TRANSACTIONS OF THE ROYAL SOCIETY OF SOUTH AUSTRALIA

 INCORPORATEDADELAIDEPUBLISHED AND SOLD AT THE SOCIETY'S ROOMSKINTORE AVENUE, ADELAIDE

TRANSACTIONS OF THE ROYAL SOCIETY OF SOUTH AUSTRALIA

INCORPORATED

ADELAIDE
PUBLISHED AND SOLD AT THE SOCIETY'S ROOMS
KINTORE AVENUE, ADELAIDE

Registered at the General Post Office, Adelaide, for transmission by post as a periodical

CONTENTS

Page
Obituary-Edwin Ashby 1
Bernot, R. M., and Vogelsang, E.: Comparative Vocabularics of the Ngadjuri and Dieri Tribes, South Australia 3
Mercer, F. V.: Atmospheric Pollen in the City of Adelaide and Environs 11
Turner, A. J.: A Revision of the Australian Heliodinidae (Lepidoptera) 14
Womersley, H.: Rediscovery of one of Canestrini's Australian Acarids 28
Johnston, T. H., and Mawson, P. M.: Some Nematodes from Australian Birds of Prey 30
Evans, J. W.: New Australian Leaf-hoppers 36
Womersley, H.: Revisional Notes on the Australian Species of Tenuipalpus (Acarina, Tetranychidae) 42
Crocker, R. L., and Skewes, H. R.: The Principal Soil and Vegetation Relationships on Yudnapinna Station, North-west South Australia 44
Womersley, H., and Southcotr, R. V.: Notes on the Smarididae (Acarina) of Aus- tralia and New Zealand 61
Lubbrook, N. H.: Gastropoda from the Abattoirs Bore, Adelaide, South Australia, together with a List of some Miscellaneous Fossils from the Bore 79
Crocker, R. L.: Notes on the Gdology and Physiography of South-cast South Aus- tralia, with reference to late Climatic History 103
Love, J. R. B.: Worora Kinship Gestures 108
Johnston, T. H., and MAwson, P. M.: Ascaroid Nematodes from Australian Birds 110
Tindale, N. B., and Noone, H. V. V.: Results of the Harvard-Adelaide Universities Anthropological Expedition, 1938-39. Analysis of an Australian Aboriginal's Hoard of Knapped Flint 116
Prescott, J. A., and Skewes, H. R.: An Examination of some Soils from Tropical Australia 123
Johnston, T. H., and Angel, L. M.: Life-cycle of the Trematode, Diplostomum, murrayense J. \& C. 140
Chapman, F.: Report on Foraminiferal Soundings and Dredgings of the F.I.S. "En- deavour" along the Continental Shelf of the South-east Coast of Australia 145
Cooke, W. T.: The Bromine Content of Some Saline Waters in South Australia 212
Finlayson, H. H.: On Central Australian Mammals, Pt. ii. The Muridae (continued) 215
Tindale, N. B.: Native Songs of the South-east of South Australia, Pt. ii 233
Cleland, J. B., and Black, J. M.: An Enumeration of the Vascular Plants of Kangaroo Island. Additions and Corrections 244
Wark, D. C.: The Variability of the Length of the Rainfall Season and the Amount of Influential Rainfall in South Australia 249
Johnston, T. H., and Mawson, P. M.: Additional Nematodes from Australian Birds 254
Baldwin, J. G., and Crocker, R. L.: The Soils and Vegetation of Portion of Kangaroo Island, South Australia 263
Johnston, T. H.: Bathers' Iach (Schistosome dematitis) in the Murray Swamps, South Australia 276
Johnston, T. H., and Angel, L. M.: Life-history of the Trematode, Petasiger australis n.sp. 285
Womersley, H.: The Red-legged Earth-mites (Acarina, Penthaleidae) of Australia 292
Mawson, D.: The Wilpena Pound Formation and underlying Proterozoic Sediments 295
Mawson, D.: Middle Proterozoic Sediments in the Neighbourhood of Copley 304
Mountrord, C. P.: An Unrecorded Method of Manufacturing Wooden Implements by Simple Stone Tools 312
Johnston, T. H., and Angel, L. M.: The Life-history of Echinostoma revolutum in South Australia 317
Womersley, H.: New Species of Geckobia (Acarina, Pterygosomidae) from Australia and New Zealand 323
Steele, H. Vevers: Some Observations on the Embryonic Development of Austroicetes cruciata Sauss. in the Field 329
Black, J. M.: Additions to the Flora of South Australia, No. 40 333
Balance-sheet 335
List of Fellows, etc. 336
Index 339

OBITUARY NOTICE

EDWIN ASHBY, 1895-1941

Summary

By the sudden death of Edwin Ashby on 8 January, at his home at Blackwood, South Australia, our Society has lost one of its oldest members. He was a member of Council from 1900 to 1919 and Vice-president from 1919 to 1921. He was a Fellow of the Linnean Society of London, and a Member of the British Ornithologists' Union.

THE LATE EDWIN ASHISY

TRANSACTIONS OF THE ROYAL SOCIETY OF SOUTH AUSTRALIA INCORPORATED

OBITUARY NOTICE

EDWIN ASHBY, 1895-1941

By the sudden death of Edwin Ashby on 8 Jantuary, at his home at Blackwood, South Australia, our Society has lost one of its oldest members. He was a member of Council from 1900 to 1919 and Vice-President from 1919 to 1921. He was a Fellow of the Linnean Society of London, and a Member of the British Ornithologists' Union.

Born at Capel, Surrey, England, in 1861, he was a delicate child, and except for a short period at a small Friends' School in Surrey his education was much interrupted by illness.

His intense interest in most branches of Natural History was acquired from his father, who frequently took all his seven children for excursions around their home at Redhill, Surrcy, in search of butterflies, plants, etc. On leaving school he travelled the north of England for his father's business of tea merchant of Idol Lane, London. While travelling he again developed pneumonia, and his father shortly afterwards dying of the same complaint, the family became alarmed and, on the doctor's orders, he was sent on a long sea voyage. He cante to Australia on the ship "Torrens" in 1885, and after visiting all States, as well as New Zealand, he returned to England in 1888 via America. Having a heavy cold and hay-fever on his return, he was again ordered to leave before the winter. Thereupon, with his eldest sister, he came and settled in Adelaide. On his marriage, in 1890, his sister returned to England.

As a member of the Society of Friends, he attended many conferences in the different States, and it was during such trips, as well as while inspecting properties as a land agent, that he was able to get into the scrub and indulge in his study of bird and plant life. In 1902 he moved to Blackwood. In 1918 he visited America with his eldest son, who required medical help, and was thus able to continue his natural history interests in the neighbourhood of Baltimore. Returning from America, the rest of his life, except for visits to Tasmania and Victoria, was spent at Blackwood.

He was an enthusiastic gardener and paid particular attention to the growing of native shrubs from all States in his garden at Blackwood. Other groups of interesting exotic plants, such as Cactaceae and various succulents, also claimed his attention. Being an ardent supporter of Native Reserves, such as Flinders Chase, he was a prime mover in obtaining the Chauncy's Line Reserve.

His published works have been chicfly concerned with the Chitons, and since Iredale and Hull's "A Monograph of the Australian Loricates" (Roy. Zool. Soc., N.S.W., 1927), which gives a complete bibliography to that date, he has written the following:
1928 The Rediscovery of Tonicia cuneata Suter and Acanthochites thileniusi Thiele, together with the description of a new genus and short review of the New Zcaland Acanthochitonidae. Tr. N.Z. Inst., 58, 392-407
1928 Notes on a Collection of Chitons from the Capricorn Croup, Queensland. Tratis. Roy, Soc. S. Aust., 52, 167-173

1928 Further Notes on Western Australian Chitons. Trans. Roy. Soc. S. Aust., 52, 174-181
1928 Notes on and Additions to Australian Fossil Polyplacophora. Proc. Roy. Soc. Vict., 41, (2), (n.s.), 220-230
1928 South African Chitons, being a Description of the Polyplacophora represented in the Turton Collection. Proc. Mal. Soc., 18, (2), 76-93
1929 Contribution to the Fauna of Rottnest Island, No. 2, Polyplacophora. J. Roy Soc. W. Aust., 15, 47-54

1929 New Zealand Fossil Polyplacophora. Tr. N.Z. Inst., 60, 366-378
1929 Notes on the Fauna of Dirk Hartog Island, Western Australia. No. 1, Aves; No. 2, Polyplacophora. Trans. Roy. Soc. S. Aust., 53, 54-66
1929 Taxonomic Value of Characters in the order Polyplacophora. Proc. Mal. Soc., 18, (4), 159-164
1929 Monograph of the South African Polyplacophora. Annals S. Afr. Mus., 30, (1), 1-59
1939 Notes on the Chiton, Dinoplax gigas, with descriptions of the Juvenile and various varieties. Annals Durban Mus, 3, (4), 77-79
1939 Fossil Chitons from Mornington, Victoria. Proc. Linn. Soc., London, pl. iii, 186-189
1940 A New Fossil Cryptoplax from the Pliocenc of S. Aust. Trans. Roy. Soc. S. Aust., 64, (2)
Jointly with B. C. Cotton.
1929 Notes on Australian Polyplacophora. Trans. Roy. Soc. S. Aust., 54, 57-58
1934 New species of Chitons from Broome, Western Australian. J. Roy. Soc. W. Aust., 20, 213-219

1936 South Australian Fossil Chitons. Rec. S. Aust. Mus., 5, (4), 509-512
1937 Descriptions of two New Species of Australiant Chitons with additional Notes and Records. Trans. Roy. Soc. S. Aust., 41, 145-148
1939 New Fossil Chitons from the Miocene and Pliocene of Victoria. Rec. S. Aust. Mus., 6, (3), 209-242

His ornithological papers have already been listed in the "Emu" for 1 April, 1941. Botanically, he has not published much, but an important paper, "Review of the South Australian representatives of the genus Correa, with descriptions of new species," appeared in the Proc. Linnean Soc., London, pt. iii, 214-221, for 1939.

COMPARATIVE VOCABULARIES OF THE NGADJURI AND DIERI TRIBES, SOUTH AUSTRALIA

By R. M. BERNDT and T. VOGELSANG

Abstract

Summary

In this paper vocabularies of the Ngadjuri ['qad'juri] and Dieri tribes of South Australia are compared. That of the Ngadjuri was compiled from information obtained at intermittent periods from Gunaia ['Gunaia] (third child) while on a visit to Adelaide during February to March 1940; that of the Dieri is by T. Vogelsang who was born in the Dieri country and knows their language. Gunaia was seventy-seven years of age and is ['Waria] of Tindale (1937, p. 149) and [Nadjli'buna] of Berndt (1940, p. 456).

COMPARATIVE VOCABULARIES OF THE NGADJURI AND DIERI TRIBES, SOUTH AUSTRALIA

By R. M. Berndt and T. Vogelsang

[Read 10 April 1941]
In this paper vocabularies of the Ngadjuri ['yad'juri] and Dieri tribes of South Australia are compared. That of the Nyadjuri was compiled from information obtained at intermittent periods from Gunaia ['Gunaia] (third child) while on a visit to Adelaide during February to March 1940; that of the Dieri is by T. Vogelsang who was born in the Dieri country and knows their language. Gunaia was seventy-seven years of age and is ['Waria] of Tindale (1937, p. 149) and [Nadjli'buna] of Berndt (1940, p. 456).

Except for a few words by S. Le Brun in E. M. Curr (1886, 2, p. 140) and by N. B. Tindale (1937, pp. 149-153), no vocabularies of the Ngadjuri people have been recorded.

The Ngadjuri language belongs to the "Lakes" or more properly to the "Eastern Group," and the construction of words is similar to that of the Wailpi of the Northern Flinders Ranges. A broad comparison of the two languages (Ngadjuri and Dieri) shows only a slight similarity.

The following table compares several kinship terms of the Wailpi, Pankala (Bangala), Ngadjuri and Dieri, those of the first two tribes after Elkin (1938).

		Wailipi	Pankala	Ngadjuri	Dieri
father	-	bapi	bapi	'vapi	'1japeri
mother	-	yami	jami	'pami	' yandri
wife	-	atuna	katu	'atu	'noa
sister	-	yakana	yaka	'jaga	'kaku (clder sister)
eldest brother	-	nayana	yuya	nııja	'neje

Hale and Tindale (1925, pp. 57-60) recorded many words of the Wailpi tribe to some extent similar to those of the Ngadjuri.

Reference to Dieri vocabulary and grammar has been made recently by Berndt and Vogelsang (1941, p. 369).

In the transcription, the alphabet of the International Phonetic Association as modified for Australian languages has been used (Tindale, 1935 and 1940), except in the case of the Wailpi.

The distinct [v] sound occurs, as in ['vapi] (father) and [vad'napa] (circumcision), and is probably the most noticeable. This is often a [bv] sound hard to distinguish from the $[b]$; it is rare in Australia but occurs in the Flinders Ranges, South Australia (Hale and Tindale, 1925, and E1kin, 1938). Capell also mentions that the bilabial [v] is found in parts of north-west Australia.

A PARTIAL LIST OF PRONOUNS

	Personal		Possessive			
	ngadjuri	DIERI			Ngadjuri	DIERI
I -	- neiji	'jani	my	-	neiji	'fakani
we	- 'gadiu	'paiani	mine		nadju, muta	'jakani
you	- nena	'jidni	our	-	'gadlu	'yaia'ıani
he	nena	nauja, nulu	your	-	nena	'jinkani
she		nania				
it -	- gundi'itji	'jenia				

Objective

GENERAL VOCABULARIES

	N'gadjuri	Dieri	Wailpi
abdomen -	bunduka	'mandra	
adam's-apple	'judni'muku	'wonkili	
adder, large	'apara	'wiparu	
adder, small wood -	munka		
ah! - -	'wa!		
ancestral being (a giant)	mirlki		
ancestral times (eternal dream-time)	warumata	'warula'mala	
ant, black - -	'wipa	'mirka	wipa
ant, bull -	'ardu		aldu
ant, green	muni		
ant, winged	'wip'a	'katjiriri	
ant-hole, winged	'wip'a'junta, 'wip'a'wadlju	'karjiriri'minka	
anus - - -	mundu'wadlju		
aperture (of the body) -	,japa		
arm - -	'yuntu	' jura	
arm-pit, hair of -	'bidnu'buti	'kapuru'nujdu	
away -	'nukana		
back, the	'jadna	'tuku	
back-bone of a fish	'jadna'walpu	'tuku'muku'parundru	
barter, or exchange	kopera	'jinki'malina	
bat - -	mik'a	'pintji'pintjin'dara	
beat, to - -	dundu	nandrana	
beating on the ground to accompany chants -	bun'ba'ta	'kata'nandrana	
bee, stingless, or blowfly	mitji'mitji	'muntju'runtju	
berry, a grey bush with green -	'uyma		
billy-button (a flower) -	'wilu		
bird, yellow-breasted -	'arku'eta		
blackfellows (or people)	'juru	'kana	
blind - -	menámika	'putju	
blood -	garu	'kumari	arti
boomerang	'wadria	'kir:a	wadna
bone, sharpened - -	'baija	'muku'wutju	
boy (before circumcision)	'mandu	'kanku	
boy (after circumacision)-	vad'napa	'karuwali, 'tjutjuru	
branches rustling -	inderi		
breasts - - -	yama	'yama	
breasts, heavy - -	yama'yara	'yama'madi	
"bruising" (during revenge expedition after			
a death) - -	midli'inda		
bullroarer, large - -	'wetana	'junta	

	Ngadjurt	Dieri	Wailpt
hut	ganagu	'1jura	
hymen	mita'japa		
jaw	'yilkinja		
kangaroo (general)	gudla	'tjukuru	
kangaroo, rock -	gandu		
kangaroo, red (male)	'wudlu		wudlu
kangaroo, red (female)	'waulwi		
kangaroo-skin bag	'wudli'jakuda	'tjukuru'jakuta	
king-fisher	'julu		
knee -	bura	'pan'tja	
labia minor	muniyi, bimba'kakuti		
lark	dere :lja		
like this -	'yaru	'jeruja	
lip	'gimi	'mana'mim :i	
lizard, frilled	gadnu		ardnu.
lizard, jew	'kudnu	'kadni	'kadni
lizard, sleepy	'alda		
lizard, small	'iti'iti	'kadiwarı	
look	'inakuka'ic'la	'najina	
louse	gudlu	'kata	
$\begin{aligned} & \text { magpie, small } \\ & \text { backed) } \end{aligned}$	bindi'garu		wurukuli
mallee -	gula		yunda
mallee hen	budni		
mallee root, water-hcarin	guya	'japa	
man, a -	'juri, meru, 'epa		wulka
man, old		,pinaru	
man, young		materi	yongari
medicine-man (male			
fenrale) -	mindaba, mindabi	'kunki	
milk, human	'ıjama	'tyama,	
Milky-way	'wali'bari	'kadri'pari' wilya	
moon	bera	'pira	vera
morning -	'nupuru	'tayu'bana	
mouse -	mupu	'punta	
move! do not	'panjeli!	',wata'walki'walkiamai!	
mulga	mulka	'nıalka	
nail, finger	herini	'mar:a'pir : i	
nape of neck	'yundi	'wakura	
native tobacco	'pitjuri	'pitjiri	
net, fishing	minda, mindi	'jama	
night -	'wildja	'tinkani	
nipple (female) -	'1jami	1 1 ama'tjilpi	
no! (stay)	-'una !		
no! (refusal)	'ne!	'wata	
noise	'walpara	'mir'tja	
nose	mudla	'mudla	
nostrils -	mudla'wadlju	'mudla' wilpa	
nut grass (tubers)	'jalka	'jaua	
ochre, black	muruya	'mita'karku'maru	
ochre. red	'jumbura, mildi	'mita'karku'maralji	
opossum	bilda	'pildra	
opossum rug	bildapalda		
opossum skin pad	'walka		
owl, large	'winda	'winta	

Dieri
Wailpi
owl, small - - 'yani 'munju
parrot, green tree - guli
parrot, grey - - 'wurebu
parrot, blue mountain
parrot, mulga - - gupilja
parrot, red-backed -
parrot, shell - - 'wulur:i
parrot, blue-bonnet
peach, wild - - 'wuti
pearl-shell - - makil:a
pears, wild - - 'jawala pears, wild (roots of)
penis - - - 'wari
penis, erection of - 'wari'ewaku
picking up - - 'narinjenara
playstick (knobbed) - 'jakura
playstick (thrown through
a bush or along claypan)

- 'kukuru
playstick (plain) - 'waba
Pleiades - - - bulali
pointing-bone - - badnu
porcupine grass (Triodia) 'nala
potatoes, wild
pouch (for carrying
objects in) - -
pubic covering - - 'wunar
pubic hair - - 'yani
purulent discharge - gaba
quartz, white - - 'judla'gadna
quandong - - gu'ti
rain - - - galwi
rain-maker - - galwi'jura
rain-stone (gypsum) - galwi'biki
rain-bow - - guriyi
rat - - - wada
reeds (at waterholes) - 'jaki'walala receptacle or wooden dish revenge expedition (hon-
ing) - - - badn
ribs - - - 'uriuj
robin red-breast - - 'jupi
round - - - buri
sandalwood tree - bulkara, baru
scapula - - - 'weri
scars (on body) - - maijka
scrub land - - 'walpa
seeds, Acacia - - min'ga
seeds of the silverwattle - vaka'mai:
seeds, ground - - bulpa
semen - - - 'yuru
shadow - - - buya
shaking out dust - 'kunma'rindma
she-oak tree - - gudli
bard'laru
'katatara
'pulanku
wulti
'kaldrati
'kidni
wariardi,
'manina'kurana
'kuku:r:u'pirkina aya
'mankara'wora
'naria'moku
'jakuta
'ijampu
'winti
'talara'marda
'talara'kunki
'talara
'kuri'kir:a wuranyi
'punta
'wirka, 'wilti
wichi
'piya
'pankiriri
'dampu'dampuru, 'pira'pira
'kalju'mara
embura
'tuktu'mukut
'dapa
'mita'kunari
'kuntjiripatia
'punpu
'katu
'kanti'kanti'bana

Ngadjuri
Dieri
Wailpi
shin - - - 'yati
silverwattle - - vaka
sing, to - - guri'wayutja 'wankana
sit, to - - - ikaya 'jamana
sitting down of youth at initiation -
sky - - - ikara
slecp - - - meja'wanti
snake, carpet - - mudlu
snake, mythological - 'akaru
snake, small red (asso-
ciated with the 'akaru)
snake, small - -
snake, tiger - - 'arkubi
snake, whip - - 'wiperu
Southern Cross (lit. eagle)
Southern Triangle
sparrow, diamond - 'iti
spear

- 'wincla
spear-thrower - - midla
spider, black - - 'waku
'marankara
spider, trap-door - 'arambura
spider's web - - 'waku'ŋuı 1 ura
spine
- bari
spirits or ancestral beings
linjura
spirit of deceased - 'w111' japi
spirits causing heat - 'epa'tura
- muyiura
spirits inhabiting hills
spirit-children
- muri'papa
spirits that torment - 'wunda'winjut
spirit-men (ancestral or
medicine-men) - mindaba
spirit-world - - 'kintjura
star - - - budli
stick - - - 'widni
stone - - - murku
stone for grinding steds
stone, a creck - - gunja
stony country - - 'udnamutn
stone-axe
stomach - - - bunduka
string or fibre
- 'ita, 'yuri
stul - -
sumrise - -
$\begin{array}{ll}\text { sunset - } \\ \text { subincision } & - \\ \text { s }\end{array}$
swelling of penis after
circuuncision - - mudjuna
swelling, body - - mipari
talk, to - - - mulka
"talk." by sticks on the ground, or "silent-talk"
tecth Jatámulka
testicles - - \quad gadlu
- 'jandu'yalpayda 'ditji'wiri
'pari'tjiwaka buudli
'tuku'julkuru, 'tuku'wirdi
'mura'inura
'kutji
'pita
'marda miri
'marda'kuparı mara, wadla
'marda'paltirani
'kalara
'mandra
'jinka
'ditji yuundu
'ditji'dunka
binaru
'wanku
'wiparı
'paia'tidna
'mankarawara
'tiwilitja
'kalti wadlala
fandu, 'djendı
bita
muyari
'purulkt1'tjerina
'tara'kana
'jatana
'mana'tandra
'kadlu'kapi

ATMOSPHERIC POLLEN IN THE CITY OF ADELAIDE AND ENVIRONS

By F. V. MERCER, University of Adelaide
(Communicated by J. G. Wood)

Summary

The work described in a previous paper on pollen frequencies (Mercer, 1939, Trans. Roy. Soc. S. Aust., 63, (2) , 372) at Adelaide has been continued for a further year. Certain unknown grains have since been identified, and as a result of the two years' observations it is now possible to present a generalised picture of the pollen grain cycle in Adelaide.

ATMOSPHERIC POLLEN IN THE CITY OF ADELAIDE AND ENVIRONS

By F. V. Mercer, University of Adelaide
(Communicated by J. G. Wood)

[Read 10 April 1941]
The work described in a previous paper on pollen frequencies (Mercer, 1939, Trans. Roy, Soc. S. Aust., 63, (2), 372) at Adclaide has been continued for a further year, Certain unknown grains have since been identified, and as a result of the two years' observations it is now possible to present a generalised picture of the pollen grain cycle in Adclaide.

The sites were the same as before, but vertical as well as horizontal slides were exposed at each tri-weekly period during the year 1 August 1939-31 July 1940. At the Town Hall the vertical slides contained $63 * 7 \%$, and at Croydon 63.5% of the total count, and at each individual count the percentage of cach species was approximately the sanue on both sides. The relative percentages of the different species are shown in the accompanying table, the frequencies and incidence throughout the year being approximately the same as previously reported.

Species not previousiay identified
Dock (Rumer spp.) occurred in very small quantities from SeptemberDecember, probably from plants commonly growing on wasteland.

Salvation Jane (Echium plantagineum L.) occurred sporadically from October-November. The species is normally insect-pollinated and rarely becomes atmospheric.

Walnut (Juglans regia I..)-A few grains regularly from mid-October to mid-Novenber.

Sisymbrium spp.-Occasionally present in September-October.
Olive (Olea curopea L.) -Common in many areas, especially in the foothills. Grains occurred from end of October to end of November. At the Waite Research Institute, Glen Osmond, counts rose from one or two grains at the end of October to 2,200 per unit area on 13-15 November, and thereafter fell to zero at end of November. At other sites a similar incidence but smaller numbers was observed.

She-oak (Castarina spp.), reported as No. 3 in the previous communication; it occurred over extended periods May-July and August-December but never more than 2% of the total. Native she-oaks common in the Mount Lofty Ranges have following flowering periods: C. stricta, summer; C. striata, June-December; C. Muclleriana, May-Decomber.
"Unknown group"-This is a residue of grains of doubtful origin. It reaches a maximum in early spring when counts are high and doubtless includes some already known tree pollens which are variable and difficult to identify at the magnifications used for counting. The individual members of the group are never present in large amounts nor for any length of time, and not therefore likely to be of importance from a hay-fever aspect at Adelaide.

The Generalised Porlen Cycle

This is shown graphically, utilising the data accumulated over two years. The incidence and naximum for any species is the same for any part of the Adelaide area, although the actual number of grains present depends on the composition of adjacent vegetation.

All species listed produce pollen over long periods and can be regarded as suspects in causing hay-fever. It is noteworthy that wild oats (Avena fatua), still one of the commonest grasses around Adelaide in August-September with large pollen grains is rarely found on the slides. Pollens found occasionally or

General Pollen Chart in the City of Adelaide.
Each vertical division equals five grains per day per four square centimetres.
locally but not listed include: Euculyptus spp. (September-April); Tamari.r (January-February) ; Malvaceae (probably Lagmaria), Spring.

In Spring, at higher levels, such as at the Town Hall, Adelaide, the grass pollen consists mainly of smaller grains, whereas at the lower levels of the University and Croydon, both large and small grains are about equal.

The outstanding features of the cycle are:
June-July: Ash;
August-Scptember: chiefly exotic trees, notably pines, elms, plane, Cupressus, and occasionally Acacia and Casuarina;
August-April: annual and herbaceous plants, notably grasses.

The above cycle applies only to Adelaide and its environs. At increasing distances from the city the prominence of pollen from introduced species is probably replaced by that from indigenous species.

I inentification of Common Pollens

The following key permits practical identification of the prominent pollens likely to cause hay-fever in Adelaide. It does not pretend to be a systematic classification but is arranged for practical convenience.

Bladiers present.	Pinus spp.
Grains spherical-	
(a) starch grains prominemb	size 70μ Arancaria ,, 30μ Rumex spp.
(b) exine reticulate	
June-furrows vague, reticulations small.	Fraxintis
September-grains irregular.	Platanus
October-exine thick betweerı furrows and stains deeply.	No. 4
October-reticulations prominent and fine.	Sisymbritm
November-reticulations prominent and coarse.	Olea
January.	Tamarix
(c) exine pored.	
pores single. pores sunken.	Graminae Chenopodiaceae
pores sunken. pores papilliform.	Chenopodiaceae Plantago
(d) intine star-shaped.	Cupressus
Grains aspidate-	
pores 3 .	Casuarina
pores 3-7.	Ulmus
pores ∞.	Juglans
Grains compound.	Acacia
Grains triangular-spherical--	
Furrows conspicuous.	Amygdalus
", inconspicuous, exinc rigid.	Eucalyptus

A REVISION OF THE AUSTRALIAN HELIODINIDAE (LEPIDOPTERA)

By A. JEFFERIS TURNER, M.D., F.R.E.S.

Summary

This family is a modern conception, which we owe to Meyrick. I cannot do better than to commence by quoting his description from the Genera Insectorum (1914).

A REVISION OF THE AUSTRALIAN HELIODINIDAE (LEPIDOPTERA)

By A. Jefferis Turner, M.D., F.R.E.S.
[Read 10 April 1941]
This family is a modern conception, which we owe to Meyrick, I cannot do better than to commence by quoting his description from the Genera Insectorum (1914).
"Head smooth; ocelli usually present; tonguc usually developed. Antennae one-half to over 1 , often strongly ciliated in male or fringed with long rough projecting scales, basal joint without pecten. Labial palpi slender with appressed scales, pointed, usually long, recurved, often diverging, sometimes short, porrected. Maxillary palpi short or usually very short. filiform; scaled, appressed to tongue, or often obsolete. Posterior tibiae hairy, bristly, or smooth, with more or less developed whorls of bristles or scales at origin of spurs, tarsi always with more or less developed bristles at apices of joints; in repose habitually erected over back or projecting laterally (in Vanicela appressed to abdomen without touching ground). Forewings narrow or very narrow, often widest near base, costa usually rather strongly arched towards apex, tornus obsolcte; 1 b furcate or simple, 2 from towards angle, 7 and 8 separate or stalked, 7 to termen or costa, 11 from about middle. Ilindwings 1 or under 1 , from narrowly elongate-ovate to lanceolate or linear, cilia 1 to $6 ; 3-7$ normally separate, 3 and 4 seldom stalked, 6 and 7 sometimes stalked. Larvac with prolegs on segments 7-10 and 13, feeding externally or mining in leaves, stems, galls, or fruits, or on scale insects (Coccidae)."

Ile adds that the family "is specially characterised by the singular habit of erecting the posterior legs in repose, for which, as in the case of the peculiar atlitude of the Gracilariadae, it is difficult to imagine any adequate explanation; associated with this habit is the invariable presence of apical bristles (sometimes very short) on the joints of the posterior tarsi, often more conspicuously developed on the tibiae also."

In the Genera Insectorum Meyrick recorded 41 genera and 227 species, but in his revised IIandbook of British Lepidoptera (1927) he states that the number had risen to about 70 genera and 350 species. Since then many have been described in his Exotic Microlepidoptera, and there is no doubt many more will be discovered. The family is mainly tropical, but is well represented in Australia by 22 genera and 118 species.

> Key to Geniert

1	Hindwings lincar-lanceolate or linear Lindwings more broadly lanccolatc or narrowly clongate-ovate	
2	Forewings smooth	
	Forewings with tufts of raised scalcs	Trychopepla
3	Palpi short, drooping	Actinoscelis
	Palpi long, curved, ascending	
4	Antemmae with basal segment dilated fo form ann eyecap	
	Antcnnae without cyecap	
5	Anterior tib"ae and tarsi much thickencd with smooth scales	İanicila
	Anterior tibiac and tarsi not dilated	
6	Antennae in male simple	Calicotis
	Antemac in male with long ciliations	Jicromantis
7	- Tongue with long hairs on base	Idioglossa
	Tongue without basal hairs	
8	Antennac much longer than forewings	Zaratha
	Antemae not longer than forcwings	
9	Antemace nearly as long as forewings	Ethirastis
	Antennae not excceding four-fifths	
	Forewings with 6 and 7 out of 8	Isorrhoa

11 Hindwings with 4 absent, male antennae simple
Pachyrhabda
Hindwings with 4 present, male antennae ciliated
Antennae of male with very long cilia towards base
$\begin{array}{ll}\text { Palpi moderate or long, curvcd, ascending } & 14 \\ \text { Forewings smooth } & 15\end{array}$
$14 \begin{aligned} & \text { Forewings smooth } \\ & \text { Forewings with tufts of raised scales Coracistis }\end{aligned}$
15 Palpi very long, much exceeding vertex 16
Palpì moderate, not exceeding vertex 18
16 Antennae with a ridge of raised scales on dorsum 17
Antennae without dorsal ridge Lissocarena
17 Hindwings with 6 and 7 connate or stalked Hindwings with 6 and 7 separate, parallel
18 Tongue absent
19 Forewings with 7 absent 20
Forewings with 7 present
20 Antennae less than one-half
Antennae four-fifths
21 Forewings with 7 absent
Forewings with 7 and 8 stalked

12
Acoloscelis
Stathmopoda
Heliodinides 14

Pseudaegeria
Snellenia
Aenictcria

21
Agiton
Molybdurga

1 Gen. Actinoscelis
Meyr., Exot. Micro., i, p. 24.
Tongue rudimentary. Palpi short, slender, drooping. Antennae in male ciliated. Posterior tibiae and tarsi with whorls of very long bristles ; inner median spurs ending in whorls of short bristles. Forewings very narrow. Hindwings linear. Type, A. irina Meyr., from India. Only two species have been described,

1 A. astricta Turn., P.R.S.Vict., 1923, p. 80. (Qld.: Caloundra.)

2 Gen. Idioglossa

Wals., Tr, E. S., 1881, p. 273.
Tongue with long hair-scales on base. Palpi long, recurved, diverging. Antennae in male simple with a deep notch near base covered by a projection beneath. Forewings with 6 and 7 out of 8 . Hindwings linear-lanceolate; 4 present. Type, I. mirachlosa Frey, from North America. Two species are recorded from India and one from Africa.

According to Meyrick the larvac feed in a silken tube on the underside of grass leaves. Pupae within the tube.

2 I. metallochrysa Turn., P.R.S.Q., 1917, p. 84. (Cairns, Innisfail, Eungella, Nambour, Mount Tamborine, Macpherson Range 2,000 ft.)

3 Gen. Zaratha

Wlk., xxix, p. 789 ; Meyr., Exot, Micro., i, p. 335.
Tongue present. Palpi very long, slender, recurved, ascending. Antennae much longer than forewings; in male simple. Posterior tibiae with long hairs on dorsum; tarsi with very short or minute whorls of bristles. Forewings with 7 and 8 stalked. Hindwings linear-lanceolate.; 4 present. Type, 7. pterodactylella Wlk. from South America.

3 Z. trisccta Meyr., Exot. Micro., i, p. 335. (Darwin. Cairns.)
4 Z. crotolitha Meyr., Exot. Micro., i, p. 336. (Darwin, Cairns.)

4 Gen, Ethirastis

Meyr., Exot. Micro., ii, p. 462.
Tongue present. Palpi very long, slender, recurved, ascending. Antennae nearly as long as forewings ; inı male ciliated. Posterior tibiae with long hairs on dorsum and with apical whorls of hristles; tarsi with minute whorls of scales. Forewings with 7 and 8 stalked. Hindwings linear-lanceolate; 4 present. Type, E, sideraula Meyr. Monotypic.

5 E. sideraula Meyr., Exot. Micro., i, p. 315. (Cairns.)

5 Gen. Vanicela
Wlk., xxx, p. 1,039; Meyr., P.L.S.N.S.W., 1897, p. 314.
Tongue present. Palpi long, curved, diverging, slightly thickened with appressed scales. Antennae with basal segment dilated to form an eyecap; in male with long ciliations. Anterior tibiae and tarsi thickened with appressed scales. Posterior tibiae with rough bristly hairs on dorsum. Forewings with 7 and 8 separate. Hindwings linear-lanceolate; 4 present. Type, V. disjunctella W1k., from New Zealand. Four species.

6 V. xenadelpha Meyr., ibid., 1897, p. 315. Gen. Inscct., pl. i, fig. 7. (Yeppoon, Bundaberg, Noosa, Brisbane, Stradbroke Island, Mount Tamborine, Rosewood, Toowoomba, Lismore, Sydney.)
7 V, dentigera Mcyr., Exot, Micro., is p. 81. (Herberton.)
$8 V_{.}$Iricolona Meyr., ibid., i, p. 81. (Cairns.)

6 Gen. Hieromantis

Meyr., P.L.S.N.S.W., 1897, p. 315.
Tongue present. Palpi long, recurved, diverging. Antennae with basal segment expanded to form an eyecap; in male with long ciliations. Forewings with 7 and 8 stalked. Hindwings linear-lanceolate; 4 present. Type, II. ephodophora Mcyr. There are four Indian species and three from Fiji.

9 H. ephodophora Meyr., ibid., 1897, p. 315. (Cairns, Cardwell, Brisbane, Esk, Tweed Hds., Warwick, Sydney.)
10 H, albata Meyr., Exot., Micro, i, p. 94. (Dunk Island, Stradbroke Island. Also from New Guinea.)

7 Gen, Calicotis

Mcyr., Tr. N.Z. Inst., 1889, p. 170; P.L.S.N.S.W., 1897, p. 313.
Tongue present. Palpi long, recurved, diverging. Antennae with basal segment dilated and hollowed to form an eyecap; in male simple. Forewings with 7 and 8 stalked. Hindwings linear-lanceolate; 4 absent. Type, C. crucifera Meyr. Besides the Australian species two have been described from Fiji, and one from the Seychelles.

Larvac feeding in galleries of loose refuse among the sporangia of ferns.
11 C. microgalopsis Low., Trans. Roy. Soc. S. Aust., 1904, p. 171. (Cairns, Mackay.)
12 C. sialota Turn., P.R.S.Q., 1917, p. 87. (Nambour, Brisbane, Stradbroke Island, Mount Tamborine, Tweed Hds., Toowoomba.)
13 C. crucifora Meyr., Trans. N.Z. Inst., 1888, p. 170 ; P.I.S.N.S.W., 1897, p. 313. Gen. Insect., pl. i, fig. 5, (Brisbane, Mount Tamborinc, Macpherson Range 2,500-3,000 ft., Bunya Mountains $3,500 \mathrm{ft}$., Sydney. Also from New Zealand.)
14 C, triplocsta Turn., P.R.S.Vict., 1923, p. 78. (Brisbane.)

8 Gen. Pacifyrhabda

Meyr., P.L.S.N.S.W., 1897, p, 312.
Tongue present. Palpi long, recurved, divergent, Antennae in male simple. Forewings with 7 and 8 separate or stalked. Ifindwings linear-lanceolate; 4 absent. Type, P. steropodes Meyr. The number of described species is now 22, of which four are from Ceylon and India, two from Africa, twelve from Australia, one from New Zealand, three from Fiji, and one from the Seychelles. One of the Australian species is recorded also from India, Ceylon and Kermadec Island, and another from Ceylon. This, however, does not give a correct idea of its real distribution, for there can be little doubt that the genus is of Indo-Malayan origin, and will be found most plentiful in that region. With only two exceptions the Australian species are confined to the coast of Queensland.

15 Pachyrhabda punctifera n. sp.

punctiferus, spotted.
f, 10 mm . Head, palpi, antennae, and thorax grey-whitish. (Abdomen missing.) Legs white; posterior pair with fuscous rings on apices of tibiae and on tarsi. Forewings moderate, apex pointed; 7 and 8 separate; grey-whitish; costal edge fuscous towards base; fuscous dots on fold at one-cighth and onefourth, a third subcostal at two-fifths, a fourth on costa at two-thirds, and a fifth beneath it; cilia grey-whitish, on apex fuscous. Hindwings one-half; grey; cilia 4, grey. Queensland: Bundaberg in August; one specimen.

16 Pachyrhabda campylosticha n.sp.

t. 8 mm . Head fuscous; face glossy ochreous-whitish. Palpi fuscous, inner surface ochreous-whitish. Antennae grey. Thorax fuscous, Abdomen fuscous, towards base brassy. Legs ochreous-whitish; antcrior pair fuscous (posterior pair missing). Forewings narrow, apex pointed; pale yellow with blackish markings ; a costal streak from base to thrce fourths ; two closely appressed longitudinal lines on middle of fold; two zig-zag fasciae, broadest on costa, slender in middle, composed of coalesced longitudinal lines; first from mid-costa to before tornus; second from three-fourths costa to termen; an apical dot; cilia grey, on apex blackish. Hindwings over one-half ; fuscous with brassy lustre; cilia 3, grey. Queensland: Bunya Mountains in January; two specimens.

17 P. hygrophaes Turn., P.R.S.Vict., 1923, p. 79. (Gympie, Brisbane.)
$18 P$ adela Turn., ibid., 1923, p. 79. (Macpherson Range, 2,500-3,000 ft.)
19 P. capnoscia Turn., ibid., 1923, p. 80. (Macpherson Range, 3,000 ft.)
20 P. xanthoscia Turn., ibid., 1923, p. 80. (Cairns.)
21 P. steropodes Meyr, P.L.S.N.S.W., 1897, p. 312. (Toowoomba, Katoomba, Mount Wilson, Warragul, Mount Wellington 2,500 ft.)
$22 P$. antinona Meyr, Trans. N.Z. Inst., 1910, p. $72=$ cryerodes 'Turn., P.L.S.N.S.W., 1915, p. 195. (Macpherson Range 2,500-3,000 ft., Ebor. Also from Kermadec Island, Ceylon, and India.)

23 Pachyrhabda argyritis n, sp.

ápyuptrts, silvery.
of, 12 mm . Head and thorax shining white. Palpi grey-whitish, inner surface white. Antennae dark grey. Abdomen grey, Legs dark grey; tarsi, rings on posterior tibiac, and anterior coxae white. Forewings narrow, apex pointed; 7 and 8 stalked; shining silvery-grey; a narrow whitish fascia from onethird costa to one-third dorsum; a transverse whitish fascia from two-thirds costa to tornus, not reaching margins; cilia grey, on apex fuscous. I lindwings onehalf; cilia 5, grey. North Queensland: Dunk Island, in May; one specimen.

24 Pachyrhabda acroscia n. sp.
$\dot{\text { áробкноs, shaded at the apex. }}$
t. $9,8-11 \mathrm{~mm}$. Head and palpi white. Antennae grey, Thorax and abdomen grey-whitish. Legs white; posterior pair with tibiae broadly fuscous at apices. Forewings narrow, apex obtuse; 7 and 8 stalked, whitish-grey; apical area suffusedly fuscous; cilia fuscous, on dorsum and tornus grey. Hindwings one-half; grey; cilia 4, grey, Quccnsland: Mount Tamborinc in March; Macpherson Range ($3,000 \mathrm{ft}$.) in Navember; Bunya Mountains ($3,500 \mathrm{ft}$.) in October; three specimens.

25 P. bacterias Meyr., Exot. Micro., i, p. 95. (Cairns, Tweed IIds. Also from Ceylon.)

26 Pachyrhabda liriopis n. sp.

$\lambda_{\ell \rho \iota \omega \pi}$ es, white as a lily.
ㅇ, $8-9 \mathrm{~mm}$. Head, palpi, antennae, thorax, and abdomen white. Legs white ; posterior pair with a dark fuscous ring at origin of terminal spurs. Forewings narrow, apex acute; 7 and 8 stalked; shining white; cilia white. Hindwings one-third; pale grey; cilia 8, pale grey. Queensland: Macpherson Range ($2,500 \mathrm{ft}$.) in November; two specimens.

9 Geil. Isorrhoa

Meyr., Exot. Micro., i, p. 79.
Tongue present. Palpi very long, slender, recurved, diverging. Antennae of male simple towards base, towards apex with segments triangularly dilated and minutely but interruptedly ciliated. Forewings with 7 and 8 out of 6 . Hindwings lincar-lanceolate; 4 present. Type: I. antimetra Meyr., from India. There have been described four species from Ceylon and India, one from North and one from South Africa.

27 I. atmozona Turn., P.R.S.Q. 1917, p. 85. (Cairns, Cardwell.)
28 I. pandani Turn., P.R.S.Vict., 1923, p. 76. Larvae feeding on Pandathas in oval cases made of two conjoined segments each of the whole thickness of the leaf, leaving oval perforations in the leaves. (Darwin, Palm Island, Magnetic Island.)
29 I. ancistrota Turn., ibid., 1923, p. 77. (Macpherson Range, 3,000 ft.)
30 I. cmplecta Turn., Trans. Roy. Soc. S. Aust., 1926, p. 142. (Bunya Mountains, $3,000 \mathrm{ft}$.)
31 I actheria Meyr., P.L.S.N.S.W., 1897, p. 327, Gen. Insect., pl. i. fig. $4=$ hydrographa Meyr., ibid., 1897, p. $327=$ implicata Meyr., Exot. Micro., ii, p. $324=$ loxoschema Turn., P.R.S.Vict., 1923, p. 97. In this species the markings on the forewings vary much in detail. In 13 examples I have found scarcely any two alike. The black scales on the forewings and cilia are inconstant, frequently absent in the male, more developed in the female. (Cairns, Yeppoon, Gympie, Brisbane, Tweed Hds,, Mount 'Jamborine, Macpherson Range 2,500 ft.. Sydney.)
32 I. ochrochyta Turn., Trans. Roy, Soc. S.A., 1926, p. 143. (Bunya Mountains, $3,000 \mathrm{ft}$.)
33 1. cuzona Turn., ibid., 1926, p. 143. (Macpherson Range, at the foot.)

10 Gen. Aeoloscelis

Meyr., P.L.S.N.S.W., 1897, p. 326.
Tongue present. Palpi very long, slender, recurved, diverging. Antennae of male shorily or minutely ciliated. Forewings with 7 and 8 stalked. Hindwings linear-lanceolate; 4 present. Type, A. hipparcha Meyr. At present known only from Australia.

34 A. chrwsophoenicea Meyr., ibid, 1897, p. 328. (Gympie, Brisbane, Stradbroke İsland, Tweed Hds., Rosewood.)
35 A. hipparcha Meyr., ibid., 1897, p. 328. (Geraldton.)
36 A. sphragidota Meyr., ibid., 1897, p. 329. (Geraldton, Carnarvon.)
37 A. thiostola Turn., P.R.S.Vict., 1923, p. 77. (Charleville.)

38 Aeoloscelis pachyceros n. sp.

$\pi а \chi^{\nu \kappa \epsilon \rho \omega ь, ~ t h i c k-h o r n e d . ~}$
o, ㅇ. $12-14 \mathrm{~mm}$. Head pale ochreous or ochreous-grey; face and palpi ochreous-whitish. Antennae grey with obscure fuscons annulations; in male thickened, ciliations one-half. Thorax ochreous-grey. Abdomen grey; in male
bases of segments and tuft ochreous-whitish. Legs grey; posterior pair ochreoustinged. Forewings narrow, apex pointed; pale ochreous; costal edge fuscous towards base; markings variable, sometimes some median fuscous irroration, or a fuscous subdorsal median spot; cilia grey, on apex fuscous. Hindwings onefourth, grey; cilia 8, grey. North Queensland: Palm Island in May, Mackay in October; four specimens.

11 Gen. Statilmopoda

Sttn., Brit. Tineina, p. 227; Meyr, P.L.S.N.S.W, 1897, p. 316.
Tongue present. Palpi very long, slender, recurved, diverging. Antennae in male with very long fine ciliations (3-7), sometimes with a short series also. Forewings with 7 and 8 stalked. Hindwings linear-lanceolate; 4 present. Type, S. pedella Lin,s from Europe. By far the largest genus in the family, more than 150 species have already been described. It is most abundant in the Indo-Malayan region and in Australia and well represented in New Zealand and oceanic islands, but no continent is without at least one or two representatives. The Australian species known at present number 61 .

The larvae vary much in habit. Some feed in galls or fruits; some on scale insects; and one on spider's eggs.

39 S. melanochra Meyr., ibid., 1897, p. 321, Gen. Insect., pl. i, fig. 11, (Brisbane, Toowoomba, Glen Innes, Armidale, Ebor, Gosford, Sydney, Katoomba, Bathurst, Mittagong, Canberra, Adaminaby, Gisborne, Casterton, Melbourne, Launceston, Deloraine, Campbellown, Hobart, Mount Gambicr, Victor Harbour, Adelaide, Mount Lofty.) I arvae feeding on Eriococcus sp. (L. Tonnoir).
40 S. desmotcles Meyr., ibid., 1897, p. 322 (Bathurst).
41 S. lethonoa Meyr., ibid., 1897, p. $322=$ acromolybda Turn., I'R.S.Vict., 1923, p. 78. (Brisbane, Bunya Mountains, Tabulam, Gosford, Sydney, Melbourne, Hobart.)
42 S. chalybeis Meyr., ibid., 1897. p. 322. (Hobart, Port Lincoln, Albany.)
43 S. acontias Meyr., ibid., 1897, p. 318. (Fernshaw, Iaunceston, Deloraine. Strahan, Russell Falls, Hobart.)
44 S. chalchotypa Meyr., ibid., 1897, p. 318. Jaryae fceding in galls on Acacia decurrens. (Brisbanc, Warwick, Sydney, Melboume, Hobart.)
45 S. cyanopla Meyr., ibid, 1897, p. 319. (Mount Kosciusko, Deloraine.)
46 S. sphendonita Meyr., Exot. Micro, ii, p, 461. (Cairns.)
47 S. holobapta. Low., Trans, Roy. Soc. S. Aust., 1904; p. 171. (Melbourne.)

48 Stathmopoda castanodes n. sp.

δ, $\circ, 12-18 \mathrm{mmn}$. T Fead with crown reddish-hrown, fillet leaden-fuscous, face shining white. Palpi palc brownish; internal surface white. Antennae pale grey, base and apex darker; ciliations in male 7. Thorax brown; tegulae except bases white. Abdomen brown; tuft whitish-ochreous. Legs white; posterior pair brownish, apices of tibiae and last two tarsal segments white, tarsi with fuscous rings. Forewings narrow, broadest near base, diminishing at first rapidly, then gradually to an acute apex; costal edge fuscous to a variable extent; a brownwhitish costal streak throughout; a reddish-brown median streak intermpted in middle, with a rounded basal expansion reaching dorsum and containing a leadenfuscous spot; a brown-whitish streak along dorsum and termen interrupted beyond tornus by a leaden-fuscous spot: cilia grey, bases ochreous-whitish, on apex wholly fuscous. Hindwings onc-fourth, almost linear; cilia 10, grey. North Queensland: Atherton Plateau (Lake Barrine). I bred from an unidentified rainforest fruit 14 examples, of which only one was a malc, in August. I also took a female example in June.

49 S. cophalaea Meyr., P.L.S.N.S.W., 1897, p. 319. Bred from galls on Acaria decurrens and another Acacia. (Bunya Mountains, Guyra, Hobart, Mount Wellington 1,500 ft.)

50 Stathmopoda amathodes n. sp.

$\dot{\alpha} \mu \alpha \theta \omega \delta \eta s$, sandy.

of, 14 mm . Head and thorax pale ochreous-brown; face and palpi white. Antennae grey with fuscous annulations. (Abdomen missing.) Legs white. Forewings moderate, apex rather obtusely pointed; pale ochreous-brown; an illdefined fuscous dot before midtermen; cilia grey, on apex pale ochreous-hrown. Hindwings one-half; grey; cilia 5, grey. West Australia: Mcrredin in Scptember; one specinten.

51 S. astrapcis Meyr., ibid., 1897, p. 320. (Campbelltown, 'Tasmania; Adelaide.)
52 S. mesombra Meyr., ibid., 1897. p. 320. (Hobart.)
53 S. hyposcia Meyr., ibid., 1897, p. 320. (Warwick, Sydney, Mount Milson, Bathurst. I Iobart, Albany.)

54 Stathmopoda notosticha n. sp.

viotortioos, with dorsal lines.
of. 13 mm. Head with crown dark fuscous ; face shining white, I'alpi white. Antennae pale grey. Thorax white. Abdomen whitish; apices of segments fuscons; posterior pair with fuscous rings on apices of tibiae and on tarsi. Forewings narrow; white with slight costal fuscous suffusion; markings dark fuscous ; a broad dorsal patch extending from base to one-third; a short median dorsal line almost confluent with it ; a short longitudinal line above tornus; cilia grey. I Iindwings one-half; grey; cilia 5, grey. New South Wales: Mount Wilson in November; one specimen.

55 S. iodes Meyr,, ibid, 1897, p. 323. (Sydney, Fernshaw, Deloraine.)
56 S. doralias Meyr., ibid, 1897, p. 323. (Albany.)
57 S. sentica Low., ibid., 1899, p. 114. (Broken Hill.)
58 S. xanthoma Meyr., ibid., 1897, p. 323. (Brisbane, Sydney.)
59 S. metopias Meyr., Exot. Micro., ii, p. 324. (Melbournc.)
60 S. isoclera Mcyr., ibid., 1897, p. 328. (Brisbane, Macpherson Range, 2,500 ft.)
61 S. callichrysa Low., Trans., Roy. Soc. S. Aust,, 1893. p. 184, Meyr., ibid., 1897. p. 325. Bred from Acacia sp. (Brisbane. Stanthorpe, Sydney. Melbourne, Port Lincoln, W.A., York, Northampton.)
62 S. ischnotis Meyr., ibid., 1897, p. 324. (Carnarvon.)
63 S. crocophanes Meyr., ibid., 1897, p. 324. One example has been bred from the fruit of the loquat (Photinia japonica). (Townsville, Yeppoon, Duaringa, Gladstonc, Gayndah, Noosa, Brisbane, Stradbroke Island, Tweed IIds., Rosewood, 'Toowoomba, Bunya Mountains, Charleville, Milmerran, Warwick, Killarney, Glen Innes, Newcastle, Sydney, Cooma, St. IIelens, I Iobart, Adelaide, Hoyleton, Perth, Mogumber, (ieraldton.)

64 Stathmopoda ptycholampra 11. sp.

$\pi \tau v \chi o \lambda \mu_{\mu} \pi \rho o s$, with shining fold.
ㅇ. 10 mm . Head yellow; face glossy whitish. Palpi whitish. Antentrae grey. Thorax yellow. Abdomen grey. Legs whitish. Forewings rather narrow; yellow, towards apex with some brownish suffusion; costal edge fuscous from base to one-third; a fuscous costal dot near base; a fine silvery metallic line on fold; cilia grey. Hindwings one-half; grey; cilia 3, grey, Queenland: Noosa in May; one specimen.

65 Stathmopoda marmarosticha 11. sp.

mappaportiरos, with shining lines.
f, \circ, 14-15 mmı. Ifead ochreous-yellow; face whitish. Palpi ochreouswhitish. Antennae grey; ciliations in male 3 near base only, together with a short series from base to apex. Thorax ochreous in male; ochreous-fuscous in female. Abdomen grey; apices of segments grey-whitish. Legs fuscous; posterior pair ochreous. Forewings moderate, apex obtuse; ochreous-yellow, paler towards apex; costal edge fuscous towards base; markings lustrous silvery; a narrow subcostal line from base to midcosta; a narrow line on fold from base to dorsum; an oval spot on base of dorsum and another at one-fourth; cilia pale ochreousgrey, Hindwings one-half; grey; cilia 4. pale ochreous-grey. North Qucensland: Townsville and Bowen in June; five specimens.

66 S. bathrodelta Meyr., Fxot. Micro., ii, p. 461. (Cairns.)

67 Stathmopoda citroptila n. sp.

$\kappa \iota \tau \rho \sigma \pi \tau \iota \lambda o s$, citron winged.
o, 13 mm . Head and palpi whitish-ochreous. Antemme and thorax pale fuscous. Abdomen and legs whitish-ochreous. Forewings rather broad towards base, gradually narrowing towards apex, which is acnte, costa moderately arched; very pale ycllow; a moderately broad fuscous fascia from costa beyond middle to dorsum before tornus, its edges somewhat suffused; cilia grey. Hindwings onehalf; grey; cilia 3, grey. North Queensland: Bowen in June; one specimen.

68 S. trichopeda Low., Trans. Roy. Soc. S. Anst., 1904, p. 171. (Cairns. Townsville.)
69 S. arachnophthora Turn., P.R.S.Q., 1917. p. 86. Larvae fecding in the egg capsules of an unidentified spider. (Eidsvold.)
70 S. basixantha Turn., ibid., 1917, p. 85. (Rosewood.)
71 S. tritophafa Turn,, ibid., 1917, p. 86. (Cairns, Brisbanc.)
72 S. mimantha Meyr., Exot. Micro., i, p. 92. (Cape York, Cairns, Yeppoon, Bumdaberg.)
73 S. ranthocrana Turn., Trans. Roy. Soc. S. Aust., 1933, p. 179. (Macpherson Range, $3,000 \mathrm{ft}$.)
74 S. trisclena Meyr., P.L.S.N.S.W.. 1897, p. 318. (Cairns, Nambour. (aloundra, Brisbane.)

75 Stathmopoda trimochla 11.sp.

т $\rho \mu_{0} \chi \lambda$ доs, three-harred.
o, 12 mm . Head white; filiet narrowly fuscous. Palpi white. Antennae grey; ciliations in male 4. Thorax white. Abdomen grey; tuft white. Legs white; posterior pair with pale fuscous rings on apices of tibiac and on tarsi. Forewings narrow, apex acite; white with fuscons narkings; an oval subdorsal spot at one-fifth; a moderate somewhat oblique fascia from two-fifths costa to mid-dorsum, expanded on dorstm, an ill-defined fascia from four-fifths costa to tonnts; a subapical fascia leaving extrene apex white; cilia grey. Hindwings one-half; grey; cilia 6, grey. Quect:sland: Brisbane in September; one specimen.

[^0]77 S. diclidias Meyr., Exot. Micro., ii. 1. 462 . (Cairns.)
78 S. pantarches Meyr., P.L.S.N.S.WV.. 1897, p. 321. (Brisbane, Sydney, Melbourne.)
79 S. mannophora Turn., 'lrans. Roy. Soc. S. Aust., 1900, 1. 23. (Nambour, Brisbane.)
80 S. nitida Meyr., Exot. Micro., i, p. 93. (Darwin.)
81 S. grammatopis Meyr., ibid., ii, p. 462. (Cairns.)
82 S. rhythmotu Meyr., ibid., ii, p. 324. (Brisbane.)

83 Stathmopoda dimochla n. sp.

$\delta i \mu o \chi \lambda o s$, iwice-barred.
\&, 9 mm . Head, palpi, antennae, and thorax white. Abdomen pale grey. Legs white; posterior pair with two broad tibial and three narrow tarsal fuscous rings. Forewings narrow, apex pointed; white; markings and some irroration fuscous; a broad submedian fascia, its outer edge angled beneath costa; a second somewhat suffused postmedian fascia not reaching costa, the two separated by a narrow white inwardly oblique line, a median spot above tornus and another at apex; cilia whitish-grey, on apex fuscous. Hindwings one-half; pale grey; cilia 5, whitish-grey. North Quecnsland: Cairns in August; one specimen.

84 S. canonica Meyr., P.L.S.N.S.W., 1897, p. 326, (Yeppoon, Stradbroke Island, Sydney, Katoomba.)
85 S. megathyma Meyr., ibid., 1897, p. 325. (Brisbane, Stradbroke Island, Mount Tamborine, Tweed Hds., Rosewood, Lismore, Glen Innes, Gosford, Sydney, Wollongong.)
86 S. liporrhoa Meyr., ibid., 1897, p. 326. (Tonwoomba, Chinchilla, Newcastle, Sydncy, Launceston.)
87 S. rubripicta Meyr., Exot. Micro., ii, p. 490. (Cairns, Innisfail, Nambour, Tweed Fids.)
88 S. zalodes Meyr., ibid., i. p. 93. (Cairns.)
89 S. effossa Meyr., ibid., ii, p. 460. (Adelaide.)
90 S. nephocentra Meyr., ibid., ii. p. 461. (Broken Mill, Adelaide.)
91 S. aphanosema Turn., P.R.S.Vict., 1923, p. 78. (Stanthorpe.)
92 S. trifida Mcyr., ibid., ii, p. 462. (Cairns.)
93 S. pampolia Turn., ibid., 1923, p. 79. (Tweed Hds.)
94 S. ceramoptila Turn., ibid., 1923, p. 79. (Cairns.)

95 Stathmopoda zophoptila n. sp.

乡офоттідоя, dark-winged.
ô. 10 mm . Head with crown fuscous, fillet and face shining whitish; fillet prominent. Palpi whitish. Antennae whitish; ciliations in male 8 ; there is also a series of shirt ciliations. Thorax and abdomen fuscous. Legs whitish; posterior pair with dark fuscous rings on apices of tibiae and on tarsi. Forewings moderate, apex rather obtusely pointed; fuscous; a darker fuscous spot on costa at onethird and another above tornus; small areas of whitish-ochreous irroration on costa at middle and three-fourths; a small whitish-ochreous crescent at apex; cilia fuscous. Hindwings onc-third; fuscous; cilia 6, fuscous. Queensland: Bundaberg in September; one specimen.

96 Stathmopoda recondita n.sp.
reconditus, concealed, obscure.
ㅎ. 우. 12-16 mun. Head glossy ochreous-grey-whitish; in female fuscous. Palpi ochreous-grey-whitish or grey. Antennac grey or grey-whitish; ciliations in male 5 towards base, but with a continuous scries of shorter ciliations. Thorax ochreous-grey; in female fuscous. Abdomen grey; in female fuscous; tuft in male whitish-ochreous. Legs ochreous-grey or grey; anterior pair fuscous. Forewings broadest near base, gradually narrowing to an acute apex; grey-whitish or ochreous-grey-whitish with usually a variable degree of fuscous irroration; this may form inconstant basal, tornal, and subapical spots; cilia grey, on apex iuscous. Hindwings one-half; grey; cilia 4, grey. Tasmania: Burnie in December and January; Hobart, Strahan and Deloraine in February; six specimens.

97 Stathmopoda rhodocosma n. sp.

joठокоб μ os, with rosy ornament.
ㅇ. 13 mm . Head, palpi, and antennae white. Thorax white, in centre densely sprinkled with crimson. Abdomen and legs white. Forewings narrow, broadest at base, gradually attenuated to an acute apex; white; a few crimson scales close to base; termen from tornus to apex edged with crimson; cilia white. Hindwings onc-half ; whitish-grey; cilia 4, whitish. North Queensland: Dunk Island in May; one specimen.

98 Stathmopoda nympheuteria n. sp.

t, 13 mm . Head, palpi, antennae, and thorax white. Abdomen grey; tuft whitish. Legs white; posterior pair with fuscous rings on apices of tibiae and on tarsi. Forewings moderate; shining white; cilia grey. Hindwings two-thirds; grey; cilia 3 and a half, grey. Tasmania: Mount Wellington ($1,500 \mathrm{ft}$.) in January; one specimen.

12 Gen. Trychnopepla nov.
$\tau \rho v \kappa \nu о \pi \epsilon \pi \lambda$ лоs, rough-coated.
Head smooth; face retreating. Tongue present. Palpi moderately long, diverging, thickened with loosely appressed scales, slightly rough anteriorly; terminal segment shorter than second, equally stout, obtusely pointed. Antennae with basal segment clongate. Posterior tibiac with long hairs on dorsum ; tarsi with whorls of short scales on apices of segments. Forewings with tufts of raised scalcs, of even width with rounded apex; 7 and 8 separate; 11 from before middle. Hindwings almost linear. The palpi and shape of forewings are distinctive.

99 Trychnopepla discors n.sp.

discors, unlike.
ㅇ, 10 mm . Head white. Palpi whitish-brown with two fuscous bars on terminal scgment, inner surface white. Antennae whitish-brown with dark fuscous amulations. Thorax pale ochreous-brown sprinkled with dark fuscous. (Abdomen missing.) Lëgs whitish; tarsi with dark fuscous rings. Forewings with costa straight to near apex; pale ochreous-brown unevenly suffused with pale crimson; markings and some irroration dark fuscous; a slender median lifte from one-third to two-thirds; a subdorsal tuft of raised scales at one-fourth; a transverse ridge of raised dark fuscous scales in dise at three-fourths; a spot between this and apex; a slender terminal line; cilia pale ochreons, on costa fuscous, on dorsum grey. Hindwings one-fifth; grey; cilia 6, grey, North Queensland: Kuranda; one specimen received from F. P. Dodd.

13 Gen. Aenicteria

Turn.. Trans. Roy. Soc. S. Aust., 1926, p. 143.
Tongue absent. Palpi moderately long, smooth, recurved, ascending; second segment slightly thickened. Antennae in male very minntely ciliated. Fosterior tibiae with dense long hairs on dorsum and with a terminal whorl of short scales; tarsi with whorls of very short scales. Forewings with rounded apcx. Hindwings lanceolate; 2 and 3 connate, 4 absent. Monotypic.
100 A. tcrmiticola Turn., ibid., 1926, p. 143. Probably associated with termites. (Cairns.)

14 Gen. Lissocarena

Turn., P.R.S.Vict., 1923, p. 80.
Palpi long, smooth, recurved, diverging ; terminal segment broadly dilated but laterally compressed. Antennae ncarly 1 ; in male simple. Postcrior tibiac and first tarsal segment clothed with short bristly hairs, whorls of short scales on apices
of tibiae and first three tarsal segments. Forewings with 7 and 8 stalked. Hindwings lanceolate, 4 absent. Monotypic.
101 L. semicuprea Turn., ibid., 1923, p. 81. (Cairns.)

15 Gen. Feliodinides

Sttn., Brit. Tin., p. 243 ; Meyr., Trans. Roy. Soc. S. Aust., 1906, p. 54.
Tongue present, Palpi short, filiform, porrect or drooping. Antennae in male thickened, simple, Posterior tibiae smooth with whorls of short bristles at apices; tarsi with short bristles at apices of segments. Forcwings with 7 absent, 6 and 8 sometimes stalked. Hindwings lanceolate; 4 absent. 'Type, H, rocsella Lin, from Europe. There are also nine species recorded from North America and four from the West Indies.
102 II. princeps Meyr., ibid., 1906, p. 54. (Cairns, Brisbanc.)

16 Gen. Agiton

Turn, ibid., 1926, p. 145.
Tongue present. Palpi moderately long, recurved, ascending, rliyergent; second segment thickened towards apex with loosely appressed seales; terminal segment stout, rather obuse. Antennae short (less than one-half); in male thickened and minutely ciliated. Posterior tibiac hairy on dorsum, with a terminal whorl of bristles; tarsi with whorls of short bristles on apices of segments. Forewings elongate-triangular; 7 absent (coincident with 8). LTindwings spathulatelanceolate; 2 and 3 stalked, 4 absent, 6 absent. Monotypic. A curious and isolated genus.
103 A. idiop fila Turn,, ibid., 1926, p. 145. (Macpherson Range, 2,500-3,000 ft.)

17 Gen. P'secdafgeria

Wals., Tr. E. S., 1889, p. 17; Meyr., P.L.S.N.S.W ${ }^{\text {T, }} 1907$, p. 133.
'Tongue present. I'alpi long, smooth, recurved, ascending; second segment thickened with appressed scales. Antennae with dorsal ridge of scales : in male ciliated. Abdomen with terminal tult of laterally projecting scales. Dosterior tibiae with dense whorls of long scales at apices; tarsi with spines at apices of segments. Forewings with 7 and 8 stalked. Hindwings narrowly elongate-ovate; 3 and 4 connate or stalked, 6 and 7 connate or stalked. Type, Ps squmicornis Feld. The genus appears to be confined to Australia.

104 Pseudaegeria phlogina 11. sp.

ϕ дoyıvos, fiery.
d. ㅇ, 23-28 min. Head brilliant red; eyes white-cdged beneath. Palpi moderately long, recurved, ascending, second segment moderately thickened, rough anteriorly; terminal segment $\frac{1}{2}$, slender, acnte; black, apex and anterior nargin of second segment white. Antentae about $4 / 5$, with a ridge of dense scales on dursum from $\frac{3}{4}$ to near apex. ciliations in male ($2 / \beta$) ; black, apex of dorsal ridge white. Thorax black, posterior and sometimes anterior margin red. Abdomen cxpanded towards apex with projecting lateral scales; bright red, tratisversely barred with black on two basal and three terminal serments. Legs black; middle and posterior tibiac with median part red, spurs white; posterior tarsi much longer than tibiae. Forewings elongate, narrow, posteriorly dilated so as to be somewhat spathulate, costa sinuate, apex rounded, termen and dorsum not differentiated; black with red markings; a narrow line on costa from base almost to apex; a similar line on dorsum from $1 / 5$ to tornus; these are connected by an inwardly curved transverse line shortly before middle; a spot in dise at $2 / 3$ beneath or touching costal line; cilia purple, bases narrowly white. Ilindwings narrow;

6 and 7 short-stalked or approximated; basal area in male scaleless and transparent in costal half, bright red in dorsal half in male, orange in fenale; apical area black; cilia as forewings.

The larvae of this remarkable species feed on the bark of the woody stems of a climber locally known as "Supplejack," making' small tunnels in its nodes and spinning a covering of silk and sawdust as is done by some Xyloryctidae. Mr. 11. Francis has identified the food plant as Venilago viminalis (Rhamneae). Queensland: Injune in March; four specimens received from W. B. Barnard. Type in Queensland Museum.
105 P. squamicornis Feld., pl. cxxxix, fig. 6; Meyr., P.L.S.N.S.W., 1907, p. 134, Gen. Insect., pl. i, fig. 15 . (Sydney.)

106 P. polytita Turn., ibid., 1913, p. 221. (Townsville.)
107 P. hyalina Turn., ibid., 1913, p. 222. (Birchip.)

18 Gen. Snellevia

Wals., Tr. E. S., 1889, p. 13; Meyr., P.L.S.N.S.W., 1907, p. 132.
Tongue present. Palpi extremely long, slender, recurved, ascending, slightly rough anteriorly. Antennae with a dorsal ridge of rough scales; in male ciliated. Abdomen margined with rough scales; in male with a large posterior tuft. Posterior tibiae smooth with whorls of large scales on origin of spurs; tarsi with short spines on apices of segments. Forewings with 7 and 8 stalked. Hindwings very narrowly elongate-ovate; 3 and 4 connate, 6 and 7 separate, parallel, Type, S. coccinea Wals., from India. Besides the Australian there are two Indian and one South American species.
108 S. lincata Wlk., viii, p. 261; Meyr., P.L.S.N.S.W., 1907, p. 132, Cen. Insect., pl. ii, fig. $16=$ sesioides Feld., pl. cxl, fig. 22. (Nambour, Brisbanc, Tweed Hds., Tabulam, Sydncy, Gishorne.)
109 S. hylaea Turn.: ibid., 1913, p. 221. (Mount Tamborine, Macpherson Range 2,500-3,500 ft.)
110 S. miltocrossa Turn., P.R.S.Vict.. 1923, p. 81. (Bulli.)
111 S. capnora Turn., P.L.S.N.S.W., 1913, 1, 221. (Herberton.)
19 Gen. Dolophrosyni:
Drint, Novit. Zool., 1919, p. 120.
Tongue present. Palpi moderate, recurved, ascending; second segment thickened and somewhat rough anteriorly; terminal segment short. Antennae in male thickened and slightly laminate with fascicles of cilia. Posterior tibiae with dense scale-tufts at origin of spurs; tarsi with whorls of short scales at apices of segments. Forewings narrow; 7 and 8 stalked, Hindwings narrowly elongate-ovate; 3 and 4 connate or stalked, 5 remote, 6 and 7 stalked. Monotypic.
112 D. baltcata Drnt,, ibid., 1919, p. 121. (Yeppoon, Duaringa.)

20 Gein. Eretmocera

Zel., Micr. Caffr, p. 96; Meyr., P.I.马.N.S.W., 1897, p. 420.
Tongue strongly developed. Palpi rather short, curved, ascending; second segment somewhat thickened and rough anteriorly. Antennae with some long loose scales on dorsum; in male simple or very minutely ciliated. Abdomen broad, flattened, with laterally projecting scales. Postcrior tibiae smooth with whorls of short scales at apices; tarsi with short spines at apices of segments. Forewings narrow; 7 absent, 6 and 8 stalked. Hindwings lanceolate. Type, E. fuscipennis Zel., from Africa. Most numcrous in species from Africa, from which 13 species have been described, together with three from China and India, one from Europe, and four from the Archipelago.

113 E. chrysias Meyr., P.L.S.N.S.W., 1896, p. 1,047, ibid., 1897, p. 421. (Palm Island, Townsville, Duaringa, Maryborough, N.W.A., Noonkambah.)
114 E. cyanauges Turn., ibid., 1913, p. 220. (Townsville.)
115 E.dioctis Meyr., ibid., 1897, p. $370=$ flavicincta Turn., ibid., 1913, p. 219. (Banana, Brisbane, Rosewood, Toowoomba, Dalby, Bunya Mountains, Injune, Milmerran, Warwick, Killarney, Geraldton (W.A.))
116 E. coracopis Turn., P.R.S.Tas., 1926, p. 155. (Cradle Mount, 2,000 ft.)

21 Gen. Molybdurga

Meyr., P.L.S.N.S.W., 1897, p. 369.
Tongue present. Palpi moderately long, curved, ascending; second segment thickened with appressed scales. Posterior tibiae rough-haired; tarsi with short bristles at apices of segments. Forewings with 4 absent, 6 and 7 stalked. Hindwings lanceolate; 2 to 7 separate, nearly parallel. Monotypic.
117 M. metallophora Meyr., ibid., 1897, p. 369, Gen. Insect., pl. ii, fig. 20. (Melbourne.)

22 Gen Coracistis

Meyr., ibid., 1897, p. 370.
Tongue present. Palpi very long, recurved, ascending; second segment roughscaled anteriorly towards apex. Antennae over 1 ; in male simple; in female with tuft of scales on mid-dorsum. Posterior tibiae long-haired on dorsum with slight whorls on origin of spurs; tarsi with short bristles on apices of segments. Forewings with tufts of raised scales; 7 and 8 out of 6 . Hindwings lanceolate; 4 present, 6 and 7 parallel. Monotypic.
118 C. erythrocosma Meyr., ibid., 1897, p. 370. Gen. Insect., pl. ii, fig. 26. (Melbourne, Gisborne.) Mr. Gco. Lyell, who has captured a specimen, says that it simulated a wasp both in appearance and poise.

		Index to Genera
Actinoscelis Meyr. ...	1	Ethirastis Meyr. 4
Aenicteria Turn.	2	Eretmocera Zel. 20
Aeoloscelis Meyr.	10	Heliodinides Sttn. 15
Agitan Turn.	16	Hieromantis Meyr. .. 6
Calicotis Meyr.	7	Idioglossa Wals. 2
Coracistis Meyr.	22	Isorrhoa Meyr. 9
Dolophrosyne Drnt...	19	Lissocarena Turn. 14
		Index to Species Synonyms in Italics
acontias Meyr.	43	balteata Drnt. 112
acroscia n, sp.	24	basixantha Turn. 70
adela Turn.	18	bathrodelta Meyr. 66
aetheria Meyr,	31	callichrysa Low. 61
albata Mcyr.	10	campylosticha n. sp... 16
amathodes 11.sp.	50	canonica Meyr. 84
ancistrota Turn.	29	capnora Turn. 111
antinoma Meyr.	22	capnoscia Turn. 19
aphanosenta lurn.	91	castanodes 11. Sp. 48
arachnophthora Turn.	69	cephalaea Meyr. 49
argyritis n . sp.	23	ceramoptila Turn. 94
astrapeis Meyr	51	chalchotypa Meyr. 44
astricta Turn.	1	chalybeis Meyr. 42
atmozona Turn.	27	chrysias Meyr. 113
bacterias Meyr.	25	chrysophoenicea Meyr. 34

保
Eretmocera Zel. 20
Heliodimides Sttn. 15Idioglossa Wals.2
.14
Molybdurga Meyr. 21
Pachyrhabda Meyr, 8
Peudaegeria Wals. 17
Snellenia Wals. 18
Stathmopoda Sttn 11
Trychnopepla n. g. 12
Vanicela Wlk. 5
Zaratha WIk. 3
citroptila n s 67
coracopis Turn. 116
crocophanes Meyi 63
crotolitha Meyr. 4
crucifera Meyr. 13
cyanauges Turn. 14
cyanopla Meyr. 45
dentigera Mcyr. 7
desmoteles Meyr. 40
diclidias Meyr. 77
dimochla n. sp. 83
dioctis Meyr. 115
discors 'Iurn. 99
doratias Meyr. 56
effossa Meyr. 89

Erratum
By an unfortunate accident one of the best known species of Gracilaria was omitted from my revision of the Gracilariidae in these Transactions published last year.
169A G. xanthopharclla Meyr., P.L.S.N.S.W., 1881, p. 141. N. Qld.: Atherton Tableland. Qld.: Brishane, Mount Tamborine, Tweed Ids., Toowoomba. N.S.W.: Lismore, Sydney.

In the same paper the food plants of Lithocolletis aglaozona. Meyr. were by an error of copying transferred to L. stephanota Meyr.

Phyllocnistis enchalcoa (Proc. Roy. Soc. Tas., 1938, p. 100) is a misprint for P. enchalca. This is plainly indicated by the derivation given from $\epsilon \gamma \chi^{a \lambda \kappa o s,}$ brassy.

REDISCOVERY OF ONE OF CANESTRINI'S AUSTRALIAN ACARIDS

By H. WOMERSLEY, F.R.E.S., A.L.S., South Australian Museum

Summary

In 1884, "Atti Ist Veneto," ser. vi, vol. 2, 705-728, Canestrini described and figured a number of species of Acarina from Australia, many of which were new. Of these none have hitherto been recognised since Canestrini's publication. His figures were reasonably good and well enable the species to be recognised; his descriptions, however, were inadequate.

REDISCOVERY OF ONE OF CANESTRINI'S AUSTRALIAN ACARIDS

By H. Womersley, F.R.E.S., A.L.S., South Australian Museum

[Read 10 April 1941]
In 1884, "Atti Ist Veneto," ser. vi, vol, 2, 705-728, Canestrini described and figured a number of species of Acarina from Australia, many of which were new. Of these none have hitherto bcen recognised since Canestrini's publication. His figures were reasonably good and well cnable the species to be recognised; his descriptions, however, were inadequate.

Amongst the new species described was the deutonymph of Uropoda spinulipes, from specimens found on a beetle, said to be allied to the European Geotrupes. It was illustrated by a figure of the ventral surface and of the tarsus.

Recently I have received from Dr. J. W. Evans; of Hobart, a specimen of an earwig killed by an overwhelming number of deutonymphal Cropodid Mites which

Uropoda sprntlipes Canestrini (deutonymph)
A, dorsal view; B, ventral view; C, epistome and palpi ; D, gnathosoma from below; E, tritosternum ; F, mandible ; G, tarsus I; H, tarsus II; I, dorsal seta
are undoubtedly the same as Canestrini's U. spinulipes. The locality was Hobart, Tasmania, September 1940. When received, all the mites were alive and, although in the deutonymphal stage, were very active and the adhesive vesicle had disappeared.

The purpose of this paper is to redescribe and refigure the species.

Uropoda spinulipes Canestrini 1884
Fig. A-I
Deutonymph
Shape broadly oval, slightly tapering apically. Length, 835μ, width 610μ (i.e., rather greater than dimensions given by Canestrini- 720μ and 500μ, respectively).

Dorsal surface with an entire shield which is coarsely and sparsely pitted or pored. Clothing as figured, mainly of long (90μ) strong setae, which basally are strongly bent (fig. I) ; medially the two longitudinal rows are of much shorter fine sctae. There are also a fow large pores in the middle field (not figured).

Ventral surface-Tritosternum (fig. E) apparently trifurcate apically, the base longer than wide, the furcae with ciliations. Sternal-metasternal-genital shield long and roughly 4 -sided with cight pairs of short, fine setae and two pairs of pores. Posterior shield roughly elliptical with the anus at the apex; it carries 14 long setae similar to those on the dorsum. The extreme edge of the venter outside of the plates carries some short, fine setae.

Gnathosoma-epistoma as in fig. C. Ventral view as in fig. D. Palpi as in fig. C and D, 5 -segmented, segment II ventrally with a stout apical tooth. Mandibles as in fig. F .

Legs short and stout, tarsi with claws at the apex of a long caruncle, I apically with a number of long setac, one of which over-reaches the claws, and another which is stout, blunt and rod-like, II-IV with a number of short, stout spines.

SOME NEMATODES FROM AUSTRALIAN BIRDS OF PREY

By T. HARVEY JOHNSTON and PATRICIA M. MA WSON, University of Adelaide

Summary

This paper is based on material collected over a period of years from different parts of Australia. We are indebted to the late Dr. T. L. Bancroft (Eidsvold, Burnett River, Queensland), the late Dr. MacGillivray, Professor J. B. Cleland, Dr. A. Randall, Mr. J. T. Gray (Orroroo, S.A.), and the Queensland Museum for some of the parasites examined. Most of the remainder where collected by the senior author. The work was made possible by the Commonwealth Research Grant to the University of Adelaide. Types of the new species described have been deposited in the South Australian Museum. The following is a list of parasites arranged under their hosts:

SOME NEMATODES` FROM AUSTRALIAN BIRDS OF PREY

By T. harvey Joinston and Patricia M. Mawson, University of Adelaide
[Read 10 April 1941]
This paper is based on material collected over a period of years from different parts of Australia. We are indebted to the late Dr. 'L. L. Bancroft (Eidsvold, Burnett River, Queensland), the late Dr. MacGillivray, Professor J. B. Cleland, Dr. A. Randall, Mr. J. T. Gray (Orroroo, S.A.), and the Queensland Muscum for some of the parasites examined. Most of the remainder were collected by the senior author. The work was made possible by the Commonwealth Research Grant to the University of Adelaide. Types of the new species described have been deposited in the South Australian Museum. The following is a list of parasites arranged under their hosts:
Falco longipennis Swainson (Orroroo, Gawler, and Lake Alexandrina, S. Aust.; Burracoppin, W. Aust.), Serratospiculum guttatum (Schneider).
Falco peregrinus Tunstall (Moorook, S. Aust.), Scratospiculum guttatum (Schneider).
Falco melanogenys Gould (Macdonald Downs, Central Aust.), Serratospiculum gutlaturn (Schneider).
Nisaetus morphnomes Gould (Lake Frome, S. Aust.), Porrocaecum cercintm n. sp.

