TRANSACTIONS OF THE
 ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

CONTENTS

Oliphant, Sir Mark The Second Century 1
Tyler, M. J. Comparative Osteology of the Pelvic Girdle of Australian Frogs and Description of a New Fossil Genus 3
Houston, T. F. New Australian Allodapine Bees (Subgenus Exoneurella Michener) and their Immatures (Hymenoptera: Antho- phoridae) 15
Plummer, P. S., and Gostin, V. A. Faulting Contemporaneous with Umberatana Group Sedimentation (Late Precambrian), Southern Flinders Ranges, South Australia 29
Smith, Meredith J. Small Fossil Vertebrates from Victoria Cave, Naracoorte, South Australia. IV. Reptiles 39
PUBLISHED AND SOLD AT THE SOCIETY'S ROOMS STATE LIBRARY BUILDING

THE SECOND CENTURY

Abstract

Summary The Royal Society of London was conceived more than 300 years ago when, following a lecture by Christopher Wren, it is recorded that "something was offered about a designe of founding a Colledge for the promoting of Physico-Mathematicall, Experimentall Learning". Charles I1 became interested and granted the Society its first Charter in 1662, naming it "The Royal Society". A second Charter, in 1663 , granted the body Arms, bearing the motto "Nullius in verba", as an expression of the determination of the Society to resist all dogma and to verify all information and statements by appeal to observation. At the same time, the full title of the Society became "The Royal Society of London for Improving Natural Knowledge".

THE SECOND CENTURY

The Royal Society of London was conceived more than 300 years ago when, following a lecture by Christopher Wren, it is recorded that "something was offered about a designe of founding a Colledge for the promoting of Physico-Mathematicall, Experimentall Learning". Charles II became interested and granted the Society its first Charter in 1662, naming it "The Royal Society". A second Charter, in 1663, granted the body Arms, bearing the motto "Nullius in verba", as an expression of the determination of the Society to resist all dogma and to verify all information and statements by appeal to observation. At the same time, the full title of the Society became "The Royal Society of London for Improving Natural Knowledge".

Sir Mark Oliphant, K.B.E., Patron of the Royal Society of South Australia

A little more than 200 years later, the Royal Society of South Australia was born, and 1976 is the centenary of its Transactions. Throughout this time the South Australian Society has played an invaluable role in recording, in proper scientific manner, manifold observations and descriptions of the geology, the fauna and the flora of this State. For long, the Society has emulated in its activities the search for natural knowledge which was the objective of the founders of the original Royal Society. However, for very practical reasons, such bodies are reappraising their activities and ever questioning whether they can continue to exist. Strangely enough, the problems arise from the very success of their past work. The technology, the application of knowledge for practical purposes, which arises from increasing understanding of nature, has made of science an ever growing national and international activity. Through their control of money, governments now determine the level of scientific enquiry and its content, while the rapidly increasing cost of publication means that they become the arbiters of what science shall be printed.

There are other factors which have a probounced influence on comparatively small societies attempting fo cater for those interested generally in science. Forernost is the growth of specislist socicties interested only in a very narrow area of natural knowledge. It is almost impossible today to attract a binchemist to a discussion of relativity or cosmology, or to persuade a nuclear physicist that the nature of the chemical hond can be an interesting subject of study. The particle physicist canot understand the entomologist, or the computer electronics expert the ornithologist. A broad interest in nature generally is now rare. There are few today whose interesls are as broad as those of Lord Rayleigh, who wrote learnedly of the hending of marble mantlepieces and developed the mathematical theory of the waveguide. Publication of the results of scientifie enquiry becomes more and more confiued to specialist journals, or specialist sections of older joundals.

Secondly, it is the national bodies, like the Academies of Science of the United States and Russia, which are governtuent agencies, or the Royal Socicty of London and the Australian Academy of Science, which are not controlled dipectly by government, which represent science internationally for their counlries, and which receive the greatest financial backing, It is they who can afford to organise conferences, national or international, they who can provide the expenses for travel by members and by visitors. They are prestigious societies whose activities are of world-wide significance.

The Royal Society of South Australia cannot emulate these giants. However, I am convineed that it will have a vital part to play in the second century of its existence. The growing interest, among scientists and the general public, in the preservation of the environment, in pollution, ecology, our national heritage of fauna and flowa, natural resources, and the beauty of landscape, encourages belief in a return to deep interest in nature generally: rather than in one aspect only. If, as I believe, our Royal Society is to be revitalized to become a signifieant socjal influence through science, it must espouse causes, after full and frank discussion to determine an agreed approach, and then speak loudly and in public of its conclusions.

As instances of broad issues to which the Socjety could eontribute much, there are preservation of the Mr Lofty Ranges and the Flinders Ranges, the salinity of the River Murray, the deterioration of our desert areas. We should not be deterred by the existence of C.S.I.R.O., of State instrumentalities, or of the Australian Academy of Science, from choosing areas of comprehensive, itterdisciplinary study, which can be exciting scientifieally and could be rewarding socially. A paper describing a now species of coleoptera from the Lake Frome area should be published, but will not rouse much interest in a general scieutific audience. On the other hand, if this discovery is significant in indicating climatic change, or ecologieal upset on the eastern borders of the Flinders Ranges, it could become an important contribution to wide discussion.

South Australia faces a multitude of problems, most of which are relegated to investigation by governmental bodies. Our future depends critically upon assured supplies of water and of energy. Water, gas, and electricity authorities are too busy with immediate questions to exercise the imaginative responses necessary for creation of new approaches to longer term problems. On the other hand, a Royal Society which stimulates constructive discussion of such problerss, in their widest context, mught generate completely new ideas.

Where are we going? That is the first question we must answer in the early part of our second hundred years.

> Md. Dighant

COMPARATIVE OSTEOLOGY OF THE PELVIC GIRDLE OF AUSTRALIAN FROGS AND DESCRIPTION OF A NEW FOSSIL GENUS

by M. J. Tyler**

Summary

TYLER, M. J. (1976).-Comparative osteology of the pelvic girdle of Australian frogs and description of a new fossil genus. Trans. R. Soc. S. Aust. 100(1), 3-14, 28 February, 1976.
The osteological characteristics of the pelvic girdle of twenty-five extant genera of Australian frogs of the families Hylidae, Leptodactylidae, Microhylidae and Ranidae are defined. The new Tertiary fossil genus and species Australobatrachus ilius are described from the Etadunna Formation. The fossil exhibits a unique lateral ilial groove and is referred tentatively to the family Hylidae.

COMPARATIVE OSIEOLOGY OF THE PELVIC GIRDLE OF AUSTRALIAN FROGS AND DESCRIPTION OH' A NEW FOSSIL GENUS

by M. J. Tyler ${ }^{\text {F }}$

Abstract

Summary Tyler, M. J. (1976).-Comparative osteology of the petvic girdle of Australian frogs and description of a new fossil genus. Trans. R. Soc. S, Aust 100(1), 3-14, 28 February, 1976.

The osteologieal characteristics of the pelvic girdle of twenty-five extant genera of Australian frogs of the families Hylidae, Leptodactylidae, Microhylidac and Ranidae are defined. The new Tertiary fossil genus and species Australobutrachus ilius are described from the Fadunna Formation, The fossil exhibits a unique fateral ilial groove and is referred tentatively to the family Hylidae.

Introdoction

Of all benes of the anuran skeleton, the lilium has been shown to vary considerably and consistently between families, genera and even species. Ilia are commonly well preserved amongst disarticulated skeletal material, and their features are sufficiently diagnostic to permit identification; for this reason ilia have provided the basis for the recognition of genera and erection of new fossil species (Lynch 1963; Chantell 1964: Folman 1965).

Dati on extant species so essential for identification and general comparative purposes are frequently limited, and in the case of Australian frogs, data ate particularly deficient. Lynch (1971) provides the only comparative contribution. Confining his interest to leptodactylids, Lynch described the ilia of representatives of nine genera. Since then a fossil ilium of a previously undescribed genus bas been reported from the Australian Tertiary by Tyler (1974), and if has proved necessary to examine and describe representative ilia of all of the known living genera in order to describe the new genus and species.

Material and methods

The dry specimens of the modern species studied were dissected from representatives of 4 farnilics, 25 genera and 60 species, including all genera known in Australia This material is in the author's collection. The fossil described
herein is in the Palaeontology collection of the South Australian Museum.

With only minor variation, the descriptive terminology used follows Lynch (1971), and the features recognised are shown in Figure 1. Morphometric data were obtained with dial callipers or an eyepiece micrometer. The length of the animals from snout to vent was measured before dissection. Subsequently, the distances between the tip of the dorsal acetabular expansion and the end of the ilial shaft and the spat between the anterior margin of the dorsal prominence and the veniral acetabular expansion were measured. The bonc measurements were examined to establish relationships between ilial size or proportions and the size of the donor frog.

(A) Pubis

Eeatures of the Anuran pelvis

The pubis is customarily a small, roughly triangular, cartilaginous wedge of tissue sepatating and underlying the ventral borders of the ischiom and ilium (Fig. 1). In particularly large specics (rately in small ones), where there is a more intimate degree of fusion of the pelvic components, the pubis is often calcified or ossified.

(B) Ischium

The ischium is a bony or cartilaginous dise anteriorly fusing with the ilium to provide the posterior half of the acetabulum, and pos-

[^0]

Fie. 1. Left lateral aspect of anuran pelvic girdleAbbreviations: Acct, fossa-acetabular fossa; D. acet. exp-dorsal acetabular expansion; D. prom.-dorsal prominence; D. protub.--dorsal protuberance; pre-acel. zone-pre-acetabular zone; V. acet. exp.ventral acetabular expansion.
teriorly forming a plate occupied by numetous muscles communicating with the fernur.

The shape of the ischium varies considerably at a specific level and is associated with differences in habits. For example, the development of a particularly large plate posterior to the acetabular fossa is found only in rotund species with exceptionally short and muscular hind limbs. Similarly, the development of a high, dorsally projecting extension is characteristic of large but agile frogs with powerful hindlimbs. Viewed with the femur as the refcrence point it is clear that a majot shift in the muscle mass can only be brought about by toncurrent changes in the development of the isthium.

(C) Hium

The ilium is the largest pelvic bone, and consists of an elongate shaft terminating in an axehead shaped body. It is a paired structure articulating anteriorly with the ventral surface of the sacral diapophysis and posteriorly abutting the ischium and pubis. Various areas of the ilium are recognisable as distinct components:
(a) Ifial shaft: The ilial shaft is an elongate and usually slightly curved structure varying from a eylindrical section through verically oval to more elaborate forms in which there are grooves on the lateral or medial surfaces.
(b) Dorsal crest: A smoöth bordered crest, rising high as a thin blade, occurs in numerous species of frogs, but is rate amongst Australian forms. It usually arises from the dorsolaterat surface of the shaft, and reaches its maximum theight within the anterior one-third of the shaft (Fig. 4L),
(c) Dorsal prominence: The dorsal prominence is a differentiated area rising on the superior margin of the shaft in a position above or slightly anterior to the acetabulum. It is not present in all species and is scarcely detectable in many others (e,g. In those exhibiting a dorsal crest).
(d) Dorsal protuberance; From the body of the dorsal prominence the dorsal protuberance arises as an elongate, rounded or pointed knob. To it attaches the Musculus gluteus maximus.
(e) Dorsal acetabular expansion: The body of the ilium extends dorsally into a triangular portion of bone superior and posterior to the acetabulum. This projection is termed the dorsal acetabular expansion. It may rise steeply and so meet the ischium in a vertical planc, whilst the anterior face can be at an acute or obtuse angle to the ilial shaft.
(f) Acetabulum: Variation in the acetabulum consists of differences in size (relative to adjacent structures), in position in relation to the Slial shaft, and in the width and extent of deyelopment of the acetabular rim.
(g) Ventral acetabular expansion The superios segment of the ventral acetabulat expansion has been termed the preacetabular zone by Lynch (1971). The considerable variation in this portion of the pelvis is difficult to express, because of the iastability of potential reference points such as the acetabulum. Nevertheless, the basic shapes range from the form of a straight line extending ventrally and posteriorly (Fig. 2A, D), a gradual concavity (Fig. 2B), or a concavity of the preacetabular zone and a convexity bencath (Figure 2C).

Fig. 2. Variation in the shape of the ventral acetabular expansion viewed from lefl aspect. See text for explanation.

Fig. 3. Pelvis or isolated ilium of hylid and leptodactylid frogs:
A. Litoria caerulea, x $2 ; B$. L. Lesueuri, x $2 ; C$. L. euchemis, × $5 ; D$. Nyctimystes zwiefeli, $\times 2$; E. Adelotus brevis, $\times 5 ; F$. Assa darlingıoni, x $5 ; G$. Crinia georgiana, x $5 ;$ H. Cyclorana novaehollandiae, x 2; 1 . Geocrinia laevis, x $5 ; J$. Glauertia orientalis $\times 5 ; K$. Heleioporus albopunctatus, $\times 2 ; L$. Kyarranus sp., X 5; M. Lechriodus fletcheri, x 5; N. Limpodynastes peroni, x 5 ; O. Mixophyes fasciolatus, $\times 2$.

Post-mortem Changes

Disintegration of the pelvic girdle into its component bones has been observed in species in which cartilage is most extensive. Species that are heavily ossified remain intact.

During the process of dehydration, the acetabular fossa may become distorted and, in the material available, such distortion takes the form of compression in a dorsoventral direction. The dorsal crest of the dium is par-

TABLE 1
Characteristics of the Mium in species of Litorta

Species	Profile of ventral acetabular expansion	Dorsal prominence/ anterior tim of Acetahulum	Acetabular rim/ ventral ifial shaft margin	Pubis	Position of medial rimon Thum
adelaidensis	concave	level	above	cart.	ant ${ }^{\text {a }}$
antiana ${ }^{\text {* }}$	concavo-convex	posterior	level	cart.	absent
durea	concave	3 anterior	above	cars.	ant. ?
bicolar	concave	$\frac{1}{3}$ antcrior	above	cart.	?absent
hootrolatgensis	concaro-convex	$\frac{1}{4}$ anterior	level	bany	central 1 号
brevipalmata	concave	level	above	cart.	ant, $1 / 3$
cacrutea	concave	level	level	curt.	ubsent
citropa	concave	level	above	cart,	ant. ${ }^{\text {a }}$
dorsalis	concavo-convex	$\frac{1}{1}$ anterior	level	cart.	sat. :
cuçnemis	concalo-convex	level	above	bony	ant. $\frac{1}{1}$
ewingt	concave	level	above	cirt.	post, ${ }^{\text {a }}$
gracilenta	concavo-conyex	$\frac{1}{2}$ antarios	above	cart.	absent
injrafrenuia.	concave	$\frac{3}{3}$ anterior	above	cart.	and. 3
lesucuri	concavo-convex	3 anterior	level	bony	central 1/8
microbelos	concavo-convex	Jevel	above	citt.	sut. ${ }^{\text {a }}$
namnoris	concayo-gonvex	leyel	above	bony	nbsent
nasula	concavo-convex	$\frac{1}{2}$ anterior	above	cart.	ant. 1/a
nigrolrenata	eoucavo-convex	\$anterior	sbave	bony	ant. ${ }^{\text {a }}$
rubella	concave	$\frac{1}{2}$ anterior	above	Carl	?absent
rothi	concave	antorior	above	carl.	absent
thesaurensis*	concavo-convex	level	above	brey	ant, $\frac{1}{4}$

*Species Testricted to New Guinea.
ticularly subject to post-mortem distortion, commonly bending medialiy from a perfectly vertical orientation to form a quadrant, Even more conspicuous is the distortion amongst material recoycred from owl pellets where there has been an induced medial curvature of the ilial shaft in several specimens.

Account of modern genera and species Family HYIIDAE LITORIA Tschudi

$$
\text { FIG. } 3 A-C
$$

Species examined: L. adelaidensis (Gray), L, engiana (Bonlenger), L. aurea (Lesson), L. bicolor (Gray), 1. boaroalongentis (Moore), L. brevipalmata Tyler, Martin \& Watson, L. caerulea (White), L. ciffopa (Tschudi), L. dotsalis Macleay, Lr eucnemis (Lönnberg), L, ewingi Dumeril \& Bibron, L. gracilenta (Peters), L. infrafrenatia (Gunther), L. lesueuri Dumeril \& Bibron, $L_{\text {a }}$ microbelos (Cogger), $L_{\text {, }}$ namotis (Andersson), L. nasuta (Gray), L. nigrofrenata (Gunther), L. rubella (Gray), L. rothi (de Vis), L. thesaurensis (Pcters).
ant-anterion; cart-cartilagnous.
Variation in this morphologically and ecologically diverse genus renders a generic definition a difficult proposition. For this reason comparative data are included in Table 1, and only the following generalisations are possible:

The pubis is cartilaginous or ossificd and the ischium is ossified.

The ilial shaft lacks a dorsal crest but invariably bears a narrow rim on at least a portion of the medial surface. In L. aurea there is also a lateral groove exhibiting a distinct ontogenetic trend in becoming progressively less conspicuous. The acetabular fossa tends to be rather large. The ventral acetabular expansion is of a variety of forms, from a narrow, concave profile to concavo-convex.

The dorsal protuberance and dorsal prominence are usually well differentiated but are pot raised high above the level of the ilial shaft.

NYCTMMYSTES Stejneger

FIG. 30
Species examined: N, tymponocryptis (Andersson and N. zweifeli Tyler of New Guinea.

TABLE 2
Generic features of Ilia

	Hià shaft crest	Ilial shaft rim	Darsal protuberance	Dorsal prominence? anterior fim of acétabulum
Adelotus	absent	present	prominent	anterior
Assa	absent	absent	inconspicuous	Ievel
Cophixalus	absent.	absent	inconspicuous.	anterior
Crinia	absent	present	inconspictuts	anteriar
Cyclorana	absent	present ot absent	inconspicuous	anterior
Geocrinia	absent	absent	absent	level
Glauertia	absent	absent	inconspicuous	anterior
Heleloporus	absent	absent	prominest	anterior
Куarranus	absent	present.	prominent	anterior
Lechriodus	present	absent	moderate	posterior
Limnodynastes	present or absent	present or absent	prominent	ant. or level
Litoria	absent	present or absent	moderate	usually anterior
Mixophyes	present	abseat	inconspicuous	anterior
Myobatrachus	absent	absent	absent	posterior
Neobatrachus	Ebserit	absent	prominent	anterió
Notaden	absent	absent:	prominent	posterior
Nrerimystes	absent	absent	moderate	level
Philoria	Pbsent	present	incoaspicuous	anterios
Pseudophryne	absent	absent	moderate	level
Rana	present	absent	inconspicuous	posterior
Ranidella	absent	absent	moderate	anterior
Rheobatrachus	absent	absent	prominent	posterior
Sphenophryne	absent	absent	inconspicuous	posterior
Taudactylus	absent	absent	prominent	anterior
Uperoteia	absent	absent	prominent	anlerior

The ilium and ischium are ossified in both species. The pubis is ossified in zweijeli and cartilaginous in tympanocryptis.

The ilial shaft is long, curved distally and very slightly compressed mediolaterally. The ventral acetabular expansion is gently rounded in a single, uninterrupted concave arc. The acetabular fossa is prominent, with its upper margin level with the centre of the ilial shaft. The dorsal prominence and dorsal protuberance ate small and project laterally rather than superiorly. The anterior margin of the dorsal protuberance is on a level with the ankerior margin of the acetabular rim. The dorsal acctabular expansion is only slightly raised.

Family LEPTODACTYLIDAE
ADELOTUS Ogilby
FIG. 3E
Species examined: A. brevis (Gunther).
The ischium is bony and the pubis is entirely cartilaginous.

The ilial shaft is distinctly curved and bears a narrow indentation on the medial surface. This indentation is deepest in the midsection of the shaft. The acetabulum has a narrow peripheral rim which superiorly is on a level with or is slightly superior to the veniral surface of the ilial shaft. The ventral acetabular expansion is only slightly developed, and the preacetabular zone is extremely narrow. The dorsal acetabular expansion is elongate and raised moderately. The dorsal prominence is poorly defined. The dorsal protuberance is extremely large, inclined posteroventrally and is almost entirely anterior to the anterior rim of the acetabular fossa.

ASSA Tyler

$$
\text { FIG. } 3 F
$$

Species examined: A. darlingtoni (Loveridge).
The pubis and ischium are bony except for the portion associated with the posterior balf of the acetabular fossa.

The ilian shaft is slightly curved, lacks tuges and indentations and is circular in cross section. The acctabulum has an execplionally twill developed peripheral rim whicds superiorly is very slightly ahove the venasal margitu of the ilial shath, It it ventral acctabular expansion is slightly developed into a nariow preacetabular wous. The dorsal acetabular cxpansion is very poorly devcloped. The dursal prominence is only slighty defined. The dorsal proluberance is small bui prominent, its anterior margit on alevel whth the auterior margin of the acelabular rini.

CRINIA Tschudi
FIG. $3 G$
Species ennminud: C, geargiana Tschudi.
The pubis is cartilaginous and the ischium is ossiticd.

The jhat shaft is curved, flatened mediolaterally over the posterior half and sorsoventrally over the unterior half. There is no dorsal ilisl crest but there is a very slight langitudinal medial inientation. The acetabulum is larec. has a farly broad peripheral sim which superiorly is very slightly above the level of the ventral nagein of the ilial shaft.. The ventual acerabular expansion is only slightly develaped: the subacetsbular zonc does not protrude anteriorly. The dursal acetabular expansion is poorly developed. The dorsal prominence is fow, but quite distinguishable from the ilial whats. The dorsal protuberance is jush detectable. Slightly lens than one-half of the Lorsal protuberance is anterior to the anterior tim of the adetabulum.

CYCTORANA Stcindachner
 FlG. 3!

Speciey exomined: C. mustralis (Gray), C. dalli (Boulenger), Co noviehollandiae Steindachner and C. plasycephalus. (Guather'),

The ischium is bony and fused to the ilium, whereas the pubis can be extensively ossifica and similarly fused (C, dahli and C. novazhollandiced), or completcly cartilaginous (f.. austrulis and C platycephatus).

The ilial shaft is slightly curyed and cither hears a narrow dorsal rim, rendered conspicuous by a longitudinal indentation on the medial surface of the shaft (C. utsstralis, C. dulli and C. novaehollandiae), or elsc fack's n durxal rim (C. platycephulus). The acetabulums has at narrow peripheral rim which superiotly is above the level of the ventral surface of the ifial shute The ventral acetabular expansion is slightly developed and the preacetabular zone
is narrow. The dorsal acetabular expatsion is prominent and conspicuous. The dorsal piominence is distinguishable from the ilial shati but onily slightly raised. The dorsal protuberance is inclined ventroliterially, extends far from the prominence, and is approximately one-half anterior to the anterior tim of the acetabular fossi

GEOCRINIA Blake
 FIG. 3 I

Spectes examined: G_{1} inevis (Gunther).
The pubis is cantilaginous and the ischium is ussificd.

The ilial shaft is shoot, slightly curved and dattened laterally in eross-section, The acerabulum is moderate with a marow periphcral rim. The superior margin of the acetabulum lies slightly ubove the level of the ventral margin of the ilial staft. The ventral acctabular expansion is only slightly dilated. The dorsal acetitbulas expansion is not pronounced. The dorsal pruminence is small and the dorsal protuberance is nut delectable as is distinguishable area, The dorsal prominence is on a level with the anterior rim of the acetabuturn.

GLAUERTIA Loveridge
 FIG. 31

Species exuminted: G. orientalis Pasker.
The pubis and ischium are eattirely castilaginous.

The ilial shatt has an almost horizontal dorsal kurface and a slightly curved ventral one, so creating as slight broadening at the exuemities of the shaft: There is nether as rim nor a crest to the shaft. The acetabulum has a scarcely delectable peripheral rim which superiorly is above the level of the ventral surlace of the ilial shatt. The rentral acetabular expansion is slightly developed and the preacelabular zothe is slender, The dorsal acetabular expansion is poorly developed. The dorsal prominence is dimicult to distinguish from the prominent and evenly rounded dorsal protuberaince which appears to be inclined laterally. Approximitely onc half of the lengti of the datsal protuberance lies anterior to the anterior tim of the acetatulum.

HELEIOPORUS Gray

FIG. 3K

Spertur e.cumined. H. albopunctatis Gray.
The pubis and ischium are ossified.
The ilial shaft is not:curved but has a slightily undulating superior face, raised inlo a thickeneal ritge on the posterior half. The
acotahulum is smati ana is surrounded by an obliquely tapering tim. The acelahulum is high and is hisected by the ventral margin of the ilial siaft. The ventral actiahular expansion is only stightily dilated but the dorsal acetaluatar expansion rises sharply. The dorsal prominence is vast and the dorsal protuberunce simply an etongate. seni-cylindrical ridge. At least twothinds if the dorsal proluberance lies anterior to the anterior sim of the acetabulum.

KYARRANUS Moore
 FIG. 3L

Species examinedi K, sphagnicolur Moore. Kevprrenus p .
The pubis and ischium are almost entirely bony, unly the central nortion of the acetabuTar fossa remainiog cartilaginous.
The ilitil shafi is strongly curved and almest cireular in cross section, but for an indistinet and narrow rim on the posterior half. This tim is ereated by an indentation of the medial surface of the shaft, The ventral acelabulat expansion is poorly developed and the preacetabular zone is very narrow. The dorsal ncetabohlis expansion is quite prominent. The dorsal expansion is searcely distinguishable from the large and oval, postcroventrally inclined dorsal prominence. The anterior margin of the dorval prominence is considerably anterior to the anserior rim of the acetabulum.

LECHRIODUS Boulenger
 FIG. 3M

Spenies examined: LL melanopyga (Doria).
The puhis is cartilaginous and the ischum ossificd.

The ilial shall is slightly curved and bears an cniarged, fanlike dorsal crest arising from the posterior three-quarters of the shaft. The neefatulum is small and has a broad peripheral rim; the dorsal margin lies above the ventral margin of the ilial shaft. The ventral acetahular expansion is onty slightly developed. The dotsal acetabular expansion is long and projects posteriorly. The donal prominence is small but detectable and the dorsal protuberance can be distinguished. The anterior margin of the dorsal plotuberance is slightly posterior to the anterior rim of the acetabulum.

I. IMNODYNASTES Fitzinger FIG. 3 N

Spacies rxaminad: Lo convexinsmhr (Mae(cay), I. dumerifi Peters, L. omatus (Gray). L. perone (Dumeril \& Bibron), Lo sulmiai Steim-
dachner, L. spenceri Parker, r., Mananionsfs Gunther, L. serrueresinae Fry.
The pubis is eartilaginous and tite ischinm is oxsified.

The ilial shaft is stightly curved and foghly variable in structure. There is an clonate groove on the medial surface in L. dumerilt, a short groove in L. tersaereginac, a short lateral groove in L. fasmaniensls, and there is a distinct dorsal crest in \mathcal{L} o ormapes and L, spencen? The acetabulum is small and high. bisected in most species by the ventral margin of the ilial shaft. The ventral acetabular expansion is small and not particularty expanded. The dorsal acetabular expansion rises into a moderate or else high and acutely pointed spike. The dorsal prominence is conspicuous in all species except those with crests on the shafts, It tends to form a conical shape in profile, but is somewhat bronder and rounded in the largest species. The storsal protuberance is an elongate sidme or expanted knob upon the tip of the doral prominence. The dorsal protuberance is on a level with or sightly anterion of the anterine rim of the acetabulum.

MIXOPHYES Gunther

FIG. 30
Species examined: M. Jasciolans Gunther.
The puhis and fischium ate cormpletely ossified.

The ilial shaft is slightly curved and hears an enlarged fan-like dorsal crest arising dorsolaterally from the length of the shatt. The acetabulum has a broat peripheral tim, the dorsal margin of which lies above the ventral margin of the ilial shaft. The ventral acesubulat expansion is noderately developed but with a father narow mixacetabular zonc: The dorsal asebabular expansinn rises high to ahut the enlarged superior portion of the ischinm. There is modntsol prominence, and the dorsal protuberance is entirely laterally directed and so poorly developed that it is detectahle only when the area is viewed from the dorsal or ventral aspecta. The anterior margin of this weak protuberance is located anterior to the anterior rim of the acelabulum.

MYOBATRACHUS Schlegel
 FIG. 4A

Species examined: Mf gouldil (Gray).
The isthium is a large and almost circular bony plate, and the pubis is reduced to a small, triengular wedge of cartilage.

The ilial shaft is distinctly curved, hacks erests and indentations and is stighty fattenel

Fig. 4. Pelvis or isolated ilia of leptodactylid, microhylid and ranid [rogs:
A. Myobatrachus kouldii, x 5; B. Notaden melanoscaphus, x $5 ; C$. Neobatrachus centratis, x 5 ; D. Philoria frosti, x $5 ; E$. Pscudophane bibroni, x $5 ; F$. Ranidella parinsignifera, x 5; G. Rheobatrachus silus, x 5 ; H. Taudacthis diurnus, $x 5$; 1 . Uperoleia sp., $x 5 ;$. Cophixalus omaus, x 5; K. Sphenophryne robusta, x 12.5; L. Rana papua, X S.
laterally, producing an oval cross section. The acetabulum is large and has a narrow peripheral nim whose superior margin is considerably above the level of the ventral surface of the ilial shaft. The ventral acetabular expansion is greatly reduced, consisting of just a slender slip of bone bordering the acctabular rim. The dorsal acetabular expansion is a more prominent feature, rising above the ilial shaft. There is no dorsal prominence, and the dorsal protuberance is replaced by an oval, dorso-
laterally inclined plate, consisting of a weak peripheral rim surrounding a very shallow depression. The anterior margin of this structure is far posterior to the anterior margin of the rim of the acctabular fossa.

NEOBATRACHUS Peters
 FIG. $4 C$

Species exumined: N. centralis Parker.
The pubis is cartilaginous and the ischium is ossified.

The ilial shaft is almost perfectly straight The acclabulum is small and high, the venesal marion of the flium being on a level with the anterior unedhirl of the acetabulanl. The ventrat acctabular expansion is oniy slightly dilated, the preacetabular zone being particulusly reduced. The dorsal acetabular expansion is high. The dorsal prominence is very large and the dorsal protuberance is a pointed nodule upon it. Approximately one-half of the dorsal protuberance lies anterior to the anterior sim of the ncerabulum.

NOTADEN Gunther

FIG. $4 B$
Species exthriredt: N. melthoscaphus Hosmer.
The pubis and ischum are cartilaginous, the latter with as median calcified zone.

The ilial shatit is only very slightly curved, lacks ridges and indentations and is circular in esoss section. The acctabulum has a distince, flatened peripheral rim which superiorly is n a level with the ventral surface of the ifial shaft. The ventral acetabular expansion is slightly developed with a narrow preacetaholar zone. The dorsal acetahular expansion is small and moderately developed. The dorsal promirence is broad and clearly demarcated from the ilial ghatt. The dorsal procuberance is small and located on a level above the centre of the acectatular fossa.

PHILORIA Spencer

FIG. id
Sipecies racamined: P- froski Spencer.
The pubis is cartilaginous and the ischium ossilied.

The ilial shaft is strongly eurved and has is medially disected dorsal rim. The acctahulam is large. its superior margin on a level with the ventrat margin of the ilial shaft. The ventral acctabular expansion is not obviously diated. The torsal acelubular expatsion is moderately well developed. The dorsal prominence is not conspicunus and the torsal protuberance searcely detectable as a separate cntity. The dorsal protuherance is almost entirely antetinr to the anterior rim of the acetabulum.

PSEUDORHR YNE Fikingur

FIG. $4 E$
Species examined: P. bibronk Gunther, P. coriocea Keferstein.

The puhis is Eatilaginous and the ischium is ossified.

She iltal shaft is almost straight and is circtular in cross section. The acetabulum is large
and has a nartow peripheral tim. The superior margin of the acetabutum lies on ar slightey above the level of the ventral margin of the ilial shaft. The ventral acetabular expansion is ditiated: The dorsal acelabular expansion is only: very slightly raised. The dorsal prominente is small (searcely detectable in P. corincea, but quite distinct in P. bihooni) and the dorsal prominence n very small knob on its tip. The dorsal protuberance is on a level with the anturior rim of the acctabulom.

RANIDEIS.A Girund
 FIG. $4 F$

Species excunined: Ω, papinsignifern (Main). R_{1} signifera Girard.

The pabis is cartilaginous and the ischium is bony.

The ilial shaft is curved, compressed lateratly and possesses neither a fim nor a crest. The acetabulum has a bmad peripheral rim whicla superiorly is on a level with the ventral margin uf the ilial shaft. The ventral acetabular expar. sion is greatly enlarged, the subacetabular zone protruding anterintly. The dorsal acetabular expansion is poorly developed. The dorsal prominence is broad and the dorsal protuberance is rounded, inclined posteroventrally and moderately prominent, Approximately anc-balf of the dorsal protuherance is anteriar In the anderior sim of the acetabulum.

RHEOBATRACHUS I.jem FIG. $4 G$

Sprotess exmmined: R, silus Liem.
The pubis is cartilaginous and the ischium ossified.

The ilfal shaft is exceptionally slender, yery sightly curved and cylindrical in cross section. The acetahulum is very large with a conspicuous rim, its superior margin slighty thuve the level of the ventral surface of the ilial shaft. The ventral acetabular expansion is slichtls dilated. The dorsal acetabuhar expansion is sligbtly developed, projecting posteriorly. The dorsal prominence is well developed and the torsal protuherance is conical and situated posterior to the anterior tim of the acetabulum.

TAUDACTYLUS Strsughan \&ee

FIG. $4 H$
Specces cramined: T, dimem, Straughan \& Lee
The pubis is cartilaginous and the ischinm is ussified.

The ilial strapt is gently curved, slighty tompressed lakerally and possesses neither a filn
nor a dorsal crest, The acetabulum is largo whth a well developed rim creating a deep neelubular forsa. The ventral acetabular expansian is slighty diluted. The dorsal acetabular expansion is directed posteriorty and overlies the superior margin of the ischount. The dorsal prominence is only slightly distinguishable frotn the large. ralsed, ovaf, dorsolaterally directed dorsáal protuberance, Approximately one-half of the dorsal protuberance lies anterior to the acetabular rim.

UPEROIEIA Ciray

FIG. 41
Specles examined: U. marmarata Gray, Upomleicsp.

The pubis and ischium are caritaginous.
The ilial shaft is almost straight and is cireular in cross section, lacking a rim and a crest. The acetabulum is large and has a troad peripheral rim. The superior margin of the actabuluns lies above the ventral margin of the iliat shafe. The ventral acetabular expansion is of moderate width with the subacetahular zone very slightly expanded. The dorsal acetahular expansion is not pronounced. The dorsal prominence is large and the dorsal protuberance conical and rising far thove the level of the shaft. The anterior margin of the dorsal probuherance is situated anterior in the anterion rim of the acelabulum.

Family MICROHYTADAE
 COPHIXALUS Boctiger
 FIG. 4J
 Specier eranined: C. ormanus (Fry).

The ischiuns is small hut ossified, and the pubis is cartilaginous.

The ilial shaft is compressed mediolaterally. has neither a rim nor at crest, and is very shighly curved. The ventral acetabular expansion is concave and very narrow. The acetabular fossit is extremely large and very high. its superior margin nearer to the dorsal than the ventral maryin of the flial shaft. The dorsal protuberance is not distingulshable from the dorsal prominence, and lies slightly anterior to the anterior margin of the acetahular rim. The dorsal acetabular expansion is very poorly developed.

SPHENOPHRYNE Peters \& Doria FIG. $4 K$
 Species examinesl: $\$$, rohusta (Fry),

The ischium is extremely small and unly parly ossified. The puhis is cartidaginous.

The ilial shaft is compressed mediolatcratily, has neither a fim nor a crest, and is very slightly curved. The ventral acetabular expansion is slightly concave and very narfow. The acetabular losss is large and high, and is partly bisected by the ventral bonder of the ilial shaft. The dorsal protuberance is not distinguishable from the dorsal prominence, and lies entirely posterior to the anterior margin of the acetabio lat rim. The torsal acetatular expansion is only slightly develoned.

Family RaNidafo

RANA Linné
FIG. 4L

Species examined: R, papua Lesson

The pubis is cartilaginous and the ischilm is bony.

The ilial shaft curves gently downwards and bears a inassive fin-like and tapering dursal crest. The acetabulum is large tind bears a broad peripheral rim. The superior margin of the ncetabular rim extends considerably above the ventral nargin of the ilist shaft. The ventral acetabular expansion has a reduced preacetabulat zone and greatly dilated subacctabular mone. The dorsal acetahular expansion is well developed, topering to a point postcriorly. There is no dorsal prominence and the dorsal protuherance is an oyal and almonst vertical expansion of the base of the ilial shaft. This protubetance lies entirely posterior to the anto ferior rim of the acetabulom.

Fossil genus

AUSTRALOBATRACHUS new yemus
Ope specier: Australobatrochus Hius new species.

This taxon was first reported on by Tyle: (1474, p, 711, fig, 1).
Extendiog from the acetatular region the thial shaft bears a deep, curved groove on its lateral surface. The acetabular fossa ix exceptionally high in relation to the ilisa shaft. fits superior border reaching a position equivalend to midway up the shaft. The acetabutar rim is poorly developed. The dossal protuherance is gently pounded, and not distinguishable from the dorsal prominence. The anterior timil of the dorsal protuberance is on a level with the anterior margin of the acetabular rim. The ventral acetabular cexpansion is nether protuherant nor concave, the flial/preacetabular zone forming almost a straight line extending gradualty posteriorly, The dorsal isctatular expansisit probably does not project superiorty.

Fig. 5. Left ilium of Austrainhaprachur tine holotype, SAM. [18021.

Australobatrachus ilius hew species
Holotype; Two fragments comprising the distal 6.7 mm of is single left alium. SAM, P 18021 (Fiz. 5).
Type localiny: Tedford Quarry, on the west gide of Lake Palankarrina, S.A. (Universily of Culifarnia Museum of Palacontology locality V.5375.)

Ihurient: Eudunna Fornation.

Age: Ngapakaldi Fanna, Tertiary; probably mid-Miocene.
Description of holotype: As for genus.
Cumparison with other species: Of the existing families of frogs that do not have modern represenatives in Australia, the Leiopelmatidae. Pipidae and Pelobatidae have members in the sothhern hemisphere and could all be regarded as potential contributors to the ancestral Auswalian frog fauna; hence they meril comparison with Australobntrachus.

The leiopelmatidae of New Zealand have simple ilia with is slender, cylindrical ilial shaft find a poorly developed ventral acctabular expansion (Stephenson 1960). There is rot the slightest resemblamee to Australohitrachus.

Accurding to Trueb (1973), the pipids are quite unique in possessing a lateral erest (not grnoye) to the jlial shaft. Any resemblance to Alusirulebtatrathus has to be weighed against the condition of the dorsal prominesice (vast and projecting high above the shaft in pipids: relluced and not raised above the shaft in Alstenlolntrachus) and of the ventral acetabular expansion (vestigial in pipids as opposed in being highly developed).

To judge from the descriptions and inlustrations of Zweifel (1956) and Kluge (1966) the pelobatid ilium has typically a bow-like dorsad curvature, creating a totally different form from that of Australohatrachus. In addition the species illustrated by them bave poorlydeveloped ventral acctabular expansions and more prominent acetabular fossae than has the new genus.

In comparison with the ranids of Austration and New Guinca, Australobatrachus is readily distionguished by its total lack of the dorsat cress which rises high above the ranid ilial shaft. Similarly many microhylids (and also some leptodactylids) cxhibit such a crest. but the microhylids lacking a dorsal crest may be distinguished by the poor development of the ventral acctabular expansion.

Establishing means of distinguishing Austrafian hylids trom leptodactylids has proved difficult In general it would apear that a well. developed, dorsally-projecting dorsal prominence is almost characteristic of the lepto. dactylids, whereas it tends 10 he poorly developed or clse laterally disprosed in hylids. Most of the leptodactylids which are excep. tional in having poorly-develuped dorxil prominences, are those in which the upper section of the ilial shaft is modified in some way: Hence the prominence is scarecly differentiated in lechriodus and Mixophyes which have is dorsal crest because the prominence is upon this thin flange of bone. It could be argued that the poor development of the dorsal prominence in Australobatrachus conflicts with ms interpretation of the groove as an intrinsis modification of the ilial shaft. Hence ath iltct-
native hypothesis is that the upper fim is the supra-ìlial structure, comparable to a dorsal crest. This Iatter explanation is not favoured, simply because the cod section of the ilial shaft is 8oshaped, and the nature of the acetabulum (a poorly developed rim) is not usually developed on a pelvic girdle in which the acetabulum reaches the upper scgment of the shaft.

Anongst the Australian hylids and leptodactylids there is considerable variation in the shape of the ventral acelahular expansion. Cyclorana australis and several species of Litorio approach the condition displayed by Australdobitivishus, bus in each the dorsal prominence is more highly developed and the lateral groove is lacking.

If Alustralobarrachus lacked a lateral groove the nature of the dorsal prominence and the ventral acetabular expansion would cause me to favour referring the genus to the Hylidac. Hence to avoid over-interpreting the presence
and form of the Iateral groove, Ahstralobatrachus is assigned tentatively to this family.
Erroapolation of musculature, "The lateral surface of the ilial shaft is the site of origin of the musculus iliacus externus. Any extreme broadening of the tateral surface of the iliat shaft increases the surface area available to this muscle. Unquestionably these are modifications most commen in aquatic frogs or specles inhabiting streamside situations. members of such genera as Xenopus, Rana, Lechriodus and Mixophver. Certainly is is tempting to attribute a similar functional association for Australobatrachus, and hence assume that inis snimal lived close to permanent water.

Acknowledgments

I am deeply indebied to Dr M, O. Woodbuine for the opportunity to examine and describe the new fossil genus. Dr J. Ling and Mr N. Pledge read and provided constructive criticisms of the manuscript. Mis L. Kingston very kindly typed the manuscript.

References

Cilanterte, C. J. (1964),-Some Mia-Plincene hylids from the Valentine formation of Nebraska. Amer. Midl. Nul. 72, 211-225.
Holmsn, J. A. (1965)-Farly Miocene amurans fiom Eloriđa. Quart. J. Florida, Acad_ Sci. 28. 68.82

K̃, i/ge, A. G. (1966)-A new pelobatine frog from the Lower Miocene of South Dakota with al discussion of the evolution of the Scophiopus-Spea complex. Comtrih. Sci. Lios Angeles Conhty Mus. (113). 1-26,
I.vNCif. I. D. (1963).-Additional evidence for the recognition of Limuaendus (Amphibia: Hylidae). Copeia 1963. 566-568.
Lyncif. . . D. (1971).-Evolutionaty relationsbins. asteology, and 2oogeography of leptodactyloid frogs. Misc, Publ. Unir, Kanker Mus: Nat. III.s. (53), 1-2.38.

Stephenson. E. M. (1960). The skeletal characters of Leeiopelma hatilifoni McCulloch, with particular reference to the elfects of heterochrony on the genus. Trums; R. Soc. N.Z. 88(3). 473-488.

Treeb, L. (1973).-Bones, frogs and evolution. In Vial, ग. (Ed.), "Evolutionary Biology of the Anurans, Contemporary Research on Major I'roblems". pp. 65-132. (Univ. Missouri Press.)

Tylfr, M. J. (1974) - First frog fossils from Australia. Neture 248(5450), 711-712.
Zwarel. R. G. (1956)-Twa new pelobatid frogs from the Tertiary of North America and their relationshins to fossil and recent forms. Am. Mus. Novit. (1762), 1-45.

NEW AUSTRALIAN ALLODAPINE BEES (SUBGENUS EXONEURELLA MICHENER) AND THEIR IMMATURES (HYMENOPTERA: ANTHOPHORIDAE)

by T. F. Houston*

Abstract

Summary HOUSTON, T. F. (1976).-New Australian Allodapine bees (subgenus Exoneurella Michener) and their immatures (Hymenoptera: Anthophoridae) . Trans. R. Soc. S. Aust. 100(1), 15-28, 28 February, 1976. Three new species of Exoneura Smith (E. eremophila, E. setosa and E. tridentata) are described and figured. They are assigned to the formerly monotypic subgenus Exoneurella Michener and both adults and immatures of the new species are compared with those already described for the typespecies, E. lawsoni Rayment. A key for identification of adults is provided. Females of E. tridentata vary greatly in size and exhibit allometric variation of the head and metasoma.

NEW AUSTRALIAN ALLODAPINE BEES (SUBGENUS EXONEURELLA MICHENER) AND THEIR IMMATURES (HYMENOPTERA: ANTHOPHORIDAE)

by T. F. Houston

Abstract

Summary Houston. T. F. (1976).-New Australian Allodapine bees (suhgenus Exeneurefla Michurar) and their immatures (Hymenoptera: Anthophoridae). Trans. R. Soc. S. Ahsp. 100(1), 15-28, 28 February, 1976. described and figured. They wre assigned to the formerly monotypic subgenus Exomenrella Michenct and both adults and immatures of the new spacies are compared with those already described for the fype-species, E. lamsoni Rayment. A key for identification of adults is provided,

Females of E. ridentara vary greaty in size and exhibit allometric variation of the head and metasoma.

Introduction

The chief purpose of this paper is to provide names for three species of bees whose ethology is to be dealt with in a subsequent work. An exhaustive examination of material from collections has not been attempted and the descriptions to follow are based on specimenis in the collections of the author and the South Australian Museum.

The three new species are assigned to the subgenus Exoneurella Michener (of Exoneura Smith) which formerly contained only the type-specics, E. lawsoni Rayment. Since Exoneurella was founded partly on the basis of the larval characteristics of \mathcal{E}. Jawsoni, it seemed of interest to describe and compare immatures of the new species, Generally, the characteristics of the new species support retention of Exmbeurella as a discreet taxon.

The size-correlated variation of females of E. tridentata sp. nov is detailed below as it is significant in terms of the bionomics of the species. Such variation is unusual amongst allodapine bees and in the farnily Anthophoridae as a whole.

The following abbreviations are used for the names of institutions and collections referred to in the text below: ANIC (Australian National Insect Collection, C.S.T.R.O., Can-
berra), HC (author's private collection, to be deposited in SAM), KU (Snow Entomoogical Muşeum, University of Kansas, Lawrence, Kansas, U,S.A.), SAM (South Australian Museum. Adefaide) and WADA (Western Australian Department of Agriculture, Perth),

Except where stated otherwise, all specimens listed. in this paper were collected by the author.

Genus ExONELRA Smith

Exoneura Snilh, 1854, p. 232. Sec Michencr. 1965, рp. 223-226 for detailed description, subgenera and specics.

Subgenus EXONEURELLA Michener

Exomizurella Michener, 1963, p. 257 (erected as a genus): 1965, pp. 223-224 (relegated to subgeneric status: diagnosis provided).

THE ADULTS

Key to the species of Exoneurella

1. Second cubital cell of fore wing with subequal costal and medial burders (Fig. 1); 6th melasomal tergum of female with simple non-bifid apes athl is pair of luteral projections (Fig. 24, 25); compound cyes of malc strongly swoliten (Fig. 19)
E. tridentata
2. Second cubital eell of fure wing with costal margin conspicuously sboter than medial margin (Figs 2, 3); 6th metacomal tergum of fenialc with bidentate apex and with or without lateral

[^1]

10

II
\qquad

- 0.1 mm

FIGS 1-19
propections (Figs 4-6), compound eycs of male not swollen (Figs 17, 18)
2. Sixih metasomal teggum of female withou lateral prominences. margias smanthly shanate (Fiq, 4); hiod femora of male obutiely produced and carioule ventcully (Fig. 8); nietasomal terga of both sexes black without cream or creamy-brown pignentution and withont numernus comspicuously thickened setare E. lawsonh
2. Sixth metasomal tergum of femate wath dlstinct Jateral projections or prominences (Figs S. fi): hind femora of mate mmodified (Fig 7) or mol mudified as in Fig. 8: metasomal leres of both seves with faint to distinct cream bandy: terga 3 and 4 (females) or 4 and 5 (males) with numerous conspicuously thickened setae (Fig. 11)
3. Alctisomal terge yellow-brown to black with wile cream bands (Fitr 14): 6th metasomal tergum of fomale with subacute hateral projeclions (Tige 6) hind temora of nuale each with an acute ventral projection (Fig. 9)

E, evemophilf
3. Metasomal terga laserely black with quitow (sometimes faint or incomplele) cream suhapio cal binds (Fig. 13); fith metasomal tergirm of temale with very obtuse lateral prominences (Fig. 5); hind femord of male unmadified (Fig. 7)
E. wetess

Exoncura (Exoneurelta) erensophila n.spp,

$$
\text { Figs } 2,6,9,14,15,17
$$

Types
Holotype: B' 3 (SAM, 1 20961), New Kalamurini Homestead, S. Aust, ($27^{\circ} 44^{\prime} \mathrm{S}, 138^{\circ} 15^{\circ} \mathrm{E}$). 9-11.iii. 1972 on Hablenbergis.
Allotype: 9 in SAM, Porstypes; 42 3. 448 in SAM: 2 E. 29 in ANICi I ${ }^{3} .19$ in KU.
Diagnoxis: This species differs trom atl other Exonenrelle as follows. Lateral face marks of male filling spaces belween clypeus and comfound eyes (Fig. 17): melasomal terga of both sexes yellow-brown to black with extensive cream maculations (Fig, 14): pronolum with a pair of cream marks sublaterally; hind femora of matle each with an acule ventral projection
(Fig. 9) ; foth metasomal lergum of lemale with bidentate aper and a pair of subacute lateral projections (Fige b).

Descriplion

Male. Body length 3.8-4.1 mm: head width $1.1-1.2 \mathrm{~mm}$.

Head capsule as broad as long; compound eyes of usual relative size (Fig. 17): face natrowed to about 43% of head width; ocelli approximately equal in size to antennal sockets: scapes fating to reach level of median ocellus; flagella 85% as fong as head width, the middle segments about as long as broad: genae viewed laterally almost half as wide as compound eyes and evenly conver: infe legs not especially slender, the fore tibiat about 3.5 s as long as wide; hind femora laterally compressed. cach with an acute ventral projection (Fig. 9); coxtal margin of and cubital cell of fore wing about half as dong as 1st transverse cubital vein (Fig.2).

Integument glossy generally with sparse fine pitting or fone; metasomal terga very finely lineate.

Pubcscence white, virtually absent dorsally but farisly long and dense ventrally and on legs and mescoisterna; 4 th and sth metanomal terga (exceps laterally) with a sparse covering of thickened bristle-like stac.
The following areas white or cream: lowes face, labrum and middle portions of mandibles (Fig. 17). scapes and pedicels ventrally, tubercles and dorsal margin of pronotum (except medially), spots on legulac. basal parts of wing veins, subapical bands on thetasomal terga (Fig, 14), apices of femora, bases of tibiae, anterior edges of tore tibiae, and basitursi. The following areas yellow-brown: scapes dorsally, Hagella ventrally, most parts of lces (except for cream areas), metasoms

Figs 1-3. Second cubilal cells of right fare winge (in dorsal views) of Evonew? (Eroneurdla) tridert futa, E. $(E$,$) cremophila, and K. (E$.$) sepena respsolively. C=$ costal margir, $1=$ firat transycrse cuthital vell.
Figs 4- h. Sixth metasornal terga (dortal views) of temales of E. (E.) futwoni, E. (E.) selosar and E. (E.) eremophila respectively.

Figs 7-9. Trochanters, femora und apices of tiblac uf lefl bind legs isnterior viemat of mader of E (E) sefosa, E. (E.) lewsone and S_{i} (E.) eremophlla rempectively.

Fig. 10. Left mundible of female of E, (E) tridrnita (ventral view).
Fig. 11. Thickened bristle-like setae from fourth matasomal tergum of tenate of E. (E.) sprasu
Fig. 12. Head capuale of a relatively laree female of E. (E.) trideniasa (laft lateral view .
 spectively showing cream bands (white) and transluecnt icrgal margins istipnled).
Fig. 15. Iower portion of head of female of E. (E.) cremophila (anierior view) showing T-shaped clypcal mark,
Fis. 16. Head capsule of male of E (E_{1}) sidgntats (1e[L Isleral view).
 (rillentafa lespective)y.
ventrally and partiatly or cxtersively dorsally． Remaning areas black or tark brown．
Frmale．Body length $4.0-5.5 \mathrm{~mm}$ ：head width $1.1-1.2 \mathrm{mmi}$ ．
Heat form simitar to that of make（Fise 17）： liagclla about 67% as loug as head width； mandibles tridentute hut not constricied suho apically：metasoma fairly elongate；Gth meta－ sumal tergumt with a bidentate apee and a pair of small but almost ucure uptatued jateral projections（ $F \mathrm{jg}$ ．6）：hind femora unmodified，

Inlegument and puhescence stouch its in male but thick bristle－like setac occur only on lerga 3 and 4

Coloration as in male except that white un face is linuited to a full－length T－shaped mark on elypeus（Fig．15）

Vasiation

The extent of ycilow－brown coloration on the metasoma varies considerably amonget in－ dividuals collecled together and some speci－ mens have creamy－brown maculations on the fateral margins of the scutum and scutellum．

The specific hame，derived from Greek， means loving solitude and alludes to the arid hahitut of the species．

Bistribution

Central regions of Austealin includine por－ tions of the Norlhern Tersitury，Queensland， New South Wales and South Australia．

Speriment crumined：The holotype and the follow－ ins．（ 810 y 今t 8 ？． 3 niles（ 4.8 km ）W，of wis． Nara，17，iy．1969．ex nests（HC）．N．S．WV＝ 1 P． 82 miles（132 kin）（V）of Cohar ，11－1971 on Piflo－ trs（SAM）： 1 E， 14 S． 70 mides（ 113 kns ）E．oi Wikannith，31．l，7971．On Helichyssum，Geodenia and Wrationhergia（SAM）．S．AUST．：I 7 ．Amake （Musgrave Park）settement， $14 . x, 1972$ ron Cirhisn－
 33 miles（ 9 名 kmi ）W，of Amata， $17 . x .1972$ ，ex nes in pilhy iwig，H．E．Evans \＆T．H ．Heursion （SヘM） 7 S，Bettys Well（132 $26^{\circ} \mathrm{F}, 27^{2} 2^{\circ} S$ ）． Therarif Parh Sta，1－5ixi．197U，on Hiblachs filmiget（SAM）； 45 a（paratypes） 48 （allotype and paralypes）．New Katamurina HS．（ $27^{\prime} 44^{\prime} S_{1}$
 58 pinned），ex dead stems of Myrfocephahis（38 B． 43 오 intwhul）（ANLC，KL，SAM）：2\％Mor－
 10 miles（ 16 km ） S of Ml Davies：airstrip． $21 . \times 1972$ on Prilohes．IT．F．Fivanw ie T．F．Hows－ fors（SAM）： 2 \％Mt Miccolle（32＇31＇S， 136 $36^{\circ} \mathrm{E}$ ）Sinm Stn，20iv．1971．ex nest（SAM）：

 for（ 5 MM）： 2 P． 31 miles（ 50 kni ）W．of Wel－ bonrn Hill HS．13．x．1972．on Hlue Ercmuphild．
 jniles（16 kms SE of William Cteck．2§，x．！y72， on Hakern IV．F．Eiman \＆T，F．Housten（SAM）．

Exoncura（Exoneurella）lawsoni Raymeni 1946，pp．230－232，tig． 2 （male，not female or Jervas）．

FIGS 4． 8
Ercumarella dakseni．（Rayment）Mishener． 1963．D． 257.
 Michener，1965，p．224．
Holotype：d（in ANIC），Cubbersis d．C．I． Newton R．Lawson．Iuly 1949，
I have not examined the holotype fol Ms Jusephinc Cardale（ANIC）made a crivical examinition of it on my behalf and confirmed What it agrees with the male churaclecisties given in the diagnosis below．

Michener（1963，p，258）pointed out that the females and larvae described thy Rayment in the original description of E．lawsoni are of another species ind are referable to the suh－ achus Brevincura．
Diagnosix：E，lawsons differs from all nther Exoncurella as follows．Hind femora of male earinate and broadly produced ventrally（Fig． S）；6th metasumul lergun of femate lacking lateral prominences，the margine gently silluate （Fig，4）．Differs from E ，setosu and E ． cecmophitia in complete absence of cream pig－ mentation from metasoma and in absence（or only leeble development）of thickened bristlc． like sctac on dorsum of metasoma．

For a cetailed description of both sexes see Michener（1963，p．259）．Note，however，that the pale maculations of the face of the mate are white，not pale yellow．
Distribution：On and near Gieat Dividing Range of southreastem Ouecnstand．New Soult Wales and eastern Victoria．
Specimens examinedo of D 4 है，$\$$ O，Buyy Moun－
 Tambo Valley， 22 i .1965 ，on Wallewhesge（HC）．

Exoneura（Exoneurella）sctosa n．sp．

PLGS 3．54．7．11．13．18

typers

Holotype： 5 （SAM，I 20902），West Beact． Adetaide，S．Aust，25．jr 1995，ex dead Farpherbia stem，C．A－\＆T．F．Ilouzton．
Allotype：of in SAM，Paratypes： 7 है， 10 of in SAM； $4 \mathrm{~B}_{4} 49$ in ANIC； $2 \mathrm{E}^{5}, 29$ in KU．
Diagnosis：Very like E．tawsoni，differing as follows．Hind fentora of nate unmodified， backing ventral thanges and projections（Fig． 7）：6th metasimal tergunt of feniale with a pair of lateral convexities（Figg 5）；metasomal terga of thith sexes with narrow subapical bands of cleamish plgnicnt（sometimes faint or imcomplece，especiatly medtially）and trans－
lucent brown trpical margins（Fiz 13）：raeta－ somal terga 4 and 5 （mine）or 3 and 4 （fe－ mate）with numerous conspicuously thickencd． hristle－like setac（king 11）．

Dercription

Male．Body length 3．8－4．7 mm：head width 1.11 .2 mm ．

Head capsule 1.1π is broad as longe com－ pound eyes of ustal size（Fige 18）；face nar－ mived to abour． 42% of head width in 10wer part；ocelli approximating size of antennal sockets；seapes jusi failing to reach level of median ocellus：Alagelia about 7246 as long as head width；middle flagellar segments slightuly hroader than fonge genae viewed latesally $2 / 3$ as wide as compound eycs and evenly conves； fore legs not unusually elongate，the fore sibiate abour 3.5 s at long as wide，hind femara un－ modilicd（Fig，7）：costal margin of ？nd cubital cell of fore wing ahout $1 / 4$ to $1 / 2$ as long as 1st transverse culytal vein（ F ig ，3）

Integument almost entirely glossy；clypeus and scutellum finely pitfed．dorsal area of pro－ podeum dulled by extrenaly fine sculptuting； metisumal terga finely lineale．

Pubescence whitc．sparse on focad and body． densest laterally and venirally on thoras and basal parte of tegs：4th and 5th metasomal terga with numerous short but thick bristle－like setac（Fig，11）on dorso－apical areas．

The following areax white：almost all of ely－ peus and a snot of variable size on cach side （Fige 18），labrum，anterior stripe on tore libia． spors at bases of mid and hind tibiac，pronotal lubercles and alar sclerites．The following areas oll－white to cream：ventral edges of scapes． mid and hind basitarsi，narrow subapical bands on melasomal terga（Fig．13；sometines faint or incomplete especially medially）．For legs （hargely）and mid femona and tibiae anterierly yellow－brown．Hind margins of metusotnsl zerga translucent pale bruwn；memaning hreas black or blackish brown．
Femaic，Body length 4．3－5．5 mm；head width $1.1-1.2 \mathrm{~mm}$ ．

Head form similar to that of male：flagella 64% as long as loead wideh：mandihtes tri－ dentate but not constricted subapically： metasnma elongate．the 6ih lergum with bi－ dentate uper and as pair of obtase lateral prominences（Eig；5），
botcegument scuptured as in male．
Pubescence much as in male but bristle－like setse oceur on hind margin of 3rd metakomal tergum and dorsal area of 41 h ．

Coloration differs trom that of male as fol－ lows：dypeus with a full－fength while T－shaped stripe partocular areas without white spots； labrum entirely brownistr；legs lacking yellow． brown coloration．

Thu specific name，derived froml Lan and meaning＂bristly＂．alludes to the setation of the rnetasuma．

Distribution

Lowlands of southern South Allstralia（West to spencer Gilf）and of south－Eistern Queens－ land．
Specimens examinedt the bololype and the follow． ing．OLD： 1 t． 2 miles（ 3.2 km S．of Nanango， 7．x．1968，on Hatitemtersia（HC），！ゴ． 3 \％ 3 miles（ 4.8 km ） N o of Peregian Beach Inear Nposil
 50，Glenelg North（duncs），Adelaide．24．8．1963． （6．xi．i． 1964 and 14－16．i．1965，on nigface and Whaterbergia fowes（ILC）：I O，Mambray Crech Rail Siding， 13 －xi－1970 ex pithy stem（SAM） 3 fo 3organ，18－19．xii．1963 on Wiblalentergia（IIC）： 13 e（paratypes）． 17%（alotype and matatypes）， West Beach，Adelaide，same dasa as for holotype （ANIC KU，SAM）： 1 \＆ु， 3 品 West Beach． Adelaide 5 and 24．ii．1965，37．ir．1965，on．Wahlen－ hergia and ex bollow stems（HC）．
lixomecura（Exncurella）tridentata n．5p．

FIGS 1，10，12，16，19－30

Types
Holdype：З＂（SAM， 1 20963），Lake Gille National Park（136＂46 R， $33^{\prime 2} 2^{\prime} S^{\prime}$ ）S．Aust． 34．xii．t973，ex short tumeel in ewig of 7etero dendren．
Allolype：早 in SAM．Paratypes： 39 है， 29 Q in

Diagnosis：E．tridenatas differs from atl other Exomearella ats follows．Costal margin of 2rad cubinal ecll of fure wing equal to or slightly longer than Ist uansyerse cubital vein（Fig 1）；seapes reaching to above jevel of median ocellus；male with swollen compound eyes and relatively narrow face（Fig．19）and fore legs conspichously elongated；femate with angutar genac（Fig．12），mandibles constricted sub－ apicalty（Fige 10）and 6ih metasomal serguti with non bifiu apex（Figs 2t．25）．

Desrripsion

Male．Body tength 4．5－4．9 mm：head width $1.6-1.9 \mathrm{~mm}$ ．

Head capsule 7．3x as broal as long：como pound eyes strongly swollen so that face ap－ pears sunken between thein：face narrowed to about 1／4 of head width（Fig．19）：ocelli relatively Jarye（about $1.4 x$ as wide as antennal sockets）；genae viewed laterally（Fig．16） muct narrower thas compound eyes and not angular：seapes stender，reaching to just abouve

Figs 20 29. Exoneurat (Exhaturella) tridentata female. Figs 20, 21. -Head capsules (anterior views) of smallest and largest known specimens respectively, drawn to same length. Figs 22, 23 , Smallest and largest known specimens respeclively (dorsal views) (antennae and legs omitted, fore wings represented by broken lines). Figs 24, 25.-Sixth metasomal terga (dorsal views) of smallest and largest known specimens, respectively. Figs 26, 27. -l.eft halves of fourth metasomal sterna (dorsal views) of smallest and largest known specimens, respectively, drawn to same length. Fies 28, 29. -First metasomal terga (dorsal views) of smallest and largest known females, respectively, drawn to same size to illustrate differences in surface pitting.
level of median ocellus; llagella relatively short, $1 / 2$ as long as head width, all segments but apical one broader than long; fure legs very slender, the tiblae 5 s longer than wide; hind femora unmoditied; costal margin of 2 nd cubital cell of fore wing equal to or longer than 1 st transverse cubital vein (Fig. 1); metasoma relatively short broad and depressed.

Integument of face smooth but dull with close small pitting on clypeus; scutuin and scatellum glossy with very sparse fine pitting; mesepisterna dulled by shaltow coarse pitting; anterior half of 1 st metasomal iergum glossy and impunctate, the posterior half and most of tergum 2 pitted and finely roughened, dull ex-
copt Iaterally; tergum 3 shiny but coarsely pitled; terga. 4 to 7 duller with fine reticulate sculpture.

Pubescence white, fairly long and sparse generally, densest on clypeus, posterior of head, sides and venter of thorax, sides of propodeum, hasal areas of legs und 1 st metasomal tergum.

Colour black generally except for the following: clypeal mark (Fig. 19), ventral edges of scapes, patches on tegulae and wing bases and spot at base of each tibia white to cream; apical portions of femora, all tibjae and tarsi orange-brown; wing veins and ventral surfaces of flagella brown.

Female. Size catremely wapiable; body length $4.8-10.0 \mathrm{~mm}$; heth wisth $1.3-21 \mathrm{~mm}$.
Heall (viewes anteriorly) grading from faitly round in small females (Fig. 20) to rather quadrate in large remales (Fig. 21): accordingly ate inner orbits vary from slightly converging to slighlly diverging below: genae (siewed lateruliy) almost as wide as compound eyes and very angular. especially in large specimens (Fig. 12); scapes slender and reaching median ocellus: Ragella 655 as long as hend width; labrum with a stout carinate median tubercle; mandibles wridentate, stronsly constricted subupically (Fig, 10); legs not as stender as thove u[mate: metasoma elongate and rather parallel-sided, more so in large females (Figs 22. 23); 6th lexgum upturned, slightly to strongly concave doraally, rather riangular with small lateral projections in small females (Fig. 24) gradine to quadrate in Jarge lemales (Fig. 25).

Integument largely glossy with few scattered smill pies dorsal and lateral areas of propodeum dull with fine noughening; 1st melas somal tergum of small specimens with relatively sew pits concentrated along posterior margin (Fig. 28), of larger specimens with numenous coarser pits some of which exceed the ocelli in size and many of which coalesce fo form an irregular emargination posterionly (Fig. 29): more apical terga with sparse miedium pitting and fine reticulate sculpturing, simagest on terga 4 ta 6 . Pubescence gencrally sparse, white and inconspicuous, longest on sides of metasoma and hind tibiaed dorsal areas af metasumal tesyar lacking thickened of cunsрісибиs setac.
Heal and body black! tlypens with a fulf length T-shaped white mark: labrum, mandibles and lege largely of wholly orange-brown; medium and large females usually have diffuse orange-brown palches on mesepisterna, metasternum and anterior metasomal sterna.

The specific name refers to the 3 -pointed margin of the 6 th metasomal tergum of the female.

Diswifution

Semiarat regions of Suuth Atustralia and southern Western Australia sthe mallec EncoIrphas hell and bordering areash.
Spreimens examined. The holotype and the fallow ing, S AUST.: 1 © and 14 \% (all gratalypes). Corunna Hills, N . of Tran Ḱnob, 19.iv.1971, ex nest (SAM): 4 I, S. of Iron Haron. Eyre reninsula, 30×1.1971. an timemophia (HC): 40 B (naratypes), 26 of (including allotype and 22 paratypes), Lake Gilles National Park. 30-31.2ü. 1973.

11-16iv.1974, 14-17.vi, 1974, 29.viii-1.ix, 1974 and 27.x.1974. ex nests in hollow /iperodendion twig: C. A. \& $\boldsymbol{C}, \mathcal{K}$. Henston (ANIC, HC, KU and SAM -some in aleohol); 1δ (paratype), 3 i, northern
 ex hollow Heterediendrom twigs, Ci, A, \boldsymbol{X}. \mathcal{E}. Honsron (HC, SAM):79.8 Eniles (13 km) F. of Poocheral 8.i. 1970, on Metuteuca puhescens (HC) 1 ㅇ, 29 km NNW. of Pt Augusta, 29.ix. 1972 , on Myorverun (SAM): 3 P, 2 miles (3.2 km) N. of Fort Germein, 2i.1470, on Lorumbus miruculosus and Mchaleucu pubescens (IIC): 14.30 miles (48 km) NNW. of Renmark, 23.i.1972, on malle Eitcutyptise ISAM), W, AUST.: 13.27 mites (43 kim) W: nf Cirolgurdie. 18,i.1970, on Eucalophas (HC)= ? fini.1974. K. I. Richurds (WADA): 1 O. \AA miles (13 km) S. of Wanuo, 7. $\mathbf{2}$ 1974. $\mathcal{K}, \boldsymbol{r}$, Hichonds (WADA).
siac-correlated sedriotion in E. Eridentata
As toted in the above description. females of ε_{0}. Aidemata vary marhedly in size and fotm and slightly in coloration. Some of this variation is correlated with size and since it is significant in ictus of the bionomics of the bees it is detailed below.

Individual size has been judged ncconding in heid capsule swidth. Mcasurements of Fore wing lengths wete madc but pruved unnecessary since the ratio of fore wing length to head width remained approximately constant over a range of measurenments.

With increasing size, the following changes nccur.
(1) The heate cupsule becomes increasingly more quadrate, the inner orbiss changing from sliuhtly canverging to slighty diverging below thit the clypeus becoming wider relative to its Iength (cf, Fige 20, 21).
(2) The metasoma becomes retatively fatger (especially in length). In the smallest females the apex of the metasuma does not extend beyond the tips of the reflexed fore wings whelcas in the largest females it protrudes beyond them by about 1/3 of its length (cr. Figs 22, 23). This jucrease in relative size is sot due to extension of the telescopic segments but reflects an increase in size of all the component parts including the sting.
(3) The latero-apical projections of the 6th nectasomal tergum become relatively larger, more obtuse and further :apart (cfFigs 24, 25). This variation is quantificed in Figure 30.
(4) The 1st metasomal tergum hecrmes increasingly more coarsely and decply pitted and in the larger females the pits atong

Hir, 30. Allometry is females of Exonetrat (ExoMeupelld) seducntatio. Scatter diagram showing how relative widl or apex of sialh metasomial tergum increases with size of individual. The namber of individuals tapresented by spots increases with their size in the ordet $1,2,3,4,5,6-10$, $11-15,16-20$ and $21-25$.
the posterior margin coalesec to form an irregular emargination (cf. Figs 28, 29).
(5) The integument of the metasoma becomes relatively thicker and more brittle and the apodemes become relatively larger (cf. Figs 26, 27) - The sturdier anterolateral apodemes are associated with selatively larger extensor muscles.
(c) Orange-brown patches with diffuse borders appear on the thorax and metasoma of medium and large females. They oceur on the mesepisterna, mesosterna ind anterior metasomal sterna. The larger the individual. the more extensive are the maculations.
(7) A small median spinc develops from the gradulus of the 4th metasomal tergum in medium and large females.

This variation appears to be unique amongst allodapine bees tund in the family Anthophoridae as a whole, Michener (1965a) discussed size variation amongit females of the social Australian hee, Exoneura (E.) variabilis Raynient, In this species, egg layers average larger than workers but no structural differences or allometry has been seported. The degree of size variation in this species is also less than in E: iridentala, the largest known fenales baving head widths only 1.28x as great as the smallest temales (cf. 1.54 x in E. ridentata):

THE IMMATURES

The inmatures studied wore preserved by dropping them live into either Kahle's solution of 75% ethyl alcobol and were stosed in the latler.

Syed (1963) described a larval instars of E. lawsoni from preserved material and Michencr (1964) deseribed and figured live specimens of prohable 2nd, 3 rd and 4 th instars as welt as the egg prepupa and pupa. However, the identity of the materiat studied and described by these unthops is subject to a litule uncertanty hechuse a few of the nests from which it was serived have proven to belong to EF setosa (C. D. Michener-personal communication), Professor Michener confirms thal the bulk of the adult material on which he based his 1964 studies is clearly E. lawson and in all probability the limmatures described by him would be of the same species.

Four morphologically distinct Tarval instars can be recognised in each of the known species of Exonetrella without recnurse to histograms of head width freqnencies. Indeed, with Exonetura tridentata there is such marked size variation within cach instar and such wide nverlap in size between them that the histogram of head width frequencies was of no help at all in determining the number of instars.

The terminology employed in the following descriptions of larvae follows that of Michener (1953).

Figs 31-42. Immatures of Exontura (Exonetrella) premuphila. Fig. 31-Egg. Fig. 32.-First instat partly enclosed in chorion (left Lateral view). Fig. 33--Second instar wih chorion still attached (left lateral view). Fig. 34,-Ventral view of head and fore bady of second in-star- Figs 35, 36.-Ihird and fourth instars, respectively (left lateral views). Fig. 37.spiracle of fourth instar. Fig. 38.- Head of fourth instar (anterior view). Figs 39. 40.-I eft mandible of fourth instar. anterior and ventral views, respectively. Fig, 41.-Mouthparts of fourth inslar (posterior view). Fig. 42.-Female pupa (left lateral view).

38

FIGS 31-42

E. (E.) eremophita

Byg. (Eig. 31)- About 41 mm tung and 0.4 mm is masamume width; white, salage-shaped and with a cosare reticutate sculptungeach end the middle partion being tuberculate.

In some eggs from Quensland nexts the sculpturing was weak or absent.
first instar:-(Fig 32). Remains almost wholly sithis chorions head of very sinple form, lacking lateral lobes, antennac and setac: mouthparts hardly developed, lobe-like and probably non-functionall bouly sac-like without obvicus segmental lines, tubercles or setae.
Second instar,-(Figs 33, 34), Chorion remains attached to abdoment head relatively hroader than in $18 t$ instar but with no obvious lateral lobes: antennae well-developed, capitate and laterally directed; mouthparts sell-deveInped and functionat: head capsule with numerous moderatcly long setae; body without stac and distinct segmental lines but with 4 tubercles each side anteriorly and a miducosal tubercle or prothorax.
Third instive- (Fig. 35), Entirely itee of chorion; head relatively very broad with wedt developed ventrolateral lobes; antennas very slender and acute apically; body gently eurved with distinct intersegmental lines, no anterolateral tuhercles or ventrolateral swellings but prothorax with a distinct midtorsal rubercle; anal slit moderately deeply incised: setac numerous on head and body, longest on sentrolateral lobey of head; patches of small setae occur dorsally and Jaterally on the prothorax, laterally on the foltowing of segments and rransverse rows of short stiff setac occus dursolaterally on the 2nd to 121 h bouly seg. ments.
Fourth instar.-(Figs 36-41). Head relatively very broad wift conspicuous venrolateral swellings and slender acuterantennae (Fig. 38) ; labrum bilohed apically with a few sensoria, not delimited from distinctly sunken clypeal region; manditles slemter apically with only a lew minute spines subspically and a single sensurium ventrally (Fig 39, 40): makillae thorter than labium, their palpì consisting of indistinct tubcrcles beating a few sensoria (Fig 41); labium bearing tubescle-like palpi latero-apically; body strongly bent at 51 h abdominal segment (Fig. 36); prothoras with in obtuse mid-dorsal tubercle: interscgmental lines weak; yentrolateral bouty stwellings absent; terminal segnent of abdomed strongly fateradly
compressed with anal shit deeply incised; setafion much as in 3rd instur but all hody seements have ventrolateral patches of sctac; atilial anki primary lrachical uperings of spiracies circulat atria without spines but with a few branching and arastonoosing sculpural lines: subatria relatively fong (Fig. 37).
Prepirpa--Similar to the instar except that the body is straight ant swollen anteriorly.
Pupha-(Fig. 42). Conforms cssentially to features of the adult but the following special pupal structures were noticed: all coxae with venterapical spines (very short and inennspicuous un mid and hind cosae of fernales): vertex (across full width). interantennal area, upper, minddle and lower clypeus with enuremely long setae; 2nd to 5 th inctasomal segments also with 2 or 3 long setae each side; in same specimens the more apical metasomal terga bear a few tiny setac darsally.
Matarial cxamined.- 155 eges. 109 tarvac and prepupac and 46 pupae, New Kalamurina HS, S. Alisi-, 9-11.lii.1972, ex. dead stems of Myilacephalles: 7 egge, 48 larvae and prepupae and? gupus, 4.8 lim W of Windorah. Old, 17.sv. 1964 . cx desd stems of Cromalaria.

F. (\mathbf{F}_{n}) setoss

E.g.-(Fig. 43). About 1.0 mm long and 0.4 mm in maximum width; white, кausageshated and with a reticulate scupoural patem (finer than that of E. eremophiter eggs.)
First instar:-Nol ohserved.
Sersond insterr.--(Fig. 44). Similar to that of E. erenophilt except that antennae pre not capitate; ist and 2nd body segments with a few small setue dorsally.
Thired instar,-($\mathrm{Fig}, 45$). Similar to that of E. anemsophila hus with more distinct intersegmental lines and moderately developed ventroluteral hody swellings. Of 4 specimens examined. 2 lacked dorsal abdominal setae and 2 stightly larger ones hat setate on all but the terminal segment
Foturt instar-(Fig. 46). Generally similar to that of E. eremophiin except as folluws: interscgmenial lines more distinet ventrolateral swellings moderatcly developedi 5th abdominal segment slighly more poluheiant dorsally, labial palpi situated more posteriorly on labium and further from apex.
Prepupa-Like 4 th instar but body straight and swollen anteriorty.
Puph.-Gencrally similar to that of E. eterne. phile (allowing for differences correlated with

0.5 mm

43

Nigs 43-46. Immatures of Eronedur (ExOnewrella) setosa, Fig. 43.- Ege, Fig. 44.-Second instar in left lateral (upper) and darsal (lawer) views. Figs 45, 46.-Third and fourth instats, respectively (Ieft Jateral wicws).
adult form) ; 3rd to 5 th metasomal terga with a few short setae dorso-apically,
Material examined-21 eggs, 32 larvac and prepupace and 12 pupae. West Beach, Adelaide, S. Aisti, Fcb,-Oct. 1965, ex dead stems of Euphorbia, 14 eggs, 28 larvae and prepupae and 3 pupuc. 4.8 km N. of Peregian Beach, Qld, 9.xii. 1966.

E. (K_{4}) tridentarta

Egg.-(Fig. 47). Size variable ranging from $1.3-2.0 \mathrm{~mm}$ in length and $0.43-0.70 \mathrm{~mm}$ in maximum width; white, sausage-shaped to clongate ovoid; chorion entirely smootl to finely granular (except at the ents).
First instar-(Fig. 48). Remuins largely within chorion; head capsule smooth and appoximately circular in anterior views anternae, mouthparts and setae absent" body sac-like without intersegmental lines, lubercles and setac.
Second insiar.-(Fig, 49), Retains chorion on apex of abdomen* head broad with distinet lateral lobes which are usually reflexed against sides of prothorax; antennae absent, mouthparts acveloped and functional: body sausageshaped, curved, lacking tubercles and with weak intersegmental lines; head with numerous sctae, longest on vertex where they are thick throughout their leogth; body lacking setae.
Third inskar.-(Fig. 50). Head relatively extremely broad with laterally extended lobes: antennac present, relatively short (compared with those of other Expnewrella) and medially ulicected; body curved, without tubercles (except. dorso-apically on terminal segment) and with weak intersegmental lines; head with almost a complete covering of short hlunt setae; body without setae.
Fourth instar-(Figs 51-56): Head with exceptionally large quadrate lateral cxicnsions (Fig. 53), antennae short, slender, acute and unedially directed; labrim broad and bilobed with several sensoria ventrully (Fig. 56), not delimited from clypeo-frontal area; mandibles (Figs 54-56) slender, tapering and compressed apically, cach with is pair of sensoria ventrally but lacking spines; labium rounded and lobelike, bearing 2 patches of sensoria which may represent obsolescent palpi (Fig. 56): a transverse, laterally projecting lobe behind the labium probably represents degenerate maxilac (Figs 53, 56): body strongly hent at 5th abdominal segment which, like the 6th, bears 2 promineut dorso-median tubercle (Fig; 51); 7 th abdominal segment with in small dorsal tubercle; terminal abdominal segment broad

Figs 47-56. Immatures of Exoneura (Exoneurella) tridentata. Fig. 47.-Eggs showing extremes of form and sculpturing. Figs 48, 49.-Firsi and second instars with chorion attached (left lateral views). Figs 50,51.-Third and fourth instars, respectively (Ieft lateral views), with enlargements of capitate seta and spinose apical tubercle. Fig. 52.-Spiracle of fourth instar. Fig. 53.-Head capsule of fourth instar (anterior view). Figs 54, 55.-Left mandible of fourth instar in anterior and ventral views, respectively. Fig. 56-Mouth parts of fourth instar (ventral view. L, labrum; LI, labium; M, mandible; MX, maxilla?). Figs 48-5I are drawn to same scale.
with a moderaticly farge spinase tubercle just above the anus (Fig. 51); head with monerous shogi obtust setae body with short setue disposed in transwerse bands on prothoracic to 4th abdominat segments and small dorsal patches on the 5th lo 9 th. relatively large thick capitate selac occur ventrally is clusters on the metatlioracic to 2nd abtominal seyments and singly or elusterted laterally on the mesothoracie to tith abblominal segments; spiracles (Fig. 52) not protruding above body wall: athial ant primary ftachead openings circular; atria subspheroidal without spines or other sculpture, subaitria slender with about 18 annulations.
Prepupa-Similat to 4th instar but body straight, swollen antetionly and with reduced dorsal tubeteles.
pupa-Similar to that of $E_{\text {a }}$ eremopliles diflering as follows. Head with fewer setae, it puir heing silluated low on the clypeus and several across the vertex. the more lateral ones being much fonger than more medial ones: metasoma with short setale dorsally on segmenis 2.5. (females) and 2-6 (males) (in addition to the long lateral setae).
Matreial examined. $200+$ Eges 125 larvae and nrepupae and 73 mynae, Lake Gilles National Park. S. Aust., $30, x i i i=1973-27, x, 1974$, ex desd slems of Heterodemuran aleffolium.

Discussion

Regarding adut foutures, the 3 new species agrec almost totally with the diagrosis of Fxoneurelfe given by Michener (1965b, p. 2231. The uoly points of disagreement relate. 10 E. sridentata! in this species tife eyes of mates are conspicuously swollen. the aper of. the 6 th metaronsal tergum of temates is simple. net bifid, and the costal margin of the 2hd cubital cell of the fore wing of boin sexes is at least as long as the lat transverse cuhtital vein, not muelk shorter, In these respects E. stidentata is rather more like bees of the subgenus Exomema than are other Exonemella. It is also unlike its closest relativer in the enn. strieted mandithes, angular genac, pronounced sice vatiation and allometry of females.

Eges of Exoneurelfa are unusual amungst those of allodapines (Michener 1973, p. 281) in having sculplured charions. The sculpturing forms a delicate reticulum in E. lawsoni and E. wetosfa, fine granules in E. Iridemata (absent in some specimens) and as eambination of catarve teliculum and sistinct tubercles in E. eremopilta.

Similaritics in larval form between the 4 species of Exonearalla conespond to similari. ties in aduh form. Thus, larvac of E. serosa are mast like darvac of E. Zawsing as described and figured by Michener (1964. pp. 422-424. ligs (3-20) and larvae of E - cremaptrita difficr from these 2 species in only a few minor features. On the other hand, larvare of 8 . tridentate are highly distinctive: the head cap. sule of 2nd to 4th instas is extratodinarily froduced and guadrate laterally, the anlemmae are comparatively liny, the maxillae and laburn are strongly modified, and instars lack Jateral body tubencles bur 41 in instars have large dorsal tubereles on the 5th and 6ith abdominal scements, spiny apical lubercies and peculiar thickened sctac on the thotacte and anterior abdomintal scyments.

