Transactions of the

Royal Society of South Australia

Incorporated

Contents

Bourman, R. P., Belperio, A. P., Murray-Wallace, C. V. \& Cann, J. H. A lastinterglacial embayment fill at Normanville, South Australiaand its neotectonic implications1Beveridge, I. New species of Cloacina Linstow, 1898 (Nematoda : Strongyloidea) parasitic in the stomach of the quokka, Setonix brachyurus (Marsupialia : Macropodidae) from Western Australia 17
Kolesik, P. A. A new genus and species of gall midge (Diptera : Cecidomyiidae) damaging flowers of the South Australian swamp paper-bark, Melaleuca halmaturorum (Myrtaceae) - 31
Smales, L. R. Bainechina rossiae gen. et sp. nov. (Nematoda : Seuratidae) from Australian dasyurid marsupials 37
Cann, J. H. \& Murray-Wallace, C. V. Source of food items in an Aboriginal midden at Little Dip, near Robe, southeastern South Australia: implications for coastal geomorphic change 43
Griffith, J. E. Three new species of strongyloid nematodes from Thylogale stigmatica (Gould, 1860) and Thylogale thetis (Lesson, 1828) Marsupialia: Macropodidae) 53
Conran, J. G. \& Christophel, D. C. A redescription of the Australian Eocene fossil monocotyledon Petermanniopsis (Lilianae : aff. Petermanniacae) 61
Bird, A. F. A comparison of some soil microinvertebrate assemblages in Southern Australia 69
Brief Communications:
White, J. M. Seasonal variation in salinity in the Watervalley Wetlands in the south east of South Australia 77
Jones, J. B. \& Zeidler, W. The occurrence of Pachypgus gibber (Thorell, 1859) (Copepoda : Notodelphyidae) in Australian waters 81
Smales, L. R. Species of Gnathostoma (Nematoda : Spiruroidea) from bandicoots and dasyurids (Marsupialia) from Australia 83

TRANSACTIONS OF THE

ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

VOL. 123, PART 1

TRANSACTIONS OF THE

ROYAL SOCIETY OF SOUTH AUSTRALIA INC.

CONTENTS, VOL. 123, 1999

PARTS 1 \& 2, 31 MAY, 1999

Conran, J. G. \& Christophel, D. C. A redescription of the Australian Eocene fossil monocotyledon Petermanniopsis (Lilianae : aff. Petermanniacae) -61
Bird, A. F. A comparison of some soil microinvertebrate assemblages in Southern Australia 69

Brief Communicatlons:
White, J. M. Seasonal variation in salinity in the Watervalley Wetlands in the south east of South Australia77
Jones, J. B. \& Zeidler, W. The occurrence of Pachypgus gibber (Thorell, 1859) (Copepoda: Notodelphyidae) in Australian waters 81
Smales, L. R. Species of Gnathostoma (Nematoda: Spiruroidea) from bandicoots and dasyurids (Marsupialia) from Australia 83

PARTS 3 \& 4, 30 NOVEMBER, 1999
Beveridge, 1. \& Speare, R. New species of parasitic nematodes from Dorcopsulus vanheurni (Marsupialia: Macropodidae) from Papua New Guinea 85
Thomson, S. A. \& Mackness, B. S. Fossil turtles from the Early Pliocene Bluff Downs Local Fauna, with a description of a new species of Elseya 101
Hemer, M. A. \& Bye, J. A. T. The Swell Climate of the South Australian Sea 107
Kolesik, P. \& Peacock, D. E. A new species of gall midge (Diptera: Cecidomyidae) damaging branch shoots of the dryland tea-tree, Melaleuca lanceolata (Myrtaceae) 115
Bird, A. F. Observations of some nematodes from Kangaroo Island, South Australia, including the description of a new species, Hemicycliophora fluvialis (Tylenchida: Hemicycliophoridae), from Rocky River 121
O'Callaghan, M. G. \& O'Donoghue, P. J. A new species of Eimeria (Apicomplexa: Eimeriidae) from the sticknest rat, Leporillus conditor (Rodentia; Muridae) 133
Smales, L. R. Cloacinidae (Nematoda: Strongyloidea) including a new species, Dorcopsinema simile, from Dorcopsulus vanheurni (Marsupialia: Macropodidae) from Papua New Guinea 37
Turni, C. \& Smales, L. R. Progamotaenia abietiformis sp. nov. (Cestoda: Anoplocephalidae) from Onychogalea fraenata (Marsupialia: Macropodidae) from Central Queensland 143
Brief Communications:Lepschi, B. J., Kolesik, P. \& Gates, M. Notes on the insect fauna of the fruit galls ofAnthocercis anisantha (Solanaceae) in Western Australia149
Lauck, B. \& Tyler, M. J. Ilial shaft curvature: a novel osteological feature distinguishing two closely related species of Australian frogs 151
Mackness, B. An additional record of a meiolaniid turtle from the Pleistocene of Northem Queensland 153
Barker, S. Designation of lectotypes of three species of Cisseis (Coleoptera: Buprestidae) 155

A LAST INTERGLACIAL EMBAYMENT FILL AT NORMANVILLE, SOUTH AUSTRALIA, AND ITS NEOTECTONIC IMPLICATIONS

By R. P. Bourman*, A. P. Belperio ${ }^{*}$, C. V. Murray-Wallacet
\& J. H. CANN*

Summary

Bourman, R. P., Belperio, A. P., Murray-Wallace, C. V. \& Cann, J. H. (1999) A last interglacial embayment fill at Normanville, South Australia and its neotectonic implications. Trans. R. Soc. S. Aust. 123(1), 1-15, 31 May, 1999.
Stratigraphic, sedimentological, amino acid racemisation, thermoluminescence (TL) and foraminiferal analyses of an embayment fill at Normanville, south of Adelaide, have established the presence of the last interglacial (Oxygen Isotope Substage 5e) subtidal sediments of the Glanville Formation at elevations of up to 12 metres AHD. Overlying aeolian deposits, dated at about 60 to 50 ka , are possible equivalents of the Fulham Sand of the Adelaide area. TL dating of the Fulham Sand from its type borehole location yielded an age of $74.9 \pm 6.9 \mathrm{ka}$, considerably older than previous estimates but compatible with a recent re-evaluation of the age of the Pooraka Formation.
Key Words: Last Interglacial, embayment fill, Normanville, Glanville Formation, neotectonics, molluscs, foraminifera, amino acid racemisation, thermoluminescence dating, Fulham Sand.

A LAST INTERGLACIAL EMBAYMENT FILI AT NORMANVILLE, SOUTH AUSTRALIA, AND JTS NEOTECTONIC TMPLICATIONS

by R. P. Bolrman, A. I. Belperio, C. V. Murray-Wal.ace \& J. H. Cann'

Abstract

 May. 1940. andyser, of an embayment fill at Normanville, south of dedelaide; have estathlished the presence of the fast Sand of the Adelade areth. TL dathe of the Faham Sand from is type horehole locution yieded ar age of 74.9 the Porrakie termatorn. mitsinde of the last interglicial Glanville Formation from Guif St Vincent, derose Fearicu Penmsula to the Peistosenclimestones.

[^0]
Iniroduction

A sequence of lask interghaial and younger sediments infills a former inarine embayment in the Normanville atea on the castern shoreline al Gull St Vincent upproximately 70 km SSW of Adelade (Fig. 1). The extent of the formet marine embayment is marked by mo monate refict constal clift lime eut inlo Cambrian and Precaunbrian rocks and Permiatn glacigenic sediments (Fig, 2). The majority of the sedment-infilled embayment oceurs below the 20 m contour and the location of the former coastal evill is clearly marked by the 30 III to 50 in eontours. metging welf eurtent boastal chils at both the nawhern and suthern extrenties of the formes embayment.

Geomorphic Setting

Three streams. Currichalinga Creck and the Yankallila and Bungala Rivers cross the embayment fill in the Normanville area and have contributed to its firmation. The Bungala River is the largest of the

[^1]streams entering the sed in the tentral section of the embayment and ils satchment wea is dominated by Permian. sandy, glacigente deposits that have fargely provided the quartzose sedtments of the mestern beacti and dune system. Carrickalimga Creck and the Yankatilla River alser pass through some arcas of Permian sediments and enter the embayment at its northern and southert ends. respectively. The present rectilinear, sandy, six kilomelre long shoreline is bucked by mudernewastal dunes up $10 \% 15 \mathrm{~m}$ high and contrasts markedly with the morphology of the pataeo- cliffed eosathine. A combination ol marios: atoliten and flewial sediments has eontributed to the inlilline of the former embayment. The lofmer clifted voastline las a clear topographic expression. and adjoining low slopes reflect allostal fan sedmentation at the scarp/plain junction. With deolian sund drift contributing tuditional relicf on the embayment fill (Figs 3, 4), Spectacular seree stopes necur along the highest pharts of the lasi interglacial elimlime from Lady Bay en Litte Gorges. where the cliff line coincides with an ancient fault zone. Fluvial, slope and acolian sedmentation have thus somewhat abseund what was formerly it gently soping plain of coastal progradatom, with rocky shome patform it itsexremitios.
Two sets of fiver teraces llagk the three magor strams: which flow across the infilled embayment. High, patred lerraces are undel dain by reddish, hrown

Fig. 1. Location of the study area.

 Divoluamente fill traching the moderol chastal eluned maskud by a line of verestation at she atowe The present

 aconsimathe ot this lofe,

198, B. View in the sumbers acrase the Normantille Enbayment fill from the relict last interglacial clijf line. Topengapife erfegularines su the embatyment fisf have esulted lam alluvial lam sadmentainon amay Trom the
 phulograph

Fife + View argon the Narntanville Embayment fill fous Hele it showing the relisendastal cliti no the hackgroums from which am illuvidl lan estends.
colouned sedtuents that are regateded here ths the equivatenis of the Pooraka Formation elsowhere dated its las merglacial (Bourman ay ul. 1997). Sel within an valley eroded out of the Poaraku Formation sediments ade grey dodete cologred sedinents which lemir lower level paired (erraces likely to be of midHolseene age (Bousment ef al. 1997). λ distinctive high level alluvial surlace at the athet of Lata Gorge ifig. 5) to the sea is protably indated 16 as former higher seat lewel.
The extremities of the embayment are charmeterised hy nocky clifed storelmes developed of stystalionc Archacan rocks io the stouls, near Lille Gorge, ond Combrimm melascdimentary rocks to the nords near Haycock Point. These rinky shores also wepresent the hinge perints of the embayment doring the relatively hightr seid level of last interglitist tomes.

Materials and Mathods

This suldy Wits instigated by the serendipitans discovery of a serics of investivatite pits. Le to 5 m deep (Fige O). excovated in the Normanvilte Embsyment fill bor as profestion al goll exurse amd bousing developonen. The lowations st these hoies are stown in Figure 5, The vertical wathe of the pith provided complete and superdutive 3 -dimensional expusare of the subsurface sediment biyers. which inchded various mafincestrell, graved and sand layers heneath a near-xurlace salcreted horion. Waing an afuminium extension ladder for itecess, the sediment profiles exposed in the excivaboms were measured. descritued and sampied for hating and fianal andysts. The geound surtice clevations at the pita were surveyed using in sutomatic level and related 10 Sustraliam Hejght Datun (AHD) by levelling 10 a nestray survey bench maik.
Fossil molluse shells uefo collerted for species
 racenrisation analysis. Anmon acid racemisation analyses were underfaken on the thinge region of well-peservod, disatticulated spotimetns of Mowted atsimalis Lamarch. Complefe detaits of the imalylical procedones lollowed ane provided by MurtayWallace (1093). Analyset of the N-pentid-
 were indertaken using a Hewled Pucbard 5890 A Serice 11 gas chromatograph with a flame innisatism detector and a 25 m couled. Fused siliea eapillary
 Val In this work, the extent of facemisation is reporid for the amino sides alanine (ALA), valine PALD, leucine (LEEUS, usparlic acid (ASP), glutamic ated (GLut : 6 w well at the exten of isoleurme epimerisalion (KLLO/ASO), 2

Sarnl samples fiom acolian sediments werb

Fig. 5. Normanville Embayment - localities of excavations.

Fig. ar. Five m deep inspection pit (thole w1) exesvated ina the Normanvilte Estbsyment fill sediments Note the boil bilfol sulution piges which penetrate a calerete chapate.
collected for thermoluminescence dating using appropriate rechniques that prevented exposure wh the sand to sunlight. Dating was carried out in the Tbermoluminescence Laboratory of the Universily of Wollongong, One sample was collected from Hole \#1 from line, well-sorted acotian sand overlying cross bedded gravels and sands containing disarticulated valves, to compare its age with that of the underlying shells. A secund sample was collected from reddish sands that stratigraphically overlie the shells exposed in the pits and which form dunes that produce much of the current irregular relich across the surface of the Normanvilte Embsyment fill materials. The sumple was collested trom a construction excavation several metrex helow the ground surface. These sands resemble the Fulbant Sand (Firman 1966) of the Adelaide region. They att well rounded. Well sorted carry it palinit of ipon usides and form dunes with a simitar general distribution and setting to those of the Fulham Sand. The Fulham Sund is characherised by bow, iecegolat dane topography and oceurs within a broad sone up for 3 km in width subparallet in the coostline (Bowman \& Sheard 1988). At Nummaville similar subdued dunes are more restricted topographically, are subparallel to the coastline I kni from the shore and are up to 0.5 km in width.

A sample of the Fulham Sand Tron the Adelaide Region was collected trom its Type Drillhole location in a small reserve on Telford Avenue, Findon (Bowman \& Sheard 1988) for thermoluminescence dating and comparison with the lithokgically equivalent material at Normanille. The Telford Avenue semple was collected by sand atuger from a depth below the ground surfaco sl 2.5 in where the Futham Sund extends to a depth of 3.3 m. 'This wats done tos avoid possible surface reworking of the original doposit.

A fourth sample was collected from atolian material overlying an elevated shore plathorm and cobble bach facies of inferred last interglacial age in Sellicks Beach (May do Bourman 1944). The sand is unconsolidated but contains calcareous rhizomonphs.

Bulk samples of the Nonnanvilte Embayment lill sediments were collected lor loraminiferal analysis. in particular to document the assemblages of foxsil

Halc Number	Sample Number	Depth interval below surface	AHD Elevation
\#1	41	$3.56-4.60 \mathrm{~m}$	$3.5-4.54$ mas
业1	\#	$2.501-2.70 m$	$4.54-5.7 \mathrm{~m} \text { as }$
\#1	43	$1.80-2.40 \mathrm{~m}$	$5.70-6.3 \mathrm{~m} \text { as }$
H2	\#4	$3.00-3.50 \mathrm{~m}$	4.80) $5,1 \mathrm{ml}$ and
H_{5}	\#5	$3.00 \mathrm{~m}$	11.9 m as

foraminifera within the exposed sediments and hence 10 inter their age(s) and palaeoenvironments of deposition. Sediment samples for foraminiteral analysis were collected firm the excavations at the following locations (Fig. 5, Table 1).
All samples were essentially disaggregated and clean and were thus dry sieved without any form of washing or other pretreatment. The grain size fractions $0.50-0.25$ mrn were retained and examined for foraminifera using standard micropalacontological procedures (e.g. Cann et al. 1993). Larger grain size fractions were visually inspected, particularly for the presence of Marginopora vertelratis.

Results

Strutigraphys

The stratigruphy exposed in the excavations is illustrated in Figure 7 and is described in greater detail in the Appendix, In Holes \#1 and \#2 the base of the section is eomposed of fine. quarte rich, hioclastic sand up to in elevation of 4.5 m AHD (Hole \#1) and 4.25 m AHD (Hole \#2). This is (wverlain by $1.3-1.7 \mathrm{~m}(4.3-6.0 \mathrm{~m}$ AHD) of crossbedded gravels and sands containing numerous disarticulated whole shells, dominantly convex
upward. The cross bedding is both tabular and herringboned (Fig. R), with co-sels of beds averaging from $5-20 \mathrm{~cm}$ in thickness. Oceasional articulated valves provide evidence that they were deposited below sea level and that the shell deposits do nol represent a storm or a beach lace environment of deposition. This facies association is interpreted as accumulation from an upward shoaling, tidally influenced, shallow marine sea floor.
This overlying unit comprises $0.5-0.9 \mathrm{mt}(5.8-6.9 \mathrm{ml}$ AHD) of fine acolian sand containing calcareous rhizomorphs. A sample of this material was collected at an elevation of 6.2 m AHD in Hole \#1 for thermoluminescence dating. An irtegular. calorete hardpan up to 0.5 m thick rests on the sand and solution pits infilled with red sandy soil extend into and through the calcrete into the underlying fine sand and gravels, in places to depthe of 3 m below the surface (Fig. 9 from Hole \#5). The reddish-brown terta rossa soil which intills the solution pipes is uverlain by a grey-brown sandy loam. This generalised stratigraphy is atso revealed in the other excavations but with increasing elevation in successively landward pits the lowermost units progressively fail to be exposed. The above sequence of strata is also exposed in a large excavated lake irrmediately to the horth ol Hole \#1.

Fiy. 7 Strangraphy of Normanville Embayment fill.

 Pamian elatigenic sadiments. Nobe wecalsiontal
 field is upproximately 2 if.

 rich d lanizon. The lanil underlyong the ballerete in al line quath sand with alew calcaresus hisomaphe it she

Ritillics	Cimiturud.
 Irens eforterlms A 	 Ilith. litulu Prestinit os ims

Fensil maillata assemblage

The embayment fill sucession eomeains ai relatively diverse assemblage of tosshlf, shathow
 follows that al Ladtrous (198t). The mellasies are mosily mell-preserved and some show traces at theil
 articulated bivalves sesurs but lisey are pres. dominanely disarticulated, cenvex up, Jnd show litte
 erver short distances under condiesors ol mexterate energy, Aharfar entrathis dominates the hivalte aswemblete Collectively, the itsemblate reflece deposistion in an intertidal for shallow suhridal semeng with ia sandy subatrate. Shme gatropalx, however. sedell ith Tumber epor were evidenly derived liom
 a Hanatect cminlage

Amimenucid retcembullon resells
 the himge regern of well-presonced, disarfientated
 ennentathe in the extent af racemisation fon
 Nomansille Emhayment bill (Tiable 3). 'Ske

 is mufeti ALA $3.3 \% \%$ VAI. $4.1 \% \%$ ALLOMSO 4.2%

 sexth mollast is consintent with previously
 Quatermaty moshases such lhan ALA>ASB>

 reponted |were, Signilisant differencest from theses ubsersed retalime extent of rimemisalion wombt
otherwise point to the possibitity of contamination by nen-indigentus amion acids.
A common age lor the inollanes from the Narmanville deposit is imbeated by the equivalent
 lissalo. Their exsent ut rememisatist far exceeds that fior fonkeeme materialn (fible Br see also Murray Wallace 1995) and a bint interglatial age is indicated lor the molluses from the Nornanville Embayment bill. by analogy with lossil motluses firm the reference section of the lam interybacial Gbansille Formation at Dry Credk in the Abebatde areal (a 125 ka: Oxygen Ibotope Suh-stage 5ez Caml 1978: Eselperio et if. 1995), similarly. the lossil molluses From the Nosmatnville E:mbibrient lilt show a comparathe extent of racemication for spectment of A1. amsmotis from atas interghatial sand flat facies on Ilindmansh Istand ('lable 3), Jontay the Nommavilles Hindmarod Island and Dry Creck sites dee characterised loy similar mean anmual comperatures, abl at a corvilary are likely on have experienced equivalent diagenetic kemperathe histories, The equivalemere in amines acid D / L rabos therefore indicates at common age for the lossal mollemes form the se there sites.

Pioremminteral emelnses

All samples yiched foraminilera and, in parlicular. they all eontaned fragmens of Moreibepmed werthradis Blannille supporthen al last interylatial uge for the marine depusits within the embayment lifl at Nommatmille (Glamville Formation cquav:UEnが.
L'on' samples conlain ablundant. Well preserved and easily identifialbe framinifera. The mamerical distribution of spextes lom these stimples js eiven it Fitble 4 and the relalive atbundakers of those speceres comblitutime $>15 / 8$ of a population are shown in Figure 11). Thece of the mox conmmon specise Were

 Limnes, all of which are known to be chartaclerisioce nf the shallow, subtidal coashal envirommentsonf modern

 the disumblates. some marked and ention mane subthe, the sigatifance of which will be disconsed Piver.
 combiaded predeminantly of guarta, grands cobled wholly or in part by cantomatco Quarth granas 1.60 0.50 mm are polished and show is high degree of rounding and xpheronty; This is cemsistent with deblian reworking sorting and poshishing. Fomminifera are relatisely rane had have undergone exponsive carbomate diagenesis, rendering lests dastingumbable anty on the basis of groms thape.
 guctim size (0.50.0.25 mm.

Species a! foraminifers	Hule \# 1 Sample ${ }^{\text {\# }} 1$		Hole 开 Sample \#?		Unle \#2 Simple \#4		Hole \#5 Sample \#5	
	Depth in hole$3.564,60 \mathrm{~m}$		Depth in Iowle$2.602 .70 \mathrm{~m}$		Depth in hole 3.(4) 3.515 m		Depth in fole 2.75 3.70111	
	No.	4	No.	\%	No.	\%	No.	r/t
Cribatulimina mixay	3	0.9	4	1.5	5	1.6		
Nuhecsolurna hailuga	. 17	11.7	75	28.3	8.	27.18	2	0.8
Quinqueforulinu lammekinha	6	1.9	6	2,3	16	5.1	7	
0. miownemais	\checkmark	2.5			4	$1 . .3$		
O. pirsersis							5	1.9
	28	8.s	1.3	1.9	13	4.2		
	6	1.4	1	0.4				
I'curerwplis planatus	2	0.6	1	0.4	5	1.6		
Markinmurara vertetoalis	2	0.6	4	1.5	2	0.6	4	1.5
Discorhis dimidicums	197	30.6	$1+1$	53.2	147	47.3	150	56.8
Rusatimor unssmelis	5	1.6	1	0.4	2	10.6	65	24.6
			t	1.5		0.6		
Elphidiumt crivpues	11.3	35.6	11	1,2	23	7.4		4.2
E. nuticelliferme	3	(0.)	t	1.5	2	0.6	13	4.9
Ohler spectes:		2.2				1.9		2.7
	$N=317$		$N=265$		$N=311$		$N=26 t$	

Laboratory Na .	Speciment name	Location	TLuge	Isotope Stage 81×0	Sca level position
W2356	Nomanville 1	Hole at Depth 1.810 Calcarcous constal icolian silld	$50.4 \pm 4.3 \mathrm{ka}$	$\begin{aligned} & 3.13 \\ & 14) \end{aligned}$	\cdots
W2357	Nommanville 2	Reddish dunes. I km NW of Hole \#1 Depth 2.5 m (alkareums at deptlı	$58.0 \pm 6.1 \mathrm{ka}$	$\begin{aligned} & 4.11 \\ & (t) \end{aligned}$	- - 40 (111
W2354	Fulh:m Sand 1 Type Drillme Lncation	Telford Ave.. Findur	$7.4 .9 \pm 6.9 \mathrm{kti}$	$\begin{aligned} & 5.13 \\ & (50) \end{aligned}$	$\begin{aligned} & -80 \mathrm{ml} \\ & -143 n^{\prime} \end{aligned}$
W2317	Sellicks: Beash 1	Abuve cobble beach on dien platform 4.6 m ast Catancum	$3+.0 \pm 2.9 \mathrm{ki}$	$\begin{aligned} & 3.1 \\ & i 31 \end{aligned}$	-22 $10-30 m^{\circ}$

Sonte:
i' O [sotopic events unbracketed ascigned wigig the scheme of Martinson et at. (1987)
δ *) Isotopice events in brackets as signed using the seheme of Aharon \& Chappell (1480 (

- Sea leveds from Aharon \& Chappell (1986)

Sea level from Murtay-Wullace et al. (1988)
Sea level trom dails ef al. (1984)

When wet, some revealed other features that allowed identification. such ass E. erispum, which showed the characteristic pattern of numerous natrow chambers will ratsed remal processes bridgong the depressed sutures. Other species idemified included 1). dimidianms and M. berpormatis. It was not possible to determine a meaningful numerical distribution of species for this sample, particularly for the particle sise fratction $0.50-0.25$ minn.

Thennolamincreance (TL) danins

The Thermoluminesence laboratory att the Universily of Wollongong reported that the samples, exhibited good TL characherislics with lengthy temperature platean comparisoms and regenerated TL growth curve r-square correlation coefficients approximating unity. These shateteristics, logether with the small age uncertainty levels associated with these determinations. further validate the depositionall ares reported bere (Table 5).

Fig. 10. Bar graph comparing percentage distributions of species of foraminifera from sediment samples; data from Table 4. A. Hole \#1, sample \#2, depth in hole 2.60$2.70 \mathrm{~m} . N=265$. B. Hole \#1, sample \#1, depth in hole $3.56-4.60 \mathrm{~m} . N=317$. C. Hole \#2, sample \#4, depth in hole $3.00-3.50 \mathrm{~m} . N=311$. D. Hole \#5, sample \#3. depth in hole 2.75-3.70 m. $N=264$.

1 Li, Quinyt, McGowran, B.. Bone, Y. \& James, N. P. (1997) Recent forminifera along the southern Australian margin: padeonceanographic significance. Third Australian Marine Geosejence Conference, Department of Geology and Geophyuics, University of Adelaide. Abstracts, 38-39.

Discussion

Foraminiferal analysis
Foraminiferal analysis has confirmed the sedimentological interpretation of a shallow marine. shoaling upward succession. It further supports the last interglacial age assignment. Fossil foraminifera within the last interglacial Glanville Formation are generally similar to those presently living within the marine environments of the South Australian gulfs, Gulf St Vincent and Spencer Gulf. However, there are distinctive elements, such as M. vertebralis, which signify that the waters were somewhat warmer than those of today (Cann 1978). It is now recognised that the occurrence of these organisms in the last interglacial sediments of southern Australia can be attributed to a particularly active phase of the Leeuwin current. At times of global warming this narrow current of warm tropical water flows south along the western coast of Australia before turning to the east across the Great Australian Bight (Cann \& Clarke 1993: McGowran et al. 1997). Among the distinctive fossil foraminifera of the Glanville Formation, the most frequently recorded species has been the megascopic M. vertebralis although Li et al. (1997) ${ }^{1}$ have referred equivalent modern specimens. at Esperance, Western Australia, to the genus Amphisorus.
Nubicularia lucifuga is the most conmon species of foraminifera in the shallow subtidal Posidonia seagrass meadows of the modern South Australian gulfs. In the sediments exposed in Hole \#1, this species increases up-sequence, from $12-28 \%$, which suggests water shallowing, probably due to sediment aggradation and ongoing development of a seagrass environment. In the lower Sample \#1 E. crispum is at its maximum occurrence, signifying a shallow subtidal setting of normal marine salinity but higher in the sequence this species represents $<5 \%$ of the assemblage and there is substantial development of D. dimidiatus. This reversal in relative abundance is a clear signal of water shallowing (Cann et ctl. 1988). Thus the sequence of sediments exposed in Hole \#1 between 3.5 m and 5.5 m AHD can most casily be interpreted as one of sediment aggradation in a seagrass environment during the last interglacial sea level maximum.

The foraminiferal assemblage of Sample \#4 from Hole \#2 (4.6-5.1 m AHD) is remarkably similar to, and may be correlated with, that of Sample \#2 of the adjacent Hole \#1 (4.5-5.7 m AHD). Thus, essentially the same shallow subtidal seagrass palaeoenvironment of deposition is signified for this interval of sediment.
There are several quite marked features of the foraminiferal assemblage within sample \#5, which contrast with those derived from the other samples.

 mase dendward silc (Table 16 . Mond ubviomsly, N

 the ablosente of all adjacent subtidal Pasidonta scagraths meaduns. Despite the Fatct iltal the yery high
 Shallows subuidall secting, Rewedibe alrvadis (latry)
 together ponside consimeng evidence that mach of He assemblage wats deribed from slighty decpel:
 comos. Mlore subtle supportinge evidence is the

 sedmene exposed in Jole $\$ 5$, with its distimetive athernthage of inger slaelf Joraminilerst watho al Iswal patily, terived from offabore enviremments and
 inctolatial marine transgressime 'This pathete of sedinamb. revialeal in lise most clevaled and land.
 limat of the lasy medelucial sen level evemt.
 - shavisulime:

The T1. atace derisud fiom anonlian sediments
 are sommaderably yonnger than the last inkerglacial later, at Normansille and Sellick Beandr. "flocy sugecs that there has hean ungaing atontian
 bodiex along the easedem shoreline al Giull Si Vinecol deditige rimes wher seg Jevel was loper shaim al present, with confintail re-selting villa Tl.c.leck. All thres sites and TL dittes imply fin apparent youthfolmess of the catbere ceapose formed on the
 ill Hote 执 is correct Hese dath provide a
 (ablected surlate and imply that calcretisation did
 cesmanion of marine wedimentations.

Ihere late Iwers considentle exmecthre ahoul the age est ote Fulham Siand. Bowntan ofe Shoard (19881 nomest that it is the lossififeroms low that it stratigropheadty werties both the lata inkerglatiad

 They reararded the ages of the Pooriahat Formationd for he $35-20 \mathrm{ka}$ [sp. They cuncluded that the medatise
 Fonlham saud. ill temorarisun with the St kitdit

dace. If Wuscequated with dertioul landscapse instathilty

 presicostal here sagges that the Filthem satnd in censiderahly wder tham prexiously suggeseded, with potential ages ranging lionm 75.50 hat BP. This
 Suad teeing formper lian the tasurahel formation is in Hats heed acmemstruled, in some lexalities thl leats. that the Porraika Formatiom is the e eerrestrial cquivalent of the latut interglacial (125kabpl marinc Cilanville l'ormation lBonmaner a'l ed. 1997].
 considerohly nlater than the $35-30$ kat uge dincussel abose
 experael do the former sub-lillorat some baseel on the
 hol Tha puoduced an age oll Sol hat Acolian reworhine even of enststal ealearenticn proceceded lataty onimpeded as evidenced by the "TL dades ilt Nerthantible. Sellicka Bead and al the Fitham Sitned Type brilltale loLiation.

Nénhichernis.

 variuhte movernent ulonge the laull eones of tite region. Fon cximate due Chatendorochre Conco didnltine appedes to have been loched throgeghot the Quakstary (Ward lwobi whereas there hats been
 Zonce during the Iteinstene. ith demonntated by the
 Bonemman 198+1,

Recuarent bectomism durimy the Citnematic is

 Beately hur 12 hmt untay geross the Willongat Fituh

 mexvernent sime this lime (May be Bewroban Ibsth.

 Adelade area 10 g 50) maki at Cape dervis (1 "irman

 pecsent aliweritulion of the Bumblan Limestone fand its chaivalentoresulvad fronz getule watping axd alsu

 The stevations of the burnham limessone, with

 (98d). P'm Willunes (Firman 1476) (15 miand) and at Sellicks Beach (8 mast) (May \& Bourman 198t). support the view of gente teetonic filtug or waping of the landsates, However, heally such as acmoss
 Willomen Fiwh Zons: at Selliches Beach, thens has heen simulcan tecture ulisering of the tsurnham I innestome, which is particularly marked since it is a typisally thim mit fishat 1.3 m thick.
A comsideration of the veribeal distribulam of last interglacial shoreline sediments (125 kal) further
 abertine Fowrich Peninsula, In at peview of Austalian ucearrencen an las interglacial (Oxyeen Fsotore Sub-stage 5e) codatal deposilso Murray=

 lom the westem dent of tyre lempada. Here. infertintal fatios of ithe last interglaciab shorelines beche ill 2 m Athl ower admance of 500 km . The consivervey wo this shoreline datum has heots adtributed to the rataipe tectomice sability of the
 of have interylatial stoneline deposits has been noted and. int the cete of the Coorong to the Mosant Cambier Comalal Plain in the southeast of Somith Austatia, variations in clevalion hate bect

 Sall ('reek to near Mount fimmber the bask barrich
 al the low inderglacial Whatwine Ringe ham loen
 (Murraty-Wallince et ad 1996)

 Stwere plathem at approximalely $4-5 \mathrm{~m}$ AHD has been erndeal temes staeply lilkel Terliary limesunc heds and un which sests a broulder bewelt containing

 hagh leved stort phathem has produced at series of whall ace stack whendag aboye the modern shore plallorm, Cillarperpas dume sinds, several meares thick and erisentially uncomsolistated, put combiaining
 Whatine can tre tased for severul hundred metes in a somberly direction and dexes nood appere th lave heen tilled Immediatsly who horth if the Willunge

evidence of this former anowline leature suggeatios
 shedls within the tralderp heikels returned a
 1984) while the overtying dune simal wats dated all 340 ± 2.9 ka by thernulonimeseence techaiques (Tuble 5). Here we interped the elevatal shome platform and boulder heach as last merelacial reatures, with the whe sand havine been deposited or neworked during a Jower inmertadial sea level (oxyenh isonope stage 3) when seal level may have been some 22 (u.30) in lower liam al presen) (Muraily Willuce ef af. 1993)
At Vietor Hathor on the smultuasern side ul Ferarica Penimula thene is extensive geomorphwhgical and sedimentatogical el idence of the last
 (13curtman of at 1989. 1997). However. altong the cosak heaween sellicks Buach ind Vienor Harher there athe one reponed eceurrences of the lass incerghacial shoneline despite there heing many octavions taltere high Jevel alluvial sedimenes appeas 10 grade 10 an aboreline consideratly frighter that in present. The distovery of the bust interglacial slumetine is Nommaville at reported in this paper helps of redresy this vaid und prosides signitician dita relevant os the kecmaic hasory of thentica Decomenta.
 glacial sediments have been identifiel at eleations
 an the furthest inland sile. The erevurence of the
 Ho Nommanille lientayment lill to 12 in Allls inpties 10 or uf aplift since the Last Intratacial

 within this mamerressive packape hase new beeo identilied with iny graat precision. The motluse
 potentially occur at in rande or depthe ceg. shathos. sub-tidad. Herringlune sund itud eravel cross heds. cundaining convex upward yalves, sumest relatively stromg reversing curnents in a sulblilural ensirmaneme and heme provide maly at minimum fommer bea level puisifitu. Athrughth mathicabated bivalves were recovered from the inspectien pile. bedestonal pais becoured in the lape watip hole
 shedse have unly beer lransported oper whol disatusee from their original in sims pensigums.
The tectonia dislowation of the Late Pleistenctac lase imerglacjal Glamsille formatoon appars on mank the carlier tectsaic history wl Cull St Vineem and Jifcurien. Peninsula. revealed hy the diadecationt of shder marine units, sigmifyine uptifo of likurisu benimsala and depression of the Addhide unea and
R. P. BCHRMAN, A, P BEIPPERIC, C, V. MURRAY-WALIACE SH I, H. C.ANN

The Willunga Embayment. In the area merth and west of Adstade city, the upper surface of the Glanville fiomantion extends io depohs of 11 m below low
 dinatwatrd lomil reaching low water al St Kildat and + (1.4 m all L2ry Cicek (Lutbrook 1976: Belperin 1985). indicuathy eradual submergence ol the last interglacial facies in this areat.

The abtitudes wl korwn lam interglaciad shoreline
 Waltace (19y5), are illustrited in Pigure fl. The elevalions sugegen proxi-lint interylacial Iectomism cesulting in tiling of the shoreline, with vilferential uplill allong the Fleurneu Peninsulat with at maximum in the Normanville area, adjecent to the Litte Gorge libuh, and submergence in the Adelade and Muraty Gakes arens. (Ongong uplift of the Mount I.oity Ranges thomghout the Cainozoic has been demonatritted by many workier, Boumater \& Lindsay
 of itae Mound Lutity leanges, which supperts die view of enn-pressive fores heing involved in the ongang delornation of the ranges ats suggented by Welloman de (irecthbalgh (198s), In addition to the denkmstrated compressive linces (yperating ongoing uplifi Daty atso be ietaked to cromional moloading adod assoreated inostatic Expmpensation of the Adelatide boldibell.

Cnnclusions

The identification of the elevilat shell beds and contstal sediments of last intergavial age in the conbayment lill rediments at Normanville atbows quantification of the nethectonism allecting- Peurica

Penimata. Convincing tomelation by andme acid racemisation of the last interglacial Dry Creck Glatmille Pomation with the shells at Nombanville and those on Hindnarsh Isfond is supplemented by thermbumineseence and losamintieral analyais. Comparisons of elevations of the Glanvilke Farmation seveal the dillertobial upliat ol Fleuricu Peninsulat and depression of the Adelaide area and the Murray Basin di up te 10 in oser the pats 125 hit. 'The lectonic diskeation of the luse interglacial

 units of Miocene and carliest fleistowene ages.

Spucies of foraminifera, comsistent with at lath interglacial ange reveal at shallow sub-lidal environment of deposition, in waters that were warmer than ar present. The mollused athor beflea intertidal in mbridal sethinges with a sumby milotiade and protection tiom a rocky coashlace. Some of the
 such be Tinton ip. in the asemblage suggest intcomixing from whas sentogs firchation rochy shenclimes on the extrentites of the embayment.

Overlying, but genslically related acoliant samal indiate omerning acolian betivity on at lenst 50 ka Themoluminescence dithe wh the tulhan Siand lin the firs lime provides at nummeat age of 74.9 ± 6.9 kin, which is much obler then previsus essimates, hons the sirdier interperations were restricted by the
 formation. The formathon of acolian deponits. occurved during inferstadial and glacial bow ata Eevels, hy the reworking of former comstal sathe bradies and sediments out the exposed sea mend: Lumineacence dating has demonatrated the

Fosmanion al calcerese and the developanemb sil dimolution leatures in dixe batst 50 ka. On Fleuricu Peninubla, salerete formation :ppart to have been
 around the state. 'This allowed the reactivalion and ctrakial sediments -ant a sequelue of gencolically
 ypreads te develop frefore salerelisation stabilised the bequences.

Ackmonledgnents

The Unversity an South Amstralia is ink howledged lig Fonding investigationts of the lave haterglacial shorelinc. Murroy-Walface skhombedges fumdirge
 Reweareh Centre al the Lintversity of Wultugente. We appreciate tias conctractive comblolls of the relerces. V. Cosstin and M. Whate.

Reterences

 limill St

 maireit of she Abum lasiy Romeser sonth Australlio.

 development of Palice Pbunt spis, Vicen Itarthon, Semith

 of

 Olum. Ress. 29, 153-17\%.
__ R161. R. L. (144.3)

 Y(1): Sical. 111, 171.157.

 She S. Aun 10\%, 1?1-142

 sequence in somb Australia thel. 58. - 5 .

 345-372.

 Ster: S, JINM 57. 4.7

 Sumth Alustraliii).

 impact of the Lectuwin Cuprent in southeril Austration

 Ullul., Res. 27. 1-29.

 401.

 1166, +11.51

 Eillth S'V 37. 2615-3(37.

 284)-294.
 and climatic hisomy of the Adelade area, South Allmatian: A dimumbinn. J. Reml. 73. 237-24?
 the wothesestern part of Comty Alclaide, South

Amatratial CSIRO Soile Publication No 23.
 Lonty Ratnges. South Ausitalliat Iheir uplife erosion and
 112, 11-11).

HOH I: 2 ISLIEVATION K.IH \& A1 AHI)

Sullacta (o) (9, K m
8.1-7.3 mi Red. bximwis sivl.
$11.8-1.2 \mathrm{nl}$

12.2.? 11
f.9.5.9 nt Sinall shells. ratre stomes. line sumed probably dune matcial.
$4.2-3.5 \mathrm{~m}$ dinc bioctiatic samd, weatkly stratiJitil. suhbidal uillt.

HOT.H:3 BIAVATION 8.94S M AIII
Dencrip)lem
Sudike la (. 11 m
8.95 .7 .95 m Siandy form on top finlilline pipers.
1.112 .2 m
$7.95-6.75 \mathrm{~m}$
Gilcreted atolian culcareows sind. Fins batcatemb hioclastic sand. Variablo

2.2-3.7m
$6.75-5.25 \mathrm{~mm}$ Cross-hedded grayelly and shelly samad includes worshe graveily unil whit sublla (kame shells as in oh our holes) Sharp lop in grasels. Stratitied, water hombe scdiments.

HOLE 4 ELLEVATION 10.728 . W AHIS)
Surlite to 0.3 m
 bled limegents within it, Gey bromn sail at bop. Calcrees is hander here than at ohber sites.
(1, $3 \quad 2,0111$
$10.43-8.73 \mathrm{~m}$
Biodlavic. line sand with mizomerphs: arid leworked cabretc. Grakles uly ines) imexular catereled surfike up ka 0.3 II : Ind (down lo) 1.0 m .
$3.11 \cdot 1.7 \mathrm{~m}$
$8.73-7.113 \mathrm{~mm}$ Well stratiliced gratelly sand with at fem shells. Rhizamorphs extend intu this Imit: Pronounecd top of it in depth of 2,11 m. Shells same at ill wher Keratifitenpossible bstuarine influence- evidence of strong currents with coalse grathel moving in both dibtetions. Possibly brumd. shallaw lidal chanmel berweein weval and estuary.

HOLE 5 ELEVATION 14.870 M AHD
Surface to 1.11 m
14.87-13.87m Red-brawal chay-rich lower unit in plates fills in solution hallomse Unifirm light hown quartanse sandy Joam in top metre.
1.0-1.8 m
$13.87 \mathrm{~m}-13.07 \mathrm{~m}$ Pinirly develıred hamipuar.

