TRANSACTIONS OF THE ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

ADELAIDE

PUBLISHED AND SOLD AT THE SOCIETY'S ROOMS
STATE LIBRARY BUILDINGS
NORTH TERRACE, ADELAIDE

Price: Six Dollars Thirty Cents

FIELD NOTES ON RABBIT BANDICOOTS, MACROTIS LAGOTIS REID (MARSUPIALIA), FROM CENTRAL WESTERN AUSTRALIA

by D. R. SMYTH* ${ }^{*}$ and C. M. Philpott*

Abstract

Summary The numbers and range of the rabbit bandicoot have greatly diminished in recent years. The results of a natural history study are presented to act as a basis for future research, and to facilitate conservation of bandicoot populations. At least two bandicoots were living in one square mile of scrub containing mulga, spinifex and tussock grasses, near the Warburton Range, Western Australia. Their burrows, scratchings, tracks and faeces are described. Fifty-eight burrows were mapped and 55 of them found to be distributed at random within two areas delineated by presence of bandicoot scratchings. The main food species of the bandicoot were the termites Hamitermes (Drepanotermes) rubriceps (Froggat) and Eutermes tumuli Froggat. On each of 8 consecutive nights from 2% to 27% of the burrows were used. Out of 35 representative burrows, 14 were not used on any of the 8 nights, and none were used on more than 4 nights.

FIELD NOTES ON RABBIT BANDICOOTS, MACROTIS LAGOTIS REID (MARSUPIALIA), FROM CENTRAI WESTERN AUSTBALIA

By D, R, Smyth ${ }^{\text {i }}$ and C. M. Philport ${ }^{*}$

[Read 2 October, 1967]

[^0]
Abstract

SUMMARY The numbers and range of the rabbit bandicont have greatly diminished in receut years. The results of a natural history study are presented to act as a basis for futore research, and to facilitate conservation of bandicoot populations.

At least two bandicuots were living in one square mile of sernb containing mulga, spinifex and tussock yriastes near the Warburton Range. Western Australia, Their burraws, scratchings, tracks and faezes ure described. Fifty-eight burrows were mapped and 55 of them found to be distributed at random within two areas delineated by presence of bandicoot scratetrings. The main food spesies of the bandienot were the termites Hamitermes (Drepanotermes) nubriceps (Froggat) and butermes tumuli Froggat On cach of 8 consecutive nights from 2% to 27 , of the burrows were used. Ont of 35 representative thurows, 14 were not used on any of the 8 nights, and none were used on more than 4 nights,

INTRODUCTION

Since the coming of European man to Australiu, the range and population sice of many marsupials have been greatly reduced. In some species it is probable that this reduction has reached its limit, and that the species are extinct, Calaby (1963) suggests that there are six such species. If so, then further study of them is restricted to museum specimens and fossils. Calaby also lists other marsupials close to extinction. The biology of most of these is little-known, and opportunities to record it monomon. Calaby includes the rabbit bandicoot, Maerotis lagotis Reid, shown in PI, 1, Fig 1, amongst these species.

Recently, we studied some of the natural history of a small population of rabhit bandicoots near the Warhurton Range, Western Australia. Previous work of this uature in the genus Maorotis has mostly been in the form of briof observations made during collecting trips. Wood-Iones (1924) made many such obseryations. He discusses notes recorded by other authors, mad also describes aspects of behaviour of captive rabbit bandicoots,

Our aim in recording and discussing our results is to provide a backgronnd on which other studios on rabbit bandicoots may be based, or with which they may be compared. If these bandicoots were to become extinct, we hope our study will give future workers some idea of how they lived.

METHODS

During 1966, we surveyed the present range of rare marsupials in parts of arid Australia, the results of which have been reported (Philpott and Smyth,
1967). During this survey, we located an area near the Warburton Range where rabbit bandicoots were Living, and used it as our study area. We carried out the work recorded here during November and December, 1966.

We were taken to the arca by semi-nomadic aboriginal people of the Nga:myatjara and Pitjantjatjara tribes. These people have an intimate knowledge of the signs and habits of the rabbit bandicoot, because they still hunt it oceasionally for food. They were happy to commonicate this knowledge to us. This communication was facilitated by use of the aboriginal names of the rabbit bandicoot. Near the study area, they call it the "ninu". East, in the Musgrave and Everard Ranges, it is called the "talku", while south-west towards Laverton it is called "matura", All aboriginal names are spelt phonetically following Douglas (1964).

We mapped the burrows in the study area by triangulation using a prismatic compass.

To record if burrows had been used overnight, we inspected them daily, swept away fresh tracks from the mouth, and placed a twig in the single entrance such that it would be dislodged by a bandicoot entering or leaving. We took care to minimize our secnt on the twig and around the entrance of the burrow. We scored a burrow as being used by a rabbit bandicoot if the twig was knocked down and characteristic tracks and tail marks left near the entrance.

Faecal contents were examined microscopically after crushing in water containing a drop of detergent.

We identified plant species in the field, and checked several in the State Herbarium of South Australia. Ants were identificd at the C.S.I.R.O. Division of Entomology, Canberra, and termites and insect Jarvae by staff at the South Australian Museum.

RESULTS
(a) General description of the study area

The study arca is about 7 miles (11 km) north of Warbuton Mission, and its latitude and longitude are $26^{\circ} 02^{\prime} \mathrm{S}$. and $126^{\circ} 31^{\prime}$ E. respectively. Its position is shown in Fig. 1. It is an irregular shape, with a maximum Iength of 1.4 miles ($2 \cdot 3$ km) and is 1.0 mile (1.6 km) across at its widest point. Fig. 2 is a sketch map of the study area, which has a total area of 1.0 square mile ($2.6 \mathrm{sq} . \mathrm{km}$).

Fig, 1. Location of the study area rieat Warhurton Mission, Central Australia, with the general area slown on on indented map of Australia.

1'ig. 2. Sketch map of the study area, showing approximately the positions of 58 bandicont burrows, the limits of bandicoot scratchings, and the areas covered by the 5 yegetation groups.

The following general description is based on obseryations and on information from the Atlas of Australian Resources (1959).

The area has a dry continental climate, with irregular rainfall, but with the maximum amount falling in summer. The average annual rainfall is $5-8$ inches ($13-20 \mathrm{~cm}$). The average daily maximum temperature in January (summer) is $95-100^{\circ} \mathrm{F}\left(35-39^{\circ} \mathrm{C}\right)$, In July (winter), the average daily minimum is in the range $40-45^{\circ} \mathrm{F}\left(4-7^{\circ} \mathrm{C}\right)$.

The study area is bounded by low rocky ridges on the north and north-west. From the low pass between them, the land slopes gradually to the south-west. Skelctal soils cover the hills, while the flats and plams are of deep, desert loams, with small rocks and pebbles distributed through all levels. Permanent surface water is absent from the study area, and uncommon nearby.

For the purpose of description, the vegetation of the area has been divided into five classes. These are not discontinuous, and are based on subjective observations.
(i) Open rocky savannah. This type occurs on the skeletal soils of the ridges and hills. Perennial hard-leafed grasses and occasional shrubs such as Cassia and ptilotus obovatus provide a sparse cover. Mulga (Acacia aneura) also occurs at very low density,
(ii) Open mulga scrub, Pl. 3, Fig 1-Mulga accurs in stands of low to medium density in certain areas. There are no shrubs or perennial herbs under the open mulga canopy. Ephemeral crucifers, grasses, composites and other herbs spring up on the bare ground after rain. The soil is often shallow.
(iii) Mulga-tussock scrub, Pl_{+}3, Fig. 2-This is similar to the second type, except that the mulga is usually more dense, and the ground has a moderate cover of perennial tussock grasses. The soil is probably deeper than in the previous class.
(iv) Mulgat-spinifex scrub, P1. 3, Fig, 3-On the deep desert loams, mulga and spinifex (Triodia busedowii) often occur together at medium densities. Many other species of trees and shrubs grow as scattered solitary individuals. Such trees as the bloodwood (Eucalyptus terminalis) and the corkwood (Hakea suberea) occur. The shrubs present include the dead finish (Acacia tetragonophyllit), the witchetty bush (Acacia kempeana), and various Cassia and Eremophila species. Some herbs and grasses also oceur.
(v) Open spinifex glade, P1. 3, Fig. 4-In some areas, the major plant cover is spinifex Occasional individuals of mulga and witchetty bosh occur, Ephemerals grow in the spaces between spinifex clumps after rain.

The approximate limits of these classes in the study area are shown in Fig. 2.
(b) Signs

We did not see any rabbit bandicoots above the surface of the ground during daylight hours. They are probably strictly nocturnal. Their presence in an area searched during the day can only be proved by capturing a specimen. However: various characteristic signs of their presence can be readily secn.
(i) Burrows-The most obvious sign is the hurrow. We located 58 bandicoot burrows in the study area, and completely dug out six. A sketch diagram of two representative burrows is shown in Fig. 3.

Fig. 3. Sketeh diagrams of two burrows which were dug rut completely. (1) and (2) are the side elevation and plan respectively of it burrow near the unth-east corver, (8) and (4) are the side. elevation and plan of a burrow on the central wostern edre, X indicates the position from which a female rabbit bandiunot was taken.

A small circular mound of soil was prosent outside the entrance of all burrows. The tumel cross-section was usually circular or slightly oval, and about 6 inches (15 cm) in diameter. Burrow entrances were often partially hidden by dense spinifex, tussock grass or juvenile mulga plants, Occasional burrows were underneath or near fallen logs. Eight of the burrows were conspicuous by being dug into the large mounds of loose soil frequent in the area. Two representative burrows are shown in P1. 2, Figs. 2 and 3.

In two burrows which contaned a solitary rabbil bandicont, the tunnels were blacked in from one to three places along their length by loose, frequently dag soil. There were no faeces in_{2} or close to the burrows, In one of the burrows containing a bandicoot, an area of the floor near the end was damp, possibly from recently voided urine. The two bandicoots were at the extreme ends of their respective burrows, and were rapidly lengthening them when captured.

Rabbit bandicoot burrows werc different from ather types of burrows present in the area, Rabbit (Oryctolagers cuniculus Lime) burrows are often built in warrens, are of a different plan, and are often marked by facees. We located two burmows which were probably used by rabbits in the study area. Goanna (Varanus. sp.) burows which were ulso present, were smaller, semi-circular in eross-section, and much shallower.
(ii) Scratchings-Diggings and scratchings covered the soil over much of the study area. They were of listinct types. (1) The most frequent type was a shallow, cylindrical pit, $2-8$ inches (5.20 cm) deep, and $2-6$ inches $(5-15 \mathrm{~cm})$ wide, an cxample of which is shown in P1. 1. Fig. 2. The soil from them was piled up in all directions around their mouths. (2) There wete also smaller scratchings of irregular shape, and areas of loosened topsoil, often near mulga roots. (3) A further type was a conical pit moder certain tussock grasses, as illustrated by PI. 1, Fig. 3, Oht of a sample of I07. 62\% were mder Eragrostis eriopodn and E. lantflora, 18\% under Danthonia bipartita, and the rest under Aristida contorth and Eriachne mucronata. These pits were mostly in mulga-tussock scrub. They were about A-8 inches ($10-20 \mathrm{~cm}$) deep, and descended at an angle.

We believe that all these diggings were made by rabbit bandicoots. The evidence which suggest this is: (1) the diggings were distributed in close association with the bandicoot burrows, as shown in Fig. 2, and were never more than 600 feet (180 m) from one; (2) the density of scratchings was frequently higher in the vicinity of a burrow; (3) faeces, later shown to be closely similar to those of recently captured bandicoots, were occasionally found on or near the freshly dug soil; and (4) insect species, fragments of which were found in newly captured bandicoot's facces, (see Results, Part [d]), were often found in the scratchings,
(iii) Tracks-Characteristic tracks were often left in birrow entrances and on fresh scratchings. They werc also left on the pebbly surface between some burrows in the area. A sketch diagram of a set of tracks entering the mouth of it rabbit bandicoot burrow is shown in Fig. 4. Although we luave only aboriginal opinion and circunstantial evidence, we believe these characteristic tracks were those of a rabbit bandicoot.

We observed characteristic grooves on loose soil near scratchings and also near burrow entrances, as shown in P1. 2. Fig. 3. Captive bandicoots left similar

Fig. 4. Sketeh diagram of a series of presumed rabbit bigndicont tracks leading to the entrance of a burrow. The probable direction of travel is shown with an axtow.

Fig. 5. Frequency distribution of 58 burrows, showing the distance of the nearest neighbouring burrow to each of these burrows. The mean distance is 249 feet with a standard crror of $14 \cdot 1$ feet,

Fig. 6. Frequency distribution of 35 burrows, showing the number of nights each of these. burrows was used over a period of 8 consceutive nights. The mean number of nights is 1×14, and its standard error is 0.036 nights.
marks while digging in loose soil on the cage floor. The marks were left by the tail, which was used as a strut while the hind legs were in use.
(iv) Faeces-Faeces of captive bandicoots were similar in shape and size to those found occasionally on or near scratchings. Four representative groups of pellets are shown in Pl. 2, Fig. 1.

(c) Distribution of burrow's

The distribution of the 58 burrows over the study area is shown in Fig. 2. Most burrows were in mulga-tussock scrub and mulga-spinifex scrub. Two were in each of open mulga scrub and open spinifex glade. There were none in open rocky savannah.

The burows were distributed in two clusters bounded approximately by the limit of bandicoot scratchings. In order to test if the burrows were distributed at random within the scratched areas, a grid of quadrats with sides equivalent to 340 feet (105 m) was laid over a map of the area. We considered only those quadrats within the scratched areas, and those intersected by the limit of scratchings. The distribution of burrows within these quadrats was tested for goodness of fit with a Poisson distribution, as shown in Table 1.

TABLE 1
Distribution of burtows in quadrats cavering all of the scratchot ares. showing gurumess of fit tést to a Enisan distribution.

No. of hurrowz per rpuarirat:	Obsorved No , of quadrats (0)	Expooted No. of quadrats (E)	$\frac{(\mathrm{O}-\mathrm{E})^{3}}{\mathrm{E}}$	
6	60	61.28	0.02\% 7	Mean $=0.539$
1	34	38.41	0.07%	$Y^{\prime \prime} \mathrm{ce}=0.45 \mathrm{~s}$
2	9	8. 57		$x_{1}^{3}+0.11,6$
i	1	1-51	-0.0103	$70 \% \sim 20 \% 80 \%$.
\pm ¢\% neme	0	$0 \cdot 23$		
Total	104	104-00	(1).114	

The result ($x^{2}=0.114,70 \%<\mathrm{p}<80 \%$) strongly suggests that the burrows were randomly distributed over the area. This indicates that the position in which a bandicoot dug a burrow was independent of the position of other burrows in the area.

It is probable that a rabbit bandicoot uses a burnow as a refuge into which to flee when danger threatens. If so, then sume description of distances between burrows is useful. Fig. 5 shows a histogram of the number of burrows and the distance of the nearest neighbouning burrow to each of these 58 burrows taken in turn. The spread of the nearest neighbour distance is small, with no burrow more than 550 feet (170 m) from any other one.

There is a small peak in the histogram composed of burrows with nearest neighbour distance greater than 350 feet (105 m). These burrows were distributed over the whole study area, and the presence of this peak is therefore perhaps fortuitous.
(d) Food

We collected all the faeces voided by two bandicoots during their first night in captivity. One pellet from each was examined microscopically after crushing. They both contained more than 50y by volume of soil and grit. They also contained a small number of rabbit bandicoot hairs. However, the most striking contents were the hard, keratinised mandibles and whole heads of certain insects. We collected insects from the study area which were possible food species, dissected their mandibles, and compared these mandibles and heads with those found in the faecal pellets. By this method we were able to identify remains of both soldier
and worker castes of two termite species, Hamitermes (Drepanotermes) rubriceps (Froggat) and Eutermes tumuli Froggat, and workers of one species of ant, Componotus sp.

Counts of the numbers of mandibles, and in two instances twice the number of leads (for comparative purposes), of these species are given in the first two rows of Table 2

TABLE 2
Frequency tof mandiblos of verious insect spucies in facenl pellets from wecently raptimert rabbit bandicoots and from noar seratchings made by bandicoots in the study area.

* No. of heade 8.
$\dagger+1$ mandible of Camponotus species.
+ 42 mandibles of Camponotus species.
\& +2 mandihles of larval lep midoptera.
The counts may not represent the relative numbers of individuals eaten. Captive bandicoots masticated their food very thoroughly, and it is possible that a different proportion of mandibles and heads from different food species were crushed beyond recognition. However most mandibles from pellets were whole, and little changed in shape or colour. There is probably some simple relationship between mumbers eaten and fragments in faeces.

After working with faeces known to be bandicoots, we analyzed contents from presumed handicoot faeces collected near scratchings. These results are given in the remander of Table 2. They closely resemble those from known bandicoot faeces. In these other pellets, we identified remains of a small black ant, Iridomyrmex sp., and a white Lepidopteran larya, as well as species fonnd in the earlier analyses.

The two species of termites were abundant over much of the study area. They were found in vast underground colonies, with domes and mounds raised above the soil surface in places. Bundicoot saratchings often intersected the underground passages, hut there was no sign of interference with the mounds. From the numbers of mandibles in the pellets, and from the numbers of scratchings intersecting colonies, it is likely that these termite species were a primary source of food for bandicoots in the study area.

The specics of Iridontyrmex identified from faeces was also extremely abundant over the area. Being highly active and pugnacious, they readily attacked and carried off termites when given access to their colonies. Because of this, and their ubiquitonsness (therefore being readily available where a bandicot was fecding an termites), as well as the fact that their remains only uccurred in large numbers in one group of pellets, it is possible that they are only a subsidiary food sumee. or perhaps even a "contrminant" of the usual diet.

The larger ant, Cimmonotios sp., was less abundant than Iridomymene. Is stmradic appearance in faeces suggests that this is also a secondary food species.

We found the large white grub (larval Lepidoptera) undet two specmer ot lussock grass, Eragrostis eriopode and F. Tanifona. Of the five grasses seratched under in the sturdy are:a, theme two were the mose frequent. Although mandibise nf this particnlar larva were fonnd only tovice in a sample of 14 pellets, the large size si the grub (up to 20 mm long), and the large number of tussocks scrate hed under, suggests that larvie of this species and perhaps other unidentified ones are ill importaint food.

Farces necacionally rontomed other materials. Small amounts of plant tissur: such as undigested seeds and plant hairs were sometines present. Unidentified lhichened fiseme alos encenryed in moderate amounts. These objects were not sonsistently present.

(0) Activity

For eight consectitive days we kept a ccord of the burrows that had been used daring the previous night. Thirly five burrows were seroted on all eight nights, and more were added to thie list as we found them. For the last two days we seored 52 burrows, and considened that we had located at least 90.5 of all the hurrows present. Our method of senring did not differentiote between a single entry or exit by a bandicool, nor did it dilferentiate either of these from multiple entries hand exits during one night.

We must assume firstly that our working in the area did not have any cffect on the behavion of the bandienots present. Although we heve no concricte cyidence to sngesest that this is a valid assumption, we noted that recently caplured handicoots slowed little fear of humans or human sent. Secombly, we will assume that the hurrows we observed for the longest period were a representatise sample of all burrows with respect to use by a bandicent. We could not deteet any risible sifferene between these burrows and the remannag ones.

For each night we enlentated the percentage of burruws which were used oul of all those we scored. The mean percentage and its slandard etron were $15.5 \pm$
 mone night ($2 \cdot\left(0{ }^{2}\right)$, indicates that all the handiconts present did not torage every night, but spent at least one underground. We secorded overnight minimum temprature during the period, Ent could not deduce any relationship between it and prercentage of burrovs used.

When considering the number of times each individual hurrow was used, it is eonvenient to take only those burrows scored for all eight uights. The frequency distribution of these 35 burrows showing the number of nights each of them was used is shown in Fig, 6.

Fourteen burrows (40) were not used on any night. These burrows did not Appear to be distributed at random over the area, but a statistical test is impractical becanse of the small numbers involved. They fended to be on or near the castrom edge, where habitats with spinifex predominated. From Fig. G, we can also
note that more burrows were used on two occasions than on une. I'his can be explained when we comsider that a bandicuot spending a day in a burrow would use it on entering one night and leaving on a subsequent aight. It would be scored both times.

We know that there ware at least two female bandicoots in the sludy ared. because we captured two from burrows alrout 1,400 feet (405 m) apart on the western edge of the area. This was within two days of completing the observalions on activity. Ontside the study area, the nearest locality we found where rablit bandiconts were living was about 3 miles (5 km) away. Even assuming no migration to or from the study area, it is mpossible to estamate the total number of handicuots present.

Because there were mos signs of activity beyond 600 feet (180 m) from the mearest burrow, we may assume that for both female bandicouss captured, their home tange was completely covered lay the study area.

(1) Notns on cotphice sporimens

Thic two adult females we caught in the study urem elich not have pouch young Whon taken in mid-December, nor when examined a montly later.

When kept unavoidably at an air temperature of $100^{\circ} \mathrm{F}\left(39^{\circ} \mathrm{C}\right)$ for a short period, they lapped the water which was supplied, there was no permanent water avalable in or near the study area, and it is molikely that bandicoots experionec such high air temperatures in the wild. At these temperatures. they slept on their sides, with tail, hind-feet, and head all extended. However, at lower temperaturcs they slept cronched on all Fom feet, with the nose fucked muder the chest, the bail curled around the body, and the ears folded fowad over the eyes.
"The captives started to eat choppeed, tinncel beef and to drink milk about is weck after boing taken into captivity, Later, they ate minced fresh meat and lise mealworms.

13SCUSSION

Where one sludy overlaps with those of other recent authors, the genaral vesults ayree

Marlow (persomal communication) caught two mbhit bandicoots in an areal of similat habitat on April 5 and B, 1965. At latitude $90^{\circ} 49^{\circ} \$$, and longitude $130^{\circ} 15^{\prime} \mathrm{E}$., (about 25 miles (40 km) NW of The Granites, $\mathbf{N . T}$.), the bandicouls were living in an urea of spinifex-Mclaleucat serub, wilh sendy soil and numerous termite mounds. One of the bandicoots, a fomale, is preserved in the Australian Misenth, registered number 18620.

A brief survey of the distribution of rabbit bandicoots noar Warburton Mission indicated that they lived in small isolated groups over a large arsa. Newsme (1962) says he found that rabbit bandionots were living in at least four and perlamps six localities in a vectangular area 50 mikes long by 30 miles wide (80 km ly 50 km) in Central Australia. It is probable that rabbit bandicoots utilize only a small percentage of the large homugeneous areas which could support them.

Insect lirvare and small vartchrates have both heen the most frequently noted types of food of the rabbit bandicoot, es. Wathoy (1962). Finlayson (193.5) found rodent fur in the gut of a closely related species, Marrotis minor' (Spencer). Although honse mice, Mus musculus Tinne, were present in the study area, their fur did not appear in athy of 50 pellets cursorily examined. Aboriginal reports clearly indicated that the rabbit bandicoot cats the large witchetty gribs, (larvae
of buprestid betefex , when they are present in the roots of the witehelty lrush. Acucia kempeener. Gould (1845) made a similar ubservation in South-hresteru Australia. At the time of our study, witchetty grubs were absent from the sturly area, altheugh ahoriginah claim that they had been plentiful in former times.

Tlee fool of the jubbit handiceot reported here is remarkably similar to that of the marsupial, Mermecobius fascintus Waterhouse, (bauded ant-eater), which Cinlahy (1460) studied in South-Westeru Australia. He found that temites of many species, all different from those recorded above, were the principal food, and that remains of ants were also often found in faeces. Likewise, he argued that ants were ingested incidentally while termites were being caten. Howover, he fonnd no traces of Lepidopteran or other insect larvae.

There is little conerete data on the breceding of the rabbit bandisoct Whad. Jones (1924) comments that breeding of Macrotis in Central Australia is regulated hy rains and abundance of food, an ohservation macle on many specess which live in a dimate without regular seasonal variation. Two other species of bundirouts have bern shomen to breed throughont the year. Lywe (1964) working with Porameles nasuta Geoffroy, and Mackerras and Smith (1960) with Isoodon macrourus (Gonld), have hoth recorded breeding during all seasons.

Observations of activity of the rabbit bandicoot are limited, but Mood-Jones (1024) has noted that captives usually emerged about an hour after dusk, Stodart (1966) observed the long-nosed bandicoot, Porameles namba Ceoffroy in a 4 -acte enelowire. She tomel that thery usually emerged from their wests at dosk, and most of then activity was completed after about two hours. They spent nearly all of this lime searehing for foons.

Athough we found that a group of rabbit bandicoots lived in a small proportion of an anda with the pontential tos suphort them, we have no criblence conceming territmial behaviour within this small area. Two male and four femule longnosud handiconts in an melosute did not have territories (Stodart, 1066) and were solitary fecders, with intentional contact betweent individuals restristed to actual matinis.

The rablit bandicont wats monlerately plentiful amd widecpread in trmperate and arid dustralia during the last century. Jowever, a rapid decrease in sange and numbers has heen the pattern in recent years, especially in the more tesmerate regions. It has not been recorded from New Sonth Wales simee 1912 (Marlow, 1958), and from Victoria since at least 1866 (Brazenor, 1950). In 1034, it was said to he widely distributed in Western Australia south of the Kimberley region (Chetuert, 1934), but twenty yars later lie deported that thete were "no remorts of is presence anywhere (in Western Australia) within recent years". (Glauert, 1954). In arid South and Central Australia, Finlayson (1961) claimed that it was rapidly being teduced to areme form, hat Newseme (1962) indicated that it had reecently Isen recorded from 36 localities in the Northern "lerritory. Rabhit bandicmots were tithen uear Birdsville in Soulh-Western Qucensland during 1957 to 195 F (Mach. 1901), hut while in the area recently, we obtaned gool evidence that the bandicoots disappeared there about five years later. Thus, a steady reduction in rimpe towards pats of arise Gentral Australia seems to be taking place, with no cvidence that this reduction is slowing down or stopping.

An attompt to conserve some natural populations of rabbit handiconts is probably necestary now if they are to continuc as one of Nustralia's naturally occurring species. Sinecessful conseriation of a species drpende largely on a knowIeatge of its distritation and ecolsegy. We loupe mur study will tre riseful to those who plan to couserve the rabliat busticont in jts natural habitat.

ACKNOWLEDGEMENTS

This work was supported by a Noffield Foundation Rescarch Grant to the Royal Zoological Society of South Australin, and was administered by the Socicty's l'resident, Dr. P. S. Watts.

We wish to thank Professor II. G. Andrewartha of the Department of Zoology, University of Adclaide, for encouragement, gndance and for many useful discussions. The Council and Staff of the Royal Zoological Society of S.A. gave us unlimited help. We reccived excellent co-operation from the Western Australian Fisheries Department, and Mr, A. J. Fraser, Chief Warden of Fanna. Finally, we: wish to thank the Western Australian Department of Native Welfare; and the superintendent, staff and people at the Warburton Ranges Mission for gencrous help.

REFERENCES.

Atlas ol Australian Hesourecs (19;3). (Deparbment ol National Development: Canherra.)
linazkwon, C. W. (1950). "The Mammals of Vjctorias. (Brown, Prior, Anderson: Melboune.)
Calaby, J. H. (1960). Observations on the banded ant-eater, Mymecobius f, fasciahus WaterLhuse (Marsuphalial) with pirticular veference to its fool lafits. Proc. Zoul. Soc. Lond. 135: 1833-8177.
Calany, J. IT. (1963). Australia's threatened manmals, Widhife, Brisbane-1: No. 1. 15-8.
Donrans, W. H. (196f). An introuluction to the Western Desert Language. Oceanial Iinguistic Monogr No. 4 (revised). (University of Sydncy: Sylney.)
Fintaybos, H, H, (1935t. On mammals From the Lake Eyre Basin: 1art II, The Peramelirlae. Trans. H. Soc S. Aust. 50: 227-36.
 tatus raf Central Australian species, Rec, S. Alust. Mus. 11: 141-S1.
Glavent L. (1434), The distribution of inarsupials in Vestern Aisistralian. J. Proe, Ro, Soc, West Aust: 19: 17-32.
GiAvemt, 1. (1454). The recment increase of the rarer native mammals. Ir Hetords from the W. A. Muserm: W, Aust. Nitt, it 129-32.

Conmin, J. (Ls45). "The Afammals of Australia, Vol, 10" (The Author Lomelenn)
 rasula Geoffroy with notes on other bandicnots. Alast J, Tool. I2, 323-36.
Mack, G. (1961). Mammals From South-Vestern Qneensland. Mem. Xd. Mus. 13: 213-ํ.
 coot, Isoodon mencroutus (Gould) in caphivity.. Aunt. J. Zobl. 8: 371-82.
MAn, ow, 13, J. (1958), A survey of the marsupials of New Sond Wales. C.S.I.R.O. Wild. Kез. 3: 71-114.
Mancovy. B. I. (1968), "Marmpials of Australfa" (Jararandas Brishate")

l'hnport: C. M., and SMyra, D. R. (I967). A contribution to our knowledge of some mative manmals from tukind Australia, Trens, R. Sonce S. Alsist, 01: 115.3.3,
Stolart, E. (1966). Management and beltaviour of breeding groups of tho marsinial Perrmeles nasuta Geoffroy in captivity. Aust. J. Zool. 1A: 611-23.
Wood-Jones, F. (1921). "The Mimmali of South Australia. Parl II." (Cavenment Printer: Adelaide.

Pisis. I. An immature femate rabhit bandicont from 120 miles cast of the study areato Apprex. (1). $28 \times$ natural size.

Pig. 2. Cylindrical bandicoot seratching, with fateal pellets on the tup edge. The measure is 1 foot (30 cm) long.
Fig, B. Conical bandicont seratching under Eragrostis lanifora, The measure is 2 in . \& 1 保 inn. $(5 \cdot 0) \mathrm{cm} \times 3.5 \mathrm{~cm})$.

P1.ATx: 2
Fig. 1. Rabhit bandienot faecen, showing yroups of pellets voided toxether. The scate is in inches and centimetres.
Fis. 2. Bandicoot burrow near a fallen mulga log.
Fig. B. Bandicoot hurrow with tailmarks on the mound of soil at the entranes. The measure is 1 frot (30 cms) long.

1'late: 3
Fig. 1. Open mulga scrub, with a burrow at the base of it gmolea in the forearound. This vegetation type contained only 2 burrows.
Fior 2. Mulga-tussock serub, with al burrow partially hidelen by tussock grass in the foreground.
Fig. B. Mulga-spinifex scrub, with handicoot scratchings in the foreground.
Fig. 4. Open spinifex glade, showing low rocky hills in the background. There were only 2 burrows in this vegetation type.

AN ANALYSIS OF VEGETATION ON STRANDED COASTAL DUNE RANGES BETWEEN ROBE AND NARACOORTE, SOUTH AUSTRALIA

By R. M. E. Welbourn and R. T. Lange

Abstract

Summary The presence or absence of 80 species has been scored in 330 samples of sclerophyll forest on nine dune ranges, and the data classified by association analysis. The vegetation is a mosaic of groups, within which four main groups may be distinguished. These roughly correspond to orthodox vegetation societies, lint key species are determined solely by measured association with other species, without reference to physical prominence. For example, the species with the highest degree of association in this study, Phyllota pleurandroides, is a small shrub. The potential value of the groups in vegetation mapping is indicated.

AN ANALYSIS OF VEGETATION ON STRANDED COASTAL DUNE RANGES BFTWFEN ROBE AND NARACOORTE, SOUTH AUSTRALIA

by R. M. E. Welbouna and R. T. Lanefo

[Gead 9) Navenliers $] 967]$

SUMMARY

 scderophyll furcst on nine dune ranges, and the data classitied by associationanallysis,

The vegetation is a nosaic of groups, within which four muin groups may her listinguished. Theae ronghly cartespond to orthertox vegetatiom sacieties, but key species ate determined solcly by measured association with other species, without refereace to physical prommence. For example, the species with the highest degree of association in this study, Bhyllofa plemendroides; is at amall shrub.

The potential value of the groups in vegetation mapping is indicated.

INTRODUCTION

The purpose of this study was to show by masurement, the doristic composition of the dune range vegetation and to discuss factors controlling its disposition. A discussion of analytical methods used has been published elsewhere (Welbourn and Lange, 1967). The study was an M.Sc. project with Ule University of Adelaide, to whom, with the State Herbarium of South Australia, grateful achnowledgment is made.