The fcatures which will distinguish Exomeurelfa larvae from those of other groups are the following. Head capsule (of more mature instars) relatively broad swith distinct hairy ventrolateral or laleral expansions: antennae (except in E. ridentata) of 2nd to 4th instars relatively long slender apically, thickened basally and directed anterolaterally; no separation of clypeus and Jabrum; mandibies strongly tapcred with slender simple apiees; body of 42 h instar conspicuously bent at 5 th abdominal segment which prolnudes dorsally: 3 rl and 4 th instars lacking lateral or ventrolatcral extensions of hady segments such as necur in other Exoneura (Syed 1963),

The puage of Exoncurella ditfer from species to species in conformity with adult difrenences bul otherwise are faitly uniform. Of The various specialized pupal strutiures occur. ring in Apoiden (Michener 1954) the only ones occuring in Exonemella ate long thick setae on the head and metasoma, tine shost setse on the metasomal lerga, and coxal spines Michener (1964, p. 424) remarks on the absence of cuxal and trochanteral spines in E. lawsoni but I have seen no material which could confirm this. Specifice differences werc ooted in the number and arrangement of setae.
Exoncurcla. originally establishod as a genus, was relegated to subweneric status in Michener's (1965b) classification of Australian bees fut has continued in receive generic slatus (Michencr 1971, 1973). The taxon with its new additions nemains distinctive and well defined. I consides it a purely abitrary maller whether one recognizes it at generic or subgencric lavel and have preferted to inllow

Michener's (1965b) arrangement since it cxpresses the obvious affinity between Exoneurella, Exonemra s. str. and Brelineura.

Acknowledgments

I wish to thank my wife, Carol Houston, for assisting with collection of some of the material described below, Ms J. C. Cardale
(ANIC) for providing some critical details of the type specimen of Exoneurd lawsoni, and Professor C. D. Michener (KU) for advice concerning material used in his studies of Exonevrella.

Some of the material listed herein was collected during field work funded by the Royal Society of South Australia.

References

MICHENER, C. D. (1953),-Comparative morphological and systematic studies of bee Larvae with a key to the families of hymenopterous Jarvac. Univ. Kans, Soi. Bull 35(8), 987 1102.

Micifener, C. D. (1954).-Observations on the pupae of bees (Hymenoptera: Apoidea). PanPacif. Ent. 30(1), 63-70.
Michener, C. D. (1963), -New Ceratinini from Australia (Hymenoplera, Apoidea). Unir. Kans. Sci, Bull, 49(7), 257-261.
Michener, C, D. (1964).-The bionomics of Exoneurella, a solitary relative of Exoneura (Hymenoptera* Apoidea: Ceratinimi). PacifInsects 6(3), 411-426.
Michener, C. D. (1965a). -The life cycle and social organization of bees of the gerus Exoneura and its parasite, Inguilina (Hymenoptera; Xylocopidac). Univ. Kans, Sci. Bull. $46(9), 335-376$.

Michener, C. D. (1965b).-A classification of the bees of the Australian and South Pacific regions. Bull. Am. Mus. nat. IIist. 130, 1-362.
Michener, C. D. (1971)-Biologies of African allodapine bees (Hymenoptera, Xylocopinae). Bull. Am. Mus. mat. Hist. 145(3), 219-302.
Mtchener, C. D. (1973),-Size and form of eggs of allodapine bees. J. cht. Soc. sth Afr. 36(2), 281-285.
Rayment, T. (1946).-New becs and waspsPart II, Victorian Nat. 62, 230-236.
Smiti, $\mathrm{F}_{+}(1854)$-"Catalogue of hymenopterous insects in the collection of the British Museurn. II." (British Museum: London.)
SyEd, I. H. (1963).-Comparative studies of larvae of Australian ceratioinc bees (Hymenop(era, Apoidea), Uhu. Kans. Sci. Bull. 44(8), 263-280.

FAULTING CONTEMPORANEOUS WITH UMBERATANA GROUP SEDIMENTATION (LATE PRECAMBRIAN), SOUTHERN FLINDERS RANGES, SOUTH AUSTRALIA

by P. S. Plummer** and V. A. Gostin*

Abstract

Summary PLUMMER, P. S., \& GOSTIN, V. A. (1976).-Faulting contemporaneous with Umberatana Group sedimentation (Late Precambrian), southern Flinders Ranges, South Australia. Trans. R. Soc, S. Aust. 100(1), 29-37, 28 February, 1976. Interglacial sedimentation within the Late Precambrian Umberatana Group (Adelaide System) was greatly influenced locally by contemporancous faulting along the Spring Creek Mine Fault. Stratigraphic study both sides of the fault and of the fault zone has revealed a variable sequence of elastics and carbonates. Lithological correlation across the fault zone suggests two periods of faulting contemporaneous with deposition, followed by a phase of downwarping of the area north of the fault along a hinge line coinciding with the earlier fault zone. This activity resulted in a thickness increase of approximately 750 m in the sequence north of the fault when compared with that of the more stable sequence to the south. Three varieties of stromatolites occur within the area studied, displaying distributions which were influenced by varying water depths. Palaeoenvironmental interpretations based on yertical and lateral lithological associations, palaeocurrent analysis and studies of the contained stromatolites reveal that sedimentation south of the fault occurred within shallow marine, intertidal and supratidal environments resulting from the prevailing regional regressive-transgressive-regressive marine cycle. Modification of this cycle north of the fault zone was influenced by contemporaneous faulting.

FAULTING CONTEMPORANEOUS WITH UMBERATANA GROUP SEDIMENTATION (LATE PRECAMBRIAN), SOUTIIERN FLINDERS RANGES, SOUTH AUSTRALIA

by Pas. Plummer and V. A. Gustin*

Abstract

Summary Flummer, P. S., \& Gostin, V. A. (1976).-Faulting contemporameons with Umberatana Group sedimentation (Late Precambrian), suuthern Flinders Ranges, Soulh Australia, Trans. R. Suc. S. Atust. 100(1), 29-37, 28 February, 1976. Interglacial sedimentation within the Late Precambrian Umberauna Group (Adelaide System) was greatly infiuenced locally by contemporaneous faulting atoty the Spring Creek Mine Fault. Stratigraphic study both sides of the fault and of the fault zone has revealed a variable sequence of clastics and carbonates, Litholugical correlstion acrosy the fault zone suggests two periods of faulting contemporaneous with deposition, followed hy a phase of downwarping of the area north of the fautt along a hinge line coinciding with the earlier fault rane. This activily resulted in a thickness increase of approximately 750 im in the sequence north of the faull when compared with that of the more statle sequence to the south. Throe varieties of stromatolites occur within the area stodied, displaying distributions which were inlluenced by varying water depths.

Palaeoenvironmental interpretations based on vertical and Iateral lithological associations. palaeocurrent analysis and studies of the contained stromatolites revent that vedimentation south of the fault occurred within shallow marine. intertldal and supratud envimaments resulting from the prevailing regional regressive-transgressive-regressive marine cycle. Modifiction of this cycle north of the fault zone was influenced by comermporaneous faulting.

Introduction

This paper deals with Umberatana Group sedimentation ini a region of contemporaneous finlting on the western flank of the Finders Ranges, 12 km NNW. of Melrose (Fig_{1} 1), This is in the southeast quadrant of the ORROROO 1:250,000 geological shect mapped by Binks (1968). Deposits of the Sturtian and Blatina glaciations form the basal and capping components, respectively, of the Umberatana Group. The intervening period is represented by a variable sequence of clastic and carbonate sedinents of non-glacigene osigin. (Thomson 1969).

The study area is divided by a fisult cone into two subareas of differing stratigraphics, These reffect penecontemporaneows movement on the east-west Spring Creck Minc Fault (new name). The regional pattern of the area was one of a regressive-transgressive-regressive
marine cycle. represented hy the stratigraphy of the southern shbarea (Fig. 7), However, foult rupture and subsequent subsidence north of the fault zone produced a short transgression within the initial regressive phase, but the main sedimentation cycle regained dominance as the sedimentation rate exceeded the rate of subsidence.

Time-stratigraphic relationships, as shown in Fig. 7, are based on the assumption that the fault zone can be interpreted as in Fig, 5. The rature of outcrop is not sufticent, however, to fully confirm this interpretation and the possibilify of complex fault klices of the stratigraphy contuined within the faut zone is not discounted.

Stratigraphic nomenclature (Fig. 2) is that of Thomson et al. (1964) and Thomson (1969). Detailed yeology is deseribed is Plummer (1974) ${ }^{1}$.

[^2]

Fig. 1. Generalized geological map of the Umberatana Group in the study ared.

Lithologies

Fig. 2. Stratigraphic nomenclature and general stratigraphic columns of the two subareas divided by Spring Creek Mine Fault. Thickness variations controlled by subsidence north of the fault.

Fig. 3. Diagramatic facies sketh of the tase and edge of a stromatolite bioherm, Midde Brighten Limestone, southern subarer.

Sedimentation prior to faultimg

Following the Sturtian glaciation, interglacial sedimentation began in a marine basin helow The wave base, oulside the zone of cathonate deposition, and under reducing conditions, The ecsultant lithologies, namely black, finely laminated pyritic quarizose shales grading upward into well laminated dark grey quartzose sildstones, form the Tapley Hill Formation (Howchin 1904: Thomson et at. 1964). Gradually the sediment surface rose into the pone of cathonate deposition, resulting in an increase in carbonate content toward the top of this tormation. Eventually carhonate becanse dominant as a well laminated dark grey silty limestone was deposited (basal Brighton Limestone-Howchin 1904). Above this, the presence of large dendroid branching stromatolites, set in a blue-grey limestone, testify to the basin floor rising above the level amenable to stromatolite growth. Current activity during this initial period of uniform sedimentation was minimal. the dominant direction indially boing from the noth-west, but later swinging to how from the soult-west (Fig. 6). A gradual increase in current intensiiy is suggested by the change from rare small crosslaminations (tower Tapley Hill Formation) to more common shallow ripple marks (basal Brighton Limestone).

Faulting with sedimentation

Movement along the Spring Creek Mine Fsult ended Lower Brighton Limesione sedi-
mentation and produced variations in lithn. logies across the faut. A sketch of the fauit zone is shown in Fig. S. Tentative correlations of rocks in this zone with adjacent lithologies suggest two periods of faulting (Fig. 7), the total stratigraphic throw being approximately 750 m . Fatilt-zones facies 1 (FFi)-a dark grey micritic limestone (breceiated in places), with stromatolitic limestone megaclasts (up to 0.5 mm long) of the previously deposiled Brighton Limestone-suggests initial rupture along the fault, whereas subsequent facies lacking megaclasty (and FF2 lacking brecciation) imply warping due to very gradual subsidence.

Southern Subarea

South of the frult, shallowing steadily continued. At, or just after the time of initial fuulting, the blue-grey stronatolitic limestones of the preceding period grade slowly upward into massive decp reddish-purple intra-formational limestores containing abundant bulfsellow stromatolite bioherms, displaying large furcate to smatl digitate branching columns, as the sedimentation sufface tose into the zone of wave agitation, oxygenation and tidal activity.

Within these bioherms. a zonation based on stromatolite morphology occurs (Fig, 3), suggesting a series of growth stages resulling from energy fluctuations within the depositional environment, indicating emergence of the bioherms through the intertidal zone in the following manner:
(a) hasal stratiform mats Irapped sedimend forming a stable layer within the high-

Fig. 4, I'epee structure, Upper Brighton Limestone, northern subarea.
energy subtidal to low intertidal zonc;
(b) 'large' columns (7-20 cm wide) then developed within the lower to midule intertidal zonc. Abundant carbonate makes, originating from disruptive wave and tidal action, lodged between these columns:
(c) 'small' columns ($2-5 \mathrm{~cm}$ wide) cap the bioherms in the high intertidal zone. Rare disruption of Jaminac, or an efficient drainage of debris from the intercolumn maze explains the relative lack of carbonate flakes in this \%one: and
(d) stratiform layering on the bioherm Manks encasing both facies (b) and (c) enhanced drainage from the centre of the bioherm.
Fault-zone facies 2, a yellow dolostone, lacking brecciation and in places sandy, suggesting yradual subsidence and warping of the still soft sediment, and FF3, a brecciated pale ycliow dolnstone, were probably deposited during this period of stromatolite proliferation.

Continued shullowing then produced a supratidal enviromment of deposition and completed the initial regressive sequence of the interglacial period south of Spring Creek Mine Fault. A purple dolostone, with disrupted
clay laminae and lenlicular beds of quartz sand, caps the Brighton Limestone. Fault-zone lacies 4 and 5-brecciated purple dolostones (with clay in the former)-are the lime equivalents of this unit, although north of the fault these two facies possibly represent the time equivalents of two very different lithologies (uppermost Brighton Limestone and Argepena Formation).
Northern Subarea
At the time of initial rupture along Spring Creek Mine Fault. the northern block was downthrown below the depth amenable to stromatolite growth, yet remaining within the zone of carbonate deposition, resulting in flaggy grey limestones bcaring a minor quartz. silt fraction. The thickness (125 m), and uniformity of this unit is a result of equivalent rates of subsidence and sedimentation. Rare large scale ripple marks (wavelength 50 cm . amplitude 8 cm) and cross-bedding (up to 2.5 m per set with foreset slopes between 15° and 40°), plus the more abundant small seale current-ripples and cross-stratification, suggest an increase in current activity attributed to the change in scafloor topography. Palacocurrent analysis reveals several modes as shown in Fig. 6. Rare lenticular outcrops of grey stromatolitic and purple intraformational limestones

Fig. 5. Facies sketch map of the fault zone, Spring Creek Mine Fault.
FF1: dark grey micritic limestone with some megaclasts, brecciated in places
FF2: yellow dolostone, sandy in places.
FF3: brecciated pale yellow dolostone.
FF4: brecciated purple dolostone with clay.
FF5: brecciated purple dolostone.
FF6: grey silty limestone.
Formation symbols as in Fig. 7.
suggest that the depths of oxygenation, agitation and stromatolite growth were almost juxtaposed.

Above this unit a change in colour and lithology suggests shallowing of the basin to an oxygenated wave agitated depositional environment, within which a 20 m thick unit was deposited. This unit exhibits facies variation from pink dolomitic oolites with birdseye structures, and sandy dolostones near the fault grading northward into white limestones with dolomite flakes, generally graded within trough crossbeds, and rare ooids. A gentle palacoslope northward away from the fault is therefore suggested. A supratidal environment followed, depositing a 5 m thick purple dolostone with clay laminae exhibiting tepee structures (Fig. 4) in the vicinity of the fault. This unit, possibly equivalent to fault-zone facies 4 (and ? 5), caps the Brighton Limestone north of Spring Creek Mine Fault as does its counterpart to the south. It therefore appears that supratidal deposition occurred uniformly over the entire area at this time, suggesting a temporary quiescence of fault activity (Fig. 7).

These purple dolostones were overlain by 350 m of the greyish-red fine sandstones of the Angepena Formation (Thomson 1969). These contain abundant purple clay laminae providing excellent bedding plane partings revealing a wealth of ripple marks and both polygonal and sinuous mudcracks. Lenses of coarse-grained rounded sand are common, often graded and draped with clay. These sedimentary structures typify a vast tidal flat to distal fluviatile depositional environment. The abundance of desiccation cracks, some reaching 1 cm in width, favours a nonmarine influence. Palaeocurrent analysis reveals a dominant easterly drainage pattern with minor southern and western components (Fig. 6).

This dominantly regressive sequence north of Spring Creek Mine Fault was then overlain by the transgressive grey-green deposits of the lowermost Wilmington Formation (Thomson 1969). Siltstone pillows in dolostone are overlain by grey slightly calcareous siltstones with chloritic wavy laminae, ripple marks and rare sinuous muderacks. These in turn are overlain by a massive grey calcareous siltstone bearing pillow structures, slump beds and lenticular beds of olive green-brown oolitic limestone. A very shallow, yet wholly submerged environment is therefore suggested. Fault-zone facies 6 , a grey silty limestone, is possibly the equiva-

Fig. 6. Palacocurrent analysis of the Umberatana Group in the study area.

Hig. 7, Time-straligraphic summary chart of lithologies, fault activity and palteoenvironments. Litholo. gies as in Fiy. 2: 'HHI Tapley Hill Formation: BI_, Brighton I imestone; AF: Angepena Formattion; WF: Wimington Furmaion; EF: Elatha tormation; L: Lower; M: Midde; U: Upper; de:

lent of this period, and represents tho final phase of faulting (Hig. 7).
South of the fault, the Angepena Formation and the two lower parts of the Wilmington Formation are absent. The contact between the Lipper Brighton Limestone and the Lower Wilmiogton Formation is nowhere visible. It is suggested that either an hintus in deposition nccurs between the Upper Brighton Limestone and I.ower Wilmington Formation, of afternatively the Upper Brighton Jimestone despusitimp continued in it restricted, stightly elevated environment, whilst to the north the much thicker Angepena Formation and the two lower units of the Wilmington Formation were laist town.

Continued warping

Deposition was dominantly terrigenous is Spring C'reck Mine Fault evolved from a zone of separation of the two subareas into a flexure with mors marked subsidence of the northern subarea. The fault zone was still a major influence of Wilmington Formations sedimentation as lacies changes and thickness variations accutred above, of immediately adjacent to it.

Massive dark grey very fine sandstones overbain by brown fine and medium sandstones of the lower Wilmingtom Formation grade southward into flagey grey siltstones supporting the palatocurrent data of at west-north-westerly source area. Widespread slumping and crossbedding within included sandstone beds imply a palaeoslope (possibly submarine deltaic) away from this source region.

The ensuing calcareous membice of the uppermost Wilmington Formation (bercin regarded as the equivalent of the Trezona Formation of Thomson es al. 1964) represenis the maximum trangressive phase of deposition. Flagey grey silty limestoncs and massive grey, in piaces stromatolitic, limestones in the south thicken rapidly north of the fault zone (by up to 5 times) and interdigitate with a buff corarse sandy cross-hedded limestone bearing ooids and imbricatel dolomite intraclasis. The repelitive nature of this interfingering, which commences directly above the fault zonc (Plummer 19741, Fig. 10), prohably resulted from fluctuating rates of sedimentation and subsidence within a shallow sea.

The final regressive coarsening upward sequence of laminated silfstones to finc and coarse sandstones suggest prograding. deltaic sedimentation. Ripple marks, cross-bedding and some slide-slump bedding support a west to east palaeoslope, (Fig. 6). Capping the Umberatana Group are the massive purple siltstones of the Elatina Formation bearing (?ise-rafted) erratics. Equivalents of these siltstones clsewhere in the Flinders Ranges are distinctly glacigene in origin (Elatina glaciation of Mawson 1949).

Conclusion

Stratigraphic study south of the Spting Creek Mine Fault reveals that a regressive-transgressive-regressive cycle of marine sedimentation took place during the deposition of the interglacial portion of the Late Precambtian Umberatana. Group. The sedimentary structures and presence of stromatolites within these sediments indicate that environmental
conditions ranged from shallow subtidal, through intertidal to supratidal, then back to a shallow subtidal environment.

To the north of the Spring Creek Mine Fault, two periods of faulting contemporaneous with deposition caused water depth fluctuations during the jnitial period of shallow sublidal deposition, then rapid shallowing through intertidal and supratidal conditions to a marginal matine (possibly distal lloodplain) environment: This fauting and later subsidence hinged along the fault zone, caused a 750 m thickening of the succession to the north of the fault.

Acknowledgments

The authors wish to thank Dr B. Daily for critical examination of this text and helpful discussion in the fich. Acknowledgment is also made to the Australian Rescarch Grants Committec for supporting the research of Dr V. A. Gostin,

References

Binks, P. J. (1968) --ORROROO map sheet, Gealogical Allas of South Austratia, 1:250,000 series. (Geol. Surv. S. Aust. Adelaide.)
Binss, P. J. (1971), The Geulogy of the ORROROO 1:250,000 map area. Rep: Invest. geoi. Surv.. S. Ahst. 36.
CoATS, R. P. (1973),-Explanatory notes for the COPLEY $1: 250,000$ geological map, Geol. Surve S. Aust.
Forbes, B, $\mathrm{G}_{\mathrm{o}}(1971)$ - A table of Adelaidean and Cambrian stratigraphic names. Quart. geol. Notes, geol, Surv, S. Aust. 38.
Howchin, W. (1904). -The geology of the Mount Lofty Raages, Part 1. The coastal district. Truns: R. Sue S. Aust 28, 253-280.
Howchis, W. (1916). The geology of Mount Kemarkable Trans. R. Suc. S. Aust. 40, 545584.

Mawson, D. (1949), - Ilatina glaciation; third recurrence of gluciation cvidenced in the Adelaide System. Trans. R. Soc. S. Aust. 73, 117-121.
Smith, D. B. (1974),-Origin of tepees in Upper Permian Shelf carbonate rocks of Guadahupe Mountains, New Mexico. Bull. Am. Ass. Perrol. Geal. 58. 53-70.
Thumson, B. P. (1969)-Precambrian Basement Cover-The Adelaide System. In L. W. Parkin (Ed.), "Handbook of South Australian Geology', pp. 49-83. (Geol. Surv. S. Aust.: Adelaide).
Thomson, Br Po, Coats, R Po, Mirams, R. C. Forges f. G., DLluarno, C. R. \& Johnson, J. E. (1964),-Precambrian rock groups in the Adelaide Geosyncline: A new subdivision. Quart acol. Notes, geol, Surv: S. Aust. 9.

SMALL FOSSIL VERTEBRATES FROM VICTORIA CAVE, NARACOORTE, SOUTH AUSTRALIA IV. REPTILES

by Meredith J. Smith

Summary

SMITH, Meredith J. (1976) .-Small fossil vertebrates from Victoria Cave, Naracoorte, South Australia. Trans. R. Soc. S. Aust. 100(1), 39-5 1, 28 February, 1976.
Reptile fossils have been found at Naracoorte, South Australia, in a Pleistocene cave deposit that is rich in marsupial and rodent remains. Reptile vertebrae are abundant and a few jaws and limb bones have been recovered. The diagnostic features of these bones are described.
Of the twelve reptile species present, nine still live in the Naracoorte area; they are three elapid snakes, Pseudonaja c.f. P. nuchalis, Notechis c.f. N. scutatus, and Pseudechis c.f. P. porphyriacus; and six lizards, Varanus varius, V. gouldii, Trachydosaurus rugosus, Tiliqua nigrolutea, Egernia c.f. E. whitei and a species consistent with Sphenomorphus tympanum. A fourth elapid snake represented by 40 isolated vertebrae, and a species of Amphibolurus have not been identified.
The remaining species is a boid snake, described here as a new genus and species, Wonambi naracoortensis. The eight vertebrae recovered are large, suggesting a length of at least 5 m for the whole snake. Morphologically, the vertebrae differ strongly from those of other Australian boids in having a high but back-sloping neural spine, paracotylar foramina present, accessory processes absent, and, particularly, in having large paradiapophyses that extend further laterally than the zygapophyses. These vertebrae closely resemble those of Madstoia bai Simpson from the Eocene of Patagonia, but without cranial remains of both species, no relationship can be postulated between Wonambi and Madstoia.

SMALL FOSSIL VERTEIRATES FROM VICTORIA CAVE NARACOORTE, SOUTH AUSTRALA 1V. REPTILES

by Meredith J. Smith

Abstract

Summary Smirh, Meredith J. (1976).-Small fossiI vertebrates from Victorla Cave, Naraçoorte, Sonth Australia. Trans. R. Soc. S. Anst, 100(1), 39-5), 28 February, 1976. Repuite fossils have been tound at Naracoorte, South Australia, in a Plcistocenc cave deposit that is rich in marsupial and rodent remains. Reptile vertebrae are abundant and a few jaws and limb bones have been recovered. The diagnostic features of these bones are described.

Of the iwelve reptile species present, nine still live in the Naracoorte area; they are three elapid suakes, Pseudonaja c.f. P. muchalis, Nosechis c.f. N. scufatus, and Pseudechis c.f. P. porphyrincus; and six lizards, Varanus varins, W. gouldii, Trachydosaurus ngsosus, Tilhqua migroitutea, Egerniu c.f. E. Whitei and a species consistent with Sphenomorplus tymponum. A fourth eJopid snake represented by 40 isolated vertebrac, and a species of Amphibolutrus have not been identificd.

The remaining species is a boid snake, descrihed here as a new genus and species, Wonumhi navacoortenvis. The eight vertebrae recovered are large, suggesting al length of at least 5 m for the whole snake. Morphologically, the vertebrae differ strongly from those of other Ausiralian boids in having a high but back-sloping neural spine, paracotylar foramina present, accessory processes absent, and, particularly, in having large paradiapophyses that extend further laterally that the zygapophyses. These vertebrae closely resemble those of Madstoia bai Simpson from the Eocene of Patagonia, but without cranial remains of both species, no relationship can be postalated between Wonambi and Madstoin.

Introduction

The reptile fannas of Australian fossil deposits have tarely becu completely analysed. For some deposits, the presence of unidentified reptiles has been noted (e.g. Areher 1974. Dorth \& Merrilees 1971, Gill \& Banks 1956, Lundelius 1963); for other deposits, the mosi distinctive species have been identified, but often to genus only (e.g. Merrilecs 1968: Thorne 1971). Exceptions are the carpet snakc, Python variegatus' ($=$ Python spilotus' variwsation) associated with the extinet marsupiat, Thylacoleo sp., and other marsuptal remains at Marmor Quarry, Queensland (Iongman 1925) and the sleepy lizard, Trachydosaurus rugosus, at Gore Iimestone Quarries, Queensland (Longman 1945). Remains of a large exlinet Yaranid lizard, Megalania prisca, have been found in Pleistocenc deposits in Quecnsland, New South Wales and central Australiz (Fejervary 1918. 1935; Hecht 1975).

The deposit in Victoria Cave at Naracoorte, Snuth Australia, is probably of Pleislocene age (Smith 1971). Among the large animals, extinet species are common (yan Tets \& Smith 1974: Wells. pers. comm.), but, in contrasi, the small marsupials and small birds are referrable to modern species, though not all of them occur in the Naracoorte area now (Smith 1971, 1972; Van Tets \& Smith 1974].

Fur identifying reptile species, characteristics of skull fragments, jaws and teeth are of less value than they are for mamimals. As reptiles grow throughout life and are polyphyodont, the "adulf" dention cannot be defined as it can in mammals. The variations in dentition between species in many gencra is no greater than within species: Fortunately the vertebrae of reptiles are of tliagnostic value and Auffenberg (1963) was able to identify single vertebrae of North American snakes to genus and often to species. Diagnostic vertebral characters haye

[^3]

a
Elapid

b
Varanid

c
Scincid

d
Agamid

Fig. I. Ventral (above) and lateral views of precaudal vertebrae of (a) Pseudonaja muchalis (Elapidae), (b) Vrarus gouldii (Varmidae), (c) Tiliqua accipitalis (Scincidae), (d) Amphibolurrs barbatus (Agamidae).
Fig. 3. Vertebrac of Wonambi naracoortensis are distinguished by their wide paradiapophyses (p) and presence of paracotylar foramina (f) as seen in (a) anterior view of P16144k and (b) lateral. and (c) posterior view of P16144s.
Fig. 5. The prezygapophysial facets are less upturned in Trachydosaurus rugosus (b) than in Tiliama nigrolutea (a).
Fig. 6. Distally, the fused sacral plenrapophyses are cup-shaped in Trachydosaurus rugosus (a) and T. occipitalis (b) but are triangular in T. nigrolutea (c), T, scincoides (d) and Figernia cumminshami (e).
not been established precisely for any Australian snake species (Smith. 1975). Fossil remains of lizards include not only skull boness and vertebrae but also some limb bones and some elements of pectoral and pelvic girdles, These are briefly described, and their diagnostic values assessed in this paper.

Methods

Methods of collection and prescrvation follow Smith (1971).

The present maximum depth of excavation is 80 cm , although bone chips occur in cores taken as deep as 2.5 m.

TABLE 1
Some dimensions of the holotype (P/6168) and the seven paratype vertebrae of Wonambi naracoortensis (Dimensions in mm)

	Specimen							
	P16168	P16170a	P16166	P16129t	P16144K	P16144s	1116167	P16170b
Length between zygapophyses	16.5	15.4	18.1	16.4	19.3	21.8	23.4	19.6
Height (centrum + neural spine)	32.3	34.1**	40.8 ${ }^{\text {\% }}$	33.1	38.4	37.1	41.0	36.2
Width across prezygapophyses	25.6	21.1	27.7	25.8	30.4	33.0	35.5	29.5
Width across paradiapophyses	28.5	22.3	29.7	27.7	33.2	41.1	43.7	33.0
Minimum width of centrum	18.6	15.9	21.2	19.1	22.7	24.1	27.1	21.8
Width of zygosphene	9.2	8.4	11.8	9.3	12.6	10.9	12.4	11.3
Width of condyle	10.8	8.2	10.6	10.3	12.6	12.3	12.7	12.4
Length of prezygapophysis	8.1	6.1	7.5	7.4	8.9	11.8	12.8	10.9

* Height includes length of hypapophysis.

Skull and jaw elements of all but the most robust species were rarely recovered from the Victoria Cave deposit, whereas vertebrae were common. Consequently, for the diagnosis of reptile species in this fauna, vertebrae have been considered in detail and other bones more briefly. Comparisons have been made with dry, disarticulated skeletons, and occasionally with cleared, alizarin-stained whole specimens.

Descriptive terms (Fig. 1) follow Auffenberg (1963). The "length" referred to in descriptions of vertebrae is the greatest distance from the anterior edge of the prezygapophysis to the postcrior edge of the postzygapophysis (Pr-Po of Smith 1975). The ranges of lengths are given, with mean and standard error. Measurements were made to the nearest 0.1 mm , with dial-reading, needle-point calipers. The fossil specimens are lodged in the South Australian Museum (SAM).

Results
 Family BOIDAE

Boid vertebrae lack parapophysial processes, the accessory processes are very short or absent and the vertebrae lack hypapophyses on the posterior two thirds of the precloacal column (Hoffstetter \& Gasc 1969).

Wonambi n. gen.
Definition: Vertebrae characterized by a high, backwardly-sloping neural spine; slightly upturned zygapophysial facets; large paradiapophyses extending laterally beyond the zygapophyses; and a pair of paracotylar foramina.
Type species: Wonambinaracoortensis
Content: W. naracoortensis is the only known species in the genus.
"Wonambi" is derived from an aboriginal name for the mythical rainbow serpent (Elkin 1964).

Wonambi naracoortensis ת. sp.

Holotype: SAM, P16168. A dorsal vertebra collected in Fossil Chamber, Victoria Cave, Naracoorte, S. Aust., at a depth not greater than 30 cm below the surface of the cave earth.
Definition: 'The same as for the genus Wonambi until other species are described.
Description: The neural spine is high (Fig. 2C); its anterior edge begins near the rim of the zygosphene and rises obliquely to the horizontal dorsal edge of the spine. The spine overhangs slightly posteriorly. The zygosphene is narrow (Table 1) but it is so heavily thickened that it is as deep in dorsoventral extent as it is broad. The zygosphenal facets are almost vertical (c. 70° to horizontal) (Fig. 2D). The relatively small zygapophyses are slightly upturned (c. 25° from horizontal). Accessory processes are completely absent. The paradiapophyses are large (Table 1); the upper part of the articular facet is convex and protrudes so far from the centrum that the maximum width of the vertebra is the width measured across the paradiapophyses; the lower part of the articular facet is flat. The cotyle and condyle are slightly depressed (Fig. 2A) and the top of the condyle is tilted forwards at c. 75° to the vertical. The ventral surface of the centrum is smoothly rounded, with weak subeentral ridges and a low median ridge that terminates posteriorly as a blunt haemal keel, notched in the midline (Fig. 2B).

Each foramen of the subcentral pair is located close to the median ridge at about midcentrum; each foramen of the lateral pair lies on the neural arch pillar about halfway between paradiapophysis and postzygapophysis. There appear to be two pairs of parazygantral foramina, but, as the bone is pitted in this region.

B

D

Fig. 2. The holotype of Wonamhi naracoortansis (P16168) in dorsal (A), ventral (B), lateral (C). anterior (D), and posterior (E) views.
foramind are distingushed with diffeulty fion piss. The two formina of a paracotylar pair lie elase to the rime of the cotyle near the toj) of the centrum.
Pariation: The paratype series consises of seven dotsal vertebrac: P16129t, P16144k,5, P16166Th and P1gn7na, b all but une of which were found in the top 30 cm of the cave carth of Fessil Chamber, Victoria Cave. All specimens share with the holotype the diagnostic features, especially the widely spaced paradiapophyses (Table 1. Fig. 3), The parazygantral foramina consist of a single pair which are sunk into hollows in P16129s, P16167 and P16170b; and in Pl 6144 k the single pair of zygantral foramina can be seen clearly. The haemal keel is notched posteriorly in P16129s, Pl 6167 and P16170b (ss in the holotype), these vertebrae having occurred nearer the tail than the others, ats judged from their lower neural spines. PI 6166 bears a kmall hypapophysis, and Pl6170a a longer hypapophysia
Associated materiad: A feagment (P16170c) from near the anterior ond of a Jeft maxilla with three teeth, curyed backwards. Each iooth is approximately 7 mm long.

Assuming that P16167 iepresented lite largest vetiebres of the specimen of Womanibs navarobatenasti, and assuming that the largest vertebrat of W^{\prime}. maraenorserisis and Pyifon ipilonus, respectively, occuny the samie proportion of the length of the verchral cofomin, then Plfibt would have been derived from a snake of total length about 5.0 m .
Comparisan with ather species; of the cight Australian species of Boidac. Vertebrac of Python splonis (4 specimens). Ps amethistim. (2). Limas childreni (1), Chombropyhort riridis (1) and Aspidfies melanorephatus (3) have heen examined.

The vertehrae of these extant hoids are chasacterized by the presence of small. pointed. accessury processes beneath the prezygapophyses, by having large outwardly-dinectod zygapophyses extenuling further laterally than the pucadiapoplyses (Table 2) and the neural spine hatcher-shaped, and hy the absence of paracorylar formmina. Subcentral ridges are strongly dateloped. The gencral stape of the veriebria is similar among all the spocies (Tahles 2, 3). Chondropython viridis differs in topving the neural spine bifurcate anteriorly,

Pyshort spilolus and P. umbethistinus lesemille ench other in having I pair of foramina at the base of the neurat spine, while Asplitues
melanocenhains, Chandropethon viridis nimd doñasis chiddreni lact: thls pair of foramina.

Wonambi manacuersensis: differs from all other Australian todds in lacking accessory processes, in having the neural spine sloping bitck. wards, in having weak subcentral ridges, and in the presence of paracotylar foramina, it shares with Aspidites melanocephahes. Chosdropython mhidis and liasis ghildram the absence of foramina at the base of the neural spine. The total height (relative to length) of the vethetrac is greater in W. Haracoonemsis than in other Australian boids, the paradiaporphyses extend further laserally than the zygapophyses, the condy]e (relative to vertebra length) is wider and the gygasphene (relative to vertebra length) is narrower (Tahle 2). On the other hand. width across prezygapophyses. minimum width of centrum, and length of prezygapophysis (all relative to vertebra length) fall within the ranges of the extant species, as does height/ width of condyle (Table 3).

Paracotylar foramina ure gencrally absent in extant boids, anil oceur oniy in the geners Comstrictor and Tropidophts (Boinac) and Einygrus (Erycinae) (Hoffstetter \& Guyrard 1964). They are found, wsullty the twairs, in the fossil gencra Gigantughir and Madstoiu (Hoffsterter 1961a, h), and as a single pair in $W_{\text {, }}$ murucoortensis.

Whereas the lengths of veptebrae af Wonamin Haracoorsensis \{relative to width across preaygapophyses) fall within the ranges of those of the extant Australian boids, including Liasis (Table 3), six vertebrac from the Wellington caves of New South Wales were 1nnger than vertebrac of Liaris (l.yiletker 1888, p. 256).
There is a striking resemblance hetween Wimanhi vertehrae and thosc of Mendsoio Mal (Palaencene-Eacene of Palagonia) and M, madacescarienses (Cretaceous. Madagascar) (Hoffstetter 1961a, Simpson 1933), palticu. larly in the back-sloping neural spine, broad paradiapophyses. and absence of acecssory processes. Hofistetter (1961a, b) includerl Madsooir and Gigantophis (from the Eocene of Egypr: Andrews 1906) in a sut-family Madstoinac. The diagnostic features werc: (a) accessory processes abseni; (b) a pair of para zygantral foraming present and opening into deep hallows: and (c) paracotylar foramina always present, usually as two pairs. The twe genera were distinguished by the form of the ventral surface of the cenerum. Gigandanhis hasing an undivided haemal kcel, and Mon-
stoia haying the haemal keel distinctly divided intn two. All W^{R}. Maracoortensis vertobrae confarm with character (a) and difer from other mids. all of which hiave accessory processes (Hoffstetter 1961a)", and the more posterior vertebrae conform with (b). Howeyce all the vertebrae have distinct parazygantral foramina (even though they emerge through the charucteristic deep bollow only in the posteriop vertebrac) and such foramina in modern boids are minute, irregular and insonstint (Hofistetter 1961a). W. naracoartensis vertcbrac differ slightly from (c) in having ai single pair of paracotylat foramina, but their presence at all is rare in boids (Holfsteter \& Gaymad 1964), The form of the ventral surface of W^{-}maracoortersis weatebrae ranges from hypapophysis present (P16166) or beemal keel undivided (P161292 P16144k), to harmal keel nothed (216168) and finally to haemal keel distinctly divided (P16129s and 116167), thus it encompasses the form of hoth Madsioia and Giganrophls. Mindsoia differs from Giganophis also in the greater development of neural spincs and paradiapophyses (Simpson 1933). In these features ${ }^{3}$. naracoortensis closely resembles Madsroia.

When Mristoia was compred with many boids, buth retent and fossil, the resemblane of Madstoia to Gigantophis was found to be closer than to ather known genera. However it was impossible to conclude that the two were definitely more closely related to each other than to other fossil boids (Simpson 1933). Similarly the relationship of Wonambl to Madstoia or any other boid will rensain obscure until the skull is known.

The presence of Madstoia in Patagonia and Madagaycar has been reganded as evidence of former continuty of the southern continents (Hershknvitz 1972. p. 316).

Family ELAPIDAf:

Elapid vertebrae have conspicuous accessory processes and hypapophyses on all preeleacals (Fig 1).

Psendonaja c.f. P. nuchalis Gunther

Material: Vertebrae (566 precloacal, 25 caudal): dentaries (6).

The vertebrae have heen described (Smith 1975). The largest with a length of 11.1 mm between zygapophyses would hive heen derived from a snake about 190 cm Jong.

The dentary of P. meshalis is atmost siraight posteriorly, but anteriorly it curwes outwards then inflects sharply. The teeth are strung and
curve trackwards very slighly. They are separated hy a distance equal to c. $2 / 3$ of the adjacent teeth. The sccond tooth is the Innges: but the suceeding teth along the dentary deerease in size only slighty. The fossil dentaries are similar.

Notechis cif, N. scutatus (Peters)
Matmrial: Vertebrac-precloazal (13, |engll 5.3-9.9 лим, mean 7.6 ± 0.35).

These vertebrace dificr from P. inchalls and resemble \mathcal{N}. scutatur in having at relatively shor neural spine overhangigg both anteriorly and posteriorly (Smith 1975).

Pseudechis c.f. Po porphyriacus (Shaw)

Materiul: Vertebrae-precloazal (55, lengtl $4.1-9.5 \mathrm{~mm}$. леан $6.3=0.13$); maxillae (2); dentary (1).

Both Notuchis and Presudechins have 3-5 small 1 ecth, whereas Pseudonajes has $8-111$ (Worrell 1963; nets, nheerv.) A ieft maxilla (Pl6164a) bears a curved fang. followed atter a diastema, by three small, curved twelt ana is consistent with P_{i} porphyriturus in size atol shape. A smaller fragment of a tight maxilla (P16164b) is probably from the same skull. having been taken from the same sample.
P. porphyriacus dentaries differ from r. nuchenis and N. scutathus dentaries in bcing mote sharply curved anteriorly. the icoth are finc, backward-curving and closelv-sel A right den(ary (P16132e) conforms with f - purfiry bictas.

The vertebrae have the long, acute, acectsory processes (Smith 1975) 1ypical of Popopinn riacus but they differ in having these processes directed more antenolaterally than in the P porphyriactus available for comparison.

Umbeternined

An unidentified clapid group Lontains 40 vertcbrac (Ieneth $\mathbf{3 . 8 - 7 . 8} \mathrm{mm}$, mear $6.0 \pm$ -15) characterized by the short, blunt hypapnphysis.

Family Varanidae

Varanid vertebrac are distinguished by then overhanging condyle (Fig, 1).

Varanus varius (Shaw)

Material: Veftebrae-carvical (4 , Jengths $18.7-$ 26.3 mm . mean 21.35 ± 1.76), dorsal (17. lengths-Table 4), saeral (3), caudal (26r. lengths $7.9-19.2 \mathrm{~mm}$, mean $12.3=.53)$: maxilla (1): dentarič (5) ; parietal (1),

The dorsal vertchrae of Tuanus sigomens are readily distinguisbed by their broad centra

Tratio of width across prezygapophyses ($\mathrm{Pr}-\mathrm{Pr}$) to minimum width of centritn (BW) $\leqslant 1.6$ (Table 4) | and Jong neural spines, vertical botb anterinfly and posteriorly. But the vertehrae of V. varlus and V. gonldia are similar morpho-logically-there is overlap in the relative width of centrum " relative width of condyle (CW) and selative width across prezygapophyses (all relative to the length, $\mathrm{Pr}_{\mathrm{r}}-\mathrm{PO}$) and also in the ratio of width ucross pfezyeapophyses to minimun centrum width (Table 4), These values nveldap even when the comparison is made hetween vertebrae fron the same position in the column. The neural canal, viewed from the front, is slightly depressed in V, gouldit hul is round in V. varius.

The fossil dorsat vertehrae are consiulent with hoth V. varius and V. souldit in their propropartions and have the neural canal mund anterionty, as in V. Puelith.
like the dorsals, the cervical and caudal vertebrae of V. vorims and V. sonldfliare almost (or quike) indistinguishable as to species, but the first sacral vertebrae are distinctive. The Hansverse processes of the first sheral of V. golidit (2 specimers eximined) bear several Inw ridges- one such ridge Irom the anterionmose point of ine lateral surface of the transverse process extends lowards the cotyle: an diagonal ridge passes from the prezygapophysis to the lateral postero-dorsal fin of the transverse process and a ridge from the lateml antero ventral tip of the transverse process to the condyle makes the posterior surface of the transverse process slighlly concave, in contrist. the transverse processes are smoothly-rounded and convex in ν. varius (3 snecimens examined). Similarly in the fossils (P16135r, Pl6169a) the transverse processes are snonthly rounded, The fossil conforms with V. varius and difers trom V. gonldit also in having the nevtal canal round anteriorly and the transverse processes at their lateral extremi. lies flared in helow the level of the centrum (whercas in V. souldii the flating extends more (lorsally).

In Varamus varus the parictal foramen lies in the middle third of the length of the patietsl plate (Mertens 1942), whereas in V. gorddig and V_{0} gagdenters it is in the anterior third \{pers. obsery),

Laterally compressed, texurved, pleurotont. teeth with striated bases are characteristic of varanids (Edmund 1969). The teeth of ν, suivmeten are line and thin, but in V. varins ind V pouldd, and in the fossils, the lateral com-
pression is less cxtreme, and at labial and a lingual ridge ascend each moth. The hasal Huting extends nbouk $1 / 3$ of the way up the tonth

The length of the larger fossil lirst sacraf vertchra (18.8 mm Pr - Fo) indicates a total length of $c .1 .6 \mathrm{~m}$ for the animal.

Varantes gouldii (Gray)

Material Humerus (1).
The shafe of the humetus is smodhly rounded in V. varites (2 specimens) but in V. souidii (3 specimens) a ulstinet ritge extends from the proximal Lermination of the supinatur exest tu a muscle sear (presumathy for the humeroradialis mifate) near the proximat expansion. Anteroventrally, the dellopectoral crest is prominent in both V, varius and V gouldii, but in V. gourdit the crest extends lurther proximally than in V. varims, The fosss humerus (P16146b) conforms with V, youldii and dilfers $\mathrm{cmam} . V$, waius in having a ridge extending proximally from the supinator crest and apparently atso in the pmximal development of the deltopecturul crest, allhough most of the proximal articular face of the fossil humerus has been losi. The fussil hay a distinet Whercle at the proximal termination of the supinator erest. Such at distinct tuberele was seers only in one modern specimen of Vamans species. viz. a very large V_{-}gouldit. No luhercte could be distinguished in two V. gouldii comparable in size with the forsil, nor is twa V varins.

Family SCINCIDAE.

in seincid vertetrac the centrum tapers, in ventral nutine, from honader antertiorly io narrower pasicriorly and there is no precondytar constriction. The ventral surfact of the cent frum is smoothly rounded (Fig. 1),

Trachydosannus rugesns (Gray)

Mareflul: Osteoderms (several hundred) : verte-bra-cervical (10, lengths 5.27 .0 mm , mean 6.0 ± 0.21). dorsal (46 , lengths $6.1-10.7 \mathrm{~mm}$. mean $8.9=0.17$). sacral (5 pairs), pygal (6 . lengths $6.7-10.0 \mathrm{nmm}$ mean 8.0 ± 0.53), caudal (5 , lengths $5.0-7.0 \mathrm{~mm}$, mesan $6.3=$ (137): maxillac (5) : promaxillac (2): dentaries (6) : humeri (3); fenur (1): frontals (23.

Oxeoderns: in Trachydosaurus; the asten derms are thick and coarscly pitted, whereas in Tilligur niprolurea; 2' nexipitatios und T' stincoldes the osteoderns are thinner and fincly pitted, in Égernia cenuringhamé the darsal osteoderms bear a posterior median tooth; and in

Fig. 4. Frequency distributions of some dimensions of dorsal vertebrae in which Trachydnsatrms rugosus differs from Tiligua specics. The sample of fossil vertebrae assigned to T. rugosus has frequency distributions similar to the modern sample. (a) width across prezygapophyses divided by length between zygapophyses, (b) width across prezygapophyses divided by maximum width across paradiapophyses, (c) width of condyle divided by width across postzygapophyses, (d) height of condyle divided by width of condyle. Although the number of presacral vertebrae without a hypapophysis is $30-32$, not all vertebrae could be measured in every specimen.
most other skinks the osteoderms are thin and ilmost smooth, except over the head of some.
Cervical vertebrae: Cervical vertebrae of scincids have the hypapophysis sutured or fused to the posterior part of the centrum whereas in agamid cervical vertebrae the hypapophyses are sutured or fused to the anterior part of the centrum (Hoflstetter \& Gasc 1969). Cervicals of Trachydosaums rugosus have broad, roundish zygapophysial facets whereas in Tiliqua species and Egemia species the zygapo-
physes are usually anteroposteriorly elongated and narrow.
Dorsal vertebrue: Cervical vertebrae are defined as those anterior to the first vertehra of which the rib joins the sternum (Hoffistetter \& Gasc 1969), but because this distinction cannot be applied to isolated vertebrat, I have included in the discussion of dorsal vertcbrae all the presacral vertebrae that do not bear a hypapophysis. Dorsal vertebrae of T. rugosus are squarish in dorsal outline, i.e the width
across the zygapophyses approximately eyuak the lenglt between the zyeapophyses, whereas Lorsals of Tiligua species ase longer than wide (Fig. 4a), In other skinks also, and even in the liargest Australian skink, tho heavily-buitt Esernia bunyana (only one specimen examined), the vertebrac are longer than wide. In T- rigosen vertebrae, the neural spine is low, slopes backwards and overhangs posteriorly. At its pasterior termination, the neural spine is thickened and marked by nishort median aronve. The preozygapophysial facets are directed dorsally at an angle to the horizontal of abosit $20-40^{\circ}$ (although in the ano terior 3 or 4 dorsals the angle may be as great as 60^{n} in some specimens (Fig, 51). The prezygapophysial focets extend laterally nearly as far as, or further than, the paradiapophysial convexities (Fig. 46). The zygapophysial facets are almost round in contrast with the outwardly directed zygapophyses of agamids. The condyle is natrow (Fig. 4c) and slightly depressed (Fig, 4d). Except for the neural spine and slight zygapophysial ridges, the centrum is smoothly rounded, again in shatp contrast with agamids where not only are the 3ateral ridges strong, but also a wide midvenifal ridge is conspicuous (Fig, 4d). The ventral surface of the contrum is triangular in T. riegoses (as in agamids) whereas in other skinks, ventrally the sides of the eentrum are almost parallel behind the paradiapophyses.
Socmat vertehrae; The pleurapophyses of the sacral vertebrae ars fused distally for about one third of their Jength. The face for articulation with the Blium is cupped and differs from the (riangular facets of Tiligua species (except T. neripitulis) and Egernia species (Fig 6). In T. arcipitalis where the lateral arliculation is cupned fas in T. muows), the zygapophytial facets are sharply upturned, at an andle of about 40-50., as in other Tiliqua species, whereas in 7. mugowns the facets are only slightly upturned (angle $\mathrm{c}_{2} 20^{\circ}$). The condyle is narrower in ${ }^{\prime}$? rugarner than in Tiligua species,
Enufal verrebrae: T. rugosus caudals are robus: and the transversic processes project only slightly ventally, much less venirally than in T. setncoldes, J' oncipitalia and T. nignoluzea.
Teets and foothatharing bomes: The iecth of Tinarhydoraunes resemble there of Titigun species in having conical tips, whereas teeth of Egertint species are laterally compressed at the fips (Mitchell 1950), Usually the eeth of T. ragogise are hroal and lylunt, but in some specimens the lecth are longer, ithinner and
sharper. These lather overlap in form with thnse of the larger Tifiqua species. In T_{0} gerrarali one tooth in each jaw is very Inrece, about four times the thickness of the others, which ure fine, with rounded lips. The maxillary bone al r. rugosus is sobust. Beneath the orhit. a strong hone vidge mons paraltel to the jaw margin and extends posteriorly heyond the level of the end of the tooth row. In Tiligete species, this ridge is Weaker and shortes, not extending beyond the end of the tooth row. and offen ending still more anteriorly. The dematies, ton, are rolust. and are thicker and deeper, especially antcriorly, hear the symphysis, than are those of Tiliqua species.
Frontals: Two fromal bones were each charactorized as of $T_{\text {, megosus by the thick. coarsely- }}$ pilled osteoderm fused with the bane.
Limb hones: Humerus and femar have relalively thick shafts in ' X . fugosur.

Tiliqua nigroldtea (Qudy \& Gaimard)

Materfat: Vertehtae-sotsal \{6. Jencitis 6.1\}8.9 mm , mean 7.8 ± 0.44), pygal (2 , lengiths $5.0,6.2$ лиส). catulal (3, leagths 5.5, 6.4, 6.8 mmli maxillae (4) i đenlaries (3): parietal hone (1).

The sice of the fessil dursal vertethrae indisates that they were derived from a lizard at least 22 cm in snout-vent lengh. Such size is reached by the larget species of Esernice and Tiligun, but not by T, cawnrinae, T. besunchiale. T. petersi nor T. wood-jonesti.
in Tillqua species, the prezygapophyses are dossally uptumed at an angle of $35-55^{\circ}$ (Fig. $5 n$) or ceven greater in the first two or three dorsals. The dorsal yertebrae of Australian skinks, other than Trachodosaurur, are Innger than wide, excent somelimes the last presacral which may be slightly wider than long (Fig 4a). In T. scincoides. most of the dorial vertebrac (except for the first twe ar three and last two or three) are extremely elingated (Fis. 4a) and this species is further characterized thv the broad. depressed condyle (Fig. 4c, di) and narrow zygapophyses directed almost anferoposteriorly. Ir T - scincoldes, the parhitiabophyses extend laterally wall beyond the lateral edges of the zygapophyses (Fig 4b), in T : niprohutea and T - oceiphali. the ryyapophystal facets are slighty wider (though the width never equals nor exceeds the length) and are directed antero- or poslero-laterally: hente the width across the ryegapoplyses is greater (relative to, es. the length hetween rygapo-

TABLE 2

8peciman	Lengtti（marl）	Tatal heipht／length	Wieth acrebs paradiupapfyses）Width across pricaqzapuptiyser	Widtif condylptLengit	Zygosphene width） Lengut
F．mataconfentice					
P1616t	16.5	1.95	1.11	D．65	0.55
P16140	19.4	1.90	1.08	0.65	0.65
P16144s	＇21．5	1，70	1.24	0.55	0.50
P161394．	16，4	2.02	1,07	0.6	0.57
F16167	33.4	1.70	723	0.54	0.55
P1617016	196	1，85	112	0.63	0．93
Lempls childirent	4．3－5．2（4．9＋．09）	1．01－1．53（ $1.17 \pm .03)$	0．90－0．91（0．89 $\pm .01$ ）	$0.350 .0 .52(0.47=03)$	0．59－11．74（10．66i $\pm .12)$
Py／hus spilehas					
23	7．5－8．5（ $6.7 \pm$ ，（N）	1．04－1．29（1．17 $\pm .01)$	D． 70.10 .77 （0．93 $\pm 01)$	0.1790 .55 （0．53	0，57－0，72（0，66
2	8．1－0．8（8．4 $\pm .08)$	1．24－4．47（1．361－1．02）	$0.78-4.4080$	－0．53－1．58（0．56	$0.65-0.76$（0，71 $\pm 01)$
54	41．4－12．0（11．6 $\pm .07)$	1．53－1．71（1．61 $\pm 02)$	$0.70-0,73(0.71 \pm(1) 12)$	$0.47-4.51$（0．4\％$\pm .003)$	
PYthon amethismmus					
$1{ }^{4}$	14．5－15．5（14．9＋（118）	1．32－8．45（1．3H2	－ 0.750 .78 （0．7T 上 00.3 ）	0．47－0．51（0．49 $\pm(044)$	
16^{4}	10．1－10．5（10．3 $\pm 0.4)$	$1.42-(.49(1.45 \pm .06)$	0．79－0．82（0．40 $\pm 003)$	$0.59-0.62$（0．64）	
Aswifiesmalanocephulus					
3	$5.7-6.5(6.2 \pm$ 土 ． 07 ）	1．37－1．54（1．46 5.02$)$	0．79－11．83 $8.81 .82 \pm 5084$	0．55－11．52（0．59	$0.70-0.77$（0．73 $\pm .013$
13	5．5－6．4（6．1	1.29 ［．55（1．43＝03）		0．52－0．62（0．50 \pm（tt）	
Chmonforphyatan sipdils	$5.5-0.9(6.4 \pm .14)$	0．95－1．75（1，27 $\pm 04)$	$0.73-0.83 \times 0.78=.013$	$0.40-0.49 \cdot(0.46 \pm .011$	D． $52-0.64$（0．59＋．01）

TABLE 3
 specinesar．The pongy te folhowed by owean \pm standord smor is parcwihesis．

Specimen	W．acrow pre． zygstudphysee／Length	Min w．centrumlengih	Helgit condytef Width candyle	1．pret zgapophysis／Lengrth
W4，marcemortemsk				
PISHES	1.55	1.12	0.82	049
Pl6ti4k	1.55	1.17	0.81	0.46
P16144s	751	1.10	0.84	4.54
Fi6129\％	1.58	1.16	62.78	H145
136167	－152．	4.16	0.46	＊（1．55
91617）	1.50	1，12	0.84	11.36
Limnis chiluran	1．301．71 \｛0．22 $\pm .94\}$	$0.78-9.05(0.93 \pm 03)$		$0.740 .4680 .40=.01 \%$
PbJhar abdums				
33	1．48－1．71（1．60	0．31－1．in $[101 \pm 02)$		0．40－0．39（0．45 $\pm .013)$
$2 *$	［．53 $1.77(1.66 \pm .03)$	（161－1．18（1．311 \pm（63）	1．7．75－4．46（0．85 \pm ， 022 ）	0．dimist $90.50 \pm 111)$
3＊	1．74－188（1．81 + ＋02）		$0.9501 .04(0.59 \pm \text {（1）})^{\prime}$ ）	$11.54-2) .54(0.50 \pm .011$
F\％unon unathlatime				
14	1．601－1．76（1．72：上，［11）	$1.16-1.21(1.18 \pm .105)$	0．88－5．90（0．89	0．48－0．53（0．51 \pm ． 0.55
6\％	（135－1．65（ $1,62 \pm .01)$	140［14（112 12 ± 005	$0,768.81$（0．80 $\pm .01)$	$0.41-18.45$（0．43 \pm（105）
Asparlies mmkanorpatotas				
3	1．62－1．74（1．67 $\pm .01)$	1016－1．12（1．09		0．42－10．47 $(0.48 \pm .804)$
13	153－1．63（1．58 $\pm .01)$	0．99－1．06（1．03 \pm 511）	$0.25-0.82,00.78 \pm .01)$	0.410 .0 .46 （0．42
Chondrogyathn पiridis	1 13－144 11，34：12．03）	$0.78-0.99(0.91+.68)$	0．75－0．80 $0.0 .99 \pm .01)$	0．27－0．43（0．27 $\pm .08)$

TADLE 4
 mean It standard erfor im presmhesas．

Speciminn	Numbers of vertebrak	175－100（mm）	HW／Pr－1\％	CW／Ps－P：	Hratioleralo	
－gixamenat	29	24，5－27，1（ $35,7 \pm$ ，14）	0，54－0，6，（0，58 $\pm .005)$	0.580 .63 （ $0.59 \pm .006)$	0．85－1．01 $20.92 \pm .007 \%$	1．51－0．64（158 土 ，007）
V．sarulai						
Spectinta i	20	12．A－13．6（132．1． 07 ）	$0.48-0.60$（0．52－．005）	$0.52-0.56$（0．54 +.062$)$	0．85－1．00 $0.0 .00 \pm .0071$	$1.66-1.78(1.73+.005)$
Spectimenz	20	17．5－（9．6（98．5＋（＊）	0，47－0．59（0．59＋．007）	0．48－0．54（0．52 \pm 5004）		1．70－1．60）（1．71＋．011）
Spreciphens	20	14．7－15．8（15．4 +.47$)$	0．43－0．54（0．49）\pm－ 5176$)$	$0.44-0.53$（0．40 \pm（106）	0．82－0．95（0．91 $\pm 0.007)$	1，70－1，97（1，185 $\pm 013)$
V. surtus						
Nrecimen 1	19	167－18．9（179 $\pm .09)$	0480.50 （0．51 $\pm .005)$		0．87－0，92（0，90	
Specinatm	36	13．8－15．4（19．8 + ＋10）	0.450 .57 （12．51 \pm（017）	11．51－12．57（1．55 + （044）	6，84－0．96 $0.0 .41 \pm .0051)$	8，70－1．888 $11.78 \pm .011$ ）
Spucimea ${ }^{\text {a }}$	19	21．2－23．7（22．4 $\pm .17)$		（1．47－4．51（0．40	10．82－1 $310180.85 \pm 011)$	（．57－1，84 $(1.93 \pm .015)$
1－wariax ［Гоккіі）	13	13．1－21．8（16．3	0.470 .55 （0．51 +007$)$	（3．48－0．57（0．53 $\pm 807)$	0．84－0．98 $80.91 \pm 010)$	

physes or to the condyle) than in T. scincoides. In Tiligua species and Egcrria species the tip of the neural spine may be thickened and sometimes marked with a shallow median groove, but in I_{1} nggolurea (four specimens examined) the median grouve is so deep that the spine terminates in a double fip.

Tbree jucomplete dentarics (P16124L, Plin126w, and P(6)28h) resemble 7 : pilernlitea dentaries in shape, and four maxillac (P16125s, P16128n, P16128w and P161577) are conkistent with T. Migrolutea (and also with T. scincoides and I' oecipitalis) in the slight suborbital ridge. A parietal bonc (PIG127d) is probably also of this species althougt the sides are slightly less constricted than in modern T nigrolutea.

c.f. Spheumnorphus tympanum (Lönnbery \&

 Andersson)Mazerial; 'Twa fused sacial ventelrae.
In Sphestomorphus 子'mpanum, the wansvelse processes of the first sacral vertebrae ($S 1$) are strong and slant backwards only a few degrees. The transverse processes of $\mathbf{S 2}$ are thinner and are diected forwards to join and fuse with those of Si at their lateral expansions. The sacral fersae between the transierse processes nee wide. S. tympanum sacral vertebrac 山lifer from those of Egernia strolata in having relatively wide fossae, and differ from E. whied rencinose whete the transverse processes of S1 nre angled backwards and the transverse processes of $\mathbf{S 2}$ are perpendicular to the long axis of the vertelarit. The fossil (P16146r) has at total length (from prezygapophysis of Si to posizygapophysis of $\mathbf{S N}_{2}$) of 3.7 mm .

Egernia, c.f. E Whitti (I acepede)

Material: Veitebras-dorsal (2, lengths 3.4, 2.7 man), taudal (1, length 2.4 mm); maxillac (5 left, 5 right); deatatics (8 Ictt, 6 right); frote tals (1).

The Meckelian groove in the lower jaw is closed anterior to the splenial in Egernia but it is open forward to the symphysis in Sphenomorphus. 'The dentary of \boldsymbol{E}. whisei is deencs than the slender dentary of S. tympanitem, and the notch in the posterior Jateral surface of the dentary is bigher (i.e. nearec the tooth row) than in S. bympanum. The fossils are mosislent in shape and size with E whitel.

The fused frontal tones of E_{c} whims differ from thase of S. bymparmum in their gradual ispet, both anteriorly and posteriorly.

Family AGAMLCOAE

Aganid vertebrac ale characterized by their triangular ventral outline and strong subecentral ridges.

Amphibolurus e. f. A. barbatus

Material: Maxillac (1); dentarics (7).
Agamids ate the only Australim reptiles with acrodont tooth implantation. The largest fossif, a sight dentary (P16132b) with renglh of tooth row 14.5 mm , closcly resembles 4 . barhaun. The other specimens, wo of them Iragments, may he of a smiller specics.

Faunal change

The two septiles most comunon in the Victoria Cave deposit, vir. Psendonaja c.f, P andhalis and 7. rugosus were represented at all depths in. similar ahundance. The less common species, except for H1. naracootiensis wers also found al various depths from the surface to the present maximun depth of excavation. Seven vertebrae and the tooth iragment of \boldsymbol{N}, mara. coonensis. were near the surface and all within 2 metres of each other. Henoe the septile fauna does not change remarkably with depth in the deposit.

Discossion

The small massupial remains, together whith abundant rodent temains, were probably brought into Victoria Cave by owls (Smith 1971, 1972), and the small lizards may also have been the prey of owils. Among the larger spocies, Trachydasames :mgunus is a clumsy. shor-legged, heavy-bodied likard which might casily fall into sinkboles or caves and would have little chance of escaping. This species has been recorded frem several cave deposits (c.g. Cook 1963, Finalayson 1933, I.ongman 1945), The snakes may have actually inhatbited the cave, as live brown smakes. (I'seadomaja sp.) are found in the limestone caves in south eastern South Australia (Wells, pers, comm.) and P. huchalis has been classified as on oecasional trogloxene (Richards 1971),

In any measurements of the boncs of reptiles, intraspecific variances are large because reptile growth is asymptotic. When vertcorac are the bones measured, changes along the columa further increase the variation. In the identification of isolated vertabrae of snme groups (erg the make fanily Crotalidac), these inherent large variances can he offset by consideting several dimensions simultaneousty and in comparison with their previondy deter mined inler-telationships along the entire column of reference skeletons (Bpattstram)
1964). Nevertheless, when the replite remains are abundant os include at qualitatively diagnostic bonc (c.g the firsa sacral vertebra of Vurums), the species can be diagnosed with cunfidence.

Of the 5 species contidently determined, 4 are still Jound in southeastern Australia, and all but Euranus varius have been found near Naracoorle. All 6 additional species tentatively identified bave been found near Naracoorte. The large boid is the unly Pleistocene speuis absent now. Hence, among the reptilcs, the small species hatve survived from Pleistocene to present without detectable change of the tharacters available in fossil material, whereas the large species has become extinct. Sintilarly with the marsupialin, while many large speties have become extinct [c,ge sevesal Sthemums speciex. Thylacoleo ef. T. carmifex (Wells, pers. comm.), Palorchestes sp., (Pledge, pers. tomm,) I, the statl species, keg. Bertongia spe., Perameles sppa, Antechimus spp. and Pesauras beviceps are indistinguishoble from modern species, many of which stitl survive near Naratcoorte (Smith 1971, 1972). Among the birds. tho only species now extinct. Progura naracoontensis, was a large bird, while all of the small species ire extant. The factors that caused the extinction of so many large vertebrate species have had little perceivable effect on the small vertebrates.

The presence of Pavans warius together with $V_{\%}$ gombliai in this Pleistocene deposit does not support the suggestion (King \& King 1975) that the indicas karyolype frepresented by If. Murims invaded south-eastem Australia after the sceparation of Kangaron Island from the mainland, $8,000-10,000$ years ago.

Most of the extant species of the Victoris Cave septile fatnat are wide-ranging with broad inabitat bolerances. Vanamus gouldia occurs in moist parts of mainland Australiz but is most common in sandy areas, where it lives in sand burrows. (Worrell 1963). The trececlimbing species V. varias, decurs throughout castern Australis inside the $20^{\prime \prime}$ (508 mm) isohyct
(Kawlinson 1969). Trachydosaunus nagosus. is found in inland areas of all mainland states, while Psendechir porphyriacus lives in coastal to mountainous forests and swamps of eastern Austratia, but doess not extend into dry inland areas (Worrell 1963). The ranges of Pseudostaja nuehalis and the marphologically similiar Po textilis togetber include most of mainand Australis (Worrell 1963), and P. Eexpilis oscun alsu in New Guinea (McDowell 1967). None of these species extend into the cuol temperata zone of the Bassian zoogcographical subregion (Rawlinson 1974). Converscly, Tiliqua nigrao hures is continel to the cool temperate zone, its range extending from the extreme south-uan of South Australia and soukhern Victoriat to the islands of Bass Strait and Tasmania. Naracoorte is close to the northowestern limit of its range. (Rawlinson 1974). Egernta whired. Spheromorphus tmipamum and the genus Notechis occur in all zones of the Bastian but not in Other subregions (Ruwlinson 1974) Hence little palaeo-ecological information (an be gleaned from them, The presence of a large proportion of the Pleistocene leptite faunit in the area at present does suggest that climatic changes during the last 30,000 years have been slight in south-eassern South Australia.

Acknowledgments

The field work in Victoria Cave has heen planned and supervised by Dr R T T, Wolls, and to him and his voluntary helpers (many of them CEGSA members) 1 am gratcful Transpost costs for field workers were defrayed hy a grant from the South Australian Goveramene Tourist Bureau. Specimens of snakes and lizasts have been given or loaned to me by many people, among whon I thasts expecially Mr F. W. Aslin. Mr J. deBayay, Mr W. J. Parmenter, Mr R. Strine. Mr M. J. Tyler, Dr R. Henzell, Dr D. Horton Dr T. F. Houston, and Dr G. F. van Tets. Mr P. G. Kempster prepared the photographs (Fige 2), D: R, T Wellt and Mr M. J. Tyler kindly criticized the manuscript.

Refercnes

Andilws, C. W. (1906).-"A descriptive catalogue of the Tertiary Vetebrata of the Faymm Eyypt." (British Musenm: Lundon.)
Ансниt, M. (1974)--Exsavations in the Orchestra Sbell Cave, Wanneroo, Western Australia. II, Foskil veslebrale remains, Archenl. Phys Amintapol. Ockarle $9(2), 156-162$.
Aitetinberg, W. (1963-The lossil snakes of Floridid THame Sphat Znol. 10, 131-216

Buttstrom. B. H. (1964),-Eyolution of the pit virers. Trans. Sull Dicgo Soc. Nat. Hist. 13(L1). $385-268$.
Cook, D. 1- (196.3)-The fossil vertebrate fauls of Strong's Cave, Horssum. Western Australin. W_{9} Alast, Nat. 8, 153-162.
Dortck C. E., \& Merrilets, D. (1971)-A saivage excavation in Devil's l=ir. Westera Alutridilia, J. R. Soce, W, Airst, 54, $03-113$.

Edrusd, A. G. (1969)-Dentition. In C. Gans (Ed, "Biology of the Repiilia", Vol. K, pp. 117-200. (Acauemíc Press: Londoñ.)
[ikik. A. P. (1964). -The Aastralian Abarigines. Athedn. (Angus and Robertson: Sylaeyi)
Fralekvary, G. J. (1918), Contributionis 10 a monograph on fossil Varanidac and on Megalanidat. Ahn. Hish. Nal. Mus. Null Hang. 16. 341-467.
Fejravari; $G_{i} J .(1935)$, Furthee contributions to a monograpth of the Megalanidue and fossil Vistinidae. with notes on reecne Varanidny. Anh. Hist. Nat. Mlus. Nat Hung. 29. 1-130.

Fincarsonn H. H. (1933). In rindales N. B. (1933)-Tantanoola Cuves, south east of South Australia: geological and physiographical notes. Trans, R2. Soc. S. Alust, 57, 13(1-142.
Ginf. F. D.; \& Banks, M. R. (1956),-Cainozoic history of Mowbray Swamp and other' areas of sorth western Tasmania, Rec. Queen Fric. foría Mirs Latunceston, N.S. No. 6. 1-42.
Heculs, M. K. (1975).-The morphology and relationships of the largest known teifestriat Jizard. Megalania priser Owen, from the Pleistocene of Australia. Froc. μ_{1} Soc. Vici. $87(2), 239-250$.
Horestitter, R. (1961a):-Nouvenux restes d'un serpent bointe (Madstoia madaynscupiensis nov. sp.) dans le Cretace superieur de Madagascar, Hull. Mus, hall Hish. nato, Paris (2). 33. 152-160.

Horrstetter, R. (1961b). Nouvelles recoltes de serpents fossiles- dans l'Eocene Superientr de Desert I ibyque. Bull. Mus. hat Hist, mat." Faris (2), 33, 326.331.
TTaprstettit, R., \& Qasce J-P (1969),-Vertabrie and ribs of modern septiles. In C. Gans (EJ.). Biology of the Reptilia Vol. I. pp. 201.310. (Academic Press: Lomdon.)
Hórstittik, R., \& Giviaris, Yo 119741 -Ohsatvations sur l'osteologic et la chassification des Achrochordidae (Serpentes). Dull. Blus. nall Hisf- Hat., Panis (2) 365. 677-696.
Hersimovirz, f. (1972). -The recent mammal. of the Neotropical Region: A zoogcographic and ecologival review. In A. Ketast. F. C. Etk. \& B. Glass (Eds), "Evolation. Manmals and Soutbern Continents." (State Universily of New York Press: Albany:)
King Mi* K King, D. (1975)-Chromusunma evolutiou in the lizatd yenus Branas (Rep(ilia). Aust. 1. Biol. Sci. 28(1), 89-108.
Longman H. A. (1925).-Ophidian veriebrae from cave deposils at Marmor Quary. Mcm. Qhi Afis, 8, \$11-112.
Lomgman. H. A. (1945).-Fossil vertebrates from Gore Quartics. Mem. Qid Mus. 12, 164

Lunoruus E. L. (1963).-Vertctôte semaing from the Nullarbor Caves, Western Ausiralia. J. R. Sor. IH. Ausj. 46. 75-80.

Lzorkitm, R. (1888) -Calalogue of Fussth Reptiles and Amphibians" Past 1. (British Mucentn: London.)
McDowcid, S. B. 11967$\}$-Sxpidomorpluns, a genuy of New Giunea snakes of the famity Elapidaze, with natey on related gencra. J. Zoed. Lond. 151. 447-543.
Mexrilees, D. (1968), Man the-destroyer: Tite Quaternary changes in the Austrulian mar supiat taums. J. R. Suc. W, Aust. S1, 124.
Mertens, R. (1942),-Die Famile der Warane (Varanidae). Zweiter T'cil: Der Schädel, Abh, Senckenb. Nurusf, Ges, 465, 117-234.
Mrichell, $F_{\text {. }}$ J. (1950). The scincid genera Egernia and Tiliqua (Lacertilia). Keco b. Ausp. Mus. 9, 275-308.
Hawianson, P. A. (1969). -The Jeptiles af Eust Gippsland. Prex: R. Suc. Vice.82, 113-128.
RaWLINSON, P. A. (1974). Biogcography and ecology of the rentiles of Tasmania and the Bass Suat arca. In Williams, W. D. (Ed.) "Biogeography and Ecology bo Tasmuthia", pp. 291-338. (Junk: The Haguc.)
Richarus, A. M. (1971) - An ccological study of the caverticolous fauna of the Nullarbor Plain, South nusfralia, X, Zoof Lind 164 , 1-60.
ROMER A. Si (195K)-Osteology of the rep. tiles." (University of Chicago Eress: Chicago.)
Simpson, G. O. 〔1933J-A new lasin smike from the Nosostylops beds of Patagonis. Bill. Am. Mus, Nut. Hish. 67, 1-22.
S.mreh, M. d. (1971).-Small fossil vertehrates from Victoria Cave, Natacoontc, Sunth Aus tralia. I. Potoroinue (Macropodidae), Pctauridac and Burramyidae (Marsupialia). Trans. R. Soc: Su.Aust 95(4), 185-198.

Smithi, M. J. (1972),-Small fossil vertebrates from Vicloria Cave, Naracnorte, South AusIralid. II. Peramelidac, Thylacinidse and Dasyuridae (Marsuplatie). Trans. R. Sor. S. Aust. 96(3), 125-137.
Smitu, Mi I. (1975) - The vertebree of four Nustralian elapid snakex (Squamala Elapidae). Truns. R. Soc. S. Aust, 99(2), 71 -84.
Thorne, A. (1971)--The Fauna. fn R. V \& Wright (Ed.t, "Archacology of thic Gallus site Koonaldy Cive Ausimalian Inal. Atorgimal Slutles. No. 26, 45-47.
Vhn TITR G. F_{t} \& SMITH, H1 (1974) --Smat! fossil vertebrates from Vicioria Cowe, Namcuorte. South Australia 111, Blids (Aves). Tnnus, R, Sere S, AlBs. 48(4), 225-227.
Worrels. E, (1963).-"Reptiles af Australisi" (Anges and Robertson: Sydacy.)

TRANSACTIONS OF THE
 ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

CONTENTS

Archer, M.	Miocene Marsupicarnivores (Marsupialia) from Central South Australia, Ankotarinja tirarensis gen. et sp. nov., Keeuna woodburnei gen. et sp. nov., and their Significance in Terms of Early Marsupial Radiations
Reedman, D	and Womersley, H. B. S. Southern Australian species of Champia and Chylocladia (Rhodymeniales: Rhodophyta)
Watts, C. H. S.	Leggadina lakedownensis, a New Species of Murid Rodent from North Queensland
Baverstock, P.	, Hogarth, J. T., Cole, S., and Covacevich, J. Biochemical and Karyotypic Evidence for the Specific. Status of the Rodent Leggadina lakedownensis Watts

PUBLISHED AND SOLD AT THE SOCIETY'S ROOMS STATE LIBRARY BUILDING NORTH TERRACE, ADELAIDE, S.A. 5000

MIOCENE MARSUPICARNIVORES (MARSUPIALIA) FROM CENTRAL SOUTH AUSTRALIA, ANKOTARINJA TIRARENSIS GEN. ET SP. NOV., KEEUNA WOODBURNEI GEN. ET SP. NOV., AND THEIR SIGNIFICANCE IN TERMS OF EARLY MARSUPIAL RADIATIONS

BY M. ARCHER*

Summary

ARCHER, M., (1976) .-Miocene marsupicarnivores (Marsupialia) from central South Australia. Akotarinja firarensis gen. et sp. nov., Kecuna woodburnei gen et sp. nov., and their significance in terms of early marsupial radiations. Trans, R. Soc. S. Aust., 100(2), 53-73, 31 May, 1976.
Two of Australia's oldest known marsupicarnivores, from the Etadunna Formation of the
Lake Eyre Basin, are described. Ankotarinja tirarensis is a tiny marsupicarnivore which may be related to didelphids as well as dasyurids. Although it is much too late in time to be the actual ancestral dasyurid, it is regarded as a structural ancestor. It is also structurally ancestral to Keeuna woodburnei.
Keeuna woodburnei is a small marsupicarnivore which is more similar to dasyurids than is A. tirarensis. It resembles species of Phascolosorex Matschie, 1916, Neophascogale Stein, 1933, Murexia Tate \& Archbold, 1937, and some Antechinus Macleay, 1841. More distant relationship to didelphids is suggested.
Resemblance of both of these fossil marsupicarnivores to modern New Guinean highland rainforest dasyurids rather than to more arid-adapted Australian dasyurids, is regarded as evidence suggesting that central Australìa was less arid during Etadunna time than it is now.

MIOCENE MARSUPICARNIVORES (MARSUPIALIA) FROM CENTRAL SOUTH AUSTRALIA, ANKOTARINJA TIRARENSIS GEN, ET SP. NOV., KEEUNA WOODBURNEI GEN. ET SP. NOV., AND THEIR SIGNIFICANCE IN TERMS OF EARLY MARSUPIAL RADIATIONS

by M. Archer ${ }^{\text {T }}$

Abstract

Summary Archer, M., (1976).-Miocene marsupicarnivores (Marsupialia) front central South Australta. significance in terms of eatly marsupial radiations. Trans. R. Soc. S. dust, 100(2), 53-7, 31 May, 1976. Two of Australia's oldest known marsupicarnivores, from the Etadunna Formation of the Lake Eyre Basin, are described. Ankofarinja tirarensis is a tiny marsupicarnivore which may be related to didelphids as well as dasyurids. Although it is much too late in time to be the actual ancestral dasyurid, it is regarded as a structural ancestor. It is also structurally ancestral to Kécuna woodburnel.

Keeuna woodburnei is a small marsupicarnivore which is roore similar to dasyurids than is A. tirutensis. It resembles species of Phascolosorex Matschic, 1916, Neophascogate Stein. 1933. Murexia Tate \& Archbold, 1937, and some Antechinus Macleay, 1841. More distant relationship to didelphids is suggested.

Kesemblance of both of these fossil marsupicarnivores to modern New Guinean highland lamforest dasyurids rather than to more arid-adapted Australian dasyurids, is regarded as evidence suggesting that eentral Australia was less arid during Etadunna time than it is now.

Introduction

In 1971 W. A. Clemens, M. O. Woodburne, C. Campbell and the author recovered fossil mammal remains from a site known as Tedford Locality, on the west side of Lake Palunkarinna, Etaduma Station, South Australia. These fossils come from the Etadunua Formation which is now regarded (W, K Harsis, pers. comm.) as being approximately middle Miocene in age. In 1972 M. O. Woodburne, P. Lawson, W, Head, E. Archer and the suthor catensivcly quarried and screen-washed Tedfond Locality. Ftom the concentrate, two marsupicarnivores, as well as other mammal remains, were recovered.

Stirton, Tedford, \& Miller (1961) obriefly describe a third marsupicarnivore from the Etadunna Formation.
Terminology of individual teeth is that used hy Thomas (1887) and Archer (1974). Terminology of tooth crowas is shown in Figure 1 and follows that used by Archer (19753). Comparisons with other marsupicarnivores are hased in large part on Archer (1976b).

Specimens with prefix P are in the fossif collection of the South Australian Museum; F in the fossil collection of the Queensland Museums, UCR in the University of California at Riverside; AMNH in the Archbold Collections of the American Museum of Natural His tory: I and JM in the modern collections of the Queensland Museum; and WAM in the modern collections of the Western Australian Muscum.
Species names of modern Australian marsupials are those employed by Ride (1970), Lauric \& Hill (1954) or Archer (1975b). Other modern marsupial names are those employed by Collins (1974). Names of Cretaceous didelphids are mainly those used by Clemens (1966). Forsil marsupial names are those employed by the most recent reviewer of those particular groups.

Taxonomy

Genus ANKOTARINJA nov.
Type species: Ankotarinja sirarensis sp. now. (Hyy designation and monotypy).
Generic diagnosis: Differs from other Australian and Nex Guinear dasyurids in having, as

[^4]

Fis. 1: 'Terminology of molar cusps und crests (thased on Ankotarinja tirarensis). IA, upper molar. 1B, lower molar. a.c., sm(erior cingulum; c.o., cristid obliqua; end, entoconid, hyed, hypocristid: hyd, hypoconid; hyld, hypocomulid; hyld ho, hypoconnulid notch; mel., metaconule; mol.rmetrcanular ridge; me.. metactne: mue., metiacrisla: mecd, metacristid; med, metaconid; pa., paracone; pacd, paracristid; pad, pataconid, pame. cr., para-metacone crest; pel., protoconule; pprer, postprotocrista; prop ", protocrista; prd, protoconid; prgd, precingulid (or anterior cingulum): posgd, postaingulid for posterior cingulums): pird, parastylid; r - ridge mesial to stC; st.A-E, stylar cusps A-E.
a combination of characters, relatively unreduced talonid on M_{4} with well-formed hypoconid, hypoconulid and entoconid and relatively unreduced \mathbf{P}_{f}.
Origin of gensric name: An pllusion to Ankotarimia. a dreamtime ancestos (Robinson 1966.
F. 26) Who, having remained buricd a loog time as bones in the earth, resurrected himself in it snall watercoursc. Ankorarinja is here given inusculine gender.
Ankotarinja tirarensis sp. noy.

> FJGS 3-5

Holotype; P18190, right dentary fragment with MS_4,
Type locality: Tedford Locality, Etadunna Formation, Take Palankarinta, Efaduma Station, S.A. ($28^{\prime \prime} 47^{\prime} \mathrm{S}, 138^{\prime} 25^{\prime} \mathrm{E}$).

Diagnosis: That of gemus. Features likely to be of specific value include very small size; readlionship of hypocristid to entoconid, size and width of anterior and posterior cingula, relative size of pariconid on $\mathbf{M} /$, and relatiye size of stylar cusps.
Origin of specific fame: Specitic name refers 10 the Tirari Desert, the portion of the Simpson Desert containing Lake Palankarinna.
Referred specimens: UCR, 15340, dentary fragment with $\mathbf{L M}_{1} ; \mathrm{UCR}^{2}$ 15341, dentary fragnent with LME; UCR, 15342, dentary fragment with RM/; F7331, dentary fragment with LM\} $\}_{4}$: UCR, 15343, maxillary fragnent with alveoli for LM \%-4; UCR, $15308, \mathrm{LM}^{29}$; F7332, LM? ${ }^{2}$.

