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preface 

T. HIS introduction to the Theory of Relativity is based in part 

upon a course of lectures delivered in University College, London, 

1912-13. The treatment, however, has been made much more 

systematical, and the subject matter has been extended verj’’ con¬ 

siderably ; but, throughout, the attempt has been made to confine 

the reader’s attention to matters of prime importance. With this 

aim in view, many particular problems even of great interest have 

not been touched upon. On the other hand, it seemed advantageous 

to trace the connexion of the modern theory with the theories 

and ideas that preceded it. And the first three chapters, therefore, 

are devoted to the fundamental ideas of space and time underlying 

classical physics, and to the electromagnetic theories of Maxwell, 

Hertz-Heaviside and Lorentx, from the last of which Einstein’s 

theory of relativity w'as directly derived. In the exposition of the 

theory itself free use 'has been made not only of the matrix method 

of representation employed by Minkowski, but even more of the 

language of quaternions. Very little indeed of these mathematical 

methods is required to follow the exposition, and this little is 

given in Chapter V., in a form which will be at once accessible 

to those acquainted wuth the elements of the ordinary vector 

algebra. 

It is hoped that the book will give the reader a good insight 

into the spirit of the theory and will enable him easily to follow 

the more subtle and extended developments to be found in a 

large number of special papers by various investigators. 
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CHAPTER I. 

CLASSICAL RELATIVITY. 

Before entering upon the subject proper of this volume, namely, the 

modern doctrine of Relativity and the history of its origin and develop" 

ment, it seems desirable to dwell a little on the more familiar grcjund 

of what might be called the classical relativity, and to cuuisider 

two particular points which are of fundamental importance*, not (Jidy 

for the appreciation of the whole subject to follow, but also for att 

adequate understanding of almost all physico-mathomatic'al considera¬ 

tions. What I am alluding to are the following (|ueslions; i” the 

choice of a framework of axes or, more generally, of a sjsiem 

of reference in space, and 2“ the definition of physical lime, or the 

selection of a clock or time-keeper, to bo employed for the «iuantita” 

tive determination of a succession of physical events. 

Both of these questions existed and were .solved, at least implicitly, 

a long time before the invention of the modern Principle of Relativity, 

in fact centuries ago, in their es.scnce a.s early as (kiiicrnicuH founded 

his system.* 

The question of a .space-framework is obvious entmgh and widely 

known; it will reejuire therefore only a few .simple ruraark.s. 

The most superficial observation of everyday life would .sufricat to 

show that the form and the degree of simplicity of the alaternent of 

the laws of physical phenomena, more especially of the laws of motion 

of what are called material bodies, depend essentially on our selec¬ 

tion of a system of reference in space. ( ertuin frameworkN f>f 

reference are peculiarly fitted for the repre.senlation of a particular 

*A clear and beautiful statement of the fundamental im[>ortiuiet? of the 
Copernican idea is to be found in P. Painlev^’s article ‘ Mcnuiuiuc' in the r«.Urr. 
tive volume I)e la MCthode dans hs Sciences, edited by itmilc Horcl, (Pafi-*, 
F. Alcan, 19x0.) 

S.R. A 



2 THE THEORY OF RELATIVITY 

instance of motion of a particular body or also of almost any 

observable motion of bodies in general, leading to a high degree 

of completeness, exactness and simplicity, while other frame¬ 

works (moving in an arbitrary manner relatively to those) give of 

the same phenomena a most complicated, intricate and confused 

picture.* 

Suppose that somebody, ignorant of the work of Copernicus, 

Galileo and Newton, but otherwise gifted with the highest experi¬ 

mental abilities and mathematical skill (a quite imaginary supposition, 

being hardly consistent with the first one), chooses the interior of an 

old-fashioned coach,, driven along ‘a fairly rough road, as his laboratory 

and tries to investigate the laws of motion of bodies enclosed together 

with him in the coach—say, of a pendulum or of a spinning top—and 

selects that vehicle as his system of reference. Then his tangible 

bodies and his conceptual ‘ material points/ starting from rest or any 

given velocity, would describe the most wonderful paths, in incessant 

shocks and jerky motions; the axis of his ‘free gyroscope’ would oscillate 

in a most complicated way,—never disclosing to him the constancy of 

the vector known to us as the ‘angular momentum,-’ i.e. the rotatory- 

analogue of Newton’s first law of motion. Nor would the uniform 

translational motion have for him any peculiarly simple or generally 

noteworthy properties at all. His mechanical experience being, in a 

word, full of surprises, he would soon give up his task of stating any 

laws of motion whatever with reference to the coach. Getting out of 

it on to firm ground, he will readily find out that the earth is a much 

better system of reference. With this framework, smoothness and 

simplicity will take the place of hopeless irregularity. Undoubtedly, 

this property must have been remarked in a very early stage of man’s 

history, and the above example will appear to the least trained student 

of mechanics of our present times trivial and simply ridiculous. ‘ Of 

course,’ he would say, ‘ the motions of material bodies relatively to 

that coach are so very complicated, for that vehicle is itself moving in 

a highly complicated way.’ He would hardly consider it worth while 

to add ‘ relatively to the earth.’ The coach being such a small, insigni¬ 

ficant thing in comparison with the terrestrial globe, it would seem 

extravagant to our interlocutor, if somebody insisted rather on saying 

that it is the earth which moves in such a complicated way relatively 

* And as to ‘ absolute motion,’ regardless of any system of reference, it is need¬ 
less to mention that it is devoid of meaning in exactly the same way as ‘ absolute 

position.’ 



very feeble argument (as we shall see presently, from another 

example). 

At any rate the earth, the ‘firm ground,' allowance being made 

for occasional large shocks and for very small but .incessant oscil¬ 

lations of every part of its surface,* has proved to be an excellent 

system of reference for almost all motions, especially tho.se on a 

small scale with regard to space and time, and practically without 

any reservation for all pieces of machinery and technical contriv¬ 

ance. In fact, the earth as a system of reference offered at once the 

advantage of a high degree of simplicity of description of states of 

equilibrium and motion, opening a wide field for the application of 

Newton’s mechanics, at least as regards purely terrestrial observations 

and experiments.! The earth is then a reference-system which is 

constantly used also by the most advanced modern student of 

mechanics. 

But things become altogether different when we look up to the sky 

and desire to bring into our mechanical scheme also the motions of 

those luminous points, the celestial boclie.s, including, of cour.se, our 

satellite, the moon, and our sun. Then the earlli loses its privilege 

as a framework of reference. If it were only for the so-called ‘ fixed 

stars,’ which form the enormous majority of those luminous points 

(and the moon too), we could still satisfy our vanity and continue to 

consider our globe as an universal mechanical system of reference, 

the system of reference, as it were. On our plane drawings, t)r in our 

three-dimensional models, we could then represent the earth by a 

fixed disc, or sphere, respectively, with a smaller .sphere moving 

round it in a circular orbit, to imitate our moon, the whole sur¬ 

rounded by a large spherical shell of glass sown with millions of tiny 

stars, spinning gently and uniformly round the earth’s Exi.s,—very 

* Which gave so much trouble to the late Sir G. H. Darwin and his brother in 
their attempts to measure directly the gravilalionnl action of tlie tw d«eribe«l 
in Sir G. H. Darwin’s attractive popular book, The 'Tides and Kindred Thrnmmia 
in the Solar System^ London, 1898 (German edition by A. Pockeli, enlarged j 
Teubner, Leipzig, 1911). 

fWith the exception of those of the type of Foucault’s pendulum exfjerimente, 
performed with the special purpose ‘of showing the earth’s rotation.’ In more 
recent times the pendulum could be successfully replaced by a gyroscope, m 
originally suggested, and tried, by Foucault himself. 
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much like, in fact, some primitive mental pictures of the universe.* 

But the cjise be('omes entirely difTerent when wc come to consider the 

far less numerous clas.s of luminous points or little discs, the planets, 

and the ccmiets, moving visibly among the ‘ fixed ’ shining points 

in a complicated way. 'I'hen, even before touching any dynamical 

part of the celestial problem, we are compelled to give up our earth 

as a sy.stem of reference and replace it by that of the ‘ fixed stars,’ 

originally so inconspicuous, or—what turns out to be equally good_ 

by a framework of axes pointing from an initial point fixed in the sun 

toward.^ any given triad of fixed .stars. It is needless to tell here 

again the long story of that admirable and ingenioius system which 

was founded by Ptolemy (born about 140 ii.c:.), which held the 

field during fourteen centuries, to be replaced finally and definitely 

by the system of (lopernicus {1473-1543), which transferred to the 

sun the previous dignity of the earth.f 'Phe (lopernican system of 

reference had the enormous advantage of simplicity, cpiite inde¬ 

pendently of any mechanical, i.t\ (to put it more .strictly) dynamical 

considerations. Its .superiority to tlu; geot'eiUric .system manifested 

itself already in the sinqiliciiy it gave to the paths of the solar family 

of bodies, the wonderfully .simple shaptts of the orliils of the planets. 

In the geoet!ntrie Hcheme wtJ had tlie eoTni)licated .system of 

‘excentries and epit;yele.s’ of Ptolemy, whereas taking, in our 

drawing or model, the sun as fixed, the orbits of die [)lanets became 

simple circles, which in the next step of aj[t()roximation turned out to 

be slightly dliptic. 'Phus the CloiJernican sy.siem of reference had its 

enormous advantages httfore any properly mechanical point of the 

subject wa.s entered upon. Hi.storieally, in fact, the mechanics of 

Galileo and Newton ttanm* a long time after Copernicus, so that the 

* The earth as the rrnlre of the universe, willi the * rryslal .splieres,’ with the 
stuck to them, spinniriK r«)unil the earth, alii! formed part of the teachings of 

the Ionian school of pin!f)«»phfrK foundetl by Thales (lK>rn about 640 B.c.). The 
first to roggest the rotation of the earth round its axis and its motitm round tha 
sun fwems to Imve Iwen Pythagoras, one of TlmlcH* disriples, though it Ims been 
later unJuBtly attributed ti> Philolaus, one of Pytlitigoras’ disciples (horn about 

450 B.C}. 

t Although I do not claim to give here iinythtng like a history of astronomy, it 
nmy lie worth mentioning that the Pythitgoreans alretuly taught tlmt the planets 
and comets wwe eireling rrmnd the sun. Hut at any rate the Ptolemaean geo¬ 
centric system reigned univer»l!y from the sajcond till the fifteenth century, die 
only serious objection against its complexity having lK*en raised in the thirteenth 
century by Alphon»> X., king of tlaulile, the author of the astronomical ‘Tables’ 

ttioemted with hii name (pulilishcd during I348-I2S2)* 
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privilege of reference-system was taken away from our earth and 

transferred to the sun on the ground of purely kinematical con¬ 

siderations of simplicity, a few centuries before Newton. liut after¬ 

wards the Copernican or the ‘ fixed-stars ’ system of reference appeared 

to be wonderfully appropriate to Newtonian mechanics, both hi its 

original shape and in its later (chiefly formal) development by 

Laplace for celestial and by Lagrange for terrestrial and general 

problems. It soon became the final reference-system of mcchanic.s. 

It is relatively to this ‘ fixed-stars ’ system of reference that the law of 

inertia has proved to be valid. We will call it, therefore, following 

the modern habit, the inertial system, or sometimes, also, the 

tonian system of reference.^ It is relatively to this system that .spin¬ 

ning bodies behave in the characteristically simple manner which has 

led many authors to speak of their property of ‘absolute orientation.’ 

Or, to put it in less obscure words, it is relatively to the inertial system 

that the vector called angular momentum is preserved, both in sixe 

and in direction,—this property being a consequence of the funda¬ 

mental laws of Newton’s mechanics, and, at the same time, a purfucl 

and most instructive analogue to Newton’s First Law of motion.t 

The most immediate and tangible manifestation of this property i.s 

that the axis of a free gyroscope (practically coinciding in direction 

with its angular momentum) points always towards the same fix(;d 

star; thus having the simplest relation to the inertial system, since it 

is invariably orientated in this system of reference. Notice that it 

would, therefore, be more extravagant to .say that the axis of .suc:h a 

gyroscope moves relatively to the earth than vice though 

apparently, bodily, the gyroscope of human make is suc:h an incon¬ 

spicuous tiny thing in comparison w'ith our planet. I'he con.scrvation 

of the angular momentum, or moment of momentum, 1^'wVrv, f of 

the whole solar system, which is best known in {X)nnexion with 

Laplace’s ‘invariable plane,’ is but the same thing on a larger scale 

than that exhibited by our spinning tops, hut this only by the 

*We speak of it in the singular, instead of infinite plural, only for the «i,ke of 
shortness. For, as is well known, if S, say the ‘fixed’ stars, be sueli asyslem, 
then any other system 2' having relatively to X any motion of uniform (reclilinmr) 
translation is equally good for all purpo.ses. 

tThis point is expre.ssly insisted upon and successfully applied to didactic 
purposes in Professor A. M. Worthington’s Dynaiuks of Kotalionf sixth edition, 
new impression 1910; Longmans, Green & Co., London. 

$See, for example, the author’s Vectorial Mechanics, Chap. III. ; Mactnilkn & 
Co., London, 1913. 
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way. What mainly concerns us here is that the ‘ fixed-stars ’ system 

—or, more rigorously, any one out of the ooS multitude of equivalent 

inertial systems—has gradually turned out to be peculiarly fitted as 

a system of reference for the representation of the motion of material 
bodies, 

But also with this system of reference the laws of motion have 

their simple, Newtonian form only for a / measured in a certain way, 

i.e. for a certain clock or time-keeper, e.g. approximately the earth in 

its diurnal rotation, or, more exactly (in connexion with what is 

known as the frictional retarding effect of the tides), a time-keeper 

slightly different from the rotating earth. This is equivalent to 

defining as equal intervals of time those in which a body not acted on 

by ‘ external forces,’ i.e. very distant from other bodies or otherwise 

suspected sources of disturbance, describes equal paths.* In main¬ 

taining the motion of such and such a body in such and such circum¬ 

stances to be uniform, we do not make a statement, but rather are 

defining what we strictly mean by equal intervals of time. Selecting 

quite at random a different time-keeper, we could not, of course, 

expect the same simple laws to hold, with respect to the inertial 

system of reference. But with another space-framework of reference 

airpther time-keeper might do as well. 

Thus we see that, to a certain extent, the choice of a system of 

reference in space has to be made in conjunction with the selection 

of a time-keeper. Our x, y, z, t, the whole tetrad, the space and time 

framework must be selected as one whole. That kind of ‘union’ 

emphasized by the late Hermann Minkowski, the joint selection of 

h A manifesting itself in the modern relativistic theory by the 

consideration of a four-dimensional ‘world’ (instead of time and 

space, separately), is not altogether such an entirely new and revolu¬ 

tionary idea as is generally believed; for to a certain extent, and in a 

somewhat different sense, it is as well a requirement of Newtonian 

mechanics, and, more generally, of the classical kind of Physics, as of 

modem Relativity. What difference there really is between the two 

we shall see in the following chapters. 

* Thus it is manifest that the science of mechanics does not describe the motion 

<jf bodies in its quantitative dependence upon * time, flowing at a constant rate ’ 

(Newton), but literally gives only sets of simultaneous states of motion of the 

various bodies, the time-keeper itself being included. What is besides contained 

in these sets or successions is a non-quantitative element, namely, of what is 

vaguely called ‘before’ and ‘after.’ . .. 
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j^^eanwhile we have touched, in passing, the fourth variable t, 

and brings us to our second point, namely, the definition of 

the selection of ‘the independent variable t' of our 

physi^o-rnathematical equations, but viewed more generally, and more 

carefully, than above, where we have touched it only incidentally. 

Te> ^ explain this question, of capital importance for almost every 

quantitative physical research, I must ask you to direct your attention 

to following considerations. 

Suppose we do not limit ourselv.es to the investigation of motion 

only? but are concerned with every possible kind of physical pheno¬ 

mena, Such as conduction of heat or electricity, diffusion of liquids or 

gases, melting of ice, evaporation of a liquid, etc., etc., and that we 

propose to describe the progress of these phenomena in time, to trace 

theif bistory, past and future. How are we, then, to select our time- 
quantity if?.- 

First of all, we cannot, of course, take it to be Newton’s ‘absolute 

time,' which is defined, according to a quotation from Maxwell,* as 
follows : 

‘ Absolute, true, and mathematical Time is conceived by Newton 

as flowing at a constant rate, unaffected by the speed or slowness of 

the motions of material things. It is also called Duration.’ 

For, supposing there is such a thing,! we do not know how to 

find or to construct a clock which measures this ‘absolute time,’ 

even approximately; that is to say, we have no criterion to distinguish 

such a clock from a ‘ wrong ’ one. And thus, certainly, we cannot 

use this kind of definition for physical purposes. How are we then 

to measure our tt Granting that the selection of a chronometer 

indicating our t is (at least within certain wide limits) arbitrary or 

free, what is the requirement on which we have to base our choice ? 

Now, it seems to me that the first and most general requirement, 

which may also be seen to be tacitly assumed in all the investigations 

•of both the more recent and classical natural philosophers, especially 

physicists and astronomers, is 

that our differential equations, representing the laws of physical 

(and other) phenomena, should not contain the time, the variable t, 

eocplicitly, 

,* JhfatCer and Motion, page 19. 

T But, as a matter of fact, the phrase ‘ flo-wing at a constant rate ’ is simply 

meaningless. 
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i.e. that for- "any sufificiently com,prehensive physical system, of 

which tliec'ihstantaneous state is defined, say, by /i, J>2, the 

diffetenlial equations should be of the form 

A, •••A), I 

z'—i, 2, ... n. J 
This requirement is also intimately connected with a certain form 

of what Maxwell* calls ‘the General Maxim of Physical Science" 

and what is commonly called the Principle of Causality. 

To make my above statement more intelligible to a wider circle of 

(non-mathematical) readers, let us consider some very simple examples 

which will enable us also to see the exact meaning of instantaneous 

''state^ of a system and to learn to distinguish between two very 

important and large classes of systems: i) co?nplete or '‘undisturbed* 

and 2) incomplete or 'disturbed' systems. 

Suppose we have a small metallic sphere,! suspended somewhere 

in a large dark cellar kept at constant temperature a, receiving no 

heat, radiant or other, from without. Suppose we heated the sphere 

to 100° C., which is to be >a (say, a = o‘’C.), and from that instant 

left it to its own fate. We return to it after an hour, as measured, 

say, on one of our common clocks {i.e. rotating earth as time-keeper), 

and we find it has cooled down, say, to 90°. Thus : 

;^o+ih. 90°. 

.". A(9= - 10°, 

for A^'= I h. 

Now, if we repeated the whole experiment to-morrow or next week, 

we should find that during one hour the fall of temperature of our 

suspended sphere would again be from 100° to 90°, i.e. A6= - 10° 

for A;^= I h. We could make similar observations for any other stage 

of the cooling process of our little sphere (say down from 50° instead 

of 100°) and for other time-intervals (say ^h. instead of i h.), arbitrarily 

small,! and, repeating our observations, we should find again and again 

the same permanency of results,—only with different values of A 0 for 

different intervals A^'and for different starting temperatures. 

* Matter and Motion, p. 20, first paragraph of Art. xix. ; see also p. 21, lines 7-11. 

Small* only so as not to be obliged to consider the different temperatures 
of its various parts. 

f Or practically so, at least. 
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COMPLETE AND I^COMPLETE^.S^^MS 

Thus, the temperature 6 of our M&re, pl^ed 
conditions of its environment, varies 

til a certain determinate way^ namely, so^^^staf ^ 

temperature B, its change during a given ti^^^erval^^ 

always one md the same, that is to say, no matter zvhenthS 

independently of /q,. but depending only on ^ 

Now, such a system, i.e. the sphere in its above environment,''I 

propose to call an undisturbed or, what for the beginning is more 

cautious, complete system. And, in this case B being the only 

quantity on whose instantaneous value the whole (thermal) future 

history of our sphere depends, we shall say, in accordance with 

general use, that the instontaneous value of the temperature B defines 

the instantaneous state of our system (a being supposed given once 

and for ever). In the case before us we have a one-dimensional 

system, which may be called also a system of one degree of freedom. 

Take the limit of the mean rate of change A^/Aif for A^'->o ; then 

the differential equation of our simple system will be of the form 

i=/w. (X) 
which may be read; the instantaneous time-rate of change of the 

temperature is a function of its instantaneous value only.f We 

know in this case that f{0)— —h{B~a) approximately, when 6 —a 

is small, where is a positive constant; but the particular 

form of the function / is for our present purposes a matter of 
indifference. 

Let us, on the other hand, consider a similar sphere suspended, 

say, in a window, exposed south, in a land in which the sun is wont 

to shine often. Then, for the same starting value B and same A/, 

the change A (9 will be difere?it at different times of the day, e.g. larger 

from 7 till 8 a.m. than from 2 till 3 p.in., larger in winter than in 

summer, and so on.- Now, a system such as this sphere we will call 

a disturbed system or a-system ‘ exposed to external agents,’ or better 

an incomplete system, for this concept does not presuppose the know¬ 

ledge of what is meant by ‘action’ of one system upon another. 

* Observe that n mechanical ' degrees of freedom ’ amount to an degrees of 
freedom in the sense here adopted. 

t See Note 1 at the end of the chapter. 
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In the present case the differential equation of our system, will be 

of the form 

/a (2) 

/ being again measured with the ordinary (earth-)clock, and g being 

some function involving j!" in a very complicated manner. 

Now, according to the above general requirement, our /-clock 

would be the right one, the peculiarly fitted one, for our first 

physical system, (i), but not for the second, (2). 

By selecting a different time-keeper we might possibly convert 

some (not all) ‘ disturbed ’ into ‘ undisturbed ’ or complete systems; 

but then we should spoil the completeness of (1). Let us see, first 

of all, what other clocks we can take instead of our original one 

without spoiling the simple property of (i). Instead of /, take 

T^m> 

then (i) will be transformed into 

Thus, if the property of completeness is to be preserved, 4>{i) must 

be a constant, and consequently T a linear function of t, say 

/q •+• a/, 

amounting only to a different initial point of time-reckoning and 

to the choice of a different time unit. 

Now (2), the equation of our second sphere, is not of the form 

dBjdt^'^it) but rather of the form 

g-/[0-aW]+GM; 

consequently, if we wished also to sacrifice the completeness of (i), 

we certainly cannot transform (2) into an undisturbed or complete 

system, by any Hence the moral: certain incomplete 

systems cannot be made complete by merely selecting a new clock 

instead of the old one, and such systems I propose to call essentially 
incomplete systems. 

But suppose we had a system obeying a law of the form 

^=_^(/).(0-a), (S) 



SYSTEMS MADE COMPLETE u 

i.e. a sphere as in (i), but having a coefficient k (coefficient of what 

Fourier called external conduction, divided by specific thermal 

capacity), which due to some visible changes of the sphere’s 

surface, such as oxidation, is variable, instead of being constant. 

Then we could represent it as a complete system by taking instead 

of the Jf-clock another clock indicating the time 

T=^\h{t)dt, say 
Jo 

but, F{f) not being a linear function of the old time, this innovation 

would at once spoil the completeness of (i). 

At this stage we would find ourselves in face of an alternative : 

which of the two systems, (i) or (3), is to be saved, which is to 

be sacrificed ? And, correspondingly: which of the two clocks, the 

/-clock or the Ttclock is to be selected as time-keeper? If we 

could detect no difi'erences between the spheres (i), (3)—besides 

that of their respective thermal histories—the choice would be 

difficult, or rather arbitrary, quite a matter of taste or caprice. But, 

say, the latter sphere, (3), gets oxidized, shrinks or expands, and 

what not, and the former, (r), remains sensibly unaffected by the 

process of repeated cooling and heating. Therefore, following the 

maxim or principle of causality, we would conserve our /-clock, 

best fitted for (i), and would try to convert (3) into a complete 

system in a different way, namely, by taking account explicitly of the 

oxidation of the sphere’s surface, of its dilatation, and so on, i.e, 

by introducting besides Q other quantities, say, the amount .m of 

free oxygen present in the enclosure and the radius r of the sphere, 

and by defining the state of the system by the instantaneous values 

of 6*, in r. 

In this way, retaining our old clock, we should have converted the 

originally disturbed system of one degree of freedom into a complete 

system of three or more degrees of freedom. As a rule, we do not 

reject our traditional time»kceper at once. Encountering an incom¬ 

plete or disturbed system, every physicist will, first of all, try to throw 

the ‘ disturbances’ on some ‘ external agent’ rather than on his clock. 

He will look round him for external agents, almost instinctively 

following the voice of the maxim of causality, whispering to him, as 

Maxwell puts it {Matter and Motion, p, 21): ‘The difference between 

one event and another does not depend on the mere difference of the 

times,’ And finding nothing particularly suspect in the nearest 
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neighbourhood, he will look farther round, of deeper into, the system 

in question. 

Similarly, if we amplified the system of our second example (the 

sphere tX)oling before an open window), taking in the sun varying in 

position, the atmosphere, and possibly a host of other things, we 

would obtain a larger, more comprehensive system which, though 

more complicated than the original one, would satisfy us as being 
nndisUirkd^ witli our old f-clock. 

So it i.s' in many other cases. Tims, we can say: 

Adding to a given fragment of nature (system), which in terms 

of a certain /-clock behave.s like a disturbed or incomplete system 
(^1,/.j, i,€. obeys the equations 

' "''f {Pii P'ii "'Pm /)> (4) 
/=• 1, 2, ... n, 

fresh fragments of nature (with the corresponding parameters 

A tu •••A-tm). obtain a now, larger,* system which, 

still witli the .same /, is undisLurhed or complete: 

PiiPli P'4) '"Pn) PnH) '••Pn-hm')) (S) 
/ ’ T, 2, ... n + PI. 

In short, we compkk the .system to The /, implied 

here, is practically the time indicated by that clock which proved 

peculiarly fitted for lire descri[)lion of our previous stock of experi¬ 

ence. I'hus, for examiJle, Fourier’s theory of conduction of heat 

was preceded by the triumphs of classical mechanics; and if asked 

what the / in his fundamental ecpiation 

fV 

meant, ho would, doubtle.s.s, an.swor that it is to be measured by the 

rotating earth as time-keeper, though lie hardly ever stopped in his 

researches to con.sidor this matter explicitly. 

Thu.s, generally, we do not reform our traditional clocks, but we 

make our systems complete as in (5), by amplifying them. But 

* Ncit necemrily larger in volume ; for often we introduce new parameters by 
going deeper into the original syatem Itself, sornclime.s ajs deep as the molecular, 
atomic or even auh-atomic structure, say, of a piece of matter ; or being originally 
concerned with the thermic history only, we supplement the temperature by the 
pressure, volume, electric fxitential, and m on. 
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sometimes, when we think that we have made our system 
sufficiently comprehensive, that we have exhausted all reasonably 

suspected material as possible ‘external agents,’ and when 

nevertheless continues to behave as an incomplete system, ix. w;hen 

still 

then, to make it finally complete, we decide ourselves to change 

our /, our traditional clock,—especially if the change required is a 

slight one. This procedure, of course, is possible only when the AJ’s 

in (6) are all of the form 

(7) 

Otherwise, we feel obliged to help the matter by introducing yet fresh 

parameters A+m.+n A+wn a> not finding real (perceivable) 

supplementary material round us, we introduce fictitious supplements, 

which sometimes turn out to be real afterwards, thus leading to new 

discoveries. 

From this it is also manifest that the Principle of Causality has the 

true character of a maxim ; though of inestimable value both in 

science and in everyday life, it is not a law of nature, but rather 

a maxim of the naturalist. 

We have classical examples of both the procedures sketched above, 

viz. of reforming our clocks and of supplementing or amplifying a 

system with the view of .securing its completeness. In the first place, 

to get rid of one of the ineciualities in the motion of the moon round 

the earth, astronomers have Iiad recourse to the supposition that there 

is a gradual slackening in the speed of the earth’s rotation. Of 

course, they did it in connexion with the tides and with immediate 

regard to the fundamental principles of mechanics, implying also the 

law of gravitation. But at any rate, in doing so, and in declaring that 

the earth as a clock is lo.sing at the rate of 8*3, or (according to 

another estimate) of 22 seconds per century, they gave up the earth 

as their time-keeper and substituted for the sidereal time t a certain 

function T=^ij>it), .slightly difiering from t, as their new '•kinetic 

time,^ as Prof. Love calls it.*^ Secondly, as is widely known, the 

perturbations of the planet Uranus have led Adams and Le Verrier 

“A. H. 11. Love, 'rheeretical Mechanics, .second edition, Cambridge, 1906, 
page 358. In connexion with our subject, the whole of Chapter XL of Prof. 
Love’s book may he warmly recommended to the reader. 

lo.-—^ 
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(working independently) to complete the system by a celestial body, 

at first fictitious, but then, thanks to admirable calculations based on 

the -5-law, actually discovered and called Neptune. Notice that 

both kinds of procedure have essentially the character of successive 

approximations. 

Any future researches of mechanical, thermal, electromagnetic 

and other phenomena, either new or old ones but treated with 

increasing accuracy, if leading to ‘disturbed’ systems, obstinately 

withstanding the supplementing procedure (i.e. that consisting in the 

introduction of fresh parameters A+i> etc.), may oblige us to reform 

also the newer, slightly corrected earth-clock, to give up the ‘kinetic 

time’ of modern astronomy for a better one, more exactly fitted for 

the representation of a larger field of phenomena, and so on by 

succe.ssive approximation. It may well happen that we shall have to 

give up the kinetic time for the sake of the ‘ electromagnetic time,’— 

if I may so call the variable t entering in Maxwell’s differential 

equations of the electromagnetic field.’'* For suppose for a moment 

that some future experimental investigations of high precision were to 

prove that the variable t in 

3E iTur 
curlM, -7^ — . curlE 

ot ■ ot 

is not proportional to the kinetic time; then the electricians would 

hardly give up these admirably simple and comprehensive equations; 

they would rather sacrifice the kinetic time. Thus, in the struggle 

for completeness of our physical universe, we shall have always to 

balance the mathematical theory of one of its fragments, or sides, 

against that of another. A great help in this struggle is to us the 

circumstance that, though, rigorously, all parts of what is called the 

universe interact with one another, yet we are not obliged to treat at 

once the whole universe, but can isolate from it relatively simple 

*Thus we read in Painlev^’s article {loc. cit. page 91) t *La dur6e d’une 

ondulation lumineuse correspondant une radiation d^termin^e (ou quelque dur6e 

ddduite d’un ph^nom^ne electrique constant) sera vraisemblablement la prochaine 

unlt6 de temps.’ This idea seems to be suggested first by Maxwell; the cor¬ 

responding wave-length would at the same time be the standard of length, when 

the platinum 'inHve italon^ will be given, up. Thus it may happen that the 

‘ kinetic length’ (f.a. that based on our notion of a ‘ rigid’ body) will he sacrificed 

for the benefit of an optical or ‘electromagnetic length’ in the same way as the 

‘kinetic time’ may be replaced by an ‘electromagnetic time.’ 
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parts or fragments, which behave sensibly as complete systems, or 

are easily converted into such. 

Herewith I hope to have explained to you, at least in its 

fundamental points, the question of selection of a time-keeper. 

Thus, we know, essentially, how to measure our /, at least in or 

round a given place (taken relatively to a certain space-framework). 

We do not yet know what is the precise meaning of simultaneous 

events occurring in places distant from one another. But the notion 

of simultaneity, especially for .sy.stems moving relatively to one 

another, belongs to the modem Theory of Relativity, and is, in fact, 

a characteristic point in Einstein’s reasoning. Therefore it will best 

be postponed until wo come to treat of the principal subject of this 

volume. 

We could now pass immediately to the history of the electro¬ 

magnetic origin of the modern principle of relativity, extending from 

Maxwell to Lorentz. But since we already have come to touch, 

more than once, Newtonian or classical mechanics, let us dwell here 

another moment upon this subject. 

Let us call 2 one of the ‘inertial’ systems of reference, say the 

system of ‘fixed’ stars, and let yi, S/ be the rectangular co¬ 

ordinates of the f-th particle* of a material system, relatively to 2, 

at the instant 4 Then the Newtonian equations of motion are 

or 

^ JCij etc.. 

dt 
ih, 

dz, 
dt 

Wi, 

(8) 

nil 
du 

dt 
AT/, 

dvi 

dt 
Yu mi 

dzVi 

dt 
' Yi, 

where mi, the masses, are constant scalars belonging to the individual 

particles, t is the ‘kinetic time’ and Xi, etc., are functions of the 

instantaneous state of the material system, ix. of the instantaneous 

configuration and (in the most general case) of the instantaneous 

velocities of the particles relatively to one another, which for certain 

systems may, but for a sufficiently comprehensive system do not, 

contain explicitly the time A If the material system is subject to 

constraints, say , , 
c/jmo, Xj/csO, etc., 

*The material ‘particle ’ may also play the part of a planet or of the sun, as in 
celestial mechanics. 
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then Xi, etc., contain, besides the components of what are called the 
impressed forces, also terms like 

, A/) 

O.Vi c\Vi ’ 

which depend only upon the re/afive [jositions and relative velocities 

of the parts of the system {i.t\ of the mass-i)articles) to one another or 

to the surfaces or lines on which they are constrained to remain, 

or to the points of support or suspension entering in such constraints! 

Thus the boh of a pendulum is constrained to remain at a constant 

distance relatively to the point of susi)ension, the friction of a body 

moving on a rougli surface; depends on its velocity relative to that 

surface, and so on. Consequently, if instead of il any other system 

of reference ^'(V, j-', s') is takem, having relatively to purely 

translational^ uniform^ rectilinear motion, Xi, Yl, Xi are not changed. 

And the same thing is true of the U;ft-hand sides of the equations of 

motion. For, if .v/, etc., he the coordinates of the z-th particle 

relatively to li' at the instant /, and if wc take, for simplicity, the 

axes r)f .< y', s' parallel to and (concurrent with those of x, y, s 
respectively, then 

.1'/J'l - si ~~.Zi-7tJl,] , . 
f (9) 

where (zz, w) is the constant velocity of relatively to IS, and 

where the fourth ctiuation is added to emphasize that the old time if 

is retained in the transformation. Consecpiently, 

, flxi (IXi 

(and for any pair of particles a/- iij, etc.), and 

dul dui dvi dVi d7vl div, 

dt dt dt dl dt dt 

which proves the .statement. 

'Hms, the eciuations of motion (H), or, in vector form, 

remain unclianged by the transformation (9), or, written vectorially, 
by the transformation 

r/ a® Tjf vz*. 1 
ft / \ {9<^) 
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where v, the resultant of the above w, w, is the vector-velocity 

3f 2' relatively to 2. As regards the time, we could write also 

f'=:a!f+/’ (a, b being constants), but this would amount only to a 

change of units and shifting of the beginning of time-reckoning. 

In view of the above property, the linear transformation (y) or (y<i), 

V being any constcint vector, is called the Newtonian (and by sonus 

authors the Galileian) transformation. Thus we can say, shortly: 

The equations of classical mechanics are invariant with resfect 

to the Newtoniaji transformation. 

Notice that v being quite arbitrary, both as regards its sis'.e (or 

tensor) and direction, we have in (9^:) a manifold of 00® transA^rma- 

tions, and all of these form a group of transformations. For, if 

r/ = ri-Vi/; 
and 

r/'-rZ-v/; f 
then 

r./' = rf~v/; t" 

where 
v = Vi-HVa. (10) 

We shall refer sometimes to (9) or (9(1:) as the Newtosdan group. 

Notice the simple additive property (10), to be compared later on 

with a less simple property of the corresponding group in inodurn 

Relativity. 

Thus, there is no unique frame of reference for classical nicchanicK ; 

if the Newtonian equatioas of motion arc .strictly valid relatively 

to the framework 2 of the ‘fixed’ shirs, they are ecjually valid 

relatively to any other out of the 00® frameworks 2', cronnected with 

2 by (9), say relatively to the solar-system frame, which luus relatively 

to 2 a uniform velocity of something like 25 kilometres per second, 

towards the constellation of Hercules.* ThereAjre, by purely in» 

temal mechanical experiment and observation, ix. not looking out¬ 

side to external systems, we could never di.stinguish the stjlar frame 

2' from 2, that is to say, 2', like 2, does not show any anisotropy 

with regard to mechanical phenomena. The same remark ap[iUe.s, 

with sufficient approximation, to the earth’s annual motUai: it is not 

ascertainable by purely terrestrial mechanical experiments. 

Physicists hoped to detect this motion which they called also 

‘ the motion relative to the aether,’ by the means of purely tcrre.strifil 

* Quoted after Painlev^, loc. at. page 117, 
B S.R. 
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optical or ekctroinagfietic experiments,—we shall see later how 

unsuccessfully. 
In other words, seeing that there is no unique ‘kinetic’ space- 

framework, they tried to find a unicpie ‘ optical ’ or ‘ electromagnetic ’ 

reference-system, the ‘aether,’ or rather to show that this wonderful 

medium, already invented for other purposes, was such a unique 

frame of reference. Fut the results of all experiments of this kind 

have been obstinately negative. 

It is chiefly this which has led to the construction of the new 

theory of relativity. 

NOTES 'TO CHAPTER L 

Note 1 (to page 9). To show, generally, the connexion between 
the integral form of the properties of a complete system, as stated in the 
above illustrations, and its differential form, of which eq. (i) is an 
example, let us consider such a system of n degrees of freedom. Let its 
state at any instant t be determined by 

Then, 4=0 being any other, say, past instant, 

A(o); ^.1) b 2,... 

where A is a symbol of an operation or a function, implying besides the 
‘initial’ state yJ(o) the C\m.^4nierval / -/-/(, elapsed, but independent of 
the choice of the initial instant. This is the finite or integral way of 
expressing that the system is complete. Now let t^a be any particular 
instant and t^c another instant of time, such that 

c~aArb. 

Then 

so that the transformations corresponding to the passage of the system 
from any of its states to its successive states form wg^roup of transforma- 
tions, t being the (only) ‘parameter’ of the group. Thus we can imitate 
Lie’s general proof of his Theorem 3 (Sophus Lie, Theorie der Transfor- 
maiionsgruppen, Leipzig, 1888 ; Vol. I.) for this simplest case of one 
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parameter. Considering /j(o), ^ independent variables, 

differentiate pi{c) with respect to a ; then 

3A(^) #i(t) , , , pA(£) 

but difda= - i ; therefore 

'dM^) 

/— I, 2,...;»/. 

Now />i(c), ..■/,j(i') arc mutually independent; c)iher\vi.se less than w 
quantities/ would suffice for the determination of the state of the system, 
contrary to the supposition. Therefore the functional determinant 

does not vanish identically, and the above .system of « ecjuations can he 
solved with respect to dpi{ci)ld(i, etc., leading to 

-AM; fl. ■. ■■■ «• 

But these equations must be valid for all value.s of the mutually in¬ 
dependent magnitudes li and n. (living therefore to any conslattt 
value, and writing / instead of a, we obtain for any /, 

(0, A(0l ( =1,2,... //, 

and this is the diffcnjitial form alluded to, f uA •'-/». being function*, 
of the instantaneous state only. 

It is instructive to consider the instantaneuuH state of a system us a 
point in the ;2-dimensional spacc^ or domain of states .V„, (/t, p,^ 
and to trace in this ‘space’ the UneB of efcatea, i,t\ the linear cotuimiu 
of states assumed successively by difTerent copies (cHeniplars) of the 
system, starting from given initial .states. 'I’lie difierential et[uatioti‘i tif 
these lines of state.s, or, as Lie calls them, the ‘pathn {/iaJkntunvn) c»f 
the corresponding infinitesimal transformation,' are 

A 

(iPn 

/n ■ 

A complete system may then be characteriised by Haying tluii the linr*i 
of states are fixed in the corresponding space .S',,, like the linen (»f flow of 
an incompressible fluid in steady nuition. A ropy of the syNtetn, or 
rather its representative point, placed on one of these lines remains on 
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it, moving along it in a determined sense. (For particulars of physical 

application of these concepts, see the author’s paper in Ostwald’s 
Annalen d. Naturphilosophie^ Vol. II. pp. 201-254.) 

Note 2 (to page 12). Systems obeying partial differential equations, 
as for instance that of Fourier, ’ 

'de ^ 
ij 

adduced in the text, may be considered as systems of infinite degrees of 

freedom. The instantaneous state of such a system implies an infinite 

number of data/,;, or say p=p{x,y, 2), given as a function of x,y, 2 for 

every point of a portion of space coextensive with the system, as for 

example the instantaneous temperature for every point of a cooling body 

of finite dimensions, in which case the system will have 00 3 degrees of 

freedom. Instead of one we may have also two or more functions of 

.r, y, 2, defining the instantaneous state, as for example two vectors, 
amounting to six scalars, for an electromagnetic system (field), the 
differential equations being in this case those of Maxwell, 

3E 
~c)t 

= c. curl M, 
0M 
'dt 

— c. curl E. 

Here, as in the above example, the right-hand sides do not contain the 

time explicitly, but depend only on the space-distribution of magnitudes 
referring to the instantaneous state. If such be the differential equations 

and if also the limit or surface-conditions do not contain the variable t 
explicitly, the system of infinite degrees of freedom will be a complete or 

tmdisturbed one, in the sense of the word adopted throughout the chapter. 

Thus a heat-conducting sphere, of finite radius i?, obeying in its interior 

Fourier’s equation and whose surface is thermally isolated or radiates 

heat into free space, will be a complete system ; for its boundary con¬ 

ditions, viz. 

or 

Tt 
— const. X (0 — const.) 

respectively, do not contain the time explicitly. But a sphere (like the 

earth), whose surface is kept at a generally variable temperature by 

means of external sources (like the sun), will be an incomplete system, 

unless we amplify it by taking in the ‘ sources ’ themselves. 



CHAPTER II. 

AIAXWELLIAN EQUATIONS FOR MOVINO MEDIA AND 
FRESNEL’S DRAGGING OOEFFIOIENT. LORENTZ’S 
EQUATIONS. 

The modern principle of relativity arose on the ground of Lorent/s 
electrodynamics and optics of moving bodies. Einstein’.s work, in 
fact, consisted mainly in deducing logically, on the basis (jf plau.sihle 
and sufficiently general considerations, certain formulae of space and 
time transformation, which in Lorentz’s theory had partly a [)urcly 
mathematical meaning and partly the character of an hypothesis 
invented ad hoc (‘local time’ and the contraction hypothesis, 
respectively). In a word, Einstein has given a plausible .support to, 
and a different interpretation of, what appeared already in the thetjry 
of the great Dutch physicist. In its turn, the theory of Lorent/, 
based on the macroscopic treatment of a crowd of electrons (tlu)Ugh 
later supported and made vital by physical evidence of an entirely 
different kind), was constructed by its author chiefly with the purjjose 
of accounting for optical phenomena in moving bodie.s, which may be 
best grouped summarily under the head of Ere.snePs ‘ dragging coefli- 
dent’ and with which the equations of Maxwell and of HerU- 
Heaviside have proved to be in complete disagreement. 

Now, it seems to me that the best, most natural and most efficient 
way of propagating new ideas (if indeed there is such a thing arising in 
the collective mind of humanity) i.s to show their intimate connexion 
with older ones, and the more so when the new ideas have the 
reputation, widespread but partly unjustified in our case, of being of 
a very revolutionary character. It will be advi.sable, therefore, btd’ore 
entering upon our proper subject, to turn back to laircnt/. and 
Maxwell. In doing so, I must warn the reader at the out.set that the 
new Relativity, though grown on electromagnetic soil, does not-- in 
spite of a current opinion—require us at all to adopt an clcctra. 
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magnetic view of all natural phenomena. Nor does it force upon us 

a purely mechanistic view, which till recently held the field, before 

the pan-electric tendencies arose. Modern Relativity is broader 

than this; it subordinates mechanical, electromagnetic and other 

images to a much wider Principle which is colourless, as it 

were. 
Thus, the reason of returning here to Maxwell is, in the first place, 

of an historical (and partly didactic) character. But we have yet 

another reason for dwelling in the present chapter upon the great 

inheritance left to Science by Clerk Maxwell. It is widely known 

that but a few things of the old system of physics have remained 

untouched by the modern principle of relativity, though the changes 

required are generally but very slight. In fact, almost nothing of the 

old structure has been spared by the new theory of relativity; but 

Maxwell’s fundamental eciuations, namely those known as his 

equations for ’• stationary’^ media, have been spared. More than 

this; not only have they been preserved entirely in their original 

form, without the slightest modification of any order of magnitude 

whatever, but they form one and the best secured of the actual 

possessions of the new theory, the largest and brightest patch of 

colour, as it were, on the vast and as yet mostly colourless canvas 

contained within the frame of the new Principle. Moreover, a 

peculiar union or combination of the electric and magnetic vectors 

which appear in Maxwell’s equations of the electromagnetic field 

became the standard and prototype (not as regards physical meaning, 

but mathematical transformational properties) of a very important 

class of entities admitted by the new theory (the so-called ‘world- 

six-vectors’ or ‘physical bivectors’). 

So much to justify the insertion of the following topics of the 

present chapter. 

Maxwell’s fundamental laws of the electromagnetic field in a 

‘ fixed ’ or ' stationary ’ non-conducting dielectric medium * may be 

expressed in integral form as follow.s: 

I. Electric displacement-current through any surface o- bounded 

by the circuit line integral of magnetic force M round s. 

IL Magnetic current through or= -rxline integral of electric 

force E round j, 

* Practically, fixed with respect to the earth, or, if not, then with respect to a 
definite system of reference 6', to be ascertained on further examination. 
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i.e. in mathematical symbols ; 

here Jtt denote the dielectric di.si)lacement or polari^uion ami 

le magnetic induction respectively, c a scalar constant, the vclot ity 

f light in vacuum, n a unit vector normal to cr, the sense cif the 

itegration round of which is a vectorial element, being clock- 

ise fora spectator looking along n (see hig. r). Mere, as throughout 

n 

ie volume, (®ii), etc., generally (AB), in round [)arL‘nlhe.sc.s, denote 

le scalar product of a pair of vectors: 

(AB) = AB cos (A, B), 

f, B being the sizes or ab.solutc values of the vector.s A, B.* 'rhus, 

le surface element dor being con.sidercd as an ordinary .Ht*alar, the 

irface integral j((En)d(r stands for the total number of Faraday lubf.s 

init tubes) crossing cr, and the surface integral in ii. has a similar 

leaning with respect to the tubes of magnetic induction. 

*lf it were only for purely vectorial algebra and annlyniH, wt< multi write, aftrr 
eaviside, for the scalar product simply AB. But since we nhall have to recur in the 
quel to Hamilton’s quaternionic calculus, wc reserve AB for the 
oduct, and write therefore (AB) for the scalar product, t.r. for lite nrgalivt; 
alar part of the Hamiltonian product, and \’AB for the vector prtulucf, thus 

AB = S. AB -b V. AB 

= -(AB) + VAB. 
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Remembering the definition of ‘ curl ’ by means of the line integral, 

we may write i. and ii. at once in dinercntial form, 

m 
IV ' 

= <*. curl M, 

'di 
- --^-.curlE, 

or, in Cartesian expansion, 

I D/lfg ZAf 

c Zf ** 'dv " 'Os’’ 

L 5*^1 ™ 
c di c)s c)|’ ’ 

Every point or surface element of being fixed, relatively to the 

system of coordinates x, p', s, round tV.s have; been written on 

the left hand to express partial difTerentiations with respect to /, 

i.e. local time-rates of change of the corresponding vectors. 

(la) or (i) is the Jlcriz-ffeavishic farm of Maxwell’s dinercntial 

equations, although, if I am not mistaken, Maxwell himself on one 

occasion employed this form. At any rate, tlu‘ Ilertz-IIeaviside 

equations for a stationary medium differ only formally from the 

equations of Maxwell as given in his moiumumlal ‘Treatise’ and 

in several papers; the auxiliary jiotentials being easily eliminated. 

As regards the relations obtaining between 4ft ^tnd E, M 
respectively, it will bo enough to romcmbtir here that the first pair 

of vectors arc linear functions of the second, say, 

(^^A'E and (2) 

where A", ^ arc in the general case, of crystallitui bodies, symmetrical 

or self-conjugate linear vector operator.s, which in the simplest case 



MAXWELL'S EQUATIONS 25 

and future, is uniquely determined,—though in most cases the 

mathematician may have the greatest difficulties in finding it out. 

The electromagnetic field, as far as it obeys these equations, 

is at any rate a complete system in the sense of the word 

previously explained. It will be noticed later that the funda¬ 

mental equations of the electron theory do not possess this simple 
property. 

From I., II. we see immediately that the total current, electric 

or magnetic, through all possible surfaces o- bounded by one and 

the same circuit (s), has the same value. I'aking therefore a pair 

of such surfaces o-^ which together form a surface (cr), enclosing 

completely a certain portion t of the medium, and inverting one 

of the normals of the component surfaces (Fig. 2), so that the. 

normal n is directed everywhere outwards (or everywhere inwards) 

with respect to the enclosed space, we see that, for any closed 

surface (cr), 

1 ((En)<fcr, I (Jftn) i3!<r = con-st. in time, 
J (<r) J (<r) 

the second constant being everywhere equal to zero, by experience. 

In other words, the total electric charge enclosed by (o-) does not 

vary in time, its magnetic analogue being constantly non-existent. 

The same property being valid for any volume t, and remembering 

that ‘ div' or divergence is defined as the surface integral of a vector 

per unit of enclosed volume, we may write also, in differential form, 

div ® = p = const., 

div JE = const. = o ; 



26 THE THEORY OF RELATIVITY 

p is the volume density of (true) electricity. I'hc second property 

is commonly expres.sed by .saying that the tubes of magnetic induc¬ 

tion are always closed, or that has a purely sokmidal distribution. 

The invariability of both divergences may be seen with etiual ease 

from (i), remembering that the operations div and tl/D/ are com¬ 

mutative, while diveurb^o, identic'ully. 

Thus, the full .system of Maxwell’s ecjuations for a stationary 

dielectric, which we will put here together for future reference, is 

the equation 

dJI 
cV"' 

c. curlM 

• - c. curl E; div o 

®-A'E; 

p." div® 

(3) 

being here considered as the definition of the demsity p of I'lectric 

charge. Notice, in jiassing, that tlu* ‘ electric' charges ’ have been 

driven to the background by the Maxwellian theory (espec'ially as 

propagated by Hertz, Heaviside and Fmil (’olm), ns rather .secamdary 

derivate enlitie.s, but to return later with increased vigour and to 

rcaccpiire tlieir dominant position, viz. as fundarnetUal elements of 

the electron theory. 

We shall not stop here to eorisider liie gent'ral Maxwellian ex¬ 

pressions of energy, ponderoinotive fortte and of the corresponding 

stress. 

In vamo^ and practically also in air under ordinary conditions, 

K - p. I, 

so that Maxwell’s cquation.s (3) become 

BM 
'6i 

(. curlE (4) 

div M ■ o, 

to which in the present case may he added also 

cHvE®'0 (4i) 

expressing the absence of electric charge. Notice in passing that 

these equations are not invariant with re.spect to the Newtonian 
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insformation. The transformation which docs i)rcscrvc tlicir iorin 

of a different kind, as will be seen later. 
The independent variable t appearing in Maxwell’s ecpiations (4) 

r empty space may be taken, provisionally at least, us fur us 

perience goes, to be the ordinary or the kineti(t time. And us regards 

e (or a) space-framework, with respect to wliich they arc; intended 

be rigorously valid, let us call it once and for ever the system A, 

latevcr it may be. If the reader wants to fix his ideas lie may think 

S as the ‘ fixed-stars' system ; but as yet we cannot and need not 

scuss this point thoroughly, being forced by the very nature of tlie 

estion to postpone it to a later chapter. At first sight it might 

em that (4) are wholly itidcpendent of a space-frame of rcfi-rcncc ; 
r the curls and div’s can be, and primarily are, defined in lerrus 

line integrals and surface integrals respectively, and thn.s dcptcnd 

ily upon the distributional iieculiarities of the res[)ective ve;ctor 

:lds. But this means only that the etiuations in tpiestiou are 

dependent of the choice of axes (x, p', 5) within A, the only ctmdi 

)n being that they must be immovable relativity to S; in other 

jrds, curl E, curl M are vectors as good as E, M ihcm.sttve.s * atul 

V E, div M are true scalars like a volume, for instance. Notice, 

wever, that, on the left hand of the e(|uations, I'/iV i.s to he the 

cal time rate of change of E or M, i.t\ the varialion in a point /' 

;pt fixed. Now, this would be altogether meaninglc.s.s if it 

not explained with resiiect to what frame the point /* is to 

; fixed. It would not help us very miieh if .soincliody told 

1 that is to be a fixed point of the field or of a Kiirfulay 

be; for we have no means of identifying .sikL a [loint. 'File 

ath of what has just been said may be seen even more ini- 

ediatcly from the integral form of Maxwell’s eiiuulions, u and 11,, 

liere for the present case ffi, tire to be identified with E, M; 
r the circuit (j') is to be kept ‘ fixed,’ i.t. fixed with respeet to 

mething.t I'herefore we necessarily waul a frame of referettee, 

id call it S. 

*The distinction of what are called axia/ md polar vectors docs not C(»ri»Trf» tc* 
re. 

tin the more general case of a ponderable medium, wiy in a piece c4 glajt*., ihr 

•cuit (d is, of course, to he fixed in the glass : hut this would nol Ik* enough : the* 
role piece of gloss, as will he explained [irescntly, must not move in an arhioary 

inner relatively to some external frame or other, if the laws 1., n, are t«» 1« 
lid, wliether the observer does m tloes not share its motion. 
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To see the property of the scalar constant <r, eliminate, in the usual 

way, E or M, qmploying their solenoidal properties ; then 

7i (5) 

.where </> means E or M, or any one of their Oartesian components 

jSi, ... ; hence, in the case of plane waves, for example, 

and 

f being an arbitrary function of the linear argument. Thus r, 

in round figures 3.10^° cm. scc.“b is the vdodty of propagation 

in empty space, relatively to A, of transversal electromagnetic waves 

or disturbances, their transver.sality being an immediate consequence 

of the solenoidal conditions, which, in the present case, reduce to 

‘dMfdx^-o. Henceforth c will be referred to shortly 

as ‘ the velocity of light,’ and sometimes jus the ‘ critical ’ velocity. 

What is properly called a wave is a non-.stationary surface of discon¬ 

tinuity of E, M themselves or of their derivative.s, which i.s individually 

recognimble as such and can be watched when moving about. It is 

the velocity of motion of such n wave, normal to itself, which is 

properly called the velocity of propagation, as distinguished from the 

phase-velocity of a continuous train of disturbances. Now it may be 

easily shown that c is precisely the value of this true velocdly of pro¬ 

pagation for any form of the wave, plane or not, the proi)erty belonging 

to every surface element of the wave, considered .separately. (See 

Note 1 at the end of the chapter.) 

Notice that this property is epnte independent of the direction of 

the wave normal, ix, of its orientiition with respect to any axes drawn 

in S. In other words ; 

Maxwell’.s equations imply isotropic as well as uniform * propaga¬ 

tion in empty .space relativeiy to A, ix. to that .system in which 

they are valid. There are no privileged places or directions for 

the electromagnetic disturlrance.s. 

Thus a continuous train of spherical waves, with centre 0, will 

remain spherical for ever, which may be seen also frcirn (5). For a 

* By ‘ uniform ’ we metut lunnogencous nr amsuint in sjsact? nnd invariable in 
lime, c l»eing ennsitutu with respect lo kali. 
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irticular integral of that equation, adapta^^^^any initial state 

) = ~/(^)j is f/> = "/(^ ± <^^)> <^^^i^^measured 

Dm 0. Again—which is more a^i^^istant 

spherical surface of transversal discoj^^iity or ^ prop^^le^o- 

agnetic wave, then, expanding (or shrinking) wiflr|t«m, 

main spherical for ever, with centre O coincidi;iqgf m^faVs w^^"" 

lat of the original <r, fixed once and for ever w’i^^^fiespect to the* 

■ame 6',—quite independently of whether and how'%'e'-material 

)urce was moving at the instant when it originated that /^ave. 

'hus a ‘point-source' (and notice that a physical source Sf;any 

mpe or finite dimensions may be regarded as such, provided w'e 

D away from it far enough) producing a solitary disturbance, say 

flash of light, at the instant 4, will (Originate a wave which always 

ill be spherical of radius 

ie=c(/-4), 

aving its centre where the source was at the instant 4> no matter 

^hither it went afterwards or whence it came, or how swiftly it flashed 

trough that place. 

We shall have to return to this argument, of capital importance, 

lore than once; but meanwhile we must leave it. 

As has been already remarked, Maxwell’s etjuations for '‘stationary ’ 

iielectrics, i.c. i. and n. with their supplements as given together 

,'ith their differential form under (3), have not only survived the 

eneral massacre, but have very substantially enriched the new theory, 

n fact, both the most particular and simple eepations (4) for the 

acuum and the more general ones, (3), for ponderable media have 

)een incorporated into the posse.ssion.s of modern Relativity, the 

ormer in a quite easy way by Einstein (1905), and the latter 

n a less easy and very ingenious way by Minkowski (1907). 

i)n the other hand, it i.s needles.s to tell here again about the 

dde field of experience covered by these equations and about 

heir numerou.s and successful applications in proper Electro- 

nagnetism, to say nothing about the electromagnetic theory of light 

vhich soon after its creation proved to be much superior to the 

ilastic theory. 

Serious difficulties arose only in connexion with the elcctro- 

iynamics, and more especially with the optics of moving media, a 

ong time before the dates just quoted. 



