INDUCTION-MOTOR REGULATION 187 induction machines, the phenomenon is frequently observed that the machine starts at moderate voltage, but does not run up to synchronism, but stops at an intermediary speed, in the neighbor- hood of half speed, and a considerable increase of voltage, and thereby of motor torque, is required to bring the machine beyond the dead point, or rather "dead range," of speed and make it run up to synchronism. In this case, however, the phenomenon is complicated by the effects due to varying magnetic reluctance (magnetic locking), inductor machine effect, etc. Instability of such character as here described occurs in elec- tric circuits in many instances, of which the most typical is the electric arc in a constant-potential supply. It occurs whenever the effect produced by any cause increases the cause and thereby becomes cumulative. When dealing with energy, obviously the effect must always be in opposition to the cause (Lenz's Law), as result of the law of conservation of energy. When dealing with other phenomena, however, a$ the speed-torque relation or the volt-ampere relation, etc., instability due to the effect assisting the cause, intensifying it, and thus becoming cumulative, may exist, and frequently does exist, and causes either indefinite increase or decrease, or surging or hunting, as more fully discussed in Chapters X and XI, of " Theory and Calculation of Electric Circuits." 4. GENERATOR REGULATION AND STABILITY 85. If the voltage at the induction-motor terminals decreases with increase of load, the maximum torque and output are de- creased the more the greater the drop of voltage. But even if the voltage at the induction motor terminals is maintained con- stant, the maximum torque and'power may be reduced essen- tially, in a manner depending on the rapidity with which the voltage* regulation at changes of load is effected by the generator or potential regulator, which maintains constancy,of voltage, and the rapidity with which the motor speed can change, that is, the mechanical momentum of the motor and its load. This instability of the motor, produced by the generator regulation, may be discussed for the case of a load requiring constant torque at all loads, though the corresponding pheno- menon may exist at all classes of load, as discussed under 3, and may occur even with a load proportional to the square of the speed, as ship propellors.