CONCLUSION 475 Most of the less-known and less-used types of apparatus have been discussed in the preceding, and a comprehensive list of them is given in Chapter XXIII, together with their definitions and short characterization. While electric machines are generally divided into induction machines, synchronous machines and commutating machines, this classification becomes difficult in considering all known apparatus, as many of them fall in two or even all three classes, or are intermediate, or their inclusion in one class depends on the particular definition of this class. Induction machines consist of a magnetic circuit inductively related, that is, interlinked with two sets of electric circuits, which are movable with regards to each other. They thus differ from transformers or in general stationary induction apparatus, in that the electric circuits of the latter are stationary with regards to each other and to the magnetic circuit. In the induction machines, the mechanical work thus is pro- duced—or consumed, in generators—by a disappearance or appearance of electrical energy in the transformation between the two sets of electric circuits, which are movable with regards to each other, and of which one may be called the primary cir- cuit, the other the secondary circuit. The magnetic field of the induction machine inherently must be an alternating field (usually a polyphase rotating field) excited by alternating currents. Synchronous machines are machines in which the frequency of rotation has a fixed and rigid relation to the frequency of the supply voltage. Usually the frequency of rotation is the same as the frequency of the supply voltage: in the standard synchronous machine, with direct-current field excitation. The two frequencies, however, may be different: in the double synchronous generator, the frequency of rotation is twice the frequency of alternation; in the synchronous-induction machine, it is a definite percentage thereof; so also it is in the induction* machine concatenated to a synchronous machine, etc. Commutating machines are machines having a distributed armature winding connected to a segmental commutator. They may be direct-current or alternating-current machines. Unipolar machines are machines in which the induction is produced by the constant rotation of the conductor through a constant and continuous magnetic field.