30 THE THEORY OF RELATIVITY 

There are two different sets of what are commonly called Max¬ 

wellian equations for moving media: i° a system of equations which 

may be gathered together from different chapters of Maxwell’s 

‘ Treatise/ and which we shall call shortly the equatio7is of Maxwell, 

though it can be reasonably doubted whether Maxwell himself would 

consent to attribute to them general validity, especially with the 

inclusion of optics; and 2° a system of equations which Hertz 

obtained by a certain, apparently the most obvious, extension 

of the meaning of the form i., ii., and which Heaviside, inde¬ 

pendently, constructed by introducing into Maxwell’s equations a 

supplementary term dictated by reasons of electro-magnetic sym¬ 

metry; these are widely known as the Hertz-Heaviside equations 

for moving bodies. 

We shall use for 1° and 2° the abbreviations (Mx), (HH). 

Neither has been able to stand the test of experience. Though 

contrary to the historical order, it will be more instructive to con¬ 

sider first the latter and then the former system of equations. 

Let us return to the semi-integral form of electromagnetic laws i. 

and ]i., given, in words and symbols, on pp. 22-23. These are valid 

for a ponderable dielectric medium or body, stationary with respect 

to our frame S, and for any surface o- which, together with its 

bounding circuit s, is fixed in the body. Thus the surface o-, 

through* which the ‘current’ is to be taken, is itself fixed in S. 

Now, what Hertz did in order to obtain the required extension, 

was simply to suppose that i. and ii. are still valid for a body, 

rigid or deformable, moving with respect to S in any arbitrary 

manner, provided that the currents on the left-hand side of these 

equations are taken through a surface composed always of the same 

particles of the body, or—to put it shortly—through an individual <t, 

together with its s. This gives for the current per unit area of cr, 

instead of the local time-rate of change 'd^j'dt, if v be the velocity 

of a particle relatively to S, 

^-l-vdiv ®-l-curlV®v, (6) 

and a similar expression for the magnetic current,* while the right- 

hand sides of I., II., containing only the instantaneous values of 

line integrals, remain obviously unaffected by the Hertzian require¬ 

ment. The distribution of Jit being supposed solenoidal, as 

*See Note 2. 
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previously, the second term in the above expression is absent in the 

magnetic current. Thus, transferring the curl-terms of the currents 

to the right-hand sides, we obtain the required equations 

^-l-pv = r. curl^M - i V(Ev^ 

-^.curl^E-iVvJft). 

Heaviside calls V(Ev/r the ‘ motional magnetic force ’ and VvJE/^r 

the ‘motional electric force,’ considering them as a kind of impressed 
forces. 

In what we have called Maxwell’s equations, the former of these 

‘ motional forces ’ and the convection current pv are absent; other¬ 

wise they are as (HH) j thus 

9® 1 n/r = c. curl M 
ot 

^ ^. curl (e - VvJe). 

(Mx) 

The connexions between ®, JE and E, M are as in (3), except 

that K, fx may undergo continuous variations due to the strain 

of the material medium. Also, divJE = o, as in (3). Notice, in 

passing, that the first of (HH) gives 

|^-Fdiv(pv) = o 

or 

J + pdivv-o, 

where dpjdt = 'dpl'dt + {'7V)p is the variation at an individual point of 

the body. Now, divv being the cubic dilatation, per unit time and 

per unit volume, the last equation may at once be written 

where dr is an individual volume-element of the material medium, 

i.e. an element composed always of the same particles. Thus the 

charge pdr of any such element remains invariable, being attached to 

it once and for ever. The charge, being preserved in quantity, moves 
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with the body. In this respect it behaves like the mass, according 

to classical mechanic.s. As regards the equations (Mx), they must be 

considered as referring to the particular case of an uncharged body ; 

Maxwell happened not to consider ex[)licitly charge.s in motion ; 

otherwise he would doubtless have brought in the term pv. 

Now, both of these systems of eciuations, (Mx) as well as (HH), 

are in full disagreement with experience, especially with optical 

experience, terrestrial and astronomical, Le'. with experiments on the 

propagation of electromagnetic waves (light) in bodies moving 

relatively to the observer, and also in bodies moving with the 

observer and with his apparatus relatively to the source, .say relatively 

to a star. 

The equations in question have also been manifestly contradicted 

by electromagnetic experiments projjerly so called, viz. those of 

H. A. Wilson and of Roentgen and ICicdtenwald ; * but it will be 

enough to consider here only the difficulties met with on optical 

ground, the other deviations being t)f essentially the .same character, 

while the optical example.s, tjuite conclusive by themselves, seem to 

be very instructive. 

Let me explain to you fully what this disaccordance consists in. 

To take the simplest case possible, let the material medium or 

body move as a whole with uniforn\ translational veUjcity v with respect 

to S, and let plane waves of light be propagated in it along the 

positive direction of v (Fig. 3). If the unit-vector i be the wave 

normal, concurrent with the propagation, then v - Let to' be the 

scalar velocity of propagation of the waves, when the material medium 

* 11, A. Wilson, J^Ml, 7'ratts., A. Vol. CCIV, p, 121 ; 1910. -W, (.’. Roentgen, 
Berl. Silzber., 1885; Wktkm. Ann., Vol. XXXV. j888, and Vol. XL. 1890.— 
A. Eichenwald, Ann. der Physik, Vol. XL 1903. 
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ationary in N, and b their velocity of propagation, as judged 

L the ^'-standpoint, when the medium is moving with it.s actual 

2ity. What is the relation between b and b', If ""'y were 

:erned with waves of sound, instead of light waves, then b would 

imply the sum of b^ and of the whole v \ the waves would he 

■ely dragged by the medium, say air or water, with its full 

city. But the case before us is different. Write, generally, 

= J)' + KV 

^^b_-b'. 

. /f, whatever its value, will be what is called the draggring ooeffloleat, 

eating the fraction (if it happens not to be the whok;) of the 

ium’s velocity conferred upon the waves. Wliat is, then, the 

ging coefficient in the case of electromagnetic, and especially of 

inous waves ? 

ccording to (FIH) it i.s, obviou.sly, eciual to unity. 'I'o .see ihi.s 

lave no need to integrate these dilTuruntial e([uaLions,* hut slniply 

anember Hertz's interpretation of the law's i., ii., which furuislKid 

with these equations (p. 30). I'or according to that intcrprcla- 

,and extension, of i., 11., the electromagnetic disturbances behave 

Hveiy to the material medium (generally in each of its elements, 

in the present case, of rigid tran.slation, throughout the whole 

ium) just as if it were stationary. Hemx*, on llu! ground of 

deal kinematics of course, the velocity of the medium is .simjdy 

id to that of the waves, precisely as in the case of sound. 'I'huH, 

[, according to (HH). 

et us now see what is the value of tlic dragging cocflicicnt 

irding to (Mx). lake the simple.st c-ase of an i.sotropic medium ; 

by the w’ay, — for light waves. Measuring x along i in the 

im S, take E, M, and therefore also 4ft, proportional to a 

tion of the argument a'-b/, so that b will bo the velocity of 

'hough the reader, to .satj.sfy hinrself, may do .no. I’roceeding f.iiiiili»rly m itt 
ase of (iMx), worked out in Note 3 at tlic end of this clmpter, lie will Mam 
diat to=to' + iy. 



or 

b = + ‘ (7) 

where /3==v/c and where n^cjb' is the index of refraction of the 

medium. Now, in all actual experiments, by means of which the 

dragging of light can be determined, is a small fraction, viz. io~^ 

in the case of Airy’s astronomical, and much smaller in that of 

Fizeau’s terrestrial experiment, both to be considered later. There¬ 

fore terras of the order of can certainly be rejected, so that 

2 8 ' 
and 

but here even the /8-term may be safely omitted, so that finally 

K==l-* 

Thus, we have for the dragging coefficient according to (HH) 

and (Mx), re.spectively, 

K = I, (HH) 

(Mx) 

Now, both of these are radically wrong, the true one, ie. that 

showing excellent agreement with experiment, being Fresnel’s widely 

known dragging coefficient {coefficient d'ent7-aineinent') 

~ ^ ’ (Frsnl) 

where n is the index of refraction. It is, for more than one reason, 

worth our while to dwell here upon the interesting history of 

Fresnel’s coefficient. 

The phenomenon of stellar al^erration, discovered by Bradley in 

1728, found its immediate explanation when the assumption was 

made that the light-waves do not share in the earth’s orbital motion, 

*This result was obtained by J. J. Thomson, See Heaviside’s Electromapietic 

Theoiy, Vol. Ill, §471 et seq.^ where some interesting remarks regarding this and 

allied subjects may be found. 
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consequently, in the motion of the tube of the telcsco[)t‘ 

led with air or empty). In fact, making this assumption, the 

tional formula 

(H) 

- = sin 9 tan 9, 
c 

(8a) 

sily obtained by using the widely known analogy of a ship iit 

n pierced by a shot fired from a gun on the sliore. 

rmula (8) gave, from Bradley’s observations (c/)»2o"'44) and 

the known velocity v of the earth’s motion (30 kilom. per .second), 

.le for c, the velocity of propagation of light, which agreed very 

[y with that obtained by RCmer in 1676 from ol)Nervutions of 

clipse of Jupiter’s satellites. 'I’hus (8) was verified. 'Co state 

are facts, it would have been enough to .say .simply that the tube 

3 telescope, or the air contained in it, does not carry with it the 

coming from the star, whatever it may consist in (corpusttles or 

3). But to make the statement more tangible, it lias lieen said 

the ‘corpuscles’ or the ‘aether,’ respectively, do tiot .share in 

elescope’s motion. Whereas aberration wa.s explained l»y its 

verer in terms of the corpuscular theory (each corpuscle {if light 

ponding then most immediately to the .shot in the above 

gy), it was Young who first .showed (1804) how it may be 

ined on the wave-theory of light and on the hypolhe.si.s that thr 

r ‘pervades the substance of all material bodic.s with little or rui 

ance, as freely perhaps as the wind passes through a grove ol 
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tUTS.’* This pirturfst|ut‘ atialt»ny liltfil ultcigrlhcr the case of air, 

which hchuvrs very lU'urly likt- a \acuiiin, hut not glass or water, for 

winch tlu* ‘grove t»f trees' had to he replaeetl by a rather dense 

thic-ket. lUu at any rate the uho\e wurtls of Vtaing hit very near the 

truth. 

'ho pul it hhtnlly, in tlie rase of air the dragging is ////, or nearly 

so, K i o. 

Hut the ease is differctu lor o[>iieally tlen.ser media, having, for 

light of a given frc'{|uenry, an index of refraetion .sensibly different 

frtan unity. For if k were nil iilst* fur sueh metlia, we shoultl have to 

replace e itt (H) hy the smaller veloeity of j»roj«igation e///, so that the 

rmgk* of aherraliou woukl he different for optieally different media, 

whereas it has heett proved exprritneiUally to he just tlu; same as in 

the ea.se tjf air. More gjaicrally, Arago etmeluded from his experi¬ 

ments on the light c»f stars that the earths nujiion has no sensible 
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on of the problem, and which has since become one of the most 

supports of modern inquiry into the optics of moving media, 

appears for the first time his ‘coefficient d’entrainemcnt,’ 

ly mentioned above. Fresnel based the theory of aberraticm, 

ssociated matters, on the following hypothesi.s, which turned out 

a very happy guess indeed : 

Fresnel supposed that the excess, and only the exce.s.s, of the 

her contained in any ponderable body over that in an e(|ual 

ume of free space is ca?‘ried alo?ig with the full velonty, v, of the 

y; while the rest of the aetlier within the .space occupied by llu* 

iy, like the whole of the free aether outside, is stationary,—with 

pect to the fixed stars, of course. 

's amounts * to supposing that the velocity of proi)agation of the 

rvaves is augmented only by the velocity of the ^ centre of 

(centre of mass) of the whole mass of the aether contained 

2 body. This velocity will, generally, be but a fraction of t. 

.t Kv; then k will be what has above been called the dragging 

2ient. Let /Jq be the density of the aether outside the 

and p its density within the body; then, by Fresnel's 

hesis, 
(/> -- p^^)v = p. KV 

K^l- pjp. 

e being the coefficient of elasticity of the aether within the 

and i?o that of the free aether, the body’s refractive index n is 

by 

PqIp 
Fresnel’s aether has throughout the .same eUisticitj-, within 

jrable bodies and interplanetary space, so that e and 

IPq- 
us we obtain Fresnel’s celebrated formula for llu* dragging 
dent; 

(hrsnl) 

ice that considering the exce.ss of the nether, i,e, p p^^ per 

volume, as a permanent part of material bodies, it ran hr miil 

■f that the aether proper is not moved at all, that it is entirely 

; the letter in question, p. 631 of reprint in Vol. H. of (Ktmri umpieff.. 
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uninfluenced by the moving bodies. Fresnel’s theory is therefore 

usually alluded to as the theory of a fixed aether. Implicitly, this 

aether of Fresnel is supposed to be fixed relatively to the stars, or at 

least to those stars Avhich have been concerned in the aberrational 

observations. 

For a vacuum, or air, «== i and k-q. 'I'hus, first of all, Fresnel’s 

theory is in perfect agreement with Bradley’s observations. For 

other media n>\ and o<:k<i, or the dragging is partial, and 

increases with the optical density of the medium. 

By means of his dragging coefficient JYesnel treated fully the 

problem of refraction in a prism, showing that it must be sensibly * ; 

uninfluenced by the earth’s motion, in agreement with Arago’s obser¬ 

vations. This problem, in fact, was the chief object of the letter i 

quoted. 
To close his admirable letter, Fresnel gives an applic^ation of his ^ 

theory to an experiment, suggested previously, in 1766, by Boscovich,t " 

consisting in the observation of the phenomenon of aberration with a 

telescope filled with water,—commcmly ('ailed ‘Airy’s experimemt.’ 

Fresnel infers from his formula for k, by simple and most elegant 

reasoning, that if observations were made witit such a telescope, 

the aberration would be unaffec'ted by the prc.sence of the water. 

'This re.sult was verified, for the first time, by Sir (1. B. Airy in 1873, 

in the observatory of Greenwich. His observations on 7 Draconis, 

during 1871-1872, proved indeed that the presence of water, in place of f 

air, has no sensible, i.e. no first-order (»/c) influence on the aberration. ' 
\ 

* Le, as far as the first power of p/e goes. 

t R. J. Boscovich (or BoSkovic), Ijorn in Ragusa 17 H, died in Milan 1787. 
The principle of the water-telescope was first explained by Boftcovieh in a letter to |i 
Heccaria in 1766, and then fully developed in the second vtduine of his optical 

and aiitrononiical papers, Opera pertineutta ad aptiiwn et astronomiam ; Basani, j 
1785, Vol. Ill, opusculum III. pp. 248-314. An interesting account t)f the work i 
(and life) of Boscovich is given by (». V. Schiaiiarelli in a manuscript, SulP 

atiivitA del fioPkoinc qimk astrommo in Milano, edited recently hy Dr. V. Vari&k 

(Agram, South Slavic Acad, of Sc., 190; 1912). In connexion with the subject 
of our Chap. L, the reader may also he warmly recommended to consult another 
paper of Boscovich, edited hy Dr. Varidak {ibidem, 190 ; 1912): I)e motu ahsohdo, 

an possit a relative distinffni, originally a supplement of^Boscovich to Philosophiae 

reeeniioris a Benedicto Stay versibus traditae, Libri X,; Vol. I. p, 350; Rcmie, i 
1755. This paper, which is missing even in Duhem’s bibliography of the subject | 
{Le monvenient absoht et k mouvement relatif, 1909), contains many remarkably 1 
clear and radical ideas regarding the relativity of space, time and motion. | 

For both of the.se pamphlets I am indebted personally to Dr. Varicak. . 
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hough Fresnel’s own reasoning, reprinted at the end of the 

2nt chapter (Note 4), exhausts the subject entirely, U-t ns yet 

il upon it a moment. 
the aether behaved in optically denser bodies a.s in air, /.r*. if 

e were no dragging at all, we should have, by the ship and shot 

ogy, instead of (8), 
V __ sin 

ejn sin 6^’ 

Deing the velocity of propagation of light in water, or in any other 

lium filling the tube of the telescope, 'riten Airy’s experiment 

Id have given a positive result But he obtained precisely the 

e ^ as for air. I’his negative result suggested to him (at least ns 

3 usually represented in text-books) the sujiposilion that the 

ter carries with it the aether’ with only a certain [tart of it.s 

icity, namely such that, in the above formula, we luive to wrtltf 

istead of v, where 
V = 

;hat 
sin 4> 7) 71 

sin 6^ cju c 

3r air. In reality the process of compensation is not so simple m 

; but in Airy’s experiment the oompcnHation~sensihly complete 

reduced in a slightly different way, Considering a .slab of water 

ing perpendicularly to its axis, and neglecting second order terms 

you will easily obtain * 

smO -C-x) . O) 

re, being the relative velocity of the aetluir and telt'seope, 

ijv has been written for the dragging coefficient, as yt't suppoHcd 

e unknown. Hence, to account for Airy’.s negative result, i>. to 

e (9) identical with (8), we have to write (i »• i, ur 

Fresnel’s formula. 

ee, if necessary, for instance N. R. CampUell’# J/m/ftn 7'kt0>y, 
iridge, 1907; pp, 293-294 (but interdiangf the dashes tu /’, i\ t), (# jn hi® 

e 28, which are placed tlie wrong way ; correct also same tiadsei on p. 
ead at the bottom of tlie page ‘ presence ’ instead of ‘ preswjrr.’ A% regard* 
u’s experiment, amend the aiiockinganaclironism m p, 295 ; * hheaw tried ' 
—‘to test the correctness of Airy’s hypothesis’—iKyi). 
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Thus, Airy’s negative result is perfectly accounted for by Fresnel’s 

dragging coefficient, terms of the order of being, of course, 

beyond the possibility of observation. 

But Fresnel’s formula found also, twenty years earlier, an im¬ 

mediate verification in Fizeau’s optical interference-experiment with 
flowing water.* The arrangement of the apparatus which was used 

by Fizeau is seen at a glance from Fig. 5. Light from a narrow slit, 

.S', after reflection from a plane parallel plate of glass, A A, is rendered 

parallel by a lens L and separated into two pencils by apertures in a 

screen EE placed in front of the tubes Y’j, containing running 

water. The two pencils, after having traversed (towards the left 

hand) the respective columns of water, are focussed, by the lens 

upon a plane mirror Z, which interchanges their paths: the upper 

pencil returns towards L by the tube the lower by T^. On 

Fu;. 5. 

emerging finally from the water, both pencils are brought, by Z, to a 

focus behind the plate AA, at S' (and partly also at S). Flere a 

system of interference fringes is produced which can be observed 

and measured in the usual way. Thus, each pencil traverses both 

tubes, Zj and Zg, i.e. the same thickness of flowing water, say /. 

Moreover, the (originally) upper pencil is travelling always with, the 

other against the current. If, therefore, v be the velocity of the 

water and k the dragging coefficient, the difference in light-time for 

the two pencils will be given by 

' ---'--.I 

\cl?i - Kv ejn + Kvj 

where n is the refractive index of . water. Passing from stationary to 

flowing water, Fizeau observed a measurable displacement of the 

interference fringes, namely with v^^oo cm./sec.; and by reversing 

*H. Fizeau, Comples rendus, Vol. XXXIII., 1851; Annaks ds Chitnie, 
Vol. LVIL, 1859. 
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the direction of the current of water the displacement of the fringes 

could be doubled. From the observed displacement it is easy to 

find the difference of times A, and by equating it to the above 

expression of A to find the dragging coefficient k in terms of /, 

which can be measured. The result of Fizeau’s experiment was that 

K is a fraction, sensibly less than unity. How much less, could not 

be ascertained Avith sufficient precision. Fizeau’s experiment was 

therefore repeated in a form modified in several important points by 

Michelson and Morley* (1886), who found, for AA^ater (moving Avith 

the velocity of 800 cm. per second) at 18“ C., and for sodium light, 

K = 0-434 ±0-02, (MM) 

z.e. ‘Avith a possible error of ±0-02.’ 

Now, n being, in the case in que.stion, equal to 1-3335, Fresnel’s 

formula gives 

K = i-^2 = °'438, (Frsnl) 

a value agreeing very closely with Michelson and Morley’s experi- 

' mental result. 

Thus, Fresnel’s formula, deduced from Avhat in our days may be 

deemed an assumption of naive simplicity, proved to be in admirable 

conformity with experiment, like everything predicted by Fresnel in 

optics. His dragging coefficient has acquired a special importance 

in recent times, and every modern theory is proud to furnish his k, 

which has become, in fact, one of the first requirements demanded 

from every theory of electrodynamics and optics of moving bodies 

which is being proposed. ‘Agreeing with Fresnel’ has become 

almost a synonym of ‘agreeing with experience.’ 

Now MaxAvell’s and Hertz-Heaviside’s equations for moving media, 

(Mx) and (HH), giving, as we have just seen, k=J and k= 1, or half 

and full drag, respectively, for any medium, be it as dense as water 

or glass or as rare as air, proved thereby to be in full disagreement 

with Fresnel, i.e, with experiment. 

The first successful attempts to smooth out this discordance of 

(Mx) and (HH) from experiment, Avhich—as has been mentioned— 

manifested itself also in the case of electromagnetic experiments 

properly so called, were made by H. A. Lorentz in 1892. The 

* Michelson and Morley, American Journ. of Science, Vol. XXXI. p. 377 ; 18S6. 
See also A. A. Michelson’s popular book, Light Waves and their Uses ; Chicago 

1907; P- ISS- 
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theory proposed in a paper published in that year,* and which led 

with sufficient approximatioh to hTesnel’s dragging coefficient, was 

then simplified and extended in 1895, in a paper f which has since 

become classical. 

Stokes’ moving aether (1845) L'i-ihing to serious difficulties,! 

Lorentx decided in favour of Fresnel’s immovable, stationary aether, 

as the all-pervading electromagnetic medium. 

Thus, Lorentz’s theory, presently known widely as the Electron 

Theory, is, first of all, based on the assumption of a stationary, 

isotropic and homogeneous aether. In calling it shortly ‘ stationary ’ 

(ruhef/d), Lorentz states expressly that to speak of tlie aether’s 

‘ absolute rest ’ would be pure nonsense, and that what he means is 

only that the several parts of the aether do not move relatively to one 

another (iJi'.fry', p. 4). In other words, J.,orent/,’s aether is not 

deformed, it is subjected to no strain, and does not, consequently, 

execute any mechanical oscillations. And this being the case, it has, 

of course, no kind of elasticity, nor inertia or density. It is thus far 

less corporeal than Fresnel’.s Jiether. One fails to sec what properties, 

in fact, it still has left to it, be.sides that of being a colourle.ss seat 

(we cannot even say substratum) of tile electromagnetic vectors E, M. 
And although Lorentz himself continues to tell us, in 1909,!^ that he 

‘ cExnnot but regtird the ether as endowed with a c'ertain degi-ee of 

substantiality,’ yet, for the use he ever made of the aether, lie might 

as well have called it an empty theatre of E, M, and their jierform- 

ances, or a purely geometrical system of reference, stationary with 

regard to the (or at least to some) ‘ fixed ’ stars. 'I'liis aether, having 

been deprived of many of its jirecious projierties, was at any rate 

already so nearly non-subslantial, that the first blow it had to sustain 

from modem research knocked it out of exi.stence altogether,-—-as will 

be seen later. Still, substantial or not, for the theory of I.,orentz we 

are now considering, it is somethhig, namely its unique system of 

reference. So long, therefore, as it was thouglit that there is .such an 

■’‘II. A. Lorentz, La thiorie ikclmnagn^tique tie Maxtmll et son application 

aux corps moiwnnls', Leiden, K. J. Brill, 1892 (also in Arch, niorly Vol. XXV.). 

t II. A. Lorenlz, Versttch einer 7'heorie der elecirischen nnd opHschm Mrschdn- 

un^ondn bewegten A'Urpcr/i; Leiden, E. J. Brill, 1895. This paper will be 
shortly referred to as * £ssaji’ (= Versuch). 

J See Note 0 at the end of this chapter. 

§ Lorentz, The Theory oj Electrons, etc., Ix*cturc.s delivered in Columbia 
University, 1906; Leipzig, Teubner, 1909; p. 230. 
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lue system, Lorentz’s all-pervading mctliuin could continik* its 

ity existence. 
dr this free aether, i.e. where it is not contaniinutcd by the* 

ience of ponderable matter, Lorentz as.siime.s tlic exact validity «»i 

xweirs equations, (4), i.e, 

^-z-.curlM; ™c. curl E ; divM -o, 
0/ IV 

\ p = divE = o. (As to terminology, Lorentz calls the ahtjve E 

dielectric displacement, and M the magnetic fonr.) 

Ten, to account for the optical and, more generally, electro - 

jnetic phenomena in moving ponderable mattc'r, he has recourse 

deciro-atomism, an hypothesis already employed (i882-1KK8) by 

se, Schuster, Arrhenius, Elster and (Jc'itel, and tJthers, and later 

) by Helmholtz (1893) himous tslectromagnetie thecuy «»f 

Dersion, and in various writings of Sir Joseph Uirnior. Aeeortling 

Lorentz, matter ly itself has no influence whatever on the 

:tromagnetic phenomena; *in thi.s resi)ect it behaves like the free 

ler. Only when and as far as matter is the seat of ‘sons,* in 

•entz’s, or electrons in modern terminology,* it nuidifies the 

:tromagnetic field and it.s variations. In other words, Maxwell’s 

lations, (4), arc assumed to be strictly valid not only in tht; free 

her, but also in all those portion.s of pondi-rnble tiudecules in 

ch there is no charge, i.e. wherever p - o, And a.s to tfte tpieslitm 

2ther ponderable matter consists entirely tjf electrical [wirticlcs 

arges) or not, Lorentz leaves it an C}j)en (juestion. If I may 

iture an opinion, it was very wise of hitti not to have hiul 

Abraham’s ambition to construct a purely eU'ctromagtietic 

eltbild,’ as the Hermans call it. ('I'his remark will be uncler 

od better later on, when we shall see that, as far as vve know, 

n the mass of the free clectroms, su(*h as the kiilluide ray» or 

)articles, may not be of purely clcctromagnetit' origin.) 'bhe jwrt 

yed in Lorentz’s theory by matter itself eonsi.st.s ordy in keeping 

electrons, or at least some of them, at or rtnmd eerliiin pliers, 

, restraining them from too wide excursions. Maxwell's etjuiititms, 

written above for the free aether, are modified only where 

div E ■ /■} rjfe o, 
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i.e. where there is, at the time being, some electric charge or 

electricity, and where, moreover, the electricity is moving.* The 

‘ modification is the slightest imaginable,’ to put it in Lorentz’s own 

words {Electro7i Theory^ p. 12). If p be the velocity of electricity 

at a point, relatively to the aether, i.e. relatively to that system of 

reference, S., in which the free-aether equation.s (4) are valid, then 

the left-hand member of the first of these equations, or the displace¬ 

ment ciirrent, is supplemented by the convection cwir^it^ per unit 

area, i.e. by pp, while the second and third equations remain 

unchanged. 

Thus, Lorentz’s differential equations, assumed to be valid exactly 

or microscopically\ throughout the whole space, are 

?)t 
-j-/)p=r. curlM, where p — diwE 

dm 
dt 

- c. curl E; divM = o. 

(!•) 

These have been since generally called tiie fundamental equations of 

the electron theory. They contain, of cour.se, the equations for the 

free aether as a particular case, namely for p = o. 

An important supplement to the above system of equations con¬ 

sists in the formula for the ponderomotive force ‘ acting on the electrons 

and producing or modifying their motion,’ which, guided by obvious 

analogies, Lorentz assumes to be, per unit volume, 

P = p[E + ~VpM], (n.) 

or, per unit charge, 

E' = E-f~VpM. (10) 

This ‘force’ is supposed to be exerted by the aether on electrons 

or matter containing electrons. Vice versa, as Lorentz states it 

expressly, matter, whether containing electrons or not, exerts no 

action at all on the aether,—since the aether has already been 

supposed to undergo no deformations, etc. Of course, Lorentz’s 

aether is massless as well. Lorentz tells us, with emphasis, not to 

*This, of course, implies the possihiluy of our following an individual portion 
or element of charge in its motion,—a subtle point (duo to circuital indeterminate¬ 
ness, etc.), which, however, need not detain us here. 

fTo be contrasted afterwards with his macroscopic (or average) equaLion.s. 
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f in even the notion of a ‘force on tlic aether.’ It is true—he 

—that this is against Newton’s third law (actumreaetitm), 

, as far as I see, nothing comi)cls us to elevate that pro[Uwition 

fundamental law of unlimited validity’ (.A.wrn', p. 2H). 

at there is no need to keei) in mind all these, and siniilar, re- 

:s and verbal explanations,—csi)ec'ially as the absetiee of force 

re free aether is seen from (u.) at a glance, by puttittg /> o. 

It is perfectly sufficient to state that the basis of Lorcnl/’s 

eory is entirely contained in the above {mHroscof>imi(v valid) 

[uations (i.), (n),* all otlier things being obtained from these 

[uations by more or less pure deduction, wilhcml new hypo- 

eses.f 

otice, in passing, that (1.) is not a compleli; system in the senst? 

ie word explained in (lhap. I. For to traett llu! electromagnetic 

)ry, not only Eq, Mq for /<=o and for the whole space, but also (> 

p for all values of / must be given. In (i.) we have, essentiiilly, two 

or equations of the first order for three ver'lors E, M, p, atul the 

lula (ii.) docs not complete the system, since, on further research, 

les not lead to an cciuation of the ff)rm I'p/iV 12(E, M, p),,’ but 

le most favourable ease to an integral ecjualion extending twer 

rtain interval of time, generally finitt', but .sometimes indermilely 

mged. But this ‘incompleteness’ i.s no dNadvantage in (t.), 

especially for the purpose of macro.seopio trealmenl, in which 

isted Lorentz’s main object of c.onstnuaing these ecjuaiious. 

re equations as.scmljled in (l), which, together with the fornmla 

he ponderomotive forego, have Ijeen received into the <lomnin 

odern Relativity, as will he .seen later, can he cusily eoiulensnl 

a single quatcrnionic erpiation. First of all, put 

(t,| 
re and call it the eiectaromaimetie Wvectoie. Alwi write, 
onvenience, 

l^kCt. 

hese are also the cqualionH of who hlarted fr.mi thr .4 « 

rigid aether and deduced the etjualions in ijuf^lion friinj thr uririrndr »«f 
iclion. (Aether and Jl/atter, (lainhridge, 1900,} 

11 he comes to Michclson and Morlcy's fainous interfrrenre rHjK'rintrni. 

being some space-operator find E, M, p tlie iiihtiinlitncou*, v»ih»rn ut ihp 
vectors or vector-fields. 



C=p(^t + ipj, (14.) 

which we may call the ourrent-ciuaternioii. Then the last equation 

becomes 
i)B=C. (i. « 

Thus, the four vectorial equations in (i.) coalesce into a singl* 

quaternionic equation (1. a), whose form will be most convenient fo 

relativistic electromagnetism. It is scarcely necessary to say tha 

what we have done here has nothing to do with Relativity. We at 

not as yet so far. (i. a) is simply a formal condensation of th 

fundamental electronic equations (i.). 

What we are mainly concerned with in the present chapter 

the macroscopic or average result of these equations and of the for< 

formula (ii.). But before passing to consider Lorentz’s macroscop 

equations, it will be good to dwell here a little upon the exact 
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microscopic formulae (i.), (n.), and some of their immediate and 
most important consequences. 

First, as regards the conservatwi of energy^ multiply the first of (r.) 

by E and the third by M, both times scalarly. Then, remembering 
that, by (ii.), p(Ep) = (Pp), and, by vector algebra, 

(E curl M) - (M curl E) = - div VEM, 

the result will be 

II = (Pp) + div fj. 
(15) 

where U = (16) 

and = cVEM. 
(17) 

Now, (pp) is the activity of the ponderomotive force or the 

work done ‘by the ether on the electrons’ per unit time, and unit 

volume. Thus, by (15), the principle of conservation of energy will 

be satisfied for every portion of space, however small, if is inter¬ 

preted as the density, and at the same time ^ as the flux, of electro¬ 

magnetic energy. The possibility of adding to any vector of purely 

solenoidal distributiori need not detain us here. ^ is widely knowm 

as the Poynting vector, in commemoration of the fact that this 

vector and the corresponding conception of the flow of energy were 

first formulated by Poynting (1884). Thus we see that the density 

and the flux of electromagnetic energy, given by (16) and (17), are 

in Lorentz’s theory precisely as in Maxwell’s and Hertz-Heaviside’s 

theory. 
Next, as regards the p07ideromotive fo7-ce P, in comparison with 

that of Maxwell as expressed by his electromagnetic stress, use the 

first and third of the fundamental equations (i.); then (ii.) will 

become 
T T 31VE 

P = pE-VEcurlE-VMcurlM-iv-M-^VE^, 

or, introducing the Poynting vector, 

P = pE-VEcurlE-VMcurlM-i^. (18) 

This is the expression of Lorentz’s force, equivalent, in virtue 

of (i.), to the original expression (ii.). Now, MaxwelPs fo7idero- 

motive force, per unit volume, is given by 

Pm, =/)E - VE curl E-VM curl M. (19) 
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This is the resultant of Maxtvell's tvell-knotvn eteotromasnetio Btresa 

f„.,m-E(En)-M;(Mn). (»°) 

p,, „-idivfi-idivfa-kdivf,, (“t) 
t,e, * 

* . tiTT'fi on SI surface element whose 
hein, *0 1- ™ - ,3 f. for 

w: I not stop here to show the ecini- 

“T r tirand Oi) for we shall have an opportunity to do so 

later, What concerns ns here « ^ j ,,, 
Maxwell’s ponderomotive fortt. lion i t / 

the former is ^ 
!P»3Phu’"pi 'j3/‘ 

MI 1V« fnree on the//W (i9) _and 

th" (..I: tJlti “in fhi»-- 

p_*iVEM + -”VEM:, 
o'* £ 

for p 5= 0. (^9o) 

L, i„ a variahlc 

::rffri'i has 

Heaviside, suggested^ to Helmholu ^ ^ free aether.t 
namely an investigation of t le poss o • aether is always mV, 

On the other band, ^ been akeady 
according to his fundamenta ^ aether, 
.marked hn Lr to he imnrovable- 

rc:r To““)"e Maxwellian force on the aether is just co.- 
ivccorumb \ ^7^%% rdf In using the 
pensated by Lorente’s supplementary term -^ »/ • 

• \ T /•iprmi'ir f'nn‘?iders it, of course, fta Maxwellian stress fn in bis theory, Lortnt^ • 

a system of ‘merely fictitious tens.ons (cf. &say P 9; 

■»• I'retratc proper l.eing couiicecl pwnvc, Mer "die Sewiiutigm 
tn. V. Uelmliota,/•i/irrawn «-« -Varw" ml. p. I3S. 

d.lni„m Atthen, llerl. Siul«.. J»ly 5. >»93 ■ " 

j8M. 



49 PONDEROMOTIVE FORCE 

faxwell’s theory the ponderomotive actions observed in clectrit. and 

lagnetic fields were physically accounted for by the tensions and 

ressures of the aether. But Lorentz, in order to be consistent, 

k^oids considering the ‘aether tensions’ as something physical, situtc 

lese would mean forces exerted by the different parts of the author 

Q one another. Thus, the Maxwellian stress is to him but a ctMi- 

mient instrument for calculation. ^ 
Returning to the general case, IjOrcntz’.s pondcromo^'o 

)rce (n.) may be written, by (22) and (21), 

P=-idivfj-jdivfg-kdivfg”J ^C?3) 
? . ^ i / ' 

; thus consists of two parts, the first of which is dedUcible Trot^-iho 

[axwellian stress, while the second, foreign to MaKwell^Uhcory, is 

ven by the negative time-rate of local change of tfiC vecU>r'It 

this second term which always compensates tho MaxwclHan action 

11 the pure aether. ^ 

Finally, to obtain Lorentz’s 7-csulkmt force 

1 the whole system of electrons (r being any vttlume ('oiUamtng all 

le electrons), use the expression (23), and ob.serve that 

J div fi dr = ^(nfi)dcr, r, 2, 3, 

here n is the outward unit normal of the surface <r cnclo.sing the 

gion T, Also remember that 

i(fin)-f-j(fgn) -f-k{f8n) - f„, (24) 

nice the Maxwellian stress is irrotational or self-conjugate, Thun 
e result will be 

= (35) 

being supposed fixed in the aether, Le, relatively to the frarnewtirk 

in which the fundamental equations are to be valid, ioirmuia (25) 

ites simply the same thing for the whole .sy.stcm, contained in r, 

ich is expressed by (23) for each of its elements. Of <*our,He, in 

-ssrng from (23) to (25), the continuity of the vector f„ (or at least 

its components normal to .surfaces of discontinuity, if there he luiv) 
S.R. I, 
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has been tacitly assumed throughout t.* The last formula, again, 

may be written: 

which needs no further explanation. Now, as the mathematicians 

say, let a- expand to infinity, or at least so that, i?, M decreasing in 

the usual way as i/r^. the surface integral may vanish. Then 

while 

1 II (26) 

where the vector Q- is defined by 

(27) 

and is called the electromagnetio momentiun. 

Thus Maxwell’s resultant force is strictly nil, satisfying Newton’s 

third law {actio est par reactioni), Avhile Lorentz’s resultant force is 

generally different from zero, against the third law,—a result which 

has been already stated in a slightly different form. Thus Maxwell’s 

theory, admitting an action on the pure aether, did, while Lorentz’s 

theory, denying it, does not satisfy Newton’s third law. But, as was 

observed by Lorentz himself, there is nothing to compel us to 

universalize that law of Newtonian mechanics. At first, Poincare 

tried to use this as an argument against Lorentz’s theory; f but he 

soon gave it up. This was to be only one of a whole series of 

sacrifices, and not the greatest one, made by modern physicists. 

Similarly, the resultant moment of the ponderomotive forces, 

i2 = jvrP^T, (28) 

where r is the vector drawn to any point of the field from a point O 

fixed in the aether, or fixed relatively to S, may be easily put into the 
form 

*The treatment of possible exceptions to this assumption, as electromagnetic 
surfaces of discontinuity or waves properly so called [which e.vceptions seem to be 
overlooked by the leading electronists, who claim for (25) general validity], need 
not detain us here. 

tH. Poincar^, yi7rk. Nierland., Vol. V.; 1900. 
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Thus, for the whole space, and with the usual assumption as to the 

behaviour of E, M at infinity, 

and 

where 

- 

dt' 
(29) 

is called the electromagnetic moment of momentum. Its analogy to 

the ordinary, mechanical, moment of momentum 

2wzVrv 

is obvious. So is also the analogy of the above 0- with the ordinary 

momentum 
'Lmv 

and the corresponding interpretation of (26) and (29). Both G and 

H are so constructed as if the aether contained (electromagnetic) 

momentum in each of its elements amounting to 

g = (30) 

per unit volume. 

So much as regards the chief consequences of the fundamental 

formulae (i.) and (ii.). 

Now for Lorente’s macroscopic equations. These are obtained 

from (i.), (11.) by averaging over ‘ physically infinitesimal ’ regions of 

space. Lorentz calls a length I ‘physically infinitesimal’ (in dis¬ 

tinction from what is called ‘ mathematically infinitesimal ’) if the 

values of any observable magnitude obtaining in two points distant I 

from one another are sensibly equal to, i.e. indiscernible from, one 

another. Molecular, and, a fortion^ electronic, dimensions and 

mutual distances of molecules constituting a ponderable medium, are 

assumed to be small fractions of /. Let p be any magnitude, scalar 

or vectorial. Round a point E draw a sphere of physically infinitesimal 

radius ; let t be the volume of this sphere. Then 

i J pdr 

is called the ‘ mean value of xp at E,’ and is denoted by p. If p be 

any of the magnitudes involved in the fundamental (microscopic) 
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equations, as for instance p or M, then V' is what is macroscopically 

observable. 

We cannot reproduce here the details of the process of averaging 

based upon the above fundamental notion,* but shall simply write 

down the resulting macroscopic equations, limiting ourselves to the 

case of a perfectly transparent ip.e. non-conducting), non-magnetic 

ponderable medium, and leaving out of account dispersion. We 

must, however, explain first the meaning of the symbols involved in 

these equations. 

Assuming that the molecules of the ponderable medium or body 

contain electrons,! to which belong certain positions of equilibrium 

within the individual molecules, Lorentz supposes their displacements 

from these positions, q, and their velocities relative to the cor¬ 

responding molecule, 

<i = d(ijdt, 

to be infinitesimal. In other words, he neglects the squares and 

products of q, q, or any of their components in presence of their 

first powers. Notice that the only part played by the molecules of 

ponderable matter consists here in restraining the electrons, i.e. in 

keeping them near certain positions. For, as has already been 

remarked, one of Lorentz’s fundamental assumptions is, that matter 

by itself, apart from electricity, behaves like the free aether, its 

presence having no influence whatever upon the electromagnetic 

field. 

Let e be the charge of an electron which has experienced 

the displacement q, as explained above. Then Lorentz brings 

in the notion of electrical moment, not unfamiliar to older 

theories, defining this vector to be, per unit volume, the average 

of (?q, i.e. 

iq. 

Taking the sum of this and of the average of our above E, Lorentz 

introduces the macroscopic vector 

@ = E-f-^ (31) 

*See Sections II. and IV. of Lorentz's Essay, or his article in Encykl. d, 

math. Wtss., Vol. V^, pp. 200 ei seg.\ Leipzig, 1904. 

tViz. ‘polarization-electrons,’ and leaving out of account circling or ‘mag¬ 
netization-’ and free or ‘ conduction-electron;?.’ 
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which he calls the dielectric polarizatio7i* Thus, in the free aether 

QB reduces to E, and generally ® is what Maxwell called the 

dielectric displacement. 

Next, the macroscopic mag?ietic force is defined to be the average 

of our above M, i.e. M, instead of which, however, we shall write 

shortly M. 

Finally, the macroscopic electric force is introduced, being defined 

as the average of E', i.e. of the ponderomotive force per unit charge, 

as given by the formula (lo). Instead of E' we shall, again, write 

more conveniently E'. Thus Lorentz’s macroscopic electric force 

will be 

E' = E + iVpM. (32) 

Notice that here p means the resultant velocity of an electron, i.e. 

the vector sum of its velocity relatively to the molecule in question 

and of the velocity of the ponderable body as a whole, say v, 

‘relatively to the aether,’ so that p = (i + v. 

With these meanings of the symbols, Lorentz’s macroscopic 

equations for a transparent, non-magnetic, ponderable body, movmg 

with constafitf velocity v ‘through the stagnant aether,’ i.e. relatively 

to the framework S, are as follows {Essay, p. 76): 

m 
'dt ' 

"dm. 

"dt 

■■ c. curl M'; div ® = o 

— - c. curl E'; div M = o 

M' = M- VvE' 

A”E' = (!B + -VvM. 
c 

(33) 

Here the system of coordinates involved in div and curl, is rigidly 

attached to the ponderable body, thus sharing in its motion through 

the aether. But the time t is the same as in the fundamental 

equations (i.); obviously, therefore, 3/3/ is the time rate of change 

(for constant values of those coordinates, i.ei) at a fixed point of the 

body, not of the aether or of 6'. 

*The above (& is Lorentz’s 5*. 

i' Constant in space and time, that is to say for a body having a uniform purely 
translational, rectilinear motion. 
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The second of (33) is an obvious expression of the (assumed) 

absence of macroscopic charge, i.e. of p = o. In the more general 

case of a sensibly charged body we should have div ^ — where p is 

the observable density. As to X, appearing in the last of (33), it is a 

linear vector operator in crystalline, and a simple scalar coefficient in 

isotropic bodies, known as the ‘ dielectric constant ’ or permittivity, 

and depending in a complicated way on the distributional properties 

of the electrons. The numerical value of K in an isotropic, and its 

principal values, K^, K^, in a crystalline body, are not constant, 

of course, but vary with the period T of the incident light- or, 

generally, electromagnetic oscillations. However, to avoid unneces¬ 

sary complication, we may think here of the simple case of homo¬ 

geneous light, of a particular kind (colour). Then K, or K^, K^, K^, 

are constants, whose numerical values are to be considered as 

deduced from the observable refractive properties of the body with 

regard to light of that particular kind. In case of isotropy we have 

to write K=rP, if n be the corresponding index of refraction.* 

Notice that (33) contains, besides the solenoidal conditions for 

and M, four vector equations for as many vectors, 

M, E', M', 

the velocity of motion v being given. And since the differential 

equations are of the first order with regard to t, the electromagnetic 

history of the whole medium is determined by its initial state, say, by 

Mq given for t—o. 

It must be kept in mind that, to obtain the system of equa¬ 

tions (33) from the fundamental ones, Lorentz has consciously 

neglected not only various small terms concerning the minute 

influence of electrons, but also all terms of second order in (B, or, to 

put it shortly, all (B^-terms, where 

This is especially true of the fifth of (33), which has been obtained 

from the more exact formula M' = M - VvE/r by writing E' instead 

of E, and thus [cf. (32)] omitting VvVpM/d4, which is a (B^-texm. 

*As to dispersion, which need not detain us here, it can be accounted for in the 
well-known way by attributing to the body (or to its molecules) one or more 
internal, ‘natural periods,’ and, to introduce these, plenty of opportunities are 
offered hy the hypothesis of the electronic structure of molecules and atoms. 



coefficient, k= r --i- This, in fact, is a consequence of (33), when 

/3‘^-terms are neglected and when dispersion is not taken into account. 

For a dispersive medium that value of the index of refraction is to be 

taken which corresponds to the ‘ relative ’ period of oscillation, T',— 

a concept to be explained further on. This gives a slight correction 

term,—?i~^T'dnj'dT(JSssa)\ p. loi), where n is the refractive index of 

the medium corresponding to the ‘absolute’ period T, i.e. the 

period of the oscillations emitted by the source, say, in Fizeau’s 

experiment. Thus, Lorentz’s formula is 

ir — 
n Br’ 

(Lor) 

For water, at r8° C., and for sodium light, this becomes 

k = o-45i, (Lor) 

whereas Fresnel’s value, and that obtained experimentally by 

Michelson and Morley, have been 0-438 and 0-434 ±0-02 respec¬ 

tively. Thus Lorentz’s dragging coefficient agrees with the experi¬ 

mental value (MM) quite as well as Fresnel’s, especially if the 

‘possible error of ±0-02’ be taken into account. In a word, 

Lorentz's equations git’e the right value of the dragging coefficient. And, 

from what has been said previously, it can be argued that these 

equations will also give correct results for all first order phenomena. 

Next, putting v = o, we see at once that (33) become 

= c. curl M j div ® = o 
ot 

= - r. curl E ; div M = o 
ot 

®=ArE 

that is to say, identical with Maxwell's equatio?ts, for a statio?i- 

ary (non-magnetic) ?nedium, (i), p. 24. Taking account of 

Proceeding, omtatis mutandis, similarly as in Note 3, concerning (liH). 

Another, more simple, method of obtaining the dragging coefficient is to apply 

Lorentz’s ‘ theorem of corresponding states,’ to be considered later. 
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magnetization-electrons, we would have, in the second and third 

equation, JE instead of M, where JE = /-tM, /x being the permeability. 

This is a very satisfactory result, for, as already mentioned. Maxwell’s 

equations for stationary media, agreeing fully with experiment, have 

been able to stand even the severe criticism of the modern relativists, 

who have adopted them without the slightest modification whatever. 

‘ Stationary ’ means, of course, in Lorentz’s theory, fixed relatively 

to the aether. 

In order to exhibit the properties of his equations, (33), in the 

general case of any constant v, i.e. for a material medium having any 

uniform motion of rectilinear translation relative to the aether, 

Lorentz transforms these equations by introducing instead of the 

time t a new variable of very remarkable properties. This, the so- 

called ‘local time,’ which was to become one of the most immediate 

forerunners of Einstein’s relativistic theory, deserves a rather more 

extended treatment. It will occupy our attention in the next 

chapter. 

NOTES TO CHAPTER II. 

Note 1 (to page 28). Let or be a surface of electromagnetic discon¬ 
tinuity of first order, for example ; that is to say, the vectors E, M being 
themselves continuous across cr, let their space- and time-derivatives of 
first order be different in absolute value and direction on the two sides 
of the surface. Call one of its sides i, and the other 2 ; draw the normal 
unit vector n from i towards 2, and denote by [a] the jump of any magni¬ 
tude a, i.e. the difference a^ —Uj. Then the so-called identical conditions, 

to be fulfilled in any case, are 

[div E]=(ne); [curl E]=Vne ; {a) 

and the Mnematical condition of compatibility, valid under the supposition 
that the surface is neither being split into two or more nor dissolved, is 

e being the same vector as in {a), characterizing the electrical discon¬ 
tinuity, and to (an independent scalar) the velocity of propagation of cr, 
counted positively along n. Both e and to remain so far indeterminate, 
in numerical value and direction. Similarly, for the magnetic discontinuity, 

[div M] = (nm), [curlM]=Vnin, (c?,) 

raM' 
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m being a new vector and b the same scalar as above, since the electric 
and magnetic discontinuities are supposed not to part from one another. 
(For the deduction of the above conditions see J. Hadamard’s Legons sur 
lapr&pagation des ondes et les iquations de Vhydrodynamiqicc^ Paris, 1903, 
or, in vectorized form, my book on Vectorial Mechanics^ London, Mac¬ 
millan & Co., 1913 ; also Annalen der Fhysik, Vol. XXVI., 1908, p. 751 
and Vol. XXIX., 1909, p. 523.) 

If e, m are normal to or, we have a longitudinal, and if tangential, a 
transversal discontinuity. 

So far everything has been independent of any electromagnetic con¬ 
nections. Now use Maxwell’s equations (4), with (41); since they are 
valid on both sides of cr, we have also 

[^] = ^[curlM], etc.. 

and, using {a), {b) with their magnetic analogues. 

-e = Vmn; -ni=A^ne 
c c 

(mn)=o; (en)=o. 
(D 

Notice that if b does not vanish, i.e. if there is propagation at all, the 
second pair of equations becomes superfluous, since it then follows 
identically from the first pair. Now, eliminating m from the first pair 
of {c\ we have 

^ e=Vn Ven=e - n (en). 

n being a tinit vector. But (en)=o ; hence 

and similarly 

— e=e. 

m=m. 

Thus, if e, m do not vanish, i.e. if there is at all a discontinuity, 

b=±c; (d) 

that is to say, each element dor of the wave is propagated normally to 
itself with the velocity c. Q.E.D. 

Notice that the sign of h, left undetermined in {d\ due to the quadratic 
result of elimination, may be defined uniquely by means of the original 
pair of equations {c\ which are linear in b. In fact, multiply the first 
scalarly by e (or the second by m), then 

h=j (e Vmn)=.y (nVem), 

where j' is a positive scalar, namely cje^. Thus, if n, e, m is a right- 
handed system, like the usual i, j, k then b is positive, i.e. the sense of 
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propagation is that of n, and if n, e, m is left-handed, then the propaga¬ 

tion is along — n. Thus, the sense of propagation coincides always 

with that of the vector 
Vem. 

If e points upwards and m to the right, then the wave is propagated 

forwards. Notice the similarity with the sense of the flux of energy, or 

the Poynting vector, in relation to E, M, 

|1=^VEM. 

Finally, notice, in passing, that by the first pair of (c), 

similarly to the known characteristic, = of the usual ‘pure’ waves. 

The above results may easily be extended to waves of discontinuity of 

any order. 

Note 2 (to page 30). Take as a surface element the parallelogram 

constructed on two coinitial line elements a, b, composed always of the 

same particles, so that, n being its positive normal, 

n^/(r=Vab. 

Write, generally, R for <2 or Then the induction through ckr will 

be given by the volume of the parallelepiped R, a, b, i.e. 

(Rn)fl’a-=(RVab). 

The current through dor, say (pn)^for, being the rate of change of this 

induction, is 

(pn)flb-=(Rn)fl’a-f(RVab)-i-(RVab), {a) 

where the dots stand for individual variation. Thus 

and [Veclorial Mechanics, Chap. V., formula (75)] 

a= —=(aV)v,* b=(bV)v. 

Now, i, j, k being the usual right-handed system of mutually normal 
unit vectors, take a rectangular dor, say 

a=j<^, lo=Tiid2, 

n=i, dcr=djy.d2. 

■ ^ ^ ^ ^ 

i 

and, consequently, 

Then 
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so that the sum of the last two terms in (a) will be 

(Ev|k)rfaH-(EVjg)rf., 

or, per unit area, 

(1-+^’)' 

hence, substituting (d) in the first term of (a) and remembering that 

(pn)=(pi)=/i, (Rn)=i?i, 

=^+(vV)i?i+div V - , 

with similar expressions for Ps T t)e taken normal to j or k respec¬ 
tively. Thus the resultant current will be 

or 

p = current (R)=+ (vV) R - (RV) v -1- R di v v, 

3R 
p=current(R)=-f v div R -f curl VRv, (c) 

which is the required formula. 

In the simplest case, considered on p. 33, in which the material medium 

moves as a whole with purely translational velocity v='z/i, we have to 

take only the first term of (a), so that in this case 

® dt 'bt 
-|-(vV)R=|~-i-^/ 

Ar" (^'1) 

Note 3 (to page 34). Take E, etc., proportional to an exponential function 

of the argument 

where g- is an imaginary constant, as usual. Then 

and, consequently, curl=VV=^Vi. Introducing this in the equations 
(Mx), remembering that v=='z/i and omitting the common factor g, we 

obtain at once 

--®=ViM, 
c ’ 
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but divJR=o gives''m’the present case (JEi)=o. Thus 

h(£=fVMi, 

arid, the. medium being isotropic, 

(h-z/)M = ^ViE, 

hE = ^VMi. 
A 

Eliminate E, remembering that (Mi)=o ; then the result will be 

h(h-'z/)M = —M = 

where b' would be the velocity of propagation, if the medium were 

stationary in A. Thus 

and, the sense of propagation being that of v, 

b=-^w + \/l3'^+w2/4, 

which is the required formula. 

Note 4 (to page 39). To spare me trouble and to give the reader 
a sample of Fresnel’s charming manner of exposition, I quote here 

simply the closing passages of his letter to Arago {loc. at. pp. 633-636), 

in which he treats in a masterly manner the water-telescope experiment., 

both on the corpuscular and on the undulatory theory of light: 

‘ Je terminerai cette lettre par une application de la meme th6orie k 

I’experience proposde par Boscovich, consistant k observer le phdnomkne 

de I’aberration avec des lunettes remplies d’eau, ou d’un autre fluide 

beaucoup plus rdfringent que Pair, pour s’assurer si la direction dans 

laquelle on apergoit une dtoile peut varier en raison du changement que 

le liquide apporte dans la marche de la lumikre. Je remarquerai d’abord 
qu’il est inutile de compliquer de I’aberration le rdsultat que I’on cherche, 

et qu’on peut aussi bien le determiner en visant un objet terrestre qu’une 

dtoile. Voici, ce me semble, la manikre la plus simple et la plus commode 

de faire I’expdrience.’ 
‘ Ayant fixd k la lunette meme, on plutdt au microscope FBDE [figure 

2 of Fresnel’s letter], le point de mire M, situd dans le prolongement de 

son axe optique C/i, on dirigerait ce systdme perpendiculairement k 

I’dcliptique, et, aprds avoir fait I’observation dans un sens, on le retour- 
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nerait bout pour bout, et I’on ferait roliservation e^^^cpntraire. Si le 

mouvement terrestre deplagait I’image du point M D®vr€ii»Drt au fil de 

I’oculaire, on la verrait de cette manifere Itetot k drm 

du m.’ . ' 
® ‘Dans le systkme d’emission, il est clail*^^^^ I’a^-'^^ i»- 
marque, que le mouvement terrestre ne doit rieft^fe^er^^^pare^^eg ' 

du ph6nomkne. En elfet, il rdsulte de ce mo^^ent raybn 

partant de M doit prendre, pour passer par le centre de I’obj 
direction MA' telle que I’espace AA' soit parcouru par le gl^^^dai* ^ 

meme intervalle de temps que la lumikre emploie k parcoui-^™|5', ou 
MA (k cause de la petitesse de la vitesse de la terre relativemeiw^eUe 

CC'G g 

de la lumikre). Reprdsentant par v la vitesse de la lumikre dans Pair, et 

par t celle de la terre \i.e. our c and v respectively], on a done : 

A A' f 
MA : AA' ::v :t ou 5 

MA V 

e’est le sinus d’incidence. v' dtant la vitesse de la lumikre dans le milieu 

plus dense que contient la lunette \v' is our cjn}, le sinus de Pangle de 

refraction CA'G sera egal k ; on aura done C'G=A'C'-,; d’oii Pon 

tire la proportion 

C'G:A'C' ::r.7/. 

Par consequent le fil C de Poculaire placd dans Paxe optique de la lunette 

arrivera en G en mdme temps que le rayon lumineux qui a passd par le 

centre de PobjectifP 
So far the corpuscular or emission theory. Again : 

‘La theorie des ondulations conduit au meme rdsultat Je suppose, 

pour plus de simplicity, que le microscope est dans le vide, d et d' dtant 

les vitesses de la lumikre dans le vide et dans le milieu que contient la 
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lunette, on trouve pour le sinus de Tangle d’incidence AM A', - , et pour 
td' . . . , 

celui de Tangle de refraction C'AG, Ainsi, mdependamment du 

ddplacement des ondes dans le sens du mouvement terrestre, 

C'G=A'C^-^. 

Mais la vitesse avec laquelle ces ondes sont entramees par la partie 

mobile du milieu dans lequel elles se propagent est dgale a 

t 
d'^ ) 

\^.c. in our notation j done leur dfeplacement total Gg^ pen¬ 

dant le temps qu’elles emploient k traverser la lunette, est dgal k 

A'C Jd^-d'^^ 4'C ,fd^-d'^\ . 
d' V d'^ ) ’ 

C^=A'C 

On a done la proportion C'g: A'C :: td' par consequent I’image du 

point M arrivera en^i/’en meme temps que le fil du micrometre. Ainsi les 

apparences du phenomkne doivent toujours rester les memes quel que soit 

le sens dans lequel on tourne cet instrument. Quoique cette experience 

n’ait point encore dtd faite, je ne doute pas qu’elle ne confirrakt cette con¬ 

sequence, que Ton ddduit dgalement du'systeme de Temission et de celui 

des ondulations.’ 

