work art so much cheeper than rith us. The Preach lounders ars, however, very ekilful, and anme.very remarkable vorks are to be mes with is Parie, executed io ceteimn. The norithern ste of the Madelaioe, the founkiof epd Lamp-poth of the Place do la Concorde, may be cited es fllugtrations.

I (b). Ihe beat commercial wrourbloiroo is that from the province of Berris hut it is very ueequal io quality, momecime at wugh a our beat Welch irom, st otbera at abort an the very cormmoneat Staffordshire, owing to the bad manipulation is the fartories. The very high price of iron, suo, prevente to much attention being paid so the detuil of it production as it the one where its econorny recdere it use a matter of every-day necemity. Indeed, tho tate of the irooworke in Frence is E aingular illustration of the evils of the protective eyetern. The mabufacturer beve i monopnly; they fear oo compaticion, sod mak a had irob. The public usys dearly, and therefore usea as litule ron m posible.
Since railways have been in fabion, however, the use of iroo for roofs has becorne more gedaral, sod there are in Paris certainly some of the fioest roof in Europe. Amongst them may be ciled the roof over the Entrepte reel des Marais, of the Halle aux Bles (io cust-iroo), of the St. Germainn snd Roued Railway, erecoted by M, Euged Flachat.

The plate-irod boz-Rirders are ef presedt unkDown; corrugeted iron is hut of very recedt introduction, nor do the Ereoch architects sppear to suproes much of it.
Owing to she very hifh price of nmughtiron, the use of froo wire for ouspensiod. bridges has heen pushed wo very grest extedt throughout France. There are upon the Seine many very remarksble bridges executed with this material, such oe the bridges axT riel, Gielloo, and Rouen. The iron wire is exposed to thi iocodvenience, that with all possible care in the fabrication of the chaine, the ceparnco thresis cavoot be drawo out to the full: the chains, therefore alyays stretch, and the platform of the bridge oceesarily sioks. Wire chajos, however, hear a greater weagha in proportion to theip afictional aree than equare bera, and are more likely to be homogeneoun in theip surength. They iroid, moreover, the neceseity for the coupliog-liaks, which, on the latest sum peosion-bridges execuled, sugment the weight of the chain 31 per eent. beyoad that slmolutely Decessary, aupposing the chaid to he of one piece. The surface of oxidation is greater for the wire than fur the bar-iron chanos, nearly id the proportion of 47 to 1 , amd this becomes one of the ereatest practical objections, for not oaly does it Decessitate frequent painting, but is diminishes, in time, the real atrength of the wire cables. The practical stredgth of these is found, io fect, io be $250 \% 0$ to 100 of the theoretical atrength; aftes a few years it falls to 0.66 . The voids io the wire cables, according to theory, should be to the aolida so ar 1025 to 1.0000; in practice they are found to be 0.25 10\% 1%. On the uspension-bridgee, the Go. vernmeab eagineers enfores a proof of it kilogs, per millimetre equere of the sectional area of the iron-wire ihains, to insure a surplas of atrength ea muarmate agaiont deterionation: on the bereiron cbaide the prool in ouly 12 kiloge.

A vart beautiful bridge man erected at Surespet, by M. Flachat, of hoop-iroo baads to form the maio ehains, which answered ramapkebly well. This application attained a nort of mediurn result, both an w cost and atrength. between the yatems hitherto car ploped.

There if a very beauliful adaptation of the use of the muspedion principle to roofiof purposes is the Panoranis in the Cbsmpe Elysies, at Pars. The chains ard of wrought-iroo wire.
2. Lead,-For buildiag purposes, the bulk of the lead ueed is imported from Englapd, Spaid, end Ameries. If is dearer than with us, consequently lto une is not so general, elne
being generally whatituted for is. The use aod modes of fabrication, wherever is ia em. ployed, Bre precisely the smone ns in Englood.t 3. Copper.-Fradce sleo drawe the bolt of