The habitats arc distinct ranges considered to he successively younger toward the present coast. In the area studied there are ut least twelve ranges subparallel to the coast, about 2 km wide by 30 m ligh above the otherwise flat countryside (PL. 1). Each range consists of two portions. The core is more or less consolidated calcareous beach sand, a relic of coustal dunes formed at various stages of the Pleistocene from about 600 to 200 thousand years B.1'. (Sprigg, 1952). This material outcrops westward as acolianite limestone, parent material of the teria rossa soil carrying open woodland. Overlying this core are siliccous sands, of uncertain origin but considered to be windsorted, leached and of Recent age (Blackburn et al., 1965). These sands form the bulk of cach range, and are the parent material of the podsol which supports the predominant vegetation. This is largely the Eucalyptus baxtevi association within the dry solcrophyll forest formation (Crocker, 1944).

Pattom, the degree of non-randommess in the sputial distribution of individuals, was the vegetation feature investigtated. Since pattern reflects habitat variation, the patterns of ecologically simila species tend to coincide, or associate, thus indicating a vegetation group. The variable commonly measured to reveal such groups is species frequency, the proportion of sample quadrats occupied. Associthlinns were determined with such data in this study.

Fig. 2.

METHODS

The area bounded hy Kingston, Naracoorte, Penola and liobe was selected for study because the dune ranges are most distinct here (Fig. 1). Sumpling areas wore located within the remaiming estimated 750 sq . kan of vegetation so that the Pariation of mean annual ramfall, about 900 mm , would be represented on each range. Most of the vegetation was unnatural in some way, so that, having excluded areas obviously disturbed, or burnt less than four yoars before, ar dominated by bracken, 33 areas remaned. At each of these, 1 en 20 sq . in cirenlar samples were located randomly where feasible, otherwise systomatically. All species likely to occur in upland sites in the area studied were scored; also Bunksin marginala and Calymix telragona were divided into at hoe torms to render the data more sensitive to habitat variation. A seference collection of relevart pecies whs used throughout.

The method selected 10 reveal vegetation groups was association-analysis as proposed by Willinms and Lambert (1959). Therr recommended association indes is for cach specties the sum of all the chi-squared values obtained from continEency testing with each other species in turn. The procedure is to subdivide the 330 samples firstly into two groups, respectively with and without the appropriate kev species. The key species is that with the highest association inder at any stage of subdivision. Within each of the groups thus formed, the process is repeated, fractionating the miginal single group of 330 samples into progressively more subldivisimn. In this study, only specjes with a frecuency greater than 1% were considered: dat: were computed electronically, and suldivision was stopped it 16 gimups.

THE VEGETATION゙

"Her analysion in thes terms reveals a series of groups of decreasing importance, conveniently scpresented as a hierarchy ($F \mid g, 2$). The validity of ain grout as a recognizable vegetation community is indicated by the range of anociation index over which it persists undivided; this is supported by its containiugs relutively few minor groups. F'or cxample, Group B suhdivided on Monotoca is such a community, since it persists from Index 155 to Index 20 , and embrace\% only Wwo minor groups as fur as the date were analysed,

On this basis four such gromps may be distinguished from the complex mosaie of sroups of varying validity which comprise the samples studied. These groups, 1 to D, exist simultancously over a larger range, 125 to 60, than any other number of groups. Thus within the limitations of the analysis, they are communtics approximating societies within the Eucalyptus baxteri association. They are identificd by 16 indicator species which vary in frequency between groups (Table 1). Fos examp!e, vegetalion containing Momotoca, Persoomis and Acacia spincsecers, font nost Pultanafe, would bo cither Group A or B. If furthermore it contained Phyllota. Kantherrhoce and Boronia, but not Ac oxycedrus or Styphelim, it would le Group A.

On the other hand the remaining 64 species antalysed are relatively insensitive to the discontimities that affect the key species. Of these, 22 have a frequency greater thun 30\% (Table 2), their similar group frequencies, indicating their umbused distribution throughout the area studied. The appearance of the vegetation is dominated by the five species of frequence greater than 75%, $\mathrm{i} i=$. the tree E. Mueferi, the small shubs L. mirsmoides and X^{*}. australis, and the undershrubs I. serfecea and L. virgatess. Suprimposed upon this pisture of four groups

TABLE 1
INDICATOR SPECIES
Hpecies usod to identify the groups；relatively high frequencips are in bold faced typto，

species	Overall	Frequency \％			
		A	B	0	D）
Monotocn scopuriet（Sms，R R Br	ジき	17	100	0	0
Persoonia juniperinm Labill．	8	17	21	3	0
Acteia spinescens Benth．	2	10	2	0	0
l＇ultenaea prostrata Benth，ma Hook． í $^{\text {a }}$	0	3	0	13	8
Phyllota plekrandroidlea F＂．V．M．	18	100	0	11	11
Frantharshase quentrangulata F．v．M．	6	32	0	0	11
Boronce coeruleseens F．V．M．	3	14	0	1	0
（Benth．）Black	5	27	3	0	0
Lhotsky alpestris（Lindl．）Druec	7	25	0	2	4
Aedciat oxycerdras Nieb．ex DC．	3	（1）	11	11	0
	15	39	2	15	14
Styphelin ordacendene R, Br ．	万	0	16	2	F
Eucalyphus obliqute L＇Herit	12	8	3	28	4
Isopayon ceratowhyllus $\mathrm{R} . \mathrm{Br}$ ．	57	77	68	100	0
Hodonnerr viscosm Jacq．	4	\％	0	0	11
Leucopogon collinus \｛Labill．）R．Mr．	23	49	30	$\underline{2}$	\％

TABLE 2

COMMON SPECIFS

speries	Qverall ！	Frequemoy or			
		A	［	${ }^{\prime}$	D
MYRTACEAE					
Eucalyptus baxteri（Benth．）Maiden at Blakely 60 Black	89	95	47	72	74
Leptosyermum mypsinaifes Sohldi．	89	$41 /$	118	4	71
Catytrix tetrayona Labill，（ghakerimes fomm）	30	16	． 56	24	24
EPACRLDACEAL					
Jeucopogon virgratus（Labill．）R． Br_{8} ，	80	（i）	86	82	HH
Astrolumu conosteveltuiles（Numil．）E．v．M． ex Menth．	74	50	86	50	74
Brechiloma cilintum Bonth．	4is	42	70	6.5	$6{ }^{6}$
Lewcopogon exicoides（Sin，）Rur－	52	$1!1$	60	45	$7!$
Epaoris impressa Labill．	51	4.7	40	58	31
dorotriche spryurnta（Laluill．）K．l3r．	47	$3 \times$	52	31	311
Astrolomu humintsum（Cav．）R．J3r．	34	15	13.	38	11
A．hamifustan var．denticulatum（ L, Br－） 1 back	31	31	258	23	4
PROTEACEAF					
Banksica orsatar F＇．V．M．ex Meist．	$n \mathrm{fl}$	86	65	164	$3!1$
Isopogon ceratophyllus 12． $\mathrm{Br}^{\text {r }}$ ．（san Table $]$ ）	57	${ }^{*}$	\pm	\times	\times
Bankais marginata CaF．（shrob form）	45	63	87	57	25
Bunksiu marginata Cav．（tree furm）	8.8	I＊	32	35	47
1．EOLIMNOSAE					
Acneire mbyekfolion（sim）Willd．	310	43	5%	26	13
Kemmedio prostratra R，Mr．ed Ait．	30	20	3	36	23）
OTHER FAMILIES					
Hiblerticu wericea（R．Br，ex DC．）Tenth．	84	88	80	82	85
Xanthorrhots nusirrsis R．Br．	80	741	H．	113	16
Hiblertion stricke（DC．）F．v．M．	62	83	54	73	40
Hypoluena fastiginta R．Er．	60	78	81	$6 \pm$	35
Tetratheca elfiutet Lindl．	48	25	70	$5 \overline{5}$	3.9
Correa reflext（Labill．）Vont，var，reflecis	40	39	6\％	49	18

cortrasted with common widespread species, are 42 wpecies with similar frequency to that of the indicators, 2 o 29.4 , but occurring haphazardly in the groups and thus clistributed unpredictably throughout the wegetation. Superficially, then, the dry selerophyll forest studied appears to comprise un open tree canopy over a layer esf small shruhs dominated by relatively few species. The overall impressiun is of uniformity. Ifoweyme measurement reveals that, of the numeruns low frequency species, sume cunsistently associate in socictics or grnups.

Since it is difficult to assess the validity of the groups other than by field experience, it is necessary to state at least some sources of error inherent in the methods nised. Firstly. there are the hasic earors due to a sampling intensity of whut 0.0019 and to operator Tallibility in naming and scoring species. Secondly. data trased on fraquency are liable to misrepresentation because quadrat size affect: the sesults. Fur example, a large quadrat overemphasizes uncommon xpecies, whilst a small quadrat underemphasizes the importance of species of patchy distribution. This defect can be overcome only with additional data on variables such as density. Thirdly, the unalytical method was arbitrarily selected from several which might have been used (Wedhouto and Lange, 1967). Its most scrious fault is that in subdividing on a single association index, this method does not indicate the extent or nature of any suhordinate association whech mely exist. That is, there is no indicalion of the overall comfidence with which a particular subdivision is made. Furthernore the assuciation index itself falls short of theoreticall excellence. Finally, it should be recognived that any such method imposes definite cut-off points to groups hetween which there is some continuity. Severtheless such groups provide at least an objective basis upon which to classify and map vegetation variation.

Fig. 3 is such a man which reveals that the groups themselves are more or less geagraphically restricted. For example, Croup A tends to the north-central arce. 13 to the south-cast. C ten the west and south, and D to the cast and north. Since these apperar mot to be chance distributions, there are likely to be envirnamental factors correlated with them. Several factors will he discussed, to illustrate the sort of hypothesis which may arise from such vegetation mapping.

It time was the only factor involved, sone groups could bee expected to represont stages in a succession, and so to predominate on ranges of similar age. Such Irends are appurent; for example, between Naracoorte ami Robe, Grenp, D) is gradually replaced firstly by A and B, then by C on the younger ranger. However: this evidence rests on the assumption that all other environmental facturs are hold constant. This was not so in the case of soil and lopographs which were more variable than expected. Thus the correlation of vegetation with habilat age cumol be tested under the sampling conditions of this study. Similar remarks apply 10 a correlation with aspects of climate such as coastal influence and anmual rainfall.

From field descriptions of the sampling areas, it is apparent that variatims In soil and lopography are correlated to some degree with vegetation wariations. For example Group A necurs 1 m and ridges normal to the ranges, suggesting an immature profile; the Fuculphtus baxteri here is stunted, and E. dicersifolin Bompl. Was ohserved nearby suggesting at gradation to the soladized solonetr soil common to the north. Crrip h oucurs on deep samds in the higher fainfall area: the vegretation is profuse and undisturbed. Group C is a diversified group which tends to occur in flat, shallow areas, particularly to wostward where the ranges appear to have less siliceous sand covering the limestonc. The mext suhtivisiun of this group (Fig. 2) is on E. obliqua, a species known to ofeur on shallower soils. Group D occurs on the castern sides of Janges well away from limestone, bul with some seasomal watertable influence.

Fig. 3.
Clearly, profile measurements and more intensive sampling are required to substantiate any correlation of vegetation with soil and topography. Such correlation, once established, will be of value in habitat classification and mapping.

REFERENCES

Blackburn, G., Boxd, R. D, and Clauke, A, L. P., 1965. Soil develupment associated with stranded beach ridges in South-East Sonth Australia. C.S.I.R.O. Anst. Soil. Publ. No, 22. Crocker, R. L., 1944. Soil and vegetation relationships in the Lower South Eist of Sonth Australia. A study in ecology. Trans. R. Soc. S. Aust., 68, pp. 144-172.
Sprig. R. C., 1952. The geology of the South-East Province, South Australia, with special reference to Quaternary coastline migrations and inodera beach develonaments. Geol. Surv. S. Aust. Bull. No. 29.

Welbouns, R. M. E. and Lânge, R. 'T", 1907, Subdividing vegetation on inter-specific assuciation. Vegetatio Acta Ceobotanica, 15, pp. 129-136.
Whliakss, W, T. and Lambert, J, Ma, 19p9. Multivariate methods in plant ecologỳ. I. Association-analysis in plant communities. J. Ecol., 47, pp. 83-101.

$\mathrm{l}^{\mathrm{P}_{\mathrm{L}} \text { ATE }} \mathrm{l}$
General vjew of the area studied. looking eastward towards Narnooorte. Three ranges. each partly cleared of natural vegetation, are emphasized in the foreground and middle distance with a line allong their crests.

FURTHER TAXONOMIC NOTES ON THE SPECIES OF MILLOTIA CASSINI (ASTERACEAE)

BY RICHARD SCHODDE*

Abstract

Summary One new species, Millotia inopinata, is described and chromosome numbers for it, M. myosotidifolia (Benth.) Steetz, and M. tenuifolia Cass. are reported. Attention is drawn to the reported tolerance to and accumulation of copper in M. myosotidifolia.

NURTHER TAXONOMIC NOTES ON THE SPECIES OF MILLOITA CASSINI (ASTERACEAE)

hy Richard Schodde*

[Read 9 November, 1967]

SUMMARY

Gne new spemes, Millohia inuminatu, is described and chromosome numbers for it, ML. myosotidifolia (Benth.) Steet, and M. tcristfolia Cass aie reported. Attention is drawn to the reported tolerance to and accumalation of copper in . II - m!osotidifolia.
Since the publication of my taxonomic account of the genus Millotia Cass. (Schodde, 1963), further material and information have become available. The abheriations AD, CANB, K, MEL, PERTH used in the text refer respectively to the State Ilerbarimm of South Australia, Adelaide, South Australlia; the herharium. C.S.I.K.O., Camberra, A.C.T.; the Hertsarium, Reyal Botenic Gardens, Kew, Fingland; the National Iferbarium, Royal Botanie Cardens, Melbourne, Australia; and the Westerw Australiau Herharium, Perth, Wostern Australia.

1. Millotia inopinata Schodde, sp. nop,-Fig. I
M. myosofidifolia (Benth.) Steetz proxima, cujus involucrum, formam flosculorm, et cypselas plerumque strigulosas habet, sed habitu latiore, foliis \pm anguste lincari-oblanceatis vel paene filformibus, capitulis \pm depressis globosis vel aliquantum turbinatis, hracteis involucralibus ad apices plerumque ratundatis, corollis aureo-flavis, cypselis aliquantum longioribus in rostris deflexis, papillis eypselarum ad apices integris et \pm patentibus vix strigosis in mostris cypsclarum, st pappi setis $5-8$ grosse barbellatis vel sub-plumosis differt.

Typus: B. L. Tumer 5494: CANB 156680 (holotypus), AD, K, PERTH: Western Australia, 82 mi . (miles) N. (rorth) Murchisun River along North West Coastal Hwy. (Highway), 26 Aug. 1965.

Grey somewhat virescent herb, $2-11 \mathrm{~cm}$ tall, $2 \sqrt{2}-12 \mathrm{~cm}$ broad, with $4-10$ stems branched and ascending broadly rarely rather erectly from the base, covered gencrally with a rather sparse white lanate indnuentism, and bearing (2-)5-25 floner heads. Jeaves relatively sparse and appearing confined towards stem hases duc to the prominent peduncles, narrow linear or linear-oblanceate to almost filiform where attached towards bases and apices of stems, ($1 / 2-)^{3}-2(-3) \mathrm{cm}$ long $\times(4-3 / 2-1(-1 / 2) \mathrm{mm}$ broad at the widest part, obscurely mucronate at the apices, slightly or scarcely amplexicaul. Peduncles ($\left.{ }^{2}-\right)^{3}-3(-4 \%) \mathrm{cm}$ long, raising the flower heads $1 / 2-23(-31 / 2) \mathrm{cm}$ above tops of cauline leaves, appearing hardly or, due often to denser woolliness, slightly expanded under involucres, and bearing occasional or frequent filiform peduncwlar leate's $3-10(-15) \mathrm{mm}$ long.

Flower hends \pm depressed ghbose or somewhat turbinate when mature, $6-9 \mathrm{~mm}$ long $x(7-) 8-11$ or more mm broad, hearing ca $(10-) 25-80+$ florets. Inowinctes $(3-) 3 \%-43$ mon long, of $(7-) 9-12(-13) \pm$ biseriate and imbricale equilong. oblong bracts ($\pi_{3}-$) $1-1 \frac{1}{1 / 2} \mathrm{~mm}$ broad with rather lanate to glabrous carinate midribs narrower than the broad \pm glabrous or sparingly lanate scarious margins and with apices broadly obtuse when mature (though rather acute to shortly caudate when young) and often finely ar olsscurely fimbriate or barbate.

[^1]Trans. Roy. Soc. S.A. (1968), Vol. 92.

Fig L. A, whole plant; B, mature flower fead: C , involueral laract; D , Hogets with maturing cypselate: and E , whole style and androciom.
 throat and deffexed over iwvolucre when mathre (contral curollas as dettexed as or somewhat more erect than peripheral corollas), bright golden yollow with the tube becoming brownish after anthesis; corolla limbs of (exceptionally 4) speading acute lobes $\frac{1}{5}-\frac{2}{3}$ mm long. Stamens 5 , with apices beceming exserted to or a little beyond rims of corolla limb; anthers with oblong theere $\frac{2}{2}-1 \mathrm{~mm}$ longe the connective tips extended $-\frac{3}{5} \mathrm{~mm}$ beyond thecae. Style hrunchess +1 mm lung, dilated broadly at the apices with conoidal anote eppenduges. Coynselme liucur, 6-9 (-10) mon long, sharply deflexed from near base of beaks over jnvolucre and protruding $3-4(-5) \mathrm{mm}$ beyond at matuity, variously dark hrown, sparsely hispidulous-strigillose; cypsela benks ($2 K_{1}-$) $3-5 \mathrm{~mm}$ Jong ut maturity. compressed and most broadly so on area of deftexion: aypsela papillas $=$ terece Io natow cylindrical clavate $=: \% \mathrm{~mm}$ lomg, entive rather expanded obluse ut the apices, culourloss more-or-fess briensparcont, somewhat appressed and diffase on body of cypela, rather spreading, denset, and confined to margius of
 as long as corsilas, tecoming sparsely coarse barbellate or semi-plumose towards Lhe apices. Chennosome number; $n=8$ (fide B. L. Tumer).

DISTRIPUTION ANIS ECOI.OCYY

Known presently fram three collections: leg. A. S. Cicorge 7978: PFHTH: 29) milues west of Mt. Magnet, comprising 12 plants, lag. C., H. Ciffins lotu: PIERTH: 7 miles south of Wimmo Roadhouse, eomprising 7 plants, and the type collection, of 14 plants, from 82 miles nosth of Murchison river. All localities are in the contral west jegion of Western Austratia.

According to Tumer (pers. comm.), the species was losally common in the type locality on coarse sandy soil in open areas with burned-over mulga (Acacia. sp.): Gcorge records il in sady loam at a granite outerop, Flewering: AugustSeptember.

CHARACTERS AND AFFINITIES

M. inopinate is closely selated to and sympatric with M. myosotidifolice. The Inorphological similarities lie in the long compressed heaks and cylindrical mostly uppessed papillac of the cypselae, the form of the corella, androccium and style branches, the narmwly midribbed bracts, and the wholly lanate judumentum. The new species would he identified as M. muosotidifolia when my key to the species of Millotio (Schondes, 1983) is used but may be distonguished by the following characters against which the contrasting characters of if. mesesotidifolia are bracketed: cypsedae with beaks conspicmusly deflexed and papillace obtuse at the usices (beaks eruct and papillae minutely noteled); cornllas deep golden yeflow (creamy white rarely creamy y fllow); pappus bristles $5-5$, $\pm \frac{2}{5}$ as long as corolla (bristles usually ($15-$) $18-85(-30), \pm$ as long as corolla, very rarely fewer and shorter); mature flower heads depressed globose (cylindrical-globose); apices of involucral hracts broad rounded obtuse. Often finely on obscurely fimhriate, rarely attemuted (caudate morc-or-less entire, rarely to atuminate or acute); leaves narrow linear-oblanceate to atmost filiform ($3-\{1-2(-3)$ cm lomg
 What spathulate (broadly ascending (ascending to erect).

Thes chnomosome mumbers so tar recorded. $n=8$ in M. inopinula and $n=10$ or $11 \mathrm{in} \mathrm{M} .\mathrm{mynsotidifolia} \mathrm{(sce} \mathrm{below)} ,\mathrm{also} \mathrm{appear} \mathrm{to} \mathrm{be} \mathrm{consistent} \mathrm{with} \mathrm{rliffer-}$ eneres between the two species. Additional comnts from the localised populations
of M, inopinate and from the castern Australian populations of M. myosotidifolica are needed, however, to determine how far these numbers are charneteristic at the species.

It is noteworthy that a number of the characters distinguishing M. inopinata from M. myosotidifolia resemble those of the eremaean M. grecuesif F. Muell.: in particular the hahit, shape of leaf and flower head, depauperate: pappus, and corolla colour. This may be a case of parallelism in so far as Me inopinate oceurs towards the north-west and arid margins of the geographic range of M1. myosotidifolia. There appear to be similar convergences in the charactess distinguishing M. matrocarba Schodde from its nearest relative, M. tenuifolia. Cass,

There are also similaritios between the new species and M. dopauperafe Stanlf, which was reduced to M, myosolidifolia (Schodde, 1963), ant to cevaluate them Professor B. L. Turner (pers. comm.) has examined the type of M. thepabpernte. This specimen, thusgh like 11 . inopinata rather than M. myosolidifosea in its few bristled pappus, apparently obluse-tipped cypsela papillac, and brosdtipped involucral bracts, is apparently too young and depanperate in its various elkaracters to permit certain identificition. Turner considers that in general habit it resembles M, myosotidifolia and that its cypsela papillace and involucral bracts. Hungle slightly different from much of the material of M. myommidifola ho examined, In match cectain determined cullections of that species well enough, Lee. Prilzel 545. In the present circumstances, there seems to be little point in Geating M. elepmenerata as anything else that as syoonym of M. munsotidifolia.

2. Mfillutia myosotidifolia (Benth) Stuetz

(ifromosume mamber: $n=10$ or 11, reporicd by B. L. Turuer. Vouchers: Tunner 5253. 13 miles north of Nomeman (n - ca 10): MLL; Turner 5442. 7 miles soutlo of Three Springs ($\mathrm{n}=10$): MEL: Turner 5182,30 miles south of Almadurals ($n=11$): MEL. All Incalities are in sonthern Western Australia,

Blissett (1966) bas recorded toleranec to und accumulation of copper in plantw of this species found growlog exelusively and abundantly on strips of open ground directly below old eopper-bearing dumps from the Ukaparinga coppea mine near Wijliamstown, South Australia. Spectrographic analysis of sample cislections showed copper contents of approximately 40,000 p.p.m. in the ash of green plants and approximately 4 祭 in the ash of dead plants. Voucher: 1. Moisseeff s.az, Ukrparinga Coppermine, IH miles cast of Williamstown: AD9664710s.

It is of Interest to mention that the species has also been observed growing ahoudantly on the rocky dumps from the old Blinman copper mive, at Blinman, South Australia. Vouchers: D. N. Kruchenbuehl 18, rocky livlskjpes of the ohd Bliminan Copper Mine at the north cond of Blinman: AIS 959009049; R. Schodefe 99°. hillslopes of the old Blinman Mine at the north end of Blimman: AD9590s0st.

3. Millotia matrocarpa Schoolde

The shape of the coralla is more accurately described as very narrow infunli. buliform of, the original description of the species in which tha term "narrow cyathifmon was inended to apply to the throat only, mat the whole corolla.

4. Millotia tenuifolia Cass.

Chromosome number: $n=13$, reported by B. L. Turner. Voucheos: Turners 5271.5 miles murth of Norsman: MEL; Turncr ia375. 14 miles west of Southerm Cross: MEL; Turner D516, 5.3 miles Jorth of Albany: NEL. The connts arw all from vir. Penuifolia and the lncalities are all in southem Western Australia.

My attention has also been drawn to a recently collected specimen of this species from near Collic, in southern Western Australia (leg. P. G. Wilson 3750: CANB 161828) which is unusual in possessing predominantly 5 -lobed corollas, and short laevigate cypsclae $3-4 \mathrm{~mm}$ long at maturity, only $\frac{3}{3}-\frac{3}{4}$ as long as the involucre, and with short beaks $\frac{1}{2}-1 \mathrm{~mm}$ long. It extends the known variation of the species in these characters.

ACKNOWLEDGEMENTS

Thanks are duc to Professor B. L. Turner, University of Texas, Austin, Texas, U.S.A., and Mr. P. G. Wilson for their collaboration, particularly to Professor Turner for making available the chromosome counts and checking details of Millotia inopinata against the type of M. depauperata at Kew. Professor Turner's investigations were assisted by a National Science Foundation Grant GB1216.

REFERENCES

Blissetr, A. H., 1966. Copper Tolerant Plants from the Ukaparinga Copper Mine, Williamstown. Quart. Geol. Notes no. 18, pp. 1-3 incl, f: publ. Geol, Surv: S. Austral. Dept. of Mines, South Australia.
Schodde, K., 1963. A Taxonomic Kevision of the genus Millo'ia Cassiní (Compositae) Trans. Roy. Soc. S. Austral. 87, 209-241.

A NEW SPECIES OF PTILOTUS FROM SOUTH AUSTRALIA (Amaranthaceae)

By G. Benle, F.L.S.*
(Communicated by Hj. Eichler)

[Read 11 April, 1968]

Abstract

SUMMARY A description and an illustration are given of a new species of Ptilotus, Pt. symonii from South Australia. The type specimens are cited and some critical notes are made on some characters of the new taxon which is compared with Pt. seminudus (J. M. Black) J, M. Black and other species.

A recent examination of specimens of Ptilotus sent us from both the State Herbarium of South Australia (AD) and Mr. D. E. Symon (Herbarium ADW) revealed the existence of a hitherto unknown species which is here described as follows:-
Ptilotus symonii Benl, sp, nov. (Fig. 1. a-c).
Planta perennis, pluricaulis, in statu iuvenili leviter tomentosa, demum subglabra. Rhizoma lignosum adscendens, plusminusve tortuosum, fusiforme, in speciminibus examinatis usque ad 25 cm longum, superne 16 mm crassum. Caules 50 cm et ultra longi, $1-3 \mathrm{~mm}$ diametro (in basi lignosa $3,5 \mathrm{~mm}$ crassi), virgati, saepius curvato-adscendentes, visu cinerei dein pallido-virides; iuveniles teretiusculi per totam longitudinem pilis crispis crassiusculis nodulosis, ad $1,5 \mathrm{~mm}$ longis dense, adulti sulcati sparse induti. Rami valde ramulosi, ramuli tenerrimi subdensi, adscendentes, divaricati vel patulo-erecti, ad 20 cm longi; basales 7-22 mm distantes, summi approximati, usque ad inflorescentiam dense foliati.

Folia permulta minora quin etiam minima, alterna interdum specie secunda (Fig. a), $2-6 \mathrm{~mm}$, raro ad 13 mm distantia, primo modice puberula denique glabra et lacte viridia, plusminusve coriacea, integerrima, siccitate marginibus raro subsinuatis, nervo medio subtus vix prominente; omnia inferne attenuata, breviter vel brevissime petiolata (petiolo indistincto ad 2 mm longo), in apice mucronata (mucrone $0,1-0,2 \mathrm{~mm}$ longo); maiora $1-2 \mathrm{~cm}$ longa et $2-3 \mathrm{~mm}$ lata oblongo-lanceolata, minora saepe acicularia.

Spicae haud amplae numerosac, hemisphaericae ($1,5-2,5 \mathrm{~cm}$ diametro) vel subovoideae ($2,5 \mathrm{~cm}$ longae et $1,8 \mathrm{~cm}$ latae), pedunculatae, solitariae ramulos terminantes, raro subsessiles laterales, rhachide breviusculo ($0,7-1,3 \mathrm{~cm}$ longo) dense villoso, pilis plusminusve flexuosis nodosis, $1-1,5 \mathrm{~mm}$ longis. Flores (15-25, raro ultra) haud dense congesti, demum stramineo-flavescentes, albido-pilosi.

Bractea bracteolaeque acutae integerrimae, pilosae, extus pilis articulatis, apicem attingentibus quin etiam paullulo excedentibus obsessae, uninervae, post lapsum perianthii superstites, inaequales: Bractea inferior rigida, subcordatolanceolata $2,5-3 \mathrm{~mm}$ longa et $1-1,2 \mathrm{~mm}$ lata, fuscescens, nervum medium versus obscura, in dorso omnino pilosa, pilis articulatis, circiter 1 mm longis densius vestita. Bracteolae 2 distincte maiores subcarinatae, membranaceae, tenues, ovato-lanceolatae $4-6 \mathrm{~mm}$ longae et 2 mm latae, tantum nervum medium fuscescentem versus pilos circiter $1,5 \mathrm{~mm}$ longos gerentes, lateribus glabris generaliter incoloratis, hyalinis, nitentibus, perianthio adpressae.

[^2]

Fig. 1. Ptilotus symonii Benl: Pedicelled spike (from AD 96131068) with the tiny upper leaves (Fig. a); perianth (from AD 968020399) with stamens and staminal cup spread open, inner view (Fig. b); pistil (Fig. c).

Perianthium pentaphyllum elongato-erectum dein subcampanulato-patens, basim constrictam cartilagineam versus sensim indurescens, tubum angustum cylindraceum 0,8-1,2 mm longum, extus pubescentia plusminusve absconditum formans. Tepala elongato-linearia vel lineari-oblonga, anguste hyalino-marginata, trinervia-nervis lateralibus (superne saepius indistinctis) areolam medianam impellucidam, incrassatam, coloratam includentibus-, ecarinata, integerrima, truncata, apicibus inconspicuis, fere nudis $3-4 \mathrm{~mm}$ longis, rufescentia dein viridiflavescentia, pilis dorsalibus strictis, rectis, articulatis, in articulis breviter verticillatis ad 9 mm (in ima basi circiter 1 mm) longis, imprimis dimidio inferiori areolae medianae tepalorum orientibus, sed apicem superantibus adpresse denseque obtecta, pilis marginalibus tenuioribus, brevioribus sparse ciliata, intus demum albido-laevigata, inaequalia: 2 exteriora $9-11 \mathrm{~mm}$ longa et $0,6-0,9 \mathrm{~mm}$ lata, marginibus (ca. $0,15 \mathrm{~mm}$) in apicem paulo contractum, eroso-denticulatum, pilis dorsalibus longe (ad 2 mm) superatum transeuntibus (Fig. b); 3 interiora paullum breviora, sed angustiora ($0,4-0,6 \mathrm{~mm}$ lata) et acutiora, marginibus superne involutis, inferne pilis crispis, nodulosis, uni sive duobus lateribus tepali, praecipue autem margini tubi perianthii orientibus et introflexis, plusminusve copiosis munita.

Stamina staminodiaque 5 , in floribus examinatis semper 3 fertilia et 2 abortiva, basi modice (ad $0,2 \mathrm{~mm}$) dilatata filamentorum applanatorum cupulam membranaceam, hyalinam, tubo perianthii adnatam formantia, anulo minimo ($0,15-0,3 \mathrm{~mm}$) libero integro, pseudostaminodiis nullis, filamentis ligulatis superne subulatis, interdum brunnescentibus, circiter 2 mm longis, abortivis rudimentis antherarum coronatis vel anantheris brevioribus ($0,5-1,5 \mathrm{~mm}$); antherae biloculares, flavae, lato-ellipsoidcae $0,3-0,4 \mathrm{~mm}$ longae et $0,2-0,25 \mathrm{~mm}$ latae, dorso affixiae.

Ovarium subclavatum, conspicue stipitatum 2,5-3 mm longum (stipite circiter 1 mm longo incluso) et $0,7-1 \mathrm{~mm}$ latum; stylus sicut ovarium regulariter glaberrimum $1,3 \mathrm{~mm}$ longum et circiter $0,1 \mathrm{~mm}$ diametro, plusminusve excentricum; stigma inconspicuum haud distincte capitellatum, papillosum.

Holotype of species- 5 miles south of Koonalda Homestead (east of Eucla), south-western region of South Australia; D. E. Symon, No. 4684, 21.1I.1967, AD No. 968020399.

Isotypes-Idem, $\mathrm{A}, \mathrm{ADVV}, \mathrm{CANB}, \mathrm{K}, \mathrm{LE}, \mathrm{M}, \mathrm{TI}, \mathrm{UC}, \mathrm{W}$.
Further collection-Other material of this taxon had already been collected by P. G. Wilson (No. 1635) in North West Plains, ca. 40 km East of the Western Australian border, off Eyre Highway, 13.IX. 1960 (AD 96131068). Our description is based on Wilson's specimens, too, which, therefore, may be regarded as Paratypes.

Habitat-Symon's plants were growing "in open Mallee scrub" and "mostly found in the twiggy remains of dead or dying plants of Westringia rigida". Wilson's material had been gathered in Acacia woodland.