Note 6 (to page 42). Stokes’ theory of aberration (‘ On the Aberration 

of Light,’ Phil. Mag.., Vol. XXVII., 1845, P- 9) reprinted in Math, and 

Phys. Papers, Vol. 1. p. 134) was based on the assumption that the 

aether surrounding the earth is dragged by this planet in its annual 

motion, in such a way that the velocity of the aether relative to the earth 

is nil near its sttrface, and, increasing gradually, becomes equal and 

opposite to the earth’s orbital velocity at very considerable distances 

from our planet. It is obvious, that this hypothesis led at once to a 

rigorous independence of purely terrestrial optical phenomena from the 

earth’s annual motion. But in order to explain coiwectly astronomical 

aberration, Stokes had to assume that the aether’s motion, between the 

earth and the ‘ fixed ’ stars, is purely irrotational, which assumption could 

not be reconciled with the absence of sliding over the earth’s surface, so 

long as the aether was regarded as incompressible. It is true that this 

difficulty, as has been shown by Planck, can be overcome by giving up 

the incompressibility, namely by supposing the aether to be condensed 

around the earth and the celestial bodies, as if it were subjected to 
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gravitation and behaved more or less like a gas. But the condensation 

around the earth, required to reduce the sliding to, say, one half per cent, 

of the earth’s orbital velocity, would be something like e^\ i.e. corre¬ 

sponding to a density of the aether near the earth about 60,000 times as 
great as its density in celestial space. Now, it is certainly difficult to 

admit that the velocity of light is not to any sensible extent altered by 
this enormous condensation of the aether around the earth. 

Particulars concerning the discussion of this most interesting subject 

will be found in Lorentz’s book on Theory of Electrons (Chap. V.), and 

in his original paper on ‘ Stokes’ Theory of Aberration in the Supposition 

of a Variable Density of the Aether,’ Amsterdam Pf'occedings^ 1898-1899, 
p. 443, reprinted in Abhandlungen iib. theor. Physik^ Vol. I. p. 454. 



CHAPTER III. 

THEOREM OF CORRESPONDING STATES. SECOND ORDER 

DIFFICULTIES. THE CONTRACTION HYPOTHESIS. 

LORENTZ’S GENERALIZED THEORY. 

Let us return to Lorentz’s macroscopic equations, for a material 

medium moving relatively to the aether with uniform velocity v, 

= c. curl M ; 
ot 

div © = o 

dm 
div M = o 

M' = M-iVvE' 
c 

KYi = (&-V~Nvm. 
c 

(L) 

In the simplest case of a medium fixed in the aether, i.e. for z/ = o, 

these, as already noticed, become identical with Maxwell’s equations 

for a stationary dielectric, 

= c. curl M \ div ® = o 

dm 
dt 

- c. curl E; div M = o 

® = A'E. 

(Lo) 

In order to exhibit the properties of the more general equations 

(L), Lorentz introduces instead of the ‘ universal time,’ as he calls t, 

a new variable t\ which will now be explained. 

Let O' be a point fixed in the material body, chosen arbitrarily but 

once and for ever as the origin of coordinates, x, y', z', measured 
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along axes rigidly attached to the body. From O' draw to any 

individual point of the body P'{x'^y'^ z) the vector r', so that the 

three Cartesian coordinates are condensed in 

r' = ia;'+jy+ k2'. 

Let us call the framework of reference rigidly attached to the body 

the system S'. For comparison and to impress better upon your 

mind the meaning of r', take also an initial point O fixed in the 

aether, i.e. relatively to the system 6', and draw from O P 

the vector r, or in semi-Cartesian expansion, using the same unit 

vectors as above,* 
r = ix + jy + ka. 

If O' is taken to coincide with O at the instant t—o, we have 

simply 
r' = r - v/. 

il 
4^ 

Remember that the equations (L) hcdd for t and a:', y z' (not x, y, z) 

as independent variables, or, more shortly, for 

r', t. 

This fixes the meaning of curl, div and d/dt, as already mentioned 

in Chap. II. As regards the curls and divergences, they are, of 
course, the same in x, y', z as in .v, y, z. 

^This is always possil)le, since the material body or medium moves relatively 

to 6’ in a purely t ran National manner. 

S.R. K 
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Now, r' being the above vector characterising any_ given point P' 

of the moving body or medium, the new variable t' is defined by 

and is called the local time at P'. Since the scalar product in the 

second term vanishes for r'Xv, the local time coincides with the 

‘universal’ one at all points lying on the plane passing through O' 

and perpendicular to the direction of motion. But at all other 

places the new and the old time differ from one another, the local 

time being behind the ‘ universal ’ time in the anterior portion of the 

body, and the reverse being the case in its posterior portion (Fig. 6). 

In Cartesians, if v = iz)j^+jt'.2 + kz)s, the local time is 

t' {xv-^ + zv^jc-, 

or if i be taken along the direction of motion, t'-— f ~ x'vjc-. 

Notice that Lorentz’s local time, as just defined, has nothing 

physical about it. It is merely an auxiliary mathematical quantity 

to be used instead of the ‘universal’ time i in order to simplify 

the form of equations (L). It is constructed expressly for this 

purpose, and serves it excellentl}'. 

In fact, taking instead of r', t (or x, y, s', /) 

V, r 

as the new independent variables, and denoting the divergence and 

curl in terms of the new variables b)' 

div' and curl', 

we obtain, for example, by (i) and by the third of equations (L), 

I 
div M = div' M + - v curl E' 

c 

= div'M--divVvE', 
c 

since curlv = o, by hypothesis. But for VvE', as for any vector 

normal to v, we have, obviously, div = div'. Flence, by the fifth 

of (L), 

div M = div' (m - i VvE') = div' M'. 
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Thus, the fourth of equations (L), divM = o, becomes, in the new 

variables, div' M' = o. Similarly, the second of (L), div OB = o, is 

transformed into div' 0' = o, where 0' is a new vector defined by 

the formula 

0' = (i54-i\VM. (2) 
c ^ ' 

Using this new vector and the vector M', defined by the fifth 

equation, the remaining equations (L) may be transformed, with 

equal ease, to the new variables. 

The result is surprisingly simple. The system of Lorentz’s 

equations (L) for a moving medium takes with the new variables 

r', z, f) the form 

30' 

3/ 

3M' 

7-= r. curl'M'; div'0' = o 

3/ 
j- = - c. curl' E'; div'M' = o 

0' = /CE', 

(I^') 

that is to say, precisely the same form as for a stationa7y meditan, 

(Lq), the only difference being that the electromagnetic vectors E, 

0, M, are replaced by their dashed corre.spondents, as are also 

the independent variables r, t. 

This remarkable discoveiy, made by Lorentz, has played a most 

important rdle not only in his own theory, but also in the subsequent 

evolution of ideas concerning electromagnetism and optics. Un¬ 

doubtedly, it may, to a great extent, be regarded as the germ of 

modern relativistic tendencies. It will therefore be worth our while 

to treat this subject at some length, and not onl}' as an historical 

episode. 

The above result may be put into the form of what has been 

called by Lorentz the Theorem of corresponding states; 

If ive have for a stationaiy medmm or system of bodies any 

solutio7i {of Maxwells equations Lq), in 7vhich 

^ E, 0, M 
are certam fmctiojis of 

X, y, z, t, 
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7ve 7vill obtain a sohction for the same system of bodies moving 

7vith imiform translatio?i-velocity v, takmg for 

E', M' 

exactly the same functions of the variables 

.v'j y\ z' and t' — t - (vr'). 

In other words, and somewhat more shortly: 

For each state in which E, OE, M depend in a certain way on 

a:, y, 5, t in the stationary system, there is a corresponding state in 

the moving system characterised by E', (!£', M' which depend in 

the same way on a', y\ s', 

It will be useful to put here together the scattered definitions of 

the dashed vectors, 'fhese are, by (32), Chap. II.,* by (2) and by 

the fifth of equations (L), 

E' = E + ~ VvM 
c 

(!B' = ® + iVvM ► 
c 

= VvE'. 

(3) 

As to the coordinate systems, notice that they are in both cases 

rigidly attached to the material medium or to the .system of bodies 

in question, a, j', s being fixed together with it in the aether, and 

x\y\ z sharing its motion through the aether. 

'rhe above theorem of corresponding states has, of course, like 

the equations (L) themselves, the character of a first approximation 

only, terms of the order of ~ v-jc- having been neglected. 

The broad and easy applicability of this beautiful theorem of 

Lorentz is obvious. It will be enough to quote here a few illus¬ 

trative examples. 

* Remernbering that M itself is of the first order, so that 

- VpM = i VvM = I Vviil, 

i.e. in the adopted short notation, I VvM. 
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If, in tlie stationary medium or system S of bodies, E, (£, M are 

periodical functions of /, with period T, then, in the moving system 

S\ the vectors E', (£', M' are periodical functions of the local time t\ 

and consequently, at a point P' fixed in S', also of /, tviih the same 

relative period T \¥hat Lorentz calls the relative period is the 

period of changes going on at a fixed point of the system S' moving 

relatively to the aether, i.e. for a constant r', whereas the period 

of changes taking place at a point fixed in the aether, i.e. for a 

constant r, is called, the a'baolute period. Similarly, relative rays are 

distinguished from absolute rays, and so on. Thus, to luminous 

vibrations in 6" of a given absolute period correspond luminous vibra¬ 

tions in S' of the same relative period. 

If, in certain regions of the stationary system, ^ = 0, etc., then 

also P' = 0, etc., in the corresponding regions of the moving system. 

Thus, to darkness corresponds darkness. Also, limitations of beams 

in S and S' correspond to one another. Luminous rays i?i S', of 

relative pe7'iod T, are 7‘efracted and 7-ejlected acco7'di7ig to the same 

laws as rays of (absolute) pe7'iod T m S. The same is true of the 

distribution of dark and bright i7ite7fere7ice fringes, and consequently 

also of the concentration of light in a focus, by mirrors or lenses, 

this being a limiting case of diffraction. 

But, although the lateral limitations of beams for corresponding 

states are the same, corresponding wave jmmials in S, S' have 

generally diffe7-e7it directio7is, this being again an immediate conse¬ 

quence of the theorem of corresponding states. In fact, if we have 

in S, say, plane waves whose normal is given by the unit vector n 

and whose velocity of propagation is h, i.e. if E, (B, M are proportional 
to a function of the argument 

(rn) -1)/, 

then, in the moving system, E', etc., will be the same functions of the 
argument 

(r'n)-h/' = (r'n)-i-^(r'v)-b/. (4) 

Consequently, the direction of the wave normal in the moving 

system will be given by that of the vector 

C‘ (5) 
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Thus, unless n 1| v, the directions of the wave normals in 6" and S' 

are different. To state the same thing in Cartesians, the direction- 

cosines of the wave normal in the moving system will be given by 

the proportions 

: ;?2' : 7/3' = ^ ^1) = (^^2 + ^ ^2) = 

In particular, for a vacuum or, very approximately, for air, in which 

case h = <r, 

N' = n-h~v, (sa) 

or, in clumsy Cartesians, 

: u.,': ti. n. + /’I’o + 
c, 

«3 •+• 

These formulae may, after a slight transformation, be applied at 

once to the case of astronomical aberration, the relative period 

being here that reduced according to Doppler’s law. Thus Lorentz 

obtains immediately the right results for air- and water-telescope 

aberration. (Cf. Essa)\ p. 89.) 

To obtain the dragging coefficient it is enough to write the 

argument (4) 

Since here n' is a unit vector, the velocity of propagation in S' is 

b 

or, neglecting the term containing /il- = (z'/<r)“, developing the square 

root and neglecting again the second and higher powers of (vn)/rj 

‘3' = b-0) (vn). (6) 

In particular, if the propagation is in the direction of motion or 

against it, as in Fizeau’s experiment. 

b' = b + 
o 

V. 
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Thus, the velocity of propagation relative to the aether will be 

and the value of the dragging coefficient 

Here v = c/h is the refractive index of the medium, say water, corre¬ 

sponding to the relative period which is connected with the period T 

of the emitted light by the formula 

second order terms being neglected. Thus, if 71 be the refractive 

index for the period 

V 
V = -4- - 

b 
T 

'dfi 

whence Lorentz’s formula for the dragging coefficient. 

K = I - JL _ I 
,i 'dT' 

closely agreeing with experiment, as already mentioned in Chapter II. 

For purely terrestrial experiments, in which not only the observer 

but also every part of his apparatus and the source of light are 

attached to the earth, the theorem of corresponding states leads to 

the following result: 

The earth!s motion has no first order mfluence whatever on any of 

such exferimefits. 

The possibility of a second order influence remains, of course, in 

this stage of the research, an open question. For, as will be re¬ 

membered, before arriving at the macroscopic equations (L), from 

which the theorem of corresponding states has been seen to follow, 

/SMerms have been throughout neglected. In other words, that 

beautiful theorem, developed and illustrated by a series of most 

important examples in the fifth section of Lorentz’s classical Essay^ 

is but a first order approximatio7i. 
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So far everything is quite satisfactory. But now, in the sixth, 

and last, section of Lorentz’s Essay the difficulties begin.* In 

this section Lorentz investigates three problems, of which two 

concern the rotation of the plane of polarization and Fizeau’s 

polarization experiments. But without dwelling on these, \ve shall 

pass straight on to the third one, namely to the famous hiter- 

ference experime7it of Michelso7i and Mo7'ky. I'his second order or 

/82-experiment, originally suggested by Maxwell,! was performed by 

Michelson in i88i, and six years later repeated on a larger scale 

and with a higher degree of exactness by Michelson and Morley.J 

A beam of luminous rays coming from the source j-, after having been 

made parallel in the usual way, is divided by the semi-transparent 

plane mirror (half-silvered plate) ab^ which is inclined at an angle 

of 45“ to sOA^ into a transmitted beam OA, and a reflected one OB. 

After having been reflected by the mirrors placed at A and B (at 

right angles to OA., OB, which directions are perpendicular to each 

other), the two beams of light return to the central mirror; here a 

part of the first beam is reflected along OC and a part of the second 

* As is explicitly slated in the title : ‘ Ah-schnitt VI.—Versuche, cleren Ergeh- 
nisse sich nicht ohne Weiteres erklaren lassen.’ 

t See Note at the end of chapter. 

I A. A. Michelson, ‘ The relative motion of the earth and the luminiferous 
ether,’ Avier. fount, of Scioice, 3rd Ser. Vol. XXII., 1881. A. A. Michelson 
and E. W. Morley, Sill, fotim., and Ser. Vol. XXXI., 1886; Amer. fow-n. oj 

Scieuce, 3rd Ser. Vol. XXXIV., 1887; Phil. Mag., 5th Ser. Vol. XXIV., 1887. 
Wliat is given above is but the usual rough scheme; details of the actual arrange¬ 
ment will be found in the original papers quoted and, to a certain extent, also in 
Michelson’s popular book on Light Waves and their Uses, where a diagram of 
the actual apparatus is given (Fig. 108), 



THE MICHELSON EXPERIMENT 73 

beam is transmitted towards C, thus producing with one another a 

system of bright and dark interference fringes, which can be observed 

through a telescope placed on the line OC. To resume it shortly, 

the paths, taken relatively to the earth, of the two interfering beams 

of light are: 
sOAAOC and sOBBOC. 

Let OA (Fig. 7) be in the direction of the motion of the earth, 

and consequently also of the apparatus, source and all, with respect 

to the aether of Fresnel and Lorentz, and let v be the velocity of 

this motion, i.e. the resultant of the earth’s orbital velocity, at the 

time being, and of the velocity of the solar system with respect to 

the ‘fixed stars’ or to those ‘fixed’ stars relatively to which the 

aether is supposed to be at rest. (Cf. Note 2.) On this assumption 

let us calculate the times taken by the two beams in travelling along 

their paths. Since the parts sO and OC are common to both, we 

have only to consider the intervals of time, say and T.,, taken 

to traverse 
OAAO and OBBO 

respectively, where the letters denote, of course, points attached to 

the apparatus. 

Now, as has been already said in Chapter II., in connexion with 

Maxwell’s equations for the ‘free aether,’ the velocity of light with 

respect to the aether is always equal <^=3. cm. sec.“\ quite 

independently of the motion of its source. This is no novel idea 

at all; Fresnel himself considers it apparently as an obvious matter, 

when he says (in an early part of his letter, already mentioned) 

without any further explanations: ‘ car la vitesse avec laquelle se 

propagent les ondes est independante du mouvement du corps dont 

elles 6manent.’ Thus, according to both the classical and the more 

recent adherents of the aether, the velocity of light relative to the 

aether does not depend on the sonrce''s motion ; and on the wave-theory 

there is no reason why it should. Newton’s corpuscular theory, 

revived in a more elaborate form in the writings of the late Dr. Ritz, 

need not detain us here. 

Thus, the mirror A^ receding from the waves on the part OA of 

their journey, and the mirror 0 moving toward them on their return 

from A to (7, we have 

T,= OAi 
c+vj 

2C 

c- - V- 
r,OA[, 



where the index i is to remind us that OA is ‘longitudinal,’ t.e. along 

the direction of motion. Putting vjc — jS and 

we may write shortly, without yet making any use of the smallness 

of/3=. 

T^=~y"-o3i. (8) 

To obtain Tn, the time for the second beam, we could say simply, 

after the manner of .some authors, that the relative velocity of light, 

being the vector sum of the velocity c parallel to OB and of the 

velocity v of the aether with respect to the apparatus, perpendicular 

to OB and directed backwards, is equal {<?■ - so that 

n=2^t{c^~v^y^ 
or 

(9) 

where the index t is to remind us that OB is ‘ transversal ’ or per¬ 

pendicular to the direction of motion. But since this may not 

seem very satisfactory, we can support it by the following, equally 

frequent, reasoning which is but formally different from the above 

short statement. Contemplate for a moment Fig. 8, the paper 

on which it is drawn being now supposed to be stationary in the 

aether, and the apparatus moving past it from left to right. Let. 

the centre of the inclined mirror be at (Pat the instant /=o, when 

the light leaves it, and at 0" at the instant when the light 

returns to it; let B' be the position of B when the beam reaches 

it, and let O be the simultaneous position of 0. If it be granted 
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that the three distinct points of the aether, O, O', O", are the 

consecutive positions of exactly the same point of the inclined 

mirror, that is to say, that the ray in question returns to exactly, 

or sensibly, the same point of the mirror from which it started, then 

OB'O" will be an isosceles* triangle, so that OB' = \cT^, and 

This gives T^ — 2 0Bt{fi-v-) q which is identical with (9). 

By (8) and (9) we get for the time-difference of the two beams, 

by which the phenomenon of their interference is determined, 

T^-T.= ^-^,[ydA^-OB;S. (10) 

Let us now turn round the whole apparatus through 90°, so that 

OA becomes transversal, and OB longitudinal. Then we shall have, 

using dashes to distinguish this case from the above one, 

SO that the time-difference of the two beams will become 

Ti-n = ~y{OA,-ym]- (10') 

If therefore the fixed-aether theory is true, such a rotation of 

the apparatus should produce a shift in the position of the inter¬ 

ference fringes, corresponding to the change of the time-difference 

of the two beams, A = (10) - (10'), i.e. 

A = ^ 7 {y -t- OBi) - {OA, -t- OB,)}. (i i) 

The indices , and ,, distinguishing between longitudinal and trans¬ 

versal orientation, have been introduced here (contrary to the his¬ 

torical order) only for the sake of subsequent discussions. To 

Michelson and Morley there was no question of distinguishing be¬ 

tween the lengths of a segment in different orientations. To put 

*That the above assumption is satisfied with a sufficient degree of accuracy 
may be seen from Note 3 at the end of the chapter, where the corresponding 
Huygens construction is worked out. 
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ourselves into cigreement ^Yith their manner of treatment we bave^ 

therefore, to write simply 

OAi — Oj4.( = OA^ 

To secure these equalities Michelson and Morley mounted the 

mirrors* and, in fact, the whole of the apparatus, on a heavy slab 

of stone mounted on a disc of wood which floated in a tank of 

mercur}', so as to be able ‘to rotate the apparatus without intro¬ 

ducing strains.’ In a word, they made the configuration of (9, 

A^ etc., ‘rigid,’ that is to say as rigid as a stone is. On this 

understanding, formula (ii) may be written 

^^-^y{y-l).{OA-\-OB). (12) 

As to the mutual relation of OA^ OB, they were made ‘nearly 

equal,’ to suit the well-known requirements for producing neat 

interference fringes, in each of the two orientations of the appa¬ 

ratus. Moreover, since these lengths or distances enter in the 

formula only by their sii?n, their equality or non-equality is of no 

essential importance. V^e may therefore, without any more ado, 

write OA = dB = L or else call the sum of these lengths 2Z. Then, 

as regards the factor depending on the velocity of motion, we have, 

by (7), 1 

or, up to quantities of the second order, i.e. neglecting /3‘‘^-terms, etc., 

Thus, the second-order effect to be expected on the stationary- 

aether theory would be determined by the change of the time- 

difference of the two beams 

A= —Z. (12a) 

If Z be the period of the light and A = the wave-length, the 

corresponding shift .y = A/Zof the interference bands, measured as 

a fractional part of the distance of two neighbouring bands, would be 

given by 

^ = (13) 

*In the actual experiment not three hut sixteen in number. 
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The length 2Z, which in Michelson’s original apparatus was too 

small, was in Michelson and Morley’s experiment increased to 

about 22 metres, by multiple reflection from suitably placed mirrors. 

And since, for sodium light, A = 5-89. io“'' cm., the ^tig 2Z/A had 

nearly the value -37.10®. As regards yS-, we shoulil Imve, taking 

for V simply the earth’s orbital velocity, i.e. 30 kiloifl;:r':per secon'd; 

R-— ro“®. It is true that, at least in some of the experiments, the 

rays of light, being horizontal, made a considerable with the' 

earth’s orbit, but on the other hand the motion iof^the* who|e ■ 
solar system exerted a favourable influence, so as tO'-double the 

value of j3- (as was already mentioned). So that to'^]^ - equal 

io~® is certainly not to overestimate its value considfe-Ably, ‘Thus 

the shift should be on tlie stationary-aether theory, in I'^und figtires, 

i' = o-4 of a fringe width. . r 

In no case, however, did the actual displacement the fringe;? . 

exceed -02, and probably it was less than -or, ie. IdS's'than iV^bZ 

of the expected value. The experiment was repeate4..hl 1905 by - 

' Morley and Miller* with considerably increased accuracy^ and their • 

result was that, if there is any fringe-shift of the kind expected, it is 

something like .^ = -0076 instead of 1-5, i.e. not greater'.'than one 

two-hundredth of the computed value.t 

Thus, not nearly the expected second-order effect of the earth’s 

motion relatively to the aether was observed. It seems, therefore, 

reasonable to say at least that, as far as we know, the above 

A is nil. 

In order to explain this negative result and to save, at the same 

time, the stationary-aether theory, Lorentz has had recourse to a 

peculiar hypothesis, constructed atl hoc., which occurred to him 

independently of Fitzgerald, who w'as the first to suggest it. ^ It is 

' *E. W. Morley and D. C. Miller, JVuI. Vol. VIII. p. 753, 1904; 

JVii/. Mag., Vol. IX. p. 680, 1905. 

fAs to various objections raised against the correctness of tire interference 

experiment by Sutherland, LUroth and Kohl, and their refutation by Lodge, 

Lorentz, Debye and Lane, see the ‘ Literaturllbersicht ’ in J. Laub’s report 

‘ Ueber die experimentellen Grundlagen des Relalivitatsprinzips,’der 

Radioakiivitat und Elektronik, Vol. VII. p. 405, 1910. 

jCf. Lorentz’s Essay, p. 122 (1895), where reference is made to a paper 

of his, dated 1892-93. As regards Fitzgerald, we read in The Ether of Space 

by Sir Oliver Lodge (London, 1909, p. 65), referring to that hypothesis: ‘It 
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now widely known under tlie name of the contraction hypothesis, and 

it consists in assuming tliat, in Lorentz’s words, ‘ the dimensions of 

a solid body undergo slight changes, of the order yQ-, when it moves 

through the ether,’ namely a longitudinal contraction amounting 

to per unit length or, more generally, both a transversal and 

a longitudinal lengthening, e and S, per unit length, such that 

e-8=:-},f3-. ’'hhis would amount for the whole earth to about 

6-5 centimetres only. 

To see at once that the negati\'e result of the Michelson experi¬ 

ment is thus accounted for and to grasp as clearly as possible the 

nature of the h3-pothesis, let us return to the more general formula 

(ii) for A, from which (12) or (12a) followed by identifying OA, with 

OAt, and similarly O^i with OjBt. Now, to simplify matters, 

assume OB\—OAi and OBi—OAi (which, as we saw, is of no 

essential importance), but on the other hand distinguish between 

OAi and OA;. Then formula (n), valid by the fixed-aether theory, 

will become 

^ = ~r(y0A-02,); (14) 

and since A = o, by experience, we have to write, in order to respect 

both that theoiy and experieirce, 

or, up to quantities of the second order, 

OAi:OAi=^ 

which is the Fitzgerald-I^orentz hypothesis. 

Notice that it would be a perfectly idle thing to quarrel ^Yhcther 

OA, is shortened, while OA, remains unchanged, by the earth’s 

motion through the aether, or w'hether OA, alone is lengthened, or, 

finally, whether both are changed in suitable proportions. The only 

thing we are required by the aether theory and by experiment to do 

is to consider the ratio of the lengths of one and the same ‘ material ’ 

was first suggested by the late Professor G. F. Fitzgerald, of Trinity College, 

Dublin, while sitting in my study at Liverpool and discussing the matter with 

me. The suggestion bore the impress of truth from the first.’ Happy are those 

who are gifted with that immediate feeling for ‘truth.’ 
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segment OA, or shortty Z, in those two orientations as being equal 

to I - iyS-, or, more rigorously, 

= (15) 

This implies that for ^ = 0, i.e. if the earth stopped moving through 

the aether, or nearly so, we should have Li=L(, say, both equal 

to Zf). But it cannot inform us as to the ratio which either length 

bears to Z^, when the earth is moving through that medium ; more¬ 

over, such considerations are, thus far, physically meaningless. 

At any rate, Lorentz soon decided in favour of a purely longitudinal 

contraction, which amounts to writing 

Z, = Zo and Z, =^’ = Z„s/i -/i". (i5«) 

In doing so he based himself on certain results obtained from 

the fundamental (microscopic) equations in an early part of his 

classical £^ssay, to be mentioned presently. That this, in fact, was 

his choice we see explicitly from the shape attributed by him 

to moving electrons. While Abraham’s electron is and remains 

always a sphere, being rigid in the classical sense of the word, 

Lorentz’s electron is a sphere, of radius 7?, say, when at rest, and 

becomes flattened longitudinally, when in uniform ■motion, to a 

rotational ellipsoid of semiaxes 

Ai?, W, It 
7 

Such an electron, of homogeneous surface- or volume-charge, is now 

generally known as the Lorentz eIcctro7i. The history of its rivalry 

with the rigid one, and of its rather victorious issue from the contest, 

need not detain us here. It is, besides, sufficiently well known. 

Lorentz’s attitude towards the contraction h5'pothesis may be seen 

best from his own words, written in 1909 {Elect7-on Theo7-}\ p. 196) : 

‘ The hypothesis certainly looks i-ather startling at first sight, but we 
can scarcely escape from it, so long as we pei-sist in regarding the ether 
as immovable. We may, I think, even go so far as to say that, on this 
assumption, Michelson’s experiment the changes of dimension in 
question, and that the conclusion is no less legitimate than the inferences 
concerning the dilatation by heat or the changes of the refractive index 
that have been drawn in many other cases from the observed positions 
of interference bands.’ 
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The obvious criticism of the above comparison may be left to 

the reader. 

As regards the justification of the contraction hypothesis which to 

an unprepared mind certainly does ‘look rather startling,’ Lorentz 

observes in his original £ssaj’ of 1895 (p. 124) that we are led 

precisely to the change of dimensions defined by (i5^r), if, dis¬ 

regarding the molecular motion, we assume that the attractive and 

repulsive forces acting on any molecule of a solid body which ‘is 

left to itself’ are in mutual equilibrium, and if we apply to these 

molecular forces the same law which, by the fundamental equations, 

holds for electrostatic actions. It is true, as Lorentz himself con- 

fesse.s, that ‘there is, of course, no reason’ for making the second of 

these assumptions. But those who entertain the hope of constructing 

an electromagnetic theory of matter will easily adhere to it. To 

obtain the law in question return to the fundamental electronic 

equations (i.). Chap. IL, and introduce the so-called vector potejiiial 

A and the scalar potential satisfying the differential equations 

'dt'^ 

fi 0/2 
U 02 v=)A=rpp 

and subject to the condition 

... 1 d4> 
divA + - ~ = o. 

c ot 

(16) 

(17) 

Then all of the equations (i.) will be satisfied by 

E= - 
I dA 
c 0/ 

M = curl A, 

(18) 

so that every blectomagnetic problem is reduced to finding the 

potentials according to (16) and (17). Suppose, now, that a material 

body moves as a whole, relatively to the aether or to the system S, 

with uniform translational velocity v, and that all the electrons it 

carries are at rest with respect to the body. Then the above p will 

have throughout the constant value v, so that, by (16), 

A = (19) 
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Thus everything is made to dei)end on alone. 'Fake the a'-axis 

in S along the direction of motion, so that v-ed, and 

.suppose that the electromagnetic; field is invariable with respect to 

the material body. 'I'his assumption will be satisfied if </j is supposed 

to depend only on the c'oordinales attached to the. body, 

A V O', C 

'I’hu.s we shall have 

d 

iV 

d d d 
''d^’ da"^d^’ 

d" 02 

etc., 

and tlie ecpiation for </> will become 

1 02,/, 
(20) 

while the c'ondition (17) will be satisfied identically. Hi're 

y‘ 'i as I — 

as above. Again, by (18), 

E ( 
d 0 
ya + j 

0 

dr; 

U ' VvE-/^ViE, 

vvhenc;c the ponderomotivu force [rcr unit charge, or I,orent^,’.s 

electric force, E + /iViM, (to), (Tap. II., which we shall now denote 

by {.since the dashed B would be ini.sleading), 

(».) 

w'here V™ic)/d^+j d/0);4-kd/d|^i-i0/dv*f“... i.s the Hamiltonian 

(here acting as the slope), taken with respect to the tielher or, 

which in our ca.se i.s the .same thing, with respect to the material 

body. 'I'hu.s, the electric force i.s derived from a scalar ]H)tential 

precisely as irt ordinary tdcclrostalics. Uy the way, ‘/Vy'"® is 

called the coimction potential. Notice that it is ,.|f, the electric 

force, and not the ‘diclctUric di.sidacenumt ’ E, that law a scalar 

potential. 
.S.K, F 



Now, supposing always /3- < i and consequently y real, write 

x' = y$, y = 7?, z=C, (22) 

and denote the corresponding Hamiltonian, i3/3a;' + etc., by V'. 

Then (20) will become 

^23) 

To adopt for the moment Lorentz’s notation, call the moving 

material body or system of bodies the system .Si, and compare it 

with a system So which is j^xed in the aether and which is obtained 

from by stretching all its constituent bodies, together with the 

electrons, longitudinally in the ratio y: i, so that to any point 

rj, of S^ corresponds the point x', y', z' of and so that 

corresponding volume-elements, dr and dT' = ydr, contain eyt/al 

charges. Then, p and p' being the densities of electric charge at 

corresponding points. 

and, by (23), 

p =~P, 

= - yp'. 

If then </)' be the scalar, electrostatic, potential in S.o, so that 

we shall have 

c//=-c/., 
' y 

and consequently, instead of (21), using (22), 

But the electric force in the stationary system S<^ is 

Therefore, using the indices i and t to denote the longitudinal 

and the transversal components of the electric forces. 

(24) 
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and since charges of corresponding elements are equal, exactly the 

same relations will hold between the ponderomotive forces acting 

On each electron in the moving system and on the corresponding 

electron in the stationary system 
This is the ‘law’ alluded to. Now, suppose that it is obeyed by 

the molecular forces keeping together the parts of a moving solid 

which, disregarding its interior molecular and electronic motions, is 

to be taken for the system S^. Then, if the molecular forces 

balance each other in the corresponding stationary body S,>, they 

will do so in the moving body But, by (22), is the body 

S.^ contracted longitudinally with preservation of its transversal 

dimensions, exactly as in and the motion would produce 

this flattening ‘by itself.’ Whence Lorentz’s justification of the 

contraction hypothesis. 
Thus, the longitudinal contraction, though at first manifestly 

invented ad hoc^ to account for the negative result of the Michelson 

experiment, found a kind of legitimate support by being brought 

into connexion with the fundamental assumptions of the electron 

theory. But the cure of the disease has not been radical. In 

fact, the idea naturally suggested itself, that the Lorentx-Fitzgcrald 

contraction, like an ordinary strain, might give rise to double 

refraction, of the order in solids or liquid.s, a property which 

should be directionally connected with the earth’s motion round 

the sun. But here again the result of experiments has been 

sensibly negative. Lord Rayleigh’s* experiments (1902) with liquids 

(water and carbon disulphide) as well as those with solids, with 

glass plates piled together, have given no trace of an eflcct of 

the expected kind. At least, if there was any effect on turning 

round the apparatus, it was less than of that sought for. 

Rayleigh’s experiment was then repeated (1904) by Brace t with 

considerably increased accuracy, and the result has again been 

negative: the relative retardation of the rays due to the supposed 

double refraction should be of the order whereas, if existent 

at all, it was certainly less than 5 . in the case of glass, and 

even less than 7. 10“^®, in the case of water. 

To account for these obstinately negative results, and with a view 

to settle the matter once and for ever, Lorentz undertook what he 

*Lord Rayleigh, Phil. Mag., Vol. IV. p. 678, 1902. 

to. B. Brace, Phil. Mag., Vol. VII. p. 317, 1904; PoUamann-Festschrift, 

p. 576, 1907. 
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thought a radical discussion of the whole subject, that is to say, 

of the electromagnetic phenomena in a uniformly moving system, 

not as hitherto for small values of v, but for any velocity of transla¬ 

tion smaller than that of light, i.e. for any y8< i. Lorentz’s ideas, 

laid down in a paper published in 1904,* are fully developed in his 

Columbia University Lectures, already quoted (p. 196 et seq.). His 

aim was now to reduce, ‘at least as far as possible,’ the electro¬ 

magnetic equations for a moving system to the form of those that 

hold for a system at rest—always, of course, relatively to the aether— 

without neglecting either ^2. or, in fact, terms of any order whatever. 

It will be remembered that even in his first approximation, 

i.e. when neglecting Lorentz employed the ‘local time’ 

t'==t--{vx)lc\ or, measuring x along the line of motion, 

= [a) 

Then the necessity of accounting for the negative result of Michelson’s 

interference experiment brought him to the contraction hypothesis, 

according to which the longitudinal dimensions of the moving 

system are reduced in the ratio 1:7“^ where 7 = while 

the transversal ones remain unchanged. This contraction corre¬ 

sponds to /= const, and consequently may easily be shown to be 

equivalent to transforming x, y, z, the coordinates of a point with 

respect to axes fixed in the aether, or the ‘absolute’ coordinates, 

into 
X =y{x -vt), y'~y, z=z. {b) 

It is true that the transformation (a) was as yet purely formal, 

and that the contraction, or (b), was introduced by Lorentz first 

ad hoc, but afterwards to be justified. But at anyrate, having 

already {a) and (b), Lorentz has been naturally led to investigate in 

a general way the consequences of introducing, instead of x, y, z, t, 

* H. A. Lorentz, ‘ Electromagnetic phenomena in a system moving with any 

velocity smaller than that of light,’ Live. Aiiisterdain Acad,, Vol. VI. p, 809; 

1904. 

t Here, according to the original definition of ‘ local lime,’ p. 66, we should 

have rigorously (instead of the coordinate x, measured in the fixed framework) 

x~vt, so that i' = But, since at that stage ^^-terms were neglected, 

we could write simply x instead of x-vt. The symbols x', etc., in what follows 

are not to be confounded with the x', etc., of page 66. 
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new independent variables, called by him the effeotive coordinates 

and the effective time, 

oc = A.7 (:» - vt), y = Aj', z = 'kz, 

where y is as above and ^ is a numerical coefficient of which Lorentz, 

provisionally, assumes only that it is a function of v alone, whose 

value equals i for z; = o and differs from i by an amount of the 

order for small values of the ratio ^ Introducing the 

new variables (25) into the fundamental electronic equations, (i.), 

Chap. II., and defining new vectors E', M', 

M-l — = yA.“2 {M^ + Mj = yX - ] 

and also, instead of the relative velocity p-v of an electric particle, 

the vector 
p' = y {iy(/i - Z'l) + -^2) "■ 

i.e. with the above choice of axes, simply 

p' = y{iy(/i-2/)+j/2 + k/8}, (27) 

and, instead of the density p, 

p'==yk~^p, (28) 

I.orentz obtained again the equations (i.) with dashes, 

d'E'(?if + p'v' = ^ • curl' M', etc., 

but with the difference that divE = /3 was replaced by 

div'E'= P. (29) 

* Columbia University Lectures, p. 196. The above v, y, X stand for Lorentz’s 

w, k, I respectively. A transformation equivalent to (25) was previously applied 

I 
by Voigt, as early as 1887, to equations of the form ^ ; ‘ Ueher das 

Doppler’sche Princip, Gottinger Nachrichten, 1887, p. 41. Lorentz liimself 

states {loc. cit., p. 198; 1909) that Voigt’s paper had escaped his notice al! these 

years, and adds : ‘ The idea of the transformation ’ (25) ‘ might therefore have 

been borrowed from Voigt, and the proof that it does not alter the form of the 

equations for the/ree ether is contained in his paper.’ 
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not by div'Thus, the fundamental equations for the free 

aether (p = p ~ o) turned out to be rigorously invariant with respect 

to the transformation (25), which, especially for A.= i, has since been 

universally called the Lorentz transfoimation. The same invariance 

holds also in the general case, that is to say, in the presence of 

electric charges, but for the slight deviation given by (29). 

Using this result, Lorentz generalized his Theorem of corresponding 

states for any velocity v smaller than c, and succeeded in showing 

that the theorem thus extended not only accounts for the con¬ 

traction required by the result of the Michelson experiment, but that 

it explains, among other things, why Lord Rayleigh and Brace 

failed to detect a double refraction due to the earth’s orbital 

motion, A discussion of the formulae for the longitudinal and 

transversal masses of an electron, which need not detain us here,"^ 

led Lorentz to attribute to the coefficient A. (his /) the value i, 

whereby the transformation formulae (25) and (26) were reduced to 

x=y(x-vt), y'=y, z' = z, 

and 

E^ = y(E^-pjf,), Ei^y 

M^^y(3f, + PE^), M^ = y 

With this specialization, Lorentz’s modified theory, which in its 

essence was built up in 1904, satisfied the requirements of self- 

consistency and accounted for the negative results of all, second as 

well as first order, terrestrial experiments intended to show our 

planet’s motion through the aether. In other words, by modifying 

and gradually extending his original theory, Lorentz obtained the 

desired physical equivalence of the ‘ moving ’ system S', with its 

effective coordinates and time x', y', z', t', and of a corresponding 

‘ stationary ’ system with its absolute coordinates and time x, y, z, t. 

But still one of the two systems S, S', namely 6’, was privileged, 

being regarded by Lorentz as ‘fixed in the aether.’ Their equival¬ 

ence, as indicated persistently by such numerous experiments, was 

not placed as the basis of the theory, but followed as the result of 

long, laborious, and rather artificial constructions, intended to com- 

(30) 

*See Columbia University Lectures, pp. 211-212. 



LORENTZ GENERALIZED THEORY 87 

pensate gradually the pretended play of the ‘aether.’ For, to repeat, 

Lorentz continued to assume this hypothetical medium of his classical 

Essay in his extended theory, dated 1904, and adheres to it even now, 

if we may judge from the last sentences of his American Lectures 

(p. 230). Not only is the aether for Lorentz a unique framework 

of reference, but he ‘ cannot but regard it as endowed with a certain 

degree of substantiality.’ According to this standpoint, then, there 

certainly is such a thing as the aether, though every physical effect 

of the motion of ordinary, ponderable matter through it, being 

compensated by more or less intricate processes, remains undis- 

coverable for ever. 

As‘ regards the above transformation of Lorentz, we may further 

notice here that Poincare made, in 1906, an extensive use of 

its more general form (25) \Rend. del Circolo mat. di Palermo, 

Vol. XXI. p, 129] for the treatment of the dynamics of the electron 

and also of universal gravitation. Some of Poincare’s results con¬ 

tinue even now to be of considerable interest. 

In the meantime, 1905, Einstein published his paper on ‘ the 

electrodynamics of moving bodies,’* which has since become 

classical, in which, aiming at a perfect reciprocity or equivalence 

of the above pair of systems, S, S', and denying any claims for 

primacy to either, he has investigated the whole problem from the 

bottom. Asking himself questions of such a fundamental nature, 

as what is to be understood by ‘simultaneous’ events in a i)air of 

distant places, and dismissing altogether the idea of an aether, 

and in fact of any unique framework of reference, he has succeeded 

in giving a plausible support to, and at the same time a striking 

interpretation of, Lorentz’s transformation formulae and the results 

of Lorentz’s extended theory. Einstein’s fundamental ideas on 

physical time and space, opening the way to modern Relativity, 
will occupy our attention in the next chapter. 

*A. Einstein, Jnua/. der Physik, Vol. XVII. p, S91 ; 1905. 
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NOTES TO CHAPTER III. 

Note 1 (to page 72). It seems desiralDle to quote here after Lorentz 
[Abhandbmgen iiber theor. Physik, Vol. 1. p. 386, footnote) a passage 
from Maxwell’s letter ‘ On a possible mode of detecting a motion of the 
solar system through the luminiferous ether,’ published after his death in 
Proc. Roy. Soc., Vol. XXX. (1879-,! 880), p. 108 : 

‘ In the terrestrial methods of determining the velocity of light, the 
light comes back along the same path again, so that the velocity of the 
earth with respect to the ether would alter the time of the double passage 
by a quantity depending on the square of the ratio of the earth’s velocity 
to that of light, and this is quite too small to be observed.’ 

Note 2 (to page 73). Usually, at least in all text-books, it is simply 
said; ‘Suppose that the aether remains at rest, and let w=the velocity 
of the apparatus, i.e. of the earth in its orbit’ For this to be correct, the 
aether would have to be at rest with respect to our sun. But when astrono¬ 
mical aberration is in question, we are told that the aether is stationary 
with respect to the ‘ fixed stars,’ say, with respect to the constellation ot 
Flercules, which, I hope, is ‘fixed’ enough. Now, as has incidentally 
been mentioned (p. 17), the sun or the whole solar system has a uniform 
velocity of something like 25 kilometres per second towards that con¬ 
stellation, which, being nearly equal in absolute value to the earth’s orbital 
velocity (30 klm. per sec.), certainly cannot be neglected. Thus, the 
velocity {v) of Michelson’s interferometer with respect to the aether would 
oscillate to and fro, in half-year intervals, between considerably distinct 
maximum- and minimum-values. According to Lorentz (‘ De I’influence 
du mouvement de la terre sur les ph^nom^nes lumineux,’ 1887, reprinted 
in Abhandlungen., Vol. I.; see p. 388) the resultant of the earth’s orbital 
and the solar system’s velocity had at the time when Michelson was 
performing his experiment both a direction and an absolute value ‘very 
favorable ’ to the effect sought for, even so much as to double the displace¬ 
ment of the fringes expected. I am not aware whether or no the defenders 
and the adversaries of the aether have discussed this circumstance with 
sufficient care. But at any rate it seemed worth noticing here. Of 
course, it is for the adherents of the aether (and not those of empty 
space) to tell us explicitly with respect to what celestial bodies, the sun, 
or Hercules or other groups of stars, the aether is to be stationary, if it 
be granted that the parts of that medium do not move relatively to each 
other. For these stars certainly move relatively to one another. 

I cannot help remarking here that it is repugnant to me to think of an 
omnipresent rigid aether being once and for ever at rest relatively rather 
to one star than to another. For, this medium, unlike Stokes’s aether, 
being non-deformable and not acted on by any forces whatever, none of 
the celestial bodies, be it ever so conspicuous in bulk or mass, can 
claim for itself this primacy of holding fast the aether. The bare idea 
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of action exerted upon the aether by material bodies being dismissed at 
the outset, there is nothing which could confer this distinctive piivilege 
upon any one of them. But, then, I am quite aware that what ‘is re¬ 
pugnant to think of’ may not necessarily be wrong altogether. There are 
other reasons to be urged against the aether. 

Note 3 (to page 75). Let a plane wave cr (Fig. 9) proceed towaids 
the inclined mirror (half-silvered plate) Oa in the direction of its motion, 
i.e. from left to right. Let sO, sma represent the incident wave normals, 
limiting a part of the beam of breadth Ovi — b^ and let C^Vbe the normal 
to the mirror, so that 6=sOJC is the angle of incidence. Let the wave 
reach the centre 0 of the mirror at the instant ^'=o. Let Ox and tix be 
the positions of the points 0 and a of the mirror (both taken in the plane 

Fic;. 9. 

of the figure) at a later instant ^=t, when the wave of disturbance reaches 
ax, so that _ _ 

aax — OOx = VT, 

Draw round 0 a circle with the radius 

max — cr ; 

then the tangent to this circle, drawn from fq, will represent the re¬ 
flected wave, and ON will be the reflected wave normal. To obtain 
the angle of reflection, 6'=XON, consider the triangles (9Mq and Owa-x, 

having the side Oai in common and right angles at m and at N. Since, 
moreover, their sides ON and cqw are equal to one another, fq/7=! Om i>, 

so that the breadth of the beam remains unchanged by reflection, as for 
a stationary mirror, and 

-<iVOfl!x = €='< imixO-’^^-d-i, 

where ^=--^aOax. But 0'=7r/2-e-|-C- Thus, the angle of reflection & 
and the angle of incidence 6 are connected by the relation 

(A) 
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where the angle C is determined by the given properties of the parallelo¬ 
gram OaaiOi. Writing _ _ 

Oa=Oicti — I, 
we have at once 

and 

whence 

dax^=(vTy+P+2VTL sin 6 

VT : 6>rti = sin ^: cos 6 ; 

cos^e , P , 2/ . . 
• • = I -H 7—H—— sin 9. 
sm-^ {vry VT 

But VT=v^sin 6l{c~v), 

for C is 

or llvr= 
I-/? 

^isfn^’ 
so that the required formula 

. t ^ sin (20) 
o cjn C = —— *- ■>—' . „ 

s!I - /3(2 - /3) cos^ 6 
(B) 

(a) and (b) contain the rigorous solution of the problem, based, of 
course, on the assumption of a stationary aether. 

In Michelson and Morley’s expei'iment, as treated above (Fig. 8), 

20=90°, so that (b) becomes 

2 sin I3(i - (Bj) 

To connect Fig. g with Fig. 8, notice that, according to (a), the 

angle BOB' should be equal to 2^. The approximate treatment given 

in connexion with Fig. 8 (p. 74) amounts to writing 

sm(BOB')=v :c=l3. (C) 

Now, developing (Bj) and remembering that /? is a small fraction, we 

have, up to quantities of the second order, 

2 sin + 

or, neglecting the third and higher powers of the small angle 

sin(20 = iS + i/?®. 

But the term appearing in this formula for the angle would give 

in the final formula for only terms of the order of /3* and /3^ Thus, 

aiming at results which are correct only up to quantities of the second 

order, we may write the last formula 

sin (20 = /?, 

in agreement with (c). Our Huygens-construction shows then that 

the treatment adopted on page 74 is sufficiently correct for the purpose 
in question. 

That treatment, which is given in all text-books (including also such 

valuable modem works as Laue’s Relativitdtsprinzij}^ without 

any further remark, would be rigorously correct if O were, say, a point 
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source of (spherical) waves spreading out in all directions, and not, as 
it actually is, one of the points of a mirror at which reflection of plane 
^vaves is taking place. 

A different way of treating rigorously the above question will be found 
in Lorentz’s paper entitled ‘De I’influence du niouvemcnt dc la terre 
sur les phdnomfenes lumineux,’ Arch. 7t^erL, Vol. XXI. (1887), pp. 169-173 
(reprinted in Abhandlungen iiber iheor. Physik, Vol. I. pp. 389-393) and 
partly also in his Columbia U7iiversiiy JLectu7'es, p. 194. 

The discussion of our general formulae (a), (b) connecting the angle 
of reflection with that of incidence, for large values of may be left 
to the reader as a curious exercise. 



CHAPTER IV. 

EINSTEIN’S DEFINITION OF SIMULTANEITY. THE PRIN¬ 
CIPLES OF RELATIVITY AND OF CONSTANT LIGHT- 
VELOCITY. THE LORENTZ TRANSFORMATION. 

We are now sufficiently prepared to grasp the meaning of Einstein’s 

ideas* and to appreciate their relation to the work of his prede¬ 

cessors, especially of Lorentz. 

In Chapter I. we have seen how it is possible to define the time 

as a physically measurable quantity fulfilling certain reasonable 

and fairly general requirements. Practically, it was the variable f 

measured by the rotating earth as time-keeper or what, with a 

slight correction connected with tidal friction, has been called the 

‘kinetic time.’ It has certainly not escaped the reader’s notice 

that the requirements on which that choice was based had nothing 

absolute or necessary about them, being merely recommended by 

their simplicity and convenience. But this circumstance need not 

detain us here any further. Suppose we have secured a clock 

indicating, with a sufficient degree of precision, the kinetic time t. 

Suppose we keep that clock at a certain place a, relatively to a given 

space-framework of reference, say in a certain physical laboratory or 

astronomical observatory. Thus far we have tacitly assumed that 

the time t, measured by such a chronometer, is universal, if I may 

say so, i.e. that it is valid for all points of space, for all parts of 

any system, be it near to our clock or very far from it, be it at rest 

or moving with respect to it. It is very likely that nobody has ever 

As laid down in his paper of 1905, already quoted, and then (1907) developed 

by him more fully in a paper, ‘ Ueber das Relativitatsprinzip und die aus demselben 

gezogenen Folgerungen,’ Jahrbnch u&r Radioaktivitat u»d Elektronik, Vol. IV. 

p. 411. In what follows we shall refer principally to the former of these papers 

by quoting simply the original numbers of its pages. 
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asserted explicitly this universality and uniqueness of time, but 

everybody has certainly given to it his tacit consent, and would 

willingly endorse it if asked to do so. As far as we know, the first 

to question this pretended universality of time was Einstein. 

Our clock, placed at indicates the time /, i.e. marks different 

time-instants and measures the intervals between them, to begin 

with, only at the place a, or nearly so. It is, to give it a short 

name, the time /a,* Suppose that some well-marked instant is 

chosen as the initial instant, 4 = o. Then, if any event is happening 

at a or near a, we give to it that date or, as it were, label it 

with that number which is simultaneously shown by the index of 

our clock. We are exempted from defining what ' simultaneous ’ (as 

well as ‘ earlier ’ or ‘ later ’) means when applied to a pair of events 

occurring at the same place or near that place, as the passage of 

the index through a given division of the dial of our clock and the 

production of an electric spark closely to it.* But we do not 

know, beforehand, what we are to understand by saying that of 

two events occurring at places a, b distant from one another the 

first occurs earlier or later than the second, or that both are 

simultaneous. The meaning of these words has to be defined. 

If the labelling of all possible kinds of events, occurring at distant 

points, fixed or moving relatively to one another, is to be of any 

use at all, we must establish the rules according to which we are 

going to label them with the /-numbers. And first of all we have 

to decide which of these events have to receive the same labels, 

i.e. we have to define simultaneity at distant points. 

This notion is to be defined in terms of simultaneity at the same 

place, which alone is assumed to be knowm to us, and of some other 

things or processes which are actually realizable. In other words, 

distant simultaneity has to be reduced to local simultaneity by some 

physical process. Abstractly speaking, the choice of such a process 

is arbitrary, in very wide limits at least; but practically the choice 

will be reduced to such processes as are of possibly universal 

occurrence, and which are independent of the capricious peculiarities 

of different sorts of matter. Einstein has chosen for this purpose 

the propagation of light in vaato. Gravitation being, chiefly due 

*We need not stop here to consider such apparatus as Siemens’ ‘spark- 
chronometer,’ in which the visible marks corresponding to pairs of events are 
brought very close to one another, and which enable the modern physicist to fix 
witli a high degree of precision their time-relations. 
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to its alleged instantaneous action, out of question, this has been, 

in fact, the only possible choice. Moreover, it was not unprecedented 

in the history of physics and astronomy, and it suggested itself most 

obviously because the recent difficulties met with lay in the optical 

and, more generally, electromagnetic departments of physics. 

To an unbiassed mind the question may present itself: Why label 

everything in the world with /-numbers at all? Such a question 

is not altogetlier unreasonable, and it may deserve some careful 

attention. But once we decide to attach a time-label to every event, 

we are forced to reduce in some kind of way distant simultaneity to 

local simultaneity (for pairs of points at rest or moving relatively to 

one another), and not to delude ourselves with thinking that we 

know what ‘ universal simultaneity ’ means, or that it is, in fact, a 

self-consistent notion. To have initiated a critical analysis of the 

concept of simultaneity at all is certainly a great merit of Einstein’s. 

But let us leave aside these generalities and pass to the definition 

in question. We shall have to consider in the first place the 

simpler case of distant points a, h, etc., in relative rest, and then 

the somewhat intricate case of distant points belonging to systems 

which are uniformly moving with respect to one another. 

Let a, l>, etc., be points or ‘ places ’ fixed relatively to one another 

and with respect to a certain space-framework or system S, say, the 

system of the fixed stars.* Suppose we succeeded in manufacturing 

at the place a a number of equal clocks, each measuring the same, 

say the 'kinetic,’ time / and set equally or synchronously, and that 

retaining one of them at a we sent the others to b, etc., together 

with an equal number of observers who are to remain at those 

distant places with their clocks for ever. Then, to begin with, we 

should have as many ‘ times ’ as there are places in consideration, 

4, /ft, etc., valid, respectively, for the places a, b, etc., and for their 

nearest neighbourhoods. For, though all of these clocks were 

manufactured equally at a, we do not know whether they continue 

to be ‘ equal ’ or permanently synchronous, when one of them is 

*In his paper (p. 892) Einstein begins with taking, for the purpose of his 

definition of simultaneity, that ‘system of coordinates in which Newton’s 

mechanical equations are valid.’ But it seems advisable not to appeal at the 

outset, and in connexion with such a fundamental definition, to Newtonian 

mechanics, especially as it requires, according to the relativistic view itself, some 

essential, though numerically slight, modifications. On tlie other hand, the 

physical specification of what has been called above the system S will appear 

presently without recourse to any theory of mechanics. 
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still kept at a, while the others are sent far away, to the places l>, 

etc. More than this, we do not know what their being synchronous 

or not, when far apart, means. We have yet to fix how we are going 

to test it. To invoke the preservation of rate of clocks of ‘good 

make ’ in spite of their being carried to distant place.s, on the title 

of the high precision of their mechanisms, would not help us out 

of the difficulty. For, supposing we also decided to assert such 

infallible and rigorous permanence, at different places within S, 

of the mechanical laws, necessarily involved, still we should have 

to verify whether the accessorial conditions of validity of those 

laws (and practically there would be a host of such conditions) are 

fulfilled at and round each place in question. To avoid this verifi¬ 

cation, which soon would prove to be a difficult task, we must have 

some means of testing in a direct manner the synchronism of our 

distant clocks and, more generally, of correlating with one another 

the times 4, 4, etc., without being obliged to enter upon the 

properties and structure of the corresponding clock mechanisms.* 

Now, the kind of test adopted by Einstein, and con.stituting at 

the same time the essence of his definition of distant simultaneity, 

is as follows. 

Let an observer stationed at a send a flash of light at the instant 

4 (as indicated by the iz-clock) towards b, where it arrives at the 

instant 4 (according to the ^-clock). Let another observer send it 

back from b without any delay, or let the flash be automatically 

reflected at 4 towards a, where it returns at the instant 4'. I’hen 

the ^-clock is said, by definition, to be synohronous with the 
a-clock, if 

4 ~ 4 ~ 4 ~ 4 • (r) 

This amounts to requiring, per definit^ionem, that ‘the time’ 

employed by light to pass from a to b should be equal to ‘the 

time’ employed to return from h to a. Instead of (i) we may 
write, equivalently, 

4 = 4 + w (4 “ 4) ~ i (4 + 4')- (1 (i) 

Thus, the instant of arrival at b is expressed by the arithmetic mean 

of the iz-times of departure and return of the light-signal. Such 

*We may notice in this connexion that Einstein’s specification (p. 893): 

‘eine Uhr [at <5] von genau derselben Beschaffenheit wie die in A \a\ hefindliche’ 
is unnecessary and, to a certain extent, misleading. 
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being the connexion of the iz-time and of the ^-time, the clock 

placed at h is said to be synchronous with that placed at a. 

This definition of synchronism is supposed to be self-consistent, 

for any number of clocks placed at different points of the system S, 

say, besides a and h, at c, d, e, etc. To secure this consistency, 

Einstein makes, explicitly, the following two assumptions: 

1. If the clock at b is synchronous with that at a, then also the 

clock at a is synchronous with that at b. In other words; clock- 

synchronism is reciprocal, for any pair of places taken in S. 

