


THE 

THEORY OF OPTICS 

BY 

PAUL DRUDE 
Professor of Physics at the University of Giessen 

PROPERTY Of 
‘-m rx 

TRANSLATED FROM THE GERMAN 

BY 

C. RIBORG MANN and ROBERT A. MILLIKAN 

Professors of Physics in the University of Chicago 

NEW IMPPESSION 

^LONGMANS, GREEN AND CO.- 
^ FOURTH AVENUE & 30th STREET, NEW YORK 

39 PATERNOSTER ROW, LONDON 

BOMBAY, CALCUTTA, AND MADRAS 

-. 1917 



Copyright, X901, 

BY 

LONGMANS, GREENj AND 

Reprinted November, r 

Apn1' *9*3- November, 



iFACE TO THE ENGLISH TRANSLATION 

IERE does not exist to-day in the English language a 

il advanced text upon Optics which embodies the im- 

t advances in both theory and experiment which have 

nade within the last decade. 

eston’s “ Theory of Light ” is at present the only gen- 

sxt upon Optics in English. Satisfactory as this work 

the purposes of the general student, it approaches the 

t from the historical standpoint and contains no funda- 

1 development of some of the important theories which 

>t becoming the basis of modern optics. Thus it touches 

ightly upon the theory of optical instruments—a branch 

ics which has received at the hands of Abbe and his fol- 

5 a most extensive and beautiful development; it gives 

t meagre presentation of the electromagnetic theory— 

ory which has recently been brought into particular 

nence by the work of Lorentz, Zeeman, and others ; and 

tains no discussion whatever of the application of the 

)f thermodynamics to the study of radiation, 

le book by Heath, the last edition of which appeared in 

well supplies the lack in the field of Geometrical Optics, 

iasset’s “ Treatise on Physical Optics ” (1892) is a valua- 

nd advanced presentation of many aspects of the wave 
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the relation between the laws of radiation and the principles of 

thermodynamics, have yet been attempted in any general text 
in English. 

It is in precisely these two respects that the “ Lehrbuchder 

Optik by Professor Paul Drude (Leipzig, 1900) particularly 

excels. Therefore in making this book, written by one who 

has contributed so largely to the progress which has been 

made in Optics within the last ten years, accessible to the 

English-speaking public, the translators have rendered a very 

important service to English and American students of 
Physics. 

No one who desires to gain an insight into the most mod¬ 

em aspects of optical research can afford to be unfamiliar with 

this remarkably original and consecutive presentation of the 
subject of Optics. 

University of Chicago, 
February, 1902. 

A. A. Michelson. 



AUTHOR’S PREFACE 

The purpose of the present book is to introduce the reader 

who is already familiar with the fundamental concepts of the 

differential and integral calculus into the domain of optics 

in such a way that he may be able both to understand the 

aims and results of the most recent investigation and, in addi¬ 

tion, to follow the original works in detail. 

The book was written at the request of the publisher—a 

request to which I gladly responded, not only because I 

shared his view that a modern text embracing the entire 

domain was wanting, but also because I hoped to obtain for 

myself some new ideas from the deeper insight into the sub¬ 

ject which writing in book form necessitates. In the second 

and third sections of the Physical Optics I have advanced some 

new theories. In the rest of the book I have merely endeav¬ 

ored to present in the simplest possible way results already 

published. 

Since I had a text-book in mind rather than a compen¬ 

dium, I have avoided the citation of such references as bear 

only upon the historical development of optics. The few refer¬ 

ences which I have included are merely intended to serve the 

reader for more complete information upon those points 

which can find only brief presentation in the text, especially 
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In order to keep in touch with experiment and at 

simplest possible presentation of the subject I have cl 

synthetic method. The simplest experiments lead i. 

domain of geometrical optics, in which but few assui 

need to be made as to the nature of light. Hence 

begun with geometrical optics, following closely the e: 

treatment given by Czapski in “ Winkelmann’s Handbi 

Physik ” and by Lommer in the ninth edition of the “ 

Pouillet ” text. 

The first section of the Physical Optics, which foil 

Geometrical, treats of those general properties of ligl 

which the conclusion is drawn that light consists in a ] 

change of condition which is propagated with finite vel 

the form of transverse waves. In this section I have ir 

as an important advance upon most previous texts, Si 

feld’s rigorous solution of the simplest case of diff 

Cornu’s geometric representation of Fresnel’s integra 

on the experimental side, Michelson’s echelon spectros 

In*the second section, for the sake of the treatmen 

optical properties of different bodies, an extension 

hypotheses as to the nature of light became for the fi] 

necessary. In accordance with the purpose of the book 

merely mentioned the mechanical theories of light; 

electromagnetic theory, which permits the simplest ar 

consistent treatment of optical relations, I have prese 

the following form : 

Let X> Yy Zy arid a} fiy y represent respectively th 

ponents of the electric and magnetic forces (the first m 

in electrostatic units); also let jxJjy>jz, and sx,sy, sz re 

the components of the electric and magnetic current d< 

i*e. — times the number of electric or magnetic lines 



electromagnetic to the electrostatic unit, the following funda¬ 

mental equations always hold : 

etr dV dZ rtr 
c ~ Zy ft*’ ’ c ~ ?>z dj’ 

The number of lines of force is defined in the usual way. 

The particular optical properties of bodies first make their 

appearance in the equations which connect the electric and 

magnetic current densities with the electric and magnetic 

forces. Let these equations be called the substance equations 

in order to distinguish them from the above fundamental 

equations. Since these substance equations are developed 

for non-homogeneous bodies, i.e. for bodies whose properties 

vary from point to point, and since the fundamental equa¬ 

tions hold in all cases, both the differential equations of the 

electric and magnetic forces and the equations of condition 

which must be fulfilled at the surface of a body are imme¬ 

diately obtained. 

In the process of setting up “ substance and fundamental 

equations ” I have again proceeded synthetically in that I 

have deduced them from the simplest electric and magnetic 

experiments. Since the book is to treat mainly of optics this 

process can here be but briefly sketched. For a more com¬ 

plete development the reader is referred to my book “ Physik 

des Aethers auf elektromagnetische Grundlage” (Enke, 1894). 

In this way however, no explanation of the phenomena of 

dispersion is obtained because pure electromagnetic experi¬ 

ments lead to conclusions in what may be called the domain 

of macrophysical properties only. For'the explanation of 

optical dispersion a hypothesis as to the microphysical proper¬ 

ties of bodies must be made. As such I have made use of 

the ion-hypothesis introduced by Helmholtz because it seemed 

to me the simplest, most intelligible, and most consistent way 

of presenting not only dispersion, absorption, and rotary 
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polarization, but also magneto-optical phenomena and th 

optical properties of bodies in motion. These two last-namei 

subjects I have thought it especially necessary to conside 

because the first has acquired new interest from Zeeman’s dis 

covery, and the second has received at the hands of H. A 

Lorentz a development as comprehensive as it is eleganl 

This theory of Lorentz I have attempted to simplify by th 

elimination of all quantities which are not necessary to optics 

With respect to magneto-optical phenomena I have pointe< 

out that it is, in general, impossible to explain them by th' 

mere supposition that ions set in motion in a magnetic fieh 

are subject to a deflecting force, but that in the case of th 

strongly magnetic metals the ions must be in such a continuou 

motion as to produce Ampere’s molecular currents. Thi 

supposition also disposes at once of the hitherto unanswerei 

question as to why the permeability of iron and, in fact, of a] 

other substances must be assumed equal to that of the fre 

ether for those vibrations which produce light. 

The application of the ion-hypothesis leads also to som 

new dispersion formulae for the natural and magnetic rotation 

of the plane of polarization, formulae which are experimentall; 

verified. Furthermore, in the case of the metals, the ion 

hypothesis leads to dispersion formulae which make the con 

tinuity of the optical and electrical properties of the metal 

depend essentially upon the inertia of the ions, and which havi 

also been experimentally verified within the narrow limits thu: 

far accessible to observation. 

The third section of the book is concerned with the rela 

don of optics to thermodynamics and (in the third chapter) t 

the kinetic theory of gases. The pioneer theoretical work n 

these subjects was done by Kirchhoff, Clausius, Boltzmanr 

and W. Wien, and the many fruitful experimrental investiga 
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Imbued with this conviction, I have written this book in the 

endeavor to make the theory accessible to that wider circle of 

readers who have not the time to undertake the study of the 

original works. I can make no claim to such completeness as 

is aimed at in Mascart’s excellent treatise, or in Winkelmann’s 

Handbuch. For the sake of brevity I have passed over many 

interesting and important fields of optical investigation. My 

purpose is attained if these pages strengthen the reader in 

the view that optics is not an old and worn-out branch of 

Physics, but that in it also there pulses a new life whose further 

nourishing must be inviting to every one. 

Mr. F. Kiebitz has given me efficient assistance in the 

reading of the proof. 

Leipzig, January, 1900. 





INTRODUCTION 

Many optical phenomena, among them those which have 
found the most extensive practical application, take place in 
accordance with the following fundamental laws: 

1. The law of the rectilinear propagation of light; 

2. The law of the independence of the different portions of 

a beam of light; 

3. The law of reflection; 

4. The law of refraction. 

Since these four fundamental laws relate only to the 

geometrical determination of the propagation of light, conclu¬ 

sions concerning certain geometrical relations in optics may 

be reached by making them the starting-point of the analysis 

without taking account of other properties of light. Hence 

these fundamental laws constitute a sufficient foundation for 

so-called geometrical optics, and no especial hypothesis which 

enters, more closely into the nature of light is needed to make 

the superstructure complete. 

In contrast with geometrical optics stands physical optics, 

which deals with other than the purely geometrical properties, 

and which enters more closely into the relation of the physical 

properties of different bodies to light phenomena. The best 

success in making a convenient classification of the great 

multitude of these phenomena has been attained by devising 

particular hypotheses as to the nature of light. 

From the standpoint of physical optics the four above-men¬ 

tioned fundamental laws appear only as very close approxima- 
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tions. However, it is possible to state within what limits the 

laws of geometrical optics are accurate, i.e. under what cir¬ 

cumstances their consequences deviate from the actual facts. 

This circumstance must be borne in mind if geometrical 

optics is to be treated as a field for real discipline in physics 

rather than one for the practice of pure mathematics. The 

truly complete theory of optical instruments can only be 

developed from the standpoint of physical optics; but since, 

as has been already remarked, the laws of geometrical optics 

furnish in most cases very close approximations to the actual 

facts, it seems justifiable to follow out the consequences of 

these laws even in such complicated cases as arise in the 

theory of optical instruments. 
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PART I 

GEOMETRICAL OPTICS 

CHAPTER I 

THE FUNDAMENTAL LAWS 

I. Direct Experiment.—The four fundamental laws stated 

ove are obtained by direct experiment. 

The rectilinear propagation of light is shown by the shadow 

an opaque body which a point source of light P casts upon 

screen S. If the opaque body contains an aperture Lf then 
e edge of the shadow cast upon the screen is found to be the 

tersection of 5 with a cone whose vertex lies in the source P 

id whose surface passes through the periphery of the aper- 

re L. 

If the aperture is made smaller, the boundary of the shadow 

>on the screen 5 contracts. Moreover it becomes indefinite 
ben L is made very small (e.g. less than i mm.), for ^ 

>ints upon the screen which lie within the geometrical shadow? 
>w receive light from P. However, it is to be observed 

at a true point source can never be realized, and, on account 

the finite extent of the source, the edge of the shadow could 

;ver be perfectly sharp even if light were propagated in 

raight lines (umbra and penumbra). Nevertheless, in the 

,se of a very small opening L (say of about one tenth mm. 

ameter) the light is spread out behind L upon the screen so 
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The same result is obtained if the shadow which an opaque 

body S' casts upon the screen S is studied, instead of the 
spreading out of the light which has passed through a hole in 

an opaque object. If S' is sufficiently small, rectilinear 

propagation of light from P does not take place. It is there¬ 
fore necessary to bear in mind that the law of the rectilinear 

propagation of light holds only when the free opening through 
which the light passes, or the screens which prevent its passage, 

are not too small. 
In order to conveniently describe the propagation of light 

from a source P to a screen 5, it is customary to say that P 

sends rays to S. The path of a ray of .light is then defined 

by the fact that its effect upon S can be cut off only by an 
obstacle that lies in the path of the ray itself. When the 

propagation of light is rectilinear the rays are straight lines, 
as when light from P passes through a sufficiently large open¬ 

ing in an opaque body. In this case it is customary to say 

that P sends a beam of light through L. 

Since by diminishing L the result upon the screen S is the 
same as though the influence of certain of the rays proceeding 
from P were simply removed while that of the other rays 

remained unchanged, it follows that the different parts of a 

beam of light are independent of one another. 
This law too breaks down if the diminution of the open¬ 

ing L is carried too far. But in that case the conception of 
light rays propagated in straight lines is altogether untenable. 

The concept of light rays is then merely introduced for 
convenience. It is altogether impossible to isolate a single 
ray and prove its physical existence. For the more one tries 
to attain this end by narrowing the beam, the less does light 
proceed in straight lines, and the more does the concept of 
light rays lose its physical significance. 

If the homogeneity of the space in which the light rays exist 
> i* i i it .. •«.. » . . .. 
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face of the body upon which the light falls is plane, then the 
plane of incidence is that plane which is defined by the incident 
ray and the normal N to the surface, and the angle of 
incidence 0 is the angle included between these two direc¬ 
tions. 

The following laws hold: The reflected and refracted rays 
both lie in the plane of incidence. The angle of reflection (the 
angle included between N and the reflected ray) is eqiLal to the 
angle of incidence. The angle of refraction <pf (angle included 
between iVand the refracted ray) bears to the angle of incidence 
the relation 

sin 0 
sin 0' (i) 

in which n is a constant for any given color, and is called the 
index of refraction of the body with reference to the surround¬ 
ing medium.—Unless otherwise specified the index of refraction 
with respect to air will be understood.—For all transparent 
liquids and solids n is greater than i. 

If a body A is separated from air by a thin plane parallel 
plate of some other body B, the light is refracted at both sur^ 
faces of the plate in accordance with equation (i); i.e. 

sin 0 sin 0* 
sin 0' sm 0 = 

in which 0 represents the angle of incidence in air, 0' the 
angle of refraction in the body £, <p" the angle of refraction in 
the body Ay nh the index of refraction of B with respect to air, 
nab the index of refraction of A with respect to B\ therefore 

sin 0 
sin 0/; n*'nab. 
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'"I COmbination with CO then gives, *a denoting 
the index of refraction of A with respect to air, 

or 
na~ n .?i 

ndb = n„ : n * 
(2) 

i . e. the index of refraction of A with respect to B is equal to 
the ratio of the indices of A and B with respect to air. 

. . t}e, Cas® considered had been that of an infinitely thin 

t u . UP°n the body B> the same Process of reason¬ 
ing would have given 

Hence 
nia = nb: n„. 

n<a> = i : n. 'ba y 

W tkeJldeX fA witk resPect to B is the reciprocal of the 
index of B with respect to A. 

The law of refraction stated in (i) permits, then, the con- 

in" 0 TY alS° bC regarded as the angle of incidence 
infr JJ. y’ an.d * af the an2le of refraction in the surround- 

rioer^ fl ihUt tke dtrection °f Propagation may be 
without changing the path of the rays. For the case 

bajruronce "id“‘that this principie °f —- 

of uft‘n eTT” W' Which corresP'™ds to the passage 
of light from a body A to a body £ or the reverse, Ly be 
put in the symmetrical form • 

«a-sin 0a = %b . sin .^ 

normalCArtnTffl/en°te induded between the 
tifv fjt the directions of the ray in A and B respec¬ 
tively, and na and n„ the respective indices with respect to 
some medium like air or the free ether. 

The difference between the index n of a body with respect 
to air and its index n. wif-h r^crwar'f- 4-si -- • ^ 
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in which n' denotes the index of a vacuum with respect to air. 

Its value at atmospheric pressure and o° C. is 

n' — x : 1.00029.(5) 

According to equation (3) there exists a refracted ray (<p^ 

to correspond to every possible incident ray only when 

na < nb) for if na > nb, and if 

sin 0a > ^.(6) 

then sin <ph > i; i.e. there is no real angle of refraction <pb. 

In that case no refraction occurs at the surface, but reflection 

only. The whole intensity of the incident ray must then be 
contained in the reflected ray; i.e. there is total reflection. 

In all other cases (partial reflection) the intensity of the 
incident light is divided between the reflected and the re¬ 

fracted rays according to a law which will be more fully 

considered later (Section 2, Chapter II). Here the observa¬ 
tion must suffice that, in general, for transparent bodies the 

refracted ray contains much more light than the reflected. 

Only in the case of the metals does the latter contain almost 

the entire intensity of the incident light. It is also to be 

observed that the law of reflection holds for very opaque bodies, 

like the metals, but the law of refraction is no longer correct 
in the form given in (i) or (3). This point will be more fully 
discussed later (Section 2, Chapter IV). 

The different qualities perceptible in light are called colors. 

The refractive index depends on the color, and, when referred 

to air, increases, for transparent bodies, as the color changes 
from red through yellow to blue. The spreading out of white 

light into a spectrum by passage through a prism is due to this 
change of index with the color, and is called dispersion. 

If the surface of the body upon which the light falls is not 
t\l a Kill* Aii4*tTArI 14- *rv\ ^ t r 11 Ka I a aIv a/J iiv\am a a <aa a /4 a 114A a! 
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above laws. However, this process is reliable only wl 

Whin hT °f/he Surface does not exceed a certain lin 
when the surface may be considered smooth. 

Rough surfaces exhibit irregular (diffuse) reflectic 
refraction and act as though they themselves emitted 
I he surface of a body is visible only because of diffuse 

ion and refraction. The surface of a perfect mirror is 
ble. Only objects which lie outside of the mirror, and 
rays are reflected by it, are seen. 

2. £aw of the Extreme Path.*—All of these e 
mental facts as to the direction of light rays are compreh 

, the law of the extreme path. If a ray of light in p; 
rom a point P to a point P' experiences any number of i 

inTI ^ ;efraCti0nS’ then the sum of products c 
X o refraction of each medium by the distance trav 

n i , i e. Snl, has a maximum or minimum value: i 

erSf fr°m a llke sum for a11 other paths which are infii 
close to the actual path by terms of the second or higher o 
Thus if d denotes the variation of the first order, 

= o. 

. . The Product> index of refraction times distance trav 
is known as the optical length of the ray. 

POP' lrdl t0 Pr°Ve the ProP°siti°n for a single refracti 
Ur be the actual path of the light (Fig- i) OF the 

“f" of the plane of incidence 

gent plane) of the refracting body, O' a point on the si 
of the refracting body infinitely near to 0, so that 

W e^anym?gle 9 With thG pIane of incidence, i.e. wit 
r - , ' T?en 14 ls to be Proved that, to terms of the se 

or higher order, 

n.PO + n'. OP' = n-PO’ -f nr. OP', 
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in which n and n' represent the indices of refraction of the 
adjoining media. 

If a perpendicular OR be dropped from 0 upon P0f and a 
perpendicular OR' upon P'O', then, to terms of the second 

order, 

PO' = P0-\- R0\ OP' = OP' - O'R'. . . (9) 

Also, to the same degree of approximation, 

R0r = 00'-cos P00\ O'R' = Off-cos P'OO’. (io) 

In order to calculate cos POO' imagine an axis <9Z> perpen¬ 
dicular to ON and OE, and introduce the direction cosines of 

the lines PO and 00' referred to a rectangular system of 
coordinates whose axes are ON, 0E> and OD. If 0 represent 

the angle of incidence PON\ then, disregarding the sign, the 

direction cosines of PO are 

cos 0, sin 0, o, 

:hose of 00* are 

o, cos 0, sin 0. 
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products of the corresponding direction cosines of the 1 

reference to a system of rectangular coordinates, i.e. 

cos POOr == sin 0-cos 
and similarly 

cos P'OOr — sin 0/-cos 

in which 0' represents the angle of refraction. 
Then, from (9) and (10), 

n *P0f -|- n! • OP’ = n • PO -j- n • 00r • sin 0 • cos $ 

+ n'-OP' - n'. 00'.sin 4 

Since now from the law of refraction the relation e: 

7z*sin 0 = n'-sin 0', 

it follows that equation (8) holds for any position v 
of the point O' which is infinitely close to 0. 

For the case of a single reflection equation (7) 
more simply proved. It then takes the form 

S(PO + OP9) = o, ... . 

in which (Fig. 2) PO and OP' denote the actual patl 
ray% If Px be that point which is symmetrical to 

Fig. 2. 

respect to the tangent plane OE of the refracting bod 
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tion at the tangent plane OF is, then, for every position of the 
point O', equal to PfO' -f- O'P'. Now this length is a mini¬ 
mum if Px, 0r, and P' lie in a straight line. But in that case 

the point 0f actually coincides with the point 0 which is 
determined by the law of reflection. But since the property 

of a minimum (as well as of a maximum) is expressed by the 
vanishing of the first derivative, i.e. by equation (n), there¬ 

fore equation (7) is proved for a single reflection. 

It is to be observed that the vanishing of the first derivative 
is the condition of a maximum as well as of a minimum. In 
the case in which the refracting body is actually bounded by a 

plane, it follows at once from the construction given that the 
path of the light in reflection is a minimum. It may also be 
proved, as will be more fully shown later on, that in the case 

of refraction the actual path is a minimum if the refracting 

body is bounded by a plane. Hence this principle has often 
been called the law of least path. 

When, however, the surface of the refracting or reflecting 
body is-curved, then the path of the light is a minimum or a 

maximum according to the nature of the curvature. The 

vanishing of the first derivative is the only property which is 

common to all cases, and this also is entirely sufficient for the 
determination of the path of the ray. 

A clear comprehension of the subject is facilitated by the 
introduction of the so-called aplanatic surface, which is a sur¬ 

face such that from every point upon it the sum of the optical 

paths to two points Pand Pr is constant. For such a surface 
the derivative, not only of the first order, but also of any 
other order, of the sum of the optical paths vanishes. 

In the case of reflection the aplanatic surface, defined by 

PA + P'A = constant C, . . . . (12) 

is an ellipsoid of revolution having the points P and P' as foci. 
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and evidently^ ^an^nt°toeSth°n^S't0 ^ ? 
since at this point tZ fi the mirror S0S' at 0, 
vanishes for both surfaces ^ 6nVatlve °f the optical paths 

■SOS' is more “? “ the %Ure’ themi™ 
optical path PO 4- OP’ is a maxf ^ Surface> then the 

-t- is a maximum, otherwise a minimum. 

since for all 

“ (.3). the sum PO+Zk°^Z T60" *S ** 
while for all points outeide rtl , the COnstant 

‘7“ point of reflection ^it^f™ G “d ' 

n the case of refraction the aplanatic surface, defined by 

n’PA + »'-p,A = constant C, 

the less refracdve^rapn Fig* ”<1')'“d"V“ T’’"' 

points O’ the sum of th* £ P the re^ons for whose 

from those fcr %?£ r < rVheT + w d 

on the side of the aplanatic sur&cf Jard £7 

■■ 

^•JE 

» 

it S§of 
]£*?‘ 
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two media, and PO, P'O the actual path which the light takes 
in accordance with the law of refraction, then the length of the 

path through 0 is a maximum or a minimum according as 
SOS' is more or less convex toward the less refracting medium 

than the aplanatic surface AO AThe proof appears at once 

from the figure. 
If, for example, SOS' is a plane, the length of the path is 

a minimum. In the case shown in the figure the length of the 

path is a maximum. 
Since, as will be shown later, the index of refraction is 

inversely proportional to the velocity, the optical path nl is 

proportional to the time which the light requires to travel the 

distance /. The principle of least path is then identical with 

Fermat's principle of least time, but it is evident from the 
above that, under certain circumstances, the time may also be 

a maximum. 
Since dlSnl = o holds for each single reflection or refrac¬ 

tion, the equation &2nl = o may at once be applied to the 

case of any number of reflections and refractions. 
a T r»rrr /vP H/Tolne diart rvi 1 It? 4-n 
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tomic system), and those for which no such surface F can b< 
found (anorthotomic system). With the help of the preceding 
principle the law of Malus can now be proved. This law i< 

stated thus: An orthotomic system of rays remains orthotomu 

after any number of reflections and refractions. From the 
standpoint of the wave theory, which makes the rays the 
normals to the wave front, the law is self-evident. But it car 

also be deduced from the fundamental geometrical laws already 
used. 

Let (Fig. 5) ABCDE and A'BlCD'Ef be two rays infinitely 
close together and let their initial direction be normal to a 

, surface F. If L represents the total 
optical distance from A to E, then 

A * TA n! it may be proved that every ray 
n / \ 1/ \ , whose total path, measured from its 

I \ —j origin A, A\ etc., has the same 
t \ / / optical length Z, is normal to a sur- 

/ / face Ff which is the locus of the ends 

/ / E> Ef etc., of those paths. For 

/ *ke purpose of the proof let A'B and 
TLlD be drawn. 

Fig According to the law of extreme 
path stated above, the length o 

the path A'B'ClDrEf must be equal to that of the infinitely 
near path A'BCDEi.e. equal to Z, which is also the length 
of the path ABCDE. If now from the two optical distances 
AtBCDEf and ABCDE the common portion BCD be sub¬ 
tracted, it follows that 

n.AB+n'.DE=zn-A'B + n'-DE', 

in which n represents the index of the medium between the 
surfaces F and By and n{ that of the medium between Z 

and Ff But since AB = A'B, because AB is by hypothesis 
normal to F, it follows that 
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DE is perpendicular to the surface F'. In like6 manner 

may be proved that any other ray D!E‘ is normal to FL 

Rays which are emitted by a luminous point are normal to 

•surface F, which is the surface of any sphere described about 

Le luminous point as a centre. Since every source of light 

Lay be looked upon as a complex of luminous points, it 

allows that light rays always form an orthotomic system. 



CHAPTER II 

GEOMETRICAL THEORY OF OPTICAL IMAGE 

i. The Concept of Optical Images.—If in the ne 

hood of a luminous point P there are refracting and re 

bodies having any arbitrary arrangement, then, in g 

there passes through any point P' in space one and oi 

ray of light, i.e. the direction which light takes from j. 

is completely determined. Nevertheless certain points, 

be found at which two or more of the rays emitted by I 

sect. If a large number of the rays emitted by Pinter: 

a point P', then P' is called the optical image of P 

intensity of the light at P’ will clearly be a maximum ’ 

actual intersection of the rays is at P', the image is calle, 

if P' is merely the intersection of the backward prolon 

of the rays, the image is called virtual. The simplest 

pie of a virtual image is found in the reflection of a lur 

point P in a plane mirror. The image P' lies at that 

which is placed symmetrically to Pwith respect to the r 

Real images maybe distinguished from virtual by the 

illumination which they produce upon a suitably placed 

surface such as a piece of white paper. In the case of 

mirrors, for instance, no light whatever reaches the poii 

Nevertheless virtual images may be transformed into r 

certain optical means. Thus a virtual image can be set 

cause it is transformed by the eye into a real image 

illumines a certain spot on the retina. 

The cross-section of the undie nf 
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dimension. Consider, for example, the case of a single refrac 

tion. If the surface of the refracting body is the aplanati 

surface for the two points P and P;> then a beam of any siz 

which has its origin in P will be brought together in Pf; fc 

all rays which start from P and strike the aplanatic surfac 
must intersect in P'f since for all of them the total optical dis 

tance from P to P' is the same. 
If the surface of the refracting body has not the form of th 

aplanatic surface, then the number of rays which intersect i 
P is smaller the greater the difference in the form of the tw 

surfaces (which are necessarily tangent to each other, se 
page io). In order that an infinitely narrow, i.e. a plan< 

beam may come to intersection in P\ the curvature of the sui 
faces at the point of tangency must be the same at least in or 

plane. If the curvature of the two surfaces is the same at 

for two and therefore for all planes, then a solid elemental 

beam will come to intersection in Pf; and if, finally, a finil 

section of the surface of the refracting body coincides with tl 
aplanatic surface, then a beam of finite cross-section will con 

to intersection in PL 

Since the direction of light may be reversed, it is possib 
to interchange the source Pand its image P\ i.e. a source ; 

Pf has its image at P. On account of this reciprocal relatioi 

ship P and Pr are called conjugate points. 

2. General Formulae for Images.—Assume that by meai 
of reflection or refraction all the points P of a given space ai 

imaged in points Pf of a second space. The former space wj 

be called the object space; the latter, the image space. Fro: 
the definition of an optical image it follows that for every n 

which passes through P there is a conjugate ray passir 
through Pf. Two rays in the object space which intersect 

P must correspond to two conjugate rays which intersect 

the image space, the intersection being at the point Pl whi( 
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Ms -y ray ,A, 
al” “tersect ™ a point, namely taJ'Ja,a.rayS ^ a:ld ^V”, 
he four images PJP'P>P> f, the image ofHence 

WOrds' *» every polntf 5y '„r IL? ff pl“'- other 
corresponds one, and but one °”e sPa“ there 

other. Such a relation of two snac^ • ^ °r pIane in the 
colhnear relationship. PaCCS IS caIIed m geometry a 

be eXlTj™ fbe'th :Ilin^relab°nshipcan 
^ of the object space referred V C°°rdlnates of a point 

he coordinates of the doT^p^^'' system> and 
«cfc,„g„,arSystem choSen F refc"«i to another 

't'l™ ,corresponds one and onlfone^^ “ CTt?' 
bis ls only possible if ’ T > z > and wh? 

= S£+ V + -4- ) 
«-*• -f- ^ -f ^ ^ > | 

y = V + ^4- d, 
ax~\~ 3y-\-cz + j~, f ' • • • (i) 

*' = 5f + ^ ^ + < 

in i . - <Mr + ^' + «+lT 
m which a. 3 r w . 

?■ y. y ae ;al;es o"VT T™ T,hit is-for ^ 
three linear equations (,) and L >?' caku,*ted *>- the 

determine ad, y, y 1 ih , d “verseiy, given values of a, ,, 

7're no‘ ‘he quotient of too ^t'lfad ^ °f crl“«ons (i; 

■ LW r17 ^ ^ v- ‘her. ^1^ ‘ <* * * a, then 
Furthermore the denominator of ttisT? 01 *• S. 
the same linear function (ax _l qU°tlent must be one and 
a Plane in the image space + 6y + 08 + *0- since otherwise 

^ V -f B’y -f. fV 4- ]y _ 0 

W°U d n0t again oon-espond to a- Dlah> 
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If the equations (1) be solved for x, yy and zy forms analo¬ 

gous to (1) are obtained; thus 

■ a\X> + bx y + C\3' + dl tc r„\ 

a'x' + by + cV +d' ’ • * VJ 

From (1) it follows that for 

ax by -j- cz -f- d = o: xr = y! = zf = 00 . 

Similarly from (2) for 

a'x' -f- b'y' -f- c'z' j- d' — o: x = y = z = 00 . 

The plane ax -f- by -|~ cz -f- d = o is called the focal plane 

g of the object space. The images P' of its points P lie at 

infinity. Two rays which originate in a point P of this focal 
plane correspond to two parallel rays in the image space. 

The plane a'x' -f- b'y' -f- c'z' -|~ df = o is called the focal 

plane of the image space. Parallel rays in the object space 

correspond to conjugate rays in the Image space which inter¬ 
sect in some point of this focal plane 

In case a = b = c = o, equations (1) show that to finite 
values of x, yy z correspond finite values of x', y'y z'; and, in¬ 
versely, since, when ay by and c. are zero, a'y l/y c' are also 

zero, to finite values of x'y y\ z' correspond finite values of 
x, y, z. In this case, which is realized in telescopes, there 
are no focal planes at finite distances. 

3. Images Formed by Coaxial Surfaces.—In optical in¬ 
struments it is often the case that the formation of the image 

takes place symmetrically with respect to an axis; e.g. this 

is true if the surfaces of the refracting or reflecting bodies are 
surfaces of revolution having a common axis, in particular, sur¬ 

faces of spheres whose centres lie in a straight line. 
From symmetry the image P' of a point P must lie in the 

plane which passes through the point P and the axis of the 
and it iq pntirplv cmffiripnt fnr thp Qtndv nf fhp imacrp 



If the xy plane of the object space and the x'y* plane 
image space be made to coincide with this meridian plai 

if the axis of symmetry be taken as both the x and the ; 

then the z and zf coordinates no longer appear in equatic 
They then reduce to 

y = aix + biy + di , _ a2x + KyJrd2 
ax -j- by d* ax -j- by -j- d 

The coordinate axes of the xy and the xfy* systei 
then parallel and the x and xf axes lie in the same line, 

origin O' for the image space is in general distinct frc 

origin 0 for the object space. The positive direction of 

be taken as the direction of the incident light (from 

'r 

0 i jC' 0f 

Fig. 6. 

right); the positive direction of x', the opposite, i.e. 
right to left. The positive direction of y and y' will be 

upward (see Fig. 6). 
From symmetry it is evident that x' does not chan 

value when y changes sign. Therefore in equation 
bx — b — o. It also follows from symmetry that a cha] 
sign of y produces merely a change in sign of yr. ] 

a2 = d% = O and equations (3) reduce to 

_ a,*+ 4 , _ ■ 

X - ax + d’ y ~ ax + cf ' ’ ’ 

Five constants thus remain, but their ratios alon 

sufficient to determine the formation of the image. ] 
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there are in general four characteristic constants which deter¬ 

mine the formation of images by coaxial surfaces. 

The solution of equations (4) for x and y gives 

dx' — d. a.d — ad. y' 

ax — ax'y ^ b2 ax— ax' * • • (5) 

The equation of the focal plane of the object space is 

ax -j- d = °, that of the focal plane of the image space 
ax' — al = o. The intersections F and F' of these planes 

with the axis of the system are called the principal foci. 

If the principal focus F of the object space be taken as the 

origin of x, and likewise the principal focus F' of the image 

space as the origin of x'y then, if xQ, xQ' represent the coordi¬ 
nates measured from the focal planes, axQ will replace ax -j- d 

and — axf ax — ax'. Then from equations (4) 

adx — axd y_ 
y axn • • (6) 

Hence only two characteristic constants remain in the 
equations. The other two were taken up in fixing the posi¬ 

tions of the focal planes. For these two complex constants 

simpler expressions will be introduced by writing (dropping 
subscripts) 

xx --ff, 
y 

L- x' 
x- 'r ■ ■ (7) 

In this equation x and x' are the distances of the object and 

the image from the principal focal planes g and respectively. 

The ratio y' :y is called the magjiification. It is 1 for 
x = /, i.e. x’ = f'. This relation defines two planes § and 

!q' which are at right angles to the axis of the system. These 

planes are called the unit planes. Their points of intersection 
H and H' with the axis of the system are called unit points. 

The unit planes are characterized by the fact that the dis- 
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ance with the above, the distance of the unit planes ^ fro 
the focal planes g, g'. The constant / is called the foe 

length of the object space; f, the focal length of the ima± 

space. The direction of / is positive when the ray falls fir 

upon the focal plane g, then upon the unit plane £>; for/' t! 

case is the reverse. In Fig. 7 both focal lengths are positiv( 
The significance of the focal lengths can be made clear i 

the following way: Parallel rays in the object space must hav 

conjugate rays in the image space which intersect in som 
point in the focal plane g' distant, say, y' from the axis. Th 
value ofy' evidently depends on the angle of inclination u c 
the incident ray with respect to the axis. If ti = o, it follow 
from symmetry thaty' = o, i.e. rays parallel to the axis havi 
conjugate rays which intersect in the principal focus F'. Bu 

r icj. 7. 

* ** n<^ e<^ua^ to zero' consider a ray PFA which pass< 

inT/S * frSt Pn'nCipaI f°CUS and cuts the unit plane , 
Tfie ray which is conjugate to it, A'P', mu: 

throuert* "*• t0 ^ ax’s s*nce the first ray passe 
A anf f: Furtherm°re, from the property of the unit planes 

the dktanr T ***? 7 diStant from tlle axis- Consequent! 
^°m °f the ima^e "*** is formed B 
7 SaCldCnt at “ an^le « is- a* aPPears at one 
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wed in the focal plane of the image space to the apparent 

%ular) magnitude of its infinitely distant object, A. similar 

nition holds of course for the focal lengthy7 of the image 

-e, as is seen by conceiving the incident beam of parallel 

3 to pass first through the image space and then to come 

1 focus in the focal plane g. 
If in Fig. 7 A'P' be conceived as the incident ray, so that 
functions of the image and object spaces are interchanged, 

1 the following may be given as the definition of the focal 

rth f which will then mean the focal length of the image 

:e: 
The focal length of the image space is equal to the distance 

ieen the axis and any ray of the object space which is 

xllel to the axis divided by the tangent of the inclination of 

onjugate ray. 

Equation (8) may be obtained directly from (7) by making 
u ~ y: x and tan u' = y' :x'. Since .r and x( are taken 

rive in opposite directions and y and y' in the same diroc- 

it follows that u and u! are positive in different directions. 
angle of inclination u of a ray in the object space is positive 

e ray goes upward from left to right; the angle of inclina- 
u of a ray in the image space is positive if the ray goes 

iward from left to right. - 

rhe magnification depends, as equation (7) shows, upon 
le distance of the object from the principal focus I<\ and 

L /, the focal length. It is, however, independent of j\ 

:he image of a plane object which is perpendicular to the 
of the system is similar to the object. On the other hand 

image of a solid object is not similar to the object, as is 

mt at once from the dependence of the magnification 

x- Furthermore it is easily shown from (7) that the 
nification in depth, i.e. the ratio of the increment dx* of 

an increment dx of x> is proportional to the square of the 
il magnification. 
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fact that a ray through one nodal point K is conjugate and 

parallel to a ray through the other nodal point K'. The posi¬ 

tion of the nodal points for positive focal lengths /and/' is 

Fig. 9. 

shown in Fig. 9. KA and KfA' are two conjugate rays. It 
follows from the figure that the distance between the two nodal 

points is the same as that between the two unit points. If 

f — f - the nodal points coincide with the unit points. 

Multiplication of the second of equations (7) by (9) gives 

y tan u' f 

y tan u — f.0°) 

If e be the distance of an object P from the unit plane 
and e* the distance of its image from the unit plane e and 

e' being positive if P lies in front of (to the left of) |> and P' 

behind (to the right of) jp', then 

e=f—x, —f — x'. 

Hence the first of equations (7) gives 

/ f 
T+7 = I.00 

The same equation holds if e and e' are the distances of P 

and P from any two conjugate planes which are perpendicular 
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Construction of Conjugate Points.—A simple graphic 
interpretation may be given to equati< 

(i i). If ABCD (Fig. io) is a rectang 
with the sides f and then ai 

straight line ECE' intersects the pr 
longations off and fr at such distanc 

from A that the conditions AE = e at 
AEf — e' satisfy equation (i i). 

It is also possible to use the ur 

plane and the principal focus to determine the point Pl conji 
gate to P. Draw (Fig. n) from P a ray PA parallel to tl 
axis and a ray PF passing through the principal focus i 

Fig. ii. 

A}Ff is conjugate to PAy Ar being at the same distance froi 
the axis as A ; also P'B', parallel to the axis, is conjugate t 

PFBy Br being at the same distance from the axis as B. Tb 

intersection of these two rays is the conjugate point sough 
The nodal points may also be conveniently used for this cor 
struction. 

The construction shown in Fig. 11 cannot be used when j 
and Pf lie upon the axis. Let a ray from P intersect the foes 
plane g at a distance g and the unit plane ^ at a distance 
from the axis (Fig. 12). Let the conjugate ray intersect 
and ^ at the distances k'{= h) and gr. Then from the figur 

PF - x F P'Fr - x> g 



geometrical theory of optical images ,s 

nd hy addition’ since from equation (7) 

f*' ~f'x S + g' 

h 
2XXr 

I, (12) ^/ + ^/— f^ZTfrx 

may then be found by lavinrr off r 
stance s' = * _ , . J ' "S off “ th' focal plane g' the 
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? into account the directions in which xlZ ^ ^ 
:d positive (see above n rn t* and x are con- 

cind of image formation occurs ifThe ^ ^ ** 
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If the two focal lengths have opposite signs the system i 

contracurrenty i.e. if the object moves from left to right, th< 

image moves from right to left, as appears from the formuL 

xx1 = fff. This case occurs if the image is produced by an ode 

number of reflections or by a combination of an odd number o 

such with refractions. This kind of image formation is callec 

katoptric. When it occurs the direction of propagation of th< 

light in the image space is opposite to that in the object space 

so that both cases may be included under the law: In all casej 

of image formation if a point P be conceived to move along a ray 

in the direction in which the light travels, the image Pf of tha, 

point moves along the conjugate ray in the direction in which 

the light travels. 

Among dioptric systems a distinction is made between those 

having positive and those having negative focal lengths. The 

former systems are called convergenty the latter divergent, 

because a bundle of parallel rays, after passing the unit plant 

of the image space, is rendered convergent by the former, 

divergent by the latter. No distinction between systems or 

the ground that their foci are real or virtual can be made, foi 

it will be seen later that many divergent systems (e.g. the 

microscope) have real foci. 

By similar definition katoptric systems which have a nega¬ 

tive focal length in the image space are called convergent,— 

for in reflection the direction of propagation of the light i< 
reversed. 

There are therefore the four following kinds of optical 
systems: 

Dioptric.. 

Katoptric. 
a. 
b. 

Convergent: -j- f 
Divergent: —f 

Convergent: -j- f 
Divergent: — f 

+/'• 

+/'• 
6. Telescopic Systems—Thus far it has been assumed 

that the focal olanes lie at finite T f 4-1. ^- 1* _ j 
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- *■ 

, */==a*‘» y=/b. (nx 

TXz :rrt °4hT av~°» *. ^ 
** fot, given My-two 

•sections with the axis r>f tu« o J an a u f, their 
ns rr.1, 0i the astern may serve as the 

. and its Colgate polmP' ^ ^ *7 ^ C°°rdinates 

ents * angles of SsLte 

tan u = y : tan u' = y' • ,y 
:e by (13) y ' * ' 

tan u’ : tan u — 6 •, & , . 
* • • (14) 

of telescopic systems depending upon the 

[uations (14) and (13) give 

. y tan u' fji 

... 

-omparison of this equation with fio'l fn m\ u 

escopic systems the two focal lengths tho 
, have a finite ratio. Thus gh b°th 

/ /?2 
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and for the distance of the principal focus F of the combinatio 
from the principal focus Fx, 

FF (2C 

in which FFr is positive if F lies to the left of Fv 
Equations (17), (x8), (19), and (20) contain the charactei 

istic constants of the combination calculated from those of th 
systems which unite to form it. 

Precisely the same process may be employed when th 
combination contains more than two systems. 

If the separation A of the two systems is zero, the foca 

lengths f and /' are infinitely great, i.e. the system is tele 

scopic. The ratio of the focal lengths, which remains finite 
is given by (18) and (19). Thus 

,2. r /; f,.( I 
From the consideration of an incident ray parallel to the axi 
the lateral magnification y' : y is seen to be 

y':j.(22 

By means of (21), (22), and (16) the constant a, which repre 
sents the magnification in depth (cf. equation (13)) is found, 
Thus 

x 
a — Aft' 

Af? 
Hence by (14) the angular magnification is 

(23; 

tan a': tan ^ :/2'. . . . (2^ 

The above considerations as to the graphical or analytical 
determination of the constants of a combination must be 
somewhat modified if the combination contains one or more 
telescopic systems. The result can, however, be easilj 

obtained by constructing or calculating the path through the 
successive systems of an incident ray which is parallel tc 



CHAPTER III 

PHYSICAL CONDITIONS FOR IMAGE FORMATION 

Abbe’S geometrical theory of the formation of optical 
images, which overlooks entirely the question of their physical 
realization, has been presented in the previous chapter, because 

the general laws thus obtained must be used for every special 

case of image formation no matter by what particular physical 

means the images are produced. The concept of focal points 
and focal lengths, for instance, is inherent in the concept of 

an image no matter whether the latter is produced by lenses 
or by mirrors or by any other means. 

In this chapter it will appear that the formation of optical 

images as described ideally and without limitations in the 
previous chapter is physically impossible, e.g. the image of 

an object of finite size cannot be formed when the rays have 
too great a divergence. 

It has already been shown on page 15 that, whatever the 
divergence of the beam, the image of one point may be pro¬ 

duced by reflection or refraction at an aplanatic surface. Images 

of other points are not produced by widely divergent rays, since 

the form of the aplanatic surface depends upon the position of 

the point. For this reason the more detailed treatment of 

special aplanatic surfaces has no particular physical interest. 

In what follows only the formation of images by refracting and 

reflecting spherical surfaces will be treated, since, on account 

of the ease of manufacture, these alone are used in optical 
instruments; and since, in any case, for the reason mentioned 

above, no other forms of reflecting or refracting surfaces furnish 
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It wi 1 appear that the formation of optical images can b 
practically accomplished by means of refracting or reflects 

spherical surfaces if certain limitations are imposed,, namely 
imitations either upon the size of the object, or upon th< 

divergence of the rays producing the image. 

i. Refraction at a Spherical Surface.—In a medium o: 
index n, let a ray PA fall upon a sphere of a more strongh 

refractive substance of index n' (Fig. 14). Let the radius oi 

refe<?!fe r’ ItS centre In order to find the path of the 
efracted ray, construct about C two spheres 1 and 2 of radii 

ft ^ 
h = Md r2= ~r (method of Weierstrass). 

2 in^draw BC intersecting sphere 

Indent A*? fefraCted ^ This is at once 

are sililtpt “d 

if **#* of ^fraction, and since 
iRBAC - <f>, the angle of incidence, it follows that 

sin <t>: sin = BC: AC = n'; n, 

which is the law of refraction. 
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Hence equation (i) may be written : 

sin2 u*s-n2 = sin3 uf • s'•ft'2* . • 

It will be seen later that this equation always holds for 
surface elements s and s' which have the relation of object 

image no matter by what particular arrangement the imag 
produced. 

In order to obtain the image of a portion of space by me 

of refraction at a spherical surface, the divergence of the r 

which form the image must be taken very small. Let j 
(Fig. 15) be an incident ray, AP' the refracted ray, and PC 

line joining P with the centre of the sphere C, Then fro 
*«© triangle PAC, 

sin 0 : sin a = Pff.^ . _PA, 

from the triangle P'A C, 

sin : sin a — P'H — r ; _P'A. 

Hence by division. 

PH+ r JP'A 
n ~ P’H — r' ~J?A' * * • (; 

r** «“** He. infinitely «ar to If, i.e that the ■ 
Arti IS very small so tw pa , tnat tJ3e 4 

and to P’H. Also let C considered equ 
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Then from (3) 

or 

e -\-re' n' 

e' — r * e n y 

n nl n' — n 

e ef r (4) 

In which r is to be taken positive if the sphere is convex 
toward the incident light, i.e. if C lies to the right of H. e is 

positive if P lies to the left of H\ ef is positive if Pr lies to the 

right of H. To every e there corresponds a definite ef which 
is independent of the position of the ray PA, i.e. an image 

of a portion of space which lies close to the axis PC is formed 
by rays which lie close to PC. 

A comparison of equation (4) with equation (11) on page 
23 shows that the focal lengths of the system are 

/ = n — n f (5) 

and that the two unit planes § and coincide and are tan¬ 

gent to the sphere at the point H. Since / and/' have the 

same sign, it follows, from the criterion on page 25 above, 

that the system is dioptric or concurrent. If n' > n, a convex 

curvature (positive r) means a convergent system. Real 
images (ef > o) are formed so long as e >/. Such images 
are also inverted. 

Equation (10) on page 23 becomes 

y tan uf n 

v tan u-»'.(^) 

By the former convention the angles of inclination u and ul of 
conjugate rays are taken positive in different ways. If they 

are taken positive in the same way the notation 'u will be used 
instead of uf, i.e. 'u = — uf. Hence the last equation may 
he written; 
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In this equation a quantity which is not changed by refrac 

tion appears,—an optical invariant. This quantity remain 

constant when refraction takes place at any number of coaxia 

spherical surfaces. For such a case let n be the index c 

refraction of the first medium, ri that of the last; then equa 
tion (7) holds. But since in general for every system, fron 

equation (10), page 23, 

y tan u' _ f 

y tan u ~ /'’.1 

there results from a combination with (7) 

f •/' = n : nr,.(9 

i.e. In the formation of images by a system of coaxial refract 

ing spherical surfaces the ratio of the focal lengths of th 

system is equal to the ratio of the indices of refraction of th 

first and last media. If, for example, these two media ar 
air, as is the case with lenses, mirrors, and most optical instru 

ments, the two focal lengths are equal. 
2. Reflection at a Spherical Surface.—Let the radius r b 

considered positive for a convex, negatiye for a concave mirror 

By the law of reflection (Fig. 16) <£ PAC = P'AC 
Hence from geometry 

PA :I>fA = PC : PC.(ic 

If T P tYlol/AC O lorfTP onn-l/a tirlfTi T>/~' 
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h the axis varies with the angle. -In that case no image of 
point P exists. But if the angle APC is so small that the 

'le itself may be used in place of its sine, then for every 

iit P there exists a definite conjugate point P', i.e. an image 
now formed. It is then permissible to set PA — PH, 

1 = P'H, so that (io) becomes 

PH : P'H = PC : P'C.(u) 

IPH= e, P'H 

-y 

omparison of this with equation (u) on page 23 shows 

t the focal lengths of the system are 

.... (13) 

t the two unit planes § and $ coincide with the plane 
gent to the sphere at the vertex H; that the two principal 

coincide in the mid-point between C and II; and that the 

lal points coincide at the centre C of the sphere. The 
ns of e and er are determined by the definition on page 23. 

Since f and ff have opposite signs, it follows, from the 

rion given on page 25, that the system is katoptric or con- 
rurrent. By the conventions on page 26 a negative r, i.e. 

Dncave mirror, corresponds to a convergent system; on the 

er hand a convex mirror corresponds to a divergent system. 

A comparison of equations (13) and (5) shows that the 

fits here obtained for reflection at a spherical surface may 

deduced from the former results for refraction at such a sur- 
: by writing n': n = — 1. In fact when — i, the 

of refraction passes into the law of reflection. Use may 

made of this fact when a combination of several refracting 

= — e\ then, since r in the figure is nega- 

1 1 __ ^ 
ef r* 

(12) 
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to the axis, this line will intersect the previously constructed 
image line in the point sought, namely 2'. From the figure it 

may be clearly seen that the images of distant objects are real 

and inverted, those of objects which lie in front of the mirror 

within the focal length are virtual and erect, and those of virtual 

objects behind the mirror are real, erect, and lie in front of the 

mirror. 
Fig. 18 shows the relative positions of object and image 

for a convex mirror. It is evident that the images of all real 
objects are virtual, erect, and reduced; that for virtual objects 

which lie within the focal length behind the mirror the images 

are real, erect, and enlarged; and that for more distant virtual 

objects the images are also virtual. 

Eauation (11) asserts that PCP'H are four harmonic Doints 
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From any point L (Fig. 19) draw two rays LC and LHy and 

then draw any other ray PDB. Let 0 be the intersection of 

DH with BC: then LO intersects the straight line PH in a 
point P' which is conjugate to P. For. a convex mirror the 

construction is precisely the same, but the physical meaning of 
the points C and H is interchanged. 

3. Lenses.—The optical characteristics of systems com¬ 
posed of two coaxial spherical surfaces (lenses) can be directly 

deduced from § 7 of Chapter II. The radii of curvature rx 

and r% are taken positive in accordance with the conventions 

given above (§1); i.e. the radius of a spherical surface is 
considered positive if the surface is convex toward the inci¬ 

dent ray (convex toward the left). Consider the case of a lens 
of index n surrounded by air. Let the thickness of the lens, 
i.e. the distance between its vertices Sx and S2 (Fig. 20), be 

denoted by d. If the focal lengths of the first refracting sur¬ 
face are denoted by fx and//, those of the second surface by 

f% an(i > then the separation A of the two systems (cf. page 
2 &) is given by 

and, by (5), 

. . (14) 

*__ 1 n n T 
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Hence by equations (19) and (18) of Chapter II (page 29) 

focal lengths of the combination are 

n — 1 d(n — 1) — nrx + nr2 
(16) 

'e the positions of the principal foci F and F/ of the cona¬ 

tion are given by equations (17) and (20) of Chapter II 

^e 29). By these equations the distance cr of the principal 

F in front of the vertex Slf and the distance cr' of the 

cipal focus Fr behind the vertex S2 are, since cr = FFX + ft 

* = Ftf' +/;, 

ri ■ <Kn-i) + nr% . . . 
n — 1 d(n — 1) — nrx -f- nr2 * * * V // 

... <lS) 
n — 1 d[n 1) — nrx + ?ir2 x 7 

f h represents the distance of the first unit plane !q in front 

e vertex , and hr the distance of the second unit plane 

ehind the vertex S2, then f -f- h = cr and ff -j- hf = <r't 
from (16), (17), and (18), it follows that 

7 r \Ll' 
1 ~~ d(?i — i) — -f- C1^) 

,, __ — r2d 

d{n —- 1) — . 

, since the distance / between the two unit planes $ and 
/ = d -f h -f- k'y it follows that 

p — d{n — 1) d — -|- r2 
— 1) — nrx + nr2 (21) 

'■f—ft the nodal and unit points coincide (cf. page 23). 
rom these equations it appears that the character of the 
m is not determined by the radii r and r. alone, but that 
. •   r r .■% 1 . . *“ 
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not too great thickness dt acts as a convergent system, i 

possesses a positive focal length; on the other hand it acts 

a divergent system when d is very great. 

4* Thin Lenses.—In practice it often occurs that the thi< 

ness d of the lens is so small that d(?i — i) is negligible 

comparison with n[rx — r2). Excluding the case in whi 
rt = rs, which occurs in concavo-convex lenses of equal rac 

equation (16) gives for the focal lengths of the lens 

f=r = or 
(* - Ofo ~ rj 

4=(«- 
/ 'W r-J’ J 

while equations (19), (20), and (21) show that the unit plan 

nearly coincide with the nearly coincident tangent planes 
the two vertices Sj and S2. 

More accurately these equations give, when d{n — 1) 

neglected in comparison to n(r1 — r2), 

h> = + \ 
ri~r2 

d 
n 

n n rx~^ ' n X ,2 

Thus die distance f between the two unit planes is indepe 
dent of the radii of the lens. For n = 1.5, = \d. For bo 

double-convex and double-concave lenses, since A and h< a 
negative, the unit planes lie inside of the lens. For equ 
curvahnre — — — —i r _ ^ * — rt, and for n = 1.5, /z = hr = _Xd i 

t]iP^anes k°m the surface is one thi 
ae £clness of a* ton. and have the same 

tbe is cononxonrex and the unit planes may lie outsi! 

Le^rfpnsWy. foal lengths (comment ienses) includ, o 

Double-convex lenses (r 
wm. . v T ^ Vi > O, r < o), 

lenses {rx > o, r2 = oo ) 
Doncavo-convex lenses (r 

ia short ail lenses which are thtVt, 

CMu^onre* tones (,, > o, > o, 

1 i n 4-1. a._ 



PHYSICAL CONDITIONS FOR IMAGE FORMATION 43 

Lenses of negative focal length (divergent lenses) include 

Double-concave lenses (rx < o, r2> o), 

Plano-concave lenses (rx = oo , r2 > o), 

Convexo-concave lenses (rx > o, r2 > o, r2 < rj, 

i.e. all lenses which are thinner in the middle than at the 

edges.* 
The relation between image and object is shown diagram- 

matically in Figs. 21 and 22, which are to be interpreted in 

the same way as Figs. 17 and 18. From these it appears that 
whether convergent lenses produce real or virtual images of 

real objects depends upon the distance of the object from the 

lens; but divergent lenses produce only virtual images of real 

* The terms collective (dioptric), for systems of positive focal length, dispersive, 
for those of negative focal length, have been chosen on account of this property of 
lenses. A lens of positive focal length renders an incident beam more convergent, 
one of negative focal length renders it more divergent. When images are formed 
by a system of lenses, or, in general, when the unit planes do not coincide, say, 
with the first refracting surface, the conclusion as to whether the system is con- 
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objects. However, divergent lenses produce real, uprig 
and enlarged images of virtual objects which lie behind 1 

lens and inside of the principal focus. 
If two thin lenses of focal lengths /, and f2 are united 

form a coaxial, system, then the separation A (cf. page 40) 
A= — (/t 4- f). Hence, from equation (19) of Chapter 

(page 29), the focal length of the combination is 

. /1/2 _ f, 
Of 

I 

7 7+7,- 
(2 

It is customary to call the reciprocal of the focal length 

a lens its power. Hence the law: The power of a combinati 

of thin lenses is equal to the sum of the powers of the separc 

lenses. 

5. Experimental Determination of Focal Length.—F 
thin lenses, in which the two unit planes are to be consider 
as practically coincident, it is sufficient to determine the po; 

tions of an object and its image in order to deduce the foe 
length. For example, equation (n) of Chapter II, page 2 
reduces here, since f=f, to 

Since the positions of real images are most convenient 
determined by the aid of a screen, concave lenses, whit 
furnish only virtual images of real objects, are often combine 

with a convex lens of known power so that the combinatic 
furnishes a real insage. The focal length of the concave lei 
is then easily obtained from (24) when the focal length of tl 

combination has been experimentally determined. This pr< 
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ned by means of an incident beam of parallel rays. If then 
i positions of an object and its image with respect to the 
ncipal foci be determined, equations (7), on page 19, or (9), 

page 22, give at once the focal length /(=/'). 

Upon the definition of the focal length given in Chapter II, 

ge 20 (cf. equation (8)), viz., 

/=j/:tan&,.(26) 

s easy to base a rigorous method for the determination of 
al length. Thus it is only necessary to measure the angular 
ignitude 11 of an infinitely distant object, and the linear mag- 

ude / of its image. This method is particularly convenient 
apply to the objectives of telescopes which are mounted 

on a graduated circle so that it is at once possible to read 

“the visual angle u. 
If the object of linear magnitude y is not at infinity, but is 

a distance e from the unit plane while its image of linear 
ignitude y* is at a distance e' from the unit plane then 

y' -y= —e' -e,.(27) 

cause, when f = /', the nodes coincide with the unit points, 
. object and image subtend equal angles at the unit points. 
By eliminating e and er from (25) and (27) it follows that 

/ = (28) 

dw if either e or ef are chosen large, then without appreci- 
le error the one so chosen may be measured from the centre 

the optical system (e.g. the lens), at least unless the unit 

anes are very far from it. Then either of equations (28) 
ay be used for the determination of the focal length ./when 

yr ef and the magnification^*-^ have been measured. 
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the object which are a measured distance / apart. For, fro 
(7), page 19, 

(^\~± (n-x+l 
\y'K~ f' 

hence 

. (2C 

in which {y :y\ denotes the reciprocal of the magnification fo 
the position x of the object, (y :y')2 the reciprocal of the mag 

nification for a position -r-f- / of the object. / is positive if, it 

passing^ to its second position, the object has moved the dis 

tance / in the direction'of the incident light (i.e. from left tc 
right). 

# Abbe’s focometer, by means of which the focal lengths o: 
microscope objectives can be determined, is based upon this 
principle. . For the measurement of the size of the image / a 

second microscope is used. Such a microscope, or even a 

simple magnifying-glass, may of course be used for the meas¬ 
urement of a real as well as of a virtual image, so that this 
method is also applicable to divergent lenses, in short to all 
cases.* 

6. Astigmatic Systems.—In the previous sections it has 
been shown that elementary beams whose rays have but a 
small inclination to the axis and which proceed from points 
either on the axis or in its immediate neighborhood may be 

brought to a focus by means of coaxial spherical surfaces. 
In this case all the rays of the beam intersect in a single point 
of the image space, or, in short, the beam is homocentric in 
the image space. What occurs when one of the limitations 
imposed above is dropped will now be considered, i.e. an 



elementary beam having any inclination to the axis will no'v 
be assumed to proceed from a point P. 

In this case the beam is, in general, no longer homocentri< 
in the image space. An elementary beam which has startec 

from a luminous point P and has suffered reflections and re 

fractions upon surfaces of any arbitrary form is so constitutec 
that, by the law of Malus (cf. page 12), it must be classec 

as an orthotomic beam, i.e. it may be conceived as made uj 
of the normals N to a certain elementary surface 12. Thes< 

normals, however, do not in general intersect in a point 
Nevertheless geometry shows that upon every surface 12 ther< 

are two systems of curves which intersect at right angles (th< 
so-called lines of curvature) whose normals, which are also a 
right angles to the surface 2, intersect. 

If a plane elementary beam whose rays in the image spac< 

are normal to an element lx of a line of curvature be alon< 

considered, it is evident that an image will be formed. Th< 

image is located at the centre of curvature of this element lx 
since its normals intersect at that point. Since every elemen 
lx of a line of curvature is intersected at right angles by som< 

other element /2 of another line of curvature, a second elemen 
tary beam always exists which also produces an image, bu 
the positions of these two images do not coincide, since ir 
general the curvature of lx is different from that of lr 

What sort of an image of an object P will then in genera 

be formed by any elementary beam of three dimensions ? Le 

j, 2, j, 4 (Fig. 23) represent the four intersections of the fouj 
lines of curvature which bound the element d2 of the sur¬ 

face 2. Let the curves 1-2 and 3-4 be horizontal, 2—3 anc 
1-4 vertical. Let the normals at the points 1 and 2 interseci 

at 72, those at 3 and 4 at 34. Since the curvature of the line 
1-2 differs by an infinitely small amount from that of the line 

3-4, the points of intersection 12 and 34 lie at almost the same 

distance from the surface 2. Hence the line px which connects 

the points 12 and 34 is also nearly perpendicular to the ray i 
which passes through the middle of d2 and is normal to it. 
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This ray is called the principal ray of that elementary be 

which is composed of the normals to dl2. From the symme 

of the figure it is also evident that the line px must be para 
to the lines and i.e. it is vertical. The normals 

any horizontal line of curvature intersect at some point of 

line pv 

Likewise the normals to any vertical line of curvati 

intersect at some point of the line p2 which connects ip and . 

Also, p2 must be horizontal and at right angles to S. Th< 

two lines px and p2, which are perpendicular both to one anotl 

and to the principal ray, are called the two focal lines of 1 

elementary beam. The planes determined by the princi] 
ray S and the two focal lines px and p2 are called the focal plat 
of the beam. It can then be said that in general the image o 

luminous point P, formed by any elementary beam, consists 
two focal lines which are at right angles to each other and 

the principal ray, and lie a certain distance apart. This d 

tance is called the astigmatic difference. Only in special cas< 

as when the curvatures of the two systems of lines of curvati 

are the same, does a homocentric crossing of the rays and a tr 
image formation take place. This present more general ki 
of image formation will be called astigmatic in order to d 
tinguish it from that considered above.* 

A sharp, recognizable image of a collection of object poir 
P is not formed hv 
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>ject is a straight line can a straight-line image be formed; 
A only then when the line object is so placed that all the 

:al lines which are the images of all the points P of the line 
>ject coincide. Since the image of every point consists of 

ro focal lines pl and p2 which are at right angles to each 
her, there are also two positions of the line object go° apart 

hich give rise to a line image. These two images lie at 
fferent distances from the surface 2. 

Similarly there are two orientations of a system of parallel 

aight lines which give rise to an image consisting of parallel 

raight lines. 
If the object is a right-angled cross or a network of lines 

: right angles, there is one definite orientation for which an 

rage of one line of the cross or of one system of parallel lines 
' the network is formed in a certain plane ^ of the image 

>ace; while in another plane $}$2 of the image space an'image 

* the other line of the cross or of the other system of lines of 
Le network is formed. This phenomenon is a good test for 

itigmatism. 
Astigmatic images must in general be formed when the 

ementary refracting or reflecting surface has two different 

irvatures. Thus cylindrical lenses, for example, show marked 

;tigmatism. Reflection or refraction at. a spherical surface 
so renders a homocentric elementary beam astigmatic when 
Le incidence is oblique. 

In order to enter more fully into the consideration of this 
ise, let the point object P, the centre C of the sphere, and 

te point A in which the principal ray of the elementary beam 
nitted by P strikes the spherical surface, lie in the plane of 
Le figure (Fig. 24). Let the line PA be represented by s, 
it line AP2 by s2. Now since 

APAP2 = APA C + ACAP2, 

follows that 
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in which <p and <p' denote the angles of incidence and refr 

tion respectively, and r the radius of the sphere. Since n 

by the law of refraction sin <p = n sin <p'> it follows from 

last equation that 

ss2(n cos <jJ — cos <p) = srn + s2r> or 

inn cos (/>' — cos cp . 
s2~~ r 

It is evident that all rays emitted by P which have the sa 
angle of inclination u with the axis must, after refraction, cr 

Fig. 24. 

die axis at the same point P2. The beam made up of si 
rays is called a sagittal beam. It has a focal point at P2. 

On the other hand a meridional beam, i.e. one whose n 
all lie in the plane PA C, has a different focal point Pv ] 

PB be a ray infinitely near to PA, and let its angle of inclii 
tion to the axis be u + du and its direction after refract: 

BP1. Then <£BPXA is to be' considered as the increment, 
of u\ and ^BCA as the increment da of a. It is at 01 
evident that 

s. du —AB cos 0, sx. du’ = AB. cos <p'} r .da — AB. (; 

But since 
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it follows that 

d(j> = da + du = Ab(^-f- —j, 

<fy' = da- du'= Ab(^— . . . (32) 

But a differentiation of the equation of refraction sin 0 = 

« sin (/>' gives 

cos 0. dcf> = /z cos 0'. d<pf. 

Substituting in this the values of d<j> and d(j>f taken from (32), 

there results 

cos2 0 n cos2 0' cos 0' — cos 0 

-~r+-ir~ =-r-• • • <33> 

From (33) and (30) different values sx and s2 corresponding to 

the same s are obtained, i.e. P is imaged astigmatically. The 
astigmatic difference is greater the greater the obliquity of the 

incident beam, i.e. the greater the value of 0. It appears 

from (30) and (33) that this astigmatic difference vanishes, i.e. 
sx = s2 = s', only when s = — ns'. This condition determines 

the two aplanatic points of the sphere mentioned on page 33. 
The equations for a reflecting spherical surface may be 

deduced from equations (30) and (33) by substituting in them 
n =z — 1, i.e. 0' = — 0 (cf. page 37). Thus for this case* 

1 1 _ ^ cos 0 
r cos 0* 

Or by subtraction, 

r'cos 0 

Sn “ s 1 2 . 
-£——- — “ sm 0 tan 0, . (35) 
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an equation which shows clearly how the astigmatism increa 

with the angle of incidence. This increase is so rapid that 
astigmatism caused by the curvature of the earth may, 

suitable means, be detected in a beam reflected from the s 

face of a free liquid such as a mercury horizon. Thus if 

reflected image of a distant rectangular network be observec 
a telescope of 7.5 m. focal length and £ m. aperture, 

astigmatic difference amounts to To mm., i.e. the position* 
which the one or the other system of lines of the network 

in sharp focus are mm. apart. In the giant telescope 

the Lick Observatory in California this astigmatic differe: 

amounts to mm. Thus the phenomena of astigmatism n 
be made use of in testing the accuracy of the surface of a pi; 

mirror. Instead of using the difference in the positions of 

images of the two systems of lines of the network, the an 
of incidence being as large as possible, the difference in 
sharpness of the images of the two systems may be taken 
the criterion. For this purpose a network of dotted lines n 

be used to advantage. 
7. Means of Widening the Limits of Image Formati 

—It has be'en shown above that an image can be formed 
refraction or reflection at coaxial spherical surfaces only wl 

the object consists of points lying close to the axis and 
inclination to the axis of the rays forming the image is sm; 
If the elementary beam has too large an inclination to 
axis, then, as was shown in the last paragraph, no image < 
be formed unless all the rays of the beam lie in one plane. 

Now such arrangements as have been thus far conside; 

for the formation of images would in practice be utterly u 
less. For not only would the images be extremely fain 
they were produced by single elementary beams, but also, 
will be shown in the physical theory (cf. Section 1, Chap 

IV), single elementary beams can never produce sharp imag 
but only diffraction patterns. 
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the limited sensitiveness of the eye comes to our assistance: 

we are unable to distinguish two luminous points as separate 

unless they subtend at the eye an angle of at least one minute. 

Hence a mathematically exact point image is not necessary, 

and for this reason alone the beam which produces the image 

does not need to be elementary in the mathematical sense, i.e. 

one of infinitely small divergence. 

By a certain compromise between the requirements it is 

possible to attain a still further widening of the limits. Thus 

it is possible to form an image with a broadly divergent beam 

if the object is an element upon the axis, or to form an image 

of an extended object if only beams of small divergence are 

used. The realization of the first case precludes the possibility 

of the realization of the second at the same time, and vice 

versa. 

That the image of a point upon the axis can be formed by 

a widely divergent beam has been shown on page 3 3 in con¬ 

nection with the consideration of aplanatic surfaces. But this 

result can also be approximately attained by the use of a suit¬ 

able arrangement of coaxial spherical surfaces. This may be 

shown from a theoretical consideration of so-called spherical 

aberration. To be sure the images of adjacent points would 

not in general be formed by beams of wide divergence. In 

fact the image of a surface element perpendicular to the axis 

can be formed by beams of wide divergence only if the so- 

called sine law is fulfilled. The objectives of microscopes and 

telescopes must be so constructed as to satisfy this law. 

The problem of forming an image of a large object by a 

relatively narrow beam must be solved in the construction of 

the eyepieces of optical instruments and of photographic 

systems. In the latter the beam may be quite divergent, since, 

under some circumstances (portrait photography), only fairly 

sharp images are required. These different problems in image 

formation will be more carefully" considered later. The forma - 
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sure, impossible, if for no other reason, simply because, 

will be seen later, the sine law cannot be simultaneously f 

filled for more than one position of the object. 

8. Spherical Aberration.—If from a point P on the a: 

two rays Sx and S2 are emitted of which makes a very sm 

angle with the axis, while S, makes a finite angle u, the 

after refraction at coaxial spherical surfaces, the image rays . 

and Sa' in general intersect the axis in two different points 1 

and Pf The distance between these two points is known 

the spherical aberration (longitudinal aberration). In case tl 

angle u which the ray S2 makes with the axis is not too gret 

this aberration may be calculated with the aid of a series 

ascending powers of u. If, however, u is large, a dire 

trigonometrical determination of the path of each ray is to 1 

preferred. This calculation will not be given here in detail 

For relatively thin convergent lenses, when the object 

distant, the image Px formed by rays lying close to the ax 

is farther from the lens than the image P% formed by the mo 

oblique rays. Such a lens, i.e. one for which P2 lies near 

to the object than Px, is said to be undercorrected. Inversel; 

a lens for which P% is more remote from the object than P 

said to be overcorrected. Neglecting all terms of the pow 

series in u save the first, which contains iF as a factor, the 

results for this so-called aberration of the first order, if tl 

object P is very distant, 

_p >p / _ _ ^1{2-2^-j-n3-\-(r(n-j-2n:l—2n3)-j-(r2nBl 

£~ 1 1 — f.2n(n— i)2(i — af 

in which h represents the radius of the aperture of the len 

/its focal length, n its index of refraction, and tr the ratio 

its radii of curvature, i.e. 

(3; 
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: signs of rx and r2 are determined by the conventions 

pted on page 40; for example, for a double-convex lens 

. positive, r2 negative. P^P^ is negative for an undercor¬ 

ed lens, positive for an overcorrected one. Further, the 

> h :f is called the relative aperture of the lens. It 

*ars then from (36) that if cr remains constant, the ratio 

he aberration P^P^ to the focal length f is directly pro- 

ional to the square of the relative aperture of the lens. 

For given values ofy* and h the aberration reaches a mini- 

n for a particular value arf of the ratio of the radii. * By 

this value is 

4 n _. 2n* 
n(i -f- 211) (38) 

n = 1.5, cr = — 1:6. This condition may be realized 

er with a double-convex or a double-concave lens. The 

ice of greater curvature must be turned toward the incident 

n. But if the object lies near the principal focus of the 

, the best image is formed if the surface of lesser curvature 

irned toward the object; for this case can be deduced from 

above considered, i.e. that of a distant object, by simply 

rchanging the roles of object and image.t For n = 2, 

gives a' = -f- This condition is realized in a con- 

D-concave lens whose convex side is turned toward a dis- 

object P. 
rhe following table shows the magnitude of the longi- 

lal aberration e for two different indices of refraction and 

different values of the ratio cr of the radii, f has been 

med equal to 1 m. and h :f= -fa, i.e. h — 10 cm. The 

ailed lateral aberration C, i.e. the radius of the circle 

:h the rays passing through the edge of a lens form upon 

This minimum is never zero. A complete disappearance of the aberration 
i first order can only be attained by properly choosing the thickness of the 
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a screen placed at the focal point is obtained, as app< 

at once from a construction of the paths of the rays, by mu 

plication of the longitudinal aberration by the relative apert 

h : fy i.e. in this case by To- Thus the lateral aberral 

determines the radius of the illuminated disc which the out 

rays from a luminous point P form upon a screen placed in 

plane in which P is sharply imaged by the axial rays. 

f = i m. h = io cm. < • 

n — 1.5 
J 

n s= 2 

Form of lens... cr — e c cr — € 

Front face plane .. 00 4-5 cm 4.5 mm CO 2 cm 2 

Both sides alike..... — 1 1.67 “ 1.67 — I I “ 1 

Rear face plane. 0 1.17 “ 1.17 “ 0 0.5 “ 0.5 

Most advantageous form ..... _1 
1 1.07 “ 1.07 “ + * 0.44 “ 0.4 

That a plano-convex lens produces less aberration when 

convex side is turned toward a distant object than when 

sides are reversed seems probable from the fact that in the 

case the rays are refracted at both surfaces of the lens, in 

second only at one; and it is at least plausible that the 

tribution of the refraction between two surfaces is .unfavor; 

to aberration. The table further shows that the most fa1 

able form of lens has but little advantage over a suitably pk 

plano-convex lens. Hence, on account of the greater eas 

construction, the latter is generally used. 

Finally the table shows that the aberration is very ir 

less if, for a given focal length, the index of refraction is ir 

large. This conclusion also holds when the aberration 

higher order than the first is considered, i.e. when the rem 

ing terms of the power series in u are no longer neglec 
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lenses.* By selecting for the compound system lenses of 

different form, it is possible to cause the aberration not only 
of the first but also of still higher orders to vanish, f One 
system can be made to accomplish this for more than one 
position of the object on the axis, but never for a finite length 

of the axis. 
When the angle of inclination ti is large, as in microscope 

objectives in which u sometimes reaches a value of 90°, the 
power series in u cannot be used for the determination of the 
aberration. It is then more practicable .to determine the paths 

of several rays by trigonometrical calculation, and to find by 

trial the best form and arrangement of lenses. There is, how¬ 

ever, a way, depending upon the use of the aplanatic points of 

a sphere mentioned on page 33, of diminishing the divergence 

of rays proceeding from near objects without introducing aber¬ 

ration, i.e. it is possible to produce virtual images of any size, 

which are free from aberration. 
Let lens 1 (Fig. 25) be plano-convex, for example, a hemi¬ 

spherical lens of radius rx, and let its plane surface be turned 
toward the object P. If the medium between P and this lens 

'has the same index nx as the lens, then refraction of the rays 

♦ Tn /'<!i ca fn Vvn ci n»*A "K»*Jnrlvfr»acc /vf flip imaarp SftTUPwI'ia.t OT1 
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proceeding from the object first takes place at the rear surf 
of the lens; and if the distance of P from the centre of cur 

ture Cl of the back surface is rx: n1, then the emergent r 

produce at a distance nlrl from Cx a virtual image Pl free fr 
aberration. If now behind lens i there be placed a sec< 
concavo-convex lens 2 whose front surface has its centre 
curvature in P1 and whose rear surface has such a radius r2 t 
Pl lies in the aplanatic point of this sphere r2 (the inde> 
lens 2 being n2)f then the rays are refracted only at this 1 

surface, and indeed in such a way that they form a virl 
image P2 which lies at a distance «2r2 from the centre of cur 

ture C2 of the rear surface of lens <?, and which again is enth 

free from aberration. By addition of a third, fourth, e 
concavo-convex lens it is possible to produce successive virl 
images P$y P4, etc., lying farther and farther to the left, 

it is possible to diminish successively the divergence of 

rays without introducing aberration. 

This principle, due to Amici, is often actually employee 
the construction of microscope objectives. Nevertheless 

more than the first two lenses are constructed according to 

principle, since otherwise the chromatic errors which are ini 
duced are too large to be compensated (cf. below). 

9. The Law of Sines.—In general it does not follow t 
if a widely divergent beam from a point P upon the axis gi 

rise to an image Pr which is free from aberration, a suri 

element dcr perpendicular to the axis at P ^U1 be imaged 
a surface element dcr' at P\ In order that this may be 

case the so-called sine law must also be fulfilled. This 
requires that if u and uf are the angles of inclination of any' 

conjugate rays passing through P and P\ sin u : sin u* = coi 

According to Abbe systems which are free from abei 
tion for two points P and P' on the axis and which fulfil 
sine law for these points are called aplanatic systems. 

points P and Pr are called the aplanatic points of the systi 

The a fanatic points of a sphere mentioned on pasre 3 3 f 
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sines is constant. The two foci of a concave, mirror whose 

surface is an ellipsoid of revolution are not aplanatic points 
although they are free from aberration. 

It was shown above (page 22, equation (9), Chapter II) 

that when the image of an object of any size is formed by a 
collinear system, tan u : tan uf = const. Unless u and ur are 
very small, this condition is incompatible with the sine law, 

and, since the latter must always be fulfilled in the formation 

of the image of a surface element, it follows that a point-for- 
point imaging of objects of any size by widely divergent beams 
is physically impossible. 

Only when u and u* are very small can both conditions be 
simultaneously fulfilled. In this case, whenever an image Pf 
is formed of P, an image daf will be formed at Pf of the surface 
element da at P. But if u is large, even though the spherical 

aberration be entirely eliminated for points on the axis, unless 

the sine condition is fulfilled the images of points which lie to 
one side of the axis become discs of the same order of magni¬ 

tude as the distances of the points from the axis. According 
to Abbe this blurring of the images of points lying off the axis is 

due to the fact that the different zones of a spherically corrected 
system produce images of a surface element of different linear 

magnifications. 
The mathematical condition for the constancy of this linear 

magnification is, according to Abbe, the sine law.* The same 
conclusion was reached in different ways by Clausius + and v. 

Helmholtz Their proofs, which rest upon considerations of 

energy and photometry, will be presented in the third division 
of the book. Here a simple proof due to Hockin § will be 
given which depends only on the law that the optical lengths 

of all rays between two conjugate points must be equal (cf. 
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page 9).* Let the image of P (Fig. 26) formed by an 

ray PA and a ray PS of inclination u lie at the axial point 

Also let the image of the infinitely near point Pl formed b 

ray PlA1 parallel to the axis, and a ray PXSX parallel to 1 

lie at the point P/. The ray F'P^ conjugate to PXAX m 

evidently pass through the principal focus P' of the im< 

space. If now the optical distance between the points P < 
Pr along the path through A be represented by (PAP'), t 

along the path through SS' by (PSS'P'), and if a sim 
notation be used for the optical lengths of the rays proceed 

from Px, then the principle of extreme path gives 

(PAP') = (PSS'P'); (PXAXF'P') = (PXSXS'P'), 

and hence 

(PAP1) - (PxAxFrP{) = (PSS'P') - • ( 

Now since Fl is conjugate to an infinitely distant object 7 
the axis, (TPAF') = (TP^F'). But evidently TP = T. 
since PPX is perpendicular to the axis. Hence by subtracl 

(PAF') = (P,A,F'). . 
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Further, since P'PX' is perpendicular to the axis, it follows 
that when P'P/ is small F'P' = P'P/. Hence by addition 

(-PAPP') = (P^PP/X 

i.e. the left side of equation (39) vanishes. Thus 

(PSS'P') = (P^S'P').(41) 

Now if P/ is the intersection of the rays P'S' and P/S/, then 
Fx' is conjugate to an infinitely distant object Tx, the rays from 

which make an angle u with the axis. Hence if a perpendic¬ 

ular PN be dropped from P upon P1Sl, an equation similar to 

(40) is obtained; thus 

(PSS'F') = (NS.S'F/).(42) 

By subtraction of this equation from (41), 

(F'P') = - (NPt) + (F'P'). . . . (43) 

If now n is the index of the object space, n' that of the image 
space, then, if the unbracketed letters signify geometrical 

lengths, 

(NPJ = n-NP1 = n-PPx-sin u. (44) 

Further, if P'N' be drawn perpendicular to P/P7, then, since 

P'P/ is infinitely small, 

(P/P/) - (J/P') = n’-N’P; = n'-P'P/• sin u'. . (45) 

Equation (43) in connection with (44) and (45) then gives 

Tz-PP^sin u = n'-P’P/• sin u'. 

Iiy denote the linear magnitude PPX of the object, and y' the 
linear magnitude -P'P/ of the image, then 

sin u n'y' 
sin u' ~~ ny (46) 
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that obtained in equation (2), page 34, for the aplanatic poi 
of a sphere. 

The sine law cannot be fulfilled for two different points 
the axis. For if Pr and (Fig. 27) are the images of P i 

then, by the principle of equal optical lengths, 

(PAP') = (PSS'P'), (PXAP') = . C 

in which PS and P151 are any two parallel rays of inclii 
tion u. 

(PiPl - (PiP) = - {PW+ {NT), 
or 

. n-P^P{ 1 cos u) = n ■ P^P' {\ — cos u'), 
i.e. J 

sin2 \u n'-P’P( 
sin? \u' n PP~.(4! 

This equation is then the condition for the formation, by 
beam of large divergence, of the image of two neighborin 
points upon the axis, i.e. an image of an elemen of the 
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The fulfilment of the sine law is especially important in the 

e of microscope objectives. Although this was not known 

m theory when the earlier microscopes were made, it can be 

perimentally proved, as Abbe has shown, that these old 
:roscope objectives which furnish good images actually 
isfy the sine law although they were constructed from 
rely empirical principles. 

10. Images of Large Surfaces by Narrow Beams.—It 
necessary in the first place to eliminate astigmatism (cf. 

^e 46). But no law can be deduced theoretically for accom- 
shing this, at least when the angle of inclination of the rays 

th respect to the,axis is large. Recourse must then be had 

practical experience and to trigonometric calculation. It is 

be remarked that the astigmatism is dependent not only 

on the form of the lenses, but also upon the position of the 

>P* 
Two further requirements, which are indeed not absolutely 

>ential but are nevertheless very desirable, are usually im- 

sed upon the image. First it must be plane, i.e. free from 
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For a complete treatment of the analytical conditions for tih 

requirement cf. Czapski, in Winkelmann’s Handbuch d 

Physik, Optik, page 124. 

The analytical condition for freedom from distortion m< 

be readily determined. Let PPXP2 (Fig. 28) be an obje 

plane, PrPxP2 the conjugate image plane. The beams fro 
the object are always limited by a stop of definite si 

which may be either the rim of a lens or some specially intr 
duced diaphragm. This stop determines the position of 

virtual aperture B, the so-called entrance-pupil, which is 
situated that the principal rays of the beams from the objec 
P , jP2, etc., pass through its centre. Likewise the beams 

the image space are limited by a similar aperture B', t 
so-called exit-pupil, which is the image of the entrance-pupil 

If / and V are the distances of the entrance-pupil and the ex 
pupil from the object and image planes respectively, then, frc 

the figure, 

tan ux = PPX : /, tan u2 = PP2 : /, 

tan < = P'PJ : tan «2'= P’P' : l'. 

If the magnification is to be constant, then the following rel 

tion must exist: 

hence 

P'Pxf PPX = P’P; PPn 

tan u' tan u' 
-i- = --= const. 
tan ux tan u% • 

Hence for constant magnification the ratio of the tangents of - 
angles of inclination of the principal rays must be constant. 
this case it is customary to call the intersections of the pr 

cipal rays with the axis, i.e. the centres of the pupils, ortj 
scopic. points. Hence it may be said that, if the image is 
be free from distortion, the centres of perspective of object c 
image must be orthoscopic points. Hence the positions of 1 
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.n example taken from photographic optics shows how the 

tion of orthoscopy may be: most simply fulfilled for the 
3f a projecting lens. Let R (Fig. 29) be a stop on either 
)f which two similar lens systems 1 and 2 are symmetrically 

d. The whole system is then called a symmetrical double 

tive. Let S and S' represent two conjugate principal 
The optical image of the stop R with respect to the 

m 1 is evidently the entrance-pupil, for, since all principal 
must actually pass through the centre of the stop R, the 

ngations of the incident principal rays 5 must pass through 

:entre of B> the optical image of R with respect to 1. 
vise B\ the optical image of R with respect to 2, is the 

pupil. It follows at once from the symmetry of arrange- 

that u is always equal to ur, i.e. the condition of orthos- 

uch symmetrical double objectives possess, by virtue of 
symmetry, two other advantages: On the one hand, the 

dional beams are brought to a sharper focus,* and, on the 

•, chromatic errors, which will be more fully treated in the 
paragraph, are more easily avoided. The result u = u'y 

h means that conjugate principal rays are parallel, is 
ether independent of the index of refraction of the system, 
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and hence also of the color of the light. If now each of the 

two systems i and 2 is achromatic with respect to the position 

of the image which it forms of the stop R, i.e. if the posi¬ 

tions of the entrance- and exit-pupils are independent of the 

color,* then the principal rays of one color coincide with those 

of every other color. But this means that the images formed 

in the image plane are the same size for all colors. To be 

sure, the position of sharpest focus is, strictly speaking, some¬ 

what different for the different colors, but if a screen be placed 

in sharp focus for yellow, for instance, then the. images of 

other colors, which lie at the intersections of the principal 

rays, are only slightly out of focus. If then the principal rays 

coincide for all colors, the image will be nearly free from 

chromatic error. 

The astigmatism and the bulging of the image depend upon 

the distance of the lenses 1 and 2 from the stop R. In 

general, as the distance apart of the two lenses increases the 

image becomes flatter, i.e. the bulging decreases, while the 

astigmatism increases. Only by the use of the new kinds of 

glass made by Schott in Jena, one of which combines large 

dispersion with small index and another small dispersion with 

'large index, have astigmatic -flat images become possible. 

This will be more fully considered in Chapter V under the head 

of Optical Instruments. 

11. Chromatic Aberration of Dioptric Systems.—Thus 

far the index of refraction of a substance has been treated as 

though it were a constant, but it is to be remembered that for 

a given substance it is different for each of the different colors 

contained in white light. For all transparent bodies the index 

continuously increases as the color changes from the red to 

the blue end of the spectrum. The following table contains 

the indices for three colors and for two different kinds of glass. 

nc is the index for the red light corresponding to the Fraun- 

*As will be seen later, this achromatizing can be attained witli sufficient accu¬ 
racy; on the oilier hand it is not possible at the same time to make the sizes of the 
different images of R independent of the color. 
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hofer line C of the solar spectrum (identical with the red 
hydrogen line), nD that for the yellow sodium light, and nF that 
for the blue hydrogen line. 

Glass. nC nD np nF~ nC 

nD - 1 

Calcium-silicate-crown. X.5I53 x-5179 1-5239 0.0x66 

Ordinary silicate-flint. 

1 
I 6143 1.6202 I.63I4 | 0.0276 

The last column contains the so-called dispersive power v, 

of the substance. It is defined by the relation 

nD - 1 

It is practically immaterial whether nD or the index for any 

other color be taken for the denominator, for such a change 

can never affect the value of v by more than 2 per cent. 

Since now the constants of a lens system depend upon the 
index, an image of a white object must in general show colors, 

i.e. the differently colored^ images of a white object differ from 

one another in position and size. 
In order to make the red and blue images coincide, i.e. in 

order to make the • system achromatic for red and blue, it is 

necessary not only that the focal lengths, but also that the 

unit planes, be identical for both colors. In many cases a 

partial correction of the chromatic aberration is sufficient. 

Thus a system may be achromatized either by making the focal 

length, and hence the magnification, the same for all colors; 
or by making the rays of all colors come to a focus in the same 

plane. In the former case, though the magnification is the 
same, the images of all colors do not lie in one plane; in the 

latter, though these images lie in one plane, they differ in size. 
A system may be achromatized one way or the other according 
to the purpose for which it is intended, the choice depending 

upon whether the magnification or the position of the image is 
most important. 
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A system which has been achromatized for two colors, ! 
e.g. red and blue, is not in general achromatic for all other 

colors, because the ratio of the dispersions of different sub- ; 

stances in different parts of the spectrum is not constant : 

I he chromatic errors which remain because of this and which j 
give rise to the so-called secondary spectra are for the most j 
part unimportant for practical purposes. Their influence can i 

be still farther reduced either by choosing refracting bodies for * 

which the lack of proportionality between the dispersions is as ; 

small as possible, or by achromatizing for three colors. The j 

chromatic errors which remain after this correction are called t 

spectra of the third order. j 

The choice of the colors which are to be used in practice | 

in the correction of the chromatic aberration depends upon the 

use for which the optical instrument is designed. For a system 

which is to be used for photography, in which the blue rays j 
are most effective, the two colors chosen will be nearer the | 

blue end of the spectrum than in the case of an instrument | 

which is to be used in connection with the human eye, for J 
which the yellow-green light is most effective. In the latter | 

case it is easy to decide experimentally what two colors can be 

brought together with the best result. Thus two prisms of i 

different kinds of glass are so arranged upon the table of a J 

spectrometer that they furnish an almost achromatic image j 

of the slit; for instance, for a given position of the table j 

of the spectrometer, let them bring together the rays C j 

and F. If now the table be turned, the image of the slit will 

in general appear colored; but there will be one position in ; 

which the image has least color. From this position of the ! 

prism it is easy to calculate what two colors emerge from the j 
prism exactly parallel. These, then, are the two colors which 
can be used with the best effect for achromatizing instruments 

intended for eye observations. 
Even a single thick lens may be achromatized either with 

reference to the focal length or with reference to the position 

of the focus. But in practice the cases in which thin lenses 
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art* used art* mmi* imp<»itai»t Wlim an h lenses art* rom» 

bined, the thrnmath diiiricmrs m| tin* unit planes may be 

neglected without appre* i.tble enor. since, in this case, these 

plane** ahva\ *» lie withm the Inis ft I page 4.*) If then the 

focal lengths Im* achtomatiml, the *.v4rin r. almost peifrctly 

achromatic, i.e both for the pH-ainat and magnitude «»f the 

image, 
Now the focal length /, of 4 thm Ini*, u h«»**r index for a 

given color b b given by the equation tcf. eq. | „i„i i, page 4.* 1 

in which l\ b an abbreviation for the difference of the curva¬ 

tures of the faces of the lein 

Abo, by 1^41 on page 44, the focal length / of a eomhina 

tion of two thin ten sen whose se|iarate final lengths are/, ami 

f% is given by 

For an increment #/##, of the index «, i orrr*qK>rtdmg to a 

change of color, the imremrnt of the m, tprmat of the focal 

length is, from (51 g 

in which rs represents the dispersive |*ower of the material of 

lens t between the two * ojors w Im h arr nsr«b If the focal 

length / of the combination ji to |*c? the same for both colors, 

it follows from fjji and if jf that 

4 •'(;.) • <) ;; >;; 
This equation cnntattH the condition for achromatism. It 

also shows, since *\ and r% always have tin? name sign no 

matter what materials arr toed !«*r t and H, that Me 
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focal lengths of a thin double achromatic lens always have 

opposite signs. 

From (54) and (52) it follows that the expressions for the 
separate focal lengths are 

1 __ 1 ^2 1 _ 1 vi 

f\ fv2 “ v\ f2 f v2 — vi 
(55) 

Hence in a combination of positive focal lfength the lens with 
the smaller dispersive power has the positive, that with the 
larger dispersive power the negative, focal length. 

If /is given and the two kinds of glass have been chosen, 
then there are four radii of curvature at our disposal to make 

f and f correspond to (55). Hence two of these still remain 
arbitrary. If the two lenses are to fit together, r/ must be 

equal to r2. Hence one radius of curvature remains at our 

disposal. This may be so chosen as to make the spherical 
aberration as small as possible. 

In microscopic objectives achromatic pairs of this kind are 
very generally used. Each pair consists of a plano-concave 
lens of flint glass which is cemented to a double-convex lens 

of crown glass. The plane surface is turned toward the 

incident light. 
Sometimes it is desirable to use two thin lenses at a greater 

distance apart; then their optical separation is (cf. page 28) 

d = a- (f +/2). 

Hence, from (19) on page 29, the focal length of the combina¬ 
tion is given by 

/' : A + A ' a/; (56) 

If the focal length is to be achromatic, then, from (56) and (53), 

°=i+fr 
Z* a(vi + va) 

AA 

V2 f l 4- vj2 

ri+v2 
a — ■ (57) 
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Ff the two lenses are of the same material {vx = r2), then, when 

they are at the distance 

a — fi + ft 
2 3 

(58) 

they form a system which is achromatic with respect to the focal 

length. Since vx = v2, this achromatism holds for all colors. 
If it is desired to achromatize the system not only with 

reference to the focal length, but completely, i.e. in respect to 

both position and magnification of the image, then it follows 

from Fig. 30 that 

_eJL yL~_eA 
y ei’ Ti V 

i.e. the ratio of the magnifications is 

/ : y — : V2.(59) 

If, therefore, the image is to be achromatic both with 
respect to magnitude and position, then, since ex is constant 

for all colors, 

d = O, de2' = o.(60) 

But since ex -|- e% — a (distance between the lenses) is also 
constant for all colors, it follows that dex — — de%, while, from 

(60), d(ex/e^ — o. Hence dex = o and de2 = o, i.e. each of 
the two separate lenses must be for itself achromatized, i.e. 

must consist of an achromatic pair. 

Hence the following general conclusion may be drawn: 
A combination which consists of several separated systems is 
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only perfectly achromatic (i.e. with respect to both position and 

magnification of the image) when each system for itself is 

achromatic. 

When the divergence of the pencils which form the image 

becomes greater, complete achromatism is not the only con¬ 

dition for a good image even with monochromatic light. The 

spherical aberration for two colors must also be corrected as 

far as possible; and, when the image of a surface element is 

to be formed, the aplanatic condition (the sine law) must be 
fulfilled for the two colors. Abbe calls systems which are free 

from secondary spectra and are also aplanatic for several 

colors “ apochromatic " systems. Even such systems have a 

chromatic error with respect to magnification which may, 

however, be rendered harmless by other means (cf. below 

under the head Microscopes). 



CHAPTER IV 

APERTURES AND THE EFFECTS DEPENDING UPON THEM. 

i. Entrance- and Exit-pupils.—The beam which passes 
through an optical system is of course limited either by the 

dimensions of the lenses or mirrors or by specially introduced 
diaphragms. Let P be a particular point of the object (Fig. 

31); then, of the stops or lens rims which are present, that 
one which most limits the divergence of the beam is found in 

the following way: Construct for every stop B the optical 
image Bx formed by that part Sx of the optical system which 

lies between B and the object P. That one of these images 
Bx which subtends the smallest angle at the object point P is 
evidently the one which limits the divergence of the beam. 

