

THE

THEORY OF OPTICS

${ }^{\text {sX }}$
\section*{PAUL DRUDE}
Professor of Physics at the University of Giessen
PRROPERTY OF

TRANSLATED FROM THE GERMAN

BY

C. RIBORG MANN and ROBERT A. MILLIKAN Professors of Physics in the University of Chicago

NEW IMPRESSION

LONGMANS, GREENANDGO~ FOURTH AVENUE \& 30th STREET, NEW YORK

39 PATERNOSTER ROW, LONDON BOMBAY, CALCUTTA, AND MADRAS

Copyright, rgor,
BY
LONGMANS, GREEN, AND CO.

First Edition, April, rgoz.
Reprinted November, 1907.
April, Igr3. November, igr6

FACE TO THE ENGLISH TRANSLATION

HERE does not exist to-day in the English language a al advanced text upon Optics which embodies the imt advances in both theory and experiment which have nade within the last decade.
eston's "Theory of Light" is at present the only genext upon Optics in English. Satisfactory as this work the purposes of the general student, it approaches the t from the historical standpoint and contains no funda1 development of some of the important theories which st becoming the basis of modern optics. Thus it touches ightly upon the theory of optical instruments-a branch ics which has received at the hands of Abbe and his fola most extensive and beautiful development ; it gives t meagre presentation of the electromagnetic theoryory which has recently been brought into particular nence by the work of Lorentz, Zeeman, and others ; and tains no discussion whatever of the application of the of thermodynamics to the study of radiation.
ne book by Heath, the last edition of which appeared in well supplies the lack in the field of Geometrical Optics, asset's "Treatise on Physical Optics" (1892) is a valuand advanced presentation of many aspects of the wave
the relation between the laws of radiation and the principles of thermodynamics, have yet been attempted in any general text in English.

It is in precisely these two respects that the " Lehrbuch der Optik" by Professor Paul Drude (Leipzig, 1900) particularly excels. Therefore in making this book, written by one who has contributed so largely to the progress which has been made in Optics within the last ten years, accessible to the English-speaking public, the translators have rendered a very important service to English and American students of Physics.

No one who desires to gain an insight into the most modern aspects of optical research can afford to be unfamiliar with this remarkably original and consecutive presentation of the subject of Optics.

A. A. Michelson.

Universtity of Chicago, February, 1902.

AUTHOR'S PREFACE

THE purpose of the present book is to introduce the reader who is already familiar with the fundamental concepts of the differential and integral calculus into the domain of optics in such a way that he may be able both to understand the aims and results of the most recent investigation and, in addition, to follow the original works in detail.

The book was written at the request of the publisher-a request to which I gladly responded, not only because I shared his view that a modern text embracing the entire domain was wanting, but also because I hoped to obtain for myself some new ideas from the deeper insight into the subject which writing in book form necessitates. In the second and third sections of the Physical Optics I have advanced some new theories. In the rest of the book I have merely endeavored to present in the simplest possible way results already published.

Since I had a text-book in mind rather than a compendium, I have avoided the citation of such references as bear only upon the historical development of optics. The few references which I have included are merely intended to serve the reader for more complete information upon those points which can find only brief presentation in the text, especially

AUTHOR'S PREFACE

In order to keep in touch with experiment and at simplest possible presentation of the subject I have c synthetic method. The simplest experiments lead i domain of geometrical optics, in which but few assu need to be made as to the nature of light. Hence begun with geometrical optics, following closely the e treatment given by Czapski in " Winkelmann's Handb Physik" and by Lommer in the ninth edition of the " Pouillet" text.

The first section of the Physical Optics, which foll Geometrical, treats of those general properties of lig which the conclusion is drawn that light consists in a change of condition which is propagated with finite vel the form of transverse waves. In this section I have ir as an important advance upon most previous texts, S feld's rigorous solution of the simplest case of diff Cornu's geometric representation of Fresnel's integra on the experimental side, Michelson's echelon spectros

In the second section, for the sake of the treatmen optical properties of different bodies, an extension hypotheses as to the nature of light became for the fi necessary. In accordance with the purpose of the book merely mentioned the mechanical theories of light; electromagnetic theory, which permits the simplest an consistent treatment of optical relations, I have prese the following form :

Let X, Y, Z, and α, β, γ represent respectively th ponents of the electric and magnetic forces (the first m in electrostatic units); also let j_{x}, j_{y}, j_{z}, and $s_{x}, s_{y}, s_{x} \mathrm{r}$ the components of the electric and magnetic current d i.e. $\frac{\mathrm{I}}{4 \pi}$ times the number of electric or magnetic lines
electromagnetic to the electrostatic unit, the following fundamental equations always hold:

$$
\frac{4 \pi j_{x}}{c}=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}, \text { etc., } \frac{4 \pi s_{x}}{c}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}, \text { etc. }
$$

The number of lines of force is defined in the usual way. The particular optical properties of bodies first make their appearance in the equations which connect the electric and magnetic current densities with the electric and magnetic forces. Let these equations be called the substance equations in order to distinguish them from the above fundamental equations. Since these substance equations are developed for non-homogeneous bodies, i.e. for bodies whose properties vary from point to point, and since the fundamental equations hold in all cases, both the differential equations of the electric and magnetic forces and the equations of condition which must be fulfilled at the surface of a body are immediately obtained.

In the process of setting up "substance and fundamental equations" I have again proceeded synthetically in that I have deduced them from the simplest electric and magnetic experiments. Since the book is to treat mainly of optics this process can here be but briefly sketched. For a more complete development the reader is referred to my book "Physik des Aethers auf elektromagnetische Grundlage" (Enke, 1894).

In this way however, no explanation of the phenomena of dispersion is obtained because pure electromagnetic experiments lead to conclusions in what may be called the domain of macrophysical properties only. For the explanation of optical dispersion a hypothesis as to the microphysical properties of bodies must be made. As such I have made use of the ion-hypothesis introduced by Helmholtz because it seemed to me the simplest, most intelligible, and most consistent way of presenting not only dispersion, absorption, and rotary
polarization, but also magneto-optical phenomena and th optical properties of bodies in motion. These two last-name subjects I have thought it especially necessary to conside because the first has acquired new interest from Zeeman's dis covery, and the second has received at the hands of H. A Lorentz a development as comprehensive as it is elegan This theory of Lorentz I have attempted to simplify by th elimination of all quantities which are not necessary to optics With respect to magneto-optical phenomena I have pointe out that it is, in general, impossible to explain them by th mere supposition that ions set in motion in a magnetic fiel are subject to a deflecting force, but that in the case of th strongly magnetic metals the ions must be in such a continuou motion as to produce Ampère's molecular currents. Thi supposition also disposes at once of the hitherto unanswere question as to why the permeability of iron and, in fact, of al other substances must be assumed equal to that of the fre ether for those vibrations which produce light.

The application of the ion-hypothesis leads also to som new dispersion formulæ for the natural and magnetic rotatio of the plane of polarization, formulæ which are experimentall verified. Furthermore, in the case of the metals, the ion hypothesis leads to dispersion formulæ which make the con tinuity of the optical and electrical properties of the metal depend essentially upon the inertia of the ions, and which hav also been experimentally verified within the narrow limits thu far accessible to observation.

The third section of the book is concerned with the rela tion of optics to thermodynamics and (in the third chapter) t the kinetic theory of gases. The pioneer theoretical work i these subjects was done by Kirchhoff, Clausius, Boltzmanr and W. Wien, and the many fruitful experimental investiga

Imbued with this conviction, I have written this book in the endeavor to make the theory accessible to that wider circle of readers who have not the time to undertake the study of the original works. I can make no claim to such completeness as is aimed at in Mascart's excellent treatise, or in Winkelmann's Handbuch. For the sake of brevity I have passed over many interesting and important fields of optical investigation. My purpose is attained if these pages strengthen the reader in the view that optics is not an old and worn-out branch of Physics, but that in it also there pulses a new life whose further nourishing must be inviting to every one.

Mr. F. Kiebitz has given me efficient assistance in the reading of the proof.

Leipzig, January, 1900.

INTRODUCTION

Many optical phenomena, among them those which have found the most extensive practical application, take place in accordance with the following fundamental laws:
r. The law of the rectilinear propagation of light;
2. The law of the independence of the different portions of a beam of light;
3. The law of reflection;
4. The law of refraction.

Since these four fundamental laws relate only to the geometrical determination of the propagation of light, conclusions concerning certain geometrical relations in optics may be reached by making them the starting-point of the analysis without taking account of other properties of light. Hence these fundamental laws constitute a sufficient foundation for so-called geometrical optics, and no especial hypothesis which enters more closely into the nature of light is needed to make the superstructure complete.

In contrast with geometrical optics stands physical optics, which deals with other than the purely geometrical properties, and which enters more closely into the relation of the physical properties of different bodies to light phenomena. The best success in making a convenient classification of the great multitude of these phenomena has been attained by devising particular hypotheses as to the nature of light.

From the standpoint of physical optics the four above-mentioned fundamental laws appear only as very close approxima-
tions. However, it is possible to state within what limits the laws of geometrical optics are accurate, i.e. under what circumstances their consequences deviate from the actual facts.

This circumstance must be borne in mind if geometrical optics is to be treated as a field for real discipline in physics rather than one for the practice of pure mathematics. The truly complete theory of optical instruments can only be developed from the standpoint of physical optics; but since, as has been already remarked, the laws of geometrical optics furnish in most cases very close approximations to the actual facts, it seems justifiable to follow out the consequences of these laws even in such complicated cases as arise in the theory of optical instruments.

TABLE OF CONTENTS

PART I.-GEOMETRICAL OPTICS

CHAPTER I
the fundamental Laws
art. page
I. Direct Experiment. I
2. Law of the Extreme Path 6
3. Law of Malus I I
CHAPTER II
GEOMETRICAL THEORY OF OPTICAL IMAGES
I. The Concept of Optical Images 14
2. General Formulæ for Images I 5
3. Images Formed by Coaxial Surfaces 17
4. Construction of Conjugate Points 24
5. Classification of the Different Kinds of Optical Systems 25
6. Telescopic Systems 26
7. Combinations of Systems 28
CHAPTER III
PHYSICAL CONDITIONS FOR IMAGE FORMATION

1. Refraction at a Spherical Surface 32
2. Reflection at a Spherical Surface. 36
3. Lenses 40
4. Thin Lenses 42
5. Experimental Determination of Focal Length. 44
6. Astigmatic Systems 46
7. Means of Widening the Limits of Image Formation 52
8. Spherical Aberration. 54
xiv TABLE OF CONTENTS
art. PAGE
9. The Law of Sines 58
10. Images of Large Surfaces by Narrow Beams 63
11. Chromatic Aberration of Dioptric Systems 66
CHAPTER IV
APERTURES AND THE EFFECTS DEPENDING UPON THEM
12. Entrance- and Exit-Pupils. 73
13. Telecentric Systems 75
14. Field of View 76
15. The Fundamental Laws of Photometry. 77
16. The Intensity of Radiation and the Intensity of Illumination of Optical Surfaces 84
17. Subjective Brightness of Optical Images 86
18. The Brightness of Point Sources 90
19. The Effect of the Aperture upon the Resolving Power of Optical Instruments 91
CHAPTER V
OPTICAL INSTRUMENTS
20. Photographic Systems 93
21. Simple Magnifying-glasses 95
22. The Microscope. 97
23. The Astronomical Telescope 107
24. The Opera Glass 109
25. The Terrestrial Telescope 112
26. The Zeiss Binocular 112
27. The Reflecting Telescope 113
PART II.-PHYSICAL OPTICS
Section I
ART.
28. Fizeau's Method 116
29. Foucault's Method II 8
30. Dependence of the Velocity of Light upon the Medium and the Color 120
31. The Velocity of a Group of Waves I 21
CHAPTER II
INTERFERENCE OF LIGHT
I. General Considerations 124
32. Hypotheses as to the Nature of Light. 124
33. Fresnel's Mirrors. 130
34. Modifications of the Fresnel Mirrors. I 34
35. Newton's Rings and the Colors of Thin Plates. I 36
36. Achromatic Interference Bands 144
37. The Interferometer. 144
38. Interference with Large Difference of Path 148
39. Stationary Waves 154
40. Photography in Natural Colors I 56
CHAPTER III
HUYGENS' PRINCIPLE
I. Huygens' Principle as first Conceived. I 59
41. Fresnel's Improvement of Huygens' Principle. 162
42. The Differential Equation of the Light Disturbance. 169
43. A Mathematical Theorem. 172
44. Two General Equations 174
45. Rigorous Formulation of Huygens' Principle 179
CHAPTER IV
DIFFRACTION OF LIGHT
46. General Treatment of Diffraction Phenomena 185
47. Fresnel's Diffraction Phenomena r 88
48. Fresnel's Integrals. I88
49. Diffraction by a Straight Edge I 92
50. Diffraction through a Narrow Slit. 198
51. Diffraction by a Narrow Screen. 201
52. Rigorous Treatment of Diffraction by a Straight Edge 203

TABLE OF CONTENTS

ART.
8. Fraunhofer's Diffraction Phenomena.
9. Diffraction through a Rectangular Opening
10. Diffraction through a Rhomboid
ir. Diffraction through a Slit
12. Diffraction Openings of any Form
13. Several Diffraction Openings of like Form and Orientation.
14. Babinet's Theorem
15. The Difffraction Grating
16. The Concave Grating
17. Focal Properties of a Plane Grating
18. Resolving Power of a Grating
19. Michelson's Echelon
20. The Resolving Power of a Prism
21. Limit of Resolution of a Telescope.
22. The Limit of Resolution of the Human Eye
23. The Limit of Resolution of the Microscope
CHAPTER V
POLARIZATION
I. Polarization by Double Refraction
2. The Nicol Prism
3. Other Means of Producing Polarized Light.
4. Interference of Polarized Light
5. Mathematical Discussion of Polarized Light.
6. Stationary Waves Produced by Obliquely Incident PolarizeLight
7. Position of the Determinative Vector in Crystals
8. Natural and Partially Polarized Light
9. Experimental Investigation of Elliptically Polarized Light.
Section II
optical properties of bodies
CHAPTER I
ART.
4. Definition of the Electric Current in the Electrostatic and the Electromagnetic Systems. 263
5. Definition of the Magnetic Current. 265
6. The Ether 267
7. Isotropic Dielectrics 268
8. The Boundary Conditions 271
9. The Energy of the Electromagnetic Field 272
10. The Rays of Light as the Lines of Energy Flow. 273
CHAPTER II
TRANSPARENT ISOTROPIC MEDIA
r. The Velocity of Light. 274
2. The Transverse Nature of Plane Waves. 278
3. Reflection and Refraction at the Boundary between two Trans- parent Isotropic Media. 278
4. Perpendicular Incidence; Stationary Waves. 284
5. Polarization of Natural Light by Passage through a Pile of Plates. 285
6. Experimental Verification of the Theory. 286
7. Elliptic Polarization of the Reflected Light and the Surface or Transition Layer 287
8. Total Reflection 295
9. Penetration of the Light into the Second Medium in the Case of Total Reflection 299
10. Application of Total Reflection to the Determination of Index of Refraction 301
11. The Intensity of Light in Newton's Rings 302
12. Non-homogeneous Media; Curved Rays 306
CHAPTER III
OPTICAL PROPERTIES OF TRANSPARENT CRYSTALS
I. Differential Equations and Boundary Conditions. 308
2. Light-vectors and Light-rays 311
3. Fresnel's Law for the Velocity of Light 314
4. The Directions of the Vibrations 316
5. The Normal Surface 317
6. Geometrical Construction of the Wave Surface and of the Direc- tion of Vibration 320

ART.
7. Uniaxial Crystals
8. Determination of the Direction of the Ray from the Directio the Wave Normal.
9. The Ray Surface
10. Conical Refraction
ri. Passage of Light through Plates and Prisms of Crystal
12. Total Reflection at the Surface of Crystalline Plates.
13. Partial Reflection at the Surface of a Crystalline Plate
14. Interference Phenomena Produced by Crystalline Plate Polarized Light when the Incidence is Normal.
15. Interference Phenomena in Crystalline Plates in Conver Polarized Light.

CHAPTER IV

ABSORBING MEDIA

1. Electromagnetic Theory
2. Metallic Reflection
3. The Optical Constants of the Metals
4. Absorbing Crystals
5. Interference Phenomena in Absorbing Biaxial Crystals
6. Interference Phenomena in Absorbing Uniaxial Crystals.

CHAPTER V

DISPERSION
I. Theoretical Considerations
2. Normal Dispersion
3. Anomalous Dispersion
4. Dispersion of the Metals.

CHAPTER VI

OPTICALLY ACTIVE SUBSTANCES
I. General Considerations
2. Isotropic Media.
3. Rotation of the Plane of Polarization.

CHAPTER VII

MAGNETICALLY ACTIVE SUBSTANCES

A. Hypothesis of Molecular Currents

art. PAGE
I. General Considerations 418
2. Deduction of the Differential Equations 420
3. The Magnetic Rotation of the Plane of Polarization. 426
4. Dispersion in Magnetic Rotation of the Plane of Polarization. 429
5. Direction of Magnetization Perpendicular to the Ray 433
B. Hypothesis of the Hall Effect
I. General Considerations 433
2. Deduction of the Differential Equations 435
3. Rays Parallel to the Direction of Magnetization 437
4. Dispersion in the Magnetic Rotation of the Plane of Polarization. 438
5. The Impressed Period Close to a Natural Period 440
6. Rays Perpendicular to the Direction of Magnetization 443
7. The Impressed Period in the Neighborhood of a Natural Period. 444
8. The Zeeman Effect. 446
9. The Magneto-optical Properties of Iron, Nickel, and Cobalt 449
10. The Effects of the Magnetic Field of the Ray of Light 452
CHAPTER VIII
BODIES IN MOTION

1. General Considerations 457
2. The Differential Equations of the Electromagnetic Field Re- ferred to a Fixed System of Coordinates 457
3. The Velocity of Light in Moving Media. 465
4. The Differential Equations and the Boundary Conditions Re- ferred to a Moving System of Coordinates which is Fixed with Reference to the Moving Medium 467
5. The Determination of the Direction of the Ray by Huygens' Principle. 470
6. The Absolute Time Replaced by a Time which is a Function of the Coordinates. 471
7. The Configuration of the Rays Independent of the Motion 473
8. The Earth as a Moving System. 474
9. The Aberration of Light. 475
10. Fizeau's Experiment with Polarized Light. 477
II. Michelson's Interference Experiment 478

PART III.-RADIATION

CHAPTER I

ENERGY OF RADIATION

ART. Pag

1. Emissive Power 48
2. Intensity of Radiation of a Surface. 48
3. The Mechanical Equivalent of the Unit of Light 48
4. The Radiation from the Sun 48;
5. The Efficiency of a Source of Light 48;
6. The Pressure of Radiation 48
7. Prevost's Theory of Exchanges 49
CHAPTER II
APPLICATION OF THE SECOND LAW OF THERMODYNAMICS TO PURE TEMPERATURE RADIATION
I. The Two Laws of Thermodynamics. 49
8. Temperature Radiation and Luminescence. 49
9. The Emissive Power of a Perfect Reflector or of a Perfectly Transparent Body is Zero. 49
10. Kirchhoff's Law of Emission and Absorption 49
11. Consequences of Kirchboff's Law 49
12. The Dependence of the Intensity of Radiation upon the Index of Refraction of the Surrounding Medium 50
13. The Sine Law in the Formation of Optical Images of Surface Elements 50
14. Absolute Temperature 50
15. Entropy 51
16. General Equations of Thermodynamics 51
II. The Dependence of the Total Radiation of a Black upon its Ab- solute Temperature 51
17. The Temperature of the Sun Calculated from its Total Emission 51
18. The Effect of Change in Temperature upon the Spectrum of a Black Body. 51
19. The Temperature of the Sun Determined from the Distribution
TABLE OF CONTENTS xxi
CHAPTER III
INCANDESCENT VAPORS AND GASES
ART. PAGE
I. Distinction between Temperature Radiation and Luminescence. 528
20. The Ion-hypothesis 529
21. The Damping of Ionic Vibrations because of Radiation 534
22. The Radiation of the Ions under the Influence of External Radiation 535
23. Fluorescence 536
24. The Broadening of the Spectral Lines Due to Motion in the Line of Sight. 537
25. Other Causes of the Broadening of the Spectral Lines 541
Index 543

PART I

GEOMETRICAL OPTICS

CHAPTER I

THE FUNDAMENTAL LAWS

I. Direct Experiment.-The four fundamental laws stated ove are obtained by direct experiment.
The rectilinear propagation of light is shown by the shadow an opaque body which a point source of light P casts upon screen S. If the opaque body contains an aperture L, then e edge of the shadow cast upon the screen is found to be the tersection of S with a cone whose vertex lies in the source P d whose surface passes through the periphery of the aperre L.
If the aperture is made smaller, the boundary of the shadow on the screen S contracts. Moreover it becomes indefinite hen L is made very small (e.g. less than $I \mathrm{~mm}$.), for ints upon the screen which lie within the geometrical shadow F w receive light from P. However, it is to be observed at a true point source can never be realized, and, on account the finite extent of the source, the edge of the shadow could ver be perfectly sharp even if light were propagated in raight lines (umbra and penumbra). Nevertheless, in the se of a very small opening L (say of about one tenth $m m$. ameter) the light is spread out behind L upon the screen so

The same result is obtained if the shadow which an opaque body S^{\prime} casts upon the screen S is studied, instead of the spreading out of the light which has passed through a hole in an opaque object. If S^{\prime} is sufficiently small, rectilinear propagation of light from P does not take place. It is therefore necessary to bear in mind that the law of the rectilinear propagation of light holds only when the free opening through which the light passes, or the screens which prevent its passage, are not too small.

In order to conveniently describe the propagation of light from a source P to a screen S, it is customary to say that P sends rays to S. The path of a ray of light is then defined by the fact that its effect upon S can be cut off only by an obstacle that lies in the path of the ray itself. When the propagation of light is rectilinear the rays are straight lines, as when light from P passes through a sufficiently large opening in an opaque body. In this case it is customary to say that P sends a beam of light through L.

Since by diminishing L the result upon the screen S is the same as though the influence of certain of the rays proceeding from P were simply removed while that of the other rays remained unchanged, it follows that the different parts of a beam of light are independent of one another.

This law too breaks down if the diminution of the opening L is carried too far. But in that case the conception of light rays propagated in straight lines is altogether untenable.

The concept of light rays is then merely introduced for convenience. It is altogether impossible to isolate a single ray and prove its physical existence. For the more one tries to attain this end by narrowing the beam, the less does light proceed in straight lines, and the more does the concept of light rays lose its physical significance.

If the homogeneity of the space in which the light rays exist
face of the body upon which the light falls is plane, then the plane of incidence is that plane which is defined by the incident ray and the normal N to the surface, and the angle of incidence ϕ is the angle included between these two directions.

The following laws hold: The reflected and refracted rays both lie in the plane of incidence. The angle of reflection (the angle included between N and the reflected ray) is equal to the angle of incidence. The angle of refraction ϕ^{\prime} (angle included between N and the refracted ray) bears to the angle of incidence the relation

$$
\begin{equation*}
\frac{\sin \phi}{\sin \phi^{\prime}}=n \tag{I}
\end{equation*}
$$

in which n is a constant for any given color, and is called the index of refraction of the body with reference to the surrounding medium.-Unless otherwise specified the index of refraction with respect to air will be understood.-For all transparent liquids and solids n is greater than r.

If a body A is separated from air by a thin plane parallel plate of some other body B, the light is refracted at both surfaces of the plate in accordance with equation (I); i.e.

$$
\begin{equation*}
\frac{\sin \phi}{\sin \phi^{\prime}}=n_{b}, \quad \frac{\sin \phi^{\prime}}{\sin \phi^{\prime \prime}}=n_{a b}, \tag{ain}
\end{equation*}
$$ in which ϕ represents the angle of incidence in air, ϕ^{\prime} the

angle of refraction in the body $B, \phi^{\prime \prime}$ the angle of refraction in the body A, n_{b} the index of refraction of B with respect to air, $n_{a b}$ the index of refraction of A with respect to B; therefore

$$
\frac{\sin \phi}{\sin \phi^{\prime \prime}}=n_{b} \cdot n_{a b}
$$

THEORY OF OPTICS

last equation in combination with (I) then gives, n_{a} denoting the index of refraction of A with respect to air,
or

$$
\left.\begin{array}{r}
n_{a}=n \cdot n_{a b}, \tag{2}\\
n_{a b}=n_{a}: n_{b},
\end{array}\right\}
$$

i.e. the index of refraction of A with respect to B is equal to the ratio of the indices of A and B with respect to air.

If the case considered had been that of an infinitely thin plate A placed upon the body B, the same process of reasoning would have given

Hence

$$
n_{b a}=n_{b}: n_{a} .
$$

$$
n_{a b}=\mathrm{I}: n_{b a},
$$

i.e. the index of A with respect to B is the reciprocal of the index of B with respect to A.

The law of refraction stated in (I) permits, then, the conclusion that ϕ^{\prime} may also be regarded as the angle of incidence in the body, and ϕ as the angle of refraction in the surrounding medium; i.e. that the direction of propagation may be reversed without changing the path of the rays. For the case of reflection it is at once evident that this principle of reversibility also holds.

Therefore equation (I), which corresponds to the passage of light from a body A to a body B or the reverse, may be put in the symmetrical form

$$
\begin{equation*}
n_{a} \cdot \sin \phi_{a}=n_{b} \cdot \sin \phi_{b}, \tag{3}
\end{equation*}
$$

in which ϕ_{a} and ϕ_{b} denote the angles included between the normal N and the directions of the ray in A and B respectively, and n_{a} and n_{b} the respective indices with respect to some medium like air or the free ether.

The difference between the index n of a body with respect
in which n^{\prime} denotes the index of a vacuum with respect to air. Its value at atmospheric pressure and $0^{\circ} \mathrm{C}$. is

$$
n^{\prime}=\mathrm{I}: \mathrm{I} .00029 . \text {. (5) }
$$

According to equation (3) there exists a refracted ray $\left(\phi_{b}\right)$ to correspond to every possible incident ray ϕ_{a} only when $n_{a}<n_{b}$; for if $n_{a}>n_{b}$, and if

$$
\begin{equation*}
\sin \phi_{a}>\frac{n_{b}}{n_{a}}, \tag{6}
\end{equation*}
$$

then $\sin \phi_{b}>1$; i.e. there is no real angle of refraction ϕ_{b}. In that case no refraction occurs at the surface, but reflection only. The whole intensity of the incident ray must then be contained in the reflected ray; i.e. there is total reflection.

In all other cases (partial reflection) the intensity of the incident light is divided between the reflected and the refracted rays according to a law which will be more fully considered later (Section 2, Chapter II). Here the observation must suffice that, in general, for transparent bodies the refracted ray contains much more light than the reflected. Only in the case of the metals does the latter contain almost the entire intensity of the incident light. It is also to be observed that the law of reflection holds for very opaque bodies, like the metals, but the law of refraction is no longer correct in the form given in (1) or (3). This point will be more fully discussed later (Section 2, Chapter IV).

The different qualities perceptible in light are called colors. The refractive index depends on the color, and, when referred to air, increases, for transparent bodies, as the color changes from red through yellow to blue. The spreading out of white light into a spectrum by passage through a prism is due to this change of index with the color, and is called dispersion.

If the surface of the body upon which the light falls is not
above laws. However, this process is reliable only w curvature of the surface does not exceed a certain lin when the surface may be considered smooth.

Rough surfaces exhibit irregular (diffuse) reflectic refraction and act as though they themselves emitted The surface of a body is visible only because of diffuse tion and refraction. The surface of a perfect mirror is ble. Only objects which lie outside of the mirror, and rays are reflected by it, are seen.
2. Law of the Extreme Path.*-All of these e mental facts as to the direction of light rays are compreh in the law of the extreme path. If a ray of light in p from a point P to a point P^{\prime} experiences any number of 1 tions and refractions, then the sum of the products index of refraction of each medium by the distance trav in it, i.e. $\Sigma n l$, has a maximum or minimum value; i differs from a like sum for all other paths which are infir close to the actual path by terms of the second or higher o Thus if δ denotes the variation of the first order,

$$
\delta \Sigma n l=0 .
$$

The product, index of refraction times distance trave is known as the optical length of the ray.

In order to prove the proposition for a single refractio $P O P^{\prime}$ be the actual path of the light (Fig. I), $O E$ the it section of the plane of incidence $P O N$ with the surface gent plane) of the refracting body, O^{\prime} a point on the sur of the refracting body infinitely near to O, so that makes any angle θ with the plane of incidence, i.e. with line $O E$. Then it is to be proved that, to terms of the sec or higher order,

$$
n \cdot P O+n^{\prime} \cdot O P^{\prime}=n \cdot P O^{\prime}+n^{\prime} \cdot O^{\prime} P^{\prime}
$$

in which n and n^{\prime} represent the indices of refraction of the adjoining media.

If a perpendicular $O R$ be dropped from O upon $P O^{\prime}$ and a perpendicular $O R^{\prime}$ upon $P^{\prime} O^{\prime}$, then, to terms of the second order,

$$
\begin{equation*}
P O^{\prime}=P O+R O^{\prime}, \quad O^{\prime} P^{\prime}=O P^{\prime}-O^{\prime} R^{\prime} \tag{9}
\end{equation*}
$$

Also, to the same degree of approximation,

$$
\begin{equation*}
R O^{\prime}=O O^{\prime} \cdot \cos P O O^{\prime}, \quad O^{\prime} R^{\prime}=O O^{\prime} \cdot \cos P^{\prime} O O^{\prime} \tag{IO}
\end{equation*}
$$

Fig. .
In order to calculate $\cos P O O^{\prime}$ imagine an axis $O D$ perpendicular to $O N$ and $O E$, and introduce the direction cosines of the lines $P O$ and $O O^{\prime}$ referred to a rectangular system of coordinates whose axes are $O N, O E$, and $O D$. If ϕ represent the angle of incidence $P O N$, then, disregarding the sign, the direction cosines of $P O$ are
$\cos \phi, \sin \phi, \quad 0$,
=hose of $O 0^{\prime}$ are
$0, \cos \vartheta, \sin \vartheta$.
products of the corresponding direction cosines of the 1 reference to a system of rectangular coordinates, i.e.

$$
\cos P O O^{\prime}=\sin \phi \cdot \cos \vartheta
$$

and similarly

$$
\cos P^{\prime} O O^{\prime}=\sin \phi^{\prime} \cdot \cos \vartheta
$$

in which ϕ^{\prime} represents the angle of refraction.
Then, from (9) and (IO),
$n \cdot P O^{\prime}+n^{\prime} \cdot O^{\prime} P^{\prime}=n \cdot P O+n \cdot O O^{\prime} \cdot \sin \phi \cdot \cos \vartheta$

$$
+n^{\prime} . O P^{\prime}-n^{\prime} . O O^{\prime} \cdot \sin \phi
$$

Since now from the law of refraction the relation e

$$
n \cdot \sin \phi=n^{\prime} \cdot \sin \phi^{\prime},
$$

it follows that equation (8) holds for any position u of the point O^{\prime} which is infinitely close to O.

For the case of a single reflection equation (7) more simply proved. It then takes the form

$$
\delta\left(P O+O P^{\prime}\right)=0
$$

in which (Fig. 2) $P O$ and $O P^{\prime}$ denote the actual patl ray. If P_{1} be that point which is symmetrical to

Fig. 2.
respect to the tangent plane $O E$ of the refracting bod
tion at the tangent plane $O E$ is, then, for every position of the point O^{\prime}, equal to $P_{1} O^{\prime}+O^{\prime} P^{\prime}$. Now this length is a minimum if P_{1}, O^{\prime}, and P^{\prime} lie in a straight line. But in that case the point O^{\prime} actually coincides with the point O which is determined by the law of reflection. But since the property of a minimum (as well as of a maximum) is expressed by the vanishing of the first derivative, i.e. by equation (II), therefore equation (7) is proved for a single reflection.

It is to be observed that the vanishing of the first derivative is the condition of a maximum as well as of a minimum. In the case in which the refracting body is actually bounded by a plane, it follows at once from the construction given that the path of the light in reflection is a minimum. It may also be proved, as will be more fully shown later on, that in the case of refraction the actual path is a minimum if the refracting body is bounded by a plane. Hence this principle has often been called the law of least path.

When, however, the surface of the refracting or reflecting body is curved, then the path of the light is a minimutn or a maximum according to the nature of the curvature. The vanishing of the first derivative is the only property which is common to all cases, and this also is entirely sufficient for the determination of the path of the ray.

A clear comprehension of the subject is facilitated by the introduction of the so-called aplanatic surface, which is a surface such that from every point upon it the sum of the optical paths to two points P and P^{\prime} is constant. For such a surface the derivative, not only of the first order, but also of any other order, of the sum of the optical paths vanishes.

In the case of reflection the aplanatic surface, defined by

$$
\begin{equation*}
P A+P^{\prime} A=\text { constant } C \tag{12}
\end{equation*}
$$

is an ellipsoid of revolution having the points P and P^{\prime} as foci.

THEORY OF OPTICS

passes through the point O and corresponds to the points P and P^{\prime}, must evidently be tangent to the mirror $S O S^{\prime}$ at 0 , since at this point the first derivative of the optical paths vanishes for both surfaces. If now, as in the figure, the mirror $S O S^{\prime}$ is more concave than the aplanatic surface, then the optical path $P O+O P^{\prime}$ is a maximum, otherwise a minimum.

Fig. 3.
The proof of this appears at once from the figure, since for all points O^{\prime} within the ellipsoid $A O A^{\prime}$ whose equation is given in (I2), the sum $P O+O P^{\prime}$ is smaller than the constant C, while for all points outside, this sum is larger than C, and for the actual point of reflection O, it is equal to C.

In the case of refraction the aplanatic surface, defined by

$$
n \cdot P A+n^{\prime} \cdot P^{\prime} A=\mathrm{constant} C
$$

is a so-called Cartesian oval which must be convex towards the less refractive medium (in Fig. $4 n<n^{\prime}$), and indeed more convex than a sphere described about P^{\prime} as a centre.

This aplanatic surface also separates the regions for whose points O^{\prime} the sum of the optical paths $n \cdot P O^{\prime}+n^{\prime} \cdot P^{\prime} O^{\prime}>C$ from those for which that sum $<C$. The former regions lie on the side of the aplanatic surface toward the toce
two media, and $P O, P^{\prime} O$ the actual path which the light takes in accordance with the law of refraction, then the length of the path through O is a maximum or a minimum according as $S O S^{\prime}$ is more or less convex toward the less refracting medium

Fig. 4.
than the aplanatic surface $A O A^{\prime}$. The proof appears at oncc from the figure.
 a minimum. In the case shown in the figure the length of the path is a maximum.

Since, as will be shown later, the index of refraction is inversely proportional to the velocity, the optical path $n l$ is proportional to the time which the light requires to travel the distance l. The principle of least path is then identical with Fermat's principle of least time, but it is evident from the above that, under certain circumstances, the time may also be a maximum.

Since $\delta \Sigma n l=0$ holds for each single reflection or refraction, the equation $\delta \Sigma n l=0$ may at once be applied to the case of any number of reflections and refractions.
tomic system), and those for which no such surface F can b found (anorthotomic system). With the help of the preceding principle the law of Malus can now be proved. This law i: stated thus: An orthotomic system of rays remains orthotomi after any number of reflections and refractions. From the standpoint of the wave theory, which makes the rays the normals to the wave front, the law is self-evident. But it can also be deduced from the fundamental geometrical laws already used.

Let (Fig. 5) $A B C D E$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ be two rays infinitely close together and let their initial direction be normal to a surface F. If L represents the tota

Fig. 5. optical distance from A to E, then it may be proved that every ray whose total path, measured from its origin A, A^{\prime}, etc., has the same optical length L, is normal to a surface F^{\prime} which is the locus of the ends E, E^{\prime}, etc., of those paths. For the purpose of the proof let $A^{\prime} B$ and $E^{\prime} D$ be drawn.

According to the law of extreme path stated above, the length o the path $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ must be equal to that of the infinitely near path $A^{\prime} B C D E^{\prime}$, i.e. equal to L, which is also the length of the path $A B C D E$. If now from the two optical distances $A^{\prime} B C D E^{\prime}$ and $A B C D E$ the common portion $B C D$ be subtracted, it follows that

$$
n \cdot A B+n^{\prime} \cdot D E=n \cdot A^{\prime} B+n^{\prime} \cdot D E^{\prime}
$$

in which n represents the index of the medium between the surfaces F and B, and n^{\prime} that of the medium between D and F^{\prime}. But since $A B=A^{\prime} B$, because $A B$ is by hypothesi normal to F, it follows that
e. $D E$ is perpendicular to the surface F^{\prime}. In like manner may be proved that any other ray $D^{\prime} E^{\prime}$ is normal to F^{\prime}.
Rays which are emitted by a luminous point are normal to surface F, which is the surface of any sphere described about ie luminous point as a centre. Since every source of light lay be looked upon as a complex of luminous points, it llows that light rays always form an orthotomic system.

CHAPTER II

GEOMETRICAL THEORY OF OPTICAL IMAGE

1. The Concept of Optical Images. -If in the ne

 hood of a luminous point P there are refracting and re bodies having any arbitrary arrangement, then, in g there passes through any point P^{\prime} in space one and or ray of light, i.e. the direction which light takes from is completely determined. Nevertheless certain points be found at which two or more of the rays emitted by 1 sect. If a large number of the rays emitted by P inter a point P^{\prime}, then P^{\prime} is called the optical image of P. intensity of the light at P^{\prime} will clearly be a maximum. actual intersection of the rays is at P^{\prime}, the image is calle if P^{\prime} is merely the intersection of the backward prolon of the rays, the image is called virtual. The simplest ple of a virtual image is found in the reflection of a lur point P in a plane mirror. The image P^{\prime} lies at that which is placed symmetrically to P with respect to the n Real images may be distinguished from virtual by the illumination which they produce upon a suitably placed surface such as a piece of white paper. In the case of mirrors, for instance, no light whatever reaches the poi Nevertheless virtual images may be transformed into r certain optical means. Thus a virtual image can be se cause it is transformed by the eye into a real image illumines a certain spot on the retina.The cross-section of the

GEOMETRICAL THEORY OF OPTICAL IMAGES

dimension. Consider, for example, the case of a single refrac tion. If the surface of the refracting body is the aplanati surface for the two points P and P^{\prime}, then a beam of any siz which has its origin in P will be brought together in P^{\prime}; fo all rays which start from P and strike the aplanatic surfac must intersect in P^{\prime}, since for all of them the total optical dis tance from P to P^{\prime} is the same.

If the surface of the refracting body has not the form of th aplanatic surface, then the number of rays which intersect P is smaller the greater the difference in the form of the tw surfaces (which are necessarily tangent to each other, se page 10). In order that an infinitely narrow, i.e. a plan beam may come to intersection in P^{\prime}, the curvature of the su faces at the point of tangency must be the same at least in or plane. If the curvature of the two surfaces is the same at for two and therefore for all planes, then a solid elementar beam will come to intersection in P^{\prime}; and if, finally, a fini section of the surface of the refracting body coincides with th aplanatic surface, then a beam of finite cross-section will com to intersection in P^{\prime}.

Since the direction of light may be reversed, it is possib to interchange the source P and its image P^{\prime}, i.e. a source P^{\prime} has its image at P. On account of this reciprocal relation ship P and P^{\prime} are called conjugate points.
2. General Formulæ for Images.-Assume that by meat of reflection or refraction all the points P of a given space a imaged in points P^{\prime} of a second space. The former space wi be called the object space; the latter, the image space. Fro the definition of an optical image it follows that for every ra which passes through P there is a conjugate ray passir through P^{\prime}. Two rays in the object space which intersect P must correspond to two conjugate rays which intersect the image space, the intersection being at the point P^{\prime} whi
these points intersect, e.g. the ray $P_{1} P_{2}$ cuts the ray $P_{3} P_{4}$ it also intersect in a point, namely in A^{\prime} the image of A. Hence the four images $P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime} P_{4}^{\prime}$ also lie in a plane. In other corresponds and but one, point, ray, or plane in the other. Such a relation of two spaces is called in geometry a collinear relationship.

The analytical expression of the collinear relationship can be easily obtained. Let x, y, z be the coordinates of a point P of the object space referred to one rectangular system, and $x^{\prime}, y^{\prime}, z^{\prime}$ the coordinates of the point P^{\prime} referred to another versa. This is only possible if

$$
\left.\begin{array}{l}
x^{\prime}=\frac{a_{1} x+b_{1} y+c_{1} z+d_{1}}{a x+b_{1} y+c z+d}, \tag{I}\\
y^{\prime}=\frac{a_{2} x+b_{2} y+c_{2} z+d_{2}}{a x+b_{y}+c z+d} \\
z^{\prime}=\frac{a_{3} x+b_{3} y+c_{3} z+d_{3}}{a x+b y+c z+d},
\end{array}\right\}
$$

in which a, b, c, d are constants. That is, for any given $x^{\prime}, y^{\prime}, z^{\prime}$, the values of x, y, z may be calculated from the three linear equations (1); and inversely, given values of x, y, were not the quotient of two linear functions of x, y, z, then for every $x^{\prime}, y^{\prime}, z^{\prime}$, there would be several values of x, y, z.
Furthermore the deno the same linear function ($a x$ of this quotient must be one and a plane in the image space $a x+b y+c z+d)$, since otherwise
would not again correspond to a plane

$$
A^{\prime} x^{\prime}+B^{\prime} y^{\prime}+C^{\prime} z^{\prime}+D^{\prime}=0
$$

If the equations (i) be solved for x, y, and z, forms analogous to (I) are obtained; thus

$$
\begin{equation*}
x=\frac{a_{1}^{\prime} x^{\prime}+b_{1}^{\prime} y^{\prime}+c_{1}^{\prime} z^{\prime}+d_{1}^{\prime}}{a^{\prime} x^{\prime}+b^{\prime} y^{\prime}+c^{\prime} z^{\prime}+d^{\prime}}, \text { etc. } \tag{2}
\end{equation*}
$$

From (I) it follows that for

$$
a x+b y+c z+d=0: \quad x^{\prime}=y^{\prime}=z^{\prime}=\infty .
$$

Similarly from (2) for

$$
a^{\prime} x^{\prime}+b^{\prime} y^{\prime}+c^{\prime} z^{\prime}+d^{\prime}=0: \quad x=y=z=\infty .
$$

The plane $a x+b y+c z+d=0$ is called the focal plane \mathfrak{F} of the object space. The images P^{\prime} of its points P lie at infinity. Two rays which originate in a point P of this focal plane correspond to two parallel rays in the image space.

The plane $a^{\prime} x^{\prime}+b^{\prime} y^{\prime}+c^{\prime} z^{\prime}+d^{\prime}=0$ is called the focal plane \mathfrak{F}^{\prime} of the image space. Parallel rays in the object space correspond to conjugate rays in the image space which intersect in some point of this focal plane \mathfrak{F}^{\prime}.

In case $a=b=c=0$, equations (I) show that to finite values of x, y, z correspond finite values of $x^{\prime}, y^{\prime}, z^{\prime}$; and, inversely, since, when a, b, and c are zero, $a^{\prime}, b^{\prime}, c^{\prime}$ are also zero, to finite values of $x^{\prime}, y^{\prime}, z^{\prime}$ correspond finite values of x, y, z. In this case, which is realized in telescopes, there are no focal planes at finite distances.
3. Images Formed by Coaxial Surfaces.-In optical instruments it is often the case that the formation of the image takes place symmetrically with respect to an axis; e.g. this is true if the surfaces of the refracting or reflecting bodies are surfaces of revolution having a common axis, in particular, surfaces of spheres whose centres lie in a straight line.

From symmetry the image P^{\prime} of a point P must lie in the plane which passes through the point P and the axis of the system and it is entirely sufficient for the study of the imace

If the $x y$ plane of the object space and the $x^{\prime} y^{\prime}$ plane image space be made to coincide with this meridian plat if the axis of symmetry be taken as both the x and the $=$ then the z and z^{\prime} coordinates no longer appear in equatic They then reduce to

$$
x^{\prime}=\frac{a_{1} x+b_{1} y+d_{1}}{a x+b y+d}, \quad y^{\prime}=\frac{a_{2} x+b_{2} y+d_{2}}{a x+b y+d} .
$$

The coordinate axes of the $x y$ and the $x^{\prime} y^{\prime}$ syste then parallel and the x and x^{\prime} axes lie in the same line. origin O^{\prime} for the image space is in general distinct fro origin O for the object space. The positive direction of be taken as the direction of the incident light (from

Fig. 6.
right); the positive direction of x^{\prime}, the opposite, i.e. right to left. The positive direction of y and y^{\prime} will be upward (see Fig. 6).

From symmetry it is evident that x^{\prime} does not chan value when y changes sign. Therefore in equation $b_{1}=b=0$. It also follows from symmetry that a cha sign of y produces merely a change in sign of y^{\prime}. $a_{2}=d_{2}=0$ and equations (3) reduce to

$$
x^{\prime}=\frac{a_{1} x+d_{1}}{a x+d}, \quad y^{\prime}=\frac{b_{2} y}{a x+d}
$$

Five constants thus remain, but their ratios alon sufficient to determine the formation of the image.

GEOMETRICAL THEORY OF OPTICAL IMAGES

there are in general four characteristic constants which determine the formation of images by coaxial surfaces.

The solution of equations (4) for x and y gives

$$
\begin{equation*}
x=\frac{d x^{\prime}-d_{1}}{a_{1}-a x^{\prime}}, \quad y=\frac{a_{1} d-a d_{1}}{b_{2}} \cdot \frac{y^{\prime}}{a_{1}-a x^{\prime}} . \tag{5}
\end{equation*}
$$

The equation of the focal plane of the object space is $a x+d=0$, that of the focal plane of the image space $a x^{\prime}-a_{1}=0$. The intersections F and F^{\prime} of these planes with the axis of the system are called the principal foci.

If the principal focus F of the object space be taken as the origin of x, and likewise the principal focus F^{\prime} of the image space as the origin of x^{\prime}, then, if $x_{0}, x_{0}{ }^{\prime}$ represent the coordinates measured from the focal planes, αx_{0} will replace $a x+d$ and - $a x_{0}{ }^{\prime}, a_{1}-a x^{\prime}$. Then from equations (4)

$$
\begin{equation*}
x_{0} x_{0}^{\prime}=\frac{a d_{1}-a_{1} d}{a^{2}}, \quad \frac{y^{\prime}}{y}=\frac{b_{2}}{a x_{0}} . \tag{6}
\end{equation*}
$$

Hence only two characteristic constants remain in the equations. The other two were taken up in fixing the positions of the focal planes. For these two complex constants simpler expressions will be introduced by writing (dropping subscripts)

$$
\begin{equation*}
x x^{\prime}=f f^{\prime}, \quad \frac{y^{\prime}}{y}=\frac{f}{x}=\frac{x^{\prime}}{f^{\prime}} . \tag{7}
\end{equation*}
$$

In this equation x and x^{\prime} are the distances of the object and the image from the principal focal planes \mathfrak{F} and \mathfrak{F}^{\prime} respectively.

The ratio $y^{\prime}: y$ is called the magnification. It is I for $x=f$, i.e. $x^{\prime}=f^{\prime}$. This relation defines two planes $\mathfrak{5}$ and \mathfrak{F}^{\prime} which are at right angles to the axis of the system. These planes are called the unit planes. Their points of intersection H and H^{\prime} with the axis of the system are called unit points.

The unit planes are characterized by the fact that the dis-
ane with the above, the distance of the unit planes $\mathfrak{K}, \mathfrak{S}^{\prime}$ fro the focal planes $\mathfrak{F}, \mathfrak{F}^{\prime}$. The constant f is called the $f o c$ length of the object space; f^{\prime}, the focal length of the imus space. The direction of f is positive when the ray falls fir upon the focal plane \mathfrak{F}, then upon the unit plane \mathfrak{S}_{2}; for f^{\prime} th case is the reverse. In Fig. 7 both focal lengths are positive

The significance of the focal lengths can be made clear i the following way: Parallel rays in the object space must hav conjugate rays in the image space which intersect in som point in the focal plane \mathfrak{F}^{\prime} distant, say, y^{\prime} from the axis. Th value of y^{\prime} evidently depends on the angle of inclination $u \mathrm{o}$ the incident ray with respect to the axis. If $u=0$, it follow from symmetry that $y^{\prime}=0$, ie. rays parallel to the axis hov conjugate rays which intersect in the principal focus F^{\prime}. Bu

Fig. 7.
if u is not equal to zero, consider a ray $P F A$ which passes through the first principal focus F, and cuts the unit plane \sqrt{f} in A (Fig. 7). The ray which is conjugate to it, $A^{\prime} P^{\prime}$, must evidently be parallel to the axis since the first ray passes through F. Furthermore, from the property of the unit planes, A and A^{\prime} are equally distant from the axis. Consequently the distance from the axis y^{\prime} of the image which is formed by a parallel beam incident at angle u is, as appears at once from Fig. 7 .

$$
\begin{equation*}
y^{\prime}=f \cdot \tan u \tag{8}
\end{equation*}
$$

GEOMETRICAL THEORY OF OPTICAL IMAGES 2 I

med in the focal plane of the image space to the apparcht sular) magnitude of its infinitely distant object. A similar nition holds of course for the focal length f^{\prime} of the image ce, as is seen by conceiving the incident beam of parallel to pass first through the image space and then to come focus in the focal plane \mathfrak{F}.
If in Fig. $7 A^{\prime} P^{\prime}$ be conceived as the incident ray, so that functions of the image and object spaces are interchanged, the following may be given as the definition of the focal th f, which will then mean the focal length of the imarre

The focal length of the image space is cqual to the distance' reen the axis and any ray of the object spacc zohich is allel to the axis divided by the tangent of the inclination of onjugate ray.
Equation (8) may be obtained directly from (7) by making $u=y: x$ and $\tan u^{\prime}=y^{\prime}: x^{\prime}$. Since x and x^{\prime} are taken cive in opposite directions and y and y^{\prime} in the same direcit follows that u and u^{\prime} are positive in different directions. angle of inclination u of a ray in the object space is positiz' e ray goes upward from left to right; the angle of inclinau' of a ray in the image space is positive if the ray gross zward from left to right. -
The magnification depends, as equation (7) shows, upon distance of the object from the principal focus F, and f, the focal length. It is, however, independent of μ, the image of a plane object which is perpendicular to the of the system is similar to the object. On the other hand image of a solid object is not similar to the object, as is ent at once from the dependence of the magnification
x. Furthermore it is easily shown from (7) that the nification in depth, i.e. the ratio of the increment $d x^{\prime}$ of an increment $d x$ of x, is proportional to the squarc of the al magnification.

THEORY OF OPTICS

A and the axis in P (Fig. 8). Its angle of inclination u wit respect to the axis is given by

$$
\tan u=\frac{A H}{P H}=\frac{A H}{f-x},
$$

if x taken with the proper sign represents the distance of P from F.

Fig. 8.
The angle of inclination u^{\prime} of the conjugate ray with respect to the axis is given by

$$
\tan u^{\prime}=\frac{A^{\prime} H^{\prime}}{P^{\prime} H^{\prime}}=\frac{A^{\prime} H^{\prime}}{f^{\prime}-x^{\prime}}
$$

if x^{\prime} represent the distance of P^{\prime} from F^{\prime}, and P^{\prime} and A^{\prime} are the points conjugate to P and A. On account of the property of the unit planes $A H=A^{\prime} H^{\prime}$; then by combination of the last two equations with (7),

$$
\begin{equation*}
\frac{\tan u^{\prime}}{\tan u}=\frac{f-x}{f^{\prime}-x^{\prime}}=-\frac{x}{f^{\prime}}=-\frac{f}{x^{\prime}} \tag{9}
\end{equation*}
$$

The ratio of the tangents of inclination of conjugate rays is called the convergence ratio or the angular magnification. It is seen from equation (9) that it is independent of u and u^{\prime}.

The angular magnification $=-\mathrm{I}$ for $x-f^{\prime}$ and x^{\prime}
fact that a ray through one nodal point K is conjugate and parallel to a ray through the other nodal point K^{\prime}. The position of the nodal points for positive focal lengths f and f^{\prime} is

Fig. 9.
shown in Fig. 9. $K A$ and $K^{\prime} A^{\prime}$ are two conjugate rays. It follows from the figure that the distance between the two nodal points is the same as that between the two unit points. If $f=f^{\prime}$, the nodal points coincide with the unit points.

Multiplication of the second of equations (7) by (9) gives

$$
\begin{equation*}
\frac{y^{\prime} \tan u^{\prime}}{y \tan u}=-\frac{f}{f^{\prime}} \tag{10}
\end{equation*}
$$

If e be the distance of an object P from the unit plane \mathfrak{F}, and e^{\prime} the distance of its image from the unit plane \mathfrak{S}^{\prime}, e and e^{\prime} being positive if P lies in front of (to the left of) \mathfrak{F} and P^{\prime} behind (to the right of) \mathfrak{J}^{\prime}, then

$$
e=f-x, \quad e^{\prime}=f^{\prime}-x^{\prime}
$$

Hence the first of equations (7) gives

$$
\begin{equation*}
\frac{f}{e}+\frac{f^{\prime}}{e^{\prime}}=\mathrm{I} \tag{II}
\end{equation*}
$$

The same equation holds if e and e^{\prime} are the distances of P and P^{\prime} from any two conjugate planes which are perpendicular
4. Construction of Conjugate Points.-A simple graphic

Fig. Io. interpretation may be given to equati (II). If $A B C D$ (Fig. Io) is a rectang with the sides f and f^{\prime}, then at straight line $E C E^{\prime}$ intersects the pr longations of f and f^{\prime} at such distanc from A that the conditions $A E=e$ at $A E^{\prime}=e^{\prime}$ satisfy equation (II).

It is also possible to use the un plane and the principal focus to determine the point P^{\prime} conj gate to P. Draw (Fig. I i) from P a ray $P A$ parallel to th axis and a ray $P F$ passing through the principal focus

Fig. if.
$A^{\prime} F^{\prime}$ is conjugate to $P A, A^{\prime}$ being at the same distance fro the axis as A; also $P^{\prime} B^{\prime}$, parallel to the axis, is conjugate t $P F B, B^{\prime}$ being at the same distance from the axis as B. Th intersection of these two rays is the conjugate point sough The nodal points may also be conveniently used for this con struction.

The construction shown in Fig. I I cannot be used when and P^{\prime} lie upon the axis. Let a ray from P intersect the foca plane \mathfrak{F} at a distance g and the unit plane \mathfrak{F} at a distance from the axis (Fig. 12). Let the conjugate ray intersect \mathcal{F}_{6} and \mathfrak{F}^{\prime} at the distances $h^{\prime}(=h)$ and g^{\prime}. Then from the figur

GEOMETRICAL THEORY OF OPTICAL IMAGES

nd by addition, since from equation (7) $x x^{\prime}=f f^{\prime}$,

$$
\begin{equation*}
\frac{g+g^{\prime}}{h}=\frac{2 x x^{\prime}-f x^{\prime}-f^{\prime} x}{f f^{\prime}+x x^{\prime}-f x^{\prime}-f^{\prime} x}=\mathrm{r}, \tag{In}
\end{equation*}
$$

' may then be found by laying off in the focal plane \mathfrak{F}^{\prime} the stance $g^{\prime}=h-g$, and in the unit plane \mathfrak{S}^{\prime} the distance

Fig. 12.
$=h$, and drawing a straight line through the two points thus mined. g^{g} and g^{\prime} are to be taken negative if they lie w the axis.
5. Classification of the Different Kinds of Optical Sys-
s. -The different kinds of optical systems differ from one her only in the signs of the focal lengths f and f^{\prime}.
the two focal lengths have the same sign, the system is rent, i.e. if the object moves from left to right (x ines), the image likewise moves from left to right lecreases).. This follows at once from equation (7) by g into account the directions in which x and x^{\prime} are cond positive (see above, p. 18). It will be seen later that ind of image formation occurs if the image is due to ton alone or to an even number of reflections or to a nation of the two. Since this kin of mace four.

If the two focal lengths have opposite signs the system i contracurrent, i.e. if the object moves from left to right, th image moves from right to left, as appears from the formul $x x^{\prime}=f f^{\prime}$. This case occurs if the image is produced by an od number of reflections or by a combination of an odd number o such with refractions. This kind of image formation is called katoptric. When it occurs the direction of propagation of the light in the image space is opposite to that in the object space so that both cases may be included under the law: In all case of image formation if a point P be conceived to move along a ray in the direction in which the light travels, the image P^{\prime} of tha point moves along the conjugate ray in the direction in which the light travels.

Among dioptric systems a distinction is made between those having positive and those having negative focal lengths. The former systems are called convergent, the latter divergent, because a bundle of parallel rays, after passing the unit plane \mathfrak{S}^{\prime} of the image space, is rendered convergent by the former, divergent by the latter. No distinction between systems or the ground that their foci are real or virtual can be made, fo it will be seen later that many divergent systems (e.g. the microscope) have real foci.

By similar definition katoptric systems which have a nega. tive focal length in the image space are called convergent, for in reflection the direction of propagation of the light is reversed.

There are therefore the four following kinds of optica systems:

$$
\begin{aligned}
& \text { Dioptric... }\left\{\begin{array}{l}
\text { a. Convergent: }+f,+f^{\prime} \\
\text { b. Divergent: }-f,
\end{array} \text { - } f^{\prime} .\right. \\
& \text { Katoptric. . }\left\{\begin{array}{l}
\text { a. Convergent: }+f,-f^{\prime} . \\
b . \text { Divergent: }-f,+f^{\prime} .
\end{array}\right.
\end{aligned}
$$

6. Telescopic Systems.-Thus far it has been assumed that the focal planes lie at finite

GEOMETRICAL THEORY OF OPTICAL IMAGES

it a vanishes from equations (4), which then reduce by a able choice of the origin of the x coordinates to

$$
\begin{equation*}
x^{\prime}=\alpha x, \quad y^{\prime}=\beta y . \tag{I3}
\end{equation*}
$$

$x^{\prime}=0$ when $x=0$, it is evident that any two conjugate
its may serve as origins from its may serve as origins from which x and x^{\prime} are measured. flows from equation (I3) that the magnification in breadth depth are constant. The angular magnification is also tant, for, given any two conjugate rays $O P$ and $O^{\prime} P^{\prime}$, their sections with the axis of the system may serve as the ns. If then a point P of the first ray has the coordinates and its conjugate point P^{\prime} the coordinates x^{\prime}, y^{\prime}, the ens of the angles of inclination are
e by (I 3)

$$
\tan u=y: x, \quad \tan u^{\prime}=y^{\prime}: x^{\prime}
$$

$$
\begin{equation*}
\tan u^{\prime}: \tan u=\beta: \alpha . \tag{IA}
\end{equation*}
$$

st be positive for katoptric (contracurrent) systems, negaor dioptric (concurrent) systems. For the latter it is nt from (14) and a consideration of the way in which u ' are taken positive (see above, p. 2I) that for positive β images of infinitely distant objects are formed, for nega, inverted images. There are therefore four different of telescopic systems depending upon the signs of α nations (I4) and (I 3) give

$$
\begin{equation*}
\frac{y^{\prime} \tan u^{\prime}}{y \tan u}=\frac{\beta^{2}}{\alpha} . \tag{15}
\end{equation*}
$$

comparison of this equation with (IO) (p. 23) shows that escopic systems the two focal lengths, though both have a finite ratio. Thus

$$
\begin{equation*}
\frac{f}{f^{\prime}}=-\frac{\beta^{2}}{\alpha} \tag{16}
\end{equation*}
$$

THEORY OF OPTICS

equal to that of the image space (cf. equation (9), Chapter III) then $\alpha=-\beta^{2}$. Hence from (14)

$$
\tan u^{\prime}: \tan u=-\mathrm{I}: \beta .
$$

This convergence ratio (angular magnification) is called in the case of telescopes merely the magnification Γ. From (I 3)

$$
y: y^{\prime}=-\Gamma
$$

ie. for telescopes the reciprocal of the lateral magnification is numerically equal to the angular magnification. must be equivalent to a single system. Here again attention will be confined to coaxial systems. If f_{1} and f_{1}^{\prime} are the focal second, and f and f^{\prime} those of the combination, then both the focal lengths and the positions of the principal foci of the com$F_{1}^{\prime} F_{2}=\Delta$ (Fig. 13) is known. constructed if the distance for brevity the separation of th. This distance will be called be considered positive if the two systems•I and 2 , and will negative.

A ray S (Fig. I3),

e point of intersection of this ray with the axis is the primal focus of the image space of the combination. Its position be calculated from the fact that F_{1}^{\prime} and F^{\prime} are conjugate its of the second system, ie. (cf. eq. 7)

$$
\begin{equation*}
F_{2}^{\prime} F^{\prime}=\frac{f_{2} f_{2}^{\prime}}{\Delta} \tag{17}
\end{equation*}
$$

which $F_{2}^{\prime} F$ is positive if F^{\prime} lies to the right of F_{2}^{\prime}. F^{\prime} may determined graphically from the construction given above page 25 , since the intersection of S_{1} and S^{\prime} with the focal es F_{2} and F_{2}^{\prime} are at such distances g and g^{\prime} from the axis $g+g^{\prime}=y_{1}$.
The intersection A^{\prime} of S^{\prime} with S must lie in the unit plane f the image space of the combination. Thus \mathfrak{S}^{\prime} is deterd, and, in consequence, the focal length f^{\prime} of the comton, which is the distance from \mathfrak{S}^{\prime} of the principal focus F^{\prime} e combination. From the construction and the figure it wis that f^{\prime} is negative when Δ is positive.
may be determined analytically from the angle of inclin u^{\prime} of the ray S^{\prime}. For S_{1} the relation holds:

$$
\tan u_{1}=y: f_{1}^{\prime}
$$

which u_{1} is to be taken with the opposite sign if S_{1} is coned the object ray of the second system. Now by (9),

$$
\frac{\tan u^{\prime}}{\tan u_{1}}=\frac{\Delta}{f_{2}^{\prime}}
$$

ce $\tan u_{1}=-y: f_{1}^{\prime}$,

$$
\tan u^{\prime}=-y \cdot \frac{\Delta}{f_{1}^{\prime} f_{2}^{\prime}}
$$

er, since (cf. the law, p. 21) $y: f^{\prime}=\tan u^{\prime}$, it follows

$$
\begin{equation*}
f^{\prime}=-\frac{f_{1}^{\prime} f_{2}^{\prime}}{\Delta} \tag{18}
\end{equation*}
$$

ila consideration of a ray parallel to the axis in the
space and its conjugate ray in the
and for the distance of the principal focus F of the combinatio from the principal focus F_{1},

$$
F F_{1}=\frac{f_{1} f_{1}^{\prime}}{\Delta}
$$

in which $F F_{1}$ is positive if F lies to the left of F_{1}.
Equations (17), (18), (19), and (20) contain the character istic constants of the combination calculated from those of th systems which unite to form it.

Precisely the same process may be employed when th combination contains more than two systems.

If the separation Δ of the two systems is zero, the foca lengths f and f^{\prime} are infinitely great, i.e. the system is tele scopic. The ratio of the focal lengths, which remains finite is given by (18) and (19). Thus

$$
\frac{f}{f^{\prime}}=\frac{f_{1}}{f_{1}^{\prime}} \cdot \frac{f_{2}}{f_{2}} .
$$

From the consideration of an incident ray parallel to the axi the lateral magnification $y^{\prime}: y$ is seen to be

$$
y^{\prime}: y=\beta=-f_{2}: f_{1}^{\prime} .
$$

By means of (21), (22), and (16) the constant α, which repre sents the magnification in depth (cf. equation (13)) is found Thus

$$
\begin{equation*}
\frac{x^{\prime}}{x}=\alpha=-\frac{f_{2} f_{2}^{\prime}}{f_{1} f_{1}^{\prime}} . \tag{23}
\end{equation*}
$$

Hence by (14) the angular magnification is

$$
\begin{equation*}
\tan u^{\prime}: \tan u=\beta: \alpha=f_{1}: f_{2}^{\prime} . \tag{24}
\end{equation*}
$$

The above considerations as to the graphical or analytica determination of the constants of a combination must be somewhat modified if the combination contains one or more telescopic systems. The result can, however, be easily obtained by constructing or calculating the path through the successive systems of an incident ray which is parallel to

CHAPTER III

PHYSICAL CONDITIONS FOR IMAGE FORMATION

Abbe's geometrical theory of the formation of optical images, which overlooks entirely the question of their physical realization, has been presented in the previous chapter, because the general laws thus obtained must be used for every special case of image formation no matter by what particular physical means the images are produced. The concept of focal points and focal lengths, for instance, is inherent in the concept of an image no matter whether the latter is produced by lenses or by mirrors or by any other means.

In this chapter it will appear that the formation of optical images as described ideally and without limitations in the previous chapter is physically impossible, e.g. the image of an object of finite size cannot be formed when the rays have too great a divergence.

It has already been shown on page 15 that, whatever the divergence of the beam, the image of one point may be produced by reflection or refraction at an aplanatic surface. Images of other points are not produced by widely divergent rays, since the form of the aplanatic surface depends upon the position of the point. For this reason the more detailed treatment of special aplanatic surfaces has no particular physical interest. In what follows only the formation of images by refracting and reflecting spherical surfaces will be treated, since, on account of the ease of manufacture, these alone are used in optical instruments; and since, in any case, for the reason mentioned above, no other forms of reflecting or refracting surfaces furnish

It will appear that the formation of optical images can b practically accomplished by means of refracting or reflectin spherical surfaces if certain limitations are imposed, namely limitations either upon the size of the object, or upon the divergence of the rays producing the image.
I. Refraction at a Spherical Surface.-In a medium o index n, let a ray $P A$ fall upon a sphere of a more strongly refractive substance of index n^{\prime} (Fig. 14). Let the radius of

Fig. 14.
the sphere be r, its centre G. In order to find the path of the refracted ray, construct about C two spheres I and 2 of radii $r_{1}=\frac{n^{\prime}}{n^{\prime}} r$ and $r_{2}=\frac{n}{n^{\prime}} r$ (method of Weierstrass).

Let $P A$ meet sphere I in B; draw $B C$ intersecting sphere 2 in D. Then $A D$ is the refracted ray. This is at once evident from the fact that the triangles $A D C$ and $B A C$ are similar. For $A C: C D=B C: C A=n^{\prime}: n$. Hence the $\Varangle D A C=\Varangle A B C=\phi^{\prime}$, the angle of refraction, and since $\Varangle B A C=\phi$, the angle of incidence, it follows that

$$
\sin \phi: \sin \phi^{\prime}=B C: A C=n^{\prime}: n
$$

which is the law of refraction.

PHYSICAL CONDITIONS FOR IMAGE FORMATION

constructed, it becomes evident from the figure that these ys will not all intersect in the same point P^{\prime}. Hence no age is formed by widely divergent rays. Further it appears m the above construction that all rays which intersect the rere at any point, and whose prolongations pass through are refracted to the point D. Inversely all rays which rt from D have their virtual intersection in B. Hence upon ry straight line passing through the centre C of a sphere and $\dot{r} \frac{n}{n^{\prime}}$ respectively which, for all rays, stand in the relation bject and virtual (not real) image. These two points are d the aplanatic points of the sphere.
If u and u^{\prime} represent the angles of inclination with respect he axis $B D$ of two rays which start from the aplanatic ts B and D, i.e. if

$$
\Varangle A B C=u, \quad \Varangle A D C=u^{\prime},
$$

as was shown above, $\Varangle A B C=\Varangle D A C=u$. From asideration of the triangle $A D C$ it follows that

$$
\sin u^{\prime}: \sin u=A C: C D=n^{\prime}: n
$$

is case then the ratio of the sines of the angles of inclinaof the conjugate rays is independent of u, not, as in equa9) on page 22 , the ratio of the tangents. The difference en the two cases lies in this, that, before, the image of ion of space was assumed to be formed, while now only nage of a surface formed by widely divergent rays is consideration. The two concentric spherical surfaces is of Fig. I4 are the loci of all pairs of aplanatic points B To be sure, the relation of these two surfaces is not ar in the sense in which this term was used above, e the surfaces are not planes. If s and s^{\prime} represent the

Hence equation (1) may be written :

$$
\sin ^{2} u \cdot s \cdot n^{2}=\sin ^{2} u^{\prime} \cdot s^{\prime} \cdot n^{\prime 2}
$$

It will be seen later that this equation always holds for surface elements s and s^{\prime} which have the relation of object image no matter by what particular arrangement the imag produced.

In order to obtain the image of a portion of space by me of refraction at a spherical surface, the divergence of the r which form the image must be taken very small. Let (Fig. 15) be an incident ray, $A P^{\prime}$ the refracted ray, and $P($

Fig. 15.
the line joining P with the centre of the sphere C. Then fro the triangle $P A C$,

$$
\sin \phi: \sin \alpha=P H+r: P A
$$

and from the triangle $P^{\prime} A C$,

$$
\sin \phi^{\prime}: \sin \alpha=P^{\prime} H-r: P^{\prime} A
$$

Hence by division,

$$
\frac{\sin \phi}{\sin \phi^{\prime}}=\frac{n^{\prime}}{n}=\frac{P H+r}{P^{\prime} H-r} \cdot \frac{P^{\prime} A}{P A}
$$

Now assume that A lies infinitely near to H, ie. that the angl $P H$, and $P^{\prime} A$ to $P^{\prime} H$. Also let

Then from (3)

$$
\frac{e+r}{e^{\prime}-r} \cdot \frac{e^{\prime}}{e}=\frac{n^{\prime}}{n}
$$

or

$$
\begin{equation*}
\frac{n}{e}+\frac{n^{\prime}}{e^{\prime}}=\frac{n^{\prime}-n}{r} . \tag{4}
\end{equation*}
$$

In which r is to be taken positive if the sphere is convex toward the incident light, i.e. if C lies to the right of H. e is positive if P lies to the left of H; e^{\prime} is positive if P^{\prime} lies to the right of H. To every e there corresponds a definite e^{\prime} which is independent of the position of the ray $P A$, i.e. an image of a portion of space which lies close to the axis $P C$ is formed by rays which lie close to $P C$.

A comparison of equation (4) with equation (II) on page 23 shows that the focal lengths of the system are

$$
\begin{equation*}
f=r \frac{n}{n^{\prime}-n}, \quad f^{\prime}=r \frac{n^{\prime}}{n^{\prime}-n}, \tag{5}
\end{equation*}
$$

and that the two unit planes \mathfrak{S} and \mathfrak{S}^{\prime} coincide and are tangent to the sphere at the point H. Since f and f^{\prime} have the same sign, it follows, from the criterion on page 25 above, that the system is dioptric or concurrent. If $n^{\prime}>n$, a convex curvature (positive r) means a convergent system. Real images ($e^{\prime}>0$) are formed so long as $e>f$. Such images are also inverted.

Equation (10) on page 23 becomes

$$
\begin{equation*}
\frac{y^{\prime} \tan u^{\prime}}{v \tan u}=-\frac{n}{n^{\prime}} . \tag{6}
\end{equation*}
$$

By the former convention the angles of inclination u and u^{\prime} of conjugate rays are taken positive in different ways. If they are taken positive in the same way the notation ' u will be used instead of u^{\prime}, i.e. ' $u=-u^{\prime}$. Hence the last equation may be written:

In this equation a quantity which is not changed by refrac tion appears, -an optical invariant. This quantity remain constant when refraction takes place at any number of coaxia spherical surfaces. For such a case let n be the index o refraction of the first medium, n^{\prime} that of the last; then equa tion (7) holds. But since in general for every system, from equation (IO), page 23 ,

$$
\begin{equation*}
\frac{y^{\prime} \tan u^{\prime}}{y \tan u}=\frac{f}{f^{\prime}} \tag{8}
\end{equation*}
$$

there results from a combination with (7)

$$
\begin{equation*}
f: f^{\prime}=n: n^{\prime} \tag{9}
\end{equation*}
$$

i.e. In the formation of images by a system of coaxial refract ing spherical surfaces the ratio of the focal lengths of th system is equal to the ratio of the indices of refraction of th first and last media. If, for example, these two media ar air, as is the case with lenses, mirrors, and most optical instru ments, the two focal lengths are equal.
2. Reflection at a Spherical Surface. -Let the radius $r b$ considered positive for a convex, negative for a concave mirror

Fig. 16.
By the law of reflection (Fig. 16) $\Varangle P A C=\Varangle P^{\prime} A C$ Hence from geometry

$$
P A: P^{\prime} A=P C: P^{\prime} C
$$

HYSICAL CONDITIONS FOR IMAGE FORMATION

h the axis varies with the angle. .In that case no image of point P exists. But if the angle $A P C$ is so small that the le itself may be used in place of its sine, then for every at P there exists a definite conjugate point P^{\prime}, i.e. an image now formed. It is then permissible to set $P A=P H$, $A=P^{\prime} H$, so that (10) becomes

$$
\begin{equation*}
P H: P^{\prime} H=P C: P^{\prime} C \tag{II}
\end{equation*}
$$

$\mathrm{f} P H=e, P^{\prime} H=-e^{\prime}$, then, since r in the figure is nega-

$$
\begin{equation*}
-\frac{1}{e}+\frac{\mathrm{I}}{e^{\prime}}=\frac{2}{r} . \tag{12}
\end{equation*}
$$

omparison of this with equation (II) on page 23 shows t the focal lengths of the system are

$$
\begin{equation*}
f=-\frac{1}{2} r, \quad f^{\prime}=+\frac{\mathrm{I}}{2} r ; \tag{13}
\end{equation*}
$$

the two unit planes \mathfrak{S} and $\mathfrak{S}_{2}^{\prime}$ coincide with the plane gent to the sphere at the vertex H; that the two principal coincide in the mid-point between C and $I I$; and that the lal points coincide at the centre C of the sphere. The ns of e and e^{\prime} are determined by the definition on page 23 . Since f and f^{\prime} have opposite signs, it follows, from the rion given on page 25 , that the system is katoptric or concurrent. By the conventions on page 26 a negative r, i.e. oncave mirror, corresponds to a convergent system; on the er hand a convex mirror corresponds to a divergent system. A comparison of equations (13) and (5) shows that the alts here obtained for reflection at a spherical surface may deduced from the former results for refraction at such a surby writing $n^{\prime}: n=-\mathrm{I}$. In fact when $n^{\prime}: n=-\mathrm{I}$, the of refraction passes into the law of reflection. Use may made of this fact when a combination of several refracting

THEORY OF OPTICS

always results from a combination of an even number of refle tions from spherical surfaces or from a combination of an number of refractions, i.e. such systems are dioptric or concur rent (cf. page 25).

The relation between image and object may be clearl brought out from Fig. 17, which relates to a concave mirror The numbers $I, 2,3, \ldots 8$ represent points of the object at constant height above the axis of the system. The number 7 and 8 which lie behind the mirror correspond to virtua objects, i.e. the incident rays start toward these points, but fal upon the mirror and are reflected before coming to an intersection at them. Real rays are represented in Fig. 17 by

Fig. 17. former must also lie in a straight line parallel to the axis, the principal focus F and through line which passes through the object ray with the mirror, is point σ, the intersection of the tinuous line denotes real i.e. with the unit plane. The conages. Any image point 2^{\prime} mages; the dotted line, virtual imby drawing through the object 2 and the princinal page 24)
to the axis, this line will intersect the previously constructed image line in the point sought, namely 2^{\prime}. From the figure it may be clearly seen that the images of distant objects are real and inverted, those of objects which lie in front of the mirror within the focal length are virtual and erect, and those of virtual objects behind the mirror are real, erect, and lie in front of the mirror.

Fig. 18 shows the relative positions of object and image

Fig. 18.
for a convex mirror. It is evident that the images of all real objects are virtual, erect, and reduced; that for virtual objects which lie within the focal length behind the mirror the images are real, erect, and enlarged; and that for more distant virtual objects the images are also virtual.

Fig. 19.
Equation (II) asserts that $P C P^{\prime} H$ are four harmonic points

From any point L (Fig. 19) draw two rays $L C$ and $L H$, and then draw any other ray $P D B$. Let O be the intersection of $D H$ with $B C$: then $L O$ intersects the straight line $P H$ in a point P^{\prime} which is conjugate to P. For. a convex mirror the construction is precisely the same, but the physical meaning of the points C and H is interchanged.
3. Lenses.-The optical characteristics of systems composed of two coaxial spherical surfaces (lenses) can be directly deduced from $\S 7$ of Chapter II. The radii of curvature r_{1} and r_{2} are taken positive in accordance with the conventions given above ($\$ \mathrm{I}$); i.e. the radius of a spherical surface is considered positive if the surface is convex toward the incident ray (convex toward the left). Consider the case of a lens of index n surrounded by air. Let the thickness of the lens, i.e. the distance between its vertices S_{1} and S_{2} (Fig. 20), be

Fig. 20.
denoted by d. If the focal lengths of the first refracting surface are denoted by f_{1} and f_{1}^{\prime}, those of the second surface by f_{2} and f_{2}^{\prime}, then the separation Δ of the two systems (cf. page 28) is given by

$$
\begin{equation*}
\Delta=d-f_{1}^{\prime}-f_{2} \tag{14}
\end{equation*}
$$

and, by (5),

Hence by equations (19) and (18) of Chapter II (page 29) focal lengths of the combination are

$$
\begin{equation*}
f=f^{\prime}=\frac{n}{n-1} \cdot \frac{r_{1} r_{2}}{d(n-1)-n r_{1}+n r_{2}}, \tag{16}
\end{equation*}
$$

(e the positions of the principal foci F and F^{\prime} of the comtion are given by equations (17) and (20) of Chapter II 29). By these equations the distance σ of the principal F in front of the vertex S_{1}, and the distance σ^{\prime} of the cipal focus F^{\prime} behind the vertex S_{2} are, since $\sigma=F F_{1}+f_{1}$ $\sigma^{\prime}=F_{2}^{\prime} F^{\prime}+f_{2}^{\prime}$,

$$
\begin{align*}
\sigma & =\frac{r_{1}}{n-1} \cdot \frac{d(n-1)+n r_{2}}{d(n-1)-n r_{1}+n r_{2}}, \tag{17}\\
\sigma^{\prime} & =\frac{r_{2}}{n-1} \cdot \frac{-d(n-1)+n r_{1}}{d(n-\mathrm{I})-n r_{1}+n r_{2}} . \tag{18}
\end{align*}
$$

f h represents the distance of the first unit plane \mathfrak{W} in front e vertex S_{1}, and h^{\prime} the distance of the second unit plane ehind the vertex S_{2}, then $f+h=\sigma$ and $f^{\prime}+k^{\prime}=\sigma^{\prime}$, from (16), (17), and (18), it follows that

$$
\begin{align*}
h & =\frac{r_{1} d}{d(n-\mathrm{I})-n r_{1}+n r_{2}}, \tag{19}\\
h^{\prime} & =\frac{-r_{2} d}{d(n-\mathrm{I})-n r_{1}+n r_{2}} . \tag{20}
\end{align*}
$$

, since the distance p between the two unit planes \mathfrak{y} and $p=d+h+h^{\prime}$, it follows that

$$
\begin{equation*}
p=d(n-\mathrm{I}) \frac{d-r_{1}+r_{2}}{d(n-\mathrm{I})-n r_{1}+n r_{2}} . \tag{2r}
\end{equation*}
$$

$f=f^{\prime}$, the nodal and unit points coincide (cf. page 23). rom these equations it appears that the character of the m is not determined by the radii r_{1} and r_{2} alone, but that
not too great thickness d, acts as a convergent system, possesses a positive focal length; on the other hand it acts a divergent system when d is very great.
4. Thin Lenses. - In practice it often occurs that the this ness d of the lens is so small that $d(n-1)$ is negligible comparison with $n\left(r_{1}-r_{2}\right)$. Excluding the case in whit $r_{1}=r_{2}$, which occurs in concavo-convex lenses of equal rad equation (16) gives for the focal lengths of the lens

$$
\left.\begin{array}{rlrl}
f=f^{\prime} & =\frac{-r_{1} r_{2}}{(n-1)\left(r_{1}-r_{2}\right)}, & \text { or } \\
\frac{\mathbf{I}}{f} & =(n-1)\left(\frac{1}{r_{1}}-\frac{\mathbf{I}}{r_{2}}\right),
\end{array}\right\} .
$$

while equations (19), (20), and (21) show that the unit plan nearly coincide with the nearly coincident tangent planes the two vertices S_{1} and S_{2}.

More accurately these equations give, when $d(n-1)$ neglected in comparison to $n\left(r_{1}-r_{2}\right)$,

$$
h=-\frac{d}{n} \cdot \frac{r_{1}}{r_{1}-r_{2}}, \quad h^{\prime}=+\frac{d}{n} \cdot \frac{r_{2}}{r_{1}-r_{2}}, \quad p=d^{n-1} \frac{1}{n}
$$

Thus the distance p between the two unit planes is indepen dent of the radii of the lens. For $n=1.5, p=\frac{1}{8} d$. For bot double-convex and double-concave lenses, since h and h^{\prime} ar negative, the unit planes lie inside of the lens. For equal curvature $r_{1}=-r_{2}$, and for $n=1.5, h=h^{\prime}=-\frac{1}{8} d$, i.e the distance of the unit planes from the surface is one third the thickness of the lens. When r_{1} and r_{2} have the same sign the lens is concavo-convex and the unit planes may lie outside of i.

Lenses of positive focal lengths (convergent lenses) include
Double-convex lenses ($r_{1}>0, r_{2}<0$),
Plano-convex lenses ($r_{1}>0, r_{2}=\infty$)
Concavo-convex lenses ($r_{1}>0, r_{2}>0, r_{2}>r_{1}$),

Lenses of negative focal length (divergent lenses) include
Double-concave lenses ($r_{1}<0, r_{2}>0$),
Plano-concave lenses ($r_{1}=\infty, r_{2}>0$),
Convexo-concave lenses ($r_{1}>0, r_{2}>0, r_{2}<r_{1}$),
i.e. all lenses which are thinner in the middle than at the edges.*

The relation between image and object is shown diagrammatically in Figs. 21 and 22, which are to be interpreted in

Fig. 21.
the same way as Figs. 17 and 18 . From these it appears that whether convergent lenses produce real or virtual images of

Fig. 22.
real objects depends upon the distance of the object from the lens; but divergent lenses produce only virtual images of real

* The terms collective (dioptric), for systems of positive focal length, dispersive, for those of negative focal length, have been chosen on account of this property of lenses. A lens of positive focal length renders an incident beam more convergent. one of negative focal length renders it more divergent. When images are formed by a system of lenses, or, in general, when the unit planes do not coincide, say, with the first refracting surface, the conclusion as to whether the system is con-
objects. However, divergent lenses produce real, uprig and enlarged images of virtual objects which lie behind lens and inside of the principal focus.

If two thin lenses of focal lengths f_{1} and f_{2} are united form a coaxial system, then the separation Δ (cf. page 40) $\Delta=-\left(f_{1}+f_{2}\right)$. Hence, from equation (19) of Chapter (page 29), the focal length of the combination is

$$
f=\frac{f_{1} f_{2}}{f_{1}+f_{2}}=f^{\prime}
$$

or

$$
\frac{\mathrm{I}}{f}=\frac{\mathrm{r}}{f_{1}}+\frac{\mathrm{I}}{f_{2}} .
$$

It is customary to call the reciprocal of the focal length a lens its power. Hence the law: The power of a combinatz of thin lenses is equal to the sum of the powers of the separa lenses.
5. Experimental Determination of Focal Length.-F thin lenses, in which the two unit planes are to be consider as practically coincident, it is sufficient to determine the po tions of an object and its image in order to deduce the foc length. For example, equation (II) of Chapter II, page 2 reduces here, since $f=f$, to

$$
\frac{\mathbf{I}}{e}+\frac{\mathbf{I}}{e^{\prime}}=\frac{\mathbf{I}}{f}
$$

Since the positions of real images are most convenient determined by the aid of a screen, concave lenses, whi furnish only virtual images of real objects, are often combine with a convex lens of known power so that the combinatic furnishes a real image. The focal length of the concave le is then easily obtained from (24) when the focal length of th combination has been experimentally determined. This pr
ned by means of an incident beam of parallel rays. If then positions of an object and its image with respect to the ncipal foci be determined, equations (7), on page 19, or (9), page 22 , give at once the focal length $f\left(=f^{\prime}\right)$.
Upon the definition of the focal length given in Chapter II, ge 20 (cf. equation (8)), viz.,
$f=y^{\prime}: \tan u$,
s easy to base a rigorous method for the determination of al length. Thus it is only necessary to measure the angular gnitude u of an infinitely distant object, and the linear magude y^{\prime} of its image. This method is particularly convenient apply to the objectives of telescopes which are mounted on a graduated circle so that it is at once possible to read the visual angle u.
If the object of linear magnitude y is not at infinity, but is a distance e from the unit plane \mathfrak{F}, while its image of linear agnitude y^{\prime} is at a distance e^{\prime} from the unit plane \mathfrak{S}^{\prime}, then

$$
\begin{equation*}
y^{\prime}: y=-e^{\prime}: e \tag{27}
\end{equation*}
$$

cause, when $f=f^{\prime}$, the nodes coincide with the unit points, . object and image subtend equal angles at the unit points.
By eliminating e and e^{\prime} from (25) and (27) it follows that

$$
\begin{equation*}
f=\frac{e}{\mathrm{r}-\frac{y}{y^{\prime}}}=\frac{e^{\prime}}{\mathrm{r}-\frac{y^{\prime}}{y}} . \tag{28}
\end{equation*}
$$

ow if either e or e^{\prime} are chosen large, then without apprecile error the one so chosen may be measured from the centre the optical system (e.g. the lens), at least unless the unit anes are very far from it. Then either of equations (28) ay be used for the determination of the focal length f when or e^{\prime} and the magnification $y^{\prime}: y$ have been measured.
the object which are a measured distance l apart. For, fro (7), page 19,

$$
\left(\frac{y}{y^{\prime}}\right)_{1}=\frac{x}{f}, \quad\left(\frac{y}{y^{\prime}}\right)_{2}=\frac{x+l}{f},
$$

hence

$$
f=\frac{l}{\left(\frac{y}{y^{\prime}}\right)_{2}-\left(\frac{y}{y^{\prime}}\right)_{1}}
$$

in which $\left(y: y^{\prime}\right)_{1}$ denotes the reciprocal of the magnification fo the position x of the object, $\left(y: y^{\prime}\right)_{2}$ the reciprocal of the mag nification for a position $x+l$ of the object. l is positive if, it passing to its second position, the object has moved the dis tance l in the direction of the incident light (i.e. from left to right).

Abbe's focometer, by means of which the focal lengths o microscope objectives can be determined, is based upon this principle. For the measurement of the size of the image y^{\prime} a second microscope is used. Such a microscope, or even a simple magnifying-glass, may of course be used for the measurement of a real as well as of a virtual image, so that this method is also applicable to divergent lenses, in short to all cases.*
6. Astigmatic Systems.-In the previous sections it has been shown that elementary beams whose rays have but a small inclination to the axis and which proceed from points either on the axis or in its immediate neighborhood may be brought to a focus by means of coaxial spherical surfaces. In this case all the rays of the beam intersect in a single point of the image space, or, in short, the beam is homocentric in the image space. What occurs when one of the limitations imposed above is dropped will now be considered, i.e. an
elementary beam having any inclination to the axis will nov be assumed to proceed from a point P.

In this case the beam is, in general, no longer homocentri in the image space. An elementary beam which has started from a luminous point P and has suffered reflections and re fractions upon surfaces of any arbitrary form is so constituted that, by the law of Malus (cf. page 12), it must be classed as an orthotomic beam, i.e. it may be conceived as made u_{1} of the normals N to a certain elementary surface Σ. Thes normals, however, do not in general intersect in a point Nevertheless geometry shows that upon every surface Σ ther are two systems of curves which intersect at right angles (th so-called lines of curvature) whose normals, which are also a right angles to the surface Σ, intersect.

If a plane elementary beam whose rays in the image spac are normal to an element l_{1} of a line of curvature be alon considered, it is evident that an image will be formed. Th image is located at the centre of curvature of this element l_{1} since its normals intersect at that point. Since every elemen l_{1} of a line of curvature is intersected at right angles by som other element l_{2} of another line of curvature, a second elemen tary beam always exists which also produces an image, bu the positions of these two images do not coincide, since ir general the curvature of l_{1} is different from that of l_{2}.

What sort of an image of an object P will then in genera be formed by any elementary beam of three dimensions? Le $1,2,3,4$ (Fig. 23) represent the four intersections of the fou lines of curvature which bound the element $d \Sigma$ of the surface Σ. Let the curves $I-2$ and $3-4$ be horizontal, $2-3$ anc $I-4$ vertical. Let the normals at the points I and 2 intersec at 12 , those at 3 and 4 at 34 . Since the curvature of the line $I-2$ differs by an infinitely small amount from that of the line $3-4$, the points of intersection 12 and 34 lie at almost the same distance from the surface Σ. Hence the line p_{1} which connects the points $I 2$ and 34 is also nearly perpendicular to the ray S which passes through the middle of $d \Sigma$ and is normal to it.

This ray is called the principal ray of that elementary be which is composed of the normals to $d \Sigma$. From the symme of the figure it is also evident that the line p_{1} must be para to the lines $2-3$ and $I-4$, i.e. it is vertical. The normals any horizontal line of curvature intersect at some point of line p_{1}.

Fig. 23.
Likewise the normals to any vertical line of curvat intersect at some point of the line p_{2} which connects x_{4} and Also, p_{2} must be horizontal and at right angles to S. Th two lines p_{1} and p_{2}, which are perpendicular both to one anot] and to the principal ray, are called the two focal lines of elementary beam. The planes determined by the princi] ray S and the two focal lines p_{1} and p_{2} are called the focal pla of the beam. It can then be said that in general the image o luminous point P, formed by any elementary beam, consists two focal lines which are at right angles to each other and the principal ray, and lie a certain distance apart. This d tance is called the astigmatic difference. Only in special cas as when the curvatures of the two systems of lines of curvat are the same, does a homocentric crossing of the rays and a tr image formation take place. This present more general ki of image formation will be called astigmatic in order to d tinguish it from that considered above.*

A sharp, recognizable image of a collection of object poir P is not formed hy an ctiomotic

PHYSICAL CONDITIONS FOR IMAGE FORMATION

ject is a straight line can a straight-line image be formed; d only then when the line object is so placed that all the cal lines which are the images of all the points P of the line ject coincide. Since the image of every point consists of o focal lines p_{1} and p_{2} which are at right angles to each her, there are also two positions of the line object 90° apart hich give rise to a line image. These two images lie at fferent distances from the surface Σ.
Similarly there are two orientations of a system of parallel aight lines which give rise to an image consisting of parallel raight lines.
If the object is a right-angled cross or a network of lines right angles, there is one definite orientation for which an nage of one line of the cross or of one system of parallel lines the network is formed in a certain plane \Re_{1} of the image pace; while in another plane \mathfrak{F}_{2} of the image space an image the other line of the cross or of the other system of lines of e network is formed. This phenomenon is a good test for tigmatism.
Astigmatic images must in general be formed when the ementary refracting or reflecting surface has two different arvatures. Thus cylindrical lenses, for example, show marked tigmatism. Reflection or refraction at. a spherical surface so renders a homocentric elementary beam astigmatic when e incidence is oblique.
In order to enter more fully into the consideration of this ase, let the point object P, the centre C of the sphere, and e point A in which the principal ray of the elementary beam nitted by P strikes the spherical surface, lie in the plane of e figure (Fig. 24). Let the line $P A$ be represented by s, e line $A P_{2}$ by s_{2}. Now since

$$
\Delta P A P_{2}=\triangle P A C+\triangle C A P_{2}
$$

in which ϕ and ϕ^{\prime} denote the angles of incidence and refr tion respectively, and r the radius of the sphere. Since n by the law of refraction $\sin \phi=n \sin \phi^{\prime}$, it follows from last equation that

$$
\begin{gathered}
s s_{2}\left(n \cos \phi^{\prime}-\cos \phi\right)=s r n+s_{2} \gamma, \quad \text { or } \\
\frac{1}{s}+\frac{n}{s_{2}}=\frac{n \cos \phi^{\prime}-\cos \phi}{r}
\end{gathered}
$$

It is evident that all rays emitted by P which have the sa angle of inclination u with the axis must, after refraction, cr

Fig. 24.
the axis at the same point P_{2}. The beam made up of st rays is called a sagittal beam. It has a focal point at P_{2}.

On the other hand a meridional beam, i.e. one whose r: all lie in the plane $P A C$, has a different focal point P_{1}. $P B$ be a ray infinitely near to $P A$, and let its angle of incli tion to the axis be $u+d u$ and its direction after refract $B P_{1}$. Then $\Varangle B P_{1} A$ is to be considered as the increment of u^{\prime}, and $\Varangle B C A$ as the increment $d \alpha$ of α. It is at or evident that
$s . d u=A B \cos \phi, s_{1} \cdot d u^{\prime}=A B \cdot \cos \phi^{\prime}, \quad r . d \alpha=A B$.
But since
it follows that

$$
\begin{align*}
& d \phi=d \alpha+d u=A B\left(\frac{\mathrm{I}}{r}+\frac{\cos \phi}{s}\right) \\
& d \phi^{\prime}=d \alpha-d u^{\prime}=A B\left(\frac{\mathrm{I}}{r}-\frac{\cos \phi^{\prime}}{s_{1}}\right) \tag{32}
\end{align*}
$$

But a differentiation of the equation of refraction $\sin \phi=$ $n \sin \phi^{\prime}$ gives

$$
\cos \phi \cdot d \phi=n \cos \phi^{\prime} \cdot d \phi^{\prime}
$$

Substituting in this the values of $d \phi$ and $d \phi^{\prime}$ taken from (32), there results

$$
\begin{equation*}
\frac{\cos ^{2} \phi}{s}+\frac{n \cos ^{2} \phi^{\prime}}{s_{1}}=\frac{n \cos \phi^{\prime}-\cos \phi}{r} . \tag{33}
\end{equation*}
$$

From (33) and (30) different values s_{1} and s_{2} corresponding to the same s are obtained, i.e. P is imaged astigmatically. The astigmatic difference is greater the greater the obliquity of the incident beam, i.e. the greater the value of ϕ. It appears from (30) and (33) that this astigmatic difference vanishes, ie. $s_{1}=s_{2}=s^{\prime}$, only when $s=-n s^{\prime}$. This condition determines the two aplanatic points of the sphere mentioned on page 33.

The equations for a reflecting spherical surface may be deduced from equations (30) and (33) by substituting in them $n=-$ 1, i.e. $\phi^{\prime}=-\phi$ (cf. page 37). Thus for this case *

$$
\begin{equation*}
\frac{\mathrm{I}}{s}-\frac{\mathrm{I}}{s_{2}}=-2 \frac{\cos \phi}{r}, \quad \frac{1}{s}-\frac{I}{s_{1}}=-\frac{2}{r \cos \phi} \tag{34}
\end{equation*}
$$

Or by subtraction,

$$
\frac{1}{s_{1}}-\frac{1}{s_{2}}=\frac{2}{r}\left(\frac{1}{\cos \phi}-\cos \phi\right),
$$

or

$$
\begin{equation*}
\frac{s_{2}-s_{1}}{s^{\prime}}=\frac{2}{v} \sin \phi \tan \phi \tag{35}
\end{equation*}
$$

an equation which shows clearly how the astigmatism increa with the angle of incidence. This increase is so rapid that astigmatism caused by the curvature of the earth may, suitable means, be detected in a beam reflected from the s face of a free liquid such as a mercury horizon. Thus if reflected image of a distant rectangular network be observed a telescope of 7.5 m . focal length and $\frac{1}{2} \mathrm{~m}$. aperture, astigmatic difference amounts to $\frac{1}{10} \mathrm{~mm}$., i.e. the positions which the one or the other system of lines of the network in sharp focus are $\frac{1}{10} \mathrm{~mm}$. apart. In the giant telescope the Lick Observatory in California this astigmatic differe amounts to $\frac{7}{7}^{7} \mathrm{~mm}$. Thus the phenomena of astigmatism n be made use of in testing the accuracy of the surface of a pl mirror. Instead of using the difference in the positions of images of the two systems of lines of the network, the an of incidence being as large as possible, the difference in sharpness of the images of the two systems may be taken the criterion. For this purpose a network of dotted lines n be used to advantage.
7. Means of Widening the Limits of Image Formati -It has been shown above that an image can be formed refraction or reflection at coaxial spherical surfaces only wh the object consists of points lying close to the axis and inclination to the axis of the rays forming the image is sm If the elementary beam has too large an inclination to axis, then, as was shown in the last paragraph, no image be formed unless all the rays of the beam lie in one plane.

Now such arrangements as have been thus far conside for the formation of images would in practice be utterly u less. For not only would the images be extremely fain they were produced by single elementary beams, but also, will be shown in the physical theory (cf. Section I, Chap IV), single elementary beams can never produce sharp imag but only diffraction patterns.

PHYSICAL CONDITIONS FOR IMAGE FORMATION

the limited sensitiveness of the eye comes to our assistance: we are unable to distinguish two luminous points as separate unless they subtend at the eye an angle of at least one minute. Hence a mathematically exact point image is not necessary, and for this reason alone the beam which produces the image does not need to be elementary in the mathematical sense, i.e. one of infinitely small divergence.

By a certain compromise between the requirements it is possible to attain a still further widening of the limits. Thus it is possible to form an image with a broadly divergent beam if the object is an element upon the axis, or to form an image of an extended object if only beams of small divergence are used. The realization of the first case precludes the possibility of the realization of the second at the same time, and vice versa.

That the image of a point upon the axis can be formed by a widely divergent beam has been shown on page 33 in connection with the consideration of aplanatic surfaces. But this result can also be approximately attained by the use of a suitable arrangement of coaxial spherical surfaces. This may be shown from a theoretical consideration of so-called spherical aberration. To be sure the images of adjacent points would not in general be formed by beams of wide divergence. In fact the image of a surface element perpendicular to the axis can be formed by beams of wide divergence only if the socalled sine law is fulfilled. The objectives of microscopes and telescopes must be so constructed as to satisfy this law.

The problem of forming an image of a large object by a relatively narrow beam must be solved in the construction of the eyepieces of optical instruments and of photographic systems. In the latter the beam may be quite divergent, since, under some circumstances (portrait photography), only fairly sharp images are required. These different problems in image formation will be more carefully considered later. The forma-
sure, impossible, if for no other reason, simply because, will be seen later, the sine law cannot be simultaneously f filled for more than one position of the object.
8. Spherical Aberration. - If from a point P on the a: two rays S_{1} and S_{2} are emitted of which S_{1} makes a very sm angle with the axis, while S_{2} makes a finite angle u, the after refraction at coaxial spherical surfaces, the image rays and S_{2}^{\prime} in general intersect the axis in two different points and P_{2}^{\prime}. The distance between these two points is known the spherical aberration (longitudinal aberration). In case t angle u which the ray S_{2} makes with the axis is not too grea this aberration may be calculated with the aid of a series ascending powers of u. If, however, u is large, a dire trigonometrical determination of the path of each ray is to preferred. This calculation will not be given here in detail For relatively thin convergent lenses, when the object distant, the image P_{1} formed by rays lying close to the ax is farther from the lens than the image P_{i} formed by the mo oblique rays. Such a lens, i.e. one for which P_{2} lies near to the object than P_{1}, is said to be undercorrected. Inversel. a lens for which P_{2} is more remote from the object than P_{1} said to be overcorrected. Neglecting all terms of the pow series in u save the first, which contains u^{2} as a factor, the results for this so-called aberration of the first order, if th object P is very distant,

$$
\epsilon=P_{1}^{\prime} P_{2}^{\prime}=-\frac{h^{2}\left\{2-2 n^{2}+n^{3}+\sigma\left(n+2 n^{2}-2 n^{3}\right)+\sigma^{2} n^{3}\right\}}{f \cdot 2 n(n-1)^{2}(1-\sigma)^{2}}
$$

in which h represents the radius of the aperture of the len f its focal length, n its index of refraction, and σ the ratio its radii of curvature, i.e.

$$
\sigma=r_{1}: r_{2}
$$

signs of r_{1} and r_{2} are determined by the conventions pted on page 40 ; for example, for a double-convex lens positive, r_{2} negative. $\quad P_{1}^{\prime} P_{2}^{\prime}$ is negative for an undercored lens, positive for an overcorrected one. Further, the $h: f$ is called the relative aperture of the lens. It ears then from (36) that if σ remains constant, the ratio he aberration $P_{1}^{\prime} P_{2}^{\prime}$ to the focal length f is directly proional to the square of the relative aperture of the lens.
For given values of f and h the aberration reaches a minin for a particular value σ^{\prime} of the ratio of the radii.* By this value is

$$
\begin{equation*}
\sigma^{\prime}=-\frac{4+n-2 n^{2}}{n(\mathrm{I}+2 n)} \tag{38}
\end{equation*}
$$

$n=1.5, \sigma=-1: 6$. This condition may be realized er with a double-convex or a double-concave lens. The ace of greater curvature must be turned toward the incident n. But if the object lies near the principal focus of the the best image is formed if the surface of lesser curvature urned toward the object; for this case can be deduced from above considered, i.e. that of a distant object, by simply rchanging the rôles of object and image. \dagger For $n=2$, gives $\sigma^{\prime}=+\frac{1}{5}$. This condition is realized in a con--concave lens whose convex side is turned toward a disobject P.
The following table shows the magnitude of the longioal aberration ϵ for two different indices of refraction and different values of the ratio σ of the radii. f has been med equal to Im . and $h: f=\frac{1}{10}$, i.e. $h=10 \mathrm{~cm}$. The alled lateral aberration ζ, i.e. the radius of the circle :h the rays passing through the edge of a lens form upon

This minimum is never zero. A complete disappearance of the aberration first order can only be attained by properly choosing the thickness of the
a screen placed at the focal point $P_{1}{ }^{\prime}$, is obtained, as app at once from a construction of the paths of the rays, by mu plication of the longitudinal aberration by the relative apert $h: f$, i.e. in this case by $\frac{1}{10}$. Thus the lateral aberra determines the radius of the illuminated disc which the out rays from a luminous point P form upon a screen placed in plane in which P is sharply imaged by the axial rays.

$$
f=\mathrm{r} \mathrm{~m} . \quad h=10 \mathrm{~cm} .
$$

	$n=1.5$			$n=2$		
Form of lens.	σ	$-\epsilon$	ζ	σ	- ϵ	
Front face plane..............	\cdots	4.5 cm	4.5 mm	∞	2 cm	2
Both sides alike.	- I	1.67 '،	r. 67 "	- I	$1 \times$	I
Rear face plane	0	1.17 ${ }^{\prime}$	r.17 ${ }^{\prime}$	0	$0.5 \quad 4$	
Most advantageous form	$-\frac{1}{6}$	1.07 "	r. $07 \times$	+ $\frac{1}{6}$	0.44 "	0.4

That a plano-convex lens produces less aberration when convex side is turned toward a distant object than when sides are reversed seems probable from the fact that in the case the rays are refracted at both surfaces of the lens, in second only at one; and it is at least plausible that the tribution of the refraction between two surfaces is unfavor to aberration. The table further shows that the most fa able form of lens has but little advantage over a suitably plo plano-convex lens. Hence, on account of the greater eas construction, the latter is generally used.

Finally the table shows that the aberration is very m less if, for a given focal length, the index of refraction is m large. This conclusion also holds when the aberration higher order than the first is considered, i.e. when the rem ing terms of the power series in u are no longer neglec
lenses.* By selecting for the compound system lenses of different form, it is possible to cause the aberration not only of the first but also of still higher orders to vanish. \dagger One system can be made to accomplish this for more than one position of the object on the axis, but never for a finite length of the axis.

When the angle of inclination u is large, as in microscope objectives in which u sometimes reaches a value of 90°, the power series in u cannot be used for the determination of the aberration. It is then more practicable to determine the paths of several rays by trigonometrical calculation, and to find by trial the best form and arrangement of lenses. There is, however, a way, depending upon the use of the aplanatic points of a sphere mentioned on page 33 , of diminishing the divergence of rays proceeding from near objects without introducing aberration, i.e. it is possible to produce virtual images of any size, which are free from aberration.

Let lens I (Fig. 25) be plano-convex, for example, a hemi-

Fig. 25.
spherical lens of radius r_{1}, and let its plane surface be turned toward the object P. If the medium between P and this lens has the same index n_{1} as the lens, then refraction of the rays
proceeding from the object first takes place at the rear surf of the lens; and if the distance of P from the centre of cur ture C_{1} of the back surface is $r_{1}: n_{1}$, then the emergent r produce at a distance $n_{1} r_{1}$ from C_{1} a virtual image P_{1} free fr aberration. If now behind lens I there be placed a sec concavo-convex lens 2 whose front surface has its centre curvature in P_{1} and whose rear surface has such a radius r_{2} P_{1} lies in the aplanatic point of this sphere r_{2} (the index lens 2 being n_{2}), then the rays are refracted only at this 1 surface, and indeed in such a way that they form a vir image P_{2} which lies at a distance $n_{2} r_{2}$ from the centre of cur ture C_{2} of the rear surface of lens 2 , and which again is entir free from aberration. By addition of a third, fourth, e concavo-convex lens it is possible to produce successive vir images P_{3}, P_{4}, etc., lying farther and farther to the left, it is possible to diminish successively the divergence of rays without introducing aberration.

This principle, due to Amici, is often actually employed the construction of microscope objectives. Nevertheless more than the first two lenses are constructed according to principle, since otherwise the chromatic errors which are in duced are too large to be compensated (cf. below).
9. The Law of Sines.-In general it does not follow if a widely divergent beam from a point P upon the axis g rise to an image P^{\prime} which is free from aberration, a sur element $d \sigma$ perpendicular to the axis at P will be imaged a surface element $d \sigma^{\prime}$ at P^{\prime}. In order that this may be case the so-called sine law must also be fulfilled. This requires that if u and u^{\prime} are the angles of inclination of any conjugate rays passing through P and $P^{\prime}, \sin u: \sin u^{\prime}=c o$ According to Abbe systems which are free from abe tion for two points P and P^{\prime} on the axis and which fulfil sine law for these points are called aplanatic systems. points P and P^{\prime} are called the aplanatic points of the syst The a lanatic points of a sphere mentioned on page 33 f

PHYSICAL CONDITIONS FOR IMAGE FORMATION

sines is constant. The two foci of a concave mirror whose surface is an ellipsoid of revolution are not aplanatic points although they are free from aberration.

It was shown above (page 22, equation (9), Chapter II) that when the image of an object of any size is formed by a collinear system, $\tan u: \tan u^{\prime}=$ const. Unless u and u^{\prime} are very small, this condition is incompatible with the sine law, and, since the latter must always be fulfilled in the formation of the image of a surface element, it follows that a point-forpoint imaging of objects of any size by widely divergent beams is physically impossible.

Only when u and u^{\prime} are very small can both conditions be simultaneously fulfilled. In this case, whenever an image P^{\prime} is formed of P, an image $d \sigma^{\prime}$ will be formed at P^{\prime} of the surface element $d \sigma$ at P. But if \because is large, even though the spherical aberration be entirely eliminated for points on the axis, unless the sine condition is fulfilled the images of points which lie to one side of the axis become discs of the same order of magnitude as the distances of the points from the axis. According to Abbe this blurring of the images of points lying off the axis is due to the fact that the different zones of a spherically corrected system produce images of a surface element of different linear magnifications.

The mathematical condition for the constancy of this linear magnification is, according to Abbe, the sine law.* The same conclusion was reached in different ways by Clausius \dagger and v. Helmholtz \ddagger. Their proofs, which rest upon considerations of energy and photometry, will be presented in the third division of the book. Here a simple proof due to Hockin § will be given which depends only on the law that the optical lengths of all rays between two conjugate points must be equal (cf.
page 9).* Let the image of P (Fig. 26) formed by an as ray $P A$ and a ray $P S$ of inclination u lie at the axial point Also let the image of the infinitely near point P_{1} formed b ray $P_{1} A_{1}$ parallel to the axis, and a ray $P_{1} S_{1}$ parallel to 1 lie at the point P_{1}^{\prime}. The ray $F^{\prime} P_{1}^{\prime}$ conjugate to $P_{1} A_{1} \mathrm{~m}$ evidently pass through the principal focus F^{\prime} of the im: space. If now the optical distance between the points P P^{\prime} along the path through A be represented by $\left(P A P^{\prime}\right)$, t

Fig. 26.
along the path through $S S^{\prime}$ by ($P S S^{\prime} P^{\prime}$), and if a sim notation be used for the optical lengths of the rays proceed from P_{1}, then the principle of extreme path gives

$$
\left(P A P^{\prime}\right)=\left(P S S^{\prime} P^{\prime}\right) ; \quad\left(P_{1} A_{1} F^{\prime} P_{1}^{\prime}\right)=\left(P_{1} S_{1} S_{1}^{\prime} P_{1}^{\prime}\right)
$$

and hence

$$
\left(P A P^{\prime}\right)-\left(P_{1} A_{1} F^{\prime} P_{1}^{\prime}\right)=\left(P S S^{\prime} P^{\prime}\right)-\left(P_{1} S_{1} S_{1}^{\prime} P_{1}^{\prime}\right)
$$

Now since F^{\prime} is conjugate to an infinitely distant object 7 the axis, $\left(T P A F^{\prime}\right)=\left(T P_{1} A_{1} F^{\prime}\right)$. But evidently $T P=T$ since $P P_{1}$ is perpendicular to the axis. Hence by subtrac $\left(P A F^{\prime}\right)=\left(P_{1} A_{1} F^{\prime}\right)$.

PHYSICAL CONDITIONS FOR IMAGE FORMATION 6ı

Further, since $P^{\prime} P_{1}^{\prime}$ is perpendicular to the axis, it follows that when $P^{\prime} P_{1}^{\prime}$ is small $F^{\prime} P^{\prime}=F^{\prime} P_{1}^{\prime}$. Hence by addition

$$
\left(P A F^{\prime} P^{\prime}\right)=\left(P_{1} A_{1} F^{\prime} P_{1}^{\prime}\right),
$$

i.e. the left side of equation (39) vanishes. Thus

$$
\begin{equation*}
\left(P S S^{\prime} P^{\prime}\right)=\left(P_{1} S_{1} S_{1}^{\prime} P_{1}^{\prime}\right) \tag{4I}
\end{equation*}
$$

Now if F_{1}^{\prime} is the intersection of the rays $P^{\prime} S^{\prime}$ and $P_{1}^{\prime} S_{1}^{\prime}$, then F_{1}^{\prime} is conjugate to an infinitely distant object T_{1}, the rays from which make an angle u with the axis. Hence if a perpendicular $P N$ be dropped from P upon $P_{1} S_{1}$, an equation similar to (40) is obtained; thus

$$
\begin{equation*}
\left(P S S^{\prime} F_{1}^{\prime}\right)=\left(N S_{1} S_{1}^{\prime} F_{1}^{\prime}\right) \tag{42}
\end{equation*}
$$

By subtraction of this equation from (41),

$$
\begin{equation*}
\left(F_{1}^{\prime} P^{\prime}\right)=-\left(N P_{1}\right)+\left(F_{1}^{\prime} P_{1}^{\prime}\right) \tag{43}
\end{equation*}
$$

If now n is the index of the object space, n^{\prime} that of the image space, then, if the unbracketed letters signify geometrical lengths,

$$
\begin{equation*}
\left(N P_{1}\right)=n \cdot N P_{1}=n \cdot P P_{1} \cdot \sin u . \tag{44}
\end{equation*}
$$

Further, if $P^{\prime} N^{\prime}$ be drawn perpendicular to $F_{1}^{\prime} P^{\prime}$, then, since $P^{\prime} P_{1}^{\prime}$ is infinitely small,

$$
\begin{equation*}
\left(F_{1}^{\prime} P_{1}^{\prime}\right)-\left(F_{1}^{\prime} P^{\prime}\right)=n^{\prime} \cdot N^{\prime} P_{1}^{\prime}=n^{\prime} \cdot P^{\prime} P_{1}^{\prime} \cdot \sin u^{\prime} \tag{45}
\end{equation*}
$$

Equation (43) in connection with (44) and (45) then gives

$$
n \cdot P P_{1} \cdot \sin u=n^{\prime} \cdot P^{\prime} P_{1}^{\prime} \cdot \sin u^{\prime} .
$$

If y denote the linear magnitude $P P_{1}$ of the object, and y^{\prime} the linear magnitude $P^{\prime} P_{1}^{\prime}$ of the image, then

$$
\begin{equation*}
\frac{\sin u}{\sin u^{\prime}}=\frac{n^{\prime} y^{\prime}}{n y} . \tag{46}
\end{equation*}
$$

that obtained in equation (2), page 34 , for the aplanatic po of a sphere.

The sine law cannot be fulfilled for two different points the axis. For if P^{\prime} and P_{1}^{\prime} (Fig. 27) are the images of P P_{1}, then, by the principle of equal optical lengths,

$$
\left(P A P^{\prime}\right)=\left(P S S^{\prime} P^{\prime}\right), \quad\left(P_{1} A P_{1}^{\prime}\right)=\left(P_{1} S_{1} S_{1}^{\prime} P_{1}^{\prime}\right)
$$

in which $P S$ and $P_{1} S_{1}$ are any two parallel rays of incli sion u.

Fig. 27.
Subtraction of the two equations (47) and a process reasoning exactly like the above gives
or

$$
\left(P_{1}^{\prime} P^{\prime}\right)-\left(P_{1} P\right)=-\left(P_{1} N\right)+\left(N^{\prime} P^{\prime}\right)
$$

$$
n \cdot P_{1} P(\mathrm{I}-\cos u)=n^{\prime} \cdot P_{1}^{\prime} P^{\prime}\left(\mathrm{I}-\cos u^{\prime}\right)
$$

ie.

$$
\begin{equation*}
\frac{\sin ^{2} \frac{1}{2} u}{\sin ^{2} \frac{1}{2} u^{\prime}}=\frac{n^{\prime} \cdot P^{\prime} P_{1}^{\prime}}{n \cdot P \cdot} P_{1}^{\prime} . \tag{4}
\end{equation*}
$$

This equation is then the condition for the formation, by beam of large divergence, of the image of two neighborin points upon the axis, i.e. an image of an elemen of the axis

The fulfilment of the sine law is especially important in the e of microscope objectives. Although this was not known m theory when the earlier microscopes were made, it can be perimentally proved, as Abbe has shown, that these old croscope objectives which furnish good images actually isfy the sine law although they were constructed from ely empirical principles.
10. Images of Large Surfaces by Narrow Beams.-It necessary in the first place to eliminate astigmatism (cf. ge 46). But no law can be deduced theoretically for accomshing this, at least when the angle of inclination of the rays ch respect to the, axis is large. Recourse must then be had practical experience and to trigonometric calculation. It is be remarked that the astigmatism is dependent not only on the form of the lenses, but also upon the position of the p.

Two further requirements, which are indeed not absolutely ential but are nevertheless very desirable, are usually im-

Fig. 28.
sed upon the image. First it must be plane, i.e. free from

For a complete treatment of the analytical conditions for th requirement cf. Czapski, in Winkelmann's Handbuch d Physik, Optik, page 124.

The analytical condition for freedom from distortion ma be readily determined. Let $P P_{1} P_{2}$ (Fig. 28) be an obje plane, $P^{\prime} P_{1}^{\prime} P_{2}^{\prime}$ the conjugate image plane. The beams fro the object are always limited by a stop of definite si which may be either the rim of a lens or some specially intr duced diaphragm. This stop determines the position of virtual aperture B, the so-called entrance-pupil, which is situated that the principal rays of the beams from the objec P_{1}, P_{2}, etc., pass through its centre. Likewise the beams the image space are limited by a similar aperture B^{\prime}, t so-called exit-pupil, which is the image of the entrance-pupil If l and l^{\prime} are the distances of the entrance-pupil and the ex pupil from the object and image planes respectively, then, fro the figure,

$$
\begin{array}{ll}
\tan u_{1}=P P_{1}: l, & \tan u_{2}=P P_{2}: l, \\
\tan u_{1}^{\prime}=P^{\prime} P_{1}^{\prime}: l^{\prime}, & \tan u_{2}^{\prime}=P^{\prime} P_{2}^{\prime}: l^{\prime} .
\end{array}
$$

If the magnification is to be constant, then the following re tion must exist:

$$
P^{\prime} P_{1}^{\prime}: P P_{1}=P^{\prime} P_{2}^{\prime}: P P_{2}
$$

hence

$$
\frac{\tan u_{1}^{\prime}}{\tan u_{1}}=\frac{\tan u_{2}^{\prime}}{\tan u_{2}}=\text { const. }
$$

Hence for constant magnification the ratio of the tangents of angles of inclination of the principal rays must be constant. this case it is customary to call the intersections of the pr cipal rays with the axis, i.e. the centres of the pupils, ort scopic. points. Hence it may be said that, if the image is be free from distortion, the centres of perspective of object a image must be orthoscopic points. Hence the positions of

IYSICAL CONDITIONS FOR IMAGE FORMATION 65

n example taken from photographic optics shows how the tion of orthoscopy may be: most simply fulfilled for the of a projecting lens. Let R (Fig. 29) be a stop on either f which two similar lens systems I and 2 are symmetrically d. The whole system is then called a symmetrical double tive. Let S and S^{\prime} represent two conjugate principal

The optical image of the stop R with respect to the $\mathrm{m} I$ is evidently the entrance-pupil, for, since all principal must actually pass through the centre of the stop R, the ngations of the incident principal rays S must pass through entre of B, the optical image of R with respect to r. wise B^{\prime}, the optical image of R with respect to 2 , is the pupil. It follows at once from the symmetry of arrangethat u is always equal to u^{\prime}, i.e. the condition of orthosis fulfilled.

Fig. 29.
uch symmetrical double objectives possess, by virtue of symmetry, two other advantages: On the one hand, the dional beams are brought to a sharper focus,* and, on the , chromatic errors, which will be more fully treated in the paragraph, are more easily avoided. The result $u=u^{\prime}$, h means that conjugate principal rays are parallel, is ether independent of the index of refraction of the system,
and hence also of the color of the light. If now each of the two systems I and 2 is achromatic with respect to the position of the image which it forms of the stop R, i.e. if the positions of the entrance- and exit-pupils are independent of the color,* then the principal rays of one color coincide with those of every other color. But this means that the images formed in the image plane are the same size for all colors. To be sure, the position of sharpest focus is, strictly speaking, somewhat different for the different colors, but if a screen be placed in sharp focus for yellow, for instance, then the images of other colors, which lie at the intersections of the principal rays, are only slightly out of focus. If then the principal rays coincide for all colors, the image will be nearly free from chromatic error.

The astigmatism and the bulging of the image depend upon the distance of the lenses I and 2 from the stop R. In general, as the distance apart of the two lenses increases the image becomes flatter, i.e. the bulging decreases, while the astigmatism increases. Only by the use of the new kinds of glass made by Schott in Jena, one of which combines large dispersion with small inclex and another small dispersion with 'large index, have astigmatic flat images become possible. This will be more fully considered in Chapter V under the head of Optical Instruments.
11. Chromatic Aberration of Dioptric Systems.-Thus far the index of refraction of a substance has been treated as though it were a constant, but it is to be remembered that for a given substance it is different for each of the different colors contained in white light. For all transparent bodies the index continuously increases as the color changes from the red to the blue end of the spectrum. The following table contains the indices for three colors and for two different kinds of glass. n_{C} is the index for the red light corresponding to the Fraun-

[^0]hofer line C of the solar spectrum (identical with the red hydrogen line), n_{D} that for the yellow sodium light, and n_{F} that for the blue hydrogen line.

Glass.	n_{C}	n_{D}	n_{F}	$\nu=\frac{n_{F}-n_{C}}{n_{D}-r}$
Calcium-silicate-crown......	1.5153	1.5179	1.5239	0.0166
Ordinary silicate-flint.......	16143	1.6202	1.6314	, 0.0276

The last column contains the so-called dispersive power ν, of the substance. It is defined by the relation

$$
\begin{equation*}
v=\frac{n_{F}-n_{C}}{n_{D}-I} . \tag{50}
\end{equation*}
$$

It is practically immaterial whether n_{D} or the index for any other color be taken for the denominator, for such a change can never affect the value of v by more than 2 per cent.

Since now the constants of a lens system depend upon the index, an image of a white object must in general show colors, i.e. the differently colored images of a white object differ from one another in position and size.

In order to make the red and blue images coincide, i.e. in order to make the system achromatic for red and blue, it is necessary not only that the focal lengths, but also that the unit planes, be identical for both colors. In many cases a partial correction of the chromatic aberration is sufficient. Thus a system may be achromatized either by making the focal length, and hence the magnification, the same for all colors; or by making the rays of all colors come to a focus in the same plane. In the former case, though the magnification is the same, the images of all colors do not lie in one plane; in the latter, though these images lie in one plane, they differ in size. A system may be achromatized one way or the other accoreing to the purpose for which it is intended, the choice depending upon whether the magnification or the position of the image is most important.

A system which has been achromatized for two colors, e.g. red and blue, is not in general achromatic for all other colors, because the ratio of the dispersions of different substances in different parts of the spectrum is not constant. The chromatic crrors which remain because of this and which give rise to the so-called secondary spectra are for the most part unimportant for practical purposes. Their influence can be still farther reduced either by choosing refracting bodies for which the lack of proportionality between the dispersions is as small as possible, or by achromatizing for three colors. The chromatic errors which remain after this correction are called spectra of the third order.

The choice of the colors which are to be used in practice in the correction of the chromatic aberration depends upon the use for which the optical instrument is designed. For a system which is to be used for photography, in which the blue rays are most effective, the two colors chosen will be nearer the blue end of the spectrum than in the case of an instrument which is to be used in connection with the human eye, for which the yellow-green light is most effective. In the latter case it is easy to decide experimentally what two colors can be brought together with the best result. Thus two prisms of different kinds of glass are so arranged upon the table of a spectrometer that they, furnish an almost achromatic image of the slit; for instance, for a given position of the table of the spectrometer, let them bring together the rays C and F. If now the table be turned, the image of the slit will in general appear colored; but there will be one position in which the image has least color. From this position of the prism it is easy to calculate what two colors emerge from the prism exactly parallel. These, then, are the two colors which can be used with the best effect for achromatizing instruments intended for eye observations.

