work are so much cheapmor than with ua．The Preach founders are，however，very akilful， and some．very remarkable works are to be mes with is Paris，esecuted in cast－ina．The northem gite of the Madeleive，the fountaio ipd Lemp－ponts of the Place de la Concorde， ray be cived as illustrations．
（b）．Tho best commercial wroughhiron is that from the provide of Berris but it is very unequal in quality，enmecimes st Lough an our beat Welch iron，at others at abort an the very commoneat Stefiford－ chire，owiag to the bad manipulation is the factorien．The very high price of iroo， Niso，preventa so much attention being paid to the detaile of ite production at is the onse where its econorny rerder ite une a matler of every－day necencity．Indeed，the tate of the ironworks in France is E aingular illuatration of the evils of the protective syotem．The manufacturera have a monopnly；they fear no compatifion，and make a bad iron．The public pays dearly，and therefore uees in litule ron an ponsible．
Since railways bave been in lathion，however， the use of iron for rooft has become more general，and there are in Paris certain）some of the finest roofs in Europe．Amongat them may be ciled the roofs aver the Entrepos réel dea Marais，of the Halle aux Blén（in cust－iron）， of the St．Germains and Rouen Railway， erecnted by M．Eugenoe Plachat．
The plate－iron box－kinders are a present unkDown；corruguted ifon is hut of very recent introducion，nor do the French archi－ lects appear to approve much of it．
Owing to she very binh price of nmoughs－ iron．the use of fron wire for suspension－ bridges hat been pushed to a very grest extent throughout France．There are upon the Seine many very remarkable bridgen executed with this material，such an the bridges axT riel，Gail－ lon，and Rouen．The iron wire is exposed to this inconvenience，that with all posesble care in the fabrication of the chains，the separate threads canaot be drawn out to the full：the chains，therefore，always stretch，and the plat－ form of the bridge necesaarily sidk．Wire chaios，however，bear a greater wenglu in pro－ portion to their arictional srea than equare bera． and are thore likely to be bomogeneoun in their surength．They iroid，moreover，the necessity for the coupliag－linke，which，on the latess susp peasion－bridges erecuted，aupment the weigbe of the chain 31 per cent．beyond that abmolutely necessart，supposing the chain to be of one piece．The aurface of oxidation in greater for the wirea than for the bar－iron chainn，nearly in the proportion of 40101 ，and this becomen one of the greatest practical objections，for not only doey it necessitate frequent painting，but it diminishes，in time，the real strength of the wire cables．The practical strength of these is found，in fict，io be as $0 \% 0$ to 1.00 of the theoretical strength：after a ferw years it falls to 0.66 ．The roids in the wire cables，accord． ing to theory，should be to the solids，al 0 o 1025 to 1.0000 ；in practice they are found to be 0.25 to 1．00．On the suspension－bridges，the Go－ vermmend eagincert enforee a proof of 17 kilogs． per millimetre equare of the eectional area of the iron－wire hains，to insure a surplus of strength an a guarantee agoinat decerioration ： on the barsiron chains the proof is ooly 12 kilogs．
$A$ vart beautiful bridge was erected at Suresnet，by M．Flachat，of hoop－iton band to form the main elaina，which answered re－ markably well．This application attained a nort of medium result，both an to cost and ntrengith，between the aystems hithorto em． ployed．

There ia a very beautiful adaptation of the use of the cuapension priaciple to roofink pur－ poses in the Panorams is the Champe Elysien， At．Paris．The chaisa are of wrought－inon wire．＂
2．Lead．－For bülling purposes，the bulk Spaia，and Americs imported from engrand us，consequently fis use is not to general，zinc being generally wubatituted for is．The use and moden of fabrication，wherever is in em． ployed，are precisely the same as in Eugland．t 3．Copper．－France slao draw tho balk of