Description

Maxillary fragment ($\mathbf{U C R}, 15343$) referred to this species on basis of size, has alveoli for $\mathbf{M 3}-4$ and posterior root of $\mathbf{M} \%$ M ${ }^{4}$ appears to have becn as wide as $\mathbf{M} 3$, presumably with relatively litte reduction of protocone. $M+$ length less than that of M^{2}, metacone root belng reduced and displaced antero-lingually relative to metacone root of M_{3}, Zygomatic root of maxilla arises buccal to region between Ms and My. Numerous small interdental fenestrae in palate hetween M^{2} and M , and between M 多 and $\mathrm{M}^{4} / 0$

Upper teeth represented by two isolated molars, probably LMs and LM; Although posisible that these tecth actually represent \mathbf{M}^{3}, and $\mathbf{M} \%$ improbable for following reasons. Stylar cusps. (UCR, 15308) much more reduced than those cusps on M\% in all other dasyurids but not so strikingly reduced when compared with Ms in some dasyurids such as Kewunt, described helow, or some species of Planigale Troughton, 1928, Also, notch in antero-buccal cingulum of F7332 for reception of metastylar corner of preceeding tooth suggests F7332 is posterior molar. However it is also true that in somse dasyurids and didelphick with large P_{4}, such a notch sometimes exisis

Fig. 2. Specimens of Ankorarinia sirarensis and their measurements (mm). A, F7331, $1 \mathrm{M}_{3}-\mathrm{A}$ - A. UCR,
 15308, LM ${ }^{2}$. UCR, 15343, maxillary fragment with alveolj for Me-
in antero-buccal cingulum of M1. Probable that F7332 and UCR 15308 represent M ${ }^{3}$ and M ${ }^{3}$ respectively rather than $\mathbf{M} \frac{1}{}$ and \mathbf{M}_{7}^{2}

F7332 has at least three stylar cusps. StB connects to parastylar corner of tooth which may be distinguishable as disereet stA. Parastylar blade very short. Ectoloph crest despends gently from postcrior flank stB, then tises gently, to form long low ridge-like stc. Posterior point of this cusp matked by beginning of rise in ectoloph which forms tall stD. S1D has minor ectoloph crest on posterior flank which descends towards metastylar corner of toath. Very minute rise in crest an posterior flank of stD may represent stE, Ectoloph posterior to this point very low, extending to metastylar corner of tooth. Paracone taller than stylar cusps but subequal in crown height to, or shorter than, protocone. Metacone tallest cusp. Prominent protoconule and metaconule. Estoloph continuous on buccal edge of crown. Buceal concavity in crown outline slight. Paraerista just longer than afle length metacrista. Paracrista extends from paracone so anterior
half of stB. Although slighlly worn, paracrista appears to curve at buccal cnd to contace stB. Paracrista apparently transverse to imaginary long axis of toothrow. Para-nctacrista continuous, Slight protoconule ridge may be present linking base of paracone to preprotncrista, Clear metaconular ridge present lioking base of metacone to postprotocrista. Metaconular ridge extends short way up base of metacone causing bulge in base of that cusp. Metaconular ridge bounds marked declivity between posterior portion of steeply inclined postprotocrista and posterior base of metacone. Anterior cingulum complete, linking preprotocrista and antcro-buccal cingulum to parastylas comer of tooth. No posterior cingulum present. Pre- and postprotocrista form large but acutc angle.

UCR, 15308 has at least four stylar cusps. Possible stA as in F7332. Posterior crest from stB descends steeply to base of stC. Between stC and D, and connected by crests, another smaller stylar cusp of uncertain homology. StD small and connected to metastylar comer of
tooth by low extoloph crest paracone and protocone subequal is crown height. Protosunale shent and protnconule swelling only just present. Metaconule large. Buccal concavity in crown cutline deeper than in F7332. latacrista almost bree-quarters length metacrista. Paracrista wam but appears to intersect ectoloph ou anterine flank of siB. No clear protoconule ridge present, Metaconular ridge small but presell. Metaconular ridge does not clearly extened up base of metacone, Ohherwise mosphology of UCR, 15308 as in F7332.
 summarized as follows. Tooth length decreases Widtft increases. Ectoloph becomes mone evenly atad decply concave. Stylar cusps, particalatly D, become smaller. Paracrista and metacrista increase in leneth. Para-metacrista hecomes more symmetrical. Prosoconule decreases in size. Angle formed by pre- and postpirntorista hecomes slighty more acute. Artero-baceal cinguluni increases stighty in length.

Dentary fragments indicate premolar size. LCR, 15340 has alvedi for $\mathrm{C}_{1}-\mathrm{F}_{4}$ - Premular alveoli subequal in size, indicating little of no reauction in tooth sise from $\mathrm{P}_{\mathrm{e}}^{\mathbf{e}}$ to $\mathrm{P}_{4}^{\prime}-\mathrm{P}_{\mathrm{t}}^{6}$ presumably had posterior cingular cusp which correspinds with hypoconulid nutch of $\mathrm{M}_{1}-\mathrm{P} / \mathrm{g}$ anterior alveolus slightly crowded out of alignmeat but (as evidenced in modern species of Planigale, Archer 1976a), dines not necessarily mean P_{1} ctows out of aligntment. Judging from proximity of premolar and caninc alvcoli, premotars and canine presumably contacted one another antero-posteriosty. Cf atveolus suggests C_{1} width exceeded that of any promolas, but because of relatively uneduced P. P_{9}^{\prime} C_{1} probably not greatly enlarged and comparable with canime of Nitegoul Archer, 1975b.
$\mathrm{M}_{\mathrm{I}}^{\prime}$ talonid wider than trigonid but trigonid not as compressed laterally as in most modern Lasyurids, Well-developed anteriar cingulum, which terminates lingually for hypoconulid notely, Parastylid comer of tooth most anterior portion of crown Posterior cingulum comparable in jength to anterior cingulum and ter. minates buccal to postcriorly projecting hypoconulid, Basal cingulum absent berealh pastern-buceal comer of protoconid and hypocouid. Roughened enamel suggests cingulum present hersveen base of protoconid and hypnconid. No lingual cingulum. Paraconid low. approximately same height as hypoconulid. Pintoconid tallest cusp of trigonid Metaennid iute shorier thun protoconid, FIypoconid just
taller than entozonid which is taller than pasisconid. Paracristid complete between proteconid and paracunid hut almost vertical from protoconid to shallow paractistid tissure and horizomtal between paracristid fissure and paraconid. Metacristid steeply inclimed on both sides of metacristid fissure. Metacristid and hypocristid approximately transverse to long axis of dentary. Cristid obliqua (danaged) extends from hypoconid to $\begin{aligned} & \text { riganal inlersecting }\end{aligned}$ latter at point helow protoconid tip, well buccal to metacristid fissure. Hypacristid extencls from hypoconid to hypocomulid without approaching entoconid. Entoconid and hypoconulid not connected by crest: Entoconid and metaconid connected by figh crest.
$\mathrm{M} / \mathrm{talonid}$ wider than trigonid Anterior and posterior cingulum as in M_{2}. Bucceal cingu. lum hetween protovonid and hypoconid less develoned (absent in P18190). No lingual Lingulum. Paraconid smallest trigonid cusp but subequal in height to hypoconid and entoconid. Meraconid much taller than hypoconid and just shouter than protoconid. Hypoconid and entoconid subequal in feight: Entoconid not conntected to hypoconulid hy cerest, but fonnected to metaconid as in M/s except that crest interruptca by shallow transverse groove Paracristid from paracristid fissure to paraconid, inclined, not horizontal, Crista obliqua extends In thase of protoconid as in M/ but anterior end appears to be distinct contribution from Irigunid with slight fissure where talonid and trigonid parts meet. Trigonid portion thickes and more bulbous. Otherwise morphology M. as in M\}.

Ms talonid just wider than trigonid. Anlerior and posterior cingulum as in Mc, Buccal cingulum wonlined to area between base of protoconid and hypoconid, as thickened bulge of enamel, clearly less well-developed than anterior and posterior cingula, No lingual cingulum. Paraconid smallest trigonid cusp but taller than any tatonid cusp. Entoconid not connecied to hypncunulid hy erest, but connected to metaconid, as in Me. Unlike cristid nhliqua in Mh, this structure in Ms appears to lack transverse fissure separating crest into hypoconid and trigonid portions: This diefrrence between M_{6}^{6} and M_{4} notable in PI8190, Cristid obliqua also intersects trigonid in slightly mose lingual position than in Men Otherwise morphology Mos as in M.
M_{4} trigonid wider than tilonid, but talonid wider than that structure ils most modern dasyubide. Anterior cingulum $n s$ in \mathbf{M}_{6}^{2} Pos-
terior cingulum ;ibsent. Buccal cingulum confined to area between protocoald and hypoconid. Parasonid just shorter than metaconid. Entoconid and hypoconid reduced relative in $M_{i s}$ but larger relative to sooss modern dasyurids. Entoconid connected to base of metaconid yia low crest. Entoconid also connected to hypúconulid by low crest. Hypocristid convex anteriorly. Hypoconulid subequal in height to entozonid. Cristid obliqua intersects trigonid base immediately buecal to point below metacristid fissure, this being markedfy more lingual than similar imersection of cristid obliqua in M_{y}. Otherwise morphology of M4 28 in M_{3}.

Mcristic changes along touth row as follows. Pafteonid increases in height from M_{1} to M_{4}. Metaconid height $\mathrm{M}_{1}^{2}-\frac{1}{4}$ subequal but metaconid lengat at basc of cusp decreases mathedly from M_{2} to M_{4}, resull of reduction in size of minor crest on posterior slope of metaconid whiclt links with estoconid. Entonnoid M_{1} - subequal and larger than entocottid of M, Hypoconultil M1 α subegual in height and shorter than that cusp in M_{1}. Protoconid M_{i} shorter than protocontd Mis whichs is subequal to that cusp in My which is larger than that cusp in M4. Hypoconid decreases in height from. M_{1} to M_{4}. Talonid $\mathrm{M}_{1}-5$ wider than erigonid. Talonid M_{f} narower than trigonid. Paracristid M_{1} 人2 subeçual and subequal to (P18190) or just shorter than (UCR. 153-1) that crest in M_{3}. Paracristid M_{4}^{\prime} shorter than that of Me. Metacristid increases in Jength from M_{1} to M_{3}. Mctacristid M_{4} shorter than metacristid Ma. Cristid obliqua infersects trigonid in progressively more lingual position from M_{i} to M_{4}. Hypocristid M_{j} subegual in length and longer than hypocristic M. Anterior cingulum deareases in length
 Mi-\% subequal in length (absent in M_{4}).

Discussion and comparison

Aukotarinjo is a metatherian because it has tour molars, a large stylar shelf, and an approximated entoconid and hypoconulid. It is also a marsupicamivore because it has tribo. sphenic molars lacking hypocones.

Dental charactetistics of known dasyurids, peramelids, thylacioids, didelphids, and related marsupparnivores have becn reviewed (Archer 1976b) and, to avoid repstition: it is sufficient to point put here that Ankotaringa can only be reganded as either a dasyurid or didusphíd. Because morphological yariation of
teeth exhibited by didelphids and dasyurids overlaps, onjy incisor number and possibly dP4 cusp number permit diagnosis at the fanily level. All dasyurids have three lower incisozs and four upper incisors on each side. whereas almost all dideiphids have four lower and five upper incisors (exceptions may include Derorhynchas simgularis Paula Couto, 1952, species of Eadelphis Mathew, 1916). The premaxilla and anterior region of the dentary of Ankotarinja sinarensis ate unknowys. Therefore, this marsupicarnivore cannot at present be scferred conclusively to either the Dasyuridae or the Didelphidae.

Modern and fossil didelphid subfamilies exhibit greater morphological variation than dasyurids. Most ane so distinet that their mete sublamilial status has been questioned, and the reasons they are doubtfully seferned to the Oidelphidar are also the reasons they tannot be related to andioturinia tirarensis. Only didelphines warrant closer comparison.

Sonie North and South Anretican didelphines are adeguitely illustrated (such as the Palcocene forms described by Paula Couto 1952, 1962, 1970) but most are noi. Archer (1976b) summarizes the must siriking characteristics of these forms. Only species of Coona Simpson. 1938, Marmosopsis Paula Couto, 1962, Mirandatheriunt Paula Couto, 1970. Monadelphopsis Paula Couto, 1952, Derurhynchus Paula Couto, 1952, Ischyrodidelphis Paula Couto, 1952, Didelphepsis Paula Couto. 1952, Minusculudelphir Paula Couto, 1962 and an M H listed by Pauia Couto (1962) as incerlate sedia are similar to A. virarensis. Among Cretaceous didelphines, speciss of Alphacian Simpson. 1927, and Pediomys Marsh. 1889, warrant comparison. Modern dudelphines used here for comparison include two species of Marmorara Gray. 1821. M. sp, and M. Mitis Bangs, 1898. Monodelphis dimidiena (Wagner, 1847). Mefachirus nudicaudaths (Genfroy, 1803), Phlander opossume Gray, 1843. and Didelphis marsupialis Linnaens, 1760, of these, species of Marmosa, Monedelphts Burnctl, 1830 and Didelphis Limnacus, 1758 warrant closer comparison with Ankotarima.

Characters of Ankotarinfa whish are unusual among dasyurids and invite broader compari son within the Marsupicamivora (the didelphine forms noted above) are as follows: 1 , large M/ talonid; 2, relatively uncompresecd ML trigonids 3, huceal position of anterior end of cristic obliqua; 4, transverse orientation of metacristid: 5 , large $\mathbf{P}_{4} ; 6$, large $M \geqslant 7$. stylas

FIG. 3

FIG. 4.

FIG. 5.

TABLE ！
Untssual characteristics
of Ankolarinia

1． \mathbf{M}_{1} talonid large
2 Metrigonid wide
3．Coo，buecal posilior
4．Transyérse metactistial
5 ．Large P／L
b．Large M4
7．5D small and posterior

$\begin{aligned} & \frac{y}{2} \\ & \frac{5}{4} \\ & \frac{0}{6} \\ & \frac{5}{5} \end{aligned}$								Alimiserelodetphis			$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { d } \\ & \text { E } \end{aligned}$	$\frac{2}{2}$	殔		흘		$\begin{aligned} & \frac{\pi}{z} \\ & \text { 会 } \\ & \text { d } \\ & \frac{E}{E} \\ & \frac{4}{2} \end{aligned}$			
t	$\stackrel{+}{+}$		？		1	7			1		＋		$+$	$+$	\pm					
	＇7	\div	\dagger		－	－	\downarrow	$\underline{2}$	\cdots	$+$	＋	$+$	＋					－＋		
t	1	1		$+$	$\stackrel{1}{2}$	－		＋	？	$+$	－	$+$	$+$	1	$+$		$+$			
		1					－	$+$	？	$+$	4	$+$	＋	t				－－+		
	－1	t	－1－				＋	＋	？	＋	$+$	＋	$+$					－		
＋	\％	－	γ	$?$	$?$	？		\％	$?$	$+$	＋	$+$					＋	－		
4	2	\％	－	\because	9	$?$		\％	7	－	$+$	＋	＋	4	＋			－		
	？	8	？	\because	\because	＊	f	？	？		＋					$+$	$+$	$+\sim$	－+	

cusp arrangement with reduced and posteriorly positioned stD；and 8，prominear melaconule． These characters are compared in Table 1 for non－dasyurid marsupicarnivores noted above， as well as dasyurids which provide the closest approximations to Ankntarinfa．In this Table， characters 1－8 are the same as noted above． A＂${ }^{+4}$ records a condition similar to or which approaches the condition found in Ankotarinja． A＂？＂indicates either that the requisite part of the dentition is unknown or not adequately pre－ served．A＂－－＂indicates a character condition unlike that in Andotarimia．In some genera noted，some species may be simitar to，while others differ from，the condition in Anko－ farimpa．In this case，a＂f＂only＂is recorded．
M_{4}^{\prime} and M^{4} size
Large M^{4} and M_{4} talonid are related characters and more common among struc－ turally ancestral didelphines than dasyurids． Very lew dasyurids have the M_{4} talonid is relatively large as it is in Ankotaringa．The M_{4} lalonid of most dasyurids is laterally eom－ pressed with one or at most two cusps present． the hypoconid and entoconid or hypoconid and hypoconulid．In this character，Ankotarinja is most similar（among dasyurids）to Neo－ phascogale and to a lesser extent Phascoloso－ rex．Three distinct cusps may sometimes bé present on the M_{4} talonid of other dasyurids
such as Murexia；Myoictis Gray； 1858 and some Antechinus but in these forms the M_{4} trigonid is relatively larger than in Ankotarimia． while the talonid is transversely compressed， Relatively large M_{f} talonids characterize many didelphine groups．For example，the talonid of M_{4} in Marmose is only slightly more reduced than that of Andofariniq．Howeycr，in Mar－ mova the whole M_{4} is aot as reduced relative to M 反 as it is in Ankotarinja．Philander Brisson， 1762 （133460），and Metachirus Bur－ meister，1854（J3461）also show a relatively unreduced M_{4} talonid Coona and Guggerd－ heirmld Paulz Couto， 1952 have M_{4}^{\prime} talonids even wider than the trigonids．Extremely narrow M_{+}^{+}talonids（comparable with the con－ dition in most dasyurids）are found among didelphines in species of Minusculodelphis and and Maymosopsis．

Overall reduction of \mathbf{M}_{4}^{\prime} relative to \mathbf{M}_{3} ，such as occurs in Ankotarinja，does not occur in any modern dasyutids．It is common only to some didelphoids．My of Ankotarinia is un－ known but maxillary fragment UCR， 15343 jn－ dicates that this tooth was as wide but not as long antero－posteriorly as M 当 of most didel． phids．It was conparable in length to M ）of some modern dasyurids such as Neophasco－ gale，but wider than that tooth in most modern dasyurids．Size of M s in modern dasyurids

Fig．3．A－E，scanning electron microscope photographs of Ankotarinja tirarensis，A－D，UCR，15308． LM ${ }^{3}$ ．A，stereophotographs．E ，UCR，15343，maxillary frugment with alveoli for LM\％－4．
Fig．4．A－E，scanning electron microscope photographs of Ankotarinja tirarensis．A－C，F7332，LM\％．A． stereophotographs．D．E，Holotype，P18190，RM\％．entoconid broken of RM－
Fig．5．A－E，scamning electron mictuscope photographs of Askotarinja tirarensis．A－B，UCR，153A！， dentary fragment with LMg．D．UCR．15341，dentary fragment with LMájo E．F7331，deatary fragment with IMS－4．
appears to be telated to relative length of the check-tooth row, being shorter and more roduced in forms with more compressed tooih nows. This compression commonly occurs in more strictly carnivorous forms where emphasis is on devclopment of metacrista-paracristid shearing elements. In more insextivotous forms, paracrista-melacristld shearing elentents are relatively less reduced, resulting in a selatively more funcrional M, paracrista and larger M_{4} talonid.

Reasous for overall reduction of M_{4} relative to M\% aro not easy to interpret, In some diprotodont marsupials where reduction of M_{4} is advanced, sometimes even involving hiss, \mathbf{P} 's is devcloped as a large sectorial or even plagiaulacoid tooth, possibly refleciting a shift unteroorly in shearing emphasis, reducing the importanoe of M_{4}, In Ankotarinia, although P_{4}^{\prime} is large, the size is not particularly different from that of some didelphines which lack a reduecd Mb.
M_{1} Prigonid width paraconid reduction, and size of P4

Reduction of the M_{1} paraconid and $\mathrm{P}_{\text {/ }}$ are related characters and often accompanied by transverse compression of the M_{1} trigonid and increase in relative importance of the protoconid. The relatively large P_{t}^{\prime} and wide trigonid of M_{1}^{\prime} in Antorermia are unmatched anong living dasyurids. Even in Ncoshascegale the M_{1} trigonid is transversely compressed with gross reduction of the paraconid. In Ankotarinja the M_{1} paraconid is very low on the trigonid but not strongly deflected out of alignoment with the other lingual cusps such as occurs in most dasyurids. The closest match among dasyurids is found in species of Sminthopsis, Murexla, and Kecuna but even here, the M paraconid is shifted anteriorly relative to that cusp in ankotarinja. A relatively wide frigonid on M_{1} occurs in moss didelphoids, and in part. reflects the relatively large P_{8} in most of these forms. In dasyurids which show premolar reduction, it is P_{i}^{\prime} which is seduced ot lost in the lower dentition (including the interesting case of Pdeniagle zillesi Aitken, 1972; Archer 1976a); while in didelphoids and borhyaenids it is P_{1} which is nurmally leduced. The only marked exception are species of Zygolester Ameghino, 1898, which afe unique among didelphids in having an extremely neduced, although two-rooted, P_{4}^{\prime} - Reig (1957) notes that in the M_{8} the pararonid is more buccal in position than ix hurmal for the group. This modification is much less than that sten

In the trigonid of dasyurids with a comparably reduced P_{1}^{\prime}. Reduction of P_{1}^{\prime} normally occurs among dasyurids which exhibit a compressed cheek-tooth row, increased carnassiality as judged by proportionate increase in mutaristiparactistid length, colarged canimes, ctc. (Archer 1976b). Attendant reduction of the M_{1} paraconid and increase in size of the M_{1} protoconid sbift the premolatiform-molarifurn: boundary pesteriorly. The Mf trigonid funclions as a slabbing piercing premolar rather than a sectorial uigonid. Futher, in dasyurids which tave lose Fin, such as Dusyurzas Cieaitroy, 1796 and Sarcophiles, the netacrista-paracrisfid length of M_{2}^{2} is greater than that of M_{2} or M_{1}. The net effect is to concentrate the secporial function of the mulars at a point pos terior of the middle of the molar row. Posteriar shift of the premolatiform-molatiform houndary may be secn in this way as merely maintainiog the structurally arcesiral relationship between these two types of teeth.

Ankorarinja is clearly structnrally ancestal in this regard and more sintilar to didelphids than dasyurids.

Posthion of she cristid obligua

The M_{3} cristid obliqua of Anforarinia birurensir is unlike almost alf dasyurids in that it intersects the trigonid at a point so far fuccal to the metacristid camassial notch. This condition is approached in Neophascogale and to a lesset extent in Keerna. While in other dasyurids the cristid obliqua tends to intersect the trigonid just huccal to the carmussial minth. In some dasyurids (e.g. Neophuscosule and D(asyuras) the promennid flank cnmtrihutes to the cristid obliquas on $\mathrm{M}_{2}-\frac{1}{3}$, and this same condition acurs in Ankotarinja, at least on Mé. Clemens (1966) suggests that lower teeth (except perhaps dP_{4}) of pedionryids sam he distinguished from species of Alphaton in that the crista obliqua in pediomyids intersects the base of the trigonid well buccal to the metacristid fissure. This pedinmyid condition is also present is all modern didelphids examined in the present study and appears to be present in illustrazions of species of many of the Sonth Ameritan fossil didelphines. The condition in Ankorarimia is closer to this pedionyid and didelphine condition than it is to most modern dasyurids or Alohadon.

Although the functional significance of this difference is not clear, a relatively more buceal position produces ai larger talonid basin. Position of the cristid obliaut must also retlect pasition of the paracone, a more buccal position
indicaling a relatively reduced or more buocaliy siluated pasacone.

The curdilion found in Arkotarinia and some dasyurids (c,go Daryunts) of a small ahiteriot component of the cristid obliqua formed by the proloconid flank results in the development of a small accessory carnassiol wotch against whicl shears the paracone. This makes an effective point-cutting unit that supplemstits those devcloped on the trigonid.

Transverse metucristid

In Ankosariajo the metacristids afe ifant. Yerse to the long axis of the dentary. In slitsyunds. this candition is present only in species of Smimhopsis, Amechinomys Krefft. 1867. and to a lesser exteat, species of Ningoui and some species of Planfanle. In othes dissyurids. the metaconid is displaced posteriorly relative to the protoconid resulting in the metacristid and paractistid forming a more obtuse angle. The transverse condition is present among some but not all modern didelphines some Cretaccous didelphoids, and many Tertiary didelphids.

Among dasyurids, ภlarkedly non-transyersc metacristids occur only in the more camivorous forms. This structural trend is noted by Bensley (1903) who regards it as modification fowards longitudinat and away from transverse shear. In this respect, the lower molars of Anknturinia demonstrate the structurally primifive insectivorous condition, which is more common among didelphids.

Syylar crusp size and posirion

Tcrminology of the stylar cusps of Anketarinja used here is set out elsewbere (Archer 1976h).

The stylar cusp condition in Ankotarmine is closer to that of didelphids than dasyurids in having a large stylar cusp posterior to $s t B$, anlecior 10 stD and buccal to the low point in the para-metacrista of M^{3}, which is the homologue of the surmal didelphid and variably present, but invariably small, dasyurid stC. Further, stD in Ankularinia is stnaller and slighty mute posterior in position than that cusp in modern dssyuride These non-dasyusid-dike features are common among Cretaceous didelphines such as glasbines. some species ol Alphason and Pedionys.

Stylar cusps do not have ncclusal counterparts in lower molars, yet they clearly sustain wear This wear must result from food ahrasion during initial puncturing prior to the cutting or shearing ocelusal phase. As the dentary closes, force is applied to food trapped between seeth
by the lower molars in opposition to the whole of the upper molars including the stylar shelf. The area of the crushing or pututiuriug surface is increased by larger stylar cusps. In marsupicamivores, stylar cusp reduction accuss in the múte carnivorous forms such as farcopfoilus. Thylacinus Temminck. 1824, and borhyaenids where pertaps the puncturing value of shese cusps is ovcrshadowed by the need to have large and sturdy shearing crests. Tice slylar cusp size and arrangement in Ankotariniu may therefore be interpreted as evidence for insectivorous rather than carnivorous habits.

Metacomulc devefopmuns

In Anko:arinja the metaconale of the uppet molars is s prominent feature, while the protoconulc is not present in M . Conule development is present in some dasyurids and many didelphids. It is well-developed in most Creta ecous didelphines where both protoconules and metaconules occur. Simpson (192s) Totes that these cusps in recent didejphids are represented at most by yestiges.

The possible functional significance of metaconules is discussed elsewhere (Archer. 1971). In addition, well-developed metaconules may scrve as shearing counterparts for the hypoconid and buccal edge of the bypocristid.

Stimmury

The dentition of Ankotarikia resembles that of matyy didelphids, and some dasyurids such as Neophascogale, Murexia and Sminthapsis. Because of the middle Miocene age of Alx. deposit, as well as the fact that two relatively more modern-type dasyurids (Kepana and atn uninamed form noted by Stirton. Tedford, \& Miller 1961) are io the same deposit. if would be absund to regard Antoicomia as the ancestral dasyurid. However, it does preserve chatislers which could be regarded as structurally ancestral 10 moderu dasyurids. It is clear that many South Amarican Tentiary didclphines of Paleocene age (Giraham \& Ride 1967) share characters with Ankorarinja which it toes not share with modern disyurids. Taking into accottht all available morphological characters fogether with what is currently known of their distribution, and recognizing that the characters (incisor number and dP4 mosphology) which will distinguish between the two lineages Dasyuroidea and Ditelphoidea are not preserved, one cannot avoid concluding that the data available indicate a marsupicamisnre. probably belongiog to the Dasyuroidea, kut which. like the slightly older phatangeroid Wymyardia Spencer, 1900 (Ride 1964b), alsu

Fis, 6. Specimens of Keeuna woodburnei and their measurements (mm). A. Holotype, P18191, RM\%. $B, H 7333$, maxillary fragment with LM ${ }^{9}$ (broken). LM ${ }^{3}$ and alveoli for LM ${ }^{\prime}$. C. UCR, 15346, dentary fragment with LP ${ }^{2}$ erupting and alveoli for $\mathrm{LC}_{1}-\mathrm{M}_{4}$. D, F7334, LM1. E, UCR, 15344, LM
 edge of premazilary vacuity.
retains a number of characters of a sort which reyeals its derivation from early Tertiary didelphoids or the didelphoid-dasyurid stem. If it should be discovered that Ankotarinja possesses a didelphoid incisor number, the author will have no hesitation in describing it as a didelphoid with characters foreshadowing dasyurids, but it is clear that it is far too late in time to be an ancestor to the whole dasyurid family. For the present, it is listed as ?Dasyuridaes,

Genus KEEUNA nov.

Type species; Kecuna woodburnei sp. nov. (by designation and manotypy).
Generic diagnosis: Differs from other Alistrálian and New Guinean dasyurids including Ankotarinja in combining relatively reduced stD on $\mathrm{M} \geqslant-3$, large M 4 , antero-posteriorly shortened M^{5} and virtually absent posterior cingulum on My_{-3}, (although mild posterior
cingular swelling prescat on holotype), and relatively unreduced P_{4}.
Origin of generic name: Kee, central Ausiralian Aboriginal word for wild cat; una, central Australian Aboriginal word for forgotten (Smith 1880), Keerna is here given masculine gender.

Keeuna woodburnei sp, nov.

FIGS 6-8

Holotype! P18191, isolated RM ${ }^{25}$.
Type locality: Tedford locality, Etadunna Formation, Lake Palankarinna, Etadunaa Station. S.A. $\left(28^{\circ} 47^{\circ} \mathrm{S}, 138^{\circ} 25^{\circ} \mathrm{E}\right)$.

Diarnosis: That of genus. Relative development of entoconids, stylar cusps, and size may prove to be diagnostic species characters.
Origit of specific name: The specifie name is in honour of Dr M. O. Woodburne who helped
find and of the matcrial referred to this species and who, with Dr W. A. Clemens, aave the author his firsl opportumity to study Austatian Tettiary fossils.
Relened specimens: UCR, 15271. RMit: 5733.3, leff maxillary fragment with M^{3} and part of M3: UCR, 1534T, right premaxillary fragment: UCR, 15344, isotated LM si UCR, 15348. left dentary fragment: UCR, 5286 , trigonid RM í: UCR, 15269, trigonid RM ifi UCR, 15274. isolated M_{3}; UCR, 15345, Iefi dentary fragment; UCR, 15346, dentary frag. ment with LP P_{4}^{\prime} erupting: F7334, isolated $L M_{1}^{\prime}$

Description

Maxillary fragment (F7333) has LM4, posscrior part LMz, and alveoli for LM, Ms narower than Ma, but velatively litte rechuced antero-pesteriarly, being only slightly shortck than Ms. Metacone foot $\mathrm{M}=$ large, equivalent in size to protocone root, and only just smaller than paracone root. Interdental fenestrac occur between M^{3} and M^{3} and between M^{3} and M ! Maxillary toot of zygonsatic arch arises buccal to $\mathrm{M} x-\frac{8}{\text { y }}$ Infraorbital canal opens on anterior edge of maxilary fragment, dorsal to anterior end M?
Premaxillary fragment (UCR, 15347) may represent K. woodhurnel on basis of size, because lamer than would be expected for other known Ngapakaldi forms. Four alveoli precent. Largest nepresents RI), (alveolus broken). This alveolus scparated from alvenlus for R1s by Very shorl diastema. Alveoli for $\mathrm{RI}^{4}-4$ contace one another. R11, alvcolus inclinad posteriorly and suggests RI] inclined antero-ventrally. Based on alveolar size, RI1 largest incisor, $\mathrm{Rl}_{5}{ }^{5}$ exceeded $\mathrm{RI} t$ in Jength which excected $\mathrm{RI} / 3$ in length. This may be misleading since posterior lohe ot RIt , (occurrence of which is not uncommon among modern dasyurids) may have caused this tooth to be longer than R1? Also. suot for RII, commonly large in modern dasyurids, while crown may be very reduced. Posterior to R14 alveolus, premaxillary wall descends into pit which is oeclusal counterpart of RC_{i} - indicating RC large and caniniforms.
N_{3} with continuous anterior cingulum connecting parastylar corner of tooth to preproto crista (piece of enamel missing from anterior cingulum of hnlotype). Posterior cingulum absent (P7333) to doubtrully prosent (P18191) As swelling at basc of crown above nietacone root. Swelling not continuous with postprutnerists whereas this is the case in modem dasyurids with undoubled posterior cingula. Five distinct buccal cusps present. SiA
accuis at buccal and of anteriour cingulum. hetween parastylar comer of tootds and stB. Almost vertical, minof crest connects stith til parastylar corner of footh, that past of tooth which would overlap postenco-buccal edge ol pt: Very minor, mare gently inclined crest cunects stA to stB. StB connected to paracone by long parachsta. Buccal crest extends posterioriy from 5 b B to contact small, Jow stc which is adjacent to anothet smatl low stytar cusp of uncertuin homology. These two stylar cusps not connected by crest, The posterior simall cusp connects to larger stD by minour. inclined crest. StD largest stylar cusp, bul smaller ltian that cusp in M^{2} of modern dasyurids. StD coancets to metnatylar exorner of tooth by lung, low crest. No evidence of stF. From metastylar corner of tonth, three crests radiate: buecal crest to stD: metacrista to metacone: and minor short crest that extends antero-lingually from metastylar conner and ends within shore distance of $100 t$ eomer. Crescentic enamel ridge occurs lingual to mid point of ectoloph, and buccal to mid-point of para-melacrista. Ridge may represent cusp analogous to similar structure in some specimens of Sminthopsis virgimlue Tarragon, 1847 Paracone shorter than metacones, and two cusps widely separated. Small but clcar meta. conular ridge extends from base of metacone to middic of postprotocrista. Postprutacrista terminatex as steep-sided crest fdjacent to base of metacone. Decp pyramid-shaped firsa exists between hases of paracone and metacone and buccal flank of protocone. Metuerista approximately 1.5 limes length paracrista. Excoflexus in cetoloph slight, point of inflection immediately posterion to stC.

M ${ }^{\text {d }}$ with conthuous anterior cingulum. Posterior cingulum absent. At least four stytar cusps present. Parastylar extension of tooth small and secordingly fittle overlap of instastvlar corner of M 3 occurs. SIC connected in stis as in $M \not{ }^{z}$ On anterior flank of cusp called stc (F7333), small, possibly distinct swelling occurs which may be homologous swith stC of M2. If 80. cusp posterior in that cusp in M ${ }^{19}$ might be homologous with aingle conspicuous cusp in this position on M^{3}. Posterior to stc of M^{2} is slighty larger stD. Posterior to stD, and connected to it by crest, is stE. This cusp extends posterintly as ridge which temunates short of metastylar comer of looth. Only meta. crista azdiates from metastylar semer of eooth, Lingual 10 stc, as in M3. crescentic ridge occuts which may be distinct cusp. In addition

TABEE 2

Unusual chapuciers－ of Komma	는 4 4	Hidelphapsts	$\begin{aligned} & 7 \\ & \frac{3}{4} \\ & \frac{1}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { x } \\ & \text { 皆 } \\ & \text { 资 } \\ & \text { oै } \end{aligned}$		$\begin{aligned} & \text { k } \\ & \text { E } \\ & \text { E } \end{aligned}$		$\frac{y}{2}$		Neophascayale.	Thascolosorfx		㖪	皆	星
1．Lutise M\％	＋	t	\div	$+$	＋	$+$	$+$	7	－	＋	$\stackrel{1}{6}$	－	－	\leftarrow	$+$
E．Mx lask preyr．cing．	－	t	1	1	－	t	$+$	$+$	－	－	－	$+$	$+$	\％	＋
1 Stanllsid	＋	－	\rightarrow	\div	f．	＋	＋	－	－	－	－	－	－	－	f－
4．Compresied M：	－	－	r－	\sim	－	T	＋	－	$+$	－	－	\rightarrow	＊	＋	－

to metaconular ridge，as in MO_{6}^{2} clear ineta－ conular swelling piestont on pastprotocrista．No clear protaconule ar protoconular tidge present．Metacristh less than 1.5 times length paracrista．Ectoflcxus M多 broad and relatively decr．Point of inflection in ectoflexus occurs anterior to stC．Otherwise morphology of $\mathrm{M}^{\text {S }}$ as in $\mathrm{M}_{3}{ }^{3}$ ．

Dentary with two branches of inferior den－ lal canal，one emerging at point level with middle of M_{1}^{\prime} on buceal surface of dentary while other emerges at point beneath posterior mot P_{h}（latter condition determined from juvenile dentary，UCR，15346）．UCR， 15346 only specimen with premolar alveoll preservect． P_{4} erupting in this specimen．As result． apparently．crowded premolar condition may become less erowded in adult dentary．Pre－ molar gradient suggested by alveoli；P_{1}^{\prime} shorier than P_{1} which is subequal in length to P_{1} ． DP_{4} alveoli suggest tooth as large as P_{4} and two－rooted．P／i alveoli acutely oblique with an－ terior root postern－huceal to C_{1} alveolus．Pos． terior ront P_{i} immediately posterior to \mathbb{C}_{4} alvcolus．Pand alp alveoli suggest iceth only mildly out of alignment（athough crown aligment need not be retlected in root align－ ment），C＇t alvoolus relativcly small，suggesting tooth no wider than P／r．
p／i partly crupted and partly obscured．Tooth single－cuxped with tall protoconid．Paracristiod steep．No anterior cingulum cusp．Metacristid more aently inclined anel appears to directly contact very small posterior cingulum cusp．No buccal ar lingual cingula evident．
M_{1} talonid wider than trigonid，and trigonid more laterally compressed than that struchure in Ankotarinja．Anterior cingulun relatively well－developed，terminating lingually with hypoconulid noteh，and terminating buccally antcrior to buecal base of proloconid．Posterior cingulum slightly shorter than anterior cingu－ lum and exteads to contact hypoconulid．I＇ris－ tounted engelum development，as bulge
between bases of protoconid and hypoconid． No lingual cinguluni Paraconid low on crown， approximately same height as entocontid．Prove－ conid tallest trigonid cusp．Metaconid just shorter than pintoconid．Hypoconid subequal to entoconid in height Paracristid complete between protoconid and paraconid，and anterior part of crest steeply inclined．Meta－ cristid and apparently paracristid fissures extend below cutting edges of crests．Crest descends from posterior wall of melaconid and meets crest from anterior wall of entoronid． I wo crests meet with shallow，open fissure． Crest development from posterior wall of cuto－ conid slight to absent．No crest links entoconid and hypoconulid．Hypoersistid extends postero linguatly from hypoconid to hypoconulid．Both hypocristid and metacristid clearly not trans－ verse to long axis of tooth，Cristid obliqua in－ tersects trigonid well buccal to point below metarristid fissurc．

Isolated molars posterior to M_{1} not been positively identified．UCR， 15274 and UCR． 15344 tentatively regarded as representing Ms and M respectively．This conclusion based on trigonid width and paracond heigh．Both in－ crease posteriorly in most modern dasyurids between M_{1} and M_{6} ．

UCR，15274，LM than talonid．Hypoconulid notch between para－ styfid and lingual end of anterior cingulum larger than in $\mathbf{M}_{\mathbf{1}}^{\prime}$ ．Cingulum development between hase of protoconid and hypoconiat does not produce buceal convexity in crown outline．Paraconid higher on crown than in My．Paracristid fissure well－developed below crest．Cristid obliqua intersects trigonid and extends shost way up trigonid wall at point lingual to point of same intersection in \boldsymbol{N}_{3} ． Otherwise morphology UCR， 15274 same as M

LCR 15344, LM $_{4}$ ，trigonid and talonid suli－ equal in width．Hypnconulid notch larger Han in M_{1} but subequal to that of M_{2} ，Posterior
cingulum less convex posteflorly than in M ar MI. Also, posterior cingulum extends lingualy ath contacts hypoconulid rather than stopping short ol it as in M_{i} and M_{h} Hasal cingutum between protoconid and hypoconvid weitdevelopen but does not cause buccal conwexity. Crests linking metaconid and entoconid lessdeveloped than in M_{h} and M_{6}. (although M_{4} damaged in this region): Cristid obliqua Intersecte irigonid as in M. Otherwise morphology M_{5} as in M_{4}.

Discussion and comparison

A summary of important dental characters in marsupicamivores in general is given clsewhere (Archer 1976b) and to avoid repetition, discussion of dental characters of Ketuna is largely restricted to those charicters which cither make Keetuna unusual among the Dasyuridae or suggest athinities outside of that family. Comparison within the MarsupicarniVora is restricted to the Dasyuridae and Diderphidae, because no other families contain forms even ranotely similar to Keeuna.

Kecuna cannot be referred conclusively to the Dasyuridae for the same reasons given above in the discussion of Ankotarinja. Hew. ever, the features of Keewn are more sugestive of known dasyurids than didelphids. If the referred premaxilla does in fact represent Kecuma, there is no reason to doubs is reference to the Dasyuriduc. This specimen shows alveoli for four incisors. The diastema behind the anterior alveolus confirms that the anterior alveolus represents 1 , No dasyurid or didelphid known to the author has a diastema within the incisor row pesterior to 13 or anterior to 15 , other than a variably present diastema between 14 and I2

Although the dental characters of Kemane are all present in one dasyurid or another, considered logether: 1 , whe lagge M^{4} (infered from alveoli): 2, virfual lack of a posterion cingulum on the upper molars; 3, relatively reduced stD on M 2 , and 4, sntern-posteriorly shortened M7; they make Kerisha unique among dasyurids: These characters are compared in Tahle 2 for didelphids and dasyurids which provide the closest similarilies in upper molar morphology to Keeuna. Many South American Tertiary didelphids which have a lower molar marphnlogy (e,g. Miraudaherium. Paula Couto 1962. fig. 4) similar to that of Keeunas, are unrepresented by upper molars and not included in Table 2. Characters 1-4 are the same as noted above. $\mathrm{A}^{4} \neq "$ records a condition similar to or closely approaching thal

Pound in Reerma. A "? indeates elther that the dentition is too incomplete or poorly preserved to enable determination. A st-" indi. eates a condition unlike that in Keennic. Poly. bypic genera which have some forms similar to but others dilfering trom Keerma are tecorded only as "+". M" indicates any of all llppes molars.

Mysize

The posisible significance of a large M ! is discussed above. Keetula exhibits similaritics in this regand to many didelphids but only a few structurally ancestral dasyurids, including Alliotarinia.

Ponterlar cingula on apper molatr

Elscwhere (Archer (1976b) it has been noted that cingula have the effect of increasing molar surface area. It is also possible that posterior cingula on upper molars act as supplementary sheating crests in opposition to the paracristids which come into effect after the pasacristids shear past the metacrista. Distrihution of this chatactes in modern dasyurids (Archer 1976b) does not appear to lend itcelf to phylogenetic interpretation, being present in some but not other spocies of single genera such as Antechiner, Absence in Keeuma. although perhaps phylogenctically unimportant is useful in combination with other characters for differentiating the geris.

Stylar cusp D

Small size of this cusp allies Keethn with Ankorarinja, as well as with many didelphids.

The possible significance of stylar cusp size is discussed above in regard to Asthotariula.

Compressed M3

My of Keeuna is longitudinally compressed II comparison with structurally ancestral dasyurids such as Neophaseagate but not in comparison with structurally derived dasyutids such as Sminktopwis whose mblars are even mote compressal. Bensley (1903) notes relative compression in some dasyurids and regards. this as a more insectivorous than carnivotous adaptation. Extremes of non-compression, such as occur in Sarcophilus, result in shearing crests which approach longitudinal rather than a transverse orientation.

Detalled comparisons

Overall. Keema more closely rescmbles some dasyurids including Phaseolosorex, Nco. phascogate, some Ansechimis, Mfrexida, ant Ankofarbioa, than it does didelphids. Pasticnlat similatitics and differences are noted helow.

Similatitics which extend to all dasyurids are not noted.
Phascolosorex: Sinsilaritics include relatively barge $M y$ and metaconule. Upper molars of Kevuna differ from those of Phascolonarex (eg. AMNH. 109758, 151992, 101975 and (09757) in that stylar cusps much closer to buccal edge of crown: snall stylar cusp occurs lingual to stc (altbough in some specimens of species of Pharcolesseres such as AMNH, 151992, this cusp suggested on M^{3}); M_{3} shotter antero-posteriorly: paracrista and metatrista enclose more acute angle; and M3-1 lack chear nusterior cingula, In Jower molars of Reeluna, trigonid and paraconid of M_{y} much less reduced; crests from posterior face of metaconids much better-developed; talonid M_{3} sclatively slightly wider.
Neophascogale: Large M t of Keesna similar to that of Neophascogate (c.g. AMNH. 109524). Difierences in upper molars of Kesune include those noted above in comparison with Phascolosorex as well as lack of distinct anterolingual low crest developed on base of protocone twhich has nothing to do with preprotocrista); cetoloph and para-metacrista relatively more widely separate at their closest point: protoconule slightly better-developed. Lower molars Keenna differ in having less reduced M_{3} trigonid: relatively shorter, wider molats? cristid othiqua which intersects trigonid in relafikely more lingual position (notable in Ma-3): Tack of post-entoconid crest which directly connects to bypoconulid, relatively Jower talonids. higher trigonids: selatively shorter talonids.
Antechimus: Resemblance with some Anteshimus (e.g. A, mayeri (Rothschild \& Dollman. 1930). AMNH, 109816, A. sp., AMNH, 190877 Erom New Guines, and A. mefanura (Thomss. 1899). WAM, M5517) considerable including overall proporions of $\mathrm{M}_{-}^{-}-3$: somewhat similar reduction of stD on Mer nelatively unreduced P\%. Upper molars Keruha differ in that siD relatively slightly more reduces on M3: stB relatively more posterior on ectoloph:
 what shorter antero-posteriorly: Mf notably longer in groportion to length of M3: posterios Eingula absent; metacone and paracone Mat
relatively closer in height: larger, moye vanspicuous cusp of crest accurs lingwat to $3 t \mathrm{C}$: ectoflexus in relatively more posterior positions? protocone shorter antero-posteriorly at its longest puinl. Lower molars Kéfuter difter in having less-compressed trigonid on M_{1} with larger paratonid; relatively wider talonid on Mǵ: Jack complete buccal cingulum such as occurs on $M \xi_{1}^{3}$ of some Antechinus specics (e.g. A. mayeri); lower molars relatively shorter, wider; enfoconids Máa relatively tallor: hypoconulid wider and extends larther from postero-lingual comer of M_{1}-a .
Mirexia: Similaritics between species of Murexid (c.g. M. longicaudata (Schlegel 1866) (AMNH, 101972 and 152035)? int clude comparable relative length of M^{3} : relatively unreduced $\mathrm{P}_{\mathrm{y}}^{1}$. Upper molats of Keruth difier in same features from Murexio as they do from molars of Antechinux except as follows. In Keemmer all stylar cusps except C relatively smaller; parterior cingulum of upper molars virtually undeveloped (although only slight posteriur cinsular development uocurs in species of Murexia); M3 relatively longer. metaconular crest from base of metaconc less well-deycloped and lacks low. minor crest linking stD with metacone (latter oblserved only in unworn specimens of Muresia examined in this study, AMNH, 152035). Lower molars of Keruna differ in same features from teeth of Marexio that differentiate teeth of Anfechines, except as follows. In lewer molars of Keerna entoconids relatively shorter antcro-posteriorly, ath higher, butcal cingulum ahsent (occurs in one specimen of Murexda. AMNH, 152035): low direct crest lirking pesterius lince of cntoconid with bypoconulid absent.
Ankotarinja: Comparison with much smaller Ankorurintio demonetrates that hoth forms simiLar in having relatively small stylar cusps (particularly stD): stylar cusp(s) presest between B and D; no posterior cingulum; cornplete anterior cingulum; slightly smaller paracones then melacones; lack of direct trest linking ento. conid with hypoconulid: melatively large $P / 5$, unpeduced erigonit and paraconit of M_{1}^{2}. Upper molars of Keeuna difer from those of Ankomatinja in larger size and mone anterior position
 RM: stereo photographs. B, tentatively refersed to K. woodburnei, UCR. 15347 . premaxillary
 15344. LM, or LM . E, UCR, 15346, dentary fragment with unerepted LP4 and alveoli for 11 P -M M_{3} and eatges of alveoli for LC and LM .

FIG. 7.

FIG. 8.
of stD on $\mathrm{M}^{2}-3$; number of cusps in powition of SLC ; piresence of stylar erest linguat to StC: less well-developed metaconule; presence of deep git hetween bases of parncone and metaconc. 1 ower molars of Reeatu difer in having longer metacrista; relpively larger $\mathbf{M}_{1 \text { i }}$ more linguat intersection of cristid obliqua and tro. gonid; ron-transvesse metacristid and hypocristidt; large hypoconulid of Mantero-yesteriurly noa-compressed trigonids: relatively unesual hejghts of the paraconids and metaconids. Dif. ferences in position of intersection of cristid obliqua and trigonis in Ankoturinga and Keema not one of kiad, but degnee, position being gelatively more linglial in Keeunu.
Oither comparisons: Ne other dasyurids warrant detailed comparisons. Most didelphíds reveal fiver similanties, particularly if the referred premaxillary fragment of Keeuna does in fact belong to this form. Gencral simitatities with Cretaccous didelphines (e.g. suree species of Alphadon such as A. rhaster) include the paracone, which allfough smaller than the metacone, is not markedly so. Oithes similarities between Kieeunk and species of Alpludion include relatively reduced stylar cusps (except B), particularly D on M^{3} of species such as. A. whaiser and A. Lulli Clemens. 1966, and piesence uf stylar cusp or crest lingual to stc in A. rhaister. Marked differences in upper molars of Kecuna include much smaller proto. and meticonules: less-deeply concave and symmetric ectoloph of Mos, smaller stB; and absent posterior cingulum (present in some spacies of Arphadon). In lower nolars, similarities between Kequna and specjes of Alpladion include relatively unreduced trigonid of Míc Differences in lower molars of Keesthe include much smaller paraconid relative to metaconid in Mhós as opposed to specimens referred to species of Afphadon (Clemens 1966, Lillegraven 1969).

Compited with holaretic Tertiary didelphines, relative size of parawne in Keelina is simular to tondition seen in species of Peradectes and Peraheriam. Other similarilies inElude relatively fow stylar cusps; unieduced condition of \mathbf{P}_{4} (and presumably P_{4}^{4}) and M_{5} paraconidr lack ul posterior ciogulum on upper molars; relatively shallow indertation or ecto. loph: extreme buccal position of stydar cusps; and evidently non-isansvesse orientation of
metacristid and hypocristid. Differences in Reeners include sclativcly larger stylar cusps (particularly D): relatively pourly-developed metaconule: non-pediomyid-Jike cristid otliqua urientations, relatively taller meticonid and enroconid, and shoricr paraconid; and presence of redimentary buccal cingulum between bases of protoconid and hypoconid. Despite these differences, Kevured more closely resembles these didelphines than tuly others for which good illustrations or photographs are available.

Close similarilies may exist between. Keruma and some Palcocene (Riochican) didelphids Unfortumately very few are known from upper secth and few atre adequately illustrated. As noled above, all mudern didelphines cxamiacds and most Terliary didelphines exhibit a pediemyiid type of cristid obliqua, which diflers arom Kituna. Of all Palcocene forms illustrated hy Pitula Couto (2952, 1962, 1970) and Simpson (1947), Mirurdatheritum is perbaps nonst like Keerena Keerina difers from this didelphid in iclatively smallet sitac of P_{4} and presence ont buccal cinguluns developed between bases of protoconid and hypoconid. Upper molans of Mirandatherium are unknown.
Other didelphids do not reveal enough \$1milaritics to warrant separate comparisons.

Summary

Teeth of Keeuna, although resembling ieelh of some Tertiary didelphines such as species of Peratherium, Pevadectes, and Mirandatherimm, are broadly similar to teeth of some modern dasyurids sach as New Guinean Antechinus. In view also of the Australian Iocality of Kecumu. it seems most logical to regard this form as a somewhat unusual dasyurid, probably without direct descendants in the modem dasyurid fauna. Kesemblances between upher molars of Ankotarinfo and Keventa further suggest the posubibility that these two forms are more closely related to each other than either is to other dasyurids, thereby placing Kerata in .a structurally intermediate position between Andotarinja and modern dasyurids.

Discussion of Etadunna marsupicartuivores

Stitton, Tediord, \& Miller (1961, p. 35) briefly describe (but not name) another catnivore trom the Etadunax Formation, According to their description "The size of the ammal is comparable to Dasyurus auoll . . . The three

Fig. 8. A-C, scanning ettecton microscope photographs of Kisunu woodburnei, F7333, maxillary fragment with partial L.M\%, LM ${ }^{3}$ and alveoli for LM $\%$ C. stereo photagraphs.
premolars with gratation in size from \mathbf{P}; to \mathbf{P}_{6} and loc absence of the metaconid on M_{1} susgests that thls animal may not be far removed from the ancestry of Thylacimas". The author has seen drawings and photographs of this specimen (courtey Dr W. A. Clemens and Mr C" Camphell) and it is clear that nothing else about the specimen, including the morpholocy of the upper molars, shows any similarity io "\%hylacinus. On the contrary, it appears to represent ancther dasyurid lineage (perhaps related to Dadyurus) in which metaconld reduction has occurred only on M1. This unnamed dasyurid and Ketuno ate the only Eladunal camivores which can be refered with some confidence to the Dasyuridae.

Ankorutnia is cither a didelphid or dasyurid. Compared with known didelphoids, dasyuroids and peramcloids, the preserver portions of Ankerarinia do not enable confident reference to a patticular marsupial family. It is referred to here as ?Dasyuridae.

Ankiourinia and Keema compared with modern dasyurids, share most Uenial chanufers with living New Guinean species of Neaphascogate, Phascolasarex, and Antechinnos. Similaritics with Australian forms are fever and those that do exist are with forms found in sencrally non-arid Ausualian habitats, Broad M/ talonid, large M!, narrow and relatively uncrowded premolar tow, and Jarge entoconids are chatacters either lacking or tare it Austsalian arid-adapted daryurids. Several authors (c.g. Woodburne 1967. Schodde \& Calaby 1972, Stinton, Tedford, \& Woodburne 1964 indicate that New Guinea has many mammals (c,gg species of Dendrohages Muller: 1839, Dorcopsis Schlegel \& Mulles. 1839, Dis soechurns Peters, 1874, Micmperoycies Stein. 1932. Murexia, Myoicris, Neophaycogute and Pharroposores) from highland rainforest habjtats which appear to be structurally ancestral within their respective families.

Evidence for a lessarict central Australia during Ngapakaldi lime is seviewed by Stirton, Tedford, \& Woodburne (1968). In aldition, pollen Irom the base of the Etadunna Formation, recently oblained from bores in South Australig, has been found to include Nobko. Jagus sp. (pirs. comm, W, K. Harris, South Australian Department of Mines), a genus of plants presently restricted in the Ausiralian region to the high-rainfall habitats of eastern

Ausualis New Guinea and New Zeuland, Resemblance between Ngapakaldi marsupicarbivores and living New Gamean dasyurids, suggests these living highland New Guinean dasyurids may have avoided certain selective pressures brought so bear on mursupicarnivores living in central Australia, following Ngapakaldi time. These pressures may have included progressive deterioration of climate with increasing aridily. Elsewhere, as part of sevision of the dasyurid genus $S m i n t h o p z i s$, the authar has given evidence for belicving that several Australian dasyurid lineages underwent arid. adaptation. Arid-adapted forms now dominate the majority of Australia and are in clear contrast to the mursupicarnivores of the Ngapakaldi local fauna described here.

Acknowledgments

1 am deeply indebted to Drs W. A. Cientens and M. O. Woodbumre of the University of California at Berkcley and Riverside respeclively, for giving me the opportunity to help sollect and study Australian Tetiary fossils in 1971. Dr Woodburne was also a field associate and co-workcr in 1972. These trips were financed by a National Science Foundation Grant to Dis Woodburne and Clemens, Dr R. H. Tedford, American Muscum of Nalurul History, kindly allowed sue to camine in the field dasyurid and other fossil material recovered from deposits in the Lake Frome Basin, South Austealia, in 1973. Aspeets of the 1973 trip were financed by a National Science Foundation Grant to Dr Tedford. Other people who helped make the 1972 collections included Messrs R. Iawson, W. Head, South Australian Museum, and my wife Elizabeth. Mr C. Campbell of the University of Califormia at Berkeley allowed me to examine photographs of dasyurid material the 发 at present examining. Dr Clemens provided casts of upper molars of Lance species of Alphudon. Drs W. D. L- Ride, Wesiern Austratian Museum, and A, Darthokmai, Queensland Museum, sead and constru=tively critized drafts of this manuscript. Mrs C. Farlow and Miss P. Rainbird of the Queensland Mussum typed drafts of the manuscript. Messrs A. Easton and A. Elliot of the QueensIand Muscum helped with aspects of light photography: Mr 1. Hardy, University of Qucensland, produced the excellent scanning clectron microscope photographs.

References

AkCher $\mathrm{M}_{\text {(}}$ (1474),-The development of the cheek-tecth in doncchinus nawipes (Marsupialta, Disyofidae),) R, Soc- Mens- Ausf. 57. 54-63.

Arciler. M. (1975a)-The devaloprnent of premolar and molat crowns of Anrechinus fletipes (Marsupialia, Dusyuridae) and the significance of cusp onlogeny in mammalian teetli. J. R. Soc. West, Aus\%. 57, 118-125.
Ascuer, M. (1975t).-Ningaui, a new genus of tiny dasyurids (marsupialia) and two new species, from arid Western Australia, N.
 27-29.
Archen, M. (1975c),-Abnurmal dental devclopment and its significance in dasyurids and vituet marsuplals. Mem. Qd Mus. 17, 258.265.
Archer, M. (1976a). - Kevision of the narsunial dasyurial genus Planigule Troughton. Mrm. Qd Mlute its press.
Aaciler. M. (1976b),-The dasyutid dentition and ils relationships to that of didelphids, thylacinids burhyaenits (Marsupicarnivora) and peramelids (Peramelira)- Aus. \%. Zoolo. Suppl. Serlies, in press.
BEssiEY, B, A. (1903).-On the evolation of the Australian Mirsupialia; with remarks on the relationships of the marsupials, io genesat. I'runs. Ritho Sons Lond, (Zonl.) 9, 83-217.
Ctemens. W. A. (1966).-Fossil mammule of the lype Lance Formation Wyoming Parl II. Marsupialia, Bull, Dep. Gcol. Umiv, Colif, ©z, 1-122
Clemens, W. A. (1973), -Fossil mammals of the Jype Lance formation Wyomine Parl Ill. Eutheria and summary. Bull. Dep. Cinol. Univ, Culif. 94, 1-1U2.
Colsins, L. R (1974), "Monotremey and mar. supials." (Smithsonian: Washington,)
Gианам, S. Fö \& Kiue, W. D. 1.. (1967), -Tniraclass Metatheria /If "Che Fossil Record". (Cicol. Soc. Lond. $=$ London.)
 lind sommals of New Guimen. Celebes snd adjacent islands 1758.1952." (Tonbridge Printery: Tunbridgé.
Litlfgranth: J. A. (1969).-Lalest Creaczons mammals of uppec part of Extmonton formastion of Alberta. Canadn, and teview of mat-supial-placental dichotomy in mammalian evolution. Palcent. Covir, Unis. Kerts. defide 50 (Vertebrata-12) , 1-822.
Pausis Couto, C, DF (1952), Faxsil mammals from the beyinning of the Cenozoic in Brazit. Marsupialia: Didelphidae. Amer. Mi4s. Nor'ip. 1567. 1-25.

Piula Coum, C. IE (1962),-Ditelfideas fobsiles del Paleoceno de Brasil. Cinnclas Zonluigicus $8,135-166$.
IPSEAA COTTR, C. DE (1970).-News on the fossil marsunials from the Riochican of Brazil. A $\%$. sicmed. brasi, Clenc. 42, 19-34.
Rra O. A. (1957) - Sobre la posicion sistematica de "Zyguiester paranensisi" Amegh. y de "Zygotestek, ertrerridinus" Amegh. con บณม reconsideracion de la edad y conelucion del "Mesopptamiensse"- IFolmherécias 5, 209-226.

RiDE. W. D. L. $119(04)$,-AMeshimh resnmandre, n new species of dasyurid marsupial from the Hilbute District of Western Australia: with remarks on the clussilication of Ahechimus. W. HAMC Nat. 9. 58-65.

R1ot, W. D. L (1970)-"A gulde to the mative mammals of Australia." (Oxiord Univ. Pr.: Melbuurne.)
Robinson. R. (1965)- "Abariginal myths and legends." (Sun Boaks: Mchburne.)
Schodotr R., \& Calasx, J. H. (1972),-The biogengraphy of the Australollapuan bind and mantmsil 「aunus an relation to Torres Stanit. In D. Walker (Ed) Bridge and bantier: the natural and cultural history of Torres Strait." (Absl Nat. Univ, pubs, B6/3(1972): Cano berria.)
Srge. B. 11472), La faunule de mammiferes nu Crétucó supérient de Laguno Uisayo (Andes péruyienucs. Bill. Miss. motho, Miss. nat. (3) 99. 375.4105.

Simpson, G. G. (1928),-American Eocene didel. phids. Anter. Mets. Nowit 307, 1-7.
Simesov. G. G. (1929),-American Mesozuic Mammalia. Mem. Peabody Mifs, iale 3, 1171.

Simpsov, C. G. (1941)-The affinities of the Borhyacnidac. Amer. Mus. Nosis. 118. 1-f.
Simpson, G. G. (1945) - The frinciples of classification and a classification of nanmals. Muld, Anter. Alus. nus. JPist. 85, i, tvi. 1-339.
Shmpson. G. G. (1947)-A new Fonene mar. supial from Grazil. Aupre. Mws. Novit. 1357, 1-7.
Simpson, C. G. (1948) -The beginning of the dge of mammals in South Anmeriou Part I. In troduction. Sysicmatics: Massupialia, Eden tata, Condylartbra, Litopterna. and Nolioprogonia; Bull. Amer, Mus. hat, Fiss 91, 1-232.
Sinclaik, W. Ji (1906) -Mammalia of the Sants Cruz heds. Mursupialia; Rep. Pinceron Exped. Patigonia 4, 333-460.
Swrrit J. (7880),-The Rooandik Tribe of South Ausiralian Aborigines: is shetch of their habit. custome legends, sind language-" (Govt. Primer: Adelside.)
Stikyon, R. A. Trdford, R. H., \& Millatr, A. H. (1961). Cmozoic stratigraphy and verlebrate gatcontology of the Tirari Desert Scuth Ausiralia. ike"c. S. Alisr, N/us. 14, 19-61,
Stirton. R. 太.. TEDFORIB, K. TH.. \& Woonbtreyn M. O. (1968)-Australian Tertiary deposits containing letrestrial mammals. Bull. Nep Crol. Univ, Callf. 77, 1-30.
Trompas 0 . \& 1887).-On the homologics and suctsston of the tecth in the Dasyufidae Phit. Trums R, Soc, 178, 44504ti?
Wonorerne M, O. (1967).-The Alcooth Falumb. Certral Australiat an integrated nalcontologio cal and yeological study. Bur. Nin Resmu Aust. Bulf. 87, 1-187.
Wronos H. E. (1924),-The prosition of the "spur"sssodonts": with notes on the relation ships and history of the Marsinialis. /bulh. Ablé, Mir Nut. Mist. 51. 77.101.

SOUTHERN AUSTRALIAN SPECIES OF CHAMPIA AND CHYLOCLADIA (RHODYMENIALES: RHODOPHYTA)

BY D. J. ReEdman* and H. B. S. Womersley

Summary

REEDMAN, D. J., \& WOMERSLEY, H. B. S. (1976).-Southern Australian species of Champia and Chylocladia (Rhodymeniales: Rhodophyta). Trans. R. Soc. S. Aust. 100 (2), 75-104, 31 May 1976.
Five species of Champia are recognised on southern Australian coasts. C. viridis C. Ag. (including C. tasmanica Harvey, C. oppositifolia J.Ag., and C. verticillata J.Ag.) resembles the type species C. lumbricalis (L.) Desvaux from South Africa] in having numerous scattered longitudinal filaments passing through the diaphragms of the thallus. C. insignis Lucas from Tasmania also has scattered longitudinal filaments. Three other species, C. affinis (Hook. \& Hary.) J. Ag. (including C. obsolete. Harvey), C. zostericola Harvey (including var. arcuata Hook. \& Harv. of C. affinis) and C. parvula (C.Ag.) Harvey var. amphibolis var. nov., have only peripheral longitudinal filaments in the thallus. Australian records of the South African C. compressa Harvey probably apply to juvenile C. tasmanica or to a probably undescribed species on the N.S.W. coast.

One species of Chylocladia, C. grandis, is newly described. Other Australian species previously referred to Chylocladia belong to Lomentaria or are relegated to synonyms.

SOUTHERN AUSTRALIAN SPECIES OF CHAMPIA AND CHYLOCLADIA (RHODYMENIALES: RHODOPHYTA)

by D. J. Rebdmak" and H. B. S. Womersley*

Abstract

Summary Reedman, D. J., ge Womersley, H. B. S. (1976),-Southern Australian species of Champia and Chylocladia (Rhodymeniales: Rhodophyta). Trans. R. Soc. S. Aust. 100(2), 75-104, 31 May 1976. Five species of Champia are recognised on southern Australian coasts. C. virdis C. Ag, (including C. tasmanica Harvey, C. oppositifolla J,Ag,, and C, verticillata J.Ag.) resembles. the type species [C.. Lumbricalis (L.) Desvaux from South Africa] in having numerous scattered longitudinal filaments passing through the diaphragms of the thallus. C. insignis Lucas from Tasmania also has scattered longitudinal filanents. Three other specier, C. afimis (Hwuk. \& Harv.) J. Ag. (including C. absolefa Harvcy), C. zostericola Harvey (including var. arcuaba Hook. \& Harv. of C. affinis) and C. parvula (C.Ag.) Harvey var, amphibolis var. nov., bave only peripheral longitudinal filaments in the thallus. Australian records of the South African C. compressa Harvey probably apyly to juvenile C. sasmanica or to a grobably undescribed species on the N.S.W, coast.

One species of Chylocladia, C. grandis, is newly described. Other Australian species previously referred to Chylocladia betong to Lomentaria or are relegated to synonyms.

Introduction

Champia Desvaux is in general a well characterised genus (Kylin 1956) of the family Champiaceae Kuetzing (1843) (syn. Lomentariaceae Naegeli 1847) of the Rhodymeniales and includes numerous species from most coasts of the world. Some 9 specics have been credited to southern Australia, and as with so many Australian genera, taxonomic distinctions are uncertain and in some cases the catlicst vilid names are not in current use.

Chylocladia. Greville has been credited with several Australian species, all of which are synonyms of species of Champia or other genera. One new species of Chylocladia has, however ${ }_{\text {s }}$ been found in South Australian waters.

The type species of Champia is C. lumbricalis (L.) Desvaux (1800 , p. 246), from the Cape of Good Hope، South Africa، Although a well-marked species, C. lumbricalis has never been studied in detail, and the generic concepts of structure and reproduction are based largely on the European C, parvula (C. Agardh) Harvey which has been investigated most recently by Bliding (1928) who reviews earlier studies.

The thallus construction and zeproluction of the type species do, however, appear to conform with those of C. parvulo, and a brief account of the type species is given below.

Champia is characterised by a multiaxial, hollow but septate and thus segmented, usually much-branched thallus which originates from a ring of apical cells (or a ring plus several central cells). These apical cells each cut off a filament of cells which runs longitudinally through the thallus, and from the peripheral filaments the continuous cortical layer of cells originates close to the apex. If a group of central apical cells is present (as in the type species), then longitudinal filaments also occur in the central region throughout the "hollow" thallus. The characteristic transverse diaphragms in the thallus are derived from the Iongitudinal filament cells ycry close to the apes, and originate either from alternate cells or ones 2-3 cells apart. Each longitudinal fillment cell cuts off cells laterally in one tramsverse plane, and these link up and divide further to form the cbaracteristic 1 cell thick diaphragm, the peripheral filaments being adjacerit to the cortex or sometimes separated by

[^5]one diaphragm cell. The Iongitudinal filament cclls Jying between the diaphragms usually cut off one (-3) gland cells, Outer cortical layers may be formed, and in some species ant inner cortes we thizoidal funments develaps.

Most species are much branched, and the branches arise from the regions of the diaphramms by development of at ting of apical cells foom contical cells of the parent luanch.

Reproductivcty Chrmpia is failsy distinctive. Tlue procarn consists of a 4 celled carpogonial branch borme on a supporting cell (a cortical cell), fogether with a 2 -celled auxiliary cell branch perent before fertilisation. The cystocarps ure external and sub-spherical to ureeolate. osiinolatc, containing a carposporophyte with it basal fusion cell and much branched gonmolias firaments with terminal carpospocangia. The immer cells of the pericarp beconte stellate and form a network ("tela arachooidea").

Spermatangia are cut off from mother cells derived irom the ulter cortical cells, and may cover extensive neats of the brinches.

Teifasporangia stevelup by enlargement of inner coxtical eclis. they are tetrahedtally divided amd uear seattered over the branches.
Spccics of Chrmpin are moderately common atone most of the coast of southern Australia, and are commonly mentioned in acological accounts. In tencral, however, they io mut enaraterise any communities, though C. stimis may be comsmon in shatlow water on rack platforms (Womersley 74ak, 13. 158).

Chyfoctartio Grevills differs from Champias in that the cystucarps do not have an oftiole and the carposporophyte consists of to large, hasal fusion cell giving rise directly to carposporangia. The thallus construction of the two genera is similar.

CHAMPIA Desvaux

The structure and reproduction of the lype species, Champia hunbricalls

Champla Immbriculis (L.) Desvaux (180n, n. 24n) is bused on Uly fumbricalis Linnaeus (1771. P. 371) from the Cape of Good 1 lope. The species is a distinct one, and matetial from Camps Bay, Cape Town, South Africa (G). Dieckmann, 31,vili.i973) has been studied to check on the generif characteristics.
C. inmbricalls is a robust species romming clumps with mumerous axes to 15 cmi high, arising frent an entangled, stolonifesous base. The atxes aue 2-4 mim thick: terite und linear, with owcasional basally constricted braindtes
with rounded apices. The diaphragms are tegnlat in position, $:-1(-8$ s) mm apart and laracts obscured below by the thick cortex.

The apiecs have a central group of $7-8$ inifials and peripheral riag of athout 14 imbials. resbleing in ongitudinal tilaments passing through the imner part of each diaphrager as well is $14-21$ around the periphery Onc complete (tarcly 2) and two pirt tongitudinal filament cells occur between the diaphragms: bearing 1-3 gland cells. The cortex close to the apex becomes 3.4 cells thick, with al uense outer cortical bayer of anticlinally clongate cells. In old axes the cortex incecases to aboul 8 cells thick, and at wefe of thizoids ateo develops as an internal layer to the corex.

The reproductive organs occur on tufts of shorl, adventitious, branchless ($5-10 \mathrm{~mm}$ long and 1-1年 num thick) formed on the upper hat of the ades. Usually the tufts are dense. with numenous curved (concave adaxially) tertile branchlets, but in some planes cystocarps are borne on single lateral branchlets.

Cystocarps are burne mainly on the adaxial (eoncave) side of the curved brawhlets, uftan with 2-4 grouped togettari; they are ovoid withs a small ostiole. $1-2$ mom in diameler anst high. The carpuspurophyte arises from a basal fusion cell, with a stuch-branched gonimohlast bearing terminal carposporangia; subterminal cells probably also mature into carposporangia after Inss of the terminal ones. The inter cells of the pricarp become stellite, forming a loose fissuc. and the outcr wall is comparitively thisk. Carpogonial hranches and carly posifertilisation stages have not been observed.

Spermatia form a continuous covering all around the branchletc or sometimes largely on the adaxial sides, with the nuter cortical cells cutling oll $2+$ elongate apermatangial mother cells which then cut off several nvoid spermaa antyia,

Tetrasporangis necur densely it the brimenlets and are transformed from most of the larec inner comical cells: they are slighty pyriform to uvoid, about 100 jem long, and tetrahedrally divided.

The abave description of C. lumbricalis agrees welf in essential generic details wind that of Bliding (1928, p. 5) for C. Marsulu. thuugh the later is much smatler and slendeter, with a much thinaer cortex, and hax only peripheral longitudinal filuments: there is thas now reasom to doubt the generic concept of chambind as sesognsed by Bliding and liy kglin (145k, F. 3+6).

Key to southern Australian species of Shampia
1, Thallus with longitudiaal filumens scatered through the diaphingms as wcll is peciphecal filaments; hrapches usually llacar, hesally cunstictad or nor, nut or slightly asnstricted at the diaphragms; branching j̈regular or distichus

1. Thallus with peripheral yongitudinal filaments only; branches usually lapering to base and apex... usuilly slighty to moderately constricted it the diaphragms; branching irtegular or tadial
2. Branching itregulary oftea distant; branshes lifiedir, ($\mathrm{f}-\mathrm{)} 1-2!\mathrm{mm}$ broud
C. virutis ($\mathrm{p}, 77$)
3. Branching subdistichous, fuirly regularly pinnale: brariches $2-5 \mathrm{~mm}$ broad, with a basil stender stalk
C. insignts (p. 8i)

3 Thallus segments obscured; hooked branches absonti vsuslly spilithic, comeal cells culung off. mear branch aplces, uswally several small outer contical cells it first amund their makgins hater becoming stmost contimumus uyer the thallus as ar wuter layer sud in older parts culling off furthes outer cortical cellse inner primary corfical cells, which thus hecome obscured, are owoul: 1 ± -2 times as lane to broad and $20-30$ am hrosd
C. affinis (p,82)
3. Thallus segments clearly defincd itroughoul most of thalfus; usually epiphytic on seagrasses or Jurges algae: coclicat cells each cuting off usuatly only i(-2) small oells from their comers. so that the single layer of large cortical cells pemuins clearly defined throughout most of the thatlus: cortical cells usually ungular, 2-3(-4) times as long sis broad
4. Brauchlets +-1 mm , branches $1-2 \mathrm{~mm}_{4}$ in diameter; cortex essenuidly single layered throughout; usually one complete langitudinal filament cell bolween diaphragms: ultimate banchlets often hooked; usually epiphyic on Posidonia. Amplibolls or larger aleac
C. zastericola ($p .87$)
4. Rranchlets $1 / 3-\frac{1}{2}$ mm, branches $\frac{1}{2}-1 \mathrm{~mm}$. in diauneser, corex mosily single layered but 2-4. cells thick in oldest axes" usually two complete longitudinal filument cells between diaphrasms: ullinate branchlets ukually linear. rarely hooked; epiphytic on Amphibolls

Conatuhlu var. ampliticlis (n.91)
Champia viridis C. Agardh 1828: 115. Kuet2ing 1849: Síz.
Curinalktor virills (C. Agardh) Trevisan 1848: 108.

Chimpia asmanica Harvey 1844a: 407, pl. 19: 1847: 78: 1859: 307. 1. Agardh 1852: 370: 1876: 306; 1879: 67. pl. 19. ties 10-12. De Toni 19043: 79; 1900h: 563. Guiter 1952: 95. Hooker \& Harvey 1847: 402 King ef al., 1971: 122(?), Kueleing 1849: 861: $1865: 30,71.84 \mathrm{~g}$ Kylin 1931: 29. 1utas 19019: 34; 1929n: 19; 1929b: 50. Lucas \& Pcțin 1947: 207. fig. T2. May 1965: 362 , Okamura 1904: 88, Reintiold 1897: 53: 1899: 45. Sheplseld \& Womersley 1970: 134: 1971: 165, Sonder 1846: 177t? : 1853: 182: 1855: $518: 1880$: 17. Talc 1882: 18. 'lisdull 1898 506. Wilson 1592. 180. Wontetsley 1450: 176" 19670 131.

Champis tosmanica vale gracilis Harvey 186]. synop: 27. Sonder 1880: 17 Tire 1862: 18. Corimaldia fasmanica (Harvey) Trevidan 1848: 108.

Chrmpias oppuvirifolic J. Agathth 1901, 27. De
Tont 1924: 309 , Kylía 1931: 29, pl, 16, fie 37. Mny 1965: 362 .
Champid werlictllatw I. Agardh 1901: 2t. De Tomi 1924:-309. Kylin 1911: 29, N. 17. Cig 39, Mas, 1965: 362.
Champla romprossa sensu Hardey 1863, synop: 27 (at least in pars-sec below).

$$
\text { FlGS 1. } 2 A-D, 10
$$

Thallus (Fin 10) usually with scveral main axes from a stolnnilerous base, forming a dense, spreiading tuft commonly $5-15(-20) \mathrm{cm}$ high, modcrately or slighty adhering to paper. medium to datk sed or red-purple in colour. Axer ($1-12-3 \mathrm{~mm}$ broad. Ustally with numer. ous irtegular hranches in $2-4$ orders, oftens subopposite, usually less than 1 cm (kometimes $2-4$ cin) spart, in older or grazed plants offen ver: licillately hranched. All branches terete to slighty compressed, (3-)!-2I mm broad, linear to slighity curvel, basally constrictet and with rounded upices. Diaphragms $\frac{1}{2}-1\left(-1 \frac{1}{2}\right)$ mm apart. regular and usually conspicuous in surface view of thallus. Cories of a single bayer of compact cells, polygonal and 2\$-40 mm across in surfate view, with in inner cortex of fhizoidal filaments in ulder parts of robust plonks. Longitudinal filamenss Gath peripheral and central, with one complete and twn gan filamenl cells between each diaphragin.

Cyrocotps scattered over young branches. globular to urecolate, ostiolate, 1 - 1 mm it uisneter. Appareally very few cystocarpic mants have been cullected.

Spermatangit forming a continuous layer aver branchlets.

Teinaporingin scallered in young bisnches, $\mathrm{BO}-12 \mathrm{U}$ 上 n in diameter.

Ty/ue focilif!, W, Aust
Type. Hesh. Agardh, LD, 26 il 2.
Diveribution. Fiom. Rotnest I. W. Aust, around southern Australin and Tasmania to Gabo 1. Vic., isually oin tough-water coasts or in strong currents, from shaded pools $10-28 \mathrm{~m}$ Jeep, with a slender form on Fosidonia in more sheltered waters.

The type specimen of C. Fhridis C. Agardh consists of 8 small branches in mica, and k identical with the farer descrihed C_{1}. vasmamiar Harvey (eype tronn Tasmanian in TCD), unster which namet most specimens of this taxon have been known.

Fig. 1. Champia wiridis. A. Longitudinal section of a branch apex showing the development of cortex, longitudinal filaments and diaphragms (A42995). B. Surface view of a branch apex showing central and peripheral apical cells (A42991). C. Cross section of a young branch showing a diaphragm with peripheral and scattered longitudinal filaments (A42991). D. Three dimensional view of thallus showing diaphragms and fongitudinal filaments with gland cells (A42991). E. Longitudinal section of an ulder axis showing development of shizoids from the peripheral diaphragm cells (A30550),

Harvey (8863. synop. p. 27) described var. gracilis of C. Rasmanion. A suitable lectotype is probably Harvey", Alg. Aust. Exsicc. 251, in TCD, from Port Pbillip, Vic, and specimens in MEL (45227) from Brighton, Port Phillip, Vic. (Harvey. Trav. Set 483), mamed var. fracta, are probably the sume. These are small, slender forms, often Iound on Paridonia under moderate conditions of water movement (e.g. Port Phillip, Vic., St Vincent Gulf, S. Aust.) in carly sumner, and doubtrully justify a varietal name. The thallus is usually $4-10 \mathrm{~cm}$ high, densely tufted with an entangled base, irregularly branched, with occasional curved branch apiccs, branches mostly $\frac{1}{2}-1 \mathrm{~mm}$. broad and segments s-1 limes as long as broad, slightly constricted at the diaphragms. The cell structure is very similar to darger forms typisal of the species, with cells about $40 \mu \pi$ broad, ($1-$)2-3 times as long as broad, asigular with small cells cut olf from the corners (about as many small cells as parent cells). While extromes of this shelreted-water form and the nobust rough-water form appear relatively distinct, a good range of intergrades does occut.
C. verticilhete J. Agardh (1901; p. 26) is based on a specimen (type in LD, 26078) from Port Eilioh, S. Aust. (Hussey) and is an older plant of C. viridis with verticillate branching, and C. oppositifolia J. Agardh (1901, p. 27), with lype in LD (26148) is a plant with some. what more distinct opposite branching.
C. viridis is a distinctive species in size, form, and in having central as well as peripheral Jongitudinal filaments. It varies considerably in robustness and thickness of branches and in branching, with frequent occurrence of prolifcrous bsanches giving a subverticiltate arrangement. These variations we cither ecological or due to the age of the plant.
C. viridis is most closely related to the type species. C. lumbricatis: from South Africa, but
is distinct in being a less robust plant and pot developing a cortex several oells thick.

A Preiss specimen in MEL (45206) is C, zostericola, not C. viridis, but a small form of the Inter does occur in Western Australia.
C. Wiridis (as C. aamanica) has been recorded from New Zcaland by Naylor (1954. p. 658). This record has not been checked, but may apply to the closely related but distinct C : novae-zelandiae Huoker \& Hastvey, which has central longitudinal filaments but a many laycred cortex.

STRUCTURE AND REPRODUCTION

Mnterial studied: Nora Creina, S. Aust, uppermost sublilioral (Rectman, 12.ii.1973: ADU, A42995): Cape tanmes. S. Aust under ledges (Reedman, 10.iid 1973; ^DU ת42991): and Stapleton Point, Prosser Bay, Tas., $8-12 \mathrm{~m}$ deep (Olsen, 21.vi.1966: $10 \mathrm{D}, ~ \Lambda 30550\}$.

Thallus developmenr. The apex of a branch (Fig. $1 A, U$) includes both a central group of 12-16 initials and a peripheral ring of initials, producing longitucinal filaments passing through the centrat as well as the peripheral segions of the thaphragms (Fig. IC, D), 枵 it the type species. The number of central longitudinal filaments is commonly greater than the number of apical initials. due apparently to division of the inilials and consequent branching of the filameuts and subsequent hoss of some initials and termination of some filaments at diaphragms. The apical initials of the peripheral ring divide transversely, and within 2 or 3 cells of the apex divide periclinally forming cortical cells which then divide anticlinally to form the single-layered cortcx (Fig, 1A). Alternate cells of the longiludinal filaments cue off cells laterally which join to form the singlelayered diaphragms (Fig, 1A), after which the longitudinal filament cells become very elonnate. The altermate cells of the longitudinal filaments. lying between the diaphragms form $1(-2)$ gland cells (Fig. 1) $)$. Only the cortical sell formed directly from the longitudinal fila-

Ablepviations used in Figures 8 -

π	- apical cell	E.c.b	- Jused carpogonial:	0	ostiole
is.cr	- spical graup		branch	per	- pericarp
m.	- suxiliaty mothe	Fir	- Iusion cell	T, F	- thizoldal cell
(1)	- anciliary call:	¢1. E^{2}	- sonimoblas! cells	sp	- spermatangium
ch)	- Eargogonial branch	g)	- gonimolobe	p.	- spermatangis moth cell
cs	- outer corrical cedl	ald	- gland ce	Su	- supperting cell
cort	- immer carlical eell	1	- Iongitudinal filament	\dagger	la urachnoidea
csp	- carposporangilum	1.5	- laceral ronnecting ocll	$\begin{aligned} & \text { 4 } \\ & \text { \|spg } \end{aligned}$	- trichagyne - tetargoransium

Fis. 2. Champia sirides. A. An carly post-fertifisalion stage showing supporting cell with auxiliary cell branch and carpogonial branch with fisions accurting between the cells. Considerable cortical proliferation has occurted towards formation of the pericurp (A30550). B. A post-fertilisation slatge showing a connection hetween the fused carpogonial branch and the auxiliary cell. and formation of the first gonimoblast initial (130550). C. Development of tetrasporangial initials (A30550), D. A mature tetrasporangium (A30550). Champia insignis. E. Surface view of a branch apes showing initials (112237). F. Section of male thaltus showing development of spermatangia (A12237).
nent cell is in pit-connection with it. In older parts, some cortical cells may produce small outer cells from their curners, but the cortcx remains exsentially only one cell thick.

In older branches, rhizoidal cells develop from peripheral dinphragm colls and form a loose layer lining the inner side of the cortex (Fig. 1D), as- in the type species.

Branches arise from the region of the diat phragms, following development of a group of upical initiats from the cortical cells.

Procarp and carposporophyte

Cystocarpic specimens apparar to be rare, ind only one female specimen with very young carposporophytes has been available. The carpogonial branch is 4 -celled and borne on a
supporting cell which also bears the auxiliary mother cell with its auxiliary cell (Fig. 2A). Following fertilisation, the cells of the carpagonial branch fuse and a connection between the fused carpogonial branch and the auxiliary cell is formed (Fig . $2 B$), and the first gunimoblast cell is cut off from the auxiliary cell. liarly poxt-fertilisation development is niccompanied by division of the surroundine cortical cells to form the pericarp (Fig-2A), and in the one specimen (Stenhouse Bay, S. Aust. 3-7 m deep. Kroft, 18.ix. 1973; AUU. A44564) observed with cystocarps, the structure of the pericarp and carnosporophyte is sypical of Champia and vesy similat to the illustrations of Bliding (1928) fior C parvula.