Even a single thick lens may be achromatized either with reference to the focal length or with reference to the position of the focus. But in practice the cases in which thin lenses

 imaze.

 tures of the fuere of the lem"
 tion of two thin lenwe whowe acpurate fors Imenthe are f_{1}, ind f_{2} is given by

$$
\begin{array}{cccc}
i & \vdots & 1 \tag{3,4}\\
t & y_{1} & f_{i}
\end{array}
$$

 change of ondor, the therement of the tro igrosent of the fen.at lengeth ive from (31).

$$
\begin{equation*}
d\binom{t}{f_{4}} \cdots a M_{1}+\delta_{1} \quad n_{1} \cdots N_{4}, l_{1} \quad r_{1} \tag{5}
\end{equation*}
$$

in which r_{1} fepresent the divereatue prower of the material of
 length / of the kenthination in ta be the sume for foxth colora. it follown from (52) and 153 that

$$
\begin{equation*}
d_{f}^{i} \quad d\binom{1}{f_{0}}+d\binom{1}{f_{x}} \quad i_{1}+v_{z} \quad v_{2} . \tag{3+}
\end{equation*}
$$

This equation contains the condition for achromation. It also shows sitice $y_{\text {g }}$ and φ_{3} alowes have the watme dign nes

focal lengths of a thin double achromatic lens alzoays have opposite signs.

From (54) and (52) it follows that the expressions for the separate focal lengths are

$$
\begin{equation*}
\frac{\mathrm{I}}{f_{1}}=\frac{\mathrm{I}}{f} \frac{v_{2}}{\nu_{2}-v_{1}}, \quad \frac{\mathrm{I}}{f_{2}}=-\frac{1}{f} \frac{v_{1}}{v_{2}-v_{1}} . \tag{55}
\end{equation*}
$$

Hence in a combination of positive focal length the lens with the smaller dispersive power has the positive, that with the larger dispersive power the negative, focal length.

If f is given and the two kinds of glass have been chosen, then there are four radii of curvature at our disposal to make f_{1} and f_{2} correspond to (55). Hence two of these still remain arbitrary. If the two lenses are to fit together, r_{1}^{\prime} must be equal to r_{2}. Hence one radius of curvature remains at our disposal. This may be so chosen as to make the spherical aberration as small as possible.

In microscopic objectives achromatic pairs of this kind are very generally used. Each pair consists of a plano-concave lens of flint glass which is cemented to a double-convex lens of crown glass. The plane surface is turned toward the incident light.

Sometimes it is desirable to use two thin lenses at a greater distance apart; then their optical separation is (cf. page 28)

$$
\Delta=a-\left(f_{1}+f_{2}\right)
$$

Hence, from (19) on page 29, the focal length of the combination is given by

$$
\begin{equation*}
\frac{\mathbf{1}}{f}=\frac{\mathbf{1}}{f_{1}}+\frac{\mathbf{1}}{f_{2}}-\frac{a}{f_{1} f_{2}} \tag{56}
\end{equation*}
$$

If the focal length is to be achromatic, then, from (56) and (53),

$$
0=\frac{v_{1}}{f_{1}}+\frac{v_{2}}{f_{2}}-\frac{a\left(v_{1}+v_{2}\right)}{f_{1} f_{2}}
$$

or

$$
\begin{equation*}
a=\frac{v_{2} f_{1}+v_{1} f_{2}}{v_{1}+v_{2}} \tag{57}
\end{equation*}
$$

If the troo lenses are of the same material $\left(\nu_{1}=\nu_{2}\right)$, then, when they are at the distance

$$
\begin{equation*}
a=\frac{f_{1}+f_{2}}{2}, \tag{58}
\end{equation*}
$$

they form a systom wehich is achromatic reith respect to the focal length. Since $\nu_{1}=v_{2}$, this achromatism holds for all colors.

If it is desired to achromatize the system not only with reference to the focal length, but completely, i.e. in respect to both position and magnification of the image, then it follows from Fig. 30 that

$$
\frac{y_{1}}{y}=-\frac{e_{1}^{\prime}}{e_{1}}, \quad \frac{y^{\prime}}{y_{1}}=-\frac{e_{2}^{\prime}}{e_{2}},
$$

i.e. the ratio of the magnifications is

$$
\begin{equation*}
y^{\prime}: y=e_{1}^{\prime} e_{2}^{\prime}: e_{1} e_{2} \tag{59}
\end{equation*}
$$

Fig. 30.
If, therefore, the image is to be achromatic both with respect to magnitude and position, then, since e_{1} is constant for all colors,

$$
\begin{equation*}
d\left(\frac{e_{1}^{\prime} e_{2}^{\prime}}{e_{2}}\right)=0, \quad d e_{2}^{\prime}=0 \tag{60}
\end{equation*}
$$

But since $e_{1}^{\prime}+e_{2}=a$ (distance between the lenses) is also constant for all colors, it follows that $d e_{1}^{\prime}=-d e_{2}$, while, from (60), $d\left(e_{1}{ }^{\prime} / e_{2}\right)=0$. Hence $d e_{1}^{\prime}=0$ and $d e_{2}=0$, i.e. each of the two separate lenses must be for itself achromatized, i.e. must consist of an achromatic pair.

Hence the following general conclusion may be drawn: A combination which consists of several separated systems is
only perfectly achromatic (i.e. with respect to both position and magnification of the image) when each system for itself is achromatic.

When the divergence of the pencils which form the image becomes greater, complete achromatism is not the only condition for a good image even with monochromatic light. The spherical aberration for two colors must also be corrected as far as possible; and, when the image of a surface element is to be formed, the aplanatic condition (the sine law) must be fulfilled for the two colors. Abbe calls systems which are free from secondary spectra and are also aplanatic for several colors " apochromatic" systems. Even such systems have a chromatic error with respect to magnification which may, however, be rendered harmless by other means (cf. below under the head Microscopes).

CHAPTER IV

APERTURES AND THE EFFECTS DEPENDING UPON THEM.

1. Entrance- and Exit-pupils.-The beam which passes through an optical system is of course limited either by the dimensions of the lenses or mirrors or by specially introduced diaphragms. Let P be a particular point of the object (Fig. 31); then, of the stops or lens rims which are present, that one which most limits the divergence of the beam is found in the following way: Construct for every stop B the optical image B_{1} formed by that part S_{1} of the optical system which lies between B and the object P. That one of these images B_{1} which subtends the smallest angle at the object point P is evidently the one which limits the divergence of the beam. This image is called the entrance-pupil of the whole system. The stop B is itself called the apertutre or iris.* The angle $2 U$ which the entrance-pupil subtends at the object, i.e. the angle included between the two limiting rays in a meridian plane, is called the angular aperture of the system.

The optical image B_{1}^{\prime} which is formed of the entrancepupil by the entire system is called the exit-pupil. This evidently limits the size of the emergent beam which comes to a focus in P^{\prime}, the point conjugate to P. The angle $2 U^{\prime}$ which the exit-pupil subtends at P^{\prime} is called the angle of projection of the system. Since object and image are interchangeable, it follows at once that the exit-pupil B_{1}^{\prime} is the image of the

[^1]stop B formed by that part S_{2} of the optical system which lies between B and the image space. In telescopes the rim of the objective is often the stop, hence the image formed of this rim by the eyepiece is the exit-pupil. The exit-pupil may be seen, whether it be a real or a virtual image, by holding the

Fig. 31.
instrument at a distance from the eye and looking through it at a bright background.

Under certain circumstances the iris of the eye of the observer can be the stop. The so-called pupil of the eye is merely the image of the iris formed by the lens system of the eye. It is for this reason that the general terms entrancepupil and iris have been chosen.

As was seen on page 52, the position of the pupils is of importance in the formation of images of extended objects by beams of small divergence. If the image is to be similar to the object, the entrance- and exit-pupils must be orthoscopic points. Furthermore the position of the pupils is essential to the determination of the principal rays, i.e. the central rays of the pencils which form the image. If, as will be assumed, the pupils are circles whose centres lie upon the axis of the system, then the rays which proceed from any object point P toward the centre of the entrance-pupil, or from the centre of the exit-pupil toward the image point P^{\prime}, are the principal rays of the object and image pencils respectively. When the
paths of the rays in any system are mentioned it will be understood that the paths of the principal rays are meant.
2. Telecentric Systems.-Certain positions of the iris can be chosen for which the entrance- or the exit-pupils lie at infinity (in telescopic systems both lie at infinity). To attain this it is only necessary to place the iris behind S_{1} at its principal focus or in front of S_{2} at its principal focus (Fig. 31). The system is then called telecentric, -in the first case, telecentric on the side of the object; in the second, telecentric on the side of the image. In the former all the principal rays in the object space are parallel to the axis, in the latter all those of the image space. Fig. 32 represents a system which is telecentric on the side of the image. The iris B lies in front of and at the principal focus of the lens S which forms the real image $P_{1}^{\prime} P_{2}^{\prime}$ of the object P_{1} and P_{2}. The principal rays

Fig. 32.
from the points P_{1} and P_{2} are drawn heavier than the limiting rays. This position of the stop is especially advantageous when the image $P_{1}^{\prime} P_{2}^{\prime}$ is to be measured by any sort of a micrometer. Thus the image $P_{1}^{\prime} P_{2}^{\prime}$ always has the same size whether it coincides with the plane of the cross-hairs or not. For even with imperfect focussing it is the intersection of the principal rays with the plane of the cross-hairs which determines for the observer the position of the (blurred) image. If then the principal rays of the image space are parallel to the axis, even with improper focussing the image must have the same size as if it lay exactly in the plane of the cross-hairs. But when the principal rays are not parallel in the image space, the apparent
size of the image changes rapidly with a change in the position of the image with respect to the plane of the cross-hairs.

If the system be made telecentric on the side of the object, then, for a similar reason, the size of the image is not dependent upon an exact focussing upon the object. This arrangement is therefore advantageous for micrometer microscopes, while the former is to be used for telescopes, in which the distance of the object is always given (infinitely great) and the adjustment must be made with the eyepiece.
3. Field of View.-In addition to the stop B (the iris), the images of which form the entrance- and exit-pupils, there are always present other stops or lens rims which limit the size of the object whose image can be formed, i.e. which limit the field of vieze. That stop which determines the size of the field of view may be found by constructing, as before, for all the stops the optical images which are formed of them by that part S_{1} of the entire lens system which lies between the object and each stop. Of these images, that one G_{1} which subtends the smallest angle $2 w$ at the centre of the entrance-pupil is the one which determines the size of the field of view. $2 w$ is called the angular field of viez. The correctness of this assertion is evident at once from a drawing like Fig. 31. In this figure the iris B, the rims of the lenses S_{1} and S_{2}, and the diaphragm G are all pictured as actual stops. The image of G formed by S_{1} is G_{1}; and since it will be assumed that G_{1} subtends at the centre of the entrance-pupil a smaller angle than the rim of S_{1} or the image which S_{1} forms of the rim of the lens S_{2}, it is evident that G acts as the field-of-view stop. The optical image $G_{1}{ }^{\prime}$ which the entire system $S_{1}+S_{2}$ forms of G_{1} bounds the field of view in the image space. The angle $2 w^{\prime}$ which $G_{1}{ }^{\prime}$ subtends at the centre of the exit-pupil is called the angle of the image.

In Fig. 31 it is assumed that the image G_{1} of the field-ofview stop lies in the plane of the object. Thiscase is characterized by the fact that the limits of the field of view are perfectly sharp, for the reason that every object point P can either completely fill the entrance-pupil with rays or else can
send none to it because of the presence of the stop G_{1}. If the plane of the object does not coincide with the image G_{1}, the boundary of the field of view is not sharp, but is a zone of continuously diminishing brightness. For in this case it is evident that there are object points about the edge of the field whose rays only partially fill the entrance-pupil.

In instruments which are intended for eye observation it is of advantage to have the pupil of the eye coincide with the exit-pupil of the instrument, because then the field of view is wholly utilized. For if the pupil of the eye is at some distance from the exit-pupil, it itself acts as the field-of-view stop, and the size of the field is thus sometimes greatly diminished. For this feason the exit-pupil is often called the eye-ring, and its centre is called the position of the eye.

Thus far the stops have been discussed only with reference to their influence upon the geometrical configuration of the rays, but in addition they have a very large effect upon the brightness of the image. The consideration of this subject is beyond the domain of geometrical optics; nevertheless it will be introduced here, since without it the description of the action of the different optical instruments would be too imperfect.
4. The Fundamental Laws of Photometry.-By the total quantity of light M which is emitted by a source Q is meant the quantity which falls from Q upon any closed surface S completely surrounding Q. S may have any form whatever, since the assumption, or better the definition, is made that the total quantity of light is neither diminished nor increased by propagation through a perfectly transparent medium.*

It is likewise assumed that the quantity of light remains constant for every cross-section of a tube whose sides are made up of light rays (tube of light). \dagger If Q be assumed

[^2]to be a point source, then the light-rays are straight lines radiating from the point Q. A tube of light is then a cone whose vertex lies at Q. By angle of aperture (or solid angle) Ω of the cone is meant the area of the surface which the cone cuts out upon a sphere of radius I (1 cm .) described about its apex as centre.

If an elementary cone of small solid angle $d \Omega$ be considered, the quantity of light contained in it is

$$
\begin{equation*}
d L=K d \Omega \tag{6I}
\end{equation*}
$$

The quantity K is called the candle-power of the source Q in the direction of the axis of the cone. It signifies physically that quantity of light which falls from Q upon unit surface at unit distance when this surface is normal to the rays, for in this case $d \Omega=\mathrm{I}$.

The candle-power will in general depend upon the direction of the rays. Hence the expression for the total quantity of light is, by (61),

$$
\begin{equation*}
M=\int K \cdot d \Omega \tag{62}
\end{equation*}
$$

in which the integral is to be taken over the entire solid angle about Q. If K were independent of the direction of the rays, it would follow that

$$
M=4 \pi K
$$

since the integral of $d \Omega$ taken over the entire solid angle about Q is equal to the surface of the unit sphere described about Q as a centre, i.e. is equal to 4π. The mean candle-power K_{m} is defined by the equation

$$
\begin{equation*}
K_{m}=\frac{\int K d \Omega}{\int d \Omega}=\frac{M}{4^{\pi}} \tag{63}
\end{equation*}
$$

If now the elementary cone $d \Omega$ cuts from an arbitrary surface S an element $d S$, whose normal makes an angle Θ with the axis of the cone, and whose distance from the apex Q of
the cone, i.e. from the source of light, is r, then a simple geometrical consideration gives the relation

$$
\begin{equation*}
d \Omega \cdot r^{2}=d S \cdot \cos \Theta \tag{64}
\end{equation*}
$$

Then, by (6I), the quantity of light which falls upon $d S$ is

$$
\begin{equation*}
d L=K \frac{d S \cdot \cos \Theta}{r^{2}} \tag{65}
\end{equation*}
$$

The quantity which falls upon unit surface is called the intensity of illumination B. From (65) this intensity is

$$
\begin{equation*}
B=K \frac{\cos \Theta}{r^{2}} \tag{66}
\end{equation*}
$$

i.e. the intensity of illumination is inversely proportional to the square of the distance from the point source and directly proportional to the cosine of the angle which the normal to the illuminated surface makes with the direction of the incident rays.

If the definitions here set up are to be of any practical value, it is necessary that all parts of a screen appear to the eye equally bright when they are illuminated with equal intensities. Experiment shows that this is actually the case. Thus it is found that one candle placed at a distance of 1 m . from a screen produces the same intensity of illumination as four similar candles placed close together at a distance of 2 m .

Hence a simple method is at hand for comparing light intensities. Let two sources Q_{1} and Q_{2} illuminate a screen from such distances r_{1} and r_{2} (Θ being the same for both) that the intensity of the two illuminations is the same. Then the candle-powers K_{1} and K_{2} of the two sources are to each other as the squares of the distances r_{1} and r_{2}. A photometer is used for making such comparisons accurately. The most perfect form of this instrument is that constructed by Lummer and Brodhun.*

[^3]The most essential part of this instrument is a glass cube which consists of two right-angled prisms A and B (Fig. 33) whose hypothenuses are polished so as to fit accurately together. After the hypothenuse of prism A has been ground upon a concave spherical surface until its polished surface has been reduced to a sharply defined circle, the two prisms are pressed so tightly together that no air-film remains between them. An eye at O, which with the help of a lens w looks

Fig. 33.
perpendicularly upon one of the other surfaces of the prism B, receives transmitted and totally reflected light from immediately adjoining portions of the field of view. Between the two sources Q_{1} and Q_{2} which are to be compared is placed a screen S of white plaster of Paris, whose opposite sides are exactly alike. The light diffused by S is reflected by the two mirrors S_{1} and S_{2} to the glass cube $A B$. If the intensities of illumination of the two sides of S are exactly equal, the eye at O sees the glass cube uniformly illuminated, i.e. the figure which distinguishes the transmitted from the reflected light vanishes. The sources Q_{1} and Q_{2} are then brought to such distances r_{1} and r_{2} from the screen S that this vanishing of the figure takes
place. In order to eliminate any error which might arise from a possible inequality in the two sides of S, it is desirable to make a second measurement with the positions of the two sources Q_{1} and Q_{2} interchanged. The screen S, together with the mirrors S_{1} and S_{2} and the glass cube, are rigidly held in place in the case $K K$.

As unit of candle-power it is customary to use the flame of a standard paraffine candle burning 50 mm . high, or, better still, because reproducible with greater accuracy, the Hefner light. This light was introduced by v. Hefner-Alteneck and is produced by a lamp which burns amyl-acetate and is regulated to give a flame 40 mm . high.

When the candle-power of any source has been measured, the intensity at any distance can be calculated by (66). The unit of intensity is called the candle-meter. It is the intensity of illumination produced by a unit candle upon a screen standing I m . distant and at right angles to the direction of the rays. Thus, for example, an intensity of 50 candlemeters, such as is desirable for reading purposes, is the intensity of illumination produced by 50 candles upon a book held at right angles to the rays at a distance of 1 m ., or that produced by $12 \frac{1}{2}$ candles at a distance of $\frac{1}{2} \mathrm{~m}$., or that produced by one candle at a distance of $\frac{1}{7} \mathrm{~m}$.

Photometric measurements upon lights of different colors are attended with great difficulties. According to Purkinje the difference in brightness of differently colored surfaces varies with the intensity of the illumination.*

If the source Q must be looked upon as a surface rather than as a point, the amount of light emitted depends not only upon the size of the surface, but also upon the inclination of the rays.

A glowing metal ball appears to the eye uniformly bright. Hence the same quantity of light must be contained in all ele-

[^4]mentary cones of equal solid angle $d \omega$ whose vertices lie at the eye and which intersect the sphere. But since these cones cut out upon the metal sphere (cf. eq.' (64)) surface elements $d s$ such that
\[

$$
\begin{equation*}
d s=\frac{d \omega \cdot r^{2}}{\cos \vartheta}, \quad . \quad . \quad . \tag{67}
\end{equation*}
$$

\]

in which ϑ is the angle of inclination of $d s$ with the axis of the cone, it follows that the surface elements which send a given quantity of light to the eye increase in size as the angle included between the normal and the direction of the rays to the eye increases, i.e. the surfaces are proportional to $\mathrm{I}: \cos \theta$.

Hence (cf. eq. (65)) the quantity of light $d L$ which a surface element $d s$ sends to another surface element $d S$ is

$$
\begin{equation*}
d L=\frac{i \cdot d s \cdot d S \cdot \cos \vartheta \cdot \cos \Theta}{r^{2}}, * \tag{68}
\end{equation*}
$$

in which γ represents the distance between the surface elements, and θ and Θ represent the inclinations of the normals at $d s$ and $d S$ to the line joining the elements. i is called the intensity of radiation of the surface $d s$. It is the quantity which unit surface radiates to another unit surface at unit distance when both surfaces are at right angles to the line joining them.

The symmetry of eq. (68) with respect to the surface element which sends forth the radiations and that upon which they fall is to be noted. This symmetry can be expressed in the following words: The quantity of light which a surface element radiating with an intensity i sends to another surface element is the same as the former would receive from the latter if it were radiating with the intensity i.

Equation (68) can be brought into a simpler form by introducing the solid angle $d \Omega$ which $d S$ subtends at $d s$. The

[^5]relation existing bewteen $d \Omega$ and $d S$ is expressed in equation (64). Hence (68) may be written
\[

$$
\begin{equation*}
d L=i \cdot d s \cdot \cos \vartheta \cdot d \Omega \tag{69}
\end{equation*}
$$

\]

On the other hand it is possible to introduce the solid angle $d \omega$ which $d s$ subtends at $d S$. A substitution in (68) of its value taken from (67) gives

$$
\begin{equation*}
d L=i \cdot d S \cdot \cos \Theta \cdot d \omega . \tag{70}
\end{equation*}
$$

The relation which the intensity of radiation i bears to the total quantity M which is emitted by $d s$ is easily obtained.

Thus a comparison of equations (6I) and (69) shows that the candle-power K of the surface $d s$ in a direction which makes an angle ϑ with its normal has the value

$$
\begin{equation*}
K=i d s \cos \vartheta \tag{71}
\end{equation*}
$$

Let now the quantity of light be calculated which is contained between two cones whose generating lines make the angles ϑ and $\vartheta+d \vartheta$ respectively with the normal to the surface $d s$. The volume enclosed between the two cones is a conical shell whose aperture is

$$
\begin{equation*}
d \Omega=2 \pi \sin \vartheta d \vartheta \tag{72}
\end{equation*}
$$

for it cuts from a sphere of radius I a zone whose width is $d \vartheta$ and whose radius is $\sin \vartheta$. Hence, from equations (69) and (72), the quantity of light contained in the shell is

$$
d L=2 \pi i d s \sin \vartheta \cos \vartheta d \vartheta
$$

Hence the quantity contained in a cone of finite size whose generating line makes the angle U with the normal to $d s$ is

$$
\begin{equation*}
L=2 \pi i d s \int_{0}^{U} \sin \vartheta \cos \vartheta d \vartheta=\pi i d s \sin ^{2} U \tag{73}
\end{equation*}
$$

In order to obtain the total quantity M, U must be set equal to $\frac{\pi}{2}$ and the result multiplied by 2 in case the surface element $d s$ radiates with intensity i on both sides. Hence

$$
\begin{equation*}
M=2 \pi i d s \tag{74}
\end{equation*}
$$

5. The Intensity of Radiation and the Intensity of Illumination of Optical Images.-Upon the axis of a coaxial optical system let there be placed perpendicular to the axis a surface element which radiates with intensity i. Let U be the angle between the axis of the system and the limiting rays, i.e. those which proceed from $d s$ to the rim of the entrancepupil; then, by (73), the quantity of light which enters the system is

$$
\begin{equation*}
L=\pi i d s \sin ^{2} U \tag{75}
\end{equation*}
$$

Thus this quantity increases as U increases, i.e. as the entrance-pupil of the system increases. If now $d s^{\prime}$ is the optical image of $d s$, and U^{\prime} the angle between the axis and the limiting rays of the image, i.e. the rays proceeding from the exit-pupil to the image, then the problem is to determine the intensity of radiation i^{\prime} of the optical image. According to (73) the quantity of light which radiates from the image would be

$$
\begin{equation*}
L^{\prime}=\pi i^{\prime} d s^{\prime} \sin ^{2} U^{\prime} . \tag{76}
\end{equation*}
$$

Now L^{\prime} cannot be greater than L, and can be equal to it only when there are no losses by reflection and absorption; for then, by the definitions on page 77 , the quantity within a tube of light remains constant. If this most favorable case be assumed, it follows from (75) and (76) that

$$
\begin{equation*}
i^{\prime}=i \frac{d s \sin ^{2} U}{d s^{\prime} \sin ^{2} U^{\prime}} . \tag{77}
\end{equation*}
$$

But if $d s^{\prime}$ is the optical image of $d s$, it follows from the sine law (equation (46), page 61) that

$$
\begin{equation*}
\frac{d s \sin ^{2} U}{d s^{\prime} \sin ^{2} U^{\prime}}=\frac{n^{\prime 2}}{n^{2}}, \tag{78}
\end{equation*}
$$

in which n is the index of the object space, and n^{\prime} that of the image space. Hence, from (77),

$$
\begin{equation*}
i^{\prime}=i \frac{n^{\prime 2}}{n^{2}} \tag{79}
\end{equation*}
$$

Hence if the indices of the object and image spaces are the same, the intensity of radiation of the image is at best equal to the intensity of radiation of the object.

For example, the intensity of radiation of the real image of the sun produced by a burning-glass cannot be greater than that of the sun. Nevertheless the intensity of illumination of a screen placed in the plane of the image is greatly intensified by the presence of the glass, and is proportional directly to the area of the lens and inversely to its focal length. This intensity of illumination B is obtained by dividing the value of L^{\prime} as given in (76) by $d s^{\prime}$. If $n=n^{\prime}$, it follows that $B=\pi i^{\prime} \sin ^{2} U^{\prime}$. The fact that an optical system produces an increase in the intensity of illumination is made obvious by the consideration that all the tubes of light which pass through the image $d s^{\prime}$ must also pass through the exit-pupil. Hence the total quantity of light which is brought together in the image $d s^{\prime}$ is, by the proposition of page 82, the same as though the whole exitpupil radiated with the intensity i of the sun upon the element $d s^{\prime}$. The effect of the lens is then exactly the same as though the element $d s^{\prime}$ were brought without a lens so near to the sun that the angle subtended by the sun at $d s^{\prime}$ became the same as the angle subtended by the exit-pupil of the lens at its focus.

The same consideration holds for every sort of optical instrument. Therefore no arrangement for concentrating light can accomplish more than to produce, with the help of a given source of light which is small or distant, an effect which would be produced without the arrangement by a larger or nearer source of equal intensity of radiation.

In case n and n^{\prime} have different values, an increase of the intensity of radiation of the image can be produced provided $n<n^{\prime}$. For example, this is done in the immersion systems used with microscopes in which the light from a source Q in a medium of index unity is brought together by a condenser in front of the objective in a medium (immersion fluid) of greater index n^{\prime}. The quantity of light which therefore enters the
microscope is proportional to $n^{2} \sin ^{2} U$, in which U represents the angle between the limiting rays which enter the entrancepupil. The product

$$
\begin{equation*}
n \sin U=a \tag{80}
\end{equation*}
$$

is called by Abbe the numerical aperture of the instrument. Then the quantity of light received is proportional to the square of the numerical aperture. The intensity of radiation in the image, which again lies in air, is, of course, never more than the intensity of the source Q.
6. Subjective Brightness of Optical Images.-It is necessary to distinguish between the (objective) intensity of illumination which is produced at a point O by a luminous surface s and the (subjective) brightness of such a surface as it appears to an observer. The sensation of light is produced by the action of radiation upon little elements of the retina which are sensitive to light. If the object is a luminous surface s, then the image upon the retina covers a surface s^{\prime} within which these sensitive elements are excited. The brightness of the surface s is now defined as the quantity of light which falls upon unit surface of the retina, i.e. it is the intensity of illumination of the retina.

If no optical system is introduced between the source of light and the eye, then the eye itself is to be looked upon as an optical system to which the former considerations are applicable. The illumination upon the retina may be obtained from equations (76) and (79); but in this case it is to be remembered that n, the index of the object space, and n^{\prime}, that of the image space, have in general different values. Hence the brightness H_{0} which is produced when no optical instruments are present and when the source lies in a medium of index $n=\mathrm{I}$ is called the natural brightness and has the value

$$
\begin{equation*}
H_{0}=\pi i n^{\prime 2} \sin ^{2} W_{0}^{\prime} \tag{8I}
\end{equation*}
$$

i here is the intensity of radiation of the source (losses due to the passage of the rays through the eye are neglected). W_{0}^{\prime} is the angle included between the axis of the eye and lines
drawn to the middle point of the image upon the retina from the rim of the pupil. Therefore $2 W_{0}^{\prime}$ is the angle of projection in the eye (cf. page 73). If the size of the pupil remains constant, W_{0}^{\prime} is also constant. Hence the brightness H_{0} depends only upon the intensity of radiation i of the source and is altogether independent of the distance of the source from the eye.

This result actually corresponds within certain limits with physiological experience. To be sure when the source of light is very close to the eye, so that the image upon the retina is very much larger, a blinding sensation which may be interpreted as an increase in brightness is experienced. As the pupil is diminished in size W_{0}^{\prime} becomes smaller and hence H_{0} decreases.

If now an optical instrument is introduced before the eye, the two together may be looked upon as a single system for which the former deductions hold. Let the eye be made to coincide with the exit-pupil, a position which (cf. page 77) gives the largest possible field of view. Then two cases are to be distinguished:

1. The exit-pupil is equal to or greater than the pupil of the eye. Then the angle of projection $2 W^{\prime}$ of the image in the eye is determined by the pupil of the eye, i.e. $W^{\prime}=W_{0}^{\prime}$. The brightness is given by equation (81), in which i is the intensity of radiation of the source (all losses in the instrument and in the eye are neglected and the source is assumed to be in a medium of index $n=1$). If this index differs from unity, H must be divided by n^{2}. This case is, however, never realized in actual instruments. The source always lies in air or (as the sun) in space. This is also the case with the immersion systems used in microscopes, for the source is not the object immersed in the fluid, as this is merely illuminated from without. The real source is the bright sky, the sun, a lamp, etc. In what follows it will always be assumed that the source lies in a medium of index $n=1$. Hence the result: Provided no losses take place by reflection and absorption in
the instrument, the brightness of the optical image produced by an instrument is equal to the natural brightness of the source.
2. The exit-pupil is smaller than the pupil of the eye. Then the brightness is given by an equation analogous to (81), namely,

$$
\begin{equation*}
H=\pi i n^{\prime 2} \sin ^{2} W^{\prime} \tag{82}
\end{equation*}
$$

in which i is the intensity of radiation of the source, and $2 W^{\prime}$ is the angle of projection of the image in the eye. But now $W^{\prime}<V_{0}^{\prime}$, i.e. the brightness of the image is less than the natural brightness of the source. The ratio of these two brightnesses as obtained from (81) and (82) is

$$
\begin{equation*}
H: H_{0}=\sin ^{2} W^{\prime}: \sin ^{2} W_{0}^{\prime} \ldots \tag{83}
\end{equation*}
$$

Since now W_{0}^{\prime} is a small angle and W^{\prime} even smaller (in the human eye W_{0}^{\prime} is about 5°), the sine may be replaced by the tangent, so that the right-hand side of (83), i.e. the ratio of the brightness of the image to the natural brightness of the source, is equal to the ratio of the size of the exit-pupil of the instrument to the size of the pupil of the eye (or, better, to the size of the image of the iris formed by the crystalline lens and the front chamber of the eye). In short: In the case of extended objects an optical instrument can do no more than increase the visual angle under which the object appears without increasing its brightness.

This result could have been obtained as follows: By the principle on page 85 , the intensity of radiation of the image is equal to that of the source (when $n=n^{\prime}=1$ and reflection and absorption losses are neglected). An optical instrument then produces merely an apparent change of position of the source. But since, by the principle of page 87 , the brightness of the source is entirely independent of its position provided the whole pupil of the eye is filled with rays, it follows that the brightness of the image is equal to the natural brightness of the source. But if the exit-pupil is smaller than the pupil of the eye, the latter is not entirely filled with rays, i.e. the
ightness of the image must be smaller, than the natural ightness. The ratio $H: H_{0}$ comes out the same in this case before, since the inclination to the axis of the image rays is aall when the image lies at a sufficient distance from the eye be clearly visible.

If the image $d s^{\prime}$ of a luminous surface $d s$ lies at the distance from the exit-pupil (i.e. from the eye, since the latter is to \geq placed at the position of the exit-pupil), then $\delta \tan U^{\prime}$ is e radius of the exit-pupil, $2 U^{\prime}$ being the angle of projection the image (in air). Hence, replacing $\sin U^{\prime}$ by $\tan U^{\prime}$, the tio of the brightness H of the image to the natural brightness - of the source when the radius of the exit-pupil is smaller an the radius p of the pupil of the eye is

$$
\frac{H}{H_{0}}=\frac{\delta^{2} \sin ^{2} U^{\prime}}{p^{2}}
$$

Ow by the law of sines (equation (78)), the index n^{\prime} of the rage space being equal to unity,

$$
\begin{equation*}
\frac{H}{H_{0}}=\frac{\delta^{2} n^{2} \sin ^{2} U}{p^{2}} \cdot \frac{d s}{d s^{\prime}} \tag{84}
\end{equation*}
$$

which $d s$ is the element conjugate to $d s^{\prime}$ and whose limiting Ys make an angle U with the axis of the instrument. Let n $=$ the index of refraction of the medium about $d s$, then f. (80)) $n \sin U=a$ is equal to the numerical aperture of e system. $\quad d s^{\prime}: d s$ is the square of the lateral magnification the instrument. Representing this by V, (84) becomes

$$
\begin{equation*}
\frac{H}{H_{0}}=\frac{\delta^{2} a^{2}}{p^{2} V^{2}} \tag{85}
\end{equation*}
$$

his equation holds only when $H<H_{0}$. It shows clearly the fuence of the numerical aperture upon the brightness of the lage, and is of great importance in the theory of the microope.

The magnification which is produced by an optical instruent when its exit-pupil is equal to the pupil of the eye, i.e.
when the image has the natural brightness of the source, is called the normal magnification. If the radius p of the pupil be taken as 2 mm . and the distance δ of the image from the eye as 25 cm . (distance of most distinct vision), then, from (85), the normal magnifications $V_{\bar{n}}^{u}$ corresponding to different numerical apertures are

$$
\begin{aligned}
\text { when } a=0.5 & V_{n}=62 \\
" a=1.0 & V_{n}=125 \\
" a=1.5 & V_{n}=187 .
\end{aligned}
$$

When the magnification V is equal to $2 V_{n}$ the brightness H is a quarter of the natural brightness $H_{0} . \quad 2 V_{n}$ may be looked upon as about the limit to which the magnification can be carried without diminishing the clearness of the image. For $a=1.5$ this would be, then, a magnification of about 380 . For a magnification of 1000 and $a=1.5$ the brightness H is $\frac{1}{27}$ of the natural brightness H_{0}.

For telescopes equation (85) is somewhat modified in practice. Thus if h is the radius of the objective of the telescope, then, by equation (14^{\prime}) on page 28 , the radius of its exit-pupil is equal to $h: \Gamma$, in which Γ is the angular magnification of the telescope. Hence the ratio of the area of the exit-pupil to that of the pupil of the eye is (cf. p. 87 , eq. (83 et seq.)

$$
\begin{equation*}
\frac{H}{H_{0}}=\frac{h^{2}}{p^{2} \Gamma^{2}} \tag{86}
\end{equation*}
$$

For a normal magnification Γ_{n} the radius of the objective of a telescope must be $p \cdot \Gamma_{n}$, i.e. it must be $2,4,6,8$, etc., mm . if the normal magnification has the value $1,2,3,4$, etc., and p is taken as 2 mm . Thus, for example, if the normal magnification is 100 , the radius of the objective must be 20 cm .
7. The Brightness of Point Sources.-The laws for the brilliancy of the optical images of surfaces do not hold for the images of point sources such as the fixed stars. On account of diffraction at the edges of the pupil; the size of the image upon the retina depends only on the diameter of the pupil,
being altogether independent of the magnification. (Cf. Chapter IV, Section I of Physical Optics.) As long as the visual angle of an object does not exceed one minute the source is to be regarded as a point.

The brightness of a point source P is determined by the quantity of light which reaches the eye from P. The natural brightness H_{0} is therefore proportional directly to the size of the pupil and inversely to the square of the distance of P from the eye. By the help of an optical instrument all the light from P which passes through the entrance-pupil of the instrument is brought to the eye provided the exit-pupil is smaller than the pupil of the eye, i.e. provided the normal magnification of the instrument is not exceeded. If the rim of the objective is the entrance-pupil of the instrument, then the brightness of a distant source such as a star exceeds the natural brightness in the ratio of the size of the objective to the size of the pupil of the eye.*

But if the natural magnification of the telescope has not yet been reached, i.e. if its exit-pupil is larger than the pupil of the eye, then in the use of the instrument the latter constitutes the exit-pupil and its image formed by the telescope the entrance-pupil. According to equation (I4') on page 28 this entrance-pupil is Γ^{2} times as great as the pupil of the eye, Γ representing the magnification of the telescope. Hence the brightness of the star is Γ^{2} times the natural brightness.

Since, then, the brightness of stars may be increased by the use of a telescope, while the brightness of the background is not increased but even diminished (in case the normal magnification is exceeded), stars stand out from the background more clearly when seen through a telescope than otherwise and, with a large instrument, may even be seen by day.
8. The Effect of the Aperture upon the Resolving Power of Optical Instruments. -Thus far the effect of the aperture upon the geometrical construction of the rays and the bright-

[^6]ness of the image has been treated. But the aperture also determines the resolving power of the instrument, i.e. its ability to optically separate two objects which the unaided eye is unable to distinguish as separate. It has already been. remarked on page 52 that, on account of diffraction phenomena, very narrow pencils produce poor images. These diffraction phenomena also set a limit to the resolving power of optical instruments, and it is at once clear that this limit can be pushed farther and farther on by increasing the width of the beam which forms the image, i.e. by increasing the aperture of the instrument. The development of the numerical relations which exist in this case will be reserved for the chapter on the diffraction of light. But here it may simply be remarked that two objects a distance d apart may be separated by a microscope if
\[

$$
\begin{equation*}
\cdot d \geqq \frac{\lambda}{2 a} \tag{87}
\end{equation*}
$$

\]

in which λ is the wave-length (to be defined later) of light in air, and a the numerical aperture of the microscope. A telescope can separate two objects if the visual angle ϕ which they subtend is

$$
\begin{equation*}
\phi \geqq 0.6 \frac{\lambda}{h}, \tag{88}
\end{equation*}
$$

in which h is the radius of the aperture of the telescope.

CHAPTER V

OPTICAL INSTRUMENTS*

I. Photographic Systems.-In landscape photography the optical system must throw a real image of a very extended object upon the sensitive plate. The divergence of the pencils which form the image is relatively small. The principal sources of error which are here to be avoided have already been mentioned on page 63. Attention was there called to the advantage of the symmetrical double objective as well as to the influence of suitably placed stops upon the formation of a cor rect image. But the position of the stop has a further influence upon the flatness of the image.

For the case of a combination of two thin lenses of focal length f_{1} and f_{2} and of indices n_{1} and n_{2} the greatest flatness of image can be obtained \dagger when

$$
\begin{equation*}
n_{1} f_{1}=-n_{2} f_{2} \tag{I}
\end{equation*}
$$

The condition for achromatism for two thin lenses is, by equation (54) on page 69 ,

$$
\begin{equation*}
v_{2} f_{1}=-v_{1} f_{2} \tag{2}
\end{equation*}
$$

The two conditions (1) and (2) can be simultaneously furfilled only when the lens of larger index n has the smaller dispersive power v.

[^7]Formerly no kinds of glass were hnown which fulfilled this condition, namely, that the one with harger index have the smaller dispersion. For crown shas hoth the refraction and the dispersion were small; for lint ghese they were both large. Only recently has schott in Jeno proulue ed yhesses which show in some degree the reverse relation, and henee it has become possible to obtain at the same time achromativm and flatness of the image. Such systems of lemses are called the new achromats to distinguish them from the ald achromats.

For another reason the use of these new kinds of glass, which combine a large n with a small y, is atwantugeous for photographic optics. Astigmatism may be corrected by combining an old achromat with a new, beriatise the former, on account of the dispersive effect at the junction between the lenses, produces an astigmatic difference of opposite sign from that produced by the latter, which has a convergent eflect at the junction. Such symmetrical shable objectives which have on both sides a combination of old and new achromats are called anastigmatic aplanats.

In order to produce as large images as prosuble of a distant object, the focal length of the system must be as great as possible. This would necessitate, if the lenses of the system lie close together; an inconvenient lemgthening of the camera, since its length b must be approximately equal to the focal length f. This difficulty can be avoided by the use of a so-called teleobjective, which consists of a combination of a convergent and a divergent system placed at a distance a apart. The latter forms (ef. Fig. 22, page 43) erect, enlarged images of virtual objects which lie behind it but in fromt of its second principal focus F_{2}. The principal tixus F_{1}, of the con vergent lens must also lie in front of F_{g}, As is shown in Fifg. 34, the focal length f of the whole system is greater than the distance of the convergent system from the powition of the

[^8]image, i.e. than the conners lengeth. Firs evanple, in orker

F44. 4

 system given on phase so.

 cal aberration ath to fullat the stace late.
2. Simple Magnifyingeglasses. The , ,

 the object canmat lie clower te the ega than the lime wifotant

 the lens is

$$
i^{*}=\begin{array}{ccc}
y^{\prime} & x^{*} & 1+6 \tag{3}\\
y & y & f
\end{array}
$$

in which x^{\prime} denotes the distance of the image from the second principal focus, and a that of the eye. Generally a may be neglected in comparison with δ, in which case the magnification produced by the lens is

$$
\begin{equation*}
V=\frac{\delta}{f} . \tag{4}
\end{equation*}
$$

Thus it is inversely proportional to the focal length of the lens.

If the diameter of the magnifying-glass is greater than that of the image which it forms of the pupil of the eye, then the latter is the aperture stop, the former the field-of-view stop. In order to obtain the largest possible field of view it is necessary to bring the eye as near as possible to the lens. As the distance of the lens from the eye is increased, not only does the field of view become smaller, but also the configuration of the rays changes in that the images of points off the axis are formed by portions of the lens which lie to one side of the axis. This is evident at once from a graphical construction of the entrance-pupil of the system, i.e. a construction of the image of the pupil of the eye formed by the lens. The orthoscopy is in this way generally spoiled, i.e. the image appears blurred at the edges.

A simple plano-convex lens gives good images for magnifications of less than eight diameters, i.e. for focal lengths greater than 3 cm . The plane side of the lens must be turned toward the eye. Although this position gives a relatively large spherical aberration on the axis (cf. page 55), because the object lies near its principal focus of the lens, nevertheless it is more satisfactory than the inverse position on account of the smaller aberration off the axis.

The image may be decidedly improved by the use of two simple lenses because the distribution of the refraction over several lenses greatly diminishes the spherical aberration on the axis. Figs. 35 and 36 show the well-known Fraunhofer and Wilson magnifying-glasses. In the latter the distance
 Y the alvantuge in Heamel that the deteremes in the

35.

Fisi. ytu.

Fist. 1%

Brucke magnityin: "glaw, whieh compaty of a twaver hromatie fromt lens and at sombe tiatatore fron it at divergent lens, in chatateriact ly the foxt that the

 The arrangetnent of the letnen thay the the r, the on in
 rat and the divergent lenses nay le pantive. Netere
 wergent lens may lice lehind the werond fow of the nt letw. like the simple maynifying estan thin cotn 1 furnidhes crect imstres, for the imotye formest by the cont Iens done wond be inverted wree stother insep.
 of this inetrument is the emblluew of the fiels sif siew.

[^9]the magnifying-glass of short focal length by a microscope. This consists of two convergent systems relatively far apart. The first system (the objective) produces a real, inverted, enlarged image of an object which lies just beyond its first principal focus. This image is again enlarged by the second system (the eyepiece) which acts as a magnifying-glass. Apart from the fact that, on account of the greater distance apart of the two systems of the microscope, a greater magnification can be produced than with a single system used as a simple magnifier, the chief advantage of the instrument lies in this, that the problem of forming the image is divided into two parts which can be solved separately by the objective and the eyepiece. This division of labor is made as follows: the objective, which has the greatest possible numerical aperture,* forms an image of a surface element, while the eyepiece, like any magnifying-glass, forms the image of a large field of view by means of pencils which must be of small divergence, since they are limited by the pupil of the eye. It has been shown above (Chapter III, $\S \S 8,9$, IO) that these two problems may be separately solved.
b. The Objective.-The principal requirements which an objective must fulfil are as follows:
r. That with a large numerical aperture the spherical aberration upon the axis be eliminated and the aplanatic condition, i.e. the sine law, be fulfilled.
2. That chromatic errors be corrected. This requires that the aplanatic condition be fulfilled for at least two colors, and that a real achromatic image of the object be formed by the objective. It only partial achromatism is required it is sufficient to make the objective achromatic with respect to the first principal focus; for the position of the image of an object which lies near this focal point F would vary rapidly. with the color if the position of F depended upon the color. If a system has been achromatized thus with respect to the focus F, i.e.

[^10]with respect to the position of the image, it is not achromatic with respect to the focal length. The different colors, therefore, produce images of different sizes, i.e. chromatic differences in magnification still remain. These must be corrected by means of the eyepiece.

It is customary to distinguish between $d r y$ and immersion systems. In the latter the space between the front lens of the objective and the cover-glass under which the object lies is filled with a liquid. The advantages of this method of increasing the numerical aperture are evident. Furthermore, by the use of the so-called homogeneous immersions, in which the liquid has the same index and dispersion as the cover-glass and the front lens, the formation of aplanatic images by a hemispherical front lens may be attained in accordance with the principle of Amici (cf. page 58). Fig. 38 shows, in double the natural size, an objective designed by Abbe, called an aprochromat, in which the above conditions are fulfilled by a combination of ten different lenses used with a homogeneous immersion. The aprochromat, being achromatic for three colors, is free from secondary spectra, and the aplanatic conditions

Fig. 38. are fulfilled for two colors. The focal length of the system is 2 mm . and its numerical aperture $a=1.40$. The lightcollecting and dioptric excellence of this objective is such that the limit of resolving power of a microscope (equation (87), page 92) may be considered as actually attained by it.
c. The Eyepiece. -The chief requirements for the eyepiece are those for the formation of the image of an extended object by means of narrow pencils, namely:

1. The elimination of astigmatism in the oblique pencils.
2. The formation of orthoscopic images.
3. The formation of achromatic images.

The first two points have been discussed in Chapter III, \S Io, page 63 ; as to the last, partial achromatization is sufficient. Consider the case in which the image formed by an objective is free from chromatic errors. On account of the length of the microscope tube, i.e. on account of the relatively large distance between the real image formed by the objective and the exit-pupil of the objective, the principal rays which fall upon the eyepiece have but a small inclination to the axis of the instrument. If now the eyepiece is made achromatic with respect to its focal length, then it is evident from the construction of conjugate rays given on page 24 , as well as from the property of the focal length given on page 20 , that a ray of white light which falls upon the eyepiece is split up into colored rays all of which emerge from the eyepiece with the same inclination to the axis. Hence an eye focussed for parallel rays sees a colorless image. Even when the image lies at the distance of most distinct vision (25 cm .) an eyepiece which has been made achromatic with respect to its focal length nearly fulfils the conditions 71 for a colorless image.

Now it was shown on page 7 I that two simple lenses of focal lengths f_{1} and f_{2}, made of the same kind of glass, when placed at a distance apart $a=\frac{f_{1}+f_{2}}{2}$, have a resultant focal length f which is the same for all colors. Since, in addition, the construction of an eyepiece from two lenses produces an improvement of the image in the matter of astigmatism, eyepieces are usually made according to this principle. The lens which is nearer the objective is called the field-lens, that next the eye the eye-lens.

The two most familiar forms of achromatic eyepiece are the following:

1. The Ramsden eyepiece (cf. Fig. 40, page 109). This consists of two equal plano-convex lenses which have their curved sides turned toward each other. Since $f_{1}=f_{2}$, the distance a between the lenses is $a=f_{1}=f_{2}$. But this arrangement has the disadvantage that the field-lens lies at the prin-
cipal focus of the eye-lens, and hence any dust-particles or scratches upon the former are seen magnified by the latter. Hence the field-lens is placed somewhat nearer to the eyelens, for instance, $a=\frac{2}{8} f_{1}$. In this way a further advantage is obtained. When $a=\frac{2}{8} f_{1}$, the optical separation of the two lenses (cf. page 28) $\Delta=-\frac{4}{3} f_{1}$. Hence, by equation (20) on page 30 , the focal length F of the combination lies at a distance $\frac{1}{4} f_{1}$ before the field-lens; while, when $a=f_{1}$, i.e. $\Delta=-f_{1}$, it would fall in the objective lens itself. Since the real image formed by the objective of the microscope lies near the principal focus F of the eyepiece, if $a=\frac{2}{8} f_{1}$, it is still in front of the field-lens; hence the image in the microscope may be measured by introducing in front of the fieldlens, at the position of the real image formed by the objective, a micrometer consisting of fine graduations upon glass or a cross-hair movable by means of a screw.
2. The Huygens eyepiece (Fig. 39). In this the focal length f_{1} of the field-lens is larger than that f_{2} of the eyelens. Generally $f_{1}=3 f_{2}$. Then from $a=\frac{f_{1}+f_{2}}{2}$ it follows that $a=\frac{g}{8} f_{1}=2 f_{2}$. The optical separation has the value $\Delta=-\frac{2}{8} f_{1}$, hence by (20) on page 30 the focal length F of the combination lies a distance $\frac{1}{2} f_{1}$ behind the field-lens. The real image formed by the objective must, therefore, fall behind the field-lens as a virtual object, and a micrometrical measurement of it is not easily made since both the lenses in the eyepiece take part in the formation of the image of the object, while the image of the micrometer is formed by the eye-lens alone. This eyepiece also consists of two plano-convex lenses but their curved surfaces are both turned toward the object. The advantage of the combination of a weak field-lens with an eyelens three times as powerful lies in the fact that the bending of the rays at the two lenses is uniformly distributed between them.*
[^11]If chromatic errors exist in the image formed by the objective, they may be eliminated by constructing the eyepiece to have chromatic errors of opposite sign. It was shown above (page 99) that the chromatic errors of magnification are not eliminated in the aprochromat objective, the blue image being larger than the red. Abbe then combines with such objectives the so-called compensating eyepieces which are not achrometized with respect to focal length, i.e. with respect to magnification, but which produce larger red images than blue.
d. The Condenser. - In order that full advantage may be taken of the large numerical aperture of the objective, the rays incident upon it must be given a large divergence. To obtain such divergence there is introduced under the stage of the microscope a condenser which consists of one or more convergent lenses of short focal length arranged as in an objective, but in the inverse order. From the discussion above on page 85 it is evident that such a condensation of the light does not increase the intensity of the source but merely has the effect of bringing it very close to the objective.
e. Geometrical Configuration of the Rays.-If the normal magnification (cf. page 90) has not been reached, the pupil of the eye is the exit-pupil of the entire microscope, and the image of the pupil of the eye formed by the instrument is the entrance-pupil. If the normal magnification is exceeded, a stop or the rim of a lens in the microscope is the aperture stop. This stop always lies in the objective, not in the eyepiece. Fig. 39 shows a case of very frequent occurrence in which the rim $B_{1} B_{2}$ of the hemispherical front lens of the objective is both aperture stop and entrance-pupil. The image $B_{1}{ }^{\prime} B_{2}^{\prime}$ of $B_{1} B_{2}$ formed by the whole microscope is the exit-pupil. If the length of the tube is not too small, this image lies almost at the principal focus of the eyepiece. The eyepiece shown in Fig. 39 is a Huygens eyepiece. The real image of the object $P_{1} P_{2}$ formed by the objective and the field-lens of the eyepiece is $P_{1}^{\prime} P_{2}^{\prime}$. The field-of-view stop $G G$ is placed at $P_{1}{ }^{\prime} P_{2}^{\prime}$. In this way the edge of the field of view becomes sharply defined,
because the image of G formed by the field-lens and the objective lies in the plane of the object $P_{1} P_{2}$ (cf. remark on page 76). The points $P_{1}^{\prime} P_{2}^{\prime}$ must lie on the edge of the field-ofview stop. Then $P_{1} P_{2}$ is the size of the field of view on the side of the object. The virtual image $P_{1}{ }^{\prime \prime} P_{2}{ }^{\prime \prime}$ formed by the eye-lens of the real image $P_{1}^{\prime} P_{2}^{\prime}$ is the image seen by the observer. If this image is at a distance δ from the exit-pupil,

Fig. 39.
then the observer, the pupil of whose eye ought to be coincident with the exit-pupil $B_{1}{ }^{\prime} B_{2}^{\prime}$ (cf. page 77), must focus his eye for this distance δ. By a slight raising or lowering of the whole microscope with respect to the object $P_{1} P_{2}$ the image $P_{1}{ }^{\prime \prime} P_{2}{ }^{\prime \prime}$ may easily be brought to any desired distance δ. It is usually assumed that δ is the distance of most distinct vision, namely, 25 cm .

In Fig. 39 the principal and the limiting rays which proceed from P_{1} are shown. From P_{2} the principal ray only is drawn, the limiting rays being introduced behind the eye-lens.
f. The Magnification. - Let the object have the linear magnitude y. By equation (7) on page 19, the objective forms a real image of size $y^{\prime}=y \cdot \frac{l}{f_{1}^{\prime}}$, in which f_{1}^{\prime} is the second focal length of the objective,* and l the distance of the image from the second principal focus. Since, as was shown above, this image y^{\prime} lies immediately in front of or behind the fieldlens of the ocular, l may with sufficient accuracy be taken as the length of the microscope tube. Likewise, by equation (7), the virtual image formed by the eyepiece has the size $y^{\prime \prime}=y^{\prime} \cdot \frac{\delta}{f_{2}}$, in which f_{2} represents the focal length of the eyepiece and δ the distance of the virtual image from its second principal focus. Since, as was above remarked, this eyepiece lies close to the exit-pupil, i.e. to the pupil of the eye, δ may be taken as the distance of the image from the eye. The magnification V produced by the whole microscope is then

$$
\begin{equation*}
V=\frac{y^{\prime \prime}}{y}=\frac{\delta \cdot l}{f_{1}^{\prime} f_{2}} . \tag{5}
\end{equation*}
$$

Since the second principal focal length f^{\prime} of the entire microscope is, by equation (I8) on page $29, \dagger$

$$
\begin{equation*}
f^{\prime}=-\frac{f_{1}^{\prime} f_{2}}{l} \tag{6}
\end{equation*}
$$

Δ, the optical separation between the objective and the eyepiece being almost equal to l, it follows that, disregarding the sign, (5) may be written

$$
\begin{equation*}
V=\frac{\delta}{f^{\prime}} \tag{7}
\end{equation*}
$$

Thus the magnification depends upon three factors which are entirely arbitrary, namely, upon f_{1}^{\prime}, f_{2}, and l. The length

[^12]l of the tube cannot be increased beyond a certain limit without making the instrument cumbrous. It is more practicable to obtain the effect of a longer l by increasing the power of the eyepiece. Furthermore the focal length of the objective is always made smaller than that of the eyepiece. In this way not only may the lenses in the objective be made relatively small even for high numerical aperture, but also a certain quality of image (near the axis) may be more easily obtained for a given magnification the smaller the focal length of the objective. But since, with the diminution of the focal length of the objective, the errors in the final image formed by the eyepiece increase for points off the axis, the shortening of f_{1}^{\prime} cannot be carried advantageously beyond a certain limit (1.5-2 mm . in immersion systems).
g. The Resolving Power. - This is not to be confused with magnification, for, under certain circumstances, a microscope of smaller magnifying power may have the larger resolving power, i.e. it may reveal to the eye more detail in the object than a more powerfully magnifying instrument. The resolving power depends essentially upon the construction of the objective: the detail of the image formed by it depends (cf. page 92) on the one hand upon the numerical aperture of the objective, on the other upon the size of the discs which arise because the focussing is not rigorously homocentric. If two points P_{1} and P_{2} of an object be considered such that the discs to which they give rise in the image formed by the objective do not overlap, they may be distinguished as two distinct points or round spots in case the eyepiece has magnified the image formed by the objective to such an extent that the visual angle is at least I^{\prime}. But if these discs in the image formed by the objective overlap, then the most powerful eyepiece cannot separate the points P_{1} and P_{2}. For every objective there is then a particular ocular magnification, which will just suffice to bring out completely the detail in the image formed by the objective. A stronger magnification may indeed be conveniently used in bringing out this detail, but it adds no new
element to the picture. From the focal length of the objective, the length of the tube, and the focal length of the eyepiece which is just sufficient to bring out the detail in the image, it is possible to calculate from (5) the smallest permissible magnification for complete resolution. This magnification is greater the greater the resolving power of the objective. Assuming a perfect objective, the necessary magnification of the whole instrument depends only upon the numerical aperture. This has not yet been pushed beyond the limit (for immersion systems) $a=1.6$. Hence, by equation (87) on page 92, the smallest interval d which can be optically resolved is
$$
d=\frac{\lambda}{2 a}=\frac{0.00053 \mathrm{~mm} .}{3.2}=0.00016 \mathrm{~mm}
$$
if λ be the wave-length of green light. Now at a distance $\delta=25 \mathrm{~cm}$. from the eye an interval $d^{\prime}=0.145 \mathrm{~mm}$. has a visual angle of 2^{\prime}, which is the smallest angle which can be easily distinguished. Since $d^{\prime}: d=905$, the limit of resolution of the microscope is attained when the total magnification is about 900 . Imperfections in the objective reduce this required magnification somewhat. By equation (85) on page 89 the ratio of the brightness of the image to the normal brightness is for this case
$$
H: H_{0}=\frac{\delta^{2} \cdot a^{2}}{p^{2} \cdot V^{2}}=\left(\frac{250 \cdot 1.6}{2 \cdot 900}\right)^{2}=\frac{1}{20}
$$
the radius p of the pupil of the eye being assumed as 2 mm .
h. Experimental Determination of the Magnification and the Numerical Aperture.-The magnification may be determined by using as an object a fine glass scale and drawing with the help of a camera lucida its image upon a piece of paper placed at a distance of 25 cm . from the eye. The simplest form of camera lucida consists of a little mirror mounted obliquely to the axis of the instrument, from the middle of which the silvering has been removed so as to leave a small hole of about 2 mm . diameter. The image in the microscope is seen through the
hole, while the drawing-paper is at the same time visible in the mirror.* The ratio of the distances between the divisions in the drawing to those upon the glass scale is the magnification of the instrument.

From the magnification and a measurement of the exitpupil of the microscope its numerical aperture may be easily found. Since, according to the discussion on page 88, the ratio of the brightness of the image to the normal brightness is equal to the ratio of the exit-pupil to the pupil of the eye, it follows, from (85) on page 89, that

$$
\begin{equation*}
\frac{H}{\bar{H}_{0}}=\frac{b^{2}}{p^{2}}=\frac{\delta^{2} a^{2}}{p^{2} V^{2}}, \quad . \quad . \quad . \quad . \tag{8}
\end{equation*}
$$

in which b represents the radius of the exit-pupil. Hence the numerical aperture is

$$
\begin{equation*}
a=\frac{b V}{\delta} \tag{9}
\end{equation*}
$$

A substitution of the value of V from (7) gives

$$
\begin{equation*}
a=b: f^{\prime}, \tag{Io}
\end{equation*}
$$

i.e. the numerical aperture is equal to the ratio of the radius of the exit-pupil to the second focal length of the zehole microscope.

Abbe has constructed an apertometer which permits the determination of the numerical aperture of the objective directly. \dagger
4. The Astronomical Telescope.-This consists, like the microscope, of two convergent systems, the objective and the eyepiece. The former produces at its principal focus a real inverted image of a very distant object. This image is enlarged by the eyepiece, which acts as a simple magnifier. If the eye of the observer is focussed for parallel rays, the first focal plane of the eyepiece coincides with the second focal plane of the

[^13]objective, and the image formation is telescopic in the sense used above (page 26), i.e. both the object and the image lie at infinity. The magnification I means then the ratio of the convergence of the image rays to the convergence of the object rays. But, by (24) on page 30 ,
\[

$$
\begin{equation*}
\Gamma=\tan u^{\prime}: \tan u=f_{1}: f_{2} \tag{II}
\end{equation*}
$$

\]

in which f_{1} is the focal length of the objective and f_{2} that of the eyepiece. Hence for a powerful magnification f_{1} must be large and f_{2} small.

The magnification may be experimentally determined by measuring the ratio of the entrance-pupil to the exit-pupil of the instrument. For when the image formation is telescopic, the lateral magnification is constant (cf. page 26), i.e. it is independent of the position of the object and, by (14^{\prime}) on page 28 , is equal to the reciprocal of the angular magnification. Now (without reference to the eye of the observer, cf. below) the entrance-pupil is the rim of the objective, hence the exitpupil is the real image (eye-ring) of this rim formed by the eyepiece. Hence if the diameter of this eye-ring be measured with a micrometer, the ratio between it and the diameter of the objective is the reciprocal of the angular magnification of the telescope.

Fig. 40 shows the configuration of the rays when a Ramsden eyepiece is used (cf. page 100). $\quad B_{1} B_{2}$ is the entrancepupil (the rim of the objective), $B_{1}^{\prime} B_{2}^{\prime}$ the exit-pupil, and P_{1} is the real image formed by the objective of an infinitely distant point P. The principal ray is drawn heavy, the limiting ray light. $\quad P_{1}$ lies somewhat in front of the field-lens of the eyepiece. The field-of-view stop $G G$ is placed at this point. Since its image on the side of the object lies at infinity, the limits of the field of view are sharp when distant objects are observed. P^{\prime} is the infinitely distant image which the eyepiece forms of P_{1}. When the eye of the observer is taken into consideration, it is necessary to distinguish between the case in which the exit-pupil of the instrument is smaller than the
pupil of the eye and that in which it is greater. Only in the first case do the conclusions reached above hold, while in the second the pupil of the eye is the exit-pupil for the whole system of rays, and the image of the pupil of the eye formed by the telescope is the entrance-pupil.

The objective is an achromatic lens which is corrected for spherical aberration. In making the eyepiece achromatic the

Fig. 40.
same conditions must be fulfilled which were considered in the case of the microscope. Since the principal rays which fall upon the eyepiece are almost parallel to the axis, it is sufficient if it be achromatized with respect to the focal length. Hence the same eyepiece may be used for both microscope and telescope, but the Ramsden eyepiece is more frequently employed in the latter because it lends itself more readily to micrometric measurements.

Here, as in the microscope, in order to bring out all the detail, the magnification must reach a certain limit beyond which no advantage is obtained in the matter of resolving power. In telescopes the aperture of the objective corresponds to the numerical aperture in microscopes.
5. The Opera-glass.-If the convergent eyepiece of the astronomical telescope be replaced by a divergent one, the instrument becomes an opera-glass. In order that the image formation may be telescopic, the second principal focus of the eyepiece must coincide with the second principal focus of the
objective. Thus the length of the telescope is not equal to the sum, as in the astronomical form, but rather to the difference of the focal lengths of the eyepiece and the objective.

Since equation (II) of this chapter holds for all cases of telescopic image formation, the angular magnification Γ of the opera-glass may be obtained from it. This instrument, however, unlike the astronomical telescope, produces erect images, for the inverted image formed by the objective is again inverted by the dispersive eyepiece.

Without reference to the eye of the observer, the rim of the objective is always the entrance-pupil of the instrument. The eyepiece forms directly in front of itself a virtual diminished image of this rim (the exit-pupil). The radius of this image is

$$
\begin{equation*}
b=h \cdot \frac{f_{2}}{f_{1}}=\frac{h}{\Gamma} \tag{I2}
\end{equation*}
$$

in which h is the radius of the objective.
Since this exit-pupil lies before rather than behind the eyepiece, the pupil of the eye of the observer cannot be brought into coincidence with it; consequently the pupil of the eye acts as a field-of-view stop in case the quantity b determined by

Fig. 4r.
equation (I2), i.e. the exit-pupil of the instrument, is smaller than the eye, which means that the normal magnification is exceeded. Hence for large magnifications the field of view is very limited. Fig. 4I shows the geometrical configuration of the rays for such a case. p, p represents the pupil of the eye, w^{\prime} the angular field of view of the image. Since the image of
the field-of-view stop (the pupil of the eye), formed by the whole telescope lies at a finite distance, i.e. since it is not at infinity with the object, the edge of the field of view is not sharp (cf. page 76).

But if the exit-pupil $B_{1}^{\prime} B_{2}^{\prime}=2 b$ of the instrument is larger than the pupil of the eye, i.e. if the normal magnification has not been reached, then, taking into account the eye of the observer, the pupil of his eye is the exit-pupil for all the rays, and the rim of the objective acts as the field-of-view stop. The field of view on the side of the image is bounded by the image $2 b$ of the rim of the objective (in Fig. 42 this is represented by $B_{1}{ }^{\prime} B_{2}{ }^{\prime}$). Hence in this case the field of view may be enlarged by the use of a large objective. But again, for the same reason as above, the limits of the field of view are not sharp. Fig. 42 shows this case, w^{\prime} being the angular field of view on the side of the image.

Fig. 42.
If the radius of the pupil of the eye is assumed as 2 mm ., then the paths of the rays will be those shown in 41 or 42 , according as *

$$
h<2 \Gamma \mathrm{~mm}
$$

[^14]for example, for a magnification of eight diameters, $2 h=32$ mm . is the critical size of the objective.
6. The Terrestrial Telescope.-For observation of objects on the earth it is advantageous to have the telescope produce an erect image. If the magnification need not be large, an operaglass may be used. But since for large magnifications this has a small field of view, the so-called terrestrial telescope is often better. This latter consists of an astronomical telescope with an inverting eyepiece. The image is then formed as follows: the objective produces a real inverted image of the object; this image is then inverted without essential change in size by a convergent system consisting of two lenses. The erect image thus formed is magnified either by a Ramsden or a Huygens eyepiece.
7. The Zeiss Binocular.-The terrestrial eyepiece has an inconvenient length. This difficulty may be avoided by inverting the image formed by the objective by means of four total reflections within two right-angled prisms placed as shown in Fig. 43. The emergent beam is parallel to the incident, but

Fig. 43.
has experienced a lateral displacement. Otherwise the construction is the same as that of the astronomical telescope.

The telescope may be appreciably shortened by separating the two prisms I and II, since the ray of light traverses the distance between the prisms three times. By a suitable division and arrangement of the prisms the lateral displacement between the incident and the emergent rays may be made as large as desired. In this way a binocular may be constructed
in which the exit-pupils (the lenses of the objective) are much farther apart than the pupils of the eyes. Thus the stereoscopic effect due to binocular vision is greatly increased.
8. The Reflecting Telescope.-This differs from the refracting telescope in that a concave mirror instead of a lens is used to produce the real image of the object. For observing this image various arrangements of the eyepiece are used.* Reflecting telescopes were of great importance before achromatic objectives were invented, for it is evident that concave mirrors are free from chromatic errors.

To obtain the greatest possible magnification large mirrors with large radii of curvature must be used. Herschel built an enormous concave mirror of 16 m . radius of curvature. Since the visual angle of the sun is about 32^{\prime}, the image of the sun formed by it was 7 cm . in diameter.

PART II

PHYSICAL OPTICS

SECTION I
general properties of light

CHAPTER I

THE VELOCITY OF LIGHT

I. Römer's Method.-Whether light is propagated with finite velocity or not is a question of great theoretical importance. On account of the enormous velocity with which light actually travels, a method depending on terrestrial distances which was first tried by Galileo, gave a negative result. For the small distances which must be used in terrestrial methods the instruments employed must be extremely delicate.

Better success was attained by astronomical methods, which permit of the observation of the propagation of light over very great distances. The first determination of the velocity of light was made by Olaf Römer in 1675. He observed that the intervals of time between the eclipses of one of Jupiter's satellites increased as the earth receded from Jupiter and decreased as it approached that planet. This change in the interval between eclipses can be very accurately determined by observing a large number of consecutive eclipses. Römer
found that the sum of these intervals taken over a period extending from the opposition to the conjunction of the earth and Jupiter differed by 996 seconds from the product of the number of eclipses and the mean interval between eclipses taken throughout the whole year. He ascribed this difference to the finite velocity of light. According to this view, then, light requires 996 seconds to traverse the earth's diameter. Glasenapp's more recent observations make the correct value of this interval 1002 seconds. The diameter of the earth's orbit may be obtained from the radius of the earth and the solar parallax, i.e. the angle which the radius of the earth subtends at the sun. According to the most recent observations the most probable value of the solar parallax is $8.85^{\prime \prime}$. The radius of the earth is 6378 km ., so that the diameter, d, of its orbit is

$$
d=\frac{2.6378}{8.85} \cdot \frac{180 \cdot 60 \cdot 60}{\pi}=2973 \cdot 10^{5} \mathrm{~km} .
$$

Hence the velocity of light V is

$$
V=296700 \mathrm{~km} . / \mathrm{sec} .=2.967 \cdot 10^{\mathrm{ro} \mathrm{~cm}} . / \mathrm{sec} .
$$

On account of errors in the determination of the solar parallax this value is uncertain by from $\frac{1}{2}$ to I per cent.
2. Bradley's Method.-Imagine that a ray of light from a distant source P reaches the eye of an observer after passing successively through two holes S_{1} and S_{2} which lie upon the axis of a tube R. If the tube R moves with a velocity v in a direction at right angles to its axis, while the source P remains at rest, then if the light requires a finite time to traverse the length of the tube R a ray of light which has passed through the first hole S_{1} will no longer fall upon the hole S_{2}. Therefore the observer no longer sees the source P. In order to see it again he must turn the tube R through an angle α. Thus the line of sight to P appears inclined in the direction of the motion of the observer an angle ζ such that

$$
\begin{equation*}
\tan \zeta=v: V \tag{I}
\end{equation*}
$$

in which V represents the velocity of light.

This consideration furnished the explanation of the aberration of the fixed stars, a phenomenon discovered in 1727 by Bradley. He found that if the line of sight and the motion of the earth are at right angles, the line of sight is displaced a small angle in the direction of the earth's motion. According to the most recent observations the value of this angle is $20.5^{\prime \prime}$. Since the velocity v of the earth in its orbit is known from the size of the orbit, equation (I) gives as the velocity of light

$$
V=2.982 \cdot 10^{\mathrm{rocm}} / / \mathrm{sec}
$$

This method, like Römer's or any astronomical method, is subject to the uncertainty which arises from the imperfect knowledge of the solar parallax and hence of the size of the earth's orbit.

The result agrees well with that obtained by Römer, a fact which justifies the assumption made in both calculations, that the rays, in passing through the atmosphere which is moving with the earth, receive from it no lateral velocity. Nevertheless aberration cannot be completely explained in this simple way. From the considerations here given it would be expected that when a fixed star is viewed through a telescope filled with water the aberration would be greater, since, as will be shown later, the velocity of light in water is less than in air. As a matter of fact, however, the aberration is independent of the medium in the tube. In order to explain this a more complete investigation of the effect of the motion of a body upon the propagation of light within it is necessary. This will be given farther on. It is sufficient here to note that the phenomenon of aberration is capable of giving the velocity of light in space, i.e. in vacuo.
3. Fizeau's Method.-The first successful determination of the velocity of light by a method employing terrestrial distances was made by Fizeau in the year 1849. An image of a source of light P is formed at f by means of a convergent lens and a glass plate p inclined to the direction of the rays (Fig. 44). The rays are then made parallel by a lens L_{1} and pass
to the second lens L_{2} distant from $L_{1} 8.6 \mathrm{~km}$. A real image is formed upon a concave mirror s whose centre of curvature lies in the middle of the lens L_{2}. The mirror s returns the light back over the same path so that the reflected rays also form a real image at f. This image is observed through the obliquely inclined plate p by means of the eyepiece o. At f,

Fig. 44.
where the real image is formed, the rim of a toothed wheel is so placed that the light passes freely through an opening, but is cut off by a tooth. If the wheel is rotated with small velocity, the image alternately appears and disappears. When the velocity is increased, the image is seen continuously on account of the persistence of vision. As the velocity of the wheel is still further increased, a point is reached at which the image slowly disappears. This occurs when, in the time required by the light to travel from f to s and back, the wheel has turned so that a tooth is in the position before occupied by an opening. When the velocity is twice as great the light again appears, when it is three times as great it disappears, etc. From the velocity of rotation of the wheel, the number of teeth, and the distance between f and s, the velocity of light can easily be calculated. Fizeau used a wheel having 720 teeth. The first disappearance occurred when the rate of rotation was $\mathbf{1 2 . 6}$
revolutions per second. Since the distance between L_{1} and L_{2} was 8.633 km ., the velocity of light was calculated as

$$
V=3.13 \cdot 10^{\text {ro }} \mathrm{cm} / / \mathrm{sec} .
$$

The principal difficulty in the method lies in the production and measurement of a uniform velocity of rotation. By using more refined methods of measurement Cornu obtained the value

$$
V=2.9995 \cdot 10^{\text {rocm. }} / / \mathrm{sec},
$$

Young and Forbes the value

$$
V=3.013 \cdot 10^{\mathrm{xocm}} / / \mathrm{sec} .
$$

4. Foucault's Method.-This method does not require so large distances as the above and is in several respects of great

Fig. 45. importance in optical work. Rays from a source P pass through an inclined plate p (Fig. 45) and fall upon the rotating mirror m. When this mirror m is in a certain position, the rays are reflected through the lens L,* which is close to m and so placed that a real image of the source P is formed at a distance D upon a concave mirror s whose centre of curvature is at m. The mirror s reflects the rays back over the same path provided the mirror m has not appreciably changed its position in the time required for the light to travel the distance $2 D$. An image P^{\prime} of the source P is then formed by the rays reflected from m, s, and p. But if, in the time required for the light to travel the distance $2 D$, the rotating mirror has turned through an angle α, then the ray returning from m to p makes an angle 2α with the original ray and a displaced image $P^{\prime \prime}$ is produced after reflection at p.

[^15]From the displacement $P^{\prime} P^{\prime \prime}$, the velocity of rotation of the mirror m, and the distances D and Δ, the velocity of light may be easily obtained.

If $\Delta=1 \mathrm{~m} ., D=4 \mathrm{~m}$. , and the mirror m makes 1000 revolutions a second, then the displacement $P^{\prime} P^{\prime \prime}$ is 0.34 mm . By reflecting the light back and forth between five mirrors slightly inclined to one another, Foucault made the distance $D 20 \mathrm{~m}$. instead of 4 .

Theoretically this method is not so good as Fizeau's, since it is necessary to measure not only the number of revolutions but also the small displacement $P^{\prime} P^{\prime \prime}$. However, by increasing the distance D to 600 m . Michelson materially improved the method, since in this way he obtained a displacement $P^{\prime} P^{\prime \prime}$ of 13 cm . without using a rate of revolution greater than 200 a second. With Foucault's arrangement it was not possible to materially increase D, because the light returned would be too faint unless the concave mirror s were of enormous dimensions. Michelson avoided this difficulty by placing the lens L so that m lay at its principal focus. In this way the principal rays of all beams which are reflected by m to the lens L are made parallel after passage through L, so that D can be taken as large as desired and a plane mirror s perpendicular to the axis of L used for reflection. Thus the mirror need be no larger than the lens. From a large number of measurements Michelson obtained

$$
V=2.999 \cdot 10^{10} \mathrm{~cm} . / \mathrm{sec} .
$$

Newcomb also, by the method of the rotating mirror, obtained a result in close agreement with this.

The mean of the values obtained by Cornu, Michelson, and Newcomb is

$$
V=2.9989 \cdot 10^{\mathrm{rocm}} / \mathrm{sec},
$$

the probable error being only I : 10,000 . Because of the errors introduced into the astronomical methods by the uncertainty of the solar parallax the results of these methods which depend on terrestrial distances are much more reliable.

In spite of this extraordinary velocity with which light travels, a velocity 900,000 times greater than that of sound in air, the time required for light to travel astronomical distances is sometimes considerable. This appears, for instance, from the observations of Römer, which show that it requires 8 minutes for light to travel from the sun to the earth. Since many years are required for the liglht of the nearest fixed stars to reach the earth (from α Centauri $3 \frac{8}{4}$ years, from Sirius 17 years), these great interstellar distances are usually reckoned in light-years.
5. Dependence of the Velocity of Light upon the Medium and the Color.-The velocity of light is independent of the intensity of the source. This has been proved by very delicate interference experiments made by Lippich and Ebert. On the other hand the velocity does depend upon the medium in which the light is propagated. Foucault compared by his method the velocities in air and in water by placing two mirrors s_{1} and s_{2} in front of the rotating mirror m and inserting between m and s_{2} a tube of water 2 m . long. It was found that when the mirror m was rotated, the image reflected from the mirror s_{2} experienced a greater displacement than that reflected from s_{1}, a proof that light travels slower in water than in air.

Quantitative measurements of the velocity of light in water and in carbon bisulphide have been made by Michelson. For the ratio of the velocities in air and in water he obtained 1.33; in air and in carbon bisulphide, white light being used, i.77. The first number agrees exactly, the last approximately, with the observed indices of refraction. It is assumed (and in fact the wave theory demands it) that this result holds for all bodies. Hence the velocity of light in air must be somewhat smaller than in vacuum, since the index of air $n=1.00029$. The number given above for the velocity of light which was obtained as a mean from the methods using terrestrial distances was reduced to vacuum by means of this factor.

Since the index of all transparent media is smaller for the red rays than for the blue, it is to be expected that the veloci-
ties of the different colors in the same medium will be inversely proportional to the atosolute imbex, provided the velocity in vacuum is indepentent of the color. This, tot, wats proved directly by Michelson, when fond the veloxity of the red ray in water s.a per cent, in carlan hinulphite $\pm .5$ per cont greater than that of the hlue. 'lhis uspers apmonimately with the results obtained by refraction.

That the velocity in vacumm is independent of the color is very decisively proved by the fuet that at the bosinning or the end of an eclipse Jupiter's sitellites show no color; alou from the fact that temprary stars show no chames itt color.

Because of the small dingeraina of air there is pratically no difference in the velecity of propusation of the different colors in it.
6. The Velocity of a Group of Waves.-In the investigation of the velocity of light in a strongly dispersive medium, like carbon bisulphide, there is an important correction to be made, as was first puintal out by kugleigh. As will be seen in the next chapter, interferente phenomens nereswitate the assumption that light combists in a perionice chamse of a certain quantity s characterixtic of the ether or the benly conmidered, which, in view of the fact then the velecity of light is linite, may be writen in the form

$$
\begin{equation*}
s=A \cdot \sin ^{2 \pi}(t-x) \tag{2}
\end{equation*}
$$

This is the equation of a streabled plane wave which is propagated with a velocity 1° alomy the \boldsymbol{t}^{\prime} axis. 7 in the period, which determines the center of the light, and I in the amplitude, which determines the intenaity. It is necewary to distinguinh between the velocity l^{*} of a single wave and the velexity $\|$ of a group of waves. Fior example, in lizean's metherl, at a definite proint f in the path of the ray the light is alternately cut off and let through lexause of the potation of the toothed wheel. Even when the velexity of rotation of the wheel is great, the perion Z is wo stmall that a large number of waves
pass g at each interval of transmission. It is the velocity of such a complex of waves which is measured by the experiment. The phenomenon can be approximately represented mathematically if it be assumed that two waves of equal amplitude but of slightly different periods T_{1} and T_{2} and different velocities V_{1} and V_{2} are superimposed. Then the following relation exists:

$$
\begin{gather*}
s=A \cdot\left\{\sin \frac{2 \pi}{T_{1}}\left(t-\frac{x}{V_{1}}\right)+\sin \frac{2 \pi}{T_{2}}\left(t-\frac{x}{V_{2}}\right)\right\}= \\
2 A \cdot \sin \frac{2 \pi}{T}\left(t-\frac{x}{V}\right) \cos \pi\left[t\left(\frac{\mathrm{I}}{T_{1}}-\frac{\mathrm{I}}{T_{2}}\right)-x\left(\frac{\mathrm{I}}{T_{1} V_{1}}-\frac{\mathrm{I}}{T_{2} V_{2}}\right)\right] \tag{3}
\end{gather*}
$$

in which

$$
\begin{equation*}
\frac{\mathrm{I}}{T}=\frac{\mathrm{I}}{2}\left(\frac{\mathrm{I}}{T_{1}}+\frac{\mathrm{I}}{T_{2}}\right), \quad \frac{\mathrm{I}}{T V}=\frac{\mathrm{I}}{2}\left(\frac{\mathrm{I}}{T_{1} V_{1}}+\frac{\mathrm{I}}{T_{2} V_{2}}\right) \tag{4}
\end{equation*}
$$

Equation (3) now represents a light vibration of period T and periodically changing amplitude. The period T_{0} of this change of amplitude is

$$
\begin{equation*}
\frac{\mathrm{I}}{T_{0}}=\frac{\mathrm{I}}{T_{1}}-\frac{\mathrm{I}}{T_{2}} . \tag{5}
\end{equation*}
$$

Furthermore, if

$$
\begin{equation*}
\frac{\mathbf{I}}{T_{0} U}=\frac{\mathrm{I}}{T_{1} V_{1}}-\frac{\mathrm{I}}{T_{2} V_{2}}, \tag{6}
\end{equation*}
$$

it follows from (3) that at a point $x=l$ a maximum amplitude of the group of waves occurs $l: U$ seconds after it has occurred at the point $x=0$. Hence U is the velocity of propagation of the group, the quantity which was measured in Fizeau's experiment.

Setting now $T_{2}=T_{1}+d T_{1}, \quad V_{2}=V_{1}+d V_{1}$, and developing to terms of the first order in $d T_{1}$ and $d V_{1}$, there results from (5) and (6)

$$
\begin{equation*}
U=V_{1}\left(\mathrm{r}-\frac{T_{1}}{V_{1}} \frac{d V_{1}}{d T_{1}}\right) \tag{7}
\end{equation*}
$$

In this equation T_{1} and V_{1} may, with the same degree of accuracy, be replaced by T and V, i.e. by the period and velocity of a single wave.

Equation (7) shows that the velocity U of a group of waves such as is actually observed is somewhat smaller than the true velocity of light V, since in all transparent bodies V increases with T. This correction is negligible for air on account of the smallness of $d V: d T$, but for the strongly dispersive medium carbon bisulphide it amounts to 7.5 per cent. Since a careful analysis shows that the method of the rotating mirror gives the value U, it is easily understood why Michelson obtained the velocity in carbon bisulphide 1.77 times as great as the velocity in air, although the relative index of the two media is only 1.64. Increasing I .64 by 7.5 per cent gives a value in close agreement with Michelson's observation, namely, I. 76 .

Römer's method also gives the velocity U of a group of waves, while the astronomical aberration gives V directly. In these cases, however, there is no difference between the two quantities U and V, since there is no dispersion in space, i.e. no dependence of V upon color.

CHAPTER II

orc

INTERFERENCE OF LIGHT

1. General Considerations.-Experiment shows that under certain circumstances two parallel or nearly parallel beams do not produce when superposed increased intensity, but rather disturb each other's effects in such a way that darkness results. In such cases the light-waves are said to interfere.

Interference phenomena are divided into two classes: the first, that in which the beams have experienced only regular reflections and refractions; the second, that in which they have been bent from their straight path by diffraction. The former will be considered in this chapter, the latter under Diffraction. Nevertheless some of the interference phenomena discussed in this chapter, namely, those which are treated in $\S \S 3$ and 4 , and happen to be most easily produced, are somewhat modified by diffraction, while $\S \S 5,7,8$, and 9 treat only of pure interference phenomena, i.e. such as are not connected with diffraction.
2. Hypotheses as to the Nature of Light.-Theories as to the nature of light and the mathematical deductions depending upon them have in the course of time undergone many changes. So long as nothing was known of the conservation of energy, every active agent which had the power of propagating itself and of persisting under changed conditions was looked upon as a substance. The fact that light travels in straight lines supported the assumption of its material nature, for light may indeed be stopped in its progress, but in general, when no obstacle is interposed, it moves on in straight lines. It was natural to look upon this as a consequence of the inertia
ob]
an
pe1
of a material bexly. Hence Newton supported the emi isisn theory of light, according to which light consists of materis. particles which are thrown off with enormous velocities from luminous beolies and move in straght lines through space. In order to explain refintion it wits necessory to assume that the more refractive bodies exert a preater attraction upon the light corpuseles, so that, at the instant at which sweh a particle falls obliquely upon the surface of a denser medium, it experiences an attraction which gives to the component of its velocity perpendicular to the surface a larger value, and hence causes its path to approach the perpendicular. According to thic theory, then, the velocity of light must be preater within a strongly refracting bexly than in the surroumling medium. 'This fiwt alone suffices for the werthrow of the emission theory, for it was shown on pige 120 that the velocity of light is lese in water than in air. Besides, the difficultios of explaining the phenemena of interference from the stamipaint of the emission theory are enormous. Lht these very interference phenomena furnish a direct confirmation of am essentially different theory as to the nature of light, namoly, the "thduhther theore developed by Huysens.

According to this thenry, light posserses properties similar to sound. It consists in a periodie change of a certoin quantity s characteristic of the boly (or of empty space) through which the light is passing. This change is propagated with finite velocity so that, it the values which s has at any instant along the path of the raty be plotted as orlinates, the ends of these ordinates form a wave-shaped curve.

What is the nature of this quantity s whose preriodie changes are the essence of light can le: left for the present altogether undecided. In aecorelane with the mechanical theory of light, space is conceived to be filled with a subtle clantic medium, the ether, and s is the displacement of the ether particles from their pemition of equilibrium. But so specific an assumption is altogether unnecessary. It is sufficient if, in order to analytically represent the light disturb-
periodic variation of the quantity s at the point P be introduced by means of an equation of the form

$$
\begin{equation*}
s=A \sin \left(2 \pi \frac{t}{T}+\delta\right) \tag{I}
\end{equation*}
$$

in which t is the time, while A, T, and δ are constants. A is the amplitude, T the period of the quantity $s . \quad T$ varies with the color of the light, while A determines the intensity of illumination J^{*} of a screen placed at P. It may in fact be shown that

$$
\begin{equation*}
J=A^{2} \tag{2}
\end{equation*}
$$

For it follows from all theories of light that the amplitude A of the light emitted from a point source is inversely proportional to the distance r from the source Q. Since now experiment shows that the intensity of illumination is inversely proportional to r^{2} (cf. page 79), it follows that J is represented by the square of the amplitude.

If the light travels with a velocity V from a point P to a point P^{\prime} at a distance r from P, the time required to traverse this distance r is $t^{\prime}=r: V$. If (I) represents the condition at P, then the condition at P^{\prime} is represented by

$$
\begin{equation*}
s^{\prime}=A^{\prime} \sin \left(2 \pi \frac{t-r / V}{T}+\delta\right) \tag{3}
\end{equation*}
$$

for s^{\prime} is always in a given condition of vibration $r: V$ seconds after s has been in that same condition. The condition of the vibration, i.e. the argument of the periodic function, is called the phase.

If from a point source Q light radiates uniformly in all directions, equation (3) evidently holds for every point P^{\prime} which is at a distance r from Q. Any spherical surface described about Q as a centre contains, then, only points in the same

[^16]phase. Such surfaces, which contain only points in the same phase, are called wave surfaces. The wave surfaces spreading out from a point source Q are then concentric spherical surfaces, and the rays emanating from Q are the radii of these surfaces and are therefore perpendicular to them. The greater the distance of the source, the less curved are the wave surfaces and the more nearly parallel the rays. The wave surfaces of a parallel beam are planes perpendicular to the rays and parallel to each other. Hence such waves are called plane waves. They exist when the source Q is infinitely distant or at the focus of a convergent lens which renders the emergent rays parallel.

Introducing the term λ defined by

$$
\begin{equation*}
T \cdot V=\lambda \tag{4}
\end{equation*}
$$

(3) becomes

$$
\begin{equation*}
s^{\prime}=A^{\prime} \sin \left[2 \pi\left(\frac{t}{T}-\frac{r}{\lambda}\right)+\delta\right], \tag{5}
\end{equation*}
$$

i.e. at a given time, s^{\prime} is periodic with respect to r and its period is λ. This period λ, which is the distance at a given instant between any two points along r which are in the same phase, is called the wave length.

The table on page 128 gives the wave lengths in air of various light, heat, and electrical waves. These values are determined from interference or diffraction phenomena.

The wave theory furnishes the simplest possible explanation of interference phenomena. On the other hand it has considerable difficulty in explaining the rectilinear propagation of light. In this respect the analogy between sound and light seems to break down, for sound does not travel in straight lines. The explanation of these difficulties will be considered in detail in the next chapter. This analogy between sound and light presents still further contradictions when polarization phenomena are under consideration. It was these contradictions which prevented for a long time the general recognition of the wave theory in spite of the simple explanation which it
offers of interference. The difficulties were not removed until a too close analogy between sound and light was given up. This point, too, will be considered in a later chapter. Here the explanation of refraction as furnished by the wave theory will be briefly presented.

If a plane wave is incident obliquely upon the surface of a refracting body, the normal to the wave front is bent toward the perpendicular to the surface if the velocity of light in the body is less than in the surrounding medium, which will in general be assumed to be air. Upon the incident wave front consider one point A which lies upon the surface, and another

WAVE LENGTHS.

Kind of Light.	λ in mm.
Limit of the photographic rays in vacuum	0.000100
Limit of the photographic rays in air.	0.000185
Limit of visible light in the blue.	0.000330
Blue hydrogen line.	0.000486
Yellow sodium line.	0.000589
Red hydrogen line.	0.000656
Limit of visible light in the red.	0.000812
Longest heat-waves as yet detected	0.06
Shortest electric waves..	6

point B which is still outside in the air. If now the wave from A travels more slowly than that from B, it is evident that the wave front, which is the locus of the points at which the light has arrived in a given time, must be bent upon entrance into the refracting medium in such a way that the normal to the wave front (the ray) is turned toward the perpendicular. Hence the wáve theory requires the result given by experiment that the velocity of light is smaller in water than in air. The more exact determination of the position of the refracted wave front will be given in connection with the discussion of Huygens' principle, and again more rigorously in Chapter I of Section 2. Here but one important result will be mentioned, namely: When light passes from a medium A to a medium B
the index of refraction is equal to the ratio of the velocities of light in A and B.

It was shown on page 6 that the fundamental laws of geometrical optics are all included in the one principle of the extreme path. This principle gains a peculiar significance from the wave theory. Since the index of a body with respect to air is inversely proportional to the velocity of light in the body, the optical path $n l$ is proportional to the time which the light requires to travel the distance l. The law of extreme path asserts, then, that light in travelling between any two points P and P^{\prime} chooses that path which is so situated that all infinitely near paths would be traversed in the same time. Thus the laze of least path becomes the law of least time.

The nature of a ray of light may be looked upon from the standpoint of the wave theory in the following way: Elementary disturbances travel from P to P^{\prime} over all possible paths. But in general they arrive at P^{\prime} at different times, so that the phases of the individual disturbances do not agree at P^{\prime}, and hence no appreciable effect is produced. Such an effect will, however, immediately appear as soon as the beam is made infinitely narrow, for then the time of propagation between P and P^{\prime} is the same, so that the elementary disturbances all have the same phase at P^{\prime}. Hence such an infinitely thin beam marks out the path of the light, i.e. the effect at P^{\prime} is cut off by introducing an obstacle in the way of the beam.

These considerations, however, are not so conclusive as to make it superfluous to place the fundamental laws of geometrical optics upon a more rigorous analytical basis. The first question to be answered is this: If light and sound are both wave motions why is there a difference in the laws of their propagation? This question will be answered in the next chapter.

The wave theory makes it possible to drop altogether the concept of rays and to calculate the optical effect of reflecting and refracting bodies from a consideration of the wave surface. In the case of a point source P, for example, the wave surfaces
in the medium surrounding P are spherical. If the rays are to be homocentrically focussed at P^{\prime} by means of refraction by a lens, the wave surfaces must after passage through the lens be concentric spherical surfaces with their centre at P^{\prime}.

Since the rays are the normals to the wave surfaces, the law of Malus follows at once from the wave theory, because reflections and refractions can have no other effect than to deform in some way the wave surfaces.
3. Fresnel's Mirrors.-From the standpoint of the wave theory interference phenomena are explained simply by the principle of the superposition of simultaneous values of the quantity s. Thus if a source Q_{1} produces at a point P a disturbance

$$
\begin{equation*}
s_{1}=A_{1} \sin 2 \pi\left(\frac{t}{T}-\frac{r_{1}}{\lambda}\right), \tag{6}
\end{equation*}
$$

while a source Q_{2} produces at the same point a disturbance

$$
\begin{equation*}
s_{2}=A_{2} \sin 2 \pi\left(\frac{t}{T}-\frac{r_{2}}{\bar{\lambda}}\right) \tag{7}
\end{equation*}
$$

then, by the principle of superposition, which is applicable provided the rays passing from Q_{1} and Q_{2} to P have a small inclination to one another,* the resultant disturbance is

$$
\begin{equation*}
s=s_{1}+s_{2} \tag{8}
\end{equation*}
$$

Now this sum may be put into the form

$$
\begin{equation*}
s=A \sin \left(2 \pi \frac{t}{T}-\delta\right) \tag{9}
\end{equation*}
$$

by setting

$$
\left.\begin{array}{l}
A \cos \delta=A_{1} \cos 2 \pi \frac{r_{1}}{\bar{\lambda}}+A_{2} \cos 2 \pi \frac{r_{2}}{\bar{\lambda}} \tag{10}\\
A \sin \delta=A_{1} \sin 2 \pi \frac{r_{1}}{\bar{\lambda}}+A_{2} \sin 2 \pi \frac{r_{2}}{\lambda}
\end{array}\right\}
$$

[^17]in which the quantity A represents the amplitude of the resulting disturbance.

Squaring and adding the two equations (IO) gives for the intensity of the resultant light at the point P

$$
\begin{equation*}
J=A^{2}=A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos 2 \pi\left(\frac{r_{1}-r_{2}}{\lambda}\right) \tag{II}
\end{equation*}
$$

The quantity $2 \pi \frac{r_{1}-r_{2}}{\lambda}=\Delta$ is, by (6) and (7), seen to be the phase difference of the separate disturbances, and the meaning of equation (II) may be stated as follows (Fig. 46): The resultant amplitude A is equal to the third side of a triangle whose other two sides are A_{1} and A_{2} and include between them the angle $\pi-\Delta$, in which Δ is the difference of phase between the two disturbances.

According to this proposition it is evident that maxima and minima of light intensity depend upon the difference of phase Δ, the former occurring when $\Delta=0,+2 \pi,+4 \pi$, etc., the latter when $\Delta=+\pi,+3 \pi$, etc. Entire darkness must result at a minimum if $A_{1}=A_{2}$.

These conditions are realized in the Fresnel-mirror experiment in which two virtual sources Q_{1} and Q_{2} (Fig. 47) are produced by reflecting light from a single source Q upon two mirrors S and S^{\prime} which are slightly inclined to one another. In the space illumi-

Fig. 46. nated by both of the sources interference occurs.* From the calculation above there will be darkness at a point P if

$$
\begin{equation*}
r_{1}-r_{2}= \pm \frac{\lambda}{2}, \quad \pm \frac{3 \lambda}{2}, \quad \text { etc. } . \quad . \tag{12}
\end{equation*}
$$

Considering only such positions of the point P as lie on a line parallel to $Q_{1} Q_{2}$ (Fig. 47), then if d represent the distance

[^18]between Q_{1} and Q_{2}, a the distance of the line d from the line $P_{0} P$, and p the distance of a point P from the point P_{0}, which lies on the perpendicular erected at the middle of d,
$$
r_{1}^{2}=a^{2}+\left(\frac{1}{2} d+p\right)^{2}, \quad r_{2}^{2}=a^{2}+\left(\frac{1}{2} d-p\right)^{2}
$$
i.e.
$$
r_{1}^{2}-r_{2}^{2}=\left(r_{1}+r_{2}\right)\left(r_{1}-r_{2}\right)=2 d p
$$
or since $r_{1}+r_{2}$ is approximately equal to $2 a$ when p and d are small in comparison with a, it follows that
$$
r_{1}-r_{2}=d p: a
$$
i.e. darkness occurs at the points
\[

$$
\begin{equation*}
p= \pm \frac{a}{d} \cdot \frac{\lambda}{2}, \quad \pm \frac{a}{d} \cdot \frac{3 \lambda}{2}, . \pm \frac{a}{d} \cdot \frac{5 \lambda}{2}, \text { etc. } \tag{r3}
\end{equation*}
$$

\]

Hence, if the light be monochromatic, interference fringes will appear on a screen held at a distance a from the line d, and the constant distance between these fringes will be $a \lambda: d$.

Fig. 47.
If white light is used, colored fringes will appear upon the screen since the different colors contained in white light, on account of their different wave lengths, produce points of maximum and minimum brightness at different places upon the screen. But at the point P_{0} there will be no color, since there all the colors have a maximum brightness ($r_{1}-r_{2}=0$).

The distance d between the virtual sources may be calculated from the position of the actual source Q with respect to the mirrors and the angle between the mirrors. This angle must be very small (only a few minutes) in order that d may
be small enough to permit of the separation of the interference fringes. Since (13) contains only the ratio $a: d$, it is merely necessary to measure the angle subtended at P_{0} by the two images Q_{1} and Q_{2}.

Instead of receiving the interference pattern upon a screen, it is possible to observe it by means of a lens or by the eye itself, if it be placed in the path of the rays coming from Q_{1} and Q_{2} and focussed upon a point P at a distance a from those sources.* Fig. 48 shows an arrangement for making quantitative measurements such as the determination of wave lengths. A cylindrical lens l brings to a line focus the rays from a lamp. This, acting as a source Q, sends rays to both mirrors S and

Fig. 48.
S^{\prime}, whose line of intersection is made parallel to the axis of the cylindrical lens. The direct light from Q is cut off by a screen attached to the mirrors and at right angles to them. The

[^19]interference fringes are observed by means of a micrometer eyepiece L which is movable by the micrometer screw K.

The question arises whether interference fringes might not be more simply produced by using as sources not the two virtual images of a real source, but two small adjacent openings in a screen placed before a luminous surface.

In this case no interference phenomena are obtained even with monochromatic light such as a sodium flame. For if two sources are to produce interference, their phases must always be either exactly the same or else must have a constant difference. Such sources are called coherent. They may always be obtained by dividing a single source into two by any sort of optical arrangement. With incoherent sources, however, like two different points of a flame, although the difference of phase is constant for a large number of periods, since, as will be shown later, a monochromatic source emits a large number of vibrations of constant period, yet irregularities in these vibrations occur within so short intervals of time that separate impressions are not produced in the eye. Thus incoherent sources change their difference of phase at intervals which are extremely short although they include many millions of vibrations. This prevents the appearance of interference.

As was remarked on page 124, diffraction is not entirely excluded from this simple interference experiment. All the boundaries of the mirrors can give rise to diffraction, but especially the edge in which the two touch. In order to avoid this effect it is desirable that the incident light have a considerable inclination to the mirrors (say 45°), and that the point of observation be at a considerable distance from them. Also the angle between the mirrors must not be made too small. In this way it is possible to arrange the experiment so that the extreme rays which proceed from Q_{1} and Q_{2} to the common edge of the mirrors are removed as far as possible from the point of observation P.
4. Modifications of the Fresnel Mirrors.-The considerations advanced in paragraph 3 are typical of all cases in which
interference is produced by the division of a single source into two coherent sources Q_{1} and Q_{2}. This division may be brought about in several other ways. The Fresnel bi-prism, shown in cross-section in Fig. 49, is particularly convenient. The light

Fig. 49.
from a line source Q which is parallel to the edge B is refracted by the prism in such a way that two coherent line sources Q_{1} and Q_{2} are produced.

If such a prism be placed upon the table of a spectrometer so that the edge B is vertical, and if the vertical slit of the collimator focussed for parallel rays be used for the source, then two separate images of the slit appear in the telescope of the spectrometer. The angle $\boldsymbol{\alpha}$ between these images may be read off upon the graduated circle of the spectrometer when the cross-hairs have been set successively upon the two images. This angle α is the supplement of the angle $A B C$ (Fig. 49) which the two refracted wave fronts $A B$ and $B C$ make with each other after passage through the prism. If the telescope be removed, dark fringes may be observed at any point P for which (cf. 12) $r_{1}-r_{2}= \pm \frac{1}{2} \lambda, \frac{3}{2} \lambda$, etc., in which r_{1} and r_{2} are the distances of the point P from the wave fronts $A B$ and $B C$. From the figure it is evident that

$$
r_{1}=b \sin (A B P), \quad r_{2}=b \sin (C B P)
$$

hence

$$
r_{1}-r_{2}=2 b \cos \frac{A B C}{2} \cdot \sin \phi
$$

The angle ϕ is very small so that $\sin \phi=\tan \phi=p: a$. Furthermore $A B C=\pi-\alpha$, and since $b=a$ approximately, and $\sin \alpha=\alpha$, it follows finally that

$$
r_{1}-r_{2}=\alpha \cdot p
$$

Thus the relative distance between the fringes is $\lambda: \alpha$, i.e. it is independent of a. Since α has been measured by the telescope, the measurement of the distance between the fringes furnishes a convenient method of determining λ.

Billet's half-lenses (Fig. 50), which produce two real or virtual images of a source Q, are similar in principle to the

Fig. 50.
Fresnel bi-prism. The space within which interference occurs is shaded in the figure.
5. Newton's Rings and the Colors of Thin Plates.- Sufficiently thin films of all transparent bodies show brilliant colors. These may be most easily observed in soap-bubbles, or in thin films of oil upon water, or in the oxidation films formed upon the heated surfaces of polished metals.

The explanation of these phenomena is at once evident as soon as they are attributed to interference taking place between the light reflected from the front and the rear surface of the film.

Consider a ray $A B$ of homogeneous light (Fig. 51) incident at an angle ϕ upon a thin plane parallel plate of thickness d. At the front surface of the plate $A B$ divides into a reflected ray $B C$ and a refracted ray $B D$. At the rear surface the latter is partially reflected to B^{\prime} and passes out of the plate as the ray $B^{\prime} C^{\prime}$. The essential elements of the phenomena can be presented by discussing the interference between the two rays
$B C$ and $B^{\prime} C^{\prime}$ only. If these two rays are brought together at a point on the retina, as is done when the eye is focussed for parallel rays, the impression produced is a minimum if the phase of the ray L° differs from that of $i^{\circ} C^{\prime \prime}$ by $\pi, 3 \pi, 5 \pi$, etc.

Of course for a complete callulation of the intensity of the reflected light all the suceessive reflections which take place between the two surfaces must be taken into account. This

Fitu. st.
rigorous discussion will lw given in section II, Chapter II, 8 It. It is at once apparent that the introduction of these reprated reflections will not essentially mendify the result, sine the intensity of these rays is much smaller than that of $B C$ and $B^{\prime} C^{\prime \prime}$, which have experienced but one reflection.

If a perpendicular $f^{\prime \prime} f$ be dropped from $H{ }^{\circ}$ upen $H C^{\circ}$, the two rays $D C^{\circ}$ and $I C^{\circ}{ }^{\circ}$ wotuld have no difierence of phase if the phase at l^{\prime} were the same as that at for The two rate would then come together at a proint upon the retine in the same phase. The difference of phase between the points F and B^{\prime} is identical with the difference of phase between the rayg BC and $B^{\prime} C^{\prime}$.

But the difference of phase between B^{\prime} and E is

$$
\Delta=2 \pi\left(\frac{B D+D B^{\prime}}{\lambda^{\prime}}-\frac{B E}{\lambda}\right),
$$

provided λ^{\prime} represents the wave length of the light within the plate, λ its wave length in the surrounding medium. If now the angle of refraction be denoted by χ, then

$$
B D=B^{\prime} D=d: \cos \chi, \quad B E=B B^{\prime} \sin \phi=2 d \tan \chi \sin \phi ;
$$

further, $\lambda: \lambda^{\prime}=n$ (index of the plate with respect to the surrounding medium). Hence

$$
\Delta=\frac{2 \pi \cdot 2 d}{\lambda^{\prime}}\left(\frac{\mathrm{I}}{\cos \chi}-\tan \chi \frac{\sin \phi}{n}\right),
$$

or, since from the law of refraction $\sin \phi=n \sin \chi$,

$$
\begin{equation*}
\Delta=\frac{2 \pi \cdot 2 d}{\lambda^{\prime}} \cos \chi \tag{14}
\end{equation*}
$$

An important correction must be added to this expression. (14) gives the difference in phase produced between the rays $B C$ and $B^{\prime} C^{\prime}$ by the difference in the lengths of their optical paths. But there is another difference between the two rays. $B C$ has undergone reflection as the light passed from air to the plate, $B^{\prime} C^{\prime}$ as it passed from the plate to air. Now in general a change of phase is introduced by reflection; and since the reflection of the two rays occurs under different conditions, a quantity Δ^{\prime} must be added to the difference in phase as given in (14). This quantity Δ^{\prime} depends solely upon the reflection itself and not at all upon the difference in the lengths of the optical paths. Hence (14) becomes

$$
\begin{equation*}
\Delta=2 \pi \cdot \frac{2 d}{\lambda^{\prime}} \cos \chi+\Delta^{\prime} \tag{15}
\end{equation*}
$$

A definite assertion may be made with respect to this quantity Δ^{\prime} without entering any farther into the theory of light. Consider first the case in which the thickness d of the plate gradually approaches zero. According to (I4) no differ-
ence of phase would then oceur between $A C$ and $R^{\prime} C^{\prime}$; they should therefore reinforee cath other. But this effect cannot take place, because a phate of thiskness d... o is no plate at all and the homosencity of the spoue werk not be disturbed if, as will be assumed, the metlum abose and below the plate is the same, for instane atir; and herne no reflection of light can take place. For rellection can only t the place when there is a change in the hamogeneity of the medium; otherwise light could never travel with undiminishes intensity through a homogeneous trimsparent medium like the ether. Hence for $d=0$ complete interference of the two riys $N C^{\circ}$ and $/ i^{\circ} C^{\circ}$ must take place sh that no reflected light whatever is ohtained. Since in this case (4 (1) J. f. π, it follows from (15) that

$$
\begin{equation*}
J^{\prime} \quad \pm \pi \tag{16}
\end{equation*}
$$

Whether A be taken is equal to of. π or $\cdots \pi$, or $+3 \pi$, ete., is immaterial for this disenssion, sine the addition of 2π to the phase of a ray produces no change whatever in its condition of vibration.

In consideration of (16) and (15) it is evident that a minimum of intensity eceurs when

$$
\frac{2 d}{\lambda^{\prime}} \cos x \ldots 0,1,3, \ldots
$$

The light transmitted by the plate must likewise show interference effects. Since it is aswumed that no absorption takes phace within the phate, the transmitted light must be of the same intensity as the incident light if the intensity of the reflected light is zero. On the other hand, the transmitted light must have a minimum of intensity when the reflected light is a maximum. This occurs for platen whone thicknesses lie midway between the thicknesses determined by (17), for then the two reflected rass $A C^{*}$ and $F^{\circ} C^{\circ}$ are in the same phase. Nevertheless the minima in the transmitted light are never marked, since the reflected light is always but a small prortion of the incident light. The quantitative relations between the reflected and the transmitted portions can only be deduced
after a more complete treatment of the theory (cf. Section II, Chapter II).

If the plate be wedge-shaped instead of plane parallel, it must be crossed, when viewed by reflected light, by dark interference bands which are parallel to the edge of the wedge and lie at those places where the thickness d of the wedge corresponds to (17). In order that the fringes may appear separate it is evident that, because of the smallness of λ^{\prime}, the angle of the wedge must be small. Nevertheless these fringes cannot be perceived unless a broad source be used, for light from a point source is reflected to an eye placed at a particular point and focussed for parallel rays only from a single point of the wedge.

By proper focussing of the eye sharp interference fringes may be seen when the source is broad. In order to be able to form a judgment as to the visibility of the interference fringes in this case it is necessary to bear in mind the fundamental law stated above in accordance with which only those rays are capable of interfering which are emitted from one and the same point of the source, since only such rays are coherent.

Now it is evident that every point P situated anywhere in front of the plate or the wedge will be the intersection of two coherent rays emitted from a point Q of the source, the one reflected from the front, the other from the rear, surface. In general these rays start from Q in slightly different directions, but they are brought together at a point P^{\prime} upon the retina if the eye is focussed upon the point of intersection P. In this case an interference between these two waves might be detected. But there are many other pairs of coherent rays emitted from other points $Q^{\prime}, Q^{\prime \prime}$, etc., of the source, which intersect at the same point P. In general these rays pass through the wedge at different places and with different inclinations, and hence have various differences of phase at P. Therefore when the eye is focussed upon P the interference phenomena are either indistinct or else disappear entirely. Interference is perceived with the greatest clearness only when
all the pairs of coherent rays which proceed from the different points of the source and intersect at P have the same difference of phase. The locus of the points P for which this condition is fulfilled is the surface of best visibility of the interference pattern. This locus is a continuous surface and has a complicated form if the incident light is very oblique.

But, for nearly perpendicular incidence, the solution for a thin wedge is simple. In this case, with a broad source, the interference fringes appear most clearly when the eye is focussed

Fig. 52.
upon the wedge itself. If the eye is focussed upon a point P of the wedge (Fig. 52), $Q P C$ and $Q B D P C^{\prime}$ are two coherent rays which are brought together upon a point of the retina. These rays have a certain difference of phase, which depends only upon the thickness d of the wedge (say of glass) at the point P, and which from (15) and (16) may be written, since ϕ and therefore also (for a thin wedge) χ differ but little from zero,

$$
\Delta=2 \pi \frac{2 d}{\lambda^{\prime}}+\pi
$$

But every pair of coherent rays emitted by the other points $Q^{\prime}, Q^{\prime \prime}$, etc., of the source, and intersecting in P, have the same difference in phase, since for all rays the angle of incidence ϕ and also χ is to be taken so small that $\cos \chi=1$.*

[^20]Thus with nearly perpendicular incidence ${ }^{5 \%}$, source the interference figure lies within the wodld "1

In order to observe interference in a film of $\mathfrak{v , i l} \boldsymbol{H}^{8-1}$ ness, Newton pressed a slightly convex lens upon , surface. The thin layer of air between the lens $3^{5 / 4}$ gives rise to concentric interference circles whow* increase as the square roots of the even numbers.

Fig. 53.
a photograph of the effect produced by white lisk ${ }^{\text {tid }}$ homogeneous light the rings extend to the very ex plate.

Illuminated by white light, a thin plate appear w for all those colors whose wave lengths λ satisfy (1% ing. But when the thickness of the plate is consinder colors which are cut out extend in close successionat whole spectrum, hence the colors which remain ?
mixture which cannot be distinguished from white light. Also the color of the plate is not brilliant when it is too thin, because in this case all the colors are present to a greater or less extent. The colors are most brilliant for certain mean thicknesses, which for air films lie between 0.00016 mm . and 0.0008 mm . Such colors are naturally not pure spectral colors, since they arise from cutting out certain regions of color from the whole spectrum. In Newton's arrangement the rings show in close succession all the colors of thin plates.

If the incident light is made more oblique, the plate changes color. For the presence of the factor $\cos \chi$ in (17) shows that increasing the obliquity of incidence of the light has the same effect as diminishing d in the case of perpendicular incidence.

The color of the light transmitted by the plate is complementary to that of the reflected light, since the sum of the two must be equal to the incident light. Nevertheless the color of the transmitted light is never so saturated as that of the reflected light, because in the transmitted light a color is never completely cut out, but only somewhat weakened.

The color shown by a thin film in reflected light furnishes a very delicate means of determining its thickness, provided the index of refraction of the film be known. Only the knowledge of the thickness of a film of air which shows the same color is required. This knowledge may be obtained from Newton's rings or, as will be seen later, from the optical properties of crystals.

Interference has also been applied to the determination of the thermal expansion of bodies in the Abbe-Fizeau dilatometer. With this instrument* the change caused by thermal expansion in the distance between the surface O_{2} of a glass plate and a polished surface O_{1} of the body is measured by the change in the interference figure which is formed between the two surfaces O_{1} and O_{2}.

[^21]6. Achromatic Interference Bands.-In order that an interference band may be achromatic it is necessary that at the place at which it is formed the difference of phase Δ of the interfering rays be the same for all colors. Whether the band is bright or dark depends upon the value of Δ. Thus in Newton's apparatus the central spot is black in reflected light, since there the interfering rays of all colors have the same difference of phase $\Delta=\pi$. But if the interference pattern be observed through a prism, the central spot no longer appears achromatic, but the position of achromatism is at the point at which Δ varies very little or not at all with the color, i.e. at the point at which
\[

$$
\begin{equation*}
\frac{\partial \Delta}{\partial \lambda}=0, . \tag{18}
\end{equation*}
$$

\]

in which λ is the wave length of the color in air.* With a strongly dispersive prism the achromatic position may be quite a distance from the central spot.

Likewise if a thin plate, for example mica, be introduced before one side of a Fresnel bi-prism, the interference pattern is changed. In this case, too, the achromatic fringe is not at the place for which $\Delta=0$ as it was before the introduction of the plate, but at the place for which (18) is satisfied. The reason of this is that the thin plate, because of the dependence of its index upon the color, produces retardations of a different number of waves for the different colors.
7. The Interferometer.-Interference fringes due to small differences of path may be produced not only with thin films but also with thick plates by using differential effects between two of them. Jamin's form of instrument consists in two equally thick plane parallel glass plates P_{1} and P_{2} (cf. Fig. 54) placed almost parallel to each other and at a large distance apart. A ray of light $L A$ is split up into two rays $A B C D E$

* More accurately this equation should be written $\frac{\partial \Delta}{\partial T}=0$, in which T is the period. If the small dispersion of the air be neglected, this is identical with (18).
and $A B^{\prime} C^{\prime} D^{\prime} E^{\prime}$, which are in condition to interfere if the two emergent rays $D E$ and $D^{\prime} E^{\prime}$ are again brought together at a point. Since these two rays are parallel, the eye or the telescope which receives them must be focussed for parallel rays. In order to obtain greatest intensity the source is placed in the focal plane of a convergent lens so that the beam $L A$ which

Fig. 54 .
falls upon the plate P_{1} is parallel. It is furthermore of advantage to silver the plates upon their rear surfaces. The difference of phase between the rays $C^{\prime} D^{\prime}$ and $A B$ is, by (15), $\frac{4 \pi d}{\lambda^{\prime}} \cos \chi_{1}+\Delta^{\prime}$, in which χ_{1} represents the angle of refraction in the plate P_{1}. The rays $D^{\prime} E^{\prime}$ and $D E$ have, in addition, the difference of phase $-\left(\frac{4 \pi d}{\lambda^{\prime}} \cos \chi_{2}+\Delta^{\prime}\right)$, in which χ_{2}, the angle of refraction of the plate P_{2}, differs slightly from that of the plate P_{1}, since P_{1} and P_{2} are not exactly parallel. The total difference of phase between $D^{\prime} E^{\prime}$ and $D E$ is therefore

$$
\Delta=\frac{4 \pi d}{\lambda^{\prime}}\left(\cos \chi_{1}-\cos \chi_{2}\right) ;
$$

and since $\cos \chi_{1}-\cos \chi_{2}$ varies somewhat with the inclination of the beam $L A$, the field of view at $E E^{\prime}$ will be crossed by interference fringes.

The chief advantage of this form of interferometer lies in the fact that the two interfering rays $A B$ and $C^{\prime} D^{\prime}$ are separated considerably from one another provided thick plates are used and the incidence is oblique (50° is most advantageous). This instrument is capable of measuring very small variations in the index of refraction. If, for example, two tubes, closed at the ends with plates of glass, be introduced, the one in the path $A B$, the other in $C^{\prime} D^{\prime}$, and if the index of refraction of the air in one tube be changed by varying either the temperature or the pressure, or if the air in one tube be replaced by another gas, the interference fringes move across the field of view. The difference of the indices in the two tubes may be determined by counting the number of fringes which move across some mark in the field of view, or by introducing, by means of some sort of a compensator, a known difference of phase, so that the fringes return to their original position. Such a compensator may consist of two equally thick plates of glass, p_{1} and p_{2}, which are movable about a common axis and make a small angle with one another (Jamin's compensator). The ray $A B$ passes through p_{1} alone, the ray $C^{\prime} D^{\prime}$ through p_{2}. The difference of phase which is thus introduced between the two rays depends upon the inclination of the plate p_{1} to $A B$.*

With Jamin's instrument it is not possible to produce a separation between the two rays of more than 2 cm . A much larger separation may be obtained if, as in Zehnder's instrument, \dagger four nearly parallel plates be used. According to Mach \ddagger it is advantageous to replace two of these plates by metal mirrors S_{1} and S_{2}. Fig. 55 shows Mach's arrangement. He also introduced a device for increasing the intensity of the

[^22]light. In the arramements shown in lifer 54 and 55 , the raty coming to the eye at $t=$ are of small intensity beatuse they have undergone one reflection at aghes surfoce and have thus been materially weakened. In Fins. 55 the ny fom S, which

Fiti. 93.

fixas. sh

 by increasine the reflecting perweq of the nises surfise. Thes is done by depositing a thin film of silver or genty upen the war ${ }^{\text {a }}$ face, the most fivorable thickness of suelo , film beinge that for Which the intensity of the reflectes hight is equal th that of the transmitted. But with the arrantectent whown in fige, 55 it in not necessary to use two phates J_{1}^{\prime} and F_{z}, of finite thinkesw on order to produce interference; it is sufficent if. instead, the division of the ray into a reflected ray and a tronmmited ray in accomplished by means of a thin film of metal. Thim may be done by pressing together the partinlly vilverethythothowe wurfaces of two right-angled nlase prisms. The reflectows unan the mirrors S_{1} and S_{y} may be replaced by total reflection upen the unsilvered surface of righteangled glata prisme. Finally thewe latter prisms may be united with the prisms which divide the
light so as to form single pieces of glass. Thus Fig. 56 shows Mach's construction of the interferometer, in which to the two equal glass rhombs K_{1} and K_{2} the two prisms K_{1}^{\prime} and K_{2}^{\prime} are cemented with linseed oil, the surfaces of contact P_{1} and P_{2} being coated with a thin film of gold. The rays are totally reflected at the inclined surfaces S_{1} and S_{2}. When the two rhombs K_{1} and K_{2} are set up so as to be nearly parallel to each other, an eye at E sees interference fringes.
8. Interference with Large Difference of Path.-If the Newton ring apparatus be viewed in monochromatic light, such as is furnished by a sodium flame, the interference rings are seen to extend over the whole surface of the glass. This is a proof that light retains its capacity for interference when the difference of path is as much as several hundred wave lengths.

How far this difference of path can be increased before the interference disappears is a question of the greatest importance. This question cannot be answered by simply separating the two plates of the Newton ring apparatus farther and farther and focussing the eye or the lens upon the surface O_{1} of one of the plates, for, in accordance with the note on page 141, the interference fringes would soon become indistinct on account of the changing inclination of the coherent pairs of rays which intersect at a point of the surface O_{1}. It is necessary, therefore, to provide that all coherent pairs of rays which are brought together in the same point upon the retina of the observer have the same difference of phase.

This condition is fulfilled when the interference arises from reflections at two parallel surfaces O_{1} and O_{2}, and the eye or the observing telescope is focussed for parallel rays. All the interfering coherent pairs of rays which are brought together at a point of the retina then traverse the interval of thickness d between the two surfaces at the same inclination to the common normal N to these two surfaces and hence have the same difference of phase, provided the distance d is constant. This difference of phase changes with the angle of inclination to N, so that the interference figure consists of concentric
circles whose centres lie upon the perpendicular from the eye to the plates.* The interference rings thus produced are curves of equal inclination, rather than curves of equal thickness, such as are seen in a thin wedge or the Newton ring apparatus.

Such curves of equal inclination may be observed in monochromatic light in plane parallel plates several millimeters thick, so that interference takes place when the difference of path amounts to several thousand wave lengths. In order to be able to vary continuously the difference in path Michelson devised the following arrangement: \dagger

The ray $Q A$ (Fig. 57) falls at an angle of 45° upon the half-silvered front face of a plane parallel glass plate, where it is divided into a transmitted ray, which passes on to the plane mirror D, and a reflected ray, which passes to the mirror C. These two mirrors return the ray to the point A, where the first is reflected, the second transmitted to E.

A second plane parallel glass plate B, of the same thickness as A, makes the difference in the paths of the two rays which come

Fig. 57. to interference at E equal to zero, provided the two mirrors D and C are symmetrically placed with respect to the plate A.

It is evident that, as far as interference is concerned, this arrangement is equivalent to a film of air between two plane surfaces O_{1} and O_{2}, O_{1} being the mirror C, and O_{2} the image

[^23]of D in the plate A. This image O_{2} must also be parallel to C if the interference curves of equal inclination are to be seen clearly when the difference of path is large. In order to vary the difference of path, one of the mirrors C is made movable in the direction $A B$ by means of a micrometer-screw. With this apparatus, using as a source of light the red cadmium line from a Geissler tube, Michelson was able to obtain interference when the difference of path in air was 20 cm ., a distance equal to about 300,000 wave lengths. Interference was obtained with the green mercury radiation when the difference of path was 540,000 wave lengths.*

These experiments are particularly instructive because observations upon the change of visibility of the interference fringes with variations of the difference of path furnish data for more accurate conclusions as to the homogeneity of a source of light than can be drawn from spectroscopic experiments.

Fizeau had already observed that a continuous change of the thickness d of the air film produced a periodic appearance and disappearance of the fringes produced by sodium light. The fringes first disappear when the thickness d is 0.1445 mm .; when $d=0.289$ they are again clear; when $d=0.4335$ they reach another minimum of clearness; etc. The conclusion may be drawn from this that the sodium line consists of two lines close together. The visibility of the fringes reaches a minimum when a bright fringe due to one line falls upon a dark fringe due to the other. Since the mean wave length of sodium light is 0.000589 mm ., the thickness $d=0.289 \mathrm{~mm}$. corresponds to 491 wave lengths. If the difference between the wave lengths of the two sodium lines be represented by $\lambda_{1}-\lambda_{2}$, it follows that

$$
\left(\lambda_{1}-\lambda_{2}\right) \cdot 49 \mathrm{I}=\frac{\lambda}{2}=0.000294 \mathrm{~mm}
$$

i.e.

$$
\lambda_{1}-\lambda_{2}=0.0000006 \mathrm{~mm}
$$

[^24]Michelson has given a more general solution of the problem.*

According to equation (II) on page 13 I the intensity of illumination produced by two equally bright coherent rays whose difference of path is $2 l$ is

$$
\begin{equation*}
J=2 A^{2}\left(\mathrm{I}+\cos 2 \pi \frac{2 l}{\lambda}\right) \tag{19}
\end{equation*}
$$

Instead of the wave length λ of light in air, its reciprocal

$$
\begin{equation*}
\frac{1}{\lambda}=m \tag{20}
\end{equation*}
$$

will be introduced. Then m denotes the number of waves in unit length.