Circus Assiminis Jardine (Orroroo, S. Ahst.), Porrocaecum circinum 11. sp.
Astur novae-hollandiae Gmelin (North Queensland), Thelazia cquilina Baylis; (Brisbane), Porrocaecum circinum n. sp.
Accipiter cirrhocephalls Vieill. (Eidsvold), Hamatospiculum sp. (? mencilli). Hieracidea berigora Vig. and Horsf. (Eidsvold), Bancroftinema dentatum, n. . ., n. sp.

Hieracidea orientalis Schlegel (Flinders Is., Bass Strait), Acuaria flindersi, n. sp, Physaloptera hieracideac n, sp.

Cercinneis cenchromes Vig, and Horsf. (West Burleigh, South Queensland), Habronoma paraleptoptera n, sp.
Ninox connivens Lath. (Eidsyold), Seuratinema brevicaudatum n. g., n. sp. Ninox rufa Gould (North Queensland), Hamatospiculum moncilli J. \& M. Ninox boobook Lath. (Burnett River, Qucensland), Hamatospiculum moncilli J. \& M,

Ninox strenua Gould (Burnett River, Queensland), Subulura sp.

Porrocaecum circinum n. sp.

(Fig. 1)
From the spotted harrier, Circus assimilis (type host), (Orroroo; coll., J. T. Gray), the little eagle, Nisuctus morphnoides (Lake Frome, S. Aust.), and the white goshawk, Astur norac-hollandiae (Brisbanc-Queensland Museum). Complete specimens not present. Material consisting of anterior parts of females up to 100 mm . long, postcrior parts of females up to 20 mmint ; and the anterior parts of narrower worms, either males or immature females, without genital organs. Maximum width 1.5 mm . Head narrower than succeeding body, Dentigerous ridge on anterior inner surface of each lip continuing along edge of cuticular wing-like expansion on each side of lip, and extending nearly to its base. Interlabia less than half length of lips, each joined anteriorly on its inner surface to adjacent lips; two papillae on dorsal lip. one on each ventral. Oesophagus $3 \cdot 7-4 \cdot 3$ mm, long, including ventriculus $\cdot 32 \mathrm{~mm}$. long. Intestinal caccum wide, half to two-thirds oesophageal length. Nerve ring about $7-8 \mathrm{~mm}$. from head
end. Vulva not observed, only female fragment long enough to be likely to include it being very much coiled and twisted. Eggs subglobular, about 90-100 μ in diameter.

These worms differ from P. angusticolle in total length, in the relative length of oesophagus, and the size and shape of the eggs. The absence of males in our material, and of measurements of the oesophagus and intestinal caccum in accounts of previously described species, makes comparison with other forms difficult.

Physaloptera hieracideae n. sp.
(Fig. 2-3)
From the brown hawk, Hicracidea orientalis, from Flinders Island, Bass Strait. Several poorly prescrved females; only external features distinguishable. Length $17-18 \mathrm{~mm}$., maximum breadth 8 mm . Cuticular collar barely covering

Fig 1, Porrocaecum circinum: head. Fig. 2-3, Physaloptera hicracideae: sublateral and ventral views of head. Fig. 4-6, Acuaria findersi: 4, head; 5, anterior end; 6, male tail. Fig. 7-8, Habronema paraleptoptcra: 7, head; 8, male tail. Fig. 9-10, Seuratincma brevicaudahum: 9, head; 10, male tail. Fig. 1, 6, and 10 to same scale; fig. 2, 3, 4, and 8. C, cervical papilla.
base of lips. Each lateral lip with one median conical tooth, two smaller lateral stylet-shaped teeth on inner border, and two papillae externally. Median teeth apparently not meeting in midline when head seen in dorsal or ventral vicw (fig. 3). Oesophagus $2 \cdot 8 \mathrm{~mm}$. long. Tail pointed, $\cdot 3 \mathrm{~mm}$. long. The arrangement of the teeth distinguishes this species from other Physalopterids known from birds.

Acuaria flindersi n. sp.

(Fig. 4-6)
From Hieracidea orientalis, Flinders Island. Male 14.5 mm ., female 16.9 to 18 mm . long; maximum breadth .5 mm . Cordons rather faint, disappearing beyond 4 mm . from head. Lips each with two large papillae. Mouth leads to
vestibule $\cdot 25 \mathrm{~mm}$. long, 03 mm . wide: anteriur part of ocsophagus $\cdot 9$ mm., posterior part +3 mmn . in length; nerve ring 4 mm . From head. Measurements irom female.

Mate: longer spicule .51 mun. in length, iuhular proxinally, narrowed distally; shorter spicule 18 mm . long, spatulate with bhint tip. Caudal alae narrow, extending $\cdot 7 \mathrm{~mm}$. in front of posterior end; on each side two large and two smaller precloacal, four postcloacai, and near posterior end of ala one small rounded papilla,

Iemale: tail 15 mm . long. Finta 5.5 mm , in iront of posterior end, a third of body length from tail. Liggs. $36-38 \mu$ by $25-26 \mu$.

Differs from A. indica Maplestone and A. corricola J. \& M. in length of cordons and position of vulva.

Tig. 11-13, Bancroftincma dentatum: ventral, lateral and sub-lateral views of head. Fig. 14-15, Subulura sp.: 14, head; 15, anterio: end. Fig. 16-17, Sirratospiculum guflatum: 16, head, anterior view; 17, male tail. Fig. 18, Hamatospiculum sp. from. lecipiter cirrhocophlus, anterior col. A11 fig. except 15 and 18 to same scule.

Habronema paraleptoptera n.sp.

(Fig. 7.8)
From stomach of the kestrel, Circhucis conchroides, from Weat Burleigh, South Gucensland, Material consisting of two males 10 mm , and 6.3 mm . long, their widths 21 and 1 mm . respectively; and posterior 9.8 mm , of a female. Specimens so slender and fragile that only a lateral view of head conld be obtained. At least two, possibly three, teeth on each lateral lip; median of the three external lobes of each lateral lip slighly larger, the two outer each with large papilla; dorsal and ventral lips not visible from lateral aspect. Vestibule
12μ wide; oesophagus conmencing 38μ fron top of lips. In male 10 mm , in length, oesophagus 1.8 mm , long, nerte ring $\cdot 2 \mathrm{~mm}$. and cervical papillae ${ }^{*} 17 \mathrm{~mm}$. from head encl. Lateral alae about it quatter body length.

Wolf: tail with candal alae aboat 2 man. long, reaching to within 05 mm . of bhutly rounded tip. At least four pairs pednucntated preanal papillae, and three paits small sessile postanal papillae. Tail 1.2 m1m, long. Spicules in longer male -35 mm , and $1 \cdot 1$ mint, in length; in shoter male shorter spicule 3 mun. funger spictile very fine and its termitiation not observed.
female: Vulva not gresent in only available piece. Tail - 31 man. long, phinted. Fagss, thick-shellech, $25-30 \mu$ by 12-15 μ.

The species closely resembles H, toptoptera (Rud,) . but differs in the relative sizes of the lobes of the lige, the position of the nerve ring and excretory pore, and the size of the eggs. In spite of our inadeguate study. these affercuces suggest that we are dealing with a new species.

Seuratinema brevicaudatum 11. gi, n.Sp.

(Fig. 9-10)
From the winking owl, Ninor conniens, from the Bumet kiver (coll, Dr. Baneraft), One nale present, 18 mm . long, 5 mm , wide, Head rounded, with a pair lateral and two pairs larger submedian papillae; cuticlu behind these inflated for distanee of 25 mm , Oesophagus 5 mm . $10 n \mathrm{~g}$, widening at base; nerve ring .25 mm, From head. Posterior end bluntly pointed. Cloaca * 16 1mm, from tip of tail, on prominence with four pairs pericloacal papillae at its lase; posterior to these are one median and two latera papillae; near tip of tail three pairs smaller papillac. Spicules subequal, about $\cdot 22-25 \mathrm{~mm}$. long, both tapering, shorter slightly thinner.

The combined elaracters of the head, tail and oesophagis suggest a new gentes, diagnosed as follows:

Souratime: head rounderl, cuticle behind head inflated for short distance. Buccal capsule absent; oeiophagus short, muscular. Male: tail short, conical, with papiltae not in linear row; no caudal alae; spicules subequal, short. Female mannown. Parasites of birds. Type species, Seuratinoma brequandatum n. sp.

The genus alpears to be nearest Seleratum, fron which it differs in the absence of longitudinal bands on the cuticle, in the presence of inflated corvical cuticle, and in possessing a shorter male tail. It differs from genera of Thelaziidae in the absence of a buccal capsule, the presence of cervical inflation, the shortness of the mate tail, the arrangentent of the candal papillaes, and the length of the oesophagus.

Bancroftinema dentatum n. g.s 11, sp.
(Fig. 11-13)
Front Hicracidea berigora from Fidsvold, Queensland (coll., Dr. Bancroft). Two females present, $2-2.5 \mathrm{~cm}$. long, $-13-15 \mathrm{~mm}$, wide; body tapering anteriorly; tail rounded. Two more or less crescentic lateral lips, each with a small median and 1 wo large lateral papillac, Oesophagus commencing 70μ from front of lips. From this level numerous (20-30?) chitinised rods extend forwards along inner surface of each lip to terminate in tooth-like points. These forni a sort of buccal capsule, of which the dorsu-ventral diameter is much greater than that from side to side, and of which the walls are longer in the centre titan dorsally and ventrally. Cuticle inflated behind lips and extending backuards for about .25 mm . Two parts of ocsophagus not readily distinguishable, total length 2.5 mm . nerve ring -25 nmm . from head, surrounding a constriction in ocsophagus. Cervical papillae hook-like, posteriorly directed, small. 1 man. behind posterior end of cuticular inflation. Vulva just anterior to middle of ocsophagus, two uteri filled with thickslelled eggs about 50μ by $25-30 \mu$, each containing a coiled larva.

Owing to the absence of males we have been compelled to depend mainly on the characters of the head and oesophagus to determine the systematic position of this genus. The presence of two well-marked lateral "pseudolabia" suggests the Physalopteridae, but it differs from members of that family in having a welldevcloped stoma. The Spiruridae have a well-developed stoma but the pseudolabia are usually small, and cephalic papillae are situated posterior to them. Our genus then appears to lie between the Spiruridae and the Physalopteridae as outlined by Chitwood and Wehr (1934). The genus Bancroftinoma is diagnosed as follows:

Spiruroidca: with two lateral lips, each with three papillae. Buccal capsule present, narrower laterally than dorso-ventrally, its walls formed of rods arranged vertically side by side each ending in a tooth-like point on inner margin of lips. Cervical cuticle inflated. Oesophagus long, two parts not distinct. Vulva oesophageal. Parasites of birds. Type species Bancroftinema dentatum n. sp.

The genus differs from Seuratinema in the presence of lips and in the possession of an armed stoma.

Thelazia aquilina Raylis

From Astur novae-hollandiae, collected by Dr. MacGillivray in North Queensland. Several specimens of both sexes were examined. They agree essentially with Baylis' description (1934). Our specimens are shorter and stouter; the males show only three pairs of post-anal papillae. the third however is indistinct and large, and may comprise two small ones close together.

Subulura sp.
 (Fig. 14-15)

From Ninox strenua, Eidsvold, Queensland. One poorly preserved femalc present, 9.5 mm . long. Vestibule 49μ long, 29μ wide ; oesophagus 1.2 mm . long, its terminal bulb -25 mm . long, $\cdot 2 \mathrm{~mm}$. wide. Nerve ring $\cdot 28 \mathrm{~mm}$, and excretory pore $\cdot 34 \mathrm{~mm}$. from head end, Tail .755 mm . long; vulva at mid-body; eggs $30-32 \mu$ by 22μ. Possibly owing to the density of the worm, teeth were not observed in buccal cavity. In the absence of males this species cannot be compared satisfactorily with recognised species.

Serratospiclleum guttatlum (Schneider)

(Fig. 20-21)
Specimens were obtained from Falco longipennis, from Orroroo, S, Aust. (coll., F. I. Gray and S. Aust. Museum), Lake Alexandrina, S. Aust. (coll., Dr. A. S. Randall), Burracoppin. W. Aust. (coll. Dr. Cleland), and Gawler, S. Aust.; Falco peregrinus from Moorook, S. Aust.; and from Falco melanogonys from Macdonald Downs, Central Australia. All the specimens examined appear to belong to the same species, although those from I^{*}. peregrints are larger, the measurements given arc, unless otherwise stated, of males and females from F. longipennis.

Males 80 mm . long, females $100-200 \mathrm{~mm}$, maximum width 1 mm . (Males and females from F. percgrinus 160 mm . and 290 mm . long respectively, 2 mm . maximum width.) Epaulctte structures on head poorly developed; four pairs submedian papillae large; laterals very small. Median anterior projection on each lip short. Narrow anterior part of oesophagus $\cdot 35 \mathrm{~mm}$. long in female, 32 mm . in male; posterior part 10 mm . in female 200 mm . long; nerve ring around anterior part, about its middle.

Malg: spicules of typical shape, longer $\cdot 62 \mathrm{~mm}$., shorter $\cdot 3 \mathrm{~mm}$. in length (1.13 mm , and $\cdot 5 \mathrm{~mm}$. in specimens from F. peregrinus), i.e, shorter spicule
about half length of longer. Caudal alae -22 mm . long; cloaca 90μ from tip of tail. Caudal papillae pedunculate, five pairs preanal, six pairs postanal, their arrangement being remarkably constant in all specimens examined.

Female: anus 60μ in front of tip of rounded tail. Vulva near beginning of glandlular part of oesophagus, 8 mm . from head in 200 mm . long worm. All females except those from F. peregrinus covered with small cuticular bosses. Eggs, 50μ by $30-25 \mu$.

The worms differ from Iilaria attenuata Rud., 1819, as described by Seurat 1915, in being longer, in having a relatively shorter oesophagus, a pair of lateral ccphalic papillae, and in the arrangement of the postanal papillae in the male. It agrees with Schneider's Filaria guttata, described in 1866 from Falco berigora from Adelaide. Seurat placed the species as a synonym of Rudolphi's F. attenuata (from Falco peregrimus), in spite of the fact that Schneider redescribed Rudolphi's material at the same time as he published his own account of F. guttata. Baylis $(1925,112)$ recorded S. attcnuatum from Falco longipennis from St. George, Southern Queensland, quoting as a synonym Filaria guttata Schneider.

Hamatospicllum meneilli J. \& M.
This species, originally described from Ninox boobook, from IIayman Island, Queensland, is now recorded from the same host from the Burnett River, Queensland, and from Ninot rufa, collected by Dr. MacGillivray in North Queensland.

Hamatospiculum sp.
(Fig. 18)
Part of a female worm probably referable to this genus was obtained from Accipiter cirrhocephaluts at Eidsvold by Dr. Bancroft. Such features as can be made out, suggest H. moneilli J. \& M.

Literature

Baylis, II. A. 1925 A.M.N.II., (9), 15, 112-115
Baylis, H, A. 1934 A.M.N.H.. (10), 14, 142-154
Chitwood, I. G., and Werlr, E. E. 1934 Z. I’arasitenk., 7, 273-335
Johnston, T. H., and Mawson, P. M. 1941 Rec. Austr. Mus. (in press)
Maplestone, P. A. 1931 Rec. Indian Mus., 33, 71-171
Schneider, A. 1866 Monographie der Nematoden, Berlin
Seurat, L. C. 1914 Compt. rend. Soc. Biol., 76, 21-24
Seurat, I. C. 1915 Novitates Zoologicae, 22, 1-25
Note--To bring our host names into line with those given in the "Official checklist of the bitds of Australia" (1926), the following alterations are necessary : Falco melanogenys - I'. peregrinus; Nisaehs morphoides - = Hicraaetus m.; Hicracidea berigora (syn. H. orientalis) = Falco b.; Cerchneis cenchroides $=$ Falco c.

NEW AUSTRALIAN LEAF-HOPPERS

By J. W. EVANS, M.A., D.Sc., F.R.E.S.

Summary

The classification adopted in this paper is based on the system proposed in an earlier publication (Evans. 1939). No excuse is offered for considering the principal jassoid groups as families, as they are certainly as distinct as well established families in several other Orders of insects. As long as jassoid classification rests, to such a large extent, on the position of the ocelli, little progress will be made, and genera such as Xerophloca Germ. which on basic head structure and accessory characters clearly belongs to the Ledridae, will continue to be misplaced.

NEW AUSTRALIAN LEAF-HOPPERS

By J. IW. Evans, M.A., D.Sc., F.R.E.S.

[Read 10 April, 1941]
The classification adopted in this paper is based on the system proposed in an carlicr publication (Evans, 1939). No excuse is offered for considering the principal jassoid groups as families, as they are certainly as distinct as well established families in several other Orders of insects. As long as jassoid classification rests, to such a large extent, on the position of the ocelli, little progress will be made, and genera such as Xcrophloca Germ. which on basic head structure and accessory characters clearly belongs to the Ledridae, will continue to be misplaced.

BYTHOSCOPIDAE

Parablocratus australis sp. nov. (Fig. 13)
Lenglh, $6 \mathrm{mm1}$. Gencral coloration, pale yellowish-green; eves reddishbrown. Hcad, ante-clypeus parallel-sided, projecting beyond the maxillary plates. Apex of head consisting of a white apical band, of even width throughout, botnded on each side by a narrow brown line. The ocelli on this band are in contact with the eyes on each sicle. Crown flat, coronal suture extending a little beyond the ocelli. Pronolum, more or less parallel-sided. Tegmon hyaline, very pate green, appendix wide. Logs flatened, and with a devclopment of minnte spines between cach of the spines in the row of the shortest but strongest spinces.

Type z, from (ircgory Downs, Yorth Ouecusland (T. G. Campbell, May 1931), in the collection of the C.S.LR, Division of Entomology at Canbera.

Parablocratus citrinus sp. nov* (Fig. 1f-16)
Lenuth, 6 mum. Head pale hrown, ante-clypeus paralled-sided but not projecting heyond the maxillary plates; fronto-clypens convex. Apical vertical margin of the head wider against the eyes than fin the centre, white botuded on each side by a faint brown line. Ocelli on the apical margin, close to but not tonching the eyes, visible from aboue. Crown concave, white with orange markings, coronal suture extending to between the ocelli. Pronotram, anteriorly white. posteriorly brown with orange markings as indicated in fig. 16 . Teqnen pale hyaline brown, appendix narrow. Ilind tihia that with minnte spines between each short spine.

Type of, from (aims, North ()ucensland (A. M. Tea), in the collection of the South Anstralian Muscunn.

The genera Parablocratus Fincher and Spanbergiclla Sign. are more clocely related to Bythoscopus (ierm. than 10 genera in the family Euscelidac. Accordingly they are added to the list of those genera. which in the opinion of the present am:hor. comprises the family loythasopmae (Evans, 1939). It is recognised that although they are not extremely close 10 Bythoscopus and Sumosopus kirk., they are more closely related to them than are such gencra as Macropsis Lewis, Idioccus I ewis and Agallia Curtis. With regarel to the head, in Parablocratus and Spanbergiclla the ocelli are marginal, in Bythoscopus they are ventral. The ante-clypeus is rectangular in all three genera, the maxillary plate wide and the labium short. The crown in Bythosropus consisis entirely oi the vertex: in the other two genera it is made up of the vertes and part of the fronto-clypens. The pronotum in all is wide and more or less parallel-sided, the tegmina have all similar venation, and the hind tibiae are flattened and slightly curved. A change in head shape from an evenly rounded head with ventral or marginal ocelli to une that is
flattened or even spatulate with marginal or dorsal ocelli has occurred indepenciently in several groups of leaf-hoppers. A series of figures illustrating such a change and the iransition stages, has been given in an earlier paper (Evans, 1937).

IDIOCERIDAE

Idiocerus swani sp. nov. (Fig. 4)
l.cngth, $6 \mathrm{~mm} .(9), 4.5 \mathrm{~mm}$. (8). Head biscuit-coloured sulfused with pink posteriorly; ocelli red; cyes, dark reddish-brown. Face of the head in wo distinct planes which are separated by a line joining the antennae. Fronto-clypens anteriorly convex, posteriotly flat. Crown of even width throughout, pink with two small black spots close to the eyes on cach side. Pronotum, finely transversely striated, yellowish-pink with two large black spots in a line with the internal margin of the eycs on eacls side. Sintollum, wide and long with a median transverse depression, marked with a variable pattern of black, yellow and pinkishbrown. Tegmon hyaline brown, veins pink excepting for the first anal vein which is white. Thorax and abdomen, ventral surface pale biscuit colour; ovipositor. black.

Type, of, from Flinders Clase, Kangaroo Island (I). C. Swan, February 1940), in the collection of the South Australian Museum.

Idiocerus flindersi sp, nov. (Fig. 1)

Longth, 4.5 mm . Iload, ventral surface pale biscuit-colour, eyes dull red. Ante-clypens medially depressed, lora swollen; fronto-s lypeus anteriorly medially convex, posteriorly flat. Crown of even width throughont, slighty produced anteriorly. Pronotum and scotcllith pale biscuit-colour. Tegmen, transparent. colourless, veins apically pale brown.

Type, \circ, from Flinders Chase, Fangaroo Island (D. C. Swan, Fehruary, 1940), in the collection of the South Anstralian Museum.

Idiocerus macropensis \$p. nor. (Fig. 2 ancl 3)
Lenyih, 3 mmn . Heat, ventral surface ahnost flat, pale hiscuit-colour, with a rectangular grey area lying against the posterior nargin; ocelli brown, cyes black, Crown wide, pale brown and pale yellowish-brown with two small black spots close to the anterior margin. Pronotnm concolorons with the crown. Tegmon, dull whitish-grey with several scattered brown spots, apical cells hyaline, veins white. Thorax, ventral surface black. Abdomen, ventral surface pale biscuit-colour.

Type, 9 , Irom Flinders Chase, Kangaroo Island (1). C. Swan, February, 1940), in the collection of the South Australian Museum.

Idiocerus insularis sp. noct. (Fig 5 and 6)
Lomglh, $2 \cdot 5 \mathrm{~mm}$. Hoad, ventral surface evenly cotivex, ante- and fronioclypens apricot-colour; eycs purplish-hrown, ocelli black; an oval area against the postrior margin oi the face, parplish-brown; lora and maxillary plates biscuitcolourcd. Crown medially pale parplish-brown, laterally apricot, shightly wider in the contre than against the eyes. Pronotum and scutellum golden-yellow. Tegnon, golden-yellow, apically lyaline. Thorar and abdomon, ventral suriace pale biscuii--colour.

Type, ô, from Flitulers Chase, Liangaroo Islancl (D. C. Swan, February 1940). in the collection of the South Anstralian Museum.

Austrocerus gen. nov.

The ante-clypeus is flat anteriorly and steeply convex posteriorly. The fronto-clypens is narrow and convex anterior to the antennae; posterior to the
antennae the face is evenly rounded. The maxillary plates are narrow and emarginate, the eyes large and the apices of the frontal sutures directed inwards. The crown is wide and the coronal suture distinct. The hind tibia has one spine set on a prominent base in a row containing four other spines.

Austrocerus emarginatus sp. nov. (Genotype) (Fig. 8)
Length, 3 mm . Head, ventral surface biscuit-colour, eyes lemon. Crown wider in the centre than against the eyes, medially apricot-colour, laterally biscuitcolour. Pronotum, scutcllum and tegmen, apricot. Thorax and abdomen, ventral surface biscuit-colotur.

Type, is, from Flinders Chase, Kangatoo Jsland (D. C. Swan, February 1940), in the collection of the South Australian Museun.

Macrocerus gen. nov,
The ante-clypens and the fronto-clypens are wide and almost flat, and the maxillary plates are narrow and depresecd below the level of the lora. The frontal sutures are directed outwards apically and the ocelli are sunk in slight depressions. The crown is wide and the coronal suture very short. The hind tibia has two spines set on prominent bases in a row containing four other spines.

Macrocerus minutus sp. nov. (Genotype) (Fig. 9)
Length, 3 mm . Head, ventral sur[ace lemon-yellow; eycs, greenish-yellow. Crown slightly wider in the centre than against the eyes. Pronotum, scutcllum and tegnen, pale buff. Thorax and abdomen, ventral surface pale biscuit-colour.

Type, fo, from Flinders Chase, Kangaroo Island (D. C. Swan, February 1940), in the collection of the South Australian Musenm.

Idiocerella gen, nov.
The ante-clypeus is swollen and declivons anteriorly and narrow posteriorly. The fronto-clypeus is evenly rounded and narrow, and the frontal sutures are parallel. The crown is wide and the coronal suture short. The hind tibia has two spines set on prominent bases in a row containing four other spines.

Idiocerella obscura sp, nov. (Genotype) (Fig, 7)

Length, 3.5 mm . Head, ventral surface pale buff, eycs lemon-yellow. Crown slightly anteriorly produced, wider in the centre than against the eyes. Pronotum wide, hind border medially emarginate, dull buff. Scutcllum and tegmon dull buff.

Type, of, from Filinders Chase, Kangaroo Island (D. C. Swan, February 1940), in the collection of the South Australian Muscum.

Nineteen species of Idioccras Lewis have been described previously from Australia. Of these twelve occur in Queensland and two in Western Australia. Two of the remaining species, I. seckeri Ev. and I. kirkaldyi Ey., are abundant and widespread in South-Fastern Ansiralia and Tasmania, whilst three are apparently rare insects. It is of particular interest to be able to record four new

DESCRIPTION OF゙ FIGURES

Fig. 1-25
1, Idiocerus findersi, head, ventral aspect; 2, Idiocerus mocropensis, head, ventral aspect; 3, Idiocerus macropensis, tegmen: 4, Idiocerus sreani, head, ventral aspect; 5, Idiocerus insuloris, head, ventral aspect; 6, Idiocerus insularis, hind tibia; 7, Idiocerclia obscura, head, ventral aspect; 8, Austrocerus cmarginatus, head, ventral aspect; 9, Macrocorus minutus, head, rentral aspect: 10, Macropsis viridices, head atnd thorax, dorsal aspect; 11, Macropsis variabilis, head and thorax, dorsal aspect; 12, Macropsis norrisi, head and thorax, dorsal aspect; 13, Parablocratus australis, head and thorax, dorsal aspect; 14, Parablocratus citrinus, tegmen; 15, Parablocratus citrinus, head, veniral aspect; 16, Parablocratus citrinus, head and thorax, dorsal aspect; 17, Eutetiti- possiforae; 18, Eutettix passiforae, maice genitalia; 19, Eutettix passiflorac, hind tibia; 20. Tharra leat head, ventral aspect; 21, Tharra leai, head and horax, dorsal aspect; 22, Tharra lcai, hind tibia; 23, Austronirzana flavus, head and thorax, dorsal aspect; 24, Austronirana flaztus, head, ventral aspect; 25 , Austronirvana flavis, tegmen.
species of Idiocerus and three new species in allied genera, collected in a restricted area on Kangaroo Island during the same month.

MACROPSIDAE
 Macropsis viridiceps sp. nov.

(Fig. 10)
Longth, 4 mm. Head, ventral surface emerald green, longer than wide; eyes reddish-brown. Crown visible above as a very narrow border, widest against the eyes. Pronotum cmerald green, stecply declivous anteriorly. Scutcllum yellow with two dark brown triangular markings against the anterior margin. Tigmon transparent, colourless. pale grey apically; a black spot at the apex of the claval suture, and the costal border proximally black. Thorar and abdomen, ventral surface green. The bases of the spines on the hind tibiae, dark brown.

Type, of, from Hobart, Tasmania (J. W. E., February 1936), in the collection of the Sonth Australian Muscum.

Macropsis variabilis sp. nov. (Fig. 11)

Lenglh, 4 mm . Head, ventral surface witer than long, sordid yellow, eves red. Crown narrowly visible from above, widest against the cyes. Pronotum dull brown flecked with black, declivons anteriorly. Scutcllunt brownish-yellow with dark hrown punctures. Tcomen smoky-hyaline, clavus and costal margin green. Wing with R_{2+3} not fully developed. Thorax and abdonen, ventral suriace, pale greenish-yellow:

Type, ${ }^{2}$, from New Norfolk, Tasmania (J. W. F., November 1938), in the collection of the South Australian Auseum.

Note-This is a variable species, and the general coloration may be pale ycllowish green.

Oncopsis norrisi sp. nov. (Fig, 12)
Length, 4 mm . Hcad, ventral surface, ante-clypeus, lora mul maxillary phates, buff; fronto clypens reddish-brown, vertex posteriorly dark brown; cyes red. Pronotum declivous, red. Scutcllun dull brown. Teqmen proxinally pate yellow, distally testaceons; a wide red area between the costal border and the radius and a iransverse median dark brown fascia; clayus yellow, mal margin dark brown; veins distally red. Thortar and abdomen, ventral surface pale vellow. Legs pale yellow, bases of spurs on hind ribia, black.

Type, q, from Cuidford, Western Australia (K. R. Norris, September 1935), in the collection of the South Australian Muserun.

EDS(CLILDAE

Eutettix passiflorae sp. nov. (Fig, 17-19)
Length, 3.8 mm. Ifcad, ventral suríace buff with irregular yellowish-lirown markings, eyes dark hrown. Crown buff motled with ycllowish-brown. Pronotmm anteriorly yellowish-brown, posteriorly grey motled with brown. Soutclum apically, and anterior lateral angles, yellowish-brown, the remainder buif. Tegnen whitish-hyaline with an irregular pattern of light and dark brown spots; veins light and dark brown. An irregular dark grey median fascia extends from the anal border to half-way towards the costal border. Thorax and abdomen, ventral surface pale grey and bulf. Leqs, anterior two pairs huff with very dark brown markings on the femora and tihiae. Hind legs buff, bases of the spines dark browin.

Male Genitalia, as in fig. 18.
Type, ${ }^{2}$, from Sydney. N.S.W. (N. S. Noble on P'assiflora rdulis, August 1937), in the collection of the Australian Museunt.

JASSIDAE

Tharra leai sp. nov. (Fig. 20-22)

Longth, 6 min. Head, ventral surface coffec-colour, eycs black. Anteclypeus, fronto-clypeus and lora smooih, maxillary plates with marginal, and vertex with transverse striations. Ocelli distant from the fronto-clypeus which is raised above the level of the eyes ; antennae very long. Crown wide consisting entirely of the vertex, the sides of which are at right-angles to the central portion. A median carina marls the position of the coronal sumure. Pronotum and soutellam, dark brown. Tegucn, brownish-yellow, veins brown. Thorax and abdomen, ventral surface pale brown.

Type, of from Cairns, North Queensland (A. M. Lea), in the collection of the South Australian Museunı.

Kirkaldy (1906) in describing the genus Tharra stated that it differed from Jassus Fabr, by the possession of two sub-apical cells and the absence of transverse veins in the clavus. Later (1907) he was of the opinion that this venational difference was unreliable, and separated the two genera in a key in which Jassus was stated to have a flat frons and antennae situated near the intero-posterior angles of the eycs, whilst in Tharra the frons was raised and the antennae situated near the intera-anterior angles of the eyes. The species described above has been placed in Kirkaldy's genus as the fronto-clypens is raised, although in the position of the insertion of the antennae it resembles Iassus rather than Tharra.

YIRVANIDDAE

Austronirvana geni. nov.
The: ante-clypeus, which is slightly convex, is narrower anteriorly than posteriorly. The fronto-clypetts is concave, especially apically, and the lahitur is short. reaching only a little beyond the fore-coxac. The head has an apical flattened margin which is wider against the antennae on each side than in the contre, and the funscle impressions of the sucking-pump extend onto this margin. The crown is eyenly convex and declivous, and the coronal suture extends for iwothirds of the length of the crown. The ocelli are on the crown directly abose the antenmae and are closer to ach other than are the eyes. The pronotnon narrows slighty anteriorly and the sentellum is wide. The tegmen is long and narrow, has a natrow appendix and everal cells are developed between the median and the first cubital veith. The hind tibiat has two rows of evenly spaced sinilar spines. between which is a row of slightly longer sphes set on entarged lases. There is also a row of short hair-like spines.

Austronirvana flavus sp. 1:ov. (Genotype) (Fig. 23-25)
lonoth, 10 mm . General coloration pale lotff, eyes brown. Tegmon opaque. vemation intlistinct.

Type, of from Mount Tanborine, Quemsland (A. M. L.ca), in the collection of the South Australian Museunn.

Nome-Other specimens of the species from the same locality are bright yellow with a median longitudinal orange stripe on the head and pronotum. This stripe may be bordered wit'l white.

Nore-In an earlier paper (1939) the genera Ledrolla Ev, and l.cdraprora Ev. were placed in a sub-family of the Ledridace, the Ledrellinae. It is now realised that this was an cror, and they are herewith transferred to the family Thymbridac (Evans. 1939).

References
Evans, J. W. 1937 Mem. Qucensland Mus., 11, (2), 149
Evans, J. W. 1939 Pap. Roy. Soc. Tas., 1938, 39, 19
Krrkatidy, G. W. 1906 Butl. Hawaii Sug. Ass. Ent., 1, (9)
Kirkaldy, G. W. 190'~Bull. Hawaii Sug. Ass. Ent., 3

REVISIONAL NOTES ON THE AUSTRALIAN SPECIES OF TENUIPALPUS (ACARINA, TETRANYCHIDAE)

By H. WOMERSLEY, A.L.S., F.R.E.S., South Australian Museum

Summary

In these Transactions, vol. 64, pt. 2, p. 236-242 ("Studies in Australian Acarina: Tetranychidae and Trichodenidae"), I described or recorded the following species of Tennipalpus Donnadieu from Australia: phoenicis Geijs'kes 1939, californicus Banks 1904 and vitis Worn.

REVISIONAL NOTES ON THE AUSTRALIAN SPECIES OF TENUIPALPUS (ACARINA, TETRANYCHIDAE)

By H. Womersley, A.I.S., F.R.E.S., South Australian Museum

[Read 8 May 1941]
In these Transactions, vol. 64, pt. 2, p. 236-242 ('Studies in Australian Acarina: Tetranychidae and Trichodenidae"), I described or recorded the following species of Tenuipalpus Donnadieu from Australia: phocnicis Geijskes 1939, californicus Banks 1904 and vitis Wom.

The last two species were distinct from the first in being very much less chitinised, in lacking the distinct and well-defined propodosomal and opisthosomal dorsal plates with their marked reticulations, and in the absence of the distinct ventral plates.

Since publishing my paper I have been indebted to Mr. S. L. Allman, of the Department of Agriculture, Sydney, for the loan of certain further specimens, in which he had observed that the adult cuticle was well differentiated within that of the nymph. From these specimens it is now possible to definitely ascertain the relationship of particular nymphs to particular adults, with the following results in synonymy:

Tenuipalfus californicus Banks, 1904
J. New York Entom Soc., 1904, p. 55.
$=$ Tenuipalpus phocnicis Geijsles: Meded. Landbouwhoogeschool, Wageningen, 42, (4), 1939.

$$
\begin{array}{ccc}
= & " \quad \begin{array}{c}
\text { Womersley: Trans. Roy. Soc. S. Aust., } \\
64,(2), 237,1940 .
\end{array} \\
=\quad & =\quad \text { californicus Womersley: Trans. Roy. Soc. S. Aust., } \\
& 64,(2), 239,1940 .
\end{array}
$$

The type of this species is therefore the form (nymphal) described by lanks and also figured by Quayle (1912).

Tenuipalapus australis Tucker, 1926
Div. Entomology, Dept, Agric., Mem. No. v., S. Africa, 1926. p. 3, pl. i, pl. iii, fig. (-J.
$=$ Tenuipalpus ritis Womersley: Trans. Roy. Sor. S. Aust., 64. (2), p. 241.

Specinnens collected from Virginia Crecper, Armidale, Now South Wales. 22 November 1940, and sent to me by Mr. Allman, show very clearly the form described and figured by Tucker, within the nymphal cuticle of T. vitis. It is therefore definitely established that the form ritis is but the early stage of australis.
T. australis was described from South Africa and, as such, has not hitherto been recorded from Australia, My record of aifis from lemons at Perth, Western Australia, must now be referred to Tucker's species.

The most obvious difference in the adult is that in califormions there are only 6 clavate setae around the posterion margin of the opisthosoma, whereas there are 8 in australis.

Fig. A, Tenuipalpus australis Tucker, dorsal view; B, ditto, ventral view;
C, Tenuipalpus californicus Banks showing adult instar within nymphal cuticle; ventral view.

THE PRINCIPAL SOIL AND VEGETATION RELATIONSHIPS ON YUDNAPINNA STATION, NORTH - WEST SOUTH AUSTRALIA

By R. L. CROCKER and H. R. SKEWES
(Waite Agricultural Research Institute)

Abstract

Summary

Yudnapinna Station (about 50 miles north-west of Port Augusta) has been selected as the centre for soil erosion and vegetation degeneration and regeneration studies by the Waite Agricultural Research Institute, under the Ranson Mortlock bequest. The Division of Soils of the Council for Scientific and Industrial Research was co-opted to elucidate the soil and vegetation relationships. A soil and ecological survey was made of some 25 square miles (North Lambing and South Lambing Paddocks, etc.) in which it has been considered the investigations would be centred. By means of some general traverses across the whole station a broader view of the ecology was obtained and some new types investigated.

THE PRINCIPAL SOIL AND VEGETATION RELATIONSHIPS ON YUDNAPINNA STATION, NORTH-WEST SOUTH AUSTRALIA

By R. L. Crocker and H. R. Sikewts

(Waite Agricultural Rescarch Institute)
Phates I to III
| Read 8 May. 1941|

INTRODUCTION

Guchapinna Station (about 50 miles north-west of Pont. Ingusta) has been selecied as the centre for soil crosion and regetation degeneration and regencration studies, undertaken by the Waite Agricultural Research Institute, under the Ranson Mortiock beguest. The Disision of soils of the Council for Seientific and Industrial Kesearch was co-opted to elucidate the soil and regetation relationhips. A soil and coological survey was made of some 25 square miles (Xorth Lambing and South Lambing Paddocks, etc.) in which it has been considered the investigations would be centred. By means of some gencral traverses across the whole station a broader view of the ecology wats obtained and some new types investigated.

GEOLOGY AN゙D PIIYSIOGRAPHY

The general physiography is that of the last phases of a peneplain undergoing dissection. Only a few mesas and buttes give evidence of the former general level. although smaller ranges and hills are representative of successive stages of the weathering. The hills are rarely more than 300 feet above the general level.

Fig. 1
and the rock strata are horizontal or slightly inclined, and for the most part sand stone, quartzose sandstone, shales and grits, of doubtful Ordovician age (Howchin (3). 1929). The tableland was one time widespread and inquestionably continuous with the Arcoona lableland further north. Aluch sand has been superimposed on the area (luring an arid cocle in Recent (or late Pleistocene) times. In places this has been thrown up, into ridges exhibiting a rongh parallelism.

SOIL AND ECOLOGICAL SURVEY OF

CLIMATIC FEATURES

The mean annual rainfall at Xudnapinna is 7.5 inches, Fig, 1 shows the annual variation for the years 1885-1939. During this time the highest rainfall recorded was $18 \cdot 08$ inches in 1921, and the lowest $2 \cdot 36$ inches in 1928 . One of the most striking features is the variability of the rainfall, which is influenced by both winter low pressure systems and summer monsoonal rains, The arca falls within Davidson's (2) warm temperate arid zone, with $\mathrm{P} / \mathrm{E}>0.5$ for $1-2$ months of the year. Particularly in the summer months tropical downpours may be experienced. In 1938, of a total of $9 * 62$ inches of rain, six inches fell in two days (435 points on 20 February and 165 points on 23 October). It is generally recognised that annual rainfall figures are very misleading as an index to effective rainfall. The new meteotological station placed at Yudnapinna by the Waite Institute will permit of more critical analyses of the climate in future.

THE SOILS

With the aid of aerial photographs a soil survey was made of North Lambing, South Lambing and Horse Paddocks, and Lawrence's Flal, representing a total area of about 25 square miles. Seven soil types were classified and mapped on the basis of soil profle and vegetation association. Their extent and distribution are indicated on the accompanying soil map, No attempt was made (except in the case where there were definite crabhole affinities) to differentiate the soils of stony hills-the iableland remnants.

Subsequently some three square miles included in the Yarramundi grazing experiment were also surveyed. On the more extensive reconnaissance one new type and one new phase have been added to thd seven types mapped above.

The first seven types described are those differentiated in the more detailed survey of North and South Lambing Paddocks. The profie characteristics and variation of the different types are summarised in the sketch figures shown on the soil map.

Type 1-Limited to South Lambing Paddock in the detailed survey, but occurs more extensively, though sporadically, over the whole station. It is associated with the tableland remnants either on the slopes between the stony hills and the lower gently sloping plains, or on the tableland itsclf. It is characterised by gibber shelf and more or less gibber-free crabholes. There is no evidence of crabhole puff development. Towards the eastern side of South Lambing Paddock an area of this soil type occurs at a much lower tupographical position and with a slightly modified vegetation assemblage. On some of the higher stony slopes there are practically no mature crabholes, but immature crabholes occur and affinities with this soil type are obvious.

One of the most striking features of the shelf profile is the abundance of surface gibbers and pebbles. These are iron-coated, somewhat glazed, grit and sandstone gibbers, chiefly $\frac{1}{2}$ inch to $2 \frac{1}{2}$ ittch in diameter, ${ }^{(1)}$ There are occasionally isolated gibbers in the crabholes themselves, but they are usually giblber-free. Apart from the presence or absence of surface gibbers, however, there is a great difference in the structure of the clay in the twa profiles, and in the distribution of lime and in relative salinity. The shelf profile shows well developed nuttiness (with some colmmar tendencies) in the upper clay horizons, but there is a gradual decrease in structure with depth. In the crabhole profiles, apart from the large cracks which develop, there is no structure exhibited at all.

Itr the profile of Type 1 b small included ferruginous-coated pebbles and sand and coarse sand along the cleavage lines of the crabhole cracks show the maximum depth of cracking. It is approximately 33 inches. The profiles were sampled
(1) Compare shelf on Arcoona Tableland covered with large surface gibbers and plates.
about a month after a moderate fall of rain. The shelf profile was quite dry, but that of the crabhole was moist for the greater part of its depth. The better water relationships of the crabhole are further emphasised by greater leaching, resulting in low salinity and greater depth to the lime horizons relative to the shelf profiles. In both 1 a and 1 b variable anounts of gypsum are present as loose crumbs in the dcep subsoil.

Type 2-Probably the most extensive occurrence of this type on Yudnapinna is in South Lambing Paddock, although it occurs elsewhere in isolated smaller areas. In South I ambing it is found over a gently sloping plain adjacent to the stony hills. Its distribution in the detailed area studied is shown on the accompanying soil map. In Lawrence's Flat and the IIorse Paddock it is also important, but is here modified by watercourse conditions.

Normally there is between two and seven inches of sandy loam above the upper nutty clay horizon, but occasionally the profile is truncated and the clay much nearer the surface. With a super-imposed Λ_{0} horizon, showing lammae of successive additions of washed soil, the depth to the clay increases.

The most constant feature of the type is the structure of the upper clay horizon-the B_{1} horizon. This always shows distinct nutty tendencies-sometimes less perfectly developed, but nevertheless present. Immediately above the nutty clay intimately associaled with it, and often penetrating some short distance down vertical cracks in the clay, is a bleached grey-brown sandy loam horizon. This capping is a very constant characteristic. It varies in thickness between about $\frac{1}{4}$ inch and 2 inches, and shows on a pit face as an irregular and indefinite greyish band. In the Murrumbidgee area a grey, weakly cemented, apparently eluviated band has been described by Taylor and Hooper (8) ; it was sandier than the surface and usually had a lower pII. At Yudnapinna this horizon had a slightly lower pH .

Surface gibbers often occur, and very occasionally a crabhole. This and the structure of the clay represent a link with the shelf profile (Type 1a). This soil type is associated with Atriplex wesicarium (saltbush) - Kochia planifolia (bluebush) steppe, except where modifications occur under watercourse conditions.

Type 3--In the transition zone between Type 2 and Type 5 (to be described later), soils more or less internediate in profile occur.

Although the surface is deeper and the subsoil generally lighter with little structure, it bears a direct relationship to Type 2, in that there is often evidence of a thin bleached greyish layer immediately above the reddish-brown clay loam horizon. Surface gibbers occur occasionally, and there are frequently gibbers in the subsoil which impede the penetration of the soil auger. There is usually gypsum in the decper subsoil. The type is of a transitional nature, and consequently somewhat variable and not important.

Type 4-Type 4 is predominantly associated with watercourses. Here the water relationships of the soils are not dependent on soil type and rainfall itr the normal way. It is distinctly a wetter habitat. The small creeks from the stony hills to the south of, and in the south-west of, South Lambing, flood out over a gently sloping saltbush-bluebush plain, which itself acts as a watershed. This water is confined to more definite watercourses in the Horse Paddock and North lambing, which is slightly higher. This means a modificd soil and variation in vegetation relationships. All definite watercourses have been included in this type, and no attempt has been made at 'further differentiation. There is consequently a great deal of variation in soil profile. Indeed, we have variation from modified Type 2 on the one hand, where the shrub steppe gives way to more definite watercourses, to modified Type 5 on the other, where the watercourse abuts against the higher myall (Acacia Sowdenit) country. There is further variation introduced by the fact that some watercourses run much more frequently than others, or
portion of a watercourse runs before and longer than the remainder. The soils all have one thing in common: they have all been modified by additional water and all have better water relationships than normal,

As is to be expected, the modification of Type 2, where the watercourses become more definite, is not sudden and complete, but gradual and even irregular. The red-brown clay preserves some structure, and the greyish thin band associated with it frequently persists in some degree even under watercoutse conditions. On the accompanying soil map the southern boundary of North Lambing has been taken as an arbitrary boundary between Types 2 and 4. Some areas of Type 2 are included north of this, and to the south, particularly on Lawrence's Flat, there are more definite watercourses.

Type 5-This type is invarjably associated with Acacia Sowdenii (myall) Myoporum platycarpum tree steppe. It occupies a large area in North Lambing and is the most important single type over the station as a whole.

From the more extensive reconnaissance of the station as a whole it becomes desirable to regard the shallow and deeper profiles within the range of variation illustrated in the sketch figure on the map as two phases. These two phases grade into each other, but in the extremes can be correlated with variations in floristic composition of the sub-dominants. The light phase of Type 5 frequently has a more red-brown sand surface and grades into Type 6. On the accompanying soil map the lighter areas are differentiated by writing "light surface" across the map. The subsoil often seems "powdery" in the field, and it is not unusual to find a few small gibbers. These are generally coated with calcium carbonate, the amount of calcium carbonate varies considerably, but generally is less abundant in the lighter phase.

Type $5 a$-On the soil map a variant of Type 5 is mapped as Type 5 a , In the field there seems little to differentiate it from the shallow phase of Type 5. It has the same powdery surface, but the sandy clay horizon is mostly shallower: It is best considered a transition type as it gives way to modified shrub steppe:

Type 6-This type was defined in North Lambing and Lawrence's Flat Paddocks, where it is associated with the low and usually narrow sandy rises adjacent to the watercourses, These rises are usually between five and ten fect above the plain or watercourse level. There is a general transition in soil type down the slope of the rise. Elsewhere on Yudnapinna the type occurs especially as low sandy elevations in the myall-sandalwood country (Type 5). Indeed, all stages in the transition betwcon Type 6 and Type 5 (light phase) occur. These intermediate soils when mapped under Type 6 are shown by writing "shallow surface" across the soil map. They carry mulga (Acacia aneura); Occasionally in the lower rises the profile is lieavier in the deep subsoil, or occasionally, as in the sample pit, it is underlain by large water-worn quartzite pebbles and stones. The sandy loam and sandy clay loam horizons are sometimes weakly cemented with lime,

Type 7-This type is not important. Its distribution in the area in which the detailed survey was made is limited to areas adjacent to creeks. The soils are composed principally of stratified alluvium. The surface is a sand or coarse sand, but the subsoil is sometimes as heavy as a sandy clay, usually containing waterworn and stratified stones and pebbles.

Type 8-Widely distributed over Yudnapinna, but not occurring in the area surveyed in detail, are rather jumbled sandridges, which preserve a rongh sort of parallelism in any locality. Their trend is variable, but more or less east and west. They are associated with Acacia linophylla (mulga) and Casuarina lepidophloia, The soil becomes progressively shallower to the lime and the subsoil heavier, proceeding from the crest down the ridge slope. "The crest is invariably sand to 72 inches. No deeper borings were made. In the occurrence near Lake Macr Farlane the soils are much paler in colour and very close to the lake are light brown and light yellowish-brown. The type, however, is essentially the same.

The Stony Hills-The hills are somewhat variable, depending on the degree to which weathering has proceeded. On those hills whose flat tops still indicate the general pre-dissection level, there are usually crabholes and soils akin to Type 1 on the tableland remnant, but the soils of the slopes are variable and shallow and mixed with much screen material in the steeper places. No artempt has been made to classify these variable soils. Remnants of the old tableland, though, in cvery stage of disintegration, occur widely over the area.

Laboratory Examination of the Soils Standard methods of analysis were used for the determination to be briefly described. Reaction valucs were determined with the glass electrode in 1:5 soil-water suspension, previously shaken for one hour. An aliquot of this suspension was also used for the estimation of total soluble salts (conductivity methods) and chlorides (Best's (1) electrometric titration method).

Phosphoric acid was obtained from the hydrochloric acid extract. Replaceable bases were also determined by standard methods set out by Prescott and Piper (6). Caustic soda was used as a dispersing agent in the mechanical analyses which closely followed the international "A." pipette method, and the results are set out fully in the appended tables.

Fig. 2
Distribution Curves of Type 6 and Type 8
Mechanical Analysis-Mechanical analyses of 45 samples, representative of the major soil types, have been carried out. A noticcable feature is the predominance of coarse sand over fine sand in most of the types. In general, the relationship between ficld texture and mechanical composition has been satisfactory. Calcium carbonate has not been specifically determined but the "loss on acid treatment" figures are a satisfactory index, except where gypsum is present. Calcium carbonate is mostly in the form of soft lime, and rubble is relatively scarce.

Mechanical analyses were not made of the two sand types-Type 6 and Type 8. Detailed sievings, following Smith's (7) technique, were done on these, and the results expressed in a particle size distribution curve drawn from a previously constructed summation percentage particle size curve. The marked difference between the particle size distribution in the two soils is clearly shown in Fig. 2.

Soil Reaction-Soil reaction is alkaline, and in most soils markedly so, the lowest value recorded being pH 7.4 for the surface horizons of the sandridge type-Type 8 .

The highest value recorded was pH 9.9 for the deep subsoil of Type 5. Most of the pH values range between pH 8.0 and pH 9.5 .

Nitrogen-Total nitrogen has been determined on a number of surface and subsurface soils and is shown in Table III. The very low figures of $\cdot 020 \%$ and $\cdot 013 \%$ recorded for the mulga sandrise (Type 6) and the sandridge (Type 8) are respectively of the same order as those recorded for the parallel sandridge soils (Winkie sand) of the Murray Mallee area (4), The highest value, $\cdot 115 \%$, was obtained with the surface horizons of the crabhole profile (Type 1b).

Phoshoric Acid-Analyses of the hydrochloric acid extracts of ten surface soils and numerous subsoil samples show that phosphates are generally low to moderate; but 07% $\mathrm{P}_{2} \mathrm{O}_{5}$ in the surface horizons of the crabhole profile (Type 1b) is fairly high for Australian soils. They range between $02 \% \mathrm{P}_{2} \mathrm{O}_{5}$ in Type 8 to $\cdot 07 \%$ in Type 1 b .

Soluble Salts-Total soluble salts and chlorides are variable but much higher on the heavier types thath the lighter ones, where they ate negligible. In the case of the shelf profile (l'ype 1a) the B_{1} horizon, sampled only from 1-5 inches below the surface, colntained $1-44 \%$ total soluble salts, and $\cdot 687 \%$ chlorides (as C1). Undoubtedly this high soluble salt content, together with the great aridity of the edaphic habitat of which it is indicative, is the cause of the almost complete absence of plants on the gibber shelf. Soluble salts are also high in the subsoils of Type 1 b (crabhole) and Type 2 (A. vesi-carium- K. planifolia steppe) where, however, they have been leached to a greater depth. In most cases there is a steady increase in both total soluble salt and chloride content with depth.

Exchangcable Bascs-The results of some exchangeable base analyses are set out in Table I. In gencral the relative proportions of the bases and their relationship to depth and texture are somewhat different from those usually found in Australian semi-arid soils. As is ustual and to be expected, potassium is very low and sodium much more important, while calcium is the dominant hase. The unusual thing about Type 2 (shrub steppe) is that the relative proportion of the bases remains more or less constant down the B horizon. The high proportion of sodium, combined with the fairly high clay content of the subsoils of Type 2, must considcrably restrict water movement through the soil and tend to make the habitat a very arid one.

Table I
Exchangeable Bases in Yudnapinna Soils

Soil Type	Soil	$\begin{aligned} & \text { Depth } \\ & \text { (inches) } \end{aligned}$		$\begin{aligned} & \text { Total } \\ & \text { solublle } \\ & \text { salts } \\ & \% \end{aligned}$	$\begin{gathered} \text { Clay } \\ \% \end{gathered}$	Total hases m.e.	Percentage		to	bases
			${ }^{\text {pH }}$			100 gm . soil	Ca	Mg	K	Na
2	6416	5-7	$8 \cdot 8$	-047	-	22.9	49	21	8	22
	6417	7-13	$8 \cdot 9$	-172	$51 \cdot 3$	$30 \cdot 0$	45	20	6	29
	6418	13-19	8.9	-671	$44 \cdot 7$	31×2	40	22	4	34
	6419	19-42	$8 \cdot 8$	$1 \cdot 08$	$35 \cdot 7$	$25 \cdot 0$	40	26	3	31
4 b	6421	0-5	8.9	-025	23-1	$15 \cdot 7$	62	21	14	3
	6424	27-52	$9 \cdot 5$	-051	$27 \cdot 8$	$15 \cdot 6$	54	28	8	10
4 a	6428	4-19	$8 \cdot 7$	-019	$40 \cdot 3$	$21 \cdot 6$	57	28	11	4
5 a	6442	18-23	$9 \cdot 4$. 035	$18 \cdot 1$	$9 \cdot 4$	62	25	5	8
	6443	23-36	9.9	- 169	$19 \cdot 4$	$10 \cdot 8$	34	31	6	29

THE VEGETATION

The principal factors controlling the distribution of the vegetation at Yudnapinna in the regions surveyed are essentially edaphic, although abnormal water relationships are frequently a compensating factor. The foristics of a large part of the north-west-the Lake Torrens Plateau-have already been very fully dealt with by Murray (5) (1931), and the general ecology further mentioned by Wood (9) (1937). Five important associations can be recognised at Yudnapinna and are summarised in Table II.

「TAble II
Vegetation Associations

(1) Atriplex vesicarium-Bassia spp, association.

On the gibber crabhole and shelf areas (Soil Type 1) an interrupted steppe of Atriplex zesicariun (bladder salthush) principally associated with species of Bassia occurs (see pl. i, fig. 1). A. resicarium is prominent both :in and around crabholes, and is found to a much less extent on the gibber shelf. The soils of the shelf, however, in addition to being an arid habitat, have a high salinity, and vegetation is sparse or even absent. Plants occurring are Bassia brachyptera, B. zentricosa, B. sclerolaenoides, and sparingly B. lanicuspis, B. divaricata and B. biflora. Other plants even more sparingly present include a samphire (μ robably Pachycornia tenuis), Kochia spongiocarpa, K. planifolia, Bassia intricata. Babbagia acroptcra, Daucits glochidiatus, Frankenia sp. and a low Chenopodium sp.

The crabhole habitat is a much moister one. Plants are much more abundant. After rains water frequently flows from one crabhole higher up the slope to another lower down. The most important species is A. qosicarium, but associated with it frequently are Kochia spongiocarpa, K. planifolia, Bassia dizaricata, B. intricata, B. uniflora and B. biftora. Several grasses, including Eragrostis setifolia, Stipa, sp., Panicum sp. and Tragus racemosus may occur, while Schismus barbatus has been recorded. Bassiu brachyptera, B. acntricosa and Pachycornia tenuis are occasionally found on the edge of crabholes. After rains Atriples spongiosum (pop saltbush), Conzolvulus sp. (aff. C. erubescens), P'soralea sp. and Medicago denticulata are usually important.

There is a modified vegetation assemblage towards the north-eastern portion of South Lambing. This area has been badly overgrazed by sheep. The principal variation is the greater rclative abundance of Kochia planifolia, the apparent absence of K. spongiocurpa and the presence of Bassiu bicuspis, which is very abundant on both the shelf and in the crabholes. Kochia aphylla is present occasionally in some of the crabholes. This association is widespread on the gibber shelf-crabhole areas over the whole station. It is undoubtedly allied closely to that of the Arcoona Tableland and, with modifications in composition. occurs on the Tableland remnants.
(2) Atriplex vesicarium-Kochia flanifolia association.

On Soil Type 2 there is a shrul) steppe dominated by A, vesicarium (bladder saltbush) and K. planifolia (low bluebush) (pl. i, fig. 3). The associated plants are principally chenopods of the genus Bassia (Bindyi)- B. lanicuspis, B, eriacantha, B. divaricata, B. decurrens, and B. brachyptera are most important, while B. paradoxa, B. intricata, B. miflora, B. ventricosa, B. bicuspis and B. bifora are occasionally present. Grasses occur sparingly and include Stipa spp., Tragus racemosus, Eragrostis sp. and Enneapogon nigricans.

On overgrazed and degenerated areas Bassias (Bindyi) become even more important (particularly B. divaricata and B. decurrens). In extreme degeneration Eragrostis Dielsii and the annual "pop saltbush," Atriplex spongiosum, are practically the only plants of consequence to maintain a precarions existence, and then only after rains and where there is small drift accumulation (see pl. iii, fig. 12).

Kochia Georgei, K. aphylla, K. pyramidata and Eremophila Duttonit are usually prominent where water relationships are better, especially where the shrub steppe gives way to the varied association of the more definite watercourses. Although rabbit burrows are scarce in the A. wesicarium-K. planifolia association, where they do occur K. pyramidata is usually prominent on the disturbed earth (pl. i, fig. 2).

This association is not a particularly important one on Yudnapinna, and the occurrence in South Lambing is probably the most extensive Near the eastern side of Lake MacFarlane an almost pure A, vesicarium steppe occurs on a lighter soil type. This association is not widespread and not fully understood, either edaphically or floristically, but K. Georgei occurs sparingly and the rare occurrences of a samphire suggest that soil salinity is high.
(3) Acacia Sowdenii - Myoporum platycarpum association.

This is the most extensive association on Yudnapinna and is associated with Soil Type 5. The association is an open one and essentially trec-shrub steppe. The dominant tree is Acacia Sozdenii (myall), although M. platycarpum ("sandalwood") is almost invariably present. It extends, with modifications, northwards to the Arcoona Tableland and south to the Gawler Kanges; southi of this it is replaced by mallee. It has been mentioned earlier (p. 48) that a light and shallow phase of Soil Type 5 can be recognised. These grade into each other. In the extreme they are readily correlated with changes in floristic composition of the associated plants.

On the shallow phase of Type 5 there is a lower stratum (3 to 4 feet high) of Kochio sedifolia (bluebush), which gives a characteristic facies to the community (pl, i, fig. 4; pl. ii, fig. 5). The taller shrubs, Cassia Startii, C. phyllodinia, $H_{\text {r }}$ oleifolino and Lycium australe, are widespread but sparse. Other plants frequently important in the lower strata are Kochia triptera var. pentaptera, K. excavata, Enchylaena tomentosa (particularly under myall), Chenopodiun sp., Bassia sclerolaenoides and Bassia obliquicuspis, which is very abundant. The principal grass is Enneapogon nigricans. Occurring sparingly are a number of other plants, including Eremophila scoparia, Templetonia egena, Atriplex stipitatum, A, wesicarium, Kochia Georgei and Bassia paradoxa, Kochia pyramidata (black bluebush) occurs and is common where the assaciation has been heavily grazed. Ont the lighter phase of Type 5 Kochia sedifolia is more or less replaced (sometimes entirely) by Atriple.r vesicaritum (pl. ii, fig. 6) and to a much less extent A. stipitatum (mallee saltbush). The amount of free lime in the soil seems an important factor influencing the distribution of K. sedifolia-the lighter phase is gencrally less calcareous than the shallow phase but not invariably sothis tends to confuse the edaphic relationships.

Associated with the saltbushes (Atriplex vesicarium and A. stipitatum) on this light phase are a number of species which are absent or occur but rarely on the shallower phase. Generally prominent are Templetonia egcna, Acacia Burkittit (Burkitt's wattle), Heterodendron olcifolizm, Cassia Sturtii, C, phyllodinea, Lycium australe, Kochia sp, (aff. K. Georgei), Enchylaena tomentosa, K. triptera var. pentaptera and K. pyramidata, Bassia obliquicuspis and B. paradoxa are abundant, and Stipa sp. and E. nigricans are the principal grasses. Other species frequently present, are Exocarpus aphylla (wild cherry), Fusanus acuminatus (wild peach), F_{*} persicarius, Pimelia microcephala and Ercmophila scoparia. Fiusanus spicalus has now been almost entirely cut out but was once impontant.

On the extremely light soils bordering on Type 6, Acacia aneura (mulga) Trichinium obovatum and Aristida arenaria occur freely; Kochia brevifolia and Hakea leucoptera (needlebush) have been recorded. Loranthus pendulus is a very common parasite on myall, and L. Preissii on Acacia Bupkittii and other acacias. L. Exocarpi occurs very rarely.

The A. Soredenii- M. platycarpum association cannot be understood unless the edaphic variation and the parallel modification in floristics are kept in mind. It must be realised that there is complete variation in the type within the limits of the light and shallow phases. A modification of floristics occurs on the soil variant mapped as 5 a in the detailed survey. It is best considered a transition area. A. Sozedenii and M. platycarptimu occur very sparingly; K. sedifolia is abundant and $K_{\text {. }}$ planifolia always associated though less important.

Acacia ancura associalion (pl, ii, fig, 8).
On the low sandrises (Soil Type 6) in North Lambing and Lawrence's Flat Paddocks, Acacia ane tira (mulga) is dominant. Elsewhere on sandrises and low sandy arcas within the A, Soredemit-M. platycarpum association mulga scrub occurs, but the floristics are known principally fronn the detailed survey of North Lambing and Lawrence's Flat paddocks. Kochia pyramidata (black bluebush) is prominent. Other plants commonly occurring are Bassia paradoxa, Sida virgata, Euphorbia Drummondii and the grass Aristida arcuaria (mulga grass). Much less frequently Acacia Burkittii, Heterodendron oleifolium, Rhagodia sp, (probably R, spinescens), Alriplex zesicarium, A, stipitatum, Kochia brevifolia, Templetomia cgena, Bassia obliquicuspis, B. dizaricata and Trichinitm obozatum are associated. The grasses Stipa nitida, Enncapogon nigricans, Tragus racen mosus, Trisetum pumitum and Paspaliditu gracile have been recorded,

Many annual and ephemeral species may be present after rains, including Atriplex halimoides, A. angulatum, A. leptocarpum, A. limbatim, A. spongiosum, Citrullus vilgaris, Cucumis myriocarpus, Tribulus sp. (probably T, terrestris), Partulaca oleracea, Tetragonia eremea, Sulsola Kali (buckbush), Blennodia, trisecta and the composites Vittadinita tennissima, Helipternm variabile, H. moschatum, H. polygalifolum, and Helichrysum Mclorionum. Emex australis, Kochia triptera and Kochia tomontosa var appressa occur rarely. Casuarina lepidophloia was recorded on one sandrise. The three mistletoes, Loranthus Exocarpi, L. pendulus and L. Preissii, all occur very sparingly on mulga.

Acacia linophylla—Casuarina lcpidophloia association (pl. iii, fig. 9 and 10).
On the sandridges (Soil Type 8) that occur in the Yarraty-Roarys Dam area, west of Lake MacFarlane ($f . g$., Litchfield's Paddock), and clsewhere on Yudnapinna is a characteristic scrub of Acacia linophylla (mulga) and Casuarina Iopidophloia (black oak): C. Icpidophloia tends to occur on the higher ridge crests and in almost pure socielies and is not as important as A. linophylla, which is usually 10-12 feet high and more or less spreading-it is sometimes called "umbrella mulga" locally. Associated shrubs or trees are practically limited to Heterodendron oleifolium (bullock bush), Acacia aneura (mulga) and Lycium australe which occur sparingly. Myoportm sp . (probably M. desertorum); Pimelia microcephala and Ercmophila longifolia have been recorded. Lower down the slope of the sandridge Acacia Burkittii, A. aneura, Fusamus actuminatus, F. persicarius, etc, become pronninent.

Other plants are principally grasses and annuals and ephemerals but are relatively scarce. The principal grasses are Aristida arenaria, A. stipoides and Schismus barbatus; A. stipoides and A, arenaria are sometimes locally important, The annuals and ephemerals which may be of seasonal import include Agianthus pusillus, Calandrinia polyandra ("parakeelya"), Blennodia sp., Tetragonia eremea, Senecio Gregorii and Myriocephalus Stuartii.
(6) Other Communities.

These five associations described are the principal ones on Yudnapinna and most variations are understandable as transitions or as modified communities on more or less intermediate soil types. For example, Soil Type 3 (see soil map) is essentially a transition type between Soil Types 5 and 2. As would be expected, the associated vegetation is more or less intermediate between the A. SazdeniiM. platycarpum and the A. resicarium- K. planifolia associations. The most prominent plants are A, vesicarium and K. planifolia, but other species less important and of variable frequency include A, Sowdonii (myall), K. prramidata, $K_{\text {, sedifolia (where subsoil lime is abundant), Ercmophila Duttonii and numerous }}$ Bassias, including B. obliquituspis, B, Ianicuspis and B, eriatantha.

Certain other communities should be mentioned, particularly the watercourses and the stony hills.

(a) Vegetation of the reatercourses.

In the area surveyed in detail (North and South Lambing Paddocks, etc.) the watercourse soils varied (see p. 47) more or less from modified steppe soils (Type 2) to modified tree-steppe soils (Type 5). Kochia pyramidata (black bluebush) and A. vesicarium are the most frequent and consistent species.

Associated with them on the heavier soils are Kochia Georgei, K. planifolia, K. aphylla (cotton bush), Sida sp,, Sida intricata (Paddy's lucerne), Eremophilid Duttonii, Acacio ancura, Bassia paradoxa and B. divaricata. Less frequent are Acacia Burkittii, Acacia sp,. A. Sowdenii, Erocarpus aphylla, Pimelia microcephala, Eremophila glabra, Lycium australe, Heterodendroir oleifolimm, Kochia lobiffora, Bassia obliquicuspis and B. criacantha. After rains the composite Minuria leptophylla abounds. On the soils at the lighter end of the range with A. zesicarium and K. pyramidata are A, ancura, A. Burkittii (pin bush or Burkitt's wattle), L. australe, K. planifolia, K, sodifotia, K. Georgei, Casuarina lepidophloia (rately), Rhagodia sp. (probably R_{4} spincscens), Enchytacna tomentosa, Trichinium obovatum, Atriplex stipitatum, Bassia obliquicuspis and B. divaricata.

Occasional crabholes given a particular facies by the grass Eragrostis setifolia (never fail) occur in the watercourses. In small hollows in the A. SowdeniiM. platycarpuon country, where water relationships are better through inward drainage, groves of A. ancura (mulga) occur. Other species frequently occurring in watercourses like Trichiminm oboratum are associated. Lychun australc (Australian hoxthorn) is often abundant where water relationships are likewise improved.
(b) Vegctation of the stony hills.

The stony hills are remmants of the old tabeland and the associated vegetation varics considerably depending on the degree to which weathering has proceeded. Where the old tableland horizon survives, or is only slightly reduced, shrub steppe, with crabholes and shelf (c.f., Type 1) usually occurs on it, "The slopes, however, are usually wooded with mulga. (A. ancura) and black oak (C. Icpidophloia).

The hills in South Lambing Paddock, where more or less flat-topped, have definite crabhole affinities and Kochia spongiocarpa, Atriple, zesicarium and Pachycomia sp., commonly associated with crabhole and shelf, are prominent. But for the most part these hills have proceeded beyond this stage of weathering, and, as might be expected, the vegetation is variable and no doubt influenced by depth of soil and underlying rock. Acacia ancura, and usually where the soil is decper A, Sowdenii, are fairly common. Also occurring frequently are Acacia Burkittii, Casuarina lepidaphoia, Fusanus spicatus, Dodonaca lobulata, Eremophila -alternifolia, E. Latrobei, E. glabra, E. serrulata, Cassia Sturtii, Atriplex zesi-
carium, Kochia sedifolia, K, brevifolia, K, triptera var: pentaptera, K, triptera var. (allied to var. pentaplera(${ }^{(2)}$), Enchylaena tomentosa, Sida intricata, S. petrophila, Rhagodia Gaudichaudiana, Scaczola sp. (probably S. spinescens), Trichinium obowatum, Zygophyllum Billardieri, and the grasses Paspalidium gracila and Stipa sp. Less frequent are Ercmophila longifolia, Portulaca oleracca, Rhagodia parabolica, Rhagodia sp,, Tribulus sp., Solanum dlipictum and several species of Bassia.

(c) Vegctation of the crecks and adjaccut areas.

Along and in crecks like Pine (reek and the Station Creek occasional gums, Eucalyptus interterta, and native pine, Callitris glanca, grow. Acacia ancura, A. Burkittit and the grass Andropogon cxaltatus (scent grass) are common. Adjacent to the creeks on stratifed alluvium (Soil Type 7) are associated A. aneura, Dodonaea attenuata, Heterodendron oleifolium, Ercmophila Duttonii, Kochia pyramidata, Atriplex aesicarium and Aristida arcnaria. Usually present to some extent also are Kochia planifolia, K. tomentosa var. appressa, K. Georgei, Rhagodia sp., Ercmophila glabra, Templetonia egcna, Pithospornn phillyreoides, Bassia decurrens and B. paradoxa.

Pyric succession.

Much of Yudnapinna has been burnt by bushfires and some observations on succession in the A, Sotidenii-M. platycarpum association have been made. The fire kills most of the trees and the associated plants. Most of the species seem to regenerate radily although the time involyed is donbtlessly dependant on seasonal conditions. Some of the shrubs like the Cassias (especially C. eremophila var. platypoda) are, however, relatively quick-growing compared to the young M. platycarpum, A. Sowdenti and A. ancura and may temporarily give a distinct facies to the community. This stage has heen reached in the Bowen Hill area. Yudnapinna (lighter phase, Type 5), which tuntil recently had not been stocked since the fire of 1922. Regeneration of Atriplex vesicariun and Kochia sedifolia and other blutbushes and salibushes in the community is rather slower because. owing to the nature of the fruits, most of the seeds are probably destroyed in the fire, which assists regeneration of the Acacias, etc, by cracking the seed coat.

Further regeneration from the Cassia crmophila var platypoda (wattlebush) stage would no doubt be a gradual increase in the abundance of the saltbushes and bluehushes, the Cassias will become mature scraggly shrubs and very slowly the young myalls and young Myoporums will mature until the association once more takes on its old physiognomy. Most of the mulga (A. ancura) will probably be destroyed by rabbits. Much observation has heen made of the damage done to mulga and other young shrubs and trees through rabbits barking them. It would appear that mulga is more liable to barking than myall and probably sandalwood, too. In any case, it is very slow growing and cannot recover from this setback as readily as do most other species. Future regeneration in the Bowen Hill arca will depend on the future stocking policy. There is no foundation for the statement that "where wattlebush grows nothing else will." Numerons cases can be pointed out where, beneath thick nature societies of C eremophila var. platypoda, is good dense saltbush, bluebush, etc. The truth is that during the early stages of the pyric succession when the Cassias are lower, dense and spreading. and other species are just beginning to re-establish themselves, or as in the case of myall, much slower-growing and inconspicuous, the C, cromophila var, platypoda, C. phyllodinea and C. Sturtio gives the community a characteristic facies (pl. iii, fig. 11).
(2) The genus Kochia is in rather a chaotic state, and present keys do not satisfactorily differentiate between what in the field are obviously different varietjes or even different species.

The Relationship between Soll Type and Vegetation

The Yudnapinna area, of more than 1,200 square miles, is a complex one. The principal soil types of the area have been described and vegetation associated with them discussed. The edaphic control of the distribution of associations and formations is evident. Modified soils are associated with modifications in floristic composition. The floristics are as complete as time and the season permit them to be, and suffer mostly in the annuals and ephemerals, but these, even in watercourses, do not grow in the profusion apparent in the North-East of the State. This is probably due to lower soil fertility and initially to geology. In the north-east the rocks are principally Proterozoic and crystalline Archean of the Willyama Series. In the north-west they are the sedimentary sandstones, shales, grits, etc., of the Ordovician.

Soil Type 2 and the shelf soils of Type 1 are in this area the driest, and most saline habitats for plants. The lighter soils of Types 5,6 and 8 represent a moister environment. The sandy surface in the lighter types acts as an absorbing medium and further restricts soil evaporation. Many plants of the myall scrub or the mulga sandrise grow on the heavier soils of the watercourses where water relationships are compensating. From a study of the species distribution of the arca it is scen that A. ancura (mulga), A. Burkittii (Burkitt's wattle), Kochia pyramiduta, Templetonia egena, Lycium australe (Australian boxthorn), Bassia paraduxa, Trichinium obovatum, and to a less extent A. Sowdenii (myall), Heterodendron oleifoliun and others, are capable of growing on a wide range of soil types providing water relationships are suitable. They occur not only on light soils of Types 5 and 6 , but on the heavier watercourses (see pl. ii, fig. 7), Thickets of mulga in lower-lying areas, which receive additional water, are common in the A. Sowdenii -M. platycarpum association.

Other plants like Sida virgata, although irequent on the sandrises, are more exacting in their edaphic environmental limits and do not occur on the heavier soils of the watercourses. Kochia aphylla, on the other hand, is found in the watercourses but never on the lighter soils of Type 5, 6 and 8 . Some plants, like Kochia sedifolia and K. cxcarata, occur in soils which vary greatly in texture and profile, but which are all characterised by much lime.

DEGENERATION, EROSION AND ERODIBILITY

The area surveyed (North Lambing, South Lambing, etc.) has all been used for grazing, but over any area the rates of stocking vary considerably, Intensity of grazing is governed primarily by the disposition of the watering places, about which large numbers of sheep are concentrated, especially in the warmer summer months. Practically all serious degeneration and erosion in this area is about past and present watering centres-e.g., erosion about Lawrence's Dam, Ryan's Well, Pine Wcll, etc., witnesses severe overgrazing in the past.

The effect of overgrazing is firstly a degencration, and finally the disappearance of the more palatable species. In myall-sandalwood-bluebush country continuous overgrazing leads to the disappearance of Kochia scdifolia altogether, its place being taken (unless degeneration is far too rapid) by the valueless K. pyramidata (black or greet bluebush). The latter species is now becoming important over large portions of the north-west and north-east. It was always present to some extent in watercourses and probably sparingly in the A. Sozedenii -M. platycarpum association, but it was unable to compete satisfactorily with the K. sedifolia here and was always subordinate, In the absence of competition resulting from overstocking and selective grazing, the species has spread considerably and is now frequently dominant. K. pyranidata is slowly becoming more widespread at the expense of more palatable species. If degeneration is too rapid for black bluebush to replace the K. sedifolia the low shrubs disappear altogether and there is a great increase in Bassia obliquicuspis and B. paradoxa. Providing
the associated shrubs (Cassia spp., Heterodendron, etc.) and trees are not removed, degeneration and erosion may not progressimuch further than this.

In the A, vesicarium- K. planifolia steppe (Type 2) degencration follows a somewhat different course. Overgrazing leads firstly to a disappearance of A. vesicarium (selective grazing) with an increase in the Bassias (especially B. divaricata and B. decurrens). Further heavy grazing gradually lowers and finally kills the K. planifolia with a further increase in the Bassias (Bindyis) and the appearance of the annual Atriplex spongiosum (pop saltbush). If this country is to be saved degeneration must not go any further. Continued heayy stockingi results in partial or complete destruction of the Bindyis, mechanical disturbance of the soil surface and the gradual breaking down of the dead shrub remains. Wind erosion begins, and the surface soil, becoming unstable, is ready for potential water erosion. The wind erosion and water erosion, although working hand in hand; are, once started, almost independent of each other. From this stage onward water is the most serious eroding agent. It rapidly removes the A horizon, is somewhat retarded again by the weakly cemented grey-brown layer above the clay, but, breaking through this, has no difficulty in eroding the B horizon. Erosion of the B horizon apparently proceeds at quite a rapid rate. In places towards the north of Lawrence's Flat there is as much as 12 inches silt (A_{0}) accumulation, which has washed from the vicinity of Lawrence's Dam, where water erosion has proceeded well down into the B_{2} horizon, This type is particularly liable to water crosion because it occurs on a gently sloping plain over which much water from the creeks off the stony hills floods out ${ }^{(3)}$

Acknowledgments

Particular thanks are due to Miss II. M. Douglas of the Agronomy Department, Waite Institute, for assistance in, collection and identification of botanical specimens. Numerous discussions with Mr. K. Woodroffe were also helpful. Mr. J. K, Taylor, Senior Soil Surveyor, Division of Soils, Council for Scientific and Industrial Research, assisted with the sampling and made many further valuable suggestions. The Manager of Yudnapinna Station (Mr, D. R. Douglas) willingly offered every facility.