[^0]Ite oopper from foreifr countriac, at very eonsidersble expenie; its use is therefore vary mucb reatrained in building. The only Instance I taow of its application on s lange acale io at tha Halle sut Blas, which was covered with copper lo tho .Jear 18i2, and coverod with capper
1 think of tha llourse.
4. Zinc.-The bigh price of the two last nouged metall has given rice to the nee of sioa upor E vesy Jarife acalo throughout Fradec. It is itaported from Belgium and Germany in very large quantities, to the exteat of 13,000 tone. worth 280,000l. Except upoa the borders of the eat. It otands well in France; for the sespophere doe oot conteio (as is England, where so much coll is coosumed) the earbooic acid gases wich destroy sinc. On the con. trary, in, the jaterior, soonidation of the external lace of tise sinc taken place, which prevents ite decay. The roof of the palsce od the Quai d'Orçay, the Northern, and some jerse of the Rouen Realway Slation, the Uriesos Station, and crowd of other buildinga, are covered with sibe, to the perfect satinfaction of the architects.

The sies: of the metals unually employed fint rootiog are an follow:- Lead io sheets, 18 feet 3 inchea loag, by 6 feet 1 inchea wide: the thucknessen are either a full eiphth, or a shar 3-16th of an ioch: the first weighs 89 födba, wer yard square ; the wecond weighs 118 firllbs. per yanl equere. The Lap is gene. rally made from 3 incher-to 6 iaches longitu. dioally.
The obecte of copper are made 3 feet 61 incthes long by :I feet 3 inchen; the thicknessea are 0.0021236 ad 0.0024526 of s foot. the re--pective weighis 13 ri' and $1 \% 15 \mathrm{lbs}$. iroy per yard ouperficial.

The sheets of eine are mede foret 1 inchey long by 3 feet $2 f$ incless, the thickoese varyiong from a bort $\frac{1}{\text { te }}$ to very full $\frac{1}{1}$; the weights are respectively $17^{\circ} 15$ lua.: 19 (06/be.; 20 s0lbs. troy per yard superficial. The sherts of lest thickneas than these are rerely used in good build. inge. Uf hate rears, in the neighbourhood of Pars, siae tiles hsye been much uned; tbey are made from It inchea to 16 ioches lona, by 12 iseties to 14 iaches wide; astied at cop, ind fasteried by hooks to the alater, which lie iom. medrately bencech them.
The componod merals used ere brass, hronar, and tho galvanised irob. No difference exints io the mode of preparing these compround from that ubeerved in Enghand. The bronse is, howeret, much more often em. ployed than with us, Por insuoce, the colurpes of the Place Fendome, and of the Bastille; the gates of tho Madelaine and St. Viaceat de l'aul; the fouowins of L- Place Louvoise and the dumerous statues which adorn all the quarters of Parin ere in this metal.
Painang ond Glaring. - The roodes of hounepainning employed la l'aris are similar to those we employ, escept that the oils are brtter. but the colour and whise lead immessurably worse. Indoed, there is not the sarne Decessity fop excellence in the painter's art, 60 far at least as mere flat tibta and common graiding sta concerned, in a country where ask is to univeraally emplnyed far joinery. For sll objects of lusury, however. we are frightfully bohiod our Deighbours. The decorations of Nost Dame de Lorette, the Msdelaide, the Sainte Chepelle, ceses to be mere decora. tions, to pass into the bigher wslks of ert. St. Vincent do Paul. 太t. Germain I'Aureroin, offer illustrationa of polyehromic decoration, which cootrat painfully with the attempta we wee in London.

These two lasu-nsmed eborches rasy also be cited a speclaede of the escellence our beighbours have attained in the st of painting oo dese. Por drawiog and colonrigg, the wiodown of St. Vibecnt da Paul sre euperior to soything, cither ancient or modern, it hes ever

The decoratlons, painting, and glazing of the cafce sind shops might apord uecial les. soos to the archiketural stadent. Great attertion is ahown to the diatribution of the light, and the geocral tone of the colouring, 10 sid to suit the goods esposed. Glas in cheaper than in England, and io coneequence is more prodigally used. The window glass in, how-