Appendix cont.

1.8-2.75 m
13.07-12.12 m Fine quartz sand with a few rhizomorphs. Increasingly patchy carbonate, probably due to low carbonate content of sediment.
2.75-3.7 m
12.12-11.17 m

Well stratified, very quartzose sand with very low angle stratification. Contains: scattered forams and shell fragments. Perhaps 5\% forams and bioclastic fragments. Water deposited but not as
gravelly as closer to the coast, which would have been in deeper water. Shell fragments up to 1 cm in long axis. Shells derived from hole have been excavated and dumped up on top. Represents sandy beach environment. Sample collected from 3.0 m (11.9 m AHD) with lots of forams (Sample 5). Clearly a sandy littoral unit. May extend down into a gravelly unit below as there are excavated shells at the surface.

NEW SPECIES OF CLOACINA LINSTOW, 1898, (NEMATODA:
 STRONGYLOIDEA) PARASITIC IN THE STOMACH OF THE QUOKKA, SETONIX BRACHYURUS (MARSUPIALIA: MACROPODIDAE), FROM WESTERN AUSTRALIA

By I. BEVERIDGE*

Abstract

Summary Beveridge, I. (1999) New species of Cloacina Linstow, 1898 (Nematoda: Strongyloidea) parasitic in the stomach of the quokka, Setonix brachyurus (Marsupialia : Macropodidae), from Western Australia. Trans. R. Soc. S. Aust. 123(1), 17-30, 31 May, 1999. Six new species of Cloacina Linstow, 1898 are described from the stomach of the quokka, Setonix brachyurus, from Rottnest Island, Western Australia They are: C. ceres sp. nov., characterised by lip-like inflations of the peri-oral cuticle, oesophageal bosses extending two thirds of the way to the nerve ring, the deirid posterior to the nerve ring, absence of oesophageal denticles, a symmetrical buccal capsule, a simple straight vagina and spicules $1.56-1.97 \mathrm{~mm}$ in length; C, laius sp. nov., characterised by a dorsoventrally elongated buccal capsule, six leaf crown elements, a shallow buccal capsule which is arched anteriorly in lateral views, oesophageal bosses extending to the nerve ring, a single dorsal oesophageal denticle, spicules $1.50-1.97$ mm in length and a recurrent yagina. Key Words: Cloacina, new species, nematodes, Setonix, quokka, marsupials, parasites.

NEW SPECIES OF CLOACINA LINSTOW, 1898 (NEMATODA: STRONGYLOIDEA) PARASITIC IN THE STOMACH OF THE QUOKKA, SLTONIX IBRACHYURUS IMARSUPIAI.IA: MACROPODIDAE), FROM WESTERN AUSTRAISA

by 1. Bevitkincil:

Abstract

Summary

Intruduction

Many apecies of macropadid markuphals ato parastased by a sute of spocies of the bematodo genus Chocinus Limsente lses excorring in the sace batad forestomasts bel their hesis. The number
 handarons bo wallnhy hoss which have bech cxamined in detail varies commiderably, langing from

 Cinimand. 1825) , an lat in the cance of the Timmanian prademelon. Thelosede billantiorii "Desmarest

 lowe been examined les granates to be able so pronvide reliable centmates ot the divensiby ol apecics

[^2] OUuy \& G Gimard. 18303 , which js limited ju iss disulbution to the soubthestern regen ol Westeran Abstraliz (Kikelnemer 1905). A single species bif Clourimer. C. seromide wis described from thia hesal hy Mawarn (196)I imd lits subsequenlly been redeseribed hy Beveridge (1998). but since this was hased on it single coflection it is pussible that addlensal shectes exiss. Exumination of a serices of quakkias ham indiculed that they, like most shther
 (semeinu. The new species tincembtered ine described on thin paperi

Materials and Mefhods

Lseries of sit yuskkas wath colleded in Romeneal 1s., WA in April 198゙? vsing, hand nets, 'The amimals. were kilked with ath everdone at soblime pentabatbiterne and the stomach wats examined for parasilice mematodes. Nemadedery fonnd were liaced in hot 70% ethanes and were subsequently stored in
 nematemes were cleated in lacephomal. Dermanent
 ofeninge, the hursid and the spicule lips were made using pulyvinyl datuplanosl ah the mavaning Imediam.
 micrimape with Nomarski interferente optios and is drawing mbe- Measurentents were made using an acular mieroneter and afe presented in the text in millingetes is: the romec follothed in parearioness by the mean. Drawines uf upical viess of the mouth upenime we presented with the dorsall anpect "ppermont: drawings al the burwal have the ventral lobes uppertoust:
Holotypes hate been depasined in the Sonth Ambralian Museum. Ablelaide (SAMA). Jaratymes have heerb deprosited in SAMA and jo lle Britiss Wusenat (Natoral Hesnry), Lendem (BMNH).
Merplofogical econtrongy for acmatudes tollows. llail used hy Beverjdge (1998). The ahhreviaked verm S-t pure is uned in phace of sectetory-cxatery prote (Bint \& Bind do9f) und cesophagas is uned as al symonym of the more corred herm "phatyyn" (bind AE Burd lyd 1 .

Following Reveridge ifgost, the new speries are traved ont classical natues, since the gelneric bane is Hat ollat Roman gevdersi.

Cluacina ceres sp. nov. (lacis 1-14)

1) pee Holdolype do finh stomach al Setonis

Shall wemandese dervical xuthele man intlaled in

 eegment eglindricall. extremely short. 1 , 10101 leme.
 Buccall bapssule challow. čylindricill. symmerrical in
 crowels stembelts of is number, with prominent striations, urising fixm full Icheth of internal wall of

 clement, Dersall koin projecting ponmanenly ink
 with lancet-lihe propection into buctal sapsule Cosmphages simple. staviform lining etmanented

 fiom arsophasus. Nerve ping in mideterespltageat
regiun aterits in posterim vesophugeall nexian.
 (rexphlagerintestinal jurction.

Abute (Moikurementy liom 10 specimenk. Lypes) (Figs y.12)

Tinal lengeth -4.3-6.0 (5.4): - תnasinum widh 10.17

 Veatral fotes jemend ventrally: lateral lobes and
 lateral lubes. Dursul ray divides u midtengh:
 pranchates diereecel puncrionty, not reaching maken oll hursa: external branchlets shomer tham internuls. ditcted laterally. mot leachime manein al buraa.

 ventrolateral rays lused, reachinge margin of hupati anterolaneral ray divergent. shoter than wher lateral rayen wet reaching margit of bussa; wentrotatcrall and ventravental rays fused. reaboing matein of hursa.
 long: qenital cone with pratniment sutcrior ha: pasteriof dip shortey than ankeror lifh, will paile al
 cuticlepresent on cither side of anterien Iopa spicuks Lhongate. $1.56-1.97(1.76)$ ling , atate. Lif sinple ala donimishing ill width gradually tonsards sip.

Piounte (Me:isurements Irym 10 specimers. bypes) (Figs 1.3-14)
lival Lonell 4.1-6. 4 (5.7): maximum wadh (0.14 0.27 (0.24p: dimemsions of buce:al capsake (1.010

 (1.40) (0).36); deirids for anteribr bad (1.25-(0..35 (0).30). "tail simple, comicall, ($8.1 f$ - (0.25 (0.16) honge vulvo chose to anas. (1.2n-0).38 (0.33) From prosterith cemd.
 staped, infundibulun lomger that sphincter: cele

Eijnurages

Remarks

Cluakina ceres is chataterined by the presene off lip-like indations of the peri-arat cutiche.

 land side. 3. Cephalic extremity. dorsal view. 4. Cephalic exalremily. ventral view. 5. Cephalic papilla. 6. Cephailic

 Guthermaculum, ventral sjew. I1. Genital cone dorsal vicw. 12, Spicule tip, lateral view. 13. Female taild lateral view, 14. Vimina and ovejector, lateral view. Scale bars $=0.1$ man. $1,9,13,14: 0.01 \mathrm{~mm}, 2-8,16-12$.

 Lomenners excepl C. masom Beverider. 1479, C. man Beveridere. b998 and ©! papillam Beverides. 1975 by the possession of 6 mive of wesphateal homses and the tecerrence of the dejriad peaterion to the nerveringe, Chersima ceres is disilingishable from all of these species by the stape of the cephatue japillace which have a very sheri proximal semem and at larger bhuse distal sagment similar to that

 Batwan. 1439, as suite of spectice escempine in Mucraphes duetalias GGray. 1837 bull lucking

 by the presence of laplike inlations of the

Typor: Hullaype of liem stomach ill Sotemis hermethetres, kowlises 15., WA, will. I. Beverithec, 17.ival1922. SAMA AHC 30567, allolype ia SAAA

1\% : rliplish

Sirtaill netmatenter: cervicial cutiche mot inflitheal in wewhateul reyon: trasverse cuticular anmations prommatm. Sub-median papillas befogs lango. proseling anteriorly firm peri-ital alliche: proximat segment cylindrisal, 0.thk forg. fonger than wemid
 dorssmentrally colongate. Buccol capsule Nbillow. symmertion tucally armate in lateral view. with apex of arethateral: dorsal ind vental views ancuate with thases of: arch domal and vental. Bucal capsulle
 in mumber, arise from fill sengan of Internal wath of puctal capsulco slighly mburved in lips. Perioxal
 besh leall crows element. Derophangu simples
 weruphatus projecting prommently inu hucal

 edermest lowses extending from anterior and (19

 Nerve ring in mid-sesophaged reginn: deirids in fond desuphageal region, immudiacly anterne of
nerve ring S-E pore unterier to desoplagen-intesuinal junctien.

Nule (Measurements from 10 apecomems. types (Fin. 23-26)

 promment divinims betweem loters. Ventral linters joined ventrally: lateral lobes and ventral lohes joned. Durval lebe samilar in length ta lateral loties

 exacrnak directed posterolaterally. ulmust reaching margin ai hursat exiernal bramehtes. shanter dirested Ghmes haterally not rewhing margin of hurs.a. Exterondersal ray arises chene of bateral rays. men realling margin ol hursal. Pomerolateral amt ventrolateral rays lused, reathing maryin of hura, binderbateral esy divergent, thorter than whe liderat rays: for reaching margiz ot bulsati ventotatal and
 Gubernakulum shongate avod in dorsotenmal view. 12000-0.020 (6.017) long: :cnital zone proninew: iaterion lip conical, with shage papitla at apex. posienor lip shorier than amergen lip. with pair al dome-shaped papillas: puir of latcral inflations of

 erridually in with bewards tip.
 (Fige, 27-2N)
Thull lensth 7.3-9.0 (7.9): maximum widh 11.37-

 (0.5s) form ponserion ond vieina shaigh. securan.

Lailh_s(ent (i) Lathdactus, King of Thehos.

Remarks

 shathow buecal capsule whicts is arehed anteronty in baterat wews, nesophateal bosese exturding win the:

 hatal side. 17. Ciphatic extrenity, dorsal view. 18. Cephatic extromity, ventral view. IV. Cephalic exremity, apical view.
 wophayns showing thickening of lininn. 22. Donsal nesophageal denticle. dorsal view. 23. Bursa, apical dew. It Spicule tip. Iaterul view, 25, Genital cone. dorsal view, 26. Gubernaculun, ventral vitw. 27. Fernale tail. Bateral view, 28.

berse rillge at angle dorsal nemphageall dentiche
 vigeine 'The antersolly arched bucal capsule immedfately alistirguishes il from ifll tongeners

 choyblytar Boveridge; 1998 and f° - pmokremes
 buctal capsule in arctied pesterionly in lateral views

 the deviation in exen chearly only in thossal sewtes. Clonamm ifree lacks ocsophageal bormes and dentistor and is merefore inmediately distinguishatbe fiom C. forms. Thus C_{0} ferins is elearly diblimgnisbathe lrom ill congeners.

Clanacina circe 4 p- muv.

(IIGS 29-39)
Tipas Holoypes of lanm Shomach ol Selomin

Small nemathedes: servisal semtiche-mon intanted in
 prominem. Suh-medien papillace 0.014 Ione.
 distall seghent corved medially: proximal segonem

 shallows ancoate in kateral view wilh apex ol ancdo laterat. Mouth sigenting dorsoscanally clongate. Buceal capsule Wall thich dorsoventrally chongated in apieall view. Leal stown elements of in number. inctuted at tapso arise firm roll leagth of interonald Wutt of buccall eapsule. Perporal Euliche not intlated

 al therephatghs promudinge into huccal capsule wioh

 denticless ahsent in nestophage Nerve ring in mide
 revion pesterior lus merye rine: S. Fo pate anterior les Bersphaten interlinal junction

 (Fires 3-3-37)

 10.50t: worve bing lo unterver end 0.22-0.27 60.25):

S-A pure (or atmerior end $0.35-31.42(0.38)$: darid 101 anteriar end 0.3a- 0.37 (0.36). Butse without prominent divisions between lobes. Ventral lobes. joined ventrilly: lateral lohes tand ventril lohes jenned. Dorsal lobe simidar in lenget to lateral loben Durisal ray divides just belone mid-lengh: secoundary division uncurs at $\%$ lenghi\% internal hranchlets stratghe. longer that externals, directed powterionly,
 short, dirested laterally; not reaching magen of bursa. Extemadorsal ray arises close io lateral nay nott neaching margin of burso. Iosterolaterat ansed ventrodateral rays fused, reaching margin of bussit. anierolateral ny divergent, shonter than wher lateral rays not reaching maryin of burser ventobleteral and xentrovernerall raye fused, reaching nrargin of hurah. Coblxornaculan subtriangular ift dorsoventral bicw.
 contioal, with single papillas at apx; posterior lip कhortur than zuterior lipe with pair of dome ahnuped papiftas; pair ol tatcral inflations ble culcele preven
 $1.35(1$ 25) long, olake; shate diminishinge gradually if widillowards spicule lip.

Fempla (Mcathrements of 10 spechachs. types)

 (Figs 3x-39)Tintal lengll $7.3-10.5$ (8.8): mamimum widh S! A J U.54 (0.40 ; buccal capxale 0.018 (0.018) \& (0.040) -
 (0,65); nerve ring to anterior end $0.24-0.30$ (0.27); S-E pare 10 anterior end 10.33-15.46 (0.30): cteitid (s) anterits end U.30-(0.41 (0.34), Thit simple. conical.
 (0).22) Irobt pasteriog end: vagina shome straidht,

 (0).(10) $\times(0 .(15-0) .06(0.015)$.

termolesty

Circte, daughter of the sum mad Perste, lianose low her mages

Remarks

Chucima cirer is characternsed lyy a dunowenrally elongated moull openinges six leal' crown clements. éephatis papiltace which are siltatted stose togethes arrel whone lips ate devialed medially, th stallow buccal capsule ambed snferiorly, an ocmppatyus without hasses of denticles, the deirid pameriar if the nerve ring spicules in the range $0.97-1.35 \mathrm{~mm}$ amble stragigt vagina. The anteriorly arched buceat capsonte and lice forsoventratly elangue mouih "pening distinguish this spocies from all congeners

 dorcal appect on right heund side. 32. Ceplatic extremity, dersal view. 33. Ceplabic extremity apical tiew. 34. Bursa. apical view. 35. Gienital cone, dorsall view, 36, Gubernaculum, ventral view, 37. Spicule lop, fateral view. 38. Femate tail. lateral view. 39. Vagina and ovejuctor lateral view. Scale bars $=0,1 \mathrm{~mm}, 29,34,38,34,0,01 \mathrm{~mm}, 30-33,25-37$.
fuving the derid publerion for the nerve ving rather

Choacina chiron 4p. nos
 (FICS H)-5])

 bnarhumes, Rollnest lsia WA, coll. I. Beveridge

 AIB $30563: 1$ \&. 14.13 MNH J448.9.28.5- $\{0$,

1everittion

 cylindrical, (0.003 komg. meth shonter than showsid wistal seedment. Wodi. 3 knge Montix opening darsuventrally elongatc. Buccal batpatc shathow,
 Buceal capsale wialls erteubar itr apical view. Lealo

 haceall cupsule. Pari-atal suticte not indialed anto liplike luber atenched so cach heal wawn element.

 athent in westrhatense Nerve ring in mish

 prominent divisions hetween lobes. Ventral lober

 Doraal baly lome dividime st midolenght secondary muldivision near calremity, internal branctiketo shous,

 very sham. alnewed powernaterally. not renching

 Ventrolateral und ventionentroll riass fised, reasolang margin of bursa, Ginbernacollum epuadrangular in
dorsoventral view. 10.03 long: Eximital eome pur manent: ancorior lipy conisal, with single papilla al

 cutiele present on ëther side wifanerion lip: spictules
 ermindilizamerior to spicule lip.

 0.57 ($00.5(1)$; buecal capsule (0.1215-0.(020) 110,(1)20) x

 (10.34) froms posteriof end ragital shonl. stmight (1.24 1). 38 (0.34): weycelor J-xhepede sphineter athe
 . $0.0 .06 \cdot(0.11710 .077$.

l:1/nwlug

Remarlis,

Cloucima charom is chatrueterjed liy a cervital cuticular inflaniom, cephatic papillae with a fongerntseuse' distal woment, six lail crown clements, a whmetrisid

 suraigh vayimas. The shape of the cephalic papillace tund the lack of shepophagein lwase distinguish thin athectes

 decper buccal expmake. it mut having the amteries regins of the newshatem distinctly brader that the pustevion part and in baving guch shomer spicules (>1.79 fom in

 bot hate materion lates in the submedime and ventom

 then there it all of the aperite liskes.

Cloacina codmus spe nus.
(FIGS 52-62)
 brablowher. Rextnest 1s. WiA. sill. I Beveridge.
 AHC 30556: purnypes: के हर, 238% SAMIAAHE

liges 40-51. Cleacina chiom sp, hov, 40. Anterion end, lateral view. 41. Cephatic papila, 42. Cephatic extremity, lateral view, dorsal anpect on right hand tide. 43. Cephalic extremity, dorsal view. 44. Cephalic extremily, apieat view. 45. Opticall immeverse section thrmagh buceal eapsule, 46, 13apa, apical wiew, 47. Gubernaculum, venteat view, 48. Genital
 bars $=0.1 \mathrm{~mm}, 410 .+2-10,50,51 ; 0.01 \mathrm{~mm},+1,47-49$.

Deservinlierl

Vary whall mematodex: cervisal cultichenom intlated

 tibxular in apiall view. Buccal capsule shallows.
 copmalespalls hexugonal in apical view. lean sanson

 Nerse ring in posteriaminsoplageal reyibn: deride in

 1)? 57 自)Tonal lemght 3.4-4.7 (4.1): Indsimum widh 0.15-

 meve img (os interibe com $10.15-19.18$ (0.16) S-IE pure 6 baterion chal $0.20-10.31(0.26)$: deirid (a)
 pronbiment drisione between lobes. Ventad Jobes
 joined. Dotsul lohe shelaty longer than lateral Jobes. [oreal pay skonker an origitn, dividing oul mid-dength:

 almust scaching margit of huradi extermin banchlas shora'fa directed haterally, two neachme maryin al bumsa, Lexternodorsal riy arises chme bo lateret mys.

 rays: not reathing mangin of butwe venlondateral and bentroventral rays lusel. cachinge marein of bursa

 exmical. With single papillas att apx: prowerior lip

 cither side whemer ior lip: spicules elongale, 1.31 -1. A6 if for long. alate; spicule lip bifurcate surmunded by monid thane: mat derminaring athoprly inmediately

 11 195: 65 - 621

 nerve ring 10 ithterior end $10.15-19.18$ (017%

 0.72-1.(10) (0.79) kng: (wejcelor I-shaperl's sphineder

Remorks

 sife simple stender exesopltegen lackimy borsses ar denticles.. small, symmetrical buceal wipstate. ceplabic papillat wilh the proximall seggem longed than the distal, six Jeat crombe demens.
 Vigeinti. Clendoma bewhmms ditiers from or burneffomm in laving the asirid pusterios bo olse perve ring sod longer spicules (0.fir)-0.70 1 mm in
 C. cahallemmi Miwsem. 1977. C. emon Beveridge 199 S and C. ips Beveridge, 1998 bub Hey tilier in

 than atter It as in Co creitmus. Other similar snecien atic Ca mike Beveridge, lgys and C. diembated
 the delrid anterion fos the nelve fing abl longers
 which dilfers in having the deirid anterine th the nerve bing and a characteristently entaned spicule (ijas amal C, perksomi Mawsin, 1971 whith has the
 1:190116t

Cloucima delemachus का. nov.

 1 子: 13MNH 190k.4.2א...3.

He पetjutions

 wewophageal region: Iramsiverse Luticular anmulathon

cylindricul．（bishir）donge slamber han uhovoid， medially directed distal sedment，0．000）lone． Mowilt spening circubar in apical view．Haccal
 denververnast views．Buccal capsule sualla arialed．
 แunler，smaly mlighlly insurved at lips，arite from
 of ald bele ano intlated into lip－like lathes attached

 if mid－ocsophageat region．prosterior for nerve ting：
 immoudintely pasterion lo deirid．

 neree ring liont anterior ent 0.27 ．S－E prote from

 almast cenchimg maryin bf hutade experan

 Praseronatevial and vendronateral pays．Fabed． raching emuzin of hursa；ammeralancral jay
 suchons margin of bursa：ventolateral and
 Ciubernaculum quadsatmgutar in shape in darmivalltal víw 0.02 longe genital sobne probniment：antcrion＂lip somican，wibs bingel papill En athex：poserion lip shomer thant anterion lip，with
 ․ 3.3 lerlog alate．

 （1゙ぼ $71-72$ ）

 anterive cond 0．364）．40（0．38）．Tanl simple，comisul．
 （10 37）Sionnt poutering ende vaginat waight．13，45－1．12 10．79）long．Evejectors J－slaped．sphinteter and
 （1） $11 .+10105(0) .15)$

PITmatros

Remarks

CVochomar sefromerfors is chatactersed by the cephailic papillate will dite distal segment glohose amb dirested nedially．six leal erown slements，an

 und al vialight vagima．

Athough deseribes foun a mingle matco C ． setemochm is readily distongoishate from inll athgences except C^{\prime} dereets Alawson，1477．G^{\prime}

 the ecphalic paptilla with as medially directed．
 distingtithed fremi C．edmandy oll that it lacks the
 ornamemation of the eresthtated linimg．＇The

 that it lacks sesoplageal donticles．In akdition，C．

 mon and at recursen valyen，limm C．cprolle which has
 Frome C．armodedler which has anterner deisids and spiculen $1-22-1.63$ 1180 long．fron C：fermia whel hath anterior derisde and spicules \quad ． $6.5-1.85$ long： form C．Mentrens which hus anterior dejrith，spicules
 themin which has interiar deirids and spicules 1.015 ． 1.23 mum lane．

filicrassioh

 mend other kimgaron ont wollaby speeice harlzous．l

 extensive examinalloms of low loms will reveal andditiontil sprecien os Clowsinte．

All species tescribest lisent the yunthit itro sompently compadered to berestivicod lon this hosi Howeser the parasite Fatuna ant matropmalid marsughala from Western Alsestalia is mill valy prorly knows and the new spectics al＇＇Tourdor

 on Jeft hand side. 65. Cephalic extremity, dorsad wew, 60. Ceptalic extremity, apical view. 67. Cophatic evtremity,
 Latemblobe wi bursid, laternh view, 70. Gubernaculum, vemral view, 71. Female tuil, Jatral view, 72. Vigina und

Some of the new species closely resemble deseribed laxa while others exhibit novel mosphological features within the gents or novel combinations of morphological features. Closecing coummen closely resembles C. burnetriona found in Atacropmes dorsalis in Quecnstand (Beveridge 1998). Simidarly, C. chirm possesses obovate sephalic papillae similar lo a suite of species $(\mathbb{C}$, dryope, C. hebu'. C. Mypsipple. C. linstensi) found in Marropus dormolis in Quecnsland (Beveridge 1998). but diflers from all of these possible relatives in the simple thape of the buccal capsule and the oesophageal lohes projecting into the buccal capsule. Cloacima ceres ham simidaty shaped cephalic papillae trut has boshes lining the oesophagus, a leature charracteristic of an alternative suite of spectes found in as wide range of macropordid hosts (Beveridge 1998).
 hling C, themis lound in Maropos irma (Jousdan. 1837) from Western Australif. C. emathella from Persosule laterolis Goukl. 1842 from central Australia and C, etoveyt, C. frequers. C. epona and C. Feronia all trom Metrepus rohestus from infand Australia, but differs from all of them in lacking oesophancal denticles. By contrist. C. faim and \mathbb{C}
rine have an entirely novel, anteriorly arehed buccal capsule which occurs in on congener. Therefore in as far ass it is possible to assess relationships within the genus, the series of species of Cloucina described frem the quokka has possible affinitios with sulles of species in M. rdrrashis and M. robowsus, but the striking morphological originality of mosi of the new species makes the determination of atsociations diflicult. It does suggest that more extensive exammation of parasites from Western Ausibalian macropodids will continte lo reveal morphologically novel species of Clomema.

Acknowledgments

The collection af the specimens reported in this paper was supported financially by the Australian Rescarch Grants Committee, now the Austratian Research Council. Thanks are duc 10 D. Bradshaw for facilitating collection and for making available laboratory facilities on Rotmest Istand and R. Herrigan for technicall assistance. Quokias were collected under "License to Take Fauna for Scientilic" Purposes" No. 761, issued in November 1981.

References

 (\%hutime son Lisulow (Nematoda : Sirongylvidea) from macrupodid marsupisls. Inset. Toreron. 12, 237-508.
 (Acndemic Press, Sam Dicgot.

Kuburnar, D. J. (1995) Qumku: Sctomir brochmem (Quoy \& Gaimard, 1830) ppo. $4(0)-403 \mathrm{mb}$ Strathan, R. (Eall) "the Mammals of Australia" (Real Books. Chatswood).
M.thsov. P. M. (1961) A mew specios and some nell resords in the genus Clracime (Nematoda Strunylloideal from Western Australiu. Troms. R, Sine. S Sum. 85, 81-83.

A NEW GENUS AND SPECIES OF GALL MIDGE (DIPTERA: CECIDOMYIIDAE) DAMAGING FLOWERS OF THE SOUTH AUSTRALIAN SWAMP PAPER-BARK, MELALEUCA HALMATURORUM (MYRTACEAE)

By Peter Kolesik*

Abstract

Summary Kolesik, P. (1999) A new genus and species of gall midge (Diptera: Cecidomyidae) damaging flowers of the South Australian swamp paper-bark, Melaleuca halmaturorum (Myrtaceae). Trans. R. Soc. S. Aust. 123(1), 31-36, 31 May, 1999. A new species of gall midge, Australopesia melaleucae, is described from flower galls on Melaleuca halmaturorum F. Muell, ex Miq., a salt tolerant tree growing in temporal swamps and saline areas of southeastern Australia. No seeds are produced in infested flowers and the infestation can potentially limit the reproduction of the tree. The larva, pupa, male and female of the new species are described and illustrated. The gall midge is the first record of the tribe Lopesiini in Australia and a new genus is erected to contain it. Austrolopesia gen. nov. is compared to other genera of Lopesiini and Lophodiplosis Gagné, an Australian genus feeding on Melaleuca. The Australian species Cecidomyia frauenfeldi Schiner, 1868 from branch bud galls on Melaleuca sp. is newly combined in Dasineura. Key Words: Diptera, Cecidomyiidae, Melaleuca halmaturorum, wetland, swamp, South Australia.

A VEW (GENUS AND SPPCLES OF GALI MIDGE (DIPTERA: CECIDOMIIIDAE DAMAGINE FLOWERS OF THE SOLTH AUSTRALIAN SHAMH PAPER-BARK. MELALEUCA HAMAATURORUM (MYRIACEAE)

by PIGT.r Kolasis

Abstract

Summary $70.31818 y 1949$.

Introduction

The South Austatian swamp paper-bark:

 Soum Ambialia med Victoria (Banlonw 1086), II is wherant 20 salt and waterlogeing and is aftem fommed in suline aress bordering penmanem wetlands and temperal swamps (Menstiorth \& Walleser 1996). Due

 discharge (Dentom © Cian [1gyt: Menturit d Walker (9)\%). Comsiderable propportions of South Australian sois are deraded by, on mader theat of, Gdibisalion (Richardann de Narayan (495).
 preventing the process of salinitation by keeping the: grombeater leyel low.
fine new gell madye matifies flowers of M. hulmantereminn fine hadd, baity sills (Tige, 1). The satls wh the type series were collected in September, 1 b997 in the Corerong National Park by D. Peacerc: and is. Emmons during a Sonth Australian Animab and 1 lan Commen Commission survey of the ceshogital response to Earopwari rahbit population dymanion. The fim that no seeds ate poduted inside the gelled flowers indicates that the gall midge is a patential liminang Facter in the reproduction of Mt .

[^3]
 Austratian genus combianing speces modilyine
 1997), nor to any ofher known gentis and therefore a new semus hat bedrereded. The new eall mider is the first Austratian record of Lapresimis a lrobe hmown previously only from the Amerian ambl Alites Austrutopessa gen. now. diflers Fom lompern Rebsathen. the atchratl penus of the reibe in gynecoid make intennas, and from all thther tencras the tribe in the fong vemale pratubutomen.

Cochdomyor fromenfildi Schaner (1868) desoribed
 Austratia, to plated for the liest the in the gents Dusinamb fenmh. nowid. It docs nol bshong in

 bonv forbricted on species whose birvate feed an resin

Mancriably mand Methods.

 goblekted itt the Cotsongy Nathonabl Park bun '2.is. 1997. The galls were processed in oft al iwo ways. Some werectll mon and the larvac preserved

 wathin the gatlor Efincred udults were preserved bogether widh dieir pupall skins in 7 ofe whan Alicroscopes mosiots at ble bype sctice tyers prepared ikcordinge for the lechniogus sutlined by Kolesik (1905). 'The rype series and wher malerial
 atic deposteal in the Sonth Australitits Muscum? Alelatide [SAMTA!, he Australlian Nationall lmed Collections. Camberta $|\triangle N I C|$ and the State Ikertsartima bit Souts Australiad Adelaide |SiHSA]. Descopptanto and meststnements refor to ble heingype and paralypes.

Cisnus, Iastruhopesiat sch. ness.

Allill

 exes. 12 if number, dirse wid second fined. lomger

 Iadnollat large mamgular in lizmal view. Balpus d-

 bisked. Firsab barsomere wish small ventruapieal beoth. Claws domated, bowed near hasal thïd emprodia wachange loends. sil stans.

 gentorexitc choreatc. cylindman. with ublusc

 treyond: acdeagus lenge. Atuth.. hupered distally. With several darge abseduse papillate; hypuproce hilabed.
 hypopresel, with seberal weta an each lohe. Pemale
 lleshy; hyperpuct small.

PIIM

 stighty bowed, will trabhear reaching ils apes
 apines an anterior hatl:

l.lin!

 Lorsally and laterally with latge apocthe tentrally with small apiculan imeriorly, sancesth chacwhere, blemal spatala fibloted. fapillate gererally as in

 retac. Asme wenfal.

I.lomulnes

 type genus al"tic frihe Lopesiani.

Remarks

 follonvinge chataters: R_{5} wing vein in aloser for the
 with Res. clanve are lxem wear the Ifasal thirel and dise
 of Ceculony idace that is nos wasl hosmis It cantaing seven genera recouded previously. Witl biglu Sumb Americath, anc. Nowlt American and thece Nricall

 Melastomatacene. Polyognatere and Romatrab
 Hibhard 199f: Maial 1996). TIe gall midge kewpihal
 Mysticesics zund fo the enty menter of Lepexann

 and except for Comblumbia Mdaid and Comber.
 meres. The new genus appear:- wo be morphos.
 genus origutally mot asomesed lo tribe level but
 Comblembiar shobosat Matia, at spesties birming leall
 South America, difions from the new specices in the

 forrer that the hypurpoct. the gomosylus barely tagers adted th stwollein at its batial finarthe and the

 Fousth: Ute larta has eigh terminal papillace all wits

 all sadeager lenget thati the hypoproct, a rapering gonasylば which is swollen ul is busal thiad and :
 and angular cephatic homa. the probloracice spiracte is atighty and evenly lowly: the larval has eight gemmal papillace, loull with puinted setae and lour

 curved then the basibl third. the drate flagellomeress ato gynecoid ousd bear sinnple. elowely apprassed circumbild. all setace the the temale exer are simple. the pupsi has no promberances out the vertex and
 sernall spallula with is kong, narroav shall and lfo
 Whts cornifing actere and four Witl stronge, shert,

 meres are hinotal with three loopeal cirambila etre

 and for dorsill spines ing the adolomon; the lars: hati
 pratula at all. sub the ceminal seyment hears (wo or bour minttes. vetose patbillac.

Ansfonhpessia molntencore sp. now. (T1GS2-18)

 Z.ix. 1997 by Ir. VCacich and S... Jeminters. 121416 |SAMA|.
 $121+151.3 .27 \%$ pupall skin $|A N I C|_{\text {a san e data bul }}$

 ISAMN.

Male 1F-ige $2-8$ S

 s'rey, palpi grey will hiack sealles. thones athl atrdomen trimge. gentialial light bumo. Kges gey
with hathe stalen, Antemal: seeape and pelicel slighty

 heose shone thearing 24 strong setike Firss patpal everment stort, sesend and third Jonges. aptal in lemght forth longes forms with $3-4$ sulue per mile. Winge 2.5 mm lorne 0.8 mm wide $\mathrm{m}=1$. The becond specimen with one why minsing ind tox second defomed in the process of mumenting).

Fomede (Figs y-1.i)

Fium (Pigs 14, 15)

Columr: antemal hurns, prodmsacic spinate and

 Abdeminal scesments derwally wish tiekdes of $4-1.9$ spines obl anterer half,

1 arta (5ine 16 -18)

 $\mu \mathrm{m}(157-211)$ long with apical enlargement in $\mu \mathrm{m}$ (34-5al) vide. Wepth al imbinn 25 pוn ($2+24$).

fivmelren.

Crall amel biologe

 imo un oroid. whody gall sovered with alense- grey

 by a dongitudinal sutur whit a small. bata mipple ut the apex. Inside the gall is a small. owost elramber axcupicel by one larva. The chamber wall is $1.5-3$ mm thich, The sepails and petalds on Ife batem of the gatl are nol ormdilied. Non sead are protilued wiltion

 of iter hody thrusely the suture loetween the
 ithe the adole comerges. The emply pupall shim batys.
 galls collected thith the type seress showeal shath. round upenings. presumahly cicalcu by parinitarids.

Remarks

The new gall midge is different from Dasimemo froutenfadi (Schiner) (comb. nov.), il species deseribed in 1868 from beanch bud galls on Melaleuca sp. in Port Jackson, Sydiey: In D. fraturnfoldi, the R_{5} meets C anterion to the wing apex. the aedeagus is sheathed by parameres, and the lemale eighth tergite is split into two longiludinal selerites. In A. mofleucace the R, meets C posterior ta the winge apex. the mate parameres are not presems. and the lemale eighth Wergunt is not selerotised.

Acknowledgruents

I thank K. Davis for drawing my attemtion to the new species and D. leacock and S. Jemings for collecting the galls and laval stages of the type specimens. M1. C. O'Leary, State Herbarium of South Australia courteously identified the host plart. R. Contreras-Lichtebbarg, Naturhistorisches Museum, Vicuna kindly loaned the type material of Dusincurn fratenfeldi. Special thanks go in J. D. Gray, Depatment of Horticulture, Viticulture and Ocnology University of Adclaide and R. J. Gagnê, Syslemanic Entomology Laboratory USDA Washington DC. For commenting on an carly draft of the manuscript.

Figs 9-18. Ausholopesia molaloucae sp. nov, 9-13 female, 14, 15 pupa, 16 - 18 larva. Fig. 9 . End of abdomen in lateral view. Fig. 10. Ovipositur in lateral vieu. Fjg. 11. Ovipositor in dorsat view. Fig. 12. Sixih tagellomere, Fig. 13. Iast threv flagellomercs. IMg. 14. Anterior part in ventral view. Fig 15. Probhoracic spitacle, Fig. 16. Head ir ventral view. Itig. 17. Last two abdominal segments in dorsal view. Fig. 18 . Spatula with adiacent papillae. Scale bats $=100 \mu \mathrm{~m} 9,13,14,17$. $18 ; 50 \mu \mathrm{~m} 10-12,15,10$.

Relerences

BARLOW, B. A. (1986) Melaletact pp. $935-946$ fm Jessop, J. t' \& 'Toelken. H. R. (Eds) "Flora of South Australis". Part 2. (South Australian Govermment Printing Division. Adelaide).
Denion. M. de Ganr. G. G. (1944) Responise of juvenile Melalewio hulmatururam lo flooding: Management implications Jor a seasonal wetland, Bool Lagoon, South Ausiralia. Atust. J. Mar: Freshb: Res. 45, 1.395-1408.
(iscina. R. J. (1984) "The Plant-Feeding Gall Midges of Norti America" (Comell University Press, Ithaca, New Y(ok).
(1994) "The Gall Midges of the Neotropical Region" (Comell University Press. Ithaca, New York).
\& MAROIASY, J, (1993) The crall midges (Diptera: Cecidonyiddae) of Acacia spp, (Mimosaceae) in Alrica. Imsecta Mumdi 7.77-124.
\& Hibraidn, K. L. (1996) A new species of gall midge (Diptera: Cecidomyiidae) from subterranean stem walls of Licumies michatexii (Chrysobalanaceae) in Florida, I\%orida Eut. 79. 428-434.
_- BALCUINAS, J. K. \& BURROWS, D. W. (1497) Six species of edall midge (Diptera: Cecidomyidae) from Mchaleurd (Myrtaceac) in Australia. Proc embmol. Sime. Wıah. 99, 312-334.
Kolusik. P. (1995) A new species of Eorinetionmia Felt (Diptera: Cecidomyiidac) on Eubcalyptus fasciculosat in South Australia. J. Aust. ent. Soc. 34. 147-152.
Mais. V. C. (1996) Cordiamyia globosa gen.17. es sp.n. (Diptera, Cecidomyidae, Cecidomyiidi) associado com Cordia verbenacea DC. (Boraginateate) no Brasil. Revista bras. Zoml. 13, 579-58.3.
Menstorlh. L. J. \& Walker, G. R. (1996) Root dymamics of Melaletud halmaturomm in response to fluctuating saline groundwater. Plami and Soil 184, 75-84.
RICHARDSON, S. B. \& NARAYAN, K. A. (1995) The effectiveness of management opions for dryland salinity comtrol at Wanilla, South Australiu. Agric'. Wetch Matagmt. 29, 63-83.
Schaner, J. R. (1868) Familie: Cecidomyidac pp. 3-4 /n "Novara-Expedition, Zoologischer Theil. Bd. Il. Diptera" (Wien).

BAINECHINA ROSSIAE GEN. ET SP. NOV. (NEMATODA: SEURATIDAE) FROM AUSTRALIAN DASYURID MARSUPIALS

By LesLey R. SMALES*

Abstract

Summary Smales, L. R. (1999) Bainechina rossiae gen, et sp. nov. (Nematoda: Seuratidae) from Australian dasyurid marsupials. Trans. R. Soc. S. Aust. 123(1), 37-41, 31 May, 1999. Bainechina rossiae gen. et sp, nov, (Seuratidae: Echinonematinae) is described from the stomach and small intestine of the dasyurid marsupials Planigale gilesi, P. ingrami, P. maculata and Sminthopsis macroura. It resembles Seurechina spp. most closely in body armature but can be distinguished from this genus in having a triangular not dorso-ventrally elongated mouth opening, having neither sclerotised rings between the pharynx and mouth opening, nor caudal alae into which caudal papillae extend nor peri-cloacal papillae. Bainechina rossiae is unique among the echinonematines in having papillae on the body at the level of the vulva. A key to the genera is given. Aspects of the life-cycle of B. rossiae are discussed. Key Words: Bainechina, nematodes, Seuratidae, Echinonematinae, marsupials, Dasyuridae, Australia.

bIINECHIINA ROSSIAEE GEN. ETTSP. NOV. (NEMATODA: SELRATIDAE) FROM MUSTRALIAN DASYURID MARSUPIALS

by Lisimy R. Smalis'

Abstract

Summary

Inlmodiction

Nomatodes of the limily seuratide are paraniles ni" reptiles. bisds, romens. batts and sustralian maranpials (Chabatud 197*). All of the Australiam specess atre comathod within the selbfamils Echomenembatbate amd are lirumb in dasyurid on peramelial mambpiall hosts. There are four genera.
 clongated monnth opening with mo lif lobeco an anterioy extromity with or withott a swoller cephatis. bulb thearing hersss, at Ansil. smople phatrynx, pung slender spicules without flete no prestoand suther fin the mate and the cloweal region ervered by small culiculan sifallulations.
 Chabaud, Scurcau, Beveridege Bain de DurelleDesset. 1980 contain species with a swollen cephalic bulb bearing lbree rews of large how ss whentas spacties of Chedrathele flome (Smales in press) hate

 conitasif. bies at dorsh-ventrally elongated monemi sponnte and list neither a swallen ceplatice buth new exphalice luwh.