References

(1) Best, R. J. 1929 J. Agric. Sci., 19, 5-35
(2) Davidson, J. 1936 Trans. Roy. Soc. S. Aust., 66, 88
(3) Howcinn, W. 1929 The Geology of South Australia
(4) Ifubble, G. D., and Crocker, R. L. 1940 Coun. Sci. Ind. Res, (Aust.), Bull. 137
(5) Murray, B. J. 1931 Proc. Roy. Soc, S. Alist., 55, 91
(6) Prescott, J. A., and Piper, C. S. 1928 Coun, Sci. Ind. Res, (Aust.), Pamphlet No. 8
(7) Smith, R. 1940 Jour. Aust. Ins, Agr. Sc., 6, No, 4
(8) Taylor, J. K., and Hooper, P. D.; C.S.I.R. (Aust.), Bull. 118
(9) Wood, J. G. 1937 The Vegetation of South Australia

[^1]Table III Analytical Da

Soil Type	\ldots	1a Shelf South Lambing Paddo					
Locality	\ldots						
Soil No.	6401	6402	6403	6404	6405	6406
Depth (inches)	0-1	1-5	5-12	12-20	20-31	31-40
Coarse Sand		$34 \cdot 8$	$18 \cdot 6$	$23 \cdot 1$	$17 \cdot 1$	$17 \cdot 6$	$17 \cdot 3$
Fine Sand	\ldots	$48 \cdot 4$	$16 \cdot 5$	$25 \cdot 4$	$21 \cdot 8$	$21 \cdot 0$	$20 \cdot 3$
Silt	$6 \cdot 7$	$2 \cdot 6$	$4 \cdot 0$	$6 \cdot 1$	$6 \cdot 0$	$6 \cdot 2$
Clay	$8 \cdot 6$	$52 \cdot 8$	$39 \cdot 3$	$45 \cdot 8$	$43 \cdot 1$	$40 \cdot 9$
L. on Acid Treat.	\ldots	$0 \cdot 8$	$3 \cdot 0$	$3 \cdot 7$	$3 \cdot 4$	$8 \cdot 2$	$9 \cdot 4$
Moisture	$1 \cdot 0$	$7 \cdot 6$	$6 \cdot 3$	$8 \cdot 3$	7.9	7.9
L. on Ignition	1.7	$5 \cdot 4$	$4 \cdot 7$	4.7	$5 \cdot 6$	$5 \cdot 6$
Tot. Sol. Salts	\ldots	$0 \cdot 143$	1.44	$1 \cdot 32$	1.74	$2 \cdot 34$	$2 \cdot 26$
Chlorides (Cl)	\ldots	$0 \cdot 057$	$0 \cdot 687$	0.618	0.840	0.717	$0 \cdot 637$
Nitrogen	\ldots	0.039	0.067	0.045	-	-	-
$\mathrm{P}_{2} \mathrm{O}_{5}$....	\ldots	0.027	$0 \cdot 040$	0.034	0.041	-	-
Reaction (pH)	...	$8 \cdot 02$	7.7	8.4	$8 \cdot 4$	$8 \cdot 2$	$8 \cdot 2$

Soil Type		\ldots	Watercourse 4b				
Locality		North	mbing	ddock	
Soil No.		6421	6422	6423	6424	6425
Depth (inches)	0-5	5-12	12-27	27-52	52-59
Coarse Sand	$45 \cdot 6$	41.6	36-5	$31 \cdot 2$	39.4
Fine Sand	\ldots	$20 \cdot 1$	$19 \cdot 5$	19.4	17.1	$20 \cdot 5$
Silt		$7 \cdot 2$	$9 \cdot 2$	$4 \cdot 8$	$5 \cdot 3$	$2 \cdot 9$
Clay	\ldots	$23 \cdot 1$	$24 \cdot 5$	$30 \cdot 0$	$27 \cdot 8$	$28 \cdot 0$
L. on Acid Treat.	\ldots	\ldots	1.4	$3 \cdot 1$	$5 \cdot 3$	$16 \cdot 8$	$7 \cdot 3$
Moisture		$2 \cdot 5$	$3 \cdot 4$	$4 \cdot 0$	$4 \cdot 1$	$3 \cdot 4$
L. on Ignition	\ldots	\ldots	$3 \cdot 2$	$4 \cdot 0$	4.9	$9 \cdot 8$	$4 \cdot 8$
Tot. Sol. Salts	$0 \cdot 025$	$0 \cdot 04$	$0 \cdot 04$	$0 \cdot 05$	$0 \cdot 08$
Chlorides (Cl)		-	-	-	-	0.004
Nitrogen		$0 \cdot 037$	0.030	0.025	-	-
$\mathrm{P}_{2} \mathrm{O}_{5}$	\ldots	0.037	0.033	0.032	-	-
Reaction (pH)	...		8.9	$9 \cdot 0$	$9 \cdot 0$	$9 \cdot 5$	$9 \cdot 8$

Soil Type Locality Soil No. Depth (inches) Coarse Sand Fine Sand Silt Clay L. on Acid Treat. Moisture L. on Ignition Tot. Sol. Salts Chlorides (Cl) Nitrogen $\mathrm{P}_{2} \mathrm{O}_{5}$ Reaction (pH)		$\begin{gathered} \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \end{gathered}$	6438	6439	Type 5a			6443	6444
					North 1	tambing	Paddock		
					6440	6441	6442		
			0-2	2-7	7-11	11-18	18-23	23-36	36-60
			$44 \cdot 4$	$50 \cdot 7$	45•1	$43 \cdot 1$	39.7	$30 \cdot 3$	$25 \cdot 8$
			$34 \cdot 8$	$27 \cdot 9$	$28 \cdot 3$	$27 \cdot 2$	$24 \cdot 0$	$19 \cdot 0$	$21 \cdot 8$
			$5 \cdot 1$	$4 \cdot 1$	$3 \cdot 5$	2.9	$2 \cdot 6$	$3 \cdot 0$	3.8
			$12 \cdot 7$	$12 \cdot 5$	$14 \cdot 5$	$16 \cdot 3$	$18 \cdot 1$	$19 \cdot 4$	$25 \cdot 5$
			1.4	$3 \cdot 1$	$7 \cdot 2$	$8 \cdot 9$	$14 \cdot 9$	$26 \cdot 9$	$22 \cdot 3$
			$1 \cdot 8$	$2 \cdot 0$	$2 \cdot 3$	$2 \cdot 6$	$2 \cdot 6$	$2 \cdot 7$	$4 \cdot 3$
			$2 \cdot 4$	$3 \cdot 0$	$4 \cdot 6$	$5 \cdot 9$	$8 \cdot 1$	$13 \cdot 4$	$10 \cdot 4$
			0.05	$0 \cdot 03$	0.03	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 17$	$1 \cdot 3$
			-	-	-	-	-	$0 \cdot 036$	$0 \cdot 156$
			$0 \cdot 049$	0.031	$0 \cdot 026$	-	-	-	-
			$0 \cdot 029$	0.024	0.029	0.025	-	-	
			$9 \cdot 2$	9.2	$9 \cdot 1$	$9 \cdot 1$	$9 \cdot 4$	$9 \cdot 9$	$8 \cdot 4$

v Soll Types at Yudnapinna

Watercourse 4a North Lambing Paddock				Type 5 North I ambing Paddock					
6426	6427	6428	6430	6431	6432	6433	6434	6435	6436
0-2	2-4	4-19	36-64	0-4	4-12	12-17	17-44	44-72	72-84
$54 \cdot 4$	$50 \cdot 7$	$31 \cdot 2$	$33 \cdot 8$	$53 \cdot 5$	$46 \cdot 2$	$42 \cdot 5$	$37 \cdot 6$	41.2	$26 \cdot 7$
$19 \cdot 8$	$18 \cdot 9$	$15 \cdot 5$	$17 \cdot 0$	$26 \cdot 1$	$28 \cdot 5$	$27 \cdot 3$	$22 \cdot 6$	$25 \cdot 4$	$22 \cdot 4$
$6 \cdot 1$	$7 \cdot 8$	$4 \cdot 0$	$3 \cdot 4$	$4 \cdot 7$	$3 \cdot 4$	$3 \cdot 8$	$3 \cdot 0$	$2 \cdot 3$	$4 \cdot 0$
$15 \cdot 8$	$20 \cdot 1$	$40 \cdot 3$	$31 \cdot 7$	$13 \cdot 1$	$13 \cdot 4$	17.9	$17 \cdot 2$	$18 \cdot 5$	31.5
$1 \cdot 0$	$0 \cdot 9$	$1 \cdot 6$	$11 \cdot 3$	$1 \cdot 5$	6.4	$8 \cdot 1$	$19 \cdot 4$	$11 \cdot 1$	$9 \cdot 4$
1.9	$2 \cdot 4$	$5 \cdot 6$	$4 \cdot 4$	$1 \cdot 7$	$2 \cdot 0$	$2 \cdot 6$	$2 \cdot 8$	$2 \cdot 8$	$6 \cdot 4$
$2 \cdot 6$	$2 \cdot 6$	$4 \cdot 1$	$7 \cdot 3$	$2 \cdot 3$	$4 \cdot 3$	$5 \cdot 3$	9.7	$6 \cdot 2$	$3 \cdot 1$
$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 07$	$0 \cdot 03$	$0 \cdot 07$	$0 \cdot 28$	$0 \cdot 56$	$0 \cdot 48$	1.43
-	-	-	$0 \cdot 004$	-	$0 \cdot 012$	$0 \cdot 114$	0.230	$0 \cdot 173$	0.198
0.039	0.029	$0 \cdot 032$	-	$0 \cdot 026$	$0 \cdot 028$	$0 \cdot 021$	-	-	-
$0 \cdot 037$	0.036	$0 \cdot 044$	-	$0 \cdot 027$	$0 \cdot 027$	$0 \cdot 026$	-	-	-
$8 \cdot 4$	$8 \cdot 3$	$8 \cdot 7$	$9 \cdot 6$	$9 \cdot 0$	$9 \cdot 5$	$9 \cdot 1$	$8 \cdot 8$	$8 \cdot 9$	$7 \cdot 9$

Type 6				Type 8 Yarraby Paddock			Type 5 (light phase) West Strawbridge		
	Horse	Paddock							
$\begin{gathered} 6445 \\ 0-4 \end{gathered}$	6446	6447	6448	6649	6650	6651	6652	6653	6654
	4-15	15-28	28-40	0-6	6-36	36-66	0-7	7-21	21-25
See		$48 \cdot 9$	$42 \cdot 9$				$50 \cdot 6$	$46 \cdot 0$	41.2
		$29 \cdot 8$	24-1		Sec		$33 \cdot 2$	$34 \cdot 9$	$35 \cdot 0$
		1.9	$1 \cdot 7$				$3 \cdot 8$	3.9	$8 \cdot 3$
distribution		18.4	$27 \cdot 2$		distribut		11.2	$13 \cdot 1$	$7 \cdot 9$
		$0 \cdot 5$	$2 \cdot 0$				$0 \cdot 6$	$0 \cdot 7$	$5 \cdot 4$
curves		$2 \cdot 5$	$3 \cdot 9$		curve		$1 \cdot 3$	1.9	$4 \cdot 5$
		$2 \cdot 0$	$2 \cdot 9$				1.7	$1 \cdot 8$	$4 \cdot 5$
$0 \cdot 02$	0.01	$0 \cdot 02$	$0 \cdot 07$	$0 \cdot 00$	$0 \cdot 00$	$0 \cdot 03$	-	0.05	$0 \cdot 38$
-	-	-	-	-	-	-	-	--	$0 \cdot 125$
$0 \cdot 020$	$0 \cdot 013$	-	-	0.016	-	-	$0 \cdot 021$	$0 \cdot 010$	-
$0 \cdot 030$	$0 \cdot 022$	-	-	0.016	$0 \cdot 01$	-	0.027	0.023	$0 \cdot 025$
$8 \cdot 8$	$8 \cdot 7$	$8 \cdot 9$	$9 \cdot 6$	$7 \cdot 4$	8.9	$9 \cdot 2$	$8 \cdot 7$	9.6	9.4

EXPLANATION OF PLATES I-III

Fig. 1 Atriplex vesicarium-Bassia spp. association on crabhole gibber shelf (Scil Type 1). Note the almost complete absence of vegetation from the gibber shelf owing to high salinity and edaphic aridity.

Fig. 2 K . pyramidata (black bluebush) on disturbed earth of a rabbit warren in the crabhole shelf area (Type 1), South Lambing Paddock. Acacia anewra along small creek in background.

Fig. 3 Atriplex vesicarium-Kochia planifolia association (Soil Type 2). Bassia lanicuspis and B. eriacantha are also fairly abundant in the ground flora.

Fig. 4 Acacia Sozdenii-Myoporum platycarpum association (Soil Type 5). The chief undershrub is Kochia sedifolia, but K. pyramidata is also present. Heterodendron oleifolium (bullock bush) in left foreground. Bassia obliquicuspis is very prominent in the ground flora.

Plate II

Fig. 5 Acacia Sourdenii-M. platycarpum association. K. sedifolia very prominent in steppe stratum: Bookaloo Paddock.

Fig. 6 Acacia Sozedenii-M. platycarpum association, light phase Soil Type 5, with Atriplex vesicarium dominant in the shrub stratum, West Strawbridge Paddock.

Fig. 7 Mulga in watercourse, North Lambing Paddock. Kochia pyramidata-K. aphylla (cotton bush) are the prominent shrubs.

Fig. 8 Acacia aneura association on a low sandy rise (Soil Type 6) ; K. pyramidata abundant. Other plants prominent are Sida virgata and Aristida arenoria.

Plate III
Fig. 9 Acacia linophyilla-Casuarina lepidophloia association on the crest of a sandridge, Yarraty Paddock. Soil Type 8.

Fig. 10 Acacia linophylla scrub. Roary's Paddock.
Fig. 11 Cassia society at an carly stage in the pyric succession, S.E. Bowen Hill Paddock. Note the young Myoporum platycarpum centre right.

Fig. 12 Severe degeneration and erosion of the Atriplex vesicarium-K. planifolia shrub steppe, Soil Type 2, near Lawrence's Dam. Eragrostis Dielsii and Salsola Kali maintain a precarious existence on the small accumulation of sand (A_{0}).

i +1

NOTES ON THE SMARIDIDAE (ACARINA) OF AUSTRALIA AND NEW ZEALAND

By H. WOMERSLEY (Entomologist, South Australian Muscum) and R. V. SOUTHCOTT

Summary

In this family Vitzthum (Kukenthal's Handbuch der Zoologie, 1931, 3, (2), 148) includes only the two genera Smaris Latreille 1796 (= Smaridia Latreille 1817 = Fessonia von Heyden $1826=$ Phanolophus André 1927) and Microsmaris Hirst 1926, both of which have been recorded from Australia. From the allied Erythraeidae he separates the family (Tierwelt Mitteleuropas, 1929, 3, (7) , 67) as follows :

NOTES ON THE SMARIDIDAE (ACARINA) OF AUSTRALIA AND NEW ZEALAND

By H. Womersley (Entomologist, South Australian Museum)

and R. V. Sourhcott

[Read 8 May 1941]

In this family Vitzthum (Kukenthal's Handbuch der Zoologie, 1931, 3, (2), 148) includes only the two genera Smaris Latreille 1796 ($=$ Smaridia Latreille $1817=$ Fessonia von Heyden $1826=$ Phanolophus André 1927) and Microsmaris Hirst 1926, both of which have been recorded from Australia. From the allied Erythraeidae he separates the family (Tierwelt Mitteleuropas, 1929, 3, (7), 67) as follows:
"Mouth-parts not extrusile. Mandibles stylet-like. One or two sessile eycs, With crista metopica; two sensillary areas, on anterior and posterior ends of crista.

Erythracidac Oudcmans 1902
"Mouth-parts including palpi far extrusile. Mandibles stylet-like. One or two sessile cyes on each side. With or without crista metopica; one sensillary area on posterior end of crista or a corresponding position. Smarididae Kramer 1878"
It is not clear why Vitzthum placed Microsmaris in the Smarididae, unless it was on the absence of a crista. The mouth-parts, however, are not extrusile in this genus, and it cannot therefore be placed in this family. Probably he had not seen any specimens and was misled by the name.

In Europe there are apparently only three species recognised with certainty, placed hitherto in the genus Smaris Latreille 1796.

Vitzthum (loc. cit., 1929) separates these species thus:
"1 Without crista metopica. Anterior end of dorsum produced in a long extended process. Two eyes on each side.
S. squamata (Hermann 1804)
"With crista metopica. Anterior end of dorsum without extended process.
" 2 Body hairs in form of short leaves wilh serrated edge. Two cyes on cach side,
S. papillosa (Hermann 1804)
"Body hairs angular, the edges with wart-like serrations. Allegedly with only 1 eye on each side.
S. ampultigera (Berlese 1887)"

Before considering the Australian species it will be necessary to evaluate taxonomically the characters used in the above key. At first glance, in this family as wcll as in the Erythraeidae, the presence or absence of crista, and possibly also of a nasus, may appear to be of generic valuc. But are there other characters to support this?

If we look at the figures of S. squamata given by Berlese (A.M.S. ital. Repta., fasc. v, No. 4), and again (ibid., fasc. 1xxi, No. 4) we observe two distinct dorsal shields, anterior and posterior, a large ventral shield embracing the anterior two pairs of coxae, a pair of lateral ventral shields embracing coxac III and IV, as well as a large quadrangular genital shield. On the posterior margin of the anterior dorsal shield, and well behind the paired eycs, is a single pair of sensory setae. In Berlese's figures, however, of ampulligera (ibid., fasc. xxxix, No. 10; lxxi, No, 4) and papillosa (ibid., fasc. xvi, No. 3; 1xxi, No. 4) there is no suggestion of dorsal or ventral shields and no nasus; but there is a distinct linear crista with anterior and posterior sensillary areas, and in papillosa an additional sensillary area in the middle. The separation of squamata from the other two species on the absence of a crista and the presence of a nasus is supported by the presence of dorsal and ventral shields.

In 1916 Banks (Trans. Roy. Soc. S. Aust., 40, 225, p1, xxiii, fig. 5), described Fessonia prominens from ants' nests in Victoria. In 1934 (Rec, S. Aust. Mus., 5, $(2), 225)$ the senior author recorded the same species from various localities in other States and suggested that it was not necessarily a myrmecophilous species. Cnfortunately, in that paper, the species was erroneously placed in Calyptostoma (Calyptostomidac), a genus and family to which it has no relation, It is redescribed and refigured as Smaris prominens in this paper.

Although overlooked by Banks, the dorsal and ventral shields found in squamata are present in prominons. They were apparently missed as the specimens were mounted in balsam; but remounting of his co-type, in the South Australian Museum collection, in gum-chloral, renders them visible, Banks, however, does refer to several dorsal patches free of hairs, and these correspond to the smaller muscular plates described later. His figure shows only a single sensillary area with paired setae placed posterior to, but close to the eyes, It is obvious, howeyer, that these do not correspond in position to those shown by Berlese for squamofa, Banks also shows a distinct nasus but no crista.

Re-exanination of the Australian S. prominens shows that there are actually two pairs of sensory setae, an anterior pair as figured by Banks, and a posterior pair (as shown by Berlese for squanata) on the posterior margin of the anterior shield. It appears, then, that whereas Banks overlooked the posterior pair of sensillae in prominons, an anterior pair, missed by Berlese, probably accurs in the European squamata.

Berlese (Bull. Soc. eut. Ital., 1888-90) records Smaridia ampulligera var. longipes and $S_{\text {. depilata in. sp. from South America. In the latter species he }}$ describes and figures a large diamond-shaped anterior dorsal shield and seven smaller posterior plates, one in the midline, the others more lateral; that in the midline probably corresponds to the posterior shield in squamata, but the others are probably muscular plates. On the anterior dorsal shield he shows two pairs of sensillae as in prominons and both posterion to the single eyes. The species is obviously closely related to prominens and squamata.

With regard to the eyes, Berlese (A.M.S., 1883, fasc. v, No. 4) clearly tigures S. squamata (Rhyncholophts squamatus) as having only one eye on each side. In 1887 (loc. cit, fasc, xxxix, No, 10) he stated that whereas previously (loc. cit., 1884, fasc. xvi, No. 3) he figured papillosa with only one eye on each side, there was a smaller additional eye present on each sidc, which he had not been able to see in squamata and ampulligera. Later (loc. cit., 1894, Ixxi, No. 4) he describes and figures $2+2$ eyes in squamata. Accordingly it appears reasonable to suppose that he missed the $2+2$ eyes in the South American depilata.

It is evident, then, that squamata, prominens and dcpilata are closely related in the absence of a crista, the posterior position of both pairs of sensillae with regard to the eyes, and the presence of dorsal shields; but are yet generically distinct from ampulligera and papillosa, hitherto placed under Smaris (s.1.).

As squanata Hermann is the type of Smaris it is proposed to restrict this generic name to the above three species. Of the other two species, papillosa Hermann iş, according to Oudemans (Krit. Overz d. Ac., III C, 954), the type of Fessonia von Heyden 1826. It differs fron amputligera in having a third and middle sensillary area to the crista and two eyes on each side.

It remains for Enropean workers to re-investigate the presence or otherwise of the anterior pair of sensillae in squamata and whether depilata has $2+2$ or $1+1$ eyes.

Recently (Psyche, 45, (2-3), 1938, 123) Jacot has rediscovered and redescribed Say's American species Trombidum sericcum, and shown that it should be placed in Smaris (s.1.). It has both a linear crista and a short nasus but there is no suggestion of dorsal or ventral shields. In addition, Jacot also briefly describes but does not name a second very similar species of Smaris from North America. Both these species are obviously closely related to ampulligera.

A re-examination of the Australian Hirstiosoma scalaris Womersley, and of the New Zealand H, nowathollondiae Wonersley shows that both have extrusile mouth-parts and are closely related to ampulligera and to Jacot's two species. All these are generically distinct from papillosa (Fessonia) and squamata (Smoris) and accordingly requite a new generic name for which Hirstiosoma Womersley is available, with scalaris Womersley as the type. In addition to the genotype it will include H. sericea (Say, Jacot).. H. sp. Jacot, from North America, H. nozac-hollandiac, New Zealand, and H. tasmaniensis n. sp., Tasmania.

Another genus which nutust be included in the Smarididac, as understood here, is Sphaerotarsus (genotype S. almani Womersley 1936) from Anstralia. It is closely related to Hirstiosoma even in the general form of the dorsal setae, differing in having the posterior sensillary setac clavate and the of hind tarsus enlarged. The genus includes S. ripicolus (Vomersley 1934). S. allmani Won. 1936, S. leptopilus n. sp., and S. claviger n. sp., all iut being from Anstralia.

The font genera included in the family can be keycd as follows:
1 Crista absent, two sensillary areas with paired sensory setac, both placed posterior to the paired eyes. Dorsal and ventral shicids present, anterior dorsal plate produced tc a masus. Smaris Latreille 1796.
type 5 . squamata (Hermann 1804)
Crista presemt, lincar, with 2 or 3 sensillary areas, each with paired sensillae, Dorsal plates or shields absent. Eyes $2+2$ or $1+1$ about level with middle of crista.
2 Crista with 3 sensillary areas. Eyes $2+2$ licssonid von Heyden 1826 type S' pupillosa (Hermann 1804)
Crista with only 2 sensillary areas, anterior and posterior. Eycs, $1+1$.
3 Pusterior sensillary setae tapering with ciliations minute or absent. Hind tarsi in of normal. lifirstiosoma Womerslcy 1934 type H. scalaris Womersley 1934
Posterior sensillary setae clavate, strongly ciliated. Ilind tarsi in * gitatly enlarged. Sphaerotarsus Womersley 1936 type S. allman: Womersley 1936

Genus Smaris Latreille
Précis car. gén. Ins., p. 180. 1796.
Smaris prominexs (Banks 1916) Text fig. 1, A-T; 2, A-I; 3, A-C
Fessonia prominens Banks, Trans. Koy, Soc. S. Aust., 1916, 40, 225. Calyptostoma prominens Womersley, Rec. S. Aust. Mus., 1934, 5, (2), 235

Redescription of Adult, fig. 1, A-P Colour brown to reddish. Oval in outline with rather prominent shoulders, With distinct nasal process. Dorsum rather flat with raised marginal areas giving a sunken central portion which cxtends anteriorly on each side to the origin of the nasus. Length to 1.0 mm ., width to 0.5 mm ., greatest anterior to the middle.

Dorsally with two distinct shields; the anterior pear-shaped with the apex forming the nasus, anteriorly with two sessile eyes on cach side on indistinct ocular plates, behind the eyes in the midline is a pair of sensillae, 43μ long with their pits 49μ apart; on the posterior margin of this shield is a second pair of sensillac, 47μ long, with their bases 18μ apart and the pits conjoined to form a sensillary area, the distance between anterior and posterior sensillae is 220μ and both pairs are finely ciliated; this anterior shield extends to the middle of the body length and laterally to half-way between the midline and the lateral body margins, its length is 450μ, width 280μ; the posterior dorsal shicld is roundish in the $\circ, 180 \mu$ long by 140μ wide, in the $\hat{\sigma}$ it is rather straight on the anterior margin and somewhat larger than in the $\circ, 2 \overline{5} 0 \mu$ by 220μ. In both sexes between the anterior and posterior shields are two pairs of small subcuticular muscular plates which are roundish and somewhat angled medially, in the $\hat{\delta}$ the posterior

Fig. 1
Smaris prominens (Banks 1916)—A-P adult: A, entire dorsal view $\circ ; \mathrm{B}$, dorsum $\circ ; C$, venter $\circ ; D$, anterior sensillac E, posterior sensillac: F, palp dorsal; G, palp ventral; ${ }^{+} H$, post. dorsal plate δ; I, tarsus and metatarsus I; J, tarsus and metatarsus IV; K, L, M, N, different aspects of dorsal setae (N, transverse section) ; O, P, leg setae; $Q-T$, nymph; Q, dorsum; R, venter;
S, T, dorsal setae from above and below.
pair are attached to the anterior angles of the posterior shield, giving it a widened appearance anteriorly, other smaller muscular plates are as ligured. Ventrally the anterior coxae are on a large somewhat triangular shield 385μ long and 385μ wide; the posterior coxae are on triangular lateral shiclds, 305μ long by 180μ wide; smaller muscular plates are present as figured. The genital opening is externally the same in both sexes, 280μ long by 45μ wide, the lips are furnished with about 18 simple spine-like setae, and outside these lips the cuticle is raised as a pair of outer ridges furnished with normal ventral setae; in neither sex are genital discs present. Legs: I $1,100 \mu$ long, II 660μ, III 630μ, IV $1,020 \mu$ (including coxae) ; tarsus I elongate, 190μ by 40μ high; metatarsus I 225μ; all tarsi without scopulae, no difference between metatarsi and tarsi IV of ${ }_{6}$ and 9. Setae: dorsal short and oval, rather flattened ventrally, broadly convex dorsally, with longitudinal rows of adnate serrations, $1.5-20 \mu$ long; laterally on anterior end of dorsum are a few similar but longer ones to 45μ; ventral setae similar to dorsal but mostly shorter $12-14 \mu$, some 28μ; most leg setae similar to dorsal, 20μ; various types of sensory setae are also present on the legs.

Mouth-parts extrusile, palpi with fine indistinctly ciliated setae dorsally, strongly ciliated ventrally, tarsus of palp shorter than the strongly curved claw and with one blunt sensory scta, three strong simple setae and four ciliated setae.

Remarks-From the figures of squamata given by Berlese and already referred to, our Australian species differs in the size and shape of the dorsal and ventral shields. Inı squamata the anterior shield extends much further back and is square-ended; in prominons it is shorter, more pear-shaped and rounded posteriorly. The posterior shield is larger and longer in squanata, and there is a wide quadrangtular genital shield not present in prominens.

Description of larvae, fig. 2, A-I-Colour orange. Shape roughly ovoid, widest anterior to the middle, evenly rounded posteriorly, somewhat tapering anteriorly, length ranging from 223μ, to 460μ when fully gorged, width 184μ of a specimen 254μ long. With a single dorsal shield, as figured, with concave anterior and convex posterior margin, length 28μ, width 45μ, depth of anterior concavity 4μ; with two pairs of ciliated sensillae placed as shown; anterior 27μ posterior 44μ; with two pairs of ordinary fairly stout ciliated setae placed at the anterior and posterior angles, anterior 45μ long, posterior $32 \mu_{\text {. }}$ Eyes $2+2$, postero-lateral to dorsal shield, anterior ocellus the larger. Dorsum with about 44 brown fairly stout blunt ciliated setae, 24-41 μ long, arranged 4.4.4.4(5). 4.4.4.8(9).4.2.

Venter: each coxa with one ciliated seta, on I 32μ long, IT 20μ, III 26μ, that on III blunt at tip, others pointed. Between coxae I a pair of bushy ciliated setae, 16μ long; a pair of pointed ciliated setae, 20μ long, between coxae III, none between coxae II, but in the usual position of such setal bases is a pair of small rings suggestive of pores rather than the bases of setac; behind coxae III are three rows of blunt ciliated setae, $20-24 \mu$ long, arranged 4.4.3. Legs stout, I 285μ long, II 285μ, III 337μ (including coxae); tarsus I 57μ long, 30μ high. Claws strongly pulvilliform, empodium claw-like slender and curved, much longer than the claws; tarsi I with setae as figured, metatarsus I 47μ long.

Mouth-parts and palpi as figured; palpal claw trifurcate; femur, genu, tibia and tarsus with $1,1,3,6$ setae respectively.

Remarks-No larvae appear to have previously hean referred to the Smarididac. Within the Erythraeidac the genus Bochartia Oudemans, Zool. Jahrb., Suppl. 14, pt. i, 1912, p. 126 (type B. kuyperi Ouds.) appears to be most closely related to the larvae of Smaris prominens. They agree int having a dorsal shield wider than long, furnished with two pairs of ordinary ciliated setae, and two pairs of sensillary setae, and in having $2+2$ eyes and coxae well separated. S. prominens differs from all Erythraeid larvae in that the two tarsal claws are
identical, strongly pulvilliform with long cilia; the palpal claw is tri- and not bifurcate as in Bochartia. It also differs from this genus in the scutum being crescentic or oblong rather than circular, with distinct anterior and posterior lateral angles.

Mescription of Pupa, fig. 3, A-C-Colour orange. Shape ovoid with a flattened ventral surface, length 455μ, width 295μ; dorsal surface strongly

convex with the anterior end notched. Laterally the ventral surface is raised, the lateral areas merging at each end into two pairs of raised bosses in which the nymphal tarsi develop. The sunken central area is broadly convex. The dorstin entirely, and the venter peripherally, with long parallel-sided, apicallypointed setae, with serrations, setae $68-80 \mu$ long, a few thongate-lanceolate and 34μ long, each seta arising from a definite papilla. In well-developed pupae the nymphal parts can be secn, the eye spots being visible throughout the whole pipal stare, At first the eye spots are wide apart as in the larva, then approach gradually mutil the nymplat position is assmued. In eedysis the larval skin splits transversely, one balf remaining attached to each end of the pupa. The anterjor half of the cast skin has the mouth-parts, legs I and II and the dorsal scutum; legn II separate to some extent from this part. 'lhe posterior hali consists of the renninder, excepting perhaps the eyes, whose fate has not bech ascertainet.

Description of freshly cherged Nymph, lig. 1. Q-T-Colout orange, shape oval. rather flattened dorsally with raised lateral border as in adult, length $+90 \mu$, widh 315μ. Dorsuin with only the anterior pear-shaped shield present; this

Fig, 3
Smaris prominens (Banks 1916)-Pupa; A, dorsal; B, ventral; C, sctae.
carries $2+2$ eyes and two pairs of sensillac as in the adult. The anterior sensillae are 34μ long, their bases 39μ apart, the posterior 57μ and 14μ respectively; they are all fine and shortly ciliated $;$ as in the adult there is no crista and both pairs of sensillae are posterior to the paired eyes, the clistance between the pairs of sensilha is 129μ, With four large and a muber of smaller muscular plates as in the adult.

Dorsal setae of similar form, but more elongate than in adult, $18-20 \mu$ long, some laterally near the masus 40μ. Ventral setac similar to dorsal, $16-24 \mu$ long. Coxae on ventral shiclds as in adult. Small ventral muscular plates as figured, devoid of cuticular striations. No genital organs present. Mouth-parts extrusile, Palpal claw stont. simple, curved.
L.egs slender, I 662μ long, II 303μ, III 430μ, IV 573μ (all ineluding coxae); tarsus I 123μ long by 45μ high, metatarsus I 135μ long; nornal setal clothing of legs as in adult, various sensillae also present; farsal claws two, falciform, finely ciliated.

Localitics-New South Wales: Bathurst, under logs, October 1932, one specimen (S. L. A.) ; Meninclee, July 1928, three adults (S. H.). Victoria; Ocean Grove with Iridomymex mitidus, date? (A. M. L..) (o co-typer of Fessonia prominons Bks, in S. Aust. Museum). South Australia: Lrrhrae,
under bark, September 1933, one nymph (H.W.) : Encounter Bay, with termites, January 1934, one adult (H. W.) ; Mount Barker, in moss, July 1934, one nymph (H. W.) ; Bordertown, December 1934, one adult (R.V. S.) ; Myponga, in moss, April 1935, one nymph (R. V. S.) ; Belair, May 1935, one adult (H. W.), January 1940, one adult (J. S. W.), May 1940, two adults (R. V. S.) ; Sellick's Beach, February 1937, onc adult (H. M. H. and K. S.) ; Unley Park, August 1938, two adults and one nymph, October 1940, one nymph, all under eucalypt bark (R. V, S.) ; Torrens Gorge, in burnt stump of Xanthorrhoea, April 1939, one adult and three nymphs ($\mathrm{R}, \mathrm{V} . \mathrm{S}$.) ; Glen Osmond, adults found throughout the year, 1935-40, particularly from April to June, nymphs from April to October and particularly April to May ; both from soil, vegetable debris and under eucalypt bark; larvae found in similar habitat either frec or attached to the introduced and cosmopolitan Psocid Liposceles (Troctes) dizinatorius (Linn.), March 1935 (one specimen), April 1939 (8), May 1939 (2), April 1940 (2), (all R. V. S.).

Notes on the Biology of Smaris prominens (Bks.)
In trying to trace the life-history of this mite attempts to obtain eggs from adults in captivity have so far been unsuccessful. It has been possible, however, to rear nymphs from larvae attached to Psocids and these nymphs have been correlated with the adults on morphological grounds. The details of the four successful rearings (by the junior author) are given in the following table:

(i) Tube not examined until December 1939, when a dead nymph and east larval and pupal skins were found.
(2) Pupa put into formalin; the nymph was apparently ready to emerge, showing strong development as compared with ACA 654,

The mites, together with their hosts, were kept in separate damp tubes supplied with pieces of bark or paper. When fully gorged the mites left their hosts and wandered freely about the tube for several days before becoming dormant. After several more days the skin splits transversely, revealing the pupa, Three to four weeks later the nymph emerges from a rent towards the posterior end of the pupa. After each experiment the larval skins were checked to ensure correct correlation of larva and nymph. Whether a second resting stage and nymph occurs has not been ascertained, but seems to be unlikely. One of the reared nymphs (ACA 654) lived in captivity for 80 days without any sign of further ecdysis and without any increase in body length or distance between the pairs of sensillae. Latger nymphs than the one described have been taken in the field, one from Glen Osmond, May 1937 m,easured 770μ long, 460μ wide, and 157μ between pairs of sensillae. These dimensions, $i . e^{\text {., }}$ body nearly as big as adult, but with distance between sensillae corresponding to proven first stage nymphs, indicate that probably there is only one nymph.

Genus Hirstiosoma Womerslcy

Rec. S. Aust. Mus., 1934, 5, (2), 242. Type H. scalaris Wom., 1934 (loc cit.).

Hirstiosoma scataris Womersley Fig. 4, A-F; 5, A-E
Rec. S. Aust. Mus., 1934, 5, (2), 242.
Redescription of Adult, fig. 4, A-F; 5, A-C, E-Colour red. Oval in outline with prominent shoulders and a short nasus. Length 1.0 mm ., width 0.65 mm . Crista linear with two sensillary areas, anterior and posterior each with two sensillac; anterior sensillae 30μ long, expanding slightly distally, distal half with longer outstanding ciliations, proximal half with very minute adpressed ciliations, posterior sensillae very slender and tapering, 85μ, with adpressed minute ciliations barely visible under high magnification. Distance between anteriur and posterior sensillae 300μ. Eyes $1+1$, level with middle of crista. Palp as figured. Dorsal setae numerous, brown but not heavily pigmented, 3-flanged, $16-24 \mu$ long. Ventral setae posteriorly similar to dorsal, anterior to genitalia oval with long strong ciliations, $14-16 \mu$ long. Legs: I $1,230 \mu$ long, II 650μ, III 640μ, IV 960μ (including coxac), tarsus I 180μ by 45μ high, metatarsus 240μ, tarsus IV 81μ by 34μ high, metatarsus IV 228μ long.

Description of Nemph, fig, 5, D-E-Colour red. Shape as in adult. Length 500μ, width 295μ. Crista and sensillary setae as in adult, Anterior sensillae $26 \mu \mathrm{long}$, posterior 85μ, distance between anterior and posterior 188μ. Eyes $1+1$ level with middle crista. Dorsal setae similar to adult but more elongate, $18-28 \mu$ long ; ventral setae posteriorly similar to dorsal, more anteriorly elongateoval, $14-16 \mu$ long, with long strong ciliations, Legs not available.

Localities-South Australia: Victor I Iarbour, by sweeping tea-tree on banks of I Iindmarsh River, one adult (type), Janwary 1934 (H. W.) ; Glen Osmond. in soil at base of eucalypts, January 1938, two adults, Fehruary 1939, one adult, December 1939, one nymph, January 1940 one adult, December 1940, one adult, January 1941, one adult (R. V. S.) : Rocky River, Kangaroo Island, one adult, under stone, December 1939, (R. V. S.),

Hirstiosoma tasmaniensis n. sp. Fig. 4, G-O; 5, F-J
Description of Adult, fig. 4, G-N ; 5, F-HI, J-Colonr brownish. Oval in outline with prominent shoulders, length 1.4 nm ., width 0.83 mm , Propodosoma produced into a nasus about 160μ lung. Crista linear with anterior and posterior sensillary areas each with paired sensillae, anterior sensillae strong, tapering, pointed, 50μ long, with minute ciliations, posterior sensillae strong, long, tapering, pointed, 97μ long, with minute ciliations, distance between anterior and posterior sensillae 323μ, Eyes $1+1$, level with middle of crista. Palp as figured, setae spiniform, with fine ciliations. Dorsal setac numerous. dark brown (heavily pigmented), 3 -flanged, $24-31 \mu$ long; ventral setae posteriorly similar to dorsal, anterior to genitalia oval with long strong ciliations, $14-22 \mu$. I egs: I $1,640 \mu$, II 900μ. III 960μ, IV 1.375μ (including coxae); tarsus I 224μ long by 75μ high; metatarsus I 255μ long ; tarsus TV 97μ long by 68μ high, metatarsus 1V 265μ long.

Description of Nymph, fig. 4, O; 5, T-Colonr brownish.. Shape as in adult, length 510μ, width $255^{\circ} \mu$. Crista linear, as in adult, anterior sensillae fairly strong, only slightly tapering, pointed, 38μ long, with fine ciliations, posterior sensiltac more slender, tapering, pointed, 87μ long, with minnte ciliations, distance between anterior and posterior sensillae 183μ. Eyes $1+1$, level with middle of crista. Dorsal setae similar to adtult but more elongate, $22-34 \mu$ long; ventral setac posteriorly similar to dorsal, more anteriorly a long oval with long strong ciliations, and $14-16 \mu$ long, Legs I: $1,020 \mu$ long, II 460μ, III 465μ, IV 745μ (including coxae) ; tarsus 150μ long by 54μ high, metatarsús I 160μ long, tarsus IV 60μ hy 36μ. metatarsus IV 195μ long.

Localitics-Tasmania: Mount Wellington, December 1937, one adult and onc nymph; Hobart, in moss, March 1940, five adults (one the type), (J. W. E.).

Fig. 4

Hirstlosoma govae-hollandiafe Womersley Fig. $4, \mathrm{P}-\mathrm{VI}^{*} ; 5, \mathrm{H}-\mathrm{M}$
J. Lint1 Soc., London, (Zool.), 1936. 40, 118

Redescription of Adutt, fig, 4, P-U; 5, K-M -Colour brownish. Oval in outline with promment shoulders and a short nasus. Length 1.5 mnn., width 0.95 mm . Crista linear, with anterior and posterior sensillaty areas each with two sensillae; anterior sensillac fairly stout, almost parallel-sided, finely cilhted, 26μ long; posterior sensillae $4 \overrightarrow{3} \mu$ long, tapering, pointed, ciliations doubt fully visible at 3.000 dianteter, distance between anterior and posterior sensillae 414 p. Fyes $1+1$. very slightly behind middle of crista. Palp as figured. Dorsal setae mumerous, brown (heavily pigmented). 3-flanged, dorsal Hange very broad and irequently with excavations, setac $24-26 \mu$ long; ventral sctac posteriorly sintilar to klorsal, anterfor to genitalia oxal with long strong ciliations, $16-20 \mu$ iong. I.egs: I 1.620μ long, II $1,030 \mu$. Ilf $1,110 \mu$. IV $1,420 \mu$ (including cnxar); tarsus 1230μ long by 125μ high, metatarsus 1345μ long; tarsus 15115μ long lyy 62μ high, metatarstis IV 305μ loms,

Description of Nymph, fig. 4, V. 17 ; 5, M-Colour brownish, Shape as in adult, Length $8,35 \mu_{\text {, width }} 525 \mu_{*}$ Crista linear with sensillary areas as in adnutt, anterior sensillae 18μ long. fairly stont, slighty tapering and finely cizated; posterior sensillae as in adnt, 40μ lang, distance between sensillae 254μ. Eyes $1+1$, behind middle of crista. Dorsal sctae smilar to adult but more elongate and less heavily pigmented. $22-28 \mu$ long; ventral setace posteriorly similar to dorsal, more anteriorly similar, but with strong ciliations, $16-22 \mu$ long. Legs: I $1,125 \mu$ long, II 640μ, III 645μ, IV 845μ (including coxac) ; tarsus I 145μ long by 60μ high, metatarsus: I 215μ long; tarsus IV 73μ long by 32μ high, metatarsis IV 200μ long.

Locality-Ncw Zcaland: Manurewa, Auckland, May 1934, one adult (type;, (E. D. P') : Atgust 1934, one a and one nymph (E. D. I^{*}).

Generfl Remares on the Gexus Hirs mosoma

The specific differences in this genus, although small, are important, The: principal ones are the dincnsions of the metatarsus and tarsus of leg 1 , the characters of the sensillary setae of the crista and the structure of the dorsal setae.

I'reviously the senior athor (J. J.inn. Soc., London, (Zool.), 1936, 40, 118) used the character of the setac arising from papillae at the tip of the tarsi as being of value in scapating scalaris and nozac-hollandiat, those of scalaris having carlicr (Rec. S. Aust. Mus, 5, (2). 242, 1934) been considered as simple. Actually these setae are ciliated in all species (both adult and nymphal) of the fanily of which we have specimens. A key to the three species from Australia. Tanmalia and New Zealand is given but their exact rclationship to the other species cannot be determined from the published data.

In A.M.S. ital Repta., xxxix, No. 10, Berlese shows the anterior sensillae of ampultigera as relatively short thick and apically pointed with distinct ciliations, posterior sensillae as long and slender without ciliations. In the same work, lxxi, No. 4, for the same species he shows then both as long and slender, withont

Fig. 4
Hirstiosoma-A-F, stalaris Wom. 1934, adult: A, crista and eyes: B, anterior sensillary area; C, post. sensillary area; D, palp; E, tarsus and metatarsus I; F , tarsus and metatarsus IV ; $\mathrm{G}-\mathrm{O}$, tasmaniensis 11, s.p; $\mathrm{G}-\mathrm{N}$, adult; $\mathrm{C}_{\text {; }}$, outline; H, crista and eyes; I, ant, sensillary area; J. post, sensillary area; K , mouthparts from below; L, palp; M, tarsus and metatarsus $I ; N$, tas sus and metatarsus IV: O, larsus and metatarsus 1 of nymph. P-W, wozachallandiae Wom. 1936: 1 -L゙, adult; P, crista and cyes: Q, ant. sensillary area; R, post. sensillary area; S, palp from above; ' T, tarsus and metatarsus I. U, farsus and metatarsus $I V ; V-W, n y m p h: V$, dorsum: W, tarsus and metatarsus I. All tarsi and metatarsi are to same nuagnification.

Fig. 5
ciliations. This suggests that he had more than one species. The figures of the setae given for ampulligera by Berlese, and for sericea and his second species by Jacot. do not permit of comparison with the three Australasian species.
1 Tarsus 1 four times as long as high. Anterior sensillae not tapering, expanding slightly distally and here with long ciliations; posterior sensillae very slender.
H. scalaris Womersley 1934

Tarsus I not more than twice as long as high. Anterior sensillae tapering.
2 Tarsus I one and one-half times as long as high. Posterior sensillae fairly thick, about 100μ long. Dorsal setae widest about middle, dorsal flange of setae narrower, without basal excavations.
H. tasmaniensis n.sp.

Tarsus I twice as long as high. Posterior sensillae slender, about 50μ. Dorsal setae widest beyond middle; flange on dorsal surface broader, with | yasal excavations.
H. novar-hollandiae Womersley 1936

Genus Sphaerotarsus Womersley
I. Linn. Soc., London (Zool.), 1936, 40, 269, 119. Type S, allmani Wont.

Spitaerotarsus ripicolus (Womersley, 1934) Fig. 6, A-H; 7, A-F
Sphacrotarsus ripicoltts (Womersley, 1934).
Cacculisoma ripicola Womersley, 1934 (nymph), Rec. S. Aust. Mus., 5, (2), 239. Sphacrotarsius almani Womersley, 1936 (part), J. Linn. Soc (loc. cit.).

Description of Adult, fig, 6, A-D ; 7, A-D-Red. Oval, somewhat pointed anteriorly, and with prominent shoulders. Length about 1.0 nmm ., width about 0.6 mm . Crista linear with anterior and posterior sensillary areas each with t wo somewhat clavate, finely ciliate sensillae, anterior sensillae 23μ long, posterior 40μ; distance between centres of sensillae 264μ. Eyes $1+1$ behind middle of crista. Palpi very similar to nymph, but with a few more setae. Dorsal setac numerous, brown, short, ovoid (narrowing slightly distally), 3 -flanged, with crossbars, and with adnate serrations, $18-24 \mu$ long (some dorsal setae are unpigmented). Ventral setae posteriorly similar to dorsal, anterior to anus oval, with long strong ciliations, setae 17.22μ long. Legs: I, (?) μ, II 820μ long, III 870μ, IV $1,170 \mu$ (including coxae); tarsus I and metatarsus I not available. tarsus IV (f) oval, 147μ long by 94μ across, metatarsus IV (©) $2,30 \mu$ long.

Redescription of N ymph, fig. $6, \mathrm{E}-\mathrm{H} ; 7, \mathrm{E}-\mathrm{F}-$ Red. Shape as in adult. Length 0.875 mmı., width 0.56 mm . Crista as in adult, anterior sensillac 22μ long, posterior 43μ. Distance between centres of sensillae 215μ. Eyes as in adult. Palpi as figured. Dorsal setae shortly ovoid or elongate-ovoid, 3 -flanged, with serrations, and with crossbars, $20-32 \mu$ long, ventral setae posteriorly similar to dorsal, anterior to anus elongate-oval, with long strong ciliations, 18-20 μ long. Lecgs: I 805μ long, IT 555μ, III 625μ, IV 780μ (including coxae) ; tarsus I 112μ long by 49μ across, metatarsus 161μ long tarsus iV 63μ long by 34μ high, metatarsus IV 170μ long.

Localitics-South Australia: Victor Harbour, by sweeping tea-tree along Hindmarsh River, January 1934, five nymphs (including type) (H. W*.) ; Glen Osmond, November 1937, one nymph (R. V. S.). Victoria: Sandy Waterhole, Glenely River, January 1941, one adult of (H_{I} W. W.).

Erratum-Rec. S. Aust. Mus., 1934, p. 239, fig. 184 and 185 should be transposed.

Fig. 5
Hirstiosoma, dorsal and ventral setae-A-E. scataris Wom. 1934: A, dorsal seta of adult above and below; B , sanc, cncl view from above: C , same, transverse section; D, dorsal seta of nymph from above and below; E, ventral setae, adult above, nymph below: F-J, tasmaniensis n1s sp.: F, dorsal seta of adult from above and below; G, sante, end view; H, same, transverse section; I, dorsal seta of nymph from above and below; J, ventral seta of adult. $\mathrm{K}-\mathrm{M}$, nozac-hollandiac Wom. 1936: K, dorsal seta of adult from above, below and cnd view; L. dorsal seta of nymph from above and below; M, ventral setae, adult above, nymph below. (All to same magnification.)

Sphacrotarsus, dorsal and ventral setae-1-II, S. ripicolus (Wom. 1934), A-D adult: A, dorsal seta above; B same, below; C, smme, end view; D, ventral seta: $\mathrm{E}-\mathrm{H}$, nymph, E , dorsal seta, above; F , same, below; G, II, ventral setae I-L, S, leptopilus n. sp., nymph: I, dorsal seta, above; I, same, below; K, longer dorsal seta; L, ventral seta. M-U, S. allmani Wonı. 1936, M-Q adult: M, dorsal seta, above; N, same, below; O, same, end view; P, Q, ventral sctae; $R-U$, nyniph; R, dorsal seta above; S, sanc, below; T, same, end view; U, ventral seta. V.Y, S. claviger 11, sp., adult: V, dorsal seta, above; W, the same, below; X, same, cnd view (from below); Y, ventral seta. (All setac to same scale).

Sphaerotarsus leptopilus 11. s1. Fig. 6. 1-L; 7, (i-M
Iescription of Nympin (olour red. ()val in ontline. somewhat pointed anteriorly, and with prominent shoulders. Length 0.91 mm., width 0.67 mm . (rista linear with anterior and posterior sensillary areas, each with two clavate.

Fig. 7
Sphacrotarsus-A-F, S. ripicolus (Wom. 1934), A-D adult: A, anterior sensillary area; B, posterior sensillary area; C, tarsus II and metatarsus II, outline; D, tarsus IV and metatarsus IV, ($\hat{0}$) outline; E-F, nymph; E. palp from above; F, paln from below. $G-M, S$. leptopilus in. sp.. nymph: G, outlinc, entire, ventral: H , anterior sensillary area; I, posterior sensillary area; J, tarsus 1 and metatarsus I, outline; K. tarsus IV and metatarsus IV, sutine; L, palp, above; M, palp, below. (A-B; C-I): E, F, L, M ; H-I; J, K, to same magnification.)
finely ciliate sensillae, anterior sensillae 22μ long, posterior 34μ; distance between centres of sensillac 163μ. Eyes $1+1$, behind middle of crista. Palpi as figured. Dorsal setac numerous, brown. elongate-ovoid, 3 -flanged, with serrations, and small for genus, $14-30 \mu$ long, the posterior setae being the longer. Dorsal setae without the crossbars present in S, ripicolus. Ventral setae posteriorly similar to dorsal, anterior to anus elongate (fusiform) with long strong ciliations, $14-20 \mu$ long. Legs: I 655μ long, II 465μ, III 500μ. IV 585μ (including coxae). tarsus I 95μ long by 52μ across, metatarsus I 129μ long, tarsus IV $56^{\circ} \mu$ long by 24μ high, metatarsus IV 136μ long.

Locality--South Australia-Victor Harbour, by sweeping tea-tree along IIindmarsh River, January 1934, one nymph (type) (H. W.).

Remarks-Closest to S. ripicolis, winh which it was originally taken, but differs in the form of the dorsal setae, and in the dimensions of sensillae. The single nymph was among the syntypes of S. ripicolus.

Spilakotarsus allmani Womersley 1936 Fig. 6, M-U; 8, A-J $=$ Sphaerotarsus allmani Wom. 1936, J. Linn. Soc, Lon (Zool.), 40, 269, 119.

Redescription of Adult, fig, 6, M-Q;8, A-D-Red. Oval, somewhat pointed anteriorly, and with prominent shoulders. Length 1.1 mm , width 0.7 mm . Crista linear with anterior and posterior sensillary areas, each with two somewhat clavate finely cíliate sensillae, anterior sensillae 27μ long, posterior 75μ, distance between centres of sensillae 290μ. Eyes $1+1$, behind middle of crista. Palpi as in nymph. Dorsal setae numerous, brown, short, 3-flanged, without crossbars, with serrations, $16-20 \mu$ long; ventral setae posteriorly similar to dorsal, anterior to anus a short oval, $16-19 \mu$ long, with long ciliations. Legs; I $1,155 \mu$ long, II 705μ, III 760μ, IV $1,050 \mu$ (including coxae); tarsus I 154μ long by 73μ high, metatarsus I 205μ long; tarsus IV (\ddagger) nearly spherical, 148μ long by 127μ across, metatarsus IV 209μ long. No genital dises.

Description of Nymph, fig. 6, R-U; 8, E-J-Red, Shape as in adult. Length 0.77 mm ., width 0.5 mm . Crista as in adult, anterior sensillae 20μ long, posterior 62μ, distance between centres of sensillae 194μ. Eyes as in adult. Palpi as figured. Dorsal setae similar to adult, but more elongate, $18-30 \mu$ long, ventral setae posteriorly similar to dorsal, anterior to anus clongate-oval, with long strong ciliations, setac $15-20 \mu$ long. Legs: I 835μ long, II 485μ, III 525μ, IV 715μ (including coxae), tarsus 109μ long by 41μ across, metatarsus I 167μ long, tarsus IV 60μ long by 26μ high, metatarsus IV 167μ long.

Locality-New South Wales: Bathurst, under fallen leaves, 31 May 1934, one adult के (type) and two nymphs (S. L. A.).

Sphaerotarsus claviger n. sp. Fig. 6, V-Y; 8, M-Q
Descripfion of Adult-Colour red, Oval in outline, somewhat pointed anteriorly, and with prominent shoulders. Length 1.315 mm ., width 0.755 mm . Crista linear with anterior and posterior sensillary areas, each with two clavate, finely ciliate sensillae, anterior sensillae 20μ long, posterior 63μ, distance between

Fig. 8
Sphatrotarsus-A-J allmoni Wom, 1936, A-D adult: A, anterior sensillary area, B_{i} posterior sensillary area; C, tarsus I and metatarsus I, outline; D, tarsus IV and metatarsus IV ($\hat{\alpha}$), outline; E-J, nymph; E , anterior sensillary area; $F_{\text {; }}$ posterior sensillary area; G, tarsus I and metatarsus I, outline; H, tarsus IV and metatarsus IV, outline; 1 , palp above; J, palp, below. $K-Q$, claviger n. sp., adult: K, outline, entire, dorsal* L, anterior sensillary area; M, posterior sensillary area; N, tarsus I and metatarsus $I ; O$, tarsus IV and metatarsus IV, (9) outline; P, palp, above: Q, palp, below. (A, B, E, $\mathrm{F}, \mathrm{L}, \mathrm{M} ; \mathrm{C}, \mathrm{D}, \mathrm{N}, \mathrm{O} ; \mathrm{G}, \mathrm{H}$; I, J, P, Q to same magnification.)

Fig. 8
centres of sensillae 352μ. Fyes $1+1$, behind middle of crista, Palpi as figured. Dorsal setac numerous, brown, short, 3-flanged, the dorsal flange being fairly broad, without crossbars and with serrations, setae $16-21 \mu$ long. Ventral setae posteriorly similar to dorsal, anterior to anns oval, with long strong ciliations. setae $15-22 \mu$ long, Legs: I $1,335 \mu$ long, II $805 \mu, 11$ I 880μ, IV $1,205 \mu$ (including coxae) : tarsus 1178μ long by 66μ across, metatarsus 1242μ long, tarsus IV (of) 106μ long by 49μ high, metatarsus IV 247μ long.

Locality-New South 'Vales: Bathurst. "under bark", 28 fume 1932, of (S.I...1.)

Remarks on thé Genus Spfinerotarsus

The dorsal setac vary somewhat in form and size on different parts, especially so in the nymph. In the figures given, a typical dorsal seta, from the anterior twothirds in each case, is shown. Those of the posterior part of the dorstum are more elongate than those more anterior.

The specific characters of most value are the structure and dimensions of the sensillac, and the character of the dorsal setae. The genus is, at present, confined to Australia.

Khy to the Species of Spfiaerotarsus

1 Posterior sensillary setae 1.5 x as long as anterior, Dorsal setae elongate-oval, length: breadth $=2 \cdot 5: 1$. (Anterior sensillace 22μ long, pusterior 34μ.)
S. leptopilus n. sp

Posterior sensiflary setae 2.0 x as long as anterior, or more,
2 Posterior sensillary setae 2.0 x as long as anterior, Dorsal setae broadly ovoid, narrowing slightly distally. (Anterior sensillae 22μ, posterior 45μ.)
S. ripicolus (Wom. 1934)

Posterior sensillary sctae about $3 \cdot 0 \mathrm{x}$ as long as anterior.
3 Dorsal flange of dorsal seta comparatively narrow, less than one-third breadth of seta.
and with (generally) four longitudinal rows of serrations. On ventral surface of dorsal seta is a very broad clear central area. Posterior sensillac widest a little away from their distal end. S. allmani Wom: 1936 Dursal flange of dorsal seta comparatively broad, more than one-thitd of breadth of scta, and with (generally) 6 longitudinal rows of serrations. The central clear arca on the ventral surface of the dorsal seta is narrower, Posterior sensillae widest right at their distal end.
S. claviger 11.sp.

Summary

In this paper the family Smarididae Kramer 1878 is reviewed and the generic characters evaluated. The genera Smaris Latreille 1796, Fessonia von Heyden 1826. Hirstiosoma Womersley 1934, and Sphacrotarsus Womersley 1936 are included, but Microsmaris Hirst 1926 is excluded (it belonging to the Erythracidac). The genus Smaris includes S. squamata (Hermann 1804) from Europe, S. depilata (Berl. 1888) from South America and $S_{\text {: prominens (Banks 1916) }}$ from Australia. Sphaerotarsus has four species-S. ripicolus (Womersley 1934), S. allmani Womersley 1936, S. leptopilus n. sp., S. claviger n. sp, all from Australia. Fessonia is at present restricted to F. papillosa (Hermann 1804) from Europe. Hirstiosoma contains H. scalaris Womersley 1934 and H . tasmaniensis n. sp. from Australia, H. nozac-hollandiae Womersley 1936 from New Zealaud; II. ampulligera (Berlese 1887) from Europe and (doubtfully) Sonth America, H. sericea (Say 1821, Jacot 1938) and indet. sp. (Jacot 1938) from North America.

The first larval Smaridid, that of S. prominens (Banks), is described. It has been reared through the resting or pupal stage to the nymph which has been correlated morphologically with the adult. The nymphs of the Australasian species of Ilirstiosoma and Sphacrotarsus are described and correlated (on morphology) with the adults.

GASTROPODA
 FROM THE ABATTOIRS BORE, ADELAIDE, SOUTH AUSTRALIA TOGETHER WITH A LIST OF SOME MISCELLANEOUS FOSSILS FROM THE BORE

By N.H. LUDBROOK

Summary

The Abattoirs Bore has been an object of interest since its very rich fossiliferous material was collected in 1919 by the late Sir Joseph Verco and the late Professor Howchin. The present paper deals with the remaining groups to be considered in completing the list of species from the Bore represented in the Fate Collection. The writer is entirely dependent upon information given in conversation with Sir Joseph Verco relating to the manner of collecting and the depths from which the material was obtained. Notes by Verco, in my possession, are of conchological interest only; as the fossil species were unfamiliar to him, remarks were made on the outstanding features of shells, many of which were already described by Tate and other workers on Tertiary fossils from Victoria, Tasmania and South Australia.

GASTROPODA

FROM THE ABATTOIRS BORE, ADELAIDE, SOUTH AUSTRALIA TOGETHER WITH

A LIST OF SOME MISCELLANEOUS FOSSILS FROM THE BORE

By N. H. Ludbrook
[Read 8 May 1941]
Piates IV And V
IN゙TRODUCTION

The Abattoirs Bore has been an object of interest since its very rich fossiliferous material was collected in 1919 by the late Sir Joseph Verco and the late Professor Howchin. 'The present paper deals with the remaining groups to be considered in completing the list of species from the Bore represented in the Tate Collection. The writer is entirely dependent upon information given in conversation with Sir Joseph Verco relating to the manner of collecting and the depths from which the naterial was obtained. Notes by Verco, in my possession, are of conchological interest only; as the fossil species were mamiliar to him, remarks were made on the outstanding features of shells, many of which were already described by Tate and other workers on Tertiary fossils from Victoria, Tasmania and South Australia.

The writer has always fell that the information avalable to her was unsatisfactory from a stratigraphical viewpoint; Verco stated that a dray-load of fossiliferous sand, from depths of $400-500$ feet, heaped beside the Bore, had been collected and the mollusca sorted out by him, A preliminary glance at the numerous species revealed that some, hitherto considered as restricted to the Barwonian in Victoria, appeared with a predominantly Pliocene assemblage. It seemed likely that the boring had penetrated more than one horizon, and an adnixture of faunas resulted from an indiscriminate dumping of the material before it conld be collected by someone interested primarily in stratigraphy. After listing the Pelecypoda and describing new species (34), the writer deferred work on the Gastropoda until more reliable data could be used as a basis.

Howchin and Parr (20) have since published details of the Foraninifera from the Bore, together with the driller's log, indicating that several horizons had been penetrated before the boring stopped at 820 fect. This would appear to support the writer's earlier conchsion that, as a contribution to stratigraphy, the mollusca were so confused as to be of relatively little valuc. More recently. through the courtesy of the South Australian Mines Depatinent, the writer has been able to examine material from several other borings near Adelaide, all collected carefully from various depths. While none of them is as rich in the number of species as the Abattoirs, sufficient indication has been given that the Abattoirs Bore mollusca, with a icw possible exceptions, represent a single stage. It is likely that they came from depths of about 360 feet to 500 feet, the "grey sand" horizon, and that the yellow underlying Miocene (20) is not represented in the mollusca. Homogeneity in the state of preservation and colour, howerer, is an insufficient and misleading indicator of a single stage, and in the deposits underlying the Adelaide Plains camot be considered as such.

AGE OF TIE MATERIAI

Difficulty is generally experienced in correlating Tertiary lonizons in Southern Australia. Some workers have found it difficult to agree on the relative positions of numerons isolated beds, and others have, as the occasion

[^2]demanded, chạnged theit opinions as an restut of increasing knowledge of the geographical and stratigraphical range of species; it is partly due to the consideration of some zoological groups to the exclusion of uthers, particularly with the foraminifera and mollusea. It should be possible, as Ianlay and Marwick have found in New Zealand (14), to iake both the macro- and micro-fannas into consideration and eliminate apparent inconsistencies.

The "grey sand" horizon under" consideration here is the "Adeladean" (thocene). appearing in many borings near Adelaide at sonewhere near the 350 foot level. The relative position of these beds has always seemed donbeful. namply because only the larger and more common species were identilied. At first ghance, a close relationship to the Kalimman of Eustern Victoria seems obvioun. The writer (21) has expressed the view that boiln the Kalmman and Adelaidearn stages are lower I'liocenc in age Hall and Prithard (16) and Chapnan (1, 4) have identified the Λ delaidean with the Kalmman, though in at recent note (20) the latter has stated that its "position in the vertical scale appears to be better indticated by the comprehensive series of the foraminifera," and he agrees with Hourchin that the beds are younger han Kalinnan (ihougl not stating, ds Howthin does (18, 19, 20) that they are Cpper Plocene). In an earlier paper (9) Coton and the writer followed fowchin and relerved Abattoirs Borc species of Turitclla to the Upper I'liocene; these belong to the Adelaidean stage. Singleton classifies the Adelaideat as (?) Middle Plocene (25), (1)

The evidence of the foraminfera cannot be overlooked, but it is doultitul whether, from carly Pliocone upwards, they alone can be conclusive, Fintay and Marwick (14) have foum that New Zcaland Plocene stages are indicated principally by the hiollusca, and the same has been the case hitherto in Anstalif. With the Adelaiden stage, to the fanna of which the Abatoirs Bote makes the largest contribution, useful results are obtainable by considering the foraninitera and mollusca along parallel lines. Parr (24) has made an interesting analysis of the Kalinman and Adeladean foraminifa, which. from the point of view of the age of the Actadean, conld be strengthened by comparison with the ninerotatmas of Pliocene localitics nearer geographically to the Adelaidean.

Irom an analysis of the mollusea and the evidence of the foraminfert, the writer considers the Adeladean a slightly yonnger stage than the Kalinnan. To atjuat the Adeladean, Merrikooian and Kalimnan to the European time scale is not ease ; if the Kalinnat1 is accepted as Lower Pliocene and the Werrikoonan as Upper Miocene, to place the Adelatlean withont qualification in Midde Piocenc is to convey the inpression that the Adelaidean provides a single link between the Kalimman and the Werrikooian. This is far from being the case, many of the Aclelaidean mollasca being restricted halimnan species and very few Werrikooin species are found. Since the Adelaidenn bed are thicker than those of the ype kaliman area, careful investigation of further boringe naty show that the Adelaidean represents it longer bime range than the Faliman and should be classified as Lower-Midde Pliocene.

CONDITIONS OF DEPOSIT

The tunusual richmess. specifically and mumerically, of narrow, highly fossififerous beds of the Adelaidean stage invites comparison with thick shelly deposits. 011 certain beaches today. Mr. B. C. Cotion states that inder South Australian conditions, shells are deposited at the north-eastern part of a beach, preferably in a sheltered bay or estuary. The Abattoirs and other richly fossiliferous bores in_{1} the Adelaideat show sinilar conditions of deposit to those of the Quter Harbour at the present day. The maximum thickness is about 200 feet, haid down

[^3]mader conditions of depression contemporaneons with early atages of the step－ faulting from the Mount Lofty Kanges to St．Vincent（inlf．＂Yhe gastropod genera represented indicate much warmer climatic conditions than those of the present day or of the Werrikooian，and many new species exhibit close relation－ ships，both generically and specifically，with Recent shells of tropical Quecniland to which they are possibly ancestral．

AN゙ALYSIS OF MHF GiSTROP（MD FACNA

Of the 200 gastrupod species， 67 oceur in the Kalimuan of Victoria，cither in the Gippsland lakes arca or at localities accepted as contemporaneous with the type； 16 are known previonsly only in the Barwonian；three are restricted to South Anstralian Lower Plocent horizons；hive are found esswhere only among the ＂Murray Desert＂（33）fussils（pussibly exactly contemporaneous with the Adelaidean）； 44 are pectifar to the horizon and 22 are identical with or close to Recent species not occurring in the Kalmant the rest are of doubtind innits （sucle as Baryspira psondoustralis which occurs in the Barwonian，in the＂Marray Desert＂fossils and in the Adeladean），or are indetermmate specifically．（of the species in common with the Kalimman，about 22 appear to be restricted．The Adelaidean apparently has about 10% more of its gastropod species living that has the Kalimnan．This cannot be tahen as a significant pereentage in view of the linnted geographical dist－ibution of some of the species in question and the likeli－ hood of many of thent prosing distinct as more material becomes nvailable for comparison．

MSCldAANE（）OS FACNA

Garions oddments collected with the mollusea have been listed，though the 1，ryozoa appear to have been completely overlooked，and no information is avail－ able．Other phyla represented are consistent with species from the Kalimnan．

NOMENCTATLRE

It is felt that some explanation is needed of ohvions inconsistencies in the use of generic mames，This list provides a working hasis for comparing the fana of the Adelaidean with those of other horizons．As far as is possible，nanus in present use have been employed，Cotton（8）being followed for Recent shells． Considerable difficulty arises with the iossil species．Anstralian workers generally have been conservative and little revision of genera has been done．To alter some generic names withont investigating the grous as a whole is undesirable．Fron a palacontological viewpoint，the genns and subgenne method used with the Turritellidae is the most satisfactory，being intelligible to the geologist and suffi－ ciently accurate for the specialist，and is consistent with modern trends in systematics（35）．

ACKNOWLEDOMENTS

The writer withes to exprese indebtedness to Mr．T．Iredale of the Ans＊ tralian Museum；Mr，l）．C．Cotton，of the South Australian Museunn ；Sir Douglas Mawson，Dr．C．＇T＇，Madigan，Miss I．Crespin，Mr．F．A．Singleton，and par－ ticularly to Miss Joyce Allan of the Anstralian MEwseun，for her excellent illustrations．

DESCRIPTION OF NEN゙ SPECIES AN゙〕 REMARKSON NOTENORTHY SPECIES

Holotypes of all new species are lodged in the Tate Collection．Adelade University；the type locality of all new species is the Abattoirs Bore．Adelaide， South Australia；the geological horizon is Adelaidean．Dliocene，in each case．

Class GASTROPODA

Subclass STREPTONEURA

Ord. ASPIDOBRANCHIA
sulord. ARCHAEOGASTROPODA

Superfam. ZELGOBRANCHIA

Fam. FISSURELLLIDAE
Genus Tugali Gray 1843
Tugali infortunatum sp. nov.
(Pl. iv, fire. 1)
Shell thin, small, oblong, low. Apex small but prominent, strongly recurved, situated at about one-quarter from the posterior margin. Shell flaty convex anteriorly, slightly concave below the apex and flattening towards the posterior margin. Sculpture of about 40 primary radiating ribs with fainter secondary ribs rising irregularly between them. Numerons concentric ribs, closer and less prominent that the radials, the radials over-riding the concentrics so that there is no conspicnous grannlation. Margin flattened, fintly crenulate. Anterior margin sinuate, sinus produced into a faint canal within, corresponding to a thickened anterior rib on the exterior. Length, 4.2 mmn ; breadth, 2.5 mmn ; height, $1 \cdot 0 \mathrm{mmm}$.

This distinct species presents one or two unsatisfactory aspects. There are two specimens from the Bore, a larger with the margin completely broken and a smaller which is perfect but obviously immature. The younger is taken as the holotype. The only difference exhibited by the older shell is that the thickened rib from the apex to the anterior border in the juvenile extends only about halfway in the older shell, developing into three normal, radiating ribs with the regular concentrics as in the rest of the shell.

Subord. RHIPIDOGLOSSA
 Superfam. TROCHACEA
 Fanl. TROCHIDAE
 Genus (Lanculus Montfort 1810
 Clanculus quadricingulatus sp. nov.

(Ill. ix, fig. 2)
Shell solid, depressed conoidal, falsely umbilicate. Protoconch of one-and-ahalf small turns. apex smooth, gradually developing four pronounced lirae; adult whorls four, sculptured with rows of granulose cingult, four on the penultinate whorl. 13 extending from the suture to the umbilical fissure on the body whorl, the ninc on the base being finer, somewhat more closely granulose and more closely situated than the four above the periphers. The granulation of the cinguli develops with the number of the whorls; part of the protoconch and the first adult whorl show smooth cinguli, the second whorl a very fine grantation which becomes increasingly coarser on the thind and fourth whorls. Interstices finely axially lirate, Whorls slightly concex, suture depressed, periphery rounded. Aperture oblique, tetragonal; onter lip thick, abruptly lirate within; columella oblique, edge reflexed with one median tubercle and a prominent bifid tootlo at the lower edge: mombilical depression relatively deep and narrow, strongly dentate. Height. 6.2 mm ; diameter, 6.9 mm .

A larget specimen, differing slighty from the type, but apparently conspecific with it, shows 10 cinguli on the base and four on the whorl, with an additional very fine spiral lira developed by intercalation.

Clanculus eucarinatus sp. nov.

(P1, iv, fig, 3)
Shell solid, depressed conoidal, falsely umbilicate. P'rotoconch small, of one-and-a-half flattened turns, smooth at the origin, gradually developing four spiral lirae which become granulose cinguli on the adult whorls. Adult whorls four, very slightly convex, bearing four cinguli, three of approximately equal size, the fourth immediately above the suture being more strongly developed and producing a distinct carination in the body whorl. Suture deeply canaliculate. Cinguli granulose, interstices axially lirate, three lirae corresponding generally to two granules on the cinguli. Periphery roundly carinate, base convex, with nine fine granulose cinguli with axially lirate interstices. Aperture oblique, tetragonal; onter lip thick, with two rows of denticles, the outer corresponding to the cinguli, the imner about six in number; columella oblifuc, reflexed, with a bifid tootli at the lower edge; unbilical cavity deep, narrow, dentate. Height, $5 \cdot 2 \mathrm{~mm}$; diameter, $5 \cdot 6 \mathrm{~mm}$.

Gemus I'masianotroches Fischer 1885

Phasianotrochus laxegemmatus sp, nov.

> (Pi. iv, fig. 4)

Shell small, acutely conical, falsely perforate. Protoconch of one-and-a-hali convex turns; adult whorls five, flat, sculptured with a strong peripheral cord above the sutnre bearing numerons fine lirae and prominent, fairly widely-spaced tubercles, which are more prominent on the early whorls. Above the cord five equal spiral lirae, broader that interstices, crossed by mumerous crowded axial lirae. Suture linear. Base convex with about 11 spiral lirae of mequal size faintly crossed by numerous radial striac. Periphery angulate. Aperture roundly quadrate, somewhat angularly produced in the outer lip, colmmella arcuate. Ifeight, $4 \cdot 6 \mathrm{~mm}$. ; diameter, $4 \cdot 1 \mathrm{~mm}$.

Phasianotrochus subsimplex sp. nov.

(Pl. iv, fig. 10)
Shell small, thin, conical, whorls evenly sloping, suture linear, impressed. Protoconch flattened, of two-and-a-hali smooth, rounded turns, adult whorls five, sculptured with numerous, crowded, microscopic and sometimes obscure spiral striae. crossed by microscopic oblique axial growth striae. Periphery sharply angulate; base very slightly convex, with about 12 spiral striae, stronger than those on the whorl and faint but definite oblique axials. Aperture quadrate, slightly produced and angled at the periphery. Columella somewhat curved, with a small tooth at the base. Height, 4.8 mm . ; diameter, 3.7 mm .

Genus Calthalotia lredale 1929
Calthalotia nitidissima sp. nov.
(Pl. iv, fig. 11)
Shell small, thin but solid, imperforate, almost perfectly conical with a slight impression above the suture on the evenly-sloping whorls. Protoconch small, of one-and-a-half turns, adult whorls five, with strong spiral ribs of approximately equal size, increasing from three in the first to severn in the body whorl; interspaces crossed by oblique axial lirac growing more numerous towards the last whorl. In the earlier whorls, an oblique cancellation between and granulation on the ribs is produced; on the last whorl the cancellation gives way to a strong and even granulation, the axials showing relatively fainter on the interspaces. Base convex, with nine narrow, slightly granulose spirals and numerous axials of growth. Aperture trapezate, produced in the outer lip, roundly angled at the
periphery, chamelled within, following the exterior spiral ribs. Cohmella slightly curved, with a slight callus. Height, 6 mm. ; danmeter, 5 mm.

Calthalotia fictilis sp. nov.
(II. iv, fig, 1H)

Shell small, fairly thin, conical. falsely perferate. Protoconch of ore and-alalf small, smooth turns; adtult whorls four. eventy sloping, sculptured with fine, subegtal spiral lirace eight the body whor, reticulated by mumerous fine, obliunte axial lirae of about half the strength of the spirals. Base convex, with eigh: smooth spirals crossed by minute accrenental striae, progressively weakenfing irom the periphery to the umbilical fissure. Periphery angulate, aperture roushly quadrate, outer liy slightly elfuse, columella aronte, expanded at the mmblical fissure. Height, $4 \cdot 0$ mm.; diameter, $3 \cdot 5 \mathrm{mtm}$.

Thstations-This specien is sightly variable particularly in the degree of promenence of the spinals above the suture. The two above the suture in some specinems are more prominent than the rest and proluce a slight carination. The ntm:her of spirals varies with the size of the specimen. The holotype is. mforpuntucly, a young shell, larger specmens being broken at the tips. The diameter of a large example is $7 \cdot 1 \mathrm{~mm}$.
(ienus Lamemautor Iredale 1929
Laetifautor obliquicancellatus sp, nov.

$$
\text { (Pl. is, fig, } 7 \text {) }
$$

Shell fairly small, conical, imperforate. Protoconch and earliest whorls minsing, four remaining on the holotype. Aperture approximately one-quarter heikin of shell. Whorls flat, sloping towards the angular periphery. Sculpture varie - on individuals. but consists in the holotype of five strong spiral lirae, increasing to seven on the body-whorl, wo being less conspicuous than the others. These are crosed obliquely by cutul-sizct. strong, sharp axial ridges producing a rhmbic cancellation with deep interstitial pits; points of intersection developed intor rounded granules. Base flat, with 10 hasal spirals crossed by close, valid radial lirae producing granules nearly twice ats frequent as those on the whorls. Columella slightly curved, with tooth at the base. Aperture subquadrate, broken. Height (csimaterl). 8 mm ; diameter, 6 mml .
()bserations-Fragments of larger specimens reveal the regularity of the prinary spiral lirac, though the secondary lirac may vary in number.

Laetifautor spinicarinatus sp. now.
(P . iv, fig. 8)
Shell moderately small, fairly thin, broadly conical, imperforate. Protoconch (sighty damaged) of one-and-a-halt turns; adtult whorls four, slightly concave. anteriorly carinate. Sculpture of three strong spiral lirac on the posterior half of the whorl, two keels on the anterior half, each stummanted by two or three crowded lirae, those on the keel nearer the suture heing of equal, those on the further of unequal strength, lime of both anterion and posterior areas crossed by strong, sharp, oblifute axial litac producing a rhombic sculpture with deep, clearly defined intersitial pits; intersections witli spinulose granules. Base flat, with dight strong spirals. faintly crossed and grantated by numerous radial lirae. Aperture rectangular on inner $\mathrm{lip}_{\mathrm{p}}$, acute-angled on otter $\mathrm{lip}_{\mathrm{i}}$, which is produced into iwo ridges corresponding to the keels on the periphery. Colnmella almost straight, with tooth at base. Height, 5.5 mm ; dianeter, 4.8 mm .
I. similaris Reeve, is very close to this fossil species.

LaETifdutor sp.

This is a species closely related to l. spinicarinatus, but there is no specimen sufficiently complete for an accurate diagnosis to be made. The one shell that is ahnost complete shows sculptumal features approximating very closely to the former from which it differs in that the anterior ribs on each whorl are less strongly developed and can scarcely be described as keels. They are. however, stmmonted by liara in the same manner, and it is probable that the species is merely an aberrant form of spinicarinatus.

Laetifautor crebrinodulosus sp. nov.

(1 'l. iv* fig, 9)
Shell conical, fairly small, stout, imperforate. Protoconch very small, of one-and-a-half turns, faintly axially lirate; adult whorls six, slighly convex. sculptured with strong spirals, increasing by intercalation from threc primary on the first whorl to four primary and three secondary on the body whon, Spirals narrower than interspaces, crossed by evenly-spaced oblifue axials, abont 20 on the pemultimate whorl. producing granules at the intersections and deep interstit al pits between. Base slighty convex. with seven spimb, equal in width to interspaces, crosed by numerons fine radials producing a faint granulation. Aperture subpuadrate, colunella oblique, onter lip produced, roughly crenulate within. Heiglt. $7 \cdot 9$ mm, ; diameter, 6 mm.

Obscrations-This species hats features in common with Calliostoma sinntlose Tate, (alliastoma balcombensis Chapple, and Thalotia rrigua 'I'. Woods, but is distinct from each.

Laetifautor bicarinatus sp nov.

(Pl, ix+ fie, 1,3)

Shell rather small, fairly stout, conical, higher than broad, falsely perforate. ['rotoconch very small, of one-and-a-half turns; adult whorls six, slightly convex in the early whorls, sculptured above the suture with a strong peripheral cord supporting in the body and penultimate whorls four beaded lirae, fewer in number in the carly whorls; above this a marrow beaded cord and then fome small. strong, beaded, equal lirae. In the early whorls oblique axial lirae are strongly marked, with beads at the junction of axials and spirals and deep interstitial pits betueen. These become obsolete in the penultimate and body whorls, the effect being that of simple gramulation of the spirals. Base flat. with eight spiral lirate of approximately equal size with the interspaces. Aperture (broken) somewhat oblique, subquadrate, about one-quarter height of shell, columella straight. Height, 6.5 min.; diameter, $4 \cdot 8$ min.

These specimens are all small, The species is extrenely cluse to I s. spinicatrinatus and is possibly conspecific with it. In gencral the sculpture of bicarinatus is more even, particulaty on the keel, and there is a less rugged appearance about the shell generally. The kects are more sirungly developed than in spinicarinatus.

LAETIFAUTOR sp. 2

Fragments of a large Lactifontor, the senlpture of which consists of a broad peripheral carina supporing several beaded threads; a narrower rib above this also surmonnted by beaded lirae, and several small beaded lirae of yarying size on the posterior portion of the whorl. Base flat, with abont 16 spirals crossed and beaded by fine radials of growth.

IAFTIFAUTOR sp. 3

Fragnetrts of a large Lactifator similar to the previons species, but differ. ing in the unbeaded nature of the spirals on the whorls and in the smaller number of the hasal spirals.

Genus Astele Swainson 1855

Astele fanaticum sp. now.

(Pl. iv, fig. 6)
Shell depressed-conical, perforate; whorls somewhat concave, sloping. Protoconch snall, slightly broken in the holotype, of two depressed rounded turns; adult whorls three, flattened beneath the suture in an almost horizontal narrow plane, then steeply sloping for the rest of the whorl. Periphery carinate. Sculpture of fine approximately equidistant spiral threads, four on the infra-sutural plane, nine on the sloping section of the whorl, 14 on the base of the body whorl. Interstices broader than limae, crossed by crowded, very fine axial threads following the lines of growth. Base convex. Limbilicus deep. Aperture subovate; outer lip thin, angulate, following the peripheral carina. Height, 6.1 11nn.; diameter, $7 \cdot 0 \mathrm{~mm}$.