This image is called the entrance-pupil of the whole system. 
The stop B is itself called the aperttire or iris* The angle 

2U which the entrance-pupil subtends at the object, i.e. the 

angle included between the two limiting rays in a meridian 
plane, is called the angular aperture of the system. 

The optical image Bx which is formed of the entrance- 
pupil by the entire system is called the exit-pupil. This 

evidently limits the size of the emergent beam which comes to 
a focus in P', the point conjugate to P. The angle 2U' which 

the exit-pupil subtends at Pr is called the angle of projection 

of the system. Since object and image are interchangeable, 
it follows at once that the exit-pupil Bx is the image of the 

#If the iris lies in front of the front lens of the system, it is identical with the 

entrance-pupi). 

73 
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stop B formed by that part S2 of the optical system which lies 

between B and the image space. In telescopes the rim of the 

objective is often the stop, hence the image formed of this rim 
by the eyepiece is the exit-pupil. The exit-pupil may be 

seen, whether it be a real or a virtual image, by holding the 

Fig. 31. 

instrument at a distance from the eye and looking through it 

at a bright background. 
Under certain circumstances the iris of the eye of the 

observer can be the stop. The so-called pupil of the eye is 

merely the image of the iris formed by the lens system of the 

eye. It is for this reason that the general terms entrance- 

pupil and iris have been chosen. 
As was seen on page 52, the position of the pupils is of 

importance in the formation of images of extended objects by 
beams of small divergence. If the image is to be similar to 

the object, the entrance- and exit-pupils must be orthoscopic 
points. Furthermore the position of the pupils is essential to 

the determination of the principal rays, i.e. the central rays of 

the pencils which form the image. If, as will be assumed, the 

pupils are circles whose centres lie upon the axis of the 

system, then the rays which proceed from any object point P 

toward the centre of the entrance-pupil, or from the centre of 

the exit-pupil toward the image point P', are the principal 

rays of the object and image pencils respectively. When the 
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paths of the rays in any system are mentioned it will be 
understood that the paths of the principal rays are meant. 

2. Telecentric Systems.—Certain positions of the iris can 
be chosen for which the entrance- or the exit-pupils lie at 
infinity (in telescopic systems both lie at infinity). To attain 

this it is only necessary to place the iris behind .S) at its 
principal focus or in front of S2 at its principal focus (Fig. 31). 

The system is then called telecentric,—in the first case, tele- 

centric oil the side of the object; in the second, telecentric on the 

side of the image. In the former all the principal rays in the 
object space are parallel to the axis, in the latter all those 

of the image space. Fig. 32 represents a system which is 
telecentric on the side of the image. The iris B lies in front 

of and at the principal focus of the lens 5 which forms the 

real image P(P^ of the object Px and P2. The principal rays 

from the points Pl and P2 are drawn heavier than the limiting 
rays. This position of the stop is especially advantageous when 
the image P(P^ is to be measured by any sort of a micrometer. 

Thus the image P-[P£ always has the same size whether it 
coincides with the plane of the cross-hairs or not. For even 

with imperfect focussing it is the intersection of the principal 
rays with the plane of the cross-hairs which determines for the 

observer the position of the (blurred) image. If then the prin¬ 
cipal rays of the image space are parallel to the axis, even 
with improper focussing the image must have the same size as 

if it lay exactly in the plane of the cross-hairs. But when the 

principal rays are not parallel in the image space, the apparent 
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size of the image changes rapidly with a change in the position 

of the image with respect to the plane of the cross-hairs. 

If the system be made telecentric on the side of the object, 

then, for a similar reason, the size of the image is not depen¬ 

dent upon an exact focussing upon the object. This arrange¬ 

ment is therefore advantageous for micrometer microscopes, 

while the former is to be used for telescopes, in which the 

distance of the object is always given (infinitely great) and the 

adjustment must be made with.the eyepiece. 

3. Field of View.—In addition to the stop B (the iris), the 
images of which form the entrance- and exit-pupils, there are 

always present other stops or lens rims which limit the size of 

the object whose image can be formed, i.e. which limit the field 

of view. That stop which determines the size of the field of view 

may be found by constructing, as before, for all the stops the 

optical images which are formed of them by that part Sx of the 

entire lens system which lies between the object and each stop. 

Of these images, that one Gx which subtends the smallest angle 
2w at the centre of the entrance-pupil is the one which deter¬ 

mines the size of the field of view. 2w is called the angular 

field of view. The correctness of this assertion is evident at 

once from a drawing like Fig. 31. In this figure the irisi?, the 

rims of the lenses S1 and S2, and the diaphragm G are all 

pictured as actual stops. The image of G formed by is 
Gx; and since it will be assumed that Gx subtends at the centre 

of the entrance-pupil a smaller angle than the rim of Sx or the 
image which Sx forms of the rim of the lens S2, it is evident that 

G acts as the field-of-view stop. The optical image Gx which 
the entire system Sx -j- S2 forms of Gx bounds the field of view 
in the image space. The angle 2w' which Gx subtends at the 

centre of the exit-pupil is called the angle of the image. 

In Fig. 31 it is assumed that the image Gx of the field-of- 

view stop lies in the plane of the object. ThiS-case is charac¬ 
terized by the fact that the limits of the field of view are 

perfectly sharp, for the reason that every object point P can 

either completely fill the entrance-pupil with rays or else can 
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send none to it because of the presence of the stop Gv If the 

plane of the object does not coincide with the image , the 
boundary of the field of view is not sharp, but is a zone of con¬ 

tinuously diminishing brightness. For in this case it is evident 

that there are object points about the edge of the field whose 
rays only partially fill the entrance-pupil. 

In instruments which are intended for eye observation it is 
of advantage to have the pupil of the eye coincide with the 

exit-pupil of the instrument, because then the field of view is 

wholly utilized. For if the pupil of the eye is at some distance 
from the exit-pupil, it itself acts as the field-of-view stop, and 

the size of the field is thus sometimes greatly diminished. For 

this feason the exit-pupil is often called the eye-ring, and its 

centre is called the position of the eye. 

Thus far the stops have been discussed only with reference 
to their influence upon the geometrical configuration of the 

rays, but in addition they have a very large effect upon the 

brightness of the image. The consideration of this subject is 

beyond the domain of geometrical optics; nevertheless it will be 
introduced here, since without it the description of the action 
of the different optical instruments would be too imperfect. 

4. The Fundamental Laws of Photometry.—By the total 

quantity of light M which is emitted by a source Q is meant 
the quantity which falls from Q upon any close'd surface S com¬ 

pletely surrounding Q. S may have any form whatever, since 

the assumption, or better the definition, is made that the total 
quantity of light is neither diminished nor increased by propa¬ 

gation through a perfectly transparent medium.* 

It is likewise assumed that the quantity of light remains 
constant for every cross-section of a tube whose sides are 

made up of light rays (tube of light).t If Q be assumed 

* In what follows perfect transparency of the medium is always assumed, 

f The definitions here presented appear as necessary as soon as light quantity 

is conceived as the energy which passes through a cross-section of a tube in unit 

time. Such essentially physical concepts will here be avoided in order not to for¬ 

sake entirely the domain of geometrical optics. 
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to be a point source, then the light-rays are straight lines 

radiating from the point Q. A tube of light is then a cone 

whose vertex lies at Q. By angle of aperture (or solid angle) 

El of the cone is meant the area of the surface which the cone 
cuts out upon a sphere of radius I (i cm.) described about its 

apex as centre. 
If an elementary cone of small solid angle d£l be consid¬ 

ered, the quantity of light contained in it is 

dL = K dTl.(61) 

The quantity K is called the candle-power of the source Q in 

the direction of the axis of the cone. It signifies physically 
that quantity of light which falls from Q upon unit surface at 

unit distance when this surface is normal to the rays, for in 

this case d£l = I. 
The candle-power will in general depend upon the direction 

of the rays. Hence the expression for the total quantity of 

light is, by (6l), 

M= J* K-dEl,.(62) 

in which the integral is to be taken over the entire solid angle 
about Q. If K were independent of the direction of the rays, 

it would follow that 

M=4ttK, 

since the integral of dTl taken over the entire solid angle about 
Q is equal to the surface of the unit sphere described about Q 

as a centre, i.e. is equal to 4n. The mean candle-power Km 

is defined by the equation 

If now the elementary cone dd cuts from an arbitrary sur¬ 

face S an element dS, whose normal makes an angle @ with 

the axis of the cone, and whose distance from the apex Q of 



APERTURES AND THEIR EFFECTS 79 

the cone, i.e. from the source of light, is r, then a simple 

geometrical consideration gives the relation 

dfl • r2 = dS • cos 0.(64) 

Then, by (61), the quantity of light which falls upon dS is 

dL = K 
dS-c os 0 

^ • (65) 

The quantity which falls upon unit surface is called the 

intensity of illumination B. From (65) this intensity is 

B = K 
cos 0 

~rr"' 
(66) 

i.e. the intensity of illumination is inversely proportional to the 

square of the distance from the point source and directly pro¬ 

portional to the cosine of the angle which the normal to the 

illuminated surface makes with the direction of the incident rays. 

If the definitions here set up are to be of any practical 

value, it is necessary that all parts of a screen appear to the eye 

equally bright when they are illuminated with equal intensities. 

Experiment shows that this is actually the case. Thus it is 

found that one candle placed at a distance of 1 m. from a screen 

produces the same intensity of illumination as four similar 

candles placed close together at a distance of 2 m. 

Hence a simple method is at hand for comparing light 

intensities. Let two sources Qx and Q2 illuminate a screen 

from such distances rx and r2 (0 being the same for both) that 

the intensity of the two illuminations is the same. Then the 

candle-powers Kx and K2 of the two sources are to each other 

as the squares of the distances rx and rr A photometer is used 

for making such comparisons accurately. The most perfect 

form of this instrument is that constructed by Lummer and 

Brodhun.* 

* A complete treatment of this instrument, as well as of all the laws of pho¬ 
tometry, is given by Brodhun in Winkelmann’s Handbuch der Physik, Optik, p. 

45° sq- 
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The most essential part of this instrument is a glass cube 

which consists of two right-angled prisms A and B (Fig. 

33) whose hypothenuses are polished so as to fit accurately 

together. After the hypothenuse of prism A has been ground 

upon a concave spherical surface until its polished surface has 

been reduced to a sharply defined circle, the two prisms are 

pressed so tightly together that no air-film remains between 

them. An eye at (9, which with the help of a lens w looks 

Fig. 33. 

perpendicularly upon one of the other surfaces of the prism B} 

receives transmitted and totally reflected light from immedi¬ 

ately adjoining portions of the field of view. Between the two 

sources Qx and Q2 which are to be compared is placed a screen 

5 of white plaster of Paris, whose opposite sides are exactly 

alike. The light diffused by 5 is reflected by the two mirrors 

.Sj and S.2 to the glass cube AB. If the intensities of illumina¬ 

tion of the two sides of 5 are exactly equal, the eye at 0 sees 

the glass cube uniformly illuminated, i.e. the figure which dis¬ 

tinguishes the transmitted from the reflected light vanishes. 

The sources Ql and Q2 are then brought to such distances rx 

and r% from the screen S that this vanishing of the figure takes 
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place. In order to eliminate any error which might arise from 

a possible inequality in the two sides of 5, it is desirable to 

make a second measurement with the positions of the two 

sources Qx and Q% interchanged. The screen S, together with 

the mirrors and S2 and the glass cube, are rigidly held in 

place in the case KK. 

As unit of candle-power it is customary to use the flame of a 

standard paraffine candle burning 50 mm. high, or, better still, 

because reproducible with greater accuracy, the Hefner light. 

This light was introduced by v. Hefner-Alteneck and is pro¬ 

duced by a lamp which burns amyl-acetate and is regulated 

to give a flame 40 mm. high. 

When the candle-power of any source has been measured, 

the intensity at any distance can be calculated by (66). The 

unit of intensity is called the candle-meter. It is the in¬ 

tensity of illumination produced by a unit candle upon a 

screen standing 1 m. distant and at right angles to the direc¬ 

tion of the rays. Thus, for example, an intensity of 50 candle- 

meters, such as is desirable for reading purposes, is the 

intensity of illumination produced by 50 candles upon a book 

held at right angles to the rays at a distance of 1 m., or that 

produced by 12^ candles at a distance of m., or that pro¬ 

duced by one candle at a distance of \ m. 

Photometric measurements upon lights of different colors 

are attended with great difficulties. According to Purkinje 

the difference in brightness of differently colored surfaces varies 

with the intensity of the illumination.* 

If the source Q must be looked upon as a surface rather 

than as a point, the amount of light emitted depends not only 

upon the size of the surface, but also upon the inclination of the 

rays. 

A glowing metal ball appears to the eye uniformly bright. 

Hence the same quantity of light must be contained in all ele- 

* Even when the two sources appear colorless, if they are composed of different 

colors physiological effects render the measurement uncertain. Cf. A. Tschermak, 

Arch. f. ges. Physiologie, 70, p. 297, 1898. 
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mentary cones of equal solid angle dco whose vertices lie at the 

eye and which intersect the sphere. But since these cones 

cut out upon the metal sphere (cf. eq.'(64)) surface elements 

ds such that 

ds = 
dco-F 

cos •&’ (6;) 

in which is the angle of inclination of ds with the axis of the 

cone, it follows that the surface elements which send a given 

quantity of light to the eye increase in size as the angle 

included between the normal and the direction of the rays to 

the eye increases, i.e. the surfaces are proportional to i : cos 0. 

Hence (cf. eq. (65)) the quantity of light dL which a sur¬ 

face element ds sends to another surface element dS is 

i-ds-dS-cos^-cos@„ 
dL = --?-,* . . . (68) 

in which r represents the distance between the surface elements, 

and d and © represent the inclinations of the normals at ds 

and dS to the line joining the elements, i is called the inten¬ 

sity of radiation of the surface ds. It is the quantity which unit 

surface radiates to another unit surface at unit distance when 

both surfaces are at right angles to the line joining them. 

The symmetry of eq. (68) with respect to the surface 

element which sends forth the radiations and that upon which 

they fall is to be noted. This symmetry can be expressed in 

the following words: The quantity of light which a surface 

\element radiating with an intensity i sends to another surface 

element is the same as the former would receive from the latter 

if it were radiating with the intensity i. 

Equation (68) can be brought into a simpler form by intro¬ 

ducing the solid angle dfl which dS subtends at ds. The 

* This equation, which is often called the cosine law of radiation, is only approxi¬ 

mately correct. Strictly speaking, i always varies with 0, and this variation is 

different for different substances. The subject will be treated more fully when 

considering Kirchhoft’s law (Part III, Chapter II). This approximate equation will, 

however, be used here, i.e. i will be regarded as constant. 
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relation existing bewteen dTl and dS is expressed in equation 

(64). Hence (68) may be written 

dL — i'ds • cos ■& - dO.(69) 

On the other hand it is possible to introduce the solid angle 

dco which ds subtends at dS. A substitution in (68) of its 

value taken from (67) gives 

dL — i- dS• cos &• dGo.(70) 

The relation which the intensity of radiation i bears to the 

total quantity M which is emitted by ds is easily obtained. 

Thus a comparison of equations (61) and (69) shows that 

the candle-power K of the surface ds in a direction which 

makes an angle $ with its normal has the value 

K — ids cos £.(71) 

Let now the quantity of light be calculated which is con¬ 

tained between two cones whose generating lines make the 

angles 0 and 0 -j- d§ respectively with the normal to the sur¬ 

face ds. The volume enclosed between the two cones is a 

conical shell whose aperture is 

d£l — 27t sin ■& d$,.(72) 

for it cuts from a sphere of radius 1 a zone whose width is d& 

and whose radius is sin ■&. Hence, from equations (69) and 

(72), the quantity of light contained in the shell is 

dL = 27rids sin $ cos -0 d®. 

Hence the quantity contained in a cone of finite size whose 

generating line makes the angle U with the normal to ds is 

27tids I sin $ cos $ d$ = 7tids sin2 U. (73) 

In order to obtain the total quantity M, U must be set 

equal to ~ and the result multiplied by 2 in case the surface 

element ds radiates with intensity i on both sides. Hence 

M — 27tids.(74) 



84 THEORY OF OPTICS 

5. The Intensity of Radiation and the Intensity of Illu¬ 
mination of Optical Images.—Upon the axis of a coaxial 

optical system let there be placed perpendicular to the axis a 

surface element which radiates with intensity i. Let U be 

the angle between the axis of the system and the limiting rays, 

i.e. those which proceed from ds to the rim of the entrance- 

pupil; then, by (73), the quantity of light which enters the 

system is 

L = 7tids sin2 U..(75) 

Thus this quantity increases as U increases, i.e. as the 

.entrance-pupil of the system increases. If now ds' is the 

optical image of ds, and U' the angle between the axis and the 

limiting rays of the image, i.e. the rays proceeding from the 

exit-pupil to the image, then the problem is to determine the 

intensity of radiation i' of the optical image. According to 

(73) the quantity of light which radiates from the image would 

be 

V — ni' ds' sin2 U'.(76) 

Now L' cannot be greater than L, and can be equal to it only 

when there are no losses by reflection and absorption; for then, 

by the definitions on page 77, the quantity within a tube of 

light remains constant. If this most favorable case be assumed, 

it follows from (75) and (76) that 

v . ds sin2 U 

1 ~ 1 ds' sin2 U'.(77) 

But if ds' is the optical image of ds, it follows from the sine 

law (equation (46), page 61) that 

ds sin2 U _ n,% 

ds' sin2 U'~~ »2 ..^ 

in which n is the index of the object space, and n' that of the 

image space. Hence, from (77), 
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Hence if the indices of the object and image spaces are the 

same, the intensity of radiation of the image is at best equal to 

the intensity of radiation of the object. 

For example, the intensity of radiation of the real image 

of the sun produced by a burning-glass cannot be greater than 

that of the sun. Nevertheless the intensity of illumination of 

a screen placed in the plane of the image is greatly intensified 

by the presence of the glass, and is proportional directly to the 

area of the lens and inversely to its focal length. This intensity 

of illumination B is obtained by dividing the value of L' as 

given in (76) by ds'. If n — n\ it follows that B — ni' sin2 U'. 

The fact that an optical system produces an increase in the 

intensity of illumination is made obvious by the consideration 

that all the tubes of light which pass through the image ds' 

must also pass through the exit-pupil. Hence the total quantity 

of light which is brought together in the image ds' is, by the 

proposition of page 82, the same as though the whole exit- 

pupil radiated with the intensity i of the sun upon the element 

ds'. The effect of the lens is then exactly the same as though 

the element ds' were brought without a lens so near to the 

sun that the angle subtended by the sun at ds' became the 

same as the angle subtended by the exit-pupil of the lens at its 

focus. 

The same consideration holds for every sort of optical 

instrument. Therefore no arrangement for concentrating light 

can accomplish more than to produce, with the help of a given 

source of light which is small or distant, an effect which would 

be produced without the arrangement by a larger or nearer 

source of equal intensity of radiation. 

In case n and n' have different values, an increase of the 

intensity of radiation of the image can be produced provided 

n < n'. For example, this is done in the immersion systems 

used with microscopes in which the light from a source Q in a 

medium of index unity is brought together by a condenser in 

front of the objective in a medium (immersion fluid) of greater 

index n'. The quantity of light which therefore enters the 
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microscope is proportional to tz2 sin2 U, in which U represents 

the angle between the limiting rays which enter the entrance- 
pupil. The product 

n sin U — a (80) 

is called by Abbe the numerical aperture of the instrument- 

Then the quantity of light received is proportional to the 
square of the numerical aperture. The intensity of radiation in 

the image, which again lies in air, is, of course, never more 
than the intensity of the source Q. 

6. Subjective Brightness of Optical Images.—It is neces¬ 
sary to distinguish between the (objective) intensity of illumi¬ 

nation which is produced at a point 0 by a luminous surface s 

and the (subjective) brightness of such a surface as it appears to 
an observer. The sensation of light is produced by the action 

of radiation upon little elements of the retina which are sensitive 

to light. If the object is a luminous surface s, then the image 

upon the retina covers a surface s' within which these sensitive 

elements are excited. The brightness of the surface ^ is now 
defined as the quantity of light which falls upon unit surface of 

the retina, i.e. it is the intensity of illumination of the retina. 
If no optical system is introduced between the source of 

light and the eye, then the eye itself is to be looked upon as 

an optical system to which the former considerations are 
applicable. The illumination upon the retina may be obtained 
from equations (76) and (79); but in this case it is to be 

remembered that n, the index of the object space, and nr, that 

of the image space, have in general different values. Hence 
the brightness HQ which is produced when no optical instru¬ 
ments are present and when the source lies in a medium of 

index « = 1 is called the natural brightness and has the value 

= nin,% sin2 W0'.(81) 

i here is the intensity of radiation of the source (losses due 

to the passage of the rays through the eye are neglected). 

W0' is the angle included between the axis of the eye and lines 
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drawn to the middle point of the image upon the retina from 

the rim of the pupil. Therefore 2 W0' is the angle of projection 

in the eye (cf. page 73). If the size of the pupil remains 

constant, W0' is also constant. Hence the brightness HQ 

depends only upon the intensity of radiation i of the source and 

is altogether independent of the distance of the source from the 

eye. 

This result actually corresponds within certain limits with 

physiological experience. To be sure when the source of 

light is very close to the eye, so that the image upon the 

retina is very much larger, a blinding sensation which may 

be interpreted as an increase in brightness is experienced. As 

the pupil is diminished in size W0' becomes smaller and hence 

H0 decreases. 

If now an optical instrument is introduced before the eye, 

the two together may be looked upon as a single system 

for which the former deductions hold. Let the eye be made 

to coincide with the exit-pupil, a position which (cf. page 77) 

gives the largest possible field of view. Then two cases are 

to be distinguished: 

7. The exit-pupil is equal to or greater than the pupil of 

the eye. Then the angle of projection 2 W' of the image in 

the eye is determined by the pupil of the eye, i.e. W' = W0'. 

The brightness is given by equation (81), in which i is the 

intensity of radiation of the source (all losses in the instrument 

and in the eye are neglected and the source is assumed to be 

in a medium of index n = 1). If this index differs from 

unity, H must be divided by n2. This case is, however, 

never realized in actual instruments. The source always lies 

in air or (as the sun) in space. This is also the case with the 

immersion systems used in microscopes, for the source is not 

the object immersed in the fluid, as this is merely illuminated 

from without. The real source is the bright sky, the sun, a 

lamp, etc. In what follows it will always be assumed that the 

source lies in a medium of index n = 1. Hence the result: 

Provided no losses take place by reflection and absorption in 
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the instrument, the brightness of the optical image produced by 

an instrument is equal to the natural brightness of the source. 

2. ZThe exit-pupil is smaller than the pupil of the eye. Then 

the brightness is given by an equation analogous to (81), 

namely, 

H— ninsin2 W,.(82) 

in which i is the intensity of radiation of the source, and 2 W' 

is the angle of projection of the image in the eye. But now 

W' < PVj, i.e. the brightness of the image is less than the 

natural brightness of the source. The ratio of these two 

brightnesses as obtained from (81) and (82) is 

H:H0= sin2 W : sin2 W0'.(83) 

Since now W0' is a small angle and W' even smaller (in the 

human eye W0' is about 50), the sine may be replaced by the 

tangent, so that the right-hand side of (83), i.e. the ratio of 

the brightness of the image to the naUiral brightness of the 

source, is equal to the ratio of the size of the exit-pupil of the 

instrument to the size of the pupil of the eye (or, better, to the 

size of the image of the iris formed by the crystalline lens and 

the front chamber of the eye). In short: In the case of 

extended objects an optical instrument can do no more than 

increase the visual angle under which the object appears with¬ 

out increasing its brightness. 

This result could have been obtained as follows: By the 

principle on page 85, the intensity of radiation of the image is 

equal to that of the source (when n =■ n! = 1 and reflection 

and absorption losses are neglected). An optical instrument 

then produces merely an apparent change of position of the 

source- But since, by the principle of page 87, the brightness 

of the source is entirely independent of its position provided 

the wbole pupil of the eye is filled with rays, it follows that 

the brightness of the image is equal to the natural brightness 

of the source. But if the exit-pupil is smaller than the pupil 

of the eye, the latter is not entirely filled with rays, i.e. the 
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'igrhtness of the image must be smallerthan the natural 

'igrlitness. The ratio H: H0 comes out the same in this case 

before, since the inclination to the axis of the image rays is 

na.ll when the image lies at a sufficient distance from the eye 

be clearly visible. 

If the image ds' of a luminous surface ds lies at the distance 

from the exit-pupil (i.e. from the eye, since the latter is to 

- placed at the position of the exit-pupil), then d tan U' is 

e radius of the exit-pupil, 2 U' being the angle of projection 

the image (in air). Hence, replacing sin U' by tan U', the 

tio of the brightness H of the image to the natural brightness 

o of the source when the radius of the exit-pupil is smaller 

slti the radius p of the pupil of the eye is 

H d2 sin2 U' 

H,- f ' 

ow by the law of sines (equation (78)), the index n' of the 

iage space being equal to unity, 

H d8*2 sin2 U ds 

W0~ f ‘ ds'’ 
(84) 

which ds is the element conjugate to ds' and whose limiting 

ys make an angle U with the axis of the instrument. Let n 

: the index of refraction of the medium about ds, then 

f. (80)) n sin U = a is equal to the numerical aperture of 

g system, ds' : ds is the square of the lateral magnification 

‘ the instrument. Representing this by V, (84) becomes 

H___ 

2f0 ~ p2V*' 
(85) 

bis equation holds only when H < HQ. It shows clearly the 

fl-Lienee of the numerical aperture upon the brightness of the 

rage, and is of great importance in the theory of the micro- 

ope. 

The magnification which is produced by an optical instru- 

ent when its exit-pupil is equal to the pupil of the eye, i.e. 
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when the image has the natural brightness of the source, is 

called the normal magnification. If the radius p of the pupil 

be taken as 2 mm. and the distance d of the image from the 

eye as 25 cm. (distance of most distinct vision), then, from 

(85), the normal magnifications V% corresponding to different 

numerical apertures are 

when #=0.5 Vn — 62; 

“ a — 1.0 Vn = 125 ; 

“ 0=1.5 Vn= 187. 

When the magnification V is equal to 2 Vn the brightness 

H is a quarter of the natural brightness H0. 2 Vn may be 

looked upon as about the limit to which the magnification can 

be carried without diminishing the clearness of the image. 

For ci — 1.5 this would be, then, a magnification of about 380. 

For a magnification of 1000 and a = 1.5 the brightness H is 

-fa of the natural brightness Hv 

For telescopes equation (85) is somewhat modified in prac¬ 

tice. Thus if h is the radius of the objective of the telescope, 

then, by equation (14') on page 28, the radius of its exit-pupil 

is equal to h : T, in which T is the angular magnification of the 

telescope. Hence the ratio of the area of the exit-pupil to 

that of the pupil of the eye is (cf. p. 87, eq. (83 et seq.) 

H h2 

H-fr* 
(86) 

For a normal magnification Tn the radius of the objective 

of a telescope must be p-Fn, i.e. it must be 2, 4, 6, 8, etc., 

mm. if the normal magnification has the value 1, 2, 3, 4, etc., 

and p is taken as 2 mm. Thus, for example, if the normal 

magnification is 100, the radius of the objective must be 

20 cm. 

7. The Brightness of Point Sources.—The laws for the 

brilliancy of the optical images of surfaces do not hold for the 

images of point sources such as the fixed stars. On account 

of diffraction at the edges of the pupil, the size of the image 

upon the retina depends only on the diameter of the pupil, 



APERTURES AND THEIR EFFECTS 9i 

being altogether independent of the magnification. (Cf. Chapter 
IV, Section I of Physical Optics.) As long as the visual 

angle of an object does not exceed one minute the source is to 

be regarded as a point. 
The brightness of a point source P is determined by the 

quantity of light which reaches the eye from P. The natural 
brightness H0 is therefore proportional directly to the size of 

the pupil and inversely to the square of the distance of P from 
the eye. By the help of an optical instrument all the light 

from P which passes through the entrance-pupil of the in¬ 

strument is brought to the eye provided the exit-pupil is 

smaller than the pupil of the eye, i.e. provided the normal 
magnification of the instrument is not exceeded. If the rim of 

the objective is the entrance-pupil of the instrument, then the 
brightness of a distant source such as a star exceeds the 

natural brightness in the ratio of the size of the objective to 

the size of the pupil of the eye.* 
But if the natural magnification of the telescope has not 

yet been reached, i.e. if its exit-pupil is larger than the pupil 
of the eye, then in the use of the instrument the latter consti¬ 

tutes the exit-pupil and its image formed by the telescope the 

entrance-pupil. According to equation (14') on page 28 this 
entrance-pupil is T2 times as great as the pupil of the eye, F 

representing the magnification of the telescope. Hence the 
brightness of the star is T2 times the natural brightness. 

Since, then, the brightness of stars may be increased by the 

use of a telescope, while the brightness of the background is 
not increased but even diminished (in case the normal mag¬ 

nification is exceeded), stars stand out from the background 
more clearly when seen through a telescope than otherwise 

and, with a large instrument, may even be seen by day. 

8. The Effect of the Aperture upon the Resolving Power 
of Optical Instruments.—Thus far the effect of the aperture 
upon the geometrical construction of the rays and the bright- 

* The length of the telescope must be negligible in comparison with the dis¬ 

tance of the source. 
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ness of the image has been treated. But the aperture also 

determines the resolving power of the instrument, i.e. its ability 

to optically separate two objects which the unaided eye is 

unable to distinguish as separate. It has already been, 

remarked on page 5 2 that, on account of diffraction phenomena, 
very narrow pencils produce poor images. These diffraction 

phenomena also set a limit to the resolving power of optical 

instruments, and it is at once clear that this limit can be pushed 

farther and farther on by increasing the width of the beam 

which forms the image, i.e. by increasing the aperture of the 
instrument. The development of the numerical relations 

which exist in this case will be reserved for the chapter on the 
diffraction of light. But here it may simply be remarked that 

two objects a distance d apart may be separated by a micro¬ 

scope if 

■d^ 
x_ 

2 a' 
(87) 

in which A. is the wave-length (to be defined later) of light in 

air, and a the numerical aperture of the microscope. A tele¬ 

scope can separate two objects if the visual angle <p which they 

subtend is 

0.6 ..(88) 

in which h is the radius of the aperture of the telescope. 



CHAPTER V 

OPTICAL INSTRUMENTS * 

i. Photographic Systems.—In landscape photography 
the optical system must throw a real image of a very extended 

object upon the sensitive plate. The divergence of the pencils 
which form the image is relatively small. The principal 

sources of error which are here to be avoided have already been 
mentioned on page 63. Attention was there called to the 

advantage of the symmetrical double objective as well as to the 

influence of suitably placed stops upon the formation of a cor 
rect image. But the position of the stop has a further influence 

upon the flatness of the image. 
For the case of a combination of two thin lenses of focal 

length fx and f2 and of indices nx and ;z2 the greatest flatness of 

image can be obtained t when 

Vi=-Va.(0 
The condition for achromatism for two thin lenses is, by 

equation (54) on page 69, 

V2 fV\ f2.(2) 
The two conditions (1) and (2) can be simultaneously ful¬ 

filled only when the lens of larger index n has the smaller 
dispersive power v. 

*For a more complete treatment cf. Winkelmann’s Handbuch der Physik 

Optik, p. 203 sq. Mtlller-Pouillet, 9th Ed. Optik, p. 721 sq. 

fFor a deduction of this condition, first stated by Petzval in the year 1843, cf. 

Lummer, Ztschr. f. Instrk., 1897, p. 231, where will be found in three articles 

(pps. 208, 225, 264) an excellent review of photographic optics. 

93 
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Formerly no kinds of ghees w ore known winds fulfil led this 

condition, namely, that the one with larger index have the 

smaller dispersion. For crown glass both the refraction and 

the dispersion were small; for Hint glass they were both large. 

Only recently has Schott in Jena produced glasses which show 

in some degree the reverse relation, * and hence it has become 

possible to obtain at the same time achromatism and flatness 

of the image. Such systems of lenses arc called the new 

achromats to distinguish them front the old achromats. 

For another reason the use of these new kinds of glass, 

which combine a large n with a small *\ is advantageous for 

photographic optics. Astigmatism may be corrected by com¬ 

bining an old achromat with a new, because the former, on 

account of the dispersive effect at the junction between the 

lenses, produces an astigmatic difference of opposite sign from 

that produced by the latter, which has a convergent effect at 

the junction. Such symmetrical double objectives w Inch have 

on both sides a combination of old and new achromats are 

called anastigmatic aplanats. 

In order to produce as large images as jmsslble of a distant 

object, the focal length of the system must be as great m 
possible. This would necessitate, if the lenses of the system 

lie dose together; an inconvenient lengthening of the camera, 

since its length b must be approximately equal to the focal 

length /. This difficulty can be avoided by the use of a 

so-called teleobjective, which consists of a combination of a 

convergent and a divergent system placer! at a distance a 

apart. The latter forms (cf. Fig. 22, page 43) erect, enlarged 

images of virtual objects which lie behind it but in front of its 

second principal focus Fr The principal locus /q'of the con¬ 

vergent lens must also lie in front of Fr As is shown in Fig. 

34* focal length / of the whole system h greater than the 
distance of the convergent system front the position of the 

♦The barlum-dUeate glasses, im*ltue Urger refraetfesn but ^matter tlnperdoM 
than crown glass. 
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image, i.e. than the camera length, i*'**r example, in order 

to be able to line a focal length f »»J y un, in a cattteta who a* 

length is about jio cm., a vonvngrut bn* «»t lot, ,tl length 

10 cm. mu^t Ik* combined with a divergent lem* «4 lm ,d length 

5 cm. so that the optit at separation J r* t.35 » m., i.e. the dr* 

SH' t 

( 
Fm. 11 

tancc between the tenors nurd 1st f» « cm. Thrsr v.ilur-> air 

obtained from the equations 1171 and t t»ii f»*r a «.*»mp*nmd 

system given on page jq, 
In a |mrtrait lens the st/e of the a|»rf tut e u of tltr greatest 

importance because it H desirable to obtain a*s tmah light *1*4 
possible. Hence the first 1 onadn aftou r* to rSiinifiatr -»|*lirr* - 

cal aberration and to fulfil the *>mr law. 

2. Simple Magnifying-glastta. The apparent a/r of an 

object depends tij»*n the we of the angle win* h it subtends at 

the eye. This visual angle may lir nit reaped by bunging the 

object nearer to the eye, but only up to a certain hunt, **imr 

the object cannot lir t loser to the rye than the limit of drstnut 

vision {55 cm.). Hut the venial angle may be still fur liter fit’ 
creased by the use of a magnify *ng-glass. 

Tlte simplest form of magwfyiug-’gta**** h a single convergent 

lens. This prodtues icf Fig 31, jwgr 41) an errit cnlaiged 

virtual image of an object which lies between the |rm» and its 

principal focus, If litis image is at a distant c of 4## from the 

eye, then, by equation (7) m page Ujt the numnifcatititi l* of 

the lent is 

, f *t M 

/ ' / "' / ■ 
f CTt 
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in which x' denotes the distance of the image from the second 

principal focus, and a that of the eye. Generally a may be 

neglected in comparison with £, in which case the magnifi¬ 

cation produced by the lens is 

r=-*.(4) 

Thus it is inversely proportional to the focal length of the 

lens. 
If the diameter of the magnifying-glass is greater than that 

of the image which it forms of the pupil of the eye, then the 

latter is the aperture stop, the former the field-of-vicw stop. 

In order to obtain the largest possible field of view it is neces¬ 

sary to bring the eye as near as possible to the lens. As the 

distance of the lens from the eye is increased, not only does 

the field of view become smaller, but also the configuration of 

the rays changes in that the images of points off the axis are 

formed by portions of the lens which lie to one side of the axis. 

This is evident at once from a graphical construction of the 

entrance-pupil of the system, i.e. a construction of the image 
of the pupil of the eye formed by the lens. The orthoscopy 

is in this way generally spoiled, i.e. the image appears blurred 
at the edges. 

A simple plano-convex lens gives good images for mag¬ 
nifications of less than eight diameters, i.e. for foca) lengths 

greater than 3 cm. The plane side of the lens must be turned 

toward the eye. Although this position gives a relatively 
large spherical aberration on the axis (cf. page 55), because 

the object lies near its principal focus of the lens, nevertheless 

it is more satisfactory than the inverse position on account of 
the smaller aberration off the axis. 

The image may be decidedly improved by the use of two 

simple lenses because the distribution of the refraction over 

several lenses greatly diminishes the spherical aberration on 

the axis. Figs. 35 and 36 show the well-known Fraunhofer 

and Wilson magnifying-glasses. In the latter the distance 
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x the lenses is much gtrater than in tin* funner. In 

V the advantage is gained th.it the differences in the 

cations for the tlifieient is diminished, although 

ost of the distance of the object hum tin* hn.< 

uoinati/.ation is attained in SteiuheiTv >.o i ailed apla 

lagnifying-glasH by a choice of dillcient kinds of glass 

7\- In this a duuble-ionvrx lens of unun glass is 

::»! between two convexo-concave lenses of flint glass. 

Hrucke magnifying-ghvwi which consists of a mnvrr- 

hrmtiatic front lens am! at some distance front it a 

divergent lens, is chataiteri/cd by the fail that the 

lies at a considerable distance. The divergent frits 

•s in vet ted, enlarged, virtual images of virtual nbjn Is 

ie In-limd its second (critic *jul f*n u** o f T t|*. •?„?, page 

’he arrangement of the lenses may br the smite as in 

'objective fKig, 34), i,e. the optical separatum of the 

ent am) the divergent lenses may he positive. Never- 

if the object is swflicinilly close, the linage formed by 

ivergent lens may lie behind the wnml fmtss *4" the 
nt lens. Like the simple tnugnifying'glass this com- 

1 furnishes erect images, for the image formed by the 

ent lens alone would br inverted were another Inver- 

t prmluced by the divergent lens, The objei tionahle 

of this instrument is the smallness of the hr Id of view, 

rhe MlcrotCOpt* — a, (Xuftal t hfr**t!um% ■ In or*frr 

in greater magnification it is advantageous to replace 

rffril *4 lf$r s||»!4«s r lwl»r<rf« ||*r lotfcTs U§«s»t 4* l*«**t«* 1m « t«r»f 

«w, §», yi, I br siil*jptt well m»w«* «g wl»ctt lb* rj*r|4e«:** t*f 
«u*f ate imOtt cutt»l4rf*tjait. 
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the magnifying-glass of short focal length by a microscope. 
This consists of two convergent systems relatively far apart. 

The first system (the objective) produces a real, inverted, en¬ 

larged image of an object which lies just beyond its first 

principal focus. This image is again enlarged by the second 

system (the eyepiece) which acts as a magnifying-glass. Apart 
from the fact that, on account of the greater distance apart of 

the two systems of the microscope, a greater magnification 
can be produced than with a single system used as a simple 

magnifier, the chief advantage of the instrument lies in this, 

that the problem of forming the image is divided into two 
parts which can be solved separately by the objective and the 

eyepiece. This division of labor is made as follows: the 

objective, which has the greatest possible numerical aperture,* 
forms an image of a surface element, while the eyepiece, like 

any magnifying-glass, forms the image of a large field of view 

by means of pencils which must be of small divergence, since 
they are limited by the pupil of the eye. It has been shown 

above (Chapter III, §§8, 9, 10) that these two problems may 

be separately solved. 
b. The Objective.—The principal requirements which an 

objective must fulfil are as follows: 

1. That with a large numerical aperture the spherical 
aberration upon the axis be eliminated and the aplanatic 
condition, i.e. the sine law, be fulfilled. 

2. That chromatic errors be corrected. This requires that 
the aplanatic condition be fulfilled for at least two colors, and 
that a real achromatic image of the object be formed by the 

objective. If only partial achromatism is required it is suf¬ 
ficient to make the objective achromatic with respect to the 
first principal focus; for the position of the image of an object 

which lies near this focal point A would vary rapidly-with the 
color if the position of F depended upon the color. If a system 

has been achromatized thus with respect to the focus F, i.e. 

* This requirement is introduced not only for the sake of increased brightness 

but also of increased resolving power. Cf. above, pp. 90, 92. 
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with respect to the position of the image, it is not achromatic 

with respect to the focal length. The different colors, there¬ 

fore, produce images of different sizes, i.e. chromatic differences 
in magnification still remain. These must be corrected by 
means of the eyepiece. 

It is customary to distinguish between dry and immersion 

systems. In the latter the space between the front lens of the 
objective and the cover-glass under which the object lies is 

filled with a liquid. The advantages of this method of increas¬ 

ing the numerical aperture are evident. Furthermore, by the 
use of the so-called homogeneous immersions, in which the 

liquid has the same index and dispersion as the cover-glass 
and the front lens, the formation of aplanatic images by a 

hemispherical front lens may be attained in accordance with 
the principle of Amici (cf. page 
58). Fig. 38 shows, in double the 

natural size, an objective designed 
by Abbe, called an aprochromat, in 

which the above conditions are ful¬ 

filled by a combination of ten 

different lenses used with a homo¬ 
geneous immersion. The apro¬ 

chromat, being achromatic for three 
colors, is free from secondary spec- i I 
tra, and the aplanatic conditions Fig- 38- 

are fulfilled for two colors. The focal length of the system is 
2 mm. and its numerical aperture a — 1.40. The light¬ 

collecting and dioptric excellence of this objective is such that 

the limit of resolving power of a microscope (equation (87), 

page 92) may be considered as actually attained by it. 
c. The Eyepiece.—The chief requirements for the eyepiece 

are those Tor the formation of the image of an extended object 

by means of narrow pencils, namely: 
1. The elimination of astigmatism in the oblique pencils. 

2. The formation of orthoscopic images. 

3. The formation of achromatic images. 
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The first two points have been discussed in Chapter III, 
§ io, page 63; as to the last, partial achromatization is 

sufficient. Consider the case in which the image formed by 
an objective is free from chromatic errors. On account of the 
length of the microscope tube, i.e. on account of the relatively 

large distance between the real image formed by the objective 
and the exit-pupil of the objective, the principal rays which 

fall upon the eyepiece have but a small inclination to the axis 
of the instrument. If now the eyepiece is made achromatic 

with respect to its focal length, then it is evident from the 
construction of conjugate rays given on page 24, as well as 

from the property of the focal length given on page 20, that a 
ray of white light which falls upon the eyepiece is split up into 

colored rays all of which emerge from the eyepiece with the 
same inclination to the axis. Hence an eye focussed for 

parallel rays sees a colorless image. Even when the image 
lies at the distance of most distinct vision (25 cm.) an eyepiece 

which has been made achromatic with respect to its focal 

length nearly fulfils the conditions 71 for a colorless image. 
Now it was shown on page 71 that two simple lenses of 

focal lengths ./j andyj, made of the same kind of glass, when 

placed at a distance apart a = ^ have a resultant focal 

length f which is the same for all colors. Since, in addition, 
the construction of an eyepiece from two lenses produces an 
improvement of the image in the matter of astigmatism, eye¬ 

pieces are usually made according to this principle. The lens 
which is nearer the objective is called the field-lens, that next 

the eye the eye-lens. 

The two most familiar forms of achromatic eyepiece are the 

following: 
I. The Ramsden eyepiece (cf. Fig. 40, page 109). This 

consists of two equal plano-convex lenses which have their 
curved sides turned toward each other. Since fl= f2, the 

distance a between the lenses is a = fx = fr But this arrange¬ 

ment has the disadvantage that the field-lens lies at the prin- 
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cipal focus of the eye-lens, and hence any dust-particles or 

scratches upon the former are seen magnified by the latter. 
Hence the field-lens is placed somewhat nearer to the eye- 

lens, for instance, a = \ In this way a further advantage 
is obtained. When a = §fx, the optical separation of the 

two lenses (cf. page 28) A — — |/r Hence, by equation (20) 
on page 30, the focal length F of the combination lies 
at a distance \fx before the field-lens; while, when a ~ fx, 

i.e. A = —/j, it would fall in the objective lens itself. Since 
the real image formed by the objective of the microscope lies 

near the principal focus F of the eyepiece, if a — \fx, it is 

still in front of the field-lens; hence the image in the micro¬ 
scope may be measured by introducing in front of the field- 

lens, at the position of the real image formed by the objective, 

a micrometer consisting of fine graduations upon glass or a 

cross-hair movable by means of a screw. 
2. The Huygens eyepiece (Fig. 39). In this the focal 

length fx of the field-lens is larger than that f2 of the eye- 

lens. Generally fx = 3 fr Then from a — it follows 

that a = $/x = 2f2. The optical separation has the value 
A = — \fx, hence by (20) on page 30 the focal length F of the 

combination lies a distance \fx behind the field-lens. The 

real image formed by the objective must, therefore, fall behind 
the field-lens as a virtual object, and a micrometrical measure¬ 

ment of it is not easily made since both the lenses in the eye¬ 

piece take part in the formation of the image of the object, 
while the image of the micrometer is formed by the eye-lens 
alone. This eyepiece also consists of two plano-convex lenses 

but their curved surfaces are both turned toward the object. The 

advantage of the combination of a weak field-lens with an eye- 

lens three times as powerful lies in the fact that the bending 
of the rays at the two lenses is uniformly distributed between 

them.* 

*For this calculation cf. Heath, Geometrical Optics, Cambr., 1895. 
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If chromatic errors exist in tlie image formed by the objec¬ 

tive, they may be eliminated by constructing the eyepiece to 
have chromatic errors of opposite sign. It was shown above 

(page 99) that the chromatic errors of magnification are not 

eliminated in the aprochromat objective, the blue image being 

larger than the red. Abbe then combines with such objectives 
the so-called compensating eyepieces which are not achrome- 

tized with respect to focal length, i.e. with respect to mag¬ 

nification, but which produce larger red images than blue. 

d. The Condenser.—In order that full advantage may be 

taken of the large numerical aperture of the objective, the rays 

incident upon it must be given a large divergence. To obtain 
such divergence there is introduced under the stage of the 

microscope a condenser which consists of one or more conver¬ 

gent lenses of short focal length arranged as in an objective, 
but in the inverse order. From the discussion above on page 
85 it is evident that such a condensation of the light does not 

increase the intensity of the source but merely has the effect 

of bringing it very close to the objective. 
e. Geometrical Configuration of the Rays.—If the normal 

magnification (cf. page 90) has not been reached, the pupil of 
the eye is the exit-pupil of the entire microscope, and the image 

of the pupil of the eye formed by the instrument is the 
entrance-pupil. If the normal magnification is exceeded, a 

stop or the rim of a lens in the microscope is the aperture stop. 
This stop always lies in the objective, not in the eyepiece. Fig. 

39 shows a case of very frequent occurrence in which the rim 

BxB2 of the hemispherical front lens of the objective is both 
aperture stop and entrance-pupil. The image B{B2 of BXB2 

formed by the whole microscope is the exit-pupil. If the 
length of the tube is ribt too small, this image lies almost at 
the principal focus of the eyepiece. The eyepiece shown in 
Fig. 39 is a Huygens eyepiece. The real image of the object 

Pfi?2 formed by the objective and the field-lens of the eyepiece 

is The field-of-view stop GG is placed at P(P2. In 
this way the edge of the field of view becomes sharply defined, 
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because the image of G formed by the field-lens and the objec¬ 

tive lies in the plane of the object PXP2 (cf. remark on page 

76). The points P(P^ must lie on the edge of the field-of- 
view stop. Then PXP^ is the size of the field of view on the 
side of the object. The virtual image P^'P^' formed by the 

eye-lens of the real image P^P^ is the image seen by the 
observer. If this image is at a distance 8 from the exit-pupil, 

then the observer, the pupil of whose eye ought to be coin¬ 
cident with the exit-pupil (cf. page 77), must focus his 

eye for this distance 8. By a slight raising or lowering of the 

whole microscope with respect to the object PXP2 the image 

P\P<1' may easily be brought to any desired distance 8. It 
is usually assumed that 8 is the distance of most distinct vision, 

namely, 25 cm. 
In Fig. 39 the principal and the limiting rays which proceed 

from Px are shown. From P% the principal ray only is drawn, 
the limiting rays being introduced behind the eye-lens. 
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f The Magnification.—Let the object have the linear 

magnitude y. By equation (7) on page 19, the objective 
l 

forms a real image of size y' =jV'~rn in which// is the second 

focal length of the objective,* and l the distance of the image 

from the second principal focus. Since, as was shown above, 

this image y' lies immediately in front of or behind the field- 
lens of the ocular, / may with sufficient accuracy be taken as the 

length of the microscope tube. Likewise, by equation (7), the 

virtual image formed by the eyepiece has the size y" =/•—, 
Ji 

in which f% represents the focal length of the eyepiece and d 
the distance of the virtual image from its second principal 

focus. Since, as was above remarked, this eyepiece lies close 

to the exit-pupil, i.e. to the pupil of the eye, d may be taken 

as the distance of the image from the eye. The magnification 
V produced by the whole microscope is then 

V 
y" _ d-/ 

(5) 

Since the second principal focal length f of the entire 
microscope is, by equation (18) on page 29, t 

.(6) 

J, the optical separation between the objective and the eye¬ 
piece being almost equal to /, it follows that, disregarding the 
sign, (5) may be written 

v=j.(7) 

Thus the magnification depends upon three factors which 
are entirely arbitrary, namely, upon //, f2, and 1. The length 

*A distinction between first and second principal foci is only necessary for 

immersion systems. 

f For the eyepiecef2 = f2\ 
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l of the tube cannot be increased beyond a certain limit with¬ 
out making the instrument cumbrous. It is more practicable to 

obtain the effect of a longer / by increasing the power of the 

eyepiece. Furthermore the focal length of the objective is 
always made smaller than that of the eyepiece. In this way 

not only may the lenses in the objective be made relatively 

small even for high numerical aperture, but also a certain 

quality of image (near the axis) may be more easily obtained 
for a given magnification the smaller the focal length of the 

objective. But since, with the diminution of the focal length 

of the objective, the errors in the final image formed by the 
eyepiece increase for points off the axis, the shortening of 

cannot be carried advantageously beyond a certain limit (1.5-2 
mm. in immersion systems). 

g. The Resolving Power.—This is not to be confused with 
magnification, for, under certain circumstances, a microscope 

of smaller magnifying power may have the larger resolving 
power, i.e. it may reveal to the eye more detail in the object 

than a more powerfully magnifying instrument. The resolving 
power depends essentially upon the construction of the objec¬ 
tive : the detail of the image formed by it depends (cf. page 

92) on the one hand upon the numerical aperture of the 

objective, on the other upon the size of the discs which arise 
because the focussing is not rigorously homocentric. If two 

points Px and P2 of an object be considered such that the discs 
to which they give rise in the image formed by the objective 

do not overlap, they may be distinguished as two distinct 
points or round spots in case the eyepiece has magnified the 

image formed by the objective to such an extent that the visual 
angle is at least 1'. But if these discs in the image formed by 

the objective overlap, then the most powerful eyepiece cannot 
separate the points Px and Pr For every objective there is 
then a particular ocular magnification, which will just suffice 

to bring out completely the detail in the image formed by the 
objective. A stronger magnification may-indeed be con¬ 

veniently used in bringing out this detail, but it adds no new 
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element to the picture. From the focal length of the objective, 

the length of the tube, and the focal length of the eyepiece 
which is just sufficient to bring out the detail in the image, it 

is possible to calculate from (5) the smallest permissible mag¬ 

nification for complete resolution. This magnification is 

greater the greater the resolving power of the objective. 
Assuming a perfect objective, the necessary magnification of 

the whole instrument depends only upon the numerical aper¬ 

ture. This has not yet been pushed beyond the limit (for 

immersion systems) a = 1.6. Hence, by equation (87) on 

page 92, the smallest interval d which can be optically resolved 

is 

, A 0.000153 mm. 
d— — =-—-= 0.00016 mm. 

2 a 3.2 

if A. be the wave-length of green light. Now at a distance 
d = 25 cm. from the eye an interval d' = 0.145 mm. has a 
visual angle of 2', which is the smallest angle which can be 

easily distinguished. Since d' \ d = 905, the limit of resolution 

of the microscope is attained when the total magnification is 

about poo. Imperfections in the objective reduce this required 
magnification somewhat. By equation (85) on page 89 the 

ratio of the brightness of the image to the normal brightness 
is for this case 

d2-a2 _ 

fi* V% ~ 

1 

20’ 

the radius p of the pupil of the eye being assumed as 2 mm. 

h. Experimental Determination of the Magnification and the 

Numerical Aperture.—The magnification may be determined 
by using as an object a fine glass scale and drawing with the 
help of a camera lucida its image upon a piece of paper placed 

at’ a distance of 2 5 cm. from the eye. The simplest form of 
camera lucida consists .of a little mirror mounted obliquely to 
the axis of the instrument, from the middle of which the silver¬ 
ing has been removed so as to leave a small hole of about 2 

mm. diameter. The image in the microscope is seen through the 
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hole, while the drawing-paper is at the same time visible in the 

mirror.* The ratio of the distances between the divisions in 
the drawing to those upon the glass scale is the magnification 
of the instrument. 

From the magnification and a measurement of the exit- 
pupil of the microscope its numerical aperture may be easily 

found. Since, according to the discussion on page 88, the 

ratio of the brightness of the image to the normal brightness is 

equal to the ratio of the exit-pupil to the pupil of the eye, it 
follows, from (85) on page 89, that 

H-f-fV*.^ 

in which b represents the radius of the 

numerical aperture is 
bV 

exit-pupil. Hence the 

• • (9) 

A substitution of the value of V from (7) gives 

a = b :/',.(10) 

i.e. the numerical aperture is equal to the ratio of the radius of 

the exit-pupil to the second focal length of the whole microscope. 

Abbe has constructed an apertometer which permits the 

determination of the numerical aperture of the objective 

directly. + 

4. The Astronomical Telescope.—This consists, like the 
microscope, of two convergent systems, the objective and the 

eyepiece. The former produces at its principal focus a real 

inverted image of a very distant object. This image is enlarged 
by the eyepiece, which acts as a simple magnifier. If the eye 

of the observer is focussed for parallel rays, the first focal plane 

of the eyepiece coincides with the second focal plane of the 

* Other forms of camera lucida are described in Mtiller-Pouillet, Optik, p. 839. 

f A description of it will be found in the texts referred to at the beginning of 

this chapter. 
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objective, and the image formation is telescopic in the sense 

used above (page 26), i.e. both the object and the image lie 

at infinity. The magnification F means then the ratio of the 

convergence of the image rays to the convergence of the object 

rays. But, by (24) on page 30, 

r= tan u' : tan « = /, :/2, . . . . (11) 

in which fx is the focal length of the objective and f2 that of 

the eyepiece. Hence for a powerful magnification fx must be 

large andjf small. 

The magnification may be experimentally determined by 

measuring the ratio of the entrance-pupil to the exit-pupil of 

the instrument. For when the image formation is telescopic, 

the lateral magnification is constant (cf. page 26), i.e. it is 

independent of the position of the object and, by (14') on page 

28, is equal to the reciprocal of the angular magnification. 

Now (without reference to the eye of the observer, cf. below) 

the entrance-pupil is the rim of the objective, hence the exit- 

pupil is the real image (eye-ring) of this rim formed by the 

eyepiece. Hence if the diameter of this eye-ring be measured 

with a micrometer, the ratio between it and the diameter of 

the objective is the reciprocal of the angular magnification of 

the telescope. 

Fig. 40 shows the configuration of the rays when a Rams- 

den eyepiece is used (cf. page 100). BxBt is the entrance- 

pupil (the rim of the objective), BXB2 the exit-pupil, and Px 

is the real image formed by the objective of an infinitely dis¬ 

tant point P. The principal ray is drawn heavy, the limiting 

ray light. Px lies somewhat in front of the field-lens of the 

eyepiece. The field-of-view stop GG is placed at this point. 

Since its image on the side of the object lies at infinity, the 

limits of the field of view are sharp when distant objects are 

observed. P' is the infinitely distant image which the eyepiece 

forms of P1. When the eye of the observer is taken into con¬ 

sideration, it is necessary to distinguish between the case in 

which the exit-pupil of the instrument is smaller than the 
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pupil of the eye and that in which it is greater. Only in the 

first case do the conclusions reached above hold, while in the 

second the pupil of the eye is the exit-pupil for the whole 

system of rays, and the image of the pupil of the eye formed 

by the telescope is the entrance-pupil. 

The objective is an achromatic lens which is corrected for 

spherical aberration. In making the eyepiece achromatic the 

same conditions must be fulfilled which were considered in the 

case of the microscope. Since the principal rays which fall 

upon the eyepiece are almost parallel to the axis, it is sufficient 

if it be achromatized with respect to the focal length. Hence 

the same eyepiece may be used for both microscope and tele¬ 

scope, but the Ramsden eyepiece is more frequently employed 

in the latter because it lends itself more readily to micrometric 

measurements. 

Here, as in the microscope, in order to bring out all the 

detail, the magnification must reach a certain limit beyond 

which no advantage is obtained in the matter of resolving 

power. In telescopes the aperture of the objective corresponds 

to the numerical aperture in microscopes. 

5. The Opera-glass.—If the convergent eyepiece of the 

astronomical telescope be replaced by a divergent one, the 

instrument becomes an opera-glass. In order that the image 

formation may be telescopic, the second principal focus of the 

eyepiece must coincide with the second principal focus of the 
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objective. Thus the length of the telescope is not equal to 

the sum, as in the astronomical form, but rather to the differ¬ 

ence of the focal lengths of the eyepiece and the objective. 

Since equation (n) of this chapter holds for all cases of 

telescopic image formation, the angular magnification r of the 

opera-glass may be obtained from it. This instrument, how¬ 

ever, unlike the astronomical telescope, produces erect images, 

for the inverted image formed by the objective is again inverted 

by the dispersive eyepiece. 

Without reference to the eye of the observer, the rim of 

the objective is always the entrance-pupil of the instrument. 

The eyepiece forms directly in front of itself a virtual diminished 

image of this rim (the exit-pupil). The radius of this image is 

^ = = F’.(I2) 

in which h is the radius of the objective. 

Since this exit-pupil lies before rather than behind the eye¬ 

piece, the pupil of the eye of the observer cannot be brought 

into coincidence with it; consequently the pupil of the eye acts 

as a field-of-view stop in case the quantity b determined by 

than the eye, which means that the normal magnification is 

exceeded. Hence for large magnifications the field of view is 

very limited. Fig. 41 shows the geometrical configuration of 

the rays for such a case. /, p represents the pupil of the eye, 

w' the angular field of view of the image. Since the image of 
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the field-of-view stop (the pupil of the eye), formed by the 

whole telescope lies at a finite distance, i.e. since it is not at 

infinity with the object, the edge of the field of view is not 

sharp (cf. page 76). 

But if the exit-pupil B^B£ — 2b of the instrument is larger 

than the pupil of the eye, i.e. if the normal magnification has 

not been reached, then, taking into account the eye of the 

observer, the pupil of his eye is the exit-pupil for all the rays, 

and the rim of the objective acts as the field-of-view stop. 

The field of view on the side of the image is bounded by the 

image ib of the rim of the objective (in Fig. 42 this is repre¬ 

sented by B^B{). Hence in this case the field of view may 

be enlarged by the use of a large objective. But again, for 

the same reason as above, the limits of the field of view are 

not sharp. Fig. 42 shows this case, w' being the angular field 

of view on the side of the image. 

If the radius of the pupil of the eye is assumed as 2 mm., 

then the paths of the rays will be those shown in 41 or 42, 

according as * 

k<2V mm; 

*The difference between these cases may be experimentally recognized by 

shading part of the objective with an opaque screen and observing whether the 

brightness of the image or the size of the field is diminished. 



112 THEORY OF OPTICS 

for example, for a magnification of eight diameters, 2h = 32 

mm. is the critical size of the objective. 

6. The Terrestrial Telescope.—For observation of objects 

on the earth it is advantageous to have the telescope produce an 

erect image. If the magnification need not be large, an opera- 

glass may be used. But since for large magnifications this 

has a small field of view, the so-called terrestrial telescope is 

often better. This latter consists of an astronomical telescope 

with an inverting eyepiece. The image is then formed as fol¬ 

lows: the objective produces a real inverted image of the 

object; this image is then inverted without essential change in 

size by a convergent system consisting of two lenses. The 

erect image thus formed is magnified either by a Ramsden or 

a Huygens eyepiece. 

7. The Zeiss Binocular.—The terrestrial eyepiece has an 

inconvenient length. This difficulty may be avoided by invert¬ 

ing the image formed by the objective by means of four total 

reflections within two right-angled prisms placed as shown in 

Fig. 4/3. The emergent beam is parallel to the incident, but 

has experienced a lateral displacement. Otherwise the con¬ 

struction is the same as that of the astronomical telescope. 

The telescope may be appreciably shortened by separating 

the two prisms I and II, since the ray of light traverses the 

distance between the prisms three times. By a suitable division 

and arrangement of the prisms the lateral displacement 

between the incident and the emergent rays may be made as 

large as desired. In this way a binocular may be constructed 
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in which the exit-pupils (the lenses of the objective) are much 

farther apart than the pupils of the eyes. Thus the stereo¬ 

scopic effect due to binocular vision is greatly increased. 

8. The Reflecting Telescope.—This differs from the refract¬ 

ing telescope in that a concave mirror instead of a lens is used 

to produce the real image of the object. For observing this 

image various arrangements of the eyepiece are used.* 

Reflecting telescopes were of great importance before achro¬ 

matic objectives were invented, for it is evident that concave 

mirrors are free from chromatic errors. 

To obtain the greatest possible magnification large mirrors 

with large radii of curvature must be used. Herschel built an 

enormous concave mirror of 16 m. radius of curvature. Since 

the visual angle of the sun is about 32', the image of the sun 

formed by it was 7 cm. in diameter. 

For further details cf. Heatli, Geometrical Optics, Cambr., 1895. 



PART II 

PHYSICAL OPTICS 

SECTION I 

GENERAL PROPERTIES OF LIGHT 

CHAPTER I 

THE VELOCITY OF LIGHT 

i. Ro'mer’s Method.—Whether light is propagated with 
finite velocity or not is a question of great theoretical impor¬ 

tance. On account of the enormous velocity with which light 

actually travels, a method depending on terrestrial distances 
which was first tried by Galileo, gave a negative result. For 

the small distances which must be used in terrestrial methods 

the instruments employed must be extremely delicate. 
Better success was attained by astronomical methods, which 

permit of the observation of the propagation of light over very 
great distances. The first determination of the velocity of 

light was made by Olaf Rdmer in 1675. He observed that 
the intervals of time between the eclipses of one of Jupiter’s 

satellites increased as the earth receded from Jupiter and 
decreased as it approached that planet. This change in the 

interval between eclipses can be very accurately determined 
by observing a large number of consecutive eclipses. Rdmer 
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found that the sum of these intervals taken over a period 

extending from the opposition to the conjunction of the earth 

and Jupiter differed by 996 seconds from the product of the 

number of eclipses and the mean interval between eclipses 

taken throughout the whole year. He ascribed this difference 

to the finite velocity of light. According to this view, then, light 

requires 996 seconds to traverse the earth’s diameter. Glase- 

napp’s more recent observations make the correct value of this 

interval 1002 seconds. The diameter of the earth’s orbit may 

be obtained from the radius of the earth and the solar parallax, 

i.e. the angle which the radius of the earth subtends at the sun. 

According to the most recent observations the most probable 

value of the solar parallax is 8.85". The radius of the earth 

is 6378 km., so that the diameter, d, of its orbit is 

d = 
2.6378 

8.85 

180-60-60 
-= 2973 • 10s km. 

Hence the velocity of light V is 

V = 296 700 km-/sec. = 2.967 • IO10 cm7sec. 

On account of errors in the determination of the solar parallax 

this value is uncertain by from | to 1 per cent. 

2. Bradley’s Method.—Imagine that a ray of light from 

a distant source P reaches the eye of an observer after passing 

successively through two holes and S2 which lie upon the 

axis of a tube R. If the tube R moves with a velocity v 

in a direction at right angles to its axis, while the source P 

remains at rest, then if the light requires a finite time to trav¬ 

erse the length of the tube R a ray of light which has passed 

through the first hole Sx will no longer fall upon the hole S2. 

Therefore the observer no longer sees the source P. In order 

to see it again he must turn the tube R through an angle a. 

Thus the line of sight to P appears inclined in the direction of 

the motion of the observer an angle £ such that 

tan C = v : V,.(1) 

in which V represents the velocity of light. 
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This consideration furnished the explanation of the aberra¬ 

tion of the fixed stars, a phenomenon discovered in 1727 by 

Bradley. He found that if the line of sight and the motion of 

the earth are at right angles, the line of sight is displaced a 

small angle in the direction of the earth’s motion. According 

to the most recent observations the value of this angle is 20.5". 

Since the velocity v of the earth in its orbit is known from the 

size of the orbit, equation (1) gives as the velocity of light 

V— 2.982-ioIocm-/sec. 

This method, like Romer’s or any astronomical method, 

is subject to the uncertainty which arises from the imperfect 

knowledge of the solar parallax and hence of the size of the 

earth’s orbit. 

The result agrees well with that obtained by Romer, a fact 

which justifies the assumption made in both calculations, that 

the rays, in passing through the atmosphere which is moving 

with the earth, receive from it no lateral velocity. Never¬ 

theless aberration cannot be completely explained in this 

simple way. From the considerations here given it would be 

expected that when a fixed star is viewed through a telescope 

filled with water the aberration would be greater, since, as will 

be shown later, the velocity of light in water is less than in 

air. As a matter of fact, however, the aberration is indepen¬ 

dent of the medium in the tube. In order to explain this a 

more complete investigation of the effect of the motion of a 

body upon the propagation of light within it is necessary. 

This will be given farther on. It is sufficient here to note 

that the phenomenon of aberration is capable of giving the 

velocity of light in space, i.e. in vacuo. 

3. Fizeau’s Method.—The first successful determination 

of the velocity of light by a method employing terrestrial dis¬ 

tances was made by Fizeau in the year 1849. An image of a 

source of light P is formed at /by means of a convergent lens 

and a glass plate p inclined to the direction of the rays (Fig. 

44). The rays are then made parallel by a lens Lx and pass 
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to the second lens Z2 distant from Lx 8.6 km. A real image 

is formed upon a concave mirror s whose centre of curvature 

lies in the middle of the lens Lr The mirror s returns the 

light back over the same path so that the reflected rays also 

form a real image at /. This image is observed through the 

obliquely inclined plate p by means of the eyepiece o. At /, 

where the real image is formed, the rim of a toothed wheel is 

so placed that the light passes freely through an opening, but 

is cut off by a tooth. If the wheel is rotated with small 

velocity, the image alternately appears and disappears. When 

the velocity is increased, the image is seen continuously on 

account of the persistence of vision. As the velocity of the 

wheel is still further increased, a point is reached at which the 

image slowly disappears. This occurs when, in the time re¬ 

quired by the light to travel from /to s and back, the wheel has 

turned so that a tooth is in the position before occupied by an 

opening. When the velocity is twice as great the light again 

appears, when it is three times as great it disappears, etc. From 

the velocity of rotation of the wheel, the number of teeth, and 

the distance between f and s, the velocity of light can easily be 

calculated. Fizeau used a wheel having 720 teeth. The first 

disappearance occurred when the rate of rotation was 12.6 
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revolutions per second. Since the distance between Lx and Z2 
was 8.633 km., the velocity of light was calculated as 

V= 3-I3*IOIoCm7sec. 

The principal difficulty in the method lies in the production 

and measurement of a uniform velocity of rotation. By using 
more refined methods of measurement Cornu obtained the 

value 

r= 2.9995.iolocm-/sec.> 

Young and Forbes the value 

V = 3.013- ioIocm-/sec# 

4. Foucault’s Method.—This method does not require so 
large distances as the above and is in several respects of great 

importance in optical work. 

Rays from a source P pass 
through an inclined plate p 

(Fig. 45) and fall upon the 

rotating mirror m. When this 
mirror in is in a certain position, 

the rays are reflected through 
the lens L* which is close to in 

and so placed that a real image 
of the source P is formed at a distance D upon a concave mir¬ 
ror s whose centre of curvature is at in. The mirror s reflects 

the rays back over the same path provided the mirror in has 
not appreciably changed its position in the time required for 
the light to travel the distance 2D. An image P' of the source 
P is then formed by the rays reflected from in, s, and p. But 

if, in the time required for the light to travel the distance 2D, 

the rotating mirror has turned through an angle a, then the 
ray returning from in to p makes an angle 2 a with the original 

ray and a displaced image P" is produced after reflection at p. 

* In Foucault's experiment the lens L was actually between the source P and 

Hie mirror m, instead of between m and j; but the discussion is essentially the 

same for either arrangement so long as L is close to m.—Tr. 
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From the displacement P'P'', the velocity of rotation of the 

mirror m, and the distances D and A, the velocity of light may 

be easily obtained. 

If A = 1 m., D = 4 m., and the mirror m makes 1000 

revolutions a second, then the displacement P'P" is 0.34 mm. 

By reflecting the light back and forth between five mirrors 

slightly inclined to one another, Foucault made the distance 

D 20 m. instead of 4. 

Theoretically this method is not so good as Fizeau’s, since 

it is necessary to measure not only the number of revolutions 

but also the small displacement P'P". However, by increas¬ 

ing the distance D to 600 m. Michelson materially improved 

the method, since in this way he obtained a displacement P'P" 

of 13 cm. without using a rate of revolution greater than 200 

a second. With Foucault’s arrangement it was not possible 

to materially increase D, because the light returned would be 

too faint unless the concave mirror s were of enormous dimen¬ 

sions. Michelson avoided this difficulty by placing the lens L 

so that m lay at its principal focus. In this way the principal 

rays of all. beams which are reflected by in to the lens L are 

made parallel after passage through L, so that D can be taken 

as large as desired and a plane mirror s perpendicular to the 

axis of L used for reflection. Thus the mirror need be no larger 

than the lens. From a large number of measurements Michel¬ 

son obtained 

V= 2.999-ioto cm-/sep. 

Newcomb also, by the method of the rotating mirror, 

obtained a result in close agreement with this. 

The mean of the values obtained by Cornu, Michelson, and 

Newcomb is 

V— 2.9989* ioTOCm-/sec., 

the probable error being only 1 : 10,000. Because of the errors 

introduced into the astronomical methods by the uncertainty 

of the solar parallax the results of these methods which depend 

on terrestrial distances are much more reliable. 
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In spite of this extraordinary velocity with which light 

travels, a velocity 900,000 times greater than that of sound in 

air, the time required for light to travel astronomical distances 

is sometimes considerable. This appears, for instance, from the 

observations of Romer, which show that it requires 8 minutes 

for light to travel from the sun to the ejirth. Since many 

years are required for the light of the nearest fixed stars to 

reach the earth (from a Centauri 3! years, from Sirius 17 

years), these great interstellar distances are usually reckoned 

in light-years. 

5. Dependence of the Velocity of Light upon the Medium 
and the Color.—The velocity of light is independent of the 

intensity of the source. This has been proved by very delicate 

interference experiments made by Lippich and Ebert. On the 

other hand the velocity does depend upon the medium in which 

the light is propagated. Foucault compared by his method the 

velocities in air and in water by placing two mirrors sx and s,z in 

front of the rotating mirror in and inserting between m and s2 

a tube of water 2 m. long. It was found that when the mirror 

m was rotated, the image reflected from the mirror experi¬ 

enced a greater displacement than that reflected from slt a 

proof that light travels slozver in water than in air. 

Quantitative measurements of the velocity of light in water 

and in carbon bisulphide have been made by Michelson. For 

the ratio of the velocities in air and in water he obtained 1.33; 

in air and in carbon bisulphide, white light being used, 1.77. 

The first number agrees exactly, the last approximately, with 

the observed indices of refraction. It is assumed (and in fact 

the wave theory demands it) that this result holds for all bodies. 

Hence the velocity of light in air must be somewhat smaller 

than in vacuum, since the index of air n= 1.00029. The 

number given above for the velocity of light which was obtained 

as a mean from the methods using terrestrial distances was 

reduced to vacuum by means of this factor. 

Since the index of all transparent media is smaller for the 

red rays than for the blue, it is to be expected that the veloci- 
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ties of the different colors in the same medium will he inversely 

proportional to the absolute index, provided the velocity in 

vacuum is independent o! the color. This, too, was proved 

directly by Michelson, who (bund the velocity of the red ray in 

water 1.4 per cent, in carbon bisulphide 2.$ percent greater 

than that of the blue. This agrees approximately with the 

results obtained by refraction. 

'Unit the velocity in vacuum is independent of the color is 

very decisively proved by the fact that at the beginning or the 

end of an eclipse Jupiter’s satellites show no color; also from 

the fact that temporary stars show no changes in color. 

because of the small dispersion of air there is practically 

no difference in the velocity of propagation of the different 

colors in it. 

6. The Velocity of a Group of Waves.—In the investiga¬ 

tion of the velocity of light in a strongly dispersive medium, 

like carbon bisulphide, there is an important correction to be 

made, as was first pointed out by Rayleigh. As will be seen 

in the next chapter, interfereme phenomena necessitate the 

assumption that light consists in a jteriodic change of a certain 

quantity jr, characteristic of the ether or the body considered, 

which, in view of the fact that the velocity of light is finite, 

may be written in the form 

s - A>m\ 2*{t - *,).(2) 

This is the equation of a so-called plane wave which is propa¬ 

gated with a velocity V along the a-uxis. T is the period, 

which determines the color of the light, and A is the amplitude, 

which determines the intensity. It is necessary to distinguish 

between the velocity V of a single wave and the velocity V 

of a group of waves. For example, in Fi/eau's method, at a 

definite point g in the |«th of the rays the light is alternately 

cut off and let through liecause of the rotation of the toothed 

wheel. Kven when the velocity of rotation of the wheel is 

great, the period T b so small that a large number of waves 
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pass g at each interval of transmission. It is the velocity of 

such a complex of waves which is measured by the experiment. 

The phenomenon can be approximately represented mathe¬ 

matically if it be assumed that two waves of equal amplitude 

but of slightly different periods Tx and T% and different veloci¬ 

ties Vx and V2 are superimposed. Then the following relation 

exists: 

in which 

i 

T = 2\T,~ tj TV ~ 2\TXVX 
J-S 
TVj' (4) 

Equation (3) now represents a light vibration of period T 

and periodically changing amplitude. The period T0 of this 

change of amplitude is 

1 1 1 

Tq= t~ t; * * 

Furthermore, if 

1 _ 1 1 

TjJ-Yy-TFx ’ 

• • • • (5) 

. ... (6) 

it follows from (3) that at a point x — l a maximum amplitude 

of the group of waves occurs l: U seconds after it has occurred 

at the point x = o. Hence U is the velocity of propagation 

of the group, the quantity which was measured in Fizeau’s 

experiment. 

Setting now T2 = Tx -f- dTx, V2 = Vx + dVx, and devel¬ 

oping to terms of the first order in dTx and dVx, there results 

from (5) and (6) 

u= vii T.dVX 
V,dTl (7) 
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In this equation Tx and Vx may, with the same degree 

of accuracy, be replaced by T and V, i.e. by the period and 

velocity of a single wave. 

Equation (7) shows that the velocity U of a group of waves 

such as is actually observed is somewhat smaller than the true 

velocity of light V, since in all transparent bodies V increases 

with T. This correction is negligible for air on account of the 

smallness of dV\ dT, but for the strongly dispersive medium 

carbon bisulphide it amounts to 7.5 per cent. Since a careful 

analysis shows that the method of the rotating mirror gives the 

value Uy it is easily understood why Michelson obtained the 

velocity in carbon bisulphide 1.77 times as great as the velocity 

in air, although the relative index of the two media is only 

1.64. Increasing 1.64 by 7.5 per cent gives a value in close 

agreement with Michelson’s observation, namely, 1.76. 

Romer’s method also gives the velocity U of a group of 

waves, while the astronomical aberration gives V directly. In 

these cases, however, there is no difference between the two 

quantities U and V, since there is no dispersion in space, i.e. 

no dependence of V upon color. 
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CHAPTER II 

INTERFERENCE OF LIGHT 

1. General Considerations.—Experiment shows that under 

certain circumstances two parallel or nearly parallel beams 

do not produce when superposed increased intensity, but rather 

disturb each other’s effects in such a way that darkness re¬ 

sults. In such cases the light-waves are said to interfere. 

Interference phenomena are divided into two classes: the 

first, that in which the beams have experienced only regular 

reflections and refractions; the second, that in which they have 

been bent from their straight path by diffraction. The former 

will be considered in this chapter, the latter under Diffraction. 

Nevertheless some of the interference phenomena discussed in 

this chapter, namely, those which are treated in §§ 3 and 4, 

and happen to be most easily produced, are somewhat modified 

by diffraction, while §§ 5, 7, 8, and 9 treat only of pure inter¬ 

ference phenomena, i.e. such as are not connected with diffrac¬ 

tion. 

2. Hypotheses as to the Nature of Light.—Theories as 

to the nature of light and the mathematical deductions depend¬ 

ing upon them have in the course of time undergone many 

changes. So long as nothing was known of the conservation 

of energy, every active agent which had the power of propa¬ 

gating itself and of persisting under changed conditions was 

looked upon as a substance. The fact that light travels in 

straight lines supported the assumption of its material nature, 

for light may indeed be stopped in its progress, but in general, 

when no obstacle is interposed, it moves on in straight lines. 

It was natural to look upon this as a consequence of the inertia 
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of a material body, Hence Newton supported the emUaon 

theory of light, according to which light consists of material 

particles which are thrown off with enormous velocities from 

luminous bodies and move in straight lines through space. In 

order to explain refraction it was necessary to assume that the 

more refractive bodies exert a greater attraction upon the light 

corpuscles, so that, at the instant at which such a particle falls 

obliquely upon the surface of a denser medium, it experiences 

an attraction which gives to the component of its velocity per¬ 

pendicular to the surface a larger value, and hence causes its 

path to approach the perpendicular. According to this theory, 

then, the velocity of light must be greater within a strongly 

refracting hotly than in the surrounding medium. This fact 

alone suffices for the overthrow of the emission theory, for it 

was shown on page 120 that the velocity of light is less in water 

than in air. Besides, the difficulties of explaining the phenom¬ 

ena of interference from the standpoint of the emission theory 

are enormous. But these very interference phenomena furnish 

a direct confirmation of an essentially different theory as to the 
nature of light, namely, the untiuhth't y theory developed by 

Huygens. 

According to this theory, light possesses properties similar 

to sound. It consists in a periodic change of a certain quantity 

s characteristic of the hotly (or of empty space) through which 

the light is passing. This change is propagated with finite 

velocity so that, if the values which s has at any instant along 

the path of the ray be plotted as ordinates, the ends of these 

ordinates form a wnve-shapnl curve. 

What is the nature of this quantity s whose jx*rimlic 

changes are the essence of light can t*e left for the present 

altogether undecided. In accordance with the mechanical 

theory of light, spice is conceived to be fillet! with a subtle 

elastic medium, the ether, and s is the displacement of the 

ether particles from their petition of equilibrium. But so 

specific an assumption is altogether unnecessary. It is suf¬ 

ficient if, in order to analytically represent the light disturb- 



periodic variation of the quantity s at the point P be introduced 

by means of an equation of the form 

j = A sin(27Ty dj, . . . . (i) 

in which t is the time, while A, T, and d are constants. A is 

the amplitude, T the period of the quantity s. T varies with 

the color of the light, while A determines the intensity of 

illumination J* of a screen placed at P. It may in fact be 

shown that 

J=A>.. (2) 

For it follows from all theories of light that the amplitude 

A of the light emitted from a point source is inversely propor¬ 

tional to the distance r from the source Q. Since now experi¬ 

ment shows that the intensity of illumination is inversely 

proportional to P (cf. page 79), it follows that J is represented 

by the square of the amplitude. 

If the light travels with a velocity V from a point P to a 

point P' at a distance r from P, the time required to traverse 

this distance r is t' — r : V. If (1) represents the condition 

at A, then the condition at P' is represented by 

/ t — r!V \ 
s'= A'sin [2*---|-dy, ... (3) 

for s' is always in a given condition of vibration r : V seconds 

after s has been in that same condition. The condition of the 

vibration, i.e. the argument of the periodic function, is called 

the phase. 

If from a point source Q light radiates uniformly in all 

directions, equation (3) evidently holds for every point P' which 

is at a distance r from Q. Any spherical surface described 

about ^ as a centre contains, then, only points in the same 

* Tliis quantity j is called the intensity of light at the point P. It is impor¬ 

tant to distinguish between J and the intensity of radiation i of the source Q as de- 

fined on page 82. 
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phase. Such surfaces, which contain only points in the same 

phase, are called wave surfaces. The wave surfaces spreading 

out from a point source Q are then concentric spherical sur^ 

faces, and the rays emanating from Q are the radii of these 

surfaces and are therefore perpendicular to them. The greater 

the distance of the source, the less curved are the wave surfaces 

and the more nearly parallel the rays. The wave surfaces of 

a parallel beam are planes perpendicular to the rays and 

parallel to each other. Hence such waves are called plane 

waves. They exist when the source Q is infinitely distant or 

at the focus of a convergent lens which renders the emergent 

rays parallel. 

Introducing the term A. defined by 

T-V=l,.(4) 

(3) becomes 

= ... (5) 

i.e. at a given time, s' is periodic with respect to r and its 

period is X. This period X, which is the distance at a given 

instant between any two points along r which are in the same 

phase, is called the wave length. 

The table on page 128 gives the wave lengths in air of 

various light, heat, and electrical waves. These values are 

determined from interference or diffraction phenomena. 

The wave theory furnishes the simplest possible explana¬ 

tion of interference phenomena. On the other hand it has 

considerable difficulty in explaining the rectilinear propagation 

of light. In this respect the analogy between sound and light 

seems to break down, for sound does not travel in straight 

lines. The explanation of these difficulties will be considered 

in detail in the next chapter. This analogy between sound 

and light presents still further contradictions when polarization 

phenomena are under consideration. It was these contradic¬ 

tions which prevented for a long time the general recognition 

of the wave theory in spite of the simple explanation which it 
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offers of interference. The difficulties were not removed until 

a too close analogy between sound and light was given up. 
This point, too, will be considered in a later chapter. Here 
the explanation of refraction as furnished by the wave theory 

will be briefly presented. 
If a plane wave is incident obliquely upon the surface of a 

refracting body, the normal to the wave front is bent toward 
the perpendicular to the surface if the velocity of light in the 

body is less than in the surrounding medium, .which will in 

general be assumed to be air. Upon the incident wave front 
consider one point A which lies upon the surface, and another 

WAVE LENGTHS. 

Kind of Light. A in mra. 

0.000185 

Slue hydrogen line.. 0.000486 

0.000589 

0.000656 

0.000812 

Y^llrmr s?nHinm line. 

Red hydrogen line. 

Limit of visible light in the red. 

Longest heat-waves as yet detected. 0.06 

Shortest electric waves. 6 

point B which is still outside in the air. If now the wave from 

A travels more slowly than that from B, it is evident that the 
wave front, which is the locus of the points at which the light 
has arrived in a given time, must be bent upon entrance into 

the refracting medium in such a way that the normal to the 
wave front (the ray) is turned toward the perpendicular. 
Hence the wave theory requires the result given by experi¬ 
ment that the velocity of light is smaller in water than in air. 

The more exact determination of the position of the refracted 
wave front will be given in connection with the discussion of 
Huygens’ principle, and again more rigorously in Chapter I of 

Section 2. Here but one important result will be mentioned, 

namely: When light passes from a medium A to a medium B 
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the index of refraction is equal to the ratio of the velocities of 

light in A and B. ' 

It was shown on page 6 that the fundamental laws of 

geometrical optics are all included in the one principle of the 

extreme path. This principle gains a peculiar significance from 

the wave theory. Since the index of a body with respect to 

air is inversely proportional to the velocity of light in the body, 

the optical path nl is proportional to the time which the light 

requires to travel the distance /. The law of extreme path 

asserts, then, that light in travelling between any two points P 

and P' chooses that path which is so situated that all infinitely 

near paths would be traversed in the same time. Thus the 

law of least path becomes the law of least time. 

The nature of a ray of light may be looked upon from the 

standpoint of the wave theory in the following way: Elemen¬ 

tary disturbances travel from P to P' over all possible paths. 

But in general they arrive at P' at different times, so that the 

phases of the individual disturbances do not agree at P'f and 

hence no appreciable effect is produced. Such an effect will, 

however, immediately appear as soon as the beam is made 

infinitely narrow, for then the time of propagation between P 

and P' is the same, so that the elementary disturbances all 

have the same phase at P'. Hence such an infinitely thin beam 

marks, out the path of the light, i.e. the effect at P' is cut off 

by introducing an obstacle in the way of the beam. 

These considerations, however, are not so conclusive as to 

make it superfluous to place the fundamental laws of geomet¬ 

rical optics upon a more rigorous analytical basis. The first 

question to be answered is this: If light and sound are both 

wave motions why is there a difference in the laws of their 

propagation ? This question will be answered in the next 

chapter. 

The wave theory makes it possible to drop altogether the 

concept of rays and to calculate the optical effect of reflecting 

and refracting bodies from a consideration of the wave surface. 

In the case of a point source P, for example, the wave surfaces 
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in the medium surrounding P are spherical. If the rays are to 

be homocentrically focussed at P' by means of refraction by a 

lens, the wave surfaces must after passage through the lens be 

concentric spherical surfaces with their centre at P'. 

Since the rays are the normals to the wave surfaces, the law 

of Malus follows at once from the wave theory, because reflec¬ 

tions and refractions can have no other effect than to deform 

in some way the wave surfaces. 

3. Fresnel’s Mirrors.—From the standpoint of the wave 

theory interference phenomena are explained simply by the 

principle of the superposition of simultaneous values of the 

quantity s. Thus if a source Qx produces at a point P a dis¬ 

turbance 

*1 = .4, sin - J), .... (6) 

while a source Q2 produces at the same point a disturbance 

s2=A2 sin27r^-^, .... (7) 

then, by the principle of superposition, which is applicable 

provided the rays passing from Qx and Q2 to P have a small 

inclination to one another,* the resultant disturbance is 

s = si + -*2.(8) 

Now this sum may be put into the form 

s = A sin^2 7t-^ — d^, . . . 

by setting 

A cos d = Ax cos 2n~ -f- A2 cos 2 7rp, 

A sin d = Ax sin 2-j- A2 sin 

* That this limitation is necessary will be evident from a later discussion in 

which it will be proved that j is a directed quantity, i.e. a vector. 
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in which the quantity A represents the amplitude of the result¬ 

ing disturbance. 

Squaring and adding the two equations (io) gives for the 

intensity of the resultant light at the point P 

J= A* = A* A* + 2A,A2 cos 2 7t(pCZjjj' . (u) 

The quantity 2 n = A is, by (6) and (7), seen to be 

the phase difference of the separate disturbances, and the 

meaning of equation (11) may be stated as follows (Fig. 46): 

The resultant amplitude A is equal to the third side of a tri¬ 

angle whose other two sides are A1 and A2 and include between 

them the angle n — A, in tv hieh A is the difference of phase 

between the two disturbances. 

According to this proposition it is evident that maxima and 

minima of light intensity depend upon the difference of phase 

Af the former occurring when A = o, 27ty _j~ 47^ etc., the 

latter when A = -f~ ?r, _f~ 3^, etc. Entire darkness must 

result at a minimum if Ax = Ar 

These conditions are realized in the Fresnel-mirror experi¬ 

ment in which two'virtual sources 

Ql and Q2 (Fig. 47) are produced 

by reflecting light from a single 

source Q upon two mirrors F and 

S' which are slightly inclined to 

one another. In the space illumi¬ 

nated by both of the sources interference occurs.* From the 

calculation above there will be darkness at a point P if 

X 3 A. 
rl — r2=±~, ± —, etc. . . . (12) 

Considering only such positions of the point P as lie on a line 

parallel to QXQ2 (Fig. 47), then if d represent the distance 

* This space will be considerably diminished if the mirror S projects in front 

of the mirror S'. Hence care must be taken that the common edge of the mirrors 

coincides with their line of intersection. 

A, 
Fig. 46. 
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between Qx and Q2, a the distance of the line d from the line 

PqP, and p the distance of a point P from the point jPq , which 

lies on the perpendicular erected at the middle of d, 

r* = cd + (id + p)\ r.* = a2 + (id - p)\ 

i.e. r* - r2 = (rx + r2)(rx - r2) = 2dp, 

or since rx -f- r% is approximately equal to 2 a when p and d 

are small in comparison with a, it follows that 

rx — r2 = dp : a, 

i.e. darkness occurs at the points 

A, , a 3A. 
p. 

d ' 2 ’ ±d't 

. 
2 ’ 

(13) 

Hence, if the light be monochromatic, interference fringes 

will appear on a screen held at a distance a from the line d, 

and the constant distance between these fringes will be ak : d. 

If white light is used, colored fringes will appear upon the 

screen since the different colors contained in white light, on 

account of their different wave lengths, produce points of maxi¬ 

mum and minimum brightness at different places upon the 

screen. But at the point PQ there will be no color, since there 

all the colors have a maximum brightness (rx — r2 = o). 

The distance d between the virtual sources may be calcu¬ 

lated from the position of the actual source Q with respect to 

the mirrors and the angle between the mirrors. This angle 

must be very small (only a few minutes) in order that d may 



INTERFERENCE OF LIGHT i33 

be small enough to permit of the separation of the interference 

fringes. Since (13) contains only the ratio a : d, it is merely 

necessary to measure the angle subtended at PQ by the two 

images Qx and Qr 

Instead of receiving the interference pattern upon a screen, 

it is possible to observe it by means of a lens or by the eye 

itself, if it be placed in the path of the rays coming from Qx 

and Q2 and focussed upon a point P at a distance a from those 

sources.* Fig. 48 shows an arrangement for making quanti¬ 

tative measurements such as the determination of wave lengths. 

A cylindrical lens l brings to a line focus the rays from a lamp. 

This, acting as a source Q, sends rays to both mirrors 5 and 

Fig. 48. 

S', whose line of intersection is made parallel to the axis of the 

cylindrical lens. The direct light from Q is cut off by a screen 

attached to the mirrors and at right angles to them. The 

* If the eye be focussed with or without a lens upon P, the two interfering 

beams reach the image of P upon the retina with the same difference of phase 

which they have at P itself, since the optical paths between P and the retinal 

image are the same for all the rays. Hence the intensity upon the retina is zero 

if it would be zero upon the corresponding point of a screen placed at P. 
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interference fringes are observed by means of a micrometer 

eyepiece L which is movable by the micrometer screw K. 

The question arises whether interference fringes might not 

be more simply produced by using as sources not the two 
virtual images of a real source, but two small adjacent open¬ 

ings in a screen placed before a luminous surface. 

In this case no interference phenomena are obtained even 
with monochromatic light such as a sodium flame. For if two 

sources are to produce interference, their phases must always 

be either exactly the same or else must have a constant dif¬ 

ference. Such sources are called coherent. They may always 
be obtained by dividing a single source into two by any sort of 
optical arrangement. With incoherent sources, however, like 

two different points of a flame, although the difference of phase 

is constant for a large number of periods, since, as will be 

shown later, a monochromatic source emits a large number 
of vibrations of constant period, yet irregularities in these 

vibrations occur within so short intervals of time that separate 

impressions are not produced in the eye. Thus incoherent 
sources change their difference of phase at intervals which are 

extremely short although they include many millions of vibra¬ 
tions. This prevents the appearance of interference. 

As was remarked pn page 124, diffraction is not entirely 

excluded from this simple interference experiment. All the 
boundaries of the mirrors can give rise to diffraction, but 

especially the edge in which the two touch. In order to avoid 
this effect it is desirable that the incident light have a consider¬ 
able inclination to the mirrors (say 45°), and that the point of 

observation be at a considerable distance from them. Also 

the angle between the mirrors must not be made too small. 
In this way it is possible to arrange the experiment so that the 

extreme rays which proceed from Qx and Q2 to the common 
edge of the mirrors are removed as far as possible from the 
point of observation P. 

4. Modifications of the Fresnel Mirrors.—The considera¬ 
tions advanced in paragraph 3 are typical of all cases in which 
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interference is produced by the division of a single source into 

two coherent sources Qx and Qr This division may be brought 

about in several other ways. The Fresnel bi-prism, shown in 

cross-section in Fig. 49, is particularly convenient. The light 

from a line source Q which is parallel to the edge B is refracted 

by the prism in such a way that two coherent line sources Qx 

and Q2 are produced. 

If such a prism be placed upon the table of a spectrometer 

so that the edge B is vertical, and if the vertical slit of the 

collimator focussed for parallel rays be used for the source, then 

two separate images of the slit appear in the telescope of the 

spectrometer. The angle a between these images may be 

read off upon the graduated circle of the spectrometer when 

the cross-hairs have been set successively upon the two images. 

This angle a is the supplement of the angle ABC (Fig. 49) 

which the two refracted wave fronts AB and BC make with 

each other after passage through the prism. If the telescope 

be removed, dark fringes may be observed at any point P for 

which (cf. 12) rx — r2 = ± ^A, J-A, etc., in which rx and r2 are 

the distances of the point P from the wave fronts AB and BC. 

From the figure it is evident that 

rx = b sin (.ABP), r2 = b sin (CBP), 

, ABC . . 
r, — rn — 20 cos-sm <p. 1 2 9 

hence 
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The angle 0 is very small so that sin 0 = tan 0 = p : a. 
Furthermore ABC = ?r — a, and since b = a approximately, 

and sin a = a, it follows finally that 

rx — r^ — a-p. 

Thus the relative distance between the fringes is A. : a, i.e. 

it is independent of a. Since a has been measured by the 
telescope, the measurement of the distance between the fringes 

furnishes a convenient method of determining A. 
Billet’s half-lenses (Fig. 50), which produce two real or 

virtual images of a source Q, are similar in principle to the 

Fig. 50. 

Fresnel bi-prism. The space within which interference occurs 
is shaded in the figure. 

5. Newton’s Rings and the Colors of Thin Plates.-^-Suf¬ 
ficiently thin films of all transparent bodies show brilliant colors. 
These may be most easily observed in soap-bubbles, or in thin 

films of oil upon water, or in the oxidation films formed upon 
the heated surfaces of polished metals. 

The explanation of these phenomena is at once evident as 
soon as they are attributed to interference taking place between 
the light reflected from the front and the rear surface of the 
film. 

Consider a ray AB of homogeneous light (Fig. 51) incident 
at an angle 0 upon a thin plane parallel plate of thickness d. 
At the front surface of the plate AB divides into a reflected 

ray BC and a refracted ray BD. At the rear surface the latter 
is partially reflected to B' and passes out of the plate as the 

ray B'C'. The essential elements of the phenomena can be 
presented by discussing the interference between the two rays 
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SC and ITC only. If these two rays are brought together at 

a point on the retina, as is done when tin* eye is focussed for 

parallel rays, the impression produced is a minimum if the 

phase of the ray SC differs from that of B’C’ by ar, 3 jr, $7r, 

etc. 
Of course few a complete calculation of the intensity of the 

reflected light all the successive reflections which take place 

between the two .surfaces must be taken into account. Thin 

rigorous discussion will hr given in Section II, Chapter II, 

| n. It h at once apparent that the introduction of these 

repeated reflections will not essentially modify the result, since 

the intensity of these rays is much smaller than that of SC and 

B'C\ which have experienced but one reflection. 