Materials and Methods

Spucinums dissertod from desyurids from the (SiRe) Wilalife and Rungelands Colloction

[^4](CSJRO) were lixed is hot blok fomasian and then
 Mine, Central Queenshand and Yibubal near Townsville. North Quecersland, dissected fiom dinsyurids that had been fiscal in IO Fommalio, were shored in 76% shbuthe Spectmens were extmined atler clearing in faclophenol. Measurements, in mineromeltes tanlens mherwise shated, were made With the aid of a druwing talxe axd map nowasurer bt an skealar micrometer. Drawings whe made with the alid of a drawilly tute. Typer specimers have been deposited in the South Ausiralliun Musemm, Adelaide (SAMA). Voucher apecimens un ledd inthe Western Austalian Muscum. Periln (WiMP) imd CSIR(). Cunherva.

Systematies

Ifomily Scurabidac (Hall. 1916) Raillice 1916
Sulvamily Echomoncmatinate Inglis, for?
Bamechima gen, noy.
Anterior end withoul lips or lip-like bluctures. bsatring 2 paits of coutbe sub-nedian prapilluc. single pair bif lateral amphids. Mouth openinge triangular in outline Cephalie region without spines or heoks, femainder of bedy cotered with numerobs rows of hooks or spincs. Howhs on pharyngeal region becoming sumbler, grading into spincs towards posterios: Amature extending over entire body of temale temination anterion to chatea of mate. Short, bimple chation phatrynk sumomaded by merve ring anterios to deiride beirides sionple, conitall. Spisules cophal, umilar, withoulalac. Vulvil
iN

7

 (lateral biew). 10. Vagina (right lateral view), 11, Larva, posterior end (lateral view), 12, Male pocterior end (lateral view. Scate bars $=100 \mu \mathrm{~m} 1,14 ; 50 \mu \mathrm{~m} 2,3,6,7.8 .11,12: 25 \mu \mathrm{~m}+9: 200 \mu \mathrm{~m} 5$.
all mid－region ol body：monodilphic，vagina directed puederiorly．Patasites of Australian dasybuid ma：＂：

Bainechinu rossime sp ．not． （FIGS 1－12）

＂hoforypr＂ 6 ．｜ronm smatl intestine of Phamigald macmhem（Gondd．｜ 851 ），Yabulu near Townsville． Quecmaland（ 15 ＇ $11^{\circ} \mathrm{S}, 146^{\circ} 36^{\circ} \mathrm{B}$ ），October 1497， cull．W．Ilomsum．SAMA AFIC 31286．

Nopypre：P．Same data．SAMA AHC 31287．

 AIIC 31290,388 Rlair Athol Mine sile，AIIC $31291 . \mathrm{AHC} 31292$ ，Westem Australia： 2 ＇z 7 Mitehell P1atenu，WAMP $47-98,48-48$ ．From Plonigale sidesi Aitken，1972，New South Wales：I 3 rhinamans Lakle CSIRO NA40y．From I＇fomisale insrumi iThomad 1906）Northern Terriony： 2 \＆ 8 it larsise，Smithburne River， CSIRO N2116．Feom Siminhoupsis matrouter （Gould．（845），Quecmatand： 1 \＆． 2 오 Julial Creek． S $\triangle M A$ NAC 31293.

Dessripuism

Simall worms，with the characters of the genus． Bualy with tine chicular annulations．Cephalic
extmanity without hooks or spines，remainder af body with rows of hooks，at each annulation，examdinge over entive berly of femalle， 80% af hody of male Body hooks becoming biggest ab aboul row 10 ． decreasing in sire posteriorly grading jnto spines． Thirty books in firse row， 45 hooks on mad－lody row： on lemale．Iharyox sumounded at anterior end by i paiss of laminte approximately 100 loner Pharym simple，claviform，terminating at level of about 10 hh now of hooks，approximakely $1 / x^{-1 / 12}$ body kength． Nerve ring surrounding pharynx．deirids posterior to nerve ring，secretory－excretory pore not seen．

Male；（measurements Tible I）．
Nerve ring，deirids，secretory－exeretory pare moon seen．Spicules equal，similat：without atac $1 / 4$ hody length．Gubemaculum not seen．Eight pairs caudal mapiltas，\＆pairs lareral pre－cloacal． 2 pairs lateral post－clencal． 2 paims near tail tip．Nurnow saudal alase cxtending from anterior caudal papillace postarior tos cloaca．Cuticular embossing surrounding clence．＂Itil ending in promment tip．

Femule：（measurements Table I）．

Secretory－excretory pore not seen．Four papillac；I lelt lateral，I right lateral． 2 dorsal encirele body at level of vulva．Viginas directed posterionly： manodelphic：＇Tail ending in prominent sprike．Eegs （svall 36－43（39）by 33－36（34）．

Larnate：（mensurements Table 1）．
Cuticle anpinous．Tail ending in prominent spike．
 aud sfambuzh dit viariom．

	Holotyp゙ Male	Mate lrom P．yilese	$\begin{aligned} & \text { lemalew } \\ & 11=10 \end{aligned}$	I．arviele $n=4$
Len！！	1．4） 8	2.87171	$4.11-6.5,5.5 \pm 0.81 \mathrm{mmm}$	1235
Mir\％．width	270	235	$3-11-416.380 \pm 48.54$	87
リlarymix lometh	315	2011	$3611.535 .430 \pm 51.37$	1111
Malcriar lancove diny			$8(8)-164.404 \pm 9.80$	80
Allerior lordersids			（1）（10 $=1)$	
Spictile leneill	$4(1)$	56161		
Vilva（6）pumarioy				
Jiiil	4	1.35	$46-7410,6+1) \pm(0) 4,00$	（10）
V．13ilat			$180-250.215 \pm 40.41$	

Litmedeses

 wilh the (inech erthimes thedyehus, saa-wrehin) followning the form used by ("hahatel of at. (1480)
 alter a colleavene br RA Russi

Remarks

 (150), 16.5 compared with $\mathrm{t} 80-740$). Nor mature egge were nomeryed in the merns subl so these differencen in sure mylat be dise cether us the Imanamity of the worns on of difiterences in the
 wers availible for study and lle hody armatume of the lembles wat one same as that fur specimens
 be the sumes apecies.

 2.3 nomy was shmilar in sise (1) specthems form f?
 chanacters cemsistent with B. moware and are ensidered to be the satme species.

Inglis (1967) distingutshed between pains of
 extrentity of the lail wl himstowincmat. Other echinonematione generat hise three of Four panse of popiltac and al puit al promanids in hos pasition IC'babland of all losion, smales lgyy, if preses. simalesi de Ressatify99), It is pot dean whether the Lwo pairs of papillac asen ent the posterior -xamity of the tail of B. masere represern it paid of pabillace allad an pall wh phatmide or whether the phasshides wase not seboln.
Bollorathers gent not. slearly telongen in the Feblinomemalmace beditiac it hax an enterior end will a lsiamgular mesult opening ote lip lohes and
 relatively feng ($1 /$ budy lengith) sitnple spicules and

 in non having a sivellen ecphatic buth with larges

 fonar pairs int faminate at lie atherems end
 dudchore the ceavieal spimes steddy whan they are

 dessablly and ventailly, capping the sante) ion ond in
 ressiece hits cigh pilles of courdal papillice nome of Which eviende into the coudad alde at da shase of

 perioctuseal whereas thee pairs of catud papillace are peri-cloncal in semechima sper. (C'habsud ef al 198(0. Smales 1998). Nome of the wher geners withen the Eehinomematinat hats. paphllace ath lite level ol tex valsa,

 fiom Chuhamberthine with live wesves of ecophalic bowss (smates in press). The athagement of
 genus.

Key to the genera if the Nelanomemathase

 lamillte。
 Withest exphalic losuks on cephatic bulb, wills

2. Threverow sil howhs in tephatic hultyo it Fite rows af hombit on exphatic hullo. Chabrutele linnor

\qquad
\qquad

Discuasion

The laryal stages recovered lion the langes 111

 with the lack of any sexual diflerantiation suggeso Heat they were thast or batrly frourif stage larvan: undergang mignation to the digestive ramod berone

 wage larvall tinnom'intmed and fospechmer iSmalen
 their heme at a less advanced silage of
 18tses, the enty species in whith the life eyele hith
 larval in experimentally inkecod Ordiophera

become inlected after eating infected arthropods. There has, lowever been no record of larval migration within the definitive lost, as inferred in this sudy, for any of the Scuraltidae (Anderson 1992).

Acknowledgments

My thanks go to D. Spratt and I. Beveridge for making this material available for study and to W. Houston and R. Knight for allowing me to dissect planigales and dumarts which they had collected.

References

MADRRSON, R. C, (1992) "Nematode parasites of vertebrates their development and transmission" (CAB International, Wallingord).
Ciabaim), Λ. G. (1978) Keys to genera of the Superfamiles Cosmocercoidea, Seuratoidea, Heterakoidea and Subulurnidea pp, 28 -48 In Anderson, R. C , Chabaud, A. (i. \& Wilmoth S. (Eds) "CIH Keys to the nematode parasites of vertehrates" No. 6 (CAB Intemational. Famham Royall.
. Simkeal. C. Beveriogr. I.. Bain, O. \& DleretteDissur. M. C. (1080) Sur les Nematodes Echinonematince. Alm. B'arcaimol. hum, comp, 55, 427-433.
INcils. W. G. (1967) The relationships of the nematode supertamily Seuratoidea J. Helminthou 41, 115-136.
SyAr.r.s. L. K. (1997) A revision of the lichinonematinate (Nematoda: Scuratidac) from bandicoots (Marsupialia: Peramelidac). Trans. R. Suk'S, Aus\%, 121, 1-27.
(1998) New species of Sempohima (Nematorda Scuratidae) parasitic in dasyurid marsupials from Nustralia. Ibid. 122. 179-184,
(1999) Linstowincmu (Nematoda: Sematidue) from dasyurids (Marsupialia : Dasyuridate) from Australiat Syst Parasitol. 43, 29-39.
(in press) Chubumdechina 11.g. (Nematoda
Seuratidae) with the description of two new species lfom dasyurid marsupials from Australia. Ihid.
\& Rossi. P. R. (1999) maldechina virginiae n. yp, (Nomatoda : Scuratidac) Irom Sminhopsis virginiac (Marsupialia : Dasyuridae) from Northern Australia. d. Helmimhol, sion: Wishs. 66. 33-36

TRANSACTIONS OF THE

ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

VOL. I23, PART 2

SOURCE OF FOOD ITEMS IN AN ABORIGINAL MIDDEN AT LITTLE DIP, NEAR ROBE, SOUTHEASTERN SOUTH AUSTRALIA: IMPLICATIONS FOR COASTAL GEOMORPHIC CHANGE

By J. H. CANN* \& C. V. Murray-Wallace \dagger

Abstract

Summary Cann, J. H. \& Murray-Wallace, C. V. (1999) Source of food items in an Aboriginal midden at Little Dip, near Robe, southeastern South Australia; implications for coastal geomorphic change. Trans. R. Soc. S. Aust. 123(2). 43-51, 31 May, 1999. At Nora Creina Bay, in southeastern South Australia, fossil shell of the intertidal mollusc Katelysia scalarina from outcropping sediment yielded a radiocarbon age of $5600 \pm 140 \mathrm{y}$ cal BP. The presence of intertidal sandflat sediments of this age, preserved in an open ocean coastal setting, implies that the western, mostly eroded side of Robe Range once sheltered quiet water embayments with intertidal sandflats. Radiocarbon ages for fossil molluse from marine sediments landwards of Robe Range reveal that autochthonous deposition took place within an extensive Holocene coastal back-barrier lagoon environment from approximately $5500-4000$ y BP, Key Words: South Australia, coastal, Holocene, Pleistocene, Aboriginal midden, mollusc, foraminifera, radiocarbon, amino acid racemisation.

SOURCE OF FOOD ITEALS IN AN ABORIGINAL MIDDEN ATI I＇ITLE DIP，NEAR ROBIE，SOUTHEASTERN SOUTH AUSIRAIIA：IMPLICATIONS FOR COASIAL GEOMORPIIC CHANGE

by J．H．Cans de C．V．Murray－Whimac：

Abstract

Summary

Ini ruduction

Comad Abmiginal middens in the vicinity oll
 shell rembine uf marimb hollesce ante in many
 Wher farly tharian sites（nomenclature of Luchbers 1978＇）lic on the bxposed surfuce of Rent Rame

 sands，which formed duriog the interstidial

 1906）．Typurally the suell rembinm of the liatly （Hopidoss middens ind dombinated by specese of
 vommonly fonnd fordy lation in pronceded comatal
 cosmmuly prescon．＇The ysumger and mone nuncrous

[^5]Late Lforivon midderav ol Robe Rame consist ol thin
 modetn，uncomobledated dence satheds that are related to the most reeent posigelacial marine transolession． The shells of these depobise which are most frequently ohserved ith lage deposits an dediation
 Solander，al larere gistropod which is burrently tivines along the madern rocky whorefaces Eatly Formsin

 gression in the semly Holmence，whike the 1 ate

At coastal Lifle Dipp，shuthess of Rohe，fortme
 disceminated charenal．＂ccear within uncumsolidateds dunc satide ubel its a lug deposil ：ceross is modem dellatien surtace sthell from this depasit yielded a

 （ lable 1），an uge corrolourated by inmino icid
 duice sand and their contained inchatolegicat rennails immediaty ofertic abiftered concen
 Sermbly Ameruliar．

Sample 	Dated material	1．ahoratnry curle	$\begin{gathered} 8^{19} \mathrm{C} \\ (1 /(x)) \end{gathered}$	Conventional ${ }^{14}$ Catge $13 P$	Collibrand and mantife rexion tir cortected ＂C atye y cal BP＇
Ficall Dip Lithe	Nurfelysiat sriviciamor and K．Wevaph ния		$10+111$	376011 ± 76	
Nural Crinat cmbayncol	R．Acellimure		1.0 ± 1.11	$5250 \pm$ ¢06	$56016 \cdot 140$
Numa Crejma Latho Inari／cmin נnidden	niturnosp	Re¢：－1046？	10 ± 11.1	1130 ± 010	$740+161$
L．thke Dip Late Romiroe miduden	Iminesp．	｜VII ：．1．：	$(0,1) \pm 20$	8442431	4710 ± 1811
Litle Dip Liarls Iforianomidden	Kestersvice ef	S1．A．2（1）．3	111.10		$104(1+1610)$
Litue Lhip Early ltomizn stiddan	Lloutiotal	$10.11-118$	$\therefore .+11 \pm ? 0$		リフ101－\％ 0

 cmbeded within al ferad lossal soif on the otherwise caldereded and karstilied sodiments（oxygen isnotope subatage se）ol Reste Ranger．Radiombom anges of 4210 2.230 y cal B3P（ANU－7．848）lor chareosol and
 cally Holecete ate for the materials form the lowno deponit（＂lible li．Theree results are sappuried by previously published（AAR）analyseos ol Kernolwin
 of human iketivity，and theif gepmeral seltinge and exposed mattorals were proponed ith ath archatero strultaphic type foxality and type secerions．Fior the time＊chdural Lealy and I．alc Horianne of Aboriginal
 （1）．（20）－｜1リリ8）
（＇ans iv af，（1991）speculated about the origein al
 Horianom mideken all Litue Dip．Theae andmoss noted that．ntinough the midden is sitmated in chose
 Intertidad sandalal enviromments which coutd hatve suppormed this cdible sockle．However，they also
 amenchtionmens and nllochthonoms hicklabice sedi
 whal lake bede within the luw lying area innomediately inland（nentheast）of Robe Range．Theace Ifolocene stoll beds were deponited in a cobsial hack－bation lageson．which wapporical thriving prybulatoms os
 therefore concluded that this dagenom represented the
 forst by the Ahbriginal prepple who latel lived on Roblo Ranite uhout Bo（0）ycars ago．This paper re－ Levaluate ate provertance of ithese midelen materials
if the light of additional field ohservations and radiskarhon ages

Ohservations and Methots．

Fied olsernations

 aboul 7 Kin sumheast of Litte Dip and adjacent ws Noril Creinat and Stinky Batys（ligg，1）．Thate ate thre major gecombrithe elements present in this area．The oblest of these is Robe Remger，comprisine the mastly comandidated aentian colcarente that is assaciated with the interntadial highasand of wesa
 （Huntley e＇ wl．1093）．Since the culminates ol the pomb elturd marine tramgerssion and stibilisation of present seal level，this complex ol former codstal dunes fian matereme exterasive erossinn by the
 bemonallt shatl istandes and oltsbore sead stacks．Many of these exhibit sections sif acolian evosw terds and wher dume Forms（Tig．2）and their uppor nutioce ate calcreted．karstified and seppore ectül rossat subls，
 veyctation as an agent in carbonate damemesis（lige． ．3）．

The modern beisth at Norad Coreinal．Which is broall and eactusively sardy，is the second geonmophis
 silour and derived，at least in part．frem the erosional rewonking af the wher acolianite ol Robe Rangs． Some of the Robe Range seas wacks aphear to have hecer instrumental in providing athehor points lom bescls construction，as lecgional uplift of c． 70 man per Homband yours（Belpertio \＆Cann lygot Belperio at （al．1ey（o）promened beach progradation．The tratal

 the suder iksulianite (5ige 2): similar acolianites Outcrop althe the Stinky Baly beach (tige, 3).
the beathes all Nota Cerina and Stinky Batys atre
 comprose the thad exermenphice element The sume samd, ats smail.a in conporsition lo, and fremomabls a: least maghally) in dynamic equilibritum with.
 dunc: hate exposed typical makerials of the Lath Hovizon modens, namely shells of Torton sp. and Fragntenc of lint.

At Has whtheatcon exhemity of Nomal Creina Baly

 sediments, abtert 1π in height. ind cextending

 beash in righr imbleanes seate.

 4, muts in menkern beath samed.
eeveral in back from the headlund. The bise of the
 brecera of saksarenite chats, which ates is lest buperlicially, similar in kexture and campasition to the facally muteropping atedianite of llwe Rolx: Kange. The angular los subtomeded fiament range
 embedded in at matrix of estend of the same cermposinior (Jige 4. 5). The dexlure und compusilion of thin sediment is consiscen with having berol
 deponted ats stonn wave beach debris.
The aserlying hed, $111-25$ bin thick, is sedntient of

 (Fige 4,5). The morthern part of the exponare is
pexnty combolidated sind reveals in sexthon funth athiculuted and disaticulated bivatye shetle ind getey, Lartxanate-guath.. Slightly mudly sand. "lhe mparied shells. are oriented benth wenvex up and down with seseral having an imbricaled labric (Fige b). TIse
 in bouth verical and horizental exponaren wilhm
 4tate sand (IVig, 7h. Bivalves melude specien al

 commatom. From this sediment a specimed of
 radiocarbon daling and bulk sediment wats also baten for foraminiterat imalysis. The palatoenvironment

that is signified by these fossil molluses was at leats clonely simitar to a modem intertidal sandflat and it in significant that such an environment once prevalted in a colastal setting which faced the Southern Ocean.

The shelly sandlat facies at Nora Creina Bay oscurs up to 1 m above the modern high-lide sandy beach, and approximately 1.5 m above present mean sea level. Emergence of the shell bed may be attributed to the regional tectenic uplifi, 490 mm in 7 ka (Belperio \& Cann 1990), with superimposed
hydroisostatic udjustments. The degred of hydroisostatic deformation for this setting is likely to be similar to that registered elsewhere at sites close to the continental shelf edge in southem Austratia, such as at Porl Lineoln, which records about 500 mm of emergence since the culmination of the post glacial marine transgression (Belperio 1995).
Overlying these beds of the shelly sandfat facies is it dunc, $5-6 \mathrm{~m}$ high, of vegetated, but otherwise essentially unconsolidated carbonate-quart, sand. Included within the dune is an horizon of numerous

Fig. 5. Batal rubble breceia bed with cobble sise clants of reworked denlian calcarente, helieved to represent btorm wate heach dehris. A sundy hed with presersed molluse shells overlies the breccid. Geological hammer for scale.

Fig. (\%. Detail of fossil molluse thells, which are here mostly disariculated, convex upwards ind partly imbricalen. signifying wome degree of transpotation. The pera indicates scalle.
 late bl shelfor on an erosion surfice. which is here inkepulted as: at Late Iforizon Aboriginal midder (17ye t. 8). A suecimen ol shell was katen from this defusit for raducathon dating.

Rudiocrathons starme

Radionathon dating of the fossil mollasess. inwolving liguid scinfillation combling of residasil fidineartem, followed the conventional mellowe as documented by Guplat se Polach (1985). As
preticiltment, hetore sample preparation fle fossil shells were rigumaly elehed in er. ${ }^{4}$ M hydrochanic acid. The conventional tadiokthom bes were calibrated lo sideratl years using the program of Sthiver \& Rember (1993), which inchaded a correction for the marine reserves effed for soulhern Austraban ckean surface waters (-500 ± 35 y (Gillespie \& Polach 1979). With the exception al' Lhe Rurbers. sp. From Nora Creinar (Beta-1(1-522), all the radiocarbon ages were balculated using ewhatated 813C vislues. Results are reporied in Tible 1.

Piy. 7. Expused upher surliate of the shell thed. The pen indicales bevale.

 are ibuoul lit smy in dia neter.

Whimatable rellowious
The sethment simple bullecled from tie shell bed s'roppinser rull al Nobs C'remu IBas" Wask souked in lan Water mbendituce disuggregation and thet sereat in removic acdiment syaign < ().125 mm. The rebainel

 of foranninitcrin wate ulentilied and remosed to as abimbitud mientossil silide. Heswever, polisaled or
 and intilleal with aththernic cemend. were excluad as these were all presumbed to he relict. More that 300) individuals were extrated and idernathed and

Resulfe and bisenssion

I'thllactal hom eqgen

The Iadincetthot itece desermmed the shell al
 sideroial y(atrio is $56(0) \pm 140$ y call BI^{2} and that fig

 axdickathon agew which indicate that the penstghacial marime framseression inlo the coasal lagenem behind
 Fissol shalls colleced from athenthonoms deposils

 He? 'tlote the atye for the shelly sodiments it Norat Cotsha is conshaten with sedimentation wiftion the cation parl of the progelacial matime gatmatession :and paints ios be lurnerly norat eviensive intertidal

1 armmititura

Mitosscopie wxaminalion al the sedianent erain

 4

 representeal by only a single specimen.

 foraminilem which together imply the exiberoce of
 the xumination of the pertgelacial marime fanso gessumn. such enviromments were initially treated on

 which conurase Robe Range are variably lithilisod bind the fogenented nature of the presed landacupe
 stediments by fire forels of the sombern Oceill. 'The'
 Isp I him offhum and their presence implies wil average falle of entivitat reassom of 143 mun y' bance the couthimation of the prodglacial manime trathe gresaion sume $70(0)$ yean ano. This leal nate ur clif
 by Tividate (1497) for varimus siles un liym
 biectats. That impart the dimenctive yelloste-brown eblour ios the standa ol the presern day hedach ford the

 succession. With esmbineted erosien of the promective shimes ind "ishands at the scavard cdge of Rohe Range, the sabdilith: that bad lomonely lumed the imertadal fathas ats in the Nera C"reinal embuymenal beceme expenced to umbated marine erosion. The satnds were redistibucd. parly as it Iranseressive Whatiot of patabole duncs. constituting tic memb rectur phate of emstrucsion of Kote Range and alsol pamply aloug the enast mbe deposited in the pronected
 Riveli Bays, Thence latler scdinemis atre now ripresented as a semes wit relici limedane (Sprige 1452, Cann form. 1941. 1398).
 Limbe Dip

 Iry Abovisithal perpole, and nemy prexerved within the
 Dip. Faid originated in the Holuecme bach-bismer

 hestane berahlistacd withon this lament and thejr stelly remahns Echmollated borming estentive'

 more than 3 (ko) y ohder than the ages from Katedybia
 scdonems if now appeats: minlikely that the shells in fle midden dad their usigin in the lagembal waterway. The radiondarhom dated losinil K. a sethormed firm Noma Creina combings that, is sthelesod sedings atone the
 fier flim molluse. If would acem thath in the extly Hokecone, Aboriginal people havented the conkless
 side sll Litte Dip. An may be infered from the
 was probathly several hundred years helore the probighacial namine transerasioun llunded the low lying land frehind Rolve trange.

Conclusions

At the colnomatiog of the postedacial marims:
 Nora Cramaand Litte Dip, prowided shelfered back. bargier settings in whish sadods Here dejuosited dnal inkenidal mbillencs. especistly Rafelysin spp., were: the in llative, Alxnginal perple gathered these
conkles ats at forsd ssurce. ath evidenerd by the athondant shelf remains in the Litrly Horizan midden at Litule Dip. The lests sommbitated frits of the beikshdune batrier sucembed on the erobive foreen of the Semthern Ocean, whes reducing this leature over lime to the linear array of seat stack and small ishands. thall sharacterise the seaward adge of Rome Ratrex loday. The mppotected bendfiate were thus exposed for the now oxean and their sediments were redmrituled. Alech siand was blown omshore ide it
 Lansponted atony the chise and deponited for the Shellemed arean that beeame Chimen and Rivali Bays. Radiocartum ages Jor vew Parly Homion midden shells an bitfle Dip. and for the Rathesta wewlarim from the bamdlat Cacies ill Nema Creina, somstation this envirammental shange to the limes

Acknonfedgments

'The suthors thamk N. E. Alley and MI. White for theirecritical revicwo al the paper, and J. Bird for hal careful editing. Many al" incir |solplill smmocims. hatye been adopted by the atmothers

Reforences

 Airse. 5t.

 padatostrifouncutal significauce: Rule Range. South Aleinaliad Proms. R. Sroc. S. Ams, 115, 1(11-175.

 (Emur. Ime. 5h. 81-4s.

 Schund af Facilice Studisto Anstrallan Nathonal Uniseraty ('intreris).

 (bum, Mei. Kév: 12. 1-20.

 J. W. (1.ak) "Naturul History ur whe sinth Fiama" (Ragyil Suciely ur Sourn Australian Adelaitele).
Sivk

 Renlencurtas 35, 215.230.

 3.14 .3615

THREE NEW SPECIES OF STRONGYLOID NEMATODES FROM THYLOGALE STIGMATICA (GOULD, 1860) AND THYLOGALE THETIS (LESSON, 1828) (MARSUPIALIA: MACROPODIDAE)

By J. E. GRIfFITH*

Abstract

Summary Griffith, J. E. (1999) Three new species of strongyloid nematodes from Thylogale stigmatica (Gould, 1860) and Thylogale thetis (Lesson, 1828) (Marsupialia: Macropodidac). Trans. R. Soc. S. Aust. 123(2), 53-60, 31 May, 1999. Thylonema woodalli sp. nov, is described from the stomach of pademelons Thylogale stigmatica and T. thetis from Queensland. Thylonema woodalli differs from congeners in the shape of the buccal capsule. Thylonema clelandae sp. nov is described from the stomach of the pademelon, Thylogale stigmatica. Thylonema clelandae differs from congeners in the shape of the buccal capsule, the sclerotised folds in the oesophageal bulb, lip-like structures in the buccal capsule and lack of an annulus in the wall of the buccal capsule. Key Words: Thylogale stigmatica, Thylogale thetis, Thylonema woodalli sp. nov., Thylonema clelandae sp. nov., Thylostrongylus franklinae sp. nov., nematodes, new species, Macropodidae.

THREE NEW SPECIES OF STRONGYIOID NEMATODES FROM TIHYOGALE STIGMATICA (GOLID), 1860) AND THYLOGALE THETIS (LESSON. 1828) (MARSUPIALIA: MACROPODIDAE)

by J. E. Gnurim

Abstract

Sumbmaty

Introduction

The nenfatode prasites to the redolegred padenuetens. Thaygule stismatica Gould. 1860. from Oncernsdand jnclude al highly distinctive series al
 wanting ip closely retated spectes (Beveridge of ad. 1042:- Spratl a af. (dy)). However, although the helminith commanmilios of Thetogale stigmatice stignathor, Gould. IN60 hate been imyestigated in ameas north of 'liswnswille (Beveridge et at. 1992). anly al limited atomber of padentelon helonging to wher specten or suhprecies has heen examined in southem Oucenstand dind northem New South Wales (Iosmaton \& Matwan 1939; Beveridge 1982, 1983). 1) uring an inventivathon of the helminth communaties
 thetis besson. 1828 collectal liom somthern (Qucensland and northern New South Willes. several andeseribed nematodes were encomonered. This paper presemts the description of two new spoeites on Thwomema beveridger. 1981 and one new spociess of

Materials sund Methods

Buhemolans were collected opportumistadly ath rowd kills and sured an -20 ${ }^{3} \mathrm{C}$. Carcimes were thatwed

[^6]and a sample of stomach comben was collected fionn various regions of the stomach and tixed in low formalins. Nematodes were removed fion stomatis content, walled in water, cleared in latophenol, and examined using inn Olympus 13112 mismasope. Drawing were made with the aid of at dawing tube. Meastrements are given in micronefors, unfoss otherwise atated. as the rance followed by the mean in parentheses. Type specionems have been depusited in the South Austratian Alusemm, Aclobaide (SNMA).

Thylumema woudalis ys. now. (FIGS I-K)

Holorge: Eै, from the stomach of thatome
 Quecnsland, lyyte coll. P. Wombhll. SAAIA AHC 31209.

Mllorys: : SAMA AHC' 3.100.
 +1. 30) 2.
Obher material examined: from Thylogenta
 Montair. lamington National l'ank. SAMIA AHC' 31305; 1 ह. Palmerstom, SAMA AHC 31325; from
 National Park, SAMA AIJC 31306 .

Descripiom

Simall, Whilish mematorder; hody benvered with
mumerous line annulations: cephatic collar absent; mouth opening slit-like to oval, laterally clongated; Ho small amphids present on Jatcral extremities of mouth oproninge, dorsal and vertral lips cach with lwo bilobed cephalic papillac; papillae not projecting above lips, biloheal medially, rounded laterally; single seta protrudtrag between lobes: huceal capsule wider in dorsall than in lateral view, anterior and posterior extremities of wall poorly sederotised: central region forming heavily meleronised annulas: wall al buecall capsule thickened antoriorly on
dorsoventral and lateral aspects, terminating anteriorly, pusterior bo mouth opening in mediallydirected expansions: buccal capsule wall lapering posterionly; tesuphagus elongate, corpuctcylindrical. widening slightly posteriorly; isthmus short; bulh clongate, clayate, as wide as compus; nerve ring encireling acophatgus it isthmus: deivids stighty atherion to nerve ring; sechory-exctotory pore at ossophagn-intestimal junction.

Mulle (Measurements of os specimens) (Fige 1-7)

 $=0.01 \mathrm{~mm}$. $2-5: 13.1 \mathrm{~mm} .1 .6-8$.

Lengh 5.54-7.98) (0.729 mm. maximum widh

 t1) :antsriar cow $370-410$ (3 ()), Bursal bohes not
 labes distand from slightly lenger dursal fobe: wental lobes joined ventally: ventroventrad and venmolaceal tays appased, ruaching margin of busar: citernoditeral bay diverem from lateral trank, atheses reachine marain or harsat, mediolateral and pmomerolaterall rays apposed. reaching findein of

 almosi reaching margin of humat iwn small, buteral hanclacs antinge sutan alter level of major hi-

 antrone examilien of spicule imeenlarly knobled: lipe pointed, anterior lip of estitat come prominent.
 daty at imestlate progetions dorsall tor them:

 10 anterime end 4.301430), tail shoy, comicalo 450-58(1)

 f0) $110(455) \times$ 41)-60 (511

Sire al meretiom
Stomberts.
linmorney
 Anitumy. Universily oll (Quensitand.

liemarks

 Chaciminace simsich, 18 sha 2, based on the evlindrigh buceat capsuks. the bomgitutinally dispowed mejector, the wigith of the extermentasal may whe the bateral rays and the den pairs of branches to the
 meromised huctal bapsule with promineot annules and lacker a leat cruwn plachay it within the dribe Comonmanngylica Beveridect 19%.
The-drectes is plated within the geons Thytoment
becance of the Faterally efomgated moulh opaning

 the ceplatice papillace. which ace intuted inedially

 Johnten : Mawson. 1939) have comisil sephati
 and are now hilohad.
The reit ajoches is distinduistied from congeners by the morpholngy of the huccel saphule and the shape of th dumad and vermal hicksnings. Ex:uncWat distinguth other cimgeners (130veridge fosi).
 appeate to fe a prominent rity of material encirchore the mideresion of the buccall amuluy in in 7 It
 noceal capsule in lateral visu, which is wajest anderisidy and lapers posterorly, white the buceal

 Th, urumedefs. 1,91-2.02 Jom in Th. thofonemm, and

 thylemente by the shape of the heceall cupsule. spicule fenglls amd the lach of prombent laseat lips hesuring amphide in the new spectes.
Beveridge (198) mberved that the gento
 lound in Throgule the fise the perem stindy
 ally. Hewever Th wrendall wath found in only one I thetes of ten examued, empaned with fisur of live I:

 both spectes are sympatrie at the collectun ates. Is in imeresting that the isther torece aperies willint the senus have nod been separted from T, thenix despile high prevalences sul infection in symparie popHtations of T. stigmuticie will eni (umpuls)?
 in matheastern Quenkland bur was not seporned bey
 northern (Queensland. The current meteds indude

 illence.

Thylonemer clehandae in) mev. (FICSM) 9 -14)

wilchri (M'Coy, 1866), Green Mountain, Lamington National I'ark Queemstand. 1994. coll. P. Weotall. SAMA AHC 31296.

Mhtype: $\mathrm{F} . \mathrm{SAMA}$ AHC 31297.

Description

Small. white nematodes: body covered with
numerous fine arumbations: mouth opening circular in apical view. with numerous lip-like structures projecting internally from anterior extrenity of bucal coapsule, two small amphids present: submedian cephalic papillae bilobed medially. rounded laterally; single shont seta protruding medially hetween lobes; buccall capsule cylindrical; fumen of buccal capsule namowing anteriorly: inner margin of buccal cupsule selerotised to level of cephalic collar, contiming to mouth opening:

 apical sew. 14. Female kail, lateral view. Sealle hars $=01.1 \mathrm{nmm}, 9,13-14 ; 0.01 \mathrm{~mm}, 1(1)-12$.
wesupfagum elongate: Lorpus cylindrital, wideniny slighelg poservorly: isthmes short: hulb worgeate,
 thechemes of the laning: merve finge encoraling
 merve ring: sectetary excretory ghore enteroth \&

Longill $4.5-4.8(4.6)$ mon. masinntim witho 200)-

 alllenion Lnd 235-285 (269): hunsall lobey shar we̊l separated: ventral and baterill Jober joined. hereal lothes distince lioum wightly Jonger bersabl lollo: velumb lohe jotined ventrally: ventroventral iellet sentrolateral ratys appasided. rachinge matryin of loumas extermatiteal rafy dowegent frant lateral trunk, alomost reathing margin of homat medistateral and
 bursa: Extemokersill liky arising clowe to the lateral bank, rual reschings nurgins of bursa, dorsal tay
 Dronctucs, almost reactinge mangin of huren, (wos blrath. facral benshes aricime som alfer level of

 houblied: diper permed: amedion lip of genital come prominestr, corsical; pasterios lip with iwn hathous

1.cngth 5. (05-5.39 (5.22) mim, miximum vadh
 (20) in latcral view:

 (32.3) Lone: vetva inmodiately anterion (6atus. 135.

Sik 样macotry

Stsunacto.

 (*) Nand).

Remarhs

'Itse new speejes is allexated to thytoneme for the sank reataras is thone presented abowe lots The
 all sondencors hy the shaph al the huccal celpsuke. which diministacs in diameder anterionly and lacks st preminemt annulus or llachentag. Thecinala' mobrh opening in crowe seetion, the lip-like projections of the treseall capsuke ime the mouth opening sud the teleronised lohds within the sessophageal bult atwe conable this specien tor be distingorished from congenusis.

 the chaterteristic annelles pexath ath the bate of the
 the mid region of the buccal cempuls af Th

 Lomparced with 1.70 .2 .22 mm in 7h. weretulli, 1.22.
 thedrmema and $1 . a t x-1.70$ nmm in $3 / 1$ makera

The mounthensing uf Th, hatker is mome momed Hzan in songeners and is sometimbs foted ios site
 and theretone it is simbler what of Th. rhownles:

In The drfanelers. the acnital cone is complex. is in
 bemical anterion lif ind buthous papillas on the puskerior lip.
The genes Fhylemenm has matil now heren chatracterised both by distinctivaly shaped sobe mestian papillace and the prosence of at seblemised annulus surnounding lite buccal taphute. Theformerno

 wall is slighty thicher than the antarion parl Hentever, The ifelanelac possosses the chatsicteristic ceptalice parpiltue st the genus thereby conliming this charater an its key distinguinhang feature. The lathial crown of numerous fine elements io 11 novel

Thykstrongylus franklinae sp. now. (10105 15-23)

Hoherype: 5 Irom stomach of Thaterghle atighuricei Wileari, Green Momatain. Lamingenn National Path. Qucensland. July \|yy.l. coll. [? Whasdall. SAMA AltC 313107.

M/forper '8, SAMA AHC 313K,

Berctinumun

Small nematordes withor atare or longitudital bondy
striations: body covered. with numerous, line transverse annulations, ceplatic collar distinct. demareatted on anterior and posterior borders by transterse sutores; colliar pierced by two amphids and fous larger submedian papillate each bearing two soot setace external labial crown with cight blunttipped sculptured petaloid elements. arising internally to cephalic collar; mounh circular in cross
section; buccal capsule cylindricald subdivided longitudinally. slighty longer than wide. heavily selerotised with numerous fine transverse striations: small cavity containing granalat material surrounding anterior end of buecal capsule; ostophagus short, corpus eylindrical: isthmus short: bulb ovoid: lumen of bulh with clongate selerotised plates: nerve ring encircling oesophagus at isthmus,

 dembal tiew, 23. 1mmale tail. Latcral view. Seale hars $=0.1 \mathrm{~mm} .15 .19-21,23 ; 0,01 \mathrm{~mm} .16-18.22$.
sedetofyexemomy pare an level if nerve ling:
 anturior projestions af intestinal wall absem,

 bateral view. nesuphayus 6.t1-690 (673): nerve ring

 sepurated trom one armiter: itu hussea or strations: paesem on thrsat: ventomental and ventralateral rilys shouker. apposed, reathing margin of bumat mednatateral and peiterolateral mins lomge, thim, apponed ratehing margin of bursas externolateral bay disegent, shorter dian other lateral rays. joinhe lateral rrunk near srigim, med keaching

 stum in hatin: dividing at \% kengh into awo long. marrow hranches; was bher kateal banchets leaville main branches at one hatf the wal length:
 will two hane lateral ippendages; ? rilhbed venual

 provections destensing in fongth trem ventral ou
 aromel pustetior lip: apiculen slender, clengate.

 spicules urecularly kmobed: distul tips pointex alise luperine kevards spicule lips: gollomaseulum Athem: chatate thichening present at jundion of prontc shesalha; chongate thickeninges present if
 thicheming.

Site orimection

1.10mbunc

Remarks

 Cloucinioase Srestich, 1809 , hecause it proseseses a cylindrical butcal capsules and at bingitudinally

 species helongs the the genus Thatertoranglas.
 collar piecied hy two amphide and fisur subnesdian

 opronily and huceal capaule in aross section tims atongate secternined plates lining the avend (x.my) bageal hulb (Beverider (982).
 in the proportions of the hucerin capsule which resemble more dosely thure of Te, mandand mis nex
 Buving prominent triations on the buccal cerpalc, in spicale length. in the arigin of the dersal my und in akeant side (13evelidet 1982). It diflern from 7 .
 width kenget liwn the neres ring be ankerior emb. lenghth fion the secredry-xectengy pure to the
 cend leneth of the spiculec, fengula from the sulva to the proterion end tempth of the bal and the sien of the

 cephatic papillace have iwa sclise in 7. fomplinere is

 (982), However, the atide ane examely dillicull to sec clearly.

Discussion

 et. Ty92, The hetminits csmmunty include :

 andge 198.3- or acent primarily willin pademeton-
 nolerapentid husis, suct in Mmilomemer Beveridge

 bivend only ass parawite of padenctome.

of helminth parasites described from pademelons supports the hypothesis that the pademelons harbour a distinctive nemadode parasite fauna in comparison with other macropodid marsupials (Beveridge of al. 1992). The reasons for the relative diversity and distinctive parasitic community found within species of Thylogale are not clear.

Acknowledgments

I wish to thank P . Woodall (University of Queensland) for collection of specimens and l. Beveridge for help with initial identificution and constructive comments on the manuscript and figures.

References

Bryeringe, 1. (1981) Thylonema gen. D. (Nematoda Strongyloidea) from the pademelon Thylogate Mignalict (Marsupialia) in Australia, wilh three new species I. Partsithl. 67, 101-107.
(1982) A taxonomic revision of the Iharyngostrongylinea Popova (Nematoda: Strongyloidea) from macropodid marsupials, Alss\% I. Zool. Suppl, S'er. No, 83. 1-150.
(1983) Taxonomic revision of the Zonionamine (Popora) (Nematuda : Strongyloidea) from macropodid marsupials. Jhid. 91, 1-88.

Splatr:, R.. Johnson, P, M. \& Spratt. D. M. (1092) Helminth parasite communities of macropodoid marsupials of the genera Hypxiprymmodom, Aepyprymulus. Thwogale, Onyehogated, Laporchestes and Dendrolugus from Quecmitand. Wild. Res. 19, 359-376.