Gemus Pulcirastele Iredale 1929
Pulchrastele planiconicum sp. nov-
(P1. iv, fig. 12)
Shell moderately small, conical, higher than broad, narrowly perforate, whorls evenly sloping, flattened. Protoconch small but prominent, of two turns; adult whorls six, sculptured above the suture with a strong peripheral cord which supports beaded lirae increasing in number to five on the body whorl: above the cord prominent lirae increasing by intercalation from three on the early whorls to five on the body whorl. Spirals crossed by mumerous strong axial lirae producing a cancellation in the early whorls with granules on the spirals; the axials become relatively more frequent and less prominent in the last whorls and the cancellation develops into a mere gramulation. Base flat, with 11 primary spiral lirae and one or two faint secondary lirae on the interspaces, somewhat granulose near the umbilicus, faintly crossed by numerous radial striac. Aperture broken, quadrate, produced in the outer lip and angled at the peripheral cord; outer lip thin; inner lip straight with a slight denticle at the base. Height. 8 mm.; diameter, $5-5 \mathrm{~mm}$.

Pulchrastele tuberculatum sp, nov.

(Pl, iv, fig. 15)
Shell small, broadly conical, narrowly umbilicate, stout, whorls evenly sloping. Protoconch slightly broken, very small, flattened, of onc-and-a-half turns; arlult whorls five, sculptured with a thick cord supporting four small tuberculate lirac at the sharply-angled periphery; above the cord three narrow spirals with small prominent tubercles on each whorl, about half as wide as the interspaces; number of tubercles on the periphery increases on each whorl, there being about 40 on the periphery of the body-whorl in the holotype. Aperture relatively small, rhombic, produced and sharply angled in the outer lip; inner lip danaged but showing a callus reflected towards the umbilicus. Base flat, with eight strong spirals, narrower than interspaces; umbilical spirals tuborculate. Height. 4.8 mmı. ; diameter, 4.5 mmn .

Genus Ethminolia Iredale 1924
Ethminolia perglobosa sp. nov.
(Pl. iv, fig. 5)
Shell solid, obtuse, globose conic, perforate. Protoconch somewhat flattened, turbinate, of thrce very small turns ; adult whorls three, convex, sculptured with numerous fine spiral striae, crossed irregularly and frequently by faint. oblicue striae of growth, Periphery rounded, base convex, sculptured with spiral striae as whorls, striae broadening somewhat and deepening near the umbilicus. Aperture subcircular, outer lip moderately thick, obscurely crenulate within;
imer lip arcuate, with faint snggestion of tooth at base. Height, 4.6 mmn..; diameter, 5.8 mm .

Obscriations-The sculpture of this species varie's somewhat, some specimens presenting finer spiral striae than others. Ethminolia probabilis Iredale is the closest Recent species.

Fain. TUPIOLIDAE
Genus: Partubiola Iredale 1936
Partubiola depressispira sp. nov.
(11. iv. fig. 16)

Shell very small, subliscoidal, depressed, broadly umbilicate, tricarinate. Protoconch very small, slightly elevated, helicoid; adult whorls three, at first more or less rounded; body whorl with three regularly disposed carinae with flatened areas between; that between the suture and the carina below it decidedly sumken. Spiral sculpture of fine, more-or-less regular lirate, about six between each two keels; axial sculpture of indistinct growth lines on the spire faintly reticulating the spirals; axials much more prominent on the base, strongly retictilating the spirals in the umbilical area. Base flattened near the keel, convex towards the umbilicus. Unbilicus broad, showing all the whorls. Aperture wite, roundly quadrate, peristone not continuous; outer lip attached to whorl above at median carina, overhanging aperture above, excavate below. Height, 1.5 mon.; diameter, $3 \cdot 5 \mathrm{~mm}$.

Partubiola varilirata sp. nov.

(Fl. ix, fig. 17)

Shell very small, studiscoidal, depressed, broadly umbilicate. Protoconch very small, of about two helicoid turns, elevated; adult whorls three, with one carina at the posterior one-third of the whorl, Area between suture and carina flat, depressed, seulptured about eight very fine spiral lirae; below the carina whorls convex, spiral lirae stronger and more widely separated. On the bodywhorl about 12 subequal, strong lizae extend from the carina to the umbilicus. where they disappear; unbilical area with very faint spirals. Axials faint or absent in the region of strong spirals, finely reticulating the fine spirals below the suture and in the umbilicus. Unbbilicus broad, showing all the whorls: aperture rounded, peristome not entire; outer lip overhanging above and excavate below. Height, $1 \cdot 3 \mathrm{~mm}$.; diameter, $3 \cdot 5$ m 1 m .

Obscriations-This species is very like P. blancha lredale, from which it differs in sculpture and size.

Fam. STOMATELIIDAE Genus Herpftopoma Pilsbry 1889
 Herpetopoma pliocenica sp. nov.

(l'l. iv, fig. 18)
Euchelus baccatus Chapman 1914 non Menke sp.; Chapman, Proc. Roy, Soc. Vict., 26, (2). (n.s.), 316.
Shell small, globose-conical, thin, perforate. Protoconch very small, of one-and-a-half flatly convex, axially lirate turns; adult whorls 4, convex. body whorl globose. Aperture about three-yuarters as high as spire, suture deep. impressed. Sculpture of cquidistant. granulose, spiral ribs, three on the postembryonic whorl, increasing by intercalation to nine on the pentiltimate whorl; 13 on the body whon extending evenly from the suture to the umbilicus. Interspaces wider than ribs adorned with fine, regular, axial threads which are more distinct in the carlier whorls. Granules on the ribs correspond to threads on the interspaces. Periphery rounded. Aperture circular, entire; onter lip thin, crenate within; inner l_{1}) reflexed; colnmella rounded, smooth. Umbilicus narrow, deep. Ifcight, 9 mm . ; diameter. 7 mm .

Obscrations This species is very like, and is probably ancestral to H. baccata (Menke) ; the sculpture of H. plioconica is finer and the axial threads sharper and more clearly defined on most specimens. H. fliocenica is a smaller shell, less than half the size of the Recent baccata, I difference between the F'liocene species and the Recent was recognised by (hapman who states. "The Wallee example appears at lirst sight to have a neater and more concise ornament than fresh shells of the living species."

Fam. II(otild Ai
Genus Dolicrossea Iredale 1924
molicrossla labiata (Tenison Woods 1876)

Five small examples of this species occur; it is represented in the barwonian as D. sublubiatd (late). The Adelaidean specimens approximate more closely to the Recent labiala than to sublabiala and are smaller than either.

Superfan. NERITACEA
Fam. PlIE NACOLEP.NDIDAE
Gerlu, Phenacolepas Pilshry 1891

Phenacolepas tela sp. 110 v .
(1 '1. iv, fiy. 19)
Shell moderately small, thin, owat, fairly low; apex prominent, slighty recurved, situated one-eighth distance iron posterior border. Sculpture absent near apex, elsewhere of $80-90$ radial ribs, with abont 11 raised, sharp, concentric ridges, between which are very fine, crowded, inconspicunts, concentric lirat. Ridges crowded posterior to the apex, widely spaced anteriorly. Margin of shell raised slighty in the central portion, smooth; interior oi shell smooth with faint irregular grooves corresponding to growth lines and radial ribs. Lengeth, $7 \cdot 5$ mm, ; breadth. $5 \cdot 2 \mathrm{~mm}$; height, $2 \cdot 5 \mathrm{~mm}$.

Ord. PECTINIBRANCHIA
Subord. TAENIOGLOSSA

```
Section JLATYIODAA
Superfam, RISSOACEA
    Fann. RISSOIDAE
Genus Kaurnella nov.
```

Shell small, stout, imperforate, subglobose-conical. Apex patispiral, smooth, small. Spire short, hody whorl large; suture linear, whorbs spirally liate; aperture subcircular, entire. (ienotype Kinurnella denotata sp. nov.

Kaurnella denotata sp, nov.
(1 l. r., fig. 1)
Shell small, fairly stott, stibglobose-conical, imperforate. Spire small, body whorl large and globose, Protoconch of one-and-a-half very small, flatly convex, mooth, shining turns; adult whorls four, rapudly increasing, inflated; suture linear, deep. Whorls sculptured with numerons line, spiral lirae, two of which are more prominent than the rest, crossed by inconspicuous, finc, oblique axial striae. Each whorl absolutely semi-ribbed, seven on the last whorl, producing a more-or-less obscure tuberculation on the prominent liate, Base convex, litate. Aperture subcircular; onter lip thickened; colnmella very slightly concave. Height, $3 \cdot 1 \mathrm{~mm}$. ; diameter, $2 \cdot 2 \mathrm{~mm}$.

Superfam. CERITHIACEA
Fam, STRLTHMOLRIIDAE
Genus Timospira Harsis 1897

TYMOSPIRA CORONATA MARW゙iCKも (Finlay TGBl)
Pchcaria coronata Ta*e: Tate 1890, Trans. Ros, Soe. S. Aust, 13, (2), 176: maraicki Finlay 1931, Trans. ŇZ. Inst, 62, (1), 17; how hhin Cotion 1934. S.A. Nat., 16, (1), 7; Ilowchin 1936, Trans. Roy Soc, S. Aust., 60, 19; coronala Tate subsp). howthini Cotom, Howchin 1935. Trans. Roy. Soc. \therefore Iust., 59, 85, 90.
Tyaspira coronata Tate: Demant and Kitson. 1903, Rec. Cieol. Surv. Vict.. 1, (2), 144.

Confusion appears to have arisen over the identification of this common and restricted Naliman species, probably on account of the few specimens examined by various athors. In the opinion of the writer the Adeladean examples ate mercly geographical variants of Tylospira corontans in ocenrs in Victoria. Exammation of a large series of the se shells and they are extremely abundant shows that the species is considerably variable between localities, those from the Adelaidean departing furthest from the type. The Adelaidean specimens, in general, show a weaker fendency to sulcation at the suture, but this ogether with the height of the spire is very variable in individuals from the same locality. Tate himeelf identificd Aelchadean specimens with corontot. However, the writer acknowledges that differences occur, principally in the degree of sulcation and shape of the whorls, sufticiently general to permit the classification of the Adelaidern examples as a sul)species.

Finlay's name (no figure) has priority over Cotton's; the latter was eridently unfamiliar with the species and figured an extremely eroded shell. Tylospira is the correct genns.

Fam. (ERRITIIIDDE
 Genns Cirpeomorys Jousseatme 1888

Clypeomorus bivaricatus sp. not.
([1. iv, hig. 20)
Shell moderately small, turcted, spire evongate. Protoconch of one-anc-ahalf small, inconspicuons fums. sharp at the origin; adult whols nine, angulate at the posterior thid, almost vertical in the anterior two-thirds; angulation more pronounced in the early whorls; hody whorl more or less rounded. convex. Suture linear, impressed. Scupture of curved axial costae, about 15 on the penultimate whorl, tuberculate at the angle, crossed by athout six strong spiral lirae in the anterior two-thirds, and font much weaker, more closely-set lirae above the shoulder; the number of lirae increases slowly by intercalation fron two on the carliest whorls. 'lwo varices on each whorl, fairly prominent, one at the aperture, Sculpture finer on the base, about six fine spial lirae extending from the columella. Aperture ovate, with a short, recurved anterior canal; outer lip thin, columella concave, inner lip with a thin callus. Heigh. 11 mm. diameter, 3.1 mm .

Obscrations-The sculpture of this species is variabie, its characteristics in general being that of tuberculate axial costac crossed by spiral lirae of unequal strength; angulation of the whorls is always present, at least in the carly whorls.

Clypeomorus multiliratus sp. nov.

($\mathrm{P} 1 . \mathrm{iv}$, fig, 22)
Shell moderately small, turreted, spire elongate. Protoconch of three relatively large, convex whorls; adult whorls seven. convex, senlptured with promi-
nent curved axial costae, increasing from seven in the first adult whorl to 11 in the body whorl. Spiral sculpture of numerous fine lirae. wider than interspaces ; about 15 on the penultimate whorl. Three varices of each whorl, only slightly more prominent than the costae. Sculpture on the basc comparatively weak, about seven widely-spaced, faint spiral lirae being developed on an otherwise smooth surface. Aperture subovate, outer lip thin, broken in the holotype; canal short, slightly recurved; columella smooth, curved. Height. 9.7 mm ; diameter. 3.6 mm .

Genus Adelacerithium nov.

Shell small, elongate-turreted, spirally and axially ribbed. Apex prominent. pancispiral. Suture impressed, whorls flat. Columella with a strong twist or fold; aperture somewhat pyriform; outer lip not expanded, thin. Genus recalling Ataroccrithium but lacking pagodoid formation and possessing vertagoid columellar plait. Genotype Adelacerithium morultum sp. nov.

Adelacerithium merultum sp. nov.
(P1, iv, fig. 23)
Shell fairly small, clongate-turreted. Tip of protoconch broken, one smooth convex whorl renaining; adult whorls 14 , Hattened; suture deep. impressed. Sculpture of fine, prominent, axial costae crossed by approximately coutidistant spiral lirae, with a slight granulation at the intersections; about 24 axial costac on the penultinate whorl, with five spirals; the number of costae increases rapidly at about the seventh adult whorl ; earlier whorls show a much coarser cancellation than the subsequent. Aperture broken in the holotype, subpyriform; columella short, with a strong plait; canal short, recurved. Ileight, 9.5 mm ; diameter. 2.2 mun.

Genus Obtortio Hedley 1899

Obtortio liratus sp. nov.

> (Pl. iv, fig. 24)

Shell small, thin, elongate-turreted. Protoconch of onc-and-a-half small, smooth turns; adult whorls seven. angulate at the posterior third. sculptured with fine, prominent, spiral lirae below the angle, absent or inconspicuous above; spirals crossed by about 14 curved, axial costae, more prominent in the early whorls and weakening considerably in the body whorl. Whorls varicate. Base spirally lirate, not so strongly as whorls. Aperture subovate, with a very short anterior canal. Height. $5 \cdot 2 \mathrm{~mm}$.; diameter. $1 \cdot 7$ mum.

Observations-The axial costae vary in intensity and in the degree of curvature or angulation. The angulation is modified in the holotype, but may be pronounced and the costae be somewhat tuberculate at the shoulder.

Genus Ceritinopsis Forbes and Hanley 1849
 Cerithiopsis perelongatus sp. nov.

(Pl. iv, fig. 25)
Shell small, yery elongate-turreted. whorls flatened. Protoconch of three carinate, smooth, tapering whorls; tip heterostrophic. Adult whorls cight, sculptured with three spiral costae of about equal size with the interspaces, crossed by about 16 axial costae, less conspicuons than the spirals and producing a flattened gemmulation on the spirals. Suture linear; base smooth. Aperture with outer lip broken, columella curved, with a short curved anterior canal. Height. $6 \cdot 1 \mathrm{mmn}$; diameter, 1.1 mm .

Paratyp-One specimen consists of the last whorls of a much larger shell. the height of which is estinated at 12 mm ., the diameter 2.5 mm . The sculpture is consistent with that of the holotype.

Genus Terfbralia Swainson 1840
Terebralia fallax sp. nov.
(Pl. iv, fig. 21)
Shell elongate-turreted, of moderate size. Protoconch missing in the holutype; adult whorls 13, the first six convex and cancellate, the posterior half of the whorl more finely cancellate than the anterior; plications develop at about the sixth whorl and become increasingly prominent throughout the rest of the shell. Seven plications to each whorl narrow, curved, crossed by spiral sculpture: spiral sculpture commences in the post-embryonic whorls as fine, thread-like ribs, more prominent in the centre of the whorl and coarser in the anterior half; the ribs becone wider and more nearly equal in size in the succeeding whorls; in the early whorls ribs are more or less rounded, in the latter whorls they are flattened and rectangular in section, interspaces correspondingly channelled with vertical sides; narrower than ribs. Each rib in the last whorl supports a line median striation. Axial sculpture equal to the spiral in the post-embryonic whorls. obsolete in the last whorls. lase spirally lirate, Aperture and body whorl broken, columella concave; a short, slightly recurved anterior canal. Height, 31 mun.; diameter, $11.5 \mathrm{nmm1}$.

Paratyp-A portion of a small shell has the protoconch intact, of two small globose turns, smooth and shinitg; succeeding whorls are convex and cancellate ats in the holotype.

Obserations-The sonlpture and shape of this species are very like some forms of I yrawus cbeninus, the common Sydncy whelk, but the resemblance is superficial only: The species is not uncommon in the Borc, but no perfect specimen is available; the holotype is the most complete, fragments of two others are larger, about half the size of Prazus cbeninus.

Gemus Minulond nov.

Shell small. elongate-turreted; protoconch straight, paucispiral, smooth; suture linear: whorls flat, spirally sculptured; sculpture tuberculate; aperture sub)ovate; canal short, alnost straight or only slightly reflexed; colnmella slightly arcuate. Genotype Mapulona arrigosa ip. nov.

Manulona arrugosa sp. nov.

(Pl. iv. fig. 26)
Shell small, slender, turreted; whorls flat tu concave. dpex straight, of two smooth whorls; adult whorls 10 , prominently sculptured with a supra-sutural thread above which is a prominent band with about 12 elevated tubercles; above the band, three flattened. beaded lirae, the beads being about f wice as munerous as. and very much smaller than the tubercles: interspaces very narrow. Suture linear, irregular base striate, aperture sub-ovate, broken in the holotype, with a fant anterior canal. Height, 8.7 mmn ; diameter, 2.2 mm .

Manulona lirasuturalis sp.nor.

(Pl. iv, fig. 27)
Shell small, slender, turreted, whorls slightly carinate. I'rotoconch of two smooth, convex whorls; adult whorls 11. Whorls more or less smooth, faintly axially and spirally striate, with a row of abott nine tubercles above the suture giving a carinate appearance to the whorls; below the suture an inconspicuous row of fine, munerous beads. Suture linear, with a single, fine lira inbricating above; the lire shows conspicuonsly on the periphery of the body whorl. Base spirally striate. Aperture broken in the holotype, columella curved. Height. 9.1 mm . diameter, $2 \cdot 2 \mathrm{~mm}$.

Obscretions-This species is very similar to M. armgosa, from which it differs in its sculpture. The aperture of specinens otherwise less complete than the holotype is shown as subpuadrate, with a short anterior canal.

Fam. TRIPHORIIDAE

Genus Triphord (s.1.) Bhainville 1828

TRIPHORA (S.1.) spp

The only species of Triphora recorded from the Naliman is T. antkinsoni, but it secms more than likely that several genera and specties may be represented. Arlathean examples, of which there are two species, do not seen to answer to the description oi ailkinsoni T. Woods (Proc, Linn, Soc. N.S.W., 1878, 3, 233), althongh they belong to the same species as some from the Kalinnan. It is desirable to investigate further material, incholing anthentic examples from the Barwonian, before identifying the present specimens in more than a broad sense.

Fan. IDALIDAE
 (ientus Mereldia nos.

Shell small, solid. subulate; apex patcispiral, smooth. dome-shaped; whorls numerons, flatened, striate; aperture relatively small. ovate; colmmella almost -1raight, short, smooth. (ients allied to Ihula, differing in size, apex, and striation uf whorls. Genotype Mercldia incommoda n, nov.

Mereldia incommoda sp, nov.

(I'l. v, fig. 3)
Shell small, solid, subulate, whorls with straight sides. Protoconch of two fattenced, dome-shaped, smooth, convex whorls; adult whorls ninc, flattened. grachally tapering posteriorly; suture linear. impresect. Whorls shining but culptures with mumerous fine spiral striac. Aperture small, ovate; outer lip thin, simple; columeila short, straight. smooth. Height, 10 mmin ; dianeter. 3.6 mm .

Superfan. A(iLOSSA
lam. PYRAMIDEI.IDAE
Genus Sirnor.e A. Adans, 1860

Syrnola acrisecta sp, now.

(1Pl. v, fig. 2)
Shell very small, moderately tapering, thin, shining. Protoconch prominent, of two smooth, heterostrophic turus; adult whorls six, moderately rapidy increasing. Hattened. Suture canaliculate, impressed. Sides of body whorl alnost vertical. base convex, an obsenre angulation at the periphery. Aperture elongatepyriform, columellar fold near the origin, inner lipe effuse, slightly expanded below. J leight, $3 \cdot 3 \mathrm{~mm}$. ; diameter, $1 \cdot 1 \mathrm{~mm}$.

Obscrations-This small species bears strong resemblances to S. infrasulcuta and S. jonesianu; it is somewhat broader than either and is more deeply impressed at the suture.

Gentr Turbonima Risso 1826
Turbonilla vixcostata sp. nov.
(Pl. v, fig. 6)
Shell elongate-turretce, solid, fairly thin. Droioconch of two prominent somewhat globose heterostrophic turns; adult whorls nine. slightly convex, slow increasing; stuture impressed and well defucd. Axial costae about 14, from
suture to suture in the early whorls but becoming less conspicnous to the sixth whorl, from which they are obsolete for the rest of the shell; in the last three whorls costae give way to faint axial striae of growth; whorls also very obscurcly striated spirally. Aperture subquadrate, elongate; coltumella almost straight. slightly plicate; otter lip thin. Height, $9.8 \mathrm{mm}$. ; diancter, 2.2 mm .

(?) turbonilla sp.

Six specinens of a Twronilla-like shell. all with the early whorls missing. There is no axial ribbing shown on any of the shells, though the most complete shows a suggestion of costat in its lirst whorl. The species is very like, though not identical with. T. aircoslata; however, there is absence of ribling, the shell is thicker and in the anterior quarter of each whorl there is a suggestion of angulation with a sudden oblifuee descent to the suture.

Turbonilla subfusca sp. nov.
(1'1. v, fig. 7)
Shell very small, elongate-turrcted, thin. Protoconch of two small heterostrophic turns, smooth and prominent ; adult whorls seven, slightly convex, the inst two of which are not or only olsiscurely costate. The costae rise towards the end of the second post-embryonic whorl and are almost fully developed in the third; in later whorls the costac are prominent, extending from suture to suture; about 16 costae on the penultimate whorl, slighty obligute and of approximately equal size with the interspaces. Suture impressed, deep. Aperture subquadrate; onter $\mathrm{lip}_{\mathrm{p}}$ parallel to colmolla, with a downwate turn at its junction with the previons whorl; aperture rounded antcrionly, Base withont costae. Height, $5 \cdot 1 \mathrm{~mm}$; diameter, $1 \cdot 0$ mun.

Obsereations-T. subfusca is somewhat like T. radicans Chapman and Crespin, but is a more fragile shell. with more nunceons ribs. Its nearest rescmblance is to the Recent T. \dot{u} sca Arlams. Irom which it differs in the sculpture of the early whorls, in the shape of the aperture and in possessing flatter whorls.

Fam. EULIMIDAE
(ienus Fimima Risso 1826
Eulima longiconica sp. nox.
(H . v , fig. 4)
Shell small, shining, smooth, narrowly conical, very slightly curved. Protoconch of one inconspicuous flattened turn followed by eight adult whorls, nearly straight, slowly increasing. Suture linear, slightly impressed. Aperture ovate, outer lip entire; columella nearly straight, with a slight callus. Ileight, 5 munt, diameter, 2 mm .

Obscrations-The nearest living specier to this shell is E. roegerac Cotton and Godfrey.

Eulima minuticonica sp. nov.

($\mathrm{P} 1 . \mathrm{v}$, fig. 5)
Shell minute, smooth, shining, subulate. Protoconch of two conspicnous, -mooth. convex turns; adult whorls 7, straightly sloping; suture linear; body whorl with an obscure angulation. Aperture priforn; columella slightly concave, reflexed. Height, $3 \cdot 1 \mathrm{mmn}$. dianeter, $1 \cdot 0 \mathrm{~mm}$.

Obscrations-Practically identical in shape with E. longiconica, distinguished by smaller size and number and shape of embryonic whorls.

Superfam. CHEILEACEA
 Fam, (HEILEIDAE
 Genus Cheilea Modeer 1793
 Cheilea adelaidensis sp. 110v.

((1. v, fig. 8, 9)
Shell considerably broken, size and adult shape indeterminate, elevated; apex anterior, smooth and sharply curved in two turbinate whorls. Shell fairly smooth in the neighbourhood of the apex, contral portion of the shell forming a cap with steep sides, rest of the shell apparently more or less flattened and irregular in shape. Sculpture of numerous, very fine, waving, radial lirae slightly wider than interspaces, broken by irregular. concentric lines of growth and crossed irregularly by diagonal radial grooves; sculpture extends from edge of smooth portion surrounding apex to the adult area outside the cap. Internal appendage fairly strong, broken in the holotype. Dimensions (of cap only)-height. 4 mm.; dianleter, 6 mm .

Paratyp-The internal appendage of the paratype is semi-circular in basal outline, convex in front, fairly wide and showing irregular growth lincs.

Obscrations-Although neither of the two specimens is complete, it is desirable to describe this apparently rare and interesting shell. It differs markedly from either of the two Recent South Australian species, and like C. occidut Cotton forming a distinct cap in the early part of the shell, although the senlpture in no way resembles that of occidua.

Superfan, CYPRAEACEA
Fam, TRIVIIDAE
Genus Ellatrivia Iredale 1931
Ellatrivia wirrata sp. nov.

(Pl. v", fig. 16)

Shell small, thin. glohular, narrowed anteriorly, spire conspictons and globular. Surface of shell sculptured with fairly even, fine, sharp prominent ribs, most extending over the dorsal sur [ace without interruption by medial line, others mesting at an angle in the medial dorsal region. About 35 ribs approach the outer lip over the dorsal surface, approximately 20 of which continue over the thickenerl, inflected outer lip and denticulate it within; about the same number denticulate the imer lip, extading across the columellar groove. Aperture arcuate, narrow, slightly widened anteriorly. Length, 9 mun.; breadth, 7 m11.; height, 6 m111.

Obserations-Ellatritia merces Iredale, the genotype, is very close to I. airata which is more globular, has a more prominent spire, and closer and fincer ribs.

Superfani. DOLIACEA

Fanl (YMATIIDAE
Cicnus Cymatiella Iredale 1924
Cymatiella adelaidensis sp. nov.
(Pl. v, fig. 10)
Shell of moderate size, strong, elongate-fusiform. spire one-and-a-half times height of canal and aperture, Protocunch of three smooth, globose whorls, the first very small, the rest rapidly increasing ; adnlt whorls six, with a strong varix every three-quarters of a volution. Sculpture of prominent, narrow, elevated axial costae, the number varying from four to five on different whorls, between each varix; betweet the costae numerons irregular striae of growth; axial sculpture crossed by small, narrow, spiral ribs. wider than interspaces, irregular and uncqual in size; faint nodulation where the spirals cross the axials. Aperture
subovate, with a fairly short, sharply recurved anterior canal; outer lip strongly variced, with elongate denticles more or less in pairs within; inner lip smooth, reffected over columella, faintly nodulose below; columella arcuate. Height, 15 mm ; diameter, 8 mm .

Observations - Two Pliocene species come close to C: adelaidensis, the Upper Aldingan C. scicostala (Tate), which differs in the number of intervariceal costae and in the spiral sculpture, and Personclla clarkei Chapman and Crespin, which has less prominent axial costae and is not so slender as the Adelaidean species.

Subord. STENOGLOSSA
Section RACHIGLOSSA
Superfam. MURICACEA
Fam. MURICIDAE
Genus Murex Linné 1758
Murex peramangus sp, nov.
(P1. v, lig. 24)
Shell of moderate size, triangularly ovate, imperforate, somewhat squat; spire half length of aperture and canal ; body whorl large, with seven varices. Varices stout, prominent, squamose; sculpture of fairly fine, spiral lirae of unequal size, narrower than interspaces, crossed by frequent, finely-waving, axial lirae and foliaceous growth lamellae. Varices foliaceous below; umbilical depression conspicuous. Aperture ovate, outer lip variced; inner lip thickened, reflected over columella; columella arcuate; canal tubular, almost closed, recuryed. Height, 33 mm .; diameter, 25 mm .

Obserations - This species appears to be considerably variable in the strength of the spiral lirae and in the height of the spire, and to grade into M. biconicus Tate, which is a more elongated shell with a distinct sculpture, A graduated series from the 7 -variced, squat M. peramongus to the clongate, 6 -variced M. biconicus occurs in the Bore, but it is possible to separate the two species fairly easily. M. biconicus is a comtnon species in the Adelaidean, though it is apparently rare elsewhere; so far as the writer is aware, the "Murray Desert" (type locality) is the only other locality at which it occurs.

Genus Widningia nov.

Shell moderate, elongate-fusiform, spire shorter than aperture; apex small, pancispiral; whorls convex, axially lamellose-costate, spitally lirate; sculpture squamose, resembling Bodcza. Aperture ovate, canal long, obliquely curved, columella without plait, otherwise shell resembles P'eristernia. Unlike Nodopolagia. Genotype Widningia crassiplicata sp. nov.

Widningia crassiplicata sp. nov.

$$
(\mathrm{Pl}, \mathrm{y}, \mathrm{fig} .25)
$$

Shell of moderate size, fusiform, elongate, spire shorter than aperture and canal. Protoconch eroded, one small tooth turn remaining; adult whorls six. rapidly increasing, body whorl large. Six plicate axial costae on the body whorl, increasing gradually in number posteriorly; whorls connpletely and evenly sculptured with numerous spiral lirae which are more prominent on the anterior half of the whorl; these are crossed by crowded, squamose, waving, fine lamellac. the waves of which are regularly directed backwards over the lime and forwards in the interspaces; lamellae slightly more prominent over the costae and becoming foliaceous, as do the plicate costac, towards the base. Shape of the whorls somewhat angulate from the prominence of the costae. Aperture elongate-ovate with a large canal; margin of aperture broken in the holotype; inner lip reflccted over
columella. Height, 40 mm .; diameter, 17 mm ; length of aperture, 12 mm ; length of canal, 11 mm .

Paratype-A specimen, more eroded than the holotype, with the aperture and canal complete. Outer lip with two rows of small, elongate, numerons denticles; canal recurved, half closed. Umbilical fissure wide in this specimen.

Superfan. BUCCINACEA
 Fam. IYRENIDAE
 Genus Ademitrella nov.

Shell small, elongate-fusiform, spire comparatively short, aperture long; protoconch smooth, subconical tip small, pointed. cccentric; whorls smooth, suture linear; columella smootlr, outer lip of aperture thickencd, subvaricose, smooth within. Genotype Ademitrella insolcntior sp. nov.

Ademitrella insolentior sp. nov.

($\mathrm{Pl} . \mathrm{v}$, fig. 11)
Shell small, spindle-shaped, with a comparatively short spire. Protoconch sharp, sub-conical, of one-and-a-half smooth turns, the apex eccentric; adult whorls three-and-a-half, smooth, flattened or slightly convex; hody whorl large. compressed at the base. Whorls smooth except for faint, axial growth striae and about eight spiral striae on the base. Suture distinct, linear, ascending near the aperture. Aperture elongate, outer lip thickened, subvaricose, slightly excavate above, inflected below, smooth within; columella excavate a little above the middle, slighty twisted bclow and turned to the left. Height. $6 \cdot 2 \mathrm{~mm}$. ; diameter, $2 \cdot 1 \mathrm{~mm}$.

Genus Zemitrella Finlay 1926
Zemitrella muscula sp. nov.
(Pl. v, fig. 12)
Shell very small, bluntly fusiform, spire approximately equal to aperture. Protoconch of one blunt, flattened, smooth, convex turn; adult whorls four, flattened; body whorl moderately convex, tapering anteriorly. Suture canaliculate; whorls smooth except for indistinct axial growth lines and about 10 incised spiral striac at the base. Aperture elongate, fairly narrow; outer lip somewhat notched above and inflected below, conspicuously and finely dentate within; columella slightly excavate above, almost straight and turned to the left below. Height, 4.2 mm , diameter, 2 mm .

Superfam. VOLC'IACEA
 Fam. MITRIDAE
 Gellus Austromitra Finlay 1926

Austromitra angusticostata sp. nov.
(Pl. v, fig. 13)
Shell small, rather thin, turreted. Protoconch of one-and-a-half small globose, smooth turns; adult whorls five, convex, sculptured with strong, arcuate, axial ribs, narrower than interspaces, 11 on the penultimate whorl; interspaces very finely axially striate. Suture decp, impressed. Aperture elongate, narrowing anteriorly; nuter lip broken but apparently smooth within; columella with four sharp, fairly stout plications; base strongly spirally lirate, six lirat on the holotype. Height, 8 mm ; diameter, 3 mm .

Obscrations-This species comes very close to A. schomburgki (Angas). but differs in having its axial ribs decidedly curved, and in the number of columellar plications. It is slightly more slender than A. schomburgki. In similar respects it is distinct from A, scalariformis (T. Woods).

Fam, TUi)ICLIDAE
Genus Todicra Bolten 1798
Tudicla sinotecta sp. nov.
(1l. v, fig. 14)
Shell of moderate size, thin; spirc conical, very short; body whorl large and elongate-conical. Protoconch very conspictuous of two prominent, convex turns, completely flattened at the top; adult whorls three, very rapidly increasing; whorls with slightly concave sides; body whorl concave posteriorly, rising at the periphery to a sharp angulation, slowly descending anteriorly. About 12 sharp angular ridges on the periphery becoming obsolcte towards the edges of the whorl, These ridges are shown on the suture as even deep undulations imbricating the suture which is prominent and waving. Flsewhere sculpture of uneven, spiral ribs and threads crossed by irregular growth striae. Aperture elongate-ovate with a long canal; outer lip thin, broken; inner lip thickened; columella with a single twist, fold not prominent. Height, $23 \cdot 5 \mathrm{~mm}$; diameter, 15 mm . Height of aperture and canal, 20 mm .

> Fam. MARGINELLIIIAE
> Genus Marginella Lamarck 1801
> Marginella moana sp. nov.
(I'l. v. fig. 15)
Shell small, solis, pyriform, spire immersed, apical portion depressed. Body whorl completely enveloping the rest of the shell. Aperture long, narrow, curved, with margins parallel; aperture raised above the apex of the shell and curving somewhat towards the origin. Outer lip thickened, faintly and finely denticulate within; columella with four plaits, the anterior shorter than the rest and bordering the canal; canal narrow, curving inwards. Height of whorl, $4 \cdot 1$ nimı. ; height of aperture, $4 \cdot 3$ min.; diameter, $3 \cdot 1 \mathrm{~mm}$.

Obscruations-This pear-shaped species comes closest to M. globiformis Chapman and Crespin, also occurring in the Abattoirs Bore.

Marginella sp.
Shell small, stout, elongate-ovate, spire bluntly rounded, body whorl large. somewhat cylindrical. Protoconch roundly depressed, of one convex turn; adult whorls three, each almost covering the preceding whorl. Aperture ncarly twice height of spire, elongate, narrow posteriorly and broadening anteriorly; outer lip constricted in the middle, with a row of fine denticles along almost the whole length; columella with four parallel plaits, one bordering the broad anterior canal.

The single specimens from the present bore being somewhat freakish, complete description of this species is deferred.

Superfam. TOXOGLOSSA
 Fam. TURRIDAE
 Genus Bathytoma Harris and Burrow: 1891
 Bathytoma adelaidensis sp. nov.

(Fl. v, fig. 17)
Shell of moderate size, broadly fusiform, solid, turreted. Protoconcl of two fairly large, flatly globose, smooth whorls; adult whorls six. sculptured with two strong spiral cords close together on the shoulder; above the cords fine spiral ribs crossed by numerous, obliquely curved axial threads; below the cords one or two fine spiral ribs increasing in number on each whorl. On the body whorl, strongly costate from shoulder to base, about 10 prominent ribs approximately equal to the interspaces which bear from one to four fine spiral lirae. Spirals crossed by mumerous fine growth lines showing a conspicuous sinus. Whorls carmate at the shoulder, concave above and below; suture lincar. Aperture
oblique, elongate-pyriform, fairly narrow; outer lip slightly broken, with a sinus at the shoulder, canal short and slightly flexuous; columella somewhat oblique and concave; inner lip thin, smooth, reflected over columella, Height, 20 mm ; diameter, 8.5 mm .

Obserations-Three specimens occur, apparently of the same species, with a narrower spire angle, the relative dimensions being 21×8 mn1 . The spiral sculpture is less prominent but otherwise resembles that of B. adelatdensis which is variable.

Genus Inquisitor Hedley 1918
 Inquisitor detritus sp. nov.

 (Pl. v, fig. 18)Shell small, narrowly fusiform. Protoconch of two somewhat flattened, convex, smooth turns; adult whorls six, slightly angled just above the middle of each whorl; suture impressed. Axial sculpture of about 11 prominent narrow costae to each whorl, extending from just above the angulation to the suture below, most prominent at the angle; spiral sculpture of one prominent rib mmediately below the suture, followed by numerous, very fine, inconspicuous, crowded lirae to the angle, then by about five strong striae, crossing the axial ribs and the interspaces; on the body whorl the striac contintue from the periphery to the base, about 16 in number. Aperture oblique, elongate, fairly narrow; outer lip broken in the holotype but obviously carrying a prominent sinus above the periphery; columella straight above, turned to the left below; inner lip snooth; canal almost straight, obliquely turned to the left. Height, 12 mmt ; diamcter, 3.8 mm ,

Obserations-This fossil species fairly closely resembles the Recent I. flindersionus Hedley, a larger shell lacking the rib boncath the suture. It appears to be not unconnmon in the Kalimnan, part, though not all, of the exanuples identified with the New Zealand I. wanganticnsis (Hutton), belonging to this species. Adelaidean specimens are certainly not arangantionsis.

Genus Austronrillta Ifedley 1918

Austrodrillia trucidata sp. nov.

(Pl. y, fig, 20)
Shell small, turreted, spite elongate. Protoconch smooth, of two Hatly globose turns; adult whorls seven, gradually increasing, angulate at the middle. Sculpture of oblique axial costae, 12 on the penultimate whorl, sharp and prominent on the angle of the whorl and extending nearly to the suture below, absent above the angle, the post-angular area being more or less sharply excavate; numerous fine axial threads of growth; spiral sculpture absent except for about cight fine lines at the base. Aperture elongate-pyriform, about two-thirds height of spire, with a decp narrow sinus near the junction with the penultimate whorl; outer lip broken but fairly thick; columella straight above, slightly turned at the canal; inner lip callused over the columella and thickened into a tooth-like prontinence near the sinus. Height, 15 mm .; diameter, 5 nmm.; height of aperture and canal, 6 mm.

Austrodrillia decemcostata sp. noy.

(Pl. v, fig. 19)
Shell small, elongate-fusiform, moderately thick. Protuconch of one-and-athalf globose, smooth hams: adult whorls five, angulate at the middle in the early whorls, less so in the later. Sctipture of 10 axial costae on each whorl, more prominent in the middle but extanding to the suture in each direction; whorls otherwise smooth except for very faint axial growth striae and six short spiral lirae adjacent to the catal in the body whorl. Suture inpuressed. Aperture oblique, fairly open; outer lip with a prominent sinus above and inflected below; columella almost vertical; anterior canal short, with a broad moteh; inner lip smooth and slightly callused; callus near the sinus developed into a slight tubercle. Height, 7.2 mmn ; diameter, 2.2 mm . ; height of aperture, 2.2 mm .

Observations-A small species, very like A. trucidata; size distinct and costae extend front suture to suture, instead of being cut off above as in the former species.

Gentis Mappingia nov.

Shell very small, clongate-subfusiform, near Guraleus in general appearance; apex noulti-spiral; whorls convex, axially costate, spirally lirate; aperture pyriform, colmmella smooth; outer lip with it very shallow sims, somewhat thickened and conspicuonsly dentate within. Genotype happingia aculispira sp. nov.

Mappingia acutispira sp. nov.
(Pl. v, fig. 21)
Shell very small, subfusiform, spire elongate. Protoconch of three elevated, convex, smooth turns; adult whorls four, convex, constricted at the suture which is irregular and impressed. Sculpture strong, of prominent, oblifue slightly curved, plicate axial ribs, eight on the penultimate whorl, extending from suture to suture on the spire whorls and on the body whorl weakening from the periphery to the base where they disappear; axial sculpture crossed by fine, spiral lirae extending over the whole of the whorl including the base of the body whorl. Aperture narrow, elongate-pyriform; onter lip with a faint sinus at the suture; lip inflected below and conspicuonsly dentate within-abont 10 small denticles altogether; columella almost vertical above, turned to the left and retroflect below; canal fairly long, narrow, decp, and slightly recurved; inner lip smooth. Height, 5.5 11111, ; diancter, 2 minn.

Genus Etrima Hedley 1918
Etrema peramoena sp. nov.
(I1. v, fig. 23)
Shell very small, fusiform, with sharply carinate whorls. Protoconeh of two large, erect, grobose, smooth turns; adnlt whorls threc, carinate at the middle. Above the carina senlpture of about six very fine spiral lirae crossed by curved, ohlique axials, very fine but widely separated; spirals about three times as close as axials; on and below the carina seulpture of two fine spiral costae crossed by oblique axials producing a cancellation with sharp nodules at the interscetions. Borly whorl about equal to the spire, with coarse sculpture of the anterior hall of each whorl continned to the base, the spirals beconing more numerous and crowded on the canal area, the axials growing fainter and disappearing. Aperture elongate-pyriforn with a deep subpuadrate sinus above the carina; outer lip slightly expanded helow the carina, smooth within except for rougheming by the spiral ribs; colmuella straight above, tumed to the left below; canal very slightly curved. Ifeight, $4 \cdot 1 \mathrm{~mm}$ diameter, $2 \cdot 1 \mathrm{~mm}$.

Genus Guraleus Hedley 1918

Guraleus subnitidus sp. nov. (${ }^{3}$. $\mathrm{v}, \mathrm{fig}, 22$)
Shell very small, fusiform, spire gradate. Protoconch clevated, of three smooth, convex. flattened turns, the first very small; adult whorls fonr, roundly angulate just above the middle, decply constricted at the suture; suture irregular, impressed. Axial sculpture of strong costae- 10 on the penultinate whorlstrongest and most prominent at the angle; below the angle slightly oblique, in the narrow area above curved in the manner of the apertural simus; costae weakening towards the sutures, iading out towards the base of the body whorl; spiral sculpture of numerous line lirae (less strongly developed in the holotype than in most specimens, which vary considerably in the number and prominence of the spiral lirae); lirae stronger on the base in the holotype, about 12 in number. Aperture fairly narrow, sides subparallel, with a bluntly-rounded sinus below the
suture, constricted below to a short, open, slightly recurved canal ; outer lip with sinus above, inflected below; coltmella slightly oblique, straight. Height, 4.8 mm .; diameter, $1 * 8 \mathrm{~mm}$.

Last of Species

GASTROPODA
*Haliotis naterosoides McCoy 1876; Tugalicicatricosa Aclams 1851, infortunata, sp. now; Emarginula candida Adams 1851, †delicatissima Chap. \& Gab. 1923, *demnanti Chap. and Gab. 1923; *Sphismaletas migrita (Sow. 1834); Claneuths, quadricingulatus, entarinatus, Phosianotrochus laxagemmans, subsimples. Calthalotia nilidissima, fictilis, Lactifautor obliquicancellanis, spinicarnatus, crebrinodulosists, *icarinahss spp, now.; Lactifantor spp. indet.; Astele fanaticunt, *Pulchrastele planiconicam, thberculatum, Ethminohia prrytobosa spp. now.; Saluriclla siriyala (T. Woods 1878); *Temostoma depressitla Chap. \& Gab. 1914: Partubiola depressispira, tarilirdta, *Herpetopona pliocenica spp- nuv.: Gena sp.; *Liofella capitata Hedley 1007 : Lietella sp.; *Liotima lamellosa (T. Woods 1876) : *Dolicrassealabiata (T. Woods 1870), cf. Turbo sn. (operculum), cf, Astrate sp.; *Astraea (Bellasiraca) aster (T. Woads 1878); *Phasimella dentanti Cresp. 1925; Phasianella sp.

 Tate \& May 1900; Merelun ef, suprascufia May 1915* * Fpigrus chrysalidus (Chap. and Gab. 1014) * eypindrarcus. (T. Woods 1878) ; *Estca cf, bicalor (Petterd 1884) ; Rissoina rlcyantula Angas 1880, nitray Adams 1851; *Turitella (Gazancda) articula adolaidensis, C. \& W, 1235; subacricula C. \& W. 1935, * (Maoricolpus) murravana subrudis C. \& W. 1935. sp. aff, platysiza T. Woods 1878, (Ctenacolpies) trili- C. \& W. 1935; *Tytospira coronata marexicki (Finlay 1131): Siliquaria austratis Q. \& C. 1934; *Neodiostoma promisi

 cotcnatum Tate 1893, cf. Alaracevithian sp.; Adclaccrithum morultum sp, tov:; cf. Hypotrochus penctricinctus ©. 103z, of. Hypotrochus monachus (Crosse and Fischer 1864), cf. Hypotrochus sp. indet.; Obtortio lipathes sp. nov: Semiarefagns capillatus Tate 1823; Terebralia fallax sp. noy., addadensis Tow, \& C. 1936, cf. Cerithopsis spt;
 mata Chap. \& Cresp. 1928; Manulona armysa, firasuturahis spp. now: : Scila (Notoseila) crocra Angas $1871 ; \dagger$ Trithora spp.; Mereldia intomnodo sp, nov;; *Architectonica munnonensis (T. Woods 1878); Epitonium cf. interstriahm (Tate 1890); *Eglisia triplicata (Tate 1890), sp. indet; *Otestomia cf. deflera Tate \& May 1900; Symola bifasciafa T. Wooçs 18975, * tasmanica TT. Wouds 1876, *finda Angas 1871, infrasillatat Tate 1898, acrisecta sp. nov., Syrnola sp. *T"ubonilla rudicons Chap \& Cresp. 1928, subfusca sp. now., * liraecostata T. Woods 1877 . cf. mariae T. Wuods 1876 , cf. padicans Chap. \& Cresp.
 sn.; *Niso psila T. Woods 1879 ; Salba conict (Schum. 1817) ; Copulus circinatias Tate 1893 ; + Crefiduta hainstor thi Johnston 1885 * dubitapilis Tate 1893, * mpuiformis I amk.
 (Tate 1893), * substolidus (Tate 1893), *subatians (Tate 1893), ** (5) hutton yon Thering 1907, *Sigartotena subinfundinutu (Tate 1893); *Natica hamillonensis Tate 1893, "Yatica" sp. opercula, cf. Ampullina spr; Cypracts sp, indet.; *Notetrivia spr-; Ellutrizion wetrata sp now: †Proteralo australis (Tate 1890): *Hypocassis lertilis (Tate 1882); **Semicassis tronscmat Tate 1889, **adiata Tate 1889; (\%) Cymatitm sp.

 ct. Zafra sp; Cominella sp. indet.; *Nassarius tatci (T. Woods 1878); *Ohichla nymphalis (Tate 1889) ; **Baryspira pendaustralis (Tate 1889), *intri (Marwk. 1924); Atstrownitras schomburghi (Angas 1878), anynsticastata sn. 11ov, scalarifornis. (T, Woods 1876), sp. Mitra rhodigh (${ }^{(3)}$ Recere 1845, glabra Swahn 1821, fodiualis Tate 1899 ; \dagger Austroharpa sutcosa (Tata 1889); Tudicla sinoticha sp. 110y- **Aulica tabulata (Thate 1889); **Voluta uncifera Tate 1889 * sllipsoidea Tate 1889; †Tulyoraria ancillnides (Tate 1889); *Oaparuia tatei (Cossn. 1889) ; Cancellaria spp. indet, f flarginclla kitsoni Chap. 1922; * qecriworthi. T. Whods 1877, * globiformis Chap. \& Cresp. 1928, * muscayioides Tate 1878, fasmanica T. W'oods 1876. * kalimnae Chap. \& Cresp. 1933, sp, nov, moana sp. nov, spp. indet.: (I) Asthcnotoma subhilinea Hedley 1918; *Filodritia dilcetpides Chap. \& Gab. 1916, cf. Filodrillia sp;: Bathytoma sp, ; adeladensis sp. nov.: *Inquisitor detritus; *Austro-

[^4]drillio deconcostata, *rucidata; Mappingia aculispira; Etroma peramocna spp. nov.; \dagger Elrcma pracspurca Chap. \& Cresp. 1928; *Guralcus cf. lasmanicus (T. Woods 1876), * subuitidus sp. nov., sp.; *Conus hamiltonensis Tate 1800; **Terebra subspectabilis Tate 1889, ** angulosa Tate 1889, †additoides T. Woods 1877, sp.; †.1cteon scrobicalalus T. Woods 1877, cf. Actem sp.; *Scmiacicon microplocus Cossu. 1897; *Retusa Ionyispira (Cossin 1897), *apiculata Tate 1879; *Voliulella rostrata (A. Adams 1850); *Cylichncha cuncopsis (Cossn. 1897). *cf. angustata (Tate \& Cossn. 1897) ; *Scaphander tatci Cos, nn. 1897; *Rorania bullacformis Cosinn, 1צ97.
Scaphoruma
Dentalum (Paradentalium) howchini Cott. \& Ludb, 1938, * (Fissidentalum) bifrons Tate 1887; †Cadulus mucronatus Tate 1887, *acuminatus Tate 1887.
Vermes
*Ditrupa cornca wormbefiensis McCoy 1874.
Echinodermata

* (?) Goniocidaris mortcnsi Chap. \& Cud. 1934.

Arthropoda
*Balans (Chirona) zclandicus Withers 1924, *amphitritc acutus Withers 1924.
Prsces
*Odontaspis contortidens Ag. 1843; Lamna sp.; *Carchurias (l'ronodon) aculcatus (Davis 1888) ; *Myholatis mourabintensis Chap. \& Prit. 1907.

Rrferences
1 Chapman, F. 1916 Rec. Geol. Surv. Vict., 3, 4
2 Chapmay, F". 1914 Iroc, Roy, Soc. Vict., 27, (1). (11.s.)
3 Chapman, Fo, and (resphe, I. 1933 Proc. Roy, Soc, Vict., 46, (1), (11.s.)
4 Cilarman, F., and Ckespln, I. 1935 Rep. A.X.Z.A.A.S., Melb. Mecting
5 Cimpman, F., (respin, I., and Kible, R. A. 1928 Kec. Geol. Surv. Vict., 5, (1)
6 Cotton, B. C. 1934 S.A. Nat., 16, (1). 7
7 Cotton, B. (․ 1935 Journ. Roy. Soc, W, Aust., 21, 153-4
8 Cotton, B. C., and Gonfrey, F. K. 1938 Mal. Soc. S. Aust. 1
9 Cotton, B. C.. and Woods, N. II. 1935 Rec. S.A. Mus., 5, (3). $369-387$
10 Cotton, B. C.. and Ludprook, N. II. 1938 Trans. Roy. Soc. S. Aust., 62, (2), 217-228
11 Devnant, J.. and Kitson, A. E. 1903 Rec. Geol. Surv. Vict., 1, (2)
12 Finlay, II. J. 1931 Trans. N.7. Inst., 62, (1), 7.19
13 Finlay, H. J. 1926 Trans. N.Z. Inst., 57
14 Finlay, IH. J., and Mirwicis, J. 1940 Trans. Rog. Soc. N.Z., 70, (1), 77-135
15 Finlay, H. J., and Marwick, J. 1937 N.7., Pall. Bull., 15
16 Hall, T. S.. and Pritchard, (i. B., 1902 Proc. Roy. Soc. Vict. 14, (1), (11.s.) , 75-81

17 Itenley, C. 1922 Rec, Atist. Mus., 13, 213-359
18 IIowchin, W. 1935 Trams. Ruy. Soc. S. Alst. 59, 68-102
19 Howchin, W. 1936 Ibid., 60, 1-34
20 Howchin, W., and Fark, W. J. 1938 Trans. Roy, Soc. S. Aust., 62, (2), 287-317
21 Lumisook, N. H. 1937 Rep. A.N.Z.A.A.S., 23, Auckland Meeting
22 Marwick, J. 1924 Trans. N.... Inst., 55, 545-579
23 Marwick, J. 1923 Rep. A.N.Z.A.A.S., Wellington Meeting.
24 Parr, W. J. 1939 Mint, \& Geol. Jo11r11. (Melb.), 1, (4), 65-71
25 Singleton, F. A. 1937 Rep. A.N.Z.A.A.S., 23, Auckland Mecting
26 Singleton, F. A. 1932 Proc. Roy, Soc. Vict., 44, (2), 289-308
27 Singleton, F. A., and Woods, N. H. 1934 Proc. Roy. Soc. Vict., 46, (2), 207-213

28 Tate, R. 1890 Trans. Roy. Soc. S. Aust., 13, (2), 172-180
29 Tate, R. 1887 Ibid., 10, 91-176

30 Tate，R． 1888 Ibid．，11，116－174
31 T＾tе，R． 1890 Ibid．，13，185－235
32 Tate，R． 1894 Ibid．，17，316－345
33 Tate，R． 1899 Ibid．，23，102－110
34 Woons，N．H． 1931 Trans．Roy．Soc．S．Aust．，55，147－151
35 ＂The New Systenatics＂Ed．by Julian Huxley Oxford The Clarendon Press 1940

FXPLANA＇IION OF PIATES IV AND V

```
Plate IV
1 Tugafi infortwnatum sp. nov. Holotspe, side and dorsal vicw, X 5
CIanculus quatricingulatus sp. nov. Holotype, X 33
Clanculus cucarinatus sp. nov. Holotype X 3l
Phasianotrochuts laxcgematus sp. nov. Holotyps X 5
Ethminolia perglobosa ep. nov. Hulotype* X 5
Astrle fanatictm sp. nov. Holotype X 3!
L_actifautar obliquicancellatus spr. nov. Holotype X 3!
Lactifautor spinicarimatu.s sp. nov. IIolotype X 3!
Lacifautor cribrinodulosus sp. nov. Holotyp.} X 3!
Phasianotrochus subsimflen sp. nov. Holotype X 5
Calthalotia nitidissima sp. nuv. Holntyp= X 3!
Patchrastele planiconicum sp. nov. IIolotype X 3!
Yactifautor bicarinatus sp. nov. Holotype \ 3!
# Calthalotia fictitis sp. nov. IHolotype X }
15 Pulohrastele tuberculalum sp. nov. Holotype X 4
16 Partubiofa defressispira sp. nov. IIolotype X 5
17 Partubicula zaviliraia sp. nov. Inulutype X }
18 Herpetopoma plioccmica sp. nov. Holotype X 3t
19 Phenatolcpas tola sp. nov. Molotype, side and dorsal view, X3t
20 Clypeomorus biacuricatus sp. nov. Holotype X 5
21 Terbbalia fullax sp. nov. Holotype X'2
22 Clycomowas muitiliratus sp. nov. Holotype X 3!,
23 Adelacrithium morultum sp. nov. Holotype X 3?
24 Obtortio liratas sp. nor. Tfolotype X 5
25 Cerithiopsis perelongatus sp. nov. Holntype X }
26 Mamulona armeosa sp. now. Holotype X }
27 Manulona linasuturalis sp. nov. Holotype X X
Plate，V
2
```

 Eulima longiconica sp. nuv. Holonvpe X 4
 Eulima minuticonicu sp. nov. Holotype X 5.⿱亠䒑
 Iurbonilla ritcostata sp. lov. Holotype X 4
 Turbonilla subfusca sp. nov. Holotype X 4
 Chcilca adclaidensis sp. nov. Holotype, exterior view, X t
 Chcilca adrlaidensis sp. nov. Paratype, interior viuw, &
 Cwmaticlla adclaidensis sp. nov. Holotype X 22
 Ademitrella insolcntior sp. nov. Holotype X 4
 Zcmilrella muscula sp. 110v. ITolotype X }
 Austromitra angusticostata sp, nov. Holotype X }
 Tudicla sinoliclu sp. nov. I Colotype X 2
 Marginclla moana sp. nov. Holotype X4
 Ellarriva wirrata sp. nov. Inolotype X 3
 Bathvtoma adclaidonsis sp. nov. HLolotype X 2
 Inquisitor dotritus sp. nov. Hosotype X 2l
 Tustrodrillia docomoostala sp. nov. Folotype X 33
 Austrodrillia trucidata sp. nov. Holotype X 2%
 Wappingia arntispira sp. nov. Holotype X 7
 Guralcus subnitidus sp. nov. Holotype X }
 Etroma poramocna sp. nov. Holotype X6
 Murex peramamgus sp. nov. Tlolotype c. nat. size
 Widningia crassiplicata sp. nov, Hulotype c. nat. size
 Kaurnella denotata sp. nov. Mnlotype X 6
 Sjrmola acrisecla sp. nov. INolonype XG
 Hercldia incommoda sp. nov. Flolotype X +
    ```



\title{
NOTES ON THE GEOLOGY AND PHYSIOGRAPHY OF SOUTH-EAST SOUTH AUSTRALIA WITH REFERENCE TO LATE CLIMATIC HISTORY
}

\author{
By R. L. CROCKER
}

\section*{Summary}

The chief physiographic feature of the South-East generally is the unique arrangement of sand dune ranges parallel to the existing coastline. These ranges are frequently indurated. They are rarely more than 100 feet above the general level and between them are series of flats or plains. The ranges are generally recognized \((11,2,5)\) as representing old coastal dunes, or dune remnants, connected with successive stages in the retreat of the sea in late Pleistocene or Recent geological times. These superimposed ranges have impeded the natural drainage to the sea and have preserved a topography of extreme immaturity.

\title{
NOTES ON THE GEOLOGY AND PHYSIOGRAPHY OF SOUTH-EAST SOUTH AUSTRALIA WITH REFERENCE TO LATE CLIMATIC HISTORY
}

\author{
By R. L. Crocker
}
[Read 8 May, 1941]
The chief physiographic feature of the South-East generally is the unique arrangement of sand dune ranges parallel to the existing coastline, These ranges are frequently indurated. They are rarely more than 100 feet above the general level and between them are series of flats or'plains. The ranges are generally recognised \((11,2,5)\) as representing old coastal dunes, or dune reminats, connected with successive stages in the retreat of the sea in late Pleistocenc or Recent geological times, These superimposed ranges have impeded the natural drainage to the sea and have preserved a topography of extreme inmaturity:

Fenner (2) considers that the Naracoorte lange represents and old fault scarp and not a sand dune ridge. According to Howchin (5) "In the Mospuito Creck near Struan there is . . . a beach at the foot of the limestone ridge. This old heach is now 200 feet above present sca level. and about 50 miles from the coast." The Naracoorte Range may represcit a fault line, but, if so, there are sand dunes and indurated dunes superimposed mpon it. The inportant thing is that the comntry to the cast of this range is much higher. Its physiography is now modified but it was the old land surface prior to the posilive earth movenents, of late leistocene and Recent times, which resulted in the retrent of the sea (4). The major physiographic features of the Lower Sonth-East are illnstrated in fig. 1. The figures represent leights above sea level (normal spring tides) at some selected centres. I'roceeding across sand range and inter-range flat, fron the coast to the nost inward range, the Naracoorte Range, it is possible do retrace the successive steps in the recession of the seat. The planis are underlain by flat-beded Mocene marine limestones, but at least in part these are overlain by more recent calcareous material and recent deposits of sand and clay. This is especially so in the flat heath areas so characteristic of the Hundred of Coles and northwards.

The sand dune ranges reach their maximum development in the Mount lime Range, but the geological features are here further complicated by the existence of numerons small and isolated basaltic. ash and tuff hills. Monnt Lyon, Monnt Murr, Monnt Fdhard, Mount Watch, Mount Lookout, Mount Muir, Monnt Muirhead. Mount Grahane, the Blatf, Mount Mactntyre, ete, all have volcanic affitities, and are capped with cither basalt, or tuff and ash. This volcanic capping is freguently of very linited extent and in some casts is limited to a few square chains-at Mont Lookout it is much less. These are generally considered to be the same as. and probably contemporaneus with, volcanic activity in the Mount Gambier district, which Fenmer (1) considers very recent or "prehistoric." From new evidence, both of a geological and pedological nature. it seems certain that the western volcanic activity of the Mount Burr Kange preceded that of Mount Gambier and Mount Schank. But before detailing this cvidence it will be necessary to deal more fully with the dune range remnants.

The Dune Range Remmants-The old dunes have been preserved in two forms-firstly, as consolidated dunes, and secondly as unconsolidated siliceous sands. The Woakwine Range is a "consolidated dune" range almost cntircly free
from siliceous sands, and the ranges extending easterly to the Naracoorte Range include both siliccous and consolidated dunes.

It is a well-known fact that the present-day dunes of our sonthern coast are of a predominantly calcarcous nature, although quartz sand frequently forms a considerable part. At Robe (Thomas, 8) quartz sand forms some \(25 \%\) of most of the aeolian sand soils. These calcareous dmes are well known in South Australia because of "coastiness" in sheep associated witl them in the South-East and on ドangaroo Island.


Fig. 1
The problem of why the sands of the dunc ranges are so siliceons, and how other duncs have beome indurated, has always been a puzzling one. It is 1 mreasonable to suggest that the beach ridges during the Pleistocenc elevations were not calcareons, as today, and a smple explanation is now offered on pedological evidence. It is supposed that leaching of former calcareons dunes led to a complete removal of the calciun carbonate and other more soluble salts from the
upper horizons, leaving then predominantly siliceous. Leathing, however, was not complete, and the calcium carbonate was deposited in definite horizons lower down. Pedologists have established conditions of moderate to low rainfall (semiaridity) for development of lime pans in soils, and it is necessary to presuppose these conditions. This period of lime pan formation was probably concerned with the onset of a period of great aridity that was to follow it. This arid period must have developed very rapidly in its final stages and have been very severe, for vegetation was not able to exploit the new environment and maintain soil stability. This loss of stability resulted in a general aeolian re-sorting of the upper leached layers with a consequent exposure of the zone of lime accumulation-the ofd (illuvial) horizon of the soil. The re-sorted upper horizons today form the siliceons sands of the South-East, and the old zone of calciun carbonate deposition is preserved in the consolidated dunes.

In the Woakwine Range (see fig, 1), where the consolidated dunes are most exposed and where practically all the siliceous sands have been removed, the sandy limestone varies in thicknessi between one foot and several feet and is nuderlain by a highly calcareous sand with abundant fine shell fragments. This material is practically identical with that in the present-day enastal dunes. Simitar calcareous sand can be seen underlying the limestone nantle in the consolidated dunes further inland, eg., there is a good exposure in a road cutting in West Avenue Range, near Bull Island. No doubt the method of "consolidation" has been similatr.

Evidence for a patticularly arid period in late Plcistocene or Recent times can be found in other parts of the State. On south Kangaroo Island unconsolidated calcareous coastal dines, in composition rery like those of the South-East (Thomas, 8), overlic an old consolidated dune formation (fig, 2). The upper leached horizons have been completely renoved during this arid cycle and are represented today in the grey and light grey sands which occur (particularly in valleys and on slopes) in the lateritic areas, and the grey-white siliceous sands in the region of Mount Stockdale and Mount Taylor. The more or less parallel sandrises of the Murray Mallee, with their east-west trend and the sandiddges of the northwest of South Atistralia, must also have been built up during a late period of great desication and wind erosion on a grand scale. Whitehouse (10) considers that there has been an arid period in the late Pleistocene in Queensland and that since then rainfall increased, although it may possibly be declining now, He suggests that the large dune ridge formations of the Simpson Desert were built up during this aridity. Hills (4) believes that the rainfall decreased after the Pleistocene in Victoria, but that during Recent times there have been relatively wetter and drier periods. That the climate in South Australia has become wetter since the arid period is demonstrated by the fact that the then unstable siliceous sands of the South-East are now fixed by vegetation-indeed, are supporting a dry sclerophyll forest. The sandrises of the Mallee, too, are stabilised by whipstick mallee and porcupinc grass, and in the North-West the ridges are largely fixed by Acacia limoplylla (mulga) and Casuarina lopidophloia (black oak).

Hills (3) considers that the Pleistocene period exhibits in Victoria a succession of dune-building periods with intervening periods of sand stability, and suggests that the period of dune huilding may be correlated with ice-cap formation (after Sayles). Considering the present-day dunes along our southern coast, and particularly the large area occupied by them on south Kangaroo Island, it does not seem mecessary to postulate conditions very different from today to explait the building up of coastal dunes.

It has been recognised (Hills) that, could the age of the consolitated dunes be determined, a period of great stratigraphical significance in deciding the age of many of the Cainozoic volcanic rocks of Southern Australia would be fixed. It seems evident that pedologists, physiographers and geologists must take increas-
ing cognisance of late geological climatic changes. Our sandridge deserts, for example, are almost certainly connected with the last great arid cycle rather than with the present-day climate. This probably explains the very imperfect correlation obtained by Prescott (6) in attempting to relate them to the present climate by means of precipitation/saturation deficit-ratio zoncs.

While not yet prepared to place the last arid period as late Pleistocene or Recent, it is suggested that the South-East of South Australia may prove a critical area for its study. If one accepts Tindale's (9) correlation of coastal terraces in U.S.A. and the South-East the W'oakwinc Range would be very late Pleistocene, and the arid period Recent. Withont fixing this horizon definitely, use can already be made of it in establishing some of the stratigraphical sequence in this region.

Volcanic Actiaity in South-East South Australia-Owing to the limited extent and greater complexity of the volcanic rocks of the Mount Burr Range area they have been little studied geologically, but the evidence for their being older than the Mount Gambier and Mount Schank activity can be detailed briefly.

Firstly, in the Mount Burr region the yellow and grey siliceons sands are superimposed upon the general volcanic framework, which means that volcanic activity nust have been of the pre-arid period. At Mount Gambier, on the other hand, gently undulating siliceous sandrises have a capping of rolcanic ash varying in thickiness up to approximately one-and-a-half feet and weathering to a rich volcanic


Fig. 2
Loam. The Mount Gambier activity, therefore, has been of the post-arid period. Secondly, Howchin (5) draws attention to a raised sea beach on the sides of Mount Grahame which, he says, "shows that the sea must have encroached upon the locality, and again receded since the volcanoes were in cruption." Other strong evidence, too, (a) water-worn basaltic grit and pebbles in a bore put down near the Mount Burr Forest Homestead (and noted by the author), and (b) the occurrence of a shell bed (very like that on Mount Grahame) above volcanic tuff, in a deep obsetvation pit of the Forest Research Station, suggests inundation. There is no evidence (1) oi a similar inundation in the Mount Gambier district. It may be, of course, that the raised beach at Mount Grahane does not mean an incursion of the sea, but rather that this region was an island during the Pleistocene retreat. This fact is rather supported in that on the slope of Mount Grahame, and to Mount Muirhead and beyond, there are frequent outcrops of consolidated dune limestone at two separate horizons, and suggestive of successive stages in the retreat of the sea. Thirdly, the volcanic soils of the Mount Burr region are more acid in reaction, indicative of longer leaching, and range as low as \(\mathrm{pH} 5 \cdot 2\) in samples collected by Stephens. \({ }^{(1)}\) In the Mount Gambier region. according to Prescott and Piper (7), the reaction range is from pH 6.4 to pH 8.2 .
\({ }^{( }{ }^{4}\) Stephens, C. G., private communication.

The volcanic activity of the Mount Burr region is, therefore, older than that at Mount Gambier, which seems to have been placed accurately by Femer as "prehistoric." It is now also possible to limit within some degree the period of the retreat of the sea. For example, prior to the arid period, the coastline of the South-East must have been very similar in outline to the coast today, as consolidated duncs occur in the succession of all the ranges, from the Naracoorte Range to the Woakwine Range. If this arid period can be chronologically fixed a very great step forward in interpretation of late climatic history, and its effect on present land form and pedogenics, will be made.

\section*{References}
(1) Fenner, C. A. 1921 Trans. and Proc. Roy. Soc. S. Aust., 45, 169
(2) Fenner, (. A. 1930 Ibid., 54, 1
(3) Hills, E. S. 1939 Proc. Roy. Soc. Vict., 51, (1), 112
(4) Hills, L. S. 1939 Ibid., 51, (2), 297
(5) Howcinn, W. 1929 "Geology of South Australia," Adelaide
(6) Prescott, J. A. 1936 Trans. and Proc. Roy. Soc. S. Aust., 60, 93
(7) Prescott, J. A., and Piper, C. S., 1929 Ibid., 53, 196
(8) Tiomas, R. G. 1938 C.S.I.R. Bull., No. 113
(9) Tindale, N. B. 1933 Trans. and Proc. Roy. Soc. S. Aust., 57, 130
(10) Whiteiouse, F. W. 1940 "Studies in the Late Geological History of Queensland," Lniv. of Queensland
(11) Woods, J. 1862 "Cieology of South Australia"

\title{
WORORA KINSHIP GESTURES
}

\author{
By J. B. LOVE
}

\section*{Summary}

The Worora recognise sixteen degrees of kinship, for which there are sixteen terms, as listed below. These sixteen degrees are included in ten gestures. There are also separate words for the relationship of elder and younger brother and sister, but the elder or younger relationship does not alter the status of the individual with regard to other members of the tribe, and there is no separate gesture to denote elder or younger. In general the terms for brother and sister in any degree are the same, with the masculine and feminine form of the noun in each case. The exceptions to this rule are: (1) mother and mother's brother; (2) wife and wife's brother; also wife's-father, wife's-brother'sson, and all the male line of the wife's horde; (3) father and father's sister. In this last instance, however, it is to be noted that, though father's-sister is in adult speech a different term from father (being the same as man's daughter), in baby talk the father and father's-sister are denoted by the masculine and feminine forms of the same term. viz., [djidai] and [djidjinjaj. Not counting the separate terms for elder and younger brother and sister, nor masculine and feminine forms as separate terms. the sixteen kinship terms of the Worora are as follows

\section*{WORORA KINSHIP GESTURES}

\author{
By J. R. H. I ove
}
[Read 12 June 1941]

\section*{Plate VI}

The Worora recognise sixteen degrees of kinship, for which there are sixteen terms, as listed below. These sixteen degrees are included in ten gestures. There are also separate words for the relationship of elder and younger brother and sister, but the elder or younger relationship does not alter the status of the individual with regard to other members of the tribe, and there is 110 separate gesture to denote clder or younger. In general the terms for brother and sister in any degree are the same, wiil the masculine and femmine form of the noun in each case. The exceptions to this rule are: (1) mother and mother's brother; (2) wife and wife's brother; also wife's-father, wife's-brother's-son, and all the male line of the wife's horde; (3) father and father's sister. In this last instance, however, it is to be noted that, though father's-sister is in aduit speech a different term from father (being the same as man's danghter), in baby talk the father and father's-sister are denoted by the masculine and Feminine forms of the same term, ziz., [djidai] and [djidjinjal. Not comnting the separate terms for elder and younger brother and sister, nor masculine and feminime forms as separate terms. the sixteen kinship terms of the Whorora are as follows:
1 Father, for which the 1 Oorora word is [irai]. In reciprocal speech the father and son will address one another as [irai], but in speaking of one another the son will speak of his father as [irai], while the father will speak of his son as [kayo:lu| (or some other grammatical form of that word, which is not a noun, but a verb, meaming I-beget-him).
2 Man's-son, [i1]ko:lul, which means Whom-le-hegets.
3 Man's-daughter, [panaranja]. Father's sister is also denoted by this term [pamaranja].
4 Mother [karanja].
5 Woman's-son and woman's-daughter, [ibai| and |ibanja|.
6 Mother's-brother, [kakai]. Man's-sister's-child. [ibai] and [ibanja].
7 Brother and sister, [nawaial and [1]awanjal. Elder-brother is |abia|, cldersister is [abi:njal, younger-brother is [iwomale]. younger-sister is [njimbomalinja|.
8 Mother's mother, [kadjanja]. Mother's-monher's-brother is 【kadjaia|.
9 Woman's-daughter's-son and woman's-daughter's-daughter, [buda] and [budinja].
10 Husband, [kulai]. I lusband's-sister is [kulanjal.
11 Wife, [manganja].
12 Wife's-brother, also wife's-father, and all males in wife's lime, |waia|.
13 Wife's-mother, i.e., man's mother-in-law, [kurumanja]. Man's mother-in-law's-brother is [kurum|.
14 Woman's-daughter's-husband, i.c., woman's son-in-law, [wolbaia]. Wonnan's daughter's-husband's-sister is [wolbanja].
15 Husband's-mother, i.e., woman's-mother-in-law, [yalindjanja]. Husband's-mother's-brother is |yalindjaia]. Woman's-son's-wife, i.c., womau's daughter-in-law is the same term as hushand's mother, wiz., [yalindjanja] ; also woman's-son's-wife's-brother is [1alindjaia].
16 Mother's-father, [tjamaial. Mother's-father's-sister is [tjamanja]; but man's-daughter's-child is called by the same term as the daughter uses, viz., [ibai] or [ibanja], the same term that is used by the mother's brother.


Father's-father is classed with elder-brother, and son's-son is classed with younger-brother. Husband's brother is classed with husband, and wife's-sister is classed with wife. Father and son address each other reciprocally as ["irai"]; hence son's-wife is classed with mother, viz., ["karanja". I A man addresses his daughter's husband by the term the danghter uses, viz: |"Kulai,"] husband.

The masculine terminations of the kinship terms mas be heard as \([-a i \mid\) or [-aia]. Wife's-brother (etc.) is always heard as [waia"|, avoiding the monosyllable [wai], which is another word; the longer words more usually are heard as ending in [-ai.]

Most gestures are used repicrocally to denote either party to degree of kinship.
Terms 1, 2 and 3, the father-child rclationship, is shown by bending up the arm and touching the shoukder with the hand, See fig. 1.

Term 4, the mother-child relationship; mother holding her breast. (Fig. 2.)
Term 5, the child-mother relationship, is shown by placing one hand below the thigh near the buttock. The sont, or daughter, also uses this same gesture to denote mother's-brother. See fig. 3. An alternative is for the son or daughter to place the clasped hands behind the neck. See fig, Ba.

Term 6, the man's-sister's-child relationship, is denoted thy the mother's brother pointing to his belly. (Not figured.)

Term 7, the brother-brother, brother-sister, and sister-sister relationship, is denoted by placing a hand on the lower leg, either shin or calf . See fig. 4 .

Terms 8 and 9 , the mother's-mother and daughter's-child relationship, is denoted by touching one knce. See fig. 5.

Terms 10 and 11 , the husband-and-wife retationship, is denoted by touchng one hip. See fig. 6. Termi 12. wife's-lorother or father, is included in this gesture

Terms 13 and 14, the mother-in-law and son-in-law relationship, is denoted by placing one hand on the shoulder-blade. See fig, 7.

Term 15, the mother-in-law and daughter-in-law telationship, is shown by touching the spine about the region of the kidneys. See fig. 8. N+B,-In this figure the mother-in-law's brother, [1]alindjaia \(\mid\), is making the gesture.

Term 16, mother's-father, is shown by placing the hand below the thigh, near the knee. Sce fig. 9. An alternative is to touch the spine high up, either by reaching the hand over the shoukder, or by reaching up the back.

The sixteen kinship terms, with their ten gestures, may be summarised as follows: Father : son : danghter, three terms, one gesture; mother : child : mother's-brother, three terms, thrce gestures; brother : brother isister, one tem, one gesture; maternai-grandnother : grandchild, two terns, one gesture; husband: wife : wife's-brother, threc terms, one gesture; mother-in law : daughter-in-law; one term, one gesture; mother-in-law a son-in-law, two terms, one gesture; mother's-father, one term, one gesture.

In daily use the gestures accompany the spoken word for the degrec of kinship, In introducing a stranger, the one making the introduction will name the relationship that exists between himself or herself and the stranger. and at the same time, make the gesture for that relationship. So, also, in answering a question as to the relationship that exists between a person interrogated, the one answerng will name the relationship and, at the same time, make the gesture,

In reply to a question as to why the gestures are used, or what purpose they serve, one man said, "For use at a distance." This would seem quite a reasonable answer, as the gesture can be conveyed at a distance, when speech might not be convenient. The majority of men questioned simply said, ["juy"]. ["juj"] is the way things have always been from time immemorial. Men have conceived the spirits of their children in a dream. ["jup"] : the Worora people used these signs.

In addition, a very full set of gestures denotes the atnimals, and would seem to serve the purpose of communicating at a distance. Several of the kinship gestures are very obvious in their meaning. Others scem, to have been deliberately devised to complete the set to include the whole kinship system.

\title{
ASCAROID NEMATODES FROM AUSTRALIAN BIRDS
}

\author{
By T. HARVEY JOHNSTON and PATRICIA M. MAWSON, University, Adelaide
}

\section*{Summary}

Much of the material referred to in this paper was collected by the late Dr. T. L. Bancroft at Eidsvold, Burnett River, Queensland; his daughter, Dr. M. J. Mackerras, from the same locality, and from the Thompson River at Longreach, Western Queensland; Professor J. B. Cleland from some localities in New South Wales, South Australia and Western Australia; J. T. Gray, Orroroo, South Australia; and the late Dr. W. D. Walker at Morgan, Murray River, South Australia. Some of Krefft's original material was forwarded by the Director of the Australian Museum. Sydney for our examination. The rest was obtained by the senior author from localities in Queensland, New South Wales, and South Australia, the material from Tailem Bend having been found in birds collected for us by Messrs. G. and F. Jaensch and L. Ellis. To all who have assisted us we tender our thanks. The study of the material was made possible by the Commonwealth Research Grant to the University of Adelaide.

\section*{ASCAROID NEMATODES FROM AUSTRALIAN BIRDS}

\author{
Hy 'T. Harvey Johnston and Patricta M. Mawson, University, Adelaide
}

\author{
[Read 12 June 1941]
}

Much of the material referred to in this paper was collected by the late Dr. T. L. Bancroft at Eidsvold, Burnett River, Queensland; his daughter; Dr. M. J. Mackerras, from the same locality, and from the Thompson River at Longreach, Western Qutensland; Professor J, B. Cleland from some localities in New South W'ales, South Australia and Western Australia; I. T. Gray, Orroroo, South Anstralia; and the late 1)r. 11. D. Walker at Morgan, Murray River, South Australia. Some of Krefft's original material was forwarded by the Director of the Australian Musemm, Sydney, for our examination, The rest was obtained by the senior author from localities in Queensland, New South Vales, and South Australia, the material from Tailen Bend having been found in birds collected for us by Messrs. G. aud F. Jaensch and L. Ellis. To all who have assisted us we tender our thanks. The study of the material was made possible by the Commonwealth Research Grant to the University of Adelaide.

Nost of the species described below belong to Contracactum. It is regretted that, in the past, many authors omitted to indicate the ratios of lengths of parts of the alimentary canal and of the spicules to the total body length. In the older and even 111 some of the recent descriptions a wide range of body length but only one length of spicule is given, so that the actual ratio which appears to nts to be of systematic value is not available for comparison. In describing the new species, ne have stressed what have appeared to 11 s to be the main distinguishing specific characters-the shape and relative length of lips and interlabia, width of the head relative to the body, the ratios of the oesophagus and of the diverticula of the alimentary canal to the body length, the ratio of the spictules to the body length, the position of the vulva, and the arrangement of the male caudal papillae. The two last-mentioned features are similar in several different species, so that they alone are insufficient for diagnostic purposes.

Types of the new species have been deposited in the South Anstralian入userm.

\section*{I.ist of Parasites arranged undel their Hosts}

Pimalacrocorax carbo Limn. (var. novae-hollandae). Contracaechm spiculigcrim Rud. (Lower Hawkesbury R., N.S.W.; Tailem Bend, S. Aust.). C. simulabiatum n. sp. (Eidsvold, Qld.).

Phaiacrocorax fuscescens Víhill. Č. spiculigerum Rud. (Kangaroo Island). F'hatackocorax varlus Gmelin, Contracaecum spichligcrinn Rid. (Perth, W.A.). Phatacrocorax metanoleucus Vieill. Contracaccum spiculigermin Rud. (Hawkeshury R., N.S.W., Thompson R., Qld.; Adelaide, Otroroo, and Encounter Bay, S. Aust.). C. simulabiatum n. sp. (Tailem Rend, S. Aust.). Pbaracrocorax sulcirostris Brandt. Contracaccum spichligerime Rud. (Thompson K. and Burnett R., Qld. ; Adelaide).
Plotus sovae-mollandiar. Could. Contracaecum simulabiatum n. sp. (Burnett R. and Thompson R., Qld.). C. tricuspe (Ged.) (Australian Museum; Burnett R., Qld.).
Iflechyus conspicillatus Temm. Contracaccum bancrofti 11, sp. (Burnett R. and Thompson R., Qld.; Sydney Zoological Gardens, from N.S.W.; Morgan. \(\therefore\) Aust.), C. clelandi n. sp (Perth). Contracaecum sp.. larvae and immature worms (Perth; Tailem Bend, S. Aust.).
Notophoyx pacifica Lath. Porrocaccum reticulatum Linst. (Thompson R. and Eidsvold, Qld.). Contracaecum spiculigerum Rud. and Contracaecum sp. (Thompson R., Qld.).