Characteristics-The new taxon superficially approaches the South Australian Pt. seminudus (J. M. Black) J. M. Black as regards the general form and colour of the spikes. In this species, too, the outer perianth segments bear a truncate and denticulate apex, and the inner tepals are distinctly exceeded by dorsal hairs. The stems arising from a strong rhizome (see "Australian Plants" 4: 117, 1967) are pubescent in about the same way, when young.

In Pt. seminudus, howèver, the stems' and branches are constantly shorter and thicker, the leaves (especially the radical ones) considerably larger, the spikes richer, the bract and bracteoles nearly equally long and more acute; the bract being usually less hairy. Moreover, the tepals are longer, the jnner ones more
narrowed towards the apex, and the points of the outer segments are not so markedly overtipped by the erect dorsal hairs.

In both species these hairs are articulate and of nearly the same length, but in: Pt. symonii they primarily rise from the lower half of the tepals thus covering the perianth tube, while in Pt. seminudus the basal part of the segments looks naked, revealing the hirsute subglobular tube. In this plant we find inflexed hairs inside the perianth arising from the margins of the inner tepals above the tube, whereas in Pt, symonii a woolly pubescence of the inner segments takes its origin from the edge of the perianth tube, too.

In addition to these characters, numerous details of the reproductive organs diverge: e.g. two stamens only are fertile in Pt. seminudus, its staminal cup shows a comparatively higher free ring, and between two filaments much broadened at their base you may find a small lobe, at times; the ovary being pilose in summit. Pt, seminudus, therefore, differs markedly from our taxon.

As a striking particular feature of diagnostic importance are to be regarded the numerous and uncommonly small narrow leaves densely borne along the branches and branchlets of Pt, symonii. Except for the bushy and extremely branched Pt. parvifolius (F. v. Muell.) F. v. Muell., no other representative of the genus is characterised by such leaflets. But these two plants are quite unlike one another.

An additional trait of diagnostic interest is given by the relatively long and strict dorsal hairs of the intense pubescence in the perianth, distinctly exceeding and concealing the outer as well as the inner tepals, which look tapering because of this. To a lesser extent, we find a similar appearance in Pt, arthrolasius F. v, Muell., a subshrub with a yellowish pubescence, and still more in Pt. eriotrichus (W. V. Fitzg. ex Ewart \& White) W. V, Fitzg, another frutescent species with a dense greyish tomentum. The shorter hairs in the small flowers of Pt, forrestii F. v, Muell, and the longer ones in Pt, villosifforus F. v. Muell. are less distinctly articulate, and mostly lack the verticillate toothlets at the nodules, as is the case in Pt. arthrolasius, too. The tepals of the narrow-spiked Pt. lanatus Cunn. ex Moq. (including var. glabrobracteatus Benl) are surpassed by short bristly and thickish hairs, those of the long-spiked Pt. leptotrichus Benl by a tuft of relatively few articulate hairs, In Pt. albidus (C. A. Gardn.) Benl, Pt. brachyanthus (F. v. Muell. ex Benth.) F. v. Muell. and Pt. petiolatus L. Farmar the perianth is more or less completely hidden among dorsal hairs forming an intricate wool. Each of the cited species has a dissimilar appearance of its habit, of its leaves, spikes or floral organs, and there is no doubt left as to the specific nature of our well distinguishable taxon: Pt, symonii does not at all agree with any of the species hitherto described.

Name-The plant is named in honour of Mr. David E. Symon, B.Ag.Sc., Botanist at the Waite Agricultural Research Institute. Mr. Symon is one of the collectors of the new species, drew my atteution to it, and supplied us with sulficient material.

THE YELLOW-EYE MULLET AGE STRUCTURE, GROWTH RATE AND SPAWNING CYCLE OF A POPULATION OF YELLOW-EYE MULLET ALDRICHETTA FORSTERI (CUV. AND VAL.) FROM THE COORONG LAGOON, SOUTH AUSTRALIA

by J. A. HARRIS*

Summary

The "Coorong mullet" spawns once per year, from January to early April Males begin maturing a few months before the females are running ripe. Seven stages can be recognized in the gonads of the female and measurements of the diameter of the ova in each stage are given. The smallest fish with mature gonads were found to be 21 cm (males) and 23 cm (females), measuring from the tip of the snout to the caudal fork.
The ages of the fish were determined from a study of otoliths and this method was supported by the Petersen method of analysis of frequencies of lengths. The mean lengths attained by the "Coorong mullet" during their first four years are $14,21,26$ and 31 cm respectively.
Characteristics of the "Coorong mullet" are compared with both the eastern and western races of the yellow-eye mullet (See Thomson, 1957a; 1957b). It is concluded that the "Coorong mullet" has the characteristics of the eastern race.

THE: YELLOW-EYE MULLET

AGE STRUCTURE, GROWTI RATE AND SPAWNING CYCLE OF A POPULATION OF YELLOW-EYE MULLET ALDRICHETTA FORSTERI (CUV. AND VAL.) FROM THE COORONG LAGOON, SOUTH AUSTRALIA

by J. A. Hanms*
[Read 9lı May, 1968]

Abstract

SUMMARY The "Cooroute mullet" spawas once per year, from Janury to early April. Mules begin suaturing in few months before the females ture ruming ripe, Sepen stages can be recognized in the gonads of the female and measurements of the diameter of the ova in each stane are given. The smallest fish with nuture gronads were found to he- 21 cm (males) and 23 cm (Iemales), ineasuring from the tin of the syout to the caudal fork.

The ages of the fish were determined from at study of entoliths and this method was supported hy the Petersen method of analysis of frequencies of lengths. The mean lengths attained by the "Coorong sinullet" during their first four years are $14,21,26$ and 31 crin respectively.

Chatacturistics of the "Coorong mullet" are conspared with both the castern and western races of the yellow-eye mallet (See Thomson, 1957a; 19575). It is concluted that the "Cooront anilet" has the charaeteristics of the eastern race.

INTRODUCTION

The yellow-eye or fresh-water mullet Aldrichetta forsteri (Cuvier and Valencicunes) nceurs in coastal waters of all Australian States except Quecnsland. Thomson (1957a) studied the yellow-eye mulle of Western Australja and compared it with those of Victoria and Tasmania. However, very little is known about the rate of growth and spawning cycle of the yellow-eye mullet of South Australia, especially from the Coorong lagoon (ste Fig, 1).

The yellow-cye mullet is very common in South Australia, particularly in constal brackish waters. It is the principal species of mullet sold commercially in this State. The only records of the commercial fishery available during this study were very rough estimates of the total weight of mullet sold in South Australian markets from 1951-62:

$1951-52$	$770,000 \mathrm{lh}$	$1957-58$	$560,000 \mathrm{lb}$
$1959-5 \mathrm{lb}$	$500,000 \mathrm{lb}$	$1958-59$	$900,000 \mathrm{lb}$
$1953-54$	$500,000 \mathrm{lb}$	$1959-60$	$649,405 \mathrm{lb}$
$1954-55$	$431,220 \mathrm{lb}$	$1980-61$	$812,000 \mathrm{lb}$
$1955-56$	$550,000 \mathrm{lb}$	$1961-62$	$675,000 \mathrm{lb}$

The total weight of mullet handled by the Sonth Australian Fisherman's Co-operative Limited (S.A.F.C.O.L.) from July 1st, 1961 to) June 30th, 1962, was $584,984 \mathrm{lb}$. Approximately 75 per cent of this came from the Courong Tagoon, the other 25 per cent from the shallosv coastal waters of South Australia. 'The fish

[^3]Trans. Roy, Soc. S.A. (1968), Vol. 92.

Fig. 1. Location map of the Coorong lagoon,
from the Coorong lagoon and those from the coastal waters are sold under different names at S.A.F.C.O.L. as "Coorong mullet" and "sea mullet" respectively. This investigation only deals with the "Coorong mullet".

The legal minimum length for yellow-eye mullet in South Australia is 7 inches $(17.8 \mathrm{~cm})$, total length. As so little is known about the commercial fishery in this state, the effectiveness of the present minimum legal length is open to question. The small amount of data pertaining to fish below 17.8 cm is a deficiency in the present investigation; however, the commercial catch (above 17.8 cm) has been covered as thoroughly as possible in the time available.

THE "COORONG MULLET" FISIIERY

The name "Coorong" applics to a long, narrow lagoon and associated shallow lakes, paralleling most of the upper south-east of South Australia. This area is divisible into two sections, the zone of permanent lagoonal water to the north and the shallow, non-perennial lake to the south. In Fig. 1 the lagoon is enclosed by the rectangle. The "Coorong mullet" fishery is only concerned with the lagoon.

The Coorong lagoon extends southwards from the mouth of the River Murray a distance of GS miles and reaches a maximum width of 2\% miles. The maximum depth reached in winter near Salt Creek is about 14 feet, but the average depth is only 6 feet. The mouth of the Murray provides the only connection belween the lagoon and the Southern Ocean. The mouth is about 300 yards in width and consists of a tidal chanuel through the unconsolidated dunes of Younghusband Peninsula.

Mesh and gill nets are the principal means of catching the "Coorong mullet" and regulations restrict the size of the mesh and the lengths of these nets. The influence that regulations on nets have on the yellow-eye mullet fishery in Western Australia has been discussed by Thomsont (1957a). Hegulations during the period of this investigation restricted the length of any net co 60 yards, the length of mesh rets to 35 yards and the size of the mesh used in all nets to not less than 2 incher.

The "set net" is by far the most common method used for catching mullet. Longths of mesh or gill nets are anchored to stakes across the current. They are checked at regular intervals and the "gilled" fish collected. "Ring netting" is often used with great success on calm, still nights. The fisherman lays in riet, one end of which is attached to a buoy, around a school of fish. A few fishermen usc beach seine nets from sindy beaches or sand bars. Unfortunately, these beaches are rare due to the rocky nature of the bottom. During the summer months sand banks are exposed in the centre of the lagoon and from these banks beach seining is very seucesssfully carried out. Most of the mullet from the lagonn is sent to Meningie to be packed in ice prior to transport to S.A.F.C.O.L.

SAMPLING METIIODS

Weekly samples of "Coonong mullet" were cullectod from S.A.F.C.C.L. Adelaide market for one year from February, 1962 to January, 1963. Over 100 fish wore selected at random cach week and their lengths were measured by puncturing holes in a celluloid strip, mounted on a centimetre rule, with a houtmakers awl (see Scott, 1954). From this random sample approximately 12 fish wese chosen, representing the complete range of sizes of fish available, for further detailed examination in the laboratory.

This detailed examination consisted nf: (a) collecting scales and otoliths and storing them in labelled envelopes, and (b) macroscopic examination of the gonads, after which they were fixed in 5 per cent formalin for microseopic csamination.

On one occasion on October 7th, material was obtained from the Coorong lagoon by seine netting ins shallow water with a net of 1 inch mesh. Only 31 fish rabuging from 5.5 cm to 15.8 cm were caught.

During the year the lengths of $6,0.54$ fish were measured and 631 otoliths sere examined in order to determine their age and rate of growth. In addition, the macroscopic and microscopic conditions of abnut 600 gonads were noted. All measurements of lengths were taken from the tip of the snout to the caudat fork (Tv.C.F F) unless otherwise stated.

DETERMINATION OF AGE BY BEANS OF OTOLITHS

Otoliths were found to be a good index of age and were easy to handle and examine. Both otoliths in any one fish were found to be identical. No preparation prior to the reading of them was required (see Dakin, 1939). Regular upaque bands and translucent bands are obvious even in the largest otoliths. The two otofiths collected from rach fish were read together using a low power binocular microscope.

As the otolith bands are formed by regular concretions (Hickling, 1931), the alternate opaque and translucent zones must at some stage actually constitute the margin of the otolith. All the otoliths collected from each weckly sample of fish were placed into two groups, those in which an opaque band constituted the margin and those in which a translucent band constituted the margin. Transitional or doubtful ones were discarded and these accounted for about 20 per cent of the otoliths. The occurrence of opaque margins was plotted as a percentage of all otoliths examined during each month of the year from February, 1962 to January, 1963. The results are shown in Fig. 2.

Fig. 2 shows that the lowest percentage of otoliths with opaque margins occurs during August and September while the highest percentage occurs in January. Translucent bands occur during the winter months and opaque bands form during the summer months. A similar condition was observed for garfish in South Australia by Ling (1958), for plaice (Molander, 1947) and for the tiger flathead (Dakin, 1939, Fairbridge, 1951). Thomson (1957b), has shown that the annuli in the scales of the yellow-eye mullet from both Western and Eastern Australia are formed when growth recommences after the winter cossation.

The first translucent band is laid down during the first winter, approximately 6 months after spawning. The first opaque band is laid down during the first stmmer after spawning. Hence, the number of opaque bands represents the actunl

Fig. 2. Munthly sercentage incidence of otoliths with opaque margins for the 12 montly period Fehruary, 1062 to Jantary, 1963.
age of the fish in ycars. For this reason the opaque zones were counted and the age groups denoted as $0+, 1+, 2+$, etc., the numbers representing the age of the fish in years and the + sign signifying an additional unknown number of months (but less than 12) above the preceding numbers. The results of the otolith readings are given in Table 1. The number of fish in each age group are arranged with their corresponding lengths.

Ling (1958) discusses in great detail the ways of confirming the otolith method as a means of detcrmining the age of fish. He discusses Graham's original five tests to validate the scale method (Graham, 1929). In this investigation Petersen's method of interpreting the modes of a graph of length distribution as the model lengths of successive age groups is used to support the data obtained from otoliths.

Monthly histograms of the frequencies of lengths of fish measured each week by the celluloid strip method (see Scott, 1954) are shown in Fig. 3. In the majority of histograms a definite mode occurs about the lengths of $20-22 \mathrm{~cm}$, a less

TABLE 1
Length freruencies of males and femalos with their ages, as fletermined from otoliths, for all fish examined in the laboratory from february, 1962 to January. 1968.

Age groups	Male				F'emale					
Lengrth (cm)	$0+$	It	$2+$	$3+$	$n+$	$1+$	$2+$	34	$4+$	$5+$
5	1				1					
7	1				2					
$\stackrel{8}{8}$					3					
8										
10										
11		1								
12						1				
13		2				2				
14		5				6				
1.		2				4				
16										
17						1				
18							1			
19			7				7			
20			30				14			
21			46				30			
22			30	3			38	1		
23			9	3			40	3		
24			2	14			8	10		
25			1	10				. 36		
26				5				39		
27								27	1	
28								17	3	
29								6	3	
30				1				2	4	
31									11	
32									5	
33									7	
34										
35										2
Total			125	36	6	14	143	141	32	2

Fig. 3. Monthly frequency distribution of lengths of fish sampled each week for the 12-month period February, 1962 to January, 1963.

Fig. 5. Monthly frequency distribution of diameters of ova examined from fish selected at random over the 12 -month period February, 1962 to January, 1963. (Note: Hickling's "reserve fund eggs" were only measured in February).
definite one about $24-26 \mathrm{~cm}$, and the trace of a third mode about $30-32 \mathrm{~cm}$. By comparison with the different age groups obtained using otoliths, these modes correspond to the age groups $2+3+$ and $4+$ respectively. Therefore, agreement between the Petersen method and the determination of age by means of otoliths is quite good. It can be seen that the majority of fish are in the age group $2+$ with a smaller number in the age group $3+$ and very few in the age group $4+$.

Fig. A. Frequency distribution of lengths of fish caught October 7th with a net of 1 in, mesh.

Fig. 4 shows the length frequency histogram of 31 fish caught on October 7th with a net of 1 inch mesh. Only one mode at 15 cm is obvious, but probably there is one at 8 cm . These modes correspond to the age groups $0+$ and $1+$ respectively. In general, it may be stated that the determination of age by means of otoliths is supported by the results of the Petersen methud.

RATE OF GROIVTH

(a) Using otoliths and measurements of length

Table 1 shows the frequencies of lengths of males and fernales with their ages, as determined from otoliths, for all fish examined in the laboratory from February, 1962 to January, 1963. An analysis of these results was carried out to test the two null hypotheses implicit in these results: (1) that there is no difference in the lengths of the fish in the age groups $0+$ and $1+, 1+$ and $2+, 2+$ and $3+, 3+$ and $4+$, and (2) that there is no difference in the lengths of a male and fomale in the age groups $0+1+, 2+$ and $3+$. These null hypotheses were tested by the " t " test (Snedecor, 1956). The first mull hypothesis was disproved for all cases, but the stcond null hypothesis was not disproved for all cases. The differences between the lengths of male and female fish in groups $0+$ and $1+$ were not significant, but those for groups $2+$ and $3+$ were highly significant.

The mean lengths attained by the female "Coorong mullet" during their first four years are $14 \cdot 2,21 \cdot 7,26 \cdot 1$ and $30 \cdot 9 \mathrm{~cm}$ respectively, Rapid growth occurs during their first two years, but then falls off during their third and fourth years. The mean lengths attained by the males during their first threc years are $13 \cdot 7$, 21.1 and 24.5 cm respectively, Growth is again rapid during their first two years, but during their third ycar the mean length attained is 1.6 cm less than that of the females. After the first two years, the rate of growth of males (using only length as the measure of growth) is much slower than that of females.

The two largest fish examined during this study were both femules, approximately 35 cm Jong. Only one male fish examined was found to be longer than 26 cm^{-}and it was 30 cm in length. These data indicate that the females grow to a larger size than the males.

(1) Using the Petersen method

As mentioned earlicr, the histograms of frequencies of lengths given in Figg. 3 show two definite modes occurring about the lengths of $20-22 \mathrm{~cm}$ and $24-26 \mathrm{~cm}$ with jerhaps the trace of a third one ahout $30-33 \mathrm{~cm}$. These modes are considered to eomespond to the age groups $2+, 3+$ and $4+$ respectively. The evidences for motal progression when following the progress of one particular mode in the curuse of time is very good.

If March is taten ats the time that spawning activity is at its peak, the histugram for March may be said to represent the fregnenciess of lengths at the beginning (or end) of one or more somplete years in the life-cycle of the fish. Defirite modes vecur about the lengths 20.5, 24,5-26 and $30 \cdot 5$ con respectively in the March histogram. It is easy to trace the mode about 90.5 cm throughout the year. In April and May, just prior to winter, a small amement of growth is apparent. In May the mode is obvious about $21 . \overline{3} \mathrm{~cm}$. (Wver the winter months June to Suplember this mode abont 21.5 cm is masianned, indicating no grow th, or very littice (as also indicated by the study of otoliths). From October to January the mode shitts rapidly from about 22 cm in Oetober, 1023.5 cm in November, 24.5 cm in December and $24 \cdot 5-26 \mathrm{~cm}$ in January. The histogram for February of the previons year shows a very gond mode about 20 cm and supports the evidence for mudal progression aver one year being apprositnately 20.0 to 26 cm . This corresponds to a growth of 5.5 cm which is very close to the annual growth of a 2 -year-old "Courong mullet" as suggested by the study of their otuliths, Over the same time period pussibly the mode about $24.5-26 \mathrm{~cm}$ gives way to modes about 28.5 cm in Octuber and November, 29.5 cm in December and 30.5 cm in Jawary. This corresponds to a growth of $4.5-6 \mathrm{~cm}$ which is roughly equivalent to the rate of growth of a B-ywar-old fish is suggested by the study of otoliths.

THE SPAWNING CYCLE

"He methods by which the spawning eycle may be studicd include a survey of the seasonal variations in the conditions of the gonads. This involves a macr. seopise cxamination of the appearance of the gonsts aucl a microscopic examinalion of the ova.

In most investigations (Clark, 1925; Fairbridge, 1951; Scott, 1954) the fermale cycle has been studied in more detail than the male cycle. In the present investigation the male cyele was examined in less detail because it was found ham to distinguish the stages of the testes and because the condition of the ovaries changed much more noticeably than that of the testes. A month by month evmparivon of the macrosenpice conditions of the avaries was noted and this was bater momelated with a microscopic examination of the ova, including measurements of their size.
(a) Asacrosconsic cxamination of gonalds

Hjort's classification of the gromads of herring (Hjort, 1910) has heen adopted with certain modifications to suit this particular species. Sevell stages in the ofaries of the "Coorong mullet" were distinguished while the testes were distinguished only as immature or rature. The classification of cach of these sever stages of the ovaries is given in Table 2.

TABLE 2
Length and stage of maturity of 348 females sumpled during January, 19638.

Length (mm)	Stages of nvaries				
	Imimature	Admasent	Maturing	Spent	Her cent maturing sund spent
19	2				0
20	2	2			1)
21	2	2			0
22^{2}	3	2			0
23	12	18	2		16
34	15	5.5	25	1	27
$3 \sqrt{18}$	13	43	50		47
20	3	21	26	3	49
$\because 7$		2	17		89
28		4	4	3	70
29.			9		100
311			5		1 mo
31			3		100
Total	52	148	141	7	43

Stage 1. Immature virgins. Owaries small, thread-like and translucent.
Stage II. Adolescent, Ovaries larger, walls taut, extendiug half-way into the body cavity.

Stage III. (a) Maturing virgins or (b) recovering or resting (spent) fish. Colour ranges from pink at early pigmentation to dark red at a later stage. In (a) walls of ovarics are taut but in (h) walls are llaceid. Ovaries extend further into body cavily.

Stage IV. Maturation continuing. Ovaries larger, red-ycllow in colour. Walls taut and not quite transparent so that eggs can only be seen with difficulty after cutting the wall.

Stage V. Mature. Ovarics greatly enlarged from stage IV, occupying the whole of the body cavity. Yellow-orange in colour, walls taut and transparent with eggs clearly visible.

Stage VI. Rumning-ripe. Yellow-orange in colour with large eggs being extruded when slight pressure is applied to the abdomen.

Stage VII. Spent. Ovaries dark red and Haccid. This stage eventually passes into stage III from which it is hard to distinguish.

The seasonal changes in the gonads may be summarized as follows. The testes of the immature fish are white, thin bodies, triangular in section During maturation they become thicker and rounder, protruding further into the body cavity and milt bcing exuded if the walls are ruptured. During the months of May, June and July no mature testes were noticed. For the rest of the year there were always a few mature testes present and during the spawning scason January to March, over 50 per cent of all testes examined were mature, (Sce Table 3 for the percentage of maturing males during January).

When the investigation started in February, 80 per cent of the ovaries examined were mature (stages IV, V and VI) with 25 per cent of these being in the "ripe" condition (stage VI). During March a similar set of conditions
continued with a few spent ovaries (stage VII) becoming apparent. IIowever. during April and May spent ovaries became unore evident and the last mature ovary (stage VI) was Iound on April 11th, exeept for one ovary at stage V found on May 2nd which appeared to be abnormal, ouly one branch having developed.

During the months of June and July, except for one fish on July 25 th which was at stage IV, all ovaries were chassified as belonging to stages II and III. Approximately 85 per cent of the ovaries examined during August, September and October were at stages II and III. Only 15 per cent were more advanced than stage $1 I I$ and it is possible that they were carly spawners. During November and Deccmber, however, ovaries at stage IV became more evident with an occasional stage V until in Janmary ovaries at stage V were common with several at stage Vl. (Sce Table 2 for the percentage of maturing females during January.)
(b) Microscopic examinntion of obarics

Several ovaries chosen at random, were set aside each week, proserved in 5 per cent formalin and stored in labelled vials. These ovaries were examinesl under the microscope at in later tate.

To measure the diameter of the ova a small pliece of ovary was teased mat unto a microseope slide, mounted in 5 per cent formalin and covered with a cover 4in. The diameters were measured using a micrometer eyc-piece and a microxcope.

All eggs were measured along whichever axis of the egg lay parallel to the cross-hair of the micrometer eye-picce. Clark (1935) has shown that this methexl gives a reliable estimate of the frequencies of diameters of the ova. Throughout the investigation group A eggs were not measured, except in Fchruary, as they were far too nimerous in all of the oparian stages.

Consistent with the classification of Hickling (1930) and other workers, the owa of the "Coorong mullet" were classified into four groups.

Group A - Immature ova. Very small, angular and colourless with nuclens clearly visible. They are Thickling's "rescrve fund $\mathrm{cggs}^{\text {" }}$ and measure up to $120 \mathrm{\mu}$.

Group B - Maturing ova. The smallest eggs in this group are becoming mound and opargue due ta accumulation of yolk granules, while the largest ova are quite round and opaque. Size varies from 120μ to 255μ

Group C - Mature ova. Luge round opaque ova, pale yellow. Size varies lyom 255 年 10380 j.

Group D - Ripe ova, Fery large ronnd npaque nva, yellow. Size varies from 380μ to 600μ. This stage merges with group C, but is distinct fronn gronp C by size and coloration.

The microscopic characters of each ovarian stage were established as follows: Stage I. The ova are all typically group A, with none larger than 80μ.
Stage II. As for stage I, but an occasional ova of group B may be present No ova Jarger thum $135{ }^{\circ}$

Stage III. Ova of groups A and B are very mmerous with and occasional group Co Usually mo eggs larger than $255{ }^{5} \mu$

Stage IV. Ova of groups A, IB and Care mumerous but group B is usually more numerous than group C.

Stage V. Oza of groups A, B and C are numerous with a few of group is. Group C is usually more numerous than groups \mathbf{B} and D.

Stage VI. As for stage V, but the ovaries are much larger with ova of group D mest numerous and lying free in the lumen. Groups A, B and C are onfined to a layer inside the ovary wall.

Stage VII. Dva of groups A and B are both numcrous. An occasional group D owum is present undergoing breakdown.

The frequencies of diameters of the ova examincd were plotted as monthly histograms and are shown in Fig. 5. Throughout the year there is a residue of Hickling's "reserve fund eggs" which were too numerous to measure cvery month and are shown only in the Fehruary histogram. From Fig. 5 it can be seen that numerous ova of group B also are present throughout the year. From May to October (except in August when the nvary examined may have been that of an early spawner) ova of groups A and B are by far the most numerous. During November, however, an increase in the diameter of the ova present is obvious. As maturation continues through December, the diameters of the oya continue to increase until "ripeness" (stage D) is obtained. Ripe eggs are present in greatest numbers during March, with large numbers also present in February and April. Spawning is thus at its greatest intensity during late summer. A sharp drop in the overall diameter of the ova marks the spent and recovering stages, during April and May. It is followed by a period of quiescence from June to October.

SIZE AND AGE AT FIRST MATURITY

The gonads of 122 male and 348 female fish were examined; and their lengths taken, during visits to S.A.F.C.O.L. in January, 1963. The females were classified arhitrarily as immature (stages I and II), adolescent (stage III), maturing (stages IV, V and VT) and spent (stage VII). The males were classified under two divisions, immature and maturing. Tahles 2 and 3 show the lengths and stages of maturity of these males and females.

Table 2 shows that 15 fish with lengths of less than 22 cm were examined and none showed signs of maturing. Sixtecn per cent of the fish 23 cm in length were maturing and spent. The percentage rose to 100 per cent for all fish 29 cm and above. Females, therefore, do not reach maturity before 23 cm .

Table 3 illustrates that only 3 males 21 cm long were examined and that one of these was maturing. Because so few fish of this Iength were examined it cannot be proved that males mature at 21 cm . Howerer, 19 fish of length 22 cm were

TARL, ${ }^{2}$
Tringtha and slage of muturity of 122 males sampled during , Fanuary, 1963.

	Stages of testos		
Tangth (em)	Immature	Muturing	Per cent maturing
20	4		0
21	2		3.3
22	11	*	42
3%	22	211	57
34	11	94	69
$2{ }^{29}$	1	7	87
226			100
Total	51	71	61

examined and of these fish 42 per cent were maturing. Males, consequently, are definitely mature by 22 cm .

Correlating the lengths at which the fermales and males first mature with the data obtained from the otoliths, it is concluded that the "Coorong mullet" attain maturity during their third year.

DISCUSSION

The: "Coorong mullet" grows to a relatively small size of 35 cm . At first the growth, using only length as a measure of growth, is rapid. The mean lengths attained during their first and second years are 14 and 21 cm respectively. Aften this period, however, there is a marked slowing down in growth reaching a mean length of 26 and 31 cm during their third and fourth ycars respectively. This slowing down is more promounced in the males which do not grow as lurge as the females.

T'ABI $\mathrm{F}_{\mathrm{j}}+$

 Multet ("homson, 1957b) and the mestr leagths attained by the "Comorong mullet" over nu equivaleat time perind.

Table 4 compares the growth of the western and eastern mees of the yelloweye mullet with that of the "Coorong mullet". The data for the western and easters races is taken from Thomson (1957b). The year-classes designated in Thomson's paper refer to the length attained each winter average (the western stock being winter spawners). Over an equivalent time interval the "Coorong mullet" grows to a mean length of $7(?), 14 \cdot 2,26$ and 31 cm by their first, second, third, fourth and fifth winters respectively. It can be seen that their growth rate agreex closely with that of the Victorian and Tasmanian yellow-eye mullet which comprise the majority of fish referred to as "eastern" by Thomson (1907b). The "Comrong mullet" grow at a slower rate than the Western Australian yellow-eye mullet and do not become as large.

The spawning period lasts for $3-4$ months from January to early April. This proves that the "Coorong mullet" have the characteristics of the easterm race rather than the western sace of yellow-eye mullet (see Thomson 1957b, p. 19). Spawning probably takes place in the Courong lagoon which would provide a very productive area in which the nowly hatched fish can grow rapidly with little chance of a shortage of food occurring. The largest ova of the "ripe" fish were approximately $600{ }_{\mu}$ in diameter which is relativcly small compared with whiting 980μ (Scott, 1954) and garfish 3,500 μ (Ling, 1958).

The smallest fish recorded with mature gonars were 23 cm for Females and 21 cm for males. They mature during their third year or by their third winter. The "Coorong mullet", therefore mature a little earlier and at a slightly smalker size than the Western Australian yellow-eye mullet studied by Thomson (1957a). In addition, due to the spawning periods of the two races of fish occurring at different times of the year, the summer spawning "Coorong mullet" reach maturity faster than the sinter spawning western race

Comparing the commercial catch of "Coorong mullet" with the catch of yellow-eye mullet in Victoria, some interesting facts emerge. In Victoria the fish
reach the minimum legal length, 9% inches total length (21.3 cm L.C.F.), from $9 / 2$ to ${ }^{\prime} y_{3}$ months prior to spawning (Thomson, 1457a). In South Australia the minimum legal length is 7 inches total Iength (15 cm L.C.F.) and the fish attain this size approximately 12 months before they have spawned for the first time. South Australia's minimum legal Iength is obvionsly too small and at first glancethe "Coorong mullet" fishery appears to be in jeopardy. Mowever, fig. is shows that no dish below 17 cm were sampled at S.A.F.C.O.L. The majority of fish, in fact worc well above 20 cm . This biased sample was due to the size of the mesh of the nets used lyy the commercial fishermen. In South Australia the minimum legal mesh size during the study was Z inches, compared with of inches in Victoria. Thomson (1957a) showed that, as far as scllow-eye mulleb are conserned, any mesh from 2 inches to 34 inches allows the majotity of the eatch to lie above the length of 30 cm .

Thomson (1957a) discusses the management of the yellesverye mollet fishery Iotly in Eastorn and Westem Australia and concludes that the pxisting managroment policies are effective in maintaining stocks. Whether this is alsor tne for the "Coorong mullet" fishery cunnot be determined yet due to lack of information, hoth hiological and stulistical. A study of the length/weight relationships is required tugether with estimations of fecundity and observations of the survival of fry and small immature fish. Statistics of the catch and fishing effort art: alsur required before at more somplete management programme can be suggestad.

ACKNOWLEDGMENTS

The project was suggested and supervised by Mr. I. M, Thomas, Zoojogy 1) epartment of the University of Adelade, prior to going overscas on sabbatical leave. I am greatly indebled to Dr. S. J. Edmonds for supervising me duriug Ms. Thomas absence, for reading the original draft and offering much heloful advice. Thanks are due to Mr. T. D. Scott, formerly Curator of Fisherics of the South Australian Museum for his guidance and to Prof. J. M. Thomson, Zoology Department of the University of Queensland, for critically reading this mabuscript. linancial support fur this investigation came from the Researeh Criants Comonittec uf the University of Adelaide. Finally, thanks are due to S.A.F.C.O.L. for enahling the sampling programme to be carried out on their premises.

HEFERENCES

 controiled upawning babits. Fish. Bull. Sacramerto No, 10; 1-51,
Dasin; W. T. (1939). The age determintion of the tiger datheat. Nonofulycephafus (Coleforia)

 (Ogtlisy). T. Biolngy and age determination. Aust. J. Mar, Fresho. Res, a; 117-18.
Grabang. A1. (1829). Studies of dye determination in fish. 11. A survey of the literaturn. Fish. Incesh, Lomel. (2) 11(3): 1-50.
The:xinct, C. F. (1930). The natural hintury of the hake. IIT. Seasonal change:s in the comderm of the bake Kish. Pnest. Lond- (2) IP(1): 1.78.