2. If two clocks, placed at a and b, are synchronous with a third 

clock, placed at c, they are also synchronous with one another. 

Or, more shortly, clock-synchronism is trafisitive throughout the 

system 6*. 

This is the way that Einstein himself puts the matter. But it 

may easily be shown that the first of his assumptions will be 

fulfilled if we require that ‘ the time ’ employed by the light-signal 

to pass from a to b is always the same. In fact, let us denote the 

jj'time, taken generally, by a instead of 4> and similarly, let us write 

b instead of the general variable 4j and let us use the suffixes 

a, n, r to denote the instants of departure, arrival and return. Then, 

if the (i^-clock is synchronous with the n:-clock, we have, by definition, 

ba = -l(ati-{-a,.), or 

for the ‘return’ at a maybe equally well considered as an arrival 

at that place. Now, if at the instant a^ the flash be sent again 

towards b, where it arrives at the instant b^., we have, by our above 

requirement, 

ha~ad = ^r-aa, 

and, by the last equation, 

^a~ ^a~ ~ 

But here b^ is identical with the instant of departure b^a, and, 

consequently, 

i.e. the clock placed at a is synchronous with that placed 
at b. Q.E.D. 

A similar treatment of assumption 2. may be left to the reader, 

who will find sufficient hints in Fig. 10. This assumption will be 

easily seen to imply that if a pair of flashes be sent out simultaneously 
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from one via b, c and the other via c, b, they will both simul¬ 

taneously at a. More generally, the time elapsing between the instant 

of departure and that of return of the light-signal sent round abca will 

be equal to the time elapsing between departure and return of the 

signal sent round acha, and similarly for every other closed path m 

S', both times being measured by the clock placed at a. 1 his oi m 

of the property attributed to the system S is worthy of being especially 

insisted upon, as it implies only operations to be performed at one 

and the same spot. To state this property of the system S, the 

observer has not to move from his place. 

Such then are the physical properties of this system of reference. 

It is strange that Einstein, after having made explicitly the above 

assumptions i. and 2., considers it necessary to add (p. 894) that 

‘ according to experience ’ the quantity 

ab 

or, in the notation of formula (i), the quantity 

ab 
(2) 

is to be taken as ‘an universal constant (the velocity of light in 

empty space).’ At any rate, if the last assumption is made, for any 

pair of points a, b in S, once and for ever, then the above state¬ 

ments I. and 2. are certainly superfluous. But considerations of 

this order need not detain us here any more. 
S.R. G 



In this way the various times, 4j 4j etc., originally foreign to one 

another, are all connected so as to constitute one time only, valid for 

the whole system, which we may denote simply by /, calling it shortly 

the S-time. 

There is, thus far, nothing essentially new in Einstein’s procedure. 

It was more or less unconsciously applied since people began to 

measure the velocity of light, and even sound, nay, since they began 

to exchange with one another letters or messages of any kind. The 

novelty does not come in until the next stage, when the time-labelling 

is extended to different systems moving (uniformly) with respect to 

one another. 
Let S be as above, and let us consider other systems of reference, 

S', S", and so on, each having wdth respect to 6* a motion of 

uniform {rectilmea)-) t?’anslation. Having settled the matter for the 

system S, i.e. having established the .S-time, f, let us similarly 

establish an .S'-time, an ;5'"-time, t", etc., and let us see how the 

times t', t", etc., are connected with the time t valid for ^S. It can 

reasonably be expected that these processes of (time-) labelling of 

events happening at different places, being undertaken from different 

standpoints, S, S', S", etc., will generally ')iot coincide with one 

another, e.g. that events obtaining identical Mabels may receive 

different /'-labels, and so on. Such, in fact, will be the case; the 

labels of different sorts, dashed and non-dashed, though none is 

privileged in any way, will have to be carefully distinguished from 

one another. In a word, it will appear that, with the above 

definition of simultaneity, no universal, no unique time-labelling is 

possible. 

It will be enough to consider explicitly, besides S, one other 

system only, say. S'. Supposing that a consistent time-labelling of 

events occurring at different places of S' or an 6''-time, is possible, 

like the above ;5-time, the question is, how is this time t' to be 

connected with the time /? We shall see that the connexion sought 

for will involve also the coordinates defining the position of points 

♦Which Einstein himself, in order to have a convenient name, provisionally, 

calls ‘ the stationary system.’ 
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pulse or wave of discontinuity is a spherical surface, of centre P 

and of radius 
r = cf, 

if t is reckoned from the instant of emission. Again, if P' is a point 

fixed in S\ and if the arbitrarily moving source emits a flash just 

when it is passing through P', then the wave, as it appears to 

observers rigidly attached to S\ will be a sphere wliose centre is 

permanently situated at P' and whose radius at any instant of the 

A'-time is 
r'=-ct', 

if f is reckoned from the instant of emission. .Such is, in virtue of L, 

the meaning of the principle of ‘constancy’ of light-propagation in 

empty space. Of especial interest i.s the particular case, in which 

our source is fixed at a point P' of the system S', and therefore 

moving uniformly with respect to S. In this case the centre of 

the spherical wave will, to the A'-observers, be permanently situated 

at the material particle playing the part of source, whereas for the 

A-observers the centre of the spherical wave, fixed in S, will detach 

itself from the material source, the source moving away from it 

with uniform velocity together with the w'hole system S'. This 

case will be made use of presently. 

Let us now return to the first of the above princiyfles, and let 

us remember how the time t, valid for the whole system S, has 

been defined. Since S has been endowed with physical properties 

required for a consistent method of time-labelling of events occurring 

at its various points, the same properties will, in virtue of L, hold 

also for S'. Again, local clocks satisfying the requirements of 

convenience, e.g. the causality-maxim, being possible in S, such 

time-keepers are, by L, possible also for various stations taken in S'. 

We can therefore consider first a time 4'> measured by a clock 

placed at a point a in S', then distant clocks placed at //, etc., 

leaving the task of testing their synchronism to observers attached 

to the system S', and repeating in fact literally all that has been said 

before with regard to the system S. In this way we should obtain 

out of the originally local times a unique time t' applicable to the 

whole system S'. Let us call the time thus constructed the s'-tlme. 

The question now is, how are the A'-time and the A-time con¬ 

nected with one another (and, possibly, with other things, viz. 

lengths or distances as measured by the S- and A'-observers) ? 



TIMES AND LENGTHS COMPARED lOI 

The answer to this fundamental question may be obtained, with 

the help of the two above principles, in a variety of ways. But for 

certain reasons the following way, though not the shortest, seems to 

me the most instructive to begin with.* It is, moreover, intimately 

connected with what has been said in the last chapter with regard 

to the MicheLson experiment. 

Let us imagine an A'-observer having at his disposal a point-source 

of light at a place P' fixed in the system S'. Let A' and B' be a 

pair of distant points also fixed in A', and such that the straight line 

P'A is in the direction of motion of S' relatively to A, and that 
'B' is perpendicular to that direction (Fig. n). As before, we 

shall call P'A' longitudinal, and P'B' transversal. Let /' be the 

tB' 

P' 

/ ° S 

Kifi. 

—--- 

length ’ of tlie first of these segments or the ‘ distance ’ from P' 

0 A, according to the estimation of the A'-inhabitants, and similarly 

' the length of the second segment. Suppose that our observer 

nds an instantaneous light-flash from P' towards A and receives 

; back at P' after the lapse & of the /'-time. 'Fhen, having assured 

imself by any means that an assistant stationed at A sends him 

ack his signals without any delay, our observer will write 

c 

Inder similar conditions, if he sends a flash towards f B' and 

* Einstein’s method of reasoning, as given in his original paper (§3, see also 
otes at the end of this Chap.) may be mathematically iiiLeresling, but does nol 
em to be the fittest when a clear discussion of the physical aspect of the (luestion 
aimed at. ‘ 

tTo avoid unnecessary difficulties as to hitting the receiving station, now /.•' 
d now A , it muU be best to imagine that our observer sends each time a full 
herical wave of discontinuity or a very thin spherical pulse. Thi.s will be 
md especially convenient when we come next to consider the same processes 
»m the i’-standpoint. ‘ 
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receives it back after the interval t' of the /'-time, he will put down 

the equation 
, 2/ 

~ £2 

There is, in fact, by the above principles, no difference between 

longitudinal and transversal light signalling between stations fixed 

in S', as observed by the inhabitants of this same system. 

Let us now see how each of the above two processes will be 

described by an observer attached to the system Y. Call the lengths 

or distances P'B', as estimated by the J?-observer, I and s 

respectively. Each of these is obtained by ascertaining, with the 

help of an appropriate number of synchronous /-clocks, which are 

the points of the b'-system, through which P' and Ji!, or P' and B' 

pass simultaneously, and by measuring the mutual distances of 

these points by means of an b-stairdard rod. Similarly, /' and s' 

are to be considered as the distances P'A' and P'B' measured by 

standard rods which the ^''-observers are carrying with themselves. 

Notice that, by Principle L, /' and s', thus measured, will be the 

same whether the system S', together Avith its observers, clocks and 

measuring rod.s, is at rest with re.spect to S or whether it moves 

uniformly Avith respect to that system, as it actually does. But /, s 

are not necessarily equal to /', s'. For although they are ‘distances 

of the same pairs of material points,^ the source and the receiving 

stations, they are not obtained by the same processes. Having 

thus explained the meaning of /, .r, let us consider, from the 

Y-standpoint, first the longitudinal and then the transversal signal¬ 

ling. The ^lash sent out by the luminous source Avill, according 

to Principle II., appear to the Y-observers in both cases as a 

spherical wave expanding with the velocity c and having its centre 

at that point P^, fixed in S, through which the source has passed 

when emitting the flash. Now, if v be the velocity of S' relative 

to S, the receiving station A moves aAvay from P^ with the uniform 

velocity v. If, therefore, be the Y-time required for the wave 

to expand from P^ to A, 

and 

In the same way, if B^ be the Y-time employed by the light 



I 

TIMES AND LENGTHS COMPARED 103 

o return from the receiving station* to the sending station jP', 

I’hus, the N-time 6 elapsing between the first appearance and the 

eappearance of a light flash at A\ being the sum of 6)^ and 6^, 

vill be given by 

e 2lc 

\ similar reasoning applied to the case of transversal signalling, in 

vhich case the sphericity of the wave will be found particularly 

:onvenient, will give us for the A-time elapsing between the appear- 

.nce of the first and second flash at A' the value 

T=2y-, 

,'here 7 = (i-/3-)~-, = 

Compare the last two formulae with the above ones for & and t', 

nd denote the ratio sjs' by a. .Then the result will be 

0 r s 
(3) 

here a is a number which for v = o becomes equal i, but i.s othcr- 

ise an unknown function of the data of the problem. 

Now, each of the two processes, i.e. the longitudinal and the 

ansversal signalling, may (by disregarding the receiving stations) 

e considered as phenomena consisting in a double appearance of 

flash at one atid the same station^ at the .same individually dis~ 

jrnible point A\ fixed in S'. Thus far we have, purposely, kept 

lese two processes separate. But now we can advantageously 

)mbine them with one another. If the receiving stations were 

losen so that s ■=1 ^ then we should have, by the first pair of 
rmulae, 

& = T, say = T, 

id if the two processes were started simultaneously, from the 

-point of view, they would also have ended simultaneously for 

e A'-inhabitants. In other words, we would have, in S\ a pair of 

This station A' (and similarly, in the case of transversal .signalling, the station 
) may be imagined to become an instantaneous point-source emitting a spherical 
ve at the moment when it is reached by the original wave. 

I 
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simultaneous events followed by another pair of simultaneous events,, 

all. of these occurring at the same place A'. Let us now require 

(what, as far as I know, is tacitly assumed by most authors) that 

III. lL'Ve?its locally* sim!/lta?ieous fo7‘ a?i S‘-observe7- should also 

be swiullatieous for the S-obse7‘ve7-s. 

This amounts to supposing that there is a 07ie-to-07ie co7‘7-esfo7ide7ice 

between the /-labels and the /'-labels to be applied to events 

occurring at any given place, ix. for fixed values of the coordinates 

x\ y, z' in S'. (The analogous one-to-one correspondence between 

x', j'', z and a;, j', z for /' = const, i.s tacitly assumed as a matter of 

course.) On the other hand, two events occurring at distinct places, 

being simultaneous in S', are generally ?w?/-simultaneous from the 

Y-standpoint. 
Now, in virtue of the requirement III., call it postulate or 

•desideratum, or whatever you prefer, the above two simultaneous 

processes or phenomena occurring at A' will also begin and end 

simultaneously for the Y-observers, so that 

^ = T, say = T, 

and 
0/^' = r/T'=r/r'. 

Consequently, by the equations (3), 

r/r' = a7 = a(i 

Ijl'=-ay~'^si s' —a. 
(4) 

These are the required connexions between durations and lengths, 

measured in Y and in S'. They are based on the above assumptions 

L, II., III., the last of which is certainly the most obvious. The 

common coefficient a i.s, thus far, indeterminate. If we are to endow 

(empty) space with homogeneity, as well as with isotropy,! and if 

it be granted that the relations between the Y- and Y'-measure- 

ments do not vary in time, the unknown coefficient a can depend 

only upon v=^c^. The only thing we thus far know about this 

* i.e. occurring at one and the same place. 

tBoth properties having been already attributed to it physically, t.e. as regards 

propagation of light, by 11. 
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function is that it reduces to unity for /5 = o, when S' is at rest 

relatively to A, when, in fact, both systems cease to be discernible 

from one another. Thus 

a~a(/3), a(o) = i. 

Notice that for zi^o we have also 7=1, so that in this case 2] /, x 

become, by (4), identical with T', s', as was to be expected. 

To put the relations (4) in words as simi)ly as possible, and to 

fix the ideas, let us assume for the moment a=i. 'I'hen 

Tlx, 

Thus, a transversal bar sharing the motion of S' will have the same 

length from the standpoint of either of the two systems S, S', whiki 

a bar of longitudinal orientation and of length /' in A' will, according 

to the estimation of the A-observers (with equal /-values for Ixjth 

terminals of the bar), be shortened to l-l's/s^S^, A solid fixed 

in S', which for the inhabitants of that system is a sphert; of 

radius T, will, according to the estimation of the A-observers, become 

a longitudinally flattened ellipsoid of semi-axes 

-T, R, R, 
y 

precisely as in the contraction hypothesis of Fitzgerald and I^oreiUz. 

It is a slightly different thing to say, instead of this, that a body 

which for the A-observers is spherical while at rest in A becomes 

flattened down to the above ellipsoid when set in motion wjth the 

translation-velocity v relative to A. The clause hinted at is in 

connexion with the manner in which the body is set from rest to 

motion and cannot satisfactorily be dealt with at this stage of our 

considerations. Again, as regards the ratio of times, remember 

that T is the A'-duration of a phenomenon or process going on at 

a place T fixed in A', ue. for constant a-',;/, 5'. I'his duration or 

time-mterval is then_lengthened in the estimation of the A-observurs 

o T=yT'We are assuming here, of course, that 
P<i, so that 7 is real and greater than unity. Instead of a [)air of 

flashes, as considered above, we may think of two consecutive indica¬ 

tions of an A clock preserved at R', and we may say that a clock 

moving relatively to A with the uniform velocity zf goes slower, in the 
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ratio \/i - fS- :x, than ‘the same’ clock when at rest in Y. This at 

least is the way that the leading relativists put the above result. 

^ The same ’ is taken to mean that the mechanism of the clock has 

undergone no changes due to its passing from rest to motion, 

except those which are implied by the fundamental relativistic prin¬ 

ciples themselves. This statement does by no means look satis¬ 

factory, but it can be made more rigorous and clear by returning 

to it after certain portions of relativistic physics have been 

worked out. The practically important question is, which are the 

physical systems w’e are going to consider as such clocks whose 

‘internal mechanism’ is not subject to changes due to their merely 

passing from rest to uniform motion relatively, say, to the earth or 

the fixed stars. Now, as far as I know, the prevailing tendency is 

to consider as such physical systems the various atoms (or at least, 

if they are to serve us for thousands of years, those which are 

not sensibly radioactive) with their ‘ natural ’ periods of vibration, 

manifested in their characteristic spectrum lines.* The influence 

felt by such minute mechanisms in the presence of a strong magnetic 

field (Zeeman’s effect) will not, of course, be forgotten. Who knows 

but that some remote future generations, to get rid of such physical 

influences, may choose to consider as ‘invariable’ the mechanism 

not of light emission but of radioactive disintegration of atoms. 

If such is to be the case, the formula T=yT' will be interpreted 

by saying that the ‘half-life’ of radium, which is about 1760 years, 

is in the estimation of a terrestrial observer lengthened by a month 

or so, when flashing before him with something like one hundredth 

of the velocity of light. 

We have already remarked in passing that two events occurring 

simultaneously in S' at places distant from one another will generally 

be non-simultaneous to the A-observers. This may be seen im¬ 

mediately by the principle of constant light-velocity, valid by I. for 

both S and S'. For let a spherical wave or a very thin pulse be 

started from our point-source placed at P'. Then, if /' = /, the 

arrivals of flashes at A and B' will be a pair of events simultaneous 

*Thus we read, in M. Lane’s Relaiivitaisprinzip^ second edition, 1913, p. 42: 
* In einem bewegten Wasserstoffatom (Kanalstrahlen) werden, zuin Beispiel, die 
Licht emittierenden Eigenschwingungen geringere Frequenz haben, als in einem 
ruhenden.’ 

As regards the experimental side of the subject, see J. Laub’s report in 
Jahrb. d. Rad. «. Elektrcnik, Vol. VII. p. 439. 
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D the Y-observers. On the other hand, the A-time required for 

he wave to reach A' will be 

Tp'A'= ’ ‘ c-v 

nd that to reach B' 

r,.,B = yy 

low, by {4a), and also by the more general formulae (4), 

'hence 

//j- = y-i/y/= l/y. 

P’A’ -Tp 'W '■ 

IBy 

'hus, the pair of events in question will not be simultaneous for 

le ^observers. Instead of the two particular points A\ B\ the 

'hole wave may be considered. I'hen it will be scon at oiK'c that 

le sphere r' = const, with centre F' will, to the A'-observers, be the 

Kus of points reached simultaneously by the wave, but not so to 

le ^observers. For to these the loci of simultaneously illuminated 

oints will be spheres centered at a point, /■*(), fi.xed in A, from 

'hich P' is continuously moving away. 

Thus, the notion of distant .simultaneity, to call it again by thi.s 

hort name, has no ‘absolute’ or universal meaning, but involves a 

pecification of one out of systems of reference. For suc.h is 

le manifold of the vector-values of their relative velocniy v, its 

bsolute value v amounting to one scalar, and its direclion to two 

lore. 

Let us now once more return to our formulae (4), with the view 

f deducing from them the relations connecting the A-timc and 

oordinates /, a-, y, z with the A'-time and coordinates w', y\ s'. 

ake the V-axis coincident in direction and sense with the .v-axi.s, 

oth concurrent with the vector v fixing the velocity of A' relative 

D A (Fig. 11),* and the axes of y, s', both transversal and per- 

endicular to one another, parallel to and concurrent with the axes 

f jv, s respectively. Count both the A'- and the A-timc from the 

*In that figure the systems S', S are represented as .sliding along one another 
nly to avoid confusion in the drawing, but in reality they are to be imagined as 

iterpenetrating one another throughout the whole (three-dimensional) space. 
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instant at which' the origins of the coordinates, O' and (9, coincide 
with one anQth'er, z.i?.'assume' " 

♦ , / ^ , 

as corresponding to ' 

t' — x ~y' = 5' = o, 

which is a-pure convention. The axes ofj'' and s' will then coincide 

at that ■instant with the axes of y and s. Let us fix our attention 

on. any'point P'{x,y', s') taken in S'. Then by the second of 

fovmulae (4), in which we have to write l=x-vf, 1'= x', 

Y = (x - -vt). 
a ^ ' 

and, by the third of those formulae, 

(5) 

(6) 

To obtain if as a function of x, y, s', /, notice first of all that 

events occurring at various points of a h-ansveisal plane {x = const.), 

being simultaneous in 5', are also simultaneous with one another 

according to the A-point of view. For if M\ N' be a pair of such 

points, and if M'N' = s', then a wave started at their mid-point C' 

at the instant t' -I s'jc will reach both Af and N' simultaneously, 

at the instant f. Again, from the ^'-standpoint, in our previous 

notation. 

Ta'^T‘ ~ Tc. Wj 

so that M' and N' will receive the signals at the same instant t. 

Thus, t is independent of j-', s', and consequently 

t~t{x', /'). 

Next, take a longitudinal pair of points, say P' on the a;'-axis and 

the origin O'. Call a;' the abscissa of P'. Imagine a wave started 

at the mid-point of O' and P' at the instant t' - \x'lc\ then the wave 

will reach O' and P' at the same instant /', and, by Principle IT 

and by the second of formulae (4), 

, , ,/ a. x' f 1 I \ 
t{x, 0 “ O =-(-;—) 

^ ' ' y 2 \c-v c+vj 
■ay-^x. 
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But, by the first of formulae (4)^4 by tl^ ab(^y^ .0’^yention as 

to the origin of time-reckoning ^ ^ 

tst{x', t') = ay(t' + j„x\ 

. ' 
which is the required connexion. Substituting here (5) 

and remembering that -i- ily-= 1, we shall obtain f' 

f=/(x\ ^')~ayU' + -^x'\ 

of /, a-. _ ^ 

Thus, the complete set of formulae connecting the S'- with the 

T-time and coordinates will be 

' 7 / 'I 'I x=--^{x-vn; y =~y; s =- 
a' ' a a 

Conversely, resolving these equations \vith respect to 2^, x, y, s, or 

simply copying (7) and using it to eliminate t from the first equation. 

= (xy ix' •+• Vt'') : y = ay ; 

t= ay^C 

Notice that, disregarding a, the set (9) follows from (8), and vice 

versa^ by simply interchanging x, y, 0, t with aq jy', 0', f and 

by writing - v instead of v. Now v being the velocity of S' 

relative to A, - v will be the velocity of S relative to S'* As 

to q it is common to both systems, and y(z;) = y( - z^) = (i - v^^jc'^Y'-. 

Thus, there is reciprocity betw'een the two systems of reference, 

except for the common arbitrary coefficient which is a"^ in the 

* In fact, what we call the velocity of S relative to S' is the vector whose 
components are the derivatives of x', j/', z' with respect to t', for constant z, 

that is to say, by (8), 
dx'__ ^ cfy'_ dz' _ 

dt'~~ dt' dt''~‘^’ 

and this is the vector -v. In exactly the same way, the velocity of .S" relative to 
S is the vector whose components are the derivatives of x, y, z with respect to t, 

for constant w', _y', s', f.e., again by (8), 

dx dy 

~dt~'^'‘ Tt 
o, 
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first, and a in the second set of formulae. As a matter of fact, 

there is a physical reciprocity anyhow, i.e. for any a = a{v\ subjected 

to the condition a(o)=i. For the conditions imposed upon the 

time-labellings in .S and in S', in order to make them self-consistent, 

will continue to be satisfied when all values of time and coordinates, 

in or in S', have been multiplied by a common factor; a“i in one, 

and a in the other case may be thrown back upon the choice of the 

units of measurement. Thus, the choice of a being a matter of 

indifference, we may take a= i. But, if not content with the physical, 

we require also a formal reciprocity, then we have to write 

a“^ = a, i.e. a-=i. 

But a(o)=i. Thus, if o.iv) is to be continuous, a= + i.* 

In this way we obtain the formulae of what is universally called 

the Lorentz transformatioii. 

x’^y{x-vt)-, y'=y; s' = z 

already met with in Chap. III. But here, as can be judged from 

the whole line of reasoning, the meaning and the role of this 

transformation are essentially different from Avhat they were in 

Lorentz’s theory, based as it was on the assumption of a privileged 

system of reference, the aether. 

Let us write also the inverse transformation 

x = y(x' + v/'); y=y'; 

(lo') 

The above postulate I., or the Principle of Relativity, may now 

be expressed in the concise and more definite form: 

I“. The laws of ■ physical phejiomena, oi' rather their viathe- 

inatical expressions, are invariant with respect to the Lorentz 

transformation, f 

*With regard to Einstein’s own treatment of this subject, and also that 
adopted in Laue’s book, see Note 1 at the end of the present chapter. 

tSome authors employ in this connexion the mathematically sanctioned term 
covanant, instead of invariant. But it will be convenient to reserve ‘covariant’ 
for another use, namely to denote that two groups of magnitudes are equally 

transformed. 
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That is to say, if a law Z, valid in N, involves—besides other 

magnitudes—X, j', s, t in a certain way, and if these are transformed 

according to (lo), then the resulting law Z', valid in S\ will involve 

V, y\ z, t' in exactly the same way. Any system S\ with its 

corresponding tetrad of independent variables, is as ‘legitimate' 

as S. The choice of one out of co ^ systems of reference moving 

uniformly with respect to one another is a matter of indifference. 

As regards the behaviour of the ‘ other magnitudes ’ involved in the 

laws, any attempt to elucidate it by general remarks in this place 

would be useless. We shall come to understand this point by and 

by when considering various applications of the above principle. 

And, with regard to the specification ‘ physical,’ it has, of course, to 

be taken in the broadest sense of the word. The phenomena in 

question may as well be chemical or physiological (though, for the 

present, physiology is far from being prepared to receive a theory 

of such a high degree of accuracy). Instead of ‘ physical phenomena' 

the reader can, at any rate, put theoretically: any phenomena which 

are at all localizable in space and in time. But subtleties of this 

kind need not detain us here any further. 

The principle of relativity excludes all such law's as are not 

invariant with respect to the Lorentz transformation. Thus, for 

instance, Newton’s inverse square law of universal gravitation, or 

even his general law's of motion, cannot stand in their original 

form, but require some slight modi6cations, if they are to be 

brought into line with the principle in question. But there is 

certainly no need to multiply such negative examples \ the reader 

can pick out at random as many cases as he w'ants, and he is 

sure never to hit a case wdiich does not contradict the principle of 

relativity. Maxwell’s equations for the ‘ free aether,’ also w'ith the 

supplementary term pp, and for “ stationary' ponderable media, are, 

as has been already remarked, in an exceptional position. But these 

electromagnetic equations will occupy our special attention in later 

chapters. 

Thus far we have had only one example of a ‘ law' ’ w'hich is 

proclaimed to be ngoronsly valid, with reference to S, namely the 

law of light propagation, as enunciated in the principle of constant 

light-velocity.* Thus, the true office of II. is to fix a particular 

case of a physical law w'hich is postulated rigorously to satisfy 1. 

* Notice that, in considering this law', we need not yet trouble about the 
electromagnetic, or any other, theory of light. 
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'rhis law then has certainly to be invariant with .respect to the 

Lorentz transformation. And .since this transformation has been 

obtained by means of the law itself, applied both to S and S', it 

can be foreseen without calculation that this law will prove to be 

invariant. In fact, this prevision may be verified at once. For the 

law in question states that if light be emitted at the instant 

by a point-source, placed at or just passing through a given point, 

which may be taken as the origin of the coordinates, O, then at 

any instant />o it reaches a spherical surface of radius r==cf and 

centre O, i.e. such that, x, y, z being the coordinates of that surface, 

+ (ii) 

Now, squaring the equations (lo) and adding up, we have, identically, 

^^-'2 + y'i + s'S _ ^ + .2 _ ^2^2^ ( j 2) 

and consequently also 

x'~+y^ + z'--c:~^'- = o. (11') 

d’hus, the law of light propagation, (ii), is invariant with respect 

to the Lorentz transformation. Remember that O' coincides with 

O for /=o, when also f' = o, and that, therefore, (ii') expresses 

for S' precisely the same thing as (ii) for S. Notice, moreover, 

that the law under consideration would be invariant with any value 

of a (not zero). For, then, we should have, by (8), 

+ .2 „ ^2^2 ^ a2(^^.'2 + y2 + ^'2 _ ^2^'2)^ 

and what we require is not so much the invariance of the quadratic 

function +y + as that of the equation (n). But having 

once decided, be it only for purely formal reasons, to take a=i, 

the property (12), which will in the sequel be often referred to, is 

worth keeping in memory. 

It may be expressed shortly by saying that 

x^+y^ + 2^--c-y^-, or 

is a relativistic invariant. Any function of this expression alone is, 

of course, again an invariant. But all of these count as one 

invariant. It is worth noticing that, on this understanding, there 

are among all functions of x, y, z, t no other invariants than 

A/" , 
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Tn what precedes we have used the integral form, (n), of 

(a particular Le of) the law of propagation. We might as well have 

used its differential form, pir (13) 

where may be thought of as any one of the rectangular conv 

ponents of a ‘light-vector,’ and where 

I 32 02 32 02 __ I 32 
[J ^ V2 _ ^2 3^2 

is Cauchy’S symbol, called also the Dalemtoertian. 'Fhc physical 

meaning of this famous differential equation is (among other things) 

that any element of a wave of discontinuity is propagated normally 

to itself with the velocity ^ (cf. Note 2). This then is the genera 

law of which the previous is but a particular case, corresponding 

to a particular form of the wave. Now, by (10), 

3 / 3 « ^ A • ^ - A • ; 
dy Sy’ 32 ds' 

c'dt "^Kcdt' ^dx'/ 

which proves the invariance of the differential law of the propagation 

of light in empty space. But since (13) involves further particulars 

not yet entered upon (embodied summarily in cj,) concerning light, 

the reader is recommended to keep rather to the above integral 

form (it), until we come to consider the relativistic properties of 

electromagnetic laws. Meanwhile he is asked to retain in memory 

solely that Dalembertian is an invariant as good as 

although the latter is a magnitude and the former an operator. 

Conversely, the Lorentz transformation may be obtained by 

postulating the invariance of the Dalembertian and by making some 

auxiliary assumptions (Note 3). But the above method of obtaining 

the transformation formulae seemed to me to be more suitable for 

bringing into prominence their physical meaning. 

Basing ourselves upon the Principles I., 11., and upon the 

obvious requirement III., we have obtained the formulae (4«) for 

the ratios of time-intervals and lengths as measured in S and S'. 

From these formulae the Lorentz transformation (to), and its inver.se 
S.R. H 
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(10'), followed almost iminediately. Now, it may be well to notice 

here how (4a) are to be obtained conversely from (10), (10'). The 

third of (4a) is identical with y—y, z = z. To obtain the first of 

formulae (4a), remember that it was valid for a point (any point) 

fixed in S'. Take therefore, in the last of (10'), ic' = const., and 

denote by A any increment. Then the result will be 

St—y A/', 

Similarly, remembering that the terminals of the segment I are to 

be taken simultaneous in S, take, in the first of (10), /=const. j 

then the result will be 

A^ = - Sx'. 
y 

Now, these are precisely the relations stated by (4a). Notice that 

the constancy or variability of the transversal coordinates y, z is 

a matter of indifference. As to the fact, mentioned on several 

occasions, that simultaneous events occurring at distant places in 

S' are generally not simultaneous in S, and vue versa, it is most 

immediately expressed in (10), (10') by the' circumstance that 

/ contains x' besides and similarly, that f contains x besides /. 

So long as v<c, or /3 < 1, the coefficient 7 is real and greater 

than unity, so that the duration of any process, local in S', is 

lengthened, to the A'-observers, 7 times or in the ratio r : (i - 

and any longitudinal segment Ax' is contracted to Ax'{i -(3^)^. In 

the critical case of 5:; = ^, or {3=1, we have 7 = 00. Then any finite 

duration A/' becomes infinite in S, and any finite distance Ax', as 

judged by the ^S-observers, dwindles down to nothing: the whole 

of S', with all the bodies sharing its motion, becomes a transversal 

flatland. Finally, for (3>i, i.e. when the velocity of S' relative 

to S exceeds the velocity of light or when it becomes what may 

conveniently be called a hypervelooity,* 7 is purely imaginary and so 

also are x, t for any real values of x, t', But, as far as I can see, 

this does not necessarily mean that motion with hypervelocity, of 

one body relative to another, is ‘impossible.’ It would, thus far, 

be enough to say simply that there is in this case no correlation 

in real terms between S' and S to be obtained by light-signalling. 

Notice that, from the <5-standpoint, any station P' can then succeed 

in sending light-signals only to points contained in a certain back- 

*The Germans call it ‘ Ueberlichtgescbwindigkeit.’ 
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cone, so that, according to that standpoint, no such station can ever 

receive back any of its signals, and that therefore the whole of our 

previous reasoning ceases to be applicable to the case in question. 

In what sense hypeiwelocities are, or by what reasons they may 

be required to be, ‘impossible,’ will be seen from the physical 

applications of the principle of relativity. 

For the present, and for what follows, we shall simply assume 

v<c, 

considering only now and then the limiting value v^c. 

To touch the other extreme, let us suppose that v is a very small 

fraction of c. Then, neglecting yS^-terms, and limiting ourselves 

to such values of x as are not enormously great compared with 

ct, we obtain from (10) the Newtonian transformation (Chap. I.) 

x=x-vt-, y=jv; z' — z; 

Or, if we like, we can say also that, if 00 is taken instead of the 

Lorentz transformation reduces to the Newtonian transformation. 

Just as the equations of classical or Newtonian mechanics were in¬ 

variant with respect to the Newtonian transformation, so are the 

fundamental laws of optics and (as we shall see later) of electro¬ 

magnetism invariant with respect to the Lorentz transformation. 

Let us call the principle associated with the former the classicai 

principle of relativity, and that corresponding to the latter of these 

transformations the nezv principle of relativity. Then it is obvious 

that we cannot have both, retaining the classical principle for our 

mechanics and using the new one for our electromagnetism. For 

if .S' be a particular system or space-framework of reference in which 

the laws of both classical mechanics and electromagnetism are valid, 

then, among all the systems moving with respect to it with uniform 

velocity, no other would have this property,* In other word.s, the 

system S would be privileged, being the system for both classc.s 

of laws, whereas, according to the general principle of relativity, 

t.e. according to I. taken by itself (without yet touching IL), none 

of the manifold of 00» systems moving uniformly with respect to 

one another is to be privileged, equal rights being claimed for all 

of them with regard to any physical phenomena. I’hus, if wc are 

* Supposing, of course, that the inhaljitants of each 
only of otie set of coordinates and time. 

system avail tlnemselves 
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to construct a truly relativistic theory at all, we can have but one 

Principle of Relativity, that is to say, one at a time. (It may well 

happen that the next, or even the present, generation will have to 

give up the ‘new’ principle for a yet broader one.) Now, Hertz’s 

and Heaviside’s attempts to extend the classical principle of relativity 

to the domain of electromagnetism proved a complete failure. And 

since, for the time being, tertmm 7ion datur, the ‘new’ principle, 

involving the Lorentz transformation, has become the principle of 

relativity of modern physic.s. In this connexion it must not be 

forgotten that electromagnetic and especially optical phenomena 

have been known all these years with a much higher degree of 

accuracy than the various instances of motion of material bodies. 
No wonder, therefore, that the physicist has so easily decided to 

mould his mechanics and thermodynamics according to a principle 

which sprang out from optical and, generally, electromagnetic ground. 

This is not to say, of course, that mechanical and all other pheno¬ 

mena must be ‘ ultimately ’ electromagnetic, i.e. that everything must 

be explained by, or reduced to, electromagnetism. The theory of 

relativity is not concerned at all with such reduction of one class 

of phenomena to another. It does not force upon us an electro¬ 

magnetic view of the world any more than a mechanical view. Quite 

the contrary; it opens before us a wide field of possibilities of 

asserting that even the mass of a free electron, say a y8-particle, must 

not be entirely electromagnetic. 

Like the Newtonian transformations, the Lorentz transformations, 

generally with the inclusion of pure space-rotations,* constitute a 

group, that is to say, two of such transformations applied successively 

one after the other are equivalent to a single transformation, which 

is again a Lorentz transformation. In the case of the Newtonian 

transformation, if V;^ be the velocity of S' relative to S, and V2 the 

velocity of S" relative to S', the vectorial parameter v of the 

resultant transformation is simply the sum of the parameters of 
the component transformations, i.e. v=V;,-|-V2. The parameter 

of the resultant Lorentz group is a more complicated function of 

the parameters of the component transformations, thus leading to a 

more complicated rule of physical addition of velocities, which will 
be given in the next two chapters. Only when the absolute values 

of V-,, Vg are small compared with the critical velocity, does the 

familiar rule of composition of velocities reappear. Classical kine- 

*This reservation will become clear in Chapter VI. 
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matic is but a limiting case of modern relativistic kinematic. So 

are also most of the remaining branches of mechanics and generally 

of physics. For slow motion the reader will recognise throughout 

his good old friends in this new and strange land of relativi.stic 

connexions. 
To close this somewhat lengthy chapter on the foundation.s of 

the theory of relativity, one short remark more. Einstein’s re.siilts 

concerning electromagnetic and optical phenomena will I)e seen 

to agree in the main with those which have been obtained by 

Lorentz in his generalized theory, the chief difference being (to 

quote Lorentz's own words, Columbia Uuive7'sity Lectures^ p. 230) 

that Einstein simply postulates what Lorentz has deduced ‘with 

some difficulty, and not altogether satisfactorily, from the fundamental 

equations of the electromagnetic field. By doing so, he may cer¬ 

tainly take credit for making us see in the negative result of 

experiments like those of Michelson, Rayleigh and Brace, not a 

fortuitous compensation of opposing effects, but the manifc.station 

of a general and fundamental principle. ... It would be unju.st 

not to add that, besides the fascinating boldness of its starting point, 

Einstein has another marked advantage over mine. Whereas I 

have not been able to obtain for the equations referred to moving 

axes exactly the same form as for those which apply to a .stationary 

system, Einstein has accomplished this by means of a .system of 

new variables slightly different from those which I have introdiuaal.' 

(As to these slight differences, cf. Note 86 to Lorentz’s Lectures.) 

We see from the above quotation that Lorentz himself aimed at 

an exact sameness of form of the laws of all, or at least of electro- 

magnetic, phenomena for a pair of systems moving uniformly with 

respect to one another. Why then not postulate this samciu:s.s 

at once? But Lorentz had not the heart to abandoir the aether 

which he confessedly ‘cannot but regard as endowed with a certain 
degree of substantiality.’ 
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NOTES TO CHAPTER IV. 

Note 1 (to page no). Einstein, AfZ7t. d. Physik, Vol. XVII., 1905, §3, 
obtains the formulae of transformation (10) in the following way ; 

Let, to use our notation, x, y, z, t be the coordinates and the time in S, 
and V, y, z\ t' those in S'. Write 

^=x — vi; 

then to a point fixed in S' corresponds a system of values of j, 3 
independent of /. To obtain t' as a function of y^ z, Einstein considers 
a signal sent at the instant /(,' from the origin O’ along the axis of x! 
towards the point where it arrives at the instant and, being reflected 
there, returns to O' at the instant 4'. Then, according to the definition 
of synchronism, {id), p. 95, which is to hold equally for S' as for S, 

Y=^(4' + 4')> 

i.e. filling in the arguments and applying the principle of constant light 
propagation, 

t'{o, o, 0, /) + /'^o, o, o, o, o, 

whence, for an infinitesimal 

'di' , V 'dl _ 

Applying the same reasoning to signals sent along the axes of y or z, 
Einstein obtains 

'df 'di' ■^=0, g~=o, 

and, assuming i' to be a linear function of its arguments, 

where is thus far an unknown function of v, and where i'=o has 
been put at O' for i=o. 

Next, to obtain from the last equation x',y', z' in terms of x, y, z, t, 
Einstein writes the principle of constant light-propagation in S'. A 
signal started at O' at the instant t'^o reaches at the instant f a point 
of the positive .a:'-axis, for which 
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But the same process, if considered from the S'-standpoint, gives 

^=it{c-v). Thus 

Similarly 

where t=y{(P‘-v^Y^, ^=0. Thus 

y = cli(v)yy 

and s' = 4>(v)y3. 

Consequently, writing again ^=x-z't, and throwing the common 

factor y upon 4>{v), 

x'=^{v).y{x-vt\ y = <^{v).y, z' = ^(v).s, 

/'^cjy(v).y(^^-~xy 

These are identical with the formulae (8) of the present chapter, for 

<jf>(i/)=i. The way that Einstein obtains the particular value (l)(y) = i 

{Joe. cit. pp. 901-902) need not detain us here. We know that the value 

of such a common coefificient is essentially, from the physical standpoint, 

a matter of indifference. 
As to Laue {Das RelativitdtsJ)rinzip, 2nd edition, p. 38, etc.), his 

method of obtaining the Lorentz transformation consists in postulating 

the invariance of the ‘wave-equation’ 

and in assuming linearity and symmetry round the axis of motion, 

i.e. in writing 

x'=-k{v) .{x — 'vt), y~X{v).y, 3''=X(w) .S'I 
I ('*) 

i' = }i{v).t — v{v).x, J 

where k. A, ju, v are functions of v alone. These functions are then easily 

determined from the postulated invariance which Laue writes 

where a is again an unknown function of v alone. The value of A is 

easily shown to be equal to unity, by requiring reciprocity, /.<?. 

y = X{-v).y, z=X{-v).z', 
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and by remembering that ‘for the j/- and ^-directions it is exactly the same 

thing whether 5' moves relatively to ^ in the positive or in the negative 
sense of the x-axis,’ so that X.(v)=^X.{-v). Thus y=j, and, by 

(0, « = //.= =y, v = ~y. Substituting these values in (a), Laue 

obtains the required formulae (lo). The discussion of Laue’s method of 

obtaining for a the particular value i, rather than any other, is again 
left to the reader. 

Note 2 (to page 113). Let the function (jt, satisfying the equation 

be continuous, as well as its first derivatives 'd4>/df, 'd^l'dx\ 
etc., that is to say, let 

W]=o. 

but let the derivatives of the second order, 'd^cj)/?ix% etc., 

experience a discontinuity at the surface <r. Then, u=ini+in.j.->r'k.n^ 

being the normal of any surface-element <rfcr, at the instant t, the identical 

conditiom and the kinematic conditions of coinpatibility, expressing that 

o- is neither split into two or more surfaces, nor dissolved, at the next 
instant t-ydi, are (cf. Ann. der Physik, Vol. XXIX., 1909, p. 524) 

where I3 is the velocity of propagation, along n, and A a scalar 

characterizing the discontinuity. Now, n being a unit vector, 

[VV]=A, and 

whence lb|=i‘. Q.E.D. 

In electromagnetism f/> has in turn the meaning of the components 

of the electrical and the magnetic vector, and the se^tse of propagation, 

±n, follows from the mutual relations of these two vectoi's. 

Note 3 (to page 113). Postulate the invariance of the Dalembertian, i.e. 

and assume 

y=x, 

or make any set of plausible assumptions leading to this. Then 

32/0y 2=^ 02/0^2 32/3^2^ 

I 02 _ 32 32 

''dx '2 c 2 3/2 

and 
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Instead of x, t introduce new independent variables 

^=:^X-Ct, 

Tj—X+Ct, 

and similarly, for the system 5', 

7] —x' + 

Then the required invariance will assume the form 

02 _ 3‘-! 

Now, considering t) as functions of ivithoui assuming their 

linearity, we have 
9 9 3 

02 9^' W 92 , 977' 977' 92 , /9f 977' , 9^' 'OrA 92 

• 9|-'2+^ ^ • 0^2+- 

, 92^' 9 9277' 9 
+9p'77'9f' + 9^97/-SV* 

Thus, by (a), 
92f _ 3277' 

9|'977~°’ 9^'97p°’ 

9f 9f 977' 977' 
#■977“°’ -9^'977 ^°’ 

077 077 

To satisfy the third of these conditions, put 

then the fifth will become 

9^' 92^_ 
df 9r/ ” 

so that the only possibility of fulfilling the fourth condition consists in 
taking 

977' 
^=0. 

Thus, 
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I 

Hereby tire first and second of the above conditions are identically 
satisfied, and the fifth becomes 

drj' 

' dy) 
— r. (0 

[An alternative solution would be and dTj'jdyj — o, i.e. 

with {d^'jd7j).{dy]'ld^)=i ; but this may easily be shown to 
lead substantially to the same final result as the above one.] Now, for 

we require _r'=o, i.e. 
x—vt=c^t, 

[^/(/3 - I)] + ?7' [^/(/? +1)] = o, 

for every thence, differentiating with respect to t, and supposing v 
constant.^ 

and, by {b\ 

where both square roots are to be taken with the same sign, namely the 

positive (since etc., for/?=o). Here (), in the differential coefficients, 

means ‘for x^vf •, but since ?/ depend only on 77 respectively, these 

formulae are valid for any arguments. Hence, integrating, and remember¬ 
ing that for x=t=o, i.e. for £ = 77 — 0, we require ^'=77'=o, 

This intermediate form is worth notice, since it shows at once that 

i.c) 

i.e. — — 

Introducing again the values of £, etc., in terms of j.-, etc.,(i‘) are readily 
seen to be identical with the required formulae 

xd=^y{x-vt\ = 



CHAPTER V. 

VARIOUS REPRESENTATIONS OF THE LORENTZ 

TRANSFORMATION. 

Passing now to consider the various expressions of the Lorentz 

transformation, which was seen to be fundamental for the wliole 

theory of Relativity, let us first of all deprive the A'-axis of its 

(formal) privilege and write (lo). Chap. IV., symmetrically in a-', j, s, 

or, using vectors, avoid splitting into Cartesians altogether. Thi.s is 

done in a moment. In fact, remembering that our axis of x was 

longitudinal, and those of y, s transversal, and calling r the vector 

drawn from 0 to any point in S, and r' its ^-correspondent, we 

can write the first of (lo), 

(r'i) = 7[(ri)-z^/], 

where i is the unit of vf similarly the second and third, 

r' - (r'i)i = r- (ri)i, 

and, finally, the last of (lo). 

To obtain the full vector r' combine its transversal and longi“ 

tudinal parts, and to get rid of the new letter i, write (ri)i {nr)yr/v^. 

Thus, the concise vectprial form of the Lorentz tran.s’formation, 

exhibiting its independence of the choice of coordinate axes, will be 

r =r-l- 
y-I 

(vr)-7^ 

= I (vr)]. 

V 

(0 
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Here v is the velocity of S' relative to S, and 7 = (i - l^ = vlc, 

as before. 
To suit the iion-vectorial reader we may again split (i) into 

Cartesians. But in doing so, let us this time take any set of 

mutually perpendicular axes x, y, s, for S, which are also to be the 

axes of x', y', z, x", y", z", etc., for all other systems S', S", etc., 

moving uniformly with respect to one another. Call Vy, the 

components of v taken along these universal, but quite arbitrary, 

axes. Then, projecting the first of (i) upon these axes and re¬ 

writing the second of (i), the required symmetrical form will follow, 

VIZ. 

x' = X -1- 

y =y + 

z' = z + 

7-1 

7-1 

(rv) - 7/ 

(rv) - y/ 

(la) 

where (rv) may be looked at as an abbreviation for X7j^ -hyvy-hzvi. 

The inverse transformation is obtained by transferring the dashes 

from x', y, z, t' to a:, y, z, t, and by changing the sign of v, that is 

of Vx, ®j/} • 

On the other hand, to condense the vectorial form (i) still a 

little more, observe that r enters into the first of (1) by the 

expression r + —v(vr) only. Introduce therefore the Ihiear vector 

operator 

e=H-^-^v(v . (2) 

Then the Lorentz transformation will be expressed by 

r' = er - vyt 

t' = y[t~^,{xv)']. 

Write again, for a moment, v/z; = i, and let j, k be a pair of unit 

vectors normal to one another and to v. Then (2) may be written 

€ = 7i(i-t-1-i(i, or, i being the ‘ idemfactor,' t.e. i(i-l-j(j-t-k(k, 

€ = 7i(i-t-3(j-t-k(k . 
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This is called a dyadic.* Considered as an operator it is a 

symmetrical linear vector operator, so that if A, B be any pair 

of vectors 

(A..B) = (B.,A). (3) 

But the operator e may be described most immediately by calling 

it a longitudinal atretcner, since it stretches or magnifies 7 times any 

longitudinal vector, i.e. any vector parallel to v, and leaves unchanged 

any transversal vector. According to the usual terminology, 7 would 

be the ratio of this stretcher. 

Observe that v enters into e through 7 only, i.e. quadratically. 

Thus, the inverse transformation will be 

r = 6r' +V7/' 

/=7[/' + l(vr')]. 

The above form of the Lorentz transformation, involving (one 

vectorial parameter v or) three scalar parameters Vy, Vg, is 

especially useful when there are more than two systems, A, S\ S", 

to be considered, and when the velocity of S" relative to S' is not 

parallel to that of S' relative-to S. 

But before proceeding further let us yet dwell a little more upon 

the properties of the sub-group contained in (ih), Avhich involves 

one scalar parameter only, and which covers the particular case of 

parallel velocities. This case is especially interesting and instructive 

as illustrating a fundamental theorem of Lie's theory of groups of 

transformationsf and as preparing the way for a subsequent form 

of the Lorentz transformation, adopted for illustrative purposes by 

Minkowski. 

Measuring x, and x'., along the direction of motion of S' relative 

to A, write again, as in the last chapter, 

x=y{x-vt\ t'-=y(t~~xy y =y, z' = z,t 

*Cf. for instance my Vectorial Mechanics, London, Macmillan & Co., 1913, 

p. 97. The dots used there as separators are here replaced by ( . Thus er means 

yi (ir) + j (jr) + k (kr) = yhc+iy + iLz. 

t Theorem 3 in Vol. I. of S. Lie’s Theorie der Transformationsgruppen, 

Leipzig, 1888, p. 33. See also the whole of ‘ Kapitel 3. iSmgliedrige Gruppen 

und infinitesimale Transformationen,’ Ibidem, p. 45. 

JThat these transformations form a gi'Oti-p, and that therefore Lie’s theorem 

must be applicable to them, is easily seen. In fact, if is the velocity of S' 
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and differentiate x', y, s', with respect to the parameter v. Then, 

denoting dyjdv by y, 

dx' y , ^ df ./ V \ y 

and using the inverse transformation x = y{x yvt'), etc.. 

dx 

dv \y 

y^V\ t 7V; 
dy dz' 

■V) 
X “ -^ = 0 i dv 

dt' (1^ 72z/N t 7^ , 
t —^x. 

dv ~ \7 

(4) 

(5) 

To see that this is precisely the form corresponding to Lie’s theorem, 

which, writing a instead of v, and Xi{i— i, 2, 3, 4) for x, y, z\ t\ 

would be 

we have to remember only that 7^ = (i -P = vlc, so that 

(6) 

and consequently 

7/7 — y^vjc’^ — o, 

relative to 6”, and that of S" relative to S' being taken from the ^'-point ot 
view and from the ^'-standpoint), then we have 

and 

nr'=7i(a--V), = /=J. = ^ 

x" = y.,[x’-v./), ^"=7o(^'-^Lr'), /'=/,• s" = .', 

and substituting the first in the second, we obtain at once 

x"=y[x-Vt), f-y(^t~'^^, y"=zy, z"~Z, 

which is again a Lorentz transfonnation like each of the above ones, namely 
with the parameter (velocity of S" relative to S) 

Wl +Vt2 
v=—- 

Ta-?!a 

This formula embodies the simplest case of Einstein’s ‘ addition-theorem ’ of 
velocities, which will occupy our attention in the ne.xt chapter. 
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identically. Thus, the differential equations (4), (5), with the 

omission of the obvious dy fd7i~dz ldv~o, become at once 

or, writing 

where l = ^ - i. 

dx 

dv 

dt' _ 7^ , 

dv 

l'=^LCt\ and similarly l=LCt^ 

dx' 

dv 

dJ' 

dv 

(7) 

(8) 

(9) 

Here, the coefficient on the right side being in both equations the 

same known function of v, the idea easily suggests itself to introduce 

instead of v the new parameter 

i.e. 

I f” , f» dp 

w = arctan (i/8). (10) 

With this new variable the above equations become 

dx' _ _ dl' 

d(i> ’ d()> 
(qa) 

Using the well-known general integral of these simple equations 

and remembering that for /? = o (t.e. for (o = o) /'««/, we 

obtain the remarkable expression of the Lorentz transformation; 

x' = X cos (0 -t- / sin w; y' ~y; z' = z 

r = lcos oj - or sin w, 

which was first given by Minkowski, who made it his starting point.* 

Thus, the Lorentz transformation may be described as a 

rotation^ in the fonr-dimensional space x^ y, z, i, through an 

imaginary angle (o in the plane x, /, or Wound the plane' y, z. 

*H. Minkowski, ‘Die Grundgleichungen fLlr die clektromagnelischen Vorginge 

in bewegten Korpern,’ Gbttinger Nachrichten, 1907 ; reprinted in ‘ Zwei Abhand- 

lungen liber die Grundgleichungen der Elektrodynamik,’ Teubner, Leipzig, 1910, 
p. 10. 
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That the transformation in question is a pure rotation, i.e. without 

change of ‘length,’ {x‘^ + + z- +1'^)^, is best seen from (9a), which 

give at once 
d 

d(o 

showing thus the invariance, already noticed, of x‘^ + P, and con¬ 

sequently also of x^+y^ + z^ + r-. Notice that the above rotation 

0) is an imaginary Euclidean rotation in x, y, z, /, or, which is the 

same thing, a real non-Euclidean (Lobatchewslcyan) rotation in 

the space x, y, z, ct through an angle p connected with w by 

tan CO = i tan i/'. (12) 

We shall soon have an opportunity to return to this real angle, 

which, according to (10), is defined by 

tant/' = /?. (13) 

Let again Vj be the velocity of A' relative to S, and V2 that of S" 

relative to S', the former from the A- and the latter from the A'-point 

of view. Then, if and Vo be parallel to and, say, concurrent 

with one another, the corresponding rotations are 

(Oj = arc tan {i^i) 

round a certain plane, in the four-dimensional space x, y, z, /, and 

(O2 — arc tan 

round the same plane. (In three dimensions the rotation is round 

an axis, or line, in four ‘round a plane,’ t.e. leaving fixed a whole 

plane instead of a line.) Thus, the resultant rotation, corresponding 

to the passage from the A- to the ^''-variables, will be 

0) ~ -|- 10.2 . ( ^ 4) 

Not the velocities themselves are added but the corresponding 

angles of rotation. 

To verify the last formula, call v = c/3 the resultant velocity, corre¬ 

sponding to w. Then 

= tan (D = tan -1- cog) = 
/^i + /^2 

1 +^]/?2’ 

© = • 

or 
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Now, this is but a particular case (cf. footnote on pp. 125-6) of 

Einstein’s general formula for the composition of velocities, to be 

fully considered later on. 

Since the sub-group under consideration contains the identical 

transformation, namely for v — o or w = o, it must be po.ssiblc, 

according to Lie’s Theorem 6 {loc. cit. p. 49), to represent it a.s a 

^group of translations^^ i.e. by 

In fact, by (ga) we have the simultaneous system 

dx‘ 
r' 

dy' ~ dz' ~ o. 

with the initial conditions x' — x, y'~y, z' — z, V 
Whence 

^-1 + 1'2 _ ^2 4. /2 _ ^2^ 

and 
dl' 

-:j^zpr 

: /, lor (0 

Thus, we have only to write 

4l = (:V’+ /*)»: = arc sin 
/ 

and the Lorentz transformation will assume the reciuired canonic 
form 

(t=1,2,3); </b' = ‘/b ■“ w. (16) 

The mterpretation of this simple result, and especially that of the 
meaning of is left to the reader. 

We shall now pass to a remarkable and instructive grapliic 

representation of the Lorentz transformation, due to Minkowski.* 

Minkowski calls a space-point at an instant of time, i.e. the whole 

tetrad of values a;, y, z, t, a world-point (Weltpunkt), and the four- 

dimensional manifold of all possible systems of valuc.s x v " t the 

world (die Welt)._ Thus, a point of the world represents a material 

or, in Minkowski’s terminology, a ‘substantial’ particle at a certairi 

instant. Suppose that the particle can be recognized and watched 

Minkowski, ‘Raum und Zeit,> lecture delivered during the nwetinr. of 
the Naturforscherversammlung’at Cologne. 1908, ^ v, ', V 
p. 104, 1909. reprinted, with a preface by A. GuJuer bv B C T i ’ 
Leipzig and Berlin, 1909. ■ vjuumer, iiy li. j eubuer, 
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during its whole history. Then a one-dimensional continuum, con¬ 

tained in the four-dimensional world, may be constructed, whose 

element has the components 

(Ac, dy^ dz, dt 

along the space- and time-axes, and which represents the history 

of the particle. This line, whose points may be uniquely referred 

to the parameter say, from - co to -t- co, is called a •world-line 

(Weltlinie). Thus the whole world would consist of a maze of such 

world-lines, and the physical laws would find ‘their most perfect 

expression in the mutual relations obtaining between these world¬ 

lines.’ This, of course, can be only an ideal task, and 

in putting it before the eyes of physicists and mathematicians, 

Minkowski, no doubt, was very well aware how far we are from its 

accomplishment. 

If instead of a particle or substantial point we have a body of 

finite space-extension, then drawing through each of its points a 

world-line, we shall obtain a tubular portion of the four-dimensional 

world, which may be called a worid-tutoe. In his previous paper, 

of 1907,* Minkowski calls it a space-time filament. The utility 

of the conception of a space-time filament or tube in mechanical 

problems and those concerned with the motion of electrons is 

obvious. 

The world-line of a particle will in general be curvilinear, e.g. for 

any non-uniform motion, whether the particle’s path or orbit in 

ordinary space be curvilinear or its velocity be changing in absolute 

value. But if the particle is moving uniformly, with respect to a 

given system A {x, y, z, then its world-line will be a straight 

line, which means only that the corresponding equations obtaining 

between the four variables will be linear. In particular, if the 

particle is at rest in A, then its world-line will coincide with the 

/-axis, this axis, as also the axes of x, y, z, being considered as 

straight lines in the four-dimensional world. 