Johnston. T. H. \& Mawson. 1? M. (1939) Sirongyle nematodes from Queensland Marsupials. Trans, R. Sos: S. Allst. 63, 123-1.48.

Lichrenfils, J. R. (1980) Commonwealth listitute of Helminthology Keys io the Nematode Parasites of Vertebrates. No. 7. Keys to genera of the superfamily Strongyloidea (Commonwealth Agricultural Bureaux. Farnham Royal).
MAWSON, P. M. (1977) Revision ol the genus Mu'roposifromglus and deseriptions of three new gencra Popovastrangiles. Doreopsinema and Armedelia (Nematoda : Trichonematidae). Trums. R. Seco S. Atsp. 101, 51-62.
 catalogue of Anstralasian monotremes and marsupials and their recorded helminul parasites. Rec. S. Altst. Mms Monog. Ser: 1, 1-105.

A REDESCRIPTION OF THE AUSTRALIAN EOCENE FOSSIL, MONOCOTYLEDON PETERMANNIOPSIS (LILIANAE: AFF. PETERMANNIACEAE)

By John G. Conran* \& David C. Christophel*

Abstract

Summary Conran, J. G. \& Christophel, D. C \times (1999) A redescription of the Australian Eocene fossil monocotyledon Petermanniopsis (Lilianae: aff. Petermanniaceae). Trans. R. Soc. S. Aust. 123(2), 61-67, 31 May, 1999. The fossil monocotyledon Petermanniopsis angleseaënsis Conran et al. was known previously only from a single incomplete mummified leaf from the Site II Lens B of the Anglesea Coal Mine fossil deposit, Victoria, The recognition of three additional leaf impressions with cuticles from the Site I Mesophyll and Site II Lens B lenses at Anglesea allows for the amendment of the original description to include the leaf apex and estimates of size and cuticular variability. The leaves are confirmed as acrodromous, with acuminate apices and a short drip tip. The usefulness of the unusual marginal venation in Petermanniopsis as an identifying feature is also discussed. In addition, the stomata are brachyparacytic and amphibrachyparacytic, rather than anomocytic, as reported previously. Key Words: Petermanniopsis, angleseaënsis, monocotyledon, macrofossil, Eocene, Anglesea, Victoria. Australia.

A REDESCRIPTION OF THE AUSTRALIAN EOCENE FOSSIL MONOCOTYLEDON PETERMANNIOPSIS (LILIANAE: AFF. PETERMANNJACEAEI

hy Iomin G. Conran \& David C. Christoryma

Abstract

Summary The recogntion of thre additional leal impressionsw will cutiche from the Sike I Mewphyll and bite It Lemo 3

 Allaspolla.

Introduction

The funsil net-veined monocotyledon Perem

 Leas B ath the Alera Amplesed locality in Victoria $\left(38^{\prime \prime} 25^{\prime} \mathrm{S}, 138^{\circ} 28^{\prime}\right.$ R. Fig. 11 it a late Middle Firecene lossiblerous clay lens (honran ef ab, 1904, The aeology of this deposit has been dexeribed by Cltrisuphe et af, (198\%). Sulsequent examination al the crollections of fossilised heal ecompressioms foed at the University ol Adelade Botany Depamment padacobotany collection ($\triangle D U$ bevealed the presence of an additional these specimens referable (6) His luxom: Wo from the Sile II Lens B and one firmen the site I Mesophyll Lens. Alf of these specemens shoryed culteular preservation. and two were mare or less complete hearses. This enathes the amendmant of the deseription for P? amgeferedemair ha inclute informatom ahout the leal apex and to verily andar expand the range of variation seen itt the
 baxon. As the specimens were from a number of defferend lenses trom the original, in aks dillows for further comment on the: natere of the commenitien in which flemghesentusis necurved.

Materials and Methods

Forssil tamina fragments were removed from the

[^7]

Fiys. 1. Man shawing the kx:aliey of the Angelse: depamil (l) riverl (inum Chriatholel ef al. (1987).

 remove any meswphyll, and the remaining euticula materith eloand and prepared by the methosk al Clorisumbel de Lys (1986). Leal compression and collicle vorillers of the tasal were deposited all $\triangle D \mathrm{U}$ Womoted cultes, were examined and phorogmphed blader Nomarski diflerential interference exantas aplies nionoseopy using a Zeiss photomierobeapo Leal morphology. venation archilectlire and epidermal cells and edticles ware deseribed ballowing the eriveria outlined by Dikeher (1974). Wilhinsob (1979). Comoser (1983, 1991), atho
 clamilicattiom follows that of Webh (1950).

Systematics

The descrintion lormal findsway that ol Coman at al. (1494). Sipecimen bumbers reder to the ADL pativoturamical conlection.
Superonder: Order Lilhanac: Líliales
Family jnatrate sedis aff. Petermatan"
 Vent.

Genus
Pbermumbirpses Cibirall ef at
 raln dal.

Revisal descripsion

Leal simple, entirs. symmetrealt whate ovateelliptical; size notoplyyll-mesophyll apex bepering. actumate-illenuate with thert thip-lip. base aster tapering into a petiole, Venation acorodromens with weven primary veiss (midrib plus 3 acts al paired first oder laterals), the inner theee noticenthly stronger, atl veins weakeaing marke dly towards keal upex. Midrib straight. Secondary veins solitary, eurved, more or less regularly spaced between primarics. unbranched, emerging halsally from primary veins at at low ingle $\left(15-20^{\prime \prime}\right)$ abuve petione, Intersecondaties lew simple. Tertiary veins random reliculabltranched pereument with externall fopping fonn marginal primarics ind necondarios. Sulb-matrental lintitrial vein present, with small dicracoid (Y shaped veinlets alung its length extembling outwards. lowards margin (Fig. 3), Areotes indistincl with liree-

 upper. Scolle hars $=2 \mathrm{~mm}$.

 randerm: stomatal somplex trachypuracytic.

 curvol antictimal wallow adaliat celio shighty smaller Will sllanghi to morderatoly courved andiclinal wallai all mon-b|omatal perislimat walls withour armse
 dathondes shasems

(lile.S 2-1)

Mullivial

Hoveryne: ADH 26to (Fige ?A). Sile II Lem B. Akona open b'ul Libal minc. Anglesed. Vic. D. C: Choishaphed s.an.. Nas: 1987.

 mine_ Algglescan. Vic.. 1). C'. Chrishmhel s.ll., Nov. 1987.
(Hher murberiel ceamined: \triangle DU Alonss 1 (liges 2C:
 malls. Alselcsea. Vicio D. C. Chmivephat dotho. Now.

 ("hrathyhet millo Nos. 1987; ADU 408s (Fig 2B). Site If Jeme B, Akern opent cut coal mine, Anglesca.

 Nov. 1987.

Ravived le:sorjmmon

 3.5-5.5 s.mi whde. Apes iknominate-atkenate with al
 thefe $55-700^{\circ}$. lijercine hite as pertiole. tipidermal cell
 The athaxial cellis are gencrally larger und more stromgly curved. Ahaxial epridermal eelts (15-40 x 13.25 pins. mean 25×21 нmp; adiaxial cells $1.3-25 \times$

 7-10 ر.

Discussiom

Given the present wate of flax in monocotyledon Clasilication duc es vealignments senming from

 that the feates wers probably accodromanos. "Nas
 veined monterth is atme under revew. wilh loble
 prillidy vells deseritacd by Conmode (1983) th
 B. Forme at buc brechidedremones lirat sedel venalion pratern, Feveribeless. the presence in all of

 uh, (19y+4), The marginal venallon seen iss the fossila

 bembets exhending asu from the suh marginal lime brial veio ate adsu bot lotund many wher members enf
 ithentilatation of fragmentaty Peformambiopssis

There is simidar sarimions in the stomatial
 Timalinan de Ayensu (1909), Dahleren \& Cliflond (1582), Dahlgren ad al. (1985). Contover (1991) and Contan el al. (1994) viriousty describe the callisten
 Swilca, Pelemmantia and (Betermanniopsais), Eoppal d Relra (1993) considered similar to he pred(m)

 |cillurce although Tombinson (19748 argued Noal is bonded anly be thad in cominnerionn with ulles morphological eltameterimiss. Dilchea (197 f) dob served that the sunnatal commplex was generatly tmadiested by the environnkent, stemayth severat diflerem types conld ammetiness be fomind on the
 1992), is known for the met-veimed minnocont
 amisocyic and stutronyoc stomata ita addition to the mure commath anomosytice patern (Upadhyay 1987). As it is nom possible lo study the entergeny of the
 stomatal confoles catri mily be classiticed pradernintatly into patterns correspmading to Dikchers (1974) brachyparacytic and anthotracheppatracylic types (Fige - 4 Fi). This is ateorection to the previous.

[^8]

Uomely for other memhers of the net-veined Lilianae. af mo what baxa have heen reesraded with these silomental lypes.

 peratex ent medey between hie sibe 1 and Site II
 leaf pantaxal fas its name suggesth): the Ebename Lens hy chare-leaved mohophyll deist paralaxa fachan
 contain ahmadant Marlaceace and tarions mher ambebcrihed lasal which were cillater sery rare of
 beywera the qenses were disetased by christophel ef af. (1987) by way es callyatisabo with ale examt rannfonesil commonily at Noak Crext in Jar marth Queconstand (16" 077° S. $145^{\circ} 26^{\circ}$ E). Where the patchinesh dithe fise wass retlected in the lokealised bian at the liter sithoples. If the hathitat preferences

 vepulation similally pitchy. with Noblorgiagtas Microphylf Mossy Fored. Notophyll Vine Furces
 with ar willous NVF anderstorcy. ull withon is 1 hor

 envirnments \{Conran 198r, 1941).

The presences of Iaremmanatepsis in several lenmes
 understorey pane in the Anglesea bainforests, and ano will it fiai moramee of vatiation in lencal
cousditions. Oher prosem day commoun underatorey

 well will Podromaminh, have now heen recorded
 1hat Smikes oustralis R. Bi. fow example, carn sexur everywhers fom dense maniorest io dry upen cusalype fincess, the absences of these wher nes-ycinced
 reflect deppontomic and freservanional hianess and
 the ersteinal forests.

Now ithat severall sprecimens sil R amplasememsis Conran ex wh ato at hand, it maty he coneluded that The gencral leal nampholngy suggental ill the briginal
 extribited by the laxem art sariable. which is
 presenee of this laxem in wererad discrute elay lemes all the Anglesea lecedty, whose foristice sighanares stlegest a mosaic patemed rainkitest stracture

 Wers equally brasulas Potermmmiat - Its mearest

Acknowledgnents

Akou dit Austenlia is thanked for their sooperation and supkon br DCC, The collecting was ulan
 Dowd is thanked for the preparation of the culcular matelal. atr is the Bonany Depariment at The Lhiversity of Adelade for die provision al lequlines to urdertake this researeh.

Refinences

 リ9.

 C. J. (Eds) "Muntrotyledons: Syskollatice and

 llicl, pio firs-7.30.

 Wh herineer 1t. W103 33.3.

(imovir, M. II. (148.3) the vegelalive anatomy en the

 Sis 307. 245 -31?
 phenologey of wame sonith cast Old raintoresu
 \{1D0|| A stuly af the phemology int some

 צid. $155.81(0-827$

 Vivd de, |sertim.

References

Dilcher, D. (1974) Approaches to the identification of angiosperm leaf remains. Bot. Res: 40, 1-157.
Gopal., B. V. \& Ra7a, S. H. (1992) Stomatal structure as an aid to the taxonomy of Liliaceae. Asian J. Pl. Sci, 4, 5156.

Poni., M. (1991) A modified terminology for angiosperm leaf architecture. J. Roy: Soc. N. Z. 21. 297-312. (1993) Early Miocene flora of the Manuherikia Group. New Zealand. 5. Smilacaceae, Polygonaceae, Elaeocarpaceae. Ibid. 23, 289-302.
Stibbins. G. L. \& Khushi, G. S. (1961) Variation in the organisation of the tomatal complex in the leaf epidermis of monocotyledons and its bearing on their phylogeny. Amer: J. Bot. 48. 51-59.

Tominson, P. B. (1974) The development of the stomatal complex as a taxonomic character in the monocotyledons. Taxon 23, 109-128.
\& Ayensu, E. S. (1969) Notes on the vegetative morphology and anatomy of the Petermanniaceac (Monocotyledones), Bot. J, Lim. Soc: 62, 17-26.
Upadiyay, N. (1987) Epidermal structure and ontogeny of stomata of Dioscorea watii Pr. \& Burk. J. Indian Bot. Soс. 66, 448-450.
Webb, L. J. (1959) A physiognomic classification of Australian rain forests. I. Ecol. 47, 551-570.
Wilkinson, H. P. (1979) The plant surface (mainly leaf) pp. 97-165 In Metcalfe, C. R. \& Chalk, L. (Eds) "Anatomy of the Dicotyledons 2nd Edition" (Clarendon Press. Oxford).

A COMPARISON OF SOME SOIL MICROINVERTEBRATE ASSEMBLAGES IN SOUTHERN AUSTRALIA

BY ALAN F. BIRD*

Abstract

Summary Bird, A. F. (1999) A comparison of some soil microinvertebrate assemblages in southern Australia. Trans. R. Soc. S. Aust. 123(2), 69-75, 31 May, 1999. Microinvertebrates from five widely diverse environments have been isolated and living specimens examined. A total of 24,237 organisms was counted. They consisted of annelids, archiannelids, crustaceans, insects, molluscs, nematodes, tardigrades and turbellarians. In all instances nematodes predominated as follows: edge of lake numbers (n) 86%, taxa (t) 79%, ocean beach n 53%, t 76%, river bank n $87 \%, \mathrm{t} 71 \%$, river estuary $\mathrm{n} 93 \%, \mathrm{t} 84 \%$ and wheat field $\mathrm{n} 91 \%, \mathrm{t} 87 \%$. The mean percentage of nematodes as numbers (n) and taxa (t) in these soils was $\mathrm{n}=82$ and $\mathrm{t}=79$. Key Words: Microinvertebrates, nematodes, diverse environments, abundance, biodiversity, meiofauna.

A COMIPARBGON OF SOME SOLL MICROINVERTEBRATE ISSEMBLA(;ES IN SOUTHERN AUSTRAIA

by MIAN F. BIKI)'

Abstract

Summery B. Ams. 12A(2), ©每-75, 31 Mily. 1999 these sailo was $11=$ h'2 and $t=79$. pichness and anmonace of nematoden compared with other sant micronvertehrade in these widely dincrse

Introduction

 Soull Auspalian sorls loas indicated that mematode predonnimate in all soil tomeronments soudied (Nicholas of wh. 1992; Yattes \mathfrak{x} Bind 1994). Nowever. nos quantitutive exmparisomb with oftere micromedanaths uver at range of habiats have previousty heen made. Where quantiblive comparisuns bet-

 de fackridge 1408), it is possible (o) estiblishth the degeree ofl dommanaso. In this study. insects
 of tasa. Theste urganismon weece collected ate the sisil sardice by swesping with a fine mesh net. Howered,
 mone compleas and lyptally in olves sither sioving through as range al sioves or whiliong movement in

Willion die soil, microseropie nematodes ate kinown (o) toe at biodiverse se the matroinverthetes atwo

The prosedple sobective of the work rephred here Wis so quantily the athundances and diveraty of the
 mincotcorates in arange of envithaments.

[^9]
Materials and Methods

Suil samples ware esllected from live different enviromments. All of these soits ane chasitied under the US suil classification (Soil Survey Staff 1998) ath lintisols of Sonne sandy soils. One of these was ertestrial (at wheal lichod and iss suledibsilied as an oritsent wittr the lexture al at dey sandy loam. The remaining four were scmi-uquatie from the shore of at balke, the edge of ther, the shome bl an shthary and ath (xean beach. All wh these were wel sands ind were clabsified ins atpuents

Fervestrial andirament (l)

(1) Sumples whe collocted on $2(1$ April teys dionin
 Avem. SA. This site had treen direet drilled and bad al
 which houd lallen the previous week and which had broken the summer dreanght. Sofil was sampled to is depth al 11.5 em uning it 4.7 can diancter corcr thas giving a sample polthite of approxinately 20 ml . Ten simples were sotlected at regular intervals giving a linal soil volume of 2 I which was thined in at plaslice bug and shored in al polyaterone box for (a) arsport back to the laboratory.

Wiblor several buturs wh its enllecton the sab sample was sisved lordugh a 2 mon sieve, weighed into 50 e atiguots and placed in et mising machine for four days ux deseribed prowionsly s Yoates de Bird (6y4). The mistine proces herth aterates the suil and stumulate movement of the micromedaroa which

Nu． 1see	Stice		Susil clansification （US）	$\begin{gathered} \text { C' } \\ \text { Cliy } \end{gathered}$	$\begin{aligned} & 乡 i \\ & \text { Sill } \end{aligned}$	$\begin{gathered} \text { i/i } \\ \text { Sand } \end{gathered}$		1－xame	Suthinis Jinal Suhble Silts 17ged
Eige 11	Numbe	GPS Readiny				Fine	ciourse		
2	Litue	lut $35^{\prime \prime} 23^{\prime}{ }^{\text {S }}$	Letisol－itument	4	＜1	cl	199	Sindy	$316)$
3	Nlexandrima ciknele Raser		Fintisol－Mptunt	ind	inl	113	1 ml	Samily	
	（Dartmenil	1014 1．41＂17 I：							
$+$	River Murray Linlairy （Goolva）	$\begin{aligned} & 10135^{\circ} \quad 32^{\prime} \\ & \text { lome } 13 \mathrm{~K}^{\prime} 50^{\prime} \mathrm{F} \end{aligned}$	IfMisul－iknum	<1	<1	32	67	Simaty	23.500
5	Oc： （Guichen Bay）	l．ti $37^{\circ} 100^{\circ} \mathrm{S}$ 		0	11	1	99	Simuly	$3+2(8)$

${ }^{7} \mathrm{~m} \|=1 \mathrm{ml}$ determinerl
gravitake through the suil abd into the collecting lubes．At the completion of the cextaction and alter sedimentation and stprernatsum penoval，the living microntetarta were counted billowing the methot of Bird（ 199 （ 1 ）and classificd into major groups．

The remaining lisur envirominents were comsidered to be muatice since all the soils were wather－lugered and mergine with the wateres edge．They were atl samely solk and the micrometazal were extracted by
 were：
（1）I．ake Alexatadrana at the mouth of the Eremer River（350 $23^{\prime} \mathrm{S}, 139^{\circ}$（13＇E）．Collected 26 Aususs lyys．The lake was chonpy whl monas convered the sandy theish where the collestion was made．The Bremer River batd partly thonded the and of rusher and reeds atjacent lo the lake．
（3）Gkencly River all Dammone（Vic．）Ixam Fond O＂llare and just before the junction with the
 ected 29 Iuly ly9y alter leeavy rain．
（4）River Mun ray estary hetween the sea und the seatward side th the Gorlwa hatrage（35＂32＇S． $1.3^{\prime \prime} 50^{\circ} 12$ ）Collected 2 func 190 ）．
（5）Oecian beath alt Guchen Bay at Rohe（37 37° S． $139^{\circ} 45^{\circ}$ Ei．Cullectsd 16 September lyys in the intertidal rone with the lide reeceding． The ocean was calon．
Jos cath case five wamples were collected using the 4.7 cm Larer giving at lotal valume of approximatels ｜I．The shil Wans mixed in a becken with water from Hee covironment being studied．The water wats liee at misroinvertebrates ats delemined inisially hy eye amb bater by micrancopre examination．The suil was

 $\mu \mathrm{m}, 75$ fon and 5.3 pan sieves．The material wis

Wawhed Irom these siever into a buaker and elecembed
 flasks were ipped inten conenting chambers and
 thes examined and cotnted dinder a dissecting microscope and classiticel intor magor groupse using bright lield and elifterentabl interterense bontrast ロрй心。

Sail secrioms

Sisk sanples were tahen loy the method denwibed by Hrewer id Slexmar（IVR8）amd ware Transputed to the laboratory in an ice box．They were freest dried in the labasalory and impregnated will araddite in la＇us（Cent \＆Brewer 1971）．Alter poly meri／alion，thin sections，ranging in thickiness，loun $20-40$（Hm．Were cul using dianond tipped sum biade and were then groumb on a rotary dianmind lap．
＇These seetions were bxamined and photogeaphed under pularised diglat with an Olympus Vanox

Results

The cemviromments

 for bie five shles are yiven（Table 1．Fing 1）．The sifes ate widely sepitrated，ranging fromb a wheal
 seifle frem tresh wile habituts situated on the hambes
 ively．（o）wather habilals if at river exalaty and at sandy beach．The salinilich of these envionancols rame from 300 mg 11 for the shore of lake
 Ginchen Baty．

\wedge lenal of 24.237 individuals from approximately 93 laxa saty contined from the live samples．Sonss

Fig. 1. Maps showing collecting sites.

Zumlogioal groups	Localities				
	Wheat licld (Avon)	(2) Lake Alexandma	(3) Glenely River (1)artmoor)	(4) River Murray esuary (Gor)lwa)	(5) Ocean beilch (Guidicn Bay)
Nematodes					
	1400	690)	17300	1800	\cdots
	91	S6	87	93	53
1 (taxamemic groups)	1.3	11	17	21	13
ats Cetaxa				St	76
Arthiamnelids					
notus) ${ }^{\text {a mil) }}$	-	-			3
	-	-	-		2-
1 (taxomemic groups)	-	-	.	-	1
	-	-			1
Other Ammelids					
	12	50	19014	48	12
as \% famna	11.6	6	III	2.5	8
1 (taxonomic groups)	1	1	3	1	1
in 'fr taxa	0.5	7	1.3	4	1
Turbillatan					
Ulnom ! moil)	-		170	fin	
a教fauna	-		1	3	
t (taxonomic erouph)) -		I	1	
	-	-	t	t	
Tardigraden					
"1 (nom \|'smil) as *, founct	1.30 8.3	311	40		
1 (tavonomic groups)	- 1	$\stackrel{1}{1}$	l-	-	
is titula	6.5	7	4		
lowecte					
11 (nas 11 xail)	-	30	349		
	-	4	$?$.	
1 (faxamemic groups)	1	1	$?$		
at 7 \% 1axal	-	7	\cdots		
Crustaceans					
0 (nos l^{-1} smit)	-	-	-	24	
	-	-		1.5	10
1 (taxonomic groups)) -			-	1
as \% laxis		-		*	1
Menluacs					
n (mos [1 soil)	-		-		\vdots
as the fatmia	-	-	-		1
1 (taxomonic groupps)	$)$ -	-			1
	-	-		-	1

specimens were jdentified to species and bome of these nceurred in more than one of the live environments. Other specimens could only be placed in limilies or orders. Nematodes were the dominant group comprising 82% of individhals and 79% of taxa (Tahle 2). The numbers of nematodes per litre of woil at each ste ranged from 80 at the ocean beach site to 17,300 atl the Glenelg River bank and the number of laxa from 11 on the bank of Lake Alexandrima to 21 for the River Murray estary. It must be emphasired that figures for these taxia are only approximate due to a combination of limited baxonomic knowledge. rapidity of assessment and some replicution of taxa. These limitations are discussed below:

In the wheat field 91% of the numbers of animals cuunted were nematodes and they comprised 87 the of
the taxa. Turdigrades made up most of the remander representing just over st\% of the animals. They consisted entirely of Macrobiotus ef. psewdohufchandi tharos 1966 (Bird 1996; Bird \& MeClure 1997). Tardigrades were also found to a lesser extem in the wet sandy soils of the Glenelg River and Lake Alexandrina shores and belonged to it differem family. Nemitodes comprised 876 and $86 / 6$ of the mombers and 71% and 79% of the taxat respectively. in these enviromments (Tuble 2). Annelids made up 10\% of the numbers of the microinvertebrates of the Glenelg River bank, the remaining organisms comprising insect dipheran larvale (2%) and in unidentified species of turbeltarian (1%), A thrip insect, identified as Fromkliniefla schultaei (Trybom) (A. Wells pers. comm, 1948) made up 4% of the Lake Alcxandrina ussemblage together with :"
speciby ol annetis（6\％）and as specice ul bardigradt：
 cladikeran Crustacal wath fimnd swmumine in the Water atheve the soil hut these were ane comsidered os the pars bi lie suif envifomment．

In the mere salime wel suits of the Riser Murtaly espary below the Gonlw，barragey ard at Guchen
 84% of the lata lis the former athe 534 of the ntambers anct 76% of lise taxat in the latter．Boll u： there enviromments comband small ammelide and thate from the river esulury were identilied as pronel is belonging th the fanily Natididae（K．Lede pert． comm．fyest，these wete the only envinomments
 water．The ucuan beikll simple was the only one to
 taxia）and ant archianmelid（22／6 of the mombers and G年 of He laxat．The achannetids resemble the
 Because of their congonate appeatrance they ates listed sepsarately liere fronn the other ammelids flable $2)$.

Siall werginns

 of the enviromment in which these misery－ inverthates have whome and feced．＇Thes，ot 20 pin vertiall sestion through the saline wer sundy wibl （agkend of the Merray River batuary smel photographed under brigh lield optics（lix．2） showe pate of a mematorde theil is to pan wide and in surrounded by samb grains ranging foun abour 50 pum （0） 3101 dhe in diameter and whes exhibie biece
 some clatker coloured organic materiall．Thes snil
 Hois He chance of obtamines cemsty identiftatbe
 semens．

Jincussimn

It is clear from these resulles that nematude： prodominate boull in mumbers ind diversity anmone We tomeromelarbia in at wide range of mil
 ammon the matcromyertebrathes atl the shil surlate
 dominate among the micrombertebates within the sul．Their numbers vay dependiney the time at the yest that they ate collected and the wation conditions on the day off cotbestion．＂Thess in the wheat lick shif al Asom，there ate many more

 at wike to see 「ix．I．Phorographed made brighe 「ielal

 that at the end of summer when there is smby dry stabtbe an the gmund and liwe il any plant parastic forms．Similarly it has beed blown（Niblathe of at （y9）2）that wematode numbers on the state al Lake aberandrima vaty markedly foom nomith to month thronghoul the yeat．When the lahe is rough og during the lootesar months of Jemmary．Fehreary and Murch，utute is considerable nombiality of mematores and ather microinverrebrates its judied by the prestente of dead apeciment durines counting（pers （b）A）．Also，there was an incretise in memathede morlality when the sathity in the River Murtas estary dropped bivlowme the opening sh the batrage gatem and the dibshare it River Mursay water

It seems that clinkatic ind acasonal vintations as
 changes in nematode phpubaion numbers．Howsver： these ethangess seenl for inflemes wht the mideromedarok since the persentage of hematonkes in these poppodatono remains constath．＇Thas the percentige of nemaloxdes present in lice müro

Mッチ"
 a bample collected sis monetis later ori 20 vion 1 y 98. ablomugh there was at thees-fold difference in

 invertehates in the live different envimomens

 fore enlly miceroinverhehrets eroup, apart from
 lisul math greater diversity thon imy mather gemup ('Tille 2). 13ccabee al their relanively den mumbers in

 weppepode difd ctadoceromio on oms acceations

 conbeacd with cilia and had of pair of :anterior lateron

 dil speciments Lexaminad seerned lol trave stmibll

 (allles hisul

 mitamehatsm in varions dillerent ensirsmotiont ith

 Lrustabedns (himpraticonils) whe prenent in all the beach sieq cxamined hy Metaclitun (1985), immelide

 beed to be mepreat, As Lambon ef ell, (f)ys) paint ouk. in their wark un biontiversily in a topmeal fores. as vase annunt of cofort is required in compilinge an
 particularly do micremerpic arganishti.

 then its numbers. purticulaty when detemming the

 Becadese stme soil semabdes can complete their lile syeles in thres days und eath lennile cem lay several Itunstred cegen wilhid ad couple ob avecks, the numbes wall yisur to millions (taird de [sided (991) with a grater honmats then much larger and mure abshly Reproflacing forms. In mature the he fuge increases in

 Thus. huge numbers of memsudes are tarely. if eves.

 the she site. Fars example. Nicholus. \& Iterdda 1 III
 giten sandy lewch sire can via'y connderably, heine forseng in wonleg and bighes durigg the xammer,

 the Insecta and Nemandas shane that give them the

In conctusion, this paper is :at aftempe lu dean

ishlatom and detection, parnicularly as only living and moving materiak was considered. Furthermore. the number of laxat counted wals limited by the athelor"s kinowledge of nematode taxonomy. However: all matrial wats fixed and preserved for subsequent identificeulion.

These preliminary studies emphasize the need to examme the miconveriebrates of the soil in more detail and (o) understand lurther the ecology of the nemathales that dominate in thestenvironments. This is a largely umexplored ared of research that hats heen overfooked by dhase involved in researeh on soil nlicrobiokngy.

Acknowledgments

I wish to thank J. Bird for constactive criticism of the manuscript and for assistine with collecting. CSIRO Land \& Water provided atcommodation, facilities and expertise including that of \wedge. Beech (water analyses). J. Coppi (collocting), R. Fitopatrick and W. Hudnell, u visitury setentist from USA (advice on soilst, K. Leé (annelid identiliceation) and G. E. Rinder (mapping). 1 shonuld afso like to thank T. Cribb. University af Quensuland and M. Currini-Galletti (visitor to the British Museum) (archannelid identifation) and A . Wells, AIBRS Camberra (Ihrip idendilication). This reseath was made passible by a sotur fiom the Ausitalian Biokogical Resources Sthdy.

Relerences

 (1947) Bisidence ho a slade al nemmondes, artbopods
 64.3.
 Pravil. Šuik 14, (36)-105

 fioms. K. sime. S. Am, 120. 147-15н.

 $121,51.57$.

 114.120 t .

 J. B.. Maw ostliv, N. A.. Stokn, N. E., Srivastava, D. S.
 taxa and eflects of habitat modilication in tropicial lorest. Notrue (/.onu/om) 391. 71-76.
 inicrsbital fama on clean and wrack-covered beathes in

 C: (19y2) The nenatme fabsa of lhe Nustay Kiser estuary, South sustraliat the efficels of the farrages across ils mouth. /falporatogip 234. 87-[0].
__ \& Hernat, A1 (in press) The frecoliving
 founal componition aud sariation oner spate ind finc. Ilial.

 prollutime, Alarince E゙n'imu. Kes. 7. 151-Ifr.
 asmemblages at Goyder Lagoon. Diamemina Riser,

 Ldı (USDA. Warhinglen DC).
 the intlene of agrisulfural pactices an the mematode litume uf some Sund Aublratian suils. Fibmitum- afyl Nemanol. 17. 13.3-145.

SEASONAL VARIATION IN SALINITY IN THE WATERVALLEY WETLANDS IN THE SOUTH EAST OF SOUTH AUSTRALIA

Brief Communication

Abstract

Summary The Watervalley Wetlands in the south east of South Australia are a group of shallow seasonal, ephemeral and permanent lakes and swamps which have been restored or rehabilitated between 1984 and 1995 (Fig. 1). They comprise a series of 15 wetland complexes totalling some 12,000 ha and are managed primarily for the conservation of waterbirds by a private conservation organisation, Wetlands and Wildlife, or by T. K. and P. A. Brinkworth.

BRIEF COMMUNICATION

SEASONAI. VARIATION IN SALINITY IN THE WATERVAIJEY WETLANDS IN THE SOUTH EAST OF SOUTH AUSTRAIIA

rehabilitated between 1984 and 1995 (Fig. 1). They comprise a scries of 15 wethand complexes totalling some 12.000) ha and are managed primarily for the conservation

17ig. 1. The Watervalley Wetlands. Note: Sites mentioned in the text are underlined. Wetlands are not drawn to scale.

Lig. 2. Seanonal lluchations of salinity and He concurrent Water Level Index in six of the Watervalley Wetlands, W = winter: $\mathrm{S}=$ summer. Note dilferent scales for salinity of Cortinat Lakes and Mandina Laken. Excepl For winter [19yb, no reading indicates that the sampling site was dry.
 Wellande and Wilditic su by T. K. and 1? A. Brinkworth.

 Which habe treen destroycd') and bew muelo ol that dand is.
 "ethands vary frome hesal lo sallime lut all wetlands that
 maluines

 whlly

 Lillsilly this whiller deperssion in sidhaty is still a matlec

 dain and given in 'athe 1. Ratillad hisures are those fon
 Whe sludy aiks. and Natrastrite, heal the extite of the
 Bencorndagy in adelaide'

 Famm died completels All hut Cortila baters and the

 retainal waller througherel the shedy but the watke hered

 mor ol |y atry geriond in liat wethand way alforithad.
Jowsh water hlowd from the drallage syaten inter all in

 sumchaly well helow tapocity ore dry.

 10 leyels nearo ar below, thate measumed in the carlice pors iff the study in lyyy a yoar ul ulate werope ranlall

 (h.

 Wite supped flewing ind it in January 1093 'The wellands

	Bonneys Camps g／L	Bonneys Citmp N g / I ．	$\begin{aligned} & \text { Cuminal } \\ & \text { Lathes } \\ & \text { yfl. } \end{aligned}$	Mandinu Jakes g／I．	Mindina Marab ［8／．	Jip Jip乡月。	Didi Drain $g / 1$ ．	NeH Drain部。
M1：3n	．5．15	5.26	8．12	11．34	5.101	2.23	4.32	
SI3	1.79	2.77	8.34	8.75	2.61	0.89	（1）－4）	
Мット．	931	13．95	4.3 .5	44.35	10.75	3.41	5.518	7．48
Min．	2 M 2	2.75	2.31	1.52	1.010	0.43	＋．104	6.28
No．	26	14	24	22	19	10	12	2

Didi Drain＝I iderohtum Drairat Pellerick Rel．
hirds ol Australia＂．Iafty per cent of the liesth water puten－ tially atvailable th these wethands is currenty drained our to
 draindege water cat be diverted to the wellinds athd same bats alreaty begun to flow into the system．Jividence su bir （Table 1 and unpublished datan supplied by the Soum Eant Watce Conservaston andi Dratinage Board）indicates that bome of the planned dains will be carrying groundwater of grealer sallinity thate that whicls has previously entered the Wellands＇hat the measured salinity of those waters is wieh－ in the limits of known salinitien of the wedfands，particular－ Iy thowe in the wothern part of the watersourses，Given liche circunstances it is important to the long tern viabili－ ly of the Watervalley Wetlands，as well at to others in the negion，that Fresh water from the current iund any luture drains he made available to the wethands wherever feabible． The Watervalley Wellands are managed with the aim of maximising the diversity of species present．＇This requires al
diversity of lubitat and the varied salinity of the Wuervalley Wertamds．whach currently banges trom fresh （Dip lip）（18 permaneruty saline（Mandinal Laheses）provider such diversity．Satine lakes are gencrally more produtite than fieshwater systems＂but is long－tern inctease in salini ty in either the frexhwaller wetlands or the saline omes will inevitably lead to at state of constant hypmadimity and this in turn will lead th the exclunidn of sume species all watero birds and plants which cursenlly inhahit the wetande＇＂． Long－term manithing of the cancequences of the addition of more saline witer to the wethands is essential and llis paper protides basehne infermatoon for future studies．

This study is supported by the Wildife Conservatom Fornd of：South Austratia，the University of Sounh Australiad ancl Wetlandy and Widdife．I thanh the Brink worth fantily for their hoppitality and freedom of aceess to their proper ty．Aly thanks alseg gum T．C．R．White for invaluable lied dsbistumee suld for comments on drats of this paper．

NRCSA（Natural Resources Comet of South

Austratia）（120．4）Upper swalh ciase dry land calinity unt flowd managenent plan．Supplemen（Deparment of Lnsitomment and Natural Resources，Adelaide）．
White，N．M．\＆Brake，I．A．（1955）Welland：15，247－257．
Blackhurn，（G．（196t）The boils of County Macdonnall and Ruthe．Sitenll Australian，Soifs and Lamduse Series．Nis 4.5 （CSIRO．Australlit）．
＇Tamasier，A．\＆（rrillas，P：（1994）Bin）．Canserv，70．39－ 47.

Prith，II．I．（ 1 W67）＂Water fond in Anslralial＂（Anǧus d． Ruhertwom，Sydney）．

Braithwaite，L．W．，Maher，N．T．，Holmes，J．\＆
Parker，IB．S．（［1）86）Technical Memwrandum No 2．l． December 1986（CSIRO Divivion ol Wildlite and Rangelands Research，（ianberra）．
EWS（Enginering and Water Supply Department） （｜y91）Fintal Report．Bakers Remge／Marenllat Watertourses Workisg Group．Report No．LWW 7 （I）7／9）．
Kingsford，R．T．\＆Prorler，J．I．．（1994）Bial．Conem 69． $219-228$.
Currick，A，H．（1982）Proc．R．Sine．Vict，94，朻－87 James，K．R．※．Hart，B．T：（1）993）Aust．J．Mar． Firechw．Res，44．764－777．
 The Levels Canma，Warrendi Rosad Mawsun Libes S．Aust． 5095.

THE OCCURRENCE OF PACHPYGUS GIBBER (THORELL, 1859) (COPEPODA: NOTODELPHYIDAE) IN AUSTRALIAN WATERS

Brief Communication

Abstract

Summary The ascidicolid copepod, Pachypygus gibber (Thorell, 1859) was reported to occur in Australian waters by Schellenberg ${ }^{1}$. That observation has been questioned by subsequent authors. However, the finding of P. gibber in the branchial basket of the ascidian Ciona intestinalis (Linnacus, 1767) in South Australia now confirms a southern hemisphere record for P. gibber. Since the host ascidian has been introduced into Australian waters, the commensal copepod may also have been introduced.

BRIEF COMMUNICATION

THE OCCURRENCE OF PICHYPYGUS GIBBER (TIIORELI, 1859) (COPEPODA: NOTODELPHYIDAE) IN AUSTRALIAN WATERS

 1854, was reported to occur in Australian waters by Schellenberg. That observation has theen questioned by subsequent autwors. Howerer, the linding nt $/ 2$ gihber in the bronchial basket of the ascidian Ciomat intestimatis (Linnteus. 1767) in Soluth Australia now contiom à soull
era lemisphere recond lor P gibhere Since the Jase ancidian lats been introduced into Australian watters, the commensat copepod may also trate been introluced.

The genus ain be separited into two groupings bithed on the morpholegy al the fourth leg exopodite.

Very litale is known of the ascidicolous coperpul jammat of

 Icmake. C. Exepodite Ieg 4 (redrawn liom Gotto 1975). Scalk bars = 1 mm Ai 0.25 mm B,C.

Allstralia．The lirst and still umbe extentive collection was Hatl of Schellemberg＇．He recorded añe species of copepoed from Austratian acidians，including lathyevers gibber（as
 （9）2．Undertunately his collection was apparently low dur－ ing the Second World War，Ilis identilication of P spibher Wat queried hy lily？who nuked．in a major review of the fimily，that f ？dibhe＇s had at predominantly Western Albantic and Mediterrencan distribution．while the allopalric species If morer Illag．1958，occurced in the Carribean and Went mulies．In at series of papers，Ootshat socumented the werurence ol P ．gibber in Japanese waten and deseribed ℓ ？ revicarm Ooishi，1961．and I？shofonses Oovishi，1963．The subsequent dencription lirons Ausitratias of ant uppartonty
 1975），led（wotes 10 speculate that P ．kiffer might olso necur in Austrulian waters，as repurted by Schellenhery＇． Dhis mote contirma that feg ghber does accur in Australian waters．

Seven lemale arcidicolous copepods were collected by
 Ausimalia．One waty dissected in lactophenot＂．The dissected temate and the wis intice spectimens are housed in the South

Systematics

Family Nonochelphyidate
Conta tuchopmans

 17075 collecter in Angas Inlet，eats of lim Garden Island

Schellenkerg，A．（142工）Mill．Zowl．Mus，Berlin 10， 219－274：277－298．

4． $81-86$.
Onishi，S．（I4Gla）Ibide 4．87－42．
＇Ooishi，S．（19）（3．3）thid．\＆．377－38．
（Woishi，S．（14（23b）Mid．4．山l2－428．
public tout rump，Pout Adelaide，Suuth Australia．
lital fongth of body，from rostrum to catadal ramus． average af 7 specimerne 4.11 mem．Range $3.5-4.4 \mathrm{~mm}$（1） （A）．There were an signifiena differences between the femaden from Australias und the detailed dencription iff It sibher coblected fromn Comen intestinalia in the Bay wh Naphos（Mcditertanean Seal＂．
Commemts：Baned an the morphology of the evopodite of the fourth lege there appear to lea two geroupinge within
 exopostite of leg th is follows：thres－hegmented．firse seg－
 ment with medial setules，modial margin of thind vegment with rows of spinules ate approximate thists．Lateral margin of segments one and two with lateral spine，thiral sexmen with three bateral，one terminat spine（Fig．（B）．This pat－
 hesv（wo terminal spines）．
 prulis hets a fourth legexuphrite which is threb－wegmented with a very kong sparsely ketowe first segment．In f？（1ans
 described＂th＂tonguc－shaped＂，second semment hearing two beybual setse third segment carrying five delisate selac．Inw blunt terminal spines and many small irreguler－ ly arranged mberoles．
 in sumblern fiemisphere waters，Itwever，the hast incithinl

 an introlution from the northern hemisplare．

We are very gratedul to P．Mathert do Queensfand Musensn lor condirnany the identification of ciome infotine fin

Gotfor．R．V．（1975）Buld，7onol．Musi，Uni．Amakerdan 4. 16ヶ1－177．
Huys，R．© Buxshall，（i．A．（1991）Raly Sentity．Lemukn 159．1－4 48
 Napoli 34，373－451．
＇Herdman，W．A．（I899）AmL Mun．．Sydney，Citatognce 17．1－1．39．
 \％FIDLER，South Austialian Muscumf，Nofiti Terrace Adelaide S．Aust．Smot．

SPECIES OF GNATHOSTOMA (NEMATODA: SPIRUROIDEA) FROM BANDICOOTS AND DASYURIDS (MARSUPIALIA) FROM AUSTRALIA

Brief Communication

Abstract

Summary First discovered in a gastric tumor of a tiger in the Regent's Park Zoological Gardens, London Gnathostoma spinigerum Owen, 1836 occurs in a range of felid and canid hosts, including feral and domestic cats (Felis catus) and dogs (Canis sp.) from Asia, Oceania and South America ${ }^{1}$. In Australia G. spinigerum has previously been known as an uncommon parasite of cats ${ }^{2}$. Up to 1978 nine occurrences of this parasite, all from Townsville, Queensland, had been reported ${ }^{2}$.