If a perpendicular B'F, l»e dropped from B* upm B(\ the 

two rays BC and B'( would have no difference of phase if the 

phase at U' were the same as that at H, The two rays would 

then come together at a jwint u|xm the retina in the same 

phase. The difference of phase between the points li and if 

is identical with the difference of phase between the rays BC 
and B'CL 
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But the difference of phase between B' and E is 

provided A/ represents the wave length of the light within the 

plate, A. its wave length in the surrounding medium. If now 

the angle of refraction be denoted by X, then 

BD = B'D = d : cos X, BE = BB’ sin 0 = 2d tan x sin 0; 

further, A.: A' =. n (index of the plate with respect to the sur¬ 

rounding medium). Hence 

A = 
27t-2d i 
—Y7—\-tan 

y Vos X 
X 

sin 0 \ 

n r 

or, since from the law of refraction sin 0 = n sin X, 

A = 
2ft • 2d 

A? cos X- (14) 

An important correction must be added to this expression. 
(14) gives the difference in phase produced between the rays 

BC and B’C by the difference in the lengths of their optical 

paths. But there is another difference between the two rays. 
BC has undergone reflection as the light passed from air to the 

plate, B'C as it passed from the plate to air. Now in 

general a change of phase is introduced by reflection; and 
since the reflection of the two rays occurs under different con¬ 
ditions, a quantity A' must be added to the difference in phase 
as given in (14). This quantity A' depends solely upon the 

reflection itself and not at all upon the difference in the lengths 
of the optical paths. Hence (14) becomes 

4 = 2ft~cos x + 4'.(15) 

A definite assertion may be made with respect to this 
quantity A' without entering any farther into the theory of 
light. Consider first the case in which the thickness d of the 

plate gradually approaches zero. According to (14) po differ- 
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cnee of phase would then occur between FC and JVC \ they 

should therefore reinforce each other. But this effect cannot 

take place, because a plate of thickness d . . o is no plate at all 

anti the homogeneity of the space would not be disturbed if, 

as will be assumed, the medium above ami below the plate is 

the same, for instance air; and hence no reflection of light can 

take place. For reflection can only take place when there is 

a change in the homogeneity of the medium; otherwise light 

could never travel with undiminished intensity through a homo¬ 

geneous transparent medium like the ether. Hence for d: ■ o 

complete interference of the two rays Ft' and F t" must take 

place so that no reflected light whatever is obtained. Since 

in this case (*/ t») i. it follows from (15) that 

.(16) 
Whether J be taken as equal to »f* at, or — nt or 3** 

etc., is immaterial for this discussion, since the addition of 2«’ 

to the phase of a ray produces no change whatever in its con¬ 

dition of vibration. 
In consideration of fib) and {15) it is evident that a mini¬ 

mum of Intensity occurs when 

2#/ # , 
jp Cc»H X O, 1,3,... . . . . (i;) 

The light transmitted by the plate must likewise show 

interference effects. Since it is assumed that no absorption 

takes place within the plate, the transmitted light must be of 

the same intensity as the incident light if the intensity of the 

reflected light is zero. On the other hand, the transmitted 

light must have a minimum of intensity when the reflected light 

is a maximum. This occurs for plates whose thicknesses lie 

midway between the thicknesses determined by (17), for then 

the two reflected rays FC and B'i" are In the same phase. 

Nevertheless the minima in the transmitted light are never 

marked, since the reflected light is always but a small portion 

of the incident light. The quantitative relations between the 

reflected and the transmitted jxirtion* can only be deduced 
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after a more complete treatment of the theory (cf. Section II, 

Chapter II). 
If the plate be wedge-shaped instead of plane parallel, it 

must be crossed, when viewed by reflected light, by dark 
interference bands which are parallel to the edge of the wedge 

and lie at those places where the thickness d of the wedge 

corresponds to (17). In order that the fringes may appear 
separate it is evident that, because of the smallness of H} the 
angle of the wedge must be small. Nevertheless these fringes 

cannot be perceived unless a broad source be used, for light 

from a point source is reflected to an eye placed at a particular 

point and focussed for parallel rays only from a single point of 

the wedge. 
By proper focussing of the eye sharp interference fringes 

may be seen when the source is broad. In order to be able 
to form a judgment as to the visibility of the interference fringes 

in this case it is necessary to bear in mind the fundamental law 
stated above in accordance with which only those rays are 

capable of interfering which are emitted from one and the same 

point of the source, since only such rays are coherent. 
Now it is evident that every point P situated anywhere in 

front of the plate or the wedge will be the intersection of two 

coherent rays emitted from a point Q of the source, the one 

reflected from the front, the other from the rear, surface. In 
general these rays start from Q in slightly different directions, 

but they are brought together at a point P' upon the retina if 
the eye is focussed upon the point of intersection P. In this 

case an interference between these two waves might be 
detected. But there are many other pairs of coherent rays 

emitted from other points Q', Q", etc., of the source, which 
intersect at the same point P. In general these rays pass 
through the wedge at different places and with different incli¬ 

nations, and hence have various differences of phase at P. 

Therefore when the eye is focussed upon P the interference 

phenomena are either indistinct or else disappear entirely. 

Interference is perceived with the greatest clearness only when 
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all the pairs of coherent rays which proceed from the different 
points of the source and intersect at P have the same differ¬ 

ence of phase. The locus of the points P for which this con¬ 
dition is fulfilled is the surface of best visibility of the inter¬ 

ference pattern. This locus is a continuous surface and has a 
complicated form if the incident light is very oblique. 

But, for nearly perpendicular incidence, the solution for a 
thin wedge is simple. In this case, with a broad source, the 

interference fringes appear most clearly when the eye is focussed 

upon the wedge itself. If the eye is focussed upon a point P 

of the wedge (Fig. 52), QPC and QBDPC' are two coherent 
rays which are brought together upon a point of the retina. 
These rays have a certain difference of phase, which depends 

only upon the thickness d of the wedge (say of glass) at the 

point P, and which from (15) and (16) may be written, since 

0 and therefore also (for a thin wedge) x differ but little from 

zero, 

. 2d , 
A = 4- It. 

But every pair of coherent rays emitted by the other points 

Q'y Q'\ etc., of the source, and intersecting in P, have the 
same difference in phase, since for all rays the angle of inci¬ 

dence 0 and also X is to be taken so small that cos x — I-* 

*This is only permissible when the thickness d of the wedge is not too great. 

When d is very large, for example, several thousand wave lengths, the change in x 
for the different pairs of wave lengths must still be taken into consideration. The 

interference then becomes indistinct. 
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Thus with nearly perpendicular incidence 

source the interference figure lies within the wcdgi * 

In order to observe interference in a film of e*1 

ness, Newton pressed a slightly convex lens upon ‘ 

surface. The thin layer of air between the lens 
gives rise to concentric interference circles wlme4*r 

increase as the square roots of the even numbers, 

Fig. 53- 

a photograph of the effect produced by white li|£ li 
homogeneous light the rings extend to the very e«tj 

plate. 
Illuminated by white light, a thin plate appear M 

for all those colors whose wave lengths A. satisfy {if % 

ing. But when the thickness of the plate is corwltfis* 
colors which are cut out extend in close succession 

whole spectrum, hence the colors which remain |i 
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mixture which cannot be distinguished from white light. Also 
the color of the plate is not brilliant when it is too thin, because 

in this case all the colors are present to a greater or less 
extent. The colors are most brilliant for certain mean thick¬ 

nesses, which for air films lie between 0.00016 mm. and 0.0008 
mm. Such colors are naturally not pure spectral colors, since 

they arise from cutting out certain regions of color from the 
whole spectrum. In Newton’s arrangement the rings show in 
close succession all the colors of thin plates. 

If the incident light is made more oblique, the plate 

changes color. For the presence of the factor cos x in (17) 
shows that increasing the obliquity of incidence of the light 

has the same effect as diminishing d in the case of perpendicular 
incidence. 

The color of the light transmitted by the plate is comple¬ 

mentary to that of the reflected light, since the sum of the two 

must be equal to the incident light. Nevertheless the color of 
the transmitted light is never so saturated as that of the reflected 

light, because in the transmitted light a color is never com¬ 
pletely cut out, but only somewhat weakened. 

The color shown by a thin film in reflected light furnishes 

a very delicate means of determining its thickness, provided 
the index of refraction of the film be known. Only the knowl¬ 
edge of the thickness of a film of air which shows the same 

color is required. This knowledge may be obtained from 
Newton’s rings or, as will be seen later, from the optical 

properties of crystals. 

Interference has also been applied to the determination of 

the thermal expansion of bodies in the A bbe-Fizeau dilatometer. 

With this instrument * the change caused by thermal expan¬ 

sion in the distance between the surface 02 of a glass plate and 
a polished surface Ox of the body is measured by the change 

in the interference figure which is formed between the two 
surfaces Ox and Ov 

* Cf. Pulfrich, Ztschr. Instrk. 1893, or Mttller-Pouillet, Optik, p. 924. 
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6. Achromatic Interference Bands.—In order that an 
interference band may be achromatic it is necessary that at the 

place at which it is formed the difference of phase A of the 

interfering rays be the same for all colors. Whether the band 

is bright or dark depends upon the value of A. Thus in 

Newton’s apparatus the central spot is black in reflected light, 

since there the interfering rays of all colors have the same 
difference of phase A — 7t. But if the interference pattern be 

observed through a prism, the central spot no longer appears 

achromatic, but the position of achromatism is at the point 

at which A varies very little or not at all with the color, i.e. at 

the point at which , 

chd _ 
3 A. “ 

(i 8) 

in which A is the wave length of the color in air.* With a 
strongly dispersive prism the achromatic position may be quite 

a distance from the central spot. 
Likewise if a thin plate, for example mica, be introduced 

before one side of a Fresnel bi-prism, the interference pattern 

is changed. In this case, too, the achromatic fringe is not at 
the place for which A = o as it was before the introduction of 

the plate, but at the place for which (18) is satisfied. The 
reason of this is that the thin plate, because of the dependence 
of its index upon the color, produces retardations of a different 

number of waves for the different colors. 

7. The Interferometer.—Interference fringes due to small 
differences of path may be produced not only with thin films 
but also with thick plates by using differential effects between 

two of them. Jamin’s form of instrument consists in two 
equally thick plane parallel glass plates Px and P2 (cf. Fig. 54) 
placed almost parallel to each other and at a large distance 
apart. A ray of light LA is split up into two rays ABODE 

* More accurately this equation should be written = o, in which T is the 

period. If tie small dispersion of the air be neglected, this is identical with (18). 
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and AB'C'D'E', which are in condition to interfere if the two 

emergent rays DE and D'E are again brought together at a 

point. Since these two rays are parallel, the eye or the tele¬ 

scope which receives them must be focussed for parallel rays. 

In order to obtain greatest intensity the source is placed in the 

focal plane of a convergent lens so that the beam LA which 

falls upon the plate Px is parallel. It is furthermore of advan¬ 

tage to silver the plates upon their rear surfaces. The differ¬ 

ence of phase between the rays C'D' and AB is, by (15), 

cos Xi + 4', in which Xx represents the angle of refraction 

in the plate Pv The rays D'E' and DE have, in addition, the 

[\ird \ 
difference of phase — ^-^-7- cos x2 + A J, in which x2, the 

angle of refraction of the plate P2, differs slightly from that of 

the plate Px, since Px and P2 are not exactly parallel. The 

total difference of phase between D'E' and DE is therefore 
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and since cos Xx — cos X2 varies somewhat with the inclination 

of the beam LA, the field of view at E E' will be crossed by 

interference fringes. 

The chief advantage of this form of interferometer lies in 

the fact that the two interfering rays AB and C'D' are sep¬ 
arated considerably from one another provided thick plates are 

used and the incidence is oblique (50° is most advantageous). 

This instrument is capable of measuring very small variations 
in the index of refraction. If, for example, two tubes, closed 

at the ends with plates of glass, be introduced, the one in the 

path AB, the other in C'D', and if the index of refraction of 
the air in one tube be changed by varying either the tempera¬ 

ture or the pressure, or if the air in one tube be replaced by 

another gas, the interference fringes move across the field of 
view. The difference of the indices in the two tubes may be 

determined by counting the number of fringes which move 
across some mark in the field of view, or by introducing, by 

means of some sort of a compensator, a known difference of 
phase, so that the fringes return to their original position. 

Such a compensator may consist of two equally thick plates of 
glass, px and p2, which are movable about a common axis and 

make a small angle with one another (Jamin’s compensator). 
The ray AB passes through pi alone, the ray C'D' throughpr 

The difference of phase which is thus introduced between the 
two rays depends upon the inclination of the plate px to ABA 

With Jamin’s instrument it is not possible to produce a 

separation between the two rays of more than 2 cm. A much 

larger separation may be obtained if, as in Zehnder’s instru¬ 
ment,t four nearly parallel plates be used. According to 

Mach X it is advantageous to replace two of these plates by 
metal mirrors and 52. Fig. 55 shows Mach’s arrangement. 

He also introduced a device for increasing the intensity of the 

* For the more rigorous calculation cf. F. Neumann, Vorles. fiber theor. 

Optik (Leipzig, 1885), p. 286. 

| Cf. Zehnder, Ztscbr. Instrkd. 1891, p. 275. 

\ Mach, Wien. Ber. 101 (H.A.), p. 5, 1892. Ztscbr. Instrkd. 1892, p. 89. 
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light. In the arrangements shown in Figs. 54 ami 55, the rays 

coming to the eye at li are of small intensity because they have 

undergone one reflection at a glass surface and have thus been 

materially weakened. In Fig. 55 the rays from „S\, which 

/, 

F»ti, 53. I'm v«. 

pass through PI\ are much more intense than those which are 

reflected from EI\ to /*.. 'I his difTn ulty t an he diminished 

by increasing the reflecting power of the glass .urf.nr, This 

is done by defKisiting a thin film of silver or gold upon the sur» 

face, the most favorable thickness of such a film being that for 

which the intensity of the reflected light is eejual to that of the 

transmitted. But with the arrangement shown in Fig, 55 it is 

not necessary to use two plates I\ ami J\ of finite thickness in 

order to produce interference; it is suffk lent if, instead, the 

division of the ray into a reflected ray and a transmitted ray is 

accomplished by means of a thin film of metal This may ttr 
done by pressing together the partially silvered hyf*othrmwe sur¬ 

faces of two right-angled glass prisms, The reflections u§t»n the 

mirrors Sx and St may be replaced by total reflections tifmn the 

unsilvered surfaces of right-angled glass prfom*. Finally these 

latter prisms may be united with the prisms which divide the 



148 THEORY OF OPTICS 

light so as to form single pieces of glass. Thus Fig. 56 shows 
Mach’s construction of the interferometer, in which to the two 

equal glass rhombs Kx and K2 the two prisms Kx and K2 are 
cemented with linseed oil, the surfaces of contact Px and P% 

being coated with a thin film of gold. The rays are totally 

reflected at the inclined surfaces and 52. When the two 

rhombs Kx and K2 are set up so as to be nearly parallel to each 

other, an eye at E sees interference fringes. 

8. Interference with Large Difference of Path.—If the 

Newton ring apparatus be viewed in monochromatic light, such 

as is furnished by a sodium flame, the interference rings are 

seen to extend over the whole surface of the glass. This is a 

proof that light retains its capacity for interference when the 

difference of path is as much as several hundred wave lengths. 
How far this difference of path can be increased before the 

interference disappears is a question of the greatest importance. 

This question cannot be answered by simply separating the 

two plates of the Newton ring apparatus farther and farther 
and focussing the eye or the lens upon the surface Ox of one of 

the plates, for, in accordance with the note on page 141, the 
interference fringes would soon become indistinct on account 
of the changing inclination of the coherent pairs of rays which 

intersect at a point of the surface Ov It is necessary, therefore, 
to provide that all coherent pairs of rays which are brought 

together in the same point upon the retina of the observer have 
the same difference of phase. 

This condition is fulfilled when the interference arises from 
reflections at two parallel surfaces Ox and 02, and the eye or 
the observing telescope is focussed for parallel rays. All the 
interfering coherent pairs of rays which are brought together 
at a point of the retina then traverse the interval of thickness 

d between the two surfaces at the same inclination to the 
common normal N to these two surfaces and hence have the 

same difference of phase, provided the distance d is constant. 
This difference of phase changes with the angle of inclination 
to N, so that the interference figure consists of concentric 
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circles whose centres lie upon the perpendicular from the eye 
to the plates.* The interference rings thus produced are curves 

of equal inclination, rather than curves of equal thickness, such 

as are seen in a thin wedge or the Newton ring apparatus. 

Such curves of equal inclination may be observed in mono¬ 
chromatic light in plane parallel plates several millimeters 
thick, so that interference takes place when the difference of 

path amounts to several thousand wave lengths. In order to 

be able to vary continuously the difference in path Michelson 
devised the following arrangement: + 

The ray QA (Fig. 57) falls at an angle of 450 upon the 

half-silvered front face of a plane parallel glass plate, where it 
is divided into a transmitted ray, 

which passes on to the plane 
mirror D, and a reflected ray, 

which passes to the mirror C. 

These two mirrors return the ray 
to the point A, where the first is 

reflected, the second transmitted 
to E. 

A second plane parallel glass 

plate B, of the same thickness 
as A, makes the difference in the 

paths of the two rays which come 
to interference at E equal to zero, provided the two mirrors D 

and C are symmetrically placed with respect to the plate A. 

It is evident that, as far as interference is concerned, this 

arrangement is equivalent to a film of air between two plane 

surfaces Ox and 02, Ox being the mirror C, and 02 the image 

* Lummer uses this phenomenon (cf. Muller-Pouillet, Optik, pp. 916-924) to 

test glass plates for parallelism. The curves of equal inclination vary from their 

circular form as soon as the distance d between the two reflecting surfaces 01 and 

Oa is not absolutely constant. 

f A. A. Michelson, Am. J. Sci. (3) 34, p. 427, 1887. Travaux et Mdm. du 

Bureau International d. Poids et Mes. n, 1895, pp. 1-237. In-this second work 

Michelson determined the value of the metre in wave lengths of light by the use of 

his interferometer. 
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of D in the plate A. This image Oa must also be parallel to 

C if the interference curves of equal inclination are to be seen 

clearly when the difference of path is large. In order to vary 

the difference of path, one of the mirrors C is made movable 

in the direction AB by means of a micrometer-screw. With 

this apparatus, using as a source of light the red cadmium line 

from a Geissler tube, Michelson was able to obtain interference 

when the difference of path in air was 20 cm., a distance equal 

to about 300,000 wave lengths. Interference was obtained 

with the green mercury radiation when the difference of path 

was 540,000 wave lengths.* 

These experiments are particularly instructive because 
observations upon the change of visibility of the interference 

fringes with variations of the difference of path furnish data for 

more accurate conclusions as to the homogeneity of a source of 

light than can be drawn from spectroscopic experiments. 

Fizeau had already observed that a continuous change of 

the thickness d of the air film produced a periodic appearance 

and disappearance of the fringes produced by sodium light. 
The fringes first disappear when the thickness d is o. 1445 mm.; 

when d — 0.289 they are again clear; when d = 0.4335 they 

reach another minimum of clearness; etc. The conclusion 
may be drawn from this that the sodium line consists of two 

’ lines close together. The visibility of the fringes reaches a 
minimum when a bright fringe due to one line falls upon a dark 

fringe due to the other. Since the mean wave length of sodium 

light is 0.000589 mm., the thickness d = 0.289 mm. corre¬ 

sponds to 491 wave lengths. If the difference between the 

wave lengths of the two sodium lines be represented by 
— \, it follows that 

(\ “ ^2)‘49i — \~ 0.000294mm., 

_\ — \ = 0.000 0006 mm. 

* A. Perot and Ch. Fabry (see C. R. 128, p. 122^^899), using a Geissler 
tube fed by a high-voltage battery, obtained interference for a difference of path of 
790,000 wave lengths. 
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Michelson has given a more general solution of the 

problem.* 
According to equation (n) on page 131 the intensity of 

illumination produced by two equally bright coherent rays 

whose difference of path is 2/ is 

2^2(i+cos 2it~).(19) 

Instead of the wave length A of light in air, its reciprocal 

I = in. . (20) 

will be introduced. Then in denotes the number of waves in 

unit length. 
If now the light is not strictly homogeneous, i.e. if it con¬ 

tains several wave lengths A, or wave numbers in, then if the 

wave numbers lie between in and m -f- dm, the factor A% in 

equation (19) maybe represented by f(m)-dm. The intensity 
J obtained when interference is produced by an air film of 

thickness / is 
/*>«» 

J = 2 / +cos An lnt\dm, . . (21) 

in which the limits of integration are those wave numbers 
between which differs appreciably from zero. 

Assuming first that the source consists of a single spectral 

line of small width, and setting 

m — m + x, mx — m — a, m2=. . (22) 

(21) becomes 

r+a „ 
J — 2 I *P(d)[i -f-cos 4rfl(m -\-x)]dx\ 

* This development is found in Phil. Mag. 5th Sei.„ VoL 31, p. 338, 1891; 

Vol. 34, pp. 380 and 407 (Rayleigh), 1892. 
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or setting 

4 *l™ = $, J1>(x)dx = P, 

f^ix) cos (4nlx)‘dx=z C, J'tp(x) sin (4 7tlx)-dx=zS, / 

zJ — P + C cos $ — .5 sin $. . . . ^23) 

If the thickness of the air-plate be slightly altered, J varies 

because $ does. On the other hand, C and 5 may be con¬ 

sidered independent of small changes in /, provided the width 

of the spectral line, i.e. the quantity a, is small. 

Hence, by (23), maxima and minima of the intensity / 
occur when J u 

the maxima being given by 

the minima by 
£/max. = P+ VC2-}- S2, 

iJmia. = P- "Si, 

Hence no interference is visible when C=S=o But 

also when these two expressions are small there will be no 

perceptible interference. The visibility of the interference 
frmges is conveniently defined by 

J/~ v^nax. ~/mtn 

^ax.+ymin;.(26) 
Hence, from (25) and (25'), 

V2 = ^2 
..(27) 

wiJteSm„cSe °oTSpat0hW ^ ?*** 
when /is changed by the micromete^crew '***“ 
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If the distribution of brightness of the spectral line is sym¬ 

metrical with respect to the middle, S = o and (27) becomes 

V — C \ P. 

If it be assumed that = constant = c, then 

^ 2c sin ATtla Tr sin ATtla , n 

p="*< c = v=~£et- ■ w 

Thus the interference fringes vanish when 4la — 1, 2, 3, 

etc., and the fringes are most distinct (V =. 1) when l — o. 

As / increases, the fringes, even for the most favorable values 

of /, become less and less distinct, e.g. for 4la — §• 

J7 = 2 : 37t — 0.212. 

Likewise a periodic vanishing and continual diminution in 

the distinctness of the maxima occur if, instead of f{x) = con¬ 

stant, 

J>(x) — cos^tt—. 
J 2a 

The smallest value of l for which the fringes vanish is given 

P P 
by 4lxa = — -j- 1 j they vanish again when 4l2a = — -f- 2, 

P 4/3a = - 3, etc. Hence from the distances /2, /3, at 

which the visibility curve becomes zero, the width a of the 

line, as well as the exponent /, which gives its distribution of 
brightness, may be determined. 

If y>(*) = *-*»■* 

there is a gradual diminution of the visibility without periodic 
maxima and minima. 

In like manner, when the source consists of several narrow 

spectral lines, the visibility curve may be deduced from (21). 

Thus, for example, two equally intense lines produce periodic 

* This intensity law would follow from Maxwell’s law of the distribution of 
velocities of the molecules as given in the kinetic theory of gases. 
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zero values of V. If the two lines are not equally intense, the 
visibility does not actually become zero, but passes through 

maxima and minima. This is the case of the double sodium 

line. 
This discussion shows how, from any assumed intensity 

law the visibility V of the fringes may be deduced. 

The inverse problem of determining $(m) from V is much 
more difficult. Apart from the fact that the numerical values 

of V can only be obtained from the appearance of the fringes 
by a somewhat arbitrary process,* the problem is really not 

solvable, since, as follows from (27), only C2 -f- S2 can be de¬ 

termined from V, and not C and 5 separately. + Under the 

assumption that the distribution of brightness in the several 
spectral lines is symmetical with respect to the middle, a solu¬ 
tion may indeed be obtained, since then, for a single line, 
5 = o, and for several lines similar simplifications may be made. 

Michelson actually observed the visibility curves V of numer¬ 
ous spectral lines and found them to differ widely.% He then 
found by trial what intensity law best satisfied the ob¬ 
served forms of V. It must be admitted, however, that the 

resulting $(m) is not necessarily the correct one, even though 

the distribution of intensity and the width of the several spectral 
lines are obtained from this valuable investigation of Michelson’s 

with a greater degree of approximation than is possible with a 
spectroscope or a diffraction grating. In any case it is of great 
interest to have established the fact that lines exist which are 

so homogeneous that interference is possible when the differ¬ 
ence of path is as much as 500,000 wave lengths. 

9. Stationary Waves.—In the interference phenomena 
which have thus far been considered, the two interfering 

.w/?i5htbe.d?termined rigorously if/^x. and /min. were measured with a 
photometer or a bolometer. 

f From Fourrier's theorem #») could be completely determined if C and S 
were separately known for all values of /. 

* “ Wi‘t *””• «' P- 79°. 1891, that these visibility curves 
vary greatly with varying conditions of the source. 
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beams have had the same direction of propagation. But inter¬ 
ference can also be detected when the two rays travel in 

opposite directions. If upon the train of plane waves 

which is travelling in the positive direction of the .sr-axis, there 

be superposed the train of plane waves 

s%— A sin -J- -jjj-j, 

which is travelling in the negative direction of the ^-axis, there 

results 
. . t z , . 

s = St -J- S2 = 2A Sin 27Tyr COS 27T-. . . (29) 

This equation represents a light vibration whose amplitude 

2A cos 2nz[k is a periodic function of z. For ~ f, etc., 

the amplitude is zero, and the corresponding points are called 

z 
nodes. For j- = o, £, §, etc., the amplitude is a maximum, 

and the corresponding points are called loops. The distance 

between successive nodes or successive loops is therefore 

This kind of interference gives rise to waves called stationary, 
because the nodes and loops have fixed positions in space. 

Wiener* proved the existence of such stationary waves by 
letting light fall perpendicularly upon a metallic mirror of high 

reflecting power. In this way stationary waves are produced 
by the interference of the reflected with the incident light. 

In order to be able to prove the existence of the nodes and 

loops Wiener coated a plate of glass with an extremely thin 
film of sensitized collodion, whose thickness was only ^ of a 

light-wave = 20 millionths of a mm., and placed it nearly 

parallel to the front of the mirror upon which a beam of light 
from an electric arc was allowed to fall. The sensitized film 

* O. Wiener, Wied. Ann. 40, p. 203, 1890. 
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then intersects the planes of the nodes and loops in a system 

of equidistant straight lines, whose distance apart is greater 

the smaller the angle between the mirror and the collodion 

film. Photographic development of the film actually shows 

this system of straight lines. This proves not only that photo¬ 

graphic action may be obtained upon such a thin film, but also 

that such action is different at the nodes and the loops. These 

interesting interference phenomena may also be conveniently 

demonstrated by means of the fluorescent effects which take 

place in thin gelatine films containing fluorescin.* Such a film 

shows a system of equidistant green bands. It is a fact of 

great theoretical importance, as will be seen later, that the 
mirror itself lies at a node. 

io. Photography in Natural Colors.—Lippmann has made 

use of these stationary light-waves in obtaining photographs in 
color. As a sensitive film he chose a transparent uniform 
layer of a mixture of collodion and albumen containing iodide 

and bromide of silver. This he laid upon mercury, which 
served as the mirror. When this plate has been exposed to 

the spectrum, developed, ahd fixed, it reproduces approxi¬ 

mately the spectrum colors. The simplest explanation is that 
in that part of the film which was exposed to light whose 
wave length within the film was A, thin layers of silver have 
been deposited at a distance apart of £A. If now these parts 

of the film be observed in reflected white light, the light-waves 
are reflected from each layer of silver with a given intensity. 

these reflected rays agree in phase, and hence give maxi¬ 
mum intensity only for those waves whose wave lengths are 

°r or etc- Hence a spot which was 
77,.fe %ht> for instance, appears in white light 

^ ^een> f°r the wave length £A lies outside the visible 

exm™?. ,Ut Utldf some circumstances a part of the plate 

wave lenp-fh rTf appears violet’ because in this case the 
wave length *A falls within the visible spectrum. 

_iif!^J^otograph be breathed upon, the colors are dis- 

* Crude and Nemst, Wied. Ann. 
45> P- 46o, 1892. 
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placed toward the red end of the spectrum, because the 

moisture thickens the collodion fdin, and the reflecting layers 

are a greater distance apart. If the plate be observed with 

light of more oblique incidence, the culur-. are deqdat ed t.w.utl 

the violet end of the spectrum, for the same reason th.it the 

Newton’s rings shift toward the lower orders as the iiu idence 

is more oblique. For, as is evident from i t-p "ii page i tH, 

the difference of phase J between two rays re {levied hum two 

surfaces a distance d apart is proportional to cos x, in w bn b x 
is the angle of inclination of the rays between the two *»uitut r*i 

to the normal to the surfaces. When the angle of im idem r 

increases A decreases; but in Newton's rings this rifrct h 

much more marked than in Lippmami\ photographs, dmr, m 

the former, within the film of air which gives rise to the inter 

ference, x varies much more rapidly with the incident e than it 

does in the collodion film, whose index is at least as mm h as 

Although the facts presented prove beyond a doubt that 

the colors are due to interference, yet the explanation of these 

colors by periodically arranged layers of stiver i * found, ujwm 

closer investigation, to be probably untenable. Ida St butt * 

has made microscopic measurements iijxm the *u/r of the pat - 

tides of silver deposited in such photographic fihm», and found 

them to have a diameter of from 0.0007 to o.oooq mm., which 

is much larger than a half wave length. According to Si luitl. 

tlie stationary waves anti the fixing of the srndtive film pro¬ 

duce layers of periodically varying index of refraction, due to 

a periodic change in the arrangement of the silver molecules. 

This theory does not alter the principle underlying the expla¬ 

nation of the colors, for it also ascribes to the collodion f»Si>t a 

variable reflecting power whose jieriod is |A. 

This theory makes it possible to calculate the intensity of 

any color after reflection. The complete discussion will tie 

omitted, especially as the calculation h complicated by the 

fact that it is not permissible to assume the number of period* 

* f. KtbUU, WW. Attn. $|» fjj, t%fx 
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in the photographic film as large.* The best color photo¬ 

graphs are obtained when the thickness of the photographic 

film does not exceed o.ooi mm. This thickness corresponds to 

3-5 half wave lengths. But without calculation it may be seen 

at once that the reflected colors are a mixture and not pure 

spectral colors,—a fact which can be verified by an analysis of 
the reflected light by the spectroscope. + For even if that 

color whose wave length is the same as that of the light 

to which the plate was exposed must predominate in the 

reflected light, yet the neighboring colors, and, for that matter, 

all the colors, must be present in greater or less intensity. 
According to an experiment of Neuhauss,:]: the gradual 

reduction of the thickness of the film by friction causes the 

reflected colors to undergo certain periodic changes. This 

effect follows from theory if the small number of periods in the 

photographic film be taken into consideration. 
A further peculiarity of these photographs is that, in 

reflected light, they do not show the same color when viewed 
from the front as from the back.§ Apart from the fact that 

the glass back gives rise to certain differences between the two 
sides, it is probable that the periodic variations in the optical 

character of the film are greater in amplitude on the side of 
tile film which lay next to the metal mirror. On account of a 

slight absorption of the light, the stationary waves which, in 
the exposure of the plate, lie nearest the metal mirror are most 
sharply formed. 

If this assumption be introduced into the theory, both the 
result of Neuhauss and the difference in the colors shown by 
tile opposite sides of the plate are accounted for. 

* The only calculations thus far made, namely those published by Meslln 

«e eMm. et de phys. (6) 27, p. 369, 1892) and Lippmann (Jour, de pbys. 

(31 3t P» 97? lS94)i not only make this untenable assumption, but they also lead to 

the impossible conclusion that under certain circumstances the reflected intensity 
can be greater than, the incident 

| Cl,Jot instance, the above-mentioned article by Schutt. 

N uhauss’ Photo8r- Rundsch. 8, p. 3or, 1894. Cf. also the article by 

| Cl Wiener, Wied, Ann. 69, p. 488, 1899. 



CHAPTER III 

HUYGENS’ PRINCIPLE 

i. Huygens’ Principle as first Conceived.—The fact has 
already been mentioned on page 127 that the explanation of 
the rectilinear propagation of light from the standpoint of the 

wave theory presents difficulties. To overcome these difficulties 

Huygens made the supposition that every point P which is 
reached by a light-wave may be conceived as the source of 

elementary light-waves, but that these elementary waves 

produce an appreciable effect only upon the surface of their 
envelope. If the spreading of the rays from a point source Q 
is hindered by a screen SXS2 containing an opening AXA2, 
then the wave surface at which the disturbance has arrived 

after the lapse of the time t may be constructed in the follow¬ 

ing way: 
Consider all the points As in the plane of the opening AtA2 

as new centres of disturbance which send out their elementary 
waves into the space on both sides of the screen. These 

elementary wave surfaces are spheres described about the 
points A. These spheres have radii of different lengths, if they 

are drawn so as to touch the points at which the light from Q 
has arrived in the time t. Since, for instance, the disturbance 
from Q has reached A& sooner than Ax> the elementary wave 

about A% must be drawn larger than that about Ax in proportion 
to the difference between these two times. It is evident that 

the radii of all the elementary waves, plus the distance from Q 
to their respective centres, have the same value. But in this 
way there is obtained, as the enveloping surface of these ele- 

159 
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mentary waves, a spherical surface (drawn heavier in Fig1. 58) 

whose centre is at Q, and which is limited by the points Bx, 

JB2, i.e. which lies altogether within the cone drawn from Q 
to the edge of the aperture Inside this cone the light 

from Q is propagated as though the screen were not present, 

but outside of the cone no light disturbance exists. 

Though the rectilinear propagation of light is thus actually 

obtained from this principle, yet its application in this form is 

subject to serious objection. First, it is evident from Fig. 58 

that the elementary waves from the points A have also an 

envelope CXC% in the space between the screen and the source. 

Hence some light must also travel backward; but, as a matter 

of fact, in a perfectly homogeneous space, no such reflection 

takes place. Furthermore, the construction here given for the 
rectilinear propagation of light ought always to hold how¬ 

ever small be the opening AXA% in the screen. But it was 

shown on page 1 that, with very small apertures, light no 

longer travels in straight lines, but suffers so-called diffraction. 

Again, why do not these considerations hold also for sound, 

which is always diffracted, or, at least, never produces sharp 
shadows ? 
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Before considering Fresnel’s improvements upon Huygens’ 

work, the latter’s explanation of reduction and refraction will 

be presented. Let AtA3 be the bounding surface between two 

media I and II in which the velocities of light are respectively 

Fj and l\, and let a wave whose wave front at any time /o 

B 

occupies the position AXB fall obliquely ujxm the surface AtAr 
What then is the position of the wave surface in medium II at 

the time 4 -f'• / f Conceive the jaunts A of the bounding sur¬ 

face as centres of elementary waves which, as above, have 

different radii, since the jxilnts A are reached at different times 

by the wave front AIL Since the disturbance at /I, logins at 

the time 4, the elementary wave about Ax must have a radius 

represented by the line AfC = \\t. Let the jmsition of the 

point A% be m chosen that the disturbance reaches it at the 

time 4 + /. This will 1 m the cmc if the |K?rpemlk*ulnr dropped 

from At upon the wave front has the length f',/» since, accord¬ 
ing to Huygens’ construction, in a homogeneous medium such 

as I any dement of a plane wave Is promulgated in a straight 

line In the direction of the wave normal. The elementary 

wave about A% has then the radius* sera. For any jx>int A 
between Ax and At the elementary wave has a radius which 

diminishes from fy to aero proportionally to the distance 
AXA. The envelope of the elementary waves in medium II 

is, therefore, the plane through At tangent to the sphere 
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about Av The angle J/'Jt k then .1 right angle. Since 
now Hi'n <»** . /•*,!,; JjJj 0/ ' ns.fif mi x l VI t: AxAt = 

l\t *. *lrlal it fulloW* tlt.lt 

Rut ilncc # awl X arc thr angle** of incidence ami refraction 
respectively, this it the well-known law of refraction. Hence, 

m mm remarked though m*t deduced on page 129, the 

index of refraction *t h r«jtial to tlir ratio of the velocities of 

propagation of light in the two media. 

By constructing in the same way the elementary waves 

reflected back into medium I the law of retire thin h at once 

obtained. 
a, Fresnel** Improvement of Huygens1 Principle.—Fres¬ 

nel replaced Huygens* arbitrary avuimption that only the 

enveh*|»e of the elementary waves 

prwltivci appreciable light effects 

by the principle that the elementary 

waves in their erm-trmring influ¬ 

ence one another lit accordance with 

the principle of interference. Light 

ought then to apj«*ar riot only iij»n 

the enveloping surface, but every¬ 

where where the elementary waves 

reinforce one another; on the other 

hand* there should !** darkness 

wherever they destroy one another, 

Now m a matter of fact it k invisi¬ 

ble to deduce from thh Fresnel- 

fluygenH principle not only the 

laws of diffraction, but also those of straight-line propagation, 

reflection, and refraction. 

Consider the disturbance at a point /* caused by light from 

a source Q% and at first assume that no screen is tnterftnsed 

between P and Q. A sphere of radius a described about Q 
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(Fig. 60) may be considered as the wave surface, and the dis¬ 

turbance which exists in the elements of this sphere may be 
expressed by (cf. page 127) 

A (t a\ 
S ~ ~a C0S 271 \~T ~ I/’ • • • • (1) 

in which A represents the amplitude of the light at a distance 
a — 1 from the source Q. Fresnel now conceives the spherical 
surface to be divided in the following way into circular zones 

whose centres lie upon the straight line QP\ The central zone 
reaches to the point Mx, at which the distance MXP = rx is 

greater than the distance M0P. Calling the latter b, 

MXP =. rx~ b The second zone reaches from Mx to 

, where MJP = = rx -j- -JA.. The third zone reaches from 
Mz to , where M%P = r% — r2 -j- -JA, etc. Consider now in 

any zone, say the third, an elementary ring which lies 

between the points M and ML Let the distances MP = r, 
M'P = r + dr, and <£ MQP = u, <£ M'QP = «-f du. The 
area of this elementary zone is 

do = 'iTtcd sin u du. 

Also, since 

P — a% -J- {at + b)2 — 2a{a + b) cos u, 

it follows by differentiation that 

2r dr — 2a{a -J- b) sin udu, 

so that equation (2) may be written 

(2) 

do = 2re—ar~ r dr.(2) 
a -j- b 

The disturbance ds' which is produced at P by this ele¬ 
mentary zone must be proportional directly to do and inversely 

to r, since (cf. page 126) the amplitude of the disturbance due 
to an infinitely small source varies inversely as the distance 

from it. Hence, from (1), 

kA ( t a + r\ 
d*' = — cos 27t\~-^— j do, 

ar w A / ’ • • (4) 
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or, in consideration of (3), 

,, k*A It a + r\ 
ds = 27tv+Jcos2n\T—ir-)dr- • • (4) 

In this equation k is a factor of proportionality which can 
depend only upon the inclination between the element do and 

the direction of r. Fresnel assumes that this factor k is smaller 

the greater the inclination between do and r. If this inclination 
be assumed to be constant over an entire Fresnel zone, i.e. 

between Mn_x and M„ , an assumption which is allowable if a 
and b are large in comparison with the wave length A, it follows 

from (4/) that the effect of this nth zone is (kH denoting the 
constant k under these circumstances) 

But since 

it follows that 

■■b-\-A., rn=b + -\, 
1 2 ’ * 1 2 ’ 

a -}- P , , . , 2knXA . ( t 
Sn = (— i)”+I-;—r Sin 27t[ —-— 

v * a b X (6) 

From this it is evident that the successive zones give alter¬ 
nately positive and negative values for s'. If the absolute 
value of sn' be represented by sn, then by the principle of in¬ 
terference the whole effect s' at P due to the first n zones is 
given by the series 

s' = sx-st + si-si+.?. . + (- + . (7) 

If kn were assumed equal for all zones, s2, j3, etc., would 

all be equal, and the value of the series (7) would vary with the 

number of terms n. But kn and hence sn diminish continuously 



HUYGENS• PRINCIPLE *65 

as n increases, since the greater the value of n the greater the 

inclination between r ami #/«». In this case the value of the 

series may be obtained in the following way: * If n is odd, the 

series may be written in the form: 

If now every is greater than the arithmetical mean of the 

two adjacent quantities , and $ttil the conclusion may be 

drawn from (8) that 

while it follows from (9) that 

These two limits l»etween which s' h in this way contained 

are, however, equal to one another when, as is here the case, 

every sf differs by an infinitely small amount both from j?,, , 

and jr/fl. I fence 

, jr, sm 
* a‘ ! ,.(">) 

A simitar conclusion may be drawn when each st is smaller 

than the arithmetical mean between the two adjacent quantities 

s^t and Sp tIn this latter case if at equal distances along art 

axis of abscissae the jr#'n be erected as successive ordinates, 

* A. Stlui»trr, Mill. IMbg, (5), ,11, 85, i8t)i. 
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the line connecting the ends of these ordinates is a curve which 
is convex toward the axis of abscissae. In the former case 
this curve is concave toward this axis. These same conclu¬ 

sions may be drawn, i.e. equation (io) obtained, if the sf curve 

consists of a finite number of concave and convex elements. 
Only when this number becomes infinitely large does equation 

(io) cease to hold. On account of the presence of the factor 

kn this case can never occur. 
If n is even, a similar argument, with a somewhat different 

arrangement of the terms of series (7), gives 

£1 
2 

Sn 
(1 o') 

According to Fresnel these zones are to be drawn until the 
radius vector r from P becomes tangent to the wave surface 

about Q. For the last zone r is perpendicular to QM and 
both kn and sn become zero. Hence the values of (10) and 
(io') are identical and the light disturbance at P is 

k^A 
a -f- b 

(t a-\-b\ 

sm 27t\T T~) (11) 

Thus it may be looked upon as due solely to the effect of 
the elementary waves of half the central zone. 

The effect at P of introducing any sort of a screen will 
depend upon whether the central zone and those immediately 

adjacent to it are covered or not. It might be expected that 
the effect at P would be completely cut off by a circular screen 
whose centre lies at M0 and which covers half of the central 
zone. But this is not the case. For when a circular screen 
is introduced perpendicular to PQ with its centre at M0, the 
construction of the Fresnel zones may begin at the edge of 
this screen. Then half of this first zone is still effective at P, 

Le. equation (11) still holds, but b now represents the distance 
between P and the edge of the screen, and kx refers to the first 
zone about the edge of the screen. Hence there can be dark¬ 

ness at no point along the central line MfiP. This surprising 

conclusion is actually verified by experiment. However, for 
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screens which are large in comparison with the wave length 
as well as in comparison with the distance b, the effect at P 

is small, because the factor kn in equation (5) is then small. 

Likewise the effect at P is small if the screen 5 is not exactly 
circular. For, consider that the screen 5 is bounded by 

infinitely small circular arcs of varying radii drawn about MQ 

as a centre. Let the angle subtended at the centre by the 

first arc be d<px, the distance of this arc from the point P be bx, 

and from Q, ax. Then, by (11) and the above considerations, 

the effect of the entire opening which lies between the two 

radii vectores drawn from M0 through the ends of this first arc is 

„ , kXA d<px . ft a. 4- b,\ 
dsJ — ---7- * —- sin 27t\~ —1 . 

1 ax + bx 27t \T X ) 

Similarly the effect of that part of the next angular opening 

d<f>2 which is not covered by the screen is 

kXA d<p . ft a2 4- b„\ 
ds' =  V 7- • •—? sin 27t[—-H—-2 , 

etc. All these effects must be summed in order to obtain the 

value of s' at P after the introduction of the irregular screen 

at M0. If the screen is not too large, it is possible to set 
kx — k2 = kz, etc. Likewise the differences between the various 
as and b's in the denominator may be neglected so that 

, ^1^ j ,. . ft ax + ^i\ 
(a-\-b)27t ( ^ \F X j 

I Jrh o JL . 1 
+ d<f>t sin 2*[y~ 2 x 2J +- • [■ (i1') 

In the argument of the sin it is not permissible to set 

ax -f- bx = a2 -f- b2, etc., since these quantities are divided by 
the small quantity X. For if the screen S is many wave 

lengths in diameter (it need be but a few mm.), the differences 

between the quantities a -f- b amount to many wave lengths. 

Hence with an irregular screen the different terms of equation 

(11) are irregularly positive and negative so that in general 

the whole sum is small. Only when the screen has a regular 
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form, for instance when all the a’s and b’s are exactly equal, 

is the sum s' finite. Hence it is possible to speak of rectilinear 

propagation of light, since the result of interposing a screen of 

sufficient size and irregular form upon the line QP is darkness 

at P. 

If between Q and P a screen with a circular opening whose 

centre is at M0 be introduced, then the effect at P varies greatly 

with the size of this opening. If the opening has the same size 
as half of the central zone, the effect at P is the same as though 

no screen were present, i.e. the light at P has the natural 

brightness. If the opening corresponds to the whole central 

zone, s' at P is twice as great as before, i.e. the intensity at 

P is four times the natural brightness. If the size of the open¬ 

ing be doubled, so that the first two central zones are free, 

then, according to (7), s'=sl—s2f an expression whose 

value is nearly zero; etc. This conclusion also has been veri¬ 

fied by experiment. Instead of using screens or apertures of 

various sizes, it is only necessary to move the point of observa¬ 
tion along the line QM0. 

Although Fresnel’s modification of Huygens’ principle not 

only accounts for the straight-line propagation of light, show¬ 
ing this law to be but a limiting case,* but also explains the 

departures from this law shown in diffraction phenomena in a 

way which is in agreement with experiment, nevertheless his 
considerations are deficient in two respects. For, in the first 
place, according to his theory, light ought to spread out from 

any wave surface not only forward, but backward toward the 
source. This difficulty was contained in the original concep¬ 

tion of the Huygens’ principle (cf. page 161). In the second 
place, Fresnel’s calculation gives the wrong phase to the light 
disturbance s' at P. For, according to equation (1) on page 
163, in the case of direct propagation s' ought to be 

/ A 

S ~ a + b 

11 
COS 27ty~. 

a b \ 

* > 
* That this is not true for sound is due to the fact that the sound-waves are so 

long that the obstacles interposed are not large in comparison. 
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while by (II) on page *66, s', as determined by the considera¬ 

tion of (die elementary waves upm a wave surface, is 

In order to obtain agreement between the amplitudes in 

the two expressions for s*, may be assumed equal t<* |, but 

the phases in the two expressions cannot be math* to agree. 

These difficulties disappear as stum as Huygens' principle is 

placed upon a more rigorous analytical basis. This was first 

done by Kirchhoff.* The simpler deduction width follows is 

due to Voigt.t 
3. The Differential Equation of the Light Disturbance, 

It would have been possible to find the analytic al expression for 

the light disturbance s at any point /’in spate it all waves were 

either spherical or plane. Hut when light stiihes an obstacle 

the wave surfaces often assume c»»mplitatrd forms. In order 

to obtain the analytical expression for * in such rases, it is 

necessary to base the argument itf*on more grnrrul considera¬ 

tions, i.e. to start with the differential equation which s 

satisfies. 

Every theory of light, and, for that matter, every theory of 

the propagation of wave-like disturbances, leads to the differ¬ 

ential equation 

«*/»** 4, a8jr 4, ^ 

mx* ' av* ^ ,wY* 

in which t represents the time, y, s the coordinates of a 

rectangular system, amt V the velocity of propagation of the 

waves. This result of theory may for the present be assumed; 

a deduction of the equation from the standpoint of the electro* 

magnetic theory will be given later (Section II, Chapter I). 

*0. Kirchhoff, Ck», Abh, or Vwtrc titer nuth Opttk. 
f W, Voigt, Kompmlium 4. ihror. I*by*ik, II, p. JJ6, tMpilg, i%fit 
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It will first be shown how the analytical forms of s given 
above for plane and spherical waves are obtained from (12). 

For plane waves let the ^-axis be taken in the direction of 

the normal to the wave front, i.e. in the direction of propaga¬ 
tion; then s can depend only upon and t, since in every 

plane x = const, which is a wave-front, the condition of vibra¬ 

tion for a given value of t is everywhere the same. Equation 

(12) then reduces to 

_ ygL 
dl2~ dx2' 03) 

The general integral of this equation is 

s =fi[*— y) +/2(/ + ^)» * * • (J4) 

in which fx is any function whatever of the argument t — -p., 

and /2 any function of the argument t -f- -p. For if the first 

derivatives of the functions fx and f2 with respect to their argu¬ 

ments be denoted by fx and f2, the second derivatives by 
//', /a", respectively, then 

dt ~Jx ’ dP +/2// 

df_ . 
dx ' rh-\ yfz* dxz ~ + yz f\ 4" yi.fi 

i.e. equation (13) is satisfied. If now the variation of s with the 

time is of the simple harmonic form, i.e. if it is proportional to 
t 

cos 2ar~, as is the case for homogeneous light, then, by (14), 

S — Ax COS pr^+d^-f-^COS 27r(yr-f-j7j + ^2)> (r5) 

in which Ax> A2, &x, <?3 are constants. This corresponds to 
our former equation for a plane wave of wave length A = VT. 

■A 1 is the amplitude of the waves propagated in the positive 
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ction of the x-axis, ,-Ja the amplitude of those* propagated 

ic negative direction of the .e-ax is. 

[•'or spherical waves whose centre is at the origin, s can 

*nd only upon i and the distance r Irom the origin. Hence 

0* , ps Hr , s.V X 

Ox “' Or Ox i >z* r 

Oi Or os y 

Bz* ' ’ Or * r' 

c'W , ‘A' J 

Bj ~~ Or ' ’ f)4? . '/■ r' 

- j*3 *4- s*! partial differentiation given 

= X• 04% i.c. !.ir ■-- "* COS (/*„*), 

similarly 

?s _ 1 

Xt4 r ’ 

similarly 

ds , x* * D H ^ Ds\   ?s n ,»n 
’ dr ' r * 'dAr * cW r* Or4 * xrlr r1/* 

t 

By r1 ’ Br1 '' c)r -r r®/* 

3a* _ 4?? av <W* **v 

i)3* z4 * tV4 ‘‘ dAr r*Y 

ttion (12) becomes, therefore, for this caw 

v4lfs-h Qp- * W» * rar/» * 

h may also be written in the form 

v&'irs) 
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This equation has the same form as (13) save 
replaces s, and r replaces x. The integral of (17) is the*"6 c 

by (14), 

«=/!(<--p)+/,(<+£)• • • - ( 

If, again, homogeneous light of period T be used, it follow5 * 

‘ = 7Tcos 27r (^—pr+^+T2 cos 27,{t+Tt+s^ • ( 

This is our former equation for spherical waves. One tr*&lr 

waves moves from the origin, the other moves toward it. ^ 

amplitudes, for example are inversely proportional *° 

This result, which was used above on page 126 in defining' 

measure of intensity, follows from equation (12). 
Before deducing Huygens’ principle from equation (12)' 

following principle must be presented. 
4. A Mathematical Theorem.—Let dt be an element 

volume and F a function which is everywhere finite, contiiiuo 

and single-valued within a closed surface 5. Consider 1 

following integral, which is to be taken over the entire volu 

contained within 5: 

/&****■ 
First perform a partial integration with respect to x, i.e. ma 

ZF 
a summation of all the elements —which lie upon a 

straight line © parallel to the axis of x. The result is /ZF 
~dx = dy dz(-/q + F% - /q + Fi etc.), 

in which iq, iq, etc., represent the values of the function 

at those points upon the surface 5 where the straight line 
intersects it. For the sake of generality it will be as sum 

that this line intersects the surface several times; since, ho' 
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ever, S is a closed surface, the number of such intersections 

will always be even. In moving along the line bi in the direc¬ 

tion of increasing a\ L\, /*5, etc., which have odd indict s, 

represent the values of F at the points of entrance into the 

space enclosed by S\ while /'a, Ft, etc., which have even 

indices, represent the values of /•' at the points of exit. Con¬ 

struct now upon the rectangular base dy </• a column whose 

axis is parallel to the .r-axis. This column will then cut from 

the surface St at the points of entrance and exit, the elements 

dSx, dS%, etc., whose area is given by 

dy ds t dS>rtw(#i), 

in which (fix) represents the angle between the »-axis and the 

normal to the surface .S' at each particular point of intersection. 

The sign must be taken so that the right-hand side h jwisitive, 

since the elements of surface dS are net evurily positive, it 

will he taken posit ire imeatd the in ter ter oj (he spat e em iosed 

hy S. Then, at the points of entrance, 

dy ds *|’ dSx <cos (>, \) . -}■ r/.Spcos (ny j» etc., 

and at the points of exit 

dy ds — dS^vtn (nd-t) • t!Si-cos (//t * i, etc. 

Hence 

dy dsJ ^dr rs — /‘*t cos [ntx)'dSx — F^em (ngri>dSi - etc. 

If now the integration he fwformed with rrsjirct to/and 

s in order to obtain the total sjxvce integral, i.e. if thr summ»i- 

tion of the products F cos (ttx)dS over the whole surface be 

made, there results 

^ f Fem(»x)*dS% * , . (JOj 

in which on the right-hand side F represents the value of the 

function at the surface dement dS, 

Thus by means of this theorem the original integral, which 
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was to be extended over the whole volume, is transformed into 

one which is taken over the surface which encloses the volume. 

From the method of proof it is evident that F must be finite, 

continuous, and single-valued within the space considered, 

since otherwise in the partial integration not only would there 

appear values Fx, F2, etc., of F corresponding to points on 
the surface, but also values for points inside. 

5. Two General Equations.—Let U be a function which 
contains explicitly x, y, z, and r. Let r represent the dis¬ 

tance from the origin, i.e. r2 — x1 y1 -j- z2. Let — repre¬ 
ss 

sent a differentiation with respect to the variable x as it 

explicitly appears, so thaty, z, and r are in this differentiation 

considered constants. On the other hand let represent 

the differential coefficient of U, which arises from a motion dx 

along the #-axis; in which it is to be remembered that in this 
case r varies with x. Then 

dU__^U_ 
dx ~ dx 

dU 3r 3U , 3U 

+ aTa? = a? + 37 cos ^ • (2I> 

But (cf. page 171) ~ = ~=cos (rx). Hence 

d /* ^U\ __ dj\ oH\ ._ 
dx\x dx J dx \r dx / dr v* dx / cos (rx), 

or, since in the differentiation the radius r is constant, 
dx 

_1 &u 1 1 d2u 
dx V dx) r dx2 r* dx C0S ^ + ~r drdx C0S 

y/i dU\ 1 d*u idu 1 d*u 

df V dyl~ r ‘ df ^37COS M +Td?ty C0S 
d n 3EA 1 &U 1 dU 1 d2U 

d&\r dzt~ r \ dz* ^ 3JC0S^ + ^a^ cos (™0- 

l (22) 
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Now let represent the ratio of the total change in U to a 

change in r, which arises from a motion dr along the fixed 

direction r. This change in U is a combination of several 

partial changes: First, U varies with r as it explicitly occurs, 
'dU 

the amount of this variation being Second, it varies 

because x, y, z, which occur explicitly in U, are functions 

of r. Further a simple geometrical consideration shows that 
dx = dr cos (rx), dy — dr cos (ry), dz = dr cos (rz), hence 

dU dU dU d U 3*7 . , , , 
sr= 77 + a7cos + wcos W + 37cos (")■ (23) 

. If in this equation U be replaced by 
d_U 

dr ’ 
the result is 

d (dU\ d*U t d*u . 3**7 , , . d*U , N x 
dAwl = a7+3^cos('';t)+3^cos^)+3?3icos^)- <2+) 

Addition of the three equations (22) gives, in consideration of 

(23) and (24), 

ill &L) , ^ , £[l H) = 
d'.rV dx > ' dy\r dy * dz^r 3z / 

i/0^7 9^7 1 £ £/3*7\ 1 /<K7 8?7\ 
r'3^r2 dy5*-*- 3^a . dr*''rdr\dr‘ r'ldr dr )° 

But 

1 dfoU\ ]_d£_ __ 1_d_f dU\ 

r dr \ dr ) ‘ r* dr r*dr\dr}' 

(25) 

(26) 

If equation (25) be multiplied by the volume element dr — 

dxdy dz and integrated over a space within which l 

1 3*7 

r dz 
ai* finite, continuous, and single-valued, and if theorem 
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(20) on page 173 be applied three times,* there results, in 
consideration of (26), 

- j MScos ^) + ^rcos M + ^cos («*)}<*$ = 

r'l&U^&U^'U &u\^ , fidizu rA^ ^ 
y 0rz)dt+j r*dr\dr U)d ' ^ ^ 

The space over which the integration is extended evidently 

cannot contain the origin, since there ^ becomes infinite. 

Now two cases are to be distinguished: I. The space over 

which the integration is extended is bounded by a surface 5 
which does not include the origin; II. The outer surface 5 of 

that space does include the origin. 

CASE II. In this case, which will be first considered, con¬ 
ceive the origin to be excluded from the space over which the 

integration is extended by means of a sphere K of small radius 
p about the origin as a centre. The region of integration has 

then two boundaries, the outer one the surface 5, the inner 
one the surface K of the sphere. The surface integral of 
equation (27) is therefore to be extended over both these sur¬ 

faces. The value of the integral over the surface K is, how¬ 
ever, not finite when p is infinitely small, since this surface is 

an infinitesimal of the second order with respect to p, and r 

appears in the denominator of the left-hand side of (27) in the 
first power only. Further, 

5Fcos <“*> + cos <&) + si cos (*») = gF (28) 

in which 3 £7: 3n is the differential coefficient which arises from 
a motion 3n in the positive direction along the normal n to 5 

* The symbol which appears in equation (20) has the same meaning as 

here. That equation is also to be applied in this case when the differentiation is 

talten with respect toy and z. 
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when r is treated as a constant. Hence the left-hand side of 

equation (27) becomes 

_ A— J r dn 
dS, 

and this integral is to be taken over the outer surface only, 

not over the small spherical surface K. 

The last term on the right-hand side of (27) will now be 

transformed by writing 

dr = r*d<p dr,.(29) 

i.e. the volume element is now conceived as the section cut 

by an elementary cone of solid angle d(f> from a spherical 
shell whose inner and outer radii are r and r -j- dr respec¬ 

tively. Then 

f»• <>°> 

r denotes the value of r upon the outer surface 5 of the region 
dU 

of integration. If now p is infinitely small, the quantity r— 

has no finite value for r = p. Furthermore, in the limit 

<J> = o) 
fd<p-(U)r=, = A*Ua.(31) 

in which U0 represents the value of U at the origin. Again, 

since 

'Pdcfy = — dS cos (nr), .... (32) 

if the positive direction of r be away from the origin, then 
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which integral is to be extended over the outer surface S. It 

follows therefore from (27), in consideration of (30), (31), and 

(33), that 

1 dU 

r dn 

+ 
d2U d2U d2lf\ 

df + a^2 ~ 'dr2) 
dt -f- 4nU0. (34) 

In this equation the volume integral may be extended over the 

whole space included within the surface S, since the infinitely 

small sphere K whose volume is proportional to p3 adds when 

p = 0 an infinitely small amount to the integral, because r 
appears in the denominator in the first power only. 

Case I. If the surface does not enclose the origin, the dis¬ 
cussion is exactly the same, save that it is unnecessary to 

construct the sphere K. In order to integrate the last term 
of the right-hand side of (27), assume as before 

dt — r2d<p dr; 

but now the limits of integration are not p and r, but rx and 

r** which represent the two distances from the origin at which 
the axis of the elementary cone of solid angle dd> intercepts 
the surface 5. Hence 

/*{(■ 
A 

dU 

dr 

l£/ dU 
r2 dr\ dr 

U) - 
/r = rt 

jdT=: 

(30') 

frTT* * eIement Which the Elementary 
w afa ftmn the surface 5, then, at the point of entrance of 

;z:‘" -- 
r^d<p = -f- dS-cos (nr), 

while at the point of exit 

r&<f>=-dS.cos(nr). 
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Hence the volume integral (30') may be written as the surface 
integral 

= - fdS-cos= ~ f dS-cos (nr)^(^-\{?,o') 

Hence for this case (27) becomes 

f(idU . 

- 73r-cos(: c°s (»)%£) 

J r\ Zx*^ Zy2 Zz2 Zr*r‘ ‘ * 

6. Rigorous Formulation of Huygens* Principle.—The 
following application will be made of (34) and (34'): Let s be 

the light disturbance at any point, s0 the value of j at the 

origin, s satisfies the differential equation (12) on page 169. 

U will now be understood to be that function which is obtained 

by replacing in s the argument t (time) by t — rjv• This 
will be expressed by 

U= sit-r/v). 

It is then evident that U0 = s0, since at the origin r = o. 
Furthermore, from (12), 

*£ _ yJPIL 
a*2 ~~ '•3;r! Zf Zz2l 

but since U is a function of t — rfy, (cf. equations (17) and 
(18), page 171) the following relation also holds: 

Z2U _ a32U 
ZP ~ y Zr2' 

Hence, from the last two equations, 

Z2U Z2U Z2U_ Z2U 

Zxr ' Zy2 ' Zz2 ~~ Zr2 ’ 

Hence (34) gives, for the case in which the origin lies within 
the surface S, 

r\zsiLzllil ) 

*nS»=j\^fr-cos(*-)-^ (35) 
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This equation may be interpreted in the following way: j 

The light disturbance at any point Pa (which has been taken 

as origin) may be looked upon as the superposition of disturb- ■' 

ances which are propagated with a velocity V toward P0 from 

the surface elements dS of any closed surface which includes the j 

point P0. For, since the elements of the surface integral (35) 1 
are functions of the argument t — rj y, any given phase of the « 

elementary disturbance will exist at PQ, r/ v seconds after it l 
has existed at dS. j 

In this interpretation of (35) it is easy to recognize the j 
foundation of the original Huygens’ principle, but the condition j 

of vibration of the separate sources dS is much more compli¬ 

cated than was required by the earlier conceptions, according 

to which the elements of the integration were simply propor- j 

tional to s(t — r'jy) (cf. (4) on page 163). j 

Further, it is possible to calculate from equation (35) the 

disturbance sQ at the point PQ if the disturbances s and — are„ 

known over any closed surface 5. In certain cases these are 

known, as, for instance, when the source is a point and the 
spreading of the light is not disturbed by screens or changes j 

in the homogeneity of the space. In this case, to be sure, 5° j 

can be determined directly; nevertheless, for the sake of what | 

follows, it will be useful to calculate it from (35). J 
Let the source Q lie outside of the closed surface S. Let | 

the disturbance at any point P which lies upon 5 and is } 

distant rx from the source Q be represented by J 

(37) 
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Now rx must be large in comparison with A, hence the first 
term is negligible in comparison with the second, so that 

Mi ~ r/v) , , . (t r + r\ 
-Tn-= . (38) 

Further, from (36), 

s{t-r/v) A (t r+r,\ 
-—= — cos 27l{—--I—11 

r rrx \T A / 

If this expression be differentiated with respect to r, a term 
may again be neglected as in (37), since r also is large in 
comparison with A; hence 

3'S(i ~~ VV) 

r 2 nA . (t r + rA 

—s?— = i^sm2'rvr r^v- • • to) 

Substitution of the values (38) and (39) in (35) gives 

zH I ^ sin 2It\T "T~Acos W " cos (nri)¥S- (40) 

This equation contains the principle of Fresnel stated above 
1 on page 163, but with the following improvements: 

1. Fresnel’s factor >£ is here determined directly from the 
differential equation for s, which constitutes the basis of the 

theory. Consider, for example, an element dS which lies at 
the point MQ (Fig. 61) along the line QP0; then for this ele- 

Fig. 61. 

ment cos (nr) = — cos (nrx), since t]je positive directions of r 

and rx are opposite. Hence Fresnel’s radiation factor k is 

A _ cos (nr) 

k~ A ‘ 



182 THEORY OF OPTICS 

If dS is perpendicular to QPq, then cos (nr) — — i, and, 
save for the sign, the factor kx (cf. page 169) of the central zone 

has been deduced in an indirect way. 

2. For an element dS, which lies at M0' (Fig. 6i), the 

positive directions of r and rx are the same, i.e. 

cos (nr) — cos (nr= o. 

Hence the influence of this element upon the value of 50 dis¬ 
appears, i.e. the elementary waves arp not propagated back¬ 

ward as they should be according to Huygens’ and Fresnel’s 

conceptions of the principle. It is at once evident that this 

disappearance of the waves which travel backward is a conse¬ 

quence of the fact that in (35) every elementary effect appears 
as the difference of two quantities. 

3. The phase at PQ is determined correctly, being the same 
as that due to the direct propagation from ^ to P0. For 

surface elements dS which lie at M0 perpendicular to QP0 are 
multiplied in (40) by the factor 

ft r 4- r. \ 
- sin 2 x[T - -x-), 

and hence the effect is the same as though these surface ele¬ 

ments vibrated in a phase which is ^ ahead * of that of the di¬ 

rect wave from Q to dS, which, in accordance with (36), would 

— _ —-1-j. When the inte¬ 

gration is performed over the surface 5 there is again obtained 

for the point PQ: -f- cos 2n{^p — ~X~)» not> as *n Fresnel’s 

* If the light disturbance be assumed to exist not as a convex, but as a con¬ 

cave, spherical wave, which travels toward a point Q outside of S, the considera¬ 

tions are somewhat modified, as may be seen from (35). (In Mascart, Traitd d’Op- 

tique, I, p. 260, Paris, 1889, this case is worked out.) Under some circumstan¬ 

ces this case is of great importance for interference phenomena. Cf. Gouy, C. R. 

no, p. 1251; hi, p. 33, 1890. Also Wied. Beibl. 14, p. 969. 
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ft a -I- b\ 
calculation, sin 2-—-j~~j (cf. page 169). Thus this 

contradiction‘in Fresnel’s theory is also removed. 

Now if any screen be introduced, the problem of rigorously 
determining sQ is extremely complicated, since, on account of 

the presence of the screen, the light disturbance .y at a given 

point P is different from the disturbance Y which would be 

produced by the sources alone if the screen were absent. In 

order to obtain an approximate solution of the problem, the 

assumption may be made that, if the screen is perfectly opaque 
• 'ds 

and does not reflect light, both s and — vanish at points which 

lie close to that side of the screen which is turned away from 
the source; while, for points which are not protected from 'the 

sources by the screen, the disturbance s has the value Y which 
it would have in free space. 

In fact this was the method of procedure in the above 

presentation of Fresnel’s theory. Then, starting from equa¬ 

tion (40), by constructing the surface vS so that as much as 
possible lies on the side of the screen remote from the source, 

a very approximate calculation of the disturbance s0 at any 
point P0 may be made. Only the unprotected elements 

appear in (40). It is immaterial what particular form be given 

to this unprotected surface, provided only that it be bounded 
by the openings in the screen. This result can be deduced 

from equation (34') on page 179, which shows that the right- 
hand side of (40) becomes zero for this case, if the closed 

surface 5 excludes the point P0 (and also the source Q), for 
which is to be calculated. Hence if the integral of equa¬ 

tion (40) be taken over an unclosed surface 5 which is bounded 

by a curve C, and if another surface S' be constructed which 
is likewise bounded by C, then 5 -j- S' may be looked upon as 
one single closed surface which does not include the origin P0. 

(34') shows that the sum s0 -j- .y0' of the two integrals extended 

over S and S' vanishes. But in this n is always drawn toward 
the interior of the closed surface formed by 5 and S', so that, 
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if the positive direction of the normal to 5 points toward the 

side upon which P0 lies, then the positive direction of the 

normal to S' points away from this side. If then the positive 

direction of the normal to S* be taken toward the side upon 

which P0 lies, the sign of the integral s0f becomes reversed. 

Hence it follows that 50 — s0' — 0, or = s0', or, expressed 
in words: The integral , defined by equation (40), has the 

same value for all unclosed surfaces S of any form which are 

bounded by a curve C, provided the normal be always reckoned 

positive in the same direction {from the side upon which the 

source lies to that upon which P0 lies), and provided these 

different surfaces S do not enclose either the source Q or the 

point P0for which 50 is to be calculated. 

How, now, from equation (40) the rectilinear propagation 
of light, and certain departures from the same, may be 

deduced has already been shown in § 2 with the aid of Fres¬ 

nel’s zones. In the following chapter these departures from 
the law of rectilinear propagation, the so-called diffraction 

phenomena, will be more completely treated. 



CHAPTER IV 

DIFFRACTION OF LIGHT 

As is evident from the discussion in § 2 of the preceding 

chapter, diffraction phenomena always appear when the screens 
or the apertures are not too large in comparison with the 

wave length. But, as will be seen later, diffraction phe¬ 

nomena may appear under certain circumstances even if the 

screen is large, for example at the edge of the geometrical 
shadow cast by a large object. If now, starting with equation 

(40), the diffraction phenomena be calculated in accordance 
with the considerations on page 182, it must not be forgotten 
that the theoretical results thus obtained are only approximate; 

since, on the one hand, when screens are present, the value of 

s is not exactly the same at unprotected points as it would be 
with undisturbed propagation, and, on the other hand, at pro¬ 

tected points s and ~ do not entirely vanish. The approxi- 
qU 

mation is more and more close 
as the size of the apertures in the 
screens is increased; in fact the 

approximate results obtained 
from theory agree well with ex¬ 

periment if the apertures are not 

unusually small. The rigorous 

theory of diffraction will be pre¬ 
sented in § 7 of this chapter. 

i. General Treatment of Dif¬ 
fraction Phenomena.—Assume 

that between the source Q and 
the point P0 there is introduced a plane screen 5 which is of 

185 

Fig. 62. 
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infinite extent and contains an opening cr of any form. Let 

this opening be small in comparison with its distance rl from 
the source Q, and also in comparison with its distance r from 

the point PQ at which the disturbance sQ is to be calculated by 

equation (40) of the preceding chapter. In performing the 

integration over cr the angles (nr) and (nrx) are, on account of 
the smallness of <r) to be considered constant; likewise the 

quantities r and rl whenever they are not divided by A; hence 

*,=4 ysin2>4_!4%. (o 

Assume now a rectangular coordinate system x, y, z. 

Let the xy-pla.ne coincide with the screen S, and let some 

point P in the opening cr have the coordinates x and y. Let 

xltylf zx be the coordinates of the source, zx being positive; 

and xQ, y0, zQ those of P0. z0 is then negative. Then 

r?-(xx-xy+ (y^-yf+z^ p - (^0-^)2+(j/0-j)2+^02. (2) 

Let the distances of Q and PQ from the origin be px and p0 
respectively; then 

Pi2 = xx + yi + po2 = xi + JV02 + V- 

Then the following relations hold: 

r, = P^J I + *+?-****+»>* 
Pi 

, _ 0 . /, , * +y - Kxx0 +m\ 

(3) 

(4) 

The dimensions of the opening cr and its distance from the 
origin are to be small with respect to f\ and p0. Hence, in 
the integration over <r, ;tr and y are small with respect to p. 

If now the expression (4) be expanded in a series with increas¬ 
ing powers of x/px, y/px and x/pQy y/p0> and if powers 

higher than the second be neglected, there results, since 

(1 + 6)* = 1 +£e —-JeS provided e is small in comparison 
with 1, 
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( , *2+y ^ -f- yyx ,,s 

r*sspi\l + -ip?-W * (S) 2 p* 

r = * i1 + -i^r - —0~ ~ *ps r * (6) 
Denoting; the direction cosines of px and p0 by ax, , yx 

and a0, fi0, y0, respectively, in which the positive directions 

of px and p0 point away from the origin, then 

^ g _ Z±. a — ^ 6 — — (7) 
x-Pi’ A p/ 0 pQ> Po p; * ‘ W 

Hence the addition of (5) and (6) gives 

r1+r=PI+Pt-*(‘rI + «o)-XA+AO+'/j/Q/^) 
_ (*«, +W _ K+W 

2/3; 2/30 

Substituting this value in (1) and writing for brevity 

rx + r = Pi + /°o +■/<>> 

* Pi + P0 *' * 
r a. t ’ 

A cos (;zr) — cos (7zrt) 
2 A. rr. 

: A't 

(8) 

(9) 

(1) becomes 

s0 = j sin 2tt//cos [/[.r, y)~\d<r 

- cos 2*4/sin [/(.r^/)]^. (10) 

J0 may therefore be conceived as due to the superposition 
of two waves whose amplitudes are proportional to 

C = /cos [f(x, y)]d<r, 

S~f sin [/(hr, y)]d<r,.(11) 

* This change displaces the origin of time. 
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and whose difference of phase is - . Hence, from the law on 

page 131 [cf. equation (n)], the intensity of illumination of 
the light at the point P0 is 

J=A'*(C» + S?).(12) 

Now two cases are to be distinguished: 1. That in which 

both the source and the point PQ lie at finite distances (Fresnel's 

diffraction phenomena) \ and 2. That in which the source and 

P0 are infinitely far apart (Fraunhofer s diffraction phenomena).' 

2. Fresnel’s Diffraction Phenomena.—Let the origin lie 
upon the line QPq and in the plane of the screen. Then px 

and p0 lie in the same straight line, but have opposite signs, 

hence 

= - “0. A = - A- 
A comparison of equations (8) with equations (9), which 

define ffx, y)> gives 

A*> y) = +f - (*ai +yPiY\- • (13) 
This equation may be still further simplified by choosing as 
the ;r-axis the projection of QP0 upon the screen. Then 

fix = o. Also if the angle which px makes with the ^-axis be 
represented by <p, then 

Ax> y) ~i(^+ ~^)l>2-cosa 0 + /]• * * (r4) 

In order to avoid the necessity of interrupting the discussion 
later by lengthy calculations, a few mathematical considera¬ 
tions will be introduced here. 

3. Fresnel’s Integrals.—The characteristics of the func¬ 
tions which are known as Fresnel’s integrals will here be dis¬ 
cussed geometrically.* There are two of these integrals, 

namely, 

* This method was proposed by Cornu in Jour, de Phys. 3, 1874. 
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The and 7 which correspond to each particular value of 
the parameter v may be thought of as the rectangular coordi¬ 

nates of a point E. Then, as v changes continuously, E 

describes a curve whose form will be here determined. 

Since, when v = o, £ = 7 == 0, the curve passes through 
the origin. When v changes to — v, the expression under the 
integral is not altered, but the upper limit of the integral, and 

hence also £ and 7, change sign. Hence the origin is a centre 
of symmetry for the curve, for to every point -f- «£, -f- 7, there 

corresponds a point — — 7- The projections of an element 
of arc ds of the curve upon the axes are, by (15), 

7tv2 rev2 
= dv-cos — , dif — dv • sin -j-. . . (16) 

Hence 

ds — V d%2 + drj1 = dv, 

or, if the length s be measured from the origin, 

s — v.(17) 

The angle t which is included between the tangent to the 

curve at any point E and the <£-axis is given by 

dr} rev2 . n 
tan r = = tan —, i.e. r = . . . (18) 

Hence at the origin the curve is parallel to the £-axis; when 

v—\, i.e. when the arc s= 1, it is parallel to the 7-axis; 
when s2 = 2 it is parallel to the £-axis; when s2 = 3 it is 

parallel to the 7-axis; etc. 
The radius of curvature p of the curve at any point E is 

given by [cf. (17) and (4 8)] 

_ ds_i___ _i_ 

^ dr 7tv 7ts (19) 

Hence at the origin, where v = o, there is a point of inflec¬ 
tion. As v increases, i.e. as the arc increases, p continually 

diminishes. Hence the curve is a double spiral, without 

double points, which winds itself about the two asymptotic 
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points F and F', whose position is determined by v — -j- 00 

and v = — 00 . The coordinates of these points will now be 
calculated. For F, 

To obtain the value of this definite integral set 

J'Qe~x*dx = M..(2i) 

If jv is the variable, then also 

The product of these two definite integrals is 

fo fj-^+^dxdy^M*.(22) 

If now x and y be conceived as the rectangular coordinates 
of a point P, then .r2 -j-y2 = r2, in which r is the distance of P 

from the origin. Furthermore dx dy may be looked upon as a 

surface element in the .ary-plane. But if a surface element be 
bounded by two infinitely small arcs which have the origin as 

centre, subtend the angle d<p at the centre, and are at a dis¬ 
tance dr apart, then its area do is 

do — r dr d(f>.(23) 

Hence, since the integration is to be taken over one quad¬ 
rant of the coordinate plane, (22) may be written 

/"■/a pm 

d<t>Joe-r'r dr. .... (24) 

But now 

J* e ~ rV dr — — -e ~ r*, 

Hence 

M* = ~, M = 
4 2 • (25) 
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Writing in (21) for ;r 

7ty2 . 
x% = — i—, i. 

2 
• • (2<5) 

in which i represents the imaginary, there results from (21) 

and (25) 

or, because 

But since 

+ * 

4/2 ’ 

dv = L±J 
2 

e 
nv2 . . kv* 

= cos-\- 2 sin- 
2 2 

. • (27) 

. . (28) 

it follows, by equating the real and the imaginary parts of (27), 

that 

Hence, in accordance with (20), the asymptotic point F lias the 

coordinates — iiF — The form of the curve is therefore 
that given in Fig. 63. The curve may be constructed in the 

following way: Move from o along the <?-axis a distance 

s = o. 1. Construct a circle of radius p = — = -1-.- which 
7tS 7t 

passes through the point o and whose centre lies upon a line 

which passes through the point 5=0.1 and makes with the 
. ns% Tt 

?/-axis the angle r = — = o.oi~ [cf. (18)]. On the circle 

thus constructed lay off from o the arc 5 = 0.1. Through its cncl 
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point draw another circular arc of radius 0 = JL- = —-— = — 
TtS 7T.0.2 7t 

whose centre lies upon a line which passes through the point 

j- = o. I on the curve and which makes with the v-axis an 
, tcs2 n _ . 

angle t — — = 0.04—. Proceeding in this way, the entire 

curve may be constructed. 

4. Diffraction by a Straight Edge.—Resume the notation 
of § 2. Let the j-axis be parallel to the edge of the screen, 
and let the screen extend from x = 00 to x = x' (the edge 

of the screen, cf. Fig. 64). In the figure x’ is positive, i.e. 
P0 lies outside of the geometrical shadow of the screen. Con¬ 
sider the intensity of the light in a plane which passes through 
the source Q and is perpendicular to the edge of the screen. 

QPq then lies in the jw-plane. Equation (14) is here appli- 
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cable, and gives, in combination with (11), the following ex¬ 

pressions to be evaluated: 

c = j Jdxdy cos[r(^+ cos2 0 +/)]> | 

S = J* J'dxdy sin^^4-^-)(.r2 cos2 0j 

It is necessary first to justify the extension in this case of the 
integration over the whole portion of the xy-p\ane not covered 

by the screen, for it will be remembered that in the preceding 
discussion (cf. page 186) the integral was extended only over 

an opening all of whose points lay at distances from the origin 

which were small in comparison with px and p0. As a matter 

of fact such a limited region of integration is in itself determina¬ 

tive of the intensity J of the light at the point P0, since it 
includes the central zones, and indeed a large number of them. 
An extension of the integration over a larger region adds 

nothing to J, since, as was previously shown, the edge of the 
screen exerts no further influence upon the intensity at the 

point PQ when it is many zones distant from the line connect- 
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ing Po and Q. Hence in (30) the result is not altered when 

the integration is taken over the entire portion of the xy~plane 
not covered by the screen. 

Substitution in (30) of 

X 

gives 

C = 

7tlP 

2 

cos0'^7+i) 
s = 

c°S0.|(^-+ hrrzJ: 
pPV 

dv du cos ~(v2 + «*), 

dv du sin -(v2 -{- u2), 

in which 

(31) 

(32) 

,'=.'cos j-y . . . (33) 

If m (32) the following substitution be made, 

cos ^ = cos n-± cos - sin ** sin 5* 

and for sin ~{v2-\-u2) the analogous expression, the integration 

with respect to u may be immediately performed and there re¬ 
sults, in consideration of (29), 

j/r 
7tV2 
•—dv — 

2 

fV\ ICv* ) " 

( r. nv2 T 
j 1 

/ V 7CV2 ) 1 • (34) 

j J-T ~dv + 

u (fT* }-J 
/=- 

X 

,/ 1 1 V • • • (35) 
2 COS 0—. 
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Hence it follows from (12) that 

J = 2| (/cos + (/sin |. . (36) 

The value of A' is given in (9), page 187. Since, according to 
the observations on the preceding page, only those portions of 
the .vy-plane which lie near the origin are in the integration 

determinative of the intensity J at the point PQ, it is possible 

to set in the expression for A' 

r 

Hence 

p0, rx — plf cos (nr) = — cos («rt) = cos <p. 

A’.f = 
A 

2(Po + PiT (37) 

The two Fresnel integrals which occur in (36) will be inter¬ 
preted geometrically as in § 3. If the coordinates of a point 
E of the curve of Fig. 63 be represented by the above 

equations (15), i.e. by 

and the coordinates of another point E' on the curve, corre¬ 

sponding to the parameter v', by 

£' = f. 
7tV^ . 

cos —av, 
2 

then evidently 

The stun of the squares of these two integrals is then equal to 

the square of the distance between the two points E and E' of 

the curve in Fig. 6j. The point E — F! corresponds to the 

parameter v = — 00 . Hence if the distance of the point F' 
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from a point E\ which corresponds to a parameter 1/, be 

represented by (— 00 , v'), then, by (36) and (37). 

y= 
A2 

2(/°0 + ^i)2 

(38) 

From the form of the curve in Fig. 63 it is evident that J has 

maxima and minima for positive values of v', i.e. for cases in 

which P0 lies outside the geometrical shadow of the screen. But 

when P9 lies inside the shadow, the intensity of the light 

decreases continuously as P0 moves back into the shadow; for 

in this case v' is negative and the point E' continuously 

approaches the point FJ. 

If v' = -f- 00 , then (— 00 , -j- 00 )2 = 2, since each of the 

points F and F' has the coordinates % — V = §•. In this case 
P0 lies far outside of the geometrical shadow, and by (38) the 

intensity is the same as though no screen were present. For 

v' = o, P0 lies at the edge of the geometrical shadow, in which 
case (— 00 , o)2 = and, by (38), the intensity is one fourth 

the natural intensity. 
The rigorous calculation of the maxima and minima of 

intensity when P0 lies outside the shadow will not be given 

here.* It is evident from Fig. 63 that these maxima and 

minima lie approximately at the intersections of the line FF' 

with the curve. Since this line cuts the curve nearly at right 
angles, it is evident that at the maxima the angle of inclination 
r of the curve with the £-axis is ($-j-2h)ir, at the minima 

r — (1 + 2h)nt in which h = o, 1, 2, etc. Hence at the 

maxima, cf. equation (18) on page 189, v' — -|- 4h, at the 

minima, v' — -}- 4^. Now in order to determine the 

position of the diffraction fringes, conceive the screen so 

* Cf. Fresnel, CEuvr. compl. I, p. 322. For a development in series of 

Fresnel s integrals, cf. F. Neumann, Vorles. u. theor. Optik. herausgeg. von 

Dorn, Leipzig, 1885, p. 62. Lommel in the Abhandl. d. bayr. Akad., Vol. 15, 

p. 229, 529, treats very fully, both theoretically and experimentally, the diffraction 
produced by circles and straight edges. 
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rotated* about its edge that it stands perpendicular to the 
shortest line a which can be drawn from Q to the edge 
(cf. Fig. 64). Then pv = a : cos <p. Further, draw through 

P0 a line parallel to the ^r-axis, and let the distance of PQ from 
the geometrical shadow of the screen measured along this line 
be represented by d. Then x': d = a \ a -J- b. Hence d 

denotes the distance of the point P0 from the geometrical 
shadow, in a plane which lies a distance b behind the screen. 

Introducing now in (33) the quantity d in place of x', and set¬ 

ting px = a, pQ b, which is allowable since cos <p does not 
differ appreciably from 1 provided P0 be taken in the neigh¬ 
borhood of the shadow, there results 

] = ■ ■ ■ (39) 

in which p is an abbreviation for 

-JSg*.<« 

There are therefore maxima of intensity when d — p Vf -|- 4A, 

i.e. when 

dv=P' 1.225; d2 = A 2-345 ; d3=p-3.082, etc., 

minima when d = p 4b, i.e. when 

d\ = / • 1.871; dz'=p-2.739; ^ 3.391, etc. 

The exact values differ only slightly from the approximate ones, 
which are also in agreement with observation.f 

According to (38) the intensity of the light at these max¬ 
ima and minima may be determined by measuring the suc¬ 

cessive sections which the line FF' cuts from the curve. 
Thus, if the free intensity be 1, the maxima are 

71=1-34; 72=l-20; J3= 1.16; 

* Such a rotation of the screen and corresponding rotation of the free surface 

over which the integration is extended produces no change in the result (cf. propo¬ 

sition on page 184). 

| The diffraction fringes may be observed either by means of a suitably placed 

screen or a lens with a micrometer (cf. p, 133, note). 
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the minima, 

y/= 0.78; J2 =0.84; JJ = 0.87. 

From a more exact evaluation of his integrals Fresnel 

obtained values differing but little from these. 

5. Diffraction through a Narrow Slit.—Using the same 
coordinate system and the same notation as in the preceding 

paragraph, the intensity of the light will be investigated in a 

plane which passes through the source Q and is perpendicular 
to the edges of the slit. This 

plane is the .r.s-plane (cf. Fig. 

65). Let the x coordinates of 
the edges of the slit be xx and xr 

If the point PQ, at’ which the in- 
tensity is to be calculated, lies 

in the geometrical shadow of 
one of the screens which bound 

the slit on either side, then xx 

and x2 are either both positive 

or both negative. But if the 
line connecting Q with PQ passes 
through the open slit, then the 

signs of xx and x2 are opposite. 
This case is shown in Fig. 65. It will be assumed that the 
source Q lies directly above the middle of the slit, as shown in 

the figure. Let d be the width of the slit. Then 

xi “ x% — d, xx — |d : d — a \ ab. . . (41) 

a and b may without appreciable error be replaced by px and 
pQ, since when d is small the inclination of px to a is also small. 

Introducing again the quantity v which is defined by (31) 

on page 194, and calling vx and v2 the values of v which 
correspond to the limits of integration xx and x2, the intensity 
of light at Pq is, as in (38), 

Pa & 

Fig. 65. 

j= 
2<A + P,): 

h'"'l > (42) 
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in which (vlf ^2) represents the distance between the two 

points of the curve in Fig. 63 which correspond to the param¬ 
eters vx and vr But now, by (41) and (31), 

in which p has the same meaning as in (40). If now it is 

desired to investigate the distribution of light in a plane which 
lies a distance b behind the screen, the dependence of equation 

(42) upon d must be discussed. According to (43) the differ¬ 
ence between the parameters is constant. Hence the question 

is, how does the distance vary between the two points vx and v2 

whose distance apart, when measured along the arc of the 

curve in Fig. 63, has the constant value s = vx — v2} Assume 
first a slit so small that the length of the constant arc s is about 

o. 1,* then the curve shows that the intensity remains constant 
from d~ o up to a large value of vx, i.e. of d, and then 

gradually decreases when vx and v2 both attain very large posi¬ 

tive or negative values, i.e. when PQ lies very far within the 
geometrical shadow. Hence when the slit is narrow the 

geometrical shadow cannot be even approximately located, for 
the light is distributed almost evenly (diffused +) over a large 

region, and there is nowhere a sharp shadow formed. 

If the width of the slit is somewhat larger (though still but 
a small fraction of a mm.), so that the constant arc length j 

amounts to 0.5, then the curve of Fig. 63 shows 

that here too the light extends far into the 
geometrical shadow, and that maxima and 

minima of intensity occur only when z\ and v% 

have like signs, i.e. diffraction fringes are formed 

only within the geometrical shadow. Sharp 
minima exist (cf. Fig. 66) when the tangents to Fig. 66. 

the two points vx and v2 of the curve are parallel so that their 

* For a = b = 20 cm., 8 must be about 30A to attain this. 

\ Diffusion of light must always occur, as can be shown from the construction 

of the Fresnel zones, if the width of the slit 8 < |A. 
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angles (cf. page 189) differ from each other by a whole multiple 

of 2it. Since now, by (18) on page 189, r = the positions 

of the diffraction fringes must be given by 

~(vx2 — v2) = ± 2h7t, i.e. (vx — v2)(vx -f v2) = ± 4^» 

or, in consideration of (43), by 

d‘$ — ± hXby h— 1,2,3.(44) 

These fringes are then equidistant and independent of a, i.e. 

of the distance of the source from the screen. 
If the slit is made broader, or if a and b are reduced, the 

width of the slit remaining unchanged, so that the difference 

vx — v2 is essentially increased, then diffraction fringes may 

also appear, as is shown by Fig. 63, when vx and v2 have 

opposite signs, i.e. outside of the geometrical shadow. For a 
given value of vx — v2 the numerical value of J corresponding 

to any particular value of d may be determined from the curve 
with a close degree of approximation. When the slit becomes 

very broad, i.e. when vx — v2 is very large, the case approaches 
that treated in § 4 above. 

At the mid-point where d — o, J never vanishes. But for 
given values of a and <5, the value of b determines whether J is 

a maximum or a minimum. Since when d =0, vx and v2 are 
equal and of opposite sign, the line connecting them passes 

through the origin (cf. Fig. 63). Hence the points of inter¬ 
section of the curve with the line FF' determine approxi¬ 
mately the maxima and minima, i.e. (cf. page 196) there are 

Maxima when vx — 4k, 

Minima when vx= Y%-\- 4h, 

or, according to (43), since v2 = — vx, 

Maxima when ^(i+ i) = f+ 4* 

Minima when j) = J + 4*, 

h — o, 1, 2, 3 .. . 

(45) 
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6. Diffraction by a Narrow Screen.*—Let the screen have 
the width <5, and let the source Q lie at a- distance a directly 

over its mid-point. Consider the intensity of the light in a 

plane (the ^-plane) which passes through Q and is perpendic¬ 
ular to the parallel edges of the screen. Use the preceding 

notation (cf. Fig. 65), and let xx and x2 be the ^--coordinates 

of the edges of the screen, vx and v2 the corresponding values 
of the parameter v. vx and v2 then satisfy equation (43). The 

intensity of the light J is proportional to the sum of the square 
of the integrals (cf. page 195) 

Now the first term of M is equal (cf. the analogous develop¬ 

ment on page 195) to the ^-component of the line which con¬ 

nects F' and the point Ex which corresponds to the parameter 
vx (cf. Fig. 67), The second term of M is equal to the £- 

Fig. 67. 

component of the line (E2F) in which the point E2 corresponds 
to the parameter v2. The two terms in iVhave similar signifi- 

* A straight wire may be conveniently used as such a screen. 
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cations. If the £ and rj components of the lines (.F'Eand 

(EJF) be denoted by Zx, £2, ^2, then 

^2 + ^2 = (^ + ^)3 + K + ^)2- 
If at the end of the line (F'EX) the line (EXF"), having the 

same length and direction as the line (E2F), be drawn, then 

the line (F'F") has the components + £2 > *7i H- %- The 
intensity J at -the point P0 is then proportional to the square 

of the line (F'F"), which is the geometrical sum of the two 

lines (F'EJ and (E2F), i.e. 

.(46) 

From this it appears that the central line (d = o) is always 
bright, although it lies farthest inside the geometrical shadow; 

for along it the values of vx and v2 are equal and of opposite 

sign, so that the two points Ex and Ez in Fig. 67 are sym¬ 
metrically placed with respect to the origin, and hence the 

lines F'EX and EJF are equal and have the same direction, so 
that their sum can never be zero. The broader the screen, the 

smaller is the intensity along the middle line. 
If the screen is sufficiently broad so that vx and v2 are large, 

the points Ex and E2 lie close to F' and F. The lines (F'E^j 

and (E%F) are then approximately equal, and complete dark¬ 
ness results, provided (.F'Ex) and (.E2F) are parallel and oppo¬ 
site in direction. 

Since, for large values of vx and v2, the lines (F'Ex) and 

(.FE2) are almost perpendicular to the curve in Fig. 67, it fol¬ 
lows that if these lines have the same direction, the tangents 

which are drawn to the curve at Ex and E2 are approximately 
parallel to each other; and their positive directions, which are 

taken in the direction of increasing arc, are opposite. Hence 
the difference between the angles which the tangents make 
with the <?-axis, i.e. rx — r2, is an odd multiple of zr, or since, 

by (18), t — dark fringes occur when 

\{vx- v22) = ± I, ± 3> ± 5> etc. 
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4 becomes, in consideration of (43), 

2 (id : ± hr.- I , 3, 5, etc. . . . (47) 

These fringes become less black as It increases. They are 

distant and independent of the distance a of the source 

1 the screen. These results hold only inside the p'eometri- 

shadow, i.e. only so long1 as d ^ , and only then 

close approximation provided the values of v't and which 

,«spoml to the edpvs of the screen are sufficiently larqe, 

irovided the screen is broad enough and the point /*,, is 

:iently near to it and to the middle line of" the shadow. 

Vs /*„ moves toward the etl^e of the |;eometrical shadow 

j,sses outsiile of it, maxima and minima occur at different 

ions of which can be determined for every special ease 

ie construction given in Fig. by. 'flu* law determining 
positions of these fringes is, however, not a simple one. 

’hose examples will suffice to show the utility of the 

letricai method used by Cornu.s Observation verifies all 

tmseqtienees here deduced. 