The complete representation cannot of course be given, either 

by a plane drawing or by a three-dimensional model, t But this is 

no serious objection against Minkowski’s metho*d. For, first of all, it 

Gnmdgleiclmngm ftir die elektroniagnetischen Vorgdnge, p. 47* 

i'For a remarkable attempt to obtain a geometrical image of Minkowski’s 

world by means of systems of spheres see a paper by H. E. Timerding in 

Jahresbencht der deutschen Math. Vereinigiing, Vol. XXL 1913, p. 274. 
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is very advantageous, especially for the trained geometer of our days, 

even merely to think and to speak about these relations in terms of 

four-dimensional geometry. And then we can help ourselves by 

taking various sections of the four-dimensional world, by constructing 

three-dimensional models {■x,y, t, oxy, z, t, etc.) or, still better, plane 

drawings in t and one of the space-axes. 

It is such a graphic representation that we are offered in 

Minkowski’s inspired lecture. 

Let B-^OB (Fig. 12) be the axis of ct, and A-^OA that of a'.* 

Draw the straight line OL bisecting the right angle A OB, This 

line would represent the world-line of a particle moving uniformly, 

Fig. 12. 

along the axis of a, with the velocity of light c. Now, according 

to one of the assumptions of the theory of relativity, the velocity 

of any particle is always smaller than or at least does not exceed 

Consequently no world-line will be steeper than, or even as steep 

as, L^OL or JST^fiN. Every world-line passing through O, ie 

belonging to a particle for which a = o at the instant ^*>0, is entirely 

confined to the region consisting of Z<9iF and BOJV,. For to 

penetrate into LON, or NOL,, the particle would have to mive 

at least during a certain part of its wandering, with a hypervelocity! 

no^el^aboitlt^ novel about it. It is fannhar to everybody from elenienhii-u («v.i 1,1 ^ 

mechanics by the name of a ‘displacement curve.’ J!" 
application to relativistic connexions has been a happy idea, ^ 
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Let OB' be a world-line representing a particle in uniform motion 
with velocity v=c(i. Then 

tan = /3, 

where ^ is the angle BOB'. Notice that our previous angle w 

endowed with the remarkable additive property with regard to the 

composition of parallel velocities, is connected with this real angle 

BOB' by tan oj = i tan By what has been said above, the absolute 

value of the trigonometric tangent of this angle is smaller than unity, 

I tan )/' I < I. 

Now, to obtain a representation of the Lorentz transformation 

from S(x, t) to the system S'{x', t') attached to our uniformly 

moving particle, draw the hyperbola 

X“-c‘^t-=-i 

and the conjugate hyperbola 

(i8) 

of which the previous LijOL., N-yjON^ given by 

a;- —= 

is the common pair of asymptotes. 

In order to represent the particle as being at rest, i.e. in order to 

pass from ^ to S', talce OB', instead of OB, as the new axis of 

time, that is to say of ct', and as the axis of x' a straight line OA, 

such that 
LOB'^LOA' 

or 
AOA'==BOB' = xf^, 

and, instead of OA and OB, the segments OA' and OB' as the 

units of x' and cf, as explained in Fig. 12. The obvious proof 

that this is equivalent to the Lorentz transformation x' = y(x -v/), 

t' =^y{t-vxlc^), is left to the reader. Notice further that, by con- 

.struction, OA' and OB' are conjugate semi-diameters of the hyperbola 
^2_^3/2_ _ as were also OA and OB. 

Thus, the Lorentz transformation consists in passing from .one 

to another pair of conjugate serai-diameters of the hyperbola 

- I and in taking their lengths as the new units for 

X and ct.^ 

*IIere, as before, x, that is to say x for ..S’ as well as the new x' for S', is the 
coordinate measured along v, the velocity of S' with respect to S. 
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The new and /-axes are obtained by turning each of the 

old ones, towards or away from the asymptote OL, through tlie 

angle 
i/' = arc tan p, 

not exceeding 45°. 

Since is invariant with respect to the Lorcnty. trans¬ 

formation, the asymptotes L-^OL and and the liypeibolac 

are fixed, i.e. remain always the same no matter whether a-, / or a-', f 

or x\ t'\ etc., are chosen as variables. The same property belongs 

of course to the whole system of hyperbolae 

— C^t^= ~ K“ 

and of the conjugate hyperbolae 

tvhere i< is any real number. The asymptotes may be c;on.siderccl 

as a particular, limiting case of these curves, corresponding to i< o. 

The reader is recommended to compare the case under con¬ 

sideration with that of an ordinary rotation of a plane, say x, _r, in 

itself, when = is invariant, giving circles, instead of 

hyperbolae, as permanent paths of the points of the plane, and 

a single fixed point k = o instead of a pair of straight line.s. In 

connexion with this remark hyperbolic functions may convenitinLly 

be introduced, to replace the ordinary sine and cosine. ^Vriung 

tan i/'= tanh a, (20) 

Pig. 12 will easily lead to the formulae 

X ~ X cosh a — ct sinh a ) 

ct' = ct cosh a- X sinh a, j 

which agree with (ii), since, by (20) and (12), 

w = ta. (22) 

Remember that, by the definition of the hyperbolic function.s, 

sinh a = - tsin(ta), 

cosh £Z = cos (ta). 

Notice that, the region of OB' being LONp’ a time-axis can be 

For positive values of /, and for negative values of and .similarly as 
regards LON-^ when the ar-axis is in question. 
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drawn from 0 througli any world-point situated in this region, that 

is to say, through any point for which 

< o. (23a) 

Similarly, the region of OA' being LOJSf-y^ an x-axis can be drawn 

through any world-point for which 

x^ - > o, (233) 

so that any of such world-points can he made simulta?ieous with 0. 

This is an eminently characteristic feature of the new doctrine as 

distinguished from the old system of physics in which simultaneity 

was an absolute property of events, independent of our choice of 

a standpoint. It is plainly an immediate consequence of the reform., 

of the concept of simultaneity introduced by Einstein. Pairs of 

events are or are not simultaneous according to the choice of our 

standpoint, i.e. of one out of an infinity of legitimate systems 

S, S', etc., in exactly the same way as pairs of space-points have 

or have not equal values of and y (or y and z, or z and x) 

according to our choice of the coordinate-planes. There is thus 

far an intrinsic similarity, a kind of coordinateness, between space 

and time, or as the Time Traveller, in a wonderful anticipation of 

Mr. Wells, puts it: ‘ There is 710 difference between Time and Space 

except that our consciousness moves along itl"* 

The process of passing the time-axis through a world-point corre¬ 

sponding to a given particle, since it brings it to rest, is often 

referred to as transforming that particle to restf In view of the 

above property, a vector (‘world-vector,’ to be treated fully further 

on) in the plane x, ct, drawn from O to any point of the region 

limited by LON, or LfON-^, satisfying the condition (23a), may 

be called a time-like vector, and a vector drawn from 0 towards any 

* H. G. Wells: The Time Machine, 1898 (Tauchnitz edition), p. 13. It is 
interesting to remark that even the forms used by Minkowski to express these 
ideas, as ‘ Three-dimensional geometry becoming a chapter of the four-dimensional 
physics,’ are anticipated in Mr. Wells’ fantastic novel. Here is another sample 
{loc. cit. p. 14), illustrative of what is now called a world-tube; ‘For instance, 
here is a portrait [or, say, a statue] of a man at eight years old, another at 
fifteen, another at seventeen, another at twenty-one, and so on. All these are 
evidently sections, as it were, Three-Dimensional representations of his Four- 
Dimensioned being, which is a fixed and unalterable thing.’ Thus, Mr. Wells 
seems to perceive clearly the absoluteness, as it were, of the world-tube and the 
relativity of its various sections. 

t In German, ‘ Auf Ruhe transformieren.’ 
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point of the remaining region, LON-^ or IryON, t-e. satisfying (23/^), 

a space-like vector* On the border between these two classes of 

vectors we have singular vectors, drawn from the origni to any 

point of the asymptotes, i.e. coinciding, in this bi-dimensional case, 

in fact, with parts of the asymptotes, and characterized by 
For / > o the world-point at the end of a singular vector represents 

a particle when it just receives a light-signal from (9, that is to say, 

a signal started at x — o at the instant / — o. Similarly, foi ^'-<0, 

the end-point of a singular vector represents a particle just at the 

instant when it sends a light-flash which arrives at a: = 0 at the instant 

t—o. Or, as Minkowski puts it, L-^ON-^ consists of all the world- 

joints that send light towards O, and LON of all those that 

receive light from O. 
Notice that x~ ±ct^ if transformed, gives a:'= ±ct\ which follows 

from the invariance of x^ - (together with the requirement a:' = a:, 

/' = / for v = o\ and is only a verification of the assumption, made 

at the outset, that the velocity of light in empty space is the same 

for all legitimate systems of reference. In this case both x and / 

are reduced by the Lorentz transformation in the same ratio. In 

fact, substituting x — ct in x — y{x — vt')^ t' — y(t — vxlc‘^), we obtain 

x'-.x = t':t^(i-(3)^(i+(3)-^. 

Thus far we have considered besides t one independent variable 

only, the space coordinate x. Accordingly, any world-line, traced in 

that bi-dimensional diagram, has been the representation of a particle, 

or, in the limiting case, of a flash of light travelling along a .straight 

line, the a:-axis. Now, bring in the coordinate j'. Then the resulting 

three-dimensional diagrarn or model will be appropriate to rcj;)rcscnt 

the motion of a particle, or the propagation of light, in a plane, the 

plane of x, y. Return to Fig. 12, and imagine the axis of y to be 

drawn through O perpendicularly to the paper. To obtain the 

required representation, we have only to spin the two hyperbolae 

of Fig. 12 and their asymptotes round B^OB as axis. The two 

branches of the hyperbola (17) will generate o. hyperholoid 0/revolu¬ 
tion of two sheets 

x^-yy‘^ - ^ s, . (24) 

and the two branches of the hyperbola (18), exchanging r61es after 

* If we are to translate thus the names used by Minkowski: zeilartiger and 
ratimariiger Vektor respectively. 
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a rotation through i8o°, will give rise to a hyperboloid of revolution 
of one sheet 

(25) 

which will be cut by the j'-axis in a pair of points, say, C and 

one above and the other below the paper, while the asymptotic lines 
will generate a right cone 

= (26) 

the asymptotic cone of the hyperboloids. As regards this conic 

surface, let us distinguish its two parts L^OPf and Z(9(revolved), 

corresponding to negative and positive times respectively, and let 

us call the first the fore-cone and the second the aft-cone of OP 

The fore-cone consists of all world-points, out of those under con¬ 

sideration, which ‘ send light ’ towards 0, and the aft-cone of all 

those which ‘receive light’ from 0. Any vector drawn from 0 to 

a world-point contained within the fore- or aft-cone Avill be a time¬ 

like vector, and vectors drawn from 0 to any point of the remaining 

region of the world, outside the cones, will be space-like vectors. 

Now, let V be the ordinary vector-velocity of a particle in uniform 

motion, and let it have any direction whatever in the plane of x, y. 

Then the world-line of this particle will be a straight line passing 

through 0 in the plane v, Oj5, and including with OB, the original 

time-axis, the angle 
\p = arc tan/3, 

where ^ = vlc. To transform the particle to rest, take this world¬ 

line as tlie axis of ct', and to obtain at the same time the new 

coordinates a-', f turn the old plane xy through the angle rp round 

an axis passing through 0 and perpendicular to both v and OB. 

For the moment, call the coordinates measured in the aj'-plane, 

along V and perpendicularly to it, ^ and v respectively. Then the 

turning round of that plane from its original position (^“=0) will 

amount to writing 
cl=^. tan p = /3^. 

On the other hand, we have 

^ yp 

for any point of the plane xy, so that (25) will become 

* Minkowski, ‘ VorkegsP and '■ Nachkegell 
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The intersection of the new plane, x'y', with the surface (25), will,_ 

therefore, be given by 
( 1 — — I, 

Now, /32<i. Thus the x'y' plane will cut the one-sheeted hyper¬ 

boloid in an ellipse. To complete the Lorentz transformation we 

have only to take the semi-diameters of this ellipse as the neiv zmits 

of length measured from the origin along any direction, in the x'y 

plane. The major principal axis of this metric ellipse will be 

contained in the plane v, OB, and the other axis will be normal 

to it. This ellipse of our graphical representation will, of course, 

in the new units of length, be a circle, i.e. x'^+y"^=i. So also did 

the old plane of coordinates (xy) cut the one-sheeted hyperboloid in 

a circle x'^ +y^ = i. This is seen at once to agree with the invariance 
of x^+y^ - e^t^. We have generally 

and since the sections under consideration are obtained by putting 

t=o, t' = o respectively, the A-circle 

+y‘2 = I 

has for its ^'-correspondent the circle 

-|_j/2= j. 

The neiv unit of time, i.e. of ct', is again represented by the segment 

of the et'-axis cut off by one of the sheets of the two-sheeted 

hyperboloid of revolution, i.e. by the semi-diameter conjugate to 

the plane x'y'. So also was the old time-axis, OB, conjugate to 

the old plane of coordinates (xy), and the unit of ct was the semi¬ 

diameter OB. 

To resume this three-dimensional graphic representation: 

The Lorentz transformation consists in passing from one to 

another set composed of a time-like semi-diameter and the 

conjugate space-like semi-diameters of the hyperboloid 

y-y'^ — = — I, 

and in taking the lengths of the new semi-diameters as the units 

for the time (cf) and for the space-coordinates; the units of 

length being thus given in each case by the semi-diameters of the 

ellipse cut out from the one-sheeted hyperboloid -f = i 

by the plane of coordinates. 
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The new time-axis and the new coordinate-plane are obtained 

by turning each of the old ones, towards or away from the 

asymptotic cone round an axis passing through 0 and perpen¬ 

dicular both to the old time-axis and to the velocity v of the 

new system with respect to the old one. 

Having gone through all of this, we can now pass to the most 

general, four-dimensional case. Here, it is true, our imagery fails 

us. But we can still advantageously avail ourselves of the geo¬ 

metrical language as a guide to, and as a short expression of, the 

analytical process involved. 
Instead of the hyperboloidic surfaces we have now the two-* sheeted ’ 

hyperhololdic space or, as we may conveniently call it, the double 

hyperboloid 
^ _ ^2^2 ^ ^2 ^jj;2 ^ ^2 _ ^2^2 _ _ j ^27) 

and its conjugate, 

hyperboloid 

the one-* sheeted ’ hyperboloidic 

^ _ ^2^2 = ^2 + 22 _ ^2^2 ^ I ^ 

space or the single 

(28) 

with their common asymptotic conic space 

+ = (29) 

consisting of the fore-cone /do and the aft-cone />o, as before, 

with the only difference that these, like the hyperboloids, are now 

three-dimensional entities. 
The /-axis cuts the double hyperboloid (27) in a pair of points, 

namely 
x=y = z = o, ct~\ 

and 
x-=-y — z = o^ 

Take the first, contained in the positive * sheet.’ Call it so that 
OPi a semi-diameter of the hyperboloid (27), is the old time- 

axis, and the length of this semi-diameter is the unit of d. ^ The 

space /=o, that is to say, the ordinary space-manifold x, y, z is the 

three-space conjugate to the semi-diameter OP, just as the :ri^-plane, 

in the previous case, was conjugate to OB (Fig. 12). Now, instead 

of P, take any other point P' of the positive sheet of (27), and 

consider OP' as the new time-axis and the length of this semi- 

diameter as the unit of d'. Turn the :rj^z-space (/ = o) which cut 

the single hyperboloid (28) in a sphere, 

x^ +y‘^ + = 
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round the plane passing through O and perpendicular to v, till this 

space, or pencil of semi-diameters, becomes conjugate to the 

semi-diameter OJ^'. Then it will become the a:j^'2;'-space. This 

space cuts the single hyperboloid in an ellipsoid (ellipsoidic surface). 

Take the semi-diameters of this ellipsoid as the new units of length 

measured from the origin along any direction in the aj-'s-space. 

Then the Lorentz transformation, from S to S\ will be completed, 

and the new metric surface which, from the 6-point of view, is an 

ellipsoid of revolution will for the A'-standpoint become a sphere, 

a:'2+y2 + /2^i. 

So also was the old metric surface, viewed from the old standpoint, 

a sphere of unit radius. Remember that OJ^' is time-like, ie. 

contained within the four-dimensional region bounded by the three- 

dimensional cone, but otherwise the choice of this axis as a 

time-axis is free. The possible positions of P' constitute a triple 

manifold, namely all the points of the positive sheet of (27). Thus, 

the systems S'{x',z\ t') equally legitimate with 6' are 00as 
has been repeatedly observed.* 

To resume what has just been said with regard to the general, 
four-dimensional case ■: 

The Lorentz transformation consists in passing from one (lime¬ 

like) semi-diameter OJP and the pencil of cofijugate (space-like) 

semi-diameters of the hyperboloid = - i to another semi- 

diameter OP' with its corresponding pencil of conjugate semi¬ 

diameters, and in taking the lengths of the new semi-diameters 

as the units of time {ct') and of space-coordinates; the units of 

length being thus given in each case by the semi-diameters of the 

ellipsoid cut out from the hyperboloid by the new 
space of coordinates. 

The property of two lines OJ>, and beiirg conjugate may be 
expressed analytically by the equation 

where a:j, y^, ct^ and y^, z^, ct^ are the values of the four 

physically, no need to consider such rotations. And with ren-arfl in tl, ^ .1 ^ 
raatical r61e, see Chap. VI. ^ ^ 
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variables defining the world-points and Y’o respectively, or, using 
the ordinary vectors and r,, 

or finally, writing l=Lct^ 

(^1^2) + 44 “ (30) 

By an obvious analogy such lines OP^, OP^ are also called 

mutually perpendicular or normal lines in the world x, y, z, L 

Notice that this property of a pair of lines is mvariant with 

respect to the Lorentz transformation, i.e. that (30) is trans¬ 

formed into 
(ri'r./)-1-///g'= o. 

In other words, conjugate diameters remain conjugate, indepen¬ 

dently of the choice of a reference-system. This is obvious, at least 

in two and three dimensions. More generally, for any pair of lines 

OP^, OP,, 
(r/r;)-i-/i7; = (r,rg)-l-44, (31) 

as the reader himself may prove, using for instance the form {\b) 

of the Lorentz transformation, and noticing that 

(er,. er.,) - 7‘L-2(riV) (rgv) = (r^rg) 

identically. Thus, the invariance of orthogonality is but a particular 

case of the invariance of 
(rii.g) -t- 44. 

We shall return to the last property later on. 

Given the origin 0 (and any world-point can be made the 

origin), the set of any four values of 

.T, y, 5, /, 

or, more generally, of any four scalar magnitudes 

s, 

which are tra7isfon7ted like x, y, z, I respectively, and of which the 

first three are real and the fourth purely imaginary, defines what is 

called a world-vector or space-time vector of the first kind * (Minkowski) 

or a four-vector (Sommerfeld). 

*To bedistingui-shed, later on, from those ‘of the second kind’ or ‘six-vectors.’ 
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Thus, if (30) is satisfied, the four-vectors and OPare said 

to be perpendicular to one another. Generally, if 

(W1W2)= (32) 

then Wi, Si and Wq, i-, form a pair of perpendicular four-vectors. Here 

Wj is the ordinary or three-vector whose components are 7f'^, 

and Wo has a similar meaning, while (w^Wo) is, as before, the 

ordinary scalar product of Wj, w^. 
Any four-vector drawn from O to a world-point contained within 

the asymptotic cone, z.e. such that P - = + P<o or, more 

generally, any four-vector w, s, such that 

7£/2-|-^-<0, (33/) 

is called, as in the two- and three-dimensional cases, a time-lllie vector, 

while four-vectors satisfying the condition r2-t-/“>o or, generally, 

7v- + s^>o, (33^-) 

are called space-like vectors. 

The reader will easily prove that if one of a fair of nornml four- 

vectors is time-like^ the other is space-like^ or that, in other words, 

if one is contained Avithin the asymptotic cone, the other is 

outside it. 

Again, as in the above special cases, any vector drawn from 0 
towards a point of the asymptotic cone, whether the fore- or aft-cone, 

is called a singruar four-vector. The analytical expression of a singular 

vector is r'^-cH^ = P = or, generally, 

= (34) 

Finally, as in the less-dimensional cases, the aft-conc may be 

said to consist of all world-points which ‘receive light' from 6>, 

and the fore-cone of all those that ‘send light’ towards 0. 

Pig- 13) which is Fig. 12 redrawn with the omission of th(i 

arbitrary axes, and thus contains only what is ‘absolute^ or 

independent of the choice of such time- and space-axes, may aid 

the reader in remembering the meaning of tlic various names 

employed in the above representation. This figure is drawn per- 

spectively (in three dimensions, of course), so as to show that the 

hyperboloids (27) and (28) are hyperboloids of revolution, the 

former consisting of two disconnected ‘ sheets ’ and the latter of one 

‘sheet.’ We may mention further that the world-region contained 
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within the fore-cone (left) was called by Minkowski this side of O 

and that contained within the aft-cone that side of 0. Every world- 

point of the first region is necessarily (independently of the selection 

of a reference-system) or essentially earlier, and every world-point of 

the second region is essentially later than 0. Any point of the 

remaining, cyclical, region of the world, called the intermediate 

region, can be made simultaneous with or earlier or later than 

0 {i.e. can be given a value of / = or < or > o) by an appropriate 

choice of the time-axis, and is therefore essentially neither earlier 

nor later than 0. This region is the domain of all space-like four- 

vectors which can be drawn from O. Between the time-like and 

space-like classes of world-vectors are the singular vectors, composing 

the cones which are three-dimensional entities. 

This partitioning of the world and the characteristic properties 

of the cones are obviously conditioned by the assumption that no 

particle, or at least, no legitimate system, can ever move (relatively 

to another one) with a velocity v exceeding that of light in empty 

space. In classical physics there was no limit whatever to v. The 

Newtonian transformation follows from the Lorentz transformation 

by taking oo instead of c, or, figuratively, by widening both the 

cones till they coalesce with one another in a plane, squeezing out 

the space-like four-vectors and opening the whole world to the time¬ 

like vectors. Any straight line would, in the Newtonian world. 
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represent a possible uniform motion of a particle with respect to 

certain frames of reference. 
So much as regards the geometric representation of the Lorentz 

transformation. 
Now for its analytical expression and the methods of dealing with 

the world-vectors. 
• Minkowski, though availing himself now and then of the four¬ 

dimensional vector language and ideology, made a systematical 

and extensive use of Cayley’s calculus of matrices. Thus, the 

fundamental world-vector r, I and, more generally, any space-time 

vector of the first kind w, s is considered as a matrix of i row and 

4 columns, say, 

and, in general, 
X=\ X, y, z, I I 

kF=l 7%, Wy, w„, s \. 

(35) 

The transformed world-vector r', 1' will then be another matrix 

of I X 4 constituents, 

which is obtained from X by taking its ‘product’ into a certain 

matrix of 4 x 4 constituents, 

“ll’ “123 ®183 “u 

“213 “223 “283 “24 

“813 “s23 “883 “84 

“413 “423 “483 “44 

and which is written simply 

X = XA. (37) 

Thus, the Lorentz transformation is expressed by the matrix A 

taken as a postfactor of the world-vector to be transformed. 'I'lii.s 

matrix is characterized by the condition that its determinant is + i, 

det^ = i, (38) 

and further that all of its constituents containing the index 4 once 

* Cf.. Minkowski’s Gi-undgleichtingen, already quoted, §§ r i et seg. Those 
readers who are not familiar with this branch of mathematics may consult the Not0 

at the end of this chapter, where the definition of different kinds of matrice.s and 
some rules of operating with them are given. 

(3d) A = 
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only are purely imaginary, while the remaining seven constituents 
are real and the right lowermost positive: 

11’ “12 ’ ... fflgg real 

hi’ “21 ’ “84 "1 , . . 
J- purely imaginary 

4i’ “42’ “43 ^ 

> o. 

The inverse transformation is represented by the reciprocal of 4, 

which is at the same time the transposed of 4, A~^=A, so that 

AA~AA—i. (39) 

It is this property that insures the invariance of r‘^-{-P. Using A 

and X, we may write also, instead of (37), 

X' = AX. 

The short formula (37) replaces 

X = 4- + a4i/, 

and three similar equations, with 2, 3, 4 as second indices. If, in 

particular, the x, z-axcs are taken along v and normal to it, and 

if x', y, z' arc, as before, measured along the same directions, then, 

as we saw, 

x' = y(x-+ iPl) ; y = 0 ; z' = o ; 

r — y{l — if3x). 

Hence, for this particular choice of coordinate-axes the matrix 

representing the Lorentz transformation reduces to 

7’ °’ - ifSy 

0, I, 0, 0 

0, 0, I, 0 

i/Sy, 0, 0, 7 

The transposed matrix A which represents the inverse Lorentz 

transformation is obtained from this by simply changing the sign- 

of /3, as it should be. 
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Writing, instead of.*..../, the ditferentiatpfs 3/3*,. 

obtain a matrix of i x 4 constituents, winch;.t^nkowski 

in honour of Lorentz, 

3 3 3 3/ . 

3^’ 3^’ 3/-;-.-_; 

.. 3/3/j we 

called lor, 

This is the matrix-equivalent of our quaternionic; diffeftlitid operator 

D, as defined by (13), Chap. IL It can be easily verified that 

3/3x, ...3/3/ are transformed in exactly the ?ame waj as.aq y, a, / 

respectively.* Thus, lor is covariant, or equally. tra*ti^formed, with 

the matrix X representing the standard world-vector, i.e. 

\ox' = \QrA. ; • • (42) 

Moreover, it has the same structure as X, its first-three constituents 

(differentiators) being real and the fourth, 3/3/,'.purely imaginary. 

Thus, lor, though an operator, behaves in every respect Jike a 

space-time vector of the first kind. 
We cannot stop here to consider the matrix form of space-time 

vectors of the second kind and their analytical connexion with those 

of the first kind (although it could be done in a few lines), for the 

reader does not yet know their relativistic physical significance. 

Moreover, it is not our purpose to develop fully the matrix method of 

treating relativistic questions, since we shall avail ourselves chiefly of 

other methods. But one simple property of products of IF-matriccs 

in connexion with the above remarks is worth mentioning here, 

namely that, if fFg are matrices representing a pair of vectors 

of the first kind (w^, j^; Wg, ^2)3 ^be product 

JVo^ = (w^Wg) + (43) 

is an invariant. For by (39), and by the associative property of 

products of matrices, 

W{ = W^A .AW^^W^ W^, 

*Thus, for instance, measuring x along v, 
we have 

/r' = 7(x-t-t^d ; y=^; z' = z\ i'=y{t-i^x), 

whence x=y{x’etc., and 

3j)/' "dy ’ 'dz 3s ’ 
K 
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Thus,. the orthog07iality of two four-vectors, which is an invariant 

property, is expressed by 

W^JT\ = o. 
Similarly, _ 

lor' IF" = lor W, 

or lor W is SL relativistic invafia?tt. Notice that, similarly to (43), 

— 'dtv^ 'dwy 'bWz 

or, using div in its ordinary sense, 

lor JV=div'W + 3/ 
(44) 

So much as regards Minkowski’s matrix-form of the fundamental 

relativistic connexions. 
Sommerfeld, whose aim was to elucidate Minkowski’s ideas, re- 

placed his language of matrices by a four-dimensional vector-algebra 

(and -analysis) which he developed in two very lucid papers,* 

and which is an obvious generalization of the familiar three- 

dimensional calculus of vectors. Sommerfeld begins by drawing 

our attention to the well-known circumstance that in space of three 

dimensions there are two kinds of vectors to be distinguished, e.g. 

vectors of the ‘ first kind ’ or polar, and those of the ‘ second kind ’ 

or axial vectors. A vector of the first kind, such as a translation 

velocity, is a segment of a straight line having a certain direction 

(and sense); its components are the projections upon the coordinate- 

axes. On the other hand, a vector of the second kind, such as 

angular velocity, is represented by a plane surface of a certain area 

with a given sense of circulation round its circumference, and its 

components are the projections of that area upon the coordinate- 

planes. Consequently, the components of a vector of the first kind 

should be written with single indices, Vy, or while 

those of a vector of the® second kind, as, for instance, rotational 

velocity w, with double indices, cd^, or Wgg, Wgj, This 

discrimination, which in three dimensions is not very important (or 

at least ceases to be so when, instead of the plane area, a repre¬ 

sentative line-segment normal to it is introduced), becomes in 

*A. Sommerfeld, ‘Zur Relativitiitstheorie. I. Vierdimensionale Vektoralgebra,’’ 
Ann. der Phystk, Vol. XXXIL, 1910, p. 749, and ‘II. Vierdimensionale Vekfcor- 
analysis,’ Ann. der Physik, Vol. XXXIll., 1910, p. 649. 
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Minkowski’s four-dimensional world quite essential. For here 

argues Sommerfeld—we have 

{^=zfour coordinate axes, 

a-, 2, /, 

coordinate planes, 

vzi zx, xy, x/, y/, z/, 

and 
{^=four coordinate spaces, 

xyz, yz/, zxl, xyl. 

Accordingly, we have to distinguish in the ‘world’ between 

vectors of the first kind having four components, or four-vectors ; 

those of the second kind having six components, or six-vectors; 

and, finally, 

those of the third kind, which again have four components, atid 

can be replaced by their ‘ supplements,’ which are vector.s 

of the first kind. 

Consequently, vectors of both the first and the third kind are 

called by Sommerfeld, summarily, four-vectors. 

This classification will be found useful for what is to 0(x;uj)y us 

later on. But meanwhile we are concerned only with space-time- 

vectors of the first kind, which we shall simply call four-veclors. 

The standard or typical example of such vectors is that drawn 

from the origin O to any world-point. Call it jP.'^ Then its 

components would be, according to Sommerfeld’s general notation, 

■Px) -Pyj Pi. 

These, of which the first three are real and the last imaginary, are 
simply the previous 

J', z, L 

Sommerfeld does not use any special type of print for his four-vectors, to 
distinguish them from six-vectors. A certain uniformity of notation was 
introduced later by Laue, loc. cit. But we shall not want very much of it for 
our subsequent purposes. 
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What Sommerfeld denotes by j-P] and calls the size of the vector 

a; or its lengfth, i.e. the Tength’ of the corresponding four-dimensional 

straight line, is the positive (or positive imaginary) value of 

-Jx- +y-^ + s- + /2 = Jx- +y- -I- 

or of 

The length of this, and of every other, four-vector is invariant 

with respect to any Lorentz transformation. It is its only invariant. 

Notice that the length, thus defined, of a four-vector may be 

either real, or purely imaginary, or nil, according as we have what 

was previoiLsly called a space-like, a time-like, or a singular vector. 

If A, B be any pair of four-vectors, the sum of the products of 

their .corresponding components is called their scalar product, and 

is denoted by (AB). Thus 

(AB) = (Aa.Bu. +AyBy +A^B^ +AiBi). (4^) 

Guided by the analogy of ordinary vector-algebra, Sommerfeld 

define.s then the direction-cosine of A relative to B, or vice versa, 

by writing 
(^A?) = |yJl.li>’|.cos(^, .^). (45fl) 

Gonsequently, when 
{AB) = o, 

the four-vectors A, B are said to be perpendicular to one another 

I'his is identical with the previous definition of pairs of perpen¬ 

dicular vectors. 

What Sommerfeld calls the ‘vector product’ of A, B cannot here 

occupy our attention. P'or such a product is a (special) six-vector, 

which as yet is unfamiliar to us. 

As to the T.orentz transformation itself, it appears in Sommerfeld’s 

treatment as a rotation of the system of four axes. Let P be any 

four-vector, and P.jf, etc., its components along the old axes; then 

Sommerfeld defines the components of P along the new axes by 

// = Pj, cos (.X"', a') -1- Py cos {x, y) H- P^ cos (a', z) -l- Pi cos {x, /), (46) 

and by similar formulae for Py, P^, Pi'. Here, the meanings of 

the cosines are defined by (45fl). If the .v'-axis is space-like, then 

the first three cosines in (46) are real, while cos {x\ /) is purely 

imaginary, like Pi, so that P^^ is real. Similarly, the y'- and z'-axes 

being space-like, Py', P^ will be real. And the /'-axis being time- 
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like, Fi’ will be purely imaginary. In order to show that the 

projection- or component-formulae (46), etc., are identical with those 

of the Lorentz transformation, Sommerfeld considers the particular 

case of rotation round the j)^2-plane, i.e. in the A:/-plane, when 

cos (V, x) = cos (/', /), say = cos w, 

cos (V, /) = - cos (/', iv:) = \/i - COS-0) = .sin w, 

cos(y, y = cos(2', 2) = I, 

while all other cosines vanish. Here we have, obviously, cos to >1, 

so that the angle w, as well as its sine and tangent, are purely 

imaginary, and the absolute value of the latter is < i. Con.sequently 

we can write 

tan 0) = f/3, cos 0) = ( I - = y, sin o = 

so that (46), etc., are at once reduced to the formulae (r r), on p. 127, 

with the .same meaning of to, provided that the new .system of s[)ace- 

axes {x'yz) .moves relatively to the old one ixyz) with the uniform 

velocity z/ = tr/3 along the ^-axis. There is, in fact no difference what¬ 

ever between Sommerfeld’s and Minkowski’s method of representing 
the relativistic transformation. 

It is true that the systematic use of the four-dimensional vector 

language may offer some advantages, when comi)ared witii tluit 

based on the use of matrices. But, on the other band, tliere are 

rather important arguments which may be brought forward in defence 

of the matrix-method. Thus, for instance, Sommerfeld’s ‘ .scalar 

product,’ say (AB), is the sairm thing as Minkowski’s i)roduct of the 

correspmiding matrices, fF, JV^, (43). But whereas the invariance 

of I-yiFg is seen at a glance, viz. by writing, in virtue of tlm 
fundamental formula (39), 

W^A.AJV^= 

the invariance of {AB) cannot be proved without splitting the four- 

vectors into their components and multiplying out expressions like 

(46) and adding them up. For Sommerfeld’s only definition of 

'scalar product’ (45) is of such a character. It is essentially 

Cartesian, not vectorial. Of course, we know that, in three- 

dimensional space, the scalar product of a pair of vector.s can be 

and pnerally is, defined without any reference to axes, so that it.s 

invariance with respect to space rotations requires no proof. But 
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this does not by itself enable us to see the invariance of {AB\ when 

we are asked to pass into the four-dimensional world, where our 

imagery fails us. Similar remarks could be made with respect to 

other points of Sommerfeld’s method of treatment. But discussions 

of this kind need not detain us here any further.* 

In the sequel we shall not avoid either of these two methods of 

analytic expression. In fact, we shall now and then profitably 

employ matrices as well as world-vectors. But principally we shall 

avail ourselves of the language of HamiHo7i's quaternions, the 

utility of which for relativistic purposes I have endeavoured to show 

in two papers.t I may notice that Minkowski himself {Gnmdgleich- 

wigen, p. 28, footnote) despised Hamilton’s calculus of quaternions 

as ‘too narrow and clumsy for the purpose’ in question. But, 

notwithstanding that, I am still under the impression that quaternions 

are admirably suitable for most, if not for all, relativistic needs. 

We had a sample of the conciseness of Hamilton’s language in 

Chapter II., when we saw how easily the four vector equations 

of the electron theory are condensed into a single quaternionic 

equation, viz. = C. But in advocating here the cause of 

quaternions I am doing so not only because they furnish us very 

short formulae and simplify their handling. Quite independently 

of this, the quaternion seems to me intrinsically better adapted 

than the world-vector to express that ‘union’ of time and space 

which was (too strongly, perhaps) emphasized by Minkowski. For, 

although there is a certain union between the two, which manifests 

itself when we pass from one system to another, there is no total 

fusion. In each system, out of the four scalars a:, j', z, /, the first 

three are more intimately bound to one another than any of them 

to the last one. The first three are artificial components of a vector, 

r, which certainly is a more immediate entity than each of them. 

Now, in a four-vector, as well as in a matrix, y, z, I are, as it, 

*Nor can we enter here upon a paper of E. B. Wilson and G. N. Lewis, 
Proc. Avter. Acad, of Arts and Sciences, Vol. XLVIIL, Nov. 1912, p. 389, in 
which an attempt is made to work out the four-dimensional vector-algebra and 
-analysis, ab ovo, starting from a number of quasi-geometric postulates. 

'\Phil. Mag., Vol. XXIII., 1912, p. 790, and Vol. XXV., 1913, P- ^3S> also 
Bull, of the Socieias Scientianun Varsaviensis, Vol. IV. fasc. 9, communicated 
in November, 1911. I wish to mention here that Dr. G. F. C. Searle has 
drawn my attention to a paper of Prof. Conway, Proc. Irish Acad,, Vol. 
XXIX. Section A, March 1911, in which some of my results are arrived at. 

Particulars of comparison are left to the reader. 
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were, on entirely equal footing with one another, being the four 

‘components’ of the former, or the four ‘constituents’ of the latter.* 

On the other hand, a quaternion q has a distinct vector part, V. ^ or 

simply V^, and a scalar part, S^, and none of the components of 

the former can be confounded with the latter. Now, the position of 

a particle is determined by a vector (in its ordinary sense), and its 

date by a scalar. What then more natural than to take the first as 

the V and to embody the second in the S of a quaternion? We 

could insist upon loosely juxtaposing both entities, and write simply 

r, /. 

But, if instead of the comma the plus sign is used, we have just 

enough of ‘union’ to express the relativistic standpoint, and yet 

enough distinction not to amalgamate time and space entirely. 

Let us therefore combine the position vector r of a particle with 

its date, into a quaternion, 

^’ = /+r, (47) 

which, if it needed a name of its own, we might call the position- 

quaternion. Those who are particularly fascinated by the world- 

concept can consider this ‘position’ to be the ‘position in the 

world.’ But, in fact, the above provisional name is simply an 

abbreviation for ‘position-date quaternion.’ 

The conjugate of y, t.e. Hamilton’s Ky, will be denoted by q^- 

Thus, 
qo = /-i. (47^) 

The reader must not be afraid of quaternions. If he is familiar 

with the elements of ordinary vector-algebra, the following short 

remarks will enable him to understand thoroughly all of our sub¬ 

sequent calculations. 

1. Without returning to Hamilton’s original expression of a quaternion 

as the ‘ratio’ or the quotient of two vectors, he can conveniently define 
it from the outset as the sum of a scalar and a vector^ using for the latter 

heavy type. Thus 
a=(T-\-k 

will be a quaternion, whose scalar part is <r, and whose vector part is A, 

S«==cr, V<2=A. 

*It is true, that the fourth, /, is imaginary, while the first three are real, but 
this does not seem to me to emphasize the distinction sufficiently. 
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2. The conjugate of the quaternion a is defined, as above, by 

. «c=o- —A, 

t.e. by «c = Sa-Vfl:. 

_3. Two quaternions b are said to be equal if both their scalars and 
their vectors are equal to one another. Thus, 

a = b 
means the same thing as 

Ya~Yb and Si5: = S^ 

4. Quateinions aie added to one another by adding separately their 
scalars and their vectors. Thus 

c~a-\-b 
means the same thing as 

S<r=S(3:+S/^, Vc=Ya-\-Vb. 

Now, since the addition of scalars and the addition of vectors are both 
commutative, the commutative property belongs also to the sum of 
quaternions, 

b + a~a +1>. 

And for the same reason the associative law holds for the sum of any 
number of quaternions. Thus 

+ [^ + (T] ~ [rt + ^] + £■, 
so that both sides may be simply written a-\-b-\-c. 

6. Subtraction of quaternions, and the change of the sign of a 
quaternion are at once reduced to the same operations applied to scalars 
and vectors. Thus, if rt=(r+A, 

— a——(T~k. 

Also, by 4, a-b= ~b + a. 

6. Two quaternions, ri^cr+A and ii'=T+B, are multiplied by the 
formula 

= err+tA + (tB+AB, 

where the first three terms require no further explanation, and the last is 
defined to be a quaternion 

ab=Vab+Sab, 

such that VAB is identical with the ‘vector product’ and SAB is the 
negative ‘scalar product,’ both supposed to be known from ordinary 
vector algebra. Thus, in our usual notation. 

AB = VAB-~(AB). 
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The minus sign is introduced to suit the whole of Hamilton’s calculus ; 
I do not think there is any trouble in doing so. Ultimately, product 

ab of a pair of quaternions is given by 

%ab — err — (AB), 

Yab=tA + crB + VAB. 

Thus, ab, and similarly, the product of any number of quaternions, is 
again a quaternion, with uniquely determinate vector and scalar parts. 

Both (AB) and VAB being distributive, quaternion multiplication is 
distributive, i.e. 

a\b-{-c\=ab+ac, 

\b-{-c\a = ba-\-ca. 

It can easily be shown that it is also associative, i.e. that 

a. bc=ab. c, 

so that both sides may be simply written abc. The same thing is true 
of the product of any number of quaternions. It is chiefly this associative 
property which makes Hamilton’s calculus so powerful. 

From the above formulae we see that 

^ba = ^ab, 

because (AB), like (TT, is commutative. On the other hand we have, 
generally, 

Slba ^ Yab, 
because VBA=—VAB. 

Thus, multiplication of quaternions is, generally, not commutative, 

ba ^ ab. 

It becomes commutative only when VAB vanishes, i.e. when A 1| B, 

or Ya\\Vb. This is, for instance, the case for a pair of conjugate 
quaternions, and, consequently, we have, for any quaternion a, 

nao=acn. 

7. Writing again iz=cr+A, we have, by 6, 

aaa = aoa = (P->r A'*^, 

where A^={AA). Thus zza,, is always a pure scalar. Its square root is 
called the tensor of the quaternion a, and is denoted by Ta, 

Ta = {(r^ + A^)^. 

If it is real, the positive value of the root is taken, and if purely 
imaginary, the positir^e imaginary value of the root is taken. (In cases 
of complex values, when ambiguity of T might arise, special explanations 
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will be given.) But the chief thing is to keep in mind the formula for 

the square of the tensor, 
{T ay — aac=iXcti., 

which is called the norm of the quaternion a. 
Let a be the unit of A, so that (aa)=i and A~A&. (There is, I hope, 

no danger of confounding the quaternion a with the absolute value of a, 

which is I.) Then the quaternion a can be written 

a=lia . [cos a+asin a], 

or, by an obvious analogy, 
a — Ta . 

where e is the basis of natural logarithms. The factor of Ta, which is a 

quaternion of unit tensor or a unit quaternion, is called the versor of the 

quaternion a, and is denoted by Ua, so that a~Ta, Va. The unit vector 

a is called the axis of the quaternion a, and the angle a, which can be 

real or imaginary, is called the angle of the quaternion a. 

Thus, conjugate quaternions may be described as quaternions having 

equal tensors and equal angles, but opposite axes. 
Notice that if (as in the case of our above g') cr is imaginary and A real, 

or rnce versa^ the tensor of a may vanish, though a is not simply ‘zero,’ 

but a definite quaternion having a certain axis and a certain angle. Such 

a quaternion was called by Hamilton a jiullificr, and by Cayley a nullitat 
In our physical applications we shall not avail ourselves of either of these 

names, but shall adopt for such quaternions the name singular, already 

used for the corresponding world-vectors. 

8. The following rule, which will be often required, can easily be 

proved: 
The conjugate of the product of any number of quaternions is the 

product of their conjugates in the reversed order. 
Thus, if 

m=ab, 
then 

bcUa • 

9. Finally, as regards division by quaternions, it may be entirely 

reduced to multiplication by what are called their reciprocals. 
The reciprocal of a quaternion a is again a certain quaternion, which is 

denoted by a~^ and which is defined by the equation 

a~^a= 1. 

*But this analogy cannot be pushed so far as to write in the expression of a 

product of two quaternions a, b 
gaa-f-/3b 

and to invert the order of addends in the exponent. For, unless al|b, the 

product ah is not commutative. 
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Multiply both sides by as a postfactor. Then a-^aac = ac, and, by 7, 

-1 I TT I 

Thus, the reciprocal of a quaternion is its conjugate divided by its norm. 

In other words, the reciprocal of a has the reciprocal tensor, the opposite 
axis and the same angle as a. 

Consequently, we can also Avrite 

Thus, if we have an equation 

mn — b 

and we wish to isolate w, we have only to multiply both sides by ar^ as 

prefactor, obtaining 
m=a~^b. 

Similarly, if 

we shall have 
iia = b^ 

n ~ ba~^. 

Notice, in particular, that the reciprocal of a unit quatemion is at the 
same time its cojijugaie. 

10. The differentiation of quaternions, with.respect to time or position 

in space, does not require any explanations. The definition of ‘ curl ’ and 

‘div’ being supposed known from usual vector-analysis, it will be enough 

to remember here what was said already in Chap. II., namely that v, the 
vector part of our Z?, when applied to a vector A, gives 

VA = VyA -I- S VA=VvA - (VA) 

(as in 4, because y apart from its differentiating properties is to be treated 
as an ordinary vector), or ultimately 

yA= curl A — div A. 

For all of our purposes we shall hardly want more than is given 

in the above ten sections,—which will in the sequel be shortly referred 

to as ‘ Quat. 1, 2, etc.’ 

Returning to our position-quaternion q, let us write its N'-corre- 

spondent, or the transformed quaternion 

q'=:-r + T'. (47') 

Since I=i£t, i.e. t— -lijc, we have, by {ib), p. 124, and denoting 

now the unit of v by u, 

/' = >[/-t^(ur)] I 

r' = er -f ifiylw.. J 
(48) 
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Here, it will be remembered, € is the longitudinal stretcher, whose 

developed form is, by (2), 

e=i + (y-i)u(u . 

Now, such being the scalar and the vector parts of q in terms 

of those of y, we can easily find a quaternion Q such that 

q'==QqQ.*' (49) 

First of all, since we know that is an invariant, or that 

Ty' = Ty, can at once take for Q a unit quaternion, 

Q = cos 0 + a. sin 6. 

Thus, we have only to find the angle and the axis of Q in terms 

of ft and u. Now, developing the triple product in (49), we obtain 

easily, by Quat. 6, 

I's SQqQ =cos (26) J- sin(2 6>) .(ar), 

t' ^YQqQ = T - 2 sin20.a(ar)+ sin(20). /a, 

whence, comparing with (48), 

a = u; cos(2^) = y; sin(20) = (/3y, 

and I - 2 sin‘^6*.a(a = e, i.e. 2 i - y, which is identical with 

the third of the above equations, and this, again, says the same 

thing as the second. Thus, all conditions are satisfied at once, and 

we have ultimately 

a = u and ^==iarctan(t^) = |-w, 

where w is the (imaginary) angle of rotation, as previously defined. 

[Cf. (10), p. 127.] To resume; 

The position-quaternion g is transformed by the operator 

Q[ ]G. 
the meant place being destined for the operand. 

The axis of the unit guater7iion Q is u, the imit of v, and its 

atigle is half that of MmkowsMs imagiiiary angle of rotation, i.e. 

(2-cos- + u.sin- = r . (5°) 
^2 2 

*As regards the reason why particularly this form, involving a quatetnionic 
prefactor and postfactor, is sought for, see my paper in Fhit. Mag., Vol XXIII., 
quoted before, where I gave references going back to Cayley’s original discovery 

(1854). 
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Another form of this quaternion is 

Observe that, 7 being > i, the vector part of Q is imaginary, while 

its scalar part is real. 
Since (2 is a unit quaternion, we have Q~^=Qc, ox 

QQc=QcQ=^, 

a property which we shall constantly use. Thus, to obtain from 

(49) the inverse transformation, multiply both sides by Qc as a 

post- and a prefactor. Then the result will be 

f=Qcf'Q„ (49'>) 

as it should be, since Qc is obtained from Q by a reversal of u or v. 
Again, to see once more, or to verify, the invariance of 

= = + = (S^) 

take the conjugate of (49), which, by Quat. 8, is 

e = Qo^oQc’ 

Now, by the same formula (49), and by the associative law, 

7Vc'= QgQQcdcQc^ QmQc- 

But, since qqc is a scalar, it may be written before the (2, or if you 

wish, after the Qe, so that 

!7'^c' = f/(/cQQc = ^!7c, 
Q.E.T). 

We shall see later on, when we come to consider products of 

two, or more, of such quaternions, that they are transformed with 

equal ease. 

Consecutive transformations assume the following simple form. 

Let Vj = z;;^Uj be the velocity of S' relative to S, and the 

velocity of S" relative to S', and let Qi, Qq be the corre.sponding 

transforming quaternions, i.e. 
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and 

i ~ 0.2? Q-2~ Q-^Qx^Q-iQ'it 

so that the compound transformer is 

Q^Q-x [ ] Qx^2- 

In general, for non-parallel axes U2, 

QxQ2y 
SO that the compound transformer has not the form Q[ ] (2- This 

is but the quaternionic expression of the fact, to be considered fully 

in the following chapter, that a pair of consecutive three-parametric 

Lorentz transformations, (48), does not generally give again such a 

transformation, but is equivalent to (48) combined with a pure 

rotation in ordinary three-dimensional space. In other words, the 

transformations (48) do not constitute a group. But, as we saw 

before, they contain sub-groups, namely for parallel velocities. Then, 

and only then, (?2<2i becomes equal to and the compound 

transformer assumes the form <2 [ ] <2- Suppose, for instance, that 

the velocities Vj, v.^, being parallel, are also concurrent with one 

another, i.e. that 

so that the previous formula for the composition of parallel velocities, 

(0 = -f C0.2, follows from the quaternionic form immediately. 

Imitating the name ‘world-vector,’ we could now call or qc, 

the standard of w'orld-quaternions. But the more modest name 

phyeioal quaternion will do as well. Also, to begin with, no further 

specification of the ‘kind’ is needed. But it may be convenient to 

have a pair of short symbols, in order to compare any quaternions 

with respect to their relativistic behaviour. By writing 

we shall understand that the quaternion X is covariant or, equaUy 

transformed, with q, z.e. that 
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without taking into account the structure of X. And if X has also 

the Btiructure of g, that is to say, if it has a purely imaginary scalar 

and a real vector,* then we shall write 

AT-y. 

The latter will then be equivalent to saying that Af is a physical 

quaternion, viz. covariant with g. This being the case, the conjugate 

of AT will, of course, be also a physical quaternion, e.g. 

The same notation we shall extend to quaternionic operators. 

Thus, as we saw, 9/3/ and V, the scalar and the vector parts of 

the operator D, are transformed like /, r, the scalar and the vector 

parts of the position-quaternion, i.e. 

D'^QDQ, (52) 

and similarly, = being the conjugate operator, 

X>c QaDcQo. (52^) 

But D has also the same structure as g. Consequently, a{)art from 

its differentiating properties, D behaves as a genuine physical 
quaternion, or 

D^q. 

Analogously to Minkowski’s classification of four-vectors, we may 

call any physical quaternion AT a space-like, or a time-like, or finally 

a singular quaternion, according as its norm, (1’^)'“= ATATo, is positive, 
or negative, or zero. 

But it does not seem desirable to dwell any longer upon the 

formal side of the subject until our stock of materials ha.s 

been somewhat enlarged. For as yet we have only one physical 
quaternion, namely q. 

* If the reverse is the case, then lX will have the structure of g. 
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NOTE TO CHAPTER V 

(To page 143.) A matrix is any rectangular array of magnitudes or 
more genei'ally, of symbols either of magnitude or of operation, each of 
which has its assigned place, i.c. belongs to a given row and a given 
column. Thus 

^n, ^*12, • .. a\n 

O'l'iy . .. O'lyl 

• • dim 

is a matrix of w j'Otas and n columns. The first index of any constituent 
a^K denotes the row, and the second the column to which it belongs. 

The matrix whose rows are the columns of A is called the transposed 
of A!, and is denoted by A. Thus, A being as above. 

awy 0'>l, . ■ • 0)ii,\ 

A = (hiy 

dlly • • • 

To specify the number of rows and columns of a matrix we may con¬ 
veniently attach tojts symbol a pair of indices. Thus, A will be Amni 
and similarly A -Anm- equivalently, that A! is a matrix 
of m X n constituents, and A a matrix of n x in constituents. 

If we have a pair of matrices A=A,a,i and then the matrix 
C^Cmny whose constituents are sums of the corresponding constituents 
of A, B (J.c. CiK=(hK-\-l\K\ is written 

C=^A + B. 

If, in particular, B—Ay the result of addition is written 2A, and so on. 
Generally, if a be any number (or symbol of operation) and A any 
matrix, then the matrix C, whose constituents are CiK = aa^Ky is called 
the product of a into A, and is denoted by aA. 

If the matrix B has as many rows as A has cohcnms, i.e. if 

A ^Aniny B — Bnyt 

(where p may be equal to or different from m\ then the matrix C, of 
which any constituent is equal to the sum of the products of the 
constituents of the tth row of A into those of the Kth column of B, is 
called the product of A into By and is written 

C^AB. 
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Thus, if A is as above, and if 

then 

where 

bn, bi2. 1 ... bip 

^21 j ^22: , ... Ihp 1 , 
bn2 , ... byp 

^•'n, ^12 , • • • ('W 

nniByp ~ C2\, C22 \, ... c-jp 

Cul) ('m2, C)rtp 

c\\ = b\\ + <^12 (^21 + • •. + , 

C\2'=anbi‘i-\- a\'ih‘22+.. .+aui b,i2y 

i6i 

and so on, generally 

— i^jK + n;i2/^2K + ••• 

Notice that, if j) i=in, _the expression BA would be meaningless. Hut, 

since B=Bpn and A = Anm^ we can have the product BA, which will be 
a matrix ofconstituents. This, as can easily be seen, will be the 
transposed of AB, i.e. _ 

AB=BA, 

Compare this property with Quat. 8. p. 154. 

Since AB~C,np, it can be multiplied into a third matrix thus 

giving rise to AB. D, which will be a matrix of iny.q constituents. It 

can be proved that for such products the associative Imv holds (supposing, 

of course, that the constituents themselves, -which generally can be 
operators, obey this law), i.c. 

AB.D=A.B7X 

Hence, both sides may be simply written A7i7.i). The same property 
belongs to the product of any number of matrices. Thus 

Api^BDpq... 7\7^p 77= 7?,,,*; 

wll be a definite matrix of in x constituents, independent of the grouping 
of the factors. Notice the analogy with quaternionic products. 

Let each of the constituents of the principal diagonal (from left upper¬ 
most to right lowermost) of a square matrix be equal r, i.e. 

i(n = tC22—.-. = Unn=i, 

and let each of its remaining constituents be zero. Then if Af he 
any matrix of n rows, ’ 

UM^Td. 
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In view of this property, U is called a unit-matrix, and may be simply 

denoted by i. 
Now, let M be any square matrix. Then the determinant formed of 

its constituents is called the determinant of and is shortly written 

detM. Suppose that det J/does not vanish. Then thei'e exists a definite 

matrix which, multiplied into M, gives a unit matrix or simply ‘ unity.’ 

This matrix is called the reciprocal of M, and is denoted by M~'^. The 

above definition is written shortly 

M-^M= I, 

where i stands for l/nn- The reciprocal is, of course, as itself, a 

square matrix of x 7i constituents. 

Other particulars concerning matrices will be given incidentally, as 

the need arises in the subject under consideration. 



CHAPTER VI. 

COMPOSITION OF VELOCITIES AND THE LORENTZ 
GROUP. 

Consider a particle moving about in an arbitrary manner in the 

system S', which in its turn moves with uniform velocity v relatively 

to the system S. Let p' be the instantaneous velocity of the particle 

from the point of view of the ^''-observers, ie. let at the instant 

What is the velocity p of this particle from the ^S-standpoint, at the 

instant / corresponding to /'? 

To answer this simple but very fundamental question of relativistic' 

kinematics, use the form Chap. V., of the Lorentz trans¬ 

formation. Then its inverse will be, as in (r//), 

r = er'-t-7V/', 

^=y[r + -^.,(vv)], 

and, since dev'^edr' and d{vr') = {vdv'), 

P 
dr 
dt 

(.dr' 4- yvdt' 

yW + (v^/r')] 

I^ivide the numerator and the denominator on the right by dt', 

and remember the meaning of p'. Then the required velocity will 
follow at once under the simple form 

-yv + ep' 

r[i + ^2 (vp')] 
(ta) 
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This is the vectorial expression of Einstein’s famous Addition 
Theorem."^ 

As before, 7 = (i — f^ — vjc, and e is the longitudinal stretcher 
of ratio 7. Thus, in Cartesians, with a; measured along v, {m) will 
become 

A= = 
I 

.h _A_ 
A = A' 

r(i + z'A7A’ 

but having explained this for the non-vectorial reader, we shall 
henceforth use the above short formula. 

By writing p', p we wished to emphasize that the latter is the 

^-correspondent of the former. But we may as well look at p as 

the resultant of v and p', keeping in mind that the first of these 

component velocities is taken relatively to one system, S, and the 

second relatively to another f system A'. Then it may be more 

convenient to write for the velocities to be compounded Vj, v 

(instead of v, p'), and for the resultant velocity v (instead of p). 

'I'hus, attaching the correspondent index to 7 and e, we shall write 

7iA+ejV^ 

yi[r+7a(ViV,,)] 
(I) 

Notice that the resultant is, in general, a non-.symmetrical function 

of the two component velocities. It is important to know which of 

these comes first, and which next. In Newtonian or classical 

kinematics the resultant is simply plus v.^ and at the same time 

Vg plus Vj. Here the case is different. We may still speak of 

‘addition,’ as a non-pedantic synonym of composition of velocities, 

but to avoid confusion we should employ insstead of the ordinary h- 

another .symbol, say +, and write the above v, as given by (i), 

Vj -|b Vg. 