If now the light is not strictly homogeneous, i.e. if it contains several wave lengths λ, or wave numbers m, then if the wave numbers lie between m and $m+d m$, the factor A^{2} in equation (I9) may be represented by $\psi(m) \cdot d m$. The intensity J obtained when interference is produced by an air film of thickness l is

$$
\begin{equation*}
J=2 \int_{m_{1}}^{m_{2}} \psi(m)[1+\cos 4 \pi l m] d m, \tag{2I}
\end{equation*}
$$

in which the limits of integration are those wave numbers between which $\psi(m)$ differs appreciably from zero.

Assuming first that the source consists of a single spectral line of small width, and setting

$$
\begin{equation*}
m=\bar{m}+x, \quad m_{1}=\bar{m}-a, \quad m_{2}=\bar{m}+a, \tag{22}
\end{equation*}
$$

(21) becomes

$$
J=2 \int_{-a}^{+a} \psi(x)[\mathrm{I}+\cos 4 \pi l(\bar{m}+x)] d x
$$

[^25]or setting
\[

$$
\begin{gather*}
4 \pi l \bar{m}=\vartheta, \quad \int \psi(x) d x=P, \\
\int \psi(x) \cos (4 \pi l x) \cdot d x=C, \quad \int \psi(x) \sin (4 \pi l x) \cdot d x=S, \\
\frac{1}{2} J=P+C \cos \vartheta-S \sin \vartheta . \quad . \quad . \tag{23}
\end{gather*}
$$
\]

If the thickness of the air-plate be slightly altered, J varies because ϑ does. On the other hand, C and S may be considered independent of small changes in l, provided the width of the spectral line, i.e. the quantity a, is small.

Hence, by (23), maxima and minima of the intensity J occur when

$$
\begin{equation*}
\tan \vartheta=-\frac{S}{C}, \tag{24}
\end{equation*}
$$

the maxima being given by the minima by

$$
\begin{equation*}
\frac{1}{2} J_{\max .}=P+\sqrt{C^{2}+S^{2}} \tag{25}
\end{equation*}
$$

$$
\frac{1}{2} J_{\min .}=P-\sqrt{C^{2}+S^{2}}
$$

Hence no interference is visible when $C=S=0$. But also when these two expressions are small there will be no perceptible interference. The visibility of the interference fringes is conveniently defined by

$$
\begin{equation*}
V=\frac{J_{\max .}-J_{\min }}{J_{\max .}+J_{\min } .} \tag{26}
\end{equation*}
$$

Hence, from (25) and (25'),

$$
\begin{equation*}
V^{2}=\frac{C^{2}+S^{2}}{P^{2}} \tag{27}
\end{equation*}
$$

This equation shows how the visibility of the fringes varies with the difference of path $2 l$ of the two interfering beams when l is changed by the micrometer-screw.

If the distribution of brightness of the spectral line is symmetrical with respect to the middle, $S=0$ and (27) becomes

$$
V=C: P
$$

If it be assumed that $\psi(x)=$ constant $=c$, then

$$
\begin{equation*}
P=2 a c, \quad C=\frac{2 c \sin 4 \pi l a}{4 \pi l}, \quad V=\frac{\sin 4 \pi l a}{4 \pi l a} . \tag{28}
\end{equation*}
$$

Thus the interference fringes vanish when $4 l a=1,2,3$, etc., and the fringes are most distinct ($V=1$) when $l=0$. As l increases, the fringes, even for the most favorable values of l, become less and less distinct, e.g. for $4 l a=\frac{3}{2}$

$$
V=2: 3 \pi=0.212
$$

Likewise a periodic vanishing and continual diminution in the distinctness of the maxima occur if, instead of $\psi(x)=$ constant,

$$
\psi(x)=\cos ^{\beta} \pi \frac{x}{2 a}
$$

The smallest value of l for which the fringes vanish is given by $4 l_{1} a=\frac{p}{2}+\mathrm{I}$; they vanish again when $4 l_{2} a=\frac{p}{2}+2$, $4 l_{3} a=\frac{p}{2}+3$, etc. Hence from the distances l_{1}, l_{2}, l_{3}, at which the visibility curve becomes zero, the width a of the line, as well as the exponent p, which gives its distribution of brightness, may be determined.
If

$$
\psi(x)=e^{-p x^{2} *}
$$

there is a gradual diminution of the visibility without periodic maxima and minima.

In like manner, when the source consists of several narrow spectral lines, the visibility curve may be deduced from (21). Thus, for example, two equally intense lines produce periodic

[^26]zero values of V. If the two lines are not equally intense, the visibility does not actually become zero, but passes through maxima and minima. This is the case of the double sodium line.

This discussion shows how, from any assumed intensity law $\psi(m)$, the visibility V of the fringes may be deduced. The inverse problem of determining $\psi(m)$ from V is much more difficult. Apart from the fact that the numerical values of V can only be obtained from the appearance of the fringes by a somewhat arbitrary process,* the problem is really not solvable, since, as follows from (27), only $C^{2}+S^{2}$ can be determined from V, and not C and S separately. \dagger Under the assumption that the distribution of brightness in the several spectral lines is symmetical with respect to the middle, a solution may indeed be obtained, since then, for a single line, $S=0$, and for several lines similar simplifications may be made. Michelson actually observed the visibility curves V of numerous spectral lines and found them to differ widely. $\ddagger \mathrm{He}$ then found by trial what intensity law $\psi(m)$ best satisfied the observed forms of V. It must be admitted, however, that the resulting $\psi(m)$ is not necessarily the correct one, even though the distribution of intensity and the width of the several spectral lines are obtained from this valuable investigation of Michelson's with a greater degree of approximation than is possible with a spectroscope or a diffraction grating. In any case it is of great interest to have established the fact that lines exist which are so homogeneous that interference is possible when the difference of path is as much as 500,000 wave lengths.
9. Stationary Waves.-In the interference phenomena which have thus far been considered, the two interfering

[^27]beams have had the same direction of propagation. But interference can also be detected when the two rays travel in opposite directions. If upon the train of plane waves
$$
s_{1}=A \sin 2 \pi\left(\frac{t}{T}-\frac{z}{\lambda}\right)
$$
which is travelling in the positive direction of the z-axis, there be superposed the train of plane waves
$$
s_{2}=A \sin 2 \pi\left(\frac{t}{T}+\frac{z}{\lambda}\right),
$$
which is travelling in the negative direction of the z-axis, there results
\[

$$
\begin{equation*}
s=s_{1}+s_{2}=2 A \sin 2 \pi \frac{t}{T} \cos 2 \pi \frac{z}{\bar{\lambda}} . \tag{29}
\end{equation*}
$$

\]

This equation represents a light vibration whose amplitude $2 A \cos 2 \pi z / \lambda$ is a periodic function of z. For $\frac{z}{\bar{\lambda}}=\frac{1}{4}, \frac{8}{4}, \frac{5}{4}$, etc., the amplitude is zero, and the corresponding points are called nodes. For $\frac{z}{\lambda}=0, \frac{1}{2}, \frac{2}{2}$, etc., the amplitude is a maximum, and the corresponding points are called loops. The distance between successive nodes or successive loops is therefore $\frac{1}{2} \lambda$. This kind of interference gives rise to waves called stationary, because the nodes and loops have fixed positions in space.

Wiener* proved the existence of such stationary waves by letting light fall perpendicularly upon a metallic mirror of high reflecting power. In this way stationary waves are produced by the interference of the reflected with the incident light. In order to be able to prove the existence of the nodes and loops Wiener coated a plate of glass with an extremely thin film of sensitized collodion, whose thickness was only ${ }_{8}^{1}$ of a light-wave $=20$ millionths of a mm., and placed it nearly parallel to the front of the mirror upon which a beam of light from an electric arc was allowed to fall. The sensitized film

[^28]then intersects the planes of the nodes and loops in a system of equidistant straight lines, whose distance apart is greater the smaller the angle between the mirror and the collodion film. Photographic development of the film actually shows this system of straight lines. This proves not only that photographic action may be obtained upon such a thin film, but also that such action is different at the nodes and the loops. These interesting interference phenomena may also be conveniently demonstrated by means of the fluorescent effects which take place in thin gelatine films containing fluorescin.* Such a film shows a system of equidistant green bands. It is a fact of great theoretical importance, as will be seen later, that the mirror itself lies at a node.
10. Photography in Natural Colors.-Lippmann has made use of these stationary light-waves in obtaining photographs in color. As a sensitive film he chose a transparent uniform layer of a mixture of collodion and albumen containing iodide and bromide of silver. This he laid upon mercury, which served as the mirror. When this plate has been exposed to the spectrum, developed, and fixed, it reproduces approximately the spectrum colors. The simplest explanation is that in that part of the film which was exposed to light whose wave length within the film was λ, thin layers of silver have been deposited at a distance apart of $\frac{1}{2} \lambda$. If now these parts of the film be observed in reflected white light, the light-waves are reflected from each layer of silver with a given intensity. But these reflected rays agree in phase, and hence give maximam intensity only for those waves whose wave lengths are equal to either λ, or $\frac{1}{2} \lambda$, or $\frac{1}{8} \lambda$, etc. Hence a spot which was exposed to green light, for instance, appears in white light essentially green, for the wave length $\frac{1}{2} \lambda$ lies outside the visible spectrum. But under some circumstances a part of the plate exposed to deep red appears violet, because in this case the wave length $\frac{1}{8} \lambda$ falls within the visible spectrum.

If such a photograph be breathed upon, the colors are dis-

[^29]placed toward the red end of the spectrum, because the moisture thickens the collodion film, and the refleting: livers are a greater distance apart. If the phate he uhoemed with light of more oblique incielence, the collore, tre deplew el townd the violet end of the spectrum, for the s.athe rewnon that the Newton's rings shift toward the lower ordere th the ine isterne
 the difference of phase 1 between two raty reflected fom twn surfaces a distance d apart is proportional to wos x, in whin x is the angle of inclination of the rase betwern the tha etatise 8
 increases Δ decreases; but in Newton's rimes this eftect in
 the former, within the film of air which siveq riace to the inter ference, χ varies much more rapidly with the intaleme thish it does in the collodion film, whose intex in at lexse no math in 1. 5 .

Although the facts presented prowe leyond of dathe that the colors are due to interference, yot the explatitem al thew
 closer investigation, to be probshly untenable. Pin tiontat * has made microscopic measurements upm the vioc of the phen ticles of silver deposited in such photographeic films, atn! fromel
 is much larger than a half wave lemeth. Aroweding the he hatt. the stationary waves and the fixing of the wenvitive fiten ${ }^{\text {prox }}$ duce layers of periodically varying index of refration, dew the a periodic change in the arrangerment of the witwer matratios. This theory does not alter the principle tmberlyiny: the splaw nation of the colors, for it alse ascribes the the collomfom fitim a variable reflecting power whose perion in ind.

This theory makes it powible to valculate the internaty of any color after reflection. The complete disensuman will twe omitted, especially as the calculation is complicaterl by the fact that it is not permissible to axsume the numine of periofls

[^30]in the photographic film as large.* The best color photographs are obtained when the thickness of the photographic film does not exceed 0.001 mm . This thickness corresponds to 3-5 half wave lengths. But without calculation it may be seen at once that the reflected colors are a mixture and not pure spectral colors, - a fact which can be verified by an analysis of the reflected light by the spectroscope. \dagger For even if that color whose wave length is the same as that of the light to which the plate was exposed must predominate in the reflected light, yet the neighboring colors, and, for that matter, all the colors, must be present in greater or less intensity.

According to an experiment of Neuhauss, \ddagger the gradual reduction of the thickness of the film by friction causes the reflected colors to undergo certain periodic changes. This effect follows from theory if the small number of periods in the photographic film be taken into consideration.

A further peculiarity of these photographs is that, in reflected light, they do not show the same color when viewed from the front as from the back.§ Apart from the fact that the glass back gives rise to certain differences between the two sides, it is probable that the periodic variations in the optical character of the film are greater in amplitude on the side of the film which lay next to the metal mirror. On account of a slight absorption of the light, the stationary waves which, in the exposure of the plate, lie nearest the metal mirror are most sharply formed.

If this assumption be introduced into the theory, both the result of Neuhauss and the difference in the colors shown by the opposite sides of the plate are accounted for.

[^31]
CHAPTER III

HUYGENS' PRINCIPLE

1. Huygens' Principle as first Conceived.-The fact has already been mentioned on page 127 that the explanation of the rectilinear propagation of light from the standpoint of the wave theory presents difficulties. To overcome these difficulties Huygens made the supposition that every point P which is reached by a light-wave may be conceived as the source of elementary light-waves, but that these elementary waves produce an appreciable effect only upon the surface of their envelope. If the spreading of the rays from a point source Q is hindered by a screen $S_{1} S_{2}$ containing an opening $A_{1} A_{2}$, then the wave surface at which the disturbance has arrived after the lapse of the time t may be constructed in the following way:

Consider all the points A_{3} in the plane of the opening $A_{1} A_{2}$ as new centres of disturbance which send out their elementary waves into the space on both sides of the screen. These elementary wave surfaces are spheres described about the points A. These spheres have radii of different lengths, if they are drawn so as to touch the points at which the light from Q has arrived in the time t. Since, for instance, the disturbance from Q has reached A_{3} sooner than A_{1}, the elementary wave about A_{3} must be drawn larger than that about A_{1} in proportion to the difference between these two times. It is evident that the radii of all the elementary waves, plus the distance from Q to their respective centres, have the same value. But in this way there is obtained, as the enveloping surface of these ele-
mentary waves, a spherical surface (drawn heavier in Fig. 58) whose centre is at Q, and which is limited by the points B_{1}, B_{2}, i.e. which lies altogether within the cone drawn from Q to the edge of the aperture $S_{1} S_{2}$. Inside this cone the light from Q is propagated as though the screen were not present, but outside of the cone no light disturbance exists.

Though the rectilinear propagation of light is thus actually obtained from this principle, yet its application in this form is subject to serious objection. First, it is evident from Fig. 58

Fig. 58.
that the elementary waves from the points A have also an envelope $C_{1} C_{2}$ in the space between the screen and the source. Hence some light must also travel backward; but, as a matter of fact, in a perfectly homogeneous space, no such reflection takes place. Furthermore, the construction here given for the rectilinear propagation of light ought always to hold however small be the opening $A_{1} A_{2}$ in the screen. But it was shown on page I that, with very small apertures, light no longer travels in straight lines, but suffers so-called diffraction. Again, why do not these considerations hold also for sound, which is always diffracted, or, at least, never produces sharp shadows?

Before considering Fresnel's improvements upon Iuygens' work, the latter's exphomation of reflection and refraction will be presented. Leet $A_{1} A_{a}$ be the lemuding surfice between two media I and It in which the velowites of lipht are respectively V_{1} and V_{2}, and let a wave whese wave front at any time to

Fic. 5%
occupies the position $A_{1} B$ fall obliquely upon the surfice $A_{1} A_{y}$. What then is the pesition of the wave surfare in medium II at the time $t_{0}+$ if Conceive the prints of of the homaling surface as centres of elementary waves which, is above, have different radii, sinee the points at are reahed at different times by the wave front A 1 . Since the disturhance at A_{1} tregins at the time t_{n}, the elementary wave abrut A_{1} must have a radius represented by the line $A_{1} C=V_{3}^{\prime \prime}$. L.et the prosition of the point $A_{ \pm}$be so chosen that the disturbance reaches it at the time $t_{6}+t$. This will be the case if the perpendicular dropped from A_{2} upon the wave front has the length $V_{1} / L_{\text {, since, accord }}$ ing to Huygens' construction, in a homozenenus medium such as I any element of a plane wave is propagated in a straight line in the direction of the wave normal. The elementary wave about A_{2} has then the ratius zero. For any point A between A_{1} and A_{2} the clementary wave has a radius which diminishes from $l^{\prime \prime} t$ to zero proportionally to the distance $A_{1} A$. The envelope of the elementary waves in medium II is, therefore, the plane through A_{2} tangent to the sphere
 now sinc $\quad B A_{2}: A_{1}, I_{2} \quad l: 8:, A_{1}, A_{2}$, wan $x \quad i, A_{1}: A_{1} A_{2}=$ $r_{2} t: A_{1}, f_{2}$, it followe that

But since 中 and x are the angites of inciatence and refraction respectively, this is the well-hnown hiw of reftrotion. Hence, as wan remarked though mot dexlucest on phase 129, the index of refractiten m is expmel to she tution of the velocities of propagation of tieht in the two mectias.

By constructing in the same way the clementary waves reflected back into medium I the latw of teflection is at once obtained.
2. Fresnel's Improvement of Huygens' Principle.--Fres* nel replaced lluygens aphtraty wsumptran that only the
 envelone of the cirmentery waves pronlues apprectiahte light effects by the frimetite that the elementary waves in their stiswor fowsing influence one atather ist accordente with the princigite of interference. l,ight *ught then to atyeror not only upon the envelaping subface, hat every where where the clementary waves reinforce one anuther; on the other hand, there should lwe darkness wherever they dewtroy wo another. Now as a matter of fact it is prossible to deduce from thiv FresnelHuyten principle mot only the laws of diffraction, but also those of straight-line propagation, reflection, and refraction.

Consider the disturbance at a point "caused by light from a source Q, and at first assume that no wereen is interpssed between P and Q. A sphere of radius a deseribed about Q
(Fig. 60) may be considered as the wave surface, and the disturbance which exists in the elements of this sphere may be expressed by (cf. page 127)

$$
\begin{equation*}
s=\frac{A}{a} \cos 2 \pi\left(\frac{t}{T}-\frac{a}{\lambda}\right) \tag{I}
\end{equation*}
$$

in which A represents the amplitude of the light at a distance $a=\mathrm{I}$ from the source Q. Fresnel now conceives the spherical surface to be divided in the following way into circular zones whose centres lie upon the straight line $Q P$: The central zone reaches to the point M_{1}, at which the distance $M_{1} P=r_{1}$ is $\frac{1}{2} \lambda$ greater than the distance $M_{0} P$. Calling the latter b, $M_{1} P=r_{1}=b+\frac{1}{2} \lambda$. The second zone reaches from M_{1} to M_{2}, where $M_{2} P=r_{2}=r_{1}+\frac{1}{2} \lambda$. The third zone reaches from M_{2} to M_{3}, where $M_{3} P=r_{3}=r_{2}+\frac{1}{2} \lambda$, etc. Consider now in any zone, say the third, an elementary ring which lies between the points M and M^{\prime}. Let the distances $M P=r$, $M^{\prime} P=r+d r$, and $\Varangle M Q P=u, \Varangle M^{\prime} Q P=u+d u$. The area of this elementary zone is

$$
\begin{equation*}
d o=2 \pi a^{2} \sin u d u \tag{2}
\end{equation*}
$$

Also, since

$$
r^{2}=a^{2}+(a+b)^{2}-2 a(a+b) \cos u
$$

it follows by differentiation that

$$
2 r d r=2 a(a+b) \sin u d u
$$

so that equation (2) may be written

$$
\begin{equation*}
d o=2 \pi \frac{a}{a+b} r d r . \tag{3}
\end{equation*}
$$

The disturbance $d s^{\prime}$ which is produced at P by this elementary zone must be proportional directly to do and inversely to r, since (cf. page 126) the amplitude of the disturbance due to an infinitely small source varies inversely as the distance from it. Hence, from (I),

$$
\begin{equation*}
d \varepsilon^{\prime}=\frac{k A}{a r} \cos 2 \pi\left(\frac{t}{T}-\frac{a+r}{\lambda}\right) d o \tag{4}
\end{equation*}
$$

or, in consideration of (3),

$$
d s^{\prime}=2 \pi \frac{k \cdot A}{a+b} \cos 2 \pi\left(\frac{t}{T}-\frac{a+r}{\lambda}\right) d r .
$$

In this equation k is a factor of proportionality which can depend only upon the inclination between the element $d o$ and the direction of r. Fresnel assumes that this factor k is smaller the greater the inclination between $d o$ and r. If this inclination be assumed to be constant over an entire Fresnel zone, i.e. between $M_{n-\mathrm{r}}$ and M_{n}, an assumption which is allowable if a and b are large in comparison with the wave length λ, it follows from (4^{\prime}) that the effect of this nth zone is (k_{n} denoting the constant k under these circumstances)

$$
\begin{equation*}
s_{n}^{\prime}=\int d s^{\prime}=2 \pi \frac{k_{n} A}{a+b} \int_{r_{n-1}}^{r_{n}} \cos 2 \pi\left(\frac{t}{T}-\frac{a+r}{\lambda}\right) d r \tag{5}
\end{equation*}
$$

or
$s_{n}{ }^{\prime}=\frac{k_{n} \lambda A}{a+b}\left\{\sin 2 \pi\left(\frac{t}{T}-\frac{a+r_{n-x}}{\lambda}\right)-\sin 2 \pi\left(\frac{t}{T}-\frac{a+r_{n}}{\lambda}\right)\right\}$.
But since

$$
r_{n-\mathrm{x}}=b+\frac{n-\mathrm{I}}{2} \lambda, \quad r_{n}=b+\frac{n}{2} \lambda,
$$

it follows that

$$
\begin{equation*}
s_{n}^{\prime}=(-1)^{n+1} \cdot \frac{2 k_{n} \lambda A}{a+b} \sin 2 \pi\left(\frac{t}{T}-\frac{a+b}{\lambda}\right) . \tag{6}
\end{equation*}
$$

From this it is evident that the successive zones give alternately positive and negative values for s^{\prime}. If the absolute value of $s_{n}{ }^{\prime}$ be represented by s_{n}, then by the principle of interference the whole effect s^{\prime} at P due to the first n zones is given by the series

$$
\begin{equation*}
s^{\prime}=s_{1}-s_{2}+s_{3}-s_{4}+\ldots .+(-\mathrm{I})^{n+{ }^{n}} s_{n} . \tag{7}
\end{equation*}
$$

If k_{n} were assumed equal for all zones, s_{1}, s_{2}, s_{3}, etc., would all be equal, and the value of the series (7) would vary with the number of terms n. But k_{n} and hence s_{n} diminish continuously
as n increases, since the freater the value of n the greater the inclination between r and the. In this case the value of the series may be obtained in the following way: * If n is odd, the series may be written in the form:

$$
\begin{align*}
& s^{\prime}=\begin{array}{l}
s_{1} \\
2
\end{array}+\left(\begin{array}{l}
s_{1} \\
2
\end{array}-s_{2}+\begin{array}{l}
s_{3} \\
2
\end{array}\right)+\left(\begin{array}{c}
s_{3} \\
2
\end{array}-s_{4}+\begin{array}{l}
s_{3} \\
2
\end{array}\right)+\ldots \\
& +\binom{s_{n} * s_{n \ldots 1}+s_{2}}{2}+s_{2}^{s_{n}} \tag{8}
\end{align*}
$$

or in the form:

$$
\begin{align*}
s^{+}=s_{1} & -s_{2}-\left\{\binom{s_{2}-s_{2}+\frac{s_{4}}{2}}{2}+\left(\begin{array}{l}
\left.s_{4}-s_{2}+\begin{array}{c}
s_{n} \\
2
\end{array}\right)+\ldots \\
\\
\\
\end{array}+\left(\begin{array}{c}
s_{n} \\
2
\end{array} \cdots s_{n}+\begin{array}{c}
s_{n} \\
2
\end{array}\right)\right\}-s_{n-1}+s_{n} .\right.
\end{align*}
$$

If now every s_{α} is greater than the arithonetical mean of the two adjacent quantities s_{∞}, and $s_{p, 1}$, the conclusion may be drawn from (8) that

$$
x^{0}=x_{1}^{s_{2}}
$$

while it follows from (9) that

$$
s^{\prime}>s_{1}-s_{2}+s_{4}-s_{a}=1 .
$$

These two limits between which s^{\prime} is in this way contained are, however, equal to one another when, as is here the case, every s_{p} differs by an infinitely small amount both from s_{p} and $s_{\text {pi }}$. Hence

$$
\begin{equation*}
x^{\prime} \quad x_{1}+\frac{x_{n}}{2} \tag{10}
\end{equation*}
$$

A similar conclusion may be drawn when each s is mmaller than the arithmetical mean between the two adjacent quantities $s_{f, \text {, }}$ and $s_{f, 1}$. In this hatter cowe if at equal distances alonge an axis of abscissie the $s_{p}^{\prime} s$ be erected an successive ordinates,

[^32]the line connecting the ends of these ordinates is a curve which is convex toward the axis of abscissæ. In the former case this curve is concave toward this axis. These same conclusions may be drawn, i.e. equation (IO) obtained, if the s_{p} curve consists of a finite number of concave and convex elements. Only when this number becomes infinitely large does equation (io) cease to hold. On account of the presence of the factor k_{n} this case can never occur.

If n is even, a similar argument, with a somewhat different arrangement of the terms of series (7), gives

$$
s^{\prime}=\frac{s_{1}}{2}-\frac{s_{n}}{2}
$$

According to Fresnel these zones are to be drawn until the radius vector r from P becomes tangent to the wave surface about Q. For the last zone r is perpendicular to $Q M$ and both k_{n} and s_{n} become zero. Hence the values of (10) and (10') are identical and the light disturbance at P is

$$
\begin{equation*}
s^{\prime}=\frac{s_{1}}{2}=\frac{k_{1} \lambda A}{a+b} \sin 2 \pi\left(\frac{t}{T}-\frac{a+b}{\lambda}\right) \tag{II}
\end{equation*}
$$

Thus it may be looked upon as due solely to the effect of the elementary waves of half the central zone.

The effect at P of introducing any sort of a screen will depend upon whether the central zone and those immediately adjacent to it are covered or not. It might be expected that the effect at P would be completely cut off by a circular screen whose centre lies at M_{0} and which covers half of the central zone. But this is not the case. For when a circular screen is introduced perpendicular to $P Q$ with its centre at M_{0}, the construction of the Fresnel zones may begin at the edge of this screen. Then half of this first zone is still effective at P, i.e. equation (II) still holds, but b now represents the distance between P and the edge of the screen, and k_{1} refers to the first zone about the edge of the screen. Hence there can be darkness at no point along the central line $M_{0} P$. This surprising. conclusion is actually verified by experiment. However, for
screens which are large in comparison with the wave length as well as in comparison with the distance b, the effect at P is small, because the factor k_{n} in equation (5) is then small. Likewise the effect at P is small if the screen S is not exactly circular. For, consider that the screen S is bounded by infinitely small circular arcs of varying radii drawn about M_{0} as a centre. Let the angle subtended at the centre by the first arc be $d \phi_{1}$, the distance of this arc from the point P be b_{1}, and from Q, a_{1}. Then, by (II) and the above considerations, the effect of the entire opening which lies between the two radii vectores drawn from M_{0} through the ends of this firstarc is

$$
d s_{1}^{\prime}=\frac{k_{1} \lambda A}{a_{1}+b_{1}} \cdot \frac{d \phi_{1}}{2 \pi} \sin 2 \pi\left(\frac{t}{T}-\frac{a_{1}+b_{1}}{\lambda}\right) .
$$

Similarly the effect of that part of the next angular opening $d \phi_{2}$ which is not covered by the screen is

$$
d s_{2}^{\prime}=\frac{k_{2} \lambda A}{a_{2}+b_{2}} \cdot \frac{d \phi_{2}}{2 \pi} \sin 2 \pi\left(\frac{t}{T}-\frac{a_{2}+b_{2}}{\lambda}\right)
$$

etc. All these effects must be summed in order to obtain the value of s^{\prime} at P after the introduction of the irregular screen at M_{0}. If the screen is not too large, it is possible to set $k_{1}=k_{2}=k_{3}$, etc. Likewise the differences between the various a 's and b 's in the denominator may be neglected so that

$$
\begin{align*}
s^{\prime}= & \frac{k_{1} \lambda A}{(a+b) 2 \pi} \\
& \left\{d \phi_{1} \sin 2 \pi\left(\frac{t}{T}-\frac{a_{1}+b_{1}}{\lambda}\right)\right. \\
& \left.+d \phi_{2} \sin 2 \pi\left(\frac{t}{T}-\frac{a_{2}+b_{2}}{\lambda}\right)+\cdots\right\}
\end{align*}
$$

In the argument of the \sin it is not permissible to set $a_{1}+b_{1}=a_{2}+b_{2}$, etc., since these quantities are divided by the small quantity λ. For if the screen S is many wave lengths in diameter (it need be but a few mm.), the differences between the quantities $a+b$ amount to many wave lengths. Hence with an irregular screen the different terms of equation (II) are irregularly positive and negative so that in general the whole sum is small. Only when the screen has a regular
form, for instance when all the a 's and b 's are exactly equal, is the sum s^{\prime} finite. Hence it is possible to speak of rectilinear propagation of light, since the result of interposing a screen of sufficient size and irregular form upon the line $Q P$ is darkness at P.

If between Q and P a screen with a circular opening whose centre is at M_{0} be introduced, then the effect at P varies greatly with the size of this opening. If the opening has the same size as half of the central zone, the effect at P is the same as though no screen were present, i.e. the light at P has the natural brightness. If the opening corresponds to the whole central zone, s^{\prime} at P is twice as great as before, i.e. the intensity at P is four times the natural brightness. If the size of the opening be doubled, so that the first two central zones are free, then, according to (7), $s^{\prime}=s_{1}-s_{2}$, an expression whose value is nearly zero; etc. This conclusion also has been verified by experiment. Instead of using screens or apertures of various sizes, it is only necessary to move the point of observation along the line $Q M_{0}$.

Although Fresnel's modification of Huygens' principle not only accounts for the straight-line propagation of light, showing this law to be but a limiting case,* but also explains the departures from this law shown in diffraction phenomena in a way which is in agreement with experiment, nevertheless his considerations are deficient in two respects. For, in the first place, according to his theory, light ought to spread out from any wave surface not only forward, but backward toward the source. This difficulty was contained in the original conception of the Huygens' principle (cf. page 16i). In the second place, Fresnel's calculation gives the wrong phase to the light disturbance s^{\prime} at P. For, according to equation (I) on page 163 , in the case of direct propagation s^{\prime} ought to be

$$
s^{\prime}=\frac{A}{a+b} \cos 2 \pi\left(\frac{t}{T}-\frac{a+b}{\lambda}\right)
$$

[^33]while by (11) on page $166, s$, as determined by the consideration of the elementary waves upen a wave surface, is
\[

s^{\prime}=$$
\begin{gathered}
k_{1} \lambda A \\
a+b
\end{gathered}
$$ \sin 2 \pi\left($$
\begin{array}{cc|c}
t & a & A \\
r & & \lambda
\end{array}
$$\right) .
\]

In order to obtain agreement between the amplitudes in the two expressions for s^{\prime}, A_{1} may be assumed equal to $\frac{t}{d}$, but the phases in the two expressiens cannot be mate ta arree. These difficulties disappear as stom an llygens' prituitle is
 done by Kirchhoff." The sumpler deduction whith follows is due to Voigt. \dagger
3. The Differential Equation of the Light Disturbance. It would have been prosible to find the malythal expersina for the light disturbances at any faint ['in 'pace if all wave were either spherical or plate. Hut when light stiker an ohstacle the wave surfaces often awsume complisated forms. In erder

 tions, i.e. to start with the differentind extution whith sums satisfies.

Every theory of light, and, for that matter, every theory of the propagation of wave-like disturbances, leads to the differential equation

$$
\frac{\partial^{2} s}{\partial u^{3}}=V^{2}\left(\begin{array}{l}
d^{2} s \tag{12}\\
a x^{2}
\end{array}+\frac{b^{2} s}{n v^{2}}+\begin{array}{c}
n)^{2} s \\
x^{2} m^{2}
\end{array}\right)=V^{2} A s
$$

in which t represents the time, x, y, the eoordinates of a rectangular system, and I^{\prime} the velocity of propagation of the waves. This result of theory may for the prosent be aswnned; a deduction of the equation from the standpoint of the electrom magnetic theory will be given later (Section II, Chapter I).

[^34]It will first be shown how the analytical forms of s given above for plane and spherical waves are obtained from (i2).

For plane waves let the x-axis be taken in the direction of the normal to the wave front, i.e. in the direction of propagation; then s can depend only upon x and t, since in every plane $x=$ const. which is a wave-front, the condition of vibration for a given value of t is everywhere the same. Equation (12) then reduces to

$$
\begin{equation*}
\frac{\partial^{2} s}{\partial t^{2}}=V^{2} \frac{\partial^{2} s}{\partial x^{2}} \tag{13}
\end{equation*}
$$

The general integral of this equation is

$$
\begin{equation*}
s=f_{1}\left(t-\frac{x}{V}\right)+f_{2}\left(t+\frac{x}{V}\right) \tag{I4}
\end{equation*}
$$

in which f_{1} is any function whatever of the argument $t-\frac{x}{V}$, and f_{2} any function of the argument $t+\frac{x}{V}$. For if the first derivatives of the functions f_{1} and f_{2} with respect to their arguments be denoted by f_{1}^{\prime} and f_{2}^{\prime}, the second derivatives by $f_{1}^{\prime \prime}, f_{2}^{\prime \prime}$, respectively, then

$$
\begin{gathered}
\frac{\partial s}{\partial t}=f_{1}^{\prime}+f_{2}^{\prime}, \quad \frac{\partial^{2} s}{\partial t^{2}}=f_{1}^{\prime \prime}+f_{2}^{\prime \prime} \\
\frac{\partial s}{\partial x}=-\frac{\mathbf{I}}{V} f_{1}^{\prime}+\frac{\mathbf{1}}{V^{\prime}} f_{2}^{\prime}, \quad \frac{\partial^{2} s}{\partial x^{2}}=+\frac{\mathbf{1}}{V^{2}} f_{1}^{\prime \prime}+\frac{\mathbf{1}}{V^{2}} f_{2}^{\prime \prime}
\end{gathered}
$$

i.e. equation (13) is satisfied. If now the variation of s with the time is of the simple harmonic form, i.e. if it is proportional to $\cos 2 \pi \frac{t}{T}$, as is the case for homogeneous light, then, by (14),

$$
\begin{equation*}
s=A_{1} \cos 2 \pi\left(\frac{t}{T}-\frac{x}{V T}+\delta_{1}\right)+A_{2} \cos 2 \pi\left(\frac{t}{T}+\frac{x}{V T}+\delta_{2}\right) \tag{15}
\end{equation*}
$$ in which $A_{1}, A_{2}, \delta_{1}, \delta_{2}$ are constants. This corresponds to our former equation for a plane wave of wave length $\lambda=V T$. A_{1} is the amplitude of the waves propagated in the positive

action of the x-axis, A_{2} the amplitude of these propagated se negative direction of the $\begin{aligned} \\ \text { a -axis. }\end{aligned}$
for spherical abates whose centre is at the origin, s can end only upon t and the distance r from the origin. Hence

$$
\begin{aligned}
& \text { as iss ar ar } r \\
& \partial r^{\circ} \text { or ix or } r^{\circ} \\
& \partial s=\partial s \quad \partial r \quad a, y \\
& \partial y=i r^{\prime} \partial y \text { or' } r \text { ' }
\end{aligned}
$$

since $r^{2}=x^{4}+r^{2}+z^{2}$ partial differentiation gives

$$
r \cdot \partial r=x \cdot \partial x, \text { i.e. } \frac{r}{\partial x} \frac{x}{r} \cos (r x),
$$

similarly

$$
\frac{\partial r}{\partial y}=\frac{y}{r}, \begin{array}{lll}
\partial r & z & y^{\prime}
\end{array}
$$

,

similarly
nation (12) becomes, therefore, for this cave

$$
\begin{equation*}
a^{2} s=b^{2}\left(a^{2} r^{2}+\frac{2}{r a r}\right) \tag{16}
\end{equation*}
$$

h may also be written in the form

$$
\frac{a^{2}(r s)}{a h^{4}}=\frac{V a^{2}(r s)}{\partial r^{2}} \cdot \cdot \cdot \cdot \cdot(1 \eta)
$$

This equation has the same form as (13) save $\mathbf{t 1}$ at replaces s, and r replaces x. The integral of (I7) is therefc by (14),

$$
r s=f_{1}\left(t-\frac{r}{V}\right)+f_{2}\left(t+\frac{r}{V}\right) .
$$

If, again, homogeneous light of period T be used, it follows t $s=\frac{A_{1}}{r} \cos 2 \pi\left(\frac{t}{T}-\frac{r}{V T}+\delta_{1}\right)+\frac{A_{2}}{r} \cos 2 \pi\left(\frac{t}{T}+\frac{r}{V T}+\delta_{2}\right)$.
This is our former equation for spherical waves. One trair waves moves from the origin, the other moves toward it.] amplitudes, for example $\frac{A_{1}}{r}$, are inversely proportional to This result, which was used above on page 126 in defining measure of intensity, follows from equation (12).

Before deducing Huygens' principle from equation ($\mathbf{1} 2$) following principle must be presented.
4. A Mathematical Theorem.-Let $d \tau$ be an element volume and F a function which is everywhere finite, contixzuo and single-valued within a closed surface S. Consicler ${ }^{1}$ following integral, which is to be taken over the entire volu: contained within S :

$$
\int \frac{\partial F}{\partial x} d \tau=\int \frac{\partial F}{\partial x} d x d y d z
$$

First perform a partial integration with respect to x, i.e. ma a summation of all the elements $\frac{\partial F}{\partial x} d \tau$ which lie upon a straight line (G) parallel to the axis of x. The result is

$$
d y d z \int \frac{\partial F}{\partial x} d x=d y d z\left(-F_{1}+F_{2}-F_{3}+F_{4} \text { etc. }\right)
$$

in which F_{1}, F_{2}, etc., represent the values of the function at those points upon the surface S where the straight line intersects it. For the sake of generality it will be assum that this line intersects the surface several times; since, ho
ever, S is a closed surface, the number of such intersections will always be even. In mowing alom: the line (\$) in the dirsetion of increasing x, μ_{1}, \dot{F}_{3}, ette., which have odd indices, represent the values of f° at the points of entrance into the space enclosed by S; while F_{a}, L_{4}, etce, whish have even
 struct now upon the rectangular hise $d y$ d: a colum whise axis is parallel to the $x=a x i s$. This column will then ent from the surface S, at the points of entrance and exit, the elements $d S_{1}, d S_{y}$, ete., whesse area in given by

$$
d y d=\quad t a s \cdot c o s(m) \text {. }
$$

in which ($n x$) represents the angle between the ranion and the normal to the surface si at cach particular perint of intereection. The sign must be taken se that the right mand sifle in pawitive, since the elements of surface ath are newentrily pasitive. n
 by s. Then, at the points of entrance.

$$
d y d z==d S_{1} \cdot \cos \left(n_{1}\right) \quad \text { | } d S_{1} \cdot \cos \left(n_{4}\right) \text {, cte. }
$$

and at the pointe of exit

$$
d y d a \cdots \cdots d S_{2} \cos \left(n_{d}\right) \quad d S_{4} \cos \left(n_{4} n_{1}+t \cos \right.
$$

Hence
$d y d z \int \frac{A}{d x} d r=F_{1} \cos \left(n_{1} r\right) \cdot d S_{1}-A_{2} \cos \left(n_{3} x \cdot d S_{2}\right.$ ctc.
If now the integration be performed with respect te, y and a in order to obtain the total space integral, i.e if the summa. tion of the products $f=$ eos ($n x$) dS aver the whole surfore be made, there pesults

$$
\begin{equation*}
\int \frac{d x}{d x} d x=-\int f \cos (n x) \cdot d x \tag{*0}
\end{equation*}
$$

in which on the right-hand side $f=$ pepresents the value of the function at the surface element \mathbb{d}.

Thus by means of this theorem the original integral, which
was to be extended over the whole volume, is transformed into one which is taken over the surface which encloses the volume. From the method of proof it is evident that F must be finite, continuous, and single-valued within the space considered, since otherwise in the partial integration not only would there appear values F_{1}, F_{2}, etc., of F corresponding to points on the surface, but also values for points inside.
5. Two General Equations.-Let U be a function which contains explicitly x, y, z, and r. Let r represent the distance from the origin, i.e. $r^{2}=x^{2}+y^{2}+z^{2}$. Let $\frac{\partial U}{\partial x}$ represent a differentiation with respect to the variable x as it explicitly appears, so that y, z, and r are in this differentiation considered constants. On the other hand let $\frac{d U}{d x}$ represent the differential coefficient of U, which arises from a motion $d x$ along the x-axis; in which it is to be remembered that in this case r varies with x. Then

$$
\begin{equation*}
\frac{d U}{d x}=\frac{\partial U}{\partial x}+\frac{\partial U}{\partial r} \cdot \frac{\partial r}{\partial x}=\frac{\partial U}{\partial x}+\frac{\partial U}{\partial r} \cos (r x) \tag{2I}
\end{equation*}
$$

But (cf. page 171) $\frac{\partial r}{\partial x}=\frac{x}{r}=\cos (r x)$. Hence

$$
\frac{d}{d x}\left(\frac{1}{r} \frac{\partial U}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\mathrm{I}}{r} \frac{\partial U}{\partial x}\right)+\frac{\partial}{\partial r}\left(\frac{\mathrm{I}}{r} \frac{\partial U}{\partial x}\right) \cdot \cos (r x)
$$

or, since in the differentiation $\frac{\partial}{\partial x}$ the radius r is constant,

$$
\left.\begin{array}{l}
\frac{d}{d x}\left(\frac{1}{r} \frac{\partial U}{\partial x}\right)=\frac{1}{r} \cdot \frac{\partial^{2} U}{\partial x^{2}}-\frac{1}{r^{2}} \frac{\partial U}{\partial x} \cos (r x)+\frac{1}{r} \frac{\partial^{2} U}{\partial r \partial x} \cos (r x), \\
\frac{d}{d y}\left(\frac{1}{r} \frac{\partial U}{\partial y}\right)=\frac{1}{r} \cdot \frac{\partial^{2} U}{\partial y^{2}}-\frac{1}{r^{2}} \frac{\partial U}{\partial y} \cos (r y)+\frac{1}{r} \frac{\partial^{2} U}{\partial r \partial y} \cos (r y), \tag{22}\\
\frac{d}{d z}\left(\frac{1}{r} \frac{\partial U}{\partial z}\right)=\frac{1}{r} \cdot \frac{\partial^{2} U}{\partial z^{2}}-\frac{1}{r^{2}} \frac{\partial U}{\partial z} \cos (r z)+\frac{1}{r} \frac{\partial^{2} U}{\partial r \partial z} \cos (r z) .
\end{array}\right\}
$$

Now let $\frac{d U}{d r}$ represent the ratio of the total change in U to a change in r, which arises from a motion $d r$ along the fixed direction r. This change in U is a combination of several partial changes: First, U varies with r as it explicitly occurs, the amount of this variation being $\frac{\partial U}{\partial r}$. Second, it varies because x, y, z, which occur explicitly in \dot{U}, are functions of r. Further a simple geometrical consideration shows that $d x=d r \cos (r x), d y=d r \cos (r y), d z=d r \cos (r z)$, hence
$\frac{d U}{d r}=\frac{\partial U}{\partial r}+\frac{\partial U}{\partial x} \cos (r x)+\frac{\partial U}{\partial y} \cos (r y)+\frac{\partial U}{\partial z} \cos (r z)$.
If in this equation U be replaced by $\frac{\partial U}{\partial r}$, the result is
$\frac{d}{d r}\left(\frac{\partial U}{\partial r}\right)=\frac{\partial^{2} U}{\partial r^{2}}+\frac{\partial^{2} U}{\partial r \partial x} \cos (r x)+\frac{\partial^{2} U}{\partial r \partial y} \cos (r y)+\frac{\partial^{2} U}{\partial r \partial z} \cos (r z)$. (24)
Addition of the three equations (22) gives, in consideration of (23) and (24),

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{\mathrm{I}}{r} \frac{\partial U}{\partial x}\right)+\frac{d}{d y}\left(\frac{\mathrm{I}}{r} \frac{\partial U}{\partial y}\right)+\frac{d}{d z}\left(\frac{\mathrm{I}}{r} \frac{\partial U}{\partial z}\right)= \tag{25}
\end{equation*}
$$

$\frac{\mathrm{I}}{r}\left(\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}+\frac{\partial^{2} U}{\partial z^{2}}-\frac{\partial^{2} U}{\partial r^{2}}\right)+\frac{\mathrm{I}}{r} \frac{d}{d r}\left(\frac{\partial U}{\partial r}\right)-\frac{\mathrm{I}}{r^{2}}\left(\frac{d U}{d r}-\frac{\partial U}{\partial r}\right)$.
But

$$
\begin{equation*}
\frac{\mathbf{I}}{r} \frac{d}{d r}\left(\frac{\partial U}{\partial r}\right)+\frac{\mathbf{I}}{r^{2}} \frac{\partial U}{\partial r}=\frac{\mathbf{I}}{r^{2}} \frac{d}{d r}\left(r \frac{\partial U}{\partial r}\right) \tag{26}
\end{equation*}
$$

If equation (25) be multiplied by the volume element $d \tau=$ $d x d y d z$ and integrated over a space within which $\frac{\mathbf{I}}{r} \frac{\partial U}{\partial x}, \frac{\mathbf{I}}{r} \frac{\partial U}{\partial y}$, $\frac{1}{r} \frac{\partial U}{\partial z}$ are finite, continuous, and single-valued, and if theorem
(20) on page 173 be applied three times,* there results, in consideration of (26),

$$
\begin{align*}
& -\int \frac{1}{r}\left\{\frac{\partial U}{\partial x} \cos (n x)+\frac{\partial U}{\partial y} \cos (n y)+\frac{\partial U}{\partial z} \cos (n z)\right\} d S= \\
& \int \frac{1}{r}\left(\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}+\frac{\partial^{2} U}{\partial z^{2}}-\frac{\partial^{2} U}{\partial r^{2}}\right) d \tau+\int \frac{1}{r^{2}} \frac{d}{d r}\left(\frac{\partial U}{\partial r}-U\right) d \tau . \tag{27}
\end{align*}
$$

The space over which the integration is extended evidently cannot contain the origin, since there $\frac{1}{r}$ becomes infinite. Now two cases are to be distinguished: I. The space over which the integration is extended is bounded by a surface S which does not include the origin; II. The outer surface S of that space does include the origin.

Case II. In this case, which will be first considered, conceive the origin to be excluded from the space over which the integration is extended by means of a sphere K of small radius ρ about the origin as a centre. The region of integration has then two boundaries, the outer one the surface S, the inner one the surface K of the sphere. The surface integral of equation (27) is therefore to be extended over both these surfaces. The value of the integral over the surface K is, however, not finite when ρ is infinitely small, since this surface is an infinitesimal of the second order with respect to ρ, and r appears in the denominator of the left-hand side of (27) in the first power only. Further,

$$
\begin{equation*}
\frac{\partial U}{\partial x} \cos (n x)+\frac{\partial U}{\partial y} \cos (n y)+\frac{\partial U}{d z} \cos (n z)=\frac{\partial U}{\partial n} \tag{28}
\end{equation*}
$$

in which $\partial U: \partial n$ is the differential coefficient which arises from a motion ∂n in the positive direction along the normal n to S

[^35]when r is treated as a constant. Hence the left-hand side of equation (27) becomes
$$
-\int \frac{1}{r} \frac{\partial U}{\partial n} d S
$$
and this integral is to be taken over the outer surface only, not over the small spherical surface K.

The last term on the right-hand side of (27) will now be transformed by writing

$$
\begin{equation*}
d \tau=r^{2} d \phi d r, \tag{29}
\end{equation*}
$$

i.e. the volume element is now conceived as the section cut by an elementary cone of solid angle $d \phi$ from a spherical shell whose inner and outer radii are r and $r+d r$ respectively. Then

$$
\begin{gather*}
\int \frac{\mathbf{1}}{r^{2}} \frac{d}{d r}\left(r \frac{\partial U}{\partial r}-U\right) d \tau=\int d \phi \int_{\rho}^{\bar{r}} d r \cdot \frac{d}{d r}\left(r \frac{\partial U}{\partial r}-U\right)= \\
\int d \phi\left\{\left(r \frac{\partial U}{\partial r}-U\right)_{r=\bar{r}}-\left(r \frac{\partial U}{\partial r}-U\right)_{r=p}\right\} . \tag{30}
\end{gather*}
$$

\bar{r} denotes the value of r upon the outer surface S of the region of integration. If now ρ is infinitely small, the quantity $r \frac{\partial U}{\partial r}$ has no finite value for $r=\rho$. Furthermore, in the limit ($\rho=0$)

$$
\begin{equation*}
\int d \phi \cdot(U)_{r=\rho}=4 \pi U_{0} \tag{3I}
\end{equation*}
$$

in which U_{0} represents the value of U at the origin. Again, since

$$
\begin{equation*}
\bar{r}^{2} d \phi=-d S \cos (n r) \tag{32}
\end{equation*}
$$

if the positive direction of r be away from the origin, then

$$
\begin{align*}
\int d \phi\left(r \frac{\partial U}{\partial r}-U\right)_{r=\bar{r}} & =-\int d S \cdot \cos (n r)\left(\frac{1}{r} \frac{\partial U}{\partial r}-\frac{U}{r^{2}}\right) \\
& =-\int d S \cdot \cos (n r) \frac{\partial}{\partial r}\left(\frac{U}{r}\right), \tag{33}
\end{align*}
$$

which integral is to be extended over the outer surface S. It follows therefore from (27), in consideration of (30), (31), and (33), that

$$
\begin{gather*}
-\int\left\{\frac{1}{r} \frac{\partial U}{\partial n}-\cos (n r) \frac{\partial}{\partial r}\left(\frac{U}{r}\right)\right\} d S= \\
\int \frac{I}{r}\left(\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}+\frac{\partial^{2} U}{\partial z^{2}}-\frac{\partial^{2} U}{\partial r^{2}}\right) d \tau+4 \pi U_{0} \tag{34}
\end{gather*}
$$

In this equation the volume integral may be extended over the whole space included within the surface S, since the infinitely small sphere K whose volume is proportional to ρ^{3} adds when $\rho=0$ an infinitely small amount to the integral, because r appears in the denominator in the first power only.

CASE I. If the surface does not enclose the origin, the discussion is exactly the same, save that it is unnecessary to construct the sphere K. In order to integrate the last term of the right-hand side of (27), assume as before

$$
d \tau=r^{2} d \phi d r
$$

but now the limits of integration are not ρ and \bar{r}, but r_{1} and r_{2}, which represent the two distances from the origin at which the axis of the elementary cone of solid angle $d \phi$ intercepts the surface S. Hence

$$
\begin{gather*}
\int \frac{\mathrm{I}}{r^{2}} \frac{d}{d r}\left(r \frac{\partial U}{\partial r}-U\right) d \tau= \\
\int d \phi\left\{\left(r \frac{\partial U}{\partial r}-U\right)_{r=r_{2}}-\left(r \frac{\partial U}{\partial r}-U\right)_{r=r_{1}}\right\}
\end{gather*}
$$

If now $d S$ represent a surface element which the elementary cone cuts from the surface S, then, at the point of entrance of the elementary cone into the enclosed space, since n, the normal to S, is drawn inward,

$$
r_{1}^{2} d \phi=+d S \cdot \cos (n r)
$$

while at the point of exit

$$
r_{2}^{2} d \phi=-d S \cdot \cos (n r)
$$

Hence the volume integral (30^{\prime}) may be written as the surface intcgral
$=-\int d S \cdot \cos (n r)\left(\frac{1}{r} \frac{\partial U}{\partial r}-\frac{U}{r^{2}}\right)=-\int d S \cdot \cos (n r) \frac{\partial}{\partial r}\left(\frac{U}{r}\right) \cdot\left(30^{\prime}\right)$
Hence for this case (27) becomes

$$
\begin{gather*}
-\int\left\{\frac{1}{r} \frac{\partial U}{\partial n}-\cos (n r) \frac{\partial}{\partial r}\left(\frac{U}{r}\right)\right\} d S= \\
\int \frac{1}{r}\left(\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}+\frac{\partial^{2} U}{\partial z^{2}}-\frac{\partial^{2} U}{\partial r^{2}}\right) d \tau .
\end{gather*}
$$

6. Rigorous Formulation of Huygens' Principle. -The following application will be made of (34) and (34) : Let s be the light disturbance at any point, s_{0} the value of s at the origin. s satisfies the differential equation (12) on page 169 . U will now be understood to be that function which is obtained by replacing in s the argument t (time) by $t-r / v$. This will be expressed by

$$
U=s(t-r / v)
$$

It is then evident that $U_{0}=s_{0}$, since at the origin $r=0$. Furthermore, from (I2),

$$
\frac{\partial^{2} U}{\partial t^{2}}=V^{2}\left(\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial \gamma^{2}}+\frac{\partial^{2} U}{\partial z^{2}}\right)
$$

but since U is a function of $t-r / v$, (cf. equations (17) and (18), page 17 I) the following relation also holds:

$$
\frac{\partial^{2} U}{\partial t^{2}}=V^{2} \frac{\partial^{2} U}{\partial r^{2}}
$$

Hence, from the last two equations,

$$
\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}+\frac{\partial^{2} U}{\partial z^{2}}=\frac{\partial^{2} U}{\partial r^{2}}
$$

Hence (34) gives, for the case in which the origin lies within the surface S,

$$
\begin{equation*}
4 \pi s_{0}=\int\left\{\frac{\partial \frac{s(t-r / v)}{r}}{\partial r} \cos (n r)-\frac{1}{r} \frac{\partial s(t-r / \nu)}{\partial n}\right\} d S . \tag{35}
\end{equation*}
$$

This equation may be interpreted in the following way: The light disturbance s_{0} at any point P_{0} (which has been taken as origin) may be looked upon as the superposition of disturbances which are propagated with a velocity V toward P_{0} from the surface elements $d S$ of any closed surface which includes the point P_{0}. For, since the elements of the surface integral (35) are functions of the argument $t-r / v$, any given phase of the elementary disturbance will exist at $P_{0}, r / v$ seconds after it has existed at $d S$.

In this interpretation of (35) it is easy to recognize the foundation of the original Huygens' principle, but the condition of vibration of the separate sources $d S$ is much more complicated than was required by the earlier conceptions, according to which the elements of the integration were simply proportional to $s\left(t-r^{\prime} / \nu\right)$ (cf. (4) on page 16_{3}).

Further, it is possible to calculate from equation (35) the disturbance s_{0} at the point P_{0} if the disturbances s and $\frac{\partial s}{\partial n}$ are ${ }_{c}$ known over any closed surface S. In certain cases these are known, as, for instance, when the source is a point and the spreading of the light is not disturbed by screens or changes in the homogeneity of the space. In this case, to be sure, s^{0} can be determined directly; nevertheless, for the sake of what follows, it will be useful to calculate it from (35).

Let the source Q lie outside of the closed surface S. Let the disturbance at any point P which lies upon S and is distant r_{1} from the source Q be represented by

$$
\begin{equation*}
s=\frac{A}{r_{1}} \cos 2 \pi\left(\frac{t}{T}-\frac{r_{1}}{\lambda}\right) . \tag{36}
\end{equation*}
$$

Then

$$
\frac{\partial s}{\partial n}=\frac{\partial s}{\partial r_{1}} \cos \left(n r_{1}\right),
$$

or

$$
\begin{align*}
\frac{\partial s}{\partial n}=\cos \left(n r_{1}\right)\left\{-\frac{A}{r_{\lambda}^{2}}\right. & \cos 2 \pi\left(\frac{t}{T}-\frac{\dot{r}_{1}}{\lambda}\right) \\
& \left.+\frac{2 \pi A}{\lambda r_{1}} \sin 2 \pi\left(\frac{t}{T}-\frac{r_{1}}{\lambda}\right)\right\} \tag{37}
\end{align*}
$$

Now r_{1} must be large in comparison with λ, hence the first term is negligible in comparison with the second, so that

$$
\begin{equation*}
\frac{\partial s(t-r / \nu)}{\partial n}=\cos \left(n r_{1}\right) \cdot \frac{2 \pi A}{\lambda r_{1}} \sin 2 \pi\left(\frac{t}{T}-\frac{r+r_{1}}{\lambda}\right) . \tag{38}
\end{equation*}
$$

Further, from (36),

$$
\frac{s(t-r / \nu)}{r}=\frac{A}{r r_{1}} \cos 2 \pi\left(\frac{t}{T}-\frac{r+r_{1}}{\lambda}\right) .
$$

If this expression be differentiated with respect to r, a term may again be neglected as in (37), since r also is large in comparison with λ; hence

$$
\begin{equation*}
\frac{\partial \frac{s(t-r / \nu)}{r}}{\partial r}=\frac{2 \pi A}{\lambda_{r r_{1}}} \sin 2 \pi\left(\frac{t}{T}-\frac{r+r_{1}}{\lambda}\right) . \tag{39}
\end{equation*}
$$

Substitution of the values (38) and (39) in (35) gives
$s_{0}=\frac{A}{2 \lambda} \int \frac{\mathbf{1}}{r r_{1}} \sin 2 \pi\left(\frac{t}{T}-\frac{r+r_{1}}{\lambda}\right)\left[\cos (n r)-\cos \left(n r_{1}\right)\right] d S$.
This equation contains the principle of Fresnel stated above 1 on page 163 , but with the following improvements:

1. Fresnel's factor k is here determined directly from the differential equation for s, which constitutes the basis of the theory. Consider, for example, an element $d S$ which lies at the point M_{0} (Fig. 6I) along the line $Q P_{0}$; then for this ele-

Fig. 6i.
ment $\cos (n r)=-\cos \left(n r_{1}\right)$, since the positive directions of r and r_{1} are opposite. Hence Fresnel's radiation factor k is

$$
k=\frac{\cos (n r)}{\lambda}
$$

If $d S$ is perpendicular to $Q P_{0}$, then $\cos (n r)=-\mathrm{I}$, and, save for the sign, the factor k_{1} (cf. page 169) of the central zone has been deduced in an indirect way.
2. For an element $d S$, which lies at M_{0}^{\prime} (Fig. 61), the positive directions of r and r_{1} are the same, i.e.

$$
\cos (n r)-\cos \left(n r_{1}\right)=0
$$

Hence the influence of this element upon the value of s_{0} disappears, i.e. the elementary waves are not propagated backward as they should be according to Huygens' and Fresnel's conceptions of the principle. It is at once evident that this disappearance of the waves which travel backward is a consequence of the fact that in (35) every elementary effect appears as the difference of two quantities.
3. The phase at P_{0} is determined correctly, being the same as that due to the direct propagation from Q to P_{0}. For surface elements $d S$ which lie at M_{0} perpendicular to $Q P_{0}$ are multiplied in (40) by the factor

$$
-\sin 2 \pi\left(\frac{t}{T}-\frac{r+r_{1}}{\lambda}\right),
$$

and hence the effect is the same as though these surface elements vibrated in a phase which is $\frac{\pi}{2}$ ahead $*$ of that of the direct wave from Q to $d S$, which, in accordance with (36), would lead to the expression $\cos 2 \pi\left(\frac{t}{T}-\frac{r+r_{1}}{\lambda}\right)$. When the integration is performed over the surface S there is again obtained for the point $P_{0}:+\cos 2 \pi\left(\frac{t}{T}-\frac{a+b}{\lambda}\right)$, not, as in Fresnel's

[^36]calculation, $\sin 2 \pi\left(\frac{t}{T}-\frac{a+-b}{\lambda}\right)$ (cf. page 169). Thus this contradiction in Fresnel's theory is also removed.

Now if any screen be introduced, the problem of rigorously determining s_{0} is extremely complicated, since, on account of the presence of the screen, the light disturbance s at a given point P is different from the disturbance \bar{s} which would be produced by the sources alone if the screen were absent. In order to obtain an approximate solution of the problem, the assumption may be made that, if the screen is perfectly opaque and does not reflect light, both s and $\frac{\partial s}{\partial n}$ vanish at points which lie close to that side of the screen which is turned away from the source; while, for points which are not protected from the sources by the screen, the disturbance s has the value \bar{s} which it would have in free space.

In fact this was the method of procedure in the above presentation of Fresnel's theory. Then, starting from equation (40), by constructing the surface S so that as much as possible lies on the side of the screen remote from the source, a very approximate calculation of the disturbance s_{0} at any point P_{0} may be made. Only the unprotected elements appear in (40). It is immaterial what particular form be given to this unprotected surface, provided only that it be bounded by the openings in the screen. This result can be deduced from equation (34') on page 179 , which shows that the righthand side of (40) becomes zero for this case, if the closed surface S excludes the point P_{0} (and also the source Q), for which s_{0} is to be calculated. Hence if the integral s_{0} of equation (40) be taken over an unclosed surface S which is bounded by a curve C, and if another surface S^{\prime} be constructed which is likewise bounded by C, then $S+S^{\prime}$ may be looked upon as one single closed surface which does not include the origin P_{0}. (34^{\prime}) shows that the sum $s_{0}+s_{0}{ }^{\prime}$ of the two integrals extended over S and S^{\prime} vanishes. But in this n is always drawn toward the interior of the closed surface formed by S and S^{\prime}, so that,
if the positive direction of the normal to S points toward the side upon which P_{0} lies, then the positive direction of the normal to S^{\prime} points away from this side. If then the positive direction of the normal to S^{\prime} be taken toward the side upon which P_{0} lies, the sign of the integral $s_{0}{ }^{\prime}$ becomes reversed. Hence it follows that $s_{0}-s_{0}{ }^{\prime}=0$, or $s_{0}=s_{0}{ }^{\prime}$, or, expressed in words: The integral s_{0}, defined by equation (40), has the same value for all unclosed surfaces S of any form which are bounded by a curve C, provided the normal be always reckoned positive in the same direction (from the side upon which the source lies to that upon which P_{0} lies), and provided these different surfaces S do not enclose either the source Q or the point P_{0} for which s_{0} is to be calculated.

How, now, from equation (40) the rectilinear propagation of light, and certain departures from the same, may be deduced has already been shown in § 2 with the aid of Fresnel's zones. In the following chapter these departures from the law of rectilinear propagation, the so-called diffraction phenomena, will be more completely treated.

CHAPTER IV

DIFFRACTION OF LIGHT

As is evident from the discussion in $\S 2$ of the preceding chapter, diffraction phenomena always appear when the screens or the apertures are not too large in comparison with the wave length. But, as will be seen later, diffraction phenomena may appear under certain circumstances even if the screen is large, for example at the edge of the geometrical shadow cast by a large object. If now, starting with equation (40), the diffraction phenomena be calculated in accordance with the considerations on page 182, it must not be forgotten that the theoretical results thus obtained are only approximate; since, on the one hand, when screens are present, the value of s is not exactly the same at unprotected points as it would be with undisturbed propagation, and, on the other hand, at protected points s and $\frac{\partial s}{\partial n}$ do not entirely vanish. The approximation is more and more close as the size of the apertures in the screens is increased; in fact the approximate results obtained from theory agree well with experiment if the apertures are not unusually small. The rigorous theory of diffraction will be presented in § 7 of this chapter.
r. General Treatment of Diffraction Phenomena.-Assume that between the source Q and

Fig. 62. the point P_{0} there is introduced a plane screen S which is of
infinite extent and contains an opening σ of any form. Let this opening be small in comparison with its distance r_{1} from the source Q, and also in comparison with its distance r from the point P_{0} at which the disturbance s_{0} is to be calculated by equation (40) of the preceding chapter. In performing the integration over σ the angles $(n r)$ and $\left(n r_{1}\right)$ are, on account of the smallness of σ, to be considered constant; likewise the quantities r and r_{1} whenever they are not divided by λ; hence

$$
\begin{equation*}
s_{0}=\frac{A}{2 \lambda} \cdot \frac{\cos (n r)-\cos \left(n r_{1}\right)}{r r_{1}} \int \sin 2 \pi\left(\frac{t}{T}-\frac{r+r_{1}}{\lambda}\right) d \sigma \tag{I}
\end{equation*}
$$

Assume now a rectangular coordinate system x, y, z. Let the $x y$-plane coincide with the screen S, and let some point P in the opening σ have the coordinates x and y. Let x_{1}, y_{1}, z_{1} be the coordinates of the source, z_{1} being positive; and x_{0}, y_{0}, z_{0} those of $P_{0} . \quad z_{0}$ is then negative. Then $r_{1}^{2}=\left(x_{1}-x\right)^{2}+\left(y_{1}-y\right)^{2}+z_{1}^{2}, \quad r^{2}=\left(x_{0}-x\right)^{2}+\left(y_{0}-y\right)^{2}+z_{0}^{2}$.
Let the distances of Q and P_{0} from the origin be ρ_{1} and ρ_{0} respectively; then

$$
\begin{equation*}
\rho_{1}^{2}=x_{1}^{2}+y_{1}^{2}+z_{1}^{2}, \quad \rho_{0}^{2}=x_{0}^{2}+y_{0}^{2}+z_{0}^{2} \tag{3}
\end{equation*}
$$

Then the following relations hold:

$$
\left.\begin{array}{l}
r_{1}=\rho_{1} \sqrt{1+\frac{x^{2}+y^{2}-2\left(x x_{1}+y y_{1}\right)}{\rho_{1}^{2}}}, \tag{4}\\
r=\rho_{0} \sqrt{1+\frac{x^{2}+y^{2}-2\left(x x_{0}+y y_{0}\right)}{\rho_{0}^{2}}}
\end{array}\right\} .
$$

The dimensions of the opening σ and its distance from the origin are to be small with respect to ρ_{1} and ρ_{0}. Hence, in the integration over σ, x and y are small with respect to ρ. If now the expression (4) be expanded in a series with increasing powers of $x / \rho_{1}, y / \rho_{1}$ and $x / \rho_{0}, y / \rho_{0}$, and if powers higher than the second be neglected, there results, since $(\mathrm{I}+\epsilon)^{\frac{1}{2}}=\mathrm{I}+\frac{1}{2} \epsilon-\frac{1}{8} \epsilon^{2}$ provided ϵ is small in comparison with I ,

$$
\begin{align*}
r_{1} & =\rho_{1}\left\{1+\frac{x^{2}+y^{2}}{2 \rho_{1}^{2}}-\frac{x x_{1}+y y_{1}}{\rho_{1}^{2}}-\frac{\left(x x_{1}+y y_{1}\right)^{2}}{2 \rho_{1}^{4}}\right\}, \tag{5}\\
r & =\rho_{0}\left\{1+\frac{x^{2}+y^{2}}{2 \rho_{0}^{2}}-\frac{x x_{0}+y y_{0}}{\rho_{0}^{2}}-\frac{\left(x x_{0}+y y_{0}\right)^{2}}{2 \rho_{0}^{4}}\right\} . \tag{6}
\end{align*}
$$

Denoting the direction cosines of ρ_{1} and ρ_{0} by $\alpha_{1}, \beta_{1}, \gamma_{1}$ and $\alpha_{0}, \beta_{0}, \gamma_{0}$, respectively, in which the positive directions of ρ_{1} and ρ_{0} point away from the origin, then

$$
\begin{equation*}
\alpha_{1}=\frac{x_{1}}{\rho_{1}}, \quad \beta_{1}=\frac{y_{1}}{\rho_{1}} ; \quad \alpha_{0}=\frac{x_{0}}{\rho_{0}}, \quad \beta_{0}=\frac{y_{0}}{\rho_{0}} . \tag{7}
\end{equation*}
$$

Hence the addition of (5) and (6) gives

$$
\begin{gather*}
r_{1}+r=\rho_{1}+\rho_{0}-x\left(\alpha_{1}+\alpha_{0}\right)-y\left(\beta_{1}+\beta_{0}\right)+\frac{x^{2}+y^{2}}{2}\left(\frac{r}{\rho_{1}}+\frac{r}{\rho_{0}}\right) \\
-\frac{\left(x \alpha_{1}+y \beta_{1}\right)^{2}}{2 \rho_{1}}-\frac{\left(x \alpha_{0}+y \beta_{0}\right)^{2}}{2 \rho_{0}} . \quad . \quad . \tag{8}
\end{gather*}
$$

Substituting this value in (1) and writing for brevity

$$
\left.\begin{array}{l}
r_{1}+r=\rho_{1}+\rho_{0}+f(x, y) \cdot \frac{\lambda}{2 \pi} \tag{9}\\
\frac{t}{T}-\frac{\rho_{1}+\rho_{0}}{\lambda}=\frac{t^{\prime *}}{T}, \\
\frac{A}{2 \lambda} \frac{\cos (n r)-\cos \left(n r_{1}\right)}{r r_{1}}=A^{\prime},
\end{array}\right\}
$$

(I) becomes

$$
\begin{aligned}
s_{0}=A^{\prime}\left\{\sin 2 \pi \frac{t^{\prime}}{T} \int\right. & \cos [f(x, y)] d \sigma \\
& \left.-\cos 2 \pi \frac{t^{\prime}}{T} \int \sin [f(x, y)] d \sigma\right\}
\end{aligned}
$$

s_{0} may therefore be conceived as due to the superposition of two waves whose amplitudes are proportional to

$$
\begin{align*}
& C=\int \cos [f(x, y)] d \sigma \\
& S=\int \sin [f(x, y)] d \sigma \tag{II}
\end{align*}
$$

* This change displaces the origin of time.
and whose difference of phase is $\frac{\pi}{2}$. Hence, from the law on page 13 I [cf. equation (iI)], the intensity of illumination of the light at the point P_{0} is

$$
\begin{equation*}
J=A^{\prime 2}\left(C^{2}+S^{2}\right) \tag{12}
\end{equation*}
$$

Now two cases are to be distinguished: I. That in which both the source and the point P_{0} lie at finite distances (Fresnel's diffraction phenomena); and 2. That in which the source and P_{0} are infinitely far apart (Fraunhofer's diffraction phenomena).
2. Fresnel's Diffraction Phenomena.-Let the origin lie upon the line $Q P_{0}$ and in the plane of the screen. Then ρ_{1} and ρ_{0} lie in the same straight line, but have opposite signs, hence

$$
\alpha_{1}=-\alpha_{0}, \quad \beta_{1}=-\beta_{0} .
$$

A comparison of equations (8) with equations (9), which define $f(x, y)$, gives

$$
\begin{equation*}
f(x, y)=\frac{\pi}{\lambda}\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{0}}\right)\left[x^{2}+y^{2}-\left(x \alpha_{1}+y \beta_{1}\right)^{2}\right] . \tag{I3}
\end{equation*}
$$

This equation may be still further simplified by choosing as the x-axis the projection of $Q P_{0}$ upon the screen. Then $\beta_{1}=0$. Also if the angle which ρ_{1} makes with the z-axis be represented by ϕ, then

$$
\begin{equation*}
f(x, y)=\frac{\pi}{\lambda}\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{0}}\right)\left[x^{2} \cdot \cos ^{2} \phi+y^{2}\right] \tag{14}
\end{equation*}
$$

In order to avoid the necessity of interrupting the discussion later by lengthy calculations, a few mathematical considerations will be introduced here.
3. Fresnel's Integrals. - The characteristics of the functions which are known as Fresnel's integrals will here be discussed geometrically.* There are two of these integrals, namely,

$$
\begin{equation*}
\xi=\int_{0}^{v} \cos \frac{\pi v^{2}}{2} d v, \eta=\int_{0}^{v} \sin \frac{\pi v^{2}}{2} d v \tag{15}
\end{equation*}
$$

[^37]The ξ and η which correspond to each particular value of the parameter v may be thought of as the rectangular coordinates of a point E. Then, as v changes continuously, E describes a curve whose form will be here determined.

Since, when $v=0, \dot{\xi}=\eta=0$, the curve passes through the origin. When v changes to $-v$, the expression under the integral is not altered, but the upper limit of the integral, and hence also ξ and η, change sign. Hence the origin is a centre of symmetry for the curve, for to every point $+\xi,+\eta$, there corresponds a point $-\xi,-\eta$. The projections of an element of arc $d s$ of the curve upon the axes are, by (15),

$$
\begin{equation*}
d \xi=d v \cdot \cos \frac{\pi v^{2}}{2}, \quad d \eta=d v \cdot \sin \frac{\pi v^{2}}{2} . \tag{I6}
\end{equation*}
$$

Hence

$$
d s=\sqrt{d \overline{\xi^{2}}+d \eta^{2}}=d v
$$

or, if the length s be measured from the origin,

$$
\begin{equation*}
s=v \tag{17}
\end{equation*}
$$

The angle τ which is included between the tangent to the curve at any point E and the ξ-axis is given by

$$
\begin{equation*}
\tan \tau=\frac{d \eta}{d \dot{\xi}}=\tan \frac{\pi v^{2}}{2} \text {, i.e. } \tau=\frac{\pi}{2} v^{2} . \tag{I8}
\end{equation*}
$$

Hence at the origin the curve is parallel to the $\bar{\xi}$-axis; when $v=\mathrm{I}$, i.e. when the $\operatorname{arc} s=\mathrm{I}$, it is parallel to the η-axis; when $s^{2}=2$ it is parallel to the ξ-axis; when $s^{2}=3$ it is parallel to the η-axis; etc.

The radius of curvature ρ of the curve at any point E is given by [cf. (17) and (18)]

$$
\begin{equation*}
\rho=\frac{d s}{d \tau}=\frac{\mathrm{I}}{\pi v}=\frac{\mathrm{I}}{\pi s} . \tag{I9}
\end{equation*}
$$

Hence at the origin, where $v=0$, there is a point of inflection. As v increases, i.e. as the arc increases, ρ continually diminishes. Hence the curve is a double spiral, without double points, which winds itself about the two asymptotic
points F and F^{\prime}, whose position is determined by $v=+\infty$ and $v=-\infty$. The coordinates of these points will now be calculated. For F,

$$
\begin{equation*}
\xi_{F}=\int_{0}^{\infty} \cos \frac{\pi v^{2}}{2} d v, \quad \eta_{F}=\int_{0}^{\infty} \sin \frac{\pi v^{2}}{2} d v \tag{20}
\end{equation*}
$$

To obtain the value of this definite integral set

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x^{2}} d x=M \tag{2I}
\end{equation*}
$$

If y is the variable, then also

$$
\int_{0}^{\infty} e^{-y^{2}} d y=M
$$

The product of these two definite integrals is

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=M^{2} \tag{22}
\end{equation*}
$$

If now x and y be conceived as the rectangular coordinates of a point P, then $x^{2}+y^{2}=r^{2}$, in which r is the distance of P from the origin. Furthermore $d x d y$ may be looked upon as a surface element in the $x y$-plane. But if a surface element be bounded by two infinitely small arcs which have the origin as centre, subtend the angle $d \phi$ at the centre, and are at a distance $d r$ apart, then its area $d o$ is

$$
\begin{equation*}
d o=r d r d \phi \tag{23}
\end{equation*}
$$

Hence, since the integration is to be taken over one quadrant of the coordinate plane, (22) may be written

$$
\begin{equation*}
M^{2}=\int_{0}^{\pi / 2} d \phi \int_{0}^{\infty} e^{-r^{2}} r d r \tag{24}
\end{equation*}
$$

But now

$$
\int e^{-r^{2}} r d r=-\frac{\mathrm{I}}{2} e^{-r^{2}}
$$

Hence

$$
\begin{equation*}
M^{2}=\frac{\pi}{4}, \quad M=\frac{1}{2} \sqrt{\pi} \tag{25}
\end{equation*}
$$

Writing in (2I) for x

$$
\begin{equation*}
x^{2}=-i \frac{\pi v^{2}}{2}, \text { i.e. } x=v \sqrt{\frac{-i \pi}{2}} \tag{26}
\end{equation*}
$$

in which i represents the imaginary, there results from (2I) and (25)

$$
\sqrt{\frac{-i \pi}{2}} \int_{0}^{\infty} e^{i \frac{\pi v^{2}}{2}} d v=\frac{1}{2} \sqrt{\pi}
$$

or, because

$$
\begin{align*}
& \frac{1}{\sqrt{-i}}=\sqrt{i}=\frac{1+i}{\sqrt{2}} \\
& \int_{0}^{m_{i} e^{i \frac{\pi}{2}}} d v=\frac{1+i}{2} \tag{27}
\end{align*}
$$

But since

$$
\begin{equation*}
e^{i \frac{\pi v^{2}}{2}}=\cos \frac{\pi v^{2}}{2}+i \sin \frac{\pi v^{2}}{2} \tag{28}
\end{equation*}
$$

it follows, by equating the real and the imaginary parts of (27), that

$$
\begin{equation*}
\int_{0}^{\infty} \cos \frac{\pi v^{2}}{2} d v=\frac{\mathrm{r}}{2}, \quad \int_{0}^{\infty} \sin \frac{\pi v^{2}}{2} d v=\frac{\mathrm{x}}{2} \tag{20}
\end{equation*}
$$

Hence, in accordance with (20), the asymptotic point F has the coordinates $\xi_{F}=\eta_{F}=\frac{1}{2}$. The form of the curve is therefore that given in Fig. 63. The curve may be constructed in the following way: Move from 0 along the ξ-axis a distance $s=0.1$. Construct a circle of radius $\rho=\frac{1}{\pi s}=\frac{10}{\pi}$ which passes through the point o and whose centre lies upon a line which passes through the point $s=0$. I and makes with the η-axis the angle $\tau=\frac{\pi s^{2}}{2}=0.0 \mathrm{I} \frac{\pi}{2}$ [cf. (18)]. On the circle thus constructed lay off from o the $\operatorname{arc} s=0$. r. Through its end
point draw another circular arc of radius $\rho=\frac{\mathrm{I}}{\bar{\pi} s}=\frac{\mathrm{I}}{\pi \cdot 0.2}=\frac{5}{\pi}$ whose centre lies upon a line which passes through the point

Fig. 63.
$s=0.1$ on the curve and which makes with the η-axis an angle $\tau=\frac{\pi s^{2}}{2}=0.04 \frac{\pi}{2}$. Proceeding in this way, the entire curve may be constructed.
4. Diffraction by a Straight Edge.-Resume the notation of $\S 2$. Let the y-axis be parallel to the edge of the screen, and let the screen extend from $x=+\infty$ to $x=x^{\prime}$ (the edge of the screen, cf. Fig. 64). In the figure x^{\prime} is positive, i.e. P_{0} lies outside of the geometrical shadow of the screen. Consider the intensity of the light in a plane which passes through the source Q and is perpendicular to the edge of the screen. $Q P_{0}$ then lies in the $x z$-plane. Equation (14) is here appli-
cable, and gives, in combination with (II), the following expressions to be evaluated:
$C=\int_{-\infty}^{x^{\prime}} \int_{-\infty}^{+\infty} d x d y \cos \left[\frac{\pi}{\lambda}\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{0}}\right)\left(x^{2} \cos ^{2} \phi+y^{2}\right)\right]$,
$\left.S=\int_{-\infty}^{x^{\prime}} \int_{-\infty}^{+\infty} d x d y \sin \left[\frac{\pi}{\lambda}\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{0}}\right)\left(x^{2} \cos ^{2} \phi+y^{2}\right)\right].\right\}$
It is necessary first to justify the extension in this case of the integration over the whole portion of the $x y$-plane not covered by the screen, for it will be remembered that in the preceding discussion (cf. page 186) the integral was extended only over an opening all of whose points lay at distances from the origin which were small in comparison with ρ_{1} and ρ_{0}. As a matter

Fig. 64.
of fact such a limited region of integration is in itself determinative of the intensity J of the light at the point P_{0}, since it includes the central zones, and indeed a large number of them. An extension of the integration over a larger region adds nothing to J, since, as was previously shown, the edge of the screen exerts no further influence upon the intensity at the point P_{0} when it is many zones distant from the line connect-
ing P_{0} and Q. Hence in (30) the result is not altered when the integration is taken over the entire portion of the $x y$-plane not covered by the screen.

Substitution in (30) of

$$
\begin{equation*}
\frac{\pi}{\lambda}\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{0}}\right) x^{2} \cos ^{2} \phi=\frac{\pi v^{2}}{2}, \quad \frac{\pi}{\lambda}\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{0}}\right) y^{2}=\frac{\pi u^{2}}{2} . \tag{31}
\end{equation*}
$$

gives

$$
\begin{align*}
& C=\frac{1}{\cos \phi \cdot \frac{2}{\lambda}\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{0}}\right)} \cdot \int_{-\infty}^{v^{\prime}} \int_{-\infty}^{+\infty} d v d u \cos \frac{\pi}{2}\left(v^{2}+u^{2}\right), \\
& S=\frac{\mathrm{I}}{\cos \phi \cdot \frac{2}{\lambda}\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{0}}\right)} \cdot \int_{-\infty}^{v^{\prime}} \int_{-\infty}^{+\infty} d v^{\infty} d u \sin \frac{\pi}{2}\left(v^{2}+u^{2}\right), \tag{32}
\end{align*}
$$

in which

$$
\begin{equation*}
v^{\prime}=x^{\prime} \cos \phi \sqrt{\frac{2}{\bar{\lambda}}\left(\frac{\mathrm{I}}{\rho_{1}}+\frac{\mathrm{I}}{\rho_{0}}\right)} . \tag{33}
\end{equation*}
$$

If in (32) the following substitution be made,

$$
\cos \frac{\pi}{2}\left(v^{2}+u^{2}\right)=\cos \frac{\pi v^{2}}{2} \cos \frac{\pi u^{2}}{2}-\sin \frac{\pi v^{2}}{2} \sin \frac{\pi u^{2}}{2}
$$

and for $\sin \frac{\pi}{2}\left(v^{2}+u u^{2}\right)$ the analogous expression, the integration with respect to u may be immediately performed and there results, in consideration of (29),

$$
\begin{gather*}
C=f \cdot\left\{\int_{-\infty}^{v^{\prime}} \frac{\pi v^{2}}{2} d v-\int_{-\infty}^{v^{\prime}} \frac{\pi v^{2}}{2} d v\right\}, \\
S=f \cdot\left\{\int_{-\infty}^{v^{\prime}} \frac{\pi v^{2}}{2} d v+\int_{-\infty}^{v^{\prime}} \cos \frac{\pi v^{2}}{2} d v\right\}, \tag{34}\\
f=\frac{\lambda}{2 \cos \phi\left(\frac{I}{\rho_{1}}+\frac{I}{\rho_{0}}\right)} . \tag{35}
\end{gather*}
$$

Hence it follows from (12) that
$J=2 A^{\prime 2} \cdot f^{2} \cdot\left\{\left(\int_{-\infty}^{z^{\prime}} \cos \frac{\pi v^{2}}{2} d v\right)^{2}+\left(\int_{-\infty}^{z^{\prime}} \sin \frac{\pi v^{2}}{2} d \tau\right)^{2}\right\} .$.
The value of A^{\prime} is given in (9), page 187. Since, according to the observations on the preceding page, only those portions of the $x y$-plane which lie near the origin are in the integration determinative of the intensity J at the point P_{0}, it is possible to set in the expression for A^{\prime}

$$
r=\rho_{0}, \quad r_{1}=\rho_{1}, \quad \cos (n r)=-\cos \left(n r_{1}\right)=\cos \phi
$$

Hence

$$
\begin{equation*}
A^{\prime} \cdot f=\frac{A}{2\left(\rho_{0}+\rho_{1}\right)} . \tag{37}
\end{equation*}
$$

The two Fresnel integrals which occur in (36) will be interpreted geometrically as in $\S 3$. If the coordinates of a point E of the curve of Fig. 63 be represented by the above equations (15), i.e. by

$$
\xi=\int_{0}^{v} \cos \frac{\pi v^{2}}{2} d v, \quad \eta=\int_{0}^{v} \sin \frac{\pi v^{2}}{2} d v,
$$

and the coordinates of another point E^{\prime} on the curve, corresponding to the parameter v^{\prime}, by

$$
\xi^{\prime}=\int_{0}^{v^{\prime}} \cos \frac{\pi v^{2}}{2} d v, \quad \eta^{\prime}=\int_{0}^{v^{\prime}} \sin \frac{\pi v^{2}}{2} d v
$$

then evidently

$$
\int_{v}^{v^{\prime}} \cos \frac{\pi v^{2}}{2} d v=\xi^{\prime}-\xi, \quad \int_{v}^{z^{\prime}} \sin \frac{\pi v^{2}}{2} d v=\eta^{\prime}-\eta
$$

The sum of the squares of these two integrals is then equal to the square of the distance bctrveen the troo points E and E^{\prime} of the curve in Fig. 63 . The point $E=F^{\prime}$ corresponds to the parameter $v=-\infty$. Hence if the distance of the point F^{\prime}
from a point E^{\prime}, which corresponds to a parameter v^{\prime}, be represented by $\left(-\infty, v^{\prime}\right)$, then, by (36) and (37),

$$
\begin{equation*}
J=\frac{A^{2}}{2\left(\rho_{0}+\rho_{1}\right)^{2}} \cdot\left(-\infty, v^{\prime}\right)^{2} \tag{38}
\end{equation*}
$$

From the form of the curve in Fig. 63 it is evident that J has maxima and minima for positive values of v^{\prime}, i.e. for cascs in which P_{0} lies outside the geometrical shadow of the screen. But when P_{0} lies inside the shadow, the intensity of the light decreases continuously as P_{0} moves back into the shadoze; for in this case v^{\prime} is negative and the point E^{\prime} continuously approaches the point F^{\prime}.

If $v^{\prime}=+\infty$, then $(-\infty,+\infty)^{2}=2$, since each of the points F and F^{\prime} has the coordinates $\boldsymbol{\xi}=\eta=\frac{1}{2}$. In this case P_{0} lies far outside of the geometrical shadow, and by (38) the intensity is the same as though no screen were present. For $v^{\prime}=0, P_{0}$ lies at the edge of the geometrical shadow, in which case $(-\infty, 0)^{2}=\frac{1}{2}$, and, by (38), the intensity is one fourth the natural intensity.

The rigorous calculation of the maxima and minima of intensity when P_{0} lies outside the shadow will not be given here.* It is evident from Fig. 63 that these maxima and minima lie approximately at the intersections of the line $F F^{\prime}$ with the curve. Since this line cuts the curve nearly at right angles, it is evident that at the maxima the angle of inclination τ of the curve with the ξ-axis is $\left(\frac{3}{4}+2 h\right) \pi$, at the minima $\tau=\left(\frac{7}{4}+2 h\right) \pi$, in which $h=0,1,2$, etc. Hence at the maxima, cf. equation (18) on page $189, v^{\prime}=\sqrt{\frac{3}{2}+4 h}$, at the minima, $v^{\prime}=\sqrt{\frac{7}{2}+4 h}$. Now in order to determine the position of the diffraction fringes, conceive the screen so

[^38]rotated* about its edge that it stands perpendicular to the shortest line a which can be drawn from Q to the edge (cf. Fig. 64). Then $\rho_{1}=a: \cos \phi$. Further, draw through P_{0} a line parallel to the x-axis, and let the distance of P_{0} from the geometrical shadow of the screen measured along this line be represented by d. Then $x^{\prime}: d=a: a+b$. Hence d denotes the distance of the point P_{0} from the geometrical shadow, in a plane which lies a distance b behind the screen. Introducing now in (33) the quantity d in place of x^{\prime}, and setting $\rho_{1}=a, \rho_{0}=b$, which is allowable since $\cos \phi$ does not differ appreciably from I provided P_{0} be taken in the neighborhood of the shadow, there results
\[

$$
\begin{equation*}
v^{\prime}=d \sqrt{\frac{2 a}{\lambda b(a+b)}}=d: p \tag{39}
\end{equation*}
$$

\]

in which p is an abbreviation for

$$
\begin{equation*}
p=\sqrt{\frac{\lambda b(a+b)}{2 a}} \tag{40}
\end{equation*}
$$

There are therefore maxima of intensity when $d=p \sqrt{\frac{8}{2}+4 h}$, i.e. when

$$
d_{1}=p \cdot 1.225 ; \quad d_{2}=p \cdot 2.345 ; \quad d_{3}=p \cdot 3.082, \text { etc. }
$$

minima when $d=p \sqrt{\frac{7}{2}+4 / 2}$, i.e. when

$$
d_{1}^{\prime}=p \cdot 1.87 \mathrm{I} ; \quad d_{2}^{\prime}=p \cdot 2.739 ; \quad d_{3}^{\prime}=p \cdot 3.39 \mathrm{I}, \text { etc. }
$$

The exact values differ only slightly from the approximate ones, which are also in agreement with observation. \dagger

According to (38) the intensity of the light at these maxima and minima may be determined by measuring the successive sections which the line $F F^{\prime}$ cuts from the curve. Thus, if the free intensity be 1 , the maxima are

$$
J_{1}=\mathrm{I} .34 ; \quad J_{2}=1.20 ; \quad J_{3}=1.16 ;
$$

[^39]the minima,
$$
J_{1}^{\prime}=0.78 ; \quad J_{2}^{\prime}=0.84 ; \quad J_{3}^{\prime}=0.87
$$

From a more exact evaluation of his integrals Fresnel obtained values differing but little from these.
5. Diffraction through a Narrow Slit.-Using the same coordinate system and the same notation as in the preceding paragraph, the intensity of the light will be investigated in a plane which passes through the source Q and is perpendicular

Fig. 65. to the edges of the slit. This plane is the $x z$-plane (cf. Fig. 65). Let the x coordinates of the edges of the slit be x_{1} and x_{2}. If the point P_{0}, at which the intensity is to be calculated, lies in the geometrical shadow of one of the screens which bound the slit on either side, then x_{1} and x_{2} are either both positive or both negative. But if the line connecting Q with P_{0} passes through the open slit, then the signs of x_{1} and x_{2} are opposite. This case is shown in Fig. 65. It will be assumed that the source Q lies directly above the middle of the slit, as shown in the figure. Let δ be the width of the slit. Then

$$
\begin{equation*}
x_{1}-x_{2}=\delta, \quad x_{1}-\frac{1}{2} \delta: d=a: a+b \tag{4I}
\end{equation*}
$$

a and b may without appreciable error be replaced by ρ_{1} and ρ_{0}, since when δ is small the inclination of ρ_{1} to a is also small.

Introducing again the quantity v which is defined by (31) on page 194, and calling v_{1} and v_{2} the values of v which correspond to the limits of integration x_{1} and x_{2}, the intensity of light at P_{0} is, as in (38),

$$
\begin{equation*}
J=\frac{A_{2}}{2\left(\rho_{0}+\rho_{1}\right)^{2}}\left(v_{1}, v_{2}\right)^{2}, \tag{42}
\end{equation*}
$$

in which $\left(v_{1}, v_{2}\right)$ represents the distance between the two points of the curve in Fig. 63 which correspond to the parameters v_{1} and v_{2}. But now, by (4I) and (3I),

$$
\begin{equation*}
v_{1}-v_{2}=\delta \sqrt{\frac{2}{\lambda}\left(\frac{1}{a}+\frac{1}{b}\right)}, \quad \frac{v_{1}+v_{2}}{2}=d: p, . \tag{43}
\end{equation*}
$$

in which p has the same meaning as in (40). If now it is desired to investigate the distribution of light in a plane which lies a distance b behind the screen, the dependence of equation (42) upon d must be discussed. According to (43) the difference between the parameters is constant. Hence the question is, how does the distance vary between the two points ν_{1} and ν_{2}^{\prime} whose distance apart, when measured along the arc of the curve in Fig. 63 , has the constant value $s=v_{1}-v_{2}$? Assume first a slit so small that the length of the constant arc s is about 0. I,* then the curve shows that the intensity remains constant from $d=0$ up to a large value of v_{1}, i.e. of d, and then gradually decreases when v_{1} and v_{2} both attain very large positive or negative values, i.e. when P_{0} lies very far within the geometrical shadow. Hence when the slit is narrow the geometrical shadow cannot be even approximately located, for the light is distributed almost evenly (diffused \dagger) over a large region, and there is nowhere a sharp shadow formed.

If the width of the slit is somewhat larger (though still but a small fraction of a mm.), so that the constant arc length s amounts to 0.5 , then the curve of Fig. 63 shows that here too the light extends far into the geometrical shadow, and that maxima and minima of intensity occur only when v_{1} and v_{2} have like signs, i.e. diffraction fringes are formed only within the geometrical shadow. Sharp minima exist (cf. Fig. 66) when the tangents to

Fig. 66. the two points v_{1} and v_{2} of the curve are parallel so that their

[^40]angles (cf. page 189) differ from each other by a whole multiple of 2π. Since now, by (18) on page $189, \tau=\frac{\pi}{2} v^{2}$, the positions of the diffraction fringes must be given by
$$
\frac{\pi}{2}\left(v_{1}^{2}-v_{2}^{2}\right)= \pm 2 h \pi, \text { i.e. }\left(v_{1}-v_{2}\right)\left(v_{1}+v_{2}\right)= \pm 4 h
$$
or, in consideration of (43), by
\[

$$
\begin{equation*}
d \cdot \delta= \pm h \lambda b, \quad h=\mathrm{I}, 2,3 \cdots \cdot . \tag{44}
\end{equation*}
$$

\]

These fringes are then equidistant and independent of a, i.e. of the distance of the source from the screen.

If the slit is made broader, or if a and b are reduced, the width of the slit remaining unchanged, so that the difference $v_{1}-v_{2}$ is essentially increased, then diffraction fringes may also appear, as is shown by Fig. 63, when v_{1} and v_{2} have opposite signs, i.e. outside of the geometrical shadow. For a given value of $v_{1}-v_{2}$ the numerical value of J corresponding to any particular value of d may be determined from the curve with a close degree of approximation. When the slit becomes very broad, i.e. when $v_{1}-v_{2}$ is very large, the case approaches that treated in § 4 above.

At the mid-point where $d=0, J$ never vanishes. But for given values of a and δ, the value of b determines whether J is a maximum or a minimum. Since when $d=0, v_{1}$ and v_{2} are equal and of opposite sign, the line connecting them passes through the origin (cf. Fig. 63). Hence the points of intersection of the curve with the line $F F^{\prime}$ determine approximately the maxima and minima, i.e. (cf. page 196) there are

Maxima when $v_{1}=\sqrt{\frac{3}{2}+4 h}$,
Minima when $v_{1}=\sqrt{\frac{7}{2}+4 h}$,
or, according to (43), since $v_{2}=-v_{1}$,

$$
\left.\begin{array}{c}
\text { Maxima when } \frac{\delta^{2}}{2 \lambda}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{3}{2}+4 h, \tag{45}\\
\text { Minima when } \frac{\delta^{2}}{2 \lambda}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{7}{2}+4 h, \\
h=0,1,2,3 \ldots
\end{array}\right\} .
$$

6. Diffraction by a Narrow Screen.*-Let the screen have the width δ, and let the source Q lie at a distance a directly over its mid-point. Consider the intensity of the light in a plane (the $x z$-plane) which passes through Q and is perpendicular to the parallel edges of the screen. Use the preceding notation (cf. Fig. 65), and let x_{1} and x_{2} be the x-coordinates of the edges of the screen, v_{1} and v_{2} the corresponding values of the parameter $v . \quad v_{1}$ and v_{2} then satisfy equation (43). The intensity of the light J is proportional to the sum of the square of the integrals (cf. page 195)

$$
\begin{aligned}
& M=\int_{-\infty}^{v_{1}} \cos \frac{\pi v^{2}}{2} d v+\int_{v_{1}}^{+\infty} \cos \frac{\pi v^{2}}{2} d v \\
& N=\int_{-\infty}^{z_{1}} \sin \frac{\pi v^{2}}{2} d v+\int_{v_{2}}^{+\infty} \sin \frac{\pi v^{2}}{2} d v
\end{aligned}
$$

Now the first term of M is equal (cf. the analogous development on page 195) to the ξ-component of the line which connects F^{\prime} and the point E_{1} which corresponds to the parameter v_{1} (cf. Fig. 67). The second term of M is equal to the $\xi-$

Fig. 67.
component of the line ($E_{2} F$) in which the point E_{2} corresponds to the parameter v_{2}. The two terms in N have similar signifi-

[^41]cations. If the ξ and η components of the lines $\left(F^{\prime} E_{1}\right)$ and $\left(E_{2} F\right)$ be denoted by $\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}$, then
$$
M^{2}+N^{2}=\left(\xi_{1}+\xi_{2}\right)^{2}+\left(\eta_{1}+\eta_{2}\right)^{2}
$$

If at the end of the line $\left(F^{\prime} E_{1}\right)$ the line $\left(E_{1} F^{\prime \prime}\right)$, having the same length and direction as the line $\left(E_{2} F\right)$, be drawn, then the line ($F^{\prime} F^{\prime \prime}$) has the components $\xi_{1}+\xi_{2}, \eta_{1}+\eta_{2}$. The intensity J at the point P_{0} is then proportional to the square of the line ($F^{\prime} F^{\prime \prime}$), which is the geometrical sum of the two lines $\left(F^{\prime} E_{1}\right)$ and ($\left.E_{2} F\right)$, i.e.

$$
\begin{equation*}
J=\frac{A^{2}}{2\left(\rho_{0}+\rho_{1}\right)^{2}} \cdot\left(F^{\prime} F^{\prime \prime}\right)^{2} . \tag{46}
\end{equation*}
$$

From this it appears that the central line $(d=0)$ is always bright, although it lies farthest inside the geometrical shadow; for along it the values of v_{1} and v_{2} are equal and of opposite sign, so that the two points E_{1} and E_{2} in Fig. 67 are symmetrically placed with respect to the origin, and hence the lines $F^{\prime} E_{1}$ and $E_{2} F$ are equal and have the same direction, so that their sum can never be zero. The broader the screen, the smaller is the intensity along the middle line.

If the screen is sufficiently broad so that v_{1} and v_{2} are large, the points E_{1} and E_{2} lie close to F^{\prime} and F. The lines ($F^{\prime} E_{1}$) and ($E_{2} F$) are then approximately equal, and complete darkness results, provided $\left(F^{\prime} E_{1}\right)$ and $\left(E_{2} F\right)$ are parallel and opposite in direction.

Since, for large values of v_{1} and v_{2}, the lines $\left(F^{\prime} E_{1}\right)$ and $\left(F E_{2}\right)$ are almost perpendicular to the curve in Fig. 67, it follows that if these lines have the same direction, the tangents which are drawn to the curve at E_{1} and E_{2} are approximately parallel to each other; and their positive directions, which are taken in the direction of increasing arc, are opposite. Hence the difference between the angles which the tangents make with the $\bar{\xi}$-axis, i.e. $\tau_{1}-\tau_{2}$, is an odd multiple of π, or since, by (18), $\tau=\frac{\pi}{2} v^{2}$, dark fringes occur when

$$
\frac{1}{2}\left(v_{1}^{2}-v_{2}^{2}\right)= \pm \mathrm{r}, \pm 3, \pm 5, \text { etc. }
$$

; becomes, in consideration of (+1.3),

$$
\begin{equation*}
2 d \delta: \ldots \pm h \lambda h, h \ldots \mathrm{I}, 3,5 \text {, etc. } \tag{47}
\end{equation*}
$$

These fringes become less blak as h increases. They are distant and independent of the distance of of the source , the sereen. These results hobld only inside the geometri-
 close apmoximation provided the values of π_{1} and i^{\prime} which sepond to the edpes of the sereen are sufficiently larpe, rovided the soreen is brosal emomgh and the paint $P_{"}$ is ;iently mear to it and to the midedle line of the shatow. Ls P_{n} moves toward the edpe of the seemetrical shatose asses cut oide of it, moximat and minimat ocour at different ions of $I_{"}^{\prime}$ which call be determined for every spectial case te eonstration given in Pize 6\%. The law determining wsitions of these frimes bis, howerer, not a simple one. These examples will suffere to show the mility of the
 מия equencer here deducel.
Rigorous Treatment of Diffraction by a Straight Edge. was remarked at the hepriming of this chapter (page 185).
 'ens' primiple, is cmly appoximately correct. Nuw it portant to motice that in at least one case, namely, that fraction hy at straight colpe, the problem can he solved Hsly, as has been shown by Sommerfeld.t This solution urnishes a test of the aceuraty of the approximate solteand atow makes it possible to discuss theoretically the menat when the ange of diffaction is harge, i.e. when $D_{"}$ r within the limits of the geometrical shatow, -an diseus. -hich was not presihle with the ather methorl, at least it making: inumortant extensions.

Shumerteld, M.uh, Aturikn, Val. XI.VII, p, 32\%, 8805.

In the rigorous treatment of the diffraction phenomena the differential equation (I2) on page 159 ,

$$
\frac{\partial^{2} s}{\partial t^{2}}=V^{2}\left(\frac{\partial^{2} s}{\partial x^{2}}+\frac{\partial^{2} s}{\partial y^{2}}+\frac{\partial^{2} s}{\partial z^{2}}\right)
$$

for the light disturbance must be integrated so as to satisfy certain boundary conditions which must be fulfilled at the surface of the diffraction screen. The form of these conditions will be deduced in Section II, Chapters, I, II, and IV; here the results of that deduction will be assumed. In the first place, to simplify the discussion, assume that the source is an infinitely long line parallel to the y-axis. Also let the edge of the screen be chosen as the y-axis, and let the x-axis be positive on the side of the screen, and the z-axis positive toward the source (cf. Fig. 68). In this case it is evident that

Fig. 68.
s cannot depend upon the coordinate y, so that the above equation reduces to

$$
\begin{equation*}
\frac{\partial^{2} s}{\partial t^{2}}=V^{2}\left(\frac{\partial^{2} s}{\partial x^{2}}+\frac{\partial^{2} s}{\partial z^{2}}\right) \tag{48}
\end{equation*}
$$

Let the screen be infinitely thin and have an infinite absorption coefficient. It can then transmit no light, but can reflect perfectly, as will be shown in Section II. A very thin, highly
polished film of silver may constitute such a screen. It is then not a "perfectly black" screen, but rather one "perfectly white." * The boundary conditions at such a screen are:
(49) $s=0$, if the incident light is polarized in a plane perpendicular to the edge of the screen,
(50) $\frac{\partial s}{\partial z}=0$, if the light is polarized in a plane parallel to the edge of the screen. \dagger

The meaning of these symbols and of the word polarized will not be explained until the next chapter. Here it is sufficient to know that the solution of the differential equation (48) must satisfy either (49) or (50). The boundary conditions hold upon the surface of the screen, i.e. for. $z=0, x>0$; or if polar coordinates are introduced by means of the equations

$$
\begin{equation*}
x=r \cos \phi, \quad z=r \sin \phi, \tag{51}
\end{equation*}
$$

for $\phi=0$ or $\phi=2 \pi$.
If these polar coordinates be introduced into the differential equation (48), there results

$$
\begin{equation*}
\frac{\partial^{2} s}{\partial t^{2}}=V^{2}\left(\frac{\partial^{2} s}{\partial r^{2}}+\frac{1}{r} \frac{\partial s}{\partial r}+\frac{\mathrm{I}}{r^{2}} \frac{\partial^{2} s}{\partial \phi^{2}}\right) . \tag{52}
\end{equation*}
$$

Now a solution of this differential equation, which satisfies the boundary condition (49) or (50), gives for the particular

[^42]case in which the source lies at infinity and the incident rays make an angle ϕ^{\prime} with the x-axis
$s=A \cdot \frac{\mathbf{I}+i}{2} \cdot e^{i z \pi \frac{t}{T}}\left\{e^{-i \gamma} \int_{-\infty}^{\sigma} e^{-i \frac{\pi \nu^{2}}{2}} d v \mp e^{-i \gamma^{\prime}} \int_{-\infty}^{\sigma^{\prime}} e^{-i \frac{\pi \eta \mathbf{y}}{2}} d v\right\}$,
in which
\[

$$
\begin{array}{r}
\gamma=\frac{2 \pi r}{\lambda} \cos \left(\phi-\phi^{\prime}\right), \quad \gamma^{\prime}=\frac{2 \pi r}{\lambda} \cos \left(\phi+\phi^{\prime}\right), . \\
\sigma=\sqrt{\frac{8 r}{\lambda}} \sin \frac{\mathrm{I}}{2}\left(\phi-\phi^{\prime}\right), \quad \sigma^{\prime}=-\sqrt{\frac{8 \bar{r}}{\lambda}} \sin \frac{\mathrm{I}}{2}\left(\phi+\phi^{\prime}\right) . \tag{55}
\end{array}
$$
\]

In (53) the sign is minus or plus according as it is the condition (49) or (50) which must be fulfilled. The letter i denotes the imaginary $\sqrt{-1}$. Thus the solution of s appears as a complex quantity. In order to obtain its physical significance, it is only necessary to take into account the real part of this quantity. Thus setting

$$
\begin{equation*}
s=(A+B i) e^{i 2 \pi \frac{t}{T}}, \tag{56}
\end{equation*}
$$

the physical meaning of s is the real part, i.e.

$$
\begin{equation*}
s=A \cos 2 \pi \frac{t}{T}-B \sin 2 \pi \frac{t}{T} \tag{57}
\end{equation*}
$$

The intensity of the light would in this case be (cf. similar conclusion on page 188)

$$
\begin{equation*}
J=A^{2}+B^{2} \tag{58}
\end{equation*}
$$

This result could have been obtained from (56) directly by multiplying s by the conjugate complex quantity, i.e. by that quantity which differs from the right-hand side of (56) only in the sign of i, namely, by $(A-B i) e^{-i a m \frac{t}{T}}$. For the sake of later use this result may be here stated in the following form: When the expression for the light disturbance s is a complex quantity (in which s signifies physically only the real part of
this complex quantity), the intensity of the light is obtained by multiplication by the conjugate complex quantity.

That equations (53), (54), and (55) are a real solution of the differential equation (52) can be shown by taking the differential coefficients with respect to r and $\phi .^{*}$ Also the boundary condition (49) is fulfilled when the minus sign is used in (53), since for $\phi=0$ and $\phi=2 \pi, \gamma=\gamma^{\prime}, \sigma=\sigma^{\prime}$. The boundary condition (50) is fulfilled when the plus sign is used in (53), since $\frac{\partial s}{\partial z}=\frac{1}{r} \frac{\partial s}{\partial \phi}$ for $\phi=0$, and since the differential coefficient with respect to ϕ of the two terms in the brackets of (53) take opposite signs for $\phi=0$ or $\phi=2 \pi$. Furthermore, that (53) is a solution corresponding to the assumed case of a plane wave from an infinitely distant source lying in the given direction will be seen from a more detailed discussion. But it is first necessary to consider a very important point. If the point P_{0}, for which s is to be calculated, be made to execute a complete revolution in the $x z$-plane about the edge of the screen and at a fixed distance r from it, then ϕ increases an amount 2π. s does not regain its original valuc, because, on account of the factor $\sin \frac{1}{2}\left(\phi \mp \phi^{\prime}\right), \sigma$ and σ^{\prime}, in the change from ϕ to $\phi+2 \pi$, have changed their signs. s is therefore not a single-valued function of the coordinates. But the physical meaning of s demands that it be single-valued. This demand can at once be satisfied if, in the change of ϕ, P_{0} be never allowed to pass through the screen: This restriction will be made, so that ϕ is allowed to vary only between 0 (the shadow side of the screen) and 2π (its light side).

Three regions are to be distinguished within which s must be treated differently:
I. The region of the shadow: $0<\phi<\phi^{\prime}$. From (55), σ and σ^{\prime} are negative. Hence, for an infinitely large value of r, s is zero.

[^43]2. The region of no sluadow: $\phi^{\prime}<\phi<2 \pi-\phi^{\prime}$: positive, σ^{\prime} negative. Since, from (27) on page 191,
$$
\int_{-\infty}^{+\infty} e^{-i \frac{\pi v^{2}}{2}} d v=2 \int_{0}^{\infty} e^{-i \frac{\pi v^{2}}{2}} d v=\mathbf{1}-i,
$$
it follows that, for infinitely large values of r,
$$
s=A e^{i 2 \pi\left(\frac{t}{T}-\frac{r}{\lambda} \cos \left(\phi-\phi^{\prime}\right)\right)}
$$

The real part of this expression corresponds to plane which have amplitude A, and whose direction of propa makes the angle ϕ^{\prime} with the x-axis. The solution a corresponds then, for large values of r, to the inciden from an infinitely distant source Q which lies in the directi
3. The region of reflection: $2 \pi-\phi^{\prime}<\phi<2 \pi$. σ; are positive. Hence, for infinitely large values of r,

$$
s=A \cdot e^{i 2 \pi \frac{t}{T}}\left\{e^{-i \frac{2 \pi r}{\lambda} \cos \left(\phi-\phi^{\prime}\right)} \mp e^{-i \frac{2 \pi r}{\lambda} \cos \left(\phi+\phi^{\prime}\right)}\right\} .
$$

The real part of this expression corresponds to the : position of the incident plane wave and the plane wave ref at the screen in accordance with the laws of reflection. reflected amplitude is in numerical value equal to the inc amplitude.

Equation (53) may be made more intelligible by making use of the curve of Fig. 63. For, from page 195

$$
\int_{-\infty}^{\sigma} e^{-i \frac{\pi v^{2}}{2}} d v=\xi-i \eta,
$$

in which ξ and η are the projections of the line $\left(F^{\prime} E\right)$ the ξ and η axes respectively, and E represents the poi the curve corresponding to the parameter σ. Similarly

$$
\int_{-\infty}^{\sigma^{\prime}} e^{-i \frac{\pi v^{2}}{2}} d u=\xi^{\prime}-i \eta^{\prime}
$$

in which ξ^{\prime} and η^{\prime} are the projections of the line $\left(F^{\prime} E^{\prime}\right)$, and E^{\prime} is a point of the curve which corresponds to the parameter σ^{\prime}.

Now upon the side of the screen turned away from the source, $0<\phi<\pi$, and it is to be noticed that, on account of the small denominator λ (wave length), σ^{\prime} is always very large and negative, provided r be not taken very small. Hence, for large values of r, it is possible by equation (6I) to write approximately $\xi^{\prime}=\eta^{\prime}=0$, and there results from (53) and (60)

$$
s=A \frac{\mathrm{I}+i}{2} e^{i a \pi \frac{t}{T} e \cdot-i \gamma}(\xi-i \eta),
$$

and by theorem (58), for the intensity of the light,

$$
\begin{equation*}
J=\frac{A^{2}}{2} \cdot\left(F^{\prime} E\right)^{2} \tag{62}
\end{equation*}
$$

Almost ${ }^{*}$ the same equation would have been obtained from the approximate method of $\S 4$ above. For, when the source is infinitely distant, equation (38) there given would lead to

$$
\begin{equation*}
J=\frac{A^{2}}{2}\left(-\infty, v^{\prime}\right)^{2} \tag{3}
\end{equation*}
$$

and by (39),

$$
v^{\prime}=d \sqrt{\frac{2}{\lambda b}}
$$

The meaning of d may be obtained from Fig. 64. If the distance r of the point P_{0} from the edge of the screen be introduced, then $d=r \sin \left(\phi-\phi^{\prime}\right)$, if $\phi-\phi^{\prime}$ be the angle of diffraction, i.e. the angle between the incident and the diffracted rays. Since in the neighborhood of the edge of the shadow it is permissible to write $b=r$, it follows that $v^{\prime}=\sin \left(\phi-\phi^{\prime}\right) \sqrt{\frac{2 r}{\lambda}} ;$ but [cf. (55)]this expression is also the value of σ when the angle of diffraction is small, i.e. the point E in equation (62) corresponds to the parameter v^{\prime} of equation (63).

Hence both equations lead to the same value of J in the neighborhood of the edge of the shadow. At greater distances from it the more rigorous equation (62) differs from that obtained by the above approximate method. The previous conclusion that diffraction fringes occur only outside the region of shadow is confirmed by this more rigorous discussion.

Upon the side of the screen turned toward the source $(\pi<\phi<2 \pi)$ within the region of reflection ($\phi>2 \pi-\phi^{\prime}$) equation (6I) assumes values of considerable size.

Hence if it is desired to deduce a general rigorous equation for the intensity of the light, integral (6 r) cannot be neglected in comparison with (60). This is true, both for the region of reflection and for the other regions, when r is very small or when the angle of diffraction $\phi-\phi^{\prime}$ is large.

This rigorous equation for the intensity J is obtained by multiplying the right-hand side of (53) by the conjugate complex expression. Using the notation of (60) and (61), the following is thus obtained:

$$
\begin{aligned}
J=\frac{A^{2}}{2}\left\{\xi^{2}\right. & +\eta^{2}+\xi^{\prime 2}+\eta^{\prime 2} \mp 2 \cos \left(\gamma-\gamma^{\prime}\right) \cdot\left(\xi \xi^{\prime}+\eta \eta^{\prime}\right) \\
& \left. \pm 2 \sin \left(\gamma-\gamma^{\prime}\right) \cdot\left(\eta \xi^{\prime}-\eta^{\prime} \xi\right)\right\}
\end{aligned}
$$

or
$J=\frac{A^{2}}{2}\left\{\left(F^{\prime} E\right)^{2}+\left(F^{\prime} E^{\prime}\right)^{2} \mp 2\left(F^{\prime} E\right)\left(F^{\prime} E^{\prime}\right) \cos \left(\gamma-\gamma^{\prime}+\chi\right)\right\}$,
in which χ denotes the angle included between the lines ($F^{\prime} E$) and $\left(F^{\prime} E^{\prime}\right) . \quad \chi$ is taken positive when the rotation which leads most directly from $F^{\prime} E$ to $F^{\prime} E^{\prime}$ takes place in the same direction as a rotation from the η - to the ξ-axis. By (54),

$$
\begin{equation*}
\gamma-\gamma^{\prime}=\frac{4 \pi \gamma}{\lambda} \sin \phi \sin \phi^{\prime} . \tag{65}
\end{equation*}
$$

By (64) J is proportional to the square of the geometrical difference or sum of the two lines of length $\left(F^{\prime} E\right)$ and $\left(F^{\prime} E^{\prime}\right)$ which include the angle $\chi+\gamma-\gamma^{\prime}$. The geometrical differ-
ence is to be taken when the incident light is polarized in a plane perpendicular to the edge of the screen, the geometrical sum when it is polarized in the plane parallel to that edge.

The expression (64) may still be much simplified when the intensity J is reckoned for points which are not in the neighborhood of the edge of the shadow, i.e. when the difference between ϕ and ϕ^{\prime} is large.

For then in the region of the shadow σ and σ^{\prime} have large negative values, and hence, as is evident from the discussion of the form of the curve of Fig. 63 given in $\S 3, F^{\prime} E$ becomes equal to the radius of curvature ρ of the curve at the point l, $F^{\prime} E^{\prime}$ to its radius of curvature at the point $I E^{\prime}$, and the angle χ, which the two lines make with cach other, equal to the angle included between the tangents drawn to the curve at the points E and E^{\prime}. Hence, from equations (i8) and (I9) on page 189 ,

$$
F^{\prime} E=\frac{1}{\pi \sigma}, \quad F^{\prime} E^{\prime}=\frac{1}{\pi \sigma^{\prime}}, \quad \chi=\frac{\pi}{2}\left(\sigma^{2}-\sigma^{\prime 2}\right)
$$

Now, from (55) and (65), $\gamma-\gamma^{\prime}+x=0$, and hence, from (64),

$$
\begin{equation*}
J=\frac{A^{2}}{2 \pi^{2}}\left(\frac{1}{\sigma} \mp \frac{\mathrm{I}}{\sigma^{\prime}}\right)^{2} . \tag{60}
\end{equation*}
$$

If the values of σ and σ^{\prime} given in (55) be introduced here, then, when the sign is negative, i.e. when the incident light is polarized in a plane perpendicular to the edge of the sereen,

$$
\begin{equation*}
\text { (} 1 \text {) } J=\frac{A^{2}}{\pi^{2}} \cdot \frac{\lambda}{r} \cdot \frac{\sin ^{2} \frac{1}{2} \phi \cdot \cos ^{2} \frac{1}{2} \phi \phi^{\prime}}{\left(\cos \phi-\cos \phi^{\prime}\right)^{\prime}} \tag{67}
\end{equation*}
$$

while when the sign is positive, i.c. when the incident light is polarized in a plane parallel to the edge of the sereen,

$$
\begin{equation*}
\text { (||) } J=\frac{A^{2}}{\pi^{2}} \cdot \frac{\lambda}{r} \cdot \frac{\cos ^{2} \frac{1}{2}(\phi) \cdot \sin ^{2} \frac{1}{2}\left(\beta^{\prime}\right.}{\left(\cos \phi-\cos \left(\phi^{\prime}\right)^{2}\right.} \tag{58}
\end{equation*}
$$

These equations for the region of the shadow hold only so long as $\frac{\lambda}{r}$ is very small and the difference between ϕ and ϕ^{\prime} is large. Thus they do not hold at the edge of the shadow. The equations show that, at the screen itself ($\phi=0$), the light is completely polarized in a plane parallel to the edge of the screen; also that, as ϕ increases, the intensity J in both equations continually increases, and that the intensity (67) of the light polarized in the plane perpendicular to the edge of the screen is always smaller than the intensity (68) of the light polarized in the plane parallel to the edge of the screen. The difference between the two intensities continually decreases as the edge of the shadow is approached.

Gouy* has made observations upon the diffraction of light by a straight edge when the angle of diffraction is very large. When the edge of the screen was rounded, colors were produced which depended upon the nature of the screen. The theory here given requires that, independent of the nature of the screen, the colors of long wave-length predominate in light diffracted at a large angle. If there is to be a dependence of the color upon the nature of the screen, the boundary conditions (49) and (50) must contain the optical constants of the screen. Thus far no integration of the differential equation (48) which involves such complicated boundary conditions has been made.

Outside of the region of the shadorv, and also outside of the region of reflection, and at a sufficient distance from the limits of these two regions, σ has a large positive and σ^{\prime} a large negative value. Hence $F^{\prime} E^{\prime}$ is very small and, disregarding the sign, has the value $1: \pi \sigma^{\prime}$, while $F^{\prime} E$ is approximately equal to $\sqrt{2}$. Further, since the angle included between $F^{\prime} E$ and the ξ-axis is approximately $\frac{1}{2} \pi$, $\chi=-\frac{1}{4} \pi-\frac{1}{2} \pi \sigma^{\prime 2}$, so that

$$
\chi+\gamma-\gamma^{\prime}=-\frac{1}{4} \pi-\frac{4 \pi \gamma}{\lambda} \sin ^{2} \frac{1}{2}\left(\phi-\phi^{\prime}\right) .
$$

[^44]$10^{\text {nce, }}$ neglecting $\left(F^{\prime} E^{\prime}\right)^{3}$, there results from $\left(\sigma_{4}\right)$

IDhts, as ϕ varies, diffraction fringes appear which are, to be surt, very indistinct. The fringes become chearer the nearer ϕ apmoaches $2 \pi-\phi$. But then equation (oig) bo longer ho ${ }^{\text {k }} \mathrm{ls}$, and for points close to the boundary of the requon of refoction the result must be whatined from (6,4) and the curve of l"ife G3, since in this case fel' is larper.

In the region of reflection, at a sulficient distance from its boundary $\phi=2 \pi-\phi^{\prime}$, both $F^{\prime} l=$ and $F^{\prime} l E^{\prime}$ are approximately equal to 12 and $x=0$. Hence, from (64) and (655), the internsity changes periodically from perfect darkness to four times the intensity of the incident light according an $\frac{2 r}{\lambda}$, in $\phi \sin \phi^{\prime}$ is a whole mumber or half of an odd number. Hence the phenomenon of stationary wives, disensed above on puge 155 , is again encountered. Such stationatry waves always oceme When the incillent and the reflected light are superposed. Hut it is important to remark that the sigrnificance of s depends upon the condition of polarization of the incident light (ef. foot-note, P. 205). This matter will be disetused in a later chipter.
8. Fraunhofer's Diffraction Phenomena.-. As wits rem marked on paye 188 , Iratunhofer's diffaction phenomenat are those in which the source (lies at an infinite distance from the posint P_{0} of observation. These phenomena inay be observed by placing a peint source () at the foens of a convergent lens, so as to render the emergent rays parallel, and observing by means of a telescope placed behind the diffaction sereen and ocussed for parallel rays.

The discussion will be based, as in $\$ 1$, on IHy\%ens' rineiple; and hence the treatment will not be altogether iforous. Mut, as has alreatly been seen, this principle gives a
very close approximation when the angle of diffraction is not too large. In accordance with equations (8) and (9) on page 187, when $\rho_{1}=\rho_{0}=\infty$,

$$
\begin{equation*}
f(x, y)=-\frac{2 \pi}{\lambda}\left\{x\left(\alpha_{1}+\alpha_{0}\right)+y\left(\beta_{1}+\beta_{0}\right)\right\} \tag{70}
\end{equation*}
$$

in which $\alpha_{1}, \beta_{1}, \alpha_{0}, \beta_{0}$ denote the direction cosines with respect to the x - and y-axes of the lines drawn from the origin to the source Q and the point of observation P_{0} respectively. (Cf. Fig. 62, page 185.)

Hence, from equations (II) and (I2) on pages 187 and 188, using the abbreviations

$$
\begin{equation*}
\frac{2 \pi}{\lambda}\left(\alpha_{1}+\alpha_{0}\right)=\mu, \quad \frac{2 \pi}{\lambda}\left(\beta_{1}+\beta_{0}\right)=\nu, . \tag{71}
\end{equation*}
$$

there results for the intensity of the light at the point P_{0},

$$
\begin{equation*}
J=A^{\prime 2}\left(C^{2}+S^{2}\right), \tag{72}
\end{equation*}
$$

in which
$C=\int \cos \left(\mu_{x}+\nu y\right) d \sigma, \quad S=\int \sin (\mu x+\nu y) d \sigma$,
and the integration is to be extended over the opening in the screen.

The meaning of the constant A^{\prime} may be brought out by introducing the intensity J^{\prime} which is observed behind the diffraction screen when the telescope is pointed in the direction of the incident light. For then, at all points of the screen which are not infinitely distant from the origin, $\mu=\nu=0$, so that the relation holds

$$
J^{\prime}=A^{\prime 2} \cdot \sigma^{2}
$$

where σ denotes the area of the entire opening. Hence for any direction of the telescope it follows that

$$
\begin{equation*}
J=\frac{J^{\prime}}{\sigma^{2}}\left(C^{2}+S^{2}\right) \tag{74}
\end{equation*}
$$

9. Diffraction through a Rectangular Opening. - The integral of (73) may be most easily obtained when the opening
is a rectangle. Take the middle of the rectangle as the origin, and let the axes be parallel to its sides and let the lengeths of these sides be a (parallel to the x-axis) and b (parallel to the y-axis) respectively, then

$$
C=\begin{gathered}
4 \\
\mu^{\prime} \\
\sin \\
\mu_{2}^{\mu \prime}
\end{gathered} \sin _{2}^{v / \prime}, \quad S=0
$$

Hence, from (74), since $\sigma=a(a b$,

$$
J=J^{\prime} \cdot\left|\begin{array}{c}
\mu u y \\
\sin \\
2 \\
\mu \\
2
\end{array}\right|^{2}\left|\begin{array}{c}
\sin ^{m} \\
2 \\
w \\
2
\end{array}\right|^{2} \cdot \ldots \quad . \quad . \quad . \quad(75)
$$

Therefore complete darkness occurs in directions for which μ_{0} or r is an exact multiple of 2π.