Spermatangia

Spernâtangial plants liave not been observed.

Termaporantia

Ictrasporangia develon liy endatgement of contical cetts (Fig. $2 C, D$) and are retsahedrally divided, $60-120 \mathrm{~mm}$ in shameter when mature, and scaliercel in sounger beanches.

NOTES ON CHAMPA COMPRESSA

Champia compresiu Harvey tla3E: 402: 1847: 78, pl. 30) was tirst reconded from Australia by Harvey (1863, synop: 77) on the basis of specimens from Western Australia〔Clifron, and Alg. Aust. Cisice, 250N1 and from Part Fairy, Vic, (Alg. Aust. Ersica 250D). Since then. C. compressa has been reconden from Australia by the following authors, probably lareely on the basis of Harvey's reconds: Garnet 1971: 96. Lucas 1909: 34. Lucas \& Perrin 1947: 206. Muy 1947: 275; 1965: 362. Sonder 1880: 17(?). Tisuall 1898:506.

Hnwever, compratison with material of Champris compressa from St James. SimonsIлwn. S. Niricil (G. Dieckmann. 29iii.1973; ADLI A4460t) shows that the Nustralian reoords almost certatinly are not C.. comparesid. The South African species has strongly compressest hranches wilh numerous central longitudinal filtments scattered across the diaphragns. Harrey's Western Australian specimens also have centrat longitudinal filaments thit the hrinkies are only stightly campressed. They aute in chese features with C - viridis C. Agerdh. and are very similar tio young, well displayed. specimens of this species from elseWhere in southern Austrilith. Harvey x Alg. Aust. Ensicc. 250D (10 TCD) fiom Port Faity, V is., incluedes C_{0}° bividis as well as some plants
which are not a Champia and one specimen of zsoD in BM is C. zastericola.

Othet records of C. campresso from southern Australia probably apply to C. lifidis if the apecinuens have central longitudinal filaments. but the records of May (1947, p. 275; 1965, p. 362) from N.S.W. apply to a separate species which may be unnamed. This small, irrjdescent specics, with branches attached to olhers hy haptera, does not have central longltudinal filaments and is only slighty compressed. It is thes distinct from both G. viridis and C. compressa, and slso differs from the very strongly tlattened subtropical C. vieillardif Kuetzing, which frum material from the Solomon Islands (Womersley \& Bailey 1970, p. 321) is a 0 s. strongly flatened that the displinaghs are only $2-1$ cells across in the direction of Ratlening of the thallus, and Jongitudinat filaments are almost entirely around the nerinhery.

It is therefore considered that Chumpla comprisen does not occur on Australian coasts. Other reconds of this spacies from outside South Africa tso necd checking: the reand of Weber van Bosse (1928, p. 477) from Borneo is probably C. viellardii, and that of Joly (1985, ก. 176) from Brazil prubably applies to á different spacies.
Champia insignis Lucas 1931: 409. pl. 25, fig. 1. Citiler 1952: 94. Lucan \& Pcrrin 1947: 207. May. 1965: 362.

FIGS 2E: $F, 11 A$

Thaller (Fig. 11A) with one to several main axes io 18 cm high, arising from ot stmatl, aliscoid to slightly Jobed holdfast on pebbles of shells: branches uf pyramidal form, with lower daterals often similarly brimehed; thallus adhering closely ta paper, solour red-brown (her. batum specimens) to "bright purple" (Lucas). Axes 3-5 mm in diameler, subterete (possibly slightly compressed), lincar, beitring alternutc or opposite Iaterals mosily $:-1$ cor apart and sub-ilisichotisly arranged along the inses, ofter: somewhat denulded totrards the base. Main lateral branches usually with a slenter stalk. (Eig, $11, A$, then broadening, linear or gently Iapering, usually $3-5 \mathrm{~mm}$ in diumeter, with io robnded apcx. Lesser branches similar but slenderer and shorter. Diaphraghs apparent throughout most of the thallus, $2-3(-4) \mathrm{mm}$ apart in oljer pirts, $1-2 \mathrm{~mm}$ apart in younger branches which atre slightly consificted at the diaphragms. Corfex essentially one coll thich, the cells subpolygomal in surface vicw, mostly

Sn-100 $\mu \mathrm{m}$ lone and $35-50 \mu \mathrm{~m}$ broad. cutting off $1-3$ smifl cells lirum their outer comers and more pumerous such cells near the thallus hase. Longitudinal hlamenfs scattered throughoul the diaphragms, consisting of several (?) cells heIwsen diaphragms.

Cyshocapps scatiered aver the lesset iranches, conical to urccolate, ostiolate, $1-11$ nint in dianicter: caiposporophyte branched with luwer sterile cells and terminal carposjurangia.

Spermatanglercut off from cortical cells-(Fjg. $2 \mathcal{F}^{\prime}$) ind jorming collar-like patches on citber side of the diaphragms of lesser branches.

Tetraypormmia scattered over the lesser branches, tetrahedfally divided, $80-100 \mathrm{\mu m}$ in diameter.

Type locality. R_{1} Derwent Estuary, Tas. ("Sandy Bay. Hohart. Oct. 1925" on type sincets.)

Lecootypr. Hérb. Lucas, NSW, 136559. Syntyקes (d) in NSW (136558) and ADU (112337).

Distrinatlon Only known from the type collechion and the tollowing Tasmanian collections: D'Entrecasteatuk Chammel, Nov, 1910 (NSW, 136561); Browns River, Lekus, Oct. 1923 (NSW, 136563): and Snug, Licas, Aug. 1925 (NSW, 136560). Two specimera or the BM, labelted "Tas, Oldfield"; one numbered S1. Tre probably also from the Derwent Estuary, The species apperirs to be known only from. or lust south of, the Derwent Estuary,

Lucas did not specify type mutcrial, but the one now selected as lectolype is the cystocarpic specimen illustrated by Lucas (1938, pl. 25. fig. 1\%.

The above description is cumpiled frum that of lucas (1931, $n, 409$) and study of the type and other material in NSW and ADU, C imsignis bas zpparently not becn collected receatly. but it seems to be a quite distinct specits. It resembles C viridis in having peripheral and central upical cells (tige 2E) producing longitudinal filaments scattered across the diaploragms, bul differs in fumm and dimensions and in being essentially distichously branched. l.uens ($1931, \mathrm{p} .409$) Tefers to the whole plant as bcing "compressed". It is tesirable, however, that liquid preserved collections should be studied to confirm such aspects.

The BM specimens agree well with the type collection though the lateral branches do nat appear to be themselves distichously branched,
and the main braches are basally constricted but scarcely stalked; they are cystocarpic, In culpasporonhytc structure and the ostiolatc cystocarp. C. inalgutis appears to conform well with Chamepia.
Champia affinis (Hookes \& Harvey) Jo Agaroh 1876: 304. De Toni 1900a: 75, pl, 5, fiy. ? 1900b: 559: 1924: 307, Guiler 1952: 94. Harvey 18553: 545(\%): 1859: 307; 1863, synop.: 27. Kylin 1931: 28, Lucas 1909: 34: 1929a: 19: 1929b: S0, Reinbold 1897: 53: 1899: 45. Sondet 1880: 17. Tisdall 1898: 506. Wilson 1892: 180.

Chayloclation alfinis Hooker \& Harvey 1847: 402. Harvey 1847: 79, pl, 29(?).

Lobpeptarice ufinis (Hooker si Harvey) Kuctzing 1849: 863. J. Agardl 1852: 730. Sonder 1853: 693.
Gastrocfonium affine (Hooker \& Hatvey) Kuetzing. 1849: 866.
Chylochadin kaliformis sensu Harvey 1844b: 44.

Champia obsoleta Harvey 3859: 307: 1863. synop: 27. J, Agardh 1876: 304. De Tomi 1900:4; $75, \mathrm{pl} .5,5 \mathrm{~g} .3 ; 1900 \mathrm{~b}=559: 1924: 307$. Guiler 1952: 94, Kylín 1931: 28. pl. 15, fig. 15. Lueas 1909: 34: 1929a: 19; 1929b: 50̃. Lucaz \& Perin 1947: 206. May 1965:362. Rcinbold 1898: 46. Sander 1880: 17. Whison 1848: 506. Womersley 1950: $576: 1966: 150$.

FIGS 3. 4. 118. 12

Thatias (Figs 11B, 12A, B) esect usually $4-15(-40) \mathrm{cm}$ high, with one 10 several main axes from a small discoid holdfast, grey-red to purple in colour, adhering 10 paper: usually growing on suck or on Amphibulis, rasely on Posidonia Axes usually densely und irregularly radially branched for 3 or 4 ofders, branches of pyramidal form (more spreading in plants on scagmsses). often denuded below, axes $1-3 \frac{1}{2} \mathrm{~mm}$, branches $\frac{1}{2}-1 \frac{1}{5} \mathrm{~mm}$, and lesser branches $d-\frac{1}{s} \mathrm{~mm}$, in thameter, all branches plightiy basally constricted and lapering to rounded apices Diaphrayms usually fairly distinct in lesser htanches. obscured on older axe5. $(1-) 1-11(-2)$ nип สุparl (xugments ($1-$) 1-13 times as long as broad), thallus colistricted at disphugms excepl on older axes. Corsex of a layer of large sub-ovoid cells, (20-) 25-40(-60) $\mu \mathrm{m}$ across, and a sparse layer of outer small cells around margins af inner cells in young branches. (Fig. $3 F_{1}, 1$), bccoming more or less cominuous on older paris (Fig. 3G-1) and stear bases of old plants 2-4 celts thick (Fig 3E). Longitudinal filamems usually confined to periphery of the diaphragtns (Figg 3C), rarely with 1 or 2 within the periphery, usually with two (oceasionally

Eig. 3. Champia affinis. A. Longitudinal section of a branch apex showing the development of cortex, longitudinal filaments and diaphragms (A42994). B. Surface view of a branch apex showing apical cells (A42994). C. cross section of a mature branch showing a diaphragm with peripheral longitudinal filaments and small outes corticsl cells (A42994). D. Longitudinal section of mature branch (A42993). E. Longitudinal section of an old axis showing several layers of contical cells (A42997). F. Surface cell pattern of type specimen (Gunn, in BM) 10 segments from a branch apex. G. Ditto, 30 segments from a branch apex. H. Ditto for Harvey, Als. Aust. Exsicc. 2521 from Georgetown, Tan, as C. obsolela, 30 cells trom a bianch apex. 1. Ditto for A42990, 10 segments from a branch apex.
one or thiec) complete. cells and twa pait cella between the diaphragms.

Cystocarps single, scittered aver lesser branches, subspherical to urceolate, $1-14 \mathrm{~mm}$ lorgen it 1 mm in diameter, with in distinct ostiole (Fig. 4C).

Spermeitanzict (Fig, 4E) in patches irommid branchlets on cither side of diaphragos. often covering most of the segments.

Tenarporangia scattered over brollches, $60-80 \mu \mathrm{~m}$ in diameter (Fig, 4F).
becrosprpe kyculits: Georgelown. Tas, (Gimn).

Lecintype. BM,
Disfihuriens. From King Gcolige Sound, W: Alast, in Wesiern Port, Vici, and around Tusmanis. Gencrally found in shallow water on reel's on rough.water cousts, rarcly epiphytic on Positomin or robst algae.
\therefore affinis was reported from Now Zealand lis Hirvey (18556, p. 236) and secently by Chmpman \& Dromgoole (1970, p. 145). There ire also specimens in BM from New Zealand. but whilc they appeat closely related to C. uffuis there are dillerences in form. Detailed comperisons of liquid-preserved naterial ale ntruled Io establish the relationships of the New Zealand plant

Hooker \& Harvey (1847, $\Gamma .402$) based c. affiris on plants from Georgetown, and a cystocarpuc plant in BM has been selected as lector type (Fig 11b). Other specimens in BM and in 'TCO are syntypes. The type spocimens are of loose, sprending torm and typical of plants from moderately sheliered conditions: the diaphragns atte not corkpicudus ntid the wall has an outer layer of smatl cells which becomes collunuous in ulder parts.

Some of thesc Geargetown specimens are sefersed by Harvey fo C, shsolfor, which be described (185\%, p. 307) on the hasis of thetlue struclurs and cystocarpic platos. referring to "Alg. Exsic. H. 252" and the follawing localities:
${ }^{-}$HALB. Georgctown. Southport, Co Smurt.
IDISTRIB. Pust Fnity. Victoris. IV:H.H."
'I he critical specimens in TCD incfude

1. "Gutorgetown. Sept. 1848. 252 f ". This spucimen (Fig. 12A) was previously considered the lectotype (by H.B.S.W. it 1952), but is ietrasporangial ind has no aame on the sheet; it is an old palant but is C. affinis: beme very sumilar to the tyo of this species. Ancther specimen labelled "Cicorgetown,
V.D.1. $2521^{\prime \prime}$ is also in old, baltesed specimen, probathy of C. effinis:
2. "Southport, V.I.L. C. Shart"-_tour mpecimens. two with "C, nbsoleti" on the shects, and which une C_{v} allinis. Thay are all (etritsporangiak and da not match the type alescripion tll all well.
3. "Port Fairy. Vic. W'H:H,252 D"—five specimens, 3 tetrasporangial and 2 cystocarpic: It:ese match the description well and include the only cystocarpie specimens in TCD. Onc letrasporangial specimen has "C"hampia ohsolera" an the sheet.
On the haxis that the lectotype specimen of C. olesolere should have Harvey's number 252 ont it ard shmbld also sgree well with the type description and be cyatucatpic. une of the two Pote (Finsy specimens (Fig 12B) is now selected as the Joctotype and the other Port Finiry specimens are then syntypes.

In dexcribing C, absaleta, Harvey (1859 . P. 307) stated "perhaps only a variety of C ". sffints: and $K y \operatorname{lin}(1931=\rho+28)$ doubted that they were distincz species. Sudy of Harvey's Gcorgetown material, the Port Fairy specimens of C. olroleta, and knowledge of this common species along southern Australian coasts, sug. gests strongly that anly one species is involved. and C. ohsolefa is therefore reduced to synonymy, C. affitix occurs mainly on rocks and platforms at about low tide level, and inder rough-water conditions in such habitats it is of pyramidal form and grey-purple in culour. wh Harvey (1859, p. 307) noted. While normally epilithic, it oceasionally necurs on wher robust atgac or on the seagrass Amphitolis, and some of Harvay's Geargetown specimens were growing on Posidonie. While there appesi to be no structural differences between these lorms on seagrasses and the rough-water forms. the former are more loosely hrancfed and nif more spreading habit.

The type specimetl of $\{$:- affinis shows numtrous small outer cells cut off from the primaty cortical cells (Fig, 3F, G), but not its many is in rough-water furms (Fig. 3l). However, the babit, lack of cleaty visible primury corlical celly and obscuring of the diaphragms in moxd of the thallus. are teaturea of \dot{C}. affints as understood here. and differentiate this xpecici from C. zostericola (sec helow), The type of C. alfinis and ather specimens ic.g in ADU, from Gcorgctown in Thasmania. Port Phillip Heats in Victoria, and neat American River inlet on Kangarno tslnud, appear to represent relatively ralm water forms of the specties
and the type of C . obsoleta in represent soughwater torms of mote pyramidal habit and wilt nole prominent outer cortical cell layes.

Some specimens of Champida epiphytic on Poisidentic, resemble C affinis in that the segments are not distinct and a moderate number of outer cortical cells are present. The segments are, however, often tistincty longer than in the type of C. ctfinis being $2-3(-4)$ times as long as bruad, The longitudinal filaments of en consist of $2-3$ complete ecells hetween the diaphragms, and the primary cortical cells are muderately conspicuous. Most of the planks with these chamateristics afe small and possibly young. ftough often ferrile, Fine the present they are reganderd ats probably a form of C. affinis, but further studies on their seasonal growth and variation is needed. The specimans concerned include: Port Lincoln, S. Aust, 4-12 ni ưeep, on Paxifonia \{Shepherd. 23.viii. 1975 : ADU, A46561, A46567, A46570), aled Pig I. American Re inles, Kungaro I., S. Aust. (Womersky, 17:8.1947: ADL', A4467),
ε - affins differs from the other common southern rustralian specics. C. zostericola, in its habit, fack of hooked branches, and thick (2-3 latered) enftex which obscurca both the diuphragms and the Jarge primary costical cells. The latter specics is discussed further below. hut very oceasional mants with intermediate characters do occus Harvey's Alg. Aust. Exsicc. 253 H , disiributed as C. afinis, is typical C. zositericolu, and this has led to considerable cunfusion.
J. Agirdh (1876. p. 304) elistinguished two varieties of C, affinis (var. u affinis and var. β intermedia) on the proportions of the artigulytions and density of ketrasporangia. Buth these Peatures are unsatisfactory characters to separate yaricties, and Kylin (1931, p. 28) considered var. intremedur as intermediate between C. aphinis and C. obsoleta. Thesc varielies do not uppear wordh distinguishing from the specics.

Hooker \& Harvey (1847, p. 402), following description of C. offintis, also described var. arcuntr. This varicty is considered specifically distiact and is relegated betow to the synonymy of C_{3} zestericola Harvey.

STRUCTURE AND REPRODUCTION

Mforerial studided: Cape lannes, S. Aust. low sulitural (Resemben. 10,ii 1973: ADU, A42593 ant 12.ii. 1973: NDU. A42990): Nosa Creina, 5 Angt, 10wer ellitroral (Kerdmant, 12.ii. 1973: ADLI A42yy4; and Penningtun Eay; Kangarao 1. S. Austo low eulitoral on reaf (Reediman 13.14:1973: ADU. At2997).

Thathus develomment

There ure 12-16 apical inilials (Fig. 38) which iorm a peripheral cing of longilludinal filaments:-anly very oceasionally have filameats bein seen within the periplery of the dikphragms. The initials aegment (Fig, 3A) as do the peripherat spical initials in C_{0} viridis, but the corical layer of large cells cuts oft small outcr sells. at first around their outer margins, but a more or less continuous layer of small sellis vecurs on mature pares (Fis. $3 G-1$), and near the base (especially in older plants) a cortex several colls thick is developed (Fig. 3E) - Hairs are commonly formed from onter corsical cells near brunch apiess The diaphragms are formed usually by every thed or fourth cell of the longitudinal filaneents (Fig. $3 A, D)$, leaving usually two or litese complete celly beween the diaphragms, cach cell commonly bearing a aland cell. Rhizoldal develop. ment withim the cortical laycr has not been observed.

Branches arise from the region of the diaprogans, where a ring of outer cortical cells becomes meristematic and forms the apisal initials of the brancl. Branching occurs irregulariy and often densely on all sides.

Procarp and carposporophyte

The suppotting cell (Fig 4A) is it harge cortical cell in primary pitconnection with a longitudinal filament, and is generally attached opposite al gland cell. The cystocarps thus lie betseen the diaphragms of a branch, and cystocarpic plants are common. The supporting cell is multinucleate and densely cytoplasmic, and cuts off à a-celled. curved, carpogonial hranch (Fin. + f) ; of whith the tirst cell is binuelcate and the other three uninucleate.

The supporting cell also produces a muklibucleate, densely eytoplasmic auxiliary mother cell (Fig. 4A), which produces a umprucleate auniliary oell just prior to fertitisation.

Following fertilisution, the pit-connections of the carpogonial branch cells entarge (Fig. 4B) and the cells iend to fuse. Following presumed diploidisation of the anxiliary cell, first and then second gatimoblast celis are produced, and the latter divides further to produce a clusler of branclied gonimoblast filaments (Fig. 4C, D), which terminate in uninurleate, ovoid carposporangia. The carposporangia mature simultancously. but a new gonimolobe sammonly develops from the basal cell of the gonimoblast and produces a secondary, later maturing. smaller cluster of tarposporangia.

Fig. 4. Champia nffinis. A. Supporting cell with auxiliary mother cell and carpogonial branch (A42990), R. Pust-fertilisation stage with cells of Earpogonial branch fusing (A42990). C. Section of an immature cystocarp showing development of carposporophyte from old auxiliary cell (A42997). D. A malure carposporophyte showing much-branched gonimoblast with terminal curposporargiu, surrounded by cells of the "tela arachnoidea" (A42990). E. Section of male thallus showing development of spermatangia (A42997), E. Section with it mature tetrasporangium (A42993).

Vcgetative cells adjacent to the auxiliary mother cell becomes densely cytoplasmic, and assist nutrition of the developing carposporophyte. Pit-conmections between the Jower cells nf the gonimoblast enlarge considerably but the cells do not fuse completely.

As the gonimoblast deyclops, vegetative cells around its base divide to produce the pericatp. Inner cells of this form the cell reticulum, with an outer wall several cells thick (Fig 4C). The mature cystocarp bas a well-defined oxtiole.

Sperimatangia

Spermatangial mother cells are cut off from the small outer cortical cells to form a com tinuous layer over the branches, and each cuts off 2-3 ovoid spermatangia (Fig. 4E). Usually the entire spermatangium is shed.

Tetrasporangia

Tetrasporangia (Fig, 4F) develop by enlargement of inner cortical cells which develop several secondary pit-connections with infjacent cells, They are tetrahedrally divided.
with at thick yelatinuus shealh, and ustually deasely seattered over the branches.

Champia zostericola (Kanvey) conlb. nov.
Lomentaria sostericoia Hasvey 1855a: 345; 1863, symop.: 26. J. Agardh 1876: 632.
Gustruclonium (?) zastericolan: (Havey) De Toni 190(1): 567.
Chylocfodir zosicricold (Harvey) Kylin 1931。 30.

Chyiocladian uffinis var. arcualia Hooker \& Harvey 1B47.: 402. Woracrstey $1966: 150$.
somentaria afinis seasu Kuetzing 1865: 31, pl. 86d-1. Sonder 1855: 523.
Champla affinis sensu king eq al.p 1971: 122. Lucas \& Perrin 1947: 206, lig 71, May 1965; 362. Shepherd \& Wontersicy 1971. 165. Womersley 1950: 17\%.
Champia narvia seasu Harvey 1855a: 545 (in part).

FIGS 5, 6, $12 C, 13$
Thalites (Figs 12C. 13) usually spreading and forming irregular clumps with several branches from the entangled base sonetimes with one of more erect uxes and spreadiug laterals, commonly 6 to 20 cm high, grey-red to red in colour, normally epiphytic on the sea ${ }^{2}$ grasses Posidonia and Amphibolis or on larger algae, possibly on rock; attachment at first by means of a small discoid holdfast with ore to several axes, later uttaching by smatl adventio tious multicellular pads to the seagrass or itselt. Axes usually $13-3(-5) \mathrm{mm}$ in diameter. branches only slighty slenderes and whimato branches $\mathbf{1 - 2} \mathrm{mm}$ in diameter, branches slightly basally constricsed and with rounded apices: mature plants normally with some to many branches ending in recurved ("hooked") iips (Fig. 13); young branches distinctly constricted at diaphragms, segments mostly ($\frac{1}{3}-$) 1-11 times as long as broad. Diaphragmes distinct except in oldest parts of some plants, $1-1(1(-2) \mathrm{mm}$ apart, Cortex single layered, of relativeiy large angular cells $[40-60(-75) \mu \mathrm{m}$ across and mostly ($12-$)2-4 times as long as broad] which are usually artanged more or less in longitudinal rows (Fig. 5E-H). Near the apiocs, each sell usually cuts off a single, relalively small cell from wear a corner, and further such cells develop on older parts; however, the essentially single layesed costex of farge cells is mainlaincd tbroughout most of the plant (Fig. $5 F_{i} H$). Longitudinal flamenty contined to periphery of the diaphragms, rarely with odd oaes more centially plamen, with generally one complete cell and wo part cells between the diaphragms (Fiy. SC),

Cystorurpy subsphesical to slighlity conical, base hroad and slightly consiricted, ?-1 mm in diameter.

Spermatangia scattered over smaller branchdels, as extensive patches or collaralike sori around the diaphragnes.

Tetrasporangia scattered nver branches, $60-100 \mu \mathrm{~m}$ in diameter.

Type focality. Rotnesi 1., W, Alsit.
Type. TCD (Harvey, Trav. Sef 195),
Distriburion, Erom the Abrolhos Islands. W. Ausi. around southern Ausisalia to Kiame, NS.W. and around Tasmania. Generally epipistic on seagrasses or other algae, from low tide level to 41 m deep, gencrally under slight to moderate water moyement.
C. zostericolt is based on small plants 3-4 cm high, growing on Posidoniar (not Zostera), The type is No. 195 in Harvey's "Travelling Set". and his Ag, Aust. Exsicc. 294A (MEL 45197) from Fromantic (Fig 12C) is very similar. Harvey was in the vicinity of Fremantio from Aprit to June 1854, and during this period the plants are young (though often fertile), but may not show the typical hooked branches. Later in the year, especially in spring and early summer (Septembes to November) the plants reach 20 cm in height and nearly all plants develop the hooked branches.

The lectolype (Fig. 13A) of var. arcuata Hooker \& Haticy of C, aftinis has been sclected fron several specimens in BM. It is a well-duveloped specinfen, attiched to stems of Heterozastira (?) and with numerous hooked branches. Whereas the type of C. zoster:colu is a young small plant, that of var, arenelf is an older, larger plant of the same specjes.

The general confusion between C. atjinis and C. zostericola (or Ca affinis var. arcuaza) is probably largely due to Harvey in his Alg. Ausl. Exsice listing 253H from Western Port, Vic. ats C. uffinis, whereas these specimens ale typical C. zostericola.

In conisast to C. affinis which is usually epilithic on rough-water coasts and only ocessionally oocurs on robuse algae or on seagrasses, C. wosterfolit is a common epiphyte on Pasidonise and on some larger algae, usually in conditions of slight to moderatu water mavement and extending into decper water.

The preacnec of hooked branches, the clearly scptaie thallus almost throughout, the essentially one cell thick cortex throughout the

Fig. S. Champia zostericola, A. Surface vjew of apsx of branch showing apical cells (1435 s 6), A. Cross section of branch showing cortex, diaphragm and peripheral longitudinal filaments (A4356). C. Romgitudinal section of mature branch showing single layered cortex, diaphragms and longitudinal filaments with gland cells (A43556). D. Longitudinal section of an akd axis showing slight development of small outer cells (A8944). E. Surface celf pittern of Harvey Alg. Aust. Exsicc. 249 (MFI.. 45197), 10 cells from branch apex. F, Ditto. 30 cells 1 rom it branch apex. G. Surlace cell pattern of the typz specimen in BM of C. affinis var, arcunta, 10 cells from a branch apex. H. Ditto 30 cells fromio branch apex.
plant with fow small eclis lying largely detween the primary ones, and the corlical cell tlmensions and arrangement. characterise this speches, but occasional plants occur without hooked branches. While most mature plants have several vague axes from their entangled bases, some (from Tasmania and Port Phillip Heads in particular) dn have well developed main axes with abundant Jaterals. Such plants sommonly (but not always) have hooked branches and have the single-fayered, largecelled cortex typical of e zostcricola. How ever. the number of small cortical cells cut off
from the larger ones does vary somewhat, and very occasionally planik intermediato in this respect with C. alfitis ure found (see under C. alfinis),
C. zostericolas shows the variation in form which occurs in many other algal species distrihuted slong all wf suthern Ausisalia, i.e. the western specimens are eenerally smaller and less robusi, and in the east, especially near Port Phillip Heads and in Tasmania, larger and mote robust planis vecur.

Varibition in siameter of the branches and axes in cunsidetabie, probably largely depend-
ent on age, but branches ate normally over 1 num thick. However, new growth on older deturded blanches may be slender and only about it mm thick, as shown on several col. lections from Pearson I., S. Aust. in ADU,

Many references to Champio affinis apply, at lease in part, to C - zastericola father than to true C. riffinis (sec above). Probably most Austratian records of C.- parvula aho apply to young plants of C. zastericold, though some maly apply to slender C. viridin.

STRUCTURE AND REPRODUCTION

Material stadied: L'oins Peton. W, Aust., drift (Gardam! $15 . x i .1968$; ADU, A34256); Port Naarlunga. S. Aust., 6-7 mu ueep un jetty piles (Johnson, $15.1 i, 1973$; ADU, A43556) Marino, S. Aust., dift (Womersley, 26.5.1975; ADU, A46646).

Thallas development

There are 14-20 apicill initials (Fig, \$d) which form a peripheral ring of longitudinal filaments (Fig. SB), with only occasionally an odd inner one. The initials segment as in C. affimis and a single layer of jarge cortical cells is formed, arranged more or less in longitudinal lines (Fig $5 E-H$). Fairly near the apices, these cortical cells become angular and cut off from a comer is smaller cell, which renains essenbially in the layer of larger cells (Fig. $S E-H$). The smatler cells arge at first simitar in number to the larger primary cortical cells, but later more may be formed; howewer, the cortex remains essentially only one cell thick througout mast of the thallus (Fig. 5C, D). The diapheagms are formed usually from altemate longitudinal filament cells, so that there is onc complete longitudinal filament (with a gland cell) and two part ones between successive diaphragms (Fig. SC). The relatively thin. cssentianly sitngle layered cortex results in the primary cortical cells being visible throughout most of the plant, and the diaphragms are also conspjenous. Rhizoidal development within the costex does not oceus.

Branches arise Lrom the region of the dia. phragms, with their apical cells differcotiationg from the cortical cells. Near the base of entangled thalli, small branches may develop into maustorial pads of tissue and attach to other branches or to the host.

Many of the branch apices are curved or hooked (Fige) $38,14 A$), and in some eases these aid in attachment. The only structurat difference in hooked branch ends appears to be that on the convex side cuch segment has at greater number of cells than on the concave side.

Procarg and sarposporophyte

From the limited female material available. the supporiing cell of the procarp appears to be a large cortical cell, which produces the carpogonial and aexiliary cell branches (Fig. 6A): Following fertilisation, the pit-connections of the carpogonial branch cells enlarge (Fig. 6B) and the cells fise, with a conncetion Lorming from the old carpogoniun to the auxiliary cells (Fig. 6C).

The diploidised auxiliary cell cats off a first gonimoblast cell which divides again (Fig. 6D) to initiate several branched gonimoblast filaments with the mature filaments terminating in single carposporangia (Fig. 6E) which mature simultaneously, New gonimolobes are produced from the base of the gonimoblast and mature later. Some darkity-staining and possibly nuttitive cells occur around the base of the old auxiliary mother cell.

At an early stage in development of the pro. carp. cells are cut off from the surrounding cortical cells to form the protective pericarp (Fig. 6D). The inner cells of the pericarp form a reticulum (the "tela arachnoidea") which is gradually absorbed by the developing carposporophyte (Fig. 6 E), and the nuter 2-3 layers temain as the cystocatp wall, wilh a distinct apical ostiole.

Spermatangia

Spermatangit are formed as in other species, with sornald cells heing cut off around the margins of the cortical cells and then producing branched chains of spermatangial another cells over the surface, from which the clougate spermatangia develop.

Tetrasponangia

The tetrasporangia develop by enlargement of cortical cells (Fig. OF) which protude within the cortical layer, and they divide tetrahedrally (Fig 6G)
Champia parvula (C. Agardh) Harvey 1853: 76. 1. Agardh 1876: 303. De Toni 1900b: 558. Newton 1931: 439, fig. 263. Gayral 1966: 485, pl. 134.
Chondria marvula C. Agardh 1824: 207.
Chylocladia parwia (C. Abardh) Hooker. Hurvey 1849: Pl. 210.
Type locelity. Gades (Cauliz), Spein.
Type. Herb. Agardh. LD. 26 GV 2.
Distribution. C. parvula appears to be the ody species of Champia known from European coasts, and has been recarded fiom mast temperate ant troplcal coasts of the world.

Fig. 6. Chumpid zostericola. A. Supporting cell with auxiliary cell branch and carpogonial branch (A43556). B, An early post-fertilisation stage showing fusions between cells of carpogonial branch (A43556). C. Post-fertilisation stage with fused carpogonial branch and connections to auxiliary cell (A43556). D. Young gonimoblast within developing pericarp (A43556). E. Older carposporophyte with terminal carposporangia, within pericarp (ostiole not in section) (A43556). F. A young tetrasporangium (A34256), G. Mature tetrasporangium (A34256).

The following references crellit C. paroubls to southern Australia, but probably all apply to other species, mainly 10 small specimens of C. zoxtericola; iff inost cases it is not possible to clarify these references

Guiler 1952: 94. Harvey 18553: 545: 1859: 307. Lucas 1909: 34; 1919a: 19: 1929b: 50. Lueds \& Perrin 1947: 206, fig. 70. May 1965: 362. Reinbold 1897: 53. Sondé 1846: 176; 1880: 17. Tate 1832: 18. Tisdall 1898: 506. Wilson 1892: 180.
C. parvuld is generally recognised as a relalively small and variatile speciex and heshatium specimens credited to it vary in size, degrec of hranching, proportions of the seg. ments and distinceness of the diaphragms, anci in the size of the cortical cells and degree of outer corical development: Havey (1849, pl. $21(1 ; 1853$, p. 76) commented on the variability of this species. In comparisons with southern ^ustralian tara, liquid preserved material from lle Vertc. Roscofi. France (B. Feldmumm, 14.x.1974: ADU, A46057.) has beca taken us representing the species in western Europe. This specimen has fonger segments (about as long as broad) than shown by Gayral (1966. pl. 134) but distinctly shorter than illusirated by Harvey (1849, pl. 210), snd the disphragms und cottical cells are distinct through. out the plant, will relalively slight development of suall vuter cells. Therc are usually two complete longitudimal filament cell.s between the diaphragns, and the longitudinal filaments are confined to the puriphery of the diaphragms. The most detailed account of C. partula is by Bliding (1928) who studicd material from Woods Fole, LiS.A. Blidingis description and illustrations sppear to agrec with the IIc Verte spectimern.

In spite of the several refeesences to C. parvaho in soutbern Australia, it now seens clear that sypical forms of this species do not occur here. Young and small plants of C. zortepicola do strow sonic similatities, but are generally troader, more robust, and when mature have mumerous hooked branches. Also, Co zoaterieain his usually only one complete longitudinal filament cell between the diaphagms, and the cortical cells are lurgec; Some small forms of C_{1} affinir also approach C parwula but can be distimguished on their greater outer cortical devclopnncat. Harvey"s specimens referred to C parvila appear to be slender forms of cither C. zurtericola or C. viridis.

However, a distinctive tason occurs epiphylic on Amphibolir at Tipara reef in Spencer Gulf, South Australia, and it appeats best to
designate this as a distinct variety of C. porvnha, to whinch it seens more closely allicd than to the larger ci- zorteplcola. Fulure studies may show that it should be teeognised as H distiuct species.

Champia parvula var. amphibolis var. nov.
FIGS 7. 14A
Thallus (Fig 14A) crect, spreadiag, 3-11 cm high, wilh one to several nuctiobranched suảh axes arising from a small discoid holdfast on stems of 4 mphibolis; red to red brown in colour, ashering to paper; occasional attachments by haustorial pad's occur, Ayen densels and infegularly radially branched to 3 or 4 orders. with alternate, opposite or nccasionally whorled branches: ixes $]-1 \frac{1}{2} \mathrm{~mm}$ in diameter below, tapering gradually to branchlets lis-d mm in diameter. Young branches slighty constricted at disphragans, segments $1-1 \frac{1}{2}$ times as lung as broad, branch ands usually straight bui rately hooked, apices tonnulcd. Dlapiragma dis einet throughoue nose of the thallus, somewbal shscured near lases of older plants. Corsex of - layer of angular cells $25-40(-50) \mu \mathrm{m}$ across and ($1-)^{2}-3(-4)$ times as long as hroad, with small cells cut off from their corvers, and on older suxes developing a contizuous outer corlical fayer (Fig, 7D) which in old plants may be 3 cells thick. Longinudinal filantents confined to pertiphery of diaphragms, Ueveloped from 10-15 apical cells. Usually with two (-3) complete cella and two part celts between the diaphragms (Fig. 7C).

Cystocarps single, subsphericall to urceolate, scaltesed over younger branches, f-1t mm long and $\frac{1}{4}-1 \mathrm{~mm}$ in diameter, ostiolate.

Spermuramgic forming sori over several seg. ments near the apicer of young branches.

Tefraporangra scattered in young branches. 75-120 رس in diametcr.

Thallus crectus, Effusus, $3-11 \mathrm{~cm}$ altus ex hap. tere parva discoideo in Amphibole. Axcs irreguoulatilet ramosi, $1-1 \pm \mathrm{mm}$ is diametro, ramuli 1/3- $\frac{1}{2} \mathrm{~mm}$ in diametro: segmenta $1-1 \frac{1}{t}$ flo Jonglora quam fata, Diaphragmota conspicua tisi prope bases plantarum veterum. Cortex compositus cellularim angulosarum 25-40(-50) mm lalanum, (1-)2-3(-4) plo longiorum quam latatuas, parvas cellulas in angulis ferens, ad 3 cellulas crassus in partibus veteribus crescens, Fllamenta longitudinalia tantum in murgine, $2(-3)$ o-7hulas lotas juter diaphragmata habentia. Cystucarpisa subglobosa vel urceolata, dispersa, $1 \frac{1}{4} \mathrm{~mm}$ longa ef 1 y mm ith diametio, ostolata. Spermatangla in soris fasciculatu prope apices ramuloruin. Teitasporanghá 75-120 $\mu \mathrm{m}$ in diametro dispersi.

Tig. 7i Chnmpia parvula var. umphibolis. A. Surface view of branch showing apical cells (A41276). B. Cross scction of branch showing diaphragm, cortex and peripheral longitudinal filaments (A41276). C. Longitudinal section of a branch showing single-layered cortcx, diaphragms, and longitudinal filaments with gland cells (A41276). D. Tongitudinal section of older axis showing two (-3) layered cortex (A37291). EK. Post-fertilisation stage showing fusions between carpogonial branch cells and cunnection to auxiliary cell (A38255). F. Young gonimoblast (A38255). G. Mature eystocarp (ostiole not in section) with carposporophyte bearing terminal carposporangia (A38255). H. Section of male thallus with spermatangia (A41276). I. Mature tetrasporangium (A37291).

Type locality, Tipara roef, Spencer Gulf, S . Aust. (Sheoherd, 23,8ii.1971).

Type. ADU. A38255.

Dikreihnian. Ǩnowu from several coliections trom Tipara recf on Amphibolis antarction and A, griffithif, 5-11 mi deep. Young plants oceur in June, maturing to bushy plants up to 11 cm high in December.

Var. annphibolls rescmbles the more typical forms of Champia parwio in being a relatively slender plant, mostly irregularly altemately hranched, with diaphragens distinct throughout most of the plant and segments as long to slightly longer than broad, with the primary cortical layer of cells cutting off relatively few outcr cells (except in old parts). and with usually two complete longitudinal filament cells between the diaphragms. Reproductively it is similar to the account of Bliding (1928) and at least superticially to the Ile Verte material.

It differs from European forms in buing stendener than some, more profusely branched. and in growing on Amphibolis as erect rufted plants. Future collections may show that it is not confined to this sea-grass and some specimens of Harvey (in TCD \& MF1.) from Fremantle and King George Sourd, W. Auss. (eg. Aly (hust. Exsice. 254 B in MEL, 45307) need caroful comparison with this varicty and with C. zontericola.

This Austratian variety shows slight similarity to C. zostericola but is very much slendeser than most plants of the latter, noly tarely bas hooked branches; has tonger segments close In the apices and has two complete longitudinal filament cells between the diaphagnis rather than the usiuat one in C. zostericola. C zostericola docs oocur on Amphibulis, but is more characieristically associated with Posidoniu.

STRUCTURE AND REPRODUCTION

Materth sumdicd: Tipara reef, Spencer Gulf, S. Ausi.. on Amphibolis, Shepherd. The type, A41276 (13.xii.1971) รกณ 137291 (30.ix. 1970),

Thallus develmpmene

The thallus has $10-15$ apical cells ($\mathrm{Fig}_{\mathrm{s}}$. 7 A) which segment as in other species to form a peripheral sing of longitudinal filiments (Fig. 7B). with diaphragms forming usually from each third cell and thus with two (occasionally three) complete longrtudinal filament cells (tisually each wih it gland cell) between successive diaphragms (Fig. 7C). The cortex is one cell thick (Fig. 7C) except on older axes
(Fig 7D) and the clongare contical cells cut off from their cothers, snall cells (Insually only one per cell) which lic more or less in the layer of primary costical celts. These small cells commonly bear a hair in young branches, but such hoirs are lost from older branches.

On old axes the primary cortical call cut off an outer, continuous, bayer of cells (Fig, TID) and this may become two or three cells thick, the outermast layer being of small cells,

Branching oceurs from the regions of the diaphragns. Most branches are linear to lue apex, but octasionally a curved or slightly "hooked" branch end accurs.

The hodefast semains small and discoid, but several new axey may devclop from it. Small, pad-like haustoria also develon from branches of same plants, attuching mainly to other branches.

Procarn and carpasporophyle

The mulinucleate supporting cell develops from a cortical cell and hears both carpogonial and auxiliary cell branches as in other species. Following fertilisation, the carpogonial branch colls begin to fuse (Fig. 7E) and a connection forms between the fertilised carnogonium and the auxiliary cell. The diploidised auxiliary cell forms if first gonimoblast cell which divides again (Fig. 7E). and the uppur cell forms the branched gonimoblast filaments (Fig. IG) which bear terminal carpoxpurangia.

Following fertilisation, some vegctative cells arnund the supporting cell become darklystaining, apparcrily as nutritive cells. Other vegetative cells divide to form the pericarp (Fig. 7G) which develops as in other speciek. with the innes celts forming the "gela arachnoidea" which is broken or ahsorbed by the teveloping carposporophyte, A well-defined ostiole occurs at maturity of the cystocarp.

Sperinatangia

The small outer cortical cells, or futher cells cut off from the primary cortical cellis, divite to form branched filaments of cells covering the surface of one to several segments close to the apices of young branchlets. Each cell of these filaments functions as a spermatangial mother cell which cuts of outwardly 2-3 clongite-oyold spermatangia (Fig. 7H), which appear to be shed contire.

Tietrasponangia

Tetrasporangia (Fig. 78) develop within cortical cells which enlarge ercatly and hatge within the segments of the thallus.

CHYLOCLADIA Gireville

Chyfocladla Greville (in Hooker 1833, p. 297). With the type species C. kuliformais, is conserved over Kalformis Stackhouse 1809. and is dislinguished from Champia by the formation of carposporangia directly from a large hasal fusion cell (without branched gonimoblast filaments ixs in Champia) and by the cyslocarps being non-ostiolate. Otherwise, Chylocladia is similar structurally to Chumpia.

While numerous Nustralian toxa have at sume time been referred to Chybachadia, most have been placed in uther gencra (sec Kylin 1931) or can now (see below) be excluded [rem Chyloriadia

However. as very distinctive species of Chyloefichla, known from only a few deep-water colfuctions, has recently been discovered is South Austealion waters.

Chylocladia grandis sp, hov.

$$
\text { FIGS 8, 9. } 14 B
$$

Thallsi (Fis. 148) crect, red-browin to redpurple, $20-50 \mathrm{~cm}$ high, with one to several sues urising from a hard, branched, perennial base to 5 cm high and $1 / 3-\frac{3}{9} \mathrm{~cm}$ thick., attached to rock by a discoid holdfast to $\mathrm{j} \frac{1}{2} \mathrm{~cm}$ neross. Axcs with opposite or usually whorled latesal branches to 10 cmi long, similarly branched (mainly opposiacly of alternately) to a second or third oster: axes often deriuded below, 2-7 mm in dianeter, branches $1 \frac{1}{3}-2 \frac{1}{2} \mathrm{~mm}$ in dia. mitter tapering to $:-1 \mathrm{~mm}$ in diameter in branchlets: atl branches slightly busally consuricted, tapering gently to a rounded apex. scgments t-13 limes as loug as braad; beanches slightly constpicted between seements. but diaphragms conspictous: Cortex in branchlets i cell thick (Fig. 80), in older branches thlcker and in axes to 8 cells thick (Fig. SE'); contical cells ovoid, $25-35(-40) \mu \mathrm{m}$ acriss and $1-2$ times as long as broad in surface view. Largitudinal filametts scattercd throughout diaphragms. with (I-)2(-3) complete cells and twa part cells betweer the diaphragms (Fig. 8B), with each peripheral filament cell consected to the conical cells by a lateral filamert.

Cyshocorps scattered over lesser branches. spherical to slighlly ovoid, $\frac{1}{-1}\left(-1 \frac{1}{2}\right)$ min across, broad based, without an ostiole; carpo. sporsngia borne directly on the large, basals fusion cell,

Spermatangia unknown.

Tetrasporangint scattered over branchess tetrahedrally divided, mostly $150-200(-250)$ $\mu \mathrm{m}$ in thameter.

Thallus erectas ad $20-50 \mathrm{~cm}$ allus uno vei pluribus axibus ex base durs ramoso el percons ad 5 cm altis et $1 / 3-\frac{3}{3} \mathrm{~cm}$ latis arlis, haplere discoideo, hami laterales in verticilluni vel oppasite dispositt, ad 10 cm longi et simillita ramosi; axes 2-7 mm, rami $1.5-2.5 \mathrm{~mm}$ et ramuli $0.7-1 \mathrm{mna}$ in diametro, segmentis $\frac{1}{2}-1 \frac{1}{2}$ plo lonsioribus quam latis, plus minus constrictus, diaphragmalibus conspicuis. Cortex ad unam cellulan in ramulis crassus, ad 8 cellulas crassus in arlbus crescens. Filamenta longitudinalia dispersa, plesumque 2 selluliss totas inter diuphragmata habentia. Cystocarpia subglobosa $\frac{3}{3}-1\left(-1 \frac{1}{4}\right)$ mim Iala, haud osteo1atu, diapsrsa; carposporangia in woalescenti cellula insi magna basali portata. Tetrasporangia in ramis dispersa, $150-200(-250) ~ \mu \mathrm{~m}$ in diametio.

Type localio, Tapley Shoal, Edithburg, S. Aust., 15 m deep (Shepherd, 2,ii,1969).

Holotype. ADU, A33515. Isotypen to be disributed under this number.

Distribution. Only known from the type collection Lrom Tapley Show, and Investigator
 ADU. A40995), 23 m deep (28.i.1971; ADU, A41010), and 34 m deep (20.i-1971: ADU. A39197).

Chrlocladia grandis appeass to he quite dis tinct in its form, latge size, dense branching, and in the perennal base which appears to last for several years. producing one to several fronds ammally (prubably ju spriug and lasting (ffrough sunmer).

SIRUCTURE AND REPRODUCTION

Material sfudicd: The lype and Investigatur Strait collections.

Thallus develomment

The multiaxial apex of is branch (Fig. $8 A, B)$ includes both a centrill group of apical cells. Which give rise to the scattered longitud. ind filaments, and outer apical oclls which pro. duce the peripheral longitudinal fitaments and the cortex.

Fig. 8. Chisloclodia sratudir. A. Surface yiew of un apex showing peripheral and central apical cells (A33515). 8 . Longltudinal section of a branch aper showing development of cortex, diaphragms, and longitudinal filaments with gland cells (A33515). C. Cross section of at bsanch showing a diaphragm with sub-partpheral and central longitidimal daments (A33515). D. longitudimal view of outer past of a mature branch, showine the lateral connecting fikanents hetwern the longitudinal filaments and the coriex (A33515). E. Lungitudinal section of an axis showing the multi-layered corlex (A33515),

FIG. 8.

Fig. 9. Chylocferlha grandis. A, Longitudinal section showing supportiag cell with auxiliary mother cells and 4 -celled carpogonial branch (A33515) - B. Post-fertilisation stage showing two auxiliary cell hranches and remnants of carpogonial branch (A33515). C. Post-fertilisation stage winh auxiliary cells bearing young catposporangia. The supporting cell, auxilisry mother cells aud suxiliary cells are parly fused (A33515). D. A cystocarp with mature carposporangia formed directly from the fusion cell, the lobes of which probably indicate the original zuxiliary mother cells (A33515). E. A young tetrasporangium (A39197). F. A mature tetrasporangium
(A39197).

The 12-16 central apical cells (Fig. 8A, B) divide transversely and the cells elongate to form longitudinal fllaments. Each third cell usually produces a whorl of diaphragm initials which divide further to join with similas adjacent cells to form the single-layered diaphragms (Fig. 8B, C). The longitudinal filament cells between the diaphayms generally produce a single spherical to slightly pyriform gland cell (Fig. 8B).

The 15-20 outer apical cells divide transversely to form the peripheral ring of Jongitudinal filaments, but each of these cells. close to the branch apex divides periclinally to form an outer primary cortical cell initial (Fig. 88). This cell divides periclinally again once or iwice and then the outer cell divides anticlinally to
form the primary cortical layer, but the later formed cells are not in pit-connection with the longitudinal filaments (Fig, 8B).. The periclinal division of the cortical initial is followed by the inner one or two cells elongating to form a bridging filament between each cell of the peripheral longitudinal filaments and the cortical cells (Fig. 8D). This feature is not found in the Australian species of Champia. The peripheral longitudinal filament cells cut off diaphragm cells which join with those from the inner filaments. The peripheral filaments arc usually separated by one diaphragm cell from the cortex (Fig 8C).
Many of the primary cortical cells cut off a small outer cell which produtes a hair; these hairs form a dense felt over noost of the thallus.

Fig. 10. Champia viridis. A. Type of C. tasmanica Harvey in TCD. B. A slender form (var. gracilis Harvey) on Posidonia (Marino, S. Aust. Drift. Womersley, 26.x.1975; ADU, A46651).

As the branch matures, the primary cortical cells cut off outer layers of cells, and in old axes the cortex may be up to 8 cells thick (Fig. 8E).

Branches originate from the region of the diaphragms, when a group of apical initials develops from the cortical cells.

The basal part of the thallus is clearly perennial, being hard and resistant, up to 5 cm high with irregularly placed, lateral propections representing the bases of previous axes. From the number and position of branch bases, some perennial bases appear to be 4-5 years old, and the axes are probably newly formed in spring and lost by the following winter. The branches probably decay rapidly since this plant has never been collected in the drift.

Procarp and carposporophyte

The supporting cell is a large primary cortical cell in pit-connection with a peripheral longitudinal filament (Fig. 9A). The supporting cell is multinucleate and cuts off outwardly a small cell, the carpogonial branch initial, and two larger cells, the auxiliary mother cells. The carpogonial branch (Fig. 9A) is 4 -celled, curved, with an outwardly directed trichogyne. Prior to fertilisation, each auxiliary mother cell produces a uninucleate auxiliary cell (Fig. 9B).

Following fertilisation, a connection forms between the fertilised carpogonium and each auxiliary cell, and carposporangia are formed directly from the auxiliary cells (Fig. 9C). Fusion occurs between the auxiliary cells and auxiliary mother cells (Fig. 9D), forming a large basal fusion cell bearing the carposporangia directly. The supporting cell and some vegetative cells may be incorporated into the fusion cell.

Concurrent with the early development of the carposporophyte, vegetative cells around the supporting cell divide to produce erect chains of cells which cut off outer cells and form the pericarp (Fig. 9D), as in Champia. The inner cells of the pericarp form the "tela arachnoidea", but no ostiole is produced. When the carposporangia are mature, the top of the pericarp ruptures.

Tetrasporangia

The tetrasporangia develop by enlargement of the primary cortical cells (Fig. 9E), which have several pit-connections with adjacent cells. The tetrahedrally divided sporangia (Fig. 9 F) develop a thick gelatinous sheath.

Relationships

Chylocladia grandis agrees well with Chylocladia and its type species, C. kaliformis, in thallus structure and in reproduction. However, it has not been established whether one or two auxiliary cell branches occur in C. kaliformis. Champia has only one auxiliary cell branch as far as is known, but the type of Gastroclonium Kuetzing (G. ovale (Hudson) Kuetzing) has two auxiliary cell branches (Bliding 1928, p. 27).

The thallus structure of Chylocladia grandis differs from that of the Australian species of Champia in that the initial cells of the primary cortex are connected to the longitudinal filament cells via a filament of one or two cells, not directly. Whether this occurs in C. kaliformis has not been established.

SPECIES EXCLUDED FROM CHYLOCLADIA

Apart from the various Chylocladia names which have been shown previously to be synonyms of species of Champia or other genera, the following names are now referred to other genera.
Chylocladia fruticulosa (Reinbold) De Toni 1900b: 576.
Lomentaria fruticulosa Reinbold 1899: 46.
Type locality. Investigator Strait, S. Aust. (Davey 148).

Type. Herb. Reinbold, M. Isotype in ADU, A1553.

The thallus of the isotype is on Posidonia (not Amphibolis antarctica as in Reinbold). It is hollow and without diaphragms, and the tetrasporangia are grouped in sori around depressions in the wall of the branches. These features are typical of Lomentaria, and the isotype (a small, bleached specimen) appears similar to the earlier described Lomentaria australis (Kuetzing) Levring 1946, p. 223 (Chondrothamnion australe Kuetzing 1865, p. 29, pl. $82 \mathrm{~d}-\mathrm{f})$. The southern Australian species of Lomentaria are in need of detailed study.
Chylocladia gelidioides Harvey 1863, synop.:
46. De Toni 1900b: 578; 1924: 312. Gepp \& Gepp 1906: 257. Okamura 1904: 88.
Type locality. Twofold Bay, N.S.W. (F.v. Mueller).

Type. Herb. Harvey, TCD.
Although cystocarpic material has not been studied, the hollow thallus construction without single layered diaphragms, and sori of tetrasporangia, are typical of Lomentaria. The

8

Fig. 11. A. Champia insignis. Isotype male specimen (ADU, A12237). B. Champia affinis. Lectotype specimen in BM.

Fig. 12. Champia affinis. A. Harvey's Alg. Aust. Exsicc. 252I (as C. obsoleta) from Georgetown, Tas. (in TCD). B. Lectotype of C. obsoleta (Port Fairy, Vic. Harvey's, Alg. Aust. Exsicc. 252D) -a rough-water form. Champia zostericola. C. Harvey's Alg. Aust. Exsicc. 249A, Fremantle, W. Aust.

Fig. 13. A. Lectotype of C. affinis var. arcuata Hooker \& Harvey. Gunn 1332, in BM. B. Champia zostericola. Musselroe Bay, Tas. Perrin, March 1937 (MEL 45252)_-plant with welldeveloped axes.

Fig. 14. A, Champia parvula var. amphibolis. Type specimen of variety.
B. Chylocladia grandis. Holotype specimen.
thallus habit, cell detail, and tetrasporangial sori are very similat to Lomentaria catenasa Harvey from Jagan (as noted by Harvey 1863 and Okamura 1904), and the N.S.W. plant may be a slightly less robust form of the Japanese species, which is also recorded from Pacific Mexico by Dawsons (1963, p. 465, pl. 92). It appears to be closely rehated to Lomen. pario ramsayana (J. Agardh) Kylin (1931, p. 27, pl, 14, fig. 33).
Chylociadid mulisamea Sonder 1353: 681.
Type locality, Letevre Pen., S. Aust
Type. MEL, 45196.
The type specimen (fenale) in MEL is a slender, much branched, bleãched plant of Dasyphloed insignls Montagne.

Acknowledgements

The authors are indebted to the Difectors of the National Hexbaria of Victoria and of New South Wales, and zo the British Museuns (N.H), London, for the loan of specimens, Professor J. Feddnan, Institut de Biologic Végétale, Paris, kindly seot material of Champia parvila from Brest, and Mr R. H Simons, South Aftican Seaweed Research Laboratory, forwarded material of C. tumbricald and C. compressa.
The second author gratefully acknowledges a grant from the Australian Research Grants Committee and the technical assistance proyidea by Mrs Enid Robertson and Miss Cacryl Anderson.

References

AGARDH, C. A. (3820).-"Systenà Algarum," (Lund.)
Agaroh, C, A. (1828) - " Species Algaturs." Vol. 2. (Gryphiswald.)

AOMRDH, J. G. (1852),-"Species, Genera et Ordines Algarum." Vol. 2, PI 2, pp. 337.720. P1 3, pp, 701-786. (1 und)
Agarom, Ji G. (1876). "Species, Genera et Ordines Algarum." Vol, 3, $\mathrm{Pt} 1,810.1-724-$ Epicrisis systenratis Floridearuan. (Lund,)
AGAsph, J. G. (1879)-Florideernes motphologi. K. Petensk Akad. Forschanat, 15, L-199, Plates 1.33.
Аgaide, J. G. (1901),-"Spocies, Genera el Otuines Algaram.' Vol. 3. Pt 4, pr. 1-149. (Lund.)
Blating, C (1928),-Studien uber die Floriáeen. ordoung Rhodymeniales. Acta Unit. luve. N.F. Avd, 2, 24(3), 1-73.

Chapasan, V. J., \& Dromgoole. F. I. (1970) The marine algae of New Zealand. Part III: Rhodophyceae. Fiosideophycidae; Rhodymeniales. pp, $115-154$, Plates $39-50$.
Dawson, E. Y. (1963),-Matine ted alque from Pacific Mexico. Part 6. Rhodymeniales, Novf Hedwigia 5, 437-476, Ptates 77.95.
Desyaux, N. A. (Isos), Champia Desv. A. de Bor. 1, 245-246.
De Tons G. Bi (1900a),-11 genere Champia Desv. Mem. Pontif. Accod. Nuovi Linced, Roma 17, 65-80.
De Toni. G. B. (1900b),-"Sylloge Algarum omnium hucusque Cognitarium." Vol. 4. Florideae. Sect: 2 , Pp. 387.776. (Padur.)
De Tont, G. B. (1924),-"Syloge Algatum emnium hurcusque Cogaitarium." Vol. 6. Florideae. (Padua)
Grknet, J. R. (1971),-Check-list No. h-Marine and Freshwater Algae. In "The Wildfowers of Wilson'a Psonwitory National Park", pp; 9397. (Lothian: Melbourne.)

GiAyuht, P. (1966) -"Les Algues des Côtes Fran. casises." (Deren! Paris.)
Gerp. A. \& GEPp, E, S. (1906).-Some matine algae from New South Wales, J. Bot. Lomh. 1906, 249-261, Plate 481.

Gunke, E. K. (1452) -The matine algae of Tasmania: check list with localities. Pap, Proc. K. Soc, Tasm, 86, 71-106.

Harvex, W. H. \{1838\}. - "The genera of South African planis." (Cape 'Town)
Harvex, W. H. (1844a).-Champio tarmarioc; a new Australian alga, Lond, S. Bor, 3. 407, Plate 19.
Hakvy. W. H. (1844b), Algae of Tasmania. Lond. J. Bos. 3 428-454.
Harvey. W. H. (1847).-"Nercis Australls." (Roover Londan.)
Harvey, W. H. (1849),-"Phycologia Britannica," Vol. 2. Plates 121-240. (Reeve: London.)
Harvey. W. H. (1853).-"Nereis Boreali-Amerio cana," Part II,-Rhodospermae: (Smithsonian Inst. Washingtors.)
harvey, W. H. (1855a), -Some account of the marine botany of the colony of Western Austualia. Trans. R. Jrish Acad. 22, 525-566.
Harvey, W. H. (1853b),-Aigac. in J. D. Hocker. "The Botany of the Antaretic Voyage", Pari 11. Flora Novae-Zelandise. Vol. 2. pp.. 211266, Plates 107-121.
harvey, W. H. (1859), - Mtgae; sn 1. D. Hooker. "The Botany of the Anlarclic Voyage", Pari III. Flora Tasmaniae Vol. 2 pp. 282-343. Plates 185-996.
Hakvey. W. H. (1863), -"Phycologia Australlca." Vol. 5, plates 241-300, synop pp. 1.73.
Hooker. J. D., \& Harvar, W. H. (1847)-Algae Tasmanicae. Lond_ J. Bof. 6, 397-a17.
Hcokek, W. 3. (183s)-"The British Flora. ${ }^{3}$ Vol. 2.
Foly. A. Bo (1965)-Plora Marinhe do litoral norte do estado de Sãa paylo e regioes citcunvizinhas. Bol. Fac, Fllos, Clềnc. Leltras, Unio. Säo Puulo. 294, Ser. Bat. 21, 7-393.
King. R. I., Black. J. Hope, \& Durkeh, Sophic (1971)-Port Phillip Bay Survey 2. 8. Intertidal ecology of Port Phillip Bay with systematic Llsts of plants and animals. Merm noin. Mus. Vied, 32, 93-128.
Kuetzang. F. T. (1843),-"Fhycologia gencralis." (Lejpzig.)

Kuetzing, ${ }^{\circ}$. T. (1849) - "Species Algarum ${ }^{\text {M }}$ (Lejpzig.)
Kuetang $\mathrm{F}_{\text {, }}$ T. (1865),-"Tabnlae Phycologicae." Vol. 15. (Nordhausen.)
Kivlen, H. (1931).-Die Floridernordnung Rhodymeniales. Acrã UnW, lum, N.F. AYd. 2, 27 (11). 1-48, Plates 1-20.

Kvisn, H. (1956),-"Die Gattungen der Rhodophyceen." (Lund.)
Lluring, X. (1946), -A list of marine algac from Australis und Tasmania. Acta Horli gothohurg 16, 215-227.
Linnaeus. C. (1771),-"Mantissa plantarum alteri." pp. fovi, 143-588. (Stockholm.)
Lucas, A. H. S. (1909).-Revised list of the Fucuideae and Florideae of Australia. Proc. Limn, soc. N, SiW, 34, 9-60.
Lucks, A. H. S، (1929a). -The marine algae of Tasmania. Pap Proc. R. Soc. Tosm, 1928, 6-27.
Lucas, A. H. S. (1929b),-A census of the marine algae of South Australia. Trans. R. Soc: S. Aust, 53, 45.53.
LUCAS, A. H. S. (1931).-Notes on Australian marine alsae, V1. Proc. Linn. Soc, N.S.WY. 56, 407-411. Plates 23-27.
Lucas. A. H. S., \& PERRIN, P. (1947),-"The Seaweeds of South Mustralia." Purt II. The Red Seawceds. pp. 109-458. (Covt Prinicr: Adelaide.)
Max, V. (1947).-Studics on Australian marino algue. 1II. Proc: Jinn. Soc. N.S.W. 71, $273-$ 277. Plate 19.

May. V. (1965),-A census and key to the species of Hhodophyceac (red atgae) recorded from Australia. Contr. N.S.W. nam. Werfi. 3. 349.429

Natarat, C. (1847),-"Die neueren Algenstyeme." (Zurich.)
NAYi.ort. M. (1954), -A check list of the marine algac of the Dunedin district. Trans. R. Soc. N,Z, 82(3), 645-663.
Niswton, L, (1931), "A Mandbook of the British Seaweeds." (British Museum: London,)
Ogamura, K. 11904), -List of marine algae col. lected in Caroline Islunds and Australia. Bot. Mag., Tokyo 18, 77-96.
Reinbold. T. (1897),-Die sajgen der Lacepede und Guichen Bay Nuova Notarisía 8, 41-52.
Rejnbold, T_{i} (1898),-Die Algen der Lacepede und Guichen Bay (Suid Austratien) und deren näherer Umbebung, gesammelt vou $\operatorname{Dr} \mathrm{A}_{\text {. }}$ Engelhar-Kingston. II. Nuova Notarisia 9, 33.54

Reinbold, T. (1899),-Mecresalgen yon Invesu. gator Street (Sud Australien), gesammelt von Miss Nellie Davey (Waltham, Honiton). Henwigia 38, 39-51.
Sirepherd, S. A. \& Womersiex, H. B. S. (1970). -The sublittoral ccology of West Islahd, South Australia. I. Environmental features and the algal ecology. Trans, R. Soc*, S. Aasi, 94, 105-138.
Shepherd, S A. \& Womersley, HiBs (1971), -Peatson Island Expedition 1969.-7. The sub-tidal ecology of benthic algae. Trans, Ki. Soc, S. Aust 95(3), 155-167.
SONDER; O . G. (1846).-Algat. In C. Lehmann. "Plantac Prcissianae. ${ }^{44}$ Vol. 2, op. 148-195. (Hamburg.)
Sonmer, O. G. (1853),-Plantac Mucllcrianae, Algae. Linnaed 25, 657-709.
Sonder, O. G. (1855),-Algae annis 1852 et 1853 collectae. Linnaea 26, 506-528.
Sonder, O, G. (1880) - in F, von Mucller, "Eragmenta Phylographiae Australiae". Supplementum ad volumen undecínum= Algae Anstralitnate hactenus cognitae. pp. 1-42, 105-103.
Stackhouss, \quad, (8809) -Tentamen MarinaCiryptogamicum. Mém. Soc. Imp. Nut. Moscoul 2, 50.97.
TATE, R. $(1882)-1$ list of the charas, mosses. liverworts, lichens, fungs, and algals of extra tropical South Australia. Trons. R. Sac S, Alist. 4: 5-24.
Tispmil. H. T. (1898), The algac of Victoria, Kep, $7 \mathrm{th}_{\mathrm{k}}$ Meet. Aust Ass. Ady.. Sci., Sydney. 1898. pp. 493-516.

Treysinn Y. B. A. (1848):-"Saggio di unt monografia delle alghe cocotalle." (Padova,)
Weger van Bossis, A. (1928).-Liste des algues du Sitoga. IV. Rhodophyceas. Pt III, Gigattinales ct Rhodymeniales. Monogr. Siboga Exped. 59d, 393-533, Plates 11-16.
Wilson, J. B (1892)-Catalogue of algae collected at or near Port Phillip Heads and Western Port. Proc, K_{1} Soc, Vict. 4, 157-190.
Womersley, H. B. S. (1948),-The marine algas of Kangaroo Island. II. The Pennington Ray region. Truns. R, Soc. S. Aust. 72, 143-166. Plates 10-15.
Womersley, H. B. S. (1950), -The manine algae of Kangaroo Island. IIL List of species 1. Trans. R. Soc. S. Aust. J3, 137-197.
Womerstey, H. B. S. (1966).-Pórt Phillip survey, 1957-1963: Algae. Mem. natr. Mus. Virt. No, 27, 133-156.
WOMERSLEY, H. B. So \& Bhey. A. (1970)Marine algae of the Solamon Islands. Fhel. 1 rams, \mathcal{K}, Soc. Lond. B. 259, 257-352.

LEGGADINA LAKEDOWNENSIS, A NEW SPECIES OF MURID RODENT FROM NORTH QUEENSLAND

BY C. H. S. WATTS*

Summary

WATTS, C. H. S. (1976).-Leggadina lakedownensis, a new species of Murid rodent from north Queensland. Trans. R. Soc. S. Aust. 100(2), 105-108, 31 May, 1976.
Leggadina lakedownensis, a new species of murid rodent from northeastern Queensland is described and figured. Morphologically it most closely resembles L. forresti (Thomas).

LEGGADINA LAKEDOWNENSIS, A NEW SPECIES OF MURID RODENT FROM NORTH QUEENSLAND

by C. H. S. Watts*

Abstract

Summary Watts, C. H. S. (1976).-Leggadina Lakedownensis, a new species of Murid rodent from north Queensland. Trats, R. Soc. S. Aust. 100 (2), 105-108, 31 May, 1976. Leggadina lakedownensis, a new species of murid rodent from northeastern Qucensland is described and figured. Morphologically it most closely resembles L. forresti (Thomas).

Introduction

A pair of small rodents from Cape Yorks examined during the course of a broader investigation into the karyotypes of Australian rodents, was found to differ in karyotype, blood proteins, and cranial morphology from the otherwise similar Leggadina forresti, as well as all other murids examined.

Leggadina lakedownensis n.sp.

FIGS 1,2 , and 3
Holotyper Qld Mus, JM1192, if Reccived from Quecnsland Museum in May 1975, killed August 1975. The parents of this specimen were reccived by the Qucensland Museum from Mr C. Tanner in August 1973; these were offspring of animals collected at Lakeland Downs,

110 km S of Cooktown, Queensland by Mr R. Bucktey in 1973.
Description: (Colour after Ridgway 1912). Head relatively narrow and pointed as in L. deliculata and L. hermannsburgensis. Eyes not as prominent as in those species or in L. forresiti. Ears small and broad, proportionately smaller than in L. forresti. Feet narrow. Hairs on back with tips bulfy brown grading to pale olive-buft on sides, bases of hairs blackish brown which shows through giving back a brindled look. Underside white, hairs white to basex as are bairs on upper surfuce of feet. Face with suggestion of darker central stripe and lighter ring around eyes. Tail sparsely haired with light-coloured hairs.

Skull flat on top, rostrum short, interorbital region broad. Interparietai wide, short. Zygi-

Fig. 1. Dorsal, lateral and ventral views of skull of Holotype Leggadina lakedownensis $\mathrm{n}, \mathrm{sp} ., \times 2.5$.

[^6]

Fig, 2. Upper right molar tooth row of holotype ol Leggadina lakedownensis n,sp.
matic plates moderate, minimum width equal to length of M \% Lacrimals small Nasale short, not exceeding premaxillae anterintly. Incisive foraminae longer than tooth row, reaching beyond anterior end of M_{3}, broad, slightly wider posteriorly, broadly rounded posteriorly, more pointed anteriorly. Posterior palatal foriaminac oval, about length of My. Mesopterygoid fossae narrow, their width about equal to lengit of M^{2}. . Bullae moderately developed about size of occipital foraminae, the distance between them absut equal to combined lengits of M : and M^{3}. Upper incisors forward pointing. Molars as in Figure 2, anterior ligual cusp of M \} blade-tike and strongly developed. My large. a.pproximately 65% of tooth row, M ${ }^{3}$ small. approximately 15% of tooth row.
Specimens examined: Paratypes; Qld Mus. JM1293 品. JM1294 ¢ bred in captivity; collection details as for Holotype, Referred specimen. Qld Mus. J.17919, Williams Id, Queensland ($35^{\circ} \mathrm{S} ; 135^{\circ} \mathrm{E}$), 1969, coll. Mri C. Tanner

Diagnosis

(Head and body 60-70 mm . Tail $40-50 \mathrm{~mm}$. Far $10-12 \mathrm{~mm}$, Skull length $20-23 \mathrm{~mm}$), Incisive foramiaae reaching beyond anterior end of M1, rounded and slighty widened posteriorly. Upper incisors forward pointing. Upper molar tooth raw $3.7-4.2 \mathrm{~mm}$ long: Anterior ligual cusp of My blade-like and strongly developed. M >4 to 5 times length of $\mathrm{M} \%$.

Systematic position

Leggudina lakedownersis is separated from all named forms within the genus Leggadina, is recognised by Tate (1951), except L, forresti (Thomas), L. waitel (Troughton) and L. messoria (Thomas), by the short tail, small ears, long incisive forminat, and large molar tooth row with M_{1}^{1} large and with a strongly deyeloped interior ligual cusp.

These three taxa, L. forvesti, L. watei and L. messoria, were considered to he very closely related by Tate (1951) and were synonymised under the mame of Pseudomys forresti by Ride (1970). My examination of the types of alt three supports this view that only one species is involyed, characterized by downward pointing upper incisors and long incisive foraminae narrowing posteriorly and about 3 times the length of M^{3}. Measurements of the Holotypes are included in Table 2.

Legyadina lakedownensis differs from L. forresil (and the Holotypes of L. waiter and L messoria) in having the incisive foraminae widening rather than narrowing posteriorly, al slighty larger M3 (in comparison to total tooth row), a smatler M^{3} and forward pointing upper incisors. On the limited evidence available it is

TABLE 1
Measurevtents of spectmens of Lu lakedownensis (mun)

	1	2	3	4
Head and body	72	-	-	64
Thil	45	-	--	41
Hind toot (5.4.)	15	-	-	11
Far (fram novich)	11	-	-	J1
Gireatest Jength if khull	23.10	31.9	-	20.4
Zypornatic breadth	125	114	12.0	10.8
Interorthital breadth	30	3.5	3.4	1.h
Depth of brain case. including bullue	Red	-	-	7.6
Length if nasal	7.3	7.3	7.3	6.7
Length of ant. palatsl foramina	9.7	5.2	3,4	4.8
Crown length of molat suw	4.0	3.9	3.7	4.2
Crowa length of My	2.8	2.7	2.4	2.6
Crown length of M3	0.6	0.5	0.5	0.7

1. Old Mus. \$M1292 © Likelamd Dawns, Qld, 1973. Holotype.
2. Qld Mus. JM1294. Op Lakeland Dowhs. Qhd, 1973
3. Gld Mus. JM1293 ㅇ, Lakeland Downs, Qid, 1973,
4. Qid Mus. J17919, Williums 1u, Qid, 1969.

Fig. 3. Lacggadina lakedownensis, n.sp.
a slightly smaller animal. In my opinion the scale of these differences indicate a form specifictlly distinct from L. forresti or any other described rodent.

Support for the distinctiveness of L. lakedownensis from L. Jorresti comes from studies of the chromosomes and blood proteins of these and some related species (Baverstock et al. 1976). These studies suggest that L. forresti and L. lakedownensis form a distinct group Whthin Pseudomys sensu fato. The morphological characters (cf. above) tend to support this view and it seems prudent at this stage to retain the genus Leggadiner at least for these two species.

Habitat and distribution

The Williams Island locality is an area of short grassland surrounded by scrub. (The locality is illustrated as Lakefield Station, by Covacevich (1974, p. 7).) Lakeland Downs is on an isolated area of basalt-derived red and brown soil supporting a natural vegetation of Box woodland (E. leptophleba), and deciduous scrub with kangaroo (Themeda australis) and
spear (Heteropogon contortus) grass. At the time of collection however, sorghum covered the whole area. Rainfall is between 100 cm and 130 cm per year, occurring mainly in the summer (J. Covacevich, personal communication).

At present the species is only known from the above 2 localities on the eastern side of Cape York. Leggadina forresti has a much greater distribution in inland Australia and is known from W.A., S.A., N.T. and N.S.W. is well as western Queensland. From specimens in the Australian Museum and Queensland Museum (Table 2) it appears that there is a considerable gap between the distribution of the two species.

Acknowledgments

Miss Jeanette Covacevich kindly sent the animals on which the descriptions are based. Curators in the Quecnsland Muscum, Australian Muscum and South Australian Museum kindly sent material or allowed me access to specimens of Legsadina in their care. I am also grateful to Miss Heather Aslin for draw. ing the skull and teeth of the type specimen.

TABLE 2
Measurements of specimens of L ，forresti from Qld，S．A．and N．T．tncluding Holotypes of L．waitei，L．forresti and L． messoria（ mm ）

	H z淢䘮玉응 が兄 2 $\sum_{\ll 3}^{3}$								＇sumoti preuopoen	SAM M2405B, Horn Exp. (Waite)				＇ezepeupoo z E $\stackrel{y}{*}$ in 8之 	
Head and body	77	104	67	84	83	－	88	100	－	－	－	80	90	84	80
Tail	55	72	53	53	－	－	59	69	－	－	－	56	61	－	59
Hind foot（S．u．）	－	19	17	18.7	17.2	－	17	17	－	－	－	18	18	19	18
Ear（from notch）	－	15	13	13.2	12.3	－	15	14	－	－	－	12	14	15	14
Greatest length of skull	22.4	24.9	23.3	－	－	23.5	23.4	24.6	25.2	24.4	24.3	23.6	24.6	25.2	23.4
Zygomatic breadth	12.0	－	12.4	－	13.8	12.6	12.1	13.2	14.0	12.9	13.1	13.1	13.2	13.0	12.7
Interorbital breadih	3.5	3.6	3.4	3.4	4.0	3.7	3.6	3.3	3.6	3.8	3.6	3.7	3.6	3.7	4.0
Depth of brain case， incloding bullace	8.5	8.9	8.1	7.8	8.6	8.7	8.6	9.2	8.8	8.9	8.6	－	8.8	8.9	8.9
Length of nasal	7.6	8.5	7.7	9.0	－	－	7.7	9.1	8.3	7.8	8.4	7.7	7.7	7.6	7.5
Length of ant．palatal foramina	5.8	5.3	5.6	6.0	5.0	5.2	5.4	5.6	5.7	5.0	5.5	5.2	5.3	5.6	5.4
Crown length of molar row	4.0	4.3	4.2	4.6	4.5	4.6	4.6	4.3	4.4	4.0	4.5	4.3	4.6	4.4	4.4
Crown length of M1	2.4	2.5	2.5	2.7	2.7	2.7	2.7	2.5	2.6	2.3	2.7	2.6	2.6	2.7	2.5
Crown length of Ms	0.9	1.0	0.9	0.9	0.9	0.9	1.0	0.8	0.8	0.8	0.9	0.9	0.8	0.8	1.0

References

Baverstock，P．R．，Hogarth，J．T．，Cole，S．，\＆ Covacevich，J．（1976）．－Biochemical and Karyotypic evidence for the specific status of the rodent Leggadina lakedownensis Watts． Trans．R．Soc．S．Aust，100（2），
Ride，W．D．L．（1970）．－＂A guide to the native mammals of Australia．＂（Oxford Univ．Press： London．）

Ridoway，R．（1912）．－＂Colour standards and colour nomenclature．＂（Ridgway：Washing－ ton）．
Tate，G．H．H．（1951），－Results of the Archbold Expeditions．No．65．The rodents of Australia and New Guinca．Bull．Am．Mus．Nat．Hist． 97，183－430．
Covacevich，J．．\＆Easton，A．（1974）．－＂Rats and mice in Queensland．＂（Queensland Museum Booklet No，9：Brisbane）．

BIOCHEMICAL AND KARYOTYPIC EVIDENCE FOR THE SPECIFIC STATUS OF THE RODENT LEGGADINA LAKEDOWNENSIS WATTS

by P, R. Baverstock* , J. T. Hogarth*, S. Cole ${ }^{*}$ and J. Covacevich ${ }^{\dagger}$

Summary

BAVERSTOCK, P. R., HOGARTH, J. T., COLE, S., \& COVACEVICH, J. (1976).-Biochemical and karyotypic evidence for the specific status of the rodent Leggadina lakedownensis Watts. Trans. R. Soc. S. Aust. 100(2), 109-1 12, 31 May, 1976.
Leggadina lakedownensis Watts differs karyotypically from its apparent nearest relative, L. forresti. Further, the biochemical differences between L. lakedownensis and L. forresti are greater than those between other "good" species of similar sized pseudomyins. These data support the specific status of L. lakedownensis.

BIOCHEMICAL AND KARYOTYPIC EVIDENCE FOR THE SPECIFIC STATUS OF THE RODENT LEGGADINA LAKEDOWNENSIS WATIS

by P. R. Baverstock*, J. T. Hogarth*, S. Cole* and J. Covacevich \dagger

Abstract

Summary Baverstock, P. R., Hogarti, J. T., Colef, S_{H} \& Covacevich, 1, (1976), -Biochemical and karyotypic evidence for the specific status of the rodent Legradima lakedownensis Walts. Trans. R: Soc. S. Aust 100(2), 109-112, 31 May, 1976. Leygradina lakedownensis Watts differs karyotypically from its upparent nearest relative. L. jorresti. Further, the biochemical dillerences between L. lakedownensis and L. forresti are greater than those between other "good" species of șimilar sized pseudomyins. These data support the specific status of L. lakedownensis.

Introduction

In 1973 several specimens of a species of small rodent were collected from Lakeland Downs in northeast Queensland and described as a new species, L. lakedownensis, by Watts (1976). The morphological differences between L. lakedownensis and its apparent nearest nelative L. forressi are, however, minor. Because speciation is the result of the accumulation of many genetic differences and because morphology alone reflects only part ol these genetic differences, it seems desirable in such cases to assess other aspects of genetic differences between allopatric populations. The present study was undertaken to determine whether the karyotypic and biochemical differences between L. forresti and L. lakedownensis substantiated the recognition of the latter as in distinct species,

Methods

Sources of animals: The sources of animals utilized in the present study are shown in Table 1, along with their Institute of Medical and Veterinary Science number. When these animals die their skull and skin will be submilled to a Museum and given a Museum number. Muscum numbers corresponding to IMVS numbers. will be available from the IMVS or the South Australian Museum.
Chromosome preparations: Chromosonie preparations were made from \& L. forresti and 3 L. lakedownensis. Animals were bled
by cardiac puncture under ether anaesthesia and leukoeytes cultured for 3 or 4 days. Slides ware prepared by means of the routine

TABLE 1

Reference numbers and sources of animals			
IMVS			
Species	No.	Sex	Locality
(a) Chromosomes			
L. furressi	1	F	Coorahulk3, SW Qld
	2	M	$19 \mathrm{kr口} \mathrm{~W}$ Innsmincka. S.A.
	3	F.	S.A.
	5	F	19 km W Innamincka, S.A.
	6	M	Howlers Gap Sim, N.S.W.
	7	M	Fowlers Gap Stns N.S.W
	8	M	Fowlers Gart Sin, N.S.W.
	9	A	Mt Surah Str, S.A.
1. lakedowizensis	10*	12	Lakeland Lowns Stn, Qla
	11	M	Lakeland Downs Sth, Qid
	12	M	Lakcland Downs Stn. OIH
(b) Electrophoresis			
L. farrext	3	F	19 km W Inrampinctif, S.A.
	5	F	19 km W Innaminckg, S.A.
Lr lakedownensis	$10^{\text {a }}$	P	Lakeland Downs Stn, Q1d
Lu. delicatula	13	M	Fairbaitn Darn, 22 km SW Emerald, Qld
	14	M	Fairbuirk Dam; 22 km SW Emerald, Qld
L. hermanms-			
burgensis	14	M	Lab, stock
$r_{\text {r }}$. novaehollandiat	15	M	Iort Stevens ares, N.S.W.
P. australls		M	Lab. stock

* Holotype-Queensland Museum JM1292

[^7]TABLE 2
Electrophorefic huffer abd sfaining systems used for protèns examined

Hnzyme/ Mrotcin
N.M I.1.1.49. Glucose 6-Phusphate dehydrogenase (O 6-PD)
6-Phosphoybtunste dehydrugenase E.C. 1.1.1.44 (6-PGD)
Phosplo-fexose isomerase E.C. 5.3.1.9. (HHI)
Phosphogluconutase E.C. 2;7.51. (PGM)
Littale dehydrogenase E.C. 1.1.1.27 (LDII)
NAD-Mobate dehydrogrense E.C 1.7.6.37 (NAD-MDH)
Levine aminopeptidasè E.C. 3,4.1,1 (LAP)
Glyceraldehgde 1-Phosphate dehydrogenase GA 1.1PD EC. 1.2.1.12
Telrazolium oxidase

Esterase (Est)

Albumin (Alib.)

