SINGLE-PHASE COMMUTATOR MOTORS 339 the compensating winding, however, is constant in the space from pole corner to pole corner, as shown by C in Fig. 158, and since the total m.m.f. of the compensating winding equals that of the armature, the armature m.m.f. is higher at the brushes, the compensating m.m.f. higher in front of the field poles, as shown by curve R in Fig. 158, which is the difference between A and C; that is, with complete compensation of the resultant armature and compensating winding, locally undercompensation exists at the brushes, overcompensation in front of the field FIG. 158.—Distribution, of m.m.f. in compensated motor. poles. The local undercompensated armature reaction at the brushes generates an e.m.f. in the coil short-circuited under the brush, and therewith a short-circuit current of commutation and sparking. In the conductively compensated motor, this can be avoided by overcompensation, that is, raising the flat top of the compensating m.m.f. to the maximum armature m.m.f., but this results in a lowering of the power-factor, due to the self- inductive flux of overcompensation, and therefore is undesirable. 193. To get complete compensation even locally requires the compensating winding to give the same distribution curve as the armature winding, or inversely. The former is accomplished by distributing the compensating winding around the entire cir- cumference of the armature, as shown in Fig. 159. This, how- ever, results in bringing the field coils further away from the armature surface, and so increases the magnetic stray flux of the field winding, that is, the magnetic flux, which passes through the field coils, and there produces a reactive voltage of self-in- 1