If the light from © falls perpundicularly upon the sereen, $\alpha_{1}, \beta_{1} \cdots$ o. I et the optical axis of the ohserving teleseope be parallel to the incident lipht, i.e. perpendionlar to the screen. The intensity $/$ in the direction determined by α_{0}, β_{0} is then observed at a print " of the focal plane of the telescope objective which has the courdinates

$$
x^{\prime} \cdots f\left(x_{0}, y^{\prime} \quad / \beta_{0} \cdot \quad . \quad . \quad(7(0)\right.
$$

in a coordinate system $x y^{\prime}$ whose oryin lies at the focus fof the objective, and whose axes are parallel to the sides of the rectangle, frepresents the focal length of the objective. In (76) it is assumed that α_{0}, ϕ_{0} are small quantitics, i.e. the angle of diffraction is small.

Now, from (71),

$$
\mu=: \begin{gather*}
2 \pi x^{\prime} \tag{77}\\
\lambda f
\end{gathered}, \quad v=: \begin{gathered}
2 \pi y^{\prime} \\
\lambda f
\end{gather*}
$$

Hence complete darkness ocours when

$$
\mu_{a x}= \pm 2 h \pi, \quad \text { i.e. } x^{\prime}- \pm h_{a}^{\lambda f}, \quad h_{a}=x, 2,3 \ldots
$$

and when

$$
v b= \pm 2 h \pi, \quad \text { i.e. } y^{\prime}= \pm k_{b}^{\lambda f}, k=z 1,2,3 \ldots
$$

Hence in the focal plane of the objective there is produced, when monochromatic light is used, a pattern crossed by dark lines as shown in Fig. 69. The lines are a constant distance

Fig. 69.
apart save in the middle of the pattern, where their distance is twice as great. The aperture which produced this pattern is shown in the upper left-hand corner of the figure. Hence the fringes are rectangles which are similar to the aperture but lie inversely to it.

At the focus of the objective the intensity reaches its greatest value $J=J^{\prime}$; for when $\mu=0$, the limiting value of the quotient $\sin \frac{\mu a}{2}: \frac{\mu a}{2}=\mathrm{r} . \quad J$ has other but weaker maxima approximately in the middle points of the rectangles bounded by the diffraction fringes in Fig. 69. For these points

$$
\mu a=\pi(2 h+1), \quad v b=\pi(2 k+1), \quad h, k=1,2,3 \ldots
$$

But for the middle points of those rectangles upon the x^{\prime}-axis

$$
\mu_{a}=\pi(2 / t+1), \quad v=0, \quad k=1,2,3 \ldots
$$

Hence the intensities in the maxima upon the x^{\prime}-axis (or the y^{\prime}-axis) are

$$
J_{1}=J^{\prime} \frac{4}{\pi^{2}(2 h+\mathrm{I})^{2}},
$$

while the intensities at the middle points of other rectangles for which neither x^{\prime} nor y^{\prime} vanish are

$$
J_{2}=J^{\prime} \frac{16: \pi^{4}}{(2 h+1)^{2}(2 k+1)^{2}} .
$$

Thus the intensities J_{2} are much smaller than the intensities J_{1}; so that the figure viewed as a whole gives the impression of a cross which grows brighter toward the centre and whose arms lie parallel to the sides of the rectangle. In Fig. 69 the distribution of the light is indicated by the shading.
10. Diffraction through a Rhomboid.-This case may be immediately deduced from the former by noting that in (73) the integrals C and S, and consequently the intensity J, remain unchanged if the coordinates x, y of the diffraction aperture are multiplied by the factors p, q, while at the same time the μ, v, i.e. the cordinates x^{\prime}, y^{\prime} of the diffraction pattern, are divided by the same factors p, q. Thus a rectangular parallelogram whose sides are not parallel to the coordinate axes x, y may be reduced to a rhomboid by the use of two factors p, q, and in this case the diffraction fringes will also be rhomboids whose sides are perpendicular to the sides of the diffracting opening.
II. Diffraction through a Slit.-A slit may be looked upon as a rectangle one of whose sides b is very large. Hence the diffraction pattern reduces to a narrow strip of light along the x^{\prime}-axis. This is crossed by dark spots corresponding to the equation

$$
\begin{equation*}
J=J^{\prime}\left[\frac{\sin \frac{\mu_{a}-2}{2}}{\frac{\mu a}{2}}\right]^{2} \tag{78}
\end{equation*}
$$

in which, when the incident light is perpendicular to the plane of the slit,

$$
\mu=\frac{2 \pi}{\lambda} \sin \phi
$$

where ϕ denotes the angle of diffraction, i.e. the angle included between the diffracted and the incident rays. If Q is a line source which is parallel to the slit, the diffraction pattern becomes a broad band of light which is crossed by parallel fringes at the places determined by $\mu a=2 h \pi$. Between the limits $\mu a= \pm 2 \pi$ the intensity is much greater than elsewhere. The position of the dark fringes can also be determined directly from the following considerations:

In order to find the intensity for a given angle of diffraction

Fig. 70. (cf. Fig. 70) conceive the slit $A B$ divided into such portions $A A_{1}, A_{1} A_{2}, A_{2} A_{3}$, ctc., that the distances from A, A_{1}, A_{2}, \ldots to the infinitely distant point P_{0} differ from each other successively by $\frac{1}{2} \lambda$. The combined effect of any two neighboring zones is zero. Hence there is darkness if $A B$ can be divided into an even number of such zones, i.e. if the side $B C$ of the right-angled triangle $A C B^{\circ}$ is equal to $h \cdot \lambda$, where $h=1,2,3$, etc. Since now $B C=a \sin \phi$, in which a is the width of the slit, there is darkness when the angle of diffraction is such that

$$
\begin{equation*}
\sin \phi= \pm \mu \cdot \frac{\lambda}{a} \tag{79}
\end{equation*}
$$

But from (78^{\prime}) this is identical with the condition $\mu_{a}=2 h \pi$. Hence it follows that when $a<\lambda$ there is darkness for no angle of diffraction, i.e. diffusion takes place (cf. page 199).

If the incident light is white, and if the intensity J^{\prime} which corresponds to a given color, i.e. a given wave-length λ, be denoted by J_{λ}^{\prime}, and if the abbreviation $\pi a \sin \phi=a^{\prime}$ be introduced, then for a given value of a^{\prime} the whole intensity is

$$
\begin{equation*}
J=\Sigma J_{\lambda^{\prime}} \cdot \frac{\sin ^{2} \alpha^{\prime} / \lambda}{\left(a^{\prime} / \lambda\right)^{2}} \tag{79'}
\end{equation*}
$$

If a^{\prime} is not very small, e.g. if it is about $3 \pi \lambda$, then in $\left(79^{\prime}\right) \sin \frac{a^{\prime}}{\lambda}$ varies much more rapidly with λ than does $\frac{a^{\prime}}{\lambda}$. If $\frac{a^{\prime}}{\lambda}$ be considered approximately constant, (79^{\prime}) assumes the form given for the intensity of light reflected from a thin plate (cf. Section II, Chapter II, § I). Hence at some clistance from the centre of the field of view colors appear which resemble closely those of Newton's rings.
12. Diffraction Openings of any Form.-With any sort of unsymmetrical opening, the integrals C and S have in general a value different from zero. At positions of zero intensity in the diffraction pattern the two conditions $C=0$ and $S=0$ must be simultaneously fulfilled. Hence in gencral such positions are discrete points, not, as with a rectangular opening, continuous lines. For the theoretical cliscussion of special forms of diffraction apertures cf. Schwerd, "Dic Beugungserscheinungen,'" Mannheim, 1835.
13. Several Diffraction Openings of like Form and Orientation. - Let the coordinates of any point of a diffraction opening referred to a point A lying within that opening be $\underset{\xi}{\xi}$ and η, and let the point A in all the openings be similarly placed. Let the coordinates of the points A referred to any arbitrary coordinate system $x y$ lying in the diffraction screen be $x_{1} y_{1}$, $x_{2} y_{2}, x_{3} y_{3}$, etc. Then for any point in any opening, for instance the third,

$$
x=x_{3}+\xi, \quad y=y_{3}+\eta
$$

and, from (73),

$$
\left.\begin{array}{l}
C=\sum_{i} \int \cos \left[\mu\left(x_{i}+\xi\right)+\nu\left(y_{i}+\eta\right)\right] d \Sigma d \eta \tag{80}\\
S=\sum_{i} \int \sin \left[\mu\left(x_{i}+\xi\right)+\nu\left(y_{i}+\eta\right)\right] d \xi d \eta
\end{array}\right\}
$$

The ξ and η vary in all the openings within the same limits. Hence denoting the integrals C and S when they are extended over a single opening by c and s, that is, setting
$c=\int \cos (\mu \xi+\nu \eta) d \xi d \eta, \quad s=\int \sin (\mu \xi+\nu \eta) d \xi d \eta$,
amb, for the soble of hereits, Whtin:
then, from (tin,
and hence, from (:"' ,

$$
. \quad .11^{2} ; 1:^{2}
$$

From thi: cyuntion is wititat tha

 The intendity at ally funat i. . . . :

 umber the sign \# why ismentus bes

 at romblom ly at mextle. The thatise tows

The result in cotiody rhfiterent when the arranged or ate fow in mantery Coqsond case of tiow sopmon and set

$$
i_{1}: u_{1} \quad t_{1} \quad A_{1} \quad i_{1} \quad i_{1}
$$

then

$$
c^{\prime 2}+s^{\prime 2}=4 \cos ^{2} \frac{\mu d}{2}
$$

The diffraction pattern which is produced by a single opening is now crossed by dark fringes corresponding to the equation $\mu d=(2 / 2+1) \pi$, i.e. by fringes which are perpendicular to the line connecting two corresponding points of the openings and which are, in the focal plane of the objective, a distance $\lambda f: d$ apart.
14. Babinet's Theorem.-Before passing to the discussion of the grating, which consists of a large number of regularly arranged diffraction openings, the case of two complementary diffraction screens will be considered. If a diffraction screen σ_{1} has any openings whatever, while a second screen σ_{2} has exactly those places covered which are open in σ_{1}, while the places in σ_{2} are open which are covered in σ_{1}, then σ_{1} and σ_{2} are called complementary screens. The intensity J_{1} when the screen σ_{1} is used is proportional to $C_{1}{ }^{2}+S_{1}{ }^{2}$, in which C_{1} and S_{1} are integrals which are extended over the openings in σ_{1}. The intensity J_{2} when the screen σ_{2} is used is proportional to $C_{2}{ }^{2}+S_{2}{ }^{2}$, in which C_{2} and S_{2} are extended over the openings in σ_{2}. The intensity J_{0} when no screen is used is therefore proportional to $\left(C_{1}+C_{2}\right)^{2}+\left(S_{1}+S_{2}\right)^{2}$. But, in this latter case, at a point in the field of observation which corresponds to a diffraction angle greater than zero, $J_{0}=0$, i.e. $C_{1}=-C_{2}$, $S_{1}=-S_{2}$, and hence $J_{1}=J_{2}$. Or in other words: The diffraction patterns which are produced by two complementary screens are identical excepting the contral spot, which corresponds to the diffraction angle zero. This is Babinet's theorem.

Application of this theorem will be made to the diffraction pattern produced by irregularly placed circular screens of equal size. This pattern must be the same as that produced by irregularly arranged openings of the same size. Hence it consists of a system of concentric rings. The phenomenon
may be produced by scattering lycopodium powder upon a glass plate. Similarly the halos about the sun and moon may be explained as the diffraction effects of water drops of equal size.*
15. The Diffraction Grating.-A diffraction grating consists of a large number of parallel slits a constant distance apart. As in § I 3 , set

$$
\begin{gathered}
x_{1}=0, \quad x_{2}=d, \quad x_{3}=2 d, \quad x_{4}=3 d, \text { ctc. }, \\
y_{1}=y_{2}=y_{3} \ldots=0
\end{gathered}
$$

in which d denotes the distance between two corresponding points in adjacent slits, the so-called constant of the grating. Then, from (82),

$$
\begin{aligned}
& c^{\prime}=1+\cos \mu d+\cos 2 \mu d+\cos 3 \mu d+\ldots \\
& s^{\prime}=\sin \mu d+\sin 2 \mu d+\sin 3 \mu d+\ldots
\end{aligned}
$$

In order to obtain the value of $c^{\prime 2}+s^{\prime 2}$, it is convenient to introduce imaginary quantities by writing, assuming that there are m openings,

$$
c^{\prime}+i s^{\prime}=1+e^{i \mu d}+e^{2 i \mu d}+c^{3 i \mu d}+\ldots+e^{i(m-i) \mu d} .
$$

This summation gives at once

$$
c^{\prime}+i s^{\prime}=\frac{c^{i m \mu d}-\mathrm{I}}{e^{i \mu d}-\mathrm{I}} .
$$

A multiplication of each side of this equation by its complementary complex expression gives

$$
c^{\prime 2}+s^{\prime 2}=\frac{r-\cos m \mu d}{1-\cos \mu d}=\frac{\sin ^{2} \frac{m \mu d}{2}}{\sin ^{2} \frac{{ }^{2} d}{2}},
$$

so that there follows, from (83) and (78),

$$
\begin{equation*}
J=J_{1}^{\prime} \frac{\sin ^{2} \frac{\mu a}{2}}{\left(\frac{\mu_{a}}{2}\right)^{2}} \cdot \frac{\sin ^{2} \frac{m \mu d}{2}}{\sin ^{2} \frac{\mu d}{2}} \tag{85}
\end{equation*}
$$

[^45]In this J_{1}^{\prime} denotes the intensity which would be produced by a single slit for the diffraction angle zero ($\mu=0$). From this equation it appears that the diffraction pattern is the same as that of a single slit (which is represented by the first two factors) save that it is crossed by a series of dark fringes which are very close together and correspond to the equation $\frac{m \mu d}{2}=l_{l} \pi$. These fringes are closer together the greater the number m of the slits. Between the fringes the intensity J reaches maxima which are, however, at most equal to the intensitics produced at the same points by a single slit. But much stronger maxima occur when $\sin \frac{\mu d}{2}$ vanishes, i.e. when

$$
\begin{equation*}
\mu=\frac{2 h \pi}{d}, \text { i.e. } \sin \phi=h \frac{\lambda}{d}, \tag{8б}
\end{equation*}
$$

in which ϕ denotes the angle of diffraction. (The light is assumed to fall perpendicularly upon the grating.)

For the diffraction angles ϕ thus determined

$$
\frac{\sin ^{2} \frac{m \mu d}{2}}{\sin ^{2} \frac{\mu d}{2}}=m^{2}
$$

so that the intensity is m^{2} times as great as it is at the same point when there is but one slit. When m is very great, it is these maxima only which are perceptible.* One of these maxima may be wanting if a minimum of the diffraction pattern due to a single slit falls at the same place, i.e. if both (86) and

$$
\mu=\frac{2 k \pi}{a}
$$

are at the same time fulfilled.

[^46]This is only possible if the width of the slit a is an exact multiple of the constant of the grating d. Close-line gratings are produced by scratching fine lines upon glass or metal by means of a diamond. The furrows made by the diamond act as opaque or non-reflecting places. According to Babinet's theorem the width of the furrow may also be looked upon as the width a of the slit. This latter then is much smaller than the constant d of the grating, so that, in any case, the first maxima, which in (86) correspond to small values of h, do not vanish. These maxima have a nearly constant intensity, since for small values of the width a of the slit the diffraction figure which is produced by a single slit illuminates the larger portion of the field with a nearly constant intensity.

Hence, when the number m of the slits is sufficiently large, the diffraction pattern in monochromatic light, which proceeds from a line source Q, consists of a series of fine bright lines which appear at the diffraction angles $\phi_{0}, \phi_{1}, \phi_{2}$, etc., determined by $\phi_{0}=0, \quad \sin \phi_{1}= \pm \frac{\lambda}{d}, \quad \sin \phi_{2}= \pm \frac{2 \lambda}{d}, \quad \sin \phi_{3}= \pm \frac{3^{\lambda}}{d}$, etc.

If the grating is illuminated by white light from a line source Q, pure spectra must be produced, since the different colors appear at different angles. These grating spectra are called normal spectra, to distinguish them from the dispersion spectra produced by prisms, because the deviation of each color from the direction of the incident light is proportional to its wave length, -at least so long as ϕ is so small that it is permissible to write $\sin \phi=\phi$. Since each color corresponding to the different values of h in (86) appears many times, many spectra are also produced. The spectrum corresponding to $h=\mathrm{I}$ is. called that of the first order; that to $h=2$, the spectrum of the second order, etc. In the first spectrum the violet is deviated least; the other colors follow in order to the red. After an interval of darkness the violet of the second order follows. But the red of the second spectrum and the blue of the third overlap, since $3 \lambda_{v}<2 \lambda_{r}$, in which λ_{v} and λ_{r}
denote the wave lengths of the visible violet and red rays contained in white light. This overlapping of several colors increases rapidly with the angle of diffraction.

That pure spectral colors are produced by a grating and not by a slit, which gives approximately the colors of Newton's rings (cf. page 219), is due to the fact that in the case of the grating it is the positions of the maxima, while in the case of a slit it is the positions of the minima, which are sharply defined.

The grating furnishes the best means of measuring wave lengths. The measurement consists in a determination of d and ϕ and is more accurate the smaller d is, since then the diffraction angles are large. Rutherford made gratings upon glass which have as many as 700 lines to the millimetre. The quality of a grating depends primarily upon the ruling engine which makes the scratches. The lines must be exactly parallel and a constant distance apart. Rowland now produces faultless gratings with a machine which is able to rule 1700 lines to the millimetre.
16. The Concave Grating.-A further advance was made by Rowland in that he ruled gratings upon concave spherical mirrors of speculum metal, the distance between the lines measured along a chord being equal. These gratings produce a real image P of a line source Q without the help of lenses; the diffraction maxima P_{1}, P_{2}, etc., are also real images. In order to C locate these images, construct a circle tangent to the grating (Fig. 71) upon the radius of curvature of the grating as its diameter. If the line source Q lies upon the

Fig. 7r. circle, an undiffracted image is produced upon the same circle at P by direct reflection, in such a way that P and Q are symmetrical to C, C being the centre of curvature of the grating
$G G$. For the line $C B$ is the normal to the mirror at the point B, hence the angle of incidence $Q B C$ is equal to the angle of reflection $P B C$. But a ray reflected from any point B^{\prime} of the mirror must also pass through P because $C B^{\prime}$ is the normal to the mirror at B^{\prime}, since C is the centre of curvature of the mirror and since approximately $\Varangle Q B^{\prime} C=\Varangle P B^{\prime} C$, and therefore $B^{\prime} P$ is the direction of the reflected ray. The angles $Q B^{\prime} C$ and $P B^{\prime} C$ would be rigorously equal if B^{\prime} lay upon the circle itself, since then they would be inscribed angles subtended by equal arcs. P is then the position of the undiffracted image which is formed by reflection by the mirror of the light from Q.*

The position of the diffraction image P_{1} is at the intersection of two rays $B P_{1}$ and $B^{\prime} P_{1}$ which make equal angles with $B P$ and $B^{\prime} P$. Hence it is evident that P_{1} also lies upon the circle passing through $P C Q B$, since the angles $P B^{\prime} P_{1}$ and $P B P_{1}$ would be rigorously equal if B^{\prime} lay upon the circle.

If the real diffraction spectrum at P_{1} were to be received upon a screen S, it would be necessary to place the screen very

Fig. 72. obliquely to the rays. Since it is better that the rays fall perpendicularly upon the screen S, the latter is placed at the point C parallel to the grating. The source Q must also lie upon the circle whose diameter is $C B$, i.e. the angle $C Q B$ must always be a right angle. In practice, in order to find the positions of Q which throw diffraction spectra upon S, the grating G and the screen S are mounted upon a beam of length r (radius of curvature of the grating) which slides along the right-angled ways $Q M, Q N$, as shown

[^47]in Fig. 72. The source is placed at Q. As S is moved away from Q the spectra of higher order fall successively upon the screen.
17. Focal Properties of a Plane Grating. - If the clistance d between the lines of a grating is not constant, then the diffraction angle ϕ which corresponds to a maximum, for instance the first which is given by $\sin \phi=\lambda: d$, is different for different parts of the grating. d may be made to vary in such a way that these directions which correspond to a maximum all intersect in a point F. This point is then a focal point of the grating, since it has the same properties as the focus of a lens.*
18. Resolving Power of a Grating.-The power of a grating to separate two adjacent spectral lines must be proportional to its number of lines m, since it has been already shown that the diffraction maxima which correspond to a given wave length λ become narrower as m increases. By equation (80) on page 223 , the maximum of the order k is determined by
$$
\mu=2 h \pi: d, \text { i.e. } \sin \phi=l \lambda \lambda: d .
$$

If μ rises above or falls below this value, then, by (85), the first position of zero intensity occurs when μ has changed in such a way that $m \mu d / 2$ has altered its value by π, i.e. when the change in μ amounts to

$$
d \mu=2 \pi: m d .
$$

Hence the corresponding change in the diffraction angle ϕ, whose dependence upon μ is given in equation $\left(7^{\prime}\right)$, is

$$
\begin{equation*}
d \phi=\lambda: m d \cos \phi \tag{87}
\end{equation*}
$$

Hence this quantity $d \phi$ is half the angular width of the diffraction image.

[^48]- For an adjacent spectral line of wave length $\lambda+d \lambda$ the position of the diffraction maximum of order h is given by

$$
\sin \left(\phi+d \phi^{\prime}\right)=h(\lambda+d \lambda): d
$$

i.e. the angle $d \phi^{\prime}$ between the diffraction maxima corresponding to the lines λ and $\lambda+d \lambda$ is

$$
d \phi^{\prime}=h \cdot d \lambda: d \cos \phi
$$

- In order that the grating may separate these two lines, this angle $d \phi^{\prime}$ must be greater than half the breadth of the diffraction image of one of the lines, i.e.

$$
\begin{equation*}
d \phi^{\prime}>d \phi, \quad h \cdot d \lambda>\lambda: m, \quad \frac{d \lambda}{\lambda}>\frac{1}{h m} . \tag{88}
\end{equation*}
$$

Thus the resolving power of a grating is proportional to the total number of lines m and to the order h of the spectrum, but is independent of the constant d of the grating. To be sure, if d is too large, it may be necessary to use a special magnifying device in order to separate the lines, but the separation may always be effected if only the resolving power defined by (88) has not been exceeded.

In order to separate the double D line of sodium for which $d \lambda: \lambda=0.001$, a grating must have at least 500 lines if the observation is made in the second spectrum.
19. Michelson's Echelon.*-From the above it is evident that the resolving power may be increased by using a spectrum of high order. With the gratings thus far considered it is not practicable to use an order of spectrum higher than the third, on account of the lack of intensity of the light in the higher orders. But even when the angle of diffraction is very small, if the light be made to pass through different thicknesses of glass, a large difference of phase may be introduced between the interfering rays, i.e. the same effect may be obtained as with an ordinary grating if the spectra of higher orders could be used. Consider, for instance, two parallel slits, and let a

[^49]glass plate several millimetres thick be placed in front of one of the slits; then at very small angles of diffraction rays come to interference which have a difference of path of several thousand wave lengths. This is the fundamental idea in Michelson's echelon spectroscope. m plates of thickness δ are arranged in steps as in Fig. 73. Let the width of the

Fig. 73.
steps be a, and let the light fall from above perpendicularly upon the plates. The difference in path between the two parallel rays $A A^{\prime}$ and $C C^{\prime}$, which make an angle ϕ with the incident light, is, if $C D$ is $\perp A A^{\prime}$ and if n denote the index of refraction of the glass plates,

$$
n \cdot B C-A D=n \delta-\delta \cos \phi+a \sin \phi
$$

since $A D=D E-A E$ and $D E=\delta \cos \phi, A E=a \sin \phi$. If this difference of path is an exact multiple of a wave length, i.e. if

$$
\begin{equation*}
\hbar \cdot \lambda=n \delta-\delta \cos \phi+a \sin \phi, . \tag{89}
\end{equation*}
$$

then a maximum effect must take place in the direction ϕ, since all the rays emerging from $A B$ are reinforced by the parallel rays emerging from $C F$. Hence equation (89) gives the directions ϕ of the diffraction maxima.

The change $d \phi$ in the position of the diffraction maxima
corresponding to a small change $d \lambda$ in λ is large, since it follows from (89) by differentiation that

$$
h d \lambda=\delta \cdot d n+(\delta \sin \phi+a \cos \phi) d \phi^{\prime}
$$

i.e. if ϕ be taken small,

$$
\begin{equation*}
d \phi^{\prime}=\frac{h \cdot d \lambda-\delta \cdot d n}{a} \tag{90}
\end{equation*}
$$

Since, by (89), when ϕ is small $h \lambda=(n-\mathrm{I}) \delta,(90)$ may be written

$$
d \phi^{\prime}=\frac{\delta}{a}\left[(n-1) \frac{d \lambda}{\lambda}-d n\right] ;
$$

Hence $d \phi^{\prime}$ is large when $\delta: a$ is large. It is to be observed that it is in reality a summation and not a difference which occurs in this equation, since in glass, and, for that matter, all transparent substances, n decreases as λ increases.

One difficulty of this arrangement arises from the fact that the maxima of different orders, which yet correspond to the same λ, lie very close together. For, by (89), the following relation exists between the diffraction angle $\phi+d \phi^{\prime \prime}$ of order $h+I$ and the wave-length λ :

$$
\lambda=(\delta \sin \phi+a \cos \phi) d \phi^{\prime \prime}
$$

i.e. when ϕ is small,

$$
\begin{equation*}
d \phi^{\prime \prime}=\lambda: a \tag{9I}
\end{equation*}
$$

Thus, for example, with flint-glass plates 5 mm . thick the two sodium lines D_{1} and D_{2} are separated ten times farther than are the two adjacent spectra of order k and $h+1$ of one of the sodium lines. In consequence of this the source must consist of very narrow, i.e. homogeneous, lines, if the spectra of different order are not to overlap, i.e. if $d \phi^{\prime \prime}>d \phi^{\prime}$. Thus, for example, Michelson constructed an instrument of twenty plates, each 18 mm . thick, with $a=1 \mathrm{~mm}$., which requires a source the spectral line of which cannot be broader than $\frac{1}{15}$ the distance between the two sodium lines.

In order to determine the resolving power of the echelon it
is neceswary to calculate the brealth of the diffaction maximum of order h, i.e. those angles of diffation (4 , $1:$ dit) comresponding to those zero positions which are immediately aljacent to the maximat determined by ($\mathrm{Sin}_{\mathrm{j}}$). In weder th lime these pexitions of zero intensity, consider the m phate: of the cehelon divided into two equal pertions 1 and II. Ihaheres newns for those angles of diffaction $\phi^{\prime} \mid$ des for which the differnce of path of any two ratys, one of which paces through omy point of portion I, the other through the comempmeling: fuint of portion II, is an odd multiple of $\frac{1}{2} \lambda$. "Just as the right sithe of (80) gives the difference of path of two reys. one of wheh hat passed through one more plate than the other, so the difference of path in this case, in which one wave har pased through ${ }_{2}$ more plates than the other, may be obtaned by multiplying the right-hand side of $\left(\mathrm{S}_{(1)}\right)$ by ${ }_{2}^{m}$.

Hence, at a position of zero intensity which corresponds to the angle of diffration $\langle\cdot|, d$,

In order that $d \phi$ may be as small as provible, i.e. in uriter to ohtain the two prositions of acto intersity which are clone st th
 son with (89) shows, to make in this equation $k \ldots h_{2}^{\text {m. . Hence }}$ from these two equations

$$
\pm \frac{1}{2} \lambda={ }_{2}^{m}(\delta \sin \phi \mid a \cos \phi) d \phi
$$

or, when ϕ is small,

$$
\begin{equation*}
d \phi= \pm{ }_{m a^{\prime}}^{\lambda} . \tag{2}
\end{equation*}
$$

Thus this angle $d \phi$ is half the angular width of the diffraction image of the spectral line of wave length λ. That a double
line whose components have the wave lengths λ and $\lambda+d \lambda$ may be resolved, the angle of dispersion $d \phi^{\prime}$, corresponding to equation (90), must be greater than $d \phi$., i.e.

$$
\begin{equation*}
\frac{d \lambda}{\lambda}>\frac{1}{m \delta\left(\frac{n-1}{\lambda}-\frac{d n}{d \lambda}\right)} \tag{93}
\end{equation*}
$$

Thus the resolving power of the echelon depends only upon its total length mठ no matter whether it consists of many thin plates or of a smaller number of thicker ones. But for the sake of a greater separation $d \phi^{\prime \prime}$ of the spectra of different orders, and for the sake of increasing the angle $d \phi^{\prime}$ of dispersion, it is advisable to use a large number of plates so that a may be made small [cf. equations (90) and (91)].

For flint glass $-\frac{d n}{d \lambda}$ has about the value 100 if λ is expressed in mm . For a thickness δ of 18 mm . and a number of plates $m \doteq 20$ the resolving power is, by (93),

$$
m \delta\left(\frac{n-1}{\lambda}-\frac{d n}{d \lambda}\right)=0.46 \cdot 10^{6}
$$

which, according to (88), can only be attained with a line grating of half a million lines.

Although, as was seen above, the diffraction maxima of different orders lie close together, there are never more than two of them visible. For it is to be remembered that, in the expression for the intensity in the diffraction pattern produced by a grating, the intensity due to a single slit enters as a factor (cf. page 222). In the echelon the uncovered portion of width \boldsymbol{a} of each plate corresponds to a single slit, so that (cf. page 218) the intensity differs appreciably from zero only between the angles $\phi= \pm \frac{\lambda}{a}$, which correspond to the first positions of zero intensity in the diffraction pattern due to one slit. Thus the intensity is practically zero outside of the angular region $2 \lambda: a$. Since, by (91), the angular distance between two suc-
cessive maxima of different order has the value $\frac{\lambda}{a}$, only two such maxima can be visible.

In order that the echelon may give good results, the separate plates must have exactly the same thickness δ throughout. The plates are tested by means of the interference curves of equal inclination (cf. page 149, note 1) and polished until correct.
20. The Resolving Power of a Prism. - In connection with the above considerations it is of interest to ask whether the resolving power of a prism exceeds that of a grating or not. The resolving power of a prism depends not only upon its dispersion, but also upon its width (measured perpenclicular to the refracting edge). For if this width be small, each separate spectral line is broadened by diffraction.

The joint effect of dispersion and cross-scction of the beam upon the resolving power of a prism, or of a system of prisms, has been calculated by Rayleigh in the following way: * If, by means of refraction in the system P (Fig. 74), the plane wave

Fig. 74.
$A_{0} B_{0}$ of incident light of wave length λ is brought into the position $A B$, the optical paths from A_{0} to A and B_{0} to B are equal (cf. page 6). A wave of other wave length $\lambda+d \lambda$ is brought in the same time into some other position $A^{\prime} J^{\prime}$. The difference between the optical paths $A_{0} A^{\prime}$ and $A_{0} A$, i.e. the distance $A A^{\prime}$, can be expressed as follows:

$$
\left(A_{0} A^{\prime}\right)-\left(A_{0} A\right)=A^{\prime} A=d n \cdot e_{1},
$$

[^50]in which $d n$ denotes the difference between the indices of refraction of the prism for the two wave lengths λ and $\lambda+d \lambda, *$ and e_{1} the path traversed in the prism by the limiting rays (cf. Fig. 74). This path is assumed to be the same for the different colors, an assumption which is permissible since $A A^{\prime}$ contains the small factor $d n$.

Likewise the difference between the optical paths $B_{0} B^{\prime}$ and $B_{0} B$, i.e. the line $B B^{\prime}$, is

$$
\left(B_{0} B^{\prime}\right)-\left(B_{0} B\right)=B^{\prime} B=d n \cdot e_{2},
$$

in which e_{2} denotes the path traversed in the prism by the other limiting rays of the beam. Now the angle $d i$ which the plane wave $A^{\prime} B^{\prime}$ makes with the wave $A B$, i.e. the dispersion of the prism, is evidently

$$
d i=\frac{B B^{\prime}-A A^{\prime}}{b}=d n \frac{e_{2}-e_{1}}{b},
$$

in which b denotes the width of the emergent beam, i.e. the line $A B$. If the limiting rays $A_{0} A$ pass through the edge of the prism, $e_{1}=0$, and

$$
\begin{equation*}
d i=d n \cdot \frac{e}{b} \tag{94}
\end{equation*}
$$

in which e represents the thickness of the prism at its base, provided the prism is set for minimum deviation, i.e. the rays within it are parallel to the base, and the incident beam covers the entire face of the prism. The same considerations hold for a train of prisms; if all the prisms are in the position of minimum deviation, e represents the sum of all the thicknesses of the prisms at their bases.

In order that such a train of prisms may be able to resolve in the spectrum a doublet whose angular separation is $d i$, the central images in the diffraction patterns, which are produced by each spectral line in consequence of the limited area b of the beam, must be sufficiently separated. For an opening of

[^51]breadth b the first minimum in the diffraction image lies, by (79) on page 218, at the angle $\phi=\lambda: b .^{*}$ If then two spectral lines are to be separated, their dispersion di must at least be greater than this angle ϕ, which is half the angular width of the central band in the diffraction image of a spectral line; i.e. by (94) the following must hold:
\[

$$
\begin{align*}
d n \cdot \frac{e}{b} & >\frac{\lambda}{b} \\
e & >\frac{\lambda}{d n} \tag{95}
\end{align*}
$$
\]

Hence the resolving power of a prisin depends only upon the thickness of the prism at the base, and is independent of the angle of the prism. Thus for the resolution of the two sodium lines a prism of flint glass $(n=1.650, d n=0.000055$, $\lambda=0.000589 \mathrm{~mm}$.) at least I cm . thick is required. But for the resolution of two lines for which $d \lambda: \lambda=2: 10^{6}$, which may be accomplished with the Michelson echelon or with a grating of half a million lines, the thickness of the prism would need to be $e=5.10^{2} \mathrm{~cm}$., i.e. 5 m ., a thickness which is evidently unattainable because of the great absorption of light by glass of such thickness. A grating device permits, therefore, of higher resolving power than a train of prisms.
21. Limit of Resolution of a Telescope.-If a telescope is focussed upon a fixed star, then, on account of the diffraction at the rim of the objective, the image in the focal plane is a luminous disc which is larger the smaller the diameter of the objective. The diffraction caused by a circular screen of radius h gives rise to concentric dark rings. The first minimum occurs when the angle of diffraction is such that $\sin \phi=0.6 \mathrm{I} \frac{\lambda}{h} \cdot \phi$ Assume that a second star would be distinguished from the first if its central image fell upon the first minimum of the first star; then the limiting value of the angle which the two stars

[^52]must subtend at the objective if they are to be separated by the telescope, provided with a suitable eyepiece, is*
$$
\phi>0.6 \mathrm{I} \cdot \frac{\lambda}{h} .
$$

If λ be assumed to be 0.00056 mm ., and if ϕ be expressed in minutes of arc, then

$$
\begin{equation*}
\phi>\frac{\mathrm{I} \cdot 17^{\prime}}{h}, \tag{96}
\end{equation*}
$$

in which h must be expressed in mm . A telescope whose objective is 20 cm . in diameter is then able to resolve two stars whose angular distance apart is $\phi=0.0117^{\prime}=0.7^{\prime \prime}$.
22. The Limit of Resolution of the Human Eye.-The above considerations may be applied to the human eye with the single difference that the wave length λ of the light in the lens of the eye, whose index is I.4, is I: I. 4 times smaller than in air. The radius of the pupil takes the place of h. If h be assumed to be 2 mm ., then the smallest visual angle which two luminous points can subtend if they are to be resolved by the eye is

$$
\phi=0.42^{\prime} .
$$

The actual limit is about $\phi=\mathrm{r}^{\prime}$.
23. The Limit of Resolution of the Microscope.-The images formed by microscopes are of illuminated, not of selfluminous, objects. \dagger The importance of this distinction was first pointed out by Abbe. From the standpoint of pure geometrical optics, which deals with rays, the exact similarity of object and image follows from the principles laid down in the first part of this book. From the standpoint of physical optics, which does not deal with rays of light as independent geometrical directions, since this is not rigorously permissible, but which is based upon deformations of the wave front, the similarity of

[^53]object and image is not only not self-evident, but is, strictly speaking, unattainable. For the incident light, assumed in the first case to be parallel, will, after passing through the object which it illuminates, form a diffraction pattern in that focal plane \mathfrak{F}^{\prime} of the objective which is nearest the eyepiece. The question now is, what light effect will this diffraction figure produce in the plane \mathfrak{F}^{\prime} which is conjugate with respect to the objective to the object plane \mathfrak{F} ? The image formed in this plane is the one observed by the eyepiece. The formation of the image of an illuminated object is therefore not direct (primary) but indirect (secondary), since it depends upon the effect of the diffraction pattern formed by the object.

It is at once clear that a given diffraction pattern in the focal plane \mathfrak{F}^{\prime} gives rise always to the same image in the plane \mathfrak{S}^{\prime} upon which the eyepiece is focussed. Now in general different objects produce different diffraction patterns in the plane \mathscr{J}^{\prime}.* But if the aperture of the objective of the microscope is very small, so that only the small and nearly uniformly illuminated spot of the diffraction pattern produced by two different objects is operative, then these objects must give rise to the same light effects in the plane \mathfrak{S}^{\prime}, i.e. they look alike when seen in the microscope. Now in this case there is seen in the microscope only a uniformly illuminated field, and no evidence of the structure of the object. In order to bring out the structure, the numerical aperture of the microscope must be so great that not only the effect of the central bright spot of the diffraction pattern appears, but also that of at least one of the other maxima. When this is so, the distribution of light in the plane \mathfrak{S}^{\prime} is no longer uniform, i.e. some sort of an image appears

[^54]which has a rough similarity to the object. As more maxima of the diffraction pattern are admitted to the microscope tube, i.e. as more of the diffraction pattern is utilized, the image in the microscope becomes more and more similar to the object. But perfect similarity can only be attained when all the rays diffracted by the object, which are of sufficient intensity to be able to produce appreciable effects in the focal plane \mathfrak{F}^{\prime} of the objective, are received by the objective, i.e. are not cut off by stops. This shows the great importance of using an objective of large numerical aperture. The greater the aperture the sooner will an image be formed which approximately reproduces the fine detail in the object. Perfect similarity is an impossibility even theoretically. A microscope reproduces the detail of an object up to a certain limit only.

To illustrate this by an example, assume that the object P is a grating whose constant is d, and that the incident beam is parallel and falls perpendicularly upon the grating. The first maximum from the centre of the field lies in a direction determined by $\sin \phi=\lambda: d$. Let the real image of this maximum in the focal plane \mathfrak{F}^{\prime} of the objective be C_{1}, while C_{0} is that of the centre of the field (Fig. 75). Let the distance between

Fig. 75.
these two images be ε. Now the two images C_{0} and C_{1} have approximately the same intensity and send out coherent waves, i.e. waves capable of producing interference. Hence there is formed at a distance x^{\prime} behind the focal plane \mathscr{F}^{\prime} a system of fringes whose distance apart is $d^{\prime}=x^{\prime} \lambda: c$. If now the objective is aplanatic, i.e. fulfils the sine law (cf. page 5^{88}), then

$$
\sin \phi=\epsilon \cdot \sin \phi^{\prime}
$$

in which e denotes a constant. Settins sin $\boldsymbol{s}^{\prime} \quad \therefore: x$, which is permissible since ϕ^{\prime} is always sumall (while osmy be latge), and remembering that sin $\phi \cdot d: d$ it fillows that

i.e. the distance d^{\prime} between the fringe: is

$$
d^{\prime} \quad r^{\prime} \lambda \ldots t d
$$

or, the distance between the fringeri ir proportional to the constant of the grating and indeperdent of the colen of the light used.

Hence in order that the gratins limes moty lae preceptible in the imare, the objective must tereder rese whas inclination
 the case of an immersion system denoter the wave lengeth in the immersion fluid, i.e. it is rgual to $d: /$ when d whotes the wave length in air and n the intex of the fluid with teripert to air. Ilence

$$
n \sin \phi \cdot \lambda: d
$$

 (cf. equation (80) on pithe 8 sta, protiled t° is the athele included between the limiting rey and the asis. Hence the smalkest distance a which can be resolved by a microseope of aperture a is

$$
\begin{equation*}
d: \lambda: t . \tag{97}
\end{equation*}
$$

This equation holds for perpendicular illumination of the ohject. With oblipue illumination the resolving pmore may be increased, for, if the contral spent of the diffintion pattern does not lie in the midelle but is displacel th one sible, the first diffraction maximum appoars at a smaller ample of inclination to the axis. The conditions are mose favenoble when the incident light has the same inclination to the axis ad the diffracted light of the first maximum, and both just ace in to the objective.

If the incident and the diffracted light make the same angle U with the normal to the grating, then, by (7I) on page 214, $\mu=\frac{2 \pi}{\lambda} \cdot 2 \sin U$. Since, further, by (86) on page 223 , the first diffraction maximum appears when $\mu=\frac{2 \pi}{d}$, it follows that in this case

$$
\sin U=\frac{\lambda}{2 d} .
$$

Hence the smallest distance d which the microscope objective is able to resolve with the most favorable illamination is

$$
\begin{equation*}
d=\frac{\lambda}{2 a}, \tag{98}
\end{equation*}
$$

in which a is the numerical aperture of the microscope and λ the wave length of light in air. This is the equation given on page 92 for the limit of resolution of the microscope.

In order to increase the amount of light in the microscope, the object is illuminated with strongly convergent light (with the aid of an Abbe condenser, cf. page 102). The above considerations hold in this case for each direction of the incident light; but in the resolution of the object only those directions are actually useful for which not only the central image but also at least the first maximum of the diffraction pattern falls within the field of view of the eyepiece. The diffraction maxima corresponding to the different directions of the incident light lie at different places in the focal plane of the objective, but they exert no influence whatever upon one another, since they correspond to incoherent rays; for the light in each direction comes from a different point of the source, for example the sky.

If, instead of a grating, a single slit of width d were used, no detail whatever would be recognizable unless the diffraction pattern were effective at least to the first minimum. Since, according to equation (79) on page 218 , for perpendicularly incident light this first minimum lies at the diffraction angle
${ }^{\prime}$ mined by $\sin \phi=\lambda: d$, ${ }^{*}$ the result for one slit is the same or a grating. Only in this case a real similarity between mage and the slit, i.e. a correct recognition of the wielth ${ }_{1} e$ slit, is not obtained if the diffraction pattern is effective up to the first minimum.
fonly an approximate similarity between object and image ${ }_{2}$ fficient, for example if it is only desired to detect the ence of a small opaque body, its dimensions maty lie conably within the limit of resolution d as hore deducel; for ng as the diffraction pattern formed by the whent causes ppreciable variation in the uniform illumination in the e plane which is conjugate to the object, its existence be detected.
rom the above considerations it is eviclent that the limit solution d is smaller the shorter the wave length of the used. Hence microphotography, in which ulthowiolet is used, is advantageous, although no very freat incrane e resolving power is in this way olstathet. But the tages of an immersion system beconce in this cate very ed, since by an immersion fluid of high intex the wave h is considerably shortened. This result atreat at onte equations (97) and (98), since the numerical aperture a -portional to the index of refraction of the innmersion fluid.

[^55]
CHAPTER V

POLARIZATION

I. Polarization by Double Refraction.-A ray of light is said to be polarized when its properties are not symmetrical with respect to its direction of propagation. This lack of symmetry is proved by the fact that a rotation of the ray about. the direction of propagation as axis produces a change in the observed optical phenomena. This was first observed by Huygens* in the passage of light through Iceland spar. Polarization is always present when there is double refraction. Those crystals which do not belong to the regular system always show double refraction, i.e. an incident ray is clivided within the crystal into two rays which have different directions.

The phenomenon is especially easy to observe in calc-spar, which belongs to the hexagonal system and cleaves beautifully in planes corresponding to the three faces of a rhombohedron. In six of the corners of the rhombohedron the three intersecting edges include one obtuse and two acute angles, but in the two remaining corners A, A^{\prime}, which lie opposite one another (cf. Fig. 76), the three intersecting edges enclose three equal obtuse angles of $10 I^{\circ} 53^{\prime}$. A line drawn through the obtuse corner A so as to make equal angles with the edges intersecting at A lies in the direction of the principal crystallographic axis. \dagger If a rhombohedron be so split out that all of its edges are equal, this principal axis lies in the direction of the line connecting the two obtuse angles A, A^{\prime}. Fig. 76 represents such a crystal.

[^56]If now a ray of light $L L$ be incident perpendicularly upon the upper surface of the rhombohedron, it splits up into two rays $L O$ and $L E$ of equal intensity which emerge from the crystal as parallel rays $O L^{\prime}$ and $E L^{\prime \prime}$ perpendicular to the lower face. Of these rays $L O$ is the direct prolongation of the incident ray and hence follows the ordinary law of refraction in isotropic bodies, in accordance with which no change in direction occurs when the incidence is normal. This ray $L O$ together with its prolongation $L^{\prime} O$ is therefore called the ordinary ray. But the second ray $L E$, with its prolonga-

Fig. 76. tion $L^{\prime \prime} E$, which follows a law of refraction altogther different from that of isotropic bodies, is called the extraordinary ray. Also the plane defined by the two rays is parallel to the direction of the crystallographic axis. A section of the crystal by a plane which includes the normal to the surface and the axis is called a principal section. Hence the extraordizary ray lies in the principal section; it rotates about the ordinary ray as the crystal is turned about $L L$ as an axis.

The intensities of the ordinary and extraordinary rays are equal. But if one of these rays, for instance the extraordinary, is cut off, and the ordinary ray is allowed to fall upon a second crystal of calc-spar, it undergoes in general a second division into two rays, which have not, however, in general the same intensity. These intensities depend upon the orientation of the two rhombohedrons with respect to each other, i.e. upon the angle included between their principal sections. If this angle is 0 or 180°, there appears in the second crystal an ordinary but no extraordinary ray; but if it is 90°, there appears only an extraordinary ray. Two rays of equal intensity are pro-
duced if the angle between the principal sections is 45°. Hence the appearance continually changes when the second crystal is held stationary and the first rotated, i.e. when the ordinary ray turns about its own direction as an axis. Hence the ray is said to be polarized. This experiment can also be performed with the extraordinary ray, i.e. it too is polarized. Also if the first rhombohedron is rotated through 90° about the normal as an axis, the extraordinary ray produces in the second crystal the same effects as were before produced by the ordinary ray. Hence the ordinary and extraordinary rays are said to be polarized in planes at right angles to each other.

The two rays produced by all other doubly refracting crystals are polarized in planes at right angles to each other.

The principal section is conveniently chosen as a plane of reference when it is desired to distinguish between the directions of polarization of the two rays. Since these phenomena produced by two crystals of calc-spar depend only upon the absolute size of the angle included between their principal sections and not upon its sign, the properties of the ordinary and extraordinary rays must be symmetrical with respect to the principal section.

The principal section is called the plane of polarization of the ordinary ray, -an expression which asserts nothing save that this ray is not symmetrical with respect to the direction of propagation, but that the variations in symmetry in different directions are symmetrical with respect to this plane of polarization, the principal section.

Since, as was observed above, the ordinary ray is polarized at right angles to the extraordinary ray, it is necessary to call the plane which is perpendicular to the principal section the plane of polarization of the extraordinary ray. These relations may also be expressed as follows: The ordinary ray is polarized in the principal section, the extraordinary perpendicular to the principal section.
2. The Nicol Prism.-In order to obtain light polarized in but one plane, it is necessary to cut off or remove one of the
two rays produced by double refration. In the year 1828 Nicol devised the following methed of :womphishing this end: By suitable cleavage a crystal of cale-spur is whtained whelh is fully three times as long ats brout. The chel surfices, which make an angle of 72° with the chyes of the sithe, are gromed off until this angle (Ah.1' in ligg. 77) is us'. The crysta! is

F4. 77.
then sawed in two along a phane $A A^{\prime}$, which passes throuph the corners αA^{\prime} and is perpendieular beth te the cud faces and to a plane defined by the erystallographic axis and the leng axis of the rhombohedron. These two cot fiues of the two halves of the prism are then cemented togrether with Cianalat babsatm. This balsam has an index of refraction which is smatler than that of the orelinary but limeser than that of the extramelinary ray. If now a ray of light $/ .1$. chters paralled to the long axis of the rhombohedron, the ordinary ray $/ \mathbf{l d}^{\prime} \mathrm{in}$ tutally redlected at the surface of the Canala babwan and absombed by the blackened surfice li.l', while the extratolinory raty alone passes through the prism. The plane of polariation of the emergent light $/: J^{\prime \prime}$ is then perpentionlar th the prineipal section, i.e. parallel to the long diagemal of the surfues sha or $A^{\prime} B^{\prime}$.

The angle of aluerture of the cone of rays which eat enter the prism in such a way that the ordinary ras is totally redlected amounts to about $300^{\prime \prime}$. Furthermose a comverpent incident beam is not rigoronsly polarized in one phate, since the phane of polarization varies somewhat with the inclination of the incident ray; for the plane of polarization of the extromedinary ray is always perpendicular to the phane defined by the ray and the crystallographic axis (principal plane). The principal plane and the principal section are identical for nomal incidenes.
3. Other Means of Producing Polarized Light.-Apart from polarization prisms* constructed in other ways, tourmaline plates may be used for obtaining light polarized in one plane, provided they are cut parallel to the crystallographic axis and are from one to two millimetres thick. For under these conditions the ordinary ray is completely absorbed within the crystal. Also, polarized light may be obtained by reflection at the surface of any transparent body if the angle of reflection ϕ
S, ha axis. in ors differ, of lig mean. difficu menti fulfils the condition (Brewster's lave) $\tan \phi=n$, in which n is the index of refraction of the body. This angle ϕ is called the polarizing angle. For crown glass it is 57°. The reflected light is polarized in the plane of incidence, as may be shown by passing the reflected light through a crystal of calc-spar.

If light reflected at the polarizing angle from a glass plate be allowed to fall at the same angle upon a second glass plate, the final intensity depends upon the angle α included between the planes of incidence upon the two surfaces and is proportional to $\cos ^{2} \alpha$. This case can be studied by means of the Nörrenberg polariscope. The ray a is polarized by reflection upon the glass plate A and then falls perpendicularly upon a silvered mirror at c. This mirror reflects it to the black glass mirror S which turns upon a vertical axis. The ray $c b$ falls also at the polarizing angle upon S and, after reflection upon

[^57]S, has an intensity which varies as S is turned about a vertical axis. Between A and S a movable glass stage is introduced in order to make it convenient to study transparent objects at different orientations in polarized light. But since the intensity of light after but one reflection is comparatively small, this means of producing polarized light is little used; the same difficulty is met with in the use of tourmaline plates (not to mention a color effect).

A somewhat imperfect polarization is also produced by the oblique passage of light through a bundle of parallel glass plates. .This case will be treated in Section II, Chapter II. That polarization is also produced by diffraction was mentioned on page 212 .
4. Interference of Polarized Light. - The interference phenomena described above may all be produced by light polarized in one plane. But two rays which are polarized at right angles never interfere. This can be proved by placing a tourmaline plate before each of the openings of a pair of slits. The diffraction fringes which are produced by the slits are seen when the axes of the plates are parallel, but they vanish completely when one of the plates is turned through 90°.

Fresnel and Arago investigated completely the conditions of interference of two rays polarized at right angles to each other after they had been brought back to the same plane of polarization by passing them through a crystal of calc-spar whose principal section made an angle of 45° with the planes of polarization of each of the two rays. They found the following laws:
I. Two rays polarized at right angles to each other, which \have come from an unpolarized ray, do not interfere even when they are brought into the same plane of polarization.
2. Two rays polarized at right angles, which have come from a polarized ray, interfere when they are brought back to the same plane of polarization.
5. Mathematical Discussion of Polarized Light.-It has been already shown that the phenomena of interference lead
to the wave theory of light, in accordance with which the light disturbance at a given point in space is represented by

$$
\begin{equation*}
s=A \sin \left(2 \pi \frac{t}{T}+\delta\right) \tag{I}
\end{equation*}
$$

It is now possible to make further assertions concerning the properties of this disturbance. For in polarized light these properties must be directed quantities, i.e. vectors, as are lines, velocities, forces, etc. Undirected quantities like density and temperature are called scalars to distinguish them from vectors. If the properties of polarized light were not vectors, they could not exhibit differences in different azimuths. For the same reason these vectors cannot be parallel to the direction of propagation of the light. Hence s will now be called a light vector. Now a vector may be resolved into three components along the rectangular axes x, y, z. These components of s will be denoted by u, v, w. Hence the most general representation of the light disturbance at a point P is

$$
\left.\begin{array}{c}
u=A \sin \left(2 \pi \frac{t}{T}+p\right), \quad v=B \sin \left(2 \pi \frac{t}{T}+q\right) \\
w=C \sin \left(2 \pi \frac{t}{T}+r\right) \tag{2}
\end{array}\right\}
$$

The meaning of these equations can be brought out by representing by a straight line through the origin the magnitude and direction of the light vector at any time. The end \mathfrak{F} of this line can be located by considering u, v, w, as its rectangular coordinates. The path which this point (F) describes as the time changes is called the vibration form and is obtained from equations (2) by elimination of t. (2) may be written

$$
\left.\begin{array}{rl}
\frac{u}{A} & =\sin 2 \pi \frac{t}{T} \cdot \cos p+\cos 2 \pi \frac{t}{T} \cdot \sin p \tag{3}\\
\frac{v}{B} & =\sin 2 \pi \frac{t}{T} \cdot \cos q+\cos 2 \pi \frac{t}{T} \cdot \sin q \\
\frac{w}{C} & =\sin 2 \pi \frac{t}{T} \cdot \cos r+\cos 2 \pi \frac{t}{T} \cdot \sin r
\end{array}\right\}
$$

Multiplying these equations by $\sin (q-r), \sin (r-p)$, and $\sin (p-q)$ respectively, and adding them, there results

$$
\begin{equation*}
\frac{u}{A} \sin (q-r)+\frac{v}{B} \sin (r-p)+\frac{v v}{C} \sin (p-q)=0 \tag{4}
\end{equation*}
$$

i.e. since a linear equation connects the quantities u, v, w, the vibration form is always a plane curve.

The equations of its projections upon the coordinate planes may be obtained by eliminating t from any two of equations (3). Thus, for instance, from the first two of these equations $\sin 2 \pi \frac{t}{T}(\cos p \sin q-\cos q \sin p)=\frac{u}{A} \sin q-\frac{v}{B} \sin p$, $\cos 2 \pi \frac{t}{T}(\cos p \sin q-\cos q \sin p)=-\frac{u}{A} \cos q+\frac{v}{B} \cos p$. Squaring and adding these two equations gives

$$
\begin{equation*}
\sin ^{2}(p-q)=\frac{u^{2}}{A^{2}}+\frac{v^{2}}{B^{2}}-\frac{2 u z v}{A B} \cos (p-q) \ldots \tag{5}
\end{equation*}
$$

But this is the equation of an ellipse whose principal axes coincide with the coordinate axes when $p-q=\frac{\pi}{2}$. Hence, in the most general casc, the vibration form is a planc clliptical curve. This corresponds to so-called clliptically polcrized light. When the vibration form becomes a circle, the light is said to be circularly polarized. This occurs, for instance, when $w=0, A=B$, and $p-q= \pm \frac{\pi}{2}$, so that either the relation

$$
\begin{equation*}
u=A \sin 2 \pi \frac{t}{T}, \quad v=A \cos 2 \pi \frac{t}{T} \tag{6}
\end{equation*}
$$

or the relation

$$
u=A \sin 2 \pi \frac{t}{T}, \quad v=-A \cos 2 \pi \frac{t}{T}
$$

holds. These two cases are distinguished as right-handcd and left-handed circular polarization. The polarization is righthanded when, to an observer looking in a direction opposite
to that of propagation, the rotation corresponds to that of the hands of a watch. When the vibration ellipse becomes a straight line, the light is said to be plane-polarized. "This occurs when $w=0$, and $p-q=0$ or π. The equation of the path is then, by (5),

$$
\begin{equation*}
\frac{u}{A} \pm \frac{v}{B}=0 \tag{7}
\end{equation*}
$$

The intensity of the disturbance has already been set equal to the square of the amplitude A of the light vector. This point of view must now be maintained, and it must be remembered that the square of the amplitude is equal to the sum of the squares of the amplitudes of the three components. The intensity J is then, in accordance with the notation in (2),

$$
\begin{equation*}
J \sim A^{2}+B^{2}+C^{2} \tag{8}
\end{equation*}
$$

An investigation will now be made of the vibration form which corresponds to the light which in the previous paragraph was merely said to be polarized, i.e. the light which has suffered double refraction or reflection at the polarizing angle. The principal characteristic of this light is that two rays which are polarized at right angles never interfere, but give always an intensity equal to the sum of the intensities of the separate rays.

If there be superposed upon ray (2), which is assumed to be travelling along the z-axis, a ray of equal intensity, which is polarized at right angles to it and whose components are u^{\prime}, v^{\prime}, w^{\prime}, and which differs from it in phase by any arbitrary amount δ, then

$$
\begin{gather*}
u^{\prime}=B \sin \left(2 \pi \frac{t}{T}+q+\delta\right), \quad v^{\prime}=-A \sin \left(2 \pi \frac{t}{T}+p+\delta\right) \\
w^{\prime}=C \sin \left(2 \pi \frac{t}{T}+r+\delta\right) \tag{9}
\end{gather*}
$$

For, save for the difference in phase δ, these equations become equations (2) if the coordinate system be rotated through 90° about the z-axis.

By superposition of the two rays (2) and (9), i.e. by taking
the sums $u+u^{\prime}, v+v^{\prime}, v+w^{\prime}$, there results, according to the rule given above [equation (II) page I3I], for the squares of the amplitudes of the three components

$$
\begin{aligned}
& A^{\prime 2}=A^{2}+B^{2}+2 A B \cos (\delta+q-p) \\
& B^{\prime 2}=A^{2}+B^{2}-2 A B \cos (\delta+p-q) \\
& C^{\prime 2}=2 C^{2}(\mathrm{I}+\cos \delta)
\end{aligned}
$$

Addition of these three equations gives, in consideration of (8),

$$
J^{\prime}=2 J+2 C^{2} \cos \delta-4 A B \sin \delta \sin (q-p)
$$

Since now experiment shows that J^{\prime} is equal simply to the sum of the intensities of the separate rays and is wholly independent of δ, it follows that $C=0$, i.e. the light vector is perpendicular to the direction of propagation, or the wave is transverse; it also follows that $\sin (p-q)=0$, i.e., from (5) or (7), the vibration form is a straight line.

Hence rays which have suffered double refraction or reflection at the polarizing angle are plane-polarized transverse zeaves.

Since, as was shown on page 244 , the properties of a polarized ray must be symmetrical with respect to its plane of polarization, it follows that the light vector must lie either in the plane of polarization or in the plane porpendicular to it. Whether it lies in the first or the second of these planes is a question upon which light is thrown by the following experiment.
6. Stationary Waves produced by Obliquely Incident Polarized Light.-Wiener investigated the formation of stationary waves by polarized light which was incident at an angle of 45° (cf. page 155), and found that such waves were distinctly formed when the plane of polarization coincided with the plane of incidence, but that they vanished completely when the plane of polarization was at right angles to the plane of incidence. The conclusion is inevitable that the light vector zehich produccs the photographic effect* is perpendicular to the

[^58]plane of polarization; for stationary waves can be formed only when the light vectors of the incident and reflected rays are parallel. When they are perpendicular to each other every trace of interference vanishes.

It will be seen later that, from the standpoint of the electromagnetic theory, the above question has no meaning if merely the direction of the vector be taken into account. For in that theory, and in fact in any other, two vectors which are at right angles to each other (the electric and the magnetic force) are necessarily involved. However, the question may well be asked, which of these two vectors is determinative of the light phenomena, or whether, in fact, both are. If both were determinative of the photographic effect, then in Wiener's experiment no stationary waves could have been obtained even with perpendicular incidence, since the nodes of one vector coincide with the loops of the other, and inversely, as will be proved in the later development of the theory of light. But the fact that stationary waves are actually observed proves that, for the photo-chemical as well as for the fluorescent effects, only one light vector is determinative; and indeed that it is the one which is perpendicular to the plane of polarization is shown by the experiments in polarized light mentioned above.

The phenomena shown by pleochroic crystals like tourmaline lead also to the same conclusions.
7. Position of the Determinative Vector in Crystals.-In crystals the velocity depends upon the direction of the wave normal and upon the plane of polarization. Similarly in the pleochroic crystals the absorption of the light depends upon the same quantities. Now it appears* that these relations are most easily understood upon the assumption that the light vector is perpendicular to the plane of polarization. For then the velocity and the absorption t of the wave depend only upon the

[^59]direction of the light vector with respect to the optical axis of the crystal. The following example will illustrate: A plate of tourmaline cut parallel to the principal axis does not change color or brightness when rotated about that axis, i.e. when the light is made to pass through obliquely, but its direction is kept perpendicular to the axis. But the brightness of the plate changes markedly if it be rotated about an axis perpendicular to the principal axis of the crystal. The plane of polarization of the emergent ray is in the first case perpendicular to the principal axis, i.e. to the axis of rotation of the plate; in the second case it is parallel to this axis. The vector which is perpendicular to the plane of polarization is, therefore, in the first case continually parallel to the principal axis of the plate, but in the second it changes its position with respect to this axis.

Thus far no case has been observed in which a light vector which lies in the plane of polarization is alone determinative of the effects, i.e. furnishes the simplest explanation of the phenomena. Hence in view of what procedes it may be said: The light vector is perpendicular to the plane of polarization.*
8. Natural and Partially Polarized Light._It has been shown above that two plane-polarized beams may be obtained by double refraction from a single beam of natural light. Superposition of two plane-polarized rays which have the same direction but different phases and azimuths produces, as is shown by equation (5), elliptically polarized light. The vibration in such a ray is, however, wholly transverse, since the plane of the ellipse is perpendicular to the direction of propagation.

As will be fully shown later, elliptically polarized light is produced by the passage of a plane-polarized beam through a doubly refracting crystal whenever the two beams produced by the double refraction are not separated from each other.

[^60]Also the most general case, represented by equations (2), of elliptically polarized light which is not transverse can be realized by means of total reficction or absorption, as will be shown later.

The question now ariscs, What is the nature of natural light? Since it does not show different properties in different azimuths, and yet is not identical with circularly polarized light, because, unlike circularly polarized light, it shows no one-sidedness after passing through a thin doubly refracting crystal, the only assumption which can be made is that natural light is plane or elliptically polarized for a small interval of time δt, but that, in the course of a longer interval, the vibration form changes in such a way that the mean effect is that of a ray which is perfectly symmetrical about the direction of propagation.

Since Michelson has observed interference in natural light for a difference of path of $540,000 \lambda$ (cf. page 150), it is evident that in this case light must execute 540,000 vibrations at least before it changes its vibration form. But since a million vibrations are performed in a very short time, namely, in 20.10^{-10} seconds, the human eye could never recognize a ray of natural light as polarized even though several million vibrations were performed before a change occurred in the vibration form. For, in the shortest interval which is necessary to give the impression of light, the vibration form would have changed several thousand times.

As regards the two laws announced by Fresnel and Arago (cf. page 247), the second, namely, that two rays polarized at right angles interfere when they are brought into the same plane of polarization provided they originated in a polarized ray, is easily understood; for in this case the original ray has but one vibration form, hence the two reuniting rays must be in the same condition of polarization, i.e. must be capable of interfering. This is the case also when the original ray is natural light so long as the vibration form does not change, i.e. within the above-mentioned interval δt. But for another
interval δt^{\prime}, although interference fringes must be produced, the position of these fringes is not the same as that of the fringes corresponding to the first interval δt. For a change in the vibration form of the original ray is equivalent to a change of phase. Hence the mean intensity, taken over a large number of elements δt, is equivalent to a uniform intensity, i.e. two rays polarized at right angles to each other, which originated in natural light, do not interfere even though they are brought together in the same azimuth. This is the first of the Fresnel-Arago laws.

The term partially polarized light is used to denote the effect produced by a superposition of natural light and light polarized in some particular way. Partially polarized light has different properties in different directions, yet it can never be reduced to plane polarized light, as can be done with light which has a fixed vibration form (cf. below).
9. Experimental Investigation of Elliptically Polarized Light. -In order to obtain the vibration form of an elliptically polarized ray, it is changed into a plane-polarized ray by means of a doubly refracting crystalline plate. For, as was remarked upon page 242 , the passage of plane-polarized light through a doubly refracting crystal decomposes it into two waves polarized at right angles to each other. The directions of the light vectors in the two waves are called the principal directions of vibration. These have fixed positions within the crystal and are perpendicular to each other. Since now the two rays are propagated with different velocities within the crystal, they acquire a difference of phase which depends upon the nature and thickness of the plate. An incident light vector which is parallel to one of these two principal directions of vibration within the crystal is not decomposed into two waves.

Two methods of procedure are now possible: first, the plate of crystal may be of such thickness that it introduces a difference of phase of $\frac{\pi}{2}$ (difference of path $\frac{1}{4} \lambda$) between the two waves propagated through it. This is called a quarter-wave
plate (Senarmont's compensator). If the quarter-wave plate is rotated until its principal directions are parallel to the principal axes of the elliptical vibration form of the incident light, the emergent light must evidently be plane-polarized, and the position of its plane of polarization must depend upon the ratio of the principal axes of the incident ellipse. For the two light vectors which lie in the directions of the principal axes of this ellipse have, after passage through the plate, a difference of phase of 0 or π, and in this case there results (cf. page 250) plane-polarized light in which the direction of the light vector is given by equation (7). Hence if the emergent light is observed through a nicol, entire darkness is obtained when the nicol is in the proper azimuth. Hence this method of investigation requires a rotation both of the crystalline plate about its normal and of the nicol about its axis until complete darkness is obtained. The position of the crystal then gives the position of the principal axes of the incident ellipse; that of the nicol, the ratio of these axes.

Second, a fixed plate of variable thickness, such as a quartz wedge, may be used in order to give those two components of the incident light which are in the principal directions of vibration of the plate such a difference of phase that, after passage through the crystal, they combine to form plane-polarized light. A nicol is used to test whether or not this has been accomplished. The position of the nicol gives the ratio of the components u, v, of the incident light, while their original difference of phase is calculated from the thickness of the plate which has been used to change the incident light into planepolarized light.

In order that the crystal may produce a difference of phase zero, it is convenient to so combine two quartz wedges, whose optical axes lie in different directions, that they produce differ-

[^61]whose principal axis is perpendicular to the edge but parallel to the surface (Babinet's compcnsator). Only the difference in the thickness of the two wedges is effective. Hence, if the incident light is homogeneous and elliptically polarized, a suitable setting of the analyzing nicol brings out dark bands which run parallel to the axis of the wedge. These bands move across the compensator if one wedge is displaced with reference to the other. A micrometer screw effects this displacement. After the instrument has been calibrated by means of planepolarized light, it is easy from the reading on the micrometer when a given band has been brought into a definite position to calculate the difference of phase of those two components u, v, which are parallel to the two principal axes of the quartz wedges.

The construction must be somewhat altered if it is desired to obtain a large uniform field of plane-polarized light. Then, in place of a quartz wedge, a plane parallel plate of quartz must be used as a compensator. Such a plate is produced by combining two adjustable quartz wedges whose axes lie in the same direction (Fig. 80). In order to make

Fig. 80. it possible to introduce a difference of phase zero, the two wedges are again combined with a plane parallel plate of quartz B whose principal axis is at right angles to the axes of A and A^{\prime}; so that the effective thickness is the difference between the thickness of B and the sum of the thicknesses of the wedges A and A^{\prime}. This construction, that of the SoleilBabinet compensator, is shown in Fig. 80. In the wedges A, A^{\prime} the principal axis is parallel to the edges of the wedges; in the plate B the principal axis is perpendicular to the edge and parallel to the surface. It is convenient to have one plate, for example A^{\prime}, cemented to B, while A is micrometrically adjustable. For a suitable setting of the micrometer and the analyzing nicol the whole field is dark.

This construction of the compensator is particularly con-
venient for studying the modifications which plane-polarized light undergoes upon reflection or refraction. In a spectromcter (Fig. 81) the collimator K and the telescope F are furnished with nicol prisms whose orientations may be read off on the graduated circles p, p^{\prime}. The Soleil-Babinet compen-

Fig. 81.
sator C is attached to the telescope. Its principal directions of vibration (the principal axes) are parallel and perpendicular to the plane of incidence of the light. S is the reflecting or refracting body. Thus the light is parallel in passing through the nicols and the compensator.*

[^62]
SECTION II
 OPTICAL PROPERTIES OF BODIES

CHAPTER I

THEORY OF LIGHT

1. Mechanical Theory.--The aim of a theory of light is to deduce mathematically from some particular hypothesis the differential equation which the light vector satisfies, and the boundary conditions which must be fulfilled when light crosses the boundary between two different media. Now the differential equation (I2) on page 169 of the light vector is also the general equation of motion in an elastic medium, and hence it was natural at first to base a theory of light upon the theory of elasticity. According to this mechanical conception, a lig-ht vector must be a displacoment of the ether particles from their positions of equilibrium, and the ether, i.e. the medium in which the light vibrations are able to be propagated, must be an elastic material of very small density.

But a difficulty arises at once from the fact that light-waves are transverse. In general both transverse and longitudinal vibrations are propagated in an elastic medium; but fluids which have no rigidity are capable of transmitting longitudinal vibrations only, while solids which are perfectly incompressible can transmit transverse vibrations only. The fact that the heavenly bodies move without friction through free space would point strongly to the conclusion that the ether is a fluid, not an in-
compressible solid. Nevertheless this difficulty may be met by the consideration that, with respect to such slowly acting forces as are manifested in the motions of the heavenly bodies, the ether acts like a frictionless fluid; while, with respect to the rapidly changing forces such as are present in the vibrations of light, a slight trace of friction causes it to act like a rigid body.

But a second difficulty arises in setting up the boundary conditions for the light vector. The theory of elasticity furnishes six conditions for the passage of a motion through the bounding surface between two elastic media, namely, the equality on both sides of the boundary of the components of the displacements of the particles, and the equality of the components of the elastic forces. But in order to satisfy these six conditions both transverse and longitudinal waves must be present. How the various mechanical theories attempt to meet this difficulty will not be considered here:* suffice it to say that most of these theories retain only four of the boundary conditions.

In order to bring theory into agreement with the observations upon the properties of reflected light, for instance to deduce Brewster's law as to the polarizing angle (cf. page 246), it is necessary to assume either that the density or that the elasticity of the ether is the same in all bodies. The former standpoint was taken by F. Neumann, the latter by Fresnel. Neumann's assumption leads to the conclusion that the displacement of the ether particles in a plane-polarized ray lies in the plane of polarization, while Fresnel's makes it perpendicular to this plane.
2. Electromagnetic Theory.-The fundamental hypothesis of this theory, first announced by Faraday, and afterwards mathematically developed by Maxwell, is that the velocity of light in a non-absorbing medium is identical with the velocity of

[^63]an electromagnetic wave in the same medium. Either the electric or the magnetic force may be looked upon as the light vector; both are continually vibrating and, in a plane-polarized ray, are perpendicular to each other. This two-sidedness of the theory leaves open the question as to the position of the light vector with respect to the plane of polarization; nevertheless, for the reasons stated on page 252 , it is simpler to interpret the electric force, which lies perpendicular to the plane of polarization, as the light vector. This leads to the results of Fresnel's mechanical theory, while Neumann's results are obtained when the magnetic force is interpreted as the light vector.

The following are the essential advantages of the electromagnetic theory:
I. That the waves are transverse follows at once from Maxwell's simple conception of electromagnetic action, according to which there exist only closed electrical circuits.
2. The boundary conditions hold for every electromagnetic field. It is not necessary, as in the case of the mechanical theories, to make special assumptions for the light vibrations.
3. The velocity of light in space, and in many cascs in ponderable bodies also, can be determinued from pure clectronnagnetic experiments. This latter is an especial advantage of this theory over the mechanical theory, and it was this point which immediately gained adherents for the electromagnetic conception of the nature of light. In fact it is an epoch-making advance in natural science when in this way two originally distinct fields of investigation, like optics and electricity, are brought into relations which can be made the subject of quantitative measurements.

Henceforth the electromagnetic point of vieze will be maintained. But it may be remarked that the conclusions reached in the preceding chapters are altogether independent of any particular theory, i.e. independent of what is understood by a light vector.
3. The Definition of the Electric and of the Magnetic Force.-Two very long thin magnets exert forces upon each other which appear to emanate from the ends or poles of the magnets. The strengths of two magnet-poles m and m_{1} are defined by the fact that in a vacuum, at a distance apart r, they exert upon each other a mechanical force (which can be measured in C. G. S. units)

$$
\begin{equation*}
K=\frac{m \cdot m_{1}}{r^{2}} \tag{I}
\end{equation*}
$$

In accordance with this equation a mit magnetic pole ($m=1$) is defined as one which, placed at unit distance from a like pole, exerts upon it unit force.

The strength $\mathfrak{5}$ of a magnetic field in any medium* is the force which the field exerts upon unit magnetic pole. The components of \mathfrak{F} along the rectangular axes x, y, z will be denoted by α, β, γ.

The direction of the magnetic lines of force determines the direction of the magnetic field; the density of the lines, the strength of the field, since in a vacuum the strength of field is represented by the number of lines of force which pass perpendicularly through unit surface. A correct conception of the law of force (I) is obtained if a pole of strength m be conceived as the origin of $4 \pi m$ lines of force. For then the density of the lines upon a sphere of radius r described about the pole as centre is equal to $m: r^{2}$, i.e. is equal to the strength of field \mathfrak{F}, according to law (I).

Similar definitions hold in the electrostatic system for the electric field.

The quantities of two electric charges e and e_{1} are defined by the fact that in a vacuum, at a distance apart r, they exert upon each other a measurable mechanical force

$$
\begin{equation*}
K=\frac{e \cdot e_{1}}{r^{2}} . \tag{2}
\end{equation*}
$$

The definition of unit charge is then similar to that of unit pole above.

* This medium can be filled with matter or be totally devoid of it.

The strength \mathfrak{F} of cuny clectric field in any medium is the force which it exerts upon unit charge. The components of \mathfrak{F} along the three rectangular axes will be denoted by X, Y, Z.

The direction of the electric lines of force determines the direction of the electric field, and the number of lines which intersect perpendicularly unit surface in a vacuum determines the strength \mathfrak{F} of the field. Hence, since law (2) holds, $4 \pi_{e}$ lines of force originate in a charge whose quantity is e.
4. Definition of the Electric Current in the Electrostatic and in the Electromagnetic Systems.-In the electrostatic system the electric current i which is passing through any crosssection q is defined as the number of electrostatic units of quantity which pass through q in unit time. Thus if, in the element of time $d t$, the quantity $d e$ passes through q, the current is

$$
\begin{equation*}
i=\frac{d e}{d t} . \tag{3}
\end{equation*}
$$

If the cross-section q is unity, i is equal to the current density j. The components of the current density, namely, j_{x}, j_{y}, j_{z}, are obtained by choosing q perpendicular to the x-, y-, or z-axis respectively.

In the electromagnetic systenn, the cutrent i^{\prime} is defined by means of its magnetic effect. A continuous current is obtained in a wire when the ends of the wire are connected to the poles of a galvanic cell. In this case also definite quantities of electricity are driven along the wire, for the isolated poles of the cell are actually electrically charged bodies. A magnetic pole placed in the neighborhood of an electric current is acted upon by a magnetic force. In the electromagnctic system the current i^{\prime} is defincd by the fact that it requires $4 \pi i^{\prime}=\mathfrak{N}$ units of work to carry unit magnetic pole once around the current.*

Take, for example, a rectangle whose sides are $d x, d y$ (Fig. 82), and through which a current $i^{\prime}=j_{x}^{\prime} \cdot d x d y$ flows in a

[^64]direction perpendicular to its plane. j_{z}^{\prime} is the z-component of the current density in the electromagnetic system. If the current flows toward the reader (Fig. 82), and the positive direction of the coordinates is that shown in the figure, then, according to Ampère's rule, a positive magnetic pole is deflected in the direction of the arrow. The whole work \mathfrak{A} done in moving a magnet pole $m=+\mathrm{I}$ around the circuit from A through B, C, D, and back to A is
\[

$$
\begin{equation*}
\mathfrak{X}=\alpha \cdot d x+\beta^{\prime} \cdot d y-\alpha^{\prime} \cdot d x-\beta \cdot d y \tag{4}
\end{equation*}
$$

\]

if α and β denote the components of the magnetic force which act along $A B$ and $A D$, while α^{\prime} and β^{\prime} denote the components which act along $D C$ and $B C$. $\quad \alpha^{\prime}$ differs from α only in that it acts along a line whose y-coordinate is $d y$ greater than the y-coordinate of the line $A B$ along which α acts. When $d y$ is sufficiently small $\left(\alpha^{\prime}-\alpha\right): d y$ is the differential coefficient $\partial \alpha: \partial y$, so that

$$
\alpha^{\prime}=\alpha+\frac{\partial \alpha}{\partial y} d y
$$

Similarly

$$
\beta^{\prime}=\beta+\frac{\partial \beta}{\partial x} d x
$$

so that, from (4),

$$
\mathfrak{N}=\left(\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial y}\right) d x d y .
$$

Since now by the definition of the current i^{\prime} this work is equal to $4 \pi i^{\prime}=4 \pi j_{x}^{\prime} \cdot d x d y$, it follows that

$$
4 \pi j_{s}^{\prime}=\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial y},
$$

and in the same way the two other differential equations may be deduced, namely,

$$
\left.\begin{array}{l}
4 \pi j_{x}^{\prime}=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z} \tag{5}\\
4 \pi j_{y}=\frac{\partial \alpha}{\partial z}-\frac{\partial \gamma}{\partial x}
\end{array}\right\}
$$

These are Maxwell's differential equations of the electromagnetic field. In order to use them with the signs given in (5), the coordinate system must be chosen in accordance with Fig. 82. In these equations the current density j^{\prime} defined electromagnetically may be replaced by the current density j defined electrostatically by introducing c, the ratio of the electromagnetic to the electrostatic unit. Thus

$$
\begin{equation*}
i: i^{\prime}=c, \quad j_{x}: j_{x}^{\prime}=c, \text { etc. } \tag{6}
\end{equation*}
$$

Hence, by (5),

$$
\begin{equation*}
\frac{4 \pi}{c} j_{x}=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}, \frac{4 \pi}{c} j_{y}=\frac{\partial \alpha}{\partial z}-\frac{\partial \gamma}{\partial x}, \frac{4 \pi}{c} j_{z}=\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial y} . \tag{7}
\end{equation*}
$$

These equations are independent of the nature of the medium in which the electromagnetic phenomena occur (cf. note 1, page 263), and honce they hold also in non-homogeneous and crystalline media.

The value of the ratio c can be obtained by observing the magnetic effect which is produced by the discharge of a quantity e of electricity measured in electrostatic units. It may be shown that c has the dimensions of a velocity. Its value is

$$
c=3 \cdot 10^{10} \mathrm{~cm} . / \mathrm{sec}
$$

5. Definition of the Magnetic Current.-Following the analogy of the electric current, the magnetic current which passes through any cross-section q is defined as the number of units of magnetism which pass through q in unit time. The magnetic current divided by the area of the surface q is called the density of the current, and its components are represented by s_{x}, s_{y}, s_{x}.

Equations (7) express the fact that an electric current is always surrounded by circular lines of magnetic force. But on the other hand a magnetic current must always be surrounded by circular lines of electric force. This follows at once from an application of the principle of energy.

Fig. 82.

Imagine the rectangle $A B C D$ of Fig. 82 traversed by an elec-
tric current of intensity i (measured in electrostatic units) flowing in the direction of the arrows. Then a positive magnetic pole would be driven through the rectangle toward the reader, i.e. in the positive direction of the z-axis, and would continually revolve about one side of the rectangle. The work thus performed must be done at the expense of the amount of energy which is required to maintain the current at the constant intensity i while it is doing the work; or, in other words, the motion of the pole must create a certain counter-electromotive force which must be overcome if the current is to remain constant. The expression for the work done when a unit charge is carried once about the rectangle in the direction of the arrows is analogous to that given in (4) and (4^{\prime}), i.e.

$$
\begin{equation*}
\mathfrak{U}=\left(\frac{\partial Y}{\partial x}-\frac{\partial X}{\partial y}\right) d x d y \tag{8}
\end{equation*}
$$

In order to maintain the current at intensity i during the time t, this work must be multiplied by the number of unit charges which traverse the circuit in the time t, i.e. by $i \cdot t$. The principle of energy requires that this work $\mathfrak{N i t}$ be equal to the work which is done upon a magnet pole of strength m in carrying it once around a side of the rectangle in the time t. Since (cf. page 263) this work is equal to $4 \pi m i^{\prime}=4 \pi m i: c$, it follows that

$$
\begin{equation*}
\mathfrak{N} \cdot i \cdot t=4 \pi m i: c, \quad \text { i.e. } \mathfrak{A}=4 \pi m: c t . \tag{9}
\end{equation*}
$$

But $m: t$ is the strength of the magnetic current which passes through the rectangle, and $m / t \cdot d x d y$ is equal to the z-component of the magnetic density. Hence from (8) and (9) it follows that

$$
\begin{equation*}
\frac{4 \pi}{c} s_{z}=\frac{\partial Y}{\partial x}-\frac{\partial X}{\partial y} . \tag{IO}
\end{equation*}
$$

And similarly two other equations for s_{x} and s_{y} are obtained.
In (10) X and Y represent the electric forces which must be called into play in order to keep the current constant. But
if X and Y denote the opposite forces produced by the magnetic current by induction, they are of the same magnitude but opposite in sign. Hence
$\frac{4 \pi}{c} s_{x}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}, \quad \frac{4 \pi}{c} s_{y}=\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}, \quad \frac{4 \pi}{c} s_{z}=\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x}$.
These equations are perfectly general and hold in all media, even in those which are non-homogeneous and crystalline.

The general equations (7) and (II) may be called the fundamental equations of Maxwell's theory. In all extensions of the original theory of Maxwell to bodies possessing peculiar optical properties, such as dispersion, absorption, natural and magnetic rotation of the plane of polarization, these fundamental equations remain unchanged. But the equations which connect j_{x} and s_{x}, etc., with the electric and magnetic forces have different forms for particular cases.
6. The Ether.-Constant electric currents can only be produced in conductors like the metals, not in dielectrics. Nevertheless a change in an electric charge produces in the latter currents which are called displacement currents to distinguish them from the conduction currents, and the cornerstone of Maxwell's theory is the assumption that these displacement currents have the same magnetic effects as the conduction currents. This assumption gives to Maxwell's theory the greatest simplicity in comparison with the other electrical theories. Constant magnetic currents cannot be produced, since there are no magnetic conductors.

It is first necessary to determine how the electric and magnetic current densities in the free ether depend upon the electric and magnetic forces. In the free ether there are no charges e or poles m concentrated at given points, but there are lines of force. Now, in accordance with the convention adopted on pages 262 and 263 , namely, that every charge c or pole m sends out $4 \pi e$ or $4 \pi m$ lines of force, it may be said that 4π multiplied by the current density is equal to the change in the density of the lines of force in unit time, i.e.

$$
\left.\begin{array}{l}
4 \pi j_{x}=\frac{\partial N_{x}}{\partial t}, \quad 4 \pi j_{y}=\frac{\partial N_{y}}{\partial t}, \quad 4 \pi j_{x}=\frac{\partial N_{x}}{\partial t}, \\
4 \pi s_{x}=\frac{\partial M_{x}}{\partial t}, \quad 4 \pi s_{y}=\frac{\partial M_{y}}{\partial t}, \quad 4 \pi s_{x}=\frac{\partial M_{x}}{\partial t}, \tag{I2}
\end{array}\right\}
$$

in which $N_{x}, N_{y}, N_{x}, M_{x}, M_{y}, M_{z}$ are the components of the densities of the electric and magnetic lines of force. But now, in accordance with the definitions on pages 262 and 263 , in a vacuum the density of the electric or magnetic lines of force is numerically equal to the electric or magnetic force, so that, for a vacuum, equations (12) become

$$
\left.\begin{array}{l}
4 \pi j_{x}=\frac{\partial X}{\partial t}, \quad 4 \pi j_{y}=\frac{\partial Y}{\partial t}, \quad 4 \pi j_{x}=\frac{\partial Z}{\partial t} \\
4 \pi s_{x}=\frac{\partial \alpha}{\partial t}, \quad 4 \pi s_{y}=\frac{\partial \beta}{\partial t}, \quad 4 \pi s_{x}=\frac{\partial \gamma}{\partial t} \tag{I3}
\end{array}\right\}
$$

Hence for the free ether the equations (7) and (II) of the electromagnetic field take the form

$$
\left.\begin{array}{l}
\frac{\mathrm{I}}{\mathrm{c}} \frac{\partial X}{\partial t}=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}, \quad \frac{\mathrm{I}}{c} \frac{\partial Y}{\partial t}=\frac{\partial \alpha}{\partial z}-\frac{\partial \gamma}{\partial x}, \quad \frac{\mathrm{I}}{c} \frac{\partial Z}{\partial t}=\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial y} \\
\frac{\mathrm{I}}{\mathrm{c}} \frac{\partial \alpha}{\partial t}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}, \quad \frac{\mathrm{I}}{c} \frac{\partial \beta}{\partial t}=\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}, \quad \frac{\mathrm{I}}{c} \frac{\partial \gamma}{\partial t}=\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x} . \tag{14}
\end{array}\right\}
$$

7. Isotropic Dielectrics.-For a space filled with insulating matter laws (I) and (2) must be modified. For if the electric charges e and e_{1} are brought from empty space into a dielectric, for example a fluid, they exert a weaker influence upon each other than in empty space, so that it is necessary to write

$$
\begin{equation*}
K=\frac{\mathrm{I}}{\epsilon} \frac{e e_{1}}{r^{2}} . \tag{15}
\end{equation*}
$$

The constant ϵ is called the dielectric constant. The definition holds also for solid bodies, only in them the attracting or repelling forces cannot be observed so conveniently as in fluids. But there are other methods of determining the dielectric constant of solid bodies for which the reader is referred to texts
upon electricity. The dielectric constant of all material bodies is greater than I .

Similarly the forces between magnetic poles are altered somewhat when the poles are brought from a vacuum into a material substance, so that it is necessary to write

$$
\begin{equation*}
K=\frac{\mathrm{I}}{\mu} \frac{m m_{1}}{r^{2}} \tag{I6}
\end{equation*}
$$

The constant μ is called the permeability of the substance. It is sometimes greater than I (paranagnetic bodies), sometimes less than I (diamagnetic bodies). It differs appreciably from I only in the paramagnetic metals iron, nickel, and cobalt. At present dielectrics only are important since it is desired to consider first perfectly transparcnt substances, namely, those which transmit the energy of the electromagnetic waves without absorption, i.e. without becoming heated. In dielectrics μ differs so little from I (generally only a few thousandths of I per cent) that in what follows it will alzuays be considered equal to r.*

Because of the change of the law (2) into (15) a change must also be made in equations (13), since with the same currents the electric force in the dielectric is $\frac{I}{\epsilon}$ weaker than in the free ether. Hence (I 3) become

$$
\begin{equation*}
4 \pi j_{x}=\epsilon \frac{\partial X}{\partial t}, \text { etc., } \quad 4 \pi s_{x}=\mu \frac{\partial \alpha}{\partial t}, \text { etc. } \tag{17}
\end{equation*}
$$

For an isotropic dielectric, since equations (7) and (II) are applicable to this case also, the following equations hold when $\mu=\mathrm{I}$:
$\frac{\epsilon}{c} \frac{\partial X}{\partial t}=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}, \quad \frac{\epsilon}{c} \frac{\partial Y}{\partial t}=\frac{\partial \alpha}{\partial z}-\frac{\partial \gamma}{\partial x}, \quad \frac{\epsilon}{c} \frac{\partial Z}{\partial t}=\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial y}$,
$\left.\frac{\mathrm{I} \partial \alpha}{c \partial t}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}, \quad \frac{\mathrm{I}}{c} \frac{\partial \beta}{\partial t}=\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}, \quad \frac{\mathrm{I}}{c} \frac{\partial \gamma}{\partial t}=\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x}.\right\}$

[^65]These equations completely determine all the properties of the electromagnetic field in a dielectric.

If equations (12) be considered general, i.e. if the number of lines of force which originate in a charge be considered independent of the nature of the medium, then a comparison of (17) with (I2) shows that within the body

$$
\left.\begin{array}{ll}
N_{x}=\epsilon X, & N_{y}=\epsilon Y, \quad N_{x}=\epsilon Z \tag{19}\\
M_{x}=\mu \alpha, & M_{y}=\mu \beta, \quad M_{z}=\mu \gamma
\end{array}\right\}
$$

i.e. only in the ether $(\epsilon=1, \mu=1)$ is the density of the lines of force numerically equal to the electric, or the magnetic, force.
$4 \pi^{e} e$ lines of force must be sent out from the entire surface of an elementary cube which contains the charge e and has the dimensions $d x d y d z$. But the number of emitted lines can also be calculated from the surface of the cube; thus the two sides which lie perpendicular to the x-axis emit the number $-\left(N_{x}\right)_{1} d y d z+\left(N_{x}\right)_{2} d y d z$, in which the indices I and 2 relate to the opposite faces which are $d x$ apart. Now evidently, from the definition of a derivative,

$$
\left(N_{x}\right)_{2}=\left(N_{x}\right)_{1}+\frac{\partial N_{x}}{\partial x} d x
$$

so in this way the whole number of lines passing out of the surface is found to be

$$
\left(\frac{\partial N_{x}}{\partial x}+\frac{\partial N_{y}}{\partial y}+\frac{\partial N_{z}}{\partial z}\right) d x d y d z
$$

If this expression be placed equal to $4 \pi e$, then it follows, in consideration of (19), if $e: d x d y d z=\rho$ be called the density of the charge (charge of unit volume),

$$
\begin{equation*}
4^{\pi \rho}=\frac{\partial(\epsilon X)}{\partial x}+\frac{\partial(\epsilon Y)}{\partial y}+\frac{\partial(\epsilon Z)}{\partial z} \tag{20}
\end{equation*}
$$

It is evident from its derivation that this equation holds also for isotropic non-homogeneous bodies, i.e. for bodies in which ϵ varies with x, y, z. An analogous equation may be deduced for the density of the magnetization.
8. The Boundary Conditions.-If two different media are in contact, there are certain conditions which the electric and magnetic forces must fulfil in passing from one medium into the other. These conditions may be obtained from the equations (18) by the following consideration: In the passage from a medium of dielectric constant ϵ_{1} to one of dielectric constant ϵ_{2} the change in the electric and magnetic forces is not abrupt, as would be the case if the surface of separation were a mathematical plane, but gradual, so that within the transition layer the dielectric constant varies continuously from the value ϵ_{1} to the value ϵ_{2}. Also within this transition layer the equations (7), (II), and (17), and hence also (18), must hold, i.e. all the differential coefficients which appear in them must remain finite. Assume now, for example, that the plane of contact between the two media is the $x y$-plane. Since the differential coefficients $\frac{\partial Y}{\partial z}, \frac{\partial X}{\partial z}, \frac{\partial \beta}{\partial z}, \frac{\partial \alpha}{\partial z}$ must remain finite within the transition layer, it follows that, if the thickness of this layer, i.e. $d z$, is infinitely small, the changes in Y, X, β, α in the transition layer are infinitely small. In other words, the components of the clectric and magnetic forces parallel to the surface must vary continuously in passing through the transition layer, assumed to be infinitely thin. That is,

$$
\begin{equation*}
X_{1}=X_{2}, \quad Y_{1}=Y_{2}, \quad \alpha_{1}=\alpha_{2}, \quad \beta_{1}=\beta_{2} \text { for } z=0 \tag{2I}
\end{equation*}
$$

in which the subscripts refer to the two different media.
Since in equations (18) the differential coefficients $\frac{\partial Z}{\partial z}$ and $\frac{\partial \gamma}{\partial z}$ do not appear, the same conclusions do not hold for Z and γ which held for X, Y, β, α. Nevertheless it is evident from the last of equations (I8) that $\frac{\partial \gamma}{\partial t}$, and hence also γ, has the same value on both sides of the transition layer, because, for all values of x and y, X and Y have the same values on both sides of that layer. Hence there is no discontinuity in γ in passing. through the infinitely thin boundary layer. In the same way the conclusion may be drawn from the third of equations (18)
that the product ϵZ is continutous and hence that Z is .tiscontinuous. To the boundary conditions (2I) there are then also to be added

$$
\epsilon_{1} Z_{1}=\epsilon_{2} Z_{2}, \quad \gamma_{1}=\gamma_{2} \text { for } z=0
$$

But on account of the existence of the principal equations (18) only four of the six equations $(2 T)$ and $\left(2 I^{\prime}\right)$ are independent of one another.

Equation (19) in connection with (21) shows that the lines of force do not have free ends at the boundary between two media. (N.B in ($2 \mathrm{I}^{\prime}$) μ is assumed equal to I , otherwise it would be necessary to write $\mu_{1} \gamma_{1}=\mu_{2} \gamma_{2}$.
9. The Energy of the Electromagnetic Field.-If equations (I8) be multiplied by the factors $X d \tau, Y d \tau, Z d \tau, \alpha d \tau$, $\beta d \tau, \gamma d \tau$, in which $d \tau$ represents an element of volume, and then integrated over any region, there results, after adding and setting

$$
\left.\begin{array}{rl}
ほ=\frac{\epsilon}{8 \pi}\left(X^{2}+Y^{2}+Z^{2}\right)+\frac{1}{8 \pi}\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right) \\
\frac{4 \pi}{c} \frac{\partial}{\partial t} \int \mathfrak{E} d \tau & =\int\left(\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}\right) X d \tau+\ldots \tag{23}\\
& +\int\left(\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}\right) \alpha d \tau+\ldots
\end{array}\right\}
$$

The application of theorem (20) on page 173 gives

$$
\int \frac{\partial \gamma}{\partial y} X d \tau=-\int \gamma X \cos (n y) d S-\int \gamma \frac{\partial X}{\partial y} d \tau
$$

in which $d S$ denotes an element of the surface which bounds the region over which the integration is taken, and n the inner normal to $d S$. When this transformation is applied to the first three integrals which appear on the right-hand side of (23) the volume integrals disappear, and there results

$$
\begin{array}{r}
\frac{\partial}{\partial t} \int \check{\int} d \tau=\frac{c}{4 \pi} \int[(y Y-\beta Z) \cos (n x)+(\alpha Z-\gamma X) \cos (n y) \\
 \tag{24}\\
+(\beta X-\alpha Y) \cos (n z)] d S
\end{array}
$$

If the region of integration be taken so. large that at its limits the electric and magnetic forces are vanishingly small, then equation (24) asserts that the quantity \mathfrak{F} for this region does not vary with the time. 『 signifies the energy of the electromagnetic field in unit volume. This can be shown to be the meaning of \mathfrak{C} by a calculation of the work done in moving the electric or the magnetic charges. (Cf. Drude, Physik des Aethers, pages 127, 272.)
10. The Rays of Light as the Lines of Energy Flow.-If at the boundary of the region of integration $X, Y, Z, \alpha, \beta, \gamma$, do not vanish, equation (24) can be interpreted to mean that the change of electromagnetic energy in any region is due to an inflow or outflow of energy through the boundary. According to (24), the components of this energy flow, represented by f_{x}, f_{y}, f_{z}, may be regarded as the following:

$$
\begin{equation*}
f_{x}=\frac{c}{4 \pi}(\gamma Y-\beta Z), f_{y}=\frac{c}{4 \pi}(\alpha Z-\gamma X), f_{z}=\frac{c}{4 \pi}(\beta X-\alpha Y) . \tag{25}
\end{equation*}
$$

From this it follows that

$$
\begin{gathered}
\alpha \cdot f_{x}+\beta \cdot f_{y}+\gamma \cdot f_{z}=0 \\
X \cdot f_{x}+Y \cdot f_{y}+Z \cdot f_{z}=0
\end{gathered}
$$

and hence the direction of the flow of energy is always perpendicular to the electric and magnetic forces.

This theory, due to Poynting, of the flow of energy in the electromagnetic field, is of great importance in the theory of light in that the rays of light must be considered as the lines of energy flow. For on page 2 a light-ray which passes from a source Q to a point P was defined as the locus of those points at which an obstacle, i.e. an opaque body, must be placed in order to cut off the light effect at P. Now evidently the energy cannot be propagated from Q to P if the lines of energy flow from Q to P are intercepted by an obstacle.

Hence, by (25), the direction of the rays of light must be perpendicular to the electric and magnetic forces.

CHAPTER II

TRANSPARENT ISOTROPIC MEDIA

I. Velocity of Light.-From the standpoint of the electric theory a plane electromagnetic wave may be conceived to originate as follows: Imagine that at a certain instant an electric current parallel to the x-axis is excited in a thin layer which is parallel to the $x y$-plane. This current gives rise to magnetic forces at the surface of the layer, which are parallel to the y-axis. The growth of the magnetic field induces electric forces which within the layer are parallel to the negative x-axis, without the layer parallel to the positive x-axis. Hence within the layer the electric current disappears, because the induced currents neutralize the original current; but in its place there arises outside the layer electric currents which run along the positive direction of the x-axis. In this way an electric impulse is propagated in the form of a wave along both the positive and negative directions of the z-axis.

In order to find the velocity of propagation, it is necessary to return to equations (i8) of the previous chapter.

If the first three of these equations be differentiated with respect to the time, and if the values of $\frac{\partial \alpha}{\partial t}, \frac{\partial \beta}{\partial t}, \frac{\partial \gamma}{\partial t}$ given in the last three of these equations be introduced, there results

$$
\frac{\epsilon}{c^{2}} \frac{\partial^{2} X}{\partial t^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x}\right)-\frac{\partial}{\partial z}\left(\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}\right),
$$

and similarly two other equations are obtained. Now this equation may be written in the form

$$
\begin{equation*}
\frac{\epsilon}{c^{2}} \frac{\partial^{2} X}{\partial t^{2}}=\frac{\partial^{2} X}{\partial x^{2}}+\frac{\partial^{2} X}{\partial y^{2}}+\frac{\partial^{2} X}{\partial z^{2}}-\frac{\partial}{\partial x}\left(\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}\right) \tag{I}
\end{equation*}
$$

Also differentiation of the first three of the equations (18) with respect to x, y, z, and addition of them gives

$$
\frac{\partial}{\partial t}\left(\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}\right)=0
$$

Since in what follows we are only concerned with periodic changes in the electric and magnetic forces, and since for these the differential coefficient with respect to the time is proportional to the changes themselves (when the phase $\frac{\pi}{2}$ has been added), the conclusion may be drawn from the last equation that

$$
\begin{equation*}
\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}=0 \tag{2}
\end{equation*}
$$

Hence equation (r) becomes

$$
\frac{\epsilon}{c^{2}} \frac{\partial^{2} X}{\partial t^{2}}=\frac{\partial^{2} X}{\partial x^{2}}+\frac{\partial^{2} X}{\partial y^{2}}+\frac{\partial^{2} X}{\partial z^{2}}=\Delta X
$$

Similar equations hold for Y and Z, so that the following system of equations is obtained:

$$
\begin{equation*}
\frac{\epsilon}{c^{2}} \frac{\partial^{2} X}{\partial t^{2}}=\Delta X, \quad \frac{\epsilon}{c^{2}} \frac{\partial^{2} Y}{\partial t^{2}}=\Delta Y, \quad \frac{\epsilon}{c^{2}} \frac{\partial^{2} Z}{\partial t^{2}}=\Delta Z \tag{3}
\end{equation*}
$$

For the components of the magnetic force similar equations hold, thus

$$
\begin{array}{r}
\frac{\partial \alpha}{\partial x}+\frac{\partial \beta}{\partial y}+\frac{\partial \gamma}{\partial z}=0, . . . \\
\frac{\epsilon}{c^{2}} \frac{\partial^{2} \alpha}{\partial t^{2}}=\Delta \alpha, \quad \frac{\epsilon}{c^{2}} \frac{\partial^{2} \beta}{\partial t^{2}}=\Delta \beta, \quad \frac{\epsilon}{c^{2}} \frac{\partial^{2} \gamma}{\partial t^{2}}=\Delta \gamma .
\end{array}
$$

Now it has been shown on page 170 that differential equations of the form of (3) and (3^{\prime}) represent waves which are propagated with a velocity

$$
\begin{equation*}
V=\frac{c}{\sqrt{\epsilon}} \cdot \quad \cdot \quad \cdot \cdot \cdot \tag{4}
\end{equation*}
$$

This is then, according to the electromagnetic view of the nature of light, the velocity of light, and it is immaterial whether the electric or the magnetic force be interpreted as the light vector, for the two are inseparably connected and have the same velocity.

- Applying equation (4) to the case of the free ether, it follows that the velocity of light in ether is equal to the ratio of the electromagnetic to the electrostatic units. This conclusion has actually been strikingly verified, for (cf. page 119) the mean of the best determinations of the velocity of light was seen to be $V=2.9989 \cdot 10^{10} \mathrm{~cm} . / \mathrm{sec}$., a number which agrees within the observational error with that given for the ratio of the units, namely, $c=3 \cdot 10^{10} \mathrm{~cm} . / \mathrm{sec}$.

This is the first brilliant success of the electromagnetic theory.

According to (4) the velocity in ponderable bodies must be I $\cdot \sqrt{\epsilon}$ smaller than in the free ether, or, since the index of refraction n_{0} of a body with respect to the ether is the ratio of the velocities in ether and in the body,

$$
\begin{equation*}
n_{0}=\sqrt{\epsilon}, \quad n_{0}^{2}=\epsilon \tag{5}
\end{equation*}
$$

i.e. the square of the index of refraction is equal to the dielectric constant.

Evidently this relation cannot be rigorously fulfilled, for the reason that the index depends for all bodies upon the color, i.e. upon the period of oscillation, while from its definition ϵ is independent of the period of oscillation.

But in case of the gases, in which the dependence of the index upon the color is small, the relation (5) is well satisfied, as is shown by the following table, in which the values of the
dielectric constants are due to Boltzmann,* while the indices are those for yellow light:

	n_{0}	$\sqrt{\epsilon}$
Air.	1.000294	1.000295
Hydrogen...	1.000138	1.000132
Carbon dioxide.	1.000449	1.000 473
Carbon monoxide.	1. 000346	1.000345
Nitrous oxide	1.000503	1.000 497

Relation (5) also holds well for the liquid hydrocarbons; for example, for benzole n_{0} (yellow) $=1.482, \sqrt{\epsilon}=1.49$.

On the other hand many of the solid bodies, such as the glasses, as well as some liquids, like water and alcohol, show a marked departure from equation (5). For these substances ϵ is always larger than $n_{0}{ }^{2}$, as the following table shows:

	n_{0}	$\sqrt{\epsilon}$
Water. .	1.33	9.0
Methyl alcohol.	1.34	5.7
Ethyl alcohol..	1. 36	5.0

In order to explain these departures, the fundamental equations of the electric theory must be extended. This extension will be made in Chapter V of this section. In this extension the quantity ϵ which is here considered as constant will be found to depend upon the period of oscillation.

But first an investigation will be made from the standpoint of the electric theory of those optical properties of bodies which do not depend upon dispersion. In what follows it will be assumed that the light is monochromatic, and that the extension to be given in Chapter V has already been made, so that the constant ϵ appearing in the fundamental equations is equal to the square of the index of refraction for the given color.

[^66]2. The Transverse Nature of Plane Waves.-A plane wave is represented by the equations
\[

\left.$$
\begin{array}{l}
X=A_{x} \cdot \cos \frac{2 \pi}{T}\left(t-\frac{m x+n y+p z}{V}\right) \\
Y=A_{y} \cdot \cos \frac{2 \pi}{T}\left(t-\frac{m x+n y+p z}{V}\right) \tag{6}\\
Z=A_{x} \cdot \cos \frac{2 \pi}{T}\left(t-\frac{m x+n y+p z}{V}\right) .
\end{array}
$$\right\}
\]

For the phase is the same in the planes

$$
\begin{equation*}
m x+n y+p z=\text { const. } \tag{7}
\end{equation*}
$$

which is then the equation of the wave fronts. m, n, and p are the direction cosines of the normal to the wave front, provided the further condition be imposed that

$$
\begin{equation*}
m^{2}+n^{2}+p^{2}=\mathrm{I} \tag{8}
\end{equation*}
$$

A_{x}, A_{y}, A_{x} are the components of the amplitude of the resultant electrical force. They are then proportional to the direction cosines of the amplitude A. In consequence of equation (2) on page 275 ,

$$
\begin{equation*}
A_{x} \cdot m+A_{y} \cdot n+A_{z} \cdot p=0, \tag{9}
\end{equation*}
$$

an equation which expresses the fact that the resulting amplitude A is perpendicular to the normal to the wave front, i.e. to the direction of propagation; or in other words, that the wave is transverse. This conclusion holds for the magnetic force also. That plane waves are transverse follows from equations (2) or (2^{\prime}), i.e. from the form of the fundamental equations of the theory.
3. Reflection and Refraction at the Boundary between two Transparent Isotropic Media. -Let two media I and 2 having the dielectric constants ϵ_{1} and ϵ_{2} meet in a plane which will be taken as the $x y$-plane. Let the positive z-axis extend from medium 1 to medium 2 (Fig. 83). Let a plane wave fall from the former upon the latter at an angle of incidence ϕ, and let the $x z$-plane be the plane of incidence. The direction cosines of the direction of propagation of the incident wave are then

$$
\begin{equation*}
m=\sin \phi, \quad n=0, \quad p=\cos \phi . \tag{10}
\end{equation*}
$$

Let the incident electric force be resolved into two components, one perpendicular to the plane of incidence and of amplitude E_{s}, and one in the plane of incidence and of amplitude E_{p}. The first component is parallel to the y-axis so that, in consideration of (6) and (ro), the y-component of the incident force may be written

$$
\begin{equation*}
Y_{e}=E_{s} \cdot \cos \frac{2 \pi}{T}\left(t-\frac{x \sin \phi+z \cos \phi}{V_{1}}\right), \tag{II}
\end{equation*}
$$

in which V_{1} is the velocity of light in the first medium. By (4),

$$
\begin{equation*}
V_{1}=c: \sqrt{\epsilon_{1}} . \tag{12}
\end{equation*}
$$

Since the wave is transverse, the component E_{p} of the electrical force, which lies in the plane of incidence, is perpendicular to the ray, i.e. the components A_{x} and A_{x}, along the x - and z-axes, of the amplitude E_{p} must have the values

$$
A_{x}=E_{p} \cdot \cos \phi, \quad A_{x}=-E_{p} \cdot \sin \phi,
$$

if, as shown in Fig. 83, the positive direction of E_{p} is taken downward, i.e. into the second medium.

The x - and z-components of the electric force of the incident wave are, therefore,

$$
\left.\begin{array}{l}
X_{e}=E_{p} \cdot \cos \phi \cdot \cos \frac{2 \pi}{T}\left(t-\frac{x \sin \phi+z \cos \phi}{V_{1}}\right), \\
Z_{e}=-E_{p} \cdot \sin \phi \cdot \cos \frac{2 \pi}{T}\left(t-\frac{x \sin \phi+z \cos \phi}{V_{1}}\right) . \tag{I3}
\end{array}\right\}
$$

Now a magnetic force is necessarily connected with the electric force in the incident wave, and from the fundamental equations (18) on page 269 , and (12) above, the components of this force are found to be

$$
\left.\begin{array}{l}
\alpha_{c}=-E_{s} \cdot \cos \phi \sqrt{\epsilon_{1}} \cos \frac{2 \pi}{T}\left(t-\frac{x \sin \phi+z \cos \phi}{V_{1}}\right), \\
\beta_{c}=+E_{p} \cdot \sqrt{\epsilon_{1}} \cos \frac{2 \pi}{T}\left(t-\frac{x \sin \phi+z \cos \phi}{V_{1}}\right), \tag{14}\\
\gamma_{e}=+E_{s} \cdot \sin \phi \sqrt{\epsilon_{1}} \cos \frac{2 \pi}{T}\left(t-\frac{x \sin \phi+z \cos \phi}{V_{1}}\right) \cdot
\end{array}\right\}
$$

If $E_{s}=0, E_{p}>0$, then $\alpha_{e}=\gamma_{\epsilon}=0$, and β_{ϵ} differs from

C Fig. 83. zero, i.e. the amplitude E_{p} of the electric force, which lies in the plane of incidence, gives rise to a component β_{e} of the magnetic force which is perpendicular to the plane of incidence. Conversely, the component E_{s} of the electric force, which is perpendicular to the plane of incidence, gives rise to a magnetic force which lies in the plane of incidence. This conclusion that the electric and magnetic forces which are inseparably connected are always perpendicular to each other follows from the considerations already given on page 274 .

When the incident electromagnetic wave reaches the boundary it is divided into a reflected and a refracted wave. The electric forces in the reflected wave can be represented by expressions analogous to those in (11) and (13), namely, by

$$
\left.\begin{array}{l}
X_{r}=R_{\phi} \cdot \cos \phi^{\prime} \cdot \cos \frac{2 \pi}{T}\left(t-\frac{x \sin \phi^{\prime}+z \cos \phi^{\prime}}{V_{1}}\right) \tag{15}\\
Y_{r}=R_{s} \cdot \cos \frac{2 \pi}{T}\left(t-\frac{x \sin \phi^{\prime}+z \cos \phi^{\prime}}{V_{1}}\right) \\
Z_{r}=-R_{p} \cdot \sin \phi^{\prime} \cos \frac{2 \pi}{T}\left(t-\frac{x \sin \phi^{\prime}+z \cos \phi^{\prime}}{V_{1}}\right) \cdot
\end{array}\right\}
$$

The corresponding equations for the refracted wave are

$$
\left.\begin{array}{l}
X_{2}=D_{p} \cdot \cos \chi \cdot \cos \frac{2 \pi}{T}\left(t-\frac{x \sin \chi+z \cos \chi}{V_{2}}\right) \tag{16}\\
Y_{2}=D_{s} \cdot \cos \frac{2 \pi}{T}\left(t-\frac{x \sin \chi+z \cos \chi}{V_{2}}\right) \\
Z_{2}=-D_{\phi} \cdot \sin \chi \cdot \cos \frac{2 \pi}{T}\left(t-\frac{x \sin \chi+z \cos \chi}{V_{2}}\right)
\end{array}\right\}
$$

In these equations $R_{p}, R_{s}, D_{p}, D_{s}$ denote amplitudes, ϕ^{\prime} the angle of reflection, i.e. the angle between the $\mathcal{f} z$-axis
and the direction of propagation of the reflected wave, χ the angle of refraction.

The corresponding magnetic forces are, cf. (14),
$\alpha_{r}=-R_{s} \cdot \cos \phi^{\prime} \cdot \sqrt{\epsilon_{1}} \cdot \cos \frac{2 \pi}{T}\left(t-\frac{x \sin \phi^{\prime}+z \cos \phi^{\prime}}{V_{1}}\right)$,
$\beta_{r}=+R_{p} \cdot \sqrt{\epsilon_{1}} \cdot \cos \frac{2 \pi}{\bar{T}}(t \ldots)$,
$\gamma_{r}=+R_{s} \cdot \sin \phi^{\prime} \sqrt{\epsilon_{1}} \cdot \cos \frac{2 \pi}{T}(t \ldots)$.
$\alpha_{2}=-D_{s} \cdot \cos \chi \cdot \sqrt{\epsilon_{2}} \cdot \cos \frac{2 \pi}{\bar{T}}\left(t-\frac{x \sin \chi+z \cos \chi}{V_{2}}\right)$,
$\beta_{2}=+D_{p} \cdot \sqrt{\epsilon_{2}} \cdot \cos \frac{2 \pi}{T}(t \ldots)$,
$\gamma_{2}=+D_{s} \cdot \sin \chi \cdot \sqrt{\epsilon_{2}} \cdot \cos \frac{2 \pi}{T}(t \ldots)$.
in which u is the index of refraction of medium 2 with respect to medium I .

The laws of reflection and refraction follow, then, from the fact of the existence of boundary conditions and are altogether independent of the particular form of these conditions.

As to the form of these conditions it is to be noted that here $X_{1}=X_{e}+X_{r}$, with similar expressions for the other components, since the electric force in medium I is due to a superposition of the incident and reflected forces. Hence the boundary conditions (21) on page 272 give, in connection with (20),

$$
\left.\begin{array}{l}
\left(E_{p}-R_{p}\right) \cos \phi=D_{p} \cos \chi, \tag{22}\\
E_{s}+R_{s}=D_{s}, \\
\left(E_{s}-R_{s}\right) \sqrt{\epsilon_{1}} \cos \phi=D_{s} \sqrt{\epsilon_{2}} \cos \chi \\
\left(E_{p}+R_{p}\right) \sqrt{\epsilon_{1}} \quad=D_{p} \sqrt{ } \overline{\epsilon_{2}} .
\end{array}\right\}
$$

From this the reflected and refracted amplitudes can be calculated in terms of the incident amplitude. Thus:

$$
\left.\begin{array}{c}
2 E_{s}=D_{s}\left(1+\frac{\sqrt{\epsilon_{2}} \cos \chi}{\sqrt{\epsilon_{1}} \cos \phi}\right), \\
E_{s}\left(\frac{\sqrt{\epsilon_{1}} \cos \phi}{\sqrt{\epsilon_{2}} \cos \chi}-\mathrm{I}\right)=R_{s}\left(\frac{\sqrt{\epsilon_{1}} \cos \phi}{\sqrt{\epsilon_{2}} \cos \chi}+\mathrm{I}\right), \tag{23}\\
2 E_{\phi}=D_{p}\left(\frac{\cos \chi}{\cos \phi}+\frac{\sqrt{\epsilon_{2}}}{\sqrt{\epsilon_{1}}}\right), \\
E_{p}\left(\frac{\cos \phi}{\cos \chi}-\frac{\sqrt{\epsilon_{1}}}{\sqrt{\epsilon_{2}}}\right)=R_{p}\left(\frac{\cos \phi}{\cos \chi}+\frac{\sqrt{\epsilon_{1}}}{\sqrt{\epsilon_{2}}}\right) .
\end{array}\right\}
$$

If the ratio $\sqrt{\epsilon_{2}}: \sqrt{\epsilon_{1}}$, which, according to (4), is the index of refraction n of medium 2 with respect to I , be replaced by $\sin \phi: \sin \chi[c f$. (2I)], then (23) may be written in the form,

$$
\left.\begin{array}{l}
R_{s}=-E_{s} \frac{\sin (\phi-\chi)}{\sin (\phi+\chi)}, \quad R_{p}=E_{p} \frac{\tan (\phi-\chi)}{\tan (\phi+\chi)}, \\
D_{s}=E_{s} \frac{2 \sin \chi \cos \phi}{\sin (\phi+\chi)}, \quad D_{p}=E_{p} \frac{2 \sin \chi \cos \phi}{\sin (\phi+\chi) \cos (\phi-\chi)} . \tag{24}
\end{array}\right\}
$$

These are Fresnel's reflection cquations, from which the phase and the intensity of the reflected light can be calculated in terms of the characteristics of the incident light.

It is seen from (24) that R_{s} never vanishes, but that R_{p} becomes zero when

$$
\begin{equation*}
\tan (\phi+\chi)=\infty, \quad \phi+\chi=\frac{\pi}{2} \tag{25}
\end{equation*}
$$

i.e. when the reflected ray is perpendicular to the refracted ray.

In this case it follows from (25) that

$$
\begin{array}{r}
\sin \chi=\sin \left(\frac{\pi}{2}-\phi\right)=\cos \phi, \text { or, cf. (2r) } \\
\tan \phi=n .
\end{array}
$$

When, then, the angle of incidence has this valuc, the electric amplitude in the reflected wave has no component which lies in the plane of incidence, no matter what the nature of the incident light, i.e. no matter what ratio exists between E, and E_{p}. Thus if natural light is incident at an angle ϕ which corresponds to (25^{\prime}), the electric force in the reflected wave has but one component, namely, that perpendicular to the plane of incidence; in other words, it is planc-polarizud. Now this angle ϕ actually corresponds to Brewster's law given above on page 246. At the same time it now appears, since the plane of incidence was called the plane of polarization, that in a plane-polarized zoave the light vector is perpcndicular to the plane of polarization, provided this acctor be idcultificd with the electric force.

On the other hand the light vector would lic in the plane of polarization if it were identified with the magnetic force, since, by equation (17) (cf. also page 280), R_{p} significs the amplitude of the component of the magnetic force which is perpenclicular to the plane of incidence. Neumann's reflection cquations would follow from the assumption that the magnetic force is the light vector.

The intensities of the reflected electric and magnetic waves are equal. For, given incident light polarized in the plane of
incidence, in order to calculate the reflected intensity it is necessary to apply only the first of equations (24), no matter whether the electric or the magnetic force be interpreted as the light vector. For, by (14) on page $279, E_{s}$ is in every case the amplitude of the incident light.

On the other hand the signs of the reflected electric and magnetic amplitudes are opposite. This difference does not affect the intensity, which depends upon the square of the amplitude only, but it does affect the phase of the wave. This will be more fully discussed for a particular case.
4. Perpendicular Incidence. Stationary Waves.-Equations (24) become indeterminate when $\phi=0$, because then χ is also zero. However, in this case, since $\sqrt{\epsilon_{1}}: \sqrt{\epsilon_{2}}=n$ and $\cos \phi=\cos \chi=1$, (23) gives

$$
\begin{equation*}
R_{s}=-E_{s} \frac{n-\mathrm{I}}{n+\mathrm{I}}, \quad R_{p}=E_{p} \frac{n-\mathrm{I}}{n+\mathrm{I}} \tag{26}
\end{equation*}
$$

The first of these equations asserts that, if $n>1$, the reflected electric amplitude is of opposite sign to the incident amplitude. But the second equation asserts the same thing, for, when $\phi=0$, like signs of R_{p} and E_{p} actually denote opposite directions of these amplitudes, as appears from the way in which R_{p} and E_{p} are taken positive. in Fig. 83 on page 280. The stationary waves (cf. page 155) produced by the interference of the incident and reflected waves must have a node at the reflecting surface, which, to be sure, would be a point of coniplete rest only if R_{s} were exactly as large as E_{s}, i.e. if $n=\infty$. For finite n only a minimum occurs at the mirror, since the reflected amplitude only partially neutralizes the effect of the incident amplitude.

For the magnetic forces, however, E_{ϕ} and R_{ϕ} represent the components of the amplitude which are perpendicular to the plane of incidence, i.e. parallel to the y-axis. Like signs of these amplitudes represent actually like directions, so that it follows from the second of equations (26) (also from the first, if the proper interpretation be put upon the direction of the amplitudes
in space) that the reflected magnetic amplitude has the same direction as the incident magnetic amplitude. Hence stationary magnetic waves have a loop at the mirror itself if $n>\mathrm{I}$.

Wiener's photographic investigation showed that at the bounding surface between glass and metal a node was formed at the surface of the mirror. This indicates that the electric force is the determinative vector for photographic effects, as was even more convincingly proved by the investigation of stationary waves formed in polarized light at oblique incidence (cf. page 25 1).
5. Polarization of Natural Light by Passage through a Pile of Plates.-From equation (24) it is seen that $R_{s}: E_{s}$ continually increases as ϕ increases from zero to $\frac{\pi}{2}$. On the other hand $R_{p}: E_{p}$ first decreases, until it reaches a zero value at the polarizing angle, and then increases to the maximum value I when $\phi=\frac{\pi}{2}$ (grazing incidence). But for all angles of incidence if $E_{s}=E_{p}, R_{s}>R_{p}$. For, from (24),

$$
\begin{equation*}
\frac{R_{\phi}}{R_{s}}=-\frac{E_{p}}{E_{s}} \cdot \frac{\cos (\phi+\chi)}{\cos (\phi-\chi)} \tag{27}
\end{equation*}
$$

Hence at every angle of incidence natural light is partially (or completely) polarized in the plane of incidence. And since by assumption no light is lost, the refracted light must be partially polarized in a plane perpendicular to the plane of incidence. This explains the polarizing effect of a pile of plates.

Also an application of the last two of equations (24) to the two surfaces of a glass plate gives directly, for the passage of the light through the plate,

$$
\begin{equation*}
\frac{D_{s}^{\prime}}{D_{p}}=\frac{E_{s}}{E_{p}} \cos ^{2}(\phi-\chi), \tag{28}
\end{equation*}
$$

in which $D_{s}^{\prime}, D_{p}^{\prime}$ denote the amplitudes of the ray emerging from the plate. Hence when $E_{s}=E_{p}$, it follows from (28)
that $D_{s}^{\prime}<D_{p}^{\prime}$, i.e. incident natural light becomes by passage through the plate partially polarized in a plane perpendicular to the plane of incidence. To be sure, there is no angle ϕ at which this polarization is complete, as is the case for reflection; it is more complete the larger the value of ϕ. If ϕ is equal to the polarizing angle* $\left(\tan \phi=n, \phi+\chi=\frac{\pi}{2}\right)$, then, by (28), when $E_{s}=E_{p}$,

$$
\frac{D_{s}^{\prime}}{\overline{D_{p}^{\prime}}}=\sin ^{2} 2 \phi=\frac{4 n^{2}}{\left(1+n^{2}\right)^{2}}
$$

Hence when $n=1.5, D_{s}^{\prime}: D_{p}^{\prime}=0.85$, and the ratio of the intensities $D_{s}^{\prime 2}: D_{\phi}^{\prime 2}=0.73$. After passage through five plates this ratio sinks to $0.73^{5}=0.20$, i.e. the light would still differ considerably from plane-polarized light.
6. Experimental Verification of the Theory.-Equations (24) may be experimentally verified either by comparing the intensities of the reflected and incident light, or more conveniently by measuring the rotation which the plane of polarization of the incident light undergoes at reflection or refraction. The amount of this rotation may be calculated from equations (27) or (28).