 1fen No. 53: 1-173.
Lasco. I. K. (1958). The Sea Garfish, Reporhumphus melunochär (Civiar \& Valenvirinnes') (Hemiramphidae), on Suruth Australia: Broeding age determination and erowah rateAlis8. J, Mar, Frashiob, Res, 9: B0-105.
Mon.ander. A. R. (1947). Ohservations om the growth of the place and on the formation of annual rings in the otolith. Surenska Hydrogr,-uinl. Komm. Skr, 9: 1.9.
Sentr, T. D. ($145-1$) M.Su. Thesis. University of Adelaide.
 hiology" Fifth edilion, (The Inwa State College Press: Ames, Towio)

Thomison, J. M. (1957a). Biological studies of economic significance of the Yellow-Eye Mullet, Aldrichetta forsteri (Cuvier \& Valenciennes) (Mugilidae). Aust. J. Mar. Freshw. Res. 8; 1-13.
Tiomson, J. M. (1957b). Interpretation of the scales of the Yellow-Eye Mullet Aldrichetta forsteri (Cuvier \& Valenciennes) (Mugilidae). Aust. J. Mar. Freshu. Res. 8; 14-28.

THE DISTRIBUTION AND LIFE HISTORY OF THE SKINK HEMIERGIS PERONII (FITZINGER)

By MICHAEL SMYTH*

Abstract

Summary Hemiergis peronii occurs from south-western Western Australia to southeastern South Australia, but rarely inside the 12 -inch isohyet and not in the Flinders or Mt. Lofty Ranges. Its northern limit is probably determined by aridity; its southern limit might be determined by the length of the winter. H. peronii bears two to five living young in February. Females are inseminated in the autumn, when they are two years old. They ovulate in spring and do not bear their first young until they are three years old. Males first come into breeding condition when two years old. H. peronii eats mostly arthropods and snails.

THE DISTRIBUTION AND LIFE HISTORY OF THE SKINK

HEMIERGIS PERONII (FITKINGER)

by Michael Smytio ${ }^{\circ}$

[Read 11 July, 1968]

SUMMARY

Abstract

Hemictgis peronil occurs frum sonth-western Western Anstralia to southeastern South Australia, but rarely inside the 12-inch jsahyet and not in the Flinders or Mt. Lufty Ranges, Its northern limit is probably determined by grility; its sonthern limit might be deternined by the length of the winter. H. peronit bears two to five living young in Fehruaty. Females are inseminated in the auturnn, when they are two years old. They owdate in spring and do not bear their first young unilit they are threc years old. Males first come into breeding condition when two years old. II. peronil tuts inostly arthropods and snails.

INTRODUCTION

Hemiergis peronii is a small, weak-limbed skink, very abundant in coastal dunes near Adelaide. Its reproductive cycle is unusual in that the females are inseminated in the autumn but do not ovulate until spring (Smyth and Smith, 1968). I now report some other details of its life history. They will provide a background against which the adaptive significance of the unusual reprodnctive cycle will perhaps become clearer, and they will slightly diminish our great iguorance about our native reptiles.

Some authors use Hemicrgis as a sub-genus in the genus Lygosoma. H. peronii is called L. (II.) quadridigitatum Werner by Glanert (1961), probably for reasons which are explained and dismissed by Loveridge (1934). Worrell (1963) calls it Lygosoma (Leiolopisma) peronia.

METIODS

The distribution of H. peronii was mapped from the records of the South Australian, Western Australian, and Australian Museums and the Department of Zoalogy, University of Melbourne, from the published records of Werner (1910), Waite (1999), Loveridge (1934) and Mitchell and Behrndt (1949), and from my own collcctions and those made for me by a group of students of Naracoorte High School directed by Mri D. Von Behrens.

The natural history was described from samples of from four to 16 lizards taken at two to four-weekly intcrvals for a year at Port Gawler and Middle lieach, about 30 miles north of Adclaide. Most of them were taken from under dead clumps of the lily Dianella revoluta R. Br, on shell-grit dunes behind the beach. The lizards were brought hack to the laboratory and kept at $10^{\circ} \mathrm{C}$ until they were

[^4]Trans, Hoy. Soc, S.A. (1868), Vol, 92.
dissected. They were then measured with dividers, their reproductive organs removed and examined, their guts removed, the food taken out and identificd, and the guts examined for parasites. The bodies were then preserved in buffered neutral formalin. The gut parasites are described by Angel and Mawson (1968),

DISTRIBUTION

H. peronit is confined to southern Australia, from south-western Western Anstralia to south-eastern South Australia (Fig. I). It probably oceurs in western Vicloria as well, for according to Rawlinson (1966) there is a specimen in the National Muscum, Molhoume, listed in the catulogue as from "Mallee district, Victoria". Bust it does not oceur in suthern Victoria, Tasmania, or the Bass Strait islands (Rawlinson, 1967). Lucas and Frost's (1894) claim that it has been taken in the Dandenong Ranges near Melbourne is probably mistaken, and Weekes's

Figg I
(1930) clam that she took Lygosoma (II) equadridigitutum at Tanara and Jenolan, Now South Wales, is probably based on a wrong identification.

In Western Australia, II, peronii is found into the 50-60 inch rainfall belt near Northeliffe, but as far as we know at present its range does not extend right to the west coast. Loveridge (1934) does record a specimen from Perth, but this might have been the address of the collector rather than of the lizard. It has been taken as far inland as Fraser Range, in the 11-12 inch rainfall belt.

In South Australia, H. peromii is very abundant aronnd much of the coastline (Fig. 2). It also occurs on many of the offshore islands, including St, Francis, Franklin, Flinders, Pcarson, Greenly, Price, Black Rock, the South Neptune, and Wedge Islands. It occurs inland on sandy or skeletal calcareous soils on Eyre and Yorke Peninsulas, Kangaroo Island, and in the south-east of the State. Its distribution extends slightly inside the 12 inch isohyet only or the West Coast and near the head of St. Vincent Culf (Fig. 2). It scems not to occur in cither the Flinders or Mt Lofty Ranges.

Further collecting will no doulst extend the known ramge of II. peronii. For instance, it might be found all the way around the Bight, and further into the Murray Mallee of Sonth Australia.

REPRODUCTION

Male H. peronii come into brceding condition and inseminate the females in the later summer and autumn (Smyth and Smith, 1968). The sperm is stored in the female genital tract over winter; the fomales ovulate and their eggs are fertilized in the spring, between late October and the end of November. Two, three or four young are born at the end of February, larger mothers bearing on the average large litters.

TABLE 1
Breeding condition of frimule Hewniergis pernuiz.

Date	Niumber of females with*				Total number
	doveluping follicles	ovarial crges	aviducal eggs	nos sign of repronductive activity	
16 November 1966			1	1	2
29 Novernber			6	1	7
14 Dectunler			6	2	8
5 January 1967			8		3
$25 . J a n u r y$			5	4	11
15. Fobruary			4	3	7
1 March				5	\square
14 Merroh				2	8
28 March				9	9
12 April				2	星
25 April				\%	8
10 May	6			${ }^{2}$	8
24 Mryt	4			1	\%
13.1 due	6			1	7
18 June	4				4
If July	1			1	2
18.4 utust,	3			1	3
I4 September	2			1	3
3 U October	6				${ }_{6}$
17 Ortaber					5
31 Oetober		2			4
21 Nuveraber		2	2		4

[^5]In H. peronii the right ovary is well anterior to the left in the bady cavity, and the right oviduct is much longer than the left. About equal numbers of eggs are shed from each ovary hul a high proportion migrates from the left ovary to the right oviduct. This is deduced from a comparison of the distribution of the corpora lutea between the Iwo ovaries with the distribution of eggs and embryos between the two oviducts. Thus of 90 eags shed from the ovaries of 29 females. 48 came from right ovaries, but 61 emhryos developed in right oviducts and only 29 in the left. In only ove of the 29 females was there more than one embryu in the left oviduct; in this case there were two in each. The most posterior egg was always in the left oviduct.

GHOWTU AND AGE STRUCTURE

Figs. 4 and 5 show the distribution of snout-vent lengths of all individuals taken cluring the year. It can be shown from these figures that males first come into breeding condition, and females are first inscminated, when they are two years old Females thereforc bear their first young when they are about three years old. Consider the snout-vent lengths of females (Fig. 4); in April and May there are clearly two year-classes in which there is no follicular development. These have been delineated in Fig. 4; the lower group is of young of the year, the

Fig. 4. The snout-to-vent lengths of all female H. peronit caught from November, 1965 to December, 1966. pregnant; not pregnant, follicks undeveloped; O follicles visibly developing; + juvenile, sexes not distinguished.
upper group is of onc-year-olds. Now consider the distributions for November, 1966 to Febniary, 1967, when the females were pregnant. It is apparent that those femalcs not pregnant must have belonged to these two youngest year classes. A somewhat similar argument can be applied to the males (Fig. 5). From February to May, when the testes of most males in the samples were enlarged, there were always some males with quite undeveloped testes; these were young of the year and, as well, larger animals which must have been one year old.

Neither the males nor the females, once they have reached scxual maturity, can be confidently scparatcd into further year-classes, but it is likely that there are at least two year-classes of pregnant females in the summer, which by February will be three and four ycars old respectively. The larger females, probably approaching four years old, bear the largest litters (Fig. 3). Females grow to be longer than males.

Fig. 5. The snout-to-vent langths of all male H. peronii caught from November, 1965 to December, 1966. - testis and/or epididymis contains sperm; O no sperm; to juvenile, sexes not distinguished,

FOOD

It was fairly easy to classify most arthropod foods to Order because at least the heads and usually other parts as well passed through II. peronii intact. But some other foods were probably missed. Land snails, for instance, were sometimes found without shells or with only a few fragments of shell adhering, which made them hard to notice. Also, the shells of land snails were probably sometimes confused with the small marine shells, mostly of gastropods and foraminifera, which made up much of the gromid on which the lizards were living, and which often appeared in the lizards ${ }^{3}$ guts. So the proportion of land snails in the diet wats probably inder-estimated.

The abundance of various items of food taken by male, female and juvenile H. peronii is shown in Table 2. Obviously H. peroni is almost exclusively insectivorous. The only plant food found more than once was the seeds of the lily D. revoluta under which most of the lizards were canght. These seeds are small, black and shiny, and might have been mistaken for insects. They were largely rindigested.

TABLE 2
The dict of Hemieryis perronit.

Item	Numbers of each item			\% of Litul		
	Males	Femalea	Juveniles	Dlales	Fomalos	Javoniles
Beaties	100	383	6	$28 \cdot 3$	29.9	7-1
Ants and other Hymenopteraz	21	56	2	$0 \cdot 8$	$12 \cdot 6$	2.4
Cuekroachas	30	24	8	8-5	$5 \cdot 2$	$3: 6$
Cockronch oothecut	15	25		$4 \cdot \underline{3}$	516	
Moths	25	22		$7 \cdot 1$	4.9	
Thugs (Hemiptora)	17	10		$4 \cdot 8$	3'2	
Uudentified insact larvae	11	13		$3 \cdot 1$	$2 \cdot 9$	
Collembola	2	1		0. 6	$0 \cdot 2$	
Grasshoppers	$\underline{1}$			(1-65		
Flies	1			0-3		
Esarwign	1			0. 3		
Ardelions		1			(0) 2	
Mitas	41	101	69	11.6	27:2	82.1
Spidera	13	10.		$3 \cdot 7$	428	
Pxeudusestrpйоия	3		2	0.8		214
Slaters (Isapoda)	4	7		I-1	1.6	
Centipedes		1.			$0 \cdot 2$	
Snaila		0	1		1 -3	1-9
Lizards	3	1		0. 6	() ${ }^{\text {\% }}$	
Sheodis	21	1.5		$5 \cdot 6$	\% 4	
Unidentificd	12		1	$3 \cdot 4$		1-2
Total number of individual jtems	853	445	84			

The range of size of the foods taken was large, from small mites, mostly Orībatids, up to adult skinks Ablepharus greyii (Gray), which are about 4 cm long. Juveniles took only small items: there is very little difference between the foods of males and females. Most of the animals caten were feeders in litter or on the surface.

INJURIES TO LIMBS

Several H. peronii had lost digits or parts of limbs. This would he no great handicap to them, since their movement is mainly by lateral undulations. Some of these members would lave been tost in accidents; I found one M. peronit with an aut's head still firmly clanped onto its foreleg, though the limb distal to the ant's mandibles had withered and would soon have drupped off. In other cases, the memhers might have been lost by discase or fights.

Males and females apparently lost large portions of front and hind limbs with about equal frequencies, but in both sexes toes were missing much more often than fingers (Table 3). This suggests that digits and large portions of limbs are lost from different causes.
'IABTAE 3

		Male.	Fernolo
	front	ir	交
Nu. Jimber wholly or pertly lost	bint	21	29
	hisul	4	4
Sit. Ahimats with ull tnembers intrach.		160	73
Siv. himals gxumitad		!	4 S

One II. peronii was found to have five fingers on cach front foot, though the usual number is four. This anomaly is worth mentioning only because several species of Ifemiergis are most easily distinguished on the basis of the number of their fingers and tocs. Werner (1910) clamed that this was the only way he could separate them at all. Glauert (1961) mentions sonne other freak numbers of digits. and gives the impression that the mumber of digits is not a gond specific character.

DISCUSSION

It is likely that the northern limit to the distribution of H. peronit is determined by aridity, for its powers to resist desiccation are relatively poor. Warburg (1966) has shown that its rate of evaporative water loss incrcases rapidly with increasing temperature, and that it quickly dies in a dry atmosphere at temperatures as low is $35^{\circ} \mathrm{C}$.

The southern limits to its distribution might be delennined by winter temperatures. Where winters are cold, lizards usually become torpid, and will hecome active again only in warm, sunny weather. Even then, they probably do not fced, for torpid cold reptiles with food in their guts are in mortal danger because they cannot digest the food, which then putrefies (Reegal, 1966), I found food in the gut of H. peronii throughout the winter, so, though it certainly becomes less active, it prohably does not become torpid for long. Also, abdominal fat bodies, which in some lizards are known to be important in over-winter metabolism (Dessauer, 1955), are absent in H. peronii, though they are prominent in some other local skinks.

So H. peronif might need to feed over winter in order to survive. If this is so, its preferred hody temperatme should be low. There is no information available on this, but Lichit, Dawson, Shoemaker and Main (1966) have shown that the preferred body temperature of $I I$. quadrilineathm is relatively jow, and
II. quadrilinealum, like II. pueronii, hais a very high rate of evaporative water loss (Licht, Dawson and Shoemaker, 1966).

Why II. peronii does not oecur in the Flinders or Mt. Lofty Ranges is hard to say. Over much of its range it occurs on sand; in the south-cast, for instance, its range seems to coincide with the relict coastal dunes there (Sprigg, 1952). On parts of Eyre Peninsula it occurs on soils which, though not very sandy, are underlain by kumkar derived from old sand dunes. Perhaps H. peronii avoids soils prone to water-logging. But obviously a full analysis of its distribution requires much more detailed study.

ACKNOWLEDGMENTS

I wish to thank John Mitchell, Glen Storr, Harold Cogger, Peter Rawlinson, Dierk Von Behrens and students from Naracoorte High School, Michacl Braysher, Meredith Smith, Vaal Nielsen, Beverley Jones, Stuart Harris and Lewis Chimner for help and advice.

REFERENCES

Avger, 1. M. and Mawson, P. M. (1968). Helminths of sume lizards from South Australia. Proc. K. Soce S, Aust 92: 59-7.
 carolinensis. J. Exp. Zool. 128: 1-12.
Glaueat', L. (1961). "A Handhook of the Lizards of Western Australia', (Western Australian Naturalists" Club: Perth.)
Lacur, P., Dawsoy, W. H. and Shemaken, V. II. (1966). Ment resistance of some Australian lizarels, Copès 1906: 162-169.
Licht. P, Dawson, W, R., Shgemaket, Y, H. and Mats, A. A. (1968). Observations om the thermat relations of Wextern Australian Jizarts. Copeia 1968: 97-I10.
Luvehoge, A. (1934). Australian reptiles in the Musewn of Comparative Jonioggy, Cambriuge, Massachusetts. Bull, Mus. Comp. Zool Haivard 77: 243-383.
Lucass, A. 11. S' and Frost. C. (1891). The lizards indigenous to Victoria. Proc. H. Soc. Viet. 6) 24-92.

Mircherlla F. J. and Behmint, A. C. (1049). Fama and fora of the Greenly Inlimeds, Part 1. Introductory narrative and vertebrate fauma, Rec. South Aust, Mus, y= 167-179.
Rawlenson, 1. A. (1968). Reptiles of the Victurian Mallee. Proc, R, Soc. Vict. 70: 605-819.
Rawansons, P. A. (1967). The vertebrate fauna of the Bavs Strait Islands: D . 'The Reptilia of Flinders ant King 1slands. Proc H. Soc. Vict. 80 - 211 -22 4.
Hgcal., P. J. (1966). Thermophilie response following feeding in certain reptiles. Copeia 1966: 585-590.
Smytir, M, and Smith, M. J. (1968). Obligatory sperm storage in the skink Ifemiergis peronii. Science 161: 575.
Spricg. R, C. (1952). The geology of the South-Eunt lruvince, South Australia, with spacial reference to Quaternary conast-line migratiuns and modern beach developments, Bull. Geol. Surv, S. Anst. no. 29: $1=20$.
Ware, E. R. (1920). "The Reptiles and Amphibia of South Australia". (Caverament Printer: Adelaiste.)
Wansurg, M. H. (1966). On the water ceconumy of several Australian peckos, ngamids and skinks. Copecia 1966: 230-235,
Werkes, H. C. (1980). On placentation in reptiles. II. Proc, Limn. Soc. N.S.W. 55: 550-576.
Werner, F. (I910). Reptilia (Geckmidue und Scincidac). In "Dic Fauna Südwest-Australiens, Ergebrisse der Mauthurger südwest-anstralischen Forschungereise 1905". Ed. by Michachser, W. and Hartmeyer, R, Bal. 2, pp, 45I-93, (Fïscher: Jcma.)
Wourex, E. (1063). "Reptiles of Australia". (Angus and Mobertson; Syurny:)

HELMINTHS FROM SOME LIZARDS MOSTLY FROM SOUTH AUSTRALIA

by L. Madeline Angel and Patricia M. Mawson*

Abstract

Summary An account is given of helminths from lizards from an area near Port Gawler in South Australia, including a table of their incidence. Records are also given of trematodes from two Queensland lizards. Species recorded (all from the Pt. Gawler region unless otherwise stated) are: Paradistomum crucifer (Nicoll) (syns. Eurytrema crucifer Nicoll, Paragonimus trachysauri MacCallum, Cephalogonimus trachysauri MacCallum, Paradistomum muccallumi Johnston) from Hemiergis peronii, Trachydosaurus rugosus (Pt. Gawler area and from Murray Bridge S.A.), Tiliqua scincoides (Queensland), and Varanus varius (Queensland) Oochoristica trachysauri (MacCallum) (syn. Oochoristica australiensis Spassky (from Trachydosaurus rugosus; Thelandros kartana Johns ton and Mawson from H, peronii, Phyllodactylus marmoratus;' T, trachysauri Johnston and Mawson from Trachydosaurus rugosus; Skrjabinodon smythi n. sp. From P. marmoratus. Other helminths recorded are Microphallus sp. from T. rugosus;' Trematoda, ? sp., from Rhodona bougainvillii; Oochoristica sp. and Baerietta sp. from R. bougainvillii, H. peronii and P. marmoratus; Skrjabinelazia sp. From P. marmoratus; acanthocephalan cysts from H. peronii.

HELMINTIIS FROM SOME LIZARDS MOSTLY FROM SOUTH AUSTRALIA

by L. Madeline Angel and Patricia M. Mawson*

[Read 8 August 1968]

Abstract

SUMMARY An necount is given of helminths from lizards from ana area neut Port Gawler in South Anstralia, including in table of their incidence. Records are also given of Lremstodes from two Queconsland lizards. Species recorded (all from the Rt, Cawler reyion unless otherwise stated) are: Paradistomum crucifer (Nicoll) (syns: Earyitema crucifer Nicoll, Paragonimus trachysuuri MacCallum, Cephakogranimus trachysuntri MacCadturn, Paradistomum muccullumi Johnston) from Hemiergis peronii, Trachydosairrty rufoshs (Pt. Gavler area and from Murray Bridge, S.A.), Tiliquia scincoides (Queensland), and Varanus varius (Queensland): Dochoristica trachasquri (MacCallum) (sym. Oochoristica australicnsis Spassky (fremp Trachydosaurus rugosus; Thelandros kartarat Johnston and Mawson from Mo peronil, Phylloductulus marmaratus; T. trachusturi Johnston and Mawson from Trachipdosautus rusosts; Skrahinodon smytht n. sp. from P. marmoratis. Other helmuiths recorded are Microphallys sp. from T, sugosus; Trematode? Sp. from Rhodouck bougnavillit; Oochoristica sp. and Baerietta sp. from R. bougaincillit, H, peronit that P. marmoratus; Skrlabinelazia sp. from f_{i} murmotutus; acanthoceyhalan cysts from H, peronif.

INTRODUCTION

During 1967, Dr. Michacl Smyth, of this department, undertook an investigation of aspects of the ccology of lizards inhabiting a coastal strip north of Adelaide. The parasites of these lizards, and some from the same host species from different localities, are discussed in this paper. The occurrence of a trematode from two other species of lizards, both from Qucensland, is also recorded.

We are very grateful to Dr. Smyth, not only for giving us the visccra for examination, but also for the regularity and precision of his collection and records. Ar aceount of his work is in press.

The study area is a short distance north of Adclaide and the two collecting centres are Port Gawler and Midlle Bcach. The two areas are separated by two permanent salt water channels. The lizards from cach atea are listed in Table 1, with records of parasitism. It will be noted that trematodes were found (except in one case) only at Middle Beach; cestodes and nematodes occured in both areas. Juvenile lizards seem to be free from helminths. Records were kept of the sex of each lizard dissected, but this appeared to have no significanco in relation to the iufestation by helminths, and has not been indicated in the Table.

Differences in the incidence of parasitism, as well as of the different groups of helminths, in the different species of lizards, are quite marked, and are discussed below.

We are grateful to Dr. S. J. Edmonds, of this department, for examining the acanthocephalan cysts. Our thanks are also due to Mr. John Mitchell, of the South Australinn Muscum, for the correct names of the lizards concerned.

[^6]TABLE 1
froidence of helminths it the sludy ures.
The figures refer to the number of lizards dissected or found parasitised. An usteriak modicates that the alimentary conal only, not the gell hladder, of these speciment whe examined

PARASITES RECORDED, ARRANCED UNDER THEIR HOSTS

Trachydosaurus rugosus Gray. Microphallus sp.; Paradistomum armeifer (Nicoll), Thelandros trachysauri Johnston and Mawson.

Hemierwis peronii (Fitzinger). Paradistomim crucifcr (Nicoll); Oochoristica sp.; Baerictia sp.; Pharyngodon kartana Johnston and Mawson.

Tiliqua scincoudes (Shaw), Paradistomum crucifer (Nicoll).
Rhodona bougaineillii (Cray). Trematodet, : sp;; Oochoristica sp.; Baericta sp.
phyllotactulus marmoratus (Gray). Skrjahinodon smythi n. sp., Thelandros kartana Johnston and Mawson; Skriabinelazia sp.

Varanus cariks (Shav). Paralistomum crucifer (Nicoll).

TREMATODA

Paradistomum crucifer (Nicoll)

(Figs. 1-6)
Eurytremer erycifer Nierll. 1914, B38, in gall-bladeler, Delma frastri.
Paradistomum cructfer (Nicoll) Travasch 1919, 12; 1944, 256.
Paragonimus frachysauri MacCallum. 1021. 173. in gall-bladder. Trachydosaumus rugosus (syns. Trachysatitus ruessus).
 Paradistomut truchusauri (MacCallman) Dollfus, 1922. B29.
Paradistomatrachysatri (NacCallum) Dulfus: Johnston, 1932, 64.
Paradistomum muccullumi Juhaston, 1932, 64 (nom. now. for Cephalagonimus truchysauri (MacCallum)
Paradixtunum trachysauri (MncCallum) Dollfas; (syns. Paragonimus trachusmari MaeCallum and Parcielistomum maccalunt Johnston). Malan 1939, 37.
Parkelisfomam trachysauri (MacCallum) Dollfus; Travassos, 1044, 262.

Hosts and Localities: Hemiergis peronii, Middle Beach, South Australia, from gall-bladder, occasionally in small intestine; Trachydosaurus tugosus, Murray Bridge district, South Australia, from gall-bladder and liver; Tiliqua scincoides, Fucing Island, near Gladstone, Qucensland, apparently collected by Professor T. Harvey Johnston, in 1918, from gall-bladder (ten specimens from one host); Veranus varius. Townsville, Queensland, collected by Dr, G. A. M. Heydon in 1927, from gall-bladder (two specimens from one host).

The description is based on 24 stained and mounted specimens from Hemiergis peronii, with details from living specimens. Notes on the trematode from Tradiydosturus rugosus are given in the discussion.

Filgs. 1-6 Paradiatomum erturifer, Drawings were made with the aid of a camera luciala, Scales in millimetres, Figs. 1 and B to sime scale. Eigg nut drawin exactly to scale-
 extent of uterus. (2, Hattened); 各, cirrus sae; from specimen shown in fig, 2, enlarged; 5, yourty adult, excretory system from living specimen. Fig. 4, type spccimen redrawn (frôm Dalma frasert). ${ }^{\mathrm{E}}$, cirrus; fob, excetory bladder; mg Mehlis gland; o, ovary; jste brostate aladd erlls; rs, receptaculum seminis; sv, seminal vesicle; vd, vitelline linct.

The numbers of trematodes in the infected H. peronii ranged from I-15, and grnerally included juveniles as well as adults. One gill-bladder contained 65 specimens, hut all were very young. Nearly all specimens were found in the gallbladder, but a lew were in the liver, and four were taken from the intestine. Of these last, three were in two hosts whose gall-bladders were uninfected, and the fourth was in a lizard whose gall-hladder contained twelve trenatodes. In one lizard only, the trematodes were found not only in the gall-bladder (thirtcen). but also in ducts which appear to be pancreatie, running through the elongated piancreas from the gall-bladder to the intestime (fifteen).

Specimens were fixed, under a coverslip with only slight pressure, in formol acetic alewhol, stained in Van Cleave's combination haematoxylin stain, and momed in Depex.

DESCRIPIION

Shape: Elongated or leaf-like when living; fixed specimens with bluntly rombled posterior and often somewhat elongated anterior end. Colour pale pink, with cacca yellow.

Body $0.748-2.840 \mathrm{~mm}$ long by $0.306-1.496 \mathrm{~mm}$ wide. Cuticle not spined. Oral sucker rounded or slightly oval, $223-494 \mu$ (average 342μ) Jong by 129. 4% 1. (330 (12) wide. Acetabulum rather inconspicuous, rounded, 170-353 (235μ) long hy $141-306 \mu$ (239μ) wide; anterior border near anterior third of horly. Ratio of width of oral to width of ventral sucker $1: 0.7$ to $1: 0.9$, lrepharynx short; pharynx 50 by $50 \mu-110$ by 100 m dorsal to oral sucker or parlly pusterior to it; oesophagus short; caeca wide, sinuous, extending hearly to posterior end of body.

Testes symmetrical, at sides of acetabulum, rouncled in living, thay lie irregnlar in fixed specimens, equal or sub-equal, 71-165 \% (110 N) long hy 5 y$176 \mu(106 \mu)$ wide. (imms sac S2 284μ long hy $45-100 \mu$ wide, letween suckers, at an angle to loft of mid-line. Seminal vesicle internal, much coiled. Cimus inconspicuous, slightly coiled, surrounded by diffuse prostatic cells. Ceuital pore median, near posterior border of oral suckei.

Ovary post-ucetabular, sinistral, irregular, $82-293 \mu$ long by $71-188 \mu$ wide. Receptaculum seminis mostly dorsal to avary, may be posterior or to cither side of it, $47-141 \mu(96 \mu)$ by $59-212 \mu(107 \mu)$. Mehlis gland irregular, generally posterior to ovary and slightly tor right. Laurer"s canal not scen. Ulerus varying in cxtent from condition shown by Nicoll, with relatively few eggs (Fig. 6), to one in which it fills all of hind-body and an area in front of acetabulum; passing to right of cirrus sac and opening by muscular metraterm at genital pore.

Eggs variable, largest 40μ lay 92μ.
Vitellaria extracaecal, restricted to middle of borly, reaching level of posterior third of acetabulum anteriorly; 270-764 $\mu(476 \mu)$ in cxtent; lobules variable, some moderately largi. Transverse yolk ducts widening at junction in mid-line, but forming no obvious yolk restrvait:

Excrotory bladder elongate, main arms leaviner antorior end. Excretory pore terminal.

DISCUSSION

The mature trematodes found in Hemiergis perumii in this study show a considerable variation in size, ranging from 0.748 by 0.374 mm to 2.890 hy 1.258 mm , and in appearance. The trematodes found in the pancreatic ducts were greatly elangated, while the worms from the gall-bladder tended to be
foliate. As immature specimens are often present with the adults, some of the differences among tagg-lsearing adults are probably due to differences in age. For example, the testes and ovary may be as large in small worms as in much larger mes (Figs. 2, 6) giving a dixpmportimate emphasis to these organs in the small specimens. The specimen shown in Fig. 1 shows the acctabnlum very near the prat suckers; a specimen of similar size from the same host showed a similar arrangement of cggs, but the body was more clongated and the acetabulum was in the more typical position. Even among specimens of the same size there is great variation in the number of eggs, and this leads to diturences of form and general appearance. In the original deseription of Paradistomem crucifer, Nicoll stated that the uterns, especially in the less mature specimens, hat a characteristic crugiform cusurse, but that in more mature specimens this arrangempnt was, to somo extent, obliterated. Among the sunall trematodes of my collection. sume (Fig. 6) have a utcrus showing the cruciform conrse, while in others (Fig. 1) the eggs form a more or less soliel mass in the himblofoly and sometimes anteriorly to the acctabulum, so that must of the organs are obscured. Even among the larger specimens there is also a good deal of variution in the number of $\mathrm{eg} \mathrm{g}_{\mathrm{g}}$.

By comrtesy of the Director of the School of Public Incalth and Tropical Medicine, Sydney, one of us (L.M.A.) has becn able to examine the type of P. erucifer. Some of our smaller specimens are very similar to it in appearathee, and one of them is almost identical with it, not only in orerall sice, but in the sire and arringement of the organs. The trematocies from Hemergis peronis must be regarded as Parulistomum crucifer.

Although the range of measurements given by Nicoll shows that his specimens were uniformly smaller than the trematodes formo in M. peronii, Nicoll's description was based only on "a few" worms. In addition, all measusernents Eiven by Nicoll are eonsistently smaller than those now made on the type (Table 2). It is possihle that this is due to some flattening of the specomen over the years; it is also possible that Nicoll had marle a mistake in his scale.

MacCallum (1921) found about twenty trematodes in the gall-bladder of a stump-tailed lizard. Trochydusumess rugesus, which died in the New York Zoo. He stated: "there were three different sizes among them, which, with the decided differences in form, would almost make it necessary to divide them into three specles, but as they are in many naticulars alike, and for brevity's sake, we shatl describe them as one species". 'This Jie named Paragonimets trachysaurt. Later in the same paper Mace Callum stated that he had found two different trematodes in the lizard, one being P. trachusauri; the sccond he described as Cephalogonimus fracheysouri. Malas (1939) regarded the two as identical, and thus synonymons with Paradistomum frachysauri, and this has been aceepted by later workern.