Transferrin (TY)
-1EB - Tris-EDTA-Borate

Buffer system	Staint
Brewer (1970)	Hrewer (1970)
Brewer (1970)	Hrewer (19/0)
Selsnder el al. (1971) 7	Urewet (1970)
Selander el al. (1971) 7	Brewer (1070)
```Molmes el al. (1473)```	Drewer (1970)
Holmes ef al. (1973) TEB*	Hrewer (1070)
Selander ef ol. (1971) 2	Ri'swer ( 1970)
Brewer (1970)	Brewer (1970)
Brewer (1970)	Scored from pels stained from GA 3.PD
Soln Ai 10.08 M . tris-citrate pH 8.6 Sola B: 0.06 M. Li-borate- pH 8.8 Gel: 337.5 ml Soln A: 62.5 ml Solu B in 400 nII B. Electrode: Soln 18.	Hrewer $\{1970\}$
34 for Est	Aumido Black
as lar 6ititu	
as for Est	Amida Rlact

sir-dry method, For karyotypes, slides were stained with $2 \%$ Giemsa, C-staining was conducted by the method of Arrighi and Hsu (1971) except that the RNase step was onnitted. Slides were then stained with $10 \%$ Giemsa.

Electrophoresis: In addition to L. . forresti and $\ell$, lakedownensis, specimens of 1. . delicurula, $\mathcal{L}$. hermansburgensis, Pseudomys novachollandiae and $P$. australis were studied, Blood was collected by cardiac puncture under ether anaesthesia in syringes containing a dried film of heparin and centrifuged immediately at 2.000 G for 10 minutes at room temperature Plasma was pipetted off and stored at $-20^{\circ} \mathrm{C}$. The red cells were washed 3 times in 2 volumes of isotonic saline and lysed in an equal volume of distilled water containing $1 / 5$ volume of toluene. Cell walls werc centrifuged out and the clear supernatant stored at $-20^{\circ} \mathrm{C}$ for a maximum petiod of 3 weeks.

Horizontal starch yell electrophoresis was used. Gel slabs $300 \mathrm{~mm} \times 150 \mathrm{~mm} \times 6 \mathrm{~mm}$ werc prepated from $12,5 \%$ ( $50 \mathrm{~g} / 400 \mathrm{ml}$ buffer) starch using a perspex mould. Gels. were run in a refrigerator to minimize heating. After electrophoresis a section approximately 90 mm $x 120 \mathrm{~mm}$ was cut from the gel slab, sliced into two separate halves, and these halves then
incubated in the appropriate staining solutions (Tiable 2).

## Results

Chromosome studes: Fig. Ia shoks the karyotype of a female L. forresti. The diploid number Was $2 \mathrm{~N}=48$. The largest chromosome, designated pair 1, was acrocentric in IMVS 1, 2, 5 . 7, 8 ind 9 . However, in IMVS 3 and 6 , pair ! was heteromorphic, one menhet being acrocentric and the other being subacrocentric with a distinct short arm. Pairs of 2 to 21 were acroccntric forming a series graded in size, Pairs 22 and 23 were small metacentrics. 'The presumed X-chromosome was an acrocentric representing about $6 \%$ of the total chromosome length and the $\mathbf{Y}$-chromosome an acrucentric,

The C-staining technique (Fig. 1b) showed that although the centrometric area of some chromosomes were C-banded, only in the small metacentric pairs 22 and 23 was this marked. In many preparations the presumed $Y$ stained slightly more intensely than other chromosomes over its entire length.

Chromosomally L. lakedownensis differs from L. forresti in possessing only one puir of small metacentrics (Fig. 1c). Also, in the three individuals karyotyped; pair 1 was always acrocemtric, Centroneric C-banding of L. lake-


Fig. 1. Karyotype and C-banding of $L$. forresti and $L$. lakedownensis. 1a, Karyolype of female L. forresti (IMVS 3) heteromorphic for pair 1; 1b, C-banding of male $L$. forresti (IMVS 6) heteromorphic for pair 1; Ic, Karyotype of male L. Iakedownensir (IMVS 11); 1d, C-banding of male L. lakedewnensis (IMVS 12).

Species	G-6-PD	Hb	то	GA-3-PD	Est-1	Alb	AD-MD
L.f.	1	1	1	1	I	1	1
L. 1	1	I	I	I	I	1	1
L.d	I	11	I	I	I	I	1
L. h	1	11	I	1	1	1	1
P. n	I	II	I	I	1	I	I
P.a	1	I	III	1	I	1	1

Fig. 2. Representation of electrophoretic patterns observed for seven useful proteins in six pseudomyin species. In each çase the origin is to the left, and fastest migrating bands to the right (cathodal). Key-L.f, = Leggadina forresti; L.I. = L. lakedonnensis, L., d, = L. delicatula; L. $\boldsymbol{h}_{0}=$ L. hermannsburgensis; $P_{T} m_{-}-P_{\text {sevdomys }}$ nowachollandiac; $P_{a}=P_{\text {a }}$ ausuralis.
downensis (Fig. 1d) was evident only in the smaller chromosomes. The presumed Y was slightly more intensely C -banded than other chromosomes over its entire length.
Electrophoresis: Of the 16 proteins studied (Table 2), LAP, PHI, Tf, Est. 2 and Est. 3 showed evidence of polymorphism in at least
one species, and 6-PGD, LDH A \& B and PGM were idenical for all species. This left seven of the proteins studied that were consistent within species but varied between species. The electrophoretic results for these seven proteins are shown in Fig. 2, and the resulting difference matrix in Table 3.

TABLE 3
Difference masrix for stata in Figure? (Key as in Figure 2)

	to.fo	L. 1.	L. d. $^{\text {. }}$	L.h.	P.n.	P.a.
E.f.	0					
1.i.	3	0				
I..d.	6.	3	0			
[J.h.	$k$	5	0	0		
P.n.	7	6	1	1	0	
P.a.	6	7	4	4	4	0

## Discussion

Most L. forresti wete found to possess the same karyotype, although twa were hetenomorphic for a sub-acrocentric pair 1. Cbanding showed that the short arm on the sub-acrocentric member was not heterochromatic, suggesting that the sub-acrocentric was related to the acrocentric by a pericentric inversion.
L. lakedownensis, however, had a pair of small metacentrics converted to a pair of acrocentrics, presumably by a pericentric inversion. Although a single fixed chromosomal difference between L. forresti and L. lakedownensis is insuffieient ia itself to indicate a species differense, taken in the context of the very low karyotypic variation of the whole of the pseudomyinae (unpublished data), a single chromosomal rearrangement probably indicates reasonable differentiation.

The biochemical data are more convincing. Of the seven uscful proteins studied; $L$. forresil
and L. lakedownensis differ in 3 (Table 3). This is considerable compared to the biochemical differentiation between 3 "good" species-L. delicatula and $L$. novaehollandiae ( 1 difference), and L. novaehollandioe and $L$. hermannsburgensis (1 difference). These results suggest that L. . forresti and $L$. lakedownensis may have been separated from each other for at least as long as have $L$. delicafula, $L$. nevazhollandiae and $L$. hermansburgensis.

Phenetically $L_{2}$ lakedownensis and $L$. forresfi are biochemically more similar to cach other than either is to any other pseudomyin studied (Table 3). Although more data are needed these results support the maintenance of Leggrdina as ateparate genus which at this time would include only these two species.

## Acknowledgments

We are grateful to Dr C. H. S. Watts for helpful comments during the course of this study. The original specimens of $L$. lakedownensis were collected by R, Buckley and presented to the Queensland Museum by $\mathbf{C}$. Tanner. We thank the various. State Wildlife authoritics for permission to collect specimens, several of which were collected by A. \& J. Robinson under an Australian Biological Resources Study Grant to C. H. S. Watts and P. R. Baverstock.

## References

Arrioht, F. E., \& Hsú, T. C. (1971).-Localization of heterochromatin in human chromosomes. Cytogenetics 10. $81-86$.
Brewer, G. J. (1970) --"Introduction io Isozyme Techniques," (Academic Press: New York and London).
Holmes, R. S. Cuoier, D. W., \& Vandeberg; I. I. (1973).-Marsipial and monotreme lactate dehydrogenase isozymes: phylogeny, ontogeny and homology with eutherian mammals. J. Exp. Zool. 184, 127-148.

Selander, R. K., Smith, M, H., Yange, S, Y., Johnson, W. E., \& Gentry, J. Bi (1971),Biochemical polymotphism and systematics in the genus Peromyscus. I. Variation in the oldfield mouse (Peromyscus polionatus), Sutd. Genet. V1, 49-90 (Univ. Texas Publ. 7103).

Wstrs C. HT S. (1976).-Leggadina lakedownerisis, a new species of murid rodent from north Queensland. Trans. R. Soc. S. Aust. $100(2)$,

## TRANSACTIONS OF THE ROYAL SOCIETY OF SOUTH AUSTRALIA

 INCORPORATED
## CONTENTS

Foster, R. J., and Philip, G. M. Corystus dysasteroides, a Tertiary Holasteroid Echinoid Formerly Known as Duncaniaster australiae ..... 113
Crisp, M. D. Rediscovery of Acacia barattensis J. M. Black (Mimosaceae) in South Australia ..... 117
Mawson, Patricia M. Woodwardostrongylus obendorfi new species (Nematoda: Amidostomatidae) from Kangaroos ..... 121
Callen, R. A., \& Tedford, R. H. New Late Cainozoic Rock Units and Depo- sitional Environments, Lake Frome Area, South Australia ..... 125
Glaessuer, M. F. A New Genus of Late Precambrian Polychaete Worms from South Australia ..... 169

# CORYSTUS DYSASTEROIDES, A TERTIARY HOLASTEROID ECHINOID FORMERLY KNOWN AS DUNCANIASTER AUSTRALIAE 

by R. J. Foster* and G. M. Phillip $\dagger$

## Summary

FOSTER, R. J., \& PHILIP, G. M. (1976).- Corystus dysasteroides, a Tertiary holasteroid echinoid formerly known as Duncaniaster australiae. Trans. R. Soc. S. Aust. 100(3), 113-116, 31 August 1976.

The type specimens of the nominal species Rhynchopygus dysasteroides Duncan 1877, Holaster australiae Duncan 1877, Holaster difficilis Duncan 1887 and Galeraster australiae Cotteau 1890 (which include the type species of Corystus Pomel 1883, Galeraster Cotteau 1890 and Duncaniaster Lambert 1896) are discussed and illustrated. All are included in one species correctly designated Corystus dysasteroides (Duncan).

# CORYSTUS DYSASTEROIDES, A TERTLARY HOLASTEROID ECHINOID FORMERLY KNOWN AS DUNCANIASTER AUSTRALIAE 

by R. J. FOSTER* and G. M. Philip $\dagger$


#### Abstract

Summary Foster. R. Jo, \& Phile, G. M. (1976).-Corystus dysasteroides, a Tertiary holasteroid echinoid formerly known as Duncaniaster australiae. Tranr. R. Soc. S. dust, 100(3), t13-116 31 August 1976. The type specimens of the nominal species Rhynchopygus dymasteraides Duncan 1877. Holaster australiac Duncan 1877, Holaster difficilis Duncan 1887 and Gateraster custralice Cotteau 1890 (which include the type species of Constus Pomel 1883, Galeratter Cotreau 1890 and Duncanlastér Lambert 1896) are discussed and illustrated. All are included in pre species cotrectly designated Corysius dysasteroides (Duncan).


## Introduction

Holasteroid echinoids are not abundantly represented in the diverse Tertiary echinoid fauna of southern Australia, but there is one common species which, for the last eighty years has beent known as Dumeaniarter uastraliace (Duncan). The purpose of this note is to review the complex nomenclatural history of the species and to decide on its correct designation. Also, photographs of the type material of four nominal species proposed by Duacan (1877, 1887) and Cotteau (1890) are published for the first time.

The species is known from the Tertiary coastal basius of southern Australia from Eucla Basin in the west to 'Torquay Embayment in the east, and from New Zealand. The carliest known Ausitalian occurrence is in the Middle or early Late Eocene; it is present in the Wilson Bluft Limestone at the Bluff and in Abrakurric Cave, and in the Tortachilla Limestone and equivalents of the St Vincent Basin. It makes its last Australian appearance in the late Early Mocene (uppermost Longfordian) Watacpoolan Limestone at Koonalunda in western Victoria. The species also occurs in the South Istand of New Zealand it appears first near the base of the Weka Pass Limestone in the Early Olizocene (questionable Whaingaroan), and lass in the Gee Greensand in the Late Oligocene or Early Miocene (Waitakian-Otaian). More
stratigraphic details are given in a separate paper (Foster and Philip, in press).

## Historical review

Duncan (1877, p. 49) described the species Rinynchopysus dysasteroides from Castic Cove. Victoria (Late Eocence Casile Cove Limestone) and (1877, p. 51) described a further species. Holuster australiae from the same locality. The holotype of $R$ : dysasteroides is crushed, and it was presumably for this reason that Duncant regarded the specimen as a cassiduloid. Pomel (1883, p. 61) proposed the genus Corystus for R. dysasteroides because of its intercalary apical system. In his revision of the Australian echinoid fauna Duncan (1887, p. 421 ( provided a corrected woodcut of the apical system of the holotype of $H$. ausiraliae. He recognised that he had misinterpreted the species $R_{\text {- }}$ dysasreroides and been mistaken about its affinities. As a consequence he renamed it Holaster difficilis. Pomel's work was not well known at the time and it is no doubt because of this Duncan made no mention of the genus Corystus.

Cotteau (1890, p. 548) described Galevaster austratiae from Mount Gambier (Early Miocene Gambier Limestone) as à new genus and species, placing the genus Galeraster close to Holasfer. Tate (1891, p. 276) first suggested that $H$, difficilis and $H$. austruliae were the same species. In 1892 Bittner (p. 359) rejected the

[^8]genus Corssius, noting Gregory's (1890, p. 490) reference to $H$. difficilis as an "unsatisfac. lory species", Also, in 1892 Tate published his strongly worded criticism of Bittore's paper but in regard to these species be followed Bittuer. although be suggested that Galeraster austratiae was an additional synonym of Holester coustrafiac.

Lambert (1893, p. 97) transferred K. aus- $^{\text {a }}$ maliae 10 Pomel's genus Lampedocorys but later ( 1896, p. 317) made it the type species of his new genus Durcaniaster which he placed close to Stegutter. Thus was created the widely used name Duncaniaster australiae. In 1903 Lambert ( $\mathrm{p}, 32$ ) grouped the genus with Lampadocorys. Stegaster. Tholaster and Offaster in his subfamily Echinocorynac.

Lambert \& Thiery (1921, p. 332) recognised Grieraster as a valid genus in the Echinogalerinae, stating ( 1924, p. 408) that Tate was mistaken when he made Galeraster custraline a synonym of Holaster ausiraliae. They (1921, p. 364) reinstated the species Rhynchopygets dysasteroldes. and made Corystus Pomel a synonym of Rhynchogygus d'Orbigny, Last of all (1924, p. 408), they relegated Duncaniaster Lambert to a sub-genus of Cibaster Pomel.
H. L. Clark (1946), in his review "The Echinoderm Fauna of Australia* mentioned neither Corystus nor Galeraster. He maintained Duncmiater as a separate genus (p.361), but did not consider it far removed from Cardiester, the only species he listed was $D$. australiae (Duncan), Mortensen (1948, p. 84) retained Colteau's genus Goblerester in the family Echinoncidae Wright and close to Pyrita, but ( $\mathrm{p}, 203$ ) considened Corystus to be a synonym of Cassidulus. He confirmed (1950. p. 74) Duncaniaster in the Holasteritlae close to Cihaster. Wagner \& Durham (1966, pp. Li445 U528) in the Treatise followed Mortensen in their' placement of Galerasper and Dascanigster, and Corystus was tentatively placed among the cassiduloids as a doubtul numinal genus.

## Type material

The holotype of Rhymchopygus dyaveroides is $\mathrm{BM}, \mathrm{E} 42418$ (Fig. $2 \mathrm{C}, \mathrm{E}, \mathrm{F}$ ) and that of Holaster aussraline is BM, E31067 (Fig. 2 A, B, D). Both are lodged in the British Muscum (Natural History), and both were collected from the "No. 5 Upper Coralline Beds, Castle Cove, near Cape Otway" in Victoria. This is the old locality AW5 of Wilkinson (1865) in the Castle Cove Limestone, which Cartes


Fig. 1. Plating of apical system of holotype of Holasfer australize Dumean (BM E31067).
(195S, p. 21) refers to as his Foraminiferal Units 2 and 3. The echinoids are probably from the upper part of the formation in the latest Lutte Eocene.

As indicated above, the type specimen of $R$. dysasteroides is badly crushed, although the adapical surface shows an holasteroid apical system, similar to that of $H$. aussraliate ( Fig. 1). In both specimens the adoral surface is poorly preserved, and the plastronal plating is obsclife. Because of the state of preservation, the presence or absence of a subanal fasciole could not be established.

The holotype of Cotteau's Galeranter ausraliae is an unnumbered specimen in the Ecole des Mines, Paris, in the Cottenu Collection (Fig. 2 G, H, I), Its locality is "Mount Gambier. Australiá" and doubtless is from the Gambier Limestone. The type section in the sinkhole at Mt Gambier town is of Longfordian (Early Miocene) age, and Janjukian (Late Oligocene) outcrops are limited to restricted areas NW and SW of the town. The precise locality of Cotteau's type, and of the only other representatives of the genus from this formation (P20456 from the National Museum of Victorin and T267a from the Tate Collectom labelled "Holaster woodsii Mi Gambier"), is


Fig. 2. All natural size. $A, B, D$. Adapical, adoral, and lateral views of holotype of Holaster australiae Duncan (BM E31067) , C, E, F. Adoral, lateral and adapical views of holotype of Rhynchopygus dysasteroides Duncan (BM E42418).G,H, I. Lateral, adapical and adoral views of holotype of Galeraster australiae Cotteau.
not known. The genepal echimaid fauna presently available from the Gambier Limestone appears to have ite closest affintices with Ibat of the Longfendian Minnum Fiomation of the Kiver Mursay cliffe In particular, ' 12673 the only well-preserved specimen of Corysths trom Mount Gambier was elsewhere (Foster \& Philin, in press) compared statistically with the porulations from a number of south-eastern Australian locallies ranging from Late Eocene to Early Miocenc, and its parameters correlated best with samples of populations from the Mannum Formation and the loongendian partion of the Port Vincent Limestanc. It is therefore concluded that the holotype is probatly from the Early Mioceno. Agair the holotype is a poorly preserved specimen, It is worn and cracked and a number of borings occur its parts of the test. Surface detail is obscured by matrix and secondary calcite to the degree that even the paths of the ambulacra are diflicult to Irace. Preparation of the apical reglon of the specimer showed the widely separated oculars typical of an holasteroid apical system.

## Conclustions

Despite the unsatisfactory nature of the type materlal, we conclude that all specimens are conspecific. We base this conclusion on the large colloctions of the species available to us from various localitles in south-eastern Australia. We hese choose dysasteroides as the valid name for the species as it has page precedence over australiae which was introduced by Duncan in the same publication. Pomel's genus Corystus las priority over Duncuniaster Lamber. 'Thus the valid Linnean species is Corystus dysasternides (Duncan).

In a further paper (Foster \& Philip, in press) we present a statistical analysis of samples of Corystus populations ranging from Lare Eocene to Early Miocene in age. This analysis is designed to depict the momhological trends apparent in the evolution of the species. We also have in preparation a taxonomic study of all tho holasteroid echinoids known from the Tertiary rocks of Australia (including Western Australia) and New Zealand. In this lattes article we will review the affinities of the genus Corystus.

## Heferences

Eitrout, $\mathcal{A}$. (1892) -Wher Eehiniden des Terviars von Australien. sife, א., Admot. Whe When, (Math, Nasur, Cl.) 101, 331-371.
Cartmx. A. N. (1958),-Terniary Fnramimifera 1 rom the Airc Dlsnit\%, Victoria, Bull. Gect. Surs. I'ich 55, 1-76.
Clafl. F. L. (1946).-The Echinoderm Fauna of Ausiralia. Ifs composition and origin. Puh?. Carnexie Jras. Whash. S66, 1-567.
Comtau, G. H. $(189(1)$,-Echinides nauveaux nu pea connus $3(9)$ Mem. Soe. Zool. France. 537.550.

Duncan P. M. (18771.-On the Echinodermata of the Australian Cainuzoic (Tertiary) Deposits. Qumpp. Licul, Sx. Lond 13(1). 42-71.
DUNCAN. P. M. \{1887), - A revision of the Echinoidea from the Australian Tertiaries. Jhid. 43 (3). 411 - 430.
Finstren, R. V., \& PHIt ir, G. M. (in meess) Statisticat analysis of the Teatiary holastervid Coryrm. dyyartmoides from Australasia. Thinlassia ducrasl.
Greanav; 1. W. $(189(1)$,-Some additions to the Australian Textiary Ectionidca. Geok. Mas. 27. $481-492$.

LAMBERT, J. (1893).-Eludes marphalogigues sur les plastron des spatangides Bull. Sinc, Scl. hiss, n+1. "Yunne 47, 55-98.
Lamvert, I. (1896) -Nove ster quelques Echinides crélasés de Madagascar. Bull. Soc. Geol. France 24, 313.332.

Lumorex. 1. (1903)-Deseription des échinides crétaces de la Belgique. I. Etude monosraphique sur le senre Echinocorys. Aéfre. Mus. Roy. dlyist. Nap. Belg. 2, 1-15\%,
Lamuter, J. \& Thiery, P. (1909-1925).-"Essai de Nomenclature ralsonnée des Echinides" 1-9 (Libraire Ferriére: Chaumont).
Mortensen T. (1948) - "A monograph of the Echinoidea" IV (1) Holectypoida, Cassiduroida ( $\mathrm{C}, \mathrm{A}$, Reitzel: Copenhagen).
Mortensen, I. (1950), -Iuem V (1) Spatangoida I.

POMEL, N. A. (1883).-"Classification méthodique et cenera des echindes vivants et fossiles" (Aclalphe Jourdan: Alger\}.
Tare, R. (1891),-A hibliography and revised list of the Descritied Echinoids of the Australian Eocene, with descriptions of some rew species. Truns, Proc. R, Soc. S. Ausi, 14, 27(1)-282.
TATE, K, (1892)-.Critical remarks an A. Bittuer"s "Echinden des Tertiars von Australien". Jbid, 15(2). 190-194.
WAONER, C. D. \& Dtrham, J. W, (19К6).Holectypoids, Holasteroids. In- Moore, R. C. (Ed.) Treatise on invertebrate palaeontology" U3(2). L4440-U450 \& US23-US43.
Wrammson, C. S. (1865)-Report on the Care Otway Country (from Parl. Papers, $186 \%$ 1865). Repr. Geol. Supv. Vict. 1863-1864, 2128.

# REDISCOVERY OF ACACIA BARATTENSIS J. M. BLACK (MIMOSACEAE) IN SOUTH AUSTRALIA 

BY M. D. CRISP*

## Summary

CRISP, M. D. (1976).-Rediscovery of Acacia barattensis J. M. Black (Mimosaceae) in South Australia. Trans. R. Soc. S. Aust. 100(3), 117-120, 31 August 1976.
Acacia barattensis, previously known only from the type collection, has been rediscovered near the type locality in the Flinders Ranges, South Australia. It is described in more detail than previously, the legumes and seeds for the first time. Its taxonomic affinities and the type material are discussed. Possible reasons for the species remaining "lost" for so long are suggested, and its state of preservation is discussed in relation to its distribution and ecology.

# REDISCOVERY OF ACACIA BARATTENSIS 3. M. BLACK (MMOSACEAE) IN SOUTH AUSTRALIA 

by M. D. Crisp*

## Summary

Crisf, M. D. (1976),-Rediscovery of Acacia barattensis J. M. Black (Mimosacenc) in South Australia. Trans, R. Sue. S. Aust. 100(3), 117-120, 31 August 1976.
Acaciz baraltensis, previously known only from the type collection, has been rediscovered near the type lucality in the Flinders Ranges, South Australia, It is described in more detail than previously, the legumes and seeds for the first time. Its taxonomic affinitics and the type material are discussed. Possible reasons for the species remaining "lost" for so long are suggested, and its state of preservation is discussed in relation to its distribution and ecology.

## Introduction

Recently I rediscovered Acacia barattensis in the Flinders Ranges, South Australia. In so doing I established that the species was not extinct iेs previously supposed (Specht et al. 1974. p. 304), and that the locality informa lion given by its author was ioaccurate. The following formal faxonomic treatment contains new information about its morphology, type material, aftinities, ecology and distribution.

## Taxonomy of Acacia barattensis

Acacia barattensis J. M, Black in Tyans. $R$. Soc. S. Aust, 56:42, d.1, fig. 2 (1932): Fior. S. Aust.ed. 2:419. fig. 578 (1948).

Somewhat diffuse, spreading shrub $2-3 \mathrm{~m}$ tall with several slender branches allising at or near the base. Rrunchits slender, glabrous, gently curved so that the tips stand erect; strongly angular and very viscid towards the tipy; becoming terete, less viscid and faintly striate towards the bases; greenish-brown but usually covered with a black incrustation. Foliage with a strong odour of resin acids when dryi. Stipules absent. Phyllodes crect, narrow-linear but tapering slightly towards both ends, vertically flattened, never terete. gently incurved, abruptly rostratc-uncinate at the upices, (3) $5-8 \mathrm{~km}$ long, $0,8-1.5 \mathrm{~mm}$ broad, 3 -neryed on each face, l-nerved un each margin ( 8 -nerved in all); with a narrow groove which is usually filled with brown resin atove and along each nerve; often shallowly
and irregularly sulcate between the nerver; very sparsely and minutely pusticulate, initially very viscid. Marginal gland scarcely vísible, 2-3 mm above the base of the phyllode. Pedunctes 1-2 in the axils, each with a minute narrow-triangular basal bract ( 0.5 mm long), slender ( $0.2-0.3 \mathrm{~mm}$ diam.) , terete $\pm$ papis lose-viscid, $8-13 \mathrm{~mm}$ long. Heads globular, $5-7 \mathrm{~mm}$ diam. at anthesis, ea 20 -flowered Floral bracts navicular with long (ca 0.5 mm ) triquetrous claws and with extended acule apices, $0.8-0.9 \mathrm{~mm}$ long and 0.2 mm broad, densely papillosc-viscid, the margins scarious, $\pm$ entire. Flowers 4 -merous, Calyx cat $1 / 3$ length of corolla, consistently divided for $1 / 4$ its length into triangular and barely acute lobes with entire margins, papillose-viscid. Petals oblong, recurved at the acute tips, 2 mm long. faintly uninerved, $\pm$ papillose-viscid, loosely connate for ea $\frac{-1}{2}$ their length. Ovary 1 sessile, densely papillose-viscid. Lequme narrow-linear. $\pm$ coriaceous, straight or slightly curved, stipitale, contracled to $!$ its width between the seeds, (6) $8-10(15) \mathrm{cm}$ long, $2.5-3.5 \mathrm{~mm}$ broad, offen with a very narrow ( 1 mm ) and elongate ( $u$ p 101 cm ) blick sterile tip: Surface of the legume initially very viscid, finally not viscid, durk brown, with anastomosing raised veins hetween the seeds, irregularly col. liculate over the sedd. Margins of the legume much thickened. straw coloured. Seeds longitudimal, oblong-elliptic, smooth, dark brown, cu $亡 .5 \times 4.5 \mathrm{~mm}$, Aril much dilated, with

[^9]

Fig. 1. Acacia barattensis. A. Portion of branch in bud and flower. B. Phyllode. C. Transverse section of phyllode, taken near the centre, showing resin-filled grooves. D. Apical portion of phyllode. E. Inflorescence (note basal bract). F. Floral bract in lateral (left) and ventral (right) view. $G$. Calyx and corolla. H. Legumes and peduncle. I. Exterior view of portion of legume over seed, J. Seed, aril and funicle. A-E from M. D. Crisp 889; F-G from M. D. Crisp 731; H-J from M. D. Crisp 890.
hyaline wings, unce-bent above the seed and gradually conlracted through a sharp bend into a thrice-folded funde.

Type cilation: "Near Baratta head-station. on a branch of the Siccus River and 20 miles west of Kounamore."

Holarypis: J. B. Clefand, 3atii.1930, "North of Baratta Head Statn." ( Itaratta is at $31^{\circ} 599^{\prime} \mathrm{S}$. $139^{\circ} 06{ }^{\circ} \mathrm{E}$ ). AD 9733807 L (f.)! 1sarypi: AD 96247254 ("belongs to AD 97338071") (fi.)!, K.

Distribution: South Australia: Flinders Ranges. Apparently restricted to the decp gullics of an unnamed range forming the northem and western boundaries of Bibliando Station, ca 55 km E of Hawker and 16 km NW of Baratta head station. All recent collections have been made in the vicinity of the peat known as "The Bluff".

Ecology: Apparently confined to near-verstcail gorge walls, from just above creck level to ca 30 m above, on skeletal soils between outcroppiag quartzite. Flowering is apparently irregulat, having been observed in Aprit, October, November and December: fruiting in October (immature) and November.

Additional specimens examined: Biollando Sth. et $2 \mathrm{~km} N$ of New west Bore $311^{\circ} 52^{\circ} \mathrm{S}$. $\left.139^{\circ} 03^{\prime} E\right)$. M. D. Crisp 731, 13.iv.1974. f.., fr. \& photo. (AD; CBG 060871-arig, spec.); Bibliando Stn. southern slopes of The Bluff. West Bare Pak ( $3 l^{\circ} 51^{\prime} \mathrm{S}, 139^{\circ} 00 \mathrm{E}$ ), M. D Crisp S89. 211.x.1974, fl. \& fr. (CBG 060873orig. spec.: NSW): ibid. M, D. Crisp 590, 20.x.1974, fl, \& fr, (CANB, CBG 060872orig. spee, NSW, TL, US) = Between Willipa and Bibliantio, M. $G_{1}$ Catford s.n., $2 \times 1.1974$. fl. \& fr. (AD 97448228-pro parte): ibid, A1. G Canford 5.n., 23.xi.1974, fr. IAD 97448228-p8o parie)

Affinities: In his original deseription of Acncid barattensir, Black placed it next to $A$. subporosit $F$. Muell. Sthe now segregated $A$, rognate Domin). I consider it to be much closer to the group $A$. gracilifolia Maiden et Blakely, A. withelmiana F. Muell., A. heimsiana Maider and $A$. nenzelit J, Mi Black, which apparently belongs in Bentham's serius Corlanilurmes. However it differs from all these in its fomerous flowers and in being totally glabrous. Maiden \& Rlakely (1927) deseribe a 4 -partite conolla for A: gracilifolia, but both their illustration nod material examined by myself have a 5 -partite corolla, in SE Australia the most similar relative of $A$, barop-
sensis is apparently A. mepzefil, which has similar phyllodes, glands, péduncles; legumes, seeds and arits, However the latter differs in having phyllodes shorter and wrually terete, 2 fewer metves per phyllode, bracts larger. cucullate and prominently ribbert, flowers 5 merous, floral bracts with short claws.

## Discussion

The type materisl it AD consists of 2 sheets. hoth ranotated by Black. Ore of these (AD 97338071) has two twigs of naterial and two locality labets in Black's handwriting. One label.

> "North of Baratta
> Head Siatr $3 / 12 / 30$
> (J. B. Cleland)
> label marked Kew $137^{\circ} \cdot$.
appears to be the original information received from Cleland, while the other,
"Baratta H.S. (on a branch of the Siccus
Riyer \& 20 miles $W$ of Koonamore.)".
is Black's transcription of the former for publication. There is no evidence to suggest that the two twigs are sepatate collections. Buth twigs are identical in all respects, particularly in the stage of flowering. The sheet also bear: extensive descriptive notes and drawings, and is bold Jabel "Acacia haratensis J. M. Black", all in his hand. Clearly this shect is the holotype.
The second sheet (AD 96247254), origin. ally kept separately in Herb. J. B. Cleland but jater transferred to AD , carries a locality label similar to that on the holotype, and a twig identical to the others, indicating that this sheet is an isotype. The tahel is marked "Kew 237" by an unknown writer, and
${ }^{7}$ Apparently a mew sp.\}. but if sent to Kew, I scarcely know what to do-J.M.B."
hy Black. Clearly it was after he wrote this note that Black decided to descrite and name the Acicius from the duplicate (holotype) material. If any specimen had been sent previously to K , it must heve been returned. because the only specimen of $A$. burallensis now there is endorsed

## "comm, J: M. Black, Jan. [933"

i.e. it was sent there after publication of the new species by Black. This third specinen appears in all respects to be a duplicate of the holotype collection, and must be regarded as a second isotype.
The ahnve discussion shows clearly wity many attemprs to telocate Aracia haratensig falled. Whereas Clelani"s field lucality was
"North of Baratta" (in the ranges where it presently occurs and only about 10 km distant from Baratta), Black's published locality erroneously focussed attention on the head station itself, where it does not occur. The populations of the Acacia are in fact restricted to specific sites in the deep gorges of the range at Bibliando. However, where populations do occur they are fairly extensive and protected by the inaccessibility of their habitat. Provided that no major disturbance occurs in this range, Acacia barattensis is probably safe from the threat of extinction for the immediate future.

## Acknowledgments

I wish to thank the staff of the State Herbarlum of South Australia (AD) for the loan of specimens and for assistance received. I am also grateful to Dr Hj . Eichler of Herbarium Australiense (CANB), who offered some useful comments about the type material and read the manuscript. Mr A. B. Court of the Herbarium, Canberra Botanic Gardens (CBG) offered many helpful suggestions. Dr A. Kanis kindly located and supplied data from the specimen at the Herbarium, Royal Botanic Gardens, Kew (K).

## References

Maiden, J, H., \& Blakely, W. F. (1927).-Descriptions of fifteen new Acacias. J. Roy. Soc. N.S.W. 60, 171-196.

Specht, R. L., Roe, E. M. \& Boughton, V. H. (cd.) (1974),-Conservation of major plant communities in Australia and Papua New Guinea. Aust. J. Bot. Supp، Ser. 7.

# WOODWARDOSTRONGYLUS OBENDORFI NEW SPECIES (NEMATODA: AMIDOSTOMATIDAE) FROM KANGAROOS 

by Patricia M. Mawson*


#### Abstract

Summary MAWSON, P. M. (1976).-Woodwardostrongylus obendorfi new species (Nematoda: Amidostromatidae) from Kangaroos. Trans. R. Soc. S. Aust. 100(3), 121-123, 31 August 1976. Woodwardostrongylus obendorfi n.sp. is described from the oesophagus of Macropus parryi (type host), M. robustus, and M. rufogriseus. It is distinguished from W. woodwardi (Wood) chiefly in having only 6 pairs of oral denticles instead of 16 . Woodwardostrongylus Wahid is transferred to the family Amidostomatidae, and the genus Cristaceps Mawson is placed as a synonym of Woodwardostrongylus.


# WOODWARDOSTRONGYZUS OBENDORFI NEW SPECIES (NEMATODA: AMIDOSTOMATIDAE) FROM KANGAROOS 

by Patricia M. Mawson*


#### Abstract

Summary Mawson, P. M. (1976).-Woodwurdostrongylus obendorfi new species (Nematuda: Amidostromatidae) from Kangaroos. Truns. R. Soc. S. Aus, 100(3), 121-123, 31 August 1976. Woodwardostrongy/us ohendorfi n.sp. is described from the oesophagus of Macropiss parryi (type host), M. robustus, and M. rufogriseus. It is distinguished from W. woodwardi (Wood) chiefly in having only 6 pairs of oral denticles instead of 16. Woodwardostrongylhs Wahid is transferred to the family Amidostomatidae, and the genus Cristaceps Mawson is placed as a synonym of Woodwardastrongylus.


## Introduction

The genus Woodwardostrongylus was erested by Wahid (1964, p. 184) for Pharyngostrongylus woodwardi Wood, 1931. Mawson (1971, p.. 174) not having seen Wahid's work, proposed the genus Cristaceps for the same species ${ }_{j}$ pointing out that this genus was close to Filarineme in the famity Amidestomatidae (sensu Inglis 1968). Cristaceps now falls as a synonym of Woodwardostronglux, but the latter must be transferred to Amidostomatidac.

Nematodes recently taken from the vesophagus of three species of macropods have been identified as a new species of Woodwardostrongylus, in all three cases the worms were threaded through the oesophageal epithetium so that care was necded to collect them entire. This situation is similar, though in the oesophagus instead of the stomach, to that occupied by $W$. Woodwardi in the two recorded findiogs (Wood 1931; Mawson 1971). It is a locale which is likely to escape all but the most careful dissections, so it is possible that species of the genus are more widely distributed than the records indicate.

J am very grateful to Dr Brian Coman and De Tom Kirkpatrick who shot the kangaroos and to Mr David Obendorf who first noticed the presence of the worm.

The micrographs (Figs 10,11) were taken by E.T.E.C. Autosean in the Central Electron Optical Laboratory of the University of Adelaide. I am indebted to Dr Karl Bartusek
of this Laboratory for help in taking the micrographs, and to P. G. Kempster for developing and printing them.

## Woodwardostrongylus obendorfi insp.

FIGS 1-11

Host and Locality: Macropus parry (Bennett) (lype host and M. robustus (Gould), from Dorrigo, N.S.W.: M. rufogriseus (Desmarest\} from Warwick, Qld.

The worms are thin and elongate, the males $15,9-16.7 \mathrm{~mm}$, the females $24-26 \mathrm{~mm}$ in length. The body, especially of the female, is widest in its posterior part. The rounded anterior cnd bears a small round mouth, on each side of which lic six prominent denticles each associated with a plate-like sclerotisation in the cuticle. The mouth leads to a thickwalled buccal capsule or vestibute. The lumen of this is narrow but wider dorsoventrally than from side to sidc. The walls are faintly striated transversely (more distinctly in some specimens than others), and arc distinctily thicker posteriorly than anteriorly. The cephalic papillac and amphids are very small.

The oesophagus widens in its posterior half to a very slight terminal swelling. It is $800-$ $900 \mu \mathrm{~m}$ long in the male, $900-1050 \mu \mathrm{~m}$ in the female. In the male the distance from the anterior end of the worm to the nerve ring is $320-400 \mu \mathrm{~m}$, to the cervical papillae 300 460 jm , and to the excretory pore $440-510$ $\mu \mathrm{m}^{*}$ in the female these distances are respec-

[^10]

Figs 1,2 and 3-Head, in semi-cn face, lateral and ventral views respectively. Fig. 4 Oesophageal region. Figs 5, 6, 7, and 8-Views of bursa. Fig. 9-Posterior end of female. Figs 1-3 to same scale. Figs 5-8 to same scale.
tively $360-400 \mu \mathrm{~m}, 560-600 \mu \mathrm{~m}$, and $500-$ $550 \mu \mathrm{~m}$.

The butsa is only slightly lobed, closed ventrally, and somewhat voluminous dorsally where it extends so that the dorsal tay for most of its length lies at right angles to the long axis of the body. The arrangement of the riays is shown in Figs 5-8. The genital pore is of medium size, apparently without accessory tobes. The spicules are $1700-2100 \mu \mathrm{~m}$ long, the ratio body length; spicule length being $9.9-12.8$. A gubernaculum is present.

In the female the tail is $180-220 \mu \mathrm{~m}$ long, conical and pointed. The vulva is shortly in
front of the anus, $300-350 \mu \mathrm{~m}$ from the posterior end, The vagina is relatively long, up to $800 \mu \mathrm{~m}$. Vaginal eggs measure $140-150 \times 70-$ $80 \mu \mathrm{~m}$.

The species is distinguished from $W$, woodwardi mainly by the presence of only six pairs of oral denticles instead of sixteen pairs, and by the presence of the associated basal plates. which are not-seen in the type species. There is also a difference in the site in which the species occur in the body, $W$. woodwardi in the stomach and the new species in the oesophagus. In M. parryit and M. rufogrisaus the worms werc numerous, but only one was found in $M$, robustus.


Fig. 10. S.E. Micrograph, anterior end almost en face (x 1500).
Fig. 11. S.E. Micrograph, part of region around mouth, showing two of the submedian papillae, the mouth, and some of the oral denticles ( $\times 3500$ ).

## References

INGLIS, W. G. (1968).-The geographical and evolutionary relationships of Australian trichostrongyloid parasites and their hosts. J. Linn. Soc. Lond. Zool. 47, 327-347.
Mawson, P. M. (1971). -Pearson Island Expedition 1969.-8 Helminths. Trans. R. Soc. S. Aust. 95, 169-183.

Wahid. S. (1964), -A preliminary revision of the genus Pharyngostrongylus Yorke and Maplestone, 1926.J. Helminthol 38, 180-190.

Wood, W. A. (1931).-Some new parasitic nematodes from Western Australia. Rep. Director Inst. Animal Path. Univ. Camb. 1, 209-219.

# NEW LATE CAINOZOIC ROCK UNITS AND DEPOSITIONAL ENVIRONMENTS, LAKE FROME AREA, SOUTH AUSTRALIA 

BY R. A. CALLEN* AND R. H. TEDFORD $\dagger$

## Summary

CALLEN, R. A., \& TEDFORD, R. H. (1976).-New late Cainozoic rock units and depositional environments, Lake Frome area, South Australia. Trans. R. Soc. S. Aust. 100(3), 125-167, 31 August 1976.
Five new rock units are defined for the Lake Frome area of South Australia.
The Namba Formation of Miocene age constitutes fine grained immature muddy sediments laid down in a low-energy fluviatile and lacustrine environment, possibly partly estuarine or lagoonal. Climate was subtropical or warm temperate with high rainfall, but seasonal aridity. Aphanitic oolitic lacustrine dolomite and palygorskite are included in this sequence. The Flinders Ranges had very low relief. The overlying and intertonguing Willawortina Formation represents alluvial fan deposits with minor lacustrine phases, recording the beginning of the late Cainozoic uplift of the Flinders Ranges, during which the Miocene lake was greatly reduced in area.
The Millyera Formation, constituting laminated ostracode bearing clay, fine sand, and charophyte limestone, records lacustrine deposition during the Pleistocene. This took place in an enlarged ancestral Lake Frome. The essentially fluviatile and aeolian deposits of the Eurinilla Formation and Coonarbine Formation were deposited during the late Pleistocene and early Recent. Arid and pluvial climates alternate in the late Tertiary and Quaternary. Drainage trends and the predecessor of Lake Frome were established, closely approximating present day geography. During deposition of the Coonarbine Formation the seif dunes of the southern Strzelecki Desert formed.

# NEW LATE CAINOZOIC ROCK UNITS AND DEPOSITIONAI. ENVIRONMENTS, LAKE FROME AREA, SOUTH AUSTRALIA 

by R. A. Callen* and R. H. Tedford ${ }^{*}$


#### Abstract

Summary Callen, R. A., \& Tedford, R. H. (1976).-New late Cainozoic rock units and deporilional environments, Lake Frome area, South Australia. Trans. R. Suc. S. Aust, 100(3). 125-167. 31 August 1976. Five new rock units are defined for the Lake Frome area of South Australia. The Namba Formation of Miocene age constitutes fine grained immature muddy sediments laid down in a low-energy fluviatile and lacustrine environment, possibly partly estuarine or lagonnal. Climate was subtropical or warm temperate with high rainfall, but seasonal aridity. Aphanitic oolitic lacustrine dolomite and palygorskite are included in this sequence. The Finders Ranges had very low relief. The overlying and intertonguing Willswortina Formation represents alluvial fan deposits with minor lacustrine phases, recording the beginning of the late Cainozaic uplift of the Flinders Ranges, during which the Miocene lake was greatly reduced in area.

The Millyera Formation, constituting laminated ostracode bearing clay, fine sand, and sharophyte limestone, records lacustrine deposition during the Pleistocene. This took plave in an enlarged ancestral Lake Frome. The essentially fluviatile and aeolian deposits of the Eurinilla Formation and Coonarbine Formation were deposited during the late Pleistocene and early Recent. Arid and pluvial climates alternate in the late Tertiary and Quatemarys. Drainage trends and the predecessor of Lake Frome were established, closely approximating present day geography. Dutiog deposhion of the Coonarbine Formation the seif dunes of the snuthern Streclecki Desert formed.


## Introdaction

Mapping on the FROME (Callen 1975). and CURNAMONA 1:250000 geological sheets has reswled in differentiation of several Tertiary and Quaternary nock units which can be traced throughout the Lake Frome area (the region sotth of Lake Callabonna between the Flinders, Barrier and Olary Ranges). The Eyre Formation has been defined prepiously (Wopfner ef al. 1974). It lies immediately beneath the units described here for the Lake Frome area and can be recognised over a mucts wider region. The other units are at present restricted to the Lake Frome region, though corrclation with units elsewhere, especially in the Lake Eyre Basin, is generally possible on a fiem basis.

There was a low divide between the depositinnal areas of Lakes Frome and Eyre, suggested by the distribution of arenaceous material in the Miocene rocks. The develop-
ment of this divide is clearly described by Wopfner (1974, p, 6). Thus the Lake Eyre and Lake Frome areas formed two distinct depositional basins during late Tertiary times: different sets of formal names are used for rock units in each. In late Tertiary and Quaternary times the Flinders. Ranges achieved their present dimensions, completely separating the two basins by a sange of mountains.

This paper describes five rock units requiring formalization under the Australian Code of Stratigtaphic Nomenclature [1973), commenting on the paleo-environmental inferences to be drawn from them. The nomenclature supersedes that shown on the FROME geo. logical map, relationships between units now being on firmer basis. The paper is divided into two parts, dealing with essentially 'Tertiary' and Quaternary units respectively. New geo. graphic names have been formalized with the Geographic Names Board of South Australis

[^11](pers comm. 1973) and are designated with a superseript whetever they first appear, thus: Lake Nambax. Geologic nankes have becn cleared with the Central Registry (Canberna 1973). The paper derived from a report by Callen (1974)! and an M.Sc. thesia (Callen. 1976)2. Additional stratigraphic data may be found in this thesis.

Previous work includes the early geological surveys of Selwyn (1860), Brown (1884) and later of Jack (1930) and Kenny (1934). More recenlly Ker (1966). Krinslcy el a! (1968) and Draper \& Jensen ( 1975 , in prep.) have ieported on hydrolngy and geology. The margins of the basin have been the subject of regional mapping programmes by the South Australian and New South Wales zoological surveys, on $1: 250000$ scalc. Relevant to this seport are Lecson (1967)3, Firman (1971) ${ }^{4}$ and Coats (1973). A detailed basin study of the older unit NAMBA FORMATION is in progress and will be reported at a later date. A preliminary account of the stratigraphy is presented in Callen (1976), which gives the structural and tectoaic setting.

The terms used to describe the scdimentary mocks are those of Folk at al. (1970), unless indizated othervise. Colours are given symbolically in terms of Munsell Colour Code (Geological Socicty of America 1951\%. A relative scale was used for designating the thickness of cross-bedding, as Lollows: very small < 1 cm , small $1-5 \mathrm{~cm}$. medium $5-50 \mathrm{~cm}$. large $0.5-2 \mathrm{~m}$, very large $>2 \mathrm{~mm}$. In the designation of contact features, core width places a limit on efre interpertation, as it does on maximum grain size: cobbles and boulders are interpeted from the propartion and shape of fragments ground flown and hraken by the drilling operation, and nature of petrophysical log response.

The older units ( Pt I ) were described manly from beres, the younger (Pt 31) from outcrnp Knowledge of the younger units was derived trom detailed investigation of over 100 trenched onterup sections, Where passible units were qaced between sections. Fexsil soils were an aid to stratigraphic interpretation.

The location of the sections is shown in Fig. 1, Tables I and 3 summarizing rock unit minpetties, palacontology and geomorphologs, Symbols are in Fig. 2.

The subsurface sections were studied from cores derived from hores drilled by the South Australian Department of Mines and private companies. Some percussion and rotary cutting were used to assist correlations, hut those utilized for type sections were cored continuously, and are available for inspection at the South Australian Department of Mines Core Láboratory. Petrophysical logs were tun in all cases. The lithological descriptions were supplemented by binocular microscope examinafion, and clay. (x-ray diffraction) and grain size (sieve and pipette) manlyses ware performed by Drs K . N . Hrown and B , G Stevenson respectively of the Australlant Mineral Development Lahoratories.

The ext is regarded as: a supplement to the diagrams and tables; descriptions in Tables 1 and 3 should be tead firsk. Complete descriptions of each section are given in the appendiess, whercin the sequences are described as they occur on the earth's surface-i.e. youngest at top, oldest at base. Depths to the sop of each unit or bed from the bore collar are given. and the thicknicss is placed at the start of its deseription, In each unit, descripfion of the dominast lithology is capitalized: followed by qualifying descriptots referring to each lithology in the same order.

Diyision into units in the reference sections is intended as an aid to identification of the appropriate intervals in the descriptions (Section 12, Fig. 3), not a folmal subdivision. Cone Joss is indicated in the hore logs (Fig. 3 sections $10.11 \& 12$ ).

## Pt. 1-Otder Cainozoic Rock Units

A general delinition of cach unit giving salient features, aye and geomotphic selting is presentex in Tahle 1, mepresertative sections in Fig. 3. Appendix 1 gives setaided descriptions of individual allits

[^12]

Fis. 1. Locality man, Lake Frome area-location of type sections. Numbered sections shown in Figs 3,
14,15 .

## LEGEND



Fig. 2. Legend.

## LITHOLOGY

NAMSBA FORMATION (Derivation, Like Nambax ${ }^{\text {, CURNAMONA map sheet: "Namba" }}$ is the Jadiaura aborigin! tribal word for bonefish).

The type section is Yalkalpo No; 1 bore (section 12, Fig. 3) drilled by the South Australian Department of Mines, Though not typical in some respects, this is the only section demonstrating the relationship to the Eyre Formstion (Appendix 1). The sequence is of reduced thickness ( 56.60 m ) compared with that of the reference section in Wooltana No. I bore ( 170.09 m . Section 11, and Appendix 1 , excluding unit 4 which is 68.25 m thick). Section 11 also contains a microflora importani in the age determination of the unit. The most extensive outcrops are on the west shore of lake Tackaroolont (Fig- 14), where 26 m are exposed, and at the south and north ends of Lake Namba (e.g Section 8, Fic 15). These are unsuitable for designation as type sections, as anly the uppermost heds are represented.

The typc section consists of a serics of cyclle sand/clay sequences in the lower part totalling 32 m nt interhedded yellowish silt and uark grey or olive clay. This is overlain by 24.8 m of burrowed yellowish silt and intraformationally brecciated light olive clay. The cyclic sequences constitute the following, from the base of each set upwards:
(a) Fine to medium-grained sand with small to medium scitle cross stratification.
(b) Laminated silt to very fine sand with very small scale cross-lamination.
(c) A sone of dolomite or calcite phiches or a bed of dolomitc.
(il) A relatively thick Jark grey clay with irregular shiny-susfaced fractures iskew flatnes of Brewer 1964) and scattered patches and wisps of fine to coarse sands. in which grains are polished.
In this sequence (a) and (b) may aliernatc. or either (a) or (b) may be absent Unit 5 of the lype section represents a relatively completo cycle:
1.70 m Alternating CLAY and SILT to SAND. Sand very fine grained moderately sorred. percentage increasing upwards. Citains very anyular, with crystal fuces developed on quartz. Becontes calcareous al top. Bedding denticular, with sedimentary breaciation sind nossible burtowing adetivity. Obseute harizontal lamination at top. 7 \% carbonate grains, sate mica, Colour 3 YG/ 11 motlled IUYR6f6.
0.75 mi SANDY CLAY. Vertically streaked tratsition zone from sand to clay. Fine sand formis stiesks and palches in claty. Very poorly sorted medium sill, with modes in clay and very fine sand sizes.
4.1051 CLAY, black (5Y1/1) and tugh, with characteristic irregular shiny-surfaced Fractures, and treaky of white carbonate. Motled with orange brown colours which suggest an irregular microstructure. Many brown futches have well defined straight boundarier, producing angulat blocks with dendritic or patchy internal strucIure. Unovidized clay in these blocks is specnish grey. Scattered patches of silt and very fine sand are prexent. Upper contact sharg, but distarbed, with partial mixing into averlying sand,
The lumrowed sitt is very finely laminated, but this is often disrupted by burrowing. Very fine sand sized material is the poarsest grain size encountered. Colours are mainly yellowish grey to yellowishowhite for silt or light olive for clays having a greasy lustre. Friactuses do not. reach the degree of development of comparable structures in the black elays of the lower past of the sequence.

The butrow sturctures are a few millimetres in diameter, containing convex-down Jamellac usually less than 0.5 mm thick. They are irregular and often branch, tending to be contcentrated in eertain horizons. Many of the homogenized class have a churned structure sugecslive of bioturbation.

The top of unit 9 marks the last appearance of the tough black clays characteristic of the lawer part of the formalion (Fig. 4). Frequently alunite $\left(\mathrm{KAl}_{3}\left(\mathrm{SO}_{4}\right)_{n}(\mathrm{OH})_{0}\right.$ ) is developed as lusirous white particles or patches within the clay at the top of this unit. Above unit 9. silts dominate over clay, and burrous (Fig. 9) are more common.
The outcrop at Lake Tarkarooloo (scetion J3, Fig. 14) is situated on the westera cliff face immediately north of the track-enossing. the the toute from "Erome Downs" to Black Oak Bore. The lower part of the section is -s few tens of metres south of this track. The two parts were correlated using conitinuously traced bedding planes, and levelled with an Abncy hand icvel. The strata are essentially horizontul, as are those in the type section.

Nolable realures of this outcrop are the interbedded gypsum nodules in the upper part of the section, the presence uf ostracondebearing oolitic dolomite associated with palygorskite, burrowed fine sand heneath the upper clay-dolomite sequence. the finely faminated
calcareous sill gear the base of the sequence, and the sharp contact with the upper tough black clay. These features, particulariy the last mentioned, are useful in corredation. In Nection 12, the petrophysical logs indicate the interval between iunits 12 and 13. which lacks core, is probably silcrete, calcrete or dolomite. The absence of palygnrskite beneath it suggests it may not be dolomite (this clay mineral is invariably associated with dolomite elsewhere in the basin). A turte shell fragment in thit 10 supports a dithological correlation with section 8, if the black clay and ?dolomite are alsa correlated, but this is not in agrecment
with the clay mincralogy. Section 13 shows the bypical dolomite-palygorskite association. und arend towards illite domination in inember two.

Typieal of the Namba Formation outcrop are the brown chent nodutes which cover the breakaway stopes, and black manganese oxide conting on the grains in sand beds Micrnseopically, the chert nodules have struetures indicative of shrinkage and formation from accretionaty silicas gel. The blach stain is manganese, Both these scoondary effects are Iocslized, occurring in sands cropping out in the banks of stream valleys-croded in the Namha Formation, prior to the deposition of the

Figs 4-9. Older units, Examples of Namba Formation lithology. Scales 1 mmm and cm . Core sections. Arrows point to top of mailion.
Fie. 4 Section 12, Yalkalpo 1 hare, 125.00 ml Core, Darl grey clay with streaks of carbunate, dather and lighter clay, and sand, some nilling hurrows or root holes. Vertical dispositiun of patches well-displayed. Kepresents swamp deposition or a lake depost which has been subject 10 subaerial exposure. Centripetal orientation of streaks is result of expansion of clay as it enters the cure barrel.
Fig. S. Section 11. Wooltams 1 bore, 218.68 m . Section through core, showing upper contact of laminated dolomite bed, Shrinkage and crabling of the dolomte has occurred, allowing penetration of the semi-fluld overlying clayey lime (C). Represents chemical sedimentation in a facustrine or marginal marine environment. Boundaries of carbonate fragments and laminae emphosized by inking,
Fig. fi. Section 11. Woollana 1 hore, 58.72 m . Core. Caleareous claystone with numesous burnuws in. filled with green-grey clay. Irregutar shrinkage crack (C) has been infiled with semi-liquid day which carries carbonate partisles. The clay.filled crack is itself burrowed. indteating genesis soon after deposition. Represents combined chemical and detrital deposition in a marginal marine lagout or lacustrine crivironment, with bursowiny organisms.
Fig. 7. Section 11. Wooltana 1 hore, 122.00 m . Core. Fine lamination with eypical alternation of silh and sand. Very fine scale frough cross-lamination. Quiet water deposition (migrating sipples in a tidal, lacustrine or floodplain environ ment.
Fig. 8. Wertatoona 1 bore, 152.00 m . Araldite peel of sectioned care. Typicul example of small scate crossdamination in medium grained sand, partly disfupted by bucrowing in upper part. Clayey laminae alternate at base, Relief coincides with porosity, though affected by varving thickness of core aeross section. Crosss betding formed by ripple migration, in in offshore bar or chamnel.
Fig. 19. Section 12, Yalkalpo 1 bore. 22.61 m . Core. Ton of bedding planc. Shows burrows along bed. ding plane, with concave intemal lamination 11). Represents yuict water deposition with burrowing pramisms.
Figa 10-13. Oulcrop of Namba Formation and Willawortina Formaton. core of Willawortimar Formaiton.
Fig. 10 Vertebrate fossil float from the Namba Formation of L.Yandia on Euriaulla Creek. Vertebra on far left (D) is riverine dolphin, on its tight ( $L$ ) are lungfish seeth and two fish spines ( $F$ ) In centre (T,C) are mainly crocodife scutes and turile plates- $A$ frakment of bird bone (B) is on upper right corner, From base of upper unit of Namina Formation. Scale 30 cm .
Fig. 11. South end of Lake Namba. Typical outcrop of Namba Formation. Gypsum nodule capping (G) overlies thin nudular dolomite (white: LS), Greyish olive silty clay (erey) occupies moxi of section. Grassed white bench at base of slope is very tine grained laminated sand ( S ). 30 em scale rests on unper cuntact in trench. Outerop surface is covered hy gypsum nudules and weathered riay. Sand represents chanmel ot lloodplain deposition, clay and dolomite probably Jacusutne.
[ijg. 12. Hatcanoona Ck, Willawortina Formation. Celcified medium croxshedded asnd lens in calcareous reddish brown very ponfy ported clay-wif. Note thin bedding in silt. Sand lens represents deposition frons bigher powered sireams, fine sediments are floodplain deposits. Scale 30 cm .
Fig. 13. Seclion $10, W C 2$ bore, 68.75 m , yectiun of cure. Willamatina Formation shows large pelinles, granules, very coarse zilty and clayey sand. Extremely poor sorting. Representis depasition in ath alluvial fon environment. Scate in mm .


## Millyera Formation and Eurinilla Formation

 (new names see Pt. II).Wooltana No. 1 bore (Fig. 3, Section 11 and Appendix 1), drilled by the Australian Department of Mines is an important supplementary section, exhibiting a thicker sequence, lithologically more typical of the Namba Formation than the type section. It also demonstrates the intertonguing relationship with the Willawortina Formation (new name Pt. 1).

The base of the Namba Formation was not penetrated, though cuttings from old Pootana bore (Fig. 1, 50 km north-north-east of Wooltana No. 1 bore) indicate a total thickness of 190 m . This compares with 54.40 m in Yalkalpo No. 1 bore (Section 12). The sediments have been divided into six informal units. The lowest of these (unit 1) consists of 8.5 m of laminated black and dark olive carbonaceous clays with characteristic fauna and microflora (discussed later), Laminae containing ostracodes of early Neogene aspect (including cypridids-pers. comm. K. McKenzie 1973), and fish spines are present. Protoconchs of a small gastropod (Potamopyrgus s.1., see Ludbrook 1972) ${ }^{5}$, are scattered through the clay and ?gastropod tracks and burrows of other organisms are common on bedding planes. These sediments are restricted to the Poontana Sub Basin west of Lake Frome.

Unit 2 ( 40 m ) is dominated by white, frequently oolitic, dolomite beds (Fig. 5) containing characteristic branching pores 0.5 mm diameter, alternating with clay, and sometimes interbedded with silt and fine sand. The carbonates have unusual transitional or irregular upper boundries: in some beds spherical zones delineated by colour variations develop, which pass upwards into discrete carbonate lumps within the matrix of overlying unit. These are thought to be diagenetic features associated with lithification possibly resulting from intermittent exposure. Other beds (Fig. 5) show shrinkage cracks, into which the overlying clay penetrates. Particles of carbonate are included and flow lines occur, indicating liquefaction resulting from thixotropic transformation. The lack of rounding of the clasts derived from cracking, and gradation to uncracked material, suggests sinking of carbonate plates into underlying liquid clay. The cracking may be a syneresis phenomena, which occurred during or shortly after deposition of the over-


Fig. 14. Namba Formation-outcrop reference section.
lying clay. Occasionally the clasts have been rounded, and incorporated in the overlying unit: current or wave action has been effective in some cases. Other beds show wispy carbonate and clay intermixed at the contact, interpreted as flame structures which have transformed by thixotropic changes, to flow as a semi-liquid. Bioturbation is frequently associated with these structures, and is common throughout (Fig. 6).

Unit $3(49.7 \mathrm{~m})$ is very similar to the lower part of the Type Section (section 12, units $1-9$ ), exhibiting similar cyclic deposition, in which cross-stratified sands (Fig. 8) grade up into tough black clays with pockets of medium sand, often with polished grains (see description of unit 4, section 12). The black clays are identical to those in section 13, Fig. 14. Analyses showed the black colour does not

[^13]result from anomalous concentration of casi. honaceous matter sulphides or manganese. Tran-rich montmorillonite or humit acid stainlog are alternative explanations. A bed of dolomite or limestone nodules is of ten present at the contact between the sand and black clay. Lamination (Fig. 7) is generally not th prominent as in the equivalent strata in the type section, and the sand beds ate often burrowed.

The cross-bedded sand sequence of unit 4 ( 49.2 m total thickness) grades up into a uniform olive clay with churned structure. The sand bed is a promincat horizon west of Lake Frome, and is being prospected for sedimentary uranium of the geochemical cell typc. The datk sandy clays with skew planes are rather weakly developed in this unit.

The upper carbonate horizon, unit $S_{\text {; }}$ is 23.7 m thick, has a much higher propostion of clay than unit $z_{\text {a }}$, and is intensely burrowed. Sedimentary gypsum laminae are present.

The uppermost part of the section (unir 6) in which the Namba and Willawortina Formathons intertongue is mote conveniently des. cribed when discussing relationships between units.

The Namba Formation has been broadly divided into two informal menbers (i and 2) of regional cxtent, on the basis of the presence ot absence of the tough black sandy clays with skew planes. The lower member (e.g. units 1-4, section 11, Fig. 3) is characterized by thesc clays, and cyclicity is more prominen. It was later found that this subdivision closely coincided with the change from smectite to illite-kaolinite dominated clay mineral suites (inset. Fig. 3), except in Yalkalpo 1 bore (Fig. 3, section 12). In this bore it is uncertain whether the dominance of smectite throughour the sequence sepresents a local variation in elay mineralology or whether the upper part has been wrongly assigned to memter 2 (which may have been eroded). The mincralogy in Yalkalpo 1 bote is remarkably uniform, smectite almost the only component. The higher proportion of silt is also unusual.

An intercsting, varied vertehrate fauma is found in the upper part of member 1 and the base of member 2 of the Namba Formation in various small saltpans southeast of Lake Frome, in the vicinity of Eurinilla and Billeroo Creaks. One of these lecalities is at Lake Pimpa (Scetion 8, Fig. 15).
WILLAHORTINA FORMATION (Deriva-firn-Willawortina Creek, passing south of "Wertaloona" on the Balcanoona High Plans.
in the viciaity of the outcop reference section),
The type secton for this unit is Western Nuclear's sedimentary uranium test hole WC2 (Fig. 3, section 10 and Appendix il cores from 8 m to base. The hole was drilled on the uplifted plains flanking the Flinders Ranges, near Paralana, where a continuous sequence of coarse poorly sorted sediments is encountened. A detailed division is not postible as a result of moderate recovery and gradational contacts. Thice members are recognized, members 1 and $2 \$ 16.4 \mathrm{~m}$ and 17.0 m thick respectively) have less mica and sand in the matrix than the overlying beds, and are less oxidized. Member 2 has fines overall grain size than member 3 but is comparatively coarser than mesiber one. Members 1 and 2 are equivalent to unit 6 of section 11.

Although bedding planes are very indistine, transitions in grain size are often abrupt (Fig. 13). Secondary alteration with production of red rootuling is common throughout. Feldspars are generally more abundant than in the Namba Formation. Sandy beds have matrix. supported framework with a high proportion of rramework compared with the Namba Formation.

The Pormation crops out along crecks incised into the high level plains tlanking the Flinders Ranges, along the southern shore of Lake Frome, and along the Siccus-Pasmote River. The section (Fig. 3 section 1, Appendix 1) in a low range of hills, 3.2 km on $22^{\circ} \mathrm{T}$. north of Prism Hill and south of "Wertaloona" (Air photo reference: S. Aust. Depr. Lands Svy, 803, Baicanopna Run 7, photo 0014), is an important supplementary section, as it is the only outcnop in which the contact with the Namba Formation can be observed. The sequence is 140 m thick and dips $30-50^{*}$ cast. in accond with the remainder of the Camozole section. The whole rests with angular uneonformity on Middle Cambrian rocks. Exposure is moderate to poor, necessitating reconstruction from sevesal scattered cutcrops, paricularly through the Namba Formation. This sequence was first mapped by Leeson (1967)z who referred the conglomerate to the Telford Gravel (Firman 1963, 1964. 1966b, 1967a. 1970) and the underlying clays to the Avondale Clay (Firman 1967a). Subsequenily Callen (in Coats 1973) remapped the area during 1970-1 for the COPLEY 1:250.000, genlogical trap sheet, and the sezuence was assigned to an undifferentiated Tenliary-Quaternary unit.

Elsewhere on the eastern portion of COPLEY, green clay, now knowis to belong to the same sequence, was called Avondale Clay.

In Section ) (Fig 3) the base of the Willawortina Formation is placed at the base of the lowest conglomemte. Beds below this unit include poosly sorted sandy clays, bue with intetbedded micritic white dolomite, fine yel-low-green sand. and pale grey and olive clay, clasafy rescmbling the Namba Formation. Below these beds. resting with angular unconformity on the gently Iolded Middle Cambrian red heds is coarse sand with polished pebbies and ?ferricretc clists resembling the Eyre Formation.

Another section regarded as equivalent to the Willawortina Formation, but of overall finer grainsize, is exhibited by unit 6 of WoniLana No, 1 bore (Fig, 3, scetion 11). It shows a prominent alectation of sand and clay in fining upwards sequences, cach separated by sharp contacts. Sorting is uniformly very poor, and mattled green and brown colours common. Sccondary carbonate fodules are present, and alsn heds of lacustrine dolomitc. Toward the top of the section the fining upwands sequences become poorly defined. The top is capped by a thin dolomite bed, overtain by cohble corglomerate and sandy clay silt, representing the Eurinilla Formation and "unnamed annglomerate ${ }^{\text {ir }}$ (probably equivalent to the Millyera Fummation).

Upstheam from section 2 along Balcanoona Creck. excelcut exposures (c.g. Fig. 12) of the upper part of the sequence seen in scction If are displayed in cliffs. One of these exhitits a hiatus-limestone and conglomerate in the lower part have been faulted before deposition of the overyling silts, Subsurfacc (below soll) karst struciure is present.

## REI_ATIONSHIPS BETWEEN FORMATIONS

The rature of the contact between the Nambra ant Eyre Eormations, and difficulties associated with differentialion when both units are sandy, have boen discussed by Wopfner if at (1974). The disconformable relationship is demonstraied palymologically by W. K. Harris (pers. comm. 1974. sce section on A(iE. this paper).

The infertonguing relationship between the Willawartina and Namba Formations is illustrated by Fig, 3 (insct), ar section acrows the Pbralana High Plain, an whech Wooleana 1 bore has been superimposed. A similar section
showing the same latures can be drawn across the Balcanoona High Plain through WT3. WT5 and WTf bores (Mines Administration Ply Lid) and Wooltana I bore. The derrease in coarse clastics proceeding east from the Flinders Ratnges is demonstrated. The lower boundary of the Willawortina Formation has been drawn al the basc of the characteristic mottled, immature, poorly sorted sediments. Note the varying electric $\log$ response to similar lithological differences between bores, which results from differing drilling mud propertics and sensitivity; and in the casc of WC2 bore, different instrumentation. Holes F22-20 and E20-13 however, are not affected by these variables and are directly comparable.

In Wooltana 1 bore (scction 11 Fig. 3) intcrtonguing with the Namba Formation is exthibited by unit 6. The typical Nambs For mation lithology of sharply dificerntiated selatively belles sorted clay and silt beds grades to the extremely fo very poorly sorted coarse geaincd Willawortina Formation. The ewa units alternate to some extent. Essentially there is a gradual upward incroase in the coarser grained fraction, though an isolated pebbly bed appears low in the sequence. Clays are rich in tilice (muscovitc) and feldspar is ahumdant, compared with the bulk of the Nambia Formation where thesc mineralt are minor components and smectite the doninant clisy mineral.

Unit 6 of soction 11 is therefore interpreted as the equivalent of the lower part of the Willawortina Formation in section 10, a relationship suggested by the correlation lines drawn in Fig. 2 of Callen (1976). The criteria chosen here to identify the base uf the Willawortins Formation are those readidy mappable: the base of the consistenty cuarse-grained poorly sorted sediments. Thus unit 6 as shown on lige 3 is regarded as mainly Willawontina Formation, though it containg longues of lacustrine dolomite like those in the Nambis Furmation. The contacl is readily recognizable from petrophysical Jogs (Callen 1936 Fig- 2) and car partly be explained hy the degrec of secondary alteration (carbonate nodules, iron oxide mottling) siratigraphically associatcd with the Wiltawortina Formation. These secondary cffcets alternated with deposition, and are an integral part of the unit.

Support for the inlertanguing Ielationship between Namba and Willawortina Formation
is also derived from clay mineral analyses (Callen 1976): Resules are shown diagram. matically on the inset of Fig, 3 denonstrathing the sbrupt change from rocke dominated hy smectite and randomly intersustified clay, to illite (largely well crystallized muscovite), randomly interstratified clay and kaolinite. This change corresponds to the position of the illunile horizon within the Namba Formation, and is widespread throughout the basit, having heen located in 14 bores and in outcrop. The change was probably initiated by upliti of che Flinders Ranges, probably with climatic varigtion from high to low rainfall as indicated by clay mincrology and colour change (see later). It is therefore regarded as an approximate lime marker, and is caincident with the boundary between members 1 and 2 of the Namba Formation, and with the base of the Willa wortina Formation in its type section. The change corresponds with the base of the Willat wortian Formation identifled in WC? and Woollana 1 bore.

Alunite is recorded neas the top of member 1 of the Namba Formation, forming a serics of nodular horizons associaled with sharp bedding planes. The nodules ramify througft the ctay and resemble calcareous hardpans of soils in their raanner of development. The horizons ate widely developed in the Parklana High Plains area, but are also found in the eastern part of the hasin in Cls bore. Here, they are overlain hy a relatively thicker sequence of memher 2 than in the high plains. The horizons are regarted as soils; associated with a well developed hiatus or disconformity formed during uplifi of member 1 . This entphasizes the bime significance of the clay mineral change recorded carlicr.

Silcrete has been identified by one suthor (R.A.C.) in the interval $72-94 \mathrm{~m}$ fram cutlings of bore [B37, drilled by Mines AdminisIration Ily Itd, It is developed on clay, and ofectain by greanish-red mottied sandy calcareous clay resembling the Willawortina Fotmatian. A number of closely spaced bores berween "Murnpeowie" and Reedy Springs. drilled by Pechines Exploration (Australia) Piy 1.13 (Mannoni \& Barral 1972) ${ }^{6}$ suggests a similar relationship. The silcrete varies from the red and grey mottled chalcedonic ind opaline "puddingstane" to the grey roicrocrystalline quafta "groy billy" type, according
to whether clay or sand is silicified. This is displayed by Manmoni \& Bartal in their erosssection. and can be observed in outcrop. The same silctete horizon forms a cap to the dipping Eyte Formation at Recdy Sptuss (Woplnet et al. 1974 Fig 2). The silencte is thought to represent a soit horizon, and thersfore marks a discontormily (Cullen 1976):

Thus there is evidence supporting a disconformity helween the Namba Formation and rocks resembling the Willawortina Formation in this area. Although the silcrete has not been identifed in the high plains regions, it is apparent that the Willawortina Formation, as dedned, may contain some younger material.

The brown silerele and ferruginous material developed on sandy lacies of the Namba Formation exposcil at Lake Tarkarqolpo and around other saltpans east of Lake Frame, are thought to be equivalent to that just described, Cementation certainly occumred prior to depasition of the Millyera Formation, as indicated by abundant silcrete sodules and ferruginized Namba Formation clasts in the base of the channel facies in Lake Tarkargolon.

## AGE

The flors of member 1 of section 11 . (Fig, 3) indicatcs in early to midde Mocene age fur the base of the Namba Fiormation (Bates-fordian-Balcombian-pers, comni. W. K. Harris 1974). Harris states the florit is similar to that of the Muntso Para Clay of Lindsay \& Shepherd (1966), and Lindsay (1969, p. 38) in the Adelaide Plains Sub-Basin. An assentblage of the same age was found in Mines Adiministration Pty Lid LCIA bore (for lithological description see Wopfner of d. 1974) to the north of section 11. and also in Lake Eyre 20 bore (Johns \& Ludbronk 1963) in the Etadunna Formation.

The age af the Willawortina Fintmation, accepting a conformable relationship with the Namba Formation, is therefore medial Miocene or younger. Its upper age limit. as for the Namba Formation, is deduecd from relde tionship ta the Millyera Formation, and Eurinilla Fornation (Pt II) indicating a mimmum age in excoss of 40000 years B.P. possibly pre-Pliscenc.

[^14]| TABLE 1. SUMMARY OF ROCK UNIT PROPERTIES |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l\|} \hline \text { ROCK } \\ \text { UNIT } \\ \hline \end{array}$ | $\begin{aligned} & \text { SECTION } \\ & \text { (Fig. 3) } \end{aligned}$ | LITHOLOGY | SEDIMENTAAY STRUCTURES | $\begin{aligned} & \text { CRITERIA } \\ & \text { FOR CORRELATION } \end{aligned}$ | FOSSILS | AGE | GEOMETRY | GEOMORPHIC EXPRESSION | ASSOCIATED SOILS |
|  | 10 $(1,17)$ | Exicuncl, ho weft perity terley boskety IJ <br>  <br>  and shets of zale greensh white datom te with <br>  <br>  |  |  | Rase wettates |  |  |  Ranges, witez it 54 ppotis growith <br>  sreeks. Clits alang Fitcus Pasmerc Lake lionie. |  |
|  | 12 (II) |  <br>  <br>  <br>  <br>  <br>  |  and vif firs sum cross bedting comriun ar silts and santis itjegular ood the a carbolates, uttert rod staped, Irfrafomanauna, breckid oh, qulsh fibn structures commole. Bolurbatior common Rare shivaze <br>  prominen |  <br> 男 |  |  |  |  |  |

## REGIONAL. CORRELATION

Relationships with other units used on adjacent South Austritsan Department of Mines Geological Atlas Series map sheets (COPLEY. PARACHILNA) and in other basins, are shown jn Table 2.

Equivatence betwecn the Etadunna and Namba Formations is Uemonstrated by lithological similarity, similar flosa, and occurrence of species of fossil marsupials previondy known only from the Etadunaa Formation. Both contuin the untusual dolomite-palygorskite mineral assemblage.

A sequence penetrated duriog drilling operalions by Carpentaria Exploration Pty Jtd imncdiatcly west of the Ediacara Fault \{Binks 1932) is very similar to that encountered in Woolana. No. 1 bore (section 11. Fig. 3) in the Lake Frome ares. The soction in Binks ${ }^{\text {a }}$ Fig. 3 has becn interpseted by one of 4 s (R.A.C.) thus: 0.0 to 94.8 m ?Willawortins Formation equivalent, 94.8 to 121.0 m -unnamed beds, 121.0 to 233.2 m-Etadunna Formation equivalent, 233.210298 .7 m -kyre Formation. The sequences in the intermontane Walloway and Willochra Basins (Howchin 1909. 1913; O'Driscall 1956) are more diffi. cult to compare litholegically, but palynology (Hartis 1970)? [rom 30 m in Willochra No. 2 bure suggests mast of the sequence is equivelent to the Eyre Formation.

On the northwestern side of the Flinders Ranges is the Avondale Clay (Firman 1967a) of similar lithology and mineralogy to the green clays of the Namba Formation and Willawortina Formation, particularly whese they intertongue (unit 6, section 11, Fig. 3). The type section is affected by secondary iron oxide mottling, and the "clay" is actually a clayey fine sand, with angular shiny grains. The relationship between Avondale Clay and Eladunna Formation is unknown at the fype area: the base is not exposed, and the unit is unconformably overlain by the Telfond Gravel and "Coaglomerate at. Lyadburst" (Firman 1969), The "Conglognerate al Lyndhurst" pesembles conglomerates jn the Willsworting Formation (Fig, 12 this paper). Kaolinte is the dominant clay in the Avondale Clay type section, and is abundane in the uppet part of the Namba Formation, and the Wiltawortina Furmation.

A section of Yerila Creek in the Moolnowatana arca of the northern Flinders Ranges swas described and figured by Firman (1971, Fig. 12) 月 as Avondale Clay. Upstream from this site, a lower park of the section is exposed. connected by continuous outcrop. This exhibits micritic carbonale nodules, underlain by silty olive grey clays similar to the upper part of the section. The clay is capped by a welldeveloped hard white tine grained carbonate soif horizon, comparable to that developed on the Willnwortina Formation at Balcanonna Creck, It is ovenain by the Eurinilla Formation. The lithology is identicsil to the fransition beds between the Namba and Willawortina Formations (section 11 ; uait 4).

The Avondale Clay is regarded by Fimman as much younger than the Etadunar Formation, hence younger than the Namba Forma. tion, However, the comments above suggest it could either be part of the Eladunna Forma. tion, equivalent to the lower part of the Willawortina Formation or upper Namba Formation.

The lower part of the Telford Gravel (Firman 1967a) may be equivalent to at least past of the Willaworting Formation

## ENVIRONMENT

Consideratiors as to whether the Namba Formation sediments are marine, marginal, or non-maritte was a prime objective. The most conciusive indicators of marine infiuence are marine fossils and glauconite, hence samples were investigated for foraminifera, and any green pellets or clays were studied by x-ray diffraction. A variety of lithological types from subsurface and outcrop were examined by J. M. Lindsay who found no foraminifera، Non-marine gastropods and pelecypods (pers. comm. N. H. Ludbrook 1973-4) are present. as are non-marine ustracodes (pers. comm. K. McKenzic) and the (resh water algae Pediastrum, (pers, comm. W. K. Harris) and charophytes. All green clays proved to be תontmorillonite, and green pellets found in the castern arcas werc dolomitc, associated with non-marinc pelecypods.

Other evidence for non-marine origin is derived from the terrestrial vertebrate remains (e.g. Fig. 10). Several skeletons were found in a partly articulated state. Delicate bomes are
${ }^{2}$ Hartis, W. K. (1970) -Patynology of Loxer Terfiary sediments, Soulh Australia, M.Sc, thesis, Unjo versity of Adelaide (unpublished).
a Firman. I. B. (1971).-Regional stratigraphy of surficial deposits in the Great Alesian Basin anit Frome Embayment in South Australia. S. Sust. Dept. Mines Rept. RB 71/16.
CORRELATION CHART - OLDER UNITS

TABLE 2		CORRELATIOH CHART - OLDER UHITS			
time   UNIT	LAKE FROME AREA	SUGGESTED EQUIVALENTS - ADJACENT MAP SHEETS AND OTHER BASINS			
	CALLEN \& TEDFORD This paper	FIRMAN,   N. Western flinders Ronges	COATS el ol. COPLEY 1:250 000 map sheet	WOPFNER, 1974. Strzelecki Desert and noriheastern South Austrolia	STIRTON EI ol.,   1961 Loke Eyre
	Ferricrete	Ferruginous horizon lof Karoonda surface)			
MIOCEME To EARLY	WILLAWORTINA FORMATION	AVONDALE CIAY and "Conglomerate at Lyndhurst'			MAMPUWORDU SAND
PLEISTOCEHE	? Puddingsterie and grey billy silcrete, on ferricrete?	FERRICRETE			
MEDIAL to late miocene	NAMBA FORMATION			ALBERGA LIMESTONE	ETADUNNA FORMATION
OLIGOCENE to EARLY MIOCENE	Massive columnar 'grey billy" silcrete	SILCRETE		SILCRETE OF CORDILIO SURFACE	
MEDIAL EOCENE AND PALEOCENE	EYRE FORMATION		EYRE FORMATION		EYRE FCRMATION

S.A. Depl. of Mines
well-prescryed, and abrasion duc to transportasion in. currents virtually absent. The sediments in which they occur are fine sand, clay, and dolomitic clay. A nearshore marine environment therefore seems untenable, though a lagoonal or upper estuarine enviromment is possibie A norotharine envirosment is preferred, though presence of Cetacean remains (a platanistid dolphin) indicates a link to the sea at some stage.

More specifically, environments are (i) Micritic dolomitic carbonates with irregular oolithe, suggesting low energy shallow lake or shoreline conditions (ii) Black, laminated fossiliferous clay of Wooltana No, 1, unit 1 , suggesting a well developed lake: the fins laminae resemble varves, but have been disrupted by diagenesis and bioturbation. (iii) Sedimentary siructure $1 y$ pes, abundance of fines, and very poor to poor sorting support it Jow energy environment for the whole unit. This may explain the apparent lack of welldeveloped beach sands, which would be poorly developed and poorly sorted along a low entergy shoreline.

The environments reprexented by the cyclic sequence described earlier are in ascending order: (a) channels: small to medium scale cross-bedded fine to micdium sand (Fig 8). (b) flood plain, estuarine or lacustrine: finely laminated silt, often burrowed and with very small to small scale cross-bedding (Fig. 7), and olive clay. (c) lacustrine: patchy carbonate, oolitic dnlomite (Fig. 53 and clay (Fig. 6). (d) swamp or mud flat with occasional channets: hard, black, noutted clays with irregular fractures and sand patches (Fig. 4), interpreted as verisols. The cyclic sequences are of $1-20 \mathrm{~m}$ thickness, averaging 9 m , well-developed in most parts of the basin. except the northwest where uniform elay seclians domirate. The eyclicity suggests a deposjtional process resulting in a particular sequence of facies, but with juherent instability. Some examples applicable to the Namba Formation are (1) a delta buldding into a shallow lake or estuary (nocessarily shatlow because the cyclic sequeaces are thin), (2) repetitive transgression and regression of a shallow lake shore in response in fiuctuations in water level (3) repetitive ayulsion of a meandering stream. (4) bars associated with development and abardnoment of portions of river chansel.

The atbundant bioturbation. and its oceur. rence in medtum-scale cross-bedded coarse ctamut sands, aud basal paris ui larnitated
silt beds, is inconsistent with river thannel origin of these facies. These sainds morte likely represent ofishore lacustrine bars. Lenses of the coarser sand facies at the base of, or wibbin, the lough dark grey clays are also difficul! to explain in terms of a river and flood plain relationship: chamnels cutting across a tidal or deltaic mud-@at are more acceptable. Subsequent intensive bioturbation or sheotropic flow has partly destroyed bedding, distributing the sand in irregular patches. In the estuarine casc, the absence of any evidence for a matine influence; particularly in the microfauna, indicates deposition in the uppermost reachex of the estuary. In sequences where coarser channel sands are interbedded with non-bursowed laminated silts, the river-channel and flood-plain relationship is still applicable.

Fluviatite deposity are abundant, and fossils (e.g. Fig. 10) of squatic vertebsates (Dipnoi, Teleastei, Chelonia. Cetacen) suggests a permanent waler supply, and fossil plants 〈Notho. fagus and Pogocarpus) indicate high rainfall. The alistribution of lenses of channel sands within an essentially claycy sequence is typical of meindering sivers. Althotigh only 42 current directions were measured (mostly in the Lake Tarkarooloo area) results sugesst a southerly component of transport dircetion for the upper part of the Namba Formation, in marked contrast with the north-casterly direction of overlying units.

Dense vegetation is suggested by the palynology of the basal unit 1: the modern descendants of the species represeated typify fainforests. Abundant grasx pollen arc evidence that grassland occupied extensive areas. This rainforest was rot condinuous in the carly lacustrine phase of deposition. The relative ahundance of arboreal marsupials is the upper part of the Namba Formation indicates the presence of gallery forests along the watercourses.