[^0]ite copper from forvign countrim，at rery eor－ oidenable expense；ith ute is therufore very mueb retraiond is buiding．The oaly in－ stance 1 know of it application on a lagge scule is at tha Hale cur Blie，which wan coverod aith capper in tho Jear 18ia，and I think at the llourse．＂

4．Zise．－Tlue bing price of the two lase notiond metale has given rise to the use of sino upon a very large seale throoghout France． Is is imported from Befgiuca and Germany in verg large quantitiea，to the extent of 13,000 cona，worth 280,0001 ．Except upoa the bondare of the seat，if sands well in Frace；for the anmosphere doet not contain（as in England， where so much eosl is connumed）the earbonic scid guset which destroy sine．On the con． trary，in the interior，an oxidation of the es－ ternal lace of tibe zinc taker place，which pre－ vento ite decay．The roof of the palace on the Qusi d＇Orsay，the Northern，and tome parta of the Rouen Railway Station，the Oriean Sution，and crowd of other buildiagn，are covered with ribe，to the perfect satisfaction of the architects．

The sizes of the metals uxully employed for roofog are a fullow：－Lead in sbeets， 12 feet 3 inchea long，by 6 feet 11 inches wide； the thicknessen are either full eighth，or a short 3 －16th of an inch：the firat weighs 89 गrifibs．per yard square ；the second weipbs 118 sivlibe．per yand equare．The isp is gene． ralls made froxn 3 inchento 6 inches longitu． dinally．
The sheeta of copper are made 3 foet 61 inches long by is feet 3 inches；the thicknesten are 0．0021236 and 0．0024526 of a foot，the re－ opective weigher 13 ro＇e and $1 ; 15 \mathrm{lbs}$ ．sroy per yard superficial．
The sheet，of zinc are made 6 fret $t$ inchey long hy 3 feet $2 f$ incles，the thickness varying from a ahort $\frac{1}{1}$ wa very full $\frac{1}{1}$ ；the weigbti are re－
 per yard superficial．The sheets of lene thick－ ness than these are rarely used in pood build． inge．Of late jears，in the neighbourhood of Paris，zime tiles have been much used；they are pasde from 14 inches to 16 inches long，by 12 inehee to 14 inches wide；nated at top，and fasteried by hooks to the alites，which hie im． mednelely beneuch them．
The compound metala uned are brass， bronse，and the galranised iron．No differ－ ence eriats in the mode of preparing these compound from that obeerved in Engiand． The bronze is，however，much more often em－ ployed than with us．For inntance，the colucans of the Plece Vendome，and of the Bascille；the gates of the Madelaine and Sh．Vineent de Paul；the fountains of La Place louvoise and the aumerous statues which adorn all tbe quarters of Parin are in this mesal．

Painting and Glazing．－The modes of house－ painting employed in Paris are imilar to those we employ．exeept that the oils are better． but the colour and white lead immeasur－ ably worve．Indeed，there is not the sarue pecessity for excellence in the painter＇s art，so far at least as mere flat tiate and common graining are concerned，in a collintry where oak is to univeraally employed for joinery． For all objecta of lusury，however，we are frightfully behind our neighboure．The decora－ tions of Notre Dame de Lorette，the Madelaine， the former Chamber of Peers，the Louvre，and the Sainte Chapelle，cease to be mere decora－ tions，to pass into the higher walka of art．St Vincent de Paul，St．Germain l＇Aurerois，offier illuntrations of polyehromic decoration，which coatrat painfully with the atcempts we see in London．

Thear two lasa－narned eharches roay also be cited a specitaneos of the excellence our veigh． bourt heve attained in the art of painting on glase．For drawing and coloaring．the win－ dowe of 8．Viscent de Paul are superior to anything，either ancieat or modern，it has ever been tiny fortun to eramine．