Notophoyx noyae-hollandiae Lath. Contracaccum spiculigerum Rud. (N.S.W".), Contracaectim sp., fragments and larvae (Tailem Bend, S, Aust.).

Nycticorax caledonicus Gmelin. Contracaccum spiculigerum Rud. (Tailem Bend, S. Aust.).
Botaurus poeciloptilus Wagl. Contracaccum spiculigerum Rud. (Orroroo S. Aust.).

Xenorifyncirus asiaticus Lath. Contracaccum sp. larvae (Zoological Gardems, Adelaide, from Murray R., S. Aust.).
Egretta alba Less. Porrocaccum reticulatum (Linst,) (Thompson R, Qld.). Contracaecum sp., larvae (Tailem Bend, S. Aust.).
Chenonetta jubata Lath. Hetcrakis chononettae Johnst: (Sydney Zoological Gardens, from N.S.W.).
Anas doscitas Linh. (Domestica Briss.). Contracaecum microcophalum (Rud.) and Heterakis isolonche Linst. (Lord Howe Island).
Anas superciliosa Gmelin. Contracaechm microcephalum Rud. (N.S.TV.).
Eudyptula minor Forst. Contracaccum sp., larya (Brighton, S. Aust.).
Axous srolidus Línn. Contracaecion magnicollare n. sp. (North-11 est Islet, Great Barrier Reef, Qld.).

\section*{Contracafeust spiculigerum (Rud.)}

Fig. 1-2
We have identified this species from Phalacrocorax carbo (Eidsvold. Qld.; I.ower Hawkesbury River, N.S.W.; Tailem Bend, S. Aust.) ; P. sutcirostris (Adelaide, S. Aust.; Thompson R., Qtr., coll. Dr., Mackerras); P, molunoleturns (Encounter Lay, S. Aust., coll. Dr. Cleland; Orroroo, S. Aust., coll. J. T. Gray ; Itawkesbury River, N.S.W., coll. Dr, Cleland; Thompson River, Qld... coll. Dr, Mackerras; Adelaide); P. fuscescens (American River, Kangaroo Island); Notophoyx pacifica (Thompson River, Qld, coll. Dr. Mackerras) ; N. nor'arhollandiae (N゙.S.W.); Rotaurus pocciloptilus (Orroroo, S. Aust., coll, J, T. Gray) : Nycticorax calcdonicus (Tailem lend, S. Aust). Some broken specimens from Phalacrocorax varius from Perth, W. Aust., are also assigned to this species.

This species was described very briefly by Rudolphi (1809), Schneider, in 1886, gave a longer illustrated accotint, but omitted measurements except the total length of the worm. Since then the parasite has been recorded from many different species of birds from various parts of the world. One of us recorded it from Phalacrocorav sulcirostris (Johnston 1912, 74; 1912 b, 108; 1916, 49) from Southern Queensland; and as Ascaris spiculigera? (1912, 75) from \(I_{1}\) carbo from Sydney. Ascaris sp. of Johnston (1912b, 108) from P. carbo from N.S.VV. is the same species. The presence in Pelctanus conspicillatus from Sydney of parasites, apparently referable to the species, was also mentioned (Johnston, 1912, 74) ; and these nematodes were also quoted as Ascuris spiculigera? (Johnston, \(1912 \mathrm{~b}, 108\) ), but our re examination of the material indicates that they belong to a closely related new species, C. bancrofti. Astaris spiculigera of Johniston (1912, 74; \(1912 \mathrm{~b}, 108 ; 1916\), 49) from Plotte nozde-hollandiak, Burnett River, Queensland, has been re-examined and is now identified as a yery closely allied new species, Contractocum simulabiatum, together with \(C\). tricuspe (syn. Ascaris sp. Krefft, 1873).
C. spichligeram appears to us to be one of several very closely related species fornerly confused under that name. Rudolphi's type (1809) of Ascaris spiculigera cante from a pelican, Pclecanas onocrotalus, bit in 1819 he recorded it from Pclecanus carbo, P. cristatus, and P. pygmacus (p, 290), as well as from P. braziliensis and \(P^{3}\) aquila ( p .662 ). Most of the identifications made subsequently have been based on specimens from cormorants and other birds. The re-examination of Rudolphi's type material would be necessary to determine the true C. spiculigerum. The available descriptions are, however, few and incomplete and the following account based on Australian material is offered.

Length varying greatly, even among adult specimens. Males, \(14-26 \mathrm{~mm}\); females, \(16-55 \mathrm{~mm}\). Body tapering in anterior third. Head narrower than succeeding part of body. Lips as described by Schneider (1866), with characteristic antero-lateral projections and without lateral culicular flange. No dentigerous ridge seen, though figured by Linstow. Interlabia nearly as long as lips, sometimes with bifid tips. Annular striations forming marked "collar" at base of lips. Oesophagus \(1: 4 \cdot 6-8 \cdot 8\) of body length, generally \(1: 7\). Oesophageal appendix and intestinal caecum respectively \(1: 3-5\) (usually \(1: 3 \cdot 7\) ) and \(3: 4\) of length of oesophagus. Nerve ring about midway between head and anterior end of caecum; cervical papillae just behind that level.


Fig 1-2-Contracaccum spiculigerum: two views of head. lig. 3-5-Contracacum hancrofi:- 3 and 4, two views of head; 5, male tail. Fig. 6-8-Contraccecum sinulabiatum: 6 and 7, two views of head; 8, male tail. Fig. 9-10- Contracaccum clelaudi: 9, head; 10, male tail. Fig. 11-12 Contracaecum magnicollare: 11, head; 12 male tail. Fig. 13--IIcterakis chenonctac, ventral view of male tail. Fig. 1 and 2 to same scale; fig, 3 to 12 to same scalc. a, alae; c cloaca; s. spiculc.

Malc-Arrangement of caudal papillac exactly as described and figured by Schneider; in a few specimens the arrangement of the three pairs of lateral postanal papillae varied slightly. Spicules usually \(1: 3 \cdot 6\) to \(1: 4 \cdot 2\) of body length. In one collection from Phalacrocorar carbo (Tailem Bend), and in the material from Notophoyx novac-hollandiae the spicules were as short as \(1: 7\) body length, but in the appearance of the head and in the other ratios these specimens agreed with C. spiculigerum.

Female-Vulva between a third and a quarter body length from head end.

\section*{Contracaecum bancrofti n. sp.}

Fig. 3-5
From Pelecanas conspicillatus from Burnett River, Qucensland, type locality (coll. Dr. Bancroft) ; Thompson River, Queensland (coll, Dr. Mackerras):

Morgan, South Australia (coll. Dr. Walker) ; and from Sydncy Zoological Gardens, from New South Wales. Males up to 24 mm . long; females to 30 mm . lips with short antero-lateral projections. Interlabia nearly as long as lips ; with bifid ends. Head narrower than body succeeding it; striated cuticular "collar" well developed.

Malc-Breadtl \(\cdot 64 \mathrm{~mm}\).; oesophagus 3.2 mm . long, \(1: 6\) body length; oesophageal appendix \(1: 5\), and intestinal caecuin \(3: 4 \cdot 8\) of oesophageal length, nerve ring 98 mmz , from head in 20 mm . long worm; cervical papillae at same level. Spicules \(2 \cdot 2-2 \cdot 8 \mathrm{~mm}\). long, \(1: 7-9\) body length, alate, with blunt tips. Tail \(\cdot 18\) \(\cdot 2\) min, long, conical. Three pairs dotuble postanal papillae and about twentythree pairs preanal papillae, latter arranged in a straight row on either side of ventral surface, the first two pairs adanal, and the first ten papillae on each side larger and closer together than the remainder.

Fcmalo-Oesophagus \(1: 7-10\) body length; intestinal caccum \(3: 3 \cdot 7-4 \cdot 5\), and ocsophageal appendix \(1: 4\) of oesophageal length. Tail conical, 34 mm . long. Vulva at \(4: 9\) body length fron head. Eggs subglobular, about \(54 \mu\) by \(58 \mu\).

The male tail of this species most closely resembles that of C. wicropapillatum (Stoss.), but the species differs in the length of spicules, size of eggs, and position of the vulva. C. bancrofti differs from C. spiculigertm in the shape of the lips (antero-lateral projection not so marked in the former), in the length of the spicules and in the arrangement of male papillae.

Contracaecum clelandin. sp.
Fig. 9-10
From Pelecamus conspicillalus from Perth, West Australia, coll, Dr. Cleland. Males. \(27-30 \mathrm{~mm}\). long; females, 32 mm . TIead much wider than long, interlabia about threc-quarters length of lips; papillae on lips just below leyel of anterior ends of interlabia. Body following head much wider than head. Oesophagus \(1: 6 \cdot 1-1: 7 \cdot 5\) body length, oesophageal appendix \(1: 3 \cdot 5-5\), and intestinal caecum \(1: 1 \cdot 2-1-3\), of oesophageal length. Nerve ring 44 mm . from head, just in front of cervical papillae.

Male-Tail tapering suddenly, 8 mm . long; a pair large postanal caudal papillae, followed by four pairs, as in fig. 10 ; over twenty pairs preanal. Spicules \(1 \cdot 3-1 \cdot 4 \mathrm{nmm}\). long, broadly alate.

Femalc-Vulva 12 minn from head, at \(1: 2.7\) body length.
The species is distinguished from \(C\). bancrofti and \(C\). spiculigerum by the relative breadth of the head, the shortness of the spicule, as well as the number and arrangement of male caudal papillae.

\section*{Coritracaecum sinulabiatum \(n\), sp .}

\section*{Fig. 6-8}

Front a darter, Plotus nozae-hollandiae (type host) from Burnett River (coll. Dr. Bancroft), and Thompson Riser, Queensland (coll, Dr, Mackerras); from Phalacrocorant carbo from Eidsvold, Oucensland (coll. Dr. Bancroft); and \(P\). molanolencus, Tailem Bend, South Australia.

Males, 14-16 mm. long ; females, \(18-20 \mathrm{~mm}\). I Head about same width as succeeding body. Each lip with antero-lateral ear-like projections; in addition, below these, prominent lateral cuticular flanges. Interlabia broad; tip widened and frequently bifid, reaching betwecn antero-lateral projections and lateral flanges of adjacent lips. Head about three-quarters as long as wide. Papillae on lips at level of anterior ends of interlabia. Oesophagus \(2 \cdot 08-2 \cdot 24 \mathrm{~mm}\), long in male, and \(2 \cdot 36 \mathrm{~mm}\). in female, \(1: 7-8 \cdot 6\) body length; intestinal caecum \(3: 4\) and oesophageal appendix \(1: 2 \cdot 9-3 \cdot 7\) of oesophageal length. Nerve ring \(44-48 \mathrm{~mm}\). from head, just anterior to cervical papillae.

Male-Tail conical, 15 mm . long; spicules \(1: 8 \cdot 3-9 \cdot 5\) of body length, with blunt tips. Between twenty and thirty pairs preanal papillae and seven pairs postanal, arranged as in C. spiculigerum.

Femole-Tail conical. Vulva at \(1: 4 * 4-4 \times 5\) body length.
The species differs from \(C\). spiculigerum chifefly in the possession of lateral flanges on the lips, in the shortness of the spicules, and in the more anterior position of the vulva.

\section*{Contracaecum magnicollare n. sp.}

\section*{Fig. 11-12}

From a noddy, Anous stolidus, from North-West Islet, Capricorn Group, Great Barricr Reei, Quecnsland. Four worms present, two young males 8-11.6 mm. long, and two young females \(9 \cdot 7-10 \cdot 2 \mathrm{~mm}\). long. Head about twice as wide as long, and rather narrower than succeeding body. I.ips with anterolateral projections but no lateral flanges. Papillae on lips just below level of tips of interlabia; latter four-fifths length of lips. Annulated "collar" following lips well developed, even in young specimens. Oesophagus \(1: 4 \cdot 8-6 \cdot 1\) body length; intestinal caccum \(3: 4 \cdot 2\), and oesophageal appendix \(1: 3 \cdot 5\) oesophageal length. Nerve ring 35 mm , front head, just anterior to cervical papillae,

About twenty to twenty-two pairs of preanal papillae in male, the four most posterior papillae of each side closest together. Six pairs postanal papillae, their arrangement resembling that in C. microcephalum. Vulva \(1: 2 \cdot 2-1: 2 \cdot 5\) body length front head. Both females young, ripe eggs not present.

The species resembles \(C\). microcephalum and \(C\). punctatum in the male tail, but differs from both in length of the spicules.

\section*{Contracaecum microcephallum (Rud. 1809)}

This species was taken from the caccum of a domestic duck. Anas bochas, from Lord ITowe Island; and from a black duck, Anas superciliosa, from New South Wales.

Male 18 mm.. females \(18-25 \mathrm{~mm}\). Head half as long as wide, slightly narrower than succeeding body. Lips with wide earlike antero-lateral projections. Interlabia bifid in all specimens, three-quarters length of lips; papiltae on lips at level of fips of interlabia. Oesophagus 1:7-7.5 body length; interstinal caccum \(1: 1.4\) and oesophageal appendix \(1: 6\) oesophageal length. Spicules \(1: 7\) body length. Vulva a third body length from head.

Contracaecum tricuspe (Gedoelst 1916)
From Plotus notac-hollandiae from the Burnett River (coll. Dr, Bancroft) and from the Australian Musenm (coll. Krefft, also from Burnett River). Krefft (1873) liad recorded it as Ascaris sp. Spicules in our specimens about \(1: 4 \cdot 7\) body length, instead of \(1: 3\) as given by Gedoelst, and the two pairs of small papillae figured by that anthor just posterior to the cloaca are in our single male specimen merged intu one pair of very large papillac. In other respects our specimens agree closely with those described by Gedoclst.

\section*{Contrachecum spp, larvae}
(1) From the jabiru, Xcuorlynchus asiations; length 24 mun., width 8 nm.; no lips present, larval tooth prominent. Oesophagus \(3 \cdot 2 \mathrm{nmm}\). long, intestinal caecum 2.56 mmı. oesophageal appendix \(\cdot 56 \mathrm{~mm}\). Tail 24 mm . long.
(2) From the egret, Egretta alba (Tailem Bend, S. Aust.). Length 8 - 10 mm.; larval tooth and three low lips present; ocsophagus -88-1. 6 nnm ; ossophageal appendix \(\cdot 4-52\) minc, and intestinal caecum \(-56-1 \cdot 12 \mathrm{mmn}\), in length.
(3) From Pelccanus conspicillatus (Tailem Rend, S. Aust,), Length 8.2 mm , width \(\cdot 4 \mathrm{mmri}\); three low lips present. Oesophagus 1.04 mm ; intestinal caecunn -72 mm, and ocsophageal appendix 64 mm. in length. Tail 12 mm . long.
(4) Larval Contracaecum spp. were also obtained from Notophoy-r noraehollandiac (Tailem Bend, S. Aust.; and from Eudyptula minor (Brighton, S. Aust.), latter worms 2 mm . in length.

\section*{Contracaecum spp.}

Worms and parts of worms unidentifiable specifically were taken from Pclecanus conspicillatus (Perth, W. Aust., coll. Dr. Clelaud); Notophoys pacifica (Thompson River, Queensland, coll. Dr, Mackerras) ; Notophoyr nozachollandiac (Tailem Bend. S. Aust.) and Plotus nozac-hollandiac (Australian Muscum, from Qucensland).

Porrocaecum reticulatum (Liist. 1899)
Material consists of two females; one 80 mmn . long, from Notophoys pacifica from Eidsvold, Queensland (coll. Dr. Bancroft), and the sther 65 mm , long, from the same host species from the Thompson River, Queensland (coll. Dr. Mackerras) ; also a malc 35 mm , long from Egretta alba, Thompson River, Queensland, We find on the male tail six pairs of preanal papillae and three pairs postanal, the most anterior of the latter group having (as described by Hsü, 1933) double nerve endings. Spicules in our male 41 1mn. long, gubernaculum \(\cdot 1 \mathrm{~mm}\).

\section*{Heterakis chenonettae Johinston 1912}

Fig. 13
Several worms belonging to this species were obtained from the caecum of a wood duck, Chenonctta jubata, from New South Wales (Sydney Zoological Gardens). A re-examination of the type matcrial shows that a revised description of the male tail is necessary.

Spicules equal, \(4-42 \mathrm{~mm}\), long ; sucker \(\cdot 8\) monn. diameter, posterior border .2 mm . in front of cloaca; cloaca 25 mm . from tip of tail. Alae commencing just anterior to sucker, extending to within \(\cdot 11 \mathrm{~mm}\), of posterior end of body, leaving narrow spinc-like tail. Two pairs pedunculated papillae at level of sucker; two pairs sessile adanal papillae; cight pairs pedunculate papillac in alae, arranged as in fig. 13.

In other features our specimens agree with the original description (Johnston 1912). The species differs from \(H\). altaica Spanl 1929 in being smaller, in having a rather longer ocsophagus and relatively shorter spicules, and in the arrangement of papillae on the male tail. It most closely resembles \(H\). papillosa Bloch. differing chiefly in the slape of the alae and sucker, and in the number of papillae on the male tail.

\section*{Heterakisisolonche linstow 1906}

Several specimens agreeing closely with \(H\). isoloncine Linst. as described and figured by Li (1933), were taken from the caccum of a domestic duck. Anas boschas, from Lord ITowe Island. Baylis (1939) has recorded this species from Brisbane, where it was taken from a crested pheasant, Chersolophus amhorstioc, an introduced bird.

\section*{Litterature}

Paylis, H. A. 1934 Parasitol. 26, 129-132
(ram, E, B. 1927 L.S. Nat. Mins., Binll. 140
Johnston, T. H, 1912 Froc. Roy. Soc, Qld., 24, 63-91
Johnston. T. H. 1912 b Emu, 12, 105-112
Krefft, G. 1873 Tr . Ent. Soc. N.S.TV., 2, (1871), 206-232
Li, H. C. 1933 Chinese Med. Jontr., 47, 1,307-1,324
Romolpif, C. 1819 Entozoorum synopsis. Berlin
Scifeider, A. 1866 Monographic der Nematoden, Berlin
Yorke, W., and Maplestone, P. A. 1826 The nematode parasites of vertebrates. [.ondon

\title{
RESULTS OF THE HARVARD-ADELAIDE UNIVERSITIES ANTHROPOLOGICAL EXPEDITION, 1938-39 ANALYSIS OF AN AUSTRALIAN ABORIGINAL'S HOARD OF KNAPPED FLINT
}

\author{
By NORMAN B. TINDAL and H. V. V. NOONE
}

\begin{abstract}
Summary

The following is a contribution to the results of the Harvard-Adelaide Universities Anthropological Expedition of 1938-39, which was made possible by a generous grant from the Carnegie Corporation of New York.
\end{abstract}

\title{
RESULTS OF THE HARVARD-ADELAIDE UNIVERSITIES ANTHROPOLOGICAL EXPEDITION, 1938-39
}

\title{
ANALYSIS OF AN AUSTRALIAN ABORIGINAL'S HOARD OF KNAPPED FLINT
}

\author{
By Norman B, Tindale and H. V. V. Noone
}
[Read 12 June 1941]
The following is a contribution to the results of the Harvard-Adelaide Universities Anthropological Expedition of 1938-39, which was made possible by a generous grant from the Carnegie Corporation of New York.

The 74 pieces (A. 27556 in the South Australian Museum) of light brown and grey flint dealt with in this analysis were found in June 1939 by D. M. Tindale on an aboriginal site of recent occupation among coastal dunes near Eucla, a telegraph repeating station, now abandoned, situated where the eastern border of Western Australia meets the shore of the Great Australian Bight. The pieces had been buried under blown sand of the coastal dunes but were lying in such a position that evidently they forned, at one time, a compact parcel which for some reason had been abandoned. This fact and the semi-finished appearance of most of the flakes, together with their presence in that particular locality, indicated that the collection was a hoard or trade parcel which was in transit from the known flint sites on the coastal cliffs one day's journey to the East. 'These deposits, exposed by the weathering away of the cliff face of the Miocene limestone beds of the Nullarbor Plain, provide nodules of an excellent grade of flint in a fresh or "green" condition.

From the cultural point of view the Mirning, the present-day ahorigines of the locality, are amongst the most primitive of the people in Australia, their habitat being about 750 miles south-westward beyond regions where edge-ground stone axes are made, and at least 500 miles away from areas where even "traded" axes of that kind have penetrated. As the find apparently represents a collection of material made during a flint knapper's expedition, it was expected that such an unique opportunity as was presented by these specimens would revcal interesting characteristics of the technique practised on flint material by a people living at what might be termed a palaeolithic-level of culture.

IIcre it is perhaps as well to emphasise that during the semi-developed stages of a stone industry the tools produced are, for several reasons, restricted to a few types which serve many purposes. Pieces, therefore, which we term "scrapers," "adzes." "points," etc., in this survey are only named as such for convenience and in order to conform to established classification. Two typical worked stone tools of the Eucla area. of types in use up to the present day are shown as fig. 1. They are made of similar flint to that found in the hoard. An example made of material similar to that of this hoard has been found 180 miles away to the north at Wardaruka ( Boundary Dam), and other examples have been noted at Ooldea (200 miles east).

The notes below are the result of our preliminary analysis of the pieces. The accompanying diagrans, fig. 2 , will serve, we hope, as a guide to the nomenclature employed.

\section*{Description}

Viewed as a whole, the 74 specimens appear the product of knapping at least four nodules of flint-light brown, reddish brown, grey and blackish grey pieces
being distinguishable. Two of the pieces are "flake implements." There are no cores or coroid implements, and the parcel consists of flakes-a few reaching the "blade" category-but two specimens are actually more in the nature of blocks. A fow picces have been crackled by heat.

Twelve of the pieces are really large fragments, as they lack the platform and bulb end. Onc of these shows a certain amount of trimming at one end, approaching the shape of an "ogival" or nosed-scaper. Some of them are such as would be handy pieces mounted in gum for cutting purposes. Eight of the flakes show a certain amount of trimming on the platform. These last, as well as the two implements, will be referred to separately in more detail.


Fig. 1
\(a-c\), flint implement fron Eucla (A. 27550 in S.A. Muscum); d-f, ditto from hoard of knapped flint (A. 27556).

Flake Analysis
There are left 52 pieces which bear the platform intact, and are thus suitable material for analysis. Some 19 of this group show trimming, or squilling of sorts at one or other part of the margin, and a few of them may have been called into use or more likely touched up during the knapping operation, but they are included in this group to provide a more adequate sample for study, the
secondary attention not having been sufficient to obscure the characteristic major features of the flakes. There are, however, four specimens with smashed bulbs and seven pieces with snapped-off ends-as also one with heat-crackled tip-which are in consequence not included in some of the analyses.

Platform-A simple prepared, that is a flattened, platform was usually employed. There is only one instance of the impact spot being on the crust. Very little crushing of the comparatively brittle cortex has taken place. The bult) on this specimen is of the diffused form. On the other hand, some 13 flakes show bruising or pulverising at the impact spot, or at the intersection of the platform and bulb, i.e.; the bulb-top. Of the other 38 pieces, 22 show clean and unmarked platforms, and 16 bear small arc-shaped cracks at the impact spot forming what may be described as a ghost, or incipient, cone (fig. 3a). There were no genuine examples of the platform with scveral facettes.

As regards the depth of the platform, i.e., the distance between the inner face edge at the bulb-top and the outer face edge which is directly opposite, this reaches 1.6 cm . in one case whilst in one or two specimens it is too small for


Fig. 2
Diagrans illustrating nomenclature ennployed.
ordinary measurement. I division showed 17 flakes with depth of platform at 5 mm . or under, and 35 at over 5 mm .

The above cvidence suggests an absence of regular procedure as to the treatment and form of the platforn, except that a plain (simple) levelled platiorm over 5 mm . in depth was more frequent.

Inner Platform Angl-Taking the angle between the plane of the plat form at impact spot and the planc of the adjacent bulbar, or inmer face, to a length of 2.5 cm ., it was fonnd that six pieces showed an angle below \(100^{\circ}\) (low), while 32 were from \(100^{\circ}\) to \(115^{\circ}\) (medium), and 10 above \(115^{\circ}\) (high), the highest being \(125^{\circ}\). The deepest platform of 1.6 cm . mentiones above was at a low angle.

The evidence shows that, except for most of the work being done at an angle between \(105^{\circ}\) and \(115^{\circ}\), the worker knapped off any angle within a range of some \(35^{\circ}\), and had no particular rule.

Bulbs-It was found that the more or less curved edge which intersects the bulb and the platform, where the fracturing that separated the flake from the
nucleus commenced, was of large radius (diffused, fig. 3 b) on 21 pieces and of small radius (salient, fig. 3 c ) on 27 . These forns of bulb-top do not show any dependence on the angle of the platforms, as of 32 pieces of medinn angle platform. 15 have diffused and 17 salient bulbs, while of the high angles three were diffused and seven were salient. The salient bulb is in a slight majority, nearly \(60 \%\), but is not characteristic of the worker.

Multiple Bulbs, etc-Multiple bulbs occur in five pieces and are salient except in one case. Three pieces bear more of a pyramidal than a conic form of bulb.

Frailhures (chafed or searred miarks on bulb) are comparatively plentiful, being found clearly on 23 pieces.

Conchoidal ripplos, as also fissures on the bulb, are not much in evidence.
Six of the pieces show checked (step, resolved) flake scars at the butt on the outer surface (fig. 3e). These may be the result of ineffective blows due to clumsiness, irregularity of material or unfavourable surface contour.

Six flakes end with a hinge fracture.
Dimensions-The lengttr of the flakes ranges from 3.5 cm , to 8.5 cm . The commonest lengths are, respectively, \(5 \mathrm{~cm} ., 7 \mathrm{~cm}\). and 6 cm ., and these three sizes comprise nearly \(60 \%\) of the total number of complete flakes

Measuring the greatest width of each piece the range is found to be 2.5 cm . to 7.5 cm . and the majority ( nearly \(60 \%\) ) are between \(3 \cdot 5\) and 5 cm . In this connection it should be botne in mind that we are here concerned with selected flakes. rejections having been left on the working site, and it must be assumed that the above show the dimensions of pieces thought suitable for tool production.

\section*{Secondary Working}

T'wo pieces which are definite flake implenents have been, mentioned. One has a truncated isosceles triangular outline and the appearance of an end-scraper, the wings of which were the working edges. Its dimensions are 7.5 cm . long by 5.5 cm , at the scraper end. The narrower butt-end has been worked by long retotuches, and the striking off of the platforn and bulls has been done by one blow, Sone rough white cortex occupies about one-fifth of the outcr face.

The other implement (lig, 1 d-f ) appears to be a form of large flake adze such as wonld be monnted axially in gum at the end of a wooden haft and is roughly a semi-dise in outline, being \(9 \mathrm{~cm} . \times 6 \mathrm{~cm}\). . The marginal shaping and trimming has in its course removed the platform and most of the bulb. About one third of the outer face retains the rough white cortex.

Both implements are made on stont flakes of dull brown flint, and in fact the material is so sinilar in texture that they appear to he off the same nuclens, The outstanding attention given to these inplements, as if they were one of the main reasons for the knapping, compled with the likelihood that they were deriyed from the same mucleus and the fact that they still retain a fair proportion of the module crust, warrants the deduction that their maker was a rapit and deft stone worker.

In addition to these two implements there are eight Hakes which show more or less trimming of the platform (fig 3 d ), and these bear definite signs that this work was done after detaching the flake from the nuclens. In appearance they are somewhat similar to the "facetted butts" of Europe which are said to be the peculiar product of the "tortoise corc." These cight flakes, however, cannot be this explained, the facetting cither being subsequent to, or, where the impact spot is plain and intact, independent of the knapping. We therefore view these pieces as (1) possibly providing a working edge which had been trimned on the butt because of its suitable formation; or (2) as having been semi-trimmed about the
time of knapping with a view to making them into more definite tools when required.

The above 10 pieces show the secondary work and trimming to have been done by the removal of bold and well-placed shaping scales followed by chipping and a longish retouch. There are few signs of a "step" (or "checked") retouch having been employed, and none of the abrupt or the pressure trimming kind. It should not be overlooked, however, that the nature of the find is such as to imply that the pieces are incompletely finished material.

\section*{Discussion on Knapping Technique Employed}

Thirty-four specimens of the flakes are found to be thinner at end than at butt, and taking into account the seven snapped pieces, as also six which end with a hinge fracture, a thin-ended flake may be taken as the usual result of this knapper's work. Twenty-one of the specimens show some form of median ridge on the outer face, but only 12 of these end in anything approaching a


Fig. 3
Details of Specimens from Hoard
a, incipient or "ghost" cones; b, diffused bulb; c, salient bulb; d, sulssequent trimming of platforn, resembling "facetted butt"; e, checked flake scars at butt
point. Twenty-one other pieces bear more than one ridge and 10 have none at all. There would thus seen to have been no definite desire to make pointed flakes. and in this comection it may be mentioned that, except for a single specimen (pirri) of local material found on a Eucla site (which may be a relic of an earlier period), such innplements as points are not now used in the Fucla territory. In regard to what is achievable with pointed flakes in the more advanced northern culture areas, it may not be out of place to mention that we have seen one magnificent single-ridged specimen from Wave Hill, North Australia. It is in a very pale rose quartzite of a length of 27 cm . (actually about 27.5 cm . as tip is broken off) of almost perfectly flat lanccolate shape and obtuse triangular transverse section, the width near butt being 6.3 cm . This is a 1 riumph of Australian knapping, as no trimming was necessary to make the shape perfect. The inner platform angle is \(110^{\circ}\). The source of the material from which such blades are made is known to be in the Katherine area of North Australia,
but the technique has not yet been studied. Motion picture studies of such workmanship as this, with, just as important, running commentaries by experienced eyewitnesses, as also of hammer-dressing, polishing, "pressure" denticulating edge, and each tribe's knapping techmique are highly desirable. Australia's unique preservation of so many different methods of stone working will not last much longer.

Careful inspection of the direction of the knapping blows that detached the earlier flakes from each of the 52 pieces, as shown by the flake scars on the outer face, reveals that on 25 picess all the blows were delivered from the same direction, whilst 26 bear scars showing that the blows were from more than one direction. One picce is all crust on the outer face.

The above facts would seem to show that the Eucla worker (or workers) did not aspire to the making of long flakes, but the 25 pieces each worked in the same direction not only imply an appreciation of a common platform but the realisation that a carefully shaped face on a nuclens, bearing the right ridges and contour, is the major essential to successful knapping. This is further borne out by the fact that most of the flakes are practically frce of cortex, and that no less than 21 of the pieces show a median ridge. It is unfortunate that no nucleus is included in the hoard. Whilst the evidence of a repeatedly used prepared simple platform suggests that a sort of prismatic nucleus was eventually formed, the number of flakes with diversely produced ridges, assuming they do not all represent prelininary dressing, should mean the formation of globular or polyhedral cores also. The use of a common platforn and the production of thin-ended flakes entails: (a) some dressing of the nuclear face; (b) simultaneous use of more than one platform on the nucleus; or (c) commencement of the work on a high-angled platform or conically dressed nucleus in order to counteract the consequent sub-pyranidal form that the nucleus assumes after several flakes have been removed.

Stone was probably used as the knapping and trimning tool. One cannot definitely say that comparatively soft material was not also employed. We expect that a granite pebble or a flint nodule was used, as these are the only kinds of suitable stone material available within a radius of 250 miles.

It will be noticed that we have not made use of the platform analyses in our above remarks. Our experience in experimental knapping, as also that gained by one of us of stone work done during his sojourns amongst the aboriginal tribes still using stone has led us to believe that, provided the impact point on a nucleus of good material offers sufficient obstruction (a correctly delivered blow suitably placed being assumed), little else but a favourable range of angularity is required of the platform. The shape of the knapping tool at the spot where it cones into contact with the nucleus is apparently a more intimate influence on the nature of the fragment detached. The careful sclecting of the exact portion of the hammer that is to come into contact with the nucleus inmediately before the blow is struck is a noticeable characteristic of present-day aboriginal knapping. 'There is also a frecdon from working restrictions which is also revealed by the analyses given above in regard to bulbs and platforms, and this exposes the minor piart actually played by the platform. The major factor in knapping technique is shown to be the contour and ridging of the face of the nucleus from which the desired fragment is detached-together with the position of the point of impact in regard to same, these being the main controlling factots of block, flake or blade form.

\section*{Conclusions}

We class the Eucla work in flint as that of a developed flake industry producing good flakes at the "incipicnt blade" stage, and we consider the parcel the product of one or more practised specialists, who could work on a platiform angle range of \(35^{\circ}\).

Simple flat platforms were prepared but no strict rule of detached platform angle was followed beyond \(60 \%\) ranging between \(105^{\circ}\) to \(115^{\circ}\), and as to platiorm size, except that it was usually over 5 mm . This contrasts with the finding of one of us (Tindale 1937) amongst Tasmanian implements, where the angle is usually over \(110^{\circ}\), and commonly even \(120^{\circ}\) in the case of the most recent.

Preparation by decortication of the nodule was eflected to produce a good nuclens. The face of the nuc'eus was prepared and a common platform utilised, though this higher technique was not improved to a full development. A salient hulb, \(60 \%\), and crallures are to some extent characteristic. Thin-ended flakes ranging from 5.0 to 7.0 cm . long by 3.5 to 5.0 cm , wide are to a slight extent, \(60 \%\), characteristic. It would seen that thongh not entirely dependent on secondary work to obtain the desired tool shape, its enployment was still to a fair extent necessary to complete the tool. In trimming well-placed shaping scales were followed by finer chips and the long retouch. There are no signs of pressure trimming.

It may not be out of place here, in order that the workmanship of the hoard should be appreciated, to draw attention to the great irregularities, almost amounting to inconsistencies in some modern aborigines' treatment of stone for their requirements. Any random piece of suitable stone may at times be used without further treatment and, if at all trimmed, this may in some cases be actually done with the teeth. What might he described as professional work may be found alongside examples of very indifferent work in the same group. or even done by the same person. When a cutting chip of sorts is required. sutch as in the bloodletting ceremony, the procedure nay be little more than hitting one stone with another and selecting from the sharpest fragments so obtained. A suitable piece with sharp edge, as knapped, is brought straight into use, and what might be scientifically classed as "secondary work" or "trimming" is actually re-edging. This re-edging. moreover, may be done with the teeth, stones, a spear-thrower, a throwing stick, or any other convenient article such as a hunting boomerang, if hard enough. As to the aboriginal use of the re-edged tool, the plain face used as the plationm upon which is applied the re-edging blow or force, is invariably the face nearest to the material worked upon when chopping or scraping. Some favourite tools are so repeatedly re-edged that the working edge faces are at a marked obtuse angle. whilst a few others are so often used as to show a distinct polishing of the working edge. In one case, a pebble chopper (A. 28408) from a Murundian site, at Moana, South Australia, the obtuse angle shown by the faces forming the working edge, was as high as \(140^{\circ}\) when discarded.

\section*{Reference citel}
'Tindale, N. F. 1937 Records of South Aust, Museum, 6, 36

\title{
AN EXAMINATION OF SOME SOILS FROM TROPICAL AUSTRALIA
}

\author{
By J. A. PRESCOTT and H. R. SKEWES, Waite Agricultural Research Institute
}

\section*{Summary}

Comparatively little information is generally available concerning the soils of tropical Australia, and until relatively recently few samples had been collected and little field work had been done. The present report is the result of an examination of samples collected during field work carried out in 1933 and 1937, following a preliminary visit to tropical Queensland in 1929.

\section*{AN EXAMINATION OF SOME SOILS FROM TROPICAL AUSTRALIA}

By J. A. Prescott and II. R. Snewes, Waite Agricultural Research Institute
[Read 12 June 1941]

\section*{INTRODUCTION}

Comparatively little information is generally available concerning the soils of tropical Australia, and until relatively recently few samples had been collected and little ficld work had becn done. The present report is the result of an exaninination of samples collected during field work carried out in 1933 and 1937, following a preliminary visit to tropical Qucensland in 1929.

For some years the Chief Chemist of the Queensland Department of Agriculture has published analyses of soil samples in his amnual report, and some of these naturally relate to the tropical areas. Previous investigations on soils from the Northern Territory have been principally laboratory studies on samples collected by reporters on various parts of the Territory. Ainongst these reporters under the South Australian administration were Brackenbury (1896) and Holtze (1911). Brackenbury's samples were analysed by Cioyder, of the South Australian School of Mines, and commented upon by L.owrie. Holtze collected samples from Coulburn and other islands; these samples were examined and reported upon by Hargreaves, the government analyst in Adclaide.

Soil samples from the 'lerritory have also becn examined from time to time in the laboratories of the Queensland Department of Agriculture. A number of samples from the Pindan country of the Kimberleys was collected by Despeissis about 1911 and subsequently examined hy the government analyst of Western Australia. More recently samples have been collected by the survey partics engaged in fixing the boundary between the Northern Territory and Western Australia.

In all these cases the analyses relate to the major plant nutrients, and little or no information is available regarding the field characteristics of the soils or their physical texture.

The samples dealt with in the present report are derived from three main areas. The first is the Kimberley region of Western Australia, the second is the western and accessible part of Arnhem I and, and the third is the cattle country of northern Queensland, west of Charters Towers. The alluvial soils of the Katherine and Daly Rivers, devoted to cultivation of the peanut, have already been described (Prescott, 1938).

From the fiefd notes taken during the traverses and from other information, an attenpt has been made to construct a picture of the character of the major soil zones and of their general distribution. The fores at work in the determination of the soil zones will also be discussed.

The soils of the Dutch East Indies, which have been described by Mohr (1933, 1934), should afford a useful parallel. Generally speaking, however, those of Anstralia's nearest ncighbours, Dutch Timor and Dutch New Guinea, are relatively little known, and Mohr emphasises climatic conditions and parent rocks rather than the soils themselves. Dutch Timor, with a rainfall varying from 37 to 79 inches and with annual drought periods of from cight monthis to two months, should afford a better parallel with Australia within these limits of rainfall than does New Guinea.

\section*{SOIL-FORMING PROCESSES AND THE CIIMATIC FACTOR}

In considering the principal climatic factors responsible for the soil-forming processes in tropical Australia, it has been found necessary to emphasise three factors:
(1) Amount of rainfall and its efficiency as controlled by evaporation.
(2) Intensity and length of the drought period.
(3) Intensity of daily rainfall.

The first factor, the actual amount of the rain and its efficiency as determined by evaporation, is probably best considered on a monthly basis rather than on an annual basis. The degree of leaching to which the soil may be subject is determined by the balance between rainfall and the loss of soil water by direct evaporation, the transpiration of plants and percolation through the soil. A complicating factor in tropical Australia is the high proportion of run-off, with the result that local topography and micro-relief may be very important in determining the


Map1

character of the drainage through the soil. Quite a number of soils examined were associated with ironstone gravels, and these probably with lateritic parent materials which do not show the sane obvious tendency to podsolisation as do more normal soils. Thercfore, in spite of relatively high rainfalls for three or four months of the year, only the leaching out of calcium carbonate is complctcd. and full leaching with the removal of exchangeable calcium and mobilisation of iron oxides is restricted to swampy areas. If the pH values of the samples recorded later are taken as indices of the degree of leaching, it will be seen that on the whole only a mild degree of podsolisation is achieved.

The second factor, the length and intensity of the seasonal drought, must be considered also in this connection. It is quite possible that the prevailing redness of soils under Mediterranean and monsoonal conditions may be ;determined by this drought period which dehydrates the free iron oxides in the soil, and this
protects them from leaching during the wet season, For maps illustrating the monthly climatic indices expressed in terms of the ratio of rainfall to saturation deficit, and for details of the lengths of the wet season and drought periods, reference may be made to a previons publication in these Transactions (P'rescott, 1938),

The intensity of the rainfall itself, expressed most simply in terns of the amount of rainfall per rainy day, is a very important factor in the tropics in determining the degree of soil erosion, If reference be made to fig. 6 in the Bulletin "The Soils of Australia in Relation to Vegetation and Climate" (Prescott, 1931), the minimum intensity of rainfall in Australia is seen to be of the order of 0.15 inches per wet day, and the maximum intensity is 0.60 inches per wet day. This high value is at some distance inland from the northern coast and must play an important part in detemining the claracter and amount of the runoff in these parts of Australia. The rivers running into the Indian Ocean, the Thmor sca and the Gulf of Carpentaria are essentially storm-water drains, many of them of very large size but dry, except for waterholes and certain reaches, fur the greater part of year. Generally speaking, an average intensity of \(0 \cdot 30\) inches per wet day is required before dranage lines develop in sonthern Australia. The intensity of rainfall in Timor and Dutch New Guinea ranges from 0.53 to 0.83 incles per wet day. In the mandated territory of New Guinea the range is from 0.33 to 0.71 .

It is generally recognised that the most erosive rains are those immediately following a dry period, and it is to be expected therefore that opportunities for such erosion tuder natural conditions will be very common in northern Australia.

\section*{THE SOIL ZONES OF TROPICAL AUSTRALIA}

The major soil zones in tropical Australia n1ay be divided into nine groups. Fach group of soils is associated wifh a characteristic native vegetation, frequently with indicator species of plants, a feature which assists materially in interpreting the reports of other observers when the correlations have once been worked out by investigations in the field. The distribution of these nain soil groups will be found in the accompanying map, in which subdivision of some of the groups has made possible the recognition of twelve principal groups of soils.

\section*{1 Desert sandhills.}

The only part of the Australian sandy deserts occupying any portion of tropical Australia belongs to the northern part of the Great Sandy Desert of Western Australia the boundaries of which have been more accurately defined in recent years by the atrial reconnaissances of the Mackaty expeditions. particularly that of 1933. An outlier of this desert lies between Tanami and Tennant's Creek. This was traversed by Davidson (1905) in 1900 and by Chewings (1930) in 1909 . The sandhills have an east-west trend and are parallel, The primeipal vegetation consists of species of Triodia. Generally speaking, the colour of the sandihills is fiery red and in parts they are very close together; particularly to the north-west of Take Mackay, The red colour of these desert sands shows a higher degree of saturation than can be matched by meanss of the Munsell colour disks as standardised and reconmended for use with soils.

\section*{2 Sails of the desert and semi-desert other than sandhills}

The soils of the semi-desert country, characterised by an Acacia grassland including malga (Acaciu ancura) in the central area and gidgea (Acacia Cambagci, and (rcorginar) towards the Quecnsland border, have not been investigated in any detail. The plains are intersected by ranges and by channel country in the south. Samples of soils from the country between the Granites and Lake Mackay have been previously reported upon (Prescot1 and Skewes, 1938), and there is no reason to believe, from the degree of acidity of this group of soils and from the presence of ironstone gravels, that they are residual from a former wet
climatic period. In this area, instead of a mulga savannah or mulga scrub, the plant association, according to Professor J. B. Cleland,(1) is one of Triodia with small trees and shrubs. These latter include the mallees, Fucalypfus gamophylla, pachyphylla and odontocarpa, several species of Hakra, of which \(H_{+}\)lorea is common, and a number of acacias, including \(A\). coriacea and notabilis. The association is very similar to that recorded by Blake (1938) for the sand plains of south-western Queensland. These soils may be separated for mapping purposes into two groups -the desert loams and the desert sand plains,
3 Stony tablclands and ranges
It has been emphasised above that the character of the rainfall in tropical Australia is favourable to a much greater degree of erosion than is common in southern Australia, This erosion is the result of the more torrential character of the rainfall, and is probably most active following upon the long winter dronght and the firing of the dried grass which has been practised by the aburiginal population for many centiries.

The importance of this aspect of crosion in monsoonal regions cannot be over-emphasised, and the key to the soil-foming processes may well lie in its recognition. It is worth while to fuote from two other observers of this phenomenon. Gantier (1935) vividly deseribes the process in Firench West Africa in the following terms:
"The rains are concentrated into a few months; there is a long dry season, at the end of which the conntry is scorched, naked, powdery, This alternation is obviously favourable to the progress of erosion. "The desiccated rock material offers a minimum resistance to the torrential downomer of the equatorial rains."
Simitarly Voisey (1939), in his summary of the stratigraphy of the Northern Territory, says:
"Alluvial flats occupy large arcas of country and separate rocky hills. This alluvitu has accumulated during the present cycle of erosion owing to the action of heavy monsoonal rains. Disintegrated rock material luas been washed off the hills and deposited in the valleys. so that even small creeks have wide flood planns which end abruptly against hills of almost bare rock."

Ufider these conditions, generally speaking, two types of conntry may be recognised in Australia-the steep-sided ranges and the tablelanfs associated either witl horizontally bedded rocks or witl cappings of ironstone or laterite, some areas may be practically devoid of soil, particularly in the north-west region of Western Australia in the Attlagine. Hamersley and Ashburton soil provinces of Teakle (1938), but elsewhere there may be a thin cover, or on gentle slopes somewhat deeper soils which are very stony. Apart from the north-west region just mentioned, important areas include the kimberley region between the Fing Leopold Range and the Carr Boyd Range, the eastern section of Arnhem Land and the mining country of the eastern half of Cape York Peninsula and to the west of the Atherton Tableland.

The vegetation carricd by these ranges is usually a savannal woodland of scattered encalyptus and poor grasses. If the drought season is at all lengthy species of Triodia bccome dominant. In the Nullagine-Flamersley country of Western Australia Triodia dominates the landscape and trees ate few. In the rugged country of the Cloncurry-Mount Isa district of Queensland. with somewhat better rainfall, the community is one of mountain gum and spinifex (Encalyptus pallidifolia-E. leumophylla-Triodia) and has been alescribed by Blake (1938). This and related communities on stony country extend into the
\({ }^{(1)}\) Privately communicated.

Northern Territory to the north of the Barkly 'Tableland and beyond the McArthur River* Triodtu commumities also occur on the ranges and tablelands in the vicinity of the Victorin River. The vegetation of ranges in the higher rainfall areas of the Kimberleys has beet described by Citrdner (1923), who distinguishes between basaltic savannahs and sandstone savamahs. In neither case is Triodia present, the wet season being of sufficiently long duration to cnsure the permanence of better grasses.

\section*{4 Brorert soils of light terture}

The soils immediately on the wetter side of the desert areas belong to the group of brown soils. They are associated either with an open grassland or sayannah or with a savanah woodland of low trees, the association dejending upon the texture and level of Certility of the soil itself. The marked differance in general character and manner of use of the two main groups of light-textured and heavy-textured types, nakes it worth while to separate then in any disenssinn. The light-textured types, including sands and sandy loanns, are important pastorally in the Kimberleys and acin also in Queensland. They have a temperate parallel in the mallee soils of the south, but differ from them in so far as they are relatively free from salt and are free from calcium carbonate except possibly in the very decp horizons.

The Pindan country of Western Australia, which inclutes areas near broome and Derby, and the sandy country between the alluvial plains of the Fitzroy and the King lacopold Kange are very characteristic. The Warralong province of the nortli-west of the same State thay be included. The Cockatoo sands across the Ord River from Ivanhoe Station afford another example, and the commey between Victoria River Downs and Daly Waters should frobably be included. In Qucensland an area between the Downs conntry and the mining belt at Croydon has been noted and sampled on Saxby Downs, Owing to the light texture of these soils the ranis penerate easily and leaching is possible during the wet scason. The soils are in consequence ncutral to somewhat acid in reaction and accmutnations of calcium carbonate in the profile have not been observed, although such accmulations are common in the case of heavier soil types the same localities. In some cases ironstone gravels are associated with these soils, as on Saxby Downs, and this suggests that int such cases they may be derived from older and leached soils. The Warralong province of Western Atss ralia has been desctibed by T'eakle (1938); here the monsoonal trees, whitcwood (Atalaya hemiglauca) and Banhinia Cunninghanii are associated with the kanji (Acacia profolig). corkwood (Hakea lorea) and other small trees of the semi-desert region. The grasses include specics of Triodia, Triraphis, Eragrostis and Chrysopogon.

Gardner (1923) has described the vegetation of the Pindan country. A characteristic tree is the Pindan wattle (Acaria tumida). Small irces mentioned ly him as being prominent inctide a bloodwood (Eucalyptus pyrophora), E゙, miniata, E. papuana and Eryhophlem Laboucheri. The shrubs include the Konkerberry (Carissa lanceolata), Aclaleuca alsaphylla and two species of Torminalia. The grasses are usually coarse and Andropogon affinis, speargrass or sugargrass, is very common.

The Pindan sands like the mallee sands frequently take the form of low sandhills having an east-west trend, suggesting that they are possibly a vegetated extension of the sandy desert which lies to the south and cast.

Pastorally the main value of these sandy soils is best achieved in combination with the heavicr soil types. These latter are nsually very boggy in the wet seasout and the sandy country on the higher level is usually safe for cattle and shecp at this period. The sands respond quickly to rain, but the fertility level and carrying capacity are low. They can only be reasonaby managed when heavy soils and food plains are readily accessible.

The general character of these soils may be gathered by reference to Table 1. Descriptions of full profiles are not generally available.

The samples from Saxby Downs include surface scrapings consisting of a coarse sand containing about \(3 \%\) of fine gravel. The colour is somewhat pinkish as a result of the intense insolation during the dry season, in marked contrast with the brownish colour of the true soil immediately below. In undisturbed soils in these practically uninhabited regions, this thin surface layer is very characteristic. It is washed almost free from clay by the rains.

Generally speaking, these sandy soils are deficient in plant foods, particularly in phosphates. There is, however, a scale of fertility level even here, and as in the desert soils previously described (Prescott and Skewes, 1938) this low fertility level is associated with Triodia as the main perennial grass.

\section*{5 Brown soils of heavy texture.}

The most important pastoral soils in tropical Australia are brown soils of heavy lexture carrying an open grassland in which Mitchell grasses (Astrobla spp.) and Flinders grasses (Iscilcma spp.) are important and characteristic.
\(\begin{aligned} & \text { TABLE } 1 \text { - ANALYTICAL DATA RELATING TO CHARACTERIETIC } \\ & \text { BRONN SOILS OF LICFT TEXTURE. }\end{aligned}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Profile No. & & 1 & & 2 & & 3 & \multicolumn{4}{|c|}{4} \\
\hline Locality & \multicolumn{2}{|l|}{Liveringa} & \multicolumn{2}{|r|}{Yeeda} & \multicolumn{2}{|r|}{Ivanhoe} & \multicolumn{4}{|c|}{Saxby Downs} \\
\hline Sample No. & 5178 & 5179 & 5183 & 5184 & 5210 & 5211 & 3460 & 3461 & 3462 & 3463 \\
\hline Horizon & A & B & A & B & A & B & \(A_{0}\) & A & B & BC \\
\hline Depth (inches) & O-5 & 5-14 & 0-10 & 10-20 & 0.6 & 6-18 & \(0^{\circ}\) & 0-10 & 10-30 & 30-36 \\
\hline Colour & - RB & RB & RB & R-RB & RB & R & LRB & B-GB & BYB & DYB \\
\hline Reaction ( pH ) & 6.8 & 6.9 & 6.6 & 6.7 & 6.7 & 6.7 & 6.3 & 5.8 & 5.5 & 6.1 \\
\hline Mechanical Analysis: & \% & \% & 6 & \% & \% & \% & \(\%\) & \% & \% & \(\%\) \\
\hline Coarse.sand & 42.4 & 41.6 & 20.4 & 20.8 & 40.1 & 45.0 & 87.7 & 55.5 & 53.8 & 55.1 \\
\hline Fine sand & 45.0 & 44.3 & 72.0 & 69.8 & 51.4 & 44.1 & 11.1 & 35.0 & 35.5 & 35.8 \\
\hline Silt & 4.4 & 3.7 & 1.8 & 1.2 & 2.2 & 2.0 & 0.4 & 2.1 & 2.1 & 2.1 \\
\hline Clay & 7.4 & 10.2 & 5.7 & 8.1 & 6.0 & 8.9 & 1.0 & 7.0 & 8.3 & 7.3 \\
\hline L.on acid treataent & 0.3 & 0.4 & 0.3 & 0.2 & 0.2 & 0.2 & 0.0 & 0.1 & 0.1 & 0.0 \\
\hline Maisture & 0.5 & 0.4 & 0.2 & 0.3 & 0.2 & 0.2 & 0.1 & 0.4 & 0.4 & 0.3 \\
\hline Chemicel Analycic & & & & & & & & & & \\
\hline L, on ignition & 1.4 & 1.5 & 1.2 & 1.2 & 1.3 & 1.4 & 0.6 & 1.2 & 1.2 & 1.0 \\
\hline Nitrogen (N) & 0.018 & 0.013 & 0.018 & 0.011 & 0.015 & 0.010 & 0.009 & 0.014 & 0.011 & 0.010 \\
\hline Phosphoric acid ( \(\mathrm{P}_{2} \mathrm{O}_{5}\) ) & 0.019 & 0.016 & 0.005 & 0.007 & 0.007 & 0.008 & 0.005 & 0.014 & 0.012 & 0.010 \\
\hline Potash ( \(\mathrm{K}_{2} \mathrm{O}\) ) & 0.19 & 0.22 & 0.10 & 0.12 & 0.06 & 0.08 & 0.03 & 0.09 & 0.08 & 0.07 \\
\hline Soluble salte & 0.007 & 0.005 & 0.005 & 0.004 & 0.006 & 0.005 & 0.005 & 0.004 & 0.005 & 0.005 \\
\hline
\end{tabular}
: Key to soil coloure in this and subsequent tables: \(R=\) red; \(A=\) brom;


Profile No. 1-Paradise Section of Liveringa, West Kimberley, W. Aust. Pindan country with red anthills and Triodia, Rainfall, 22 inches. Length of season, 3.5 months.
Profile No. 2-Yeeda, West Kimberley, W. Aust. Sandy coastal pindan country. Rainfall, 24 inches. Length of season, 4-1 months.
Profile No. 3-Ivanhoe, Fast Kimberley, W, Aust. Cockatoo Sands. A savamah woodland with tall grasses. Rainfall, 33 inches. Length of season, 4-4 months.
Profile No. 4-Saxby Downs, Nth. Queensland, south of Saxby River, 13 miles north-east of homestead. The vegetation consis1s of a savannah woodland with low trees and some tall "spear grass," probably Andropogon and a little Triodia. The trees include Bauhinia, sandalwood, various acasias and, beef wood (Graillca). Rainfall, 20 inches. Length of season, \(3 \cdot 1\) months.
Many of these are alluvial soils on the desert margins, watered to a certain extent by flood waters, and would include the plains of the Fortescue and pos-
sibly the plains of the Sturt Creek. The alluvial country of the Fitzroy and Ord Rivers is important also, but there are also heavy soils at higher levels derived from suitable rocks, such as basalt, which tend to be stony but which are very important pastorally, particularly in the valleys of the Ord and Victoria Rivers.

Further east the Barkly Tableland and the Queensland Downs between Cloncurry and IIughenden afford characteristic examples. The soils are usually brown in colour, cloddy in texture and contain calcium carbonate and frequently gypsum in the profile. The coluur range varies, however, from dark grey to chestnut.

The pastoral country of the Barkly Tableland is a complex of Mitchell grass downs, Bauhinia savannahs, and low lying, heavy country subject to flood, which is not at all well understood and does not appear to have been visited by any ecologist. The pastoral community recognises grass country and desert country, the latter being used in the wettest part of the season or again as reserve country during drought.

TABLE 2 - ANALYTIGAL DATA RELATING TO EOIL PROFILE FROM NCONKANBAH, W. AUST.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Depth (inches) & 0 & 0-5 & 5-17 & 17-35 & 35-48 \\
\hline Reaction (pH) & 7.: & 7.7 & 8.8 & 9.1 & 7.9 \\
\hline Mechanical Analysis: & \(\%\) & \({ }_{0}\) & \(\%\) & " & 品 \\
\hline Coarse sand & 9.9 & 10.4 & 10.4 & 10.5 & 9.1 \\
\hline Fine sand & 52.3 & 46.7 & 45.7 & 45.6 & 41.7 \\
\hline Cilt & 9.H & E. 8 & 8.1 & 8.3 & 7.7 \\
\hline CI ay & \(\therefore 2.3\) & 30.1 & 31.3 & E8.6 & 28.4 \\
\hline L.on ecid treatment. & 1.4 & 1.0 & 1.9 & \%. 8 & 8.7 \\
\hline Woisture & 2.9 & 3.9 & 4.1 & 4.0 & 5.2 \\
\hline Chemical Anslysis: & & 3.6 & 3.7 & 3.9 & 3.6 \\
\hline L. On ignition & 5.4 & 3.6
0.01 & 3.7
0.73 & 1. 3.97 & 3.6
1.46 \\
\hline Gatcium sulphate & - & - & - & 0.03 & 5.81 \\
\hline Total soluble selte & 0.04 & 0.01 & 0.03 & 0.04 & - \\
\hline Organic casbon (C) & 1.73 & 0.41 & 0.22 & -. & - \\
\hline Nitrogen (N) & 0.118 & 0.034 & 0.024 & \(\cdots\) & - \\
\hline Phosphoric Acid ( \(\mathrm{P}_{2} \mathrm{O}_{5}\) ) & 0.036 & 0.080 & 0.018 & .. & - \\
\hline Potash ( \(\mathrm{K}_{2} \mathrm{O}\) ) & 0.43 & 0.41 & 0.37 & .- & - \\
\hline \multicolumn{6}{|l|}{Exchangeable Bases:} \\
\hline Total (m.e.per 100 gns.) & - & \(19 . \varepsilon\) & 18.0 & 12.8 & - \\
\hline Proportion as: Ca & - & & 79 & 65 & - \\
\hline Mg & - & 20 & 18 & 27 & - \\
\hline K & \(\cdots\) & 3 & 2 & 2 & - \\
\hline Na & - & 1. & 1 & 4 & - \\
\hline
\end{tabular}

Locality: Noonkanbah: Terrace of Fitzroy alluvium near homestead. Pure stand of Triodic. Rainfall, 20 inches. Length of season, 3.0 months.
Description of profile:
Sample No. 5186: surface half-inch—Dust mulch round clumps of Triodia; brown to grey-l)rown.
Sample No. 5187: 0-5 inches-Nutty structure, brown to greybrown.
Sample No. 5188: 5-17 inches-Cloddy structure, with white flecks of calcium carbonate. Brown to dark grey-brown.
Sample No. 5189: 17-35 inches-Cloddy structure, white flecks increasing. Brown to dark grey-brown.
Sample No. 5190: 35-48 inches-Cloddy structure, gypsum, increasing with depth.
Samples of these soils have been collected on the Fitzroy and on Argyle Downs in the Kimberleys and have been examined at Victoria River Downs and at several points in the Queensland areas. Samples from a profile on Millungera Station in North Queensland are described below.

The vegetation varies from almost pure grassland to open savannah; the texture, fertility level, degree of stoniness, and amonnt of flooding determine the vegetation. The heaviest and low-lying soils are associated with the guttaperchat, fircafcaria parifolia, which is to be found from Western (Queensland to the Kimberleys in quite restricted habitats on dark soils, Analyses of samples from two profiles are given in Thables 2 and 3 .

TABLE 3 - ANALYTICAL DATA RELATING TO SOIL PROFILE FROM MILLUNGERA, N.QUEENSLAND.
\begin{tabular}{|l|c|c|c|c|}
\hline & & & \\
Sample No. & 3466 & 3467 & 3468 & 3469 \\
Depth (inches) & \(0-12\) & \(12-24\) & \(24-36\) & \(36-42\) \\
Reaction (pH) & 8.0 & 8.6 & 9.1 & 9.3 \\
Mechanical Analysis: & & & & \\
Coarse sand & 38.1 & 37.7 & 36.3 & 36.7 \\
Fine sand & 12.4 & 10.1 & 10.2 & 9.9 \\
Silt & 10.0 & 9.5 & 9.3 & 9.3 \\
Glay & 36.5 & 38.6 & 39.1 & 38.9 \\
L.on acid treatment. & 0.8 & 1.2 & 1.4 & 2.0 \\
Moisture & 3.4 & 3.9 & 4.0 & 4.1 \\
& & & & \\
Chemical_Analysis: & & & & \\
L.on ignition & 3.7 & 3.8 & 4.3 & 4.3 \\
Calcium carbonate & 0.17 & 0.28 & 0.49 & 0.84 \\
Total soluble salts & 0.02 & 0.03 & 0.05 & 0.07 \\
Nitrogen (N) & 0.025 & 0.016 & 0.014 & 0.017 \\
Phosphoric acid ( \(\mathrm{P}_{2} \mathrm{O}_{5}\) ) & 0.017 & 0.012 & 0.011 & 0.011 \\
Potash (K20) & 0.04 & 0.03 & 0.03 & 0.03 \\
& & & & \\
\hline
\end{tabular}

Locality: Millungera, clean skin paddock, 26 miles by road irom homestead. Open savanmah with a few bloodwoods and whitewood (Alalaya). Rainfall, 20 inches. Lengtl of season, \(3 \cdot 1\) months. Heavy grey soil (very dark grey-hrown to brown) throughout profile.

The two profiles selected are of relatively low fertility but duite characteristic. Teakle (1938) atso quotes data for a greyish-chocolate heavy soil from Ivanhoe, carrying a Mitchell grass-Bathinia savannah, very similar in character to the above. An interesting feature brought out is the very low salt content and

TABLE 4 - ANALYTICAL DATA RELATING TO HEAVY-TEXTURED BRONN SOILS FROM THE KIMBFRLEYC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Soil } \\
\text { No. }
\end{gathered}
\] & Colour & \[
\begin{aligned}
& \text { Depth } \\
& \text { (inches) }
\end{aligned}
\] & Locridty & Clay
\(\%\) & \(\mathrm{CaCO}_{3}\) & N
\(\%\) & \(\mathrm{P}_{2} \mathrm{O}_{5}\)
6 & \[
\begin{gathered}
\mathrm{K}_{2}{ }^{0} \\
6
\end{gathered}
\] & Total salts \(\%\) & \[
\begin{aligned}
& \text { Reaction } \\
& \mathrm{pH}
\end{aligned}
\] \\
\hline 5214 & Cn . & 0-9 & Argyle.Newry Gate & 48 & 0.11 & 0.095 & 0.038 & 1.39 & 0.02 & 7.9 \\
\hline 5216 & v.LG & 0-6 & Argrle.Fosemood Gate & 50 & 5.61 & 0.056 & 0.020 & 0.60 & 0.04 & 8.8 \\
\hline 5218 & Y. DG & 0-4 & Argyle & 54 & 0.16 & 0.043 & 0.028 & 0.89 & 0.02 & 8.e \\
\hline 5212 & Ch. & \(0-7\) & Aregle-stony soil & 49 & 0.01 & 0.074 & 0.043 & 0.58 & 0.02 & 7.0 \\
\hline 5182 & DGB & 0-6 & Upper Liveringa & 48 & - & 0.034 & 0.042 & 0.98 & 0.01 & 7.9 \\
\hline 5181 & DB-GB & 0-6 & Upper Liveringa & 44 & - & 0.058 & 0.050 & 0.87 & 0.04 & 6.9 \\
\hline 5180 & DGB & 0-6 & Upper Liveringa & 38 & - & 0.038 & 0.041 & 0.83 & 0.01 & 7.6 \\
\hline 5177 & B & \(0-12\) & Noonkanbah & 39 & - & 0.037 & 0.030 & 0.83 & 0.10 & 7.5 \\
\hline
\end{tabular}
absence of solonisation, in marked contrast to conditions in similar soils in southern Australia. [nformation regarding other heavy-textured soils from the Kimberleys is given in Table 4 . The soils from Liveringa and Noonkanbah are on Fitzroy alluvium. All are associated with grasslands.

6 Black carths, modifind black sarths of the brigatone seribs, and rendwinas.
The belt of true black earths in gucensland does not extend very far north into the tropics and is closely associated with scrubs or low forests in which brigalow (Acacia harpophylla) is frequently an important constituent. The blach earths proper carry an open grassland in which the important species is bluegrass (Dichunthium scriceum). The analyses of characteristic examples have already been recorded by llosking (1935).

The northern limit of these soils is in the neighbourhood of Natal Downs and extends down the valley of the Sultor towards the Burdekin. The associated brigalow has been observed as far north an Mirtna, where the soil profile was examined and samples taken. There is evidence generally in (Jucensland that the brigalow is tending to invade the open grasslands even where the soils are duite

TABLE 5 - ANALYTICAL DATA RELATING TO SOIL, PROFILE
FROM MIRTNA, N. QUEENSLAND.
\begin{tabular}{|c|c|c|c|c|}
\hline Depth (inches) & 0-4 & 4-5 & 5-13 & 13-25 \\
\hline Reaction ( pH ) & 6.1 & 6.6 & 7.6 & 8.0 \\
\hline Mechanical Analysis: & \% & \% & \(\%\) & \% \\
\hline Coarse sand & 27.7 & 27.4 & 20.4 & 23.4 \\
\hline Fine sand & 34.8 & 38.9 & 29.3 & 32.0 \\
\hline Silt & 13.2 & 13.5 & 11.7 & 11.2 \\
\hline Clay & 20.6 & 18.3 & 34.7 & 29.0 \\
\hline L.on acid treatment & 0.8 & 0.6 & 1.1 & 1.0 \\
\hline Moisture & 2.1 & 1.6 & 4.1 & 3.9 \\
\hline \multicolumn{5}{|l|}{Chemical Analysis:} \\
\hline L.on ignition & 4.6 & 2.5 & 3.8 & 3.1 \\
\hline Calcium carbonate & 0.01 & - & 0.01 & 0.10 \\
\hline Total soluble salts & 0.01 & 0.01 & 0.07 & 0.32 \\
\hline Nitrogen (N) & 0.10 & 0.05 & 0.05 & 0.03 \\
\hline Phosphoric acid ( \(\mathrm{P}_{2} \mathrm{O} 5\) ) & 0.04 & 0.02 & 0.02 & 0.01 \\
\hline Potash ( \(\mathrm{K}_{2} \mathrm{O}\) ) & 0.25 & 0.19 & 0.32 & 0.31 \\
\hline \multicolumn{5}{|l|}{Exchangeable Bases:} \\
\hline Total (m.e. per \(100 \mathrm{gm}\). ) & 8.8 & - & 15.5 & 15.1 \\
\hline Proportion as: Ca & 64 & - & 40 & 27 \\
\hline Mg & 28 & - & 44 & 45 \\
\hline K & 6 & - & 2 & 1 \\
\hline Na & 2 & - & 14 & 27 \\
\hline
\end{tabular}

Locality: Mirtna, Nth. Q1d., near homestead. Brigalow scrub. Rainfall, '22 inches, Length of season, \(4 \cdot 8:\) months. \(^{2}\)
Description of profile:
Sample No. 3470: 0-4 inches, grey sandy loata.
Sample No, 3471: 4-5 inches, light grey finc sand showing signs of hardpan formation.
Sample No. 3472: 5-1.3 inches, srey-brown heavy clay.
Sample No. 3473: 13-25 inches, whitish clay.
heavy, and there is further evidence that salt is present in many of these soils and that they are subject to sone degree of solonisation. The occurrence of such salt lakes as Lake Buchanan is of some possible significance.

This belt of country is in the path of the easterly winds from the lacific Ocean and may be subject to accessions of cyclic salt sucl as are known to occur in southern Australia. Some confirmation is obtained from the analysis of the samples from Mirtna, recorded in Table 5, which shows evidence of solonisation,

Throughout tropical Australia there occur many scattered examples of rendzinas, black soils derived from highly calcareous parent materials. The samples from Chudleigh Park, analysed and recorded by Hosking (1935), are from an undoubted rendzina formed on a local deposit of limestone possibly of tertiary age.

A very characteristic rendzina on limestone has been observed covering a fairly extensive area on Elsey Station in the Northern Territory. This soil was found to be relatively shallow, the vegetation was a savannah woodland which included nutwood (Ťcminalia sp.) and anthills were frequent and quite black in colour.

7 Red soils, including red loams, residual red carths and red-brozen carths.
Soils with a predominantly red of red-brown colour are characteristic of much of tropical Australia receiving a reasonably high rainfall marked by a seasonal incidence in which the drought period is characterised by high midday

TABLE 6 - ANALYTICAL DATA RELATING TO RED-BROWN EARTHS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Profile No. & \multicolumn{4}{|c|}{1.} & \multicolumn{3}{|c|}{2} \\
\hline Locality & \multicolumn{4}{|c|}{Cardigan, N.Q.} & \multicolumn{3}{|l|}{Manbulloo, N.T.} \\
\hline Sample No. & 3439 & 3440 & 3441 & 3442 & 5267 & 5268 & 5269 \\
\hline Horizon & A & B & BC & BC & A & B & BC \\
\hline Depth (inches) & 0-8 & 8-15 & 15-24 & 24-40 & 0-8 & 8-28 & 28-42 \\
\hline Colour & B-GB & DRB & LB & LB & RB & R-LRB & R-LRB \\
\hline Reaction( pH ) & 7.0 & 6.7 & 7.5 & 7.9 & 5.9 & 5.6 & 5.9 \\
\hline Mechanical Analysis: & \% & \(\%\) & \% & \(\%\) & \% & \% & \(\%\) \\
\hline Coarse sand & 48.4 & 29.4 & 31.2 & 45.0 & 67.6 & 64.5 & 56.5 \\
\hline Fine sand & 33.6 & 30.5 & 30.6 & 34.3 & 23.2 & 23.0 & 24.8 \\
\hline Silt & 5.7 & 5.3 & 9.2 & 6.7 & 1.1 & 0.5 & 0.9 \\
\hline Clay & 11.4 & 30.3 & 25.7 & 11.8 & 7.0 & 11.0 & 17.1 \\
\hline L.on acid treatment & 0.5 & 0.7 & 1.1 & 1.3 & 0.2 & 0.2 & 0.2 \\
\hline Moisture & 0.7 & 2.0 & 2.4 & 1.7 & 0.4 & 0.3 & 0.4 \\
\hline Chemical Analysis: & & & & & & & \\
\hline L.on ignition & 2.5 & 5.0 & 4.6 & 2.6 & 2.1 & 1.8 & - \\
\hline Calcium carbonate & 0.003 & 0.004 & . 0.004 & 0.004 & - & - & - \\
\hline Nitrogen ( N ) & 0.035 & 0.040 & 0.019 & 0.008 & 0.027 & 0.014 & - \\
\hline & 0.019 & 0.020 & 0.032 & 0.046 & 0.008 & 0.007 & - \\
\hline \begin{tabular}{l}
Potash ( \(\mathrm{K}_{2}\) ) \\
Soluble salts
\end{tabular} & 0.22
0.02 & 0.37
0.03 & 0.48
0.02 & 0.32
0.01 & 0.030
0.01 & 0.035 & - \\
\hline
\end{tabular}

Profile No. 1-Cardigan Station, near Charters Towers. Sandy soil over granite. Savannah woodland with ironbark and bloodwoud. Rainfall 26 inches. Length of season, \(5 \times 0\) months.
Profile No 2-An example of a light textured soil carrying cypress pine (Callitris), Manbulloo, near Katherine, NTT, along the road towards Victoria River Downs. Rainfall, 38 inches, Length of scason, 4.7 months.
temperatures accompanied by relatively high rates of cvaporation, particularly in autumn and spring. It appears probable that the prevailing redness of soils itn regions having either a Mediterranean or monsoonal climate is associated with this drought period, during which the iron oxides are dehydrated to such an extent that mobility during the wet season, unless accompanied by waterlogyed conditions, is non-existent. Where the parent materials are predominantly ferruginous, as in many soils of lateritic origin, the rainfall needs to be high and persistent before any degree of podsolisation becomes evident. Such soils may le called "ferromorphic," just as rendzinas may be referred to as being "calci-
table 7 - analytical data relating to red earths assoclated with lateritic parevt material.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Profile No. & \multicolumn{4}{|l|}{1} & \multicolumn{4}{|l|}{2} & \multicolumn{3}{|l|}{3} & \multicolumn{3}{|l|}{4} \\
\hline Locslity & \multicolumn{4}{|l|}{Vyols, N.Q.} & \multicolumn{4}{|l|}{Chusloigh Park, N.Q.} & \multicolumn{3}{|l|}{Darwin, N.T.} & \multicolumn{3}{|l|}{Betchelor, N.T.} \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Sample No. \\
Dopth (inches) Ironstone gravel as percentage of original sample Colour of fine earth Reaction (pH)
\end{tabular}} & 3445 & 3447 & 3448 & 3449 & 34.55 & 3456 & 34E5 & 3457 & 5229 & 5230 & 5231 & 5239 & 5240 & 5241 \\
\hline & 0-8 & 9-21 & 21-32 & 32-42 & 0-9 & 9-:8 & 18-27 & 27-40 & 0-6 & 6-19 & 19-27 & 0-9 & 9-24 & 24-36 \\
\hline & 8. 5 & 10.0 & 18.4 & 19.9 & 14.9 & 25.3 & 24.2 & 17.7 & 17.8 & 15.7 & 34.0 & 7.9 & 10.9 & 17.9 \\
\hline & Ch & npr & RR-DRB & RB & vจ \({ }^{\text {¢ }}\) & DE-LY: & DYB & DYB & DYB-LRB & R-RB & R & Ch-DB & CH & DB \\
\hline & 5.9 & 6.7 & 6.3 & 6.5 & 6.8 & 7.1 & 7.0 & 7.1 & 6.2 & 5.7 & 5.8 & 5.6 & 6.0 & 6.1 \\
\hline Mechanlcal anslysisi & , 5 & \% & \% & 6 & \(\%\) & t. & \(\square\) & \({ }_{6}\) & \% & \% & \% & \% & \% & \$ \\
\hline Coarse sand & 23.4 & 21.4 & 22.6 & 20.7 & 30.0 & 28.6 & 19.1 & 18.3 & 14.4 & 14.4 & 23.8 & 13.5 & 13.2 & 12.8 \\
\hline Fine sand & 15.0 & 7.3 & 4.8 & 5.0 & 20.3 & 16.0 & 12.2 & 13.5 & 48.9 & 44.1 & 40.8 & 36.7 & 31.7 & 31.5 \\
\hline Silt & 16.3 & 10.5 & 7.4 & 8.1 & 13.6 & 9.5 & 10.0 & 11.3 & 7.0 & 6.7 & 6.6 & 13.9 & 13.1 & 14.9 \\
\hline Clay & 37.9 & 52.4 & 58.2 & 58.3 & 30.1 & 40.8 & 54.2 & 51.7 & 25.5 & 32.5 & 27.1 & 33.8 & 39.6 & 39.6 \\
\hline \multirow[t]{2}{*}{L.on acid treatment
Moisture} & 1.2 & 5.5 & 5.1 & 4.9 & 0.7 & 0.6 & 0.5 & 0.5 & 1.2 & 1.1 & 0.9 & 0.3 & 0.3 & 0.2 \\
\hline & \(4 . ?\) & 4.9 & 4.5 & 4.5 & 4.2 & 5.0 & 5.5 & 5.8 & 1.3 & 1.2 & 1.2 & 2.0 & 1.8 & 1.8 \\
\hline Chemeal Analysis: & 8.9 & 8.3 & 9.4 & 9.5 & 7.0 & & 9.9 & & & & & & & \\
\hline Calcium carbonate & 8.9 & 8.3 & 9.4 & - & 0.015 & 7.814 & 9.8
0.030 & 10.1
0.044 & \({ }^{7.6}\) & 7.1 & 7.4 & 4.7 & 4.7 & 4.6 \\
\hline Nitrogen ( N ) & 0.089 & 0.047 & 0.032 & 0.022 & 0.066 & 0.041 & 0.027 & 0.0 .30 & 0.061 & 0.029 & 0.018 & 0.048 & 0.027 & - \\
\hline Phosphoric Acid ( \(\mathrm{P}_{2} \mathrm{O}_{5}\) ) & 0.127 & 0.075 & 0.087 & 0.100 & 0.991 & 0.071 & 0.082 & 0.092 & 0.038 & 0.033 & - & 0.029 & 0.027 & - \\
\hline \multirow[t]{2}{*}{Potash ( \(\left.\mathrm{K}_{2} \mathrm{O}\right)\)
Soluble salts} & 0.72 & 0.21 & 0.18 & 0.14 & 0.28 & 0.28 & 0.29 & 0.28 & 0.04 & 0.03 & - & 0.73 & 0.72 & - \\
\hline & 0.021 & 0.018 & 0.018 & 0.016 & 0.015 & 0.011 & 0.014 & 0.016 & 0.010 & 0.009 & 0.005 & 0.027 & 0.009 & 0.006 \\
\hline Exchangeable Bases: & & & & & & & & & & & & & & \\
\hline Total(m.c. per 100 gms & & & & & 15.1 & 13.7 & 13.4 & & & & & & & \\
\hline Proportion as: Ca & & & & & 62
30 & 58
35 & 53 & & & & & & & \\
\hline \[
\underset{\mathrm{K}}{\mathrm{Ng}}
\] & & & & & 30 & 35 & 39 & & & & & & & \\
\hline \[
\begin{aligned}
& \mathrm{K} \\
& \mathrm{Na}
\end{aligned}
\] & & & & & 7
1 & 6
1 & 7 & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Profile No. 3-Darwin, N.T., 6 miles south along the main road towards Adelaide River. Native vegctation is a sclerophyll forest with Eucalyptus miniata, E. tetradonta, E. microtheca, Pandanus: cycads, Heteropogon, Themedo. Profile bottoms on decomposing rock below 27 inches. Rainfall, 60 inches. Length of season, 6.5 months.

Profle No. 4 -Batchelor, N.T, In abandoned and grassed orchard season, \(6 \cdot 4\) months.
}
morphic," The main characteristic of these soils is that, athough rainfall is sufficient to wash down a proportion of the clay to form a subsoil heavier than the surface soil, conditions are not favourable for the mobilisation of free iron oxides except such as is associated with the clay fraction. Calcium carbonate may or may not be present in the illuvial horizons, depending on its presence or absenco in the parent materials.

In tropical Australia there are many lateritic arcas, of which those in Western Queensland have recently been described and mapped by Whitchonse (1940). To the north-west of Charters Towers occurs an extensive area of red soils associated with the basaltic flow known as the "great basalt wall." These appear to be residual soils associated with a peneplain some 1,100 feet above sea level and they are characterised by heavy ironstone gravel. In all probability this area is related to the Alice Tableland. somewhat to the south, and described by Whitehouse (1940), on which the soils, similarly residual, are more podsolic in character.

TABLE 8 - ANALYTTCAL DATA RELATING TO RESIDUAL AND LATERITIC PODCOLIC SOILE.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Locality & \multicolumn{3}{|c|}{Barrington} & \multicolumn{5}{|c|}{Stapleton} \\
\hline Sample No. & 3443 & 3444 & 3445 & 5244 & 524.5 & 5246 & 5247 & 5249 \\
\hline Gravel in original & 4.2 & 32.6 & 41.5 & \(11 . ?\) & 6.1 & 9.7 & 45.8 & 28.4 \\
\hline sample \({ }^{\text {S }}\) & A & B & B & A & AB & F & B & BC \\
\hline Eepth (inches) & 0-12 & 12-36 & 36-42 & 0-6 & 6-12 & 12-28 & -8-36 & \(3 n-42\) \\
\hline Colour & DG & W-LG & W-LG & vDGB & B & B- \(\mathrm{F} Y \mathrm{~B}\) & RB & RS-R \\
\hline Reaction (pir) & 6.7 & 6.8 & 5.3 & 6.5 & 6.4 & 5.7 & 5.6 & 5.5 \\
\hline Mechanical Analysis: & b & 6 & P & , & \(\pm\) & \% & \% & t \\
\hline Coarse sand & 73.4 & 64.7 & 59.7 & 35.2 & 31.0 & 20.5 & 21.3 & 23.9 \\
\hline Fine sand & 17.5 & 23.5 & 20.6 & 42.5 & 36.8 & 24.5 & 21.3 & 19.8 \\
\hline S11t & 4.9 & 7.0 & 11.0 & 7.4 & 6.8 & 9.7 & 10.3 & 11.5 \\
\hline Clay & 3.7 & 4.8 & 8.5 & 12.0 & 23.2 & 48.4 & 44.2 & 42, 1 \\
\hline L.on acid treatment & 0.1 & 0.1 & 0.2 & 0.1 & 0.3 & 0.4 & 0.4 & 0.3 \\
\hline Voisture & 0.2 & 0.2 & 0.5 & 1.0 & 1.3 & 2.7 & 2.7 & 2.9 \\
\hline Chemical Analysis: & & & & & & 8.4 & 9.1 & 8.9 \\
\hline L.on ignition
Nitrogen (N) & 1.1
0.021 & 0.8
0.010 & 2.0
0.011 & 3.9
0.072 & 4,7
0.048 & 0.028 & 9.- & 8.9 \\
\hline Phosphoric acid \(\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)\) & 0.011 & 0.007 & 0.007 & 0.013 & 0.014 & 0.026 & - & - \\
\hline Potash ( \(\mathrm{K}_{\mathrm{O}} \mathrm{O}\) ) C & 0.05 & 0.05 & 0.11 & 0.17 & 0.09 & 0.13 & - & - \\
\hline Coluble salts & 0.021 & 0.005 & 0.010 & 0.013 & 0.011 & 0.026 & 0.006 & 0.006 \\
\hline
\end{tabular}

Profite from Barrington, Nth. Qld., at junction of Lolworth-Balie's Creek Road with Allendale-Tomba road. Twenty-four miles from Allendale. Vegetation consists of a low tree savannah woodland of wattle, silver-leaved ironlsark, broadleaved yellow jacket and speargrass. A coarse grey sand with superficial layer of very coarse sand or finc gravel. The gravel' is cquartz. "Rainfall, 26 ninches. Length of scason, 4.8 months.
Profile from near Stapleton, N.T., at the junction of the Stapleton, Brock's Creek and Daly River roads. A savanah woodland with box, ironwood and bloodwood with ironstone gravel in the profile. Rainfall, ca, 50 inches. Length of season, \(5 \cdot 5\) months.
At a somewhat higher elevation on Chudleigh Park similar red soils occur associated with heavy ironstone gravel. In the immediate vicinity of Darwin and for some distance to the south, soils rich in ironstone gravel or associated with massive laterite give rise to similar red and red-brown soils.