- Freace maported in 1BEi, ime toas of copper. Eurch
ever, bad, both to colour and is in poware of resiatoce ; it it thid, freed, and wevy. Alebourh the ebovi notioerof thi buldiat materials emplored io Paris, \&e., bes mown to s very areat length, I beve been furced wo peas over come of the moat ioporraot and ic. tereasiag subjecte the review usgestn. The chernicsl proceas, called by the gorkrmen ialiperriog, end its actaos upan stooes when hid bedeise. or antiont the bed the meniner in which stooes ar sffected when exposed to the various acraips; the componition of mortart End cements, and all the phenomena whien atiend their use io the air, or under waterAali orfreah; the qualities of roodr aod metals lave all glided before us; buifrom the limined time we can bere devote to thecr. these subject have mot met with the atreotion they merit. lodeed, this remark holds gaad oot only bert hut elsewbere. Ver litul í koowd, cornparaiively opeakiog. of the chemistry of our profesioo; whas litve we do koow may pripeipelly be sought for mongst the French authurs. Perhsps I ray not bave occupied your attention in vain, if my remarks should csll attention weubjecth so full of interes: wo us, but at present so iovolved in obncurity.

Geo. Hersell

BISHOPP'S DISC ENGINE.

Payinc: risit the otber morniag to the Times Priatiog-office, we eave the sew Diec Esgine chat has been put up thete to drive Applegarth's two rotery priotorg macbioes, by which the 36, oon copess. whiffled off at the rate of bbout sion com. plete copies per bont. In thid enxine, the alrantages of which have been long knows. the ubjections that aloze kept it our of general use. appear to have been succerefully nverrome. It is is bu-horm power engine. 00 the high-presoure sad coodensiog prociple: it is. hagb-presoure sad coodensioy priocupla : il it.
however, equally suatsble to the worked ts however, equally suitable to the nobraed
simple low-premure condeasing engiae.

It atsind is the machine-room cloes 10 a wall, and occupies a ingulariy arnall opace.t The shaftionfor driving ithe prialing machines in carried by hracketa gied w the mall over the engion, end in drivea by two hands: the drum on the eqgiae-shaft to 30 incbea dis. meter, and the two puliry orerbeas feet dismeter.
Our impressiony in fisour of the engree were contiomed by inquirr, Il neem thas. befure being esteted at the Times office. it was tested, during a month, by Mr. Pedo. of Cireenwich, add Mr. Farey foth pood sutbo. pivent, in 8 cord-mill urlonging to the former. The comparison wan made with a beam-engiae of the best constructius; sind, uoder amiar circumstancer, there was so importapi dites. edce in farour of the diac engine. the enguce driting alturoakely the seme machiDery, at 20 equal ipesd, fruse the same builer.

Several dise engines have been fised io rarious paris of the kuogdorn duriog the lant aigbt yeare. but the errangemente lately
pateoted by 1 r . G. D. Hishopy inere so much pateoted by Mr. G. D. Hishopp mere so much spbere of ection. Ibis at the Tiems office wia meoufactured by Mears. Joceph Wbitworth aod Co., of Manchester.
The peculiarity of the diec engine $i n$, that it qives diroct morion wa crable oo the equine. shaft, sod exeres perfoculy uniform force on It ibroughout the revolution. There are. 1 herefore, no " dead points ;" and when drivinu by geaniog. Withous a fy-mheel, there is bo backlasb in the wheela. Moreover, the akeam can be cut aff at very early part of the struke, without msteraily ffecung the regularity of the driving force.
Orher adeaotages lresides the limie apace oceujued are, that it can be fixed on the beame of a Hoor, or oo a olight founcianion, sod that slithough the nueed of tibe piston, i.t.. of the disc rings.) is only 200 feet per minute, the eagioe ankes three tines an many revolutione per
rnlpute so common engine, aod consequently, io most caeca, much eaprōuve pating is dil. reamed with. It mppears to ue edmirebly

[^1]

[^0]: ## Aron, Wrace ien.

 Prase imported in $164 s, 28,000$ loas of lead, of a prime
 con palat of 600,004 , stering

[^1]: buone 1 imp

