CHAPTER VI INDUCTION-MOTOR REGULATION AND STABILITY 1. VOLTAGE REGULATION AND OUTPUT 79. Load and speed curves of induction motors are usually calculated and plotted for constant-supply voltage at the motor terminals. In practice, however, this condition usually is only approximately fulfilled, and due to the drop of voltage in the step-down transformers feeding the motor, in the secondary and the primary supply lines, etc., the voltage at the motor terminals drops more or less with increase of load. Thus, if the voltage at the primary terminals of the motor transformer is constant, and such as to give the rated motor voltage at full-load, at no- load the voltage at the motor terminals is higher, but at overload lower by the voltage drop in the internal impedance of the trans- formers. If the voltage is kept constant in. the center of distri- bution, the drop of voltage in the line adds itself to the imped- ance drop in the transformers, and the motor supply voltage thus varies still more between no-load and overload. With a drop of voltage in the supply circuit between the point of constant potential and the motor terminals, assuming the cir- cuit such as to give the rated motor voltage at full-load, the voltage at no-load and thus the exciting current is higher, the voltage at overload and thus the maximum output and maximum torque of the motor, and also the motor impedance current, that is, current consumed by the motor at standstill, and thereby the starting torque of the motor, are lower than on a constant-poten- tial supply. Hereby then the margin of overload capacity of the motor is reduced, and the characteristic constant of the motor, or the ratio of exciting current to short-circuit current, is in- creased, that is, the motor • characteristic made inferior to that given at constant voltage supply, the more so the higher the voltage drop in the supply circuit. Assuming then a three-phase motor having, the following con- stants: primary exciting admittance, Y = 0.01 — 0.1 j] primary self-inductive impedance, Z<> = 0.1 + 0.3 j] secondary self-induc- 123