If the incident light is plane-polarized, the quantity $\boldsymbol{\alpha}$ contained in the expression for the ratio of the components, namely, $E_{p}: E_{s}=\tan \alpha$, is the azimuth of the plane of polarization of the incident light. The reflected and refracted light is likewise plane-polarized and the azimuth ψ of its plane of polarization is determined by (27) and (28). Thus $\tan \psi=R_{p}: R_{s}$. For the measurement of this angle it is convenient to use the apparatus shown on page 258 without the Babinet compensator. The incident light is polarized by means of the Nicol p (the polarizer), and the Nicol p^{\prime} (the analyzer) is then turned until the light is extinguished. The value of ψ which corresponds to any particular α can thus be observed.

[^67]Both methods furnish satisfactory verification of the laws of reflection; but Jamin found by very careful investigation that, in the neighborhood of the polarizing angle, there is alwass a departure from those laws, in that the polarization of the reflected light is not strictly plane but somewhat celliptical. Hence it cannot be entirely extinguished by the analymer unless the compensator is used. The explamation of this phenomenon follows.
7. Elliptic Polarization of the Reflected Light and the Surface or Transition Layer.-The above developments make application of the boundary conditions (21) on parge 271 and rest upon the assumption that when light passes from medium I to medium 2 there is a discontimity at the bounding surface. But strictly speaking there is no discontinuity in Nature. Between two media 1 and 2 there must alwas:s exist a tranm sition layer within which the dielectric constant varies continnously from ϵ_{1} to ϵ_{2}. This transition layer is indeed very thin, but whether its thickness may be negrected, as hats hitherto been done, when so short electromagnetic watves ats are the light-waves are under consideration, is very doubtful. Furthere more the thickness of this transition layer between two media is generally increased by polishing the surface.

In any case the actual relations can be better represented if a transition layer be taken into account.

Nevertheless, in order not to unnecessarily complicate the calculation, it may be assumed that the thickness / of this transition layer is so small that all terms of higher order than the first in l may be neglected.

First the boundary conditions which hold for the electric and magnetic forces at the two boundaries of the transition layer will be decluced. These boundaries ate defined its the loci of those points at which the dielectric constant first attains the values ϵ_{1} and ϵ_{2} respectively.

According to the remark of page 207 equations (18) on page $2 \sigma_{9}$ hold within the transition layer also.

If the fourth and fifth of these equations (18) be multiplied
by an element $d z$ of the thickness of the transition layer, and integrated between the two boundaries 1 and 2 , there results, since the quantities involved do not depend upon y, provided y be taken perpendicular to the plane of incidence,

$$
\left.\begin{array}{l}
\frac{\mathrm{I}}{c} \frac{\partial}{\partial t} \int_{1}^{2} \alpha \cdot d z=Y_{2}-Y_{1} \\
\frac{\mathrm{I}}{c} \frac{\partial}{\partial t} \int_{1}^{2} \beta d z=\int_{1}^{2} \frac{\partial Z}{\partial x} d z-\left(X_{2}-X_{1}\right) \tag{29}
\end{array}\right\}
$$

Now, by (2I) and (21') on pages 27I and 272, α, β, and ϵZ are approximately constant within the transition layer, so that α, β, and ϵZ may be placed before the sign of integration in the above equations and replaced by $\alpha_{2}, \beta_{2}, \epsilon_{2} Z_{2}$ (or by α_{1}, $\beta_{1}, \epsilon_{1} Z_{1}$). Thus

$$
\int \alpha \cdot d z=\alpha \int d z, \quad \int_{1}^{2} \frac{\partial Z}{\partial x} d z=\epsilon_{2} \frac{\partial Z_{2}}{\partial x} \int_{1}^{2} \frac{d z}{\epsilon}
$$

Introducing the abbreviation

$$
\begin{equation*}
\int_{1}^{2} d z=l, \quad \int_{1}^{2} \epsilon d z=p, \quad \int_{1}^{2} \frac{d z}{\epsilon}=q, . \tag{30}
\end{equation*}
$$

in which l denotes the thickness of the transition layer and ϵ its dielectric constant at the point corresponding to the element $d z$ of the thickncss, equations (29) become

$$
\begin{equation*}
X_{1}=X_{2}+\frac{l}{c} \frac{\partial \beta_{2}}{\partial t}-\epsilon_{2} \frac{\partial Z_{2}}{\partial x} q, \quad Y_{1}=Y_{2}-\frac{l}{c} \frac{\partial \alpha_{2}}{\partial t} \tag{3I}
\end{equation*}
$$

Likewise the first two of equations (18) give, after multiplication by $d z$, integration, and treatment as above,

$$
\begin{equation*}
\alpha_{1}=\alpha_{2}-l \frac{\partial \gamma_{2}^{\prime}}{\partial x}-\frac{p}{c} \frac{\partial Y_{2}}{\partial t}, \quad \beta_{1}=\beta_{2}+\frac{p}{c} \frac{\partial X_{2}}{\partial t} . \tag{32}
\end{equation*}
$$

Equations (3I) and (32) take the place of the previous boundary conditions (2I) on page 27 I .

To determine the electric and magnetic forces in media I and 2 , equations (II), (I3), (14), (15), (I6), (17), (I8) of this chapter may be used, but with the limitation that the forces in
the reflected and refracted wave must differ in phase from the incident wave by an amome which must be dedued from equations (31) and (32). Withont such at difierence of phatse these equations cammot be satistioct.

Now these differences of phatse mity be most simply taken into account in the following way: Write, for instance fer. equations (15), pare 2SO),
then Y_{r} is the real part of the complex quantity

Writing now

$$
\begin{equation*}
K_{s} \cdot r^{\prime t}=R_{n}, \tag{3.3}
\end{equation*}
$$

then
in which the symber the means that the real pat of the complex quantity which follows it is to 10 taken. This complex quantity within the brackets contains the amplitule R, which

 an exponemtial function combtaming a complea fater (amplex amplitute). The wher electric amb magnetie forces may be treated in the same wity.

Instead of performing the calculations with the real parts only of the complex cuantities, it is possible, when only linear equations (or lincar differential equations) are involved, to first set the electric and magnetio forses equal to the complex quantities and, at the end of the calculation, to take the real parts only into consideration in determining the physical meaning.

Thus in the previous equations (11), (13), (1.4), (15), (16), (17), (18) for the clectric and magnetic forces, the real amplitudes $E_{A}, I_{A}, K_{x}, K_{f}$, cte., will be rephaced by the complex
amplitudes $E_{s}, E_{p}, R_{s}, R_{p}$, etc., and the cosines by the exponential expression (cf. equation (34)). Then the boundary conditions (31) and (32) give, since they are to hold for $z=0$, and since $X_{1}=X_{c}+X_{r}, \alpha_{1}=\alpha_{e}+\alpha_{r}$, etc.,

$$
\begin{align*}
\left(\mathrm{E}_{\mathrm{p}}-\mathrm{R}_{\mathrm{p}}\right) \cos \phi & =\mathrm{D}_{\mathrm{p}}\left[\cos \chi+i \frac{2 \pi}{T}\left(\sqrt{\epsilon_{2}} \frac{l}{c}-\frac{\sin ^{2} \chi}{V_{2}} \epsilon_{2} q\right)\right], \\
\mathrm{E}_{\mathrm{s}}+\mathrm{R}_{\mathrm{s}} & =\mathrm{D}_{\mathrm{s}}\left[\mathrm{r}+i \frac{2 \pi}{T} \cos \chi \sqrt{\epsilon_{2}} \frac{l}{c}\right], \\
\left(\mathrm{E}_{\mathrm{s}}-\mathrm{R}_{\mathrm{s}}\right) \sqrt{\epsilon_{1}} \cos \phi & =\mathrm{D}_{\mathrm{s}}\left[\sqrt{\epsilon_{2}} \cos \chi-i \frac{2 \pi}{T}\left(\frac{\sin ^{2} \chi}{V_{2}} \sqrt{\epsilon_{2}} l-\frac{p}{c}\right)\right], \tag{35}\\
\left(\mathrm{E}_{\mathrm{p}}+\mathrm{R}_{\mathrm{p}}\right) \sqrt{\epsilon_{1}} & =\mathrm{D}_{\mathrm{p}}\left[\sqrt{\epsilon^{2}}+i \frac{2 \pi}{T} \cos \chi \frac{p}{c}\right] .
\end{align*}
$$

From these equations $R_{s}, R_{p}, D_{s}, D_{p}$ may be calculated in terms of E_{s} and E_{p}. It is the reflected light only which is here of interest. If the product $T c$ be replaced by λ, the wave length in vacuo of the light considered, and if V_{2} be replaced by $c: \sqrt{\epsilon_{2}}$, then, from (35),
$\left.\begin{array}{l}\frac{R_{p}}{\mathrm{E}_{\mathrm{p}}}=\frac{\cos \phi \sqrt{\epsilon_{2}}-\cos \chi \sqrt{\epsilon_{1}}+i \frac{2 \pi}{\lambda}\left[p \cos \phi \cos \chi-\left(l-q \epsilon_{2} \sin ^{2} \chi\right) \sqrt{\epsilon_{1} \epsilon_{2}}\right]}{\cos \phi \sqrt{\epsilon_{2}}+\cos \chi \sqrt{\epsilon_{1}}+i \frac{2 \pi}{\lambda}\left[p \cos \phi \cos \chi+\left(l-q \epsilon_{2} \sin ^{2} \chi\right) \sqrt{\epsilon_{1} \epsilon_{2}}\right]}, \\ \frac{\mathrm{R}_{\mathrm{s}}}{\mathrm{E}_{\mathrm{s}}}=\frac{\cos \phi \sqrt{\epsilon_{1}}-\cos \chi \sqrt{\epsilon_{2}}+i \frac{2 \pi}{\lambda}\left[l \cos \phi \cos \chi \sqrt{\epsilon_{1} \epsilon_{2}}-p+l \epsilon_{2} \sin ^{2} \chi\right]}{\cos \phi \sqrt{\epsilon_{1}}+\cos \chi \sqrt{\epsilon_{2}}+i \frac{2 \pi}{\lambda}\left[l \cos \phi \cos \chi \sqrt{\epsilon_{1} \epsilon_{2}}+p-l \epsilon_{2} \sin ^{2} \chi\right]} .\end{array}\right\}$.
Now it is to be remembered that the terms which contain the factor $i \frac{2 \pi}{\lambda}$ are very small correction terms, since they are proportional to the thickness l of the transition layer. Hence if the expressions (36) be developed to terms of the first power only of the ratio $l: \lambda$, there results

$$
\left.\begin{array}{l}
\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{p}}}=\frac{\cos \phi \sqrt{\epsilon_{2}}-\cos \chi \sqrt{\epsilon_{1}}}{\cos \phi \sqrt{\epsilon_{2}}+\cos \chi \sqrt{\epsilon_{1}}}\left\{\mathrm{I}+i \frac{4 \pi}{\lambda} \cos \phi \sqrt{\epsilon_{1}} \frac{p \cos ^{2} \chi-l \epsilon_{2}+q \epsilon_{2}^{2} \sin ^{2} \chi}{\epsilon_{2} \cos ^{2} \phi-\epsilon_{1} \cos ^{2} \chi}\right\} \tag{37}\\
\frac{\mathrm{R}_{\mathrm{s}}}{\overline{\mathrm{E}}_{\mathrm{s}}}=\frac{\cos \phi \sqrt{\epsilon_{1}}-\cos \chi \sqrt{\epsilon_{2}}}{\cos \phi \sqrt{\epsilon_{1}}+\cos \chi \sqrt{\epsilon_{2}}}\left\{\mathrm{I}+i \frac{4 \pi}{\lambda} \cos \phi \sqrt{\epsilon_{1}} \frac{l \epsilon_{2}-p}{\epsilon_{1} \cos ^{2} \phi-\epsilon_{2} \cos ^{2} \chi}\right\}
\end{array}\right\}
$$

The denominator of the correction term which appears in the second of these equations can never vanish, i.e. $\epsilon_{1} \cos ^{2} \phi$ can never be equal to $\epsilon_{2} \cos ^{2} \chi$, for if $\epsilon_{2}>\epsilon_{1}$, then always $\phi>\chi$, and hence $\cos \phi<\cos \chi$. But the denominator of the correction term of the first of equations (37) does vanish if

$$
\begin{equation*}
\cos \phi \sqrt{\epsilon_{2}}=\cos \chi \sqrt{\epsilon_{1}} . \tag{38}
\end{equation*}
$$

A simple transformation of (38) shows, since $\sqrt{\epsilon_{2}}: \sqrt{\epsilon_{i}}=n$, that this condition is fulfilled for the polarizing angle $\bar{\phi}$, which, according to Brewster's law, is determined by $\tan \bar{\phi}==n$. Hence for this angle of incidence it follows from (37), or also directly from (36), that

$$
\begin{equation*}
\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{p}}}=i \frac{4 \pi}{\lambda} \cos \phi \sqrt{\epsilon_{1}} \frac{p \cos ^{2} \chi-l \epsilon_{2}+g \epsilon_{2}^{2}}{\left(\cos \phi \sqrt{\epsilon_{2}}+\sin \chi\right.} \frac{\cos \chi}{\left.\sqrt{\epsilon_{1}}\right)^{2}} . \tag{39}
\end{equation*}
$$

Equations (37) can be further simplified by consideration of the law of refraction, namely,

$$
\begin{equation*}
\sin \phi: \sin \chi=n=\sqrt{\epsilon_{2}}: \sqrt{\epsilon_{1}} . \tag{40}
\end{equation*}
$$

For from this it follows that

$$
\left.\begin{array}{l}
\epsilon_{1} \cos ^{2} \phi-\epsilon_{2} \cos ^{2} \chi=\epsilon_{1}-\epsilon_{2} \tag{41}\\
\epsilon_{2} \cos ^{2} \phi-\epsilon_{1} \cos ^{2} \chi=\frac{\epsilon_{1}-\epsilon_{2}}{\epsilon_{2}}\left(\epsilon_{1} \sin ^{2} \phi-\epsilon_{2} \cos ^{2} \phi\right)
\end{array}\right\} .
$$

Now the nature of the reflected light is completely determined by the ratio $R_{p}: R_{s}$. Assume that the incident light is plane-polarized at an azimuth of 45° to the plane of incidence (cf. page 286). Then $\mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\mathrm{s}}$, and from (37) it follows, in consideration of (40) and (4I), that
$\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{s}}}=-\frac{\cos (\phi+\chi)}{\cos (\phi-\chi)}\left\{\mathrm{I}+i \frac{4 \pi}{\lambda} \cdot \frac{\epsilon_{2} \sqrt{\epsilon_{1}}}{\epsilon_{1}-\epsilon_{2}} \cdot \frac{\cos \phi \sin ^{2} \phi}{\epsilon_{1} \sin ^{2} \phi-\epsilon_{2} \cos ^{2} \phi^{\eta}}\right\}$,
in which η is an abbreviation for

$$
\begin{equation*}
\eta=p-l\left(\epsilon_{1}+\epsilon_{2}\right)+q \epsilon_{1} \epsilon_{2} . \tag{43}
\end{equation*}
$$

At the polarizing angle ($\tan \bar{\phi}=n$) (42) assumes the value

$$
\begin{equation*}
\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{s}}}=i \frac{\pi}{\lambda} \frac{\sqrt{\epsilon_{1}+\epsilon_{2}}}{\epsilon_{1}-\epsilon_{2}} \eta, \tag{44}
\end{equation*}
$$

as is seen most easily from (39) by dividing it by the secon of equations (37) and retaining terms of the first order only i $\eta: \lambda$.

In order now to recognize the physical significance of (42 and (44) it must be borne in mind that, according to (33),

$$
\mathrm{R}_{\mathrm{p}}=R_{p} \cdot e^{i \partial_{p}}, \quad \mathrm{R}_{\mathrm{s}}=R_{s} \cdot e^{i \delta_{s}}
$$

in which R_{p} and R_{s} are the components which are respectivel: parallel and perpendicular to the plane of incidence of th amplitude of the reflected electric force, and δ_{p} and δ_{s} are th advances in phase of these components with respect to the in cident wave. Hence

$$
\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{s}}}=\frac{R_{\rho}}{R_{s}} e^{i\left(\delta_{\rho}-\delta_{s}\right)}=\rho \cdot e^{i \Delta}
$$

in which ρ is the ratio of the amplitudes and Δ the difference in phase of the treo components. Hence, from (44), it follows tha at the polarizing angle $\bar{\phi}$

$$
\begin{equation*}
\bar{\rho}=\frac{\pi}{\lambda} \eta \frac{\sqrt{\epsilon_{1}+\epsilon_{2}}}{\epsilon_{1}-\epsilon_{2}}, \quad \Delta=\pi / 2 \tag{47}
\end{equation*}
$$

i.e. the reflected light is not plane-polarized in the plane o incidence as it was above shown to be when the transitior layer was not considered, but it is elliptically polarized. The principal axes of the ellipse are parallel and perpendicular tc the plane of incidence (cf. page 249) and their ratio is $\bar{\rho}$. $\bar{\rho}$ wil: be called the coefficient of ellipticity. By (43), (47), and (30), this may be written

$$
\begin{equation*}
\bar{\rho}=\frac{\pi}{\lambda} \frac{\sqrt{\epsilon_{1}+\epsilon_{2}}}{\epsilon_{1}-\epsilon_{2}} \cdot \int \frac{\left(\epsilon-\epsilon_{1}\right)\left(\epsilon-\epsilon_{2}\right)}{\epsilon} d z \tag{48}
\end{equation*}
$$

in which the integration is to be extended through the transition layer between the two media.

According to (48) $\bar{\rho}$ is positive if the value of the dielectric constant ϵ of the transition layer varies continuously between the limiting values ϵ_{1} and ϵ_{2}, and if $\epsilon_{2}>\epsilon_{1}$. But if at any point within the transition layer $\epsilon>\epsilon_{1}$ and also $\epsilon>\epsilon_{2}$, then \bar{f}
is negative when $\epsilon_{4}>\epsilon_{1}$. The relations are inverted when $\epsilon_{1}>\epsilon_{2}$, i.c. when the medium producing the reflection has the smaller refractive index. In consideration of the way in which the amplitude R_{β} is taken positive (cf. Fig. 83 , parse 280), it is evident that, if the coefficient of ellipticity β is positive, the direction of rotation of the reflected light in its elliptical vibration form is comater-clockwise to an observer standing in the plane of incidence and looking toward the reflecting surface, provided the incident electrical force makes an angle of 45° with the plane of incidence and is directed from upper left to lower right. But if $\bar{\rho}$ is negative, then when the same conditions exist for the incident electrical force, the direction of rotation of the reflected clectrical force is clockwise.

Also for any other angle of incidence the reflected light is always elliptically polarized, even though the incident light is plane-polarized, for there is always a difference of phase A between the p - and s-components, which, according to (42) and (46), has the value

$$
\begin{equation*}
\tan \Delta=4 \frac{\pi}{\lambda^{\prime}} \eta_{\epsilon_{1}-t_{2} t_{1} t_{1} \sin ^{2} \phi-\epsilon_{2} \cos ^{2} \phi^{\prime}} \tag{40}
\end{equation*}
$$

while the ratio ρ of the amplitudes does not depart appreciably from the normal value

$$
\begin{equation*}
\rho=-\frac{\cos (\phi+x)}{\cos (\phi-x)^{\prime}} \tag{50}
\end{equation*}
$$

which is obtained without the consideration of a surface layer. In consideration of (47), (49) may be written

$$
\begin{equation*}
\tan \Delta=4 \ddot{j} \frac{\pi^{2}}{11+u^{2} \tan ^{2} \phi-u^{2}} \tag{r}
\end{equation*}
$$

On account of the smallness of \bar{p} the difference of phase is appreciable only in the neighborhood of the polarizingr angle, for which $\tan \phi=\mu$.

These theoretical conclusions have been completely verified by experiment. For, in the first place, it is observed that
when the angle of incidence is that determined by Brewster's law, the reflected light is not completely (though very nearly) plane-polarized, since it is not possible to entirely extinguish it with an analyzing Nicol. The results of the investigation of the elliptic polarization of reflected light by means of the analyzer and compensator (cf. page 255) are in good agreement with equations (50) and (5I).

It is further found that the coefficient of ellipticity is smaller the less the reflecting surface has been contaminated by contact with foreign substances. Thus, for example, it is very small at the fresh surfaces of cleavage of crystals, and at the surfaces of liquids which are continually renewed by allowing the liquid to overflow. For polished mirrors $\bar{\rho}$ is considerable. The change in the sign of $\bar{\rho}$ when the relations of the two media are interchanged is in accord with the theory. The theory is also confirmed by the fact that, in the case of reflection from polished surfaces, $\bar{\rho}$ is in general positive. Only in the case of media which have relatively small indices of refraction, like fluor-spar ($n=1.44$) and hyalite ($n=1.42$), has $\bar{\rho}$ been observed to be negative. This also might be expected from the theory, provided the index of refraction of the polished transition layer were greater than that of the medium.

For well-cleaned polished glass surfaces, when the reflection takes place in air, the value of $\bar{\rho}$ lies between 0.03 (for heavy flint glass of index $n=1.75$) and 0.007 .

For liquids in contact with air the value of $\bar{\rho}$ does not exceed 0.O1. Water has a negative coefficient of ellipticity which, when the surface is thoroughly cleaned, may be as small as 0.00035 . There are also so-called neutral liquids like glycerine which produce no elliptic polarization by reflection. According to the theoretical equation given above for the coefficient of ellipticity it is not necessary that these liquids have no transition layer, i.e. that an actual discontinuity occur in the dielectric constants in passing from the air to the liquid. Rather, layers which have intermediate values of the dielectric
constant may exist, provided only other layers whose dielectric constant is greater than that of the liquid are also present.

When the coefficient of ellipticity is positive (for reflection in air) it is possible to determine a lower limit for the thickness of the transition layer. For evidently, for a given positive value of $\bar{\rho}$, the smallest thickness which the transition layer can have is attained when its dielectric constant is assumed to be a constant whose value is determined by making the factor $\frac{\left(\epsilon-\epsilon_{1}\right)\left(\epsilon-\epsilon_{2}\right)}{\epsilon}$ in equation (48) a maximum. This is the case when $\epsilon=\sqrt{\epsilon_{1} \epsilon_{2}}$, i.e. when the dielectric constant of the transition layer is a geometrical mean of the dielectric constants of the two media. Hence, from (48), the lower limit \bar{l} for the thickness of the transition layer is given by

$$
\begin{equation*}
\frac{\bar{l}}{\lambda}=\frac{\bar{\rho}}{\pi \sqrt{\epsilon_{1}}+\epsilon_{2}} \cdot \frac{\sqrt{\epsilon_{2}}+\sqrt{\epsilon_{1}}}{\sqrt{\bar{\epsilon}_{2}}-\sqrt{\bar{\epsilon}_{1}}}=\frac{\bar{\rho}}{\pi 1^{\prime} 1+n^{2}} \frac{n+\mathrm{I}}{n-1} . \tag{52}
\end{equation*}
$$

in which n denotes the inclex of refraction of the medium 2 with respect to the medium I (air). Thus for flint glass, for which $n=1.75, \bar{\rho}=0.03$ (cf. page 294), $\bar{l}: \lambda=0.0175$. Hence the assumption of a transition layer of acry small thickness is sufficient to account for a very strong elliptic polarination in reflected light.
8. Total Reflection.-Consider again the case in which the light incident in medium I is reflected from the surface of medium 2. If the index n of 2 with respect to 1 is less than 1 , the angle of refraction χ which corresponds to the angle of incidence ϕ is not real if

$$
\begin{equation*}
\sin \chi=\frac{\sin \phi}{n}> \tag{53}
\end{equation*}
$$

At this angle of incidence ϕ there is then no refracted light, but all of the incident light is reflected (total reflection).

In order to determine in this case the relation between the nature of the reflected light and that of the incident light, the method used in § 3 of this chapter must be followed. The discussion and the conclusions there given are applicable. In
order to avoid the use of the angle of refraction χ in equations (22), (23), and (24), $\sin \chi$ may be regarded as an abbreviation for $\sin \phi: n$, so that $\cos \chi$ may be replaced by

$$
\cos \chi=\sqrt{\mathrm{I}-\frac{\sin ^{2} \phi}{n^{2}}}
$$

If $\sin \phi>n$, this quantity is imaginary. In order to bring this out clearly the imaginary unit $\sqrt{-\mathrm{I}}=i$ will be introduced, thus:

$$
\begin{equation*}
\cos \chi=-i \sqrt{\frac{\sin ^{2} \phi}{n^{2}}-\mathrm{I} . *} \tag{54}
\end{equation*}
$$

Equations (23) must hold under all circumstances, \uparrow for they are deduced from the general boundary conditions for the passage of light through the surface between two isotropic media, and these conditions always hold, whether total reflection occurs or not. But when (54) is substituted in (23) the amplitudes in the reflected light become complex, even when those of the incident light are real. From the physical meaning of a complex amplitude which was brought out on page 289, it is evident that in total reflection the reflected light has suffered a change of phase zvith respect to the incident light.

In order to calculate this change of phase, write, in accordance with (45), for the reflected amplitudes which appear in (23) the complex quantities $R_{p} e^{i \delta_{p}}, R_{s} e^{i \delta_{s}}$, so that from (23) and (54), since $\sqrt{\epsilon_{2}}: \sqrt{\epsilon_{1}}=n$, $\left.\begin{array}{l}E_{s}\left(\frac{i \cos \phi}{\sqrt{\sin ^{2} \phi-n^{2}}}-\mathrm{I}\right)=R_{s} \cdot e^{i \delta_{s}}\left(\frac{i \cos \phi}{\sqrt{\sin ^{2} \phi-n^{2}}}+\mathrm{I}\right), \\ E_{p}\left(\frac{i \cos \phi \cdot n}{\sqrt{\sin ^{2} \phi-n^{2}}}-\frac{\mathrm{I}}{n}\right)=R_{p} \cdot \cdot^{i \delta_{t}}\left(\frac{i \cos \phi \cdot n}{\sqrt{\sin ^{2} \phi}-n^{2}}+\frac{\mathrm{I}}{n}\right) .\end{array}\right\}$.

In order to obtain the intensities of the reflected light, i.e. the values of R_{s}^{2} and R_{p}^{2}, it is only necessary to multiply equations (55) by the conjugate complex equations, i.e. by those equations which are obtained from (55) by substituting $-i$ for i.* The result is

$$
\begin{equation*}
E_{s}^{2}=R_{s}^{2}, \quad E_{p}^{2}=R_{p}^{2}, \tag{56}
\end{equation*}
$$

i.e. the intensity of the reflected light is equal to that of the incident light (total reflection). This holds also for each of the components (the s and p) separately.

The absolute differences of phase δ_{s} and δ_{p} will not be discussed, but the relative difference $\Delta=\delta_{p}-\delta_{s}$ is of interest because, according to page 292, the vibration form of the reflected light is obtained from it. Division of the first of equations (55) by the second gives, when $E_{s}=E_{p}$, i.e. when the incident light is plane-polarized at an azimuth of 45° with respect to the plane of incidence, since then, according to (56), $R_{s}=R_{p}$,
$\left.\frac{i \cos \phi-\sqrt{\sin ^{2} \phi-\overline{n^{2}}}}{i \cos \phi \cdot n-\frac{1}{n} \sqrt{\sin ^{2} \phi-n^{2}}}=e^{i\left(\delta_{s}-\delta_{p}\right)} \frac{i \cos \phi+\sqrt{\sin ^{2} \phi-n^{2}}}{i \cos \phi \cdot n+\frac{\mathrm{I}}{n} \sqrt{\sin ^{2} \phi-n^{2}}}\right\}$. (57)
From this it follows that

$$
e^{i \Delta}=e^{i\left(\delta_{p}-\delta_{s}\right)}=\frac{\sin ^{2} \phi+i \cos \phi \sqrt{\sin ^{2} \phi-n^{2}}}{\sin ^{2} \phi-i \cos \phi \sqrt{\prime}^{\sin ^{2} \phi-n^{2}}}
$$

Hence

$$
\frac{\mathrm{r}-e^{i \Delta}}{\mathrm{I}+e^{i \Delta}}=\frac{-i \cos \phi \sqrt{\sin ^{2} \phi-n^{2}}}{\sin ^{2} \phi}
$$

If this equation be multiplied by the conjugate complex expression, there results, since $e^{i \Delta}+e^{-i \Delta}=2 \cos \Delta$,

$$
\frac{I-\cos \Delta}{I+\cos \Delta}=\left\{\frac{\cos \phi \sqrt{\sin ^{2} \phi-n^{2}}}{\sin ^{2} \phi}\right\}^{2}
$$

[^68]i.e.
\[

$$
\begin{equation*}
\tan \frac{1}{2} \Delta=\frac{\cos \phi \sqrt{\sin ^{2} \phi-n^{2}}}{\sin ^{2} \phi} \tag{58}
\end{equation*}
$$

\]

From this it appears that the relative difference of phase Δ is zero for grazing incidence $\phi=\frac{1}{2} \pi$, as well as for the critical angle $\sin \phi=n$; but for intermediate values of the angle of incidence it is not zero, i.e. the reflected light is elliptically polarized when the incident light is plane-polarized. A differentiation of (58) with respect to ϕ gives

$$
\frac{\mathrm{I}}{2 \cos ^{2} \frac{1}{2} \Delta} \frac{\partial \Delta}{\partial \phi}=\frac{2 n^{2}-\sin ^{2} \phi\left(\mathrm{I}+n^{2}\right)}{\sin ^{3} \phi \sqrt{\sin ^{2} \phi-n^{2}}} .
$$

Hence it follows that the relative difference of phase Δ is a maximum for that angle of incidence ϕ^{\prime} which satisfies the equation

$$
\begin{equation*}
\sin ^{2} \phi^{\prime}=\frac{2 n^{2}}{\mathrm{I}+n^{2}} \tag{59}
\end{equation*}
$$

Hence the maximum value Δ^{\prime} of the difference of phase is given, according to (58), by

$$
\begin{equation*}
\tan \frac{1}{2} U^{\prime}=\frac{1-n^{2}}{2 n} \tag{60}
\end{equation*}
$$

For glass whose index is 1.5 I , i.e. for the case in which $n=1: 1.51$ (since the reflection takes place in glass, not in air), it follows from (59) that $\phi^{\prime}=5 \mathrm{I}^{\circ} 20^{\prime}$, and from (60) that $\Delta^{\prime}=45^{\circ} 36^{\prime} . \Delta$ has exactly the value 45° both for $\phi=48^{\circ} 37^{\prime}$ and for $\phi=54^{\circ} 37^{\prime}$. Two total reflections at either of these angles of incidence produce circularly polarized light, provided the incident light is plane-polarized in the azimuth 45° with respect to the plane of incidence, i.e. pro-

Fig. 84. vided $E_{s}=E_{p}$ and $R_{s}=R_{p} . \quad$ Such a twofold double reflection can be produced by Fresnel's rhomb, which consists of a parallelopiped of glass of the form shown in Fig.
84. When the light falls normally upon one end of the rhomb
and is plane-polarized in the azimuth 45° with respect to the plane of incidence, the emergent light is circularly polarized.

Circular polarization can also be obtained by a threefold, fourfold, etc., total reflection at other angles of incidence. The glass parallelopipeds which must be used in these cases have other angles, for example $69^{\circ} 12^{\prime}, 74^{\circ} 42^{\prime}$, etc., when the index of the glass is 1.51 .
9. Penetration of the Light into the Second Medium in the Case of Total Reflection.-In the above discussion the reflected light only was considered. Nevertheless in the second medium the light vector is not zero, since equations (23) on page 282 give appreciable values for D_{s} and D_{p}. The amplitude decreases rapidly as z increases, i.e. as the distance from the surface increases, for by (16) and (18) on pages 280 and 281 the electric and magnetic forces in the second medium are proportional to the real parts of the complex quantities

$$
\begin{equation*}
e^{i \frac{2 \pi}{T}\left(t-\frac{x \sin x+x \cos x}{V_{2}}\right)} \tag{61}
\end{equation*}
$$

which, when χ is eliminated by means of equations (53) and (54), takes the form

$$
\begin{equation*}
e^{-\frac{2 \pi}{7 V_{2}} \sqrt{\frac{\sin ^{2} \phi}{n^{2}}-x \cdot x} \cdot e^{i \frac{2 \pi}{T}\left(t-\frac{x \sin \phi}{n V_{2}}\right)} .} \tag{62}
\end{equation*}
$$

Thus for values of z which are not infinitely large with respect to the wave length $T V_{2}=\lambda_{2}$ in the second medium, the amplitude is not strictly zero.

This appears at first sight to be a contradiction of the conclusion that the intensity of the reflected light is equal to the intensity of the incident light, for whence comes the energy of the refracted light?

This contradiction vanishes when the flow of energy through the bounding surface is considered. According to equation (24) on page 272 this flow is, since in this case $\cos (n x)=\cos (n y)=0, \cos (n z)=1$,

$$
\begin{equation*}
\frac{4 \pi}{c} \cdot \frac{\partial \mathscr{E}}{\partial t} d t=d t \int\left(\beta_{2} X_{2}-\alpha_{2} Y_{2}\right) d S \tag{63}
\end{equation*}
$$

If now the electric and magnetic forces be taken as the real parts of the complex quantities which are obtained from the right-hand sides of equations (16) and (18) on page 280 by replacing the factor $\cos \frac{2 \pi}{T}(t \ldots)$ by $e^{i \frac{2 \pi}{T}(t \ldots)}$, it is clear that, on account of the factor $\cos \chi$, which by (54) is purely imaginary, α_{2} has a difference of phase $\frac{\pi}{2}$ with respect to Y_{2}, and β_{2} a difference of phase $\frac{\pi}{2}$ with respect to X_{2}, so that by writing

$$
Y_{2}=a \cos \left(\frac{2 \pi t}{T}+\delta\right),
$$

in which a and δ no longer contain the time, the magnetic force α_{2} takes the form

$$
\alpha_{2}=a^{\prime} \cdot \sin \left(\frac{2 \pi t}{T}+\delta\right)
$$

Hence if $\alpha_{2} Y_{2} d t$, contained in the expression (63) for the energy flow, be integrated between the limits $t=0$ and $t=T$, there results

$$
\begin{aligned}
\int_{0}^{T} \alpha_{2} Y_{2} d t & =a a^{\prime} \int_{0}^{T} \sin \left(\frac{2 \pi t}{T}+\delta\right) \cdot \cos \left(\frac{2 \pi t}{T}+\delta\right) \cdot d t \\
& =\frac{a a^{\prime} \cdot T}{4 \pi}\left[\sin ^{2}\left(\frac{2 \pi t}{T}+\delta\right)\right]_{0}^{T}=0
\end{aligned}
$$

In the same way the integral of $\beta_{2} X_{2} d t$ vanishes. Thus, on the whole, during a complete period, no energy passes from medium I to medium 2. Hence the reflected light contains the entire energy of the incident light.

That no energy passes through the $x z$-plane appears plausible from (62). For this equation represents waves which are propagated along the x-axis. But from equation (24) on page 272 there is an actual flow of energy into medium 2 when the direction of flow (i.e. the normal n) is parallel to the x-axis. There is then a passage of energy into medium 2 at
one end of the incident wave, i.e. when x is negative, but this energy is carried back again into medium I by the waves of medium 2 at the other end of the wave, i.e. when x is positive.

These waves of variable amplitude possess still another peculiarity: they are not transverse zuaves. For it follows from (62) that they are propagated along the x-axis; hence if they were transverse, X_{2} would of necessity be equal to zero. But this is not the case. This is no contradiction of the Fresnel-Arago experiments given on page 247 which were used as proof of the transverse nature of light; for those experiments relate to waves of constant amplitude. Quincke's investigation, showing that these waves of variable amplitude may be transformed into waves of constant amplitude when the thickness of medium 2 is small, i.e. when it is of the order of magnitude of the wave length of light, may be looked upon as proof that, in the case of total reflection, the light vector in the second medium is not zero. As a matter of fact, if medium 2 is a very thin film between two portions of medium I , no total reflection takes place, for, in the limit, the thickness of this film is zero, so that the incident light must pass on undisturbed, since the homogeneity of the medium is not disturbed. As soon as the medium 2 becomes so thin as to appear transparent, then it is evident that, even at angles larger than the critical angle, the reflected light must lose something of its intensity. All the characteristics of this case can be theoretically deduced by simply applying upon both sides of film 2 the universally applicable boundary conditions (2I) on page 271.*
10. Application of Total Reflection to the Determination of Index of Refraction.-When the incident beam lies in the more strongly refracting medium, if the angle of incidence be gradually increased, the occurrence of total reflection is made evident by a sudden increase in the intensity of the reflected light, and the complete disappearance of the refracted light. But it is to be remarked that the curves connecting the inten-

[^69]sities of the reflected and refracted light with the angle of incidence ϕ have no discontinuity at the point at which ϕ reaches the critical angle. Nevertheless these curves vary so rapidly with ϕ in this neighborhood that there is an apparent discontinuity which makes it possible to determine accurately the critical angle ϕ and hence the index of refraction.* Thus, for instance, for glass of index $n=1.5$ I the following relations exist between the intensity R_{p}^{2} of the reflected light and the angle of incidence $\phi\left(E_{\phi}^{2}\right.$ is set equal to r, ζ is the angle in minutes of arc by which ϕ is smaller than the critical angle):

ζ	o^{\prime}	2^{\prime}	4^{\prime}	8^{\prime}	$\mathrm{I} 5^{\prime}$	30^{\prime}
$R_{p}{ }^{2}$	I	0.74	0.64	0.53	0.43	0.25.

II. The Intensity of Light in Newton's Rings.-The intensities of the reflected and transmitted light will be calculated for the case of a plate of dielectric constant ϵ_{2} and thickness d surrounded by a medium of dielectric constant ϵ_{1}. Let the first surface of the plate upon which the light falls be the $x y$-plane, the second surface the plane $z=d$.

For the sake of simplicity the incidence will be assumed to be normal and the incident light to satisfy the equations

$$
\begin{equation*}
X_{e}=0, \quad Y_{e}=E \cdot e^{i 2 \pi / T\left(t-z / V_{1}\right)}, \quad Z_{e}=0 \tag{64}
\end{equation*}
$$

Setting $X_{\epsilon}=0$ places no limitation upon the generality of the conclusions, since, at perpendicular incidence, all results which hold for the y-component of the light vector hold without change for the x-component also.

According to equations (14) on page 279, if (64) represents the electric force, the incident magnetic force is represented by

$$
\begin{equation*}
\alpha_{c}=-E \sqrt{\epsilon_{1}} i^{i} 2 \pi / T\left(t-z / V_{1}\right), \quad \beta_{e}=0, \quad \gamma_{e}=0 . \tag{65}
\end{equation*}
$$

[^70]By equations (15) and (17) on pages 280 and 281 , the reflected electric and magnetic forces in medium 1 are represented by

$$
\left.\begin{array}{l}
X_{r}=0, \quad Y_{r}=\mathrm{R} e^{i \pi / T\left(t+z / V_{1}\right)}, \quad Z_{r}=0 \\
\alpha_{r}=\mathrm{R} \sqrt{\epsilon_{1}} e^{i \pi / T\left(t+z / V_{1}\right)}, \quad \beta_{r}=0, \quad \gamma_{r}=0
\end{array}\right\}
$$

Now repeated reflections and refractions take place at the surfaces of the plate (cf. above, page 137); but it is not necessary to follow out each one of these separately, since their total effect can be easily brought into the calculation.* This effect consists in the propagation of waves within the plate along both the positive and the negative directions of the z-axis. For the former the following equations hold:

$$
\left.\begin{array}{rl}
X^{\prime} & =0, \quad Y^{\prime}=D^{\prime} e^{i 2 \pi / T\left(t-z / V_{2}\right)}, \quad Z^{\prime}=0 ; \tag{67}\\
\alpha^{\prime} & =-D^{\prime} \sqrt{\epsilon_{2}} e^{i \pi / T\left(t-z / V_{2}\right)}, \quad \beta^{\prime}=0, \quad \gamma^{\prime}=0 ;
\end{array}\right\}
$$

while for the latter

$$
\left.\begin{array}{rl}
X^{\prime \prime} & =0, \quad Y^{\prime \prime}=D^{\prime \prime} e^{i 2 \pi / T\left(t+z / V_{2}\right)}, \quad Z^{\prime \prime}=0 \tag{68}\\
\alpha^{\prime \prime} & =D^{\prime \prime} \sqrt{\epsilon}_{2} e^{i} i^{2 \pi / T}\left(t+z / V_{2}\right), \quad \beta^{\prime \prime}=0, \quad \gamma^{\prime \prime}=0
\end{array}\right\}
$$

Let the total effect of all the waves which have passed through the plate be

$$
\left.\begin{array}{l}
X_{d}=0, \quad Y_{d}=D e^{i^{2 \pi} / T\left(t-z / V_{1}\right)}, \quad Z_{d}=0 \tag{69}\\
\alpha_{d}=-D \sqrt{\epsilon_{1}} e^{i 2 \pi / T\left(t-z / V_{1}\right)}, \quad \beta_{d}=0, \quad \gamma_{d}=0
\end{array}\right\}
$$

It is now necessary to apply at both sides of the plate ($z=0, z=d$) the boundary conditions (21) on page 27 I , which here take the form
$Y_{e}+Y_{r}=Y^{\prime}+Y^{\prime \prime}, \quad \alpha_{e}+\alpha_{r}=\alpha^{\prime}+\alpha^{\prime \prime} \quad$ for $z=0, \quad$ (70) $Y^{\prime}+Y^{\prime \prime}=Y_{d}, \quad \alpha^{\prime}+\alpha^{\prime \prime}=\alpha_{d} \quad$ for $z=d$.

The conditions (70) give
$E+\mathrm{R}=D^{\prime}+D^{\prime \prime}, \quad(E-\mathrm{R}) \sqrt{\epsilon_{1}}=\left(D^{\prime}-D^{\prime \prime}\right) \sqrt{\epsilon_{2}}, \quad . \quad\left(7 \mathrm{O}^{\prime}\right)$

[^71]and the conditions (7 I)
\[

\left.$$
\begin{array}{rl}
D^{\prime} e^{-i p}+D^{\prime \prime} e^{+i p} & =D e^{-i q}, \\
\left(D^{\prime} e^{-i p}-D^{\prime \prime} e^{+i p}\right) \sqrt{\epsilon_{2}} & =D e^{-i q} \sqrt{\epsilon_{1}},
\end{array}
$$\right\}
\]

in which p and q are abbreviations for

$$
\begin{equation*}
p=\frac{2 \pi}{T} \cdot \frac{d}{V_{2}}=2 \pi \frac{d}{\lambda_{2}}, \quad q=\frac{2 \pi}{T} \cdot \frac{d}{V_{1}}=2 \pi \frac{d}{\lambda_{1}} . \tag{72}
\end{equation*}
$$

From ($7 \mathrm{I}^{\prime}$) follows at once

$$
\left(D^{\prime} e^{-i \phi}+D^{\prime \prime} e^{+i p}\right) \sqrt{\epsilon_{1}}=\left(D^{\prime} e^{-i \phi}-D^{\prime \prime} e^{+i p}\right) \sqrt{\epsilon_{2}},
$$

from which is deduced

$$
\begin{equation*}
D^{\prime} e^{-i p}\left(\sqrt{\epsilon_{2}}-\sqrt{\epsilon_{1}}\right)=D^{\prime \prime} e^{+i p}\left(\sqrt{\epsilon_{2}}+\sqrt{\epsilon_{1}}\right) . \tag{73}
\end{equation*}
$$

From (70^{\prime}),

$$
\frac{E+\mathrm{R}}{\overline{E-R}}=\frac{D^{\prime}+D^{\prime \prime}}{D^{\prime}-D^{\prime \prime}} \cdot \frac{\sqrt{\epsilon_{1}}}{\sqrt{\epsilon_{2}}}
$$

i.e.

$$
\frac{\mathrm{R}}{E}=\frac{D^{\prime}\left(\sqrt{\epsilon_{1}}-\sqrt{\epsilon_{2}}\right)+D^{\prime \prime}\left(\sqrt{\epsilon_{1}}+\sqrt{\epsilon_{2}}\right)}{D^{\prime}\left(\sqrt{\bar{\epsilon}_{1}}+\sqrt{\epsilon_{2}}\right)+D^{\prime \prime}\left(\sqrt{\bar{\epsilon}_{1}}-\sqrt{\bar{\epsilon}_{2}}\right)^{2}} .
$$

- In consideration of (73) this last may be written

$$
\begin{aligned}
\frac{\mathrm{R}}{E} & =\frac{\left(e^{+i p}-e^{-i p}\right)\left(\epsilon_{1}-\epsilon_{2}\right)}{e^{+i p}\left(\sqrt{\epsilon_{1}}+\sqrt{\epsilon_{2}}\right)^{2}-e^{-i p}\left(\sqrt{\epsilon_{1}}-\sqrt{\epsilon_{2}}\right)^{2}} \\
& =\frac{i \sin p \cdot\left(\epsilon_{1}-\epsilon_{2}\right)}{i \sin p \cdot\left(\epsilon_{1}+\epsilon_{2}\right)+2 \sqrt{\epsilon_{1} \epsilon_{2}} \cdot \cos p} .
\end{aligned}
$$

In order to obtain the intensity J_{r} of the reflected light, this equation must be multiplied by the conjugate complex equation (cf. page 297). Thus, when J_{c} denotes the intensity of the incident light, there results

$$
\begin{equation*}
J_{r}=J_{e} \frac{\sin ^{2} p\left(\epsilon_{1}-\epsilon_{2}\right)^{2}}{\sin ^{2} p\left(\epsilon_{1}-\epsilon_{2}\right)^{2}+4 \epsilon_{1} \epsilon_{2}}=J_{c} \frac{\sin ^{2} p\left(\mathrm{I}-n^{2}\right)^{2}}{\sin ^{2} p\left(\mathrm{I}-n^{2}\right)^{2}+4 n^{2}}, \tag{74}
\end{equation*}
$$

provided $\epsilon_{2}: \epsilon_{1}=n^{2}$, so that n is the index of the plate 2 with respect to medium I .

From (70^{\prime}) and $\left(7 \mathrm{I}^{\prime}\right)$ it is easy to deduce the equation

$$
\begin{aligned}
\frac{D e^{-i q}}{E} & =\frac{4 \sqrt{\epsilon_{1} \epsilon_{2}}}{e^{i p\left(\sqrt{\epsilon_{1}}+\sqrt{\epsilon_{2}}\right)^{2}-e^{-i p}\left(\sqrt{\epsilon_{1}}-\sqrt{\epsilon_{2}}\right)^{2}}} \\
& =\frac{2 \sqrt{\epsilon_{1} \epsilon_{2}}}{i \sin p\left(\epsilon_{1}+\epsilon_{2}\right)+2 \sqrt{\epsilon_{1} \epsilon_{2}} \cdot \cos p} .
\end{aligned}
$$

So that the intensity J_{d} of the transmitted light is

$$
\begin{equation*}
J_{d}=J_{e} \frac{4 \epsilon_{1} \epsilon_{2}}{\sin ^{2} p\left(\epsilon_{1}-\epsilon_{2}\right)^{2}+4 \epsilon_{1} \epsilon_{2}} . \tag{75}
\end{equation*}
$$

Hence the relation holds

$$
\begin{equation*}
J_{d}+J_{r}=J_{e}, . \tag{76}
\end{equation*}
$$

as was to be expected, since the plate absorbs no light
According to (74) the reflected light vanishes completely when $p=0, \pi, 2 \pi$, etc., i.e. when the thickness of the plate $d=0, \frac{1}{2} \lambda_{2}, \lambda_{2}, \frac{3}{2} \lambda_{2}$, etc. This is in agreement with the results deduced from equation (17) on page 139 . A maximum of intensity occurs when $\sin p=1$. Then $J_{r}=J_{e}\left(\frac{1-n^{2}}{I+n^{2}}\right)^{2}$. [In the case of normal reflection at one surface only, equation (26) on page 284 gives $\left.J_{r}=J_{e}\left(\frac{1-n}{I+n}\right)^{2} \cdot\right]$

If media 1 and 2 are air and glass, $n=1.5$. In the case of Newton's rings these media are glass and air, so that $n=1: 1.5$. In both cases equation (74) becomes

$$
J_{r}=J_{e} \frac{\sin ^{2} p \cdot \mathrm{I} \cdot 56}{\sin ^{2} p \cdot \mathrm{I} \cdot 56+9}
$$

Hence, for an approximation, the term $\sin ^{2} p\left(\mathrm{I}-n^{2}\right)^{2}$ in the denominator of (74) may be neglected in comparison with $4 x^{2}$, so that at a point in the Newton ring apparatus at which the thickness of the air film is d,

$$
\begin{equation*}
J_{r}=J_{e}\left(\frac{1-n^{2}}{2 n}\right)^{2} \sin ^{2} 2 \pi^{d} / \lambda \tag{77}
\end{equation*}
$$

λ denotes the wave length in air. If the incident light is white, and if J_{λ} denotes the intensity in the incident beam of light of wave length λ, then the intensity of the reflected light is, provided dispersion or the dependence of n upon λ be neglected,

$$
\begin{equation*}
J_{r}=\left(\frac{1-n^{2}}{2 n}\right)^{2} \Sigma J_{\lambda} \sin ^{2} 2 \pi^{d} / \lambda \tag{78}
\end{equation*}
$$

The colors of thin plates are then a mixture composed of pure colors in a manner easily evident from (78).
12. Non-Homogeneous Media: Curved Rays.-The optical properties of a non-homogeneous medium, in which the dielectric constant ϵ is a function of the coordinates x, y, z, will be briefly considered. The most logical way of doing this would be to integrate the differential equations (18) on page 269; for these hold for non-homogencous media also. To do this ϵ must be given as a function of x, y, and z. This method would give both the paths of the rays and the intensities of the reflections necessarily taking place inside of a non-homogeneous medium. But even with the simplest possible assumption for ϵ this method is complicated and has never yet been carried out. Investigation has been limited to the determination of the form of the rays from Snell's law or Huygens' principlea process which succeeds at once if the medium be conceived to be composed of thin homogeneous layers having different indices. When the index varies continuously, the ray must of course be curved. Heath * has deduced for its radius of curvature ρ at a point P the equation

$$
\begin{equation*}
\frac{\mathrm{I}}{\rho}=\frac{d \log n}{d v} \tag{79}
\end{equation*}
$$

in which v denotes the direction of most rapid change (decreasing) of the index n.

This equation explains the phenomenon of mirage, which is observed when the distribution of the density of the air over

[^72]the earth's surface is abnormal, as is the case over heated deserts. At a certain height above the earth the index n of the air is then a maximum. But in this case, by (79), $\rho=\infty$, i.e. at this height the ray has a point of inflection. Hence two different rays can come from an object to the eye of an observer, who then sees two images of the object, one crect, the other inverted.*

An interesting application of the theory of curved rays has been made by A. Schmidt. \dagger He explains the appearance of the sun by showing that a luminous sphere of gas of the dimensions of the sun, whose density increases continuously from without towards the interior, would have sharp limits, as the sun appears to have. For a ray of light which travels towards such a sphere of gas so as to make an angle less than a certain angle ϕ with the line drawn from the observer to the centre of the sphere is deflected toward the centre of the sphere and passes many times around that centre. It thus attains depths from which a continuous spectrum is emitted, for an incandescent gas emits such a spectrum when the pressure is sufficient. But a ray which makes an angle greater than ϕ with a line drawn to the centre of the sphere must again leave the sphere without having traversed intensely luminous layers. Although there is no discontinuity in the sun's density yet it appears as a sharply bounded disc which subtends a visual angle 2ϕ.

For the experimental presentation of curved rays cf. J. Macé de Lépinay and A. Perot (Ann. d. chim. et d. phys. (6) 27, page 94, 1892); also O. Wiener (Wied. Ann. 49, page 105, 1893). The latter has made use of the curved rays in investigations upon diffusion and upon the conduction of heat.

[^73]
CHAPTER III

OPTICAL PROPERTIES OF TRANSPARENT CRYSTALS

I. Differential Equations and Boundary Conditions.-A

 crystal differs from an isotropic substance in that its properties are different in different directions. Now in the electromagnetic theory the specific properties of a substance depend solely upon its dielectric constant, provided the standpoint taken on page 269 , that the permeability of all substances is equal to unity, be maintained.Now an inspection of the deduction of the differential equations for an isotropic body as given upon pages 269 sq. shows that equations (17) contain only the specific properties of the body, i.e. its dielectric constants. But equations (7) and (II) are also applicable to crystals, as has been already remarked. Hence only equations (17) need to be extended, since in a crystal the dielectric constant depends upon the direction of the electric lines of force. The most general equations for the extension of (17) are

$$
\left.\begin{array}{l}
4 \pi j_{x}=\epsilon_{11} \frac{\partial X}{\partial t}+\epsilon_{12} \frac{\partial Y}{\partial t}+\epsilon_{13} \frac{\partial Z}{\partial t} \\
4 \pi j_{y}=\epsilon_{21} \frac{\partial X}{\partial t}+\epsilon_{22} \frac{\partial Y}{\partial t}+\epsilon_{23} \frac{\partial Z}{\partial t} \tag{I}\\
4 \pi j_{x}=\epsilon_{31} \frac{\partial X}{\partial t}+\epsilon_{32} \frac{\partial Y}{\partial t}+\epsilon_{33} \frac{\partial Z}{\partial t}
\end{array}\right\}
$$

since the components of the current must always remain linear functions of $\frac{\partial X}{\partial t}, \frac{\partial Y}{\partial t}, \frac{\partial Z}{\partial t}$. Equations (1) assert that in general in a crystal the direction of a line of current flow does not
coincide with the direction of a line of force, since if, for example, Y and Z vanish while X remains finite, j and J_{z} do not vanish.

Equation (23) on page 272 for the flow of energy may be deduced by multiplying the general equations (9) and (II), namely,

$$
\frac{4 \pi}{c} j_{x}=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}, \ldots \frac{4 \pi}{c} s_{x}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}, \ldots
$$

by $X d r, \ldots \alpha d \tau$, and integrating with respect to τ. ($d \tau$ represents element of volume.) The result is

$$
\begin{gathered}
\frac{4 \pi}{c} \int\left(j_{x} X+j_{y} Y+j_{x} Z\right) d \tau \\
+\frac{4 \pi}{c} \int\left(s_{x} \alpha+s_{y} \beta+s_{z} \gamma\right) d \tau=\frac{4 \pi}{c} \frac{\partial}{\partial t} \int \S d \tau,
\end{gathered}
$$

in which § represents the energy in the volume element $d \tau$. This equation may also be applied to crystals, since the specific properties of the medium do not appear in it. Hence the change in the electromagnetic energy in unit volume with respect to the time is

$$
\frac{\partial \mathscr{F}}{\partial t}=j_{x} X+j_{y} Y+j_{x} Z+s_{x} \alpha+s_{y} \beta+s_{x} \gamma .
$$

Since the last three of equations (17) on page 269 hold in this case also (when $\mu=\mathrm{I}$) the last three terms of this equation are a differential coefficient with respect to the time, i.e.

$$
s_{x} \alpha+s_{y} \beta+s_{x} \gamma=\frac{1}{8 \pi} \frac{\partial}{\partial t}\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)
$$

Consequently $j_{x} X+j_{y} Y+j_{s} Z$ must also be a differential coefficient with respect to the time. In order that this may be possible in consideration of (I), the following conditions must be fulfilled:

$$
\begin{equation*}
\epsilon_{21}=\epsilon_{12}, \quad \epsilon_{31}=\epsilon_{13}, \quad \epsilon_{23}=\epsilon_{52}, \quad . \quad \tag{2}
\end{equation*}
$$

and in this case the part \mathfrak{F}_{1} of the energy which depends upon the electric forces is

$$
\left.\begin{array}{c}
\mathfrak{F}_{1}=\frac{1}{8 \pi}\left(\epsilon_{11} X^{2}+\epsilon_{22} Y^{2}+\epsilon_{33} Z^{2}+2 \epsilon_{23} Y Z\right. \tag{3}\\
\left.+2 \epsilon_{31} Z X+2 \epsilon_{12} X Y\right) .
\end{array}\right\}
$$

By means of a transformation of coordinates \mathfrak{E}_{1} may always be reduced to the canonical form

$$
\begin{equation*}
\mathfrak{F}_{1}=\frac{\mathrm{I}}{8 \pi}\left(\epsilon_{1} X^{2}+\epsilon_{2} Y^{2}+\epsilon_{3} Z^{2}\right) \tag{4}
\end{equation*}
$$

When the coordinates have been thus chosen the factors $\epsilon_{h k}$ vanish and equations (I) take the simplified form

$$
\begin{equation*}
j_{x}=\frac{\epsilon_{1}}{4 \pi} \frac{\partial X}{\partial t}, \quad j_{y}=\frac{\epsilon_{2}}{4 \pi} \frac{\partial Y}{\partial t}, \quad j_{\mathrm{x}}=\frac{\epsilon_{3}}{4 \pi} \frac{\partial Z}{\partial t} . \tag{5}
\end{equation*}
$$

These coordinate axes are characterized by the fact that along their direction the electric current coincides with the direction of the electric force. These rectangular axes will be called axes of electric symmetry, since the crystal is symmetrical in its electrical properties with respect to them, or also with respect to the three coordinate planes which they define. $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$ signify the dielectric constants corresponding to the three axes of symmetry. They will be called the principal dielectric constants.

As was remarked above, the assumption will be made that the permeability of the crystal is the same in all directions. Although this is not rigorously true, as is evident from the tendency shown by a sphere of crystal when hung in a powerful magnetic field to set itself in a particular direction, yet experiment justifies the assumption in the case of light vibrations.*

Hence in the differential equations (18) on page 269, which apply to isotropic media, only such modifications are necessary

[^74]as are due to the fact that the dielectric constant has different values in different directions. The dielectric constant appears in only the first three of equations (18). These equations assert that the components of the current are proportional to the quantities $\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}$, etc. Since the components of the current in a crystal are given by equations (I) and (5), the general differential equations (7) and (II) of the electromagnetic field on pages 265 and 267 become for a crystal, when its axes of electric symmetry have been chosen as coordinate axes,
$\frac{\epsilon_{1}}{c} \frac{\partial X}{\partial t}=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}, \frac{\epsilon_{2}}{c} \frac{\partial Y}{\partial t}=\frac{\partial \alpha}{\partial z}-\frac{\partial \gamma}{\partial x}, \frac{\epsilon_{3}}{c} \frac{\partial Z}{\partial t}=\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial z}$,
$\frac{\mathrm{I}}{c} \cdot \frac{\partial \alpha}{\partial t}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}, \quad \frac{\mathrm{I}}{c} \frac{\partial \beta}{\partial t}=\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}, \frac{\mathrm{I}}{c} \frac{\partial \gamma}{\partial t}=\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x}$.
When referred to any arbitrary system of coordinates, equations (6) must be replaced by
$$
\frac{I}{c}\left(\epsilon_{11} \frac{\partial X}{\partial t}+\epsilon_{12} \frac{\partial Y}{\partial t}+\epsilon_{13} \frac{\partial Z}{\partial t}\right)=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}, \text { etc. }
$$

The conditions which must be fulfilled at the bounding surface between two crystals, or between a crystal and an isotropic medium, for example air, may be obtained from the considerations which were presented in $\S 8$ of Chapter I, page 27 I . They demand that, in passing through the boundary, the components of the electric and magnetic forces parallcl to the boundary be continuous.
2. Light-vectors and Light-rays.-In the discussion of isotropic media on page 283 it was shown that different interpretations of optical phenomena are obtained according as the light-vector is identified with the electric or with the magnetic force. Both courses accord with the results of experiment if the phenomena of stationary waves be left out of account. The case is similar in the optics of crystals, save that there is here a third possibility, namely, that of choosing the electric current as the light-vector. Its components are
then proportional to $\epsilon_{1} \frac{\partial X}{\partial t}, \epsilon_{2} \frac{\partial Y}{\partial t}, \epsilon_{3} \frac{\partial Z}{\partial t}$. Thus in the optics of crystals there are three possible theories which differ from one another both as regards the position of the light-vector with respect to the plane of polarization, and also as regards its position with respect to the wave normal in the case of plane waves. As to the latter difference it appears from page 278 that the light-vector is perpendicular to the wave normal in the case of plane waves (i.e. plane zuaves are transverse), if its components, which will here be represented by u, v, and w, satisfy the differential equation

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 . \tag{8}
\end{equation*}
$$

Differentiation of equations (7) with respect to x, y, and z and addition of them gives, as above on page 275 ,

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{\partial \alpha}{\partial x}+\frac{\partial \beta}{\partial y}+\frac{\partial \gamma}{\partial z}\right)=0, \tag{9}
\end{equation*}
$$

i.e. the waves are transverse if the magnetic force is taken as the light-vector.

If the same operation be performed upon the three equations (6), there results

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\epsilon_{1} \frac{\partial X}{\partial t}\right)+\frac{\partial}{\partial y}\left(\epsilon_{2} \frac{\partial Y}{\partial t}\right)+\frac{\partial}{\partial z}\left(\epsilon_{3} \frac{\partial Z}{\partial t}\right)=0, \tag{10}
\end{equation*}
$$

i.e. the waves are likewise transverse if the electric current be interpreted as the light-vector.

But the waves are not transverse if the electric force is taken as the light-vector, since, in consequence of the last equation, because of the differences between $\epsilon_{1}, \epsilon_{2}$, and ϵ_{3}, the following inequality exists:

$$
\begin{equation*}
\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z} \gtrless< \tag{II}
\end{equation*}
$$

The plane of polarization is defined by the direction of the wave normal and the magnetic force, as was shown on page 283 to be the case for isotropic media.

Thus the characteristics of the three possible theories of the optics of crystals are the following:

1. The magnetic force is the light-vector. Plane waves are transverse; the light-vector lies in the plane of polarization. (Mechanical theory of F. Neumann, G. Kirchhoff, W. Voigt, and others.)
2. The electric force is the light-vector. Plane waves are not strictly transverse; the light-vector is almost perpendicular to the plane of polarization. (Mechanical theory of Ketteler, Boussinesq, Lord Rayleigh, and others.)
3. The electric current is the light-vector. Plane waves are transverse; the light-vector lies perpendicular to the plane of polarization. (Mechanical theory of Fresnel.)

These differences in the theory cannot lead to observable differences in phenomena so long as the observations of the final light effect are made in an isotropic medium upon advancing, not stationary, waves. No other kinds of observations are possible in the case of crystals. Hence nothing more can be done than to solve each particular problem rigorously, i.e. in consideration of its special boundary conditions.

The system of differential equations and boundary conditions to be treated are then completely determined, and there results one definite value for the electric force in the outer isotropic medium no matter what is interpreted as the lightvector in the crystal. The results which can be tested by experiment are the same whether the magnetic force or the electric force is taken as the light-vector in the outer medium. For, according to the fundamental equations, the intensity of the advancing magnetic wave is always the same as the intensity of the advancing electric wave.

The electromagnetic theory has then the advantage that it includes a number of analytically different theories and shows why they must lead to the same result.

A ray of light was defined on page 273 as the path of the energy flow. According to the equation given on page 310 for the electromagnetic energy in crystals, equation (23) on
page 272 for the flow of energy holds for crystals also. The direction cosines of the ray of light are then also in the crystal proportional to the quantities f_{x}, f_{y}, f_{z}, defined in equation (25) on page 273.

The ray of light is then perpendicular both to the electric and to the magnetic force. In general it does not coincide with the normal to a plane wave, since from the inequality (II) this normal is not perpendicular to the electric force.
3. Fresnel's Law for the Velocity of Light.-In order to find the velocity of light in crystals, it is necessary to deduce from equations (6) and (7) such differential equations as contain either the electric force alone or the magnetic force alone. The former are obtained by differentiating the three equations (6) with respect to t and substituting for $\frac{\partial \alpha}{\partial t}, \frac{\partial \beta}{\partial t}, \frac{\partial \gamma}{\partial t}$, which appear upon the right-hand side, their values taken from (7). Thus from the first of equations (6)

$$
\frac{\epsilon_{1}}{a^{2}} \frac{\partial^{2} X}{\partial t^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x}\right)-\frac{\partial}{\partial z}\left(\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}\right)
$$

The right-hand side of this equation can be written in the more symmetrical form

$$
\begin{equation*}
\frac{\epsilon_{1}}{c^{2}} \frac{\partial^{2} X}{\partial t^{2}}=\Delta X-\frac{\partial}{\partial x}\left(\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}\right) \tag{I2}
\end{equation*}
$$

Similarly, from the two other equations of (6),

$$
\left.\begin{array}{l}
\frac{\epsilon_{2}}{c^{2}} \frac{\partial^{2} Y}{\partial t^{2}}=\Delta Y-\frac{\partial}{\partial y}\left(\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}\right) \\
\frac{\epsilon_{3}}{c^{2}} \frac{\partial^{2} Z}{\partial t^{2}}=\Delta Z-\frac{\partial}{\partial z}\left(\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}\right) \tag{I2}
\end{array}\right\}
$$

From the discussion of the preceding paragraph it appears that only analytical differences result from differences in the choice of the light-vector. In order to bring the discussion into accord with Fresnel's theory, the light-vector will be assumed to be proportional to the electric current. Let u, v,
w, be the components of the light-vector for plane waves, thus:

$$
\begin{align*}
& \left.u=\epsilon_{1} X=A 0\right\} \cos { }^{2 \pi}\left(t-{ }^{m}(n+n y+p z),\right. \tag{13}
\end{align*}
$$

$$
\begin{aligned}
& w^{\prime}=\epsilon_{3} \%=A \neq \cos \frac{2 \pi}{\pi}\left(1-\frac{m x+\mu \nu+h}{V}\right),
\end{aligned}
$$

in which it is assumed that

$$
\begin{equation*}
9 \pi^{2}+9 u^{2}+4^{2}=m^{2}+n^{2}+t^{3}=1 \tag{14}
\end{equation*}
$$

A denotes then the amplitude of the light-vector, Di, 98 , 4 its direction cosines with respect to the axes of electric symmetry, m, n, p the direction cositacs of the wave normal, l the velocity of light measured in the direction of the wave nommal (the so-called velocity along the normal). On account of equation (10) the relation holds

$$
\begin{equation*}
23 m+9 n+9 p=0, \tag{15}
\end{equation*}
$$

which signifies that the wave is transverse.
Substitution of the values (13) in (12) gives (C, is written for c above)

A multiplication of these equations by $C^{2} V^{\prime 2}$ and a substitution, for brevity, of

$$
\begin{array}{r}
C^{2}: \epsilon_{1}=a^{2}, \quad C^{2}: \epsilon_{2}=b^{2}, \quad C^{2}: \epsilon_{3}=c^{2}, * \quad(16) \\
\left.a^{2} \mathfrak{M} / m+b^{2}\right)\left(n+c^{2} P p=c^{2}, \quad . \quad . \quad\left(16^{\prime}\right)\right.
\end{array}
$$

 of light in vacus. In the section on opties of crystals C ' will be used to demote this velocity, and c will stand for $C: \sqrt{ }$ en.
gives
$\mathfrak{M}\left(a^{2}-V^{2}\right)=m G^{2}, \quad \mathfrak{R}\left(b^{2}-V^{2}\right)=n G^{2}, \quad \mathfrak{P}\left(c^{2}-V^{2}\right)=p G^{2}$,
i.e.

$$
\mathfrak{M}=G^{2} \frac{m}{a^{2}-V^{2}}, \quad \Re=G^{2} \frac{n}{b^{2}-V^{2}}, \quad \mathfrak{P}=G^{2} \frac{p}{c^{2}-V^{2}} .
$$

If these last three equations be multiplied by m, n, p, respectively, and added, the left-hand side reduces to zero, because of (15), so that, by dropping the factor G^{2}, there results

$$
\begin{equation*}
\frac{m^{2}}{a^{2}-V^{2}}+\frac{n^{2}}{b^{2}-V^{2}}+\frac{p^{2}}{c^{2}-V^{2}} \doteq 0 \tag{18}
\end{equation*}
$$

This equation, which expresses the functional relationship between V^{2} and m, n, and p, is of the second degree in V^{2}. Hence for every particular direction of the wave normal there are two different values for the velocity. Equation (18) is called Fresnel's law.

When $m=\mathrm{I}, n=p=0$, the two velocities are $V_{1}^{2}=b^{2}$, $V_{2}^{2}=c^{2}$. Thus when the wave normal coincides with one of the axes of electric symmetry of the crystal, two of the quantities a, b, and c represent velocities. Hence a, b, c are called the principal velocities.

The same law of velocity (18) results if either the electric or the magnetic force is taken as the light-vector.
4. The Directions of the Vibrations. - Two waves travelling with different velocities correspond to every wave normal. The position in these waves of the characteristic quantity, for example the electric current, is perfectly definite and different in the two waves. Thus if the indices r and 2 refer to the two waves respectively, then, from (17^{\prime}), the position of the light-vector is obtained from

$$
\left.\begin{array}{l}
\mathfrak{M}_{1}: \mathfrak{R}_{1}: \mathfrak{F}_{1}=\frac{m}{a^{2}-V_{1}^{2}}: \frac{n}{b^{2}-V_{1}^{2}}: \frac{p}{c^{2}-V_{1}^{2}} \tag{19}\\
\mathfrak{M}_{2}: \mathfrak{N}_{2}: \mathfrak{P}_{2}=\frac{m}{a^{2}-V_{2}^{2}}: \frac{n}{b^{2}-V_{3}^{2}}: \frac{p}{c^{2}-V_{2}^{2}} .
\end{array}\right\} .
$$

Thus in the direction of a given wave normal but two planepolarized waves are able to be propagated, and these waves are polarized at right angles to each other. For, from (Ig),

$$
\begin{equation*}
M_{1} M_{2}+\mathfrak{N}_{1} \mathfrak{N}_{2}+\mathfrak{M}_{1} \mathscr{H}_{2} \sim \frac{m^{2}}{\left(a^{2}-V_{1}^{2}\right)\left(a^{2}-V_{2}^{2}\right)}+\text { ctc } . \tag{20}
\end{equation*}
$$

But now

$$
\frac{n n^{2}}{\left(a^{2}-V_{1}^{2}\right)\left(a^{2}-V_{2}^{2}\right)}=\frac{n n^{2}}{V_{1}^{2}-V_{2}^{2}}\left(\frac{1}{\left(a^{2}-V_{1}^{2}\right.}-\frac{\mathbf{1}}{a^{2}-V_{2}^{2}}\right),
$$

so that the left-hand side of (20) is proportional to

$$
\begin{aligned}
& \frac{1}{V_{1}^{2}-V_{2}^{2}}\left\{\begin{array}{l}
m^{2} \\
a^{2}-V_{1}^{2}
\end{array} n^{2}-V_{1}^{2}+{c^{2}}^{2}-V_{1}^{3}\right. \\
& \left.\left.-a^{3}-V_{2}^{2}-b^{3}-r_{2}^{2}-\dot{n}^{2}-1_{2}^{3}\right\}\right\} \text {. }
\end{aligned}
$$

Now since both Γ_{1} and Γ_{2} satisfy equation (i8), this cintire expression is equal to zero. Consequently the light-vectern $\mathfrak{M n}_{1}, \mathfrak{R}_{1}, \mathfrak{P}_{1}$ is perpendicular to $\mathfrak{M R}_{2}, \mathfrak{l}_{2}, \mathscr{H}_{2}$.

The volocity is a single-talued function of the direction of vibration. For, in consideration of (IO), Fresnel's law (I8) may be written

$$
\left(a^{2}-V^{2}\right) \mathfrak{M}^{3}+\left(b^{2}-V^{2}\right) \mathfrak{N}^{2}+\left(c^{2}-V^{2}\right) \mathscr{F}^{2}=0
$$

i.e., since $\mathfrak{M}^{2}+\mathfrak{M}^{2}+\mathfrak{S}^{2}=1$,

$$
V^{2}=a^{29} M l^{2}+b^{2} 9 \mathfrak{l}^{2}+c^{2} B^{2}
$$

5. The Normal Surface. - In order to gain a conception of how the velocity varies with the direction of the wave normal, it is best to lay off from a given origin (), in all possi ble directions of the wave normals, the two velocities as radii vectores. In this way a surface consisting of two sheets is obtained, -the so-called normal surfoce. In a plane of electric symmetry, for example the $y \tilde{\sim}$-plane, the two values of the velocity are, by (18),

$$
\begin{equation*}
V_{1}^{2}=a^{2}, \quad V_{2}^{2}=b^{2} p^{2}+b^{2} n^{2} \tag{2I}
\end{equation*}
$$

i.e. the section of the wave surface by a plane of electric symmetry consists of a circle and an oval. If $a>b>c$, the
sections of the wave surface by the planes of symmetry are shown in Fig. 85. In the $x z$-plane, for two directions of the wave normal, which are denoted by A_{1} and A_{2}, the two roots V_{1} and V_{2} of necessity coincide, since the two sheets of the normal surface intersect. It can be shown that this occurs for

Fig. 85.
no other directions of the wave normal; for the quadratic equation in V^{2} is, by (18),

$$
\begin{align*}
V^{4}- & V^{2}\left\{m^{2}\left(b^{2}+c^{2}\right)+n^{2}\left(c^{2}+a^{2}\right)+p^{2}\left(a^{2}+b^{2}\right)\right\} \\
& +m^{2} b^{2} c^{2}+n^{2} c^{2} a^{2}+p^{2} a^{2} b^{2}=0 . \tag{22}
\end{align*}
$$

If the following abbreviations be introduced:
$M=m^{2}\left(b^{2}-c^{2}\right), \quad N=n^{2}\left(c^{2}-a^{2}\right), \quad P=p^{2}\left(a^{2}-b^{2}\right),$.
the solution of (22) is

$$
\left.\begin{array}{l}
2 V^{2}=n^{2}\left(b^{2}+c^{2}\right)+n^{2}\left(c^{2}+a^{2}\right)+p^{2}\left(a^{2}+b^{2}\right) \tag{24}\\
\pm \sqrt{M^{2}+N^{2}+P^{2}-2 M N-2 N P-2 M P .}
\end{array}\right\}
$$

are the roots the 5 for

Now since $a>b>c, M$ and P are positive, N negative. Since the quantity under the radical may be put in the form

$$
(M+N-P)^{2}-4 M N
$$

it is made up of two positive terms. Hence when the two roots in V^{2} are equal, the two following conditions must be satisfied:

$$
M+N-P=0, \quad M N=0
$$

Now M cannot be zero, since in that case $N=P$, which is impossible, for N is negative and P positive. Consequently the expression under the radical vanishes only when

$$
N=\mathrm{o}, \quad M=P
$$

i.e. when

$$
\begin{equation*}
n=0, \quad m^{2}\left(b^{2}-c^{2}\right)=p^{2}\left(a^{2}-b^{2}\right) \tag{25}
\end{equation*}
$$

or since $m+n^{2}+p^{2}=1$, when

$$
\begin{equation*}
m= \pm \sqrt{\frac{a^{2}-b^{2}}{a^{2}-c^{2}}}, \quad n=0, \quad p= \pm \sqrt{\frac{b^{2}-c^{2}}{a^{2}-c^{2}}} \tag{26}
\end{equation*}
$$

These equations determine the two directions of the wave normals for which the two velocities are the same. These directions are called the optic axes. The axes of electric symmetry x and z which bisect the angles between the optic axes are called the median lines of the crystal.

The value of the common velocity of the two waves when the wave normal coincides with an optic axis is $V_{1}=V_{2}=b$. This is evident from Fig. 85 as well as from equation (24) taken in connection with (26). Hence, from (19), the direction of vibration of these waves is indeterminate, since an indeterminate expression, namely, $n: b^{2}-V^{2}=0: 0$, occurs in these equations. Hence along the optic axis any kind of light may be propagated, i.e. light polarized in any way, or even natural light.

The velocity V can be calculated more conveniently by introducing the angles g_{1} and g_{2} which the wave normal makes with the optic axes than by the use of (24). Let the
positive direction of one of the optic axes A_{1} be so taken that it makes acute angles with the positive directions of the x - and .z-axes. The direction cosines of this axis are then, by (26),

$$
m_{1}=+\sqrt{\frac{a^{2}-b^{2}}{a^{2}-c^{2}}}, \quad n_{1}=0, \quad p_{1}=+\sqrt{\frac{b^{2}-c^{2}}{a^{2}-c^{2}}}
$$

Let the positive direction of the other optic axis A_{2} be so taken that it makes an acute angle with the z-axis but an obtuse angle with the x-axis. Its direction cosines are then

$$
m_{2}=-\sqrt{\frac{a^{2}-b^{2}}{a^{2}-c^{2}}}, \quad n_{2}=0, \quad p_{2}=+\sqrt{\frac{b^{2}-c^{2}}{a^{2}-c^{2}}} \quad . \quad\left(2 \sigma^{\prime \prime}\right)
$$

Hence the cosines of the angles g_{1} and g_{2} between the wave normal and the positive directions of A_{1} and A_{2} are

$$
\cos g_{1}=m n_{1}+n n_{1}+p p_{1}
$$

i.e.

$$
\left.\begin{array}{l}
\cos g_{1}=m \sqrt{\frac{a^{2}-b^{2}}{a^{2}-c^{2}}}+p \sqrt{\frac{b^{2}-c^{2}}{a^{2}-c^{2}}}, \tag{27}\\
\cos g_{2}=-m \sqrt{\frac{a^{2}-b^{2}}{a^{2}-c^{2}}}+p \sqrt{\frac{b^{2}-c^{2}}{a^{2}-c^{2}}}
\end{array}\right\}
$$

In consequence of the relation $n^{2}=\mathrm{I}-m^{2}-p^{2}$ it is easy to deduce the following:

$$
\begin{align*}
& m^{2}\left(b^{2}+c^{2}\right)+n^{2}\left(c^{2}+a^{2}\right)+p^{2}\left(a^{2}+b^{2}\right) \\
& \quad=a^{2}+c^{2}+\left(a^{2}-c^{2}\right) \cos g_{1} \cos g_{2}, \tag{28}\\
& M^{2}+N^{2}+P^{2}-2 M N-2 N P-2 M P \\
& \quad=\left(a^{2}-c^{2}\right)^{2} \sin ^{2} g_{1} \sin ^{2} g_{2}
\end{align*}
$$

Hence, from (24),

$$
\left.\begin{array}{l}
2 V_{1}^{2}=a^{2}+c^{2}+\left(a^{2}-c^{2}\right) \cos \left(g_{1}-g_{2}\right) \\
2 V_{2}^{2}=a^{2}+c^{2}+\left(a^{2}-c^{2}\right) \cos \left(g_{1}+g_{2}\right)
\end{array}\right\}
$$

6. Geometrical Construction of the Wave Surface and of the Direction of Vibration.-Fresnel gives the following geometrical construction for finding, with the aid of a surface called an ovaloid, the velocity and the direction of vibration: Let
the direction cosines of the ratias vector of the ovaloid be $\vartheta_{1}, \vartheta_{2}, \vartheta_{3}$. The equation of the ovaloid is then

$$
\begin{equation*}
\rho^{2}=a^{2} y_{1}^{2}+f-h^{2} v_{2}^{2}+f s^{2} v_{3}^{3}, \tag{30}
\end{equation*}
$$

a, b, and c being its principal axes. In order to obtain the velocity of propagation of a wave front, pass a plane through the centre of the ovaloid parallel to the wave front, and determine the largest and the smallest radii vecteres ρ_{1} and ρ_{2} of the oval section thus obtained. These are equal to the velocities of the two waves, and the directions of ρ_{1} and ρ_{2} are the directions of vibration in the waves, the directions ρ_{1} and ρ_{a} corresponding to the velocities ρ_{1} and ρ_{1} respectively.

In order to prove that this construction is correct, atcount must be taken of the fact that $\forall_{1}, \psi_{2}, \psi_{5}$ must also satisfy both of the conditions

$$
\begin{align*}
& 1=\vartheta_{1}^{3}+\vartheta_{2}^{3}+\vartheta_{3}^{2}, \tag{31}\\
& \left.0=m v_{1}+\mu\right)_{2}+f \vartheta_{3} \tag{32}
\end{align*}
$$

The last equation is an expression of the fact that the oval section is perpendicular to the wave normal. In order to determine those directions v_{1}, ψ_{2}, ϑ_{3} for which ρ hat a maximum or a minimum value, ϑ_{1}, ψ_{y}, ψ_{3} may, in accordance with the rules of differential calculus, be regarded as independent variables provided equations (31) and (32) be multiplied by the indeterminate Lagrangian factors σ_{1} and σ_{a}, and added to equation (30). By setting the separate differential coefficients of ρ^{2} with respect to $\vartheta_{1}, \vartheta_{2}, \vartheta_{3}$ equal to zero, there results

$$
\left.\begin{array}{l}
0=2\left(a^{3}+\sigma_{1}\right) \vartheta_{1}+m \sigma_{2} \\
0=2\left(b^{2}+\sigma_{1}\right) v_{2}+m \sigma_{2} \tag{3.3}\\
0=2\left(c^{2}+\sigma_{1}\right) \vartheta_{3}+p \sigma_{2}
\end{array}\right\}
$$

If these equations be multiplied by ϑ_{1}, ϑ_{2}, and ϑ_{3} respecetively and added, then, in consideration of (3i) and (32),

$$
a^{2} \vartheta_{1}^{2}+b^{2} \vartheta_{2}^{2}+c^{2} \vartheta_{3}^{2}=-\sigma_{1}
$$

Hence, from (30), $\sigma_{1}=-\rho^{2}$. If this value is substituted in (33), these three equations may be written in the form
$\vartheta_{1}=-\frac{1}{2} \sigma_{2} \frac{m}{a^{2}-\rho^{2}}, \quad \vartheta_{2}=-\frac{1}{2} \sigma_{2} \frac{n}{b^{2}-\rho^{2}}, \quad \vartheta_{3}=-\frac{1}{2} \sigma_{2} \frac{p}{c^{2}-\rho^{2}}$.
If these equations be multiplied by m, n, and p respectively and added, then it follows from (32) that

$$
\frac{m^{2}}{a^{2}-\rho^{2}}+\frac{n^{2}}{b^{2}-\rho^{2}}+\frac{p^{2}}{c^{2}-\rho^{2}}=0
$$

i.e. ρ actually satisfies the same equation as the velocity V [cf. equation (I8), page 3 I6].

From (34) it follows that $\vartheta_{1}, \vartheta_{2}, \vartheta_{3}$ stand in the same ratio to one another as $\mathfrak{M}, \mathfrak{R}$, and \mathfrak{P} in (ig), i.e. the direction of the light-vector is that of the maximum or minimum radius vector of the oval section.

Since, by $\S 5$, the direction of vibration is indeterminate in the case in which the wave normal coincides with one of the optic axes, the oval section has in this case no maximum or minimum radius vector, i.e. the intersections with the ovaloid of planes which are porpendicular to the optic axes are circles. The radii of these two circles are the same and equal to b. Any arbitrary oval section of a plane wave whose normal is N cuts the two circular sections of the ovaloid in two radii vectores r_{1} and r_{2} which have the same length b. These radii r_{1} and r_{2} are perpendicular to the planes which are defined by the wave normal N and the one or the other of the optic axes A_{1} and A_{2}; since, e.g., r_{1} is perpendicular to N as well as to A_{1}. Hence these planes $\left(N A_{1}\right)$ or $\left(N A_{2}\right)$ also cut the oval section of the ovaloid by the plane wave in two equal radii r_{1}^{\prime} and r_{2}^{\prime}, since r_{1}^{\prime} is perpendicular to r_{1}, and r_{2}^{\prime} to r_{2}. Also, since $r_{1}=r_{2}$, it follows, from the symmetry of the oval section, that $r_{1}^{\prime}=r_{2}^{\prime}$, and that the principal axes ρ_{1} and ρ_{2} of this section bisect the angles between r_{1} and r_{2}, r_{1}^{\prime} and r_{2}^{\prime}. The directions of vibration of the light-vectors (which coincide with ρ_{1} and ρ_{2}) lie in the two planes which bisect the angles formed by the planes $\left(N A_{1}\right)$ and $\left(N A_{2}\right)$. Thus the directions of the
vibrations are determined, since they are also perpendicular to the wave normals N. The direction of vibration which corresponds to V_{2} [defined by (29)] lies in the plane which bisects the angle $\left(A_{1}, N, A_{2}\right)$, in which A_{1} and A_{2} denote the positive directions of the optic axes defined by $\left(26^{\prime}\right)$; the direction of vibration corresponding to V_{1} is perpendicular to this plane, i.e. in the plane which bisects the angle ($A_{1}, N,-A_{2}$).
7. Uniaxial Crystals.-When two of the principal velocities a, b, c are equal, for example when $a=b$, the equations become much simpler. From (26) on page 319 it follows that both optic axes coincide with the z-axis. Hence these crystals are called uniaxial. From (29) it follows, since $g_{\mathrm{I}}=g_{2}$, that

$$
\begin{equation*}
V_{1}^{2}=a^{2}, \quad V_{2}^{2}=a^{2} \cos ^{2} g+c^{2} \sin ^{2} g, . \tag{35}
\end{equation*}
$$

in which g denotes the angle included between the wave normal and the optic axis. One wave has then a constant velocity; it is called the ordinary wave. The direction of vibration of the extraordinary wave lies, according to the construction of the preceding page, in the principal plane of the crystal, i.e. in the plane defined by the principal axis and the normal to the wave. The direction of vibration of the ordinary wave is therefore perpendicular to the principal plane of the wave. Since the principal plane of the wave was defined above (page 244) as the plane of polarization of the ordinary wave, the direction of vibration is perpendicular to the plane of polarization, as is the case from Fresnel's standpoint for isotropic media. When the angle g which the wave normal makes with the optic axis varies, N remaining always in the same principal section, the direction of vibration of the ordinary wave remains fixed, while that of the extraordinary wave changes. Hence, as was mentioned on page $252, \S 7$, Fresnel's standpoint has the advantage of simplicity in that the direction of vibration is alone determinative of the characteristics of the wave. If this is unchanged, the velocity of the wave is unchanged even though the direction of the wave normal varies.

Uniaxial crystals belong to those crystallographic systems
which have one principal axis and perpendicular to it two or three secondary axes, i.e. to the tetragonal or hexagonal systems. The optic axis coincides with the principal crystallographic axis. The crystals of the regular system do not differ optically from isotropic substances, since from their crystallographic symmetry $a=b=c$.

Rhombic, monoclinic, and triclinic crystals can be optically biaxial. In the first the axes of crystallographic symmetry coincide necessarily with the axes of electric symmetry, since in all its physical properties a crystal has at least that symmetry which is peculiar to its crystalline form. In monoclinic crystals the crystalline form determines the position of but one of the axes of electric symmetry, since this latter is perpendicular to the one plane of crystallographic symmetry. In triclinic crystals the axes of electric symmetry have no fixed relation to the crystalline form.

In the case of uniaxial crystals $(a=b)$ the ovaloid becomes, according to (30), the surface of revolution

$$
\begin{equation*}
\rho^{2}=a^{2}+\left(c^{2}-a^{2}\right) \vartheta_{3}^{2} . \tag{36}
\end{equation*}
$$

According as this surface is flattened or elongated in the direction of the axis, the crystal is said to be positively or negatively uniaxial. Thus in the former $a>c$, in the latter $a<c$. According to (35), in positive crystals the ordinary wave travels faster, i.e. is less refracted, while in negative crystals the ordinary wave is more strongly refracted than the extraordinary. Quartz is positively, calc-spar negatively, uniaxial.
8. Determination of the Direction of the Ray from the Direction of the Wave Normal. - Let the direction cosines of the ray be $\mathfrak{m}, \mathfrak{n}, \mathfrak{p}$. From the considerations presented on page 313 and equation (25) on page 273,

$$
\begin{equation*}
\mathfrak{m}: \mathfrak{n}: p=\gamma Y-\beta Z: \alpha Z-\gamma X: \beta X-\alpha Y \tag{37}
\end{equation*}
$$

But from equations (13) and (16) on page 315 ,

$$
\begin{equation*}
X: Y: Z=a^{2} \mathfrak{M}: b^{2} \mathfrak{A}: c^{2} \Re(. \tag{38}
\end{equation*}
$$

Also, from equations (7), page 3 II , and (I 3), it is easy to decluce
$\alpha: \beta: \gamma=b^{2} p \mathfrak{N}-c^{2} n \mathfrak{B}: c^{2} m \Re-a^{2} p \mathfrak{M}: a^{2} n \mathfrak{M}-b^{2} m \Re$.
Substitution of the values (38) and (39) in (37) gives $\mathfrak{m}: \mathfrak{n}: \mathfrak{p}=-m\left(a^{4} \mathfrak{M}^{2}+b^{4} \mathfrak{R}^{2}+c^{4} \mathfrak{S}^{2}\right)$

$$
+\mathfrak{M} a^{2}\left(a^{2} m \mathfrak{M}+b^{2} n \mathfrak{M}+c^{2} p \mathfrak{P}\right): \ldots: . . . \quad \text { (40) }
$$

The terms denoted thus...can be obtained from the written terms by a cyclical interchange of letters.

If now the abbreviation (16^{\prime}) on page $3 I 5$ be introduced, i.e. if

$$
\begin{equation*}
a^{2} m \mathfrak{M}+b^{2} n \mathfrak{M}+c^{2} p \Re=G^{2} \tag{41}
\end{equation*}
$$

it follows from (17) that
$a^{2} \mathfrak{M}=\mathfrak{M} V^{2}+m G^{2}, \quad b^{2} \mathfrak{M}=\mathfrak{M} V^{2}+n G^{2}, \quad c^{2} \mathfrak{F}=\mathfrak{B} V^{2}+p G^{2}$.
If these three equations be squared and added, then, since (cf. page 315)

$$
\begin{aligned}
& \mathfrak{M}^{2}+\mathfrak{n} \mathfrak{n}^{2}+\mathfrak{P}^{2}=m^{2}+n^{2}+p^{2}=\mathrm{I} \\
& \mathfrak{M} m+\mathfrak{M n}+\mathfrak{P} p=0,
\end{aligned}
$$

it follows that

$$
\begin{equation*}
a^{4} \mathfrak{M}^{2}+b^{4} \mathfrak{R}^{2}+c^{4} \Re^{2}=V^{4}+G^{4} . \tag{42}
\end{equation*}
$$

Squaring and adding equations (17^{\prime}) gives

$$
\begin{equation*}
\mathrm{I}=G^{4}\left\{\left(\frac{n}{a^{2}-V^{2}}\right)^{2}+\left(\frac{n}{b^{2}-V^{2}}\right)^{2}+\left(\frac{p}{c^{2}-V^{2}}\right)^{2}\right\} . \tag{43}
\end{equation*}
$$

If now the value of $\mathfrak{M R} a^{2}$ obtained from (17^{\prime}) be introduced, namely,

$$
\mathfrak{M} a^{2}=G^{2} \frac{m a^{2}}{a^{2}-V^{2}}
$$

then, in consideration of (41) and (42), (40) becomes

$$
\mathfrak{m}: \mathfrak{n}: \mathfrak{p}=-m\left(V^{4}+G^{4}\right)+m G^{4} \frac{a^{2}}{a^{2}-V^{2}}: \ldots: \ldots
$$

or

$$
\begin{align*}
\mathrm{m}: \mathfrak{n}: \mathfrak{p}=m\left(V^{2}+\frac{G^{4}}{V^{2}-a^{2}}\right) & : n\left(V^{2}+\frac{G^{4}}{V^{2}-b^{2}}\right) \\
& : p\left(V^{2}+\frac{G^{4}}{V^{2}-c^{2}}\right) . \tag{44}
\end{align*}
$$

This equation gives the direction of the ray in terms of the direction of the wave normal, for V^{2} is expressed in terms of m, n, and p in Fresnel's law (I8), and G^{2} [cf. (43)] in terms of m, n, p, and V^{2}.

In order to determine the absolute values of $\mathrm{m}, \mathfrak{n}, \mathfrak{p}$, not their ratios merely, it is possible to write

$$
\left.\begin{array}{c}
\mathrm{m}=m \sigma\left(V^{2}+\frac{G^{4}}{V^{2}-a^{2}}\right), \quad \mathrm{n}=n \sigma\left(V^{2}+\frac{G^{4}}{V^{2}-b^{2}}\right) \tag{45}\\
p=p \sigma\left(V^{2}+\frac{G^{4}}{V^{2}-c^{2}}\right),
\end{array}\right\} .
$$

in which σ is a factor of proportionality which can be determined by squaring and adding these threc equations. This gives, in consideration of (18) and (43),

$$
\begin{equation*}
\mathrm{I}=\sigma^{2}\left(V^{4}+G^{4}\right) \tag{46}
\end{equation*}
$$

9. The Ray Surface.-If a wave front has travelled parallel to itself in unit time a distance V, then V is called the velocity along the normal. The ray is oblique to the normal, making with it an angle which is given by

$$
\begin{equation*}
\cos \zeta=n 1 n+n n+p p \tag{47}
\end{equation*}
$$

The ray has then in unit time travelled a distance \mathfrak{B} such that

$$
\begin{equation*}
\mathfrak{B} \cos \zeta=V . \tag{48}
\end{equation*}
$$

\mathfrak{B} is called the velocity of the $r a y$: it is larger than the velocity along the normal.

If the three equations (45) be multiplied by m, n, p, respectively, and added, it follows that $\cos \zeta=\sigma V^{2}$, or, in consideration of (48),

$$
\begin{equation*}
\sigma=\mathrm{I}: V \mathfrak{B} . \tag{49}
\end{equation*}
$$

Hence, from (46),

$$
\begin{equation*}
G^{4}=V^{2} \mathfrak{B}^{2}-V^{4} \tag{50}
\end{equation*}
$$

or, in consideration of (48),

$$
\begin{equation*}
G^{2}=V^{2} \tan \zeta \tag{51}
\end{equation*}
$$

If the value of G^{4} from (50) be substituted in (45), then, in consideration of (49), there results, after a simple transformation,
$\frac{\mathfrak{m} \mathfrak{B}}{\mathfrak{B}^{2}-a^{2}}=\frac{m V}{V^{2}-a^{2}}, \quad \frac{\mathfrak{1}}{\mathfrak{B}^{2}-b^{2}}=\frac{n V}{V^{2}-b^{2}}, \quad \frac{\mathfrak{} \text { B }}{\mathfrak{B}^{2}-c^{2}}=\frac{p V}{V^{2}-c^{2}}$.
If these three equations be multiplied by $\mathfrak{m} a^{2}, \mathfrak{n} b^{2}$, $\mathfrak{p c} c^{2}$, respectively, and added, then, in consideration of $\left(17^{\prime}\right)$, $\mathfrak{B}\left(\frac{\mathfrak{m}^{2} a^{2}}{\mathfrak{B}^{2}-a^{2}}+\frac{\mathfrak{n}^{2} b^{2}}{\mathfrak{B}^{2}-b^{2}}+\frac{\mathfrak{p}^{2} c^{2}}{\mathfrak{B}^{2}-c^{2}}\right)=-\frac{V}{G^{2}}\left(a^{2} \mathfrak{M m}+b^{2} \mathfrak{M n}+c^{2} \mathfrak{P} \mathfrak{p}\right)$.

But the light-ray is perpendicular to the electric force. Hence the right-hand side of the last equation vanishes, since the components of the electric force satisfy (38). Hence

$$
\begin{equation*}
\frac{\mathfrak{m}^{2} a^{2}}{\mathfrak{B}^{2}-a^{2}}+\frac{\mathfrak{n}^{2} b^{2}}{\mathfrak{S}^{2}-b^{2}}+\frac{\mathfrak{p}^{2} c^{2}}{\mathfrak{B}^{2}-c^{2}}=0, \tag{53}
\end{equation*}
$$

which may also be written in the form

$$
\frac{\mathfrak{m}^{2}}{\frac{\mathrm{I}}{a^{2}}-\frac{\mathrm{I}}{\mathfrak{B}^{2}}}+\frac{\mathfrak{n}^{2}}{\frac{\mathrm{I}}{b^{2}}-\frac{\mathrm{I}}{\mathfrak{B}^{2}}}+\frac{\mathfrak{p}^{2}}{\frac{\mathrm{I}}{\mathrm{c}^{2}}-\frac{\mathrm{I}}{\mathfrak{B}^{2}}}=0 . \quad . \quad . \quad\left(53^{\prime}\right)
$$

The addition to (53) of $m^{2}+n^{2}+p^{2}=1$ gives

$$
\frac{\mathfrak{m}^{2} \mathfrak{B}^{2}}{\mathfrak{B}^{2}-a^{2}}+\frac{\mathfrak{n}^{2} \mathfrak{B}^{2}}{\mathfrak{B}^{2}-b^{2}}+\frac{\mathfrak{p}^{2} \mathfrak{B}^{2}}{\mathfrak{B}^{2}}-c^{2}
$$

This equation expresses the velocity \mathfrak{B} of the ray as a function of the direction of the ray. If in every direction m, n, p the corresponding \mathfrak{B} be laid off from a fixed point, the so-called vay surface is obtained. This surface, like the normal surface, consists of two sheets. These two surfaces are very similar to each other, since equation (53') of the former is obtained from (I8) of the latter by substituting for all lengths which appear
in (18) their reciprocal valucs. Each of the planes of symmetry intersects the ray surface in a circle and an cllipse.

Hence, in order to apply the geometrical construction given in $\S 6$ to this case, it is necessary to start from the surface [cf. (30)]

$$
\frac{1}{\rho^{2}}=\frac{\vartheta_{1}^{2}}{a^{2}}+\frac{\vartheta_{2}^{2}}{b^{2}}+\frac{\vartheta_{s}^{2}}{c^{2}},
$$

i.e. from an ellipsoid whose axes are a, b, c. The velocities \mathfrak{B} of the ray in a direction \mathfrak{m}, n, p are given by the principal axes ρ_{1} and ρ_{2} of that ellipse which is cut from the ellipsoid by a plane perpendicular to the ray.

In this case also there must be two directions, \mathfrak{T}_{1} and \mathbb{R}_{2}, for which the two roots $\mathfrak{3}^{2}$ of the quadratic equation (53') are the same. These directions are obtained from the equations for the optic axes, namely, $\left(26^{\prime}\right)$ and $\left(26^{\prime \prime}\right)$, by substituting in them for all lengths the reciprocal values. Thus
$\mathfrak{m}= \pm \sqrt{\frac{\frac{1}{a^{2}}-\frac{1}{b^{2}}}{\frac{1}{a^{2}}-\frac{1}{c^{2}}}}, \quad \mathfrak{n}=0, \quad \mathfrak{p}=\sqrt{\frac{1}{b^{2}}-\frac{1}{c}} \begin{gathered}\frac{1}{a^{2}}-\frac{1}{c^{2}}\end{gathered}$,
or
$\mathfrak{m}= \pm \frac{c}{b} \sqrt{\frac{a^{2}-b^{2}}{a^{2}-c^{2}}}, \quad n=0, \quad p=\frac{a}{b} \sqrt{\frac{b^{2}-c^{2}}{a^{2}-c^{2}}}$.
These two directions are called the ray axcs.
The ray surface can be looked upon as that surface at which the light disturbance originating in a point P has arrived at the end of unit time. For this reason it is commonly called the wave surface.

If, in accordance with Huygens' principle, the scparate points P of a wave front are looked upon as centres of disturbance and if the wave surfaces are constructed about these points, the envelope of these surfaces represents the wave front at the end of unit time (cf. page 159). According to this construc-
tion the wave front corresponding to a ray PS is a plane tangent to the wave surface at the point S.

This result can also be deduced from the equations. If the rectangular coordinates of a point S of the wave surface are denoted by x, y, and z, then $m \mathfrak{M}$, etc., and $\mathfrak{B}^{2}=$ $x^{2}+y^{2}+z^{2}$, and, from ($53^{\prime \prime}$),

$$
\begin{equation*}
\frac{x^{2}}{\mathfrak{B}^{2}-a^{2}}+\frac{y^{2}}{\mathfrak{B}^{2}-b^{2}}+\frac{z^{2}}{3^{2}-c^{2}}-\mathrm{I}=0 . \tag{55}
\end{equation*}
$$

If this equation be written in the general form $F(x, y, z)=0$, the direction cosines of the normal to the tangent plane at the point x, y, z are proportional to $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}$. Hence it is necessary to prove that

$$
\begin{equation*}
\frac{\partial F}{\partial x}: \frac{\partial F}{\partial y}: \frac{\partial F}{\partial z}=m: n: p . \tag{56}
\end{equation*}
$$

Now, from (55),

$$
\frac{\partial F}{\partial x}=2 x\left(\frac{1}{\mathfrak{B}^{2}-a^{2}}-\frac{x^{2}}{\left(\mathcal{B}^{2}-a^{2}\right)^{2}}-\frac{y^{2}}{\left(\mathfrak{N}^{2}-b^{2}\right)^{2}}-\frac{z^{2}}{\left(\mathcal{S}^{2}-c^{2}\right)^{2}}\right) .
$$

From (52), $x: \mathfrak{B}^{2}-a=m V: V^{2}-a^{2}$, etc. Hence, in consideration of (43) and (50),

$$
\frac{\partial F}{\partial x}=2 x\left(\frac{1}{\mathfrak{B}^{2}-a^{2}}-\frac{V^{2}}{G^{4}}\right)=\frac{2 x V^{2}}{G^{4}} \cdot \frac{a^{2}-V^{2}}{\mathfrak{B}^{2}-a^{2}}
$$

i.e., in consideration of (52),

$$
\begin{equation*}
\frac{\partial F}{\partial x}=-2 m \frac{V^{3}}{G^{4}} \tag{57}
\end{equation*}
$$

From this equation $\frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}$ may be written out by a simple interchange of letters. Hence equation (56) immediately results, i.e. the construction found from Huygens' principle is verified.

From these considerations it is evident that the direction $\mathfrak{m}, \mathfrak{n}, \mathfrak{p}$ of the ray can be determined from the direction m, n,
p of the normal in the following way: Suppose a light disturbance to start at any instant from a point P; the ray surface is then tangent to all the wave fronts, i.e. it is the envelope of the wave fronts. Consider three elementary wave fronts the directions of whose normals are infinitely near to the direction of the line $P N$. Their intersection must then be infinitely near to the end point S of the ray $P S$ which corresponds to the normal $P N$, since S is common to all three waves. The correctness of this construction will now be analytically proved. The equation of a wave front is

$$
\begin{equation*}
m x+n y+p z=V \tag{58}
\end{equation*}
$$

If the point x, y, z is to lie upon an infinitely near wave front, the equation obtained by differentiating (58) with respect to m, n, and p will also hold. But these quantities are not independent of one another, since $m^{2}+n^{2}+p^{2}=\mathrm{I}$. According to the theorem of Lagrange (cf. above, page 321) there can be added to (58) the identity

$$
f\left(m^{2}+n^{2}+p^{2}\right)=f
$$

so that there results

$$
\begin{equation*}
m x+n y+p z+f\left(m n^{2}+n^{2}+p^{2}\right)=V+f . \tag{59}
\end{equation*}
$$

f is an unknown constant. Since this constant has been introduced into the equation, m, n, and p in (59) may be looked upon as independent variables, and the partial differential coefficients of (59) with respect to m, n, and p may be formed, namely,

$$
\begin{equation*}
x+2 f m=\frac{\partial V}{\partial m}, \quad y+2 f n=\frac{\partial V}{\partial n}, \quad z+2 f p=\frac{\partial V}{\partial p} . \tag{60}
\end{equation*}
$$

But, from (18) and (43),

$$
\begin{equation*}
\frac{\partial V}{\partial m}=\frac{m}{V^{2}-a^{2}} \cdot \frac{G^{4}}{V} \tag{6I}
\end{equation*}
$$

Similar expressions hold for $\frac{\partial V}{\partial n}, \frac{\partial V}{\partial p}$. If the three equations (60) be multiplied by m, and p, respectively, and added, it
is evident from (18) and (6I) that the right-hand side of the resulting equation reduces to zero, while the left-hand side is, by (58), $V+2 f$, so that the constant $2 f$ is determined as $2 f=-V$. Hence, in consideration of (6I), the first of equations (60) becomes

$$
x=m\left(V+\frac{1}{V^{2}-a^{2}} \cdot \frac{G^{4}}{V}\right)
$$

and similarly

$$
\begin{aligned}
& y=n\left(V+\frac{\mathrm{I}}{V^{2}-b^{2}} \cdot \frac{G^{4}}{V}\right), \\
& z=p\left(V+\frac{\mathrm{I}}{V^{2}-c^{2}} \cdot \frac{G^{4}}{V}\right)
\end{aligned}
$$

Hence the radius vector drawn from the origin to the point of intersection x, y, z of the three infinitely near wave fronts coincides in fact with the direction of the ray as calculated on page 326 , since $x: y: z=\mathfrak{m}: \mathfrak{n}: \mathfrak{p}$. Further, the velocity of the ray $\sqrt{x^{2}+y^{2}+z^{2}}$ is found to have the same value as that given above in (45) and (49).

For other geometrical relations between the ray, the wave normal, the optic axes, and the ray axes, cf. Winkelmann's Handbuch der Physik, Optik, p. 699.
10. Conical Refraction. - Corresponding to any given direction of a wave normal there are, in general, according to equation (44), two different rays, since for a given value of m, n, and p there are two different values of V^{2}. But it may happen that these equations assume the indeterminate form $0: 0$. Thus this occurs when one of the quantities m, n, or p is equal to zero. If, for example, $m=0$, then, from (2 I) on page $317, V_{1}^{2}=a^{2}$. In this case, by (43) and (44);

$$
\begin{gather*}
G^{4}=\left(V_{1}^{2}-a^{2}\right)^{2}: m^{2} \\
\mathfrak{m} \sim m \frac{G^{4}}{V_{1}^{2}-a^{2}}=m \cdot \frac{V_{1}^{2}-a^{2}}{m^{2}} \tag{62}
\end{gather*}
$$

The value of this expression, which is of the form $0: 0$, is easily
determined, since, by Fresnel's equation (18) on page 316, the expression m^{2} : $V_{1}^{2}-a^{2}$ has a finite, determinate value, namely,

$$
\begin{equation*}
\bar{V}_{1}^{2}-m^{2} a^{2}=\frac{n^{2}}{b^{2}-V_{1}^{2}}+\frac{p^{2}}{c^{2}-V_{1}^{2}} \tag{63}
\end{equation*}
$$

The right-hand side of this equation can never be zero, since for $a>b>c$ and $V_{1}^{2}=a^{2}$ both terms of the right-hand side are negative. Hence, by (62), $m=0$ when $m=0$, i.e. the light-ray is in the $y z$-plane when the wave normal is in the $y z$-plane. When $p=0$ the conclusion is similar. But the case in which $n=0$ requires special consideration. For then, when $V=b$, equations similar to (62) and (63) are obtained, namely,

$$
\begin{equation*}
\mathfrak{n} \sim n \frac{V^{2}-b^{2}}{n^{2}}, \quad \frac{n^{2}}{V^{2}-b^{2}}=\frac{m^{2}}{a^{2}-V^{2}}+\frac{p^{2}}{c^{2}-V^{2}} \tag{64}
\end{equation*}
$$

The right-hand side of this equation which corresponds to the case $V=b$ may become zero, namely, when

$$
m^{2}\left(c^{2}-\dot{b}^{2}\right)+p^{2}\left(a^{2}-b^{2}\right)=0
$$

Now this relation is actually fulfilled when the wave normal coincides with an optic axis [cf. (25), page 319]. In this case, by (64), \mathfrak{n} still retains the indeterminate form $0: 0$, i.e. to this particular wave normal there correspond not two single determinate rays, but an infinite number of them, since 11 always remains indeterminate. The locus of the rays in this case can be most simply determined from the equation

$$
\begin{equation*}
\frac{m m}{\mathfrak{B}^{2}-a^{2}}+\frac{n n}{\mathfrak{B}^{2}-b^{2}}+\frac{\mathfrak{p} p}{\mathfrak{S}^{2}-c^{2}}=0, \quad . \tag{65}
\end{equation*}
$$

which is deduced from (52) by multiplying by n, n, and p, respectively, adding, and taking account of (18). If the wave normal coincides with an optic axis, then $n=0$, but \mathfrak{n} is not necessarily zero and \mathfrak{j} is therefore in this case different from b. Hence

$$
\begin{equation*}
\frac{\mathfrak{m} m}{\mathfrak{B}^{2}-a^{2}}+\frac{p p}{\mathfrak{B}^{2}-c^{2}}=0 \tag{66}
\end{equation*}
$$

Further, from (47) and (48), since $V=b$,

$$
\begin{equation*}
\mathfrak{B}(\mathrm{m} m+\mathfrak{p} p)=b \tag{67}
\end{equation*}
$$

Elimination of \mathfrak{B}^{2} from these two equations gives

$$
\begin{equation*}
\left(\mathrm{m} m c^{2}+\mathfrak{p} p a^{2}\right)(\mathrm{m} m+p p)=b^{2} \tag{68}
\end{equation*}
$$

If the coordinates of the end points of a ray are denoted by x, y, z, so that $\mathrm{m}=x: \sqrt{x^{2}+y^{2}+z^{2}}$, etc., it follows that

$$
\begin{equation*}
\left(x m c^{2}+z p a^{2}\right)(x m+z p)=b^{2}\left(x^{2}+y^{2}+z^{2}\right) . \tag{69}
\end{equation*}
$$

This equation of the second degree represents a cone whose vertex lies at the origin. Hence when the zuave nommal coincides with the optic axis there are an infinite number of rays which lie upon the cone defined by equation (69). This cone intersects the wave front

$$
\begin{equation*}
x 1 n+z p=\text { const. } \tag{70}
\end{equation*}
$$

in a circle, since when (70) is substituted in (69) the latter becomes

$$
\left(x m c^{2}+z p a^{2}\right) \cdot \text { const. }=b^{2}\left(x^{2}+y^{2}+z^{2}\right)
$$

which is the equation of a sphere.
Hence from the discussion on page 328 it follows that the wave surface has two tangent planes which are perpendicular to the optic axis and tangent to the wave surface in a circle. The axis of the cone coincides with the optic axis; it is therefore perpendicular to the plane of the circle. The aperture χ of the cone is determined from (69) as

$$
\begin{equation*}
\tan \chi=\frac{\sqrt{\left(a^{2}-b^{2}\right)\left(b^{2}-c^{2}\right)}}{b^{2}} \tag{71}
\end{equation*}
$$

This phenomenon is known as internal conical refraction, for the following reason: If a ray of light is incident upon a crystal in such a direction that the refracted wave normal coincides with the optic axis of the crystal, then the light-rays within the crystal lie upon the surface of a cone. The rays which emerge from the plate lie therefore upon the surface of an elliptical cylinder whose axis is parallel to the incident light in case the plate of crystal is plane parallel.* Aragonite is

[^75]especially suited for observation of this phenomenon, since in it the angle of aperture of the cone is comparatively large

Fig. 86. ($\chi=\mathrm{I}^{\circ} 52^{\prime}$).* The arrangement of the experiment is shown in Fig. 86. A parallel beam so is incident through a small opening o upon one side of a plane-parallel plate of aragonite which is cut perpendicular to the line bisecting the acute angle between the optic axes. When the plate is turned into the proper position by rotating it about an axis perpendicular to the plane of the optic axes, an elliptical ring appears upon the screen $S S$.

A microscope or a magnifying-glass focussed upon o may be used instead of a screen for observation.

The equation representing the dependence of the direction of the wave normal upon the direction of the ray may be easily deduced from (52) taken in connection with (47) and (48). The result shows that in general for each particular value of $\mathfrak{m}, \mathfrak{n}, \mathfrak{p}$ there are two values of m, n, p. Only when $\mathfrak{n}=0$ and $\mathfrak{B}^{2}=b^{2}$, i.e. when the ray coincides with the ray axis, \dagger does n become indeterminate, as can be shown by a method similar to that used above. Hence wollen the ray coincides zerith the ray axis, then at the point of exit of the ray the ray surface cloes not have merely trwo definite tangent planes, but a cone of tangent planes. The corresponding wave normals lie upon a cone of aperture ψ such that

$$
\begin{equation*}
\tan \psi=\sqrt{\frac{\left(a^{2}-b^{2}\right)\left(b^{2}-c^{2}\right)}{a^{2} c^{3}}} . \tag{72}
\end{equation*}
$$

This equation is obtained from (71) by substituting in it for all the lengths their reciprocal values.

[^76]This phenomenon is called external conical refraction, for the reason that a ray which inside the crystal coincides with the ray axis becomes, upon emergence from the crystal, a cone of rays. For the rays after refraction into the outer medium have different directions corresponding to the different positions of the wave front in the crystal (cf. note, page 333).

Fig. 87 represents an arrangement for demonstrating experimentally external conical refraction. A beam of light is concentrated by a lens L upon a small opening o in front of

Fig. 87.
an aragonite plate. A second screen with an opening o^{\prime} is placed on the other side of the plate. If the line $0 o^{\prime}$ coincides with the direction of a ray axis, a ring appears upon the screen $S S$. The diameter of this ring increases as the distance from o^{\prime} to the screen increases. In this arrangement only those rays are effective which travel in the direction 00^{\prime}, the others are cut off by the second screen. The effective incident rays are parallel to the rays of the emergent cone.

The phenomena of conical refraction were not observed until after Hamilton had proved theoretically that they must exist.
II. Passage of Light through Plates and Prisms of Crystal.-The same analytical condition holds for the passage of light from air into a crystal as was shown on page 280 to hold for the refraction of light by an isotropic medium. If the incident wave is proportional to

$$
\cos \frac{2 \pi}{T}\left(t-\frac{m x+n y+p z}{V}\right)
$$

while the refracted wave is proportional to

$$
\cos \frac{2 \pi}{T}\left(t-\frac{m^{\prime} x+n^{\prime} y+p^{\prime} z}{V^{\prime}}\right)
$$

and if the boundary surface is the plane $z=0$, then the fact that boundary conditions exist requires, without reference to their form, the equations

$$
\frac{m}{\bar{V}}=\frac{m^{\prime}}{V^{\prime}}, \quad \frac{n}{V}=\frac{n^{\prime}}{V^{\prime}}
$$

This is the common law of refraction, i.e. the refracted ray lies in the plane of incidence, and the relation between the angle of incidence ϕ and the angle of refraction ϕ^{\prime} is

$$
\begin{equation*}
\sin \phi: \sin \phi^{\prime}=V: V^{\prime} \tag{73}
\end{equation*}
$$

in which V and V^{\prime} are the velocities in air and in the crystal respectively. But in the case of crystals this relation does not in general give the direct construction of the refracted wave normal, since in general V^{\prime} depends upon the direction of this normal.

But the application of Huygens' principle, in accordance with the same fundamental laws which were stated on page 161 for isotropic bodies, does give directly not only the relation (73), but also the construction of both the refracted wave normal and the refracted ray. For let $A_{1} B$ (Fig. 88) be the intersection of an incident wave front with the plane of incidence (plane of the paper), and let the angle $A_{1} B A_{2}=\frac{\pi}{2}$, and $B A_{2}=V$, and construct about A_{1} the ray surface Σ within the crystal, this surface being the locus of the points to which the disturbance originating at A_{1} has been propagated in unit time. Draw through A_{2} a line perpendicular to the plane of incidence, and pass through it two planes $A_{2} T_{1}$ and $A_{2} T_{2}$ tangent respectively to the two sheets of the ray surface. According to Huygens' principle these tangent planes are the wave fronts of the refracted waves. The lines drawn from A_{1} to the two points of tangency C_{1} and C_{2} of the planes with the ray surface give
the directions of the refracted rays. In general these do not lie in the plane of incidence.

Hence for perpendicular incidence the wave normal is not doubly refracted, but there are two different rays whose directions may be determined by finding the points C_{1} and C_{2} in which the two sheets of the wave surface constructed about a point A of the bounding surface are tangent to two planes

Fig. 88.
parallel to the bounding surface G. The directions of the rays are $A C_{1}$ and $A C_{2}$ respectively.

When the light passes from the crystal into air a similar construction is applicable. Hence in the passage of light through a plane-parallel plate of crystal there is never a double refraction of the wave normal, but only of the ray. In order to observe the phenomena of double refraction it is necessary to view a point on the remote side of the crystal. This point appears double, since its apparent position depends upon the paths of the rays.* But the introduction of a crystalline plate between collimator and telescope produces no displacement of the image, since in this case the wave normal is determinative of the position of the image. In order to detect double refraction in this case, which occurs in all observations

[^77]with the spectrometer, it is necessary to introduce a prism of the crystal.

With the help of such a prism it is possible to find the principal indices of refraction, i.e. the quantities

$$
\begin{equation*}
n_{1}=V: a, \quad n_{2}=V: b, \quad n_{3}=V: c . \tag{74}
\end{equation*}
$$

If, for example, a prism of uniaxial crystal $(a=b)$ be used whose edge is parallel to the optic axis, then the velocity V^{\prime} of the waves whose normals are perpendicular to the edge of the prism has the two constant values a and $c . n_{1}$ and n_{3} can therefore be found by the method of minimum deviation exactly as in the case of prisms of isotropic substances. The different directions of polarization of the emergent rays make it possible to recognize at once which index corresponds to n_{1} and which to n_{3}.

In the same way one of the principal indices of refraction of a prism of a biaxial crystal whose edge is parallel to one of the axes of optic symmetry may be found. In order to find the other two indices it is necessary to observe the deviation of a wave polarized parallel to the edge of the prism for at least two different angles of incidence.

From the meaning which the electromagnetic theory gives to the principal velocities a, b, c, it is evident from equations (16) on page 315 and (74) that

$$
\begin{equation*}
\epsilon_{1}=n_{1}^{2}, \quad \epsilon_{2}=n_{2}^{2}, \quad \epsilon_{3}=n_{3}^{2} \tag{75}
\end{equation*}
$$

at least if C, the velocity in vacuo, be identified with V, the velocity in air. The error involved in this assumption may be neglected in view of the uncertainty which attends measurement of the dielectric constant.

The relation (75) cannot be rigorously fulfilled, if for no other reason, because the index depends upon the color, i.e. upon the period of the electric force, while the dielectric constant of a homogeneous dielectric is, at least within wide limits, independent of the period. It is, however, natural to test (75)
under the assumption that n^{2} is the index of infinitely long waves, i.e. the A of the Cauchy dispersion equation

$$
\begin{equation*}
n=A+\frac{B}{\lambda^{2}} \tag{76}
\end{equation*}
$$

Relation (75) is approximately verified in the case of orthorhombic sulphur, whose dielectric constants have been determined by Boltzmann.* Its indices were measured by Schrauf. \dagger In the following table n^{2} denotes the index for yellow light and A the constant of (76) :

$$
\begin{array}{lll}
n_{1}{ }^{2}=3.80 ; & A_{1}{ }^{2}=3.59 ; & \epsilon_{1}=3.8 \mathbf{1} \\
n_{2}{ }^{2}=4.16 ; & A_{2}{ }^{2}=3.89 ; & \epsilon_{2}=3.97 \\
n_{3}^{2}=5.02 ; & A_{3}^{2}=4.60 ; & \epsilon_{3}=4.77
\end{array}
$$

Thus the dielectric constants have the same sequence as the principal indices of refraction when both are arranged in the order of their magnitudes, but are uniformly larger than the A 's. With some other crystals this difference is even greater. The departure from the requirements of the electromagnetic theory is of the same kind as that shown by isotropic bodies (cf. page 277). Its explanation will be given in the treatment of the phenomena of dispersion.

Thus the electromagnetic theory is analytically in complete agreement with the phenomena, but the exact values of the optical constants cannot be obtained from electrical measurements. These constants depend in a way which cannot be foreseen upon the color of the light. In fact not only the principal velocities a, b, c, but also, in the case of monoclinic and triclinic crystals, the positions of the axes of optic symmetry depend upon the color.
12. Total Reflection at the Surface of Crystalline Plates. -The construction given on page 336 for the refracted wave front becomes impossible when the straight line $(\$ 3$ which passes through A_{2} and is perpendicular to the plane of incidence inter-

[^78]sects one or both of the curves cut from the wave surface Σ by the bounding surface G. In this case there is no refracted wave front, but total reflection takes place. The limiting case, in which partial reflection becomes total, is reached for either one of the two refracted waves when the line (\mathbb{S}) is tangent to that sheet of the ray surface Σ which corresponds to the wave in question, i.e. is tangent to the section of the wave surface by the bounding plane G. In this case, since the point of tangency T of (5) with Σ lies in the bounding plane G, the refracted ray is parallel to the boundary (cf. Fig. 89). This

wave then can transfer no energy into the crystal, since the ray of light represents the path of energy flow (cf. page 313), and hence no energy passes through a plane parallel to the ray. Thus it appears from this consideration also that in this limiting case the reflected wave must contain the entire energy of the incident wave, i.e. total reflection must occur.

Hence if a plate of crystal be immersed in a more strongly refracting medium, and illuminated with diffuse homogeneous light, two curves which separate the regions of less intensity from those of greater appear in the field of the reflected light. If the observation is made, not upon the reflected light, but upon light which, entering the crystal at one side and then falling at grazing incidence upon the surface, passes out into a more strongly refractive medium, these limiting curves are much sharper since they separate brightness from complete darkness. From these curves the critical angles ϕ_{1} and ϕ_{2} may be
determined. These curves are not in general perpendicular to the plane of reflection. Special instruments have been devised for their observation. Fig. 90 represents Abbe's crystal refractometer. The plate of crystal which is to be investigated is laid upon the flint-glass hemisphere K of index 1.89 .

Fig. 90.
Between the crystal and the sphere a liquid of greater index than the latter is introduced. K can be rotated along with the azimuth circle H about a vertical axis. The movable mirror S makes it possible to illuminate the crystal plate either from below through K or from the side. The limiting curves of
total reflection are observed through the telescope $O G G O$ which turns with the vertical circle V : For convenience of observation, the telescope is so shaped that the rays, after three total reflections within it, always emerge horizontally. The objective of the telescope is so arranged that it compensates the refraction due to the spherical surface K of the rays reflected from the crystalline plate. It forms, therefore, sharp images of the curves.