BRIFD POMMAILNICNHIGN

BANIHCOOTS AND DASYLRIDS (NARSUPINLIA) HROM NLSTRARA

 t ballonat cervicall sade syblema bypical ut the gentiv. The

 Whith is almo loumd ill pige Mbsatat in his review of anathostombasis mold that he lata prechously re-examined

 mination atas confinmed by Talbof", Aceordingly (d. hispudam is comsiderad to be dimised in agtographeat digeri-

 fiving. sheathed sicesnd stage larn which anmm in wattor
 is third shage larwa. "there third stage larvan mature the

 lisede sites ar the vertatram. Whath tmimak infected by

 if is unlikely that incy would tore atcidernally ingected an

 of cimathersemme were repurted".

 Allo. 31212
'Miyazaki, I. (1991) "Helminthic Zoonoses" (International Medical Foundation of Japan, Tokyo). 'Beveridge, I., Presidente, I', J. A. \& Arundel, J. H. (1978) Aust. Vet. J. 54, 46.

Prescott, C. W. (1984) University of Sydney,
Postgraduate Foundation in Veterinary Science, Review No. 24. Paracitic diseases of the cat in Australia.
Barton, M, A. \& McEwan, D, R. (1993) Aust. Vet. J. 70. 270.
'O'Callaghan, M. \& Beveridge, I. (1996) Trans. R. Soc. S. Aust, 120, 175-176.
${ }^{+}$Coman, B. J., Jones, E. H. \& Driesen, M. A. (1981)
Aust. Vet. J. 57, 324-327.
"Gregory, G. G. \& Munday, R. L. (1976) Ibid. 52, 317-320.
Dunsmore, J. D. \& Shaw, S. E. (1990) University of
Sydney. Postgraduate Foundation in Veterinary Science,
Review No. 31. Clinical Parasitology of Dogs.
"Bates, M. Jones, K. \& Waddell, A. H. (1983) Ausi. Vet. J. 60, 285-286.
'Seddon, H. R. (1967) "Diseases of Domestic Animals in Australia Part I Heiminth infestations"
(Commonwealth Dept of Health, Canberra).
${ }^{1}$ Eduardo, S. L. (1989) Trans. Nat. Acad. Sci. Tech.
(Phils.) 11, 97-102.
${ }^{12}$ Yadar, A. K. \& Tandon, V. (1994) Acta Parasitol. 34. 150-152.
"Talbot, N. T. (1969) Aust. Vet. J. 45.548.
"Gordon, (G. (1995) Northern brown bandicoot Isoodon macrourus pp. 174-175 It Strahan. R. (Ed.) "Mamntals of Australia" (Reed Books, Chatswood).
'Spratt, D. M., Beveridge, I. \& Walter E. L. (1991)
Rec, S. Aust. Mus., Monogr, Ser. No. 1, 1-105.
"Spratt, D. M. \& Pavlov, P. M. (1996) Aust. Vet. J. 74. 394-395.
L. R. SMALES, School of Biological and Environmental Sciences, Central Queensland University Rockhampton Qld 4702.

Transactions of the Royal Society of South Australia

Incorporated

Contents

Beveridge, I. \& Speare, R. New species of parasitic nematodes from Dorcopsulus vanheurni (Marsupialia: Macropodidae) from Papua New Guinea 85
Thomson, S. A. \& Mackness, B. S. Fossil turtles from the Early Pliocene Bluff Downs Local Fauna, with a description of a new species of Elseya 101
Hemer, M. A. \& Bye, J. A. T. The Swell Climate of the South Australian Sea 107
Kolesik, P. \& Peacock, D. E. A new species of gall midge (Diptera: Cecidomyiidae) damaging branch shoots of the dryland tea- tree, Melaleuca lanceolata (Myrtaceae) 115
Bird, A. F. Observations of some nematodes from Kangaroo Island, South Australia, including the description of a new species, Hemicycliophora fluvialis (Tylenchida: Hemicycliophoridae), from Rocky River 121
O'Callaghan, M. G. \& O'Donoghue, P. J. A new species of Eimeria (Apicomplexa: Eimeriidae) from the sticknest rat, Leporillus conditor (Rodentia: Muridae) - 133
Smales, L. R. Cloacinidae (Nematoda: Strongyloidea) including a new species, Dorcopsinema simile, from Dorcopsulus vanheurni (Marsupialia: Macropodidae) from Papua New Guinea 137
Turni, C. \& Smales, L. R. Progamotaenia abietiformis sp. nov. (Cestoda: Anoplocephalidae) from Onychogalea fraenata (Marsupialia: Macropodidae) from Central Queensland 143
Brief Communications:Lepschi, B. J., Kolesik, P. \& Gates, M. Notes on the insect fauna of the fruitgalls of Anthocercis anisantha (Solanaceae) in WesternAustralia149
Lauck, B. \& Tyler, M. J. Ilial shaft curvature: a novel osteological feature distinguishing two closely related species of Australian frogs 151
Mackness, B. An additional record of a meiolaniid turtle from the Pleistocene of Northern Queensland - 153
Barker, S. Designation of lectotypes of three species of Cisseis (Coleoptera: Buprestidae) - 155

TRANSACTIONS OF THE
 ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

VOL. I23, PART 3

NEW SPECIES OF PARASITIC NEMATODES FROM DORCOPSULUS VANHEURNI (MARSUPIALIA: MACROPODIDAE) FROM PAPUA NEW GUINEA

By I. BEVERIDGE* \& R. SPEARE†

Abstract

Summary Beveridge, I. \& Speare, R. (1999) New species of parasitic nematodes from Dorcopsulus vanheurni (Marsupialia: Macropodidae) from Papua New Guinea. Trans. R. Soc. S. Aust. 123(3), 85-100, 30 November, 1999.

Seven new species of Cloacina are described from the stomach of the lesser forest wallaby, Dorcopsulus vanheurni, from a single locality, Doido, in Papua New Guinea. Cloacina syphax sp. nov. differs from all congeners by the undulating anterior margin of its buccal capsule, lack of lips and acutely pointed tips to the submedian cephalic papillae. Key Words: Dorcopsulus vanheurni, nematodes, new species, Cloacina.

NEW SPECIES OF PARASITIC NEMATODES FROM DORCOPSULC'S VANHEURNI (MARSUPLALIA: MACROPODIDAE) FROM PAPUA NEW (:UINEA

by 1. BEVERMGTE* \& R. Silarit

Abstract

Summary 1リขリ invorable to pernnil adeacriplion.

Introduction

Mow species on kangeriens and waltabies which have heers examined for the presence of inkernal parasites bave been found to hatbona diverse arraty of parasince nematodes, the majority belonging to the superfamity Serongyloidea Weinland, 1863 (Sprate et rif. 1941 . Honvever, an number ol species of wallabies hitw apparenity never tweet examined for helminth patasites and grominent among them we the forest Wallathes of the related gentral Ioneopsin Schlegel de Muclis. 1842 and Domaposelu, Matschic, 1910
 (RS) hate the uppoytunity to solled parasites trom four specimens ot the lesser lorest Wallaby, Derrambuhes vemherwni (Thomats, 1922d, at Doido in The Chimba Pavince of Paphat New Guine it 16^{3} $\left.33^{\circ} 5.1+4^{\circ} 50^{\circ} \mathrm{E}\right)$. New specties of the nematode gente Clindeme vons Linsitow, 1898 found in the stonaches of the amimals examined are duscribed in Whis papper.

[^10]
Materials and Methods

Stomaci cantents of wallabies were presenced in for fismalin. In the taboralory, the evonents were washed to remove the firmalin, nematodes were exiracted, wowhed in water and sured in 70\% ethange prion to examination. For identilicultom, nematotes were clearad in Jactophents. Permanent prepautions. on slides. of apical vicws of the mouth spening, bursa and spiculc hips wire made using golyvingl bactoplaned as the mentating medium. Mciturements were made bsiog all evelar mowometer und are pronentel in millimetres as the dinge followed by the nean in parembeses, for insanes where all individual measurements were the sance a single ligure uppears before the mean in parentheses. If enly twa measurements weye gyaibabe the indivjdual masurcmemts afe given. Drawions were mate with the atid of a drawing lube attithed to an Olympus 13 H 2 microscope using Nomarsti interderence aptics. Drawings of apical views of the musuk opening ave presented witl toe dosual aspers uppermost; drawings of the bursia loive the ventral lobes uppermoss

Torminology bir morphological feathes of the genus Chacimet follows beveridge (1948), excerpl

What the tem secrelary－excretory（S－E）porm is used following Bird \＆Bird（ 1901 ）．Holotype specimens lave been depenited in the Soulh Nustralias －1uscurn．Adelade（SAMA）while parntype materiad has been disurbuted between SAMA．and the Britiva Muscum（Nimumal History），Lomkn（BMNIE），Hose momenctathere blibised is that of Plannery（1095）． Followinge Bereridge（lyys）．Whe names of the new specics are ald elatsical origio．

Choreina syphnes sp，not． （FIGS 1－10）

 coll．K．Spetwe，SAMA AHC ． 31104 ：allenger \because
 SAMA AHC 31211－2： 1 के． 1 ㄷ．BMNH 14y8．9．28．21－22．

19，wherroll

Simall nemadoulest．Eervicul sulicle slightly mathed

 choneale 0.015 .5 long．projecting anterminy fromperi－

 ＂ivgmetrical in dosseventrat vicus．circular in apical

 striations，arinnge from lull lengh of ingernal wall on

 projectine mos buscal sapsule．Desophlingls simples． chongute clabiform：linine unernamonted：denticles
 deirids in anterior cresophageal megion，immediancly anterions le serte ring．＂ 8 － 1 ：pare anterime on あexuphayu－inlestinal jurnelion．
 11）

 0．17－0．60（0）．55）：ferve ring 117 atherion bend $0.22-0.23$ （10．24）；S E pore（0）unterion con（1）．39－1）．5（1）（1）．4．5）： deivide to anterion eand（0．18－0．26（10．21）．13uran
 loshes joined ventrally；laceral and fentral lollose jovined．Dowsat lowe sheghly longer than laterat lothes． Dorsall fay htomer al erogini primary banchled arise

phateronly，reaching margin of bursal cextermal branchlels similar in length to internals．dirested possterolaterstly，not reacheng matein of hursis．
 veaching margior of bursia．Pomerolateral samd ventrohaterul rays apposed，reasthing margin sil hemadi anterobiteral ray divergent ，worter than other Jateral raym not reaching matrem of huswa；ventrolacral and vellemventeal ratys upposed，reaching margill of Bu＊s，Gubormatulum broadly｜riangular，18．n？s． U， 0,30 lung：cemial cordate and paited lateral thickentuge of spieule shouths present：genitul enne
 atherion，with pair af dome shapest papillame pair wl

 alate．lip simple：ald dinninishling in width gradenlly com．Ind 昭
 （Figs り．10）
「utal length $+14-5.13(+5 y)$ ：mimimum widh

 （1）．54）：nerve fing แh thresion cend 0．2．5－（1．27（0．2（i）：S．
 interior and U，18－（1，2：5（1）．2（），Tan simple，centusill．

 （10．0）$)$ ．

Syphax．King of Numishat the rinto el the seconkl punic＂：ar．

Remnorks

flonelma syphas is distimguished fixan ath cemploers by the shape of the anterion margin of the
 bilid，interionly dicected lohe immediately posternor （1）cach submednan papilla，Comgeners with symmentical buecal kiapsule heuring prominent anteriar lohes whe C．＂rtems Beveridect．1498，C．

 colnemb whidh are lacking in C．syphos．I＇t these
1

2號 7

8
\qquad
 right hand side, 3. Cephalic extremity, dorsal view, 4. Cephalic extrmity apicall view. 5. Spicule tip, dateral vicw, 6.
 and vawina laterat view. Scale bars $=0.1 \mathrm{~mm} .1,7-10 ; 1,01 \mathrm{~mm}, 2-6$.
pensmas. C_{0}, mphan is eomsidered disting from inl congentor.

Cloacina sameus sp. nov. (FICiS II-13)

 twll. R. Speares SAMA AHC 31144: allorype +. same dita. SAMA AHC 3/195; paratypen, same
 BMINHI IMy8.4.2\%.15.

Marripmion

Simall memallektes: cervical culicke doy milateal m
 proninent, Suh-median papillate shlall. 0.010 long.

 capnale shallow. eylindricald symmemicial irn

 medially ditected indentidions proserion be sad :amphid and athonedian mpillid as well its anc dorsal and she verarial indentatiun. Eiglat leaf eroam
 lengith ol memat wall of buccol sapsole, mot
 inue leqrike When artached to esels leat crown
 shocont, Desaphtgus simple, clabiform. stightly
 whamented; denicles abment, Neree ring in mid

 18-211
 $(1,-11 \cdot-(1.52(1), 45)$: dimensions of butenl dapsule 11.0) (1-0.0.025 (0.022) * 0.0.06-0.080 (0.075):

 Bensa drthour prominent divisions helween folver. Vermas bohes foined ventrally: faneral and vental
 lohes. Thwsal baty divides at midlength; seeondary

 exteratal brandiats sherter than internals. dimeted ponsterofaterally; mat wathong margin of bursad.

anterolateral ray divergent, shonter olian other lateral
 ventroventral lays apposed reaching matein of bursil. Cuburnaculum boadly quadramgubar U.025. (0.044) (0.032) long; central condate and pained bateral thickeninge of spicule slowaths present: genital bene Whth prombent anterion ligi jwsterion lip shorter then anterior lip. with pait ol derne shaped papillac: pair of tateral inflathons of cuticle prosent on ciblor side of sune erior lip: spicolles changste. 1.7.3-2.67 12.25$)$ lenge alate, (ip simple, what diminjshing in widh gradually then lermmatime abruply inmosdately anterior 10 保
 (Finti 22. 23)
Total 16ngeth 5.511 .2 (7.N) maximunt wall U. 11

 posterion end: "agimi sinuons, (0.67, O. Mit long: ovejoceler. J- shaped. infundibulant an longe ab

/1/maltas

Rembaris:

Elometime watery is dixtingenifice from all

 by the presence af two vertical thicheniners of the huecal esapsule wall. Shmilar thickeninge of the will are viathe in dorsal and ventral views (18.ge (t. I.5).
 the bubcal somsule in apied view is approximate ly
 vanems, the haceal capsule is roughly quedramentar in apical vicw end huss dight indentathons of its matyent, six associated with amphide and suhnestimen papillae dix well as at dorsall and at ventral mdentationt. The wall of the buscal bapmole is statigh in lateral

 whork munded distal seemment, whle thone of C : theridis hatve art clougate ohtuse distal segmeth, In

 extremily, buterall view, thossal aspect oub fight hand she. If. Ceplatie extremity. dorsal view. 15. Cephathe extrenty.

 0.11 mm . 12. $1 \mathrm{th}-20$.

Cloacinut solon shenow

（51GS 24－34）

 conl．R，Speturc，SAMA AHC 312Hz；allorype ：
 ？ $5 . S A M A$ AHC 312115＊ 1 b． 1 ？．I3MNH 1以08．5．28．18．1\％．

Tescriprien

Sinall nematosdes；bervical tuhele prominenty
 ammbutions faint on ecrvic：al intlation，prominent posseriou ta it．Suh median papillace elongrate 0.01 \％ tong－frojecting anteriorly fitum peri－aral cuticle：
 shores than ovoid，shouse distal segmemt．0．012 lorger Buccal bapaule shallow．cylindrical． synmearical ion dorsoyentral viewse circular in apicad view：anteriot margin of buccal eapsule sindous in tateral，dorbal and Ventral viewt，Eiglt Leaf ceoven cdencols，wath dime stiations，arisiog from foll lengit of internat wall of buccal sapsule，recurved ill tipos：Pori－apol cuticke not inflated into lip－like lotses amadiced bo rach leat crown element．Domal

 buscal capsule．Oesophragus simple，elongyite， clavibom：limine momemmented senticken atosent． Nerse ring in mid－nestophageal region：deirids in Haterion despphageal region，juk interios ko nerve flag：S－E pore anteriot to uesophager－intestinisl junclicon．
 （tige－29－22）
 $0.47(0+1)$ ：shmensions ul buccal capsule 0.015
 （1．70）－0．8．3（0．75）：nerve rines 10 anterimpad 0．27－0．3？ （1）．29）：S－18 puse to anterior end $0.52-0.6 .3(0.59):$ droirids 10 daterios ented 0．19－1）．26（0．22）．Bursal without prominent divisions between lober，Ventral tobes joined ventrally；lateral and ventral lohen jonined．Damsal hate similar in lengto to latenal lobes． Dorsal ialy لivides at $1 / x$ Jength；secoundary
 directed pasterionly．abomst reachane margin of borsad；external bramentets shorer than internals， directed posterolaterally，sus besching margit of
 tont reaching margin of bursa．Pemerolateral ant ventrolateral rays apposed，reaching matrein of bussal： amerolateral nay divergent shonter than ohther laterad
 vanfoventrall ravs appowed，reaching inargin of

（1．030（0）．1329）Inoge central Enodite and painal lateral
 wh prominent anterion lip：posterior lip shoner thon
 laleral milullons of ewtiche present on cither side al anterior lip；spicules elongate．2．60－2．94（2．81）Longe
 6かんmatiog bear tip．

Femuk Measumments from 10 specimens；typess （Fixss 33，34）
 0.55 （ 0.467 ；dimensions shl buecal copate li，015－
 （1）．71－10．86（0．78）：7etre ting（0 anterior end（0．23－（0．36） （0）．27），SEE pore th amterior end（0．53．0．0．7（ 0.011 ）； deirids lo anterior end（）．3（1）－1）．23（1），21）．Tuil simple：
 $0.27-11.39$（ 0.32 ）from pustenions cnd：vigina hang．
 1．09．1．41（1．21）lomge ovejector a shaped．

Commorey

Solont a diamus legistator of Athens ame of the seven suges of Gicees．

Remarks

 chavionmo wabmamented vesophagus．submedian cephatie papilate in which the proximal segmens is short and the distal segment large and abtuse and hy at buccal capsenfe which has it regulatly simesors anterior matela，These leateres diatioghish it frent atl
 hehe．C．Mspsipnte．C．Ansmari，C．muin Beverides．
 C．Thedidis hate exfremely shallow buctal capsult： Which disungnish them immedjatery firnent C_{5} ．solom． while Co limatoni and（C．muib lack or cervian inflationt of the cudicle and thave V －shaped avejectors nather than the J－shaped ovejector found ill C ：suldu． Clancina hypripyle pussesses a buccal capmule whish js triangular in spictl wiew sather than circulat as in
 the wight in C_{0} ．proma．Ior addition．the apmenten of 6° bypaypele are $1.04-1.15 \mathrm{nom}$ lome compared wilh $2.60-2.94$ minn in C° ，solren and the wagina of C° bepsipule is straight while that of C solven is teximent．

Cloacina sapphos sp，now

（FIGS 35－4 5 ）
Types：Hololype from stomach of Demomentms Irahertmi．Defider，Papun New Guinea．17．v．1984．

 om keft hand vide. 2h. Cephalic extremity, ventral view. 27. ('ephalue extremity. dorsat view 28. Cephatic extremity. apical view. 29. Bursa, tyical riew 30. Cienital cone dorsal view 31. Guhermaculum and thickenings of spicule sheathe ventral view. 32. Spicule rip, lateral view. 33. Femble dail, lateral view. 34. Ovejector and vagina, lateral view, Scale bars $=0.1$ mint, 27, 29, 31, 33-34: 0.011 mm, 25-28, 30, 32,

 is lent hand side. 37. Cephalic extremity, darsal view. 30, Cephalic exaremity, apical view. 39. Bursa. apical view, 40
 lateral siew: 43. Fiemale tail, lateral wiew, stale bars $-11.1 \mathrm{~mm}, 35,39,42,43 ; 0,01 \mathrm{~mm} 36-38,40,+1$.
coll．R．Spewe，SAMA AHC 2118s，allotype P． simme data，SAMA $A+J C$ It $\left[x^{4}\right)^{2}$ paratypes． 10.19. SSMA AIIC 311（\％）．

Deseriphian

 prembinen！．Sub－onedian papillac 0.013 long．
 un elevatons af peri－aral cultele proximal seament

 pronminent some：al progections from peri－eral cullela． Pameal capmate sablow．cylindrical symmerrical in lateral sicws．citcular ith apicas viewa anturior matgin

 lall tengell wh indemal wall uf buccal capsule，nus recurved of tips，Peri－amal cuticle mot inlated intolip－
 Dorsabl xestophatecal moth inferent．Ocsophatus

 marmamemadi alemtides ubsem．Nerve rime in

 （i） 111

 whboul promancel blevisions belween lohes．Vealral
 juimed．Dersal bohe similar in lenegth wateral labess． Dorsial rety divides all midnenght meconclary

 pasterimely ablmot reaching margion of hurati
 pasmernaterally．bun reachong bargell of burnat，
 reathing modeth of hafed．Poskendsteral atrod
 inkeondateral ray diveregent，shorter Ihan other lateral
 ventrovenlial rigy apposied，reaching margion bl

anteriun lip：spicules clongate， 1.30 － $1.50(10.38)$ Jong． alač。
 （Figs 42．43）

Tenal lengitr 5．リ．B．I：maximum widh（0．fer．（1．5．t：

 detiod to amerior and 0.26 .0 .29 ．Tail simple

 lone：ovejechan J －shaped．infondiontem hoger than sphinster＂ceg nol seer，

R．17mmines

Supplor a cinett Ifric poutess．

Remarlis

Ahhousth dencribed Trom al very limiked sertes of

 preseme of prominent conical projeetions fiom the peri wal cutice beathge the amphids．In addinom． the－dape of the iterophagtis，whothe anterior Fegion browder than the posterior regingro distmenishes the

 hasoal coapsuke a buceal capsule that is circulay in

 elements and＂in the shape of the eephatic panitlace which in C＇．dreopy termonate will atn efongate． bhturd segment．

Cloucime sciron sp．nov． （1．（CS 4．4－54）

 same buha SAMA AHC 3120n；palallynes：is is क．
 HMNH ノยッк．9．28，16－17．＂

Descrimion

 proniment，Sub－median papiltac ctomatc，（1，0）18 long．projectine anterienty liom peri－oral suthete：
 lorge ass ovoid，diwal segment．（）．000 lorge．Buas：al capsate stallown cylindricals symmetricall in

Figs 44.54. Clocectim seinon sp, nov, 44. Anterior end, lateral view of 6, 45. Cephalice extremity, lateral vicw dorsal ahpect on right hand aide. 46. Cephalic extremity, dorsal view. 47. Ceplalic extremity, apical view. 48. ©plical transverse sect ton through buccal capsule. 49. Spicule tip, lateral view. 50. Oesophageal denticle, lateral view. 51. Gubernaculum amb genital cone, sentrall view 52. Bursat, apical view. 53, Female tail, bateral view, 54. Oyejetor and vagina, lateral view. Scale bars $=0.1$ mam. 44. 52-54: 01.01 matr 45-51.
vicw；anterion margin of buteal capmule arthed anterionly in lateral viewn，Bighl laal brown clements，with baint striations：attising from fult length of intemal wall on buceal saphele．man rechrved al lips．Peri－sual cutick mot inflated into lip like lobes outached to ewah kett enowi dement． Dorbit onsompageal fouth alsemt．（esophanus simple，tonyate，clavibom；lining uxomamented： single dersat denticte presem in mideregion of
 deduld at fevel of nerve ring：S－E pore imerior in

 （1） 12.549 .51 .521

Tasal lengel de（1－6． 1 （－t．5）：marimum width or．2e－ 1） 36 （（1．32）：dimensions af huccal capmake 0．

 withou prombinend divisimen helween lobes．Ventrat Whas joined benually．Jateral and sental hates

 slivision：intermal branchtes．directed pesteriorly． almona reaching mateit al burse extenal buachets
 washang madein of horia．Extermadortall ray atiking
 Romerodateral and vertralateral rays apponed． reaching mangin of bursilamerohateral ray divergent． thonter than wher fateral says．whe teaching matein on hursa：ventrolacral and ventroventail tays appored． reachme matein it hursa，riahernaculam

 Abomer than anterion．with pair of ctome shaped papillace fair of lateral inllathens of enticke presen

 dimminthay in widh gradually moardis tip．
 11 虫 58.541

Envollogy

Scison ath Epicuran plikimopher：

Remarks

Cluencinue se iton is charicicrised by a simple． chatrate ocsophtagus，with a dumal dentiche at the level of the serve ring．the deitid at the level of the nerve ringe，as esrvian butichlar indation and eight deal cromen elements．Specess which mod celosely rexemble ca si im in posessing an thmonamented oespliaterus and at single dorsal wesuphageal demite are：（C cormmen（Davey \＆Whod（938），C， efindimente Beveridete Bys．C．dirce Beverides．

 haryng at prominent dorsal oswoplageal koth． 6. dindymetre und C．dime have cigh leal crown clenents．the deirit is in the anterien region of the
 Clowtime lempispuculuta hata a cervical enticular milhaten which eerminates pristeries wo the level seen
 pare lies puntering of the nesuphage－intestinal junction and de femake hail in blum with at distinctive simutus and slehthly recurrent vaginal．

（1）IGS．55－67）

 sumb dilla．SAMA AIC 31142：paratypers！\＄．S1S． 4 5年 SAMA AHC 3H63： 1 B BMNII 1945．9．2s．20

De＂r ripuism

 0．01）lenge pryicsling anterierly liwnis peri－nsal culicte：peximal semmen cylindricul， 0.005 homge ath
 Fuccal capsule shallow，eylinutrical anemmeniail in bateral views．with ventral thall if huctal capsube
 darcoventally shmgate in andal viow：allesting margin of hiccal capsule brytul anterat！in laterat
 anmy elements，arising from ludl lengilh of internal
 culiche not entheal into lip－like holes ataided io
 projecting promincmly ina buccal capable：cath

 un Jelt hatud side. 57. Cephatic extremity, dorsal view, 58. Cephatic extremity, ventral view, 59. Cephatic extremity, apical siew. 60. Optical transverse section through butceal capstale. 61 . Ocsophageal demicte, lateral view, dorsal aspect on hefi lamd side. 6J. Desophageal demicle, dosal view. 63. Whasia, apical view. 64. Spicule tip, lateral view. 65. Cuhemaculum, genital cone and thichenings of spicufe sheaths, ventral view, G6. Female tail, kateral view, 67. Oycjuctor and barina.

simple chavifomm. with shight protemal swellog:
 Examdinge fom unterion" botd ta nerve fing: singe
 nerve ringe Nerve ring in midenesophated regremp:

 (1920663-65)

 willaner panminent division berween lobes. Ventral
 jomal. Dorad labe cimilat in keneth to latchal dotes. Dopsall ray droiken just after midlengthe secomdary suldivimions immediately mifer primaty blivasoli:

 latereal rays: not benching margin of bursa. Ponteralikeral and velllofideral pays appomed. rekhing margin of hursui micolateral ray diverem.

 present: genitil crome with prominent interioy lif: pumterik lifashonter than materior, with pater of Jome
 Frenent ons either side sf whererop lip: spactule
 diminimhone in wistlin gadually then endine ubrupty *1.11!

 $(1,7.3$ (1).38). dimemaions. s. paceal capsule 0.8$) 15-$

 deiride to thetrion end $0,24.41 .30$ (0.29). Taial mimple,

 (1.076-16.04) (0.0.8) $\times 0.113-11.04(0.0 .4)$.

Kemarks

Ginusima aserope is thatacterised by at haceal sapsule which išasymmetmeal in lateral view, bowsen finmeg tha atherion hatf of the shatphatal lemen, a
 bemence amd the devide immediately posserint to the

 the atheriop extremity of the eraphlaghs. (: alis

 papillace with at very bhort biatid acernemi. C..
 beccall caphete avall and in mamore of leaf crown
 anterion position of the deis and and tentholated

 subucdian papillat. Ci fefer Bseveridge, bye in the

 (Davey \&e Work, 1938) in the anmerion deerid and the

 papillac with as shat dinal segment dud at recoment vagind, C^{\prime} ? phderen Beveridee, 1998 is the antarion pasition of the teride thestrape of the blecall capsate

 and C. Tyry Beveradge. 1998 in the anterior deleded.

Cloucima solymers 4р. 11ヶ\%.
(FICiS ins-77)

 same diald, SAMA $\triangle H C$ 3lles.

Mascripuinu

 long. progecing anterwoly liom alight depressions in the peri-spal colicke proximat segmeat cylandical.

 bhallowv. bylindrical. symmetrical in laterad and

 an right hand side. 70, Cephalic extremisy; Uorsal view. 71. Submedian cephalic papillia. 72. Cephalic extremity. apital view, 73. Uptical transyerse section through buceal capsule. 74, Bursat, apical tiew. 75. Spicule tip, Iuteral view. 76. Femalde diail. lateral view, 77. Onemeter and sagina, faterall view. Scale bars $=1 \% .1$ man, $68,74,76,77$; 0.01 mun, (2)-73. 75.
with anterior projedion immedialely pesferior to bich suhneddim papilla. Light Jeal ctuwn clementso anding fron lubl lengils of intersal wall of huced capsule, ma recurved at tips, Peri-dral eutiche got inflated into lipdike kohes attuched on euth leal bernan element. Obsophagias simple, al almast nmiform width: lining unomsmented: denticks abseat. Nerve rage in mid-restophageal region! weirids at level of nerve sing: S-E prote anterior to vasophagen-iticntimal junction.

Male (Mcasurementiv Irom 2 apecimens, 1ypedh)(Figs 7-4. 751

Tonal Iengli 7.8, th, 6; max mum wielth 0,54. 0.55 : dimmensuns of buccal čupsule 0.020, 0.023 天 0.08 .08. (1.085; nexphagu- 11.85 .12 .89 ; nerve ring so anterior

 panmineot divisions, betmeen lahes. Ventral lohess jemued ventrally: litesal and ventral lohes joimed. E(ersel dube similar in length do lateral lohes Dorsal ney divikes at midenglh; secondary suthdivisions al
 not reathong margin al hursa; external branelikets shorery than internals. directed pusterobaterally, mot

 P'ostobolateral and ventrolateral tays apposed.
 whomer bam othe laternd riys, mat reachong bargion of
 foaching mafgit ol bursil. Gemital sonne with prombinent ankerot lip: pair br latcrol indations of Eaticto prexent on cither bide of anterior lip: spicules elongate-3.76. 3.74 lesuge alate lip simple: dat dimminhing in width grudaulty towards lip.

Tivall icnghtr 5 fr: haxamtom width (0.022 : dimencions

 nirot been

Remarks

Athough unly at small series sul apeciment was
 Hew blecios. It is charatelerised by a simple. Hownamented ocsophagess symmelrical buceal

ecphalic papiltase. Ueirid at the level of the nerve ring and al recurant vagina, Congeners with symmetrical buccal capsulles atid prominent atoberior lobes ure $r_{\text {. }}$
 firendiv and C. Wathabioe. The distal segments of the
 and C. the pletio ate mode tatger than the proximal segments ind are whluse at their tips. rulher then beine small and narmwer than the proximal acgonent
 wallethete dave lip-like expatisions of the cepplatic coticke sttached to each leat sown stement whish are lacking is C_{1} sol ymus.

 in the shape of the suiceal capsule: but dlllers limon these syecies in batwing very small submedian cephatic papillac.

Clacina spo.

Addifional undescribed species of Chnocime were present in the stomateln of the wallahicy examined but were rapresented by single specimens maly. Description of these speetes walt hare lo awatt tice

Discussinn

The deseriptions ut new specien presented here
 diverse surity of species of ciprendute. Only four abimat were awalable lise sxamimy ob but the above firolinges suggest that soflection of deditunal wallabies will retcal an osen greater variety of
 Irsm Piptal New Cilimeat atc peurly knonva with

 limited serises of Jefonmion sentlected from one or Iwo beses sperimers.

 affinmies wilh subgrtaplofger within the geonss.

 froleseru and C. gyrn) which occul in a ranye al sperices of matoropodide (Marrophe asilis) (Could. 18421, M. donsalis (GBay. 1837), M. pipantew Shaw.

Clrefermed sconers, by contrast; is characterised by at simple, bneratmented oesophagus und at simghe
dorsal denticle. It therefore resembles it diflerent series of species (C. cormuta, C. dindymenc. C. dirce and C. longispiculata) again parasitic in macropodids (Macropues agilis, M. robustus, M. amilopinus (Gould, 1842)) in northern Australia (Buveridge 1998) while C. someus has atimilics with C. bantofformm occurring in M. dorsalis in northeastern Australia.

The series of new species, C, syphax, C. solom, C: supphe and C. solymms is charaterised by a simple, unornamented ocsophagus, lack of lips and a symmetrical buccal capsule with a sinuous anterior margin. While a parallel series of species (C. hebe. C. hypripsle, C, linstowi, C. thetidis) occurs in M1. dorwatis in Australia with similarly sinotus buceal capsule margins, the new species from Prapua New Guinea are distinct in possessing eight leal crown elements rather than six and in having the deirid cither at the level of the nerve ring or just anterion to it rather tham in the anterior
ocsophageal region. In spite ol these similarities, $C_{\text {. }}$ syphax, C solon, C. sappho and C_{+}solymus differ natkedly in the shape of their cephalic papillate and the branching pattern of their dorsal rays. By contrast, C. hebe, C. hypsipyle, C. linstowid, and C. thetidis all have similar. distally obtuse cephalic prapillae. The evidence available therefore sugegests that the series of species C. syphax, C. solon, C. sappher and C solymus, described hercs, may represent a unique subgrouping within the genus restricted to at single host species. This hypothesis, remains to be lested both by more detailed anatomical comparisons of the as yet undencibed species of Clousine present in D, vemherturn and by more extensive collecting from related hos apeceies in Papuai New Guinea.

Acknowledgments

We wish to thank R. Harrigan for expert technical assistance.

Relerences

Bl:VLRuxits I. (lyyg) Taxomomic revision of the gema Clreacima von Linstow (Nematodat : Stronyytoidea) from macropodial marsupials. Imert. Texom. 12, 237-508.
Bikn, A. F. \& Bikt, J. (1991)"The Sitmeture of Nematordes" Ind edn (Acadenic Press. Sun Diego).
I'LAmafry, T, F. (1995) "Mammals of New Guinea" (Reed Buoks. New South Wales).
__. Martin, R. \& Srality, A. (19y()) "lree Kangarons: a curious natural history" (Reed Boroks. Victoria).
Sural\%. D. M. Beypridgif, I. \& Watitir, E. L. (1991) A catalogue of Anstralian monotremes and marsupials and their recorded helminth parasites, Res: S. Aust. Misa, Mumogr: Ser. No. 1, 1-105.

FOSSIL TURTLES FROM THE EARLY PLIOCENE BLUFF DOWNS LOCAL FAUNA, WITH A DESCRIPTION OF A NEW SPECIES OF ELSEYA

By Scott A. Thomson* \& Brian S. Mackness \dagger

Abstract

Summary Thomson, S. A. \& Mackness, B. S. (1999) Fossil turtles from the Early Pliocene Bluff Downs Local Fauna, with a description of a new species of Elseya. Trans. R. Soc. S. Aust, 123(3), 101-105, 30 November, 1999. The freshwater turtle fauna of the early Pliocene Bluff Downs Local Fauna consists of members of the Emydura, Chelodina and Elseya genera. A new species of the chelid genus Elseya is described based on a partially articulated carapace and associated plastron. The new species is most similar to the living Elseya irwini Cann, 1998 but can be distinguished from it by the close encroachment of the ilium suture to the seventh pleural. It also differs from E. irwini in having a very narrow ilium suture, almost approaching the Emydura condition in this character. Two additional fossil chelids are described. Key Words: Pliocene, Bluff Downs Local Fauna, chelids, Emydura, Chelodina, Elseya, turtles.

FOSSH. TURILLES MROM THE EARLY PLIO)CENR BLLEF DOWNS LOCAI FAUNA, WITH A DESCRIPTION OF A NEW SPECIES OF ELSEEY

by Scoit A. Thumson \& Brian S. Macknisht

Abstract

Summary in llige characeter Twa additional lowsil thelide are desertited.

Intruduclion

 and much in necd of revisw (Coggen of of. 19y.7: Thumson ef ah, 19y7). Elcelropharclice surveys have revealed that in some instances. currenty wecpacd species homblatios are dillicedt do justify and what

The delinied momphodogical analysis recpuined to verifly these findings ham but lieen conmpleied (Thamson \& Courges, 1990; I'lomsim a' et. 1997), and until recontly it wat not possiblo the distinguish even belween extand :horl-neehed generan on the
 form homwhedge bl ostedlagieal chantaters subiable low discongunhing the getrera of extant lontis makes the identilisation of fossibs. thaty incomplets. diflicillt (Thonnson ct af. 1007). In many insfatces.

 climinate the possibility that the shor-necked berons

Materials and Methods

Spectimens: whe the chelid turte spocies identified using elempophoresis by Genwes \& Adantin (1946) Were whatiod from mosemms. The Conservition

[^11]Commission of The Northem Tersibery and the University of Canherral Where possibks, the venched
 utilised lo avond incormest idenlilication. The specmen collection was supplemented by limised field sampling. All speciment tice sheletomined and assessed by methodk sumbed in "Thermant is of (1997).

The 「onsil specimens From Blaff Downs wers cothected as pait of an thogaing study of the palacuecology or the Blull Down Loxal Fanat by one of the atuthors (BMD). Speciansors will be depusited in the Quecostand Musedm. Reats wes examined to determine the presence at character satcon for the charraters identificel ats being eliagnostie at the kevel al genus lier extant lava. 'the fossil specimens wore then astiened (of gents.
 of"the shelt and the overlying sentes follow duse of 7angerl (16nリ) extern that we lollow Pritchated d Trehban (1984) and recoghte the term pleural ds
 sedues Additional (ermimology refering th the antorior bridge slruls of the plasimol and the hridge strul suture of the catapike followe thennsen of at. (1997).

Five characters were identified the diagomstic at generic leyel. Where pularity is indicated. it was determaned by eomparisun with Soulh Americaln cloelichs and Alricun pelsmedusids in a cladiaice analysis to be presented elsewhere (Thomson \& Georges mpoh.). Only those charabters nolevant be the identilictation of the fossil specimen are presconted.

Anteriorthidge siruls

A0: In the primitive stats. the posterior tedge of the bridge-carnmese suture runs parallel and idjucent mo the lib/ganmonosis of plemal I.
Ali In the derived state the pentebigr edge of his shture semmats the rib/gomplossix at ils unterior end but is set at a lorward divergent ungle of between 15° and 50". "Ihis angle is mose pronounced in Embderes. keast in Rhewhtros.

Bl: The anterior and posterior edges of the bridgecilrabite suture diverge from their poim of corgerwence chosest to the vertchral columan. The widest extent of the suture is distel to the vertehrat columb and there is mon medial constriction.
B2: The saterion and pasterior wiges st the bridgeLarsuptere sethme are puratlel os closely so will at prominent suture surlace berween them. There is mo medial comartiction.
133: The bridge carupace sulure is expraded fir its fill length thut nore sis at extremes, there heing alo shvisur medial constric|is.
B4: The bridge-cinapate sulure narrons from its Widest poine proximal to the vertetrat colenmen and comstricts exompletely in forma ridge exonfluent with He edge fimmed by the yontral sutero wo the peripherat boncs.

Ribleqomplasive wiplewatl I

(1). The ventral surface on the dishal extent of the bih/gentiplossin is rutaled obliguely, on fike velltrally tren with pusterion inflection.
C'I: 'llhe rib/gomphosis shows 116 such formisn distilly,

Demsell manarders

 widtl.
D2: Fiost wetcloral sculs whler Ilan sceond amd thiml

Fít): Pervicual betule fypically prexchl,
LiJ. Lervical scule typically alosent.

F-(): Jlitmo sulures to fore seventh and edghla plearals and the pygal.
FI: Niam sutures (o) the cighilt plewal and pygal tholy but is atirectly ndjacent to the suture hermeen the sevesulla iud elgith pleutals.
E'こ: Hiun sutures fo the cighlo plebual and pygit only has is widdy separatud from the suthe between the seventhand eighls pleutad.