* ‘ Aclditionslheorem der (IcvschwindigUeiten,’ Aim, d. Phys.^ Vol. XVII., 

1905; §5- 

tlf both were taken with respect to the saute system, then their resultant 
would, of course, be .simply eciual to their vector sum. But tliis is hardly 
worth mentioning. For all ease.s of composition of velocities, which have any 
physical interest, are of the type considered above, viz. imply component velocities 
referred to a chain of different .systems: An object B moves in a given way 
relatively to /<, a third olyect C moves relatively to B, and so on; find the 
motion of the last relative to the first. 
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Then the resultant of Vg and {i.e. the S'-velocity of a particle 

moving with velocity V;^ relative to S', which in its turn moves with 

velocity Vg relative to S) would be 

Vo=fF.Vi=-“Y""' ~ ’ 

r2[H-72(VlV2)] 

where is a stretcher acting along Vg, of ratio 

In short, the relativistic composition of velocities is, generally 

speaking, non-commutatlve. 

But it is interesting and, in view of what has to come later, useful 

to notice that the two vectors (i), (2), though differing in direction, 

are identical in their absolute magnitude. To see this, we have 

only to prove that the squares of the two vectors 

a = v, H— £,Vy 
7i 

h = v., + — 
' 72 

are equal to one another. Now, by the elementary rules of vector 
algebra, 

+ . «1V,) 

and, since Cj is a symmetrical vector-operator, 

(v^. ^iVa) = (e^Vi. Vo) = 71 (viVg). 

Again, denoting by 6 the angle between v^ and Vo, 

Hence 

h^2) = ^2^ [cos2 6 + ^^ sin2 0] = [ i - sin^ ^J. 

a2 _ ^2 + 2,^2 ^ 2 ^ ^^22,^2 sin2 ^ _ i. (VViVj,)'-^, 

and this, being a symmetrical function of Vj, v^, is at the .same time 
the value of q.e.d. 

velockL'^^' relativistic composition of 

(V, + Tj)*=(v, + T,)=. (,) 
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Th. .-omm,.,, yalu. «r these scalars is. by (i) and by the formula 
jiisi (ound lur (r, 

?l- r- 
(y,+v,y^ p.(Vv,v,)--^ 

ld+7j(VivJjr 
(4) 

'This is ICinsU-in’s famous formula for the square of the resultant 
\flofUy, written veetoriall3^ 

iSeforc passing to give a few examples and a certain very re- 

murkahle geometric representation of the Addition Theorem (i), 

let us approach the (luestion of composition of velocities from 

another side, hy ('onsidering a pair of consecutive Lorentz 
trnn.sfornmtions. 

it again Vj he the velocity' o( »S relative to iS, but instead of 

our particle take a third system .S'" moving relatively to .S'with the 

\eloc-ily V.,, the former vttloeity being taken from the .S-standpoint 

and the latter from the .S'-point of view, both being now uniform 

transinlioiml veloeilie.s. Let y,, and y«^, be the corresponding 

lueHuiiig.s of y, «. 'I'hen, r' being the time and the space-vector 

in S\ and r" tin: time and the space-vector in S", we shall have, 

by (i/d, Chuji. V., 

and 

r* eir^v.y,/; /'■' yi ~ (5i) 

7t> V - ^ (v/)]- (52) 

Introduce the values (51) of x and into (5._j), and remember that, 

*, being u symmelrieal vee.ior operator, (v.j. Cii) ~ (€jVo. r). Then 

the rcHuU will he 

r" T 7i7--'^.i(Vir) - 7, -h 7aV2]/ 

f" 7irJ' + '-i ^ - 1 7sL(^iVl> • r) + 7i(Vir)]. 
< £ ; 

(6) 

'File lairenl/ Irnnsformations hitherto considered, of which (51) 

ami (5.,) are intlividual cases, involve three scalar parameters 

*4ie vectorial parameter v. Let us therefore denote 

any rmu of tlufsc transffirmalions hy /■(v). 'J'hus, the two above 

curuponeut tninsforniations will he /.(v,), Z(v.^), and their resultant, 
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i.e. the first followed by the second, or the transformation (6), may 

be written Z(v2)Z(Vj). 
We know that any Z(v) leaves invariant the quadratic expression 

+ + 

and can therefore be considered as a rotation in the four-dimensional 

world, ‘But it is not the most general rotation, since it does not 

include the rotation round the time-axis, i.e. a rotation of the space- 

framework, or an equivalent rotation of the three-dimensional vectors. 

If any transformation Z(v) is followed by such a rotation of r', 
which does not change the value of r'^ ~ x'-+y'-^ + then the 

above quadratic expression will, obviously, continue to be an 

invariant. Let be a purely rotating operator, or what Oibbs*** 

called a ‘versor,’ i.e. such a linear vector operator tliat, for any 

vector E, 

Then the amplified or, as it is sometimes called, tJie general Lorentss 

transformation will be given by 

r' == il [er - vy/J, 

r = y[/_^(vr)]. 
Z(v, il) 

Since 0, involves three scalar data, viz. one for its angle and two 

for its axis, Z(v, fi) will be a six-paravietric transformatifjn. 'FluiSj 

the above symbol Z(v) of the special Lorentz transformation stands 

for Z(v, i). Notice that the scalar product of two vectors, r,g». (vx), 
IS not changed at all by a pure space-rotation. This is tlu; reason 

that fi does not enter into the expression for and would not enter 

into it even if the rotation preceded the special I.orentz transformation. 

Let us now return to our as given by the formulae (6). 

We have seen in the last chapter that, if the velocities v, and v._, 

are parallel to one another, the resultant transformation is again a 
special Lorentz transformation, i.e. 

■^(v,0-^(Vi) = Z(v), 
where v |1 || Vo. Now, it can easily be shown that this is the ca.st! 
only for Vj jj Vg. 

*J. Willard Gibbs, Scientific Papers, Vol. II. p. 64. 
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In fact, suppose that (6) is an Z(v), that is to say, suppose 
there is a vector v (with the corresponding 7 and e), such th 

r" = €1 - vy/; = (vr)] • 

Then, remembering that this has to coincide with (6) for eve 
(as well as for every /) and taking, for instance, r = o, you 

obtain, from the first of (6), 

7V = 7i[«2Vi + 72T2], 

and at the same time, from the second of (6), 

yV==72[€iV2 + 7iVi], 

and, consequently, 

7i = 72 [*1^2 + 7iTi]. 

Now, this equation cannot be satisfied unless Vi and V2 
To see this, call and the parts of taken along and no] 
to V2J similarly Ig and n2 the parts of V2 taken along and no; 

to V3., and write + n^, V2 = ^2 + ^2* Then, remembering 
€3 are longitudinal stretchers, the above equation will assume 

form 

7l[72ll + 111 + 72^2 + 72II2] = 72[7ll2 + ^2 + 7lll + 7llll] 
or 

7i(i-72)111 = 72(1-71)112. 

Hence, either 71 = 72=1? which corresponds to the trivial 
^^ = ^2 = 0, or njing, and consequently also ViHVg* Q.e*d. 

Thus, if Vi and V2 are not parallel to one another, the resu' 
transformation (6) is not an Z(v). In other words, the class of 
transformations L(v) does not constitute a group, although it coni 
one-parametric subgroups, each ranging over parallel velocities. 

But the six-parametric transformations Z(v, 0) do constitu 
group, i,e. 

Z(V2, ^i) = Y(v, f2), 

for any pair of velocities and any pair of versors, and hence 
particular, also for 12i=i, 03=1, as in our case. For non-pai 
velocities, then, our Z(v2)Z(v.^) is not again an Z(v), but it i 
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Z(v, 12) with a certain space-rotation,* to be determined. In 

. the formulae (6) are of the form 

t" —12 \_€T — vy/] = 12€;^ - y/12v 

where 12 1. 

A comparison with (6) will give us the four equations 

126 = €2 

y=yi72[i+72(vi'^2)] 

flv = ^[ejTl + y2T2] 

'^=yh’’2+yiVi]- 

From (/^), (d) we have at once the resultant velocity, of S 

to 5, 

v = v, + V2 = --^*-i^, 
yi[i+72(T^i^2)] 

identical with (i), which was obtained by differentiation, 

verification that 7, as given by (d), is equal to {1 

to the reader. Again, the right side of {c) is what v becor 

permutation of 3, so that 

12V = 12 [v^ 4= Vg] = V2 + Vi, 

and this agrees with the nature of the operator 12. For, ; 

shown explicitly, the tensors of the two resultant velocities are 

cf. (3). Thus, 12 ^ur/is 4 Vo into V24V1. The equatii 

* In four-dimensional language the case under consideration may be e 
as follows. Call t the time-axis in Minkowski’s world. Then ZfVj) v 
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of course, does not by itself suffice for a complete det( 

the operator, for it states the result of its application 

vector V only. But we have still (a), which is valid for 

as operand, Le, 

As to e, the reader may verify that none of the above fc 

is contradicted by assuming it to be a longitudinal str 

spending to v, i.e. by writing, for any r, 

er = r + -^-^v(vr). 
v-‘ ^ ^ 

Then Q will be determined by (a). In fact, take for r 

normal to the plane and consequently norma 

(which is always coplanar with v^, v^)- Then (v^n) ai 

vanish, and en = n, so that (a) will become 

l]n = e^e^n, 

and since e., are longitudinal stretchers and n is no 
axes of both, 

Thus, the axis of rotation, or simply the axis of 12, is nc 

plane while the angle of rotation is given b] 

outstanding determination of the sense of rotation is 
reader. To resume: 

The general or six-parametric Lorentz transformatic 

constitute a group, but the special or three-parametric 

tions Y(v, i) or Y(v) do not constitute a groups though t 

the subgroups for parallel velocities. The successive 

of two special Lorentz transformations with non-parat 

Vi, Vo gives always an Liyr, 12), that is to say, it is equ 

special Lorentz transformation followed by a pure sj. 

round an axis normal to v-j^ and Vo, which turns v = v 

V2 + Vp—the former of these vectors being given \ 
_T_ /_\ 
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axes are not parallel. But this subject need not further ( 

us here. 

We have touched the six-parametric Lorentz group on 

elucidate the question of successive transformations, as intir 

connected with the composition of velocities. But hencefor 

shall hardly need it any more. In fact, our previous transforn 

Z(v), without any rotation of the space-framework, will be 

sufficient for all physical purposes. 

Having got through this, let us return to the ‘ Addition The< 

of velocities, (i), with the purpose of illustrating its meaning 

few remarks and some simple examples. 

In the first place, if both Vj and are sjnall as compared wi 

velocity of light, then, if magnitudes of second order are negl 

(i) reduces at once to 

V = V;,^-hVo = V2 + '®'lJ 

which is the Newtonian or classical formula for the composit 

velocities. 

Next, consider the simplest case of parallel velocities. 

€^V2 = 7iV2, and, as in Chap. V., 

V, -h Vo 

or, counting the resultant velocity positively along v^, 

V. ± Vo 

I ± 

according as V2 is concurrent with or against Vj. It will be e 

to consider the former case, for which 

V. 4- 7Jo 
V~---=77,- 

I -j- 

Let both v-^ and be smaller than e, say, 

where m, n are positive and smaller than c. Then 

(zr- m - fi)c 
— —. — ^ 
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obtained by the accumulation of any number of veloc 

than (f. This property, proved here for concurrent ve 

be expected to hold a fortiori for velocities of any dire 

rigorous proof, to be based upon the general formula ( 

the reader as a useful and interesting exercise. • 

Again, if one of the compounded velocities, say 

then, by (9), 

i.e. the restdta7it of c and of a?iy other parallel velocit) 

whether it is smaller or equal to or even greater that 

the velocity of light c.^ This result becomes obvious, 

remembered that in the present case the system S 

flatland^ perpendicular to the direction of motion, anc 

the former f is the velocity of our particle relative t 

whole path of the particle appears to the 5-observers 

point of that flatland, so that, for these observers, 

might as well be fixed in 5'. 

The following is one of the most beautiful applications 

that were made’in the early times of the doctrine. 

To emphasize better the meaning of the various vel 

again, for the moment, /, f instead of s 

^ I yvp' jc- 

Now, this can be put into the form 

p—p'y KVj 

where x, expressing the fraction of v, which is added t( 

rigorously by 

l-vvp 

and approximately, for moderate values of fjc and 

ofvjc, by 
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Here is the velocity, as observed in S\ of what we have hithertc 

called a ‘material particle.’ But in doing so, we have assumed 

only that it is something that can be recognized and watched in its 

changing position. Its being ‘ material ’ or not, mattered, in fact, 

but little. We might as well have spoken from the beginning 01 

any comparatively permanent complex of sense-data, distinctl} 

localizable in the S- and .V'-spaces. Thus, if />' be the velocity oi 

propagation or transfer of anything that can be watched,* from the 

^'-standpoint, and if be the velocity of S' relative to S, then 

as given by (ga), will be the corresponding velocity of propagatior 

or transfer, from the N-point of view, and the above k will be the 

dragging coefficient of S' (if it be empty except for the framework) 

or, as the case may be, of the bodies or media carried along with S' 

If, for example. S' is attached to a column of air blowing uniforml) 

past an observer resting on earth (N), and if p' be the velocity o 

sound relative to S' (and consequently, by the principle of relativity 

also the velocity of sound as would be obtained by our A-observei 

in quiet air), then (it) will be the dragging coefficient of air foi 

sound. In this case p'jc is of the order 3-3 . 10*73.10*^^== 

so that K difTers from unity by little more than one millionth, anc 

we have a sensibly (though not rigorously) full drag of sound b} 

air. Similarly, for light t propagated along a column of flowing 

water, as in Fizeau’s experiment, if /' be its velocity relative to th( 

water and taken from the A'-standpoint (and hence also the velocit] 

of light in stationary water from the standpoint of an ordinary o 

^S-observer), formula (ii) will express the drag of light by water 

* * Propagation,’ as here defined, docs not necessarily involve any materia 
medium as the * substratum ’ of the thing to he recognized and watched in it 

migrations, the only requirement being the possibility of its being watched so 

Thus, we may liave * tiropagation ’ of a distortion along a rope, or of sound wave 
in air, or of electromagnetic ‘disturbances’ through empty space as wxdl a 

through glass or water. The tirocess of detecting and watching the waves o 

disturbances may he immediate in some, and very indirect in other cases, hut thi 

does not bring in any essential differences. 

tin this case we can imagine an irregular train of light waves or a solitar 

wave or a sufficiently thin electromagnetic sheet which can be watched, at leai? 

theoretically. And if we wish we can reduce this case to that of the motio' 
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The only difference is that in this case the value of p'jc \ 

exceedingly small as for sound and air, and this is why 

of considerable physical importance. For water in or 

ditions p'jc is as great as 3/4, and it approaches unity 

nearly for optically ‘rarer’ media. Generally, if ?i ha 

spending index of refraction, we have so thai 

at once 
I 

/< =: I —^ 

n- 

and this is the famous d7'aggi?ig coefficient of Fres?iel^ whi( 

so much of our attention in the early part of this v 

which was found to be in such good agreement with ( 

Thus, Fresnel’s formula, which on the ground of t 

theory appeared as the outcome of a rather complica 

minute particles, follows here as a simple conseque 

fundamental theorem of relativistic kinematics, quite iiK 

of any theory of the structure of matter. 

* Notice that the above is but an approximate value of t 

coefficient, and that its rigorous value would be, by (i 

___ I - 

"'=! + /;<///’ 

where But for the present Fresnel’s formula, 

the technical difficulties of the measurements, is more than 

accurate. Remember that in Fizeau’s experiment, as rep 

improved form by Michelson and Morley (p. 41), the 

flowing with a velocity of 8 metres per second, so tha 

the order while the observed value of the dra, 

trusted to hardly more than two decimal figures. I dc 

what possibilities lie in canal rays. At any rate the e 

discrimination between (12) and the Fresnel formula is 

reserved for the future. 

As a further example of composition of velocities, let 

the case of pe7’pendiadar components. Returning once i 

notation adopted in the general formula (i), we have in 
t '(tr nr \ M ^ nr nr Ck i* l+’n “f* TV 
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Similarly, the resultant of followed by will be 

V2i = Vo+tri=V2 + Vg + Vi 

In Fig. 14, in which PAJVJ5 is a rectangle, the former of tl 

vectors is given, in absolute value and direction, by OC, and 

latter by OD, while the diagonal ON represents the Newtoi 

resultant. As was already remarked, the absolute values of 

relativistic resultants v-jg, are equal to one another, the sq 

of each being in the present case given by 

V- = V-f + 
^ 00 

instead of which we may conveniently write 

or also, as a particular case of (Z'), p. 169, 

7 = 7172- 

To obtain the angle ^^COD enclosed by the two resultants, 

their scalar product and divide it by v^. The result will be 

cos f 7i/^i" + 72^2“ 
7/i^ 

Thus, for equal ■}, i, of the velocity of light, the an 

would be, in round figures, i®, 8°, 43'’ respectively, or more accur 
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while it is moved relatively to the paper (S) horizont 

velocity the point of a pencil is led along the vertic 

the velocity V2 relative to the ruler (S'), then the pen' 

the line OC, e.g. the segment OC in unit time (5-tim 

other hand, if the ruler is moved vertically with velocit 

pencil is led along its horizontal edge with velocity 

the pencil will draw the line OD. According to classica 

the line dra\ra would be in both cases the diagonal of t 

Notice that from the paper-standpoint the velocities 

pounded are: in the first case OA and A C (not AN^j 

second case OB and BJD (not BBP). In the old kine 

was no question of discriminating between the pap 

ruler-standpoints. 

So much to explain the true meaning of =D= V2, as < 

from Vg + Vj. 

The space in the ordinary sense of the word, or 1 

positions being assumed Euclidean in both the old £ 

theory, the space representative of velocities, or whi 

called the kinematic space, is again the Euclidean spac 

kinematics, but non-Euclidean in relativistic kinematic 

to represent the resultant same Euclidean p 

with the component velocities, we had to cut off from 

CJV] and similarly, in constructing V21 we had to cut 

the piece BJVi If we want to obtain the resultant 1 

construction without cutting off anything from the seg 

senting the component velocities or any functions of e 

velocities alone, then we have to use a non-Euclideai 

Lobatchewsky^s and Bolyai’s space of constant negati'^ 

or, as it is appropriately called, a hyperbolic space.* 

In short, the relativistic kinematic space is a h3rperb' 

*This was first pointed out explicitly by V. Vari6ak, P/iys. ZeitSi 
1910, pp. 93, 287, 586; cf. also Jaliresbericht dev deutschen Mat 

Vol. XXL 1912, p. 103, where all his contributions to the subjec 
But it must be noticed that materially the discovery was made previoi 
Sommerfeld {Verk. deutsch. Phys. Ges., XI. p. 577), when he j 
relativistic formulae for the composition of velocities are * 710 lo7ig. 
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To see this, take, for simplicity, the above case of 

Denote the angle contained between and the resultant v — \ 

i.e. the angle AOC of Fig. 14, by Then, by (13), 

/] ^^0 /^o tan 
TJj-yi 

a,nd, by (16), 7 = 7172* 

Now, instead of the absolute value of each of the velociti 

introduce the corresponding imaginary angle w, 

(0 = arctan (c/B), 

as defined by (10), Chap. V. Then y = cosco, ^87= -tsino), g 

the above pair of formulae will become 

cos (0 ™ cos cuj. cos Wo, 

tan 60 
tan (0^ 

sin 

and these are the known formulae of spherical trigonometry fo 

right-angled triangle, whose sides and hypothenuse are 

and whose angle opposite to is difference being t 

here all the sides are imaginary. This is the property remarked 

Sommerfeld (cf. last footnote). 

Next, to get rid of the imaginary sides, introduce, for each veloc 

instead of <0 the real angle a, as defined by (20), Chap. V., such tl 

tanh ^ = v/c. ( 

'Fhen, as was previously noticed, io — ta, and, since 

sin (la) — L sinh a, cos (ui) = cosh a, 

the above formulae become at once 

cosh a — cosh . cosh a. 

tan 
tanh a2 
sinh a^ 

Now, these are exactly the formulae for a right-angled triangk 

Lobatchewskyan or hyperbolic space.^ Thus, if a^ and (Fig. 
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are segments of geodesics or shortest lines in hyperbi 

representing the component velocities, the shortest line aj 

the triangle, will represent the resultant velocity, as regard 

and inclination, The same property may he proved 

general, i.e. for component velocities including with oi 

any angle. Here it will be enough to give the ler 

Denoting by tt - ^ the angle Vj, Vo, 

opposite to a (Fig. r6), we have 

J (^1^2) = - 

so that our previous formula (/^), 

y=yir-2[t+^(v,v,.)], 

becomes at once 

cosh a = cosh a-^. cosh a.j. - sinh , sinh . cos 0, 

The determination of the angle 9o, by means of the gcnei 

(i), is left to the reader. 

Notice that, as long as we are concerned only with tw< 

and their resultant, we have no need of three-dimensional 

space. What we want then is a Lobatchewskyan plane c 

of constant negative curvature. Now this may be easil; 

of any size in Euclidean space. Models of such a stirfi 

as a pseicdosphere^ which is a surface of revolution,* belo 

the outfit of many mathematical class-rooms. Our last 1 

must be imagined to be drawn on a pseudospherc (whic 

has nothing more imaginary about it than the page on v 
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coCiniutativity and all the remaining properties of the addition 

of velocities. In this way the relativistic rule.s of the composition 

of velocities could be made accessible even to all those who do not 

to think of hyperbolic, and other non-Euclidean, spaces. 

It has been proposed by Dr. Robb* to call our above a, as 

<3Lefined by (18), that is 

a = arctanh -™ , (21) 
i' 

tlae rapidity, corresponding to the velocity v. It seems a very con¬ 
venient name for the purpose. Using it, we may briefly restate the 
a.t)Ove result as follows : 

Any two rapidities are compounded by the triangle-rule in 

hyperbolic space. 

Whence also : the resultant of any number of rapidities arranged 

in a cham in hyperbolic space, is the geodesic or the straight line 

of that space, drawn from the beginning to the end of the chain. 

Notice that if rapidity is to involve * direction ’ as well as size 

or absolute value, it has to be considered as a vector localized m its 

o%^n line^ i.e. in a Lobatchewskyan straight line or shortest line 

upon our pseudosphere. In connexion with this we have only 

thte triangle-m\Q^ and not the parallelogram-rule, as in Newtonian 

Icinematics. There are no parallelograms in hyperbolic space or 

upon a pseudosphere, any more than upon a sphere. To express 

that direction is involved, we may write for the rapidities a^, a.^, etc., 

a.nd use the ordinary sign + for their addition, keeping in mind 

that each of these rapidity-vectors can be shifted only along its own 

line, and, consequently, that their addition is non-commutative, 

unless a^ a^ are on the same line. Thus, the rapidity aj^-fa.j 

(Fig. 17) is Aid, while a.^ + aj^ is CD, which, though of the same 

length, is on a different line. 

“^Alfred A. Rol)!), Optical Geooietry 0/ Motion, ('aiubddge, W. Ilcficr & Sons, 

1911. 
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Remembering that tanha = + (?*'«), we can 
of (21), 

a = I log = ^ + 1.^3 4. r ^6 4..., _ 

For small values of fi we have, up to quantities of the 

a = P = vlc, so that for small velocities the correspond 

are small fractions, of the order of /3, and the Lo 

triangle becomes a Euclidean triangle, as in classics 

It seems worth mentioning that to unit rapidity corres 

velocity, amounting to f of the velocity of light; mo: 
we have 

P = -7616 for a — i. 

Fig. 18. 

From (21a) we see most immediately that to the vel 
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Thus, equations (19) can be written, in terms of ordinary trigo 

metric functions of the respective angles of parallelism. 

sin n (^) = sin n(^i). sin 0(^2) 

tan = tan n (a-y). cos H (a.,), 
( 

which is the original form of Lobatchewsky’s own formulae, fo 

right-angled triangle. Similarly, the general formula (20), will becc 

sin 11 (a) 
sinll(^,).sinn(r^,) 

cos n(«j) . cos n(^?o) . cos o' 

which is Lobatchewsky's fundamental formula. The unit of ler 

here adopted is that employed by Lobatchewsky, it\ that ler 

whose negative reciprocal square is the curvature of the representa 

hyperbolic space, or the curvature of the pseudosphere upon wl 

the triangles are to be drawn. Thus, if we take for that purp 

a pseudosphere of curvature - i/roo cnr., a segment of its geod 

10 centimetres long will correspond to the rapidity a — i, and ( 

sequently will represent the velocity -76 c which is a little ab 

the velocity of light in water. 

Instead of (18), we shall now have, by the second of (22), 

omitting the unnecessary argument, 

cos II = ~ (I 

For very small values of /S the angle of parallelism 11 is nearl 

right angle, as in a Euclidean plane. Thus, for the earth’.s orl: 

motion and 11 = 89*' 59' 39"’4» the departure fi 

Euclid amounts only to 2o"-6. But if we turn to swift electn 

as observed in kathode rays and /5-rays of radioactive substaii' 

the angle of parallelism is very considerably reduced. For 

and '95 (Kaufmann observed even -99 and more) I find ir=-2 5“ 

and 18" 12' respectively. At the limit, for light-velocity, the angl< 

parallelism would vanish altogether. 



CHAPTER VIL 

PHYSICAL QUATERNIONS. DYNAMICS OF A 

The importance of the study of world-vectors < 
quaternions for relativistic investigations is obvious 
form of the laws of physical phenomena is to be pr 

ivolve beside 
des any inva: 
MrtYmSj bear 
to its time ai 
efore, physica 

choose for 1 

modern relativist. And what is most important to k 

that he cannot use any other material. For if he did, h 

To try to describe in a few abstract sentences th< 

material is procured and how it is used, would be i 

The reader will see it best from particular cases. 

As yet we had, properly speaking, only one physi 

which we made the standard of such quaternions, e. 

was transform 

ernion X was transformed 

wrote X^ fj, and if it had also, like an imagina 

real vector, we wrote and called X a physi 

Such was our definition given in Chap. V., entirel] 

that of a four-vector. 
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Now let us look for other physical quaternions. An indehi 

number of such can be obtained at once from (j itself. 

In fact, let q belong, say, to a material particle at a given instai 

of its history. Let the particle move about in an arbitrary mam 

and let p be its instantaneous velocity in S, Then its positi 

quaternion at the instant will be q + dq, and this as well i 

will certainly be a physical quaternion. And since (2 [ ] C 

distributive (or since the Lorentz transformation is linear and ho' 

geneous), the difference of these two quaternions, z.e. 

dq^di+dx = [ic + p] df^ 

will again be a physical quaternion, 2; <7. Therefore, as we la 

from Chap. V., its tensor 

Tdq =: L dtsjc^ ~ 

will be an invariant. Divide it by then 

dr = d;^ yj 1 ~ ~ 

will again be an invariant Its value will be real, provided 1 

p is not greater than c. And since dq is a physical quaternion, 

shall have also 

that is, Y will again be a physical (iuaternion. Let us call it 

veiocity-auaternion of the particle in question. Its developed form 

l"=7p[‘^ + P]. ( 

where p is the ordinary vector-velocity of the particle, justif) 

the above name. 

The plain meaning of our result is that Y F<2, i^e, that 

and py^ 
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Using this, the reader will obtain at once the addition tl 

velocities, identical with (i«), Chap. VI., along with the 

(identical with (i), p. 169), which is a conseciucnco of that 

Thus, the relativistic rule for the composition <)f velocities i 

in the statement that F is a physical quaternion. 

The infinitesimal scalar dr, as defined by (2), deserve 

attention. For = o it reduces to df, the element of 

5“time, but is, in general, smaller than dt It has the a 

of being an invariant, which df is not. In other words, t 

of dr is independent of the choice of our standpoint, bei 

for all legitimate systems. It belongs to the particle. T 

property will obviously hold for 

where the integral is taken along any portion of the i)article^, 

or along any segment of its world-line, from an arbitral 

initial point to the variable end-point. The parameter r, thus 

may be called, after Minkowski, the proper time*^ of the 

The velocity p of the particle, entering into each clement 

its square, may, in general, vary from instant to instant, a.*- 

both absolute value and direction. If the particle is fixed 

proper time is the ordinary time / of the system .S’. An 

particle moves uniformly in S, we can imagine a system S' 

it will be at rest. And then the proper time of the par 

become the ordinary time of that system. 

The velocity-quaternion may now be described as the d 

of the position-quaternion with respect to the proper tim< 

particle. It will often be convenient to use the dot 
differentiation. Thus, F=y. 

The name corresponding to Y in the language of four-dim 

algebra would ht four-velocity,\ and its matrix-form would be 
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Remember that dr^ as originally defined, was simply the 1 

of dq divided by lc. The tensor of the velocity-quaterni( 

therefore, 
T y= 

We know, from Chap. V., that the tensor of every physical quatc 

is an invariant. In the present case this knowledge doe 

furnish us anything new. For c is, by the fundamental assum; 

of the theory, a universal constant. The norm of Y being ne^ 

namely equal to the velocity-quaternion is always twi 

In MinkowskFs language we should say that the four-velo< 

along the world-line of the particle in question. 

Since F is a physical quaternion and t is an invariant, 

Z: 
dJY 
dr 

will again be a physical quaternion which, for obvious reasons 

be called the acceleration-quaternion. So also will d'^qjdr^^ e 

physical quaternions,, each 2; y, and obviously also d'^qJdT'^ 

each Lut of all these derivatives of q we shall hardly 

more than the first two, containing the velocity and the accelei 

Let Yc be the conjugate of Y. Then, by Quat. 7, we can 

for its norm the product YY^. or also SYY^, and conseqi 

instead of (4), 
FK = r-. 

Differentiating this with respect to t, wc have 

ZYa+ FZ,-o, 
or also 

SZY o, 

which says precisely the same thing as (6a).* Such then 

relation which holds always between the acceleration- an 

velocity-quaternion of a particle. Using the developed form q^ 

we should have, correspondingly. 

and 

(rr) -t- /^ = - 

(ir) -h / /= o, 

4> 

In fact, the reader will find at once that, for any pair of quaternions a, 

abc + bac = iSab^ = iSacb, 
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or, in a still more developed form, 

:v2+j;2 + s2 + ^= - 

and . • 
x'cc zz + //= o- 

In four-dimensional language, as explained in Chap. V 

formula would read: The foiir-accehration ts always nor. 

four-velocity and, consequently, to the worlddine of the p 

famous statement of Minkowski. This cardinal property 

its short quaternionic expression in (6). Observe that th 

of that equation is the same thing as Sommerfeld s scaL 

of the corresponding four-vectors. But the invarianc( 

expressions is seen more immediately on the quaternioni 

In fact, remembering that QQc — QcQ~ have, by ' 

SZ'F/ - SQZQQc YcQc = ^QZYcQc = ^QcQYY, - SF 

Next, as regards the transformational properties of the ac 

These are entirely determined by saying that Z=f<r/+r is 

quaternion. For this means simply that /, r are transfc 

/, r. If, therefore, S' be a system moving relatively to t 

uniform velocity v, we have, according to (iV;), Chap. ’V 

r = cvr' +vy.yi'' ^ 

where the subscripts are to remind us that 7, € are to be 

the velocity v. The dots denote, on both sides, differenti 

respect to the same variable r. For, as the reader alrea 

dT=dr. There is no difficulty in developing these forr 

thus finding the ordinary acceleration 

in terms of a' = dp'jdt' and p' (or vice versa), for any pair of 

systems S, S' picked out at random. But this would 

worth the trouble. 

To see the plain kinematical meaning of the second < 

with respect to r and hence of the whole acceleration-c 

we have to place ourselves at a standpoint which bears th 
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possible relation to the moving particle itself. Let us then t 

for S' that particular system of reference with respect to wf 

the particle is instantaneously at rest. In other words, let S' b 

system whose uniform velocity v, relative to S, is equal in size i 

direction to the instantaneous velocity of the particle, ie. to 

value of p at a given instant of its history. Then, at that instj 

p' = o and 7' = 7(/') = i. Now, we had, generally, dtjdr — yi 

Therefore, 

i' 
, dy __ dy 

lF~df 
d£ 
dt' 

or /' = o, as might have been expected, and in a similar way. 

df lit'' ’ 

so that = + the acceleration--(.|uaternion relative to S'^ for 

instant in question, is simply 

Z' = a', 

Le. equal to the ordinary acceleration of the particle with res] 

to S', Since S' is that particular system of reference in which 

particle is instantaneously at rest, it may be called the rest-^y^ 

and the corresponding a' the rest-acceleration of the particle.* 

Thus, the scalar part of the acceleration-quaternion Z' vanii 

identically, and its vector part is equal to the rest-accelerati< 

Consequently, TZ'^a'. And since the tensor of every phyj 

quaternion is an invariant, we have also, for any legitimate syster 

In words, the tensor of the acceleration-quater?iioti is equal to 

absolute value of the rest-acceleration of the particle. It acqi 

thus an immediate kinematical meaning. At the same time form 

(7), in which we have now to write vs=p, give us, for the systo 

which in a certain sense is an unnatural system of reference, 
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and so^dhat the whole acceleration-quati 

written ii • 
^ dY L . 

Here,v.p is the velocity of the particle relative to J 

the {Stretcher € = €p, of ratio yp, acts along the instantai 

df p or tangentially to the path of the particle. Thus 

if the tangent to the path of the particle, drawn in t; 

its motion, be our instantaneous a;-axis. 

a; = y^^«, j' == cty, z = a. 

and If the j^-axis be taken in the oscul 

the path, then b’ = o. Since we already know, by (( 

, "'O , ’n) 0,0 /»> 

the formula for / becomes superfluous. 

Finally, to express i = d-ildr^ in terms of the ordir 

tion B>==^dpldf, remember once more that dtidr — y. 

definition of y, 

dt * dt ^ ’ 

the result will be 

r = y -If- = [a + 7-p(pa)] = 7- [a + 

where u is the unit of p. Now, i -i-/3y = y2 identica 

the bracketed expression is the vector sum of the lo 

of a magnified y*'^ times and of its unaltered trail? 

simply the result of a double application of the strel 

ultimately, 
.. d-i * O 0^ T, = y-e-a, 

whence also, by (lo), 
y-ca = a. 

giving the connexion between a and the rest-accek 

Cartesians, with the above choice of axes, for the 1< 

the transversal components of r, 

y^^x ■™" j y'^^y J 7*"^® ”™ • 

and 
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By (13) we have also, writing//f=/3, 

rt . y^\/i - /Q-sin-(p, a) = a!, 

which is merely a developed form of (9). In hict, the righM; 

side of (14) is seen, by (ii), to be identical with TZ. 

The simplest case of motion of a particle occurs wha^;^ 

permanently nil, and consequently also a = o. This is, as in cla4 

kinematics, the trivial case of uniform rectilinear motion. Such mol 

preserves its character in all legitimate systems. In fact, owing to 

linearity of the Lorentz transformation, any motion which is uniform; 

rectilinear with respect to one of these systems will be so relati'' 

to any other of them. A straight worlddine will remain strai] 

The next simplest kind of motion, which also preserves its chara^ 

in all such systems of reference, occurs when the non-vanishing ? 

acceleration is constant in size and direction^ i.e. when ddljdr' = o, , 

hence also ddlldt—o. Then, by (13), the vector y-ea is consi 

in A, that is to say, independent of /. But since the axis of 

stretcher €, or the a'-axis in (13^^), instead of being fixed, is at ei 

instant tangential to the path of the particle, which may be curvilin 

it does not follow that even the direction of the acceleration a 

be constant in S. Thus, the general case of such motion, whic! 

the counterpart of the uniformly accelerated or parabolic motioi 

classical kinematics, would still be fairly eomplicated. The simp 

sub-case, which also will show best the characteristic propertiei 

this kind of motion, occurs, of course, when the particle moves 

a straight line. Let this be our a:-axis. 'Fhen, by (13), 

ST-, ^ = (I 
^ ^ dt ’ 

JO ^7 ^ d{y“) 

whence, counting the time / from the instant at which / = o, 
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Thus, as long as at is small in comparison with the ve 

light (whether before or after the instant when the particL 

rest in S\ we have, approximately, p = dt, and x = ^df‘ 

as in the Galilean free fall. But after a sufficiently long i 

neglected terms begin to make themselves sensible, and the 

of the particle, instead of increasing beyond all limit 

asymptotically to the velocity of light. In fact, ^ we ha 

(15), for any given a\ p~+c ^or /= + co. 

Integrating once more, and choosing the origin of 

for t~Q, x^XQ^c^jd, we obtain 

Thus, the world-line of our particle, in rectilinear motii 

constant rest-acceleration, is an equilateral hyperbola (Fig. 

Fig. 19. 

^‘2 
length of whose semiaxes is equal This motion has tl 

a 
been called by Born, who was the first to study it, hyperbolic ] 

The asymptotes AO^ OA correspond, as in a previous figure 

velocity q directed towards and away from the origin. The 

arrives from a; =00 with light-velocity, moves up the x-m 

ever-diminishing velocity towards -P, the vertex of the repres( 

hyperbola, where its velocity is nil. Then it turns and move 

the a;-axis with increasing velocity, which again tends asympt 
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more sudden is the passage of the particle’s velocity from - c throi 

zero to +r. Taking, instead of N, another system of reference 

which moves uniformly along the ^"-axis, and whose origin coinci* 

with O at the instant /" = /=o, we shall have again equation ( 

for the new variables. For, is an invariant, and so is 

acceleration a\ by its very definition. It is this we meant by say 

that the considered kind of motion preserves its character in differ 

systems of reference,—a property which is not shared by 

Galilean uniformly accelerated motion to which would correspc 

a parabola as world-line. Remember that in classical kinemal 

there was no question of discriminating between the ordin 

*S-acceleration a and the rest-acceleration d. 

We may mention here that the hyperbolic motion is particuk 

interesting in connexion with the theory of the relativistic ^rig 

body. But its chief importance lies herein that atiy varia 

motion can be closer approximated by it than by uniform moti 

In other words, any curved world-line can be brought into clc 

contact with a hyperbola than with a straight line. There is 

every point P of such a world-line a hyperbola of closest cont 

with the world-line, which plays the part of the familiar cii 

of curvature and which was called by Minkowski the hyperl 

of airvature. If O be the centre of this hyperbola (whose ver 
is at jP), then the four-acceleration will be given by the wo 

vector drawn in the direction OP and having the absol 

value djOP^ or 
semiaxis 

In fact, as we have just seen, the 

expression is simply equal to a\ and this again was seen to 

identical with TZ, or with the size of the four-acceleration wh 

was always normal to the world-line. Remembering, on the ot 

hand, that TF=f<r, or that the square of the four-velocity is eq 

to - the reader will at once perceive the perfect analogy betwi 

the above property of c-jOP and the familiar formula: non 

will also be noticed that, the square of the four-velocity be 

negative, the four-acceleration is directed away from the centre 
nf nsmlatinfr vvnrld-hvnf^rl'inln. whilo in thnt fnmilifir r 
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Such then are the properties of the velocity- and tl 

quaternion. These being simply the (first and seco 

of the position-quaternion <7 of a particle with respec 

time, our above considerations had a purely kinema 

Although we have spoken of </as defining the position 

a ‘particle,’ the latter could mean anything which car 

at all and watched in its varying position. Of cour 

be possible, the ‘ particle ’ must have some or other cl 

its own. But these must not necessarily be quantitativ 

to say nothing of their being constant in time or eqi 

standpoints or systems of reference. The moving th 

might have no such characteristic at all. 

But let us suppose there is a certain magnitude ( 

that there is, more especially, a scalar coefficient 

attached to the particle and fulfilling the latter 

invariant with respect to the Lorentz transformation. 

without yet giving it any name. 'Fhen wy, 

and so on, will all be physical quaternions, and, con 

of them may be employed, along with other physic 

for relativistic purposes, i.e. to write down laws of 

particle. vSuch laws would be admissible, in thai 

word, that they would not infringe against the princij 

But this does not imply, of course, that they will 

Nature. If such laws or equations are to be of a 

physicist, and if they do not happen to cover an enti 

ground, they have to coincide, roughly at least, an 

circumstances, with what is otherwise known to hold 

In the present case we shall require that the relati^ 

of motion should coincide, approximately for smal 

rigorously, when referred to the rest-system, with N 

law of motion. 

Keeping this in mind, let us see what are the c 

assuming, as the equation of motion of our particle 

dmY 

dr 
X. 
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the quaternion A, and implies that it has an imaginary scalar 
a real vector; the coefficient m being supposed real. 

By its construction, equation (17) will preserve its form in 
legitimate systems of reference. 

Remembering that dijdr^y, write, instead of (17), 

dm^_i y 
dt ~ 

and denote the imaginary scalar of 7“^ A by lv and its real ve 
by N, i,e. put 

I 
- A= (v + N. 
7 

Then (17) will split into the vector and the scalar equations 

d I 

where p = dxjdt is the ordinary velocity of the particle relative t( 

and 7 = (i - 
Written for the rest-system^ which we shall again denote by 

the first of these equations becomes at once 

wa 
dd ’ 

identical with the classical equation of motion of a particL 
mass m under the action of the impressed force N', Thus, 
above requirement is fulfilled. In view of this property, 
coefficient m is called the rest-mass of the particle.* The ordii 
force, N' in the rest-system and, generally, N in any legitir 
system is called the ‘Newtonian force’ in distinction from 
the vector part of A, which is the ‘ Minkowskian force.’ For rea: 

*Lorcntz, Phys. Zeiischrifty Vol. XI. 1910, calls m the ‘Minkowskian n 
and VJif=7N the ‘Minkowskian force/ since (17), with constant w, is 
eauivalent of the four eouations of motion viven hv Minkowski: Gf'undp'leiclmf 
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which will appear when we come to consider .the 
actions of the electromagnetic field, we shall have 
former and not the latter as the force acting upon 

The second of (17a) becomes, for the rest-syste 

dvi _ V 

dt' c 

As will be seen in Chapter IX., there arc reasor 
that even the rest-mass may vary with time. Ir 
in general, be the case when the internal state of tl 
during its motion. But, to simplify matters, let ■ 
the particle’s internal state is kept constant. Then 
will be constant in time. This implies so 
quaternion X will be reduced, for the rest-system, 

a'-n; 

and we shall have, for any legitimate system X, 

where JV' is the absolute value of the (Newtonian) f<: 
from the standpoint of the rest-system. 

With this supposition of a ams/a/d resZ-mass^ equati 

dV tw* JlMs ^ M Jfi 

m == X, 
dr 

Now, by (6), SAKi = o, and consequently also 

SXFc-o, 

or, in developed form, by (3C1) and (18), 

(Np)» fv. 

Hence, by the second of (17a), whicli is simply 
of (20), 

(Np) 
d 

dt 
{mc^y). 

Thus, (Np) being the activity of the force N, th 
the quaternionic equation (20) expresses the pris 
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'{principle of Vis-viva\ giving for the kinetic energy of the 
the value 

T~ me- (y + const.). 

If we require that, for p — o {i.e. for 7 = 1), YJ) = o, we have 
const. = - I. Ultimately, therefore, the Mnetic energy of the ] 
moving with the velocity p relative to 5, becomes 

T== me- (y - I) == ^ne'^ [(^ ”" “■ i]? 

or, developed in a series, 

For small velocities, this reduces sensibly to the first tern 
which is the classical value of the kinetic energy, since in tl 
the rest-mass becomes sensibly identical with its *S'-value. 

The above expression of the kinetic energy was first g 
Einstein’s fundamental paper of 1905. An alternative, rein; 
form of (23), due to Minkowski, is 

dt - dr 

dr ’ 

and reads as follows: the kinetic energy of a particle, as es 
from the ^-standpoint, is the product of its rest-mass by the 
of the light-velocity and by the proportionate gain of the 
with respect to the particle’s proper time. 

Let us now consider the vector part of the quaternionic c 
of motion, or the first of (1 ya). This, which holds also for a ^ 
rest-mass, may be read in the usual way : rate of change of mor 
= force. Then the momentum of the particle, of rest-mass w, 

G sr ;;^yp m 

sj 1 ^'py^ 
p- 

Thus, to obtain the momentum we have to multiply the c 
velocity p of the particle by my, and not by m. Some auth( 
therefore, my the ‘ordinary mass^ of the particle. But w 
rather to avoid so many different names. It is quite suffic 
know that m, the rest-mass, enters in a certain way into the exj 
of momentum, and in a certain way into that of kinetic 
The momentum-quaternion, which is always a physical quaterni 

simply be mV. 



Next, to see the properties of vi with respect 

acceleration a = //^r/^//^ return once more to th« 

constant w, and write the first of {}^a) 

Then, by (12), 

dx m.. ;// — := ^ r = N. 
df y 

;;/7€“a~N, 

where, it will be remembered, €- is a stretcher c 

tangentially to the path. Thus, the forexs though 

in the osculating plane, will, in general, differ in di 

acceleration. Instead of the old ‘mass/ whic'h wn 

factor converting the acceleration a into the force 

the linear vector-operator 
my, c“. 

Or, splitting the acc'clcration into its tangential 

longitudinal and transversal) components, a,,, 

my''^. 

This result is exfiressed by saying that the pariicUi h 

mass 

nil — my^^ 

and the transversal mass 

nif -- my 

m 

j{ I - jPf 

m 

For vanishing velocities both of these masses becoi 

the rest-mass of the partiede. With increasing vt 

tudinal mass increases morct rapidly than the trans 

/ = rboth would become infinite. So also would tl 

of the particle increases beyond all limits when tlu; 

is approached. 

It is worth noticing here that tlu^ above mi and i 
1  • j r . - .... ... j 1.. ...  . i 1. . 

Vi 
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formula of Lorentz for the transversal electromagnetic mass is 

fairly well verified by experiments on electrons constituting the /5- 

In the early stage of such experimental research other elect] 

formulae coincided equally well with the observed facts. It 

been argued therefore that the 7if/io/e mass of the electron is of p 

electromagnetic origin. Now, the above relativistic formulae, g 
the required dependence on velocity, have nothing electromag 

about them. If, therefore, the doctrine of relativity is accepted, 

part of the observed mass of the electron may be attributed 

non-electromagnetic origin. To obtain this we have only to 

to the electron, instead of the usual cm., a correspond 

greater radius, reducing thus its electromagnetic mass. Remei 

that what is given by observation is the total mass and the 

charge of an electron, while its dimensions remain free, in very 

limits at least. But this subject cannot profitably be discussed 

any further. 

The longitudinal and the transversal masses of a particle, dei 

as the quotients of the corresponding components of force 

acceleration, may also be written, by (24), in terms of the abs< 

value G of the momentum, 

r dCr 

The first of these is simply (24) itself, and to see the truth of 

second, we have only to remember that dyldp — y^flc^."^ 

formulae (27) would even continue to be true if we had in 

expression of the momentum, instead of the factor my, any c 

function of fS alone, as the reader may easily prove for himsc 

Let us once more return to the first of equations (17^), w 

may be written 
dOc ^ = N. 

Multiply it on both sides vectorially by r. Remember that 

momentum coincides in direction with the velocity p = ^r/^, 

that VpG = o. Then the result will be 
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In words : The rate of change of the moment of m( 

in absolute value and direction, to the moment < 

force, both moments being taken about (9, the ori^ 

the relativistic equivalent of what is known in clasi 

ihe principle of areas. The above moment of momc 

of the rest-mass w, and r, r, 

(It 
nNxQc = niNx , • 

dr 

In particular, if the moment VrN" is permaneni 

impressed force is central, we have the ccpiivalent 

of conservation of areas., that is, m being again supp( 

Vr 
dr 

where the vector A is constant both in size and in 

to the frame-work of reference S. In this case the 

a plane, normal to A, as it would also acc!ordii 

mechanics. But there is the following difference, 

usual polar coordinates r, we have, by the las 

« dB 
-r A. 
dr 

that is to say, equal areas swept out by the radiu 

intervals of the proper time of the particle, and n 

Using the time / of the observers fixed in S we 

dQ 
^ . =yWi-/7r-, dt 

and this is variable, unless the parti(!le happens tc 

along its orbit. Such then is the rttlativistic modifii 

second law, valid for any (X^ntral for<‘es. For .slo 

back, of course, to the ordinary (Conservation of 

Leaving, for the present, any further dynamical c 

’close this chapter by developing some simple and j 

of certain combinations of physical ciuaternions, int 

particular meaning. I'hcse will be found useful i 
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quaternions, obtained by their addition and multiplication, ca¬ 

used for relativistic purposes, that is to say, for writing c 

equations which will satisfy the principle of relativity? 

We need not dwell upon the sum « + ^ 4- ^ 4-... (or <2^ + 4 4- + 
which is again a physical quaternion, in the original sense of 

word, and as such, is relativistically available. But having menti( 

the sum at all, it may be good to observe that a sum of antiva 

quaternions,* as, for example, 

<2 4- ^<5, 

cannot be used. For not only is this sum not covariant with y. 

with yc) but, when subjected to the Lorentz transformation, 

split, the two addends being torn asunder, thus 

d 4- ~ QaQ + QcbcQc' 

In other words, such a sum is not transferred as a whole from 

legitimate system of reference to another. 

Now for the product of physical quaternions. Begin with 

simplest case of two factors. Leave aside ab which is split ir 

act of transformation, thus 

a7/=(2«(2V;(2, 
and pass straight on to the product of antivariant factors^ say. 

Pass from the system S to any other legitimate system S'. '\ 

B'^Q^a^Qo.QbQ, whence, by the associative property, and 

membering that 

Thus, the new quaternion ZT, though it is neither covariant with 

standard q nor covariant with is transformed as a whole (< 

posed of constituents already admitted) and can therefore be 

for relativistic purposes. A moment’s reflection will convince 

reader that such a procedure will not infringe against the prin* 

of relativity. And the meaning of these abstract remarks 

*Any two quaternions of the set 
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become plainer when we come, in the next cha 

a concrete law involving a magnitude which, in pasj 

is transformed exactly as the above quaternion H. 

us look for some further properties of that quatei 

Consider the conjugate of //. This will he, 1 
rule of the conjugate of a product, Quat. 8, 

Now, transforming this, we get JJ'c ~ QJ^cQcQ<^Q.i 

same way as above,* 

Thus we see that 

a[ ]<2 
is the relativistic transformer of hth II and its a 

hence also of their sum and of their difierence 

scalar and of the vector parts of the ctuaternion h 

and L, 
L = V//. 

Now, s being a scalar, we have simply 

i.e. s is an invariant, as was proved before. Thu 

of ajj need not detain us any further. 

What we really need for the subsctiuent pliysical 

the vector part of this quaternion. This is trans! 

L'= 

and since (2, Qc ^re unit ctuaternions, the tensor of 

TL' = TL, which may also be written, more conv 

Here, III is an abbreviation for (/4)', the transfoni 
taking the conjugate of the transfonncd cpuiteruion, {31), 

so that (//c)'==(//%, and both skies may, 
simply HI- 

t Remember that the Kcpuire of the tensor, or t!\e norm 
is AWc. Now, in our case, L being a smiarit'ss cpiatern 
Lo=-L, so that its norm is simply -L'-*. If L were an ( 

we could write (instead of ~L*^) /A the sfpiare of its siz' 

But since L is a complex vector, or a the above iv 
is a scalar^ of course, e.g. a complex scalar, as will be 

need not put the prefix S before it, since VIX is always 
definition of vector nroduct. 
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These being the transformational properties of the vector L =' 

let us see what is its structure. 

Since both a and b have the structure of the standa 

physical quaternions, write 

^ = 6a + A; — K 

and ^ = t/5? + B, 

where a, ^ are real scalars and A, B ordinary, i,e. real vectors. 

Xi == — iL2, 

where and are the real vectors 

Li-VBA, L.> = M-aB. 

Thus, L is a complex vector or a bivector,—called so, sir 

consists of two ordinary vectors. had, in Chap. IL, a si 

of such a magnitude in the electromagnetic bivector. The coi 

invariant, (34), of L splits into its real invafiants, 

and (LiL^). 

The second of these invariants vanishes, since, by (36), 

perpendicular to L^. This being the case, L — is a ^ 

bivector (and is equivalent to Sommerfeld’s ‘special six-vec 

In order to obtain the ge?ie?‘al bivector, whose two real V' 

are mutually independent, we have only to add to the abc 

another, appropriate, special bivector having the same transf 

tional properties. For this purpose we can take the special bi^ 

the supplement of L, defined by = Yll^\ where H 

pair of physical quaternions, such that 

But particulars concerning the choice of a sufficiently g^ 

supplement, as this is, need not detain us here. 

Henceforth we shall denote by L the general bivector, 

obtainable. And we shall call it, where it will be needed f( 

sake of distinction, a left-handed bivector, owing to the positi 
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general right-handed bivector, R, consisting of 

vectors ®2* This will be transformed by 

and will, therefore, have again the two real invi 

and (BiR-a)- 

Both L and R can be used, with equal convenic 

purposes, and will be found useful for the trc 

magnetic questions. 
To illustrate the above properties by a simple ki 

take, as the generating factors, the velocity- anc 

quaternions of a particle. Then 

L = VyoZ= -Vrr + i^(^^r-fr), 

i,e,^ after a slight calculation, in terms of the ordir 

acceleration a, 
Lj = 7^Vap, = - 0^‘^a. 

Thus, besides (L^Lg) which vanishes, obviou^ 

invariant {L^-L^ and, therefore, also) 

- = af -Ji - sin^;! 

and this invariant has a simple kineniatical me 

identical with the absolute value of the rest-acc( 

particle, as given by (14). 

Returning to our general topic, let us consider 
number of left-handed bivectors. Then we shall s 

transforming it, all the internal <2’s and <2c’s, as 

one another {QQc—^)^ and what is left is or 

beginning and the Q at the end of the whole cha 

single L. In other words, the vector part of the proi 

of left-handed bivectors is again a left-handed bi 

we see, by (38), that the vector part of the prodti 

bivectors is again a right-handed bivector. But we 

physical application of such products. 
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Notice, therefore, that if a be any physical quaternion covi 

with q (not necessarily that already involved in L or R), the pr( 

dis will transform into 

that is to say, <2L will again he covariant with q. So also wi 

be covariant with q. And similarly will and a^R be cov, 

with q^. In short symbols, 

cih ^ Ra 

Each of these products can be, and is, in fact, used for relat 

purposes. As regards their structure, they are biquaternio: 

Hamilton’s (not in Clifford’s) sense of the word, that is t( 

quaternions, of which both the scalar and the vector parts are 

plex.* But, as we shall see in the next chapter, any one of 

biquaternions can be split into a pair of our original pi 

quaternions, each or in the case of (40) or (40a) r 

tively. In this way we Ml back to the quaternions conside 

the outset. 
Thus, the product of any number of antivariant physica 

ternions 
... ah^de^... 

will furnish us (after the rejection of the invariant scalar j 

bivector L or R, which is transformed by [ ] Q Q [ 

respectively, or again, biquaternions consisting of pairs of p 

physical quaternions, which are transformed by (2 [ ] <2> 

Qc[ ]<2c- 
And, as was already remarked, products of covariant factor: 

as ah, are out of (Question. 

As concerns the operation of division by a physical quat< 

we know that it is reduced to multiplication by its reciprocal, 

it will be enough to observe that the reciprocal of a p 

quaternion is again a physical ciuaternion. For we have 
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and the tensor T^: is a relativistic invariant. Nc)ti< 

are mutually antivariant. 

Finally, notice that any one of the above factors 

by the quaternionic differential operator 

+ V = 

or by its conjugate Z>c, which is Thus, fo 

quaternion ^ be a function of time and the 

will be a left-handed bivector; and so also 

right-handed bivector. For, independently of lh< 

power, these operators behave with respect to tf 

formation exactly as any of our primary quaternic 



CHAPTER VIII. 

FUNDAMENTAL ELECTROMAGNETIC EQUATIONS. 

In this chapter we shall consider, from the relativistic standp 

the fundamental, or ‘microscopic,’ equations of the electron th 

and their consequences. These equations, written in their ordi 

vector form, are, as under (i.) and (ii.). Chapter 11., 

4- pp — c, curl M; p~ div E 

r. curl E : div M = o 

P = /.[Eh-'VpM] = ^,J. 

Here, p is the velocity of a charge-element with respect to 

framework S, for which, to begin with, the equations are supp 

to be rigorously valid; P is the ponderomotivc force, per 

and Jf the ponderomotivc force 

force. 

First of all, we have to ask whether these equations satisf) 

e of relativity, that is to say, whether they preserve 

len we pass from the svstem .SY4 x, r, s') to another s 

,y, z) movi; 

inswer be. a 

:o o. 

^hat a 

11 
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Lorentz transformation -\rvt')^ etc., and expressing ] 

of p' by means of his addition theorem of velocities, sho 

variance of the form of these equations, and finally gathei 

the terms which in the transformed equations play the p£ 

field-vectors.* But the shortest method to obtain these 

to write the four equations (i.) in their condensed qui 

form, 
I)B=C, 

as given in Chap. II., and to test the constituents of this 

with regard to their relativistic qualities. 

Here, it will be remembered, B = M - zE, while 

c=p[c+~M 

or, in terms of the velocity-quaternion, (3a), Chap. VIL, 

C 
O'i? 

y, 
where yp = (i - 

Keeping this in mind, consider the equation (i). 

already that the differentiator D behaves exactly as a 

quaternion, viz. that Dz:Lq. The only thing, therefore, 

require, is to find the nature of the current-quaternion C 

Now, the electric charge de of any individual portion of ai 

is a relativistic invariant, i.e. if dS be the volume of thai 

and dS' its Y'-correspondent, then 

pdS^pdS'. 

In fact, taking the divergence of the first of (i.), we hav 

O = + div (/jp) = + (pV) p + pdi\ p, 

which is known as The equation of continuity,^ or, denot 

the rate of individual change, as on p. 31, 
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d 
whence, multiplying by dS and observing that -j^(dS)-=^dS.dl\ 

Thus, the charge, as estimated from the ^standpoint, is invar 

in time, notwithstanding the motion and deformation of the vol 

element we are watching. This being the case, we can imagin( 

charge first fixed in 5 and then set it into motion, bringing it b}; 

by to the velocity v, when it will be at rest in S', Claiming, t 

fore, in the name of the principle of relativity, the same rights f 

as for /S, we shall have de ^de. (If the reader does not like 

kind of proof, he can simply postulate the invariance of charge, 

verify a posteriori^ after having obtained E' in terms of E, M, 
this postulate is fulfilled.) 