The method of total reflection is the simplest for the determination of the principal indices of refraction of a crystalline plate. These indices are obtained at once from the maximum or minimum values of the angles of incidence which correspond to the two limiting curves.

Thus if ϕ denotes the angle of incidence corresponding to a limiting curve for any azimuth ϑ of the plane of incidence (cf. Figs. 88 and 89), then the line $A_{1} A_{2}=V: \sin \phi$; for $B A_{2}=V$ (the velocity in the surrounding medium), and $A_{1} A_{2}$ is the distance of the point A_{1} from a line which is tangent to the curve of intersection of the wave surface constructed about A_{1} with the bounding surface G. Maximum and minimum values of the limiting angles ϕ, i.e. of the line $A_{1} A_{2}$, coincide necessarily with maximum or minimum values of the length of the ray $A_{1} T$ (cf. Fig. 89), as can be easily shown by construction. In fact in this case $A_{1} A_{2}$ coincides with the ray $A_{1} T$, since the tangents must be perpendicular to the radius vector $A_{1} T$ when this has a maximum or minimum value. The length $A_{1} T$ of the ray has now in every plane section of the wave surface the absolute maximum a and the absolute minimum c. For it appears from the equation of the wave surface (cf. page 327) that \mathfrak{B} must always lie between a and c, since otherwise the three terms of equation (53) would have the same sign and their sum could not be zero. On the other hand it is also evident that in every plane section G of the wave surface \mathfrak{B} reaches the limiting values a and c, for, from Fig. $85, \mathfrak{B}$ attains the value a at least in the line of intersection of G with the $y z$-plane; since in the $y z$-plane one velocity has
the constant value $\mathfrak{B}=a$, while in the line of intersection of G with the $x y$-plane \mathfrak{i} must attain the value c. In the intersection of G with the $x z$-plane $8=b$; but it is uncertain, as can be shown from the last of Figs. 85, whether b belongs to the minimum of the outer or the maximum of the inner limiting curve. This can be decided by investigating the maxima or minima of the angle of incidence corresponding to the limiting curves for two plates of different orientations.* Four such measurements can be made upon each plate, and three of these must be common to the two plates. These three correspond to the three principal velocitics a, b, c. Their respective values may be determined from

$$
\begin{equation*}
A_{1} A_{2}=V: \sin \phi=a, b, c \tag{77}
\end{equation*}
$$

where ϕ denotes the maximum or minimum value of the angle of incidence for the limiting curve which corresponds to the given azimuth θ of the plane of incidence. If the index of the medium (V) with respect to that of air $\left(V_{0}\right)$ be denoted by n, i.c. if $V_{0}: V=n$, then from (77) the principal indices of refraction of the crystal with respect to air are obtained from the equation, since $V_{0}: a=n_{1}$, ctc.,

$$
\begin{equation*}
n_{1}, n_{2}, n_{3}=n \sin \phi \tag{78}
\end{equation*}
$$

For uniaxial crystals $(a=b) \phi=$ const. along one of the limiting curves. This angle determines the principal velocity a. For the other limiting curve the angle of incidence varies. If γ denotes the angle which the optic axis makes with the bounding surface of the crystal, the ray velocity, when the plane of incidence passes through the optic axis, is

$$
\begin{equation*}
\mathfrak{W}^{2}=\frac{a^{2} c^{2}}{a^{2} \sin ^{3} \gamma+c^{2} \cos ^{2} \gamma} \tag{79}
\end{equation*}
$$

If the plane of incidence is perpendicular to the optic axis, then $\mathfrak{V}^{2}=c^{2}$. For positive uniaxial crystals $(a>c)(79)$ gives

[^79]the maximum value of \mathfrak{B}, i.e. it determines the minimum value of ϕ along the limiting curve which arises from a total reflection of the extraordinary ray. The maximum value of ϕ along this limiting curve determincs, therefore, the value of c; from the minimum value of ϕ it is possible to calculate γ, i.e. the inclination of the face of the crystal to the optic axis. In the case of negative uniaxial crystals $(a<c)$ the minimum value of ϕ determines the principal velocity c.

Likewise in the case of biaxial crystals the angle between the face and the axes of optic symmetry can be determined from observation of the limiting curves of total refection. Neverthcless for the sake of greater accuracy it is advantageous to couple with this other methocls, for example, the method which makes use of the interference phenomena in convergent polarized light (cf. below).

Conical refraction gives rise to peculiar phenomena in the limiting curves of total reflection. These may be observed if the bounding surface G coincides with the plane of the optic axes. For more complete discussion cf. Kohlrausch, Wied. Ann., 6, p. 86, 1879; Licbiscl, Physik. Kryst., p. 423; Mascart, Traité d'Optique, vol. 2, p. 102, l'aris, 189 r.
13. Partial Reflection at the Surface of a Crystalline Plate. - In order to calculate the changes in amplitude which take place in partial reflection from a plate of crystal it is only necessary to apply equation (σ^{\prime}) and (7) on page 3 II together with the boundary conditions there mentioned.

But since the calculation is complicated (cf. Winkelmann's Handbuch, Optik, p. 745) only the result will be here mentioned that there is an angle of complete polarization, i.c. an angle of incidence at which incilent natural light is plane-polarized after reflection. But the plane of polarization does not in gencral coincide with the plane of incilence, as it does in the case of isotropic media.
14. Interference Phenomena Produced by Crystalline Plates in Polarized Light when the Incidence is Norma1.Let plane-polarized monochromatic light pass normally through
a plate of crystal and then through a second polarizing arrangement. This case is realized when the crystalline plate is placed upon the stage of the Nörrenberg polarizing apparatus described on page 246. The upper mirror can be conveniently replaced by a Nicol prism, the analyzer. Let the plane of vibration of the electric force within the analyzer be A (Fig. 91), and that within the polarizer P. The incident polarized light, the amplitude of which will be denoted by E, is resolved after entrance into

Fig. 91. the doubly refracting crystal into two waves of amplitude $E \cos \phi$ and $E \sin \phi$ respectively, ϕ being the angle which P makes with the directions H_{1} and H_{2} of the vibrations of the two waves W_{1} and W_{2} within the crystal. The decrease in amplitude by reflection is neglected. It is very nearly the same for both waves. These two waves after passing through the crystal are brought into the same plane of polarization, and hence after passing through the analyzer have the amplitudes $E \cos \phi \cos (\phi-\chi), E \sin \phi \sin (\phi-\chi)$. Now a difference in phase δ has been introduced between the two waves by their passage through the plate. This difference is

$$
\begin{equation*}
\delta=d \frac{2 \pi}{T}\left(\frac{\mathrm{I}}{V_{1}}-\frac{\mathrm{I}}{V_{2}}\right)=2 \pi \frac{d}{\lambda}\left(\frac{V}{V_{1}}-\frac{V}{V_{2}}\right) \tag{80}
\end{equation*}
$$

in which d denotes the thickness of the crystalline plate, V_{1}, V_{2} the respective velocities of the two waves within it, V the velocity of light in air, and λ the wave length in air of the light used. Hence, according to page 13I, the intensity of the light emerging from the analyzer is

$$
\begin{aligned}
J=E^{2}\left\{\cos ^{2} \phi\right. & \cos ^{2}(\phi-\chi)+\sin ^{2} \phi \sin ^{2}(\phi-\chi) \\
& +2 \sin \phi \cos \phi \sin (\phi-\chi) \cos (\phi-\chi) \cos \delta\}
\end{aligned}
$$

If $\cos \delta$ be replaced by $1-2 \sin ^{2} \frac{1}{2} \delta$, the equation becomes

$$
\begin{equation*}
J=E^{2}\left\{\cos ^{2} \chi-\sin 2 \phi \sin 2(\phi-\chi) \sin ^{2} \frac{1}{2} \delta\right\} \tag{8r}
\end{equation*}
$$

The first term $E^{2} \cos ^{2} \chi$ represents the intensity of the light which would have emerged from the analyzer in case the crystal had not been introduced. This intensity J_{0} will be called the original intensity; thus

$$
\begin{equation*}
J_{0}=E^{2} \cos ^{2} \chi \tag{82}
\end{equation*}
$$

Two cases will be considered in greater detail:
r. Parallel Nicols: $\chi=0$. Then

$$
\begin{equation*}
J_{\|}=J_{0}\left(\mathrm{I}-\sin ^{2} 2 \phi \sin ^{2} \frac{1}{2} \delta\right) . \tag{83}
\end{equation*}
$$

If the crystal be rotated, the original intensity will be attained in the four positions $\phi=0, \phi=\frac{\pi}{2}, \phi=\pi, \phi=\frac{3 \pi}{2}$, i.e. whenever one of the planes of vibration within the crystal coincides with that of the Nicols. In the positions midway between the above, i.e. $\phi=\frac{\pi}{4}$, etc.,

$$
\begin{equation*}
J_{\|}=J_{0}\left(\mathrm{I}-\sin ^{2} \frac{1}{2} \delta\right)=J_{0} \cos ^{2} \frac{1}{2} \delta, \tag{84}
\end{equation*}
$$

i.e. with the proper values of δ, i.e. of the thickness of the crystal, complete darkness may result.
2. Crossed Nicols: $\chi=\frac{\pi}{2}$. Here $J_{0}=0$ and

$$
\begin{equation*}
J_{x}=E^{2} \sin ^{2} 2 \phi \sin ^{2} \frac{1}{2} \delta \tag{85}
\end{equation*}
$$

Thus, whatever its thickness, the plate appears dark when its planes of vibration coincide with those of the Nicols. If this is not the case, it is dark only when $\delta=2 h \pi$. In the positions $\phi=\frac{\pi}{4}$, etc.,

$$
\begin{equation*}
J_{\mathrm{x}}=E^{2} \sin ^{2} \frac{1}{2} \delta . \tag{86}
\end{equation*}
$$

Hence, unless it happens that $\delta=2 / 2 \pi$, it is possible to find the direction of polarization or of vibration within the crystal by rotating it until the light is cut off.

Hence a crystalline wedge between crossed Nicols is traversed by dark bands which run parallel to the edge of the
wedge, unless it is in the position in which the light is wholly cut off. These bands lie at those places at which the thickness of the wedge corresponds to the equation $\delta= \pm 2 h \pi$. If the incident light is white, the bands must appear colored since δ varies with the color.

A plane-parallel plate of crystal between crossed Nicols must in general appear colored when the incident light is white. Not only does the amplitude E and the difference of phase δ depend upon the color, but also the angle ϕ, i.e. the position of the planes of vibration. However, this latter variation can in general be neglected on account of the small amount of the difference in the retardations for different colors. When the Nicols are crossed it appears from (86) that in white light for $\phi=\frac{\pi}{4}$

$$
J_{\mathrm{x}}=\Sigma E^{2} \sin ^{2} \frac{1}{2} \delta,
$$

in which Σ is to be extended over the values corresponding to the different colors. Thus

$$
\begin{equation*}
\Sigma E^{2}=\text { white light. } \tag{87}
\end{equation*}
$$

Now from (80) its evident that the dependence of δ upon λ is principally due to the appearance of λ in the clenominator. Hence if the approximately correct assumption be made that $\frac{V}{V_{1}}-\frac{V}{V_{2}}$ is independent of the color, then

$$
J_{\mathrm{x}}=\Sigma E^{2} \sin ^{2} \pi \frac{d^{\prime}}{\lambda}
$$

in which

$$
d^{\prime}=d\left(\frac{V}{V_{1}}-\frac{V}{V_{2}}\right)
$$

is approximately indepenclent of λ. It appears from a comparison of (87^{\prime}) with (78) on page 306 that the platc of crystal shows approximately the same colors as those produced by the interference of the two waves reflected at the surfaces of a thin film of air of thickness $\frac{d^{\prime}}{2}$. (Newton's ring colors.) But the

Newton interference colors of thin plates differ widely from those produced by the crystal when the difference in the dispersion of the two waves within the crystal is large. Then d^{\prime} is no longer independent of λ. This is, for example, the case with the hyposulphate of strontium, apophyllite (from the Faroe Islands), brucite, and vesuvian.

For a given angle ϕ the plate of crystal shows between parallel Nicols colors which are complementary to those which it shows between crossed Nicols. For from (83) and (85) the sum of the intensities in the two cases is always ΣE^{2}, which by (87) means white light.

In the case of Newton's interference colors there are certain values of δ which give what are called sensitive tints which change rapidly for a slight change in δ. For example, the violet of the first order, which appears when δ for the mean wave lengths has about the value π, is such a sensitive tint. For a slight increase in δ the color passes into blue, for a slight decrease into red. A plate of crystal \mathfrak{F} which shows a sensitive tint-for example, a plate of quartz of suitable thickness cut parallel to the axis-may be used to detect traces of double refraction in another plate \mathfrak{F}^{\prime}, since the latter produces at once a change in the color of \mathfrak{F} when placed upon it and viewed between crossed Nicols. The arrangement is even more sensitive if the plate \mathfrak{B} is cut in the direction of the line bisecting its planes of vibration, and the two parts cemented together along the plane of section after one of them has been rotated through 180° about the normal to that surface. A trace of double refraction in the plate \mathfrak{F}^{\prime} then produces in the two halves of \mathfrak{P} changes of color in opposite senses. This arrangement has been called a Bravais bi-plate after its inventor. With such a plate it is easy to show that the pressure of the finger, for example, is sufficient to produce double refraction in a glass cube. Also, the directions in which the light is completely cut off by \mathfrak{F}^{\prime} can be accurately determined with the help of a Bravais biplate.

The application of the optical properties of crystals to the
construction of Babinet's and Senarmont's compensators has been mentioned above on page 256 .
15. Interference Phenomena in Crystalline Plates in Convergent Polarized Light.-Consider first the case in which the polarized light is incident upon the plate at an angle i. Let the angles of refraction be r_{1} and r_{2} (Fig. 92). It is evi-

Fig. 92.
dent from the figure that the difference in phase between the two waves after propagation through the crystal is

$$
\delta=\frac{2 \pi}{T}\left(\frac{B D}{V_{2}}+\frac{D K}{V}-\frac{B C}{V_{1}}\right),
$$

in which $D K$ is the projection of $C D$ upon the direction of propagation of the wave W_{2}. Now $B D=d: \cos r_{2}$, $B C=d: \cos r_{1}, D K=C D \sin i=\left(B C \sin r_{1}-B D \sin r_{2}\right) \sin i$, hence

$$
\delta=\frac{2 \pi}{T} d\left\{\left(\frac{\sin i \sin r_{1}}{V}-\frac{\mathrm{I}}{V_{1}}\right) \frac{\mathrm{I}}{\cos r_{1}}-\left(\frac{\sin i \sin r_{2}}{V}-\frac{\mathrm{I}}{V_{2}}\right) \frac{\mathrm{I}}{\cos r_{2}}\right\} .
$$

But from the law of refraction

$$
\frac{\sin i}{V}=\frac{\sin r_{1}}{V_{1}}=\frac{\sin r_{2}}{V_{2}}
$$

it follows that

$$
\delta=\frac{2 \pi}{T} d\left\{\frac{\cos r_{2}}{V_{2}}-\frac{\cos r_{1}}{V_{1}}\right\} \ldots
$$

If now the angles g_{1} and g_{2} which the wave norinili with the optic axes within the crystal be introducedt, tle ens
 rational functions of $a^{2}+c^{2}$ and $a^{2}-c^{2}$. Neglectin\& $t_{4}-\boldsymbol{r}$ higher order than the first in $a^{2}-c^{2}$, which is pernmisisill account of the smallness of the double refraction in all k minerals, there results

$$
\delta=\frac{\pi}{T} \cdot \frac{d}{\cos r} \frac{a^{2}-c^{2}}{\left(\frac{a^{2}+c^{2}}{2}\right)^{\frac{3}{2}}} \sin g_{1} \sin g_{2} .
$$

In this equation g_{1} and g_{2} denote the angles wixiclu one of the two refracted wave normals makes witlu tlie* axes; r denotes the angle of refraction for one of $\mathbf{t l z} \mathcal{C}$ refr wave normals. Hence $d: \cos r$ is the length of the: 1.4 the crystal. Since terms of the first order only inn $\mathrm{cx}^{2} \rightarrow * *$ been retained, $B D$ may be considered equal to $\triangle C$.

If the principal indices n_{1} and n_{3} of the crystal lue ; duced, and if n denote their geometrical mean, tluen

$$
a^{2}=V^{2}: n_{1}^{2}, \quad c^{2}=V^{2}: n_{3}^{2},
$$

and hence
$\delta=\frac{\pi d}{\lambda \cos r} \frac{n_{3}{ }^{2}-n_{1}{ }^{2}}{n} \sin g_{1} \sin g_{2}=\frac{2 \pi d}{\lambda \cos r}\left(n_{3}-n_{1}\right) \sin \mathscr{S}_{1} \sin \mu_{n}$.
If the plate of crystal be introduced between a 1 w.14 and an analyzer, the resultant intensity is approxiry expressed by (81), at least if the change in amplitucle i duced by refraction at the surfaces of the cry"ontin neglected.

The case becomes of especial interest if the effects upon the intensity J corresponding to different angles of incidence i can be brought into the field at the same time and compared. This can be done by means of the polarizing apparatus shown in Figs. 93 and 94. The mirror A reflects light from the sky

Fig. 93.

Fic. 94.
into the apparatus. This light is concentrated by means of two lenses B and D) upon the aperture $l i$. It is polarized by passage through the Nicol C. It lies at the principal focus of one or more convergent lenses F, which transform all the cones of rays which have their vertices at E into beams of parallel rays
which pass through the crystal G in all possible directions. In the figure three such beams are shown. The rays then fall upon a convergent lens H which brings together in a point M at its principal focus, which lies in the aperture of the diaphragm J, each beam of parallel rays. The image formed at M is magnified by the eyepiece K, and the rays pass finally through the analyzer L. As is evident from the figure, the middle of the image at J is formed by rays which pass normally through the plate; the side portions of this image, by rays which traverse the plate in directions which are more and more oblique the nearer the point M approaches the edge of J. With this arrangement the interference effects of rays which traverse the plate in different directions are brought simultaneously into the field of view.

At the different points M of the field of view the difference of phase δ between the two waves is different, as is also the angle ϕ which the plane of vibration of the polarizer makes with the direction of vibration of one of the waves in the crystal. The loci of those points of the field for which δ is constant constitute a family of curves, the curves of equal difference of path (isochromatic curves). The loci of those points of the field for which ϕ is constant are the curves of constant direction of polarization (isogyric curves). It is with the help of these two families of curves that the distribution of intensity in the field of view is most easily described.

If all the rays which traverse the crystal be conceived to pass through a single point O upon its first surface, then only one ray comes to each point M in the field of view. This ray intersects the second surface of the plate in some point M^{\prime}. If in this way points M^{\prime} upon the second face of the crystal, corresponding to all the points M of the focal plane, be found, then the figures formed by these two sets of points are similar. Hence only the points M^{\prime} will be considered. It appears from equation (89), in which $d: \cos r$ denotes the length of the path of the ray within the crystal, that the curves of equal difference of path are obtained from the
intersection of the second surface of the crystal with the family of surfaces constructed about O whose equation is

$$
\begin{equation*}
\rho \sin g_{1} \sin g_{2}=\text { const., } \tag{91}
\end{equation*}
$$

in which ρ represents the radius vector of a point P with respect to the point O, while g_{1} and g_{2} are the angles included between the radius vector and the optic axes. Such a surface has a form like that shown in Fig. 95. It must be asymptotic to the optic axes, since for $g_{1}=0$ or $g_{2}=0, \rho=\infty$ [cf. (91)].

If the crystal be cut perpendicular to

Fig. 95. an optical median line, i.e. to an axis of optic symmetry lying in the plane of the optic axes, the curves of equal difference of path are lemniscates whose poles A_{1} and A_{2} are the optic axes. If the plate be observed between crossed Nicols, equation (85) is applicable. In homogeneous light the curves of equal difference of path for which $\delta=2 / 2 \pi$ are black. In white light they are curves of like colors (hence called isochromatic), resembling closely the Newton interference colors. Nevertheless, for the reasons given on page 348, departures from this form are shown by some crystals,* and the entire phenomenon is complicated on account of the dispersion of the optic axes, i.e. on account of the fact that the trace of the optic axes upon the second surface of the crystal varies with the color. \dagger In some crystals (brookite) the plane of the optic axes swings about through 90° if the color be changed. The form of the isochromatic curves in white light is greatly changed by the dispersion of the optic axes. The whole ficld of view is now,

[^80]in accordance with (85), traversed by a black curve, the so-called principal isogyre, for which $\sin 2 \phi=0$. If the plane of the optic axes coincides with the planc of polarization of the analyzer, or the polarizer (the so-called principal position), the principal isogyre is a black cross one of whose arms passes through the optic axes, while the other, perpendicular to it, passes through the middle of the ficld. For, according to the construction given upon page 322, the directions of polarization H_{1} and H_{2} corresponding to points on this cross are parallel and perpendicular to the line $A_{1} A_{2}$ joining the optic axes. Hence the interference figure is that shown in Fig. 96.

In the second principal position of the crystal, i.e. when the plane of the optic axes A_{1} and A_{2} makes an angle of 45° with the plane of the analyzer, the principal isogyres are hyperbolæ which pass through the optic axes. Hence the interference pattern is that shown in Fig. 97. The equation of the principal isogyre can be approximately obtained by taking the line $P B$, which bisects the angle $A_{1} P A_{2}$, as a direction of polarization H within the crystal,* P being any point upon the plate (cf. Fig. 98). Let the directions of the coordinates x and y

[^81]nes of polarization of the analyzer and the polarizer
Also, let $P A_{1}=l_{1}, P A_{2}=l_{2}, A_{1} A_{2}=l$. Then
$$
B A_{1}: B A_{2}=l_{1}: l_{2}, \quad B A_{1}+B A_{2}=l,
$$
\[

$$
\begin{equation*}
B A_{1}=\frac{l_{1}}{l_{1}+l_{2}} l \tag{92}
\end{equation*}
$$

\]

he triangle $A_{1} B P$,

$$
\begin{equation*}
\sin \alpha: \sin \Varangle A_{1} B P=B A_{1}: l_{1} . \quad . \quad . \tag{93}
\end{equation*}
$$

the principal isogyre $\Varangle A_{1} B P=45^{\circ}$, since the anecting the optic axes is to make an angle of 45°

Fig. 98.
rdinate axes, and since, for the principal isogyre, is to be parallel to the y-axis. Hence, from (92)

$$
\begin{equation*}
\sin \alpha=\frac{1}{\sqrt{2}} \cdot \frac{l}{l_{1}+l_{2}} \tag{94}
\end{equation*}
$$

n the triangle $A_{1} P A_{2}$,

$$
+l_{2}^{2}-2 l_{1} l_{2} \cos \phi=\left(l_{1}-l_{2}\right)^{2}+4 l_{1} l_{2} \sin ^{2} \alpha ;
$$

i.e., from (94),

$$
l^{2}=\left(l_{1}-l_{2}\right)^{2}+2 l^{2} \frac{l_{1} l_{2}}{\left(l_{1}+l_{2}\right)^{2}},
$$

or

$$
\begin{equation*}
l^{2}\left(l_{1}^{2}+l_{2}^{2}\right)=\left(l_{1}^{2}-l_{2}^{2},{ }^{2} .\right. \tag{95}
\end{equation*}
$$

If the coordinates of the points A_{1} and A_{2} of the optic axes are called $\pm p$, then
$l_{1}^{2}=(x-p)^{2}+(y-p)^{2}, \quad l_{2}^{2}=(x+p)^{2}+(y+p)^{2}, \quad l^{2}=8 p^{2}$,
and (95) becomes

$$
\begin{equation*}
x y=p^{2} \tag{96}
\end{equation*}
$$

But this is the equation of an equilateral hyperbola which passes through the optic axes A_{1} and A_{2} and is asymptotic to the coordinate axes.

These black principal isogyres which cross the interference pattern are especially convenient for measuring the apparent angle between the optic axes, i.e. the angle which two wave normals, which within the plate are parallel to the optic axes, make with each other upon emergence from the plate. With the aid of the law of refraction the angle between the optic axes themselves may be calculated from this, if the mean principal velocity b within the crystal be known. The apparent angle between the optic axes is measured by rotating the crystal about an axis perpendicular to the plane of the optic axes, and thus bringing the traces of the optic axes successively into the middle of the field of view, i.e. under the crosshairs. The angle through which the crystal is rotated is read off on a graduated circle. The apparatus constructed for measuring this angle is called a stauroscope.

In uniaxial crystals a surface of equal difference of path ($\bar{\delta}=$ const.) has the form shown in Fig. 99. When the plate is cut perpendicular to the optic axis, the isochromatic curves are concentric circles about the optic axis. With crossed

Nicols the isogyre is a black right-angled cross. Hence the interference pattern is that shown in Fig. 100. From a measurement of the diameters of the rings the difference in the

Fig. 99.

Fig. 100.
two principal indices of refraction of the crystal can be obtained.

For a discussion of methods of distinguishing the character of double refraction by means of a plate of selenite for which $\delta=\frac{\pi}{2}$, as well as for other special cases, cf. Liebisch, Physik. Krystallogr., or Winkelmann's Handbuch der Physik, Optik.

CHAPTER IV

ABSORBING MEDIA

1. Electromagnetic Theory.-Absorbing media will be defined as media in which the intensity of light diminishes as the length of the path of the light within the medium increases. The metals are characterized by specially strong absorbing powers. According to the electromagnetic theory absorption is to be expected in all media which are not perfect dielectrics. For the electric currents arising from conduction produce heat the energy of which must come from the radiant energy of the light.

The electromagnetic theory given above on page 268 sq . will now be extended to include the case of imperfect insulators, i.e. to include media which possess both a dielectric constant ϵ and an electric conductivity σ.

The components of the electric current density will here, as above, be denoted by j_{x}, j_{y}, j_{z} (in electrostatic units), so that for an imperfect insulator
$j_{x}=\frac{\epsilon}{4 \pi} \frac{\partial X}{\partial t}+\sigma X, \quad j_{y}=\frac{\epsilon}{4 \pi} \frac{\partial Y}{\partial t}+\sigma Y, \quad j_{x}=\frac{\epsilon}{4 \pi} \frac{\partial Z}{\partial t}+\sigma Z$.
For the total current is composed of the displacement currents which alone were considered in equation (17) on page 269 above, and the conduction currents, which are reprèsented in (I) by the terms $\sigma X, \sigma Y, \sigma Z$. If the current density and the electric force are measured in electrostatic units, then σ represents the absolute conductivity* in the electrostatic system. For mercury it has the value $\sigma=9.56 .10^{15}$.

[^82]Equations (1) contain the only additions which need be made to the theory of perfect dielectrics previously given. For equations (7) and (II) on pages 265 and 267 will be retained as the fundamental equations of the Maxwell theory for every medium. If the permeability μ be set equal to I , so that $4 \pi s_{x}=\frac{\partial \alpha}{\partial t}$, etc., then these equations are

$$
\begin{array}{lll}
\frac{4 \pi j_{x}}{c}=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}, & \frac{4 \pi j_{y}}{c}=\frac{\partial \alpha}{\partial z}-\frac{\partial \gamma}{\partial x}, & \frac{4 \pi j_{x}}{c}=\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial y} \\
\frac{\mathrm{r}}{c} \frac{\partial \alpha}{\partial t}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}, & \frac{\mathrm{I}}{c} \frac{\partial \beta}{\partial t}=\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}, & \frac{\mathrm{I}}{c} \frac{\partial \gamma}{\partial t}=\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x} . \tag{3}
\end{array}
$$

It may apppear questionable whether it is permissible to set $\mu=1$ in this case, since the strongly magnetic metals iron, nickel, and cobalt are included under the head of absorbing media. Nevertheless it is shown, both by experiment and by the theory which will be given in Chapter VII, that the permeability of all metals is for light vibrations equal to I .*

In accordance with the general conclusion reached on page 270 , the boundary conditions for the passage of light through the surface separating two different absorbing media are expressed in the same form as above, namely,

$$
\begin{equation*}
X_{1}=X_{2}, \quad Y_{1}=Y_{2}, \quad \alpha_{1}=\alpha_{2}, \quad \beta_{1}=\beta_{2} \tag{4}
\end{equation*}
$$

provided the $x y$-plane is parallel to the boundary.
Equations (1) to (4) constitute a complete basis for the electromagnetic theory for isotropic absorbing media.

In order to integrate the differential equations write, as on page 289 ,

$$
\begin{equation*}
X=A e^{i \frac{2 \pi}{7}(t-(\mu x+v y+\pi z))} \tag{5}
\end{equation*}
$$

in which not only A but also μ, ν, and π are complex quantities. The physical meaning of X is obtained from the real

[^83]parts of the complex quantities given in (5). It is, however, simpler to ignore the physical meaning of X until the conclusion, i.e. to carry the calculation through with the complex value of X given in (5). Thus, from (5),
$$
\frac{\partial X}{\partial t}=i \frac{2 \pi}{T} X
$$
so that equations (I) become
\[

$$
\begin{equation*}
j_{x}=\frac{\epsilon-i \cdot 2 \sigma T}{4 \pi} \frac{\partial X}{\partial t}, \text { etc. } \tag{6}
\end{equation*}
$$

\]

Thus the only difference between isotropic transparent and isotropic absorbing media consists in this, that the constant ϵ, which is real for transparent media, becomes for absorbing media the complex constant

$$
\begin{equation*}
\epsilon^{\prime}=\epsilon-i 2 \sigma T . \tag{7}
\end{equation*}
$$

All the preceding equations can be applied if ϵ is simply replaced by ϵ^{\prime}.

Thus, for example, according to equation (3) on page 275 ,

$$
\begin{equation*}
\frac{\epsilon^{\prime}}{c^{2}} \frac{\partial^{2} X}{\partial t^{2}}=\Delta X \tag{8}
\end{equation*}
$$

This gives, in connection with (5),

$$
\begin{equation*}
\frac{\epsilon^{\prime}}{c^{2}}=\mu^{2}+v^{2}+\pi^{2} . \tag{9}
\end{equation*}
$$

Since ϵ^{\prime} is complex, μ, ν, and π cannot all be real. But this presence of an imaginary always indicates an absorption, i.e. a diminution in the amplitude. If, for example, $\mu=\nu=0$, $\pi=\frac{1-i \kappa}{V}$, in which κ and V are to be real, then, from (5),

$$
\begin{equation*}
X=A e^{-2 \pi \kappa \frac{z}{\lambda} \cdot e^{i 2 \pi}\left(\frac{t}{T}-\frac{z}{\lambda}\right), ~} \tag{10}
\end{equation*}
$$

in which λ is set equal to $T \cdot V$. But equation (io) asserts that the ratio of the amplitude at any instant to the amplitude after the wave has travelled a distance λ is $\mathrm{I}: \ell-2 \pi \kappa$. Hence κ is called the coefficient of absorption.

Equation (10) represents the case in which light falls perpendicularly from air upon the absorbing medium. V is the velocity and λ the wave length of light in the medium. If the ratio $c: V=n$ be called the index of refraction of the medium, since it represents the ratio of the velocitics of light in air (assumed to be the same as in vacuo) and in the medium, then, by (9),

$$
\epsilon^{\prime}=\pi^{2}\left(\mathrm{I}-\kappa^{2}-2 i \kappa\right),
$$

or

$$
\begin{equation*}
n^{2}\left(\mathrm{I}-\kappa^{2}\right)=\epsilon, \quad n^{2} \kappa=\sigma T \tag{II}
\end{equation*}
$$

Thus this equation furnishes the means of determining the index of refraction and the cocfficient of absorption from the electric constants. It will be shown later that the relation (II) cannot be numerically verified; nevertheless the important point here is to observe that a complex value of ϵ^{\prime} actually means an absorption of light, and that the real and imaginary parts of ϵ^{\prime} can be replaced, in accordance with (I I), by the more tangible concepts of refraction and absorption cocfficients.
2. Metallic Reflection. - Resume the notation on page 279 sq. Let the incident light be plane-polarized at an azimuth of 45° to the plane of incidence. Then $E_{p}=E_{s}$. The entire development there given can be applied here if only the real constant ϵ be replaced by a complex quantity ϵ^{\prime}. ϕ denotes the angle of incidence and χ a complex quantity which may be determined in terms of ϕ by

$$
\begin{equation*}
\sin \chi=\frac{\sin \phi}{1^{\prime} \epsilon^{\prime}} . \tag{I2}
\end{equation*}
$$

Then, from (27) on page 285 , the ratio of the components of the complex amplitude of the reflected light is

$$
\begin{equation*}
\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{s}}}=\rho \cdot e^{i \Delta}=-\frac{\cos (\phi-1-\chi)}{\cos (\phi-\chi)} . \tag{13}
\end{equation*}
$$

ρ here denotes the ratio of the real amplitudes of the p - and s components of the reflected light, Δ the relative difference of phase of these components. This is at once evident by setting
$\mathrm{R}_{\mathrm{p}}=R_{p} e^{i \delta_{p}}, \mathrm{R}_{\mathrm{s}}=R_{s} e^{i \delta_{s}}$, in which $R_{p}, R_{s}, \delta_{p}, \delta_{s}$ are real quantities. Then

$$
\begin{equation*}
\rho=R_{p}: R_{s}, \quad \Delta=\delta_{p}-\delta_{s} . \tag{14}
\end{equation*}
$$

Since the right-hand side of (r3) is a complex quantity, Δ cannot be zero. Incident plane-polarized light therefore becomes by reflection at the surface of a metal elliptically polarized.

From (13) it follows that

$$
\frac{I+\rho \cdot e^{i \Delta}}{I-\rho \cdot e^{i \Delta}}=\frac{\sin \phi \sin \chi}{\cos \phi \cos \chi} .
$$

If in this equation χ be replaced by ϕ and ϵ^{\prime} in accordance with (12), then

$$
\begin{equation*}
\frac{1+\rho \cdot e^{i \Delta}}{1-\rho \cdot e^{i \Delta}}=\frac{\sin \phi \tan \phi}{\sqrt{\epsilon^{\prime}-\sin ^{2} \phi}} \tag{15}
\end{equation*}
$$

Hence when $\phi=0, \rho \cdot e^{i \Delta}=-\mathrm{I}$, or $\Delta=0$ and $\rho=-\mathrm{I}$. When $\phi=\frac{\pi}{2}, \rho e^{i \Delta}=+1$, i.e. $\Delta=0, \rho=1$. Hence the relative difference of phase Δ of the reflected light, i.e. its ellipticity, vanishes at perpendicular and grazing incidence. That angle of incidence $\bar{\phi}$ for which the difference of phase Δ amounts to $\frac{\pi}{2}$ is called the principal angle of incidence $\bar{\phi}$. At this angle $e^{i \Delta}=i$; hence, from (15),

$$
\begin{equation*}
\frac{1+i \cdot \bar{\rho}}{1-i \cdot \bar{\rho}}=\frac{\sin \bar{\phi} \cdot \tan \bar{\phi}}{\sqrt{\epsilon^{\prime}-\sin ^{2} \bar{\phi}}} . \tag{I6}
\end{equation*}
$$

If this equation be multiplied by the conjugate complex equation

$$
\frac{\mathrm{x}-i \cdot \bar{\rho}}{\mathrm{I}+i \cdot \bar{\rho}}=\frac{\sin \bar{\phi} \cdot \tan \bar{\phi}}{\sqrt{\epsilon^{\prime \prime}-\sin ^{2} \bar{\phi}}},
$$

in which $\epsilon^{\prime \prime}$ denotes the complex quantity which is conjugate
c left-hand side reduces to 1 . Hence the principal inciclence is determined by
$r^{4} \bar{\phi}=\pi^{4}\left(\mathrm{I}+\kappa^{2}\right)^{2}-2 \pi^{2}\left(\mathrm{I}-\kappa^{2}\right) \sin ^{2} \bar{\phi}+\sin ^{4} \bar{\phi}$.
he numerical calculation it is generally sufficient to ount of the first term only on the right-hand side of tion, since, for all the metals, $n^{2}\left(1+\kappa^{2}\right)$ has a value ater than I , somewhere between 8 and 30. With wimation (17) becomes simply

$$
\begin{equation*}
\sin \bar{\phi} \tan \bar{\phi}=n \sqrt{\mathrm{I}+\kappa^{2}} . \tag{18}
\end{equation*}
$$

uproximation may be obtained directly from (15) by ${ }_{r}{ }_{r}$ in the denominator of the right-hand side $\sin ^{2} \phi$ in nl with ϵ^{\prime}. For, from (II),

$$
\begin{equation*}
\sqrt{\epsilon^{\prime}}=n(\mathrm{I}-i \kappa), \tag{19}
\end{equation*}
$$

5) becomes

$$
\begin{equation*}
\frac{\mathbf{I}+\rho \cdot c^{i \Delta}}{\mathbf{I}-\rho \cdot c^{i \Delta}}=\frac{\sin \phi \tan \phi}{u(\mathrm{I}-i \kappa)} . \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\rho=\tan \psi \tag{2I}
\end{equation*}
$$

i [cf. (13)] that ψ represcnts the azimuth of the onlarization of the reflected light with respect to the nciclence, after it has been made plane-polarized by s such as the Babinct compensator (cf. page 257). s called the asimuth of restored polarization. ; is casy to deduce the relation

$$
r-\frac{\rho e^{i \Delta}}{\rho c^{i \Delta}}=\frac{\cos 2 \psi-i \sin \Delta \sin 2 \psi}{1+\cos \Delta \sin 2 \psi},
$$

: following may be obtained from (20):

$$
\sin \Delta \tan 2 \psi,
$$

$: \sin \phi \tan \phi \frac{\cos 2 \psi}{1+\cos \Delta \sin 2 \psi}$,

$$
\begin{equation*}
\left.\left.+\kappa^{2}\right)=\sin ^{2} \phi \tan ^{2} \phi \cdot \frac{1-\cos \Delta \sin 2 \psi}{1+\cos \Delta \sin 2 \psi} .\right\} \tag{22}
\end{equation*}
$$

From these equations the optical constants n and κ of a metal can be determined with sufficient accuracy from observations of ψ and $\Delta .^{*}$

The value of ψ which corresponds to the principal angle of incidence $\phi=\bar{\phi}$ is called the principal azimuth $\bar{\psi}$. From the first of equations (22) it follows that

$$
\begin{equation*}
\kappa=\tan 2 \bar{\psi} . \tag{23}
\end{equation*}
$$

Inversely, in order to obtain Δ and ψ from the optical constants, set

$$
\begin{equation*}
\tan P=\frac{n \sqrt{1+\kappa^{2}}}{\sin \phi \tan \phi}, \quad \tan Q=\kappa \tag{24}
\end{equation*}
$$

Then from (20), since the right-hand side has the value $\cot P . e^{i Q}$,

$$
\begin{align*}
\tan \Delta & =\sin Q \tan 2 P \\
\cos 2 \psi & =\cos Q \sin 2 P . \tag{25}
\end{align*}
$$

The reflecting pozeer of a metal is defined as the ratio of the intensity of the reflected light to that of the incident light when the angle of incidence ϕ is zero. In this case, from equation (26) on page 284 , since n is here to be replaced by $n(\mathrm{I}-i \kappa)$ [cf. equation (19)],

$$
\begin{equation*}
\frac{\mathrm{R}_{\mathrm{p}}}{E_{p}}=\frac{R_{p} \cdot e^{i \delta_{p}}}{E_{p}}=\frac{n(\mathrm{I}-i \kappa)-\mathrm{I}}{n(\mathrm{I}-i \kappa)+\mathrm{I}} . \tag{26}
\end{equation*}
$$

If this equation is multiplied by its conjugate complex equation, the value of the reflecting power R is found to be

$$
\begin{equation*}
R=\frac{R_{p}^{2}}{E_{p}^{2}}=\frac{n^{2}\left(\mathrm{I}+\kappa^{2}\right)+\mathrm{I}-2 n}{n^{2}\left(\mathrm{I}+\kappa^{2}\right)+\mathrm{I}+2 n} . \tag{27}
\end{equation*}
$$

Since for all metals $2 n$ is small in comparison with $n^{2}\left(\mathrm{I}+\kappa^{2}\right), R$ is almost equal to unity, i.e. the reflecting power is very large. A substance which shows this strong reflecting power characteristic of the metals (in the case of silver it

[^84]amounts to 95 per cent) is said to have metallic lustre.* This is more marked the greater the absorption coefficient of the substance. Since κ is different for different colors, some metals, like gold and copper, have a very pronounced color. Thus a metal appears red if red light is reflected more strongly than the other colors. Hence the light reflected from the surface of a metal is approximately complementary to the color of the light transmitted by it. In order to observe this it is necessary to use sheets of the metal which are only a few thousandths of a millimetre thick. Gold-foil of such thickness actually appears green by transmitted light.

The more often light is reflected between two mirrors of the same substance the more saturated does its color become, for the colors which are most strongly absorbed by the substance are much less weakened by repeated reflection than the others. In this way Rubens and Nichols, \dagger and Aschkinass \ddagger have succeeded in isolating heat-waves much longer than any previously observed. An Aucr burner without a chimney was used as the source of the radiations. After five reflections upon sylvine an approximately homogeneous beam of wave length $\lambda=0.06 \mathrm{I} \mathrm{mm}$. was obtained, this being the longest heatwave yet observed. The reflecting power of sylvine for this radiation is $R=0.80$, i.e. 80 per cent. Long heat-waves can also be isolated by multiple reflections upon rock salt, fluorspar, and quartz.

It is important to distinguish between the surface colors produced by metallic reflection and those which are shown by weakly absorbing substances with rough surfaces; for example, by colored paper, colored glass, etc. These substances appear colored in diffusely reflected light because the light is reflected in part from the interior particles of the substance, and hence

[^85]selective absorption is the cause of the color. In such cases the colors in transmitted and reflected light are the same, not complementary as in the case of the metals.
3. The Optical Constants of the Metals.-Equation (22) shows how the optical constants n and κ of a metal can be conveniently determined, namely, by observing the vibration form of the elliptically polarized reflected light when the incident light is plane-polarized, i.c. by measuring Δ and ψ by means of a Babinet compensator and analyzing Nicol in accordance with the method described on page 255 sq . But care must be taken that the surface of the metal be as clean as possible, since surface impurities tend to reduce the value of the principal angle of incidence.* The following table contains some of the values which Drude has obtained by the reflection of yellow light from surfaces which were as clean as possible:

Metals.	nk	n	$\bar{\phi}$	$\bar{\psi}$	R
Silver.	3.67	0.18	$75^{\circ} 42^{\prime}$	$43^{\circ} 35^{\prime}$	95.3\%
Gold.	2.82	0.37	7218	4139	85.1
Platinum	4.26	2.06	7830	3235	70.1
Copper.	2.62	0.64	7×35	3857	73.2
Steel.	3.40	2.41	773	2749	58.5
Sodium.	2.61	0.005	7119	4458	99.7
Mercury .	4.96	1.73	7934	3543	78.4

The reflecting power R was not measured directly, but calculated from (27).

The optical constants can also be determined by observations upon the transmitted light. By measuring the absorption in a thin film of thickness d a value for $\kappa: \lambda$ may be obtained, as is seen from (IO), λ denoting the wave length in the metal. Since now $\lambda=\lambda_{0}: n$, and since λ_{0}, the wave length in air, is known, $n \kappa$ may also be obtained. But reflection at the bounding surfaces of thin sheets of metal is accompanied by a great loss

[^86]in intensity. In order to eliminate this difficulty it is necessary to compare the absorptions in films of different thickness. The losses due to reflection are then in both cases nearly the same, so that a conclusion may be drawn as to the value of $n \kappa$ from the difference in the absorptions. The difficulty in making these observations lies in obtaining metal films but a few thousandths of a millimetre in thickness, which are yet uniform and free from holes. For this reason the value of $n \kappa$ as determined by this transmission method usually comes out smaller than by the reflection method.* But in some cases, \dagger for example, silver-which can be easily deposited upon glass from a solution-the values of $n \kappa$ determined by the two methods are in good agreement.

As in the case of transparent media, the index of refraction can be determined from the deviation produced by a prism, \ddagger but in the case of the metals the angle of the prism must be very small (a fraction of a minute of arc) in order that the intensity of the light transmitted may be appreciable. Since Kundt succeeded in producing metal prisms suitable for this purpose § (generally by electrolytic deposition upon platinized glass), the indices of refraction of the metals have been determined many times by this method.\| Not only is the production of these prisms troublesome, but also the observations are very difficult, since the result is obtained as the quotient of two very small quantities. In general the results agree well with those obtained from observations of reflection; for example, the remarkable conclusion that for certain metals $n<1$ has been confirmed.

These small indices of silver, gold, copper, and especially

[^87]of sodium are particularly surprising; they mean that light travels faster in these metals than in air.

If these optical constants be compared with the demands of the electromagnetic theory [cf. (II)], a contradiction is at once apparent. For since ϵ is to equal $n^{2}\left(1-\kappa^{2}\right)$, the dielectric constant of all the metals would be negative, since $\kappa=\tan 2 \bar{\psi}$, and since 2ψ is for all metals larger than 45°, i.e. $\kappa>1$. But a negative dielectric constant has no meaning. Also, the second of equations (II), namely, $n^{2} \kappa=\sigma T$, is not confirmed, since, for example, in the case of mercury, for yellow light $\sigma T=20$, while $\pi^{2} \kappa=8.6$. For silver σT is much greater, while $n^{2} \kappa$ is much smaller than for mercury.

The same fact is met with here which was encountered above when the indices of refraction of transparent media were compared with the dielectric constants. The electromagnetic theory describes the phenomena well, but the numerical values of the optical constants cannot be determined from electrical relations. The extension of the theory, which removes this difficulty, will be given in the following chapter.
4. Absorbing Crystals.-The extension of the equations for isotropic absorbing media to include the case of absorbing crystals consists simply in assuming different dielectric constants and different conductivities along the three rectangular axes of optical symmetry. If the coordinate axes coincide with these axes of symmetry, equations (I2) on page 314 are obtained, with this difference, that $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$ are complex quantities, if, in accordance with (5) on page 359, the electrical force is introduced as a complex quantity. To be sure the equations will not be perfectly general, since the axes of symmetry for the dielectric constant do not necessarily coincide with those for the conductivity. These axes must coincide only in crystals which possess at least as much symmetry as the rhombic system. Nevertheless the most general case will not be here discussed, since the essential elements may be obtained from the simplification here presented.*

[^88]In order to integrate the differential equations given above, namely,
let the components u, z^{\prime}, z of the light-vector be represented by the equations
in which $m^{3}+n^{2}+f^{2}=1$, and A, N, H may be complex. These equations correspond to a plane wave whose direction cosines are m, n, ρ. I is the velocity of the wave, and κ the absorption coefficient (ef. paye $3(x)$. Let

$$
\stackrel{V}{i-i \kappa}=(a) .
$$

in which, however, $a_{n}{ }^{3}, b_{n}{ }^{3}, c_{n}{ }^{3}$ are complex. Hence this: equattion splits up inter two from which 1 and κ may lue calculates separately as functions of the direction m, n, pof the wave normal. According to copations (15), (10), ant (20) on payes 315 and 317 , the following relations hold for the quantities M, N, M :

$$
\begin{equation*}
M m \cdot\left|\cdot N_{n}\right| 1 \cdot \| \rho: \cdot: 0, \tag{32}
\end{equation*}
$$

$$
\begin{align*}
& M_{1} M_{2} \cdot\left|\cdot N_{1}^{r} N_{z}^{r}\right| H_{1} H_{2} \cdot 0 . \quad . \quad . \tag{33}
\end{align*}
$$

Since, by (33), M, N, $/ /$ are complex, two elliptically polarized rays correspond to cerery direction m, n, p. For if it 'ee assumed that $M=\ddot{M} e^{i i_{1}}$, N $N \cdot t^{j i_{2}}$, them $\delta_{1}-\delta_{2}$ denetes
the difference of phase between the components u, v of the light-vector. For plane-polarized light $\delta_{1}-\delta_{2}=0$. Equation (32) expresses the fact that the plane of the vibration is perpendicular to the wave normal, (34) the fact that the ellipses are similar to each other, while their positions are inverted.*

The relation which can be deduced from (3I) between the velocity and the direction m, n, p is very complicated. Hence Fresnel's law, in spite of its apparent identity with (31), is considerably modified. But the relations are much simpler in the case of weakly absorbing crystals such as are always used when observations are made with transmitted light. \dagger For if κ^{2} can be neglected in comparison with I , then $\omega^{2}=V^{2}(1+2 i \kappa)$. Hence setting

$$
\begin{equation*}
a_{0}^{2}=a^{2}+i a^{\prime 2}, \quad b_{0}^{2}=b^{2}+i b^{\prime 2}, \quad c_{0}^{2}=c^{2}+i c^{\prime 2} \tag{35}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{m^{2}}{a_{0}^{2}-\omega^{2}}=\frac{m n^{2}}{a^{2}-V^{2}-i\left(2 \kappa V^{2}-a^{\prime 2}\right)}=\frac{m n^{2}}{a^{2}-V^{2}}\left(\mathrm{I}+i \frac{2 \kappa V^{2}-a^{\prime 2}}{a^{2}-V^{2}}\right) . \tag{36}
\end{equation*}
$$

Hence (3I) splits up into the two equations

$$
\begin{gather*}
\frac{n^{2}}{a^{2}-V^{2}}+\frac{n^{2}}{b^{2}-V^{2}}+\frac{p^{2}}{c^{2}-V^{2}}=0, \tag{37}\\
2 \kappa V^{2}\left\{\frac{m^{2}}{\left(a^{2}-V^{2}\right)^{2}}+\frac{n^{2}}{\left(b^{2}-V^{2}\right)^{2}}+\frac{p^{2}}{\left(c^{2}-V^{2}\right)^{2}}\right\} \\
=a^{\prime 2} \frac{n^{2}}{\left(a^{2}-V^{2}\right)^{2}}+b^{\prime 2} \frac{n^{2}}{\left(b^{2}-V^{2}\right)^{2}}+c^{\prime 2} \frac{p^{2}}{\left(c^{2}-V^{2}\right)^{2}} . \tag{38}
\end{gather*}
$$

Equation (37) is Fresnel's law. Hence when the absorption is small this is not modified. Equation (38) presents $\boldsymbol{\kappa}$ as a function of m, n, and p. According to (33), when the absorption is small M, N, Π are very nearly real, i.e. the two waves within the crystal have but a slight elliptic polarization. If $\mathfrak{M}, \mathfrak{N}, \mathfrak{F}$ denote the direction cosines of the principal axis of

[^89]the vibration ellipse, then, from (33) and (36), since \mathfrak{M} is the real part of M, etc.,
\[

$$
\begin{equation*}
\mathfrak{M}: \mathfrak{N}: \mathfrak{P} \doteq \frac{m}{a^{2}-V^{2}}: \frac{n}{b^{2}-V^{2}}: \frac{p}{c^{2}-V^{2}} \tag{39}
\end{equation*}
$$

\]

Thus $\mathfrak{M}, \mathfrak{N}, \mathfrak{B}$ are determined in the same way as the direction of vibration in transparent crystals.

In view of (39) and the relation $9 \mathfrak{l}^{2}+9 \mathfrak{2}^{2}+\mathfrak{B}^{2}=1$, it is possible to write (38) in the form:

$$
\begin{equation*}
2 \kappa V^{2}=a^{\prime 2} \mathfrak{M}^{2}+b^{2} \mathfrak{R}^{2}+c^{\prime 2} \mathfrak{B}^{2} ; . \tag{40}
\end{equation*}
$$

i.e., in accordance with (18^{\prime}) on page 317, which also holds here,

$$
\begin{equation*}
2 \kappa=\frac{a^{\prime 2} \mathfrak{M}^{2}+b^{\prime 2} \mathfrak{R}^{2}+c^{\prime 2} \mathfrak{P}^{2}}{a^{2} \mathfrak{M}^{2}+b^{2} ⿹ \mathfrak{U}^{2}+c^{2} \mathfrak{W ^ { 2 }}} . \tag{41}
\end{equation*}
$$

Hence the index of absorption κ, like the velocity V, is a sing-le-valued function of the direction of vibration.

This law can be easily verified by observing in transmitted light a cube of colored crystal cut parallel to the planes of symmetry. This shows different colors as the direction of the ray is changed (trichroism for rhombic crystals, dichroism for hexagonal and tetragonal crystals). This phenomenon can be observed in tourmaline, beryl, smoky topaz, iolite, and especially in pennine, which appears bluish green and brownish yellow. If the light transmitted by such a crystal is analyzed with a Nicol, the color depends upon its plane of polarization, the extreme colors being obtained when the Nicol is parallel to an axis of symmetry of the crystal.* The six extreme colors which can be observed in a cubc of tricroitic crystal by means of a Nicol reduce in reality to threc, since each color appears twice, namely, in the positions for which the direction of vibration in the Fresnel sense is the same (cf. page 253).

Equations (40) and (41) become simpler if the wave normal lies near an optic axis; for example, near A_{1}. If the angle g_{1}

[^90]which the wave normal N makes with the optic axis A_{1} is so small that its square can be neglected in comparison with I, then $V^{2}=b^{2}$. If, further, the angle between the plane of the optic axes ($x z$-plane) and the plane $\left(N A_{1}\right)$ defined by A_{1} and N be denoted by ψ, then the plane defined by N and the direction of vibration $\mathfrak{M}_{1}, \mathfrak{N}_{1}, \mathfrak{F}_{1}$ makes an angle $\frac{\psi}{2}$ with the $x z$-plane. For, from page 322 , the plane of vibration bisects the angle included between the planes $\left(N A_{1}\right)$ and ($N A_{2}$) ; but since N is to lie very near to the optic axis, the plane $\left(N A_{2}\right)$ may be identified with the plane $\left(A_{1} A_{2}\right)$ of the optic axes, i.e. with the $x z$-plane. Hence the direction of vibration $\mathfrak{M}_{1}, \mathfrak{N}_{1}, \mathfrak{F}_{1}$ must make an angle of $\frac{\psi}{2}$ with that direction S in the $x z$-plane which is perpendicular to the wave normal N, i.e. to the optic axis A_{1}. The direction cosines of S are $\cos q, \circ,-\sin q$, where q denotes the angle between the optic axis A_{1} and the z-axis, i.e. half of the angle included between the optic axes. Hence it follows that
\[

$$
\begin{equation*}
\cos \frac{\psi}{2}=\mathfrak{M}_{1} \cos q-\mathfrak{F}_{1} \sin q \text {. } \tag{42}
\end{equation*}
$$

\]

Since now the direction $\mathfrak{M}_{1}, \mathfrak{N}_{1}, \mathfrak{F}_{1}$ is also perpendicular to the wave normal N, i.e. to the optic axis A_{1}, whose direction cosines are $\sin q, 0, \cos q$, it follows that

$$
o=\mathfrak{M}_{1} \sin q+\mathfrak{F}_{1} \cos q .
$$

From these last two equations
$\mathfrak{M}_{1}=\cos q \cos \frac{\psi}{2}, \quad \mathfrak{N}_{1}=\sin \frac{\psi}{2}, \quad \mathfrak{\Re}_{1}=-\sin q \cos \frac{\psi}{2}$.
From this the direction $\mathfrak{M}_{2}, \mathfrak{R}_{2}, \mathfrak{P}_{2}$ may be determined, since it is perpendicular to $\mathfrak{M}_{1}, \mathfrak{N}_{1}, \mathfrak{F}_{1}$, and to m, n, p. Thus

$$
\begin{equation*}
\mathfrak{M}_{2}=-\cos q \sin \frac{\psi}{2}, \quad \mathfrak{N}_{2}=\cos \frac{\psi}{2}, \quad \mathfrak{R}_{2}=\sin q \sin \frac{\psi}{2} . \tag{44}
\end{equation*}
$$

ence, from (40), in the neighborhood of the optic axis

$$
\left.\begin{array}{l}
2 \kappa_{1} b^{2}=\left(a^{\prime 2} \cos ^{2} q+c^{\prime 2} \sin ^{2} q\right) \cos ^{2} \frac{\psi}{2}+b^{\prime 2} \sin ^{2} \frac{\psi}{2} \\
2 \kappa_{2} b^{2}=\left(a^{\prime 2} \cos ^{2} q+c^{\prime 2} \sin ^{2} q\right) \sin ^{2} \frac{\psi}{2}+b^{\prime 2} \cos ^{2} \frac{\psi}{2} \tag{45}
\end{array}\right\}
$$

These equations show that for any angle $\pm \psi$ the value of is the same ats that of k_{2} for an angle $\psi^{\prime}=\pi \pm \psi$. These uations are incleterminate for the optic axis itself, because on ψ has no meaning. In accordance with the preceding ;cussion, the direction of vilmation may be taken arbitrarily \because page 310). From (40) it follows that for a wave polarized the plane of the optic axes, i.e. vibrating perpendicularly to ase axes, since in this case $M:=O=0,4 \pi=1$,

$$
\begin{equation*}
2 \kappa_{s} l^{2}=. \quad b^{\prime 2}, \tag{46}
\end{equation*}
$$

t for a wave polarized in a plane perpendicular to the plane the optic axes, and therefore vibrating in that plane, since

$$
\begin{equation*}
2 k_{\mu} l^{3}:: \sigma^{2} \cos ^{2} q \mid-c^{\prime 2} \sin ^{2} q . \tag{47}
\end{equation*}
$$

r intermediate positions of the plane of polarization values κ are obtained which lie between those of κ_{s} and κ_{p}. nee the absomption of a mater traithing along an optic axis eends upen its plame of pularization. Upon introduction of quantities κ_{s} and $\kappa_{A}(45)$ becomes

$$
\begin{equation*}
=\kappa_{p} \cdot \cos ^{2} \frac{\psi}{2}+\kappa_{s} \cdot \sin _{2}^{\frac{1}{2}} \quad \kappa_{2}=\kappa_{p} \cdot \sin ^{2} \frac{1 /}{2}+\kappa_{s} \cdot \cos ^{2} \frac{1}{2} . \tag{48}
\end{equation*}
$$

For uniaxial crystals ($a=b, a^{\prime}=b^{\prime}$), if g represent the fle between the wave normal and the optic axis, it is easy leduce from (40) for the ordinary wave

$$
2 \kappa_{0} \gamma_{0}^{2}=a^{\prime 2}, \quad l_{0}^{2}=a^{2}
$$

the extraorelinary wave

$$
\left.\begin{array}{c}
2 \kappa_{0} Y_{0}^{2}=a^{\prime 2}, \quad l_{0}^{2}=a^{2} \tag{49}\\
\text { the extraordinary wave } \\
V_{2}^{2}=a^{\prime 2} \cos ^{2} \xi^{r}+c^{\prime 2} \sin ^{2} g^{\prime}, \quad r_{2}^{2}=a^{2} \cos ^{2} g+c^{2} \sin ^{2} g .
\end{array}\right\} .
$$

5. Interference Phenomena in Absorbing Biaxial Crys-tals.-Let a plate of an absorbing crystal be introduced in convergent light between analyzer and polarizer. Resume the notation of $\$ \$ 14$ and 15 on pages 344 and 349 , and consider Fig. 9I. A wave W_{1}, vibrating in a direction H_{1}, which upon entering a crystal has an amplitude $E \cos \phi$, upon emergence from the crystal has the amplitude $E \cos \phi e^{-\frac{2 \pi}{T}} \frac{\kappa_{1} l}{V_{1} l}$, in which l denotes the length of the path traversed in the crystal. If d denote the thickness of the plate of crystal, and r_{1} the angle of refraction of the wave W_{1}, then $l=d: \cos r_{1}$. Similarly the amplitude of the wave W_{2} is, upon emergence from the crystal, $E \sin \phi e^{-\frac{2 \pi}{T}} \frac{\kappa_{2}}{V_{2}^{2} l}$ (the length of the path within the crystal is assumed to be for both waves approximately the same). After passing through the analyzer the amplitudes or the two waves are

$$
\left.\begin{array}{ll}
E \cos \phi \cos (\phi-\chi) \cdot e^{-\kappa_{1} \sigma_{1},} & \sigma_{1}=\frac{2 \pi}{T V_{1}} \frac{d}{\cos r} \tag{50}\\
E \sin \phi \sin (\phi-\chi) \cdot e^{-\kappa_{2} \sigma_{2},} & \sigma_{2}=\frac{2 \pi}{T V_{2}} \frac{d}{\cos r}
\end{array}\right\}
$$

The difference in phase δ of the two waves in convergent light is determined by equation (88) on page 350 .

The case of crossed Nicols $\left(\chi=\frac{\pi}{2}\right)$ will be more carefully considered. Assume that the plate of crystal is cut perpendicular to the optic axis A_{1}, and denote by ψ the angle which the plane $A_{1} A_{2}$ of the optic axes makes with the line $M A_{2}$ drawn from a point M, which is near the optic axis in the field of view, ${ }^{*}$ to the optic axis A_{1}; then (cf. Fig. IOI) the direction of vibration H_{1} makes approximately the angle $\frac{\psi}{2}$ vith the direction $A_{1} A_{2}$, provided $A_{1} M$ is small in comparison with

[^91]$A_{1} A_{2}$. If, further, the plane of vibration P of the polarizer makes the angle α with the plane $A_{1} A_{2}$ of the optic axes, then

Fig. ion.
in (50) $\phi=\alpha-\frac{\psi}{2}, \chi=\frac{\pi}{2}$. The amplitudes of the two interfering waves are therefore

$$
\left.\begin{array}{l}
+E \cos (\alpha-\psi / 2) \sin (\alpha-\psi / 2) e^{-\kappa_{1} \sigma}, \tag{5I}\\
-E \sin (\alpha-\psi / 2) \cos (\alpha-\psi / 2) e^{-\kappa_{2} \sigma},
\end{array}\right\}
$$

in which

$$
\sigma=\begin{gathered}
2 \pi d \\
T b
\end{gathered}
$$

since in the neighborhood of the optic axis $V_{1}=V_{2}=b$, and r is to be small.

Hence the intensity of the light which emerges from the analyzer is

$$
\begin{equation*}
J=\frac{E^{2}}{4} \sin ^{2}(2 \alpha-\psi)\left\{e^{-2 \kappa_{1} \sigma}+c^{-2 \kappa_{2} \sigma}-2 e^{-\left(\kappa_{1}+\kappa_{2}\right)} \cdot \cos \delta\right\} \tag{52}
\end{equation*}
$$

If the wave normal actually coincides with the optic axis, the end sought may be obtained from the following considerations: The amplitude E is resolved into components which are parallel and perpendicular respectively to the plane $A_{1} A_{2}$ of the optic axes. These components are $E \cos \alpha$ and $E \sin \alpha$. After emergence from the crystal the former has the value
$E \cos \alpha c^{-\kappa_{p} \sigma}$, the latter $E \sin \alpha_{c} c^{-\kappa s \sigma}$. After passage throug the analyzer the former has the amplitude $E \cos \alpha \sin \alpha c^{-2 K_{p}}$ the latter $-E \sin \alpha \cos \alpha c-\kappa_{s} \sigma$. These two waves have 1 difference in phase, since the velocity in the direction of t l optic axis is the same for both of them. Hence when th wave normal is parallel to the optic axis, the light whic emerges from the analyzer has the intensity

$$
J^{\prime}=\frac{I^{2}}{4} \sin 2 \alpha\left(e^{-k_{p} \sigma}-e^{-k_{s} \sigma}\right)^{2}
$$

The first factor in (52) placed equal to zero determines tl position of the black principal isogyre $1=2 \alpha$. But zohile t. black isogyere in the uncolored arystals passes therought the op axis itsclf, in the pleochroic crostals the point of intersection the optic axis waith the isogyre is bright, unless $\alpha=0$ $\alpha=\frac{\pi}{2}$, i.e. unless the plate lies in the first principal positio For, from (53), J^{\prime} differs from zero when $\sin 2 \alpha \geqslant 0$, and differs from κ_{s}.

The second factor in (52) placed equal to zero shows th there are dark rings about the optic axis, since the value this second factor depends upon cos δ, and cos δ has period maxima and minima as the distance from the optic at increases. Nevertheless even with monochromatic light the rings are perfectly black only where $\kappa_{1}=\kappa_{2}$, i.e., accordi to (48), when $\psi= \pm \frac{\pi}{2}$, for there the second factor actual vanishes when $\cos \delta=\mathrm{r}$. The whole phenomenon of t rings is less and less distinct the stronger the absorption, i . the thicker the plate. For the term in (52) which depen upon the difference in phase δ has a factor which can written in the form $e-\left(\kappa_{p}+\kappa_{s}\right) \sigma$. If the crystal is at all c
taining $\cos \delta$ vanishes. This second factor in (52) can be written

$$
\begin{equation*}
F=c^{-2 \kappa_{1} \sigma}+c^{-2 \kappa_{2} \sigma} . \tag{54}
\end{equation*}
$$

Although σ is large, these terms may yet have appreciable values, since κ_{1} or κ_{2} may be small for certain points $M I$ of the field of view provided either κ_{p} or κ_{s} is small. It can now be shown that when $\psi=0$ or π, F is a maximum; when $\psi= \pm \frac{\pi}{2}$, a minimum. For, from (48),

$$
\frac{\partial F}{\partial \eta}=\sigma \sin \psi\left(\kappa_{p}-\kappa_{s}\right)\left(\iota^{\prime-2 \kappa_{1} \sigma}-\iota^{\left.-2 \kappa_{2} \sigma\right)} .\right.
$$

Therefore maxima or minima occur when $\psi=0$ or π, or when $\kappa_{1}=\kappa_{2}$, i.c. $\psi= \pm \frac{\pi}{2}$. But when $\psi=0$ or π,

$$
\begin{equation*}
F=\iota^{-2 \kappa_{p} \sigma}+\iota^{-2 k_{s} \sigma}=I_{1} \tag{55}
\end{equation*}
$$

and when $\psi= \pm \frac{\pi}{2}$,

$$
\begin{equation*}
I=2 \cdot 6^{-\left(\kappa_{p} \mid \kappa_{s}\right) \sigma}=F_{2} \tag{56}
\end{equation*}
$$

Writing $c^{-2 \kappa_{p} \sigma}=x, c^{-2 \kappa_{3} \sigma}=y^{\prime}$, then $\frac{1}{2} \mu_{1}=\begin{gathered}x+y^{\prime} \\ 2\end{gathered}, \frac{1}{2} I_{2}=V_{x} y^{\prime}$
But now, since the arithmetical mean is always greater than the geometrical (the difference between them increasing ats the difference between x and y^{\prime}, ice. between κ_{p} and κ_{s}, increases), the values $\psi=0$ or π correspond to a maximum, the values

In addition to the principal isegryer $(1)=2 \times 2)$, there is always a black brush traversing the field of mica perpendicular to the plane of the optic aries $\left(1,= \pm \begin{array}{l}\pi \\ 2\end{array}\right)$. This brush coincodes with the principal isogyre in the second principal position of the plate $\left(\alpha=\frac{\pi}{4}\right)$.

Absorption gives rise to certain peculiar phenomena when either the analyzer or the polarizer is removed. In the first case the two amplitudes which emerge from the crystal have the values $E \cos \left(\alpha-\frac{1}{2} \psi\right) e^{-\kappa_{1} \sigma}$ and $E \sin \left(\alpha-\frac{1}{2} \psi\right) e^{-\kappa_{2} \sigma}$. If these are not brought back to a common plane of vibration, they do not interfere and the resultant intensity is simply the sum of the two components, ie.

$$
\begin{equation*}
J=E^{2}\left\{\cos ^{2}\left(\alpha-\frac{1}{2} \psi\right) e^{-2 \kappa_{1} \sigma}+\sin ^{2}\left(\alpha-\frac{1}{2} \psi\right) e^{-2 \kappa_{2} \sigma}\right\} \tag{57}
\end{equation*}
$$

When the wave normal coincides with the optic axis,

$$
\begin{equation*}
J^{\prime}=E^{2}\left\{\cos ^{2} \alpha e-2 \kappa_{p} \sigma+\sin ^{2} \alpha e^{-2 \kappa_{s} \sigma}\right\} . \tag{58}
\end{equation*}
$$

The following principal cases will be investigated:
I. $\alpha=0$. Then

$$
\begin{aligned}
J & =E^{2}\left\{\cos ^{2} \frac{1}{2} \psi \cdot e^{-2 \kappa_{1} \sigma}+\sin ^{2} \frac{1}{2} \psi e^{-2 \kappa_{2} \sigma}\right\} \\
J^{\prime} & =E^{2} e^{-2 \kappa_{p} \sigma}
\end{aligned}
$$

But since

$$
\begin{aligned}
\frac{\partial J}{\partial \psi} \sim \sin \psi\left\{\sigma (\kappa _ { s } - \kappa _ { p }) \left(\sin ^{2} \frac{1}{2} \psi e^{-2 \kappa_{2} \sigma}\right.\right. & \left.-\cos ^{2} \frac{1}{2} \psi e^{-2 \kappa_{1} \sigma}\right) \\
& \left.+\frac{e^{-2 \kappa_{2} \sigma}-e^{-2 \kappa_{1} \sigma}}{2}\right\}
\end{aligned}
$$

therefore

$$
\frac{\partial J}{\partial \psi}=0 \text { for } \psi=0 \text { or } \pi, \text { or for } \psi= \pm \pi / 2
$$

When $\psi=0$ or π,

$$
J=J_{1}=E^{2} \cdot e^{-2 \kappa_{p} \sigma} ;
$$

when $\psi= \pm \pi / 2$,

$$
J=J_{2}=E^{2} \cdot e^{-\left(\kappa_{p}+\kappa_{s}\right) \sigma}
$$

If, therefore, $\kappa_{p}<\kappa_{s}$ (type II, iolite, epidote), $J_{1}>J_{2}$, i.e. there is a dark brush perpendicular to the plane of the optic axes, which is, however, intercepted by a bright spot on the optic axis. But if $\kappa_{p}>\kappa_{s}$ (type I, andalusite, titanite), then
2. $\alpha=\frac{\pi}{2}$.

$$
\begin{aligned}
J & =E^{2}\left\{\sin ^{2} \frac{1}{2} \psi e e^{-2 K_{1} \sigma}+\cos ^{2} \frac{1}{2} \psi e-2 K_{2} \sigma\right\} \\
J^{\prime} & =E^{2} \cdot e^{-2 K s} \sigma
\end{aligned}
$$

When $\psi=0$ or π,

$$
J=J_{1}=E^{2} \cdot e^{-2 K_{s} \sigma} ;
$$

when $\quad \psi= \pm \pi / 2$,

$$
J=J_{2}=\dot{E}^{2} \cdot e^{-\left(\kappa_{p}+\kappa_{s}\right) \sigma} .
$$

If, therefore, $\kappa_{p}<\kappa_{s}, J_{1}<J_{2}$, i.e. a continuous dark brush lies in the plane of the optic axes. But if $\kappa_{p}>\kappa_{s}, J_{1}>J_{2}$, i.e. the dark brush is perpendicular to the plane of the optic axes and is intercepted by a bright spot on the optic axis.

If both analyzer and polarizer are removed, i.e. if a plate of biaxial pleochroic crystal cut perpendicular to one of the optic axes is observed in transmitted natural light, the resultant intensity is

$$
\begin{equation*}
J=E^{2}\left(e^{-2 \kappa_{1} \sigma}+e^{-2 \kappa_{2} \sigma}\right) ; \tag{59}
\end{equation*}
$$

while along the optic axis itself it is

$$
\begin{equation*}
J^{\prime}=E^{2}\left(e^{-2 \kappa_{p} \sigma}+e^{-2 \kappa_{s} \sigma}\right) . \tag{60}
\end{equation*}
$$

For natural light may be conceived as composed of two incoherent components of equal amplitudes which vibrate in any two directions which are at right angles to each other. Hence in (60) $2 E^{2}$ denotes the intensity of the incident light. Since now it was shown above [equation (54), page 377] that (59) has a minimum value when $\psi= \pm \frac{\pi}{2}$, it is evident that a dark brush perpendicular to the plane of the optic axes and intercepted by a bright spot upon the axis will be seen. These figures produced in natural light were observed by Brewster as long ago as 1819. They may be easily seen in andalusite anc epidote.*

[^92] *リ!4 .6 *

 -

 © the ©
long the optic axis $\kappa_{o}=\kappa_{c}$; hence
\[

$$
\begin{equation*}
J^{\prime}=E_{c}^{2} c^{-2 \kappa_{0} \sigma} \tag{64}
\end{equation*}
$$

\]

rystals of the first type $\left(\kappa_{o}<\kappa_{e}\right)$ show, therefore, a dark brush then $\phi=0$ and $\phi=\pi$, i.e. in a direction parallel to the direcon of vibration, or perpendicular to the plane of polarization f the polarizer. The dark brush is intercepted by a bright pot on the axis. In the case of crystals of the second type $\kappa_{o}>\kappa_{e}$) there is a dark brush when $\phi= \pm \frac{\pi}{2}$, i.e. parallel to he plane of polarization of the polarizer. The dark brush asses through the axis itself.
3. Transmitted natural light. The intensity of the ordinary ay is $E^{2} e^{-2 \kappa_{0} \sigma}$, that of the extraordinary ray is $E^{2} e^{-2 \kappa_{\epsilon} \sigma}$, ence

$$
\begin{equation*}
J=E^{2}\left(e^{-2 \kappa_{v} \sigma}+c^{-2 \kappa_{c} \sigma}\right) . \tag{65}
\end{equation*}
$$

llong the optic axis itself $\kappa_{o}=\kappa_{e}$, hence

$$
\begin{equation*}
J^{\prime}=2 E^{2} C^{\prime}-2 \kappa_{0} \sigma . \tag{66}
\end{equation*}
$$

E^{2} denotes the intensity of the incident natural light. In rystals of the first type there is a bright spot on the axis surounded by a dark field; in crystals of the second type, a ark spot on the axis surrounded by a bright field.

CHAPTER V

DISPERSION

I. Theoretical Considerations.-A theory which accounts well for the observed phenomena of dispersion may be obtained from the assumption that the smallest particles of a body (atoms or molecules) possess natural periods of vibration. These particles are set into more or less violent vibration according as their natural periods agree more or less closely with the periods of the light vibrations which fall upon the body.* That such vibrations can be excited by a source of light, i.e. an oscillating electrical force, is easily comprehended from a generalization of the theory, necessitated by the facts of electrolysis, that every molecule of a substance consists of positively or negatively charged atoms or groups of atoms, the so-called ions. \dagger In a conductor these ions are free to move about, but in an insulator they have certain fixed positions of equilibrium about which they may oscillate. In every element

[^93]of volume the sum of the charges of the positive and negative ions must be zero, since free electrification does not appear at any place upon a body which has not been charged from without.

Consider first only the positive ions, and denote by e_{1} the charge of a positive ion, by m_{1} its mass, by ξ_{1} the x-component of its displacement from its position of equilibrium; then the equation of motion of this ion, when an exterior electrical force whose x-component is X is applied, must be of the form *

$$
\begin{equation*}
m_{1} \frac{\partial^{2} \xi_{1}}{\partial t^{2}}=e_{1} X-\frac{4 \pi e_{1}^{2}}{\vartheta_{1}} \xi_{1}-r_{1} e_{1}^{2} \frac{\partial \xi_{1}}{\partial t} \tag{I}
\end{equation*}
$$

For the first term of the right-hand side $e_{1} X$ is the total impressed force. The second term denotes the (elastic) force which is called into play by the displacement of the ion and which acts to bring it back to its original position. The factor ϵ_{1}^{2} is introduced to indicate that the sign of this force is independent of sign of the charge. The third term represents the force of friction which opposes the motion of the ion. This term also contains the factor $e_{1}{ }^{2}$, since it must also be independent of the sign of the charge. $m_{1}, \vartheta_{1}, r_{1}$ are positive constants. The meaning of ϑ_{1} is obtained by determining the position of equilibrium of the ion under the action of the force X. For if ξ_{1} is independent of the time t, then, from (I),

$$
\begin{equation*}
e_{1} \xi_{1}=\frac{\vartheta_{1}}{4 \pi} X \tag{2}
\end{equation*}
$$

ϑ_{1} is proportional to the facility with which the ions may be displaced from their positions of rest, i.e. it is inversely proportional to the elastic resistance (or the coefficient of elasticity). For conductors ϑ_{1} is to be set equal to ∞.

[^94]An entircly similar equation holds for the ne charged ions, namely,

$$
m_{2} \frac{\partial^{2} \xi_{2}}{\partial t^{2}}=\varepsilon_{2} X-\frac{4 \pi e_{2}^{2}}{\vartheta_{2}} \xi_{2}-r_{2} e_{2}^{2} \frac{\partial \xi_{2}}{\partial t}
$$

Here, tno, $m_{2}, \vartheta_{2}, r_{2}$, are positive, but e_{2} is negat
Now the electric current along the x-axis consists parts:
I. The current which would be produced in the fr by an electrical force X if no ponderable molecu present. According to (13) on page 268 , the curren has the value

$$
\left(j_{x}\right)_{0}=\frac{\mathrm{I}}{4 \pi} \frac{\partial X}{\partial t}
$$

2. The current due to the displacement of the charses. If the displacement during the time $d t$ am d ξ_{1}, and if $9{ }^{\prime}$ denotes the number of positive ions in uni and IN $^{\prime \prime}$ the number in unit cross-section, then there time dt through unit cross-section the quantity

$$
c_{1} M^{\prime \prime} \cdot d \xi_{1} \mathfrak{N}^{\prime}=c_{1} \mathfrak{N}_{1} d \xi_{1}
$$

in which $\vartheta_{1}=9 y^{\prime} . y^{\prime \prime}$ denotes the number of ion tree I which are present in unit volume. Hence in there passes through unit cross-section the quantity

$$
\left(j_{x}\right)_{1}=c_{1} \mathfrak{l} \frac{d \xi_{1}}{d t}=\varepsilon_{1} \Re_{1} \frac{\partial \xi_{1}}{\partial t}
$$

in which ${ }^{\prime}{ }_{1}$ is a differential coefficient with respect to $\left(i_{1}\right)_{1}$ denotes the current density which is produce motion of the ions of type I.
3. The current due to the displacement of the charses. This may be written in a form similar to t this

$$
\left(j_{x}\right)_{2}=\epsilon_{2} M_{2} \frac{\partial \xi_{2}}{\partial t}, .
$$

for a displacement of a negative charge in the negative direc tion of the x-axis is equivalent to a positive current in th positive direction of the x-axis.

The total current density along the x-axis is then

$$
j_{x}=\left(j_{x}\right)_{0}+\left(j_{x}\right)_{1}+\left(j_{x}\right)_{2}=\frac{\mathrm{I}}{4 \pi} \frac{\partial X}{\partial t}+\frac{\partial}{\partial t}\left(e_{1} \Re_{1} \xi_{1}+e_{2} \mathfrak{N}_{2} \xi_{2}\right) .
$$

The components of the current along the y - and z-axes take similar form

Since no free charge can exist in an element of volume the following relation holds:

$$
e_{1} \mathfrak{N}_{1}+e_{2} \mathfrak{N}_{2}=0
$$

Now the fundamental equations (7) and (II) on pages 26 and 267 are, as always, applicable. The permeability μ wil be assumed equal to unity, so that $4 \pi s_{x}=\frac{\partial \alpha}{\partial t}$, etc. Henc these fundamental equations, together with (I), (3), and (7) constitute a complete theoretical basis for all the phenomen of dispersion.

The general integral of differential equations (I) and (2) car be immediately written out if X be assumed to be a periodi function of the time. For ξ_{1} and ξ_{2} are proportional to th same periodic function of the time plus a certain term whicl represents the natural vibrations of the ions, which, accordins to (1) and (3), take place when $X=0$. But in considerins stationary conditions this term can be neglected, since, ol account of the resistance factors r_{1} and r_{2}, it disappears in th course of time because of damping. Hence it is possible to se

$$
\begin{aligned}
\xi_{1} & =A_{1} \cdot e^{i \frac{t}{\tau}}, \quad \xi_{2}=A_{2} \cdot e^{i} \frac{t}{\tau}, \\
\tau & =T: 2 \pi, \quad . \quad . \quad . \quad . \quad .
\end{aligned}
$$

in which A_{1} and A_{2} are still undetermined functions of th coordinates, which, however, no longer contain the time while T is the period of the impressed force, i.e. of the ligh vibrations. In reality ξ_{1} and ξ_{2} stand for the real parts of th
complex quantities written in (9); nevertheless they can equal to these complex quantities and the physical me can be determined at the end of the calculation from th parts. This method of procedure makes the calculation simpler.

Now, from (9),

$$
\frac{\partial \xi_{1}}{\partial t}=\frac{i}{\tau} \xi_{1}, \quad \frac{\partial^{2} \xi_{1}}{\partial t^{2}}=-\frac{I}{\tau^{2}} \xi_{1} .
$$

Hence (I) may be written

$$
e_{1} \xi_{1}\left(\mathrm{I}+\frac{i r_{-1} \vartheta_{1}}{4 \pi}-\frac{\mathrm{I}}{\tau^{2}} \frac{m_{1} \vartheta_{1}}{4 \pi e_{1}^{2}}\right)=\frac{\vartheta_{1}}{4 \pi} X ;
$$

or when

$$
a_{1}=\frac{r_{1} \vartheta_{1}}{4 \pi}, \quad b_{1}=\frac{m \vartheta_{1} \vartheta_{1}}{4 \pi e_{1}^{2}}
$$

it follows that

$$
e_{1} \xi_{1}=\frac{1}{4 \pi} X \frac{\vartheta_{1}}{1+\frac{i}{\tau} a_{1}-\frac{\sigma_{1}}{\tau^{2}}}
$$

The similar expression for $\varepsilon_{2} \varepsilon_{2}$ is obtained by replacin subscript I by 2. Hence, from (7),

$$
j_{x}=\frac{\mathrm{I}}{4 \pi} \frac{\partial X}{\partial t}\left\{\mathrm{I}+\frac{\vartheta_{1} \Re_{1}}{\mathrm{I}+\frac{i}{\tau} a_{1}-\frac{b_{1}}{\tau^{2}}}+\frac{\vartheta_{2} \mathfrak{N}_{2}}{\mathrm{I}+\frac{i}{\tau} \alpha_{2}-\frac{b_{2}}{\tau^{2}}}\right\} .
$$

A comparison of this equation with (17) on page namely, $j_{x}=\frac{\epsilon}{4 \pi} \cdot \frac{\partial X}{\partial t}$, shows that in place of the die constant ϵ there appears the complex quantity ϵ^{\prime} which d ϵ upon the period $T(=\tau \cdot 2 \pi)$; thus
n which the following abbreviation has been introduced:

$$
\vartheta_{l}{ }^{\prime}=\vartheta_{h} \mathfrak{l}_{h} .
$$

The Σ is to be extended over all the ions which are capable of vibrating. It is possible to assume more than two different xinds of ions. But in the case of the high periods of light ribrations and of dielectrics, these kinds are not to be assumed o be identical with those found in clectrolysis.

The meaning of the constants which appear in (15) can be rought out as follows: If the periocl is very long, i.e. if $=\infty$, a condition which is practically realized in static xperiments or in those upon slow electrical oscillations, it ollows from (15) that

$$
\begin{equation*}
\epsilon=\epsilon_{\infty}^{\prime}=\mathrm{x}+\mathrm{L}^{\prime} \vartheta \vartheta_{h}^{\prime} . \tag{16}
\end{equation*}
$$

In such experiments ϵ is the dielectric constant of the nedium. From (2) and (13) it is evident that v_{h}^{\prime} can be called he dielectric constant of the ions of kind h. The resulternt Zielectric comstant is then the sum of the dielectric constants of he ether and of all the kinds of ions.

Further, b_{k} is a constant which is associated with the natural period T_{h} which the ions of kind $/ /$ would have if their ocfficient of friction α_{h} could be neyrgected. For in this case $X=0, a_{h}=r_{h}=0$) it follows from (1) that

$$
\begin{equation*}
b_{h}=\tau_{h}^{2}, \quad \tau_{h}=T_{h}: 2 \pi \tag{17}
\end{equation*}
$$

It has been shown above on page 3 Gr that a complex lielectric constant indicates absorption of liyght. If n represent he index of refraction and κ the coefficient of absorption, then rom the discussion there given [equation (1I)], and the equaion (15) here deduced,

$$
\begin{equation*}
\epsilon^{\prime}=n^{2}(\mathrm{I}-i \kappa)^{2}=\mathrm{I}+\sum_{1+i i_{\tau}}^{1} \frac{i_{h}^{\prime}}{\tau_{\tau^{2}}^{2}} \tag{18}
\end{equation*}
$$

 t.
$\%$

 "

Using these series and introducing in place of τ the period T itself, in accordance with (IO) and (I7), (19) becomes

$$
\begin{align*}
& n^{2}=\mathrm{I}+\Sigma \vartheta_{v}^{\prime}+\frac{\Sigma \vartheta_{v}^{\prime} T_{v}^{2}}{T^{2}}+\frac{\Sigma \vartheta_{v}^{\prime} T_{v}^{4}}{T^{4}}+\ldots \\
&-T^{2} \Sigma \frac{\vartheta_{r}^{\prime}}{T_{r}^{2}}-T^{4} \Sigma \frac{\vartheta_{r}^{\prime}}{T_{r}{ }^{4}}-\ldots \tag{22}
\end{align*}
$$

Now in fact a dispersion formula with four constants, namely,

$$
\begin{equation*}
n^{2}=-A^{\prime} T^{2}+A+\frac{B}{T^{2}}+\frac{C}{T^{4}} \tag{23}
\end{equation*}
$$

in which A^{\prime}, A, B, and C are positive, has been found to satisfy observations upon the relation between n and T for transparent substances. (23) is easily recognized as the incompleted series (22), and it is easy to see from (22) why the coefficients A^{\prime}, A, B, and C must be positive. It also appears that the term A of the dispersion equation, which does not contain T, has the following physical significance:

$$
\begin{equation*}
A=\mathrm{I}+\Sigma \vartheta_{v}^{\prime} \tag{24}
\end{equation*}
$$

Since by (r 6) the dielectric constant ϵ has the meaning

$$
\epsilon=\mathrm{I}+\Sigma \vartheta_{h}^{\prime}=\mathrm{I}+\Sigma \vartheta_{v}^{\prime}+\Sigma \vartheta_{r}^{\prime}
$$

it appears that

$$
\begin{equation*}
\epsilon-A=\Sigma \vartheta_{r}^{\prime} \tag{25}
\end{equation*}
$$

i.e. the differcnce betzecen the dielectric constant and the term of the dispersion equation wevich does not contain T is alwoys positive and is cqual to the sum of the diclectric constants of the ions whose natural periods lie in the ultra-red. . In this way the discrepancies mentioned above between Maxwell's original theory and experiment are explained.

Such a difference between ϵ and A must always exist when the dispersion cannot be represented by the three-constant equation

$$
\begin{equation*}
n^{2}=A+\frac{B}{T^{2}}+\frac{C}{T^{4}} \tag{26}
\end{equation*}
$$

:11 $1116^{3} \quad 1+41116186$

$$
\begin{array}{lllll}
i & i & i & i & i
\end{array}
$$

i.c.

 atrecatent wath: *

$$
n^{3} \quad 1 \quad=n^{*}+\frac{1}{n} n_{n}^{n}
$$

 $54,1,67 x, 25,5$.
i.e. in the form

$$
\begin{equation*}
n^{2}=b^{2}+\Sigma \frac{M_{h}}{\lambda^{2}-\lambda_{h}^{2}}, \tag{29}
\end{equation*}
$$

it is evident that b^{2} must be identified with the dielectric constant ϵ. In the case of the substances just mentioned n^{2} can be well represented by equation (29); for example, for quartz, for the ordinary ray, the values of the constants are:

$$
\begin{array}{ll}
M_{1}=0.0106, & \lambda_{1}^{2}=0.0106 \\
M_{2}=44.224, & \lambda_{2}^{2}=78.22, \\
M_{3}=713.55, & \lambda_{3}^{2}=430.56, \quad b^{2}=4.58
\end{array}
$$

In this $\lambda_{k}=T_{h} \cdot V$, and the unit in which λ_{k} is measured is a thousandth part of a millimetre (μ). According to (29) these seven constants $M_{1}, M_{2}, M_{3}, \lambda_{1}, \lambda_{2}, \lambda_{3}, b^{2}$ must satisfy the equation

$$
\begin{equation*}
b^{2}-\mathrm{I}=\Sigma \vartheta_{h}^{\prime}=\frac{M_{1}}{\lambda_{1}^{2}}+\frac{M_{2}}{\lambda_{2}{ }^{2}}+\frac{M_{3}}{\lambda_{3}^{2}} . \tag{30}
\end{equation*}
$$

The numerical value of the right-hand side is 3.2 , that of the left 3.6. The difference is due to molecules whose natural periods of vibration lie so far out in the ultra-violet that $\tau_{k}=0$ for them. If the sum of the dielectric constants of these molecules be denoted by $\vartheta_{0}{ }^{\prime}$, then, from (29),

$$
b^{2}=\mathrm{I}+\vartheta_{0}^{\prime}+\Sigma \vartheta_{h}^{\prime}, \quad M_{h}=\vartheta_{h}^{\prime} \cdot \lambda_{h}^{2}
$$

Hence the following takes the place of (30):

$$
b^{2}-\mathrm{I}-\frac{M_{h}}{\lambda_{h}^{2}}=\vartheta_{0}^{\prime}
$$

Now the value of the dielectric constant of quartz lies between 4.55 and 4.73 , which agrees very well with the value of b^{2}.

For fluor-spar

$$
\begin{array}{rlrl}
M_{1} & =0.00612, & \lambda_{1}{ }^{2}=0.00888 \\
M_{2} & =5099, & \lambda_{2}{ }^{2}=1258 \\
b^{2} & =6.09, & & \epsilon=6.7 \text { to } 6.9 .
\end{array}
$$

[Here again (30) is not exactly satisfied.].

Fin obls

 cktont

npressed periods which does not include a natural period of ne ions. But whenever an impressed period coincides with a atural period, the normal course of the dispersion is disturbed. or it follows from (19) that for periods T which are smaller nan a natural period T_{h}, i.e. for which $\mathrm{I}-\left(\frac{\tau_{h}}{\tau}\right)^{2}$ has a negave value, say $-\zeta, n^{2}$ contains the large negative term - $\vartheta_{h}^{\prime}: \zeta$; while for those values of T which are larger than $\tau_{h}, \mathrm{x}-\left(\frac{\tau_{h}}{\tau}\right)^{2}$ assumes the negative value ζ^{\prime}, so that n^{2} contains e positive term $+\vartheta_{h}^{\prime}: \zeta^{\prime}$. Hinuce as T increases continously n^{2} in groncral decreases; but in passing through a recrion f absorptien it increases. Within the region of absorption 19) cannot be used, but n^{2} and κ must be calculated from 8), a_{h} being now retained in the calculation. In any case ${ }^{2}$ must be a continuous function of T. Hence the general orm of the n^{2} and κ curves is that shown in Fig. 102. The alue of κ differs from zero only in the immediate neighborhood f T_{h}, and there it is larger the smaller the value of a_{h}. For, om (18), when $T=T T_{n}$,

$$
\begin{equation*}
2 n^{2} \kappa=\frac{T}{2 \pi u_{h}}=\cdot{ }_{r_{h}}^{2} . \tag{3x}
\end{equation*}
$$

Hence if a_{h}, i.e. r_{k}, is small, the absorption bands of the abstance are sharp and narrow; but if α_{b} is large, the absorpon extends over a large region of wave lengths but has a mall intensity.
The form of the anomakews dispersion curat shown in Fig. 02 represents well the observations upon substances which xhibit strong selective absorption, for example, fuchsine.* the gases and the vapors of metals are distinguished by very arrow and intense absomption hands, and anomalous dispersion ccurs in the neighborhood of these hands.

 nethen af N.

reflected rays and forms a real image of L upon the screen S. This image is spread out into a spectrum by means of a suitably placed glass prism. This spectrum then shows the distribution of light indicated in the figure: the curve $m n p q$ represents the limiting curve of total reflection. The break in the curve between n and p shows at a glance the effect of anomalous dispersion. Between n and p there is a dark band, since, for the colors which should appear at this place, the index of refraction of the flint glass is the same as that of the fuchsine solution, so that no reflection whatever takes place. The index of refraction within the region of maximum absorption cannot always be determined by this method, since, on account of the high absorption, the partial reflection in this region is so

Fic. 103.
large (cf. metallic reflection) that it passes continuously into total reflection, so that no sharp limiting curve appears. n and K can then le determined from the partial reflection as in the case of the metals.

A striking confirmation * of the theory here presented has recently been brought out by the discovery of the fact that for very long waves $(\lambda=56 \mu)$ quart\% has a much larger index $(n=2.18)$ than for the shorter visible rays. Equation (29) gives, with the assumption of the values of the constants given for quart\% on page $301, n=2.20$. Ilence if the radiation from an Auer burner be decomposed into a spectrum by means of
end of the spectrum and may therefore be easily iso cutting off the other rays with a screen.

The case inverse to that of narrow absorption band in which not a_{h} but b_{h} or τ_{h} are to be neglected in (15), i.e. the case in which the region of absorption which no natural periods of the ions occur (the ir periods are larger than the natural periods could poss: In this case, from (I8),
$n^{2}(\mathrm{I}-i \kappa)^{2}=\mathrm{I}+\sum \frac{\vartheta_{h}^{\prime}}{\mathrm{I}+\frac{a_{h}^{2}}{\tau^{2}}}\left(\mathrm{I}-i \frac{a_{h}}{\tau}\right)+\sum \frac{\vartheta_{v}^{\prime}}{\mathrm{I}-\left(\frac{\tau_{v}}{\tau}\right.}$
The last Σ, that connected with the index v, refe natural periods which lie in the ultra-violet. If these are assumed to be small in comparison with T, then fr if, as on page $39 \mathrm{I}, \Sigma \vartheta_{v}^{\prime}$ be called ϑ_{0}^{\prime},
$n^{2}\left(\mathrm{I}-\kappa^{2}\right)=\mathrm{I}+\vartheta_{0}^{\prime}+\sum \frac{\vartheta_{h}^{\prime} \tau^{2}}{\tau^{2}+a_{h}^{2}}, \quad 2 n^{2} \kappa=\sum \frac{\vartheta_{h}^{\prime} \alpha}{\tau^{2}+}$
If only ions of kind h are present, it appears th decreases from $T=\infty, n$ decreases continuously, absorption, which covers a broad region, reaches a m for a certain period T. These equations appear to r well for many substances the dispersion phenomena as observed by means of long electrical waves ranging the limits $\lambda=\infty$ and $\lambda=1 \mathrm{~cm}$.*
4. Dispersion of the Metals.-In considering co of electricity it is necessary to bear in mind that with conductors a constant electrical force produces a co displacement of quantities of electricity, and that the have no definite positions of equilibrium. The idea n of in electrolysis, that the displaced electrical quant connected with definite masses (ions), will be applie metals to the extent that the motion of the ions
possessed inert mass m. But this may be only apparent mass, since the inertia may be accounted for by self-induction (cf. note, page 383).

The constant ϑ of these conducting ions must be taken as infinitely great, since, according to (2), ϑ_{1} is proportional to the displacement of the ions from their original position because of the influence of a constant electrical force. The equation of motion of these ions is therefore obtained from equation (r) on page 383 by substituting in it $\vartheta_{1}=\infty$. It is, therefore,

$$
\begin{equation*}
m \frac{\partial^{2} \xi}{\partial t^{2}}=e X-r e^{2} \frac{\partial \xi}{\partial t} \tag{34}
\end{equation*}
$$

or if the current due to these ions, which according to (5) is $j_{x}=e \mathfrak{N} \frac{\partial \xi}{\partial t}$, be introduced,

$$
\begin{equation*}
\frac{m}{e^{2} \mathfrak{M}} \frac{\partial j_{x}}{\partial t}+\frac{r}{\mathfrak{R}} j_{x}=X \tag{35}
\end{equation*}
$$

In this equation m is the (apparent or real) mass of an ion, e its charge, \mathfrak{R} the number of ions in unit volume. From (35) it is evident that if two kinds of conducting ions, one charged positively and the other negatively, whose resistance factors are r_{1} and r_{2}, respectively, are present, then for a constant current the following holds:

$$
\begin{equation*}
\frac{\mathfrak{R}_{1}}{r_{1}}+\frac{\mathfrak{R}_{2}}{r_{2}}=\sigma, \ldots . . . \tag{36}
\end{equation*}
$$

in which σ is the specific conductivity of the substance measured in electrostatic units (cf. page 358).

For periodic changes, since $X=-i_{\tau} \frac{\partial X}{\partial t}$, by (35),

$$
j_{x}\left\{\frac{i}{\tau} \frac{m}{e^{2} \Re \tilde{n}}+\stackrel{r}{\mathfrak{n}}\right\}=-i \tau \frac{\partial X}{\partial t}
$$

or

$$
\begin{equation*}
j_{x}=\frac{\mathrm{I}}{4 \pi} \frac{\partial X}{\partial t}\left\{-\frac{4 \pi \tau \mathfrak{R}}{-\frac{m}{\tau}+i r}\right\} \tag{37}
\end{equation*}
$$

Equation (14) on page 386 must then be extended term of this kind so that if, for abbreviation,

$$
m: e^{2}=m^{\prime}
$$

the resultant complex dielectric constant takes the form

$$
\epsilon^{\prime}=\mathrm{I}+\sum_{k} \frac{\vartheta_{k}^{\prime}}{\mathrm{I}+i \frac{a_{k}}{\tau}-\frac{b_{k}}{\tau^{2}}}+4 \pi \tau \sum_{k} \frac{\Re}{i r-\frac{m^{\prime}}{\tau}} .
$$

If it be assumed that the periods are remote from natural periods of the ions of kind l, , so that a_{h} may be lected, then since $\epsilon^{\prime}=u^{2}(\mathrm{I}-i \kappa)^{2}$, it follows from (39) separation of the real and the imaginary parts, that

$$
\begin{aligned}
n^{2}\left(\mathrm{I}-\kappa^{2}\right)= & \mathrm{I}+\sum \frac{\vartheta_{h}^{\prime}}{\mathrm{I}-\left(\frac{\tau_{h}}{\tau}\right)^{2}}-4 \pi \sum \frac{n^{\prime} \mathfrak{\Re}}{r^{2}+\left(\frac{m^{\prime}}{\tau}\right)^{2}}, \\
& n^{2} \kappa=2 \pi \tau \sum \frac{r^{\prime} \mathfrak{N}}{r^{2}+\left(\frac{n^{\prime}}{\tau}\right)^{2}}
\end{aligned}
$$

From this it is evident that in the case of the metals κ be greater than I, since the right hand side of (40) ma negative not only on account of the second term, but als account of the third term, which is proportional to the mas of the conducting ions. For a given value of m^{\prime} and 2 right-hand side of (40) becomes negative sooner the smal is, i.e. the larger the specific conductivity. Furthermore, explains the second difficulty which was mentioned on 368 , namely, that for the metals $n^{2} \kappa$ is smaller than σT. if $m^{\prime}=0$, or $\tau=\infty$, (41) actually gives, in connection (36), the relation demanded by Maxwell's original the namely,
is the case when the period is small (τ small) and the conductivity large (r small), then (4I) gives $n^{3} k<\sigma T$.*

Still more general equations than (40) and (41) could be formed by taking account of the conditions represented by (33), which would correspond to the assumption that, in addition to the actually conducting ions, other conducting constituents were present, which constituents, however, under the action of a constant electric force, would be displaced only a finite distance from their original positions. This is the case of so-called internal conductivity which can be roughly imitated by embedding conductors in dielectrics. Whether such an assumption is necessary or not cannot be determined without a more complete investigation of the dispersion of the metals than has as yet been possible.

Equations (40) and (4I) also account for the fact that only in the case of substances which are as grood conductors as are the metals does the electric conductivity cause absorption of light, while in the very best conducting electrolytes the conductivity is still so small that they can be quite transparent, as observation shows them to be. Thus, for example, the specific conductivity of the best conducting sulphuric acid or nitric acid is only 7-10 " times that of mercury. Since for the latter (cf. page 35^{8}) $\sigma \cdots 10^{16}$, for the best conducting electrolyte $\sigma=7 \cdot 10^{11}$. Now the period of the light vibrations is about $T=2 \cdot 10^{-15}$, hence $\sigma \mathscr{T}=14 \cdot 10^{-4}$ or $:=0.0014$. But, from (4r), $n^{2} \kappa$ is always smaller than σT. Thus κ, i.e. the light absorption, or at least that part of it clue to conductivity, is very small.

[^95]
CHAPTER VI

OPTICALLY ACTIVE SUBSTANCES

I. General Considerations.-If a ray of planelight falls perpendicularly upon a plane-parallel plate the plane of polarization of the emergent ray is the that of the incident ray. This is generally true fo stances, including crystals which are cut perpendi the optic axis.

Nevertheless the so-called optically actize substanc a striking exception to the rule. Thus, for exampl of quartz, cut perpendicularly to the optic axis, rc plane of polarization strongly, and even a sugar soluti it appreciably. This last fact is the more remarkabl it is customary to look upon a solution as a perfectly substance; but this phenomenon indicates that it i tropic. For, from considerations of symmetry, if a were perfectly isotropic, it could produce no change in the plane of polarization of the incident light.

This phenomenon therefore indicates that, optic sidered, a sugar solution possesses no plane of symme otherwise, if the plane of polarization of the incic coincided with this plane, no rotation could take pla the nature of a solution is of itself evidence that it has properties in all directions. Hence the form of the d equations which are able to describe the optical proc sugar solution must be such that it remains unchange
change if only one of the coordinate axes is inverted, i.e. if, for instance, x and y remain unchanged while z is changed to - z. Substances for which differential equations of this form hold are called unsymmetrically isotropic.

On the other hand a crystal which, like quartz, has no plane of optical symmetry is called an unsymmetrically crystalline substance.
2. Isotropic Media.-Lack of symmetry in a solution can have its origin only in the constitution of the molecules, not in their arrangement. In fact le Bel and van't Hoff have been able to bring the rotating power of substances into direct connection with their chemical constitution. In the case of solids the lack of symmetry may be due to the arrangement of the molecules.

An attempt will here be made to extend the preceding theory by altering equation (r) on page 383, Maxwell's fundamental equations being as usual maintained.

The unsymmetrical constitution of a substance can be recognized only by comparing its properties at one point with those at a neighboring point. The extension of the preceding ideas as to the motions of the ions will consist in considering the displacement of an ion to depend not only upon the electric force which exists at the point occupied by the ion, but also upon the components of the electric force in the immediate neighborhood of this point. In order to express this idea mathematically it is necessary that equations (1) or (2) on page 353 contain not only X but also the differential coefficients of X, Y, and Z with respect to the coordinates. Now in view of the condition of isotropy, i.e. that the properties of the substance in one coordinate direction are not to be distinguished from those in another, the only possible extension of (2) is

$$
\begin{equation*}
e \xi=\frac{\vartheta}{4 \pi}\left(x+f^{\prime}\left[\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}\right]\right) \tag{I}
\end{equation*}
$$

to which are to be added two similar equations obtained by a cyclical interchange of the letters in (\mathbf{I}). So far as isotropy
is concerned (I) might also contain the term $\frac{\partial X}{\partial x}$, but vanish because otherwise

$$
e\left(\frac{\partial \xi}{\partial x}+\frac{\partial \eta}{\partial y}+\frac{\partial \zeta}{\partial z}\right) \sim \frac{\partial^{2} X}{\partial x^{2}}+\frac{\partial^{2} Y}{\partial y^{2}}+\frac{\partial^{2} Z}{\partial z^{2}}
$$

i.e. an accumulation of free charge might take place general-for example, in the case of light vibrat right-hand side does not vanish.

An unsymmetrical isotropic medium would res the molecules were irregular tetrahedra of the sam the tetrahedra of the opposite kind (that which is the the first) being altogether wanting. The same woul if one kind existed in smaller numbers than the o graphical representation of equation (I) may be obt conceiving that because of the molecular structure of the ions are not short straight lines, but short helix in the same direction and whose axes are clirected a in space. Consider, for example, a right-handed he whose axis is parallel to the x-axis. The component the charged ion always toward the left; but a positive the ion on the upper side of the helix toward the le lower side toward the right. is therefore a force toward the ri is proportional to $-\frac{\partial V}{\partial z}$, since i upon the difference between the Y above and its value below. a positive Z drives the ion on side of the helix toward the le back side toward the right. The resultant effect t right is therefore proportional to $+\frac{\partial Z}{\partial y}$. These conc represented in equation (I). i which f^{\prime} would be

In consideration of equation (I), equation (I) on page 383 would become

$$
\begin{equation*}
m \frac{\partial^{2} \xi}{\partial t^{2}}=e\left(X+f^{\prime}\left[\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}\right]\right)-\frac{4 \pi e^{2}}{\vartheta} \xi-r e^{2} \frac{\partial \xi}{\partial t} \tag{2}
\end{equation*}
$$

If, as on page $385, \xi$ be assumed to be a periodic function of the time, then there results, upon introduction of the current $\left(j_{x}\right)_{1}=e \Re \frac{\partial \xi}{\partial t}$,

$$
\begin{equation*}
\left(j_{x}\right)_{1}=\frac{\vartheta \Re}{4 \pi\left(\mathrm{I}+i \frac{a}{\tau}-\frac{b}{\tau^{2}}\right)} \frac{\partial}{\partial t}\left(X+f^{\prime}\left[\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}\right]\right) \tag{3}
\end{equation*}
$$

in which

$$
\begin{equation*}
a=\frac{r \vartheta}{4 \pi}, \quad b=\frac{r \vartheta}{4 \pi e^{2}}=\tau_{1}^{2} \tag{4}
\end{equation*}
$$

In what follows $\frac{\alpha}{\tau}$ will be neglected, which is permissible if the periods of the light vibrations are not close to the natural periods of any of the ions. The whole current due to all of the ions and the ether is then

$$
\begin{equation*}
j_{x}=\frac{\mathrm{I}}{4 \pi} \frac{\partial}{\partial t}\left\{\epsilon X+f\left(\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}\right)\right\} \tag{5}
\end{equation*}
$$

in which

$$
\left.\begin{array}{c}
\epsilon=\mathrm{I}+\Sigma \frac{\vartheta_{h} \Re_{h}}{\mathrm{I}-\left(\frac{\tau_{h}}{\tau}\right)^{2}} \tag{6}\\
f=\Sigma \frac{\vartheta_{h} f_{h}^{\prime} \Re_{h}}{\mathrm{I}-\left(\frac{\tau_{h}}{\tau}\right)^{2}},
\end{array}\right\} .
$$

The fundamental equations (7) and (II) on pages 265 and 267 become therefore, if the permeability $\mu=\mathrm{I}$, so that $4 \pi s_{x}=\frac{\partial \alpha}{\partial}$, etc.,

$$
\begin{array}{r}
\frac{\mathrm{I}}{c} \frac{\partial}{\partial t}\left(\epsilon X+f\left[\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}\right]\right)=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}, \\
\frac{\mathrm{I}}{c} \frac{\partial}{\partial t}\left(\epsilon Y+f\left[\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}\right]\right)=\frac{\partial \alpha}{\partial z}-\frac{\partial \gamma}{\partial x}, \\
\frac{\mathrm{I}}{c} \frac{\partial}{\partial t}\left(\epsilon Z+f\left[\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x}\right]\right)=\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial y}, \\
\frac{\mathrm{I}}{c} \frac{\partial \alpha}{\partial t}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}, \quad \frac{\mathrm{I}}{c} \frac{\partial \beta}{\partial t}=\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}, \quad \frac{\mathrm{I}}{c} \frac{\partial \gamma}{\partial t}=\frac{\partial}{\partial}
\end{array}
$$

From the same considerations which were giv 27 I , it is evident that the boundary conditions to b the passage of light through the surface separatin ent media are continuity of the components paralle face of both the electric and magnetic forces.

In this way a complete theory of light ph optically active substances is obtained.

From equations (7) it follows that

$$
\frac{\partial}{\partial t}\left(\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}\right)=0
$$

Hence from equations (7) and (8) there results, by tion of α, β, γ, as on page 275 ,

$$
\left.\begin{array}{l}
\frac{\mathbf{I}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\left(\epsilon X+f\left[\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}\right]\right)=\Delta X, \\
\frac{\mathbf{I}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\left(\epsilon Y+f\left[\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}\right]\right)=\Delta Y, \\
\frac{\mathbf{I}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\left(\epsilon Z+f\left[\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x}\right]\right)=\Delta Z .
\end{array}\right\}
$$

α, β, γ satisfy equations of the same form.
3. Rotation of the Plane of Polarization. -If a is travelling along the z-axis, it is possible to set
p represents the reciprocal of the velocity of the wave. If the values in (II) be substituted in (IO), there results

$$
\begin{aligned}
& \epsilon M-\frac{i}{\tau} f p N=M p^{2} c^{2} \\
& \epsilon N+\frac{i}{\tau} f p M=N p^{2} c^{2}
\end{aligned}
$$

These equations are satisfied if

$$
\begin{equation*}
\epsilon-p^{2} c^{2}=\frac{p f}{\tau}, \quad M=i N \tag{12}
\end{equation*}
$$

or if

$$
\begin{equation*}
\epsilon-p^{2} c^{2}=-\frac{p f}{\tau}, \quad M=-i N \tag{13}
\end{equation*}
$$

Hence in this case the peculiar result is obtained that two waves exist which have different values of p, i.e. differen velocities. Further, the waves have imaginary y-amplitudes i they have real x-amplitudes.

In order to obtain the physical significance of this it is to be remembered that the physical meaning of X and Y is founc by taking the real part of the right-hand side of (II). Hence when $i N=M$,

$$
\begin{equation*}
X=M \cos \frac{\mathrm{x}}{\tau}(t-p z), \quad Y=M \sin \frac{\mathrm{x}}{\tau}(t-p z) \tag{14}
\end{equation*}
$$

when $i N=-M$,

$$
\begin{equation*}
X=M \cos \frac{\mathrm{I}}{\tau}(t-p z), \quad Y=-M \sin \frac{\mathrm{I}}{\tau}(t-p x) \tag{15}
\end{equation*}
$$

These equations represent circularly polarized light; anc since, in accordance with the conventions on page 264, th x-axis is directed toward the right, the y-axis upward to at observer looking in the negative direction of the z-axis, th first is a left-handed circularly polarized wave, since its rotation is counter-clockwise; the second is a right-handed circularly polarized wave (cf. page 249).

Now these two waves have different velocities V, and fact, from (I2), for the first

$$
\begin{equation*}
p^{\prime}=\frac{1}{V^{\prime}}=-\frac{f}{2 \tau c^{2}}+\frac{r}{c} \sqrt{\frac{f^{2}}{4 \tau^{2} c^{2}}+\epsilon}, \tag{I}
\end{equation*}
$$

and, from (13), for the second

$$
p^{\prime \prime}=\frac{\mathrm{I}}{V^{\prime \prime}}=+\frac{f}{2 \pi c^{2}}+\frac{\mathrm{I}}{c} \sqrt{4^{\tau^{2} c^{2}}+\epsilon}
$$

Hence the indices of refraction for right-handed and lef handed circularly polarized light in optically active substance must be somewhat different; and a ray of natural light decomposed into two circularly polarized rays one of whig is right-handed, the other left-handed. When the incident is oblique these two rays should be separated. These dedu tons from theory have been actually experimentally verifies by v. Fleischl* for the case of sugar solutions and orth liquids.

The effect of the superposition of two circularly polarize waves whose velocities are V^{\prime} and $V^{\prime \prime}$ respectively, one which is right-handed, the other left-handed, is

$$
\left.\begin{array}{l}
X=X^{\prime}+X^{\prime \prime}=2 M \cos \frac{1}{\tau}\left(t-\frac{p^{\prime}+p^{\prime \prime}}{2} z\right) \cos \frac{1}{\tau} p^{\prime \prime}-p^{\prime} \\
2 \\
z
\end{array}\right\} .
$$

Hence in one particular position, i.e. for a certain value of the light disturbance is plane-polarized, since, according (18), X and Y have the same phase. The position of the plat of polarization with respect to the x-axis is determined from

$$
Y: X=\tan \frac{1}{\tau} \frac{p^{\prime \prime}-p^{\prime}}{2} \approx
$$

i.e. this position varies with z. Thus the plane of polarizatio rotates uniformly about the direction of propagation of th light, the angle of rotation corresponding to a distance z beins

$$
\delta=\frac{\tilde{z}}{\tau} p^{\prime \prime}-p^{\prime}{ }_{2}^{2}=\frac{f}{2 \pi^{2} c^{2}} \tilde{z}=2 \pi^{2} \frac{f}{\lambda_{\theta}^{2}} \tilde{z},
$$

provided $\lambda_{0}=T c$ denote the wave length in vacuum of th light considered. Since pc represents the index n of the sub stance with respect to a vacuum,

$$
\begin{equation*}
\delta=\frac{z n^{\prime \prime}-n^{\prime}}{\tau_{c}} \frac{2}{2}=\frac{\pi}{\lambda_{0}}\left(n^{\prime \prime}-n^{\prime}\right) \tag{19}
\end{equation*}
$$

$n^{\prime \prime}$ and n^{\prime} denoting the respective indices of refraction of th substance for a right-handed and a left-handed circularl polarized wave. Hence, from (19) and (19'),

$$
2 \pi_{\lambda_{0}}^{f}=n^{\prime \prime}-n^{\prime}
$$

If, then, plane-polarized light fall perpendicularly upon plate of an optically active substance of thickness z, the plan of polarization will be rotated an angle δ by the passage of th light through the crystal. The rotation δ may take place one direction or the other according to the sign of f. $n^{\prime \prime}$ may be calculated from δ by (19^{\prime}).

Special arrangements have been devised for measuring th angle of rotation casily and accurately.* In the half-shaden polarimeter the field of view is divided into two parts in whic the planes of polarization are slightly inclined to each othe But even with the use of two simple Nicols, a polarizer and a analyzer, when the light is homogeneous and sufficient intense the position of the plane of polarization can be dete mined from the mean of a number of observations to with

[^96]three seconds of arc, provided the setting is made with the of the so-called Landolt band. For when Nicol prisms used the field of view is never polarized uniformly through so that, when the Nicols are crossed, the whole field is completely dark, but is crossed by a dark curved line w was first observed by Landolt. The position of this b changes very rapidly as the plane of polarization of the 1 which falls upon the analyzer changes.*
4. Crystals. -In order to obtain a law for crystals, it 1 be borne in mind that the constants y_{1}, r_{1}, which appea equations (1) of the dispersion theory on page 383 , dep upon the direction of the coordinates. Nlso that the to which have been added in this chapter and which correspon the optical activity can have a much more sencral form with crystal than that given in (1) on page $40 r$. Nevertheless assumption will be made that, so far as these added terms concerned, a crystal is to be treated like an unsymmetric isotropic substance. No objection can be made to this assu tion, since the coefficients f of these added terms are so sn in the case of all the actually existing substances, that change of f with the direction which is due to the crystal structure can be neglected.

If the coordinate axes be taken in these directions wh would be the axes of optical symmetry of the crystal if it v not optically active, the extension of equations (7) and would be \dagger

$$
\left.\begin{array}{l}
\frac{1}{C} \partial t\left(\epsilon_{1} X+f\left[\frac{\partial Y}{\partial z}-\partial Z\right.\right. \\
\frac{1}{\partial} \frac{\partial}{\partial t}\left(\epsilon_{2} Y+f\left[\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}\right]\right)=\frac{\partial y}{\partial y}-\partial \beta \\
\frac{\partial z}{\partial z}-\partial y \\
\frac{1}{C} \frac{\partial}{\partial t}\left(\epsilon_{3} Z+f\left[\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial r}\right]\right)=\frac{\partial \beta}{\partial r}-\partial r \\
\partial y
\end{array}\right\}
$$

$\frac{\mathrm{I}}{C} \frac{\partial \alpha}{\partial t}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}, \frac{\mathrm{I}}{C} \frac{\partial \beta}{\partial t}=\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}, \frac{\mathrm{I}}{C} \frac{\partial y}{\partial t}=\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x},(2 \mathrm{I})$ in which

$$
\begin{align*}
& f=\frac{\Sigma_{h} \hat{G}_{h}^{\prime} \mathfrak{M}_{h}}{1-\left(\frac{\tau_{h}}{\tau}\right)^{2}} \tag{23}
\end{align*}
$$

In this $\vartheta_{h}^{\prime} \mathfrak{N}_{h}, \vartheta_{h}^{\prime \prime} \mathfrak{R}_{h}, \vartheta_{h}^{\prime \prime \prime} \mathfrak{R}_{h}$ denote the three different dielectric constants of the ions of kind h along the three coordinate directions, and $\tau_{h}^{\prime}, \tau_{h}^{\prime \prime}, \tau_{h}^{\prime \prime}$ are proportional to the three periods of vibration corresponding to the three axes. $\operatorname{In}(23) \theta_{h}, \tau_{h}$ are mean values of $\vartheta_{h}^{\prime}, \vartheta_{h}^{\prime \prime}, \vartheta_{h}^{\prime \prime \prime}$, and $\tau_{h}^{\prime}, \tau_{h}^{\prime \prime}, \tau_{h}^{\prime \prime \prime}$, respectively.

For the sake of integration set, as on pare 360 ,
in which u, π, ac may be interpreted as the components of the light-vectors. Then it follows from (20) and (21),* using the abbreviations

$$
\begin{array}{r}
C^{2}: \epsilon_{1}=a^{3}, \quad C^{2}: \epsilon_{2}=b^{2}, \quad C^{2}: \epsilon_{3}=c^{2} \\
\eta=\begin{array}{r}
2 \pi / C \\
\pi \epsilon^{2}
\end{array}, \quad \cdot \quad \cdot \tag{26}
\end{array}
$$

(in which ϵ denotes a mean value of $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$) that the expres-
\qquad

* This is more fully developerl in Winkelman's Ifandhuch, Optik, p. 79 r . The nermal surface and the ray surfuce are more fully discussed by (). Weder in Die Lichthewegung in zwefaxigen Crystallen, Miss. Leipzig, r800, Zeitschr. f. Krystallogr. isher.
sion for the velocity V in terms of the direction m, n, p of wave normal takes the form:

$$
\begin{aligned}
m^{2}\left(V^{2}-b^{2}\right)\left(V^{2}-c^{2}\right) & +n^{2}\left(V^{2}-c^{2}\right)\left(V^{2}-a^{2}\right) \\
& +p^{2}\left(V^{2}-a^{2}\right)\left(V^{2}-b^{2}\right)=\eta^{2}
\end{aligned}
$$

The introduction of the angles g_{1} and g_{2} which the w normal makes with the optic axes gives, as on page 320 ,

$$
\left.\begin{array}{rl}
2 V_{1}^{2}=a^{2}+c^{2}+ & \left(a^{2}-c^{2}\right) \cos g_{1} \cos g_{2} \\
& +\sqrt{\left(a^{2}-c^{2}\right)^{2} \sin ^{2} g_{1} \sin ^{2} g_{2}+4 \eta^{2}} \\
2 V_{2}^{2}=a^{2}+c^{2}+ & \left(a^{2}-c^{2}\right) \cos g_{1} \cos g_{2} \\
& -\sqrt{\left(a^{2}-c^{2}\right)^{2} \sin ^{2} g_{1} \sin ^{2} g_{2}+4 \eta^{2}}
\end{array}\right\}
$$

It appears from this that the two velocities V_{1} and V_{2} never identical, not even in the direction of the optic axes.

Thus upon entering an active crystal a wave always div into two waves which have different velocities. These waves are elliptically polarized, and the vibration form of is the same, but the ellipses lie oppositely and the directio rotation in them is opposite. The ratio $/ \%$ of the axes of ellipse is given by

$$
h+\frac{1}{h}=\frac{\sqrt{\left(a^{2}-c^{2}\right)^{2} \sin ^{2} g_{1} \sin ^{2} g_{2}+4 \eta^{2}}}{\eta}
$$

Hence in the direction of an optic axis (g_{1} or $g_{2}=$ $h=\mathrm{r}$, i.e. the polarization is circular. But when the n normal makes but a small angle with the direction of an 0 axis, the vibration form is a very flat ellipse, since 2η, eve the case of powerfully active crystals, is always small in c parison with the difference $a^{2}-c^{2}$ of the two velocities.

Biaxial active crystals have not thus far been founc nature ; but several uniaxial active crystals exist. Quart one of these. It exists in two crystallographic forms, on which is the image of the other; hence one produces ri
perpendicular to the optic axis is given, as in the case o isotropic media, by the equation

$$
\delta=2 \pi^{2} \frac{f}{\lambda_{0}^{2}} \approx=\frac{\pi}{\lambda_{0}} z\left(n^{\prime \prime}-n^{\prime}\right)
$$

When $z=1 \mathrm{~mm}$. and yellow light ($\lambda_{0}=0.000589 \mathrm{~mm}$.) is used, $\delta=21.7^{\circ}=0.12 \pi$ radians. Hence in this case

$$
2 \pi \frac{f}{\lambda_{0}}=n^{\prime \prime}-n^{\prime}=0.12 \cdot \frac{\lambda_{0}}{z}=0.000071
$$

In this n^{\prime} and $n^{\prime \prime}$ denote the two indices of refraction which quartz must have in the direction of its optic axis in conse quence of its optical activity. Now a double refraction $n^{\prime \prime}-n$ of the magnitude given in (3I) has actually been observed it quartz in the direction of its axis by V. v. Lang. This doubl refraction can be conveniently demonstrated by the metho due to Fresnel, in which the light is successively passed througl right- and left-handed quartz prisms whose refracting angle are turned in opposite directions.