Comporaine matarfal

All names used for umdescribed spocies are from Georges \& Adams (1492 . 1496) with modilisations from 'I'lomason ed al. (1997). Abbrevialions uned: AM. Ausbralian Muselum: NTM, Museum and An Galleries of the Northem" Jernlory; UM. Quesemband Museum: WAM. Western Ausitalian Museum: 110 Llaversily of Canberta; UM, Unis ersity wf Michigen Fiedd Series: LIL, Universily of L'ah.
 19508: Eksert Hemuta: NTM 13319. 13521. 1 (9.330.

 (QMJ 31939. $319+2,31944,31946-47,3144950$ 3145246284.47908 .47011 .48544 . 48547。(01255.

 123042. QM 59289.90; Emydume marquarii: QM 48016. 48034. 48050-51. 59275-76. LIC (10175-76. 0303; Emydere shhghtorser: NTM 503s. K206. 1.342x, 134.33. 16332, LCC (1171-72.0177. Emveluro tembinarager: AM 125470-71. 125491. NTM S211 8213. 17339. Eindedura vitwriene NPM 13513-14.
 (South Alliguttor): AN1 1281022,128004, QM $59285-$

 $28+49.36030,300139,360+1-42,361+4+-47+37933$.
 (dohnklene): OA 22044. 23175. 23294. 23300. 23322. 24938, 284.40, 48060. 48068. AA 12302N.
 11178 WAM 24337: Rhmornes howhons: 1JC: (1)73.

Symumalios

Coder"Testudines Linnteus. 1754
Suborder [leurudira Copes. 1804
Fimily Chelidac Oyilby. 1905
Efseyor madibatiagu: sp. now.
(I) G. I)

Holmane: QM 1330576. a matially :
 Condthelp during the 1992 Find Sbatson. Upred Andretws Onamy.
 the simmeste.

Tyme Lexalisy

Upper Andrew Quatry ($19^{\prime \prime} 43^{-} \mathrm{S}, 145^{\circ} 36^{\circ} \mathrm{B}$) Allinghan Formation. Blali Duwhs. Blum Dewas

 vicw ul' plasiron. (D). Exalemal view of phishrem. Scalle hars $=5 \mathrm{~cm}$.

Station, norih-eastem Queensland. The Allingham Firmation was named by Archer of Wade (197(0) For a sequence of terrigemous clays, sills, sands and catbareous sands that vulcrop on Bluft Downs Station, atone the hanks of the Allingham Creek, at unbutary of the Burdekin Rives, Several different quarries have been established to exploit thene outcrops.. all showing a simbar and sombenows stratigruphy (BM umpub.). The sedinents reenvered are fluviatile ind lastetrine in moturedul represem a mumher of steposilional events.

Ag
 age of the overlying hasalts (Archer is Wate 19795: Mickness er of in press)

Didsmosis

 af sleeply angled bridge arus, features dingnostic of Eheret sensu stricto. (Thomsom at al. 1997: Thomson
in press) and Ennydura. The carapacial sulures for these stuts are wide throughout their Jength, which is diugnstic of the Elsego favaraskorm group within this genus (Thomson ef al. 1997). Other diagnostic features include the lirst vertebral seute being wider than the second and thind and the athence of al cervical seule (Thmmen m ill. 1997: Thomson in press).
Within Elseya, this species is must smikar to E. Insini (Cam. 199\%) from the Burdeh in River but can be distinguished from it by the close encroachment nt the ilium suture to the seventh pleural. In E. irmini the suture is widely spaced as is typical on Elitey hut in E. malibediag they are extrencly close almost approaching the Emvilura condition in this character.

Descriphen

Carapace consists of a complete nuchal brone with menervical seute present, The Jefi pleunil one is more complete than the right and the anterior bruge strue bus a wide sutural surlace betwen parallel amerior
and fonterion exges ot' the suthre throunhour itx lengeth, which is preserved, The sutate is decply insereded into the cenbante and angled shatrply away from the rib/emmenessis. The sulci preserved in this
 widere than the second and thim.
Fleurals Iwo for six are partially preserved on cither sile but withour their peripleral contacts. Nas Heacrata an all tmarticulated unt is the lefi sighth propipheral. The anterior sutumel sytatice lior the ifiun is ckearly cemplruincal to this mall and deres not extend on Ios or makb sutural contate with. the acevenils floural. It dis's hosvevers. continue on th the pyeal in He pasterion, the typical condition of the Eladider.
thl the unth are represented in the phasiron exteps 110 cpoplastra, whath are either holl missing or nut idemifiatile umong the fragoments. Incladed here alsw
 throutionti the length at the setural surfice where they contuet the canapace. The plathat elements, both in matci ind twny elements are similat in form to any

Ihe spectils epultet is firm the Gogu- Yatanji

 significant age of the toxsil. The henfer in of neuter gerider,

Chelentinus ip.

 lomyon nllisgroup

Remarks

This specimen can bo didgnosed by lite exireme
 well an the wide. muthe cervichl sente. There is aton -1 harese series of muscle attachments for the manden at the hace of the wech wheth, by necerally, ate dolargel in the lone-nectied furthes fThentson de Georese feyot, J"fe platement within the f:
 wit the shell. it leallure thore grevallent in specties such
 members af llee C. exponser gromp. This is, fowever, a lighly vatiable chatictor and prohtably of puor tusumomic value (Gatfiney 1981: Thomsion in presis).

Remartis

Nome of the platurals is distioguintable fiom thene
 E. Areflitio ficorges \& Ndems $199($ g) and we therefore batice the most parsimonious fiew and ibshign the lessial to the fiving spectes whish is lonund in Allingham C'rock mody.

Discussion

The living species that mose dowely desembles

 of these texsonomic indicators fosad colson alded biochemistry) have nos bebon preserved itt the lissil
 the powitum of the iliunkearapace sulure. Itas enabled the separation al \mathcal{E}. nedibagenge from wher mentars of the genes Jilse'te. 'Thece is a popsithibo. howered. that this character maty be subpect to in lion mene variation than wian be seen in the lameded
 alobuggh atnalysien of vatiation presem in enfer members of the denus makes this mintikely, Replifes have a lower rate af specios tumoser than theia mammadian counterparts with mathy extan specica having lowsil records stretching back millions on years (Lat Duke lgol).
White \& Archer (19)f) described the finsuil ehatid
 depmits of Riversteigh and living examplen Wens: dencribed just three years later (Thomeson ef ato. 1り77
The exchrenes of thece different chelith laxa liom
 syhtems havoug fote of bure dilteren geners in low:
 been live ditherent turles recorded for the Burdokin (Cunll 1998) including three short-hecked and sive lone-necked taxid.
The paldenemvirmunenf of the Blaft Towns lex.al fanna hen been interproded as heing somilar to what in present day Kakudu (Bules be Mackness (by)d) with avian subecicy stich as darkes ind pygny-geose indic:lling permancal water hodies (Mackness byys)
 thichets (Dlackness unpub.). Fonsits of shori-necked
 a) preservathons indicating: al pliocenc praturo. entromment with well developed rivers. erechs atad latuonss and abomdant aquatic lathat (Cimil 1978: Legler 1985). The longenceked tortoises indicate mat at the sarme time, there may have been shalloge ferbid lagerons (White 1097),

Acknowledgments

Whe authors wial lo thank A. Gerorges, J. Cans, \wedge. Whife, M. Areher and S. Hatsd who provided lelpulat comments on, or atsisistance with the prepanation wh. this mamuscript. J. Best provided techuied suppor\%. The Smith Family of Blut Downs: Stution continue to provide ledpand support fire the ongang renearch into the Blutt Downs lacall fimmat The collection of the Blull Downs
material was supported in part by an \triangle RC Progrant Grant io M. Archer, a grant from the Depurment of Artis, Sport, the Enviromment, Tourism and Territories to M. Archer, S. Hand and 11 . Godthelp, at grant from the National Estate Program Grambs Scheme to M. Archer and A. Barthomatiand grants in aid to the Riversleigh Renearch Profect from the University of New South Wales. Wang Australial Ply Lud, IC"I Aumbatia und Ihe Auslrulian Geugraphice Socicty.

Refirrences

Akejuls. M1. © Wion: M. (1976) Results of the Ray E

 Amatralia, Ms'm. (ed Afiss. 17. 379-397.

 kisherlmon. Sydncy).

 and Kepulian (Ansmatian (rovernmeat Priating Service. (arnlxera)
C.atNity. E, S. ([1977) The side-necked luatle fatmly ('aclides: a theony of retationships using shared derised

(1981) A review of the tossil turles ofl Ausimia. thild 2720. 1-3K.
 Australiom chedid lurtles hased on alloyyme chectriphomeenve Aush I. Zonel. 415. 453-470.
\& \qquad (10)(o) ELecersplonetic dedineation of - pecies bothataries within the short-neched freshwater
 Sem. 118, 241-2611.
1.A Dikla. T. C. (|火火|) Jossial smakes of Pil gil. Kanchal La
 28.
 palterns ill wide-ranging taxal pp. 117-123 m Girtey, (i..
 lioges and "eptiles" (Ruyal Zoological "Society ol New
 NSW)

 'Fanna of' Australia. Ven. $2 A$ Amphibia und Reptibas (Gimermanent Printing Service, Cantorati).
 pygmy dater from the carly Plineene IBtat Downs Lusial

- What:II:Ab, P. W. de McNamaka, (t. C. (in prews) A new ponansium-argen basalt date in relations la tha
 Arst. I. Eirth Siri.

 Aboriginal Sudies. Number 2 (Aubralian Inslitute an Aburieinal Studies. Canberra).
 Venczuela. SSak Comsrib. Herpetwh. 2. 1-10.3.
Thmasum. S. A. (in prese) A revision of the lemail chelat
 Mrm. Qul. Mas.

 Finsil. Mrim. Ol Mfus. 42 327-3.36.
Wirrm A. W. (1977) Cannozoic turles from Riversleight. northestem Quemsiusl. Ihid, 41, 413.421 .
 new Pkistocene turle (Fleurodira : (helidac) Ifon fluviatile depmais al Risersleigh, Nomberitern Quemsland, Rece. S. Atres. Mus. 27. 150.167.

THE SWELL CLIMATE OF THE SOUTH AUSTRALIAN SEA

BYM. A. HEMER* \& J. A. T. BYE*

Summary

Hemer, M. A. \& Bye, J. A. T. (1999) The Swell Climate of the South Australian Sea. Trans. R. Soc. S. Aust. 123(3), 107-113, 30 November, 1999.
The Southern Ocean swell continually impinges on South Australian coastal waters, In this study we present simple formulae which predict the swell height at several locations in the South Australian Sea from swell height data in the open sea south of Eyre Peninsula, which are available in real time from the Bureau of Meteorology. The predictions are based on the state of the art wave model SWAN, and indicate that the major factor which determines the coastal swell climate is the direction of approach of the open ocean swell. From these predictions, bottom orbital currents can be computed, which are a fundamental factor in the marine ecology of the South Australian Sea. The formulae can also be used (at own risk) on a routine basis by mariners and surfers.
Key Words: Swell, marine ecology, South Australia.

THE SWELI. CLIMATE OF THE SOUTH ALSTRALIAN SEA

by M. A. Hfarike de J. A. T. Byrs

Abstract

Summary 123(3). 167.113. 301 Navenither, $128 y 1$

Rove Whane Strell. marinc acolagy, Somili dustralias.

Isfanduciom

The swell gemerated in the Soulticon Occan smath
 sil any is the werla's oreans (Chelfom at at l981). Ifowerse. the shell in the seme enclosed waters of
 Thes transhisen hewes'n the open oxedan and conastal

 wells is a reltahe signal on which the marine ecology of the surt rans deprends. Shushern Ocean
 swell everols tohich velitlate lle interior ol the comball seas by the intemmity of the lowtors orthital curnems that they genterate. 'I hin sudy shows that dre
 provides a simple prodictias limmulat whish can tes
 atal also by manimers and bution to make rend time

 it ponprayentes Fivan the apen wexan sonth wio South

 cencomed watem ol spencer Gull. Cobll S' Vineem.

[^12]
 Sbuthern (Lewn, from RV Sentherf sumeyer

Fig. 2. The Sonti Australian Seat with painte of interest at mentioned in the texp, x, -indiane the pusitions of forecas limmula listed in Table 1. R, show whe obserman siter.

Wive Data

The only extended serics of measurements of the Southern Ocean swell along the South Australian coustline was conducted by Steedman Science and Engineering of l'erth, Western Australia, between May and October 1984 at sever measurement sites in the Gireat Ausuralian Bight. These data have been analysed by Provis \& Stcedman (1985)', who noted at reduction in significant wate height by a factor of atoul two ats the waves moved from the deepwater wave recorder in 1150 mof water, across the shelf

[^13]towards the coast to the shallowes wave reconder is 26 m of water. Significunt wave heights in excess of 5 m were recorded on several occasions, ind waves of over 10 m were recorded during a duly stom as far inshore as the 75 m depth contour. The significant Wave period remained almost constiunt at about 15 s at all seven measurement sites. This perion is very similar to the dominant swell period (16 s) in the classical experiment of Munk el al. (1963) in which swell was observed to travel acrose the Pacilice Ocean to Alaska from Southern Ocean winter storms. almost without loss of energy.

An interesting feature of the meatared open ocean wave spectral is that they are mimodal, ie. there atre no distinct wind seat and swell peaks. Only at times. of very low incident swell were separate peaks observed. Young \& Gorman (1995) suggest that the
proximity of the site to the Southern Ocean storm belt does not provide sufficient time for the wavelield to disperse and a bimodal (wind wave and swell) wave spectrum to develop.

No open sea wave measurements appear to be available for the summer season, but in April 1998, a new series ol wind wave and swell measurements was initiated in the South Australian Sea and the adjacent Southern Ocean using electric field measurements (Heinson el al. 1998; Hemer 19982: Hemer et (al. 1999). The details of this program are reported elsewhere, but for our purposes an important feature was the near simultaneous observation of wave spectra on the Southern Shelf and in Spencer Gulf with which the predictions of the wave model can be compared. Apart from these measurements,

Fig. 3. Comparison of SWAN wave heights with the analytic solution of Nielsen (1983) for an incoming swell of period ($\mathrm{T}=12$ s) and height ($\mathrm{H}_{\mathrm{H}}=1.4 \mathrm{~m}$) running up) a plane of slope 1.125×10^{3} with a quadratic bottom friction coefficient, $C_{f}=0.015$. The abscissa is the ratio of the water depith (h) to incoming wavelength ($g T / 2 \pi$) where g is the acceleration of gravity and the ordinate is the wave height (H). The SWAN results (x) are computed on at 4 km grid.

[^14]wave studies in the South Australian Sea (Bye ot al. 1975*, Culver \& Walker 1981*; Walker 19895) have usually neglected the swell signal.

The SWAN Wave Model

The SWAN wave model (Simulating WAves Nearshore) is a directional spectral wave model written by the Coastal Engineering group of the Delft University of Technology, Netherlands (Ris el al. 1997) especially for coastal seas. In the formulation of the model, many wave propagation processes are implemented. These include wave propagation, wave refraction due to bottom shoaling and refraction and reflection by currents. Along with these effects, the model also includes generation of wave energy by wind, dissipation of wave energy by whitecapping and depth induced wave breaking. frictional dissipation due to bottom drag and redistribution of energy over the wave spectrum by non-linear wavewave interactions (SWAN 1998 ${ }^{6}$). Limitations of SWAN are that it does not account for diffraction or reflections, and hence it is umsuitable for regions where wave height variations are large within a horizontal scalc of a few wavelengths (Ris et al. 1997) and regions of "steep beaches" (i.e. cliffs. harbours etc.) SWAN is therefore a "state of the art" model for the present study of the propagation of swell into the South Australian Sea. It is important however to carry out two basic checks on the model.
Firstly, the analytic model of Nielsen (1983) was compared with the results of the SWAN model over a plane sloping bed under variable conditions in which a plane wave was propagated into the domain at the deepest end (Hemer 1998²). Figure 3 shows that, for a typical swell period of 12 s , and at quadratic bottom friction coefficient $\left(\mathrm{C}_{1}\right)$ of 0.015 .

Fig. 4. The swell wavefield in the South Australian Sea predicted by the SWAN model for $\mathrm{C}_{\mathrm{f}}=0.015$ and $\mathrm{D}_{\mathrm{w}}=$ 230°. The contours show normalised wave height (NWH): contour interval $0_{2} 1$, and the arrows indicate the direction of swell propagation.
such ils would oceur over sandy beaches (Jonscun (9xib), the analytical sobtotion and the numerieat soluthon are in vary gond agreement for the grid imerval 4 km. The SWAN model simulations presented below are sun ols almiform 100 \& fote rectangular yrid of grite inuerval, 7.5 km on which the bathymedry was laken from the Austealion Gocological Surveyang Organisalion (ACiSO) 30 arb second digital lite Secondly, we ermpure the predicters of SWAN lor swell proppartugt into Spencer Cinfl, with the April 1908 whe ohservations athe the pretictions of the Burcatl on Mcteonolngy Soulhem Ocemon ware morbel (WAM) which is mon in mparational mude with wave tieded issued atm nener. (16i(t). 12100 and 1800017 C . and is availatale fiom the Buctu it Metcorology (Butcan of Meterology. 19997, IL is exmbenien is presend (he resulls of the enmpurison at the end of the nex seetion alter the SWAN matel autputs have been descrifited.

Results

$$
\begin{equation*}
N w H=H / H_{n} \tag{11}
\end{equation*}
$$

Whore H in live swell watve height, and H. is life upern akewn input swell hoiglit. and also the wave dineainn (D) Por savell of periokl 1.5 sind $H_{3}=35111$ propewating fram the decetion. $D_{1}=2360^{\circ}$, It is the ereved that the swell beying Io fuse the Energy an soon its it ensers the region. Nore energy is last when NE wave front ranche Kam!atoud dimd (K^{\prime}) wath the coast absorhing the emerey of some diccetiond compements of the watce. latrec wave height uetwr
 These acesulla atgree with ancedotal uthervations of larege wave hejghes on the sumbern and westerl

 is lis water ileptla dexreanes and the wover "wrap"
 parpuctudicular th he edephs comburs, Signilicatat hose

[^15]Woves at the head of cisilv the western end of Backatairs Passage and the metromotitan chate of Adelaide all show wave heights less that blion at ote inpul height (NWV $<0,1$). In Invewigatom Stmat refiaction is seen to have an eltect will the waves twedoning more und more perpethlicular th the erods and the monthern coast of KI shows tegings whe
 watve directiom. Within the gull, a notthward deminance of wave propagathon sill exisis, hut at significam spreathige lownds the chast at all lessations is shaserved. Witre height in shaterved lat increatse markedly along the sonthem side oll
 Weblern end (NWH < 11.1) 6 sighificunt wive enery
 Enchunter Bay shows very lithe refraction, dun ow the waves mitially thaselling alomos manat it ithe Weptle conlume.
The propadealion as" swell into Sperect (intir (sci)
 height) sith decteasing bater depht towards the heind nt the gelle. Large lose of wive conerges is shacrved in
 Hardwiche fay. Again eteatt evidencestriblfaction Bon sbowred woll wave direction becomines meanly perpendiculat In the cersed in all regemas. Within Hatdwehe Bay. Waren ane obserwed is be
 llib mpath swell dircetion. In the vismity of l'sul Lamendf, wayes ille observed lo have relrated hy 180^{-}with waves Harselling jut the oppuste darection

 enceyy fewarsts the sides al the gull. "The smalh wewtern coses of Eyre leninsula shows very liute foms bf encrey before reaching the chash. Onthe weal

 wate lweight Ifort deep wate to the etrast Bentratary cllecis precelode a cenmparison belaeen simabiation and whemations in thim region but at simplar
 Hay. Fstand its the upenines 10 KCi such us Ine
 form prophestime into the gult.

 expected given that nol lurther wimb lomge withir the ngion in present. A redubion bl watkengh of
 Wate speed wht akedeasing water depth ince exa
 urhisisl voluciby, $f f$. sull alse be derived (ldenter
 neracen the decreasing wavs hegthts andy

 hond were obseryed in the shallow witer of the south catas wl Kimgares lyand．Withill the gellis． watcy depals were much desses but wave shargy lodel
 were kesw tham hatf ot she magntude on the sobth That of Kimneatuas Island．
 have theen carticel our by varying inpat model wave begghes，directamb，periods．batesn linction and wave breaking parametcts．and model fans were alloo catricd out with a unitom depth South Australdian Scalo Yatation of inpul shell wave heights（ $1 L_{1}$ ）was lound to catuse minitnal blamges in the NWH Ilomaghout the Somth Ausralian Sea with slighty lower NWH（greater dissipation）for a larger input Wave height．Chatuge the inpul wate period alvo anly had small effecto on the wave heights amed dircctions willin the South Ausualiam Sea for typical swell perionds．
The swell pmopatition is atse insensitive on the

over sedgrass beds．In the chatsal gone lometer． bottom iriction is found（t）catuse signilfount decreakes in predicted wetve beights．bege wave heights in the sarf rone une afproximately 3 sto greater if frictionless cunditions ate whsumed for
 specilying the South Austatian Sea 10 have on utiform depth an 50 ont tube almont the sume reduction in wave height with progrescion inlo Spencer Gutt and Gult St Vincent，as tor the depeth varying lopegraphy，These revalts sugges that the dominamt soure af wergy loss in the South Austratian Sca is atsurptern of wave encrey at the ctexs by frietionat loss in the shallews and wave
 rather thiun any formof ofepth induced elfect in the interior ol the seat．

We conclude from these sensidivity studics that the minor source of strelf herght tarlability in the South Absatratian Seas in the direction of upprodeth of the Jectp seat swell．Figure 5 illumatas the eftect off at rotation of the ditection isf approtelo uf the deep seat
 digetion．A westerly swell penctrites intos
 Gill atong the wesern coast of Vorke Peninsuld （Figg． $5(a)$ ）．On the ohther hand．Investiguthr Strat is well proteded from the south casterly swells，mote typical af Sumime weallee cunditanx．whoth ate wimared into Spencer Gulf＂on the kiasern cuidr of
 April 20 lage wheri wave ubservations were made in nid Spencer Gull（R，in Fies．2才．The ehnerved swell height and direction were reapectively，If $=$
 ［＇entinsular the WAN mudel prodicred tice swell
 which NWII $=0.018$ ．The SWAN model predicison shown in lige $5(\mathrm{~h})$ yields NWII $=0.0 \mathrm{R}$ ．and ditccisun $15=$ フป $3^{\prime \prime}$ 。ingexd agremment with the ohertations．The inceusacy of the Whith mexd was alsul athesessed loy comparison with obberoted wave
 （49．s（ $R+$ in 「ig．2）．The predicted swell parameters． $1 H_{0}=1.5 \mathrm{~m}$ and $\mathrm{B}_{2}=220^{\circ}$ were io gond agrempent
 （Hemer lyox：）．
We conclude that ins phedictions wh the WAM utal
 neliabte swell prediction formulac tor the South Austratian Seat which the presented int the nest sccelions．

Swell Prediction fiormulat

The isolatiou of wave stirection as the dommant inlluence th marmalised wave heights（NWII）withon

 Sers.

Position	$\mathrm{h}(\mathrm{ml})$	$a_{1}\left(\times 10{ }^{-1}\right)$		42(10)	a $2_{1}(1010)$	4
1. Cape du Couedic	47	-6,884. 2	6. 38.89	-2.2079	3.3862	-18.512
2. Cape Coutustrophe	50	-68.622	58.499	-18.517	25.781	-1.32ゴ
3. Lituricu Peninsula	27	34.150	-27.419	8.0 .454	-10.190	47.38s
+. 1ramklin Harbour	11	12.8807	-10.71.	3.2714	-4.3259	20.988
5. Mid Gull'St Vincem	33	-2.2465	1.8031	-1. 1.51453	11.63910	-2.9210
6. Hardwicke Bay	10	20027	-1.7867	1.58000	-11.80+86	4.0547
7. Adclaide	10	$5.8+35$	-4.8575	1.4918	-1.9994	0.9334
8. I.uwer Spencer Ciuls	46	32.304	-26.892	8.1539	-10.64+4	50.701
4. Inventigator Strait	36	-7.7055	5.x92\%	-1.66i17	1.0485	-8.85013
10. Mid Spencer Gulf	28	28.743	-23.97.3	7.3154	-9.670)	46. 8.73
11. Lipper Stpencer Guld	12	4. 2561	-3.5376	1.17781	-1.42+1	6. 5 K13
12. Latcapede Bay	34	8.2245	- 0.6783	1.50108	-2.1954	4.0546

	HP^{+}	120.	$\mathrm{H}^{\text {+ }}$	U^{+}		$\mathbf{C H}^{+5 \times 1}$
Paxiturn		(in)			(105 $)^{1}$)	
1. Cope du Coumdie'	4.73	4.84	3.85	11.77	01.73	(1).02?
2. Capoce Catastrophe	4.47	4.52	4.24	13.65	U.06\%	0.6 .3
2. Fleurieu Jeninsula	2.91	2.31	1.93	1.10	11.157	0.73
4. Framhlin Harthour	0.73	11.42	0.2.2	11.98	11.56	11,24
5. Midl Cimf St Vincent	0.36	11.55	0.107	(1).10	11.16	(1.12
6. Hardwiche Raly	0.50	11.48	0.1.3	0.77	11.74	(1.2)
7. Adeluide	0.54	11.0 .3	0.3 .4	11.91	11.47	10.52
8. Luwer Spencer Giulf	3.44	2.14	1.114	11.58	11.45	0.18
9. Invertigatur Sermil	1.81	2.76	112.	11.45	1.6S	6.106
11. Mid Spencer Ciulf	1.63	0.92	0. 1.15	11.58	11.3 .3	0.16
11. Upper Spencer Cimir	U.24	1).14	0.107	11.28	11.17	(1).14)
12. Litapede Bay	4.46	3.51	3.15	11.86	11.67	0.61

the Soult Austriblian Sea suggested that swell prediction lormatie coould be obtained. I'lue set 1150 , $1600^{\circ} \cdot 175^{\circ}-1300^{\circ} \cdot 200^{\circ}, 215^{\circ} \cdot 222^{\circ} \cdot 230^{\circ}$. 237°. $245^{\circ} .253^{\circ}$ and 2600°) was chosen [rom SWAN runs us representative of the swell energy window from which waves propagate. and the NWH wad determined at selected grid points. Using the twelye runs. a polynomial of order 4 was filled at each grid point to interpolate NWH over the range al propagation directions, $\left[D_{0}=1500^{\circ}-260^{\circ}\right.$.

$$
N W H=a_{1} D_{0,}^{4}+u_{3} D_{n,}^{3}+u_{2} D_{n}{ }^{2}+a_{1} D_{1 n}+u_{n}(2)
$$

[^16]The cocfficients are shown in lible 1 fior the possitions in the South Australlian Sear illustrated in Fig. 2. It is emphasised that, for the coastal sites. equ (2) predich the incoming swell heights outside the surf zone at a depth of 10 mm . Table 1 allows at simple calculation of swell heights to be made uting the deep sear swell height and direction from the WAAI model oulput, over the range of directions for which signilicant swell energy proptgates into the South Australian Sca.

The travel time. Tin h, lon swell over a distanee. a in km, assuming deep water wave conditions, is

$$
\begin{equation*}
T-0.18 t / T \tag{3}
\end{equation*}
$$

in which T is the swell period. For at representative travel distance of 350 km , and an swell period of 13 s . $\tau-5 \mathrm{~h}$, and hence reat time lorecasts for swell conditions can be ohtained from the tix hourly wavelields available from the Burean of

Mctenoligy (13 urcall sil Metcorology 19997). It is suggeseded that input parmeters be taken from the

The corresjonding meximum botom whital velocilies, U, duc for the swell can be calleulated from celle (2) using the formulat

$$
\begin{equation*}
I=\pi / H / \Gamma \sin \|(k h) \tag{141}
\end{equation*}
$$

in whict h is the waller depth and h is llow Watemumber at the swell. Hhach salt be aletermined From the inporeximate formetia (Fenton 1990)

$$
h=\frac{4 \pi}{4}\left(\operatorname{lon}\left(\frac{2 \pi}{2} \sqrt{\frac{11}{11}} \begin{array}{l}
2 \tag{151}
\end{array}\right)\right.
$$

in which g is the acecoleration due es gravity. The

 previous section ate tepmesmative of the mose
 ato Somla Alaraitian Scal \{Table I\}.

Conclusion

[lons stady user state of the ant wate mondelling to show the propagation of swell into the South Australian Sea. An ahwious application is reas time sivell forccasting for mariners and surfers. The SWAN monlel can be also run lo lonecast the wind wave spectrum generated by local winds hut this is treyond the present soupe.

The intrinsic interest of ewell is jts role in sediment fanspony prokesses at the we hollom, The example of 'Table 1 illustrates that it severe strell event gencrales vary signiticant boutom onhital motion Which resuspends sediment partiches into the water column which may then be transperied by didal and wind driven carrents. In wader in descrite the sediment Iranaport process in coastal ancas it is eswential to detembe the swell climate medrately. The results of this wave staly, dong with developed Aediment renuspunsion towls, will help signifigantly to adyanse the understanding of sediment abd
 within the Sumh Austratian Sea, forp eximphes the Adelaide melropolitan coastline (Wynne 1984) and the mouth of the River Mursiy (17arses 1996). and provicle al liamework for is lathre mandyement (Harhison 109711).

Refercuces.

 Alctatides.
 (itedral Satellite Mhesursments of Wiler Virmant. Wind Specd ind Wave Height. Nempre 294, 529-532.

 Witey liseracterte. New Yirh.

 Fomes stull 34.15 .57.

 (Moryphaid (sin preas)
 Wave finergy and Tombulene Spectra limat the

 127-1.48. (Am, Sue, ('iv. Finers. New York).
 V. F -(196.3) Dirctional Rewnding at Sivell ham Disath

 Friction. Comsmo Bing, 7, 253-251,
 (Sambudat Luiversity Press. Cambridye).

 (Helli Unixemily of Techoukyey, Delli).
 Review - TThe Coast Protection Romil. Senill Nabltalial.
 the Evolurion ol Secan Wive Spectrat due is Botem

A NEW SPECIES OF GALL MIDGE (DIPTERA: CECIDOMYIIDAE) DAMAGING BRANCH SHOOTS OF THE DRYLAND TEA-TREE, MELALEUCA LANCEOLATA (MYRTACEAE)

By Peter Kolesik* \& David E. Peacock \dagger

Abstract

Summary Kolesik, P \& Peacock, D. E. (1999) A new species of gall midge (Diptera: Cecidomyiidae) damaging branch shoots of the dryland tea-tree, Melaleuca lanceolata (Myrtaceae). Trans. R. Soc. S. Aust. 123(3, 115-119, 30 November, 1999. A new species of gall midge, Lopesia quadrata, is described from Melaleuca lanceolata Otto in South Australia. The infested branch shoots are transformed into pine cone-like galls and do not develop further. The larva, pupa, male and female of the new species are described and illustrated. The new gall midge, only the second record of the tribe Lopesiini in Australia, is compared to other known gall midge from Melaleuca spp. Key Words: Diptera, Cecidomyiidae, Melaleuca lanceolata, South Australia.

A NEW SPECIEG OF GAIJ MIDGE (DIPTERA: CECIDONYJIDAE) DAMA(ING HRANCH SHOOTS OF THE DRYLAND TEA-TREF, MELALEUCA LANCEOLATA (MYRTACEAE)

by Piter Komasikis en Davio E. Peacock

Abstract

Summary November. 1964.

Introduction

The drytand lea-Ires, Medeleated Runcrotane Oile (Myotaccac), also known us Moonah or black ca-
 ucourring in Western Australia, South Austalia. Vienoria, New South Wulew and Queenshand (Barlow (1)K6). It grows in various habitats. in South Ausitralia commonly in saline heary clays that are subject to periodic waterlagging. The durable wood is occersionally used it the limber industry and the fowering trecs tre valued by beekeeprers (Cunningham et (ad. 1981).

The atall midere modilies bancts shonts of M. Iancerdabe subsp. fenceolute into galls that resemble piat conch (lig. 1). The galls were collected by she ol Us (DE1) ill Octeher. fyys in the Comrong Nalionul f'ark during as Šouth Austrablan Amimal and Plant Control Commission ecological survey. Althergh the geills were found in low abundance the gall midge call potentially have usevere impaed on tree development becatise it prevents the growth of new lranches.

The new gill midger. to bo attibuted to kolesik, is placed in the genus fopesion and becomes the secornd known Australian species the the tribe Lopesitini, Blong with Australopresia meldhacere Kolesik (1999) that lorms llower galls on Melalenca habmanarawn F. Mucll. ex Miq in Sounta Australial.

[^17]
 Atefulerees homerehem, Arrow markis pupal akin. Sicale tate $=119 \mathrm{~mm}$.

Materials and Methods

Branch galls on Mefatetten lemmentates where conlecked at tue Comonge National t'akk on 5.x. 19y8. The galls were processed in one of two ways. Some were pected upen and the larvale preservad it 70% ethanol. Those remaining were kepl in plastic hags and the larvace were reared to adalts. I'upation took place within the galls. Pancrged adulth were preserved logether with thesil pupal skins in 70% ethanol. Mieroscope monnts of the type-series were prepared according in the lechniape oullined by Kolesik (1995). The type series and ohter material retaimed in 70\% ethathe wether witlo dried galls are deposited in the South Australian Muscum. Adelaide (SAMA): lise Alsbralian National Inseet Collection. Cunherra (ANIC) and the State llerbarium ol Senth Australia. Acletabte (AO), Descriptions ind measurements refor whe folbtypu and paralypes.

 190k: 30, lige 11, 12

Leppender in abente of the supertribe Cecidennyiidi
 vein at its juneture with R_{y}. R_{s} situated beyond the midengeth of \mathbb{K}_{1}, boothed tarsal claws, empudiat shorrer than thats, shert femate postabumbern with hatye certio and lum-sewmented palpi. If in currently
 ank now alao inclades species with sinaple tarsal dawn and at adeded momber of palpal sexments (Ciagne ex Marohary 1993. Gagne \& llibhard 1990) The mest species fies lomeries s.s. jull wharders except the twersegmented palpi, it reduction thel appears independenty in mony penereathed dees mu frecolde placing the aptecies wilhin the wida toncept of the senus.

Lapesia quadrata sp. neiv.

 (13G5 1-16)
 reared by II Koblesik Jomm beancly slowat walls 2,11
 collecied 5.x.1098 by D. F. Peacoch, I214'27 (SAMAT.

 (ANIC) vernce dilta hut emerged 8.x-23.x.1998. larve (SAMA. 1214333. 1 larya (ANIC). collequal Wいた lulotyp

 (A1xyyy26213).

Alule (ligs 2 - 8)

Colour: cyes hlack. licad dark-lomwn, thmonnade and pralpi trown, thorax harek ilorsatly and sed clsablere abdomen with sclerotised parts bown and unsolerobised parts red, genilalia brown, Jeges brewn and yellow.

Head: Antemat scape slighly Iomee than wide: prodicel spheroid: flagelfomeres 12 it number. binodal. wath ence circumfila on basal mate. (lwa ion distal, circumfilar kops mot reathing the next destad cireunbilum, nowes with spuese, shore setulac, lates lagedtomere with shatl, upical nipplo. Eyce liace elsosly idjacent excopt al ventex where sparsere bye

Palpil iwo-segmented. segmuntatorn weak. Prous
 with of -9 shont setice.
 th. widh $0.9 \mathrm{~mm}\left(15 . \mathrm{K}-(10.5)\right.$) K_{8} varies between bately vintble lo lull strengit vein. Tarsal clawn curved beyond millongith, will shom, wide footh. somporiai less than ball craw lengeth.

Abdunten: Stemum I was siclembised, asebobe. stermites II - VIll with anteriog pain on lrichond
 scallered elsewhere Tergies I - VII with anterior pair of trichoid sensillit. posterion setal mow and sportatie selite elsewhere, tergum VIII In
 sylindrical, with largec rounded, setulose mesebasial folle: genontylus shghtly diperad distally, hent :n distal third, slighely swollon and setulome un labsel third ascome and ridged heyond: dedeagns will several asctume papillice, fonger llan grameroxines. rohush lifpead distally: hypoprext boloned. cuctrlate
 than hypoproxt, each lube with sevorial sutiat. setulone.

Framk (Figs 3 - 12)

Colsur ats in male Ilead: forms with 7 - 8 seloce lathella sach whel 3 - 7 schac; lasellomeres cylimdrisal. with slight restriction at midlengith in
 several smatl, mbereonmedred arehes dibtally, meteldeshore and mpine batsally, unustally lone and depase distilly. Wing lenglt $2.6 \mathrm{~mm}(2,3-2.8, \mathrm{n}=4)$, whilh 1.0 min (0.9 - 1.0). Nixdamen smemunt VIII and IX not sclerorised, setome: fergite VIII consisting of two smat arcals ome on ciach side of tentos, tergunt IX selerotibed, buh selose ovipession shoth, hately
 belose, keveral selace on posteroventral surlisee thick: bypoproct short, robust. with severad selas. selulowe. Otherehameters as if make.

Prou (Fige 1.3. 1.d)

Cobnur: namow ping in anterion pati al antenta

 sne of thee lateral papillide setusco. all setase minute Proboracic spiracte very shorl, ath lome ins wide No darsall ithedumimal spines

/enler (lias 15, 16)

Colour: brange-red. Idenglt $1.5-1.9$ bunt ($n=11$. Ilead: andennas mansablly hroadened basally. powterolitterall aparemes very shopt. No mernal spatula, Terminal segmens. with seversl ambll. :1schose papillats

Figg 2-8. Male of Leppesiat duadratusp. nov. Fig. 2. Head in frontal view. Fig. 3. 1atht three flagellonteres. Fig. 4. Sixth Dagelonere, [ig, 5. First tarsomere. IFig. 6. Tarsal chaw and empodium. Figg, 7. Genitalia in dorsal view, Fig. 8, Wing. Scale batrs $=100 \mu \mathrm{~m} 2,3,7: 50 \mu \mathrm{~m} 4-60500 \mu \mathrm{~m} 8$.

Figs 9-16. Lopesia quadruta sp- nov. 9-12 female. 13. 14 pupa, 15. 16 larva. Fig. 9. End of abdomen in Jateral view (setation on segment $I X$ and ovipositor onitted). Fig. 10. Oviposithr in lateral view. Fig. 11. Last three flagellomeres. Fig. 12. Sixth flagellomere. Fig. 13. Prothoracie spiracle. Fig, 14. Abterior part in ventral view. Fig. 15, Latst Iwo abduminal segments in dorsal view. Fig. 16. Head in ventral view. Scale bars $=100 \mu \mathrm{~m} 9-16,14,15,50 \mu \mathrm{~m}$ 12. 16: 10 $\mu \mathrm{m} 13$.

Es
Elongate-rvinid, red in colsur,

Entumotery

The nume ofedraki is a Lallin idjective for "4quare", veferring to the shape of the gatl in the lop side view.

 some-like gall (fige. 5), 3-y mon long and 4-6 mini wide, square in the side top views outer leaflels fared and brown in coloure mer ones soli and yellow. green, at sparacly enverged with shate silvery hails.
 closely uppressed lealleds. Pupation tukes piace inside fie gall. At the end of ins development the pupa bilts $2 / \mathrm{s}$ of its body ousside the gall. Sherely alferwards the pupal skis splike open at the dersal part of the therax ind the edelth energes. At the bexinning of October 1998, at the Convong Nationtal Park, the sall midge papulation comsisted matinly of pupake with omly a sumall propurtion of larvad. or 11 exanmed Moluterer lumentana trees, six liad diths of the new specties, The lree with the highest imbestalion was 5 in high will a canopy of 4 m and bure ithut 3 (9) gealls.

Renarks

Pevionsly, fise cecidomyide have been kmon (o)

 Coikne lrom rusethe hud galls on M. guinuwenervia (Cave) S. T. BJuke Λ_{+}comutu Gigne Irom trumpasshaped leaf galls an M. wervow (Lindley) Cheel, and M. vividiftoma Sot ex Giaerncr, La indentha Gugné lon blate gath obleayes of M. yumpurnervie, dh.
deatheme S. T. Blake, Af, wividiflere. M. theank S, T.
 Schauce and I. Wentulum Gagne Irom M apinamennoter and M. piridithru. The tifth species. Austroloperiad melnlencae Kolasik (1999).
 Miy, inlu hard, spherical. Itairy gails.
The mann charater that distinguishes the new species from the otherwise rather diverse species of
 probuberance on the popal bertex which is presem in the sher species but absent in Lopiesian quadratus ap. nov. 'The new species differs from Amatolepersia metatencos', a spocies will which if shares the lype
 the pralpi are twe-segmented. the lalsal clitw has a bread. short tooth the male flagelfoneres are birodad. The gevipusiter is share and barely prourusible, the pupal prothoracic apifack is as leme as wide wide the larva has mis stemal spateda. In A. metulcorrots. the palpi are lour-segmented, the tarsall claw hats as thin, long tooth, the mate flagellomeres are gyncentd, the ovipostor is long and promusible. Use parail prothoracie spiracte is several times fonger than wide and the lerya has at well developed sternal spallula.
Some speciment of the wew species had the addeagus witely upencd at ils terminal end, is transiotmation porssibly catsed by mationg.