. Rigorous Treatment of Diffraction by a Straight Edge, 
was remarked at the beginning of this chapter (page 1X5), 

>reguing treatment of diffraction phenomena, based upon 

■eiw’ principle, is only approximately correct. Now it 

portaul to notice that in at least one case, namely, that 

fraction by a straight edge, the problem can be solved 

tusly, as has been shown by Sommerfeld.t This solution 

urnishes a test of the accuracy of the approximate solu- 

;uul also makes it possible to discuss theoretically the 

mena when the angle of diffraction is large, i.e. when 

v within the limits of the geometrical shadow,--a discus*- 

*hich was not possible with the other method, at least 

it making important extensions. 

m|«U< t'.t’.c'i .up Uy Utr* uwsluht l»y M.irn'.ut, Tr.ueHl‘OpUfpit*, 
KHo, Vul. I, jt. ,*H|. 
StumticrfcUl, M.uh. Amulm, Vnl. Xt.VIt, j». 317, 1805, 
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In the rigorous treatment of the diffraction phenomena the 

differential equation (12) on page 159> 

for the light disturbance must be integrated so as to satisfy 

certain boundary conditions which must be fulfilled at the sur¬ 

face of the diffraction screen. The form of these conditions 

will be deduced in Section II, Chapters, I, II, and IV; here 

the results of that deduction will be assumed. In the first 

place, to simplify the discussion, assume that the source is an 

infinitely long line parallel to the y-axis. Also let the edge 

of the screen be chosen as the y-axis, and let the A'-axis be 

positive on the side of the screen, and the .s'-axis positive 

toward the source (cf. Fig. 68). In this case it is evident that 

Incident light 

Fig. 68. 

j cannot depend upon the coordinate y, so that the above 

equation reduces to 

Let the screen be infinitely thin and have an infinite absorp¬ 

tion coefficient. It can then transmit no light, but can reflect 

perfectly, as will be shown in Section II. A very thin, highly 
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polished film of silver may constitute such a screen. It is then 

not a ‘ * perfectly black” screen, but rather one "perfectly 

white.” * The boundary conditions at such a screen are: 

(49) s = o, if the incident light is polarized in a plane per¬ 

pendicular to the edge of the screen, 

(50) ~ = o, if the light is polarized in a plane parallel to the 

edge of the screen, t 

The meaning of these symbols and of the word polarized 

will not be explained until the next chapter. Here it is suffi¬ 

cient to know that the solution of the differential equation (48) 

must satisfy either (49) or (50). The boundary conditions 

hold upon the surface of the screen, i.e. for.-sr = 0, x > o; 

or if polar coordinates are introduced by means of the equa¬ 

tions 

x = r cos 4>, 2 — r sin <"/>, . . . . (51) 

for — o or = 2 7t. 

If these polar coordinates be introduced into the differential 

equation (48), there results 

1 'ds 1 d2s \ 

Now a solution of this differential equation, which satisfies 

the boundary condition (49) or (50), gives for the particular 

* A perfectly black screen, i.e. one which neither transmits nor reflects light, is 

realized when the index of refraction of the substance Constituting it changes 

gradually at the surface to that of the surrounding medium, and the coefficient of 

absorption at the surface changes gradually to the value zero. Every discontinuity 

in the properties of an optical medium produces necessarily reflection of light. 

Hence an ideal black screen, consisting of a thin body, wilh sharp boundaries, at 

which definite boundary conditions can be set up, is inconceivable. 

t As will be seen later in the discussion of the electro-magnetic theory, s has 

not the same meaning in the two equations. In (49) j represents the electric force 

vibrating parallel to the edge of the screen, in (50) the magnetic force vibrating 

parallel to the edge of the screen. The intensity is calculated in both cases in the 

same way, at least for the side of the screen which is turned away from the 
source. 
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case in which the source lies at infinity and the incident rays 

make an angle <p' with the A'-axis 

I +*• ian-E ( 
s = A ■-•e r\e 

in which 

~ {y J”e 2 dv T e ~iy > J*e ? 2 dv | , 

2.Ttr 2.7* r 
y =-j-cos(<t> — <p'), y' = -j~ cos (<p + q>'), . 

(53) 

(54) 

(55) 

In (53) the sign is minus or plus according as it is the con¬ 

dition (49) or (50) which must be fulfilled. The letter i denotes 

the imaginary V — 1. Thus the solution of s appears as a 

complex quantity. In order to obtain its physical significance, 

it is only necessary to take into account the real part of this 

quantity. Thus setting 

s — (A -j- Bi)e,vr T,.(56) 

the physical meaning of j is the real part, i.e. 

t t 
s = A cos 27*-j — B sin 27*-^- . . . (57) 

The intensity of the light would in this case be (cf. similar 

conclusion on page 188) 

J=A* + B>.(58) 

This result could have been obtained from (56) directly by 

multiplying j by the conjugate complex quantity, i.e. by that 

quantity which differs from the right-hand side of (56) only in 

the sign of i, namely, by (A — Bi)i~r2nr. For the sake of 

later use this result may be here stated in the following form: 

When the expression for the light disturbance s is a complex 

quantity (in which j signifies physically only the real part of 
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this complex quantity), the intensity of the light is obtained by 

multiplication by the conjugate complex quantity. 

That equations (53), (54), and (55) are a real solution of 

the differential equation (52) can be shown by taking the 

differential coefficients with respect to r and 0."x' Also the 

boundary condition (49) is fulfilled when the minus sign is used 

in (53), since for 0 = O and 0 = 27T, y — y', cr = cr'. The 

boundary condition (50) is fulfilled when the plus sign is used 

in (153), since ~ = — -^4 for 0=0, and since the differential 
Zz r Z<P 

coefficient with respect to 0 of the two terms in the brackets 

of (53) take opposite signs for 0=0 or 0=2re. Further¬ 

more, that (53) is a solution corresponding to the assumed case 

of a plane wave from an infinitely distant source lying in the 

given direction will be seen from a more detailed discussion. 

But it is first necessary to consider a very important point. If 

the point PQ, for which j is to be calculated, be made to 

execute a complete revolution in the A'#-plane about the edge 

of the screen and at a fixed distance r from it, then 0 increases 

an amount 2tc. s does not regain its original value, because, 

on account of the factor sin -£(0 T 0'), cr and cr', in the change 

from 0 to 0 —{— 27T, have changed their signs, s is therefore 

not a single-valued function of the coordinates. But the 

physical meaning of s demands that it be single-valued. This 

demand can at once be satisfied if, in the change of 0, P0 be 

never allowed to pass through the screen.- This restriction 

will be made, so that 0 is allowed to vary only between o (the 

shadow side of the screen) and 2it (its light side). 

Three regions are to be distinguished within which s must 

be treated differently: 

1. The region of the shadow: o < 0 < 0'. From (55), cr 

and cr' are negative. Hence, for an infinitely large value of 

r, s is zero. 

* The way in which Sommerfeld reached this solution cannot here be presented, 

as it would require too long a mathematical deduction. 



208 THEORY OF OPTICS 

2. The region of no shadow: <fi' < 0 < 27t — <p', 

positive, <?' negative. Since, from (27) on page 191, 

+ “ _ .7T»2 

e 2 dv = 2 

it follows that, for infinitely large values of r, 

The real part of this expression corresponds to plane 

which have amplitude A, and whose direction of propa 

makes the angle <f>' with the ^r-axis. The solution a< 

corresponds then, for large values of r, to the inciden' 

from an infinitely distant source Q which lies in the directi 

3. The region of reflection: 21t ~ 4>' < <p < 27t. <r ; 

are positive. Hence, for infinitely large values of r, 

s — A-e™T { e~ cos | . 

The real part of this expression corresponds to the : 

position of the incident plane wave and the plane wave ref 

at the screen in accordance with the laws of reflection, 

reflected amplitude is in numerical value equal to the in< 

amplitude. 

Equation (53) may be made more intelligible by 

making use of the curve of Fig. 63. For, from page 195 

1 dv = Z iy, 

in which £ and v are the projections of the line fF'E) 

the Z and rj axes respectively, and E represents the poi 

the curve corresponding to the parameter <r. Similarly 

— irf’y . 
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in which and rf are the projections of the line (.F'E'), and 

E' is a point of the curve which corresponds to the param¬ 

eter cr'. 

Now upon the side of the screen turned away from the 

source, o < 0 < 7T, and it is to be noticed that, on account 

of the small denominator A. (wave length), cr' is always very 

large and negative, provided r be not taken very small. 

Hence, for large values of r, it is possible by equation (61) 

to write approximately <?' = rf = 0, and there results from 

(53) and (60) 

s = A l-^NLf7rTe • ~iy (£ — if, 

and by theorem (58), for the intensity of the light, 

a2 

J = .(62) 

Almost the same equation would have been obtained from 

the approximate method of § 4 above. For, when the source 

is infinitely distant, equation (38) there given would lead to 

00 > v')\.(63) 

and by (39), 

v' = d\]ry 

The meaning of d may be obtained from" Fig. 64. If the 

distance r of the point Pa from the edge of the screen be intro¬ 

duced, then d = r sin (0 — 0'), if <p — <p' be the angle of 

diffraction, i.e. the angle between the incident and the 

diffracted rays. Since in the neighborhood of the edge of the 

shadow it is permissible to write b — r, it follows that 

/ 2r 
v’ = sin (0 — 0') a / -j-; but [cf. (5 5)] this expression is also the 

value of cr when the angle of diffraction is small, i.e. the point E 

in equation (62) corresponds to the parameter v' of equation (63). 
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Hence both equations lead to the same value of J in the 

neighborhood of the edge of the shadow. At greater distances 

from it the more rigorous equation (62) differs from that 

obtained by the above approximate method. The previous 

conclusion that diffraction fringes occur only outside the region 

of shadow is confirmed by this more rigorous discussion. 

Upon the side of the screen turned toward the source 

(11 < 0 < 27t) within the region of reflection (0 > 27t — 0') 

equation (61) assumes values of considerable size. 

Hence if it is desired to deduce a general rigorous equation 

for the intensity of the light, integral (61) cannot be neglected 

in comparison with (60). This is true, both for the region of 

reflection and for the other regions, when r is very small or 

when the angle of diffraction 0 — 0' is large. 

This rigorous equation for the intensity J is obtained by 

multiplying the right-hand side of (53) by the conjugate com¬ 

plex expression. Using the notation of (60) and (61), the 

following is thus obtained: 

a2 ( 
J~ — j £2-f. if-f £/a-f ?f2 =F 2 cos {y- y').(gg'-j- rjf) 

± 2 sin {y — y')-(y$' — y'£) j , 

or 

jE~ j {F'£f+(F'£f^2(F'£)(F£')cos(r-r'+X) j , (64) 

in which ^denotes the angle included between the lines {F'E) 

and (F'E). x is taken positive when the rotation which leads 

most directly from F'E to F'E takes place in the same direc¬ 

tion as a rotation from the 7- to the £-axis. By (54), 

, 4 Ttr . 
V — Y = -jp sin 0 sin 0'.(65) 

By (64) J is proportional to the square of the geometrical 

difference or sum of the two lines of length {F'E) and {F'E) 

which include the angle x+y-y'. The geometrical differ- 
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ence is to be taken when the incident light is polarized in a 

plane perpendicular to the edge of the screen, the geometrical 

sum when it is polarized in the plane parallel to that edge. 

The expression (64) may still be much simplified when the 

intensity J is reckoned for points which are not in the neigh¬ 

borhood of the- edge of the shadow, i.e. when the difference 

between 4> and <p' is large. 

For then in the'region of the shadow cr and or' have large 

negative values, and hence, as is evident from the discussion 

of the form of the curve of Fig. 63 given in § 3, F'E becomes 

equal to the radius of curvature p of the curve at the point Et 

F'E' to its radius of curvature at the point E', anti the angle 

X, which the two lines make with each other, equal to the 

angle included between the tangents drawn to the curve at the 

points E and E'. Hence, from equations (18) and (19) on 

page 189, 

F'E = —, F'E' 
7t(T’ > X = -(<?*- <r'3). 

(64), 
Now, from (55) and (65), y — y' = o, and hence, from 

_ A2 (1 I \3 
J= zA- =F V • (66) 

If the values of cr and cr' given in (55) be introduced here, 

then, when the sign is negative, i.e. when the incident light is 

polarized in a plane perpendicular to the edge of the screen, 

n\ r—A2?i sin2 £</>•cos*\(fi' 

W J ~ na V (cos c/> cos c//f * * * ) 

while when the sign is positive, i.e. when the incident light is 

polarized in a plane parallel to the edge of the screen, 
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These equations for the region of the shadow hold only so 

long as is very small and the difference between 0 and 0' is 

large. Thus they do not hold at the edge of the shadow. 

The equations show that, at the screen itself (0 = o), the 

light is completely polarized in a plane parallel to the edge 

of the screen; also that, as 0 increases, the intensity yin both 

equations continually increases, and that the intensity (67) of 

the light polarized in the plane perpendicular to the edge of the 

screen is always smaller than the intensity (68) of the light 

polarized in the plane parallel to the edge of the screen. 

The difference between the two intensities continually de¬ 

creases as the edge of the shadow is approached. 

Gouy * has made observations upon the diffraction of light 

by a straight edge when the angle of diffraction is very large. 

When the edge of the screen was rounded, colors were pro¬ 

duced which depended upon the nature of the screen. The 

theory here given requires that, independent of the nature of 

the screen, the colors of long wave-length predominate in 

light diffracted at a large angle. If there is to be a depend¬ 

ence of the color upon the nature of the screen, the boundary 

conditions (49) and (50) must contain the optical constants of 

the screen. Thus far no integration of the differential equation 

(48) which involves such complicated boundary conditions has 

been made. 

Outside of the region of the shadotu, and also outside of 

the region of reflection, and at a sufficient distance from the 

limits of these two regions, cr has a large positive and cr' 

a large negative value. Hence F'E' is very small and, 

disregarding the sign, has the value 1 : kg', while F'E 

is approximately equal to fi. Further, since the angle 

included between F'E and the £-axis is approximately \it> 

X = ~ so that 

x-\-y — y'—~\7t~ '-lJC sjn2 ^0 __ 

* Gouy, Ann. d. Phys. et de Chim. (6), 8, p. 145, 1886. 
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j^nce, neglecting (F'F'f, there results from (64) 

/^ { " A/ 4r sin i{</> • | - (/>') 
(«9) 

as 0 varies, diffraction fringes appear which are, to he 

vcr^ ^distinct. The fringes become clearer the nearer 
0 approaches 2 nr — 0', But then equation (bp) no longer 

j^jgls, and for points close to the boundary of the region of 

^flection the result must be obtained from t/4) and the curve 

()f l‘*ig- f>3. since in this case /<"Ii' is larger. 

In the region of reflection * at a sufficient distance from its 
j)()liiulary 0 ~ 2* — </>', both F'F and F'E‘ are approximately 

etjVi.'il to 4 2 and X = o. Hence, from (bq) and (65), the in- 

tcJisity changes periodically from perfect darkness to four times 

qJt; intensity of the incident light according as sin 0 sin 0' 

j8 a whole number or half of an odd number. I fence the 

phenomenon of stationary waves, discussed above on page 155, 

is ag^in encountered. Such stationary waves always occur 

uhen the incident and the reflected light are superposed. But 

it is important to remark that the significance of .v depends 

upon the condition of polarization of the incident light (rf. 

foot-note, p. 205). This matter will be discussed in a later 

chapter. 

8. Fraunhofer’s Diffraction Phenomena.—As was re¬ 
marked on page 188, Fraunhofer's diffraction phenomena are 

those in which the source Q lies at an infinite distance from the 

point 1\ of observation. These phenomena may be observed 

by placing a point source Q at the focus of a convergent lens, 

so as to render the emergent rays parallel, and observing by 

means of a telescope placed behind the diffraction screen and 
ocussed for parallel rays. 

The discussion will be based, as in § 1, on Huygens’ 

manciple; and hence the treatment will not be altogether 

‘igorous. But, as has already been seen, this principle gives a 
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very close approximation when the angle of diffraction is not 

too large. In accordance with equations (8) and (9) on page 

187, when pl = p0 = 00 , 

y) = — x | + "0) -f- y(fi\ + A»)}> (7°) 

in which cq, ^, /?0 denote the direction cosines with 

respect to the x- and y-axes of the lines drawn from the origin 

to the source Q and the point of observation PQ respectively. 

(Cf. Fig. 62, page 185.) 
Hence, from equations (n) and (12) on pages 187 and 

188, using the abbreviations 

xK + ffo) = t(A + 4>) = ^ • • (71) 

there results for the intensity of the light at the point P0, 

J=A'\C*+S*),.(72) 

in which 

C — J*cos {jfix -f vy)d(T, S = Jsin (f-ix -{- vy)d<?, . (73) 

and the integration is to be extended over the opening in the 

screen. 

The meaning of the constant A' may be brought out by 
introducing the intensity J' which is observed behind the 

diffraction screen when the telescope is pointed in the direction 

of the incident light. For then, at all points of the screen 
which are not infinitely distant from the origin, /t = v = o, so 
that the relation holds 

J> = 

where cr denotes the area of the entire opening. Hence for 
any direction of the telescope it follows that 

/ = + s").(74) 

9. Diffraction through a Rectangular Opening. — The 
integral of (73) may be most easily obtained when the opening 
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is a rectangle. Take the middle of the rectangle as the origin, 

and let the axes be parallel to its sides and let the lengths of 

these sides be a (parallel to the .r-axis) and b (parallel to the 

/-axis) respectively, then 

6’ : 
4 . . sm sin 

2 

rb 

Hence, from (74), since <r ab 

/ = /’ 

■ . tilt 
3 , rb 

sm ^ sm 
2 

f(a rb 

2 2 

(75) 

Therefore complete darkness occurs in directions for which pa 

or rb is an exact multiple of 2a\ 

If the light from (J falls perpendicularly upon the screen, 

o, , /f, o. Let the optical axis of the observing telescope 

be parallel to the incident light, i.e. perpendicular to the 

screen. The intensity J in the direction determined by 

o'y, is then observed at a point /’ of the focal plane of the 

telescope objective which has the coordinates 

* < /<*„, / .//*„.(76) 

in a coordinate system .rV whose origin lies at the focus F of 

the objective, and whose axes are parallel to the sides of the 

rectangle, /represents the focal length of the objective. In 

(76) it is assumed that FQ are small quantities, i.e, the 

angle of diffraction is small. 

Now, from (71), 

F 
2-rrv 2ttv 

A/ • ,'lf! A/* 

Hence complete darkness occurs when 

Fit • ± 2hit. ± h - It 

(77) 

3 • ■ • 

and when 

rb =s ± 2 It ?r, 
Xf 

i.e. / = ± A* ' , k =s 1, 2, 3 . 
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Hence in the focal plane of the objective there is produced, 

when monochromatic light is used, a pattern crossed by dark 

lines as shown in Fig. 69. The lines are a constant distance 

0 

I 

Fig. 69. 

apart save in the middle of the pattern, where their distance is 
twice as great. The aperture which produced this pattern is 

shown in the upper left-hand corner of the figure. Hence the 

fringes are rectangles which are similar to the aperture but lie 
inversely to it. 

At the focus of the objective the intensity reaches its 
greatest value J= J'; for when pt — o, the limiting value of 

pia pta 
the quotient sin — ; — = 1. J has other but weaker maxima 

approximately in the middle points of the rectangles bounded 
by the diffraction fringes in Fig. 69. For these points 

pia = n{2h +1), vb — 2k +1), ht k = 1,2,3... 

But for the middle points of those rectangles upon the-jr'-axis 

jia = rc(2h +1), v — o, h = 1, 2, 3 . . . 

Hence the intensities in the maxima upon the Jtr'-axis (or the 

y'~axis) are 

j — p_1- 
J lt\2h -f I)2’ 
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while the intensities at the middle points of other rectangles 
for which neither x' nor y' vanish are 

S,=A 
16 : 71* 

(2h + i)%2& -j- i)2‘ 

Thus the intensities are much smaller than the intensi¬ 
ties Jx\ so that the figure viewed as a whole gives the im¬ 

pression of a cross which grows brighter toward the centre and 

whose arms lie parallel to the sides of the rectangle. In Fig. 
69 the distribution of the light is indicated by the shading. 

10. Diffraction through a Rhomboid.—This case may be 
immediately deduced from the former by noting that in (73) 
the integrals C and S, and consequently the intensity J, 

remain unchanged if the coordinates x, y of the diffraction 
aperture are multiplied by the factors J), g, while at the same 
time the /*, v, i.e. the cordinates x', y' of the diffraction 

pattern, are divided by the same factors /, q. Thus a rectan¬ 

gular parallelogram whose sides are not parallel to the coordi¬ 
nate axes x, y may be reduced to a rhomboid by the use of 

two factors q, and in this case the diffraction fringes will 

also be rhomboids whose sides are perpendicular to the sides 
of the diffracting opening. 

11. Diffraction through a Slit—A slit may be looked 
upon as a rectangle one of whose sides b is very large. Hence 

the diffraction pattern reduces to a narrow strip of light along 
the .r'-axis. This is crossed by dark spots corresponding to 
the equation 

J = J' (78) 

in which, when the incident light is perpendicular to the plane 
of the slit, 

2 n 
M = ~y sin 0,.(?&) 
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where 0 denotes the angle of diffraction, i.e. the angle included 

between the diffracted and the incident rays. If Q is a line 

source which is parallel to the slit, the diffraction pattern 

becomes a broad band of light which is crossed by parallel 

fringes at the places determined by fxa = 2hit. Between the 

limits pa — ± 2n the intensity is much greater than elsewhere. 

The position of the dark fringes can also be determined directly 

from the following considerations: 
In order to find the intensity for a given angle of diffraction 

n (cf. Fig. 70) conceive the slit 

AB divided into such portions 

AAX, AxA2, A2As, etc., that the 

distances from A, At, A2, . . .to 

the infinitely distant point PQ differ 

from each other successively by 

■|A. The combined effect of any 

two neighboring zones is zero. 

Hence there is darkness if AB can 

be divided into an even number 

of such zones, i.e. if the side BC 

of the right-angled triangle ACB’ is equal to /*.A, where 

h — 1, 2, 3, etc. Since now BC — a sin 0, in which a is the 
width of the slit, there is darkness when the angle of diffraction 
is such that 

A. 
sm 0 = ±  (79) 

1 A, A2Aj. 9 

Fig. 70. 

But from (78') this is identical with the condition }*a = 2hn, 

Hence it follows that when a < A there is darkness for no angle 
of diffraction, i.e. diffusion takes place (cf. page 199). 

If the incident light is white, and if the intensity J' which 

corresponds to a given color, i.e. a given wave-length A, be 
denoted by and if the abbreviation it a sin 0 = a' be intro¬ 

duced, then for a given value of a' the whole intensity is 

• j// sin2 tt/A 
A • (a,A)2 . (79) 
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If a' is not very small, e.g. if it is about 3^, then 

in (79') sin varies much more rapidly with A. than does ^. 

If ^ be considered approximately constant, (79') assumes the 

form given for the intensity of light reflected from a thin plate 

(cf. Section II, Chapter II, §1). Hence at some distance from 

the centre of the field of view colors appear which resemble 

closely those of Newton’s rings. 

12. Diffraction Openings of any Form.—With any sort 

of unsymmetrical opening, the integrals C and S' have in 
general a value different from zero. At positions of zero 

intensity in the diffraction pattern the two conditions C = O 

and S = o must be simultaneously fulfilled. Hence in general 

such positions are discrete points, not, as with a rectangular 
opening, continuous lines. For the theoretical discussion of 

special forms of diffraction apertures cf. Schwerd, “Die 

Beugungserscheinungen, ” Mannheim, 1835. 

13. Several Diffraction Openings of like Form and Orien¬ 
tation.— Let the coordinates of any point of a diffraction open¬ 

ing referred to a point A lying within that opening be £ and 

77, and let the point A in all the openings be similarly placed. 

Let the coordinates of the points A referred to any arbitrary 
coordinate system xy lying in the diffraction screen be xxyx, 

x%y%^ x%y%-> etc- Then for any point in any opening, for 
instance the third, 

x = xs + y =ys + i?> 
and, from (73), 

c = cos OOh- + £) + v{y; -I- V)]dFd>i, | 

•s = sin [X*, + $) •+ + v)}dSd,,. | ' (80) 

The £ and r) vary in all the openings within the same limits. 

Hence denoting the integrals C and 5 when they are extended 
over a single opening by c and s, that is, setting 

c =fcos + vv)d£dii, s = J1 sin (yu£ + vij)dddi], (81) 
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then 

£'2 + = 4 cos2 -. 

The diffraction pattern which is produced by a single open¬ 
ing is now crossed by dark fringes corresponding to the equa¬ 

tion yd = (2/1 -j- i)7ti i.e. by fringes which are perpendicular 

to the line connecting two corresponding points of the openings 
and which are, in the focal plane of the objective, a distance 
Lf: d apart. 

14. Bahinet’s Theorem.—Before passing to the discussion 
of the grating, which consists of a large number of regularly 
arranged diffraction openings, the case of two compleme?itary 

diffraction screens will be considered. If a diffraction screen 
cq has any openings whatever, while a second screen cq has 

exactly those places covered which are open in cq, while the 

places in cq are open which are covered in cq, then cq and cr2 

are called complementary screens. The intensity Jx when the 

screen cq is used is proportional to Cp -f- Sx, in which Cx and 
are integrals which are extended over the openings in <q. 

The intensity J2 when the screen oq is used is proportional to 

C2 -j- vS22, in which C2 and S2 are extended over the openings 
in uq. The intensity J0 when no screen is used is therefore 

proportional to (Cx -f- Cff -j- (Sx -j- Sff. But, in this latter 
case, at a point in the field of observation which corresponds to 

a diffraction angle greater than zero, J0 = o, i.e. Cx = — C2, 
Sx = — S2, and hence Jx = J2. Or in other words: The 

diffraction patterns which are produced by two complementary 

screens are identical excepting the central spot, which cor¬ 

responds to the diffraction angle zero. This is Babinet’s 

theorem. 
Application of this theorem will be made to the diffraction 

pattern produced by irregularly placed circular screens of equal 

size. This pattern must be the same as that produced by 

irregularly arranged openings of the same size. Hence it 
consists of a system of concentric rings. The phenomenon 
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may be produced by scattering lycopodium powder upon, a 

glass plate. Similarly the halos about the sun and moon may 
be explained as the diffraction effects of water drops of equal 

size.* 
15. The Diffraction Grating.—A diffraction grating con¬ 

sists of a large number of parallel slits a constant distance 

apart. As in § 13, set 

.aq = 0, x2 = d, x3 = 2d, x± = 3d, etc., 

J'i = ^2 = J'i • • * = °> 
in which d denotes the distance between two corresponding 
points in adjacent slits, the so-called constant of the grating. 

Then, from (82), 

c' — 1 -f- cos jid -j- cos 2}xd -f- cos 3 jJ-d -f- . . . 

s' = sin }xd -f- sin 2^d -f- sin 3 pd -j- . . . 

In order to obtain the value of c'2 -f- s'2, it is convenient to 

introduce imaginary quantities by writing, assuming that there 
are m openings, 

c' -j- is' — 1 -f- e^d -f e*itid -j- c*itLd f e^m ~ 'K 

This summation gives at once 
pirny-d. _ T 

+ is' = - f • 

A multiplication of each side of this equation by its com¬ 
plementary complex expression gives 

. 2mf*d 
, stir- 

— cos m)xd _ 2 

1 — cos p-d ~ Md * 
sin2—■ 

2 

so that there follows, from (83) and (78), 

. „ Fa mpd 
sin2 — sin4- 

2 2 

» + j'* = - 

(") 

, dd (85) 

* For a calculation of the size of the drops from the diameter of the halo 

cf. F. Neumann, Vorles. uber theor. Optik, Leipzig, 1885, p. 105. 
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In this Jx' denotes the intensity which would be produced 

by a single slit for the diffraction angle zero (f = o). From 
this equation it appears that the diffraction pattern is the same 
as that of a single slit (which is represented by the first two fac¬ 

tors) save that it is crossed by a series of dark fringes which arc 

, , . wf*d 
very close together and correspond to the equation -g— — hit. 

These fringes are closer together the greater the number vi 

of the slits. Between the fringes the intensity J reaches 
maxima which are, however, at most equal to the intensities 

produced at the same points by a single slit. But much 
pd 

stronger maxima occur when sin — vanishes, i.e. when 

F = 
'iJm 

~d~ 
i.e. sin 0 = h 

d' 
(86) 

in which 0 denotes the angle of diffraction. (The light is 
assumed to fall perpendicularly upon the grating.) 

For the diffraction angles 0 thus determined 

. g mFd 

so that the intensity is m3 times as great as it is at the same 
point when there is but one slit. When m is very great, it 
is these maxima only which are perceptible.* One of these 

maxima may be wanting if a minimum of the diffraction pattern 
due to a single slit falls at the same place, i.e. if both (86) and 

_ 2krc 

a 

are at the same time fulfilled. 

* If the constant of the grating is less than A, no maxima appear, since, by (86), 

sin 0 > x. Hence transparent bodies may be conceived as made up of ponderable 

opaque particles embedded in transparent ether. If the distance between the 

particles is less than a wave length, only the undiffracted light passes through. 
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This is only possible if the width of the slit a is an exact 

multiple of the constant of the grating d. Close-line gratings 
are produced by scratching fine lines upon glass or metal by 

means of a diamond. The furrows made by the diamond act 

as opaque or non-reflecting places. According to Babinet’s 
theorem the width of the furrow may also be looked upon as 

the width a of the slit. This latter then is much smaller than 

the constant d of the grating, so that, in any case, the first 

maxima, which in (86) correspond to small values of h, do not 

vanish. These maxima have a nearly constant intensity, since 
for small values of the width a of the slit the diffraction figure 

which is produced by a single slit illuminates the larger portion 

of the field with a nearly constant intensity. 
Hence, when the number m of the slits is sufficiently large, 

the diffraction pattern in monochromatic light, which proceeds 

from a line source Q, consists of a series of fine bright lines which 
appear at the diffraction angles 0O, 0X, 02, etc., determined by 

X 2X 3A. 
0O = o, sin <fil = ± sin 02 = ± —, sin 03 = ± -j, etc. 

If the grating is illuminated by white light from a line 
source Q, pure spectra must be produced, since the different 
colors appear at different angles. These grating spectra are 

called normal spectra, to distinguish them from the dispersion 

spectra produced by prisms, because the deviation of each 
color from the direction of the incident light is proportional to 

its wave length, —at least so long as <p is so small that it is 
permissible to write sin 0 = 0. Since each color correspond¬ 
ing to the different values of h in (86) appears many times, 

many spectra are also produced. The spectrum corresponding 
to h — 1 is. called that of the first order; that to h — 2, the 
spectrum of the second order, etc. In the first spectrum the 
violet is deviated least; the other colors follow in order to the 
red. After an interval of darkness the violet of the second 
order follows. But the red of the second spectrum and the 
blue of the third overlap, since 3^ < TXr, in which Xv and Xr 
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denote the wave lengths of the visible violet and red rays 
contained in white light. This overlapping of several colors 

increases rapidly with the angle of diffraction. 
That pure spectral colors are produced by a grating and 

not by a slit, which gives approximately the colors of Newton’s 

rings (cf. page 219), is due to the fact that in the case of the 
grating it is the positions of the maxima, while in the case of 
a slit it is the positions of the minima, which are sharply 

defined. 
The grating furnishes the best means of measuring wave 

lengths. The measurement consists in a determination of d 

and 0 and is more accurate the smaller d is, since then the 
diffraction angles are large. Rutherford made gratings upon 

glass which have as many as 700 lines to the millimetre. The 

quality of a grating depends primarily upon the ruling engine 

which makes the scratches. The lines must be exactly 

parallel and a constant distance apart. Rowland now pro¬ 
duces faultless gratings with a machine which is able to rule 

1700 lines to the millimetre. 

16. The Concave Grating.—A further advance was made 
by Rowland in that he ruled gratings upon concave spherical 
mirrors of speculum metal, the distance between the lines 
measured along a chord being 
equal. These gratings produce a 

real image P of a line source Q 

without the help of lenses; the 

diffraction maxima Plf P2, etc., 
are also real images. In order to C 

locate these images, construct a 

circle tangent to the grating (Fig. 
71) upon the radius of curvature 
of the grating as its diameter. If 

the line source Q lies upon the Ftg- 71- 

circle, an undiffracted image is produced upon the same circle 
at P by direct reflection, in such a way that P and Q are sym¬ 

metrical to C, C being the centre of curvature of the grating 
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GG. For the line CB is the normal to the mirror at the point 

B, hence the angle of incidence QBC is equal to the angle of 

reflection PBC. But a ray reflected from any point B' of the 

mirror must also pass through P because CB' is the normal to 

the mirror at B', since C is the centre of curvature of the 

mirror and since approximately QB'C — ^PB'C, and 

therefore B'P is the direction of the reflected ray. The angles 

QB'C and PB'C would be rigorously equal if B' lay upon the 

circle itself, since then they would be inscribed angles sub- 

tended by equal arcs. P is then the position of the undiffracted 

image which is formed by reflection by the mirror of the light 

from QP 

The position of the diffraction image Px is at the intersection 

of two rays BPX and B'PX which make equal angles with BP 

and B’P. Hence it is evident thati^ also lies upon the circle 

passing through PCQB, since the angles PB'PX and PBPX 

would be rigorously equal if B' lay upon the circle. 

If the real diffraction spectrum at Px were to be received 

upon a screen S} it would be necessary to place the screen very 

obliquely to the rays. Since it 

is better that the rays fall per¬ 

pendicularly upon the screen S, 

the latter is placed at the point 

C parallel to the grating. The 

source Q must also lie upon the 

circle whose diameter is CB, 

i.e. the angle CQB must always 

Fig- 72. be a right angle. In practice, 

in order to find the positions of Q which throw diffraction 

spectra upon S, the grating G and the screen 5 are mounted 

upon a beam of length r (radius of curvature of the grating) 

which slides along the right-angled ways QM, QN, as shown 

* This would follow from the second of equations (34), page 51, which apply 

to the formation of astigmatic images by reflection. For this case ^ CBQ = cp, 

CB = r, and hence QB = s = - r cos <p. Hence sx = - s, i.e. the point P, 
symmetrical to Q with respect to C, must be the image of Q upon the circle. 
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in Fig. 72. The source is placed at Q. As 5 is moved away 

from Q the spectra of higher order fall successively upon the 

screen. 

17. Focal Properties of a Plane Grating.—If the distance 

d between the lines of a grating is not constant, then the 

diffraction angle 0 which corresponds to a maximum, for 

instance the first which is given by sin <p = A. : d, is different 

for different parts of the grating, d may be made to vary in 

such a way that these directions which correspond to a maxi¬ 

mum all intersect in a point F. This point is then a focal 

point of the grating, since it has the same properties as the 

focus of a lens.* 

18. Resolving Power of a Grating.—The power of a grat¬ 

ing to separate two adjacent spectral lines must be proportional 

to its number of lines m, since it has been already shown that 

the diffraction maxima which correspond to a given wave 

length A become narrower as in increases. By equation (8G) 

on page 223, the maximum of the order h is determined by 

jj. = 2hit : d, i.e. sin <p = /A : d. 

If fi rises above or falls below this value, then, by (85), the 

first position of zero intensity occurs when has changed in 

such a way that mpd/2 has altered its value by 7t, i.e. when 

the change in amounts to 

dfx = 27r : md. 

Hence the corresponding change in the diffraction angle 

0, whose dependence upon j* is given in equation (78'), is 

d4> = 1 : m d cos 0.(87) 

Hence this quantity d(/> is half the angular width of the diffrac¬ 

tion image. 

* For the law of distribution of the lines cf. Cornu, C. R. 80, p. 645, 1875 ; 

Fogg- Ann. 156, p. 114, 1875 \ Soret, Arch. cl. Scienc. Plays. 52, p. 320, 1875 i 

Pogg. Ann. 156, p. 99, 1875 I Winkelnaann’s Ilandbuch, II, p. 622, 
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■ For an adjacent spectral line of wave length A -j- dh the 

position of the diffraction maximum of order h is given by 

sin (0 + dp') = hft + dh) : d, 

i.e. the angle dp' between the diffraction maxima correspond¬ 
ing to the lines A and A -j- ^A is 

dp' — /i-dk : d cos 0. 

In order that the grating may separate these two lines, this 
angle dp' must be greater than half the breadth of the diffrac¬ 
tion image of one of the lines, i.e. 

dp' > dp, h-d'h > A : m, ~> . . (88) 

Thus the resolving power of a grating is proportional to 
the total number of lines m and to the order h of the spectrum, 
but is independent of the constant d of the grating. To be 

sure, if d is too large, it may be necessary to use a special 

magnifying device in order to - separate the lines, but the sep¬ 
aration may always be effected if only the resolving power 
defined by (88) has not been exceeded. 

In order to separate the double D line of sodium for which 
dh : A = o.ooi, a grating must have at least 500 lines if the 
observation is made in the second spectrum. 

19. Michelson’s Echelon.*—From the above it is evident 
that the resolving power may be increased by using a spectrum 
of high order. With the gratings thus far considered it is not 

practicable to use an order of spectrum higher than the third, 
on account of the lack of intensity of the light in the higher 

orders. But even when the angle of diffraction is very small, 
if the light be made to pass through different thicknesses of 
glass, a large difference of phase may be introduced between 

the interfering rays, i.e. the same effect may be obtained as 
with an ordinary grating if the spectra of higher orders could 

be used. Consider, for instance, two parallel slits, and let a 

A. A. Michelson, Astrophysical Journal, 1898, Vol. 8, p. 37. 
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glass plate several millimetres thick be placed in front of one 

of the slits; then at very small angles of diffraction rays 
come to interference which have a difference of path of several 

thousand wave lengths. This is the fundamental idea in 
Michelson’s echelon spectroscope, in plates of thickness d 
are arranged in steps as in Fig. 73. Let the width of the 

steps be ay and let the light fall from above perpendicularly 
upon the plates. The difference in path between the two 

parallel rays A A' and CC', which make an angle <p with the 
incident light, is, if CD is A. A A' and if 11 denote the index of 

refraction of the glass plates, 

ii‘BC — AD = 118 — d cos 0 “I- ci sin 0, 

since AD = DE — AE and DE = d cos 0, AE = a sin 0. 
If this difference of path is an exact multiple of a wave length, 

i.e. if 

h‘X — n<$ — d cos 0 —j- a sin 0, . . . (89) 

then a maximum effect must take place in the direction 0, 

since all the rays emerging from AB are reinforced by the 
parallel rays emerging from CF. Hence equation (89) gives 

the directions 0 of the diffraction maxima. 
The change d<p in the position of the diffraction maxima 
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corresponding to a small change dX in A- is large, since it fol¬ 

lows from (89) by differentiation that 

hdX = $'dn -f- (<? sin <p -f a cos 0)^0', 

i.e. if 0 be taken small, 

d<pf = 
k-dX - 

. (90) 

Since, by (89), when (f> is small /X = (« - i)tf, (90) may be 

written 

d<p' 
= s[(*-• • • k0') 

Hence dft is large when 8 : a is large. It is to be observed 

that it is in reality a summation and not a difference which 
occurs in this equation, since in glass, and, for that matter, all 

transparent substances, n decreases as X increases. 
One difficulty of this arrangement arises from the fact that 

the maxima of different orders, which yet correspond to the 
same X, lie very close together. For, by (89), the following 

relation exists between the diffraction angle 0 -j- d<p" of order 
h -}- 1 and the wave-length A.: 

X = (d sin 4> + a cos d)d<p", 

i.e. when 0 is small, 
d<p"=X:a.(91) 

Thus, for example, with flint-glass plates 5 mm. thick the two 
sodium lines Dx and D2 are separated ten times farther than 

are the two adjacent spectra of order h and h -J- 1 of one of the 
sodium lines. In consequence of this the source must consist 

of very narrow, i.e. homogeneous, lines, if the spectra of differ¬ 
ent order are not to overlap, i.e. if d<p" > d<f>\ Thus, for 

example, Michelson constructed an instrument of twenty plates, 
each 18 mm. thick, with a — 1 mm., which requires a source 
the spectral line of which cannot be broader than ^ the dis¬ 
tance between the two sodium lines. 

In order to determine the resolving power of the echelon it 
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is necessary to calculate the breadth of the diffraction maximum 

of order //, i.e. those angles of diffraction (*/' h dtp) correspond¬ 

ing to those zero positions which are immediately adjacent to 

the maxima determined by In order to find these posi¬ 

tions of zero intensity, consider the tn plates of the echelon 

divided into two equal portions I and II, l hukness occurs for 

those angles of diffraction <p | dtp tor which tin* difference of 

path of any two rays, one of which passes through any point 

of portion I, the other through the corresponding point of 

portion II, is an odd multiple of |A. 'Just as the right side of 

(89) gives the difference of path of two rays, one of which has 

passed through one more plate than the other, so the difference 

of path in this ease, in which one wave has passed through W 

more plates than the other, may he obtained by multiplying 

the right-hand side of (Hq) by /. 

Hence, at a position of zero intensity which corresponds to 

the angle of diffraction <p j ■ dtp, 

(k ± i)L = ™ cos ((/> J; dtp) { it sin t tp f dtp) |, 

In order that dtp may be as small as possible, i.e. in order to 

obtain the two positions of zero intensity which are closest to 

the maxima determined by (89), it is necessary, as a compari¬ 

son with (89) shows, to make in this equation k . , It\ Hence 

from these two equations 

db |A — ^ (tf sin tp \ a cos tP)dtp> 

or, when <p is small, 

dtp = ± 
K 

nut' (92) 

Thus this angle d<P is half the angular width of the diffraction 
image of the spectral line of wave length A, That a double 
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line whose components have the wave lengths A and A -J- A 

may be resolved, the angle of dispersion dp', corresponding to 
equation (90), must be greater than dp., i.e. 

dX 1 
A ^ In — 1 dn\.^3) 

mS\-x~ - si) 
Thus the resolving power of the echelon depends only upon its 

total length mS no matter whether it consists of many thin 

plates or of a smaller number of thicker ones. But for the sake 

of a greater separation dp" of the spectra of different orders, 

and for the sake of increasing the angle dp' of dispersion, it is 

advisable to use a large number of plates so that a may be 

made small [cf. equations (90) and (91)]. 

For flint glass — has about the value 100 if A is 

expressed in mm. For a thickness 8 of 18 mm. and a number 

of plates m == 20 the resolving power is, by (93), 

Jn — 1 dn\ 

mS\—\—--dxl = 0-46-10’ 

which, according to (88), can only be attained with a line 

grating of half a million lines. 
Although, as was seen above, the diffraction maxima of 

different orders lie close together, there are never more than 

two of them visible. For it is to be remembered that, in the 
expression for the intensity in the diffraction pattern produced 
by a grating, the intensity due to a single slit enters as a factor 

(cf. page 222). In the echelon the uncovered portion of width 

a of each plate corresponds to a single slit, so that (cf. page 
218) the intensity differs appreciably from zero only between 

the angles p = ± ^, which correspond to the first positions 

of zero intensity in the diffraction pattern due to one slit. Thus 
the intensity is practically zero outside of the angular region 
2A : a. Since, by (91), the angular distance between two sue- 



DIFFRACTION OF LIGHT 233 

cessive maxima of different order has the value —, only two 

such maxima can be visible. 
In order that the echelon may give good results, the 

separate plates must have exactly the same thickness d 

throughout. The plates are tested by means of the interfer¬ 

ence curves of equal inclination (cf. page 149, note 1) and 

polished until correct. 
20. The Resolving Power of a Prism.—In connection 

with the above- considerations it is of interest to ask whether 

the resolving power of a prism exceeds that of a grating or 
not. The resolving power of a prism depends not only upon 

its dispersion, but also upon its width (measured perpendicular 
to the refracting edge). For if this width be small, each 

separate spectral line is broadened by diffraction. 

The joint effect of dispersion and cross-section of the beam 
upon the resolving power of a prism, or of a system of prisms, 

has been calculated by Rayleigh in the following way: * If, by 

means of refraction in the system P (Fig. 74), the plane wave 

A0B0 of incident light of wave length X is brought into the 

position AB, the optical paths from A0 to A and B0 to B are 
equal (cf. page 6). A wave of other wave length X -|~ dX 

is brought in the same time into some other position A'B'. 

The difference between the optical paths A0A' and A0A, i.e. 
the distance AA', can be expressed as follows: 

(A0A') — (A0A) ~ A'A = dn-ex, 

* Rayleigh, Phil. Mag. (5), 9, p. 271, 1879; Winkelmann’s Handb. Optik, 
p. 166. 
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in which dn denotes the difference between the indices of 

refraction of the prism for the two wave lengths A and ^ + dht* 

and ex the path traversed in the prism by the limiting rays 

(cf. Fig. 74). This path is assumed to be the same for the 
different colors, an assumption which is permissible since A A' 

contains the small factor dn. 

Likewise the difference between the optical paths B0B' and 

B0B, i.e. the line BB', is 

(B0B') - {B0B) = B'B = dn-e2, 

in which <?2 denotes the path traversed in the prism by the other 

limiting rays of the beam. Now the angle di which the plane 

wave A'B' makes with the wave AB, i.e. the dispersion of the 

prism, is evidently 

BB' — AA’ e — e 
di = --j-= dn~~— 

in which b denotes the width of the emergent beam, i.e. the 

line AB. If the limiting rays A0A pass through the edge of 

the prism, ex — o, and 

di = dn--^,.(94) 

in which e represents the thickness of the prism at its base, 
provided the prism is set for minimum deviation, i.e. the rays 
within it are parallel to the base, and the incident beam covers 

the entire face of the prism. The same considerations hold 

for a train of prisms; if all the prisms are in the position of 
minimum deviation, e represents the sum of all the thicknesses 
of the prisms at their bases. 

In order that such a train of prisms may be able to resolve 
in the spectrum a doublet whose angular separation is di, the 

central images in the diffraction patterns, whieh are produced 
by each spectral line in consequence of the limited area b of 
the beam, must be sufficiently separated. For an opening of 

The dispersion of the air is neglected. 
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breadth b the first minimum in the diffraction image lies, by 
(79) on page 218, at the angle 0 = A : b* If then two spec¬ 

tral lines are to be separated, their dispersion di must at least 

be greater than this angle 0, which is half the angular width 
of the central band in the diffraction image of a spectral line; 
i.e. by (94) the following must hold: 

, e A 

dn-b > 1,' 

dn (95) 

Hence the resolving power of a prism depends only upon the 

thickness of the prism at the base, and is independent of the 

angle of the prism. Thus for the resolution of the two sodium 
lines a prism of flint glass (n — 1.650, dn = 0.000055, 

A = 0.000589 mm.) at least 1 cm. thick is required. But for 
the resolution of two lines for which dL : A == 2 : 106, which 

may be accomplished with the Michelson echelon or with a 
grating of half a million lines, the thickness of the prism would 
need to be e ~ 5 ■ ioa cm., i.e. 5 m., a thickness which is evi¬ 

dently unattainable because of the great absorption of light by 
glass of such thickness. A grating device permits, therefore, 
of higher resolving poiver than a train of prisms. 

21. Limit of Resolution of a Telescope.—If a telescope is 
focussed upon a fixed star, then, on account of the diffraction 
at the rim of the objective, the image in the focal plane is a 
luminous disc which is larger the smaller the diameter of the 

objective. The diffraction caused by a circular screen of radius 
h gives rise to concentric dark rings. The first minimum 

occurs when the angle of diffraction is such that sin 0 = o.diy.t 
ft 

Assume that a second star would be distinguished from the 
first if its central image fell upon the first minimum of the first 

star; then the limiting value of the angle which the two stars 

* Since b is large in comparison to A, 0 is substituted for sin <p. 
f For the deduction of this number cf. F. Neumann, Vorles. ti. Optik, p. 89. 
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must subtend at the objective if they are to be separated by the 

telescope, provided with a suitable eyepiece, is * 

4>>o.6i.j. 

If A be assumed to be 0.00056 mm., and if 0 be expressed in 
minutes of arc, then 

*>4*-',.(96) 

in which h must be expressed in mm. A telescope whose 
objective is 20 cm. in diameter is then able to resolve two stars 

whose angular distance apart is <p — 0.0117' = o.j". 

22. The Limit of Resolution of the Human Eye.—-The 
above considerations may be applied to the human eye with 
the single difference that the wave length A of the light in the 

lens of the eye, whose index is 1.4, is 1: 1.4 times smaller 

than in air. The radius of the pupil takes the place of h. If 
h be assumed to be 2 mm., then the smallest visual angle 
which two luminous points can subtend if they are to be 
resolved by the eye is 

0 = 0.42'. 

The actual limit is about 0 = ih 

23. The Limit of Resolution of the Microscope.—The 
images formed by microscopes are of illuminated, not of self- 
luminous, objects.f The importance of this distinction was first 
pointed out by Abbe. From the standpoint of pure geometri¬ 

cal optics, which deals with rays, the exact similarity of object 
and image follows from the principles laid down in the first 
part of this book. From the standpoint of physical optics, 
which does not deal with rays of light as independent geometri¬ 
cal directions, since this is not rigorously permissible, but which 
is based upon deformations of the wave front, the similarity of 

* On account of the smallness of <p, <p may be written for sin <p. 
f Objects which are visible by diffusely reflected light may be approximately 

treated as self-luminous objects. 
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object and image is not only not self-evident, but is, strictly 

speaking, unattainable. For the incident light, assumed in the 

first case to be parallel, will, after passing through the object 

which it illuminates, form a diffraction pattern in that focal plane 

g' of the objective which is nearest the eyepiece. The question 

now is, what light effect will this diffraction figure produce in 

the plane which is conjugate with respect to the objective 

to the object plane ? The image formed in this plane is the 

one observed by the eyepiece. The formation of the image of 

an illuminated object is therefore not direct (primary) but 

indirect (secondary), since it depends upon the effect of the 

diffraction pattern formed by the object. 

It is at once clear that a given diffraction pattern in the focal 

plane gives rise always to the same image in the plane 

upon which the eyepiece is focussed. Now in general different 

objects produce different diffraction patterns in the plane $'.* 

But if the aperture of the objective of the microscope is very 

small, so that only the small and nearly uniformly illuminated 

spot of the diffraction pattern produced by two different objects 

is operative, then these objects must give rise to the same light 

effects in the plane i.e. they look alike when seen in the 

microscope. Now in this case there is seen in the microscope 

only a uniformly illuminated field, and no evidence of the 

structure of the object. In order to bring out the structure, 

the numerical aperture of the microscope must be so great that 

not only the effect of the central bright spot of the diffraction 

pattern appears, but also that of at least one of the other 

maxima. When this is so, the distribution of light in the plane 

$)T is no longer uniform, i.e. some sort of an image appears 

*By the introduction of suitable stops in the plane %' the same diffraction 

pattern may be produced by different objects. In this case the same image is also 

seen at the eyepiece in the plane 9)', although the objects are quite different. 

Thus if the object is a grating whose constant is d, and if all the diffraction images 

of odd order be cut out by the stop, then the object seems in the image to have a 

grating constant Cf. Mtiller-Pouillet (Lummer), Optilc, p. 713. The house of 

C. Zeiss in Jena constructs apparatus to verify these conclusions. 
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which has a rough similarity to the object. As more maxima 

of the diffraction pattern are admitted to the microscope tube, 

i.e. as more of the diffraction pattern is utilized, the image in 

the microscope becomes more and more similar to the object. 

But perfect similarity can only be attained when all the rays 

diffracted by the object, which are of sufficient intensity to be 

able to produce appreciable effects in the focal plane of the 

objective, are received by the objective, i.e. are not cut off by 

stops. This shows the great importance of using an objective 

of large numerical aperture. The greater the aperture the 

sooner will an image be formed which approximately repro¬ 

duces the fine detail in the object. Perfect similarity is an 

impossibility even theoretically. A microscope reproduces the 

detail of an object up to a certain limit only. 

To illustrate this by an example, assume that the object P 

is a grating whose constant is d, and that the incident beam is 

parallel and falls perpendicularly upon the grating. The first 

maximum from the centre of the field lies in a direction deter¬ 

mined by sin <fi '= \ : d. Let the real image of this maximum 

in the focal plane of the objective be Cl, while C0 is that 

of the centre of the field (Fig. 75). Let the distance between 

these two images be e. Now the two images C0 and Cx have 

approximately the same intensity and send out coherent waves, 

i.e. waves capable of producing interference. Hence there is 

formed at a distance x' behind the focal plane a system of 

fringes whose distance apart is d' — x'X : c. If now the objec¬ 

tive is aplanatic, i.e. fulfils the sine law (cf. page 58), then 

sin 0 = e-sin 0', 
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in which denotes a constant. Sett in*1, sin </>' <- : .r\ which 

is permissible since 0* is always small (while </> may be large), 

and remembering' that sin 0 A : <L it follows that 

A f 
\i ' a 1 * 

i.c. the distance d‘ between the fringes is 

,f (/' »,/, 

or, the distance between the fringes is proportional to the con¬ 

stant of the grating and independent of the color of the light 

used. 

Hence in order that the grating lines may In; perceptible 

in the image, the objective must receive rays whose inclination 

is at least as great as that: determined by sin 0 A : ,/. in 

the ease of an immersion system A denotes the wave length in 

the immersion fluid, i.e. it is equal to A : n when A denotes 

the wave length in air and n the index of the fluid with respect 

to air. Hence 

n sin 0 - A : d. 

Now n sin l•' a is the numerical aperture of the mit rosvope 

(cf. equation (Hu) on page Hog provided V is the angle* 

included between the limiting ray and the axis. Hence the 

smallest distance d which can be resolved by a microscope of 

aperture a is 

d e.; A ; a, ..(c)7) 

This equation holds for perpendicular illumination of the object. 

With oblique illumination the resolving power may be in¬ 

creased, for, if the central spot of the diffraction pattern does 

not lie in the middle but is displaced to one side, the first 

diffraction maximum appears at a smaller angle of inclination 

to the axis. The conditions are most fuvoi.dde when tin* inci¬ 

dent light has the same inclination to the axis as the diffracted 

light of the first maximum, and both just get in to the objec¬ 

tive. 
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If the incident and the diffracted light make the same angle 

U with the normal to the grating, then, by (71) on Paffe 2I4> 

u = 2—.2 sin U. Since, further, by (86) on page 223, the 
A. 

2 ft 
first diffraction maximum appears when = —r, it follows that 

in this case 

Hence the smallest distance d which the microscope objective 

is able to resolve with the most favorable ilhimination is 

A 

2a' 
(98) 

in which a is the numerical aperture of the microscope and A 

the wave length of light in air. This is the equation given on 

page 92 for the limit of resolution of the microscope. 

In order to increase the amount of light in the microscope, 

the object is illuminated with strongly convergent light (with 

the aid of an Abbe condenser, cf. page 102). The above 

considerations hold in this case for each direction of the incident 

light; but in the resolution of the object only those directions 

are actually useful for which not only the central image but 

also at least the first maximum of the diffraction pattern falls 

within the field of view of the eyepiece. The diffraction 

maxima corresponding to the different directions of the inci¬ 

dent light lie at different places in the focal plane of the 

objective, but they exert no influence whatever upon one 

another, since they correspond to incoherent rays; for the light 

in each direction comes from a different point of the source, for 

example the sky. 

If, instead of a grating, a single slit of width d were used, 

no detail whatever would be recognizable unless the diffraction 

pattern were effective at least to the first minimum. Since, 

according to equation (79) on page 218, for perpendicularly 

incident light this first minimum lies at the diffraction angle 
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✓mined by sin 0 = A : d* the result for one slit is the same 

ya grating. Only in this case a real similarity between 

■jnage and the slit, i.e. a correct recognition of the width 

\e slit, is not obtained if the diffraction pattern is effective 

up to the first minimum. 
f only an approximate similarity between objc t1 «uu image 

jfficient, for example if it is only desired tn detect the 
jnce of a small opaque body, its dimensions nu> lie eon- 

^bly within the limit of resolution d as here deduced; for 

jig as the diffraction pattern formed by the object causes 

ppreciable variation in the uniform illumination in the 

e plane which is conjugate to the object, its existence 

be detected. 
'rom the above considerations it is evident that the limit 

solution a? is smaller the shorter the wave* length of the 
used. Hence microphotography, in which ultraviolet 

is used, is advantageous, although no very great increase 

ie resolving power is in this way obtained. Hut the 
itages of an immersion system become in this case very 

ed, since by an immersion fluid of high index the wave 

h is considerably shortened. This result appears at once 

equations (97) and (98), since the numeric al aperture a 

*portional to the index of refraction of the immersion fluid, 

*/kere lias the same signification as a Uu-rc. 



CHAPTER V 

POLARIZATION 

i. Polarization by Double Refraction.—A ray of light is 
said to be polarized when its properties are not symmetrical 

with respect to its direction of propagation. This lack of 
symmetry is proved by the fact that a rotation of the ray about 

the direction of propagation as axis produces a change in the 
observed optical phenomena. This was first observed by 

Huygens * in the passage of light through Iceland spar. Polar¬ 
ization is always present when there is double refraction. 
Those crystals which do not belong to the regular system 

always show double refraction, i.e. an incident ray is divided' 

within the crystal into two rays which have different directions. 
The phenomenon is especially easy to observe in calc-spar, 

which belongs to the hexagonal system and cleaves beautifully 
in planes corresponding to the three faces of a rhombohedron. 

In six of the corners of the rhombohedron the three intersect¬ 
ing edges include one obtuse and two acute angles, but in the 

two remaining corners A, Awhich lie opposite one another 
(cf. Fig. 76), the three intersecting edges enclose three equal 
obtuse angles of ioi° 53'. A line drawn through the obtuse 

corner A so as to make equal angles with the edges intersect¬ 
ing at A lies in the direction of the principal crystallographic 

axis.t If a rhombohedron be so split out that all of its edges 
are equal, this principal axis lies in the direction of the line 

connecting the two obtuse angles A, A'. Fig. 76 represents 
such a crystal. 

* Huygens, Trait6 de la Lumiere, Leyden, 1690. * 

t The principal axis, like the normal to a surface, is merely a direction, not a 
definite line. 

242 
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If now a ray of light LL be incident perpendicularly upon 
the upper surface of the rhombohedron, it splits up into two 
rays LO and LE of equal intensity 

which emerge from the crystal 
as parallel rays OL' and EL" 

perpendicular to the lower face. 

Of these rays LO is the direct 

prolongation of the incident ray 
and hence follows the ordinary 

law of refraction in isotropic 
bodies, in accordance with which 

no change in direction occurs 

when the incidence is normal. 

This ray LO together with its 

prolongation L 0 is therefore 
called the ordinary ray. But the 

second ray LE, with its prolonga¬ 

tion L"E, which follows a law of refraction altogther different 

from that of isotropic bodies, is called the extraordinary ray. 
Also the plane defined by the two rays is parallel to the direc¬ 
tion of the crystallographic axis. A section of the crystal by 

a plane which includes the normal to the surface and the axis 
is called a principal section. Hence the extraordinary ray lies 

in the principal section; it rotates about the ordinary ray as the 

crystal is turned about LL as an axis. 
The intensities of the ordinary and extraordinary rays are 

equal. But if one of these rays, for instance the extraordinary, 

is cut off, and the ordinary ray is allowed to fall upon a second 

crystal of calc-spar, it undergoes in general a second division 
into two rays, which have not, however, in general the s'ame 

intensity. These intensities depend upon the orientation of the 
two rhombohedrons with respect to each other, i.e. upon the 

angle included between their principal sections. If this angle 

is o or 1800, there appears in the second crystal an ordinary 
but no extraordinary ray; but if it is 90°, there appears only 

an extraordinary ray. Two rays of equal intensity are pro- 

L 
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duced if the angle between the principal sections is 45 

Hence the appearance continually changes when the second 
crystal is held stationary and the first rotated, i.e. when the 

ordinary ray turns about its own direction as an axis. Hence 

the ray is said to be polarized. This experiment can also be 
performed with the extraordinary ray, i.e. it too is polarized. 

Also if the first rhombohedron is rotated through 90° about 
the normal as an axis, the extraordinary ray produces in the 

second crystal the same effects as were before produced by the 

ordinary ray. Hence the ordinary and extraordinary rays 

are said to be polarized in planes at right angles to each other. 

The two rays produced by all other doubly refracting 
crystals are polarized in planes at right angles to each other. 

The principal section is conveniently chosen as a plane of 

reference when it is desired to distinguish between the direc¬ 

tions of polarization of the two rays. Since these phenomena 

produced by two crystals of calc-spar depend only upon the 
absolute size of the angle included between their principal sec¬ 
tions and not upon its sign, the properties of the ordinary and 

extraordinary rays must be symmetrical with respect to the 
principal section. 

The principal section is called the plane of polarization of 

the ordinary ray,—an expression which asserts nothing save 
that this ray is not symmetrical with respect to the direction 

of propagation, but that the variations in symmetry in different 
directions are symmetrical with respect to this plane of polar-, 
ization, the principal section. 

Since, as was observed above, the ordinary ray is polarized 

at right angles to the extraordinary ray, it is necessary to call 
the plane which is perpendicular to the principal section the 
plane of polarization of the extraordinary ray. These relations 

may also be expressed as follows: The ordinary ray is polar¬ 

ized in the principal section, the extraordinary perpendicular 

to the principal section. 

2. The Nicol Prism.—In order to obtain light polarized in 
but one plane, it is necessary to cut off or remove one of the 
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two rays produced by double refraction. In the' year 182K 

Nicol devised the following method of accomplishing this end: 

By suitable cleavage a crystal of calc-spar is obtained which is 

fully three times as long as broad. Tin* end surfaces, which 

make an angle of 72° with the edges of the side, an* ground 

off until this angle (AAA1 in Fig. 77) is OX1'. Tin: crystal is 

Fun 77. 

then sawed in two along a plane AA\ which passes through 

the corners A A' and is perpendicular both to the end faces and 

to a plane defined by the crystallographic axis and the long axis 

of the rhombnhedron. These two cut faces of the two halves 

of the prism are then cemented together with Canada balsam. 

This balsam has an index of refraction which is smaller than 

that of the ordinary but larger than that of the extraordinary 

ray. If now a ray of light 1,1, enters parallel to the long axis 

of the rhombohedron, the ordinary ray 10 is totally reflected 

at the surface of the Canada balsam and absorbed by tlu* 

blackened surface A Awhile the extraordinary ray alone 

passes through the prism. The plain* of polarization of the 

emergent light HU' is then perpendicular to the principal 

section, i.e. parallel to the long diagonal of the surfaces A A 

or A'A'. 

The angle of aperture of tlu* com* of rays which can enter 

the prism in such a way that the ordinary ray is totally reflected 

amounts to about 30". Furthermore a convergent incident 

beam is not rigorously polarized in one plane, since the plane 

of polarization varies somewhat with the inclination of the 

incident ray; for the plane of polarization of tlu* extraordinary 

ray is always perpendicular to the plane defined by tlu* ray atul 

the crystallographic axis (principal plane). The principal plane 

and the principal section are identical for normal incidence. 
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3. Other Means of Producing Polarized Light.—Apart 

from polarization prisms* constructed in other ways, tourmaline 
plates may be used for obtaining light polarized in one plane, 

provided they are cut parallel to the crystallographic axis and 

are from one to two millimetres thick. For under these con¬ 
ditions the ordinary ray is completely absorbed within the 

crystal. Also, polarized light may be obtained by reflection at 

the surface of any transparent body if the angle of reflection 0 

fulfils the condition (Brewster’s law) tan 0 = n, in which n is 

the index of refraction of the body. This angle <p is called 

the polarizmg angle. For crown 

glass it is 570. The reflected 

light is polarized in the plane of 

incidence, as may be shown by 
passing the reflected light through 

a crystal of calc-spar. 

If light reflected at the polar¬ 

izing angle from a glass plate 

be allowed to fall at the same 
angle upon a second glass plate, 

the final intensity depends upon 

the angle cx included between the 

planes of incidence upon the two 
surfaces and is proportional to 

cos2 a. This case can be studied 

by means of the Norrenberg 
polariscope. The ray a is polar¬ 

ized by reflection upon the glass 
plate A and then falls perpendic- 

jg| ularly upon a silvered mirror at c. 

This mirror reflects it to the black 
glass mirror 5 which turns upon a 

FlG' 78, vertical axis. The ray cb falls 
also at the polarizing angle upon .S and, after reflection upon 

*Cf. W. Grosse, Die gebraucliliclien Polarisationsprismen, etc., Klaustahl, 

1889; Winkelmann’s Handbuch d. Physik, Optik, p. 629. 
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5, has an intensity which varies as 5 is turned about a vertical 

axis. Between A and 5 a movable glass stage is introduced 
in order to make it convenient to study transparent objects at 
different orientations in polarized light. But since the intensity 

of light after but one reflection is comparatively small, this 
means of producing polarized light is little used; the same 

difficulty is met with in the use of tourmaline plates (not to 
mention a color effect). 

A somewhat imperfect polarization is also produced by the 

oblique passage of light through a bundle of parallel glass 
plates. -This case will be treated in Section II, Chapter II. 

That polarization is also produced by diffraction was mentioned 
on page 212. 

4. Interference of Polarized Light.—The interference 
phenomena described above may all be produced by light 

polarized in one plane. But two rays which are polarized at 

right angles never interfere. This can be proved by placing 
a tourmaline plate before each of the openings of a pair of slits. 

The diffraction fringes which are produced by the slits are seen 

when the axes of the plates are parallel, but they vanish com¬ 
pletely when one of the plates is turned through 90°. 

Fresnel and Arago investigated completely the conditions 
of interference of two rays polarized at right angles to each 

other after they had been brought back to the same plane of 

polarization by passing them through a crystal of calc-spar 
whose principal section made an angle of 450 with the planes 
of polarization of each of the two rays. They found the fol¬ 
lowing laws: 

1. Two rays polarized at right angles to each other, which 
\ have come from an unpolarized ray, do not interfere even when. 

\they are brought into the same plane of polarization. 
2. Two rays polarized at right angles, which have come 

firom a polarized ray, interfere when they are brought back to 

the same plane of polarization. 

\ 5. Mathematical Discussion of Polarized Light.—It has 
been already shown that the phenomena of interference lead 
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to the wave theory of light, in accordance with which the light 
disturbance at a given point in space is represented by 

s = A sin^TTy + d).(1) 

It is now possible to make further assertions concerning 
the properties of this disturbance. For in polarized light these 
properties must be directed quantities, i.e. vectors, as are lines, 
velocities, forces, etc. Undirected quantities like density and 

temperature are called scalars to distinguish them from vectors. 
If the properties of polarized light were not vectors, they could 

not exhibit differences in different azimuths. For the same 
reason these vectors cannot be parallel to the direction of 
propagation of the light. Hence s will now be called a light 

vector. Now a vector may be resolved into three components 

along the rectangular axes x, y, z. These components of s 
will be denoted by u, v, w. Hence the most general repre¬ 
sentation of the light disturbance at a point P is 

u — A sin + /), v = B sin ^27Ty-|-^ 1 

/ t \ r • (3) 
w = C sin \27Ty r). 

The meaning of these equations can be brought out by 
representing by a straight line through the origin the magni¬ 
tude and direction of the light vector at any time. The end 

© of this line can be located by considering u, v, w, as its 
rectangular coordinates. The path which this point © 
describes as the time changes is called the vibration form and 
is obtained from equations (2) by elimination of t. (2) may 
be written 

u . t / 1 
y = sin 2tfy cos/-|-cos 2tfy sin/, 

v . t t 
y = sin 2?Ty • cos q -j- cos 27fy • sin q, 

w . t , t . 
y = sin 27Ty-cos r + COS 27T—; -sin r. 

(3) 
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Multiplying these equations by sin (q — r), sin (r — p), 

and sin {p — q) respectively, and adding them, there results 

n v zv 
-J sin (q - r) + sin (r — p) + sin {p — q) = o, (4) 

i.e. since a linear equation connects the quantities u, v, w, the 

vibration form is always a plane curve. 
The equations of its projections upon the coordinate planes 

may be obtained by eliminating t from any two of equations (3). 

Thus, for instance, from the first two of these equations 

t . u . v . 
sin 27T-jr (cos p sin q — cos q sinp) ~ sm q — sin p, 

t , . u ,7/ 
cos 2 7T— (cos p sm q — cos q si-n p) — — cos q cos p. 

Squaring and adding these two equations gives 

tp v2 221V 
sin2 (p-q) = — +—- -^cos {p - q). . . (5) 

But this is the equation of an ellipse whose principal axes 

coincide with the coordinate axes when p — q — ~. Hence, 

in the most general case, the vibration form is a plane elliptical 

curve. This corresponds to so-called clliptically polarised 

light. When the vibration form becomes a circle, the light 
is said to be circularly polarized. This occurs, for instance, 

when w = o, A — B, and p — q = ±~, so that either the 

relation 

a ■ t A t 
u = A sm 27T— v = A cos 2zt~y ... (6) 

or the relation 

. . t t 
u — A sin 27t~, v = — A cos 2zr-^ . . (6') 

holds. These two cases are distinguished as right-handed and 
left-handed circidar polarisation. The polarization is right- 
handed when, to an observer looking in a direction opposite 
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to that of propagation, the rotation corresponds to that of the 
hands of a watch. When the vibration ellipse becomes a 

straight line, the light is said to be plane-polarized. *This 
occurs when w = o, and p — q — o or tt. The equation of 

the path is then, by (5), 

A ± B °* (7) 

The intensity of the disturbance has already been set equal 

to the square of the amplitude A of the light vector. This 
point of view must now be maintained, and it must be remem¬ 

bered that the square of the amplitude is equal to the sum of 
the squares of the amplitudes of the three components. The 

intensity J is then, in accordance with the notation in (2), 

J~A> + B2+C*.(8) 

An investigation will now be made of the vibration form 
which corresponds to the light which in the previous paragraph 
was merely said to be polarized, i.e. the light which has suffered 

double refraction or reflection at the polarizing angle. The 
principal characteristic of this light is that two rays which are 
polarized at right angles never interfere, but give always an in¬ 
tensity equal to the sum of the intensities of the separate rays. 

If there be superposed upon ray (2), which is assumed to 
be travelling along the .sr-axis, a fay of equal intensity, which 
is polarized at right angles to it and whose components are u', 

v', w’, and which differs from it in phase by any arbitrary 

amount d, then 

u'= B sin [271q -f- d), v'= — A sin ^27Ty-|-p + d) • 

/ , X ,■&> 
w' = C sin \27r— -f- r -j- dj. 

For, save for the difference in phase d, these equations become 
equations (2) if the coordinate system be rotated through 90° 

about the .s'-axis. 
By superposition of the two rays (2) and (9), i.e. by taking 
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the sums u -j- ?/, v -}- v', w + w', there results, according to 
the rule given above [equation (11) page 131], for the squares 
of the amplitudes of the three components 

A'2 = A* + B2 + 2AB cos (fl -f q - p)f 

B’2 = A2 + B* - 2 AB cos (d + p - g), 

C'> = 2C* (1 + cos $). 

Addition of these three equations gives, in consideration of (8), 

f = 2/ -j- 2C2 cos $ — 4AB sin d sin (g — p). 

Since now experiment shows that Jl is equal simply to the 

sum of the intensities of the separate rays and is wholly inde¬ 

pendent of d, it follows that C = o, i.e. the light vector is 
perpendicular to the direction of propagation, or the wave is 

transverse; it also follows that sin (p — g) = o, i.e., from (5) 
or (7), the vibration form is a straight line. 

Hence rays tv hie h have suffered dozible refraction or reflec¬ 

tion at the polarizing angle are plane-polarized transverse 

waves. 

Since, as was shown on page 244, the properties of a 
polarized ray must be symmetrical with respect to its plane of 
polarization, it follows that the light vector must lie either in 

the plane of polarization or in the plane perpendicular to it. 

Whether it lies in the first or the second of these planes is a 
question upon which light is thrown by the following experi¬ 

ment. 
6. Stationary Waves produced by Obliquely Incident 

Polarized Light.—Wiener investigated the formation of sta¬ 
tionary waves by polarized light which was incident at an 

angle of 450 (cf. page 155), and found that such waves were 
distinctly formed when the plane of polarization coincided with 
the plane of incidence, but that they vanished completely when 
the plane of polarization was at right angles to the plane of 
incidence. The conclusion is inevitable that the light vector 

wInch produces the photographic effect * is perpendicular to the 

* The same holds for the fluorescent effect produced by stationary waves. 

Cf. foot-note, p. 156 above. 
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plane of polarisation; for stationary waves can be formed only 
when the light vectors of the incident and reflected rays are 

parallel. When they are perpendicular to each other every 

trace of interference vanishes. 
It will be seen later that, from the standpoint of the elec¬ 

tromagnetic theory, the above question has no meaning if merely 

the direction of the vector be taken into account. For in that 
theory, and in fact in any other, two vectors which are at 

right angles to each other (the electric and the magnetic force) 
are necessarily involved. However, the question may well be 

asked, which of these two vectors is determinative of the light 
phenomena, or whether, in fact, both are. If both were 
determinative of the photographic effect, then in Wiener’s 
experiment no stationary waves could have been obtained even 
with perpendicular incidence, since the nodes of one vector 
coincide with the loops of the other, and inversely, as will be 

proved in the later development of the theory of light. But 
the fact that stationary waves are actually observed proves 
that, for the photo-chemical as well as for the fluorescent 
effects, only one light vector is determinative; and indeed that 
it is the one which is perpendicular to the plane of polarization 
is shown by the experiments in polarized light mentioned 

above. 
The phenomena shown by pleochroic crystals like tourma¬ 

line lead also to the same conclusions. 

7. Position of the Determinative Vector in Crystals.—In 
crystals the velocity depends upon the direction of the wave 
normal and upon the plane of polarization. Similarly in the 
pleochroic crystals the absorption of the light depends upon 
the same quantities. Now it appears* that these relations are 

most easily understood upon the assumption that the light vector 

is perpendicular to the plane of polarization. For then the 
' velocity and the absorption t of the wave depend only upon the 

* This is more fully treated in Section II, Chap. II, § 7. 

f The fluorescence phenomena in crystals lead also to the same conclusion. 

Cf. Lommel, Wied. Ann. 44, p. 311. 
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direction of the light vector with respect to the optical axis of 

the crystal. The following example will illustrate: A plate 

of tourmaline cut parallel to the principal axis does not change 
color or brightness when rotated about that axis, i.e. when the 
lightis made to pass through obliquely, but its direction is kept 

perpendicular to the axis. But the brightness of the plate 
changes markedly if it be rotated about an axis perpendicular 
to the principal axis of the crystal. The plane of polarization 

of the emergent ray is in the first case perpendicular to the 
principal axis, i. e. to the axis of rotation of the plate; in the 

second case it is parallel to this axis. The vector which is 

perpendicular to the plane of polarization is, therefore, in the 
first case continually parallel to the principal axis of the plate, 
but in the second it changes its position with respect to this 
axis. 

Thus far no case has been observed in which a light vector 
which lies in the plane of polarization is alone determinative 

of the effects, i.e. furnishes the simplest explanation of the 

phenomena. Hence in view of what precedes it may be said: 
The light vector is perpendicular to the plane of polarization* 

8. Natural and Partially Polarized Light.—It has been 
shown above that two plane-polarized beams may be obtained 
by double refraction from a single beam of natural light. 

Superposition of two plane-polarized rays which have the same 
direction but different phases and azimuths produces, as is 

shown by equation (5), elliptically polarized light. The vibra¬ 
tion in such a ray is, however, wholly transverse, since the 
plane of the ellipse is perpendicular to the direction of propa¬ 
gation. 

As will be fully shown later, elliptically polarized light is 
produced by the passage of a plane-polarized beam through a 
doubly refracting crystal whenever the two beams produced 

by the double refraction are not separated from each other. 

* At least this assumption gives a simpler presentation of optical phenomena 
than the other (which is also possible) which makes the light vector parallel to the 
plane of polarization. 
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Also the most general case, represented by equations (2), of 

elliptically polarized light which is not transverse can be 

realized by means of total reflection or absorption, as will be 

shown later. 

The question now arises, What is the nature of natural 

light ? Since it does not show different properties in different 

azimuths, and yet is not identical with circularly polarized light, 

because, unlike circularly polarized light, it shows no one-sided¬ 

ness after passing through a thin doubly refracting crystal, the 

only assumption which can be made is that natural light is 

plane or elliptically polarized for a small interval of time St, 

but that, in the course of a longer interval, the vibration form 

changes in such a way that the mean effect is that of a ray 

which is perfectly symmetrical about the direction of propa¬ 

gation. 

Since Michelson has observed interference in natural light 

for a difference of path of 540,000/! (cf. page 150), it is 

evident that in this case light must execute 540,000 vibrations 

at least before it changes its vibration form. But since a 

million vibrations are performed in a very short time, namely, 

in 20. io~10 seconds, the human eye could never recognize a 

ray of natural light as polarized even though several million 

vibrations were performed before a change occurred in the 

vibration form. For, in the shortest interval which is neces¬ 

sary to give the impression of light, the vibration form would 

have changed several thousand times. 

As regards the two laws announced by Fresnel and Arago 

(cf. page 247), the second, namely, that two rays polarized at 

right angles interfere when they are brought into the same 

plane of polarization provided they originated in a polarized 

ray, is easily understood; for in this case the original ray has 

but one vibration form, hence the two reuniting rays must be 

in the same condition of polarization, i.e. must be capable of 

interfering. This is the case also when the original ray is 

natural light so long as the vibration form does not change, 

i.e. within the above-mentioned interval dt. But for another 
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interval $t', although interference fringes must be produced, 

the position of these fringes is not the same as that of the 

fringes corresponding to the first interval St. For a change in 

the vibration form of the original ray is equivalent to a change 

of phase. Hence the mean intensity, taken over a large num¬ 

ber of elements St, is equivalent to a uniform intensity, i.e. 

two rays polarized at right angles to each other, which origi¬ 

nated in natural light, do not interfere even though they are 

brought together in the same azimuth. This is the first of the 

Fresnel-Arago laws. 

The term partially polarized light is used to denote the 

effect produced by a superposition of natural light and light 

polarized in some particular way. Partially polarized light has 

different properties in different directions, yet it can never be 

reduced to plane polarized light, as can be done with light 

which has a fixed vibration form (cf. below). •* 

9. Experimental Investigation of Elliptically Polarized 
Light.—In order to obtain the vibration form of an elliptically 

polarized ray, it is changed into a plane-polarized ray by means 

of a doubly refracting crystalline plate. For, as was remarked 

upon page 242, the passage of plane-polarized light through 

a doubly refracting crystal decomposes it into two waves 

polarized at right angles to each other. The directions of the 

light vectors in the two waves are called the principal direc¬ 

tions of vibration. These have fixed positions within the 

crystal and are perpendicular to each other. Since now the 

two rays are propagated with different velocities within the 

crystal, they acquire a difference of phase which depends upon 

the nature and thickness of the plate. An incident light vector 

which is parallel to one of these two principal directions of 

vibration within the crystal is not decomposed into two waves. 

Two methods of procedure are now possible: first, the 

plate of crystal may be of such thickness that it introduces a 

7t 
difference of phase of ~ (difference of path £A) between the 

two waves propagated through it. This is called a quarter-wave 
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plate [Senarmont's compensator'). If the quarter-wave plate is 

rotated until its principal directions are parallel to the principal 

axes of the elliptical vibration form of the incident light, the 

emergent light must evidently be plane-polarized, and the 

position of its plane of polarization must depend upon the ratio 

of the principal axes of the incident ellipse. For the two light 

vectors which lie in the directions of the principal axes of this 

ellipse have, after passage through the plate, a difference of 

phase of o or zr, and in this case there results (cf. page 250) 

plane-polarized light in which the direction of the light vector 

is given by equation (7). Hence if the emergent light is 

observed through a nicol, entire darkness is obtained when the 

nicol is in the proper azimuth. Hence this method of investi¬ 

gation requires a rotation both of the crystalline plate about 

its normal and of the nicol about its axis until complete dark¬ 

ness is obtained. The position of the crystal then gives the 

position of the principal axes of the incident ellipse; that of 

the nicol, the ratio of these axes. 

Second, a fixed plate of variable thickness, such as a quartz 

wedge, may be used in order to give those two components of 

the incident light which are in the principal directions of vibra¬ 

tion of the plate such a difference of phase that, after passage 

through the crystal, they combine to form plane-polarized 

light. A nicol is used to test whether or not this has been 

accomplished. The position of the nicol gives the ratio of the 

components u, vy of the incident light, while their original 

difference of phase is calculated from the thickness of the plate 

which has been used to change the incident light into plane- 

polarized light. 

In order that the crystal may produce a difference of phase 

zero, it is convenient to so combine two quartz wedges, whose 

optical axes lie in different directions, that they produce differ¬ 

ences of phase of different sign. Thus, 

B for example, in Fig. 79, A is a wedge 

Fig. 79. of quartz whose crystallographic axis 

is parallel to the edge of the wedge, while B is another plate 
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whose principal axis is perpendicular to the edge but parallel 

to the surface {Babinef s compensator). Only the difference 

in the thickness of the two wedges is effective. Hence, if the 

incident light is homogeneous and elliptically polarized, a suit¬ 

able setting of the analyzing nicol brings out dark bands which 

run parallel to the axis of the wedge. These bands move 

across the compensator if one wedge is displaced with reference 

to the other. A micrometer screw effects this displacement. 

After the instrument has been calibrated by means of plane- 

polarized light, it is easy from the reading on the micrometer 

when a given band has been brought into a definite position 

to calculate the difference of phase of those two components 

u, v, which are parallel to the two principal axes of the quartz 

wedges. 

The construction must be somewhat altered if it is desired 

to obtain a large uniform field of plane-polarized light. Then, 

in place of a quartz wedge, a plane parallel plate of quartz 

must be used as a compensator. 

Such a plate is produced by com¬ 

bining two adjustable quartz wedges ^ 

whose axes lie in the same direc¬ 

tion (Fig. 80). In order to make 

it possible to introduce a difference of phase zero, the two 

wedges are again combined with a plane parallel plate of 

quartz B whose principal axis is at right angles to the axes of 

A and A'; so that the effective thickness is the difference 

between the thickness of B and the sum of the thicknesses of 

the wedges A and A'. This construction, that of the Soleil- 

Babinet compensator, is shown in Fig. 80. In the wedges A, 

A' the principal axis is parallel to the edges of the wedges; in 

the plate B the principal axis is perpendicular to the edge and 

parallel to the surface. It is convenient to have one plate, for 

example A', cemented to B, while A is micrometrically adjust¬ 

able. For a suitable setting of the micrometer and the 

analyzing nicol the whole field is dark. 

This construction of the compensator is particularly con- 

Fig. 80. 
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venient for studying the modifications which plane-polarized 

light undergoes upon reflection or refraction. In a spectrom¬ 

eter (Fig. 81) the collimator IC and the telescope F are fur¬ 

nished with nicol prisms whose orientations may be read off 

on the graduated circles p, The Soleil-Babinet compen- 

Fig. 81. 

sator C is attached to the telescope. Its principal directions 

of vibration (the principal axes) are parallel and perpendicular 

to the plane of incidence of the light. 5 is the reflecting or 

refracting body. Thus the light is parallel in passing through 

the nicols and the compensator.* 

* Since the telescope must be focussed for infinity, the simple Babinet compen¬ 

sator cannot be used. 



SECTION II 

OPTICAL PROPERTIES OF BODIES 

CHAPTER I 

THEORY OF LIGHT 

i. Mechanical Theory.—The aim of a theory of light is to 

deduce mathematically from some particular hypothesis the 

differential equation which the light vector satisfies, and the 

boundary conditions which must be fulfilled when light crosses 

the boundary between two different media. Now the differen¬ 

tial equation (12) on page 169 of the light vector is also the 

general equation of motion in an elastic medium, and hence it 

was natural at first to base a theory of light upon the theory 

of elasticity. According to this mechanical conception, a light 

vector must be a displacement of the ether particles from their 

positions of equilibrium, and the ether, i.e. the medium in 

which the light vibrations are able to be propagated, must be 

an elastic material of very small density. 

But a difficulty arises at once from the fact that light-waves 

are transverse. In general both transverse and longitudinal 

vibrations are propagated in an elastic medium; but fluids which 

have no rigidity are capable of transmitting longitudinal vibra¬ 

tions only, while solids which are perfectly incompressible can 

transmit transverse vibrations only. The fact that the heavenly 

bodies move without friction through free space would point 

strongly to the conclusion that the ether is a fluid, not an in- 
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compressible solid. Nevertheless this difficulty may be met 

by the consideration that, with respect to such slowly acting 

forces as are manifested in the motions of the heavenly bodies, 

the ether acts like a frictionless fluid; while, with respect to 

the rapidly changing forces such as are present in the vibra¬ 

tions of light, a slight trace of friction causes it to act like a 

rigid body. 

But a second difficulty arises in setting up the boundary 

conditions for the light vector. The theory of elasticity fur¬ 

nishes six conditions for the passage of a motion through the 

bounding surface between two elastic media, namely, the 

equality on both sides of the boundary of the components of 

the displacements of the particles, and the equality of the com¬ 

ponents of the elastic forces. But in order to satisfy these 

six conditions both transverse and longitudinal waves must be 

present. How the various mechanical theories attempt to 

meet this difficulty will not be considered here: * suffice it to 

say that most of these theories retain only four of the boundary 

conditions. 

In order to bring theory into agreement with the observa¬ 

tions upon the properties of reflected light, for instance to 

deduce Brewster’s law as to the polarizing angle (cf. page 

246), it is necessary to assume either that the density or that 

the elasticity of the ether is the same in all bodies. The 

former standpoint was taken by F. Neumann, the latter by 

Fresnel. Neumann’s assumption leads to the conclusion that 

the displacement of the ether particles in a plane-polarized ray 

lies in the plane of polarization, while Fresnel’s makes it per¬ 

pendicular to this plane. 

2. Electromagnetic Theory.—The fundamental hypothe¬ 

sis of this theory, first announced by Faraday, and afterwards 

mathematically developed by Maxwell, is that the velocity of 

light in a non-absorbing medium is identical with the velocity of 

*For complete presentation cf. Winkelmann’s Handbuch, Optik, pp. 

641-674. 
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an electromagnetic wave in the same medium. Either the elec¬ 

tric or the magnetic force may be looked upon as the light 

vector; both are continually vibrating and, in a plane-polarized 

ray, are perpendicular to each other. This two-sidedness of 

the theory leaves open the question as to the position of 

the light vector with respect to the plane of polarization; 

nevertheless, for the reasons stated on page 252, it is simpler 

to interpret the electric force, which lies perpendicular to the 

plane of polarization, as the light vector. This leads to the 

results of Fresnel’s mechanical theory, while Neumann’s re¬ 

sults are obtained when the magnetic force is interpreted as the 

light vector. 

The following are the essential advantages of the electro¬ 

magnetic theory: 

1. That the waves are transverse follows at once from 

Maxwell’s simple conception of electromagnetic action, 

according to which there exist only closed electrical circuits. 

2. The boundary conditions hold for every electromag¬ 

netic field. It is not necessary, as in the case of the mechan¬ 

ical theories, to make special assumptions for the light 

vibrations. 

3. The velocity of light in space, and in many cases in 

ponderable bodies also, can be determined from pure electromag¬ 

netic experiments. This latter is an especial advantage of this 

theory over the mechanical theory, and it was this point which 

immediately gained adherents for the electromagnetic concep¬ 

tion of the nature of light. In fact it is an epoch-making 

advance in natural science when in this way two originally 

distinct fields of investigation, like optics and electricity, are 

brought into relations which can be made the subject of quan¬ 

titative measurements. 

Henceforth the electromagnetic point of view will be main¬ 

tained. But it may be remarked that the conclusions reached 

in the preceding chapters are altogether independent of any 

particular theory, i.e. independent of what is understood by a 

light vector. 
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3. The Definition of the Electric and of the Magnetic 
Force.—Two very long thin magnets exert forces upon each 

other which appear to emanate from the ends or poles of the 

magnets. The strengths of tzoo magnet-poles m and ml are 

defined by the fact that in a vacuum, at a distance apart 

r, they exert upon each other a mechanical force (which can be 

measured in C. G. S. units) 

In accordance with this equation a unit magnetic pole (in = 1) 

is defined as one which, placed at unit distance from a like 

pole, exerts upon it unit force. 

The strength, ^ of a magnetic field in any medium * is the 

force which the field exerts upon unit magnetic pole. The 

components of § along the rectangular axes „r, y, z will be 

denoted by <*, /?, y. 

The direction of the magnetic lines of force determines the 

direction of the magnetic field; the density of the lines, the 

strength of the field, since in a vacuum the strength of field is 

represented by the number of lines of force which pass per¬ 

pendicularly through unit surface. A correct conception of the 

law of force (1) is obtained if a pole of strength m be conceived 

as the origin of 4ztm lines of force. For then the density of 

the lines upon a sphere of radius r described about the pole as 

centre is equal to m : r3, i.e. is equal to the strength of field 

|), according to law (1). 

Similar definitions hold in the electrostatic system for the 

electric field. 

The quantities of tzvo electric charges e and ex are defined 

by the fact that in a vacuum, at a distance apart r, they exert 

upon each other a measurable mechanical force 

K - . efh 
H ' (2) 

The definition of unit charge is then similar to that of unit pole 

above. 

This medium can be filled with matter or be totally devoid of it. 
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The strength ^ of any electric field in any medium is the 

force which it exerts upon unit charge. The components of $ 

along the three rectangular axes will be denoted by X, Y, Z. 

The direction of the electric Imes of force determines the 

direction of the electric field, and the number of lines which 

intersect perpendicularly unit surface in a vacuum determines 

the strength $ of the field. Hence, since law (2) holds, 4ice 

lines of force originate in a charge whose quantity is e. 

4. Definition of the Electric Current in the Electrostatic 
and in the Electromagnetic Systems.—In the electrostatic sys¬ 

tem the electric current i which is passing through any cross- 

section q is defined as the number of electrostatic units of quan¬ 

tity which pass through q in unit time. Thus if, in the element 

of time dt, the quantity de passes through q, the current is 

If the cross-section q is unity, i is equal to the current 

density j. The components of the current density, namely, 

jx, jy, fi, are obtained by choosing q perpendicular to the 

x-, y-, or .s'-axis respectively. 

In the electromagnetic system, the air rent i' is defined by 

means of its magnetic effect. A continuous current is obtained 

in a wire when the ends of the wire are connected to the poles 

of a galvanic cell. In this case also definite quantities of elec¬ 

tricity are driven along the wire, for the isolated poles of the 

cell are actually electrically charged bodies. A magnetic pole 

placed in the neighborhood of an electric current is acted upon 

by a magnetic force. In the electromagnetic system the current 

i' is defined by the fact that it requires prci' — 91 units of work 

to carry unit magnetic pole once around the current. * 

Take, for example, a rectangle whose sides are dx, dy 

(Fig. 82), and through which a current i' = j'ydx dy flows in a 

>* The work 91 is independent of both the path of the magnet pole and the 

nature of the medium surrounding the current. Cf. Drude, Physik des Aethers, 

PP- 77, 83. 
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direction perpendicular to its plane. /' is the ^-component of 

the current density in the electromagnetic system. If the cur¬ 

rent flows toward the reader {Fig. 82), and the positive direc¬ 

tion of the coordinates is that shown in the figure, then, accord¬ 

ing to Ampere’s rule, a positive magnetic pole is deflected in 

the direction of the arrow. The whole work done in mov¬ 

ing a magnet pole in = 1 around the circuit from A through 

B, C, D, and back to A is 

9f = a-dx -f* ft'dy — a'-dx — fi-dy, . . . (4) 

if a and ft denote the components of the magnetic force which 

act along AB and AD, while a' and §' denote the components 

which act along DC and BC. a! differs from a only in that it 

acts along a line whose jz-coordinate is dy greater than the 

jz-coordinate of the line AB along which a acts. When dy is 

sufficiently small (V — a): dy is the differential coefficient 

da: dy, so that 

, . doc 

“ = “+§7^ 
Similarly 

so that, from (4), 

.(4'> 

Since now by the definition of the current i' this work is 

equal to 4ni' — ^nj'^dxdy, it follows that 

dfl 

dx dy' 

and in the same way the two other differential equations may 

be deduced, namely, 

4*7* 
' dy dz ’ 

4#j 
■ __d(x dy ^ 

f ' ~ dz dx 

(5) 
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These are Maxwell’s differential equations of the electro¬ 

magnetic field. In order to use them with the signs given in 

(5), the coordinate system must be chosen in accordance with 

Fig. 82. In these equations the current density j' defined 

electromagnetically may be replaced by the current density j 

defined electrostatically by introducing c, the ratio of the elec¬ 

tromagnetic to the electrostatic unit. Thus 

i : i' — c, jx\ j'x = c, etc.(6) 

Hence, by (5), 

4^ . _ 9y dfi 47r . _ da 9y 4^. _ 9/? da , 

c ~ dy ~ d#’ ~TJy~ dz~ d)x' cJz~~ dx Qy‘ ^ 
These equations are independent of the nature of the 

medium in which the electromagnetic phenomena occur (cf. 

note 1, page 263), and hence they hold also in non-homogeneons 

and crystalline media. 

The value of the ratio c can be obtained by observing the 

magnetic effect which is produced by the discharge of a quan¬ 

tity e of electricity measured in electrostatic units. It may be 

shown that c has the dimensions of a velocity. Its value is 

c — 3 • io10 cm./sec. 

5. Definition of the Magnetic Current—Following the 

analogy of the electric current, the magnetic current which 

passes through any cross-section q is defined as the number of 

units of magnetism which pass through q in unit time. The 

magnetic current divided by the area of the surface q is called 

the density of the current, and its components are represented 

by sxy sy, sx. 

Equations (7) express the fact that an electric current is 

always surrounded by circular lines of magnetic force. But on 

the other hand a magnetic 2 

current must always be sur- j) c 

rounded by circular lines of 

electric force. This follows ^ 

at once from an application A B 

of the principle of energy. 

Imagine the rectangle A BCD of Fig. 82 traversed by an elec- 



266 THEORY OF OPTICS 

trie current of intensity i (measured in electrostatic units) flow¬ 

ing in the direction of the arrows. Then a positive magnetic 

pole would be driven through the rectangle toward the reader, 

i.e. in the positive direction of the ^-axis, and would continually 

revolve about one side of the rectangle. The work thus per¬ 

formed must be done at the expense of the amount of energy which 

is reqidred to maintain the current at the constant intensity i 

while it is doing the work; or, in other words, the motion of 

the pole must create a certain counter-electromotive force which 

must be overcome if the current is to remain constant. The 

expression for the work done when a unit charge is carried 

once about the rectangle in the direction of the arrows is 

analogous to that given in (4) and (4'), i.e. 

In order to maintain the current at intensity i during the time 

t, this work must be multiplied by the number of unit charges 

which traverse the circuit in the time t, i.e. by i-t. The prin¬ 

ciple of energy requires that this work StzV be equal to the 

work which is done upon a magnet pole of strength m in 

carrying it once around a side of the rectangle in the time t. 

Since (cf. page 263) this work is equal to 4nmi' — 4nmi:c} it 

follows that 

%-i‘t — Agtmi : c, i.e. 21 = 4nm : ct. . (9) 

But m: t is the strength of the magnetic current which passes 

through the rectangle, and mjt-dx dy is equal to the ^-com¬ 

ponent of the magnetic density. Hence from (8) and (9) it 

follows that 

4n _ SF_ 3X 

c S* ~~ dx dy ' 
(10) 

And similarly two other equations for sx and sy are obtained. 

In (10) and Y represent the electric forces which must 

be called into play in order to keep the current constant. But 
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if X and Y denote the opposite forces produced by the mag¬ 

netic current by induction, they are of the same magnitude but 

opposite in sign. Hence 

45 _d¥ dZ 47c __9£_9A^ 4* _dX 8Y 

c S* dx dy’ c Sy dx 3z' c S*~ dy dx' 

These equations are perfectly general and hold in all media, 

even in those which are non-hoinogeneous and crystalline. 

The general equations (7) and (11) may be called the 

fundamental equations of Maxwell's theory. In all extensions 

of the original theory of Maxwell to bodies possessing 

peculiar optical properties, such as dispersion, absorption, 

natural and magnetic rotation of the plane of polarization, 

these fundamental equations remain unchanged. But the 

equations which connect jx and sx, etc., with the electric and 

magnetic forces have different forms for particular cases. 