The decorations，paintiag，and glazing of the cafés and abops might aford useful les． nons to the architectural student．Great as． tention is shown to the distribution of the light，and the general tone of the colouring， 10 it to suit the goods exposed．Glass in cheaper than in England，and in consequence is more prodigalls used．The window glass is，bow．
ever，bad，both in colour and io in powers of resialanee ；it is thin，praen．and Wavy．

Although the sbovi motice of the building materiais emplored io Paria，ke．，bat arown to a very great lengat，I bave been furced to pans over come of the mont important and ia－ terestiag subject the review auggeat．The chernical procees，called ty the workmen air． perriog，and ita action upon olones when laid bedwime，of ayaiout the bed；the masider ia which stones ery affected when expoeed to the various smains；the composition of mortars and cerneats，and all the pheoometa which attend their use in the air，or under water－ ealtor fresh；the qualities of roodr and meials－ have all alided before us：bus from the dimined time we can bere devote to thens，these sub－ jecth have not met with the atiention they merit．Iodeed，thit remark bolds good not only here but elsewhere．Ver litde is known， comparatively speaking，of the chemistry of our profension：whas litue we do koow auay principelly be sought for anongst the French authurs．Pertaps 1 rosy not bave occupien your attention in vain，if my remarks should call attention to subjectin so full of interest to us，but at preseat so involved in obacurity．

Gェo．HしゃさをしL

## BISHOPP＇S DISC ENGISE

Payidg a risit the other morning to the Times Priasiag－office，we asw the new Dire Engine shat has tren pit up there to drive Applegrarth＇s two rokery print－ ing machines．by which the 36.0 om copies， or thereabovit．matutinally raquired．＂are whiftled off at the rate of ibout $\mathrm{s,0} 0 \mathrm{~m}$ com． plete copies per bour．In thit enulne．the aldrantages of which have been long known． the ubjections that aloae kept it out of general use．appear to have been suecesafully aver－ rome．It it it lu－horse power engine．od the high－preshure and condensing priaciple：it is， however，equally sumble to be worked es a siraple low－premure condenonar engine．
If unads in the machine－room close wa wall，and occupier a eimguiariy emall opece．t The shaftion for driviag the printing mechines is carried by bracketu ssed to the wall over the engiac，sad ie driven by two bagdu：the drum on the eagine－siaft is 30 incbea dia． meter，and the two puliegs overbaci + feet dismeler．

Our impressions in istrour of the engine were contirmed by inquirr．It reems that． befure being etreted at the Times office，it wat tested，during a month，by Mr．Pean．of Gireenwich，and Mr．Farer（hoth noad sutbo riselt，is a cora－mill belonging to the former． The compariton way made with a beam－engine of the best construction；and，under nmiar circumstancev，there was an important doter－ ence in farour of the disc eagane．the enatide driving afternately the same machinery，at an equal opead，fruen the name builer．
beveral disc engiaes bave been fised io various paris of the kungdom during the lant eight years．Lus the arrangecnents bately pastented by Mr．G．D．Hisbopy hare so much itnproved it，as $\omega$ open to it a much larger sphere of action．This at the Times office was manufectured by Merars，Joceph Whitwortin and Co．，of Manchester．
The peculamity of the dace engine is．that it gived direct mation to a crank on the engine． shafi，and exerts a perfeculy uniform force on It throughout the revolution．There are．ithere－ fore，no＂dead points ；＂and when drivine by gearing，without a ty－wheel，there is no back－ lastu in the wheels．Moreover，the steats can be cut off at very early part of the struke， withous matenaily affecung the regularity of the driviag force．
Other adrantages treades the litie space oceuphed are，that it can be fired on the beatas of a thoor，or on a aligat fuupciation，and that， slithough the areed of the pixion ．i．e．，of the disc ringsl is only 200 feet per minuse，the engine makes three tides many revolutiona per
minute as a comaon engine，and coonequently， in mast cases，much expronuve gearing is dis－ peased with．It appears to us admirably

[^1]
[^0]:    ## Sron，ur guech．

    

[^1]:     simp
    