Acknouledgments

M. C. OLeary, State Hertarimen of South Australia, courtevesly itemified the host plame We thank R. J. Gagné, Systematic IEntomotogy Laboratory. USDA, Waslaington DC, for commenting on an early dratio of the manuseript.

References

 Alebluthe)

 Walles" (New Sould Willes Cinvernment Primine (Offase Siyducy).

 in Afric: Inserim Mumi"? 77-124
 miders (Dipleral C'ccidontyidac) lrom sublertansan mern

Six apecios bt gill midac (Dipteris: Cecidumvindach Cam

 inoulf Australiat. J. Aruse eff. Sirk, 34. 147-152.

 (Alymatite) Thms. R. Sis'. S. Als. 123, 31-36.

TRANSACTIONS OF THE

ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

VOL. 123, PART 4

OBSERVATIONS OF SOME NEMATODES FROM KANGAROO ISLAND, SOUTH AUSTRALIA, INCLUDING THE DESCRIPTION OF A NEW SPECIES, HEMICYCLIOPHORA FLUVIALIS (TYLENCHIDA: HEMICYCLIOPHORIDAE), FROM ROCKY RIVER

BY ALAN F. BIRD*

Abstract

Summary Bird, A. F. (1999) Observations of some nematodes from Kangaroo Island, South Australia, including the description of a new species, Hemicycliophora fluvialis (Tylenchida: Hemicycliophoridae), from Rocky River. Trans. R. Soc. S. Aust. 123(4), 121-131, 30 November, 1999. A new species of Hemicycliophora De Man, 1921 is described from Rocky River which runs through the Flinders Chase National Park on Kangaroo Island. The morphology of the new species, Hemicycliophora fluvialis, is compared with that of four mainland South Australian species of this genus. It resembles H. charlestoni Reay, 1984 more closely than the other South Australian species. Key Words: Hemicycliophora fluvialis sp . nov., Eutobrilus heptapapillatus, Hemicriconemoides minor, Rocky River, Kangaroo Island, nematodes, morphology, measurements.

OBSIR RATIOAS OF SOME NLAAATODES FRON KAVGAROO ISLAND, SOLTHAUSTRALJA, INCLIDING THE DESCRIPTION OF A NEW SPECIES, HEMIC ECLIOPIORA FIUHABSS (TILENCHIDA: HEMICYCLIOPIORIDAE), FROM ROCKY RIVER

hy AI.ANH:Blkl)

Abstract

Summary

Intronduction

Rochy Rivaris ance of the more pristane rivers or vicames an Kangaroo Istanal ramming as il deres.

 microfatmat hak now hecor studical on compared with maniand species. Katogtow, inand is thought to have hean separated from the mainand for abous 4, 500 years (Lallyen 1979) and stomb divergence firmo the mabmatad pupulatmons might be expected.
In this paper the lemic composition of the water
 farm lands is compared wilh lial Jrom Rencky lkiter. Measurements sf sume free-living and plant parasitic genatiodes atte bade and compared with related manland species. These redationshipe are discussed amd at hew speccien is deseribed.

Miatcrials and Methods

Sifis

Soil and water samples were collected from the Renchy River site (1) (35" $57^{\circ} \mathrm{S}$. $1.36^{\circ} 42^{\circ} \mathrm{E}$) on (wo occasions: firstly on 3 Junce 1993 and secondly, tour yearn later ou 5 Oetoher 1947 . On the firs nechasion samples were sullected from abor rivers on Kangarok 1slatul (Tgg. I) loreongrarison. Thesesites, in onder of increansing salimty. were (2) Stunsail

[^18][3uom River, cesllactal on the wesward sude of the
 Harsied River. collected on the seawand side of the bridgencrosio the river bit the South Comse RU, (7) bleanor River, bullected close to the hridge incomso He riverton the South Cobst Izd. (5) Chapman River: sellected on the landward side of Willoushhy Rad and
 the hridge al the rownatrip?

Witer samples: were filtered through at $0.2 \mu \mathrm{~mm}$ memberane lifter and moned in serile serew-eapped bouldes prior to sundyses of major soluthe fons in dencrited previously (Bird I リ95), Suil simples taken adjacent to the river wsine 54.7 coll dianter conct were treated in is misting mashine as atescribed by
 suil it the riven bdges Were tho edolled using the eorer but this buth wats mixed swith water and sieved blorongh a range of sieves ats dextioned by Bird (1999) The 1943 samplen were conllected liroughtull athe intand by bue author tosisted by H. R. I3. Juck and the 1997 samples From Rocky River by A. McK Meffegh ascisted by M. McHugh.

Soil troni Kyena Comervition IEark, supplied by li. Rewy and containing Hemicatoonthmades mimor. wats also placed in the misting mbichine and the liv ing nemadeden extracted and photograpled.

Treathnent of mentrudes

Liviug menatheres under a dissecting microscope were picked From the contancss infer which they had

Fig. 1. Map showing collecting sites with rivers listed in order of increasing salinity (see Table 1). (1) = Rocky. (2) = Stunsail Boom. (3) = Harriet. (4) = Eleanor. (5) = Chapman. (6) $=$ Cygnet.
been spatated and fixed in hus $B^{3} \Lambda$ at 1 betore heons proneessed to unhydrous glyecon us deserobed previ－ ously（Biral（My5）．Both living ind lixed nematondes Here pholsgraphed using a Vanox Nable research mercroscope cquipped wills bright fied and interfer－ ence combtrast（Nomarakil optics with IVford Delta dur）fillom．

The type scries has lesen deposited in the South Australian Muscum，Ackelade（SAMA）。 CSIRO Division ol Entomolegy－Cmbera ACT（ $\triangle \mathrm{NIC}$ ）anl the Waite losdituse Nematude Cullectorn．Universty al＇Alelaide（WINC＇）
De Mans：indices and ubhrevialions firs moppha－ hagicall lerminulngy are ab linlows．
is：｜ndy lengit \div maximum budy diameter：b：boly

 af specomens： \mathbb{R} ：mumber al budy alnomes：RIS：

 and bimb anmbe aller secretory－excretory（ $\mathrm{S}-\mathrm{E}$ ）porto

 ．annules beeween lathist dixe and base ol sylet knobs：
 munher of emmoles belween volvat and anns：Vis： distance of valua from anterion chal $\times 100) \div 1.8$ VL． datanee lectweso volva and tail tip：VI／Voz ：diatance

Results

Nose uf the wather samples Were sollested in mide willes when all the speinges and fivers had bombing Waller，Neverthelest，sumbe whe rivers，such as the C＇yenet and C＇hapman（Fig．I．Thale I
 hate mome salciom，matenestan，phosphoras and sell－ phat than the wher rivcre listed，paticularly Rokoky

River which runs throughtue its tengh in the FJinders Chase Natomal Latk and so is not expmoed to aggricultural eflluentm．If in pleasing bothe（Tahke 1）that over the foum－yen proded from 1993． 1907 there was an increase in the fonic compoments in its water，in fact，there appears to have hem it sligh decreane，pussibly dace th the difference in the tine ol horar．

Nemmurdes

Hemicycliophura／luvialis sp，wov．
（H1 3 S $2-5$ ）
 ＋2＊E）．woll．A．F．Hid．3．vi．1993．SAMA AIRC 2队リア．
 AHC＇28115．ANIC 700）．WINC 2022．

 Bitce makhing on cither side ol marow bated of gromse running umbohen through bentre of cach ambule．No breaks on moved in amolations．No later all lines appparent．Jip region combinuens will hody
 annades，the third being lirgest，Siglet lome，batial
 cavity．Mcelian bult．inthoms and termonal bulb ut pharyon distike Secretry－excretery（S－E）powe al junction of pharyox and intestine on slighty merion＇． Genilal hranch single．inuseretched．Spermathecal ovall，contaning sperm in all specimens examined． Vulval lips intesular．Past－vulval region eytindtical．
 Alsus ohscure and net whersed．

Fimule（Mcasucments of holotype）（Figs 2－5）
Lenglb $1104 \mu m ; a=32 ; h=5.7 ; V=86: V 1 .=1.36$ f1m：VL／VB $=4.3$ ；stylet 110 人1m；m $=8(1: R=351$ ：

Joule	सiver	Na	$1]$	8	M	K	P	S	＂1泩	－ HSS
$3 \text { Jume 10y. }$	Stursiil Bu＊ット	264	4.38	12	76	5.5	＜11．3	12	1.3	（1）以
	Ifarrict	13.16	．3161）	（14）	181	59	11.3	118	11.6	11．104
	ticumar	1930	． 33711	167	20.5	27	01． 3	79.	51.8	0.0 .5
－－	Cluipmatry	3614	4.30	4， S_{1}	． 580	S2	0.5	334	17.8	1.10
	Cygner	4750	8．970）	5.40	（6）	． 37	3.18	257	22.4	1.501
	Rucky	87	$1+8$	2.8	11	$\underline{9}$	E1）．5	4	（1）．45	12.10 .3
Sscturer 1497	－Rocky	62，6	111	2.9	7.7	25	11.1	3.11	11.45	11.11 .3

[^19]

 and there is mevidente of lateral limes.

 the dixtine median boith, isthnus and lemmimal bulb.

Parmype fomales（Mcasurements Table 2）

Etymologs

The name is derived from L．flatiafis，of or belong－ inge（e）a river．

Diagheresir and relationships

Hemirveliophara jhujabis sp．nov，resembles H. charfostomi Reay， $198+$ but diflers in having its vulval closer to the tail tip．fewer annules hetween its vulva and tail dip，no observable latesal lines，unbroken midi－annmar transverse bands or growes and a lower VL／VIS ratio（［igs 3，4，6．Table 2）．Hemicyefophored flrirestis differs from H ．Riborolis Reay，1984 in hav－ ing as shorter distance between its vulval and tail tip． no sobervable lateral lines．unbroken mid－anmular transverse bands or grouves．lewer annules between its S－E pore and the lip of its head，a lower VLNB ration and in the absence of the characteristic vulval Fold of the outer collicle found in most／f．Firoralis （Figss 3．4，7．Tahbe 2）（Reay 1984；Ve © Cerater 11997）．The new species differs from H ．wothered

Reay， 1984 in having a much larger stylet（ $114 \mu \mathrm{~m}$ compared with $82 \mu \mathrm{~m}$ ），more annules between its vulva and tail tip and a higher VI＿／VB ratio（Table 2） and from H_{+}ebledyphi Reay，l984 in having th lower De Man＇s index b，al larger stylet（ $114 \mu \mathrm{~m}$ compared wilh $10+\mu \mathrm{m})$ ，more annules，a higher $\mathrm{K}_{\mathrm{c} \text { ，}}$ ， RV and VI．／VA ratio（Table 2）．

Entohrilus haptapapillatus（Joubert \＆H Heyns，1979） Tatolikhin．1981
（FICBS 8－10），Table 3）

Material examinterl

 coll．A．F．Bird，3，vi．1993．SAMA AHC 28116． ANIC 701．WINC 2（12．3．

Moravement：Table 3

Relatonships cand remarks

Eutobrifur frepapapillanss is one of the mont com－ mon nematode intabitants at the water＂s edge al

 （．111世ハー）

TABIE 2. Comparisons of measurments of females of Hemicyeliophora fluvialis sp. nov from Rocky River (k'l) with those puhlished for owher species from Senth Australia.

l'ante measured (ann)	H. fluvialis$n=10$			$\begin{gathered} \text { H. charlestomi } \\ \text { (Reay 1984) } \\ \text { 11-12 } \end{gathered}$		$\begin{gathered} \text { H. Jitoralis } \\ \text { (Reay 1984) } \\ n=52 \end{gathered}$		H. wadred + (Reay 19st)$n=27$		H. cucahym (Rcay 198.4) $n=11$	
	Range	Mcan		Range	Mean	Range	Mcan	Range	Mean	Range	Mean
Body length (L)	974-1278	1096	± 83	1000-1420	1222	850.1380	1114	870-1130	1007	870-120)	1050
De Mans inder a	29-39	34	± 4	*1 nd		nd		nd		nd	
- b	5.2-5.9	5.5	± 0.3	$5.3 \cdot 6.5$	6.0	4.7-6.6	5.5	5.1-6.3	5.9	5.4-6.7	6.2
Vther	85-88	86.2	± 1.0	82-87	84	82-86	8.4	$87-90$	89	$8(-84)$	87
VL	120-160	138	± 13	159-220	195	156-200	178	101-131	111	116-1.48	1.37
Stylet length	107-118	114	± 4.5	100-120	112	प9+-118	109	$77-88$	82	$97-113$	10.4
m	$79-88$	82	± 3.2	82-84	83	$82-85$	84	79-85	8.3	$83-87$	St
k	279-352	307	± 27	277-316	297	$299-380$	326	267.305	285	$190-221$	20%
$\mathrm{Rex}^{\text {c }}$	50-54	52	± 1.5	49-58	53	(6)-73	66	49-57	53	$34-44$	41
$\mathrm{R}_{\text {cr }}$	25-33	30	± 2.6	nd		nd		nd		nd	
$\mathrm{R}_{\text {pharynx ((0es) }}$	48.58	52	± 3.4	nd		nd		nd		nd	
RV	49-59	53	± 3.2	54-65	60	48-69	55	31-44	36	30-37	3.3
VL/VB	4.0-4.8	4.4	± 0.3	4.5-6.3	5.2	$4.8-7.3$	5.7	3.1-3.9	3.5	3.2-4.2	3.7

${ }^{*} \mathrm{nd}=$ not determined.

TAbs. 3. Comparisons of monswemems of males of Eutobrilus heptapapillatus from Kocky River (KI) with ofher populations.

Parts measured ($\mu \mathrm{m}$)	Rocky River$n=7$		South Africa (Swart \& Heyns 1988) $\mathrm{n}=7$		Lake Albert (Bird 1095) $n=5$		Lake Alexandrina (Bird 1995) $11=5$	
	Range	Mean SD	Range	Mean	Range	Mean	Range	Mean
Body length (L)	1700)-2136	1952 ± 185	1550-2120	1920)	1873-2000	1931	18100.1990	1840
Max, body width	45-68	55 ± 7	Find	53	64-77	71	$60-70$	06
Pharynx (oes) length	$303 \cdot 361$	3.31 ± 24	nd	369	305-327	311	270-315	290
Tail Jenath	387.269	199 ± 7	$211-3010$	24	160-191	179	1.10192	17.3
Body widthat anus	30-34	33 ± 1	nd	38	$36-41$	38	.32-4	38
Spicule	50-57	$5+ \pm 3$	48-57	53	50-55	54	52.56	53
Gubernaculum	27.33	30 ± 2	35-39	37	23-36	31	.30-36	33
De Man's index a	3140	36 ± 3	32-41	36	$26-30$	27	$28-31$	29
b	5.2-6.2	5.9 ± 0.3	5.1-5.3	5.2	5.7-6.6,	6.2	6.1-7.0	6.11
. $¢$	8.5-10.5	9.8 ± 1	6. $2-8.8$	7.9	10.4-11.6	10.8	9.9-12.9	11.1
\cdots -	$5.7-6.7$	6.1 ± 0.3	$5.8-8.0$	6.5	4.4-5.3	4.7	+.4-4.8	4.6
${ }^{* \prime}$ Ctat dist. $S_{5}-\mathrm{S}_{4}$	19-24,	22 ± 2	16-18	17.4	16-23	20	17-22	14

[^20]

8

Fig. 8. Montage of whole Eutobrilus heptapapillans of showing its overall thinner appearance than the same species from the mainland lakes (Table 3).
Fig, 9. Tail region of nematode shown in lijg. 8 at a higher magnification and showing the supplenentary ongans inumberd arrows).
Fig. 10. Head region of nematode showa in Fig. 8 at a higher magnification and showing the pharynx and associated glands (arrows).

Fip. 11. Living Hemicricomemnides minor of showing shane and size. Note copulatory spicule (arrow) aud ahmence of in buccal stydet.

 the off set heads (h) (cephatie amules) and the buccal stylen (h). These maintand necimens haye identieal meatsurements to the Rochy River poputation (Table +1.

Rocky River, making up almosk 40% of the nemat lonte poptulion of the samples collectal. This F: hepmenpillatus populalion appears lo he morphologe ically intermediate between the South African popu-
 Allown and Nexandrina in South Australia (Bird 1945), The population tron Kingaros Ishoud resemhen its South Alrican counterpart in maximum body width and De Man's jndices a and c° and is thonner than the populations from the South Austrilian lakes (Fig. \&, Table , 7). It resembles the lake populations in the size of the gubernaculum and percentage distance between the supplementary organs S_{5} and S_{4} (fig. 9, Thate 3). The Kingaroo Istand population is intermediate between the South African and South Austratim Jahes popubations in pharymx lenglt (Fig. 10, "Fible 3), tail length and Dc Man's indices band c. It has in narruwer hody width at the level of its anus then any wf the other populations but all the populdlions resemble cach other in body length and spicule size (Thate 3).
The mopphological differencen between the Rucky River popatation of E. haptopapillentas and populations of this speecies from Lakes Alexandrina and Albert may be a reflection of the isolation of Kongaros [sland from the mainland of South Austalia some 4, 500 yeursugo (Lumpert 1979). It is
thonght that prion to separation from the mainland the ancient River Murray ran past the catiern fip of Kungaron Island less thatr 10 km away from it. The subsequent retreating of the river the formation of the istand and the onset of more arid conditions. as indicated by changes in the vegetation, would have subjected the entrilids in Rocky River Io environmental pressute greater than these in the billabonges of the River Murray.

Hemicricememoides minor Brzeshi \& Reay, 1982
(FIGS 1I-IA. Table 4)

Actaerial examined

 $57^{\circ} \mathrm{S}, 136^{\circ} 42^{\circ} \mathrm{E}$) coll. 1 . F. Bird. 3.. vi. 1993. SAMA AICC $2 \not 117 . A N J C$ 702, WINC 2024.

Remarks

Kuitpo Forest near the township of Mcadows and 30 km south of Adelaide is the type locality for llemicricomemoides minor. Howevers this species is widely spread throughout the southern parts of Australia and has been found in virgin karti and matri forests soruth of Manjimup, Western Austradia in forest soil near Cape Jervis. South Australia, in

Parls measured ($\mu \mathrm{mm}$)		Rocky Rivit		Kuitpo Forest (Brzeski ac Reay 1982)		
	Ramge	Mcan	3D	Ranne	Mean	
Bendy longh (1.)	243.383	328.8	± 21.4	240-370	320)	340
De' Mans s inder at	13.6-17.7	15.4	± 1.3	12-15	14	15
\cdots	3.11-3.9	3.3	± 0.3	2.84 .4	3.4	3.3
せ	* nd			14.27	23	26
\checkmark	877.44.4	911	± 21	01.94	92	92
VLJi	1.2-1.5	1.3	± 11.1	$1 \geq-1.5$	1.3	1.5
Stylet	6,3,3-70.0)	(15.3)	± 2.1	56-0.	6.3	615
k	110-127	118	± 4.5	112-125	118	117
RIS $(n=5)$	$3.3-4.1$	3.5	- 11.4	mil	nd	n!
$\mathrm{R}_{\text {si }}$	21.26	25.1	± 0.5	nd	nd	nd
$\mathrm{R}_{\text {pharyand (ens }}$	36-41	38.5	± 1.5	nd	Ind	nd
RV	$9-11$	10.1	± 0.6	111. 13	12	1.3
$\mathrm{Rel}^{\text {c }}$	ind			32-34	37	34
$R_{\text {vill }}$	nid			$2-5$	-1	5
$\mathrm{R}_{\text {af }}$	nd			6.8.	7	7

Fnd = nur determined.

Whaltand adisent for the River Morraly in the

 10 bumborst nean the Helger River，not kom south ut Brantic in Tasmanial（Brawhi \＆Reay 1982：Reaty \＆
 poww becn lisund on kungarex Istand in the suil und ber
 III Roman Rocky Reter，

 parmype demales al＂H．minner fom kidipu Fontal D＇latile 4）stow that dey are remukably similat．

 small nemanale with the uthll lemaile loaving ed elar
 litmoles ane abosul $1 / 2$ nim in lengith．Cricumemands

 in the living mate（Iijg，Wh，Thene nematoder havi－ promounced losedy annules and a dong stylee．＇The

 shealli－like with retrose dmatalions．The bead maty
 secto in the living state（E゙g心 13．14）．The spormathe

 not found in soill form the sample site adjucert to Rochy River althuagh they have beemadescribsed Jizom the Ciranpian Momutains in．Victoria（Resty 战

 Acoluide（Fige 11）．They ate natronver than lemates amblack a buecal stylet．Males have mat heed liound igt many of the siter thom which femates have hew dacolved．

 female speciment moknured from Rexky River （Ladse＋1，Cigures lim De Mans＂s intex ev and $R_{\text {ex－}}$ $\mathbb{R}_{\text {van }}$ und $\mathbb{R}_{\text {anl }}$ arts nol given．Howeven figures for
 Iy lxem detcmemed，we provided．Th alf cases where
 di）the Renty River peppulatisn clowely rexombles the （i）patatye levales al H_{o} mino form Kuitpo forest．in apite of a physical sepamation by sea fors $4.5(x)$ ysum

Discusciom

If in interesting low speculate upon the effeets of

Water legered sebik at the water＂dedge of Rocky
 similar species／poppulations an the manaland of Stholh
 lecked fizan sobl wfiacent to the rever bat ender hatur－ al vegetation whe indintinguiblahk limen is
 likely thal the ensirsmment of the river hat in Racky River whieh dries－up into pook if the summer and the site usp river from the resid bridge which doles dul
 fluctate inceit more lhate lhat uf the forlorgan of taks： Altoat und Alexandina where other propulations aif
 जresses of dryine and Wetlines ctald explain why．for
 have aunce sumilur morphological characterimbiss．an

 ple of this cenr he found it the madx imum widths．Thes
 that of the specimens form Reckiy River and

 if the kengarco faland and Stentr Alrican paysula－ tions have greater cotpability of strexing destectafon that tike lakes proprlations．
 minur was culbected．wider native veselation it－bail
 ly ats great as at the ripretian sime and avould hes simi far th the various hamband silew where H ，minn has been collected．This may accersint for their close mosir pholonical simikuties（ lable t）．

Ahhough is comsiderahle amonnm wi revearsh hals
 momy worheris（Tyler at at．1474）there ham bean lit
 water mematados，Howstcr，hey ate very much at
 trat camponent of why atudies on binvirommental hiblagy and hiodiversily．

Scknowledgments

I thank J．Rird for condractive criticism of How आabuscriot．CStter Limd abd Water peovideal itcemmodtation，Faceibitich und the expertise of A ． Beecta（water alnalyges），C，E．Rinder（mappingis）and the lilarary stafie．I should like to thant Re di litlis （Dastrict Ramer Kallagarm Intand W）For permisaion
 Park．This resarch was made possible lay at gran

References

Brkl. A. F. (Jy95) Studies on Ethobrilus heptapapillatus (Nematoda: Tobrilidacs the predominant nematode inhabiting the bottoms of Lakes Albert and Alexandrina, Soult Australia, Tram, R. Soce. S. Aust, 119, 133-141. (1999) A enmparison of some soil microinvertehrate assemblages in Southern Australia. Ilid. 123, 69-75,
 minor sp. n. with observations on four other species of the senus (Nematoda: Criconematidac). Revue Nematol. 5, 327-334.
1.ampirt, R. J. (1979) Aborigines, pp. 81-89 In Tyler, M. J... Twidale, C. R. \& Linge, I, K. (Eds) "Natural History of Kangaroo Island" (Royal Socicty of South Australia. Adelaide).
Reay. I: (1984) Ilant nemanodes from Australia: Sudies un Ifemicycliophoridae (Nematoda: Tylenchida). Revue Nematel. 7. 367-384.
—— © Coharan , R. C. (1986) Australlan plant nematodes: two new species of Hemicriconemoides

Clitwood \& Birchfield, 1957 with notes on IV. minor Brzeshi \& Reay, 1982 and H. subrici (Yeates, 1973) Raski, 1975 (Nematodat Criconematidae). Ihid. 9, 325. 336.

Swart, A. \& Heyns. J. (1988) Redescription of Eutohrilus heptapapillaths (Joubert \& Heyns, 1979) Tsalolikhin, 1981 will notes on its morphology and a possible excretory system (Nematoda: Tobrilidie). Phytophylactica 20. 161-168.
Tyifr, M, J., Twinale, C. R, \& Ling, J. K. (Eds) (1979) "Nalural History of Kangaroo Island" (Royal Society of South Ausitralia. Adelaide).
Yrates. G. W. \& Bird, A. F. (1994) Some obvervations on the influence of agricultural practices on the nematode faunae of some South Australian soils. Fitudum. (tpp). Nematol. 17. 133-145.
YE., W. \& Geraert, E. (1997) Plant parasitic nematoden from the Solomon lslands with a description of Boleodorus solomonensis. Nematolegica 43, 431454.

A NEW SPECIES OF EIMERIA (APICOMPLEXA: EIMERIIDAE) FROM THE STICK-NEST RAT, LEPORILLUS CONDITOR (RODENTIA: MURIDAE)

By Michael G. O'Callaghan* \& Peter J. O'Donoghue \dagger

Abstract

Summary O'Callaghan, M. G. \& O'Donoghue, P. J. (1999) A new species of Eimeria (Apicomplexa: Eimeriidae) from the stick-nest rat, Leporillus conditor (Rodentia: Muridae). Trans, R. Soc. S. Aust. (1999) 123(4), 133-135, 30 November, 1999. A new species of Eimeria is described from five of eight (62.5%) stick-nest rats, Leporillus conditor from South Australia. Sporulated oocysts of Eimeria leporilli sp. nov. are ovoidal to sub-spheroidal, $19.3 \times 15.7 \mu \mathrm{~m}$, with a double oocyst wall, no micropyle, no oocyst residuum, with four ellipsoidal sporocysts $9.4 \times 6.2 \mu \mathrm{~m}$, slightly pointed at one end with a knob-like Steida body, each containing two sporozoites. Attempts to infect laboratory rats, Rattus norvegicus, with sporulated oocysts from stick-nest rats were unsuccessful. Key Words: Coccidia, Eimeria, Eimeria leporilli sp. nov., Rodentia, Muridae, Leporillus conditor, stick-nest rat, Australia.

A NEW SPECIES OF EIMERIA (APICOMPLEXA: ISIMERIIDAE) FROMT THE STICK.NEST RAT, LEPORIIIUS CONDITOR (RODENTIA: MURIDAE)

Abstract

Summary Nowember 1409. laboratory gals. Remms forvesicus; with sporulated mocysin from stich-nesi rats were unsuccessful.

 rat. Austrollia.

Introduction

Entericencecidia hiale nus previnusly been reported in the wick-ne:al rat. Lepurillms crondimer iSluth. 1858). Indeed, all previonis records of efomeriial cocciblia in rodems lion Australith have been
 mascerles hel. Mackernas 1958). A novel timertiasp. wash diseovered in 1 .o comatior and jo described here as new. The valistity and hast specificity ot the fimetios sp, was eximmined by aftemped crossmansmission ion Ratures mpregieus.

Materials and Methods

fousat samples were wolfected from eight sticto nest rats from liranklin Iffund, South Australia liant 1968 so 1997. Two samples were colleded fixnon animals which were sotesequently transterved from
 coteny it the Monatior Frand foucility, Soum Ausiralia. Fuccal samplety were stored at room
 pohassionr dichromate to allow oocysts to sporulate-Suh-sumples were mixed in saturated sucrose sollation (S.C. 133) and oocybls rectovered by bentritugal fotation, Oewshas were exammind mberoscopically using an bil imimersion 100x

[^21]objective with a Nomatshi dillerential interference contrast system and were measured usimg on byepicte graticule ealihrated with an Olympus onjective miorontere Meastrements in the lext are given in micrometren $(\mu \mathrm{m})$. incun \pm standat deviation witl range in parentheses.

A phototype of the sporutated oucyse hath been deposided in the US Nationat Meseum, Bellesville Maryland, I'aramite Collection (USNPC No. 88842).

Cores.fremsmivion vads

 subbed Sprague-Dawley rats. Rultus nortegiots Berkenhout 1769. were oblaned from the Institnte ol Medical and Velerinary Science. Adelitide: Animals were housed in a plastic edere with pre-steriliked bothling and accessed water and blerilized commercial rodent pellets at lihitm. Both were expessed to nadutal light/alark and temperaltore pattonis (av.min.. L7. C. ay. mux. $21^{\circ} \mathrm{C}$) innd isulated from other rodents. One sul was inoculated wilh 5,000 and the wher with 10,000 sporulated oneysts baryested fromi laree stick-nest rats by centrifugal Ifolation in saturated sucrone solution, Washed three fimes in tap water, counted in a foamocyloneter and given orally using a syringe lilled will plastic tubing. These ancysts were havested from fiecall sampley enllected in July. Jyyl and were stored at
 dichronute for less lhan 82 days. Faceal samples were coflected before incoculation io ensure the inoculated animath were bol passthe obocysts. Fonlowing inotulation. Face: samples were colléled daity and examined lor oncyste lor 24 days.

Results

Cocecidial oocysts were detected in faeces from (ive of eight (62.5%) stick-mest rats examined. The morphologicas configuration of the oocysts conformed to those of the genus Eimerio in that they contained four sporocysts per oocyst and two sporomotes per spororyst. The coccidian species detected was considered new on the basis of morphological characteristics, noyel host species and apparent host specilicity is infections could not be extablished in \boldsymbol{R}. nonvegions.

Eimeria leporilli sp. nov.
 (FIGS 1-3)

Material examimed

Oncysls in fucces fiom 5 Leporithes condifor. 4 originating liom Franklin Island, SA, (32 $27^{\circ} \mathrm{S}$. $133^{\circ} 40^{\prime}$ E). 2. vi. 1988. 21. vi. 1988.27 . vi 1988. 14. vii.1997. and 1 from captive animals transferred from Framklin Island to Munario. SA (35 $07^{\circ} \mathrm{S}$. $130^{\circ}\left(199^{\circ}\right.$ E) 27. v8i. 1997. USNPC No. 88842.

Description

Oocysis owoidal or subspheroidal, 19.3 ± 2.3 (1725) $\times 15.7 \pm 1.6(11.5-19)(11=100):$ mean length:width ratio 1.2; oocyst wall bi-lliyered, outer layer colourless, smooth, 1.0 thick: inner bayer colourless. 0.6 thick; micropyle and aocyst residuum absent; predominantly l, but up to 5 refractile polar gramules present; 4 ellipsoidal sporocysts $9.4 \pm 1.25(7.3-13) \times 6.2 \pm 0.71(4.2$ 8.2) $(\mathrm{n}=100)$: slightly printed at one end with al
conspicuols knob-like Steida hody: sub-Steida hody absent; 2 sporozoites filling sporocyst: large refractile globule 2.4-3.2 in diameter at posterion end; ellipsoidal sporocyst residumm, 2.4 jn diameter att equator of sporecyst, composed ais an argeregation of numerons, granules.

Type host

Leporillus combitor (Siunt. 1848) Stick-nest rat.

Lecolios

Franklin Istand, $S \wedge\left(32^{\circ} 27^{\circ} \mathrm{S}, 133^{\circ} 40^{\circ} \mathrm{E}\right)$.
lacedion in hasl
Oocysts in faeces:

Entmolegy

Specific name derived from the generic natme of the host.

Corss-fromsmission study

Ofer the 24 day observalion period, coccidial were mot recovered from the facees of lwo k, morvesicts inoculated with sporulated oocysts irom stick-nest rats.

Discussion

Coccidia of the genus Eimeria are lypically host specific; it is rate for these parasites to inlect more than one host and many species are known only by the morphology of the oocysts and by the identity of the hosi in which they are found (Joyner 1982). Upton eq af. (1992) suggested that bome rodent

Fig. 1. Eimeria leporilli spnov. from captive stick-nest rat - sporulated oocyst. Scale bar $=10 \mu \mathrm{~m}$,
Fig. 2. d. leporilli sp. now. from slick-nest rat on Franklin Istand - sporulated wocyst. Scule bar $=10 \mu \mathrm{~m}$.

Fis 3. Componitu line drawing of sporulated oncyst of E. leperilli. Scale har $=10 \mu \mathrm{~m}$.

Lexcidia are less specilit in their host range and may be able to infect diflerent, usually phylogenetically related. species. In this study the Eimeria sp. derected in stick-nest rats did not establish an infection in experimentally inoculated R, morvegicus. The inahitity to infect R. noresegicus confirms the dispinctness from coccidia previously reported in rodenfs in Australial (Mickertas 1958). However, the host range of coccidian species from native rodents. remains to be determined by further compretensive coprological and cros: transmission studies. In addition. hiskological studies on gut sections atre requiral to determine the endogentous developmental cycles and for indicate the potemial pruthogenicity of infections.

Eimeria leporillisp. nov. exhihited variation in oocyst and sporocyst size. up 60 40\% and 43% respectively in each imimal. Considerable variation in oocyst and sporocyst size is hown to nocur for many Eimerid specien, some varying as much as 40\% (Duszynski 1971). In the absence of other distinguishing characteristics, the coccidia described here are considered to be a single species with considerable sise variation in the oncyst and sporocyst.

Acknowledgment

We thank S . Comaghty for providing samples from the captive animals.

References

 ancysus during patency. J, Parmsited. 57, $948-952$.
Jomm'r. L. P. (1982) I lout and site specilicity pp. 35-57 /m Long, P. L. (Ed.) "The biolngy of the coccidia" (Ldward Arnold, Losidon).
Mackrrbas. M. J. (1958) Catulogue of Australian mammals and their recorded internal parasites: Part II . Eulheria. Proc, Limn. Suc, N. S. W. 83, 126-14.3.
 Duszranski. D. W. \& Wasu. C.D. (1992) CromsIransmission studies with Eimerion arizumensis-likt orsysts (Apicomplexa) in New World rodents al the generat Baiomys, Nestoma, Onchomys, Permysars, and Redhrodontemys (Muridat) d. Parasizet. 78, Whto -118.

CLOACINIDAE (NEMATODA: STRONGYLOIDEA) INCLUDING A NEW SPECIES DORCOPSINEMA SIMILE, FROM
 DORCOPSULUS VANHEURNI (MARSUPIALIA: MACROPODIDAE) FROM PAPUA NEW GUINEA

By L. R. SMALES*

Abstract

Summary Smales, L. R. (1999) Cloacinidae (Nematoda: Strongyloidea) including a new speces, Dorcopsinema simile, from Dorcopsulus vanheurni (Marsupialia; Macropodidae) from Papua New Guinea. Trans. R. Soc. S. Aust. 123(4), 137-142, 30 November, 1999.

Paralabiostrongylus bicollaris, Dorcopsistrongylus labiacarinatus, Coronostrongylus coronatus and Macropostrongylus sp . are recorded from the stomach of the lesser forest wallaby Dorcopsulus vanheurni from Doido in Papua New Guinea. Key Words: Dorcopsulus vanheurni, Dorcopsinema, nematodes, Cloacinidae, marsupials, Australia, Papua New Guinea.

CLOACINIDAE TNEMATODA: STRONGYLOIDEAI INCLUDING A NEW SPECIES. DORCOPSINEMA SIMILE. FROM DORCOPSULUS VINHEURNI (MARSUPIALIA: MACROPODIDAE) FROM PAPUA NEW GUINEA

by L. K, Sutarlis

Abstract

Summary 123(6). 1.37-1.22. 30 Nusember. 1000).

 Now rilumati.

Intronduction

The genme Dorersjuincoma Mawsoll. 1477 comprixes suramydoid menatoders of the Janity

 Sichangel, I8.39 and bereat wallathes Domonpais

 Hse" related genus wh lonest wallabies Dempopanfors
 (Thumtas. 1922) (sec sipratl of al. By91). Four

 Giluneat in 1484 by R. Speare were lound on have is diverse commomity of stomach nenatodes. A new
 New luss rexuraly fors uthar spectics wl the
 examined eme giverp holdow and new specice sty the
 clach wer

Natcrials and Mtethords

 liseal in loci formatin in the fiedd. Suhsequently the

[^22]contents were wablued in water dis remove the formalin, nembetweh were removed, wathed again and atored in 7 ored ehamol. Worms were sedeated in lactophemal prier to exandination. Specinient from

 unkess btherwise stated. Were made using ant wentar michoncter and itre prexcoted ins the range fiollowed
 with the sits of at thwing lube Host natmes linlow Flameny (19y5). Nemanode classilization and tsiminology lislow Beveridge (1987). All makertial Ins been dejomited in fle Souls Ausuralith Maseum, AdchatikelSAMA).

Re"sillt

 Johbuson de Mawstht, 1939 (Cloweinimac (")rmostromgytincas Beverides, 198(o) liom four
 Yorke \& Maplestont: 1020 (Clesacminte:

 bicwd. 3. Cephalace end. lip-like elements not extended (lateral vicw). 4. Spicule. amerior end. S. Oesophago-intentimal punction (lateral view). 6. Cephalic end, opheal section (dernal view). 7. Cephalic end, optical section (dateral view), 8. Guhernakum (ventral view), 9. foderror end. Jemale (lateral view). 10. Cephalic end (on firee tiew). 11. Spicule dip (laterall view), 12. Ovejector (yentral view), 13. Female tail ij). I4. Dearid, 15, Gental cone (dursal siews. Scalen bam =

Percopsimetme simile sp．now．

（FIG！1－22）
7ypur ：Holotype os allotype paratypus 54 of
 （Thomas．1922）．Duidu（ $6^{\circ} 33^{\circ} \mathrm{S}$ ． $\left.144^{\prime \prime} 56^{\circ} \mathrm{E}\right)$ ． Chimbur Proviace，Bapua Now Giuines．sull．R， Speave；17．$v_{1} 198+$ SAMAAHC 31320，A1KC 31327， and AllC： 31328 respectively．

DCwファロ＂••

Relatively large worms；herly with line transverse culturat striations．Cephatic extremity with wide．

Welladefined lleshy collit bearing twormphids，weh on dome－like progection，and four cephalic pupillac： pertionall conticle firming eight selembed lip－lihe processes arising wilhin buccal capsule．Buccal capsule short，eylimdrical，walls well selerohised． within region of collar．Desophagus long，clatinc． athout 20% body Jengit．Ocsuphage－intestanal divertiedtai small lenglh of diverticula Jens than maximum whidh of ocrophagus．

Mall

Lenglt 16 － 24 （20）mm，midximum width 605 1105 （760）．Buccial capsule $60 \quad 85$ 175）wide $\times 75$ －100）（88）deep，Oesophagus 3．500－4．760（4．110） long Nerve rine $580 \quad 735$（ 665 ）．uleirids $735-460$
 （1020）from imterion end．Bursal lobere not separate：
dorsisl lobe fongest, ventrall lobes shomest. Ventrovemesal and ventrolateral fays apposed.「"aching margin ol hursat externelateral rioy divergent mat reachong margin of hasas: modiotaceal and posterolateral rays apposed. reaching marein of bursn: externodorsal pry drising shase folateral trtunk, not reachang anaryin ol bursa: dorsabl lrank sonu; hifurcating af ahout $1 / 3$ its length. rays reaching margine of harsa: cach ray branching anteriar ta level al' bifurcation. lateral hranchleds nom reaching margin of bursa. Spicules 1085 - 2055 (1850) lang. yta budy kenglin; anterior extremities Fresularly hnobbed: diatal lipsis slightly surved. finsely striated bresed alate not externding to spicule dips. Gesitial sone promiment anterion lijs larger conisal. extenaling atomos (e) Jimit of ventral loben: penterner lip stratler with 3 pairs prosteringly divected appendages, hore cential projection. Cabernaculun

1 nimile

 Thal 570 - $1150(1090$) lontes ending in pointed lip: vulva immediately tmerior for ams. $2175-2550$
 - d70) (4100 lang: vessithule muscullata about sames

 lons.

Recbatrhs

 dharapsis premtentarly in havinge sigh peri-aral lip
 coultay ind in the lengith of the westophagles antal
 pomitions of the nerse rione and dernde the berve

737 companed will 7.37 48.5). This semulls iin the dernd being posterion th the nerve ring rather thint anterior to it am in D. ehforopssiv. Ohber differences between the two phecies the that lige eqge of 10 . vimite ate larger (120) \& (68.5) than llowse of 0 .
 whorter tails (970 -1190 compared with 1]20-14.30)
 Than /D. chmeropsis. Dureogsementur simbe hats three paits of ispendages on the pesterior lip of the yenital erone and the lateral brancthter of the donsal ray arise slightly amterior lo its bilureation from the
 appordedgey on the posterior lip of the assmital seme and the lateral hasachteles of the dorsist rity urise rilightly poskerior in its hifureation fitm the dorsal
 may scem stizthe they are eomsistem and ank satioicient 10 diticrendato If. atorespash from It.
 stilicance al atcolt minor mophologixal difleremes herweer speceics hus bect confirmed by

 readily distinguished by the relatise pussitiono of
 Chilom ed af. (1493) and Beveridege (1998) for wher clofkinid specics.

 $1: 3741$ (ser smales pers7).

Key to the species of Dorcopsinema

sevined litum Simales 1997

1. Will thenhy head collad hearimg amploids and cervical papillate evight sederotesed lip-like
 Dsencripsis.
 collat: sis sedernised lip-like processes.