6. The Ether.—Constant electric currents can only be 

produced in conductors like the metals, not in dielectrics. 

Nevertheless a change in an electric charge produces in the 

latter currents which are called displacement currents to dis¬ 

tinguish them from the conduction currents, and the corner¬ 

stone of Maxwell’s theory is the assumption that these dis¬ 

placement currents have the same magnetic effects as the 

conduction currents. This assumption gives to Maxwell’s 

theory the greatest simplicity in comparison with the other 

electrical theories. Constant magnetic currents cannot be 

produced, since there are no magnetic conductors. 

It is first necessary to determine how the electric and 

magnetic current densities in the free ether depend upon the 

electric and magnetic forces. In the free ether there are no 

charges e or poles m concentrated at given points, but there 

are lines of force. Now, in accordance with the convention 

adopted on pages 262 and 263, namely, that every charge e or 

pole in sends out 4ice or 4mn lines of force, it may be said 

that 4n multiplied by the current density is equal to the change 

in the density of the lines of force in unit time, i.e. 
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dNx 

4^=“a7 

_ mx 
dt ’ 

dNx . dNy dX3 'j 

dt ’ 47tJy " dt ’ 47tJi ~~ dt ’ 

4nsx 4 ns -- ■ 

dt 

d Mv 

dt '■ 

dN, 

dt 

dMz 

dt ’ 

(12) 

in which Nx, Ny, Nt, Mx, My, Mz are the components of the 

densities of the electric and magnetic lines of force. But now, 

in accordance with the definitions on pages 262 and 263, in a 

vacuum the density of the electric or magnetic lines of force is 

numerically equal to the electric or magnetic force, so that, for 

a vacuum, equations (12) become 

(13) 

4 njx = 
dX dV . dZ 

df £
 II 

dt ’ 4V- = dI’ 

da d/3 3 y 

= 3? 
4 TtSx — 

df 
47CSy = 

dt ’ 

Hence for the free ether the equations (7) and (n) of the 

electromagnetic field take the form 

i dX _dy_ _dP I dV_ jry idZ d£_ da 

c dt ~ dy dz * c dt ~ 

_ 

dz dx’ ~cdi~ dx dy’ 

1 da _dy dZ 1 d/3 _ dZ _ dX 1 dy _ dX dV 

c dt ~ ~ dz ~dy} c dt ox ' dz’ c dt dy dx' 

7. Isotropic Dielectrics.—For a space filled with insulat¬ 

ing matter laws (1) and (2) must be modified. For if the 

electric charges e and ex are brought from empty space into a 

dielectric, for example a fluid, they exert a weaker influence 

upon each other than in empty space, so that it is necessary 

to write 

The constant e is called the dielectric constant. The definition 

holds also for solid bodies, only in them the attracting or 

repelling forces cannot be observed so conveniently as in fluids. 

But there are other methods of determining the dielectric con¬ 

stant of solid bodies for which the reader is referred to texts 
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upon electricity. The dielectric constant of all material bodies 

is greater than 1. 

Similarly the forces between magnetic poles are altered 

somewhat when the poles are brought from a vacuum into a 

material substance, so that it is necessary to write 

The constant is called the permeability of the substance. 

It is sometimes greater than I (paramagnetic bodies), some¬ 

times less than 1 (diamagnetic bodies). It differs appreciably 

from 1 only in the paramagnetic metals iron, nickel, and 

cobalt. At present dielectrics only are important since it is 

desired to consider first perfectly transparent substances, 

namely, those which transmit the energy of the electromagnetic 

waves without absorption, i.e. without becoming heated. In 

dielectrics M differs so little from 1 (generally only a few 

thousandths of 1 per cent) that in what follows it will always 

be considered equal to /.* 

Because of the change of the law (2) into (15) a change 

must also be made in equations (13), since with the same cur¬ 

rents the electric force in the dielectric is - weaker than in the 
e 

free ether. Hence (13) become 

ax 
AVx= etc-, 4^, = A*-q~, etc. . . (17) 

For an isotropic dielectric, since equations (7) and (11) are 

applicable to this case also, the following equations hold when 

M = i: 

eaX_3y dfi e 3F_3ac 3y e3Z _ 3/? 1 

c dt dy dz’ c 31 dz dx’ c 31 dx dy’ I 

i3^__3F dZ _i 3/?_ 3Z_3X i_3y __3X__3F K18^ 

cdt~dz dy’ 'c dt~ dx dz’ c dt~~ dy dx’ J 
* In the discussion of the optical properties of magnetized bodies it will be 

shown why it is justifiable to assume for light vibrations' ju — I for all bodies. 

The reason for this is not that the magnetization of a body cannot follow the rapid 

changes of field which occur in light vibrations, but is far more complicated. 
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These equations completely determine all the properties of 

the electromagnetic field in a dielectric. 

If equations (12) be considered general, i.e. if the number 

of lines of force which originate in a charge be considered 

independent of the nature of the medium, then a comparison 

of (17) with (12) shows that within the body 

Nx = eX, Ny — eY, Nz = eZ, \ 

Mx = m*, My := m/3, Mz= MV, ) * ' 

i.e. only in the ether (e = 1, m = 1) is the density of the lines 

of force numerically equal to the electric, or the magnetic, force. 

tpxe lines of force must be sent out from the entire surface 

of an elementary cube which contains the charge e and has the 

dimensions dx dy dz. But the number of emitted lines can 

also be calculated from the surface of the cube; thus the two 

sides which lie perpendicular to the ;r-axis emit the number 

— (Nfxdy dz -|- {Nfifiy dz, in which the indices 1 and 2 relate 

to the opposite faces which are dx apart. Now evidently, from 

the definition of a derivative, 

so in this way the whole number of lines passing out of the 

surface is found to be 

\ dx 
fjp + mdxdyd0. 

dy oz 1 J 

If this expression be placed equal to 4ne, then it follows, in 

consideration of (19), if e : dx dy dz = p be called the density 

of the charge (charge of unit volume), 

_d(fiX) 

dx 

dfiY) 

dy 

d(e£) 

dz 
(20) 

It is evident from its derivation that this equation holds also 

for isotropic non-homogeneous bodies, i.e. for bodies in which e 

varies with x, y, z. An analogous equation may be deduced 

for the density of the magnetization. 
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8. The Boundary Conditions.—If two different media are 

in contact, there are certain conditions which the electric and 

magnetic forces must fulfil in passing from one medium into 

the other. These conditions may be obtained from the equa¬ 

tions (18) by the following consideration: In the passage from 

a medium of dielectric constant ex to one of dielectric constant 

e2 the change in the electric and magnetic forces is not 

abrupt, as would be the case if the surface of separation were 

a mathematical plane, but gradual, so that within the transi¬ 

tion layer the dielectric constant varies continuously from the 

value e1 to the value e2. Also within this transition layer the 

equations (7), (n), and (17), and hence also (18), must hold, 

i.e. all the differential coefficients which appear in them must 

remain finite. Assume now, for example, that the plane of 

contact between the two media is the xy-plane. Since the 

1-rr . , dY dJT dP da 
differential coefficients ^r—, -x—, x—, x— must remain finite 

3z 3 z dz dz 

within the transition layer, it follows that, if the thickness of 

this layer, i.e. dz, is infinitely small, the changes in Y, X, 

ft, a in the transition layer are infinitely small. In other 

words, the components of the electric and magnetic forces parallel 

to the surface must vary continuously in passing through the 

transition layer, assumed to be infinitely thin. That is, 

Xx-X%, Yx~Y2, ax = as, Px — P2 for ^ = o, (21) 

in which the subscripts refer to the two different media. 

Since in equations (18) the differential coefficients and ~ 

do not appear, the same conclusions do not hold for Z and y 

which held for X, Y, ft, oc. Nevertheless it is evident from the 

dy 
last of equations (18) that —, and hence also y, has the same 

value on both sides of the transition layer, because, for all 

values of ^ and_y, X and Fhave the same values on both sides 

of that layer. Hence there is no discontinuity in y in passing 

through the infinitely thin botmdary layer. In the same way 

the conclusion may be drawn from the third of equations (18) 
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that the product eZ is continuotts and hence that Z is discon¬ 

tinuous. To the boundary conditions (21) there are then also 

to be added 

6i^i = e2^2> Vi = V2 for z = o. . . (21') 

But on account of the existence of the principal equations 

(18) only four of the six equations (21) and (21') are independent 

of one another. 

Equation (19) in connection with (21) shows that the lines 

of force do not have free ends at the boundary between two media. 

(N.B in (21') M is assumed equal to 1, otherwise it would be 

necessary to write Mlyl — P-2yr 

9. The Energy of the Electromagnetic Field.—If equa¬ 

tions (18) be multiplied by the factors Xdr, Ydr, Zdr, adt, 

fidr, ydt, in which dt represents an element of volume, and 

then integrated over any region, there results, after adding and 

setting 

® = Yt + ^ + n^ + P + r2)’ ■ (22) 

?!/«-/%■-IK- I 
f(-dY dZ\ [ ' (23^ 

The application of theorem (20) on page 173 gives 

JTyXdr = ~fyX cos (**>dS ~frTsrdr’ 
in which dS denotes an element of the surface which bounds 

the region over which the integration is taken, and n the inner 

normal to dS. When this transformation is applied to the first 

three integrals which appear on the right-hand side of (23) the 

volume integrals disappear, and there results 

^S cos ~ cos 

-j- (ftX — a Y) cos (nz)\dS. (24) 
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If the region of integration be taken so. large that at its 

limits the electric and magnetic forces are vanishingly small, 

then equation (24) asserts that the quantity (£ for this region 

does not vary with the time. (£ signifies the energy of the 

electromagnetic field in unit volume. This can be shown to 

be the meaning of @ by a calculation of the work done in 

moving the electric or the magnetic charges. (Cf. Drude, 

Physik des Aethers, pages 127, 272.) 

10. The Rays of Light as the Lines of Energy Flow.—If j 
at the boundary of the region of integration X, Y, Z, ocf ft, y, ; 

do not vanish, equation (24) can be interpreted to mean that j 

the change of electromagnetic energy in any region js due tp> 

an inflow or outflow of energy through the boundary^ Accord¬ 

ing to (24), the components of this energy flow, represented 

bY fx> fyi fs > may be regarded as the following: 

L=^{yY-fiZ), f^^aZ-yX), f = ±^X-aY). (25) 

From this it follows that 

«•/* + P'fy + Y'fz = O, 

X-fx + Y-f, + Z-f, = o, 

and hence the direction of the flow of energy is always per¬ 

pendicular to the electric and magnetic forces. 

This theory, due to Poynting, of the flow of energy in the 

electromagnetic field, is of great importance in the theory of 

light in that the rays of light must be considered as the lines 

of energy flow. For on page 2 a light-ray which passes 

from a source Q to a point P was defined as the locus of those 

points at which an obstacle, i.e. an opaque body, must be 

placed in order to cut off the light effect at A*. Now evidently 

the energy cannot be propagated from Q to P if the lines of 

energy flow from QtoP are intercepted by an obstacle. 

Hence, by (25), the direction of the rays of light must be 

perpendicular to the electric and magnetic forces. 



CHAPTER II 

TRANSPARENT ISOTROPIC MEDIA 

I. Velocity of Light.—From the standpoint of the electric 

theory a plane electromagnetic wave may be conceived to 

originate as follows: Imagine that at a certain instant an 

electric current parallel to the .r-axis is excited in a thin layer 

which is parallel to the .ry-plane. This current gives rise to 

magnetic forces at the surface of the layer, which are parallel 

to the y-axis. The growth of the magnetic field induces elec¬ 

tric forces which within the layer are parallel to the negative 

^r-axis, without the layer parallel to the positive x'-axis. 

Hence within the layer the electric current disappears, because 

the induced currents neutralize the original current; but in its 

place there arises outside the layer electric currents which run 

along the positive direction of the .ar-axis. In this way an 

electric impulse is propagated in the form of a wave along 

both the positive and negative directions of the .s'-axis. 

In order to find the velocity of propagation, it is necessary 

to return to equations (18) of the previous chapter. 

If the first three of these equations be differentiated with 

'da dfi dy 
respect to the time, and if the values of given 

ot ot ot 

in the last three of these equations be introduced, there 

results 

fMT 3 ,dX dY\ 3/3Z dX\ 

<? dt2 ~~ dy\dy dx) dz\ dx dz /* 

274 
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and similarly two other equations are obtained. Now this 

equation may be written in the form 

eb2X _b2X b2X g)2A 9 rbX bY bZ\ 

P bfi bx2 'by2 bP bx\bx ' by bz P ^ 

Also differentiation of the first three of the equations (18) 

with respect to ,r, y, z, and addition of them gives 

b fbX 3K. ZZ\ 

bt l bx ' 'by ' 'bz I 
— o. 

Since in what follows we are only concerned with periodic 

changes in the electric and magnetic forces, and since for 

these the differential coefficient with respect to the time is 

proportional to the changes themselves (when the phase 

— has been added), the conclusion may be drawn from the 

last equation that 

SI . BF . 

aV + + aT ~ °' (2) 

Hence equation (i) becomes 

_6^I tfX b2x 

P bP ~ bx2 by2 dz2 ~ 

Similar equations hold for Y and Z, so that the following 

system of equations is obtained: 

eb2X 

P~bP 
= AX, 

eb2Y 

P bP : 
AY, 

ebPZ 
P bP 

AZ. (3) 

For the components of the magnetic force similar equations 

hold, thus 

e 02a 

PbP 

3« 3£_ , 3X 
dx dy ' 3# 

= 0, . . . . * (20 

<?d Y• • (30 
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Now it has been shown on page 170 that differential equa¬ 

tions of the form of (3) and (3') represent waves which are 

propagated with a velocity 

This is then, according to the electromagnetic view of the 

nature of light, the velocity of light, and it is immaterial 

whether the electric or the magnetic force be interpreted as the 

light vector, for the two are inseparably connected and have 

the same velocity. 

Applying equation (4) to the case of the free ether, it fol¬ 

lows that the velocity of light in ether is equal to the ratio of 

the electromagnetic to the electrostatic units. This conclusion 

has actually been strikingly verified, for (cf. page 119) the 

mean of the best determinations of the velocity of light was 

seen to be V — 2.9989- io10 cm./sec., a number which agrees 

within the observational error with that given for the ratio of 

the units, namely, c = 3 • io10 cm./sec. 

This is the first brilliant success of the electromagnetic 

theory. 

According to (4) the velocity in ponderable bodies must 

be 1 • Ye smaller than in the free ether, or, since the index of 

refraction n0 of a body with respect to the ether is the ratio of 

the velocities in ether and in the body, 

nQ=V~e, n*=e,.(5) 

i.e. the square of the index of refraction is equal to the dielectric 

constant. 

Evidently this relation cannot be rigorously fulfilled, for 

the reason that the index depends for all bodies upon the color, 

i.e. upon the period of oscillation, while from its definition e is 

independent of the period of oscillation. 

But in case of the gases, in which the dependence of the 

index upon the color is small, the relation (5) is well satisfied, 

as is shown by the following table, in which the values of the 
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dielectric constants are due to Boltzmann,* while the indices 

are those for yellow light: 

«0 

Air. 1.000 294 1.000 295 

Hydrogen. 1.000 138 1.000 132 

Carbon dioxide. x. 000 449 1.000473 

Carbon monoxide. 1.000 346 1.000345 

Nitrous oxide 1.000 503 1.000497 

Relation (5) also holds well for the liquid hydrocarbons; for 

example, for benzole n0 (yellow) = 1.482, Ve = 1.49. 

On the other hand many of the solid bodies, such as the 

glasses, as well as some liquids, like water and alcohol, show 

a marked departure from equation (5). For these substances 

e is always larger than n0z} as the following table shows: 

«0 Ve 

Water. i-33 9.0 

Methyl alcohol. 1 1-34 I 5-7 

Ethyl alcohol. I-36 5.0 

In order to explain these departures, the fundamental 

equations of the electric theory must be extended. This 

extension will be made in Chapter V of this section. In this 

extension the quantity e which is here considered as constant 

will be found to depend upon the period of oscillation. 

But first an investigation will be made from the standpoint 

of the electric theory of those optical properties of bodies which 

do not depend upon dispersion, hi what follows it will be 

assumed that the light is monochromatic, and that the extension 

to be given in Chapter V has already been made, so that the 

constant e appearing in the fundamental equations is equal to 

the square of the index of refraction for the given color. 

L. Boltzmann, Wien. Ber. 69, p. 795, 1874. Pogg. Ann. 155, p. 407, 1873, 
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2. The Transverse Nature of Plane Waves.—A plane 

wave is represented by the equations 

„ . 2 7t , mx A- ny 4- pz\ 
X = Ax- cos -^[t-^ L. L-T-. 

mx -j- ny -j- pz\ 
_ ), 

mx -f- ny -f- 
r 

Y — Ay’ cos ~{t - 

~ . 27t j 
Z = Ax' COS -yrhf - 

. • (<S) 

For the phase is the same in the planes 

mx -J- ny -|- pz ■=■ const., .... (7) 

which is then the equation of the wave fronts, in, n, andp are 
the direction cosines of the normal to the wave front, provided 

the further condition be imposed that 

m* + iF -f- P1 = ..(8) 
Ax, Ay, Ax are the components of the amplitude of the 

resultant electrical force. They are then proportional to the 

direction cosines of the amplitude A. In consequence of equa¬ 

tion (2) on page 275, 

Ax-m -j- Ay-n -f- Az-p = o, .... (9) 

an equation which expresses the fact that the resulting ampli¬ 
tude A is perpendicular to the normal to the wave front, i.e. 

to the direction of propagation; or in other words, that the 
wave is transverse. This conclusion holds for the magnetic 

* force also. That plane waves are transverse follows from equa¬ 
tions (2) or (2'), i.e. from the form of the fundamental equa¬ 
tions of the theory. 

3. Reflection and Refraction at the Boundary between 
two Transparent Isotropic Media.—Let two media 1 and 2 
having the dielectric constants eL and e2 meet in a plane which 
will be taken as the .ary-plane. Let the positive .s’-axis extend 
from medium 1 to medium 2 (Fig. 83). Let a plane wave fall 
from the former upon the latter at an angle of incidence <p, and 
let the xz-plane be the plane of incidence. The direction 
cosines of the direction of propagation of the incident wave are 
then 

m — sin 0, n — o, p = cos <f>. . . . (id) 
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Let the incident electric force be resolved into two com¬ 

ponents, one perpendicular to the plane of incidence and of 
amplitude Es, and one in the plane of incidence and of ampli¬ 
tude Ep. The first component is parallel to the jy-axis so that, 

in consideration of (6) and (io), the ^-component of the incident 

force may be written 

Y. = E-cos 
271 

~T\ 

4: sin 0 -j- z cos 0\ 
(li) 

- \ "l 

in which Vl is the velocity of light in the first medium. 

By (4), 

V^c-.Ve,.(12) 

Since the wave is transverse, the component Ep of the elec¬ 

trical force, which lies in the plane of incidence, is perpendic¬ 
ular to the ray, i.e. the components Ax and Az, along the 

x- and .s'-axes, of the amplitude Ep must have the values 

Ax = Ep • cos 0, Az = — Ep -sin 0, 

if, as shown in Fig. 83, the positive direction of Ep is taken 
downward, i.e. into the second medium. 

The 47- and ^-components of the electric force of the inci¬ 

dent wave are, therefore, 

Xe = iy cos 0'Cos - 

Ze= — iysin 0-cos ~Y\t 

47 sin 0 -j- z cos 0^ 

V, b 

.r sin 0 -j—2 cos <p\ 
j 

03) 

Now a magnetic force is necessarily connected with the 

electric force in the incident wave, and from the fundamental 
equations (18) on page 269, and (12) above, the components 

of this force are found to be 

7- , 27t( xsin 0-j- zcos 0\ 
ae = —Es-cos <p Vcos-—--J, 

y— 27T / 
A = +£,* COS -jryt - 

K 

27t ( xsin 0 —j— z cos 0\ 

Vx 

,,27T / 47sin 0 + ^cos 0' 
ye=^-\-Ersm 0 Vexcos — ^ —-y- 

)-J 

Y (I4) 
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> o, then ote =. ye— o, and fit differs from 

zero, i.e. the amplitude Ep of the 
electric force, which lies in the 
plane of incidence, gives rise to a 
component of the magnetic force 

which is perpendicular to the plane 

of incidence. Conversely, the 
component Es of the electric force, 

which is perpendicular to the plane 

of incidence, gives rise to a mag- 

* Fig> 83- netic force which lies in the plane 

of incidence. This conclusion that the electric and magnetic 
forces which are inseparably connected are always perpendic¬ 
ular to each other follows from the considerations already given 

on page 274. 
When the incident electromagnetic wave reaches the 

boundary it is divided into a reflected and a refracted wave. 

The electric forces in the reflected wave can be represented by 

expressions analogous to those in (n) and (13), namely, by 

Xr — R..cos <p' 
27t( x sin <p' 4- z cos <p'\ 

•c°s tv-v.—y 

Yr = /?f-cos - 
x sin <p' -f- z cos 0^ 

Vx J 

z = 
_ . 27t f ;r sin + z cos <p‘ 

■ Rp-sin <p cos ~Y\t-y— 
0- 

The corresponding equations for the refracted wave are 

„ ~ 21c ( x sin x + e cos x\ 
X2- Dp-cos x-cos -y-), 

K = A- 

Z„= — D, 

271 ( x sin x -}- z cos x\ 

;Tr F, >• 

^•sin *-cos - 
x sin x + s cos x\ 

(15) 

(16) 

In these equations Rp, Rs, Dp, Ds denote amplitudes, <p' 

the angle of reflection, i.e. the angle between the -f- ^-axis 
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and the direction of propagation of the reflected wave, x the 
angle of refraction. 

The corresponding magnetic forces are, cf. (14), 

otr= — Rs-cos 0'* l^.cos ■ 

Pr=+Rp- 4/Fpcos -^(t . . . .). 

yr= +J2,.sin 0' 4^. cos ~{t . , 

a2 = — Dt-cos x • V^-cos ~™{t - 

A= +Dp' ^-cos ^r{t ....), 

y2 = + A*sin X‘ Ve2-cos . , 

sin 0' -f- cos 0'^ pT j. 

x sin x 2 cos X\ 

v2 -) 

(J7) 

(18) 

On account of the boundary conditions (21) of the previous 
chapter, there must exist between the electric (or the magnetic) 

forces certain relations for all values of the time and of the 

coordinates x and y. Such conditions can only be fulfilled if, 
for z = o, all forces become proportional to the same function 
of t, y> i.e. the following relations must hold: 

sin 0 sin 0' sin x 

~vT=z~vTt= .(I9) 
From the first of these equations it follows immediately that 

sin 0= sin 0'; i.e., since the direction of the reflected ray 
cannot coincide with that of the incident ray, 

cos 0 = — cos 0', i e. 0' = n — 0. . . (20) 

This is the law of reflection, in accordance with which the 
incident and reflected rays lie symmetrically with respect to 
the normal at the point of incidence. 

The second of equations (19) contains the law of refrac¬ 
tion, since from this equation 

sin 0 : sin x = Vx : V2 = n, . • (21) 
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. in which n is the index of refraction of medium 2 with respect 

to medium i. 

The laws of reflection and refraction follow, then, from the 

fact of the existence of boundary conditions and are altogether 

independent of the particidar form of these conditions. 

As to the form of these conditions it is to be noted that 

here Xx = Xe -j- Xr, with similar expressions for the other 

components, since the electric force in medium i is due to a 

superposition of the incident and reflected forces. Hence the 

boundary conditions (21) on page 272 give, in connection with 

(20), 
{Ep — Rf cos 0 = Dp cos x, 

Es + Rs = Ds, 

(Es — Rs) Y^ cos 0 = Ds fe2 cos X, 

[EP + RP)YTX =DpYrr 

From this the reflected and refracted amplitudes 

calculated in terms of the incident amplitude. Thus: 

. (22) 

can be 

iEs 

f Vel cos 0 

v Ye2 cos x 

2 Eb 

*/—• 
\COS X 

= dL + +V0S4 
\ Y6l COS 0/ 

_ j) = R(vi™i* + 
/ V Ye% cos X 

£ 
Ye, 

(23) 

If the ratio Y e2 : Yev which, according to (4), is the index 

of refraction n of medium 2 with respect to 1, be replaced by 

sin 0 : sin x [cf. (21)], then (23) may be written in the form > 

P - _ P Sin & "I) r> _ zr tan ~ X) 
sin (0 -J- x)f ^“^teT(0TJY 

D = E 2 sin X cos 0 _ 2 sin x cos 0 
J sin (0 + *)’ > — ^ sin (0 -j- x) cos (0 — X)' 
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These arc Fresnel's reflection equations, from which the 

phase and the intensity of the reflected light can be calculated 

in terms of the characteristics of the incident light. 

It is seen from (24) that Rs never vanishes, but that R# 

becomes zero when 

tan {</> + x) = o°, 0 + X = • • • (25) 

i.e. when the reflected ray is perpendicular to the refracted ray. 

In this case it follows from (25) that 

sin x = sin ^ — <P] — cos 0> or» cf- (2r)> 

tan 0 = n.(25') 

When, then, the angle of incidence has this value, the 

electric amplitude in the reflected wave has no component 

which lies in the plane of incidence, no matter what the nature 

of the incident light, i.e. no matter what ratio exists between A 

and Ep. Thus if natural light is incident at an angle </> which 

corresponds to (25'), the electric force in the reflected wave 

has but one component, namely, that perpendicular to the 

plane of incidence; in other words, it is plane-polar Fed. Now 

this angle <p actually corresponds to Brewster’s law given 

above on page 246. At the same time it now appears, since 

the plane of incidence was called the plane of polarization, that 

in a plane-polarized wave the light vector is perpendicular to 

the plane of polarizatio?i, provided this vector he identified with 

the electric force. 

On the other hand the light vector would lie in the plane 

of polarization if it were identified ivith the magnetic force, since, 

by equation (17) (cf. also page 280), Rp signifies the amplitude 

of the component of the magnetic force which is perpendicular 

to the plane of incidence. Neumann's reflection equations 

would follow from the assumption that the magnetic force is 

the light vector. 

The intensities of the reflected electric and magnetic waves 

are equal. For, given incident light polarized in the plane of 
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incidence, in order to calculate the reflected intensity it is 

necessary to apply only the first of equations (24), no matter 

whether the electric or the magnetic force be interpreted as the 

light vector. For, by (14) on page 279, Es is in every case 

the amplitude of the incident light. 

On the other hand the signs of the reflected electric and 

magnetic amplitudes are opposite. This difference does not 

affect the intensity, which depends upon the square of the 

amplitude only, but it does affect the phase of the wave. This 

will be more fully discussed for a particular case. 

4. Perpendicular Incidence. Stationary Waves.—Equa¬ 

tions (24) become indeterminate when 0 = 0, because then X 

is also zero. However, in this case, since Vex : Ve2 = n and 

cos 0 = cos X = 1, (23) gives 

Rs = - Es- 
sn -f V R* ~~ E*n + 1* ’ ^ 

The first of these equations asserts that, if n> 1, the 

reflected electric amplitude is of opposite sign to the incident 

amplitude. But the second equation asserts the same thing, 

for, when 0=0, like signs of Rp and Ep actually denote oppo¬ 

site directions of these amplitudes, as appears from the way in 

which Rp and Ep are taken positive.in Fig. 83 on page 280. 

The stationary waves (cf. page 155) produced by the interfer¬ 

ence of the incident and reflected waves must have a node at 

the reflecting surface, which, to be sure, would be a point of 

complete rest only if Rs were exactly as large as Esf i.e. if 

n — 00 . For finite n only a minimum occurs at the mirror, 

since the reflected amplitude only partially neutralizes the 

effect of the incident amplitude. 

For the magnetic forces, however, Ep and Rp represent the 

components of the amplitude which are perpendicular to the 

plane of incidence, i.e. parallel to the jy-axis. Like signs of these 

amplitudes represent actually like directions, so that it follows 

from the second of equations (26) (also from the first, if the 

proper interpretation be put upon the direction of the amplitudes 
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in space) that the reflected magnetic amplitude has the same 

direction as the incident magnetic amplitude. Hence stationary 

magnetic waves have a loop at the mirror itself if n > 1. 

Wiener’s photographic investigation showed that at the 

bounding surface between glass and metal a node was formed 

at the surface of the mirror. This indicates that the electric 

force is the determinative vector for photographic -effects, as 

was even more convincingly proved by the investigation of 

stationary waves formed in polarized light at oblique incidence 

(cf. page 251). 

5. Polarization of Natural Light by Passage through a 
Pile of Plates.—From equation (24) it is seen that Rs : Es 

continually increases as 0 increases from zero to —. On the 

other hand Rp : Ep first decreases, until it reaches a zero value 

at the polarizing angle, and then increases to the maximum 

7t 
value 1 when <p = — (grazing incidence). But for all angles 

of incidence if Es= Et, Rs> Rp. For, from (24), 

_E* C0S + X) 
Rs Es cos (0 — X).^ ' 

Hence at every angle of incidence natural light is partially (or 

completely) polarized in the plane of incidence. And since 

by assumption no light is lost, the refracted light must be 

partially polarized in a plane perpendicular to the plane of 

incidence. This explains the polarizing effect of a pile of 

plates. 

Also an application of the last two of equations (24) to the 

two surfaces of a glass plate gives directly, for the passage of 

the light through the plate, 

D\ 
cos2 (0 — X), (28) 

in which D's, D'p denote the amplitudes of the ray emerging 

from the plate. Hence when Es= E^, it follows from (28) 



THEORY OF OPTICS 286 

that D's<D'p, i.e. incident natural light becomes by passage 

through the plate partially polarized in a plane perpendicular 

to the plane of incidence. To be sure, there is no angle 0 at 
which this polarization is complete, as is the case for reflection; 

it is more complete the larger the value of 0. If 0 is equal 

to the polarizing angle* ^tan 0 = n, 0-f- X t*1611’ by 

(28), when E( = Ep, 

D£ 
sin2 2 0 

4 n2 

(1 + 

Hence when n = 1.5, D's : D’p = 0.85, and the ratio of the 

intensities D\2 : D'p 2 = 0.73. After passage through five plates 

this ratio sinks to 0.735 = 0.20, i.e. the light would still differ 

considerably from plane-polarized light. 

6. Experimental Verification of the Theory.—Equations 

(24) may be experimentally verified either by comparing the 

intensities of the reflected and incident light, or more con¬ 

veniently by measuring the rotation which the plane of polariza¬ 

tion of the incident light undergoes at reflection or refraction. 

The amount of this rotation may be calculated from equations 

(27) or (28). 

If the incident light is plane-polarized, the quantity a con¬ 

tained in the expression for the ratio of the components, 

namely, Ep : Es — tan a, is the azimuth of the plane of polariza¬ 

tion of the incident light. The reflected and refracted light is 

likewise plane-polarized and the azimuth 0 of its plane of polar¬ 

ization is determined by (27) and (28). Thus tan 0 = Rp : Rs. 

For the measurement of this angle it is convenient to use the 

apparatus shown on page 258 without the Babinet compen¬ 

sator. The incident light is polarized by means of the Nicol 

P (the polarizer), and the Nicol p' (the analyzer) is then turned 

until the light is extinguished. The value of 0 which corre¬ 

sponds to any particular a can thus be observed. 

* At this angle the transmitted light is by no means completely polarized. 
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Both methods furnish satisfactory verification of the laws of 

reflection; but Jamin found by very careful investigation that, 

in the neighborhood of the polarizing angle, there is always a 

departure from those laws, in that the polarization of the 

reflected light is not strictly plane but somewhat elliptical, 

lienee it cannot he entirely extinguished by the analyzer 

unless the compensator is used. The explanation of this 

phenomenon follows. 

7. Elliptic Polarization of the Reflected Light and the 
Surface or Transition Layer.—-The above developments make 

application of the boundary conditions (21) on page 271 and 

rest upon the assumption that when light passes from medium 

1 to medium 2 there is a discontinuity at the bounding sur¬ 

face. But strictly speaking there is no discontinuity in Nature, 

Between two media 1 and 2 there must always exist a tran¬ 

sition layer within which the dielectric constant varies continu¬ 

ously from fej to er This transition layer is indeed very thin, 

but whether its thickness may be neglected, as has hitherto 

been clone, when so short electromagnetic waves as are the 

light-waves are under consideration, is very doubtful. Further¬ 

more the thickness of this transition layer between two media 

is generally increased by polishing the surface. 

In any case the actual relations can be better represented 

if a transition layer be taken into account. 

Nevertheless, in order not to unnecessarily complicate the 

calculation, it may be assumed that the thickness I of this 

transition layer is so small that all terms of higher order than 

the first in / may be neglected. 

First the boundary conditions which hold for the electric 

and magnetic forces at the two boundaries of the transition 

layer will be deduced. These boundaries are defined as the 

loci of those points at which the dielectric constant first attains 

the values and e2 respectively. 

According to the remark of page 267 equations (18) on 

page 269 hold within the transition layer also. 

If the fourth and fifth of these equations (18) be multiplied 
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by an element dz of the thickness of the transition layer, and 
integrated between the two boundaries i and 2, there results, 

since the quantities involved do not depend upon y, provided y 

be taken perpendicular to the plane of incidence, 

7 v,-y>. j 

Now, by (21) and (21') on pages 271 and 272, a, /3, and eZ 

are approximately constant within the transition layer, so that 

a, ft, and eZ may be placed before the sign of integration in 

the above equations and replaced by a%, /?2 > (or by az, 

/3j, CjZj). Thus 

feds = afdz, f Adz = f 

Introducing the abbreviation 

/, 
f*=i‘ /**=* X^= 

(30) 

in which / denotes the thickness of the transition layer and e 

its dielectric constant at the point corresponding to the element 

dz of the thickness, equations (29) become 

dZ, 
2 Zx9, "1- "2 c di- 

Likewise the first two of equations (18) give, after multipli¬ 
cation by dz, integration, and treatment as above, 

_ P dV2 

Zx c Zt ’ 

x-x+LA 
c 7jt ' 

~ a — L ——■ — 

Tr Tr l Z<*2 . . 

^=^-777- 00 

A — A + c -at ■ (32) 

Equations (31) and (32) take the place of the previous 
boundary conditions (21) on page 271. 

To determine the electric and magnetic forces in media 1 
and 2, equations (n), (13), (14), (15), (16), (17), (18) of this 

chapter may be used, but with the limitation that the forces in 
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the reflected and refract oil wave must differ in phase from the 

incident wave by an amount which must be deduced from 

equations (31) and (32). Without such a difference of phase 
these equations cannot be satisfied. 

Now these differences of phase may be most simply taken 

into account in the following way: Write, for instance [ef. 
equations (15), page 280], 

3A’, cos '.j, ( 

then Fr is the real part of the complex quantity 

av/IW-.W.M 
Writing now 

K. = 31 ■! lO./T 

in which the symbol 3H means that the real part of the complex 

quantity which follows it is to be taken. This complex 

quantity within tlu* brackets contains the amplitude K, which 

is also complex, so (hat an advance In phtrse ivlthh o<cars in 

I'. may In' represented hr setting 1*, ct/ual to the root part of 

an exponential function containing a complex fat tor (complex 

amplitude). The other electric ami magnetic forces may be 

treated in the same way. 

Instead of performing the calculations with the real parts 

only of the complex quantities, it is possible, when only linear 

equations (or linear differential equations) are involved, to first 

set the electric and magnetic ft trees equal to the complex 

quantities and, at the end of the calculation, to take the real 

parts only into consideration in determining the physical 

meaning. 
Thus in the previous equations (n), (13), (14), (15), (t6|, 

(17), (18) for the electric and magnetic forces, the real ampli¬ 

tudes /q, /q, A’,, Rf, etc., will be replaced by the complex 
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amplitudes Es, Ep) Rs, Rp, etc., and the cosines by the 

exponential expression (cf. equation (34)). Then the boundary 

conditions (31) and (32) give, since they are to hold fora' = o, 
and since Xx = Xe -{- Xr, oq — ae _j- nq., etc., 

(Ep~ Rp) cos 0=Dp[cos X + iy 

Es + R.= dJ 1 + cos X 

P /• 2yJ r(35^ 
(Es-Rs)4^ cos 0=Ds[Ve2cos 

(Ep + Rp) V7X = Dp r cos • 

From these equations Rs, Rp, Ds, Dp may be calculated 

in terms of Es and Ep. It is the reflected light only which is 

here of interest. If the product Tc be replaced by A, the wave 

length in vacuo of the light considered, and if V2 be replaced 

by c : Ve2, then, from (35), 

Rp cos (p 4/e2—cos xV*i+* Y [P cos <P cos *—(/—? e2 sin2 x)V*&] 

Ep cos <p cos ~-\-[p cos 0 cos X+il-le2 
_ L i- <36> 

R cos <p cos xYe2~h* ~y[T cos <P cos xVeie2~~P-i-^ sin2 

Es cos <p 4/e^-j-cos xVe2+*-^|y cos 0 cos xY e\ei-\-P~letsin2 X ] 

Now it is to be remembered that the terms which contain 

the factor are very small correction terms, since they are 

proportional to the thickness l of the transition layer. Hence 
if the expressions (36) be developed to terms of the first power 
only of the ratio l : A, there results 

Rp _ cos 04/TT-cos xYel j t cos ^-p cos2 x~le^ge? sin2 x) 

®P cos <p\/ea+cos^i/el ( A e-x cos2 cp—e, cos2 x [’ 

Rs =cos_0£^-cosij^| ,+ .4* cos H-_le,-p 1 

Es cos cpYe\-\-co% xYe* ( A ^ cos1 (p—ea cos2 x \ 
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The denominator of the correction term which appears in 

the second of these equations can never vanish, i.e. €x cos2 0 

can never be equal to e2 cos2 X, for if e2 > e1, then always 

0 > x, and hence cos 0 < cos X• But the denominator of the 
correction term of the first of equations (37) does vanish if 

cos 0 Ve2 = cos X ^.(38) 

A simple transformation of (38) shows, since Ve2 : Ve, = n, 

that this condition is fulfilled for the polarizing angle 0, which, 

according to Brewster’s law, is determined by tan 0 — 11. 

Hence for this angle of incidence it follows from (37), or also 

directly from (36), that 

5p_ 
En ~ 

.4* . j-P cos2x ~ Ie2 + grea sin2x 
z— cos 0 Ve,--~—=—. 

A (cos 0 Ve -f- cos x r ex)2 
(39) 

Equations (37) can be further simplified by consideration 

of the law of refraction, namely, 

sin 0 : sin X — n — Ve2 • Vev . . . (4°) 

For from this it follows that 

ex cos2 0 — e2 cos2 X = ^ — e2, 

e2 cos2 0 — e2 cos2 X = -2 {ex sin2 0 — e2 cos2 0) 
g2 

Now the nature of the reflected light is completely deter¬ 
mined by the ratio Rp : Rs. Assume that the incident light is 

plane-polarized at an azimuth of 450 to the plane of incidence 

(cf. page 286). Then Ep = ES, and from (37) it follows, in 
consideration of (40) and (41), that 

5s_cos (0+X) S -_A* cos </> sin3 „ \ 
Rs cos(0—X) \ I^r A e~e2 ^ sin2 0 — e2 cos2 0 ;^ ' 

in which t] is an abbreviation for 

»7 = /-‘^(e1+62) + ^6162. . . . (43) 

At the polarizing angle (tan 0 = n) (42) assumes the value 

Rp ,7t Vel A-e2 

R^*I-^ 61 - e. (44) 
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as is seen most easily from (39) by dividing it by the secon 

of equations (37) and retaining terms of the first order only i 
77 : A. 

In order now to recognize the physical significance of (42 
and (44) it must be borne in mind that, according to (33), 

Rp = ^-/\ R„ = /J,V\ ... (45 

in which Rp and Rs are the components which are respective! 
parallel and perpendicular to the plane of incidence of th 
amplitude of the reflected electric force, and and dt are th 

advances in phase of these components with respect to the in 
cident wave. Hence 

Rp 
Rs 

= ^ffe/(5> ~ 5j) = p-eih 
iv. 

(46 

in which p is the ratio of the amplitudes and A the difference h 

phase of the two components. Hence, from (44), it follows tha 

at the polarizing angle 0 

ff_ ^ ~h e2 

A ^ 6, — 
: 7t/ 2, (47. 

i.e. the reflected light is not plane-polarized in the plane o 
incidence as it was above shown to be when the transitior 

layer was not considered, but it is elliptically polarized. The 

principal axes of the ellipse are parallel and perpendicular tc 
the plane of incidence (cf. page 249) and their ratio is p. p wif 

be called the coefficient of ellipticity. By (43), (47), and (30] 
this may be written 

_ it V e, + 1 
p- X e.-e ‘P dz, (48; 

in which the integration is to be extended through the transi¬ 

tion layer between the two media. 
According to (48) p is positive if the value of the dielectric 

constant e of the transition layer varies continuously between 

the limiting values el and e2, and if e2 > ev But if at any 

point within the transition layer e > eL and also e > e2, then J 
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is negative when fa > er The relations are inverted when 

f.-, > e-'jj, i.e. when the medium producing the reflection has the 

smaller refractive index. In consideration of the way in which 

the amplitude is taken positive (cf. Fig. 83, page 280), it is 

evident that, if the coefficient of ellipticity p is positive, the 

direction of rotation of the reflected light in its elliptical 

vibration form is counter-clockwise to an observer standing in 

the plane of incidence and looking toward the reflecting sur¬ 

face, provided the incident electrical force makes an angle of 
45° with the plane of incidence and is directed from upper left 

to lower right. Hut if Jj is negative, then when the same con¬ 

ditions exist for the incident electrical force, the direction of 

rotation of the reflected electrical force is clockwise. 

Also for any other angle of incidence the reflected light is 

always elliptically polarized, even though the incident light is 

plane-polarized, for there is always a difference of phase J 

between the />- and jr-components, which, according to (42) 

and (46), has the value 

tan A 
7t ra Vex cos </> sin'4 0 

^ A ^ — t., t , sin'4 (/> — t j, cos'"5 0' (49) 

while the ratio p of the amplitudes does not depart appreciably 

from the normal value 

+ X) 

cos (0 — a)’ (SO) 

which is obtained without the consideration of a surface layer. 

In consideration of (47), (49) may be written 

tan A = 4 p 
4 I + n% 

sin 0 tan 0 

tan'4 0 — >/4* (Si) 

On account of the smallness of p .the difference of phase is 

appreciable only in the neighborhood of the polarizing angle, 

for which tan 0 = n. 

These theoretical conclusions have been completely verified 

by experiment. For, in the first place, it is observed that 
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when the angle of incidence is that determined by Brewster’s 

law, the reflected light is not completely (though very nearly) 
plane-polarized, since it is not possible to entirely extinguish it 

with an analyzing Nicol. The results of the investigation of 

the elliptic polarization of reflected light by means of the 

analyzer and compensator (cf. page 255) are in good agreement 

with equations (50) and (51). 
It is further found that the coefficient of ellipticity is smaller 

the less the reflecting surface has been contaminated by con¬ 
tact with foreign substances. Thus, for example, it is very 

small at the fresh surfaces of cleavage of crystals, and at the 

surfaces of liquids which are continually renewed by allowing 
the liquid to overflow. For polished mirrors p is considerable. 

The change in the sign of p when the relations of the two 

media are interchanged is in accord with the theory. The 

theory is also confirmed by the fact that, in the case of reflec¬ 
tion from polished surfaces, p is in general positive. Only in 

the case of media which have relatively small indices of refrac¬ 

tion, like fluor-spar (n — 1.44) and hyalite (n = 1.42), has p 
been observed to be negative. This also might be expected 

from the theory, provided the index of refraction of the 
polished transition layer were greater than that of the 

medium. 

For well-cleaned polished glass surfaces, when the reflec¬ 
tion takes place in air, the value of p lies between 0.03 (for 

heavy flint glass of index n — 1.75) and 0.007. 
For liquids in contact with air the value of p does not 

exceed 0.01. Water has a negative coefficient of ellipticity 

which, when the surface is thoroughly cleaned, may be as 
small as 0.00035. There are also so-called neutral liquids 

like glycerine which produce no elliptic polarization by reflec¬ 
tion. According to the theoretical equation given above for 
the coefficient of ellipticity it is not necessary that these liquids 
have no transition layer, i.e. that an actual discontinuity occur 

! in the dielectric constants in passing from the air to the liquid, 

j Rather, layers which have intermediate values of the dielectric 
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constant may exist, provided only other layers whose dielectric 
constant is greater than that of the liquid are also present. 

When the coefficient of ellipticity is positive (for reflection 

in air) it is possible to determine a lozver limit for the thickness 

of the transition layer. For evidently, for a given positive 

value of p, the smallest thickness which the transition layer 
can have is attained when its dielectric constant is assumed to 

be a constant whose value is determined by making the factor 

—--— in equation (48) a maximum. This is the case 

when e = Ve1e2, i.e. when the dielectric constant of the transi¬ 
tion layer is a geometrical mean of the dielectric constants of 

the two media. Hence, from (48), the lower limit l for the 

thickness of the transition layer is given by 

P _ _j_11 + 1 ,52v 
A. n 4/e1 4- e2 fe2 — 4/el n Vi -f- ril n — I ’ 

in which 11 denotes the index of refraction of the medium 2 
with respect to the medium 1 (air). Thus for flint glass, for 

which n — 1.75, p = 0.03 (cf. page 294), l : A. = 0.0175. 
Hence the assumption of a transition layer of very small thick¬ 

ness is sufficient to account for a very strong elliptic polarization 

in reflected light. 

8. Total Reflection.—Consider again the case in which the 
light incident in medium 1 is reflected from the surface of 
medium 2. If the index n of 2 with respect to 1 is less than 
1, the angle of refraction % which corresponds to the angle of 
incidence 0 is not real if 

sin <j> 
sinz==___>1.(S3) 

At this angle of incidence 0 there is then no refracted 
light, but all of the incident light is reflected (total reflection). 

In order to determine in this case the relation between the 
nature of the reflected light and that of the incident light, the 
method used in § 3 of this chapter must be followed. The 

discussion and the conclusions there given are applicable. In 
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order to avoid the use of the angle of refraction X in equations 

(22), (23), and (24), sin X may be regarded as an abbreviation 

for sin 0 '■ n, so that cos X may be replaced by 

sin- 0 

n2 

If sin 0 > n, this quantity is imaginary. In order to bring 

this out clearly the imaginary unit V — 1 = i will be introduced, 

thus: 

cos x — -I\l -I.* . . . (54) 

Equations (23) must hold under all circumstances,')' for they are 

deduced from the general boundary conditions for the passage 

of light through the surface between two isotropic media, and 
these conditions always hold, whether total reflection occurs 

or not. But when (54) is substituted in (23) the amplitudes -in 
the reflected light become complex, even when those of the 

incident light are real. From the physical meaning of a com¬ 
plex amplitude which was brought out on page 289, it is 
evident that in total reflection the reflected light has suffered a 

change of phase zvith respect to the incident light. 

In order to calculate this change of phase, write, in accord¬ 

ance with (45), for the reflected amplitudes which appear in 

(23) the complex quantities Rffs, so that from (23) and 

(54), since f e%: Vex — n, 

E ( icosrt> A = R t 
y Fsin2 0 — «3 J s y Vsin2 0 — ril 

Tt ( 2 cos 0'n _ p gcos0.« I 
\ Vsin2 0—7P n) * y Fsin2 0 — n2 

* Cos x must be an imaginary with a negative sign. According to the condi¬ 

tions which are to be fulfilled, either a positive or a negative value of cos x would 

be possible. This could be physically realized only if the medium 2 were a plate 

upon both sides of which light were incident at the same angle <p, which must also 

be greater than the critical angle. This appears from the considerations in § 9. 

f The transition layers will here be neglected. They have but a small influence 

upon total reflection; cf. Drude, Wied. Ann. 43, p. 146, 1891. 
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In order to obtain the intensities of the reflected light, i.e. 

the values of R] and Rit is only necessary to multiply equa¬ 
tions (55) by the conjugate complex equations, i.e. by those 

equations which are obtained from (55) by substituting — i 

for /.* The result is 

E* = R», Ef = R/, .... (56) 

i.e. the intensity of the reflected light is equal to that of the 
incident light (total reflection). This holds also for each of 
the components (the s and p) separately. 

The absolute differences of phase 3s and will not be dis¬ 
cussed, but the relative difference A — — ds is of interest 

because, according to page 292, the vibration form of the 

reflected light is obtained from it. Division of the first of 

equations (55) by the second gives, when Es = Rp, i.e. when 
the incident light is plane-polarized at an azimuth of 450 with 

respect to the plane of incidence, since then, according to 

(56), RS = R;, 

i cos <p — Vsin2 <p — tP _^&s _S/) i cos 0 -\- Vsin2 0 — n% 

zcos 0.?z——ffsin2 0—?z2 zcos0-7z—'ffsin20— n% 
71 '71 

From this it follows that 

... . sin2 0 —I— i cos 0 -/sin2 <p — 
e= —-------—... 

sin2 0 — i cos 0 ffsin2 0 — ?z2 

Hence 

1 _ e*A _ — i cos 0 Fsin2 0 — zz2 

1 -f- eiA ~ sin2 0 

If this equation be multiplied by the conjugate complex 
expression, there results, since ei6L -}- e~iA = 2 cos At 

1 — cos A (cos 0 Fsin2 0 — ?z2 

1 -f- cos A 1 sin2 0 

* Every equation between complex quantities can be replaced by the conjugate 

complex equation; for the real and the imaginary parts of both sides of such equa¬ 

tions are separately equal to each other. 
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i.e. 

tan \A = 
cos 0 Ysin2 0 — rfi 

sin2 0 • (58) 

From this it appears that the relative difference of phase A 

is zero for grazing incidence 0 = as well as for the critical 

angle sin <p—n\ but for intermediate values of the angle of 

incidence it is not zero, i.e. the reflected light is elliptically 

polarized when the incident light is plane-polarized. A differ¬ 

entiation of (58) with respect to 0 gives 

I 'dA _ 2?z2 — sin2 0(i -j- rP) 

2 cos2 \A 00 sin3 ^ 4/sin2 0 — fP 

Hence it follows that the relative difference of phase A is a 
maximum for that angle of incidence 0' which satisfies the 

equation 

.(59) 
Hence the maximum value A' of the difference of phase is 

given, according to (58), by 

tetl iJ'= l~Fr.(6°) 

For glass whose index is 1.51, i.e. for the case in which 
n = 1 : 1.51 (since the reflection takes place in glass, not 

in air), it follows from (59) that 0' = 510 20', and from (60) 
that zf = 450 36b A has exactly the value 450 both for 

0 = 48° 37' and for 0 = 540 37'. Two total reflections at 
either of these angles of incidence produce circularly polar¬ 

ized light, provided the incident light is plane-polarized in the 

azimuth 450 with respect to the plane of incidence, i.e. pro¬ 
vided Es = Ep and Rs = Rr Such 

a twofold double reflection can 
be produced by Fresnel’s rhomb, 
which consists of a parallelopiped 

Fig* 84- of glass of the form shown in Fig. 
84. When the light falls normally upon one end of the rhomb 
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and is plane-polarized in the azimuth 45° with respect to the 

plane of incidence, the emergent light is circularly polarized. 
Circular polarization can also be obtained by a threefold, 

fourfold, etc., total reflection at other angles of incidence. 
The glass parallelopipeds which must be used in these cases 

have other angles, for example 69° 12', 740 42', etc., when 

the index of the glass is 1.51. 
9. Penetration of the Light into the Second Medium in 

the Case of Total Reflection.—In the above discussion the 
reflected light only was considered. Nevertheless in the 
second medium the light vector is not zero, since equations 

(23) on page 282 give appreciable values for Ds and Dr 

The amplitude decreases rapidly as z increases, i.e. as the 

distance from the surface increases, for by (16) and (18) on 

pages 280 and 281 the electric and magnetic forces in the 
second medium are proportional to the real parts of the com¬ 

plex quantities 

?K1-- (61) 
which, when X is eliminated by means of equations (53) and 

(54), takes the form 
a?r /sin3 *sln<ft\ 

e~Yvty *‘Vr^ <mV* K ■ M 

Thus for values of z which are not infinitely large with 

respect to the wave length TV2 = \ in the second medium, 

the amplitude is not strictly zero. 
This appears at first sight to be a contradiction of the con¬ 

clusion that the intensity of the reflected lighj; is equal to the 
intensity of the incident light, for whence comes the energy of 

the refracted light ? 
This contradiction vanishes when the flow of energy 

through the bounding surface is considered. According to 

equation (24) on page 272 this flow is, since in this case 

cos (nx) = cos (ny) = o, cos (nz) = 1, 

T;^di = dif^-^Y2ys. . . (63) 
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If now the electric and magnetic forces be taken as the 

real parts of the complex quantities which are obtained from 

the right-hand sides of equations (16) and (18) on page 280 

by replacing the factor cos ^(,t . . .) by e \ it is clear 

that, on account of the factor cos X, which by (54) is purely 

imaginary, oc2 has a difference of phase — with respect to Y2, 

and /?2 a difference of phase — with respect to X2, so that by 

writing 

Tr ( 27ft \ 
Y2~ a cos[~y~ + <V> 

in which a and 8 no longer contain the time, the magnetic 

force a2 takes the form 

. . (nrt \ 
a2 — a ‘ sink-y + 8). 

Hence if a2Y2dt, contained in the expression (63) for the 

energy flow, be integrated between the limits t = 0 and t — T, 

there results 

J a2Y2dt = aa> j sin * cos {~Y~ + ' dt 

aa!• TV . / 27tt \~i T 
= rr + v]„=°- 

In the same way the integral of §2X%dt vanishes. Thus, 
on the whole, during a complete period, no energy passes from 

medium 1 to medium 2. Hence the reflected light contains 
the entire energy of the incident light. 

That no energy passes through the ^-plane appears 

plausible from (62). For this equation represents waves which 

are propagated along the ^r-axis. But from equation (24) on 
page 272 th'ere is an actual flow of energy into medium 2 when 
the direction of flow (i.e. the normal 11) is parallel to the 

^•-axis. There is then a passage of energy into medium 2 at 
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one end of the incident wave, i.e. when .r is negative, but this 

energy is carried back again into medium i by the waves of 

medium 2 at the other end of the wave, i.e. when ;r is positive. 
These waves of variable amplitude possess still another 

peculiarity: they are not transverse zvaves. For it follows 
from (62) that they are propagated along the .r-axis; hence if 

they were transverse, X2 would of necessity be equal to zero. 
But this is not the case. This is no contradiction of the 

Fresnel-Arago experiments given on page 247 which were 

used as proof of the transverse nature of light; for those experi¬ 

ments relate to waves of constant amplitude. Quincke’s inves¬ 

tigation, showing that these waves of variable amplitude may 
be transformed into waves of constant amplitude when the 

thickness of medium 2 is small, i.e. when it is of the order of 

magnitude of the wave length of light, may be looked upon as 

proof that, in the case of total reflection, the light vector in 
the second medium is not zero. As a matter of fact, if medium 
2 is a very thin film between two portions of medium 1, no 

total reflection takes place, for, in the limit, the thickness of 

this film is zero, so that the incident light must pass on undis¬ 
turbed, since the homogeneity of the medium is not disturbed. 

As soon as the medium 2 becomes so thin as to appear trans¬ 
parent, then it is evident that, even at angles larger than the 
critical angle, the reflected light must lose something of its 

intensity. All the characteristics of this case can be theoreti¬ 
cally deduced by simply applying upon both sides of film 2 the 

universally applicable boundary conditions (21) on page 271.* 

10. Application of Total Reflection to the Determination 

of Index of Refraction.—When the incident beam lies in the 
more strongly refracting medium, if the angle of incidence be 
gradually increased, the occurrence of total reflection is made 
evident by a sudden increase in the intensity of the reflected 

light, and the complete disappearance of the refracted light. 
But it is to be remarked that the curves connecting the inten- 

* Cf. Winkelmann’s Handbuch, Optik, p. 780. 



sities of the reflected and refracted light with the angle of 

incidence 0 have no discontinuity at the point at which 0 
reaches the critical angle. Nevertheless these curves vary so 

rapidly with 0 in this neighborhood that there is an apparent 

discontinuity which makes it possible to determine accurately 
the critical angle 0 and hence the index of refraction.* Thus, 

for instance, for glass of index n = 1.51 the following relations 

exist between the intensity R* of the reflected light and the 

angle of incidence 0 (E\ is set equal to 1, C is the angle in 

minutes of arc by which 0 is smaller than the critical angle): 

Cl o' 2' 4' 8' 15' 30' 

0.74 0.64 0.53 0.43 0.25. 

11. The Intensity of Light in Newton's Rings.—The 
intensities of the reflected and transmitted light will be calcu¬ 

lated for the case of a plate of dielectric constant e2 and thick¬ 

ness d surrounded by a medium of dielectric constant ev Let 

the first surface of the plate upon which the light falls be the 

47-plane, the second surface the plane z — d. 

For the sake of simplicity the incidence will be assumed 
to be normal and the incident light to satisfy the equations 

Xe =0, Ye= £-ei27t/T(t - */*i), Zt = o. . (64) 

Setting Xe — o places no limitation upon the generality of 

the conclusions, since, at perpendicular incidence, all results 
which hold for the 7-component of the light vector hold with¬ 

out change for the ^'-component also. 

According to equations (14) on page 279, if (64) represents 

the electric force, the incident magnetic force is represented 

by 

at=z — E 2lt/T(* - */r\ = 0, ye = o. . (65) 

* For the construction of total refractometers and reflectometers for this pur¬ 

pose, cf. Winkelmann’s Handbuch, Optik, p. 312. 
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By equations (15) and (17) on pages 280 and 281, the 

reflected electric and magnetic forces in medium 1 are repre¬ 

sented by 

*=o, Yt = R,<«/r(« + */r1)> ^=o, ) (6g) 

ar = R Ve1ei2*/T(i + */y'\ fir = O, = O; ) 

Now repeated reflections and refractions take place at the 

surfaces of the plate (cf. above, page 137); but it is not neces¬ 

sary to follow out each one of these separately, since their 

total effect can be easily brought into the calculation.* This 
effect consists in the propagation of waves within the plate 

along both the positive and the negative directions of the 

^-axis. For the former the following equations hold: 

X' = o, Y' — D'ei27C/T(t ~ Z' = o; 

a'=-I)fVrfi2*/Tb-g/v*\ j3' = o, = o; 

while for the latter 

X" = o, = + Z" = o; ) 

a" = D"V7ji™/Ti*‘+z/v>), P" = o, r" = 0. ) 
Let the total effect of all the waves which have passed 

through the plate be 

X„ = o, = zd = o, ) 

V7/%*/T(‘ ~ 'A), f)d = 0, yd= o. ) 
It is now necessary to apply at both sides of the plate 

— 0, z=d) the boundary conditions (21) on page 271, 

which here take the form 

yr = F' + Y", ett-\-ar = iorz — O, . (70) 

Y'+Y"=Yd, a>-\-a" = ad (or z = d. . (71) 

The conditions (70) give 

£+R = £' + £", {E-'R.)V71=(iy-D")V7t, . (70') 

* Equations (66) are to represent the total effect of all the separate waves which 
are propagated in medium I along the negative s-axis. 
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and the conditions (71) 

D'e - # + D"e + # = De~ % } 

{D'e -# - D"e + *) YT2 = De~ * Y*lt\ 

in which p and q are abbreviations for 

2 -it d d 2 it d d 
t--T—Vr = 2n-, q - —■ F] - 2*A]. • 

From (71') follows at once 

(D'eD"e + #) Y^ = (D'e-#- D"e + #) Y^, 

from which is deduced 

(71') 

(72) 

D'e ~'«( t/e2 - i/e,) = Z>"> + '>( Ve2 + Vs,). . . (73) 

From (70'), 

E + R Z?' -f D" 4/7, 

E -R~ D' - D,r YX 

R ^ U{ V'e, - VTj + D"( V6, + VeJ 

E D'( Yex + Ye2) + D"( Yex - Ye/ 

» In consideration of (73) this last may be written 

-= 0? + — g ~ #)(ex — 63) 

E e+#(V6x+ Ye2f — e~#( Yel - Ye/ 

_z sin p-(el — e2) 

i sin p• (e, + e2) + 2 cos p 

In order to obtain the intensity Jr of the reflected light, 
this equation must be multiplied by the conjugate complex 

equation (cf. page 297). Thus, when Je denotes the intensity 
of the incident light, there results 

T r Sina/(6I~ e!? r 8inV(i - «*)» , . 
Jr Jesm2p(el— e2f + 4^ Je sin2/(1 — zza)* -f 4«2’ 

provided e2 : = n%, so that n is the index of the plate 2 with 
respect to medium 1. 
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From (70') and (71') it is easy to deduce the equation 

De-** __ ___ 4 

E e^{Vex -f- Ve2f — e ~ '?( Vex — Ve2)2 

= ___ 
i sin p(ex -j- e2) -j- 2 V exe2-cos p 

So that the intensity Jd of the transmitted light is 

4e,e, 
(75) 

(76) 

'sin2/(e1 - <)2 + 4e,S' 

Hence the relation holds 

J* + Jr=J.> • • • • 

as was to be expected, since the plate absorbs no light 

According to (74) the reflected light vanishes completely 

when / = o, 7t, 27r, etc., i.e. when the thickness of the plate 

d— o, |A2, A2, §A2, etc. This is in agreement with the results 

deduced from equation (17) on page 139. A maximum of 
/ j __ 2 

intensity occurs when sin p— 1. Then Jr— j\^ | J • 

[In the case of normal reflection at one surface only, equation 

(26) on page 284 gives Z = /*(~q~) -J 

If media 1 and 2 are air and glass, n — 1.5. In the case 

of Newton’s rings these media are glass and air, so that 

n — 1 : 1.5. In both cases equation (74) becomes 

sin2 /• 1.56 
Jr = JeZr. sin2/ -1.56 -f- 9' 

Hence, for an approximation, the term sin2/(i — ra2)3 in the 

denominator of (74) may be neglected in comparison with 4712, 

so that at a point in the Newton ring apparatus at which the 

thickness of the air film is d, 

1 — 7Z2\3 
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A denotes the wave length in air. If the incident light is 

white, and if Jk denotes the intensity in the incident beam of 

light of wave length A, then the intensity of the reflected light 

is, provided dispersion or the dependence of n upon A be 

neglected, 

/t _ 

Jr^ \~~2ir) ^ Sln2 27i;d/k' ' ' * 

The colors of thin plates are then a mixture composed of 

pure colors in a manner easily evident from (78). 

12. Non-Homogeneous Media: Curved iRays.—The opti¬ 

cal properties of a non-homogeneous medium, in which the 

dielectric constant e is a function of the coordinates^,/, z, will 

be briefly considered. The most logical way of doing this 

would be to • integrate the differential equations (18) on page 

269; for these hold for non-homogeneous media also. To do 

this e must be given as a function of x, /, and z. This method 

would give both the paths of the rays and the intensities of the 

reflections necessarily taking place inside of a non-homogene¬ 

ous medium. But even with the simplest possible assumption 

for e this method is complicated and has never yet been carried 

out. Investigation has been limited to the determination of 

the form of the rays from Snell’s law or Huygens’ principle— 

a process which succeeds at once if the medium be conceived 

to be composed of thin homogeneous layers having different 

indices. When the index varies continuously, the ray must of 

course be curved. Heath* has deduced for its radius of curva¬ 

ture p at a point P the equation 

I _ d log 11 

p dv ’ (79) 

in which y denotes the direction of most rapid change (decreas¬ 

ing) of the index n. 

This equation explains the phenomenon of mirage, which 

is observed when the distribution of the density of the air over 

* Heath, Geometrical Optics. Cambridge, 1897. 
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the earth’s surface is abnormal, as is the case over heated 

deserts. At a certain height above the earth the index n of 

the air is then a maximum. But in this case, by (79), p = 00 , 

i.e. at this height the ray has a point of inflection. Hence two 

different rays can come from an object to the eye of an ob¬ 

server, who then sees two images of the object, one erect, the 

other inverted.* 

An interesting application of the theory of curved rays has 

been made by A. Schmidt.t He explains the appearance of 

the sun by showing that a luminous sphere of gas of the dimen¬ 

sions of the sun, whose density increases continuously from 

without towards the interior, would have sharp limits, as the 

sun appears to have. For a ray of light which travels towards 

such a sphere of gas so as to make an angle less than a certain 

angle 0 with the line drawn from the observer to the centre of 

the sphere is deflected toward the centre of the sphere and 

passes many times around that centre. It thus attains depths 

from which a continuous spectrum is emitted, for an incan¬ 

descent gas emits such a spectrum when the pressure is suffi¬ 

cient. But a ray which makes an angle greater than 0 with 

a line drawn to the centre of the sphere must again leave the 

sphere without having traversed intensely luminous layers. 

Although there is no discontinuity in the sun’s density yet it 

appears as a sharply bounded disc which subtends a visual 

angle 20. 

For the experimental presentation of curved rays cf. 

J. Macd de Lepinay and A. Perot (Ann. d. chim. et d. phys. 

(6) 27, page 94, 1892); also 0. Wiener (Wied. Ann.49, page 

105, 1893). The latter has made use of the curved rays in 

investigations upon diffusion and upon the conduction of heat. 

* A more complete discussion of these interesting phenomena -with the refer¬ 

ences is given in Winkelmann’s Handb., Optik, pp. 344-384. 

| A. Schmidt, Die Strahlenbrechung auf der Sonne. Stuttgart, 1891. 



CHAPTER III 

OPTICAL PROPERTIES OF TRANSPARENT CRYSTALS 

i. Differential Equations and Boundary Conditions.—A 

crystal differs from an isotropic substance in that its properties 

are different in different directions. Now in the electromag-- 

netic theory the specific properties of a substance depend solely 

upon its dielectric constant, provided the standpoint taken on 

page 269, that the permeability of all substances is equal to 

unity, be maintained. 

Now an inspection of the deduction of the differential 

equations for an isotropic body as given upon pages 269 sq. 

shows that equations (17) contain only the specific properties 

of the body, i.e. its dielectric constants. But equations (7) 

and (11) are also applicable to crystals, as has been already 

remarked. Plence only equations (17) need to be extended, 

since in a crystal the dielectric constant depends upon the 

direction of the electric lines of force. The most general 

equations for the extension of (17) are 

■ bX 
+ ei2 

dV 
+ 

II 

bt 613 bt ’ 

bx 
+ e22 

dr 
+ 4*fy = 621 c)t dt 623 bt ’ 

bX 
+ e32 

dV 
4- 

3Z 
4V* = 

631 bt 633 ^~bt' 

since the components of the current must always remain linear 

r . bXdYbZ ^ 
functions ot —, —. Equations (1) assert that in general 

in a crystal the direction of a line of current flow does not 

308 
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coincide with the direction of a line of force, since if, for 

example, Y and Z vanish while X remains finite,/ and jz do 

not vanish. 

Equation (23) on page 272 for the flow of energy may be 

deduced by multiplying the general equations (9) and (11), 

namely, 

4?r. dy d/3 45 _ dY _ 3Z 

c^x djy ds’ ‘ ' c s* ds ’ 

by Xdt, . . . adr, and integrating with respect to t. (dr repre¬ 

sents element of volume.) The result is 

-cf U*x+j,Y+j,zyt 

+ ^ + s‘Y)dr = t- J?/®** 
in which @ represents the energy in the volume element d t. 

This equation may also be applied to crystals, since the specific 

properties of the medium do not appear in it. Hence the 

change in the electromagnetic energy in unit volume with 

respect to the time is 

-|f- =jJ+J,Y+J^+ s„a + sy/3 + s,y. 

Since the last three of equations (17) on page 269 hold in 

this case also (when fit = 1) the last three terms of this equation 

are a differential coefficient with respect to the time, i.e. 

v* + V* + s*y = ^ + /?2 + r2)' 

Consequently j*X-\-jyYjJZ must also be a differential 

coefficient with respect to the time. In order that this may be 

possible in consideration of (1), the following conditions must 

be fulfilled: 

12 > 13 > e23 — 6® > 
6 = 6 e51 = e 

• (2) 
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and in this case the part (£x of the energy which depends upon 

the electric forces is 

«. = + hP + . . (3) 
+ 2e,AZX + 2enXV). f 

By means of a transformation of coordinates (£x may always 

be reduced to the canonical form 

«. = ^(vr, + ^K’ + ‘^.« 
When the coordinates have been thus chosen the factors 

vanish and equations (i) take the simplified form 

Js=5l^' , (5) 
Jx 4?r 'dt ’ 471 dt J 47t 'bt ^ J 

These coordinate axes are characterized by the fact that 

along their direction the electric current coincides with the 

direction of the electric force. These rectangular axes will be 

called axes of electric symmetry, since the crystal is symmetrical 

in its electrical properties with respect to them, or also with 

respect to the three coordinate planes which they define. 

ei> e2> e3 signify the dielectric constants corresponding to the 

three axes of symmetry. They will be called the principal 
dielectric constants. 

As was remarked above, the assumption will be made that 

the permeability of the crystal is the same in all directions. 

Although this is not rigorously true, as is evident from the 

tendency shown by a sphere of crystal when hung in a power¬ 

ful magnetic field to set itself in a particular direction, yet 

experiment justifies the assumption in the case of light vibra¬ 

tions.* 

Hence in the differential equations (18) on page 269, which 

apply to isotropic media, only such modifications are necessary 

* The theoretical reason for setting a = I in the case of the light vibrations will 
be given later, in Chapter VII. 
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as are due to'the fact that the dielectric constant has different 

values in different directions. The dielectric constant appears 

in only the first three of equations (18). These equations assert 
that the components of the current are proportional to the quan¬ 

tities etc. Since the components of the current in a 

crystal are given by equations (1) and (5), the general differ¬ 

ential equations (7) and (11) of the electromagnetic field on 
pages 265 and 267 become for a crystal, when its axes of 
electric symmetry have been chosen as coordinate axes, 

elZX_Zy ZP e2 _ ZP Za 

c Zt Zy Zz ’ c Zt Zz Zx’ c Zt Zx Zz’ ( ' 

c Zt ~ Zz Zy ’ c Zt ~~ Zx Zz’ c Zt ~ Zy Zx ' 

When referred to any arbitrary system of coordinates, 

equations (6) must be replaced by 

1 ( ZX ZY_ 

c V" Zt + 612 Zt 

.zz\ __zr__zp 
+ 613 Zt) ~ Zy Zz’ 

etc. (6') 

The conditions which must be fulfilled at the bounding sur¬ 
face between two crystals, or between a crystal and an isotropic 

medium, for example air, may be obtained from the considera¬ 

tions which were presented in § 8 of Chapter I, page 271. 

They demand that, in passing thro'ugh the boundary, the com¬ 

ponents of the electric and magnetic forces parallel to the 

boundary be continuous. 
2. Light-vectors and Light-rays.—In the discussion of 

isotropic media on page 283 it was shown that different 
interpretations of optical phenomena are obtained accord¬ 

ing as the light-vector is identified with the electric or with 
the magnetic force. Both courses accord with the results of 

experiment if the phenomena of stationary waves be left out 

of account. The case is similar in the optics of crystals, save 

that there is here a third possibility, namely, that of choosing 

the electric current as the light-vector. Its components are 
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then proportional to Cj—, e2^-, e*bT' Thus in the optics 

of crystals there are three possible theories which differ from 

one another both as regards the position of the light-vector 

with respect to the plane of polarization, and also as regards 

its position with respect to the wave normal in the case of 

plane waves. As to the latter difference it appears from page 

278 that the light-vector is perpendicular to the wave normal 

in the case of plane waves (i.e. plane waves are transverse'), if 

its components, which will here be represented by u, v, and w, 

satisfy the differential equation 

b>u bv bw 

bx~^~ by bz °‘ (8) 

Differentiation of equations (7) with respect to x, y, and z 

and addition of them gives, as above on page 275, 

- + 7W + 'bz) (9) 

i.e. the waves are transverse if the magnetic force is taken as 
the light-vector. 

If the same operation be performed upon the three equations 
(6), there results 

i.e. the waves are likewise transverse if the electric current be 
interpreted as the light-vector. 

But the waves are not transverse if the electric force is 
taken as the light-vector, since, in consequence of the last 
equation, because of the differences between e1, e2, and e3, 
the following inequality exists: 

3A bY bZ> 

dZ+& + dI<0- (") 

The plane of polarization is defined by the direction of the 
wave normal and the magnetic force, as was shown on page 
283 to be the case for isotropic media. 
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Thus the characteristics of the three possible theories of 
the optics of crystals are the following: 

1. The magnetic force is the light-vector. Plane waves are 
transverse; the light-vector lies in the plane of polarization. 
(Mechanical theory of F. Neumann, G. Kirchhoff, W. Voigt, 

and others.) 
2. The electric force is the light-vector. Plane waves are 

not strictly transverse; the light-vector is almost perpendicular 

to the plane of polarization. (Mechanical theory of Ketteler, 

Boussinesq, Lord Rayleigh, and others.) 
3. The electric current is the light-vector. Plane waves are 

transverse; the light-vector lies perpendicular to the plane of 

polarization. (Mechanical theory of Fresnel.) 
These differences in the theory cannot lead to observable 

differences in phenomena so long as the observations of the 

final light effect are made in an isotropic medium upon ad¬ 
vancing, not stationary, waves. No other kinds of observations 

are possible in the case of crystals. Hence nothing more can 
be done than to solve each particular problem rigorously, i.e. 

in consideration of its special boundary conditions. 

The system of differential equations and boundary condi¬ 
tions to be treated are then completely determined, and there 

results one definite value for the electric force in the outer 
isotropic medium no matter what is interpreted as the light- 

vector in the crystal. The results which can be tested by 

experiment are the same whether the magnetic force or the 
electric force is taken as the light-vector in the outer medium. 

For, according to the fundamental equations, the intensity of 
the advancing magnetic wave is always the same as the 
intensity of the advancing electric wave. 

The electromagnetic theory has then the advantage that it 
includes a number of analytically different theories and shows 
why they must lead to the same result. 

A ray of light was defined on page 273 as the path of the 

energy flow. According to the equation given on page 310 

for the electromagnetic energy in crystals, equation (23) on 
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page 272 for the flow of energy holds for crystals also. The 
direction cosines of the ray of light are then also in the crystal 
proportional to the quantities fx, fy> fz, defined in equation 

(25) on page 273. 

The ray of light is then perpendicular both to the electric 

and to the magnetic force. In general it does not coincide 

with the normal to a plane wave, since from the inequality (11) 

this normal is not perpendicular to the electric force. 

3. Fresnel’s Law for the Velocity of Light.—In order to 
find the velocity of light in crystals, it is necessary to deduce 

from equations (6) and (7) such differential equations as 

contain either the electric force alone or the magnetic force 
alone. The former are obtained by differentiating the three 

da dtf dy 
equations (6) with respect to t and substituting for 

or or ot 
which appear upon the right-hand side, their values taken 
from (7). Thus from the first of equations (6) 

d dd ~~ dy\ dy dx ) dz \ dx dz J ’ 

The right-hand side of this equation can be written in the 

more symmetrical form 

d2X 
a w - — AX 
d dd ~ 

d IdX dY dZ\ 

dx\ dx dy ' dz )' 

Similarly, from the two other equations of (6), 

c2 a*2 3/ V 3* ^ Zy ^ Zs h 

e,9Z 3 /ZX , ZY , 3Z 

d dd dy ^ dz ■ 

(12) 

. (12) 

From the discussion of the preceding paragraph it appears 

that only analytical differences result from differences in the 

choice of the light-vector. In order to bring the discussion 

into accord with Fresnel’s theory, the light-vector will be 

assumed to be proportional to the electric current. Let u, v, 
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w, be the components of the light-vector for plane waves, 

thus: 

«=.,jr=wa» c»s2*{t-v,'l' + y+^) 

v = ety = AH cos “(, - *? + t*) 

«' - ea/T = cos y.(/ - y j 

03) 

in which it is assumed that 

a)*8 + a?8 *h ~ w/8 + +• p% = i. . . (14) 

^ denotes then the amplitude of the light-vector, ^ its 

direction cosines with respect to the axes of electric symmetry, 

m, u, p the direction cosines of the wave normal, lr the 

velocity of light measured in the direction of the wave normal 

(the so-called velocity along the normal). On account of 

equation (to) the relation holds 

''Mm 9i« — o, . . . . (15) 

which signifies that the wave is transverse. 

Substitution of the values (13) in (12) gives (C is written 

for c above) 

SUi m (Mm 9b/ 
= eitn - M <•> •+ O' 

n _ N tt (Mm 9to 
e%V* FA *+* e?, ej’ 

$ ¥ _ P (W»i 9b/ m 

^ v*\ f, «?/"*■ ijm 

A multiplication of these equations by C'Hri and a substi¬ 

tution, for brevity, of 

C*: et = a», C8 : = t>\ O : «8 = * . (ift) 

«89Kw -1- min -|. a^p = c;\ . . . (try) 

* The letter c has two meanings in this l«>ok. In general c denotes the velocity 
of light in vacuo. In the section on optica of crystals C will l>c used to denote 

this velocity, aiul c will stand for C s 
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gives 

W(d-V*) = mG\ 9l(P-V*)=n&, ^(d- Vz)= p(P, (i 7) 

R = G,?^r»- v = GL?iv* (vo 
If these last three equations be multiplied by m, n, /, 

respectively, and added, the left-hand side reduces to zero, 
because of (15), so that, by dropping the factor <9*, there re¬ 

sults 

nd rP p% . 

dl - V2 ' H - V2 + (? — V2~ °' * ‘ 

This equation, which expresses the functional relationship 

between V2 and in, n, and p, is of the second degree in V2. 

Hence for every particular direction of the wave normal there 

are two different values for the velocity. Equation (iS) is 

called Fresnel’s law. 

When m — 1, 11 — p = o, the two velocities are V* — IP, 

V£ = d. Thus when the wave normal coincides with one of 

the axes of electric symmetry of the crystal, two of the quan¬ 
tities a, b, and c represent velocities. Hence a, b, c are called 
the principal velocities. 

The same law of velocity (18) results if either the electric 
or the magnetic force is taken as the light-vector. 

4. The Directions of the Vibrations.—Two waves travel¬ 
ling with different velocities correspond to every wave normal. 

The position in these waves of the characteristic quantity, for 
example the electric current, is perfectly definite and differ¬ 

ent in the two waves. Thus if the indices 1 and 2 refer to the 
two waves respectively, then, from (17'), the position of the 
light-vector is obtained from 

STC, : % : = 

: % : & = 

in n p 

di - V* : H - V? : d- Vff 

m n p 

a* - V22 : b* - V* : d - Vf 

• (i9) 
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Thus in the direction of a given wave normal but two plane- 

polarized waves are able to be propagated, and these waves 

are polarized at right angles to each other. Tor, from (19), 

up 
a»,ro3 + NX + ~ 0°) 

But now 

i/p 11P / 1 1 \ 

" vf~v}\&~v} “ A*V})' 
so that the left-hand side of (20) is proportional to 

1 j vP , nl , f 

VfCTv} l a* -V} + P» - V*~h ^ - If 
Fa />a | 

“ - v,/ “ '/;a ->7 ” / 7 y ’ 
Now since both T\ and Pl2 satisfy equation (18), this entire 

expression is equal to zero. Consequently the light-vectoi 

9)^, 9^, ^ is perpendicular to 9)^, 9f2, ^3- 
The velocity is a single-valued function of the direction of 

vibration. For, in consideration of (19), Fresnel’s law (18) 

may be written 

{cp - v2)+ (ip - yyji* -b f1 - = o, 

i.e., since 9J£3 + 9£a+^a = I, 

V2 = am2 -b PW + .(18') 
5. The Normal Surface.—In order to gain a conception 

of how the velocity varies with the direction of the wave 

normal, it is best to lay off from a given origin 0% in all possi 

ble directions of the wave normals, the two velocities as radii 

vectores. In this way a surface consisting of two sheets is 

obtained,—the so-called normal surface. In a plane of electric 

symmetry, for example the jje>planc, the two values of the 

velocity are, by (18), 

V2 = «2, V2 = IPf -b *V, • . . (2 1) 

i.e. the section of the wave surface by a plane of electric 
symmetry consists of a circle and an oval. If a > b > c, the 



3i 8 THEORY OF OPTICS 

sections of the wave surface by the planes of symmetry are 

shown in Fig. 85. In the ^-plane, for two directions of the 

wave normal, which are denoted by Ax and A2, the two roots 

Vx and V2 of necessity coincide, since the two sheets of the 
normal surface intersect. It can be shown that this occurs for 

x 

no other directions of the wave normal; for the quadratic equa¬ 

tion in V2 is, by (18), 

V* _ v2\ m2(b2 -f <?) + n\<? + a2) + pz(a2 + b2)} 

-j- m2b2<? -j~ n2da2 -J- p2a2b2 =0. . . . (22) 

If the following abbreviations be introduced: 

M = m2(b2 — c2), N — 1 z^c2 — a2), P = p2(a2 — b2), . (23) 

the solution of (22) is 

2 V2 = m\b2 -f <?) + n\d + a2) + p2(a2 + b2) | ^ ^ 

± fM2 + N2-\-P2 - 2MN- 2NP - 2MP. j ' ^ 
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Now since a> b > c, M and P are positive, N negative. 

Since the quantity under the radical may be put in the form 

(M + N - Pf - 4MN, 

it is made up of two positive terms. Hence when the two 
roots in Vz are equal, the two following conditions must be 
satisfied: 

M+N- P = o, MN= o. 

Now M cannot be zero, since in that case N = P, which is 

impossible, for N is negative and P positive. Consequently 

the expression under the radical vanishes only when 

N=o, M= P, 

i.e. when 

n = o, m\b% — A) = — bz), . . (25) 

or since in -j- nz P2 = !> when 

^ /^72 ^ ^ 
m=±\/7=7' K = °- (26) 

These equations determine the two directions of the wave 
normals for which the two velocities are the same. These 

directions are called the optic axes. The axes of electric 
symmetry and z which bisect the angles between the optic 

axes are called the median lines of the crystal. 

The value of the common velocity of the two waves when 

the wave normal coincides with an optic axis is Vx= V2 — b. 

This is evident from Fig. 85 as well as from equation (24) 

taken in connection with (26). Hence, from (19), the direction 
of vibration of these waves is indeterminate, since an indeter¬ 
minate expression, namely, n : B1 — V% — o : o, occurs in these 
equations. Hence along the optic axis any kind of light may 

be propagated, i.e. light polarized in any way, or even natural 
light. 

The velocity V can be calculated more conveniently by 

introducing the angles gx and g2 which the wave normal 
makes with the optic axes than by the use of (24). Let the 
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positive direction of one of the optic axes Ax be so taken that 

it makes acute angles with the positive directions of the x- and 

.s'-axes. The direction cosines of this axis are then, by (26), 

px — + 

Let the positive direction of the other optic axis A2 be so taken 

that it makes an acute angle with the £-axis but an obtuse 
angle with the ^r-axis. Its direction cosines are then 

A = + (26-) 

Hence the cosines of the angles gx and g2 between the 
wave normal and the positive directions of Ax and A2 are 

cos gx = 1 nmx -j- nnx -J- ppx, 

cos gx 
Ici1 — b% , jb2 — c2 

~“V 
IcP - b2 , [b2 - ^ <?7) 

In consequence of the relation n2 = 1 — I'yp — p2 it is easy to 
deduce the following: 

m\b2 + c2) 4- n\<? + a2) + p\a2 + b2) 

— cP -f c2 -j- (,a2 — c2) cos gx cos g2, (28) 

+ N* + P2 - 2MN — 2NP - 2MP 

— (eP — c2f sin2 gx sin2 g2. 

Hence, from (24), 

2 V2 = a2 4- ** 4- {a2 - c2) cos (gx - g2), } 

2 V* = a2 4- ^ 4- (cP - c2) cos {gx 4- g2). ) * * ^ 9' 
6. Geometrical Construction of the Wave Surface and of 

the Direction of Vibration.—Fresnel gives the following geo¬ 
metrical construction for finding, with the aid of a surface called 
an ovaloid, the velocity and the direction of vibration: Let 
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the direction cosines of the radius vector of the ovaloid be 

fy, $a, 03. The equation of the ovaloid is then 

ffl .... (30) 

a, />, and c being its principal axes. In order to obtain the 

velocity of propagation of a wave front, pass a plane through 

the centre of the ovaloid parallel to the wave front, and deter¬ 

mine the largest and the smallest radii vectores and p2 of 

the oval section thus obtained. These are equal to the veloci¬ 

ties of the two waves, and the directions of p, and pa are the 

directions of vibration in the waves, the directions p, and p3 

corresponding to the velocities pt and p3 respectively. 

In order to prove that this construction is correct, account 

must be taken of the fact that , $3, \^3 must also satisfy both 

of the conditions 

I ^ +'V-1->V.(31) 

O - .... (32) 

The last equation is an expression of the fact that the oval 

section is perpendicular to the wave normal. In order to 

determine those directions , \l)a, for which p has a maxi¬ 

mum or a minimum value, $ x, \Sa, f)3 may, in accordance 

with the rules of differential calculus, be regarded as indepen¬ 

dent variables provided equations (31) and (32) be multiplied 

by the indeterminate Lagrangian factors (t{ and <ra, and added 

to equation (30). By setting the separate differential coeffi¬ 

cients of p3 with respect to $lf ■&>, equal to zero, there 
results 

o = 2(«" -f- <T,)«t 4- mrr,, \ 

o = 2{63 4- 4- „<rt, l . . . . (33) 
o = 2(4 4- «■,)«, 4- par ) 

If these equations be multiplied by fl,, 9,, and W, respec- 

tively and added, then, in consideration of (31) and (32), 
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Hence, from (30), cq — — p2. If this value is substituted in 

(33), these three equations may be written in the form 

$1= 32> ^2= ^s= (34) 

If these equations be multiplied by m, n, and p respec¬ 

tively and added, then it follows from (32) that 

m% ! n2 t p2 

a2 - p2 b2 - p2 + c2 - P2 = °’ 

i.e. p actually satisfies the same equation as the velocity V 

[cf. equation (18), page 316]. 
From (34) it follows that dx, $2, $3 stand in the same 

ratio to one another as 9?, and ^ in (19), i.e. the direction 

of the light-vector is that of the maximum or minimum radius 

vector of the oval section. 
Since, by § 5, the direction of vibration is indeterminate in 

the case in which the wave normal coincides with one of the 

optic axes, the oval section has in this case no maximum or 
minimum radius vector, i.e. the intersections with the ovaloid 

of planes which are perpendicular to the optic axes are circles. 

The radii of these two circles are the same and equal to b. 

Any arbitrary oval section of a plane wave whose normal is N 

cuts the two circular sections of the ovaloid in two radii 
vectores rx and r2 which have the same length b. These radii 

rx and r2 are perpendicular to the planes which are defined by 

the wave normal N and the one or the other of the optic axes 
Ax and A2\ since, e.g., rx is perpendicular to N as well as 
to Av Hence these planes (NAX) or (HA2) also cut the oval 
section of the ovaloid by the plane wave in two equal radii rx 

and r2, since rx is perpendicular to rx, and r2 to r2. Also, 
since rx — r2, it follows, from the symmetry of the oval section, 
that if = r2, and that the principal axes px and p2 of this sec¬ 

tion bisect the angles between rx and r2, rx and r2 . The 

directions of vibration of the light-vectors (which coincide with 
px and p2) lie in the two planes which bisect the angles formed 

by the planes (NA J and (NA2). Thus the directions of the 



PROPERTIES OF TRANSPARENT CRYSTALS 323 

vibrations are determined, since they are also perpendicular to 

the wave normals N. The direction of vibration which corre¬ 

sponds to V2 [defined by (29)] lies in the plane which bisects 
the angle (Alf N, A2), in which Al and A2 denote the positive 

directions of the optic axes defined by (26'); the direction of 
vibration corresponding to V1 is perpendicular to this plane, 

i.e. in the plane which bisects the angle (Alf AT, — A2). 

7. Uniaxial Crystals.—When two of the principal veloci¬ 
ties a, b, c are equal, for example when a = b, the equations 

become much simpler. From (26) on page 319 it follows that 

both optic axes coincide with the .s'-axis. Hence these crystals 
are called uniaxial. From (29) it follows, since gx—g2, that 

Vx2 = a2, V2Z = a* cos2 g -f- A sin2^-, . . (35) 

in which g denotes the angle included between the wave 

normal and the optic axis. One wave has then a constant 
velocity; it is called the ordinary wave. The direction of 
vibration of the extraordinary wave lies, according to the con¬ 

struction of the preceding page, in the principal plane of the 

crystal, i.e. in the plane defined by the principal axis and the 
normal to the wave. The direction of vibration of the ordinary 

wave is therefore perpendicular to the principal plane of the 
wave. Since the principal plane of the wave was defined above 
(page 244) as the plane of polarization of the ordinary wave, 
the direction of vibration is perpendicular to the plane of polar¬ 
ization, as is the case from Fresnel’s standpoint for isotropic 
media. When the angle g which the wave normal makes with 
the optic axis varies, N remaining always in the same principal 
section, the direction of vibration of the ordinary wave remains 
fixed, while that of the extraordinary wave changes. Hence, 
as was mentioned on page 252, § 7, Fresnel’s standpoint has 
the advantage of simplicity in that the direction of vibration is 
alone determinative of the characteristics of the wave. If this 
is unchanged, the velocity of the wave is unchanged even 

though the direction of the wave normal varies. 
Uniaxial crystals belong to those crystallographic systems 
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which have one principal axis and perpendicular to it two or 
three secondary axes, i.e. to the tetragonal or hexagonal 

systems. The optic axis coincides with the principal crystal¬ 

lographic axis. The crystals of the regular system do not 

differ optically from isotropic substances, since from their 

crystallographic symmetry a = b — c. 

Rhombic, monoclinic, and triclinic crystals can be optically 

biaxial. In the first the axes of crystallographic symmetry 

coincide necessarily with the axes of electric symmetry, since 

in all its physical properties a crystal has at least that sym¬ 

metry which is peculiar to its crystalline form. In monoclinic 

crystals the crystalline form determines the position of but one 

of the axes of electric symmetry, since this latter is perpendic¬ 

ular to the one plane of crystallographic symmetry. In 
triclinic crystals the axes of electric symmetry have no fixed 

relation to the crystalline form. 
In the case of uniaxial crystals (a — b) the ovaloid becomes, 

according to (30), the surface of revolution 

p* = a* + {<* - «*)«,*.(36) 

According as this surface is flattened or elongated in the direc¬ 

tion of the axis, the crystal is said to be positively or negatively 

uniaxial. Thus in the former a > c, in the latter a < c. 

According to (35), in positive crystals the ordinary wave 

travels faster, i.e. is less refracted, while in negative crystals 

the ordinary wave is more strongly refracted than the extraor¬ 
dinary. Quartz is positively, calc-spar negatively, uniaxial. 

8. Determination of the Direction of the Ray from the 
Direction of the Wave Normal.—Let the direction cosines of 

the ray be m, n, t>. From the considerations presented on 
page 313 and equation (25) on page 273, 

m : tt : p = y F - fiZ : aZ — yX : flX — aY, . (37) 

But from equations (13) and (16) on page 315, 

.(38) 
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Also, from equations (7), page 311, and (13), it is easy to 
deduce 

a : fi :y = 6'tpVfl — : chn^|S — #2/2ft : #2?z2ft — #%;2£. (39) 

Substitution of the values (38) and (39) in (37) gives 

in : n : p = - 7/z(«42ft2 + W + ^2) 

+ 2ft#2(#2?/z2ft -j~ b2rP$i -f- c2p^) (40) 

The terms denoted thus . . . can be obtained from the 
written terms by a cyclical interchange of letters. 

If now the abbreviation (16') on page 315 be introduced, 
i.e. if 

ahtiSk + bbiSSl + c*p% = G2, ... (41) 

it follows from (17) that 

cm = 2ft V2 + mG2, b2<$l = 9lV*-\- nG2, = ^V2-{- pG2. 

If these three equations be squared and added, then, since 
(cf. page 315) 

2ft2 + $ft2 + = w8 + rfi + p2 = 1, 
mm H- Sft« + $p = O, 

it follows that 

aim.2 + dm2 + c4^2 = V4 + G4. . . . (42) 

Squaring and adding equations (17') gives 

If now the value of 2ft#2 obtained from (17') be introduced, 
namely, 

then, in consideration of (41) and (42), (40) becomes 

m : it : p = — m{V4 + G4) + mG4^ ^ : . . . : 
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or 

m : n : p = mf* + yfrf : ’{V'‘ + WZT&j 

•■*{?*+vrr?)- ■ (44> 
This equation gives the direction of the ray in terms of the 

direction of the wave normal, for V‘l is expressed in terms of 

m, n, and p in Fresnel’s law (18), and G2 [cf. (43)] in terms 

of m, n, p, and F2. 
In order to determine the absolute values of m, it, not 

their ratios merely, it is possible to write 

m = + -yr~p}, n = naf + 

1 f'i \ (45) 

in which a is a factor of proportionality which can be deter¬ 

mined by squaring and adding these three equations. This 

gives, in consideration of (18) and (43), 

1 = cr2(F‘ -f- G'1).(46) 

9. The Ray Surface.—If a wave front has travelled parallel 
to itself in unit time a distance F, then F is called the velocity 

along the normal. The ray is oblique to the normal, making 

with it an angle which is given by 

cos C = litm + 11 w + pp.(47) 

The ray has then in unit time travelled a distance 93 such 
that 

93 cos C = V.(48) 

93 is called the velocity of the ray: it is larger than the 
velocity along the normal. 

If the three equations (45) be multiplied by in, n, p, respec¬ 

tively, and added, it follows that cos £ = crF2, or, in con¬ 
sideration of (48), 

<t — 1 : F93, (49) 
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Hence, from (46), 

G4 = F2232 — V4, ..... (50) 

or, in consideration of (48), 

G2 = V2 tan C.(5i) 

If the value of G4 from (50) be substituted in (45), then, in 

consideration of (49), there results, after a simple transforma¬ 

tion, 

mS3 mV n S3 _ nV pf8 _ pV 

W-b2-V2-b2' S32-r” V2-c* 

If these three equations be multiplied by m<32, nb2, pc2, 

respectively, and added, then, in consideration of (17'), 

( m2a2 ( n2b2 , p*c2 n 
;\S3W + W^2 + ■ ^{amrn 4- mn + c2<$p). 