Althugh the largest specinems from H. peronit are smaller than the measurements given by MacCallum for Purndistomum trachusauri, the measurements of ovarics and testes are comparable, the raties of the suckers appear similar, and the specimens resemble the one figured hy MacCallum. Differences in fixation could account for some differences in body dimensions, as also could the relative sives of the hosts'. There seems no reasom to regard the specimens from Hemieryis peromit as distinct from those dexerihed by MacCallum from Trachydosamers sugosus, so that Paradistomun trachysauri must become synonymous with 11. crucifer. It should be noted, however, that P. cricifer ass now interpreted

[^7]TABLE 2
Paradistomum crucifer (Nieoll)

Doscribed as	Ěurytrena crucifer (type specimen)		Paragonimus truchysauri	Cephalogonimus trachysatur	Pamolistomum crucifer	Paradisfomum crucifer	Parudistomsens crucifer	Paralistomam erucifer
Hust	Delma fraseri		Trachydosaures rugorus	Trachydosaurts rugosus	Hemiergis peronit	Trathytosaurus rugosus	Vatanus n:arias	I'Gliqua scircurdes
Locality	North Queensland		New York Zoo	New York Zoo	Middle Beach	nr. Hurray Bridge, $\mathbf{\alpha}$, A .	Tumneville, N゙. Q'ld.	nr, Gladstone, Q'ld.
Measurement: given by	Nicoll, 1914	Present study	$30 / 8 ; 18$ MacCallum, 1921	$30 / 8 / 18$ MacCallum, 15빈	$\begin{gathered} 1987 \\ \text { Irosont study } \end{gathered}$	$\begin{gathered} 2 / 1968 \\ \text { Present study } \end{gathered}$	$\begin{gathered} 19: 7 \\ \text { Present stud } \% \end{gathered}$	1918 Jresent study
Number examined	${ }^{2} \mathrm{a}$ few ${ }^{\text {c }}$	1.224	\% 17	$\begin{aligned} & 3 \\ & 3 \cdot 00 \end{aligned}$	0.748 \square^{2}	$1 \cdot 088-3 \cdot 7746$	2	4
Length	0.7-0.8		$5 \cdot 00$				$2 \cdot 7203 \cdot 162^{7}$	2.148-2.516 ${ }^{7}$
Width	0. 35-0.4	$0 \cdot 714$	2. 00	$0 \cdot 70$	0.306-1.496	0.289-0.918	0.384-0.918	1.088-1-292
Oral sucker ${ }^{1}$	$0 \cdot 18$	$0 \cdot 294$	-	$0 \cdot 320$	0.129-0.423 ${ }^{4}$	0.137-0.388	0.341-0.412	0.376-0-423
Acetabulum ${ }^{1}$	$6 \cdot 15$	0.223	-	$0 \cdot 328$	$0.1410 .306^{2}$	0.1180 .306	$0 \cdot 3+1-0.365$	6) 270 (0.329
Suoker ratio	1;0.83	1:0.76	3	1:1	1:0.7-1:0.9	1:0.86;1:0.8	1:0.88;1:1	1:0.78 (av.)
Pharyrx	0.04	-	-	-	0.051-0.100	0.0n33-0.107	0 +141	-
Testes--length	0.04	${ }_{0}^{0.071-0.106}$	0.15	0-200	$0.071-0.165$ $0.059-0.176$	-0.147 -0.184	\cdots	-
Ovary- length	Abont same	$0.082-0.094$ 0.094	$0 \cdot 2$	$0 \cdot 280$	$0.6599-0.126$ $0.082-0.223$	-0.184 -0.123	\cdots	-
-width	size as testes*	0.082			0.0710 .188	-0.263		
Eggs	$30-33 \times 21$	36×22^{2}	50×90	40×20	40×22^{2}	39×24^{2}	31×20^{2}	35×20^{2}

All measurements are in millimutros, except for eggs, which are in mickons. In measurements mado in the presont study, the width of suckers is given.
Largest egg measured.
Athough Mac⿻allum states in the text that "the acetabulum is as large as the mouth, his figure shoms the acetabuhm as amaller. oral sucker was longer than broad, while the aretabulum was broader than long. The largest and smallest of 30 specimeris,
Specinens less flattened than those from Hemiergis peronit (see diseussion).
Spirit specimens; do sat appear to havo beon flatened in any way.
shows considerable variation in size and general appearance. Variation has already Leen reported for another species of Pardistomum by Dollfus (1922. 32 S , footnote), who reforxed to the great morphological variations he had found it P. mutalile (Molin).

This in the first Anstralian record of a trematode from a lizard since MawCallum's report of P. truchysauri. In 1932, Harvey Johnstan reported that "it mumher" of T. rugosus had been scarched for parasites from time to time, but thut no trematodes had been found. After P. sirucifer was found in H. peronii in the present study, as many T, rugosus as possible were examined. It was not until this paper was completed that P^{\prime}. crurifer was found in this host, in two lizards from the Murray Bridge district. (Of the forty five T. rugosus disseeted only nime were from the study area north of Adelaide. The remainder came from a number of difterent licalities, In the first lizard there wese 34 trematodes in the gallbladeler and 12 in the liver. In the seoond, there were 56 living and a number of disintegrating worms (which were mere collections of eggs) in the gall-bladuer, and 13 Jiving worms in the liver. The lizards had been in captivity for almost two mozths when they were dissected. All the trematodes were mature, but great differences in size wero found. The specimens were fixed in formol acetic alcolon under a coverslip. Virtually no pressure was required to fix them lat, so that tha measurements are not truly comparable with those of the specimens trom H. peronii (which were fixed with slight pressure) hut would probably have heen greater (certainly in the width of the body) had the worms been fised with ther same pressure. Measurements of the largest and the smallest specimens from the first infected lizard are given in Table 2.

The following observations were made on the living tromatodes from f', frgosus. The caeca appear hright yellow (due to bile), and contaim mathy crystals, as recorded by MacCallum. These are tetragomal in shape, and ary in size from five slender crystals to forms 11 p to 223μ by 35μ by 35μ. (Crystals were נut present in P. crucifer from H. peronit; this is presumably shic to a difierence IH composition of the hile of the two lizards.) The part of the hody which is not coloured by bile or obscured by eggs is pale pink in colour. Twenty mature eggs taken at random from the liver washings measured $34-39 \mathrm{~g}(37 \mathrm{\mu})$ hy $21-21 \mathrm{p}$ (22 R).
P. crucifer from both hosts was very sensitive to changes in the medium in which it was kept. In 0.65% suline it very quickly hecame swallen and elied. It could be kept alive in bile at $6^{\circ} \mathrm{C}$ for several days.

R.IFF HISTOHE

The only species of Parudistomum for which investigations on the life-fistory have been recorded is P. muthbile (Molin). Timon-David and Timon-David (1967) infected Hellecella arenose experimentally and obtained brevicercous viphidiocercariae. (H. nernowe was not the normal host since it did not oceur on the islands on which Paradistomum mutabile was commonly found in lizards). The cyst stace was not found, but the authors thoughe it probable that as second intermediate host is necessary; and suggested an isonod or an insect.

In the present study no information comld be gathered on the life-history of P. crucifer. The only land snails found in the study area are Austrosescincou australis Ferrusac, Omegapilla austrelis Ancus. Australbimula margarctae Cox and Paralaoma stabilis Iredale. The last three of these are very small snails and quite difficult to find in the litter in which they occur. (P. stabilis was nat, in fact, 「raned
in the open at all, but was recovered from the stomachs of lizards, in which it occurred quite often). It was therefore not possible to conduct any trematode life-history studies with these molluses. Attempts were made to infect Austrosuccinica autralis (collected from another area) hut it proved impossible to keep the snails alive long enough to obtain any results.

It will be seen from Table 1 that whereas fifteen of seventy-one Hemiergis peronii from Middle Beach were infected with Paradistomum crucifer, none of ninety-nine of these lizards from Port Gawler harboured the parasite. We can siiggest no reason for this.

If, as seems likely, a second intermediate host is necossary, it is to be sought among the animals listed by Smyth (1968) as found in the stomachs of H. peronti. Of these, the most common are weevils, free-living mites (very small spocies), ants, eockroaches, motlus and snails.

Microphallus sp.

Host and Locality. Trachydosaurus rugosus; Middle Beach.
One specimen, in upper small intestine.
Trematoda, B sp.
Host and Looality, Rhodona bougainvillii, Yort Cawler. One specimen, in intestinc.

CESTODA

The authors, neither of whom is a cestodologist, are qreatly indebted to Dr, John Hickman, of the Zoology Department, University of Tasmania, for identification of Bucrietta sp, and verification of Oochoristica spp. Further identification of the muterial will be made by Dr. Hickman.

Oochoristica trachysauri (MacCallum)
(Fig. 7)
Tracnice trachysuuri MacCallum, 1921, 229.
Oochoristica trachusauri (MacCallum), Johnston, 1932, 65.
Oocharisfica australiensis Spassky, 1951, 547.
Host and Locality. Trachydosaturus rugosus, Middle Baach, South Anstralia.
This species was fully described by Johnston (1932). Spassky (1951) considered Juhnston's specimens different from those of MacCallum and proposed for them a now species, O. australicnsis. The material now examined, all from one host, shows similarity to all carlier collections-some specimens with an obvious rostellum, some with rounded anterior end; the mature segments vary (sometimes abruptly, fig. 7) from more or less square to elongate. It is considered that all belong to the same specics.

Ouchoristica sp.
Hosts and Locality, Mhodona bougainvillii, Hemiergis peronii, Phyllodactyless narmoratus, Port Gawler.

More that one specics may be present.
Baerietta sp,
Hosts and Locality, Rhodona bougaineillii, Hemiergis peronil, Port Gawler. The cestodes from these hosts are similar and probably belong to the same species.

Fig. 7. Oochoristica trochysuuri, part of strobila showing variation in shape of segments. Figs. 8-10, Thelandras kartana, \& anterior end; 9, vontral view of male tail; 10 , female tail. Figs. 11-14, T. trachysauri, 11 , anterior end; 12 and 13, ventral and lateral views of mate tail; 14, tail of female. Fiss, $9,12,13$, to scale beside 13, figs. $8,10,11$ and 14 to scale beside 10 .

NEMATODA

The nematodes taken from the lizards at Port Gawler show an interesting host distribution. Nonc were found in Ablepharus greyii or Rhodona bougainrillii. Oxyurids were found in Heniergis peronii, Trachydosaurus rugosus and Phyllodactylus marmoratus, and in almost all cases each of these hosts carried only its own species. The exceptions were two P. marmoratus, in which were Thelandros karlana, typically present in H. peronii. Although H. bougainvillii is apparently frec of nematodes in this area, it carries the same cestode species as does II. peronii and these species are in turn different from that from T, rugosus. This difference in parasites may be due to a high degree of host specificity among the oxyurids, and perhaps of resistance among the lizards, or it may bo explained in part by the different niches occupied by the lizards. Dr. Smyth has informed us that R. bougainvillii and II. peronii live mainly under certain bushes, A. greyii and P. marmoratus mainly under wood, stones, etc, and T. rugosus (a much larger lizard) may be found inn either habitat. Most of the lizards are diurnal and insectivorous; T, rugosus is diurnal and prodominantly vegetarian; P. marmoratus is nocturnal and insectivorous. Oxyurid eggs might be expected to be quite common over the surface in the area, expecially those of Thelandros trachysauri which occurs in hundreds in each host animal.

Thelandros kartana Johnston and Mawson
 (Figs. 8-10)

Thelandros kartana Joherston and Sawson, 1941, 145; frem Hemiergis peronii, Kangaroo Island.
Hosts and Localities. Hemiergis peronii, Port Gawler, Middle Beach. Phyllodactylus marmoratus, Port Gawler.

Thelandros kartana was taken from 22 specimens of II. peronii from Middle Beach and 27 from Port Gawler. Female worms with eggs were taken from two P. marmoratus. No more than four worms were present in any one lizard, and usually only one or two. They occurred almost always in the short caecum at the junction of small and large intestinc. The new specimens have been compared with paratypes of T. kartana and found to agree closely. The original description can now be augmented by Figures 8-10 and measurements in Table 3. The measurements of the specimens from P, marmoratus are within the range of those from H. neronii.

Figs. 15-21, Skriahinodon smytht, 15 and 16, anterior end of specimens in relaxed and contracted states respectively; 17 , posterion end of male; 18 , ventral view of cloacal region, male; 19 , tail of female; 20 , part of spike of feruale tail showing "spines"; 21 , egg. Figs. 17 and 18 to same scale.

The]andros trachysauri Johustors and Mawson

(Figs. 11-11)
 Atelainde:
Hosl and Localdirs. Trauhydosanrus rugosus, Port Cawler, Midda Heach.
Thelondros trachysauri has been found in nearly all T. regosus dixsected in this Department-more than thirty-five from various places. It is present in vety large numbers in the middle ant posterior parts of the large intextines. The collections from the Porl Gawler area agrece with the original destription, which can now he amplified by measurements of anore specimens (Tible 3) and by Figures 11-14.

The lateral alae, present in both seyps, are not very wide; in the male they cxand from the posterior oesophageal region to near the cloaca; in the female Hey are restricted commencing just postorior to the oesophagus and reaching to, not past, the vulvia. The nerve ring is $190-210 \mu$ from the head in females, sather more antcrior than described earlice. The eggs we oval in shape, contain a bent larva, and measure 100 ar by 54-60 μ.

Skrjabinodon smythi nsp.
(Figs. 35-21)
Type Host and Locally. Plyyllodactylus marmoratus, Port Gawler. Other Jocalities: Middle Teach, Chowilla, Loxton, Lock, all in Soulh Australia,

Type of and allotype of will be deposited in the South Australian Museum.
This species appears to be common in P. marmoratus throughout southern Australia, although another species (unpublished) apparently takes its place in uorthern parts of the state. It has been taken from fourteen of seventeens losst animals camined. In most cases there are about 6.8 worms in each host, but in some there are more, the greatest number beind sixty-seven of which 38 were males, 7 females with eggs, and 22 females withut eggs. All oceur in a mase in the small caecum at the origin of the large intestine. Where few worns are present, the gravid females are stufted with eggs, but where there are many: worms, the eggs are few.

There is an apparent variation in the position of the vulva and excretory pure in the females. These appear to be oesoplageal structures in some collections and well behind the oesophagus in others. This however is largely denendent an the degrec of contraction of the body: It has been noted that those womms in whish the excretory pore (and vulva) are nesophageal are stiff and barrel-like in appearance, with strongly marked ringed or ruched cuticle, whereas in flaccid spereimens with smoath cuticle these two pores are further latek. This is shown by the measurements, in Table 3 , for s. smythl as, although the tutal length measurements show a great variation, floe length of the ocsophagus and the lail spike do not. In this Table, measurements are atso given of some very flaceid specimens from Chowilla.

Lateral alae are prescont in froth sexes, from about the midlength of the ocsophageal region to the level of the anus. The amphids are large mare prominent, and slightly further back, than the four lage cephalic papiflac. The three lips are bilobed in the female and single in the mate. At the anterior end of the vesophagus of the male are three small teeth, not present in the female. The position of the nerve ring is not dear in most specimens. The excretory pore is a transverse slit with conticmarised lips and it lies posterion to the oesuphagus in relaxed specimens, It is more posterior in the make than in the female.

The malo is without caudal alac; the male tail spike has a few very minute spines. There is no spicule, but cuticularised projection of the cloacal wall is

TABLE 3

 Gawler is hroken.

Fsperies	T. Fiartayck	T Imelymadur	S. smath:		
Suphatity stute of connraction	Fart fawler	Middle Berw ${ }_{\text {d }}$	Cort Gampe (enutracted)	Port Gavicr (rnlaxed)	Chowill (flaecid)
Sules:					
Lunyth (8\%rs)	1.0.3.0	1- $5-2 \cdot 5$	1-40-1.78	5-4-3.5	1,75-3.16
nosuphurus	320-480	汤隹6519	$\cdots 20-300$	250-275	290-306
antr. end-exer. poro	$560-1000$	8500-600)	$3817-870$	$600 \cdot 650$	100-400
tril spiks	50.70	100-120	$380-410$	4010420	480 - 50
spicule	65-75	100150	-		-
Premales:					
l magth (min)	2-1-6.5	3.3-3.61	3 $300-4 \cdot 5$	$570-7.0$	5.98 .1
oerophasum:	400-1200	$830-980$	700-560	570-500	450)-000
antr. end-rxer. morm	$530-1400$	400-1000	$300 \cdot 404$	550-1350	$550-700$
-vulva	$3.10-1.8$	1-10-9:3	$350-461$	6.06-780	(501-780
tail	100-150	(390)-450)	1390-1500	1350 1800	15131-1600
tail spilue	-	-	1000-1050	800 -105\%	800-1000

present. The preanal, adanal, and postcloacal papillac are almost evenly spaced on the ventral surface. Dorsolaterally to each adaual papilla is a papilla-like extension into, but not lifting, the cuticle, and terminating at a tiny pore. These are probably the phasmids.

The tail of the female bears about $7-9$ irregularly spaced projections which are more digitiform than spinous (Fig- 20). The vulva is a transverse slit, without thickened lips. The eggs are $150-165 \mu$ long, with a plug at ench end and slightly fattened mone sidc. The most mature eggs contain a larva 120μ long.

The genus Skriabinodon was proposed hy Inglis $(1968,179)$ for some species which had been placed in Parathelandros Baylis but which differed from the type species of this genus, and from other species which he deseribed at that time. The species attributed to Parathelandros are all from Australian frogs, and those to Skrjubinodon are from lizards, mostly from places other than Australia, but one, S. oedurae (Johnston and Mawson) from an Australian lizard. The present specimens agree gencrally with other species of Skriabinodon and with the generic diagnosis proposed by Inglis, except in the two characters which he marks as doubtful, namely the absence of mochia at the anterior end of the oesophagus (present in the male of S. smythi) and the lip shape, which does not sippear to be bilobed in the male of 5 . smythi.

The species is differentiated from S. unolis (Chitwaod), the only other species of the genus in which the spicule is absent and the female tail bears large "harbs", by the shape of the barbs, the lurger size of the eggs, the longer oesoplagus, the more anterior position of the anus in the female, and by the rather तliffererit spacing of the malc caudal papillae:

Skrjabinelazia sp.

IHosk and Localties: Phyllodactylus marmoratus, Port Gawler, Middle Beach.
The material available consists of several female worms from the intestine of five geckos. No males have been found.

The worms are laxge up to 18.3 mm in length, and the cuticle at each end is markedly inflated. The anterior end bears four large papillae and two amphids. There: are no lips. The mouth, more or less circular, leads iuto a short buccal
cavity from tho walls of which project at riug of tiny teeth, like an internal leaf etown. The besophagus, 1.2 mm long, widens towards its posterior end, but is mot ohvously divided into muscular and glandular parts. The nerve ring is at: alont one third its length from the head, and the excretory pore at the same level. Cervical papillae were not secu. The posterior end naxrows suddenly 300 m berind the anus, and the body proper ends in a short spike about $110 \mu \mathrm{long}$. The inflated cuticle extends behind this for about 50μ.

The vulva lies shortly behind the nerve ring, about 490μ from the head. The eggs are large, sub-spherical, 90μ in diameter, and contain a coiled embryo, The e"gs shell is thin and apparently not rigid, as some change their shape under pressure.

These vorms are very similar in appearance to those of the generat Skriabinclazia Sypliakova und Snlobrmilla. Frcitas. The species of these genera differ, as far as the female is concerned, in the absence or presence, respectively: of lips, so the present specimens are identified as Skriuhinclazia sp. In the absence af males, no further identification is attempled. No species of Skrjubinelazia, or of Salalmeslo, has so far been recorded from Australian hosts.

ACANTHOCEPHATA

(3).

Host and Locality: Ifemierwis peronii, Port Cawler (2) and Middle Bears
Five acanthocephalan cysts were takcu from the mesenteries of these hosts. They have been examined by Dr. S. I. Edmonds, who has kindly given the following information.

All the cysts appear to belong to the same genus. In only one is the inmovert extended enough to permit an estimate of its measurements. The ellipsoidal cyst is approximately 800μ long by 300μ wide. The introvert, which is cylindrical and hears mumerous hooks, is about four-sevenths extended, and is estimated as 1100μ long and 280μ wide. The number of hooks is hard to estimate, possibly about 30 rings enth of 26 hooks.

The only acanthocephalan so far recorded from Australian reptides is Sphacerchinorhymehus rotundocapltalus (Johnston, 1912), from the black snake Psculcchis porphyriacus Shawr. The cysts from II. peronii do not belong to this species.

REFEREXCES

Cismwood, B. Go, 1934, Kmports on the collections ohtained by the first Johnson-Smithsmian deep-sea expedition to the Pumta-Ricam Deep. Two new nematodes. Smithsonian Nise. Cint (Publ 3243) 41 pp.
Dillfus, R, 1', 1 gea. Varialions dans la forme du corps,]a position et la furne des tistrienles cher Dicrucoelium lanceolaum (Rudolphi), Bull. Suc. znol. France, 47, pp. 313-6̂42.
Femerst, F. F. Teineira de, 1941. Sobre um interessante nematudeo parasitu de reptil 〈Spirusoiuea) Mem. Inst. Osw, Gruz, 28, pg, 233-245.
lacis, W. Gr.. 1968 . Nematorles parasitic in Western Arstralian trogs. Bull, Br. Mur unu ITist, (Zool.) 18, pp 13-183.
Johsston, T. H., 1912 . Notes ott smme Fintozoz. Proc. Roy, Soc. Queensland, 26, pp. R3-91.
Jusnstos, T, H1, 19132, "The parasites of the "stumpy-tail" lizard, Tracheysuutus ruggstes, "ritns. R. Soc, S, Aust. 56, pp. 62-70.
fonnston; T. H. and Mawson, P. M., 19.11. Some nematogles from Kangaroo Island, South Australiar. Records S. Aust Muserm 7 , ppo 145-148.
Jounston, T. H, ard A1Awson, P. M. 1947 . Some nematodes from Australian lizards. Tians. K. Sow. S. Aust: 71, ppo g2-27.

MncCazlum, C. A., 1921 . Studies in hehnanthology. It. 1 Trematodes. It. 2 Cestodes. It 3 Nematodes, Zoopatholugica 1, pp, 137-284.

Malant, J, R, 1939, Some helminths of South African lizards. Onderstepoort Jour. Vet, Sci. and Anim. Ind., 12, pp, 21-74.
Nrcoll, W, 1914. The trematode parasites of North Queensland, 1, Parasitol, 6, pp. 333-350.
Smytir, M., 1968. The distribution and natural history of a skink, Hemiergis peronii (Fitzinger) Trans. R. Soc, S. Aust. 92, 51-58.
Spasskx, A. A., 1951. Anoplocephalate cestodes of domestic and wild animals. (In Russian). Osnovy Tsestodologii, $1,735 \mathrm{pp}$.
Syphakova, O. M., 1930. Sur un nouveau nématode des reptiles: Skriabinelazia taurica, n.g., n.sp. Annls. Parasit, hum. comp.. 8, pp. 615-618.

Timon-David, J. and Timon-Davim, P, 1967. Contribution a la connaissance de la biologie des Dicrocoelidae (Trematoda, Digenea). Recherches expérimentales sur le cycle vital de Paradistomum mutabile (Molin) parasite de la vésicule biliaire de Lacerta muralis (Laurenti), Annls. Parasit, hum, comp., 42, pp. 187-206.
Thavassos, L., 1919. Contribuiçao para a sistematica dos Dicrocoelinae Tooss, 1899. Archivos da Escola Superior de Agric. e Med, vet., Nictheroy, Brazil, 3, pp. 7-24.
Trayassos, L. 1944. Revisāo da Familia Dierocoelidae Ohdner, 1910. Monog. Inst. Osw. Cruz $, 2,357 \mathrm{pp}$.

TWO SPECIES OF SACCOGLOSSUS (ENTEROPNEUSTA) FROM SOUTH AUSTRALIA

BY I. M. THOMAS*

Summary

A new species of the Enteropneusta, Saccoglossus aulakoeis is described. It possesses a deep, dorsal, longitudinal groove on its proboscis. It is compared with three previously described members of the genus, which have similar grooves. One of these species, Saccoglossus otagoensis (Benham) has been found in the same vicinity. This is a new record for Australia. The two species however, occupy different habitats, S. aulakoeis being found in coarse sand and shellgrit in amongst the roots of Zostera while S. otagoensis, in this locality, has been found only under stones at or below the level of low water spring tides.

TWO SPECIES OF SACCOGLOSSUS (ENTERORNEUSTA) FROM SOUTH AUSTRALLA

ly I. M. Thontas

[Rcad 8 August 1968]

Abstract

A new spreice of the Enteropneusta, Saccoglossus aulakocis is described. it Ulare previously described nembers of the genus which have similar gronves. One of these species, Saccozlossus otagoensis (Bentami) has been fomd in the same vicinity. This is in new recurd far Austrulia. The two species however, oceupy different hathitats, $\$$, aulakoeis being found in coarse sand and shellgrit in anobigst the routs of Zostere while S. otageensis, in this Jocality, has been found only under stonits at or below the level of low water spefigg lides.

During an investigation to determine the distribution of Saccoglossus apantesis (Thomas, 1956) in South Australin, two other members of the genus have been found. One of these is a new species and the other a new record for Australia. .

Material of both species was fixed in Bouin's-in-scawater and sectioned at 10μ. Sections were stained either with Ehrlich's hacmatoxylin and cosin or with Mallory's (riple stain. The latter was very effective for showing the basement membrane and the skeletal parts derived from it. Proboseis skeletons were extracted by maceration of unfixed material in 4% borax for several days. After carcful cleaning by brushing, they were stained in aniline blue and mounted in cerdarwood oil.

Saccogloṣsus aulakocis n.sp.

The trivial name is descriptive of the derp, median groove on the dorsal side of the proboscis (avdne $=$ a groove or furrow).

Specimens have becn found at Port Willunga, South Australia (lat. $35^{\circ} 16^{\circ}$ $50^{\prime \prime} \mathrm{S}$, long $138^{\prime 2} 27^{\prime} 20^{\circ} \mathrm{E}$) in a shallow tidal pool about halt an acre (0.2 hectares) in extent about a quarter of a mile (400 m) soutls of the mins of the Port Willunga jetty. The pool is covercd to a depth of five or six feet (about 1.6 m) at high spring tides and about half its foor is exposed at low spring tides.

Zostere tasmanica G. V. Martens grows sparsely in small patches at about the level of nonnal spring lows and in amongst the roots of some of these patches, the enteropneust has been found. It is by no means common. The soil over the underlying rock is not more than an inch or two deep and consists of sand and shell grit with little or no mud. The animal has not been found in sand without Zastera and many patches of Zosteru do not contain it. One specimen has been found in amongst the roots of Cymodocea antarctica (Labill.) which grows abundantly in slightly deeper water in the pool. The pool is partly protected by a low, rocky elevation (covercd at mid-tide) on its scawards side, but it is open to the sea at all states of the tide.

At Brighton, (lat. $35^{\circ} 02^{\prime} \mathrm{S}$, long. $138^{\circ} 31^{\prime} \mathrm{E}$), about thirty miles north of Port Willunga, after a heavy storm, some masses of Zostoru roots were washed

- Zoology Departatent, University of Adelaide,

Trans. Ray. Soc. Sa. (1968), Vol. 92.
ashore on a sandy heach. In amongst the routs were found four fragments of enteropneusts similar in size to the Port Willunga specimens. One of these fragments included a portion of a proboscix with a decp dorsal groove. Sectioning of the materiat has confirmed that it is S. aulakoeis:

The species agrees wifl the: diagnosis of the gesus Succoglossus Schimkewitsch, $18 \mathrm{seg}^{2}$ (syn, Dollehoglossus Spengel, 1893) in the possession of the following characters' (a) proboscis very long. (b) collar about as long as broad, (c) lateral genital folds present but dorsal gonada ibsent, (d) gill pores small lut dislinct, (e) perihacmal spuces present, (1) posterior oesophageal pores present, anterior oues ubsent.

EXTERNAL FEATURES

S. aulakocis (Fig. 1) is a species of small to moderate suec. Full grown. inlach specimens are dilticut to obtain but a specimen of veasonable sizue which has been relased by the methord recommended by I edingham and Wells (1942) (isotonic masgesinm chloride) had the following dimensions. Proboscis 16 mm ; collar 2.5 mm ; branchal region 5 mm ; otsophageal region 2 mm ; hepatice resion 13 mm ; intertiwal region © 4 mm ; genital region (which overlaps from the hranchial to the fiepatic region) 10 mm . The gonads were nest finlly mature.

The proboscis is orange-red and its base, usually hidden by the collar, slightly darker On this the preoral ciliary organ (Fig. 1) shows up as a U-shaped yellow line. The anterior threc-fifths of the collar is similar in shade to the proboscris. The: remaining two-fifths bears two hroad, slighty elevated bands, paler and yellower and separated by a masrow grove, the postetior wall of which shows un as a still palor band. This latter band corresponds to zone four in the histological divisions of the collar cpidernis (Fig, 6),

Domally and laterally, the branchial seyions is slightly browner than the proboscis and is beset with irregular flecks of yellow-orange. Thest are groups of gland colls (epidermal glandular eminences, Figs,], 7, 8 and 10). The ventrat musculature of this region is argin similar in sbade to the proboscis but with narrow and slightly paler transwerse striations. (Fig, 3). The ocsophageal region is similar in colour to the doral branchial region but the flecking, dorsally and laterally, is denser. In the hopatic region, the body wall is somewhat translueent and the surface flecks on the rpilermis are smaller and sparser. In living specimens. the deep brown colour of the lateral saccules of the liver region of the alimentary canal show through clearly. The intestinal regiom, tom, is translucent athd the sandy gut contents show through. The llecks on the epidetuis are still evidene but tre more widely spaced and are smallor than they we on the hepatic region.

In preserved specimens, the proboscis tapers slishtly thrmghout its lencth but in living aud fully selaxexl material, it has the form of it very elongate peat. heing appreciahly thicker at its base. It has a depp mid-dorsal groove which, at its deepest, is a thiod to a half of the diameter of the urgan and it cxtends almost to the anterior extremity (Figs I and 4). Posteriorly, in the vieinity of the proboscis comples, it is shallower so that on the basal face: of the proboscis, its depth is about one-fifth of the diamctes. The promal ciliary organ has a pattern similar to that in uther members of the genus in which it has been described (Brambell and Conko, 1939t; Brambell and Condhart, 1941; Thomas, 1956). It is U-shaped and lies on the base of the probosels closer to the stalk than ton the outer border of the hase. The dorsal tips of its arms, hewever, are deffected inwards and herein it differs slightly from the organ as it is pietured by lirambell and Colle (1939b) in S. subeer (syn. S. cumbrensis Burdon-Jones and Patil, 1960) in which the arms are

Fig 1. Saccoglossus aulakoeis, anterior eve, 1ateral view.
Fig. 2, Oesoplageal segion, dorsal view.
kig. 3. Trinswarse section, dorsal proboseis ymove.
Fig. 4. Transverse section, prohoscis.
Fig. 5. Proboscis skelctoin, yentral view.
Fig. 6. Zones of collis epidermis. b. hody of proboscis skeleton; b.I., basencind layer; c., collar; c.e. 1 to 5 , zones of coltar epidermis mumbered from anterior end; d, pr.. dorsal groove of prohoscis; e.gl.e. epidermal glandular eminence; gris, gill pore; gro, genital ridge; h., forn of probosus skeleton; i.c.m.pr., inner circular muscle layer of proboscis; h. keel; l.bl., lateral blood vessel; lim.pr., Jongitudinal muscles of prohoseis; m.d.bl., mid-dorsal blood vessel; n.l., nerve layer, o.em.pr, outer circular muscle layer of proboscis; o.p., desophageal pore; p.c.or., preoral ciliary organ; pr, proboscis; pr.c. proboscis coclom; pr, sk., proboscis skelcton; s., sule, formed hy ventral lungitudinal muscles; th.n. le, dorsal thickening of nerve layer; v.glec, vacuole of epidermal gland cell,
straighter. There is a single, slit-like proboscis pore on the stalk, close tor ils junc: tiun with the collar and slightly to the left of the mid-line.

The collas is longer tham its diameter in the proportion of about 1.0 to 16.7%. It is also lomger dorsally than it is ventrally in the proportion of about 1.4) to (1.85. This is due purtly to a slight retraction of the ventral part of the anterior Hange under the mouth and partly to the dorsal part of the postcrior nange externding farther over the branchal region than does the vesutal part (Fig. 1). The posterior two-fifths, approximately, of the collar bears two broad, sliphtly elevated bands of about equal width and separated by the namow groove already. mentioned.

Anteriorly, the branchial region is sumewhat quadrangular in transverse section as most of the main musculature is ventral in position. Tlie ventral surface of the fody thens turms a broad sole n when the anmal creeps (Fig, 1). Farthen back in the branchal region, the sole las a shallow median ventral groove (tigs. 7 and 8).

There are from twelve to twenty-five pairs of small gill pores set in shallow dorsc-Lateral depressions. The anterior two or there pairs are covered by the posterior flange of the collar. The last five or six dimmish in size and get sucecssively closer to the mid-dorsal line (Fig, 2). In small (immature) specimens the first gonads are seen ubout hall-way along the branchial region hat in fully mature specimens, they hegin closcly behind the collar. Depending on the gnaturity of the specimen, the gonads form more ar less conspicuous genital ridges (Fig. 7). In inmature specimens (Fig. 8) the ridges are relatively ineonspicuous. These estend to the beginning of the hepatic region in mature specimens and and rather abruptly. In immature specimens they do not extend as far back. In the branchial region, the gonads are rather lateral in position but hehind the gill pores thry becume more dorso-latoral (Figg 2).

Atrout 1 mm behind the last gill pore lie the uesophageal pores (Fig. -). Thest are arranged in two row's one on each side of the mid-dorsal line. The: pores number from two to seven or efeht pairs but the more anterior ones are not patent. The specimen shown in Fig. 10 hitl two patent (1 and 3) and three rudimentary (3, 4 and 5). The disposition of the rows is variable. Seven spectmens wore cxamined in this regard. In three of these the cows were almost paralle 1 to cach other and to the mid-dorsal line, in three they were slightly divergent, the more posterior heing the farthest apart and in one they diverged at an angle of about 30°. This specimen is shows in Fig, 2. The larger and patent pores are the most posterior. In the anterior oesophageal region the sole (Figs. 7 and 8) is as broad as it is in the posterior branchial region but begins to namow towards the posterior cud of the oesophagus. The hepatic region can he recognized by the more or less regular lateral dilatations of the alimentary canal which can be secn through the someswhat transparent body wall. The sole here narrows further and becomes less in width than the dorsal part of the body though its lateral bulges are still apparems. In the intestinal region the hudy tapers slightly to the terminal anus and the ventral musculature diminishes in anount so that the aole disambern find the hody is runded in transverse section.

1.NTERNAL ANATOMY

Prohoseris

The glandular and ciliated epidermis of the proboscis extends to the botton of the dorsal groove and beneath it hes the nerve layer (Fig. 3 and d). Over most of the proboscis, this is about 12 to 14μ thick. At the bottom of the proboscis groove there is a marked ridge in the raerve layer so that at this pesint it is 30 to 32

Fig. 7. Succoglossus aulukoéis, transverse section of nearly mature fennibe in first reginn of oesuphagus.
Fig. 8, As Firg. 7 but of immature female.
Fig. 9. Longitudinal suctital section of proboscis cmaplex
Fis. 10. Longitudinal seetion showing oesophageal pores. h.c, buccal cavity; e., collar; c.co, collar cord; c.cl., collar coelem; c.5. central sinus (blood simus); d.bl.v.. dorsal blood vessel; dil.m. dorsal longitudinal nuscle; din.c. dursal nerve cord; e.gle., epidermal glandular eminence; gl.. glomerulus; h.v., heart vesicle (pericarditm) : i.c., m.pr., jnner Jayer of circular muscles ot prohoseis: lom.pr:, langitudinal muscles of proboscis; l.m.p.c.. longitudinal museles of perihaemal cuvity; l.w.d.gr. vertieal section through wall of derral grouvc; m., mouth; n.l, pr., nerve daycr of prolesicis; o.cm.pr, outer laver of circular muscles of proboscis; ocs. 1. first recion of uesophagust o.p. 1 and 2, fisst and second oesophageal pores (patent); 0.p. 3, 4, and 5, third, fourth and fifth oenmphageal pores (rudimentary); u.p.sk., mpporting skeleton of oesophageal perres; ov., ovary; ps., prohoseis; prec., proboscis coulom; pr. ca., proboscis canal (endsac); p.sk. proboscis skeleton; st.d., distal portion of buceal diverticulum; st.pu, prosimal portion of buccal cliserticulum; tr,c.s trunk coelom; v.bI., ventral bluod vessel, vil.m., ventral Jongitudiasl musclest vine., vertral nerve cord.
p thuck (Fig. 3). Thene is alsn a general thickening ont the netve bibery at the bise of the proboscis, particnlarly under the preoral ciliary organ where it may be theee times its normal thickness (Fig. 9) The outer liser of circular mosctrs inmediately under the basement membrane is a half to two-thirds of the thickuess of the nerve layer. The Iongitudinal muscles form nine or ten coneentric layers separated by loose connective tissue. These are compressed and barely distinguishable immodiatcly under the dorsal gruwe (Fig, 4) and they are reduced to five or six in mumber posteriorly in the vicinity of the proboseis complex (Fig. B). An imer, thin layer of circular muncles lines the coelomic cavity. The latter entends almost to the tip of the pruboscis, Anteriorly it is narow, being only ahout one testh of the diameter of the prohnscis, but it expands considerably $\mathrm{p}^{\text {ons- }}$ teriorly to accommodate the proboscis complex.

Two bluend vessels are present immediately ondside the onter circular minsele layer on the esests of the ridges formed as the result of the presence of the dorsal proboscis groove (Fig. 4). A small, subncural vessel (median dorsal vessel) thas been seen in some specimens in the mid-dorsal line but at median ventral blood vessel has not hecn observed in specimens so far examined.

The buccal diverticulum (stomochord) (Fig, 9) has a wide, rentral pocket the posterior wall of which is indented by the blunt, anterior tip of the proboscis skeleton. The diverticulum is bent slightly backwards at its tip under the end of the skeleton. The lumen of the pocket is wide and broadly in contact with the main lumen of the buceal diverticulum within the neek of the prohoseis but it is not cuntluent with the huccal cavity. It is occluded at the level of the point at migin of the homs of the probnsois skeletor. Antarior to the ventral pocket, the buceal diverticulum has no contintous lumen, but only a series of unonnmecteel cavities which diminish in size anterborly. This anterine parf of the buceal diverticulum differs from the form usual in the gemes in that it is sharply elivided into two regions of mote or less equal length, The proximal part is thich and conical, while the distal part is very thin being only about one sixth of the diameter of the proximal part at its widest. The distal part is attacherd dutururentrally and curves dorsally to cod near the anterior extremity of the glomerulus. lts cills are much smaller and less vacuolate than those of the proximal part lunt the separate portions of its lumen are apparent almost to its anterior end.

The glomerulus (Fig. 9) surrounds the distal pat of the benceal diverticulum but at the level of the proximal part it is almost entincly lateral and ventral. It ceases posteriorly at the level of the ventral pocket of the huecal divertionlum. The rardiac vesicle (pericardium) and central sinus (Fig. 9) call for no special cromment. The dorsal mesentery of tive probuscis extends forvards nearly in the level of the constriction of the buceal divertichlim. The ventrat masentery is shorter, extending forwards only to the level of the verstral pocket of the buccal diverficulvm. The Jeft coelomic pouch so formed, commonicates as is usual in the genns, throngh the proboscis canal (endsac) with the prolloweis pure which is dorsolateral on the left side of the proboscis stalk.

The proboscis skeleton (Figs. 5 and 5) is slender, Icrminating anteriorly in a rounded tip which partly penetrates the postergins wall of the ventral pocket of the buccal diverticulum. The ventral ked is well formed and pasteriorly it bilureates to lsecome continuous with the homs. These catend ahnont half-way along the collar and embrace about half the circunference of the buecal cavity.

Collar

The five tranverse, epulermal annes of the collar distinguisheal by Spengel (1593) are present (Fig. 8). The first, which overlaps the anterior harige of the: collar, contains cells which have large vacunles distally. This \%one merges intu the
sencoml. This forms an eprithelimn, which, at its thickest, is more than thee thes ds thick as the fiss zone, and occupies wearly three-fifths of the length of the collar. Its colls contan largr numbers of small basophil granules in the imer: eloco-gharters wf their lengths. The third zone and the fourth and fifth zonos comhined. form two elcvated bands which are readily visible cxtcrally. The third and fourth rones are little more than half as thick as the second. The third is histolagically similar tes the second except in that the basophil granules are concentrated in the inner half to two-thirds of its cells. The fourth zone is by Ear the mamowest and torms part of the posterior wall of the groove. Its granules are nore densely moked and arc fairly evonly distribnted throughout the length of its colls. In the fifth zone the graules are more sparsely and evenly distributed and towarks its posterior end there are peripheral vacuoles which are characteristic of the epithelimm of the brituchial region with which this zone mexges.

The nerve cord of the collar is solid throughout its length. The dorsal meseu. lery is meomplete and ends anteriorly a little behind the point where the prolascies skeletan divicles to form the two horns. The ventral mesentery is mare variahle in exteme. In some specimens it extends as far forwards as the level of the posterime tips of the loms. i.e. about half-way atong the collar while sin ollers it jx apparent only near tho posterior enid.

Trosnk

The gill pores increase in size over the first two or thre ancl decrease in size uver the last frow or six. The pusterior gill pores ure very small and may lack gill fruches. behind these there maty be two or more rudimentary gills. The tongues propect farther into the pharyus than do the scpla. The gills extend a little more than half-xiay around the circumference of the pharyns.

In the oesophagus there are three regions. In the first, the epithelium is similar to that of the ventral part of the phargnx but its walls are thicker and have a higher proportion of gland cells. Its lateral walls are irregularly sacculated (Hige, 10). In the seconel region the walls are much thicker and the lumen onrespondinglv narronsr. At its antero-dorsal end Insere are deep grooves in the dorsolateral walls into which the ocsophageal pures open. Of these, two lo five are patent and two to four do not open to the surface but are represented by outpushinge of the dorsulateral grooves. There may loe errresponding indentations of the cpidermis :Howe thom. All are supported by sikelctal elements which usually fuse for form an almoss continuous plate which is perforated in the positions of the patent and the mon-patent pores. These clemonts are, like the other skeletal structures of the animal, thickenings of the bascment layer which underlies the nerve layer over the whole of the body. In the third region of the oesophagus the walls are thinner and the lumen wider. Laterally there is an irregular sequence of shallow pouches. This region merges into the heputic region which differs from it mainly in that the: laferal pouches are Jarger and more newularly arranged. In the intestinal reginon, the alimentary canal is simple. Its wall is than and the lumen wide. There are hewever, two veatral thickenings separated hy a namow, medinn. longitudinal groote which extend nearly to the posterior end.

COMPARISON WITH OTHER SPECIES

Three other species of Sacroglossus have been descrihed as possessing deep dorsal grooves on the proboscis. These are S. meveschkouskis (Nic. Wagner) 1885, S otumensis (Benham) 1849, and S. sulealess (Spengel) 1883. While the first two have been adequately described (wan der Iorst. 19.3.9), the thind was described from three anterior cads only which became dried up so that detailed examination was impossible (Spengel, 1803):

The main differences between these threc species and S. atulakocis are listed in Table 1. The relevant data un S. meresehkowiskii, S. otagoensis and S, stleatur, have heen taken, in the main, from van der Horst, 1930 and 1939.
S. aulakoeis is established on its possession of the following combination of characters.

1. Adecp dorsal probascis groove.
2. The ventral musculature forms a promincnt "sole" in the posterior branchial and ocsophageal regions.
3. The collar is slightly longer than broad.
4. The fouth epidermal zone of the collar cpidermis is very narrow.
5. There are two to five pairs of patent ocsophageal porcs preceded by two to four rudimentary anes.
6. The longitudinal muscles of the proboscis are arranged in nine or ters concentric layers.
7. Epidermal gland cells extend to the bottom of the proboscis groove.
8. The glomenulus covers the anterior end of the buccal diverticulum.
9. The buccal diverticulum has a very narrow distal portion which is not cunspicuously bent and in which the lumen is incomplete.
10. The proboscis skeleton is bluntly rounded anterionly.
11. There are no cavities in the dorsal nerve cord of the callar.

DISCUSSION

S. aulakoeis has been found only in the restricted regions indicated in the introduction. Even here it is not common. It is rare to find ass many as two or three specimens in a spadeful of mil, It is interesting however, that frequently specimens varying in size from 1.5 cm to 5.5 cm may be found at the same time. This suggests that the breeding season for the species is an extended one or that there is a considerable variation in growth rate. However, anmals with mature or maturing gonads are generally seen in late winter and early spring (Fig. 7), while in the summer months the gonads are invariably small (Fig. 8). Mature specimens dos not coil markedly in the pust-branchial and oesophageal regions ass do those of S. apontesis (Thomas, 1356). This is, no doubt, to be associated with the lesser degree of development of the genital ridges.

In all specimens examined, with the exception of those fixed without adequate narcosis, the collar is slightly longer than it is broad. The definition of the genus states that the collar is "about as long as it is broad". The proportion of the length to breadth of 1.0 to 0.77 is considered to fall within the limits of the definition but the extent of the ratio is noteworthy.

Nom-patent ocsophageal pores have heen deseribed for S. ruber (syn. S. cambrensis Brambell and Cole, 1939) and they also oceur in the present species. It will be necessary to determine their presence or absence in several other forms before reasons for their existence can he discussed.

There is a possible association between the dorsal thickening of the nerve layer and the dorsal grove of the proboscis. Both S. ofagoensis and S. aulakocis have deep dorsal grooves and a thickening of their norve layers. Similar thickenings of the nerve lavers have been described in S. ruber and in S. horsti (Brambull and Goodhart, 1941) and in these too there is a dorsal groove in the proboscis
though it is mot mearly as decp as it is in the first two spccies named．In S．apan－ tesis however，the dorsal groove is sinly slightly developed and the thickening of the nerve layer is also slight．

While the description of this speches was being prepared，some specimems which clearly belonged to the same genus were found under stoncs on Snapper Puint．This hes ahout half a mile（about 500 m ）south of the pool in which S ， aulakoeis had been fomm．These specimens were at first thought to be the same species as they also had udeep dorsal groove on the proboscis．Closer examination and later，a stady of longitudinal and transverse sections showed that this was not the case but that they were Saccoulossus citagoensis（Benham）．

> Balanoglossus ofaguensis，Berbam． 1899
> Dolichoglossus otaynensis，（Benham）van der Horst， 1930
> Saccoglosstas otugocnsis，（Benham）van der Ilorst， 1939 （p．399）

This is the first record of the species ontside New Zalland．Three fairly com－ ［lete specimens and two fragmentr were found under stones in about one foot of water at low tide on the northern（more sheltered）side of snapper Point licef （lat． $35^{\circ} 17^{\prime \prime} \mathrm{S}$ ，long． $135^{\circ} 26^{\prime} 30^{\prime \prime} \mathrm{E}$ ）．This is an extensive wave－cut platform of almost horizontally bedded sundy limestone of Pliocene age．It is relatively fard in parts but on its northem border and in some other regions，it is soffer and somiewhat friablc．Thus，along its northern margin，a secundary，narrow rect flat has been formed about two leet below the gennal level of the man rect． This is covered by ibout if foot of water at nomal spring lows．One specimen was found under in stonc in a permanent rock peol about six inches decp on the main reef surface．

It is a crawling rather than a burrowing species，as is \mathbf{S} ．aulakocis and it agrees closely with the description of S ．ofagoensis as given by Benham（1800）， and van der Horst（ 1930 and 1939）．The points of undeniahle resemblance are asterisked in Table 1．In regard to the remaining points listed，the collar is rather shorter than it is broad in the proportion of abont $1 \cdot 0$ to $0 \cdot 70$ ．This may be due to contraction in fixation．The specimens from Snapper Paint are relatively immature sa that the irregularity in the lateral genital bulges is not very apparent．In regard tu the presence of gland cells in the proboscis groove：van der Horst（1930）states that they are absent from the base of the groove and his Fig． 2 （p．137）shows them to be present in the lateral walls．This is the case in the Snapper Point speef－ mens too．However in his diagnosis of the species（1939）he says＂Ruine Driisenzellen in der Épidermis in der dorsalen Furche＂，which implies that they are absent from the groove altugether．This seems to be an oversight as they are present in the walls of the groove（though not at its base）in specimens in the ruthor＇s possession which were collected at Portolellos．New Zcaland，which is close to the type locality of the species．

Van der Horst（ 19.30 p． 139 and 1939 1，fifi1）deseribes the huceal diverticu－ lum as having two marked flexures in front of the ventral diverticulum．This is figured in his 1930 description（F＇ig．4．p．139）．The Snapper Point specimens do not have these marked flexures．I！is telt that these may swell be fixation artifacts in van der Horst＇s spucimens，

In New Zealand，the species is found in amengst coralline algite at Wellington and amongst the holdfasts of Mectocystis at Portobello．This shows it to be a crawling rather than a burrowing species and indeed．Benham in his original account of the species writes of it as crawling on a stem of seaweed．
TABLE 1

Comparison of diagnostic features of Saccoglossus otagoensis, S. mereschkourskii, S. sulcatus and S. aulakoeis.			
S. mereschkowskii	S. otagoensis	S. sulcatus	S. aulakoeis
External Features Collar about as long as broad	Collar about as long as broad	Collar about as long as broad	Collar slighty longer than broad
Genital folds more or less regular appearing in female only	Genital folds in form of irregular bulges in fomale	-	Genital folds fairly regular in both male and female
-	No epidermal glands in base of dorsal proboscis groove	-	Epidermal glands present in base of dorsal proboscis groove
Longitudinal muscle in 7 to 10 concentric rings	${ }^{\text {Worngitudinal muscles in } 3}$ or 4 concentric rings		Longitudinal muscles in 9 or 10 concentric rings
Proboscis			
-	${ }^{\circ}$ Cavity of buccal diverticulun may open into mouth cavity		Cavity of buccal diverticulum does not open into mouth eavity
Lumen of buceal diverticulum continuous	${ }^{4}$ Lumen of butecal diverticulum continuous	-	Lumen of buccal diverticulum not continuons anterior to ventral pocket
Buccal diverticulum relatively straight	Buccal diverticulum with marked ventral then anterior flexures; narrow anteriorly	-	Buceal diverticulam very narrow anteriorly but without marked flexures
Glomerulus covers nearly all of buccal diverticulum	${ }^{\text {a }}$ Two halves of the glomerulus not united in front of buecal diverticulum	-	Glomerulus extends anteriorly beyond tip of buccal divertienlum
Anterior tip of proboscis skeleton with long, sharp point	* Anterior tip of proboscis skeleton with long, sharp point	-	Anterior tip of proboscis skeleton bluntly rounded

S. mereschkouskii	S. ofagoensis	S. sulcatus	S. aulakoeis
Collar			
-	"Horns of proboscis skeleton horizontal and reach hinder end of collar	-	Homs of proboscis skeleton extend about half-way along collar and embrace about half mouth cavity
Epidemis very thick (0.05 mm)	${ }^{\circ}$ Epidermis of nomal thickness	-	Epidermis of normal thickness
-	"Three epidermal zones	-	, Five epidermal zones
Dorsal and ventral mesenteries present but incomplete	"Dorsal and ventral mesenteries absent	-	Dorsal and ventral mesenteries present but incomplete
Cavities in dorsal nerve cord	*Cavities in dorsal nerve cord	-	No cavities in dorsal nerve cord
Trunk			
-	"Ventral longitudinal muscles of tronk do not form lateral ridges	-	Ventral longitudinal muscles form conspicuous lateral ridges
About 50 pairs of gills	*10 to 15 pairs of gills	10, to 11 pairs of gills	12 to 25 pairs of gills
Oesophagus with 3 sections	Oesophagus with 6 sections	-	Oesophagus with 3 sections
About 7 pairs of ossophageal pores	${ }^{*}$ One pair of oesophageal pores	-	2 to 5 pairs of patent oesophageal pores and 2 to 4 pairs of rudimentary pores
	${ }^{\circ}$ Seldon more than δ ripe ova in one ovary	-	6 or more ripe ova in one ovary
Location			
Northern Russia to the Sea of Okhatsk	New Zealand and St. Vineent Gulf. South Australia	Japan	St. Vincent Gulf, South Aust.

- Indicates points of simnilarity between South Australian and New Zealand specimens,

REFERENCES

Benham, W. B. (1899). Balanoglossus otagoensis n.sp. Quart. J. Micr. Sci. 42; 497-504.
Brambell, F. W, R. and Cole, H. A. (1939a). The preoral ciliary organ of the Enteropneusta; its occurrence, structure and possible phylogenetic significance. Proc. Zool. Soc. London. B., 109, 181-193.

Brambell, F. W. R, and Cole, H. A. (1939b). Saccoghossus cambrensis sp.n., an Enteropneust, oecurring in Wales. Proc. Zool. Soc. London. B., 109, 211-236.
Brambeit., F. W. R. and Gocomart; C. B. (I941). Saccoglosstus horsti sp,moy an Enteromeust occurring in the Solent. J. Mar, Biol. Ass, U.K. 25, 283-301.
Bumprojoses, C. and Patil, A. M. (1960). A revision of the genus Saccoglossus (Enterbpnensta) in British waters. Proc. Zool. Soc. Lond., 134, 635-645.
Honst, C. J. van der (1930). Observations on some Enteropnewsta. (Papers from Dr. Th, Mortensen's Pacific Espedition 1914-16). Vidensk. Medid, naturh. Foren. Kobenhavn. 87, 135-200.
Honsr, C. J. van der (1939). Hemichordata, Bronns Klassen ni Ordmuggen des Tierreichs Bd. 4, Abt. 4, Buch 2, Tiel 2.
Ledingham, Isabei. C. and Wells, G. P. (1942). Nareotic for marime invertebrates. Nature, London, 150, 121-22.
Spengel, J. W. (1893). Die Enteropneusten des Galfes von Neapel. Fauna u. Flara des Golfes von Neapel Monogr. 18.
Thomas, I. M. (1956). Saccoglossus apantesis a new species of Enteropneust from South Australiat Trans, Roy. Soc. S. Aust. 79, 167-176.

LUNETTES IN SOUTHERN SOUTH AUSTRALIA

by Elizabeth M. CAMPbELL*

Abstract

Summary Lunettes are low crescentic ridges, which commonly occur on the eastern side of ephemeral lakes. They are of two types-those composed predominantly of sand, and those composed of sand, silt and clay. The mineral composition of lunettes varies, though lunettes rich in quartz or in gypsum are common. The morphology, composition and distribution of lunettes in southern South Australia are examined in the light of suggested theories of origin. The deflation hypothesis of Stephens and Crocker and many other workers can account for most, though not all, of the field evidence. Lunettes develop as a result of wind action, but wave transport is an important factor in concentrating debris on the Ice sides of lakes. The available evidence suggests that although some lunettes are apparently still forming, they are essentially relict features dating from the recent past.

LUNETTES IN SOUTHERN SOUTH AUSTRALIA

by Elizabeth M. Cantrbello

[Head 12 September 196S]

Abstract

SUMMARY Iutuelles are low dréscentiv ridgés which commonly occur on the castern side of ephemeral lakes. They are of two types-those composed predominantly of sand, and those composed of sand, silt and clay; The mineral composition of lungetes varies, though lunettus rich in quartic or in gypsum are common.

The murphology, composition und distribution of luactes is southern South Anstralia are examined in the light of suggested theories of origins. The deffation hypothesis of Stephens and Crocket and many oilier workers can account for most, thongh not all, of the field evidence. Lanettes develup as a tesult of wind iction, but wive trasport is an important factor in concentratirg debris om the lee sides of lakeck.

The available evidence suggests that alhough some lunetes are apparently shill forming. they are essentially relict fratures dating from the recent past.

INTRODUCTION

The purpose: of this paper is to describe the shape, composition and intemal structures of lunettes in southern South Australia, and to discuss their possible age and origin. The trim lunette as here used includes not only the crescentic dumes located on the lee side of lake and swamp depressions and composed varionsly of silt-clay, day-loam and sand, but also the so-called gypsum dunes of Jack (1921) and others.

Fcatures of similar morphology and situation lave been described from scveral parts of the world, including North Africa (Tricart, 1954a; Boulaine, 1954) and North America (Coffey, 1909, Huftman and Price, 1949). They have also been recorded from several parts of the Anstralian continent. In general, they are leest and most commonly devoloped in the semi-arid regions of Victoria, South Australia and Western Anstralia, thongh they occur also in humid zones, for example Tasmania, and in troly arid regions iss, for example, the north of Sonth Australia.

DESCRIPTION

Morpholog! and Sizo

The dune on the eastern side of Lake Bumburgen, Mid North, 6.4 km long, 21 m high, and 1.2 km wide, is an example of the larger lunettes known in South Australiar At the other end of the scale are the small rises ahout 0.8 km long, $4 \cdot 5-6 \cdot 0 \mathrm{~m}$ high and 45 m wide, typical of the flat, swampy interdune areas of the Southeast. There is no consistent and direct relationship between the size of each luncte and the extent of its assnciated lake. Lake Greenly, Eyre Peninsula, which is almout $23 \mathrm{~km}^{2}$ in area, is bordered by a luncte which is only just distinguishable. Lake Baird, Eyre Peninsula, on the other hand, which covers only $1.3 \mathrm{~km}^{2}$ is bordered by a lunette 2 km long, 21 m high and 0.8 km wide (Fig. ${ }^{2}$). Nor is there any consistent distributional pattern; in a given district, some lakes have associated lumettes, others do not.

- Ceography 1 cpardment, Uniyersify of Adelaide.
${ }^{1}$ For tho location of all South Australiars place sanues mentioned, see Fig. I.

Fig. 1. Southern South Australia-Lomation. Enlargenent A. Enlargement B.
Lanettes are crescent-shaped in plan and extend between one-quarter and one-half the way round the perimeter of the lake (Figs. 3, 4, PI. 1). ${ }^{-2}$ They are most commonly found cither on the eastern or southeastern side.

The smooth form of the lunette on its western or lake side contrasts with the irregular or sinuous shape of the eastern slope of many lunettes. The occurrence - For reasons not yet clear, an unnamed lake on the laterite plateau of Kangaroo Island is completely surrmunded by a cume, whilst several depressions south-east of Remmark are bordered on their western side by gypsum duncs. In the south-west of Westerm Australia between Kindinin and Corrigin where summer easterly winds are significunt lunettes occur on the western side of depressions (C. K. Twidale-personal communisation).

See opposite page
Fig. 2. Contour plan of Lake Baird lunette Plane table survey-
Five feet $=3.3$ metres, 500 yarth $=500$ metres,

Fig. 3. Contour plan of Tochaber Sramp lunette. Plane table survey. Five feet $=1.7$ metres, 1500 feet $=500$ metres.

Fig. 4. Contour plan of Cooke Plains lunette. Redrawn from King 1949a. Ten feet $=3,3$ metres, 2400 feet $\div 800$ metres.
of consolidated rock outcrops at the lake edge, as for example at Lake Greenly, introduces complications and further irregularities in the plan.

Many lakes are bordered not by a single lunette, but by two or more lunettes arranged concentrically, or nearly so, around the eastern shore. At White Lagoon, Kangaroo Island (P1. 2), for example, there are no fewer than three distinct and separate dune ridges bordering the lake on its eastern side. The pair of lunettes which borders Lake Fowler, Yorke Peninsula, and those close to the eastern shore of Hiles Lagoon, Mid North, are of similar composition, but at White Lagoon the outer or easterly dune is sandy, the westerly ridge immediately bordering the lake is composed predominantly of silt and clay, and the one between these is

Fig. 5. Transverse profiles across selected lunettes from west to east (left to right). A-Moona Flat lunette, B-Lake Cadnite lunette, C-Lochaber Swamp limette, D-Cockatoo dake lunette, $\mathbf{E}-$ Hutton's Lagoon hmette, \mathbf{F}-Hiles Lagoon lunette, \mathbf{C}--Bool Lagoon lunette.
composed of sand, silt and clay. Wore complex patterns of lake and multiple husettes are displayed at Bool I,agoon and Salt Lake near Nuracoorte, Southeast (Pl. 3). Here complexes of small lakes each with thoir insuciated lunette or lunettes, occur within larger lako basins on the eastern margins of which are found individual lunctles.

Most lunettes in southem South Australia are asymmetrical in transverse section, the steeper slope being the western or lake slope (Fig. 5). The gradient of the western slope of Bool Iagoon lunette (1 1. 4) averages 1 in 3.3 , whilst the eastern siope is 1 in 18.5 . Some few, however, are roughly symmetricat and scteral examples have been noted in which the castern slope is steeper than the Western. This is so along part of the Lake Baird lumette (Fig. 2), part of the middle lunette on White Lagoon and along most of the inner lunette at the same site. The western slopes are for the most part smooth and rectilinear and, though varying from one luncte to another, are essentially wiform on auy given feature, The inclination of the eastern slope however, varies considerably, even on the sama Iuncte.

In longitudnal section, the crests of luncttes typically rise gradnally to a high point near the centre of the feature (Fig. 3) tut many crests are undulating (Figs. 2, 4). On the imnermost of the White Lagoon lnnettes, there are no lewer than four distinct crest lines, all of them undulating, tho high points of one crest imvariably located opposite depressions in the adjacent ridge (Fig, 6).

Fig B, Diagram showing the multipic evestline of the lunette inmechiosly aljument white Latoons viewerl from the exst.

Commosition

Samples of luncte material were collected on the crest where it reached its maximum development, and from the lake hed adjacent to this position. Borings were made to below the level of soil development.

Ou the basis of particle size, lunettes are of two distinct types-those composed of almost pure sand and those composed of sand, silt and clay (Fig. 7). The predominantly gypscons and predominantly quartzose sandy lunettes are clearly differentiated. The sorting value developed lay Trask (Krumbean and Sloss: 1963 p .101) is a measure of the uniformity of the sample and is derived from the formula $S_{4}-Q_{1} / Q_{3}$ where S_{11} is the sorting value and Q_{1} and Q_{3} represent the grain size valucs corresponding to the 25 星 and 75 marks respectively of the sample. The sorting value of tho sandy Iunettes is 1.55 or less, that is they are well sorted, whilst the finc-grained lunetles are poorly sorted, with a value ranging from $5 \cdot 6$ to $7 \cdot 6$. Ficld determinations of samples collected at varous depths and from various positions across the lumette indicate that the mechanical composition is generally uniform, although there are local and minor irregularities.

Fig. 7. Curntative percentage curves of the size distribution of himette stmples.
The mineralogy of samples from six lunettes and their associated lake beds was analysed by Australian Minesal Development Laboratorics (A.M.D.L.), Adelaide. The $<0.002 \mathrm{~mm}$ fraction (Table 1) of the luncte samples is composed predominantly of "amorphous" material, which was not positively identified but which shows physical properties similar to illite and smectite, or "amorphous" material and illite. Quartz and kaolin are present in all cases, and illite-chlorite, illite, calcite and chlorite in some.

The $>0.002 \mathrm{~mm}$ fraction was separated into a light and a beavy fraction (S.C. 2.96). The light minerals (Table 2) include quartz which is abundant in all and dominant in most, silt-and clay-sized particles too swall to be identiferd by the methods used, and, in sume samples, minor amounts of calcite, layer silicates, organic remains and opal.

The heavy minerals (Cable 3) vary from 0.007\%-0.31\% of the total sample. They are numerous and vary from onc lunette to the other. Hematite, magnetite, other opaques, tourmaline and zircon are the most common.

Gypseous lunettes were not included in the sclection analysed by A.M.D.L. Apart from varying amounts of gypsum which is mainly the "seed" variety, calcite, hatite and insolnble materials, including quartz, opaques and many other minerals are present in some samples (Table d),

There is generally a close relationship between the mechanical and mineralosical composition of samples taken from the lunette and from the associated lake bed, though minor variations occur. The mineral composition (Table 4) is

TABLE 1
Sonniquantitative analysis of clay minerals in samples from lanettes and associated lake beds.

Sample	Weight $\%$ of total	Mincrals Present						
		Arnor- phous Material	Illitechlorite	Quartz	Kaolin	Illita.	Calcite	Chlorite
Meona Flat								
lunette	<10							
bed	<10							
Lake Cadnito <								
lunetto	<10							
bed.	17	1)	A	^	T			
berl (surface)	<10							
Lochaher Swamp								
lunet ter bed	32 11	D [A	A A	\xrightarrow{T}	F		
lunctio	31	1)		A	T	A		
bed	63	D		F	T	A	A	
lunetto	8			A	A		F	
bred	22	S		A	A	H	F	T
Hool Lagoon								
luncter bod	28.	D D	A	${ }_{\text {A }}$	$\stackrel{T}{T}$		T	

D - Dominaite 550%
$\mathrm{S}=$ Subdominant $20-50 \%$
A - Accessory 10-20\%
$\mathrm{T}=$ Trace $<10 \%$
$F=$ Faint trace fust detectablo.

TABLE 2
Arulysis of the light fraction mineralogy ($\mathrm{S} . \mathrm{G},<2.96$ and diameter $\geq 0.002 \mathrm{~mm}$) of samples from lunettes and asscociated lake kieds.

Sample	Minerals present as pepcentage of light fraction						
	Weight \% of total	Quartz	$\frac{\text { silt }}{+}$	Opal	Layer silicatos	Calcite	Organic Remains
Moona Flat lunette	>90 >90	100					『
Lake Carinite lunette	>90	100					छ
bed	83	75	20				5
bed (surfaco)	>90	100					<2
Lochaber swamp linnette	68	30	65				5
Cockatoo Lake lunette	89 69	85	15	T 5			<5
Cockatno Lake kerl	37	30		\checkmark	50	20	<8
Huttoris Jagoon lunette	92	25	70			5	
blal	78	40	55			5	
Bool Lagoon lunette	72	20			50	25	\$
bed	24.	15		5	60	10	10

TABLE 3
Semiquantitative analysis of heayy minerals ($S G>2,96$ and diameter $>0.002 \mathrm{~mm}$) in samples from lunettes ancl associated lake beds.

[^8]? - Non positive identification because of poor crystallinity and rarity.

TABLE 4
Mineral composition of two gypseous lunettes and their associated lake beds.