. 1
2. With delade pomberion werve tang: laterall

 Wills aderide anterim in aneve ring: latemal tranchlers arising posterion to the frfoleation al
 darren)
d. Wilh elearly aldined theide collole: decifide nean
 sithern uptere I. m/tum, Walioul clearly alelimed locied colltar: deirida clome
 mil with spike \qquad (1) alimitrulis!es

bischesion

Although small. the s:mple sif bour individuals stareseal in this study is molicative uf the deversity if normatude species neturring in mose kangamos
 all the Trihew, except the Somioluiminen (Popava. 1952) of the Cloacininue (Beveridge 1987) have
 felbingervinemis are exclosive to the islathd of New

 Papua New ciluines ane idemified as Damopath relernum Lenson, 1872 (hym, 0. muefleri), by Smates flosza) and Sprath er ul. (199|) are now known lo
 cumbnow: hid been prevorusty reported fow the litrest wallabies Don hedgeni and Do. huctured and is adse lound in sevegal matopodid econera in Absiralial (\$pratl if of 1991), Similarly. Mewnposmandmes species occur in thath Austratian and tapua New Guincan brose (Miswamt 1977: Beveridge (4x5)
 10) Now Guinea. It hes net tren limund in the Austalian specien of tree kangatoos ISprate ef ef 1991). Austrabian tree hangarons sudicd on dats have as depatiperate fedminth compionity as compareat will ohar matrapotid species. Seven De: Inminhti Cullous. 1884 firm Quevensad examined
 species, Aedrongmenter denderaters Smates 1905
 present in the stomath. Hosts from the island of New Cillinet however, have a noted diverse sumaeh

 1997. Nhaisumema smandiam Beveridge, 1497. z...

 beventley (1907).
fice kangarcos have evorved info as ghope of
 (ilanmery l99s), The mest primitive groush hawever- ineludes the iwo specien Be. Bemethams

De Vis, 1887 and De humbentiontich are leand inty in Austatia (Elathery 1445\%, Anestors of these Auspalian species are though to have miderated sunth across 'lores Strair and now represent at

 now exclusive to New Guines. Ancestrall Australian tree kangatoos may have lost components of theil helminh commumities durine migration south is Cape Yorke leminsula or following inelthign from the northern populatisns of aree kilugarnas on the island of New Gomea, Alternatively New Giluncan tree kangaroos may have acpuired a richer helminth found through hus swighing from the indigemble bresen wallather, after the isolation of New Cemme: from the Australian continent.
fouth stage larvale of 0 , wimife cramined in this
 found in the adhles. This stagests that theer naire uf lip-like processes may be a primitive cemution and four pairs of lip-like processes an advanced elvaracter. If three pairs of lip-like prosesmes is the prituitive condition then the apecites oncurritg in liorest wallabies have the derived andition). Deracapsmenta donsopsis. the other species of Dorcoprinemes scacuring in fonest wallatioct also hok lour pairs of
 becuring in lree kangarsus have only three pairs. forest wallahies, however are primitive browsing: apectes while tree kanganons are evolved arthoratal species ((mannery (1) \&y). By cobtrate trends lewarls
 mbaiso were moted by Smales (1907) stagestine is perind of co-evolution of flmopainend and Irese hangaroses. The helmind data from bohl gemum of matropectid hests are fragmentary and dedilional strveys of thelr hetminth proputations bre neakd befure the exivence of any pallemts tan delermined

Acknowledgments

By thanks br I. Beveridge whe thade the matarial avalable and to E. Harris. Naturn History Munctum, bambort and d. Fomest surtit Australian Museumi. Adedaide whogave tie access formoum secimens.

Referesuces

 318.

 te ser: 7, 76t, 78il.
(148.7) The svatemitic status of survitulian

 fismaimo 3* 25-71.

(1002).WHARE, R., JOHNSON, I. M. © SPRATT, D. M. (1992) Helmintl parante communities of matcopodid marsupials of the gencra Hypsiprymmodon. Aepypmymus, Thylogald, Omyonopaled, Lagorchestes and Dendrolasus 1 fom Quecnsland. Wikd. Res. 19, 359-376.
 Lilcctrophoretic econparikom of Rugophatront longiborswris Kung and R, wmesu Beveridge (Nematoda: Simengloideal) with the description of R, sigmed n. sp. from prademeloms. Thylogale spp. (Marsupialid: Miacropodidate). Syst. I'arasitol, 26, 159-169.
\& Smaltis, L, R. (1996) An electrophoretic and morphological analysis of Labiostromgylus (Labiommitiolew) zurimatus (Nematoda: Cloacinidae). With the description of at new species 1 . connfiguse from Wracrophy perryi (Marsuphalia: Macroporliadas). Ibid. 35. 11)-57.
 stedy in convergente pp. 1.46 /m Grigg. G. Jarmant, P. of Hame. I (Eds) "Kangaroos. Wallabjes and ratkanguroos" (Surcy Beaty \& Sons. Chipping Nobton).
(1905) "Mammals al New Gmanear (Reed Berrhs, Clrithwoond)

Martin. R, \& Srai Al, A. (1996) "Trce hingaroos : a curious marural history" (Reed Books. Melbuarne)
Johnson. P. M. (1495) Lumholtr"s tree-kangatuo Demifoldgens lumholt-i Collett, $1884 \mathrm{pp} .309-310 \mathrm{~m}$ Straham. R. (Ed.) "The mammith of Australia" (Reed Boohs. Chatswood).

MARIIN, R. W. N Johnson P. M. (1995) Bennell: tree-
 307-308 thid.
MAWSON. P. M. (1977) Revisiont of the genus Macropostrongy/us and description of thre new gemerat:
 R. Sere S. Aust 1011, S1-(92.

SMAlls, L. K. (1982t) A new genus and three new npecies of hemitrode parasites (Strongyloidea: Cloacininate) from macropodid marsupials from I'apua New Cuineab. Syst. Parasitol. 4. 361.371.
(1982h) Durcopwistrongy/us new Eenus (Nematoda: Strongyloiden) (rom the grey seruh wallaby Dopergasis wepermm Lesson, 1827 from Papuat New Guinear. Trans: R. Sire; S. Alst. 106. 31.34.
(1997) A new species of Doncupsinemm Mawatn. 1977 (Nematodat Cloncinidate') Fismm the tree Kangaron Dendrolagem mbaisa (Masupialia: Macropodidae) from Irian Jaya, Indonesia and new hom
 38.] 3 [-135.
\& Chmors. N. B. (1997) An electrophoretic and morphological analysis wi Lahmatrongy?ms (Sabiosimplet) buflomfi (Johnston \& Mawsun, 1939) (Nenatoda: Cloacindae), from macropodid matsupiak. thioh. 36. 193-20)1.
SPRAJH: D. M., BEVIRRIDGE, I. \& WALIER. LíL. (199|) A catalogue of Australesian monotremes and marsupial and their recorded helininth parasites. Rec: S. Aust. M/ra. Monogr: Ser No. 1. 1-150.

PROGAMOTAENIA ABIETIFORMIS SP. NOV. (CESTODA: ANOPLOCEPHALIDAE) FROM ONYCHOGALEA FRAENATA (MARSUPIALIA: MACROPODIDAE) FROM CENTRAL QUEENSLAND

By C. Turni* ${ }^{*}$ \& L. R. SMALES \dagger

Abstract

Summary Turni, C. \& Smales, L. R. (1999) Progamotaenia abietiformis sp. nov. (Cestoda: Anoplocephalidae) from Onychogalea fraenata (Marsupialia: Macropodidac) from Central Queensland. Trans. R. Soc. S. Aust. 123(4), 143-147, 30 November, 1999. Progamotaenia abietiformis sp. nov. is described from the small intestine of the bridled nailtail wallaby, Onychogalea fraenata, from Taunton National Park, Central Queensland. Progamotaenia abietiformis is most similar to P . dorcopsis, P . lagorchestis, P. thylogale and P. queenslandensis in having a prominently fringed velum and two uteri but differs from them in its size and the number of proglottides and testes. It also differs from most congeners in having the two uteri forming anteriorly directed arcs within the proglottis, not transverse but at approximately 45° and in the termination of the pyriform apparatus in two horns. Key Words: Onychogalea fraenata, cestode, Progamotaenia, bridled nailtail wallaby.

PROGAMOTLENA ABHETHORMIS SP: NOV. (CESTODA: ANOPLOCEPHALIDAE) IROW ONYCHO(BAIES FRAENATA (MARSLPIAIIA: MACROPODIDAE) FROM CENTRAL QUEENSLAND

Abstract

Sumbitary

Introdnction

 mannmats. birals and replites (Beveridge 19yt). Species of the geous Pmonmenteraia Nybelin. 1917 becur exclusively in the small intestine and bile duces (1) macroperdoied and vombitid midesupiats from
 Within the genus. F: Muthrofir (Jobnston. 1912) atmd
 from, anw inget other mecropodids, the lsw extant
 1841) and 0 . wngnifere (Gould, 1841) (Beveribge 1980). Recent collections of centodes from or Iracheme Irom Tauntom National Park in Central Oteenstand revealed in hird specios of Prosedmancernior which is described below.

Materials and Methods

Cebsules coltected from the intertine of a brided mailatil walkathy were lised in 10%. Femathin amd then stored in 70 or ethanol. Addibsonall material deposted in lle Soull Aushalian Museum. Adelade (SAMA). AIIC 25880 which Jad been relaxed in water proor to
 cthanof was also examined. Cesentes were stumed wilh Sarmine: dehydrated cleared in X3B and

[^23]mumated in Permisumf or wilh Cblensine blut. dehydrited. cleared in stove oil and mounted in Camadathalsimp. Sorial longitudinal sectionts were ceat
 and eosth. The mensurements of 10 specimens tre given 11 millinetres is the range lindowed by the mesell in parentheses. Drawings were made with the aid if at dratuing whe. All specionens have beern depasited in the SAMA.

I'roggromotaenia abictiformis sp. nev.
 (IICS5 1-4)

fivene Hotoype from small intestine of

 conl. C. Tumi. Junc 19yg. SAMA AHC 2807l: paratyper: whole mumnts AHC 2s072-28108, 28ill22x!1, mumerbus specimens spirit material AHC 31314 serial sections. AHC 28109-28111- andditional
 AIIC 25840 .

Deswiphion

 scolex ditameter (0.72-1.20 (0.88): sucker diameler $0.215-6.322(10.272) \times 0.215-(0.291 \quad(0.251$ s 5 neck $0.05 .0 .34(0.14) ; 34-57$ (42) prongothiden: mature proglentides $(0.64-0.74(0,72) \times 0.140(0.38(0.29) ;$ gratud progentides $0.64-0.83$ (0.76) x 0.22-(1).to (0.33): dorsal osmoregnlatory cathal (1.0| $2-003.3$ $(0.1) 19)$. ventral wanoreghtatory canal ($0.014-0.034$ $(0.0211$ in diamelere eirrus sate in matare proglothdes $0.289-1) .435(0.333) \times(1 .(14495-0.067$ (0.(159): cirrus

Figs 1-5. Progamataenia abietifumis sp, nov. 1. Eggs showing pyriform apparatus, the twa horns not visihle in all views 2. Scolex. 3. Mature proglotides prior to and during ulerus filling-4. Mature proglottis, contracted. 5. Mature proglottis. tully extended. Scale bars $=0.01 \mathrm{mmm} 1$; $0.1 \mathrm{~mm} 2-5$.

sate in gravid progotides $0.268-(t .487$ (0.386) λ (0.049-0.074 (0.062): 11 1.3 (12) kestes per progkolis:

 0.073 (0).058): vitellariom $10.0312-0.01024(0) .0453$ 又
 (0.031-0.009 $+(0.051):$ Mehlin" gland (0.0) (0-0.001 $(0.0) 17) \times 0 .(018-0.029(0) .02$ -) : Lege 0.0.01- ($) .055$ ($0.0 .0-12$) $\times 0.03 .3-(0.055(0.040)$: pyritenm appuratus. (0.012-(0.018 (0.015) \& (0.017.0.022 (0.0220): ancorphere (1.0)I2-0.0.14 ((101013).
Shom, marrow cestonk with relalizely den proglentides. Brosad serokex wilh four acetabulate suckers on pedunces extending anterg-literally. Anterion borders of suckers seft. Proglatiden eraspudote with brosd, Iringed velunt consibing af 12-16 tentacle-fike projections sverlapping adjacent

proglonides with lengeth lo widh rallon al" 1:2-1"4. $\sqrt{1}$ Gravid proglettides fatio of 1:1.7-1-1.1. Dorsal anmoregulatory canail siluated lateral (6) ventral canal: ventral catal stighty wider than dorsal cianals trannverse canals combectiny both letteral camals posterior la seminal receptacte, Gemint prose matginal grening into wide, long, simple genital alrium. Genital ilrium bending anteriorly 10 onen in ntid-section of Anteral margin of proglonides. Cirtus sacs long. thich-walled. crossing osmuregulatory canalo dersally then surving ammeriorly and dorsally, tarminatiog anterior to ovarics. Cirrus sack almesst moeting in centre of proglotis, funhing anferionsy patallet fowards border of preseding proglollis. Cirtus heavily armed, widest at distal end, mid. section marrower and not as beasily amed,]roximal cht unatmed. simuous leading into clongate internal sentmal vesiche. External seminal vesicle elongats,
ventioll do citran batio bexiendibe ablerionly. Tesace in

 Sylore over anterith half of avaly. In later inatare pmoshalloiks, with lully ceverised cirrus, vilellarium lying over gosterior hall of matry. Ovaries ovoid.

 modial to nyaryi hedwen nyary and vilelhrimm. I we: Into-like, pained in sach progetatis, extendme at appowimately 45° towardo sentre of paghentis.

 Crossilate fongeiladimal mantoregulatory canala Wensally. Lest aburnge even slightly averlapping in

 numerous fony tinc filamencs. Cirras develuped by 2027 (22) proyldris: internal seminal vestele filled with sperm in $21-2816$ (23) prostontisi
 yaginul alrophes non sech.

1 19mellesel

Divenssion

 all of which have a lringed selum, pairad uteride testa
 (Beveridge 1485). It dillers | Tom dhis Lemonlex ill its 4nall sive (up 1012.4 mm sompared will 32 m m 64 longer in the raher speciess) smatl number of proghentide (up (0) 57 cevmpaned with at heent 45 in the viher pescost and the smatl runterot lcsion (1) 1.3 compared with all leabl 30 int the Po Pagomatestin
 yeutrei. which also has ad dienged veluno, paired uteri and centes in Iwo lateral groups bul no cxternal stmonat vesticle is a sumall ceestode wirls hew

 leskes $\mathbf{1 1}-13$ connpared with 30 -ator and has a calem with 12-16 kentaterolihe projections compared with

 ahbut. Will regard for the posiliort oll the female genitalia $f^{?}$. Wherifarmis is loost smmilar to P :
 abut lleverided |yTh|

 dads ill loorms.

 (Janthit, 1906). tha ether species formed is ()

 suckers on peduncles extending interp-lalepally:

 number ble testes (smore than foll companed wilh II 1.3

 collection an maderial limn iwo spocimens of is.

 species, the bas materal pogulationg lweing complited te

 lout clesely melated hut dishate species (Beverident

 lighenther (Beveridge 1955; Beverdge \& Thompoin
 two blates will one clade consisting of the New
 Donnomaltus. and the ather including the genem Moncropmes: Lagoncoleshes, Thelogale and Onswhergaled (13urk af m. 1998). Nhhough I.. cmappirilleme is' the only lase whose rame curmenly

1995; Evans \& Cordon 1995) former distributions of eats of the hosts, insluding fossil material of Darcopsesiv spp. from Australia (Calaby 1995; Pannery 1995; Johnson \& Vernes 1995), are indicative of the potential for host switching in the pasis.

Acknowledgnents

Thanks are due Lo D. Fissher for assistance with collecting material used in this study and for L . Beveridge for the preparation of slides and serial sections and for making useful comments on a draft of the manuscript.

References

Beverisur:。 I. (1970) A taxonomic revision of the Amoplocephalidas (Cestoda: Cyclophyllidea) of Australian Marsupials. Aus\% I. Zaml. Suppl. Ser: 44, 1110.
 Anoplocephatidac): new species, redescriptions and new how records. Toms. R. Serc: S. Alss. 104, 57-79.
(1985) Three new species of Progamotacnia (Cistoda: Amoplocephalidac) from Austrubasian marsupials. Suss. Portusifed, 7, 91-102.
(199.1) Family Anoplocephalidae Cholodkorsky, 1902 pp. $315-366 \mathrm{~m}$ "Keys to the Cestode Parabiles of Ventebrates" Khalil. L. L... Jones. A. \& Bray, R. A. (Eds) (CAB International, Watlingrond).
 cessonle parasites of the spectacled hare-wallaby Laserpheate: conspicilletme: Goufe. 1842 (Marsupialia: Matcropocliclae). J. Helmiathol. 53. 153-160).
 phyfogenctic position of the musky rat-kangaroo and the evolution of bipedal hopping in kangaroos (Macropodide: Diprotodontia). Syst, Biah. 47, 457. 47.

Berbrioge. A. A. \& Joliswow, P. M. (1995) Spectacled
 Strahan, R. (Ed.) "The mammals of Australia" (Reed Boohs. Chatswockl.
Calaby, J. H. (1995) Refl-neched wallaby Muctmpus rufogrisens pp. 35()-352. Hid!
Eyays. M. \& Gorpon, G. (1945) Brided nailtail wallaby Onyedergalect fruencter pra 356-358. Dhid.
Planneky, 1, F. (1995) "Mammals of New Guinea" (Reed Books, Chatswood).
Jomison. P. M. \& Vixnts, K. A. (1095) Red-legred pademelon Thylosale stighmation pp. 397-399 In Strahan, R. (Ed.) "The mammals of Ausimial" (Reed Books. Chatsword.
Smares. L. K. (1997) A new species of Denropsineme Mawson. 1977 (Nematoda: Cloaconidae) from the bee kangaroo Denirufages mbaina (Mareupialias: Macropodidac) from Ifian Jaya, Indonesia and new loost racords for Domopsinemer olendroldag. Sys?. Pomasitot. 38. 13]-1.35.

Sprats. D. M.. Bevirkugit. I. \& Walaik. E. I.. (1991) A catalogue of Australatian momotremes and marsupials and their reconded helminth parasites. Rec: S. Alhsh, Mus. Momos. Ser: No 1, 1-105.

NOTES ON THE INSECT FAUNA OF THE FRUIT GALLS OF ANTHOCERCIS ANISANTHA (SOLANACEAE) IN WESTERN AUSTRALIA

Brief Communication

Abstract

Summary Anthocercis Labill. is an endemic Australian genus of ten species, concentrated in the south-west of Western Australia, with two taxa extending to South Australia ${ }^{1,2}$. Anthocercis species mostly occur in disturbed sites and are frequently early colonisers following fire or mechanical disturbance but a few species also occupy relatively stable habitats associated with rocky outcrops and similar landforms ${ }^{3}$. Despite their conspicuous nature and relative abundance, little has been recorded of their biology or ecology.

BRIIR COMMAUNICATION

NOIES ON THE INSECT FAUNA OF THE FREIT G:DLS OF ANTHOCHR IS ANISUNTHA (SOLANACEAES IN WESTERN AUSTRALIA

Anfterichoin Lathili. is im tondenic Alatratian gentabficll spocies bancentrated in the sumh-avest of Weatern
 Abheneme is species mostly necur in disturbod sites and are

 Prahitite atanciated with roseky butcrops and similar
 abumbanes. hithe has beem recended of their biohagy our coshor?
 10 date, Hamely, A. Blicifolia Hook. subsp. ilicioutio. A.

 A memera is he only faven in which the quall fama has besm stultoed. Fruit gull in this apecicos ane indticest by the
 which is in nurn accumpanied by as sule ul parasilice and inguthone chateiduids". Whilemones ectorded aeven spectes
 mathed galls son A. fisturea in the Pertor cegion of Wemern Amberiliai. Of thene, a species of Sigumphoma

 Solamathe, some of whish are clossed as agricultural

 then lat eycles and asocse the impact or their intestation on

We report lese the lias recond at frait gatse in

 Service. C.anberoral.
 Nuytimit 1!. 71.7\%

 Irams. K. Sone S' Aus, 121, 157-161.
in Perth for dpponximately won weeks unsit all inmed liturat had emerged, No ultempt wath mate be iseund emergence tomes, numbers af individtad insectu. sex ration or wher such data.
 MCr (wasps) and is depousiled ill the Soull Austratian

 Australlan Muscum, Peth (WANA). The plant oucther was identified hy BJI, mad on depmexted in the dumpalime

Tiwe insed specisw were reaned toms the fruit wallas. the neconlly deatribedt getl midee A. amptraceradise and a

 hoat plant recond for i, whateneraides, which was liomerly
 likely that A. ammorercidis tor at kerist a lixam chamely related in ith could be regponsible for the iruit gathe.

 marphuthey.
The prenence of we way di wh in the trat galls
 (i.c. A. whateratha for that spectise? Whillenares tresed

 Keotfer) inroaghoul the (old Werld.

 11f Finure 1.

 Ausbalial (unputs.)
Kintesik, P., AcFadyen, R. F. © © Waputhere, A. d.

 (Din:) 55.1.342.

[^24]
ILIAL SHAFT CURVATURE: A NOVEL OSTEOLOGICAL FEATURE DISTINGUISHING TWO CLOSELY RELATED SPECIES OF AUSTRALIAN FROGS

Brief Communication

Summary

The status of the Australian frog Limnodynastes spenceri Parker (1940) ${ }^{1}$, as a species distinct from L. ornatus (Gray, 1842) ${ }^{2}$, has been the subject of controversy. In the course of the study of fossil material it was noted that there was a distinct curvature of the shaft of the ilium of L . ornatus, whereas the ilium of L . spenceri appeared straight ${ }^{3}$. The present study was undertaken as a component of studies of fossil material seeking means of distinguishing species by features of the ilium.

BRILF COMIAIUNICATION

IIJAL SHAFT CURVATURE: A NOVEL OSTEOLOGICAI FEATLRE DISIINGUISIING TWO CLOSELY RELATED SPECIES OF AUSTRALIAN IROGS

 the sudy off fussil material it was moled hat there wax a

 ceatures of the ilitum.

Simmedravers mentms was desuribed liom makerial colleceded in Burt taminglan in the Nowthem Tirratory. Whe
 and camem seatrabed of Austratial.

 enntiment Pabler dencribud on wentery lione Alise Sprines, Thes bilker sprecier is batoenty used to

 distinguistung morphodegiesh kestures.

Nos all amiturs have suppured the reenghation af munc thiur one speciess. Mere secendy the perpulatume lave Ixela comsidered distinct, beng distinguisted primeipally by
 phyhugenetic almalysis" exturnted the enolmbunary

 companent al the anuran pelvis and varies in lengit all shath, pheterion stapes and the preselice and atmenece of
 adtaptaicu (6) jumping arn symbulrical prapulsion in

 pusterior al the ilion frovaden the paint of altachment for Hustes revpansible for propulvion the side und shape
 ihbon is mone likely wo be dareder in specties that require powertul kg mustios (ise, those that are significantly
 आแทแด.)!.

The fengh of the dran hak heen shown to be dincuty

 and fo ermums (10 decermine it there "was at mimata Btalionship. Specimens ut the two species were thanded

 sperteri were provided by the S'muth Austratian Aluseums.

 befare the specimens were dissected tor remere the jlium.

 of the iliunt wis mestan:a! [rom the tip of the dhath

 digged horiventally it at lutcrat plane under a disseding
 The curvaturs of the ilial shath wat mesisened imberactly

 greate the eworvace of ine itial shatt (cesmpare fat and (b) in (Fig 2).

 [ruy

Hig, 2. Jateral views of pelvises of Limmendmatey gremeri (typ) and (6. apretes (twatsm). Note the diblenence in the

The nomalaty of wal aball curvature data was enofirmed belore ditferences between the two datio sets were tested using id tho sample t-Test, is.suming equal qariance.

Strong relationships between S-V length and ilial shaft length were fousd with R^{2} values of 0.96 for bolh I.. proatus and l. spencert (Figh 3, 4). Comparison of the linear equations of the trend lines showed that In ormates and Lo spenteri dernonstrated similar S-V v. ilial lenesh relationships. The limited number of L spenceri specimens available conslrained the data in the $\mathrm{S}-\mathrm{V}$ range of 21.30 แाเง.

The curvalure of the ilial shaft for 1 . of onders was Sound to be significantly greater than that of L spenereri at a
confidence level of byere, 'The mean angle for L. strmens wes 170.4". Whereas that for Le spencest was $177.6{ }^{2}$, at mean difterence of 7.2^{3}.
Limmodynastes ermatus is known from the Cainornic of Queenslands but it is not known whether 1. spenecri coexisted or had in face diverged from th before this erat. The slight but significant differenee in the shape of the ilial shotit will provide a simple mesus of distinguinhing these species if suitable deposits are found in Central Australia.

We are grateful to M. Hutchinson. South Austratian Muscum. Who provided several specimens of Limmedynastes spenceri for use in this study. Lr. Russell for ligure 2 and to the referees for their construclive criticism.

Fig. 4. Regression line of ilial length ploted against S - V length of Lmmodynaskes sponceri

Parker, H. W. (1940) Novil. Zors). 42. 1-106.
:Gray, J. E. (1842) "'Zoological Miscellany" (Treuttel. Wiares de Co.. London).
Tyler, M. J. (1990) Mem. (1ti Mus. 28. 779-784.
-Barker, J. Girisg. C. C. \& Tyler, M. J. (1995) "A Bield Guide to Australian Frogs" (New Edn) (Surrey Beatly \& Sons. Chipping Norton, NSW).
Mlowe, J. A. (1961) Bull. Amer. Mus. Nat Hist 121, 149-386
"Barker, J. \& Girigg, (b. (1977) "A Field Guide 10 Aultralian Frogs" (Righy, Adelaide).
'Mrrescalchi, A. \& Ingram, (G. J. (1978) IExperientia (Busel) 34. 584-585.
"Tyler, M. J., Martin, A. A. de Davies, M. (1979) Aust. J. Zonl. 27. 1.35-150.
"Cugger, H. G., Cameron, E. E. \& Cogger, H. M. (1983) Zoological Catakgue of Australia. Vol. L. Amphibia and Reptilia (Australian Government Publishing Service, Canberra).
${ }^{14}$ Roberts, J. IV. © Maxsont, L. R. (1986) Aust, J. Zoct. 34. $561-573$.
${ }^{\prime}$ Tyler, M. J. (1976) Trans. R. Soc. S. Aust, 100. 3-It.
Truch, I. (I973) pp. 65-132 In Vial. J. L. (Ed.) "livolutionary bieslogy of anurans. Contemporary reseath on major problems" (Lniversity of Missouri Press. Columbia).
${ }^{13}$ Ty ler, M. J. (I944)"Australian Frogen A Natural History" (Recd Books. Sydney).
${ }^{1}$ Walker, S. J. (1994) Trane, R. Soc. S. Auss. 118. 147-14.8.

AN ADDITIONAL RECORD OF A MEIOLANIID TURTLE FROM THE PLEISTOCENE OF NORTHERN QUEENSLAND

Brief Communication

Abstract

Summary The extinct meiolaniids are an enigmatic group of turtles characterised by cranial horns and tail clubs. They are confined to the Southern Hemisphere and their phylogenetic relationships have been the subject of much discussion ${ }^{1}$. The oldest known Australian meiolaniids come from Oligocene and Miocene deposits in South Australia, New South Wales and Queensland ${ }^{24}$. Most of the Australian material collected to date however, comes from Late Pleistocene deposits from Lord Howe Island ${ }^{5,6}$. There are additional Pleistocene occurrences of meiolaniid from Walpole Island, New Caledonia, the Darling Downs of Queensland and from the Wyandotte Formation? This note reports the presence of further meiolaniid fossils from Pleistocene deposits of Bluff Downs, north-eastern Queensland.

BRIEF COMMUNICATION

AN AIDDITIONAL RECORD OF A MEIOLANIID TURTLE FROM THE PLEISTOCENE OF NORTHERN QUEENSLAND

The extinct meiofaniids are an enigmatic group of turtles characterised by cranial homs and tail clubs. They are confined to the Southern Hemisphere and their phyfogenetic relationships have been the subject of much discussion!. The oldest known Australian meiolaniids come from Oligocene and Miocene deposits in South Australia. New South Wales and Queensland ${ }^{2-4}$. Most of the Australian material collected to date however, comes from Late Pleistocene deposits of Lord Howe Island ${ }^{46}$. There are additional Pleistocene occurrences of meiolaniid from Walpole Island, New Caledonia the Darling Downs of Quecnsland and from the Wyandotte Formation ${ }^{7}$, This note reports the presence of further meiolaniid fossils from Pleistocene deposits of Bluff Downs, north-eastern Qucensland.

Bluff Downs is currently only known as a Pliocene site with a wide range of taxa already having been reported ${ }^{8} 14$. During lield investigations is 1492 , further fossil exposures were located upstream from, and on the opposite side to, the main Plincene quarries. The fossils were located in a gully that cut through a black soil plain and included mammals, crocodiles and turtles. A detailed examination of the fossils revealed dittle softening of features normally associated with iransportation or re-working and it was therefore assumed that the original site of deposition was relatively close. There were no overlying formations that could give an age to the fossils.

However, the new collecting locality, named Jaw Site, contained a diagnostic P^{3} of the diprotodontid marsupial, Zygomaturux trilohus Macleay, a species with a Pleistocene distribution ${ }^{15}$. This tooth differed from the P^{3} of a new species of Zygomaturus that had been recovered from the Bluff Downs Pliocene sediments (Lat. $19^{\circ} 43^{\circ} \mathrm{S}$, Long. $145^{\circ} 30^{\circ}$ E), indicaling that Jaw Site was not Pliocene in ageli- Furthermore, there was no evidence of the commonly found Pliocene diprotodontid Euryzygoma which was a major component of the Bluff Down Local Faunas. The age of the site was therefore either Plio-Pleistocene or Pleistocenc by biocorrelation.
A number of bone fragments with distinctive sculpturing was identified as being possible meiolaniid tail club fragments. This identification was confirmed by E. Gaffney of the Amserican Museum of Natural History. One group of fragments (QM F25854) contained 12 individual pieces including one partial tail club spike and the distal ends of caudal vertebrae (Fig. I A, B). The other group (QM F25855) contained two tail club spike fragments and a number of smaller bone shards (Fig, 1 C). The tails of these land-dwelling turtes were covered with articulated bony rings amoured with spikes.
The Wyandotte meiolaniid was identified as having affinities with Mewlania platycepss Irom Lord Howe Island rather than the maindand species M. oweni from Kings Creek, Darling Downss. Unfortunately not enough material has been recovered to make any consuructive taxonomic assignment for the Bluff Downs specimens except for identification as al meiolamiid. Unlike its Lord Howe Inland
counterpart, the Bluff Downs meiolaniid had a number ul giant reptiles to contend with including several species ol crocodile ${ }^{13}$, a large varanid and python*. Whether the significant armour the meiolaniid possessed was enough to protect it from these potential predators will perhaps never be known. Its development and elaboration during the Tertiary perhaps suggests some sort of defence strategy.

The author wishes to thank E. Gaffiney who identified the specimens and R. Molnar who facilitated the identification. The Smith Family of Bluff Downs Station continue to provide assistance and support for the ongoing research into the Bluff Downs Local Fauna. The collection of the Bluff Downs material was supported in part by ant ARC

Fig. 1. Meiolaniid turtle fragments. QM F25854. A. Partial tail club spike. B. Distal end of caudal vertebra. C. QM F25855. Tail club spike fragment. Scale bar $=5 \mathrm{~mm}$.

Program Grant to M. Archer, a grant from the Department of Arts, Sport, the Environment. Tourism and Territories to M. Archer, S. Hand and H. Godthelp, a grant from the National Estate Program Grants Scheme to M. Archer and
A. Bartholomai. and grants in aid to the Riversleigh Research Project from the University of New South Wales, Wang Australia Pty Lid. ICl Australia and the Austratian Geographic Society.

Galfney, E. S. (1983) Bull. Am. Mus. Nat. Hist. 175, 361 480.
\therefore Woodburne, M. O., Mactadden, B. J., Case, J. A., Springer, M. S., Pledge, N. S., Power, J. D., Woodburne, J. M. \& Springer, K. B. (1993) J. Vert. Palcontol. 13, 483-515. Galfney, E. S. (1981) Am. Mus. Novit. 2720, 1.38.
${ }^{4}$ Gatfney, E. S., Archer, M. \& White, A. (1992) The Beagle. Rec. N. T. Mus Atts Sci. 9, 35-47.
${ }^{5}$ Galfney, E. S. (1985) Am. Mus. Novit. 2805. 1-29.
"Gaffney, E. S. (1996) Bull. Am, Mus. Nat. Hist. 229, 1166.
${ }^{7}$ Cafiney, E. S. \& McNamara, G. (1990) Mem. Qd Mus. 28. 107-113.
${ }^{8}$ Archer, M. (1976) Ibid, 17, 379-397.
${ }^{\text {a }}$ Boles, W. E. \& Mackness, B. S. (1994) Rec. S. Aust. Mus. 27, 139-149.
${ }^{10}$ Mackness, B. S. (1995) Emu. 95, 265-271.
${ }^{11}$ Mackness, B. S. (1995) Mem. Qd Mus. 38, 603-609.
${ }^{12}$ Thomson, S. A. \& Mackness, B. S. (1999) Trans, R. Soc. S. A. 123, 101-105.
${ }^{13}$ Willis, P. M. A. \& Mackness, B. S. (1996) Proc. Limm. Soc. N.S.W. 116. 143-151.
${ }^{14}$ Wroe, S. \& Mackness, B. S. (1998) Mem. Qd. Mus. 42. 605-612.
${ }^{15}$ Murray, P. F. (1992) The Beagle, Rec. N.T. Mus, Atts Sci. 9, 89-110.
${ }^{16}$ Black, K. \& Mackness, B. S. (1999) Diversity and relationships of diprotodontoid marsupials In Archer, M. Arena, R., Bassarova, M., Black, K., Brammalt, J., Cooke, B.. Creaser, P., Crosby, K., Gillespie. A., Godthelp. H., Gott, M., Hand, S. J., Kear, B., Krikman. A.. Mackness, B.. Muirhead, J. Musser, A., Myers, T., Pledge, N., Wang, Y, \& Wroe, S. (Eds) The evolutionary history and diversity of Australian manmals. Aust. Mammalo (in press).

BRIAN MACKNESS, School of Biological Sciences, University of New South Wales Kensington NSW 2052. Present address: PO Box 560 Bcerwah Qld 4519. E-mail; megalania(@) compuserve.com

DESIGNATION OF LECTOTYPES OF THREE SPECIES OF CISSEIS (COLEOPTERA: BUPRESTIDAE)

Brief Communication

Abstract

Summary While it is usual to designate lectotypes in a generic review, the following cases have emerged from a current study of the genus Cisseis LaPorte \& Gory ${ }^{1}$ and in order to have these changes incorporated into a Catalogue of Australian Buprestidae, due to be completed in 2000, it is necessary to publish them at this stage.

BRIEF COMMUNICATION

DESIGNATION OF LECTOTYPES OF THREE SPECIES OF CISSEIS (COLEOPTERA: BUPRESTIDAE)

White it is usall to designate lectorypes in a generic review, the following eases have emerged from a current sudy of the genus Cisscio LaPorte \& Gory' and in order to have these changes incoprorated into at Catalogue of Austadien Buprestidare, due to be completed in 2000). it is necessary to publish them at this stage.
 syntype, no data, The Natural History Museum. London: ? syntype. Lake Austin. W. Australid. H. W. Brown. K 67242 Austrulian Museum, Sydney) is conspecilic wilh (isseis geterlingi Cater, 1936 (8 holotype. Marloo stn.. Wirarga, W. Australia, Australian Museum, Sydney). Cisscis forticollis Carlict, 1923 is a Qucensland species clearly separate from the other species which is found only in ardid theas of Westem Austratia. Aller exarmining all specimens I herchy elevate Cissug cyomergergen Carter to full specific status and designate as the lectotype the lemale speciment in the Anstralian Museum collection labelled Cissers faticorlis var, cromeopuget Carter. Iake Austin, W. Australlia. H. W. Brown, K67292. with a prined red label on which is written Lectrnype, Cisseis xanarpyga Canter. Designated by S. Barker, 1999.:
Catter described Ciskeis marmoreted var. prasine from two male specimens in the collection of The Nettural History Museum. London, one labelled NSW, the onlber witherit data, and fwo male specimens in the collection of the South Australian Museum, one labelled S. Anstralia, the wher Australia. I bave examined these specimens and find

What they are a good species. They are all green an colour, whereas C. mamorata Laporle \& Gory males have ar green head and pronotum and brown elylra. As well, their genitalia are of a different shape from those of male Cisseis mammorate. I herchy elevate Cissets prasina Ciuter to full species and designate as the lectotype the male specimen in the collection of the South Australian Museum labelled "Australia Blackbum"s collection", numbered in red ink: 3267 and with a primed red label on which is wrillen 'Lectolype Cisseris praxina Carter. Designated by S. Barker. 1494. A series of associated mate and female specimens. collected at Milmerfan by the late J. McQueen is housed in the Austratian National Insect Collection, Camberra, The females are brown with white markings on the elytra and are larger than the nales of the species.

Kertemanss described Cisseis symura. The four syntypes of the types series are londged in the Natural History Muscum. London, collection. Of these one male is clearly a different species from the other three. On the pin it bears a B. Levey identificalion label atating that it is a specimen of C. nigrouneat Kerremans. 1898. The remainmg three specimens, two males and a female appear to be conspecifice allhough the male genitalia vary slightly: I hereby designate the male specimen which has the broadest parameres as the lectotype of Cisseis avamury Kertemans. The specimen bears a printed red label on which is written 'Lectotype Cissers cyomuro Kerremans, Designated by S. Barker, 1999°

LLaPorte F. L. \& (Gory, H. L. (1839) * Histoire naturelle et iconographie der insectes coléoptères" wol. 2.
Carter, H. J. (1923) Proc. Limn. Soc. N.S.W. 48, 159-176.

Carter, H. J. (1936) Hid. 61, 98-110.
${ }^{+}$Kerremans, C. (1898) Amn. Soc. Ent. Belg. 92. $113-$ 182.

ROYAL SOCIETY OF SOUTH AUSTRALIA INCORPORATED

Patron:
HIS EXCELLENCY THE GOVERNOR OF SOUTH AUSTRALIA SIR ERIC NEAL, AC, CVO

OFFICERS FOR 1999-2000

President:

M. A. J. WILLIAMS, BA(Hons), MA, PhD, ScD

Vice-Presidents:
T. C. R. WHITE, BSc, BSc(For), PhD, DSc
N. F. ALLEY, BA(Hons), MA, PhD

Secretary:
O. W. WIEBKIN, BSc, PhD

Editor:
J. BIRD, BSc

Librarian:

Minutes Secretary:
C. R. WILLIAMS, BSc(Hons)

Treasurer:

J. H. BRADBURY, BSc, MSc

Assistant Editor:
N. F. ALLEY, BA(Hons), MA, PhD

Programme Secretary:

P. KOLESIK, BSc, PhD

Members of Council:

J. E. PATTISON, MA, BSc, MSc, Grad Cert Ed	M. J. WRIGHT, RDA
P. A. PARSONS, BAgSc, PhD, ScD, FLS	R. D. SHARRAD, BSc(Hons), PhD, DipT(Sec)
S.	c(Hons)

[^0]: forimimifer, amine ated racemisition. Thermolaminescence doting. Fthtam Sabd.

[^1]:

[^2]: Départment al Velerinaty Selencer. The Univerxity of

[^3]:

[^4]:

[^5]:
 ふは曻

[^6]:

[^7]: S(4) 5.

[^8]:

[^9]:

[^10]: Parkvilk Vie. 3153?

[^11]:

[^12]:

[^13]: the Gerat Australian Bight. Paper presemed ait Austahasiun

[^14]: Hrampr, M. (I9g8) A Wave Study of the South Australian Sea; Flediction. Obernation using Electric lijeld Measurements, and Application tu Sediment Resurpension Processes. BSe (Hons) Ithesis, The Flinder, University of South Australia (unpub.). Bit. J. A. T., Cienn, B. W. \& Nikpal... C. V. (1975) The Wave Clamate off Cape Jervis, Soulh Auslralia hetween June and November, 1974. Filinders Inslitute for Atmospheric and Marine Science Restarch Report. No. 17. (unpub.).
 CiItbik, R. \& WAlkJR, D. (I981) Redeliff Wave Allas. The Iniversity of Adelaide Department of Civil Engineering teport. (mpubs.).
 *Wat.kı.k, D. (1989) An Efficient Wate Hindeasting Model. 9w Aust. Conl. Coast. \& Oe. Engng. Adel., 4-8 Dec. 1989. 117-121. (unpubs.).
 SWAN (1008) SWAN when page. Intp://swan ct.tudeldin

[^15]:

 1 11 + 1.1.... I.

[^16]: "'The aultors accep nus liabihty or the the of imformation given it thim piapers.
 It Healoh and Futars. Deparmont of Envitoment and Natural

[^17]:

[^18]:

[^19]: ${ }^{*} \mathrm{EC}=$ clectrical conduẹivily（Werj－sicmens mo ${ }^{\circ}$ ）

[^20]: \% $\mathrm{md}=$ not determined.
 hetween these supplements (Bird 1995).

[^21]:

 Aekelance Austa 50)S.

[^22]:

[^23]:

[^24]:

