nerensary in all survers, wis the measurement of the base line, namely, the length and breadth of the building. Thic was done with steel tubular mearures compared, at the time of measurement, with the thermometer, from which also long deal rods were graduated for the measuremens of the heights, and for general parposes. The iron rods were carefully compared by Mr. Simms, both before and atter my return, with his standard, and I give the results as delivered at Athens. They are still subject to a vers minute correction, but not worth troubling you witb as. present.

As soon as the weather allowed, and the requisite perinission was obtained from the local authorities, I proceeded to hoist a scaffolding at the east-end, of which I made an entire circuit, beginning with the three columns which are standing on the north side, and ending with the wouth-eant angle column.
In this examination we plumbed cevery column, measured every stone of the archi-. trave, the capital, and upper and lower stones of each column, in every direction ; took careful mensureraents of all the eracks which have in any way modified the original, form, and obtained leveln of all the lines of the entablature at fixed. points ; and tinally examined the entasis of five different columns, taking several sections of each.
We then migrated to the west-end, where I contented myself with making an exact exañination only of the two angular columns, which positions enabled me to obtain the levels of the upper members of the westera part. I also wook all such measurements in the western part as my examunation of the eastern part had pointed out to me as necesary to arrive at the exact original stake. I then proceeded to ex. amine the upper members of the losticum, and the arrangement of the Tympanum, which has some peculiarities worth nutice connected with the support of the statues. Then the rooting, the ceiling, and lastly, the original painting, engaged our attention.
This work in the upper piart of the building was asturally vert much exposed to wiad, \&c. It often happened that while it was impossible to do any accusate work on the scafolding, we might be employed proftably below. But frequently it was aliogether out of the question to go up to the Acropolis at all. The pavement was of course levelled in eveerg part and several times over, until the whole syatem worked perfertly together, and 1 could astisfy myself that I had got the exact curve in every in= stance, or at least within one or two thoussandths. We also took such measures as sufficed for the accurate position and proportions of the cella, with the arrangement of columbs within it. This sums up our proceedings at the Parthenon, which oceupied nearly five months. The Propylsea occupied a considerable share of attention, and I searched the Temple of Theseus to find how far it was analogous to the Parthenon.
1)sst, but not least, we ascended the Temple of Juprer Olympius, from which we obkained various messurements and drawings. I have now nothing to do but actually to mention the measurements obtained, and I shall venture to hint at their intentions, where I have been able to form any thing like a theory on the subject.

The mearurements of the brealth of the temple on the upper step, at the east and weat ends, I found to be, Fespectively $101 \cdot 341$ and $101 \cdot 361$, -north and south, $228 \cdot 141$ and $228 \cdot 154$ respectively. This exceedingly small difference in measures which were certainly intender to be equal, points out the limit of ertor, which can be attributed solely to inaccuracy of measurement in other dimensions, na:nely, alout 1 in 5,000 . I nay just olserve
that found my wooden measures, notwith that f found my wooden measures, notwithneanding ther bal been previously saturated in oil, subject to a fuctuation in various staten of the atmosphere rather greater than this amount. Wo that, had the eastern front of the Parthenon been set out with deal rods on a dry day, and the western on a moist day, we should have had as great a difference letween them as
aetually exints. I simply mention this to proint ous that the equality of the two ends is as kreat a* wooden measures, under certain curcumspances, could enture.

It follows that all quantities which tend to proportionality muse be looked at with great suspicion, in which rarietice exist sensibly preater than this small admissible error.

I will take as my example the proportion
between the fronts and flank, measured on the upper step. I mefer adopling the measure from the eastern end, on account of the greater religious importance of the first.

This is very nearly in the proportion of 9 to 4 or $3^{\prime}: 2^{3}$. Had it been only $228^{\circ} 017$, it would have been exactly so; instead, we have 228.147 , if we adopt a mean between, the measurements of north flank and south, and which gives a difference of 130 between the probably intended proportion and the actual measurement. Again, the proportions of the cella, also measured on upper step, are 193.739 and $71^{\circ} 331$. IThis suggests the proportion of 19 to 7 , which would have held exactly, had the length of the cella step been only 193-612. The flank is, therefore, exactly as much 100 long as in the other cane of the upper step of the peristyle, supposing the two assuroptions of proportion to be correct.
These two tendencies towards a mark, and missing by exactly the rame small quantity and in the same direction, stmagly confirm the hypothesis that the mark was aimed at in hoth these cases, and that they were both deflecter by the same cause. I think I could point out what the eause nas, but 1 have already, I fear, exhausted your patience on a point of comparatively small importance. I will just point out the way in which the position of the cella seems to have been determined. My pronf that it was so resta in the exactness of the proprortions by which I have worked it out, and that it seems a very simple and natural method.
'To bring a case of a proportion that may be admitted at once without any caril, I will take the interior dimensions of the Naos, 9904 , 63.01 ; had it been 98.016 , it had been exaety in proportion of 14 to 9 : the difference here is only chit or toios. And again, the interior of the opisthodomus, or treasur;, which is between walls, 63.01 hy 43.767 . Had it been 43.750 , 1 would hare had the exact proportion of 36 to 25 , or $6^{7}: 3^{3}$ the difference in this case being voise 'This may be fairly admitter, prarticularly as it is a geometrical ratio. I will now mention an approxirnate proportion, which I am yot so ready to entertain.
The hrealth of the "Temple of Thesells is 45.011 , and its length is 104.23 . The former is almost exactly in proportion of jthe of the breadth of the Parthenon: this, I think, was intended.