Red loams over deeply weathered basalt are characteristic of the Atherton Tableland. Many typical red loams have been described previously (Prescott and ITosking, 1936). Bryan (1938) considers that many such red loans are
residual in character and should be described as residual ted earths. It is probable that a detailed study of the Atherton Tableland would reveal some relationships between soil types and late geological history. Soils derived directly under current climatic conditions from parent rock occur generally as red-brown earths, and it is probable that the alluvial soils on the Katherine in the Northern Territory are inmature variants of the group.

The vegetation under these groups is nearly always savanuah woodland with eucalypts of various species as the dominant trees. The grasses include both Themeda and Hetcropogon Contortus, the latter being assuciated probably more with podsolised soils. In the wetter areas sclerophyll forest, as near Darwin, or rain forest, as near Atherton, may be associated with these red suils.

Both these exanples show a degree of eluviation with an accumulation of clay in the subsoil. In addition, the profile from Cardigan shows an increasing degree of base-saturation in the deeper horizons, although calcinn carbonate is not actually present in quantity.

\section*{8 Podsolised soils.}

There are two main groups of podsolised soils in tropical Anstralia, a group near the coast and in regions of high rainfall which may be considered as of normal occurrence. and another inland group which may be considered as residual from a former wet cycle and which are generally associated with lateritic formations. The northern margins of the Alice Tableland to the south-west of Charters Towers afford good examples of this latter group.

Two exanples are given in Table 8 of a residual podsol from the Balie's Creek district in Queensland and of a podsol derived from lateritic material in

TABLE 9 - analytical data relating to podsolic soils.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Locality & \multicolumn{4}{|c|}{Adelaide River, N.T.} & \multicolumn{3}{|c|}{Ketherine, N.T.} \\
\hline Sample No. & 5253 & 5254. & 5256 & 5257 & 5259 & 5261 & 5262 \\
\hline Horizon & A & B & BC & BC & A & \(A B\) & B \\
\hline Depth (inches) & 0-3 & 19-24 & 24-34 & 34-42 & 1)-9 & 9-20 & 20-32 \\
\hline Colour & LG & LB-LYB & LYB & LY-LYB & LGB-GY & LY & YB \\
\hline Reaction (pH) & 5.9 & 6.5 & 7.9 & 8.7 & 5.3 & 6.1 & 6.4 \\
\hline Mechanical Anolveis: & \% & 6 & \(\%\) & \% & \(\%\) & \% & \% \\
\hline Coarse sand & 20.3 & 14.7 & 11.6 & 11.6 & 62.1 & 61.0 & 55.0 \\
\hline Fine sand & 49.6 & 31.4 & 21.7 & 23.2 & 23.2 & 23.7 & 24.2 \\
\hline Sllt & 18.6 & 24.3 & 27.2 & 25.7 & 5.4 & 6.0 & 7.0 \\
\hline Clay & 10.9 & 28.8 & 39.1 & 37.8 & 3.7 & 7.8 & 13.6 \\
\hline L.on acid treatment & 0.1 & 0.1 & 0.2 & 0.9 & 0.4 & 0.4 & 0.6 \\
\hline Moisture & 0.4 & 1.0 & 1.6 & 1.1 & 0.1 & 0.3 & 0.5 \\
\hline Chemical analysis: & & & & & & & \\
\hline L.on ignition & 2.2 & 3.7 & 5.0 & 5.1 & 1.1 & 1.2 & 1,7 \\
\hline Nitrogen ( N ) & 0.045 & 0.023 & - & - & 0.020 & 0.014 & - \\
\hline Phosphoric acid ( \(\mathrm{P}_{2} \mathrm{O}_{5}\) ) & 0.008 & 0.009 & - & - & 0.012 & 0.015 & - \\
\hline Potash ( \(\mathrm{K}_{2} \mathrm{O}\) ) \({ }^{\text {a }}\) & 0.50 & 1.08 & -0. & 0.018 & 0.12 & 0.18 & \\
\hline Soluble salts & 0.004 & 0.006 & 0.012 & 0.018 & 0.004 & 0.003 & 0.004 \\
\hline
\end{tabular}

Profile from just south of Adelaide River, level country with chiefly Mclalenct sp. ant very large anthills. Hardpan was present in the B. horizon, Rainfall, 55 inches. Length of season, 5.4 months.
Profile sampled 16 miles north of iRatherine in granitic country-a single layer of fine white gravel covcred the surface with nearly \(50 \%\) of gianitic gravel throughout the profile; a savannah woodland with ironwood. stingybark and a little bloodwood. Rainfall, 40 inches. Length of scason, \(4 \%\) nonths.
the vicinity of Stapleton in the Northern Territory. In Table 9 are given data relating to examples of podsolised soils from the Territory.

\section*{9 Szamps and marshes.}

A factor of importance in tropical Australia in determining the character of some of the coastal districts, which is unfamiliar in the south, is the high tidal range along the coast which deternines the character of the lower reaches of many of the rivers and which results in the periodic inundation of wide stretches of coast, resulting in extensive marshes and mangrove belts. Possibly the high erosive power of the early monsoonal rains is responsible also for extensive coastal plains and shallow off-shore belts, particularly around the shores of the Gulf of Carpentaria. These coastal marshes are, or have been, used for salt reclamation near Burketown and at the mouth of the Roper River. They aie extensive near IVyndham and Derby, where they may be covered only by the highest tides or during the wettest part of the monsoon. Only one of these areas was sampled, near Wyndham. The relevant information is tabulated below.

TABLE 10—ANALYTICAL DATA RELATING TO SAMPLE OF SOIL FROM A MARSH NEAR WYNDHAM, W.A. (BETWEEN 9-MILE AND WIRELESS HILL)
\begin{tabular}{llllll} 
Sample No. 5215: & & & & \\
pH - & - & - & - & - & 7.0 \\
Total salts \(\%\) & - & - & - & - & 2.24 \\
Nitrogen (N) \% & - & - & - & - & 0.052 \\
Phosphoric acid \(\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)\) & \(\%\) & - & - & 0.048 \\
Potash \(\left(\mathrm{K}_{2} \mathrm{O}\right) \%\) & - & - & - & - & 1.35 \\
Clay \(\% ~-\) & - & - & - & - & 39.5
\end{tabular}

Elsewhere local permanent springs give rise to swamps associated with jungle forests or reeds, according to the degree of drainage available. Peats may occur under these conditions even under a relatively dry climate. At Saxby Downs a burnt-out peat swamp was observed which had probably been fed from artesian springs. These peaty areas are important in the Northern Territory for market gardening-there is a well-known one near Pine Creek and another on the King River, near Marranboy.

The lower reaches of the Adclaide and Alligator Rivers, east of Darwin, are associated with extensive areas of low-lying flooded country with permanent swanps. On Koolpinyah Station near Darwin the flood plains of the Adelaide River are relatively accessible and the soil profile was examined in a locality on the swamp, four miles west of the river itself. The area is regularly flooded in summer and was still wet in the subsoil when sampled in August. The swamp carried tall grass, useful as cattle fodder and affording protection to the water bulfalo which is now wild in these areas. In Table 11 are given data relating to this profile. The heavy texture, acidity of the subsoil, high salt content and high loss on acid treatment due to the presence of gypsum is to be noted. The clay was highly plastic, and in the third depth was grey with red and yellow mottings, and inclusions of gypsuni.

\section*{SOME GENERAL CONSIDERATIONS}

\section*{Reaction.}

The reaction of the soil expressed in terms of the pH value is generally a fair index of the degree of leaching. The soils examined do not show a yery wide range in this respect, and the position is further complicated by the fact that many of the soils are associated with lateritic parent material and with ironstone gravels.

The most acid soils encountered were a deep subsoil on the flood plain of the Adelaide River, sampled on Koolpinyah ( \(\mathrm{pH} 4 \cdot 1\) ) and a swamp in the Kotanic Gardens in Darwin (pII 4.5). The most alkaline soils are those belonging to the heavy-textured grey and brown group, which may reach over pH 9 in the subsoils. Some, but not all. of the residual soils or soils derived from lateritic parent material showed an increase of acidity with depth, a feature of these soils which

TABLE 11 - ANALITICAL DATA RELATING TO A SWAMP
SOIL ON KOOLPINYAR, N.T.
\begin{tabular}{|c|c|c|c|}
\hline Sample No. & 5236 & 5237 & 5238 \\
\hline \begin{tabular}{l}
Depth (inches) Colour \\
Reaction (pH)
\end{tabular} & \[
\begin{gathered}
0-12 \\
\text { BI } \\
6.8
\end{gathered}
\] & \[
\begin{gathered}
12-24 \\
D G \\
6.6
\end{gathered}
\] & \[
\begin{gathered}
24-30 \\
G \\
4.1
\end{gathered}
\] \\
\hline Mechanical Analysis: & \(\%\) & \% & \% \\
\hline Coarse sand & 0.3 & 0.2 & 0.2 \\
\hline Fine sand & 2.4 & 2.5 & 2.8 \\
\hline Silt & 14.6 & 12.2 & 10.9 \\
\hline Clay & 65.0 & 68.2 & 66.5 \\
\hline L.on acid treatment & 3.2 & 6.5 & 6.9 \\
\hline Moistare & 8.9 & 9.8 & 10.0 \\
\hline \multicolumn{4}{|l|}{Chemical Analysjis:} \\
\hline L.on ignition & 14.8 & 9.2 & 7.1 \\
\hline Nitrogerr (N) & 0.405 & 0.111 & - \\
\hline Phosphoric acid ( \(\mathrm{P}_{2} \mathrm{O}_{5}\) ) & 0.074 & 0.038 & - \\
\hline Potash ( \(\mathrm{K}_{2} \mathrm{O}\) ) & 0.55 & 0.72 & - \\
\hline Soluble salts & 0.074 & 0.938 & 0.943 \\
\hline Sodium chloride & 0.010 & 0.007 & 0.007 \\
\hline
\end{tabular}
has been noted in other comtries. The range of pH values observed in the surface soils of the several groups has been:

Brown soils of light texture - \(\quad\) - \(5 \cdot 8-6 \cdot 8\)
Grey and brown soils of heavy texture - \(6 \cdot 9-8 \cdot 8\)
Ked earths and red-brown earths:
\begin{tabular}{|c|c|c|c|}
\hline (a) ordinary & - - & - & \(6 \cdot 0-7 \cdot 0\) \\
\hline (b) lateritic & - - & & \(5 \cdot 6-6 \cdot 8\) \\
\hline olised soils & - & - & 5•8-6.7 \\
\hline al soils of Dal & nl Kather & Rive & \(6 \cdot 4-8 \cdot 5\) \\
\hline
\end{tabular}

Teakle (1938) has already pointed out the acidic character of the brown soils occurring under the relatively arid conditions of the 10 orth-western soil pro vinces of Western Australia.

\section*{Fortility Levels}

The unimproved pastoral or forest value of any soil under a given set of climatic conditions is frequently found to be a function of the level of natural soil fertility. Frequently a scale of fertility can be expressed in terms of phosphate alone, and there is frequently also a correlation between nitrogen content and phosphate content. The samples secured and examined are too scattered and inadequate to enable a final opinion to be expressed on tropical Australia as a whole, but generalisations with respect to specific localities may prove possible. The chemical fertility will depend to a.great extent on the geological source of the soil material, and this will apply particularly to the phosphate content. The
potasle content will, in addition reflect the climatic history of this material little more can be done, therefore, than to group soils together from specific localities for this comparison. The comparison has been restricted to sinface soils. In the case of potash the comparison is made on the basis of the ratio of K . () to the clay content.

Generally speaking, it may be said that the analyses do not reveal any soils of strikingly high fertility except that those derived from basalt are, as usual. relatively rich in phosphate. "The youngest soils, hhose derived from tecent alluvium, show the highest ratio of potash to the clay content. Many of the others, particularly those associated with ironstone gravels, show low ratios for potash. In the inmediate neighbourhood of Darwin relatively high values for

TABLE 12 - SUMMARY OF INFORMATION REGARDING PLANT-FOOD STATUS OF SOME
SOILS FROM TROPICAL AUSTRALTA.
\begin{tabular}{|c|c|c|c|}
\hline & \[
\underset{\%}{\text { Nitrogen (N) }}
\] & Phosphate \(\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)\) & Potash ( K 20 ) per \(\begin{aligned} & 100 \text { gms. } \\ & \text { clay }\end{aligned}\) \\
\hline Fitzroy & 0.034-0.056 & 0.030-0.050 & \(2.06-2.19\) \\
\hline Daly & 0.020-0.047 & 0.017-0.045 & 3.31-3.86 \\
\hline Katherine & 0.027-0.102 & 0.021-0.045 & \(4.58-6.80\) \\
\hline \multicolumn{4}{|l|}{Kimperisys:} \\
\hline Light - textured brown soils & 0.012-0.018 & 0.005-0.019 & \(1.00-2.57\) \\
\hline Heavy solls, E.Kimberley & 0.043-0.095 & 0.020-0.043 & 1.19-2.89 \\
\hline \multicolumn{4}{|l|}{Northera Territory;} \\
\hline Darwin end Bathurst Island & 0.056-0.156 & 0.028-0.086 & 0.22-1.49 \\
\hline Batchelor to Katherine & 0.020-0.072 & 0.008-0.029 & 0.43-4.59 \\
\hline \multicolumn{4}{|l|}{North Sugensland:} \\
\hline Basaltic red earth residurls & 0.089,0.158,0.066 & 0.127,0.551,0.094 & 0.58,0.78,0.93 \\
\hline Charters Towers to Millungera & 0.021-0.104 & 0.011-0.082 & (0.11) \(1.22-1.93\) \\
\hline
\end{tabular}
phosphate of the order of \(0.08 \%\) have been noted. One of the basaltic soil. quoted above has a very high value for phosphate ( \(0.351 \%\) ). This is fronn an old cow-yard growing molasses-grass and is a good example of localised man made fertility. Another exceptional soil, not quoted elsewhere in this paper, was a highly calcarcous coastal soil near Darwin derived irom fragments of shell and carrying a dense jungle forest situated between the mangrove belt of the coast and the sclerophyll forest of the inland ironstone conntry. Values of \(0.252 \%\) were found for nitrogen and \(0.258 \%\) for \(\mathrm{P}_{2} \mathrm{O}_{5}\).

\section*{Salinity.}

There is very little evidence of salinity in any of the samples examined except where associated with the sea-coast or wich tidal marshes. In the Kimberleys and the north-west of Western Australia the provision of salt licks for stock, particularly for sheep, is regarded as essential. Only the sample from Mirtna on the northern fringe of the brigalow country of Qucensland shows ans degree of solonisation, and it is interesting to compare the values for exchange able bases in the three profiles specifically examined and quoled elsewhere in this paper, namely those at Chudleigh Park and Mirtna. In heavy soils gypsum mas. be encountered, but this is rarely associated with chlorides.


\section*{MAPS}

Two maps are published with this account: the first is a guide to the sites from which the soil samples described have been obtained.

The second map represents the senior author's interpratation of all the data so far examined, based on personal traverses and on a re-examination of records of exploration and geological reports. The two volumes, "Northmost Australia," by R. Logan Jack (1921), have proved to be a useful guide to exploration in the Cape York Peninsula, The recent works by Blake (1938). Bryan (1938) and Whitehouse (1940), of the University of Queensland, lave provided much new material. In this map twelve zones have been recognised :

1 Ranges and tablelands
2 Desert sandhills
3 Desert sandplain
4 Brown soils of light texture
5 Brown and grey soils of heavy texture
() Devert loams and chammel country

7 Rendzinas and black earths

8 Red soils, including red-brown earth-, red loants and residual red earth;
9 Podsols
10 Residual podsuls
11 Low country subject to periodical floorling
12 Tidal marshes and deltaic formations

\section*{Referfaces}

Blake, S. T. 1938 Proc. Roy. Soc. Qld., 49, 154
Brackenbury, L. J. 1890 "Northern Territory of South Atrstralia; Report on \gricultural and other I ands." Adelade
Mmyas, W. H. 1938 Proc. Roy. Soc. (1)d., 50, 21
Cimmintis, C. 1930 Geugr. Jour., 76, 316
Divmens, A. - 1905 "Journal of Explorations in Central Anstralia, cto. 1898-1900," Adelaide
Gardmer, C. A. 1923 Forests Dept. W. Alust., Bull. 32
(inutier, E. F. 1935 "I'Afrique Noire Occidentale," Paris, 27
Howtze, N. 1911 "Report on Goulburn and other Islands." Parl. Pap. S. Anst., No. 32
Hosking, J. S. 1935 Trans. Roy. Soc. S. Anst., 59, 168
Jack, R. Logan 1921 "Northmost Australia," Iomdon
Mohr, Fi. C. Jul. 1933. 19.34 "De bodem der tropen in het algenecn, en die van Nederlandsche-Andië in het bijzonder," Ansterdan
Prescott, J. A. 1931 Coun. Sci. Ind. Res., Butl. 52
Priscott, J. A. 1938 Jour. Coun. Sci. Ind. Res., 11, 261
Irbescott, J. A., and Hosking, J. S. 1936 Trans. Roy. Soc. s. Aust., 60, 35
I'rescott, I. A. 1938 Trans. Roy. Suc. S. Ausi., 62, 229
I'rescott, J. A., and skewis, H. R. 1938 Trans. Roy. Soc. S. Aust., 62, 320
Tearle, I. J. II. 19,38 Jour. Roy. Soc. W. Aust., 24, 123
Volsey, A. H. 1939 Jour. and Pro. Rny. Soc. N.S.V., 72, 136
Whitehouse, F. W. 1940 Univ. of gld. Papers, Dept. of Geol., 2, No. 1

\title{
LIFE CYCLE OF THE TREMATODE, DIPLOSTOMUM MURRAYENSE J. \& C.
}

\author{
By T. HARVEY JOHNSTON and L. MADELINE ANGEL, University of Adelaide
}

\section*{Summary}

In 1938 was published an account of Cerearia murrayensis, a common furcocercaria occuring in Limnaea lessoni in the swamps of the Lower Murray River (Swan Reach and Tailem Bend), infection being observed from December to May, the infection rate varying from 6 to nearly \(50 \%\) (Johnston and Cleland, 1938). Its similarity to C. flexicauda Cort and Brooks from North America was noted. The parasite was allotted to the Proalaria group (Proalaria is now considered a synonym of Diplostomum), and its next larval stage, a Diplostomulum, was stated to occur in the eyes of freshwater fish. The sporocyst stage was also described.

\title{
LIFE CYCLE OF THE TREMATODE, DIPLOSTOMUM MURRAYENSE J. \& C.
}

\author{
By T: Marvey Joinston and L. Madeline Angel, University of Adelaide
}
[Read 12 June 1941]
In 1938 was published an account of Cercaria murrayousis, a conmon furcocercaria occuring in Limnaca lessoni in the swamps of the Lower Murray River (Swan Keach and Tailem Bend), infection being observed from December to May, the infection rate varying from 6 to nearly \(50 \%\) (Johnston and Cleland, 1938). Its similarity to C: flexicauda Cort and Brooks from North America was noted. The parasite was allotled to the Proalaria group (Proalaria is now considered a synonym of Diplostomum), and its next larval stage, a Diplostomilum, was stated to occur in the eyes of freshwater fish. The sporocyst stage was also described.

Next year an account was given of the metaccrearia, Diplostomulum murrayense, obtained from the lens of various species of fish in about six weeks after experimental infections with cercariae taken from October to April. The infection route was traced and found to be similar to that described by Van Iratsma (1931) for \(D_{s}\) flexicatdum. A review of the literature relating to the occurrence of similar parasites in the eyes of freshwater fish in Europe and North Ancrica was also given. These parasites were stated to be of considerable economic importance because heavy infection, in the case of very young or small fish, commonly resulted in high mortality (Johnston and Simpson 19.39).

Freshwater fish reported capable of being infected experimentally with C. murrarensis were golden carp (Carassius auratus), rice fish (Oryzias latipes'), congolli (Pscudaphritis urrillci), Pseudomugil signifer and Melanotacnia nigrans, the last three being native fish. Natural infection was reported to have been observed in the lens of larger specincons of the golden carp, Murray cod (Maccullochella macquariae). callop (Plectroplites ambiguts), and Murray brean (Therapon bidyana), all from Tailem Bend. Attempts to obtain the adult stage by feeding diplostomula to Jaboratory-bred white rats and to muscovy ducklings led to negative results. It was believed that the adult would be found in gulls or terns; most probably the silver gull, Larus nozachollandiae.
later experience led us to regard the marsh tern. Chlidonias lencopareia, as the probable host, because of abundance of that bird on the swamps from late spring to autumn, its food consisting manily of dragonfly larvae, prawns and small fish. Thanks to the assistance of Messrs. G. and F . Jaensch and L., Ellis, we were able to examine some of these birds, finding minute diplostones in four out of nine of theni, taken during the period November to March, some of the parasites being very young and similar in size and anatomy to the parasites from fish eyes. On one occasion fish lenses were also present in the tligestive tract, and, on another, abundant remains of very small fish were seen along with various stages in the deyelopment of the trematode from the diplostonulum stage to the adult.

Since the original account was published, we have found in twelve collections of Limnaca lessoni taken at Tailem Bend during the stummer months 193841, infection varying from 0 to \(25 \%\), C. murravensis being identified from 68 out of 680 snails, \(\ddot{i}\), , in \(10 \%\) of the total examined during the period.

Eggs from adult diplostomes taken from a marsh last December were added to a small aquarium containing laboratory-bred L. Iessoni, cercariae ( C. murraycnsis) being noticed 36 days later. Fish (Gambutia affinis) were subjected to infection by these cercariae, nany fully developed diplostonula (fig 5 ) being recovered from the lenses four weeks after the earlicst infection; hence the minimum period may be less than that obseryed. Daily attempts were made to

\footnotetext{
Trans. Roy, Soc. S.A., 65, (1), 25 July 1941
}
infect tadpoles of Limnodynastes tasmanicnsis, but this seems to be a refractory host, since the parasites found in the lens had not passed beyond the tail-less cercaria stage even after six days from the commencement of infection.

Since the original account of the diplostomulum stage was publisherl, we have found it occurring under natural conditions during the summer 1940-41 in the following fish in the Murray River or swamps at Tailen Bend and Murray


Fig. 1, adult, contracted; 2, male system; 3, female system (same specimen as fig 2) ; 4, adult ; 5, 6, diplostomula from Gambusia; 7, 8. 9, successive stages of development in Chidonias; 10, youngest stages seen in Gambusia. All figures were drawa to same scale. e, egg; \(i\), intestine; 0 , ovary; t. testis; u. uterus; vr, vitellinc rescrvoir; vs, vesicula seminalis.

Bridge: Retropinna semoni. Cirassiops klunzingeri, Melanotucnia nigrans, Namoperca australis, Psoudaphritis urvillei, Craterocephahus furiatilis, Mugilogobius yalwayi, Philypnodon grandiceps, Mogurnda adspersa, Percalates colonormm and Carassins auratus; and from Galaxias attonuatus and \(G\). olidus from other South Australian localities. Our records indeate that Cercaria murrayensis has been observed each month from November (rarely October) to

May inclusive, and that the diplostomulum stage has been collected from the lens of fish in the sanie locality (Lower Murray) each month from November to May inclusive, hut not in those taken int Jine, August and October. These obscrvations indicate that snails (nnless the infection has survived the winter) may liecome infected in September or October by eggs which have passed throngh the winter in the swamp or which have been present in the faects of the earlicst terns to arrive in the spring, By October cercariae lave become available to infect fish in which fully developed diplostomula may be present in Noyember when the terns may becone infected. Onr original observation that infection. it present, was always light in the case of large fish, can be explained by the habit of such fish. since they rarely visit the shallow swanps (where small species and the young of all species are to be found), but live in the river and decper chamels where the food plants on which Limnaca lessomi feeds, do not find a suitable envionment for their growth.

We have now recorded the occurrence of the diplostomulum stage in the lens of fifteen species of native ireshyater fish and onte introduced species from south Australia, is well as (experimentally) from twa exotic fish (Oryias and (fantusta) commonly lept in aquaria. The extensive range of the species of fish concerned and the wide variety of orders and fomilies involved suggest that the parasite may be expected to be able to infect additional species. Dubois. (1938, 192) listed orer forty species of freshwater fish from the northern lumisphere recorded by varions observers as hoste for the diplostomulum stage of an allied Diplostamim ( \(D\). spathaceam) which occurs in gulls in Furope and Xorth America.

The length of egg-bearing specimens of fiplostomum murrayense, lying flat in fluid, without compression, ranged from 5 to 1 mm . The total leigth of nine such worns, the length and breadth of the fore- and hind-body respectively, and the approximate ratio of the length of the post-body to the fore-body, were as
 \((26 \times \cdot 24+24 \times \cdot 16), 1.9 .6) \cdot 54 \mathrm{~mm} .(25 \times \cdot 19+29 \times 13)\), \(1: 1 \cdot 16\); (4) 67 mım. \((36 \times \cdot 36-7.31 \times-18), 1: 86 ;(5) \cdot 67\) п11., \((\cdot 33 \times \cdot 28-.34 \times 23), 1: 1 ;(6) .85\) m \(\times 1 . .4 \times 35+45 \times-19)\), \(1: 1+12:(7) .88\) mm, \((.47 \times-43+41 \times-29), 1: 087 ;(8)-89\) nim1., \((53 \times 3+36 \times-21) .1=68 .(9) 1\) 1иm. \((5 x \cdot 42+5 \times \cdot 23), 1: 1\). \(M\) ost adults seen were \(\overline{3}\) to \(\cdot 7\) mm., few hetween, \(\cdot 7\) and 9 , and extremely fow measured 1 min. in length. The breadhis and relative lengths of the two parts of the body varied, hut the post-body was usually approximately equal to, or siightly greater that, the fore-body in length.

A few strongly contracted specmens with the hind-body lying at right angles to the fore-body were also measured (seen in lateral vicw) in fluid: (1) estimated total length 84 mm ., fore-hody (inchuding its posterior region projecting beyonk the hind-body) 55 1nm, long, hind-body .55 mm , with it maximum dorso-ventral diameter \(26 \mathrm{mm}\). ; (2) \(-80 \mathrm{mmn}. \cdot 67 \mathrm{mmn.*} 3\) (markedly arched ventrally), and 34 respectively; (3) 88,65 (with depth \(\cdot 2\) mun,), -42 and 32 mm . respectively.

Anterior sucker \(04-06\) mom, diameter, rounded or slightly longer than wide. Ventral sucker about same size, outline circular or slightly broader than long. anterior border (in fully adult specimens) distant from the anterior end of the worm 44 to \(47 \%\), occasionally \(50 \%\), of Iength of fore body. Anterior glands each between 05 and \(\cdot 06 \mathrm{~mm}\). long, with definite cavity directed antern-laterally or almost forwards. Holdfast (tribocytic) organ about * \(1-12\) mimi. long. about \(-1-15\) broad, sometimes tound; projecting prominently (especially in strongly contracted worms) ; often overlapping part of ventral sucker, but more usually a slight interval between the two organs; opening slightly longitudinal, with short groove leading into a canal surrounded by deeply-staining tribocytic glands ;
breadth of organ about 43 mm , or less, under half maximum breadth of fore-body. Genital pore dorsal, about *04-05 mmı. from posterior end; excretory pore a short distance behind it.

Anterior sucker directed more or less ventrally; prepharynx very short, .01 mm , long, above end of oral sucker"; pharynx elongate, \(04-06 \mathrm{~mm}\). long, \(\cdot 02-03 \mathrm{mmu}\), wide, oesophagus short, 01 mm . long; caeca extending back close to base of tribocytic organ and almost reaching end of worm.

The reproductive system has the same general disposition as in \(J_{\text {. }}\) fexicauctum, \(D_{*}\) spothacenm, \(D\). Iuronense and \(D\). indistinctum. The testes have the formusual in the genus. The front of the anterior testis lies at about 13 mm , behind the junction of the fore- and hind-body ' (i.c., at less than \(30 \%\) of the length of the hind-body), and adjacent to, or partly above, the posterior edge of the ovary, Its Tength is about \(\cdot 05 \mathrm{~mm}\), and the breadth \({ }^{+1} \mathrm{~mm}\). It is longer directly behind the ovary and tapering somewhat towards the opposite side of the body. The second testis, measuring 07 by 13 mm , is curved in transverse section, with its limbs directed ventrally, and with its front edge just behind ( \(55-64 \%\) ) half the total length of the post-body. The vasa deferentia were not traced fully but they pass back between the limbs of the second testis. The large rounded vesicula seminalis lies just behind, and partly below, the arch of the second testis. The narrow ejaculatory duct enters the genital atriunt above the uterus.

The spherical ovary, 05 mum diameter, lics dorsally, immediately in front of the first testis and may be partly overlapped by it. The anterior end of the organ is at about \(\cdot 07 \mathrm{~mm}\). (at \(15 \%\) of the total length of the hind hody'). The oviduct travels back above part of the anterior testis to pass through Mehlis's gland lying dorsally betwcen the two testes. The yolk reservoir is ventral and transversely placed, entering the ootyp from below. The uterine duct passes downwards and curves so as to lie antcro-ventrally front, and parallel with, the ootyp, and then forwatds as the ascending uterus below the anterior testis, extcnding into the tegion of the junction of the fore- and hind-body. It then curves back, trayersing the ventral region below the testes and ootyp to reach the genital atrium. Laurer's canal is short and opens dorsally between the ovary and the anterior testis. Yolk glands extend forwards into the region just in front of the ventral sucker. The follicles obscure most of the organs in the hind-body, except in the vicinity of the genital atrimm. "There are 1 to 12 large eggs, usually 3 or 4 , in the uterus; they measure \(\cdot 072-\cdot 1 \mathrm{m1m}\), by \(\cdot 04-06 \mathrm{~mm} .\), generally \({ }^{\circ} 09\) by \({ }^{\circ} 06\).
D. murrayense differs from D. fleticaudum as figured by Van Haitsma (1931), and D. spathacum as figured by Krause (1914), Fuhrmann (1928). and Dubois (1938), in its dimensions, body ratios, position of the ovary and number of eggs. It closely resembles 1 ), huronense La Rue (1927) and especially I). indistinctum Guberlet (1923, syin. D. confusunt Gub. 1922) in the disposition of its organs, but differs in the detailed measurements of then and particularly in the size of the worms.

Sonc very young stages of the parasite were recovered from two marsh terns. For comparison with the youngest obtamed, we mention the dimensions ( \(i 11 \mu\) ) of the diplostomulum stage (killed with boiling formalin) as given in the original account: body length 231-392 (mean 296): breadth 154-215 (177); anterior sucker 22-43 (34) long by 42-51 (47) broad; ventral sucker 30-37 (34) long by 34-47 (39) broad; holdfast 71 long by 79 broad. The largest specimens we obtained from Gaubusia were rather larger than those described hut were somewhat swollen by postmortem changes in the dead fish before we found them, the normal dimensions having probably become slightly increased -measurements in mm.: * \(4-* 44\) long, \(-2-25\) broad; anlerior sucker 05 by \(015-06\); ventral sucker .05 diameter; holdfast -09 by 06 and 07 by \(\cdot 07\). The smallest found in the bird host measured \(\cdot 3 \mathrm{~mm}\), long by \(\cdot 12\), with tore-body -28 long and a minute postbody \({ }^{\circ} 02\) long by \(\cdot 05\); anterior sucker '035 by 03 ; yentral sucker -035 by '025;
glandular areas (head) .015-02 long; holdfast 04 by -018 (grooved portion), -06 by "04 if glandular region be included; pharynx *025 by 0013 ; oesophagus - 01 long; genital anlagen represented by relatively few deeply-staining cells in the fore-body behind the holdfast and by cells in the post-body indicating the differentiating genital ducts and pore. Another was slightly larger but did not exhibit any differentiation into fore- and post-body. Its dimensions were: \(-45 \mathrm{~mm}_{\text {t }}\) long, 19 broad; anterior sucker • 04 by "03; posterior sucker 035 by '04; glandular areas 055 ; holdfast 09 broad; pharynx 03 by -02; genital anlage pyriform, much larger than in the preceding specimen but not differentiated, situated in the posterior 12 mm . behind the deeply-staining paired holdfast glands. In its characters it resembled closely the diplostomulum stage. Another young worm, " 44 mm . long, possessed the following features: fore-body 3 by -16 ; post-body ' 14 by \(\cdot 1\); anterior sucker 03 by \(\cdot 035\); ventral sucker 03 by 03 ; holdfast prominent, 06 by 06 , with well marked groove and two deeply staining glandular masses; pharynx * 03 by 02 ; genital anlagen in three masses representing ovary, anterior testis and posterior testis, also a cord of cells representing the terminal portions of the differentiating uterus and seminal vesicle, \(A\) specimen \(\cdot 4 \mathrm{~mm}\), long, with fore-body \(\cdot 3\) by \(\cdot 19\) and hind-body \(\cdot 1\) by \(\cdot 11\), exhibited a similar stage of reproductive development as seen in the preceding worm. Yolk glands seem to be fully differentiated before the sex organs become functional, the latter occurring when the parasites have become about \(\cdot 5 \mathrm{~mm}\). in length.

In addition to the diplostomula, already referred to above, taken from Gambusia, we obtained from the sante fish several very early stages, also from the lens. Some of these were practically tail-less cercariae (fig. 10) measuring from 14 by -04 to \(\cdot 19\) by 05 , with the anterior organ still persisting and with rows of spines around the head end, as well as a prominent row surrounding the projecting ventral sucker. A minute diplostomulum '(fig. 6) was also obtained, measuring - 15 mm . long, 05 broad; with an anterior sucker - 02 mm . long by \(\cdot 024 \mathrm{~mm}\); a posterior sucker '02 by -02 11m1. ; a tribocytic organ immediately behind the latter and provided with a deep groove; and head glands like those of older diplostomula, but all spines had disappeared from the hody and from the ventral sucker. These various stages from Gambusia were obtained as a result of submitting the fish to infection at short intervals by a very small mumer of cercariae.

Diplostomum murrayense is the first Australian Strigeate trematode whose complete life cycle is known, and is the first member of the genus, as now restricted, to be described from, the Commonwealth.

Type material of the various stages is deposited in the South Australian Museum, Adelaide. Acknowledgment is made of the generous assistance rendered by Messrs. G. and F. Jaensch and L. Ellis of Tailen Bend in regard to material; and by the Commonwealth Research Grant to the University of Adclaide.

\section*{Literature}

Debors, G. 1938 Monographie des Strigeida (Trematoda). Mem. Soc. Neuchat. Sci, Nat, 6, 535 pp .
Fuhrmann, O. 1928 Trematoda. Kükenthal's I Iandb. d. Zool, 2, 1-140
Guberlet, J, E. 1922 Journ. Parasit., 9, 6-14
Johnston, T. IIr, and Cleland, E. R. 1938 Trans. Roy. Soc. S. Aust., 62, 127-131
Johnston, 'T. H., and Simpson, E. R. 1939 Trans. Roy. Soc. S. Aust., 63, 230-237
Krause, R. 1914 Z. Wiss. Zool., 112, 92-238
LA Rue, G. R. 1927 Tr. Amer. Micr. Soc., 46, 26-35
Van Haitsma, J. P. 1931 Pap. Mich. Acad. Sci., 13, 1930 (1931), 483-516

\footnotetext{
Wholly set up and printed in Australia by Gillingham \(\mathbb{\&}\) Co, Limited, 106 Currie Street, Adelaide
}

\title{
TRANSACTIONS OF THE ROYAL SOCIETY OF SOUTH AUSTRALIA
}

\title{
REPORT ON FORAMINIFERAL SOUNDINGS AND DREDGINGS OF THE F.I.S. "ENDEAVOUR" ALONG THE CONTINENTAL SHELF OF THE SOUTH-EAST COAST OF AUSTRALIA
}

\author{
By FREDERICK CHAPMAN, A.L.S., Hon. F.R.M.S.
}

\section*{Summary}

The material described was collected by the "Endeavour' about the year 1912. Captain Dannevig forwarded it to me through the late Robert Etheridge., Jnr., together with a schedule of the samples dated 23 June 1913. Two other samples of soundings, collected about the same time, and included in this schedule, have already been described. \({ }^{(1)}\) Unavoidable delay in carrying out further descriptions of this interesting material has been due to stress of official and private work prior to my retirement as First Commonwealth Palaeontologist.

\title{
REPORT ON FORAMINIFERAL SOUNDINGS AND DREDGINGS OF THE F.I.S. "ENDEAVOUR" ALONG THE CONTINENTAL SHELF OF THE SOIJTH-EAST COAST OF AUSTRALIA
}

\author{
By Frederick Cifarman, A.L.S., Hon. F.R.M.S. \\ [Read 10 July 1941] \\ Plates VII, ViII, IX \\ INTRODUCTORY
}

The material described was collected by the "Endeavour" about the year 1912. Captain Dannevig forwarded it to me through the late Robert Etheridge, Jnr., together with a schedule of the samples dated 23 June 1913. Two other samples of soundings, collected about the same time, and included in this schedule, have already been described. (1) Unavoidable delay in carrying out further descriptions of this interesting material has been due to stress of official and private work prior to my retirement as First Commonwealth Palacontologist.

\section*{SCOPE OF INVESTIGATION}

The present Report relates to the soundings marked E 3915 to E 3923, comprising all those samples located towards the castern end of Bass Strait, near the boundary of Victoria and New South Wales, chiefly east by south from Green Cape; cast from Babel Island; and on the eastern edge of Bass Strait.

As these soundings range from 65 to 505 fathoms, the results have a direct bearing on the form and contour of the continental shelf around the southeastern coastline of Australia, in which the late Capt. Dannevig was so keenly interested. (See Biol. Res. F.I.S. "Endeavour," VII-The Continental Shelf of the East Coast of Australia, 3, \((6), 1915)\). The remainder of the Samples included in this collection, reserved for a further Report, were chiefly obtained from localities centred about the Great Australian Bight, off Eucla.

These Reports have been made possible through the courtesy of Sir David Rivett, K.C.M.G., F.R.S., and Dr. H. Thompson, Chief of Division of Fisheries, C.S.I.R. The writer is also indebted to Mr. S. Fowler, of the same Department, for facilities in consulting the charts of the area investigated.

\section*{DESCRIPTION OF SAMPLES AND THEIR CONTENTS}

Sample E 3915
Loc.-East from Babel Island ( \(\epsilon a s t\) of Flinders Island), 65 fathoms. 28 October 1912. Dricd Matcrial-Grey foraminiferal and shelly ooze, with a greenish tinge. Coarse Siftings contain many larger Foraminifera, as Lenticulina, Saracenaria, Dentalium, Eponides, Elphidium, Pyrgo, Polosina, Haplophragmoides, Dorothia and Textularia, Also abundant tube-building Worms, Polyzoa, Brachiopoda, many Mollusca and Ostracoda.

\footnotetext{
\({ }^{(1)}\) Biol. Res. "Endeavour," 1, (3), 309-311, 1912. Also Report of the Foraminifera and Ostracoda obtained by the F.I.S. "Endeavour" from the East Coast of Tasmania and off Cape Wiles, South Australia, 3, (1), 1915, 1-51, pls. i-iii.
}

\section*{POLYZOA Order CHEILOSTOMATA}

Caberea grandis Hincks 1881
Hincks 1881, Mnn. Mag. Nat. Hist.. (5), 8, 50, pl. iii, fig. 4; MacGillivray, 1895.
Trans. Roy. Soc. Vict., 4, 25, pl. iii, fig. 9; Stach, 1935, Proc. Roy. Soc. Vict., 47, (2), n.s.. 342 , pl, xii, fig. 3.
Common and typical. This species first appears as a fossil in the Lower Miocene of Balcombe Bay, Flinders, the Moorabool Valley, Muddy Creek and the Mitchell River, Bairnsdale; also in the Lower Pliocene (Kalimnan) at MacDonald's, Muddy Creek and in the Sorrento Bore at 726 feet. In the living condition it has been found on the cable in Bass Strait, at Western Port, Lakes Entrance, Port Phillip Heads, 22 miles cast of Port Jackson at 80 fathoms and at Darnley Island, Torres Strait ( \(10-30\) fathoms), as recorded by L. WV. Stach.

\section*{Caberea darwinif Busk 1884}

Busk 1884, Chall. Rep. Polyzoa, pt. i, 29, pl. xxxii, fig. 6; MacGillivray (in McCoy ), Prod. Zool. Vict., 1887, dec. xiv, 141, pl. cxxxvii, fig. 1-5; Jbid., 1895. Trans. Roy. Soc. Vict., 4, 25, pl. iii, fig. 10, 11.

Rare. The original, living, forms were described from New Zealand. Those from Victoria were from Port Phillip Heads (MacGillivray) and Portland (Maplestone). The fossil specimens are noted from the Tertiary of Muddy Creek near Hamilton.

Cellaria (iracilis (Busk 1852)
Salicornaria gracilis Busk 1852, Brit. Mus. Cat., pt. i. 17.
Cillaria gracilis (Busk), MacGiliivray, 1895, op. cit., 30, pl. iii, fig. 26.
Common and typical. Fossil specimens have been recorded from the Lower Miocenc of Balcombe Bay and Muddy Creek. As a living species MacGillivray notes it irom Queenscliff and Sealers' Cove, Wilson's I'romontory,

\section*{Cfllaria rigida var. venusta MacGilliviay 1895}

MacGillivray 1895 , op. supra cit., 30, pl. iii, fig. 24.
Very abundant. Found fossil in the Lower Miocene of Balcombe Bay, Muddy Creek and Bairnsdale, Victoria. Living, Anstralia.

Cellaria tenuirostris (Husk 1852)
Salicornaria tenuirostris Busk 1852, op. cit., 17.
Ccllaria tentirostris (Busk), MacGillivay (in McCoy), 1880, Prod. Zool., Vict. dec. \(v, 49\), pl. xlix, fig. 3.
Very abundant. This species was collected by Baron v. Mueller from Oneensland, Sealers' Cove and Cape le Febre (det. by MacGillivray).

Conescharelifina biarmata (Maplestone 1909)
Bipora biarmala Maplestone, Rec. Aust. Mus., 7, (4), 1909, 268, pl. lxxv, fig. \(1 a, b\).
Frequent. Previously recorded 22 miles east of Port Jackson in 80 fathoms, H.M.C.S. "Mincr."

Conescharellina pililippinensis ( Fusk 1854)
Lunulites philippinensis Busk, Brit. Mus. Cat., pt. ii, 1854, p. 101.
Bipora philippinensis (Busk), MacGillivray, 1895, Trans. Roy, Soc. Vict., 4, 89, pl. xii, fig. 2.

Occasional specimens. Found fossil in marls of Lower Miocene age at Balcombe Bay and Muddy Creek, Abundant in borings at Lakes Entrance, in beds of the same age (Imray Bore and others). Living off the coast of New South Wales.

> Cellepora fossa (Haswell 1881)

Sphacrophora fossa Haswell, Proc. Lím. Soc. N.S.M.. 1881, 5, 42.
Cellepora fossa (Hasw.), MacGillivray, op. cit., 1895, 108. pl. xiv, fig. 8-10.
Rare. Found fossil in most Lower Miocene marls in Victoria. Living around the Anstralian coast. C. M. Maplestone records it from 22 miles east of Port Jackson (80 fathonns).

Retepora babelensis sp. nov.
Pl. vii, fig. 1-3
Descripion-Holotype specimen. Zoarium slender, ranose, branching twice. Length, 5.5 mm . Zooecial tubes comparatively long and prominently recurved, as in \(R\), fissa and \(K\). schnapperensis, Margin of zooecial tubes ragged, often spinous and frequently everted, sometimes with a notch on the lower edge. Diameter of zooecial tubes, 0.19 mmi . Zoorecial tubes three or four in a more or less oblique series. Avicularia as a minute oval or longitudinal slit. Ovicells with a transverse slit-like opening.

The reverse face shows a rectangular or irregularly hexagonal areolation, as in Retcpora fissa MacGillivray.

East from Babel I;land, 65 fathoms. Rare.

\section*{Order CYCLOSTOMATA}

Crisia scalaris MacGillivray 1895
MacGillivray, op. cit., 1895, 119, pl, xvi. fig, 1.
Common. Ilitherto found fossil in the Lower Miocene of Corio Bay, Geelong.
\[
\text { Idmonea milneava d'Orbigny } 1839
\]
d’Orb., Voy, dans l'Amér, Mérid., 1839, pt, v, 20. MacGillivray (in McCoy), 1882, Prod, Zool. Vict., dec. vii, 29, pl. 1xviii, fig. 1. Id., 1895, Thans. Roy. Soc. Vict., op cit., 124, pl, xvii, fig. 1, 2.
Abundant. Fossil records in Victoria are: Lower Miocene of Muddy Creek and Sairnsdale. As a living form this widely distributed species is known from South America, Florida and from Australian waters. All Australian examples, fossils and recent, seen to be typical.

Mecynoecia (Entalophora) dannevigi sp. nov.
(Pl. vii, fig. 4)
Dcscription of Type-Zoariun dendroid, slender, once-branched and slightly curved. I ength, 14 mm . ; breadth of stipe, 0.4 mm . Zonecia 1ong, tubular and irregularly disposed but sometimes double or nearly adjacent, length of tubes circ. 0.8 mm., dianeter 0.22 mm . The wall of the zoariun is somewhat densely punctate. The zooecia are comparatively smooth but for the presence of fine longitudinal grooves. Colour of this recent zoarium is of a delicate plum-brown int.

Species abundant in this sample.
A closely related species is Mecinocria proboscidea (Milne Ldwards) which, by the way, has a cosmopolitan distribution both in time and space. It ranges from the Cretaceous to Recent in America and Europe, whilst it is conmmon in the Lower Miocenc of Gippsland. The present specimens are of a more tenuous
structure and have no cortical thickening of the wall. Entalophora australis (Busk) of the Lower Miocene of Muddy Creek lives also in Australian seas, but is a distinctly incrassate form with fewer and larger zooecia.

\section*{MOLLUSCA}

In checking and identifying the names of these, and of the Brachiopoda, I have had the expert assistance of my friend, Mr. C. J. Gabriel. A small proportion of species were recorded by the late Charles Hedley, from "Endeavour" dredgings off Cape Wiles, South Australia. \({ }^{(2)}\) These are indicated by an asterisk.

\section*{PELECYPODA}

Poroleda spatulata Hedley (c.); Sarepta tellinaeformis Hedley (v.r.); Arcoperna recens Tate (v.r.) ; Chlamys famigerator Iredale (cf. *C. antiaustralis Hedley) (r.) ; Myodora aff. antipodum Smith (v.r.) ; *Venericardia amabilis (Deshayes) (v.r.) ; Myrtaca gabrieli sp. nov. (r.) (vide infra) ; Diplodonta globulosa A. Adams (v.r.) ; *Cardium pulchellum Gray (ab.) ; Macrocallista planatella (Lamarck) (v.r., juv.).

\section*{SCAPHOPODA}

Dentalium spp. (fragments, indet.).

\section*{GASTEROPODA}
*Turritella atkinsoni Tate and May (c.) ; *Vermicularia flava Verco (f.); Nassarius semigranosus (Dunker) (f.); Marginella inconspicua Sow. (f.); M. gatliff May (v.r.) ; Cylichnella prolumida Hedley (v.r.) ; Retusa cf. cumieri Crosse and Fischer (v.r.) ; *Mitra cf. stadialis Hedley (v.r.) ; Crassispira cf. lacteola Verco (v.r.) ; ? Filodrillia sp. (v.r.).

\section*{BRACHIOPODA}
*Campages jaffaensis (Blochmann) (r.).
Note-The Foraminifera and Ostracoda found in the foregoing and succeeding samples are collected in the Table of Distribution at the end of the Description of the Dredgings and before the Systematic portion of the work dealing with the above-named groups. The abundance of the species in the Samples is indicated in the Table by the relative and not actual number of examples, and elsewhere in the text by small letters, as follows: Very Rare, 1 (v.r.) ; Rare, \(2-3\) (r.) ; Frequent, 4-7 (f.) ; Common, 8-16 (c.) ; Very Common, \(>16\) (v.c.).

Sample E 3916
Loc. -33 miles east by south from Green Cape, north of the Victorian border. From anchor, Dried Material-A pale grey, tenacious, calcareous mud. Finest Washings contain an abundance of coccoliths, denoting a rich plankton in this area. These coccoliths are of great interest from a palaeontological point of view, for they are structurally similar and of the same dimensions as those found in the Upper Oligocene marls of the Lakes Entrance borings East Gippsland. The richness of this planktonic sediment is a good indication of its suitability as a fishing ground. The remainder of the finest sediments of this sample consists of a few minute shell fragments, sonie minute Foraminifera (cf. Discorbis) and occasional siliccous sponge spicules and stellate spicules of

\footnotetext{
\({ }^{(2)}\) Hedley, C., 1911, Zool. Results, F.I.S. "Endeavour," 1, (1), 91-96. Idem, ibid., 1914, 2, (1), 65-70. See also Iredale, T., 1925, Rec. Austr. Mus., 14, No. 4, 249-270, pls. xli-xliii.
}

Tunicates. Medium Fine Siftings conprise numerous echinoid (salenid) spines, siliceous sponge spicules (cf. Tethys), abundant spicules of Tunicates (Leptoclinum) and molluscan bivalved shells in the neanic stage (cf. Lissarca). The Foraminifera and Ostracoda here belong especially to thin-shelled forms, indicating a pelagic and nektic fauna.

\section*{Sample E 3917}

Loc:-Eastern edge, Bass Strait. 140 fathonis. 12 December 1912. Dried Material-Cream-coloured, fine-grained calcareous mud. Finest Washings consist largely of minute crystallised rhombs of calcite, comprising about \(40 \%\); also minute molluscan shell-fragments and Foraminifera. A minute quantity of angular quartz grains present. The crystalline calcitic rhombs mentioned are so sharply defined that they suggest dolomite at first sight, but when treated with cold HCl they dissolve almost entirely, leaving a thin trace of ferruginous residue. (See Note below.) Medium Siftings contain a fair number of echinoid spines (salenids), frequent valves of Ostracoda and abundant Foraminifera, together with some fragments of Polyzoa. Floatings contain an abundance of Globigerina, Lagena and Bolivina. Amongst the larger fragments, after washing, there is a somewhat decomposed shell, with united valves, of Cardium pulchellum, measuring 15 mm . in length and 12 mm . in height; also fragments of Dentalium and Turritclla.

The following Polyzoa also occurred in this sample: Cellaria rigida var.; ventsta MacGill; Crisia acropora Busk and Mecynoecia dannevigi sp. nov.

Note on the Occurrence of Crystals of Carbonate of Lime in moth
Recent and Fossil Deposits, and the Probable Conditions under which they were Formed
During the past few years, whilst examining Lower Miocene marls from deep borings in East Gippsland, I have repeatedly met with rhombohedral crystals of Calcite in the finer washings.

At first they seemed to be possibly referable to dolomite, on account of the sharpness of their outlines. This doubt was solved, however, by their complete disappearance when treated with cold hydrochloric acid, thus proving then to be calcite crystals.

Whilst examining the recent deposits of the present series from Bass Strait, and particularly that of E 3917, from the eastern edge of Bass Strait, at 140 fathoms, I was struck with the large proportion of these calcitic crystals. They brought to mind the fact of their previous occurrence in the washings of the fossiliferous marls of Lower Miocene age in Gippsland, which sediments were rleposited in an ancient trough formerly contiguous with the Southern Ocean.

In both fossil and recent sediments these calcite crystals are of somewhat variable size, but generally much larger in ancient Miocene deposits than in Recent. In the Miocene marls of the lturay Well in East Gippsland, for example, the average diameter is 0.04 mm , whils. from Recent soundings only 0.006 mm , In Miocene examples I have sometimes detected the "nail-head" termination on an occasional prism.

It is somewhat renarkable that thre are so few references to the occurrence of free Calcite in descriptions of present-day sediments of the ocean. Murray and Rellard (3), in their "Deap Sea Deposits", p. 204-5, have recorded such an occurrence from "a highly characteristic Radiolarian ooze," taken at 4,475 fathoms, Sta. 225, lat. \(11^{\circ} 24^{\prime}\) N., long. \(143^{\circ} 16^{\prime}\) E, between New Guinea and Japan, which contains "some very peculiar white-coloured aggregations composed
\({ }^{(3)}\) Report, "Challenger," Deep Sea Deposits, 1891.
of minute rhombohedral crystals, which when treated with dilute acid decompose with liberation of carbonic acid, but a flocenlent residue is left behind, as well as microscopic granules; we are inclined to consider these crystals as calcite or dolomite."

The crystals referred to hy Murray and Renard are shown on pl. xxvii, fig. 5. of their Report, where it can be seen that they have exactly half the diameter ( 0.003 mm .) of the crystals occurring in the present sounding ( E 3917 ).

The minute crystals of hydrated calciuni oxalate which Earland found in the deposits from the Weddell Sea ("Scotia" Exped. 1902-4) \({ }^{(4)}\) cannot easily be mistaken for the present ones, for they are tetragonal bipyramids and show an "envelope" structure of the facets; moreover, they are ten times the diameter.

As regards the probable cause of the deposition of Calcite crystals in marine sediments, this is not far to seek. The normal calciun carbonate, as found in marine shells, is very slightly soluble, and average sea water contains only 0.12 parts per thousand. After remaining in contact with the same substance in a state of exceedingly fine division, the sea water may "take up as much as 0.65 parts per thousand (see "The Occan" by Sir John Murray p. 214. Hone University Library).

It is known that polar waters contain a minimum of calcic carbonate, hence the thin-shelled faunas of those regions; and that by a rise in the temperature of oceanic waters increased solution is induced. It follows then, that, as in the warmer waters of Bass Strait, where oceanic currents are prevalent. the supersaturated water, meeting with colder flows, will consequently yicld up this dissolved calcie carbonate, down to its normal saturation point. Thus the presence of these calcitic rhombs points directly to an area of sedimentation over which currents of varying temperatures are passing.

Santple E 3918
Loc.-"Tat. \(37^{\circ} 21^{\prime \prime} 20^{\prime \prime}\) S., long. \(150^{\circ} 24^{\prime} 25^{\prime \prime}\) E. Foraminiferal sand. 2 October 1912. Washings of mud from Agassiz 'Trawl. Depth, 505 fathons. F.I.S. 'Endeavour'," Dried Material-Grecnish-grey shelly (chiefly foraminiferal), loose, calcareous marl. IFine Washings show abundant angular quartz. a large proportion of tetractinellid sponge spicules and numerous coccoliths. Also occasional minute Foraminifera, chiefly Discorbis. In the Medium Washings Foraminifera and Ostracoda are abundant; tetractinellid sponge spicules occasional; ovoid mud pellets (exereta) in great profusion, Coarse Siffings contain. besides abundant ovoid mud pellets and occasional polished quariz grains, the following organisms: Foraminifera-Large forms, especially arenaceons ones. Echinonermata-Spines of spatangoid sca-urchins and of one of the Centrechinoida (purplish red, hollow and with obliqute rings of spintules). PonyzoARare; represented chiefly by Crisia acropora Busk, Cellaria gracilis (Busk) and C. rigida MacGill. var. perampla Waters. Mollusca-Among these are: Sarepta obolclla (Tate) ; Nuculana pala (Hedley) ; Lissarca rubricata Tate; Ihilobrya pectinata Hedley; cf. Carditella; Creseis zirgula Rang; Clio pyramidata Iimn,; Limacina inflata d'Orb; Voleula rostrata (A. Adans). This latter species was recorded by Chas. Hedley from dredgings by the "Thetis" at 63 to 75 fathoms off Port Kembla, New South Wales (Sci. Res. Mem. Aust. Mus., 4, No. 6, 1903. p. 394.

Also Pisces-Otoliths of fish, indet.

\footnotetext{
\({ }^{(4)}\) Discoyery Reports, pt. iv, 1936. Foraminifera. Additional Records, A. Earland. With a Report on some Crystalline Components of the Weddell Sea Deposits, F. A. Eannister and M. H. Hey.
}

\section*{Sample E 3919}

Loc.-"Lat. \(37^{\circ} 21^{\prime} 20^{\prime \prime}\) S., long. \(150^{\circ} 24^{\prime} 25^{\prime \prime}\) E. Depth, 505 fathoms. Washing from mud brought up in Agassiz Trawl." Dricd Matcrial-Greenishgrey fine shelly and foraminiferal mud. Fine Washings, rich in plankton (coccoliths, etc.) ; numerous broken siliceous sponge spicules; a small proportion of fine angular quartz sand and other terrigenous material. Ostracods chiefly in these siftings. Mcdium Washings with a large pelagic foraminiferal fauna. Also numerous ovoid mud pellets. Coarse Siftings contain tetractinellid sponge spicules, echinoid spines (spatangoid).

PolyzoA include Cellaria gracilis Busk, Caberea grandis IIincks, Coneschardlina philippinensis (Busk), and Crisia acropora Busk, MolluscaNuculana pala (Hedley), Poroleda ensicula (Angas), Syrnola spp., Turritella sinuata Reeve, Nassarius tasmanicus (T. Woods), Clio sp. and Dentalium sp.

A large proportion of this residue is composed of ovoid mud pellets. There are also some fish otoliths present.

Sample E 3920
Loc.-"ILat. \(37^{\circ} 21^{\prime} 20^{\prime \prime}\) S., long. \(150^{\circ} 29^{\prime} 25^{\prime \prime}\) E. 33 miles east by south from Green Cape, 470 fathoms." Mud with a greenish-grey tinge; also rubbly rock with corals. Fine Washings-Containing few coccoliths, broken sponge spicules and some angular quartz sand. Also minute Foraninifera, as Discorbis. Floatings with numerons Lagenae. Medium Siftings-Rich in echinoid spines (spatangoid), alcyonarian spicules, tetractinellid sponge spicules, as well as Foraninifera and Ostracoda. A fair proportion of the washings, about \(10 \%\), consist of ovoid mud pellets. Coarse Siftings contain abundant echinoid spines and plates, alcyonarian spicules, polyzoa and small mollusca.

The coarser rubbly element consists largely of coral fragment, Solenosmilia.
Hexacorala--Abundant fragments of Solenosmilia a'ariabilis Duncan occur in the present sample. This deep water coral was not noted by the "Challenger" from the present region, but Professor Moscley records it from varions stations in the South Atlantic which seem to have been at one time ontposts of the more extensive Antarctic Continent. Thus three localities are given for this coral-Tristan da Cunha at 1,000 fathoms. Prince Edward Is'and at 310 fathoms and from Ascension at 420 fathoms. Off Green Cape it occurs in great profusion, Octocoralla-Mclitodes sp. cf. rugosus. Numerous fragments.

Polvzoa-Catenicolla spı; Cellarin gracilis (Busk); Crisia acropora Busk. All of these in abundance.

\section*{MOLLUSCA}

Nuscula obliqua Lamarck; Mytea gabrieli sp. nov. (vide infra); Turritclla sinuata Reeve; Pyrenc sp.; Nassarius tasmanicus (T. W.) ; Cazolina telemus (Linn.) ; cf. Haminoea sp.; Clio pyranidatus Limn.; Diacria trispinosa (Blainville).

Fam. LUCINIDAE
Genus Myrtea Turton 1822
Myrtea gabrieli sp. nov.
(Pl, ix, fig. \(7 a, b\) )
Description-Type specimen, subquadrate; ventral border deeply convex, meeting the dorsal slope at a decided angle, the latter almost straight, Beak small, prominent, sharply recurved anteriorly, almost subcentral, with a narrow, excavated lunule. Surface of valves inflated, more depressed in the younger stages;
older forms as in the type specimen, depressed anteriorly and posteriorly, having an undu'ate depression from behind the umbo to the ventral. Concentric ribs close together in the neanic stage, becoming much more widely spaced proportionately in fully grown shells, numbering about 60 in the type.

Height of holotype, \(25 \cdot 5 \mathrm{~mm}\); length, 32 mm ; thickness of united valves, 12 mm .

Comparisons-Another species, Myrtea braclea, has been described and figured by Charles Hedley from Cape Wiles Sta. ("Endeavour"), from 95-100 fathoms. \({ }^{(5)}\) It differs in the more subcircular outline, the less prominent umbo, which in \(M\). gabridi is almost falciform, the subrounded concentrics (more scaly in our species), and the evenly curved shell-surface, which in M. gabrich is depressed in the anterior and posterior area. From Myrtea mayi (Gatliff and Cabricl) the species is essentially different in the absence of radial striae on the shell surface.

Accompanying these shells, from 33 miles east by south from Green Cape at 470 fathoms, are some smaller forms of this genus, which are probably referable to M. botanica Hedley. M. gabrieli also occurs in E 3915.

Pisces-Otoliths (indet.), common.
Sample E 3921.
Loc.-"Foraminiferal sand. 33 miles east by south from Green Capc. Lat. \(37^{\circ} 21^{\prime} 20^{\prime \prime}\) S., long. \(150^{\circ} 24^{\prime} 25^{\prime \prime}\) E., 505 fathoms. (Washings of mud from Agassiz Trawl.)" Fine and coarse, yellowish-brown foraminiferal mud, with Pteropoda (Cavolina inflexa Lesuetr) and corals (Solenosmilia variabilis Duncan, Melitodes and alcyonarian spicules).

Sample E 3922
Loc.-"Foraminiferal sand. 33 miles east by south from Green Cape, 470 fathoms."

Note-Although this sample bears the same locality data as E 3920, the material has a very different appearance. It is a coarse rubbly and concretionary mud accumulation, with the larger particles, obtained by washing, stained with iron oxide. This concretionary material is, however, largely calcarenus, for when treated with weak hydrochloric acid, it falls to pieces with strong effervescence, leaving a small residue of quartz sand, some siliceous sponge spicules and few ferruginous particles.

With such unpromising material it is surprising to find how numerous are the microzoa, the species of which are fairly common to both samples, E 3920 and E 3922.

The finer siftings, after washing, contain a fair proportion of ovoid mud pellets, echinoid spines, alcyonarian spicules and a few fish otoliths.
Sample E 3923
Sample number only; no locality: A fine, grey, foraminiferal sand. The washings show the same general characters, as regards organisms, as samples east of Babel Island and west of Flinders Island, Tasmania, referred to as E 3915. The present one probably came from east of Babel Island but at a greater depth, It shows a fair proportion of ovoid mud pellets, abundant echinoid spines of both cidaroid and spatangoid types and numerous tetractincllid sponge spicules.

\footnotetext{
(") Zool. Results, "Endeavour," 1, (1), 1911, 99, pl. xvii, 5-8.
}

Foraminifera and Ostracoda are abundant，the former chiefly represented by the genera Uvigerina，Cassidulina，Cibicides，Globigerina，Orbulina，Globo－ rotalia，Planispirina and Quinquelocalina；the latter by Bairdia，Cythere and Cytherella；Polyzoa，Cellaria，Crisia and Mccynoecia；Mollusca，Sarepta obolella（Tate），Cerithiopsis sp．，Rissoa verconiana Hedley；Diacria trispinosa （Blaituville），Clio pyramidatus Linn．，Cavolina sp．and Linacina inflata d＇Orbigny．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sample & 3915 & 3916 & 3917 & 39 & 3919 & 3920 & 2921 & 3922 & 3923 \\
\hline Species Depth & 65 fm ． & anch． & 140 & 505 & 505 & 470 & 505 & 470 & 65 \\
\hline 1 Spirillina inaequalis Brady & － & － & － & 1 & － & － & － & － & \\
\hline 2 Ienticulina clericii（Forn．） & － & \(\cdots\) & 1 & － & － & － & & & \\
\hline 3 I．，sp．aff．conzergens（Burn．） & 2－3 & － & － & － & & － & － & & \\
\hline 4 L．cultrata（Montf．） & 8－16 & － & － & － & 1 & & & & \\
\hline 5 L．yibba（d＇Orb．） & 2－3 & － & － & T & － & & & 1 & \\
\hline \(6 \mathrm{L}\). rotulata L am．\({ }^{\text {a }}\) & 3 & － & － & 1 & & & & 1 & \\
\hline 7 L．sp．aff．articulata（Reuss） & 2－3 & & & & － & & & & \\
\hline 8 L．sp．aff orbicularis（d＇Orb．） & 4－7 & 二 & 1 & 1 & － & － & & － & \\
\hline 9 L ．sp．aff．subalata（Reuss） & 1 & － & － & － & －1 & & & & \\
\hline 10 Planularia australis sp．nov． & & & 1 & & \(\underline{1}\) & & & & \\
\hline 11 Saracenaria italica Defr． & 2－3 & 二 & 1 & － & － & － & － & － & \\
\hline 12 S．navicula（d＇Orb．）\({ }^{\text {a }}\) Astacolus crepidulus（ F \＆M．） & 2－3 & － & 1 & － & － & － & & & \\
\hline 14 Marginulina glabra d＇Orb． & 2－3 & － & 1 & － & － & 1 & － & & 1 \\
\hline 15 Vaginulina legumen（I．inn．） & 1 & － & － & 1 & 1 & & & & \\
\hline 16 Dentalina communis d＇Orb． & 1. & － & － & － & － & － & & － & \\
\hline 17 D．fistuca（Schwager） & & － & － & － & 二 & 1 & & & \\
\hline \(18 \mathrm{D} . \mathrm{sp} . \mathrm{aff.consobrina} \mathrm{(d'Orb)}\). & 2－3 & － & － & － & － & & 1 & － & \\
\hline 19 D．soluta Reuss & 1 & － & － & － & & & & & \\
\hline 20 Nodosaria catenulata Brady & 1 & － & － & － & － & 1 & － & & \\
\hline 21 N．calomorpha Reuss & － & － & － & － & － & & & 1 & \\
\hline  & － & － & T & － & 1 & & & & 1 \\
\hline \[
24 \text { N. iertebralis (Batsch) }
\] & & － & － & － & & － & － & 2－3 & \\
\hline 25 Lagenonodosaria scalaris（Batsch） & ＞16 & － & 2－3 & 2－3 & 7 & \(4-7\) & －3 & 2－3 & 2－3 \\
\hline 26 L．scalaris var．separans Br ． & 1 & － & － & & & & & & 1 \\
\hline 27 I．scalaris var．seminuda nov． & － & － & － & 二 & － & － & & 1 & \\
\hline 28 Lagena annectens Bur．\＆Hol． & － & － & － & － & 1 & － & － & － & \\
\hline 29 L．apiculata（Reuss）．． & － & － & & － & & & 1 & & \\
\hline 30 L．clavata d＇Orb． & & － & 1 & & 1 & － & 二 & － & \\
\hline 31 L．costata（Will．） & & － & － & 二 & 1 & 1 & & & \\
\hline 33 I．．distoma P．\＆J．． & & － & － & & & 1 & & & \\
\hline 34 L．globosa（Montagu） & － & － & & － & 1 & － & － & － & \\
\hline 35 L．hexagona（Will．） & － & － & － & － & 1 & － & － & － & \\
\hline 36 L．hispida Reuss & & － & － & － & 1 & － & － & － & \\
\hline 37 L．lacunata Bur．\＆Holl． & － & － & － & － & 1 & & & － & \\
\hline 38 I．．lagenoides（Will．） & & － & － & & & 1 & & － & \\
\hline 39 I．marginata Walker \＆Boys & & & 1 & － & 1 & & & & \\
\hline 40 L. melo（d＇Orb．）．． & & － & 1 & － & 2－3 & 4－7 & & 1 & \\
\hline 41 L．orbignyona（Seg．） & & －－ & & － & 2－3 & 1 & 1 & & \\
\hline \(42 \mathrm{L}\). striata（d＇Obr．） & － & － & 2 & － & 2－3 & 1 & 1 & － & － \\
\hline 43 L．sulcata（W．\＆J．） & － & & － & － & 1 & 1 & － & － & \\
\hline 44.2. variata Brady & \(\square\) & 1 & － & － & － & － & － & & \\
\hline 45 Pseudoglandulina rotundata（Rss．） & 2－3 & － & － & － & 二 & － & － & & \\
\hline 46 Guttulina communis（d＇Orb） & 1 & & － & － & & － & － & － & \\
\hline 47 G．lactea（Walker \＆Jacob） & & & & & 2－3 & － & － & & \\
\hline 48 （r．problema d＇Orb． & 2－3 & － & 2－3 & 2－3 & － & \(\cdots\) & － & － & － \\
\hline 49 G．regina（Br．P．\＆J．） & ， & － & 1 & 1 & － & － & － & － & － \\
\hline 50 G．yabei Cushm．\＆Ozawa & 2－3 & － & － & － & － & － & － & － & \\
\hline 51 Globulina gibba d＇Orb．var．glo－ bosa（Münster） & － & － & － & － & － & － & － & － & 1 \\
\hline 52 Glandulina lac＊igata d＇Orb． & － & － & － & － & 2－3 & － & － & － & － \\
\hline
\end{tabular}

\footnotetext{
＊Numbers in Table relative and not actual．See p． 148.
}

Tabulation of Foraminifera in the Fiaunules of each Sample
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sample & 3915 & 3916 & 3917 & 3918 & 3919 & 3920 & 2921 & 3922 & 3923 \\
\hline Species Depth & 65 fm . & anch. & 140 & 505 & 505 & 470 & 505 & 470 & \\
\hline 53 Butiminella sp. & 1 & - & - & & - & - & & & \\
\hline 54 Bulimina aculeata d'Orb. & & - & - & - & - & & & 1 & \\
\hline 55 B.elegans d'Orb. & & & & - & - & 816 & 4.7 & 4 & \\
\hline 56 B.sp. aff. marginata.d Orb. & 2-3 & 1 & 1 & & 1 & 23 & & 4-7 & \\
\hline 57 R. notoz'ala sp. nov. & & & & 2-3 & & - & & - & \\
\hline 58 l'irgulina subsquanosa Egger & & & - & - & 4-7 & & & & 2-3 \\
\hline 59 Bolicina alata (Seguenza) & & 4-7 & 1 & & 2-3 & 4-7 & & 2-3 & \\
\hline 60 B . sp. aff. hentyana Chap. & \(>16\) & & 1 & 2-3 & - & & - & & \\
\hline 61 B, beyrichi Reuss .. & 8-16 & 2-3 & 1 & 4-7 & 1 & 4-7 & 4 & \(>16\) & \\
\hline 62 B. limbata Brady .- & & & - & & & - & 1 & & 2-3 \\
\hline 63 R. punctata d'Orb. & & & - & - & 1 & & & -7 & \\
\hline 64 B. robusta Brady .. (Bä) & & & & & - & 8-16 & 1 & -7 & \\
\hline 65 Rectoboliz ina bifrons (Brady) & & - & 7 & - & - & - & & & 1 \\
\hline 66 Lenostomum karrerianum ( \(\mathrm{Br}^{\text {a }}\) ) & 1 & 二 & 4-7 & - & - & - & E & -1 & \\
\hline \begin{tabular}{l}
67 Bifarina fimbriata (Millett) \\
68 (̌igorina sp. aff. pigmca (d'Orb.)
\end{tabular} & \(>16\) & 8-16 & 1 & 8-16 & 8-16 & 2-3 & 1 & 8-16 & 4-7 \\
\hline 69 Trifarina bradyi Cushman .. & & & & - & - & 1 & & & \\
\hline 70 Cassidulina crassa d'Orb. & & - & 2-3 & - & - & & - & - & \\
\hline 71 C. laerigata d'Orb. & & & - & - & 1 & 16 & 1 & \(>16\) & \\
\hline 72 C.subylobosa Brady & - & - & - & - & - & 23 & - & & 47 \\
\hline 73 C'. subglobosa var. producta Chapman and Parr & & & & & & & & & 1 \\
\hline 74 Ellipsolaycna schlichti (Silv.) & & & - & & & 2-3 & & & \\
\hline 75 Bolizinita quadrilatera (Schw.) & & - & - & 8-16 & 1 & 2-3 & 1 & \(>16\) & 1 \\
\hline 76 B. पuadrilatcra var. tortilis nov. & - & - & - & - & - & 4-7 & 1 & 4-7 & \\
\hline 77 Bolizinclla folium (P.\& J.) & - & - & - & 2-3 & & - & - & & \\
\hline 78 *Parafrondicularia helenae sp. nv & & & & - & - & & & 4-7 & \\
\hline 79 . Vodogenerina bradyi Cushm, .. & - & - & - & - & - & - & - & 1 & \\
\hline 80 N. insolita (Schwager) .. & - & - & 1 & - & - & & & & \\
\hline 81 Patellina corrugata Williams & & - & - & - & & & & & 1 \\
\hline 82 Patellimella incouspicua (Br.) & \(\square\) & - & - & - & \(2 \cdot 3\) & - & - & & \\
\hline 83 Discorbis australis Parr .. & 1 & & & & - & & & & \\
\hline 84 D. bertheloti (d'()rb.) & - & 2-3 & 2-3 & 2-3 & & \(2 \cdot 3\) & & & \\
\hline 85 1).dimidiatus (J. \& P.) & & & & & 3 & & & & 23 \\
\hline 86 I) disparilis (H. A. \& E.) & - & & 1 & - & & - & - & & \\
\hline 87 I) opercularis (d'Orb.) & - & 2-3 & - & - & & - & & & \\
\hline 88 1).orticularis (Terq.) & - & & - & 1 & & & & & - \\
\hline 89 1).rurescens (Brady) & & & & 1 & 1 & & & & 2-3 \\
\hline 91 I. rugosa (d'Orb.) & & - & - & & & & & & \\
\hline 92 I).globularis (d'Orb.) & & - & - & \(>16\) & & & & 1 & \\
\hline 93 Eponides karsteni (Reuss) & & - & - & & & - & & 1 & 2-3 \\
\hline 94 E. repandus (F.\& M.) & \(8^{2-3}\) & - & 2-3 & 2-3 & & 1 & & 1 & \\
\hline 96 Notorotalia clathrata (Brady) & & - & & & - & 1 & - & 1 & - \\
\hline 97 N. decurrens sp. nov. & 2-3 & - & & 47 & & - & - & - & \\
\hline 98 Epistomina cleyans (d'Orb.) & 8-16 & - & 2-3 & 2-3 & 1 & - & & 4-7 & \\
\hline 99 Mississippina concentrica (P. \& J.) & & & - & & 2-3 & & & - & \\
\hline  & & 1 & - & - & - & & - & 1 & \\
\hline 101 Anomalina colligera Chapm.\& Parr & 8-16 & & 23 & 1 & & 2-3 & - & 1 & \\
\hline 103 A. globulosa Chapm. \& Parr & & & & & - & 1 & - & 1 & \\
\hline 104 A polymorpha Costa & & - & 1 & 1 & - & - & - & - & 1 \\
\hline 105 A.sp.aff rotula d'Orb. & 4.7 & & - & & & & & & \\
\hline 106 . 1. rermiculata ( \(\mathrm{l}^{\prime} \mathrm{Orh}\).) & 47 & - & - & & - & 1 & - & - & - \\
\hline  & - & - & - & 2-3 & - & - & - & - & \\
\hline 08 P. bironcaza var. unguiculata & - & - & - & - & - & - & - & 1 & \\
\hline
\end{tabular}

\footnotetext{
* This species was originally placed in Plectofrondicularia but is now seen to be referable to the recently described genus Parafrondicularia Asano. To avoid much disturbance of proofs, its original position in the text is retained.
\(\dagger\) Since made the genotype of Plarulinoides Parr.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sample & 3915 & 3916 & 3917 & 3918 & 3919 & 3920 & 2921 & 3922 & 923 \\
\hline Species Depth & 65 fin. & anch. & 140 & 505 & 505 & 470 & 505 & 470 & 65 \\
\hline 109 P. haliotis (H. A. \& E.) & & - & & & & & & 1 & \\
\hline 110 (ibicides aknerianus (d'Orb.) & - & & & - & & 1 & & & \\
\hline 111 C. lobatulus (W. \& J.) & & 2-3 & 2-3 & 2-3 & 2-3 & & 1 & 4-7 & \\
\hline 112 C.sp. aff. sictorichsis (h., F. \& C. & \(>16\) & & 1 & 2-3 & 4-7 & 1 & & & \\
\hline 113 C.psendoungerianus (Cushm.) & \(4-7\) & & - & 8-16 & 1 & & & 4-7 & 4-7 \\
\hline 114 C. refulgchs Montiort & 2-3 & & - & 1 & & & & 2-3 & \\
\hline 115 C. zencllerstorfi (Schwager) & & 23 & & - & 2-3 & 4.7 & 4-7 & 4.7 & 4-7 \\
\hline 116 Dyoribicides biserialis C. \& V . & & - & - & - & - & - & - & - & \\
\hline 117 Amphistegina lessonii d'Orb. & - & - & & & 1 & & & & \\
\hline 118 Chilostomella cushmani sp. nuv. & & & 2-3 & 1 & & - & & & 4 \\
\hline 119 Pullenia sphaeroides (d'orbs) & 1 & 1 & & & & 1 & & & \\
\hline  & - & 1 & & - & 1 & 2-3 & & & \\
\hline 121 Sphacroidina bulloides d'Ort. & 1 & & 2-3 & & 2-3 & 1 & - & 1 & \\
\hline 122 (ilobigerina bulloides d'Orb. & 2-3 & 8.16 & 4-7 & \(>16\) & 8-16 & \(>16\) & -7 & \(>16\) & +-7 \\
\hline 123 (r.conglomerata Schwager & & & - & 2-3 & & & & & \\
\hline 124 (r. duterirci d'Orb. & & - & & & 2-3 & - & & 1 & \\
\hline 125 (r.infata d'Orb. & 4-7 & 8-16 & 4-7 & \(>16\) & 8-16 & \(>16\) & \(>16\) & \(>16\) & \(>16\) \\
\hline 126 G. pachyderma (Hhrcuberg) & & 1 & 1 & & & & & & \\
\hline 127 G. subrrctacea Chapm. & & & & 2-3 & 2-3 & 47 & - & - & 8-16 \\
\hline 128 Globergerinoides trilobus. (Reuss) & & \(4-7\) & 2-3 & - & & 8-16 & - & 1 & \\
\hline 129 Clobigcrinella coquilateralis ( Br.\()\) & & & & & 1 & & & & \\
\hline 1300 Orbutina umizersa d'Orb. & 4-7 & - & 2-3 & \(>16\) & \(>16\) & \(>16\) & \(>16\) & 8-16 & 47 \\
\hline 131 Pullenatina obliquiloculata( P.\&I.) & & & & 8-16 & 1 & & 1 & \(2-3\) & \\
\hline 132 Sphaeroidinclla dehiscous (P.\&J.) & & & & & 1 & - & 1 & 2-3 & \\
\hline 133 Globorotalia hirsuta (d'Orb.) & 1 & - & 2-3 & 8-16 & 8-16 & \(>16\) & - & \(4-7\) & 4-7 \\
\hline 134 (r. scitula (Brady) & - & & & & & & & 4-7 & \\
\hline 135 G. truncatulinoides (d'Orb.) & - & 4-7 & 2-3 & \(>16\) & 1 & -- & 1 & 4.7 & 47 \\
\hline 136 Nomion depressulus (W. \& J.) & & & 2-3 & - & 2-3 & & & & \\
\hline 137 N.grateloupi (d'Orb.) & - & & & & - & 47 & & - & \\
\hline 138 N. scapha (F. \& M.) & & 1 & - & 23 & & & & & \\
\hline 139 N. umbilicatulus (Mont). & 2-3 & & & & & & & 1 & \\
\hline 140 Stphidium adzermum (Cushrnan) & 8-16 & 1 & 1 & \(4-7\) & \(2 \cdot 3\) & - & & 1 & 1 \\
\hline 141 İ. crispum (I.inné) & & - & - & & & - & - & - & \\
\hline 142 İ. imperatrix (Brady) & 2-3 & - & & 47 & 47 & & & - & \\
\hline 143 E. jenscni (Cushman) & & & & & & 1 & & & \\
\hline 144 E.lessomi (dOrb.) & - & - & 2-3 & 1 & & & - & +7 & \\
\hline 145 E. macrllum ( \(\mathrm{F}_{,}\)\& M.) & - & - & - & - & - & 2-3 & 1 & 2-3 & \\
\hline 146 F. pocyantm (d'Orb.) & & & & & - & 2-3 & & & \\
\hline 147 E. a'erriculatum (Brady) & \(>16\) & - & - & 1 & - & & & 1 & 23 \\
\hline 148 Hyperammina notarsca'andia* H. A. \& E. & & - & - & - & & 23 & - & & \\
\hline 149 Saccammina spharvica (i. O. Sars & 1 & & & - & & & & & \\
\hline 150 Prlosina cylindrica Brady & 47 & - & - & - & & - & - & & \\
\hline 151 ? Brachysiphon corbuliformis & & & & & & & & & \\
\hline Chapman .. .. .. & 2-3 & - & - & - & - & & & & \\
\hline 152 Tethitchla ci. Iegumen Norman & 1 & - & - & & & & & & \\
\hline 153 Rhaldammina discreta Brady & - & - & & \(4-7\) & 1 & \(>16\) & 1 & & \\
\hline  & 1 & & & & - & 1 & - & & \\
\hline 156 C. foliarca var. cxpansa Chap. & - & -- & - & .- & 1 & & & - & \\
\hline 157 (.. lacunosa Brady & 1 & - & & - & - & \(\cdots\) & - & - & \\
\hline 158 C.striolata Brady & 1 & & & & - & & & & \\
\hline 159 Ophthalmidium sircularis (Ch.) & & - & - & 1 & & - & - & - & \\
\hline 160 Planispirina bucculenta (Brady) & 2-3 & - & - & 4-7 & 47 & - & -- & - & 8-16 \\
\hline \(161 P\), bucculenta, v. placentiformis Br. & & & & 2-3 & & - & & & 8-16 \\
\hline 162 Ouinqueloculina autcriana d'Orb. & & & - & -- & 2.3 & & & 1 & 23 \\
\hline 163 O.anstralis Parr & - & - & - & - & 2-3 & - & -- & - & \\
\hline 164 O. crassa d'()rb. & 1 & - & & & - & - & & & \\
\hline 165 O. cuzicriana d'Orl. & 23 & - & 1 & 1 & - & & & & \\
\hline 166 O. Iamarckiana d'Orb. & 4 & - & 1 & - & - & 23 & 1 & 1 & 47 \\
\hline 167 O. seminulum (Limm.) & & & 1 & & & & & & 47 \\
\hline 168 Q. zulyaris d'Orb. & 8-16 & 1 & - & B-16 & 8-16 & 2-3 & - & 1 & 2-3 \\
\hline 169 Spiroloculina canaliculata d'Orb. & 8-16 & - & - & 2-3 & 2 & - & - & - & 4.7 \\
\hline 170 Sigmoilina latissima sp. nov. & - & - & - & 2-3 & 4-7 & - & - & - & \\
\hline
\end{tabular}

