necensary in all survers, was the measuremen of the hase line, namely, the length aod breadth of the bailding. This was done with ateel tubular mearurea compared, at the time of measurement, with the thermometer, from which also long deal rods were graduated for the mearurement of the heights, ad for general parposes. The iron rods were carefully compared by Mr. SimmB, both before and after my return, with his standard, aod I give the resulus as delivered at Athens. They are atill subject to a very minnte correction, but not worth troubling you witb at. present.
As soon ay the weather allowed, and the requisite previnissiun was ohtained from the local authoritics, I proceeded to hoist a scaffolding at the east-end, of which I made an entire cirenit, beginning with the three colurnas which are standing on the north side, and ending with the south-eant adgle column
In this examination we plumhed every column, ineasured every stone of the archi-. trave, the capital, and upper and lower stones of each column, in evert direction ; took careful mensurements of all the eracks which have in any way modified the original. form, and obtained levela of all the lines of the entablature at fixed. pointe; and tinally examined the entasis of five different columns, taking several sections of each.

We then migrated to the weat-end, where I contented myself with making an exact examination only of the two angular columns, which positions enabled me to obtain the levela of the upper membiers of the westera part. also took all auch mesururements in the western part as my examuation of the eastern part had pointed out to me as necessary to arrive at the exact original state. I then proceeded to examine the upper members of the I'osticum, and the arrangement of the Tympanum, which has some peculiarities worth notice connectel with the support of the statues. Then the roofing, the ceiling, snd lastly, the original painting, engaged our sttention.
This work in the upper jiart of the luilding was' naturally vert mach exposed to wiod, \&c. It often happened that, while it was impossible to do any accurate Fork on the acafolding, we might be emplored profitably helow. But frequently it rrau altogether out of the question to go up to the Acropolis at all. The pavement was of course levelled in eveery part and several times over, until the whole aytem worked perfectly iogether, and 1 could satisfy myself that I harl got the exact curve in every instance, or at least within one of twothousandthe. We also took such measures as sufficed for the accurate position and proportions of the cella, with the arrangernent of columns within it. This sums up onr proceedings at the Parthenon, which occupied nearly five months. The Propylze occupied a considerable share of attention, and I searched the Temple of Theseus tu find how far it was analogons to the Parthenon.
last, but not least, we aacended the Temple of Jupter Olympue, from which we obtained various mesurements and drawings. I have now nothing to do hut actually to mention the measurements obtained, and I thall venture to hiot st their intentions, where I have been able to form any thing like a theory on the subject.

The measurements of the brearlth of the temple on the upper step, at the east and went endi, I found to be, reapectively 101.341 and int 361 ,-north and south, $228 \cdot\{11$ and 20) 154 respectively. This exceedingly stmall diference in measures which were certainly in. tenter! to be equal, points out the limit of ertor, which can be attributed solely to inaccuracy of measuremeot in uther dimensions, na:nely, ahout it 5,0no. I may just olsserve that found my wooden measures, notwithneanding they ball been previously saturated in oil, subject to a floctuation in various statew of the atmosplere rather greater than this amount. so that, houl the eastern front of the Parthenon lheen aet out with deal rods on a dry day, and the western on a moist day, we shoull have had as great a difference leetween them as aetually exiass. I simply mention this to jwint ourt that the equality of the two ends is as yreat as wooden measures, under certain curcumstancee, could enaure.

It follows that all quantities which tend to proportionality must be looked at with great suapicion, in which varietice exiss senaibly preater than thia small adminsible error.

I will take as my example the proportion
between the fronts and flank, measured on the upper atep. I prefer adoping the measure from the eastern end, on account of the greater religious importance of the first.
This is rery nealy in the proportion of 9 to 4 or $3^{3}: 2^{2}$. Had it been only 228.017, it would have been exactly so ; instead, wo have $228^{\circ} 147$, if we adopt a mean between the measurements of torith flank and sonth, and which gires a
difference of $: \$ 30$ between the probably in difference of $: 130$ between the probably intended proportion and the actual measurement Again, the proportiods of the cella, also meaaured on upper step, are 193739 and 71.331. 'Ihis suggests the proportion of $: 9$ to 7 , which would heve held cxactly, had the length of the cella step been only 193:6t2. The flank in, therefore, exactly as much too long as in the other cane of the upper step of the perintyic, supposing the two assurnptivos of proportion to lie correct.
These two tendencies towards a mark, and nissing by exactly the rame mmall quantity and in the same direction, atrongly confirm the hypothesis that the mark was almed at in hoth these caseq, and that they were both deflected by the same cause. I think I could point out what the cause nas, but 1 have already, 1 fear, erhausted your pratience on a point of comparatively small importance. 1 will just point out the way in which the ponition of the cella seems to have been determined. My pronf that it was so resta in the exactneas of the proprortions by which I have worked it out, and that it aeems a very simple and natural method.
'To hriog a cave of a proportion that may be admitted at once without ady caril, I will take the interior dimensions of the Naor, 98.04 63.01 ; had it been 98016, it had lecen exactly in proportion of 14 to 9 : the difference here is only "otal or rós. And again, the laterior of the opisthodomus, or treasurg, which is hetween walls, 63.01 hy 43767 . Had it been $43 \% 750$, I would hare had the exact proportion of 36 to 25 , or $6^{7}: 5^{5}$ the difference in this case being vojo This may be faidy admitted. platicularly as it is a geometrical ratlo. I will now mention in approximate proportion, which 1 arn aot so ready to entertain.