Apparently at variance is the smectito dolomite-palygorskite association, frequently recorded from arid soils. playa lakes and warm hypersaline waters (c.g McLeas et ald 1972, Bentor et al. 1963. Mecster 1971. Singet et ad. 1972). At present dolomites and high-Mg calcite are forming in hot arid or scmi-arid hypersaline Jagoons (e.g. Vun der Borch 1965, Von der Borch et al. 1975. Friedman et al, 19731 thougti some magnesium-rich sediments are found in tatiludes as high as $48^{\circ} \mathrm{N}$ (Multer et ef. 1972).

Millat ( 1964 ) indicates the montmorillonite - palygorskite-sepiblite association is the sesult of offshore lacustrine or marine chemical adeposition. This took place adjacent to $n$ Iateritized land mass of low relie! and dense vegetational cover, in a subtropical or tropical climate. Scpiolite is abxent in the Lake Frome area, but this may be an affect of degree rather tham basic difference. The hypothesis as applied to the Namba Formation overcomes the diffisulty of croking evaporative conditions in a high rainfall climate.

Millot's hypothesis has been applied in a sinilar manner to the Cannozoic rocks of the Jondon Valley (Wiersma 1970). These sediments contain a remarbisbly similar sequence of clays to the Numba Formation, Particularly sclevant are Wiersma's comments regarding the origin of palygorskite ( $\mathrm{p}, 88$ ). He concleded that innensive weathering on the hinterfand under warm humid conditions swas necessary for liberation of the elements essential to the genesis of palygorskite and its associated sediments, and that evaporation in the sedimentation basin should be such annually as to provide the necessary concentration of chemical elements. He deduced that evaporation must prevsil over precipitation and fluviatile and/or marine supply of water to the basin. In many places in the present tropics evaporation can exceed annual precipitation, with resultant formation of evaporites in favousable locutions. Palygorskite was of detrital origin in the late Tertiary and Quatemary of the Jordon Valley, having been derived from Cretaceous and early Tertiary recks in which it originated by chemical sedimentation. In the Lake Fiome area do preexisting rocks rich in palygorskite were present: rather kaolinite, smectite and illite are ahundans. Palygorskite can be formed in soils (Singer \& Norrish 1934) bue only in. relalively lew proportion, thus it must have origitated Within the depositionary hasin during sedimenlation.

It is molable that Millan's (1964) ideas as applied to deposition of Namba Fortation secioments require an equivalent Miocene Jateritization on adjacent land masses. In this context Wopfner's (1974) conclusions regarding an Oligocene-Miocene "ferralitization" are of interest, Although the evidence he gives for age of the Doonbara Formation is inconclu.
sive, some udditional observation are made here. Firstly clasts identified with the Doonbara Formation (by R.H.T:) are found in the Wipajiri Formation (Stirton al al. 1967) of Macene age, Secondy the ferruminization in Lake Eyre Bote 20, doubtfulty equivalem to the Doonbara Formation, is recorded by Callen (Wopfner ed al. 1974. Fig. 17) within the lower part of the Miocene Etiduma Formation. Others have also recorded an older Testiary ferricrete (Firman 1967b). Therefore latcritization (or at least. ferruginization) could have been procerding in uplands adjacent to the basins in which the Etadusna Formation and Namba Formation sediments were being deposited.

The main carbonate hofiznts occus a few mettes above unit 1 of section 11, with its rainforest flora, and above the vertebrate zone with its indications of sessonal climate with abundant water supply. The presence of these cartonates can be explained in terms of protracted arid phases superimposed on a subtropical or warm temperate climate.

In addition the presence of detrital feldspars must be explained, particularly in view of the abmalance of plagioclase and isssociation with smectite: : The possibitity of addition of volcanic matcrial from eastern Australian must be considered, the Miocene being a period of maximum vulcanism (Sutherland et al. 1973). However, the fercentage of feldspar is not large Preliminary studies of feldspars in the Namba and Willawortina Formations suggest relative propostions of feldspar types and compositions of plagioclases are similar to an unmodified contribution from nearby Psecambrian erystalline basement rocks. On present evidence there is apparently no change in relafive abundance and type of feldspars in the illite-kaolisite rich zones of the Tertiary, in comparison with the smectite zones. This suggests abundance is not tied to smectite necurrence, as would be expected if these minerals originated from volcanic ash falls. The presence of feldspar presents a problem considering the cyidence for a humid climate. Potsibly seasonal aridity and nearby source pemitted preservation. In addition Tadd (1968) has shown plagioclase is more stable than orthoclase under conditions of restricted leuching. in a tropical climate. Thes smectite (nrontmorillonite) is unlikely to have originaterd from volcaric asils falls.

[^15]In the final analysis, the Namba Formation was thoughe to be deposited in a warm semperate to subtropical climate. The landscape had a savannah aspect, with gallery forests sound permanent rivers and lakes Periods of aridily occurred.

High average temperature, invoked to exglain the mineralogy of the Namha Fonmation, is in accordance widh marine paleotemperature measurements in southern Australia (Gill 1968) and New Zealand (Devereux 1968. Jeakins 1968) of $18-22^{\circ} \mathrm{C}$ for the Mocenc. Considered is the light of continental derift data, which suggest Australia was closer to Antartica (though alsifting rapidy norihward: Wellman et il: 1969), and data which indicate the coolligg of Aatarcticis was undenway (Hayes ef alo 1973). the tempersture can be explaited in termis of greatly expanded subtropical climatic zones during cally and niddle Miocene times.

Deposition of the Nambe Fornation in the central part of the lake Frome area was follawed by widespread ferruginization and silicification (opal, and quartz overgrowths) and development of eryptncrystalline silica nodules. particularly in the coarser Namba Formation sands, These processes were the result of widespread groundwater novements, Formation of duricrusts and related phenomena had a locus in river valleys cut into the Namia Formation, grior to deposition of the Millyem Formation.

No evidence for a major period of Oligosene to early Miocenc "ferratitization" suggested by Wopfner (1974) was found in the lake Frome area, though there is abundant evidence for late Miocene to Pliocene fertu. ginization and orthoquartaile silcrete Formatioh. This does not necessarily negate Wopfncr's climatic evidence, sance two periods of fertuginizution are prohable (Firman 1967b, 19718: Jessup \& Norris 1971). The older Tertiary ferruginization would presumably not be manifested in the Lake Frome area, where chemical and detrital deposition were procoeding.

The coarse delritus in the Willawortina Faro mation has clasts derised from Cambrian and Presambrian rocks in the Flinders Ranges. When considered in combinstion with poos sorting and abundant feldspar content, vigorous uplies of the Ranges is indicated. This was accompanied by movement on the Poontana Fauti: A similar conslusion has been drawn by Binks (1972) from evidence on the western
side of the Ranges Itonstone and sikrete pebhles from pre-Willawortina Formation (?preNumba Formation) duticrust are present. However, laterite elasts are not as abundant in the overlying Willawortina Formation as ore would expect in a sequence supposedly desived from erosion of a laterized land mass. Presumably this is becauke the Flinders Ranges were virtually noneexistent at the lime of deposition of the Namba Formation, presenting only a small area lor laterization. Alternatively. in kecping with the suggested warm-temperate to sub-lropical climate ferruginization may not have developed ath extensive faterite chasl

Deposition in an alluvial fan environment is suggested for the Willawortina Formation by the presence of extremely poor sorting (Fig. 13), numerous channels (Fig. 12) with medium scale cross-bedding, and laminated calcatcous silts (Fig. 12) with red-mothing and carboate concretions typical of lood plain deposits. Fining upwards sequences are typified in section 11, suggestiug bar deposilion. The deposits coarsen very rapilly close to the Flinders Ranges. The extremely poor sorting, coarse grain-size and matrix-supported lexture in some beds may be the product of mud-flows. The red mottling ('mammonizalion') -ind carbonate soils are similar to those described by Freytet (1971) in passeciation with alluvial deposits, and typleally form in the inactive patts of fans (Blissenkach 1954, po 185: Denny 1967, p. 1115). These features resemble modern fan deposits.

In sechions I and 10 there is a tendency for overall coarsening upwards, suggesting increasingly rapid uplift of the Flinders Ranges. The uplift deluged the former lakes and swamps of the Namba Formation with detrilus. reducing their extent. Thin dolomite lenses in the sequence (section 11, and Balcanoona Creek) represent lacuatine or playa lake phasey similar to those of the Namba Furmalion, Petrulogical investigation khows these contsiu a much higher proportion of sand imuch of it unstable mineral grains) fhan the Namba Formation carbonates.

During deposition of the Wellawortina Formation, oxidizing condifions becarte prevalent, through aceumulation of the sedimentary column above the wates table. This contrasts with the sub-water table seducing environsaent of deposition of the Namba Formation. Abundant potash feldspar and plagioclase can be attributed to rapid deposition and possibly semi-arid elimate. Presumably uplift of the

Clinders Ranges would have hat a strong effect on lacal climate, but this cannot be assessed at present.

Following deposition of the Willawortina Formation, fericrete and calcrete formation occucred, partucularly in marginal areas.

The absence of surficial cementation of coarse sediment in the type section of the Willawortina Formation and rearby outcrop, contrasts with the ubiquitous cementation in southern areas (sections 1, 11, Fig, 3). An explanation in terms of a carbonate rich source arca for groundwater or sediment, or abundance of limestone clasts in southern ajeas, docs not explain the widespread distribution of surficial carbonate cementation in rocks of various ages throughout the Flinders Ranges. Indeed, many fans in semi-arid areas through. Dut the warld are similatly cemented. Enough calcium is produced by weathering, or deposited from wind-born dust, to provide sufficjent carbonate matcrial for cementation anywhere, Thefefore in the casc of the Willawortina Formation adjacent to Mount Painter, absence of catbonate is a local phenomenon. the explanation of which is unknown.

## Pt. II-Younger CHinozoic Rock Uaits

Type and reference sections are shown in Fig, 15, and described in detail in Appendix 2. Table 1 summarizes the lithological and other propesties of the rock units dealt with in the texs.

## LITHOLOGY

MILLVERA FORMATION (Derivation: Lake Millyerax, near the mouth of Billeroo Creck. Millycra is local aboriginal word for water. Map reference: Siccus map sheet. FROME).

The name as proposed for a sequence of interbedded greenish ostracode-bearing clays. thin limestone of charophyte algal remains. and fine sfind. The sediments occur in Lake Frome or in small lakes close to its margin. The hame is also applied to a coarse crossbedded or conglometratic sand, regarded as a Ilvyiatile equivalent of the clays, where these contain inferbedded cfiatophyte limestones.

The type section at Lake Millyera (Fis. 15. section 4) is located 69.2 km on $320^{\circ} \mathrm{T}$, northwest of Low Stony Hill (map reference Telechie) on the Siccus map sheet (Air Photo ref. Dept, Linds Svy: 361, Siectrs Run 1. Photo 4460).

The sestion consists of 4.3 m of laminated green ostracout beating clay with a thit bed
( 40 cmi ) of laminated charophyte limestone near the rop, averlata by alternating clay and fine sand. An abbrcyiated description is given in Table 3.

The lype section was not Jocated at the thicker section 5 , where there is intertonguing with red beds. This svoids confusion which might arise should the red beds, which have aftinilies with certain fluviatile equivalents (c.g. the Eurinilla Formation-sae later). ic formalized is a distinct unit.

The contacl with the Namba Formatron was not exposcx, but can be observed in the supplementary section located about 2 km east (Fig. 15, section 5.68 .7 kn on $327.5^{\circ} \mathrm{T}$ northwest of Low Stony Hill-air photo reference S. Aus. Dept, of Lands Svy. 361, Siceus Run 1. Phow 4461\},

In section 5. the Millyera Formation is X. 5 m thick, cropping out below a thick exposure of Euninilla Formation. Here thin clarophyte limestone in the Millyera Forms. tion grades laterally into gypsum, often ripple marked (Fig. 16), intercalated in an essentially sandy sequence. Sometimes botryoidal struc. tures afe present on the surface of the gypsum layer similar to those found on the Hoor of Lake Fromm. Scattered very coarse polished sand grains are present on top of the gypsum, where it is in contact with the oyerlying red sand lens.

The red sand lens consists of is thin bed of bright ted-brown coarse sill. with basal granule layers impregnated with secondary gypsum, closely resembling the Eurinilia Formation zo lithology. It grades by altemation to grecnish very five sand with coarse sand, silt and clay laminae (yellowlsh grey). The greenish sand bed is fossiliferous, with numerous charophyte oogonia and stem moulds, fish verebrate and zpines, and "Coxiclla",

The contact with the Namba Formation was exposed by trenching. Orange and yellow sands of the Millyera Formation contain reworked and oxidized tough gley sandy clay clasts from the underlying Namba Formation. The Nimbit formation is mone insiurated and darkes coloured.

The top of the sequence is marked by a sirongly developed soil. also observed else. where affecting the Namba Formation. The soil has a crumbly textute, with geds of irregular shape about $0.5-2 \mathrm{~cm}$ across. A well devcloped black mangama is present, and ted-dish-to yellowish-brown jron oxide patches are developed in the clay. A similar horizon is

TABLE 3 SUMMARY OF ROCK UNIT PROPERTIES YOUNGER UNITS									
$\begin{aligned} & \text { ROCK } \\ & \text { UNIT } \end{aligned}$	$\begin{aligned} & \text { SECTION } \\ & \text { (Fig. } 15) \end{aligned}$	LTTHOLOGY	SEDIMENTARI STRUCTURES	CRITERIA   FOR CORRELATION	FOSSILS	AGE	GEOMETRY	GEOMORPHIC EXPRESSION	ASSOCIATEL SOILS
	7 $(5,2,8)$	Gand ta sily or cayey sand prory it  	Weak tit ennlal lan matur Eloce lyper Hot   (rarel					 	
	$(5,3,9\}$	         pebbles and localy denved tiblonate ard							
	4 $(5,6)$	               Med im is line trexneth tiays? sands	Fine his antial lampaltur Coys and Motane riphes ahs batriexda    cross-beddee charmal sands. Smak scafe class lamation mavy beolone	cidj). Ine sand neth Charcles toganat	Chaybs atasi molly and    lipial, atarig beodus plamest,    Bstracuiter Bivalues, list reitebrae				Masswe while groundweter ra crete tasal cores sands ex sten Rejoralis brow puetung

developed on the Millyera Formation in Seclisn 7 of Fig. 15,

The distinction between the lacustmne facies of the Millyera Formation and the superficially similat Namba Formation can he demon. strated from Lake Millyera and Lake Taro karooloo. In Lake Millyera, the north shore is formed by cliffs of Nambi Formation clay and dolomite showing no facies changes throughout the jength of the continuous outcrop. The south shore has sporadic outcrops of Millyera Formation. also unchanged along strike, iraced to the junction of Billeroo Creek and lake Tarkarooluo. These retationships suggest a disconformity between the two units. The Millyera Formation also occurs on the nonth shore of Lake Millyera at its castern end, but a covered inferval prevents direce establishment of a relationship with the nearby Namba Formafion. The contact hetween the units can he obsecred by treaching the base of the supplemenlary section 5 , where the erusional cuntath and weathered lop of the Namba Formation support in discentormity.

Similar laminated ostracodébsaring clay and gypsum laminae are found bencath the base of the gypeum dunes conslituting the islands of lake Frome. These grade down to ostracode and charophyte-hearing indurated clays, without sedimentary structures, beneath the lake bed. Fine sand interheds are preseth. These heds are equated with the Millyera Formation. but most sediment finoring Lakic Frome, though of simitar lithology, is younger and less consolidated.

Along the eastern edge of Lake Frome is a series nt eroden mound springs, exhumed hy deflation of the modern lake lloor. These are buill of sauces-shaped carbonate layers, partly algat in origin, which intertongue with the clays, These spring deposits are partly equaled With the Millyera Formation.

In Lake Tarkarootuo, redulish-brown silt and conglomerate is inter-bedded with the charophyle limetone. Proceeding south along this linear lake. the coarse facies eventually tominates, the limestones being absent. The Millyera Eormation is no langer identifable. having sfidded into an entirely fluviatile facies of contlomerate 2-3 m thick, cemented with massive white scoondary carisonate thenceforth referted is as the unnamed conglomerate" equivalent to the Millyera Formation). Section of (kige 15, 17) shows an intetmediate stage in this Cransition. Numerous well deve-
loped channels exhibiting $\pi$ tross stratification (Allen 1963) are present. exhumed on the lake floor. They ofteri contain clasts of fossil wood, Namba Formation dolomite, ferruginized Namba Formation sand, and millky givarte th the base, demonstraning ad discorto formable relationship with the Namba Formation. There is little tacies change atong the length of Lake Tarkarooloo in the Namba Formation, whereas the Millyera Formation yaries considerably, though retaining its identity as an unil.

Two charophyle limestone horizons were developed in the southern part of lake Taro karooloo, instead of one as at Lake Millyere. Since they must have once representad a horizontal lake shorelinc, and are equivalent to the borizon at lake Millyera, structural deformation (?fauling) is required to account for their relatively higher position in the landscape. Batometric levelling, tied in with South Australian Department of Lands bench marks, established the height difference (see Scations 5 and 6, Fig. 15). Comparison of the heights of equivalent Namba Furmation carbonates. between Lake Millyera and the Namba Formution reference sectiun in Lake Tarkaroolso (Fig 14) also supports downfaulting of the lakc Millyera region.

The "unnanned conglomerate" channel equivalent of the Millyera Formation can be traced throughout the area southeast: of Lake Frome. where it is invariably overlain by the Eurinilla Formation. The disconformity is difficult to detect away from low-fying areas such as lake 'rarkaroolon, where well-devetopid areenish carbonate nodules and cylindroids of a soib calcrete mark the contact, and massive white groundwater carbonate cements the conglomerales in the Miltyera and Eurinitla Formations. Elscwhere the conglomerate has a weak earthy cartbunate cement and interbedded secondary gypsum layers. interpreted as grolsadwater phenomena sather than soils. The contact with Eurinilla Formation appears gradational (e-g, units I arid 2 of the Eurinilla Fonmation in section 8. Fig. 15), and il is not possible to establish a disconformity. An additional problem in the Millyera Formation is the repetition of red sand facies resembling those of the Eurinilla Formation. This sugerests it nuy be possible to have two sed facies superimposed. The contact between unit 2 and 3 in section 8 may reprevent such a boundary \{i.e. the lower part of this section may correlate sith the Millyera Formation).


Cusrent directions were recorded from a varicty of cross-bedding typus in widely scatiened localities in the basal channel facies (both sands and conglomerates), though with a bias fowards the Lake Tarksroolon area, hut are sufficient ( 45 measurements) to record a morth en northeasterly transport direction, Conglomerates such ns those of section 8 . where no disconformity between the Eurinilla and Millycra Forntation was established, were not included in this analysis.

EURINILLA FORMATION (Derivation, Eurinilla Creek, Eurinilla map sheet CURNAMONA).

The tyer section (sectson 7. Fig, 15) is lueated at Lakc Mokot on the junction between Billeroo and Eurinilla Creeks (Air Photo Ref. -S. Aust. Depe. Lants Svy. 395, Coonarbine. Run 3, Photo No, 9637). The locality is 45.8 km on $332^{\circ}$ T trom Hilleroo Waterhole (CURNAMONA-Bilkeroo Creek), and the outcrop (Fig. 20) oceurs in an amphitheatre. formed by gullics draining into the north end of the lake. The upper tine grained facies is well developed. The complete section is described in Appendix 2. Section 7 was construeted from two outcrops 200 m apart. corrclated by following the beds allong strike.

This sequence consists of three units, separated by a weak carbonate woil horizon. The lower unit, exposed in the southern dutcrop. consists of 1.8 metres of white well sorted metium grained channel asind. It is crossbedded, and contains some verlebrate remains. clisls of underlying units, and eharophyte oogonia. The sands have features similar eo chamel sands clsewhere at or below the base of the Eurinilta Formation. An interesting feature is the presence of hiotite. suggesting nearhy crystallinc bascment outsong at the time of deposition. Unit I is overlain by the muen more widespread and typical sed. silty and sandy facies of units 2 and 3 , respectively 5.3 and 5.5 m thick. These units itre separated by a weak carbonate soil horizon. The lower is paler than the upper, and shows no evidence of bedding. It grades to clay-silt at the haxe. The upper unit has diffuse large scale crossbedding, is sandy; and orange-coloured throughout. It is capped by a well-developed fossil soil horizor with modules and cylindroid" of carbonate and some gypsum.
The sequence is overtain above the lossil soil hy a horizonally taminuted sand, similas to that at the top of Unit 2. but thish more
pronornced bimodality. Since the sail sepre. sents a disconformity, these sands are excluded from the definition, and placed in the Coonarbine Formation.

Anothes section 8 si thick (sectuan 5, Fig. 15) is situaled on a steep bluff facing north. on the southern side of Lake Millyera, close to the Millyera Formation type section 4. A deaailed description is in Appendic 2. The sandx ase paler than those of the typce and comain low angle cross-bedding at the base. The overall two-fold division (of units 3 and 3) in the type section is retained. A diffuse thin bedding dips zoward Lake Millyera. Considered with the geometry of the outcrap, the sequence is interpreted as a smali delta.

The upper part of this sequence has qubules and cylindroids of soft white carbonate and gypsum, sevesal centimetres diameter, forming scveral inter-related horizons representing a fossil suil complex. The tubules weather out as hard cylinders. The lower pant of the sequence is pattly cemented with shects of sofi white earbonate, and with pink carbonate sedules. The base is solidly cemented with gypsum, partly derived from the tissolution of gypsum lunettes frepresentod by low angle cruss-bedding).

A third reference section of 3 m thick is located at Lake Koorka* (Fig 23). a small claypan on Eurinilia Creek, close to the boundary between FROME and CURNAMONA on Etrinilla map sheet: The western edge of the pan is formed by a cliff 6 m high. where section 9 (Fig 15) was measured (Appendix 2). Here, the Eurinilla Formation is represented hy motued very pale orange and strong brown clayey sill without stratification. capped hy a massive gypsunt horizon with 0.5 cm rosettss of gypsum crystals developed in red-hrown sill and gypsum finur. It disconformably overlites the Namba Formation,

Burrowed horizons and gypsified roots are locally common in the Eurinilla Formation, though not represented it the sections da. scribed here.

The carbonate zones at the top of the Hiurinilla Formation in sections 5 and 7 are regarated as a single widerpread palecosol, They differ from the soil developed on the overlying Coonarbine Formation by having larger patches of carbonate segregation. often in several horizons, frequenty weathering nut as solid sheets or lumps. In the Arboola Claypant large sott citlcareous "biscuils" are developed. in which the odginal lamintation of the
cemented sediment is visible. This paleosol has been identified along Balcanoona and Poontana Creeks, on the west side of Lake Frome (Figs 1. 15, section 2) where it is developed in coarser grained sediments.

The Eusinilla Formation is often underlain by a coarse cross-bedded sand or conglomesate. ?'unnamed conglomerate' usually partly cemented with hard white lime. The beds are light pinkish brown, from iron-staining on sand grains. A bypical sequence including this facies occurs at Lake Pinpa reference section (section 8, Fig. 15, and Appendic 2). The basal conglomerate often contains clasts of Namba Formation diolomite or Willawortina Formation carbonate nodules. At Lake Tarkarooloo the islands on the lake finor (especially near section 6. Fig. 15, where massive carbonate cemented pink sands and conglomerates are interbedded with the charophyte limestone). demanstrate the gradation to the Millyera Fomation.

The disconformity between the Millyern and Eurinilla Formatinns is exemplified in sections 5 and 7, but is not at all obvious in section 8 , or elsewhere away from the vicinity of Lake Frome. The relationship can, however, be observed along the Pasmore River. particularly where the main Yunta to Flinders Ranges road crosses. Here, two terraces of secondary carhonate-cemented conglomerate oscus, interbedded with yellowish sands containing greenish white carbonate nodules at the top. The nodules are interpreted as a paleosol. and octur in similar yellowish sands of the Miltyera Formation in Lake Tarkaroolon. Therefore the unnamed conglomerate and associated sads are regarded as Millyera Formation equivalents.

The red brown silty Eurinilla Formation with its charactesistic soil developed at the sop, infilts a valley cut into the 'umamed' conglomerate, and associated sediments. The whole is cut into Willawortina Formation sandy clays. I ight hrown sands of the Coonarbine Fornation disconformably overlic all units at varinus levels in the landscape.

The relationships between the Eurinilla and Willawortina Formations is also exhibited in section 3 at the mouth of the Pasmore River (Fig. 15 and Appendix 2) where reldish. brown pebbly sill with a basal conglomerate (Eurinilla Formation) rests. with sharp erossonal disconformity on pale green and redbrown muttled clay (Willawortina Formstion),

On a regional scale the disconformity surface between the Eurinilla Formation and Connathine Formation is flat, but locally, jives valleys are developed.

Within Lake Frome are several inands consisting of up to 10 m thick of coarse well rounded gypsum sand with minor quartz, and interbeds of clay pellets. These exthibit the low angle crowshedding. lithology and geametry of lunettes described by Bowler elsewhere in Australia (pers. comm, 1974, J. M. Bowfer). The sands rest discnatormably on the Miltyesa Formation indurated clays, and are tentatively correlated with the Eurinills Formation. Similar lunettes flank the eastern shore of Lake Frome.

COONARBINE FORMATION (Derivation Lake Coonarbinc, Coonarbine map shect. FROME).

The sype section is lacated at Lake Moko section 7. Fig. 14 and Appendix 2), mentioned earlier. The sequence (Fig. 20), retting disconformably on the Eurinilla Formation, consists of three parts-a basal 1.0 m of a ted brown Indistinctly laminated sand, overlain by 3.3 m of light brown dune sand (two large scale cross-bed sets are represented) with a earbonate xoil borizon at the ton. This is overlain by 0.6 m of light brown sand with carbonate patches and thizondules. The laminated sand at the base of this sequence may be a distinct unit in its own right, sinee it has features different from the remainder of the Coosarbine Formation. Its disconformable relation with the Eurinilla Formation has been established.

The carbonate soil horizons are much weaker than those of the Eurinilla Formation in the same section and at section 5 (Fig, 15). The upper more promineat horizon is correlated with that at the top of section five, The Coonarbine Formation in this section cxhibits the typical blocky joint pattern, producing $5 x$ 10 cm columns of sediment (large ped struciures). Land-snail shells occur here, and ut other widely separated localitics, being characteristic of the unit, The uppermast Inyer is associated with aboriginal artifacts and emu shell fragnients. The Formation can be tracerl west to the Pasmore River (c.g section 3) where it ovetlies the Eurinilla Formation.

An impottant suppiementary section \{sestion 2, Figa 15. 21 and Appendix 2) sepresening a coarset tacies of the Coonarbite Formation of western Lake Frome is found
in Balcanoons Creek, near the natural gas pipeline (Air Photo Ref.: S. Aust. Dept. Lands Svyı 394, Apraroala Ruil 3, Phoso No, 0078). At this site the old land surface on top of the Lurinilla Formation is exposed. The averlying beds of the Coonarbine Formation consist of 1.70 metres of dark brown, sandy silt, with a hasal pebble bed, moderately poorly sorted. No bedding plancs are visible, and colurnnas ped structure is wiell-developed.

Immediately downstream the surface of the Coonarbine Formation is scattered with aboriginal artifacts, the colour is redder, and land snail shells are present. Upstrean, near Muiga Hore on "Balcamoona", the hasal pebble bed has $0.5-1 \mathrm{~m}$ thick lenses, cutting into the Eurinilla Formation. Carbonate nodules from the soils dereloped in the Eurinills Formation are eroded and incorporated into the basal Coonarbine Formation.

East of Lake Finome the fuviatile facies of the Coonarhine Formation gives way to acolian seif dunes, forming the pattly indurated cores of the modern dunes of the southern Strzelecki Desern Exposures occur along the llanks of the mocern dunes. The gypsum lunettes of the islands have a deposition break within them, the significance of which is uncertain: it is Jikely that the part above the break corresponds to the Coonarbine Forma. tion.

## RELATIONSHIPS BETWEEN FORMATIONS

The Millyera Formation rests diszonformably un the Namba Foration in Lakes Mill. yera and Tarkarooloo, hut its relationship to the Willawortina Formation is less clear. The correlation of conglamerates and sands at the Pasmore River Section with sisnilar facies at Lake Tarkaronlon has been mentioned, and suggusts the Millyeria Formation conglomerate equivalent is also disconformable on the Willa. wostinat Formation. The relationship is similar to that at the "Wertatoona" section. Further suppoty is ucrived from the presence of bright nrange to red-brown sith and sand, similar in that in the Millyera Formation of section 5. intertonguing with the conglomerate around the mouth of Balcanona Creek.

At the "Wertaloona" section (section 1. Fig. 3) the dipping sequence of Willawortins Formation is overlain with angular unton. formits by a small patch of horizontal conglomerate and yellow sand. regarded as stillyern Formation equivalent. The conglo-
merate comaing pebbles of ferruginized materinh. derived fron what was prohably a widespread surface, now exhibited as small remnants in the same valley- This rerruginization is corfelated with that beneath the Millyera Formation at Lake Tarkarooloo, and clsewhere. Deformation of the Tertisey sequence nocursed before deposition of the Millyera Formation and development of the ferruginous horizon.

The disconformity between the Eurinitli Formation and Willawntina Formation can be seen in clifis along the Pasmore River. The clearly disconformable relationship hetween the Millyera Formation and Eurinilla Formation is seen in section 3 (Fig. 15). The disconformity is less abvious for its equivalent. the "unnamed conglomerate" of lakes Tarkarooloo, Pinpa (?units 1 and 2 af section 8 , Fig. 15), and elsewhere.
Relationship between Eurinilla and Coonarbinte Formations can be easily observed (for example in sectinns $2,3,7$ and 9, Fig. 15), The Coomurbinc Formation can be frequently seen cutting into the Eusinilla Formation, and the iwo units usually have contrasting lithology. The soil carbonate at the top of the Eurinilla Formation may be completely eroded and reworked into the younger unil.

Rock relatiouships are summarized in Fig. 24.

## AGE

The Millyera. Formation has equivalents al the southern edge of Lake Callabonna. and northern end of lake frome. it cinsely resembles laminated geten clays and sands bearing Diprotodon found in the main part of Lake Callabonna. The temporal range of Diprotodon is Pliocene to fate Pleistocene. A wood eadiocarbon age of $>40 火 00$ years B.P. (Daily 1960) from shese heds has lately been contirmed by another wood radiocstbon date of $>39900$ ycars B.P. (Tedford 1973). At the mouth of Poontana Creek, on the Lake Frome -Lake Callabonma contuence. dates from shells in sands equated with the Millyerm Formation give ages of $>33400$ years H.P. and $35200 \pm 1200$ years B.P. (GaK-4049. Gsk-4948). This shell material has been affected by younger pedogenesis. converting them to calcite (astuming the shells wese originally all aragonite as are most non-marine alolluses). Therefore the dates are minimat, and the Millyera Formation has an age in excess of 34200 years B. Pi, prohably $>\$ 1000$
sears B.P. Similar shell beds in a similar stratigraphic sequence were accorded at Lake Eyre, and gave a date of $39200=1300$ years B.P (Johns \& Ludirook 1963),

The Eurinilia Formation contains jate Peislocene veriejrate fossils, somewhat different in generic composition to thase al Lake Callahonna. The fauna occurs in channels at the base of the umit, along Billeruu Cotek east of Lake P'inpas

The overiying Coonarbine Formation is probbably late Pleistocenc or early Recent.

## regional correlation

Equivalents of Millyera Formation are lithe known at present, though the sequence dcseribed innucdiaty above the Eiadunna Formation in the Madigan Gulf region of Take Eyre North is apparcatly very similar (King 1956, Ludbrook 1956. Johns. E Ludhronk 1963). The lithological similarity between the fossiliferous grecrish sands conLaining Coxiella gilesi in Madigan's Gutf, and those in the Millyera Formation of section 5 (Fig. 15) is marked. All these beds are close to or beyond the limits of radiocarbon dating, but the closely: comparable miero-Fauna (ineludiug Elphidium spp. Ammonia becoariz. Nonion sp: jets, comm, 1, M. Lindsay 1974), charophytes and molluses tend to support correlation. The Lake Eyre sequence rests on the Etadunna Formatiun, attd is nvertain by pocks resembling the Tirari Formation.
'The Eurinilla Formation closely resembles the Tirari Formation of the Lake Eyre Basin, in lithology, stratigaphic position and topographic expression. Vertebrate faunas in basal Eurinilla formation channcls indicate equiva bence with the youngest Kistapiri Sand (Stirton et al. 1961) of the same basin.

Other possible equivalents are indicated in Table 4. The Pooraka Formation (Firman 1966a) suppasedly resis un Telford Gravel ( $\mathbf{T}$ irman 1963) on the west side of the Flinders Ranges, and is overlain by the Lake Tortens Formation (Williams \& Polach 1971). The unsamed conglonserate equivalent of the Millyera Formation lithologically resembles the Telford Gravel at Telford open cut, 1eigh Creck. The Eurinilla Formation, lithologically nesembling the Lake Torrens Formation, overlies the Millyera Formation, and is in tum overlain by the Coonarhine Formation. The later is similar to the Thomsun Creek Formation of Willians \& Pelach. There also are
similarities in the calcateous sail horizons of each, in the same geomerphic situation.

The Pooraka Formation, Telford Gravel and "unasmed conglomerate" of Lake Erome area are probably equivalents. It has been suggested by Firman (1971) 4 that the Telford Gravel is equivalent to the whule of the Tirari Formadion (Eutinilla Formation correlative), but this cannot bo the case in the Lake Frome area. The youngest probable cquivalents here are the conglomerate at the base of the surinilla Formation, and the most likely correlative the "unnamed conglumatatc" equivalent of the Millyera Formation.

The unit mapned as Pooraka Formation on COPLEY (Coats 1973) is Comarbine Formation. During mapping COPLEY, Callen \& Williams (in Coas 1973) recognized a unit of teddish brown sand and cobtics which covered most of the surface of the high leved plains llanking the cistern Flisders Ranges, The unit was later named the Arrowie Forma. tion by Coats (1973): subsequently mapping for FROME has shown it is probably prartly equivalemt to the Coonatbine Formation. The two units both contain land snail shells, and appear to grade laterally into one another at the break in slope at the base of fow hills south of "Wertaloona," However. Coats secms to include some younger and older gravels in his definition, with ?discontormable relationships.

## ENVIRONMENT

The Millyera Formation constitutes three facies groups: the most typical and widespread are the laminated ostracode clay and charophyte limestones (tig- | 8 ), with associated charophyte oogoniabearigg fine sand. Fine lamination. osiracodes. and distribution of sediment, indicate they are undoubtedly of lacustrine origin, The fine sands are well rounded and smooth and may therefore the aenlian, baving been blown into the lake, or cartied by floods. Drying of the lake is indicated by the charophyte limestone and equivalent gypsum lamellas (Figs 16. 18; cf. Recves 1968, p. 57, 58). Similar modern calcareous algal deporits (Fig. 19), grading to rippled gypsum crusts, are present in Lake Kuturns. Waves acting on the very shallow water hodies break up the filaments and orient them in enetcent like ripples, sometimes resembling the oriented struclurat in their fossil equivalents. The gypsum laminac may have hotryoidal surfaces that are seminiseent of simitar forms

on the xurface of modern Lake frome, proiluced by crystallization pressure hacliling the surficial crusts.

The second facies group is the channel facies (Fig 17), of conglometale/sant which exhibits features of meandering streans of large size containing bed-forms of slightly crescentshaped aqueous duncs. The strcams carried pebbles from the Olary Kanges, and eroded valleys into the Namba Forsuation. These Uepnsits ate lateral equivalents of the "unnamed conglomerate" which is so extensive along the Siccus-Pasmore River System.

The third facies group-are the greenish fossiliferous santls, which (Section 5, Fig, 15) dre cross-hedded on at amall to medium skale, and contain shell heds and fish vertebratc. Similar shells are also abundane in a natrow zone slong Billemo Creck beturen Lakes Kuturu ind Tarkarooloo. Thase sleposits ato interpreted is shorcline facies of the Pleistocenc Lake Frome.

These sediments, and equivalents ant the northern end of lake Frome, contain the foraminifural assemblage mentioncu warlies (p. 147). Similar spectes were also recorded by Ludbrook (Ker 1966. p. 94) in equivalent strati in Mckenzic Bore, 7.5 km suulh south. cast of section 5 , The presence of several species of roraminifera over a wide ares in the same scdiments can be explained in terms of Ludrook's (1965) hypolhesis of iransport to salt lakes an the feet of seabirds, with subsequent survival for a periud. The species
present are mostly Roblilina whth a wide salinity tolerance, and diversity is low. Such a situation is typical of inland saline lakes (Resig 1974), where foraminifera have been intro. duced by some dispersal mechanism from coastal areas. Specics such as Ammonin beccarii are common in these environments. Although the assemblages found at Lake Eyre and Lake frome are considerably difterent in content from those listed in Table 4 of Resig's paper (e.g. Nonion spp. are not secorded, though common at Lakes Frome and Eyre) this does not detract from the tlispersal hypo. thesis because each locality cited in her paper has high endemism. The Coorong area contains it similats assemblage (pers. camm. J. M. Lindsay 1975), though its low diversity is probably the result of high salintity, even though it has a connection with the sea.

Another explanation is that there was a distant connection to the sea, implying a high sea level during the Pleistocenc prior to 40000 years B.P.

The setrital component of the lacustrine Millycs Formstion sediments were hrought 10 the ancestral Luke Frome by large braided streams with it pebble bed load ("unnamed conglumerate") approximately following the channels of present day watercourses such as the Pasmore-Siccus. River system, and the Lake Tarkaroulóo- B illeroo Creek system. They were much more extensive thatr theit modern counterparts. The clasts indicate provenanos similar to the modern streams. in the Olars

Figs 16-19. Younger Unils. Structunes in Millyera Formation.
Fiz, 16, Millycra Formalion. Laminated tapple-marked sypsurn and clay (Fig. 15, section 5). Scale 30 cm.

Fig 17. Plan view of cross-stratified channel sand in Millyera Formation channel facies. bed of Lak Tarkucovloo mear Section 6. Fig, 15, Approximates Pi cross-statification. Current direction (arrowed) is to north. Hammer handle 25 cm long Laminae emphasized by iuking.
Fig. 18. Algal tuhules showing tough onentation. Same locality as Fig. 22. Scale in cm.
Fig. 19. Modern culcarous chatophyte algal tilaments, Lake Kuturu, showing crude orientation. Thin crust of gypsum ( $G$ ) in upper central part of photogroph.
Fies 2n-23. Outcrop.
Fig. 20. Ufper nart of section 7. Fig. 15, showing dune sand facies of Coonarbine Formation itwo ufper henches), hasal laminated sand sbench fust above contack), and upper part of Furimilla: Futmation with calcareous paleosol (juse below contact).
Fig. 21. Section 2 , Fig. 15, Columnat-structured sand of Coonarbine Formation overlying Emrinillit Formation. Surface in foreground shows carbonate patches of paleosol, and represents the nreConnarbine Formation Tund surface slightly modified by present crosion. Scale 30 cm .
Fia. 22. Coonasbine Formution sand with columnar jointing, overlying Millyera Formation which in tum overlies Nanba Formation. Millyera Formation shows npper algal dimestones und lower massive sandy limestonc (prominent benches) with interventing clayey sand. Lake Tarkarooloc, near Conombes Bure- Sualo 30 cm .
Tig. 23. Section 9. Fig: 15 (lower parth. Coonarbine formation, disconformably oveslying Eurinillas Furmation which has its upper stufice cemented with secondary gypsum (promistent betheh). Black Llay of Namba Fotmation at base ( 30 kn scale crosses contuct).


Haver wive


$\begin{array}{lllll}17 & \text { In } & 21 & 22 & 23\end{array}$
18



Ranges and southern Flinders Ranges. Large straight-crested aqueous dunes typified the streams with coarse sandy and pebbly bed loads, whereas crescentic dunes characterized the streams with a finer sand-bed load. The eastern shore of Lake Frome was estimated to be about 10 km further cast tham at present.

The Eurinilla Formation contains channel deposits, exemplified by coarse sand with parting lincation and cross-bedding, in troughs and point bar deposits along Billcroo Creek. The moandering form nit these channels can sometimes be seen on aerial photographs. The pebbles have sources in the Flinders Ranges or Olary Ranges, or have been croded from the underlying Tertiary units. Flond-plain deposits are represented by the fincr facies. which is sometimes laminated, The initially fluviatile phase (basal coarse grained sands) gave way to a more complex environment with finer flluviatile deposils and large scate crossbedded acolian deposits, including huge gypsum lonettes slong the south western shore and on the islands. Sonse possible loess (minssive sill and very fine sands) is preseat. These sediments transeressed over the older lake deposits of the Millyera Formation. The ancient Lake Frome therefore decreased in size in medial Pleistocene times, being somewhat smaller tham at presenl.

The platins of this essentially fluviatile environment were inhabited by large marsupials (Diprotodon sp., Procoptodon golluh, Sthemurus sp. and Macropus sp.) Rivers followed
approximately the same coarses as the present day drainage. The distribution of lunettes indicates a dominamt wind direction from the west and a strong westerly component still characterizes this icgion.

The overlying Coonarbine Formation in sludes liuviatile braided stream environments west of Lake Frome, and dominantly acolian cast of the lake. The Huviatile sediments have less defined channels than the Eurinilla Formahon, pebble sheets being more common. East of Lake Frome longitudiaal duncs were developed, and another minor phase of gypsum luncttes built up along the lake shore. Land smails probably lived around water holes.

## Conclusions

The new rock units in the Lake Frome area record a history of intermittent. deposition through Miocene to late Pleistocene-Rceent times. During this interval the extensive rivers, lakus and possibly estuarine environments of the Mocene Namba Formation drained areas nf low relief in a climate of high rainfall, and of higher annual temperature than the same latitude today, At times, seasonal dry periods became a part of the weather pattern. A connection with the sea was established at some stage, probably to the Murray Basin. Some confficting elimatic evidence is partly resolved by apmlyig the continental lessivage hypothesis (Millot 1964, as modified by Wiersma 1970) in relation to the wnectite-dolomitepalygorskite mineral suitc. Thus warm tem-


Wig, 24. Luinazoic rock stratipraphic relntionshins, lank Finame.
perate to subtropical conditions prevailed, with savannah landscape, and gallery forests around the large permanent streams and lakes.

Uplift of the Flinders Ranges sceurred at the eariest during late Miocene times, continued through the Pliocene jatermittently into the Quaternary, and is still procceding at present. Prior to this, at least during the Cainozoic, the Flinders Ranges were virtually non-existent. The sediments deposited during the Pliocene-early Pleistocene Epochs recond the change from the earlier Miosene palaeogeography to the very different landscape appraximating that of the present. Lakes and swamps during Tertiary times disappeared during the Pleistocene, as tectonism and climatic change altered the depositional regime. Drainage scsembled that of the present during the late Pleistocene, indicating the basin wass approaching its present configuration.

The Millyera Formation findicates active deposition on a playa lake somewhat larger than the present The changing chatacier of the sediments from Millyera to Coonarbine Formation suggests overall increasing aridity, probably seasonally distributed during Eurinilla Formation tires, as exemplified by the formation of the gypsum lunettes. Marked climatic Jucluations were supesposed on this overall climatic uend. Uplift of the ranges continued,
alternating with periods of stability during which soils developed.

Rock relationships are summsrized in Fig. 24.

## Acknowledgntents

This paper is published with the permission of the Director of Mines. South Australis Drafting and typing facilities were provided by the South Australian Department of Mines. Participation of R.H.T. was supported by National Science Foundation Grant GB. 18273X.

The authors also wish to acknowledge discussion and helplul criticism by Mestrs J. B. Firman, W. K. Harris and I. M. Lindsay of the South Australian Department of Mines, and by Dr B. Daily of the University of Adelaide. The project was initiated by Mr B. P. Thonson of the Souh Australian Depart ment of Mines.

Radiocarbon dates were supplied by: K. Kigoshì Gakushuin University, Tokyo.

The following companies provided core material and cuttings: Mines Administration Pty Lid, and Mr d. Andrus of Western Nuclear Aust. Pty Ltd is especially thanked for arrang. ing WC2 bore to be donated for use as a type section.

The skiltul drafting of Mr Bruce. Thomas of the South Ausualian Department of Mines is. acknowledged.

## References

Aleen J. R. L. (1963), -The classitication of cross-stratified units, with notes on their origin. Sedimentol. 2, 93-114.
Bentor, Y, K.. Bodenhelmer. W, \& Helier, J, (1963):-CLay minerals in Negev sediments. J. sedin, Petrol. 33, 874903.

Binks. P. J. (1972),-Late Cainozoic uplift of the Ediacara Range, South Australist Prece Altstratas. Inst. Min. Metull. 243 (Sep. 1972) 47. 55.

BLISSENBACH, E, (7954),-Geology of alluvial lans in semi-arid resions. Bull. yeol. Soc. Am, 65, 175.190.
Brewer, R. 1964),-"Fabric and Mineral Analysis of Soils." (Wiley: New York, Jondon, Sydney) $\$ 70$ pp.
Brown, H, Y. I. (1884).-Report of the Government Geologist, Parl. Pap, S: Aush, 35, 1-20.
Chllev, R. A. (1975),-EROME geological sheet SH54-10. Geal. Atlas Sèr geol Sirrl. S. Allist.

Calien. K. A. (1976),-Lake Frome arearegional gcology, Tertiary Stratigsaphy anu uranium localization. In Ḱnight. C. L (Ed.), "Econonic Geology of Australia and Papua New Guinea", Vol. I Melals, Monogr. Australus. /ust, Mbn Met, 803-808.

Coats R P (1973)-CDPLEY map sheet. Explanatory Notes 1:250000 Geol. Atlas Series, Sheet SH54- G. Geol. Sterv. S. Aust. Adelaide).
Daly, B, (1956) -The Cambrlan in Suuth Aus tratia, Proc. 20 sh inf. gent. Cong. (Mexico) 2, प1-142.
Daily, B. (1960).-Repart of the Curator of Fossils and Minerals. Reps S. Aus\%. Mfkr. Baard 1958/59, p. 12 (Aclelaide).
Denny. C.S. (1967) -Fans and pediments. Alm, J.Sch. 265, 81-105.

Devereux, 1. (1968)--Oxygen isotope paleotemperatures from the Tertiary of New Zealand. Inalara 16(1), 41 -44.
Fokman. 1. B. (1963)-Quaternary geological everits near Swan Reach in the Mursay Basin, South Australia Quert, Geof. Noreis, heol. Sutvo S. Aust. 5.
Firman, J. B. (1964). The Baknta Soil and other siratigraphic uniss of the late Caithozole Age in the Murray Basin. South fustratia, Quart. geol. Notés, geol. Surs. S, Ahsp. 10, $2 \cdot 5$.
Fiaman, B. D, (1966a).-Stratigraphic units oi Late Cainozoif Age in the Adelaide Plaits. Basin. Suth Ausitalia, Quart geol. Notes. grod. Sutv. S. Aust. 17, 68.

FiJRMAN, J, B, (1966b),-Straligrapiny of the Clowilts alea In the Murray Rasin, Quary. geol. Notes, geol. Suri. S. Aust. 20, 3-7.
Firman, B. $(1967$ ) -Tate Cainozoic stratisraphic units, Quaro geol. Notes, seol, Surv. S. Alusi. 22, 4-8.

Fiksan, 1. B. (1967b).-Stsatigraphy of Late Cainozoic deposits in Sxuth Australia. Trans. R. Soc. S. Auss. 91, 165-178.

Firman, S. B. (1969):-The Quaternary Petiod: In Parkin, L. W "Handbook of South Australian Geology"- (Gove Printer: Adelaido).
FIRMAN, 3. B, ( 1970 ), -l.ate Cainoznic stmatigraphic units in the Great Artesian Basin, Souh Australia, Qwart, geal. Notes. geal, Surv. S. Aust. 36, J-4.
Folk, R L. Antatews, P, \& \& Lswis; D. W. (1970) - Detrital sedimentary pock chissification and nomenclature for use in New LeaJand, N.Z. A, Geol, Geophys. 13, 937-968.
Frevtet; P. (1971)_Paleosols residuels et paleosols alluviaux hydromorphes dans le Crelace superiour el l'Eocene basal en Langueduc. Revue Geogro phys. Geol. uyn. 2. 245-288.
Freidman, G. M. Amiel, A. J.7 Briun. M. \& Miller, D. S. (1973),-Generation of carbonate particles and laminites in algal matsexample from sea-marginal hypersaline pool, Gulf of Agaba, Red Sea, Bull. Am. Ass. Perrol. Geol. 57. 541-55?.
Gux. E. D. (1968), - Onyen isotope palaeotempersture determinations from Victoria. Aus. Tralia, Twatari 16(1), 56-61.
Hayes, E, \& Frakes, 1. A. (1973)-Lep 28, deep-sea drilling in the southern ocean. Ceo dimes 18, 19-24.
Howchrn W. (1909),-Description of ant old lake dres In Pekint Creek and its retation to Recent geological changes. Trans. R. Sor: S. sust, 33, 253-261.
HowChin. W. (1913). -The evolution of the physiographical features of South sustralia In Acestralasian Assoc. Adv: Sci. 14, p. 168: Hall, T, S, (Ed).
Jsck, R. 2. (1930).-Cological structure and other factors in relation to undergrownd water supply in portions of South Australia: Bull. seon. Stery S. Aust. 14.
3ENKNS. $D$. $G_{1}$ (1968).-Planktonic foramini. ferida as indicators of New Zealsod Tertiary paleotemperaturex. Tatara 1f(1). 32-3?.
JESSUP, R. W. \& NorRis, R. M. (1971).-Camozoie stratigrophy of the Lake Eyre Basin and part of the arid region Jying to the sothth. . geom. Sor. Auss. 18, 303-333.
Joins. R. K. \& Luderouk, N. H. (1963).-Invesligation of Lake Eyre Patts 1 and II. Repf. fhrpisfo gen?. Surv. S. Aurp. 25 .
KENNY. E. J. (1934),-Darling district-a peological reconnaissance with special reference io the resonrces of subsurface water. Minaral Resnur. N.S.W. 36.
KER, D. S (1966) -The hydmlagy of the Frome Enbayment in Scuts Australia: Repp. Soucsio. gtol. Surs., S. Tens. 27.
Kiva. D. (1956). -The Quaternary siratigraphic tecond at Lake Eyre North and the evolution of existing ronoeraphle forms. Tprith. R. Sác. 5. Aust. 79, 43.103.

Krinsley, D. B. Woo, C. C. Stoertz: G. E (1968)-Genlogic characteristics seven Ausrraliar Playas: in Neal, J. T. (Ed.), "Playa sutfuce morphology; misoellameous investigations" USS Air Force Cambridge res. Lab. Exyiror. Res_ Pap, 283, 59-103.
I.jnnsar, J, M. (1969), Cainozoic Fosaminifers and stratigraphy of the Adelaido Pains Suts basio. South Australia, Bull geol. Surti. S. Aust. 42.
Linusar, 1. M. \& Siciparb, R. G. (1966):Munno Para Clay Menter, Quarf. seol Nutes gcol. Survi. S. Aust. 19, 7-11.
Ludbrcok, N. H. (1956),-Microforsits from Pleistocene to Recent deposits, Lake Eyte. South Austialia Truns. R. Soe S. Alust. 79, 37-45.
T.nonrcook, N. H. (1965):-Occurience of forsminifers in sall Jakes. Quart, geol, Notes. geol Surn. S. Aass. 14, 6-7.
MLLEAN. S. A. Allen, B. L. \& Craic. I. R. (1972), -The occurnence of sepiolite and attapulgite on the southesn higit plains. Clays Clay Miner. 20. 143-149.
MeEster, ${ }^{\circ}$. DE (1971),-Hichly cateareous lacu strine soils in the Great Konya Dasin. Turkey Yerst. lurdbounik. Onderı (Ágr. Repl) 752.
Mis.ot, G. (1964)-Trans. Farrant, W. R, \& PaQuet, H. (1970)-"Geology of Clays". (Springer-Verlag; New York Heidelbere, Geslin, Paris: Chapman \& Hall: London.)
Mulaer, G. Jron, Ci \& Forstner, U. (1972)Formation and diagencsis of inorganic CL-Mg carbonates in the lacustrine environment. Namprissenschalter 59, 158-164.
Muzat, J. W, (1968).-Liviog foraminifera of lagoons and estuaries. Micropalemmblony 14, 435-455.
D'Driscoll, E, P. D. (1956),-The bydiology of the Wiltochra Basin. Repl Inverto meol. Surv. Si Aus. 7, 58 рр.
Reeves, C. C. (1968) --Introduction to Paleolimnology". Developments in Sedimentology 11 Elsevier: Amsterdam, Lonion, New York).
Resig, J. M. (1974).-Recent formminifera front a landlocked Hawaian lake. S. Fonamimer. Res. 4. 47.60.
Sm-wy, A. R. C. ( 1860 ),-Geological notes an a journey in South sustralia from Cape Jervis to Mi Scrlc. Parl. Pap. S. Aust. 20.
Siniokr, A. EPAl, M. Banin, A. (1972)-Clay minerals in recent sedincats of Lake Kinneret (Tiberias), Israel. Sedimens. Geol, 8. $289-308$.
Sinete, A. \& Norutsh, H. K. (1974),-Pedogenic palygorskite occurrences in Australia. Ahm. Miner. 59, 508-517.
Stirton, R. A., Tevrohd, R. H. \& Mileza, A, H, (1961)-Cenozoic suaticraplyy atod vestehrate palazontalogy of the Tirari Desert, South Australia, Rec. S, Assi. Nus. 14, 19 61.

Stimton, R. A. Tedrord. R. H. \& Woodalinme. M. O. (1967) - 1 new Tertiary Formation and fauna from the Tirati Desert, South Austexlia, Rece. S. Abst, Mus. 20, 85.93.

SUTherland. F. [.. Grfen, D. C. \& Wyatt. B. W. (1973),-Age of the Gireat lake Basales Terosania, in relation to Australian Cainozoic volcanism. \& keel. Soc. Absh. 20. 85.93.

Tedfold, R H. (1973), - The Diprosodons of Lake Callaboma. Aust. Nat. Hist. 17. 349354.

Tosi, D. H. (1968)--Paleeoclimatology and the relative stability of feldspar minerals under atmospheris condition. J. sedim. Petrol. 38. 832.844.
var DER BORCH, C. C. (1465) -The distribution and preliminary geochemistry of modern carbonate sediments of the Conrons area, South Australia Geochim. Carmochim. Acke 29. 781-799.
von Der borch, C. C., Lock, D. E., \& Sahwenet, D. (1975), - Croundwater formation of dolo mite in the Coorong region of South Australin. Gedogy 3. 283-285.

Wellman, Pa Mcelimnny, N. W.- \& McDolailt. t. (1969)-On the Polampunder path for Australla durine the Cenozoic Geophys. J.R. asir. Siot. 19, 371-395.
Wifzema, J. (1970).-Hrovenarce, genesis and palcogeographical implications of microminerals occurring in sedimentary rocks of the Jordan Valley area. Pu-Fys. Geogr. Bo. Univ. Amsterdam 15.
Williams, G. Ep, \& Polath, H, A. (1971) Radiocarbon thating of and zone calcareouk paleasols. Bull. geal, इoc. Am, 82, 3069-3086.
Wopfner, H. (1974),-Post-Pocene Hisiory and stratigraphy of nonheasest Sauth Atsiralia. Trans: R. Soc. S. Aust 98, 1:12.
Woprnir, H., CAllen. R. A., \& Hakbis, Wo K. (1974),-Lower Tertiary Eyre Formation of the southwestern Great Attesisth Basin. $J$. seol. Soc. Ause 21. 17-52.

## Appendix <br> OLDER CAINOZOIC UNTS

Fig. 3. sections 1, 10, 11 12, Fig 14, section 13

## NAMBA HORMATION TYPE SECTION

## SADM Yolkalpo No. 1 Straligraphic Borc. Fis. 3 Section 12

COONARBINE FORMATION
2.00. SAND. medium graines, strong reldisth hrown (2.5YR4/6). Subrouaded grains. Rec. cangulat juint pattern and carbanate cylindroids in upper part.

- Disconformity -


## NAMBA FORMATION

Unit 18. 1.40 CLAY, slightly silty, with scatered gypsum spols. Light grey (N.t) with moderate yel. 3.40 lowish artoge ( 10 YR5/6) patches, Sharp upper contact.

Unit 17. 1.35. Interbedded SAND and CLAY overlain by SILT. Sand is very fine grained, laminated
4.75 and small scale cross laminated, as are the silt beds at the top of the unit. Lower beds have structure destroyed by secondary gypsilication. Contacts between sand and clay beds are sharp and flat. Sand-filled shrinkage cracks extend down from the wavy irregular upper contact.
Unir 16. 6.45. SILTY CIAY. Poorly sorted, diffusely laminated. Two silt beds with gradational to sharp contacts near the top. lower 1 m burrowed and bioturbated with wavy irregular upper bedding plane separating it from the remainder of the sequence. Irregular shiny fracture planes (crumbly texture) and gypsum nodules develoned in upper part. Light to moderate olive grey ( $5 Y 4 / 2-5 Y 5 / 1.5-5 Y 6 / 1$ ). Mottled black and yellow ( $5 Y 4 / 0.5$ ) in lower silt. 0.60. No recovery.
0.20. As before. Shrinkage cracks filled with sand extend down from upper unit-wavy irregular contach Light olive grey ( $5 \mathrm{Y} 5 / 2$ ) .
Unit 15. 0120. Sil.T, Laminated, very fine cross-laminated, burnowed in parl Very pale yellowish grey
1220 (N1 is $5 Y 4 / 1$ ), Upper contact sharp and hat, burrowed.
Unit it 3.00 SILTY CLAY. Intraformationally brectiated. Bursowed and biolurbated in lower half,
$[5.20$ upper half with angular clay clasts and slump structures. Upper contact sharp. flat.
Unit 13. 1.70. CLAX SILT and CLAY. Pourly sorted. Clay beds near centre. Hurrowed at top, intra.
17.30 formational brecciation common. Pale to light olive clay ( $10 \mathrm{Y} 6 / 2$ to $6 / 4$ ), silt pale giey to pale yellowish grey ( 5 Y8/1 to N7), Upper contact sharp and flat.
040 . SAND and SILT, interbedded, weakly laminated, wavy shatp contacts between interbeds. Sand is very firte, very angular (quartz crystal faces-overgrowths on rounded graits. contacts between overgrowth and griut visible).
Unit 12. 1.05. No recovery.
$19.59 \quad$ 1.24. SAND, grading up to CLAY SII, T and SILT. Sand has sinsil-scale cross lamination with heavy mineral laminate.
Unit 11. D.OS. CI.AY, black as below. Contaci with overlying bed sham and flat.
21.52 1.13. No recovery.

Unir 10. 0.20. SIr ir and CL AY, intertaminated. flame strucures on contacts. Light olive grey (Clay
$26.825 \mathrm{Y} 6 / \mathrm{b}$. Silt N9). Contact with unil 11 shatp and flat.
2.30. SlLT. lower hed laminated and cross-bedded, with scallered burrows.
result of bioturbation und extersive burrnwing. Upper contact wavy and inregular.
n. 30. CLAK, laminated, colour NO, 4 Y4/2. With CHELONIA scute at 24.21 m . 1pper conlace sharp, with flame structures.
1.40. SAND, fine grained in Iower $1 / 5$ grading up to laminated and burrowed light grey (N5) SILT. Sand grains smooth and shiny, angular, some well rounded and frosted, many with crystht faces and re-entrants. Upper contact wavy and irregular. Grading down to
1.10. SiLi, lamintad and small scale cras-bedded, with sidatered burtows.

Unit 9. 3.20. CI.AX, black (N1) molted light olive brown ( $5 \times 5 / 6$ ), with sand patches and ather fes.
fures is before, Contact with sand lower in unit gradational. Large sand grains in the parches ate polished, rounded to well rounded, smaller grains being angular to subangular with overgrowths (?). Some of the larger geains show rounded crystal forms.
0.35, No recovery,
3.60. SAND, as below. Cialcite patches and very coarse inica common. Polymodal, puarly sorted overalt. Small sizes nngular, coarse are tounded, some doubly terminated crystals. Interbedded light grey (N7) clay in centre of unit. Becoming well sorted and fine grained at top with mixed woll rounded and angular grains. Obscure snati seale cross bedding and Jamination, 0.60 . No recovery.

0 95. SAND. Coarse to medium grained, slighty calcareous Large grains polished, others with :iystal faces (overgrowths?) which givo stepped shoy surtaces Many grains shuw origust elongate quarte prism shape.
U.70. Alternating SAND and CLAY. Sand very fine grained with small scale tiough eross-
$36: 22$ lamination. Clay alive 10 medium grey ( 5 Y5/0.5).
Unit 7- 0.30. Clay as below. Sharp wavy upper cantact.
39.22 1.25. No recavery.
1.45, Alternating SAND.CLAY fining upwards sequences, Several thin beds, beginnine with very fine grained sand al base. Sharp llat contacts, eradme to black: \{NZ, 5YR2il) clay with orange hrown specks and sand patches in top 20 cm .
Unit 6 0.9.4. SANDY SLLT. grading up to CLAY. Hlach (N2) clay ats fur unit 5 , with fine sand patches, $1 / 3$ of sequenoz Sharp wavy upper contact. 0.58 . No recovery.
0.05. SIIT will slumn structures.

Unit 5. 6.5.5 SAND. SIT.T and CI.AY alternating in lower 1/3, grading to CI.AY at top. J.thology as
47.44 for unit 4 . Obscuicly lanhinated in lowet part, lenticular bedding. Light olive grey (5Y6/1) with oxidised Jrown patches (IOYREif) Cilcareous at transition ( 25 cm ) to dark day. Sand distributed in verteal sireaks and patches through the dark olive clay (5Y5/1). Ireegular wavy upper contact.
Unit 4. 3.30 . SiLT, grading up to CLAY. Lower $1 / 3$ laminated silty and clay with very-small to small 30.84 \$ale cross hedding at hase, some huprows. Irate yellowish grey ( $5 Y 9 / 1$ ) and pale slive (10Y6/2). Grades ramdly into siandy clay with verically oriented structure and lime streaks. yellowish grey to pale olive ( $5 \mathrm{Y} 7 / 2$ to $9 \mathrm{Y} 8 / 2$ ). This grades to lough black (N1) clay with yrange brown dendricie motting and patches of fine sand. A thin biown band of lion oxides is present. Upper contath wayy irregular.
Unit. 3. 1.20. SAND, grading to CNICAKHOUS Cl.AY. Lower 40 cm very fine grainced, Inosely
52.04 ccmenicd by quartz overgtowths (originat grains roundeal) calcoreous at bay. Heavy mincrals 1\%, Dusky yellow ( 5 Y4/I). Clay is olive grey ( $5 \mathrm{Y} 4,1$ ) and has white vertically oriented streaks and streets of carbonate. Contact with everlying unir is sharp and wavy.
1Jnil2 1.94. Na secovery:
56.60 (1,22. SAND, very finc grained as for base unit. C.mntact with underiying clay irregular. with mixing.
$1 \mathrm{1O}$. El NY, as for hase unit 1 , silty top, with moderate yellow green alay pathes which betome dull on exporute (7GY4/1, 5Y5/2, 5Y4/2). Obscure lamination.
1,00. No recovery.
0.20. SAND, very fine grained, scatcted medinm, malished grains. Opaques combon. Some patches moderate yellow green slay (70Y4 $1-5 Y 4 / 2\}$.
Unit 1. 120. ClAY, waxy lusire min curyed irregular fracturer. Rase angular white carbonate lumpor and streahs. Olive grey (5Y5/2).

## NAMBA FORMATION

Supplementary Sectiun Outcrup, West Sude Lake 'Takarooloo, Section 13, Fig, 14
Sonion 13A nozth of the northern track crussing I.ake Tarkartoolou.
COONARDINE EORMATION
DIO SAND. Very calcapenus, with numepous $1-5 \mathrm{~cm}$ dolomite nuduley and fertueninous sanderote lumps (rewordal from Namba Formation), 5 YR8/h.

- Disconformity -


## EURINILLA FORMAIION

2.30. CLAY-SiLT-SAND. Silt (dominant) to finc grained sund, poorly sopted, lawer $1 f \mathrm{~cm}$ monleritely sortod medium grained sand. Up to $50 \%$ reworked dalomite todules (pisolitic) of granule io pebble sise in lower part, $71 \times 5 \mathrm{~cm}$ maximm size, ath little cvidence for abrasion. Cpper $10-7 \mathrm{l} \mathrm{em}$ with gypsum nadules and carboriate patches. Grem-black terrabinous aud manganiferous stano ollerwis: light red-hnown 2.5 YR5/6.

## NAMBA FORMATION

-Disconfurmily -
3.55. CLAY, GYPSUM. Slightly silly clay, very lard, ight woight. crumbly with areasy hastre. Colour
$5 Y 5 i 2$ to 5/l, motled red-brown, yellow brown and black, specked with whife gynsum fivur. 80 cm hesizon of caullowcroid gypsum notules 1.10 m from ton. Nodules $0.25-0.50 \mathrm{cas}$ cham, with clay cores, zot associated with any porosity change in host sediment.
1.25. DOLOMITE, CLAY. Lower dolomite 0.60 m chy 4.50 m upper dotomite 0.15 m . Lover dolomite nodular fintraformalional cunglamerate) at lop, manganexe dendriles thriughout. White, very line grained, with 5 so ansular silt. Upper dolomite contains nstmeades. Clay as above,
1.95. CLAY. $5 \%$ anyular silt to vety fine sand, grading to sand at base and dolonte at top. Very hard, dight, dry and crumbly, with manganese stain.
1.45. SICT. Sill and very fine sand, becuming thayey at top. Bioturbated al log, 2-3 cm burrows, Difige wise fincly laminated. Minor hright green clay laminee. Top 40 cm impregnated with gypsum, molded opange brown Very light grey to whíce overali. Lower contact sharp. fat.
I.70. Clat Vitt, DOLOMItLE, Clay with $40 \%$ sit!, $5-10 \%$ Very fine sand. Arenaceous fraction of moderately sorted, angular grains, Colour 5 YG/1. oranee to orange-brown motling. Nodules and palches of greenish-white very line grained sandy dolomite, weathering as 2 cm grannles al 10 s ant hottom, Black stained.
0.78. Alternatung SAND and CLAY. Sund beds range from silt to very fine sand, colour 5y8/2. Clay is sandy. Individual beds $2-27 \mathrm{~cm}$. Lower beds have sharper contacts and are laminated, rery finely crossbedded and lensitg. Orange brown motling and syosum in upper nal ol extiun. Mmar nenkular dola. mite.
0.80. SILIY Claty, Silt to very fine sand $10-20 \%$ subangular foosied grains. Clay bas greasy lustre and SY6/2 colour. Upper contact very sharp, Riat.
1.00. SAND and DDLOMITE. Sandy clay and clayey sand with dolomite nodules $2-30 \mathrm{~cm}$ thick at fop and bultom. Sand is subangular to subrounded. moderately well sarted, with frassed grsins. Weathers to hard light brown sandstone, base cemented with sypsum. Sandy clay is $5 \% 5 / 2$, clayey sand $5 Y 7 / 3$, molued with yellow ereen patchey, and bluck patches at base (Ni-NS). Very sabdy parts are $105 \mathrm{R} 6 / 2$ $5 Y^{2} 5 / 2$ ut hive.
Dolomite is very finc grained with botryuidal upper surfice, in way, lensigit beds. Gircenish upper sur. faces.
(0.30. SAND. As above.
0.33. C.I.AY. Mottled clay and very fine sand, linely baminated beds which ate itregular and lenticular. and have ycllow green (10Y R6/6) clay patches and, cross-cutting brown (10Y R8/b) patches with black: centres. Sand ( 5 Y $7 / 2$ ). Basal 2 cm fine white sand. Gradational upper contact. Containe darl; bruws is yellow-orange irregular silcrete and ironstone nodules.
0.02-0.03. CLAY, As above. Shaty contacts.
0.23 . ShND. Very frne, yellow green clay lameliac. Ohschare medium eross bedding, straigh foresets. Stained grecnish black, Sharp uppur contacts.
0.25 . CLAY, As higher in the sequence. Wpper 5.10 cm dolomitic yellow-zreen and brown motted.
0.10. SAND. As above. Obscurely cooss-bcdlod. selenite semen al hase.
1.30. CI.AY. Silty. Very finely Jaminated, with very small scale crosshed set.r. Colour SY̌id.5, neca. sional black and brown natches. Upper contact sharp, that.
0.70 . Cl.*Y. Slightly silty, hard, with sub-conchoidal fracture and greasy lustre. Selenite an contact with overlying unit. Stight greenish brown tint, otherwise N4.
Siection 13B, south of the northera track, crossing lake Tarkarwentur 1200 m souh of section 13A). Constructed from a seriss of breakaway slopes. and a acoured channel In the cantre of the lake, Beginning from the top of the black clay, as al the base of the previous section, the sequence is is follows (from gully sequence):
3.5. CLAY. Dirk grey clay with irresular shiny surfaced fractures, becoming lighter coloured towards base. Crops onl poorly, forming low angle regetated slopes. Wpper cuntact sharp, flal. Tower contact moderatcly sharp to disturbed.
2.1. SAND. Very fine to fine grained, black: slained. Thin 5 sm bets and fine laminate, Brown silctete nodules throughout. Thin horizon of DOLOMITE nodutes at top. Abuar 20 csu above the base ate 10 cm of laminated silty limestone with 10 w amplitude symmetrical tipples. trud ctacks. and $1-3 \mathrm{~mm}$ lone tubules of organic origin. Sharp basal contact with ..
D.25. CLAY, As aliop of sxauence (13B).

On a small noll isolated mear the ed ${ }^{-1}=$ of the lake, the sequence cuntinues as follows, with some overlap:
1,55. DOLOMITE, Sandy sodular white dolotnite. Impregnated wids yypsum and calcite, plus tabutar biack manganese concretions.
0.95 SAND. Fine grained, well sorted. Juminatod and silty at basc. Cemented by gyosum and calcite in part. Numerous carbonate nodules cahibitink concentric structire. Sume have vertical tubular disposi(iun with in internal structure smggestive of shrinkage (ef. silerete nodales). Hack and brown stuin th basc, with orange brown and ycllow seren patch stain. This, and the previous unit are equivalent to the 2.1 m of sand described above, with its hed of dolomite nodulies.
2.5. CLAYEY SILT. Alternating hard clay and claycy silf in uery fine lamellae (varwe-like), Siliy grey clay lenser. Yellow green patches with waxy lusisc. Clay dominant at base, N5, 10Y:/4 io 6i6. Contact with underlying unit shatp, undulatiag: same contact as at hase of 2.1 in sand described in gully section abave.
0.5. Crati. Harel, neasy luytre. irmegular Iracture. N3 at top prading down to 5Y4/l.

This clay crops out across the bed of the Jate to its centre, where a scaur next to a salt springe exhibits - further 2.5 m of massive hand grey clay.

## NAMBA FORMATION SUPRLEMFENTARY SECTION <br> SADM Wooltana 1 Siratigraghic Bore, Secrion It Fig. 3

## ?ELRINILLA FORMATION

0.0105 .2 m No core
3.20 .9 COBBLE CONGLOMERATE. Cemented with red-brown carbunate, Misa sthish, Enciss, quartaite. Sinsly (medium grained), with subrounded to well rounded, grains.

- ?Disconformity -

WILLAWORTINA FORMATION AND NAMBA FORMATION \{intertonguing
Linte 6
6.1 1.1 DOLOMITE. Sandy. clayey at base. SYR6/4 to N6. Sharp upper cuntact, gradurional lower contact:
7.23 .8 CLA3. Slighty sandy, with dolomite nosules. Clay 7 Y7/2 with red-brown vertical pipe strutlure. Sund suhangular to subrounded. Some gypsum patches in fower Mart. Lawer contact gradiational. 50 cm core missing.
11.1) 0.65 SAND. Fine sand, very poorly sorted, subangular to subrounded. Thul slalomite beds. Dolomite nodules. Clay at base.
11.65 to 12.50 No core
$12.50 \quad 16.15 \mathrm{CL}$ AY grading to SAND at hasc. Numesous dolomite nodules and stme beds. Extrentely poofly sovted medium sand to coarse sill. Some gypsum patches at log. Green and red-brown pipe structure. Sand subangular to well rounded. Sharp basal contact. 40 cm core missine in sand interval.
28.654 .35 CLAY grading to SAND at base. As sbove. Mica in basal sand. 2.5YR/4-6. 586/1 montes Shatp wavy dersal contact.
33.00 5.6 CLAY. and DOL.OMITE grading to SAND at base. As ahove, but dolomite beds in upper clayey part. Dolomite is $20 \%$ clay. Medium silt, extremely poorly-sosted. Sand sukangular to rounded. Gerdationa! wavy lower contact.
$38.64 .45 \mathrm{CL} A \mathrm{Y}$, grading to SAND at base. $\alpha \mathrm{s}$ above. Dolomite beds (brown) and nodiles throughout. Sand patches at top. Lower contact gradational.
43.054 .95 CLAY grading to DOLOMTIE then SAND at base. As above. Mouled red-brown, green and yellow grey. Very poorly sorled. Minor core loss. Lower contact gradational,
48.00 S.15 SANDY CLAY grading to SAND at base, As above. Dolomite beds and nodules throushout. Sand laminated, micaceous. Intraformational clay and carbonate at hase. Satud reaches medium grain size. Subangular to rounded. Disturbed irregutar basal contact.
53.15 14.50 CLAY cf. NAMBA FOKMATION. Patchy sand and carbomate near top, Reticulate network of carbonate "vejbs". Lower part with limonite nodules, ipregular shiny black-stamed fractuned elay. Obscurely Laminated in middle nart. Sand very fine, angular to suhmounded. SY6if. 2.5YRG/2-8, 10 YR8/2, 2,5YR5/6, 5 Y7/1.5, 5Y6/1. 5Y\$/5, 2-3mecore buissing, mainly in uppas part.
67.65 6.7 SANDY CLAY. Micaceous finely laminated silt hecoming pebbly at 72 m , peverting to clay at base. Extremely poorly sorted, Granite, quartzite, shale, quartz anu gneiss pebbles. Very angular to subrounded. Clay intsaformationally brecciated and barrowed in lower part. Minot carbonate. c.E. WILLAWORTINA FORMA'TVON. Gradational lower contact.

## NAMBA FOKMATION

Uails
74.35 4.9 Alternating DOTDMITE atid CLAY Dolomite ( $5-10 \mathrm{~cm}$ thick), oolitic white, aphanitic. wilh charophytes, astracodes, molluses and unidentified caleareous oplant fossils. Numerous burrows in clay beds (all about 1 m thick). Micaceous silt in part. Bioturbated, Laminated at base. Sharp basal contact.
79.257 .9 CLAY minor DOLOMITE Upper part similar to above, laminated and burrowed, Clay sY6/1+2 5 YRd $/ 6$, becomins sardy at base, with rounded clay clasts. Basal contact grada* tional.
87.15 1.75 SANDY CLAY. Calcareous. 5Y5/1 to 5Y6/1. Sharp basal contact.
$88.90 \quad 0.10$ CLAY, Shatp contacts.
89.00 2.00 Interbedded DOLOMITP and CI AY. Dolomite as above. Very finely inlerlaminated with britte, swelling clay, Shrinkuge cracks common. Burrowed. Contacts on cartanate beds shatp and wary to disturbed irjegular. $7 \mathrm{Y} 571,5 \mathrm{Y} 6 / 1, \mathrm{~N} 3.5,5 \mathrm{Y} 4 / 2$.
$91.0 \quad 2.55 \mathrm{MARL}$ and GYPSUM. AJternating thin selenite and caicarcove clay, Sharn contacis ou gypsum Gsadational lower contact. Black to dark olive.
93.554 .60 CLAV grading to DOI OMITE 3nd MARL at base. Numervux gypsum notules, 4 Y5s/]. SY8/2. Mottled 5YR6/7. Minot gypsum laminae. Contacts wavy gradational to disurbed iregular. Iniraformational breceined.
リ8.15 3.55 CALCAREOUS CLAY. Trrgeular shiny fractuses, oxidized red-wrown patches. Swelling, Very porcus. Subaqueous shrinkage cracks.
101.7 9.15 CLAY'. Sandy in centre, with selenite veins infllins sliekensided joints. Sand laminated. Clay with irregular shiny surfaced fractures as above. $10-15$ 多 very fine sand to silt. Alternating colour pattern-oxidized red-hrown clay passes down lu 3 Y4/2 to 6 Y7/I chay, has sharn upper surfaces. Basal contuct irregular, disturbed.
110.857 .1 CLAY . As above. Basal thin white dolomite. Churned structure suggests bioturbation,
$11 \$ .007 .45$ CLAV grading to Sir.T in lower half. Silt well laminated. micaceous, very small seate
cross-7aminated. Grains very angular so sub-rounded Silt moderately sorted. Lower contact muderately sharp. laminated, lower contact moderatcly sharp.
$130.80 \quad 9.00$ SAND. interbedded CLAY, Sand fine to meaium, well sorted, small to mediuta stale ctoss-bedded. Micalceous and with clay balls. Graits very ingular to subrounded. Sharp wayy confacts.
1380002.60 SAND. As above. Upward fining. Some clay at lop. burfowed. Poorly sorted. average very fine grained. Wavy moderately sharp lower conlact.
140.616 .71 Alternating SAND. SILT. CLAY, CARBGNATE. Sand ay above. Carbonate nodular. Clay dask arcy. Bioturbated and intraformationally breceiated Mainly fining upward sequences. Sand dominant. Contacts irregulas, Alsturbéu.
Unit 3
147.3026 .10 CLAY grading to SAND in lower 1.5 m . Mancancac nodules above sand. Minot sand bed at 157 m . Clay NS, numerous irregular shiny ftactures. Sandy, averaging very fine silt. very pourly surted. Sand and very fine sift, vety poorly soried. Sand very fine, burrowed and laminated. Very angular to angular grains. Irregularly disturbed lower contact.
163.411 .80 SLLI. SY6.5/0.25, orange brown molttes, obscure lamination, bioturbated. Sharp wavy lower contact. Grades to very fine asind at base,
$165.20 \quad 3.4$ SAND. Fining upwards from fine sand to clay. Thin clay bed with shasp contacts neas sup. Medium scale cross-bedded. $6 \mathrm{Y} 6 / 1$ to $5 \gamma 3 / 2$. Sund poorly sorted. Moderately sharp wavy lower contact,
$166.80 \quad 4.00$ CLAY grading to SAND at hase. Upper 1 m sandy, lower very fine obscurcly laminated sand. Clay with irregular fractures. $5 Y 4 / 1$. Sand beds have gradational coniacts,
170.80 4.s0 AS ABOVE. Minor sand at 172.2 m . Basal very fine sand, moderately sortod, obscurely small scale cross laminated, burrowed. Gypsum nedules. Clay as above with fractures and oranse to red-brown mollles. Sand very angular to angular-
175.307 .4 Silt. Laminated fine, very poorly sotted xile, gybsum sodules at top. very small scale cross-bedded, sonic burrows. 3 m missing in centrial part. Sharp wavy lower contact.
182.7 4,6 SANDI CLAY. grading to SAND st basc, Cycle as above, Some calcareous zones, 5Y5/I. $5 \times 3 / 4$. Sandy at 185 m . Basal sand fine grained, sub-rounded. Muderately sorted. Lower cotrlact moderately shard.
187.3 R.S SANDY CLAY. SAND at base. Upper 3/4:N2 to 5GY7/0.5 ciay ns above with fractures and sandy natches. Dolomite nodutes at contact with sand. Sand very fine to fine, very poorly sorted, SY6/I to N8. Burrowed near ton sand, rest Hotubated, obscurely cross-siratilied,
196.100 .9 Sin T, Minor alternating clay and sand, sharp contact., Silf laminated. Lower contact shatp and wavy.
Unit 2
197.0
14.0 Altctnatins DOLOMITE, CI.AY, SII.T and SAND, Complex inter-selationship between clay-doloatite cycles and sand and chay beds c.f. above. Conlacts variahle. Dolomite intraformationally hrecclated. Silt laminated. Bioturbated and buroowed horizons. Clays with urreeular dractures and orange mottles. Beds $40 \mathrm{col}-1-5 \mathrm{~m}$ thick.
211.0 i6. 3 Niternaing LIMESTONE, DOI.OMTTH and CLAY. Consists of $t-2$ nt carbonate beds grading up to clay via disturbed zone. Clay beds turrowed or boolurbatcd, 10Y'5/2 io $10 Y R 7 / 2$. Bitse of dolomite beds sharp and wavy. Dolomite aphanitic, white laminated, with nolitic zone. Ostracodes common, algal mats present. Zone 215-217 m of very blarraw clay filled cracks, Irrepular shiny fractures donainste in clay near base, otherwise obsent. At top of this sequence is 5 cm gothite-limonite crust.
227.38 .7 ClAY . Calcareous, intsaformatronally biecciated with numerous white earbonaic specks, Irregular shiny surtaced frautures. Ni to olive green, Quartz rare, very fine to fire, angular. Lower cantact cradational.
236.0 8.45 CLAY. Fissile pyritic carbonaceous very finely laminated clay with sill parting. Fine laminac of N1 to dark olive or $58^{\prime} 2 / 1$ colour Numerous plant stem and leaf impressions or fruitine bodies, fish spines and scates, ostracude.s (estten in sure layers), gestropod pratoconchs, spones and pollen. Durrows (pyrite filled) and bedding plane traces. Numenous pyritemarcasite sudules. Some subnqucous shinkage cracks.

## WILLAWORIINA FORMATION TYPE SECTION <br> Western Nuclear WC2 Bore. Section 10, Fig. 3

COONARBINE FORMATION and TELIRINILLA FORMATION
0.00 to 7.05 Cuntings nnly, SANDY PEBBLES, SAND. Micaceous, calcareous, impregnated with gip. sum (cxecpt samd). Angular to very angular, 25YR4/8, 2.5YR3/6.

- Discontormily -

WILCAWORTINA FOLRMATION-MFMARR ?
3.450 .44 No recovery.

789 1,65 SAND as below, $1-3 \%$ mascavite.
$9.54 \quad 0.30 \mathrm{Nu}$ recovety.
9.843 .95 SAND grading to SILT. Sand very goorly somed aml wety fine grained, eils coarse, pebbly
and micaccous. Thin pebble bed grading up to sand at base. Porous zoncs impregnated with gypsum.
13.79
14.04
15.25
16.15
16.99
17.67 0.13 SAND, pebbly, coarse grained. Feldspars, muscovite, biotite
$17.80 \quad 1.98$ No recovery-a few abraded pebbles.
19.95
20.19
20.41
20.79
$\geq 2.24$
23.160 .33 CLAYEY SAND, very fine grained and micaccous, sharp wavy content with overlying 20 0.33 CLAYEY SAND, very fine grained and micaceous, sharp wavy content with ove
cm of COBBLES. $5-10 \%$ muscovite, pink potash feldspar. Yellowish grey ( $5 Y 7 / 2$ ).
24.4 1.49 No recovery.
24.98 0.11 SAND, grading up to GRANULES. Sand medium grained with dull, pitted or shiny surfaced, angular to subangular grains. $15-20 \%$ feldspar (mostly pink potash variety). Muscovite and biotite flakes in the quartz.
25.090 .80 No recovery.
$25.89 \quad 0.20$ SAND, pebbly; micaceous and overall fine grained.
26.09 0.72 No recovery.
26.81 0.14 COBBLES, sandy.
26.950 .47 No recovery.
27.42 0.17 Pebbly micaceous coarse sand.
27.59 1.0n No recovery.
28.59 0.27 SAND, grading over short interval to COBBLES at top. Sand is poorly sorted and micaccous, medinm grained.
$28.86 \quad 1.61$ No tecovery:
$30.47 \quad 0.27$ COBBLES, passing over short interval to medium micaceous SAND.
30.74 0.72 No recovery.
$31.46 \quad 0.53$ SAND, grading to COBBLES in upper half. Sand micaceous and poorly sorted, medium grained. Clasts pink quartzite with micaceous hematite, purple fine quartzile, vein quartz. large potash feldspar pebbles:
1.00 Nu recovery,
0.26 SANDY PEBBLES, micuceous.
0.58 No recovery.
0.30 SAND, coarse and poorly sorted, micaceous.
0.30 Na tecovery.
0.39 PEBBLY SAND, very poorly sorted, micaceous, coarse grained. Dusky yellowish grcy (5Y6/2).
0.57 No recavery.
$35.36 \quad 0.24 \mathrm{Cl} A Y$, sandy, micaceous.
35.60 0.62 No recovery.
36.220 .13 PEBELY SAND, fine grained, modernte feddish browr ( $2.5 \mathrm{YR} 5 / 6$ to 4/i $)$,
36.35 2.00 No recovery.
38.350 .30 CORRLES and PEBBLES overtain by fine grained CLAYEY SAND.
$38.65 \quad 0.20$ No recovery.
38.850 .56 GRANULE bed, thin, overlain by thick SANDY COBBLY PEBRLE bed (white vein quartz, pink potash feldspar, pink ferruginous quartzite, cosrse siliceous gneiss or granite, dark grey shale, weathered fine gneiss).
$39.41 \quad 0.77$ No recovery.
40.18 0.20 SAND as beforc, with clayey sandy cobble bed at top.
40.38 0.71 No recovery.
41.09 2.46 SAND, coarse at base, grading up to extremely poorly sorted fine sand. Vertically oriented reddish brown pipes.
43.550 .29 No recovery.
43.84 0.53 PEBBLY SAND, sand medium grained.
44.37 0.23 No recovery.
44.65 2.77 Fine SAND as before, grading up to pebbly medium grained sand in upper $1 / 3$.
47.42 0.18 No recovery.
47.60 1.47 SAND, poonly sorted and very fine grained, micaceous, with scattered gramles, two th.n pebble beds at base.
49.07 0.63 No recovery.
49.70 0.35 PEBBLES, passing over short interval ra SAND, clayey, micaceous and fine grained. poorly sorted.
50.05 1.64 No recovery.
51.69 O.34 CLAYEY SAND, coarse and very poorly sorted, grading to boulders. Metaquartzite clasts.
$52.03 \quad 1.23$ No recovery.
53.260 .29 SAND, micaceous and very fine, light yellow-brown (7YR5/6). Very poorly sorted.
53.55 1.25 No recovery.
$54.80 \quad 0.50$ SAND, very micaceous, very fine grained. Pebble bed in centre (granite, banded pink and white quartzite).
$5530 \quad 0.58$ No recovery.
$55.80 \quad 0.63 \mathrm{SAND}_{\text {, fine, }}$ grading up to fine grained with scattered granules.
56.43 0.30 No recovery.
56.730 .44 SAND, as above. Feldspathic quartzite pebbles.
57.170 .48 No recovery.
57.65 0.40 SAND, as above, pebble cobble bed in centre.
58.050 .49 No recovery,
58.540 .84 CLAY, and pebbly SAND, coars* grained. Grades rapidly to micacenus CLAYEY SAND, fine grained, in upper 30 cm .
$59.38 \quad 0.69$ No recovery.
60.07 0.56 SAND, as below, fining to fine grainsize at top.

MEMBER 2
60.63 0.66 No recovery.
61.290 .54 SAND, as below, no granules. 6
61.83 1.43 No recovery.
63.260 .99 SAND, slightly clayey, medium grained, with granules. Coarsening uplyards.
64.25 1.50 No recovery.
65.75 0.23 COBBLES: massive pink granite, very fine dark quartzite, pink feldspar with ?horn.
65.98 1,30. No recovery.
67.28 0.10 SAND, medium micaccous and clayey.
67.38 0.19 No recovery.
67.570 .34 GRANULES, grading to CLAY-SILT.
67.91 0.84 CLAYEY SAND, coarse, pebble interbeds.
68.750 .05 No recovery.
$68.80 \quad 0.47$ SAND, coarse and poorly sorted, pebbly. Pebbles of quartz and gneiss.
69.270 .14 No recovery.

69,41 0.41 SANDY CLAY, as before grading un to COBBLY SAND.
69.820 .12 No recovery,
69.94 0.18 SANDY CLAY, as before. Micaceous.