Tabulation of Foraminifera in the Faunules of each Sample
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sample & 3915 & 3916 & 3917 & 3918 & 3919 & 3920 & 2921 & 3922 & 3923 \\
\hline Species Depth & 65 fill． & anch． & 140 & 505 & 505 & 470 & 505 & 470 & 65 \\
\hline 171 S．schlumbergeri A．Silv． & & & － & － & － & & & 1 & 1 \\
\hline 172 Ptychomiliola separans（ Brady） & 2－3 & － & － & & － & & － & － & － \\
\hline 173 Triloculina chrysostoma（Chap．） & & － & － & － & 1 & － & － & － & \\
\hline 174 T．circularis Born．．． & & & & & & & & － & 4－7 \\
\hline 175 T．quadrilateralis d＇Orb， & & & & & － & 1 & 1 & 1 & \\
\hline 176 T．tricarinata d＇Orb． & \(4-7\) & & － & & 1 & 2－3 & － & － & \\
\hline 177 T．trigonula（Lamar＇ck） & 2－3 & － & 1 & & & － & & － & \\
\hline 178 T．oblonga（Muntagu） & 1 & 1 & － & 1 & － & － & － & 1 & \\
\hline 179 Pyrgo comata（Brady） & & & & & 1 & & & & \\
\hline 180 P．elongata（d＇Orb．）．． & & & & & 1 & 1 & 1 & － & 1 \\
\hline 181 P．fornasinii Chap．\＆Parr & 4－7 & － & & 1 & 一 & － & － & － & \\
\hline 182 P．sarsi（Schlumb．） & － & － & － & 1 & － & － & － & 1 & 2－3 \\
\hline 183 P．vespertilio（Schlumb．） & & － & & & 1 & － & & & \\
\hline 184 Pyrgoella sphaera（d＇Orb．） & 4－7 & & － & 4－7 & － & 1 & & & 1 \\
\hline 185 Biloculivella globulus（Born．） & 4－7 & 1 & － & － & 1 & － & － & － & \\
\hline 186 IIaplophragmoides emaciatus（Br．） & & － & & 1 & － & － & － & － & － \\
\hline 187 II．yrandiformis Cushman & 8－16 & － & － & 1 & － & － & － & & \\
\hline 188 Recurvoides contortus Earland & & & & & & & & 2－3 & \\
\hline 189 Ammobaculites agylutinans（ \(\mathrm{d}^{\prime} \mathrm{O}\) ．） & － & － & & － & 1 & － & － & & \\
\hline 190 Reophax dentaliniformis Brady & － & － & － & － & 2－3 & － & － & － & － \\
\hline 191 R．distans v，pseudodistans Cush． & － & & － & & & 1 & & & \\
\hline 192 R．scorpiurus M．ontfort & & & & 2－3 & & & & & \\
\hline 193 Textularia conica（d＇Orb．） & 8－16 & & & & － & & & & \\
\hline 194 T．corrugata H．A．\＆E．\(\because\) & 4－7 & － & & & & & & & \\
\hline 195 T．pseudogramen Chapm．\＆Parr & 8－16 & & & & 1 & & & & \\
\hline 196 T．sagittula Defr．．． & 2－3 & － & 1 & 2－3 & 2－3 & & － & － & 4－7 \\
\hline 197 Trochammina planoconvexaCh．\＆P． & & － & & & － & － & － & 1 & \\
\hline 198 Clazulina serventyi Ch．\＆Parr－ & 2－3 & － & 2－3 & － & － & － & － & － & \\
\hline 199 Dorothia arenata Cushman & 8－16 & － & － & － & 1 & － & － & － & \\
\hline 200 D．scabra（Brady） & 2－3 & － & － & － & － & － & & － & \\
\hline 201 l．isterella sp． & & － & － & － & & － & － & & \\
\hline 202 Cioudrsina robusta Cushman & & 二 & － & 二 & － & 二 & 二 & 1 & － \\
\hline 203 （i．Ir．angularis Cushman & 4－7 & － & － & － & － & － & & － & \\
\hline
\end{tabular}

Tabulation of Ostracoda in the Faunules of eachi Sample
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sample & 3915 & 3916 & 3917 & 3918 & 3919 & 3920 & 2921 & 3922 & 3923 \\
\hline Species Depth & 65 fm ． & anch． & 140 & 505 & 505 & 470 & 505 & 470 & 65 \\
\hline 1 Pontocypris bradyi nom，mut． & － & 1 & 1 & 2－3 & － & 1 & － & － & － \\
\hline 2 P．attciuata G．S．Brady ．． & & & & & 2－3 & & & & \\
\hline 3 P．simplex G．S．Brady & & & & 2－3 & 1 & － & － & － & 1 \\
\hline 4 P．subreniformis G．S．Brady & 1 & 1 & － & 1 & － & － & － & & \\
\hline 5 Argilloecia badia G．S．Brady & 1 & 1 & － & 1 & & － & & & \\
\hline 6 Macrocypris decora（G，S．B．） & 4.7 & 1 & 1 & 2－3 & 1 & － & & & 1 \\
\hline 7 M．setigera G．S．Brady & 4－7 & & 1 & & & & － & & 1 \\
\hline 8 Bythocypris reniformis G．S．B． & － & － & － & 1 & 1 & 1 & － & － & \\
\hline 9 Bairdia acanthigera G．S．Brady & & & 2－3 & 2－3 & & & & & \\
\hline 10 R．amygdaloides G．S．Brady & 8－16 & 1 & 4－7 & 2－3 & 1 & － & 1 & 1 & \(>16\) \\
\hline  & － & － & 1 & 1 & 1 & 1 & & － & 4－7 \\
\hline 12 B．cf．e．rpansa G．S．Brady & － & － & － & － & & 1 & － & & \\
\hline 13 B．fozeolata G．S．Brady & 1 & － & & － & － & － & － & － & \\
\hline 14 B．fusca G．S．Brady & & － & 2－3 & － & & & & & \\
\hline 15 R．minima G．S．Brady & & － & 1 & － & 7 & － & & & \\
\hline 16 Cythere acerosella sp．nov． & － & － & 1 & － & － & 1 & － & － & 1 \\
\hline 17 C．canaliculata Reuss & & － & － & － & － & & 1 & 1 & \\
\hline 18 C．crispata G．S．Brady & & － & － & － & － & 1 & － & & 1 \\
\hline 19 C．cristatella G．S．Brady & 2－3 & － & － & － & － & － & － & － & \\
\hline 20 C．rytheropteroides G．S．Brady & 2－3 & － & － & & － & & & & \\
\hline 21 C．dasyderma G．S．Brady & & － & － & 1 & － & － & & － & \\
\hline 22 C．demissa G．S．Brady & & － & － & 1 & － & － & － & 1 & － \\
\hline 23 C．dictyon G．S．Brady & 1 & － & － & 2－3 & － & － & － & 1 & － \\
\hline 24 C．exilis G．S．Brady & & & － & & & & & 1 & － \\
\hline 25 C．falklandi G．S．Brady & & － & & － & 2－3 & － & － & － & － \\
\hline 26 C．foveolata G．S．Brady & － & － & 2－3 & － & 1 & － & － & － & － \\
\hline 27 C．goujoni G．S．Brady & － & － & － & － & 1 & － & － & 1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sample & 3915 & 3916 & 3917 & 3918 & 3919 & 3920 & 2921 & 3922 & 3923 \\
\hline Species Depth & 65 fm . & anch. & 140 & 505 & 505 & 470 & 505 & 470 & 65 \\
\hline 28 C. inconspicua (S. S. Brady & - & - & - & 2-3 & - & - & - & & \\
\hline 29 C. irrorata G. S. Brady & & & & - & 1 & - & & & \\
\hline 30 C. militaris (G. S. Brady) & - & 1 & & & & - & & & \\
\hline 31 C. normani G. S. Brady & 1 & & - & & & & & & \\
\hline 32 C. obtusalata G. S. B. v. temuis nov. & - & & & - & 2-3 & - & 2-3 & & 2-3 \\
\hline 33 C. ozalis G. S. Brady .. & & & & 1 & & & & & \\
\hline 34 C. postcaudispinosa sp. nov. & & & 1 & - & - & & & & \\
\hline 35 C. rastromarginata G. S. Brady & & - & 1 & - & - & 1 & - & 2-3 & \\
\hline 36 C. scutigera G. S. Brady & & & - & - & - & & & & -3 \\
\hline 37 C. subrufa G. S. Brady & - & - & - & - & - & & & & 1 \\
\hline 38 C. tetrica G. S. Brady .- & & & & - & & 1 & - & & \\
\hline 39 Eucythere declivis (Norman) & & & - & 1 & 1 & - & - & - & \\
\hline 40 Krithe producta G. S. Brady \({ }^{\text {a }}\) ( Loxoconcha australis G. S. Brady & 4-7 & & - & 1 & & & & & \\
\hline 41 Lo.roconcha australis G. S. Brady & - & - & - & 2-3 & 1 & 1 & 1 & 4-7 & 1 \\
\hline  & & & - & 2-3 & - & & - & 2-3 & \\
\hline 43 Xestoleberis curta (G. S. Brady) & 2-3 & & & - & - & 1 & - & & \\
\hline 44 X . davidiona Chapman & & 1 & 2-3 & - & & & & & \\
\hline 45 X. margaritca (G. S. Brady)
\(46 \mathrm{X} .12 a n \mathrm{G} . \mathrm{S}\). Brady & - & - & - & - & - & - & - & & 1 \\
\hline 46 X. nana G. S. Brady & & & - & - & - & - & - & - & 2-3 \\
\hline 47 X. polita G. S. Brady & & & & & & - & - & & 1 \\
\hline 49 X. setrigeratata G. S. Brady & & & - & 1 & 二 & - & - & & \\
\hline 50 Cytherura costellata G. S. B. & - & & - & 1 & - & - & - & 1 & \\
\hline 51 C.cryptifera G. S. Brady & & - & - & 1 & - & & - & - & \\
\hline 52 Cytheropteron assimile G. S. B. & - & - & - & - & 1 & 1 & - & & \\
\hline 53 C. dannerigi Chapman & & & 1 & - & - & & & & \\
\hline 54 C. hedlcyi sp. nov. .. & 1 & & - & & & - & & & \\
\hline 55 Bythocythere arenacea G. S. B. & - & & - & 1 & - & - & 1 & & \\
\hline 56 Pscudocythere caudata G. O. S. & & - & 1 & - & - & & & 1 & \\
\hline 57 P. fuegicnsis G. S. Brady & - & - & - & 1 & - & & & & \\
\hline 58 Cytherella lata G. S. Brady & - & - & - & - & - & - & & 1 & \\
\hline 59 C.polita (i.S. Brady & 二 & -1 & 2-3 & - & & - & - & 1 & \\
\hline \({ }_{61}^{60}\) C. pulchra G. S. Brady & & 1 & 2-3 & 1 & & & & & \\
\hline \({ }_{62} 61\) C. punctata Gemitalis G. S. Brady & 1 & 1 & - & 2-3 & - & 1 & - & 1 & \(>16\) \\
\hline 62 C. semitalis G. S. Brady ...
63 Cytherelloidea auris sp. nov. & - & - & - & 1 & - & - & - & & \\
\hline 63 Cytherelloidea auris sp. nov. & -- & - & - & - & - & - & - & 1 & \\
\hline
\end{tabular}

\title{
SYSTEMATIC FORAMINIFERA \\ Superfam. SPIRILLINOIDEA
}

Fam. SPIRILLINIDAE
Genus Spirillina Ehrenberg 1843
1 Spirillina inafqualis Brady 1879
Brady 1879, 278, pl. viii, fig. 25a, b, 1884, 631, pl. lxxxv, fig. 8-11; Chapman, 1915, 28.
A well-known Pacific species. Previously noted from Sta. 36, east of Tasmania, 777 fathoms.

E 3918, v.r.
Fam. NODOSARIIDAE
Genus Lenticulina Lamarck 1804
2 I enticulina clericil (Fornasini 1895)
Cristcllaria clericii Fornasini 1895, text fig. 1901, 65, fig. 17.
This form belongs to the group of L. vortex (d'Orb.), serpens (Seguenza) and orbicularis (d'Orb.), in which the sutural lines are extremely angulate. Typical of South Pacific areas. This hitherto fossil form was described from a late Tertiary deposit (? Pliocene) of Italy.
3. Lenticllina sp. aff. convergens (Bornemann 1855)

Cristellaria conzergens Bornemann 1855, 337, pl, xiii, fig. 16. 17
The original species, with which the present is doubtifully identified, came from the Oligocene deposits of Hermsdorf, Germany. The "Challenger" examples came from the North and South Pacific (Brady 1884). E 3915. r.

\section*{4 Lenticllina cultrata (Montfort 1808)}

Rob:Itus cultratus Montfort 1808, 215.
Cristcilaria cultrata (Montf.), Brady, 1884, 550, pl. 1xx, fig. 4-8.
A widely distributed species, both fossil and recent. The "Challenger" oltatined it from the West Indies and Fiji, I have previously noted it from "Endeavour" material, east of Tasinania, 777 fathoms.

E 3915. c; E 3919, v.r. (deformed).
5 Lenticulina gibea (d'Orbigny 1839)
Cristcllaria gibba d'Orbigny 1839, 40, pl. vii, fig. 20, 21.
The "Challenger" figured specimens came from the West Indies. It is widely distributed both in fossil deposits and recent dredgings. E 3915, r.

\section*{6 I enticulina rotui ata I amarek 1804}
I.amarck 1804, 183, No. \(3 ; 1806\), pl, 1xii, fig. 11.

The "Challenger" figured specimens came from the West Indies. It is a widely distributed form. Previously noted by me from 40 miles south of Cape Wiles, 100 fathoms ("Endeavour").

E 3918, v.r.; E 3922, v.r.
7 Lenticulina sp . aff, articulita (Reuss 1864)
Robulina articulata Renss 1864, 53, pl.v, fig. \(62 a, b, 63 a, b\).
Recent forms, similar to the present material, found in southern waters, do not appear to be referable to the fossil species figured by Reuss from the Soptariaclays of Germany. The recent form is typical of the Australian region, Under the name of Cristcllaria articulata I have noted it from 40 miles south of Cape Wiles, 100 fathoms.

E3915. r.
8 Lenticulina sp. aff. orbicularis (d'Orb. 1826) Robulina orbicularis d'Orbigny 1826, 288, pl. xv, fig. 8, 9.

I have previously recorded this form as Cristcllaria orbicitaris d'Orb, from 40 miles south of Cape Wilcs, 100 fathoms. E 3915, f; E 3917, v.r.; E 3918, v.r.

9 Lenticulina sp. aff. subalata (Reuss 1854)
Cristcllaria subalata Rcuss, 1854, 68, pl. xxv, fig. 13.
This, in common with many other recent forms, cannot be specifically identified with the Cretaceous and Tertiary fossils of Europe.

E 3915 , v.r.
Gienus Planularia Defrance 1824
10 Planularia australis sp. nov.
( \(\mathrm{Pl}, \mathrm{ix}\), fig. 1)
Cristellaria tricarinclla Chapman (non Reuss), 1915, 24, pl. i, fig. 6.
Dcscription-Test subovate to elongate-arcuate. Surface complanate; dorsal cdge thickened but not sharply tricarinate as in Reuss' figures. Seven arcuate chambers in type, forming a widely open spiral. A small subspherical proloculus at the origin of coil. Aperture dentate. Length of test, 0.7 mm .; greatest breadth, 0.38 mm .; thickness of test, 0.08 mm .

Comparisons-miffers from "Cristellaria" tricarinella Reuss and from \(C\). complanata Reuss in having the sutures flush with the surface. Brady's specimens figured in the "Challenger" Report appear to be intermediate between the present and Reuss' form in showing some carination of the dorsal border. As Cristcllaria tricarinella, variations of this form have been recorded from the Philippines and from the west coast of New Zealand.

E 3919 , v.r.

\section*{Genus Saracenaria Defrance 1824}

11 Saracenaria ztalica Defrance 1824
Defrance 1824, 177 ; Blainville, 1825,370 , pl. v, fig. 6.
The "Challenger" figured examples came from the West Indies and Fiji. The occurrence of this species is usually indicative of the presence of warm water.
F. 3915, r.; E 3917, v.r.

12 Saracenaria navicuta (d'Orb. 1840)
Cristellaria nazicula d'Orb. 1840, 27, pl. ii, fig. 19.
A broad variation of the preceding species. It is typically a Cretaccons form, but seems to range, without any great difference, into recent times. E 3915, r.

Genus Astacolus Montfort 1808

\section*{13 Astacolus crepiduta (Fichtcl and Moll 1798)}

Naulilus crepidula Fichtel and Moll 1798, 107, pl. xix, \(g-i\).
A widcly distributed species, with many intergradations. Typical forms were found by the "Challenger" off the Ki Islands, Japan; at the Azores, the West Indies and the Bermudas.

E 3917, v.r.
Genus Marginulina d'Orbigny 1826
14 Marginulina glabra d'Orbigny 1826
d'Orbigny 1826. Mudèles, 55; Parker, Jones and Brady, 1865. 27, pl, i. fig. 36.
A common form, of wide distribution.
E. 3915, r. ; E 3917, v.r. ; E 3920, v.r. ; E 3923, v.r.

Genus Vaginlelina d’Orbiguy 1826
15 Vaginulina legumen (Linn. 1758)
Brady. 1884, 530, pl. lxvi, fig. 13-15.
A cosmopolitan species. Also found in the Philippines.
\[
\text { E } 3915 \text {, v.r.; F } 3918 \text {, v.r. } ; \text { E } 3919, \text { v.r. }
\]

Gemus Dentalina d'Orbigny 1826
16 Dentalina communis d'Orbigny 1826
d'Orbiguy 1826, 254, No. 35.
An arcuate form with oblique chambers. It agrees with those found by Brady, whose "Challenger" specimens came from the West Indies, Bermudas and Fiji.

E 3915, v.r.
17 Dentalina fistuca (Schwager 1866)
Nodosaria fistuca Schwager 1866, 216, pl, v, fig. 36, 37.
This finely hirsute form, having long ovoid chambers. was originally described from the Neogene fossil deposits of Kar Nikobar, south of the Andaman Islands.
E. 3920, v.r.

18 Dentalina sp. aff. consobrina (d'Orb. 1846)
d'Orbigny 1846, 46, pl. ii, fig. 1-3.
Dentalina consobrina of d'Orbigny is chiefly known as a Tertiary fossil, and was originally described from the Lower Miocene of the Vienna Basin. The recent species, from southern waters, is of a more regular and evenly chambered form, and occurs in the Antarctic amongst other localities.

E 3915, r.; E 3921, v.r.

\section*{19 Dentalina soluta Reuss 1851}

Reuss 1851,60 , pl. iii, fig. 4.
Nodosaria (D.) soluta Brady, 1884, 503, pl. lxii, fig. 13-16.
This remarkably persistent form in time ranges from the Cretaceous to the present.

E 3915, v.r.
Genus Nodosarta Lamarck 1812
20 Nodosaria catenulata Brady 1884
Brady 1884, 515, pl. lxiii, fig. 32-34.
This species has an interesting distribution as regards the present soundings, for Brady records it from the Philippines at 95 fathoms and off Raine Island, Torres Strait, at 155 fathoms.

E 3915, v.r.; E 3920, v.r.
21 Nodosaria calomorpha Reuss 1865
Reuss 1865, 129, pl. i, fig. 15-19; Brady, 1884, 497, pl. lxi, fig. 23-27; Chapman and Parr, 1937, 61.
The southern occurrences of this species, often at great depths, comprise the Falkland Islands, and Kerguelen Island (Brady) and also South Georgia (Earland), and in Bass Strait (Chapman and Parr). Brady also refers to it as from the Ki Islands and off the Philippines. Reuss' specimens were from the Oligocene of Pietzpuhl, North Germany.

E 3922, v.r.

\section*{22 Nodosaria ryruta d'Orbigny 1826}
d’Orbigny 1826, 253, No. 13. Brady, 1884, 491, pl. 1xii, fig. 10-12.
This is a common species in the Philippines and it has also been obtained off the Ki Islands. It is a widely distributed species elsewhere. I have previously recorded it from "Endeavour" material from east of Tasmania, 777 fathoms.

E 3923, v.r.
23 Nodosaria pyrlla var. semirugosa d’Orbigiy 1846
Nodosaria somirugosa d’()rb. 1846, 34, pl. i, fig. 29-23; Millett, 1902. 515, pl. xi, fig. 5.
Nodosaria costulata Brady 1884, 515. pl. 1xiii, fig. 23-27.
Nodosaria pyrula var, semirugosa d'Orb., Cushman, 1913, 50, pl. xxvi, fig. 4-8.
This species is found from the Cretaceous to Recent. It has been dredged from the Philippines, the Malay Archipelago and off Japan, as well as at various Stations in the West Indies. E 3917, v.r.; E 3919, v.r.

24 Nodosaria vertebralis (Batsch 1791)
Nautilus (Orthoceras) rertebralis Batsch 1791, 3, No. 6, pl, ii, fig. \(6 a, b\).
Nodosaria zertebralis (Batsch) Brady, 1884, 514, pl. lxiii, fig. 35; pl. 1xiv, fig. 11-14.
Amongst other localities, this species occurs in the North Pacific, off the Ilawaiian Islands, and from the east coast of New Zealand.

E 3922. r.

\section*{Genus Lagenonodosaria Silvestri 1900 \\ 25 Lagenonodosaria scalaris (Batsch 1791)}

Nautilus (Orthoccras) scalaris Batsch 1791, No. 4, pl. ii, fig. a, c. Nodosaria scalaris (Batsch) Cushman, 1913, 58, pl. xxiv, fig. 7.

This species occurs as a common fossil in the Neogene of Europe. It is found living off the coast of Australia, on the east coast of New Zealand, the Philippines, Guam, Japan and the Hawaiian Islands. It is one of the most abundant forms in the present series; previously recorded from "Endeavour" material (1915), from 40 miles south of Cape Wiles, 100 fathoms.
\[
\begin{aligned}
& \text { E 3915, v.c. ; E } 3917, \text { r. ; E } 3918, \text { r. ; E } 3919, \text { f.; } \\
& \text { E } 3920, \text { f. } ; \text { E } 3921, \text { r. } ; \text { E } 3922, \text { r. } ; \text { E 3923, r. }
\end{aligned}
\]

26 Lagenonodosaria scalaris (Batsch) var. separans (Brady 1884) Nodosaria scalaris var. soparans Brady 1884, 510, pl. lxiv, fig. 16-19.

Hitherto from the west coast of New Zealand (fide Nuttall's Locality List of Brady's figured specimens of the "Challenger" Report in Annals and Mag. Nat. Hist., (9), 19, 209-241, 1927-an invaluable adjunct to Brady's work).
E 3915, v.r.; E 3923, v.r.

\section*{27 Lagenonodosaria scalaris (Batsch) var. seminuda nov. (Pl, ix, fig. 2)}

Description-Test stoutly built, consisting of three sub-globular chambers, well inflated and even mote so than in the type specics; aperture round at the extremity of the extended tube, the suriace of which is distinctly annulated. Shell surface polished, relieved by a few indistinct linear costae. Length, 0.59 mm . ; greatest width of last chamber, 0.3 mm . E 3922, v.r.

Genus Lagena Walker and Jacob 1798
28 LAgena annectens Burrows and Holland 1895
Burrows and Holland (in Jones, Parker and Brady) 1895, 203, pl. vii, fig. \(11 a, b\).

This fossil Lagcna from the Eng ish Crag (Pliocene) has more recently been recorded as an Antarctic (Kerguelen) and New Zealand species. It also occurs off the coast of New South Wales. As a fossil it has also been found in the Lower Miocene of Batesford, near Geelong, Victoria.

E 3919, v.r.
29 I agena apicllata (Reuss 1850)
Oolina apiculata Reuss 1850, 22, pl, i, lig. 1.
A cosmopolitan species both as to locality and depth. It is geologically an ancient type, dating from the Lias. E 3921, v.r.

30 Lagena clavata (d'Orbigny 1846)
Oolina clavata d'Orbigny 1846,24 , pl. i, fig. 2, 3.
Lagena clavata Brady, 1884, 456; Cushman, 1913, 9, pl. ii, fig. 3.
A bipolar form and otherwise extensively distributed. Cushman records it from the North Pacific, near Guam, at 234 fathoms, and from several Stations in the Philippines.
F. 3917, v.r.; E 3919, v.r.

31 Lagena costata (IVilliamson 1858)
Entosolenia costata Williamson 1858, 9, pl. i, fig. 18.
Lagena costata (Williamson) Sidebottom, 1912, 388, pl. xv, fig. 16-21.
This species has been recorded by Sidebottom from the South-west Pacific. E 3919, v.r.
32 Lagena crenata Parker and Jones 1865
Parker and Joncs 1865*, 420, xviii, fig. 4a, b; Brady, 1884, 467, lvii, fig. 15, 21.
Besides occurring at several British localities, this comparatively rare form was noted by the "Challenger" from the Cape of Cood Hope, 15-20 fathoms, from Australian shore-sands, off Moncoeur Island, Bass Strait, 38 fathoms, and at three localities in the South Pacific at \(2,325-2,425\) fathoms. II cron-Allen and Earland obtained it from the Antarctic (Terra Nova Expedition).
\[
\text { E } 3919, \text { v.r.; E } 3920, \text { v.r. }
\]

\section*{33 Lagena distoma Parker and Jones 1864}

Parker and Jones (Ms. in Brady) 1864, 467, pl, xlviii, fig. 6.
Distributed in all scas and at varying depths. The figured specimens from the "Challenger" collection (pl. lviii, fig. 12-15) cane from Kerguelen Island (fide Nuttall).

34 Lagena globosa (Montagu 1804)
Vermiculum globosum Montagu 1804 (in Brown, Ill. Rec. Conch.), 144, pl. 1vi, fig. 37, 40 .
Widely distributed in all seas. The figure 2 on pl. 1vi of the "Challenger" Report came from Bass Strait (fide Nuttall). E 3919, v.r.

\section*{35 Lagena hexagona (Williamson 1848)}

Entosolenia squamosa var, hexagona Williamson 1848, 20, pl. ii, fig. 23.
Lagena hexagona Brady 1884, 72, pl. Iviii, fig. 32, 33.
Widely distributed in present seas. Common in various Tertiary deposits of Europe. Has been recorded generally from the Antaretic. E 3919, v.r.

\section*{36 Lagena hispida Reuss 1858}

Reuss 1858, 434. Idcm, 1862, 335, pl. iv, fig. 77-79.
Brady figures this species from Torres Strait and off Japan. It has an extensive geographical distribution and a wide geological range, from Lias to Recent. E 3919, v.r.
37 Lacena lacunata Burrows and Holland 1895
Lagena castrensis Brady (non Schwager) 1884, 485, pl. 1x. fig. 1, 2.
Lagena lacunata Burrows and Holland 1895, 205, pl. vii, fig. \(12 a, b\); Chapman and Parr, 1926, 378, pl. xvii, fig. 18.
The "Challenger" records (under L. castrensis) are: Moncoeur Island, Bass Strait, 38 fathoms; Raine Island. Torres Strait, 155 fathoms; Amboyna, 15-20 fathoms; south of Japan, 345 fathoms. Heron-Allen and Earland noted it from North Cape, New Zealand (Terra Nova Expedition). Chapman and Parr found fossil specimens of Lower Miocenc age in the Altona Bay Coal shaft, Port Phillip. The original type was recorded as fossil in the English Crag (Pliocene).

Lagena lacunata was previously recorded by me from "Endeavour" material east of Tasmania at 777 fathoms.

E 3919, v.r.

38 Lagena lagenoides (Williamson 1858)
Entosolenia marginata var. lagenoides Williamson 1858, 11, pl. i, fig. 25, 26.
Lagena lagenoides (Will.), Brady, 1884, 479, pl. 1x, fig. 6, 7, 9, 12-14.
Previously recorded by me from "Endeavour" material east of Tasmania, 1,122 fathoms.

39 Lagena marginata (Walker and Boys 1784)
Serpula (Lagena) marginata Walker and Boys 1784, 2, pl. i, fig. 7.
Lagena marginata, Brady 1884, 476, pl. lix, fig. 21-23.
This species has a widely extended range, "almost to the Antarctic IceBarrier" (Brady). F. 3917, v.r.; E 3919 , v.r.

40 Lagena melo (d'Orbigny 1839)
Oolina melo d'Orbigny 18393, 20, pl, v, fig. 9.
Lagena melo, Jones, Parker and Brady, 1866, 38, pl. i, fig. 35.
Heron-Allen and Earland record this species from east oi North Cape, New Zealand. E 3917 , v.r. ; E 3919 , r. ; E 3920, f. ; E 3922, v.r.

\section*{41 Lagena orbignyana (Seguenza 1862)}

Fissurina orbignyana Seguenza 1862, 66, pl, ii, fig. 25, 26.
Lagena orbignyana, Brady, 1884, 484, pl. lix, fig. 1, 18, 24-26.
Distribution world-wide and geologically co-extensive with the Tertiaries. Earland records this species from South Georgia, and Cushman from New Zealand. Previously recorded from "Endeavour" material, 40 miles south of Cape Wiles, 100 fathoms.

E 3919, r.; E 3920, v.r.
42 Lagena striata (d’Orbigny 1839)
Oolina striata d’Orbigny 1839,21 , pl, v, fig. 12.
Lagena striata, Brady 1884, 460, pl. lvii, fig. 22, 24, 28. 29.
Species of wide distribution. Previous records from "Endeavour" material (1915) are: east of Tasmania at 777 fathoms, and 40 miles south of Cape Wiles, 100 fathoms.

E 3917, r.; E 3919, r.; E 3920, v.r.; E 3921, v.r.
43 Lagena sulcata (Walker and Jacob 1798)
Serpula (Lagena) sulcata W. and J. 1798, 634, pl. xiv, fig. 5.
Lagena sulcata, Brady 1884, 462, pl. lvii, fig. 23, 26, 33, 34.
Several examples figured in the "Challenger" Report came from Southern Scas, as, for instance, from Kerguelen Island (pl. lvii, fig. 23, 25, 34). A previous record from "Endeavour" material is 40 miles south of Cape Wiles, 100 fathoms.

E 3919, v.r.; E 3920, v.r.
44 Lagena variata Brady 1884
Brady 1884, 461, pl. lxi, fig. 1 ; Chapman, 1907, 128. pl. ix, fig. 8.
A rare form, according to Brady. The only localities appear to be Bass Strait, 38 fathoms, Beaumaris (Chapman) and the Malay Archipelago.

E 3916, v.r.
Genus Pseudoglañdulina Cushman 1929
45 Pseudoglandulina rotundata (Reuss 1850)
Glandulina rotundata Reuss 1850, 366, pl. xlvi, fig. 2
Nodosaria (Glandutina) rotundala Brady 1884, 491, pl. lxi, fig. 17-19; Chapman, \(1916^{1}, 32\), pl. iii, fig. \(20 a, b\).

Recorded from upthrust muds, slopes of Mount Erebus (Chapman) and from Mawson's Antarctic material (Chapman and Parr, 1911-14). Previously recorded by me from "Endeavour" soundings, 40 miles south of Cape Wiles, 100 fathoms.

E 3915, r.

\section*{Fam. POLYMORPIIINIDAE}

Genus Guttulina d’Orbigny 1826
46 Cuttulina communis d'Orbigny 1826
Polymorphina (Gutlulina) communis d'Orbigny 1826, 266, pl, xii, fig. 1-4. Polymorphina communis, Brady 1884, 568, pl. Ixxii, fig. 19.

A well-grown example of this species was found close to the Antarctic Ice Barrier, in 1,810 fathoms (Chapman and Parr, 1937). Also found generally in moderately shallow water off the coast of New Zealand ("Terra Nova"). Previous records from "Endeavour" material as "Polymorphina communis," from 40 miles south of Cape Wiles, 100 fathoms.

E 3915 , v.r.

\section*{47 Guttulina lactea (Walker and Jacob 1798)}

Serpula lactea Walker and Jacob 1798, 634, pl. xiv, fig. 4.
Polymorphina lactea, Williamson 1858, 70, pl. vi, fig. 145-152.
Guttulina lactea, Cushman and Ozawa 1936, 43, pl, x, fig. 1-4.
A common species round the British Isles; also found in shallow to moderately deep water in the West Indies, the Tortugas (Florida), the coast of Japan and the Philippines. It has also been recorded in shore sands of the Victorian coast.

E 3919, r.
48 Guttulina problema d'Orbigny 1826
Guttulina problema d'Orbigny 1826, 266, No. 14.
Polymorphina problema, Brady 1884, 568, pl. 1xxii, fig. 20 ; pl. 1xxiii, fig. 1.
Both of Brady's figured specimens came from Bass Strait (fide Nuttall), Recorded by Parr and Collins from San Remo, Victoria, and from Oyster Bay, and east of Cape Pillar, Tasmania, at 100 fathoms. E 3915, r. ; E 3917, r.; F 3918, r.

49 Guttulina regina (Brady, Parker and Jones 1870)
Polymorpfina regina B., P. and J. 1870, 241, pl. xli, fig. \(32 a, b\); Chapman, 1907, 132, pl. x, fig. 4.
Guttulina regina, Cushman and Ozawa 1936, 34, pl. vi, fig. 1, 2 ; Parr and Collins 1937, 193. pl. xii, fig. 5 ; text fig. 1-7.
Localities in Victoria are Port Lonsdale and Barwon Heads; in New South Wales, Port Jackson; also from Queensland, Tasmania and West Australia, Great Australian Bight (Parr and Collins). "Challenger" examples were obtained from Raine Island, Torres Strait, 155 fathoms. E 3915, v.r.; E 3917, v.r.; E 3918, v.r.

50 Guttulina yabei Cushman and Ozawa 1930
Polymorphina oblonga Brady (non d’Orb.) 1884, pl. 1xxiii, fig. 6, 7. \(P\). thouini Chapman (non d'Orb.) 1907, pl. x, fig. 2.
Guttulina yabei Cushman and Ozawa 1930, 30, pl. iv, fig. 6, 7; Parr and Collins, 1937, 192, pl. xii, fig. 3, 4 a-c; pl. xiii, fig. 4 a-c.
This species is usually found at moderate depths ( \(6-114\) fathoms). It has been recorded (as \(P\). oblonga) by the "Challenger" from Bass Strait ( \(38-40\) fathoms) and Port Jackson ( 6 fathoms) ; other localities are off Japan and New Zealand (off the Snares).

E 3915, r.

Genus Globulina d’Orbigny 1826
51 Globllina gibba d'Orbigny var. globosa (Münster 1838)
Polymorphina globosa Münster 1838 (in Roemer), 386, pl. iii, fig. 33.
Globulina gibba var. globosa, Cushman and Ozawa 1930, 60, pl. xvi, fig. 1-4; Parr and Collins, 1937, 199, pl. xii, fig. 13.
Common in shore sand off the coast of Victoria. Also from Burnie, Tasmania, and Glenelg, South Australia (Parr and Collins).

E 3923, v.r.

\section*{Genus Glandulina d'Orbigny 1826}

52 Glandllina laevigata (d’Orbigny 1826)
Nodosaria (Glandulina) lacvigata d'Orbigny 1826, 252, No. 1, pl. x, fig. 1-3; Brady, 1884, 490, pl. lxi, fig. 20-22.
Glandulina lacvigata, Cushman and Ozawa 1930, 143, pl. xl, fig. \(1 a, b\); Parr and Collins, 1937, 208, pl. xiii, fig. \(6 a-c\).
Brady's figured specimen came from the West Indies (fide Nuttall). Parr and Collins record it from Oyster Eay, Tasmania. My previous note of its occurrence in "Endeavour" material is from Station 36, east of Tasmania, 777 fathoms, G. laevigata is found fossil in the Lower Miocene and Pliocene of Victoria and in the Lower Miocene of Table Cape, Tasmania.

E 3919, r.
Fam, BUIIMINIDAE
Genus Buliminella Cushman 1911
53 Buliminella sp.
Bulimina elegantissima v. seminuda Brady 1884 (non Terquem).
This species is now under description, in the Results of the Mawson Expedition to Antarctic, 1929-31.

E 3915, v.r.

\section*{Genus Bulimina d'Orbigny 1826}

54 Bulimina aculeata d'Orbigny 1826
d'Orb. 1826, 269, No. 7; Brady, 1884, 406, pl. li, fig. 7-9.
A species universally distributed, and usually found in deep water. It often accompanies \(B\). marginata according to Dr. H. B, Brady. It is found as far south as the Antarctic Ice Barrier. Recorcis in the Australian region are: \(27 \frac{1}{2}\) miles east of Port Jackson Head, New South Wales (Goddard and Jensen) and Western Australia (Egger). Previous records from "Endeavour" material are: Station 36, east of Tasmania, 777 fathoms and east of Tasmania, 1,122 fathoms. E 3922, v.r.

\section*{55 Bulimina elegans d'Orbigny 1826}
d'Orbigny 1826, 270, No. 10; Modèle, No. 9; Brady, 1884, 398, pl. 1, fig. 1-4; Chapman and Parr, 1937, 86.
Recorded from the Islands of the South Pacific and from the coast of New Zealand. Chapman and Parr have recorded it from stations close to the Antarctic Ice Barrier.

Note on the "Endeavoúr" Examples-Typical forms of regularly ovateelongate contour tend to have the initial series of chambers spinose or marginate, and thus pass into \(B\), marginata. Dr. C. Fornasini found the same variation in his specimens of B. elegans from the Adriatic (Accad. Sci. Ist. Bologna, 1901, 375). These variations are shown on pl. o, fig. \(7,14,33,39\), of his paper.
E 3920, c. ; E 3921, f. ; E 3922, f.

56 Bulimina sp, aff. marginata d’Orbiguy 1826
(Pl. viii, fig. 6)
The figured spacimens of the "Challenger" Report (Brady, 1884), were drawn from examples obtained off the west coast of Ireland. The forms met with in southern waters are of more tumid build and have the free edge of the segments more coarsely crenulated than those from the northern hemisphere.

E 3915, r. ; E 3916, v.r. ; E 3917, v.r.; E 3919, v.r. ; E 3920, r.; E 3922, f.
57 Bulimina notovata sp, nov,
Bulinina orata Brady (non d’Orbigny, 1846) 1884, pl. 1, fig. \(13 a, b\).
Brady's figured specimens of \(B\), "oz'ata" were obtained east of New Zealand (fide Nuttall). d'Orbigny obtained his fossil type from the Miocene of the Vienna Basin; when the latter is compared with the living form, so familiar in southern waters, the differences are easily seen. B. ortata, according to the figured type, is a long ovate form, with the segments slightly inflated and prominent and therefore specifically different from the "Challenger" specimen. Goës \((1894,45)\) has placed Brady's ozata in the synonymy of Bulimina ellipsoides Costa, but that form, according to Goës' figures (1894, pl. viii, fig. 31-36), is also distinct from this southern living species.

E 3918, r:

\section*{Genus Virgulina d’Orbigny 1826}

58 Virgllina subsguamosa Egger 1857
Egger 1857, 295, pl. xii, fig. 19-21; Brady, 1884, 415, p1, lii, fig. 7-11; Chapman and Parr, 1937, 89.
The "Challenger" figures of the above came from Tahiti (Nuttall). HeronAllen and Earland obtained it around the Falkland Islands and Egger in the South Pacific. The "Aurora" soundings (Mawson, 1911-14) showed that this species commonly occurred to the east and south of Tasmania, and more rarely near the Antarctic Ice Barrier.

E 3919, f.; E 3923, r.
Grenus Bolivina d'Orbigny 1839
59 Bolivina alata (Seguenza 1862)
Vulvulina alala Seguenza 1862, 115, pl, ii, fig. 5, 5 a.
Bolivina beyrichi Reuss var. alata Brady (pars) 1884, pl. liii, fig. 2-4.
This form appears to be common in the Late Tertiary and Recent of Italy and the Mediterrancan. One of the figured specimens of the "Challenger" came from the Philippines. It was of frequent occurrence in the "Aurora" sounding; east of Tasmania.

> E.3916, f. ; E 3917, v.r.; E 3919, r.; E 3920, f.; Е 3922, r.

60 Bolivina sp. aff. hentyana Chapman 1916
Bolizina hentyana Chapman 1916¹, 145, fig.
This species is common in one of the "Endeavour" soundings of the present series. It is a recent modification of the Lower Miocene fossil, B. hentyana Chapman,

E 3915, v.c.; E 3917, v.r.; E 3918, r.
61 Bolivina beyrichi Reuss 1851
Retuss 1951, 83, pl. vi, fig. 51; Brady, 1884, 422, pl. liii, fig. 1; Chapman and Parr, 1937, 90.
This species occurred off Sydney at 110 fathoms ("Challenger"). Dr. Egger records it off the coast of Western Australia. It was found in material gathered by the "Aurora," 1911-14, and in former "Endeavour" soundings, in
abundance at Station 36, east of Tasmania, 777 fathoms, and rarely at 1,122 fathoms in the same locality. E 3915 , c.; E 3916, r.; E 3917, v.r.; E 3918, f.; E 3919, v.r.; E 3920, f. ; E 3921, f.; E 3922,v.c.
62 Bolivina limbata Brady 1884
Brady 1884, 419, pl. liii, fig. 26-28; Chapman, 1907, 32, pl. iv, fig. 83.
A well-distributed form in the Tasman Sea and the Indo-Pacific area. It has previously occurred in "Endeavour" material, east of Tasmania, at 1,122 fathoms, and 40 miles south of Cape Wiles at 100 fathoms. It is also a Lower Miocene fossil in Victoria.

E 3921, v.r.; E 3923, r.
63 Bolivina punctata d'Orbighy 1839
d'Orbigny 18393, 63, pl. viii, fig. 10-12; Chapman, 1907, 32, pl. iv, 80 ; Chapman and Parr, 1937, 92, pl. viii, fig. 16.
Widely distributed in Australian waters, Previously recorded from "Endeavour" material, Station 36, east of Tasmania, 777 fathoms. Also in shore sands at Beanmaris, Port Phillip (Chapman).

E 3919, v.r.
64 Bolivina robusta Brady 1884
Brady 1884, 421, pl. liii, fig. 7-9; Cushman, 1937, 131, pl. xvii. fig. 1-4.
Widely spread through Atlantic, Pacific, and Indian Oceans and Antarctic Seas. The "Challenger" figures are from the Ki Islands and Fiji, It has been recorded from former "Endeavour" material, cast of Tasmania, 777 fathoms, and 40 miles south of Cape Wiles, 100 fathoms.
E 3920, c. ; E 3921, v.r.; E 3922, f.

Genus Rectobolivina Cushman 1927
65 Rectobolivina bifrons (Brady 1884)
Sagrina bifrons Brady 1884, 582, pl. 1 v , fig. 18-20.
Rectobolivina bifrons, Cushman, 1937, 204, pl. xxiii, fig. 13, 14.
Noted in dredgings made by the "Aurora," 1911-14, Antarctic Expedition, off the east coast of Tasmania. The "Challenger" record is off south-east of Japan. It is known also from the Philippines and from Funafuti, this latter a record of great depth ( 2.400 fathoms), by Chapman. Egger obtained it from "Gazelle" dredgings off Western Australia.

E 3917. v.r. ; E 3923, v.r.
Genus Loxostomum Ehrenberg 1854
66 Loxostomum karrmrianum (Brady 1884)
Bolivina karreriana Brady 1884, 424, pl. liii, fig. 19-21. Lo.rostomum karrerianum (Brady), Cushman 1937, 184, pl. xxi, fig. 17.

This species is well distributed in the Southern Hemisphere, from Mauritius, the Philippines and the Jrijis down to the east coast of Australia and New Zcaland, F 3915, v.r.; E 3917, f.

Genus Biftrina Parker and Jones 1872
67 Bifarina fimpritata (Millett 1900)
(Pl. ix, fig. 4)
Bigenerina finbriata Millett 1900, 6, pl. i, fig. 2-4.
Bifarina fimbriata (Millett), Cushman 1937, 200, pl. xxiii, fig. 3-5; pl. iii, fig. 4.
The only record for this species was the Malay Archipelago. It is now noted for the first time from the Australian region, viz., 33 miles east from Green Cape, 470 fathoms:

Genus Uvigerina d'Orbigny 1826
68 Uvigerina sp. aff. pigmea d'Orb. 1826
Uzigerina pigmea d'Orbigny 1826, 269.
One of the most ubiquitous species in the Bass Strait dredgings. Both A and B stages (megalo- and microspheric) are represented. This type corresponds to Brady's fig. 13, 14, of pl. lxxiv, "Challenger" Report, which came from Station 232, south of Japan (fide Nuttall).

E 3915, v.c. ; E 3916, c.; E 3917, v.r.; E 3918, c.; E 3919, c.; E 3920, r. ; E 3921, v.r. ; E 3922, c. ; E 3923, f.

Genus Trifarina Cushman 1923
69 Trifarina bradyi Cushman 1923
Rhabdogonium tricarinatum Brady (non Vaginulina tricarinata d'Orb.) 1884, 525, pl, lxvii, fig. 1-3.
Trifarina bradyi Cushman 1923, 99, pl, xxii, fig. 3-9; Chapman and Parr 1937, 98.
The "Aurora" dredgings off the coast of Tasmania, at 1,320 fathoms, included the above species. Heron-Allen and Earland noted this form from the "Terra Nova" dredgings off New Zealand.

The present record is from 33 miles east by south from Green Cape, 470 fathoms. As a fossil it occurs in the Lower Miocene of Victoria.

E 3920, v.r.
Genus Cassinuifna d’Orbigny 1826
70 Cassidullina crassa d'Orbigny 1839
d'Orbigny 18393, 56, pl. vii, fig. 18-20; Cushman 1911, 97, text-fig. 151 a-c; Chapman and Parr 1937, 81.
This species becomes increasing'y abundant towards the south. Falkland Islands and Cape Horn (d'Orbigny). The results of the Mawson Expedition showed its distribution to extend to the east of Tasmania and the Ice Barrier.

E 3917, r.
71 Cassidulina laevigata d'Orbigny 1826
d'Orbigny 1826, 282, No. 1, pl. xv, fig. 4, 5 ; Brady 1884, 428, pl. liv, fig. 1-3.
The "Aurora" results, 1911-14, proved the occurrence of this species to the east of Tasmania at 1,320 fathoms. The present investigation shows it to be abundant in fairly deep water, 33 miles east by south from Green Cape, north of the Victorian border. It is of minute size and only occurs in the finest siftings. C. lacvigata is also fossil in the Lower Miocene of Victoria.

> E 3919, v.r. ; E 3920, v.c. ; E 3921, v.r. ; E 3922, v.c.

\section*{72 Cassidulina subgrobosa Brady 1884}

Brady 1884, 430, pl. liv, fig. \(17 a-c\).
The "Challenger" figured specimens came from Pernambuco, Brazil. It is a well-distributed species in the Southern Ocean. Common as a Miocene fossil in Victoria.

E 3920, r.; E 3922, v.r.; E. 3923, f.
73 Cassidulina subglobosa var. producta Chapman and Parr 1937
Cassidulina murrhyna Chapman (non Schwager) 1915, 20.
Cassidulina subglobosa Brady, var. producta Chapman and Parr 1937, 82, pl, viii, fig. 12.
The "C. murrhyna" of Schwager of my previous report on "Endeavour" material from east of Tasmania, 1,122 fathoms, has since proved to belong to a
variety of Brady's species. C. subglobosa. Also as a fossil in the Lower Miocene of Victoria.

E3920, v.r. ; E3923, v.r.

\author{
「am. PLEUROSTOMEI.LIDAE \\ Genus Ellipsolagena A. Silvestri 1928
}

74 Ellifisolagena scillicitit (Silvestri 1902)
Fissurina schlichti A. Silvestri 1902, 143, text-fig. 9-11.
Ellipsolagena schlichti, Chapman and Parr 1937, 99.
Previous records for this species are:-the Subantarctic Islands of New Zealand, 50-85 fathoms; soundings from 121-171 fathoms in the Ross Sea, Antarctic, and from the "Terra Nova" Stations off New Zealand. From "Endeavour" material (Chapman 1915) it was obtained cast of Tasmania, 777 fathoms. E 3919, v.r.; E. 3920, r.

Fam. IIETEROHELICIDAE
Genus Bolivinita Cushman 1927
75 Bolivinita quadrilatera (Schwager 1866)
Textularia quadrilatera Schwager 1866, 253, pl. vii, fig. 103.
Bolivina obsoleta, Chapnan (non Eley) 1915, 20.
Bolivinita quadrilatera, Chapman and Parr 1937, 101.
The dredgings from the "Aurora" containing this species came from the east of New Zealand. As Bolivina obsoleta this species was recorded in 1915 from "Endeavour" material, east of Tasmania, 777 and 1,122 fathoms, E 3918, c. ; E 3919, v.r. ; E 3920, r. ; E 3921, v.r.; E 3922, v.c.; E 3923, v.r.

Bolivinita quadrilatera (Schwager) var, tortilis nov.
(Pl. iii, fig. 3)
Description-Differs from the specific form in having decply concave faces, a twisted and incurved test and the opposite sides or square edges out of parallel, so that when mounted on edge one of the keels appears to be interfacial. The transverse section, therefore, resembles that of Bolivina rhomboidalis Millett, io which it was referred at first sight. It may yet prove that Millett's species is another modification of Bolivinita and not a true Bolivina. Length, 0.75 mm .; greatest breadth, 0.24 mm .

Note--Heron-Allen and Earland draw attention to the fact that their "Bolivina obsoleta" (now Bolizinita quadrilatera). from "Terra Nova," Station 6, east of North Cape, New Zealand, has a spiral twist. In all probability the present variety is identical with theirs. E. 3920, f. ; E 3921, v.r.; E 3922, f.

Genus Bolivinella Cushman 1927
77 Bolivinella folium (Parker and Jones 1865)
Textularia folium Parker and Jones 1865, 370 and 420, pl. xviii, fig. 19; Brady 1884 (pars), 357, pl. xlii, fig, 1, 2 ; Chapman 1907, 127, pl. ix, fig. 4.
Bolivinclla folium Cushman 1927, 79; 1928, pl. xxxiii, fig. 15, 16; Parr 1931, 223, pl. xxi, fig. 23.
Parr has pointed out (op. cit., 1931) that Brady had confused two distinct species under Parker and Jones' name, and that subsequently Cushman gave an unnecessary varietal name, ornata, to the Australian species. This Australian form is typical of \(B\). folium ( P . and I.), and the tropical species erroneously linked with Parker and Jones' Australian form is distinct; for this Parr suggests Bolivinella elegans.

Although Parr refers to this second species figured by Brady (op. cit., pl. xlii, fig, 3-5) as tropical, Nuttall has given all but fig. 3, which came from Fiji, as from Bass Strait.

I have already recorded this species under the name of Textularia folium, from McHaffie's Reef, Phillip Island, as well as from previous "Endeavour" material from 40 miles south of Cape \Viles, 100 fathoms. The localities given by Parr are Hardwicke Bay, South Australia, and a bore at Boneo, near Rosebud, at 177-187 feet (Pleistocene).

Bolizinella folitm occurs in one of the present samples, 33 miles east by south from Green Cape, north of the Victorian border, at 470 fathoms.

E 3918, r.
*Genus Parafrondicularia Asano 1938
78 Parafrondicularia helenae sp , nov.
(Pl. ix, fig. 5, 5a)
Frondicularia intcrrupta Brady (non Karrer) 1884, 523, pl. 1xvi, fis. 6, 7.
Description-Test narrowly hastate, margin finely, narrowly keeled; surface complanate, with a longitudinal shallow sulcus, and with closely set vertical raised striae numbering about 18-20. Chambers \(V\)-shaped for the last three-fourths of the test, the initial fourth being taken up by the biserial growth. The later frondicularian chambers consisting of eight enchevroned segments. Aperture terminal, central and elliptical, with a denticulate margin. Length, 0.946 mmı.; greatest breadth, 0.243 mnn.

Observations-Brady's figured specimen agrees with the present type in length, measuring about 1 mm . Its habitat was off the Ki Islands, south-west of New Guinca. . Ite identified his "Challenger" specimen with Karrer's Frondicularia interripta, from the Lower Miocene of Baden, Vienna (Karrer, Fs, 1877, 380, pl, xvi b, fig. 27). The Bass Strait and the New Guinca examples both belong to the genus Parafrondicularia. On reference to Karrer's original figure we find the arrangement of chambers is specifically frondicularian, and this is supported by his own description. It is also clear that the interrupted character of the striations is a feature in Karrer's species, hence the name, whereas the Australian form has continuous striae throughout the length of the test.

Note- I dedicate this beatiful species to the memory of my wife, who for nearly fifty years has been my constant and devoted helper in studies on the Foraminifera. Only within a short time of her passing, Mrs. Helen Mary Chapman assisted me in selecting the material included in the present investigation. Fron the time of describing the Foraminifera of the Gault of Folkestone, the genus Frondicularia and its allies were to her particularly attractive,

E 3922 f .
Genus Nonogenfrina Cushman 1927
79 Nodogenerina bradyi Cushman 1927
Sagrina virgula, Brady (pars), 1884, 583, pl. lxxvi, tig. 8 .
Nodogenerina bradyi Cushman 1927, 79.
Brady found that the above form was confined to the South Pacific. The figured specimen was dredged by the "Challenger" from Pernanbuco (Nuttall).

E 3922. v.r.
80 Nomogenerina insolita (Schwager 1866)
Nodosaria insolita Schwager 1866, 230, pl, vi, fig. 63; Cushman 1921, 191.
This species was originally described as a fossil (Pliocene), from Kar Nikobar. Cushman has recorded the species from the "Albatross" dredgings from Verde Island Passage at 260 fathoms, and from the east coast of

\footnotetext{
* See first footnote on page 154.
}

Mundanao, 490 fathoms, both in the Philippines. Unknown hitherto to the Australian coast. E 3917, v.r.

> Fam. ROTALIIDAE
> 81 Genus Patellina Williamson 1858
> 81858 Patelina corrugata Williamson 1858

Williamson 1858, 46, pl. iii, fig. 86-89; Brady 1884, 634, pl. 1xxxvi, fig. 1-7; Heron-Allen and Eatland 1922, 198 ; Parr and Collins 1930, 90, pl. iv, fig. 1-5; Chapman and Parr 1937, 102.
This species was found in "Aurora" dredgings close to the Antarctic Ice Barrier and near Macquarie Island. Parr and Collins recorded it from Geraldton Harbour, West Australia, and east of Cape Saunders, Otago, New Zealand. Earlier records of mine are from the Subantarctic Islands of New Zealand (off the Snares, 60 fathoms and 10 miles north of Enderby Island, 85 fathoms), and cast of Tasmania, 777 and 1,122 fathoms ("Endeavour").
E. 3923 , v.r.

\section*{Genus Patelifnella Cushman 1928}

\section*{82 Patellinella inconspicua (Brady 1884)}

Textularia inconspicua Brady 1884, 357, pl. xlii, fig. a-c; Millett 1899, 557, pl. vii, fig. 1.
Patellinella inconspicua, Cushman 1928, 5, pl. i, fig. 8 a-c; Parr and Collins 1930, \(92, \mathrm{pl}\).v , fig. 7.
This species ranges from the south of Japan, through Admiralty Islands, Malay Archipelago to Bass Strait and New Zealand. It also occurs in the Indian Occan, at Kerimba. Parr and Collins give additional localilies around Victoriashore sand Port Lonsdale, Torquay and Port Fairy. As a Pleistocene fossil it was found in a boring at Boneo, near Rosebud, at 177-187 feet (W. J. Parr). One of the "Challenger" Stations for this species was Moncoeur Island Bass Strait.

E 3919, r.
Genus Discorbis Lamarck 1804
83 Discorbis australis Parr 1931
Discorbina ralv'ulata Brady (non Rosalina valaulata d’Orb.) 1884, 644, pl. lxxxvii, fig. 57.
Discorbis australis Parr 1931, 227, pl. xxii, fig. 31 a-c.
This species occurred at Moncoeur Island, lass Strait and near Fiji (Brady). It is found in shallow water on the coast of Victoria and fossil in the Lower Miocene of Muddy Creck ( ( arr ) .

E 3915, v.r.

84 Discorbis bertileloti (d'Otb. 1839)
Rosalina bertheloti d'Orbigny 18391. 135, pl. i, fig. 28-30.
Discorbina bertheloti, Brady 1884, 650, pl. 1xxxix, fig. 10-12.
Discorbis bertheloti, Chapman, Parr and Collins 1934, 561, pl. ix, fig. \(13 a-c\); Chapman and Parr 1937, 102.
Recorded by Brady from the Philippines, and down to the south-east corner of the Australian coast. Found in Lass Strait and along the Victorian coast. From the "Aurora" dredgings, east of Tasmania, at 1,320 and 1,300 fathoms. It is a common Tertiary fossil in Victoria, as old as the Lower Miocene.

E 3916, r.; E 3917, r. ; E 3918, r.; E 3920, r.

85 Discorbis dimidiatus (Jones and Parker 1862)
Discorbina dimidiata Jones and Parker (in Carpenter) 1862, 201, fig. xxxii в (in text) ; Chapman 1907, p. 136, pl. x, fig. \(8 a, b\).
Discorbis vesicularis (Lam.), var. dimidiata, Parr 1932, 227, pl. xxi, fig. 27 a-c., \(28 a-c, 29 a-c\).
Discorbis dimidiatus, Chapman and Parr 1937, 103.
Recorded from shore gatherings round Victoria, from Altona Bay. Beaumaris, McHaffie's Reef, Phillip Island, Port Nepean, Shorehan and Torquay. Common on the Australian coast below Sydney. On beaches near Auckland, New Zealand (Parr).

This species has also been noted from "Aurora" dredgings near the Antarctic Ice Barrier and east of Tasmania. E 3919, r.; E 3923, r.

\section*{86 Discorbis disparilis (Heron-Allen and Earland 1922)}

Discorbina disparilis Heron-Allen and Earland 1922, 205, pl. vii, fig. 20-22.
Discorbis disparilis, Parr 1932, pl. xliv, fig, 2.
Originally recorded off New Zealand, 100 fathoms. Parr has since noted it in Victorian shore sands. E 3917, v,r.
\[
87 \text { Discorbis opercularis (d’Orbigny 1826) }
\]

Rosalina opercularis d’Orb. 1826, 7, 271, No. 7; 1839², 101, pl. iii, fig. 24, 25, pl. iv, fig. 1.
Discorbina opercularis, Brady 1884, 650, pl. lxxxix, fig. 8, 9.
Brady records this species from Moncoeur Island, Bass Strait (at 38 fathoms) and Port Jackson, 2-10 fathoms. Also from Torres Strait and Queensland.

E 3916, r.; E 3923, r.
88 Discorbis orbicularis (Terquem 1876)
Rosalina orbicularis Terquem 1876, 75, pl, ix, fig. 4 a-b.
Discorbina orbicularis, Brady 1884, 647, pl. lxxxviii, fig. 4-8.
This species is known from both the Atlantic and Pacific Oceans and is found as far south as the southern coast of Australia (Brady). My previous record in "Endeavour" material was 40 miles south of Cape Wiles, 100 fathomis.
E3918, v.r.; E 3923, r.

\section*{89 Discorbis rarescens (Brady 1884)}

Discorbina rarescens Brady 1884, \(651, \mathrm{pl}\). xc, fig. 2, 3.
Discorbis rarescens, Chapman and Parr 1937, 105.
The "Challenger" examples came from Raine Island, Torres Strait and from the Philippines. Heron-Allen and Earland obtained this species in "Terra Nova" dredgings off the coast of New Zealand. From the "Aurora" samples it occurred east of Tasmania, in 1,320 fathoms.

E 3918, v.r.; E 3923, r.
90 Discorbis rosacea (d’Orbigny 1826)
Rotalia rosacea d'Orbigny 1826, 7, 273, No. 15-Modèle No. 39.
Discorbina rosacea, Brady 1884, 644, pl. 1xxxvii. fig. 1, 4; Chapman 1915, 29.
The "Challenger" specimens were figured from Admiralty Islands, north of New Guinea and Bass Strait (Nuttall). Found in former "Endeavour" material, 40 miles south of Cape Wiles, 100 fathoms. E 3918, v.r.; E 3919, v.r.

91 Discorbis rugosa (d’Orbigny 1839)
Rosalina rugosa d'Orbigny 18393, 42, pl. ii, fig. 12-14.
Discorbina rugosa, Brady 1884, 652, pl. lxxxvii, fig. 3 a-c, pl. xcvi, fig. \(4 a-c\);
Chapman 1915, 29.
The "Challenger" figured specimens were obtained from the Ki Islands and Torres Strait. It has already occurred in "Endeavour" material, east of Tasmania, 777 fathoms.

E 3923, v.r.
92 Discorbis globularis (d'Orbigny 1826)
Rosalina globularis d’Orb. 1826, Modèlès No. 69, 271, pl. xiii, fig. 1-4.
Discorbina globularis, Brady 1884, pl. lxxxvi, fig, 8 and 13.
This widely spread species occurs in Sample E 3918. Heron-Allen recorded it from the coasts of New Zcaland ("Terra Nova" Report).

E 3918, v.c.
Genus Eponides Montfort 1808
93 Eponides kar!steni (Reuss 1855)
Rotalia karsteni Reuss 1855, 275, pl. ix, fig. 6.
Pulvinulina karsteni, Brady 1884, 698, pl. cv, fig. 8, 9.
The "Challenger" recorded this species from the Magellan Strait at 55 fathoms, from which locality it was figured; also from the Falkland Islands, 4 fathoms, and the Rio Plata, 13 fathons.

E 3922, v.r. ; E 3923, r.

\section*{94 Eponides repandus (Fichtel and Moll 1798)}

Nautilus repandus Fichtel and Moll 1798, 35, pl. iii, fig. a-d. Pulvinulina repanda, Brady 1884, 684, pl. civ, fig. 18 a-c; Cushman 1921, 326.

Found in every sea, excepting the Arctic (Brady). Cushman records this species at many Stations in the Philippites. In previous "Endeavour" dredgings, 40 miles south of Cape Wiles, 100 fathoms. Common in Tertiary strata from borings in Victoria.

E 3915, r.
Genus Streblus Fischer 1817
95 Streblus beccarit (Linn. 1767)
Nautilus beccarii L. 1767, Syst. Nat., 12th ed. 1,162.
Streblus beccarii, Fischer 1819, 75.
Rotalia beccarii, Brady 1884, 704, pl. cvii, fig. 2, 3.
This species ranges from the Shetlands to the Cape of Good IIope (Brady). It is well established in the Philippines at the average depth of 318 fathoms. It is common as a fossil in borings in the Tertiaries of Victoria and South Australia, especially the Pleistocene.

E 3915, c.; E 3917, r. ; E 3918, r.; E 3920, v.r.; E 3922, v.r.

Genus Notorotalia Finlay 1939
96 Notorotalia clathrata (Brady 1884)
Rotalia clathrata Brady 1884, 709; pl. cvii, fig. 8, 9; Chapman 1915, 32, 33 ;
Chapman and Parr 1937, 108.
Common around the New Zealand coast. Brady's Report shows its restriction to the South Pacific, between Moncocur Island, Bass Strait and Cook Strait, New Zealand. It has also been found at two Stations on the west coast of Patagonia, and also occurred in shore sands at Torquay, Victoria. Previous records
from "Endeavour" material are: Station 36, east of Tasmania, 777 fathoms, and 40 miles south of Cape Wiles, 100 fathoms. Fossil in the Tertiary bores in Victoria.

E 3920, v.r.; E 3922, v.r.
97 Notorotalia decurrens sp. nov.
(P1. viii, fig. \(7 a, b\) )
Description-Test rotaline, plano-convex, depressed. Superior face almost flat, with thickened sutural shell development, breaking up into papillae near the initial stage of the shell. Inferior face strongly convex, with thickened, curved sutural lines of a more regular character than those on the upper surface, with faint striae at right angles between them. Diamicter of test, 0.386 mm .

Distinct from Brady's Rotalia clatlrala in the suppression of strong lattice ornament, surface sutural thickening and more depressed superior face.
\[
\text { E } 3915, \text { r. ; E } 3917, \text { v.r. } ; \text { E } 3918, \text { f. }
\]

\section*{Genus Epistomina Terquem 1883}

98 Epistomina elegans (d'Orbigny 1826)
Rotalia (Turbinulina) elegans d'Orbigny 1826, 7, 276, No. 54.
Pulvinulina elegans, Parker, Jones and Brady 1871, 174, pl. xii, fig. 142; Brady 1884, 699, pl. cv, fig .4-6.
Brady's figured specimens came from Tristan d'Acunha and Fiji. This species was common in "Aurora" material, between Tasmania and the Antarctic Ice Barrier. Previous records of "Endeavour" material, 40 miles south of Cape Wiles, 100 fathoms. E 3915, c.; E 3917, r.; E 3918, r.; E 3919, v.r.; E 3922, f.

Genus Mississiprina Ilowe 1930
99 Mississippina concentrica (Parker and Jones 1864)
Pulzinulina concentrica Parker and Jones (in Brady) 1864, 470, pl. xlviii, fig. 14; Brady 1884, 686, pl. cv, 1 a-c.
Eponides concentricus, Chapman, Parr and Collins, 1934, 565, pl. ix, 17 a-c.
Common and typical in the Philippines (Cushman). Previous record from "Endeavour" material, 40 miles south of Cape Wiles, 100 fathoms. Common and of variable size. Found in the Lower Miocene of Port Phillip. E 3919, r.

\section*{Genus Cancris Montfort 1808}

\section*{100 Cancris auricula (Fichtel and Moll 1798)}

Nautilus auricula Fichtel and Moll 1798, 108, pl. xx \(a-c\); pl. xx \(d-f\).
Pulvinulina auricula, Brady 1884, 688, pl. cvi, fig. 5 a-c; Chapman 1915, 31 ; Cushman 1915, 53, pl. xxii, fig. 1.
Cancris auricula, Cushman 1931, 72, pl. xv, fig. \(1 a-c\); Chapman and Parr 1937, 109.

A well distributed species in southern waters. Records from the "Aurora" give one typical example east of Tasmania, 1,320 fathoms. From the "Terra Nova" was noted at 7 miles east of North Cape, New Zealand. Also occurred in dredgings by the trawler "Bonthorpe" in the Great Australian Bight. Cushman states in his Philippine memoir, 1921, that it is one of the characteristic species in the dredgings off the Philippines below 100 fathoms. Previously recorded in "Endeavour" material, 40 miles south of Cape Wiles, 100 fathoms. Common as a fossil in the Lower Miocene of Victoria.

Genus Anomalina d’Orbigny 1826
101 Anomalina colligera Chapman and Parr 1937
Anomalina ammonoides, Brady (non Rosalina anmonoides Reuss) 1884, 672, pl. xciv, fig. 2, 3.
Anomalina colligera Chapman and Parr 1937, 117, pl, ix, fig. 26.
Brady's "Challenger" specimens came from Fiji and Papua. The "Aurora" examples were found in dredgings east of Tasmania and between Tasmania and the Antarctic. It was recently recorded from the Great Australian Bight ("Bonthorpe"). Previous records from the "Endeavour" (Chapman 1915, as A. ammonoides) were--east of Tasmenia, 777 fathoms, and 40 miles south of Cape Wiles, 100 fathoms.

E 3915, v.r. ; E 3922, v.r.

\section*{102 Anomalifa glabrata Cushman 1924}

Cushman 1924 \({ }^{1}\), 39, pl. xii, fig. 5-7; Chapman, Parr and Collins 1934, 570, pl. xi, fig. 39 ate ; Chapman and Parr 1937, 117.
Type locality, off Samoa, in shallow water. From "Aurora" dredgings this species was obtained off the Shackleton Shelf, Antarctic, and south and northeast of Tasmania. It also occurs as a fossil in the Miocene of Victoria (Parr) and in beds of the same age in Califorria.
E 3915, c. ; E 3917, r.; E 3918, v.r.; E 3920, r. ; I 3922, v.r.

\section*{103 Anomalina globulosa Chapman and Parr 1937}

Anomalina grosserugosa, Brady (non 'Truncatulina grosserugosa Gümbel) 1884, 673. pl. xciv, fig. 4, 5.

Anomalina globulosa Chapman and Parr 1937, 117, pl. ix, fig. 27.
Brady's "Challenger" Stations for this form are situated in the North and South Atlantic and the North Pacific; two are in the South Pacific. A. globulosa occurred in the "Aurora" soundings off St. Frances Island and to the east of Tasmania. It has also been found on the coasts of Victoria and New South Wales. Under the name of \(A\). grosscrugosa it was recorded earlier from an "Endeavour" sample, east of Tasmania, 777 fathoms. E 3920, v.r.; E 3922, v.r.' 104 Anomalina polymorpha Costa 1856
Costa 1856, 252, pl. xxi, fig. 7-9; Brady 1884, 676, pl. xcvii, fig. 3-7; Chapman, 1907, 138.
Recorded by the "Challenger" off Sydney, 410 fathoms, west of New Zealand, 275 fathoms and Fiji, 210 fathoms. Previous "Endeavour" material proved this species to be common at 40 miles south of Cape Wiles, 100 fathoms. It was also found in shore sand at Beammaris, Port Phillip.
E 3917, v.r.; E 3918, v.r. ; E 3923, v.r.;

105 Anomalina sp. aff. rotula d'Orbigny 1846
Anomalina rotula d'Orbigny 1846, 172, p1. x, fig. 10-12; Macfadyen 1930, 99, pl. iv, fig. \(10 a-c\); Chapnian, P'arr and Colins 1934, 570, pl. xi, fig. \(38 a-c\).
Hitherto a fossil (Mincene) species, from the Vienna Basin, Egypt and Victoria. The recent specimens are not quite typical when compared with the Lower Miocene fossils from Victoria.

E 3915, f .
106 Anomalina vermictulata (d’Orbigny 1839)
Truncatulina vermiculata d'Orbigny 18393, 39, pl. vi, fig. 1-3.
Anomalina polymorpha Costa?, Brady, 1884, 676 pl, xcvii, fig. 7.
Anomalina vermiculata, Feron-Allen ard Earland 1932, 423, pl. xv, fig. 1-15.
Common in the Falkland area (H.-A. and E.).
E 3915, f.; E 3920, v.r.

Genus Planulina d'Orbigny 1826
\(\dagger 107\) Planulina biconcava (Parker and Jones 1862)
Discorbina biconcava Parker and Jones (in Carpenter) 1862, 201, text-fig. xxxii; Brady 1884, 653, pl. xci, fig. 2 a-c (non fig. 3 ).
The "Aurora" soundings from east of Tasmania contained examples of this species. Also found off New Zealand ("Terra Nova"). Notably an Australian species, it has been found in Bass Strait, Port Jackson, Torres Strait and Gulf of Carpentaria. As Discorbina biconcava it also came from a former "Endeavour" dredging, 40 miles south of Cape Wiles, 100 fathoms.

E 3918, v.r.
108 Planulina biconcava (Parker and Jones), var. unguiculata (Sidebottom 1918)
Discorbina linguiata, Burrows and Holland, var. unguiculata Sidebottom 1918, 255, pl. vi, fig. 12-14.
This variety appears to belong to the Planulina type of test rather than to Heronallenia, in which genus lingulata is now placed. It was originally obtained from Pteropod ooze, dredged by H.M.S. "Dart," Station 19, at 465 fathoms. The locality is north of Shoal Bay, New South Wales. E.3922, v.r.

\section*{109 Planulina haliotis (Heron-Allen and Earland 1924)} Discorbina haliotis Heron-Allen and Earland 1924, 173, pl. xiii, fig, 99-101.

Originally described from the Lnwer Miocene of Batesford, Victoria, it is of much interest to find this species still existing in Bass Strait. The locality is 33 miles east from Green Cape, 470 fathoms.

E 3922, v.r.
Genus Cibicides Montfort 1808
110 Cibicides aknerianus (d'Orbigny 1846)
Rosalina akneriana d'Orb. 1846, 156, pl. viii, fig. 13-15. Truncatulina akneriana, Heron-Allen and Earland 1932, 421.

Recorded in "Discovery" Reports as very common in the Falkland Island area. E 3920, v.r.

111 Cibicides lobatulus (Walker and Jacob 1798)
Nautilus lobatulus Walker and Jacob 1798, 642, pl. xiv, fig. 36
Cibicides lobatulus, Chapman and Parr 1937, 119.
Very common at a large number of Stations, from the Antarctic to Tasmania and New Zealand ("Aurora" Expedition).

> E 3916, r. ; E 3917, r.; E 3918, r. ; E 3919, r. ; E 3921, v.r. ; E 3922, f.

112 Cimicides sp. aff. victoriensis Chapman, Parr and Collins 1934
Cibicides zictoriensis Chapman, Parr and Collins 1934, 38, 571, pl. ix, fig. 16 a-c.
A recent development of the Victorian Miocene C. victoriensis. E 3915, v.c.; E 3917, v.r.; E 3918, r. ; E 3919, f.; E 3920, v.r.

113 Cibicides pseudoungerianus (Cushman 1922)
Truncatulina pseudoungcriana Cushman 1922, 97, pl. xx, fig. 9.
Cibicides pseudoungerianus Cushman 1930, 123, pl. xxii, fig. 3-7.
Universally distributed in Southern Seas.
E 3915, f.; E 3918, c.; E 3919, v.r.; E 3922, f.; E 3923, f.

\section*{114 Cibicides refulgens Montfort 1808}

Montfort 1808, I, 122, 31me gènre.
Truncatulina refulgens, Brady 1884. 659, pl. xcii, fig. 7-9.
Of world-wide distribution, this species occurs generally in the Southern Hemisphere, and has been recorded from the Cape of Good Hope, Patagonia, Falkland Islands, the Antarctic Ice Barrier and up to the shores of the Australian continent.

E 3915, r. ; E 3918, v.r.; E 3922, r.

\section*{115 Cibicides wuellerstorfi (Schwager 1866)}

Anomalina zuellerstorfi Schwager 1866, 258, pl. vii, fig. 105, 107. Truncatulina rwellerstorfi, Brady 1884, 662, pl. xciii, fig. 8, 9. Cibicides zuellerstorfi, Chapman and Parr 1937, 21.

Brady's figured specimens came from the west coast of New Zealand. This species was also found in the "Bonthorpe" dredgings off the Creat Australian Bight. Earlier "Endeavour" material recorded it from east of Tasmania, 777 fathoms, and 40 miles south of Cape Wiles, 100 fathoms. Tossil examples are known from the Eocene and Miocene of New Zealand, and Schwager's specimens came from the Pliocene of Kar Nikobar.

E 3916, r.; F. 3919, r.; E 3920, f.; E 3921, f.; E 3922, f.; E 3923, f.
Genus Dyocibicides Cushman and Valentine 1930
116 Dyocibicides biserialis Cushman and Valentine 1930
Cushman and Valentine 1930, 31. pl. x, fig. 1, \(2 a-b . ;\) Cushman 1931, 126, pl. xxiv, fig. 2; Chapman, Parr and Collins 1934, 572, pl. xi, fig. \(43 a-c\).
Sparsely occuring off the coast of Australia and in the Southern Ocean. Also fossil in the lower Miocene and upward in Victoria.

E 3923, v.r.
Genus Amphistegina d'Orbigny 1826
117 Ampilistegina lessonil d'Orbigny 1826
d'Orbigny (pars) 1826, 304, No. 3, pl. xvii, fig. 1-4; Brady 1884, 740, pl. cxi, fig. 1-7.
The examples here recorded came from 505 fathoms, just north of Twofold Bay, New South W'ales ( \(37^{\circ} 21^{\prime}\) S., \(150^{\circ} 24^{\prime}\) E.). It is probably a record for this high latitude, and it is interesting to note that the soundings from the "Bonthorpe" trawler, in the Great Bight, record another solitary instance of the species in high latitudes (from Sample 4, \(33^{\circ} 14^{\prime} \mathrm{S} ., 126^{\circ} 16^{\prime} \mathrm{F}\). ) at a depth of 100 fathoms, a little south of Dover Point.
E 3919, v.r.

\section*{Fan. CIILOSTOMELLIDAE \\ Genus Chilostomella Reuss 1850}

118 Chilostomella cushmani sp. nov.
(Pl. viii, fig. 9; pl. ix, fig. 6)
Chilostomella ovoidea Cushman (non Reuss) 1919, 621.
Cushman remarks, under the above reference, which deals with the examples found off "Poor Knights Islands," as follows: "There are scveral specimens mounted on the slide which seem to show possibly both microspheric and megalospheric forms. There are two very distinct sizes: the larger specimen is evidently somewhat like C. grandis Cushman, described from the Philippines. It is, however, not as large as that species."