If a quartz plate of a few millimetres' thickness, which i cut perpendicular to the axis, be observed between crosse Nicols in white light, it appears colored. For the plane o polarization of the incident light has been rotated a differen amount for each of the different colors, and all of those color must be cut off from the field of view whose planes of polariza tion are perpendicular to that of the analyzer. Ifence the color of the quartz plate changes upon rotation of the analyzer. In convergent white light the interference figure described on page 356 for uniaxial crystals when placed between crossed Nicols are observable only at considerable distance from the centre of the field. Near the centre the circular polarization has the effect of nearly destroying the black Fig. 105. cross of the principal isogyre. Hence a quartz plate cut per
pendicular to the axis shows, between crossed Nicol vergent light, the interference figure represented in F

Spiral interference patterns appear when the incic is circularly polarized. The calculation of the form spirals, which are known as Airy's spirals, is Neumann's "Vorlesungen über theoretische Optik," 1885, page 244.
5. Rotary Dispersion.-The rotation δ of the polarization, which is produced by optically active su varies with the color. The law of dispersion can be from equations (6) and (19) by setting the thicknes plate $z=\mathrm{I}$ and introducing for λ_{0}, the wave length in λ, the wave length in air,* thus

$$
\delta=\frac{k}{\lambda^{2}} \Sigma \frac{\vartheta_{h} f_{h}^{\prime} \mathcal{N}_{h}}{\mathrm{I}-\left(\frac{\tau_{h}}{\tau}\right)^{2}},
$$

in which k is a constant.
If the natural periods of the active ions \dagger are smaller than the period of the light used that ($\tau_{h}: \tau$ ligible in comparison with I, there results the simples the dispersion equation, namely,

$$
\delta=\frac{k^{\prime}}{\lambda^{2}} .
$$

This equation, due to Biot, agrees approximately facts; yet it is not exact. If all the natural perioc active ions lie in the ultra-violet, (32) can be deve ascending powers of $\left(\tau_{h}: \tau\right)^{2}$ and put into the form

$$
\delta=\frac{k_{1}}{\lambda^{2}}+\frac{k_{2}}{\lambda^{4}}+\frac{k_{3}}{\lambda^{6}}+\ldots
$$

Now in most cases the. first two terms of this (Boltzmann's equation) are sufficient; nevertheless th

[^97]so for quartz, in which δ has been measured over a large range of wave lengths, namely, from $\lambda=2 \mu$ to $\lambda=0.2 \mu$. The constants k_{1}, k_{2}, k_{3} can have different signs, since the f_{k}^{\prime} corresponding to the different kinds of active ions need not have the same sign.

If some of the active ions have natural periods τ in the ultra-red, then (32) must be developed in powers of $\left(\tau: \tau_{r}\right)^{2}$. The equation then takes the form

$$
\begin{equation*}
\delta=\frac{k_{1}}{\lambda^{2}}+\frac{k_{2}}{\lambda^{4}}+\frac{k_{3}}{\lambda^{6}}+\ldots+k^{\prime}+k_{1}^{\prime} \lambda^{2}+k_{2}^{\prime} \lambda^{4}+\ldots \tag{35}
\end{equation*}
$$

If, as in the case of quartz, it is desired to represent the dispersion over a large range of colors, some of which have periods which are close to the natural periods, then it is better to avoid development in series and to write, in accordance with (32),

$$
\begin{equation*}
\delta=\Sigma \frac{k_{h}}{\lambda^{2}-\lambda_{h}^{2}} . \tag{36}
\end{equation*}
$$

Now in the case of quartz the wave lengths λ_{h} of the natural periods which lie closest to those of light are known for the ordinary wave; they are (cf. page 391) $\lambda_{1}^{2}=0.010627$, $\lambda_{2}{ }^{2}=78.22, \dot{\lambda}_{3}^{2}=430.6$. The unit of wave length is here taken as $\mathrm{I} \mu=0.001 \mathrm{~mm}$. But the conclusion has already been drawn from equation (30^{\prime}) that quartz has ions for which λ_{h} is much smaller than the wave length of light. The activity coefficient k^{\prime} of ions of this kind, for which $\lambda_{h}{ }^{2}$ may be neglected in (36) in comparison with λ^{2}, must be taken into consideration, so that the following dispersion equation is obtained for quartz:

$$
\begin{equation*}
\delta=\frac{k_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}+\frac{k_{2}}{\lambda^{2}-\lambda_{2}^{2}}+\frac{k_{3}}{\lambda^{2}-\lambda_{3}{ }^{2}}+\frac{k^{\prime}}{\lambda^{2}} . \tag{37}
\end{equation*}
$$

If this equation be applied to the dispersion of quartz, it is found from observation that $k_{2}=k_{3}=0$, i.e. that the kinds of ions whose natural periods lie in the ultra-red are inactive, and that k_{1} and k^{\prime} have different signs. Now it argues for the
correctness of the foundations of the theory here presented that, with the help of the equation

$$
\begin{equation*}
\delta=\frac{k_{1}}{\lambda^{2}-\lambda_{1}^{2}}+\frac{k^{\prime}}{\lambda^{2}} \tag{38}
\end{equation*}
$$

which contains but two constants, since λ_{1} is a constant which depends upon ordinary dispersion and not upon rotary dispersion, the latter can be well represented, as is shown by the following table,* in which the rotation is given in degrees per mm. of thickness:

$$
k_{1}=12.200, \quad k^{\prime}=-5.046
$$

λ (in μ).	δ obs.	δ calc.
2.140	1.60	1. 57
1.770	2.28	2.29
I.450	3.43	3.43
1.080	6.18	6.23
0.67082	r6.54	16.56
0.65631	17.31	17.33
$0.5893{ }^{*}$	21.72	21.70
0.57905	22.55	22.53
0.57695	22.72	22.70
0.546rio	25.53	25.51
0.50861	29.72	29.67
0.49 r 4	31.97	3 x .92
0.48001	33.67	33.60
0.43586	4 4 .55	4 4 .46
0.40468	48.93	48.85
0.34406	70.59	70.61
0.27467	121.06	121. 34
0.21935	220.72	220.57

* The D-line.

It is possible that values of the constants k_{1} and k^{\prime} might have been chosen so as to give a somewhat better agreement with the observations. Nevertheless the important fact is that this two-constant equation is in satisfactory agreement with observation, while the three-constant equation, which is
whose natural periods are extremely small, much smaller than those corresponding to λ_{1}.

As the table shows, δ increases as λ decreases. This is the course of normal dispersion. But, as appears from (38), this ondition would be disturbed, i.e. anomalous rotary dispersion would take place, if the wave lengths were smaller than λ_{1}, for then δ would be negative. In general anomalous rotary ispersion is produced whenever λ approaches the wave length λ_{h} of a natural period. But even when λ is much greater than λ_{h}, a change in the sign of δ may take place, as is shown by the general equation (36), if two kinds of active ions are present which have activity coefficients k_{h} of opposite sign. In this case maxima and minima in δ for variations in λ can also appear.

Cases of anomalous rotary dispersion have often been observed. (Cf. Landolt, "Mas optische Drehungsvermögen," p. 135.) G. H. v. Wyss has produced anomalous rotary dispersion by mixing right- and left-handed turpentine (Vied. Ann. 33, p. 554, 1888). In general every active substance must show anomalous rotary dispersion in certain regions of vibration, but these regions do not necessarily lie within the limits of the vibrations which can be produced experimentally.
6. Absorbing Active Substances. -If the wave length λ lies close to the wave length λ_{k} which corresponds to the natural period of an active ion, then, by (36), the rotation δ of the plane of polarization is very large. But in this case the coefficient of friction a_{h}, which was neglected on page 388 , must be taken into consideration. a_{h} must also be taken into consideration when the substance shows a broad absorption band. In this case ϵ as well as f becomes complex in equation (10); thus

$$
\epsilon=\mathrm{I}+\Sigma \frac{\vartheta_{h} \mathfrak{N}_{h}}{\mathrm{I}+i \frac{a_{h}}{\tau}-\frac{b_{h}}{\tau^{2}}}
$$

The quantity p in equation (II) must therefore also be taken as complex. If it be written in the form (cf. page 360)

$$
\begin{equation*}
p=\frac{\mathrm{r}-i \kappa}{V} \tag{40}
\end{equation*}
$$

V represents the velocity and κ the coefficient of absorption of the wave. Since there are two values of p obtained from (16) and (17), there must also be two different coefficients of absorption, κ^{\prime} and $\kappa^{\prime \prime}$, one of which corresponds to a lefthanded and the other to a right-handed circularly polarized wave. This has been experimentally verified by Cotton for solutions of the tartrates of copper and of chromium in caustic potash (C. R. 120, pp. 989, IO44, Ann. de chim. et de phys. (7) 8, p. 347, 1896.) That these solutions also showed anomalous rotary dispersion is easily understood from the foregoing, since the strong absorption which they produce is evidence that λ lies in the region which corresponds to the natural periods.

If the two indices of refraction n^{\prime} and $n^{\prime \prime}$ for left- and righthanded circularly polarized waves be introduced into (16), (17), and (18), there results

$$
\begin{equation*}
c\left(p^{\prime \prime}-p^{\prime}\right)=n^{\prime \prime}-n^{\prime}-i\left(n^{\prime \prime} \kappa^{\prime \prime}-n^{\prime} \kappa^{\prime}\right)=\frac{f}{\tau c}=\frac{2 \pi f}{\lambda} . \tag{4I}
\end{equation*}
$$

If a sharp absorption band is present, which, according to the above, corresponds to a small value of a_{h}, then the difference between $\kappa^{\prime \prime}$ and κ^{\prime} within the absorption band itself becomes very marked. For when $\tau^{2}=b_{h}$, it follows from (39) and (4I) that

$$
\begin{equation*}
n^{\prime \prime}-n^{\prime}=0, \quad n^{\prime \prime} \kappa^{\prime \prime}-n^{\prime} \kappa^{\prime}=\frac{\vartheta_{h} f_{h}^{\prime} \mathfrak{N}_{h}}{a_{h} \cdot c} \tag{42}
\end{equation*}
$$

If τ is farther from the natural period τ_{h}, and if α_{h} is sufficiently small, so that it is only necessary to retain terms of the first order in κ or a_{h}, then, from (39) and (4I), the law of dispersion for the difference of the coefficients of absorption takes the form
aries, a change in sign, and also maxima and minima " - $n^{\prime} \kappa^{\prime}$, may occur, provided there are present several of ions which have activity coefficients f_{l}^{\prime} of different reover the difference in the absorptions of the right- and t-handed circularly polarized waves is always small in rison with the total absorption.
r if f^{2} be neglected, and if only one absorption band is t, it is easy to deduce, from (10) and (17),

$$
\begin{equation*}
\frac{n^{\prime \prime} \kappa^{\prime \prime}-n^{\prime} \kappa^{\prime}}{n^{\prime \prime} \kappa^{\prime \prime}+n^{\prime} \kappa^{\prime}}=\frac{2 \pi f_{h}^{\prime}}{\lambda} n, \quad . \quad . \quad . \quad . \tag{44}
\end{equation*}
$$

ch n denotes the mean of n^{\prime} and $n^{\prime \prime}$.
$f_{h}^{\prime}: \lambda$ is always a small number. reover it is to be observed that it is not necessary that active substance which shows an absorption band should the phenomena here described. For, in order that this case, it is necessary that the ions which cause the dion should be optically active. It is easily conceivable sorption and optical activity may be due to different of ions.

CHAPTER VII

MAGNETICALLY ACTIVE SUBSTANCES

A. Hypothesis of Molecular Current
x. General Considerations.-Peculiar optical p] are observed in all substances when they are broug strong magnetic field. Furthermore it is well kr the purely magnetic properties of different substance different, i.e. the value of the permeability μ varies substance (cf. page 269). It is greater than I magnetic substances, less than I for diamagnetic one a magnetic field is said to produce a greater dens lines of force in a paramagnetic substance than in ether, and a less density in a diamagnetic substanc the free ether. Ampère and Weber have advanced that so-called molecular currents exist in paramag stances. According to the theory of dispersion been here adopted, these currents are due to the ioni When an external magnetic force is applied, these currents are partially or wholly turned into a definite so that the magnetic lines due to them are superp the magnetic lines due to the external field.

According to this theory, diamagnetic substa narily have no molecular currents. But as soon a brought into a magnetic field, molecular currents posed to be produced by induction. These currer constant so long as the external field does not char ionic charges must be assumed to rotate without fricti
no energy. The lines of force due to these induced molecula currents must oppose the lines of the external field, since according to Lenz's law, induced currents always flow in sucl a direction that they tend to oppose a change in the externa magnetic field.

If it is desired to determine the optical properties of a sub stance when placed in a strong magnetic field, it is alway necessary to bear in mind that both in para- and diamagneti substances certain ions are supposed to be in rotation and t produce molecular currents. If e be the charge of a rotatins ion of kind I , and T its period of rotation, the strength of th molecular current produced by it is

$$
i=e: \mathrm{T}
$$

If now such an ion, rotating about a point \mathfrak{P}, be struck b the electric force of a light-wave, its path must be changed. the period of rotation T is very small in comparison with th period of the light, the path of the ion remains unchanged i form and period, but the point about which it rotates is change from \mathfrak{F} to a point \mathfrak{S}^{\prime} distant ξ from \mathfrak{P} in the direction of th electrical force. The ion then oscillates back and fort between \mathfrak{P} and \mathfrak{S}^{\prime} in the period of the light-wave. The sam mean effect must be produced if the period of rotation is large provided it is not a multiple of the period T of the light vibra tion. Any rotation of the plane of the path, which is produce by the magnetic force of the light-wave, may be neglected since this is always much smaller than the external magneti force. This displacement of the molecular current also pro duces a displacement of the magnetic lines of force which aris from it, so that a peculiar induction effect takes place, an effec which must be considered when a wave of light falls upon molecular current.

This inductive effect can be at once calculated if th number of lines of force associated with a molecular current known.

Now this number can easily be found. Let the paths
the molecular currents all be parallel to a plane which is perpendicular to the direction R of the external magnetic field. Consider first a line of length l parallel to the direction R. Let \mathfrak{N}^{\prime} denote the number of molecular currents due to ions of kind I upon unit length; then $l \cdot \Re^{\prime}$ denotes the number upon the length l. These currents may be looked upon as a solenoid of cross-section q, q being the area of the ionic orbit. The number of lines of force in this solenoid is *

$$
M=4 \pi \Re^{\prime} i q: c
$$

If now there are $\mathfrak{l}^{\prime \prime}$ such solenoids per unit area, then the number of magnetic lines per unit area due to these molecular currents is

$$
M_{1}=4 \pi \frac{\mathfrak{N}^{\prime} \mathfrak{N}^{\prime \prime} i q}{c}=4 \pi i q \frac{\mathfrak{N}}{c}
$$

in which \mathfrak{N} is the number of rotating ions of kind I in unit of volume.

The components of M_{1} in the direction of the coordinates are

$$
\left.\begin{array}{c}
\alpha_{1}=\frac{4 \pi}{c} i q \Re \cos (K x), \quad \beta_{1}=\frac{4 \pi}{c} i q \Re \cos (K y), \tag{2}\\
\gamma_{1}=\frac{4 \pi}{c} i q \Re \cos (K z) .
\end{array}\right\} .
$$

2. Deduction of the Differential Equations.-The discussion will be based upon equations (7) and (iI) (cf. pages 265 and 267) of the Maxwell theory, namely,

$$
\begin{equation*}
\frac{4 \pi}{c} j_{x}=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z} \text { etc., } \frac{4 \pi}{c} s_{x}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y} \text { etc. } \tag{3}
\end{equation*}
$$

But while in the extensions of the Maxwell theory which have thus far been made only the expression j_{x} for the electric current density was modified by the hypothesis of the existence of ions, the magnetic current density s_{x} retaining always the
ue $\frac{1}{4} \pi \cdot \frac{\partial \alpha}{\partial t}$, here, because of the introduction of the rotating ions, s_{x} must also assume another form. s_{x} are defined by (12) on page 268 as the change ty of the electric and the magnetic lines of force in
order to calculate $4 \pi s_{x}$ it is necessary to take the fact that it consists of several parts. The In is produced directly by a light-wave in the flow forece through the rectangle $d y d z$ in the ether is by $d y y^{\prime} d z \cdot \frac{\partial a x}{\partial t}$. But another quantity must be added uantity which is due to the motion, produced by lve, of the point f_{i} about which the ions rotate, Les of force $M I_{1}$ move with the point P.
to calculate the amount of this portion of s_{x}, connastular element $d y d z$ perpendicular to the x-axis, what number of lines of force cut c:s abod of the rectangle because on of $\underset{*}{ }$, the components of the为

- first only the lines of force α_{1} parallel to the x-axis. In unit

Fig. 106. an ber of lines of force which pass into the rectangle side a is $\left(\alpha_{1} \cdot \frac{\partial \prime}{\partial t}\right)_{a} d z$; and the number which pass the side c is $\left(\alpha_{1} \cdot \frac{\partial \eta}{\partial t}\right)_{c} d z$. The subscripts a and c ate that the value of the expression $\alpha_{1} \cdot \frac{\partial \eta}{\partial t}$ is to be longe these sides respectively. Hence $\left(\alpha_{1} \cdot \frac{\partial \eta}{\Delta t}\right)_{c}=\left(\alpha_{1} \cdot \frac{\partial \eta}{\partial t}\right)_{a}+d y^{\prime} \frac{\partial}{\partial y^{\prime}}\left(\alpha_{1} \cdot \frac{\partial \eta}{\partial t}\right)$.
wit term α_{1} is left under the sign of differentiation in luncle the case of non-homorgencous media for which
$\alpha_{1}, \beta_{1}, \gamma_{1}$ are functions of the coordinates. In hom substances $\alpha_{1}, \beta_{1}, \gamma_{1}$ are constant. The number of which in their motion cut the sides a and c, incr number of lines which pass through the rectangle amount - $d y d z \frac{\partial}{\partial y}\left(\alpha_{1} \frac{\partial \eta}{\partial t}\right)$. Similarly the number of which in their motion cut the sides b and d of the add to the total flow through the rectangle the $-d y d z \partial{ }_{\partial z}\left(\alpha_{1} \frac{\partial \zeta}{\partial t}\right)$.

Because of the component ε of the motion of \mathfrak{F}, of force β_{1}, which are parallel to the y^{\prime}-axis, can cut sides a and c of the rectangle. Now the number of lir pass through the rectangle changes only because of a of the lines β_{1} about the $\sim-a x i s$, this change being 1 the lines β_{1} rotate from the + direction of y to the + of x. The effect of this rotation can be calculated by ing from the expression $\left(\beta_{1} \cdot \frac{0}{0} t\right)_{c} d z$, which gives the of lines which cut the side c in a second, the e $\left(\beta_{1} \cdot \frac{\partial \xi}{\partial t}\right)_{a} d z$, which represents the number which cu second. Since now

$$
\left(\beta_{1} \cdot \frac{\partial \xi}{\partial t}\right)_{c}=\left(\beta_{1} \cdot \frac{\partial \xi}{\partial t}\right)_{a}+d y, \partial y\left(\beta_{1} \cdot \frac{\partial \xi}{\partial t}\right),
$$

the rotation of β_{1} adds to the flow of lines through the the amount $+d y d z \frac{\partial}{\partial y}\left(\beta_{1} \frac{\partial \bar{\partial}}{\partial t}\right)$.

Similarly the rotation of the lines γ_{1} about the y the amount $+d y d z \frac{\partial}{\partial z}\left(\gamma_{1} \frac{\partial \xi}{\partial t}\right)$ to the flow of lines th rectangle.

The total flow through the rectangle, obtained b

The change in unit time in the number of lines which pass through an element of unit area perpendicular to the x-axis is therefore, since for a constant external field $\alpha_{1}, \beta_{1}, \gamma_{1}$ are independent of the time t,

$$
\begin{equation*}
4 \pi s_{x}=\frac{\partial}{\partial t}\left\{\alpha+\frac{\partial}{\partial z}\left(\gamma_{1} \xi-\alpha_{1} \xi\right)-\frac{\partial}{\partial y}\left(\alpha_{1} \eta-\beta_{1} \xi\right)\right\} . \tag{4}
\end{equation*}
$$

Strictly speaking, the current density is modified in a complicated way by the rotation of the ions. But if the ratio of the period of rotation of the ion to the period of the light is not rational, it is only necessary, in order to find the mean effect, to take account of the motion ξ, η, ζ of the centre of rotation \mathfrak{F}.

The current density j_{x} may therefore be written as above [cf. equation (7), page 385] in the form

$$
\begin{equation*}
j_{x}=\frac{1}{4 \pi} \frac{\partial X}{\partial t}+c \Re \frac{\partial \bar{\xi}}{\partial \bar{t}} . \tag{5}
\end{equation*}
$$

For the motion of a point \mathfrak{F}, which is the mean position of a rotating ion of kind I , two equations will be assumed. The first is the same as that given above on page 383, namely,

$$
\begin{equation*}
m \frac{\partial^{2} \xi}{\partial t^{2}}=c X-\frac{4 \pi e^{2}}{\vartheta} \xi-r e^{2} \frac{\partial \xi}{\partial t} \tag{6}
\end{equation*}
$$

and corresponds to the case in which \mathfrak{F} can oscillate about a position of equilibrium (ions of a dielectric). The second is equation (34) on page 397, namely,

$$
\begin{equation*}
m \frac{\partial^{2} \xi}{\partial t^{2}}=e X-r e^{2} \frac{\partial \xi}{\partial t} \tag{7}
\end{equation*}
$$

and corresponds to the case in which \mathfrak{F} moves continually in the direction of the constant force X, i.e. the case in which e is the ion of a conductor, for example a metal. m denotes the ponderable mass of the ion.

If the changes are periodic, so that every X and every ξ is proportional to $\epsilon \frac{t}{\tau}$, there results from (6)

$$
\begin{equation*}
e \frac{\partial \xi}{\partial t}\left\{\mathrm{I}+i \frac{r \vartheta}{4 \pi \tau}-\frac{m \vartheta}{4 \pi e^{2}} \cdot \frac{\mathrm{I}}{\tau^{2}}\right\}=\frac{\vartheta}{4 \pi} \frac{\partial X}{\partial t}, \tag{8}
\end{equation*}
$$

while from (7)

$$
i \frac{\partial \Sigma}{\partial t}\left(r+\frac{i}{\tau} \frac{m}{i^{2}}\right)=X=-i \tau \frac{\partial \mathrm{~V}}{\partial t}
$$

Hence, setting as above

$$
\frac{r \theta}{4 \pi}=a, \quad \frac{m \theta}{4 \pi i^{2}}=b=\tau_{1}^{2}, \quad \frac{m}{c^{2}}=m^{\prime},
$$

(5) gives, in case c is an ion of a non-conductor,

$$
j_{x}=\frac{1}{4 \pi} \frac{\partial X}{\partial t}\left\{1+_{\mathrm{r}+i \Delta / \tau-b / \tau a}\right\}
$$

But if e is the ion of a conductor,

$$
j_{x}=\frac{1}{4 \pi} \frac{\partial J}{\partial t}\left\{\mathrm{I}+\begin{array}{c}
4 \pi \pi^{\prime}{ }^{\prime} \\
i r-m^{\prime} / r
\end{array}\right\} .
$$

In any case it is possible to set

$$
{ }_{x}=\frac{\epsilon^{\prime} \partial V}{4 \pi} \frac{\partial t}{\partial t}, \quad j_{y}=\frac{\epsilon^{\prime} d Y}{4 \pi} \quad j_{x}=\frac{\epsilon^{\prime} \partial Z}{4 \pi \omega t}
$$

in which ϵ^{\prime} is in general a complex quantity depending upon Moreover from (1), (2), and (8) there results, for an ion a non-condluctor,

$$
\gamma_{1} \xi=\frac{9 \lambda \theta}{1+i \alpha / \tau-b / \tau_{2}} \cdot \frac{q}{c} \cos (K z) \lambda ; .
$$

and from (9), for an ion of a conductor,

$$
\gamma_{1} z=\frac{4 \pi \tau \mathfrak{N}}{i r-m^{\prime} / r} \cdot \frac{q}{c \mathrm{~T}} \cos (K z) X
$$

In both cases it is possible to set

$$
\gamma_{1} \xi_{i}=\gamma \cos (K z) I^{\prime}
$$

in which v is in general a complex quantity depending upon A similar expression may be obtained for $x_{1}-$, te. Settin
ther from (I3), (4), and (I6) the fundamental equations (3) become
$\left.\begin{array}{l}\frac{1}{c} \frac{\partial}{\partial t}\left\{\alpha+\frac{\partial}{\partial z}\left(\nu_{z} X-\nu_{x} Z\right)-\frac{\partial}{\partial y}\left(\nu_{x} Y-\nu_{y} X\right)\right\}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}, \\ \frac{\mathbf{I}}{c} \frac{\partial}{\partial t}\left\{\beta+\frac{\partial}{\partial x}\left(\nu_{x} Y-\nu_{y} X\right)-\frac{\partial}{\partial z}\left(\nu_{y} Z-\nu_{x} Y\right)\right\}=\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}, \\ \frac{\mathbf{1}}{c} \frac{\partial}{\partial t}\left\{\gamma+\frac{\partial}{\partial y}\left(\nu_{y} Z-\nu_{z} Y\right)-\frac{\partial}{\partial x}\left(\nu_{z} X-\nu_{x} Z\right)\right\}=\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x},\end{array}\right\}$
$\epsilon_{c}^{\prime} \frac{\partial Y}{\partial t}=\frac{\partial \gamma}{\partial y^{\prime}}-\frac{\partial \beta}{\partial z} \quad \frac{\epsilon^{\prime} \partial Y}{c} \frac{\partial \alpha}{\partial t}=\frac{\partial \alpha}{\partial z}-\frac{\partial \gamma}{\partial r}, \quad \epsilon^{\prime} \frac{\partial Z}{\partial t}=\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial y}$. (19)
When several kinds of molecules are present the same equations (I8) and (19) still hold, but the constants ϵ^{\prime} and v are sums; thus

$$
\begin{align*}
& \nu=\frac{\mathrm{I}}{c} \Sigma \frac{\mathfrak{l}_{h} \vartheta_{h}}{\mathrm{I}+i_{\tau}^{\alpha_{h}}-\frac{\sigma_{h}}{\tau^{2}}} \cdot \frac{q_{h}}{\mathrm{~T}}+\frac{4 \pi_{\tau}}{c} \geq \frac{\mathfrak{N}_{k}}{i_{k}-\frac{m_{k}^{\prime}}{\tau}} q_{k} . \tag{2I}
\end{align*}
$$

The index k refers to the ions of a dielectric, the index k to those of a conductor. T_{h} is positive or negative according as the positively charged rotating ion strengthens or weakens the external magnetic field. In the case of a negatively charged i on T_{h} is to be taken as negative when the lines of force of the molecular current lie in the same direction as those of the external mannetic field. In the case of paramagnetic substances T_{h} is positive for the positively charged ions and negative for those charged negatively. For ciamagnetic ions the case is the inverse. Further, q_{h} is to be considered as dependent upon the strength of the outer magnetic field, for when the magnetization is not carried to saturation all of the molecular currents have not been made parallel to one another
-a fact that is most simply expressed by saying that the value of q_{h} is then smaller. q_{h} is therefore to be assumed proportional to the magnetization of the substance. From their method of derivation (cf. page 422) it is evident that equations (18) and (I9) are perfectly general, ie. hold also in non-homogeneous bodies for which ϵ^{\prime} and v are functions of the coordinates.

3. The Magnetic Rotation of the Plane of Polarization.

 Assume that the direction of the beam of light is parallel to the direction of magnetization, and let this direction coincide with the z-axis. Then X, Y, α, β depend only upon z and t, provided plane waves are propagated along the z-axis. Furthermore, $Z=\gamma=0$, and$$
\nu_{x}=v_{y}=0, \quad \nu_{z}=\nu
$$

Hence the fundamental equations (18) and (19) become

$$
\left.\begin{array}{l}
\frac{\mathrm{I}}{c} \frac{\partial}{\partial t}\left\{\alpha+\nu \frac{\partial X}{\partial z}\right\}=\frac{\partial Y}{\partial z} \\
\frac{\mathrm{I}}{c} \frac{\partial}{\partial t}\left\{\beta+\nu \frac{\partial Y}{\partial z}\right\}=-\frac{\partial X}{\partial z},
\end{array}\right\}
$$

A differentiation of these equations with respect to t and substitution in them of the values of $\frac{\partial \alpha}{\partial t}, \frac{\partial \beta}{\partial t}$ taken from (22) gives

$$
\left.\begin{array}{l}
\frac{\epsilon^{\prime}}{c^{2}} \frac{\partial^{2} X}{\partial t^{2}}=\frac{\partial^{2} X}{\partial z^{2}}+\frac{v}{c} \frac{\partial^{3} Y}{\partial t \partial z^{2}}, \tag{24}\\
\frac{\epsilon^{\prime}}{c^{\prime}} \frac{\partial^{2} Y}{\partial t^{2}}=\frac{\partial^{2} Y}{\partial z^{2}}-\frac{v}{c} \frac{\partial^{3} X}{\partial t \partial z^{2}} .
\end{array}\right\}
$$

For the sake of integration write, as above on page 404,

Then there results from (24)

$$
\begin{aligned}
& \epsilon^{\prime} M=p^{2} c^{2}\left(M+i \frac{v}{c \tau} N\right), \\
& \epsilon^{\prime} N=p^{2} c^{2}\left(N-i \frac{v}{c \tau} M\right)
\end{aligned}
$$

These equations can be satisfied in two different ways, namely, if

$$
\begin{equation*}
p^{2} c^{2}\left(\mathrm{I}+\frac{v}{c \tau}\right)=\epsilon^{\prime}, \quad M=i N \tag{26}
\end{equation*}
$$

or if

$$
\begin{equation*}
p^{2} c^{2}\left(\mathrm{r}-\frac{v}{c \tau}\right)=\epsilon^{\prime}, \quad M=-i N . \tag{27}
\end{equation*}
$$

From the interpretation given on page 405 of the analogous equations (12) and (13) it appears that equations (26) and (27, represent right-handed and left-handed circularly polarized waves and that these waves travel with different velocities. The first (26) is a left-handed circularly polarized wave, and the value of p corresponding to it is

$$
\begin{equation*}
p^{\prime} c=\sqrt{\frac{\epsilon^{\prime}}{\mathrm{I}+\frac{\nu}{c \tau}}} \tag{28}
\end{equation*}
$$

The value of p corresponding to the right-handed circularly polarized wave is

$$
\begin{equation*}
p^{\prime \prime} c=\sqrt{\frac{\epsilon^{\prime}}{\mathrm{I}-\frac{\nu}{c \tau}}} \tag{29}
\end{equation*}
$$

In case ϵ^{\prime} and ν, i.e. p^{\prime} and $p^{\prime \prime}$, are assumed to be real, a superposition of the two circularly polarized waves gives plane-polarized light whose plane of polarization rotates, while the wave travels a distance z, through the angle

$$
\begin{equation*}
\delta=\frac{z}{\tau} \frac{p^{\prime \prime}-p^{\prime}}{2} \tag{30}
\end{equation*}
$$

If, as is generally the case, $v: c \tau$ is small in comparison wi 1 , then, from (30),

$$
\delta=\frac{v \sqrt{\epsilon^{\prime}}}{2 c^{2} \tau^{2}} z
$$

When v is positive the direction of the rotation is from rig to left, i.e. counter-clockwise, to an observer looking opposi to the direction of propagation. The positive paramagnetic io rotate in the same direction when the magnetization has t direction of the positive z-axis. Hence when v is positive t rotation of the plane of polarization is in the direction of t. molecular currents in paramagnetic substances.

Since the direction of rotation depends only upon the directi of magnetization, for a given magnetization the rotation of t plane of polarization is doubled if the light after passing throus the magnetized substance is reflected and made to traverse again in the opposite direction. By such a double passage light through a naturally active substance no rotation of t plane of polarization is produced. For in an optically acti substance the direction of rotation of the plane of polarizatic is always the same to an observer looking in a direction opp site to that of propagation, i.e. the rotation changes its absolu direction when the direction of propagation changes.

Whether the rotation δ is in the direction of the paramat netic molecular currents or opposite to it cannot be determin. from the magnetic character of the substance (whether paradiamagnetic), for the sign of v cannot be calculated from tl permeability μ of a substance when more than one kind rotating ions is present.* In accordance with (19) on pa 270, the permeability μ is defined by setting the enti density of the lines of force M_{2} in the direction of the z-ax equal to $\mu \gamma$. Now by (2), when the magnetization is in tl

[^98]direction of the z-axis, the total number of lines in unit section (the so-called induction) is
\[

$$
\begin{equation*}
M_{x}=\mu \gamma=\gamma+\frac{4 \pi}{c} \Sigma i q \mathfrak{N}=\gamma+\frac{4 \pi}{c} \Sigma e \mathfrak{R} \frac{q}{\mathrm{~T}} \tag{3I}
\end{equation*}
$$

\]

Hence the substance is para- or diamagnetic according as

$$
\begin{equation*}
\frac{4 \pi}{c} \Sigma e \Omega \frac{q}{\mathrm{~T}}<0 \tag{32}
\end{equation*}
$$

But no conclusion as to the sign of v can be drawn from the sign of this sum. Take, for example, the simplest case, namely, that in which two different kinds, I and 2 , of paramagnetic ions are present. Let $c_{1}=-c_{2}=\epsilon, \mathfrak{N}_{1}=\mathfrak{N}_{2}=\mathfrak{N}$, $\mathrm{T}_{1}=-\mathrm{T}_{2}=\mathrm{T}, q_{1}=q_{2}=q$. Then, from (31),

$$
(\mu-\mathrm{I}) \gamma=\frac{4 \pi}{c} \cdot 2 e \Re \frac{q}{\mathrm{~T}}>0
$$

But, from (21), when a_{h} and b_{h} are negligible,

$$
\nu=\frac{\mathfrak{N}}{c} \frac{q}{\mathrm{~T}}\left(\vartheta_{1}-\vartheta_{2}\right)
$$

Thus the sign of v depends upon the difference of the two dielectric constants $\mathfrak{N \vartheta _ { 1 } \text { and } \mathfrak { N \vartheta _ { 2 } } \text { . } \text { . } { } ^ { \text { . } } \text { . }}$

Observation also shows that the magnetic character of a substance furnishes no criterion for determining the direction of the magnetic rotation of the plane of polarization.
4. Dispersion in Magnetic Rotation of the Plane of Polarization. - If the wave length in vacuo $\lambda_{0}=T c$ of the light used be introduced into (30^{\prime}), it becomes

$$
\begin{equation*}
\delta=\frac{2 \pi^{2} \nu \sqrt{\epsilon^{\prime}}}{\lambda_{0}^{2}} z=\frac{2 \pi^{2} \nu n}{\lambda_{0}^{2}} z \tag{33}
\end{equation*}
$$

in which $\sqrt{\epsilon^{\prime}}=n$ represents the index of refraction of the sub-

11-:

\% $2=$

1 - 1

1

:

$\therefore \vdots$		i	
\vdots	\vdots		i
i	i	i	

 Nery a in in i, is,

 Tin数

or

$$
\begin{equation*}
n^{2}=a+\frac{b}{\lambda^{2}-\lambda_{1}^{2}} \tag{36}
\end{equation*}
$$

In this case, from (35), the dispersion equation must be written

$$
\begin{equation*}
\nu=\frac{A_{1}{ }^{\prime} \lambda^{2}}{\lambda^{2}-\lambda_{1}^{2}}+A_{2}^{\prime}+A_{3}^{\prime}+\ldots=a^{\prime}+\frac{b^{\prime} \lambda^{2}}{\lambda^{2}-\lambda_{1}^{2}} \tag{37}
\end{equation*}
$$

i.e. the dispersion equation for the magnetic rotation δ is, from (33), when $2 \pi^{2} z$ is set equal to I ,

$$
\begin{equation*}
\delta=n\left(\frac{a^{\prime}}{\lambda^{2}}+\frac{b^{\prime}}{\lambda^{2}-\lambda_{1}^{2}}\right) \tag{38}
\end{equation*}
$$

This is a two-constant dispersion equation, since λ_{1} is obtained from the equation for ordinary dispersion. The experimental results are in good agreement with (38), as is shown by the following table: *

BISULPHIDE OF CARBON.

$$
\begin{array}{lr}
\lambda_{1}=0.212 \mu, & \lambda_{1}^{2}=0.0450 \\
a=2.516, & b=0.0433 \\
a^{\prime}=-0.0136, & b^{\prime}=+0.1530
\end{array}
$$

Spectr. Line.	n calc.	n obs.	δ calc.	δ obs.
A	1.6115	1.6118	$\ldots \ldots \ldots . \ldots \ldots \ldots$.	
B	1.6179	1.6181	$\ldots \ldots \ldots . \ldots \ldots \ldots$	
C	1.6210	1.6214	0.592	0.592
D	1.6307	1.6308	0.762	0.760
E	1.6439	1.6438	0.999	1.000
F	1.6560	1.6555	1.232	1.234
G	1.6805	1.6800	1.704	1.704
H	1.7033	1.7032	$\ldots \ldots \ldots$	$\ldots \ldots$.

* Poincaré has published a collection of other single-constant dispersion equations which have been proposed in L'éclairage électrique, XI. p. 488, 1897. None of these equations agree well with the observations.

$$
1
$$

$$
\therefore \quad \therefore \quad i
$$

$$
i
$$

 फan!.

fact which will be discussed in the next paragraph leads to the same conclusion.
5. Direction of Magnetization Perpendicular to the Rays. -Let the z-axis be the direction of the magnetization, the x-axis that of the ray. Then x and t are the only independent variables and $v_{x}=\nu_{y}=0, \nu_{z}=\nu$. In the last of equations (18) the coefficient v appears only in the term $-v \frac{\partial X}{\partial x}$, but this term vanishes, because from the first of equations (i9) $X=0$. Hence from the proceding discussion the magnctization has no effect upon the optical relations wuhen the ray is perpendicular to the direction of magnetization. But as a matter of fact such an effect has recently been observed in the case of the vapors of metals. This is a sccond reason for sucking another hypothesis upon zerlich to base the explanation of the optical behatior of substances in the magnetic ficld.

The above theory might be cxtended by assuming that the structure of the magnetized substance becomes non-isotropic because of the mutual attractions of the molecular currents in the direction of the lines of force. Nevertheless another hypothesis leads morc directly and completely to the end sought. This hypothesis also is suggested by certain observed propertics of substances in a magnetic field.

B. Hypothesis of tie Hall Effect.

r. General Considerations.-The assumption of rotating ions will now be dropped and the previous conception of movable ions again taken into consideration. Now a strong magnetic field must cxert special forces upon the ions, because an ion in motion represents an clectrical current, and every element of current experiences in a magnetic field a force which is perpendicular to the clement and to the direction of magnetization. Consequently the current lines in a magnetic field tend to move sideways in a direction at right angles to their direction. This phenomenon, known as the Hall effect, is
actually observed in all metals, particularly in bisr antimony.

If an element of current of length $d l$ and inten electromagnetic units) lies perpendicular to a magr of intensity \mathfrak{S}, ${ }^{*}$ then the force $\mathfrak{\Re}$ which acts upon the is

$$
\Omega=i_{m} d l \mathfrak{F}=\frac{i}{c} d l \mathfrak{S c},
$$

in which i represents the strength of the current in ele units. When the coordinate system is chosen as on 1 $\mathfrak{\Omega}$ lies in the direction of the x-axis if i and $\sqrt{5}$ lie in tions of the y - and z-axes respectively.

If an ion carrying a charge e be displaced a dis along the y-axis in the time $d t$, then, according to the strength of current along d_{η} is $i=e \Re{ }^{\prime} \frac{\partial \eta}{\partial t}$, in wl the number of ions in unit length. Hence from (. $d l=d \eta$,

$$
\mathfrak{\Re}=\frac{e}{c} \mathfrak{N}^{\prime} d \eta \frac{\partial \eta}{\partial t} \mathfrak{S} .
$$

This is the force acting upon the whole number of i the length $d \eta$. The number of these ions is $\mathfrak{N}^{\prime} d \eta$. impelling a single ion along the x-axis is therefore

$$
\Re_{x}=\frac{e}{c} \frac{\partial \eta}{\partial t} \mathcal{F}_{x} .
$$

If in addition there is a magnetization in the directi y-axis, a displacement ζ would add a force

$$
\Omega_{x}=-\frac{e}{c} \frac{\partial \zeta}{\partial t} \mathfrak{F}_{y} .
$$

These two terms, (40) and (4I), must be add right-hand side of the equations of motion of the ions
(7) on page 423 . If it be assumed that the ions are dielectric ions, not conduction ions, an assumption which is permissible for the case of all substances which have small conductivity, then
$m \frac{\partial^{2} \xi}{\partial t^{2}}=e X-\frac{4 \pi e^{2}}{\vartheta} \xi-r e^{2} \frac{\partial \xi}{\partial t}+\frac{e}{c}\left(\frac{\partial \eta}{\partial t} \mathfrak{F}_{z}-\frac{\partial \zeta}{\partial t} \mathfrak{F}_{y}\right)$,
and by a cyclical interchange of letters

$$
\left.\begin{array}{l}
m \frac{\partial^{2} \eta}{\partial t^{2}}=e Y-\frac{4 \pi e^{2}}{\vartheta} \eta-r e^{2} \frac{\partial \eta}{\partial t}+\frac{e}{c}\left(\frac{\partial \zeta}{\partial t} \mathfrak{S}_{x}-\frac{\partial \xi}{\partial t} \mathfrak{F}_{x}\right), \tag{42}\\
m \frac{\partial^{2} \zeta}{\partial t^{2}}=e Z-\frac{4 \pi e^{2}}{\vartheta} \zeta-r e^{2} \frac{\partial \zeta}{\partial t}+\frac{e}{c}\left(\frac{\partial \xi}{\partial t} \mathfrak{F}_{y}-\frac{\partial \eta}{\partial t} \mathfrak{F}_{x}\right) .
\end{array}\right\}
$$

2. Deduction of the Differential Equations. -The fund mental equations (3) on page 420 remain as always unchanged Since it has been assumed that there are no rotating ions, th ions do not carry with them in their motion magnetic lines o force, hence the permeability $\mu=1$, and the previous relation (cf. page 269) holds, namely,

$$
4 \pi s_{x}=\frac{\partial \alpha}{\partial t}, \quad 4 \pi s_{y}=\frac{\partial \beta}{\partial t}, \quad 4 \pi s_{z}=\frac{\partial \gamma}{\partial t} .
$$

Furthermore, as above (page 384),

$$
\left.\begin{array}{l}
4 \pi j_{x}=\frac{\partial}{\partial t}\left(X+4 \pi \sum e \Re \xi\right) \\
4 \pi j_{y}=\frac{\partial}{\partial t}\left(Y+4 \pi \sum e \Re \eta\right) \\
4 \pi j_{x}=\frac{\partial}{\partial t}\left(Z+4 \pi \sum e \Re(\zeta) .\right.
\end{array}\right\} \cdot . \quad . \quad(44
$$

Equations (3), (42), (43), and (44) contain the complet theory.*

* The most general equations can be obtained from the theory of rotating ion presented above in Section A in connection with equation (42). The system equations thus obtained would cover all possible cases in which movable ions as present in a strong magnetic field. For the sake of simplicity the two theori are separately presented in Sections A and B.

When the conditions change periodically and t abbreviations are used, namely,

$$
\begin{aligned}
& r \theta \\
& 4 \pi
\end{aligned}=a, \quad m^{4} \theta=b
$$

(42) becomes

$$
c i\left(1+i \frac{a}{r}-\frac{b}{\tau^{2}}\right)-\frac{i \theta}{4 \pi c r}\left(\eta \sqrt{D_{x}}-5 \sqrt[S]{x}_{y}\right)=\frac{\theta}{4 \pi}
$$

If the z-axis be taken in the direction of the may so that $N_{x}=S_{y}=0, N_{x}=N_{0}$, then, by use of the abl

$$
1+i \frac{a}{r}-\frac{b}{r^{2}}=\left(\omega, \quad \begin{array}{c}
4 \pi i r i
\end{array}\right)=\phi
$$

there results from (46)

If these equations be solved with respect to of there results

$$
\begin{aligned}
\left.4 \pi c \xi(\omega)^{2}-\Phi^{2}\right) & =\vartheta\left(\omega V^{*}+i \omega\right) \\
\left.4 \pi c^{\prime} \eta(\omega)^{2}-\Phi^{2}\right) & =\vartheta(\omega Y-i \phi \cdot V) \\
4 \pi c^{\xi} \cdot(\omega & =\vartheta Z .
\end{aligned}
$$

Hence, from (44),

$$
\left.\begin{array}{l}
4 \pi j_{x}=\epsilon^{\prime \prime} \frac{\partial X}{\partial t}+i \nu \frac{\partial Y}{\partial t} \\
4 \pi j_{y}=\epsilon^{\prime \prime} \frac{\partial Y}{\partial t}-i \nu \frac{\partial X}{\partial t} \tag{5I}\\
4 \pi j_{x}=\epsilon^{\prime} \frac{\partial Z}{\partial t} .
\end{array}\right\}
$$

3. Rays Parallel to the Direction of Magnetization. -In this case z and t are the only independent variables, and equations (3), (43), and (51) give

$$
\left.\begin{array}{c}
\frac{\mathrm{I}}{c}\left(\epsilon^{\prime \prime} \frac{\partial X}{\partial t}+i v \frac{\partial Y}{\partial t}\right)=-\frac{\partial \beta}{\partial z}, \quad \frac{\mathrm{I}}{c}\left(\epsilon^{\prime \prime} \frac{\partial Y}{\partial t}-i v \frac{\partial X}{\partial t}\right)=\frac{\partial \alpha}{\partial z} \\
\frac{\mathrm{I}}{\mathrm{c}} \frac{\partial \alpha}{\partial t}=\frac{\partial Y}{\partial z}, \quad \frac{\mathrm{I}}{c} \frac{\partial \beta}{\partial t}=-\frac{\partial X}{\partial z}, \quad \gamma=Z=0 . \tag{52}
\end{array}\right\}
$$

If α and β be eliminated, there results

$$
\left.\begin{array}{l}
\frac{\epsilon^{\prime \prime}}{c^{2}} \frac{\partial^{2} X}{\partial t^{2}}=\frac{\partial^{2} X}{\partial z^{2}}-\frac{i v}{c^{2}} \frac{\partial^{2} Y}{\partial t^{2}} \tag{53}\\
\frac{\epsilon^{\prime \prime}}{c^{2}} \frac{\partial^{2} Y}{\partial t^{2}}=\frac{\partial^{2} Y}{\partial z^{2}}+\frac{i v}{c^{2}} \frac{\partial^{2} X}{\partial t^{2}}
\end{array}\right\}
$$

For the sake of integration set, as above on pages 404 and 426,

$$
\begin{equation*}
X=M e^{\frac{i}{\tau}}(t-p z), \quad Y=N e^{\frac{i}{\tau}(t-p z)} \tag{54}
\end{equation*}
$$

Then there results, from (53),

$$
\epsilon^{\prime \prime} M=p^{2} c^{2} M-i_{\nu} N, \quad \epsilon^{\prime \prime} N=p^{2} c^{2} N+i_{\nu} M
$$

ie. the two sets of equations

$$
\left.\begin{array}{ll}
p^{2} c^{2}=n^{2}\left(\mathrm{r}-i \kappa^{\prime}\right)^{2}=\epsilon^{\prime \prime}+\nu, & M=i N \tag{55}\\
p^{2} c^{2}=n^{\prime \prime 2}\left(\mathrm{r}-i \kappa^{\prime \prime}\right)^{2}=\epsilon^{\prime \prime}-v, & M=-i N .
\end{array}\right\}
$$

$n^{\prime}, \kappa^{\prime}$ correspond to left-handed, $n^{\prime \prime}, \kappa^{\prime \prime}$ to right-handed circularly polarized waves. From the meanings given to $\epsilon^{\prime \prime}$ and in (50) and (5 I) it follows that

$$
n^{2}\left(1-i \kappa^{\prime}\right)^{2}=\mathrm{r}+\sum \frac{\vartheta \mathfrak{N}}{(1)}
$$

If $\boldsymbol{\tau}$ does not lie close to a natural period, then th imaginary term in Θ, namely, $i \frac{a}{\tau}$, can be neglected, so the $\kappa^{\prime}=\kappa^{\prime \prime}=0$, and since Θ is always small in comparison wit I , and therefore in comparison with Θ,

$$
\left.\begin{array}{rl}
n^{\prime 2} & =\mathrm{I}+\sum \frac{\vartheta \Re}{\Theta}\left(\mathrm{I}+\frac{\Phi}{\Theta}\right) \\
n^{\prime \prime 2} & =\mathrm{I}+\sum \frac{\vartheta \Re}{\Theta}\left(\mathrm{I}-\frac{\Phi}{\Theta}\right) \cdot
\end{array}\right\}
$$

From (19) on page 407 the rotation δ of the plane polarization is

$$
\delta=z \frac{\pi}{\lambda_{0}}\left(n^{\prime \prime}-n^{\prime}\right)=z \frac{\pi}{\lambda_{0}} \frac{n^{\prime \prime} 2-n^{\prime 2}}{n^{\prime \prime}+n^{\prime}}
$$

If the mean of $n^{\prime \prime}$ and n^{\prime} be denoted by n, then

$$
\delta=z \frac{\pi}{\lambda_{0}} \frac{n^{\prime 2}-n^{\prime 2}}{2 n}
$$

Hence, from (57),

$$
\delta=-\frac{\pi}{n} \cdot \frac{z}{\lambda_{0}} \sum \frac{\vartheta \Re \Phi}{\Theta^{2}} .
$$

Thus the index of refraction n is given, to terms of the firs order in Φ, by

$$
n^{2}=\mathrm{I}+\sum \frac{\vartheta \mathfrak{N}}{\Theta}
$$

4. Dispersion in the Magnetic Rotation of the Plane c Polarization.-Upon introduction of the values of Θ and from (47) in the last equations they become

$$
\begin{gather*}
\delta=-\frac{\pi}{2 n} \frac{z}{\lambda_{0}{ }^{2}} \mathfrak{F} \sum \frac{\vartheta \Re}{\left(\mathrm{r}-\frac{b}{\tau^{2}}\right)^{2}} \cdot \frac{\vartheta}{e}, \\
n^{2}=\mathrm{I}+\sum \frac{\vartheta \Re}{\mathrm{I}-\frac{b}{\tau^{2}}} .
\end{gather*}
$$

If n^{2} can be represented with sufficient accuracy by the two-constant dispersion equation (cf. page 43I)

$$
\begin{equation*}
n^{2}=a+\frac{b}{\lambda^{2}-\lambda_{1}{ }^{2}} \tag{64}
\end{equation*}
$$

(λ, the wave length in air, is written for λ_{0}), then, from (62), i must be possible to represent δ by the two-constant dispersior equation

$$
\begin{equation*}
\delta=\frac{\mathrm{I}}{n}\left(\frac{\alpha^{\prime}}{\lambda^{2}}+\frac{b^{\prime} \lambda^{2}}{\left(\lambda^{2}-\lambda_{1}^{2}\right)^{2}}\right) . \tag{65}
\end{equation*}
$$

a^{\prime} and b^{\prime} must have different signs if but two different kinds o ions, one charged positively, the other negatively, are present This is the simplest assumption that can be made.

The agreement between (65) and observations upon carbor bisulphide and creosote is shown in the following tables:
bisulpitide of carbon.

$$
\lambda_{1}^{2}=0.0450, \quad a^{\prime}=+0.1167, \quad b^{\prime}=+0.2379
$$

Spectr. Linc.	δ calc.	δ obs.
C	0.592	0.592
D	0.760	0.760
E	0.996	1.000
G	1.225	1.234
G	1.704	1.704

CREOSOTE.

$$
\lambda_{1}^{2}=0.0340, \quad a^{\prime}=-0.070, \quad b^{\prime}=+0.380
$$

$\left[\begin{array}{c|c|c}\text { Spectr. Iine. } & \delta \text { calc. } & \delta \text { obs. } \\ \hline C & 0.573 & 0.573 \\ D & 0.744 & 0.758 \\ D & 0.987 & 1.000 \\ F & 1.222 & \mathbf{x . 2 4 4} \\ G & \mathrm{r} .723 & 1.723\end{array}\right]$

The agreement between theory and whervation is alms as good as that obtained by the hypothesis of molecular at rents (cf. pase 4.31).

5. The Impressed Period Close to a Natural Period.

 When the period of the light lies chose to a natural peris the friction term " cannot be neglected. Assume that T close to the natural period F_{1} of the ions of kind 1 , a write, therefore, $r=10_{1}(t \cdot \mid, r)=r_{1}\left(1 \mid, r^{\prime}\right)$, in which g small in comparison with 1 . Then in equation (56), sin Φ is small, it is possible to write in all the terms which under the sign Σ and do not correspond to the ions of kindso that, using the abbreviations
it follows from (50), if terms contains y^{r} in powers high than the first be neglected, and if $s^{\prime \prime} \cdot \frac{6}{6}$ be also neglected comparison with s or ϕ, that

The imaginary part of the right-hand side of (68) reaches largest value, ie. a lefthanded circularly polarized wi

But the maximum absorption for a right-handed circularly polarized wave occurs when

$$
\begin{equation*}
2 g=-\phi, \text { i.e. } \tau^{2}=\tau_{r}^{2}=\tau_{1}^{2}(\mathrm{I}-\phi) \tag{7x}
\end{equation*}
$$

Thus a small absorption band in incident natural light is doubled by the preschee of the magnetic field when the direction of the field is parallel to that of the light. In one of the bands the left-handed circularly polarized waze is strongly absorbed so that the transmitted lighet is weakenced and shows righthanded circular polariaation; in the other band the right-handed circularly polarized light is zunting.

The same result would be reached from the hypothesis A of the molecular currents.

If g is not small and if $2 g$ is numerically larger than ϕ, so that k is negligible in comparison with $2, y \pm \phi$, then in (68) and (69) κ^{\prime} and $\kappa^{\prime \prime}$ can be placed equal to zero, provided the right-hand sides are positive. Hence at some distance from the absorption band

$$
n^{\prime 2}=A+A^{\prime}+\frac{B}{2 g^{\prime}-\phi}, \quad n^{\prime \prime 2}=A-A^{\prime}+\frac{B}{2 S+\phi}
$$

(In order that the right-hand sides may be positive, the numerical value of A must be greater than that of $\left.\frac{B}{2 g \pm \phi}\right)$. From equation (59) on page 438, the amount of the rotation of the plane of polarization is

$$
\delta=-\frac{\pi}{n} \cdot \frac{z}{\lambda_{0}}\left(A^{\prime}+B \frac{\phi}{4 r^{r^{2}}-\phi^{2}}\right),
$$

in which

$$
\begin{equation*}
\left.n=\frac{1}{2}\left(\sqrt{A+} \cdot \beta, \overline{2 g}+\sqrt{A+\frac{\beta}{2 g+\phi}}\right),\right\} \tag{72}
\end{equation*}
$$

From this it appears that the rotation δ has the same sign upon both sides of the absorption band, and is nearly symmetrical with respect to this bancl, for, at least approximately, δ depends only upon δ^{2}. The same result follows from equa-
tion (62). If δ is positive, it appears from page 42 rotation takes place in the direction of paramagnetic currents. Since the sign of δ is not determined by the small term A^{\prime}, but by the much larger term $B \phi$: and since the numerical value of $2 g$ is to be large and since further B is always positive, the sign of only upon ϕ, i.e. upon the charge ε_{1}. When ϵ_{1} is i.e. when $\phi>0$, the direction of δ is opposite to t molecular currents, and further, $\tau_{t}>\tau_{r}$, i.e. that whose direction of rotation is in the sense of the currents reaches its maximum absorption for a slow T than the wave (r) whose direction of rotation is o that of the molecular currents. When c_{1} is negative of polarization is rotated in the direction of the currents. Then $\tau_{l}<\tau_{r}^{*}$, i.e. in general that wa direction of rotation is the same as that of the rot the plane of polarization reaches its maximum absc a shorter period than the wave which rotates in the direction.

All these results have been verified by experim sodium vapor. These experiments will be discus For both absorption lines of this vapor (the two D found to be negative. The truo D lines of sodium then produced by negatively charged ions.

The absorption at a place where $g=0$ may be vided ϕ is large in comparison with h. Then, by (68)

$$
n^{\prime 2}=A+A^{\prime}-\frac{B}{\phi}, \quad n^{\prime 2}=A-A^{\prime}+\frac{B}{\phi}
$$

The right-hand sides of these equations must be they are to have any meaning, i.e. the numerical v must be greater than that of $\frac{B}{\phi}$. The rotation δ of of polarization is then proportional to
δ is therefore large since ϕ is small. If e_{1} is positive, the rotation δ is in the same direction as the molecular currents, ie. within the absorption band the rotation is opposite to that just outside of the absorption band. Nevertheless the rotation δ need not pass through zero values, for at places where $n^{\prime} \kappa^{\prime}$ and $n^{\prime \prime} \kappa^{\prime \prime}$ have large but different values it is meaningless to speak of a rotation of the plane of polarization.
6. Rays Perpendicular to the Direction of Magnetization. -Let the z-axis be taken in the direction of the magnetization, the x-axis in that of the wave normal. Then x and t are the independent variables and equations (3), (43), and (51) give

$$
\left.\begin{array}{c}
\epsilon^{\prime \prime} \frac{\partial X}{\partial t}+i_{\nu} \frac{\partial Y}{\partial t}=0, \\
\frac{\mathrm{I}}{c}\left(\epsilon^{\prime \prime} \frac{\partial Y}{\partial t}-i_{\nu} \frac{\partial X}{\partial t}\right)=-\frac{\partial \gamma}{\partial x}, \\
\frac{\epsilon^{\prime}}{c} \frac{\partial Z}{\partial t}=\frac{\partial \beta}{\partial x}, \tag{74}\\
\alpha=0, \quad \frac{\mathrm{I}}{c} \frac{\partial \beta}{\partial t}=\frac{\partial Z}{\partial x}, \quad \frac{\mathrm{I}}{c} \frac{\partial \gamma}{\partial t}=-\frac{\partial Y}{\partial x} .
\end{array}\right\} .
$$

Elimination of β and γ gives

$$
\left.\begin{array}{c}
\epsilon^{\prime \prime} X+i v Y=0, \tag{75}\\
\frac{\epsilon^{\prime \prime}}{c^{2}} \frac{\partial^{2} Y}{\partial t^{2}}=\frac{\partial^{2} Y}{\partial x^{2}}+i \frac{v}{c^{2}} \frac{\partial^{2} X}{\partial t^{2}} \\
\frac{\epsilon^{\prime}}{c^{2}} \frac{\partial^{2} Z}{\partial t^{2}}=\frac{\partial^{2} Z}{\partial x^{2}}
\end{array}\right\} .
$$

If X be eliminated from the first two equations, there results

$$
\begin{equation*}
\left(\epsilon^{\prime \prime}-\frac{\nu^{2}}{\epsilon^{\prime \prime}}\right) \frac{\partial^{2} Y}{\partial t^{2}}=c^{2} \frac{\partial^{2} Y}{\partial x^{2}} \tag{76}
\end{equation*}
$$

Setting, for the sake of integration,

$$
X=M \cdot e^{\frac{i}{\tau}\left(t-p^{\prime} x\right)}, \quad Y=N e^{\frac{i}{\tau}\left(t-p^{\prime} x\right)}, \quad Z=\Pi e^{\frac{i}{\tau}(t-p x)},
$$

it follows from (75) and (76) that

$$
\begin{equation*}
\epsilon^{\prime \prime}-\frac{\nu^{2}}{\epsilon^{\prime \prime}}=p^{\prime 2} c^{2}, \quad \epsilon^{\prime}=p^{2} c^{2}, \quad M=-\frac{i v}{\epsilon^{\prime \prime}} N . \tag{7}
\end{equation*}
$$

The velocities of Z and Y are then different, i.e. the sui stance acts like a doubly refracting medium. For Z, i.e. for wave polarized at right angles to the direction of magnetize tion, the index of refraction and the coefficient of absorptio are obtained from

$$
p^{2} c^{2}=n^{2}(\mathrm{I}-i \kappa)^{2}=\epsilon^{\prime}=\mathrm{I}+\sum \frac{\vartheta \mathfrak{N}}{\Theta} ;
$$

for a wave polarized parallel to the direction of magnetizatio the following holds:

$$
n^{\prime 2}\left(\mathrm{I}-i \kappa^{\prime}\right)^{2}=\mathrm{I}+\sum \frac{\vartheta \mathfrak{N} \Theta}{\Theta^{2}-\Phi^{2}}-\frac{\left(\sum \frac{\vartheta \mathfrak{N} \Phi}{\Theta^{2}-\Phi^{2}}\right)^{2}}{\mathrm{I}+\sum \frac{\vartheta \mathfrak{R} \Theta}{\Theta^{2}-\Phi^{2}}} .
$$

The difference between n^{\prime} and n is in general very smal since it is of the second order in Φ provided Θ is not smal Hence this magnetic double refraction can only be observed the neighborhood of a natural period, since then Θ is ven small.
7. The Impressed Period in the Neighborhood of Natural Period. -Set as above $\tau=\tau_{1}(\mathrm{I}+g)=\sqrt{b_{1}}(\mathrm{I}+g$ and assume that g is small in comparison with I.

Then in every term under the sign Σ, save that whic corresponds to ions of kind I, Θ is to be considered a re quantity which is not very small. Φ^{2} is then negligible comparison with Θ^{2}.

Hence, using the abbreviations (67) on page 440,

$$
n^{\prime 2}\left(\mathrm{I}-i \kappa^{\prime}\right)^{2}=A+\frac{B}{(2 g+i h)^{2}-\phi^{2}}
$$

$$
\begin{equation*}
n^{\prime 2}\left(\mathrm{I}-i \kappa^{\prime}\right)^{2}=A+\frac{B[(2 g+i / 2) A+B]}{A\left[(2 g+i /)^{2}-\phi^{2}\right]+B(2 g+i / 2)} . \tag{80}
\end{equation*}
$$

Now for a metallic vapor the index of refraction is always arly equal to I , even when g is quite small. Hence it folws (cf. equation for n^{2} on page 44I) that A is almost equal I and b must be very small, so that in the second term of e right-hand side of (80), which contains the small factor B, can be neglected in comparison with A. Therefore

$$
\begin{equation*}
n^{\prime 2}(\mathrm{r}-i \kappa)^{2}=A+\frac{B(2 g+i \hbar)}{(2 g+i /)^{2}-\phi^{2}} . \tag{8I}
\end{equation*}
$$

The imaginary part, i.e. the absorption, will therefore be maximum, provided h is small, when

$$
\begin{equation*}
4 g^{2}-\phi^{2}=0, \quad \text { i.e. } \quad 2 g= \pm \phi \tag{82}
\end{equation*}
$$

Hence when the plane of polarization of the wave is wallel to the dircction of magnetization, there are two absorpon bands, one on each side of the single band which appears Len the magnetic field is not present.
For a wave whose plane of polarization is perpendicular to e direction of magnetization (78) gives

$$
\begin{equation*}
n^{2}(1-i \kappa)^{2}=A+\frac{B}{2 g+i / i} \tag{83}
\end{equation*}
$$

he absorption is a maximum at a place where $g=0$. Thus r a wave whose plane of polarization is perpendicular to the rection of magnetization the absorption is not altered by the cosence of the field.
If $2 g$ is large in comparison with h and ϕ, κ and κ^{\prime} are ry small, and approximately

$$
n^{\prime 2}=A+\frac{B}{2 g} \frac{A \cdot 4 g^{2}+B \cdot 2 g}{A\left(4 g^{2}-\phi^{2}\right)+B \cdot 2 g}, \quad n^{2}=A+\frac{B}{2 g}
$$

or, since $4 g^{2}$ is large in comparison with ϕ^{2}, approxir

$$
n^{\prime}-n=\frac{A B \phi^{2}}{16 n^{3} g^{-3}}
$$

i.e. the sign of $n^{\prime}-n$ depends upon the sign of g, bu pendent both of the direction of magnetization and of of ϕ. Voigt and Wiechert have succeeded in verif law of magnetic double refraction in the case of sodiun
8. The Zeeman Effect.-Zeeman discovered that vapor of a metal, like sodium or cadmium, is br incandescence in a magnetic field, a narrow line in its spectrum is resolved into two or three lines (a doul triplet) of slightly different periods. \dagger The doublet is when the direction of the magnetic lines is the sam direction of emission, the triplet when these directio right angles to each other. These observations are ϵ by the theoretical considerations given above \ddagger in cc with the law, which will be presented later, that the lines of a gas correspond to the same periods of vib the absorption lines.§ According to the preceding d the two separate lines of the doublet ought to show ri left-handed circular polarization, while in the triplet th line ought to be polarized in a plane which is perpend the direction of the magnetization, and the two oute a plane which is parallel to it. These conclusions are verified by the experiment. From measurements two triplets into which the two sodium lines $\left(D_{1}\right.$ and

[^99]esolved, Zeeman obtained for the distance $2 g$ between the wo outer lines of the triplet, when the strength of the magetic field was $\mathfrak{I}=22,400$, the value $2 g=2: 17,800$. Now, from (82) and (67),
$$
2 g=\phi=\frac{\vartheta_{1} \mathfrak{S}}{2 \pi c \tau_{1} e_{1}}
$$
r since $\tau_{1}=\sqrt{\bar{b}_{1}}$, and consequently, from (45) on page 436, ${ }_{1}=4 \pi \tau_{1}^{2} e_{1}^{2}: m_{1}$, it follows that
\[

$$
\begin{equation*}
2 g=\phi=\mathfrak{S} \tau_{1} \frac{e_{1}}{c n_{1}}=\frac{\sqrt{5} T_{1}}{2 \pi} \cdot \frac{c_{1}}{c m n_{1}} \tag{85}
\end{equation*}
$$

\]

f the values of $2 g$, $\mathfrak{F}_{\mathrm{c}}$, and T_{1} for sodium light be introduced, here results

$$
\frac{e_{1}}{c m_{1}}=1.6 \cdot 1 \mathrm{O}^{7} .
$$

This number represents the ratio of the charge of the ion, neasured in electromagnetic units, to its apparent mass (cf. ote on page 383). From observations upon a cadmium ine ($\lambda=0.48 \mu$) this ratio is determined as $2.4 \cdot 10^{7}$.*

Michelson has shown from more accurate observations, nade both with the interferometer and with the echelon specroscope, that in general the emission lines are not resolved imply into doublets and triplets but into more complicated orms. \dagger This is to be expected when, as is the case with

* It is to be noted that Kaufmann obtained from the magnetic deflection of the kathode rays (Wied. Ann. 65, p. 439, 1898) almost the same number (I. $86 \cdot 10^{7}$) or the ratio of the charge to the mass of the particles projected from the kathode. For the ions of electrolysis this ratio is much smaller $\left(9.5 \cdot 10^{3}\right.$ for hydrogen, I.I. IO^{2} for sodium). This can be accounted for either by assuming that an lectrolytic ion contains a large number of positively and negatively charged paricles (electrons) which are held firmly together in electrolysis but are free to move y themselves in a high vacuum, or to vibrate so as to give out light ; or that the lectrolytic ion consists of a combination of an electric charge e_{1} of apparent mass n_{1} with a large uncharged mass M. In a slowly changing electric field or in a :onstant current the electron clings fast to the mass M. But in a rapidly changing

Michelson's experiments, the method of investigation is carried to such a degree of refinement that the emission lines are found, even in the absence of the magnetic field, to have a structure more complicated than is assumed in the above theoretical discussion, i.e. when an emission line is shown to be a close double. Furthermore, a theoretical extension of equation (46) is possible if the influence of the motion of neighboring ions is taken into account. In this case in that equation the second differential coefficient of the electric force with respect to the coordinates would appear, and the magnetic resolution of the absorption and emission lines would be more complicated.*

A very powerful grating or prism is necessary for observing the Zeeman effect directly. Hence it is more convenient to use a method of investigation described by Konig \dagger in which a sodium flame in a magnetic field is observed through another such flame outside the field. If the line of sight is perpendicular to the field, the first flame appears bright and polarized. From Kirchhoff's law as to the equality of emission and absorption, only those vibrations of the magnetized sodium flame whose period in the magnetic field is the same as without the field can be absorbed by the unmagnetized sodium flame. Perhaps the phenomenon observed by Egoroff and Georgiewsky, \ddagger that a sodium flame in a magnetic field emits partially polarized light in a direction perpendicular to the field, can also be explained in this way, i.e. by absorption in the outer layers of the flame, the field being non-homogeneous. But even if the field were perfectly homogeneous, this phenomenon could be theoretically explained, since the total absorption $n^{\prime} \kappa^{\prime}$ for the waves polarized in the direction of magnetization, when calculated from equation (80) for all

[^100] longitudinal magnetic effects. What is the physical significance of such an effect
possible values of g, is found to be somewhat different from the total absorption $n \kappa$ of the waves polarized in a plane which is perpendicular to the magnetization when this is calculated from (83) for all possible values of g.*
9. The Magneto-optical Properties of Iron, Nickel, and Cobalt.-Although it has been shown above that in the case of metallic vapors the conception of molecular currents does not lead to a satisfactory explanation of the phenomena, yet this concept must be retained in order to account for the mag-neto-optical properties of the strongly magnetic metals. This is most easily proved by the fact that, in the case of these metals, the magneto-optical effects are proportional to the magnetization, and therefore reach a limiting value when the magnetization is carried to saturation, even though the outer magnetic field is continuously increased. \dagger The explanation based upon the Hall. effect would not lead to such a limiting value, \ddagger since the magneto-optical effects would then be proportional to the magnetic induction of the substance, i.e. proportional to the total density of the lines of force. It is true that, strictly speaking, the Hall effect is never entirely absent, even upon the hypothesis of molecular currents; nevertheless the experimental results show that, in the case of iron, nickel, and cobalt, the influence of the molecular currents is very much greater than that of the Hall effect, so that, for simplicity, the terms which represent the Hall effect will now be neglected.

[^101]a. Transmitted Light.-When a plane wave P through a thin film of iron which is magnetized 1 ' to its surface, the equations in $\S 3$ on page 426 Denote by n and κ the index of refraction ancl of absorption of the unmagnetized metal, by corresponding quantities for the left-handed circul wave, by $n^{\prime \prime}$ and $\kappa^{\prime \prime}$ the same quantities for the circularly polarized wave. Then from (28) anc 427, retaining only terms of the first order in \boldsymbol{V},
\[

$$
\begin{aligned}
p^{\prime} c=n^{\prime}\left(\mathrm{I}-i \kappa^{\prime}\right) & =\sqrt{\epsilon^{\prime}}\left(\mathrm{I}-\frac{\nu}{2 c \tau}\right) \\
p^{\prime \prime} c=n^{\prime \prime}\left(\mathrm{I}-i \kappa^{\prime \prime}\right) & =\sqrt{\epsilon^{\prime}}\left(\mathrm{I}+\frac{\nu}{2 c \tau}\right) \\
n(\mathrm{I}-i \kappa) & =\sqrt{\epsilon}
\end{aligned}
$$
\]

If v be supposed to have the form

$$
v=a+b i,
$$

in which a and b are real, then

$$
n^{\prime \prime}-n^{\prime}=\frac{n}{c \tau}(a+b \kappa), \quad n^{\prime \prime} \kappa^{\prime \prime}-n^{\prime} \kappa^{\prime}=\frac{n}{c \tau} \text {. }
$$

The second of these equations asserts that t left-handed circularly polarized waves are absorll amounts; while the first one, in connection with 407 (provided the difference between $n^{\prime \prime} \kappa^{\prime \prime}$ ancl so that the emergent light is approximately pla shows that the rotation δ^{*} of the plane of polax termined by

$$
\delta=\frac{z}{2 c \tau}\left(n^{\prime \prime}-n^{\prime}\right)=2 \frac{\pi^{2}}{\lambda_{0}^{2}} z n(\alpha+\zeta \kappa
$$

in which it is assumed that $\lambda_{0}=c T=2 \pi c \tau$.
The film of metal must be very thin (a frac
rotation is observable; for example, when $z=0.332 \lambda_{0}$ the rotation of red light ($\lambda_{0}=0.00064 \mathrm{~mm}$.) in the case of iron magnetized to saturation is $\delta=4.25^{\circ}$. This would give for the rotation produced by a plate of iron I cmn. thick the enormous value $\delta=200000^{\circ}$. From these observations and (89) there results, for red light and for iron magnetized to saturation, the centimetre being the unit of length,

$$
\begin{equation*}
n(a+b \kappa)=0.758 \cdot 10^{-6} \tag{90}
\end{equation*}
$$

The sign of $a+b \kappa$ is positive since the rotation δ takes place in the direction of the molecular currents in paramagnetic substances.

The relation between the rotation δ and the period τ or the wave length λ_{0} is obtained from equations (20) and (2I) on page 425 , taken in connection with (87) and (89). It is a noteworthy fact that δ decreases as λ_{0} decreases.* This result is seen from equation (89) to be probable, since n and $n k$ actually decrease rapidly as λ_{0} decreases, and since, from (2 1), it appears that a and b likewise decrease as λ_{0} decreases, provided only one kind of conduction ions is particularly effective in producing the magneto-optical phenomena.
b. Reflected Light (Kerr Effect). -In order that the properties of the light reflected from a magnetized mirror may be calculated, the boundary conditions which hold at the surface of the mirror must be set up. These conditions can be obtained from the differential equations (18) and (19) on page 425 , and the consideration that the surface of the mirror is in reality a very thin non-homogeneous transition layer in which these differential equations also hold (cf. page 426).

If the surface of the mirror is taken as the $x y$-plane, the boundary conditions are found, by a method similar to that used on page 27I, to be

Continuity of

$$
\begin{equation*}
\alpha, \beta, X-\frac{\mathrm{r}}{c} \frac{\partial}{\partial t}\left(\nu_{y} Z-\nu_{s} Y\right), \quad Y-\frac{\mathrm{r}}{c} \frac{\partial}{\partial t}\left(\nu_{z} X-\nu_{x} Z\right) \tag{9I}
\end{equation*}
$$

[^102]From these conditions a theoretical explanation of the effect discovered by Kerr can be deduced.* This effect \dagger consists in a slight rotation of the plane of polarization of light reflected from a magnetized mirror, when the incident light is planepolarized either in or perpendicular to the plane of incidence. This can only be due to some peculiar effect of magnetization, since without magnetization there is complete symmetry and no such effect would be possible.

1o. The Effects of the Magnetic Field of the Ray of Light.-It has been shown above that a powerful external magnetic field produces a change in the optical properties of a substance. Now the question arises whether, with delicate methods of observation, an effect due to the magnetic field of the light itself might not be detected in the absence of an external field.

If, first, only the terms representing the Hall effect be taken into account, i.e. if it be assumed that there are no molecular currents (revolving ions), then the equations to be used are (cf. page 435)

$$
\begin{array}{r}
\frac{4 \pi j_{x}}{c}=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}, \text { etc., } \frac{1}{c} \frac{\partial \alpha}{\partial t}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}, . \\
4 \pi j_{x}=\frac{\partial X}{\partial t}+4 \pi \Sigma e \Re \frac{\partial \xi}{\partial t}, . . \\
4 \pi e \xi=\frac{\vartheta}{\Theta}\left(X+\frac{1}{c}\left[\gamma \frac{\partial \eta}{\partial t}-\beta \frac{\partial \zeta}{\partial t}\right]\right), . \\
\Theta=1+i \frac{a}{\tau}-\frac{b}{\tau^{2}} . . \tag{95}
\end{array}
$$

if

[^103](94) is the characteristic equation of this problem. This shows, since η and ζ are approximately proportional to Y and Z, that the differential equations of the electromagnetic field are no longer linear in $X, Y, Z, \alpha, \beta, \gamma$. This means that the optical propertics must depend upon the intensity of the light. Such a dependence has never yet been observed, and it can easily be shown that the correction terms in (94), which represent the departures from the equation heretofore used, namely,
$$
4 \pi e \xi=\frac{\vartheta}{\Theta} X,
$$
are so small that their effect could not be observed. Since the magnetic force α, β, γ is equal to, or at least of the same order of magnitude as, the electric force X, Y, Z, it is necessary to find the value of $\frac{1}{c} \frac{\partial \eta}{\partial t}, \frac{\mathrm{I}}{c} \frac{\partial \xi}{\partial t}$, i.e. to find the ratio of the velocity of the ion to the velocity of light. Now approximately, from (94),
$$
\xi=\frac{\vartheta}{4 \pi e \Theta} X
$$
i.e., when
\[

$$
\begin{gather*}
X=A \cdot \sin 2 \pi\left(\frac{t}{T}-\frac{z}{\lambda}\right) \\
\frac{\mathrm{I}}{c} \frac{\partial \xi}{\partial t}=\frac{2 \pi}{c T} \cdot \frac{\vartheta}{4 \pi e \Theta} A \cdot \cos 2 \pi\left(\frac{t}{T}-\frac{z}{\lambda}\right) \tag{96}
\end{gather*}
$$
\]

Now, according to page 436 , the natural period T_{0} of the ion is determined in the following way:

$$
\tau_{0}^{2}=\left(\frac{T_{0}}{2 \pi}\right)^{2}=b=\frac{m \vartheta}{4 \pi e^{2}},
$$

THEORY OF OPTICS

A substitution of this value in (96) shows that the las which $\frac{\mathrm{r}}{c} \frac{\partial \xi}{\partial t}$ can have as the time changes is

$$
\frac{\mathrm{I}}{c} \frac{\partial \xi}{\partial t}=\frac{T_{0}^{2}}{2 \pi T \Theta} \cdot \frac{e}{m c} A
$$

If in this Θ be set equal to $\mathrm{I}-\frac{T_{0}^{2}}{T^{2}}$, a substitution permissible provided T is not close to T_{0}, it follows

$$
\frac{\mathrm{I}}{c} \frac{\partial \xi}{\partial t}=\frac{T}{2 \pi} \cdot \frac{e}{m c} \cdot \frac{T_{0}^{2}}{T^{2}-T_{0}^{2}} \cdot A
$$

$e: m c$ has for sodium vapor the value $1.6 \cdot 10^{7}$ 447). This value will be used in what follows. the visible spectrum $T=2 \cdot 10^{-15}$ approximately (98) may be written

$$
\frac{\mathrm{I}}{c} \frac{\partial \xi}{\partial t}=A \cdot \frac{T_{0}^{2}}{T^{2}-T_{0}^{2}} \cdot 5 \cdot 10^{-9}
$$

It is first necessary to find a value for A, i. strength of field in an intense ray of light. A sq on the surface of the earth receives from the sun kilogrammetres of energy in a second, i.e. r.22.Ic units (ergs) to the square centimeter. But from equ on page 273 , for a plane wave of natural light of am the energy flow $d E$ in unit time through unit surfac air or in vacuum is*

$$
d E\left(\text { in I sec per } \mathrm{cm} .^{2}\right)=\frac{c}{4 \pi} A^{2}
$$

[^104]$\sqrt{7}$ rom which, if half of the energy of the sun's radiation is ascribed to visible rays, the maximum strength of the electric field in sunlight is *
$$
A=\sqrt{\frac{4 \pi}{c} \cdot 0.6 \mathrm{r} \cdot \mathrm{ro}^{3}}=\mathrm{I} .6 \cdot \mathrm{IO}^{-2}=0.016 . \dagger . \quad(\mathrm{IOI})
$$

Hence for intense sunlight

$$
\begin{equation*}
\frac{1}{c} \frac{\partial \xi}{\partial t}=8 \cdot 10^{-11} \frac{T_{0}^{2}}{T^{2}-T_{0}^{2}} . \tag{102}
\end{equation*}
$$

This expression is always small provided T is not close to T_{0}. But even if, for example, $T: T_{0}=60: 59$ (sodium flame illuminated by light of wave length $\lambda=0.0006 \mathrm{~mm}$.), $T_{0}^{2}: T^{2}-T_{0}^{2}=30$, and the value of (IOI) is still very small.

If the velocity of a plane wave be calculated from (94), it is easy to see that its dependence upon the magnetic correction terms is of the second order, i.e. the change in the velocity of light produced by an increase in intensity from zero to that of sunlight would be of the order $10^{-20} V$. Hence the conclusion may be drawn that an obscriable magncto-optical effect due to the magnetic ficld of the light itself docs not exist. There might be some question as to this conclusion in the case in which the period of the incident light very nearly coincides with the natural period (sodium vapor illuminated by sodium light). But the absorption which would then take place would render impossible a decisive test as to whether or not in this case the index of refraction varies with the intensity.

If now molecular currents (revolving ions) be assumed, equations (3), (4), (5) on page 420 sq. become applicable. If it were necessary to consider only one kind of revolving ion, then, from (31) on page 429, the density γ_{1} of the lines of force might be set equal to $(\mu-\mathrm{I}) \gamma, \mu$ being the permeability

[^105]of the substance. In this it is assumed that the magn of the substance can follow instantaneously the rapid in γ. If this should not be the case, it would be nece give μ a value smaller than that which is obtained wit stant field. Hence equations (3) and (4) take the form
$$
\frac{\mathrm{I}}{c} \frac{\partial}{\partial t}\left(\alpha+(\mu-\mathrm{I}) \gamma \frac{\partial \xi}{\partial z}+\ldots\right)=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}
$$

Now $\frac{\partial \xi}{\partial z}$ is of the same order of magnitude as $\frac{\mathrm{I}}{c} \frac{\partial \xi}{\partial t}$ (the two quantities are the same). Hence the magnet correction terms of (IO3) are very small even when μ as large a value as 1000 , as is the case for iron; for th terms are of the order of magnitude $1000 \cdot 10^{-10}=1$ that the magneto-optical effcct due to the magnetic fic: light itself could never be detected in iron. even if the met tion of the iron wevere able to followe completcly the rapict of ficld which take place in a light-wave. This also why in a constant magnetic field the molecular curre rise to a permeability which is greater than unity, light-ribrations the same substance acts as thoughe meability were equal to unity. But this is not duc to of lag in the magnctization, for the conclusions here cla independent of such lag.

CHAPTER VIII

BODIES IN MOTION

x. General Considerations.-In what has preceded the optical properties of substances have been explained on the assumption of movable ionic charges. In this explanation the substance as a whole was considcred to be at rest. But a motion of a substance as a whole produces a modification in its optical properties. In order to be able to develop a theory for this case, an hypothesis must be made as to whether the charged ions alone are carricd along by the motion of the substance, or whether the ether which lies between these ions is also carried along in whole or in part. The assumption which will be adopted here is that the ether aleuays remains completely at rest. Upon this basis H. A. Lorentz* has developed a complete and elegant theory. It is essentially this theory which is here presented. The conception of an cther absolutely at rest is the most simple and the most natural, -at least if the ether is conceived to be not a substance but merely space endowed with certain physical properties. Moreover the explanation of aberration presents insuperable difficulties if the cther is not assumed to be at rest. Lorentz has shown that the theory of a stationary ether is essentially in agreement with all the observations which bear upon this point. This matter will be more fully discussed below.
2. The Differential Equations of the Electromagnetic Field Referred to a Fixed System of Coordinates.-The
(7) and (II) of the Maxwell electromagnetic the 265 and 267), namely,

$$
\frac{4 \pi}{c} j_{x}=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}, \text { etc. }, \quad \frac{4 \pi}{c} s_{x}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}
$$

It has already been shown [equation (7), page 3 there is present only one kind of ion, whose cl whose number in unit volume is \mathfrak{N}, the comp electric current density are given by

$$
4 \pi j_{x}=\frac{\partial X}{\partial t}+4 \pi e \Re \frac{\partial \xi}{\partial t}
$$

In this ξ denotes the x-component of the displa ion from its position of equilibrium within the the ions be given a constant velocity whose co v_{x}, v_{y}, v_{s}, then the above equations take the form:

$$
\begin{aligned}
& 4 \pi j_{x}=\frac{\partial X}{\partial t}+4 \pi e \Re \frac{d \xi}{d t}+4 \pi e \Re v_{x} \\
& 4 \pi j_{y}=\frac{\partial Y}{\partial t}+4 \pi e \Re \frac{d \eta}{d t}+4 \pi e \Re v_{y} \\
& 4 \pi j_{x}=\frac{\partial Z}{\partial t}+4 \pi e \Re \frac{d \zeta}{d t}+4 \pi e \Re v_{x}
\end{aligned}
$$

In these equations the differential coefficient to the time are purposely written in the two for

The first means that the change with respect some quantity at a definite point in space is c second that the change in some quantity with time at a definite point in the substance is under Hence, if the components of the velocity of the v, v, v, then in the formation of the differen
change in position alters the quantities to be differentiated by $v_{x} d t \frac{\partial}{\partial x}, v_{y} d t \frac{\partial}{\partial y}, v_{z} d t \frac{\partial}{\partial z}$, when x, y, z are referred to a fixed system of coordinates, so that finally the relation holds

$$
\begin{equation*}
\frac{d}{d t}=\frac{\partial}{\partial t}+v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}+v_{z} \frac{\partial}{\partial z} . \tag{3}
\end{equation*}
$$

Now the terms $\frac{d \xi}{d t}$, etc., must appear in equations (2) because the entire velocity of the ions is composed of the velocity of translation v_{x} of the substance, and the velocity of the ion with respect to the substance. This last is represented by $\frac{d \xi}{d t}$, not by $\frac{\partial \xi}{\partial t}$.

For the components of the magnetic current density the equations (13) on page 268 hold, namely,

$$
\begin{equation*}
4 \pi s_{x}=\frac{\partial \alpha}{\partial t}, \quad 4 \pi s_{y}=\frac{\partial \beta}{\partial t}, \quad 4 \pi s_{z}=\frac{\partial \gamma}{\partial t} \tag{4}
\end{equation*}
$$

since it is proposed to neglect the effect of any external magnetic field, and since, in accordance with page 456, the permeability μ of all substances is equal to unity for optical periods.

If the substance has no velocity of translation, i.e. if $v_{x}=v_{y}=v_{z}=0$, then the equation of motion of an ion is (cf. page 383)

$$
m \frac{\partial^{2} \xi}{\partial t^{2}}+r e^{2} \frac{\partial \xi}{\partial t}+\frac{4 \pi e^{2}}{\vartheta} \xi=e X .
$$

Now it will be assumed that the influence of the substance upon the ion is not affected by the motion of the substance. Nevertheless the differential equation must be modified because of the fact that the ions share in the motion of the sustance, and a moving ion is equivalent to an electric current whose components are proportional to $e v_{x}, e v_{y}, e v_{x}$. The magnetic
force α, β, γ acts upon this current. Hence the e motion of an ion is (cf. similar discussion on page 4 .

$$
m \frac{d^{2} \xi}{d t^{2}}+r e^{2} \frac{d \xi}{d t}+4 \pi \frac{e^{2}}{\vartheta} \xi=e X+\frac{e}{c}\left(v_{y} \gamma-v_{s}\right.
$$

Here, too, it is to be observed that $\frac{d}{d t}$ appears, b since (5) expresses the relative motion of the ions w to the substance.

When the changes in X or ξ are periodic, it is write

$$
\frac{d \xi}{d t}=\frac{i}{\tau^{\prime}} \xi, \quad \frac{d^{2} \xi}{d t^{2}}=-\frac{1}{\tau^{\prime 2}} \xi .
$$

τ^{\prime} is then equal to the period T^{\prime} divided by 2π. N it is to be observed that this period T^{\prime} is the rela with respect to the moving substance, and not th period T referred to a fixed system of coordina important to distinguish between T and T^{\prime}; thus, fo $T^{\prime}>T$ when the substance moves in the direct propagation of the light. In the case of plane wave all the quantities are proportional to

$$
e^{\frac{i}{\tau}}\left(t-\frac{p_{1} x+p_{2} y+p_{3} z}{\omega}\right)
$$

in which x, y, and z refer to a fixed coordinat $\tau=T: 2 \pi$ is proportional to the absolute period T.

* For the reasons discussed on page 455 the terms $\frac{\gamma}{c} \frac{d \eta}{d t}$, etc., are the right-hand side of (4), for they are too small to be considered. of the earth $v: c=10^{-4}$, i.e. it is of an entirely different order of m $\frac{d \eta}{d t}: c$. Also in Fizeau's experiment with running water, which wil later, in which $v: c$ has a still smaller value, it is onl the terms

Now, from (3) and (6),

$$
\frac{\mathrm{I}}{\tau^{\prime}}=\frac{\mathrm{I}}{\tau}\left(\mathrm{I}-\frac{p_{1} v_{x}+p_{2} v_{y}+p_{3} v_{z}}{\omega}\right) ;
$$

ie., if the velocity v is small in comparison with ω,

$$
\begin{equation*}
\frac{\tau^{\prime}}{\tau}=\frac{T^{\prime}}{T}=\mathrm{I}+\frac{p_{1} v_{x}+p_{2} v_{y}+p_{3} v_{z}}{\omega}=\mathrm{I}+\frac{v_{n}}{\omega} \tag{7}
\end{equation*}
$$

in which v_{n} denotes the velocity of the substance in the diractimon of the wave normal.

If the abbreviations used on page 386 , namely,

$$
\begin{equation*}
a=\frac{r \vartheta}{4 \pi}, \quad b=\frac{m \vartheta}{4 \pi e^{2}}, \tag{8}
\end{equation*}
$$

be introduced into (5), there results

$$
\begin{equation*}
4 \pi e \xi\left(\mathrm{I}+i \frac{a}{\tau^{\prime}}-\frac{b}{\tau^{\prime 2}}\right)=\vartheta\left(X+\frac{v_{y} \gamma-v_{z} \beta}{c}\right) \tag{9}
\end{equation*}
$$

In equations (2) $e \Re$ means the charge present in unit volume.

If the value of $e \mathfrak{N}$ [cf. page 270, equation (20)] obtained from (the dielectric constant ϵ of the ether is set equal to I)

$$
\begin{equation*}
4 \pi e \Re=\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z} \tag{IO}
\end{equation*}
$$

be substituted in (2), there results

$$
\begin{align*}
4 \pi j_{x}=\frac{\partial X}{\partial t} & +v_{x}\left(\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}\right) \\
& +\frac{\mathfrak{N \vartheta}}{\mathrm{I}+i^{a} / \tau^{\prime}-b / \tau^{\prime \prime}} \frac{d\left(X+\frac{v_{y} \gamma-v_{x} \beta}{c}\right)}{d t} \tag{II}
\end{align*}
$$

If several kinds of molecules are present, the first factor of the last term of this equation becomes, provided $i \frac{\alpha}{\boldsymbol{\tau}^{\prime}}$ be neg-
lected, i.e. provided the substance hats no appreciab tion,

$$
\sum \frac{9(y)}{\mathrm{I}+i^{\prime \prime} / r^{\prime}-1 / r^{\prime 2}}=n^{2}-\mathrm{I} .
$$

In this equation n is the index of refaction con th the perided $T^{\prime}=2 \pi r^{\prime}$ when the substance is at res tion (12) is derived from the theory of dispersion |ct (IS) on page 387]. If now in equation (11) the cocfficient ${ }^{d} t^{\prime}$ be replateed by its walue in terms of " $1 t^{t}$ (3), and if the resultins value for $4 \pi /$, be substitute differental equation is ohtained for the substance referred to a fixed system of coordinates. This © much simplified if only terms in the first order in : be It is always permissible to nespect the other terms, when er represents the velocity of the carth in space very small in comparison to the velocity of lieht. possible to replace ${ }^{d}$ by ${ }^{d}$ ot in these terms in (ti) multiplied by a, and alse to mesplect, in the case geneous substances, the second term of (ti) which is by $a^{\prime} x$, since aproximately, i.c. for ${ }^{2}$ ", for change of condition in such substances the followin holds (cf. page 275):

Thus (iI) becomes
hence $4 \pi j_{x}$ may be written in the form

$$
\begin{aligned}
& 4 \pi j_{x}=n^{2} \frac{\partial X}{\partial t}+\left(n^{2}-1\right)\left\{2\left(v_{x} \frac{\partial X}{\partial x}+v_{y} \frac{\partial X}{\partial y}+v_{z} \frac{\partial X}{\partial z}\right)\right. \\
&\left.-\frac{\partial}{\partial x}\left(v_{x} X+v_{y} Y+v_{z} Z\right)\right\}
\end{aligned}
$$

Hence, in view of (I) and (4), there result for a moving, homogeneous, isotropic medium whose points are referred to a fixed system of coordinates the following differential equations:

$$
\left.\begin{array}{r}
\frac{n^{2}}{c} \frac{\partial X}{\partial t}+\frac{n^{2}-\mathrm{I}}{c}\left\{2\left(v_{x} \frac{\partial X}{\partial x}+v_{y} \frac{\partial X}{\partial y}+v_{z} \frac{\partial X}{\partial z}\right)\right. \\
\left.\quad-\frac{\partial}{\partial x}\left(v_{x} X+v_{y} Y+v_{x} Z\right)\right\}=\frac{\partial \gamma}{\partial y}-\frac{\partial \beta}{\partial z}, \\
\frac{n^{2}}{c} \frac{\partial Y}{\partial t}+\frac{n^{2}-\mathrm{I}}{c}\left\{2\left(v_{x} \frac{\partial Y}{\partial x}+v_{y}^{\prime} \frac{\partial Y}{\partial y}+v_{z} \frac{\partial Y}{\partial z}\right)\right. \\
\left.\quad-\frac{\partial}{\partial y}\left(v_{x} X+v_{y}^{\prime} Y+v_{x} Z\right)\right\}=\frac{\partial \alpha}{\partial z}-\frac{\partial \gamma}{\partial x}, \\
\frac{n^{2}}{c} \frac{\partial Z}{\partial t}+\frac{n^{2}-1}{c}\left\{2\left(v_{x} \frac{\partial Z}{\partial x}+v_{y} \frac{\partial Z}{\partial y}+v_{z} \frac{\partial Z}{\partial z}\right)\right. \\
\left.\quad-\frac{\partial}{\partial z}\left(v_{x} X+v_{y} Y+v_{x} Z\right)\right\}=\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial y},
\end{array}\right\}
$$

$\frac{\mathrm{I}}{c} \frac{\partial \alpha}{\partial t}=\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}, \quad \frac{\mathrm{I}}{c} \frac{\partial \beta}{\partial t}=\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}, \quad \frac{\mathrm{I}}{c} \frac{\partial \gamma}{\partial t}=\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x}$.
Differentiation of equations (15) with respect to x, y, and z respectively and addition gives, with the use of the abbreviatron

$$
\begin{gather*}
\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}=F \\
\frac{n^{2}}{c} \frac{\partial F}{\partial t}+\frac{n^{2}-1}{c}\left\{2\left(v_{x} \frac{\partial F}{\partial x}+v_{y} \frac{\partial F}{\partial y}+v_{z} \frac{\partial F}{\partial z}\right)\right. \\
 \tag{16}\\
\left.-\left(v_{x} \Delta X+v_{y} \Delta Y+v_{z} \Delta Z\right)\right\}=0
\end{gather*}
$$

In the terms which are multiplied by τ_{x}^{\prime}, etc., th approximations may be used:

$$
\begin{gathered}
F=0, \\
\Delta X=\frac{n^{2}}{c^{2}} \frac{\partial^{2} X}{\partial t^{2}}, \quad \Delta Y=\frac{n^{2}}{c^{2}} \frac{\partial^{2} Y}{\partial t^{2}}, \quad \Delta Z=\frac{n^{2}}{c^{2}}
\end{gathered}
$$

Hence, from (16),

$$
F=\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}=\frac{n^{2}-1}{c^{2}} \frac{\partial}{\partial t}\left(\tau^{\prime} x^{\prime} X+\tau_{y}^{\prime} Y+z\right.
$$

This equation asserts that in the moring sulistan trical force cannot be propasated as a plane transz since F is not equal to zero. Fiut the magnetic fo other hand, can be so propascatced, since, from (15 '),

$$
\frac{\partial}{\partial t}\left(\frac{\partial \alpha}{\partial x}+\frac{\partial \beta}{\partial y}+\frac{\partial \gamma}{\partial z}\right)=0 .
$$

The differential equations (15) and (15) may transformed into equations cach of which contains the quantities $X, Y, Z, \alpha, \beta, \gamma$. For example, if equations (15) be differentiated with respect to t, anc $\frac{\partial \beta}{\partial t}$ be replaced by their values taken from $\left(15^{\prime}\right)$, th

$$
\begin{aligned}
& \frac{n^{2} \partial^{2} X}{c^{2} t^{2}}+\frac{n^{2}-I}{c^{2}}\left\{2 \frac{\partial}{\partial t}\left(v_{x}^{\prime} \frac{\partial X}{\partial x}+\tau_{y}^{\prime} \frac{\partial X}{\partial y}+\tau_{x}^{\prime} \frac{\partial X}{\partial z}\right)\right. \\
& \left.\quad-\frac{\partial^{2}}{\partial t \partial x}\left(v_{x} X+v_{y}^{\prime} Y+v_{x}^{\prime} Z\right)\right\}=\Delta X-\frac{\partial}{\partial x}\left(\frac{\partial X}{\partial x}+\frac{C}{\partial x}\right.
\end{aligned}
$$

In consideration of (I8) this becomes

$$
\frac{n^{2}}{c^{2}} \frac{\partial^{2} X}{\partial t^{2}}+2 \frac{n^{2}-1}{c^{2}} \frac{\partial}{\partial t}\left(z_{x}^{\prime} \partial X^{\prime} x+z_{y}^{\prime} \partial y+z_{x}^{\prime} \partial z\right)=
$$

3. The Velocity of Light in Moving Media.-From the last equation the velocity of light in a moving medium can be simply calculated. Setting

$$
\begin{equation*}
X=A \cdot e^{\frac{i}{\tau}\left(t-\frac{p_{1} x+p_{2} y+p_{3} z}{\omega}\right)}, \tag{2I}
\end{equation*}
$$

there results, from (20),

$$
\frac{n^{2}}{c^{2}}-\frac{2\left(n^{2}-1\right)}{c^{2}} \frac{p_{1} v_{x}+p_{2} v_{y}+p_{3} v_{x}}{\omega}=\frac{\mathrm{I}}{\omega^{2}}
$$

or

$$
\begin{equation*}
\frac{n^{2}}{c^{2}}\left(\mathrm{I}-\frac{2\left(n^{2}-\mathrm{I}\right)}{n^{2}} \frac{v_{n}}{\omega}\right)=\frac{\mathrm{I}}{\omega^{2}}, \tag{22}
\end{equation*}
$$

in which v_{n}^{\prime} denotes the velocity of translation of the medium in the positive direction of the wave normal. Hence, to terms of the first order in $z^{\prime} n$,

$$
\omega^{2}=\frac{c^{2}}{n^{2}}\left(\mathrm{I}+\frac{2\left(n^{2}-\mathrm{I}\right)}{n^{2}} \cdot \frac{v_{n}}{\omega}\right)
$$

i.e.

$$
\omega=\frac{c}{n}\left(\mathrm{I}+\frac{n^{2}-\mathrm{I}}{n^{2}} \cdot \frac{z^{\prime} n}{\omega}\right) .
$$

If, in the term on the right-hand side which contains v_{n}, ω be replaced by its approximate value $c: n$,

$$
\begin{equation*}
\omega=\frac{c}{n}+\frac{n^{2}-\mathrm{I}}{n^{2}} v_{n} . \tag{23}
\end{equation*}
$$

This equation asserts that the motion of a medium has the same effect upon the z'clocity of light as thoughl it communnicated to. the ether a certain fraction (namely, $\frac{n^{2}-1}{n^{2}}$) of its volocity of translation.

This conclusion was drawn by Fresnel from the experiments of Fizeau in which the velocity of light in running water was measured. However, this interpretation of equation (23) is

 1; ,

$$
1 \quad y_{1}^{1} \quad \cdots 1
$$

为

 x)

the coefficient of v_{n} in the expression for ω, was found by experiment to have the value 0.434 ± 0.02, while for water and the Fraunhofer line D equation (25) gives its value as 0.45 I . The value of this coefficient given by the assumption of Fresnel is, for this case, $\nu^{2}-\mathrm{I}: \nu^{2}=0.438$.
4. The Differential Equations and the Boundary Conditions Referred to a Moving System of Coordinates which is Fixed with Reference to the Moving Medium. -If $x^{\prime}, y^{\prime}, z^{\prime}$ represent the coordinates of a point referred to an origin within the moving medium, then

$$
\begin{equation*}
x=x^{\prime}+v_{x} \cdot t, \quad y=y^{\prime}+v_{y} \cdot t, \quad z=z^{\prime}+v_{x} \cdot t \tag{26}
\end{equation*}
$$

Since v_{x}, v_{y}, v_{x} do not depend on x, y, z, the partial differentiation with respect to x, y, z can be replaced by a partial differentiation with respect to $x^{\prime}, y^{\prime}, z^{\prime}$, i.e. in the equations of the preceding paragraph the differential coefficients with respect to x, y, z may be considered as taken with respect to $x^{\prime}, y^{\prime}, z^{\prime}$. In what follows this will be done and x, y, z will be understood to represent simply the coordinates referred to a point of the moving medium. But in place of the differential coefficients $\frac{\partial X}{\partial t}$, etc., $\frac{d X}{d t}$, etc., must be introduced, since here the dependence of X upon the time is to be investigated, and hence X must be referred to a point whose position relative to other points in the moving medium is fixed. This change is made with the aid of equation (3) on page 459, so that, for example,

$$
\begin{equation*}
\frac{\partial X}{\partial t}=\frac{d X}{d t}-v_{x} \frac{\partial X}{\partial x}-v_{y} \frac{\partial X}{\partial y}-v_{z} \frac{\partial X}{\partial z} \tag{27}
\end{equation*}
$$

If this equation be substituted in (2), then for any number of kinds of ions, in consideration of (9), (10), and (12),

$$
\begin{gather*}
4 \pi j_{x}=\frac{d X}{d t}-v_{x} \frac{\partial X}{\partial x}-v_{y} \frac{\partial X}{\partial y}-v_{x} \frac{\partial X}{\partial z} \\
+\left(n^{2}-1\right) \frac{d}{d t}\left(X+\frac{v_{y} \gamma-v_{x} \beta}{c}\right)+\dot{v}_{x}\left(\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}\right) \tag{28}
\end{gather*}
$$

$$
\begin{aligned}
& -\frac{1}{8}, 6
\end{aligned}
$$

$$
\begin{aligned}
& \text { * } n_{1}^{n} \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& 1
\end{aligned}
$$

From this and (29) the following additional conditions are obtained, namely, that
$n^{2} Z+\frac{n^{2}-1}{c}\left(v_{x} \beta-v_{y} \alpha\right), \gamma$ be continuous at the boundary. (30')
Since in (30), in the terms multiplied by v_{x}, v_{y}, v_{z}, the approximate values which are obtained when $v_{x}=v_{y}=v_{z}^{\prime}=0$ may be substituted, the boundary conditions may be put in the form
$\left.\left.X, Y, \alpha-\frac{v_{y} Z}{c}, \beta+\frac{v_{x} Z}{c}\right\} \begin{array}{c}\text { must be continuous at } \\ \text { the boundary. }\end{array}\right\} \cdot\left(30^{\prime \prime}\right)$
For a homogeneous mediun differential equations can easily e obtained each of which contains but one of the quantities $X, Y, Z, \alpha, \beta, \gamma$. For it follows from (27), when terms of the first order only in v_{x}, v_{y}, v_{z} are retained, that

$$
\frac{\partial^{2} X}{\partial t^{2}}=\frac{a^{2} X}{d t^{2}}-2 \frac{d}{d t}\left(v_{x} \frac{\partial X}{\partial x}+v_{y} \frac{\partial X}{\partial y}+v_{x} \frac{\partial X}{\partial z}\right)
$$

hence (20) becomes

$$
\begin{equation*}
\frac{n^{2}}{c^{2}} \frac{d^{2} X}{d t^{2}}-\frac{2}{c^{2}} \frac{d}{d t}\left(v_{x} \frac{\partial X}{\partial x}+v_{y} \frac{\partial X}{\partial y}+v_{z} \frac{\partial X}{\partial z}\right)=\Delta X \tag{3I}
\end{equation*}
$$

Equations of the same form may be obtained for Y, Z, α, β, γ. The preceding equations (I 8) and (19) also hold here, i.e. the electric force is not propagated as a transverse wave; but the magnetic force is so propagated.

Writing

$$
X=A \cdot e^{\frac{i}{\tau}\left(t-\frac{p_{1}^{\prime} x+p_{2}^{\prime} y+p_{s^{\prime}}^{\prime} z}{\omega^{\prime}}\right)}
$$

in which, since it is assumed that $p_{1}^{\prime 2}+p_{2}^{\prime 2}+p_{3}^{\prime 2}=\mathbf{1}, p_{1}^{\prime}$, $p_{2}{ }^{\prime}, p_{3}^{\prime}$ denote the direction cosines of the wave normal, ω^{\prime} the velocity of light referred to the moving system of coordinates. Then, from (3r),
(14

 blarexant: 45:3015 :

But, from (33), $p_{1}{ }^{\prime} x+p_{2}{ }^{\prime} y+p_{3}{ }^{\prime} z=\omega^{\prime}$; i.e., in consideraion of (32), $2 f=-c: n$. Hence, from (34), the direction of the ray is determined from the proportion

$$
\begin{align*}
& \mathfrak{p}_{1}: \mathfrak{p}_{2}: \mathfrak{p}_{3}=x: y: z=\frac{c p_{1}^{\prime}}{n}-\frac{v_{x}}{n^{2}}: \ldots, \\
& \mathfrak{p}_{1}: \mathfrak{p}_{2}: \mathfrak{p}_{3}=p_{1}^{\prime}-\frac{v_{x}}{n c}: p_{2}^{\prime}-\frac{v_{y}}{n c}: p_{3}^{\prime}-\frac{v_{z}}{n c} . \tag{35}
\end{align*}
$$

Thus the ray does not coincide with the wave normal.
Neglecting terms of the second order in v, (35) may be vritten

$$
p_{1}^{\prime}: p_{2}^{\prime}: p_{3}^{\prime}=p_{1}+\frac{v_{x}}{n c}: p_{2}+\frac{v_{y}^{\prime}}{n c}: p_{3}+\frac{v_{x}}{n c} .
$$

6. The Absolute Time replaced by a Time which is a Function of the Coordinates. - In place of the variables x, y, , t, in which t denotes the absolute time and x, y, z the :oordinates referred to a point in the moving medium, the quantities x, y, z, and

$$
\begin{equation*}
t^{\prime}=t-\frac{z_{x}^{\prime} x+z_{y}^{\prime} y+z_{z}^{\prime} z}{c^{2}} . \tag{36}
\end{equation*}
$$

vill be introduced as independent variables.
t^{\prime} may conveniently be called a sort of "position" time, ince it depends upon the position of the point under consideraion, i.e. upon x, y, z. The partial differential coefficients with respect to x, y, z will then be denoted by $\left(\frac{\partial}{\partial x}\right)^{\prime},\left(\frac{\partial}{\partial y}\right)^{\prime}$, $\left.\frac{\partial}{\partial z}\right)^{\prime}$, while $\frac{\partial}{\partial x}$, etc., will be used as above to denote the partial differential coefficients when x, y, z, t are the indeendent variables. From (36),

$$
\left.\frac{d}{t t}=\frac{d}{d t^{\prime}}, \quad \frac{\partial}{\partial x}=\left(\frac{\partial}{\partial x}\right)^{\prime}-\frac{z_{x} x}{c^{2}} \frac{d}{d t^{\prime}}, \quad \frac{\partial}{\partial y}=\left(\frac{\partial}{\partial y}\right)^{\prime}-\frac{v_{y}}{c^{2}} \frac{d}{d t^{\prime}},\right)
$$

If the following abbreviations be used,

$$
\left.\begin{array}{c}
X+\frac{v_{y} y-v_{z} \beta}{c}=X^{\prime}, \quad Y+\frac{v_{z} \alpha-v_{x} \gamma}{c}=Y^{\prime} \\
Z+\frac{v_{x} \beta-v_{y} \alpha}{c}=Z^{\prime}, \\
\alpha+\frac{v_{z} Y-v_{y}^{\prime} Z}{c}=\alpha^{\prime}, \quad \beta+\frac{v_{x} Z-v_{z} X}{c}=\beta^{\prime} \\
\gamma+\frac{v_{y} X-v_{x} Y}{c}=\gamma^{\prime}
\end{array}\right\}
$$

then the introduction of the values (37) in (29) gives, w terms in the first order only in v are retained, and when differentiation $\left(\frac{\partial}{\partial x}\right)$ is again denoted simply by $\frac{\partial}{\partial x}$,

$$
\begin{gathered}
\frac{n^{2}}{c} \frac{d X^{\prime}}{d t^{\prime}}=\frac{\partial \gamma^{\prime}}{\partial y}-\frac{\partial \beta^{\prime}}{\partial z}, \quad \frac{n^{2}}{c} \frac{d Y^{\prime}}{d t^{\prime}}=\frac{\partial \alpha^{\prime}}{\partial z}-\frac{\partial \gamma^{\prime}}{\partial x} \\
\frac{n^{2}}{c} \frac{d Z^{\prime}}{d t^{\prime}}=\frac{\partial \beta^{\prime}}{\partial x}-\frac{\partial \alpha^{\prime}}{\partial y} \\
\frac{I}{c} \frac{d \alpha^{\prime}}{d t^{\prime}}=\frac{\partial Y^{\prime}}{\partial z}-\frac{\partial Z^{\prime}}{\partial y}, \quad \frac{\mathrm{I}}{c} \frac{d \beta^{\prime}}{d t^{\prime}}=\frac{\partial Z^{\prime}}{\partial x}-\frac{\partial X^{\prime}}{\partial z} \\
\frac{\mathrm{I}}{c} \frac{d \gamma^{\prime}}{d t^{\prime}}=\frac{\partial X^{\prime}}{\partial y}-\frac{\partial Y^{\prime}}{\partial x}
\end{gathered}
$$

According to (30) and (38) the boundary conditic when the boundary is perpendicular to the z-axis, are that $X^{\prime}, Y^{\prime}, \alpha^{\prime}, \beta^{\prime}$ be continuous at the boundary. .
Now equations (39) and (40) have the same form as differential equations and boundary conditions of the elec magnetic field for the case of a medium at rest. Hence important conclusion:

If, for a system at rest, $X, Y, Z, \alpha, \beta, \gamma$ are cor
of $x, y, z, t-\frac{v_{x} x+v_{y} y+v_{z} z}{c^{2}}$, and T; in which now x, y, z are the relative coordinates referred to a point of the medium, and T is the relative period with respect to a point of the moving medium. From (7) on page 46 I , the absolute period is in the latter case to be assumed as $T\left(1-\frac{v_{n}}{\omega}\right)$.
7. The Configuration of the Rays Independent of the Motion.-The last proposition is capable of immediate application to the relative configuration of the rays. For, in a system at rest, let the space which is filled with light be bounded by a certain surface S so that outside of S both X, Y, Z, and α, β, γ vanish. Then when the system is in motion X^{\prime}, Y^{\prime}, Z^{\prime}, and $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ vanish for points outside of S, i.e. in the moving system also the surface 5 is the boundary of the space which is filled with light. Now suppose that S is the surface of a cylinder (a beam of light), an assumption which can be made if the cross-section of the cylinder is large in comparison with the wave length. The generating lines of this cylinder are called the lig-lit-rays. According to the above proposition, the boundary of the beam of light, even though it be frequently reflected and refracted, is unchanged by the common motion of the whole, i.e. in the moving system light-zuaves of the relative period T are reflected and refracted according to the same laws as rays of the absolute period T in the system at rest.

The laws of lenses and mirrors need therefore no modification because of the motion. Likewise the motion has no influence upon interference phenomena. For these phenomena differ from the others only in that the form of the surface S which bounds the light-space is more complicated, and, as above remarked, this form is not altered by the motion.

For crystals* also the configuration of the rays is independent of the motion, for the differential equations and
boundary conditions applicable to these can be put in similar to (39) and (40), so that it is only necessary to the laws of refraction of the crystal at rest.
8. The Earth as a Moving System.-The last cc tions are especially fruitful in discussing the motio earth through space. For, according to what has b the motion of the earth* can never have an influence of order in v upon the phenomena which are produced wit. trial sources of light; for the periods emitted by such are merely the relative periods of the above discuss they are wholly independent of the motion of the earth the configuration of the rays cannot be altered by this Now in fact numerous experiments by Respighi, \dagger Ketteler,§ and Mascart || upon refraction and interferen of them upon crystals) have proved that the phenor independent of the orientation of the apparatus with re the direction of the earth's motion. On the other han celestial sources of light are used the effect of the motion can be detected, for in this case the relativ depends upon that motion. As a matter of fact the lines of some of the fixed stars appear somewhat di This is to be explained by the relative motion of the of the whole solar system, with respect to the fixt For the laws of refraction and interference are concer relative periods, and from equation (7) these are ε $T\left(\mathrm{I}-\frac{v_{n}}{\omega}\right)$, in which T is the absolute period. Thus with the magnitude and sign of v_{n}, and hence also t tion of the spectral lines formed upon the moving

[^106]Since the path of the earth about the sun is nearly a circle, v_{n} is in this case equal to zero. Hence, as has been also experimentally shown by Mascart, \dagger the motion of the earth causes no shifting in the Fraunhofer lines of the solar spectrum. \ddagger
9. Aberration of Light.-Although, as was shown in §7, the configuration of the rays is not influenced by the motion of the earth, yet the direction of the wave normal which corresponds to a given direction of the ray does depend upon that motion. This has already been shown on page 470; but it is worth while to here deduce directly the definition of the ray without using Huygens' principle as was done above. Consider, for example, the case of a plane wave in a system at rest: all the quantities involved are functions of $t-\frac{p_{1} x+p_{2} y+p_{3} z}{\omega}$. In a system at rest p_{1}, p_{2}, p_{3} are the direction cosines of both the wave normal and the ray. The physical criterion for the direction of the ray will be that the light pass through

[^107]\dagger Ann. de l'école norm. (2) 1 , pp. 166, 190, 1872.
two small openings whose line of connection has the directi cosines p_{1}, p_{2}, p_{3}. If now the whole system moves with velocity $v_{x}, v_{y}^{\prime}, v_{z}$, there must always be one ray (called relative ray when referred to a moving system) whose directi cosines are p_{1}, p_{2}, p_{3}. But according to page 473 this ray produced by waves which are periodic functions of
$$
t-\frac{v_{x} x+v_{y} y+v_{z} z}{c^{2}}-\frac{p_{1} x+p_{2} y+p_{3} z}{\omega}
$$

This expression corresponds to plane waves for which direction cosines of the wave normal $p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, p_{3}^{\prime}$ are prop tional to

$$
p_{1}^{\prime}: p_{2}^{\prime}: p_{3}^{\prime}=\frac{p_{1}}{\omega}+\frac{v_{x}}{c^{2}}: \frac{p_{2}}{\omega}+\frac{v_{y}}{c^{2}}: \frac{p_{3}}{\omega}+\frac{v_{x}}{c^{2}} .
$$

This relation (42) makes possible the calculation of the dir tion of the wave normal in the moving system from direction of the ray, and vice versa. This relation is a identical with that deduced on page 47 I [cf. (35')], fr Huygens' principle, for the quantities $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \mathfrak{p}_{3}$ there cor spond to p_{1}, p_{2}, p_{3} here, and approximately $c: \omega=n$.

Hence if upon the moving earth a star appears to lie in direction p_{1}, p_{2}, p_{3}, referred to a coordinate system connec with the earth, its real direction is somewhat different, for t latter coincides with the direction of the normal to the wa from the star to the earth, i.e. the position of the star obtained from $p_{1}^{\prime} p_{2}{ }^{\prime} p_{3}{ }^{\prime}$.

The case in which the line of sight to the star and motion of the earth are at right angles to each other will considered more in detail. Thus set $p_{1}=p_{2}=0, p_{3}=$ $v_{y}=v_{z}=0, v_{x}=v$; then from (42), if the velocity in air be identified with c, -as is here permissible,-the position the star is given by
$\tan \zeta=v: c$. This angle of aberration is not changed when the star is observed through a telescope whose tube is filled with water, since it has been shown that the relative configuration in any sort of a refracting system is not changed by the motion.* This conclusion may be reached directly as follows: If ω differs appreciably from c, as is the case when the observation is made through water, then the wave normal in the water is no longer given by (43), but, in accordance with (42), by

$$
\begin{equation*}
p_{1}^{\prime}: p_{2}^{\prime}: p_{3}^{\prime}=v: 0: \frac{c^{2}}{\omega}=v: 0: c n, . \tag{44}
\end{equation*}
$$

from which the angle of aberration ζ^{\prime} is determined by $\tan \zeta^{\prime}=v: c n$. The corresponding wave normal in air or in vacuo makes, however, another angle ζ with the z-axis such that, since the boundary between air and water is to be assumed perpendicular to the direction of the ray, according to Snell's law $\sin \zeta: \sin \zeta^{\prime}=n$. Since now, on account of the smallness of ζ and ζ^{\prime}, the sin is equal to the tan, it follows that $\tan \zeta=v: c$, i.e. the angle of aberration is the same as though the position of the star had been observed directly in air.
10. Fizeau's Experiment with Polarized Light.-Although in accordance with the theory the motion of the earth should have no influence upon optical phenomena save those of aberration and the change in the period of vibration in accordance with Doppler's principle, and although experiments designed to detect the existence of such an effect have in general given negative results, nevertheless Fizeau \dagger thought that he discovered in one case such an effect. When a beam of plane-polarized light passes obliquely through a plate of glass, the azimuth of polarization is altered (cf. p. 286). The apparatus used consisted of a polarizing prism, a bundle of glass plates, and an analyzer. At the time of the solstice, generally about noon,
a beam of sunlight was sent, by means of suit mirrors, through the apparatus from east to west, at west to east. It was thought that a slight differ positions of the analyzer in the two cases was dete

According to the theory here given no such d: exist. For if in any position of the apparatus the set for extinction, then the light disturbance is space which does not extend behind the analyzer. to the discussion on page 473 , the boundary of thi not change because of the motion of the earth, F configuration of the rays with respect to the appar fixed; and this is true even when crystalline mec for producing the bounding surface S of the Hence the position of extinction of the analyzer m pendent of the orientation of the apparatus with re earth's motion. In any case it is to be hoped that ment of Fizeau's will be repeated. Until this is c least doubtful whether there is in reality a contradi matter between experiment and the theory here pr
ri. Michelson's Interference Experiment. which light requires to pass between two stationa and B whose distance apart is l is $t_{1}=\frac{l}{c}$, where the velocity of light. It will be assumed that the which the light is travelling is the ether, or, what the same thing, air. If the two points A and B hav velocity v in the direction of the ray, then the tim t_{1}^{\prime} of the light from A to B is somewhat differen light must travel in the time $t_{1}{ }^{\prime}$ not only the dis also the distance over which the point B has move t_{1}^{\prime}, i.e. the total distance travelled by the light is that

$$
t_{1}^{\prime} c=l+v t_{1}^{\prime}
$$

If the light is reflected at B, in order to re

For this case differs from the preceding only in this, that now A moves in a direction opposite to that of the reflected light. Hence the time t^{\prime} required for the light to pass from A to B and back again to A is, from (45) and (46),

$$
t^{\prime}=t_{1}^{\prime}+t_{2}^{\prime}=\frac{l}{c}\left(\frac{\mathrm{I}}{\mathrm{I}-v / c}+\frac{\mathrm{I}}{\mathrm{I}+v / c}\right)
$$

or

$$
\begin{equation*}
t^{\prime}=\frac{2 l}{c}\left(\mathrm{I}+\left[\frac{v}{c}\right]^{2}\right), \tag{47}
\end{equation*}
$$

provided the development be carried only to terms of the second order in $\frac{v}{c}$. Now although the influence of the common motion of the points A and B upon the time t^{\prime} is of the second order, it should be possible to detect it by a sensitive interference method.

The experiment was performed by Michelsen in tho year 1881.* The instrument used was a sort of an interferential refractor furnished with two horizontal arms P and Q set at right angles to each other and of equal length (cf. Fig. 57, page 149). Two beams of light were brought to interference, one of which had travelled back and forth along P, the other along Q. The entire apparatus could be rotated about a vertical axis so that it could be brought into two positions such that first P, then Q coincided with the direction of the earth's motion. Upon rotating the apparatus from one position to the other a displacement of the interference bands is to be expected.

The amount of this displacement will now be more accurately calculated. Let the arm P coincide with the direction v of the earth's motion, the arm Q be perpendicular to it. Let A be the point in which P and Q intersect. The time t^{\prime} required for the light to pass the length of P and back is given
length of Q and back is not simply $t^{\prime \prime}=2 l: c$; for it is necessary to remember that the point of intersection A of the two arms P and Q, from which the light starts and to which it

Fig. ion. returns after an interval of time t^{\prime}, has in this time changed its position in space. Thus the distance through which this point A has moved is $v t^{\prime}$ (Fig. 107). The first position of the point A will be denoted by A_{1}, the last by A_{2}. In order that the light from A_{1} may return to A_{2} after reflection at the end of the $\operatorname{arm} Q$, it is necessary that the reflecting mirror at Q be somewhat inclined to the wave normal. The distance travelled by the light is $2 s$ and the relation holds,

$$
s^{2}=l^{2}+\left(\frac{v t^{\prime}}{2}\right)^{2}
$$

Also, $t^{\prime \prime}=2 s: c$ denotes the time which the light requires to travel the length of Q and back. Now, from (47), if terms of higher order than the second in v be neglected,

$$
\begin{equation*}
t^{\prime \prime}=\frac{2 l}{c}\left(\mathrm{I}+\frac{v^{2}}{8 l^{2}} t^{\prime 2}\right)=\frac{2 l}{c}\left(\mathrm{I}+\frac{v^{2}}{2 c^{2}}\right), . \tag{48}
\end{equation*}
$$

hence

$$
\begin{equation*}
t^{\prime}-t^{\prime \prime}=\frac{l}{c} \cdot \frac{v^{2}}{c^{2}} . \tag{49}
\end{equation*}
$$

If this difference in time were one whole period T, the interference fringes would be displaced just one fringe from the position which they would occupy if the earth were at rest, i.e. if $v=0$. Hence if the displacement δ be expressed as a fractional part of a fringe, there results from (49)

$$
\begin{equation*}
\delta=\frac{t^{\prime}-t^{\prime \prime}}{T}=\frac{l}{c T} \cdot \frac{v^{2}}{c^{2}}=\frac{l}{\lambda} \zeta^{2}, \tag{50}
\end{equation*}
$$

The displacement produced by turning the instrument from the position in which P coincides with the direction of the earth's motion to that in which Q coincides with this direction should be 2δ.