$70.12 \quad 0.25$ No secovery.
70.950 .85 Silty clay grading up to cobbles.
$71.82 \quad 0.33$ No recavery.
$72.15 \quad 0.27 \mathrm{SAND}_{\text {i }}$ medium, grading up to CLAY.
72.42 0.13. Nu recovery.
72.55 4.07 SILT, extremely poorly soried, medium size.
76.62 0.11 Na tecovery.
76.73 1.40 SAND, very fine, pebbly, grading to SANDY SILT CLAY.
$78.13 \quad 0.95$ No recovery.
79.080 .85 GRANULES (lower 20 cm ) grading up over short interval to SAND, clayey, mediuns grained, very poorly sorted.
$79.93 \quad 0.17$ No recovery.
80.10 i. 68 SAND, very fine, grading to very coarse at top. I $\%$ muscovite and biotitc, $10-15 \%$ potash feldspar. Grains very angular to subangular and dull, Small grains shiny and faceted. Extremely poar sorting.
$81.78 \quad 0,15 \mathrm{Na}$ recovery.
81.93 0.25 SAND, fine grained, very poorly sarted.
82.180 .16 No tecovery.
82.34 0.85 GR^NULES, basal bed, grading over short interval to very poorly sorted CLAY, very

MEMBER 1
83.18 0.06 No recovery.
83.24 0.76 CLAY, lower 10 cm sharp contact with SAND, coarse grained to granule sized. CLAY thin bed at top. Extremely poorly sorted.
$84.00 \quad 0.37$ No recovery
84.10 0.10 SAND, fine graincd, clayey.
$84.47 \quad$ 1.37 No recovery.
85.84 1.50 SILTY CLAY. Very poorly sorted, with thin coarse sand beds.
87.34 2,03 No recovery.
89.37 S. 74 SILT, SILTY CIAY. Extremely poorly sorted coarse silt, silty clay micareous. Thin coarse grained sand bed ( 91.2 m ), above which the sediment coarsens from clay to very fine
granined sand. grsined sard.
95.11 0.45 No reowery.
95.56 1.81 S.AND, grading to CiAY al top. Sond very coarse, clay silty and micaccous with a this granule ted near the top. Yallowists grey ( 5 Y3/1).
97.37 0.26 No recovery.
97.63 5.74 SANDY CtAY, SAND. Sandy clay las medium grained sand fraction, very paorly socted, grades to clayey caarse sand, with very angular to subangular pilted to shiny arains. Feldspar is comsmon. The base of this intervel is talien as the base of the WILLAIVORTINA FORMATION.
101.52 1.08 No recavery.

## NAMBA FORMATION

102.502 .30 CLAY. $15-20 \%$ subangular to subroundad sand, minor mica. Sand gatchy near hase, with irregular shiny-surfaced fractures (shew-planes). $5 Y 6.5 / 2$ to $4 Y 5 / 1$. Busal contact sharr, 30 cm core missing neat base.
104.80 1.1UCLAY. As above. $10 \%$ sand no mica nodulat and swelling with well developed fraclures. Alunite motlles at base, 30 cm core missing in centre of interval. $1 Y 4 / 1$, $106 \mathrm{Y} 6 / 1$ at base. Sharp basal contact.
$105.90 \quad 4.90$ CLAY, grading to SLLT in basil 60 cm . Intralomalionally brecclated and burowed int 109 mi) with some laminated intervals. Well developed alunite streaks. which decrease in abundance with depth, being absent at the base. $6 \mathrm{YR} 6 / 1-6 / 2$ grading to $N 8$ al base, 70 cm core missing at vatious intervals, mainly near qop. Basal contact irregular, disturbed.
$110.80 \quad 10.50$ CLAY grading to SILT at 1A4.4m ind SAND at 119.4 m Clay intraformationally brectiated, 15-25 \% very angular to subrounded sand. Silt micaceus, Sand micaceous, crosy bedded in 30 cm sets, and laminated, fine grained, well sorted. Grains angular to subrounded. Basal contact gradavional, Weak alunite horizon 50 cm below lop of unit, absent at 115 m . Colour 5 YR5/I above alunite, N8 below, 2.1 m core missing in silt and sand beds. Wavy indistinci lower contact.
$121.20 \quad 0.70$ SILT
$121,90 \quad 1.45$ SAND. Micaceous, Jaminaled, obscurely, cross-bedded. Fine grained and moderately well sorted. Sharp lower contact. 70 cm core missing in centre of unit.
123.35 3.10 SAND. Minor clay at top, fine grained micaceous sand in centre, lower half grading to very warse sand at base, Subangular to subrounded, large grains highly polished composites. Mostly no core there being 50 cm recavered. Basal contact sharp.
126.159 .45 SILT and CLAY (below 129 m ). Clay, nodular, dark brown, silt greemish white. Sandy patches. Sand grains utten show crystal faces-bipyramids. Indistinct contacts obscrved at 129.25, 129.4, 129,6 associated with weak ulunite horizon. Colour 10YR6/2-5Y8/1 in this zane. Delow 131.80 irfegular shiny surfaced fractures and sume alunite specks. Colour 5Y5:1-4, 5Y3/1. $17 \%$ silt. Grains very angulat to itneular. Mush core missing throughout. recovery 405.

## WILLAWORTINA FORMATION SUPPLEHENTARY OUTCROP SECTION

"Weraloona" Homestead Arca. Section L, Fig. 3

## WILLAWORTINA FORMATION

Unit 9. 37.9 COBBJ.F.S. Erown quartite cobnies in a matrix as for unit f. Elasal bed of almost jhilyo grey-blue timestorte cobbles. Kare red sandstone, quartz and yellow-brown silicified carbonate cobbles in float. Exposure poor, top nol exposed.
Unit 8, 49.2 SANDY CLAY, red brown.
37.9

Unis 7.
20.R COBBLE 1 B BOULDER bedk. Matrix as for unit 5 , cemented with secondary white cat-
87.1 bonate which may be powdery and soft, or hard vaghy and crystalline. Cobbles of brown quartzife with 20 so blue-grey limestone (resembling Cambrian limestones). Rere very larae bouldets of grey missive microcrystalline quartzitic silerete with large milky quartz pebbles.
Unit 6. 13.0 (approx.) CLAY SAND. Red brown very pourly sorted and calearcous,
107.0

Units. 2.0 (appmax.) COBBt.Es. Brown quanzite cobbles seattered through matrix as for unit 4. Lenses out along strike.
Unit 4. 7.0 (approx) CLAYEY SILT SAND. As for unit 2.
Unit 3-1.0 (approx.) PEBBLY COBBLES, As for unit 1. more matrix, thin and lensing along strike.
Unit 2. 5.5 (upprox.) CLAYEY SILT SAND. Red brown, with a calcareous matrix, sometimes thinly laminated.
Unt 1. 4.0 (approx.) COBBLES Brown quartzite pehbles and cobbles in calcareous rad-brown silty
140.1 sand, lenses of calcareous medium sand at base. The sandstone fills channels, which hav: groove casts on the base. Cementation is weak, and pebbles weather oust readily with thin culcareous crusts. Proporion of matrix luw. The unit cuts inte deen red brown clayey silt, probably Namba Formation. Athough the contact here is sharp. there may be an intertonguing rclationship along stilke. The unit grades laterally to the south into pehbly clayey sandstone.
The following part of the section is poorly exposed, and is yet to be fally described:

- Disunlormity -


## ?NAMBA FORMATION

12.0 SAND. Very ninc greenish sand grading up into silty grey-green =lay with gypum pathes.
7.2 CALCAREOUS SANDSTONE. Very angular sand with soft crystalline carbonate sement Cuntaira pubbles of very angular sandstone, carbonate, rounded brown quartzite, polished milky quartz, cher granules.
51.2 CLAY. Dark green-grey day with greenish-yellow-stained patches, slighty sandy, Thin white modular dolomicrite is present near the basa, and may be a facies varlant of the proviously described unit,
8.2 SAND Reddish to greenish silty fire to medium sund.
8.2 CALCAREOUS SANDSTONE. Essentially a sandy limestone with about equal quantities of medium grained angular sand and lime. Weatbers grey, with a sculptured rough surface.
i44.7 ClAY. Grey green to olive, greasy irregular fracture, sandy and silty. Minor dark olive to grey clay. Motlled with red-brown iron oxides. The interval $430-350 \mathrm{~m}$ (nseasured from ton of the unit 9 in the Willawortina Formation section) is very poorly exposed and deeply weathered.
Near the top of these beds in the northern part of the area, is a thin white dolomicrite bed.

## TEYRE FORMATION

- Disconfor mity -
2.0 SANDSTONE. Massive calcareous medium grained sandstonc, partly silicibed, and capped by remnant silcrete, dipping with the section.
2.0 CONGLOMERATE. Granufe to pebble-sized polished white guartz, grey chert, ironstonc. Pebble to cobble-sized angular Middte Cambrian sandstone. All in medium well-rounded sand matrix, cemented by zalcium carbonate. Pebbles are patchily distributed, ant be whole crops out as a bu ridge with cavesnous weathering and of brownish grey colour. Medium scale cross-bedding is prominent. The unit has an angular unconformable relationship with the underiying Middle Cambrian red-beds, though dips are similar.

Appendix 11<br>yOUNGER CAINOZOIC UNITS<br>Fig. IS SECTIONS 2-9

(Sec Fig. 1, Kop locations, and main texe for aceess aud photo points) SUPPLEMENTARY SECTION, CJONARBINE FORMATION

## SECTION 2

## COONARBINE FORMATION

1.7 SANDY SLLT, with basal pebole bed. Sand dark brown (5YR3/5). Size varies from silt to very fine sand, moderauely poorly sorted. No bedding planes visible. Columnar structure well developed. Basad clasts may be small cobble size, and are of metamorphic rocks and quarte.
-Disconformily -

## EUKINILLA FORMATION

2.2-2.5 CLAYEY SILT-SAND. Very poorly sotted whith iregular-sbaped frosted or pitted grains, Condains pebble lenses (though not in the figured section) and large irregular aphanitic greenish white sandy carbonate limps. The later are probstly derived from the uppar carbonate in Wooltana 1 bore (section 11, Fig. 3 ) At ton of $0.5-1 \mathrm{~cm}$ diameter branching vertically oriented cylindroids of pinkish "chalky" textored carbonate, representing a fossil soil horizon.
-Disconformity -
0.2 CALCAREOUS SAND. Pebbly sand (coasse graincd), solidly cemented by pinkish buff (5YR7/2) carbonate, Culout devived mainly from orange-stained quartz grains. Laminated and thin bedded. Beds dip, suggesting cross-bedding is present (outcrops seen in plan only, in creek bed).
Possibly sepresents Willawortina Formation, ur unnamed conglomesate equivalenis di Millyesa FormsLion.

## SUPPLEMENTARY SECIION, COONARBINE FORMATION, EURINILLA FORMATION SECTION 3

Location, Curnamona Siccus map shect, Air photo yef.: S. Aust. Dept. Lands Svy, 361, rum 2, photo no. 4442 . The section is situated on the nothwestern bank of the Pasmore Rives, close to the point where at debouches in to Lake Frome.
RECENT
$0.00-1.20$ Mobile bright red-hrown dune sand, sharp erosional contact with underifing inits.
-Disconformity -

## COONARBINE FORMATION

1.nt-3.50 SAND. Yellow-brown, with large scale dune-type cross-bedding. Sharp erosional basal conlact, a lag of pebbles (eroded from the Eurinilla Formation) is at the base.
Numerous broken mature snail shells are present in the upper part of the unit. Aboriginal artifacts, al cified tree roots, emu shell, and vertebrate bones occur in the uppermust level (or possibly on the upper surface in the case of the ardifacts and etmu shelis).
Strongly developed columnar structure is present (resuling from soil processes).

- Disconformity -


## EURINILLA FORMATION

1.80 PEBOLY CTAY-SILT and SAND. Sand at base, medium-grained, yellow brown, numerous pebbles and rare flat cobbles, cemented by gypsum. Pebbles are miliky and clear quarte, and very angulur fragments of calcite-cemented conglomerate, overlain by bright red.brown silty clay
Unomed Conglomerate (?Millycta Formation equivalent)
D. 15 CONGLOMERATE Thin, catcite semented. Pebbles weather out without adherine crust. Pebbles
as for overlying unit plus ?Namba Fotmation doloaicrite, and brown carbonate nodules from Willawor. lina Eormation. Carbonate penctrates into top of underlying bed.

- Disconformity -


## HIIJ AWORTINA FORMATION

2.05 SILTY CLAY. Sandy, greenish-brown with nd-brown montles, hard. Patches of gypum whlules. Pasty calcificd at top. Blocky columar structure visible (rcsulting from soil processes). Upper contaci sharp, บndulating.

## MILLYERA FORMATIUN TYPE SECTION

## SECTION 4

11.3D SAND. Reworked from older unit into bape of dines.
0.70 SAND. Coarse grained, with many gypoum gtains and anomalous pebble sired angular quarie (milky). Powdery hummocky gypsum often developed at top (suil profile).

- Disconformily -


## EURINILLA FORMATION

1.10 CLAYEY SAND. Very tinceraimed, sub-rounded to rounded. sood spherfcity, moderate sorting. Numerous charophyte oogonia. Many greenish, yellaw and brown grains, Colour 5YR5/6. Capped by sypsum crust; of gypsum rodules in clayey sand (erountwater deposit),

- Disconformity -

MILLYERA FORMATION
Unit 7. 0.50 CLAY. Solt, conthoidal fracture. Contact with overlying Eurinilla Formation sharp and fut. Very dark yellowish brown. The oxidized crumbly appearante and shiny surfaces (cutans) on crumbs suggest sait processes have operated, und indicate a discomfomity between Millyera and Eurinilla Formations,
Unit 6. 0.40 SAND. Very fine to medium grained. Grains subangular to rounded and frosted. Charophyte uogonia .5\%. Grades by alternation, to ...
Units, $0.50 \mathrm{CL}, \mathrm{A}$ YEY SAND. Sand fraction well-sorted, with suhangular to angular rounded grains. sharp fiat upper coniach Greenish yellow (10צ7/2).
Unit 4. 0.70 Cl AYEY SAND. Interbedded thin clay and very fine ta fine clayey sand $0.25-0.50 \mathrm{~mm}$ thick. The gand is very well sorted, with subrounded to founded high sphericity frosted grainx. Darker oxidized clay present. Yellowish grey ( 5 Y7/2). Lower contact gradational,
Uall 3. 0.30 CLAY as for tuit 1.
(init 2. O.40 LIMESTONE and CLAY. Near the top of the sequence each clay Jamina grades up to charophyte stem-mould limestone (up to I cm thick). These limestone beds harden on weathering, producing staets and slabs with a metallic ting when strick. Intervening lamellae are 0.52 cm thick. Some of the Chapales tubules are oriented and small rursesed gastropods att. "coxiella" are present (henceforth referred to as "Coxiella"). An oxidized zone exisis beneath the limestone. The limestones form a distinctive marker horizon 20-30 cas thick. Contact with unit 1 and unit 3 ate gradational by altemation.
Unit 1. D iO CI,AY, brittle, soft, waxy lusire. Distinctly laminated and thin bedded ( $1-5 \mathrm{~cm}$ ), each lamina grades up to at thin fine silt layer with charophyte oogoniat and Ostracoda. White carbonate granules occur near the base of the sequence. Scittered medium polished or frosied quartz grains, sometimes up to 4n\% of the rock, occaslonally forming sand lenses Felluwish grey ( $5 \mathrm{Y} 6 / 2$-lay, lighter for sand), Base hok exposed.
SUPPIJEMENTARY SECTION, COONARRINE FORMATION, EUKINILLA FORMATION, MILLKERRA FOKMATION

SECTION 5
0.0n-3.50 SAND. Red brown sund of modern dunes sewurked from Coomarbine Formation.

COKONARBINE FOKMATION
1.00 SAND. Lleht biown. Numerous verticaliy oriented small cylindroids of suft white carbonate, of soil profile. Emu shell, ahoriginal artifaets and sare mature snail shells actur in uppermost level, Forms longitudinal dunes.

## EURINILLA FORMATION

## — Discunformily -

Unit 2. 4.00 SAND. finc to medium gaitued, with subangular rough or pitted grains, poorly sosted. Siratification absent. Grades to unt 1 over short distance. Light trown (5YR4)
Unit $\ddagger .00$ SAND, medilim grained, brown ( 5 YRh/h), lighter colouned heds alternate near base. Cross-hedded, sets 40 cm , lensing, gently curved coarse and fine laminae, sharp croded upper contacts. assymptotic bottomsets. Laminae $0.5-1 \mathrm{~cm}$, by variation in clay content. Sets are cently inclined Loward Lake Nillyers. Numerous cbarophyte oogonia
Lighsly cemented with clear or white finely crystalline carbonate. Pinkish irregular nodules, weatherng as brown lumps and slabs on surface. Carbonate gives white cast to this part of the secrion, and causes slight benching. Partly cemented with massive gypsum in the basal lapers.

- Discoaformity -

MILLYERA FORMATION
Unit 5, $\quad 1,50-2,30$ Cl, AY. Very hart, shiny irregular fractures, coated with black iron oxide and white carbonate al top (soil hoizon). Impregnated with vestically oriented gypsum masses, in $5-$ 10 sin columns (fossil groundwater horizon) at top. No silt content. Colour 10Y6/2, Similar to Willawortna Formation. Upper contat shatp, fat. Grades bown to light ereen soft clay interbeddeli with very fine grained white satul nch in chasophyte oogonia. Intereongues with unit 4.

Unit 4. $4.00-5.00$ SAND. Sill to very fine grained sand, with coarse lenses. Numerous thin $0.5-5 \mathrm{~cm}$ clay beds and lamelfae near top, which are crowded with algal tubules icharophytes). Some rare massive clarophyte crusts consisting entirely of strap-like algal forms with mamerous large oogonia. Champhyte oogonia common in upper sands. Clay pellet lajers common. Sand grains are subrounded to well-rounded smooth or frosted, with moderate sorling. Sintll scale cross-laminated sets, 10 cm thick, with cutyed laminae.
Upper surface misy be cemented with gypsum of a [ossi] groundwater horizon.
Unit 3. $0.00-0.93$ SAND. Very fine grained, well soffed. Colout $5 \mathrm{YR} 6 / 8$. Imptegnated with massive gypsuma and disc-shaped crystals of gypsum, Grades by alternation of $1-4 \mathrm{~cm}$ thick beds into overlying unit, in which it forms a lense. Contacls be:weed lamellae are wavy. leaticular, and sippled in some cases. Resembles Tirari Formation. Basal angular quartz granule Layer, often resting directly on underlying gypsum sediment.
Unit 2. 0.25 LJMESTONE-GYPSUM. Greenish slightiy 3andy clay with 20 cm of interthedded thin ( 0.5 cmi ) Eypsum laminae at top, which grades laterally into laminated algal stem (tubules of charophytes) limestone. The limestone sind gypsum cortain charophyte oogonia. The sypsum coutans scattered very coarse sand grains, and surfaces are assymetrically ripple-marked, or have botryoidal "puif" slructure.
Unit 1. (1.70 SAND. As for unlt 4. Orange and yellow slained, especially near base, greenish whese unaxidized. Reworked distorted lay fragments from underiying unjts at base.

- Disconformity -

NAMBA FORMATION
3.28 SILTY CLAY, grey to black, touah. Gradurg down to grey, clayey, puotly sorted fine samd. Gireasy lustre on Jregulat fracture sutfaces. Gypsum patches and cracks at iop infilled with overlying sand.

## SUPPLEMIENTARY SECTION, MHLLYERA FORMATION

SFETION 6
FEURINTII.A FORMATION
At least 2.0 bright red browa SANDS.

- Disconformity -


## MILLYERA FORMATION

Unit 7. 0.20 CALCAREOUS SANDSTONE. Very fine $t 0$ medium grained moderately serted sund. $30 \%$ carbonaie. Grains pitted or frosted, subrounded to tounded, alternates with very fine sand. Coarset sand contains charophyte tubules and rare oogonia, Some pink and black sand grains, rare carbonate grains. Weathered colour white (N10), unweathered greyish yellow (5Y8/4).
Elsewhere passes to hard platy limestone identical with 2. Impregnated with numerous white gypsum cylindroids Gradational contact with 6.
Unit 6. 0.62 SAND. As for sand in 3 but uncemented, distinct contact with 5. Colour moderate reas. dish yellow ( $2 \mathrm{Y} 7 / 4$ ),
Unit 5. 1.20 CLAYEY SAND. Moderately sorted, with black and orange grains scattered throughout. Irregularly cemented into very hard massive nodules and sheets by fine grained white to pini carbonate. Yellow and brown mottling common near base, white gypsum and carbonate spots throughout- Yellowish grey (5Y6/2).
Unit \&, 025 SAND. SILTY CLAY. Grades from clay to very fine sand, grains poorly rounded. Colour yellawish ( $5 \mathrm{Y} 7 / 2$ ) oxidized to moderate brown ( $5 \mathrm{YR} 6 / 7$ ) in parches.
Unit 3. 0.5 LTAIESTONE CALCAREOUS CLAK. Varies latesally from burrowed soft calcareous clay, with $30 \%$ silt to fine sand, to hard sandy white limestone. "The former bas $1-2 \mathrm{~mm}$ diameter vertical burrows (insects?) and the lattes has seattered charophyte oogonia and shrinkage cracks. The base of the furrowed horizon is gradational, and lumps of the underly. ing unit are worked into it.
Unit $2.10-0.20$ LIMESTONE, Laminated, platy, hand, metallic fing when struck. Constitutes numerous tubules of charopbytes, and patches of "Coxiella". Contact with 4 not observed. contact with 1 distinct, undulating.
Unit 1. 0.50. On east side of channel, SAND, very fine grained, nodular white carbonste at lower con. tact. Pale grey. Massive carbonite-cemented at top with shrinkage phenomena apparently fefated to drying of carbomate.
On west side of channel. CLAYEY SAND. Moderate to well sorted, aggular grains. Yellowjsh grey ( $5 \mathrm{Y} 6 / 1$ ) but speckled yellowish green, Grades up into unit 3.
NAMEA FORMATION
0.10 Black tough clay, Sharp fiat upper contact.

EURINILLA FORMATION AND COONARBINE FORMATION TYPE SECTIONS: MIILYERA
FORAIATION SUPPLEMENTARY SECTION
SECTION ?
Modern dune sands
COONARBINE FORMATION
Unit 4. 0.70 SAND, very fine to medium grained, silly. Fine size dominant, well sarled. well rounded. frosted. light byown ( $5 Y R 5 / 6$ ). Al top is 20 cm of sofl white carbonate, consisting of $0,5 \mathrm{~cm}$ cylindroids and tubules (plant fouts?) with $1-2 \mathrm{~cm}$ lumps at the top, eruding to blotchy white carbonate as for anit 2 .

Unu 3. 1,62 SAND, bimodal, medium-coarse atid very fine to finc. Bimcdality disappears downward, grain size becomes finer, and sorting punter. Sorne patches of white sand are prescm in the essentially moderate yellowish orange ( $9 Y$ R $/ 6$ ) coloured sequence. Top is moderate redulish hnwn (3yR5/6). Large scale cross-bedJing is just visible. A well developed fossil earbonatcfich soll horizon mark; the top. It is 50 cm thick and comsists of moderately hard rathe: irregular nodules and cylindroids, and gypsum cylindroids.
Uni: 2. 1.80. SAND, fine-grained ranging to coarse, grades down to CLAY-5ILT, Moderately poor sorting. No sigus of stratification. Colour light brown to tedulish yellow (6YR5/6-3YRS/6). Weakly developed whitish carbonate patches aftop (moil horizon).
Unill. 1.00 SAND. Bimodal, on medium-coarse gramed and very-fine grained bothdatics. Dark red trown (2YR4.5/6]. Indistinctly hotizontally daminated. upper contact shasp and fiat, lower comact obscure, apparently gradutional,

## - Disconformity -

## EURINILLA FORMATION

Unit 3 S. 50 SAND, as above. Solour light brown (7YR6/4), Constitutes a single cross-bed set. Cortatt with unit !, shasp, inclined, flat, Irregular gypsum as for unit [at base, Upper $10-20 \mathrm{jm}$ preanated with carbonate ( $10 \mathrm{YR} 7 / 3$ ) of a fossil soil horizon.
Unit2. 4.00 SAND, friabla, fine to medium grained, himodal. Coarse fraction well rounded, dominant, colaur light hrown ( 6 Y'R $5.5 / 6$ ). Constitutes a single cross-bed set, with low angle cross-bedding. Contact with underlying unit shatp, undulating, cuts well down into unit 1. Patches of very irregular tubules, nodules and cylindroids of gypsum occur at the top.
Unit 1. $0.8 S$ SAND. Medinm srained, sob-rounded to well-rounded grains with very fine grained angular proportioth (bimodal). Numerous coloured grains, upaques and biotite present. Silty hrown clay with gypsum forms pehble sized elasts, and class of underlyivg limy sandstone are preserit. Cross bed sets planar. 8-10 cro. Charophyte oogonia very Dommun, and fragmental vertebrate bones present. White colour. Lower contuct erosional.

- Disconlormity -


## MILIYERA FORMATION

1. I LIMY SANDSTONE, Very fine to medium graince modetately sonted slar-grained quartz sand with $30-40 \%$ fincly crystalline saft carbonate cement. Sand grains pitted or shiny, angular to subrounded. Some grains of feldspar and ferruginous sandstone, flakes of hematite. Thin section shows cartonate has recrystallized into radiating apherules, resembling sume groundwater carbonates,
2.8 SAND, SILT. Silt to finc sand, 1-5is clay-carbonate matrix, forms stroos cement by reason of poor sorting of tramework grains. Very poorly sorted with sub-rounded to very angular grains. Hard and red white motled.

## SUPPLEMENTARY SECTION. EURINILLA FORMATION SICCTION :

Locality: CURNAMONA, Eurimilta map sheets. Ait photo ref.: S. Ausl. Depl Lands Sug. 161, run Si: pluto no. 4396 . The xection is suluated on the west side of Itake Pinpa, approximately 50 m north of the only track crossing the lake.

Modern sand dunes
0.0-4.0 SAND. Fine in medium grained, moderately sorled. SYR S/8. Strongly erosional tese.

- Disconiarmily -


## ZCOONAROTNP FORMATION

$0.50 S h N D$. Very fine to medium (avisagifg fine grained), poorly sortes, with sub-sngular to suthtounded polishet or irosted grains ( $4 Y$ RS $/ 8$ ). Frosional basal contact.
This anit may represent the Coonarbine Formation. It forms the basts of the loagitudinat dunes.

- Disconformily -
0.25 SAND. Very fine to fine, rather poorly sorferi. claycy. Grains irregular, subaggular, rough. Coluur 5 YR $\$ / T$. Sott matcby carbonate well developed, with pipe like structure 5 cm diarncter. Thix is a ssil borizon, and has a similar development (1) those of the Furinilla Formation. The lithology is also elmiIor hut there is a distinct contact at the base which appeared slightly crosional. The unit sady be part of the EURINILLA FORMATION.
- Disconformity? -

HUKINIII A FORMATION
Unit 3.
1.00 SAND. Clayey, very fine to fine, poarly sorted. Angular to sub-rentaled frosted and coarsely pitted sand grains. Colnur 3 YRS/8. Well developed secondary carbonate profica constitutiong soft sandy pinkish white lime in lumps asd cylindroids $1-5 \mathrm{~cm}$ across which weather unt. In lower part of gequence fractured lumps $10-20 \mathrm{em}$ are common. The curhomate profiles form numerous dayers, concenuated toward the top of the unit, and represent soll deyedonnent (hence intermiltent deposition is indicated).
Unit 2. 5.33 SAND, Poarly sorted silty, slightly clayey fine grained, rounded (2.5Y'8\$/8). Grades isaperceptibly into overlying unit.
UNNAMED CONGIOMLRATE (?MILI.YERA FORMATION equivalent)
Unit !. 0.8 interhedded CONGLOMEKATE. SAND and CLAY. Consists of basal sanu boosely ccmented with calcium casbonate, cross-bedded on medium scale. Micaceous. At the hase of this sand bed are gramule size quari? (erey, clear, dark grey. yellow), pehble size clasis of ecey cloy and subruunded calcarcous orange-brown clay. Also large grains of brown perthite Relospar- Miaximum grain size is $1.5 \times 2 \mathrm{~cm}$.

Overlying this is an uncemented medium to coarse sand layer, which is capped by coatsely erystalline gypsum nodulas and plates, weathering to a powdery erust.
The gypsum is followed by coarse grained to medium grained moderately sorted sand as below, with scattered very coarse grains. Grains are dull and subrounded to rounded.
The uppermost calcareous sand ( 5 YR8/4) alternates with thin SILTY CLAY (10YR6/2) with irregular patches of 5 YR6/2 coarse grained very poorly sorted clayey sand. All contact are distinct and flat. Apparently grades into overlying unit over short distance and by intertonguing-no disconformity observed.
-Disconformity -
NAMBA FORMATION
Unit 8. 0.40 SAND. Very fine grained. Yellowish white.
Unit 7. 3.85 CLAY, Puggy, soft, with powdery gypsum stringers at top. NS.
Unit 6. 0.85 CLAYEY SLLT. Colour $5 Y 6 / 1$ with $10 Y 6 / 2$ patches.
Unit 5. 2.23 CLAY. Hard, ereasy, Colour 5Y6/1 (silty) to $5 Y 4 / 1$ becoming 5Y6/0.5 at base, Contact with 4 gradational.
Unit 4. 0.20 SILTY CLAY. Finely laminated, dark and bright orange brown siliceous limonite nodules, dense masses of manganese oxide. Bright yellow green patches in clay. Basal contact sharp, undulating, indicates an hiatus: Rare vertebrates.
Unit 3. 0.22 CLAY. Dark olive ( 5 Y4/1) greasy. Sharp basal contact. Numerons vertebrates as for unit 2.
Unit 2. 0.12 DOLOMITIC CLAYSTONE. Pale green ( $5 \mathrm{Y} 8 / 2$ ) with black patches. Subconchoidal fracture, hard. Sharp contact with overlying units. Numerous vertebrates include lungish, crocodiles, turtles and marsupials.
Unit 1. 0.18 CL AY. Light green.
In addition to this sequence, an erosional remnant of Coonarbine Formation is superposed on the top of the Namba Formation-Eurinilla Formation disconformity. The description is:
1.18 SAND. Yellow brown ( $7 \mathrm{YR} 6 / 7$ ) with prominent columnar jointing ( 15 cm rectangules) typical of Coonarbine Formation. Fragments of Eurinilla Formation carbonate nodules occur at the base.
Also along the lake sbore is reworked material from all the above units, forming outwash and aeolian mounds of sub-Recent origin. This material is slightly older than the red brown dunes.

## SUPPLEMENTARY SECTION, EUMINILLA FORMATION SECTION 9

Location: FROME, Coonarbine map sheets. Air photo ref.: S. Aust. Dept. Lands Svy. 395, Run 4, Photo no. 9597. The section is situated on a cliff on the western edge of a small claypan on Eurinilla Creek.

RECENT SAND DUNES
0.0-2.2 SAND. Very fine to fine grained, well sorted, with subrounded grains. Large scate dune crossbedding.

## COONAREINE FORMATION

— Disconformity -
1.7-3.5 SAND. Clayey, up 10 medium grained, mostly fine grained, grains subrounded. Moderately sorted. Weak thio horizontal bedding at base. Spotted with white carbonate patches. tending to 0.5 cm dlameter cylindroids near base (weakly developed soil profile). Colour $6 Y R 5 / 7$.
-Disconformity -

## EURINIIIA FORMATION

3.05 CLAYEY SIL'T. No sedimentary structure. Oxidized dart orange brown ( $5 \mathrm{YR4} / 7$ )-original colour (ncw patches) pale orange (10YR8/2). Gypsum beds several centimetres thick occur in lower part, as for cap of 95 cm of massive disc shaped ( 0.5 cm ) gypsum rosettes in red brown silt and white gypsum flour.

NAMBA FORMATION
1.8. CLAYEY SILT. Very soft, $5 \times 5 / 0.5$ with 5 YR4.5/4 patches.

# A NEW GENUS OF LATE PRECAMBRIAN POLYCHAETE WORMS FROM SOUTH AUSTRALIA 

BY M. F. GLAESSNER*

## Summary

GLAESSNER, M. F. (1976).-A new genus of Late Precambrian polychaete worms from South Australia. Trans. R. Soc. S. Aust. 100(3), 169-170, 31 August 1976.
New material indicates differences between Spriggina floundersi Glaessner and S.? ovata Glaessner \& Wade which are comparable with those between genera of living polychaete annelids. Accordingly, a new genus Marywadea is proposed for ovata. The evolutionary significance of the Sprigginidae is discussed briefly.

# A NEW GENUS OF LATE PRECAMBRIAN POLYCHAETE WORMS FROM SOUTH AUSTRALIA 

by M. F. Glaessner*

## Summary

Claessner, M, F. (1976).-A new genus of Late Frecambrian polychaete worms from Sunth Australia. Trors. R. Soc. S. Aurt. 10n(3), 169-170, 31 August 1976.
New material indicates differences between Spriggina flowtersi Glaessner and S. 3 nota Giliessner \& Wade which are comparable with thase between genera of living polycbaete annelids. Accordingly, a new genus Marywadea is fruposed for avata. The evolutionary significance of the Sprigginidae is discussed brieny.

## Introduction

The representatives of the Family Sprigginidac Glacssner (1958) ate among the most remarkable elements of the Ediacara Pauna from the Pound Quartzite of South Aus tralia, The Late Precambrian age, stratigraphic position and geographic distribution of this rock unit and its fauna need no further discussion (Wade 1970; Glaessner 1971, 1972). The arthropod-like appearance of Spriggina is attracting increasing attention (Cisne 1975, p. 61; Sianley 1976, p. 58). The reconstraction of an ancestral crustacean by Hessler \& Newman (1975) shows startling resemblances with Spriggina, Notwithstanding these, no convincing cvidence has been discovered which would jusify the transfer of the Sprigginidae from Annelida to Arthropoda or prove a transitional posizion of this family between two phyla. New discoveries have, however, clarified and emphasized the differences between the type species S. floundersi and the species described S.? nvata described by Glaessner \& Wade (1966). Its diagnostic characters have al least the same significance as those distinguishing genera of living Polychacta and for this reason the following new genus is proposed. It differs from Spriggind in all characters listed in the diagnosis.

## Taxonomy

Genus Marywadea nov.
「ype species: Spriggina? ovata Glacesnes \& Wadc 1966.


Fig 1. Marywadea owata (Glaessner \& Wade). Latex mould of specimen from the Latc Precambrian Pound Quartzite of Ediacara, S. Aust. x 2. (Outlines and surface slightly distorted during fossilization; anterior margin of the head pushed back causing: truncation of the outline and wrinkling of the suriace; some ventral structures may be obscurely visible. Note that sull other specimens have smoothly curved anterior outline and smooth surface,

[^16]Diagnosis: Prostomium half-moon-shaped, not wider than the body with its appendages. Integument thin, wrinkled and possibly showing some underlying structures when compressed, Body consisting of up to 50 shart, broad segments, occasionally with impressions of bundles of long, curved setae. A pair of oval impressions behind the prostomium suggests the presence of teeth. The posterior end of the body is broadly rounded.
Derivation of generic namte: After Dr Mary Wade who earlier expressed the view that ovala may he generically distinct from foundersit, this has now been confirmed by new finds.
Localiiies̀: Ediacarà Hills, Brachina Gorge. Bunyeroo Gorge, Mayo Gorge.
Number of specimens of M. ovata: 16 .

## Remarks

The Sprigginidae are not arthropods as the head did not consist of the appropriate number of appendage-bearing segments and the trunk appendages are not distinctly jointed and end in acicular setae. The nouth was probably not
directed posteriorly, there was no labrum and there is no evidence of antennae or a caudal furca, On the other hand the head was conspicuous and relatively larger than in any known annelid and its integument was more strongly sclerotized in Spriggina (apparently less so in Marywadea). There is evidence of a simple pharynx in Spriggina and of two simple teeth in Marywadea, suggesting relations to Phyllodocemorpha; otherwise the Sprigginidae are unlike living Annelida. Some cvolutionary advance in the direction of a primitive arthropod is indicated particularly in ecphalization. It may be parallel to the unknown evolutionary lineage which had produced the two primitive arthropods known from the Ediacara fauna (Praecambridium and Parvancorina).

## Acknowledgments

The specimen illustrated here was found by Mr D. Westlake in August 1975 at Ediacara. I am grateful to Mr J. Gehling, Murray Park College of Adyanced Education, who presented to me casts and moulds of this and othes specimens.

## References

CISNE, J. L. (1975)-Anatomy of Triarshrus and the relationships of the trilobita. Fossils and Strata (4); 45-63.
Glaessner, M. F. (1958) - New fossils from the base of the Cambrian in South Ausiralia. Trans. R. Soc. S, Aust. 81, 185-188.
Glatssner. M. F. (1971) -Geographic distribution and time range of the Ediacara Precambrian fauna. Bull, genl. Soc: Amer. 82, 509514.

Glafssiner, M. Fi (1972)--Precambrian palacozoology: Univ. Adelaide Cent. Précambrian Res, Spec. Pap. 1, 43-52.

Glafisnfr, M. F. \& Wade, M. (1966), The late Precambriat fosils from Ediacara, South Australia. Polteontology 9, 599-628, pls 97-103.
Hesster, R. R. \& Newhan W. A. (1975), A trilobilomorph origin for the Crustacea. Fossils and Strata (4), 437-459.
Stanley, S. M. (1976).-Fossil data and the Pre-cambrian-Cambrian evolutionary transition. Am. J. Sci, 276, 56-76.
WADB, M. (1970).-The stratigraphic distribution of the Ediacara Fauna in Australia. Trans. $R$. Soc. S. Aust. 94, 87-104.

## TRANSACTIONS OF THE ROYAL SOCIETY OF SOUTH AUSTRALIA

 INCORPORATED
## CONTENTS

Robinson, A. C. and Smyth, M. E. B. The Vertebrate Fauna of Nuyts Archi- pelago, South Australia - ..... 171
Shepherd, S. A. and Womersley, H. B. S. The Subtidal Algal and Seagrass Ecology of St Francis Island, South Australia ..... 177
Anstls, Marion Breeding Biology and Larval Development of Litoria verreauxi (Anura: Hylidae) ..... 193
Rowe, F. W. E. Restriction of the chiridotid genus Trochodota Ludwig (1891) (Holothurioidea: Apodida), with the description of a new species from South Australia ..... 203
Annual Report of Council ..... 207
Award of the Sir Joseph Verco Medal ..... 208
Balance Sheet ..... 209
List of Fellows ..... 210

# THE VERTEBRATE FAUNA OF NUYTS ARCHIPELAGO, SOUTH AUSTRALIA 

by A. C. Robinson* and M. E. B. Smyth $\dagger$

## Summary

ROBINSON, A. C. \& SMYTH, M. E. B. (1976).-The Vertebrate Fauna of Nuyts Archipelago, South Australia. Trans. R. Soc. S. Aust. 100(4), 171-176, 30 November, 1976.
The St Francis group of islands in Nuyts Archipelago was visited by a joint Royal Society of South Australia and Fisheries Department of South Australia expedition in January, 1971. Seven species of mammals, twenty-seven species of birds and sixteen species of reptiles are recorded, together with comments on their habitat and abundance. The potential of the islands for fauna conservation is briefly considered.

# THE VERTERRA'TE FAUNA OF NUYTS ARCHIPELAGO, SOUTH AUSTRALIA 

by A. C. Robinson* and M. E. B. Smyth $\dagger$


#### Abstract

Summary Robinson, A. C. \& Smyte, M. E. B. (1976).-The Vertebrate Fauna of Nuyts Archipelago, South Australia, Truns_ R. Soi . $S_{4}$ Aust. 100(4), 171-176, 30 November, 1976. The St Francis group of islands in Nuyts Archipelago was visited by a joint Royal Society of South Australia and Fisheries Department of South Australia expedition in January, 1971. Seven species of mammals, twenty-seven species of birds and sixteen species of reptiles are rycorded, togetber with comments on their habitat and abuadance. The potential of the islands for fauna conservation is briefly considered.


## Introduction

The study of the fauna of islands can provide useful insights into the biogeography of the fauna on the adjacent mainland. Many islands along the southern coast of Australia were connected to the mainland whell sea level fell duriog the Pleistocenc glaclations, and samples of the coastal llora and fauna were preserved on these islands as the sea lovel rose during the interglacial periods (Main 1961). With the accumulation of information on the flore and fauna of these islands and the adjacent mainland, including the palacofaunas and floras, it may eventually be possible to reconslruct the biological history of southern Ausuralia from the Pleistocene to the present. Further, as information is assembled on the present habisat preferences and tolerances of mainland species, data on island faunas may assist the construction of a palacoclimatic history for souttern Australia. Another important aspect of islands is their suitability for conservation, Many of the islands around southern Australia preserve relict populations of species that are fare or extinct on the mainland: Studies such as this should therefore contribute to the management of these islands as fauna sanctuaries maintaining these important populations.

This paper discusses the species of mammals, birds and reptiles recorded from the St Francis Island group of Nuyts Archipclago during the joint Royal Society of South Australia and

Fisheries Department of South Australia expedition there in January, 1971 together with some additional information gathered by subsequent visitors to the islands.

The expedition visited four islands: $S$ t Francis, Masillon, Fenclon and Dog. Mammal trapping was carried out on St Francis I. (4 nights) $\operatorname{Dog} I_{4}$ (1 night) and Masillon I. (1 night), Since then trapping has been carried out on Egg I. (D. Murray, pers. commi), Data were obtained from animals caught in traps or observed by spotlight, from collection of bones and from sigus of mammal activity. Shefman and wire cage traps were used in trap lines for a total of 153 trap nights (St Francis I. 105, Dog I. 19, Masillon I. 19, Egg I. 10). Traplines and spotlight surveys covered all vegetation associations on the islands and gave a wide coverage of the areas. Specimens have been Iodged in the South Australian Museum (SAM) ; registration numbers are cited.
The bird list is based on the observations of all members of the cxpedition and compiled by Mr P. Macrow, The records generally represent sight records, but where doubt existed ax to the identity of a species, a specimen was shot for a positive identification.

The reptile list is primarily from collections made on St Francis I. Only part of a day was spent looking for reptites on Dog, Masillon and Fenclon Is.

[^17]
## MAMMALS

Mammals previously recorded from Se Francis 1. inchide the bandicoot Isoodon obesulur numbicus and at rat kangaroo, presumed to be a species of Betrontia, which had become extinct by the 1920) (Wood Joncs 1924: Verco 1935). Three terrestrial and two marine specres ase now added, and these are marked by an asterisk in the lise which follows. In addition, skulls collected on the island enabled identification of the species of Bettonyin.

## Family PERAMELIDAE:

Isomdan obesulus (Shaw). SAM. M8546M8549. Short-nnsed handicoot. St Francis I.

A common animal preferring the grassy areas on the higher parts of the island but also occurring in the saltbush steppe association covering the remainder of the istand. These bandicouts have survived the infroduction of cats and the conversion of a large part of the ishand to grassland by cultivation. I. obesulus remains common in south-eastern and southwestern Australia and there are populations on kangaron 1. (Andrewartha \& Barker 1969) and kranklin 1. (Watts 10\%4).

## Family MACROPODIDAE

Bettongia penicillata (Gray). SAM, M8353: Brast-talled bethong. Se Erancis. 1.

Fragrents of skulls were found in the eanch. hills behind Petsed Cove, but living animals were nut obscrved. Bettongs were reponed to be very common when St Francis 1sland was first settled. Wood-Jones (1924) and Verso (1935) reported that the setters introduced cats to the island to exterminate the bettongs which were causing damage of vegetable gardens. It seems likely that alteration of habitat may have also played a part in their decline, as this species nests in dense cover such as that formerly provided by the sclerophyll shoub community on the higher parts of the island. The setters completely destroyed this habitat through clearance for wheat growing- $B_{-}$penicillata was formerly widespread throughout the southern hatf of Australia hut now appears to be confined to southwest Western Ausiralia.

[^18]vidual collected was introdubed at some- time. or that it was lest by seafers known to have collected large numbers of wallabier on other islands ( $N$. Wace pers. cuaini.). They were formerty widespread on the south and southwest Australian mathland abil populationg were rectruled from Kangaroo I., Flinders $\mathbf{1}_{\text {, }} \mathrm{St}$ Peters $I_{\text {er }}$ and a number of Western Australian islands. Today, in South Australia, lammara semain common only on Kangaroo I. and on Girecnly 1. where they were introduted (Mirchell \& Behrndt 1949); the St Peters I. population is extinct, the Finders $I_{1}$ one is almost extinct and the mainland population is reduced to a remnunt on Eyre Peninsula ( B , Aitken pers comm-),

## Family MURIDAE

${ }^{\text { }}$ Rattus fuscipes (Waterhouse). SAM, M8541MW545, M8598-M8600. Bush rut. Masillon and Dog is.

This specits appeated to be common on these islands. where it nested in limestone crevices and, possibty, mution bird burrows. It seens unlikely that the smaller islands of Nuyts Archipelago ewer supported manmals larger than $R$. fuxcipes. Its absence from Egg 1sland suggests that this island may be too small to support a population of $R$. jusciper. We did not see or collect this rat on St Francis 1, where there wre extensive areas of suitable babitat. hut again they may have been exterminated by cats.
*Rattus ratus (I.inn.). SAM, M8551, Black yar. St Francis E.

Two lnwer jaws of this introduced species were colfected in the sandhills hehind Petrel Cove, No living animals were caught. R. rufus was undoubtedly introduced by the early setters to St Francis I. and has since hecome extinct

## Family OTARIDAE

*Neuphoca cinerea (Pcron \& Lesucur). Arestra liun seat tion. Fenelon I.

This species visits all the islonds and chere is a breeding culony on the heach of Fenclon 1sland. In Jantary 1971 this colony numbered atpproximately 50 individuals, including a number of pups. D. Mursay (pers. conm.) provided the following estimates of the size of this colony in February 1973: mature bulls 7 , pups $S$, cows and immature bulls 36 . The number of individuals in the vicinily of the beach was 56-5

A South Australian National Parks and Wildlife Service expedition in Sune 1975 was unable to land on Fenelon I., but a count from the boat showed mature bulls $4_{r}$ pups 5 , cows and immature bulls. 3. They also noted a possible breeding colony of this species on Dog f. Numbers recorded for this colony were bulls 3 . cows and immature bulls 10 . In addition 20 sea lions were seen on Freeling. I.
*Arctocephalus forsteri (Lesson), Nevi Zealand fur seal. Fenelon I.

The South Australian National Parks and Wildife Service expedition in June 1975 noted 40 fur seals on Fencion 1. No evidence of breeding was observed. They also noted 5 fur seals on Freeling I.

## BIRDS

No systematic list of the birds of the St Francis Group has been compiled. The following list contsins comments on habitat and abundance of birds observed during the 1931 expedition.

## Family SPHENISCIDAE

Eudyptula minor (Stephens). Lisfle pinguin. St Francis 1.

Common around the shores of Petrel Bay: most of the binds were in a heatvy moult.

## Fanily procellaridat?

Macronectes giganteus (Gmclin), Giamr petref. Dog 1 .

Beach washed specimen.
Puifinus tenuirostris (Temminck). Shors-sailed shearwater. All istands visited except Fenelon.

Nesting burrows were found wherever sufficient soil depth allowed excavation, Approximately one-third of St Francis I. was covered by the burrows. During the day most burrows contained one adult bird and one egg in an advanced stage of incubation. At approsimately 20.00 hours each evening vast numbers of birds returned to the isliand from feeding at sca.

## Family OCEANTIDAE

Pelagodroma marina (Latham). Whife-faced starm petrel, Dog and Fenclon Is.

Dried remains and wings were found. Small burrows. on Fenelon I. may belong to this species.

## Family PHALACROCORACIDAE

Phalacrotorax varius (Gmelin). Pied cormoran. St Francis. I.

A small number of birds were fishing in Petrel Bay and roosting in company with black-faced cormorants at the eastern end of the bay.
Phalacrocorax fusesecens (Vieillot). Black-faced cormorant, St Francis 1.

Approximately 20 bisds roosted on the eastern headland of Petrel Bay.

## Famity ANATIDAE

Cercopsis novachollandiae (Latham). Cape Barren goose. St Francis 1

Approximately 50 geese were observed and flocks of 3 to 20 were seen feeding on the eastern end of the island near the lighthouse. The geese congregated around three small fresh water soaks above granite boulders on the eastern end of the istand, Goose droppings were also found on Masillon I.
Anas sp. Unidentificd teal. Egg I.
One bird was seen at sea near this island.

## Family Accipitridae

Haliaetus leucogaster (Gmelin), White-breasted sed eagle. St Francis and Masillon Is.
Several adults and one immature bird were observed fiying over St Francis I and three adult birds were scen fiying over Masillon I.

## Family PANDIONIDAE

Pandion haliaetus (Linn.). Osprey. St Francis I.
One or two birds were observed on most days at the eastern end of the island ncar the lighthouse. Old nests of sea eagles or ospreys were found on the eastern side of Dog 1. and the southern side of St Francis I.

Family FALCONIDAE
Faleo percgrinus (Turstall), Peregrine falcon. Masillon I.

Only a single bird was observed.
Falco cenchroides (Vigors \& Horsfield). Nomkeen kestrul, St Francis, Dog and Masilton Is.

Several pairs on St Francis I.

## Family PHASLANDAE

Coturnix pectoralis (Gould). Srubble guaid. St Francis I.

Several birds were flushed in the grassy area near the lighthouse.

## Family rallidar

Rallus philippensis (Linn.). Bonded landrail. St Firancis and Dog Is.

This species appeared common on St Francis I. and two specimens were collected. Only two birds were sighted on Dog.I.

## Family HAEMATOPODIDAT:

Haematopus fuliginosus (Gould). Sooty oysterraucher. All islands visited.

A common bird of the rocky shorelines.

## Family CHARADRIDAE

Vanellus miles uovachullandiae (Stephens), Spur-vinged plover. St Francis I.

Eight to ten birds were ohserved feeding shound the shores of Petel Bay.
Charadrius rubricollis (Gntelin). Hooded dotrevel. St Francis I.

From two to ten birds were seen on the beach in Petrel Bay each day.
Charadrius alexandrims (Limu,), Red-capped dotferel. St Francis 1.

Ore bird was abserved on the beach in Petrel Bay in company with four Red-recked stints.

## Family SCOLOPACIDAE

Calidris ruficollis (Pallis). Red-necked stint. St Francis 1.

Four to eight bitds on the beach in Petrel Hay, Onc specimen collected.

## Family LARIDAE

Lâus nupathollandiae (Stephens). Silver gull. St. Francis T.

Ninc to ten birds on the beach io Petrel Bay. Larus Pacificus (Latham), Pucific gull. All islands.

A common hird of these islands. Adulty and immature birds were present in about even numbers. Approximately 20 birds furaged alosig the shores of Petrel Bay,
Hydroprogne tschegrava (Lepechin). Casmim tern. Si Francis and Dog Is.

Two birds noted on each island.

## Family PSITTACIDAE

Neophema petrophila (Gould). Rocik preirrob, Found on all islands visited.

Numerous small flocks were fushed while walking on St. Francis I.

## Family IIIRUNIBINIDAE

Hirundo tahitica ncoxena (Gould). Welcome swallow. Found on all islands visited.

A common bird. Old nests in houses, lighthouse sbed and caves.

## Family MOTACILIDDE

Anthus novaeseclandiae (Gmelin). Pipir, All Islands visited.

Abundaat.

## Fanvily MELIPHAGIDAE

Meliphaga virescens (Vicillot). Singing, honeycuter. All islands visired.

A very common bird. Eight to ten birds were present in the camp area at all times.

## Family CORVIDAE

Coryus coronoides (Vigors \& Horsfield), Aussralian raven, St Francis I.

Common: il flock of approximately 30 birds wors obscrved as the expedition landed. Small flocks were seen daily, foraging amongst the mutron Bird burrows. The lighthouse tower wes it lavoured roust, and nest remains were fount here. Other nests were found on low bushes.

## REPTILES

Eleven species of reptiles are listed or mentioned for Nuyls Archipelago by Proctor (1923). Waite (1923) and Worrell (1963). Our expedition udded another five species: these are indicated by an asterisk in the list below, The islands of the group from whith each species is now known is thso recorded. Some contrasts between the abundance al several species on St Francis and other off. shore islands in the Bight are noted in the list below. Possibly the drier climate of the Nuyts Group is responsible,

## Fimily GEKKONIDAE

*Underwoodisaurus miliì (Bary). SAM, K12858. R12863, R12870, R12876, R12889. St Francis, Masillon, Fenelon, Dog Is.

Common under limestone boulders or in burrows in the sand by day,
*Heteronotia binoti (Gray). SAM, 12878. St Francis I,

Common under stones by day,
*Phyllodactylus mammoratus (Gray). SAM. R12865, R12877. St Francis, Fenclon 1\%.

Surprisingly uncommon, for this is a very abundant species on some other off-shore islands. Found nnly under akolianite slabs on exposed coastal arcis.

## Famly PYGOPODIDAE

Lialis burtonis (Gray), SAM, R12896. St Francis $\mathrm{I}_{\text {. }}$

Only one seen during the visit.
Aprasia striolata (Lutken). Revarded for St Francis 1: by Kluge (1974); this is the specimen referred by Proctor (1923) to Defisa fraseri. No Aprasiu was collected in IM71.

## Fanily AGAMIDAE

Amphibulurus fiomi (Pructor). SAM, R12874, St. Francis 1 .

Found ondy among the exposed granite around the cdges of the island. Wooc-lones did not find it (Proctor 1923), but Worrell (1963) has recorded it from St Francis I.

## Family SCincidat

Hemiergis peronii (Fitzinger). SAM, R12862. St Francis, Dog and Fenelon Is.

Surprisingly infrequently seen: like Pomarmoratus, this is a common species on othet off. shore islands.

Egernia multiscutata (Michell \& Behradt). SAM, Rt2857, R12861, R12873, R12888. St Francis, Dog, Masillon and Fenclon Is.

A very common specjes on the sandier parts, burrowing under rocks or bushes and using the mutton-bird hurruws for quick retreats,
lerista frosti (Zietz). SAM. R12859. Masiltor 1.

Another species usually common on offthore islands but very scance in the Nuyts group.
'Lerista sp. (acar picturata). SAM, R12880. St Framcis 1.

A large member of the genus, with forelimbs reduced to dimples and two toes on each hinel limb. Commonly found buried in sand under stones:
*Menetia greyii (Gray). SAM. R12875. St Francis I:
Rarely secn, probably because it is small, quick and secretive.

Morethia obscura (Storr). St Frascis I.
Again, rarely seen and yery difficull to catch. no specimens collected.
Tiliqua branchiale (Gunther). SAM, R12864. K12879, St Francis, Fenclon Is.

Common in litter and around the buildings.

## family BOIDAE

Morelia spilotes variegata (Cray). Carpet smake. St Frabis 1 .

Commonly seen in the morning and late aftemnors, na specimens collected.

## Fanily Elapibae

Drysdalca coronoides (Gunther), SAM, R12860. R12881. White-ilpped snake, St Francis, Masillon and Fenelon Is.

Not frequently seen, but probably quite com. mon.
Notechis ater (Kreft), SAM, R12895. Tiger stuke. St Francis I.

Usually conmon on nutton-bird islands, yet only it few were seen even at night.

## Discusviun

The vertcbrate fauna of the St Francis i. group of Nuyls Archipelago is quite diverse and remains relatively undsrurbed and relatively free from intraductions. The fauna of most South Australian islands and indeed of the mainland adjacent, is still incompletcly known, and so biogeographical interpretations ate difficult at this stage. However, some comments may be made on the importance of these islands in conservation.
Island faunas are extremely vulnerable to man's interference, and the fate of Bettongia penteillater on St Francis I. illustrates this point If further work there definitely establishes that this species is extince, the opportunity exists to re-establish dense vegetation on the island and introduce $B$. penicllatu from Western Australia. This should succeed as cats ate no longer present on the istand. It is obviously a longterm project but it merits consideration because the island population could uttimately serve as a reservoir of animats for release in suitable areas of their former mainland range, In addi(ion, if Rattus fuscipes is absent from Si Francis 1. it could be re-introluced from ncighbouring jslands.

The majority of the birds observed are common on all istands in the area and on the adjacent coast, but in notable exception is the Cape Barren goose. The total world population of this endemic Australian species, although it is increasing, is still dangerousiy low, and so every attempt should be made to conserve the known populations from disturbance.

## References

Andrewhrtha, By. 6. \& Barker, S. (1969) -Introduction to the study of the ecology of the kangaroo island wullaby Protemmodon eugenid (Desmarest) whin Flinders Chase Kangarco Island, South Australia. Trans. R. Soce 5. Arsili93, 127-132.

KuUGe, $\wedge$, G. (1974), - A taxonomie revision of the lizard family Pygopodiclae. Misc. Pubt. Asus. Zool. Untv. Mich. 147, 1-221.
Main, A. K. (2961),-The occurrence of Macropodidae on islands and its climatic and ecological implications. $I$. Proc, $\boldsymbol{R}_{\mathrm{t}}$ Soc. W. A esst. 44, 84-89.

Mitchell, F. J. \& Behrndt, A. C. (1949),Fauna and flora of the Greenly Islands, Part I, Introductory narrative and vertebrate fauna. Rec. S. Aust. Mus. 9, 167~179.
Proctor, J. B. (1923).-The fiora and fauna of Nuyts Archipelago and the Investigator Group. No. 5-The lizards. Trans. R. Soc. S. Aust. 47, 79-81.
Verco, J. C. (1935).-In B. C. Cotton (Ed.), "Combing the Southern Seas", chapter 8 , (Rigby: Adelaide).
Warte, E, R (1923).-The flora and fauna of Nuyts Archipelago and the Investigator

Group. No. 10-The snakes of St Francis Island. Together with a note on the name of the geographical group. Trans. R. Soc. S. Aust. 47, 127-128.
Watts, C. H. S. (1974) -The Nuyts Island bandicoot (Isoodon obesulus nauticus). S. Aust. Nat. 49, 20-24.
WOOD-JONES, F. (1924).-"The mammals of South Australia. Part II: The bandicoots and the herbivorous marsupials." (Govt Printer: Adelaide).
Worrell, E. (1963).-"Reptiles of Australia". (Angus \& Robertson: Sydney).

# THE SUBTIDAL ALGAL AND SEAGRASS ECOLOGY OF ST FRANCIS ISLAND, SOUTH AUSTRALIA 

by S. A. Shepherd* and H. B. S. Womersley ${ }^{\dagger}$

## Summary

SHEPHERD, S. A. \& WOMERSLEY, H. B. S. (1976) .-The subtidal algal and seagrass ecology of St. Francis Island, South Australia. Trans. R. Soc. S. Aust. 100(4), 177-191, 30 November, 1976. A subtidal survey of selected sites in the Isles of St Francis off the west coast of Eyre Peninsula, South Australia, shows that upper and mid sublittoral zones similar to those of Pearson I. and West I. occur. The upper sublittoral on rocky coasts is dominated by species of Corallina and Jania, with Cystophora intermedia present near low tide level or sometimes as deep at 3 m . The mid sublittoral is characterised by larger brown algae (Ecklonia radiata, Scytothalia dorycarpa, and species of Cystophora and Sargassum), often with an understorey of red algae. The lower sublittoral zone occurred between 47 and 57 m deep on the transect subject to greatest water movement, and is characterised by red algae together with bryozoa, sponges and hydroids.
In the sheltered Petrel Bay- communities of the seagrasses Amphibolis antarctica and Posidonia occur.
An algal species list is appended.

# TIIF SUBTIDAL ALGAL AND SEAGRASS ECOLOGY OF ST FRANCIS ISLAND, SOUTH AUSTRALIA 

by S. A. Shepherd* and H. B. S. Womersley ${ }^{\dagger}$

## Summary


#### Abstract

Shephirn, S. A. \& Womerstey. H. B. S. (1976).-Tbe subtidal algal and seagrass ecology of St. Francis Island, South Australia. Trans. R. Ser. S. Aialst. 100(4), 177-191, 30 November, 1976.

A suhtidal survey of selected sites in the Isles of St Francis off the west coast of Eyre Peninsula, South Australia, shows that upper and mid sublittorall zones similar to those of Pearson I. and West I. occur. The upper sublittoral on rocky coasts is dominated by species of Corallina and Jania, with Cystophora intermedia present near low tide level or sometimes its deep at 3 m . The mid sublittorat is characterised by larger brown algae (Ecklonia radiata, Scytothalia dorycarpa, and species of Cystophora and Sargassum), often with an understorey of red algae. The lower sublitoral zone occurred between 47 and 57 m deep on the transect subject to greatest water movement, and is characterised by red algae together with bryozoa, sponges and hydroids.

In the sheltered Petrel Bay, communities of the seagrasses Anmphiholis antarctica and posidonia occiur. $\wedge \pi$ algal species list is appended.


## Introduction

The marine flora of the Great Australian Bight is litle known. Apart from the intertidal region, which has been briefly discussed by Womersley \& Edmonds (1958), the subtidal region is known only from various drift collecions and the ecological account of Shepherd \& Womersley (1971) of Pearson Island. towards the eastern limit of the Bight.

An expedition to the Isles of St Francis, lying of Ceduna, supported by the then Fisheries and Fauna Conservation Deparment and the Royal Socicty of South Australia, visited the islands from 4-11 January, 1971, This provided the opportunity for-a brief survey of the subtidal ecology of selected sites subject to varying degrees of water movement. Although limited in time, these studies provide the first such information from the northern part of the Great Australian Bight,

I he isles of St Francis comprise nine small isjands, the largest of which, St Francis I. (Fig. 1) is about 4 km across and lies at $32^{\circ} 31^{\prime} \mathrm{S}, 133^{\circ} 18^{\prime} \mathrm{E}$, about 56 km from the mainland. The islands are granitic, rising
steeply from the sea-floor, and subtidally the topography consists of massive blocks and sheets of rock. In sheltered areas (e.g. Petrel Bay), the sandy sea-floor slopes more gently into decper water.

The short stay on the island prevented a detailed survey, but three survey sites were chosen on St Francis I., subject to different degrecs of water movement. One site was chosen on nearby Masillon L., and collections weré also made at Egg 1 .

The field work was limited to the subtidal region, but brief observations of the intertidal region indicated that the organisms and zonation present were similar to those described by Womersley \& Edmonds ( 1958 ) for such granitic steeply sloping coasts.

## Methods

The following transects (Eig. 1) were chosen, and in each case the transect ran normal to the coast, from low water level down the slope to the depth where rock was buried by sand, except for transect D which was predominantly on sandy bottom.

[^19]

Fig. 1. Map of four of the isles of St Francis showing the position of the four transects (A-D). Inset shows the situation of the islands in the northern Great Australisin Bight.
I'ransect A was on the NW corner of St Francis $I_{\text {s }}$ under conditions of strong water movement, and terminated at 57 m depth. A sampling gap ( $32-38 \mathrm{~m}$ deep) in this transect was filled by collections from a sinvilar site on Egg I.

Trarsect $B$ was on Masillon $\mathrm{I}_{\text {o, }}$ subject to moderate water movement, and terminated at 33 m depth.

Tronsect C on St Fraticis 1., was subject to relatively slight water movement, and descended to 20 m .

Pransect D in Petrel Bay on St Francis 1., was the most sheltered site, with a gently sloping, sandy, sea-foor dominaled by seagrasses.

On transects A, B and C, the diver first swam aboul 2 m above the bottom along the transect, estimating the percentage cover and recording the vertical range of the prominent hown algate. This was then repeated on two parallel lines, one each side of the first transect and about $15-20 \mathrm{~m}$ distant. Estimates of cover for particular depths are given as the average of these three valucs, which were made subjectively as a percentage on a scale of $0-10$. Many species wary considerably in percentage cover niver a horizontal distance of some metres ${ }_{j}$ but the figures given provide an overall assessment of the cover along the transects.

Communities were recognised by the upper stratum dominants, this being the most satisfactory method on such suryeys. At the depths studied. algac were dominant except at. $50-57$ $m$ on transect $A$, and within each community quantitative samples of the upper straturn were taken for biomass estimates. This was done by counting the plants in a hoop of $\mathrm{bm}^{2}$ area, placed sequentially along a horizontal line some 16-24 times, so as to give a fotal sampling area between 2 and $3 \mathrm{~m}^{3}$, and the number of plants per $\mathrm{m}^{22}$ calculated. The aver. age weight of an individual plant was determined by weighing it random sample of 10 plants, and the biomass per me then calculated. The other strata were sampled by means of 4 to 8 sequential samples, each of $\frac{1}{1} \mathrm{~mm}^{-2}$.

On transect D in Petrel Bay, a diver was towed on an underwater sled behind a boat, and the distribution and depth tange of the seagrisses were noted, and photographs taken.

The ilgal samples were preserved in $4 \%$ formaldchyde-sea water, and taken to the laborutory for determination and analysis. Biomass figures are based on the wet weight of the preserved collections after removal of surface water. These estimates should be taken as examples only of the size and variation in biomass of the community dominants, since the restricted diving time on a shọt expedition such as this limits the range of transects, and the number of samples that can be taken. The transect samples were supplemented by other general observations and collections, and by photography.

Depths were measured by capillary anil mechanical depth gauges, and the results averaged and adjusted to approximate low lide level.

## Environmental factors

The short duration of the survey precluded detailed studies on environmental factors, but
the following information is available. The Istes of St Francis rise from a maximum water depth of about 60 m at the southwest of St Francis 1. and are comparable to the Pcarson Islands in their distance from the mainland and in their topography.

## Water movement

Si Francis I. is subject to a strong southiwesterly swell of $10-12$ second period, prevailing throughout the year, similar to that at Pearson I. and West 1. (Shepherd \& Womersley $1970,197 \mathrm{I}$ ). In summer, a short southerly swell is gencrated by the strong southerly winds which blow for about 12 hours each day and are characteristic of this part of the Great Ausralian Bight. Wave action on all parts of the istands facing south to west is strong in the intertidal region.

## Temperature, salinity and nutrients

Sea surface temperatures range from $18-20^{\circ} \mathrm{C}$ in summer to $14-15^{\circ} \mathrm{C}$ is winter, according to Vaux (1970) and datat obtained from various oceanographic stations in the vicinity (C.S.I.R.O. 1967a, 1967b, 1968, 1969). In summer, bottom temperatures at 50 m depth are $2-3^{3}$ C lower than sea-surface temperatures. During the sfudy, the surface temperature was $18^{\circ} \mathrm{C}$ of the island and about $20^{\circ} \mathrm{C}$ inshore in Petrel Bay.

Salinity, phosphatc, nitrate and oxygen levels are similar to those for Pcarson I., viz, salinity 35.6-36.2\% inorganic phosphate 0.09-0.17 $\mu \mathrm{g}$ atom/hitre; nitrate about $0.3 \mathrm{\mu g}$ atom/litre; and oxygen saturation 93-1030.

## Submarine light intensity

Light penetration was not measured but according to H. Jitts (pers. comm.) it corresponds to that for Type II oceanic water of Jerkov (1968), and is thus only slightly less cleir than the waters about Pearmon I.

## The algal and seagrass ecology

The algal-dominated subtidal photic zone at other locialities in South Australia has been found to present three main zones, designated as the upper, mid, and lower sublittoral zones (Shepherd \& Wornetsley 1970, 1971): These zones are also apparcont in the areas studied al St Francis I.

Communities of the rocky coast will be described first, including those on both horizontal and sloping rock but not those in crevices or under overhangs, followed by the sea-grass and algal communities of sheltered, sandy areas. The communities studied are essentially those subject to sullicient light jntensity to be plant dominated, but prominent animal species are montioned where present.


Fig. 2. A vegetation profile of trantisect (St francis 1).


Fig. 3. A vegetation profile on transect B on Masillon I. See legend on Fig. 2 for other algal taxa.


Fig. 4. A vegctation profile of transect C on St Francis I. See legend on Fig. 2 for other algat taxa.

## A. ROCKY COASTS

Transects $A, B_{4}$ and C traverse rocky areas. generally steeply sloping and including both horizontal and sloping rock surfaces. The marked light gradient with depth, coupled with the considerable gradient in water moyement within each transect (especially A) and also between the transects, gives rise to a fairly distinct zonation of algae. Profiles for transects A, B, and C are given in Figs 2-4, and the depth telationships of the communities to water movement are given in Fig, 5.

## 1. Upper sublittoral zone

This zone is subject to the most intense water movement, and varies in vertical width from $5(-7) \mathrm{m}$ on rough-water coasts (transect. A, Fig. 2) to $2(-3)$ m on sheltered coasts (transect C, Fig, 4). Communities of this zone typically bave a single, dense, stratum of fairly uniform height, ranging from $15-20 \mathrm{~cm}$ for the Cystophora intermedia community to $2-3 \mathrm{~cm}$ for the Janiar community.

Corallina cuvieri, in high-light situations (i.e. especially horizontal surfaces and those facing

TABLE 1
Species and homass \{gim"\} cormposfion of uppep sublintural frommonilies in sampleq takers as dional (1-1.5) m demfh on sransects $A$. th and $C^{3}$ "P" indicates spurse oceruryence alhuugh nos prespm in sample.

Transect	A	8	c	
Arta nampled ( $\mathrm{mb}^{2}$ )	0.25.	1)25	0.37	
Water movernent	Strmag	Mulerate	Slicht	
Dominant Species				
Cwnluphora antrmuedia	1.280	0	30	
Myriodesma harvesanum	1,400			
Corallina euviers				
C. crioptala		8.800	4,200	
damia furrigitata				[1.900]*
Dihee Specles				
Camierpes brewnia	70			
Coulerpa papillowes	140			
Cissophoras sracill	$<10$			
Lodospira blorspldata	40		10	
Puchudlctyen powdrlarum	50	31	So	
Sarkaw ${ }^{\text {Pam spp. }}$		<10		
Callophylis rangilminus:	280	15		
Champlu obsoleta	80			
Dagya chavicera			$<10$	
Oriffithsa fexex	260			
Hypmeasp,	40			
Luturencia filljormis f. Aereruchada	290			
f. ivyara harveyiana	$<10$			
Polyriphonha nigritu	$<111$			
THial cuverage	100	100	106	
Biomatss $\mathrm{g}^{\text {/ }} \mathrm{m}^{4}$	3.950	2.840	4,330	[11,900]
Number of species	14	4	5	5

In each case the biomass value of the specics chatacterisIng the community is in bold type,

- This sample was taken from a distinct Jania community al a depth it about 0.5 m (sen Fig 4).
noth or cast) and subject to strong to moder. ate water movement, forms an almost pure community completely covering the rock surface. To calmer ardeas a Jania fasigiara community, presenting à somewhat similar aspect of shutt, tufted plants, replaces the Corallina. The Coralling cuvieri community extends upwards molo the lower eulittoral zone of the intertidal in rough-water situations, as described by Womersley \& Edmonds (1958, p. 232),

Cystuphora intermedia forms a fairly pure cummunity under slightly less extreme water movement than Corallina, and also on sloping (rather than hotizontal) surfaces subject to somewhat lower light intensity. While Cysrophora intermedia may be dominant in such situations, in lower fight intensity Myriodesma hurveyanum becomes co-dominant, with numerous associated species of green, brown and red algae (see Table 1).

Cystophora infermedia is rare within the Corallina cubiepl community, but may be com-


Fig. 5. Change in vegetation patterns along water movement and dcpth gradicnts.
mon sear the upper and lower boundaries of this community. Its ofcurrence at the upper limit (i.e. near low tide leyel) agrees with the observations of Womersley \& Edmonds (1958) that it marks the sublittoral fringe, but at St Francis 1 . it is not confined to this zone, occurring also as deep as 3 m .

## 2. Mid sublituoral zone

As at West I. and Pearson I., this zone on St Francis I. is characterised by larger brown algae $30 \mathrm{~cm}-1 \mathrm{~m}$ in height, forming an upper canopy or stratum over a lower stratum mainly of red algas $5-25 \mathrm{~cm}$ in height. The upper limit of this zone depends on the intensity of Water movement as described for the upper sublifloral zone, and the lower limit on the limifing depth of large brown algac; this is about $45(-47) \mathrm{m}$ deep on transect $A$. The vegetation profiles of Figs 2-4 represent the appearance of this zone on transects $\boldsymbol{\Lambda}_{r}$. $\mathrm{h}_{\text {, and }}$ $C$ and the relations of the vegetation patterns with waler movement arc shown int Fig. 5. The avcrage cover of the important upper stratuns species is given in Fig. 6.

Several communities could possibly be recognised in this zone, but more extensive studies than were possible in the time avalable are needed to establish their validity. The dominants and understorey species will therefore be discussed more generally.

Ecklonia radiata and Scytothatia dorycarpa (Fig. 9) dominate this zone under conditions of considerable water movement at the rough-

TABLE 2
Biomass (g/m) composition of mid sublitroral species in samples taken at certain depths on 3 transects. Further data on the vertical range of the species is given in the appendix

Transect	A			B			C			
Depth (m)	6	13	35	6	22	32	6	13	19	20
Area sampled (m2)	0.5	1	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Upper stratum										
*Ecklonia radiaia	2,200	300	1,800	450	900	1,200	-	1,050	250	740
\$ Scysothalia dorycarpa	2,300	2,560	200	50	1,380	2,500	-	1,245	200	
Cystophora pectinata	75	600	-	400	-		-	1,910	720	
Cystophora moniliformis			-	420	-	-	-	1.10	-	
Myriodesmo harveyanum	-		-	250		-	-		-	
Sargassum bracteolosum	-	315	P	510	180	-	-	P	15	90
Sargarsum tarlans	75	-	200	120	-	-	10	250	340	
Sargassum verruculosum	-		10	-	-	-	800	90	320	
Surgassam linearifolium	-			P	-	-	390	-	10	
Sargassum heternmorphum	-	-	-	-	-	-	210	-	-	
Sargassurn decipiehs	-	-	-	50	-	-	950	210	92	
Cysfophora browniz	-	-	-	P	-	-	110	P	-	
Cystophora subjarcinata	■	-	-	P	-	-	220	720	280	
Cystophora monilifera	-	-	-	-	-	-	560	330	710	-
Upper stratum coverage ( \% $_{\text {) }}$	100	95	35	90	50	60	80	100	80	75
Upper siratum biomass ( $\mathrm{g} / \mathrm{m}^{2}$ )	4,650	3,775	2,210	2,250	2,460	3,700	3,250	5,805	2,937	830
Lower stratum										
Brown algae										
Dictyoptcris muelleri	-	-	$p$	-	30	-	5	P	6	
Dictyota diemensis	-	-	$p$	30		-	10	-	5	-
Dictyofa prolitera	-	-	50		130	-	-	-	5	-
Chlandophora microphylla	-	-	-	-	180	-	-	-	25	80
Glossophora migricans	-	-	$P$	-	90	-	-	-	-	
Hydroclathrus clathratus	-	-		-	-	-			5	50
Lobospira bicuspidata	-	-	5	$<5$	-	-	610	75	6	
Pachydictyor paniculatum	-	-	5	25	P	-	P	60	10	
Zonaria spiralis	-	20	50	25	P	-	-	40		-
Zornaria sinclairii	-		50	-	600	-	-	-	4	
Zonarla tirneriana	-	30	P	-	-	-	-	-	-	-
Red algac										
Austraphyllis alcicornis	-	-	4	-	-	5	-			
Ballia callitricha		-	4	-	-	40	-			
Boiryucladia obavata	-			-	-	-			50	60
Champiu affinis	-	-	100	-	-	-	-		5	
Cliftonaea pectinata	-	-	60	-	-	-	-		5	
Delisea hypneoides	-	-	30	-	-	-			5	
Delisea pulchra	-		105	340	P	-	-			
Kallymeria cribrosa	-	-	20	-	-	-	-			
Laurencia filiformis f, dendiritica	-	-	80	-	-	-				
Laurercia spp.	-	-	-	-	-				36	25
Usmundaria prolifera		-	-			-	410	40	1,020	3,400
Plocantitom angustum	P	$p$	10	10	50	80	P	P	4	
Plocamium cartilagineum	P	-	$p$		90	5				
Plocqmium mertensit	P	P	300	25	180		P	P	6	
Plocamium preissianum	P	20	5	20	150	10	5	P	4	-
Pterosiphonia spe				680						
Rhodophyllis membranacea	-	-	5		50					
Sonderophycus australis		-		-	10	10				
Webervanbossea kaliformis	-	-	5		50			P	\$	
Biomass	-	70	888	1,160	1,610	150	1,040	215	1,214	3,615
Total number of species in sample	4	7	25	24	22	12	11	16	29	7
Total Biomass	4,650	3,845	3,098	3,410	4,070	3,850	4,290	6,020	4,151	4,445

[^20]
Fig. 6. Vertical distribution of $\%$ cover of prominent upper stratum species of the mid sublittoral zone, and total $\%$ cover of upper and lower strata
water sitc (transect A. Fig, 2), but with less water movement (trunsect B, Fig. 3) diter species of brown algac (Saygassam hracrenloswm and ('ystophora moniliformis) also become prominent. With greater shelter (iransect C. Figy 4, 7, 8), Cystophora monili/dra, C. necrinata and Smegssum verruchloswm are common, logether with $C$, sub/arcinate, Satgassum decipiers and S. varians. Thesc species are mosi common in the upper part of the mid sublittoral, with Ecklonia and Scylorhedio stil] common in the lower part of this zone (Fig. (i).

Sargessum brueteolasume ind Cystophora meniliformis on transect H. and S. verniculosum and $C$ monillfera on transect $C_{y}$ have similar vertjeal distributions, enabling fiehd recognition of afgal subernes dominated by these species pairs.

Unuletstorey species are sparse over much of transocts $A$ and $C$. and moderately common only un Iransect $I I$ where the canupy is less dense. The distribution of many understorey species is too patchy to show any obvious tela* tionship with ecther the distribution of upperstoncy species or with apparent environmental Factors.

The commonest understorey species are of Plocamium ( $P$. angeasitm. P. mertensit and $P$. predssianum). They occurred on all three transects, with a verfical depth tange of as much as 50 m : where they are rare or absent on horizontal surfaces, they are hsually present on vertical ones.

Other species with a wide vertical ranige are Caulerpa brownif. Lobuspira bicuspidata and Pachydictyon pmiculatumi these species are known to be tolerant 10 a wide range of light intensity and of water movement. Some other species (e.g, Glormphors nigricans. Ausfropioylis alcicornis. Clifronata pecrinatee and Delisca hypnenides) wete found only in ooepes Water; most of these specics occur also at West T. and Pearson l., with similar distribution in condiuions of low light (and slight water movement at Ucpith).

On 1ransect C at 17-18 m depth (Fjg. 4). Urete 14 an abrupl decline in the number of upper stratum specics and their coverage and atr inctesse in converage of several species of the lower stratum. e.g. Osimutharia prollfera,

Borryoctadia obopeta and Ifydrochutkris chathreters. This community forms a band $1-2 \mathrm{~m}$ wide lying imnediately above the sasuly bottom at about 20 mi depth, and the species ane uppitrently tolerant of the sedimentation which is pronotinced over this narrow band.

The cover of upper and lower stratum specles, with depth, is given in Fig. 6, Upper stratum cover is higlest betwcea 5 and 15 m depth declining with depth, whereas lower stratum cover is lowest where the upper steslum is most dense, and in general increases with depth until Jight becomes limitiag.

## 3. Dower sublizaral zome

Onty on transect A docs rocky substeate descend to sulficient depth for the lower sublittoral zone dominated by red algae (Shepherd \& Womersicy 1970. 1971) to occuc. On this transect a cummunity (Fig. 10) of red algac together with bryozoa, sponges and hyuroids. occurs between 47 and 57 m deep. The community is rich in algal specics (but of lew biomass\}, the most commen being Plocamiunn angurfiem, $\mu$. meriensio and $\mu$. prekissianum; several other species (Rhodymenia ansiralis; Gatya pinnella, Rhodocallis elegaris and Kaflymenid spinosta) werc found only in this collection. Algal cover in this community is Jow, averaging $10 \%$ ( $5-15 \%$ ), indicating that 57 m is close to the deplh (i, e. light) limit for most algae in this region.

## H. THE SEAGRASS COMMUNITIES IN PETKEL BAY

Threc scagrass communicies occur in this wheltered bay, formine bands around the bay dependent on subsirate anil depth.

A mphionlis cantarctica fringes the shon from low water mark to 11.5 m below. attactied by its rhizome-root system to calcarcous recfs of low relief. Below these reefs the bounm is sandy, and at a depth of about 2 m , Porkfonia oserifeldie forms a ftinge communlly about 20 m wide around the hay, Beyond this, desceadiog 1022 ni decp. Posidoniar aurfolis (nafrow leal form) is dominant in rairly contimuous beds. Bcyond about 22 m deep. P. ausiralis hecomes sparse, and at the cime of the survey a looselying but apparenty healthy community ol the red alga Hemnedya crispa occurred at this deptl).

Fig. 7. Algal community at 8 m depth on transect C. Note Cystophora monilifera (top icft), Scytothalia dorytupea (ton right) and several species of Sargassum (centre and lower sight).
Fig. 8. Algal community at 10 m depth at transect C. Nnte sprecies of Sargarsum (oentre left), Ecklomin radiata (top right) and eysropliora moniliferim (centec and lower right).



## Discussion

Algal zanes within the sublittoral, and the distribution. cover and biomass of the componcut species, have been described for many Eoasts clscwhere in the world. Recent accounts are those of Luining (1970) from Heigoland, Boudouresque (1971) from the Mediterranean, and Mann (1972) from the Atlantic coast of Canada. These and other accounts show that broad algal zones, correlated with light intensity and the degree of water jnovement, occur in the photic zone on most coasts.

Although limited in extent, this survey of the subtidal algat vegetation of St Francis I. shows a similar zonation pattern to that at West r and Pearson 1. (Shepherd \& Womersley 1910, 1971). As at these islands, the vertical extent of the upper sublittoral zone. and to a leuser eatent the mid sublittoral, is dependent on the degree of water roughness (with which light penedration is also assacia(cd). The extent of the upper sublittoral rone probably corresponds with the depth to which "white water" (i.e. turbulent water carsying air hubbles) penetrates under averáge swell conditions. Riedl \& Forstner (1968) considered the vertical height of their "inner surf zone" (Ried 1971) to correspond to $2.5 \times$ wave height, and this could also be applied to the uppes sublittoral zone on South Australian coasts where wave heights are $1.5-2 \mathrm{~m}$ in at moderate swell. Chapman (1967) in dixeussing the presence of a sublittoral fringe in many parts of the Pacific is targely peferring to this upper sublittoral zone. The term "sublittoral fringe" is best restricted to the zone emergent during suck back of waves at low tide, when this zone is ecologically distinctive (Womersley a Edmonds 1952).

The mid sublittoral zone at St Frameis I. shows similar fealures to this zoric at West 1. and Pearson 1., being dominated by the larger brown ullgate and with an understorcy of mainly red algae. Further studies may show that dis. tinct communifies could be recognised in this zone, since competition beiwees the various dominant species is apparent, and, over the considerable depth range, hoth light intensity and tegree of water movement vary consider-
ably. While most species show typical etbellshaped" distribution patterns (as discussed by Whittaker 1967), some (e.g, Cystophora monilijesa, $C$. subjarcinata) apparently shaw slightly bimodal distribulions (Fig 6), probably due to compctition with other species better suited to the environment within their extremes.
The lower sublittoral zone of red algae was obreryed only in depths of $47-57 \mathrm{~m}$ at St Francis r., correspording to the situation at Pearson I. rather than at West $I_{n}$, and reflecting the clarity of the water. This zone lies below the light intensity necessary for the larger brown algac and grades to the fower photit levels of the red algae. At St Francis I, intermixing of lower sublittoral red algae with fauna such as bryozoa, sponges and hydroids, was more prominent than at West $I_{1}$

Although sublittoral zones are well defined at St Francis I., this characteristic is emphasized by choice of taansects on steeply sloping shores involving steep Jight and water movement gradients. On more ifsegular shotes, dis. tinct zonation is less appatent.

Apart frome ecological differences associated with depth, which reflect mainly the decrease in light intensity, light selationships ate apparent in the mid sublittoral zune where a dense upper canopy may reduce the light reaching the lowes stratum by up to $95 \%$. This effect was well shown on tansort $A$ at $5-15 \mathrm{~m}$ depth and transect $C$ at $7-13(-15) \mathrm{m}$ depth; where a wiense canopy covered a sparse understorey. Where a dense canopy exists with considerable water movement, reduction of the understorey may alse be due to the physical effect of the larger fronds sweeping over the rock.

The effect of sediment (fine sund or sill stirced un in stormy weather and settling on the seabed under calmer conditionsi was evitlent in two places. Near the end of transect B. at about 30 m depth, sediment is present on rocky surfaces and here there is ant abrupt decline in cover of the lower stratum. At the ond of transect $C$ at $18(-20)$ m depth, where sediment also covers the rocky button, there is a distinctive community of certain red algace (Borryacladira ahovatre, Osmundaria prolifem) which can tolcrate sediment. The elfect of sedi-

Fig. 9. Algal community at 16 m denth un transect C. Note Eekionia radiofe (top jight and lower left) 3na sicytesthalia dorycarpa (centre).
Fig. 10. Spane red aleal community at 57 m depth ons Iransect A.
ment in inhibiting algal colonisation and growth has been recently discussed by Grigg \& Kiwala (1970)

The survey of St Francis I. was limited in time, the area covered, and in the variety of
habitats sampled, Nevertheless, the subtidal algal flora appears fairly rich, with some 138 species recorded, compared to 160 for Pearson I. and 132 for West I. Further studies would certainly extend this number considerably.

## Appendix: Algal species list

Identifications are by H. B. S. Womersley, Dr G. T. Kraft (Mychadeaceae, Dicranemaceae and Acroylaceae) and Dr E. M. Wollaston (Crouanieas).

## CHLOROPHYTA

Caulerpales
Caulerpa brownit (C.Ag.) Endlicher
Caulerpa cachoider (Turn.) Ci Agaruh
Caulerpa ffexilis Lumouroux
Canlerpa fiexilis Lamouroux vár- Muflleti (Sond.) Womersley
Caulerpar hedley (W, V Bosse
Caulerpulongifolia C.Ag. f. crispata (Harv.)
Womersley
Cáulerpa abseura Sonder
Caulerpa papillosa J. Agardh
Cuderpa scalpelliformis ( $\mathrm{R}, \mathrm{Br}_{\mathrm{i}}$ ) C , Agardh
Canlerpa simpliciascula (Turner) J. Agardh

## PHAEOPHYTA

Dictyotales-Dictyoteae
Dictyata diemensis Kuetzing
Diciyota furcellata (C.Ag.) T. Agardh
Dictyota prolifera Lamouroux
Dilophus fastigiatus Sonder
Dilophus robustus (J.Ag.) Womersley
Pachydictyon paniculatum JI Agardh
Pachydictjon nov. sp?
Glossophora nigricans (J.Ag) Womersley
Lobospira bicuspidula Areschoug
Zomarieate
Chlamidophora microphylla (Harv.) J. Agardh
Dictyopteris muelleri (Sond.) Reinbold
Lobophora variegata (Lamx.) Womersley
Zonaria crenata Ji Agardh
Zortaria sinclairit Hooker \& Harvey
Zonaria spiralis (J.Ag.) Papentuss
Zonaria turneriana I, Agardh
Nov. gen?
Chordariales-Chordariaceae
Corynophlaea cystophorae J. Agardh
Bacrophora filum (Harv.) J. Agardh
Bactrophora vermicularis J. Agardh
Polycercanigrescens (Harv, ex. Kuetz.) Kylin
Sporochnalcs-Sporochnaceae
Bellotic eriophoram Harvey
Sporochnus comosus C. Agardh
Dictyosiphonales-Giraudyaceac
Giraudya sphacelarioides Derbes \& Solier Punctariaceae
Hydrochathris clatiratus (C.Ag.) Howe
Laminariales-Alariaceae
Eckloniar radiata (C.Ag.) I. Agardh
Fucales-Cystoseiraceae
Scytothalia dorycarpa (Turn.) Greville
Cystopitara brownii (Turn.) J: Agardh Cystophora intermedia J. Agardh