But the light-ray is perpendicular to the electric force. 
Hence the right-hand side of the last equation vanishes, since 

the components of the electric force satisfy (38). Hence 

m2a2 , n2b2 , p2c2 / N 
S32 _ a* + $2 _ b2+ S32 - c2 ~ °’ ' • 

which may also be written in the form 

m' .+ "8 +_g- 
1 1 1 1 1 1 1 1 

J2~ W 7~ W 

— o. • (530 

The addition to (53} of m2 -J— n2 -j— p2 = 1 gives 

m2332 n2S32 p2332 _ 
S32 — <P S32 — b2 S32 — <? ~ I’ ’ ‘ (53 ) 

This equation expresses the velocity S3 of the ray as a function 

of the direction of the ray. If in every direction m, n, the 
corresponding S3 be laid off from a fixed point, the so-called 
ray surface is obtained. This surface, like the normal surface, 
consists of two sheets. These two surfaces are very similar to 
each other, since equation (53') of the former is obtained from 
(18) of the latter by substituting for all lengths which appear 
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in (18) their reciprocal values. Each of the planes of symmetry 

intersects the ray surface in a circle and an ellipse. 
Hence, in order to apply the geometrical construction given 

in § 6 to this case, it is necessary to start from the surface 

[cf. (30)] 

1- 5l _l. $£ j_ 
A4 ' b* ' ^ ’ 

i.e. from an ellipsoid whose axes are a, b, c. The velocities 

95 of the ray in a direction Tit, It, J) are given by the principal 
axes p1 and p2 of that ellipse which is cut from the ellipsoid by 

a plane perpendicular to the ray. 
In this case also there must be two directions, <3fl and , for 

which the two roots 932 of the quadratic equation (53') are the 

same. These directions are obtained from the equations for 

the optic axes, namely, (26') and (26"), by substituting in them 

for all lengths the reciprocal values. Thus 

These two directions are called the ray axes. 

The ray surface can be looked upon as that surface at which 

the light disturbance originating in a point P has arrived at the 

end of unit time. For this reason it is commonly called the 

wave surface. 

If, in accordance with Huygens’ principle, the separate 
points P of a wave front are looked upon as centres of disturb¬ 

ance and if the wave surfaces are constructed about these points, 

the envelope of these surfaces represents the wave front at the 
end of unit time (cf. page 159). According to this construe- 



PROPERTIES OF TRANSPARENT CRYSTALS 329 

tion the wave front corresponding to a ray PS is a plane tange7it 

to the wave surface at the point S. 

This result can also be deduced from the equations. If 

the rectangular coordinates of a point *S of the wave surface 

are denoted by x, y, and z, then m2} = x, etc., and 232 = 

x2 -J-y2 z2, and, from (5 3"), 

- y2 - z2 _ , % 
2F - 2$2 - b2^~ 2F _ ^ ~ 1 - °- • (55) 

If this equation be written in the general form Fix, y, z) = 0, 

the direction cosines of the normal to the tangent plane at the 

, dP dP dP TT 
point x, y, z are proportional to —, —, —. Hence it is 

necessary to prove that 

VP dP . dP 

dx dy ' dz 

Now, from (55), 

dP 

dx’ dy’ dz' 

y4 

(56) 

(&2 - a2)2 (2$2 - frf (252 - Ay)- 

From (52), x \W — a = inV: V'2 — a2, etc. Hence, in con¬ 
sideration of (43) and (50), 

dP ( 1 V2\ 2x V2a2-V2 

dx “ 2 \2F - a2 Gi I ~ G4 *2}2 — a2’ 

i.e., in consideration of (52), 

dP __ 

dx 

Vs 

1 G4' (57) 

From this equation —, — may be written out by a simple 

interchange of letters. Hence equation (56) immediately 
results, i.e. the construction found from Huygens’ principle is 

verified. 
From these considerations it is evident that the direction 

m, tt, p of the ray can be determined from the direction m, n, 
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p of the normal in the following way: Suppose a light disturb¬ 

ance to start at any instant from a point P; the ray surface is 

then tangent to all the wave fronts, i.e. it is the envelope of 
the wave fronts. Consider three elementary wave fronts the 

directions of whose normals are infinitely near to the direction 

of the line PN. Their intersection must then be infinitely near 
to the end point 5 of the ray PS which corresponds to the 

normal PN, since 5 is common to all three waves. The cor¬ 
rectness of this construction will now be analytically proved. 
The equation of a wave front is 

mx ny Ar pz = V.(58) 

If the point a", y, z is to lie upon an infinitely near wave front, 
the equation obtained by differentiating (58) with respect to 
in, n, and p will also hold. But these quantities are not inde¬ 

pendent of one another, since m2 -f- iP -f- /2 = 1. According 
to the theorem of Lagrange (cf. above, page 321) there can 
be added to (58) the identity 

f{mz + /z2 + f) = /, 

so that there results 

mx -f ny + pz + ?z2 + p*) = V+f. . (59) 

/is an unknown constant. Since this constant has been intro¬ 
duced into the equation, in, 11, and p in (59) may be looked 
upon as independent variables, and the partial differential 

coefficients of (59) with respect to in, n, and p may be formed, 
namely, 

dV dV dV 

*+2/OT=to- y+2fa = ^r> (6°) 

But, from (18) and (43), 

dV _ m G4 

dm'~V2-a*V. 

ZV ZV 
Similar expressions hold for —, If the three equations 

(60) be multiplied by in, n, and p, respectively, and added, it 
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is evident from (18) and (61) that the right-hand side of the 
resulting equation reduces to zero, while the left-hand side is, 

by (58)> V + 2/, so that the constant if is determined as 
2/= — V. Hence, in consideration of (61), the first of equa¬ 
tions (60) becomes 

and similarly 

? = *(r+ 

Hence the radius vector drawn from the origin to the point of 
intersection „r, y, z of the three infinitely near wave fronts 
coincides in fact with the direction of the ray as calculated on 

page 326, since x \ y : z = m : it : Further, the velocity of 

the ray Yx2-j-y2-j-z3 is found to have the same value as that 
given above in (45) and (49). 

For other geometrical relations between the ray, the wave 
normal, the optic axes, and the ray axes, cf. Winkelmann’s 
Handbuch der Physik, Optik, p. 699. 

10. Conical Refraction. — Corresponding to any given 
direction of a wave normal there are, in general, according 
to equation (44), two different rays, since for a given value 
of m, n, and p there are two different values of V2. But it 
may happen that these equations assume the indeterminate 
form o : 0. Thus this occurs when one of the quantities m, n, 
or p is equal to zero. If, for example, m = 0, then, from (21) 
on page 317, Vx2 = a2. In this case, by (43) and (44)*; 

G4 = (V* — cPf : *»*, 

G* V2 - cA 
m~mvf=r-a» = ’»•—^r-- • • • (fi2) 

The value of this expression, which is of the form o : o, is easily 
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determined, since, by Fresnel’s equation (18) on page 316, the 

expression w2 : V 2 — a2 has a finite, determinate value, namely, 

«2 _ »* , P 
V2 - a2 ~ b2 - V* ^ ** - V2' ’ ‘ • 

The right-hand side of this equation can never be zero, since 

for a > b> c and V2 = a2 both terms of the right-hand side 

are negative. Hence, by (62), m = o when m = o, i.e. the 

light-ray is in the j.s'-plane when the wave normal is in the 

_y^-plane. When p — o the conclusion is similar. But the 

case in which n — o requires special consideration. For then, 

when V — b, equations similar to (62) and (63) are obtained, 

namely, 

V2 - b2 n2 m2 , p2 

(04) it • 
V2 ~ b2 ' F3 + F - V2' 

The right-hand side of this equation which corresponds to the 

case V — b may become zero, namely, when 

m\c2 — b2) -f- p\a2 — b2) = o. 

Now this relation is actually fulfilled when the wave normal 

coincides with an optic axis [cf. (25), page 319]. In this case, 

by (64), it still retains the indeterminate form o : o, i.e. to this 

particular wave normal there correspond not two single deter¬ 

minate rays, but an infinite number of them, since it always 

remains indeterminate. The locus of the rays in this case can 

be most simply determined from the equation 

mm nn , pp 
2+ $2 __ ^2 + ~ °» • • (65) 

which is deduced from (52) by multiplying by m, n, and p, 

respectively, adding, and taking account of (18). If the wave 

normal coincides with an optic axis, then ?i = o, but n is not 

necessarily zero and $ is therefore in this case different from b. 

Hence 

mm t pp 

%2 - a2 + $8* - c2 - c 

Further, from (47) and (48), since V = b, 

SS(nwz -j- pp) = b. 

. . (66) 

• • (67) 
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Elimination of 3$2 from these two equations gives 

(rt\mc2 + ppdP){yxin + pP) — b2. . . . (68) 

If the coordinates of the end points of a ray are denoted by 

-r, y, z, so that m — x : Yx2 fi-y2 ~\~ z2, etc., it follows that 

(xmc2 zpcPfixm zp) = b\x2 -|-y2 -(- z2). . . (69) 

This equation of the second degree represents a cone whose 

vertex lies at the origin. Hence when the tvave normal coin¬ 

cides with the optic axis there are an infinite number of rays 

which lie tip on the cone defined by equation (dp). This cone 

intersects the wave front 

xm -|- zp — const.(70) 

in a circle, since when (70) is substituted in (69) the latter 

becomes 

(xmc2 -j- zpctr) • const. = b\x2 y2 -j- z2), 

which is the equation of a sphere. 

Hence from the discussion on page 328 it follows that the 

wave surface has two tangent planes which are perpendicular 

to the optic axis and tangent to the wave surface in a circle. 

The axis of the cone coincides with the optic axis; it is there¬ 

fore perpendicular to the plane of the circle. The aperture y 

of the cone is determined from (69) as 

tan x = 
Y (a2 — b'~)(b2 — c2) 

I2 1 . . (71) 

This phenomenon is known as internal conical refraction, for 

the following reason: If a ray of light is incident upon a crystal 

in such a direction that the refracted wave normal coincides 

with the optic axis of the crystal, then the light-rays within 

the crystal lie upon the surface of a cone. The rays which 

emerge from the plate lie therefore upon the surface of an 

elliptical cylinder whose axis is parallel to the incident light 

in case the plate of crystal is plane parallel.* Aragonite is 

* For the direction of the rays in the outer medium depends only upon the 

position of the wave front within the crystal, not upon the direction of the internal 

rays. The law of refraction will be more fully discussed in the next paragraph. 
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especially suited for observation of this phenomenon, since in it 

the angle of aperture of the cone is comparatively large 

s (^ = i° 52').* The arrangement 

of the experiment is shown in 

) Fig. 86. A parallel beam so is 

incident through a small opening 

S o upon one side of a plane-parallel 

plate of aragonite which is cut 

perpendicular to the line bisecting the acute angle between the 

optic axes. When the plate is turned into the proper position 

by rotating it about an axis perpendicular to the plane of the 

optic axes, an elliptical ring appears upon the screen 55. 

A microscope or a magnifying-glass focussed upon o may 

be used instead of a screen for observation. 

The equation representing the dependence of the direction 

of the wave normal upon the direction of the ray may be easily 

deduced from (52) taken in connection with (47) and (48). 

The result shows that in general for each particular value of 

m, tt, p there are two values of in, n, p. Only when tt = o 

and S$3 = b2, i.e. when the ray coincides with the ray axis,f 

does n become indeterminate, as can be shown by a method 

similar to that used above. Hence when the ray coincides with 

the ray axis, then at the point of exit of the ray the ray surface 

does not have merely two definite tangent planes, but a cone of 

tangent planes. The corresponding wave normals lie upon a 

cone of aperture if> such that 

tan . . . (72) 

This equation is obtained from (71) by substituting in it 

for all the lengths their reciprocal values. 

* Sulphur is still better, since its angle of aperture is 7°; but its preparation is 

much more difficult. The use of a sphere of sulphur for demonstrating conical 

refraction is described by Schrauf, Wied. Ann. 37, p. 127. 

f The ray axis is the axis of the cone of rays to which a single ray SO (Fig. 86) 

gives rise when SO has the direction which corresponds to internal conical 

refraction.—Tr. 

Fig. 86. 
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This phenomenon is called external conical refraction, for 

the reason that a ray which inside the crystal coincides with 

the ray axis becomes, upon emergence from the crystal, a cone 

of rays. For the rays after refraction into the outer medium 

have different directions corresponding to the different posi¬ 

tions of the wave front in the crystal (cf. note, page 333). 

Fig. 87 represents an arrangement for demonstrating 

experimentally external conical refraction. A beam of light 

is concentrated by a lens L upon a small opening o in front of 

an aragonite plate. A second screen with an opening o' is 

placed on the other side of the plate. If the line 00' coincides 

with the direction of a ray axis, a ring appears upon the 

screen 55. The diameter of this ring increases as the distance 

from o' to the screen increases. In this arrangement only 

those rays are effective which travel in the direction 00', the 

others are cut off by the second screen. The effective incident 

rays are parallel to the rays of the emergent cone. 

The phenomena of conical refraction were not observed 

until after Hamilton had proved theoretically that they must 

exist. 

11. Passage of Light through Plates and Prisms of 
Crystal.—The same analytical condition holds for the passage 

of light from air into a crystal as was shown on page 280 to 

hold for the refraction of light by an isotropic medium. If the 

incident wave is proportional to 

2 7t ( mx + ny 4- pz\ 

cos-7'~ v--)• 



336 THEORY OF OPTICS 

while the refracted wave is proportional to 

27C / 
COS 

and if the boundary surface is the plane 2 = 0, then the fact 

that boundary conditions exist requires, without reference to 

their form, the equations 

m in' n n' 

V = F7 ' V = W 

This is the common law of refraction, i.e. the refracted ray lies 

in the plane of incidence, and the relation between the angle of 

incidence 0 and the angle of refraction 0' is 

sin 0 : sin <p' = V : V, . . . . (73) 

in which V and V' are the velocities in air and in the crystal 

respectively. But in the case of crystals this relation does not 

in general give the direct construction of the refracted wave 

normal, since in general V depends upon the direction of this 

normal. 

But the application of Huygens’ principle, in accordance 

with the same fundamental laws which were stated on page 

161 for isotropic bodies, does give directly not only the rela¬ 

tion (73), but also the construction of both the refracted wave 

normal and the refracted ray. For let AXB (Fig. 88) be the 

intersection of an incident wave front with the plane of inci¬ 

dence (plane of the paper), and let the angle A1BA2 = and 

BA2 = V, and construct about Ax the ray surface SB within the 

crystal, this surface being the locus of the points to which the 

disturbance originating at Ax has been propagated in unit time. 

Draw through A2 a line perpendicular to the plane of incidence, 

and pass through it two planes A2TX and A2T2 tangent respec¬ 

tively to the two sheets of the ray surface. According to 

Huygens’ principle these tangent planes are the wave fronts of 

the refracted waves. The lines drawn from Ax to the two points 

of tangency Cx and C2 of the planes with the ray surface give 

in'x -}- n’y -}- p'A 
_ y 
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the directions of the refracted rays. In general these do not 

lie in the plane of incidence. 

Hence for perpendicular incidence the wave normal is not 

doubly refracted, but there are two different rays whose direc¬ 

tions may be determined by finding the points Cx and C2 in 

which the two sheets of the wave surface constructed about a 

point A of the bounding surface are tangent to two planes 

parallel to the bounding surface G. The directions of the rays 

are ACX and AC2 respectively. 

When the light passes from the crystal into air a similar 

construction is applicable. Hence in the passage of light 

through a plane-parallel plate of crystal there is never a 

double refraction of the wave normal, but only of the ray. In 

order to observe the phenomena of double refraction it is 

necessary to view a point on the remote side of the crystal. 

This point appears double, since its apparent position depends 

upon the paths of the rays.* But the introduction of a crystal¬ 

line plate between collimator and telescope produces no dis¬ 

placement of the image, since in this case the wave normal is 

determinative of the position of the image. In order to detect 

double refraction in this case, which occurs in all observations 

* The apparent position is displaced not only laterally but also vertically. Cf. 

Winkelmann’s Handbuch d. Pliysik, Optik, p. 705. 
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with the spectrometer, it is necessary to introduce a prism of 

the crystal. 

With the help of such a prism it is possible to find the prin¬ 

cipal indices of refraction, i.e. the quantities 

nx — V : a, n2 — V : b, ns = V : c. . . (74) 

If, for example, a prism of uniaxial crystal (a = b) be used 

whose edge is parallel to the optic axis, then the velocity V 

of the waves whose normals are perpendicular to the edge of 

the prism has the two constant values a and c. nx and ns can 

therefore be found by the method of minimum deviation exactly 

as in the case of prisms of isotropic substances. The different 

directions of polarization of the emergent rays make it possible 

to recognize at once which index corresponds to nx and which 

to *s. 

In the same way one of the principal indices of refraction 

of a prism of a biaxial crystal whose edge is parallel to one of 

the axes of optic symmetry may be found. In order to find 

the other two indices it is necessary to observe the deviation 

of a wave polarized parallel to the edge of the prism for at 

least two different angles of incidence. 

From the meaning which the electromagnetic theory gives 

to the principal velocities a, b, c, it is evident from equations 

(16) on page 315 and (74) that 

ei = ni> S = n2> e3 = *32, ... (75) 

at least if C, the velocity in vacuo, be identified with V, the 

velocity in air. The error involved in this assumption may be 

neglected in view of the uncertainty which attends measure¬ 

ment of the dielectric constant. 

The relation (75) cannot be rigorously fulfilled, if for no 

other reason, because the index depends upon the color, i.e. 

upon the period of the electric force, while the dielectric con¬ 

stant of a homogeneous dielectric is, at least within wide limits, 

independent of the period. It is, however, natural to test (75) 
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under the assumption that is the index of infinitely long 

waves, i.e. the A of the Cauchy dispersion equation 

n = A + §.(76) 
Relation (75) is approximately verified in the case of ortho¬ 

rhombic sulphur, whose dielectric constants have been deter¬ 

mined by Boltzmann.* Its indices were measured by Schrauf.t 

In the following table «2 denotes the index for yellow light and 

A the constant of (76): 

^2 = 3.80; A2 =3-591 ex = 3-81 

ni — 4-16; A, 2 = 3.89; ea=3-9 7 
»s2 = 5-02; A* = 4.60; £3 = 4-77 

Thus the dielectric constants have the same sequence as 

the principal indices of refraction when both are arranged in 

the order of their magnitudes, but are uniformly larger than 

the A’s. With some other crystals this difference is even 

greater. The departure from the requirements of the electro¬ 

magnetic theory is of the same kind as that shown by isotropic 

bodies (cf. page 277). Its explanation will be given in the 

treatment of the phenomena of dispersion. 

Thus the electromagnetic theory is analytically in complete 

agreement with the phenomena, but the exact values of the 

optical constants cannot be obtained from electrical measure¬ 

ments. These constants depend in a way which cannot be 

foreseen upon the color of the light. In fact not only the 

principal velocities a, b, c, but also, in the case of monoclinic 

and triclinic crystals, the positions of the axes of optic sym¬ 

metry depend upon the color. 

12. Total Reflection at the Surface of Crystalline Plates. 
—The construction given on page 336 for the refracted wave 

front becomes impossible when the straight line % which passes 

through A2 and is perpendicular to the plane of incidence inter- 

* Boltzmann, Wien. Ber. 70 (2), p. 342, 1874. Pogg. Ann. 153, p. 531, 1874. 

•j- Schrauf, Wien. Ber. 41, p. 805, i860. 
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sects one or both of the curves cut from the wave surface 2 by 

the bounding surface G. In this case there is no refracted 

wave front, but total reflection takes place. The limiting case, 

in which partial reflection becomes total, is reached for either 

one of the two refracted waves when the line (3 is tangent to 

that sheet of the ray surface 2 which corresponds to the wave 

in question, i.e. is tangent to the section of the wave surface 

by the bounding plane G. In this case, since the point of 

tangency T of © with 2 lies in the bounding plane G, the 

refracted ray is parallel to the boundary (cf. Fig. 89). This 

FrG. 89. 

wave then can transfer no energy into the crystal, since the 

ray of light represents the path of energy flow (cf. page 313), 

and hence no energy passes through a plane parallel to the 

ray. Thus it appears from this consideration also that in this 

limiting case the reflected wave must contain the entire energy 

of the incident wave, i.e. total reflection must occur. 

Hence if a plate of crystal be immersed in a more strongly 

refracting medium, and illuminated with diffuse homogeneous 

light, two curves which separate the regions of less intensity 

from those of greater appear in the field of the reflected light. 

If the observation is made, not upon the reflected light, but upon 

light which, entering the crystal at one side and then falling 

at grazing incidence upon the surface, passes out into a more 

strongly refractive medium, these limiting curves are much 

sharper since they separate brightness from complete darkness. 

From these curves the critical angles <pl and <p% may be 



Between the crystal and the sphere a liquid of greater index 

than the latter is introduced. K can be rotated along with the 

azimuth circle H about a vertical axis. The movable mirror 

5 makes it possible to illuminate the crystal plate either from 

below through K or from the side. The limiting curves of 



total reflection are observed through the telescope UGGU 

which turns with the vertical circle V: For convenience of 

observation, the telescope is so shaped that the rays, after three 

total reflections within it, always emerge horizontally. The 

objective of the telescope is so arranged that it compensates 

the refraction due to the spherical surface K of the rays reflected 

from the crystalline plate. It forms, therefore, sharp images 

of the curves. 

The method of total reflection is the simplest for the 

determination of the principal indices of refraction of a crys¬ 

talline plate. These indices are obtained at once from the 

maximum or minimum values of the angles of incidence which 

correspond to the two limiting curves. 

Thus if 0 denotes the angle of incidence corresponding to 

a limiting curve for any azimuth -d of the plane of incidence 

(cf. Figs. 88 and 89), then the line AXA2 — V: sin 0; for 

BA2 = V (the velocity in the surrounding medium), and 

AXA2 is the distance of the point Ax from a line which is tan¬ 

gent to the curve of intersection of the wave surface constructed 

about Ax with the bounding surface G. Maximum and mini¬ 

mum values of the limiting angles 0, i.e. of the line AXA2, 

coincide necessarily with maximum or minimum values of the 

length of the ray AXT (cf. Fig. 89), as can be easily shown by 

construction. In fact in this case AXA2 coincides with the ray 

AXT, since the tangents must be perpendicular to the radius 

vector AXT when this has a maximum or minimum value. 

The length AXT of the ray has now in every plane section of 

the wave surface the absolute maximum a and the absolute 

minimum c. For it appears from the equation of the wave 

surface (cf. page 327) that $ must always lie between a and c, 

since otherwise the three terms of equation (53) would have 

the same sign and their sum could not be zero. On the other 

hand it is also evident that in every plane section G of the 

wave surface $8 reaches the limiting values a and c, for, from 

Fig- 85, $ attains the value a at least in the line of intersection 

of G with the jj/^-plane; since in the jj^-plane one velocity has 
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the constant value 95 = ay while in the line of intersection of 

G with the -t^-plane 95 must attain the value c. In the inter¬ 

section of G with the .rs-plane 95 = b; but it is uncertain, as 

can be shown from the last of Figs. 85, whether b belongs to 

the minimum of the outer or the maximum of the inner limiting 

curve. This can be decided by investigating the maxima or 

minima of the angle of incidence corresponding to the limiting 

curves for two plates of different orientations.* Four such 

measurements can be made upon each plate, and three of these 

must be common to the two plates. These three correspond 

to the three principal velocities a, b, c. Their respective 

values may be determined from 

AVA,Z = V : sin </> — a, b, c, , (77) 

where </> denotes the maximum or minimum value of the angle 

of incidence for the limiting curve which corresponds to the 

given azimuth 0 of the plane of incidence. If the index of the 

medium (V) with respect to that of air (F0) be denoted by n, 

i.e. if V0 : V — n, then from (77) the principal indices of 

refraction of the crystal with respect to air are obtained from 

the equation, since V0 : a = nx, etc., 

nx, n2) 7/3 = n sin .(78) 

For uniaxial crystals [a — b) <J> = const, along one of the 

limiting curves. This angle determines the principal velocity a. 

For the other limiting curve the angle of incidence varies. 

If y denotes the angle which the optic axis makes with the 

bounding surface of the crystal, the ray velocity, when the 

plane of incidence passes through the optic axis, is 

~ dl sin54 y -f- A cosa y' ' 

If the plane of incidence is perpendicular to the optic axis, 

then 95a = A. For positive uniaxial crystals {a > r) (79) gives 

*If the polarization effects be also taken into account, one section of the 

crystal is enough. Cf, C. Viola, Wied. Buibl. iSqq, p. G41. 
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the maximum value of 95, i.e. it determines the minimum value 

of ({> along the limiting curve which arises from a total reflec¬ 

tion of the extraordinary ray. The maximum value of </> along 

this limiting curve determines, therefore, the value of <•; from 

the minimum value of (/> it is possible to calculate y, i.e. the 

inclination of the face of the crystal to the optic axis. In the 

case of negative uniaxial crystals (a < c) the minimum value of 

cp determines the principal velocity c. 

Likewise in the case of biaxial crystals the angle between 

the face and the axes of optic symmetry can be determined 

from observation of the limiting curves of total reflection. 

Nevertheless for the sake of greater accuracy it is advantageous 

to couple with this other methods, for example, the method 

which makes use of the interference phenomena in convergent 

polarized light (cf. below). 

Conical refraction gives rise to peculiar phenomena in the 

limiting curves of total reflection. These may be observed if 

the bounding surface G coincides with the plane of the optic 

axes. For more complete discussion cf. Kohlrausch, Wied. 

Ann., 6, p. 86, 1879; Licbisch, Physik. Kryst., p. 423; Mas- 

cart, Traitd d’Optique, vol. 2, p. 102, Paris, 1891. 

13. Partial Reflection at the Surface of a Crystalline 

Plate.—In order to calculate the changes in amplitude which 

take place in partial reflection from a plate of crystal it is only 

necessary to apply equation (6') and (7) on page 311 together 

with the boundary conditions there mentioned. 

But since the calculation is complicated (cf. Winkclmann’s 

Handbuch, Optik, p. 745) only the result will be here 

mentioned that there is an angle of complete polarization, 

i.e. an angle of incidence at which incident natural light is 

plane-polarized after reflection. But the plane of polarization 

does not in general coincide with the plane of incidence, as it 

does in the case of isotropic media. 

14. Interference Phenomena Produced by Crystalline 

Plates in Polarized Light when the Incidence is Normal.— 

Let plane-polarized monochromatic light pass normally through 
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a plate of crystal and then through a second polarizing 

arrangement. This case is realized when the crystalline plate 

is placed upon the stage of the Norrenberg polarizing apparatus 

described on page 246. The upper 

mirror can be conveniently replaced Ha 

by a Nicol prism, the analyzer. Let 

the plane of vibration of the electric 

force within the analyzer be A (Fig. / 

91), and that within the polarizer P. 

The incident polarized light, the _ jj- 

amplitude of which will be denoted 

by E, is resolved after entrance into Fig* 9I- 

the doubly refracting crystal into two waves of amplitude 

E cos <p and E sin 0 respectively, 0 being the angle which 

P makes with the directions Hx and H2 of the vibrations of 

the two waves Wx and W2 within the crystal. The decrease 

in amplitude by reflection is neglected. It is very nearly the 

same for both waves. These two waves after passing through 

the crystal are brought into the same plane of polarization, and 

hence after passing through the analyzer have the amplitudes 

E cos 0 cos (0 — x)} & sin 0 sin (0 — ^). Now a difference 

in phase 8 has been introduced between the two waves by their 

passage through the plate. This difference is 

in which d denotes the thickness of the crystalline plate, Vx, V2 

the respective velocities of the two waves within it, V the 

velocity of light in air, and A. the wave length in air of the light 

used. Hence, according to page 131, the intensity of the light 

emerging from the analyzer is 

J = it3{cos2 0 cos3(0 — l) + sin2 0 sin2 (0 — X) 

+ 2 sin 0 cos 0 sin (0 — Z) cos (0 — X) cos d}. 

If cos 8 be replaced by 1 — 2 sin2 the equation becomes 

J = jF2{cos3X — sin 20 sin 2(0 — x) sin2 ££}. (81) 
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The first term E2 cos2 x represents the intensity of the light 

which would have emerged from the analyzer in case the 

crystal had not been introduced. This intensity yo will be 

called the original intensity; thus 

J0 = E2 cos2 x.(82) 

Two cases will be considered in greater detail: 

i. Parallel Nicols: x = o. Then 

J\\ = Jll — sin2 2 0 sin2 ££)■ ... (83) 

If the crystal be rotated, the original intensity will be 

7t 37? 
attained in the four positions <p = o, 0 = - , 0 = nr, <p — —, 

i.e. whenever one of the planes of vibration within the crystal 

coincides with that of the Nicols. In the positions midway 

7C 
between the above, i.e. 0 = —, etc., 

4 

J = 70(i ~ sin2 £<*) = Jo cos2 i#> ■ • • (84) 

i.e. with the proper values of i.e. of the thickness of the 

crystal, complete darkness may result. 

2. Crossed Nicols: X = Here J0 = o and 

Jx = £2 sin2 20 sin2 .... (85) 

Thus, whatever its thickness, the plate appears dark when 

its planes of vibration coincide with those of the Nicols. If 

this is not the case, it is dark only when d = 2hn. In the 

7t 
positions 0 = —, etc., 

Jx = E2 sin2 .(86) 

Hence, unless it happens that d = 2hn, it is possible to find 

the direction of polarization or of vibration within the crystal 

by rotating it until the light is cut off. 

Hence a crystalline wedge between crossed Nicols is 

traversed by dark bands which run parallel to the edge of the 



PROPERTIES OF TRANSPARENT CRYSTALS 347 

wedge, unless it is in the position in which the light is wholly- 

cut off. These bands lie at those places at which the thickness 

of the wedge corresponds to the equation = ± 2hn. If the 

incident light is white, the bands must appear colored since S 

varies with the color. 

A plane-parallel plate of crystal between crossed Nicols 

must in general appear colored when the incident light is 

white. Not only does the amplitude E and the difference of 

phase $ depend upon the color, but also the angle <P, i.e. the 

position of the planes of vibration. However, this latter varia¬ 

tion can in general be neglected on account of the small 

amount of the difference in the retardations for different colors. 

When the Nicols are crossed it appears from (86) that in white 

light for 0 = ~ 

Jx = 2E2 sin2 id, 

in which IS is to be extended over the values corresponding 

to the different colors. Thus 

2E2 = white light.(87) 

Now from (80) its evident that the dependence of upon A 

is principally due to the appearance of A in the denominator. 

Hence if the approximately correct assumption be made that 

V 
V, ' 

■ — is independent of the color, then 
^2 

Jx — 2E'~ sin2 7t~) . (870 

in which 

Z) 
vj 

is approximately independent of A. It appears from a com¬ 

parison of (87') with (78) on page 306 that the plate of crys¬ 

tal shows approximately the same colors as those produced by the 

interference of the two waves reflected at the surfaces of a thin 

d' 
film of air of thickness —. (Newton’s ring colors.) But the 
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Newton interference colors of thin plates differ widely from 

those produced by the crystal when the difference in the dis¬ 

persion of the two waves within the crystal is large. Then d' 

is no longer independent of X. This is, for example, the case 

with the hyposulphate of strontium, apophyllite (from the Faroe 

Islands), brucite, and vesuvian. 

For a given angle <p the plate of crystal shows between 

parallel Nicols colors which are complementary to those which 

it shows between crossed Nicols. For from (83) and (85) the 

sum of the intensities in the two cases is always 2F?, which 

by (87) means white light. 

In the case of Newton’s interference colors there are certain 

values of d which give what are called sensitive tints which 

change rapidly for a slight change in 8- For example, the 

violet of the first order, which appears when 8 for the mean 

wave lengths has about the value tc, is such a sensitive tint. 

For a slight increase in 8 the color passes into blue, for a 

slight decrease into red. A plate of crystal ^ which shows a 

sensitive tint—for example, a plate of quartz of suitable thick¬ 

ness cut parallel to the axis—may be used to detect traces of 

double refraction in another plate $}T, since the latter produces 

at once a change in the color of when placed upon it and 

viewed between crossed Nicols. The arrangement is even 

more sensitive if the plate is cut in the direction of the line 

bisecting its planes of vibration, and the two parts cemented 

together along the plane of section after one of them has been 

rotated through 180° about the normal to that surface. A 

trace of double refraction in the plate then produces in the 

two halves of ^ changes of color in opposite senses. This 

arrangement has been called a Bravais bi-plate after its 

inventor. With such a plate it is easy to show that the pres¬ 

sure of the finger, for example, is sufficient to produce double 

refraction in a glass cube. Also, the directions in which the 

light is completely cut off by $}T can be accurately determined 

with the help of a Bravais biplate. 

The application of the optical properties of crystals to the 
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construction of Babinet’s and Senarmont’s compensators has 

been mentioned above on page 256. 

15. Interference Phenomena in Crystalline Plates in 
Convergent Polarized Light.—Consider first the case in which 

the polarized light is incident upon the plate at an angle i. 

Let the angles of refraction be rx and r% (Fig. 92). It is evi¬ 

dent from the figure that the difference in phase between the 

two waves after propagation through the crystal is 

- 2JL(BIL _l __ S£\ 
s ~ t\v2 + V vj' 

in which DK is the projection of CD upon the direction 

of propagation of the wave Wr Now BD = d : cos r2, 

BC = d : cos rx, DK — CD sin i — (BC sin rx — BD sin r2) sin z’, 

hence 

— 27td \ (S*n Z' S1*n Vl 1 \ 1 /sin z' s^n r2 1 \ 1 ) 
~ T \\ V vjcos rL ' V vJcosr2\" 

But from the l^w of refraction 

sin i _ sin rx ___ sin r2 

~v"~ ” “"*7’ 
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it follows that 

27t 
6 = -jrd 

cos r2 

K 

cos rx 

' ~V7 

If now the angles gx and g2 which the wave 1 

with the optic axes within the crystal be introduce6 * H^gt 

equations (29) on page 320, Vx and V2 may be * * *■"*■**” 
rational functions of a2 -j- d and a2 — c2. Neglee^-i11^ * 

higher order than the first in a2 — d, which is 

account of the smallness of the double refraction *1"1 ^ ^ 

minerals, there results 

7t d a2 — c2 
- 1~n—i-a“a sm sln cos r ^a2 4- c2\^ 61 62 

In this equation gx and g2 denote the angles wlucl* 1 

one of the two refracted wave normals makes wit.li tJic* 

axes; r denotes the angle of refraction for one of tlio r<?fr* 

wave normals. Hence d : cos r is the length of "tilt* 
the crystal. Since terms of the first order only in -—«* <* s 

been retained, BD may be considered equal to Yd <YY. 

If the principal indices nx and ?z3 of the crystal 1st? i 

duced, and if n denote their geometrical mean, tlicn 

and hence 

a2 — V2 : n2, c2 = V2 : n2, 

6 = 
nd 

A. cos r 
-smgxsmg2z 

27td 

\ cos Y"'2, 
.(«3-«i)sin^rx sinx*3 

If the plate of crystal be introduced between at j*c*l4 

and an analyzer, the resultant intensity is approx irm 
expressed by (81), at least if the change in amplitude? i 
duced by refraction at the surfaces of the cry^t.i 

neglected. 
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The case becomes of especial interest if the effects upon the 

intensity J corresponding to different angles of incidence i can 

be brought into the field at the same time and compared. 

This can be done by means of the polarizing apparatus shown 

in Figs. 93 and 94. The mirror A reflects light from the sky 

Fig. 93. Fto. 94. 

into the apparatus. This light is concentrated by means of 

two lenses B and 1) upon the aperture 11 It is polarized by 

passage through the Nicol C. II lies at the principal focus of 

one or more convergent lenses F, which transform all the cones 

of rays which have their vertices at £ into beams of parallel rays 
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which pass through the crystal G in all possible directions. 

In the figure three such beams are shown. The rays then fall 

upon a convergent lens //’which brings together in a point M 

at its principal focus, which lies in the aperture of the dia¬ 

phragm y, each beam of parallel rays. The image formed at 

M is magnified by the eyepiece K, and the rays pass finally 

through the analyzer L. As is evident from the figure, the 

middle of the image at J is formed by rays which pass normally 

through the plate; the side portions of this image, by rays 

which traverse .the plate in directions which are more and more 

oblique the nearer the point M approaches the edge of J. 

With this arrangement the interference effects of rays which 

traverse the plate in different directions are brought simul¬ 

taneously into the field of view. 

At the different points M of the field of view the differ¬ 

ence of phase § between the two waves is different, as is also 

the angle <p which the plane of vibration of the polarizer makes 

with the direction of vibration of one of the waves in the 

crystal. The loci of those points of the field for which S is 

constant constitute a family of curves, the curves of equal 

difference of path {isochromatic curves'). The loci of those 

points of the field for which <fi is constant are the curves of 

constant direction of polarization {isogyric curves). It is with 

the help of these two families of curves that the distribution 

of intensity in the field of view is most easily described. 

If all the rays which traverse the crystal be conceived to 

pass through a single point 0 upon its first surface, then 

only one ray comes to each point M in the field of view. 

This ray intersects the second surface of the plate in some 

point M’. If in this way points M' upon the second face 

of the crystal, corresponding to all the points M of the focal 

plane, be found, then the figures formed by these two sets of 

points are similar. Hence only the points M' will be consid¬ 

ered. It appears from equation (89), in which d : cos r de¬ 

notes the length of the path of the ray within the crystal, that 

the curves of equal difference of path are obtained from the 
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intersection of the second surface of the crystal with the family 

of surfaces constructed about 0 whose equation is 

p sin gx sin g2 = const., .... (91) 

in which p represents the radius vector 

of a point P with respect to the point 0, 

while gx and g2 are the angles included 

between the radius vector and the optic 

axes. Such a surface has a form like 

that shown in Fig. 95. It must be 

asymptotic to the optic axes, since for 

gx = o or g2 = o, p = 00 [cf. (91)]. 

If the crystal be cut perpendicular to FlG- 95- 

an optical median line, i.e. to an axis of optic symmetry lying 

in the plane of the optic axes, the curves of equal difference of 

path are lemniscates whose poles Ax and A2 are the optic axes. 

If the plate be observed between crossed Nicols, equation (85) 

is applicable. In homogeneous light the curves of equal differ¬ 

ence of path for which = 2hn are black. In white light 

they are curves of like colors (hence called isocliromatic), 

resembling closely the Newton interference colors. Neverthe¬ 

less, for the reasons given on page 348, departures from this 

form are shown by some crystals,* and the entire phenomenon 

is complicated on account of the dispersion of the optic axes, 

i.e. on account of the fact that the trace of the optic axes upon 

the second surface of the crystal varies with the color.t In 

some crystals (brookite) the plane of the optic axes swings 

about through 90° if the color be changed. The form of the 

isochromatic curves in white light is greatly changed by the 

dispersion of the optic axes. The whole field of view is now, 

* The rings shown by apophyllite from the Faroe Islands and from Peonah in 
the East Indies are especially remarkable. Each ring has the same color, and the 
alternate rings are dark violet and dull yellow. This apophyllite is positively 
doubly refracting for red light, negatively doubly refracting for blue light, and 
neutral for yellow light. 

fCf. Mascart, Traitd d’Optique, vol. ii. pp. 173-190, Paris, 1891. In Rochelle 
salt the angle between the optic axes is for red 76°, for violet 56°. 
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in accordance with (85), traversed by a black curve, the 

so-called prmcipal isogyre, for which sin 20 = 0. If the 
plane of the optic axes coincides with the plane of polarization 

of the analyzer, or the polarizer (the so-called principal posi- 
tion), the principal isogyre is a black cross one of whose arms 

passes through the optic axes, while the other, perpendicular 

to it, passes through the middle of the field. For, according 

to the construction given upon page 322, the directions of 

polarization Ht and H2 corresponding to points on this cross 

are parallel and perpendicular to the line AXA2 joining the optic 
axes. Hence the interference figure is that shown in Fig. 96. 

Fig. 97. 

In the second principal position of the crystal, i.e. when the 
plane of the optic axes Ax and A2 makes an angle of 450 with 

the plane of the analyzer, the principal isogyres are hyperbolae 
which pass through the optic axes. Hence the interference 

pattern is that shown in Fig. 97. The equation of the prin¬ 

cipal isogyre can be approximately obtained by taking the line 
PB, which bisects the angle AXPA2, as a direction of polariza¬ 
tion //"within the crystal,* P being any point upon the plate 

(cf. Fig. 98). Let the directions of the coordinates x and y 

* From the rule given on page 322 it is evident that this is only approximately 
correct. The problem is more thoroughly discussed in Winlcelmann’s Iiandbuch 

der Physik, Optik, p. 726 sq. 
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nes of polarization of the analyzer and the polarizer 

Also, let PAX = lx, PA2 = l2, AxA2 = l. Then 

^x:BA2 = lx:l2, BAx + BA2 = l, 

BAX = 
4 + 4 

. . (92) 

he triangle AXBP, 

sin a : sin AXBP = BAX : lv (93) 

the principal isogyre ^AXBP= 450, since the 
nnecting the optic axes is to make an angle of 450 

rdinate axes, and since, for the principal isogyre, 

is to be parallel to the _y-axis. Hence, from (92) 

sin a = 
1 l 

V2 h + 4 ’ 
• (94) 

n the triangle AXPA2, 

-f- 42 - 244 cos $ = (4 - 4)2 + 444 sin2 
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i.e., from (94), 
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or 

LL /-(/,- V+2n^t 

i\i? + /22) = (42 - /22,2. (95) 

If the coordinates of the points Ax and A2 of the optic axes are 

called ±p, then 

42 = (x — pf+(y — p)2, l2 = {x + pf + O' + /)2> ^2 = 

and (95) becomes 

*y-p%.(96) 

But this is the equation of an equilateral hyperbola which 

passes through the optic axes Ax and A2 and is asymptotic to 

the coordinate axes. 

These black principal isogyres which cross the interference 

pattern are especially convenient for measuring the apparent 

angle between the optic axes, i.e. the angle which two wave 

normals, which within the plate are parallel to the optic axes, 

make with each other upon emergence from the plate. With 

•the aid of the law of refraction the angle between the optic 

axes themselves may be calculated from this, if the mean 

principal velocity b within the crystal be known. The apparent 

angle between the optic axes is measured by rotating the 

crystal about an axis perpendicular to the plane of the optic 

axes, and thus bringing the traces of the optic axes succes¬ 

sively into the middle of the field of view, i.e. under the cross¬ 

hairs. The angle through which the crystal is rotated is read 

off on a graduated circle. The apparatus constructed for 

measuring this angle is called a stauroscope. 

In uniaxial crystals a surface of equal difference of path 

(d = const.) has the form shown in Fig. 99. When the plate 

is cut perpendicular to the optic axis, the isochromatic curves 

are concentric circles about the optic axis. With crossed 
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Nicols the isogyre is a black right-angled cross. Hence the 

interference pattern is that shown in Fig. ioo. From a 

measurement of the diameters of the rings the difference in the 

Fig. 99. Fig. ioo. 

two principal indices of refraction of the crystal can be 

obtained. 

For a discussion of methods of distinguishing the character 

of double refraction by means of a plate of selenite for which 

7T 
d = as well as for other special cases, cf. Liebisch, Physik. 

Krystallogr., or Winkelmann’s liandbuch der Physik, Optik. 



CHAPTER IV 

ABSORBING MEDIA 

i. Electromagnetic Theory.—Absorbing media will be 

defined as media in which the intensity of light diminishes as 

the length of the path of the light within the medium increases. 

The metals are characterized by specially strong absorbing 

powers. According to the electromagnetic theory absorption 

is to be expected in all media which are not perfect dielectrics. 

For the electric currents arising from conduction produce heat 

the energy of which must come from the radiant energy of the 

light. 

The electromagnetic theory given above on page 268 sq. 

will now be extended to include the case of imperfect insu¬ 

lators, i.e. to include media which possess both a dielectric 

constant e and an electric conductivity <x. 

The components of the electric current density will here, 

as above, be denoted by jx, jy, jz (in electrostatic units), so 

that for an imperfect insulator 

eZX . v . e3 F 

= J> = ■&-& + **’ 
■ € dZA-„7 

J' = ^hTt + x (0 

For the total current is composed of the displacement cur¬ 

rents which alone were considered in equation (17) on page 

269 above, and the conduction currents, which are represented 

in (1) by the terms &X, cY, &Z. If the current density and 

the electric force are measured in electrostatic units, then cr 

represents the absolute conductivity* in the electrostatic sys¬ 

tem. For mercury it has the value <x = 9.56. iols. 

* The dimensions of this quantity are T~*, the second being assumed as the 

unit of time. 

358 
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Equations (i) contain the only additions which need be 

made to the theory of perfect dielectrics previously given. 

For equations (7) and (11) on pages 265 and 267 will be 

retained as the fundamental equations of the Maxwell theory 

for every medium. If the permeability y be set equal to 1, so 

that 47Tsx = etc., then these equations are 

4 njx bY b>fi 
c ~~ by bz ’ 

c bt~ bz by' 

47rJy_^a_ by 4b<x^ 
c bz b>%' c bx by ’ ^ ' 

ibj3_bZ_bX 1 by __bX_bV 
c bt bx bz' c bt ~~ by bx' 

It may apppear questionable whether it is permissible to 

set jw = 1 in this case, since the strongly magnetic metals iron, 

nickel, and cobalt are included under the head of absorbing 

media. Nevertheless it is shown, both by experiment and 

by the theory which will be given in Chapter VII, that the 

permeability of all metals is for light vibrations equal to 1.* 

In accordance with the general conclusion reached on page 

270, the boundary conditions for the passage of light through 

the surface separating two different absorbing media are 

expressed in the same form as above, namely, 

X, = X„ F,= F2, «1 = «a, /?, = /?„ . (4) 

provided the 47-plane is parallel to the boundary. 
Equations (1) to (4) constitute a complete basis for the 

electromagnetic theory for isotropic absorbing media. 

In order to integrate the differential equations write, as on 

page 289, 

+ + .... (5) 

in which not only A but also M, v, and n are complex quan¬ 

tities. The physical meaning of X is obtained from the real 

* In the Physik des Aethers, Stuttgart, 1894, Drude has developed the equa. 

tions which hold for any value of the permeability, and shown that in respect to 

optical phenomena its value for iron must be unity. / 
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parts of the complex quantities given in (5). It is, however, 

simpler to ignore the physical meaning of X until the conclu¬ 

sion, i.e. to carry the calculation through with the complex 

value of X given in (5). Thus, from (5), 

3X . 2 7T 

c)t -1 Tx> 

so that equations (1) become 

e — 2-2ctT ZX 

47V Zt 
etc. . . (6) 

Thus the only difference between isotropic transparent and 

isotropic absorbing media consists in this, that the constant e, 

which is real for transparent media, becomes for absorbing 

media the complex constant 

e' = e — 2*2 cr T. (7) 

All the preceding equations can be applied if e is simply 

replaced by e'. 

Thus, for example, according to equation (3) on page 275, 

e' Z*X 

& ZP 
= AX. . (8) 

This gives, in connection with (5), 

fl = p _|_ 
(9) 

Since e' is complex, f.i, v, and rt cannot all be real. But this 

presence of an imaginary always indicates an absorption, i.e. a 

diminution in the amplitude. If, for example, /.t = v — 0, 

I — 2K 
it = —y—, in which k and V are to be real, then, from (5), 

X — Ae~ 27tKJ.ei2ir\T ~ l), . . . (10) 

in which X is set equal to T • V. But equation (10) asserts that 

the ratio of the amplitude at any instant to the amplitude after 

the wave has travelled a distance X is 1 : e — Hence k is 

called the coefficient of absorption. 
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Equation (10) represents the case in which light falls per¬ 

pendicularly from air upon the absorbing medium. V is the 

velocity and A- the wave length of light in the medium. If the 

ratio c :V ~ n be called the index of refraction of the medium, 

since it represents the ratio of the velocities of light in air 

(assumed to be the same as in vacuo) and in the medium, then, 

by (9), 
e' = ifi(i — k2 — 2 id), 

or 

n\ 1 — /c2) = e, ;r/c = cr T. . . . (11) 

Thus this equation furnishes the means of determining the 

index of refraction and the coefficient of absorption from the 

electric constants. It will be shown later that the relation 

(11) cannot be numerically verified; nevertheless the important 

point here is to observe that a complex value of e' actually 

means an absorption of light, and that the real and imaginary 

parts of e' can be replaced, in accordance with (11), by the more 

tangible concepts of refraction and absorption coefficients. 

2. Metallic Reflection. — Resume the notation on page 

279 sq. Let the incident light be plane-polarized at an 

azimuth of 450 to the plane of incidence. Then /i), == 7: r 

The entire development there given can be applied here if 

only the real constant e be replaced by a complex quantity e'. 

0 denotes the angle of incidence and x a complex quantity 

which may be determined in terms of <p by 

sin J : (12) 
sin 0 

Re'. 

Then, from (27) on page 285, the ratio of the components 

of the complex amplitude of the reflected light is 

Rp 
Rs 

= p-e 
COS (0 

COS (0 

X) 

xY (>3) 

p here denotes the ratio of the real amplitudes of the ft- and s- 

components of the reflected light, A the relative difference of 

phase of these components. This is at once evident by setting 

/ 
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Rp = R/s>, Rs = R/s', in which R^, Rst 6S are real 

quantities. Then 

p = Rj:Rs, A = tf, - Ss. . . . (14) 

Since the right-hand side of (13) is a complex quantity, A 

cannot be zero. Incident plane-polarized light therefore 

becomes by reflection at the surface of a metal elliptically polar¬ 

ized. 

From (13) it follows that 

1 + P-etA _ sin 0 sin x 

1 — p-e*4 ~ cos 0 cos x ’ 

If in this equation x be replaced by <p and ef in accordance 

with (12), then ^ 

1 p-elA __ sin 0 tan 0 ^ . 

1 — p-e1^ Yd — sin3 0 v ^ 

Hence when 0 = o, p-etA = — 1, or A — o and p = — 1. 

Tt . . 
When 0= pelj^ = -f- 1, i.e. A = o, p = 1. Hence the 

relative difference of phase A of the reflected light, i.e. its 

ellipticity, vanishes at perpendicular and grazing incidence. 

That angle of incidence 0 for which the difference of phase A 

amounts to ^ is called the principal angle of incidence 0. At 

this angle dA = i; hence, from (15), 

1 i • p  sin 0 • tan 0 

1 — i • p Yd — sin3 0 
(16) 

If this equation be multiplied by the conjugate complex 

equation 

1 — i • p sin 0 • tan 0 

1 + 3 ■ 7> ^e" — sin3 0 

in which e" denotes the complex quantity which is conjugate 
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c ^eft-liand side reduces to 1. Hence the principal 

incidence is determined by 

1'1 0 = 71*^1 k'Y — 2iE(\ — /d) sin3 0-f- sin4 0. (17) 

he numerical calculation it is generally sufficient to 

mnt of the first term only on the right-hand side of 

tion, since, for all the metals, ji\i k3) has a value 

)ater than 1, somewhere between 8 and 30. With 

ixhnation (17) becomes simply 

sin 0 tan 0 = n V1 -f- /c2.(18) 

ipproximation may be obtained directly from (15) by 

-,r in the denominator of the right-hand side sin 2 0 in 

m with e'. For, from (11), 

Ve' — n(l — Ik),.(19) 

5) becomes 

1 4- P’^ __ sin 0 tan 0 
1 — p-cid ~ r — Ik).^ ^ 

p = tan 0.(21) 

^ fcf. (13)] that 0 represents the azimuth of the 

polarization of the. reflected light with respect to the 

uddence, after it has been made plane-polarized by 

s such as the Babinet compensator (cf. page 257). 

s called the azimuth of restored polarization. 

; is easy to deduce the relation 

1 ~ cos 20 — i sin A sin 20 

i paid ~~ 1 4“ cos A sin 2 0 ’ 

: following- may be obtained from (20): 
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From these equations the optical constants n and k of a 

metal can be determined with sufficient accuracy from obser¬ 

vations of ip and 4/.* 

The value of tp which corresponds to the principal angle of 

incidence cp = 0 is called the principal azimuth Ip. From the 

first of equations (22) it follows that 

k = tan 2(p.(23) 

Inversely, in order to obtain A and xp from the optical con¬ 

stants, set 

tan P = — 
Yi ■ 

sin <p tan cp’ 
tan Q = k. (24) 

Then from (20), since the right-hand side has the value 

cot P-e1®, 

tan A = sin Q tan 2P, 

cos 2 ip = cos Q sin 2P.(25) 

The reflecting power of a metal is defined as the ratio of 

the intensity of the reflected light to that of the incident light 

when the angle of incidence <p is zero. In this case, from 

equation (26) on page 284, since n is here to be replaced by 

n( 1 — itc) [cf. equation (19)], 

Rp __ _ n(i — ik) — I 

Ej, ~~ Ej, ~~ n(i - z'/c) + i‘ 
(26) 

If this equation is multiplied by its conjugate complex 

equation, the value of the reflecting power R is found to be 

Rl _ 7Z3(l -}- /cr2) -{— 1 — 2ZZ 

El ~ n\i -|- a:3) + 1 •+ 2n (27) 

Since for all metals in is small in comparison with 

n2(i -f-zc2), R is almost equal to unity, i.e. the reflecting power 

is very large. A substance which shows this strong reflecting 

power characteristic of the metals (in the case of silver it 

* More rigorous equations, in which sin'2 0 has not been neglected, in comparison 

with e', are given in Winkelmann’s Handbuch, Optik, p. 822 sq. 
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amounts to 95 per cent) is said to have metallic lustre.* This 
is more marked the greater the absorption coefficient of the 
substance. Since k is different for different colors, some 
metals, like gold and copper, have a very pronounced color. 
Thus a metal appears red if red light is reflected more strongly 

than the other colors. Hence the light reflected from the 
surface of a metal is approximately complementary to the color 
of the light transmitted by it. In order to observe this it is 

necessary to use sheets of the metal which are only a few 
thousandths of a millimetre thick. Gold-foil of such thickness 
actually appears green by transmitted light. 

The more often light is reflected between two mirrors of 

the same substance the more saturated does its color become, 
for the colors which are most strongly absorbed by the sub¬ 
stance are much less weakened by repeated reflection than the 

others. In this way Rubens and Nichols,t and Aschkinass J 
have succeeded in isolating heat-waves much longer than any 

previously observed. An Auer burner without a chimney was 
used as the source of the radiations. After five reflections upon 

sylvine an approximately homogeneous beam of wave length 
A =0.061 mm. was obtained, this being the longest heat¬ 

wave yet observed. The reflecting power of sylvine for this 
radiation is R — 0.80, i.e. 80 per cent. Long heat-waves can 
also be isolated by multiple reflections upon rock salt, fluor¬ 
spar, and quartz. 

It is important to distinguish between the surface colors 

produced by metallic reflection and those which are shown by 
weakly absorbing substances with rough surfaces; for example, 

by colored paper, colored glass, etc. These substances appear 
colored in diffusely reflected light because the light is reflected 
in part from the interior particles of the substance, and hence 

* That this effect is actually due to a high reflecting power is proved by the 

fact that a bubble of air under water from which the light is totally reflected 

looks like a drop of mercury. 

f Rubens and Nichols, Wied. Ann. 60, p. 4x8, 1897. 

\ Rubens and Aschkinass, Wied. Ann. 65, p. 241, 1898. 
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selective absorption is the cause of the color. In such cases 
the colors in transmitted and reflected light are the same, not 

complementary as in the case of the metals. 
3. The Optical Constants of the Metals.—Equation (22) 

shows how the optical constants n and k of a metal can be 
conveniently determined, namely, by observing the vibration 

form of'the elliptically polarized reflected light when the 
incident light is plane-polarized, i.e. by measuring A and tp 

by means of a Babinet compensator and analyzing Nicol in 

accordance with the method described on page 255 sq. But 

care must be taken that the surface of the metal be as clean as 

possible, since surface impurities tend to reduce the value of 
the principal angle of incidence.* The following table contains 

some of the values which Drude has obtained by the reflection 
of yellow light from surfaces which were as clean as possible: 

Metals. nK n <P £ 

Silver. 3-^7 0.18 75°42' 43°35' 95- 

Gold. 2.82 o-37 72 18 4i 39 85.1 

Platinum. 4.26 2.06 78 30 32 35 I 70.1 

Copper. 2.62 1 0.64 7i 35 38 57 1 73-2 

Steel. 3-40 2.41 77 3 27 49 1 58.5 

Sodium. 2.61 . 0.005 71 19 44 58 99-7 

Mercury. 4.96 i-73 79 34 35 43 78.4 

The reflecting power R was not measured directly, but cal¬ 

culated from (27). 
The optical constants can also be determined by observa¬ 

tions upon the transmitted light. By measuring the absorption 
in a thin film of thickness d a value for k : A may be obtained, 
as is seen from (10), A denoting the wave length in the metal. 
Since now A = A0 : n, and since A0, the wave length in air, is 

known, iik may also be obtained. But reflection at the bounding 
surfaces of thin sheets of metal is accompanied by a great loss 

*Cf. Drude, Wied. Ann. 36, p. 885, 1889; 39, p. 481, 1890. 
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in intensity. In order to eliminate this difficulty it is necessary 
to compare the absorptions in films of different thickness. The 
losses due to reflection are then in both cases nearly the same, 
so that a conclusion may be drawn as to the value of nK from 

the difference in the absorptions. The difficulty in making 
these observations lies in obtaining metal films but a few 

thousandths of a millimetre in thickness, which are yet uniform 
and free from holes. For this reason the value of uk as deter¬ 

mined by this transmission method usually comes out smaller 
than by the reflection method.* But in some cases, + for 
example, silver—which can be easily deposited upon glass from 
a solution—the values of uk determined by the two methods 

are in good agreement. 
As in the case of transparent media, the index of refraction 

can be determined from the deviation produced by a prism,^ 
but in the case of the metals the angle of the prism must be 
very small (a fraction of a minute of arc) in order that the 

intensity of the light transmitted may be appreciable. Since 
Kundt succeeded in producing metal prisms suitable for this 

purpose § (generally by electrolytic deposition upon platinized 
glass), the indices of refraction of the metals have been deter¬ 

mined many times by this method.|| Not only is the produc¬ 
tion of these prisms troublesome, but also the.observations are 

very difficult, since the result is obtained as the quotient of two 
very small quantities. In general the results agree well with 

those obtained from observations of reflection; for example, 
the remarkable conclusion that for certain metals n < 1 has 
been confirmed. 

These small indices of silver, gold, copper, and especially 

*W. Rathenau, Die Absorption des Lichtes in Metallen. Dissert. Berlin,'1889. 

f W. Wernicke, Pogg. Ann. Ergzglxl. 8, p. 75, 1878. Also the observations of 

Wien (Wied. Ann. 35, p. 48, 1888) furnish an approximate verification. 

\ For the equations cf. W. Voigt, Wien. Ann. 24, p. 144, 1885. P. Drude, 

Wied. Ann. 42, p. 666, 1891. 

§A. Kundt, Wied. Ann. 34, p. 469, 1888. 

I Cf., for instance, Du Bois and Rubens, Wied. Ann. 41, p. 507, 1890. 
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of sodium are particularly surprising; they mean that light 

travels faster in these metals than in air. 
If these optical constants be compared with the demands 

of the electromagnetic theory [cf. (11)], a contradiction is at 

once apparent. For since e is to equal ;/3(i — /c2), the dielec¬ 

tric constant of all the metals would be negative, since 

k = tan Yip, and since 2ip is for all metals larger than 45 °, i.e. 
a-> 1. But a negative dielectric constant has no meaning. 

Also, the second of equations (11), namely, ii*K = <rT, is not 
confirmed, since, for example, in the case of mercury, for 

yellow light crT = 20, while iTk =8.6. For silver crT is 
much greater, while iPk is much smaller than for mercury. 

The same fact is met with here which was encountered 

above when the indices of refraction of transparent media were 
compared with the dielectric constants. The electromagnetic 

theory describes the phenomena well, but the numerical values 
of the optical constants cannot be determined from electrical 
relations. The extension of the theory, which removes this 
difficulty, will be given in the following chapter. 

4. Absorbing Crystals—The extension of the equations 
for isotropic absorbing media to include the case of absorbing 
crystals consists simply in assuming different dielectric con¬ 

stants and different conductivities along the three rectangular 
axes of optical symmetry. If the coordinate axes coincide 
with these axes of symmetry, equations (12) on page 314 are 
obtained, with this difference, that ex, e2, e3 are complex 
quantities, if, in accordance with (5) on page 359, the electrical 
force is introduced as a complex quantity. To be sure the 
equations will not be perfectly general, since the axes of sym¬ 
metry for the dielectric constant do not necessarily coincide 
with those for the conductivity. These axes must coincide 
only in crystals which possess at least as much symmetry as 

e r ombic system. Nevertheless the most general case will 
not be here discussed, since the essential elements may be 
obtained from the simplification here presented* 

* -rim is treated more Optik, p. 8n Sq.- 
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In order to integrate the differential equations given above, 

namely, 
et'9aA' rdX nr o?\ 
•i _ = JA - L,. + V - H- . J. «C., • (28, 

let the components u, v, 

by the equations 

' of the light-vector be represented 

«= e;x=McT{ 

vz=en'Y~ N/r{ 

.. ' ■ • ("/•*’ I I / = ) 

<IX~ 11/ r» 
in which -j-/>3i, and A/, A', II may be complex. 

These equations correspond to a plane wave whose direction 

cosines are m, n, /. F is the velocity of the wave, and k the 

absorption coefficient (cf. page 3^0). Let 

Then Fresnel's law (18) on page 31b may be written 

in which, however, Ay, q,a are complex. lienee this equa¬ 
tion splits up into two from which /'and at may be calculated 

separately as functions of the direction m, //, /> of the wave 

normal. According to equations (1 5>, (it,), and (2u)on pages 

315 and 317, the following relations hold for the quantities 
M, N, ID 

Mm ■ I™ Nn - |* ///>; ; o.(32) 

MxUt-\~Nx\\ \ 11,11, • 0. ... (34) 

Since, by (33), M, N, II are complex, two elliptieally 
polarized rays correspond to every direction m, n, /. Fur if it 

be assumed that M ~ J/.e"h» A them rf, — denotes 
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the difference of phase between the components u, v of the 

light-vector. For plane-polarized light d, — d2 = o. Equa¬ 
tion (32) expresses the fact that the plane of the vibration is per¬ 

pendicular to the wave normal, (34) the fact that the ellipses 

are similar to each other, while their positions are inverted.* 
The relation which can be deduced from (31) between the 

velocity and the direction in, n, p is very complicated. Hence 

Fresnel’s law, in spite of its apparent identity with (31), is 
considerably modified. But the relations are much simpler in 
the case of weakly absorbing crystals such as are always used 

when observations are made with transmitted light, t For if /c2 
can be neglected in comparison with 1, then go2 = F2(i -{- 2tK). 

Hence setting 

a2 a2ia'2, c2 ^ d-fiic'2, (35) 

then 

'2KV*-a'*) . 
!+* ^ _Vaj-(36) a2—go2 a2— V2—z(2kV2 — a'2) a2—V2\ ' a* — V2 

Hence (31) splits up into the two equations 

2 kV2 

f 
V2 b2 - V* d — V2 ' 

n3 , p2 

• • (3 7) 

(a2 - V2)2 + (b2 - V2)2 ^ (c2 - V2) + / 

(a2 - V2)' 
1+ & '(P - Vly- + - V'f (38) 

Equation (37) is Fresnel’s law. Hence when the absorp¬ 

tion is small this is not modified. Equation (38) presents at as 

a function of m, n, and p. According to (33), when the absorp¬ 
tion is small M, N, II are very nearly real, i.e. the two waves 
within the crystal have but a slight elliptic polarization. If 

2)?, denote the direction cosines of the principal axis of 

* For more complete proof of this, cf. Winlcelmann’s Handbuch, Optik, p. 813. 

f In reflected light the effects of strong absorption are easy to observe, for 

example, with magnesium- or barium-platinocyanide. Such crystals show 

metallic lustre and produce polarization. 



ABSORBING MEDIA 37i 

the vibration ellipse, then, from (33) and (36), since Tt is the 
real part of M, etc., 

^ : ^ : ^ ~cC> — V2 : b2 - V2 : ? — V* ' ^39) 

Thus 9ft, 91:, $)$ are determined in the same way as the 
direction of vibration in transparent crystals. 

In view of (39) and the relation 9ft2 -f- = 1, it is 
possible to write (38) in the form: 

2kV* = a'm* + b'29l2 + c'2^; . . . (40) 

i.e., in accordance with (18') on page 317, which also holds 

here, 
. a'2W-fb>2$l2 + c'2,$2 

2K ~ d‘W + W + • • • • (4i) 

Hence the index of absorption k, like the velocity V, is a 

single-valued function of the direction of vibration. 

This law can be easily verified by observing in transmitted 
light a cube of colored crystal cut parallel to the planes of 

symmetry. This shows different colors as the direction of the 
ray is changed (trichroism for rhombic crystals, dichroism for 

hexagonal and tetragonal crystals). This phenomenon can be 

observed in tourmaline, beryl, smoky topaz, iolite, and espe¬ 

cially in pennine, which appears bluish green and brownish yel¬ 
low. If the light transmitted by such a crystal is analyzed with 
a Nicol, the color depends upon its plane of polarization, the 
extreme colors being obtained when the Nicol is parallel to an 

axis of symmetry of the crystal.* The six extreme colors 

which can be observed in a cube of tricroitic crystal by means 
of a Nicol reduce in reality to three, since each color appears 
twice, namely, in the positions for which the direction of vibra¬ 

tion in the Fresnel sense is the same (cf. page 253). 
Equations (40) and (41) become simpler if the wave normal 

lies near an optic axis; for example, near Av If the angle gx 

* Bath colors arc seen at the same time if a double-image prism be used instead 

of a Nicol. Cf. Mtlller-Pouillet, vol. II, Optics, by Lummer, p. 1005. 



372 THEORY OF OPTICS 

which the wave normal N makes with the optic axis Ax is so 

small that its square can be neglected in comparison with 
i, then Vz — b3. If, further, the angle between the plane 

of the optic axes (hr.s'-plane) and the plane (NAX) defined by 

Ax and N be denoted by ip, then the plane defined by iVand 
ip 

the direction of vibration ^ makes an angle — with 

the xa'-plane. For, from page 322, the plane of vibration 
bisects the angle included between the planes (.NAJ and 

(NA2); but since N is to lie very near to the optic axis, the 
plane (JVH2) may be identified with the plane (AXA2) of the 

optic axes, i.e. with the ^-plane. Hence the direction of 
ip 

vibration 9^, ^ must make an angle of— with that direc¬ 

tion 5 in the A'^-plane which is perpendicular to the wave 

normal N, i.e. to the optic axis Av The direction cosines of 
5 are cos q, o, — sin q, where q denotes the angle between the 

optic axis Al and the sr-axis, i.e. half of the angle included 

between the optic axes. Hence it follows that 

cos-~ = 90^ cos q — ^ sin q. . . . (42) 

Since now the direction SO?!, 9?t, ^ is also perpendicular to 
the wave normal N, i.e. to the optic axis Ax, whose direction 

cosines are sin q, o, cos q, it follows that 

O = SD^ sin q + ^ cos q.(42') 

From these last two equations 

tp tp ip 
S0?x = cos q cos — , 9?! = sin ^ = — sin q cos —. (43) 

From this the direction S0?2, dl2, may be determined, since 

it is perpendicular to 9J?!, 9?1? and to in, n, p. Thus 

tp ip tp 
S0?2 = — cos q sin —, 9?2 = cos —, = sin q sin —. (44) 
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ence, from (40), in the neighborhood of the optic axis 

= (a'~ cos'- q ~f- 

2kJP = {a!* cos- y -|- 

r snr y) cos- —- sm- 

7/’ ?/J 
e sm- <y) sin- //- cos'- —. 

(45) 

These equations show that for any angle ± ?/> the value of 

is the same as that of for an angle if = 7c ± fi. These 

nations are indeterminate for the optic axis itself, because 

2n f has no meaning. In accordance with the preceding 

jcussion, the direction of vibration may be taken arbitrarily 

" page 319). From (40) it follows that for a wave polarized 

the plane of the optic axes, i.e. vibrating perpendicularly to 

-se axes, since in this case ^ = 0, = 1, 

2 k,N //3,.(46) 

t for a wave polarized in a plane perpendicular to the plane 
the optic axes, and therefore vibrating in that plane, since 

this case 2)t ~~ cos q, $1' o, ^ — —• sin q, 

2K/E : : af" cos3 q -|- C8 sin3 (47) 

r intermediate positions of the plane of polarization values 

/c are obtained which lie between those of k‘ and *7. 

nee the absorption of a leave travelling along an optic axis 

irncls vpon its plane of polarization. Upon introduction of 

quantities ks and *7 (45) becomes 

For uniaxial crystals (a 1>S a* //), if g represent the 

fie between the wave normal and the optic axis, it is easy 

ieduce from (40) for the ordinary wave 

2Ar0F„a =-. r0» ™ \ 

the extraordinary wave >. (49) 

F/= a"x cos2g ■ | <•"« sin3^, If=a8 cos3 c* sin3 g. ) 
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5. Interference Phenomena in Absorbing Biaxial Crys¬ 

tals.—Let a plate of an absorbing crystal be introduced in 

convergent light between analyzer and polarizer. Resume the 

notation of §§ 14 and 15 on pages 344 and 349, and consider 

Fig. 91. A wave Wx, vibrating in a direction Hx, which 

upon entering a crystal has an amplitude E cos 0, upon emer- 
_ 2X , 

gence from the crystal has the amplitude E cos 0 e ~r yx , in 

which l denotes the length of the path traversed in the crystal. 
If d denote the thickness of the plate of crystal, and rx the angle 

of refraction of the wave Wx, then / = d : cos rv Similarly 

the amplitude of the wave W2 is, upon emergence from the 

crystal, E sin <p e~ 'r~V\l (the length of the path within the 
crystal is assumed to be for both waves approximately the 

same). After passing through the analyzer the amplitudes 01 

the two waves are 

A cos 0 cos (0 — X)-£~ KlCTl’ <r1 = "^77 ———, 
v 1 1 1 vx cos r 

_ . . - ir rr 27t d 
£sra0sin (0-x).* ■ >. *,= YVtco 

The difference in phase 8 of the two waves in convergent light 

is determined by equation (88) on page 350. 

The case of crossed Nicols (x. — —j will be more carefully 

considered. Assume that the plate of crystal is cut perpendic¬ 

ular to the optic axis Ax, and denote by 0 the angle which the 

plane AXA2 of the optic axes makes with the line MA% drawn 

from a point M, which is near the optic axis in the field of 
view,* to the optic axis Ax\ then (cf. Fig. 101) the direction 

0 
of vibration Hx makes approximately the angle ~ with the 

direction AXA2, provided AXM is small in comparison with 

* The different points of the field of view correspond (cf. p. 351) to the different 

inclinations of the rays within the plate. 
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AiAr If, further, the plane of vibration P of the polarizer 
makes the angle a with the plane AXA% of the optic axes, then 

H2 

Ht 

Fig. ioi. 

0 7C 
in (50) 0 = a — -, X = -■ The amplitudes of the two 

interfering waves are therefore 

+ E cos (a — 0/2) sin (a — 0/2)<? ~ K'(T, ) /- r\ 

- E sin O - 0/2) cos (a - 0/2y ~ K>a, ) ‘ ^ 

in which 

2TCd 
<t = -Tp 

since in the neighborhood of the optic axis VL= V%~ b, and 

r is to be small. 
Hence the intensity of the light which emerges from the 

analyzer is 

J= ^-sin2(2a—if))\e~2KlCrc~2K'iCT~~ 2e~{'K^iC^-cos £}. (52) 

If the wave normal actually coincides with the optic axis, 
the end sought may be obtained from the following considera¬ 

tions: The amplitude E is resolved into components which 

are parallel and perpendicular respectively to the plane AXA2 

of the optic axes. These components are E cos a and E sin a. 

After emergence from the crystal the former has the value 
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E cos a e ”“K7°r, the latter E sin tx e After passage throng 

the analyzer the former has the amplitude E cos a sin a e 

the latter — E sin a cos a e ~ These two waves have r 

difference in phase, since the velocity in the direction of tl 

optic axis is the same for both of them. Hence when tl 

wave normal is parallel to the optic axis, the light whic 

emerges from the analyzer has the intensity 

I 
PJ 

sin 2(v [e 
K^iT 

• • (5 

The first factor in (52) placed equal to zero determines tl 

position of the black principal isogyre f ~~ 2 o'. But while t, 

black isogyre in the uncolored crystals passes through the op* 

axis itself, in the pleochroic crystals the point of intersection 

the optic axis with the isogyre is bright, unless ^ = 0 

7t 

a = p i.e. unless the plate lies in the first principal positio 

For, from (5 3), J/ differs from zero when sin 2a •< O, and 

differs from ks. 

The second factor in (52) placed equal to zero shows th 

there are dark rings about the optic axis, since the value 

this second factor depends upon cos S, and cos 6 has periot 

maxima and minima as the distance from the optic a> 

increases. Nevertheless even with monochromatic light the 

rings are perfectly black only where kx = Ay, i.e., accordn 
it 

to (48), when */; = ± for there the second factor actual 

vanishes when cos d = 1. The whole phenomenon of t 

rings is less and less distinct the stronger the absorption, i. 

the thicker the plate. For the term in (52) which depen 

upon the difference in phase 6 has a factor which can 
written in the form e — + If the crystal is at all c< 
r\re*A & of 1 of f A fturr^ ^Kcnrrifinn <5 tC , 51 



taining cos vanishes. This second factor in (52) can be 

written 

+ ?-*«**.(54) 

Although <7 is large, these terms may yet have appreciable 

values, since /c1 or k%1 may be small for certain points M of the 

field of view provided either or ks is small. It can now be 

7C 
shown that when p = o or 7r, I" is a maximum; when r/> = ± 

a minimum. For, from (48), 

<t sin t/'(~~ ks){c 
-• 2Kl<r 2K,(T) 

Therefore maxima or minima occur when tp r- o or 7tt or when 
7t 

kx = l.c. f = ± luit when ip = o or tt, 

A =: c " 2*>°' + r ' - 2^r = J<\; (5 5) 

7f 

and when th = ± - , 
2 

/' = I ^ = .(56) 

Writing Z c 
-2Kf>CT -2 K>cr 

=» then y*\ 
-r+j' 

4^ r.iy. 

But now, since the arithmetical mean is always greater than 

the geometrical (the difference between them increasing as the 

difference between x and y> i,e. between xy and ks , increases), 

the values tp = o or it correspond to a maximum, the values 

7t , t i * 
tf) = ± to a minimum, of r. 

In addition to the principal isopyre {ip —: 2^), there is 

always a black brush traversing the field of view perpendicular 

to the plane of the optic axes = ± yj. This brush coin¬ 

cides with the principal isogyre in the second principal position 

of the plate (^a = 
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Absorption gives rise to certain peculiar phenomena when 
either the analyzer or the polarizer is removed. In the first 
case the two amplitudes which emerge from the crystal have 
the values E cos (ot—\ip)e ~ Kl<T and E sin {a — W)e ~ K2(T. If 
these are not brought back to a common plane of vibration, 
they do not interfere and the resultant intensity is simply the 
sum of the two components, i.e. 

J = £2{cos2(# — fyp)e ~ 2Ki(r sin2 (a— itp)e~‘2^(r}. (57) 

When the wave normal coincides with the optic axis, 

J' = A2{cos2 sin2 ae~2Ks<7\. . . (58) 

The following principal cases will be investigated: 
I. a = o. Then 

J= E2{cos2 *,/•* “ + sin2 W* “ 2*2Cr}, 
J' = Ele ~ 2*>°\ 

But since 

^ ~ sin ^ j <t(jcs — *y)(sin2 We ~~ 2K%<J “ cos2 it'* ™ 2;riCr) 
2AT2CT _ _ 2/fjCF \ 

+ j f, 
therefore 

7) T 
—r = o for *p = o or tt or for *p = ± 
3</> 7 

When ^; = o or tt, 

7 = ji = E*.e-2«><T; 

when tp = ± 7/2 , 
J = Jt = + 

If, therefore, kp<ks (type II, iolite, epidote), 7 > 72, i.e. 
there is a dark brush perpendicular to the plane of the optic 
axes, which is, however, intercepted by a bright spot on the 
optic axis. But if /cy > ks (type I, andalusite, titanite), then 



7t 
2. a = . 

2 

J = £2{sin2 £ipe ~~ 2Kicr -j- cos2 %tpe ~ 

Jf = E*-e~2Ks(r. 

When tp = o or it, 

when tp = J-* ^2 , 
/ = /2 = £2^~(^+^)^ 

If, therefore, Kp < ksj Jx <J2j i*e* a continuous dark brush 

lies in the plane of the optic axes. But if > k:s9 Jx> J%> 

i.e. the dark brush is perpendicular to the plane of the optic 

axes and is intercepted by a bright spot on the optic axis. 

If both analyzer and polarizer are removed, i.e. if a plate 

of biaxial pleochroic crystal cut perpendicular to one of the 

optic axes is observed in transmitted natural light, the resultant 

intensity is 

+ .... (59] 

while along the optic axis itself it is 

J' = E\e - 2K^ + e ~ 2Ks(T).(60; 

For natural light may be conceived as composed of two in¬ 

coherent components of equal amplitudes which vibrate in an> 

two directions which are at right angles to each other. Hence 

in (60) 2E1 denotes the intensity of the incident light. Since 

now it was shown above [equation (54), page 377] that (59" 

7t 
has a minimum value when tp = ± —, it is evident that a dark 

brush perpendicular to the pla?ie of the optic axes and intercepted 

by a bright spot upon the axis will be seen. These figure* 

produced in natural light were observed by Brewster as long 

ago as 1819. They may be easily seen in andalusite anc 

epidote.* 

* For further discussion of these idiocyclophonous figures cf. Winkelmann* 
Handbuch, Optik, p. 817, note 1. 
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dong the optic axis k0 = kc ; hence 

J' = .(64) 

Irystals of the first type (k0 < /ce) show, therefore, a dark brush 

/hen (p — O and 0 = ?r, i.e. in a direction parallel to the direc- 

ion of vibration, or perpendicular to the plane of polarization 

f the polarizer. The dark brush is intercepted by a bright 

pot on the axis. In the case of crystals of the second type 

7t 
kq > kc) there is a dark brush when 0= ± i.e. parallel to 

he plane of polarization of the polarizer. The dark brush 

•asses through the axis itself. 

j. Transmitted natural light. The intensity of the ordinary 

ay is Ele “ 2Kij0r, that of the extraordinary ray is E2e~~2Ke<T, 

ence 

.(65) 

^long the optic axis itself k0 — Ke, hence 

J' = 2E*e “ ^.(66) 

E2 denotes the intensity of the incident natural light. In 

rystals of the first type there is a bright spot on the axis sur- 

Dunded by a dark field; in crystals of the second type, a 

ark spot on the axis surrounded by a bright field. 



CHAPTER V 

DISPERSION 

i. Theoretical Considerations.—A theory which accounts 

well for the observed phenomena of dispersion may be obtained 

from the assumption that the smallest particles of a body 

(atoms or molecules) possess natural periods of vibration. 

These particles are set into more or less violent vibration 

according as their natural periods agree more or less closely 

with the periods of the light vibrations which fall upon the 

body.* That such vibrations can be excited by a source of 

light, i.e. an oscillating electrical force, is easily comprehended 

from a generalization of the theory, necessitated by the facts 

of electrolysis, that every molecule of a substance consists of 

positively or negatively charged atoms or groups of atoms, the 

so-called ions.t In a conductor these ions are free to move 

about, but in an insulator they have certain fixed positions of 

equilibrium about which they may oscillate. In every element 

* As Lord Rayleigh has recently shown (Phil. Mag. (5) 48, p. 151, 1889), 
Maxwell was the first to found the theory of anomalous dispersion upon such a 
basis (cf. Cambr. Calendar, 1869, Math. Tripos Exam.). His work did not, 
however, become known, and, independently of him, Sellmeier, v. Helmholtz, and 
Ketteler have used this idea for the basis of a theory of dispersion. The assumption 
that molecules have natural periods can be justified from various points of view, 
even from that of the mechanical theory of light. From the electric standpoint 
these natural periods can be looked upon in two different ways : the treatment 
here given is based upon Reiff s presentation of v. Helmholtz’s conception—a pres¬ 
entation which also contains interesting applications to other domains of science 
(cf. Reiff, Theorie molecularelektrischer Vorgange, 1896). This conception is 
more probable than the other which was used by Kolacek (Wied. Ann. 32, p. 224, 



of volume the sum of the charges of the positive and negative 

ions must be zero,, since free electrification does not appear at 

any place upon a body which has not been charged from 

without. 

Consider first only the positive ions, and denote by ex the 

charge of a positive ion, by mx its mass, by B,x the ^--component 

of its displacement from its position of equilibrium; then the 

equation of motion of this ion, when an exterior electrical force 

whose ^"-component is X is applied, must be of the form * 

m 
'd2Sl 

1 dfi 
exX- 

$x *1 

2)gx 
Zt' 

• (0 

For the first term of the right-hand side exX is the total 

impressed force. The second term denotes the (elastic) force 

which is called into play by the displacement of the ion and 

which acts to bring it back to its original position. The 

factor ex is introduced to indicate that the sign of this force is 

independent of sign of the charge. The third term repre¬ 

sents the force of friction which opposes the motion of the 

ion. This term also contains the factor ex2, since it must also 

be independent of the sign of the charge. mlf §x, rx are 

positive constants. The meaning of is obtained by deter¬ 

mining the position of equilibrium of the ion under the action 

of the force X. For if %x is independent of the time t, then, 

from (i), 

= . 

is proportional to the facility with which the ions may 

be displaced from their positions of rest, i.e. it is inversely 

proportional to the elastic resistance (or the coefficient of elas¬ 

ticity). For conductors is to be set equal to oo . 

*A11 quantities are to be measured in electrostatic units. Equation (i) would 
also hold if the ion had no mass, provided the self-induction due to its motion be 
taken into -consideration- 



An entirely similar equation holds for the ne 

charged ions, namely, 

m. 
?r£ 

c2X- 2^2 
■e, - v>—‘. 

Here, too, w3, $2, r2, are positive, but e2 is negati 

Now the electric current along the #-axis consists 

parts: 

I. The current which would be produced in the fr 

by an electrical force X if no ponderable molecul 

present. According to (13) on page 268, the curreni 

has the value 

OOo = 
\JbX 

471 zt' 

2. The current due to the displacement of the 

charges. If the displacement during the time dt an 

dt;v and if fir denotes the number of positive ions in uni 

and 'il" the number in unit cross-section, then there 

time dt through unit cross-section the quantity 

in which fh\ W ■ 9i" denotes the number of ion 

type 1 which are present in unit volume. Hence in 

there passes through unit cross-section the quantity 

Ca)i 
'JC‘ dt 

eX 
dji 
dt' 

in which ' is a differential coefficient with respect to 

(;\)l denotes the current density which is produce 

motion of the ions of type 1. 

v The current due to the displacement of the 

chariies. This may be written in a form similar to ti 

tlms 



for a displacement of a negative charge in the negative direc 

tion of the ^r-axis is equivalent to a positive current in th 

positive direction of the .ar-axis. 

The total current density along the ;r-axis is then 

jx = C/Jo + U*\ + C/J2 = + e2%S2). (7 

The components of the current along the y- and ^-axes take ; 

similar form 

Since no free charge can exist in an element of volume 

the following relation holds: 

^1^1 ^2^2 ^ °.(8 

Now the fundamental equations (7) and (11) on pages 261 

and 267 are, as always, applicable. The permeability pi wil 

be assumed equal to unity, so that 4nsx = —, etc. Henc< 
ot 

these fundamental equations, together with (1), (3), and (7) 

constitute a complete theoretical basis for all the phenomen; 

of dispersion. 

The general integral of differential equations (1) and (2) cai 

be immediately written out if X be assumed to be a periodii 

function of the time. For and £2 are proportional to th 

same periodic function of the time plus a certain term whicl 

represents the natural vibrations of the ions, which, according 

to (1) and (3), take place when X = o. But in considering 

stationary conditions this term can be neglected, since, 01 

account of the resistance factors rx and r2, it disappears in th< 

course of time because of damping. Hence it is possible to se 

-L 
S1 = A1-etry g2 = ... (9 

r = T: 2 7t,.(10 

in which Ax and A2 are still undetermined functions of th 

coordinates, which, however, no longer contain the time 

while T is the period of the impressed force, i.e. of the ligh 

vibrations. In reality 4q and stand for the real parts of th< 
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complex quantities written in (9); nevertheless they can 1 

equal to these complex quantities and the physical me; 

can be determined at the end of the calculation from th< 

parts. This method of procedure makes the calculation 

simpler. 

Now, from (9), 

* * • 

Hence (1) may be written 

,* (T , _ L midA -Ay. 
i^i^1 t 47r r2 47te?l 4.71 ’ 

or when 

a, = 

4 7T 

4 7t 9 

4 7te*i 4 7t 

it follows that 

e\ B>, = —X 
1 1 47T 

^ ” 4^2’ ' ' ' 

_ix__ 
i b'*' 

I “(-<^1 — T> 
1 r 1 r- 

The similar expression for is obtained by replacin 

subscript i by 2. Hence, from (7)1 

Jx- 

A comparison of this equation with (17) on page 

e 7)X 
namely, 7' = —, shows that in place of the die 

47r 9/ 

constant e there appears the complex quantity er which de 

upon the period T{ = r • 2 7r); thus 
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n which the following abbreviation has been introduced: 

$h = $ A.(15') 

The 2 is to be extended over all the ions which are capable 

)f vibrating. It is possible to assume more than two different 

cinds of ions. But in the case of the high periods of light 

vibrations and of dielectrics, these kinds are not to be assumed 
:o be identical with those found in electrolysis. 

The meaning of the constants which appear in (15) can be 

wrought out as follows: If the period is very long, i.c. if 

r = 00 , a condition which is practically realized in static 

ixperiments or in those upon slow electrical oscillations, it 

ollows from (15) that 

6 = e'„ = I -f 2$'k.(16) 

In such experiments e is the dielectric constant of the 

nedium. From (2) and (13) it is evident that d,' can be called 

he dielectric constant of the ions of kind //. The resultant 

dielectric constant is then the sum of the dielectric constants of 

he ether and of all the kinds of ions. 

Furthcr, hk is a constant which is associated with the 
natural period Th which the ions of kind h would have if their 

:ocfficient of friction ah could be neglected. For in this case 

X = o, ah = rh = o) it follows from (1) that 

kh == rf rh = Th\2rc.(17) 

It has been shown above on page 36 r that a complex 

lielectric constant indicates absorption of light. If n represent 
he index of refraction and k the coefficient of absorption, then 

rom the discussion there given [equation (1 t)], and the equa- 

ion (15) here deduced, 

u\l idf 
1-2- l + t..... TV 

T“ 

(t8) 
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Using these series and introducing in place of r the period 

Titself, in accordance with (io) and (17), (19) becomes 

T , W 2?S;7> 
i + H-->-Ti-r • • • 

- T*2 K 
T} 1 ^ (22) 

Now in fact a dispersion formula with four constants, 

namely, 

B C n2 — — t 'J' 2 _|_ Jl -|_ -j~ 
J-4 t (23) 

in which A’, A, B, and C are positive, has been found to 

satisfy observations upon the relation between ?i and T for 

transparent substances. (23) is easily recognized as the 

incompleted series (22), and it is easy to see from (22) why the 

coefficients A'y Ay By and C must be positive. It also appears 

that the term A of the dispersion equation, which does not 

contain Ty has the following physical significance: 

A = 1+ 2K.(24) 

Since by (16) the dielectric constant e has the meaning 

e = I + 2&‘h = l + 2$, + 2$'r> 

it appears that 

e-A = 2&r>.(25) 
i.e. the difference between the dielectric constant and the term of 

the dispersion equatio?i which does not contain T is always posi¬ 

tive and is equal to the sum of the dielectric constants of the ions 

whose iiatural periods lie in the ultra-red. - In this way the 

discrepancies mentioned above between Maxwell’s original 

theory and experiment are explained. 

Such a difference between e and A must always exist when 

the dispersion cannot be represented by the three-constant 

equation 

B C 
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i.e. in the form 

w2 = £3 + 2 
Mh 

a2 - K%' 
. . (29) 

it is evident that <52 must be identified with the dielectric con¬ 

stant e- In the case of the substances just mentioned ril can 

be well represented by equation (29); for example, for quartz, 

for the ordinary ray, the values of the constants are: 

Mx = 0.0106, Af* = 0.0106, 

Mt= 44224, A22 = 78.22, 

m3 = 713-55, V = 430.56, <52 = 4.58. 

In this Ak — Th• V, and the unit in which A;, is measured is a 

thousandth part of a millimetre (/*). According to (29) these 

seven constants Mx, M2, Ms, At, A2, A3, b2 must satisfy the 

equation 

b2- 
A* + A/ + A/' 

(30) 

The numerical value of the right-hand side is 3.2, that of the 

left 3.6. The difference is due to molecules whose natural 

periods of vibration lie so far out in the ultra-violet that rk = o 

for them. If the sum of the dielectric constants of these mole¬ 

cules be denoted by $0;, then, from (29), 

b2 = 1 -j- -j- 2Q'h, Mh — tS/'-zI*2. 

Hence the following takes the place of (30): 

b2 - 1 (30') 

Now the value of the dielectric constant of quartz lies between 

4.55 and 4.73, which agrees very well with the value of b2. 

For fluor-spar 

Mx = 0.00612, X2 = 0.00888, 

M2 = 5099, A22 = 1258, 

b2 = 6.09, € = 6.7 to 6.9. 

[Here again (30) is not exactly satisfied.]. 
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npressed periods which does not include a natural period of 

ie ions. But whenever an impressed period coincides with a 

atural period, the normal course of the dispersion is disturbed, 

or it follows from (19) that for periods T which are smaller 

ian a natural period Tk , i.e. for which I — has a nega¬ 

te value, say — £* m contains the large negative term 

- §'h : C; while for those values of T which are larger than 

n 
assumes the negative value £', so that /r contains 

e positive term + i)'h : I fence as T increases contin- 

ously ril in general decreases; hnt in passing through a region 

f absorption it increases. Within the region of absorption 

[9) cannot be used, but nl and k must be calculated from 

[8), ah being now retained in the calculation. In any case 

2 must be a continuous function of 1\ Hence the general 

)rm of the tr and k curves is that shown in log. 102, The 

alue of k differs from zero only in the immediate neighborhood 

f Th, and there it is larger the smaller the value of For, 

om (18), when 7' = Tk , 

Hence if ah, i.e. rh, is small, the absorption bands of the 

abstance are sharp and narrow; but if ah is large, the absorp- 

on extends over a large region of wave lengths but has a 

mall intensity. 

The form of the anomalous dispersion curve shown in Fig. 

02 represents well the observations upon substances which 

xhibit strong selective absorption, for example, fuchsine.* 

'he .gases and the vapors of metals are distinguished by very 

arrow and intense absorption bands, and anomalous dispersion 

ccurs in the neighborhood of these bands. 
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reflected rays and forms a real image of L upon the screen 5. 

This image is spread out into a spectrum by means of a suitably 

placed glass prism. This spectrum then shows the distribution 

of light indicated in the figure: the curve vinpq represents the 

limiting curve of total reflection. The break in the curve 

between n and p shows at a glance the effect of anomalous 

dispersion. Between n and p there is a dark band, since, for 

the colors which should appear at this place, the index of 

refraction of the flint glass is the same as that of the fuchsine 

solution, so that no reflection whatever takes place. The 

index of refraction within the region of maximum absorption 

cannot always be determined by this method, since, on account 

of the high absorption, the partial reflection in this region is so 

Red 

Yellow 

Blue 

large (cf. metallic reflection) that it passes continuously into 

total reflection, so that no sharp limiting curve appears, n and 

k can then be determined from the partial reflection as in the 

case of the metals. 

A striking confirmation * of the theory here presented has 

recently been brought out by the discovery of the fact that for 

very long waves (A =« 56^) quartz has a much larger index 

(;/ = 2.18) than for the shorter visible rays. Equation (29) 

gives, with the assumption of the values of the constants given 

for quartz on page 391, n =s 2.20. Hence if the radiation from 

an Auer burner be decomposed into a spectrum by means of 
u nrtctm nf mtnrtv Imi<rr wtwnm fAnrwl Km/nml th#* trinlAf* 
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end of the spectrum and may therefore be easily iso 
cutting off the other rays with a screen. 

The case inverse to that of narrow absorption band 

in which not ah but bh or are to be neglected in 
(15), i.e. the case in which the region of absorption 

which no natural periods of the ions occur (the ir 

periods are larger than the natural periods could poss: 
In this case, from (18), 

The last 2, that connected with the index v, refe 
natural periods which lie in the ultra-violet. If these 

are assumed to be small in comparison with T, then fr< 

if, as on page 391, 2d„ be called 

n\\ — /c2) = x + 3' + y Air8 
7-2 -f- ’ 

2 n2K — V ^ 
2212 -)- 

If only ions of kind h are present, it appears tl 

decreases from T == 00 , n decreases continuously, 

absorption, which covers a broad region, reaches a m 

for a certain period T. These equations appear to r 

well for many substances the dispersion phenomena as 
observed by means of long electrical waves ranging 

the limits X = 00 and A. = 1 cm.* 

4. Dispersion of the Metals.—In considering coi 
of electricity it is necessary to bear in mind that with 

conductors a constant electrical force produces a co: 
displacement of quantities of electricity, and that the 

have no definite positions of equilibrium. The idea n 

of in electrolysis, that the displaced electrical quant 

connected with definite masses (ions), will be applie< 
metals to the extent that the motion of the ions 



possessed inert mass m. But this may be only apparent 

mass, since the inertia may be accounted for by self-induction 
(cf. note, page 383). 

The constant $ of these conducting ions must be taken as 
infinitely great, since, according to (2), is proportional to 
the displacement of the ions from their original position be¬ 

cause of the influence of a constant electrical force. The equa¬ 
tion of motion of these ions is therefore obtained from equation 

(1) on page 383 by substituting in it = 00 . It is, therefore, 

= eX ■ re* 
,dS 
9 /’ (34) 

or if the current due to these ions, which according to (5) is 

jx = be introduced, 

+ .(35) 

In this equation in is the (apparent or real) mass of an ion, e 

its charge, Sft the number of ions in unit volume. From (35) 
it is evident that if two kinds of conducting ions, one charged 

positively and the other negatively, whose resistance factors 

are rx and r2, respectively, are present, then for a constant 

current the following holds: 

S»i , 9ta 
= .(36) 

r\ '2 

in which cr is the specific conductivity of the substance measured 

in electrostatic units (cf. page 358). 

For periodic changes, since JST = — zr-gj-, by (35)> 

Jx 

i in r 

r7W + ft 
. d* 

tTdP 
or 

4 
in 

~ r7 +ir 

• • (37) 
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Equation (14) on page 386 must then be extended 
term of this kind so that if, for abbreviation, 

m : cr* = in',. 

the resultant complex dielectric constant takes the form 

*'=■+2 si 

, I b X 2 — — 
1 r t 

7 + 4^2— 
— kir 

31 
VI 

r 

If it be assumed that the periods arc remote from 

natural periods of the ions of kind h, so that ah may be : 

lected, then since 6' = n\\ — /at)2, it follows from (39) 

separation of the real and the imaginary parts, that 

n\i - xr2) = 1 

2*= 2*r]T- 

From this it is evident that in the case of the metals k 

be greater than I, since the right-hand side of (40) ma 

negative not only on account of the second term, but als 

account of the third term, which is proportional to the mas 
of the conducting ions. For a given value of mf and t. 

right-hand side of (40) becomes negative sooner the small 

is, i.e. the larger the specific conductivity. Furthermore, 

explains the second difficulty which was mentioned on ] 

368, namely, that for the metals u2k is smaller than crT. 

if m' = o, or r = 00 , (41) actually gives, in connection 

(36), the relation demanded by Maxwell’s original the 

namely, 

n2K = 27tt2— =zcr T: 
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is the case when the period is small (r small) and the conduc¬ 

tivity large (r small), then (41) gives u-k < <jT* 

Still more general equations than (40) and (41) could be 

formed by taking account of the conditions represented by (33), 

which would correspond to the assumption that, in addition to 

the actually conducting ions, other conducting constituents 

were present, which constituents, however, under the action 

of a constant electric force, would be displaced only a finite 

distance from their original positions. This is the case of 

so-called internal conductivity which can be roughly imitated 

by embedding conductors in dielectrics. Whether such an 

assumption is necessary or not cannot be determined without 

a more complete investigation of the dispersion of the metals 

than has as yet been possible. 