But no displacement of the interference fringes was observed. The sensitiveness of the method was afterwards increased by Michelson and Morley* by reflecting each beam of light several times back and forth by means of mirrors. The effect of this is to multiply several times the length of the arms P and Q. Each beam of light was in this way compelled to travel a distance of 22 metres, i.e. l was 1 I metres. The apparatus was mounted upon a heavy plate of stone which floated upon mercury and could therefore be easily rotated about a vertical axis. According to (50) this rotation ought to have produced a displacement of $2 \delta=0.4$ of a fringe, but the observed displacement was certainly not more than 0.02 of a fringe, -a difference which might easily arise from errors of observation.

This difficulty \uparrow may be explained by giving up the theory that the ether is in absolute rest and assuming that it shares in the earth's motion. The explanation of aberration becomes then involved in insuperable difficulties. Another way of explaining the negative results of Michelson's experiment has been proposed by Lorentz and Fitzgerald. These men assume that the length of a solid body depends upon its absolute motion in space.

As a matter of fact, if the arm which lies in the direction of the earth's motion were shorter than the other by an amount $l \frac{v^{2}}{2 c^{2}}$, the difference in time $t^{\prime}-t^{\prime \prime}$, as calculated in (49), would

* Am. Jo. Sci. (3) 34, p. 333, 1887 ; Phil. Mag. (5) 24, p. 449, 1887.
\dagger Sutherland (Phil. Mag. (5) 45, p. 23, 1898) explains Michelson's negative result by a lack of accuracy in the adjustment of the apparatus. But, according
be just compensated, i.e. no displacement of the fil be produced.

However unlikely the hypothesis that the dim substance depend upon its absolute motion may seem to be, it is not so improbable if the ass made that the so-called molecular forces, which the molecules of a substance, are transmitted b like the electric and magnetic forces, and that motion of translation in the ether must have an them, just as the attraction or repulsion between charged bodies is modified by a motion of transl particles in the ether. Since $\frac{v^{2}}{c^{2}}$ has the valu diameter of the earth which lies in the direction 0 would be shortened only 6.5 cm .

PART III

 RADIATION

 RADIATION}

CHAPTER I

ENERGY OF RADIATION

I. Emissive Power.-The fundamental laws of photometry were deduced above (page 77) from certain definitions whose justification lay in the fact that intensities and brightnesses calculated with the aid of these definitions agreed with observations made by the eye. But it is easy to replace this physiological, subjective method by a physical, objective means of measuring the effect of a source of light. Thus it is possible to measure the amount of heat developed in any substance which absorbs the light-rays. To be sure this introduces into the photometric definition a new idea which was unnecessary so long as the physiological unit was used, namely, the idea of time, since the heat which is developed in an absorbing substance is proportional to the time. According to the principle of energy, the heat developed must be due to a cert in quantity of energy which the source of light has transmitted to the absorbing substance. Therefore the emission E of a source Q is defined as the amount of energy which

```
.6%.4 41. % *...
```

 1
 1
1
$118+x+3$
P:
$20.11:=* *$

Ent
\because.

tion of the rays under consideration. i will be called the intensity of radiation of the surface d.

If all parts of a curved radiating surface appear to the eye equally bright, then, as was shown on page 82 , i must be constant, i.e. independent of the inclination ϕ. The discussion as to whether or not i is constant when considered from the energy standpoint will be reserved till later. If, for the present, i be assumed to be constant, then from (3) the energy flow which passes from $d s$ into a finite circular cone whose generating lines make an angle U with the normal to $d s$ is found to be [cf. (73) on page 83]

$$
\begin{equation*}
L=\pi i d s \sin ^{2} U \tag{4}
\end{equation*}
$$

Setting $U=\frac{\pi}{2}$ and dividing by $d s$, the emissive power e of $d s$ is obtained in the form

$$
\begin{equation*}
e=\pi i \tag{5}
\end{equation*}
$$

Here again i, the total intensity of radiation, must be distinguished from i_{λ}, the intensity of radiation for wave length λ. If c_{λ} denote the emissive power for the wave length ?, then

$$
\begin{equation*}
e_{\lambda}=\pi i_{\lambda} . \quad . \quad . \quad . \quad . \quad . \quad . \tag{6}
\end{equation*}
$$

3. The Mechanical Equivalent of the Unit of Light.-On page 81 the flame of a Hefncr lamp was assumed as the unit of light. Tumlirz* has found the emission within a horizontal cone of unit solid angle from such a flame to be 0.1483 gramcalories a second; Angström's \dagger value for the same is 0.22 gram-calories a second. If such a lamp be assumed to radiate uniformly in all directions, then its total emission, i.e. the energy which it emits in all directions (into the solid angle 4π), is calculated from the value of Tumlirz as

$$
E=4 \pi \cdot 0.1483 \frac{\mathrm{gr} \mathrm{cal}}{\mathrm{sec}}=1.86 \frac{\mathrm{gr} \mathrm{cal}}{\mathrm{sec}}
$$

magnitude has about the same brightness as a Hefner lamp at a distance of II km. In this case the eye receives about $\mathrm{I} \cdot 10^{-8}$ ergs per second.

The so-called normal candle (a paraffine candle of 2 cm . diameter and 50 mm . flame) has an emission about 1.24 times that of the Hefner lamp.
4. The Radiation from the Sun.-According to Langley about one third of the energy of the sun's radiation is absorbed by the earth's atmosphere when the sun is in the zenith. According to his measurements, if there were no atmospheric absorption, the sun would radiate upon $1 \mathrm{~cm} .{ }^{2}$ of the earth's surface at perpendicular incidence about 3 gr . cal. (more accurately 2.84) per minute (solar constant). Angström obtained a value of 4 gr . cal. a minute. Hence, making allowance for the absorption of the earth's atmosphere, the flow of energy to the earth's surface is, according to Langley, about 2 gr . cal. a minute $=\mathrm{I} \cdot 3 \cdot 1 \mathrm{O}^{6} \mathrm{erg} / \mathrm{sec}$. Pouillet's value, which was given on page 454, is somewhat smaller. The energy of the visible light between the Fraunhofer lines A and H_{2} amounts to about 35% of the total radiation, i.e. the so-called intensity of illumination B of the sun, without allowing for the absorption in the air, is, from Langley's measurements,

$$
\begin{equation*}
B=6.9 \cdot 10^{5} \frac{\mathrm{erg}}{\mathrm{sec}}=46300 \text { candle-metres. } \tag{II}
\end{equation*}
$$

If the mean distance of the sun from the earth be taken as $149.10^{9} \mathrm{~m}$., the candle-power of the sun is found to be 1.02 . 10^{27}.
5. The Efficiency of a Source of Light.-The efficiency g of a source of light is defined as the ratio of the energy of the light radiated per second to the energy required to maintain the source for the same time.

Thus a Carcel lamp of 9.4 candle-power consumes 42 gm .
$39.7 \cdot 10^{10}$ ergs. Now equation (8) gives the emission of standard unit, hence the efficiency of the lamp is

$$
g=\frac{9.4 \cdot 1.9 \cdot 10^{6}}{1.16 \cdot 10^{-2} \cdot 39 \cdot 7 \cdot 10^{10}}=0.4 \cdot 10^{-2}=0.4 \%
$$

Thus the efficiency is very small; only 0.4% of the ene contained in the oil is used for illumination.

The electric light is much more efficient. With the light I candle-power can be obtained with an expenditure $\frac{1}{2}$ watt, i.e. $5.10^{6} \mathrm{erg} / \mathrm{sec}$. Hence for the arc light

$$
g=\frac{1.9 \cdot 10^{6}}{5 \cdot 10^{6}}=0.38=38 \%
$$

For the incandescent lamp g has about the value 5.5%.
These figures show that it is more economical to use heat of combustion of oil to drive a motor which runs a dyna which in turn feeds an arc light, than to use the oil dire for lighting purposes. A Diesel motor transforms about of the energy of the oil into mechanical energy, and 90% this can be transformed into electrical encrgy by the dyna which feeds the arc light; hence the cfficiency of the elec light, upon the basis of the energy of the oil used, may be creased to

$$
g=0.38 \cdot 0.7 \cdot 0.9=24 \%
$$

In this calculation no account has been taken of the that the carbons in the lamp are also consumed. For incandescent lamp of the ordinary construction, which requ about $3 \frac{1}{2}$ watts per candle-power, g would be equal to 3 calculated upon the basis of the fuel consumption of the mo For a Nernst incandescent lamp which requires I watt candle-power,* g would be as high as 12%.
6. The Pressure of Radiation.-Consider the case o plane wave from a constant source of light falling perpend
larly upon a perfectly black body. Such a body is defined as one which does not reflect at all, but completely absorbs all the rays which fall upon it, transmitting none.* According to the theory of reflection given above, an ideally black body must have the same index of refraction as the surrounding medium, otherwise reflection would take place. \dagger Moreover it must have a coefficient of absorption, which must, however, be infinitely small, since otherwise reflection would take place (cf. chapter on Metallic Reflection), even though the index of refraction were equal to that of the surrounding medium. Hence, in order that no light may be transmitted by the body, it must be infinitely thick. An approximately black body can be realized by applying a coat of lamp-black or, since lampblack is transparent to heat-rays, of platinum-black; likewise pitch or obsidian immersed in water, not in air, are nearly black bodies. The most perfect black body is a small hole in a hollow body. The rays which enter the hole are repeatedly reflected from the walls of the hollow body even though these walls are not perfectly black. Only a very small part of the rays are again reflected out of the hole. This part is smaller the smaller the hole in comparison with the surface of the body.

Let plane waves, travelling along the positive z-axis, fall upon a black body Ω. Conceive a cylindrical tube of light parallel to the z-axis and of cross-section q. Let energy flow in at $z=0$. This energy will be completely absorbed, i.e. transformed into heat within the black body, which is supposed to extend from $z=a$ to $z=\infty$. The amount of energy thus absorbed in any time t is $E \cdot q \cdot V \cdot t$, if E denote the radiant energy which is present in unit of volume of the medium in front of \Re, and V the velocity of the waves in this medium.

* A perfectly black body can emit light if its temperature is sufficiently high. Hence it would be preferable to use the term "perfectly absorbing" instead of

If now the black body be displaced a distance $d z$ in th direction of light, then the energy which falls upon the bod in the time t is less than before by the amount of the energ contained in the volume $q \cdot d z$ of the medium, i.e. by th amount $q \cdot d z \cdot E$. Hence the amount of heat developed in tl body is smaller than before by the same amount (measured mechanical units). But the same amount of radiant energ always enters the tube in the time t no matter whether th body \Re is displaced or not. Further, the electromagnet energy contained in the volume $q \cdot d z$, which has been vacate by the motion of the body, is always the same, i.e. it is ind pendent of whether this volume is occupied by Ω or not, sin the index of refraction, and therefore also the dielectric con stank, of Ω is to be identical with that of the surroundir medium, so that reflection does not occur, i.e. the electric ar magnetic forces at the surface of the body are the same in tl medium and in Ω. If, therefore, because of the displaceme of Ω a distance $d z$, the same energy which has entered tl light-tube in the time t develops less heat than when \Re is n displaced, then, according to the principle of the conservatic of energy, this loss in heat must be represented by wo gained in the displacement of \AA. If this work be expressed the form $p \cdot q \cdot d z, p$ represents the pressure which is exert upon \Re by the radiation. Hence

$$
p \cdot q \cdot d z=q \cdot d z \cdot \mathrm{E}
$$

ie.

$$
p=\mathrm{E}
$$

Thus the pressure of radiation which is exerted by pla waves falling perpendicularly upon a perfectly black body equal to the amount of energy of the incident waves contained unit of volume of the medium outside.
of energy contained in $3 \cdot 10^{10} \mathrm{~cm} .^{3}$ of air. Hence the energy n I cm. ${ }^{3}$ is

$$
\mathrm{E}=\frac{\mathrm{I} \cdot 3 \cdot 10^{6}}{3 \cdot 10^{10}}=4 \cdot 10^{-5}
$$

Therefore the sun's rays exert this pressure upon $1 \mathrm{~cm} .{ }^{2}$ of a olack body. This pressure is about equal to a weight of $+10^{-5}$ mgr., i.e. it is so small that it cannot be detected experimentally. Nevertheless this pressure is of great theoretcal importance, as will be seen in the next chapter.
7. Prevost's Theory of Exchanges.-Every body, even when it is not self-luminous, radiates an amount of energy hich is greater and contains more waves of short period the nigher the temperature of the body. If, therefore, two bodies 4 and B of different temperatures are placed opposite to each ther, then each of them both radiates and receives energy. The temperatures of the two bodies become equal because he hotter one radiates more energy than it receives and ibsorbs from the colder, while the colder receives more than t radiates. This conception of the nature of the process of adiation was first brought forward by Prevost.

If, therefore, the emission of a body A be determined by neasuring the rise in temperature produced in a black body which absorbs the rays from A, the result obtained depends pon the difference in temperature between the bodies A ind B. The rise in the temperature of B would be so much nore correct a measure of the entire emission of A the smaller he amount of energy which B itself radiates. Hence if it is lesired to measure the energy of the light-rays from a source A, whose ultra-red rays are all absorbed in a vessel of water, t can be done by measuring the absorption in a black body B which has the same temperature as the water. For at the emperature of a room the body B emits only long heat-rays, Ind it receives from the water as many of these rays as it
the absorption of the body B at the temperature of the room nevertheless, in consideration of the greater temperature o the source (the sun or a flame), the result of the measurements is practically independent of the variations in temperature o the body B. But the temperature of B must be taken into account in measuring the emission of a body A which is not much hotter than B. This subject will be resumed in the next chapter.

CHAPTER II

APPLICATION OF THE SECOND LAW OF THERMODYNAMICS TO PURE TEMPERATURE RADIATION

1. The Two Laws of Thermodynamics.-The first law of thermodynamics is the principle of energy, according to which mechanical work is obtained only by the expenditure of a certain quantity of energy, i.e. by a change in the condition of the substance which feeds the machine. Although this law asserts that it is impossible to produce perpetual motion, i.e. to make a machine which accomplishes work without producing a permanent change in the substance which feeds it, yet a machine which works without expense is conceivable. For there is energy in abundance all about us; for example, consider the enormous quantity of it which is contained as heat in the water of the ocean. Now, so far as the first law is concerned, a machine is conceivable which continually does work at the expense of heat withdrawn from the water of the ocean. Now mankind has gained the conviction that such a machine, which would practically be a sort of perpetual motion, is impossible. In all motors which, like the steam-engine, transform heat into work, at least two reservoirs of heat of different temperatures must be at our disposal. These two reservoirs are the boiler and the condenser. This latter may be the air. In general heat can be transformed into work only when a certain quantity of heat Q is taken from the reservoir of higher temperature and a smaller quantity Q^{\prime} is given up to a reservoir of lower temperature.
obtained at the expense of heat if only one reservoir uniform temperature is at disposal. This idea is th of the second law of thermodynamics.

Only one consequence of this law will be here ma If a system of bodies, so protected that no exchanges work can take place betzveen it and the external mediu any time the same temperature in all its parts, th changes take place in the nature of any of the k difference of temperature can ever arise in the syst such a difference of temperature might be utilized fo a machine. If, then, this difference of temperature equalized by the action of the machine, it would agai itself in such a system, and could again be used for duction of work, and so on indefinitely, although orig one source of heat at uniform temperature was at This would be in contradiction to the second lav important to observe that heat originally of one tel could be used in this way for the continual production only if the nature of the bodies of the systenn roma changed. For if this nature changes, if, for exampl cal changes take place, then the capacity of the sy work ultimately comes to an end. A condition of can indeed be disturbed by chemical changes; thi however, in contradiction with the second law. nomenon can be observed in any case of combustion.
2. Temperature Radiation and Luminescence. body radiates energy, at least in the form of long 1 Now two cases are to be distinguished: either (I) tl of the body is not changed by this radiation, in whi would radiate continuously in the same way if its ter were kept constant by the addition of heat. Thi will be called pure temperature radiation. Or (2) changes because of the radiation, in which case, in
lie in the temperature of the system, but in some other source of energy. Thus the radiation due to chemical changes is called chemical luminescence. This occurs in the slow oxidation of phosphorus or of decaying wood. The phenomenon of phosphorescence which is shown by other substances, i.e. the radiation of light after exposure to a source of light, is called photo-luminescence. Here the source of energy of the radiation is the light to which the substance has been exposed, which has perhaps produced some change in the nature, for instance in the molecular structure, of the substance, which change then takes place in the opposite sense in producing phosphorescence. The radiation produced in Geissler tubes by high-tension currents is called electro-luminescence.

From what was said in § I it is clear that the second law of thermodynamics leads to conclusions with respect to pure temperature radiations only. From the conception of heat exchanges mentioned on page 491 it follows, for example, that if an equilibrium of tempcrature has once been established in a closed system of bodics, it can never be disturbed by pure temperature radiation. But a disturbance of the equilibrium might be produced by luminescence.

In what follows only pure temperature radiations will be considered.
3. The Emissive Power of a Perfect Reflector or of a Perfectly Transparent Body is Zero.-Consider a very large plate of any substance K enclosed between two plates of perfectly reflecting substance $S S$. A perfectly reflecting body is understood to be one which reflects all of the radiant energy which falls upon it. Let K and $S S$ have originally the same temperature. K and $S S$ may be thought of as parts of a large system of uniform temperature which is closed to outside influences. If now K emits energy, it also receives the same amount back again by reflection from $S S$. Assume that the absorption coefficient of K is not equal to zero. The absorbing power a of a body* or of a surface may be defined as the

* The absorling power a must be carefully distingurshed from the coefficient
ratio of the energy absorbed to the energy radiate from without. If the incident energy is I, then the absorbed is a, the quantity reflected $\mathrm{I}-a$, provided transmits no energy. Hence this quantity $\mathrm{I}-a$ is t . ing power $r=\mathrm{x}-a$, provided the body is so thicl energy is transmitted; otherwise $r<\mathrm{I}-a$.

The energy reflected to K from the mirrors $S S$ is tially absorbed in K and partially reflected to S reflected part is again entirely reflected back to K and so on. It is easy to see, since $S S$ absorb no ene when a stationary condition has been reached, the reabsorbs all the energy which it emits. If, ther mirrors $S S$ also emitted energy, the temperature of K would rise, since then K would absorb not onl energy which it itself sends out, but also a part of t emitted by $S S$. On the other hand the temperatu mirrors would fall, since they radiate but do not abso since, according to the second law, the original equi temperature cannot be disturbed by pure temperature the conclusion is reached that the emissize power of mirror is zero. If, therefore, a system of bodies is st on all sides by a perfect mirror, it is completely prote loss by radiation. In a similar way the conclusion reached that the emissive power of a perfectly transpo is zero. For conceive an absorbing body K surrou transparent body, the whole being enclosed within a reflecting shell, then the temperature of the transpal must fall if it emits anything, since it does not absorl
4. Kirchhoff's Law of Emission and Absorptic sider a small surface element $d s$ of an absorbing bc centre of a hollow spherical reflector of radius I , wh opposite ends of a diameter two small equal ope (cf. Fig. 108).

Let $d s$ be small in comparison with $d \Omega$. The energy radiated by $d s$ through each of the openings $d \Omega$ is, according to (3) on page 484 ,

$$
\begin{equation*}
d L=i d s \cos \phi d \Omega \tag{I}
\end{equation*}
$$

in which ϕ is the angle between the normal to $d s$ and the line connecting the middle points of $d s$ and $d \Omega . \quad i$ is called the intensity of radiation from $d s$ in the clirection ψ. Whether or

Fig. 108.
not i depends upon ϕ will not here be discussed. All the energy which $d s$ emits in other directions it again reccives and completely absorbs because of the repeated reflections which take place at the surface of the hollow sphere. Suppose now that the hollow sphere is surrounded by a black body $K^{\prime \prime}$, whose outer surface is a perfect reflector. $K^{\prime \prime}$ then radiates towards the interior only. Part ($d E^{\prime}$) of the energy emitted from K^{\prime} passes through the two openings d () to the clement $d s$ and is there partially absorbed. The element $d s$ subtends at a surface element $d s^{\prime}$ of the black body a solicl angle

$$
\begin{equation*}
d \Omega^{\prime}=\frac{d s}{r^{2}} \cos \phi \tag{2}
\end{equation*}
$$

if r denotes the distance between $d s$ and $d s^{\prime}$. The energy
in which i^{\prime} represents the intensity of radiation of t surface at an angle ϕ^{\prime} from its normal. The sum surface elements $d s^{\prime}$ which radiate upon $d s$ is

$$
\Sigma d s^{\prime}=r^{2} d \Omega: \cos \phi^{\prime}
$$

in which r and ϕ^{\prime} are to be considered constant for the elements of surface $d s^{\prime}$. Hence the entire energy from K^{\prime} through the opening $d \Omega$ upon the element a

$$
d E^{\prime}=\Sigma d L^{\prime}=i^{\prime} \cdot r^{2} \cdot d \Omega d \Omega^{\prime}
$$

or, from (2),

$$
d E^{\prime}=i^{\prime} d \Omega d s \cos \phi
$$

Similarly the energy which comes to $d s$ from the oth

$$
d E^{\prime \prime}=i^{\prime \prime} d \Omega d s \cos \phi
$$

in which $i^{\prime \prime}$ and i^{\prime} must be distinguished if they dep ϕ^{\prime} and if ϕ^{\prime} is different on the two sides of the e black body.

If there is originally equilibrium of temperature, be disturbed by the radiation. The energy $2 d L$ se $d s$ through the two openings $d \Omega$ must be compensat .energy $a\left(d E^{\prime}+d E^{\prime \prime}\right)$ absorbed, a being the absorbi of d corresponding to the direction ϕ. Accordin second law and (I), (6), and (7),

$$
2 i=a\left(i^{\prime}+i^{\prime \prime}\right)
$$

This equation must remain unchanged when the black body K^{\prime} changes its form, thus varying ϕ^{\prime} $i^{\prime}\left(=i^{\prime \prime}\right)$ must be independent of ϕ^{\prime}, i.e. the intensity - tion i^{\prime} of a black body is independent of the direction tion. Hence, from (8),

$$
i=a \cdot i^{\prime} .
$$

If different black bodies be taken for the surface the substance $d s$ remains unchanged, then, according

THE SECOND LAW OF THERMODYNAMICS

 always the same function p of the temperature.* Hence (9) nay be stated as follows:The ratio between the emission and the absorption of any body at a given angle of inclination depends upon the temperaure only: this ratio is equal to the emission of a black body at the same temperature. These laws are due to Kirchhoff. \dagger They hold not only for the total intensity of emission, but also for the emission of any particular wave lengoth, thus

$$
\begin{equation*}
i_{\lambda}=a_{\lambda} \cdot \dot{i}_{\lambda}^{\prime} \tag{9'}
\end{equation*}
$$

For if a perfectly transparent dispersing prism be placed oehind the opening $d \Omega$ outside of the hollow sphere (page 497), then one particular wave length from $d s$ can be made to all upon the black body, the others being returned by perfect mirrors through the prism and the opening $d \Omega$ to $d s$. Then within a small region of wave lengths which lie between λ and $\lambda+d \lambda$ the considerations which lead to equation (9) are applicable.

Equations (9) and (9') must hold for each particular azimuth of polarization of the rays. For if a prism of a transparent doubly refracting crystal be introduced behind $d \Omega$, the waves of different directions of polarization will be separated into two groups. One of these groups may now be allowed to fall upon a black body while the other is returned by a suitably placed perfect mirror. The above considerations then lead to equation (9^{\prime}), which therefore also holds for any particular direction of polarization.
5. Consequences of Kirchhoff's Law.-If a black body is slowly heated, there is a particular temperature, namely, about $525^{\circ} \mathrm{C}$., at which it begins to send out light. This is at first light of long wave length (red); but as the temperature is raised smaller wave lengths appear in appreciable amount (at

[^108]
THEORY OF OPTICS

about 1000° the body becomes yellow, at 1200 Now equation (9^{\prime}) asserts that no body can begin to at a lower temperature than a black body, but that begin to emit red rays at the same temperature (abo (Draper's lazu). \dagger The intensity of the emitted ligh to be sure, upon the absorbing power a_{λ} of the b temperature considered. Polished metals, for exam keep their high reflecting power even at high te emit much less light than lamp-black. Hence a lamp-black upon a metallic surface appears, when incandescence, as a bright streak upon a dark b Likewise a transparent piece of glass emits very lit high temperature because its absorbing power is s hollow shell with a small hole in it be made of any hole acts like a nearly ideally black body (cf. page must therefore appear, at the temperature of incand a bright spot upon the surface of the hollow shell metal has but a small absorbing power.

In the case of all smooth bodies which are not reflecting power increases as the angle of incidence hence the absorbing power must decrease. Hence to $\left(g^{\prime}\right)$, the intensity of emission i of all bodies wh: black is greater when it takes place perpendicular to than when it is oblique. Hence the cosine law of emz rigorously only for black surfaces.

At oblique incidence, as was shown on pag

[^109]
THE SECOND LAW OF THERMODYNAMICS 501

reflecting power, and therefore the absorbing power, depends upon the condition of polarization of the incident rays. Hence the radiation emitted obliquely by a body is partially polarised. That component of the radiation which is polarized in a plane perpendicular to the plane defined by the normal and the ray must be the stronger, because it is the component which is less powerfully reflected, and is therefore more strongly absorbed. In the case of crystals like tourmaline, the absorbing power, even at perpendicular incidence, depends upon the condition of polarization of the incident light. If, therefore, tourmaline retains this property at the temperature of incandescence, a glowing tourmaline plate must emit partially polarized light even in a direction normal to its surface. Kirchhoff has experimentally confirmed this result. To be sure the dependence of the absorption upon the condition of polarization is much less at the temperature of incandescence than at ordinary temperatures.

Kirchhoff made an important application of his law to the explanation of such inversion of spectral lines as is shown in the Fraunhofer lines in the solar spectrum. For if the light from a white-hot body (an electric arc) be passed through a sodium flame of lower temperature than the arc, the spectrum shows a dark D-line upon a bright ground. For at high temperatures sodium vapor emits strongly only the D-line, consequently it must absorb strongly only light of this wave length. Hence the sodium flame absorbs from the arc light the light which has the same wave length as the D-line. To be sure it also emits the same wave length, but if the sodium flame is cooler than the arc, it emits that light in smaller intensity than the latter. Hence in the spectrum the intensity in the position of the D-line is less than the intensities in the positions corresponding to other wave lengths which are transmitted without absorption by the flame.* According to this view the Fraunhofer lines in the solar snectrum are exnlained hy the
absorption of the light which comes from the hot centre of the sun by the cooler metallic vapors and gases upon its surface Nevertheless this application of Kirchhoff's law assumes tha the incandescence of gases and vapors is a case of pure tem. perature radiation. According to experiments by Pringsheim this does not seem to be in general the case. This point wil be further discussed in § I of Chapter III.
6. The Dependence of the Intensity of Radiation upor the Index of Refraction of the Surrounding Medium.-Con sider two infinitely large plates $P P^{\prime}$ of two black substance placed parallel to one another. Let the outer sides of $P P^{\prime}$ b coated with a layer of perfectly reflecting substance $S S^{\prime}$ so that radiation can pass neither out of nor into the space $P P^{\prime}$ It has thus far been assumed that the space into which th radiation is to take place is absolutely empty, or filled with homogeneous perfectly transparent medium like air. Instead of this the assumption will now be made that an empty spac

Fig. rog.
adjoins P, while a perfectly transparent substance, whose indes is n for any given wave length λ, adjoins P^{\prime}.* Let th boundary of this medium be the infinitely large plane 1 (cf. Fig. IO9), which is assumed to be parallel to the plate $P P^{\prime}$ in order that P may be everywhere adjacent to a vacuum

Now, according to page 83, an element of surface $d s$ upo P radiates into a circular conical shell, whose generating line make the angles ϕ and $\phi+d \phi$ with the normal to $d s$, th energy

$$
d L=2 \pi i d s \sin \phi \cos \phi d \phi
$$

a which i denotes the intensity of radiation from P. Part of he emitted energy $a L$ is reflected at the plane E and again bsorbed by P. Let the amount thus reflected be

$$
\begin{equation*}
d L_{r}=2 \pi i d s \sin \phi \cos \phi d \phi \cdot v_{\phi}, \quad . \quad . \tag{II}
\end{equation*}
$$

n which r_{ϕ} denotes the factor of reflection at the boundary E or the angle of incidence ϕ. The rest of the energy, $L-d L_{r}$, reaches P^{\prime} and is there absorbed.

Similarly the energy emitted from an element of surface $d s$ pon P^{\prime} into a circular conical shell whose generating lines nake the angles χ and $\chi+d \chi$ with the normal to P^{\prime} is

$$
d L^{\prime}=2 \pi i^{\prime} d s \sin \chi \cos \chi d \chi
$$

n which i^{\prime} denotes the intensity of radiation from P^{\prime}. There s returned to P^{\prime} by reflection at E the energy

$$
d L_{r}^{\prime}=2 \pi i^{\prime} d s \sin \chi \cos \chi d \chi \cdot r_{\chi}
$$

ence the energy

$$
\begin{equation*}
d L^{\prime \prime}=d L^{\prime}-d L_{r}^{\prime}=2 \pi i^{\prime} d s \sin \chi \cos \chi d \chi\left(1-r_{\chi}\right) \tag{12}
\end{equation*}
$$

eaches P and is there absorbed.
Since the temperature of P is to remain constant, it follows hat

$$
\int d L=\int d L_{r}+\int d L^{\prime \prime}
$$

.e. from (IO), (II), and (I2), since, according to page 498, he intensities of radiation i and i^{\prime} are independent of the angles ϕ and χ,
$\int_{0}^{\pi / 2} \sin \phi \cos \phi d \phi\left(\mathrm{I}-r_{\phi}\right)=i^{\prime} \int_{0}^{\pi / 2} \sin \chi \cos \chi d \chi\left(\mathrm{I}-r_{\chi}\right)$. (I 3) Now it is to be noted that for angles χ, for which $\sin \chi>\frac{1}{n}, r_{\chi}=1$, since in this case total reflection takes place at E. Hence it is only necessary to extend the integral (I3)
be assumed that n is constant for all wave lengths. (I3) ϕ and χ can be thought of as a correspondir angles of incidence and refraction for which the holds:

$$
\sin \phi: \sin \chi=n
$$

and the integration can then be carried out with re: between the limits $\phi=0$ and $\phi=\frac{\pi}{2}$. Now, from

$$
\sin \chi \cos \chi d \chi=\frac{1}{\pi^{2}} \sin \phi \cos \phi d \phi
$$

Moreover, according to equations (24) on page 282, direction of polarization, and hence also for natu $r_{\phi}=r_{\chi}$. For, according to those equations (disreg sign, which need not here be considered), the reflec tude is always the same fraction of the incident a whence it is immaterial whether ϕ is the angle of and χ that of refraction or the inverse, i.e. the factors are the same whether the light is incident fr upon the plane E at the angle ϕ or from below at χ, so long as $\sin \phi: \sin \chi=n$. Hence from (13) when $r_{x}=r_{\phi}$,
$i \int_{0}^{\pi / 2} \sin \phi \cos \phi\left(\mathrm{I}-r_{\phi}\right) d \phi=\frac{i^{\prime}}{n^{2}} \int_{0}^{\pi / 2} \sin \phi \cos \phi\left(\mathrm{I}-r_{\phi}\right)$
Since the integral which appears upon both sides of tion is not equal to zero, there results at once

$$
i^{\prime}: i=n^{2}
$$

i.e. the intensities of radiation of two black surfaces a tional to the squares of the indices of refracti surrounding media.*

[^110]This proof relates only to the total radiation, and the index n was assumed constant for all wave lengths. But equation (17) holds also for the partial radiations of any one particular period T. Let the intensity of emission of P for rays whose periods lie between T and $T+d T$ be denoted by $i_{T} d T$. Similarly denote the intensity of radiation from P^{\prime} for the same rays by $i_{T}^{\prime} d T$. Then, from (I σ),

$$
\begin{equation*}
\sum d T\left(i_{T}-\frac{i_{T}^{\prime}}{n^{2}}\right) \int_{0}^{\pi / 2} \sin \phi \cos \phi\left(\mathrm{r}-r_{\phi}\right) d \phi=0 \tag{I8}
\end{equation*}
$$

The Σ is to be extended over all periods between $T=0$ and $T=\infty$.

Between the two bodies P and P^{\prime} conceive a layer introduced which is transparent to a certain wave length λ, but reflects other wave lengths. Equation (I8) must always hold, but the functional relation between r_{ϕ} and T varies according to the thickness and nature of the layer. Now in order that (I8) may hold as r_{ϕ} is indefinitely varied, every term of the Σ in (18) must vanish, i.e. for every value of T^{*}

$$
\begin{equation*}
i_{T}: i_{T}=n^{2} . \tag{19}
\end{equation*}
$$

According to Kirchhoff's law (9^{\prime}), for a body which is not black the ratio of the emission i_{λ} to the absorption a_{λ} is proportional to the square of the index n of the surrounding medium. Since the change of a_{λ} with n may be calculated from the reflection equations, the relation between i_{λ} and n is at once obtained. In any case, then, for bodies that are not black the intcnsity of radiation is not strictly proportional to n^{2}.
7. The Sine Law in the Formation of Optical Images of Surface Elements.-If $d s^{\prime}$ is the optical image of a surface element $d s$ formed by a bundle of rays which are symmetrical

[^111]to the normal to $d s$ and have an angle of apert object space, u^{\prime} in the image space, then the wl emitted by $d s$ within the bundle under consideratio upon $d s^{\prime}$; and inversely, $d s^{\prime}$ must radiate upon d rays denote the path of the energy flow. Hence be considered black surfaces of the same tempe coated on their remote sides by perfectly reflec then, since no difference in temperature between can arise because of the radiation, the energy $d L$ s $d s$ must be equal to the energy $d L^{\prime}$ received by it f now $d s$ lies in a medium of refractive index $n, d s^{\prime}$ in n^{\prime}, and if the intensity of emission of a black body denoted by i_{0}, then, by (17), the intensity of emis: $i=n^{2} i_{0}$, that of $d s^{\prime}, i^{\prime}=n^{\prime 2} i_{0}$. Moreover, from 485,
$$
d L=\pi \cdot d s \cdot i \cdot \sin ^{2} \imath, \quad d L^{\prime}=\pi \cdot d s^{\prime} \cdot i^{\prime} \cdot \sin ^{2}
$$

Hence, since $d L=d L^{\prime}$,

$$
\pi d s n^{2} i_{0} \sin ^{2} u=\pi d s^{\prime} n^{\prime 2} i_{0} \sin ^{2} u^{\prime}
$$

i.e.

$$
d s n^{2} \sin ^{2} u=d s^{\prime} u^{\prime 2} \sin ^{2} u^{\prime} .
$$

This is the sine law deduced on page 6r (46)]. The deduction there given, which was pur rical, is more complicated than the above, which i considerations of energy.
8. Absolute Temperature.-As was noted o work can be obtained, with the aid of a suitable withdrawing a certain quantity of heat W_{1} from a and giving up a smaller quantity of heat W_{2} to ar voir 2, which is colder than I. In this process may return to its original condition, i.e. it may so-called cycle. The principle of the conservatic then demands that the work A performed be difference between the quantities of heat W_{1} ar

THE SECOND LAW OF THERMODYNAMICS 507

Now compare two machines M and M^{\prime}, both of which withdraw in one cycle the same quantity of heat W_{1} from reservoir I. They may, however, give up different quantities W_{2} and W_{2}^{\prime} to reservoir 2 . In that case the two quantities of work A and A^{\prime} done by them are different, for from (2I)

$$
A=W_{1}-W_{2}, \quad A^{\prime}=W_{1}-W_{2}^{\prime}
$$

Now consider M to be so constructed that it can be made to work backwards (i.e. let it describe a reversible cycle). In so doing it withdraws the quantity of heat W_{2} from reservoir 2, gives up the quantity W_{1} to reservoir 1 , and performs the work - A. If now a cycle of machine M^{\prime} be combined with such an inverted cycle of machine M, the resultant work accomplished is

$$
\begin{equation*}
A^{\prime}-A=W_{2}-W_{2}^{\prime} \tag{22}
\end{equation*}
$$

This process can be conceived to be repeated indefinitely. Hence according as $W_{2}-W_{2}^{\prime}$ is positive or negative heat is continually withdrawn from or added to reservoir 2, while on the whole heat is neither withdrawn from nor added to reservoir 1 . Hence in this case reservoir I may be assumed to be finite and may be considered to be part of the machine which describes the cycle; while reservoir 2 may be conceived to be the surrounding medium, for example the water of the ocean, whose heat capacity may be considered infinite. If now $A^{\prime}-A$ were greater than o , then a machine would have been constructed which, with the aid of one infinitely large heatreservoir, would do an indefinite amount of work. But by the second law of thermodynamics this is impossible (cf. page 493), hence*

$$
\begin{equation*}
A^{\prime}-A<0, \quad \text { i.e. } \quad A>A^{\prime} \tag{23}
\end{equation*}
$$

i.e. of all machines which take up a quantity of heat W_{1} at a definite temperature and give up heat to a colder reservoir, and

[^112]

A multiplication of (25) by (26) gives

$$
\begin{equation*}
W_{1}: W_{3}=\phi\left(\tau_{1}, \tau_{2}\right) \cdot \phi\left(\tau_{2}, \tau_{3}\right) . \tag{28}
\end{equation*}
$$

Hence from a comparison of (27) and (28)

$$
\begin{equation*}
\phi\left(\tau_{1}, \tau_{3}\right)=\phi\left(\tau_{1}, \tau_{2}\right) \cdot \phi\left(\tau_{2}, \tau_{3}\right) \tag{29}
\end{equation*}
$$

In this equation τ_{2} can be looked upon as an arbitrary parameter whose value need not be considered. Thus the right-hand side of (29) represents the product of two factors one of which depends only upon τ_{1}, the other only upon τ_{2}. These factors will be denoted by ϑ_{1} and $\frac{\mathrm{I}}{\vartheta_{3}}$, , so that, from (29),

$$
\begin{equation*}
\phi\left(\tau_{1}, \tau_{3}\right)=\vartheta_{1}: \vartheta_{3} \tag{30}
\end{equation*}
$$

Hence in (25) $\phi\left(\tau_{1}, \tau_{2}\right)=\vartheta_{1}: \vartheta_{2}$ and there results

$$
\begin{equation*}
\frac{W_{1}}{W_{2}}=\frac{\vartheta_{1}}{\vartheta_{2}} . \tag{3I}
\end{equation*}
$$

ϑ_{1} and ϑ_{2} are functions of the two reservoir temperatures τ_{1} and τ_{2} measured upon any scale. ϑ_{1} and ϑ_{2} are called the absolute temperatures of the reservoirs. The ratio of the absolute temperatures of any two bodies means then the ratio of the quantities of heat which a machine working in a reversible cycle withdraws from one and gives up to the other of these bodies, provided the bodies may be considered infinitely large so that their temperatures are not appreciably changed by the gain or loss of the quantities of heat W_{1} or W_{2}.

Since this merely defines the ratio of the absolute temperatures of the two bodies, it is necessary to establish a second relation in order to establish a scale of temperature. This relation is fixed by the following convention: The difference between the absolute temperatures of melting ice and boiling water, both at atmospheric pressure, shall be called ioo. It

* It is desirable to write the second factor $\frac{\mathrm{I}}{\vartheta_{3}}$ instead of ϑ_{3}, because then the parameter τ_{2} disappears from (29), as can be seen at once by writing

$$
\phi\left(\tau_{1}, \tau_{2}\right)=\vartheta_{1}: \vartheta_{2} \text { and } \phi\left(\tau_{2}, \tau_{2}\right)=\vartheta_{2}: \vartheta_{3}
$$

$$
\sum_{0}^{*} \quad \int^{i n}
$$

$$
\begin{aligned}
& \text { n } 11 \\
& \text { an }
\end{aligned}
$$

in which S represents a single-valued function of the state of the body, and $d S$ the differential of this function. For then, according to (34), the right-hand side of (35^{\prime}) always reduces to zero as soon as a cycle is described in which the final condition 2 of the substance is identical with the initial condition I . This function S of the state of a body or of a system of bodies is called the entropy of the body.

The energy E is also a function of the state of the body. It is defined by means of the assertion of the first law of thermodynamics, that in any change of the body the work δA done by the body plus the heat δW given up (measured in mechanical units) is equal to the decrease $-d \mathrm{E}$ in the energy of the body, i.e. it is defined by the equation

$$
\begin{equation*}
\delta A+\delta W=-d \mathrm{E} \tag{36}
\end{equation*}
$$

10. General Equations of Thermodynamics.-It is convenient to choose as the independent variables which determine the state of a body or of a system, the absolute temperature ϑ and some other variables x, whose meaning will for the present be left undetcrmined. x will be so chosen that when the temperature changes in such a way that x remains constant, no work is done by the body. Then, since A does not change when x remains constant, the following relations hold:

$$
\begin{equation*}
\delta A=M \delta x, \quad \delta W=X \delta x+Y \delta \vartheta \tag{37}
\end{equation*}
$$

δx and $\delta \vartheta$ represent any changes in x and $\vartheta ; \delta A$ and δW, the corresponding work done and heat given up by the body. The process will be assumed to be reversible, i.e. the equations (37) will be assumed to hold for either sign of δx and $\delta \vartheta$. Now from (35), (36), (37),
$-d S=\frac{X}{\vartheta} \delta x+\frac{Y}{\vartheta} \delta \vartheta, \quad-d \mathrm{E}=(M+X) \delta x+Y \delta \vartheta$.
Since in general

$$
d S=\frac{\partial S}{\partial x} \delta x+\frac{\partial S}{\partial \vartheta} \delta \vartheta
$$

```
#% & % % %
```


 4 B ?
\because

? 解

- © 5 ©.an

bina. k

Again, if the temperature of the entire cylinder is increased an amount $\delta \vartheta$, while x remains constant, the energy increases by

$$
\begin{equation*}
d \mathrm{E}=\frac{\partial \psi}{\partial v} \delta v \cdot x, \tag{44}
\end{equation*}
$$

since the volume of the cylinder is x. No work is done so long as x remains constant.

A comparison of (43) with (37) and of (44) with (38) shows, since by (38), when $\delta x=0, d \mathrm{E}=-Y \delta \theta$, that

$$
\begin{equation*}
M=\frac{1}{8} \psi, \quad Y=-x \frac{\partial \psi}{\partial \vartheta} \tag{45}
\end{equation*}
$$

It follows, therefore, from (42), since ψ depends only upon ϑ and not upon x, that

$$
\frac{\partial \psi}{\partial \vartheta}=\frac{1}{3} \vartheta \frac{\partial^{2} \psi}{\partial \vartheta^{2}}=\frac{1}{3} \frac{\partial}{\partial \vartheta}\left(\vartheta \frac{\partial \psi}{\partial \vartheta}-\psi\right) .
$$

Integration of this equation with respect to ϑ gives

$$
\begin{equation*}
3 \psi=\vartheta \frac{\partial \psi}{\partial \vartheta}-\psi . \tag{46}
\end{equation*}
$$

An integration constant need not be added, because when $\vartheta=0$ the body contains no heat, and hence no radiation can take place. It follows from (46) that

$$
4 \psi=\vartheta \frac{\partial \psi}{\partial \vartheta}, \quad \text { i.e. } 4 \frac{d \vartheta}{\vartheta}=\frac{d \psi}{\psi} ;
$$

hence

$$
4 \lg \vartheta=\lg \psi+\text { const. }
$$

or

$$
\begin{equation*}
\psi(\vartheta)=C \cdot \vartheta^{4} \tag{47}
\end{equation*}
$$

If now a small hole be made in the wall of this cylinder, radiation will take place from the hole as though it were a black body (cf. page 489).* The intensity of radiation i must

[^113]evidently be proportional to the energy in unit volume within the cylinder. Hence the intensity of radiation black body is
$$
i=\alpha \cdot \vartheta^{4}
$$
i.e. the total intensity of emission of a black body is proporti to the fourth power of its absolute temperature.

This law, which Stefan* first discovered experiment and Boltzmann deduced theoretically in a way similar to above, has been since frequently verified. The most accu work is that of Lummer and Pringsheim, \dagger who found by b metric measurements that within the temperature interval to $1300^{\circ} \mathrm{C}$. the radiation from a hole in a hollow shell follo the Stefan-Boltzmann law. It is of course necessary in experiments to take account of the temperature of the bolo ter (cf. page 491). The radiation of the small surface $d s$ the surface $d s^{\prime}$ at a distance r amounts, when $d s$ and $d s^{\prime}$ perpendicular to r [cf. the definition of intensity of radiat equation (3), page 484], to

$$
d L=i \frac{d s d s^{\prime}}{r^{2}}
$$

The radiation from $d s^{\prime}$ upon $d s$ amounts, if i^{\prime} denote intensity of radiation of $d s^{\prime}$, to

$$
d L^{\prime}=i^{\prime} \frac{d s d s^{\prime}}{r^{2}}
$$

of the cylinder had been perfect mirrors and no heat had been originally adr into the cylinder would the energy in unit volume $\psi=0$. The energy in volume would reach the normal value ψ if the walls of the cylinder contain spot, no matter how small, which was not a perfect mirror. If this spot wer fectly black, the pressure upon it would be $\frac{1}{3} \psi$. But in that case every part cylinder wall, even that formed of perfect mirrors, would experience the pressure, since otherwise the cylinder would be set into continuous motion of lation or rotation.

Hence if i and i^{\prime} follow the law (48), the total quantity of heat transmitted in unit time to the element $d s^{\prime}$ is

$$
\begin{equation*}
d W=d L-d L^{\prime}=a \frac{d s d s^{\prime}}{r^{2}}\left(9^{4}-9^{\prime 4}\right) \tag{49}
\end{equation*}
$$

in which ϑ^{\prime} denotes the absolute temperature of $d s^{\prime}$.
The constant a has recently been determined in absolute units by F. Kurlbaum * by means of bolometric measurements. In these experiments the temperature to which the bolometer was raised by the radiation was noted; the radiation was then cut off, and the bolometer raised to the same temperature by a measured electric current. The radiation is thus measured in absolute units by means of the heat developed by the current. Kurlbaum found that the difference between the emissive power of unit surface of a black body between 100° and 0°, i.e. the difference between the energy radiated in all directions, was

$$
\begin{equation*}
e_{100}-e_{0}=0.01763 \frac{\mathrm{gr}-\mathrm{cal}}{\mathrm{sec}} \tag{50}
\end{equation*}
$$

Now [cf. equation (5), page 485] $e=\pi i$, in which i is the intensity of radiation. Further, I gm -cal $=419 \cdot 10^{5}$ ergs, hence

$$
i_{100}-i_{0}=a\left(373^{4}-273^{4}\right)=\frac{0.01763 \cdot 419 \cdot 10^{5}}{\pi}
$$

i.e. the radiation constant a for a black body in absolute C. G. S. units is

$$
\begin{equation*}
a=1.7 \mathrm{I} \cdot 10^{-5} \mathrm{erg} / \mathrm{sec}, \tag{5I}
\end{equation*}
$$

or, in gm-cal,

$$
a=0.408 \cdot 10^{-12 \mathrm{gr} \mathrm{cal}} / \mathrm{sec}
$$

12. The Temperature of the Sun Calculated from its Total Emission. - If the sun were a perfectly absorbing (i.e. a black) body which emitted only pure heat radiations, its tem-

of a black body can now be determined by means of the following device, due to W. Wien.*

Conceive a cylinder of unit cross-section within which two pistons S and S^{\prime}, provided with light-tight valves, move. Let K and K^{\prime} be two black bodies of absolute temperatures ϑ

Fig. 1 io.
and $\vartheta+\delta \vartheta$. Let the side walls of the cylinder, as well as the pistons S and S^{\prime}, be perfect mirrors. Let also the outer sides of K and K^{\prime} be coated with perfect mirrors. Let there be a vacuum within the cylinder.

At first let S^{\prime} be closed and S be open. Then K radiates into the spaces I and $2, K^{\prime}$ into 3 . The energy in unit volume is greater in 3 than in 2 because the temperature of K^{\prime} is greater by $\delta \vartheta$ than that of K. Let now S be closed and moved a distance δx toward S^{\prime}, until the energy in unit volume in 2 is equal to that in 3. The value which δx must have in order that this condition may be fulfilled will now be calculated. If \mathfrak{F} denote the original amount of radiant energy contained in space 2 , then the original energy in unit volume in this space is

$$
\psi(\vartheta)=\frac{\sqrt{5}}{a-x} .
$$

Hence the change in energy in unit volume corresponding to a change in x is

$$
d ⿲=\frac{d(\sqrt{5}}{a-x}+\sqrt{5} \frac{\delta x}{(a-x)^{2}} .
$$

Now $d \sqrt{F}$ is the work which is done in pushing forward the piston S. Hence, from page 512, $d \mathfrak{F}=\frac{1}{3} \psi \delta x$. Hence

1
$*$

THE SECOND LAW OF THERMODYNAMICS

But, according to the second law, work A can never be gained by means of a cycle in which heat is withdrawn from only one source K^{\prime}, the heat being thus entirely transformed into work. Hence the conclusion that when the two spaces 2 and 3 contain the same quantity of energy in unit volume, the distribution of energy in their spectra is always the same.

But, according to Doppler's principle, the distribution of energy in the spectrum is changed by the motion of the piston S. Let the total energy in unit volume in space 2 be given by

$$
\begin{equation*}
\psi(\vartheta)=\int_{0}^{\infty} \phi(\lambda, \vartheta) d \lambda, \tag{56}
\end{equation*}
$$

then the expression $\phi(\lambda, \vartheta) d \lambda$ represents the energy in unit volume of the waves whose lengths lie between λ and $\lambda+d \lambda$. Consider the plane waves which are reflected back and forth at normal incidence between the pistons S and S^{\prime} in the space 2. The wave length of these waves is changed by the motion of S. Consider first a ray which starts from a point P and has been reflected but once upon S. If the vibration at the point P due to the incident wave has the period T, then the vibration at P due to the wave reflected from S will have some other period T^{\prime}. For if a disturbance starts out from P at the time $t=0$, it returns to P after reflection upon S at a time $t^{\prime}=2 b_{1}: c$, in which c is the velocity of light in space 2 (in vacuo), and b_{1} the distance of P from the mirror at the time t_{1} when the disturbance from P reached S.

If at the time $t=0$ the distance between P and S is b, hen evidently $b=b_{1}+s_{1}$, in which s_{1} denotes the distance travelled by the mirror S in the time t_{1}. If S moves with a velocity v with respect to P, then $s_{1}=v t_{1}$, and $b_{1}=c t_{1}$; hence it follows from $b=(c+v) t_{1}$ that $t_{1}=b: c+v$, or

a<

 (3)
(t)

THE SECOND LAW OF THERMODYNAMICS

It will now be assumed that v is small in comparison with c. Then from (57), retaining only terms of the first order in $v: c$,

$$
T^{(n)}=T\left(\mathrm{r}-2 n \frac{v}{c}\right)
$$

i.e., in consideration of (59),

$$
T^{(n)}=T\left(\mathrm{1}-\frac{\delta x}{a-x}\right) .
$$

The change in the period due to the motion of the piston S amounts then to

$$
\delta T=T^{(n)}-T=-T \frac{\delta x}{a-x}
$$

and also the change $\delta_{1} \lambda$ in the wave length λ due to the motion of S is

$$
\begin{equation*}
\delta_{1} \lambda=-\lambda \frac{\delta x}{a-x} . \tag{60}
\end{equation*}
$$

When δx is positive $\delta_{1} \lambda$ is negative, i.e. the wave length is shortened.

Moreover, it must be remembered that only one third of that part of the energy which is represented by (56) and which corresponds to the wave length λ can be looked upon as due to waves which travel at right angles to S (cf. page 512). The waves which travel parallel to S undergo no change in wave length because of the motion of S. If, therefore, that part of the energy which is originally present in space 2 and which corresponds to waves whose lengths lie between λ and $\lambda+d \lambda$ is

$$
\begin{equation*}
d L=\phi(\lambda, \vartheta) d \lambda \tag{6I}
\end{equation*}
$$

then, neglecting the increase of energy in unit volume due to the motion (cf. page 517), the energy $d L^{\prime}$ which, after the
length due to the motion of the piston as worked out in (60) Thus

$$
d L^{\prime}=\left[\frac{2}{8} \phi(\lambda, \vartheta)+\frac{1}{8} \phi\left(\lambda-\delta_{1} \lambda, \vartheta\right)\right] d \lambda .
$$

Now, from Taylor's theorem,

$$
\phi\left(\lambda-\delta_{1} \lambda, \vartheta\right)=\phi(\lambda, \vartheta)-\delta_{1} \lambda \frac{\partial \phi}{\partial \lambda} .
$$

Hence

$$
d L^{\prime}=\phi(\lambda, \vartheta)-\frac{\delta_{1} \lambda}{3} \cdot \frac{\partial \phi}{\partial \lambda}
$$

or again, from Taylor's theorem, by setting $\frac{1}{8} \delta_{1} \lambda=\delta \lambda$,

$$
\begin{equation*}
d L^{\prime}=\phi(\lambda-\delta \lambda, \vartheta) d \lambda \tag{6}
\end{equation*}
$$

The energy which corresponds to the wave length λ at tl temperature $\vartheta+\delta \vartheta$, i.e. after the motion of the piston, is $t]$ same as the energy corresponding to the wave length λ at the temperature ϑ. But now, from (60) and (55),

$$
\delta \lambda=\frac{1}{3} \delta_{1} \lambda=-\frac{\lambda}{3} \frac{\delta x}{a-x}, \quad \delta \vartheta=\frac{\vartheta}{3} \frac{\delta x}{a-x},
$$

ie. the relation holds

$$
\frac{\delta \vartheta}{\vartheta}+\frac{\delta \lambda}{\lambda}=0,
$$

which can be written as $\delta(\vartheta \lambda)=0$, ie.

$$
\vartheta \lambda=\text { const. }
$$

Hence neglecting the increase in the energy in unit volu due to the motion of the piston, i.e. neglecting the increase energy due to rise in temperature, the same energy in u volume exists at a temperature ϑ in waves of length λ as ext at the lower temperature ϑ^{\prime} in waves of length λ^{\prime}, provi $\lambda \vartheta=\lambda^{\prime} \vartheta^{\prime}$.

But if the increase in the total energy in unit volur which is proportional to ϑ^{4}, be taken into consideration,

THE SECOND LAW OF THERMODYNAMICS

The above law then asserts that for a black body one and the same curve expresses the functional relationship between $\psi: \vartheta^{4}$ and $\lambda \vartheta$ at any temperature. Now, from (56),

$$
\begin{equation*}
\frac{\psi(\vartheta)}{\vartheta^{4}}=\int_{0}^{\infty} \frac{\phi(\lambda, \vartheta)}{\vartheta^{5}} d(\lambda \vartheta) . \tag{65}
\end{equation*}
$$

Hence $\phi(\lambda, \vartheta): \vartheta^{5}$ must be a function of $\lambda \vartheta$, thus

$$
\begin{equation*}
\frac{\phi(\lambda, \vartheta)}{\vartheta^{5}}=f(\lambda \vartheta) \tag{66}
\end{equation*}
$$

If, therefore, for any temperature ϑ the curve of the distribution of energy be plotted using $\lambda \vartheta$ as abscissæ and $\phi(\lambda, \vartheta): \vartheta^{5}$ as ordinates, then this curve holds for all temperatures, and it is easy to construct from this curve the actual distribution of energy for other temperatures, when the λ 's are taken as abscissæ and the ϕ 's as ordinates. Hence the following theorem:

If at a temperature ϑ the maximum radiation of a black body corresponds to the wave length λ_{m}, then at the temperature ϑ^{\prime} it must correspond to a wave length λ_{m}^{\prime} such that

$$
\begin{equation*}
\lambda_{m} \cdot \vartheta=\lambda_{m}^{\prime} \cdot \vartheta^{\prime} \tag{67}
\end{equation*}
$$

Further, it follows from (66) and (67), if the function ϕ which corresponds to the wave length λ_{m} be denoted by ϕ_{m}, that

$$
\begin{equation*}
\phi_{m}: \phi_{m}^{\prime}=\vartheta^{5}: \vartheta^{\prime 5} \tag{68}
\end{equation*}
$$

i.e. if two black bodies have different temperatures, the intensity of radiation of those wave lengths which correspond to the maxima of the intensity curves for the two bodies are proportional to the fifth power of the absolute temperatures of the bodies.
14. The Temperature of the Sun Determined from the Distribution of Energy in the Solar Spectrum.-Equation (67) has been frequently verified by experiment.* The mean
value of $\lambda_{m} 9$ as determined from a number of experiment good agreement is $\lambda_{m} 9=2887$, the unit of wave length be 0.001 mm . Since now, according to Langley, the maxim energy of the sun's radiation corresponds to the wave len $\lambda_{m}^{\prime}=0.0005$, it would follow that the temperature of the is

$$
9^{\prime}=5774^{\circ}=5501^{\circ} \mathrm{C}
$$

This result is of the same order of magnitude as that calcul on page 5 I6. It is, however, questionable whether the su a perfectly absorbing (black) body which emits only pure t perature radiation. If chemical luminescence exists in sun, its temperature may be wholly different.
15. The Distribution of the Energy in the Spectrum Black Body.-The preceding discussion relates to the che in the distribution of the energy in the spectrum of $a b$ body with the temperature; but nothing has been said a the distribution of the energy for a given temperature. order to determine the law of this distribution W. Wien ceeds as follows:*

If the radiating black body be assumed to be a gas, t upon the assumption of the kinetic theory of gases, Maxw law of the distribution of velocity of the molecules would h According to this law the number of molecules whose ve ties lie between v and $v+d v$ is proportional to the qua

$$
v^{2} \cdot e^{-v^{2} / \beta^{2}} d v
$$

in which β is a constant which can be expressed in term the mean velocity \bar{v} as follows:

$$
\bar{v}^{2}=\frac{3}{2} \beta^{2} .
$$

eter cooled to $-20^{\circ} \mathrm{C}$. he found that the maximum radiation of a blac copper plate at a temperature $-2^{\circ} \mathrm{C}$. corresponded to $\lambda_{m}=0.0122 \mathrm{~mm}$. $\lambda_{m} \theta=2887$ it would follow that at $-2^{\circ} \mathrm{C}$. $\lambda_{m}^{\prime}=0.0107$. To be sure the plate was not an ideal black body and it was only its maximum relativ

According to the kinetic theory the absolute temperature is proportional to the mean kinetic energy of the molecules, i.e.

$$
\begin{equation*}
\vartheta \sim \bar{v}^{2} \sim \beta^{2} . \tag{7r}
\end{equation*}
$$

Now Wien makes the hypotheses:
I. That the length λ of the waves which every molecule emits depends only upon the velocity v of the molecule. Hence v must also be a function of λ.
2. The intensity of the radiations whose wave lengths lie between λ and $\lambda+d \lambda$ is proportional to the number of molecules which emit vibrations of this period, i.e. proportional to the expression (69). If this intensity of radiation be written in the form

$$
\phi(\lambda, \vartheta) a \lambda
$$

then from (69), (70), and (71), since v is a function of λ,

$$
\begin{equation*}
\phi(\lambda, \vartheta)=F(\lambda) \cdot e^{-\frac{f(\lambda)}{\vartheta}} \cdot * \tag{72}
\end{equation*}
$$

Since now, from (66), $\phi: \vartheta^{5}$ must be a function of the argument $\lambda \vartheta$, it follows that $F(\lambda)=c_{1}: \lambda^{5}$ and $f(\lambda)=c_{2}: \lambda$, so that the following law of radiation results:

$$
\begin{equation*}
\phi(\lambda, \vartheta)=\frac{c_{1} \cdot e^{-c_{2}: \lambda \vartheta}}{\lambda^{5}} \tag{73}
\end{equation*}
$$

and the total radiation is

$$
\begin{equation*}
i=c_{1} \int_{0}^{\infty} \frac{e^{-c_{2}}: \lambda \theta}{\lambda^{5}} d \lambda \tag{74}
\end{equation*}
$$

This law of radiation must hold for all black bodies whether they be gases or not, since, as was shown on page 498, the law of radiation of a black body does not depend upon the nature of the body.

This law has been frequently verified by experiment. \dagger

That wave length, λ_{m}, at which the intensity O maximum is determined from the equation $\frac{\partial s}{\partial \rho}$ from (73),

$$
\lg \phi=\lg c_{1}-\frac{c_{2}}{\lambda \vartheta}-5 \lg \lambda,
$$

hence

$$
\frac{\mathrm{I}}{\phi} \frac{\partial \phi}{\partial \lambda}=\frac{c^{2}}{\lambda^{2} \vartheta}-\frac{5}{\lambda}
$$

Hence the relation obtains,

$$
\lambda_{m} \cdot \vartheta=c_{2}: 5 .
$$

Since $\lambda_{m} \vartheta$ has the value 2887 (cf. page 524),

$$
c_{2}=14435
$$

when the unit of wave length is 0.001 mm .*
I

$$
c_{2}=\mathrm{I} .4435
$$

Writing $\frac{\mathrm{I}}{\lambda}=y, \frac{c_{2}}{\vartheta}=c^{\prime}$,(74) becomes

$$
i=-c_{1} \int_{\infty}^{0} y^{3} \cdot e^{-d^{\prime} y} d y
$$

But

$$
\int y^{3} \cdot e^{-c^{\prime} y} d y=-\left(\frac{1}{c^{\prime}} y^{3}+\frac{3}{c^{\prime 2}} y^{2}+\frac{6}{c^{\prime 3}} y+\right.
$$

Hence

$$
\int^{0} y^{3} \cdot e^{-c^{\prime} y} d y=-\frac{6}{c^{\prime 4}},
$$

and

$$
i=\frac{6 c_{1}}{c^{\prime 4}}=\frac{6 c_{1}}{c_{2}^{4}} \vartheta^{4}
$$

`HE SECOND LAW OF THERMODYNAMICS

lis equation be compared with (48) on page 514, it that

$$
a=6 c_{1}: c_{2}^{4}, \quad \cdot \quad . \quad . \quad . \quad(78)
$$

:h a is the constant of the Boltzmann-Stefan law of n. Now from equation (5I), page 515 ,

$$
a=1.7 \mathrm{I} \cdot 10^{-5} \mathrm{erg} / \mathrm{sec} .
$$

in consideration of $\left(7 \sigma^{\prime}\right)$ the constant c_{1} has the value
.S. units

$$
c_{1}=\frac{1}{6} a c_{2}^{4}, \quad \text { i.e. } \quad c_{1}=1.24 \cdot 10^{-5} . \quad . \quad(79)
$$

e law of radiation (73), which is universal, furnishes a of establishing* a truly absolute system of units of , mass, time, and temperature-a system which is based aniversal properties of the ether and does not depend any particular properties of any body. Thus universal ation and the velocity of light represent two universal

The absolute system is then obtained from the assumprat the constant of gravitation, the velocity of light, and ro constants c_{1} and c_{2} in the law of radiation all have the 1.

[^114]
CHAPTER III

INCANDESCENT VAPORS AND GASES

1. Distinction between Temperature Radiation an Luminescence.-The essential distinction between tempera ture radiation and luminescence has already been mentione on page 494. What is now the criterion by which it is poss ble to decide whether a luminous body shines by virtue luminescence or by pure temperature radiation ?

In the case of luminescence Kirchhoff's law as to the pr portionality between emission and absorption is not applicabl nevertheless even in this case the emission of sharp spectr lines is accompanied by selective absorption of these san lines, since both are closely connected with the existence but slightly damped natural periods of the ions.

A criterion for the detection of luminescence can obtained from measurements of the absolute value of $t]$ emissive power or of the intensity of radiation. For if t intensity of radiation of a body within any region of wa lengths is greater than that of a black body at the san temperature, and within the same region of wave lengths, th luminescence must be present. By means of this criteri E. Wiedemann,* F. Paschen, \dagger and E. Pringsheim \ddagger have sho that the yellow light which is radiated when common salt burned in the flame of a Bunsen burner is due at least pa tially to chemical luminescence (according to Pringsheim t
reduction of the sodium from the salt). The latter concludes, after many experiments, that in general, in all methods which are used for the production of the spectra of gases, the incandescence is a result of electrical* or chemical \dagger processes. Nevertheless at sufficiently high temperatures all gases and vapors must emit temperature radiations which correspond to Kirchhoff's law, \ddagger since otherwise the second law of thermodynamics would be violated. It is, to be sure, possible that the absorption, and hence also the temperature radiation, when chemical processes are excluded, is small, and gives possibly no sharp spectral lines because the absorbing power reaches an appreciable value only because of chemical processes. For example, it would be conceivable that the natural vibration of the ions, which occasion strong selective absorption, become possible only upon a.change in the molecular structure of the molecule.
2. The Ion-hypothesis.-According to the electromagnetic theory, the vibrations of the ions produce electromagnetic waves of their own period, i.e. light-waves of a given color. The attempt will be made to find out whether this hypothesis can be carried to its conclusions without contradicting other results deduced from the kinetic theory of gases.

Consider a stationary condition, in which the vibrations of the ionic charges have a constant amplitude. Since this amplitude would necessarily diminish because of radiation and

[^115]friction, it is necessary to suppose that it is kept constant by continuous supply of energy. In the case of temperatur radiation this supply of energy comes from the impacts of th molecules; in the case of luminescence, from chemical or ele trical energy.

If the distance between two equal electric charges (mea ured in electrostatic units) of opposite sign (they may be rest or in motion) undergoes a periodic change of amplitude and period T, then, according to Hertz,* the electromagnet energy emitted in a half-period is

$$
L^{\prime}=\frac{8 \pi^{4}}{3 \lambda^{3}} e^{2} l^{2}
$$

in which λ denotes the wave length in vacuo.
Hence the amount of energy radiated in unit time from \mathfrak{f} oppositely charged ions is

$$
L=\frac{16}{3} \pi^{4} \frac{e^{2} l^{2}}{\lambda^{3} T}=\frac{16}{3} \pi^{4} c \frac{e^{2} l^{2}}{\lambda^{4}}
$$

Now, according to measurements of E. Wiedemann, \dagger t energy emitted in a second, in the two D-lines, by I gm. sodium is

$$
L_{1}=32 \mathrm{IO} \mathrm{gr}-\mathrm{cal}=\mathrm{I} 3.45 \cdot \mathrm{Io}^{10} \mathrm{ergs} .
$$

The atomic weight of sodium is 23 . It is next necess to calculate the absolute weight of an atom of sodiu According to Avogadro's law, in every gas or vapor, a given temperature and pressure, there exists the same num of molecules in unit volume. This number, at a pressure I atmosphere and at $0^{\circ} \mathrm{C}$., is calculated from the kin theory \ddagger as $N=10^{20}$ in a cm. ${ }^{3}$. According to Regnault I c of air at $0^{\circ} \mathrm{C}$. and atmospheric pressure weighs 0.001293

[^116]1 is 14.4 times lighter than air; hence the weight g. slecule of hydrogen is given by

$$
\begin{aligned}
& g \cdot 10^{20}=\frac{0.001293}{14.4} \\
& g=9 \cdot 10^{-25} \mathrm{gr} .
\end{aligned}
$$

nolecule of hydrogen $\left(\mathrm{H}_{2}\right)$ consists of two atoms, the f an atom of hydrogen is $4.5 \cdot \mathrm{IO}^{-25} \mathrm{gm}$. An atom a is 23 times heavier; hence it weighs $1.03 \cdot 10^{-23} \mathrm{gm}$. 1 m is a univalent atom. Each atom is connected with whose charge will be denoted by e. If, therefore, two ith charges $\pm e$ are required to produce one vibratem, then in one gram of sodium there are present $\cdot 10^{-23}=4.85 \cdot 10^{22}$ such systems. Hence, from (2)

$$
\begin{equation*}
\frac{16}{3} \pi^{4} c \frac{e^{2} l^{2}}{\lambda^{4}} \cdot 4.85 \cdot 1 \mathrm{I}^{22}=13.45 \cdot 1 \mathrm{o}^{10} \tag{4}
\end{equation*}
$$

s a universal constant, since it represents the electrical which is connected with a univalent atom (it is the corresponding to a valence I); for since, according aday's law of electrolysis, a given electrical current decomposes the same number of valences in unit time, rrge corresponding to a valence I must be a universal it which does not depend upon the special nature of the
Now an electric current of I ampere decomposes in ;ond $0.1160 \mathrm{~cm} .{ }^{3}$ of hydrogen at $0^{\circ} \mathrm{C}$. and atmospheric e. Now the quantity of electricity carried in a second h any cross-section of a conductor conveying I ampere ent is $\frac{1}{10}$ electromagnetic units or $3 \cdot 10^{9}$ electrostatic Half of this flows as positive electricity in one direction, s negative in the other. Hence in $0.116 \mathrm{~cm} .^{3}$ of yen at $0^{\circ} \mathrm{C}$. and atmospheric pressure, the total positive \therefore is $\mathrm{I} .5 \cdot 10^{9}$ electrostatic units, the negative charge being
and a negative charge, the charge of a univalent ion element of electric quantity) is

$$
e=1.29 \cdot 10^{-10} .^{*}
$$

The introduction of this value into (4) gives, since $c=3$. and $\lambda=0.000589$, for the value of l,

$$
l=\mathrm{I} .13 \cdot \mathrm{IO}^{-11} \mathrm{~cm}
$$

The diameter of a molecule as calculated from the kin theory is about $d=2 \cdot 10^{-8} \mathrm{~cm}$. \dagger Since from (6) l is see be considerably smaller than d, the relatively strong emis of sodium vapor appears to be due to an oscillation of the (the valence charge) within the molecule (sphere of actio the molecule).

On page 447 the ratio of the charge e to the mass m negative ion of sodium vapor was calculated as

$$
e: m=c \cdot \mathrm{I} \cdot 6 \cdot \mathrm{IO}^{7} .
$$

Hence

$$
m=2.7 \cdot 10^{-28} \mathrm{gr} .
$$

i.e. the mass of the ion is the 38000 th part of the mass of atom of sodium.

On page 383 the equation of motion of an ion vibra under the influence of an electrical force X was written in form \ddagger

$$
m \frac{\partial^{2} \xi}{\partial t^{2}}+r e^{2} \frac{\partial \xi}{\partial t}+\frac{4 \pi e^{2}}{\vartheta} \xi=e X
$$

$\dot{\xi}$ denoting the displacement of the ion from its position of When r is small the natural period T^{\prime} of the ion is given

$$
T^{\prime 2}=\frac{\pi m \vartheta}{e^{2}}
$$

*J. J. Thomson (Phil. Mag. (5) 46, p. 29, 1898) has calculated from ce observations e as $6-7 \cdot 10^{-10}$, which is in good agreement with the value

Since for sodium vapor $T^{\prime}=2 \cdot 10^{-15}$, it follows from (5) and (7) that

$$
\begin{equation*}
\vartheta=7.6 \cdot 10^{-23} \tag{10}
\end{equation*}
$$

Finally, in order to determine the constant r, it is possible to make use of the conclusion reached on page 387 , namely, that the index of refraction n and the coefficient of absorption κ are determined from the equation

$$
\begin{equation*}
n^{2}(\mathrm{I}-i \kappa)^{2}=\mathrm{I}+\frac{\Re \vartheta}{\mathrm{I}+i \frac{a}{\tau}-\frac{b}{\tau^{2}}}, . \tag{II}
\end{equation*}
$$

in which \mathfrak{R} denotes the number of ions in a cm. ${ }^{3}$, and in which also

$$
\begin{equation*}
\tau=T: 2 \pi, \quad a=\frac{r \vartheta}{4 \pi}, \quad b=\frac{m \vartheta}{4 \pi e^{2}} . \tag{12}
\end{equation*}
$$

Hence the value of r could be obtained from observations upon κ. Such measurements of κ for sodium vapor have not been made and would be very difficult to make, since the absorption in the neighborhood of a natural period would vary rapidly with the period T. But an estimation of the value of r may be obtained in another way: From the sharpness of the absorption lines of sodium vapor it is evident that $\frac{a}{\tau}$ must be very small. But when $\tau=T^{\prime}: 2 \pi$,

$$
\begin{equation*}
\frac{a}{\tau}=r \cdot e \sqrt{\frac{\vartheta}{4 \pi m}}=r \cdot \mathrm{I} \cdot 9 \cdot 10^{-8} . . . \tag{13}
\end{equation*}
$$

r must then in any case have an order of magnitude less than 10 ${ }^{4}$. There is also another way for obtaining an upper limit for r.

If the ions, after being set into vibration, are cut off from external influences, they execute damped vibrations of the form

Hence, from (8), when r is small,

$$
\gamma=\frac{r e^{2}}{2 m} T^{\prime}=r \cdot 0.6 \cdot 10^{-7}
$$

in which T^{\prime} is determined by (9). Now the damping must be very small, since interference has been observed sodium light with a difference of path of 200000λ. A $t=200000 T^{\prime}, \xi$ cannot be very small. Hence 200 must be less than I, i.e.

$$
r \leqq \mathrm{IO}^{2} .
$$

In what follows a lower limit for the value of r w derived.
3. The Damping of Ionic Vibrations because of Radis -If at the time $t=0$ a negatively charged ion $-e$ is distance l from a positively charged ion $+e$, and if i course of the time T^{\prime} this distance has changed by $d l$, the change $d \mathfrak{F}$ in the electrostatic energy is

$$
d \mathfrak{F}=\frac{e^{2}}{l^{2}} \cdot d l
$$

Now, from (14), in the course of the period of time amplitude of the motion of the ion has changed by $d l=$ provided γ is small. Further, by (I) on page 530, the de in energy in the time T^{\prime} is

$$
d \mathfrak{F}^{\prime}=-\frac{16}{3} \frac{\pi^{4}}{\lambda^{3}} e^{2} l^{2}
$$

Now the decrease in energy $d \mathfrak{F}$ must at least be eq the decrease $d \mathbb{F}^{\prime}$ which is due to radiation. Hence, fron and (18), there results, if $d l$ is set equal to $-\gamma l$,

$$
\frac{e^{2}}{\bar{l}} y \geqq \frac{16}{3} \cdot \frac{\pi^{4}}{\lambda^{3}} e^{2} l^{2}, \quad \text { i.e. } \gamma \geqq \frac{16 \pi^{4}}{3}\left(\frac{l}{\lambda}\right)^{3} .
$$

Introducing the value of l from (6),
(15),

$$
r \geqq 1.6 \cdot 10^{-9}
$$

shown below that r must be considerably above limit thus determined, and that, for the value of l damping of the ionic vibrations, because of their own would be altogether negligible.
if l were assumed to be of the order of magnitude iameter of a molecule, i.e. if $l=2 \cdot 10^{-8}$, then 1^{-8}, while it is probable that y is considerably larger. .e Radiation of the Ions under the Influence of
Radiations.-Under the influence of an external eriod $T=2 \pi \tau$ and of amplitude A the ions take up of the same period whose amplitude may be written nd the abbreviations (12)]

$$
l=A \cdot \frac{\vartheta}{4 \pi e \sqrt{\left[1-\left(\frac{b}{\tau}\right)^{2}\right]^{2}+\frac{a^{2}}{\tau^{2}}}} .
$$

energy emitted in unit time by a layer of thickness $d z$ rea I is, according to (2) on page 530 ,

$$
\begin{equation*}
d L=\frac{1}{3} \pi^{2} c N d z \frac{A^{2} \vartheta^{2}}{\lambda^{4}\left\{\left[1-\left(\frac{b}{\tau}\right)^{2}\right]^{2}+\frac{a^{2}}{\tau^{2}}\right\}} \tag{21}
\end{equation*}
$$

the other hand the energy $\frac{c}{4 \pi} A^{2}$ enters the layer in unit f. page 454 ; the electric energy is equal to the magwhile the energy $\frac{c}{4 \pi} A^{\prime 2}$ passes out, provided A^{\prime} reprere amplitude of the impressed electric force after it has through the layer $d z$. Hence

The energy absorbed in unit time within the layer amo then to

$$
d \mathfrak{C}=\frac{c}{4 \pi}\left(A^{2}-A^{\prime 2}\right)=\frac{c}{4 \pi} A^{2} \cdot 4 \pi n \kappa \frac{d z}{\lambda} .
$$

But now, from (II) on page 533, in the neighborhood natural period

$$
2 n^{2} \kappa=\frac{\Re \vartheta^{a} / \tau}{\left(1-\frac{b}{\tau^{2}}\right)^{2}+\frac{a^{2}}{\tau^{2}}}
$$

In consideration of this equation the ratio of the emitt the absorbed energy is

$$
\frac{d L}{d \mathscr{C}}=\frac{2 \pi^{2}}{3} \frac{\vartheta \tau}{\lambda^{3} a} n=\frac{4 \pi^{2}}{3} \cdot \frac{n}{c \lambda^{2} r}
$$

This ratio is larger the smaller the value of r. For n and $\lambda=5.9 \cdot \mathrm{IO}^{-5}$ (24) gives

$$
\frac{d L}{d \mathscr{F}}=\frac{0.126}{r} .
$$

Since in any case this ratio must be considerably less 1 , as otherwise a reversal of the sodium line (cf. page would be impossible, then, in consideration of the inequ (16), the value of r must be about

$$
r=10 \text { to } 100 .
$$

5. Fluorescence.-If r had the value I for sodium v an appreciable radiation of light would of necessity take under the influence of radiation from without. This effec not as yet been observed, although no delicate experin have been made to attempt to discover it. In the case c fluorescent bodies an appreciable radiation is actually prod by exposure to light. The attempt might be made to ex this phenomenon by assuming a small value of r. The acter of the absorption of a body can in this way be made
be seen at once to be useless. For, according to that equation, when a stationary condition has been reached, the vibrations of the ions must have the same period as that of the incident force X. But this will not explain one of the chief characteristics of fluorescence, namely this, that fluorescent light is of a different color from that of the light most strongly absorbed.

Fluorescence is to be looked upon as a case of luminescence which is due to certain special (chemical) changes whose cause is to be found in the illumination to which the body is exposed. The mathematical equations thus far given would therefore need to be considerably extended.*
6. The Broadening of the Spectral Lines due to Motion in the Line of Sight.t-If the natural vibrations of the ions were altogether undamped, they would nevertheless give sharp spectral lines only when their centres of vibration remained at rest. But since this centre is within the molecule, and since, according to the kinetic theory, the molecule is moving hither and thither with great velocity, the vibration produced by the ions must, according to Doppler's principle, be of somewhat variable period, i.e. the spectral lines cannot be perfectly sharp.

If an ion which has the period T moves toward the observer with the velocity v, then, according to Doppler's principle, the light which comes to the observer has the period

$$
\begin{equation*}
T^{\prime}=T\left(\mathrm{I} \pm \frac{v}{c}\right) \tag{26}
\end{equation*}
$$

in which c is the velocity of light in the space between the ion and the observer. Since the index of refraction of gases differs

[^117]but slightly from $\mathrm{I}, c=3 \cdot 1 \mathrm{O}^{10} \mathrm{~cm} . / \mathrm{sec}$. If then the assump. tion were made that all the molecules had the same velocity v, the emitted wave lengths would all lie within the limits $\lambda\left(\mathrm{I} \pm \frac{c}{v}\right)$. The width $\dot{d} \lambda$ of the spectral line would therefor be
\[

$$
\begin{equation*}
d \lambda=\lambda \frac{2 v}{c} \tag{27}
\end{equation*}
$$

\]

Now, according to the kinetic theory,* the mean value o the square of the velocities is given by

$$
\begin{equation*}
\text { Mean } \quad\left(v^{2}\right)=\frac{248 \cdot 10^{6} \cdot \vartheta}{M} \tag{28}
\end{equation*}
$$

in which M is the molecular weight of the gas, ϑ its absolute temperature. Hence, setting

$$
\begin{equation*}
v=\sqrt{\text { mean }\left(v^{2}\right)}=15.8 \cdot \mathrm{10}^{2} \sqrt{\frac{\vartheta}{M}} \tag{29}
\end{equation*}
$$

the velocity of a hydrogen molecule, for example ($M=2$), at $50^{\circ} \mathrm{C} .(\vartheta=323)$ would be $v=2010 \cdot 10^{2} \mathrm{~cm} . / \mathrm{sec} .=2010 \mathrm{~m} / \mathrm{sec}$. Hence, from (27), the width of a spectral line would be $d \lambda=\lambda \cdot \mathrm{I} \cdot 34 \cdot 1 \mathrm{O}^{-5}$. According to (27) the lines in the red end of the spectrum should be broader than those in the blue. This corresponds to the facts. \dagger

The width of a spectral line is connected with the greatest difference of path over which the light can be made to produce interference (cf. page 152). If a spectral line be decomposed into two parts and if these parts be brought together after having traversed paths which differ by $d \mathrm{~cm}$., then, according to equation (28) on page 153 , these parts can produce interference fringes whose visibility V, for the case in which the intensity of the light is constant throughout the whole width of the line, is given by

$$
\begin{equation*}
V=\frac{\sin 4 \pi d a}{4 \pi d a} \tag{30}
\end{equation*}
$$

n this, according to equations (22) and (20) on page 15 I , the uantity a is connected with the width $d \lambda=\lambda_{1}-\lambda_{2}$ of the pectral line in the following way:

$$
\begin{equation*}
2 \alpha=\frac{\mathrm{I}}{\lambda_{2}}-\frac{\mathrm{I}}{\lambda_{1}}=\frac{d \lambda}{\lambda^{2}} . \tag{3I}
\end{equation*}
$$

The visibility V of the fringes is defined by equation (26) n page 152. According to Rayleigh the interference fringes re still visible when the ratio $J_{\text {min. }}: J_{\max }$ of the intensities t the positions of greatest darkness and of greatest brightess is 0.95 . In this case V would have the value 0.025 . If his value be substituted in (30), then from (27) and (31) it ppears that the maximum difference in path d at which intererence could still be observed would be

$$
\begin{equation*}
0.025=\frac{\sin \left(4 \pi^{d} / \lambda \cdot v / c\right)}{4 \pi^{d} / \lambda \cdot v / c}=\frac{\sin \pi x}{\pi x} \tag{32}
\end{equation*}
$$

n which, for brevity, $4 \frac{d}{\lambda} \frac{v}{c}$ is replaced by x. Since the righttand side of (32) is small, the smallest root of x is to be ooked for in the neighborhood of I . Setting $x=\mathrm{I}-\epsilon$, (32) cives

$$
0.025=\frac{\pi \epsilon}{\pi(\mathrm{I}-\epsilon)}=\epsilon
$$

Fence

$$
\begin{equation*}
\frac{d}{\lambda}=x \cdot \frac{c}{4 v}=0.975 \cdot \frac{c}{4 v} \tag{33}
\end{equation*}
$$

If account be taken of the fact that all the molecules have oot the same velocity v, the value of d would be still greater, amely, approximately*

$$
\begin{equation*}
\frac{d}{\lambda}=0.345 \frac{c}{v} \tag{34}
\end{equation*}
$$

in a Geissler tube is $50^{\circ} \mathrm{C}$., the ability of its spectral produce interference would vanish for a difference of p

$$
\frac{d}{\underline{\lambda}}=51600 .
$$

For sodium vapor in a Bunsen flame $M=\mathbf{2 . 2}$ Assuming the temperature to be $1500^{\circ} \mathrm{C}$., i.e. assumi 1773, then from (29) it would follow that $v=98.2$. from (34) that $\frac{d}{\lambda}=105000$.

The ability to produce interference would be high temperature were lower. As a matter of fact interfere be obtained over a longer difference of path if the sodiu is produced by an electric discharge in a vacuum tube. electro-luminescence the temperature is much lower. son estimates it in one case at $250^{\circ} \mathrm{C}$. $\frac{d}{\lambda}$ would then h value 205000 . At $50^{\circ} \mathrm{C} \cdot \frac{d}{\lambda}=245000$. The ability mercury lines to produce interference over a large di of path is accounted for by the large atomic weight of 1 (which, since the vapor is monatomic, is equal to the m weight). For, according to (29), a large value of M a small velocity v of the molecule. For mercury M hence for $\vartheta=273+50^{\circ}=323, v=2 \cdot 10^{4}, \frac{d}{\lambda}=5170$

The numbers calculated in this way agree approx with the results of Michelson's observations.* Mi could also directly observe the effect of temperature u ability to produce interference when the source of ligh hydrogen tube placed in a copper box and heated to 30 Heating decreased the clearness of the fringes. This p enon furnishes additional evidence that the temperatu vacuum tube is low, i.e. that the light emitted is due t
nescence rather than to a high temperature. For the heating of the gas to $300^{\circ} \mathrm{C}$. could only appreciably change the molecular velocity if the temperature ϑ were low, for example $50^{\circ} \mathrm{C}$.

Although the results of the above calculation are in good agreement with the facts, neveretheless the considerations here presented do not completely cover the case. For on the one hand, according to Ebert,* the distance between two lines in the solar spectrum which can still be resolved is smaller than is consistent with Doppler's principle, and on the other hand, according to Lord Rayleigh, \dagger the consideration of the rotation of the molecules would reduce the ability of the transmitted light to produce interference much more than the consideration of their motion of translation. To be sure the revolution of the molecules would have to be considered only in the case of molecules composed of more than one atom; hence the explanation given above of the great capacity for interference shown by the mercury lines would still stand.
7. Other Causes of the Broadening of the Spectral Lines. -The motion of the molecules is not the only cause of the broadening of the spectral lines. The change in the period of the ionic vibrations due to damping must set a limit to the ability to produce interference, and hence must broaden the spectral line, \ddagger since the ability to produce interference and the homogeneity of the spectral lines are closely connected. When a stationary condition of emission has been reached the ions are continually set into vibration by the collisions of the molecules. The more frequently these collisions occur, the smaller becomes the ability of the emitted light to produce interference. Since now the number of collisions increases

[^118]\dagger Phil. Mag. (5) 34, p. 410, 1892.
with the density of a gas, an increase in density produce a broadening of the spectral lines. Experi this to be the case.* On the other hand a simple the thickness of the incandescent layer (within ce produces no broadening but only brightening of However, if the thickness of the incandescent layer that it possesses appreciable absorption for all wa then, if the case is one of pure temperature radiatio according to Kirchhoff's law, show broad emissio in the limit, emit a continuous spectrum. \ddagger

[^119]
INDEX

bbe, crystal refractometer, 34 I ; dilatometer, 143; numerical aperture, 86; a prochromat, 99; focometer, 46; sine law, 59; theory of images, 3 I berration, 475; spherical, 54; chromatic, 66
bsorbing media, 358
bsorption, coefficient of, 360 ; Kirchhoff's law of, 496
chromatic interference, 144
iry, spirals, 412
mici, 58
mpère, molecular currents, 418
mplitude, 131
nalyzer, 286
ngstrom, solar constant, 485: 487, 516 nomalous dispersion, 392; curve of, 394
Perture, 73; angular, 73; numerical, 86; effect on resolving power, 91; experimental determination of, ro6
planatic, points, 58 ; points of sphere, 33 ; surface, 9; systems, 5^{8}
rago, 247
rbes, anomalous dispersion, 394
stigmatism, 48; astigmatic difference, 48
xes, of electric symmetry, 310 ; optic, 319 ; ray, 328
xis, principal crystallographic, 242
zimxith, of plane of polarization, 286;
of restored polarization, 363
abinet, compensator, 257; theorem, 221
iaxial crystals, 338
iillet, half-lenses, 136
innocular, 112
due to changes in temperature, 516; distribution of energy in spectrum of, 524
Bradley, 115
Bravais, bi-plate, 348
Brewster, 246; law, 283, 291
Brightness, 86; of point sources, 90
Broadening of spectral lines by motion in the line of sight, 537; by other causes, 541
Brodhun, 79
Brücke, 97
Candle-power, 78; candle-metre, 486
Carcel lamp, efficiency of, 487
Chromatic aberration, 66
Clausius, 59
Coaxial surfaces, images formed by, 17
Coherent sources, 134
Collinear relationship, 16
Colors, 5
Condenser, 102
Conductivity, 358
Conjugate points, 15; construction of, 24
Convergent, 26
Corbino, 432
Crystals, absorbing, 368; biaxial, 338 ; boundary conditions for, 308; differential equations for, 308 ; light vectors and rays in, 311 ; median lines of, 319 ; optic axes of, 319 ; principal position of, 324; uniaxial, 323
Currents, conduction, 267 ; displacement, 267; electric, 263; magnetic, 265
Curves of equal inclination, 149; of equal thickness, 149
of index, 276; discrepancies explained, 389 ; principal, of crystals, 310
Dielectrics, isotropic, 268; boundary conditions for, 27 I
Diffraction, 185; grating, 222; narrow slit, 198, 217; narrow screen, 20I; openings of like form and orientation, 219; rectangular opening, 214; rhomboid, 217
Dioptric systems, 25
Dispersion, anomalous, 392; normal, 388; equations of, 389 ; rotary, 412
Dispersive power, 67
Dievrgent, 26
Doppler, principle, 451, 475, 519, 537
Draper, law of emission, 500
Ebert, 54I
Echelon, 228
Egoroff, 448
Efficiency of source, 487
Elastic theory, 259
Electric field, 263 ; force, 262
Electromagnetic system, 262; ratio to electrostatic, 265
Electrostatic system, 262
Ellipticity, coefficient of, 290
Emission, 482 ; Kirchhoff's law of, 496
Emission theory, 125
Emissive power, 483 ; of a perfect reflector, 495; of perfectly transparent body, 495
Entropy, 510
Ether, 267; drift of, 457
Extreme path, law of, 6
Eye-lens, 100
Eyepiece, 99; Ramsden, 100; Huygens, IOI

Faraday, electromagnetic theory, 260
Fermat, principle of least time, II
Field lens, 100
Field of view, 76
Fitzgerald, ether drift, 48r
Fizeau, r50; ether drift, 477; velocity of light in moving water, 466; velocity of light, 116, 121
Fluorescence, 536
Focal, plane, 17 ; length, determination of, 44
Focometer, 46

Huygens' principle, I30; reflection equation 298; theory, 260; wave 320; zones, 164

Georgiewsky, 448
Grating, concave, 225; fo of, 227; plane, 222; res 227

Hall effect, 434
Hefner lamp, 8r; emissior
Helmholtz, 59
Hertz, 530
Hockin, sine law, 59
Hoeck, 470
Homocentric beam, 46
Huygens, 125; double re eyepiece, roI; princip 213

Illumination, intensity of,
Images, concept of, I4 coaxial surfaces, 17
Image space, 15
Incidence, angle of, 3; principal angle of, 362
Index of refraction, 3, temperature radiation, reflection, 301
Interference, of light, 124 light, 247; by crystals light, 34r; in absorbing tals, 374 ; in absorbing tals, 380 ; in crystals light, 349; with large path, 148.
Interferometer, 144
Ions, 382 ; hypothesis of, charge to mass, 447;
535; vibrations of, dam
Isochromatic curves, 352
Isogyre, principal, 354
Isogyric, curves, 35^{2}
Jamin, 144
Katoptric systems, 26
Kerr effect, 45 r
Ketteler, ether drift, 474
Kirchhoff, 169 ; inversio lines, 50r; law of emi
agrange, 32I, 330
angley, solar constant, 487, 516
east time, law of, I29; principle of, II enses, 40 ; classification of, 42 ; thin, 42 imit of resolution of microscopes, 106
ippmann, 157
-ongitudinal waves, 259
Corentz, moving media, 457, 48I
Luminescence, 494, 529
Lummer, 79
Macaluso, 432
Mach, 146; anomalous dispersion, 394 Magnetically active substances, 418
Magnetic field, 262; energy of, 272;
force, 262 ; rotation of the plane of polarization, 426; dispersion in rotation of the plane of polarization, 429,438 Magneto-optical properties of iron, nickel, and cobalt, 449
Magnification, angular, 22; in depth,
2I; lateral, 19; of microscope, IO4, 106; normal, 90 ; of telescopes, 108
Magnifying-glass, 95
Malus, I30; law of, II
Mascart, ether drift, 474
Maxwell, electromagnetic theory, 260; equations of electromagnetic field, 264; fundamental assumption, 267 Meridional beam, 50
Metals, optical constants of, 366; dispersion of, 396
Michelson, echelon, 228; ether drift, 478 ; interferometer, 149 ; limit of visibility, 540; velocity of light, 119; in water and carbon bisulphide, 120 , 123; in moving water, 446; visibility curves, 151; Zeeman effect, 447
Microscope, 97
Neuhauss, 158
Neumann, elastic theory, 260 ; reflection equations, 283
Newton, 125 ; rings, 136, 144, 148; intensity of rings, 302
Nicol prism, 244
Nodal points, 22
Normal surface, 3 I7
Norremberg polariscope, 246
Objective, microscope, 98
Object space, 15

Paramagnetic, 269
Permeability, 269 ; equal to 1 for lightwaves, 466
Phase, 126
Photographic systems, 93
Photography in natural colors, 156
Polariscope, Nörremberg, 246
Polarization, 243; by diffraction, 205; circular, 249; elliptical, 249; elliptical due to surface layer, 287; plane, 250; by tourmaline, 247; by pile of plates, 28 ; rotary, 400
Polarized light, partially, 253
Polarizer, 286
Polarizing angle, 246
Pouillet, solar constant, 487
Poynting, theorem, 273
Pressure of radiation, 488
Prevost, theory of exchanges, 491
Pringsheim, temperature radiation, 502
Prism, resolving power, 233
Pupils, entrance and exit, 64, 73
Quarter wave plate, 255
Radiation, dependence upon absolute temperature, 512 ; upon the index of surrounding medium, 502; intensity of, 82,484
Ramsden eyepiece, 100, 109
Rays, curved, 306; extraordinary, 243; ordinary, 243; principal, 74; optical length of, 6; as lines of cnergy flow, 273
Ray surface, 326
Rayleigh, $\mathbf{1 2}$; limit of visibility, 541
Rectilinear propagation, 2
Reflection, angle of, 3; diffuse, 6; law of, in isotropic media, 281: metallic, 261; partial, 5; at spherical surface, 36; total, 5,295 ; polarization by, 246
Reflecting power, 364
Refraction, angle of, 3; at a spherical surface, 32 ; conical, 33 r ; Law of, in isotropic media, 281; index of, 3
Respighi, 474
Resolving power, of grating, 227; of microscope, ro5; of prism, 233
Resolution, limit of, human eye, 236; microscope, 236; telescope, 235
Romer, Ir4, 120, 123

Schmidt, curved rays, 307
Schuitt, 157
Separation of lenses, 28
Sine law, 58,505
Sommerfeld, 203
Solar constant, 487
Soleil-Babinet compensator, 258
Spectral lines, broadening by motion in line of sight, 537
Spectrum, dispersion, 224; distribution of energy in, 524; normal, 224; of a black body, changes with temperature, 5I6
Stationary waves, 155,284 ; in polarized light, 25 I
Steinheil, 97
Sun, temperature of, 5I5,523
Telecentric systems, 75
Telescope, astronomical, 107; reflecting, II3; terrestrial, II2
Telescopic systems, 26
Temperature, absolute, 506; radiation, 493, 529
Thermodynamics, application of the second law to temperature radiation, 493; general equations, 5 II
Thin plates, colors of, 136
Transparent isotropic media, 271
Transverse nature of waves, 278

Tumlirz, 485
Undulatory theory, $\mathbf{I} 25$
Uniaxial crystals, directi 324; plates and prism cipal indices of refrac
Unit charge, 262; of lig equivalent of, 485; pla 19

Velocity of a group of light, 114, 26I, 27 media, 465 ; equal to 276
Visibility, 140
Voigt, 169
Wave length, 127; surf face, 326
Weber, molecular curre
Wedge, 140
Weierstrass, refraction, White body, 205
Wien, spectrum of a b 525
Wiener, 155,285
Zeeman effect, 446
Zehnder, 146
Zeiss, 112

[^0]: * As will be seen later, this achromatizing can be attained with sufficient accuracy; on the other hand it is not possible at the same time to make the sizes of the different images of R independent of the color.

[^1]: * If the iris lies in front of the front lens of the system, it is identical with the entrance-pupil.

[^2]: * In what follows perfect transparency of the medium is always assumed.
 \dagger The definitions here presented appear as necessary as soon as light quantity is conceived as the energy which passes through a cross-section of a tube in unit time. Such essentially physical concepts will here be avoided in order not to forsake entirely the domain of geometrical optics.

[^3]: * A complete treatment of this instrument, as well as of all the laws of photometry, is given by Brodhun in Winkelmann's Handbuch der Physik, Optik, p. 450 sq .

[^4]: * Even when the two sources appear colorless, if they are composed of different colors physiological effects render the measurement uncertain. Cf. A. Tschermak, Arch. f. ges. Physiologie, 70, p. 297, 1898.

[^5]: * This equation, which is often called the cosine law of radiation, is only approximately correct. Strictly speaking, i always varies with θ, and this variation is different for different substances. The subject will be treated more fully when considering Kirchhoft's law (Part III, Chapter II). This approximate equation will, however, be used here, i.e. i will be regarded as constant.

[^6]: * The length of the telescope must be negligible in comparison with the distance of the source.

[^7]: * For a more complete treatment cf. Winkelmann's Handbuch der Physik Optik, p. 203 sq. Muller-Pouillet, gth Ed. Optik, p. 7^{21} sq.
 \dagger For a deduction of this condition, first stated by Petzval in the year 1843, cf. Lummer, Ztschr. f. Instrk., 1897, p. ${ }^{231}$, where will be found in three articles (pps. 208, 225, 264) an excellent review of photographic optics.

[^8]: *'The barium-silicate glases produce larger refraction but smaller dispernion than crown glass.

[^9]:

[^10]: *This requirement is introduced not only for the sake of increased brightness but also of increased resolving power. Cf. above, pp. 90, 92.

[^11]: * For this calculation of. Heath, Geometrical Optics, Cambr., 1895 .

[^12]: * A distinction between first and second principal foci is only necessary for immersion systems.
 \dagger For the eyepiece $f_{2}=f_{2}^{\prime}$.

[^13]: * Other forms of camera lucida are described in Muller-Pouillet, Optik, p. 839.
 \dagger A description of it will be found in the texts referred to at the beginning of this chapter.

[^14]: *The difference between these cases may be experimentally recognized by shading part of the objective with an opaque screen and observing whether the brightness of the image or the size of the field is diminished.

[^15]: * In Foucault's experiment the lens L was actually between the source P and the mirror m, instead of between m and s; but the discussion is essentially the same for either arrangement so long as L is close to $m .-T \mathrm{R}$.

[^16]: *This quantity J is called the intensity of light at the point P. It is important to distinguish between J and the intensity of radiation i of the source Q as defined on page 82.

[^17]: * That this limitation is necessary will be evident from a later discussion in which it will be proved that s is a directed quantity, i.e. a vector.

[^18]: * This space will be considerably diminished if the mirror S projects in front of the mirror S^{\prime}. Hence care must be taken that the common edge of the mirrors coincides with their line of intersection.

[^19]: * If the eye be focussed with or without a lens upon P, the two interfering beams reach the image of P upon the retina with the same difference of phase which they have at P itself, since the optical paths between P and the retinal image are the same for all the rays. Hence the intensity upon the retina is zero if it would be zero upon the corresponding point of a screen placed at P.

[^20]: * This is only permissible when the thickness d of the wedge is not too great. When d is very large, for example, several thousand wave lengths, the change in χ for the different pairs of wave lengths must still be taken into consideration. The interference then becomes indistinct.

[^21]: * Cf. Pulfrich, Ztschr. Instrk. 1893, or Muller.Pouillet, Optik, p. 924.

[^22]: * For the more rigorous calculation cf. F. Neumann, Vorles. über theor. Optik (Leipzig, 1885), p. 286.
 † Cf. Zehnder, Ztschr. Instrkd. 1891, p. 275.
 \ddagger Mach, Wien. Ber. Ior (II.A.), p. 5, 1892. Ztschr. Instrkd. 1892, p. 89.

[^23]: * Lummer uses this phenomenon (cf. Müller-Pouillet, Optik, pp. 916-924) to test glass plates for parallelism. The curves of equal inclination vary from their circular form as soon as the distance d between the two reflecting surfaces O_{1} and O_{2} is not absolutely constant.
 \dagger A. A. Michelson, Am. J. Sci. (3) 34, p. 427, 1887. Travaux et Mém, du Bureau International d. Poids et Mes. 11, 1895, pp. 1-237. In -this second work Michelson determined the value of the metre in wave lengths of light by the use of his interferometer.

[^24]: * A. Perot and Ch. Fabry (see C. R. 128, p. 1221, 1899), using a Geissler tube fed by a high-voltage battery, obtained interference for a difference of path of 790,000 wave lengths.

[^25]: * This development is found in Phil. Mag. 5th Set., Vol. 31, p. 338, 189 r ; Vol. 34, pp. 380 and 407 (Rayleigh), 1892.

[^26]: * This intensity law would follow from Maxwell's law of the distribution of velocities of the molecules as given in the kinetic theory of gases.

[^27]: * V might be determined rigorously if $J_{\max }$. and $J_{\min }$. were measured with a photometer or a bolometer.
 \dagger From Fourrier's theorem $\psi(m)$ could be completely determined if C and S were separately known for all values of l.
 \ddagger Ebert has shown in Wied. Ann. 43, p. 790, 1891, that these visibility curves vary greatly with varying conditions of the source.

[^28]: * O. Wiener, Wied. Ann. 40, p. 203, 1890.

[^29]: *Drude and Nernst, Wied. Ann. 45, p. 460, 1892.

[^30]:

[^31]: * The only calculations thus far made, namely those published by Meslin (Amn. de chim. et de phys. (6) 27, p. 369, 1892) and Lippmann (Jour. de phys. (3) 3n p. 97, 1894), not only make this untenable assumption, but they also lead to the impossible conclusion that under certain circumstances the reflected intensity cam be greater than the incident.
 \dagger Cf., for instance, the above-mentioned article by Schūtt.
 \ddagger R. Neuhauss, Photogr. Rundsch. 8, p. 30I, 1894. Cf. also the article by Schütt.
 \& Cf. Wiener, Wied. Ann. 69, p. 488, 1899.

[^32]:

[^33]: * That this is not true for sound is due to the fact that the sound-waves are so long that the obstacles interposed are not large in comparison.

[^34]:

[^35]: * The symbol $\frac{\partial}{\partial x}$ which appears in equation (20) has the same meaning as $\frac{d}{d x}$ here. That equation is also to be applied in this case when the differentiation is taken with respect to y and z.

[^36]: * If the light disturbance be assumed to exist not as a convex, but as a concave, spherical wave, which travels toward a point Q outside of S, the considerations are somewhat modified, as may be seen from (35). (In Mascart, Traité d'Optique, I, p. 260, Paris, 1889, this case is worked out.) Under some circumstan. ces this case is of great importance for interference phenomena. Cf. Gouy, C. R. 110, p. 1251; 111, p. 33, 1890. Also Wied. Beibl. 14, p. 969.

[^37]: * This method was proposed by Cornu in Jour. de Phys. 3, 1874.

[^38]: * Cf. Fresnel, Cuvr. compl. I, p. 322. For a development in serics of Fresnel's integrals, cf. F. Neumann, Vorles. ū. theor. Optik. herausgeg. von Dorn, Leipzig, 1885, p. 62 . Lommel in the Abhandl. d. bayr. Akad., Vol. 15 , p. 229, 529, treats very fully, both theoretically and experimentally, the diffraction produced by circles and straight edges.

[^39]: * Such a rotation of the screen and corresponding rotation of the free surface over which the integration is extended produces no change in the result (cf. proposition on page 184).
 \dagger The diffraction fringes may be observed either by means of a suitably placed screen or a lens with a micrometer (cf. p. 133, note).

[^40]: * For $a=b=20 \mathrm{~cm}$., δ must be about 30λ to attain this.
 \dagger Diffusion of light must always occur, as can be shown from the construction of the Fresnel zones, if the width of the slit $\delta<\frac{1}{2} \lambda$.

[^41]: * A straight wire may be conveniently used as such a screen.

[^42]: * A perfectly black screen, i.e. one which neither transmits nor reflects light, is realized when the index of refraction of the substance constituting it changes gradually at the surface to that of the surrounding medium, and the coefficient of absorption at the surface changes gradually to the value zero. Eivery discontinuity in the properties of an optical medium produces necessarily reffection of light. Hence an ideal black screen, consisting of a thin body, with sharp boundaries, at which definite boundary conditions can be set up, is inconceivable.
 \dagger As will be seen later in the discussion of the electro-magnetic theory, s has not the same meaning in the two equations. In (49) s represents the electric force vibrating parallel to the edge of the screen, in (50) the magnetic force vibrating parallel to the edge of the screen. The intensity is calculated in both cases in the same way, at least for the side of the screen which is turned away from the source.

[^43]: * The way in which Sommerfeld reached this solution cannot here be presented, as it would require too long a mathematical deduction.

[^44]: *Gouy, Ann. d. Phys. et de Chim. (6), 8, p. 145, 1886.

[^45]: * For a calculation of the size of the drops from the diameter of the halo cf. F. Neumann, Vorles. über theor. Optik, Leipzig, 1885, p. 105.

[^46]: * If the constant of the grating is less than λ, no maxima appear, since, by (86), $\sin \phi>r$. Hence transparent bodies may be conceived as made up of ponderable opaque particles embedded in transparent ether. If the distance between the particles is less than a wave length, only the undiffracted light passes through.

[^47]: * This would follow from the second of equations (34), page 5 r , which apply to the formation of astigmatic images by reflection. For this case $\Varangle C B Q=\phi$, $C B=r$, and hence $Q B=s=-r \cos \phi$. Hence $s_{1}=-s$, i.e. the point P, symmetrical to Q with respect to C, must be the image of Q upon the circle.

[^48]: * For the law of distribution of the lines cf. Cornu, C. R. 80, p. 645, 1875 ; Pogg. Ann. 156, p. 114, 1875 ; Soret, Arch. d. Scienc. Phys. 52, P. 320, 1875 ; Pogg. Amn. 156, p. 99, 1875 ; Winkelmann's Handbuch, II, p. 622.

[^49]: * A. A. Michelson, Astrophysical Journal, 1898, Vol. 8, p. 37.

[^50]: * Rayleigh, Phil. Mag. (5), 9, p. 27r, 1879; Winkelmann's Handb. Optik, p. 166.

[^51]: * The dispersion of the air is neglected.

[^52]: * Since b is large in comparison to λ, ϕ is substituted for $\sin \phi$.
 \dagger For the deduction of this number cf. F. Neumann, Vorles. it. Optik, p. 89.

[^53]: * On account of the smallness of ϕ, ϕ may be written for $\sin \phi$.
 \dagger Objects which are visible by diffusely reflected light may be approximately treated as self-luminous objects.

[^54]: * By the introduction of suitable stops in the plane f^{\prime} the same diffraction pattern may be produced by different objects. In this case the same image is also seen at the eyepiece in the plane $\mathfrak{g}{ }^{\prime}$, although the objects are quite different. Thus if the object is a grating whose constant is d, and if all the diffraction images of odd order be cut out by the stop, then the object seems in the image to have a grating constant $\frac{d}{2}$. Cf. Muller-Pouillet (Lummer), Optik, p. 713. The house of C. Zeiss in Jena constructs apparatus to verify these conclusions.

[^55]: * d here has the same signification as a there.

[^56]: * Huygens, Traité de la Lumière, Leyden, 1690 . .
 \dagger The principal axis, like the normal to a surface, is merely a direction, not a definite line,

[^57]: * Cf. W. Grosse, Die gebräuchlichen Polarisationsprismen, etc., Klaustahl, 1889 ; Winkelmann's Handbuch d. Physik, Optik, p. 629.

[^58]: * The same holds for the fluorescent effect produced by stationary waves. Cf. foot-note, p. 156 above.

[^59]: * This is more fully treated in Section II, Chap. II, § 7.
 \dagger The fluorescence phenomena in crystals lead also to the same conclusion. Cf. Lommel, Wied. Ann. 44, p. 3 II.

[^60]: * At least this assumption gives a simpler presentation of optical phenomena than the other (which is also possible) whicl makes the light vector parallel to the plane of polarization.

[^61]:

 Fig. 79. ences of phase of different sign. Thus, for example, in Fig. 79, A is a wedge of quartz whose crystallographic axis is parallel to the edge of the wedge, while B is another plate

[^62]: * Since the telescope must be focussed for infinity, the simple Babinet compensator cannot be used.

[^63]: * For complete presentation cf. Winkelmann's Handbuch, Optik, pp. $64 x-674$.

[^64]: ** The work \mathfrak{A} is independent of both the path of the magnet pole and the nature of the medium surrounding the current. Cf. Drude, Physik des Aethers, pp. 77, 83 .

[^65]: * In the discussion of the optical properties of magnetized bodies it will be shown why it is justifiable to assume for light vibrations $\mu=1$ for all bodies. The reason for this is not that the magnetization of a body cannot follow the rapid changes of field which occur in light vibrations, but is far more complicated.

[^66]: *L. Boltzmann, Wien. Ber. 69, p. 795, 1874. Pogg. Ann. 155, p. 407, 1873:

[^67]: * At this angle the transmitted light is by no means completely polarized.

[^68]: * Every equation between complex quantities can be replaced by the conjugate complex equation; for the real and the imaginary parts of both sides of such equations are separately equal to each other.

[^69]: * Cf. Winkelmann's Handbuch, Optik, p. 780.

[^70]: * For the construction of total refractometers and reflectometers for this purpose, cf. Winkelmann's Handbuch, Optik, p. 312.

[^71]: * Equations (66) are to represent the total effect of all the separate waves which are propagated in medium I along the negative z-axis.

[^72]: * Heath, Geometrical Optics. Cambridge, 1897.

[^73]: * A more complete discussion of these interesting phenomena with the references is given in Winkelmann's Handb., Optik, pp. 344-384.
 \dagger A. Schmidt, Die Strahlenbrechung auf der Sonne. Stuttgart, r8gr.

[^74]: * The theoretical reason for setting $\mu=\mathrm{I}$ in the case of the light vibrations will be given later, in Chapter VII.

[^75]: * For the direction of the rays in the outer medium depends only upon the position of the wave front within the crystal, not upon the direction of the internal rays. The law of refraction will be more fully discussed in the next paragraph.

[^76]: * Sulphur is still better, since its angle of aperture is 7°; but its preparation is much more difficult. The use of a sphere of sulphur for demonstrating conical refraction is described by Schrauf, Wied. Ann. 37, p. 127.
 \dagger The ray axis is the axis of the cone of rays to which a single ray $S O$ (Fig. 86) gives rise when $S O$ has the direction which corresponds to internal conical refraction. -TR .

[^77]: * The apparent position is displaced not only laterally but also vertically. Cf. Winkelmann's Handbuch d. Plysik, Optik, p. 705.

[^78]: * Boltzmann, Wien. Ber. 70 (2), p. 342, 1874. Pogg. Ann. 153, p. 531, 1874. \dagger Schrauf, Wien. Ber. 4I, p. 805, 1860.

[^79]: * If the polarization effects be also taken into accoupt, one section of the crystal is enough. Cf. C. Viela, Wied. Beibl. 1809, p. 64r.

[^80]: * The rings shown by apophyllite from the Faroe Islands and from Peonal in the East Indies are especially remarkable. Each ring las the same color, and the alternate rings are dark violet and dull yellow. This apophyllite is positively doubly refracting for red light, negatively doubly refracting for blue light, and neutral for yellow light.
 \dagger Cf. Mascart, Traité d'Optique, vol. ii. pp. 173-190, Paris, 1891. In Rochelle salt the angle between the optic axes is for red 76°, for violet 56°.

[^81]: * From the rule given on page 322 it is evident that this is only approximately correct. The problem is more thoroughly discussed in Winkelmann's Handbuch der Physik, Optik, p. 726 sq.

[^82]: * The dimensions of this quantity are T^{-1}, the second being assumed as the unit of time.

[^83]: * In the Physik des Aethers, Stuttgart, 1894, Drude has developed the equa. tions which hold for any value of the permeability, and shown that in respect to optical phenomena its value for iron must be unity. .

[^84]: * More rigorous equations, in which $\sin ^{2} \phi$ has not been neglected in comparison with ϵ^{\prime}, are given in Winkelmann's Handbuch, Optrk, p. 822 sq.

[^85]: * That this effect is actually due to a high reflecting power is proved by the fact that a bubble of air under water from which the light is totally reflected looks like a drop of mercury.
 \dagger Rubens and Nichols, Wied. Ann. 60, p. 418, 1897.
 \ddagger Rubens and Aschkinass, Wied. Ann. 65, p. 241, 1898.

[^86]: * Cf. Drude, Wied. Ann. 36, p. 885, 1889; 39, p. 48x, 1890.

[^87]: *W. Rathenau, Die Absorption des Lichtes in Metallen. Dissert. Berlin, T 889.
 \dagger W. Wernicke, Pogg. Ann. Ergzgbd. 8, p. 75, 1878. Also the observations of Wien (Wied. Ann. 35, p. 48, r888) furnish an approximate verification.
 \ddagger For the equations cf. W. Voigt, Wien. Ann. 24, p. x44, 1885. P. Drude, Wied. Ann. 42, p. 666, 189 I .
 §A. Kundt, Wied. Ann. 34, p. 469, 1888.
 \| Cf., for instance, Du Bois and Rubens, Wied. Ann. 4I, p. 507, 1890.

[^88]: * This is treated more fully in Winkelmann's Handbuch, Optik, p. 8ry sq.

[^89]: * For more complete proof of this, cf. Winkelmann's Handbuch, Optik, p. 813.
 \dagger In reflected light the effects of strong absorption are easy to observe, for example, with magnesium- or barium-platinocyanide. Such crystals show metallic lustre and produce polarization.

[^90]: * Both colors are seen at the same time if a double-image prism be used instead of a Nicol. Cf. Muller-Pouillet, vol. II, Optics, by Lummer, p. 1005.

[^91]: *The different points of the field of view correspond (cf. p. 351) to the different inclinations of the rays within the plate.

[^92]: * For further discussion of these idiocyclophonous figures cf. Winkelmann' Handbuch, Optik, p. 817, note I.

[^93]: * As Lord Rayleigh has recently shown (Phil. Mag. (5) 48, p. 151, 1889), Maxwell was the first to found the theory of anomalous dispersion upon such a basis (cf. Cambr. Calendar, 1869, Math. Tripos Exam.). His work did not, however, become known, and, independently of him, Sellmeier, v. Helmholtz, and Ketteler have used this idea for the basis of a theory of dispersion. The assumption that molecules have natural periods can be justified from various points of view, even from that of the mechanical theory of light. From the electric standpoint these natural periods can be looked upon in two different ways: the treatment here given is based upon Reiff's presentation of v. Helmholtz's conception-a presentation which also contains interesting applications to other domains of science (cf. Reiff, Theorie molecularelektrischer Vorgänge, 1896). This conception is more probable than the other which was used by Kolacek (Wied. Ann. 32, p. 224,

[^94]: * All quantities are to be measured in electrostatic units. Equation (1) would also hold if the ion had no mass, provided the self-induction due to its motion be taken into consideration

[^95]: * For a more complete discussion ef. Mrude, Phys. '/eitschr. p. xGx, January, 1900.

[^96]: * For a description of such instruments cf. Iandolt, Dats optische Drchum vermogen der organischer Substuzen, Braunschweitg, 2d Edition, r807; Mall Pouillet, Optik, p. Ifte sif. Rotation of the plane of polarization has be practically made use of in sugar analysis.

[^97]: * In view of the sınall dispersion of air this is permissible.

[^98]: * Reiff called attention to this point in his book, "Theorie molecularelektriscl

[^99]: * W. Voigt, Wied. Ann. 67, p. 360, 1899.
 \dagger P. Zeeman, Phil. Mag. (5) 43, p. 226 ; 44, p. 255, 1897.
 \ddagger This method of explaining the Zeeman effect is due to Voigt (Wi p. 345, 1899). The differential equations upon which Voigt bases hi the same as those deduced in § 2, but he refrains from giving any phy ing to the coefficients in the differential equations.
 § This law results both from experiment and from Kirchhoff's 1 proportionality between the emission and absorption of heat-rays. Tl

[^100]: * Voigt (Wied. Ann. 68, p. 352) accounts for the anomalous Zeeman effects by

[^101]: * Voigt (Wied. Ann. 69, p. 290, 1899) accounts for the phenomenon observed by Egoroff and Georgiewsky, as well as for the variations in intensity in the Zeeman effect, by the assumption that the friction coefficient r in equations (42) on page 435 depends upon the strength of the magnetic field in different ways for vibrations of different directions. This assumption camnot be simply and plausibly obtained from physical conceptions.
 \dagger This is proved by observations of Kundt (Wied. Ann. 27, p. 191, 1886) and DuBois (Wied. Ann. 39, p. 25, 1890).
 \ddagger This, together with the difference in form of the deduced laws of dispersion, is the difference between the two theories. They would be identical if the equations deduced from the hypothesis of the IIall effect were developed only to the first order in the added magneto-optical terms. This is allowable because in the case of the metals no narrow absorption bands occur.

[^102]: * Cf. experiments of Lobach, Wied. Ann. 39, p. 347, 1890.

[^103]: * This deduction was made by Drude, Wied. Ann. 46, p. 353, 1892 . The constant b which appeared there and was assumed to be real must here be taken as complex, since from (2I) on page $425 v$ is complex. This change makes the result of the theory identical with that given by Goldhammer, Wied. Ann. 46, p. 71, 1892. The theory is in agreement with practically all of the facts. For the

[^104]: * Without using Poynting's equation, the result contained in deduced as follows: The electromagnetic energy which in unit through $1 \mathrm{~cm} .{ }^{2}$ must be that contained in a volume of $V \mathrm{~cm} .^{3}, V$ bein of light. In air or vacuum $V=c$. Further, from page 272 the el

[^105]: * As a matter of fact this ratio is only about $\frac{1}{3}$.
 \dagger The maximum strength of the magnetic field has the same value. This would thercfore be about $\frac{1}{\text { I }}$ of the horizontal intensity of the carth's magnetic field in Germany.

[^106]: * Substances which show natural or magnetic optical activity neglected.
 \dagger Mem. di Bologna (2) II, p. 279.

[^107]: * In the above it is assumed that the source A is at rest and the point of observation B in motion. The considerations also hold in case both A and B move. v_{n} is then the relative velocity of B with respect to A measured in the direction of the propagation of the light. In this case the rigorous calculation shows that the actual period T and the relative period T^{\prime} observed at B stand to each other in the ratio $T: T^{\prime}=\omega-v^{\prime}: \omega-v$, in which v^{\prime} is the absolute velocity of B, v that of A in the direction of the ray, and ω that of the light in the medium between A and B. It is only when v^{\prime} and v are both small in comparison with ω that this rigorous equation reduces to that given in the text, i.c. to the customary form of Doppler's principle. Now we know nothing whatever about the absolute velocities of the heavenly hodies; hence in the ultimate analysis the application of the usual equation representing Doppler's principle to the determination of the relative motion in the line of sight of the heavenly bodies with respect to the earth might lead to errors. Attention was first called to this point by Moessard (C. R. II4, p. $147 \mathrm{I}, \mathrm{r} 892$).

[^108]: * This function can depend upon the index of refraction of the space through

[^109]: * The first light which can be perceived is not red but a ghostl can be explained by the fact that the retina of the human eye organs sensitive to light, the rods and the cones. The former are to light, but cannot distinguish color. The yellow spot, i.e. the point of the retina, has many cones but few rods. Hence the first light is received from the peripheral portions of the retina. But as is focussed upon the object, i.e. as soon as its image is formed u spot, the impression of light vanishes, hence the ghostliness of the p
 \dagger Every exception to Draper's law, as for example phosphor

[^110]: * This law is also due to Kirchhoff (Ostwald's Klassiker, No. Io is often falsely ascribed to Clausius, who did not publish it till sever: Kirchhoff had done so. The law has been experimentally tested by

[^111]: * Equation (17) can also be obtained by the method employed on page 497 if the space outside of the hollow splere be conceived as filled with a medium different from that inside the sphere, but the calculation is somewhat more complicated. Since in such an arrangement the waves of different periods T may be separated from one another by refraction and diffraction, (19) results at once from (17) in consideration of the conclusions upon page 497.

[^112]: * That in general the equality $A=A^{\prime}$ does not hold is evident from a con-

[^113]: * This also occurs if the walls of the cylinder are not perfectly black. Hence in this case also $\psi(\vartheta)$ is the energy in unit volume for the condition of temperature equilibrium, and $\frac{1}{8} \psi$ is the pressure on the wall of the cylinder. Only if the walls

[^114]: * Planck, Berl. Ber. 1899, p. 479.

[^115]: * E. Wiedemann has shown that a low temperature exists in Geissler tubes (Wied. Ann. 6, p. 298, 1879).
 \dagger Pringsheim (Wied. Ann. 45, p. 440) obtained photographic effects from CS_{2} flame at a temperature of $150^{\circ} \mathrm{C}$. Pure temperature radiation could in this case have produced no photographic effect. According to E. St. John (Wied. Ann. 56, p. 433, 1895) the effectiveness of the Auer burner does not depend upon luminescence, but is due to the use in the flame of a substance of little mass, small conducting power, large surface, and large emissive power. But according to Rubens (Wied. Ann. 69, p. 588,1899) the Auer burner is probably chemically active for

[^116]: * Wied. Ann. 36, p. 12, 1889. A different numerical factor is here giver

[^117]: * No satisfactory theory has yet been brought forward. That of Lommel (Wied. Ann. 3, p. II3, 1878) has been compared with experiment by G. C. Schmidt (Wied. Ann. 58, p. 117, 1896) and has been found faulty.
 \dagger This question was first treated by Ebert (Wied. Ann. 36, p. 466, 1889). According to his calculations the difference of path over which interference can be

[^118]: * Sitz.-Ber. d. phys. med. Soc. Erlangen, 1889. Wied. Beibl. 1889, p. 944.

[^119]: * Cf. Winkelmann's Handbuch, Optik, p. 419 sq. The broadeni tral lines because of the mutual electrodynamic effect of the ionic been theoretically investigated by Galitzine (Wied. Ann. 56, p. \% also Mebius, Wied. Beibl. 1899, p. 4 r9.
 \dagger Cf. Paschen, Wied. Ann. 51, p. 33, 1894.
 \ddagger Cf. Wanner, Wied. Ann. 68, p. 143, 1899; who observed reversal of the sodium line upon increasing the thickness of a so repeated reflections.