On the other hand, remembering that volumes are transfoi 

in the same way as longitudinal dimensions, and denoting foi 

mbment by dS^ the rest-volume of the element considered 

shall have 

or 

Therefore, by (3), 

dS = dS^ n/i - and dS' — dS^ J1 -p'^jc'^ 

yp dS = yp' dS'. 

yi> yp' 
that is to say, />/yp, the coefficient of Y in (2a), is an invaria 

Now, as we know from the last chapter, Fis a physical quater 

Therefore, C, the airrent-quaternion^ as it was already calle 

Chapter II., is again a physical quaternion, like the standard 

as "Well as Daq- 
This proves the invaHance of the form of the eqication (i 

of the equations (i.), with respect to the Lorentz transformation 

gives at the same time the connexion between B' and B. 
Tn for't cin/^A =. D frAm (T^ 
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and inserting ,QQc=t^ between Z> and B, 

D'Q,BQ=C', 
z.e, 

Z)'B'=C', 

where B'=(2cB(2.* Thus, B, the electromagnetic bivect 

left-handed bivector. 

Or, to obtain this bivector in its typical form ^ 

proceed as follows. Operate on both sides of (i) with Dq. 

D,DB = I),a 

But DqD is an invariant. This, therefore, is already the : 

form. We need not even put the prefix V before I>c^ 

as we shall see when we next return to the last e 

Thus, B is a left-handed bivector^ having the same struct 

the same transformational properties as our L of the last 

Henceforth we can consider it as the standard of physical 1 

in the same way as q has been the standard of physical quat 

It will be found convenient for subsequent work to write thr 

If (instead of our previous B) for the electromagnetic bivectoi 

L = M-tE. 

The quaternionic equivale7it of the electromagnetic differential e 

(i.) will now be 
Dlx^C, 

€Lnd the transfomnation formula of the eleciromagfietic bivector 

L'= CcLQ. 

The invariance of the formula (ii.) for the ponderomoti 

will, with equal ease, be proved later on. Meanwhile let u: 

attention upon (5). 

As already pointed out in the last chapter, Q and ( 

unit quaternions, the square of the electromagnetic bivect( 

invariant, i.e. 
L'2 = L2. 
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Now, by (4), 

and similarly for Thus we have the two real invariant 

and (EM). 

The first of these invariants, the difference of the densities 

magnetic and the electric energies, is the electromagnetic Lagn 

fufiction per unit volume.*** The second invariant, the scalar p 

of E and M, has no particular name of its own. Notice tha 

is called a pure electromagnetic wave is defined by = l 

(EM) = o. In words: energy half electric and half magnetic 

E and M perpendicular to one another. Using the electrom£ 

bivector we can characterize pure waves more shortly by = I 
At the same time we see that a wave which is pure from the 

point is equally pure from the A'-point of view. In short, pu 

least in this domain of relations, is an invariant property. B 

only by the way. 

Next, to develop (5) into its vectorial form, remember that, h 

Chap. V., 
- 0) . w 

(2 = cos~ + u. sin -j 
^ r% r* 

where u is the unit of v, the velocity of S' relative to A, and v 

is the imaginary angle previously defined. Multiply out th( 

side of (5). Then 

L' = (i - cos w). u(uL) + cos 0). L + sin w . VLu. 

From this intermediate form we can easily see that L' is ol 

from L fy turning it about u, the axis of the quaternion <2, thrc 

the double of the angle of that quaternion. Such then is the 

of the operator Qd ]Q. This is only a particular insta 

a theorem of the calculus of quaternions, given by Ha 

himself, t 

*Thc properties of this function, belonging to the elements of the 1 
Th^v)rv. are iriven in Note 2. 
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But let us write the last formula in terms of y, which is a 

abbreviation for y^ = (i - /3 = vjc. Remembering that cos w = 

and sinco = i/3y, we have 

L' = (r - y)u(iiL) + yL + ^ yVLv, 

or, employing again the longitudinal stretcher e, of ratio y, 

L' = y[iL4-^VLv], 0 

and splitting into the real and the imaginary parts, according to (4), 

E' = y[-E+iVvM; 

M'=y[^M--VTE]. 

(7« 

Or, finally, in Cartesian expansion, using 1,2.3 i^or the rectangula 

components of the vectors taken along the direction of motion air 

perpendicular to it (right-handed system of axes), 

Af/ = Afi, = y (A/o 4- = y (J ^ 

These are the relativistic formulae for the transformation of th 

electric and the magnetic vectors, as obtained by Einstein. The 

agree entirely with those given by Lorentz in his modified theor 

(see p. 86). Notice that, in passing from the S- to the A'-standpoin^ 

the longitudinal components of E, M remain unchanged, while th 

changes brought about in their transversal components involve th 

vector products VvM and VEv and the coefficient y. 

Multiplying both sides of (5) by <2 prefactor and by as 

postfactor, we have at once 

L=eL'(2«. (5^ 

But Qq follows from (2, and vice versa^ by a mere change of the sig] 

of V. Thus, the inverse transformation, giving E, M in terms c 
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as the reader may also prove by solving (yZ*). This shows 

more that none of the systems of reference is privileged. 

The invariance of electric charge, used at the outset, can no 

directly verified by differentiation of the transformed electric v 

or of its components."^ 

The applicability of the above formulae of transformatic 

obvious. For, if we know a solution of the electromagnetic d 

ential equations for one of the legitimate systems of reference 

can deduce from it at once the solution for any other of 

systems. Now, the problem of integration may be much easie 

one of these systems than for any other, owing to some parti 

simplicity of the conditions as stated from the standpoint oi 

former system. Whence the advantage of the method.! 

The simplest solution of the electromagnetic equations i 

electrostatic field corresponding to a given distribution of ch; 

(electrons), which are all fixed with respect to a legitimate fr 

work, say S'. The 5-correspondent of this will be the ek 

magnetic field accompanying a system of electrons hi 21m 

translational motmi^ with velocity v relative to 5, or what is cal 

convective field. The framework S' will be the rest-system belor 

permanently to these charges. It will be good, before procee 

further with our general subject, to consider this example at ; 

length. 

Let us suppose, therefore, that we have in S' a purely electrof 

field, so that E' — - where is the scalar potential of the { 

distribution of charge, while M' = o. Then, remembering thal 

inverse of the first of (7<2) is 

E = y[-E'- - VvM'l, 

we shall have, from the 5-point of view, 

E = y€"-iE', 

/.(f., in Cartesians, 

= E,^yE.;, E^ = yE,;. 
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The second of {•^a) gives us at once M in terms of E, 

M= WvE = -VvE, 
c c 

since the stretcher e acts along v, while the vector produc 

to V. 

Thus we have for the most general convective field, acc 

any system of charges which moves as a whole with tl 

translational velocity v relative to .S; 

M = -^VvE. I 

Here E'= - the scalar function <j> being the electrostati 

of the given distribution of charge fixed in S\ The \ 

therefore reduced to finding, for each particular case of d 

the scalar potential c/)'. Observe that this is the poten 

while E has no such potential. Notice, further, that the 

lines, due to the motion of charges, are everywhere norm; 

E and the direction of motion. And sinc.'e E' is ('oplanar 

the magnetic lines are also at right angles to E'. 

The gradient or slope can easily be replaced by 

fact, measuring a’ along the direction of motion, so that a:'-- 

and remembering that, by assumption, D<///D/' - o, we have 

i.e. 
dx ^ dx'^ c)V cV^ 

d<i> _ dill 

f 

J 

so that the first of (8) can be written 

Thus, the displacement E, as already remarked, has 

potential. But the electric force or the ponderomotive 

unit of charge carried along with S\ has su(!]i a potenti. 

as in Lorent/As treatment, given in ('haT)ter HI. i). 8r. 
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or 

and by our last formula, 

y-2£3 E, 

Thus is the scalar potential of the electric force. This is 

convectmi fote?itial of Chap. III., the above equation being ident 

with formula (21) of that chapter, in which was y4>'. The si 

result may be deduced more directly from the transformatic 

properties of the ponderomotive force, to be developed later 0 

Since y is constant throughout S', the surfaces of constant ( 

vection potential and those of constant <■/>' overlap. We see, theref 

that the lines of electric force Jf (but not those of displacement 

cut perpendindarly the surfaces of constant electrostatic poter 

of the rest-system, </>' = const. The electric force and displaceii 

of that system are identical, of course, ix, = 

To illustrate the general formulae (8) of the convective fi 

suppose that the distribution of electric charge in S' is in homogene 

concentric spherical sheets round O, the origin of the coordin 

or the origin of the vectors r'. Then <j5)', and consequently also 

will be functions of r alone, and the lines of displacement ir 

will be straight and radial or, say, 

E' =/(/). r', ( 

where / is a scalar function of its argument. By the fundame 

formulae of transformation, r' == er - vy/. Now, since the whole li 

together with the charges, moves past S without being deformec 

is enough to consider it at one single instant. Let this be 

instant t—o, when O' coincides with O, the origin of the ^S-coordin 

or of all vectors r. Then 

r = €r, 

E = y/(/).r 

M = S/(r).Vvr, 

and, by (8), 
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The whole electromagnetic field is symmetrical, of course, roun 

this longitudinal axis. Since r —€"^r', or 

x' 
X = y = a;' \/i - y =y\ 2 = 

the spheres r ^ const, become, in .S’, oblate ellipsoids of revolutioi 

as in the FitzGerald-Lorentz contraction, i,e. having 

for their semiaxes. These are known as Heaviside ellipsoids. Sue 

then will be the surfaces of constant convection potential, and th 

lines of electric force (Jf), cutting these ellipsoids at right angles 

will be parabolic arcs, contained in the meridian planes. 

If s — {y‘^ + z^y be the distance of a point from the axis c 

symmetry, we have ___ 
t / ‘) ‘> I r = + 5-, 

or also, denoting by 0 the angle contained between r and the axis, 

r' = yrji - sin- 6. (i i 

This is to be substituted in each particular case for the argumer 

of the given function /in (lo). 

Take, as the simplest case of the above kind, a single sphere c 

homogeneous surface-charge, or a Lorentz electron. Call its res 

radius R and its total charge e (which, as we know, is the sam 

thing as e'). Then E' ~o inside the sphere r = R, and consequent! 

also E-o inside the oblate ellipsoid 7-a;^4-y- = A'-, while at th 

surface of and outside the electron*^ 

and therefore 
4Trr^ 

£ 
ey 

47rr 

E /....PzPl .. 1. 
(!■ 

that is, by (ii), 
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tional to the square of the distance from the centre of the elect; 

The unit tubes of displacement, though everywhere radial, 

crowded towards the equator, and the more so, the greater 

velocity of motion. At any given distance the density of 

tubes at the equator is greater than that at the poles {d = o oi 

in the ratio jE'^/2 : A’q = i : (i - 

From the above, widely known, formulae the longitudinal and 

transversal electromagnetic masses of the electron may be ea 

deduced in the usual way. The flux of energy or the Poynl 

vector being 

f - ^VEM = VEVvE = (Ev) E, 

we have for the electromagnetic momentum, per unit volume, 

(30), Chap. II., 

g = J[E2u-£iE], 

where u is the unit of v and the longitudinal component of 

Integrating through the whole field (from till r = oo) j 

taking advantage of its axial symmetry, we obtain, for the t( 

ehctrofnagnetic momentimi^ * 

a yv, 

whence the longitudinal electromagnetic mass nii of the electron i 

the tra^isversal one, defined by mi — dGjdv, mt—G/v: 

where 
( 

(15 su. 

These are the well-known formulae of Lorentz, as mentioi 

previously. They are valid for an electron of homogeneous surfa 

charge. In the case of volume-charge, we should obtain for 

electromagnetic momentum § of the above value, so that (14) wo' 

continue to hold with Mq equal to f of the above, 
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The electromagnetic momentum can, in either case, be v 

Gr = 7;^()yv. 

Thus, the electromagnetic rest-mass, plays the same pc 

rest-mass, of any origin, in the relativistic dynamics of a 

Cf. (24), Chap. VII. 
Having for the present sufficiently illustrated the transfo 

properties of the electromagnetic bivector, let us now retui 

general subject. 
Consider again the equation 

Dls^C 

embodying in itself the whole of the electronic differential 

(i.), and showing at the same time their invariance. Opei 

both of its sides with Then 

Z>,Z)L = AC. 

But D^D is the Dakinhertian^ 

7)2 7- 7^- T 
JDQ ~~ ^ s, “f” "h ."x •> “"Ti l—J: 

CX^ Ov- OS- cV- 

and this is a purely scalar operator; that is to say, if ap|' 

scalar it gives a scalar, and if applied t(j a vector it give 

vector. Now, L is scalarless. Therefore 

This is the equatioji of contmuify. In fact, its developec 

(2), 

g^ + div(/)p)-o. 

But this only by the way. 

Next, introduce an auxiliary quaternion 4>, satisfying t 

ential equation 
□#= -C 

and the supplementary condition 



POTENTIAL-QUATERNION 

Now, — being the norm of will be an invai 

as was already remarked on p. 113. Therefore, by (18), ^ 

be a physical quaternion, having an imaginary scalar and a 

vector. Write it, therefore, 

# = ic/) -}- A y, 

and call it the potential-quaternion, since the whole electromag 

bivector is derived from it by simple differentiation. The ( 

spending world-vector is called the foi{r'-pote7itiaL 

The scalar part of is l times the usual scalar potential^ ar 

vector part is the vector potential. In fact, splitting (20) int< 

real and the imaginary parts, we obtain at once 

M = VVA == curl A, 

E 

while the condition (19) becomes 

10f/) . 
- + div A = o, 
c ot 

and these are the familiar formulae of the electron theor 

employed incidentally in Chapter III., p. 80. The differ 

equation (18) splits, of course, into the familiar pair of equal 

□ </)= - p; □ A = 
I 
~PV, 

identical with (16), Cha[). III. 

According to (2t), and A are transformed as ct and r. 

for instance, if we have in S' a purely electrostatic field, i.e. if 

then, for the convective field, as estimated from the -5-standpoii 

as mentioned above, and 

as in (19), Chap. III. 

So much as regards the potential-quaternion and its relatii 
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which can be called the complementary electromagnetic 1 
Then we would have obtained as the condensed equivalei 
fundamental equations (i.), instead of and in exactly the s; 

as (i.a), 

where is the conjugate current-quaternion 
on both sides of this equation with D. Then the result 
□ B = And since the Dalembertian is an invariant, 
at once that R is a right-handed physical bivector,* i.e. tha 

r^=(2R(2c* 

Henceforth R can be considered as the standard of all such b 
just as L became the standard of the left-handed ones. 01 
the differential equation (i.^) is invariant with respect to the 

transformation, i.e. 

{\.a) and {i.h) differ, of course, only formally from one j 
each, when split, gives the four electromagnetic differential e 
(i.). Thus, as far as the equations of the field and all tf 
sequences are concerned, we do not need both L and 
require only one of them at a time. 

For some other purposes, however, the simultaneous use 
bivectors will prove to be very advantageous. 

Their symbols, being the initials of HefL and ‘right,’ ar^ 
so as to remind the reader of their transformational pr 
In connexion with these, L can admit a physical quaten 
variant with only on its left as neighbour, and R onl 
right. And vice versa^ if the neighbour is covariant with < 

Now for the outstanding proof of the invariance of th< 
mental formula (ii.) for the ponderomotive force. To obtain t 
we have only to write that formula in terms of legitimate re 
magnitudes. 

If we multiply our left-handed electromagnetic bivector, 
left side, by any physical quaternion then, as in (40), Chi 

* This property of R = M-l- lE may also be deduced directly from that of] 
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the resulting product will again be transformed like <]. Nc 

current-quaternion C being precisely such a ciuaternion, consi 

full product 

This then will ticinsfornicd hy (2[ 

and (4). Then the result will be 

where 

^(pE)h-e+IvpM . 

13evelop it. 

and the magnetic analogue* of this, 

^(pM)-l-M--^VpE 

Now, the vector part of F is exactly P, the ponderomotivc fc 

unit volume, as given by (n.), and the scalar part of F is t, 

the activity of this force. 1 hus, 

y/=‘(Pp)+P. 

Observe that the whole product CL, though covariant v 

standard q, has not the structure of q, since it is a full biqua 

in the Hamiltonian sense of the word. But and its n 

analogue, have each the structure q, i.e. a real vector 

imaginary scalar. 
Similarly, the complementary B being a right-handed 1: 

multiply it on the right side by C. Then the product EC w 

be transformed by <2[ ]<2- I>evelop it. Then, by (2) ai 

with precisely the same meanings of F and F,^^ as above 

again is a full biquaternion. 

Now, since both biquaternions, CL and EC are transfoi 

<2[ ]«2. this will also be the relativistic transformer of their { 

of their difference. I..eave alone the sum, which would ] 
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physically uninteresting arid take half the difference 

and (24^35). This will give 

Thus, we see that F taken by itself (as well as is < 
with q. And since F has also the structure of q, it is a 

quaternion, and may as such be called the force-oLuatemion 

volume. It has a dynamic vector, the ponderomotive force 

volume, and an energetic scalar, proportional to the a( 

that force. 
At the same time we have obtained for F the express^ 

and we know that the vector part of this is equal to P 

by (ii.). Now, (ii.a) transforms into 

F' = QFQ = [ CV -- E' C\ 

and the vector part of this quaternion is again 

which proves explicitly the invariance of the formula (ii.) wit 

to the Lorentz transformation. 

Thus, the whole of ‘the fundamental equations for the 

as (i.) and (ii.) are called, satisfy rigorously the principle of i 

and it was for this reason possible to incorporate them ei 

the new doctrine. 

By (25) we have, identically, 

and therefore also, by {2a), 

In four-dimensional language we should say that the f( 

equivalent to the quaternion F, is perpefidicular to t 

current, and consequently also to the world-line of the eL 

electric charge acted upon. We met with this propei 

treating the dynamics of a particle moving under the act 

force of any nature whatever. See (21), Chapter VII. 

Remember that what is, in our present case of electro 
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The latter is not the vector part of a physical quaternion. Bi 

the other hand, we know that 

X volume / 

is an invariant. Therefore 

vol. X 

that is to say, times the force-quaternio7i calculated for any pc 

of electricity is again a physical quatemiion. Such then is the 

formational property of ponderomotive forces due to an el 

magnetic field. 

Now, if one of these forces is in equilibrium with a for 

any other origin, from the standpoint of the system S' (sc 

the particle acted upon is at rest with respect to that system), 

these two forces have also to balance each other when estii 

from the standpoint of any other legitimate system S. For rela 

to S, the particle in question will move uniformly. Hence tl 

quirement, \lc\2X poiideromotive forces ofa?iy origin shall he transf 

171 exactly the same tv ay as those of electromagnetic origmf i.e, s( 

yp[total force + - times its activity] >2LX-^ict. 

Here ‘total force’ means the force acting upon a particle ^ 

velocity relative to *S is p, or upon a body of any dimensions 

its parts happen to have the same velocity. 

Now, what in Chap. VII. has been called the Newtonian 

N, satisfies exactly this relativistic requirement. In fact, accc 

to the formula (i8) of that chapter (where y stands for y^), 

yp(N + Lv) = X 

is a physical quaternion, and, as we have seen, v = ^ (Np). 

precisely for this reason that the Newtonian force, not the 

kowskian, has been considered as the force, and the magi 
inc-{y-i)j whose rate of change has been equal to (Np), i 

(kinetic) energy of the particle. 

This procedure of transferring the transformational propertiei 

certain physical magnitudes to others of the same kind 
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After this short digression of a general nature, let us 

our electromagnetic topic. 
The formula (ii.<2), obtained above for the force-quatc 

has nothing to do with the differential equations (i.) of th 

magnetic field. It is only another form of the original for 

for the ponderomotive force. Now, use those differential 

in their quaternionic condensation {La)j that is to say, ; 

C=DL. Then the double of the force-quaternion will b 

2F=DL.Jj-’R.DL, 

where the dot stands for a separator, stopping the diffe 

action of D. This formula, when subjected to a slighi 

somewhat peculiar change, will prove to be very conve 

further application. The peculiarity of the formal change 

to, consists in this, that it requires us to give up an c 

Hitherto, in conformity with the general convention, we ha 

used the differential operator as a ‘prefactor,’ z.e. actini 

only, just as an ordinary scalar differentiator, such as 3/3/ 

Now, the position of a scalar being a matter of indiffc 

would be utterly useless and extravagant to write 3/3/, for 

behind the scalar or vector function to be differentiated; 

,, . , ds dv 
expressions would mean just the same as or But tl 

different when the differentiator has the nature of a vect 

Hamiltonian V, or of a quaternion, as D. Since the mult 

of vectors, and more generally of quaternions, is non-com 

we obviously deprive ourselves of possible advantages if 

the r61e of quaternionic differential (or other) operators t 

prefactors. Henceforth, therefore, we shall use D as an 

acting both fo7^ivard mid bachtmrd,'^ z\e, as both a prefad 

postfactor, and we shall, for instance, write 

R[Z?]L = EZ>.L-i-E.i:>L, 

where the dots stop J9’s differentiating power, and where the 

(which could also be omitted) are used for better erhpha: 

* To cut short any justification of this departure from convention we c 
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bilateral action of the enclosed operator. The only thing to be 5 

explained in this symbolism is the meaning of which is unus 

inasmuch as the operator D follows the operand. Now, if D were 

ordinary quaternion, that is a quaternionic magnitude, with v 

its scalar and vector parts, we should have, by elementary rule 

RZ? = Ri: + VRv - (Rv) = i-R - VvR - (vR). 

Writing therefore 3/0/ instead of and V instead of v, the pi 

meaning of RZ^ will be 

RZ)-^-VVR-(VR) = -^^-curlR -divR. 

This settles the question. Notice that Z^R could not be used 

relativistic purposes, ‘ since R is right-handed. 

Now, to see the utility of RZ?, return to by which D^ — 

Take the conjugate of each side, and remember that Rc= - 

Then, by the rule of conjugate of a product, 

-RZ)=6’, 

and consequently, by 

JD\s ~ — RZ^, 

and, substituting this in (28), 

2Z^= -RZ^.L-R.Z)L== -R[Z)]L. 

In this way we obtain the required short expression for the fo 

quaternion^ in terms of the electromagnetic bivectors, 

F=-m[n]L. (I 

Thus, R[ ]L, when applied to Z>, or more correctly, when expo 

to the bilateral differentiating action of Z>, gives the force-quatern: 

We shall see in the next chapter that the same operator R[ 

when applied to an ordinary vector, e.g. the normal of a surf 

element, will give us the corresponding stress, and, when app' 

to a scalar, the density and the flux of electromagnetic energy 

As regards the matrix-equivalents of our bivectors and quaterni( 
equations, it seemed preferable, for the sake of avoiding any poss 
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NOTES ON CHAPTER VIIL 

Note 1 (to page 206). Take first the case p=o, that is to sa 
the equations (l.) outside the charges. Measure ;r along v, t 
of S' relative to S, Then 

0 0 o ^ 
cdt c'bf 

and the equations 

and 

will be transformed into 

A- 
0.r ^'dx' 0j/ dy\ 'dz 

I 0^1^0.14 

C 0/ 0J/ 0^ 

divE = ^^+-^ 
dr oy 

— o 

^ cdl' 
and 

dJS^ „ 3^, dE, 3^3 

3^ c^t'~ 3/ 3^' 

Take the sum of the first and yS times the second of these 
Then the result will be 

? |p = r|^(^^^3-^^2)-73^P/2+y8£'3). 

Thus the form of the equation {a) reappears. Treat similarly t 
ing of the equations contained in (1.). Then the whole of these 
with p=o, will reappear in dashed letters, thus : 

I 0ir/ 'dMo^ 

c 'df 0y 0y ’ 
where 

E,'=y(v).E,, E,' = y{v).y{E,--^pM,\ E.^^y{v) .y{E, 

A/2' = y(7/).y(d/2+/5E3), M^=:^f{v).y{M 

the common factor ir{v) being thus far an indeterminate fur 
which for ‘?/ = o reduces to unity. But solving the last six equ 
respect to the non-dashed components and claiming mutually e 
for the two systems, 5 and S\ we obtain at once 

and, for reasons of symmetry, 
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and these are the required formulae of transformation, identical wi 
of this chapter. 

Next, pass to the general case of divE = p=f o. Bring in the c 
terms ppi, etc., the components of pp, and, by means of the a( 
theorem of velocities, express p in terms of p' and v. Then the w 
the general equations collected under (i.) will reappear in dashed 
thus : 

where 

idE' dM,' -dMl 
c -df 02' ’ etc., 

or 

/’'=7[I-4(VP)]P, 
6 

and where the components of E', M' are still connected with tl 
E, M by the above formulae {b). The details of calculation, sirr 
those for p = o, may be left as an exercise for the reader. By wor 
out fully he will convince himself best of the advantages of shortne 
simplicity offered by the quaternionic method employed for the 
purposes in the text of the chapter. 

Note 2 (to page 209). The difference of the magnetic energy I 
the electric energy ^4? 

L= U,„-J (J}E-£-^)dS, 

has been called tlie Lagrangian function, because it has been rer 
that the fundamental electronic equations, (l.) and (il.), can be con 

into a single variation-formula having the structure of Han 

Principle (or the principle ‘of least action’), 5 j *\..==o, in which pr 

that difference of the two kinds of energy appears (along with 
possible terms) under the sign of integration. This result is hardl 
than a purely formal condensation of the original equations, 
since some authors have attributed to it an exaggerated median 
dynamical significance, it may be well to give here a short sketch 
bare result and of the method by which it is usually obtained. 

Consider a region of space, bounded by the surface cr, fixed 
system in which the equations (l.) and (ll.) hold. Let p=o at < 
the points of the surface cr, whose choice is otherwise arbitrary. ] 

space region, whose volume-elements will be denoted by dS, conti 
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the charge of each element of matter unchanged. With this assi 
and since p = divE, the distribution of the infinitesimal vector 

6'C = 5E+pSr 

will be solenoidalj ue. such that div(6'0)—o. Let Z^be the infir 
virtual work of the ponderomotive forces of electrojnagnetic orig 
i.e, by (ll.), 

W= j (P Si)dS=j /0(5r[E+iVpM])^^5. 

Then, by the differential electronic equations (i.), and after a I 
easy calculation (the details of which, together with the literatur 
subject, will be found in Lorentz’s article in the Encyklof. der 
maiiscken Wissenschaften^ Vol. Vo, pp. 167 et seq, ; Leipsic, 1904] 

lV=S([l,n - Ue) - j/8' i/«) - J (Xn)d<r, 

where X is the infinitesimal vector 

X=VA 8M - VA^I^+VE S'M, 

A being the usual vector potential, so that M=curl A. The S] 
denotes the variation which would correspond to a change of t 
electric current 

0= ^+pp=<:. curl M 

by^ 8'C, the elements of matter being kept fixed. This am( 
defining S'M by 0. curl S'M = S'0, so that 

S'U^=J (MS'M)<^5=j (S'M. curl A)rf5 

=J (A curl S'M}dS+ f(ixVAS'M)i/o- 

fj(A 8'C)r/6-+/(iiVAS'M)rfo-. 

Such then is the value of the variation appearing in the seco 
of (^). But this only by the way. 

Now, let or expand indefinitely. Then, in virtue of the usual ass 
as to the behaviour of the field ‘ at infinity,’ the surface integral h 
vanish, and 
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principle applied to the ordinary, non-electromagnetic masses 
system (if there be any such masses), 

2^(g8r) + 8 2^.(|8r) + SV-8T. 

Any relativistic amendment of d’Alembert’s principle is here disre 
of course. Combining the last two equations, integrating from 
/=/;>, and assuming that Sr and 8E vanish at these limiting time i 
we obtain, finally, 

shu„-Ue+r- v)dt=o, 
Jti 

that is to say, Hamilton’s Principle, in which to the ordinary 
energy the magnetic energy l/m and to the potential energy the 
energy Ue is added. In particular, if the whole energy is electrom 
as in Abraham’s theory, we have simply 

S Ue)dt=o. 
Jtl Jtl 

The more general equation (e) corresponds to the broader vii 
by Lorentz. 

Thus, L—U^n — Ue plays the role of the Lagrangian functior 
versely, assuming 0^/3/+pp = ^. cuiiM, with p=divE, and di 
the remaining fundamental electronic equations, i.e. 

‘dM/0/= “ r. curl E and P=/>[E+™VpM], 

can be deduced from {e). For slowly varying motion of the e 
formula {d) gives at once the ponderomotive forces of electror 
origin, corresponding to any set of configurational parameters 

well-known Lagrangian form. 
Remember that what is invariant with respect to the Loren 

formation is the Lagrangian function ^er unit volume^ i.e. 
But since y^^dS and dtjy^^y and consequently also dS.dt are invai 

element of ‘ action ’ 
Ldt^{Un-Ue)dt 

is an invariant. And so also is the whole ‘ action ’ / Ldt invar 
Jtl 

respect to the Lorentz transformation. It may be noticed here 
is only a particular instance of a general theorem of relativistic d 

obtained by Planck. 

Note 3 (to page 211). Differentiating Ei~y{E>j^- (: 
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Now, by the addition theorem of velocities (see Chap. VL, and 
formula p. 169), 

whence, by inversion, 

Thus f>ly^r=^ply^, and since y^ydS' = y^dS, 

p'dS'^pdS, 

which is the required verification of the invariance of electrical c 

Note 4 (to page 215). Using the formula obtained for g on p 
have, for the electromagnetic momentum of the whole field, 

a= f j 
where u is the unit of V and Jti the longitudinal component of E. 
the transversal part of E, the bracketed terms may be written 

and since the field is, in the case under consideration, syr 
round u, the transversal terms cancel one another in the proc( 
tegration, so that 

G=— r 6-u. 

For a Lorentz electron of homogeneous surface-charge. 

E 
ey 

47rr 

and ^=0 inside the electron. Writing, therefore, — we 

where the integral is to be taken throughout the N-space lyinj 

the ellipsoid r'=(yV+s^y^=E. But since this ellipsoid is, 
^'-standpoint, a sphere of radius E, it is easier, of course, to 

the integration in the 5'-space. Thus, remembering that j 

dS—dS'Jy (or that the functional determinant of .r, jk, ^ with r 
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so that 

and 

i) 

Sttc^R 
V 

G—6^u 
0 e-^y 
1—V 
-2 /.) ’ birc'^R 

which is the required formula. 

Note 6 (to page 218). Let A, B be a pair of real vectors and A- 
left-handed physical bivector, i.e. such that 

A' - =2,[A - cB] Q = Q,AQ - cQfiCJ. 

This splits into 

A' = re. Q^AQ - t. imag. BQ | 

tB' = t. re. Q^BQ ~ imag. Q^AQ, J 

where re. and imag. stand for ‘real part of’ and ‘imaginary pa 
Now, since Q has a real vector and an imaginary scalar, and sinc( 
the conjugate of Q, it is obvious that 

re. 2cA2=re. QAQ^, 

imag. <2^(2= - imag. <2A0„, 

and similarly for B. Therefore, by (a\ 

A' + fcB' = re. QAQc + c. re. QBQc+imsig. QAQc + i. imag. QBQc 

= 2Aa + i!2Ba=G[A+tB]2„, 

that is to say, A+tB is a right-handed bivector. Q.E.D. 

Note 6 (to page 223). Our physical bivector is equivalent to Minko 
sji)ace~time vector' of the second kind and to Sommerfeld’s six-% 
Minkowski represents this world-vector by an ^alternating^ matrix 

-^^3} 

'21} O} ^^23} ^24 

'31} h^2j 0} ^^34 

•41} ^42} /^43} 0 

(JIki lhic)y 

subjected to the condition that 

h' = AhA, 
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The matrix h is built up of six independent constituents (not counting 
the diagonal which is always the same). Out of these six constituents 
three, not containing the index 4, are real, and the remaining three 
imaginary: 

^23 J ^31? ^12 ^^^1? 

^145 ^24) ^34 imaginary. 

Along with Minkowski uses the corresponding ^ diiaV matrix which 
he denotes by and which is again an alternating matrix, e.g. 

Jf=s. ^43? O, 
^24 J '^415 O) h^ji 

^32? ^215 ^ 

This is transformed like Ji. The product of both matrices, 

h h'=- -^22 ^14 “h <^13 ^^24 "h “^21 "^34) (^) 

which is also the square root of det and 

^23^ + + ^14^ + -^24^ + ^34^ (^) 

are invariant with respect to the Lorentz transformation. Both of these 
invariants are contained in the square of our physical bivector. 

Let, in particular, 

^24=—^^*2, >^34=~t^3. j 

Then the matrix h will correspond to the electromagnetic bivector 
L = M-tE. (In Sommerfeld’s four-dimensional language we should say 
that the magnetic components are projections of the six-vector h upon the 
planes zx^ xy^ and —i times the electric components the projections 
of k upon the planes xl^ yl, zl.) With this particular meaning of h the 
matrix form of the electronic differential equations (i.) consists of the 
equations 

lor h = — i* 

lor 
id) 

the former embodying the first pair and the latter the second pair of the 
equations (l.). Here s is the current-matrix. 
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Both of these are contained in L^. The ponderomotive force P, (ii.). 
its activity are given by the* matrix —sk. In fact, taking the produ 
s into //, by the rule given in the Note to Chap. V., we obtain 

etc. 
c ^ c 

i — E^ 
c ^ 

i.e. 

-sh^\P,, A, P3, ^(Pp)|. 

Since s'=sA, as in (37), p. T43, and /i'~A/iA, we have s'H—sJiA^ sho 
that the four-dimensional force, per unit volume, is indeed a world-v 

of the first kind. Its quaternionic equivalent is /'''~-(Pp)+P, the f 
Cf 

quaternion of this chapter. The expression RC—CL in formula ( 
takes the place of the matrix isJi. 



CHAPTER IX. 

ELECTROMAGNETIC STRESS, ENERGY AND MOMENTUM. 
EXTENSION TO GENERAL DYNAMICS. 

In the preceding chapter we have seen that the fundamental 
electronic equations are invariant with respect to the I^orentz trans¬ 
formation, and we have obtained for the force-quaternion per unit 
volume, ix. for 

i^=VPp)-l-P, (i) 
w 

the short formula p. 223, 

2^=-iIl[Z>]L. (2) 

Here D is intended to operate on both K and L, and the only 
office of the brackets is to remind us of this bilateral diflcrentiation. 

We shall now deduce from this formula the electromagnetic stress 
together with the density and the flux of energy. All these 

magnitudes have already been treated in Chap. II. But now, in 
virtue of (2), they will appear in a form which will disclose at once 
their transformational properties. 

Take first the scalar part of (2). 'Phis gives, by (i), and since 
SRL= -(RL), 

J(Pp) = i|(RL)-ldivVRL, 

or 

where 

(Pp)= _^_div^, (3) 

;< = |(RL) I 

|3 = ‘^‘"VLR. I (4) 
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Remembering tl]e meaning of L and R, the reader will see at 

that these are identical with the familiar formulae = + 

^=<rVEM. But the above form will better answer our purp 

Thus, the scalar part of the equation (2) expresses the conserv; 

of energy, giving the flux of energy or the Poynting vector Jp, i 

with ?/, the dejisity of electromagnetic energy. Both of these 

also be condensed into the full product, 

|EL=-?/+^a. 

It is hardly necessary to say that this is not a physical quatern 

But the formula recommends itself by its shortness. 

Next, consider the vector part of (2). This is, by (i), the 

deromotive force, 

P= - VRL - iVR[V]L, 

or, by the second of (4), 

P= VR[V]L. 

Writing V— id/dx + jd/dy+ 'kd/dz, and remembering that bo1 

and L are to be differentiated, we have 

VR r VI L =VRiL +1- VRjL + VRkL. 
^ UX OJ’ 05 

On the other hand, if / is a stress-opcrator, i.e. if 

/n = f, 

is the pressure, per unit area, on a surface element whose 

normal is n, and if we write in particular, as on p. 48, 

then the corresponding resultant force per unit volume will 1 

ox aj Oz 
+ J 

oa; 
df _j_ ]j. 

dy dz / dx 

or 
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which is exactly of the form of (a). We see, therefore, that 

'dfis. 

’'dt "dx dy dz ’ 

where s=W, as on p. 51, and where, for i, j, k, and hence alsc 

for any unit vector n, 

/n = 4 = JVRnL. 

This is the required formula for the stress. Multiplying out the 

right-hand side, the reader will easily obtain 

4 = (RL) n - p (Ln) ~ JL (Rn) 

= 2m - E(En)-M(Mn), 

which is the Maxwellian stress, (20), p. 48. But the above form 

obtained directly from (2), is more appropriate for our purposes 

Again, since the stress is irrotational, or since / is a symmetrica 

operator, we have = etc., so that we may write, in the las 

formula for P, 

dx -dz 

where f is to be considered as a dyadic. (See Note 1.) Had w( 

used this short form at the beginning, we might have obtained th( 

above formula for / even more directly. 

Thus, the vector part of the equation (2) gives for the pondero 

motive force the expression 

i>--|-y4 (5 

where g, the electromagnetic momentum per unit volume, and /n, th 

stress for any orientation of n, are determined by 

g = ^ = —VLB (6 
C^ 2C ^ 

and 
A = JVEnL. (7 
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Now, the scalar part of this ternary product is 

SRnL = SEVnL = - (EVnL) = (nVEL), 
so that, by (4), 

|SEiiL = -(|lii). 
c 

Consequently, the full product will be 

■jEiiL = i(J]n)+/n. 

It will be convenient to combine this with (4a) into one forn 

Let be a real, but otherwise arbitrary scalar, and let us i: 

duce for the moment the auxiliary quaternion 

= to- + n. 

Adding i<t times (4^2) to (7(2), we have 

== ■ ■ [(pn) — <rcr?/] + /tl — 
c c 

This is valid for any that is, for any direction of n and foi 

value of O'. 

Since (2) transforms into itself, i.e. into F' — -|K'[Z)']L' for 

legitimate system A', the same thing is true of the equatio 

energy (3) and of the formula for the ponderomotive force 

Both are invariant with respect to the Lorentz transformation. 

where g' = |}7^ where |J', f are determined by the pre 

formulae, i,e. also by (8) with dashed letters. Remember that 

the stress-operator in S\ so that if n' is a unit vector, 

the pressure on a unit area whose normal is n'. 
What are the connexions between |J', u\ f on the one sidi 

P, u, f on the other side ? To answer this question, return t 
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n' being the unit of N'. Then 'Rklt will also be a physical qua 

temion,^::^. Denoting, therefore, by (8) the right side of th 

equation thus numbered, and by (S') the same expression wit! 

dashes, we have 

|R'^a' = (8')=G(8)<2. 

Writing down Q(S)Q and equating its scalar and vector parts t< 

the scalar and vector parts of (8'), we obtain the two relations 

y i(in)-o-2/ -^[(v/n)-?(fv)] = ^(f'N')-a-V, 

in which v is the velocity of S' relative to S and e our previoui 

longitudinal stretcher of ratio y = (i-v^lc-)~^. Now, since these 

relations hold for any value of a-, take first cr = o, and then cr — i 

and remember that, by (9), 

No' = €n, 

<-< = 7, Ni'-No'=-^v. 

Then of the four relations, obtained in this way, one, containing 

the n-component of -/v, will turn out to be a consequence 0 

the three others. 

These three relations, after a simple rearrangement of terms, anc 

without Cartesian splitting, give us the required relativistic fra?is 

formatio7i of the density and the flux of electromagnetic energy anc 

of the stress in the short form 

-f=f 4.-Zr^'4. 
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vector n as operand, and closing the parentheses, we obtain 

corresponding pressure f,i=/n, thus: 

i/n =/ai + ^[JP' + u'v] (vn) + J(i'. m). 

Remember that e is a symmetrical operator, so that n) = 
1 o obtain the stress in its more familiar form, take the uj 

system of normal unit vectors, i along and j, k at right angles to 

direction of motion. Write in turn ii==i, j, k, and remember 1 
= yi, €j = j, ck = k. Then 

£, = f,y 4- 
c ^ “ 

Splitting each of the stress vectors f^, etc., into its three rectang- 

components along the same set of axes, we obtain nine st 

formulae which contract to six, since fuandy^g^/iu 

I'reating similarly the first two of the equations (lo), we have 

the transformation of stress and of flux and density of energy the 

'('artesian formulae, which were first given by Laue, 

/n 7“(/i/ + 1 > fzz 

““/is 5 Tsi 7 ^2 i /]‘27 (/12' ^2 ^"*2 ) 

^Pi = y^[(i + +/,!>;] 

= y (it).; + 7/,/); V, = y (p,; + V/,,') 

u = y-(// + ^ 

I'he transformation formula of g, the electromagnetic momentum 

unit volume, which is simply the energy flux divided by <r-, will b 

V 
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and momentum, as estimated from the 5-standpoint, are 

up of the stress, energy- and momentum or energy flux cor 

to the 5'-point of view. This entanglement of the vari( 

tudes, which in classical physics led an independent e> 

characteristic of the theory of relativity. It is a conse 

the way in which time and space are involved in the fu 

Lorentz transformation. 

In deducing the formulae (lo) of transformation of 

associated magnitudes, we have used their expressions ii 

the electromagnetic bivectors, as condensed in (8). Our 

doing so was to show the properties of the simple opera 

But, as a matter of fact, these formulae hold quite indepe 

the particular, electromagnetic meaning of u and g or JP 

are valid in virtue of (3) and (5) alone (with 3P = ^:^g), tha 

for stresses etc. of any origin^ electromagnetic or not, fn 

the correspondmg p07tder077iotive force^ per U7iit vohwie^ and 

ca7i he represe77ted m the for77i 

P=-V/-| 

(Pp)- 
'bu 

bt 
div g. 

The proof of this statement is most simply obtained by 

method, which in this case is superior to the quaternioni- 

course, each method has advantages for certain purposes 

consider the symmetrical matrix 

fw'i fvi'> /l3J KsY 

fiv /22J f 

fz\'> /32. 
- u 

in which fK=fKL* Multiply it by, or operate upon it 

matrix lor = 
b b b b 

bx^ by’ bz’ bl ^ 
according to the rule gi' 

Note to Chapter V. Then the result will be 
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the constituents of the matrix on the right side being exactly t 

given by (a) and (b). This matrix is the equivalent of the phy 

quaternion i^==P + -(Pp). We can therefore use for it the £ 

letter F, Thus, the last equation can be written 

F— -lor;S, 

To write this for the force-matrix is exactly the same thin 

to postulate (a) and (b) for the force and its activity. 

Let me observe here that the matrix (ii)* can be written 

siderably shorter, thus : 

/ icg 

- 

Here one constituent is a linear operator, or, say, a dy 

f =i)fi two other constituents are vectors, and the fc 

a scalar. But this heterogeneity of the various constituents of one 

the same matrix need not alarm us. It seems even to harm( 

fully with the original intention of the creation of Cayley, 

wished to see his instrument of multiple algebra treated as brc 

as possible. The only requirement is that the array shouk 

rectangular. Using the abbreviated form we have, of co 

to use lor, correspondingly, as the matrix of 1x2 constitui 

V to be applied scalarly, and B/B/. In this way we obtain 

lor<§ v/4', F 

at once, instead of writing first so many scalar terms and 

gathering them together. 

But let us return to our subject. We know already that, wha 

the nature of the ponderomotive force, is a physical quaternio 

the matrix F is transformed as |r, /[. And the same thing is 

of lor. Thus, if A be the fundamental transforming matrix, i 

p. 143, we have 
F'^FA, lor-lor 

and therefore, by (12), 
lor A§! = lor §A, 
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Now, substituting here for A the matrix (40), p. 144, rei 

that the transposed matrix A is obtained from ^ by a m 

of the sign of /?, and multiplying out the right side, the 

easily convince himself of the identity of (13) with the trar 

formulae {ioa\ in which This proves the above f 

Avhich may be restated as follows: 

If we make with regard to any ponderomotive 

assumptions (a) and (b), or, which is the same 

assumption 

-\0T§, 

then the corresponding pressures, etc., are transformed 

to (loa) or (10), with ^ 

It is, of course, an entirely different question whe 

assumptions are to be considered as universally vali 

Assumption (b) is the expression of the principle of com 

energy together with the concepts of its localization an( 

(a) leads to the principle of conservation of momefitum^ ’ 

is a strong tendency among the relativists to retain bol 

principles of classical physics. Thus, M. Abraham 

involving both principles, in his paper on the electrod; 

ponderable bodies,* and appeals to this equation e^ 

theory of gravitation, which does not satisfy the p 

relativity, while Laue makes of it the basis of the genera 

of continuous bodies. On the other hand, according to IN 

electrodynamics of moving ponderable bodies, the pon 

force and its activity are expressed by that part of the v 

- lor § t, which is normal to the four-velocity F, 

matrix 

or, which is the same thing, by the physical quaternion 

\\F-^^yYFcY\, 
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and not by -lor^S itself. Now, it is true that Abraham 

Laue’s device recommends itself by its simplicity in the a 

the general mechanics of ponderable continua; but, on the 

hand, Minkowski's device seems to offer advantages for a relat 

theory of gravitation. In fact, a pair of such theories, both sati 

rigorously the principle of relativity, have been recently pro 

by Nordstrom,* in one of which the four-dimensional force 

the form lor^S, while in the other it is given by the part of 

a world-vector perpendicular to V, Now, the latter of these th 

is physically simpler, inasmuch as it leads to a rest-mass 

pendent of the gravitation potential, while the former requiri 

rest-mass to become an exponential function of this potentia 

Certainly, then, the principle of relativity does not compel 

attribute to the forms (a) and (b) of ponderomotive force a 

activity an universal validity. But it is at any rate interest] 

see the consequences of making the assumptions (a), (b) a 

accepting, therefore, the formulae (lo) also for pressures, momi 

and energy of non-electromagnetic nature in any material me 

Once the reader knows expressly the conditions of their va 

there is no danger in doing so. 

We shall therefore proceed to give here some consequences 
formulae (lo). 

Let the system of reference S' be such that there is no f 

energy with respect to it, i.e. such that JP' = o, and therefon 

g=o. This will, under a restriction, be the case when S' 

rest-system either of the whole material body, if all its parts ha 

same velocity relative to 5, or, more generally, of its volume-el 

under consideration. We may retain in both cases the sym 

which will then generally denote the velocity of an element 

body with respect to S. The restriction hinted at consists ob\ 

in supposing that in u' are contained only such kinds of energy 

not flow through the element in question, e,g. energy of 

deformation, energy stored up in the atoms, heat for the 

of uniform temperature, and—as Laue adds—‘possibly also 

new kinds of energy, yet undiscovered.' But to these the e 
TviofynAl-ir* Anorn-tT rrAnArall’tr Ka ci-nAA if rvioxr flAxi 
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or a magnetostatic field, we can include in u the density 

QQj*j'0gpQ];][(j.mg energy, combining at the same time the 

or the magnetic stress with the mechanical one. 

Keeping this in mind, and writing for we obtain, 

density of energy and of momentum and for the stress, as esi 

from the Spoint of view, the formulae (lo), considerably sim]: 

?^ = 72[z/' + ^(v/v)] 

S = "e/v] 
0 

/=€/'€+^V(V 

In Cartesians, with axes taken along the velocity v of a parti 

at right angles to it, these formulae are, as {loa) without the 

fluxes of energy, 

fll — 7^ {fll + j ^22 ““-/22 1 fz% —iss 

7^3 =7^3'; ; 7^2 = 7/12 

— +7ll ) ^ .^2 ~ ^2^12 1 ^3~ ^/l3 

^=7“(^'+/^yii')- 

We may notice in passing that the sum of the diagonal cons 

of the matrix <S, i.e. 

J^l"l'/22‘h/33~^^> 

is always an invariant. With the above choice of axes, 'v 

also separately, by (14^) or by (lo^z). 

f\i ^ and ”^22 > fzz • 

The invariant (15) vanishes in the case of purely electron 

Maxwellian stress. But for mechanical stresses its value 

general differ from zero. 
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the name of relative stress. According to Lane, we have to p 
every dynamically complete system, F— o, and to write, theref 
the head of dynamics of continuous bodies, the equation*^ 

This amounts to putting P = o in (a) and (b), so that 

'bu ^ 9 ^+.-dlVg = 0, -V/ 

At the same time it is assumed that the resultant force acting 
any individual portion of the body in question is given by 

where G = the integral being taken throughout the voli 

that portion. If, therefore, dS is an individual volume-el 
of the body, the relative stress which we shall denote by . 
symbol of an operator,! will, according to the familiar defi 
be given by 

(gdS)= - ■ 
3p, 3P2 0P3 

bx by bz 
dS, 

where Pi=/i, etc., and where — is the individual rate of c 

On the other hand, the meaning of the absolute stress / is gr 
the second of (i6a) or, in expanded form, by 

bf^ 3f3 

bx by bz ’ 

where is the local rate of variation, corresponding to cc 
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values of x, y, z. Now, we have, for any orientation of the syste 

of rectangular axes, 

(g dS) = [g div V + g + (vV) g] 

and therefore, comparing (a) with (/^), 

i,e. for any direction of n, 
Pn = 4-g(vn). 

Omitting the operand n, we may write this result, in terms of tl 
stress-operators themselves, 

/=/-g(v . (r 

This is the required connexion between f/ie relative stress p and tl 

absolute stressp Notice that,/being symmetrical or self-conjugat 

p is in general non-symmetrical, since g may differ in directic 

from V. Thus, for instance, while 

Only when g || v does the relative stress become self-conjugate. 

Let us now return to (14). Remember that, for the rest-syster 

/=/', write down g(v by the second of those formulae, ar 

subtract it from the third one. Then the terms containing m' w 

cancel one another, and the result will be 

mC a<t ^ ^ ' 

or, if i be the unit of v, 

/ = . (i 

Such then is the transformation formula of the relative stress. 11 
reader will find no difficulty in splitting (19) into nine ("artesi^ 

equations for /u, etc., especially as this procedure has be( 

illustrated a moment ago by the passage from (14) to If 
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pressure {t,e, to a pressure which is purely normal and equal 

all directions of n), either uniform or varying from point to pc 

Then the stress-operator p* degenerates into an ordinary scalar, 

pressure in the more familiar sense of the word.* In this cas 

can be written before the stretching operator, so that (19) g 
at once 

p\p' — . 

Now, = j and y^ - /3^y^~ 1, so that the right sid 

the last formula is, in Gibbs’ terminology, an idemfactor, i(i 4-j{j + i 

leaving unchanged any operand n whatever. The result, therei 
is that 

/=/, 
or that isotropic pressure is a relativistic invariant. This result 

first obtained by Planckf from thermodynamical considerations ai 

by the principle of relativity, then by Sommerfeldj: from what 

believed to be a purely geometric enunciation of the behaviou 

four-dimensional vectors and their projection, and, finally, by L 

whose method has been here adopted. The reader will find it w 

his while to compare the latter with the two former methods, 

is for that purpose referred to the papers of Planck and Sommei 

just quoted. 

So much as regards the stress and its transformation. ^ 

consider u and g, the densities of energy and of momentum 

which the first pair of (14) hold. In these formulae we have 

to substitute the identity f =p'> Thus, taking i along the direc 

of motion of the given element of the body, we have in gen 

that is to say, for any elastic stress p\ 

u = y^[z/+ 
and 

2 
g = 51 -h P'y], 

where P'y is the same thing as vpq{^ of course. 

Let dS be the rest-volume of an element of the body, and 

sequently dS—dS'Jy its ^wolume. Then we shall have for 



246 THE THEORY OF RELATIVITY 

energy of that individual element, as estimated from the -S-point 

u dS=y{u' + /3%-^')dS'. 

To obtain the whole energy U, this is to be integrated throughout 

the body. Generally speaking, there will be no simple relation 

between W and C/'. For, even if u and the stress were constant 

throughout the body, the value of /B and also the direction of v 

may change from point to point. And if but one particle of the 

body moves with varying velocit}^, then the velocity will also, as a 

rule, vary from particle to particle. Let us suppose, however, that 

this heterogeneity of the inner state {u, /') and of the motion oi 

the body can be neglected. Then, if V and V' be the volumes 

of the whole body from the two standpoints, its total energy, as 

estimated by the *S-observers, will be 

l7=y{l7'+liYiin- (2°«) 
We shall return to this formula presently, in order to compare the 

difference U- U' with the expression of kinetic energy given, foi 

the simplest particular case, in Chapter VII. 

Treating similarly the equation (21), and making the same assump¬ 

tion of homogeneity, or considering the whole body as a particle, 

we have, for its total momentum. 

G = l[U-'+F'.y-'e/]v. (21a) 

We have seen in Chap. VII., formula (24), that, according tc 

Minkowski’s dynamics of a particle, the momentum of the particle 

would be simply ym times its velocity, where the rest-mass ol 

the particle, is an ordinary scalar magnitude. Thus, according tc 

that manner of treatment, the momentum would always coincide ir 

direction with the velocity. This isotropic behaviour of the rest-mass 

appears now as the simplest particular case of formula {210), whict: 

holds for a particle conceived as the limit of an extended body 

We can still write ^ 
G- = yjwv, 

but now instead of being a simple scalar, will be a linear vectoi 



INERTIA OF ENERGY 

The first part of m is an ordinary scalar, namely 

U'lc\ 

This is the expression of the famous inertia of e7iergy which, a 

consequence of the principle of relativity, has been enunciated 

Einstein.* If a body gains or loses 7i ergs of energy, say, in 

form of heat, then we have to look for an increase or diminut 

of Its rest-mass by grams. The second part of m is due 

the stress. Since f is, in general, an operator, this part of m 

also be an operator. It will be remembered that/', being ident 

with the original is self-conjugate. The stress, therefore, 

have three mutually perpendicular principal axes. Let these 

represented by the unit vectors a, b, c, each of which can be tal^ 

of course, in both its positive and negative sense. And let 

denote the corresponding principal pressures, which are ordir 

scalars, by pf pil, // Then, if v is along a, for instance, we s] 

have 

- e/'a = -ea ./a' = a 
•y y 

since ca = ya. Similarly, if the body happens to move along b o 

Thus, the principal axes of the mass-operator m coincide %mth 

principal axes of the stressf The corresponding principal va] 

of the rest-mass are 

V'pO 

F'A') . (2 

m. 

*Cf. Einstein’s papers in A?m. der Physik, Vol. XVIII., 1905, p. 1 
Vol. XX., 1906, p. 627, but especially ‘ Ueber die vom Relativitiitsprinzip g( 
derte Tragheit der Energie,’ ibid., Vol, XXIII., 1907, p. 371. Independe 
of the principle of relativity, the inertia of energy, in the case of radiation, app 
in a valuable paper of K. v. Mosengeil, Anji. der Physik^ Vol. XXII., i' 
p. 867. The history of this concept can, of course, be traced a long way far 
back. Its origin can be looked for in Maxwell’s pressure of light, and in ■ 
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The momentum is parallel to the velocity of the body when anc 

only when it happens to move along one of its principal stress-axes 

Notice that, by what has been said, this anisotropy would be £ 

property of the rest-mass itself. When, therefore, we pass to considei 

the acceleration of such a body, or particle, in relation to the moving 

force, according to the equation of motion 

iy/.^v = N, (23: 

we can no longer express the inertial behaviour of the body in term? 

of a ‘ longitudinal ’ and a ‘ transversal ’ mass, as in Chapter VII. The 

axial symmetry produced round v in that comparatively simple case 

was due to the assumption of a scalar rest-mass. The case nov 

before us is much more complicated. Even if the inner state oi 

the body is supposed to remain invariable, a full description o' 

acceleration in connexion with force requires a linear vector operator 

involving six scalar inertial coefficients. The dynamics of trans 

lational motion of such a body is, obviously, entangled with the 

dynamics of its rotations. Unlike classical mechanics, these twe 

kinds of motion cannot, rigorously speaking, be treated separately, 

It can be shown, by considering the moment of momentum, that tc 

maintain such a body in uniform rectilinear motion, a certain couple 

is required. Only when the constant vector-velocity v of the bod} 

coincides in direction with one of its principal stress-axes, would the 

moment of this couple vanish. Again, suppose that there is nc. 

impressed resultant force, i.e. that N = o. Then the momentum will 

be constant in both size and direction relative to A, say, cc[ual C, and 

yv = ^“^0. 

If, therefore, the body rotates together with its stress-axes, the 

motion of translation will not be uniform and even not rectilinear, 

Notwithstanding the absence of a resultant A-force the body ma} 

move with varying velocity relative to the framework A. And il 

will do so if, for instance, its initial velocity does not coincide ir 

direction with one of the principal stress-axes and if the coupk 

mentioned above is not applied. But we cannot dwell anv lonaei 
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any departure from isotropy. On the other hand, it must I 

confessed that no phenomena of this kind have been sought ft 

expressly and that direct comparisons of inert masses {i.e. apa 

from gravity) could not easily be made more accurate than to or 

in ten or hundred thousand parts. One thing, at any rate, seen 

certain: If the above formulae are accepted, we cannot reasonab 

hope to produce observable anisotropy of mass by artificial pressur 

or tensions in any lump of matter. For, according to (22^), hundred 

of atmospheres appropriately applied would produce a departu 

from isotropy of mass amounting only to lo^. of 

gram per cubic centimetre. But for all that we know there mig 

be anisotropy of inertia in natural crystals, corresponding to son 

enormous latent stresses.’ And to embody such stresses into 

seems no less, and no more, legitimate than to condense in U' \ 

much ‘ latent energy ’ as is necessary to account for the observab 

mass of a body. But, apart from any theory, experiments ( 

crystals seem worth trying, whether to reveal some traces 

anisotropic inertia or to push it below a numerically defini 

limit* 

Of course, if it is assumed that the stresses represented by ai 

under all circumstances, only of the order of manifest tensions ai 

pressures known as such from experience, then the influence 

the differences ~ upon inertia will be far too small to 1 

ever detected. But if so, then there will be also no sensib 

contribution of stress to inertia at all. Such, in fact, is the prevailii 

opinion. 