```
A, 0-2, 32-38; B, 4-7: C. 2-6. 19
A, 32-38; D. 2
A, 32-38; D, 2
B, 6-18; C. 6, 19
A, 32-38, 55
D, 2
D, 2
A, \(2 ; \mathrm{D}_{2} 2\)
A, \(35 ; B, 13-18 ; C .19 ; D, 2\)
A, 32-38; C, 10-13
```

A, 3,2-38; $B, 6 ; C, 6,19$
A, 35
A, 32-38; B, 13-22; C 19
B. 22:C. 19

A, 32-38; B, 13-18
$\mathrm{A}, 2,35, \mathrm{~B}, 0-7,22, \mathrm{C}, 2-19 ;$ Masillon I . in bay, 1-4
B, $13-18$
A, 32-38, 55; B, 13-22
A, 2,35; B, 6, 13-18; C, 6-19
B, 22; C, 19-20
A. 32-38; B, 22; C. 6 - 19

B, 13-18
A, 32-38
A, $10,32-38 ; 1,13-22 ; C, 19$
A, 13, 32-38; B, 6-22; C, 10-19
A. $13,32-38$

A, 32-38
C. 10-18, on Cystophora hrownii
C. 19-22; 1, 3, 4, on Posidonia custralis and P. otienfeldif

C, 6
C. 6. 19-20; D, 3, 4, an Posidonia australis and $P$. ostenfeldit
A. 32-38; B. 13-18
A. 32-38

D, 3, on Posidonia nustralis.
C. 19-20
A. $5-38 ; B ; 5-32 ; \mathrm{C}, 8-20$
A. 6-38; B, 4-32; Cr, $8-19$, Masillon 1 . in bay, 1-4
B, 4-7: C, 2-13
$A, 0-2 ; C, D-3$

Cystophora gracilis Womersley \& Nizamuddin
Cysiophora monilifera I. Agardh
Cystophora moniliformis (Esper) Womersley \& Nizamuduin
Cystophora pertinata (Girev. \& C.Ag.) J. Agardh
Cystophora subfarcinata (Mert.) Ji Agardh
Myriodesma harvcyanum Nizamuddin \& Womersley Sargassaceas

Phyllotrichia
Sargassum decipiens (R.Br.) J. Agardh
Sargassum heteromorphum J: Agardh
Sarga.ssum varians Sonder
Sargassum verrticulosum (Mert.) Agardh Arthrophycus
Sargassum bracieolosum J. Agardh
Sargassum lacerifolium (Turn.) Agardh?
Sargassum tristichum Grev. \& Agardh ex Sonder Eusargassum
Sargassum linearifolium (Turn.) Agardh?
Sargassum podacanthum Sonder?
Sargassum spinuligerum Sonder
Sargassum distichum Sonder
Sargassum (Eusargassum, tribe Glomerulatae'?)

## RHODOPHYTA

Nemaliales-Chactangiaceae
Galctaura spathulula Kjellman
Helminthocladiaceae
Liagora harveyiana Zeh
Bonnemaisoniaceae
Asparagopsis armata Harvey
Delisea hypneoides Harvey
Delisea pulchra (Grevi) Montagne
Gelidiales-Gelidiaceae
Pterocladia lucida (R.Br.) I. Agardh
Cryptonemiales-Dumontiaceac
Acrosymphyton tarylori Abbatt Squamariaceae
Sonderaphycus australis (Sond.) Denizat
Corallinaceae (excludiag encrusting taxa)
Amphiroa anceps (Lamarck) Decaisne
Jania fastigiata Harvey
Jania micrarthrodia Lamouroux?
Jania pusilla (Sond.) Yendo
Jania sp.
Corallina cuvieri Lamouroux
Corallina cuvieri f, crispafa Lamouroux
Metagoniolithon charoides (Lamx.) W. v. Bosse
Meragoniolithon stellifera (L,amarck) W. Y. Bosse
Polyporolithon patena ( $\mathbf{H} . \& \mathbf{H}$.) Mason
Cryptonemiaceas
Carpopelfis phyllophora ( $\mathrm{H}_{4}$ \& $\mathrm{H}_{+}$) Schmitz
Cryptone mid undulata Sonder
Halymenia harveyana I. Agardh
Thamnoclonium dichotomum (J.Ag.) J. Agardh?
Grateloupiaceae
Gelinaria ulvoidea Sonder
Kallymeniaceae
Austrophyllis alcicornis (J.Ag.) Womersley \& Norris
Callophyllis rangiferinus (Turn.) Womersley
Callophyllis lambertii (Turn.) I. Agardh
Kullymenia cribrasa Harvey
Kallymenid spinosa Womersley \& Norris
Thamnophyifis lacerata Womersley \& Norris
Gigartinales-Plocamiaceat
Plocaminm angustum (J.Ag.) Hooker \& Harvey

B, 4-7
A, 0-2:C,2-19
B, 4-7
A, 6, 13; B, 6-18; C, 10-19
$B, 6 ; C_{i} 0-13,19$. Masillon I. in bay, 1-A
A, 2; B, 4-7
B, 6; C, 2-19
C. $2-4,6$

A, $6,32-38 ;$ B, 6-18; C, 6-19
A, 35; B, 13-18; C, 2-19
A, 13, 32-38; B, 4-22; C, 10-19; D, 2
A, 12, 32-38
Masillon I in bay, 1-4
B, 4-7; C, 6, 19
A, 32,38
A. 35
A. 35

C, 10-13

A, 32-38; B, 22. Masillon I. in bay, 1-4
A. 2

A, 10, 32-38; B, 4-18
A. $32-38 ; \mathrm{B}, 13-18 ; \mathrm{C}, 19$

A, 10, 32-38;B, 6-22
B, 4-7, Masillon I, in bay, 1-4
A, 32-38
B. 13-32

A, 32-38; B, 13-18, 32; C, 10-19
C, 0-2
D, 3 on Posidonia australis
B.4-7: Masillon L. in bay 1-4 on Cystophora subfarcinata
A, 32-38
B, 6
B, 0-6; C, 0-6; D, 2
C. 6 -19
D. 2 on Amphibolis antarctica

B, 13-18 on Ballia caltitricha
A, 32-38, Masillon. I. in bay, 1-3
D, 2
B, 13-18; C, 10-13
A. 32-38
C. 19-20

A, 32-38; B, 13-18, 32
A, 2-10; B, 0-7; C, 10-13
A, 55
A, 32-38, B, 13-22
A, 55
A. 32-38
A) 6-55; B, 6-32; C, 6-19

Plncamium cartilayincum (L.) Dixon
Plocamium lepiophyllum Kuetzing
Plocamium mertensii (Grev.) J. Agardh
Plocamium preissianum Sonder Solieriaceae
Solicria robusta (Grev.) Kylin
Rhabdoniaceae
A rexchougia congesta (Turn.) J. Agardh? Rhodophyllidacene
Rhodophyllis memhranacea (H. \& H.) Harvey
Rhodophylis ramentacea (C.Ag.) J. Agardh Hypreaceac
Hypnea episcopalis Hooker \& Harvey
Hypreasp.
Mychodeaceae
Mychodea pusilla (Harv.) J. Agardb
Mychodea ramulosa J. Agardh
Mychodea carnosa Hooker \& Harvey
Neurophyllis australis Zanardini

## Dicranemaceae

Dicranema revoluium (C.Ag.) J. Agardh Acrolylaceae
Hennedya crispa Harvey
Rhodymeniales-Rhodymeniaceae
Fauchea?
Webervanbossea kaliformis (I.Ag.) I. de Ton
Webervanbossea splachnoides (Harvey) I, de Toni
Botryocladia obovata (Sonder) Kylin
Coelarthrum cliffonit (Harv.) Kylin
Coefarthrum meulleri (Sond.) Boergesen
Gloiosaccion browni Harvey
Rhodymenid australis (Sond.) Harvey
Lomentariaceae
Champia affins ( $\mathrm{H}_{1}$ \& $\mathrm{H}_{\mathrm{I}}$ ) J. Agardh
Chapmpia obsoleta Harvey
Champia tasmanica Harvey
Ceramiales-Ceramiaceae
Crouaniene
Gatya pinelfa Harvey
Gulsonia ammulatu Harvey

## Antithamnieae

Acrothamnion preissii (Sond.) Wollaston
Antithamnion divergens (J,Ag.) J. Agardh
Ballia ballioides (Sond.) Wollaston
Ballia callitricha (Ag.) Kuetzing
Ballia mariana Harvey
Platy themnion nov. sp?
Griffithsieae
Griffithsia teges Harvey
Callithamnieae
Callithamnion sp.
Callithamnion sp.
Dasyphileae
Rhodocallis eleguns Kuetzing
Dclesseriaceae
Apoglossum lasmanheum (F.v.M.) J. Agardh
Dasyaceae
Dasya clayigera (Wom.) Parsons
Dasya maccarioides Harvey?
Rhodomelaceae-Polysiphonieae
Polysiphonia nigrita Sonder
Pterosiphonicae
Pterosiphoniasp.
Herposiphonieae
Diprerosiphonin? nov sp?
Herposiphontia nov. sp?

A, 6-10, 32-38, 55; B, 13-22, 32
A, 55
A, 6-55; B, 6-22; C, 6-19
A, 6-55; B, 6-32;C, 6-19
A, 32-38; C, 20; D, 4
A, 32-38
A, 35; B, 13-22
A, 32-38; B, 32
B, $6 ;$ C, 10-13
A, $2 ; 1,4-6$
D, 2, on Amphibolis antarctica
B, 4-7
A. 32-38
C. 19-20

D, 2, on Amphibolis antarctica
D, 24, loose-lying
A, 32-38
A, 32-38; B, 22; C. 10-13, 19
A 32-38; C, 19-20
C. 19-20

A, 32-38
A, 35
B. $13-18$; C. 10-13
A. 32-38, 55; D, 2

A, 32-38; $\mathrm{H}, 13-18 ; \mathrm{C}, 19$
A. 2

A, 32-38
A. 55

C, 19-20
B, 13-18, on Ballia callitricha
A, 55
A, 55
A, 35; B, 13-18, 32
A. 55

A, 55
A. 2
A. 32-38
A. 55

A, 55
B, 32
C: 0-2; D, 2-4
C. 19-20

A, 2
B, 6
B. 13-18
A. 55

Polyzonieac<br>Cliftonaea pectinala Harvey Amansieae<br>Osmundaria prolifera Lamouruus Lavrencieae<br>Luturencia clatu (Ag.) Harscy<br>Laurencia filiformis (Ag.) Montagne f. dendritica Saito \& Womersley<br>Laurencia filiformis (Ag.) Montagne f. heteraclado Saito \& Womersley<br>Lourencia pantculata (Ag.) Y. Agardh

## SPERMATOPHYTA - seagrasses

Potamogetonaccac
Seferozostera lusmanica (Mart. ex Aschers) den Hartog.
Yosidonicurastralis J. D. Hooker-narrow and broad forms
Mosidonia ostenfeldii den Hartog
Amphibolis antarctica (Labill.) Sonders ex Aschers
A. 32-38; B. 13-18; C, 19

8, 13-18; C, 6-20
B. 13-18
A. $32-38$

A, O-2;C. 19-20
C. 19-20

## Acknowledgments

We are grateful to the Royal Society of South Australia (Research and Endowment Fund) and the Department of Fisheries for grants towards the field work. The first author was assisted in the SCUBA work by Mr K. L.

Branden and Mr N. Coleman, to whom thanks are expressed. Assistance from the Australian Research Grants Committee in provision of the technical assistance of Mrs E. L. Robertson and Miss C. Anderson, is gratefully acknowledged by the second author.

## References

Boubouresout, C. F. (1971), -Contribution a l'Etude Phytosociologique des peuplements algaux des Cotes varoises. Vegetatio 22, 83. 184.

Ctapman, V. J. (1967), -The sublittoral fringe in the Pacific. I, Indian Bor, Suc. 46, 377-343.
Cis.l.K.O. (1967a) -Aust. Oceanogr. Cruise Report No. 34.
C.S.T.R.O. (1967b).-Aust, Oceanogr. Cruise Report No. 46.
C.S.IR.O. $(1968$ )-Aust. Oceanogr. Cruise Heport No. 43.
C.S.IRO. (1969) -Aust. Occanogr. Crutse Report No. 54.
GRLEG, R. W, \& KTWala, R. S. (1970).-Some ecological effects of discharged wastes on marine life. Calif. Fish and Game 56, 145155.

Jerlov, N, G. (1968):-"Optical Oceanography". (Elsevier: Amsterdam,)
Lüning. K. (1970).-Tauchuntersuchungen zur Vertikalverteilung der sublitoralea Helgolander Algenvegetation. Helgolönder wiss. Meeresunters 21, 271:291.
MANN, K. (1972).-Ecological energetics of the seaweed zone in a marine bat on the Atlantic coast of Canada. 1. 7onation and biomass of seaweeds. Mar. Biol 12, 1-10.
Rrant, R. (1971), "Water movement". In O. Kinne (Ed.). "Marine Ecology. A comprehensive integrated Ireatise on life in oceans and coastal waters". Vol. 1, Part 2, pp. I123-1156. (Wiley-Interscience. London.)

Riedi, R. \& Forstaner, H. (1968), Wasserbewegung in Mikrobeveich des Benthos. Sarsia 34, 163-188.
Shepherd, S. A \& Womersley, H. B. S. (1970) -The sublittoral ecology of West I. South Australià. I. Environmental features and the algat ccology, Trans. R.. Soc; S. Aust. 94. 105-138.

Shepherd, S. A. \& Womenslex, H. B. S (1971). Pearson Island expedition 1969. 7. The subviual ecology of benthic algae. Trans. R. Soc. S. Alust. 95, 155-167.

Stractian, A. R \& Koski, R. T. (1969),-A survey of algae off Pakos Verdes Point, Calf. fornia, Chlf, Fish and Game 55, 47-52.
Vaux, D. (1970).-Surface temperature and sallinity ior Australian waters 1961-65. C.S.I.R.O. Aust. Div. Fish. Oceanog. Allas No. 1.
Whittaker, R. H. (1967),-Gradient analysis of vegetation, Biol Rev, 42, 207-264:
WOMrRsiEY, H. B. S. \& EDMONOS, S. J. (1952):Marine coastal zonation in southern Australia in relation to a general scheme of classification. J. Ecol. 40, 84-90.
Wamersity, H. B. S. \& Edmonds, S. J. (1958) -A general account of the intertidal ecology of South Australian Coasts. Aust. J. mar. freshw. Res. 9, 217-260.

# BREEDING BIOLOGY AND LARVAL DEVELOPMENT OF LITORIA VERREAUXI (ANURA: HYLIDAE) 

by MARIon Anstis**

## Summary

ANSTIS, M. (1976).-Breeding biology and larval development of Litoria verreauxi (Anura: Hylidae). Trans. R. Soc. S. Aust. 100(4), 193-202, 30 November, 1976.
Oviposition and larval development of the hylid frog Litoria verreauxi are described and ecological notes are given. Comparisons are made with other hylid frogs (particularly members of the Litoria ewingi complex).

# BREEDING BIOLOGY AND LARVAL DEVELOPMENT OF LITORIA VERREAUXI (ANURA: HYLIDAE) 

by Marion Anstis*


#### Abstract

Summary Anstis, M, (1976),-Breeding biology and larval development of Liroria verreauxi (Anura: Hylidae). Trans. R. Soc. S. Aust. 100(4), 193.202, 30 November, 1975. Oviposition and larval development of the hylid frog Litoria verrcauxi are described and ecological notes are given. Comparisans are made with other hylid frogs (particularly members of the Litoria ewingi complex).


## Introduction

Litoria verreatexi (Duméril), previously included in Hyla ewirgi Duméril \& Bibron (see Littejohn 1963, 1965: Tyler 1971) is a hylid frog found along the coast of eastern Australia from Victoria to southern Queensland (Littlejohn 1965; Straughan 1966) t. Adult morphology in the Sydney arca has been described by Copland (1957) as H. ewingi verreauxi, and by Moore (1961) as. H. ewingi. Fletcher (1889) and Harrison (1922) provided some data on the breeding season, ova and larvae, while Moore (1961) briefly described advanced embryos and larvae. Martiri (1965) deseribed tadpoles from the Melbourne area but did not discuss embryonic development. Martin \& Watson (1971) mention some life history characteristics. The present paper provides data on breeding biology and larval ecology and includes a detailed description of embryos and larvac.
L. verreauxi appears to be related to a complex of species including $L$. ewingi, $L_{\text {b }}$ paraewingi, L. jervisiensis, and possibly La burrawsi (Martin \& Littlciohn 1966: Martin 1967a; Watson, Lottus-Hills \& Littejohn 1971 ). Where data are available, comparisons are made with these taxa.

## Material

Six egg masses of $L$, vernernati laid in the laboratory, together with samples of larval material from the field, form the basis of the study. Egg masses came from an adule popu-
lation, originally collected at Darke's Forest in 1970 and released in a garden at Penshurst. Frogs from adjacent areas in Penshurst may also have joined the population.

An egg mass from a pair of L. ewingi caplured in amplexus at Lobethal, S. Aust, on 30.viii.1972, was maintained to hatching stages. Larvac of L: paraewingi from 2 km N of Glenburn, Vict. werc examined for comparison. Collecting localities and dates are listed in Table 1.

## Methods

A series of outdoor aquaria containing rain. water and vegetation was maintained at Penshurst and checked regularly for the presence of spawn. Three pairs (one in amplexus) wers captured in the vicinity of the aquaria (two on 11.ix. 1972 and one on 20.ii.1974) and placed in plastic bags containing water, twigs and vegetation, Oviposition behaviour of these three pairs was studied.

Embryos were maintaned up to stage 25 in shallow water ranging from $14^{3}-21^{\circ} \mathrm{C}$ Larvae from the various localities were maintained separately in open outdoor aquaria, and indjviduals from some were reared to metamorphosis The behaviour of larvac was studied both in aquaria and at field collecting sites. Food provided consisted of algac and other Water plants, commercial fish food, boiled lettuce and occasionally meat. Water temperature during larval development sanged $8^{\circ}-27^{\circ} \mathrm{C}$. Specimens from each group were fixed at inter-

[^21]TABLE 1
Breeding siles of Litoria verreauxj

Locality	Description of habitat	Collecting date	Stages	Other laryae present
Menai, $\begin{array}{r} 34^{\circ} 02^{\prime} \mathrm{S} \\ 151^{\circ} \mathrm{OH} \cdot \mathrm{E} \end{array}$	1. Permanent dan in dry scletophyll bushland. Surface vegefation, rooted planls, mud substraturn.   2. Concrete water vessel, permanent water, surface vegetation, mud substratum	$21.6 i .1971$ $16.1 \times .1972$	$\begin{aligned} & 34-42 \\ & 34-41 \end{aligned}$	Liroria aturem   L. latopalmata Uperoleia marmorata Raniucla signifera
Penshutst, $33^{\circ} 58^{\circ} \mathrm{S}$ $151^{\circ} 05^{\circ} \mathrm{E}$	Permanent ouldoot aquatia in suburbán garden. Surface and rooted plants	Numerous dates 1970 to 1974	1-46	
$\begin{array}{r} \text { Darke s Forest } \\ 34^{\circ} 12^{\prime} \mathrm{S} \\ 151^{\circ} 58^{\circ} \mathrm{E} \end{array}$	1. Permanent flowing stream, sandstone base, fast flowing sections, deep poals in dry sclerophyll busthland,   2. Permanent dams, little rooted and no surface yegetation, mud substratum		$16-18$ $26-40$	Liforia jervisiensis   Limprodynastes peroni   Litoria peromi   Ranidella signifera
Ourimbah. $\begin{array}{r} 33^{\circ} 22^{\prime} \mathrm{S} \\ 151^{\circ} 22^{\prime} \mathrm{E} \end{array}$	Semi-permanent, smail, slowly flowing creek, shallow pools, rooted vegetation, mud subsiratum Cleared farmland in wet sclerophylt forest	19.18 .1973	25-33	Ranidella signifera
Gien Alice, $\begin{array}{r} 33^{\circ} 02^{\prime} \mathrm{S} \\ 151^{\circ} 12^{\prime} \mathrm{E} \end{array}$	Sem-permanent, shallow nond, grass buttom, in open cleased farmland with sursounding woodland	1.vi. 1974	25-28	Limnodynastes tapmaniensis
$\begin{aligned} & \text { Spring Creek, } \\ & 30^{\circ} 299^{\prime} \mathrm{S} \\ & 152^{\circ} 24^{\circ} \mathrm{E} \end{aligned}$	Permanent creck, stowly flowing small pools, sandy and hasalt substratum. Wet sclerophyll forest, paruly cleared	$\begin{aligned} & 25 . \mathrm{i} 1973 \\ & 25.2 i \mathrm{i} 1973 \\ & 18 . \mathrm{iv} .1973 \end{aligned}$	$\begin{aligned} & 30-46 \\ & 25-42 \end{aligned}$	Mixophyas balbus Ranidella signijera Etoria glavidulosa L. pearsoni
Dorrigo, $30^{\circ} 20^{\circ} \mathrm{S}$ $152^{\circ} 43^{\circ} \mathrm{E}$	Small, slowly flowing creek, surface vegetation, mud substratum. Cleared rainforest farmland	26.xii. 1974	28-43	Mixaphyer fascialatus Adelolus brevis
$\begin{aligned} & \text { Rouse Hill } \\ & 33^{\circ} 42^{?} \mathbf{S} \\ & 150^{\circ} 55^{\prime} \mathbf{E} \end{aligned}$	Pernanent waterhole in cleared paddock. Dry sclerophyll bushlignd area, farmiand	19. xiü 1972	$27-42$	Litoria caerula Ranidella signifera



Fig. 1. Lateral and dorsal views of larya showing measurements for morphometric cbaracters.
vals in $4 \%$ formalin, after being relaxed in $1 \%$ chlorbutol solution; larger specimens. Were injected with a small quantity of formalin before final fixation.

Measuremenls wére taken with vemier callipers reading to 0.1 mm or an ocular micrometer (reading to 0.01 mm ). Drawiogs were made using a drawing lube attached to a stereoscopic microscope. All measurements and drawings are based on preserved specimens, while descriptions are of both preserved and live material. The staging system used is that of Gosner (1960). Abbreviations and definitions of larval morphometric characters (Fig 1) are: ST-total length (tip of snout to tip of tail): BL-body length (tip of snout to junction of body wall and tail musculature): BWmaximum body width; BD-maximum body depth; TD-maximum tail depth; TM-depth of tail musculature (measured in line with TD): 10 -inter-orbital span (minimum disance between the cyes, measured at the central inner edge of each eye); IN-internarial spant
(iminimum destance from eye to nacis): ENdistance from eye to naris, MW-maximum width of oral disc.

## Rexults

Calling creriviry, The mating call bas been described by Littejohn (1965), Males at Penshurst call throughour the year, witl the most intense activily on mild, wet nights during spring and summer. Diurnal calling mostly necurs during and after rain. Males call while afloat near the edge of ponds by night, or from low vegetation or ground near the water by night or day. At 2300 hrs on $20.1 i .1974$ at Penshurst, during light rain, a silent mate surfaced in an aquarium about 4 cm from a calls. ing male. The latter turned to face the formes and, after a brief pause, swam slowly cowards him, calling in softer, separate notes (quite distinct from the mating call) and attempted amplesus. The silent male immediately zwam off, The calling male did not follow, but resumed a normat mating call.

A similar behavioural sequence preceded amplexus in one of the pairs captured on $11 . i x .1972$, the male emitting soft. separate notes as the approached the remale.
Oviposition: Oviposition at Penshurst has been nosersed in February, March, June and Sep-tember-December. The following description is a composite of observations of the theec puirs studied.

When frogs were collected on 11.x. 1972, sir temperatures 2 cm above water were $18^{\circ}-19^{\circ} \mathrm{C}$ and surface water temperatures $19^{\circ}-23^{\circ} \mathrm{C}$ Amplexus commenced in these pairs at 2000 and 2325 hrs. Eggs were laid in scparatc hatches attached to twigs or reeds over a period af hours (Tible 2). Before oviposition, the female showed lateral abdominal contractions. sither simultancously or alternately. These contractions usually became more powerful as oviposition was near and lised about one second, with iwo or more occurring in succession.

In a typical behavioural sequence, is pair subinerged and the lemale grasped a twig with one hand. She dorsifleaed her body with the hind limbs extended and, as the batch emerged.

b
Fig. 2i. Oviposition with the ntale receiving und fersilising the egys.
Fig. 2b. The mate pushes the batch down to the female's feet.
the male lowered his vent towards the eggs and cupped his feet around, so holding them (Fig. 2a). The sides of the male then undulated and his feet moved up and down in a brief fanning motions oves the eggs. This process of oviposition and ferilisation lasted 3 sec , The fenale ventrifexed, drawing het legs back under her hody, and the male rolled the batch down to her feet (Fig 2b). The female held the hatch motionless for 413 sec. She then pulled herself around the twig in spiral fashion, wrapping the eggs round it with her fect. The pair left the eggs and returned to the surface. After $1.5-7.5 \mathrm{~min}$. the entire process was repeated, and 5 min. -2 he clapsed before £urther batches ware laid.

Variations were: (1) Nearing the end of amplexus, two or three batches were haid in very close succession, each being held by the feet of the female for 40-60 see. before the ensuing one was łaid. The resulting composite batch was then attached to supporting material.
(2). Females varied in their attempts to spiread

TABLE 2
Ovipmvition behuwinur

Praie	Jotal dimation af Amplexus	Duration of egglaying petiod	Duration of single batch oviposition	Fatch huldine time (female)	$\pi$	Total eges laid
1	striols min.	$\underline{7}$ hr LS mint	3-4.30	$3 \pm-60 \mathrm{sec}$.	15	757
2	Unkrown	3 hr 47 minn.	$2-4$ sec.	35-60 sec.	23 or 24	1.011



Fis. 3. Oviposition cyeles during which a single butch is latd and attuched to vegetation, or two or three are laid in close succession before attachment.
out the eggs in spiral fashion, sometimes swivelling around the twig only once or not at all, resuling in thicker clumps of eggs. (3) One female used her left hand to grasp and pull free some eggs which had adhered to her venter, before sttaching the batch to vegetation.

Females had more difficulty in wrapping a composite batch around a twig, and often abar. doned the eggs as a thick mass. Io aquaria lacking vegetition or twigs, egg masses have been found in thick clumps on the substatum. in water up to 50 cm deep.

The final stages of amplexus in one pair were: at. 0100 hrs the female made move. ments similar to the croaking motions of malee. but produced no sound, At 0108 hrs she submerged and twoth male and remalo began iypical ovipositional behaviour, but the female remained in the dorsiffexed position for 7.7 sec. (4.7 sec. longer than average) and produced no eggs. Two sec, Jater the pair fell apari, both floating motionless on their sides just under the surface, with limbs tightly adpressed against the body. Sfter 10 sec., the male


Fig. 4. Two batcbes of eigs joined and attached to a stem. Filamentous algae are cntwinod amongst the egg mass.
zecovered from this state of suspension and surfaced, the female doing so 5 sec later. A second pair behaved similarly, except that the period of motionless suspension wias shorfer. The basic cycle of oviposition behaviour is shown in Fig. 3. Laying of all eggs comprises a number of such cycles.
Ova: In natural environments egg masses are altached to submerged reeds, twigs or grasses usually clesse to the surface (Litilejohn 196.3). The cgge cohere and the inner ones stick to the supporting material. There is a single laycr of jelly around each egg, but within at thass the individual capsules merge and are not clearly defined (Fig. 4).

The mean diameters of eggs and capsules in stages 1 and 8 are shown in lisble 3. Ova generally have a datk brown animal pole and an off-white, yellow or orange vegetil pule, All ova from a single femalc are the same colour. The animal pole gradually lightens from gas: trulation onwards:

The number of eggs in 20 single batches ranged from 1-52 (mean 30 ). Three "double" batches contained 64, 78 and 79. The total complements of four females were 1,011, 757, 632 and 522.
Development of embryos: After fertilisation there is so distinct grey crescent. Cell division appears normal, although not as symmetrical as in Gosner's (1960) diagrams.. The vegetal pole always divides later than the animal pols. At stage 17 (tail bud Fig. 5a), the head region is well defined, showing optic bulges, gill plates. U-shaped adhesive organ and a slight stomudueal pit. The posferior crescent of the adhesive organ is less distiact. In some embryos
the visceral arches and a slight pronephric bulge are discernable. The tail bud is straight and points dorsally, with no obvious tail fin rudiment, In lete stage 17, just before muscular movement begins, the tail bud extends and points cilher to the right or to the left, amd the posterior crescent of the adhesive organ almost disappears, yielding two separate organs which ate heavily pigmented. Embryos in stages 17 to 20 have a yellow yolk sac and are light brown elsewhere.

The embryon hegin hatching when they have reached stitges 19 and 20, At stage 20 (Frg, 5b) the gills are small, just functional and nonpigmented. The optic bulges are more defined, and there is a small crescent of melanophores around the interior edge of each. The stomodaest pit bas deepened and the adhesive organs are prominent. The yolk sac has elongated and is generally narrow, and there are small arcas of pigment along its dorsal edge, and between the optic bulge and offactory pit, The arca above the olfactury pit is clearing and the tail fins are a translucent milky white.

With the temperature regime prevailing during carly development, hatching was complete after 147 hr when most embryos were in slages $21-23$. The external gills are fully developed in stage 21 (Fig. 5c). The tail fins and corneas clear during stage 22 ; the operculum partly covers the gills, and the distribution of metonophores increases over the yolk sac, beneath the eyes, around the nares and along the dorsal surface of the tuil nusculalure. At stage 23 the gills are reduced, the external nares are open, the stomodaeal pit deepens further and the oesophagus begins to difierentiate. The anal tube is developing and the fins, now transparent, take on their chatacteristic arched shape. Generally, pigmentation increases, dispersing into the pattern typical of the larva. The yolk sac is pale yellow bencath the layer of metanophores, while other dorsal and lateral areas surrounding the pigment, become transparent. However one group of $\mathrm{cm}^{\text {- }}$ bryos at this stage lacked dark pigment (except for the cyes), and appeared yellow. These cmbryos did not uevelop melanophores until stage 25.

At stage 24 the mouth-patss have developed oral ridges and as small non-keratinised beak, the oral suckers have diminished, and the operculum closes on the right side. The anal tube is partly open in some embryos, During stage 25 the formation of mouthparts is virtually completed, the beak becoming keratinised and

TABLE 3
Dimenstons in mm of embryes and Jarvae of L. verreauxi from Penshurst (means, with ranges in brackets)


Larvae			
Stagc	$n$	Body lengly	Totallength
26	14	$\frac{10,16}{(9,02-12,79)}$	$\underset{(19.0-31.4)}{23.6}$
27	10	$\begin{gathered} 11,21 \\ (10.50-11.64) \end{gathered}$	$\begin{gathered} 24,2 \\ (21.2-27,2) \end{gathered}$
13	10	$\begin{gathered} 10.85 \\ (9,68-11,91) \end{gathered}$	$\begin{gathered} 24.0 \\ (21.0-27.6) \end{gathered}$
24	. 9	$\begin{gathered} 11.16 \\ (10.33-11.97) \end{gathered}$	$\begin{gathered} 24.5 \\ (24.0-272) \end{gathered}$
30	10	$\begin{gathered} 12.88 \\ (18,15-15.78) \end{gathered}$	$(25.2-3 \cdot 1.5)$
31	10	$\begin{gathered} 13,65 \\ (12.8(1-15,42) \end{gathered}$	$\begin{gathered} 37,6 \\ \{27.5-39,6\} \end{gathered}$
12	7	$\frac{13.40}{(11.91-14.27)}$	$\langle 27.0-33.2\}$
13	8	$\begin{gathered} 14.31 \\ (11.94-15.58) \end{gathered}$	$\begin{gathered} 32.6 \\ (31.0-34.0) \end{gathered}$
34	8	$\begin{gathered} 14.85 \\ (13.12-15.74) \end{gathered}$	$\begin{gathered} 34.7 \\ (30.1-37.6) \end{gathered}$
35	10	$\begin{gathered} 16.65 \\ (14.76-19.68) \end{gathered}$	$\begin{gathered} 41.1 \\ (33.0-48.8) \end{gathered}$
36	10	$\begin{gathered} 16.15 \\ (15.35-18.61) \end{gathered}$	$\begin{gathered} 41.4 \\ (.34 .8-47.2) \end{gathered}$
37	3	$\begin{gathered} 16.22 \\ (14.92-17.22) \end{gathered}$	$\begin{gathered} 39.5 \\ (36.4-44.8) \end{gathered}$


Stage	- 11	Body length.	Totallenglb
38	6	$\begin{gathered} 16.8 .4 \\ (15.00-18.00) \end{gathered}$	$\frac{43.2}{(39.6-46.0)}$
39	6	$\begin{gathered} 17.27 \\ (16.73-18,32) \end{gathered}$	$\begin{gathered} 45.6 \\ (42.0-51,9) \end{gathered}$
411	10	$\begin{gathered} 16.87 \\ (14,76-18,37) \end{gathered}$	$\begin{gathered} 46.6 \\ (39.2-52.2) \end{gathered}$
41	10	$\begin{gathered} 17,09 \\ (16,56-18,20) \end{gathered}$	$\begin{gathered} 48.2 \\ (45.0-52.9) \end{gathered}$
12	3	$\begin{gathered} 16.13 \\ (14.2717,38) \end{gathered}$	$\begin{gathered} 43.1 \\ (40.5-45.1) \end{gathered}$
43	1	$\begin{gathered} 14.51 \\ (14.37-14.92) \end{gathered}$	$\begin{gathered} 38.6 \\ (37.4-39.7) \end{gathered}$
45	10	$\begin{gathered} 16.3 \\ (14.9-18.6) \end{gathered}$	-
46	IH	$\begin{gathered} 15.3 \\ (13.2-17.3) \end{gathered}$	-

lablal teeth developing on the oral ridges. The lahial papillae may not reach their totul number until stage 26 or later. The spiracie becomes functional and the anal tube is fully open. The remnant adhesive organs gradually disappear during this stage.

Measurements of embryos are shown in Table 3.
Carve: A composite description of 10 laryae at stage 35 (Figs 5d-i) from Penshurst follows; Body widest deross the mid region of the abdmen and ovoid. Snout eyenly rounded in dorsal view and tapers to atruncale edge in lateral view. Nares dorsal and raised on very short tubes which open anteru-laterally. Eyes lateral and relatively large, Spiracle sinistral. ventrolateral and not visible from above. It opens in a porstero-dorsal dirction and diameter of the spiracular tube decreases slightly from its origin to its opening. Anal tube dextral, very short, of small diameter and opens about halfway up the ventral fin. Tail fins arched and taper to a fine point. Dorsal fin extends midway up the boly, deepest approxt. nately halfway along its length, Ventral fin deepest along its anterior thisd. Tail musculature moderately thick, narrowing to a fine point posteriorly.

Mouth antero-ventral in pasition and has bonder of papillae amound all but the anterior margin (Fig. 6). In some specimens there is also a median gap along the posterior margin (possibly caused by damage). Papillae most nuncrous laterally. Two upper and three lowes rows of labial teeth, two upper being of approximately equal length in most specimens. First two sows in the lower tabilum are also sbout equal, thind lower sow is msually the


Fig. 5. Embryological and laryal development of Litoria verreauxi, Penshurst. (Bar rep. resents 1 mm ). Siages: a-17, b-20, c21 d-36, e-16, f-36.
shortest. In some specimens a partial median gap accurs in secnend lower mow and other rows may be interrupted at vazious points, probably through damage. Beaks of moderate proportions, serrations fine on inner edge of lower beak and very fine on the upper beak

The only consistent geographic variation noted was in specimens from Spring Creek, most of which had more massive beaks and twe pigmented areas below the lower beak (Fig. 6b). Specimens from Dorrigo also showed a tendency towards more massive beaks. It was noted that specimens from the northern localities generally had shallower fins than most southern specimens (Table 4), Body dimensions of larvae are given in Table 3.

In life the dorsal surface varics amongst individuals from ligh golden to a very dark
a


Figi. 6. Mouthparts of $\mathcal{L}$. verreauxi. 3. Jrom the southern site ef Penshurst: b, from the nurthern site of Spring Creek (bar represents ( mm ).
brown (almast black). In some specimens the pigment is motuled. The areas of skin over the trabeculae cornua, centrat mervous system (brain and spinal cord to base of tail), the abdumen and surrounding the mares, are carker. There is a copper-gold sheen ventrally and haterally over the abdomen. In lateral view the areas covering the pharynx and buccal cavity (exc)uding eyes) are transparent (except for some melanophores hetween the eye and naris), and the gilts, heart and developing forelimbs are visible. From the ventral aspect the areas over the gills, heatt and buecal cavity are unpigmented.

The tail musculature is cream with isregular dark blotches over the dorsal surface, and partly over the lateral surface. in generally darker larvae the musculature may he uniformly pigmented. The dorsal and ventral fins

TABLE 4
ropopartionir in min of L. verrcaul larwae trôm differenl jocalities (menns, with runges in brackets)

	Ninthern (Spring Cheek, Docrige)	Southerm (Penshursi)
5age	35 \& 36	35\%36
$\pi$	7	10
57	$\begin{gathered} 35.1 \\ (36 . y-1=1 \end{gathered}$	$\begin{gathered} .43 .8 \\ (36.3-48,8) \end{gathered}$
BL	$\begin{gathered} 13.89 \\ \langle 12 . \$ 6-15.5 \mathrm{k}\} \end{gathered}$	$\begin{gathered} 17.3 \mathrm{~T} \\ \text { (1S. } 5 \hat{2}-19.68) \end{gathered}$
BW	$\begin{gathered} 7.74 \\ (0.72-4.86) \end{gathered}$	$\begin{gathered} 10.26 \\ (8.65-71.48) \end{gathered}$
UD	$\begin{gathered} 7.79 \\ (6.56-4.75) \end{gathered}$	$\begin{gathered} 111.54 \\ (8.86-12.14\} \end{gathered}$
TD	$\begin{gathered} 7.98 \\ (6.88-9.168) \end{gathered}$	$\begin{gathered} 10: 19 \\ (8.53 \cdot 12,30\} \end{gathered}$
JM	$\begin{gathered} 2.68 \\ (2.13-3.28) \end{gathered}$	$\begin{gathered} 3.60 \\ (2.79-4.54) \end{gathered}$
10	$\begin{gathered} 3.91 \\ (3.44-4.55) \end{gathered}$	$\begin{gathered} 9.53 \\ (4.66 \times(x .40) \end{gathered}$
IN	$\frac{2.08}{(1.72-2.21)}$	$\begin{gathered} 2.64 \\ (2.40-2.95) \end{gathered}$
EN	$\begin{gathered} 2.25 \\ (2.13-2.69) \end{gathered}$	$\begin{gathered} 2.69 \\ (2.38-3.12) \end{gathered}$
M ${ }^{\text {V }}$	$\begin{gathered} 2.03 \\ (2.05-4.43) \end{gathered}$	$\begin{gathered} 4.10 \\ [3.6]-4.66) \end{gathered}$

tary from dusky (in dark larvae) ta aimost transparent (lighter larvac), with parts of the tail vascular system pigmented. Larvac with mollted pigmentation over the budy also have mottled tails. The iris is golden.

Specimens which were dark in life may retain much of this pigment in preservative. Those which were light golden become an offwhite colone in all but the darker areas, and the skin is cleater than in life. The copper-gold sheen is lost and the abdomen may appear dark stiny blue for some lime in preservative. then eventually turn black. The iris loses its golden colour and also appears black.
Livinal behawiours: After hatching the embryos remain close to the egg capsules until about stage 24 . During stages 25 to ahout 27 , the larvace are most often found in the shallow areat of pondr's particularly near the edge, but beyond this stage a much greater water space is utilized.

The larvae are of the active, nektonic type (Orton 1953) and spend much of their time hovering in the water by rapidly oscillating the tail tip (flagellum). They frequently cruise showly to the surface with head uppermost it onlout a $45^{c}$ angle, using only the flegellum for propulsion. When feeding at the surface, they
often position themselves almost vertically and can remain suspended at this, or any level in the water. They are capahle of sudden spurts of specd (during which they may use the entirc tail and body), and rapid changes of direction (making use of the deep fins), when disturbed, As well as feeding at the surface, the larvae grate on vegetation and other material in any zone of the pend and scavenge in bntom sediments. The variation in larval pignsentation appears to be related to characteristics of the habitat. Specimens in muddy water, or clear water over a dark substratum, usually range from dusky brown to almost black, while those in clear water over a light sutsiratiom tend to be golden, with the darker aneas cosstrasting, but less pronounced.
Iapatl life span and meramarphosis: Melamoro phosis of larvae scared from eggs laid at Penshurst on 11.ix. 1972 began on 10.xii.1972, giving a spring-summer laryal life spats of 90 days. Meiamorphosis of larvac from egg masses laid on $23, x, 197$ ) occurred from late December to early March. Metamorphosis was allso recorded at Penshurst in September 1972 and at Menai from 27-29.ix.1972, It is thetefore known to occur from September-March. but probably takes place at other times besause egg masses have been found in most months of the year.

The body beagths of 10 juveniles at stage 45. and 18 at shage 46 are shown in Table 3. At these stages the juveniles closely resemble the adults in colour, but lack the deep orange on the anterior and posterior surfaces of the thigh, and the black spots in the groin. Pate orange thigh colouration is visible in some juveniles at stage 46.

## Discussion

Calling ascivity: Fletcher (1889) and Harvion (1922) noted that calling occurs throughout the year. and Moore (1961) observed calling activity from the end of July 1952 to late April 1953. Watson et u. (1971) secord calling actiwity in all months except July and found that 1.0 verreauxi males when sympatric with In ewing usually coll on land up to 25 mol from water, and anly rarely in water. This latter behaviour contrasts with that of males at Pers. butst and Darkess Forest which comanoaly call in water.
f call distinct from the mating call, given by the male on approaching a potential rival or mate, has been obscrved; its function is not known. More ubservations are necessary to
estaltish the extent of behavioural variation its this species. A similar call has been observed in L. ewingi (Anstis 1976).
Oviposition: Harrison (1922) foand spawn in Sydney every month of the year, and Mrote (1961) collected embryos in August, 1952 at Killata Fletcher (1889) found a pair in amplexus in June, 1885 and stated that the species "probahly breeds nearly throughaut the year". This agrees with the ovlposition dates recorded at Penshurst.

Oviposition has been observed in few Australian hylids, Watson es al, (1971) described part of the behaviour associated with egolaythe in Litoria paraswingi, and I have observed oviposition in $L$, citropa, L dentatu, L frey, cinelf and L. glaurerti. Some of the ovipositional patterns in $L$, verreandi are unique, notably the action of the male pushing the elutch down to the fect of the fernale where the eqgs ane held motionless for a short periad.

The bchaviour of the male in cupping his feet-around the batch and sapidly "Eannugg" the eggs may sorve to distribute the seminal huid around the eggy within a more cunfined space and thus aid fertilisation. A similar sitheugh somewhat briefer process occurs in the ovipositional bchaviour of $\boldsymbol{L}$ : cirropa, Lo denfala and La glaveri (Anstis unpubl.). By holding the harch still for a period of some seconds, the female may also aid fertilisation in allowing time for sperm penetration before the eges are attached to supporting material.

It is mot known whether the abdominal conuactions in the female prior to cgg-laying were Hie sole factor in extruding the eggs, or whether the pressure exerted by the clasp of the male aided the process.

The attachment of eges to vegetation in a spizal movement has heen reconderl by Marrison (1922) for La verreandi (as J. ewingi) and by Watson ef al. (3971) for L. paraewingi. Harrison's statement that the female moved "right amound the stalk at the moment of laying" is not borne out by the pre. sent study, but it is possible that Harrison did not see the entire egg-taying procedure. Watson ef al. (1971) state that a femple of Lo paraewingi observed in the field "held onto a submerged grass stem, and pressed the cloaca to the stem as the eggs were cxtruded: then the pair pivoted around the stem while attaching the eggs". Such behaviour would appear to be similar to that of $L_{0}$ vercauxi except that in the tatter. the female holds the eggg still before
atfachment and was not ahserved pressing the cloaca to the stem during ege extrusion. In the three oviposition sequences observed in this species, the extent to which batches of eggs were spread around the supporling vegetation variced. Obscrvations have indicated that the mortalaly rate of embryos is lower in smaller well-spread batches attached to a stem. Larger masses of eggs on the bollom of aquaria with. out vegctation sufter high mortality from about stage $y$ onwards, possibls due to inauequate oxyenation jesulting from the thickness of the cegs mass and the depth of the water where they lay. The ittedehment of two or theee briches logether ats one also tends to increitse mortality, After death of an embryo, a fungus develups ovef the egge capsule.

The manner of termination of amplexus varies amonest hyifids, kut often the last ovipositional sequance is longer then any other and is followed by separation cither immediately of a tetw seconds later, e.g. in Hyla versicolor (Fouquette \& Littlejohn 1960) and Libotias deniaics Lo slawerti and Io citropa (Anstis unpubl.). Lo verreaux \& also follow's this patterm however, the briel period of toth immobility of both male and female after separation has not been recorded in other speciss.
Ove The significance ot eggs beling alepúsited in small batches has been discussed by Pyburn (1963) and Martis * Litulejohn (1966). Harrison's (1922) observation that the eges are "attathed in a cylindrical mass numhering upwards of a hundred egegs to grass stalks and simihar subinerged objects" 4s. probably based on cases where two or three hatches wore illtrched as one.

The ovidiameter in stages $1 \sim 8(1.21 \mathrm{~mm})$ is in ayreement with Harrison's figure of 1.2 mm. The oyidiameter of \&o cwingi has been reconded as 1.65 m m (Martin \& Tittlejohn 1966) and that of $L$. ewingi and $\mathcal{A}$. verreatad as 1.7 mm (Martín. Littlejohin \& Rawlinsont 1966). A. scrics of eggs of $L$. ewingi laid in Adelante turing September 1972, have mean diancters of 1.18 mm (at stage 1), 1.20 mm (stage 5) and 1.68 (stages $12-13$ ); measurements similar to embryos of $L$. verreauxi at the same stages (Table 3). II would seem likely iberfore that measurcments by Maston ef al. inay have been taken fran embryos at about stages $11-13$.

The teges of l. pamewingi are similar to those of L eningl (Watson ef al. 1971). Thase of 1. jervisiensis can readily: be distinguished from other members of the complex by the larger
ovidiameter (2.33 at stage 10: Mattin \& Litllejohn 1966). Eges of L. burrowsi can be dis linguished from those of the lin ewingi graup by the presence of two jelly layers around the ovum. The ovidiameter of this species at stage 14 is close to that of $L_{\text {. inviriensis at the same }}$ slage.
Embryos antd larvar: The larvae of the 1 exingi complex are of the common hylid type (Martin 1967b) as is L. hurrowni, The draw. ings by Mantin (1967a) of $\mathcal{L}_{1}$ Durrowri larvac show a tail not as finely pointed and fins not is decp as in members of the $\mathcal{L}$. cwing complex. The body shape also appears somewhat differcat. L. paraewingi larvae are similar to those of $L$. evingi "excegt that the taif fins (cspecially the dorsal fin) ... are more heavily pigmented" (Watson et al. 1971). Specimens of this species examined sre more uniformly pigmented than $\mathcal{L}$ verreauxi, and threc specimens at stage 26 (mean total lengit 12.9 mm: body length 7.112 mm ) are much smaller than L. verreuuxi at the same stage. Such size differences may toe related to cnvitonmental factors.

The mouthparts of the grolap ape basicalty similar, having a forruuls of


All have a median gep in the papillae on the upper lip, the extent of which variex amongst individuals of the same species. The number and size of the papillae is variable between species: those of $L$. jernindernis ure more numeross and lightly grouped than in $\boldsymbol{L}_{0}$ verreaki, while thasa of 1.0 parawinge ate it little larger and less numenous, The larvac of $L$. jurvisiensis possess lareer, darker and more massive beaks than $L$ verreant and in a numbuer of specimsens of the former species from Darke's Forcst, the central edge of the upper beak curves slightly below: the level of the rest of the edge, unlike Lo verrearxi. The two pigmented arcts below the luwet beak in $L$. verreand from Spring Creck, are not found in wher members of the $L$. ewingi complex.
Lerval behaviour and aduplation: All the larvas of the 1 - ewing group ate nekionic and generally exhibit behaviour patterns similar to those dexcribed for \&. verreausi. However, ditferences nccur in the larvae of $L_{0}$ jervisiensis which have heen obsersed schooling logether it groups of 20 or more in the mid-level of the water. Individuals from the ghours move at
difiesent times to the surface where they may take sif (Anstis, unpubl.). Larvas of 1. verreaurl were mever obscrved congregating in this matner.
Larral life span agd inetamorphosis:- Data on larval life span are mainly limited to specimens in captive conditions. Moore (1961) records a laboratory life spar of three months for $L$. verceatios which agrees with one of the groups faised at Penshurst. Harrison (1922) found that larvac in aqnaria "required upwards of three moaths" to reach metamorphosis, but believed sevea to cight weeks to be normal life span in the field during summer. This is considesably less that the approximate minimum of 79 days for one group in the present study. but this difference may simply reflect different culture and temperature conditions. Further observations are necessary to ascertain the average life span of this species in the field.

Moore (1961) records the body lengths of 11 newly metamorphosed $L$. verreauxi as \$4.317.00 mm : consistent with measurements of specimens in the present study (Table 3). Marlin (1965) gives a range $11.1-13.6 \mathrm{~mm}$
lor newly metamorphosed $L$. ewimgi, which are genetitly smaller than $L$. verrenuxi, and Martin \& Litlejohn (1900) $15.6-19.7 \mathrm{~mm}$ for L. jervis. iensis. No data on $L$, hurrowsi and $L$ partepingi are available.

The overall Jife cycle of $d$. verveunex appears quite sinuilar to that of other members of the L. ewingi complex in the adaptations to still water situations, although L. jenvisionsis differs noliceably in the details of its life history (Martin \& Littlejohn 1966). More data are plecestary hefore useful comparions can be made between the life histories of L. burrowsi and the L. ewingi complex.

## Acknowicdgments

I gratefulty acknowledge the receipt of a research grant from the C.S.J.R.O. Science \& Industry Endowment Fund, which has greatly facilitated this study, Dr Harold Coguer, Mr Harry Ehmann. Dr Norman Gradwell. Dr Angus Mantin and Mic Michael Tyler read and constructively criticised the manuscript. Thanks are aho due to Mr and Mrs $\mathrm{D}_{2}$ Anstis for assistance in various ways.

## References

Ansms, M. (1976),-Courtship behaviour in the Australian tree fros Litoria ewings (Anura: Hylidae): Herpetofaunce $8(1), 16$.
Cinanio S. J. (1957),-Australian trec frogs of the tenus Mylu. Prix. Linnu. Suc. N.S.W. 82, 9.1108.

Fletcien, J. 1. (1889)-Observations on the oviposition and habits of certain Australian Batrachians. Proc: Einn. Soc. N.S.W, 4, 3570 387.
 (1960),-Patterns of oviposition in two apecies of hylid frofs. S'W. Naturatist $5(2)$, 92-96.
Gosser, K, L. (1950)-A simplified table for staging anman embryos and farwae with notes an identification Merprofogitia, 16, 183-190.
Gradwell., N. (1972),-Gill itripation in Rama cateshelana. Pt. I. On the anatonicat basíg. Can. \&. Loon. 50, 481-499.
Harrison, $\mathbf{I}_{\text {., ( }}$ (1922),-On the hreeding habits of some Austratian frogs Auss: Zool, 3, 17-34.
Little, John, M. J. (1963),-Frogs of the Melbournc areat Nier. Nat. 79, 29b-304.
LTTTEETOHN, M. J. (1965).-Premating isolation in the Hyla cwingi complex 1 Anuta: Hylidae), Evolumion 19, 234-243.
Martisn. A. A. (1965) -Tadpoles of the Melbourne arca Vich. Naf 82, 839.149.
Martin. A. A. (1967a).-The early development of Tasmania's endemic Anura, with comments on their relationships. Proc. Lirrn. Soc. N.S.W. $92,107.116^{\circ}$.

Martin, A. A. ( 196 Tb ) - Australian anuran life histories: some evolutionary and ecological aspects. in A. H. Weatherley (Ed.), "AustraJian Inland Waters and their Fsuma". (Aust. Nal. Univ. Press: Canberra,
Martin A. A. \& Littiejofn M. J. (Iy66) The breeding biology and larval development of Hyla jervisiensix (Anura: Hylidae), Proc. Linu. Suc. N.S.W. 91, 45-57.
martin. ^. A. Littiesohen, M. Jag \& Rawhinson. P. A. (196б) -A key to the anuran exgs of the Melbourne area und in nddition to the anuran fauna. Vict. Nat, 83, $312-315$
martin. A. A. \& Whtson, G. F. (1971),-Life history as ant uid to generic delimitation in the fanuly Hylidae. Copeia, 1971(1), 78-89.
Moore, J. A. (1961)-The frogy of eastern New South Wales. Bull. Am. Mus, Nist. Hfisf, 12h. 149-386.
Orton, G. L (1953)-The systematics of vertebrate latvae. Sys. Zool. 2(2), 63-75.
Prbuinn, W. F. (1963)-Observalions on the life history of the treefrog. phollomedusa callidryas (Cope) Texas J. Sci. 15. 155-170.
TrLer, M. J. (1971),-'The phylogenetic significance of vocal sac stuweture in hylid frops. Univ. Xansas Publ. Mur. Nut. Dist. 19, 319360 .
Watson, G. Fin, Lortus-Hitls, I; Jo \& Lerrukacsen. M. Ji (1971).-The Litoria envel complex (Antra: Hylidee) in south-castern Australia 1. A new species. from Victoria. Aus? S. Zool. 19, 401-416.

# RESTRICTION OF THE CHIRIDOTID GENUS TROCHODOTA LUDWIG (1891) (HOLOTHURIOIDEA: APODIDA), WITH THE DESCRIPTION OF A NEW SPECIES FROM SOUTH AUSTRALIA 

By F. W. E. Rowe*


#### Abstract

Summary ROWE, F. W. E. ( 1976) .-Restriction of the chiridotid genus Trochodota Ludwig (1891) (Holothurioidea: Apodida), with the description of a new species from South Australia. Trans. R. Soc. S. Aust. 100(4), 203-206, 30 November, 1976. Trochodota Ludwig (1891) is restricted to the type-species T. purpurea (Lesson), and three other species, including a new species from South Australia. The generic significance of scattered or heaped wheels, used in separating Trochodota from Taeniogyrus Semper, 1868, is disputed. The distribution of serrations on the inner margin of the wheels is regarded a more reliable generic character; on this basis seven species included in Trochodota by H. L. Clark (1921) and subsequent authors are referred to Taeniogyrus.


# RLSIRICTION OF THE CHIRIDOTID GENUS TROCHODOTA LUDWIG (1891) (IIOLOTHURIOIDEA: APODIDA), WITH THE DESCRIPTION OF A NEW SPECIES FROM SOUTH AUSTRALIA 

by F. W, E. Rowe*

## Summary

Rowe. F. W. E. (1976).-Restriction of the chiridotid genus Trechadota Ludwif (1891) (Hotorbnrioidea: Apodida), with the description of a new species from South Australia, Trans. R. Soc, S. Aust, 100(4), 203-206, 30. November, 1976,
Trochodotu Ludwig (1891) is restricted to the type-species T. purpurea (Tessan), and three other species, jncluding a new species from South Australia, The generic significance of scattered or heaped wheels, used in separating Irochodnta from Tacnogyrus Scmper, 1868, is disputed. The distribution of serrations an the inner margin of the wheels is regarded a more reliable generic character; on this basis seven species included in Trochorduta by H. L. Clark (1921) and subsequent authors are referred to Twemosyrds.

## Introduction

Armong the holothurians cnllected at Port Lincoln, South Australia during 1975 by Mr S. A. Shepherd are six belonging to an undescribed specius congeneric with Trochodoia purpured (Lcsson), type-species of Trochodota Ludwig (1891).

In one important character, the new species falls into an intermediate position between the genern Trochudotas and Taeniogyrus Semper (1868), as currently diagnosed (H. L. Clark 1921: Pawson 1964), A review of the two gencra has revealed that they are not based tpon neliable characters: in this paper they are refescribed and a list of species given for cach,

It is not appropriate to discuss in this paper the validity of all species now included in Taeniosyrks: since many species require reexamination and matcrial is not available: H. L. Clark (1921): Pitwsun (1964). However, the difterences between the four well documented species in Trochondota, including the new species described below, are tabulated.

## Taxonomic account

H. L. Clark (1921), revising the chindotid genera, separated Tazniogyrus Semper (1868) and $\quad$ rooknodote Ludwig (1891) from other genera, because they possess a combination of whecl and sigmoid ossicles. On the basis of having the wheel ossicles actually collected into
sharply defined papillae of the body wall, Taenfogyrus was considered generically distinct from Trochodota. Small accumulations of wheels were considered indicative of Trochodota. Subsequent authors have rigidly athered to this recognition of the two genera (A. M. Clark 1966; Hickman 1962; Pawson 1964, 1970; Heding 1928: Cherbonnier 1952). Although several new specics of Taeniogyrus have been described since 1921, no new species of Truchoclora have been found.

With the arrangement of wheels in large groups, though not in papillae, the new species described below falls inio an intermediate posision between Taeniogyrus and Trochodota. In my view, this shows the unreliability of using such a character for generic distinctions, parlicularly when H. L. Clark (1921) used the similar grouping of sigmoid ossicles for species determinations, A difficulty then arises in deciding the relative merits of the importance of wheels versus sigmoid ossicles in the recognition of the generic taxa, for which no sound argument has so fat been advanced. One character which does so easily distinguish $T$. purpurer, $T$. allini, $T$. maculata and the new species foot only from those in Taeniogyrus, is the arrangement of the serrations on the inner margin of the wheels. In the absence of any other reliable internal or skeletal character, 1 believe that this is a much more significant

[^22]character on which to place generic woight. It also accords with the use of spicule form in the recognition of generic taxa within other orders of holothurians (Panning 1949; Rawe 1969).

Trochodota is herein restricted to that discrete group of species with serrations of the inner rim of the wheels arranged in groups. The remaining seven species included by H .1 . Clark (1921) in Trochodota are referred to Taeniogyras.

Trochodata is now considered to be restricted to the southern hemisphote, with representative species ranging from the colder waters of the southern tip of South America to the more temperate waters of southeastern Australia, including Tasmania, and the tropical waters of the Torres Strait between Papua New Giulnea abd the northeastem tip of Australia. The genus is found from shore-line to depths of about 50 m .

Taeniogyrus Semper, 1868
Treniogyrus Semper 1868: 23.
?Sigmodota Studer 1876: 454.
TTrochodota Ludwig 1891: 358 (part).
Diagnasis: Chiridotid genus with wheels and sigmoid ossicles present, scattered, or in groups or clustered into papillae; wheels with serrations continuous around the inner margin, tentacles 10 or 12
Type-species: Chiridota australianus Stimpson 1856.

Other species: T. contortus (Ludwig 1874); T. cidaridis Oshma 1915; T, dubius H. L. Clark 1921: $T$. kelensis Heding 1928; T. clarus Heding 1928: T. dunedinensis (Parker 1881): T. diasema (H. L. Clark 1921); T. roebucki (Joshua 1914); $T$. rosea (Oshima 1914); $T$. japonica (von Marenzeller 1881); T. dendyi (Mortensen 1925): T. dayi (Cherbonnier 1952) \%?T. venusta Semon 1887.

Trochodota Ludwig, 1891
Trochodota Ludwig 1891: 358 (part).
Diagnosis: Chiridotid genus with wheels and sigmoid ossicles present scattered or in groups. wheels with serrations on the inner margin in well defined groups, tentacles 10.
Type-speries: Holothuria (Fistularia) purpurea Lesson 1830.
Other species: $T$. alluni (Joshua 1912): $T$, mazalata H. L. Clark 1921; Ti shepherdi n.sp.


Figs 1-4. Trochodoid shepherdi n.sp. Fig. 1Tentacle nods; Tig 2-Two sadial and two interradial plates of the calcareous ring: Fig. 3-Wheel ossicle; Fig. 4-Sigmoid ossicle.

## Trochodota shepherdi n.sp.

T. allani, Joshus \& Creed, 1915: 21 (non 7 . allani Joshua)
Types: Holotype (Australian Museum 19467) and 5 paratypes. 59796 (2) 19797 (1); South Australian Museum K1366(2)); Proper Bay, Port Lincoln, Spencer Gulf, S. Aust., among algae growing on Pinna dolohrata at 10 m depth. Collected by $S$. A. Shepherd, 23.viii. 1975.

Diagnosis. Large spicules, wheels 55-226 $\mu \mathrm{m}$ diameter; serrations on inner margin of whects in 6 groups of about 16 ; sigmoid ossicles 144 $190 \mathrm{\mu m}$ long. outer curve of hook of sigmond ossicle with mivute thorns; colour in life, black. Descriplion of hototype (which has been dissected) : The holntype is 60 mm long, of which the anterior 20 mm is contracted. Bady diameter $5-8 \mathrm{~mm}$ along its length, tapering only at the posterior end. Ten strongly contracted tentacles, each with about 3 pairs of digits.

TABLE 1
Differences belween spectes os Trochodata

Species	Sigmioid ossicles			Wheel ossicles		Colorit	Distribution
	Grouping	Hook	Length	Groupiag	Diameter		
maculata	in papillae and scattered	smonth	$66-77 \mu \mathrm{~m}$	scattered	50-100 $\mu \mathrm{m}$	pink with darker spots	Torres Strait, Qld
allant	scattered perpendicular to lorgitudinal body axis	smooth	120-150 $\mu \mathrm{m}$	scattered singly of at most in strall groups of 5-6	$33-216 \mu \mathrm{~m}$	purple	Port Phillip, Vic.-S.E.Tas
рирритет	scattered	smooth	125-150 $\mu \mathrm{m}$	scatered	154-182 4 m	purple	Southern   Occan, Falk-   land Istand southern coast of South America
shepherdi	scattered perpendicular to longitudinal body axis	with thoms	144-190 mm	discrete, large groups (not in papillac) arranged uniserially along each interradius	84.216 mm	black	Port Lincoln and Kangaroa 1., S. Aust.

Spicules in tentacles comprise slightly curved rods dichotomously branched at each end, and usually have a series of thorny knobs projecting laterally along shaft (Fig, 1).

Calcareous ring comprises 10 pieces fused, with a straight anterior and a slightly undulating posterior margin, Radial pieces each have a small anterior notch. Each plece of the ring is $1 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ (Fig, 2).

There is one ventral polian vesicle and the dorsally placed madreporite is yery small and hook-shaped ( $0.5 \mathrm{~mm} \times 0.25 \mathrm{~mm}$ ).

Long, unbranched gonad on either side of the dorsal mesentery, joined anteriorly to a single, dorsal gonoduct. Gonads extend for about two-thirds of the bady length and are packed with eggs.

Ciliated funnels numerous: on either side at base of dorsal mesentery in mid-dorsal interradius in mid-interradial line of interradius adjacent 10, and to left of mid-dorsal interradius, and in ventral interradius directly opposite to those two dorsal interradii. Body wall translucent; radial muscles, lines of ciliated funnels, and outline of internal organs can be seen through it.

Calcarcous spicules of body wall comprise wheels and sigmoid ossicles. Wheels restricted to discrete groups but not accumulated into papillae. These groups form a single line along
each of the intertadii, except in the posterior $1 / 3$ of hody where the groups possess smaller numbers of wheels, and form two irregular lines per interradius. Wheeis have six spokes. Inner margin of each wheel has six discrete groups of about 16 serrations (Fig. 3). Wheels are $55 \mu \mathrm{~m}-226 \mu \mathrm{~m}$ in diameter. Sigmoid ossicles evenly scattered throughout the body wall and lie perpendicular to longitudinal axis of body. Shaft of each is smooth except that on the outside curve, at the attenuated hook end, there are 2-4 minute spines or thorns (Fig, 4). The sigmoid ossicles are $144-190 \mu \mathrm{~m}$ in length.

The animal io life is black. Besides the holotype 5 other specimens, similar in all respects, were collected and these are considered as paratypes.
Distribution: Port Lincoln, Spencer Gulf and Kangaroo Isiand, South Australia.
Etymology: The species is named after the collector, Mr Scoresby A. Shepherd.
Remark: Differences between $T$. shepherdi, $T$. maculata, T. allani and T. purpurect are listed in Table 1.

## Acknowledgments

I would like to thank Mr S, A. Shepherd (Department of Fisheries, South Australia) for forwarding material of the new species to me
for examination; Dr B. J. Smith, National Museum of Victoria; and Mr W. Zcidler, South Australian Museum, for allowing me to exa-
mine remaining slides and specimens of $T$, allani and 7 . roebucki described or examined by Joshua (1912, 1914).

## Refcrences

Cherbonnier, G. (1952).-Contribution á la connaisance des Holothuties de l'Afrique du Sud. Trans. R. Soc. S. Afr. 33(4), 469-509, pls XXXV-L.
Clark, A. M. (1966).-Echinodermata. Port Phillip Survey. Mem. natn. Mus. Vict. 27, 289-384, pls i-iv.
Clakx, H. L. (1921),-The echinoderm fauna of Torres Strait. Pap Dep mar. biol: Carnegie Insin, Wash. 10, 1-223, pls 1-38.
Heding, S. G. (1928)-Synaptidae. Vidensk. Meddr dansk naturh. Foren. 85, 105-323, 69 figs, pls 2-3.
Hickman, V. V. (1962).-Tasmanian sea-cucumbers (Holothuroidea). Pap. Proct R. Soc. Tasm. 96, 49-72, figs 1-177, 2 pls.
Joshua, E. C. (1912).-On a new holothurian of the genus Taeniogyrus found in Port Phillip Bay. Proc. R. Soc. Vict. (n.s.) 25, 79-81, pls iii-iv.
Joshus, E. C, (1914),-Victorian Holothuroidea with descriptions of new species. Proc, R. Soc. Vict. (n.s.) 27(1), 1-11, pl. 1.
Joshua, E. C. \& Creed, E. (1915), South Australian Holothuroidea, with descriptions of new species. Trans. R. Soc. S. Aust. 39, 16-24, 3 pls.

LudWig, H. $\quad(1889 \div 1892)$, - Echinodermen (Stachelhauter), 1. Buch. Die Seewalzen. In Bronn, $H_{1}$ G. Klassen und Ordnungen des Thier-Reiches. Leipzig 2(3), 1-447, 25 figs, $17 \mathrm{pls}, 12 \mathrm{maps}$.
Mortensen, T. (1925).-Echinoderms from New Zealand and the Auckland-Campbell Islands. $1 I I$ Asteroidea, Holothurioidea and Crinoidea. Vidensk. Medd. naturh. Foren. Kbh. 79, 263-420, 70 figs, 3 pls.
Panning, A. (1949).-Versuch einer Neuordnung der Familie Cucumariidae (Holothuroidea, Dendrochirota), Zool. Jb, 78, 404-470, 62 figs.
Pawson, D. L. (1964).-The Holothuroidea collected by the Royal Society Expedition to Southern Chile, 1958-59. Pac. Sci 18(4), 453-470, 3 figs.
Pawson, D. L. (1970). - The marine fauna of New Zeatand: Sea cucumbers (Echinodermata: Holothuroidea). Bull. N.Z. Dep. scient. ind. Res. 201, 7-69, 10 figs, 2 pls.
Rowe, F, W. E. (1969),-A review of the family Holothuridae (Holothurioidea: Aspidochirotida). Bull, Br. Mus. nut. Hist. (Zool.) 18(4), 117-170, 21 figs.
Semper, C. (1868).-Dic Holothurien, Reisen im Archipel der Philippinen. Weisbaden 1, 228 pp., 60 pls.

## ROYAL SOCIETY OF SOUTH AUSTRALIA INCORPORATED

Patron:
HIS EXCELLENCY THE GOVERNOR OF SOUTH AUSTRALIA SIR MARK OLLPHANT, K.B.E.

> OFFICERS FOR 1976-77

## President:

B. P. WEBB, M.Sc.

Vice-Presidents:
J. J. H. SZENT-IVANY, Ph.D.
C. R. TWIDALE, Ph.D.

Secretary:
Treasurer:
B. J. COOPER, Ph.D.
C. J. M. GLOVER, M.Sc.

Editor:
Assistant Editor:
M. J. TYLER, M.Sc.
W. V. PREISS, Ph.D.

## Librarian

Programme Secretary:
N. P. McKELLAR_STEWART, B.Sc., Dip.Lib.
J. K. LING, Ph.D.

Minute Secretary:
S. A. SHEPHERD, B.A., LL.B.

Members of Council:
K. H. NORTHCOTE, B.Ag.Sc.
P. M. THOMAS, M.Sc.
R. W. R. RUTLAND, Ph.D.
J. S. WOMERSLEY, B.Sc.

Auditors:
Messrs MILNE, STEVENS, SEARCY \& CO.

Registered for posting as a publication Category ${ }^{\circ} C$ '


[^0]:    *South Australian Museum, North Terrace, Adelaide, S. Aust. 5000. (Present address Depaitment of Zoology, Univerkity of Adelaide, Adelaide, S Anst. 5000 ).

[^1]:    * South Australian Museum; North Terrace, Adelaide, S. Aust. 5000

[^2]:    * Centre for Precambrian Research, Department of Geology and Mineralogy, University of Adelaide. Arelaider. S. Anst, 5000 .
    1 Phummer, P. S. (1974) - The stratigraphy sedimentolngy and palaenenvironments of Lame Precam brian Umberazana Group in the Mount Remarkable-Alligator Gotee area. South Australiz. Lniv, ndel s, mpublished Honcours thesis.

[^3]:    - Department of Zuology, Univernity of Adelaide, Adelaide; SA. 5000 .

[^4]:    * Quennland Museum, Gregory Terrace, Brisbanc, Qld 40ng,

[^5]:    - Deparımem of Botany, University of Adelaide, Adelaide, S. Aust 5000.

[^6]:    * Institute of Medical \& Veterinary Science, Frome Rd, Adelaide, S. Aust. 5000.

[^7]:    * Institute of Medical \& Veterinary Science, Frome Rd, Adelaide, S. Ausi. 5000.

    1 Queensland Museum, Gregory Tce, Fortitude Valley, Qld 4006.

[^8]:    - BIrP Oil and Gas Division, Melbourne, Yio, 30an.
    + Department of Geology and Grophysics, University of Sydney, N.S.W. 2006.

[^9]:    ${ }^{3}$ Herhariumi, Canberma Botanic Gajdeng, P.O. Box 158, Canberra, A.C.T. 2601.
    t Personal communication: 1. Elix. Dept of Chemistry, Australian National Universily, A.C.T.

[^10]:    * Deparmert of Loulory, University of Adelaide, Adelaide, S. Aust. 5000.

[^11]:    * Geological Survey of South Australia. Box 151 Eastwood, S. Aust. 5063.

    4 American Museurn of Natural History, Cantral Park West, New York, U.S.A. 10024.

[^12]:    1 Callen, R. A. (1974) -New Rock Units and Climate of the Cainozoiç, lake Frome area, South Nustralia. S. Aust. Deph Afines Hepl. 74/75 unpub.

    - Cnilen, K. A. (1976).-Stratigraphy, sedimentology and uranium deposis of Teriary rocks. Lake Fiome area, South Ausiralia. M.Sce thesis, University of Adelaide (unpuhlished).
    a Yecson, B (1967).-Geology of Batcanoona 1:63 360 map area. S. Arsi. Depl Mimes Repp. RB $64 / 92$ uncub.
    1 Firmana 1. B. (1971),-Regional siratigraphy of surficial deposits in the Great Artesian Basin ant Frome Embayment in South Auytralia. S. diasf. DCpt. dfines Repr. KB $71 / 16$ unput.

[^13]:    ${ }^{5}$ Ludbrook, N.H. (1972). Age and environment of deposition of a sample from Yalkalpo No. 1 Bore, Lake Frome area, South Australia. S. Aust. Dept. Mines Rept. RB 72/207 unpub.

[^14]:    - Munnoni, No. \& Barryl. J. M (19721.-Murnpcowie Project S.M.L. 373 (South Austraitia) drilling program report R/32-21>U, S. Aitst, Depl. Mines enuclope 1327, Urpub.

[^15]:    :The mineral group smectite, but R. N. Brawn recognized dioctahedral montmorillonite in several in. spances.

[^16]:    * Centre for Precambrian Resaarch, Depastment of Geology, University of Adelaide. Adelaide. S. Aust. 5000.

[^17]:    + National Parks \& Widdife Service. Box 1762, G.P O., Adelaide, S. Aus. 5001.
    † Deceased; formerly of Depariment of Zoology, University of Adelaide, Adelaide, S. Aukt. S000.

[^18]:    *Marropus cugenii (Desmarest). SAM, M8575. Jommar wallaby, St Francis 1.

    A single tooth row of this species was found in the sandhilts hehind Petrel Cove, No living animals wete found. The settlers did not report tammars on the island and it is possible that they were either alreatly extinct, that the indi-

[^19]:    * Denartment óf Fisheries, Gawler Place, Adelarde, S. Aust 5000.
    $\dagger$ Department of Botany, University of Adelaide, Adelaide, S: Ausq, 5000.

[^20]:    * Values for Eicklonia and Scytothalia are mean values over 2-3 $\mathrm{m}^{2}$.

[^21]:    * 630 King George's Road, Penshurst, N.S.W. 2222.
    \$ Suaughan, I. R. (1966).-An analysis of species recognition and spectes isolation in sertain Queenslath froge. Ph.D. thesis, University of Queensland (umpubl.).

[^22]:    * Australian Musetm, P.O. Bnx A285, Sydncy South, N.S.W. $200 \mathrm{I}_{4}$