Equations (40) and (41) also account for the fact that only 

in the case of substances which are as good conductors as are 

the metals does the electric conductivity cause absorption of 

light, while in the very best conducting electrolytes the con¬ 

ductivity is still so small that they can be quite transparent, as 

observation shows them to be. Thus, for example, the specific 

conductivity of the best conducting sulphuric acid or nitric acid 

is only 7 * 10 5 times that of mercury. Since for the latter 

(cf. page 358) cr iou\ for the best conducting electrolyte 

cr =/• 1011. Now the period of the light vibrations is about 

7" = 2* iO“15, hence cr 7' 14 • 10"~4 or 0.0014. But, from 

(41), iilK is always smaller than crJ\ Thus k, i.e. the light 

absorption, or at least that part of it due to conductivity, is 

very small. 

* For a more complete discussion cf. Drutic, Phy.s. Xeitschr. p. 161, January, 

1900. 



CHAPTER VI 

OPTICALLY ACTIVE SUBSTANCES 

i. General Considerations.—If a ray of plane- 

light falls perpendicularly upon a plane-parallel plate 

the plane of polarization of the emergent ray is the 

that of the incident ray. This is generally true fo 

stances, including crystals which are cut perpendic 

the optic axis. 

Nevertheless the so-called optically active sub static 

a striking exception to the rule. Thus, for exampl 

of quartz, cut perpendicularly to the optic axis, rc 

plane of polarization strongly, and even a sugar soluti 

it appreciably. This last fact is the more remarkabl 

it is customary to look upon a solution as a perfectly 

substance; but this phenomenon indicates that it i 

tropic. For, from considerations of symmetry, if a 

were perfectly isotropic, it could produce no change 

in the plane of polarization of the incident light. 

This phenomenon therefore indicates that, optic 

sidered, a sugar solution possesses no plane of symmc 

otherwise, if the plane of polarization of the incic 

coincided with this plane, no rotation could take ph 

the nature of a solution is of itself evidence that it has 

properties in all directions. Hence the form of the d 

equations which are able to describe the optical proc 

sugar solution must be such that it remains unchange 



change if only one of the coordinate axes is inverted, i.e. if, 

for instance, x and y remain unchanged while z is changed to 

— z. Substances for which differential equations of this form 

hold are called tinsymmetrically isotropic. 

On the other hand a crystal which, like quartz, has no 

plane of optical symmetry is called an imsy mine trie ally crystal¬ 

line substance. 

2. Isotropic Media.—Lack of symmetry in a solution can 

have its origin only in the constitution of the molecules, not 

in their arrangement. In fact le Bel and van’t Hoff have been 

able to bring the rotating power of substances into direct con¬ 

nection with their chemical constitution. In the case of solids 

the lack of symmetry may be due to the arrangement of the 

molecules. 

An attempt will here be made to extend the preceding 

theory by altering equation (i) on page 383, Maxwell’s fun¬ 

damental equations being as usual maintained. 

The unsymmetrical constitution of a substance can be 

recognized only by comparing its properties at one point with 

those at a neighboring point. The extension of the preceding 

ideas as to the motions of the ions will consist in considering 

the displacement of an ion to depend not only upon the elec¬ 

tric force which exists at the point occupied by the ion, but 

also upon the components of the electric force in the immediate 

neighborhood of this point. In order to express this idea 

mathematically it is necessary that equations (1) or (2) on page 

353 contain not only X but also the differential coefficients of 

X, F, and Z with respect to the coordinates. Now in view 

of the condition of isotropy, i.e. that the properties of the sub¬ 

stance in one coordinate direction are not to be distinguished 

from those in another, the only possible extension of (2) is 

t9 / 

** = vkx+f 
to which are to be added two similar equations obtained by a 

cyclical interchange of the letters in (1). So far as isotropy 
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is concerned (i) might also contain the term but 

vanish because otherwise 

,(**, aj , ac\ &X, VY_, SV 

1,3* T T dzl a*> ^ ay ^ ay 
i.e. an accumulation of free charge might take place 

general—for example, in the case of light vibrat 

right-hand side does not vanish. 

An unsymmetrical isotropic medium would res 

the molecules were irregular tetrahedra of the sam 

the tetrahedra of the opposite kind (that which is the 

the first) being altogether wanting. The same woul 

if one kind existed in smaller numbers than the c 

graphical representation of equation (i) maybe obi 

conceiving that because of the molecular structure i 

of the ions are not short straight lines, but short helix* 

in the same direction and whose axes are directed a 

in space. Consider, for example, a right-handed he 

whose axis is parallel to the .r-axis. The component 

the charged ion always toward the left; but a positive 

the ion on the upper side of the helix toward the le 

56 

Fig. 104. 

lower side toward the right. 1 

is therefore a force toward the rij 

is proportional to —• —since 1 

upon the difference between tlu 

Y above and its value below. 

a positive Z drives the ion on 

side of the helix toward the le 

back side toward the right. The resultant effect t< 

right is therefore proportional to + -7—-. These cone 



In consideration of equation (i), equation (i) on page 383 
would become 

#5 _ 
(2) 

If, as on page 385, % be assumed to be a periodic function of 
the time, then there results, upon introduction of the current 

(jx)l = 

m 
. . a 6\dt 

47r[l+z--T2) 

(*■+/' .ds &JJ’ (3) 

in which 
r& 

47r’ ” 4nel • • (4) 

In what follows — will be neglected, which is permissible 

if the periods of the light vibrations are not close to the natural 
periods of any of the ions. The whole current due to all of 
the ions and the ether is then 

in which 

Jx 47t dt 
eX + f 'dV 

dz 
d£\ 
djy I 

6= i + 2 

/ = 

• . (5) 

• • (6) 

The fundamental equations (7) and (11) on pages 265 
and 267 become therefore, if the permeability ja= i, so that 

4nsx-=z —, etc., 
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£_3 
c d1 

dX \  dy 

dy J/ 3_y 
dfi 
dz' 

£ 3 / y i /-f9^ 3-^~j\ _doc dy 
c at[ r+/L3^ ~ 37 J] - - s7- 
- — fT^ 3^~]\ = ?/? — ?- 
£ 3^\ L3y dxjJ dx dy' 

£?/?_9Z 3^ *37 3- 
« ^ 3^ dy ’ c 3/ 3w ~~ 3^r ’ ^ 37 “ 3 

From the same considerations which were giv 
271, it is evident that the boundary conditions to t 

the passage of light through the surface separating 
ent media are continuity of the components paralle 
face of both the electric and magnetic forces. 

In this way a complete theory of light phi 
optically active substances is obtained. 

From equations (7) it follows that 

d^ldX 3 F 3 Z\ 
dt\dx “r" ~dy 37/ ~ °‘ ‘ • 

Hence from equations (7) and (8) there results, by 1 

tion of a, ft, y, as on page 275, 

a, ft, y satisfy equations of the same form. 

3. Rotation of the Plane of Polarization.—If a 
is travelling along the .e-axis, it is possible to set 



p represents the reciprocal of the velocity of the wave. If the 

values in (n) be substituted in (io), there results 

eM— ^fpN = Mfc\ 

eN+ ^fpM = Nfc*. 

These equations are satisfied if 

= M=iN, .... (12; 

or if 

e—/?<*=-M=-iN. . . . (13; 

Hence in this case the peculiar result is obtained that twc 
waves exist which have different values of p, i.e. differed 
velocities. Further, the waves have imaginary ^/-amplitudes i 

they have real ^-amplitudes. 
In order to obtain the physical significance of this it is tc 

be remembered that the physical meaning of X and Y is founc 
by taking the real part of the right-hand side of (11). Hena 

when iN = M, 

X = M cos ^(t — pz), Y = M sin -(/ — pz); . (14' 

when iN = — M, 

X = M cos — (t — pz), Y = — AT sin -(t — px). (15' 
T T 

These equations represent circularly polarized light; anc 

since, in accordance with the conventions on page 264, th< 

#-axis is directed toward the right, the j/-axis upward to ai 

observer looking in the negative direction of the -s'-axis, th< 

first is a left-handed circularly polarized wave, since its rotatioi 

is counter-clockwise; the second is a right-handed circularl] 

polarized wave (cf. page 249). 
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Now these two waves have different velocities Vf and i 

fact, from (12), for the first 

j _ _i_ _ _ _z P — y, - 2 TC* 7\lfy +6’ • • 

and, from (13), for the second 

P‘ 
1 / 

V" ~ + 2 rr 
1 IP 
c\J 4t2c: + e- V: 

Hence the indices of refraction for right-handed and lef 

handed circularly polarized light in optically active substance 

must be somewhat different; and a ray of natural light 
decomposed into two circularly polarized rays one of whic 

is right-handed, the other left-handed. When the incidenc 

is oblique these two rays should be separated. These dedu< 

tions from theory have been actually experimentally verifie 

by v. Fleischl * for the case of sugar solutions and otln 

liquids. 

The effect of the superposition of two circularly polarize 
waves whose velocities are V' and V,r respectively, one < 

which is right-handed, the other left-handed, is 

X=X'+X" = 2M cos 

Y= r+Y" = 2M cos 

1/'- 
cos ~ • — 

r 2 

. 1 sin - f.— 
r 2 

(U 

Hence in one particular position, i.e. for a certain value of , 

the light disturbance is plane-polarized, since, according ’ 
(18), Xand Fhave the same phase. The position of the plai 

of polarization with respect to the ^r-axis is determined from 



i.e. this position varies with z. Thus the plane of polarizatioi 

rotates uniformly about the direction of propagation of th< 

light, the angle of rotation corresponding to a distance z bein^ 

S = 2tT2 
/ 

■ • (19 

provided A0 = Tc denote the wave length in vacuum of th 
light considered. Since pc represents the index n of the sub 

stance with respect to a vacuum, 

S 
z n" — n' 

tc 2 
z~An" — «'), 

Ao 
(i9y 

n/f and nf denoting the respective indices of refraction of th 

substance for a right-handed and a left-handed circularl 

polarized wave. Hence, from (19) and (19'), 

f 
2tt^- = nu — nF.(19' 

If, then, plane-polarized light fall perpendicularly upon 

plate of an optically active substance of thickness z} the plan 

of polarization will be rotated an angle by the passage of tli 

light through the crystal. The rotation $ may take place i 

one direction or the other according to the sign off. nN — , 

may be calculated from 6 by (19'). 
Special arrangements have been devised for measuring th 

angle of rotation easily and accurately.* In the half-shado 

polarimeter the field of view is divided into two parts in whic 

the planes of polarization are slightly inclined to each othe 
But even with the use of two simple Nieols, a polarizer anti ; 

analyzer, when the light is homogeneous and sufficient 

intense the position of the plane of polarization can be dete 

mined from the mean of a number of observations to with 

* For a description of such instruments t*f. Landolt, Das optische I)rehun| 
vcrmOgen der nrganischer Suhstan/en, Hnumschweig, 2d Edition, i8<)7 ; Mttll 
Pouillct, Optik, p. xx(>6 jap Rotation of tlu4 plane of polarization has lx 
practically made use of in sugar analysis. 
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three seconds of arc, provided the setting is made with the 

* of the so-called Landolt band. For when Nicol prisms 

used the field of view is never polarized uniformly through 

so that, when the Nicols are crossed, the whole field is 

completely dark, but is crossed by a dark curved line w! 

was first observed by Landolt. The position of this t 

changes very rapidly as the plane of polarization of the 1 

which falls upon the analyzer changes.* 

4. Crystals.—In order to obtain a law for crystals, it r 

be borne in mind that the constants , which appea 

equations (r) of the dispersion theory on page 383, dej: 

upon the direction of the coordinates. Also that the tc 

which have been added in this chapter and which correspon 

the optical activity can have a much more general form with 

crystal than that given in (1) on page 401. Nevertheless 

assumption will be made that, so far as these added terms 

concerned, a crystal is to be treated like an unsymmetric 

isotropic substance. No objection can be made to this assu 

tion, since the coefficients /‘of these added terms are so sn 

in the case of all the actually existing substances, that 

change of f with the direction which is due to the crystal 

structure can be neglected. 

If the coordinate axes be taken in those directions w] 

would be the axes of optical symmetry of the crystal if it v 

not optically active, the extension of equations (7) and 

would bet 

I 3 / 
[eiX+f\ 

‘3F &2T' \ By 

~c 3^ . 3~ dy ~ ) “ by ~ 

I 3 / ~ZZ By 

~c 
u- 

zr . 'Sx 'A? J' 

j 7) a 
clr 

I 3 , ~zx 3FT \ B ft \)t* 
~c 3? - iy dx .. > ) - - 



C bt 3-c 

in which 

x -f 2 

by’ C bt 3-r 
v *. W <•* 

3- ’ C bt by ' bx > (21) 

-(r 
-s = 1 + 

^2 —*■* I "**|—* ^ S, « 
r7\2 , h 

w 

/■- 

' T 

>,3//X 

r 

(22) 

(23) 

In this , $* 94 i ■>'■)* 9?4 denote the three different dielec¬ 
tric constants of the ions of kind h along the three coordinate 

directions, and r' , r", r" are proportional to the three periods 
of vibration corresponding to the three axes. In (23) $ , T 

are mean values of, Q", and /*, <, T‘“, respectively. 
For the sake of integration set, as on page 3C9, 

ei* = Mr**, f ~ V AV-/V-, w = etZ = 7W-, 
2 7* / ~Tr 1 mx-\-nypi 

V 
(24) 

in which u, v, iv may be interpreted as the components of the 

light-vectors. Then it follows from (20) and (21),* using the 
abbreviations 

C* : r, » a*, c* : v., - //\ C* :es = t*, . (25) 

2 Tt/X ’ 

"1: yv.S.(26) 

(in which (■ denotes a mean value of f;i) that the expres- 

* This is mow fully .h v.-lcp.sl in Winkelmanii’s Handlmch, Optik, p. 79I. 
Tho normal sm-Uv and tin- ray surf.ur an- more fully discussed l>y (). Weder in 
Pic Lichtlii-w.-mmi; in rwt-iaxitji-n Crystallen, Hiss. Ia-ipr.ig, 1896, Xcitschr. f. 
Krystallogr. 



4io THEORY OF OPTICS 

sion for the velocity V in terms of the direction my n} p of 

wave normal takes the form: 

m\V2 - &2){V% - c2) + n\V2 - c2){V2 - a2) 

+ p2(V2--a2)(V2--b2) = if. ( 

The introduction of the angles gx and g2 which the w 

normal makes with the optic axes gives, as on page 320, 

2 V2 = a2 + c2 + {a2 — (?) cos gx cos g2 

+ Y(a2 — (?)2 sin2 gx sin2 g2 + 4?fy I 

2 V2 — a2 + <? + (a2 — c2) cos gx cos ( 

— Y(a2 — c2)2 sin2 gx sin2 g2 + 4*/2- . 

It appears from this that the two velocities Vx and V2 

never identical, not even in the direction of the optic axes. 

Thus upon entering an active crystal a wave always div 

into two waves which have different velocities. These 
waves are elliptically polarized, and the vibration form oft 

is the same, but the ellipses lie oppositely and the directio 

rotation in them is opposite. The ratio h of the axes of 

ellipse is given by 

I Via2 — (?)2 sin2 gx sin2 g2 -f - 4if 
h A—r ==•-• • ! 

~ h V 

Hence in the direction of an optic axis (gx or g2 = 
h == 1, i.e. the polarization is circular. But when the v 
normal makes but a small angle with the direction of an c 

axis, the vibration form is a very flat ellipse, since 27/, eve 
the case of powerfully active crystals, is always small in c 
parison with the difference a2 —* c2 of the two velocities. 

Biaxial active crystals have not thus far been founc 

nature; but several uniaxial active crystals exist. Quart 
one of these.. It exists in two crystallographic forms, on 
which is the image of the other; hence one produces ri| 



perpendicular to the optic axis is given, as in the case o 
isotropic media, by the equation 

f 7t 

V A0 v ; ■ 
When z = 1 mm. and yellow light (A0 = 0.000589 mm.) is 

used, = 21.70 = o. I2?r radians. Hence in this case 

f A 
27t J~ = ntf — ri = o. 12 • “ = 0.000071. . (31 

In this n( and n" denote the two indices of refraction whicl 
quartz must have in the direction of its optic axis in conse 

quence of its optical activity. Now a double refraction nu — n 

of the magnitude given in (31) has actually been observed ii 

quartz in the direction of its axis by V. v. Lang. This doubL 

refraction can be conveniently demonstrated by the methoc 

due to Fresnel, in which the light is successively passed througl 

right- and left-handed quartz prisms whose refracting angle 
are turned in opposite directions. 

If a quartz plate of a few millimetres’ thickness, which i 

cut perpendicular to the axis, be observed between crosse< 
Nicols in white light, it appears colored. For the plane c 

polarization of the incident light has been rotated a differen 

amount for each of the different colors, and all of those color 

must be cut off from the field of view whose planes of polariza 

tion are perpendicular to that of the_ 

analyzer. Hence color of the HHjHHHHHHHH 

quartz plate changes upon rotation 

of the analyzer. In convergent 

white light the interference figure 

described on page 356 for uniaxial 

crystals when placed between 

crossed Nicols are observable only 

at considerable distance from the 

centre of the field. Near the centre 

the circular polarization has the 

effect of nearly destroying the black Fig. 105. 

cross of the principal isogyre. Hence a quartz plate cut per 
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pendicular to the axis shows, between crossed Nicol 

vergent light, the interference figure represented in F 

Spiral interference patterns appear when the incic 

is circularly polarized. The calculation of the form 

spirals, which are known as Airy’s spirals, is : 
Neumann’s “ Vorlesungen fiber theoretische Optik, ” 

1885, page 244. 

5. Rotary Dispersion.—The rotation 8 of the 
polarization, which is produced by optically active su 

varies with the color. The law of dispersion can be 
from equations (6) and (19) by setting the thicknes 

plate z = 1 and introducing for A0, the wave length in 
A, the wave length in air,* thus 

^ ~ -5? ^hfh^k 

"5. - ($)*. 

in which k is a constant. 

If the natural periods of the active ions f are 
smaller than the period of the light used that (rA : r 

ligible in comparison with 1, there results the simples 
the dispersion equation, namely, 

8 
A2* 

This equation, due to Biot, agrees approximately 
facts; yet it is not exact. If all the natural perioc 
active ions lie in the ultra-violet, (32) can be deve 
ascending powers of (rh : rf and put into the form 

A 1 

A2 + ■+rf + 
Now in most cases the* first two terms of this 

(Boltzmann’s equation) are sufficient; nevertheless tl 

* In view of the small dispersion of air this is permissible. 



so for quartz, in which $ has been measured over a large range 
of wave lengths, namely, from A. = 2j* to \ = o.2M. The 
constants k^, kt, k3 can have different signs, since the f'h 

corresponding to the different kinds of active ions need not 
have the same sign. 

If some of the active ions have natural periods t in the 
ultra-red, then (32) must be developed in powers of (r : r.)2. 
The equation then takes the form 

^ + ^<f + •• • + K ^ + K ^ + • • • (35) 

If, as in the case of quartz, it is desired to represent the 
dispersion over a large range of colors, some of which have 
periods which are close to the natural periods, then it is better 

to avoid development in series and to write, in accordance 

with (32), 

e=2ia?.« 
Now in the case of quartz the wave lengths \h of the natural 
periods which lie closest to those of light are known for the 
ordinary wave; they are (cf. page 391) = 0.010627, 

A22 = 78.22, A’32 = 430.6. The unit of wave length is here 
taken, as IM =0.001 mm. But the conclusion has already 

been drawn from equation (30') that quartz has ions for which 

Xh is much smaller than the wave length of light. The activity 
coefficient kf of ions of this kind, for which Aa2 may be neg¬ 

lected in (36) in comparison with A2, must be taken into con¬ 
sideration, so that the following dispersion equation is obtained 

for quartz: 

If this equation be applied to the dispersion of quartz, it is 

found from observation that k2 = k3 = o, i.e. that the kinds oj 

ions whose natural periods lie in the ultra-red are inactive, and 

that kx and kf have different signs. Now it argues for the 
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correctness of the foundations of the theory here presented 

that, with the help of the equation 

A2 - Ax2 1 A2 2 ~ i2> (38j 

which contains but two constants, since A1 is a constant which 

depends upon ordinary dispersion and not upon rotary disper¬ 
sion, the latter can be well represented, as is shown by the 

following table,* in which the rotation is given in degrees per 
mm. of thickness: 

kx = 12.200, kf = —* 5.046. 

X (in p). 8 obs. 8 calc. 

2.140 1.60 i*57 
1.770 2.28 2.29 

1.450 3-43 3-43 
1.080 6.18 6.23 

0.67082 16.54 16.56 

O.6563I I7-3I 17-33 
O.58932* 21.72 21.70 

0.57905 22-55 22.53 
0.57695 22.72 22.70 

O.546IO 25-53 25-SI 
0.50861 29.72 29.67 

O.49I64 31-97 31*92 
O.48OOI 33-67 33-6° 
0.43586 4i-55 41.46 

O.4O468 48.93 48.85 

0.34406 70.59 70.61 

0.27467 121.06 121.34 
0.21935 220.72 220.57 

* The Z>-line. 

It is possible that values of the constants kx and kr might 
have been chosen so as to give a somewhat better agreement 

with the observations. Nevertheless the important fact is that 
this two-constant equation is in satisfactory agreement with 

observation, while the three-constant equation, which is 
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whose natural periods are extremely small, much smaller than 

those correspondmg to Ar 

As the table shows, S increases as A decreases. This is the 
course of normal dispersion. But, as appears from (38), this 
ondition would be disturbed, i.e. anomalous rotary dispersion 

would take place, if the wave lengths were smaller than Ax, 
for then $ would be negative. In general anomalous rotary 

ispersion is produced whenever A approaches the wave length 
\h of a natural period. But even when A is much greater than 
\h, a change in the sign of $ may take place, as is shown by 
the general equation (36), if two kinds of active ions are 
present which have activity coefficients kh of opposite sign. 

In this case maxima and minima in d for variations in A can 

also appear. 
Cases of anomalous rotary dispersion have often been 

observed. (Cf. Landolt, “ Das optische Drehungsvermogen, ’ ’ 
p. 135.) G. H. v. Wyss has produced anomalous rotary 
dispersion by mixing right- and left-handed turpentine (Wied. 

Ann. 33, p. 554, 1888). In general every active substance 
must show anomalous rotary dispersion in certain regions of 
vibration, but these regions do not necessarily lie within the 

limits of the vibrations which can be produced experimentally. 
6. Absorbing Active Substances.—If the wave length A 

lies close to the wave length Xh which corresponds to the natural 

period of an active ion, then, by (36), the rotation S of the plane 
of polarization is very large. But in this case the coefficient 
of friction ah, which was neglected on page 388, must be taken 
into consideration. ah must also be taken into consideration 

when the substance shows a broad absorption band. In this 

case e as well as /'becomes complex in equation (10); thus 

f. W,. 
(39) 
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The quantity p in equation (11) must therefore also be 

taken as complex. If it be written in the form (cf. page 360) 

1 — iK • 
P = —y ~.(40) 

V represents the velocity and k the coefficient of absorption 

of the wave. Since there are two values of p obtained from 

(16) and (17), there must also be two different coefficients of 
absorption, /c; and at", one of which corresponds to a left- 

handed and the other to a right-handed circularly polarized 

wave. This has been experimentally verified by Cotton for 
solutions of the tartrates of copper and of chromium in caustic 

potash (C. R. 120, pp. 989, 1044, Ann. de chim. etde phys. 
(7) 8, p. 347, 1896.) That these solutions also showed 
anomalous rotary dispersion is easily understood from the 

foregoing, since the strong absorption which they produce 

is evidence that A. lies in the region which corresponds to the 

natural periods. 
If the two indices of refraction ?i! and n,r for left- and right- 

handed circularly polarized waves be introduced into (16), 

(17) , and (18), there results 

c{ pn — p!) = nn — n' — i(n" k" — nf k') = — = (41) 
TC A. 

If a sharp absorption band is present, which, according to the 
above, corresponds to a small value of ah, then the difference 
between K,r and k; within the absorption band itself becomes 
very marked. For when t2 = bh, it follows from (39) and 
(41) that 

n" — ri = o, rirKn — W Kr = —h~l . . (42) 
*h-c 

If r is farther from the natural period rk, and if ah is sufficiently 
small, so that it is only necessary to retain terms of the first 
order in k ox ah, then, from (39) and (41), the law of dispersion 
for the difference of the coefficients of absorption takes the 
form 
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aries, a change in sign, and also maxima and minima 

" — u'k', may occur, provided there are present several 

of ions which have activity coefficients /' of different 

ireover the difference in the absorptions of the right- and 
"t-handed circularly polarized waves is always small in 
rison with the total absorption. 

r if/2 be neglected, and if only one absorption band is 
t, it is easy to deduce, from (16) and (17), 

h"k" — u'k' __ 2 7tfk 
u'^T+Ji'k*- X n (44) 

:h n denotes the mean of n' and ntf. 

tfh:X is always a small number. 

•reover it is to be observed that it is not necessary that 

ictive substance which shows an absorption band should 

: the phenomena here described. For, in order that this 

1 case, it is necessary that the ions which cause the 

tion should be optically active. It is easily conceivable 

bsorption and optical activity may be due to different 
:>f ions. 



CHAPTER Vn 

MAGNETICALLY ACTIVE SUBSTANCES 

A. Hypothesis of Molecular Current 

i. General Considerations.—Peculiar optical p] 
are observed in all substances when they are broug 

strong’ magnetic field. Furthermore it is well kr 
the purely magnetic properties of different substance: 
different, i.e. the value of the permeability pi varies 

substance (cf. page 269). It is greater than 1 
magnetic substances, less than 1 for diamagnetic one< 
a magnetic field is said to produce a greater dens: 

lines of force in a paramagnetic substance than ii 
ether, and a less density in a diamagnetic substanc 
the free ether. Ampere and Weber have advanced 1 
that so-called molecular currents exist in paramag 
stances. According to the theory of dispersion 1 
been here adopted, these currents are due to the ioni 
When an external magnetic force is applied, these 
currents are partially or wholly turned into a definite 
so that the magnetic lines due to them are superp 
the magnetic lines due to the external field. 

According to this theory, diamagnetic substai 
narily have no molecular currents. But as soon a 
brought into a magnetic field, molecular currents 
posed to be produced by induction. These currer 
constant so long as the external field does not char 
ionic charges must be assumed to rotaf-p without- fried 



no energy. The lines of force due to these induced molecula 
currents must oppose the lines of the external field, since 
according to Lenz’s law, induced currents always flow in sue] 
a direction that they tend to oppose a change in the externa 
magnetic field. 

If it is desired to determine the optical properties of a sub 
stance when placed in a strong magnetic field, it is alway 
necessary to bear in mind that both in para- and diamagnetl 
substances certain ions are supposed to be in rotation and t< 

produce molecular currents. If e be the charge of a rotating 
ion of kind i, and T its period of rotation, the strength of th 
molecular current produced by it is 

i — e :T.(i 

If now such an ion, rotating about a point 5)3, be struck b 
the electric force of a light-wave, its path must be changed. ] 

the period of rotation T is very small in comparison with th 

period of the light, the path of the ion remains unchanged i 
form and period, but the point about which it rotates is change 

from 5)3 to a point 5}$' distant £ from 5)3 in the direction of th 
electrical force. The ion then oscillates back and fort 
between 5)3 and 5)3; in the period of the light-wave. The sam 
mean effect must be produced if the period of rotation is large 

provided it is not a multiple of the period T of the light vibra 
tion. Any rotation of the plane of the path, which is produce 

by the magnetic force of the light-wave, may be neglected 
since this is always much smaller than the external magneti 

force. This displacement of the molecular current also pro 
duces a displacement of the magnetic lines of force which aris 

from it, so that a peculiar induction effect takes place, an effec 
which must be considered when a wave of light falls upon 

molecular current. 
This inductive effect can be at once calculated if th 

number of lines of force associated with a molecular current i 

known. 
Now this number can easily be found. Let the paths c 
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the molecular currents all be parallel to a plane which is per¬ 

pendicular to the direction R of the external magnetic field. 

Consider first a line of length l parallel to the direction R. 

Let 9T denote the number of molecular currents due to ions of 

kind i upon unit length; then / * 9T denotes the number upon 
the length /. These currents may be looked upon as a 

solenoid of cross-section q, q being the area of the ionic orbit. 
The number of lines of force in this solenoid is * 

M — 47z$l'iq : c. 

If now there are such solenoids per unit area, then the 

number of magnetic lines per unit area due to these molecular 
currents is 

My = 4 n- 
n^iq 

c 

. 9? 
= 4^—> 

in which 9J: is the number of rotating ions of kind I in unit of 

volume. 
The components of Mx in the direction of the coordinates 

are 

al = —zq%l cos (Kx), cos {Ky\ 
c c 

yl = '—-iqSk cos (Kz). 
• (2) 

2. Deduction of the Differential Equations.—The discus¬ 
sion will be based upon equations (7) and (n) (cf. pages 265 

and 267) of the Maxwell theory, namely, 

An ■ dV d/3 . A71 9F 
cJ*~ dy ~ dz etC-’ cs*~ a? 

(3) 

But while in the extensions of the Maxwell theory which have 
thus far been made only the expression jx for the electric cur¬ 
rent density was modified by the hypothesis of the existence 

of ions, the magnetic current density sx retaining always the 



-Ue i7r«—, here, because of the introduction of the 

rotating ions, sx must also assume another form. 
are defined by (12) on page 268 as the change 

ty of the electric and the magnetic lines of force in 

order to calculate 4nsx it is necessary to take 
tile fact that it consists of several parts. The 

: H is produced directly by a light-wave in the flow 

force through the rectangle dy dz in the ether is 

1 ▼ t i_ _il. _. i 1 _ _1 1 - 

l>y dy dz But another quantity must be added 

uzxntity which is due to the motion, produced by 
ivc, of the point about which the ions rotate, 

ics of force Mx move with the point P. 

to calculate the amount of this portion of con- 

mjjular element dy dz perpendicular to the ^r-axis, 

wliat number of lines of force cut 

ok abed of the rectangle because 
on of the components of the JP\ 

*;• v, C- * 

- first only the lines of force *x 

parallel to the .r-axis. In unit FlG- Io6> 
:ixl>er of lines of force which pass into the rectangle 

Hide a is aud tlie nuniber wbich Pass 

tire side c is dz. The subscripts a and c 

Orf . , , 
ate that the value of the expression oygj is to be 

long these sides respectively. Hence 

tst term is left under the sign of differentiation in 

little the case of non-hmnogencous media for which 
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ax, J3X, yx are functions of the coordinates. In hom< 

substances ax, fix, yx are constant. The number of 

which in their motion • cut the sides a and c, incr 

number of lines which pass through the rectangle 

amount — dy dz-, Similarly the number of 

which in their motion cut the sides b and d of the i 

add to the total flow through the rectangle the 

Because of the component £ of the motion of 'jJJ, 

of force fjx, which are parallel to the y-axis, can cut 

sides a and c of the rectangle. Now the number of lir 

pass through the rectangle changes only because of a 

of the lines ftx about the s-axis, this change being j. 

the lines fix rotate from the + direction ofy to the + 

of x. The effect of this rotation can be calculated by 

ing from the expression (/V-,// {T^vcs 

of lines which cut the side c in a second, the e: 

(/S^—) dz, which represents the number which cu 

second. Since now 

the rotation of fix adds to the flow of lines through the 

the amount + dy dz~[fi^.^. 

Similarly the rotation of the lines yx about the j-; 

the amount + dy dz^[^yl^J to the flow of lines th: 

rectangle. 

The total flow through the rectangle, obtained t 



(4) 

The change in unit time in the number of lines which pass 

through an element of unit area perpendicular to the jr-axis is 
therefore, since for a constant external field alt /?1? yx are 
independent of the time /, 

c) \ , d , 'd , 

4*s*=Tt\a + 3^ “ 

Strictly speaking, the current density is modified in a com¬ 

plicated way by the rotation of the ions. But if the ratio of 
the period of rotation of the ion to the period of the light is 
not rational, it is only necessary, in order to find the mean 
effect, to take account of the motion 77, £ of the centre of 

rotation 
The current density jx may therefore be written as above 

[cf. equation (7), page 385] in the form 

^=^"ar + ^-.(5) 
For the motion of a point which is the mean position of a 
rotating ion of kind 1, two equations will be assumed. The 
first is the same as that given above on page 383, namely, 

d - — - — (6) in- 
4^ ^ 

and corresponds to the case in which can oscillate about a 

position of equilibrium (ions of a dielectric). The second 
is equation (34) on page 397, namely, 

m^ = eX-re^,.(7) 

and corresponds to the case in which 5)3 moves continually in 
the direction of the constant force X, i.e. the case in which e 

is the ion of a conductor, for example a metal, m denotes 
the ponderable mass of the ion. 

If the changes are periodic, so that every X and every B, is 
. t 

proportional to e* r, there results from (6) 

d€ x _|_ i 
4 7tr 4 ns* 

dX 

47T 'dt 9 (8) 
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while from (7) 

■di 
I 1 m \ c:.-.\r + 7?-j n 

dX 

dt ' 

Hence, setting as above 

/*£) 
a, r{» -ta = ;//, 

47T ' 47^ 

(5) gives, in case r is an ion of a non-conductor, 

1 t)Ar f . i)iY> 
Jx 4 7t dt 

f m ) 

\1 "f" i+/«/r - ’ * 
But if ^ is the ion of a conductor, 

Jx 
1 dX ( 4^rsJt' 

47T (V \ 1 ‘ /> — w/ 

In any case it is possible to set 

e dX 

4 n dt ’ 
c)T 

47T (V ’ i\7T Ot * 

• 0 

01 

(} 

(i: 

0: 

in which e! is in general a complex quantity depending upon ■ 
Moreover from (1), (2), and (8) there results, for an ion 1 

a non-conductor, 

1*4- ia /r • Vr 
<1 

<T 
cos (Kz) A', (I* 

and from (9), for an ion of a conductor, 

V 
4.7Tr^l 

ir — w'/r 
?r cos (Air) X. 0! 

In both cases it is possible to set 

Yyp — v cos (Xz) X, .... (if 

in which v is in general a complex quantity depending upon 1 

A similar expression may be obtained for etc. Settin 



then from (13), (4), and (16) the fundamental equations (3) 

become 

I 3 
c dt 

Z oy bz 
Jr0z^'zZ' VxZ^ 3~y'VxY '3- 0,y’ 

c Zt\P^dx{ * 

I 0 (' , 3 , „ 3 , y. 3-rY 3 Y 
— — ^ y-\-^-\v Z—v, Y) — —yxZ)\ =—--5-, 
c Zt l ay y ox ) c>y ^>x 

(x8) 

e' dZ_ dy __dft £_' 3 K 3« _ 3 y e'^Z. _d_£ _d* , 

c 31 dy dz’ c dt dz d-ir’ ^ 3/ 3^r dy' 

When several kinds of molecules are present the same 

equations (18) and (19) still hold, but the constants e' and v 

are sums; thus 

ef = 1 + . 

H 

h''h r + 47tT2 
;<hj’n 
'.3 r 

v\ 

1 4- 1 
. a l>„' T 

% 

t>’u 

_Ik 

lk 

(20) 

(21) 

The index h refers to the ions of a dielectric, the index k 

to those of a conductor. Th is positive or negative according 
as the positively charged rotating ion strengthens or weakens 

the external magnetic field. In the case of a negatively 

charged ion T,, is to be taken as negative when the lines of 
force of the molecular current lie in the same direction as those 

of the external magnetic field. In the case of paramagnetic 
substances T,, is positive for the positively charged ions and 

negative for those charged negatively. For diamagnetic ions 

the case is the inverse. Further, qh is to be considered as 

dependent upon the strength of the outer magnetic field, for 

when the magnetization is not carried to saturation all of the 

molecular currents have not been made parallel to one another 
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—a fact that is most simply expressed by saying that the value 

of qh is then smaller. qh is therefore to be assumed propor¬ 

tional to the magnetization of the substance. From theii 
method of derivation (cf. page 422) it is evident that equations 

(18) and (19) are perfectly general, i.e. hold also in non-homo- 

geneous bodies for which e' and v are functions of the coordi¬ 

nates. 
3. The Magnetic Rotation of the Plane of Polarization.— 

Assume that the direction of the beam of light is parallel tc 

the direction of magnetization, and let this direction coincide 

with the £-axis. Then X, F, a, j3 depend only upon z and /, 

provided plane waves are propagated along the £-axis. 
Furthermore, Z = y = O, and 

vx = Vy = o, r* = r. 

Hence the fundamental equations (18) and (19) become 

1 a , , . 

I 9_ 

c dt 

dx\ 

dz \ 
dV 
dz ’ 

ft + v 
dj 

dz 
d* 

dz ’ 

e'd y _ da- 
c dt dz’ c dt dz' 

(22] 

(23: 

A differentiation of these equations with respect to t and £ 

da d/3 
substitution in them of the values of taken from (22' 

dt dt v ‘ 
gives 

£ alST _ v dsY ' 
c2 Q^2 dz1 ' c dtdz%y 

_ 8*F v a3X 
d dfi ~~ dz* c dtdz1’ 

• • (24; 

For the sake of integration write, as above on page 404, 



Then there results from (24) 

e'M = fe?{M + i — N), 

e'N = /V(iV - i~M). 

These equations can be satisfied in two different ways, 

namely, if 

A*(I + = e', M = m, .... (26; 

or if 

/v(i — —) = e\ M = — £N. . . . (27) 

From the interpretation given on page 405 of the analogous 
equations (12) and (13) it appears that equations (26) and (27 

represent right-handed and left-handed circularly polarized 
waves and that these waves travel with different velocities. 

The first (26) is a left-handed circularly polarized wave, and 
the value of p corresponding to it is 

The value of p corresponding to the right-handed circularly 
polarized wave is 

cr 

In case e' and i.e. pr and prt\ are assumed to be real, a 
superposition of the two circularly polarized waves gives 

plane-polarized light whose plane of polarization rotates, while 

the wave travels a distance z, through the angle 

(30) 
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If, as is generally the case, y : cr is small in comparison wi 

l, then, from (30), 

d=w*- 

When v is positive the direction of the rotation is from rig 

to left, i.e. counter-clockwise, to an observer looking opposi 

to the direction of propagation. The positive paramagnetic io: 

rotate in the same direction when the magnetization has tl 

direction of the positive £-axis. Hence when y is positive t 

rotation of the plane of polarization is in the direction of t. 

molecular currents in paramagnetic substances. 

Since the direction of rotation depends only upon the directi 

of magnetization, for a given magnetization the rotation of tl 

plane of polarization is doubled if the light after passing throu£ 

the magnetized substance is reflected and made to traverse 

again in the opposite direction. By such a double passage 

light through a naturally active substance no rotation of tl 

plane of polarization is produced. For in an optically actr 

substance the direction of rotation of the plane of polarizatic 

is always the same to an observer looking in a direction opp< 

site to that of propagation, i.e. the rotation changes its absolu 

direction when the direction of propagation changes. 

Whether the rotation § is in the direction of the parama± 

netic moleadar currents or opposite to it cannot be determim 

from the magnetic character of the substance (whether para- < 

diamagnetic), for the sign of v cannot be calculated from tl 

permeability ^ of a substance when more than one kind 

rotating ions is present.* In accordance with (19) on pa^ 

270, the permeability is defined by setting the enti 

density of the lines of force M2 in the direction of the z-ax 

equal to yy. Now by (2), when the magnetization is in tl 

* Reiff called attention to this point in his book, “ Theorie molecularelektriscl 
-- >> rr:_a._j_• /■> „ 
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direction of the #-axis, the total number of lines in unit section 

(the so-called induction) is 

= W = y + ^Siqll — r + (31) 

Hence the substance is para- or diamagnetic according as 

o. 
c T < • • (32) 

But no conclusion as to the sign of v can be drawn from the 

sign of this sum. Take, for example, the simplest case, 

namely, that in which two different kinds, 1 and 2, of paramag¬ 

netic ions are present. Let ci = — e% = e, 9^ = 9^= 9?, 

Tx = — T2 = T, qL = q2= q. Then, from (31), 

But, from (21), when ah and bh are negligible, 

y=7T^ «,)• 

Thus the sign of v depends upon the difference of the two 

dielectric constants and 

Observation also shows that the magnetic character of a 

substance furnishes no criterion for determining the direction 

of the magnetic rotation of the plane of polarization. 

4. Dispersion in Magnetic Rotation of the Plane of 

Polarization. — If the wave length in vacuo A0 = Tc of the 

light used be introduced into (30'), it becomes 

2 7rV4//€/ 2 7T^yn 

V V 
(33) 

in which Yef = n represents the index of refraction of the sub- 
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or 

n% = a + 
b 

A2—3 + 
• (36) 

In this case, from (35), the dispersion equation must be 

written 

+'A2 

A2 - A,2 
+ 41/++/+.. b' A2 , N 

* + —-~, (37) 
A2 - A/ 

i.e. the dispersion equation for the magnetic rotation 6 is, from 

(33), when 2nr2^ is set equal to x, 

S = • • (38) 

This is a two-constant dispersion equation, since At is 

obtained from the equation for ordinary dispersion. The 

experimental results are in good agreement with (38), as is 

shown by the following table: * 

BISULPHIDE OF CARBON. 

Aj = 0.212/«, Aj2 = 0.0450, 
a = 2.516, b = 0.0433, 
«'= — 0.0136, £'=+0.1530. 

Spectr. Line. n calc. n obs. 8 calc. 8 obs. 

A 
B 

1.6115 
1.6179 

1.6n8 

1.6181 

C 1.62x0 x .6214 0.592 0.592 

D 1.6307 1.6308 0.762 0.760 

E 1.6439 1.6438 0.999 1.000 
F 1.6560 1-6555 1.232 1.234 
G 
H 

1.6805 

1-7033 

I.6800 
1.7032 

1.704 1.704 

* Poincar6 has published a collection of other single-constant dispersion 
equations which have been proposed in L’ficlairage Slectrique, XL p. 488, 1897. 
None of these equations agree well with the observations. 
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fact which will be discussed in the next paragraph leads to the 

same conclusion. 

5. Direction of Magnetization Perpendicular to the Rays. 
—Let the xr-axis be the direction of the magnetization, the 

.ar-axis that of the ray. Then x and t are the only independent 

variables and vx = vy = o, vz = r. In the last of equations 
0 jg 

(18) the coefficient appears only in the term — r—, but this 

term vanishes, because from the first of equations (19) X = 0. 

Hence from the preceding discussion the magnetization has no 

effect upon the optical relations when the ray is perpendiadar 

to the direction of magnetization. But as a matter of fact such 

an effect has recently been observed in the case of the vapors 

of metals. This is a second reason for seeking another 

hypothesis upon which to base the explanation of the optical 

behavior of substances in the magnetic field. 

The above theory might be extended by assuming that the 

structure of the magnetized substance becomes non-isotropic 

because of the mutual attractions of the molecular currents in 

the direction of the lines of force. Nevertheless another 

hypothesis leads more directly and completely to the end 

sought. This hypothesis also is suggested by certain observed 

properties of substances in a magnetic field. 

B. Hypothesis of tiie Hall Effect. 

1. General Considerations.—The assumption of rotating 

ions will now be dropped and the previous conception of 

movable ions again taken into consideration. Now a strong 

magnetic field must exert special forces upon the ions, because 

an ion in motion represents an electrical current, and every 

element of current experiences in a magnetic field a force which 

is perpendicular to the clement and to the direction of mag¬ 

netization. Consequently the current lines in a magnetic field 

tend to move sideways in a direction at right angles to their 

direction. This phenomenon, known as the Hall effect, is 
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actually observed in all metals, particularly in bisr 

antimony. 

If an element of current of length dl and inten 

electromagnetic units) lies perpendicular to a magr 

of intensity then the force $ which acts upon the 

is 

$t = imdl§=-£dl& . . . . 

in which i represents the strength of the current in ele 

units. When the coordinate system is chosen as on ] 

$ lies in the direction of the .ar-axis if i and !q lie in i 

tions of the y- and ^-axes respectively. 

If an ion carrying a charge e be displaced a di< 

along the y-axis in the time dt, then, according to j 

the strength of current along dt] is i = eWl'—, in wl 

the number of ions in unit length. Hence from (, 

dl = drjy 

St |f§. 

This is the force acting upon the whole number of i< 

the length dr/. The number of these ions is %l'di?. 
impelling a single ion along the ^r-axis is therefore 

9,= ;|-X 
If in addition there is a magnetization in the directs 

jj/-axis, a displacement C would add a force 

a - 

c dt ay* 

These two terms, (40) and (41), must' be add< 

right-hand side of the equations of motion of the ions 



(7) on Pa&e 423* If it be assumed that the ions are dielectric 

ions, not conduction ions, an assumption which is permissible 

for the case of all substances which have small conductivity, 

then 

4^2 * 

mw* = ‘x-~^s 

2 3^f I 
rer-^T + 

dt c 

e (dr? 

<dt & 
ac - 
31®* 

and by a cyclical interchange of letters 

a2'? ,v 
mdf^eY' 

4 Tte* 

„&=eZ- m 3<a ^ 

$ 

47^ 

V 
d>? 

dt + X dt dt 

& 

i3C i « 52 « 
0/ ^ 

(42^ 

2. Deduction of the Differential Equations.—The funda 

mental equations (3) on page 420 remain as always unchanged 

Since it has been assumed that there are no rotating ions, th< 

ions do not carry with them in their motion magnetic lines o 

force, hence the permeability M = 1, and the previous relatioi 

(cf. page 269) holds, namely, 

4W*— dt' 7' 47rSy 
dfi 

dt' 47ts* = 
dr 
df 

(43 

Furthermore, as above (page 384), 

4nJx = ^ (^ + 4.it2e'3lg), 

4*f,= $i(Y+ * 

4*j. = \t (Z + 4rr^Z). 

(44 

Equations (3), (42), (43). and (44) contain the complet 

theory.* 

* The most general equations can be obtained from the theory of rotating ior 
presented above in Section A in connection with equation (42). The system < 
equations thus obtained would cover all possible cases in which movable ions aj 
present in a strong magnetic field. For the sake of simplicity the two theorh 

are separately presented in Sections A and B. 
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When the conditions change periodically and t 

abbreviations are used, namely, 

•= a, „ — <>, 4 7t 4 7ZC' 

(42) becomes 

<V:(l +7 ? ~ i) ~ 4^r (''& ~ : 
If the j-axis be taken in the direction of the majj 

so that ,'p* — = o, ,fiM -- ,’p, then, by use of the abl 

, b « 
t + 1-, = (->, A K'i = <I>, 

r r- 4arcrc ' 

there results from (46) 

<vT • ft) — / • c’f • <I> ~ „V, 
4 * 

i->! • ft) -4- / • c.'V • 0 ■ r 
47T 

<’C • ft> 

If these equations be solved with respect to f, 
there results 

4?rc,«;(ft>3 — <f>») = vc)(ft).V4 AM'), 

47r<v/(ft;»— 4>a) vS(ft)F — b/uV), 

4?rcC • ft) — 

Hence, from (44), 

. av 
49. = -b7 1 -t 

• r *v a Ml<r> #Jfft> \ .id'y 

2-t ft/3 — fid 1 ct jL-i <-/ — 
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dX , . ZY 
4«7* = e’ Zt ’ 

ZY . 9X 
4 *f, = e" zt 3* ’ 

zz "U) II 

Zt • 

(50 

3. Rays Parallel to the Direction of Magnetization.—In 

this case z and t are the only independent variables, and equa¬ 

tions (3), (43)- and (51) give 

1/ /tZX , . ZY 

c\ Zt ~ 

l_Za 

c Zt 

Zt 

d_y 
dz ’ 

)=-& K- 
Zfi 

Zz 

i_9/? 

c Zt 

ZY 
9t 

. ZX\ 
TV-- 

dtJ 

3 OL 

3 z’ 
dX 

(52) 

da ’ 
o. 

If a and be eliminated, there results 
tt 

3 w~ 
e" ZlX ’ &X iv Z2Y 

Zzl 

e" ol Y 

<* Zil ’ 

iv Z2X 

a a 

&Y_ 

Z£ i" Zfi 'm 

(53) 

For the sake of integration set, as above on pages 404 and 

426, 

-(/ _**) 
X=Me*v 

Then there results, from (53), 

e"M = p~c~M - ivN, 

i.e. the two sets of equations 

Net 
Y-N) 

(54) 

e''N — f<?N+ivM, 

tN, 
(55) 

/A = *'*( 1 - iK'f = e" -(- v, M 

ft* = n"% I - tK"f = e" - v, M = — z'IV. 

//', /c' correspond to left-handed, kh to right-handed cir¬ 

cularly polarized waves. From the meanings given to e" and 

in (50) and (5 1) it follows that 

,,'.(.-,>7 = .+Tz^,l 
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If r does not lie close to a natural period, then th 

imaginary term in ©, namely, z—, can be neglected, so the 

Kr = k!I = o, and since © is always small in comparison wit 

i, and therefore in comparison with ©, 

v,r 2. •+2f (* + *)■ 
«+2 ©"v1 ~~ 0 

(57 

From (19) on page 407 the rotation d of the plane c 

polarization is 
n n ntf 2 _ ^'2 

= z—(n — n) = z 
X n" + *m (5* 

If the mean of n" and nr be denoted by n, then 

6 = z 
n n n 2 

Hence, from (57), 
A0 2ZZ 

(55 

zz * A0 ©2 
(6c 

Thus the index of refraction zz is given, to terms of the firs 

order in <$9 by 

w=i+2~©.(6] 

4. Dispersion in the Magnetic Rotation of the Plane c 
Polarization.—Upon introduction of the values of © and ■ 

from (47) in the last equations they become 

m ■& jr z 
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If n2 can be represented with sufficient accuracy by the 

two-constant dispersion equation (cf. page 431) 

n2 = a + (64: 

(A, the wave length in air, is written for A0), then, from (62), il 

must be possible to represent 6 by the two-constant dispersior 

equation 

6 = 
b'M \ 

(A3-A *?/■ (65; 
ar and bf must have different signs if but two different kinds o 

ions, one charged positively, the other negatively, are present 

This is the simplest assumption that can be made. 

The agreement between (65) and observations upon carboi 

bisulphide and creosote is shown in the following tables : 

BISULPHIDE OF CARBON. 

Ax2 = 0.0450, a* = + 0.1167, br = + 0.2379. 

Spectr. Lino. 8 calc. 8 obs. 

C 0.592 0.592 

/) 0.760 0.760 

£ 0.996 1.000 

F x.225 1.234 

G 1.704 1.704 

CREOSOTE. 

A,2 = 0.0340, a! = — 0.070, // = + 0.380. 

Spectr. Line. 8 calc. 8 obs. 

C o.573 0.573 
1) 0,744 0.758 

£ 0.987 1.000 

F 1 1.222 1.241 

G 1.723 1.723 
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The agreement between theory am! observation is almc 

as good as that obtained by the hypothesis of molecular ct 

rents (cf. page 43 t). 

5. The Impressed Period Close to a Natural Period* 
When the period of the light lies close to a natural perki 

the friction term a cannot be neglected. Assume that T 
r 

close to the natural period 7\ of tin? ions of kind t, a 

write, therefore, r — \ l\( \ •)•,.*;) rgi | ■ g), in which g 
small in comparison with 1. Then in equation (56), sin 

<I> is small, it is possible to write in all the terms which r 

under the sign and do not correspond to the ions of kind 

1 1 

(») — </> /> 
1 

T 

so that, using the abbreviations 

a Oh 
H-V 

I 

1. V "'w,‘ . ,r. 

- (■ - *.)' 

1 r= //, .<0 , : </>, ‘ - /,*, 
. 4^'Vi' ‘ ' 

(f 

it follows from (56), if terms containing g in powers higl 

than the first be neglected, and if g*g Ik* also neglected 

comparison with g or 0, that 

n*\i — ik'Y 

nN\i — iKfy 

1 1 2 g 

4 

/•* 

ik — 0* 

// 

ih ) * 0’ 

The imaginary part of the right-hand side of (68) reaches 

largest value, i.e. a left-handed circularly polarized w» 



But the maximum absorption for a right-handed circularly 

polarized wave occurs when 

2gr ~ 0, i.e. r2 = Tp = 7^(1 - 0). . . (71) 

Thus a small absorption band in incident natural light is 

doubled by the presence of the magnetic field when the direction 

of the field is parallel to that of the light. In one of the bands 

the left-handed circularly polarized wave is strongly absorbed 

so that the transmitted light is weakened and shows right- 

ha?ided circular polarization; in the other band the right-handed 

circularly polarized light is wanting. 

The same result would be reached from the hypothesis A 

of the molecular currents. 

If g is not small and if 2g is numerically larger than 0, so 

that h is negligible in comparison with 2g ± 0, then in (68) 

and (69) k' and k" can be placed equal to zero, provided the 

right-hand sides are positive. Hence at some distance from 

the absorption band 

A+A' + 
B 

0’ 
A-A' + 

B 

2g + <f> 

(In order that the right-hand sides may be positive, the 

numerical value of A must be greater than that of ———-V 
2 g ± </>) 

From equation (59) on page 438, the amount of the rotation 

of the plane of polarization is 

in which 

n i + B 

2g </> 

(72) 

From this it appears that the rotation has the same sign 

upon both sides of the absorption band, and is nearly sym¬ 

metrical with respect to this band, for, at least approximately, 

£ depends only upon g*. The same result follows from equa- 
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tion (62). If d is positive, it appears from page 42^ 

rotation takes place in the direction of paramagnetic 

currents. Since the sign of S is not determined by t 

the small term A \ but by the much larger term B<p : 

and since the numerical value of 2g is to be large 

and since further B is always positive, the sign of 

only upon 0, i.e. upon the charge cv When eY is 

i.e. when 0 > o, the direction of d is opposite to t 

molecular currents, and further, rt > r., i.e. that 

whose direction of rotation is in the sense of the 

currents reaches its maximum absorption for a slow 

T than the wave (r) whose direction of rotation is o 

that of the molecular currents. When cx is negative 

of polarization is rotated in the direction of the 

currents. Then rt < r*, i.e. in general that wa 

direction of rotation is the same as that of the rot 

the plane of polarization reaches its maximum absc 

a shorter period than the wave which rotates in th< 

direction. 

All these results have been verified by experim* 

sodium vapor. These experiments will be discus: 

For both absorption lines of this vapor (the two D 

found to be negative. The two D lines of sodium 

then produced by ?iegatively charged ions. 

The absorption at a place where g = o may be s 

vided 0is large in comparison with h. Then, by (68] 

= n"*=A-A' + ll 

The right-hand sides of these equations must be ; 

they are to have any meaning, i.e. the numerical v 
22 

must be greater than that of -r. The rotation S of 
<P 

of polarization is then proportional to 



6 is therefore large since <p is small. If ex is positive, the 
rotation 6 is in the same direction as the molecular currents, 
i.e. within the absorption band the rotation is opposite to that 

just outside of the absorption band. Nevertheless the rotation 
S need not pass through zero values, for at places where n'k' 

and ii"k" have large but different values it is meaningless to 
speak of a rotation of the plane of polarization. 

6. Rays Perpendicular to the Direction of Magnetization. 
—Let the .s-axis be taken in the direction of the magnetization, 
the x-axis in that of the wave normal. Then ;v and t are the 
independent variables and equations (3), (43), and (51) give 

dt 
+ iv 

1 

c 
iv - 

d_X 

a t 

dry 

dx’ 

M 
c di■ dx’ 

i_a/?_aiT X dy dy 

c dt dx' c dt dx‘ 

(74) 

Elimination of J3 and y gives 

e" X -f ivY = o, 

e" tfY _ d2Y . r d2X 

c1 dt2 a.? 1 c2 zfi 
6f tfZ 

c1 dt1 dx2' 

(75) 

If X be eliminated from the first two equations, there results 

**\d 2Y 

e" J d? ~ dx2 

Setting, for the sake of integration, 

(76) 

X= M-e 
-U-p’x) 

Y= Ne 
~{t — p'x) 

Z — He 
~(e —px) 
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it follows from (75) and (76) that 

v* zv 
e" ~ -p = f V, e' = M = -pN. . (7; 

The velocities of Z and Y are then different, i.e. the sut 

stance acts like a doubly refracting medium. For Z, i.e. for 

wave polarized at right angles to the direction of magnetiz; 

tion, the index of refraction and the coefficient of absorptic 
are obtained from 

p* = n\l -iK? —e' = 1 +2?; • • (7: 
for a wave polarized parallel to the direction of magnetizatic 
the following holds: 

nr\ 1 — Ik')2 =z 1 +2^ m© 

The difference between nr and n is in general very smal 
since it is of the second order in $ provided © is not smal 

Hence this magnetic double refraction can only be observed i 
the neighborhood of a natural period, since then © is ver 

small. 

7. The Impressed Period in the Neighborhood of 
Natural Period.—Set as above r = rT( 1 -+-£■) = + g 

and assume that g is small in comparison with 1. 

Then in every term under the sign 2, save that whic 
corresponds to ions of kind 1, 0 is to be considered a re; 
quantity which is not very small. ^ is then negligible i 

comparison with &. 

Hence, using the abbreviations (67) on page 440, 

B 
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n'\ i — iVf = A -j- 
B[(2g + Hi) A + B] 

A [(2g + ihf — 02] + Bigg 
(80) 

Now for a metallic vapor the index of refraction is always 

:arly equal to i, even when g is quite small. Hence it fol- 

ws (cf. equation for rfi on page 441) that A is almost equal 

1 and B must be very small, so that in the second term of 

e right-hand side of (80), which contains the small factor 3, 

can be neglected in comparison with A. Therefore 

nf\I — zk)2 = A -f- 
Bigg 4- ill) 

(2g + Bif — 02' 
(81) 

The imaginary part, i.e. the absorption, will therefore be 

maximum, provided h is small, when 

Ag1 — ^ = °j i-e- 2g = ± <p. . • . (82) 

Hence when the plane of polarization of the wave is 

xrallel to the direction of magnetization, there are two absorp- 

m bands, one on each side of the single band which appears 

hen the magnetic field is not present. 

For a wave whose plane of polarization is perpendicular to 

e direction of magnetization (78) gives 

,**(I - iKf = A + —^t. • • . (83) 

he absorption is a maximum at a place where g — o. Thus 

7' a wave whose plane of polarization is perpendietdar to the 

Vection of magnetization the absorption is not altered by the 

-esence of the field. 

If 2g is large in comparison with h and 0, k and k' are 

;ry small, and approximately 

B A • 4g2 + B • 2 g B 
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or, since \g- is large in comparison with <p2, approxir 

, ABtf 
n — n = . 

16nzgz 

i.e. the sign of nr — n depends upon the sign of g, bu 

pendent both of the direction of magnetization and oi 

of 0. Voigt and Wiechert have succeeded in verif 

law of magnetic double refraction in the case of sodiun 

8. The Zeeman Effect.—Zeeman discovered that ■ 

vapor of a metal, like sodium or cadmium, is br 

incandescence in a magnetic field, a narrow line in its 

spectrum is resolved into two or three lines (a doul 

triplet) of slightly different periods. + The doublet is 

when the direction of the magnetic lines is the sam 

direction of emission, the triplet when these directio 

right angles to each other. These observations are e 

by the theoretical considerations given above X in cc 

with the law, which will be presented later, that the 

lines of a gas correspond to the same periods of vih 

the absorption lines.§ According to the preceding d 

the two separate lines of the doublet ought to show ri 

left-handed circular polarization, while* * * §in the triplet tl 

line ought to be polarized in a plane which is perpenc 

the direction of the magnetization, and the two oute 

a plane which is parallel to it. These conclusions are 

verified by the experiment. From measurements ■ 
two triplets into which the two sodium lines (Dx an< 

* w. Voigt, Wied. Ann. 67, p. 360, 1899. 

f P. Zeeman, Phil. Mag. (5) 43, p. 226 ; 44, p. 255, 1897. 

£ This method of explaining the Zeeman effect is due to Voigt (Wi( 
p. 345, 1899). The differential equations upon which Voigt bases hi: 
the same as those deduced in § 2, but he refrains from giving any ph) 
ing to the coefficients in the differential equations. 

§ This law results both from experiment and from Kirchhoff’s Is 
proportionality between the emission and absorption of heat-rays. T1 
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esolved, Zeeman obtained for the distance 2g between the 

wo outer lines of the triplet, when the strength of the mag¬ 

netic field was § = 22,400, the value 2g = 2 : 17,800. 

taw, from (82) and (67), 

0 = 2 7tcrxex 

»r since rx = 4/^, and consequently, from (45) on page 436, 

\ = 47t7*e* : ^ , it follows that 

, ^ e &f\e\ 
2P* = 0 = f)ri —— = *-- • —-• 

15 0/1 cmx 2 it cmx • (8S) 

f the values of 2^*, §, and 7^ for sodium light be introduced, 

here results 
e, 

—- = 1.6* io7. 
cm 

This number represents the ratio of the charge of the ion, 

neasured in electromagnetic units, to its apparent mass (cf. 

lote on page 383). From observations upon a cadmium 

ine = 0.48/a) this ratio is determined as 2.4- io7.* 

Michelson has shown from more accurate observations, 

nade both with the interferometer and with the echelon spec- 

roscope, that in general the emission lines are not resolved 

iimply into doublets and triplets but into more complicated 

orms.t This is to be expected when, as is the case with 

* It is to be noted that Kaufmann obtained from the magnetic deflection of the 
:athode rays (Wied. Ann. 65, p. 439, 1898) almost the same number (1.86. io7) 
or the ratio of the charge to the mass of the particles projected from the kathode, 
for the ions of electrolysis this ratio is much smaller (9.5 • io3 for hydrogen, 
l-.i-io2 for sodium). This can be accounted for either by assuming that an 
dectrolytic ion contains a large number of positively and negatively charged par- 
icles (electrons) which are held firmly together in electrolysis but are free to move 
>y themselves in a high vacuum, or to vibrate so as to give out light ; or that the 
dectrolytic ion consists of a combination of an electric charge of apparent mass 
?ix with a large uncharged mass M. In a slowly changing electric field or in a 
ronstant current the electron clings fast to the mass M. But in a rapidly changing 
dertric field, uch as co esn nds t lied t i r t’ons. onlv the electron moves, and 
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Michelson’s experiments, the method of investigation is carried 

to such a degree of refinement that the emission lines are 

found, even in the absence of the magnetic field, to have a 

structure more complicated than is assumed in the above 

theoretical discussion, i.e. when an emission line is shown to 

be a close double. Furthermore, a theoretical extension of 

equation (46) is possible if the influence of the motion of neigh¬ 

boring ions is taken into account. In this case in that equation 

the second differential coefficient of the electric force with 

respect to the coordinates would appear, and the magnetic 

resolution of the absorption and emission lines would be more 

complicated.* 

A very powerful grating or prism is necessary for observing 

the Zeeman effect directly. Hence it is more convenient to 

use a method of investigation described by Konig f in which a 

sodium flame in a magnetic field is observed through another 

such flame outside the field. If the line of sight is perpendic¬ 

ular to the field, the first flame appears bright and polarized. 

From Kirchhoffs law as to the equality of emission and 

absorption, only those vibrations of the magnetized sodium 

flame whose period in the magnetic field is the same as with¬ 

out the field can be absorbed by the unmagnetized sodium 

flame. Perhaps the phenomenon observed by Egoroff and 

Georgiewsky,f that a sodium flame in a magnetic field emits 

partially polarized light in a direction perpendicular to the 

field, can also be explained in this way, i.e. by absorption 

in the outer layers of the flame, the field being non-homo- 

geneous. But even if the field were perfectly homogeneous, 

this phenomenon could be theoretically explained, since the 

total absorption n*k' for the waves polarized in the direction of 

magnetization, when calculated from equation (80) for all 

* Voigt (Wied. Ann. 68, p. 352) accounts for the anomalous Zeeman effects by 
longitudinal magnetic effects. What is the physical significance of such an effect 



possible values of g, is found to be somewhat different from 

the total absorption uk of the waves polarized in a plane which 

is perpendicular to the magnetization when this is calculated 

from (83) for all possible values of .f.* 

9. The Magneto-optical Properties of Iron, Nickel, and 
Cobalt.—Although it has been shown above that in the case 

of metallic vapors the conception of molecular currents does 

not lead to a satisfactory explanation of the phenomena, yet 

this concept must be retained in order to account for the mag¬ 

neto-optical properties of the strongly magnetic metals. This is 

most easily proved by the fact that, in the case of these metals, 

the magneto-optical effects are proportional to the magnetiza¬ 

tion, and therefore reach a limiting value when the magneti¬ 

zation is carried to saturation, even though the outer mag¬ 

netic field is continuously increased, t The explanation based 

upon the Hall- effect would not lead to such a limiting value,£ 

since the magneto-optical effects would then be proportional 

to the magnetic induction of the substance, i.e. proportional 

to the total density of the lines of force. It is true that, 

strictly speaking, the Hall effect is never entirely absent, even 

upon the hypothesis of molecular currents; nevertheless the 

experimental results show that, in the case of iron, nickel, and 

cobalt, the influence of the molecular currents is very much 

greater than that of the Hall effect, so that, for simplicity, the 

terms which represent the Hall effect will now be neglected. 

* Voigt (Wied. Ann. 69, p. 290, 1899) accounts for the phenomenon observed 
by Egoroff and Georgiewsky, as well as for the variations in intensity in the 
Zeeman effect, by the assumption that the friction coefficient r in equations (42) on 
page 435 depends upon the strength of the magnetic field in different ways for 
vibrations of different directions. This assumption cannot be simply and plausibly 
obtained from physical conceptions. 

\ This is proved by observations of Ivundt (Wied. Ann. 27, p. 191, 1886) and 
DuBois (Wied. Ann. 39, p. 25, 1890). 

f This, together with the difference in form of the deduced laws of dispersion, 
is the difference between the two theories. They would be identical if the equa¬ 
tions deduced from the hypothesis of the Hall effect were developed only to the 
first order in the added magneto-optical terms. This is allowable because in the 
case of the metals no narrow absorption bands occur. 



45° THEORY OF OPTICS 

a. Transmitted Light.—When a plane wave p< 

through a thin film of iron which is magnetized !"> 

to its surface, the equations in § 3 on page 426 

Denote by n and k the index of refraction and 

of absorption of the unmagnetized metal, by 

corresponding quantities for the left-handed circu. 

wave, by 11" and k" the same quantities for tin<2 

circularly polarized wave. Then from (28) ant 

427, retaining only terms of the first order in » 

P'c = ri (I - *V) - V? (\ - , 

p"c= n'\ 1 - *'*")= ^ » 

n(I — Ik) ~ V e. 

If v be supposed to have the form 

Y zzz a —j— biy . . 

in which a and b are real, then 

n 71 
rir — nr = —(a 4- £/c), nn k" — nr k' =-(Vi 

The second of these equations asserts that: t 

left-handed circularly polarized waves are absorb 

amounts; while the first one, in connection witli 

407 (provided the difference between n,fk" and 

so that the emergent light is approximately pla 

shows that the rotation d* of the plane of polar 

termined by 

S~ 2CT W ~ fl"> ~ 2lgn(a + 
in which it is assumed that A0 = cT = 2itcr. 

The film of metal must be very thin (a fra< 



rotation is observable; for example, when z = o.^2l0 the 

rotation of red light (A0 = 0.00064 mm.) in the case of iron 

magnetized to saturation is d = 4.2 50. This would give for 

the rotation produced by a plate of iron 1 cm. thick the enor¬ 

mous value d == 200 ooo°. From these observations and (89) 

there results, for red light and for iron magnetized to satura¬ 

tion, the centimetre being the unit of length, 

n(a + Bk) = 0.758* io~6.(90) 

The sign of a ~f~ Bk is positive since the rotation d takes 

place in the direction of the molecular currents in paramag¬ 

netic substances. 

The relation between the rotation d and the period r or 

the wave length A0 is obtained from equations (20) and (21) 

on page 425, taken in connection with (87) and (89). It is a 

noteworthy fact that d decreases as A0 decreases.* This result 

is seen from equation (89) to be probable, since n and hk 

actually decrease rapidly as A0 decreases, and since, from (21), 

it appears that a and b likewise decrease as A0 decreases, pro¬ 

vided only one kind of conduction ions is particularly effective 

in producing the magneto-optical phenomena. 

b. Reflected Light {Kerr Effect).—In order that the proper¬ 

ties of the light reflected from a magnetized mirror may be 

calculated, the boundary conditions which hold at the surface 

of the mirror must be set up. These conditions can be 

obtained from the differential equations (18) and (19) on page 

425, and the consideration that the surface of the mirror is in 

reality a very thin non-homogeneous transition layer in which 

these differential equations also hold (cf. page 426). 

If the surface of the mirror is taken as the 47-plane, the 

boundary conditions are found, by a method similar to that 

used on page 271, to be 

Continuity of 

fi, X-Lc ^VyZ-r.Y), Y--fft(v,X-yxZ). (91) 

* Cf. experiments of Lobach, Wied. Ann. 39, p. 347, 1890. 
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From these conditions a theoretical explanation of the effect 

discovered by Kerr can be deduced.*" This effect t consists in 

a slight rotation of the plane of polarization of light reflected 

from a magnetized mirror, when the incident light is plane- 

polarized either in or perpendicular to the plane of incidence. 

This can only be due to some peculiar effect of magnetization, 

since without magnetization there is complete symmetry and 

no such effect would be possible. 

io. The Effects of the Magnetic Field of the Ray of 
Light. —It has been shown above that a powerful external 

magnetic field produces a change in the optical properties of a 

substance. Now the question arises whether, with delicate 

methods of observation, an effect due to the magnetic field of 

the light itself might not be detected in the absence of an 

external field. 

If, first, only the terms representing the Hall effect 

be taken into account, i.e. if it be assumed that there are no 

molecular currents (revolving ions), then the equations to be 

used are (cf. page 43 5) 

if 

I 4njx _Zy_Zj3 . 

c ~ Zy Zs’ ’ c Zt 

dY_ dZ 
Zz Zy ’ 

4 njx 
ZX 

Zt 
4*^91 |y, . 

4 7te£> © 

© 

x+- ' Zv 
rzt />£ )■ • 

1 -a x _1_ I — 

1 r 

b 

(92) 

(93) 

(94) 

(95) 

*This deduction was made by Drude, Wied. Ann. 46, p. 353, 1892. The 
constant b which appeared there and was assumed to be real must here be taken as 
complex, since from (21) on page 425 v is complex. This change makes the 
result of the theory identical with that given by Goldhammer, Wied. Ann. 46, p. 
71, 1892. The theory is in agreement with practically all of the facts. For the 
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(94) is the characteristic equation of this problem. This 

shows, since rj and C are approximately proportional to Y and 

Z, that the differential equations of the electromagnetic field 

are no longer linear in X, F, Z, a, /?, y. This means that the 

optical properties must depend npoii the intensity of the light. 

Such a dependence has never yet been observed, and it can 

easily be shown that the correction terms in (94), which 

represent the departures from the equation heretofore used, 

namely, 

A^eS = “X, 

are so small that their effect could not be observed. Since the 

magnetic force a, ft, y is equal to, or at least of the same 

order of magnitude as, the electric force X, F, Z, it is neces- 

, . ,1 , 1 'dV 1 BS 
sary to find the value of - r-, - —, 

C QZ C (jZ 
i. e. to find the ratio of the 

velocity of the io7i to the velocity of light. Now approximately, 

from (94), 

* = 

i.e., when 

X-= A *sin 27r 

1 _ 2 ^ B 

c l$t cT * 47r<?0 
(96) 

Now, according to page 436, the natural period T(i of the 

ion is determined in the following way: 
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A substitution of this value in (96) shows that the lai 

I 0^" 
which — — can have as the time changes is 

c 

LM=_5l_ J-a. 
c *dt 27zT© ‘ me 

T2 
If in this © be set equal to 1-a substitutioi 

permissible provided T is not close to T0, it follows 

12S T e T* 
c Zt ~ 2tt- me ' T2 - T*' • 

e\mc has for sodium vapor the value 1.6 -io7 

447). This value will be used in what follows. I 

the visible spectrum T=2*iO“15 approximately, 

(98) may be written 

c 31 
= A . . 5 . IO“9. . 

It is first necessary to find a value for A, i. 

strength of field in an intense ray of light. A sqi 

on the surface of the earth receives from the sun 

kilogrammetres of energy in a second, i.e. 1.22* ic 

units (ergs) to the square centimeter. But from eqi 

on page 273, for a plane wave of natural light of am 

the energy flow cLE in unit time through unit surface 

air or in vacuum is * 

dE(in 1 sec per cm.2) = 

* Without using Poynting’s equation, the result contained in ( 
deduced as follows : The electromagnetic energy which in unit 
through 1 cm.2 must be that contained in a volume of Fcm.3, F“bein 
of light. In air or vacuum V — c. Further, from page 272 the el< 



From which, if half of the energy of the sun’s radiation is 

ascribed to visible rays, the maximum strength of the electric 

field in sunlight is * 

A = — . 0.61. io8 = i.6- io”2 
c 

0.016.+. (IOX) 

Hence for intense sunlight 

i_dff 

c dt 

T2 

8 * i o~ n->7^ 0 
T* 

* 0 

(102) 

This expression is always small provided T is not close 

to Tq. But even if, for example, T: 70 = 60 : 59 (sodium 

flame illuminated by light of wave length X = 0.0006 mm.), 

T02 : T2 — T* = 30, and the value of (101) is still very small. 

If the velocity of a plane wave be calculated from (94), it 

is easy to see that its dependence upon the magnetic correction 

terms is of the second order, i.e. the change in the velocity of 

light produced by an increase in intensity from zero to that of 

sunlight would be of the order io~20 V. Hence the conclusion 

may be drawn that an observable magneto-optical effect due to 

the magnetic field of the light itself does not exist. There 

might be some question as to this conclusion in the case in 

which the period of the incident light very nearly coincides 

with the natural period (sodium vapor illuminated by sodium 

light). But the absorption which would then, take place would 

render impossible a decisive test as to whether or not in this 

case the index of refraction varies with the intensity. 

If now molecular currents (revolving ions) be assumed, 

equations (3), (4), (5) on page 420 sq. become applicable. 

If it were necessary to consider only one kind of revolving 

ion, then, from (31) on page 429, the density yv of the lines of 

force might be set equal to (yu — i)y, yu being the permeability 

* As a matter of fact this ratio is only about f. 
f The maximum strength of the magnetic field has the same value. This would 

therefore be about -fa of the horizontal intensity of the earth's magnetic field in 

Germany. 
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of the substance. In this it is assumed that the magn* 

of the substance can follow instantaneously the rapid 

in y. If this should not be the case, it would be necc 

give y a value smaller than that which is obtained wit 

stant field. Hence equations (3) and (4) take the fori 

1 3 / , , 

.35 
dz 

* 35 . \ dV 
Zz 

ZZ 

“ s/ " 

Now is of the same order of magnitude as j ~ 

the two quantities are the same). Hence the magnate 

correction terms of (103) are very small even when /> 

as large a value as 1000, as is the case for iron; for tli 

terms are of the order of magnitude iooo-10 ~10 = 1 

that the magneto-optical effect due to the magnetic fit ”4 

light itself coidd never be detected in iron* even if the nnf, 

tion of the iron were able to follow completely the rapid 

of field which take place in a light-wave. This also ' 

why in a constant magnetic field the molecular cur re 

rise to a permeability which is greater than unity, r 

hght-vzbrations the same substance acts as though 

me ability were equal to unity. But this is not due tt* 

of lag in the magnetization, for the conclusions here tit 

independent of such lag. 



CHAPTER VIII 

BODIES IN MOTION 

1. General Considerations.—In what has preceded the 

optical properties of substances have been explained on the 

assumption of movable ionic charges. In this explanation the 

substance as a whole was considered to be at rest. But a 

motion of a substance as a whole produces a modification in its 

optical properties. In order to be able to develop a theory 

for this case, an hypothesis must be made as to whether the 

charged ions alone arc carried along by the motion of the sub¬ 

stance, or whether the ether which lies between these ions is 

also carried along in whole or in part. The assumption which 

will be adopted here is that the ether always remains completely 

at rest. Upon this basis II. A. Lorentz * has developed a 

complete and elegant theory. It is essentially this theory 

which is here presented. The conception of an ether abso¬ 

lutely at rest is the most simple and the most natural,—at 

least if the ether is conceived to be not a substance but merely 

space endowed with certain physical properties. Moreover 

the explanation of aberration presents insuperable difficulties 

if the ether is not assumed to be at rest. Lorentz has shown 

that the theory of a stationary ether is essentially in agreement 

with all the observations which bear upon this point. This 

matter will be more fully discussed below. 

2. The Differential Equations of the Electromagnetic 
Field Referred to a Fixed System of Coordinates.—The 
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(7) and (11) of the Maxwell electromagnetic the 

265 and 267), namely, 

4it_ ■ _'dy_ 3;® __ dY 'dl 

~Jx ~ dy~dl’ etc" ~s* ~ dz~ dy 

It has already been shown [equation (7), page 3. 

there is present only one kind of ion, whose cl 

whose number in unit volume is the comp 

electric current density are given by 

4 ™jx = 

9X 

a t 
+ 47reSSl 

dS_ 

3* ' 

In this denotes the ^-component of the displa 
ion from its position of equilibrium within the < 

the ions be given a constant velocity whose co 

vxy vy> vxJ then the above equations take the 

form: 

AVx = 

4 *Jy = 

4 iq* = 

3X 

'dt 

?>Y 

3* 

3^ 

3* 

~j~ 47ze%l-—^ -j~ /\.7te(Slvxy 

+ 4 + 4 7telkvyy 

+ 47re9l~ -f- 47te2lvM. 

In these equations the differential coefficient 

to the time are purposely written in the two for 

The first means that the change with respect 1 

some quantity at a definite point in space is c 

second that the change in some quantity with : 
time at a definite point in the substance is under 

Hence, if the components of ttie velocity of the 

, v., then in the formation of the differen 



change in position alters the quantities to be differentiated by 

"0 3 "S 
Vx^~2x> 'Vy^~2y'> 2zy when x, y, z are referred to a fixed 

system of coordinates, so that finally the relation holds 

d __ 3 . 3 * 3 , 3 
W-dt+v*dZ + v*&+v‘dF- • • • (3) 

Now the terms 
dS 
dt 

, etc., must appear in equations (2) because 

the entire velocity of the ions is composed of the velocity of 

translation vx of the substance, and the velocity of the ion with 

respect to the substance. 

a<? 
a t 

d£ 
This last is represented by —, not 

For the components of the magnetic 
equations (13) on page 268 hold, namely, 

Z* Z/3 
4^sx = —, 4*sy = -^, 47TS 

current density the 

• (4) 

since it is proposed to neglect the effect of any external 
magnetic field, and since, in accordance with page 456, the 
permeability ju of all substances is equal to unity for optical 
periods. 

If the substance has no velocity of translation, i.e. if 
vx = vy —-vz = o, then the equation of motion of an ion is 
(cf. page 383) 

m 
. 47T*2 

eX. 

Now it will be assumed that the influence of the substance 
upon the ion is not affected by the motion of the substance. 

Nevertheless the differential equation must be modified because 

of the fact that the ions share in the motion of the sustance, 

and a moving ion is equivalent to an electric current whose 

components are proportional to evxJ evy) evs. The magnetic 
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force ay /?, y acts upon this current. Hence the e 

motion of an ion is (cf. similar discussion on page 4; 

d*Z dg ** e . 
m ~d¥ + r*Tt + 4?r^ = ‘x+~e(v,r ~ v‘ 

cL 
Here, too, it is to be observed that appears, b 

since (5) expresses the relative motion of the ions w 
to the substance. 

When the changes in X or g are periodic, it is ; 

write 

dg _ i_ d*£ __1 

dt ~~ -d*' dt* ‘ 

r' is then equal to the period T' divided by 2n. N( 
it is to be observed that this period Tf is the relcti 

with respect to the moving substance, and not tl: 

period T referred to a fixed system of coordina 

important to distinguish between T and T'; thus, foi 
T' > T when the substance moves in the direct 

propagation of the light. In the case of plane wave 
all the quantities are proportional to 

), 
in which x, yy and z refer to a fixed coordinat 
r = T: 27r is proportional to the absolute period T. 

* For the reasons discussed on page 455 the terms ^ etc., are 

the right-hand side of (4), for they are too small to be considered. I 
of the earth v : c = 10—4, i.e. it is of an entirely different order of m; 

~ : c. Also in Fizeau’s experiment with running water, which wil 

later, in which v: c has a still smaller value, it is onl the terms 1 

i(u pxx + p*y + psz 

A 



Now, from (3) and (6), 

L=L( 1 _ A^+A^+A^n 
t' t \ <» J> 

i.e., if the velocity v is small in comparison with go, 

f 

■t 

A 

T 
. A^ + Aa+Aa T , 
+ <a - 1 + ■5-' • (7) 

in which ^ denotes the velocity of the substance in the direc¬ 
tion of the wave normal. 

If the abbreviations used on page 386, namely, 

b = ,2 > (8) 4 7Z ' 47^ 

be introduced into (5), there results 

+ + . (9) 

In equations (2) eWl means the charge present in unit 
volume. 

If the value of *91 [cf. page 270, equation (20)] obtained 
from (the dielectric constant e of the ether is set equal to 1) 

„ m ZX , dY dX 
4**"t = -W-h TT— + 7T- 

dx 1 djy 3# 
(10) 

be substituted in (2), there results 

dx 
dt 4*7* 

(dX dY dZ\ 

+ 9l» 
• (11) I+fa/r'—Vr'* dt 

If several kinds of molecules are present, the first factor of 

the last term of this equation becomes, provided i~ be neg- 
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looted, Le. provided the substance has no appreeiab 

tion, 

s, 
In this equation // is the index of refaction eon 

to the period T* 2 ttt* when the substance4 is at res 

tion (12) is derived from the theory of dispersion |d 

(itt) on page 387]. If now in equation (n) the t 
,/ 

coefficient be replaced by its value in terms of t 
dt 17 

(3b ami if the resulting value for 4rrjx be substitute* 

differential equation is obtained for the substance 

referred to a fixed system of coordinates. This e 

much simplified if only terms in the first order in v In 

It is always permissible to neglect tin* other terms, s 

when v represents the velocity of the earth in space 

very small in comparison to the velocity of light. 

d d 
possible to replace ^ by . ^ in those terms in (11) 

multiplied by 7% and also to neglect, in the case 

geneous substances, the second term of { n j winch is 

by , since approximately, i.e. for v ; o, for 

change4 of condition in such substances the followin 

holds (cf. page 275): 

f!.V V } Y , vX 

1 , 
- | ■ _ 0. . . . 

t 'mV «.'<* 

Thus (it) becomes 

«U' , , i i'.V [ .V e.V 
4 *Jm ~~ ** .iV - 1' ("a — 1) j' r f 7' 4” v 

t-a . ) iV 

1 c \ y ot s 0i 



hence 4njx may be written in the form 

4njx = w2- 
3* 
Zt 

+ (»2 — *) 
ZX . ZX 0X\ 

“ ^~(vxX + vyY + vJZ) |. 

Hence, in view of (1) and (4), there result for a moving, homo¬ 

geneous, isotropic medium whose points are referred to a fixed 

system of coordinates the following differential equations: 

r 0X 

c Zt 

«2 0 Y 

T~zt~ 

I ( f zx , . zx\ 
-W-Z7 + ^ + ^) 

Zx" 

+ 
n‘z 0F 

0;T + Vy 
ZY 

dy 

Zy 

, *Y) 

-JL.(vxX+vyY+vtZ) 

n2 

“1)7" —j2^- 
zz . zz 

+ + v> Zx 'dy 

z 
Zz 

{i’xX + vyY + vxZ) 

Zz ■ 

Za 

Zz 

zz\ 
Zz J 

Zfi_ 

Zx 

Zy 

Zx’ 

Zoe 

Zy’ 

h 05) 

lfia ZY dZ £3^=9£_?^ /wx 
c Zt~ Zz Zy' c Zt Zx Zz ' c Zt Zy Zx ’ K * ’ 

Differentiation of equations (15) with respect to x, y, and 

z respectively and addition gives, with the use of the abbrevia- 

tion 

zz2 dF . n 

c dt 
+ 

0^ . 3F I _ F 
fr+dS + ~&- ’ 

ZF . 9 F ZF\ 

+ + *■ aFl 

i{ ( dF 

-\2^Zx 

- {vxAX + vAY + vtAZ) |=o. (16) 

c 
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In the terms which are multiplied by vx, etc., th< 

approximations may be used: 

F = 0, 

AX ■. 
«* tfX 

C2 dP ’ 

Hence, from (16), 

, ZY , 0Z 

AY — 
n! 02F 
F dr 

AZ = 

F = -I- — _|_ 
' dT d 

This equation asserts that in the moving substan 

trical force cannot be propagated as a plane transv 

since F is not equal to zero. But the magnetic fo 

other handy can be so propagated, since, from (i f)> 

M _i_ 
dt\d-r+ dj' + drjJ 

= O. . 

The differential equations (15) and (15') may- 

transformed into equations each of which contains 

the quantities X, Y, Z, a, fiy y. For example, if 

equations (15) be differentiated with respect to /, ant 

d/3 
— be replaced by their values taken from (r $/), th 
Oc 

n*d2X , - 1 ( 9/ c)X ?,x , zx\ _ __ + ™ -1- f. ) 

In consideration of (18) this becomes 

n2 d2X n2 — 1 3 3/ dX . 
' dk'x Zx 

(BA' 

'ydj 
+ *' 

dX\ 

& dt2 



BODIES IN MOTION 465 

3. The Velocity of Light in Moving Media.—From the 

last equation the velocity of light in a moving medium can be 
simply calculated. Setting 

JL _ P>x+P*y-srP*s\ 

X=A-eT\ 05 ), . . . (21) 

there results, from (20), 

_ 2(«3 — l)pf)x + + PjV, _ J_ 
C* C2 GO GO *, 

or 

( 

A1 
2 (?iz l) V. 

GD 

I 
GO2 

(22) 

in which vn denotes the velocity of translation of the medium 

in the positive direction of the wave normal. Hence, to terms 

of the first order in vn , 

GO* I + 
2 (l& — i) Vn 

■—) 
GO / 

i.e. 

n2 — 1 

u2 

If, in the term on the right-hand side which contains vn, go be 

replaced by its approximate value c : n, 

• + (23) 

This equation asserts that the motion of a medium has the 

same effect upon the velocity of light as though it communicated 
/ — 1 \ 

to, the ether a certain fraction ^namely, —^—j °f 2'ls velocity 

of translation. 

This conclusion was drawn by Fresnel from the experiments 
of Fizeau in which the velocity of light in running water was 
measured. However, this interpretation of equation (23) is 
•not- nnif-f* ricrnmiic: fnr nf rrmfi rm nf flip m^rlinm 
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the coefficient of vn in the expression for go, was found by 
experiment to have the value 0.434 ± 0.02, while for water 

and the Fraunhofer line D equation (25) gives its value as 
0.451. The value of this coefficient given by the assumption 
of Fresnel is, for this case, v2 — 1 : v2 = 0.438. 

4. The Differential Equations and the Boundary Condi¬ 

tions Referred to a Moving System of Coordinates which is 
Fixed with Reference to the Moving Medium.—If x\ y, zf 

represent the coordinates of a point referred to an origin within 
the moving medium, then 

x = xr + vx • ty y = y + . t, z = z' + Vz. /. (26) 
Since vx) vy, vg do not depend on xt y, zy the partial 

differentiation with respect to xy y, z can be replaced by a 

partial differentiation with respect to x'y yr, z!y i.e. in the equa¬ 

tions of the preceding paragraph the differential coefficients 
with respect to xy yy z may be considered as taken with 

respect to xry y\ zr. In what follows this will be done and 
x, yt z will be understood to represent simply the coordinates 
referred to a point of the moving medium. But in place of the 

_ . dX 
differential coefficients —, etc., etc., must be introduced, 

since here the dependence of X upon the time is to be investi¬ 
gated, and hence X must be referred to a point whose position 
relative to other points in the moving medium is fixed. This 
change is made with the aid of equation (3) on page 459, so 

that, for example, 

3X dX ^X 0X 3X 
-= - — v —■— — v - — v-. 
dt dt xZx y -dy x?)z‘ (2 7) 

If this equation be substituted in (2), then for any number 

of kinds of ions, in consideration of (9), (io), and (12), 

AnJx — 

+ 02 '4,ix+ 

dX zx 

dt V* Zx 

VyY ~ V.P 
“ V, 

) + 

dX _ 

y 'dy 

/dX 

V. 
dX 

’ dz 

dV , 3^ 

*\ d* 1 dy dz )■ (28) c 
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From this and (29) the following additional conditions are 
obtained, namely, that 

n2Z-\- y be continuous at the boundary. (30') 

Since in (30), in the terms multiplied by vx, vy, vz> the 
approximate values which are obtained when vx = vy = vz = o 
may be substituted, the boundary conditions may be put in the 

form 

vyZ vxZ [must be continuous at 

c 9 ' ‘ c ) the boundary. (30") 

For a homogeneous medium differential equations can easily 
e obtained each of which contains but one of the quantities 

Xy Yy Z, a, j3, y. For it follows from (27), when terms of 

the first order only in vx, vy, vz are retained, that 

&X a*X d ( ZX , dX . dX\ 

W=~dF~ 2di\vgFj; 
hence (20) becomes 

n2 d2X 2 dl dX 

c2 di2 c2 dt'xd* 
(31) 

Equations of the same form may be obtained for F, Zy a, 

/?, y. The preceding equations (18) and (19) also hold here, 

i.e. the electric force is not propagated as a transverse wave; 

but the magnetic force is so propagated. 

Writing 

X=A-e*\ *>' J, 

in which, since it is assumed that //2 +/2/2 + /3'2 = I, 
p2'f pl denote the direction cosines of the wave normal, go' the 
velocity of light referred to the moving system of coordinates. 

Then, from (31), 
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But, from (33), p^x + p^y -f- ps'z = go'\ i.e., in considera- 

;ion of (32), 2/ = — c : n. Hence, from (34), the direction of 

;he ray is determined from the proportion 

& : ^2: ^3 = x: y : ~ = 

cp( 

)r 

^1 : P2 : — Pi nr : Pi nr. '' (35) 

Thus the ray docs not cobicidc with the wave normal. 

Neglecting terms of the second order in v, (35) may be 

vritten 

A': P-1 : Pi = ^ ^: P2 + ^ : & + nc ?ic (350 

6. The Absolute Time replaced by a Time which is a 
function of the Coordinates.—In place of the variables xy yy 

r, ty in which t denotes the absolute time and xf yf z the 

:oordinates referred to a point in the moving medium, the 

quantities xy y, zy and 

+ 7'JV + VtZ 
f (36) 

vill be introduced as independent variables. 

tf may conveniently be called a sort of <l position ” time, 

iince it depends upon the position of the point under considera- 

ion, i.e. upon xy yy z. The partial differential coefficients 

".) , (r~ ) , 
qx; xQyf 

—j , while —, etc., will be used as above to denote the 

>artial differential coefficients when xy y} zy t are the inde- 

>endent variables. From (36), 

d d d fdV vx d 3 /3V v* d 
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If the following abbreviations be used, 

j[+V-Jj£=X, Y+V‘a~V‘r=Y’, 

z-K. = Z', 

vY -vyZ , , vxZ - vzX o/ 
«+ : * = «y> /» + “—= A 

, VyX ~ vxY 
Y + “-;-- = Y 

then the introduction of the values (37) in (29) gives, w 

terms in the first order only in v are retained, and when 

f b \ d 
differentiation j is again denoted simply by —, 

n% dX’ Py' pp' ?l2 dY' Bad 
c dt' ~ Py pz’ C dt' dz px ’ 

dZ' df Bad 
c dt' ~ dx ~ ~Py' 

1 da' py PZ! 1 dp' B Z' pX | 
c dt' ~ ds By’ c ~IF~ px " pz ’ 

i_ d/ __ dJC _ dY' 
c dt' dy dx 

According to (30) and (38) the boundary conditit 

when the boundary is perpendicular to the -s'-axis, are that 

X', Y'j c/y f be continuous at the boundary. . \ 

Now equations (39) and (40) have the same form as 

differential equations and boundary conditions of the elec 

magnetic field for the case of a medium at rest. Hence 

important conclusion: 

If, for a system at rest, X, Y, Z, ol, y are cer 
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vxx -f- v y + vzz _ 
of x,yy zy t-^-, and T; in which now ;tr, y, ^ 

are the relative coordinates referred to a point of the medium, 

and T is the relative period with respect to a point of the moving 

medium. From (7) on page 461, the absolute period is in the 

/ v 
latter case to be assumed as T 1-- 

7. The Configuration of the Rays Independent of the 
Motion*—The last proposition is capable of immediate applica¬ 

tion to the relative configuration of the rays. For, in a system 

at rest, let the space which is filled with light be bounded 

by a certain surface 5 so that outside of 5 both X, Y, Z} and 

a, /?, y vanish. Then when the system is in motion X'y F', 

Z\ and oc\ yr vanish for points outside of 5, i.e. m the 

moving system also the surface S is the boundary of the space 

which is filled with light. Now suppose that 5 is the surface 

of a cylinder (a beam of light), an assumption which can be 

made if the cross-section of the cylinder is large in comparison 

with the wave length. The generating lines of this cylinder 

are called the light-rays. According to the above proposition, 

the boundary of the beam of light, even though it be frequently 

reflected and refracted, is unchanged by the common motion 

of the whole, i.e. in the moving system light-waves of the rela¬ 

tive period T are reflected and refracted according to the same 

lavus as rays of the absolute period T in the system at rest. 

The laws of lenses and mirrors need therefore no modifica¬ 

tion because of the motion. Likewise the motion has no 

influence upon interference phenomena. For these phenomena 

differ from the others only in that the form of the surface 5 

which bounds the light-space is more complicated, and, as 

above remarked, this form is not altered by the motion. 

For crystals'* also the configuration of the rays is inde¬ 

pendent of the motion, for the differential equations and 
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boundary conditions applicable to these can be put in 

similar to (39) and (40), so that it is only necessary 

to the laws of refraction of the crystal at rest. 