But a difficulty occurs if we attempt to proportion the front with the flank on the upper step. It ha been ruggested to try the equilateral triangle. That, however, notwithstanding its being near enough the mark to suggest the trial, leaver a quantity $=\cdot \cdot 282$ unaccounted for at the end; and, beaides, 1 do not find that in the Parthenon there are any affitities whatever to that flgure.
I very much prefer to descend from the upper step, and try the proportions on the second. dy this addition, the Hank becomes $106 \cdot 63$, and the fromt $4=-41$.

We now obthin a proportion of 9 to 4, differing from exactitide by so small a quantity as to be fairly admissible.

It is somewhat remarkable that the quantity 1.066 is found frequently in the measures of the Erectheum

The proportion of solids to voids is 4522 to 1000 , nearly as 9 to 2 .
I have now stated the principal larger proportions: I will state a few others, which are the more important secondary ones. A very happy artifice is the walls of I'ronaos and I'ostieum being thicker than the cella walls.
The height of the columns of Partho non is exactly tor length of temple on upper step, the breadth of the abacus of
six of the eastern column is exacily six of the eastern columns is exacily r.
breadth of tetople; they are not all equal, but I have given the dimensions of those at the eastern end, which alwags gives the key to the main proportions.
In the Temple of Thescus, the column is exactly figth of length of temple on the lower step, and the abacus $r$ th of the breadth on the
upper step. In both, this member uppears to upper stcp. In both, this member uppears
The whole building is most accurately pro portioned in every part, and I think it not unlikely that it will be possible to find a standard which shall express every dimension without any incommeneurable fractions.
F. C. Pentore.

## USE OF CEMENT IN CONSTRUCTION.

Sill,-Whet I am about to say is founded on several years' experience in the almost ex. clusive and extensive use of cement; and I can prove its effimency, when property used, in building columns, as at Euston-equare station. If columne are built with good cement, hard bricks, and properly bonded, they are capable of sustaining as much weight as ordinary building stones; and the entablatures (if built in cement properly, with bricks, all stretchers, and iron-hoop bond) may be noale as utrong, or stronger, with proper iron bearers, than a stone entablature ; but the way in which irons are put in make them frequently causes of deferts in entablatures, and often usecoss. It in not necemsary to ume iron over small openings ; but over wide openings, where they are used, they should camber and have tension rods to them, and be made to take the nbutmen? of the briek work. The way in which brick work in cement is generally done in very bad indeed: for I say, and can prove it, that not one bricklayer in a hundred understands or uses cement properly; and many of the builders them. selver, not being practienl men in this depars. ment, know leas, eepecially in this matter. The chief cause is the degenerated stise of brickwork, brought on by ruinous com. petition ; and yet many architects encouraze it. by accepting tendern, however low. Invtead of accepting the lowest, if the medium price were adopted it inight be considered the mox fuir price, and low enough, too, for it is certain that when a man takes a job so very lnwe, every posnible advantage is and will be taken. frequently bringing trouble and discredit on the architect, who, not always being on the spot, cannot see or know what is going on: even if there is a clerk of the works, he is nul competent to underntand every branch, pari. cularly if he is by trade a carpenter, ab inod of them are. The syatem is to go in and win: and every adrantage is afterwards taken of plans and specifications to make extras. Ther quality of the work is not consideren, - the quantity is the chief thing required of the workmen; and he that can pack the bricks in a wall the quickest is generally esteemed the best workmen; and the railway works have made many that go merely by the name of bricklayers not worth half tbeir wages, and not noticed in a crowd at large johs.

I have known brick and cement work tendered at $14 \%$. per rod, and brick in murtar at 101. per rod, prime cost; and I ain sum that brick and cement work cannot he done properly in any case for less tban 151. per rand prime cost; and in most cases where cement is used for strength, not so litule as that; and if it is not done tolembly well, good mortia may as well be used, and in some cases better for good mortar will harden, and apoiled ion bad cement will not. It is a gencral practio where brickwork is to be cemented, that bat brick are used with the idea that any sort will do to put cement on; but it requires good haml bricks, and where bricks are intended to ll used in cement, they should be washed clean. and for purticular work one by one ; but what is generally done is to throw a few paila of water over a heap, and that neither buaks nor cleans them, and then the cement will num a/there to them. In particular jobs, eren cask or at least every load of cement
should be tried befure using. for musi of the cement that is made so cheal is very bad and unfit for anything. 'lhis pre caution is necessary even where a hettr price is given for it, as it sometimes haplens that it is stale or injured by damp, and in order to tent the abilities of a workman in the use n cennent, let him stick up some bricks fliz against the face of a wall, and if he can liring out seventeen with the ends upwards, or twely with the edges upwards, be unay be considernd an efficient workman; although I ran whem twenty-two end upwards, and fifteen edge ul wandf, stuck up within the last, ten days. with out any other support than their adhesion to the wall, and in Roman cemeñ (mot obtaine for the purpose).

Much has been maid about bond, to which I wish toadd a little, and necommend it to be $1 \cdot 1$ |ch inch thick, and $1 \frac{1}{3}$ ineh wide, and one layer if ench half-brick thick, viz., three to a briek-andhalf wall $t$ when laid in two or three courses of bricks, all stretchers, well cleaned and netted.