	Minerals present					
Sample	Gypsum	Caleium Carbonare	Sadium Chloride	Ferrio Oxide	Insolu- blos	Total
Cooke Plains lunctto (average of 16 samples) (a)	83'88	2.80	n.ei.	n.a.	11:21	97.89
Cooke Plains bed (trial hole $\left.\mathrm{S} 12: 2^{\prime} 10^{\prime \prime}-3^{\prime} 2^{\prime \prime}\right)(\mathrm{a})$	47-77	21.70	ni凤u.	n.a.	18.43	$87 \cdot 90$
Lake Fowler lunette (average of 33 samples) (b)	02.9	1.1	0×7	() 1	3.9	98.7
Lake Fowler bod (sample $\left(4: 0-29 \frac{1}{2}^{\prime \prime}\right) \text { (o) }$	75-70	1.11	1-95	0-34	18.3	97-4

Source:
(a) Fing (1949a p. 145)
(b) King (1949 b p. 6 b)
(c) Hiern ($1957 \mathrm{p}, 40$)
n.a. not available.

TABLE 5

Porcentages by weight of sand, silt and clay-
(The silt and elay fraction was not separated in some samples: sill and clay-less than 0.066 mm . sieve size.)

Samplo	Sand	Silt \boldsymbol{E}^{6} Clay	!	Silt	Clay
Cooke Plains lunctie	98.4	1.6			
Lake Fowler lunette	98.7	$1 \cdot 3$			
Lake Baird Iunetto	99.4	(1). 6			
White lagoon Iunette	93.2	6.8			
Moond Flat Iunette	96.1	3.9			
bed	96.4	$3 \cdot 6$			
Unnamed lake 2 lunetre	97-0	3×0			
bed	97•2	2.8			
Unnamed lake 1 lunetto	$94 \cdot 2$	5.8			
bed	$92 \cdot 5$	$7 \cdot 5$			
Lake Cadnite lunette	$95 \cdot 2$	$4 \cdot 8$			
hed	74.4	25.6			
(bed-surfaces 2"	$98 \cdot 3$	1.7			
Hyuam Swamp lunette	37×5			37-5	25.0
Lochaber Swamp lunette	45.0		\because	32.1	21.9
Cok bed	85.0		$!$	$4 \cdot 11$	11.0
Cockatoo Lake lunette	$\begin{array}{r} 33.0 \\ 7.4 \end{array}$			$37 \cdot 0$	$30 \cdot 0$
Hutton's Lagoon lunette	34.2	65.8			
bed	37.7	62-3			
Ifiles Lagoon lunette	$29 \cdot 7$	$70 \cdot 3$			
bed	$41 \cdot 1$	58.9			

TABLE 6
Percentage size distribution (by weight) of samples from lunettes and lake beds
J'ange of particle size in millimetres: each fraction expressed as a percentage of the total sample.

	100.0-600.0	\because
	$800 \cdot 0 \cdot 100 \cdot 0$	$\begin{aligned} & =x=1 \\ & \dot{\theta} \dot{\theta} \dot{\theta} \dot{=} \end{aligned}$
	910.0.80) 0	$\begin{aligned} & 000 \\ & 500 \end{aligned}$
	180.0.910-0	
	090-0-180.0	$\begin{aligned} & x+2 x \\ & \therefore+\dot{2}+\infty \end{aligned}$
	[680. $0 \cdot 0900 \cdot 0$	
	1ざ-0680-0	
	82I-50+6I-0	
	5276-0-821.0	
	8098.0-898.0	
	noc-0-scm 0	
	$\begin{aligned} & 112 \cdot 0-002 \cdot 0 \\ & 800 \cdot 1+1 L L \cdot 0 \end{aligned}$	
	8 son - $1 \times$	$\begin{array}{ll} \infty \pi & 8 \\ \infty & \% \\ \infty & \infty \end{array}$

TABI.ET

$$
\begin{gathered}
S_{0}-Q_{1} / Q_{a} \\
\text { wain }-n o t \text { available }
\end{gathered}
$$

the only information available by which to compare the gypseous sandy lunettes with their associated lake beds. The same minerals are present in both cases and the percentages vary only slighlly. The percentages by weight of sand, silt and clay (Table 5), the size distribution (Table 6, Fig. 8), the quartile measures and degrees of sorting (Table 7), and the mineralogy (Tables 2, 3) all indicate that the composition of the quartzose sandy lunettes is very similar to that of the associated lake bod. The size distribution of samples from the fine-grained lunctes varies slightly from that of the lake bed samples, especially in the small size grades (Table 6, Fig. 8), but the mineralogy of the two is similar (Tables 1, 2, 3). The sample from Lochabor Swamp lunette, Southeast, shows a lower percentage of light minerals than might bo expecter from the percentages obscrved in the same lake bed (Table 2). However, the composition of the Jake bed may have been altered by the man-made drain entering the swamp (Fíg. 3). Other dissimilarities, for example, at Cockatoo Lake, can be accounted for by the difficulties associated with the analysis of the samples.

Structires

Internal structures have not been observed in fine-grained Innettes, but there are several expusures in gypseaus and quatzose sandy lunettes. The most extensive of these are in Cooke Plains and Lake Cadnite lunettes, Southeast.

Cooke Plains lunette is composed almost entirely of secd gypsum of sandgrain sizc. In the quarry on the southern end of the lunette, near the swamp edge, the dip of the beds is about 2 lowards the lake; near the centre of the lunette the dir is in the same clirection but varies over short distances from 20° to almost flat (PI. 5): and on the side of the lunctte away from the swamp, the dip is consistently about 30° away fromi the depression.

Fig. 8. Cumulative percentage curves of the size distribution of lunette and lake bed samples. The solid line represents the lunette sample, and the dashed line the sample from the lake bed. In the case of Lake Cadnite, the dotled line represents the sample from the surface of the lake bed.

The structures of Lake Cadnite lunette, composed almost entirely of quartz sund, are only visible in isolated places where the quarry face has been exposed to weathering. Typical measurements near the centre of the lunctte are 9° to 12^{2} Io the east (Pl. 6), but whatever the value near the centice of the feature, the dips in till cases Hatten to the east. A serios of superimposed seril profles is exposed in a quarry face to the cast of the crest for a distance of a few inctres. Each soil consists of a black humus-sich layer which grades to light brown with depth and overlies buff-coloured sand. This rests with sharp demarcation on the black horizon of the next lower suif,

Veactation Cover

The surface of nearly all the lunctes in southem South Australia is protecterl by a demse cover of grasses. Trees are rare, hut red gums about 6 m high are lonnd on Lake Cudnite lunette, and the Cooke Platis lunette is covered ly dense Mallper serub. The grass cover has apparently been sufficient to protect the lunettes from crosion; the only occurrence where modifications to the briginal famplte form are evident are those in which wave action and slumping have gesulted in a cliff on the lake cdge, or where overgrazing by sheep and sabbits, or overcropping have resulted for crosion of the surface.

ORICIS

Precions Intestigations

The two principal liyputheses advanced in explatation of lamettes are those of llills (1930, 1940) on the one hand, and Stephers and Crocker (1946) Dn the uther. It should be notenl, however, that although Stephens and Crocker first gave prominence to the deflation theory, similar ideas are wither implicit or expleit in the writing of Coffey (1909), Criayson and Mahoncy (1910), Wybergh (1918). and ITarris (1939).

Hills suggested that spray droplets whiped from the surface of the gake by wind and dew formed preterentially on the downwind side of the lake cause the deposition and retention of atmosplerric dust on the leve shore of the lake. The presence of the water in the lake is thus an essential feature of this mechanism. Hills did not preclude the possibility of the addition of minor amounts of material by deflation from the dry lake bed hut considered this of minor significance. Stephens and Crocker and many later workers (Huffman and Pricce, 1949; Giubier. 1953; Boulaine, 1954; Tricart, 1954a, b, 1955; Jenuings, 1955) considered, huwever, that this hatter process was of prime importance. They considered that wind scourhig of the unconsolidated sediments expossed in the dry Jake bed provides material which is trapped by vegetation growing on the lee shore if the lakes. Once the lunette has developed, it propagates itself by deflecting the wind over it whilst the material in transport is deposited on the lunette. The essential contrast leetween these two bypotheses is that Hills" requires water in the lake while the deflation hypothesis required a desicoated lake hed.

Thus it is that these lwo hypotheses bave been construed by different authors as implying the association of the lunette cither with wet (glacial) or dry (interglacial) phases of the Quaternary. In wiew of the marked seasmatity of elimate and lake conditions in southern South Australia at present, it seems inneceessary to invoke such definite and long lerm changes of climate. But the age or age range of lunettes is certainly significant, for, if the features developed under

[^9]conditions widely different from those which obtain at present, modorn climatic parameters have little or no reveranee to considerations of their evolution. Thus. before any assensment of the various lines of evidence, and a discussion of the pussible genesis of these fethlures, it is necessary to examine thear likely age or ago lange.

Age of Lamettes

Soil profile development on lunettes varies considerably but most have lasen sufficiently stable to alluw the development of mature soils on the surface. Similarly, al layer of "flour" gypsum, the weathering product of the "seed" varicty. necurs at the surface of the gypscous lunettes. This is an indication that weather ing has latterly outpuced arcumulation, suggesting that lumette formation has ceased or las at heast slowed down. Itowever, it is not necessarily evidence of antiquity, as soils cun develop in a relatively short times, is evidenced by hurizon development an sediments no mare tham 100 years ofd at Beefacres, an Adelaide suburb (C . R. Twidale, personal communcatiom) .

There are isolated indications that lumetes are forming today; the bed of an mommed depression 1.3 km . northevest of Naracoorte is bare but flat-topped commants standing metre above the bed are vegetated. "This is taken to mean that the mesa slopes and the bothoms of the unsalted depression have foen recently temoved, apparenlly hy deflation; unovenuent of material across the lumetto on Ifuttons hatgon has been observed: and there are reports of lunettes forming today in Western Australia (Bettemay. 1962), Vietoria (Baldwin, Burvill and Fredman, 1939) and Texas (Colleg, 1009; Huffmas and Price, 1949) meder cmustitions similar to those in southern South Australlia.

In any case, the evidence points to the lunctes beribg geologically youthtut bather than to their ambuity. From a varicty of evidence throughont sombern Anstralia, Stophens and Crocker (1046) concluded flat "it is appasent that the bualk of the humdtes belong to the latle Pleistonene to Recent Pariod". King (18 dian) concluded that the Cooke Plains gypanm dime postdated the emergence of land after the rsid-Hecent high sea-level when conditions permitted the eqaporation of water and the precipitation of salts, In the Riverine Plans of southenstem Australia, Pels (14e66) uoted that lanettes predate the most recent period of stream incisiom into the platin but postdate the list phase of deposition by the prior streame which ocenred in the PPetestocenc (Pels, 1964). Bowler and IFarford (1966) in the sume ureu, worked out a germorphic sequence in which they revasnized three phases of lunetw, formation: the first wecersed about $7.000 \mathrm{~B} . \mathrm{P}$., indicated by a dale from dicustrine silts in the hed of the lake on which tho lunctte formed; the second occured following shonking of the lake, and the thired alter a periud of prion stream activity, deposits from which were dated by the terbon 16 method at $4,000 \mathrm{~B} . \mathrm{P}$. Bowler and Harfurt this showed that lumette formation ant bis areit began at least 7,000 yoars aso and conlmued at least until 4,000 sears dgu. that is, through the middle liecent."

Whist lumettes in southem Austratia may vary in age, it is likely that thatr age range is of the same general onler, and it can be assumed that the lomettes in sunthenn South Australia developed during the liecont. They are, theretore, a relatively southful feature of the landscape. Since thin lime, the climate of :sontherii fustralis is thought to have changed only slightly so that conditions favenrable to lunette formation are not very ditierent from the range of those

[^10]experienced at present. An cxammation of present climatio parameters is therefore relevant in a study of the origin of luncttes.

Discussion of Origin

${ }^{7} 7^{4} u^{2}$ finte-grained limattes in ssmthern South Australia are composed of $76-90 \%$ material less than 0.1 mm diameter (Fig. 7), ie. it can be transpoted in stspension. All the hanettes described by Hills (1939, 19t0) in north-western Victoria are dominuntly fine-graned. Most of these lunctes could have beens formed by the deposition of atmospheric dust on the lees side of the lake. Deflation is not, however, excluded. Most of the particles in the sandy lunctes and sorne in the finc-grained lunettes are too large to be tramsported in suspension, and therutore amnot be explained by the mechanism suggested by Ilills. Other lines of evideuce from southern South Australia throw further douth on this thenry.

No measurements for the precipitation of dust over rural areas are available. Isut the amount precipitated in wetter months, as required loy the atinuspheric clust hypothesis, must he extromely small (R. Culver-personal communication). 3n view of the youthfalness of lunettes, it is considered that there has hach insufficient time for the large amoints of material tequired to make una a lanctrs to hive heen deposited from material surpended in the atmosplsere.

Variation in compositiom of lnentes in close proximity and in an area of uniform soil types is incompatible with the atmospheric dust hypothesis. Cockaturn I ake and Tochaber Swamp, no more tham 10 km apart, are associated with lunettes of ruite different composition (Tables, 1, 2, 3), and the composilion of the there lonethes assocjated with White Latgoon, as shated previously, varies considerably.

The: position of the lunetes on the castern side of lake demersions indicates fonmatim by westerly winds. and, in general, winds in southern South Australia hilow from thix sector (Fig, 9). In mist areas where luncttes are mmerous, these winds are the least dust-bearing as they blow for only short distance's atcross land (Stephens and Crocker, 1946).

Two morphological characleristic: of lunettes which arc alypical of duncs. their smooth and regular contours as opposed to a hmmmocky surface, and their anymmetry with the steeper slopes on the windward rather than the leo sude, were interpreted by Hills (1440) as evidence against the dedation hypothesis of lunette formation. There ave, however, several factors in the lunette environment different from that of danes in general, which can account for these dmomalies. The surface of lunctes is covered and protected by vegetation, thus preventing major sisshaping of the material, and the development of a hommocky surface. A skaw ind steady (although not necessarily continuous) rate of accumulation which is indicated by the presence of low angle dips and the absence of marked disconformities in bedding:" would allow such as vegetation cover to develop and low maintainer. This regetation eover, tngether with the facts that limelese are stationary, the rate of supply of material is limited, and most deposition takes place neat the lake shore, can account for the steeper wimetward slope of lunctios. It is suggested that at late and continunus supply ot material destroys the sergetation eover and permits the development of it loummocky surface and of stecper lees slopess. In fact, some lunettes, fror example Cooke plains Innoto (Fig. 4) and some of those in morthern South Australial (C. 1R. Twidale, pursumat communication) do lave a bummocky surface due to wind and water crosion.

[^11]

Fig. 9. Wind roses-all winds. The monthly pereentage frequency distribution of wind directions from eight points of the smpass. The sides of the outagons face towards the cardinal and semicardinal pointimonoth is at the top. Projecting from cach side are twelve columns representing the twelve months of the year and the lengtis of the columus are proportional to the parcentage frequency of winds from the given direction working round dockwise from Jamary to December. The solid hlack part of the column represents the wirds of speeds $1: 3 \mathrm{~m} . \mathrm{p}$.h. (21 kilonetres per hour) and gieater, and the open part of the columan represents the winds of speads less than $13 \mathrm{~m} . \mathrm{ph}$. The seale is shown in the centre of each wind rose. The percentage frequency of calms in the twelve months is shown to the right of the wind rose, warking from left to right from January to December. The distribution of winds at 0900 hours is shown for each station and at 1500 hours for some stations. The wind roses for Mount Gambier show the distribution of winds from sixteen points of the compass: for 0830 and 1430 hours. The solid blark part of the columns represents winds of spueds 15 m.p.h. (24 kilometres per hour) and greater. aud the open part winds of speeds Joss than 15 m. 1 it.
and soms, for example parts of Lake Baird lunette (Fig. 2) are asymmetrical vith a) steper lee side. 'These unusual morphological characteristics if lumerns represcon ennditions similar to those of normal dune formation, and can be expected in the lunette enviroment as a result of the seasonat and longer lemn vuriations in cllmatie enoditions such as are experienced at preseat.

Similarly, normal variations in the climate of today can explan the multiple Hnettes which developrad it various stages in the recession of lahe shorelinss."

There is little evidence in southems South Austratia to support the atmosplicric dust theory and much which erontradicts it. On the other hand, there ne ample evidence in support of the deflation hypothesis of lunette formation.

As stated previonsly, the particle size distribution, the mineraloggy, the quartile measures and the sorting values of each lunette smonple matysed ane similar to those of the insosiblead lake bed sample. Several eomponents characteristic of, thongh not confinced to lakes, have been found in lunctles; fingston and Bettenay (TSG()) : pported alunite in lunettes, amb gypum coystals make up it Jage proportion of many, such as those at Cooke Plans and I ake Fowker; specimens of Coxiclla sp. have been found in Lochalose Swamp honcte suct Characeace uspores in Hiles Lagoon lanette. The close similarity lutwerm lime composilon of the lonctte and of its assenciaterl lake fred sugerests that the two are cansally related, i.e that the paterial in the luncte was derived from low lake hed, wis refuried by the deflation hypooblesis.

Although Hills discounted the likelihood of the Fomation of agserentes of partisles in the lake bouls of north-western Victoria, ages regates have heen noted Ifuring analysis of samples from southern South Anstralith and hove been seen in transport asans dry lake beds in Texus (Coffey, 1909). Althongh the process nt ageregate fommotion is incompletely moderstood, aggregates are comsidered lo explain the large proportion of particles in tins-gramed lonctes ($76-900$) which ane ton small to be transported by dethation as individual partiches, hat whod. n lem besnat together, behave as sand grams. The size composition of the sandy lumettes is atho consistent widh the deflation hypothesist.

If the lades depessions and their assuchater lonettes are bont callosally retatcel. tha bakes must be explained otherwise them by detlation. In southom Simath Anstralin esimples cas be cited where wave action, solution, blocking al surface drainge of fluviatide action have contributed at least in part fo the orikin of the lake, lut these processes cannot salisfictorily explam all depressions. Oning of tectonic disturbanoes and the semi-arid climate of the area, cemditwns ane latom .hh: for the creation of basins of internal drainage. The periodic acomalation of water-transported debris in the centres of these basins under amolitions of strong evaporation makes possible the removal of this material hy wind. There are inmerous examples in soulhern South Australia where depressions have been formed by this continuing process of deflation. The origin of the lakes is thus consistent with the dethation theory of lumette fomation.

It is generally accepled (J. T. Hattou- densomal s:mmanis:ation) that des conditions fovour the generation of electric charges on particles, and then dharges markedly ansist in the dellation of material. In sumthern Sonth Australia the following air temperature and relalive humidity relationships usually apply (B. Masm-personal communication):
"Variations in compasithon of laneter associatel with the one lake result from variations in the material in the lake bed which bac beren tramparted by strean: of varied sates of dinw or fimm varied sources.

The rumber of days on which the afr temperature rembes these categories varits throughout the arca, but statisties for Bount Gambier and Yougatar depresent values near the two extromes:

Air Temperature-	E	Mt. Gambier
<60	120	Yonyale
$60-80$	204	101
>80	41	159
$>$		105

For 4 consirlernble part of the year, dry conditions assist in the process of deftation.

However, the deffation hypothesis of luncte formation, though on hond terms consistent with the observed evidence, presents some diflicultics.
first, lunettes are common on the edge of salt emerusted depressions from which deflation of the underlying materiat is imponsille. However, the salt cinast maje be a more recent development.

Second, althongh the climate where lunellos are found varies from arid to Anhtimid, they are best developed in semidard ircas, and not in truly air regions where deflation is most pronounced.

Third, an examimation of the strong winds (greater than 13 miles per hourabout 21 km , pur lour ${ }^{\top}$ for selected stations in soutbern South Australia shows that in the wet season (Way to October, based on the number of rainy days per (nowh) westerly and northwesterly winds are predominant, whilst in the dry stason (November to April) the strong winds most commonly blow from a southerly to westerly direstion (Fig. 10). Lunctus occur most commonly on the eastern or south-eastern sides of lake depressions. That is, they face the wet scason winds, those which blow when the lakes are occupied by water, when cleflation from the lake bed is impossible. They are not primarily associated with the dry season wisids which could achicve deflation from the dry lake bed.

These difficultics conld be overcome by postulating a change in climate, for example, a change in temperature-humidity relationships resulting in elifferent evaporation rates, a decrease in rainfall during the wet season, or a change in wind direction. However, there is no evidence that such drastio changes of rlimate have taken place during the recent past when lunettes have apparently doveloped, Other possibilities must therefore be considered.

Although all the lakes in southem South Australia are shallow there is ample evidence of the effectiveness of wave transport and erosion. On the etsteru shore of Inte Greenly, for example, a beach partly composed of well-rounded quart/ pobbles, a shore platform, a cliff and rounded bays, all inclicate tho effect of waves (P .7 7). Cliffs are common at other sites, for example Cockatoo Lake and Lake Fowler, and beaches are partionlarly well fomed on the castern shore of lakes on the laterite plateau of Kangaroo Island. In addition, a spit on the castern shose of White Lagoon and of Lake Malata, and the characteristic rounding of the litkes (Pl. 1) (Campbell, 1967) are attributed to wave aclion.

[^12]

Fig. IO, Wind roses-strong winds in the wet and dry halves of the year. These wind roses show the distribution of strong winds from the cardinal and semicardinal points of the tompass in the wet and dry halves of the year. differentiated on the basis of numbers of rainy days per month, and averaged over the selceted stations. The monthly percentage freguency of the strong winds (13 m p.h. (21 kilometres per hour) and greater) at 1500 hours for November to April and for May to October are expressed as a percentage of strong winds for the year.

Price and Kornicker (1966) noted the importance of waves and curtents in transporting shell fragments on to the lower slopes of chay dunes similar to frneltes. 111 Texas. B3owler (1961) suggested that medium to coarse sand is concentrated in beaches betore being blown by the swind on to the lunctle, ullhough finer purtiches, lis considered. could not be concentrated in this way. However, althuugh silt-and clay-sized particles are gencrally cartied in suspension in waters some may be concentrated in a beach by one or more of the following methods. Clay patioles may adrere to sand grains or thenselves form aggregates. The salinity of the water in the lake will determine whether the clay particles ure in tue colloidal suspension, rat areable of transport by quves in the form ot aggregates, As J. T. Hutton pointed out (personal communication) wave actimu suflicient to cause transport would probably also be capable of breaking wh the afgregates; but many remained unseparaterd after mixing during the analysin ut samples. Silt and clay in suspension may be filtered out by the sand and debris in a beach or by vegretation growing om the edge of a lake. It is suggested, flereforc. that wave transpart of sand, and possibly of silt- ard clay-sized purtieles, is impertunt irt lunette formation.

As Stephens and Crocker (194() pointed ont, the resgetation grriwing on the eulge of a lake provides the rongh type of surface recuired to cause deposition of wind-transported material. The line of vegetable matter, floated mithe surfacto of the lake and deposited as the water level recedes. has an similar result, as was recognized ly Woods (186i2, pin, 28-29).

The effect of waves and the presence of vegetation on the edge of the lake tan overcome each of the dificulties cncomitered by the deflation hypothesin.

First, in the case of those lunettes occursing on the edge of the satt-enernstex lakes, the major parl of deflation oceurs from a beach built hy wave action in the wet scason, and not from the lake bed. Second, the reason for Iunctes being best developed in semi-urid rather than arid regions, is that in arid areas there is insufficient vegetation on the lake edge to trap the material which has been scoured from the lake hed and for prevent later degradatiom, and the lakes in arid areas do nut contain water Inng crough for significant wave transport ${ }^{4}$ Lo occur." The third diffienty concems the distribution of the luncte in eclation to the lake. The position of the lmette on the eastern or south-eastern side of the lake opposite the wet seacom winds is a result of wind generated waves. A beach is built on the castern and south-eastern side of the lake, and the mulerial in the beach is able to he trimsported by the wind. In the dry scason, once the water level has fallen and with the winds blowing from the west and sonth-ivest, deflation from the lake led takes place. In this way, a combination of wave and wind action results in the formation of the lumette on the eastern side, and where wave action and wind framport in winter are relatively more important on the sonth-casterm side. 'Illus. the amblogy of linestes with primary coastal foredunes is readily apparent.

ACKNOWLEDGEMENTS

The research teported in this paper was made possible by a grant from the Ifmeersity of Addaide. A mineral analysis of samples from lunettes and their assucinted lake heds was carried out by Australian Mincral Development Labota-

[^13]torics. Offecers of the Burentr of Meteorology, Adelade, kindly supplied infomation from which the wind roses wore drawn. The thanks of the writer ars due lo Dr, C. lk. Twidale, Department of Gcography, University fo Adelaide, for helpfal advice on many aspects of the research, and for a critical reading of the text, and Io Mr. J. 'T. Hutton, of the Division of Soils, C.S.I.R,O., Adclaide, and Mr. IS. Misun of the Department of Ceography, University of Adelaide.

REFERENCES

 Keremg Irriction District, Victoria. CuS.I.M.O. Bull. 125.
 arid requions of Western Anstralia, fesur, Binll Scipnce: 13. 10-17.
 Dynamique 5: 102-123.

 M.A. Thesis, Iniversity of Adelatia, (Unpublished.)
 167-77. 257-68, 391-40.
Chemr. W. S., 1958. Soil conclitions that infuence wind erosion. Lis. Dopt. Agric. Toch. Iull. 1185.
 215).
 it wind tumnel. Sci iter. 19: 249-57.
Comper, G. N. 1909. Clay dwnes. Jour. Geal. 17: 754-
 Forms of avind exaxion, Jow Soil Cons. N.S.W, 13: 17-96.
Conke, C.W. W934. Discussion of the origin of the sumposed metetrite went; of South Carolna Jume Geul. 42: 88-46.
 $205-11$.
 Jummationaux du Comire National de be Recherche Scirntifane. 35.

Cindsess. H. Ji, and Manosy D. J., 1910. The geology of the Cimperdown imh Morme Hilunhant districts Geol. Surs: Fief. Memoiri 9.
 4 5-6il.
 135 41.
[lusts, 1. S. 1939. The physiography if Northwestem Vicurat. Prok. Hoy. Soc. Vict. 5): (N.S.): 297-323.

 Jour. Seel Patral. 19: 118-127.
 Bull. 8 .

 Fianciseo Brto no.
 four. Cicol, 41:52-du.
 Griffith, New South Wale, do proce Hew, Moc: N,S.W. 97: 107-1.5.

Pels, S., 1966. Late Quaternary chronology of the Riverine Plain of southeastern Austratia. Jour. Geol. Soc. Aust. 13: 27-40.
Péwé, T. L., 1951. An observation on wind blown silt. Jour. Geol. 59: 399-401.
Price, W. A., and Kornicker, L. S. 1961. Marine and lagoonal deposits in clay dunes, Gulf Coast, Texas. Jour. Sed. Petrol. 31: 245-55.
Prouty, W, Fa, 1952. Carolira bays and their origin. Geol. Soc. Amer, Bull. 63: 167-224.
Raisz, E., 1934. Rounded lakes and lagoons of the Coastal Plains of Massachusetts. Jour, Geol. 42: 839-48.
Stephens, C. Gon and Crocker, R. L., 1946. Composition and genesis of Junettes. Trans. Roy. Soc. S. Aust. 70: 302-12.
Thicant, J, 1954:. Une forme de relicf climatique: Les sebkhas. Rev. de Géom. Dynamique 5: 97-101.
Thicart, J., 1954b. Influence des sols sallés sur la déflation colienne en Basse Mauritanie ct dans le delta du Sénéşal. Rev. de Géom. Dynamique 5: 124-132.
Trucart, J., 1955. Aspects sédimentologiques du delta dı Sénégal. Geol. Runelschau. 43: 384-97.
Woons, J. E. Tenison, 1862, Geological observations in South Australia. London, 404 p.
Wymergir, Wi, 1918. The limestone resources of the Union. Vol. 1. Ceol. Surv. S. Afric. Memoir $11, \mathrm{p} .74$.

P'ATE 1
IInton's Lagonu lunette-amerial view The smoothly rounded eastern shore is typionl of the lakes in sonthern South Australia. The dashed line inclicates the position of the erest of tho lanette. (Reproduced by courtesy of South Australian Department of Lands.)

Pate 2
White Lateon multiple lanctu-atrial view. White bageon is an eample of the mere or less comentric arrangennent of ambltiple lanette badering ore lake. The three ridges are marhend

Plate 3
Salt Lake multiple hanette-atial view. A complex of small lakes each with its associated lunette or Junettes, oceurs within a larger lake hasin on the edge of which is a large lunette. (Reproxheced by comstesy of South Austrailan Department of Lands.)

Prate 4
(See next page)
(a) Western slope of Bool Lagoon lunette. The smooth and rectilinear western slope of this Innette is typical.
(b) Bedtling in Cooke Plains lunette near the crest. The dip of the bets is variable over short distances, but nowhere exceecis 20 degrees. View looking north-east.
(c) Bedding in Lake Cadnite lunette. The characteristic dip of the beds in this lunctte near the crest is 2 to 12 degrees to the east. The example shown here jucticates at rare crossbedded sequence.
(d) Shoreline of Lake Greenly. Cneissic material outcrons on the south-eastern shoreline of Lake Greenly. A shore platform and a beach with rounded pebbles are evidence of the effectiveness of waves in transporting debris even in this shallow lake. The white material near the top of the photograph is "flour" gypsum on the surface of the lumette. (Photograph by C. R. Twidale.)

Elizabeti M. Cantprele

(a)

ORIGIN OF WAVE ROCK, HYDEN, WESTERN AUSTRALIA

By C. R. TwIDALE*

Summary

Wave Rock is a long high overhanging natural wall located on the northern side of Hyden Rock, in Western Australia's Wheat Belt. Though it displays some apparently unusual features, it has much in common with similar forms described from Eyre Peninsula and other areas both within Australia and overseas. The available evidence suggests that Wave Rock also evolved in similar fashion: by strong scarp foot weathering, and subsequent erosion of the weathered debris. This and other hypotheses advanced in explanation of Wave Rock are discussed in light of the field evidence.

ORIGIN OF WAVE ROCK, HYDEN, WESTERN AUSTRALIA

C. R. Twidale*

[Kicad October 10 1968]

Abstract

SUMMAKY Whe Buck is is lung lish owerhanging natural wall hooaled ons the northerm side of llyden hook, in Wentorn Alstralia"s Whest Bell. Thnugh it displays some appareritly unusual foatures, it has much in commort with similit forms described from Fiyre Peninsula and other ateas both within Australia aud vierseas. Tha aruilable evidence suggests that Wave Rock alsor evolved in similar fashion: by stroms scarp foot weathering atid subsequent emsion of the weathered debris. This and other hyonheses. alvanderd in explanation of Wave Rock are discussed in light of the ficid evidence.

INTRODU'CPIION

Various opinions have been offered concerning the origin of Wave Rock, a well-known and spectacular feature located near Hyden, W.A. In Land of the Southern Cross (1956), for example, a popular picture book designed to attract immigrants and tourists, it is attributed to the work of "wind and rain" (p.89). In Vincent Serventy's Landforms of Australia (1967, p. 25) it, and similar sharply sigmoidal or flared forms at Ayers Rock, are tentatively attributed to crosion hy wind-driven Sand. An alternative explanation has been offered by O'Rilcy (1967) who, citing professional opinion, suggests that Wave Rock is duc fundamentally to selective crosion by ruming water. It is suggested that the upper and earlier exposed, surfice of Hyden lhock, on which Wave hock occurs, has been indurated with silica to a greater extent than the more recently revealed Hanks, Water coursing orer the bare rock surface therefore crodes the weaker lower slopes more than the toughened upper surface; the lower slopes are "undercut by the continued flow of water": and the stone wall erected around the flattish upper surface of the rock is intended to "arrest erosion".

Comparable, though less spectacular, flared forms om Eyre Peninsula (S.A.) and elsewhere (Twidale, 1962; 1964: 1968, pp. 145-147, 347-350) are evidently due to strong localised subsurface scarp foot weathering and subsequent erosion. Because this interpretation is at variance with the opinions cited above concerning the origin of similar forms, it may be buth useful and interesting to describe the process of scarp foot weathering and its characteristic results; and to match the several hypotheses with the field evidence ut Iyden Rock.

SCARI FOOT WEATHERING AND EROSION

Flared forms developed on granitic rocks have been examined on Eyre Peninsula, in the Kosciusko region of southern N.S.W., iu the western Mt. Lofty Ranges (S.A.), and in the Sierra Nevada of California. They oceur on sandstone outcrops in the Flinders Ranges, and at Ayers Rock, as well as on the conglomerate of the

[^14]Olgas massif, Northem Territory Allhough thares are well developed on the north infl west facing slopes, and although exceptions have been noted, they are boat and most commonly developed on the southern and eastern, i.e. the shady, aspects af the residual hills or inselhergs on which they occur. Double and multiple Hares in cincavities are in places displayed. The flared slopes are not everywhere foumd in harizontally disposed zones of sterpening or overhang. At sexeral sites they are indined or even irregularly distributed, though in all cases the disposition of the ${ }^{3}$ sterpmerl zone varies in evident sympathy with that of the hill-plain or rock-soil, iunction. Flates are very well developed on the points of spurs.

