INDUCTOR MACHINES 283 phase field, as in Fig. 139, we use a polyphase exciting field. This is shown, with three exciting coils or poles energized by three- phase currents, in Fig. 141. The high-frequency voltages of pulsating amplitude, induced by the three phases, then super- pose a high-frequency wave of constant amplitude, and we get, in Fig. 141, a high-frequency alternator with polyphase field excitation. Instead of using definite polar projection for the three-phase bipolar exciting winding, as shown in Fig. 141, we could use a distributed winding, like that in an induction motor, placed in the same slots as the inductor-alternator armature winding. By FIG. 141.—Inductor alternator with three-phase excitation. placing a bipolar short-circuited winding on the inductor, the three-phase .exciting winding of the high-frequency (24-polar) inductor alternator also becomes a bipolar induction-motor primary winding, supplying the power driving the machine. That is, the machine, is a combination of a bipolar induction motor and a 24-polar inductor alternator, or a frequency converter. Instead of having a separate high-frequency inductor-alter- nator armature winding, and low-frequency induction motor winding, we can use the same winding for both purposes, as shown diagrammatically in Figs. 142 and 143. The stator winding, Fig. 142, bipolar, or four-polar 60-cycle, is a low- frequency winding, for instance, has one slot per inductor pole, that is, twice as many slots as the inductor has teeth. Successive turns then differ from each other by 180° in phase, for the high: frequency inductor voltage. Thus grouping the winding in