The brealth of the "Temple of Thesens is 45.011, and its length is 104%. The former is almost exactly in proportion of jthe of the hreadth of the Parthenon : this, It think, was inteaded.

But a difficulty occurs if we attempt to proportion the front with the flank on the upper step. It has been suggestell to try the equilateral riangle. That, howerer, notwithstanding its being near enough the mark to muggest the trial, leaver a quantity $=\cdot 282$ unaccounted for at the end; and, bealdes, I do not find that in the Parthenon there are any affinitics whatever to that floure.
I very much prefer to descend from the upper step, and try the proportions on the second. Hy this addition, the Hank hecomes 106.63 , and the front $4 \bar{F}-41$.

We now obtain a proportion of 9 to4, differing from exactitude by so small a quantity as to be faitly ailmissible.
It is anmewhat remarkable that the quantity 1066 is found frequently in the measures of the Erectheum
The proportion of solide to voids is 4522 to tomo, nearly as 9 to 2 .
I have now stated the principal larger proportions: I will state a frw others, which are the mnee important aecondary ones. A very happy artifice is the walls of Pronsos and Posticum being thicker than the cella wall.
The height of the columns of Parthoe non is exactly for length of temple on upler step, the breadth of the ahacus of
six of the eastern columns is exacily of breadth of terople; they are not all equal. hut I have given the dimensions of thowe at the eastern end, which alwass givea the key to the main proportiona

In the Temple of Thescus, the column is exactly "th of leagth of temple on the lower step, and the abacus nth of the breadth on the upper step. In both, thin unember appears le the unit of measure for all the detaila.
The whole building is most acrurately proportioned in every part, and I think it nut unlikely that it will be possible to find a standard which shall express cvery dimension withont any inommenarable fractions.
F. C. Penriose.

URE OF CEMENT IN CONSTRUCTION.

Sill, -Whet I am about to say is founded on several years experience in the almost ex. clusive and extensive use of cement; and I can prove its effimency, when properly uaed, in building columns, as at Euston-square station. If columns are built with good cement, bard brickn, and properly bonded, they are capalile of sumtaining as much weight as ordinary building stones; and the entablatures (uf huilt In cement properly, with brickn, all stretchers, and iron-hoop bond) may be nuale as strong, or stronger, with proper irou beas. ers, than a stone entablature; but the way in which irons are pat in make them frequently causea of defertm in entablatures, and often useless. It in not necesary to une iron over small openings; but over wide openings, where they are used, they should caraber and have tension rods to them, and be made to take the nbutmens of the brick work. The way in which brick work in cement is generally done ia sery bad indeed for I Bay, and can prove it, that not one briek. layer in a hundred understands or uses cement properly; and many of the builders thern selven, not being practical men in thin depart. ment, know leas, especially in this matter The chief cause is the degenerated ratap of brickwork, brought on by riunous com. petition; sod yet many architects encourage it by sccepting tendern, however low. Invtead of accepting the lowest, if the medinw price were adopted it might be considened the mo-t fair price, and low enough, too, for it is certain that when a man takes a joh no very lue; overy posnible adrantage is and will be taken. frequently bringing trouble and dincredit on the arelitect, who, not always being on the spot, cannot see or know what is goink on; even if there is a clerk of the workn, he in nul competent to understand every branch, parti. cularly if he is by trade a carpenter, ha mor of theu are. The system is to go in and win and every advantuge in afterwarde taken ', plans and apecifications to make extras. The quality of the work is not considered,- the quantity is the chief thing required of the workmen: and he that can pack the bricke in a wall the quickeat is generally esteemed the least workmen; and the railway work have made many that go merely by the name of bricklayers not worth half their magen, sund not noticed in a crowd at large johs.

I have known brick and cement work lendered at 1il. per rod, and brick in morta at 101. per rod, prime cost ; and I am sun that brick and cement work cannot the don properly in any case for lexs than 151. per ruc prime coat; and in must cases where cement is used for strength, not so little as that; and if it is not done tolembly well, good morta may as well be used, and in mome cases better for goorl mortar will harden, and whiled is bad cement mill not. It is a gencral practice where brickwork is to be cemented, that bat brickg are used with the ivea that nny wort whil do to put cement on; hut it requires good hnm hricka, and where lricks are intended iol used in cement, they ahould be wathed clean and for particular workn one lay one ; but what is generally done is to throw a few pailm" water over a heap, and that neither wak nor cleans them, and then the cement will not where to them. In paricular jobs, every cask or at least every load of cemen of the cernent that is made so chea is very bad and unfit for anything.. 'lhis pre' caution is necessary even where a hetter? price is given for it, as it mometimen hapurns that it is stale ar injured by damp, and in ordet to test the abilities of a workman in the use cernent, let him. stick up some bricks flui amainst the face of a wall, and if he can lorin out aeventees with the ends upwarda, or twel with the edges upwards, te was be considera an efficient workman: although 1 ran the twenty-two end upwards, and fifteen edge ul warls, stuck up within the last, ten daye, wit out any other support than their adhesion the wall, and in Roman cement (mot obtaine for the purfuse).

Much has been said about bond, to which wish to add a little, and necommend it to be ? 1 Pa inch thick, and $1 \frac{1}{2}$ inch aride, and one layer ench balf-brick thick, via., three to a brick-and half wall : wheo laid in two or three conress bricks, all stretchers, well cleaned and netted