Incipient flared slopes are developed bencath the land surface, benesth weathered country rock which is in situ. At the margin of the inselherg, the stmlace of the fresh rock continued subsurfice as the itcathering front (Mabhutt, \$661) or linit of weathering, characteristically plonges steeply for a few feet treneath the land surface before gradually flattening out. Such concavities in the Fresh bedrock surface, and formed bremath the natural tand surface, have been observed in dry reservoirs located on the insellberg margims, and have abso lieen detected by augering and excavation.
linally, small flared slopes oceur is clefts within the jnselhergs, armmol bouklers and on gentle slopes, in issonciation with accumulations of soil or weathortall debris.

Although several possible explanations of flared slopes have been entertained (Twidale, loe sit. 1962; op. cit. pp. 347-350), all sase one are found wanting when the field evidence is matched against the doducible consequences of the hypotheses. The interpretation which has survived rigurnms testing and which acenonts for the field evidence is that the flaves evolve in two distinct stases involving first, strung localised scarp foot weathering, and, secmul, marked slifter ontial erosion of the scarp foot zone and exposure of the ersfwhile weathering front (Fig. 1).

HYDEN ROCK

Ceneral Setting

Hyden Hock lies ahout 3 km cast of Hyden township, which is, in turn, 296 Lim, E.S.E. of Porth (Fig. 2). The Rock is about 2 km . long on an east-west awis and on a N.N.W-A.S.E. line at litue more than 0.8 lm wide (sere Fig. 3), It in composed of granite, most of which is strongly porphyritic, thongh pegmatilic., even and medium grained, and fist grained, phases oceur in pateles and veins. No horizontal that-lying zones of petrologieal differentation have heen detected in the granite.

The eranite is jointed but most of the joints are sight and widely spaced. Arenues of weathering within the Resk are few, and its greater resistanere to weathering and crosion, as evidenced by its remaming as an upstanding hill, is probably due to its being built of especially massive jesint blocks. This is demenstrably the case in places on Eyre Poninsula and elsewhere,

Hyden Rock is a granitic inselherg which rises abruptly to amaximm clovation of some 55 m . above the surrounding plains, which, withe evidences of lemes and dam excavations, wre also underlain by granite. Nere, howover, the rock is deceply weathered: Berliat (1965) reports over 20 m . of weathered gramite about . 109 mi. from the margin of a rosidual located 65 km . east of Ifyden and well over - 111 na . of disintegrated rock elsewhere bencath the glatins.

The plains are not flat, for there is a pronourced slope down to the north: Ilv: lew vaghely defined waterconsess flow toward a complex of ephemeral dakes

Fig 1. Evolution of Hared slope by scarp foot weathering and subsequent erosion. (i) Strong weathering by water (derived from rtm-off) at the lower margin of the residual hill. Numbered lines represent stages in advanue of weathering front. (b) Lowering uf base level, erosion of wathered debris, and exposure of weathering front as a flared slope, with further weathering bencath the new plain surface, (c) Development of domble flire by repetition of the two-stage process.
located immediately to the north of the Rock. The plain to the south of the Rock is abuut 25 m . higher than the plain on its northern side.

The inselberg consists of three distinct hills, the central dome-shaped hill being both slightly higher and more extensive than its neighbours to east and west. All three hills are delineated by prominent vertical or near vertical joints, the more important of which run E.N.E.-W.S.W., N.W.-S.W., and N.W.-S.E. Many clefts within the hills follow along such joints. Flat lying or gently dipping joints are also important, for, although discontinuous, they subdivide the hill into massive slabs or sheets. The weathering and erosion of several of the latter gives the Rock its stepped appearance in broad view (Fig. 4).

Flared Slopes

Flared and basally steepened slopes are well developed on all three hills, not only around the margins but in clefts (PI. I) and amphitheutres at higher levels also. The flared and steepened slopes are well formed on the long southern wall of the Rock, for instance, adjacent to the 13th fairway of Hyden Golf Club (A on Fig. 3) and they are well developed along much of the northern foot wall. Iu clefts and depressions the south-facing wall is commonly, though not in all cases, stceper than that opposite,

Fig. 2 and Fig. 3, Location map and map of Hyden Rock (drawn from W.A. Lands Dept. air photographs). Sites A-D are referred to in the text.

Fig. 4. Diagrammatic N.-S. section, not to scale, of Hyden Rock, showing stepped form, sheet structure, flared slopes, probable present weathering fronts, and the disparity in elevation between the plain north and sonth of the Rock.

But what is unquestionably the most majestic and impressive flared and over. hanging slope is Wave liock ($\mathrm{P} \mid$. II) which is a steepened and overhanging hassil slope $10-12 \mathrm{~m}$. high located on the north side of the central hill. Some fared slopes on Pildappa Mill, Eyre Peninstla, are as high or higher than Wave Rock, some at Ucontitche Hill (also en Eyre Peninsulat) overhang to a greater extent or asc more complex, but as a high continuous overhanging wall, Wave Rock indubitexbly stands alone.

At the base of the flared slopes on the northern side is a continuous, virtually level platform up to 10 m . wide (Pl. II) and located at, or a little above, the present plain level. Similar platforms have been observed marginal to the inselbergs of northwestern Eyre Peninsula, but nowhere are they as extensive and level as ut Hyden. Another notable feature is the angular jumetion between flared slope and platform. Double concavitims or flares are faisly common, as, for instance, on Wave Rock itself (11. II). Some flared zones on Hyden Rock arr inclined with respect to the horizontal, as, for instance, on the northern slopre (PI . III), in the enclave hetweens the central and castem hills. Finally, it is very typical that the weathering front-she surface between the fresh and the weathered bedrockplunges steply bencath the weathered granite which, with a vencer of mlluwial deloris, underlies the plain (PI. III). Excavations reveal that this steeply inclined slope continues bencath the plain surface for rather more than one metre. at which depth it shows תo sign of levelling out.

Thus, in maty respects the flared slopes at Hyden Rock, and particularly Wave Rock, share characteristics with similar forms in other regions. The great contrast lles in Wave Rock itself, which is on the northem, and sut the southern side of the inselberg, and which is located not on the point of a spur, but in a broad, prohably joint-controlled, crmbayment (B on Fig. 3). These apparent anomalies are, however, susceptible of ready explanation in terns of the smbsurface water weathering hypothesis.

Being in a broad cmbayment, to which drains run-off from as wide arta of the central hill, the plains marginal to the inselberg in that area undouhtedly receive a more than averige quantity of water, so that especially pronounced and decp searp foot weathering is probably developed there. Furthermore, inmediately to the north of the Rock and virtually at the same clevation as the plain on the northern side is a complex depression-probably an old drainage line-which recelves wates from a wide area and which in winter is full of water. Groundwaters from this drainage line may penetrate to the Fock itself.

The comparative degrec of erxsional exposure on the northern and sonthern arpects of Hyden Rock should also be considered. As already mentioned, the northem plain, close to the drainage depression, is about 25 m . lower than the plain to the south of the Rock (Fig. 4): indeed, the whole plain surrounding the inselberg slopes down to the north. Any lowering of the plain by streams must lrave been initiated from the old drainage line (Fig. 3) and thenefore would have: affected the northem slope of Hyden Rock before the southem. Thus, it may be argued that while greater crosion and lowering of plaiu level has already exposerl the deep weathering front on the northern face, similar lowering of the suface has not yet extended to the southern sile, where an incipient flared slope may be present beneath the surface (Fig. 4).

Thus, local circumstances may have combined to cause unusually deep and pronounced subsurface weathering of the granite on the nurthern side of Hyden Rock. The same northem slope may have been exposed by erosion to a greater extent than has the southern. These are the probable reasons for the unusual degree of stecpening of the northern slopes, and for Wave Bock in particular.

The other suggested mechatisms for the development of Wirye Rock eilhor tamot explain the field evidence, or are inconsistent with it. For instance, aexolian sand blasting cannot account for the occurrence of incipient Hares beneath the present land surface, below weathered granite in sith, and for the llares at high fevels on the liock (sand blasting is most effective within 1 m . or so of ground level). The areal distribution of the llares is also at odds with the expectable cunserguences of sand hasting. Lunctes duc to deffation of exposed lake deposits are located on the western side of lakes in the Hyden-Corrigin areat indicating a prevalence of strong winds from the east, and in these terms the "undercut" slopes SIInild be best developed un the eastern aspects of the hills, No such consistent and preferred oricntation lass heen detected. Furthermore, the very fact of the insellurgs being there would disturb the air flow and divert winds (and sand) around the residuals; the abundant vegetation growing around the hills an blete better watered searp foot zone also series to protect the lower rock walls against atolian action.

The suggestion eonemed with ruming water (O'Riley, loc. cit.) faces comparable difficulties:
(1) Induration of the smface uf Fyeden Rock has certainly occurred, partly as a sesult of climatic conditions, partly resulting from the wark of the lichens which groy in profusion on the rock surface. Iron oxides have been concentrated att and uess the surface, though much of this indurated layer appeans to bave leen errodent, only small hat-topped nobs remaining in a few places. Mut the induration appears equally distributed over mast of the surface. It is certainly ment peeferentially developed at upper levels of the Rock surface, so that selective crosion cannot be invoked. l'urthemore, though the upper area must have been first exposed, there is a strung suggestion that far from beung tougher than the lower slopes, the upper part of the rock has suftered cousiderable weathering, the uppers shects of granite having disintegrated iuto groups of blacks or rounded boulders.
(a) Some form of induration has undoubtedly affected many boulders, and preforential weathoring has given rise to cavernoms listoms ar tortoiseshell mese. But jut these fursns the hardened crust forms thin projecting lips or visors, which do not occur in the flared slopes. At one site on the northern slope of rastern hill (C on Fig, 3) there is a concentration of cavcrnous and alveolar weathering which may be due to petrologieal factors, or may be a reffection of local concentrated weathering at or just helonv at farmer plains fesel (Che site is some 6 m . above the present plain). In this area, quite deep hollows are developed bereath thin external crusts.
(3) Although rmning water, hecause of its downslope increase in velocity and volume, may appear capable of prostueinge slopes of intereasime downslope inclingtion (wee for instance Fenneman, 144日; Cotton, 1952). particularly in an embayment such as those at Wave Rock and at D (Fig, 3) on the southern side of Iyelen Rock, where Now is centripetal, there are sound hydrological reasons for suggesting that it does not do so (Twidale, lace cit., 1962). Murenver, unve a cortain critical inclination is attained, fast flowing water becomes detached from the rock surface to form a jet or waterfall. Only the slowest flowing thin films of water adhere to the steep rock face by surface tension-vet these ane sujposed in ateomplish considerable erosion, and even pronounced undercutting. At Wive look in lune 1968, some thin films of water were creeping down the overhanging slone, but thert, was is continuous drip of water from the upper lip to the foot wall. Alses, on the upper part of IVydun Rock, pronounced overhanging hares atre develoned on spars of very limited catchment. and in other places on boulders of similarly limited potential rutu-off.
(4) Selective erosion by running water camot explain multiple flares, the development of Hares in clefts and amphitheatres (nor, indeed, the amphithertres themselves), the inclination of the flared zone, and their apparent occurrence suldsurlace marginal to the Hyden residual.

The scanp foot weathering hypothesis can readily account for these and other relevant details of the flared forms, and it is suggested that it is this procoss which is responsible for the development of Wave Rock and other similar features at II den liock, ats well as on other granite residuals in the southwest of Westem Australia.

Angular Footwall

The pronounced angularity of the junction between the flared slope and the basal platform, as displayed at Wave Rock, and other similar Features at Hyden Hock and other inselbergs in the region, develops as a result of subacrial weathering. Rainwater and seepage wators trickle down the steepened lower slopes and cause the platform immediately adjacent to the hillslope to be wotted. The mek here disintegrates, and is subsequently washed out, leaving a miniature depressiont, one flake ($1-2$ cms) deep between the main platfonn level and the base of the fared slope. Such depressions, observed at the base of Waye Ronck and on Garge Ihock, near Corrigin, W.A., carry water after raim, causing further weathering of the granite with which it comes into contact, including that cxposed at the searp foot, As the shallow depression is catended lateratly by such weathering, the basal slope is medermined and stecpened, and an angular junction is deyeloped between hillslope and platiorm (Fig. 5).

Amphifheatres

Another feature well displayed at Hyders Rock, but not so Far descritoed fmom the Eastern States, is the amphitheatre. Jonnt clefts with flased bounding slopes occur on Hyden Rock (P, I) and, for instance, on several of the inselherge of northwestern Eyre Peninsula. These two areas have similar climates (both with hot sumaners, canl winters, $35-45 \mathrm{~cm}$, average ammal rainfall and a marked dry scason), but at Hyden Rock the slopes of the clefts have suffered marked racesssion as a result of soil moisture weathering and as a result have been widened to form large amphitheatres (Fig. 6). It is not known whether this more advanced stage of development reffects a time factor or the less resistant character of the porphyritic granitc exposed at Hyden Rock, but such developmants clearly contribute to the breakdown of the sheets of granite and to the formation of an overall stepped morphology an the inselbergs.

CONCLUSION

Though Wave Rock displays apparently umsuml features, it has much in common with similar forms described from Eyre Yeninsula and elsewhere. The available evidence suggests that Wave Rock evolved, as did the other flared slopes, by strong scarp foot weathering fullowed by erosional cxposure. This interpictation accounts for the ficld evidence more readily than any of the other hypotheses so far advanced.

ACKNOWLEIJCEMENTS

The writer wishes to thank Professor M. J. Wchb. Department of Geosraphy, U'niversity of Western Australia, and the Director, Geologial Survey of Vestem Australia, for froilitating in varions ways the investigation of Ilyden Rock and xeveral other inselbergs in the region. Some travel expenses were met from a Rescarch Griant from the University of Adelaide

Fig. 5. Development of an angular junction between flared slope and platform by local subacrial water and pool weathering. (a) Water trickling down Hared slope soaks the bedrock at the inner edge of the basal platfonn and weathers it. (b) The weathered debris is washed away, a shallow pool of water accumulates in the hollow so formed, and further weathering takes place. (c) The base of the flare is steepened and made angular as a result of weathering by pool water, and wonsequent
lateral extension of the poal depression.

Fig. 6. Sequential development of an amphitheatre from a joint-controlled cleft by soil moisture, weathering, undermining of bounding slopes, and progressive widening. Several such phases of weathering, with intervening spells of debris evacuation, are evidently represented in these clcfts and depressions with complex sides. The phases of weathering and erosion in the clefts, like those to which the flared slopes are attributed, are probably controlled by climatic changes or fluctuations or even seasonal and storm effects. a-d represents a sequence, representatives of which have been observed on Hyden Rock. dl shows the result of baselevel lowering in a narrow cleft (cf. PI. I). The depth of fill must decrease as the area of the denression floor increases.

REFERENCES

Anon. 1956 Land of the Southern Cross. Australian Publicity Council, Melbourne, Australia; 152 p.
Berliat, K., 1965 Exploratory clrilling for water in the sand-plain country 40 miles east of Hyden, pp. 8-9 in Annual Report (1964) Gcol. Surv, W. Austr., Perth, 72 p.
Cotron, C. A., 1952. The erosional grading of convex and concave slopes. Geog. Jour., 118, pp. 197-204.
Fenneman, N. F., 1908. Some features of erosion by unconcentrated wash. Jour. Geol., 16, pp. 746-754.
Mabbutt, J. A., 1961. "Basal surface" or "weathering front". Proc. Geol. Assoc. London, 72, pp. 357-358.
O'Riley, I., 1967. Wave that turned to stone. Walkabout, 33, (6), pp. 12-15.
Serventy, V., 1967. Landforms of Australia. Angus \& Robertson, Sydney, 132 p.
Twidale, C. R., 1962, Steepened margins of inselbergs from north-western Eyre Peninsula, South Australia, Zeitschr. f. Geomorph. (N.S.), 6, pp. 5l-69.
Twidale, C_{1}. R., 1964. Contribution to the general theory of domed inselbergs. Conclusions derived from observations in South Australia, 'Trans, and Papers Inst. Brit. Geogr., 34, pp. 91-113.
Twidale, C. R., 1968. Geomorphology, with special reference to Australia. Nelson, Melbourne, 406 p.

Plates 1 to :3

OBITUARY

Thomas Dilajer Cancpbeld (1894-1967)

Born at Milliechat in the Soulfeeast of South Australia Canplacll recejved his esily mlueation at Prinee Alfred College and malertuok tertiary study at the Eniversity of Adelaide: where he graduated in dental surgery in 1921 continumg these stndies to recelve a doctorate in 1923. His doctoral thesis wats published by the University in 1925 under the fitle "Dentition and Palate of the Australian Aboriginal" and has been widely atclained as a pioneer work in this field.

Soon after Graduation Campbell entered the: Dental Departuent of the Royal Adelade Ilospital at the first Dental House Surgeom, and in 1926 was apporinted Superintendent. He was elected Dean of the Facully rof Dentistry in 1938 , and appointed to the full-time University position of Director of Dental Studies in 1919. He becanue the first Professor of Dentistry in 1954 and upon retirement fonm years later was made Professor Eimeritus.

During his professional career latrof Campell recoived high recospition for his work. In 1948 he was made F.D.S.R.C.S. (London); in 1950, F.D.S.K.C.S. (Edinhurgh): in 1952 he was clectect an Honorary Member of the Odontological Section of the Royial Society of Medicine, London, and in 1966 at Fellow of the Australian College of Dental Surgeuns.

At all Limes Professor Campbell combined his dental studies with a keen interest in anthropology. In December 1926 he was associated with the formation of the Berard for Anthropologiend Research, University of Adelaide, and has played a leadisg role in its research activities. As organiser and leader of many expeditions to Central Australia in the 1920's and 30 's he was responsilule for the collection of a large amount of inportant data and material on many aspects of the traditional life of the aborigimal. Stone technology faseinated him and he spent countless hours searching for and making ta detaled study uf aborivinal stone implements. He contributed important papers to the literature on this subipet. Well known as an iwconnplished amateur film producer, Professor Camphell made a scries of colour-sound anovies on anpects of aboriginal technology for the Buard. He was chairman of the Board at the time of his death:

He became a meniber of this Society in 1922 and spent ten years on the Coment, bolding the office of Prosident in 1934-35. Following appointment to the Board of the Publie Tibrary Anscum ind Art Gallery in 1932, he became a foundation momper of the Museum Board in 1939, a [nnition which he held until his death. In addition to being a Fellow of the Australian Rescarch Comucil, Foundation Member of the Anstrislinn Institute of Aborginal Studies ant a Life Member of the Anthropological Socicty of South Anstralia, Professor Campbell was an honorary member of the Anthropology Staff of the South Australian Museum from I923 unti] lis death.

Tre was well fromw as a keen debater and will be remembered for Tis partiapution int many lively diseussions at hoyal Snciety meetings. A member of this Suciety with an outstanding international reputation, he died at liss home at Tusmore on 8th December, 1967.

Robert Edwards.

BALANCE SHEETS

Summary
THE ROYAL SOCIETY OF SOUTH AUSTRALIA INCORPORATED

Statement of receipts and payments for the year ended 30th june, 1968

the royal society of south australia incorporated
STATEMENT OF RECEIPTS AND PAYMENTS FOR THE YEAR ENDED 30th JUNE, 1968

[^15]
REPORT ON ACTIVITIES OF THE COUNCIL, 1967-68

Mectings

The usual cight ordinary mectings were held in the Society's rooms during the past year at which the attendance averaged 32. One special mecting was held on December 7th to ratify the new Rules and By-laws.

A total of 12 papers were read devoted to the following disciplines: - Zoology 8, Botany 3, Cenlogy 1. Lectures were given at each mecting and two exhibits presented.

Membership

Twenty-two new members were elected during the year and nine resignations were received. The membership now stands at 266 , the highest number in the histury of the Saciety.

The Council records with great regret the death of Fellons: Emeritus Pro[essor T. D. Campbell, a past president of the Society; Sir Tom Barr Sinith and Mr, J. K, Powrie.

Ruiles and By-luws

During the year the new set of Rules and By-Jaws approved at the December 1967 meetings was issued to all memhers. One amendment has since been passed at the meeting of September 12th, 1968. Rule VI (2) now reads:-

The nomination turn shall be lodged with the secretary and shall be submitted to the Council at its next meeting. Upon approval by the Council the nomination shall be submitted to the rext meeting of the Society and an election shall be held at the next meeting of the Society thereafter.

Sub-Committees of Council

The business of Council has been facilitated by the work of four sub-committecs:-

Library Committee-management of the Library
Publications Committec-production and maintenance of standards in the Transactions and any other publications of the Society
Awards Committee-nominations to the Council of nanes of members proposed for awands by the Society and other bodies
Researeh and Fondowment Fund Committec-manugement of investrnent funds.

Library

The library has operated pefficiently and profitably during the year, the Library Account having a credit balance of $\$ 1630$ as at June 30th 1968. The Council wishes to express their grateful thanks to the Assistants, Mrs. Dunlop and Mrs. Dougal for the services they have rendered to the Society both in the lilurary and in assisting the Treasurer.

Rechecking of the bookstock has resulted in 200 new entries being forwarded to the C.S.I.R.O. Index.

Fifty volumes have been bound and another 160 prepared for binding.
The exchange list has bern completely reviewed and adjustments made
where necessary. Some 340 journals are now received on exchange from 46 countries, 10 new exchanges were negotiated during the year. In addition 37 continuing subscriptions are now in operation.

Altogether 245 volumes were borrowed during the year, mainly on interlibrary loan within the state, interstate and with New Zealand.

Author and subject indexes for volumes 45 to 91 have been prepared for publication.

Publications

Vol. 91 of the Society's Transactions was published in December 1967, It contained 204 pages compared with 191 pages in Vol. 90 . The cost of printing seems to rise steadily each year but it has been possible so far to include all papers received before the June Council meeting which is normally taken as the final date for acceptance of material for the current volume.

Research and Endoument Fund

As a result of moves which were initiated two years ago, to improve the management of the fund, its finances are now on a reasonably sound basis. Accordingly this year it was found possible to make available some of the income, in the form of grants, to aid scientific research. Two grants for the calendar year 1968 were made, Dr, C. R. Twidale was awarded a grant to study the gcomorphology of the Arcoona Plateau, and Mr. I. M. Thomas and Mr. S. Shepherd on behalf of a group of workers will receive a sum of money to finance an expedition to Pearson Islands to study the flora and fauna of the islands and adjacent waters.

Verco Medal

The Council awarded the Verco Medal for the year 1968 to Mr. R. C. Sprigg.

OFFICERS FOR 1967-68

Summary

ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

Patron:
IIS EXCELLENCY LIEUTENANT GENERAL SIR FDRIC M. BASTYAN, K.C.M.G., K.B.E., C.B.

COUNCIL FOR 1967-68

President:
K. R. MILES, D.Sc., F.G.S.

Vice-Presidents:
H. B. S. WOMERSLEY, D.Sc.
F. T. MITCHELL

Secretary;
W. K. HARRIS, B.Sc.

Editor:
J. K, TAYLOR, B.A., M.Sc., B.Sc.Agr,

Librarian:
N. H. LUDROOK, M.A., Ph.D., D.I.C., F.G.S,

Treasurer:
S. A. SIIEPHERD, B.A., LL.B.

Assistant Editor:

1. M. THOMAS, M.Sc., M.I.Biol.

Programme Secretary:
D. E. SYMON B.Ag.Se.

Members of Council:
J. A, PRESCOTT, C.B.E., D. Sc ${ }_{6}$
M. J. TYLER T.R.S., F.A.A., F.R.A.C.I.
It T. HUTTON, B.Sc., A.S.A.S.M.
C. B. WELI, M.Ag.Sc.
K. E. LEE, D.Sc.
II. E. WOPFNER, Ph.D.

Auditors:

Messrs. MILNE, STEVENS, SEARCY \& CO.

LIST OF MEMBERS

Summary

ROYAL SOCIETY OF SOUTH AUSTRALIA

LIST OF NEW MEMBERS

Adam, J. R., B.E., A.M.Aust.I.M.M., Dept, of Mines, Box 38 P.O., Rundle Street, Adelaide, S.A.
Ancove, P. C., R.D.A., M.A. I.A.S., Dept. of Agriculture, Gawler Place, Adelaide, S.A. von Behrens; D., Naracoorte High School, Naracoorte, S.A.
Blissetry, A. H., M.Sc., A.M.Aust.I.M.M., F.C.S., Dept, of Mines, Box 38 P.O., Rundle Strect, Adelaide, S.A.
Boemmer, Miss S., B.A. (Mus.), Dip. S.T., Bedford Park Teachers College, Bedford Park, S.A.
Cannick, R., Ph.D., Mawson Inst. for Antarctic Research, University of Adelaide. Davx, R., B.Sc. (Hons.) Ph.D., L.R.I.C., F.G.S., C/o A.M.D.E.L., Conyngham Street, Frewville, S.A.
Dyke, N. W., A.C.A.A., Mem. Inst. Inst, \& Coni., Aust,, Seaton, S.A.
Ernst, L. K., 50 Airdrie Avenue, Findon, S.A.
Farrburn, W., B.Sc. (Hons,) A.M.I.M.M., F.G.S., Dept. of Mines, Box 38 P.O., Rundle Street, Adelaide, S.A.
IIenningsen, M.. B.E., F.S.A.S.M., A.M.I.E., Aust., A.M.Aust.I.M.M., Dept. of Mines, Box 38 P.O., Rundle Street, Adelaide, S.A.
Hifhn, M. N., B.Sc., Dept. of Mines, Box 38 P.O., Rundle Street, Adelaide, S.A.
Hutchison, A. R., 218 Shepherds Hill Road, Bellevue Heights, S.A.
Jenkins, R. J. F., B.Sc. (Hons.), Dept. of Geology, University of Adelaide.
Kenneiny, Miss G. R., B.Sc., Ph.D., Flinders University, Sturt Road, Bedford Park,
S.A.
McGowan, B., B.Sc,, (Hons.), Ph.D., Dept, of Mines, Box 38 P.O., Rundle Street,
Adelaide, S.A.
Muler, P. G., B.Sc., (Hons.), A.M.Aust.I.M.M., Dept. of Mines, Box 38 P.O., Rundle Street, Adelaide, S.A.
Mourchort, E., B.Sc., Dept. of Mines, Box 38 P.O., Rundle Street, Adelaide, S.A.
Moulns, M, S., F.R.E.S., 14 Chisholm Street, Greenwich, N.S.W. 2065.
Olsen, A. M., M.Sc., Dept. of Fisheries and Fauna Conservation, Adelaide, S.A.
Wrlson, R. B., B.Sc., (Hons.), 22 Chetwynd Street, West Beach, S.A.
Wollaston, Miss E. M., Ph.D., Botany Dept., University of Adelaide.

LIST OF LECTURES AND EXHIBITS, 1967-68 AND AWARDS OF THE SIR JOSEPH VERCO MEDAL

LIST OF LECTURES GIVEN AT MEETINGS DLRING THE YEAR 1967-68

Sepl., 1967 Dr, H. B. S. Womensley: "Aspects of Coral Reef Biology".
Oct., 1967 Mr. C. A. Martin: "Moomba, a South Australian Gas Field".
Nov,, 1967 Mr. T. R. N. Lothlan; "The work of the National Parks Commission of Sonth Australia".
ApriI, 1968 Mr. D. R, Cunemet "The Indistrial future of South Australia".
May, 1968 Prof. C. M. Donald: "Rural development in the Northern Territory",
June, 1968 Prof, R. W. R. Rutlañ: "A structural view of Continental Drift".
July, 1968 Mr. F. C. Shuge: "The Rule of Research in Industry".
Aug., 1968 Prof. I. R. M. Radok; "Waves and tides of the South Australian Coast".

Exhbits

Dr. B. G. Fonbes: Some recent maps issued by the Geological Survey of South Australia.
Mr. M. J. Tyben: Relationships between musculature and vocal sac structure in frogs.

AWARD OF THE SIR JOSEPH VERCO MEDAL

CONTENTS

D. R. Smyth and C. M. Philpoti: A field study of the Rabbit Bandicoot, Macrotis lagotis, Marsupialia, from Central Western Australia 3
R. M. E. Welbourn and R. T. Lange: An analysis of vegetation on stranded coastal dunes between Robe and Naracoorte, South Australia 19
R. Schonde: Further Taxonomic notes on the species of Millotia Cassini (Asteraceae) 27
G. Benl: A new species of Ptilotus from South Australia 33
J. A. Harris: Age structure, growth rate and spawning cycle of a popula- tion of Yellow-eye Mullet Aldrichetta forsteri (Cuv. and Val.) from the Coorong Lagoon, South Australia 37
M. Smyth: The distribution and life history of the Skink, Hemiergis peronii (Fitzinger) 51
L. M. Angel and P. M. Mawson: Helminths from some lizards mostly from South Australia - 59
I. M. Thomas: Two species of Saccoglossus (Enteropneusta) from South Australia 73
E. M. Campbell: Lunettes in Southern South Australia 85
C. R. Twidale: Origin of Wave Rock, Hyden, Western Australia 115
Obituary: Thomas Draper Campbell 125
General Account, Library Account 126
Research Fund 127
Report on Activities of the Council 1967-68 128
Officers for 1967-68 130
List of Members 131
List of Lecturers and Exhibits, 1967-68 132
Awards of the Sir Joseph Verco Medal 132

[^0]: *Royal Zuologital Soujety of South Australia, Frome Rond, Adelaide, South Australia 5000. F Present address: Research School of Biological Scjences, Australian National University, Cinberra, A.C.T. 2600.

[^1]: ${ }^{\circ}$ Division of Land Reesearch, C.S.I.A.O., Canherta, A.CT.

[^2]: * Botanische Staatssammlung München, Germany.

[^3]: * Fomerly Department of Zoology. University of Adelaide. Present address, Deparment of Zoology, University of Queenslaud,

[^4]:

[^5]: * Females with no siga of reproductive activity included juveniles, ono-yearenlds, and, in March and April, older animals. Their ovarian follicles were small and transparent. Females were said to have devaloping follicles when the folliches berame an opaqua whiter though thoy had enlarged very littlo if at all. Lator, after the follicles land wbivusly begun lon enlarge, the fematos wore saich to have ovarian eggo

[^6]: *Departnent of Tonkury, University of Aelelaid?.

[^7]: - It is of intarest te wote that Deima fraseri (the to pe hast of Paradistontim crucifcy), a

 than that at II. peronit, which is much smaller than that of T. ressases.

[^8]: $\begin{aligned} A & =\text { Abundant }(>40 \% \text { of heavy fraction }) \\ C & =\text { Common }(10-40 \% \text { of heavy fraction })\end{aligned}$
 $P=P$ resent ($<10 \%$ of heavy fraction)

[^9]: ? Various other lypotheses have heen put forward to explain similar landermes in ofleer parts of the world (Cooke, 1934, 1440 , and lkaisz, 1924 ; Grant, 194n, Nollon sum Schriever. 1933: Prouty, 1452), but nonn seems to lave amy relerazace to the situstiom in sumthen Souti Austratim.

[^10]:

 dotisminimitions lant Incen corried out.

[^11]: -The 30° dips of the beds in the Conks: Plains Inmette on the site awiay from thw batie presumably ropresent true frueset bedding. bit the low angle beds in Cooke Plains arnl Latic
 It igits.

[^12]: It is generally atcepted (Bagnold. 1941, Chepil. 1945. I958. 1959; Crepil umd Milne
 intiate movement of sume particles undur certain ontamm conditions, though stronges winds ate mere commonly required. 13 mph . is alse the lower limit of one uf the chasses on the deatufort areale.

[^13]: Su suh-humid 7 egions. the taintall is sufficient to allow the devolopment of en-ardimatud drainece syiffos whther than dry bwins of internal dramage, and the bwaporation ate is bower. Thurcfore clelletion is limsitort.
 "In several districts in southern Suuth Anstraha, for "Lampe near Snomewn. sume lakes hive associated lomates. Whilst others do not. Sush factors ass the anmont mand nature of materal carried into the lates, and the length of time the lake is occuped hy watpy (fmabling waur trasporl) or is siry (emabling deflathon) onust be considered in explaining this distrilution.

[^14]: * Department of Geography, Universily of Adelaide.

[^15]: Aundtors' Report
 30th June, 1968 and have obtained all the information and explanations woYal SOCIETY OF SOUTIL AUSTRALIA (1NCORPORATED) for the year ended cash transnctions of the Society for the year ended 30 th June, 1968 according to the by the Books of the Society submitted. We have also verified the Schedule of Investments at 30 inf June 1968 . 68.

 Milne. STEVENS, SEARCY \& CO.,