According to this opinion the stress-term in (22), (21) and, f 

slow motion, a fortiori va (20), where it appears with the coefficient / 

can be omitted for all ordinary material bodies. But the case 

* In connexion with this subject, Prof. A. W. Porter of University Colley 
London, draws my attention to experiments made by Poynting and Gn 
who tested for anisotropy of gravitation between two quartz spheres [Ph 

7'rans,^ 192, 1899, A. p. 245 ; cf. also Poynting and Thomson’s Text-Book 
Physics^ Properties of Matter^ London, 1909, p. 48). Their results showed tl 

this anisotropy could not amount in one case to more than one part in 2800, a 
in another case to more than one part in 16000. On the other hand, proportional 
between mass and gravitation, first tested by Newton in his endulum experime 
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different, of course, when the energy and the stress are 

electromagnetic, when the ‘ body ’ becomes simply a region c 

containing an electromagnetic field. Under these circumstan 

part played by f is no longer negligible, unless we wish to 

the whole mass m, and therefore also the whole momentum, 

not only then are the pressures or tensions pa, etc., of th 

order as the density u' of electromagnetic energy, but some c 

can even wholly annul the contribution of energy to mass 

for instance, the field in S' be a homogeneous elcctrostati 

E' = const., such as is contained between the plates (discs) of ; 

vacuum-condenser, far enough from the edges of the plates. 

u' — and if a be taken along the axis of the condenser o 

the Faraday tubes, pd, being a tension proper, is equal to • 

while/i,', being pressures proper, are each equal to 

fore, by {220), 
2 U' E''^ V 

while 

nia = o. 

Thus the condenser, apart from the plates, has equal rest-ma 

all transversal directions, while its longitudinal principal rej 

vanishes altogether. If it is moved along the tubes it 1 

momentum. This property, which holds separately for each 

element of a Faraday tube, harmoni^.es with Sir J. J. Tho 

well-known representation. The tubes may be straight, as 

above case, or curved and of varying section, llie only coi 

being that there shall be no flux of energy in S', we can cc 

apply the above reasoning to any electrostatic field. Summi 

the contributions due to the elements of infinitesimal filament! 

appropriate consideration of their directions), the mass-operc 

the whole field can be found. If the field is radial and symm 

round a point O', as in the case of the Lorentz electron, the 

operator m degenerates into an ordinary scalar, the rest-mass 

electron, or rather of its whole field. The reader is recommen 

prove this in detail, and to compare the result to be thus ob 
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Let us now once more return to stresses and energies of ar 

origin. In the simplest case of hydrostatic or isotropic pressm 

whatever its order of magnitude, our above p’ degenerates into f 

ordinary scalar, so that, in (21a), y'"^€/)V = 7“^€V./' = v./', while, ■ 
{2oa\ PyI — p\ and therefore 

U=y{U' + l^^p' F') | 

G = X(^7'+/r)v.j 
(2 

These are Planck’s formulae {loc, cit.). Since isotropic pressure is i 

invariant and V~ V'jy, we have also 

X^U^pV^yi^U' ^p'V')^ yxi, (2 

where x'? rest-value of x? Gibbs’ ‘heat function for consta 

pressure ’ or enthalpy.* The momentum is now in the direction 

motion. The mass-operator (22) degenerates into 

the scalar rest-mass. 

m 
u'^p'r x' 

0 5 (2 

llius, in the case of isotropic stress, the inertial behaviour of t 

body, or particle, is characterized by a simple scalar, as in Chap. V] 

But still the rest-mass will in general vary in time, inasmuch as t 

inner state of the particle {U\ p\ V') may undergo changes duri; 

its motion. If this is the case, e,g. if the enthalpy of the partic 

varies, then SXYc does not vanish, or, in other words, the Mi 

kowskian four-force X is no longer perpendicular to the particL 

world-line. In fact, instead of equation (20), p. 194, we now ha 

d y ^ 
f)i —l- y = A, 

suspended condenser due to the earth’s orbital motion was sought for. 1 

a somewhat thorough exposition of this subject would be beyond the limits a 

purposes of the present volume, and the interested reader must therefore 
4-^ ft tQ /v-T T nnnf-A/'l T-TAVA ii- will Ha Anoncrh to ' 
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and consequently, since /' can be written for the proper tii 

QYV — 

or, by (26), 

This proves the statement. Developing the left-hand side, b 

(i7<2), p. 193, we have, in terms of the Newtonian force N a 

velocity v of the particle. 

or also, by (25) and (26), 

dt 

This is now, instead of (22), p. 194, the equation of energ 

To see its meaning, consider the particular case of c( 

pressure, or what may be called isopiestic motion. Then, if 

the heat communicated to the particle per unit /-time. 

dx_dU' ,dV' 

df dt' dt' 

the heat supply being estimated from the point of view 

system S' in which the particle is instantaneously at rest, 

sequently, 
. 1 dU dV /mi- \ ^ j f ^ r 

The first term on the right is the rate of increase of the total 

of the particle, the second term gives the work done per un' 

by the particle in expanding, while (Nv) is the activity 

impressed force, everything being estimated from the *S-point 0 

If, therefore, (28) is to express the conservation of .energy in 

as (28') does with respect to A', we have to write for //, the 

heat supply as estimated from the A-point of view,t 
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And, since dt—ydi^ we have to require that the relativistic cor 

nexion between corresponding infinitesimal amounts of heat suppliei 
or withdrawn shall be 

(30 

This transformation formula agrees entirely with what follows fror 

Planck’s thermodynamical investigation. In fact,* one of Professo 

Planck s most fundamental results is that 67itwpy is hivciTiciyit wit! 

respect to the Lorentz transformation, 

and another of his results states that temperature is transforfjied lik 
volume^ 

y 

Now, the temperature being here defined in the well-known thermc 

dynamical way, we have, for reversible heat supply, 8Il'=^e'drj' 

and on the other hand (granting that a process reversible ii 

S' is also reversible from the A-standpoint), ^ff^^Odrj, wheno 

But, instead of recurring to temperature and the second law 0 

thermodynamics, the transformation formulae (29) and (30) cai 

ecjually well be considered as consequences of the principle of con 

servation of energy combined with (28), which in its turn is i 

consequence of the equation of motion (23) and of the relativisti( 

behaviour of momentum. Whatever the logical order of exposition 

the important thing to notice is that the several properties are con 
sistent with one another. 

Before leaving the discussion of variable rest-mass, only oik 

more remark. It has been shown in Chap. VIII. that the electro 

magnetic ponderomotive force per unit volume plus ijc times iti 

activity is a physical quaternion. In agreement with this the tota 

force N of Chap. VII. had the property that 'y[t(!N'v)/^r-f!Nr] was ^ 

physical quaternion. Both of these were particular instances of i 
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and consequently, since t' can be written for the proj 

dm ^dm 

or, by (26), 
df df 

SZF dX 
df' 

This proves the statement. Developing the left-hand s 

(17^3:), p, 193, we have, in terms of the Newtonian fore 

velocity v of the particle, 

(Nv) 
dt 

(mc^y) 1 ^ * 

or also, by (25) and (26), 

(Rv) + 1 dx 
y^ df 

^ . 
dt 

This is now, instead of (22), p. 194, the equation of 

To see its meaning, consider the particular case 

pressure, or what may be called isopiestic motion. 111 

the heat communicated to the particle per unit /-time 

dyi dU' .dV' 
dt' ~ dt' df '' ’ 

the heat supply being estimated from the point of 

system S' in which the particle is instantaneously at 

sequently, 
dV 

dt * 

The first term on the right is the rate of increase of the 

of the particle, the second term gives the work done 

by the particle in expanding, while (Nv) is the ad 

impressed force, everything being estimated from the N-p 

If, therefore, (28) is to express the conservation of .ener 

as (28') does with respect to S\ we have to write for i 

heat supply as estimated from the A-point of view,t 
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And, since dt—ydt, we have to require that the relativistic con 

nexion between corresponding infinitesimal amounts of heat supplier 
or withdrawn shall be 

aAr=i8JY'. (30' 

This transformation formula agrees entirely with what follows froir 

Planck’s thermodynamical investigation. In fact,* one of Professo) 

Planck’s most fundamental results is that entropy is invariafit witt 
respect to the Lorentz transformation, 

’? = V. 
and another of his results states that temperature is tra?isformed liki 

volume, 

e=-e'. 
7 

Now, the temperature being here defined in the well-known thermo 

dynamical way, we have, for reversible heat supply, 8JI' = e'dr)' 

and on the other hand (granting that a process reversible ir 

S' is also reversible from the .S-standpoint), SJI=Bdr), whenc( 

But, instead of recurring to temperature and the second law o 

thermodynamics, the transformation formulae (29) and (30) car 

equally well be considered as consequences of the principle of con 

servation of energy combined with (28), which in its turn is £ 

consequence of the equation of motion (23) and of the relativistic 

behaviour of momentum. Whatever the logical order of exposition 

the important thing to notice is that the several properties are con 

sistent with one another. 

Before leaving the discussion of variable rest-mass, only one 

more remark. It has been shown in Chap. VIII. that the electro 

magnetic ponderomotive force per unit volume plus ijc times itj 

activity is a physical quaternion. In agreement with this the tota 

force N of Chap. VII. had the property that y[i{Nv)/c+'N] was t 

physical quaternion. Both of these were particular instances of 2 
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is varying, then the above expression is no longer a ] 

quaternion. What now continues to be such a quaternion is 

X=^mY=y 
dr 

'dmyv dym 

dt dt 
or 

X=7 
L d 

c dt 
(mc^y) + N 

d 
In Chap. VIL we had simply — = (Nv), while now w 

instead of this, the equation (27). Thus, in general, for any 

of the body. 

(]srv) + I dx'' 

y^ dt' 
+ N 

is a physical quaternion, and more especially, for isopiestic mo 

X=r{i[(Nv) + /i]+N|~i7. 

In all such cases, therefore, we have to add to the activity 

impressed force the amount of heat supplied to the body f 

time. This property will reappear, in the next chapter, in coi 

with Joule’s heat in electrical conductors. 

If the enthalpy x'? and therefore also the rest-mass of the 1 

kept constant^ we fall back to the simple case treated in Chapt 

The activity then becomes, by (27), 

identical with (22), p. 194. 

write, equivalently, 

(]Srv) = 

Using the form (27(2), we m; 

dt dt dt ’ 

which reads: Work done upon the body =: increase of its ener 

work done by the body in expanding. The corresponding co 

/= 27'+/r'-const. 
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of the moving body may be invariable, i,e. U\ p' as well as V’m. 
be kept constant. But even then the work done by expansion do 

iiot disappear from (32a) unless the motion is uniform. For, wi 

constant V\ we have 
dv_ dr^ 
dt dt ' 

which expresses the varying FitzGerald-Lorentz contraction. B 

whatever the way in which x' is kept constant, we have the san 

equation of motion as in Chap. VII., 

m 

and consequently the longitudinal and the transversal masses retu 

to their rights, being again given by 

mi — m^ — vzy, 

where m has now the explicit meaning 

x' u' ^p' r 

Finally, if the pressure p', and therefore also is assumed to vanis 

the equation of energy becomes 

(Nv) 

and the constancy of the rest-mass 

means constancy of the particle’s store of energy. In this case tl 

difference between the energies U and U' can be looked at , 

entirely due to the motion of the particle and called its kinet 

energy relative to S. The value of the kinetic energy thus defin( 

is identical with that given on p. 195. In fact, the first of (2. 

becomes now U—y U\ so that 

£f' = (y-i) U'=:mc^{y~i) 
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It may be useful to illustrate here the mass formula (33) 

numerical examples. Thus, taking 2-1 gram calories for 

called the solar constant (energy received from the sun pei 

per cm^. at the earth’s mean distance), we have for the su 

radiation per minute 

477(1-5 . . 2*1.4*2 . 10'^ ergs, 

so that the diminution of the sun’s mass due to radiation w 

per minute, 2-8.10^^ grams, and per year 

8m = 1-5 . grams. 

This seems at first a prodigious loss; but the sun’s maf 

2 .10^^ gr., the proportionate loss per year. 

is quite insignificant. Next, take the example adduced by 

A mixture of 2 gr. of hydrogen and 16 gr. of oxygen dev 

the act of producing water, at ordinary pressure and tern] 

2-9.10^2 ergs of heat; the corresponding diminution of mass . 

to 3*2. io~^ gr., and the proportionate loss due to this 

reaction, 

= 2.10 

would again be far too small to be observed. Numbers o 

order would result for other instances of chemical i 

In short, the ‘ latent energy ’ which (if we neglect the coni 

due to stress) is to account for mass does not manifest 

any one of those processes in which atoms are implied as 

We are thus driven back to the interior of the old c 

atom, and have to look for that energy in the disintegr 

atoms known in connexion with radioactive phenomena, 

if we are to judge from their observed heat-effect o 

amounts of energy developed in such processes exceed in: 

all those liberated in ordinary chemical reactions, and J 

Planck seems to see in radioactivity a kind of verificj 

the energetic theorv of inertia. Now, it is true that th 
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quote Planck’s own example, one gram-atom of radium would los 

through its heat production (30240 gram calories per hour) -oi 

miligr. of its mass per year; the proportionate loss, therefon 
amounting to 

. io~’^ per annum, 

is again too small to be observed. 

We may add that the latter is small even when compare 

with the mass disintegrated during the same interval of time. F( 

this amounts, per 225 gr. of radium present, and per year, 

^^di8 = 9 • 10“^ gr., so that, in round figures, 

= lo*"! 

The mass of the disintegrated parent substance reappears sensih 

undiminished in the masses of the descendants. 

Thus, even radioactive phenomena reveal to us practica 

nothing of the assumed latent energy Its bulk remains 

latent as anything ever was. It must, therefore, be confessed tf 

the energetic theory of rest-mass, attractive and promising as it m 
seem, has for the time being the character of a purely formal redi 

tion of one concept to another. Nobody doubts, of course, that t 

chemical atoms are themselves exceedingly complicated systems, a 

that there are therefore many ways left of throwing the chief stoi 

of latent energy upon a host of ultra-atomic entities, electrons 

what not. If so, then some spontaneous disintegration, affecting 1 

atomic structure even more profoundly than that which in our di 

is associated with the name of radioactivity, may induce the gates 

those copious stores to open to the human eye. But as yet we h^ 

not the least knowledge of such phenomena. It is for this reas 

we have said that it is equally legitimate to assume latent stres 

along with the manifest ones in the mass formulae as to assu 

latent energies. Both are originally defined only by their variatic 

in time and in space respectively. And, for the present, b 

would have a purely formal character. 
The above mechanical, and partly thermodynamical, subj( 

have been treated at some length because of their affinity 'v 

the fundamental electroma netic equations for vacuum. Returr 
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NOTES TO CHAPTER IX. 

Hotel (to page 234). Let i, j, k be the antecedents, and fj, 
consequents* of the stress-dyadic/. Thus, if/ as in equation (5) 
applied as a post-factor, 

This means that V^=(li)fi=fi, etc., and in general. 

i/= (ni) fi -f (nj) £j -1- (nk) f.j 

= ?2lfj -h -H Wstj, 

which is equal to f„, as it should be. Similarly, writing instead 
Hamiltonian V, 

V/= (Vi)fi -1- (Vj)f2 -I- (Vk) £, 

3f, 3£| 
— -4— , 

ar oy os 

Using the notation of Gibbs, Scientife Papers^ Vol. II. p. 76, w( 

write /=ifi+jf2+lcf3j 

where the dot means scalar application of V, But since, in our < 
prescription of applying V scalarly is already given by the open par( 
in the dyadic (<a:), we do not require the dot or any other symbol ( 
multiplication. 

Note 2 (to page 238). Let /?, as in Note 6 to Chapter VIIL, 
kowski’s alternating matrix equivalent to the electromagnetic 1 
z>. let, according to (c\ p. 230, 

0, M,, ' ’ ^ 
^2, 0, - 
ij^ij iP i JrL Jj y 0 

Multiply it into itself. Then the finst constituent of the first ro^ 
resulting matrix /tA will be 

-/n + K 

where fn is the corresponding’ component of the Maxwellian str 
X=i(M^-jS^) the electromagnetic Lagrangian function per unit 
Similarly, 
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where u is the density of electromagnetic energy and g that of momentui 
as throughout the chapter. Thus 

{hh). 

+ A, /l2i flZy 

AiJ A2+A, 723 » Ug^ 

^315 /33+A, f'Cgz 

where <S is the matrix defined by (ii), p. 238, and A is written f 
A times the unit matrix of 4 x 4 constituents. The required connexion ; 
therefore, 

It will be remembered that A is one of the invariants of h. And, sin 

h' = AAA, the last equation gives at once 

S'=ASA, 

in agreement with (13), p. 239. On the quaternionic scheme we ha\ 
instead of (d), the operator R[ ]L of an analogous and somewhat simpl 
structure. 



CHAPTER X. 

MINKOWSKIAN ELECTROMAaNETIC EQUATIONS I 
PONDERABLE MEDIA. 

In Minkowski^s notes, which after his death were worked out I 

M. Born,* the electromagnetic equations for moving bodies, sati 

rigorously the principle of relativity, are deduced in a very ing( 

way from the fundamental equations of the electron theory, 

since the electronic equations were previously knowm to be inv 

with respect to the Lorentz transformation, and gave to the rel 

his first standard magnitudes, such a deduction was certain!] 

desirable and interesting. In fact, it occupied Minkowski’s th 

vividly during his last days. But in his own paper of 19c 

peatedly quoted, Minkowski adopts a purely phenomenol 

method, and deduces the equations for moving bodies, now 

rally associated with his name, from Maxwell’s equations for stat: 

media by subjecting them to a Lorentz transformation. 

In the present chapter we shall avail ourselves of the latter m 

only, which, apart from other considerations, recommends its 

its mathematical simplicity. Readers, and especially those 

desire to see the electron theory made the foundation of all el 

magnetic science, are referred to Dr. Bom’s paper just quoted, 

the resulting. equations t are wholly identical with Minko 

original equations to be given presently. 

* Fortschritte der math. Wiss. hi Monographien^ edited by 0. Blum 
Heft I, Teubner, 1910, p. 58. 
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We shall retain here the notation adopted in Chapter II., whei 

Maxwell’s equations for a perfect insulator are collected under (3 

p. 26. In the more general case of a conducting body, we have t 

supplement the displacement current by the conduction curren 

The latter, reckoned per unit area, we shall denote by T, and tl 

electrical conductivity by cr. Thus, Maxwell’s equations, written f( 

the system S', in which the ponderable body is at rest, will consist < 

the two groups: 

^ + r = c. curl' M'; div' = p 

= - f. curl' E'; div' JE' = o, 

(I 

J 

independent of the properties of the particular body, and 

r=(TE', 

containing its specific ‘ constants.’ These, the permittivity, indue 

vity (or permeability) and conductivity, which hereafter will play tl 

part of invariants,* may be either simple scalars (more general! 

linear vector operators) if dispersion is disregarded, or otherwi 

compound differential operators. In the latter case (in which prac 

cally X alone is concerned) the operator X is to be express 

constructed so as to be invariant. Thus it may consist of derivatio 

of any order with respect to the proper time of the body. 

In what follows we shall limit ourselves to isotropic media, so th 

K, /X, cr will have at any rate a scalar characte7', being either seal 

magnitudes or scalar operators involving differentiations. 

Let now S be another system of reference (say, the earth), relati 

to which our ponderable medium, together with its rest-system . 

moves with a uniform velocity v. Assuming the rigorous validity 

Maxwell’s equations (i') and {2) in S', and subjecting them to f 

appropriate Lorentz transformation, we shall obtain two groups 

equations for the 5-standpoint. Call them (i) and (2). Wt 

properties are we to require from (i) and (2) in the name of t 
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principle of relativity? In the previous case of vacuum, 

there was nothing to be carried along with the observers, a 

timate systems, 5, S\ S'\ ... were wholly equivalent to one at 

and the relativistic requirement was simply invariance or presei 

of form of the equations. The case before us is different, 

ponderable dielectric, with its specific properties, is at rest i 

system at a time, and moves relatively to all other systems, 

rest-system, in our concrete case S\ is an uniquely privileged 

work. If, in other concrete cases, the body were fixed in S or 

and so on, we should have to require the non-dashed or the d 

dashed equations to be of the same form as the above (i') an 

But, S being a system, relative to which the body does 

(uniformly), we have to require only that the groups of eqi 

(i) and (2), which might both contain the velocity v,* sho\ 

invariant with respect to the Lorentz transformation by me, 

which we pass from S to any other legitimate system. If this n 

ment were not fulfilled, Maxwell’s equations could not be us 

relativistic purposes at all. But, as a matter of fact, they star 

test completely. 

It seemed advisable to dwell a little upon these explana 

firstly, to avoid possible misunderstanding, and secondly, becau 

procedure and the test here exemplified are of general impoi 

They are the same in every other case in which the rela1 

equations to be constructed concern any phenomena in pond 

bodies. 

In order to obtain the two groups of equations, numbered ir 

cipation (i) and (2), and to see at the same time their invarianc 

= R' = JE' + ^E' 
and 

and similarly for the non-dashed letters. Further, introduc 

quaternion 
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our equations (i') will assume the quaternionic form 

Z>'L'+ E'i?'= o. J 

dentical with the first and the second pairs of (i') 

2[ ]<2 be our usual transformer from N to S', and there- 

, the inverse transformer. Apply the latter to each of 

s (I'a) and insert QcQ=i between D' and (or L'), 

between (or R) and jy, in very much the same way 
. Then the result will be 

J^QW'Qo-QcWQI>=^Q.c'q, 

r for the second equation, i.e. 

D^-3D=iC-\ 

D'L + 'RD^o, i 
similarly for the other pair of 

id C= <2c^^'(2c* Conversely, 

r-CcSG etc,, C=QCQ. 

ip ’{’Ijc is a physical quaternion^ and L are left- 

ical hivectors^ and ^ and R right-handed ones.* C may 

he (macroscopic) current-quaternion, while the electro¬ 

vectors need no special names. 

A.S’-equations {id) are precisely of the same form as those, 

e rest-system. And so they will be also for every other 

/stem of reference. The velocity of the body does not, 

3r into these differential equations at all. We can now 

leir quaternionic form {id) to the vectorial one, and shall 

the required first group of equations : 

3® 
3/ 

Hh I cs: C • curl M, etc., (x) 

in (i') without the dashes. At the same time we have 
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This^ property finds its immediate expression in the above 
nionic form (la).* 

Moreover, the stated transformational properties of the 

magnetic bivectors and of the current-quaternion lead at once 

second group of equations for the moving body, to be deduc( 

the Maxwellian connexions (2'). In fact, since both L = JE- 
are left-handed bivectors, t we have in exactly tl 

way as on p. 210, writing again e for the longitudinal strel 
ratio 7 = (i — 

= y Ijtl' + iVvE' ; M = 7 + 

E = yr-E'-lVviE'1; ® = 7r-<£'--VvM'1, 

whence, by the first and second of the connexions (2'), ai 

an easy rearrangement of terms, 

« + -VvM = jr [E + iVvJtt] 
c c 

Jft - iVvE = /X [M - ivv® ]. 

Both of these relations, involving the substantial properties 

medium, contain its velocity. Again, since C^ip + ljc h a ] 

quaternion, we have, by (i'^) of Chap. V., p. 125, 

I = cr-f-7pV 
and 

p'=y[p-j2 (iv)], 

whence, by the last of (2'), 

I = (r£E' + 72[/D-i(Iv)]v. 

* Or in Minkowski’s matrix form. This consists of the two equations 

lot h= -s, lor = 
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III 
But -E' = -E + -VvJE. Hence, after a slight rearrangemen 

terms, 

I_pv = i = <ryl[E + lVvJl]. 

Thus I appears as the sum of the convectio7i current pv and 

conduction current^ for which we have written E, the latter t 

proportional to the conductivity.* 

Using the convenient abbreviations 

E><=E+iVvja, ®x = ®+iVvM 
V 

and gathering together the above results, we obtain the req^ 

second group of equations, valid from the standpoint of 

system 6", 

1- pV = % = (ry^W, I 

These three connexions involve the velocity of the ponde 

medium relative to that system. It remains only to prove 

they are invariant with respect to the Lorentz transform; 

Now, introducing the velocity-quaternion 

V=y[tc + v], 
we have, identically, 

i-[FL + RF] =7r-(Jft''v)+JE^], 
2Ct ^ J 

— [ F® - m F] = 7r-(®='v) + (£>'1, 

2Ci VJ' _ 
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and each of these expressions * is a physical qiiatern 
Moreover, starting from the current-quaternion C and its ' 

we easily obtain the identical equation 

£[C+1YC, y] = - pfM + V(Iv) - pv‘^]y\ 
2 V C 

of which the left-hand side is, obviously, again a physical qi 
So also is its right-hand side, which, by the third of (2), 
to err]. Using, therefore, the above identities we can ^ 
whole of (2), in terms of physical quaternions alone, 

yiK-ilF=Ar[yL-iiF] ' 

yL-hRF=/x[F^4-ilF] 
1 

c+4 Fc y= >[ yi- - B y]. 
J 

This proves the invariance of the relations (2) with rc 
the Lorentz transformation.! Thus the whole of equa 
and (2) satisfy the principle of relativity, q.e.d. 

It is worth noticing here that the world-vector corre 
to the quaternion 

|[c-+iyc,y] 

is the part of the four-current C normal to the four-vel 
Generally, for any pair of physical quaternions a, the e: 

, baj) 
2(TY)^ 

represents that part of the four-vector corresponding to < 
is normal to the four-vector b (Note 1). The above s 
is deduced from this, remembering that TF=i<r. 

* Of which the first and the last, denoted for sub.scquent reference h 
are the quaternionic equivalents of Minkow.ski’s world-vectors of the 

and SI', called by him eiek^nsche /'iuk-hlraft and mapietfsehe j 
respectively. Cf. his Grundgleichungen^ pp. 33-34. 
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In the course of the above calculations we came across the formula 
ply=zp- (Iv)/^:2. Its inversion will be 

Substituting here (I'v) = y (Iv) - ypv^ and remembering that I == E + /)V, 
we obtain the interesting relation 

/3 = 7/>'+J(iv), (3) 

about which a few words will be said later on. To resume the 
above results: 

The equations for a moving isotropic* conducting dielectric, 

obtained from Maxwell’s equations for stationary media, are in¬ 

variant with respect to the Lorentz transformation. They consist 

1“ of a set of differential equations not containing the velocity of 

motion at all, and 2° of a set of relations concerning the substantial 

properties of the medium and involving its velocity v relative to 

the observing system. The quaternionic form of these two sets of 

equations is given in (la) and (2a), where L are left-handed 

and R right-handed physical bivectors, and C a physical 

quaternion, q. The vector form of the first set is 

q-1 = (T. curl M : 
ot ^ 

div ® = p 1 

(I) 
^-.curlE; 

ot 
divJE = o j 

and that of the second set 

(2) 
I-pv = i = o-y£-2E=', i 

j 
where stands for E + -VvJE, etc., as in (a), and X, /x, cr for 

the permittivity, inductivity and conductivity of the body, as 

originally defined from the standpoint of the rest-system. 

* If /r. vprtnr nnprfltnrc;- n9c:c:fl.cr<» from (2.) to wonlH 
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These are MmkowskVs equatmis. They were first giv 

fundamental paper of 1907, in both their vectorial and r 

forms already quoted. We may notice here that Minkowsl 

assumed that Maxwell's equations (i') and (2') are valic 

corresponding instantaneous rest-system S') at each poir 

material body, whatever the state of motion around that j: 

as if the whole body were fixed in S'• It is this that he 

‘ first axiom' {ioc, dt.^ § 8). Such being Minkowski's start 

he asserts, consequently, the validity of the resulting equa 

and (2) for each element of a material medium moving in an 

manner with respect to the framework S^ in short, for v v 

both space and time. His only restriction is that v<c, 1 
not unlikely that the first set of Minkowski’s equations c 

such a general validity. (Notice that these are, properly , 

two equations for five vectors, otherwise yet unconnected.) 

case is different when the first set is supplemented by the 

For, apart from other reasons, if we pass to K—fi—i and ( 

whole of equations (i), (2) reduce, as will be seen pres 

the vacuum-equations, and the acceptance of the latter fc 

works whose relative motion is variable, would require a 

reconstruction of the principle of relativity underlying tl 

theory. Retaining, therefore, this principle, we can consi< 

kowski’s equations as rigorously valid only for uniform 

Accordingly our v has been treated from the outset as a 

vector and F as a constant velocity-quaternion belonging 

body as a whole. Of course, as an approximation of m 

sufficient accuracy, the equations (i) and (2) can well be 

velocities experiencing all such time- and space-variation 

practically realizable. Thus, for instance, they can safely b( 

to bodies kept rotating, as in the case of Wilson’s experim 

unequal FitzGerald-Lorentz contraction and the ensuing sti 

its influence upon X, etc., being of the order of /3‘1 
The comparison of the equations (i), (2) with those c 

Heaviside, Lorentz and Cohn, none of which satisfy r: 

the principle of relativity, must be left to the reader 
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invariant with respect to the Newtonian, and not to the Lore 

transformation. 

Let ns now stop a while at Minkowski’s equations in order to lei 

some of their properties. 

In the first place, if fi—i and o- = o, then Minkowski’s eqnatk 

reduce at once to the fundamental or the vacuum-equations. In L 

in this limiting case we have, by the third of (2), l = p'v, and if p - 

also /> = o, by (3). Again, by the first and second of (2), = 

and i.e. 

whence, by elimination, 

and since 13 ^1, ® = E, and similarly, = q.e.d. The sa 

result may be obtained from the quatemionic form {2a). In 

present case ^ = L becomes identical with the electromagm 

bivector of the preceding chapters. And since at the same ti 

^ = B, the sum of the equations (la) gives at once Z>L = 

Properly speaking, to obtain AT— /x= i, or = o, we have (on the elec 

atomistic doctrine) to consider a region outside the electrons, oi 

least outside electronic assemblages crowded within atomic regie 

Then p = o, Z>L = o, and here the macroscopic bivector coinci 

with our previous microscopic L. Thus the announced reduct 

becomes complete. 

As regards the meaning of the vector I, we have already remar] 

that it is the sum of the convection- and the conduction-current, 

virtue of the properties of the stretcher c, the longitudinal compon 

of the latter current will be 

at _^ Tpx_^ T? 
Xi — JSfi — -^1) 

y y ^ 

and the transversal ones 

i2 = o-7£|=, 13=07^:3^. 
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way of splitting the conduction current into factors. But sine 

far, the only requirement is that ‘ resistance' should reduce to 

v = o^ we may equally well give the name of ‘ electromotive 

to the line-integral of the vector itself; then we shall hs 

specific resistance-operator instead of an ordinary 

If second-order terms are neglected, the distinction disappears, 

conduction current may then be written, with more than su 

approximation, 
I==OrE^. 

We will not stop here to discuss the nomenclature propos 

various authors for E^ and its magnetic companion. It 

advisable to leave them for the time being without any names. 

The integral properties of E^ and M^, in relation to JE, etc 

at once be put into a form with which the reader has h 

familiar in Chapter II. In fact, by (a) and (i), we have 

curlE-curlVvJE 

+ vdiv JE + curl VJEv, 

and this is precisely what in Note 2 to Chap. II. has been callec 

current (Jtt). 

That is to say, if da- be a surface element composed always 

same particles of the body, and n the normal of ^cr, we have 

Similarly, 

^(n.curlE^) 
dt 

{Jftn^cr). 

d 
^(n. curl M^) = ^ ((Sn da) + (Jn) 

Recurring, therefore, to Stokes’ theorem, we have for any sui 

which together with its bounding circuit 5 is carried along w 

body^ 
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and to p. 30, the reader will find this integral form of equatior 

most suitable for a direct comparison of Hertz’s theory wit 

that of Minkowski. Instead of Hertz’s E, M w^e have here E' 

and instead of his ® = ArE, etc., the Minkowskian relatioi 

(2), involving the velocity of the medium relative to the observin 

system. 

Applying (4) to a pair of surfaces bounded by one and the sam 

circuit 5, as on p. 25, we obtain the familiar equation, 

I- - j(3E«)*, « 

where e is the total charge of any portion of the medium enclose 

completely by the surface o-, whose outward normal is n. If th 

bounding surface is entirely composed of lines of conduction-curren 

then the charge remains constant. The same result follows, ( 

course, from the first pair of the differential equations (i). wit 

I=:pv + I. And since these are independent of the Minkowskia 

connexions, involving the substantial properties of the mediun 

there is no wonder that the equation of continuity reappears in ii 

familiar form. 

The above equations (4) and (5) lead at once to a pair of what ai 

usually called the boundary conditions. The other pair follov 

directly from div ® = p and div Jft = o. In fact, let 2 be, in Hadj 

mard’s phraseology, a stationary surface of discontinuity,* z.< 

permanently affecting the same material particles, such as the surfac 

of contact of two different media. And let us require that i and th 

individual time-rate of change of ® and Jft should be finite. Th 

condition, to be fulfilled at any point of 2 and elsewhere, is necessai 

to prevent mounting up to infinite values at any point of th 

medium.t Under these assumptions apply (4) and (5), in the usui 

way, to an infinitesimal rectangle, with its shorter sides normal to 1 

Then the result will be that the tangential components of E^ and M 
must be continuous. The two remaining conditions are as in th 

older theory. They follow at once from the divergence-formulai 

and require the normal component of JE to be continuous, and th 
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jump of the normal component of ® to be equal to the 

density of charge. Thus, if there is no such charge, we h 

following boundary condtUo7is: 

(JEn) and (®n) continuous^ 

VnVE^^n and VnVM^n co7itinuous^ 

where n is normal to the boundary. The latter pair of exp 

gives the tangential parts of the vectors, i.e. in both s 

direction. 
Next, .as regards the formula (3) for the density of charge, ■ 

a consequence of the nature of C as a physical quaternion. ^ 

first, that there is no conductivity. Then 

p=yp^ 

just as for the microscopic density of charge, whence, for any 

of the body, 

e={pdS=^pdS' = e', 

which means relativistic invariance of macroscopic charge 

property then continues to hold for a moving body, providec 

is a perfect insulator. 

On the other band, suppose that the body is conductive, 

there is no rest-charge {p' = o). Then there will be for the -So 

an apparent charge of density 

The history of this conduction charge, or compensation ch 

it previously has been called, can be traced back as far j 

in which year it was deduced by Budde (Wied. Ann., 

p. 553) from Clausius' fundamental law of electrodynamics, 

whose formula differed from the above one by containii 

instead of was able to defend Clausius’ law from a serioi 

by showing that this charge accounted for the non-existen< 

action between a current circuit and a charged body sh 



WILSON-EFFECT 27 

two ways leading to one and the same result will be found usefu 

and the electronic interpretation of a formula which here appea: 

as a relativistic consequence of Maxwell’s equations will not t 

lacking in interest. But even apart from electro-atomistic coi 

cepts the reader will not fail to see that if the densities of positi\ 

electricity, flowing one way, and negative flowing the other wa; 

cancel one another for an observer attached to the conductir 

body, then the corresponding values /)+ and /)_, as estimated froi 

any other (S-) point of view, will in general not annul themselve 

They will do so only when the current has no longitudinal cor 

ponent. There is no difficulty in working out the quantitatb 

details of such a reasoning, and thus re-obtaining the above formul 

Next, as regards the dragging of waves. We know already fro 

Chapter VI. that, whatever the value h' of the velocity of propagatic 

in the rest-system, its *S-value b will follow by the addition theore 

of velocities, and will give, therefore, the Fresnelian coefficier 

And that Einstein^s theorem is in fact applicable to the prese: 

case, can be concluded from the manner in which the equatioi 

(i), (2) have been obtained from those, (1'), (2'), holding in 1 

Thus we know beforehand that Minkowski’s equations will le^ 

to the correct Fresnelian value of the dragging coefficient. Ar 

this expectation is readily confirmed on performing the explic 

calculation. Cf. Note 2. 

Finally, let us remark that Minkowski’s electromagnetic equatio: 

account fully for the well-known results of Rowland’s, Wilson 

Rdntgen’s and Eichenwald’s experiments. We cannot enter he 

upon the corresponding details, and must confine ourselves 

short indications concerning each of these famous experimeni 

The magnetic effect of the convectiofi current^ first proved expe 

mentally by Rowland, and confirmed by other physicists,* 

directly expressed by the term pv, which together with t] 

conduction current makes up I, and thus equally with that curre 

contributes to the magnetic field. It is scarcely necessary to s. 

that the Rowland effect was equally well expressed by the Her' 

Heaviside equations. The result of Wilson^s experiments on tl 
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electric effect of rotating a dielectric between the connected 

of a condenser in a magnetic field M consisted in each ( 

plates being found charged to a surface-density 

(W 

of opposite signs.* In the theoretical treatment of the pn 

uniform translation (of each element) can, with sufficient acc 

be substituted for the actual spin, and the state being sup 

stationary (and cr = o, p = o), Minkowski’s differential equations r 

to curlE = o, etc. Using these, with the appropriate boui 

conditions, and the first pair of (2), Einstein and Laub t d€ 

for the surface-density in question, the value 

(X/x-i)/3Af; ( 

with the correct sign for each plate. The authors observe 

Lorentz’s theory would give, instead of this, 

(A”- 

Since in Wilson’s case /x was = t, both of these theoretical fori 

coincide with his experimental result. If a dielectric of consid< 

inductivity were available, experiment would readily decide in f 

of the former or the latter theory. As to Hertz-Heavisiclc’s tl 

it would give for the Wilson-effect 

z.e. practically which is eciually contradicted by Wilson’ 

by Blondlot’s results. This disagreement, even in the case 

first-order effect, might have been expected, in view of the fac 

Hertz-Heaviside’s equations give a full instead of a Fresnelian 

Lastly, as regards the experiments on the magnetic effect of m 

polarized dielectrics, which were first carried out by RO 

and more recently with increased accuracy by Kichenwald,! i 

be enough to write down the expression of what is generally < 

*H. A. Wilson, Phil. 7'rans,, Vol. CCIV. A, 1904, p. 121. Wilson’s p 
result agrees with the absence of any such effect stated previously by R. Bb 

Comities rendus, Vol. CXXXIII. iQor, n. 778, in the case of air as die' 



ROENTGEN-CURRENT 
275 

the Rbntgen-cur refit. In fact, if we limit ourselves to homogeneous 

media, the experimental results may be concisely stated by saying 
that the observed value of the Rontgen-current is 

{K-i) curl VEv. (Exper.) 

Now, according to the Hertz-Heaviside equations (p. 31), this 

current would be 
A^ curl VEv, (HH) 

so that the disagreement is exactly of the same kind as for the 

Wilson-effect. On the other hand, Minkowski’s equations, with 

/x = I, give for the Rontgen-current the rigorous value 

curlV[$-E]v, (Mnk) 

where, by the first of (2) and by (a), 

® - E = (A"- i)E + ^ Vv[A'Jfl - M]. 

Thus the first-order term of the Minkowskian expression represents 

correctly the observed facts. The second-order terms are, of course, 

for the time being far too small to be detected. The Minkowskian 

value of the Rdntgen-current follows also from a later form of 

Lorentz’s equations deduced (1902) from the electron theory.* In 

what consists the violation done by these last equations to the 

principle of relativity may be seen from Minkowski’s paper. There 

the reader will find also the appropriate coordination of the field- 

vectors involved in the various theories. 
So much as regards the electromagnetic equations for moving 

bodies, contained in (i) and (2). Now for the dynamical part of 

the subject. Before proceeding to a relativistic construction of the 

formulae for the ponderomotive force and the associated physical 

magnitudes, some preliminary remarks seem indispensable. These 

will concern the requirements to be postulated in addition to those 

dictated by the principle of relativity itself. The choice of such 

supplementary requirements or postulates is free, within fairly wide 

limits. We shall select those which seem to offer the advantage of 

possible simplicity and which will lead to results but slightly different 
M - n _ Jl . ^ L.1 ^ ««««%..« ««■ 1 A’s. />p-% r\ 
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Let P be the po?id€romotive force due to the electromagnetic fiel 

per unit volume of the medium, and, therefore, (Pv) its activr 

Further, let /be Joule's heat, or the Joulean waste, per unit time ai 

unit volume, and jPthe force-quaternion, i,e., according to what h 

been said in the last chapter, 

ir==I[(Pv)+/] + P. ( 

Let u be the density of electromagnetic energy, g that of electi 

magnetic momentum, and finally / and |] the ('absolute,’ n 

relative) stress-operator and flux of energy, as defined in the usi 

way with respect to the observing system S, With this meaning 

the symbols, let our requirements be as follows : 

i“. F, a physical quaternion. 

ir=‘[(Pv)+/] + ?=; (< 

2°. Principle of mo7nenium, to call it by its usual short name, th 

is to say. 

V/« 
og 
dt 

where Vf stands for dfj/dx + cTo/dj + 'Offds. 

3“. Principle of consenkition of e}m\c[y, i,€. 

(Pv) +7= 
du 

div 1)3 

where |3 has, thus far, ?iothbig to do with the momentum. 

It is needless to add that, besides fulfilling these exjilicit rctiuii 

ments, the resulting formulae have to agree with experience, 

far as it goes, and to reduce, for cr = o, to the previo 

vacuum-formulae, as, in fact, they will. 

We have seen in the preceding cha])ter that there is at the presc 

time a strong tendency to universalize the simple relation of ecpiali 

holding between g and J3/r^ in the ideal limiting case of a vacuum.' 

*Thi.s tendency was initiated by Planck’s paper {/*liys* Zeitstitrif, Vol. I 
1908, p. 828) on the principle of action and reaction. M. Abraham uses t 



PONDEROMOTIVE FORCE 277 

But, as far as I can see, there is nothing to compel us to such a 

generalization. If it is assumed that the matrix embodying the 

stress, momentum, etc., should be symmetrical, then, of course, 

the equality under consideration follows from (/3) and (y). But 

nothing prevents us from abandoning, at least in the case of ponder¬ 

able media, that assumption of symmetry.* We shall see that in 

doing so we need not even give up the formulae (14) or (14^) of 

Chap. IX., which have led to so many far-reaching consequences. 

These formulae will continue to hold within wide limits, although the 

more general formula (10) of that chapter will have to be modified. 

Thus, there will still be ‘ inertia of energy,’ with its manifold 

corollaries. 

So, much to justify the abandoning of the assumption of universal 

proportionality of momentum and energy-flux. 

Returning to our above requirements, let us, first of all, observe 

that, with the given meaning of assumptions (/3) and (y) may be 

condensed into 

where 

LCg, — u 

or, written out fully, 

/u» /l3J c ^ 

^225 

/325 

— u 

(10) 

(ii) 

(i i<a:) 

*In SommerfelcVs four-dimensional algebra {loc. nV.), the symmetrical world- 

tensor, corresponding to such a matrix, is generated by what he calls ‘ a 
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seen to hold for any electromagnetic field, if S' is attached to thi 

ponderable medium; and the condition of vanishing g' and wi] 

be satisfied in the case of a purely electrostatic, or a purel; 

magnetostatic field. 

Withalone, we have, from (i2«), the interesting relatioi 

(13 

which will hold for any electromagnetic field, provided that S' i 

the rest-system of the ponderable medium. 

But let us return to our chief subject. After what has bee- 

said we could either employ the form (10) of the force-quaternior 

and would then have to prove that § is transformed accordin 

to (12), or we can proceed by satisfying our three requirement 

in their original forms (jS), (y), and (a). The two ways are wholl 

equivalent to one another. Minkowski chooses the former: h 

constructs § in a manner that ensures by itself the validity c 

(12), subjects it to the operation lor, and develops the resultin 

four-vector.* We shall take the latter way, which the reader ma 

find easier to follow. Thus, we shall first construct jF so that 

should be a physical quaternion, and then find the correspondin 

expressions for the energy, stress, etc., according to (^), (y), aide( 

of course, by the electromagnetic equations (i), (2). 

The first step to be taken is suggested by analogy with tk 

construction of the fundamental electronic force-expression (c 

p. 220). We know that 

C=ip + ^'~<7, 

and that is a left-handed bivector. Therefore, CL 1 

Similarly, E = being a right-handed bivector, we ha\ 

The difference of both products has also the structm 

of 7, and thus is again a physical quaternion, and can be used i 

far as (a) is concerned. Try, therefore, to satisfy the remainir 

requirements of the problem by putting 

{1 Ai 
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be easily supplemented by another physical quaternion involving 

the variations of K, ju. Develop the right-hand side of (14a). 

Then the vector part will give the ponderomotive force, 

p^pE-h-VIJt, (15a) 
c 

and the scalar part will lead to 

(Pv)+/=(EI). (i6a) 

Eliminate (EI) from these two equations and remember that 

I = pv + E. Then the result will be 

p C- 

giving for Joule^s heat the expression 

/=(EEx). (.7) 

Thus far (/9) and (y) have not yet been employed. Now take 

account of these conditions, beginning with the latter. This gives, 

by (i6a), 

-(EI) = ^ + div3p. 

Now, by the electromagnetic differential equations (i), 

- (EI) = i i (E® -P MJE) + ^. div VEM. 

Thus (y), the principle of conservation of energy, is satisfied if the 
density of electromagnetic energy is taken to be 

« = i(E®-fMJft), (18) 

and Xhtflux of energy, from the standpoint of the observing system,"^ 

i = rVEM. (19) 

The addition of an arbitrary sourceless (solenoidal) flux, as well as of 
an invariable u-term, would be irrelevant. 

Lastly, to represent the ponderomotive force in the form required 
/x __j_:__ /_\ rr-M 
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Using the second pair of equations (i), and writing, for the moment, 

A = Ediv®-V® curlE + Mdiv JE-VJRcurlM, 
we have 

This gives, first of all, for the electroviapietic mo77ie7itum per unit 

volume, 

g = (20) 

and what remains to be shown is that the vector sum A, familiar from 

the Maxwellian theory, is of the form - ^f. Now, this is exactly the 

case, provided that K and /x, involved in (2), are mistant throughout 

the medium. In fact, take for the electromag7ietic stress the familiar 
expression 

4 = 2.n-E(®n)~M(Jftn), (21) 

where u is as in (18). Then, remembering that V/ is used as 
shorthand for 'dfj'dx + 'di^j'dy + 'dfj'dz, 

- V/= - 1 [(®i)E + (#ti)M] +|... +|... 

= Ediv® + MdivJE~V2^ + (®.V)E + (JE. V)M. 

On the other hand, we have 

V® curl E -V® .WE-V(E. ®) - (®. V)E 

(where the dot stops V’s differentiating action), and a similar ex¬ 

pression for the last term of A. Thus, 

-V/-A + N, 
where 

N = V(E. ® + M. ja)-V2^, 

N = |V(E.® + M. Jit--®.E-JE.M). 

To prevent a possible misunderstanding, we may add that this is a 

vector whose components are 
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paper,* the reader will verify that the above vector is identic 

N = - i {T'nY. . V/x, 

where the quaternions and C are as in (b), p. 265, In the 

homogeneity, therefore, N vanishes, and we have A = - V/j 

the condition (^8) is satisfied, with the above stress and mon 

by taking (15^^) for the ponderomotive force, that is (14a) 

force-quaternion. 

In the more general case of a heterogeneous medium we ha 

to supplement our original P by the vector N, and consequc 

add to our original F the quaternion 

DK-l(^C)K Dll., 

which, like that F itself, is since T77 and lY, being the 

of physical quaternions, are invariant with respect to the ; 

transformation. 

Thus we shall have, as a generalization of (14a), 

F=^[CL^ EC] - i (T7;)2. DF- i (1Y)‘L Dfi, 

which splits into 

P = pE+ V^- MT0-- V/. 

and 

(Pv) +/= (El) + i +1 {Tcr~j- 

All requirements being now satisfied, with the above va 

density and flux of energy, and of stress and momentum, tl 

thing to be still revised on account of the heterogeneity 

medium is the Joulean waste. Now, proceeding as befc 

obtain at once, from (15) and (16), 

/= (iEx)+i (T cr-£, 
i^JbK 

dt 'bt 
+ (vV)-«'= 

xbK 

7 bi ’ 

where 
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the previous value, (17), of Joule’s heat. Under these circumstances 
we have also 

VK=^VI<, V/. = £V'/r, 

which values can be substituted, in the last two terms of (15) 
To resume: 

The force-quaternion 

>= l[CL - UC] - i(T>y)2. DK- J(Tf)2. 

being n physical quaternion, satisfies the fundamental relativistic 

reciuirements and, at the same time, the so-called principle of 
momentHm^ 

p = - V/- 'bgj'dt, 

and the principle of conservation of energy, 

(Pv)~ + div|) = o. (y) 

It gives for the po micro motive force ^ per unit volume of an isotropic 
medium, 

P«pE + ^Vl^t^'VK— \ Vyw, (15) 

and for \\\^ Joukan waste (with dK/dt'= dfJL/di'= 0): 

/-(EE-), 

where is the conduction current, 
auxiliary magnitudes are as follows: 

I'he density of eleciroma^^metic energy 

the fiux of energy 
«i(E® + M4E), 

|I«^VEM, 

the density of etectromagnetk momentum 

(17) 

The corresponding 

(18) 

(19) 

(20) 

and, finally, the ekciromagmtic stress 
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Our ^is the quaternionic equivalent of Minkowski’s four-ve 

{loc. cit.^ § 14, for constant v, of course), and so also our 

components, etc., are identical with the sixteen constitue 

Minkowski’s matrix - S. The difference between the theoi 

proposed and that given by Minkowski, is this:—What Min 

considers as the ponderomotive force is the vector, not of . 

but, of 

i.e. of that part of the four-vector which is 7io7'vial to th 

velocity Y. Thus Minkowski’s ponderomotive force is 

the form (^5), though it becomes so in the rest-system. The 

why Minkowski proposed for the four-force the above i 

instead of the whole F^ is to be sought for in his dyr 

according to which the ^moving’ four-force had always 

normal to the particle’s world-line. This corresponded 

assumption of a constant rest-mass. But in general, as hai 

explained in Chapter IX., the four-force does not necessari 

that relation to the world-line, and it will not do so wh 

there is heat supply or heat generation. Now, this being 1 

the case with an electric conductor, we had to abandc 

Minkowskian condition of orthogonality. And, in connexio 

this. Joule’s heat has, from the beginning, been embodied ir 

force-quaternion along with the activity of the force, such 

cedure being directly suggested by the dynamical conside 

of Chapter IX. If there is no conductivity, and therefore a 

Joulean waste, then the four-force represented by (14) is, i 

normal to the world-line of the body, i.e. 

S YqF— o, for or = o, 

as is proved in Note 4 at the end of the chapter. But in 
ducting body this property does not hold. 

We will content ourselves here with the above modificat 

Minkowskian electrodynamics, which, besides fulfilling the 

requirements, is also in complete agreement with what is 
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convection-current, contained in VIJE/^). But, since nobod} 

ever observed such an action of the magnetic field, this can h, 

be considered as a serious objection. In order to obtain 

desired term, Einstein and Laub recurred to the electron th 

and since in doing so they thought necessary to limit thems 

to the case of stationary bodies, their electrodynamics is c 

particular interest from the relativistic point of view. Abrat 

ponderomotive force contains, in addition to (15), several < 

terms, and among these the displacement-current term. His eh 

dynamics of moving bodies,* as has already been mentione 

based upon the assumption of the particular relation g = 

borrowed from the vacuum-equations. The desire to retain 
relation throughout the theory makes Abraham’s formulae 

siderably more complicated than the above ones. His expre 

for the Joulean waste, subject to the same conditions for j 

is the same as above, but those for the density and flux of en 

and consequently also for the momentum, are less simple. 

The set of electrodynamical formulae given above is best ch 

terized by saying that, while satisfying the principle of rela 

and the principle of conservation of energy, it gives for the 

system the ponderomotive force 

P' = - 

In fact,y5 as given by (21), reduces in S' to the Maxwellian s 

operator, 

It will be remembered that Maxwell’s stress, taken by itself, v 

give, in absence of electric charge and of ponderable matter 

ponderomotive force 

- — VE'M', 
3/ ’ 

and this Torce on the free aether’ is just balanced by the se 
term in (23). See p. 48. With the exception of this obvi 

desirable supplementary term everything is as in Maxwell’s el( 

dynamics of stationary bodies. Thus, (15), the developed 
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where E' = I' is the conduction current, and each of the four 

has its old familiar form and meaning. Again, by (17) ar 

the Joulean waste takes its usual form, 

while (18) and (19) give at once the Maxwellian density of € 

magnetic energy, and the familiar Poynting vector for tf 

of energy, 

The transformation formula for Joule’s heat is easily ob 

In fact, since E, defined by (9), is a physical quaternion, and i 

E'===-/' 

we have at once, writing E^ for the longitudinal compor 

the force, 
f+vJ’.^yi/' + vF') 

and 
F, = y{P^ + vflc-^), 

whence, by subtraction, 

Consequently, if dS' be any volume-element of the bod 

dS its correspondent, 

in complete agreement with (29), Chap. IX. 

The electromagnetic momentum bears, in the rest-sys 

simple relation to the energy flux. In fact, by (20), 

g' = VE'M' = VE'M', 
c ,b ^ 

where, dispersion being disregarded, b' is the velocity of prop 

of disturbances, as estimated by the iS'-observers. Hence, 

of Planck’s relation, we have 

so that, in a stationary ponderable medium, b' takes the pla< 

And since b' plays in such a medium just the same part 
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critical velocity in empty space, it seems quite natural that 

should replace the relation which holds good in the absenc 

matter. The stress in being self-conjugate, our previous eqm 

(13) can be applied, so that, in general, 

where n is the refractive index of the medium. If, therefor 

differs at all from unity, we have |3 ^ unless there is m 

rest-system no Poynting flux. 

Finally, notice that if and a- = o, the ponderom 

force (15) coincides with that of the electron theory. And 

same thing is true of the above expressions for stress, density 

flux of energy, and momentum. So also were the vacuum-equa 

contained, as a limiting case, in Minkowski’s electromagnetic d 

ential equations for moving bodies. 

NOTES TO CHAPTER X. 

Note 1 (to page 266). Let the quaternions a and b represent a p 
four-vectors. Then the component of the four-vector a taken j 

the four-vector b (cf. p. 148) will be represented by 

(T^)-h 

and, consequently, the part of a normal to in both size and dire^ 
by 

b^aj) 
a)i a * 

Now, Sacb=^[bca + acb], and bbc—(Tby^. Hence 

an — i a 
baj? “ 

which is the required expression. 

Note 2 (to page 273). It will be enough to consider here the c£ 
plane waves, propagated along v, in a non-conducting medium, car 
no charge, so that I=o. 

As in a previous Note (p. 59), take E, % etc., proportional 1 
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discontinuity). Then the equations (i) and (2) will give, by (a). 

and since v=fjSi, 

--«=ViM, -<iB;=ViE, 
c c 

ffi+;SViM=V[E+jdVi#;], 

- /3 ViE=/X [M - Vi®], 

the solenoidal conditions (®i) = (Jfti)=o being already satisfied 
Next, introduce {a) into (b\ {c); then 

showing that E and M are again transversal. Use the latter ] 
in ia)^ eliminate either E or M, and remember that 

to' = 6V\/^. 
Then the result will be 

whence 
+ 7/ 

~ I * 

Thus i) is obtained from b' and v by Einstein’s addition the' 
velocities, and this, as we saw on p. 172, gives the Fresnelis 
for the dragging coefficient. 

Note 3 (to page 279). Let h and as on p. 264, be the alt 
matrices equivalent to the electromagnetic bivectors W and L 

tively, z.e. 
^23 *— ^13 ^31 ~ > 

II 

1 II ^24“ ^0^2 3 '^34 — — t(E3 

HJ3 — , 11^ 

tq
 ^12 = 

^24= -^^2, ^34 = ' - t^3 

Both of these matrices reduce, for to the matrix h o 
to Chap. IX. 

Minkowski begins by constructing the product of h into H. 
each of the factors is transformed by .^ ( ) A^ the same will 
of their product, which will be a matrix of 4x4 constituents 
similarly as on p. 259, the reader will find 
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or what in the rest-system becomes ‘the Lagrangian function/ (It mj 
be mentioned, for the sake of comparison with Minkowski’s paper, th 
our A, cS, F are his L, — 'K respectively.) Similar! 
h* and being the dual matrices, 

By {a) and (^:), A is an invariant, and is transformed by A { ) ^ 
so that 

F=-\ovS 

is a genuine four-vector (or physical quaternion). The latter become 

by (a), (c) and (6), 

where the dots act as separators and N is the four-vector written 
quaternionic form under (c), p. 282. 

Next, using in {d) the differential equations of the field, lor^= — 
lor/f*=o, Minkowski obtains 

F=s/f+-N, { 

where is the current-matrix, represented in this chapter by tl 
quaternion C. Minkowski’s ponderomotive four-force is the part of ( 
normal to the four-velocity. Our force-quaternion (14) is the quaternion 
ecjuivalent of the whole four-vector {e). 

Notice that ip) can be written, in terms of the electromagnetic bivectoi 

_ A=-iSLS, - 

whence the invariance of A is seen immediately. 

Note 4 (to page 284). For a non-conducting medium, the curreK 
quaternion becomes 

C=/)[‘+-v]=-^K, ’ ■ . ■ 
c cy 

and therefore, the force-quaternion (14), 

Da, ' y 

where 2cr)= KL —R F, as on p. 265. Hence, 

SYcV^o. 

Again, as regards the second term of F, 

^SW=^+(vV)^=f=o. 
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