8. The Earth as a Moving System.—The last cc 

tions are especially fruitful in discussing the motioi 

earth through space. For, according to what has b< 

the motion of the earth * can ?iever have an influence of 

order in v upon the phenomena which are produced wit> 

trial sources of light; for the periods emitted by suet 

are merely the relative periods of the above discuss 

they are wholly independent of the motion of the earth 

the configuration of the rays cannot be altered by this 

Now in fact numerous experiments by Respighi,t 

Ketteler,§ and Mascart || upon refraction and interferes 

of them upon crystals) have proved that the phenor 

independent of the orientation of the apparatus with n 

the direction of the earth's motion. On the other han 

celestial sources of light are used the effect of the 

motion can be detected, for in this case the relativ 

depends upon that motion. As a matter of fact the 

lines of some of the fixed stars appear somewhat di 

This is to be explained by the relative motion of the < 

of the whole solar system, with respect to the fixe 

For the laws of refraction and interference are concer: 

relative periods, and from equation (7) these are g 

7^1 — in which T is the absolute period. Thus 

with the magnitude and sign of vn, and hence also t 

tion of the spectral lines formed upon the moving < 

* Substances which show natural or magnetic optical activity 
neglected. 

f Mem. di Bologna (2) II, p. 279. 
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refraction or diffraction. This is known as Doppler's Prin¬ 

ciple* 

Since the path of the earth about the sun is nearly a circle, 

vn is in this case equal to zero. Hence, as has been also 

experimentally shown by Mascart,+ the motion of the earth 

causes no shifting in the Fraunhofer lines of the solar 

spectrum. X 

9. Aberration of Light.—Although, as was shown in § 7, 

the configuration of the rays is not influenced by the motion of 

the earth, yet the direction of the wave normal which corre¬ 

sponds to a given direction of the ray does depend upon that 

motion. This has already been shown on page 470; but it is 

worth while to here deduce directly the definition of the ray 

without using Huygens’ principle as was done above. Con¬ 

sider, for example, the case of a plane wave in a system at rest: 

all the quantities involved are functions of t — M+SaT+A* 
GO 

In a system at rest px, p%, pB are the direction cosines of 

both the wave normal and the ray. The physical criterion 

for the direction of the ray will be that the light pass through 

* In the above it is assumed that the source A is at rest and the point of obser¬ 
vation B in motion. The considerations also hold in case both A and B move. 
vn is then the relative velocity of B with respect to A measured in the direction of 
tire propagation of the light. In this case the rigorous calculation shows that the 
actual period T and the relative period Tf observed at B stand to each other in 
the ratio T: T* = go — : go — v, in which v' is the absolute velocity of B, v that 
of A in the direction of the ray, and go that of the light in the medium between A 
and B. It is only when vr and v are both small in comparison with go that this 
rigorous equation reduces to that given in the text, i.e. to the customary form of 
Doppler’s principle. Now we know nothing whatever about the absolute velocities 
of the heavenly bodies ; hence in the ultimate analysis the application of the usual 
equation representing Doppler’s principle to the determination of the relative 
motion in the line of sight of the heavenly bodies with respect to the earth might 
lead to errors. Attention was first called to this point by M'oessard (C. R. 114, 
P. 1471,1892). 

f Ann. de l’ecole norm. (2) I, pp. 166, 190, 1872. 
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two small openings whose line of connection has the directi 

cosines piy p2, pr If now the whole system moves with 

velocity vx, vy, vx, there must always be one ray (called 

relative ray when referred to a moving system) whose directi 

cosines arepx, p2i pr But according to page 473 this ray 

produced by waves which are periodic functions of 

This expression corresponds to plane waves for which t 

direction cosines of the wave normal p^ are prop< 

tional to 

A A v. A 
GO GO 

Ejl 
(* 

(a 

This relation (42) makes possible the calculation of the dir< 

tion of the wave normal in the moving system from 1 

direction of the ray, and vice versa. This relation is a 

identical with that deduced on page 471 [cf. (35')], fr< 

Huygens’ principle, for the quantities plt p2> p3 there cor 

spond toplf p2i Ps here, and approximately c : go = n. 

Hence if upon the moving earth a star appears to lie in 1 

directionpiy p2> P$> referred to a coordinate system conned 

with the earth, its real direction is somewhat different, for t 

latter coincides with the direction of the normal to the ws 

from the star to the earth, i.e. the position of the star 

obtained from p^ p2 ps 

The case in which the line of sight to the star and 1 

motion of the earth are at right angles to each other will 

considered more in detail. Thus set pl= p2 — o, ps = 

vy — vx =0, vx— v) then from (42), if the velocity in air 

be identified with c,—as is here permissible,—the position 

the star is given by 

Pi : p2 : Pl = v : o : c, . 
• • (< 
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tan Z = v : c. This angle of aberration is not changed when 

the star is observed through a telescope whose tube is filled 

with water, since it has been shown that the relative configura¬ 

tion in any sort of a refracting system is not changed by the 

motion.* This conclusion maybe reached directly as follows: 

If go differs appreciably from c, as is the case when the obser¬ 

vation is made through water, then the wave normal in the 

water is no longer given by (43), but, in accordance with 

(42), by 

A; : A' : A' = v : 0 : — = v : 0 : cn> • • (44) 

from which the angle of aberration Z' is determined by 

tan Z/ = v : cn. The corresponding wave normal in air or in 

vacuo makes, however, another angle Q with the ^r-axis such 

that, since the boundary between air and water is to be 

assumed perpendicular to the direction of the ray, according 

to Snell’s law sin Q : sin Z' — n• Since now, on account of 

the smallness of Z and Z'> the sin is equal to the tan, it follows 

that tan Z = v : cj i*e* the angle of aberration is the same as 

though the position of the star had been observed directly in 

air. 

10. Fizeau’s Experiment with Polarized Light,—Although 

in accordance with the theory the motion of the earth should 

have no influence upon optical phenomena save those of aber¬ 

ration and the change in the period of vibration in accordance 

with Doppler’s principle, and although experiments designed to 

detect the existence of such an effect have in general given nega¬ 

tive results, nevertheless Fizeauf thought that he discovered 

in one case such an effect. When a beam of plane-polarized 

light passes obliquely through a plate of glass, the azimuth of 

polarization is altered (cf. p. 286). The apparatus used con¬ 

sisted of a polarizing prism, a bundle of glass plates, and an 

analyzer. At the time of the solstice, generally about noon, 
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a beam of sunlight was sent, by means of suit 

mirrors, through the apparatus from east to west, ai 

west to east. It was thought that a slight differ 

positions of the analyzer in the two cases was dete 

According to the theory here given no such d: 

exist. For if in any position of the apparatus the 

set for extinction, then the light disturbance is ' 

space which does not extend behind the analyzer, 

to the discussion on page 473, the boundary of thi 

not change because of the motion of the earth, p 

configuration of the rays with respect to the appan 

fixed; and this is true even when crystalline mec 

for producing the bounding surface 5 of the 

Hence the position of extinction of the analyzer m 

pendent of the orientation of the apparatus with re 

earth's motion. In any case it is to be hoped that 

ment of Fizeau’s will be repeated. Until this is c 

least doubtful whether there is in reality a contradi 

matter between experiment and the theory here pr 

11. Michelson’s Interference Experiment. - 
which light requires to pass between two stations 

/ 
and B whose distance apart is l is — —, where 

the velocity of light. It will be assumed that th( 

which the light is travelling is the ether, or, what 

the same thing, air. If the two points A and B hav 

velocity v in the direction of the ray, then the tim 

// of the light from A to B is somewhat differed 

light must travel in the time not only the dis 

also the distance over which the point B has move 

t{y i.e. the total distance travelled by the light is 

that 
t^c = l -j— vtf • ... 

If the light is reflected at B, in order to re 
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For this case differs from the preceding only in this, that now 

A moves in a direction opposite to that of the reflected light. 

Hence the time f required for the light to pass from A to B 
and back again to A is, from (45) and (46), 

provided the development be carried only to terms of the 

v 
second order in —. Now although the influence of the com¬ 

mon motion of the points A and B upon the time f is of the 

second order, it should be possible to detect it by a sensitive 

interference method. 

The experiment was performed by Michelsen in tho year 

1881.* The instrument used was a sort of an interferential 

refractor furnished with two horizontal arms P and Q set at 

right angles to each other and of equal length (cf. Fig. 57, 

page 149). Two beams of light were brought to interference, 

one of which had travelled back and forth along Pt the other 

along Q. The entire apparatus could be rotated about a 

vertical axis so that it could be brought into two positions such 

that first P, then Q coincided with the direction of the earth’s 

motion. Upon rotating the apparatus from one position to the 

other a displacement of the interference bands is to be 

expected. 

The amount of this displacement will now be more 

accurately calculated. Let the arm P coincide with the direc¬ 

tion v of the earth’s motion, the arm Q be perpendicular to it. 

Let A be the point in which P and Q intersect. The time t' 
required for the light to pass the length of P and back is given 

bxr (a*7\ "Rut the time tu renmired for the hVht to trnvel the 
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length of Q and back is not simply t'f — 2/ : c; for it is neces¬ 

sary to remember that the point of intersection A of the two 

arms P and Q> from which the light starts and to which it 

, returns after an interval of time t!, has in this 

-jA2 . time changed its position in space. Thus the 

\ / distance through which this point A has 

s\ s 1 moved is vt’ (Fig. 107). The first position 

\ / of the point A will be denoted by the last 

\ by Ar In order that the light from A1 may 

\j \? return to A2 after reflection at the end of the 

q arm Q, it is necessary that the reflecting 

Fig. 107. mirror at Q be somewhat inclined to the wave 

normal. The distance travelled by the light is 2s and the 

relation holds, 

/vt\2 

Also, t'f = 2s : c denotes the time which the light requires to 

travel the length of Q and back. Now, from (47), if terms of 

higher order than the second in v be neglected, 

2/ f v2 \ 2I[ v2 
TV+8P* J-7V + T 

hence 

If this difference in time were one whole period Ty the 

interference fringes would be displaced just one fringe from the 

position which they would occupy if the earth were at rest, i.e. 

if v = o. Hence if the displacement d be expressed as a 

fractional part of a fringe, there results from (49) 

l v* l 

~ cT • 7* ~ 1^’ 
(so; 
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The displacement produced by turning the instrument 

from the position in which P coincides with the direction of 

the earth’s motion to that in which Q coincides with this 

direction should be 2d. 

But no displacement of the interference fringes was 

observed. The sensitiveness of the method was afterwards 

increased by Michelson and Morley * by reflecting each beam 

of light several times back and forth by means of mirrors. 

The effect of this is to multiply several times the length of the 

arms P and Q. Each beam of light was in this way compelled 

to travel a distance of 22 metres, i.e. I was 11 metres. The 

apparatus was mounted upon a heavy plate of stone which 

floated upon mercury and could therefore be easily rotated 

about a vertical axis. According to (50) this rotation ought 

to have produced a displacement of 2£ = 0.4 of a fringe, but 

the observed displacement was certainly not more than 0.02 

of a fringe,—a difference which might easily arise from errors 

of observation. 

This difficulty + may be explained by giving up the theory 

that the ether is in absolute rest and assuming that it shares in 

the earth’s motion. The explanation of aberration becomes 

then involved in insuperable difficulties. Another way of 

explaining the negative results of Michelson’s experiment has 

been proposed by Lorentz and Fitzgerald. These men assume 

that the length of a solid body depends tip on its absolute motion 

in space. 

As a matter of fact, if the arm which lies in the direction 

of the earth’s motion were shorter than the other by an amount 

it* 

/^, the difference in time t as calculated in (49), would 

* Am. Jo. Sci. (3) 34, p. 333? i887 ; PM1. Mag. (5) 24, p. 449, 1887. 
f Sutherland (Phil. Mag. (5) 45, p. 23, 1898) explains Michelson’s negative 

result by a lack of accuracy in the adjustment of the apparatus. But, according 
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be just compensated, i.e. no displacement of the fi 

be produced. 

However unlikely the hypothesis that the dim 

substance depend upon its absolute motion may 

seem to be, it is not so improbable if the ass 

made that the so-called molecular forces, which 

the molecules of a substance, are transmitted b 

like the electric and magnetic forces, and that 

motion of translation in the ether must have an 

them, just as the attraction or repulsion between 

charged bodies is modified by a motion of transl 

particles in the ether. Since has the valu 

diameter of the earth which lies in the direction c 

would be shortened only 6.5 cm. 



PART III 

RADIATION 

CHAPTER I 

ENERGY OF RADIATION 

I. Emissive Power.—The fundamental laws of photom¬ 

etry were deduced above (page 77) from certain definitions 

whose justification lay in the fact that intensities and bright¬ 

nesses calculated with the aid of these definitions agreed with 

observations made by the eye. But it is easy to replace this 

physiological, subjective method by a physical, objective 

means of measuring the effect of a source of light. Thus it is 

possible to measure the amount of heat developed in any sub¬ 

stance which absorbs the light-rays. To be sure this intro¬ 

duces into the photometric definition a new idea which was 

unnecessary so long as the physiological unit was used, name¬ 

ly, the idea of time, since the heat which is developed in an 

absorbing substance is proportional to the time. According 

to the principle of energy, the heat developed must be due to 

a certiin quantity of energy which the source of light has 

transmitted to the absorbing substance. Therefore the emis¬ 

sion E of a source Q is defined as the amount of energy which 
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tion of the rays under consideration, i will be called the 

intensity of radiation of the surface ds. 

If all parts of a curved radiating surface appear to the eye 

equally bright, then, as was shown on page 82, i must be 

constant, i.e. independent of the inclination <p. The discus¬ 

sion as to whether or not i is constant when considered from 

the energy standpoint will be reserved till later. If, for the 

present, i be assumed to be constant, then from (3) the energy 

flow which passes from ds into a finite circular cone whose 

generating lines make an angle U with the normal to ds is 

found to be [cf. (73) on page 83] 

L = Ttids sin2 U..(4) 

7t 

Setting U = — and dividing by dsy the emissive power e of 

ds is obtained in the form 

e = .(5) 

Here again z, the total intensity of radiation, must be dis¬ 

tinguished from zA, the intensity of radiation for wave 

length A.. If ek denote the emissive power for the wave length 

3, then 

= ^4.(6) 

3. The Mechanical Equivalent of the Unit of Light.—On 

page 81 the flame of a Hefner lamp was assumed as the unit 

of light. Tumlirz'* has found the emission within a horizontal 

cone of unit solid angle from such a flame to be 0.1483 gram- 

calories a second; Angstrom’s t value for the same is 0.22 

gram-calories a second. If such a lamp be assumed to radiate 

uniformly in all directions, then its total emission, i.e, the 

energy which it emits in all directions (into the solid angle 

47r), is calculated from the value of Tumlirz as 

E = 47T.0.1483 
gr cal 

= 1.86 
gr cal 

sec ’ sec 
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magnitude has about the same brightness as a Hefner lamp at 
a distance of 11 km. In this case the eye receives about 
1 • IO”8 ergs per second. 

The so-called normal candle (a paraffine candle of 2 cm. 
diameter and 50 mm. flame) has an emission about 1.24 times 
that of the Hefner lamp. 

4. The Radiation from the Sun.—According to Langley 
about one third of the energy of the sun’s radiation is absorbed 
by the earth’s atmosphere when the sun is in the zenith. 
According to his measurements, if there were no atmospheric 
absorption, the sun would radiate upon 1 cm.2 of the earth’s 

surface at perpendicular incidence about 3 gr. cal. (more 
accurately 2.84) per minute {solar constant). Angstrom 
obtained a value of 4 gr. cal. a minute. Hence, making 

allowance for the absorption of the earth’s atmosphere, the 
flow of energy to the earth’s surface is, according to Langley, 
about 2 gr. cal. a minute =1.3. io6 erg/sec. Pouillet’s value, 
which was given on page 454, is somewhat smaller. The 

energy of the visible light between the Fraunhofer lines A 

and H% amounts to about 35$ of the total radiation, i.e. the 
so-called intensity of illumination B of the sun, without allow¬ 
ing for the absorption in the air, is, from Langley’s measure¬ 

ments, 

erg 
B = 6.9.1 °5"sF”c“ = 463°° candle-metres. . (11) 

If the mean distance of the sun from the earth be taken as 

149. io9 m., the candle-power of the sun is found to be 
1.02. io27. 

5. The Efficiency of a Source of Light.—The efficiency g 

of a source of light is defined as the ratio of the energy of the 

light radiated per second to the energy required to maintain 
the source for the same time. 

Thus a Carcel lamp of 9.4 candle-power consumes 42 gm. 
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39.7. io10 ergs. Now equation (8) gives the emission of ■ 
standard unit, hence the efficiency of the lamp is 

g = 
9.4* 1.9- io6 

1.16-10 "2* 39.7* io10 
0.4* io-2 = 0.4#. 

Thus the efficiency is very small; only 0.4$ of the enei 

contained in the oil is used for illumination. 
The electric light is much more efficient. With the 

light 1 candle-power can be obtained with an expenditure 

£ watt, i.e. 5.106 erg/sec. Hence for the arc light 

g = 
1.9- io6 _____ = 0.38 = 38$. 

For the incandescent lamp g has about the value 5.5#. 
These figures show that it is more economical to use 

heat of combustion of oil to drive a motor which runs a dyna 

which in turn feeds an arc light, than to use the oil dire< 
for lighting purposes. A Diesel motor transforms about ; 

of the energy of the oil into mechanical energy, and 907 
this can be transformed into electrical energy by the dyna 

which feeds the arc light; hence the efficiency of the elec 
light, upon the basis of the energy of the oil used, may be 

creased to 

g = 0.38-0.7.0.9 = 24^. 

In this calculation no account has been taken of the 
that the carbons in the lamp are also consumed. For 
incandescent lamp of the ordinary construction, which requ 

about 3J watts per candle-power, g would be equal to 3 
calculated upon the basis of the fuel consumption of the mo 
For a Nernst incandescent lamp which requires 1 watt 
candle-power,* g would be as high as 12#. 

61 The Pressure of Radiation.—Consider the case o 
plane wave from a constant source of light falling perpend 
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larly upon a perfectly black body. Such a body is defined as 

one which does not reflect at all, but completely absorbs all 

the rays which fall upon it, transmitting none.* According 

to the theory of reflection given above, an ideally black body 

must have the same index of refraction as the surrounding 

medium, otherwise reflection would take place.f Moreover it 

must have a coefficient of absorption, which must, however, 

be infinitely small, since otherwise reflection would take place 

(cf. chapter on Metallic Reflection), even though the index of 

refraction were equal to that of the surrounding medium. 

Hence, in order that no light may be transmitted by the body, 

it must be infinitely thick. An approximately black body can 

be realized by applying a coat of lamp-black or, since lamp¬ 

black is transparent to heat-rays, of platinum-black; likewise 

pitch or obsidian immersed in water, not in air, are nearly black 

bodies. The most perfect black body is a small hole in a 

hollow body. The rays which enter the hole are repeatedly 

reflected from the walls of the hollow body even though these 

walls are not perfectly black. Only a very small part of the 

rays are again reflected out of the hole. This part is smaller 

the smaller the hole in comparison with the surface of the 

body. 

Let plane waves, travelling along the positive ^-axis, fall 

upon a black body Conceive a cylindrical tube of light 

parallel to the .s'-axis and of cross-section q. Let energy flow 

in at z = o. This energy will be completely absorbed, i.e. 

transformed into heat within the black body, which is supposed 

to extend from z = a to z = 00. The amount of energy thus 

absorbed in any time t is E-g-V-t, ifE denote the radiant 

energy which is present in unit of volume of the medium in 

front of and V the velocity of the waves in this medium. 

* A perfectly black body can emit light if its temperature is sufficiently high. 
Hence it would be preferable to use the term “perfectly absorbing” instead of 
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If now the black body be displaced a distance dz in tl 

direction of light, then the energy which falls upon the boc 

in the time t is less than before by the amount of the energ 

contained in the volume q-dz of the medium, i.e. by tl 

amount q-dz-E. Hence the amount of heat developed in tl 

body is smaller than before by the same amount (measured . 

mechanical units). But the same amount of radiant energ 

always enters the tube in the time t no matter whether tl 

body ^ is displaced or not. Further, the electromagnet 

energy contained in the volume q-dz, which has been vacate 

by the motion of the body, is always the same, i.e. it is ind< 

pendent of whether this volume is occupied by $ or not, sin< 

the index of refraction, and therefore also the dielectric coi 

stant, of $ is to be identical with that of the surroundir 

medium, so that reflection does not occur, i.e. the electric ar 

magnetic forces at the surface of the body are the same in tl 

medium and in $. If, therefore, because of the displacemei 

of ® a distance dz, the same energy which has entered tl 

light-tube in the time t develops less heat than when ® is m 

displaced, then, according to the principle of the conservatic 

of energy, this loss in heat must be represented by wo: 

gained in the displacement of If this work be expressed 

the form p*q-dz, p represents the pressitre which is exert< 

upon $ by the radiation. Hence 

p-q-dz = q-dz-'Ey 

i.e. 

p- E.o 

Thus the pressure of radiation which is exerted by pla 

waves falling perpendicularly upon a perfectly black body 

equal to the amount of energy of the incident waves contained 

unit of volume of the medium outside. 
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>f energy contained in 3*io10 cm.3 of air. Hence the energy 

n i cm.8 is 

E = 
1.3 • io6 
3 • io10 

4-10 ~ 5. 

rherefore the sun’s rays exert this pressure upon I cm.2 of a 

)lack body. This pressure is about equal to a weight of 

j.-io~5 mgr., i.e. it is so small that it cannot be detected 

experimentally. Nevertheless this pressure is of great theoret- 

cal importance, as will be seen in the next chapter. 

7. Prevost’s Theory of Exchanges.—Every body, even 

vhen it is not self-luminous, radiates an amount of energy 

hich is greater and contains more waves of short period the 

ligher the temperature of the body. If, therefore, two bodies 

4 and B of different temperatures are placed opposite to each 

>ther, then each of them both radiates and receives energy. 

Fhe temperatures of the two bodies become equal because 

he hotter one radiates more energy than it receives and 

Lbsorbs from the colder, while the colder receives more than 

t radiates. This conception of the nature of the process of 

adiation was first brought forward by Prevost. 

If, therefore, the emission of a body A be determined by 

neasuring the rise in temperature produced in a black body 

vhich absorbs the rays from A, the result obtained depends 

lpon the difference in temperature between the bodies A 

md B. The rise in the temperature of B would be so much 

nore correct a measure of the entire emission of A the smaller 

he amount of energy which B itself radiates. Hence if it is 

lesired to measure the energy of the light-rays from a source 

4, whose ultra-red rays are all absorbed in a vessel of water, 

t can be done by measuring the absorption in a black body B 

vhich has the same temperature as the water. For at the 

;emperature of a room the body B emits only long heat-rays, 

md it receives from the water as many of these rays as it 
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the absorption of the body B at the temperature of the room; 

nevertheless, in consideration of the greater temperature oj 

the source (the sun or a flame), the result of the measurements 

is practically independent of the variations in temperature ol 

the body B. But the temperature of B must be taken into 

account in measuring the emission of a body A which is not 

much hotter than B. This subject will be resumed in the next 

chapter. 



CHAPTER II 

application of the second law of thermo¬ 
dynamics TO PURE TEMPERATURE RADIATION 

i. The Two Laws of Thermodynamics.—The first law of 

thermodynamics is the principle of energy, according to which 

mechanical work is obtained only by the expenditure of a 

certain quantity of energy, i.e. by a change in the condition of 

the substance which feeds the machine. Although this law 

asserts that it is impossible to produce perpetual motion, i.e. 

to make a machine which accomplishes work without produc¬ 

ing a permanent change in the substance which feeds it, yet a 

machine which works without expense is conceivable. For 

there is energy in abundance all about us; for example, con¬ 

sider the enormous quantity of it which is contained as heat in 

the water of the ocean. Now, so far as the first law is con¬ 

cerned, a machine is conceivable which continually does work 

at the expense of heat withdrawn from the water of the ocean. 

Now mankind has gained the conviction that such a machine, 

which would practically be a sort of perpetual motion, is 

impossible. In all motors which, like the steam-engine, 

transform heat into work, at least two reservoirs of heat of 

different temperatures must be at our disposal. These two 

reservoirs are the boiler and the condenser. This latter may 

be the air. In general heat can be transformed into work 

only when a certain quantity of heat Q is taken from the 

reservoir of higher temperature and a smaller quantity Qf is 

given up to a reservoir of lower temperature. 
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obtained at the expense of heat if only o?ie reservoir 

uniform temperature is at disposal. This idea is th 

of the second law of thermodynamics. 

Only one consequence of this law will be here mai 

If a system of bodies, so protected that no exchanges 

work can take place betiveen it a7id the external me din 

any time the same temperature in all its parts, th 

changes take place in the nature of any of the l 
differ eric e of temperature can ever arise in the syst 

such a difference of temperature might be utilized fc 

a machine. If, then, this difference of temperature 

equalized by the action of the machine, it would agai 

itself in such a system, and could again be used for 

duction of work, and so on indefinitely, although orig 

one source of heat at uniform temperature was at 

This would be in contradiction to the second la\ 

important to observe that heat originally of one tei 

could be used in this way for the continual productioi 

only if the nature of the bodies of the system remc 

changed. For if this nature changes, if, for exampl 

cal changes take place, then the capacity of the s] 

work ultimately comes to an end. A condition of 

can indeed be disturbed by chemical changes; thi 

however, in contradiction with the second law. 1 

nomenon can be observed in any case of combustion. 

2. Temperature Radiation and Luminescence, 
body radiates energy, at least in the form of long 1 

Now two cases are to be distinguished: either (i) tl 

of the body is not changed by this radiation, in whi< 

would radiate continuously in the same way if its tei 

were kept constant by the addition of heat. Thi 

will be called pure temperature radiation. Or (2) 

changes because of the radiation, in which case, in 
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lie in the temperature of the system, but in some other source 

of energy. Thus the radiation due to chemical changes is 

called chemical luminescence. This occurs in the slow oxida¬ 

tion of phosphorus or of decaying wood. The phenomenon of 

phosphorescence which is shown by other substances, i.e. the 

radiation of light after exposure to a source of light, is called 

photo-luminescence. Here the source of energy of the radia¬ 

tion is the light to which the substance has been exposed, 

which has perhaps produced some change in the nature, for 

instance in the molecular structure, of the substance, which 

change then takes place in the opposite sense in producing 

phosphorescence. The radiation produced in Geissler tubes 

by high-tension currents is called electro-luminescence. 

From what was said in § i it is clear that the seco?id law of 

thermodynamics leads to conclusions with respect to pure tem¬ 

perature radiatioJis only. From the conception of heat 

exchanges mentioned on page 491 it follows, for example, 

that if an equilibrium of temperature has once been established 

in a closed system of bodies, it can never be disturbed by pure 

temperature radiation. But a disturbance of the equilibrium 

might be produced by luminescence. 

In what follows only pure temperature radiations will be 

considered. 
3. The Emissive Power of a Perfect Reflector or of a 

Perfectly Transparent Body is Zero.—Consider a very large 

plate of any substance K enclosed between two plates of per¬ 

fectly reflecting substance SS. A perfectly reflecting body is 

understood to be one which reflects all of the radiant energy 

which falls upon it. Let K and 55 have originally the same 

temperature. K and 55 may be thought of as parts of a large 

system of uniform temperature which is closed to outside influ¬ 

ences. If now K emits energy, it also receives the same 

amount back again by reflection from 55. Assume that the 

absorption coefficient of K is not equal to zero. The absorb¬ 

ing power a of a body * or of a surface may be defined as the 

* The absorbing power a must be carefully distinguished from the coefficient 
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ratio of the energy absorbed to the energy radiatet 

from without. If the incident energy is i, then the 

absorbed is a, the quantity reflected I — a, provided 

transmits no energy. Hence this quantity i — a is tl 

ing power r = i — a, provided the body is so thicl 

energy is transmitted; otherwise r < i —- a. 

The energy reflected to K from the mirrors 55 is 

tially absorbed in K and partially reflected to S 

reflected part is again entirely reflected back to K 

and so on. It is easy to see, since 55 absorb no ene 

when a stationary condition has been reached, the 

reabsorbs all the energy w’hich it emits. If, ther< 

mirrors 55 also emitted energy, the temperature of 

K would rise, since then K would absorb not onl 

energy which it itself sends out, but also a part of tl 

emitted by 55. On the other hand the temperatr 

mirrors would fall, since they radiate but do not abso 

since, according to the second law, the original equi 

temperature cannot be disturbed by pure temperature 

the conclusion is reached that the emissive power oj 

mirror is zero. If, therefore, a system of bodies is si 

on all sides by a perfect mirror, it is completely prote 

loss by radiation. In a similar way the conclusior 

reached that the emissive power of a perfectly transpt 

is zero. For conceive an absorbing body K surrou: 

transparent body, the whole being enclosed within a 

reflecting shell, then the temperature of the transpai 

must fall if it emits anything, since it does not absorl 

4. KirchhofFs Law of Emission and Absorptic 
sider a small surface element ds of an absorbing b< 

centre of a hollow spherical reflector of radius 1, wh 

opposite ends of a diameter two small equal ope 

(cf. Fig. 108). 
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Let ds be small in comparison with d£l- ^The energy 

radiated by ds through each of the openings dO* Is, according 

to (3) on page 484, 

dL — ids cos <fi d£2y.(0 
in which <fi is the angle between the normal to ds and the line 

connecting the middle points of ds and dD. t is called the 

intensity of radiation from ds in the direction c/>. Whether or 

Fig. 10S. 

not i depends upon <p will not here be discussed. All the 
energy which ds emits in other directions it again receives and 

completely absorbs because of the repeated reflections which 

take place at the surface of the hollow sphere. Suppose nmv 
that the hollow sphere is surrounded by a black body 

whose outer surface is a perfect reflector. A"' then radiates 

towards the interior only. Part (dJF) of the energy emitted 

from K' passes through the two openings dXX to the element 

ds and is there partially absorbed. The element ds subtends 

at a surface element ds1 of the black body a solid angle 

ds 
dQJ = -^2 cos <f> , . . ... (2) 

if r denotes the distance between ds and ds\ The energy 
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in which if represents the intensity of radiation of t 

surface at an angle from its normal. The sum c 

surface elements ds' which radiate upon ds is 

2ds' = rzd£l : cos <p', . 

in which r and <pr are to be considered constant for th( 

elements of surface ds'. Hence the entire energy 

from K' through the opening d£l upon the element d 

dE' = 2dL' = i'-f*.d£ld{l'f . . 

or, from (2), 

dE' — i'dfl ds cos 0. 

Similarly the energy which comes to ds from the otib 

dE" = i" dflds cos 0, . 

in which i" and i' must be distinguished if they dep 

0' and if 0' is different on the two sides of the ej 

black body. 

If there is originally equilibrium of temperature, 

be disturbed by the radiation. The energy 2dL sei 

ds through the two openings dfl must be compensate 

.energy a(dE' + dE") absorbed, a being the absorbii 

of ds corresponding to the direction <p. Accordir 

second law and (1), (6), and (7), 

2 i = a(if + if/). 

This equation must remain unchanged when the ei 

black body K' changes its form, thus varying <f>\ 

if(z=z i") must be independent of 0;, i.e. the intensity 

tion i’ of a black body is independent of the direction 

tion. Hence, from (8), 

i = a- i!. 

If different black bodies be taken for the surface - 

the substance ds remains unchanged, then, according 
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ilways the same function p of the temperature.* Hence (9) 

nay be stated as follows: 

The ratio between the emission and the absorption of any 

body at a given angle of inclination depends tip on the tempera¬ 

ture only : this ratio is equal to the emission of a black body at 

Tie same temperature. These laws are due to Kirchhoff.t 

Iliey hold not only for the total intensity of emission, but also 

for the emission ofa?iy particidar wave lengthy thus 

4 = <v4/.(97) 

For if a perfectly transparent dispersing prism be placed 

Dehind the opening dD outside of the hollow sphere (page 

497), then one particular wave length from ds can be made to 

rall upon the black body, the others being returned by perfect 

mirrors through the prism and the opening dll to ds. Then 

within a small region of wave lengths which lie between A and 

l _|_ dh the considerations which lead to equation (9) are 

applicable. 

Equations (9) and (9') must hold for each particular 

azimuth of polarization of the rays. For if a prism of a trans¬ 

parent doubly refracting crystal be introduced behind d£2, the 

waves of different directions of polarization will be separated’ 

into two groups. One of these groups may now be allowed 

to fall upon a black body while the other is returned by a suit¬ 

ably placed perfect mirror. The above considerations then 

lead to equation (9'), which therefore also holds for any par¬ 

ticular direction of polarization. 

5. Consequences of Kirchhoffs Law.—If a black body is 

slowly heated, there is a particular temperature, namely, about 

5250 C., at which it begins to send out light. This is at first 

light of long wave length (red); but as the temperature is 

raised smaller wave lengths appear in appreciable amount (at 

* This function can depend upon the index of refraction of the space through 
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about iooo° the body becomes yellow, at 1200 

Now equation (9') asserts that no body can begin to 

at a lower temperature than a black body, but that 

begin to emit red rays at the same temperature (abo 

{Draper s law).t The intensity of the emitted ligh 

to be sure, upon the absorbing power ak of the b 

temperature considered. Polished metals, for exam 

keep their high reflecting power even at high te 

emit much less light than lamp-black. H,ence a 

lamp-black upon a metallic surface appears, when 

incandescence, as a bright streak upon a dark b; 

Likewise a transparent piece of glass emits very lit 

high temperature because its absorbing power is si 

hollow shell with a small hole in it be made of any 

hole acts like a nearly ideally black body (cf. page 

must therefore appear, at the temperature of incand' 

a bright spot upon the surface of the hollow shell 

metal has but a small absorbing power. 

In the case of all smooth bodies which are not 

reflecting power increases as the angle of incidence 

hence the absorbing power must decrease. Hence 

to (</), the intensity of emission i of all bodies wh\ 

black is greater when it takes place perpendicular to 

than when it is oblique. Hence the cosine law of emi 

rigorously only for black surfaces. 

At oblique incidence, as was shown on pag 

* The first light which can be perceived is not red but a ghostl 

can be explained by the fact that the retina of the human eye 1 

organs sensitive to light, the rods and the cones. The former are 

to light, but cannot distinguish color. The yellow spot, i.e. the 

point of the retina, has many cones but few rods. Hence the first 

light is received from the peripheral portions of the retina. But as s 

is focussed upon the object, i.e. as soon as its image is formed u 

spot, the impression of light vanishes, hence the ghostliness of the p 

t Every exception to Draper’s law, as for example phosphori 
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reflecting power, and therefore the absorbing power, depends 

upon the condition of polarization of the incident rays. Hence 

the radiation emitted obliquely by a body is partially polarized. 

That component of the radiation which is polarized in a plane 

perpendicular to the plane defined by the normal and the ray 

must be the stronger, because it is the component which is less 

powerfully reflected, and is therefore more strongly absorbed. 

In the case of crystals like tourmaline, the absorbing power, 

even at perpendicular incidence, depends upon the condition 

of polarization of the incident light. If, therefore, tourmaline 

retains this property at the temperature of incandescence, a 

glowing tourmaline plate must emit partially polarized light 

even in a direction normal to its surface. Kirchhoff has ex¬ 

perimentally confirmed this result. To be sure the depend¬ 

ence of the absorption upon the condition of polarization is 

much less at the temperature of incandescence than at ordi¬ 

nary temperatures. 

Kirchhofif made an important application of his law to the 

explanation of such inversion of spectral lines as is shown in the 

Fraunhofer lines in the solar spectrum. For if the light from 

a white-hot body (an electric arc) be passed through a sodium 

flame of lower temperature than the arc, the spectrum shows 

a dark /Mine upon a bright ground. For at high tempera¬ 

tures sodium vapor emits strongly only the Z>-line, conse¬ 

quently it must absorb strongly only light of this wave length. 

Hence the sodium flame absorbs from the arc light the light 

which has the same wave length as the ZMine. To be sure it 

also emits the same wave length, but if the sodium flame is 

cooler than the arc, it emits that light in smaller intensity than 

the latter. Hence in the spectrum the intensity in the position 

of the jD-line is less than the intensities in the positions cor¬ 

responding to other wave lengths which are transmitted with¬ 

out absorption by the flame.* According to this view the 

"Frsmnhnfpr 1 inin tlm snlnr Qnprfnim nrp f^vnlsiinprl bv flip 
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absorption of the light which comes from the hot centre of the 

sun by the cooler metallic vapors and gases upon its surface, 

Nevertheless this application of KirchhofPs law assumes thai 

the incandescence of gases and vapors is a case of pure tem¬ 

perature radiation. According to experiments by Pringshein 

this does not seem to be in general the case. This point wil 

be further discussed in § I of Chapter III. 

6. The Dependence of the Intensity of Radiation upoi 
the Index of Refraction of the Surrounding Medium.—Con¬ 

sider two infinitely large plates PP' of two black substance* 

placed parallel to one another. Let the outer sides of PP' b( 

coated with a layer of perfectly reflecting substance 55' sc 

that radiation can pass neither out of nor into the space PP* 

It has thus far been assumed that the space into which th< 

radiation is to take place is absolutely empty, or filled with * 

homogeneous perfectly transparent medium like air. Insteac 

of this the assumption will now be made that an empty spaa 

P 

Fig. 109. 

adjoins P, while a perfectly transparent substance, whose inde: 

is n for any given wave length A, adjoins PTP Let th< 

boundary of this medium be the infinitely large plane 1 

(cf. Fig. 109), which is assumed to be parallel to the plate 

PP* in order that P may be everywhere adjacent to a vacuum 

Now, according to page 83, an element of surface ds upoi 

P radiates into a circular conical shell, whose generating line 

make the angles <p and <p -J- dip with the normal to ds, tlr 

energy 

dL = 2nids sin <p cos cp dip, . . . (ic 
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1 which i denotes the intensity of radiation from P. Part of 

he emitted energy aL is reflected at the plane E and again 

bsorbed by P. Let the amount thus reflected be 

dLr = 2nids sin 0 cos cp d<p>^9 . . • (11) 

a which r$ denotes the factor of reflection at the boundary E 
ar the angle of incidence 0. The rest of the energy, 

IL — dLr) reaches Pr and is there absorbed. 

Similarly the energy emitted from an element of surface ds 

ipon Pf into a circular conical shell whose generating lines 

nake the angles x and x + with the normal to P' is 

dL = 2 ni'ds sin x cos x dx> 

n which if denotes the intensity of radiation from Pr. There 

3 returned to Pr by reflection at E the energy 

dLr = 2 Tti'ds sin x cos x dX-rx > 

lence the energy 

dLn = dLf — dL'r = 27ti'ds sin x cos x dx (I — ^x) (12) 

eaches P and is there absorbed. 

Since the temperature of P is to remain constant, it follows 

hat 

fdL— f dLr + J dL", 

.e. from (10), (n), and (12), since, according to page 498, 

;he intensities of radiation i and i' are independent of the 

ingles 0 and x, 

rv* r/* 
: / sin cp cos <p dcj> (i — r^) = i' I sin^cos x dx (i —rx). (13) 
•do Ho 

Now it is to be noted that for angles x> for which 

5in x > — > r* = L since in this case total reflection takes place 
n 

it E. Hence it is only necessary to extend the integral (13) 
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be assumed that n is constant for all wave lengths. 
(13) 0 and x can be thought of as a correspondir 

angles of incidence and refraction for which the 

holds: 
sin 0 : sin x = 

and the integration can then be carried out with re* 
7t 

between the limits 0 = o and 0 = —. Now, from ( 

sin v cos x dx = sin 0 cos 0 dcp. 

Moreover, according to equations (24) on page 282, 
direction of polarization, and hence also for natc 

= rr For, according to those equations (disreg; 
sign, which need not here be considered), the refleci 

tude is always the same fraction of the incident a 

whence it is immaterial whether 0 is the angle of 
and x that of refraction or the inverse, i.e. the 
factors are the same whether the light is incident fi 
upon the plane E at the angle 0 or from below at 

X, so long as sin 0 : sin x = n• Hence from (13) 
when rx = 

r/* v r/> 
iJ sin 0 cos 0(i — rf)d<p = sin 0 cos 0(i — r^) 

Since the integral which appears upon both sides of 
tion is not equal to zero, there results at once 

if : i = n2, 

i.e. the intensities of radiation of two black silt faces a 

tioyial to the squares of the indices of refracti 

surrounding media. * 

* This law is also due to Kirchhoff (Ostwald’s Klassiker, No. ic 

is often falsely ascribed to Clausius, who did not publish it till sever; 
Kirchhoff had done so. The law has been experimentally tested by J 

QmriT'a-n f(~* "R to-* Tin "R/aiKI -r» r\>-t a t 



This proof relates only to the total radiation, and the index 

n was assumed constant for all wave lengths. But equation 

(if) holds also for the partial radiations of any one particular 

period T. Let the intensity of emission of P for rays whose 

periods lie between T and T -f- dTbe denoted by ijdT. Simi¬ 

larly denote the intensity of radiation from P' for the same 

rays by i'TdT. Then, from (16), 

zf 
n2 

“V, 
sin cp cos 0(i — rfjdcp = o. (18) 

The 2 is to be extended over all periods between T = o and 

T = 00 . 

Between the two bodies P and Pf conceive a layer intro¬ 

duced which is transparent to a certain wave length A, but 

reflects other wave lengths. Equation (18) must always hold, 

but the functional relation between and T varies according 

to the thickness and nature of the layer. Now in order that 

(18) may hold as is indefinitely varied, every term of the 2 

in (18) must vanish, i.e. for every value of T* 

(r9) 

According to Kirchhoff’s law (9'), for a body which is not 

black the ratio of the emission ik to the absorption ak is pro¬ 

portional to the square of the index 71 of the surrounding 

medium. Since the change of ak with n may be calculated 

from the reflection equations, the relation between ik and n is 

at once obtained. In any case, then, for bodies that are ziot 

black the intcjisity of radiation is not strictly proportional to iil. 

7. The Sine Law in the Formation of Optical Images of 
Surface Elements.—If dsr is the optical image of a surface 

element ds formed by a bundle of rays which are symmetrical 

* Equation (17) can also be obtained by the method employed on page 497 if 
the space outside of the hollow sphere be conceived as filled with a medium differ¬ 
ent from that inside the sphere, but the calculation is somewhat more complicated. 
Since in such an arrangement the waves of different periods T may be separated 
from one another by refraction and diffraction, (19) results at once from (17) in 
consideration of the conclusions upon page 497. 
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to the normal to ds and have an angle of aperti 

object space, u* in the image space, then the wl 

emitted by ds within the bundle under consideratic 
upon ds' \ and inversely, ds' must radiate upon d. 

rays denote the path of the energy flow. Hence i 

be considered black surfaces of the same tempe 

coated on their remote sides by perfectly reflec 

then, since no difference in temperature between 

can arise because of the radiation, the energy dL s( 

ds must be equal to the energy dLr received by it f 

now ds lies in a medium of refractive index n9 dsr in < 

nf, and if the intensity of emission of a black body 

denoted by z0, then, by (17), the intensity of emis: 
i = n\, that of ds', i' = n'\. Moreover, from 

4^5) 
dL = Tt-ds-i-sin2 u, dL' — 7t*ds' -ir * sin2 

Hence, since dL = dL', 

7tdsn\ sin2 u = Ttds'n' 2z0 sin2 u', 

i.e. 
dsn2 sin2 u = dsr7in sin2 2/. . 

This is the sine law deduced on page 61 [ 
(46)]. The deduction there given, which was put 
rical, is more complicated than the above, which i: 
considerations of energy. 

8. Absolute Temperature.—As was noted oi 
work can be obtained, with the aid of a suitable 

withdrawing a certain quantity of heat W1 from a 
and giving up a smaller quantity of heat W2 to at 
voir 2, which is colder than 1. In this process 
may return to its original condition, i.e. it ma] 
so-called cycle. The principle of the conservatic 
then demands that the work A performed be ( 
difference between the quantities of heat Wx at 
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Now compare two machines M and M’ y both of which 
withdraw in one cycle the same quantity of heat W1 from reser¬ 
voir 1. They may, however, give up different quantities W2 

and W2 to reservoir 2. In that case the two quantities of 
work A and A! done by them are different, for from (21) 

a = w1- Wiy Af = Wi _ 

Now consider M to be so constructed that it can be made 

to work backwards (i.e. let it describe a reversible cycle'). In 
so doing it withdraws the quantity of heat W2 from reservoir 
2, gives up the quantity W1 to reservoir 1, and performs the 

work — A. If now a cycle of machine Mr be combined with 
such an inverted cycle of machine My the resultant work 
accomplished is 

Ar - A = W2- W2'.(22) 

This process can be conceived to be repeated indefinitely. 
Hence according as W2 — W2 is positive or negative heat is 
continually withdrawn from or added to reservoir 2, while on 

the whole heat is neither withdrawn from nor added to reser¬ 

voir 1. Hence in this case reservoir 1 may be assumed to be 
finite and may be considered to be part of the machine which 
describes the cycle; while reservoir 2 may be conceived to be 

the surrounding medium, for example the water of the ocean, 
whose heat capacity may be considered infinite. If now 

A' — A were greater than o, then a machine would have been 
constructed which, with the aid of one infinitely large heat- 
reservoir, would do an indefinite amount of work. But by the 

second law of thermodynamics this is impossible (cf. page 
493), hence* 

A' — A <0, i.e. A > A', ... (23) 

i.e. of all machines which take up a quantity of heat Wx at a 
definite temperature and give up heat to a colder reservoir, and 

* That in general the equality A = A' does not hold is evident from a con- 
/-lai-'i r\-C munTr t rrAwOfCi'KlA T\ Anpccoc ca rr •fvi Ac? o c . enlace *k -T r- 
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A multiplication of (25) by (26) gives 

W1 ■ W3= 0(ri> r2)'^(T2> Ti)' • • • (28) 
Hence from a comparison of (27) and (28) 

<P(T 1< T3)= ^(Tl> T2>0(T2> T3)- • • ' (29) 

In this equation r2 can be looked upon as an arbitrary 
parameter whose value need not be considered. Thus the 
right-hand side of (29) represents the product of two factors 
one of which depends only upon rx, the other only upon r2. 

These factors will be denoted by $x and so that, from 

(29). 
0(ri> Ts) = : £3.(30) 

Hence in (25) 0(rx, r2) = $x : $2 and there results 

(31) 

$x and $2 are functions of the two reservoir temperatures rx 

and r2 measured upon any scale. #x and $2 are called the 

absolute temperatures of the reservoirs. The ratio of the abso¬ 
lute temperatures of any two bodies means then the ratio of 

the quantities of heat which a machine working in a reversible 
cycle withdraws from one and gives up to the other of these 

bodies, provided the bodies may be considered infinitely large 

so that their temperatures are not appreciably changed by the 
gain or loss of the quantities of heat Wx or W2. 

Since this merely defines the ratio of the absolute tempera¬ 
tures of the two bodies, it is necessary to establish a second 

relation in order to establish a scale of temperature. This 
relation is fixed by the following convention: The difference 
between the absolute temperatures of melting ice and boiling 
water, both at atmospheric pressure, shall be called 100. It 

* It is desirable to write the second factor —. instead of because then the 

parameter r2 disappears from (29), as can be seen at once by writing 
0(rx, r2) = ^ : $a and <p(r2, r2) = % : $8. 
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in which 5 represents a single-valued function of the state of 

the body, and dS the differential of this function. For then, 

according to (34), the right-hand side of (35') always reduces to 
zero as soon as a cycle is described in which the final condi¬ 
tion 2 of the substance is identical with the initial condition 1. 

This function 5 of the state of a body or of a system of bodies 
is called the ciitropy of the body. 

The energy E is also a function of the state of the body. 
It is defined by means of the assertion of the first law of ther¬ 
modynamics, that in any change of the body the work 6A 

done by the body plus the heat 6 W given up (measured in 
mechanical units) is equal to the decrease — d\E in the energy 
of the body, i.e. it is defined by the equation 

6A -(- 6 W = — ^/E.(36) 

10. General Equations of Thermodynamics.—It is con¬ 
venient to choose as the independent variables which determine 
the state of a body or of a system, the absolute temperature $ 

and some other variables x, whose meaning will for the pres¬ 
ent be left undetermined, x will be so chosen that when the 

temperature changes in such a way that x remains constant, 
no work is done by the body. Then, since A does not change 
when x remains constant, the following relations hold: 

6 A = MSxy 6 W = Xdx + m. . . (37) 

dx and SS represent any changes in x and $A and 6W} the 
corresponding work done and heat given up by the body. 

The process will be assumed to be reversible, i.e. the equations 
(37) will be assumed to hold for either sign of dx and d*S. 
Now from (35), (36), (37), 

- dS = - dE = (M+ X)dx + Yd$. (38) 

Since in general 

35 35 
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Again, if the temperature of the entire cylinder is increased an 
amount while x remains constant, the energy increases by 

.(44) 

since the volume of the cylinder is ;r. No work is done so 
long as x remains constant. 

A comparison of (43) with (37) and of (44) with (38) shows, 
since by (38), when Sx = o, dE= — Ydd, that 

M=W, .(45) 

It follows, therefore, from (42), since ip depends only upon 
$ and not upon .r, that 

a# ^ a^2 3 ) 3$ / 

Integration of this equation with respect to ■& gives 

yp = ■& rp. • (46) 

An integration constant need not be added, because when 
$ = o the body contains no heat, and hence no radiation can 
take place. It follows from (46) that 

hence 

AlP = $ 
dtp 

i.e. 
dB dp 

4 ir = ~f; 

= Ig'P + const., 

or 

*(«) = £•«*.(47) 

If now a small hole be made in the wall of this cylinder, 
radiation will take place from the hole as though it were a 

black body (cf. page 489).* The intensity of radiation i must 

* This also occurs if the walls of the cylinder are not perfectly black. Hence 
in this case also is the energy in unit volume for the condition of temperature 
equilibrium, and is the pressure on the wall of the cylinder. Only if the walls 
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evidently be proportional to the energy in unit volume ^ 

within the cylinder. Hence the intensity of radiation c 

black body is 

z = .( 

i.e. the total intensity of emission of a black body is proportu 

to the fourth power of its absolute temperature. 
This law, which Stefan* first discovered experiment 

and Boltzmann deduced theoretically in a way similar to 

above, has been since frequently verified. The most accu 
work is that of Lummer and Pringsheim, +who found by b 

metric measurements that within the temperature interval ] 
to 1300° C. the radiation from a hole in a hollow shell folio 

the Stefan-Boltzmann law. It is of course necessary in ; 
experiments to take account of the temperature of the bolo 

ter (cf. page 491). The radiation of the small surface ds r 

the surface ds! at a distance r amounts, when ds and ds* 

perpendicular to r [cf. the definition of intensity of radiat 

equation (3), page 484], to 

rjr .ds ds' 
dL = 1—5—. 

r- 

The radiation from ds’ upon ds amounts, if i' denote 
intensity of radiation of ds\ to 

dL1 = i 
ds dsr 

r2 

of the cylinder had been perfect mirrors and no heat had been originally adr 
into the cylinder would the energy in unit volume if> = o. The energy ir 
volume would reach the normal value ip if the walls of the cylinder contaii 
spot, no matter how small, which was not a perfect mirror. If this spot wer< 
fectly black, the pressure upon it would be But in that case every part 1 
cylinder wall, even that formed of perfect mirrors, would experience the 
pressure, since otherwise the cylinder would be set into continuous motion of 1 
lation or rotation. 
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Hence if i and V follow the law (48), the total quantity of heat 
transmitted in unit time to the element ds' is 

ds dsr 
dW =. dL — dLf = (S4 - S/4), . . (49) 

in which denotes the absolute temperature of ds'. 

The constant a has recently been determined in absolute 
units by F. Kurlbaum * by means of bolometric measurements. 
In these experiments the temperature to which the bolometer 
was raised by the radiation was noted; the radiation was then 
cut off, and the bolometer raised to the same temperature by 

a measured electric current. The radiation is thus measured 
in absolute units by means of the heat developed by the current. 
Kurlbaum found that the difference between the emissive power 
of unit surface of a black body between ioo° and o°, i.e. the 

difference between the energy radiated in all directions, was 

gr-cal 
^00-^=0.01763- sec -.(50) 

Now [cf. equation (5), page 485] e = 7ti, in which i is the 
intensity of radiation. Further, 1 gm-cal = 419- io5 ergs, 
hence 

4,0 - *0 = "(373* - 2734) = 
0.01763-419-IO5 

i.e. the radiation constant a for a black body in absohtte 

C. G. S. units is 

a = 1.71-IO-5 erB/sec.(SJ) 

or, in gm-cal, 

^ = 0.408-10-.(5l') 

12. The Temperature of the Sun Calculated from its 
Total Emission.—If the sun were a perfectly absorbing (i.e. a 

black) body which emitted only pure heat radiations, its tern- 

* Wied. Ann. 6<. d. 74.6. 1808. 
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of a black body can now be determined by means of the fol¬ 
lowing device, due to W. Wien.* 

Conceive a cylinder of unit cross-section within which two 
pistons 5 and S', provided with light-tight valves, move. 
Let K and K' be two black bodies of absolute temperatures $ 

Fig. no. 

and ■& -]- d-S. Let the side walls of the cylinder, as well as the 
pistons 5 and S', be perfect mirrors. Let also the outer sides 
of K and K' be coated with perfect mirrors. Let there be a 
vacuum within the cylinder. 

At first let S' be closed and 5 be open. Then K radiates 

into the spaces 1 and 2, K' into 3. The energy in unit volume 

is greater in 3 than in 2 because the temperature of K' is greater 
by dd than that of K. Let now S be closed and moved a 

distance Sx toward S', until the energy in unit volume in 2 is 
equal to that in 3. The value which Sx must have in order 
that this condition may be fulfilled will now be calculated. If 

(£ denote the original amount of radiant energy contained in 
space 2, then the original energy in unit volume in this space is 

(5 

a — x* 

Hence the change in energy in unit volume corresponding to 

a change in x is 

dtfI? = 
1 e 6x 

a — x~ [a — x)r 

Now d& is the work which is done in pushing forward the 
piston S. Hence, from page 512, d& = ifitix. Hence 

6x (, . , e \ 6x 
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But, according to the second law, work A can never be 

gained by means of a cycle in which heat is withdrawn from 
Duly one source K\ the heat being thus entirely transformed 

into work. Hence the conclusion that when the two spaces 2 

and j contain the same quantity of energy in unit volume, the 

distribution of energy in their spectra is always the same. 

But, according to Doppler’s principle, the distribution of 
energy in the spectrum is changed by the motion of the 
piston 5. Let the total energy in unit volume in space 2 be 

given by 

*<?) =f 0 (A, S)dx.(56) 

then the expression <p(X, S)dX represents the energy in unit 

volume of the waves whose lengths lie between X and X-\- dX. 

Consider the plane waves which are reflected back and forth 

at normal incidence between the pistons 5 and S' in the 

space 2. The wave length of these waves is changed by the 

motion of 5. Consider first a ray which starts from a point P 

and has been reflected but once upon 5. If the vibration at 
the point P due to the incident wave has the period T, then 
the vibration at P due to the wave reflected from 5 will have 

some other period T'. For if a disturbance starts out from P 

at the time / = o, it returns to P after reflection upon 5 at a 
time t' == 2bx : c} in which c is the velocity of light in space 2 

(in vacuo), and bx the distance of Pfrom the mirror at the time 
tx when the disturbance from P reached 5. 

If at the time t = o the distance between P and S is b, 

hen evidently b — bx + sx, in which sx denotes the distance 
travelled by the mirror 5 in the time tv If 5 moves with a 
velocity v with respect to P, then sx = vtx, and bx = ctx; hence 

it follows from b = (c + v)tx that tx = b : c + v> or 



\ ' % % * 

f ** ,* i X i 

t*** If# c-cft # 

*X<! a?** ^ <4 $ . 

*!liti valwtf #i 

Wi^llfl (ft? 

SI l,»*n ^ «■*-#'&“slaic-1-«”■’«t !■■** t«f;i tli-r 

Jl ai'«" f f ‘Xsafi^ i*4U 4-. 

Ifni ■% Jjf* f C ll«''» f fc'^1 tfAiltl ^ 

If life *J* 11 ^is-*: «r I# 1 %% c v $% 

i i \lH* U ,r f, ^ l(1 

X-,# 
J# - m 

■■if 

li*.sfilsl «rf r»| 

S fulfil fit l| 

1 * y 1 i\ 

* ~'X % Jt 

I fXf ## |i*|Jfi 

|l W t ui flX* ff% % ><* *X ^ 

* I I ,# * !ti, i J >, h * X X, f ** 4 f #i 

III Ituff# 4#, X 4. -'r.Ui-^ 4i ' -f# II 



THE SECOND LAW OF THERMODYNAMICS 521 

It will now be assumed that v is small in comparison 

with c. Then from (57), retaining only terms of the first 
order in v : c, 

7M = t(i - 2«y); 

i.e., in consideration of (59), 

= 7(1 ——) 

The change in the period due to the motion of the piston 
>S amounts then to 

Sx 
rw — r= - t——, 

a — x 

and also the change in the wave length A, due to the 
motion of 5 is 

Sx 

. 

When dx is positive SxX is negative, i.e. the wave length is 
shortened. 

Moreover, it must be remembered that only one third of 
that part of the energy which is represented by (56) and which 

corresponds to the wave length X can be looked upon as due 

to waves which travel at right angles to 5 (cf. page 512). 

The waves which travel parallel to 5 undergo no change in 
wave length because of the motion of S. If, therefore, that 

part of the energy which is originally present in space 2 and 
which corresponds to waves whose lengths lie between A, and 

A -j- dX is 

dL = <p(\, 2)dX,.(61) 

then, neglecting the increase of energy in unit volume due to 

the motion (cf. page 517), the energy dU which, after the 
_ x.u /~1 c? urotrA I 



522 THEORY OF OPTICS 

length due to the motion of the piston as worked out in (60) 

Thus 

dL' = [10(1, 9) + W “ six> 9)]<«.. 

Now, from Taylor’s theorem, 

30 
0(1 <5,1, 9) = 0(1, 9) 9(1 0^ • 

Hence 

dL' = 0(1, 9) - 
<5,1 

T 
30 
31’ 

or again, from Taylor’s theorem, by setting £<5,1 = <51, 

dL! = 0(1 - <51, 9)0’!.(6: 

The energy which corresponds to the wave length 1 at tl 

temperature 9 <59, i.e. after the motion of the piston, is tl 

same as the energy corresponding to the wave length 1 — < 

at the temperature 9. But now, from (6o) and (55), 

<51 = £<5,1 = 3 a — x’ 3 a — x 

i.e. the relation holds 

<59 <51 
_+T- = o, • • (« 

which can be written as d($A) = o, i.e. 

SA = const.(( 

Hence neglecting the increase in th e energy in unit volu: 
due to the motion of the piston, i.e. neglecting the increase 
energy due to rise in temperature, the same energy m u 

volume exists at a temperature 6 in waves of length X as ext 

at the lower temperature S' in waves of length X\ provii 

AS = A'S'. 
But if the increase in the total energy in unit volur 

which is proportional to S4, be taken into consideration, 
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The above law then asserts that for a black body one and 

the same curve expresses the functional relationship between 

ip : -S4 and AO at any temperature. Now, from (56), 

m Z1 
Hence (pif, S) ’• O5 must be a function of AO, thus 

<P{\, 0) 

05 =/(A0). 

(65) 

(66) 

If, therefore, for any temperature 0 the curve of the dis¬ 
tribution of energy be plotted using /If) as abscissa; and 
0(A, 0) : <95 as ordinates, then this curve holds for all tempera¬ 
tures, and it is easy to construct from this curve the actual 

distribution of energy for other temperatures, when the A’s are 
taken as abscissae and the <p’s as ordinates. Hence the follow¬ 
ing theorem: 

If at a temperature 0 the maximum radiation of a black 

body corresponds to the wave length lm, then at the temperature 

■&' it must correspond to a wave length A/ such that 

= .(67) 
Further, it follows from (66) and (67), if the function 

which corresponds to the wave length be denoted by 4>m, 
that 

-K = S5 : 3/5;.(68) 

i.e. if two black bodies have different temperatures, the intensity 

of radiation of those wave lengths which correspond to the 

maxima of the intensity curves for the two bodies are propor¬ 

tional to the fifth power of the absolute temperatures of the 

bodies. 

14. The Temperature of the Sun Determined from the 
Distribution of Energy in the Solar Spectrum.—Equation 
(67) has been frequently verified by experiment.* The mean 
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value of as determined from a number of experiment' 

good agreement is = 2887, the unit of wave length be 

0.001 mm. Since now, according to Langley, the maxin 

energy of the sun’s radiation corresponds to the wave ler 
\'m = 0.0005, it would follow that the temperature of the 

is 

S'= 5774° = S5OI° c. 
This result is of the same order of magnitude as that calculi 
on page 516. It is, however, questionable whether the su 

a perfectly absorbing (black) body which emits only pure t 

perature radiation. If chemical luminescence exists in 

sun, its temperature may be wholly different. 
15. The Distribution of the Energy in the Spectrum 

Black Body.—The preceding discussion relates to the che 

in the distribution of the energy in the spectrum of a b 
body with the, temperature; but nothing has been saida1 

the distribution of the energy for a given temperature, 
order to determine the law of this distribution W. Wien 

ceeds as follows: * 
If the radiating black body be assumed to be a gas, t 

upon the assumption of the kinetic theory of gases, Maxw 
law of the distribution of velocity of the molecules would h 

According to this law the number of molecules whose ve 
ties lie between v and v -f- dv is proportional to the qua: 

v2 • e V /P*dv,. 

in which ft is a constant which can be expressed in tern 

the mean velocity v as follows: 

v2 = fft2. 

eter cooled to — 20° C. he found that the maximum radiation of a blac 
copper plate at a temperature — 2° C. corresponded to Xm = 0.0122 mm. 
A.w-0 = 2887 it would follow that at — 2° C. X4t — 0.0107. To be sure the < 
plate was not an ideal black body and it was only its maximum relativi 
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According to the kinetic theory the absolute temperature is 
proportional to the mean kinetic energy of the molecules, i.e. 

$ ~ “Z/2 ~ /?2.(71) 

Now Wien makes the hypotheses: 

1. That the length A of the waves which every molecule 
emits depends only upon the velocity v of the molecule. 
Hence v must also be a function of A. 

2. The intensity of the radiations whose wave lengths lie 
between A and A + dX is proportional to the number of 
molecules which emit vibrations of this period, i.e. propor¬ 
tional to the expression (69). If this intensity of radiation be 
•written in the form 

0(A, §)aX, ' 

then from (69), (70), and (71), since v is a function of A, 

/(A) 
<f>(X, «) = F(X)-e (72) 

Since now, from (66), <p : $5 must be a function of the argu¬ 
ment A$, it follows that F(X) = cx : A5 and /(A) = c2 : A, so 

that the following law of radiation results: 

0(A, #) = 
cx • e ” ^ : A# 

A5 (73) 

and the total radiation is 

t z=z c 
e 

A8 (74) 

This law of radiation must hold for all black bodies whether 

they be gases or not, since, as was shown on page 498, the law 
of radiation of a black body does not depend upon the nature 

of the body. 
This law has been frequently verified by experiment.t 

Planck deduces the same radiation law from electromagnetic theory (BerL 
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That wave length, \m , at which the intensity o 

3 < 
maximum is determined from the equation 

from (73), 

lg<t> = kcx ~ — SkK 

hence 

_5^ 
0 3A A2$ A* 

Hence the relation obtains, 

Aw • •& = c2 : 5 • • 

Since Aw$ has the value 2887 (cf. page 524), 

^2= I443S * • - 

when the unit of wave length is 0.001 mm.* I 

^=1.4435. . - 

1 c 
Writing — = y, == c\ (74) becomes 

i — — cx lyz >e~ cydy. 
00 

But 

Jf-e~c'ydy = — + 
Hence 

Jf.e-^dy = - p7, 

and 

*Accoi^dmg to Beckmann (Biss. Tttbingen, 1898) and Rufcxs 
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lis equation be compared with (48) on page 514, it 
that 

a = 6cx : c24,.(78) 

h. a is the constant of the Boltzmann-Stefan law of 
n. Now from equation (51), page 515, 

a = 1.71 • 10 “5 er£/sec> 

in consideration of (j6f) the constant cx has the value 

• S. units 

ci = 1 e- ^ = 1.24-10 “6. . . (79) 

e law of radiation (73), which is universal, furnishes a 
of establishing* a truly absolute system of units of 

, mass, time, and temperature—a system which is based 
universal properties of the ether and does not depend 

any particular properties of any body. Thus universal 
ition and the velocity of light represent two universal 

The absolute system is then obtained from the assump- 

xat the constant of gravitation, the velocity of light, and 
ro constants cx and c2 in the law of radiation all have the 
1. 

* Planck, Berl. Ber. 1899, p. 479. 



CHAPTER III 

INCANDESCENT VAPORS AND GASES 

i. Distinction between Temperature Radiation an 
Luminescence.—The essential distinction between tempen 

ture radiation and luminescence has already been mentions 
on page 494. What is now the criterion by which it is poss 
ble to decide whether a luminous body shines by virtue < 

luminescence or by pure temperature radiation ? 
In the case of luminescence Kirchhoff ’s law as to the pr< 

portionality between emission and absorption is not applicabl 

nevertheless even in this case the emission of sharp spectr 
lines is accompanied by selective absorption of these san 

lines, since both are closely connected with the existence 

but slightly damped natural periods of the ions. 
A criterion for the detection of luminescence can 1 

obtained from measurements of the absolute value of tl 

emissive power or of the intensity of radiation. For if ti 
intensity of radiation of a body within any region of wa 
lengths is greater than that of a black body at the sar 

temperature, and within the same region of wave lengths, th< 
luminescence must be present. By means of this criteri 

E. Wiedemann,* F. Paschen,t and E. Pringsheim X have sho^ 
that the yellow light which is radiated when common salt 
burned in the flame of a Bunsen burner is due at least ps 
tially to chemical luminescence (according to Pringsheim t 

*WIed. Ann. 37, p. 215, 1889. 
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reduction of the sodium from the salt). The latter concludes 
after many experiments, that in general, in all methods which 
are used for the production of the spectra of gases, the in¬ 
candescence is a result of electrical* or chemical + processes. 
Nevertheless at sufficiently high temperatures all gases and 
vapors must emit temperature radiations which correspond to 

Kirchhoff ’s law4 since otherwise the second law of thermo¬ 
dynamics would be violated. It is, to be sure, possible that 

the absorption, and hence also the temperature radiation, 
when chemical processes are excluded, is small, and gives 

possibly no sharp spectral lines because the absorbing power 
reaches an appreciable value only because of chemical pro¬ 
cesses. For example, it would be conceivable that the natural 
vibration of the ions, which occasion strong selective absorp¬ 

tion, become possible only upon a.change in the molecular 
structure of the molecule. 

2. The Ion-hypothesis.—According to the electromag¬ 
netic theory, the vibrations of the ions produce electromagnetic 
waves , of their own period, i.e. light-waves of a given color. 
The attempt will be made to find out whether this hypothesis 
can be carried to its conclusions without contradicting other 
results deduced from the kinetic theory of gases. 

Consider a stationary condition, in which the vibrations of 
the ionic charges have a constant amplitude. Since this 
amplitude would necessarily diminish because of radiation and 

* E. Wiedemann has shown that a low temperature exists in Geissler tubes 

(Wied. Ann. 6, p. 298, 1879). 
f Pringsheim (Wied. Ann. 45, p. 440) obtained photographic effects from CS2 

flame at a temperature of 15 o° C. Pure temperature radiation could in this case 
have produced no photographic effect. According to E. St. John (Wied. Ann. 56, 
p. 433, 1895) tlie effectiveness of the Auer burner does not depend upon lumi¬ 
nescence, but is due to the use in the flame of a substance of little mass, small con¬ 
ducting power, large surface, and large emissive power. But according to Rubens 
(Wied. Ann. 69, p. 588, 1899) the Auer burner is probably chemically active for 
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friction, it is necessary to suppose that it is kept constant by 

continuous supply of energy. In the case of temperate 

radiation this supply of energy comes from the impacts of tl 

molecules; in the case of luminescence, from chemical or elec 

trical energy. 
If the distance between two equal electric charges (mea 

ured in electrostatic units) of opposite sign (they may be \ 
rest or in motion) undergoes a periodic change of amplitude 

and period T, then, according to Hertz,* the electromagnet 

energy emitted in a half-period is 

Lf = 
87T4 

3^3 
• • ( 

in which X denotes the wave length in vacuo. 
Hence the amount of energy radiated in unit time from 6 

oppositely charged ions is 

L = 
16 ^l2 _ 

3 

Now, according to measurements of E. Wiedemann,t t 
energy emitted in a second, in the two ZMines, by I gm. 

sodium is 

Lx = 32iogr-caL= 13.45 • io10 ergs. . . 

The atomic weight of sodium is 23. It is next necessi 
to calculate the absolute weight of an atom of sodiu 
According to Avogadro’s law, in every gas or vapor, a 
given temperature and pressure, there exists the same num 
of molecules in unit volume. This number, at a pressure 
1 atmosphere and at o° C., is calculated from the kirn 
theory £ as N = io30 in a cm.3. According to Regnault I c 
of air at o° C. and atmospheric pressure weighs 0.001293 £ 

*WiecL Ann. 36, p. 12, 1889. A different numerical factor is here givei 
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1 is 14.4 times lighter than air; hence the weighty* 
Dlecule of hydrogen is given by 

g• io20 
0.001293 

g = 9* io~25 gr. 

nolecule of hydrogen (H2) consists of two atoms, the 
f an atom of hydrogen is 4.5*10“25 gm. An atom 
a is 23 times heavier; hence it weighs 1.03 • io“23 gm. 

im is a univalent atom. Each atom is connected with 
whose charge will be denoted by e. If, therefore, two 
rith charges ± e are required to produce one vibrat- 
em, then in one gram of sodium there are present 
* iO“28 = 4.85 . io22 such systems. Hence, from (2) 

y1028 = 13,45'Io10- • • • (4) 

s a universal constant, since it represents the electrical 
which is connected with a univalent atom (it is the 
corresponding to a valence 1); for since, according 

aday’s law of electrolysis, a given electrical current 
decomposes the same number of valences in unit time, 
urge corresponding to a valence I must be a universal 
it which does not depend upon the special nature of the 
Now an electric current of I ampere decomposes in 

;ond o. 1160 cm.8 of hydrogen at o° C. and atmospheric 
e. Now the quantity of electricity carried in a second 

h any cross-section of a conductor conveying 1 ampere 

•ent is TV electromagnetic units or 3*io9 electrostatic 
Half of this flows as positive electricity in one direction, 

s negative in the other. Hence in o. 116 cm.3 of 
yen at o° C. and atmospheric pressure, the total positive 

5 is 1.5. io9 electrostatic units, the negative charge being 
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and a negative charge, the charge of a univalent ion | 
element of electric quantity) is 

e = 1.29- io-10.*. 

The introduction of this value into (4) gives, since c = 3 • 
and X = 0.000589, for the value of /, 

/ = 1.13 • io_ 11 cm. 

The diameter of a molecule as calculated from the kiti 
theory is about d = 2 - io~8 cm.+ Since from (6) /is seel 

be considerably smaller than d, the relatively strong emisi 

of sodium vapor appears to be due to an oscillation of the i 
(the valence charge) within the molecule (sphere of action 
the molecule). 

On page 447 the ratio of the charge e to the mass m < 
negative ion of sodium vapor was calculated as 

Hence 
e : mz=l c* 1.6- io7. 

m — 2.7* io--28 gr., 

i.e. the mass of the ion is the 38000th part of the mass oi 
atom of sodium. 

On page 383 the equation of motion of an ion vibra 
under the influence of an electrical force X was written in 
form$ 

m 
dt* 

S denoting the displacement of the ion from its position of 1 
When r is small the natural period T* of the ion is given 1 

7ZM$ 

J. J. Thomson (Phil. Mag. (5) 46, p. 29, 1898) has calculated from C€ 

^ as 6-7.io~10, which is in good agreement with the value 1 
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Since for sodium vapor T' = 2-io-15, it follows from (k) and 
(7) that V ; 

« = 7.6-10-**.(IO) 

Finally, in order to determine the constant r, it is possible 
to make use of the conclusion reached on page 387, namely, 
that the index of refraction n and the coefficient of absorption 
k are determined from the equation 

n\i - zk? = 1 4---j, . . . (11) 

1 + ~ zs 

in which 01 denotes the number of ions in a cm.8, and in which 
also 

t = T: 2 7ty a 
4n9 4^ * 

(12) 

Hence the value of r could be obtained from observations 
upon k. Such measurements of k for sodium vapor have not 
been made and would be very difficult to make, since the 
absorption in the neighborhood of a natural period would vary 

rapidly with the period T. But an estimation of the value of 
r may be obtained in another way: From the sharpness of the 

a 
absorption lines of sodium vapor it is evident that — must be 

very small. But when r = T' : 2it, 

r-l.g- io-B. • • (13) 

r must then in any case have an order of magnitude less than 
io4. There is also another way for obtaining an upper limit 

for r. 
If the ions, after being set into vibration, are cut off from 

external influences, they execute damped vibrations of the form 
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Hence, from (8), when r is small, 

re* _ 
Y — ~—T' = r-o.6-io~7, .... 
7 2 m 9 

in which Tf is determined by (9). Now the damping i 

must be very small, since interference has been observed 
sodium light with a difference of path of 200 000A. A 
t = 200 000 T\ % cannot be very small. Hence 200 
must be less than 1, i.e. 

r < io2 

In what^follows a lower limit for the value of r w: 
derived. 

3. The Damping of Ionic Vibrations because of Radi* 
—If at the time t = o a negatively charged ion — e is 

distance l from a positively charged ion ~\~ e> and if i 

course of the time T' this distance has changed by dl> 
the change d(& in the electrostatic energy is 

d®=y2-dl. 
I2, 

Now, from (14), in the course of the period of time j 
amplitude of the motion of the ion has changed by dl = 

provided y is small. Further, by (1) on page 530, the de< 

in energy in the time T' is 

d&= - 
16 7t4 

7^ 
e*p 

Now the decrease in energy d(& must at least be eq 
the decrease dQ£' which is due to radiation. Hence, fror 

and (18), there results, if dl is set equal to — yl, 

e2 16 
-jy> —, 
1=3 

n* 
X* 

e*P, i 

Introducing the value of / from (6), 

3 
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(15). 

1.6- io~9, 

shown below that r must be considerably above 
limit thus determined, and that, for the value of l 
damping of the ionic vibrations, because of their own 
would be altogether negligible. 
if l were assumed to be of the order of magnitude 
iameter of a molecule, i.e. if 1=2- io~8, then 
>“8, while it is probable that y is considerably larger, 

.e Radiation of the Ions under the Influence of 
Radiations.—Under the influence of an external 

►eriod T = 2nr and of amplitude A the ions take up 
of the same period whose amplitude may be written 

,nd the abbreviations (12)] 

energy emitted in unit time by a layer of thickness dz 
rea 1 is, according to (2) on page 530, 

dL — ~7t2cNdz— 
3 V- 

A2& 
(21). 

the other hand the energy — A2 enters the layer in unit 
\7t 

f. page 454; the electric energy is equal to the mag- 

c 
while the energy 2 passes out, provided A* repre- 

le amplitude of the impressed electric force after it has 

through the layer dz. Hence 
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The energy absorbed in unit time within the layer amc 

then to 
c c d% 

d% = —(A2 — A/g) = —A2 -\7tnK—. . . 
4 '4 7t A 

But now, from (n) on page 533, in the neighborhood 

natural period 

In consideration of this equation the ratio of the emittc 

the absorbed energy is 

dL 2 7r2 47zr2 n 
d& 3 A3a,n 3 cAV. 

This ratio is larger the smaller the value of r. For n 
and A = 5.9. io-5 (24) gives 

dL __ 0.126 

= —7-' 

Since in any case this ratio must be considerably less 
1, as otherwise a reversal of the sodium line (cf. page 
would be impossible, then, in consideration of the ineqi 

(16), the value of r must be about 

r = 10 to 100. 

5. Fluorescence.—If r had the value 1 for sodium v; 
an appreciable radiation of light would of necessity take ; 
under the influence of radiation from without. This effec 

not as yet been observed, although no delicate experin 
have been made to attempt to discover it. In the case c 

fluorescent bodies an appreciable radiation is actually proc 
by exposure to light. The attempt might be made to ex 

this phenomenon by assuming a small value of r. The < 
acter of the absorption of a body can in this way be made 
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be seen at once to be useless. For, according to that equa¬ 

tion, when a stationary condition has been reached, the 

vibrations of the ions must have the same period as that of the 
incident force X. But this will not explain one of the chief 

characteristics of fluorescence, namely this, that fluorescent 
light is of a different color from that of the light most strongly 
absorbed. 

Fluorescence is to be looked upon as a case of luminescence 
which is due to certain special (chemical) changes whose cause 
is to be found in the illumination to which the body is exposed. 
The mathematical equations thus far given would therefore 
need to be considerably extended.* 

6. The Broadening of the Spectral Lines due to Motion 

in the Line of Sight.t—If the natural vibrations of the ions 
were altogether undamped, they would nevertheless give sharp 
spectral lines only when their centres of vibration remained at 
rest. But since this centre is within the molecule, and since, 
according to the kinetic theory, the molecule is moving hither 
and thither with great velocity, the vibration produced by the 

ions must, according to Doppler’s principle, be of somewhat 
variable period, i.e. the spectral lines cannot be perfectly 

sharp. 
If an ion which has the period T moves toward the observer 

with the velocity v, then, according to Doppler’s principle, the 
light which comes to the observer has the period 

T'=t( I±j),.(26) 

in which c is the velocity of light in the space between the ion 
and the observer. Since the index of refraction of gases differs 

♦No satisfactory theory has yet been brought forward. That of Lommel 
(Wied. Ann. 3, p. 113, 1878) has been compared with experiment by G. C. 
Schmidt (Wied. Ann. 58, p. 117, 1896) and has been found faulty. 

f This question was first treated by Ebert (Wied. Ann. 36, p. 466, 1889). 
According to his calculations the difference of path over which interference can be 
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but slightly from I, c = 3.1010 cm,/Sec.- If then the assump? 
tion were made that all the molecules had the same velocitj 

v, the emitted wave lengths would all lie within the limits 

A^i ± The width dX of the spectral line would therefor* 

be 

dX 
2V 

(2;: 
Now, according to the kinetic theory,* the mean value m 

the squaie of the velocities is given by 

248* ro6.0 , _ 
(z' ) = —m—> .... (28; Mean 

in which M is the molecular weight of the gas, $ its absolute 
temperature. Hence, setting 

v = Vmean (v2) = 15.8* io2 
M’ 

the velocity of a hydrogen molecule, for example (M = 2), at 

50° C. ($ = 323) would be v = 2010. io2 cm/sec. = 2010 m'/sec/ 
Hence, from (27), the width of a spectral line would be 

dX = X’ 1-34* io~"5. According to (27) the lines in the red 
end of the spectrum should be broader than those in the blue. 
This corresponds to the facts. + 

The width of a spectral line is connected with the greatest 

difference of path over which the light can be made to produce 
interference (cf. page 152). If a spectral line be decomposed 
into two parts and if these parts be brought together after 

having traversed paths which differ by d cm., then, according 
to equation (28) on page 153, these parts can produce inter¬ 
ference fringes whose visibility F, for the case in which the 
intensity of the light is constant throughout the whole width 
of the line, is given by 

y ___ sin /^nda 
\7tda (30) 
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n this, according to equations (22) and (20) on page 151, the 

uantity a is connected with the width dX = \ — X2 of the 

pectral line in the following way: 

2 a = 
1 

r 

rfJL 
(31) 

The visibility V of the fringes is defined by equation (26) 
n page 152. According to Rayleigh the interference fringes 

re still visible when the ratio Jm[n. : Jmzx. of the intensities 
t the positions of greatest darkness and of greatest bright- 

tess is 0.95. In this case V would have the value 0.025. If 
his value be substituted in (30), then from (27) and (31) it 
ppears that the maximum difference in path d at which inter- 
*rence could still be observed would be 

0.025 
sin (47td/x-v/cj sin nx 

±nd/\'v/c 7ZX 
(32) 

d v 
n which, for brevity, 4— — is replaced by x. Since the right- 

Land side of (32) is small, the smallest root of x is to be 
ooked for in the neighborhood of 1. Setting x = 1 — e, (32) 

pves 
7te 

0.025 

ience 

<L 
X 

?r(l — e) 

c c 
x-= 0.975-. 

4v D 4V (33) 

If account be taken of the fact that all the molecules have 
Lot the same velocity vy the value of d would be still greater, 
lamely, approximately* 

d c 
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in a Geissler tube is 50° C., the ability of its spectral 

produce interference would vanish for a difference of pi 

d 
-r- = 5 1 600. 
A 

For sodium vapor in a Bunsen flame M = 2.2 

Assuming the temperature to be 1500° C., i.e. assumi 
1773, then from (29) it would follow that v = 98.2.] 

from (34) that ^ = 105 000. 

The ability to produce interference would be high( 
temperature were lower. As a matter of fact interfere 

be obtained over a longer difference of path if the sodii: 

is produced by an electric discharge in a vacuum tube, 

electro-luminescence the temperature is much lower. 

son estimates it in one case at 250° C. ~ would then h 

d 
value 205 000. At 50° C. — = 245 000. The ability 

mercury lines to produce interference over a large di 
of path is accounted for by the large atomic weight of r 

(which, since the vapor is monatomic, is equal to the m< 
weight). For, according to (29), a large value of M 
a small velocity v of the molecule. For mercury M 

hence for # = 273 -f 50° = 323, v = 2* io4, ^=5170 

The numbers calculated in this way agree approx 
with the results of Michelson’s observations.* Mi 
could also directly observe the effect of temperature u] 
ability to produce interference when the source of ligh 

hydrogen tube placed in a copper box and heated to 3c 
Heating decreased the clearness of the fringes. This p] 
enon furnishes additional evidence that the temperatu 
vacuum tube is low, i.e. that the llerht emitted is due t 
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nescence rather than to a high temperature. For the heating 
of the gas to 300° C. could only appreciably change the mo¬ 
lecular velocity if the temperature $ were low, for example 

50° C. 
Although the results of the above calculation are in good 

agreement with the facts, neveretheless the considerations here 
presented do not completely cover the case. For on the one 
hand, according to Ebert,* the distance between two lines in 
the solar spectrum which can still be resolved is smaller than 
is consistent with Doppler’s principle, and on the other hand, 

according to Lord Rayleigh,t the consideration of the rotation 
of the molecules would reduce the ability of the transmitted 
light to produce interference much more than the consideration 

of their motion of translation. To be sure the revolution of 
the molecules would have to be considered only in the case 

of molecules composed of more than one atom; hence the 
explanation given above of the great capacity for interference 
shown by the mercury lines would still stand. 

7. Other Causes of the Broadening of the Spectral Lines. 
—The motion of the molecules is not the only cause of the 
broadening of the spectral lines. The change in the period 

of the ionic vibrations due to damping must set a limit to the 
ability to produce interference, and hence must broaden the 
spectral line,J since the ability to produce interference and the 

homogeneity of the spectral lines are closely connected. 
When a stationary condition of emission has been reached the 

ions are continually set into vibration by the collisions of the 

molecules. The more frequently these collisions occur, the 
smaller becomes the ability of the emitted light to produce 
interference. Since now the number of collisions increases 

*Sitz.-Ber. d. phys. raed. Soc. Erlangen, 1889. Wied. Beibl. 1889, p. 944. 
t Phil. Mag. (5) 34, p. 410, 1892. 
■f* TJiIo ie tli fix iriAtfr A-f T avmwaI A rm <** r* x tOAns? 
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with , the density of a gas, an increase in density 

produce a broadening of the spectral lines. Experil 

this to be the case.* On the other hand a simple 

the thickness of the incandescent layer (within cei 

produces no broadening but only brightening of 

However, if the thickness of the incandescent layer 

that it possesses appreciable absorption for all wa' 

then, if the case is one of pure temperature radiatio 

according to Kirchhoff’s law, show broad emissioi 
in the limit, emit a continuous spectrum4 

* Cf. Winkelmann’s Handbuch, Optik, p. 419 sq. The broadeni 
tral lines because of the mutual electrodynamic effect of the ionic 
been theoretically investigated by Galitzine (Wied. Ann. 56, p. 5 

also Mebius, Wied. Beibl. 1899, p. 419. 
f Cf. Paschen, Wied. Ann. 51, p. 33, 1894. 
jCf. Wanner, -Wied. Ann. 68, p. 143, 1899; who observed 

reversal of the sodium line upon increasing the thickness of a sc 
repeated reflections. 
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bbe, crystal refractometer, 341 ; di- 
la.tometer, 143; numerical aperture, 
86; aprochromat, 99; focometer, 46; 
sine law, 59; theory of images, 31 

berration, 475; spherical, 54; chro¬ 
matic, 66 

bsorbing media, 358 
bsorption, coefficient of, 360; Kirch- 
hoff’s law of, 496 
chromatic interference, 144 
iry, spirals, 412 
mici, 58 
mpere, molecular currents, 418 
mplitu.de, 131 
nalyzer, 286 
ngstrCm, solar constant, 485, 487, 516 
noma.Lous dispersion, 392; curve of, 

.perture, 73; angular, 73; numerical, 
86; effect on resolving power, 91; 
experimental determination of, 106 

.plaxiatic, points, 58; points of sphere, 
33 ; surface, 9; systems, 58 

■rago, 247 
.rbes, anomalous dispersion, 394 
.stiermatism, 48; astigmatic difference, 

4.8 
.xes, of electric symmetry, 310; optic, 
319; ray, 328 

txis, principal crystallographic, 242 
azimuth, of plane of polarization, 286; 
of restored polarization, 363 

►abixiet, compensator, 257; theorem, 
221 

tiaxial crystals, 338 
Sillet, balf-lenses, 136 
S inocular, 112 

due to changes in temperature, 516; 
distribution of energy in spectrum of, 
524 

Bradley, 115 
Bravais, bi- plate, 348 
Brewster, 246; law, 283, 291 
Brightness, 86; of point sources, 90 
Broadening of spectral lines by motion 

in the line of sight, 537; by other 
causes, 541 

Brodhun, 79 
Briicke, 97 

Candle-power, 78; candle-metre, 486 
Carcel lamp, efficiency of, 487 
Chromatic aberration, 66 
Clausius, 59 
Coaxial surfaces, images formed by, 17 
Coherent sources, 134 
Collinear relationship, 16 
Colors, 5 
Condenser, 102 
Conductivity, 358 
Conjugate points, 15; construction of, 

24 
Convergent, 26 
Corbino, 432 
Crystals, absorbing, 368; biaxial, 338; 

boundary conditions for, 308; differ¬ 
ential equations for, 308; light vec¬ 
tors and rays in, 311; median lines 
of, 319; optic axes of, 319; principal 
position of, 324; uniaxial, 323 

Currents, conduction, 267; displacement, 
267; electric, 263; magnetic, 265 

Curves of equal inclination, 149; of 
equal thickness, 149 
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of index, 276; discrepancies ex¬ 
plained, 389; principal, of crystals, 
310 

Dielectrics, isotropic, 268; boundary 
conditions for, 271 

Diffraction, 185; grating, 222; narrow 
slit, 198, 217; narrow screen, 201; 
openings of like form and orientation, 
219; rectangular opening, 214; rhom¬ 
boid, 217 

Dioptric systems, 25 
Dispersion, anomalous, 392; normal, 

388; equations of, 389; rotary, 412 
Dispersive power, 67 
Dievrgent, 26 
Doppler, principle, 45 *» 475. 5*9. 537 
Draper, law of emission, 500 

Ebert, 541 
Echelon, 228 
Egoroff, 448 
Efficiency of source, 487 
Elastic theory, 259 
Electric field, 263; force, 262 
Electromagnetic system, 262; ratio to 

electrostatic, 265 
Electrostatic system, 262 
Ellipticity, coefficient of, 290 
Emission, 482; Kirchhoff s law of, 496 
Emission theory, 125 
Emissive power, 483; of a perfect re¬ 

flector, 495; perfectly transparent 
body, 495 

Entropy, 510 
Ether, 267; drift of, 457 
Extreme path, law of, 6 
Eye-lens, 100 
Eyepiece, 99; Ramsden, 100; Huygens, 

101 

Faraday, electromagnetic theory, 260 
Fermat, principle of least time, 11 
Field lens, 100 
Field of view, 76 
Fitzgerald, ether drift, 481 
Fizeau, 150; ether drift, 477; velocity 

of light in moving water, 466; velocity 
of light, 116, 121 

Fluorescence, 536 
Focal, plane, 17; length, determination 

0$ 44 
Tocometer, 46 
Tv__:_:_1_ 

Huygens’ principle, J 
130; reflection equation 
298; theory, 260; wave 
320; zones, 164 

Georgiewsky, 448 
Grating, concave, 225; foi 

of, 227; plane, 222; res 
227 

Hall effect, 434 
Hefner lamp, 81; emissioi 
Helmholtz, 59 
Hertz, 530 
Hockin, sine law, 59 
Hoeck, 470 
Homocentric beam, 46 
Huygens, 125; double re 

eyepiece, 101; princip 
213 

Illumination, intensity of, 
Images, concept of, 14 

coaxial surfaces, 17 
Image space, 15 
Incidence, angle of, 3; 

principal angle of, 362 
Index of refraction, 3, 

temperature radiation, 
reflection, 301 

Interference, of light, 124 
light, 247; by crystals 
light, 341; in absorbing 
tals, 374; in absorbing 
tals, 380; in crystals i 
light, 349; with large 
path, 148. 

Interferometer, 144 
Ions, 382; hypothesis of, 

charge to mass, 447; 
535; vibrations of, dam 

Isochromatic curves, 352 
Isogyre, principal, 354 
Isogyric, curves, 352 

Jamin, 144 

Katoptric systems, 26 
Kerr effect, 451 
Ketteler, ether drift, 474 
Kirchhoff, 169; inversioj 

lines, 501; law of emi 
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.agrange, 321, 330 
^angley, solar constant, 487, 510 
^east time, law of, 129; principle of, 11 
senses, 40; classification .of, 42; thin, 42 
rimit of resolution of microscopes, 106 
Jppmann, 157 
longitudinal waves, 259 
l^orentz, moving media, 457, 481 
luminescence, 494* 529 
Lummer, 79 

VTacaluso, 432 
Vlach, 146; anomalous dispersion, 394 
Magnetically active substances, 418 
Magnetic field, 262; energy of, 272; 

force, 262; rotation of the plane of po¬ 
larization, 426; dispersion in rotation 
of the plane of polarization, 429, 438 

Magneto-optical properties of iron, 
nickel, and cobalt, 449 

Magnification, angular, 22; in depth, 
21; lateral, 19; of microscope, 104, 
106; normal, 90; of telescopes, 108 

Magnifying-glass, 95 
Malus, 130; law of, 11 
Mascart, ether drift, 474 
Maxwell, electromagnetic theory, 260; 

equations of electromagnetic field, 
264; fundamental assumption, 267 

Meridional beam, 50 
Metals, optical constants of, 366; dis¬ 

persion of, 396 
Michelson, echelon, 228; ether drift, 

478; interferometer, 149; limit of 
visibility, 540; velocity of light, 119; 
in water and carbon bisulphide, 120, 
123; in moving water, 446; visibility 
curves, 151; Zeeman effect, 447 

Microscope, 97 

Neuhauss, 158 
Neumann, elastic theory, 260; reflec¬ 

tion equations, 283 
Newton, 125; rings, 136, 144, 148; in¬ 

tensity of rings, 302 
Nicol prism, 244 
Nodal points, 22 
Normal surface, 317 
Nuremberg polariscope, 246 

Objective, microscope, 98 
Object space, 15 

/vlh Act tAA 

Paramagnetic, 269 
Permeability, 269 ; equal to I for light¬ 

waves, 466 
Phase, 126 
Photographic systems, 93 
Photography in natural colors, 156 
Polariscope, Nuremberg, 246 
Polarization, 243; by diffraction, 205; 

circular, 249; elliptical, 249; ellipti¬ 
cal due to surface layer, 287; plane, 
25°; by tourmaline, 247; by pile of 
plates, 285; rotary, 400 

Polarized light, partially, 253 
Polarizer, 286 
Polarizing angle, 246 
Pouillet, solar constant, 487 
Poynting, theorem, 273 
Pressure of radiation, 488 
Prevost, theory of exchanges, 491 
Pringsheim, temperature radiation, 

502 

Prism, resolving power, 233 
Pupils, entrance and exit, 64, 73 

Quarter wave plate, 255 

Radiation, dependence upon absolute 
temperature, 512; upon the index of 
surrounding medium, 502; intensity 
of, 82, 484 

Ramsden eyepiece, 100, 109 
Rays, curved, 306; extraordinary, 243; 

ordinary, 243; principal, 74; optical 
length of, 6; as lines of energy flow, 

273 
Ray surface, 326 
Rayleigh, 121; limit of visibility, 541 
Rectilinear propagation, 2 
Reflection, angle of, 3; diffuse, 6; law 

of, in isotropic media, 281; metallic, 
261; partial, 5; at spherical surface, 
36; total, 5, 295; polarization by, 246 

Reflecting power, 364 
Refraction, angle of, 3; at a spherical 

surface, 32; conical, 331; law of, in 
isotropic media, 281; index of, 3 

Respighi, 474 
Resolving power, of grating, 227; of 

microscope, 105; of prism, 233 
Resolution, limit of, human eye, 236; 

microscope, 236; telescope, 235 
Romer, 114, 120, 123 
Tint a t-v wVlariTsitirm >i<yv in rrvstals- 
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Schmidt, curved rays, 307 
Schtitt, 157 
Separation of lenses, 28 
Sine law, 58, 505 
Sommerfeld, 203 
Solar constant, 487 
Soleil-Babinet compensator, 258 
Spectral lines, broadening by motion in 

line of sight, 537 
Spectrum, dispersion, 224; distribution 

of energy in, 524; normal, 224; of a 
black body, changes with tempera¬ 
ture, 516 

Stationary waves, 155, 284; in polarized 
light, 251 

Steinheil, 97 
Sun, temperature of, 515, 523 

Telecentric systems, 75 
Telescope, astronomical, 107; reflect¬ 

ing, 113; terrestrial, 112 
Telescopic systems, 26 
Temperature, absolute, 506; radiation, 

493/ 529 
Thermodynamics, application of the 

second law to temperature radiation, 
493; general equations, 511 

Thin plates, colors of, 136 
Transparent isotropic media, 271 
Transverse nature of waves, 278 

Tumlirz, 485 

Undulatory theory, 125 
Uniaxial crystals, directi' 

324; plates and prism 
cipal indices of refraci 

Unit charge, 262; of li£ 
equivalent of, 485; pla 

19 

Velocity of a group of 
light, 114, 261, 27 
media, 465; equal to 
276 

Visibility, 140 
Voigt, 169 

Wave length, 127; surf 
face, 326 

Weber, molecular currei 
Wedge, 140 
Weierstrass, refraction, 
White body, 205 
Wien, spectrum of a b 

525 
Wiener, 155, 285 

Zeeman effect, 446 
Zehnder, 146 
Zeiss, 112 