The definition of these New Zealand chilostomellids as given by Cushman so well fits the characters of the specimens before me, and not \(C\). grandis, that I have no hesitation in referring them to the same form as those from the "Endeavour" soundings, including their reference (as Cushman supposes in his case) to the forms \(A\) and \(B\), as here illustrated. T have much pleasure, therefore, in naming the species after my long-standing, eminent and indefatigable friend, as Chilostomella cushmani.

Description-Test large, ovoid, about twice as long as broad; sides evenly and fully curved; aperture sub-terminal, with an elevated rim (stand-up-collar shape) and a widely open mouth. No internal segmentation visible from outside. Surface of test smooth to polished, with numerous scattered puncta. Length, 1.08 mm . ; breadth, 0.65 mm . This is probably Form A, pl. ii, fig. 9.

Test small, more narrowly ovoid and thimer than in Form A, more pointed at oral end, with sides slightly more convex in proportion to Form A. Aperture slit-like, closely adpressed to surface of test and without a rim-like nargin as in Form A. Surface smooth, less punctate and with internal chambers alternating on a transverse axis, the edges of which are seen through the transparent test. Length, 0.57 mm ; breadth, 0.27 mm . This is probably form B, pl. iii, fig. 6 .

Under the name of Chilostomella oölina Schwager, Heron-Allen and Earland have figured ("Discovery" Reports Foram., Falkland Islands, 1932, 360, pl. ix, fig. 38,39 ) what appears to me to belong to a Corm very like C. cushmani of the stage \(B\). Their figures also agree in point of size, measuring 0.677 mm , in length,

E 3917, r.; E 3918, v.r.; E 3923, f.

Gentis Pullenia Parker and Jones 1862
119 Pullenia sphaeroides (d'Orbigny 1826)
Nonionina sphaeroides d'Orb. 1826, 293, No. 1-Modèle No. 43. Pullenia sphacroides, Brady 1884, 615, pl. lxxxiv, fig. 12, 13 ; Chapman and Farr 1937, 110.
Of world-wide distribution, from lat. \(70^{\circ} \mathrm{N}\)., to lat. \(54^{\circ} \mathrm{S}\). (Brady). In the Southern Hemisphere it ranges down to the Antarctic Ice Barrier, and is also found around the coast of New Zealand. Previous "Endeavour" material recorded it east of Tasmania, at 1,122 fathoms.

E 3915, vır.; E 3916, v.r.; E 3920, r.

\section*{120 Pullenia subcarinata (d'Orbigny 1839)}

Nonionina subcarinata d'Orbigny 1839; 28, pl. v, fig. 23, 24. Pullenia subcarinala, Heron-Allen and Earland 1932, 403, pl. xiii, fig. 14-18.

Originally described from the Falkland Islands by d'Orbigny, it has been generally confused with \(P\). quinqueloba (Reuss), as pointed out by Heron-Allen and Earland. It remains to be seen whether the northern form differs from this species and agrees with the fossil forms of \(P\). quinqueloba.

E 3916, v.r.; E 3919, v.r.; E 3920, r.
Genus Sphaeroidina d'Orbigny

\section*{121 Sphaeroidina bulloides d'Orbigny 1826}
d’Orbigny 1826, 267, No. 1 ; Modèle No. 65 ; Brady 1884, 620, pl. Ixxxiv, fig. 1-7.
The "Aurora" dredgings containing this species were found around Tasmania. It occurs in Sample 4 of the dredgings by the "Bonthorpe" in the Great Australian Bight (Chapman and Parr).
E 3915, v.r. ; E 3917, r. ; E 3919, r. ; E 3920, v.r. ; E 3922, v.r.

\title{
Fam. ORBCLINIDAE Genus Globigerina d'Orbigny 1826 \\ 122 Globigerina bulloides d'Orbigny 1826
}
d'Orbigny 1826, 277, No. 1, Modèles Nos. 17 and 76; Chapman and Parr 1937, 111.

A ubiquitous deep water and pelagic form.
\[
\begin{array}{r}
\text { E } 3915 \text {, r. } ; \text { E } 3916, \text { c. ; E } 3917, \text { f.; E 3918, v.c. ; E } 3919, \text { c.; } \\
\text { E 3920, v.c. } ; \text { F 3921, f.; E 3922, v.c. ; E 3923, f. }
\end{array}
\]

123 Globigerina conglomerata Schwager 1866
Schwager 1866,255 , pl. vii, fig. 113.
G. dubia, Brady (non Egger) 1884, 595. pl, 1xxix, fig. 17 a-c.
G. conglomerata, Cushman 1927³, 172; Chapman and Parr 1937, 111.

An Eastern Pacific form agreeing with the Pliocene species of Kar Nikobar E 3918, r.
124 Globigerina nutertrei d'Orbigny 1839
d'Orbigny 1839́ㅡ, 84, pl. iv, fig. 19-21.
This species was noted as comnon from the soundings by the. "Aurora," extending from the Antarctic Barrier to New Zealand and 'lasmania. From previous "Endeavour" material the species was found at Station 35, east of Tasmania, bottom sample, 377 fathoms; and 40 miles south of Cape Wiles, 100 fathoms.

E 3919, r.; E 3922, v.r.
125 Globigerina inflata d'Orbigny 1839
d'Orbigny 18391, 134, pl. ii, fig. 7-9.
The "Aurora" soundings contained numerous records of this species, from south of Tasmania and near Macquarie Island. It is one of the commonest of the genus in the present samples. Former "Endeavour" material contained the species as follows: Station 35, east of Tasmania, bottom sample 377 fathoms. Station 36. ditto, 777 fathoms; east of Tasmania, 1.122 fathoms; 40 miles south of Cape Wiles, 100 fathoms.

E 3915, f.; E 3916, с.; E. 3917, f.; E 3918, v.c.; E 3919, с.; E 3920, v.c. ; E 3921, v.c.; E 3922, v.c.; E 3923, v.c.

126 Globigerina pactiyderma (Ehrenberg 1873)
Aristerospira pachyderma Ehr. 1873, 386, pl. i, fig. 4.
Globigerina pachyderma, Brady 1884. 600, pl. cxiv, fig. 19, 20 ; ILeron-Allen and Earland 1922, 190; Chapman and Parr 1937, 112.
From the east of Tasmania down to the Antarctic Ice Barrier.
E 3916, v.r. ; E 3917, v.r.

\section*{127 Globigerina subcretacea Chapman 1902}

Globigerina cretacea, Brady (non d'Orbigny) 1884, 596, pl. lxxxii, fig. 10.
G. subcretacea Chapman 1902, 410, pl. xxxvi, fig. \(16 a, b ; 1924,17\); Chapman and Parr 1937, 113.
G. subcretacea was originally described from Funafuti, and has since been found off the South African coast (Chapman). More lately it has been recorded from the "Aurora" soundings round Tasmania and off the Shackleton Shelf (Chapman and Parr).

E 3918, r. ; E 3919, r.; E 3920, f.; E 3923, c.

Genus Giobigerinoides Cushman 1927
128 Globigerinoides trilobus (Reuss 1850)
Globigerina triloba Reuss 1850, 374, pl. xlvii, fig. 11.
G. bulloides var. triloba, Brady 1884, 595, pl. lxxix, fig, 1, 2 ; pl. lxxx, fig. 2, 3.

Present in "Aurora" samples, between Tasmania and New Zealand, south of Tasmania and in mid-ocean, north of the Antarctic Ice Barrier. Heron-Allen and Earland (1932) found this species more abundant than G. bulloides, in "Discovery" material from the Falkland Islands. Ireviously from "Endeavour" soundings (Chapman, 1915), cast of Tasmania, 1,122 fathoms, and 40 miles south of Cape Wiles, 100 fathoms. E 3916, f. ; E 3917, r. ; E 3920, c.; E 3922, v.r.

Genus Globigerinella Cushman 1927
129 Globigerinella aequilateralis (Brady 1884) Globigerina aequilateralis Brady 1884, 605, pl. lxxx, fig. 18-21.

Cushman recorded it from many. Stations in the Philippines. Earlier "Endeavour" material secured this specics from Station 36, east of Tasmania, 777 fathoms, and East Tasmania, 1,122 fathoms. E 3919, v.r.

\section*{Genus Orbulina d'Orbigny 1839}

\section*{130 Orbuifna universa d'Orbigny 1839}
d'Orbigny 1839², 3, pl. i, fig. 1; Brady 1884, 608, pl. 1xxviii ; pl. 1xxxi, fig. 8-26; pl. Ixxxii, fig. 1-3; Chapman and Parr 1937, 114.
Abundant in dredgings by the "Aurora," from Tasmania to the Antarctic Ice Barricr. Previous "Endeavour" records: Station 36, east of Tasmania, 777 fathoms, common; east of Tasmania, 1,122 fathoms, common; 40 miles south of Cape Wiles, 100 fathons, common and small.

E 3915, f.; E 3917, r.; E 3918, v.c.; E 3919. v.c. E 3920, v.c.; E 3921, v.c.; E 3922, c.; E 3923, f.
Genus Pulleniatina Cushman 1927
131 Pullentatina obliquiloculata (Parker and Jones 1865)
Pullenia obliquiloculata Parker and Jones 1865, 368, 421, pl. xix, fig. 4; Brady 1884, 618, pl. lxxxiv, fig. 16-20. Pullcniatina obliquiloculata, Chapman and Parr 1937, 114.

This species occurred itr only one sample from the "Aurora," south of Tasmania. The "Terra Nova" records were mainly round New Zealand (HeronAllen and Earland). E. 3918, c.; E 3919, v.r.; E 3921, v.r.; E 3922, r.

Genus Spimerotminelea Cushman 1927
132 Sphaeroidinella dehiscens (Parker and Jones 1865)
Sphaeroidina dehiscens, Brady 1884, 621, p1, 1xxxiv, fig. 11; Egger 1893, 376, pl. xiii, fig. 58. 59 ; Chapman 1910, 418.
This species is apparently absent or very rare in cold water areas. Only one immature specimen is recorded by the "Discovery" from the Falkland Islands. It did not occur in any of the "Aurora" soundings. Cushman notes it from numerous Stations in and around the Philippines. At Funafuti it occurred at 23 Stations, mostly in very deep water, from 590 to 1,489 fathoms. Brady records it from 23 Stations in the South Pacific. Egger records it, from amongst other Stations, from Mauritius, West Australia, Timor, New Guinea and Eastern Australia. It has been found only once in the fossil state, from the Pliocene of Kar Nikobar (as Globigerina seminulina Schwager). E 3919, v.r.; E 3920, r.

Genus Gioborotalia Cushman 1927
133 Globorotalia hirsuta (d’Orbigny 1839)
Rotalia hirsuta d'Orbigny 1839¹, 131, pl. i, fig. 37-39.
Globorotalia hirsuta, Chapman and Parr 1937, 115, pl. ix, fig. 24.
The "Aurora" dredgings showed a restricted distribution for this speciessouth and east of Tasmania and in Bass Strait, east of Adelaide.

> E 3915, v.r. ; E 3917, r. ; E 3918, c. ; E 3919, c.; E 3920, v.c. ; E 3922, f.; E 3923, f.

\section*{134 Globorotalia scitula (Brady 1882)}

Pulvinulina scitula Brady 1882, 716.
Pulvinulina patagonica Brady (non d'Orbigny) 1884, 693, pl. ciii, fig. 7 a-c.
Putzinulina patagonica (d’Orb.) var. scitula, Meron-Allen and Earland 1922, 215. Globorotalia scitula, Chapman and Parr 1937, 116.

Common in the "Aurora" dredgings; its distribution comprises Bass Strait and south-west of Australia in the Southern Ocean, and the Antarctic Ice Barrier, off Queen Mary Land. From the previous "Endeavour" dredgings (under Pulzinulina patagonica), at Station 36, east of Tasmania, 777 fathoms, and east of Tasmania, 1,122 fathoms. E 3922, f.; E 3923, v.r.

\section*{135 Globorotalia truncatulinoides (d’Orbigny 1839)}

Kotalina truncatulinoides d'Orb. 18391, 132, pl. ii, fig. 25-27. Globorotalia truncatulinoides, Chapman and Parr 1937, 116.

From the "Aurora" it was obtained at Stations south-west of New Zealand and deeper parts of the Southern Ocean. Previous material from "Endeavour" soundings yielded it from Station 35, east of Tasmania, bottom sample, 377 fathoms; Station 36, east of Tasmania, 777 fathoms; east of Tasmania at 1,122 fathoms, and 40 miles south of Cape Wiles, 100 fathoms.
\[
\begin{array}{r}
\text { E 3916, f. ; E } 3917, \text { r.; E } 3918 \text {, v.c. ; E 3919, v.r.; } \\
\text { E 3921, v.r. } ; \text { E 3922, f. ; E 3923, f. }
\end{array}
\]

\section*{Fam. NUMMUI.ITIDAE \\ Genus Nonion Montfort 1808}

136 Nonion depressulus (Walker and Jacob 1798)
Nautilus depressulus Walker and, Jacob 1798, 641, pl, xiv, 33.
Nonionina depressula, Brady 1884, 725, pl. cix, 6, 7; Chapman 1916², 70, pl. v, fig. 41.
Nonion depressulus, Chapman and Parr 1937, 99.
From the "Aurora" samples the above species was obtained in the D'Urville Sea, off the Ice Barrier; also south of Tasmania and in the deeper parts of the Southern Ocean. Heron-Allen and Earland found it in the "Discovery" samples round the Falkland Islands, where they were numerous but small.
E 3917, r. ; E 3919, r.

\section*{137 Nonion grateloupi (d’Orbigny 1826)}

Nonionina grateloupi d'Orbigny 1826, 294, No. 19; 18392, 46, pl. vi, fig. 6, 7. Nonion grateloupi, Heron-Allen and Farland, 1932, 437, pl. xvi, fig. 9, 10.

This species occurs in the West Indies and also in the Falklands ("Discovery").

138 Nonion scapira (Fichtel and Moll 1798)
Nautilus scapha Fichtel and Moll 1798, 105, pl. xix, fig. \(d-f\). Nonionina scapha, Brady 1884, 780, pl. cix, fig. 14, 15.

The "Aurora" samples (Chapman and Parr 1937) contained the above species at two stations, east of Tasmania and off Queen Mary Land, Antarctica.
E 3916, v.r. ; E 3918, r.

\section*{139 Nonion umbilicatulus (Montagu 1803)}

Nautilus umbilicatulus Montagu 1803, 191; Suppl., 78, pl, xviii, fig. 1.
Nonionina umbilicatula, Brady 1884, 726, pl. cix, fig. 8, 9. Nonion umbilicatulus, Chapman and Parr 1937, 100.

The above species occurred at the following Stations: south-east of Tasmania ; between Tasmania and New Zealand; off the Ice Barrier (Wilkes Land) ; north of Auckland Island, 85 fathoms. Previous "Endeavour" material, east of Tasmania, 1,122 fathoms. Fossil in the Lower Miocene of Victoria.
\[
\text { E } 3915 \text {, r. ; E 3922, v.r. }
\]

\section*{Genus Elphidium Montfort 1808}

\section*{140 Elphidium advenum Cushman 1922}

Polystomella subnodosa, Brady (non Münster) 1884, 734, pl. cx, fig. a, b. Polystomella advena, Cushman 1922, 56, pl. ix, fig. 11, 12. Elphidium advenum Cushman 1930, 25, pl. x, fig. 1, 2.

This species, under the name of Polystomella subnodosa, was recorded by' Brady from two "Challenger" Stations south-west of New Guinea, viz., Station 187, off Booby Island, 6-8 fathoms, and Station 188, closcly adjacent, at 28 fathoms. Cushman recorded it, under the same name as Brady, at 13 Stations in the Philippines. E 3915, c. ; E 3916, v.r.; E 3917, v.r. E 3918, f.; E3919, r.; E 3922, 'v.r.; E 3923, v.r.

\section*{141 Elphidicm crispum (Linné 1767)}

Nautilus crispus Limné \(1767,1,162 ; 1788,3,370\).
Polystomella crispa, Brady 1884, 736, pl. cx, fig. 6, 7 ; Cushman 1921, 368. Elphidium crispum, Chapman and Parr 1937, 100.

Recorded from the Subantarctic Islands, New Zealand, and off Kerguelen Island. Fairly common in the dredgings by the trawler "Bonthorpe," from West Australia. Previous "Endeavour" dredgings found it 40 miles south of Cape Wiles, 100 fathoms, where it was frequent.

E 3923, v.r.
142 Elphidium imperatrix (Brady 1884)
Polystomella imperatrix Brady 1884, 738, pl. cx, fig. 13-15.
Brady's figured types were, fig. 13, 14, from Storm Bay, Tasmania, and fig. 15, from Station 163B, Port Jackson, 2-10 fathoms (fide Nuttall).
\[
\text { E } 3915, \text { r. ; E 3918, f. ; E 3919, f. }
\]

143 Elphidicum jenseni (Cushman 1924)
Polystomella jenseni Cushman 1924, 49, pl. xv, ?4, 6.
Polystomella macella (F. and M.) var., Jensen 1905, 817, pl. xxiii, fig. 4.
Cushman's specimens were dredged at Samoa. Jensen's original examples came from 100 fathoms off Wollongong, New South Wales.

144 Elpinidium lfssonii (d'Orbigny 1826)
Polystomella lessonii d’Orbigny 1826, 284, No. 6; 1839³, 29, pl. iii, fig. 1, 2.
Elphidium lessonii, Cushman 1930, 22, pl. ix, fig. 1-4; Heron-Allen and Earland 1932, 44, pl. xvi, fig. 29, 30.
d'Orbigny's specimens came from Patagonia and the Falkland Islands.
E 3917, r. ; E 3918, v.r.; E 3922, f.

145 Elfindium maceleum (Fichtel and Moll 1798)
Nautilus macellus F. and M. 1798 ; 66 , pl. x, fig. \(\mathfrak{c}-k\).
Polystomella macella, Brady 1884, 737, pl. cx, fig. 8, 9, 11.
Elphidium macellum, Chapman and Parr 1937, 101.
The "Aurora" samples came from east of Tasmania. Previous "Endeavour" material occurred at Station 36, east of Tasmania, 777 fathoms, and from 40 miles south of Cape Wiles, 100 fathoms.

E 3920, r.; E 3921, v.r.; E 3922, r.
146 Elphidium poeyanum (d’Orbigny 1839)
Polystomella poeyana d'Orbigny, 18392, 55, pl, iv, fig. 25, 26; Cushman 1922, 55, pl. ix, fig. 9, 10.
This species has been described from Cuba and Jamaica; also from Florida. E 3920, r.

\section*{147 Elphidium verriculatum (Brady 1884)}

Polystomella verriculata Brady 1884, 738, pl. cx, fig. \(12 a, b\).; Chapman 1907, 142, pl. x, fig. 10.
Elphidium verriculatum, Chapman and Parr 1937, 101.
Brady records this species from Moncoeur Island, Bass Strait, at 38 fathoms, and according to Nuttall this is the type locality. Brady also gives Curtis Strait, Queensland, which, however, does not appear in the list of Stations, but would inferentially be of not very deep water. Other localities for this species are the Malay Archipelago, Sagami Bay, Japan and from shore sand, Beaumaris, Port Phillip, Victoria. Jensen notes it from Lizard Island, Great Barrier Reef, Queensland; whilst Goddard and Jensen obtained it from Palm Island, Townsville, at 15 fathoms. The exceptional depths recorded for this species, of 1,320 and 1,300 fathoms, were from samples dredged by the "Aurora" to the east of Tasmania; it is usually considered a shallow water form.
\[
\text { E } 3915 \text {, v.c. ; E } 3918 \text {, v.r. ; E 3922, v.r. ; E 3923, r. }
\]

\section*{Superfam. AMMODISCOIDEA}

Fam. HYPERAMMINIDAE
Genus Hyperammina Brady 1878
148 Hyperammina novaezealandiae Heron-Allen and Earland 1922
Technitella mestayeri, Cushman 1919, 595, pl. lxxiv, fig. 4. Hypcrammina novaezealandiae Heron-Allen and Earland 1922, 89, pl. iii, fig. 1-5.

Heron-Allen and Earland obtained this species in "Terra Nova" dredgings, 7 miles east of North Cape, New Zealand.

\section*{Fam. SACCAMMINIDAE}

\section*{Genus Saccammina M. Sars 1869}

149 Saccammina sphaerica Sars 1872
G. O. Sars 1872, 250 ; Brady 1884, 253, pl. xviii, fig. 11-17; Chapman 1916², 61, pl. ii, fig. 12 ; Heron-Allen and Earland 1922, 85, pl. i, fig. 16; Chapman and Parr 1937, 161.
This bipolar species has been shown, by the investigations of the "Challenger" at the Antarctic Ice Barrier, to be almost as equally abundant in Antarctic Seas as in the North Atlantic, From the "Nimrod" gatherings (Shackleton Expedition) I obtained it from the Ross Sea; whilst from the soundings of the "Terra Nova" (Scott Expedition) Heron-Allen and Farland recorded it as occurring on the east coast of New Zealand and off the Ice Barrier. The "Aurora" records (Mawson 1911-14) were off Wilke's and Adelie Land. The present example is small, white, globular with a short neck and composed of minute, irregularlysized quartz grains.

E 3915, v.r.

\section*{Genus Pelosina Brady 1879}

\section*{150 Pelosina cylindrica Brady 1884}

Brady 1884. 236, pl. xxvi. fig. 1-6; Chapman and Parr 1937, 162.
It is interesting to find this species ranging into lower latitudes of the Southern Ocean, for it was formerly known as occurring off the Ice Barrier and off the east coast of New Zealand. The "Aurora" obtained it to the east of Tasmania.
\[
\mathrm{E} 3915, \mathrm{f}
\]

\section*{Genus Jrachysiphon Chapman 1906}

\section*{151 ? Brachysiphon corbultformis Chapman 1906} Chapman 1906, 84, pl. iii, fig. \(2 a, b, 3\).

Two examples, referable to the above species, were found. These are subspherical, open at one end in the smaller and at both ends in the larger specimen. Test composed of small foraminiferal shells mingled with broken spicules of sponge. Diameter of larger specimen twice that of the type from New Zealand. Orifice in both nearly circular, with internal margin smooth. E 3915, r.

\section*{Genus Teciinitella Norman 1878}

\section*{152 Teciinitella cf. legumen Norman 1878}

Norman 1878, 279, pl. xlvi, fig. 3, 4.
This species has been recorded from, amongst other localities, Kerguelen Islands, 120 fathoms; off Sydney, 410 fathoms; the Society Islands and Fiji. Also from the North and South Atlantic.

E 3915, v.r.

\title{
Fam. ASTRORHIZIDAE \\ Genus Rhabdammina M. Sars 1869
}

153 Rifabdammina discreta Brady 1884
Brady 1884, 268, pl. xxii, fig. 7-10.
Recorded off Kerguelen Island, 120 fathoms. Also in the North and South Atlantic and the Pacific Ocean. As the cooler waters of the north and south poles are approached, the habitat of the species decreases in depth.
E 3918, f.; E 3919, v.r.; E 3920, v.c.; E 3921, v.r.

154 Rhabdammina irregularis W. B. Carpenter 1869
Carpenter 1869, 60; Brady 1884, 268, pl, xxi, fig. 9; Cushman 1918, 17, pl. viii, fig. 1.
Norman obtained this form from the Bay of Biscay. It has also been found off the West Coast of Australia and, in the Pacific.

E 3920, v.r.

\section*{Fam. OPHTHALMIDIIDAE}

Genus Cornuspira Schultze 1854

\section*{155 Cornuspira foliacea (Philippi 1844)}

Orbis foliacea Philippi 1844, 147, pl. xxiv, fig. 26.
Cornuspira foliacea, Brady 1884, 199, pl. xi, fig, 5-9; Cushman 1921, 387, pl. lxxvii, fig. 1.
This species is common to a fauna cxtending from Japan, the Philippines and the South Seas, the extremity of which area includes Tasmanian shores and Bass Strait. A large specimen, 6 mm . in diameter.

E 3915, v.r.
156 Cornuspira foliacea (Philippi 1844) var. expansa Chapman 1915
Cornuspira carinata (Costa) var. expansa Chapman 1915, 12, pl. i, fig. 3.
Cornuspira foliacea (Phil.) var. expanse, Cushman 1919, 633.
C. foliacea (Phil.) var, expansa, Cushman 1921, 388, pl. lxxvii, fig. 2.

In 1921 Cushman pointed out that my variety expansa belonged to C. foliacea, a typical Cornuspira of the Philippines, Although my specific determination of C. carinata, to which expansa was referred, was based on Brady's figure of Costa's species, in deference to Cushman's close acquaintance with the Philippine foraminiferal fauna I accept this view of the case. Cushman had already discovered my varicty in the New Zcaland fauna, from the east coast, at Poor Knights Islands. In previous "Endeavour" material, two examples from 40 miles south of Cape Wiles, 100 fathoms.

E 3919, v.r.

\section*{157 Cornuspira lacunosa Brady 1884}

Brady 1884, 202, pl. cxiii, fig. 1.
Recorded from "lorres Strait (type locality), and rarely in the Philippines and off Japan (Cushman).
E. 3915, v.r.

\section*{158 Cornuspira striolata Brady 1884}

Brady 1884. 202, pl. cxiii, fig. 18, 19 ; Chapman 1907, 23, pl. iii, fig. 47.
The type locality is Faröe Channel (cold area), 540 fathoms. Howchin, in 1889 (Trans, Roy. Soc. S. Aust., 12, 4), regarded this species as a variety of C. foliacca, with its structure presumably brought out by weathering. This was. the first note on the occurrence of this interesting specics, living elscwhore, as an Australian Lower Miocene fossil.

When describing the above as a fossil species in 1907, I remarked that "the doubts relating to their specific identilication were removed," and further noted "its strictly northern distribution in the living condition," Since then it has been recorded also in the living condition in the Southern Hemisphere in two instances: (1) By Heron-Allen and Earland, in "Terra Nova" samples, off South Victoria Land (Station 339), where one specimen reached the dimensions of the enormous tests found in the cold area of the Faröe Chanmel, namely, \(21 \mathrm{~mm}, \mathrm{x} 19 \mathrm{~mm}\).; (2) in the present series, east of Babel Island, Flinders Island. Bass Strait.

Genus Opitifalmidiua Zwingli and Kübler 1870
159 Ophthalmidium circularis (Chapman 1915)
Spiroloculina dorsata Reuss var. circularis Chapman 1915, 7, pl. i, fig. 1.
Previously obtained from "Endeavour" dredgings, Station 36, east of Tasmania, 777 fathoms.

E 3918, v.r.
Genus Planispirina Seguenza 1880
160 Planispirina bucculenta (Brady 1884)
Miliolina bucculenta Brady 1884, 170 pl. cxiv, fig. \(3 a, b\); Heron-Allen and Earland 1922, 65.
Planispirina bucculenta, Schlumberger 1892, 194, pl. viii, fig. 6, 7; Chapman 1909. 324,14 , pl. xiv, fig. 2; Chapman 19161, 42. pl. v, fig. 4; Heron-Allen and Earland 1932, 322 ; Chapman and Parr 1937, 129.
This species is fairly abundant and often of large size in southern waters; notably near the Subantarctic Islands of New Zealand, ncar the Western Base, Shackleton Shelf ("Aurora"), Falkland Islands ("Discovery")-small specimens, and from the upthrust muds on Mount Erebus ("Nimrod").
E 3915, r. ; E 3918, f. ; E 3919, f.; E 3923, c.

161 Planispirina bucculenta var. placentiformis (Brady 1884) Miliolina bucculenta var. placentiformis Brady 1884,71, pl, iv, fig. 1, 2. Planispirina bucculenta var. placentiformis, Chapman 1916¹, 43, pl. v, fig. 5.

Found in upthrust muds on Mount Erebus.
E 3918, r. ; E 3923, c.
Fam. MILIOLIDAE
Genus Quinqueloculina d'Orbigny 1826
162 Quinqueloculina aubbriana d'Orbigny 1839
d'Orbigny \(1839^{2}\), 193, pl. xii, fig, 1-3.
A small and rather contorted form of \(Q\). lamarckiana d'Orb. Also cf. Q. contorta d'Orb., which was recorded from previous "Endeavour" samples; Station 36, east of Tasmania, 777 fathoms. E 3919, r.; E 3922, v.r.; E 3923, r.

163 QuinQueloculina australis Parr 1932
Parr 1932, 7, pl. 1, fig. 8 a-c.
Having a more compressed test and marginal keel, as compared with the northern \(Q\). subrotunda (Montagu). Recorded as the latter from former "Endeavour" material, 40 miles south of Cape Wiles, 100 fathoms. E 3919, r.

164 QuinQueloculina crassa d'Orbigny 1826
d'Orbigny 1826, 301, No. 14; Fornasini 1905, 65, pl. iii, fig. 5.
Test suborbicular, swollen and finely striated. Occurred in several samples of dredgings by the trawler "Bonthorpe" in the Great Australian Bight. E 3915, v.r.
165 QuinQueloculina cuvieriana d'Orbigny 1839
d'Orbigny 1839², 190, pl. xi, fig. 19-21.
Miliolina cuzieriana, Brady 1884, 162. pl. v, fig. 12 a-c.
Periphery sharply keeled. In shore sand, Victoria, Papua and the Philippines. From previous "Endeavour" material, 40 miles south of Cape Wiles, 100 fathoms. Common as a Lower Miocene fossil in Victoria.

E 3915, r. ; E 3917, v.r. ; E 3918, v.r.

166 QUINQUELOCUITNA LAMARCKIANA d'Orbigny 1839
d'Orbigny 1839², 164, pl. ix, fig. 14, 15.
A common species in shore sands in Victoria. Distinguished by its sharp periphery. E 3915, f. ; E 3917, v.r. ; E 3920, r.; E 3921, v.r.; E 3922, v.r.; E 3923, f.

167 QUiNQUELOCLLINA SEMINULUM (I.inn. 1767)
Serpula seminulum Linn. 1767, ed. xii, 1,264, No. 791.
Miliolina scminulum, Brady 1884, 157, pl. v, fig. 6.
One of the commonest miliolines, in shore sands on the coast of Victoria. E 3917, v.r. ; E 3923, f.
168 QUiNQUELOCULINA vULGARIS d'Orbigny 1826
d'Orbigny 1826, 302. No. 33 ; Schlumberger \(1893,65,(207\) ), pl. ii, fig. 65, 66 . woodcuts \(13,14\).
Recorded from previous "Endeavour" material, 40 miles south of Cape Wiles, 100 fathoms. Abundant and rather smbll. Abundant as a Lower Miocene fossil in Victoria.

E 3915, c.; E 3916, v.r.; E 3918, c. ; E 3919, c.;
\[
\text { E } 3920, \text { r.; E } 3922, \text { v.r. } ; \text { E } 3923, \text { r. }
\]

Genus Spiroloculina d'Orbigily 1826
169 S'Piroloculina canaliculata d'Orbigny 1846
d’Orbigny 1846. 269, pl. xvi, fig. 10-12; Cushman 1921, 395, pl, 1xxx, fig. 3, \(a, b\); Chapman \(1915,6\).
Spiroloculina impressa, Hrady 1884 (non Terquem), 151, pl. x, fig. 3, 4.
Common in the Philippines, usually at less depth than 100 fathoms. From previous "Endeavour" material 40 milles south of Cape Wíles, 100 fathoms, abundant. E 3915, c.; E. 3918, r.; E 3919, r.; E 3923, f.

Genus Sigmoïlina. Schlumberger 1887
170 Sigmoilina latissima sp. nov.
(P1. viii, fig. 8)
Description-Test broadly ovate, complanate, with surface encrusted by cement and fine sand, Exterior showing slight undulations indicating the sigmoiline arrangement of the interior. Contour not so tumid as in S. schlumbergeri Silvestri, nor so spiroloculinc as in ?Spiroloculina arenaria Brady. Aperture small, at the end of a short tube, but as long as in the latter form, with which, however, it may be related. Length, 1.83 mm ; breadth, 1.6 mm ; thickness, 0.44 mm . E 3918, \(\mathrm{r}_{\mathrm{r}}\); E 3919, f.

171 Sigmoïlina scillumbergeri. Silvestri 1904
Planispirina celata, Brady (non Costa) 1884,197 pl. viii, fig. 1-4.
Sigmoïlina schlumbergeri Silvestri 1904, 267; Chapman 1915, 317; Cushman 1921, 449.
Previous "Endeavour" material contained this species at Station 36, east of Tasmania, 777 fathoms, frequent; and east of Tasmania, 1,122 fathoms. E 3922, v.r. ; E 3923, v.r.
Genus Ptychomiliola Eimer and Fickert 1899
172 Ptychomiliola separans (Brady 1881)
Miliolina separans Brady 1881,\(45 ; 1884,175\), pl. vii, fig. 1-4.
This species has previously been recorded from Raines Island, Torres Strait, Booby Island, New Guinea, and Storm Bay, 'Tasmania. E3915, r.

\section*{Genus Triloculina d'Orbigny 1826}

173 Triloculina chrysostoma (Chapman 1909)
Miliolina chrysostoma Chapman 1909, 322, pl. xiii, fig. 8-10; pl, xiv, fig. 1-4.
These show an cxtremely variable series, ranging from ovate to bi- and triloculine modifications. The oral septum is plate-like or fecbly T-shaped. Found off the Snares at 60 fathoms; 20 miles north; and 10 miles north of Enderby Esland, 85 fathoms.

E 3919, v.r.

\section*{174 Triloculina circularis Bornemann 1855}

Bornemann 1855, 349. pl. xix, fig. 4 ; Cushman 1921, 462, pl, xcii, fig. 1, 2.
Miliolina circularis, Brady 1884, 169, pl. iv, fig. \(3 a-c\); pl. v, fig. 13.
A common species in the Indo-Pacific, and in the dredgings by the "Bonthorpe" off the Great Australian Bight. Previous "Endeavour" soundings recorded this species 40 miles south of Cape Wiles, 100 fathoms; small but very abundant.

E 3923, f.
175 Triloculina Quadrilateralis d'Orbigny 1839
d'Orbigny 1839², 173, pl. ix, fig. 14-16 (quadrilatera on pl.).
This form resembles Q. aubcriana but is triloculine and with straight sides. The type locality is the West Indies. E 3920, v.r.; E 3921, v.r.; E 3922, v.r.

176 Triloculina tricarinata d'Orbigny 1826
d'Orbigny 1826, 7, 299, No. 7, Modèle, 94.
Miliolina tricarinata, Brady 1884, 165, pl. iii, fig. \(17 a, b\).
Its distribution extends from Franz Josef Land in the north to the Antarctic Ice Barrier in the south. Found in shallow water on the Victorian coast. As a fossil it ranges through the Tertiary and is frequent in the bores in Victoria. Previous "Endeavour" material yielded this species as follows: 40 miles south of Cape Wiles, 100 fathoms, and east of Tasmania, 1,122 fathoms.

E 3915, f.; E 3919, v.r.; E 3920, r.
177 Triloculina trigonula (Lamarck 1804)
Miliolites trigonula Lamarck 1804, 351, No. 3; 1822, 612, No. 3. Triloculina trigonula, d'Orbigny 1826, 299, No. 1, pl. xvi, fig. 5-9. Miliolina trigonula, Brady 1884, 164, pl. iii, fig. 14-16.

A widely distributed species, extending even to the Antarctic, but there very small. The largest forms occur in tropical waters. Also as a fossil from carliest Tertiary time. Previous "Endeavour" material yielded one rather large specimen from 40 miles south of Cape \(W\) iles, 100 fathoms.

E 3915 , r.; E 3917, v.r.
Genus Miliolinella Wiesner 1931
178 Miliolinella oblonga (Montagu 1803)
Vermiculum oblongum Montagu 1803, 522, pl. xiv, fig. 9.
Triloculina oblonga, d'Orb. 1839², 175, pl. x, fig. 3-5; Chapman and Parr 1937, 134
Miliolina oblonga, Brady 1884, 160, pl. v, fig. \(4 a, b\).
A widely distributed species from the North Sea to the Antarctic. A bipolar form. E 3915, v.r.; E 3916, v.r.; E 3918, v.r.; E 3922, v.r.

Genus Pyrgo Defrance 1824
179 Pyrgo comata (Brady 1881)
Biloculina conata Brady 1881, 45; 1884, 144, pl. iii, fig. \(9 a, b\); Schlumberger 1891 ; 565, text-fig. 26-28, pl. x, fig. 72, 73; Cushman 1921, 477, pl. xcvi, fig. \(3 a, b\).
Amongst Brady's localities for this rare species are: off Sydney, 410 fathoms ; north of New Guinea, 1,070 fathoms; and off Pernambuco, 350 fathoms. Cushman records \(B\). comata from several Stations in the Philippines, and also from the east coast of New Zealand. Schlumberger's specimens came from the Gulf of Gascony and the Skagerak. E 3919, v.r.

\section*{180 Pyrgo elongata (d'Orbigny 1826)}

Biloculina clongata d’Orbigny 1826,298 , No. 4 ; Brady 1884, 144, pl. ii, fig. \(9 a, b\);
Schlumberger 1891, 571, text-fig. 35, 36; pl. xi and xii, fig. 87-89; Chapman 1907, 15, pl. i, fig. 14; Cushman 1921, 473, pl. xcv, fig. \(4 a, b\).
Abundant in the Nortli and South Pacific (Brady). Schlumberger's specimens came from the Mediterranean. Previous "Endeavour" material contained this species from Station 36, east of Tasmania, 777 fathoms. This species occurs as a fossil in the Lower Miocene and Pliocene of Victoria.
\[
\text { E } 3919 \text {, r. ; E } 3920 \text {, v.r. ; E } 3921 \text {, v.r. ; E 3923, v.r. }
\]

\section*{181 Pyrgo fornasinif Chapman and Parr 1935}

Biloculina ringens, Brady (non Miliolites ringens Lamarck) 1884, 142, pl, ii, fig. 7. Biloculina bradyi, Schlumberger (non Fornasini) 1891, 170, text-fig. 15-19, pl, x, fig. 63-71.
Pyrgo fornasinii Chapman and Parr 1935, 5.
The trivial name for this species, having been pre-occupied by Fornasini, necesitated the above change of name. The original specimen figured by Brady came from the West Indies (fide Nuttall). Those figured by Schlumberger were dredged in the Gulf of Gascony, Coast of Marocco. The Australian examples were dredged by the trawler "Bonthorpe" in the Great Australian Bight. The species was also met with in "Endeavour" dredgings (1915), when I described it under the name of Biloculina bradyi Sch1., from 40 miles south of Cape Wiles at 100 fathoms. It has also been dredged from the arca around the Subantarctic Islands of New Zealand. As a fossil it is found in the Lower Miocene Tertiaries of Port Phillip (Chapman).
E. 3915. f.; E 3918, v.r.

\section*{182 Pyrgu sarsi (Schlumberger 1891)}

Bilocutina ringens, Brady pars (non Lamarck) 1884, 139.
Biloculina sarsi Schlumberger 1891, 551, text-fig. 10-12, pl. ix, fig. 55-59; Chapman 1907, 14, pl. i, fig. 1, 2.
The type locality for the above, as given by Schlumbergcr, is the North Sea, between Norway and Greenland. Brady does not specifically figure it, but it comes from the same "Biloculina Clay" discovered by G. O. Sars of Christian and described by him in his official report on the Norwegian Sea-fisheries for the year 1876. It has been recorded by me from the Subantarctic Islands of New Zealand, and from previous "Endeavour" dredgings, 40 miles south of Cape Wiles. The species has also been found in the Lower Miocenc of Victoria.
E 3918, v.r.; E 3922, v.r. ; E 3923, r.

\section*{183 Pyrgo vespertilio (Schlumberger 1891)}

Biloculina vespertilio Schlumberger 1891, 561, pl. x, 74-76, text-fig. 20-22.
Biloculina ringens, Brady (non Miliolites ringens Lamarck) 1884, 142, pl. ii, fig. 8;
Chapman 1909², 315, pl. xiii, fig. \(4 a, b\); Cushman 1917, 77, pl. xxx, fig. 1. Pyrgo vespertilio, Chapman and Parr 1937, 142, pl. ii, fig. 8.

Schlumberger's specimens came from the Gulf of Gascony. Cushman has noted it off the coast of Japan at 258 fathoms, and it has occurred around the Subantarctic Islands of New Zealand (Chapman) and in "Aurora" dredgings southwest of Tasmania (Chapman and Parr)

E 3919, v.r.
Genus Pyrgoella Cushman and White 1936
184 Pyrgoella sphaera (d’Orbígny 1839)
Biloculina sphaera d’Orbigny 18393, 66, pl, viii, fig. 13-16; Brady 1884, 141, pl. ii, fig. \(4 a, b\).
Planispirina sphaera, Schlumberger 1891, 377, text-fig. 45, 46; Chapınan 1906, 82,
pl, iii, fig. \(1 a, b\); Heron-Allen and Earland 1932, 322, pl. vi, fig. 41, 42.
Pyrgoclla sphaera, Cushman and White 1936, 90.
The South American type of d'Orbigny's Bilocutina sphacra shows a similar labyrinthic aperture to one found off Great Barrier Island, New Zealand. (Chapman 1906). Schlumberger's specimens came from the Gulf of Gascony. HeronAllen and Earland's Antarctic examples came from the Falkland Islands and South Georgia. E 3915, f.; E 3918, f. ; E 3920, v.r.; E 3923, v.r.

Genus Biloculinella Wiesner 1931
185 Biloculinella globulus (Bornemann 1855)
Biloculina globulus Bornemann 1855, 349, pl, xix, fig. 3; Schlumberger 1891, 575. text-fig. 42-44, pl. xii, fig. 97-100; Chapman 1907, 15, pl. i, fig. 17, 18.
Pyrgo globulus, Chapman and Parr 1937. 137.
This species was found in the Antarctic ("Aurora" dredgings), near the Western Base, off Queen Mary Land, specimens frequent. Cushman records it from the Philippines, at eleven different Stations. It was found as a fossil in the Lower Miocene of Port Phillip, Victoria. E 3915, f.; E 3916, v.r.; E 3919, v.t.

\section*{Fam. LITUOLIDAE}

Genus IIaplophragmoldes Cushman 1910
186 Haplophragmoides emaciatus (Brady 1884)
Haplophragmium emaciatum Brady 1884, 305, pl. xxxiii, fig. 26-28; Heron-Allen and Earland 1922, 98.
Haplophragmoides emaciatum, Cushman 1910, 102, text-fig. 150-152; 1920, 40, pl. viii, fig. 4, text-fig. 1-3.
Haplophragmoides emaciatus, Chapman and Parr 1937, 139.
Brady recorded this species from the West Indics. It has recently been found in the Antarctic, off Adele Land, Queen Mary Land, east of Tasmania and to the south of New Zealand, in dredgings from the "Aurora."

E 3918, v.r.

\section*{187 Haplophragmoides grandiformis Cushman}

Cushman 1910, 440, text-fig. 11; 1921, 82, pl. xi, fig. 2.
Cushman described this species from the China and Molucca Seas. It has been lately recorded in "Bonthorpe" material from the Great Australian Bight. E 3915, c.; E 3918, v.r.

\section*{Genus Recurvomes Earland 1934}

188 Recurvoides contortus Earland 1934
Earland 1934, 91, pl. x, fig. 7-19; Chapman and Parr 1937, 138, pl. ix, fig. \(34 a, b\).
First described from the Falklands Sector of the Antarctic ("Discovery"). Chapman and Parr did not find it north of latitude \(60^{\circ}\) ("Aurora"); it was commonest at \(150-300\) fathons. Its greatest depth was 1,550 fathoms. The present occurrence, 33 miles east from Green Cape, is a great distance from its hitherto known habitat.

E 3922, r.
Genus Ammobaculites Cushman 1910
189 Ammobaclites agglutinans (d'Orbigny 1846)
Spirolina agglutinans d'Orbigny 1846, 137, pl. vii, fig. 10-12.
Haplophragmium agglutinans, Brady 1884, 301, pl. xxxii, fig. 19, 20, 24-26; Heron-Allen and Earland 1922, 97.
Ammobaculites agglutinans, Cushman 1920, 60, pl. xii, fig. 3; Chapman and Parr 1937, 142, pl. x, fig. 37.
A well-distributed species. It occurs sparingly off the Antarctic Ice Barrier ("Aurora"). It was originally described from the Tertiary of the Viema Basin.

E 3919, v.r.

\section*{Fam. REOPHACIDAE}

Genus Reopiax Montfort 1808
190 Reolphax dentaliniformis Brady 1884
Brady 1884, 293, pl. xxx, fig. 21, 22; Chapman and Parr 1937, 147.
This species has been recorded from the Ross Sea ("Nimrod") and from the Antarctic by the "Terra Nova." The "Aurora" dredged it from the Antarctic and from east of Tasmania. E 3919, r.

191 Reophax distans var. pseudomistans Cushman 1919
Reophan spiculifera Brady var. pseudodistans Cushman 1919, 598, pl. 1xxv, fig. 1.
Reophax distans var. pseudodistans, Heron-Allen and Earland 1932, 338, pl. vii, 17-20.
From the "Discovery" soundings around the Falkland Islands. The present, Green Cape, locality is remote from the earlier one. E 3920, v.r.

\section*{192 Reophax scorbiurls Montfort 1808}

Montfort 1808, 330, 83 gènre; Brady 1884, 291, pl. xxx, fig. 12-17; Chapman and Parr 1937, 149.
Found off the Ice Barrier and commonly around the Australian coast. The species was dredged by the trawler "Bonthorpe" off the Great Australian Bight.

The previous "Endeavour" record for this species is 40 miles south of Cape Wiles, 100 fathoms. E 3928, r.
Fam. TEXTUIARIIDAE
Genus Textularia Defrance, 1824
193 Textutaria conica (d’Orbigny 1839)
d'Orbigny \(1839^{2}, 135\), pl. i, fig. 19, 20; Brady 1884, 365, pl. xliii, fig. 13, 14 ; pl. cxiii, fig. \(1 a_{s} b\).

Heron-Allen and Earland recorded this species from east of North Cape, New Zealand ("Terra Nova"). It has also occurred off the Great Australian Bight ("Bonthorpe").
E. 3915 , c.

194 Textularia corrugata Heron-Allen and Earland 1915
Textularia conica d'Orbigny, var. corrugata Heron-Allen and Earland 1915, 629, pl. xlvii, fig. 24-27
Textularia corrugata, Cushman 1932, 12, pl, iii, fig. 2, 4.
This form was first described from the Kerimba Archipelago. Cushman also records it from the Fijis at \(40-50\) fathoms; off Rougelap Atoll, Marshall Islands; and from Guam Anchorage, Ladrone Islands at 21 fathoms. E 3915, f.

195 Textularia pseunogramen Chapman and Part 1937
Textularia gramen, Brady (non d'Orbigny) 1884, 365, pl, xliii, fig. 10. Textularia pseudogramen Chapman and Parr 1937, 153.

Common on the Australiatı coast. It is recorded in the list of the "Bonthorpe" Foraminifera, 1935. This species was identified in the previous "Endeavour" material (1915) as Spiroplecta gramen (d'Orb.) at Station 36, east of Tasmania, 777 fathoms; and also from 40 miles south of Cape Wiles, 100 fathoms.

E 3915, c.; E 3919, v.r.; E 3923, v.r.
196 Textularia sagittula Defrance 1824
Defrance 1824, 177. Atlas Conch., pl. xiii, fig. 5; Chapman and Parr 1937, 154
This species is common on the Australian coast. The "Terra Nova" dredged it from the New Zealand area. In the previous material from the "Endeavour" it was recorded, as Spiroplecta sagittula, from 40 miles south of Cape Wiles, 100 fathoms. E 3915, r.; E 3917, v.r.; E 3918, r.; E 3919, r.; E 3923, f.

\section*{Fam. TROCIIAMMINHAAE}

\section*{Genus Trochammina Parker and Jones 1859}

197 Trochammina planoconvexa Chapman and Parr 1937 Chapman and Parr 1937, 158, pl. x, fig. 45.

In the above original reference the distribution of the species is given as confined to the Shackleton Shelf, from 250-358 fathoms. E 3922, v.r.

Fam. VALVULINIDAE
Genus Clavulina d'Orbigny 1826
198 Clavulina serventyi Chapman and Parr 1935
Chapman and Parr 1935, 5, pl. i, fig. \(7 a, b\).
The original specimens were dredged by the trawler "Bonthorpe," [rom the (ireat Australian Bight (Sample 6. 170 fathoms). Recorded from previous "Endeavour" dredgings as Clazulinu parisionsis d'Orb. from 40 miles south of Cape Wiles, 100 fathoms, common. E 3915, r.; E 3917, r.

Genus Dorotinia Plummer 1931
199 Dorotifita arenata Cushman 1936
Cushman 1936. 32. pl, v, fig. \(11 a-\tau\).
This species was described from the "Albatross" dredgings off Mindanao, Philippines, in 490 fathoms. To find this species so far south is of great interest. E. 3915, c.; E 3919, v.r.

200 Dorothia scabra (Brady 1884)
Brady 1884, 381, pl. xlvi, fig. 7; Cushman 1921, 146, pl. xxviii, fig. 5.
Localities for this species are Luzon, Bornco, north of Celebes, and Macassar Strait.

E 3915, r.
Genus Listerella Cushman 1933
201 Listeresla sp.
This species will be shortly described from the Mawson Antarctic dredgings, 1929-31.

E 3915, v.r.
Fam. VERNEUILINIIAE
Genus Gaudryina d’Orbigny 1839
202 Gaudryina robusta Cushman 1913
Cushman 1913, 636, pl. Ixxviii, fig. 2; 1937, 67, pl. ix, fig. 15.
This species was described from the "Albatross" dredgings, Gulf of Tomini, Celebes, at 750 fathoms. E 3915, v.r.; E 3922, v.r.

\section*{203 Galdryina triangutaris Cushman 1911}

Cushman 1911, 65, text-fig. 104; 1937, 66, pl. ix. fig. 16.
Recorded from the Poor Knights Islands, east coast of New Zealand; also east of Mesbate Island, Philippines, 108 fathoms. As Gaudryina ritgosa d'Orb. it was recorded from previous "Endeavour" material (1915, 16), from 40 miles south of Cape Wiles, 100 fathoms.

E 3915, f.

\title{
Subphyl. CRUSTACEA \\ (lass OSTRACODA \\ Fan. (YPRIDAE \\ Gertus Pontocylris G. O. Sars 1865
}

1 Pontocypris bradyi nom. mint.
(P1. viii, fig. 1)
Pontocypris faba G. S. Brady, (non Renss 1855) 1878, 382, pl. 1xiii, fig. 6a-e;
(i, S. Brady 1880, 37, pl. i, fig. \(a-d\) : Chapman 1916, 71, pl. iv, fig. \(45 a, b\).
In 1855 Reuss figured an ostracod from the Chalk of England as Bairdia faba (Zeitschr. d. Geol. Gesellsch., 278, pl, x, fig. 2), which I consider he correctly placed in that genus. Reuss states that the material from which he obtained this form came from Charing, in Kent, Fingland. The only one likely to supply Reuss with that local material would have been my old friend and fellow worker, Frofessor T. Rupert Jones. From the same source 1 have also a fairly large quantity of Charing washifigs, and so was able to search for a topotype. Lpon examining this material, which I fortunately brought with me to Australia, I found definite examples of a form agreeing with Reuss' original figures. Brady himself made only a provisional comparison with Reuss' species and usually queried it. A careful comparison of the topotypes with Brady's Crag specimens shows that the anterior of the latter is broader than that of the Chalk fossils (Bairdia faba).

Specimens similar to Fontocypris bradyi have been obtaincd by the "Challenger" off Eas't Moncoeur Island, Bass Strait, \(38-40\) fathoms, and off reefs, IIonolulu, 40 fathoms.
E 3916, v.r. ; F 3917, v.r. ; E 3918, r.; E 3920, v.r.

\section*{2 Pontocypris attenuata G. S. Brady 1868}
(Pl. ix, fig. 8)
Brady 1868, 179, pl. iv, fig. 11-14, Idem. 1880, 38, pl, xv, fig. 2 a-d., Idem, 1890; 491, pl. i, fig. 3, 4 ; Chapman 1919. 17.
Brady points out, in his South Sea Ostracod Memoir that the original figures were hased on young examples; those of the full-grown specimens, from the South Seas (and incidentally our present ones), being armed at the posterior ventral angle with a single short and stout spine. The original types came from Mauritius, whilst it was later noted from New Caledonia and the Fiji Islands. It also occurred at Funafuti, in the deeper dredgings by H.M.S. "Penguin," at 1,215 fathoms.
E.3919, r.

\section*{3 Pontocypris simplex G. S. Brady 1880}
G. S. Brady 1880, 37, pl. i, fig. \(5 a-d\); Egger 1901, 421, pl. i, fig. 1-3; Chapman 1919, 18, pl. xi, fig. 2, 2 a.
This species was previously recorded from Ascension Island, at 7 fathoms. It also occurred in "Aurora" dredgings, west of Tasmania, at 1,300 fathoms. Fgger found it at Station 9 ("Gazelle"), off North-West Australia, 357 metres. E 3918, r.; E 3919 , v.r. ; E 3923, v.r.

\section*{4 Pontocypris sumreniformis G. S. Brady 1880}

Brady 1880, 38, pl. xv, fig. 2 a-d; Ftgger 1901, 421, pl, vii, fig. 50-52; Chapman 1915, 35.
Previously recorded (Brady) from Simon's Bay, South Africa, 15-20 fathoms and from Port Jackson, 2-10 fathoms. The "Gazelle" obtained it from" Maurititus, Station 66 (EGger), at 411 metres. This species previously occurred in "Endeavour" material from Station 36, east of Tasmania, 777 fathoms.
\[
\text { E 3915, v.r. ; E 3916, v.r. ; E } 3918 \text {, v.r. }
\]

Genus Argilloecin G. O. Sars 1865
5 Argilloecia badia G. S. Brady 1880
Brady 1880, 40, pl. vi, fig. 3 a-d ; Egger 1901, 422, pl. iv, fig. 6, 7 ; Chapman 1919, 19.
Recorded from Port Jackson ("Challenger"), 210 fathoms. Egger ("Gazelle") recorded it from Station 90, off North-West Australia at 357 metres, and from Station 116 (off North-East Australia) at 951 metres. Chapman ("Aurora") noted it from south of Tasmania at 200 fathoms. E 3923, v.r.

Genus Macrocypris G. S. Brady 1868
6 Macrocypris decora (G. S. Brady 1866)
Cytherideis decora Brady 1866, 366, pl. Ivii, fig. 13 a-c.
Macrocypris decora, Brady, 1880, 44, pl. i, fig. \(3 a-d\), pl, vi, fig. \(8 a, b . ;\) Chapman 1915, 37 ; 1919, 20.
Widely distributed in the Southern Hemisphere. Locations given by Brady ("Challenger") are: Culebra Island, 390 fathoms; North Brazil, 350 fathoms; Kerguelen Island, 120 fathoms; Admiralty Islands, 16 fathoms. The types of this species were from Australia, 17 fathoms (Brady 1866). The previous "Endeavour" record is, Station 36, east of Tasmania, 777 fathoms, frequent.

E 3915, f.; E 3916, v.r.; E 3917, v.r.; E 3918, r.; E 3919, v.r.; E 3923, v.r.

\section*{7 Macrocypris setigera G. S. Brady 1880}
(Pl. vii, fig. 5)
Brady 1880, 43, pl. i, fig. 1 a-d.; Egger 1901, 423, pl. i, fig. 21, 22.
This species was originally recorded from Port Jackson, at 2-10 fathoms. It is distinguished from \(M\), maculata by the broader valve and evidence of bristle pits on the extremities. It may only be a variety of M. maculata, as Brady's earlier figures seem to show. Egger found this species at Station 90, NorthWest Australia at 357 metres, and near Manritius at 411 metres ("Gazelle").

E 3915, f. ; E 3917, v.r. ; E 3923, v.r.
Genus Bythocypris G. S. Brady 1880
8 Bythocypris renhformis G. S. Brady 1880
Brady 1880, 46, pl. v, fig. \(1 a, b\); Egger, 425. pl. i, fig. 40, 41.
The "Challenger" records are: Culebra Island, North Brazil, Prince Edward Island, and off East Moncoeur Island, Bass Strait, 38-40 fathoms. Egger reports this species from Kerguelen Island, 104 metres ("Gazelle").

E 3918, v.r.; E 3919, v.r.; E 3920, v.r.
Genus Bairdia McCoy 1844
9 Bairdia acantimgera G. S. Brady 1868
(P1. viii, fig. 4)
Brady 1868, 390, pl. xxvii, fig. 18-21, Idem 1880, 61, pl. ix, fig. 4 a-c; Egger 1901, 425, pl. ii, fig. 16-19; Chapman 1919, 22.
The type specimens came from the English Channel. Recorded by G. S. Brady off St. Vincent. Egger had it from Kerguelen, Fiji and West Africa. The present examples are fairly typical. From the "Aurora" soundings, 1,300 and 1,320 fathoms (Chapman). E 3917, r.; E 3918, r.

10 Bairdia amygdiloides G. S. Brady 1866
Brady 1866, 364, pl. lvii, fig. \(6 a-c\), Idem, 1880, 54 , pl. ix, fig. \(5 a-f, \mathrm{pl}, \mathrm{x}\), fig. \(2 a-c\).
Bairdia subdeltoidea, Egger (non Münster) 1901, 428, pl. ii, fig. 20, 21; Chapman 1915, 38.
Egger's record (as B. subdeltoidea) is Station 55, Kerguelen Island, 104 metres. Previous "Endeavour" records are: Station 36, east of Tasmania, 777 fathoms, frequent; 40 miles south of Cape Wiles, 100 fathoms.

E 3915, c.; E 3916, v.r.; E 3917, f.; E 3918, r.; E 3919, v.r.; E 3921, v.r.; E 3922, v.r. E 3923, v.c.
11 Bairdia australis Chapman 1914
Bairdia ovata, Brady (non Bosquet sp.) 1866, 354, pl. lvii, fig. 7 a-c.
Bairdia ?ovata, Brady 1880, 53, pl. vii, fig. \(3 a-a\).
Bairdia australis Chapman 1914, 31, 32, pl. vi, fig. 7.
(For relationship and fossil distribution see the last reference, supra cit.).
The "Challenger" specimens were found at Station 140, Simon's Bay, South Africa, 15-20 fathoms, and east of New Zealand, 150 fathoms.

E 3917, v.r.; E 3918, v.r.; E 3919, v.r.; E 3920, v.r.; E 3923, f.
12 Bairdia cf. expansa G. S. Brady 1880
Brady 1880, 58, pl. ix, fig. \(2 a-e\), Idem, 1890, 495 ; Chapman 1910, 430.
Rccorded from Honolulu, 40 fathoms ("Challenger"); alsa South Sea Islands and Noumea in shallow water. Around Funafuti, in deep water, 1,050 and 1,215 fathoms.

E 3920, v.r.

13 Bairdia foveolata G. S. Brady 1867
Brady 1867, 56, pl. vii, fig. 4-6, Iden, 1880, 55, pl. viii, fig. 1 a-f, \(2 a-f\), Idem, 1890,
493; Egger 1901, 426, pl. ii, fig. 2-4; Chapman 1902, 423, Idem, 1910, 429.
Egger records it from Amboyna, 54 metres; Monrovia, West Africa, 68 metres ; near Mauritius 411 metres. Around Funafuti in both shallow and deep water ( \(7 \frac{1}{2}\) to 1,485 fathoms), Chapman.

E 3915, v.r.

\section*{14 Bardida fusca G. S. Brady 1866}

Brady 1866 364, pl. lvii, fig. 9 a-d, Idem, 1880, 49, pl. vii, fig. \(2 a-d\); Eggert 1901, 427, pl. vii, 46-49.
This species was dredged by the "Challenger" from Port Jackson, 2-10 fathoms. Egger records it from West Africa at 677 metres. Previous "Endeavour" material gave Station 36, east of Tasmania, 777 fathoms. E 3917, r.

\section*{15 Bardia mintma G. S. Brady 1880}

Brady 1880, 53, pl. vii, fig. 6 a-g; Egger 1901, 427, pl. ii, fig. 14, 15.
Egger's record for the "Gazelle" is Station 90 , North-W'est Australia, 357 metres.

E 3917, v.r.; E 3919, f.

\section*{Fan. CYTHERIDAE \\ Genus Cytilere Müller 1785 \\ 16 Cythere acerosella sp. nov.}
(Pl. viii, fig. 5)
Description-Valve seen from the side, subreniform, slightly higher in front than behind; anterior roundly curved, posterior broadly so; dorsal margin slightly curved and tapering posteriorly; ventral slightly sinuate in the middle. Seen from above, oblong, ovate, thickest in the middle, tapering to the anterior extremity and broadly to the posterior, hoth being sharply acuminate. End view, broadly ovatc. Surface of valve sparsely covered with minute papillac, which are distinctly setose. Length, 0.88 mml ; greatest height, at anterior, \(0.54 \mathrm{m1m}\).

Obscrations-This species, in outline and form, belongs to the Cythore kerguclenensis group of the genus, but has no surface pittings, these being otherwise represented by papillae.

E 3917, v.r.; E 3920, v.r.; E 3923, v.r.

\section*{17 Cythere cañaliculata (Reuss 1850)}

Gypridina canaliculata Reuss 1850, 76. pl: ix, fig. 12.
Civhere canalictluta (Reuss), Egger 1858, 33, pl. v, fig. 10. 11 ; Brady 1866, 373, pl. lix, fig, 4 a-f. Idem 1880, 73, pl. xiv, fig. 7 a-d; Egger 1901, 4.32, pl.iv, fig. 15, 16 ; Chapman 1914, 32, pl. vi, fig. 8, Idem 1919, 23.
The first recent occurrence of this species in A11stralia was recorded by Brady from Hobson's Bay in 1866. It was later obtained in "Challenger" dredgings from E. Moncoetur Island, Bass Strait and al Port Jackson. Egger's recent forms were found in "Gazelle" dredgings, at Station 90, North-West Australia. The "Aurora" Antarctic Expedition (Mawson 1911-14) obtained this species south-west of Tasmania, Previous "Endeayour" material yielded this species from Station 36, east of Tasmania, 777 fathoms. It was found, in association with many other still living ostracods, in the Mallee Bores of Tertiary age in Victoria, and recorded in 1914. It ranges as far back as the Lower Miocene.

E 3921, v.r.; E 3922, v.r.

18 Cythere crispata G. S. Brady 1868
Brady 1868, 221, pl. xiv., fig. 14, 15, Idem 1880, 72, pl. xiv, fig. 8 a-d; Chapman
1914, 33, pl. vi, fig. 9, Idem 1919, 23.
In lower latitudes this species scems to inhabit shallow water, as at Port Jackson, 2-10 fathoms; Booby Island, New Guinea, 6-8 fathoms; and Hong Kong, 7 fathoms. In the "Aurora" sample, however, it occurred to the southwest of Tasmania at 1,300 fathoms. Fossil in lower Miocene strata in the Mallee Bores.

E 3920, v.r.; E 3923, v.r.
19 Cythere cristatella G. S. Brady 1880
G. S. Brady 1880, 90, pl. xix, fig. 6 a-d.

Dredged by the "Challenger" at Booby Island, at 6-8 fathoms. E 3915, r.
20 Cythere cytheropteroides G. S. Brady 1880
Brady 1880, 78, pl. iv, fig. 16-18; pl. xx, fig. 1 a-f.
The "Challenger" obtained specimens of this species from the Cape of Good Ifope at 150 fathoms. From previous "Endeavour" material this species was obtained at Station 36, cast of Tasmania, at 777 fathoms.

E 3915 , r.

\section*{21 Cythere dasyderma (i. S. Brady 1880}

Brady 1880 , 105, pl. xvii, fig. \(4 a-f\), pl. xviii, fig. \(4 a-f\); Chapman 1910, 432, Idem 1914, 34, pl. vi, fig, 10.
This is a distinctly deep water form. Brady gives 13 "Challenger" Stations of over 1,000 fathoms from which it was obtained. The greatest depth was at Funafuti at 1,485 fathoms (Chapman). Many localities in the Indian Ocean and South Pacific are given for this species. It was found as a fossil in the Lower Miocene of the Mallee Bores, Victoria.

E 3918, v.r.

\section*{22 Cithere demissa G. S. Brady 1868}

Brady 1868, 180, pl. xii, fig. 1, 2, Idem. 1880, 66, pl. xii, fig. 1a-j, Idem 1890, 497; Chapman 1914, 34, pl. vi, fig. 11.
This species was described fron Port Jackson, 2-10 fathoms. It is a shallow water form. As a fossil it occurs in the Lower Pliocene of the Mallee Bores.
\[
\text { E } 3918 \text {, v.r.; E 3922, v.r. }
\]

\section*{23 Cythere dictyon G. S. Brady 1880}

Brady 1880, 99, pl. xxiv, fig. 1 a-y; Egger 1901, 442 pl. vi, fig. 41-43; Chapman 1910, 433, Idem 1914, 34, pl. vii, fig. 12, 13, Idem 1915, 41.
This is another deep water form ; fifteen of the "Challenger" Stations contained this species, which reached a depth of over one thousand fathoms. Egger records it from "Gazelle" dredgings from Kerguelen Island and Table Bay, South Africa. Prcvious "Endeavour" material contained this species, as follows: Station 36, east of Tasmania, 777 fathome; and 40 miles south of Cape Wiles, 100 fathoms. It is fairly common in the Lower Miocene strata of the Mallee Bores.

E 3915, v.r.; E 3918, r.; E 3922, v.r.
24 Cythere exilis G. S. Brady 1880
Brady 1880, 69, pl. xvi, fig. 5 a-h; Egger 1901, 439, pl. vii, fig. 29-31.
The "Challenger" specimens came from Simon's Bay, South Africa, at 15-20 fathoms. The "Gazelle" dredged it from Kerguelen Island at 104 metres.

25 Cithere falklandi G. S. Brady 1880
Brady 1880, 65, pl. xii, fig. \(6 a-f\).
The original locality for the species is Stanley IIarbour, Falkland Island, 6 fathoms.

E 3919, r.
26 Cytherf foveolata G. S. Brady 1880
Brady 1880, 75, pl. xiii, lig. \(5 a-h\); Chapman 1915, 41, Idem 1916, 38, 49, pl. iv, fig. 2.
The "Challenger" specimens came from Christmas Harbour, Kerguelen Island, at 120 fathoms, and from Heard Island, at 75 fathoms. Typical specimens were found in the upthrust muds on the slopes of Mount Erebus on the "Nimrod" expedition (Chapman). Previous "Endeavour" material from Station 36, east of Tasmania, afforded this species, at 777 fathoms. E 3917, ri; E 3919, v.r.

27 Cythere goujoni G. S. Brady 1867
Brady 1867, 78, pl. x, fig. 9, 10. Idem 1880, 96, pl. xxv, fig. 7 a- \(g\); Egger 1901, 431, pl, vi, fig. 29-31.
The "Challenger" found this specics at Port Jackson, 2-10 fathoms; at Booby Island, 6-8 fathoms, and at Ilong Kong Harbour, 7 fathoms. From the "Gazelle," Station 90, off North-West Australia, it was found at 357 metres.

E 3919, v.r.; E 3922, v.r.
28 Cythere inconsiricua G. S. Brady 1880
Brady 1880, 70, pl. xiii, fig. 1 a-d.
The "Challenger" obtained this species at one Station only, at Raines Island, Torres Strait, 155 fathoms. E 3918, r.

29 Cythere irrorata G. S. Brady 1880
Brady 1880, 108, pl. xviii, fig. 2 a-d.
Recorded from one "Challenger" Station, near the Admiralty Islands, at 16-25 fathoms.

E 3919, v.r.
30 Cytilere militaris (G. S. Brady 1866)
Cythercis subcoronata G. S. Brady (non Speyer) 1866, 384, pl. 1x, fig. 9 a-e. Cythereis militaris G. S. Brady 1866, 385, pl. 1xi, fig. 9 a-d.
Cythere clavigera G. S. Brady 1880, 109, pl. xxiii, fig. 7 a-d ; Chapman 1914, 37, pl. vii, fig. 18.
In commenting on Cythere clazigera of the "Challenger" collection, Brady (1880, 110) says: "And it is just possible that the Australian species described in the same memoir (Cythercis milituris) may represent a very young specimen of C. clazigera." C. militaris ( 1866 Memoir) was from Hobson's Bay, Melbournc. The "Challenger" specimens were dredged from Port Jackson, at 2-10 fathoms. In the descriptions of Ostracoda from borings in the Victorian Mallec, the writer has shown that typical as well as varietal forms of the above species are very common in both Kalinman (Lower Pliocene) and Lower Miocene strata in those borings. At the depth of 256-263 feet (Lower Pliocene) this species, in association with Cythere dictyon, another living species, was so abundant that it formed about 15 per cent. of the washings of a glaticonitic clay in which they were embedded.

E 3916, v.r.
31 Cythere normani G. S. Brady 1880
Brady 1880, 101, pl. xvii, fig. \(3 a-d\), and (?) pl. xxvi, fig. \(4 a, b\); Chapman 1914, 37, pl, vii, fig. 19. Idem, 50, 73, pl. vi, fig. 2.
The "Challenger" specimens were dredged off Heard Island, Station 150, on coarse gravelly bottom at 150 fathoms. The examples described by the writer
in 1916 were from dredgings in the Ross Sea and from upthrust muds on Mount Erebus ("Nimrod"). This species dates, as a fossil, from the Lower Miocene of the Mallee Bores, and has been identified in late Tertiary deposits from a wellsinking in the Murray Flats, South Australia, by Brady.

E 3915, v.r.
32 Cythere obtusalata (i. S. Brady tenuis var, nov.
(Pl. ix, fig. 9)
Ref. to specific form-Cythere obtusalata \(G\). S. Brady 1880, 91, pl. xii, fig. 1a-c; Egger 1901, 443, pl. viii, fig. 12-15; Chapman 1914, 38, pl. vii, fig. 20.

Resembling Brady's type figure, excepting for the very delicate arcolation or polygonal pitting and the thinner build of the shell. The outline of the carapace agrees with the specific form.

Brady's species was found in "Challenger" dredgings off E. Moncoeur Island, Bass Strait, 38-40 fathoms, and off Admiralty Islands, 16-25 fathoms. Egger records the species from Kerguelen; Monrovia, West Africa; and Mauritius ("Cazclle"). The writer found the species, C, obtusalata, in the Lower Miocene and the Lower Pliocene of the Mallee, Victoria.

E 3919, r. ; E 3921, r. ; E 3923, r.

\section*{33 Crthere ovalis G. S. Brady 1880}

Brady 1880, 66, pl. xiv, fig. 4 a-d; Chapman 1914, 38, pl. vii, fig. 21.
Brady's type specimens were dredged off Booby Island, 6 to 8 fathoms. The fossil specimens, from the Victorian Mallee, were found in Lower Miocene strata.

E 3918, v.r.

\section*{Cythere postcaudispinosa sp. nov.}
(Pl. vili, fig, 3)
Dcscription-Valve seen from the side, subrectangular, anterior extremity wider than posterior, roundly arched and bordered by a raised flange beset with a few denticles; narrower to posterior extremity which is terminated by a few stout teeth. Dorsal margin sinuate below the anterior third, thence sloping to posterior elevation. Ventral margin gently curved to meet the toothed extremity. Surface of valves anteriorly swollen and punctate, with prominent anterior median tubercle; posterior area slightly concave, without pittings. In profile the carapace is much more inflated than in the related Kalimnan to Lower Miocene fossil (C. caudispinosa) of the Sorrento Bore. It also lacks the long spine of the posterior cxtremity and the thickly punctate ornament of the Sorrento fossil (Cythere caudispinosa Chapman and Crespin. In Chapman, "The Sorrento Bore, Mornington Peninstula."-Rccorts Geol, Surv. Vict., 5, pt. i, 1928, 125, pl. ix, fig. \(64 a, b\) ). Length, 0.8 m1m. ; greatest height, at anterior, 0.43 mml ; thickness of carapace, 0.03 mm .

E 3917, v.r.
35 Cythere rastromarginata G. S. Brady 1880
Brady 1880, 83, pl. xvi, fig. \(1 a-d\); Egger 1901, 442, pl. vi, fig. 5-9; Chapman 1914, 40, pl. vii, lig. 24.
The "Challenger" dredgings of C. rastromarginata were: off Reefs, Honolulu, 40 fathoms; off Moncocur Island. Bass Strait, 38-40 fathoms; and Station 167, blue mud, between Sydney and New Zealand, 145-150 fathoms. The "Gazelle" soundings, recorded by Egger, containing this specics, were from, Fiji, Samoa and Western Australia. Fossil specimens, of this species, fairly typical, came from the Tertiary of the Victorian Mallee.
E 3917, v.r.; E 3920, v.r.; E 3922, r.

36 Cythere scutigera G. S. Brady 1868
Brady 1868, 70, pl. viii, fig. 15, 16, Iden 1880, 109, pl. xxii, fig. 5 a-f; Chapman 1914, 41, pl, viii, fig. 27.
Brady's "Challenger" specimens came from Java, Amboyna and Papua. The fossil specimens from the Mallee Lower Miocenc were typical though not so clearly sculptured.

E 3923, r.

\section*{37 Cythere subrufa G. S. Brady 1880}

Brady 1880, 81, pl. xx, fig. 3 a-f.
From amongst the "Challenger" samples Brady recognised this species from Balfour Bay, Kerguelen, 20-50 fathoms, and Prince Edward's Island, 50-150 fathoms.

E 3923, v.r.
38 Cythere tetrica G. S. Brady
Brady 1880, 104, pl. xxiii, fig. \(5 a-d\).
"Challenger" specimens dredged off Booby Island, 6-8 fathoms (Station 87). E 3920, v.r.
Genus Evcythirre G. S. Brady 1868
39 Ecccytifere declivis (Norman 1865)
(Pl. viii, fig. 10)
Cythere declivis Norman 1865, 16, pl. v, fig. 9-12.
Eucythere declivis G. S. Brady 1868, 430, pl. xxvii, fig. 22-26; Egger 1901, 449. pl. iv, fig. 65-67.
The specics was previously recorded by the present writer [ronn "Endeavour" soundings off Cape Wiles, 25 years ago. A more typical example of this rare form is here figured. Its wide distribution is remarkable. Earlier records are from the coasts of Great Britain and Ireland (G. S. Brady), and off NorthWestern Australia at 357 metres (Egger, "Gazelle," Station 90). It was also found in the Pleistocene glacial clays of Scotland. E 3918, v.r.; E 3919, v.r.

Genus Krithe Brady, Crosskey and Robertson 1874 40 Krithe producta G. S. Brady 1880
Brady 1880, 114, pl. xxvii, fig. \(1 a-j\); Egger, 1901, 451, pl. iv, fig. 17, 18; Chapman, 1902, 427, Idem 1910, 434.
The "Challenger" dredgings from which this species was recorded came from Pernambuco, North Brazil, I'rince Edward's Island, and off Sydney at 410 fathoms. Ligger's specinens from the "Gazelle" soundings cane from Kerguelen Island and the north-west coast of Australia. In 1910 the writer recorded this species from around Funafuti (H.M.S. "Penguin") at the great depths of 1,4892,715 fathoms. Prcvious "Endeavour" material (1915) showed it to occur at Station 36, east of Tasmania, 777 fathoms, common; and south of Tasmania at 1.122 fathoms.

E 3915, f. ; E 3918, v.r.

\section*{Genus Loxoconcila G. O. Sars 1865 \\ 41 Loxoconcila australis G. S. Brady 1880}

Brady 1880, 119, pl. xxviii, fig. \(5 a-f\), pl. xxix, \(3 a-d\); Chapman 1914, 42. pl. viii. fig. 30, Idem 1915, 44.
In the latter reference, on pl. ii, fig. 6, a thin-shelled and nearly smooth form is figured as var. tasmanica. This has not been met with in the present samples, with the exception of a possibly solitary specimen. The "Challenger" met with this well-distributed Australian form at Port Jackson, 2-10 fathoms; Booby Island, 6-8 fathoms. E 3918, r. : E 3919, v.r.; E 3920, v.r.; E 3921, v.r. ; E 3922, 1.; E 3923, v.г.

42 Loxoconcha avellana G. S. Brady 1880
Brady 1880, 117, pl, xxviii, fig. 1 a-f.
The "Challenger" examples were dredged at Port Jackson, 2-10 fathoms; and at Tongatabu, 18 fathoms. E 3918, r, ; E 3922, r.

Genus Xestoleberis G. O. Sars 1865
43 Xestoleberis clrta (G. S. Brady 1866)
? Cytheridea curta \(\mathrm{G}, \mathrm{S}\), Brady 1866, 370, pl. lviii, fig. \(7 a, b\).
Xestoleberis curta G. S. Brady 1868, 79, pl. x, fig. 16-18; Idem 1880, 126, pl. xxxi, fig. \(6 a-d\).
The "Challenger" dredgings contaning this species are: Kerguelen Island, Port Jackson, Booby Island, Fiji, New Caledonia. The writer found this species at Funafuti to inhabit shallow to deeper water to 200 fathoms. It occurred as a Pliocene fossil in the Mallee Bores. E 3915, r.; E 3920, v.r.

\section*{44 Xestoleberts davidiana Chapman 1915}
(Pl, viii, fig. 2)
Chapman 1915, 45 ; Idem 1916, 51, pl. vi, fig. 5, 6 (typical); Idem 1919, 32, pl. xxii, fig, \(2,2 a\) (not typical).
The earlier references to the above species relate to the material collected as upthrust muds on the slopes of Mount Firehus, and also muds dredged in the Ross Sea by the "Nimrod," of the Shackleton Expedition of 1907-9. The " Aurora" specimens were obtained from several dredgings along the Ice Barrier, and also from South-East 'Tasmania towards Macquarie Island. Previous records of "Endeavour" material include south of Tasmania, 1,122 fathoms.

E 3916, v.r.; E 3917, r.
45 Xestoleberis margaritea (G. S. Brady 1866) Cytheride a margaritea G. S. Brady 1866, 370, pl. 1viii, fig. 6a-d.
Xestolcberis margaritea (Brady) 1880, 127, pl. xxx, fig. 2 a-g; Egger 1901, 456, pl. iii, fig. 27-30; Chapman 1902, 429, Idem 1914, 43, pl. viii, fig. 32.
Kecords by Brady are Sponge sand, Mediterranean, and from the "Challenger," off Booby Island. Egger's "Gazelle" Stations are: Kerguelen and off the coast of West Australia. It was also found by the writer in shallow water round Funafuti, and as a Lower Miocene fossil in the Mallee Bores, Victoria.

E 3923, v.r.
46 Xestoleberis nina G. S. Brady 1880
Brady 1880, 127, pl. xxxi, fig. \(5 a-c\); Egger 1901, 456, pl. iii, fig, 31, 33 ; Chapman 1902, 430, Idem 1915, 46, Idem 1919, 32.
Recorded by Brady ("Challenger") off Tongatabu, 18 fathoms in coral bottom. Egger found it in "Gazelle" dredgings from Fiji, Samoa, and North-W'est Australia. The writer has noted its occurrence at Funafuti (South Pacific) at 18-200 fathoms, and also in "Aurora" soundings, west of Tasmania. Previous records in "Endeavour" material are: east of Tasmania, 1,122 fathoms, and 40 miles south of Cape Wiles, 100 fathoms.

Е゙ 3923, т.

\section*{47 Xfstoleberis iolita G. S. Brady 1876}

Brady 1876, 202, pl. xxvii, fig. 15, 16, Idem 1880, 127, pl. xxxi, fig. 7 a-6; Chapman 1919, 33.
The type specimens were obtained from the Straits of Magellan, and the "Challenger" examples came from Stanley Harbour, Falkland Islands, in 6 fathoms. The writer recorded the species from Mawson's "Aurora" dredgings from the west of Tasmania at 1,300 fathoms.

E 3923, v.r.

48 Xestoleberis setigera G. S. Brady 1880
Brady 1880, 125, pl. xxxi, fig. \(2 a-d, 3 a-c\); Lgger 1901, 456, pl. iii, fig. 37-39; Chapman 1902, 428.
The "Challenger" specimens came from Kerguelen, IIeard and Prince Edward's Islands. The "Gazelle" dredged it off Monrovia, West Africa. From Funafuti the writer obtained it from beach sand of Avalau, sand from the lagoon beach at Funafala, the lagoon dredgings Rocky Islet, lagoon dredgings \(8 \frac{1}{2}\) miles from the Mission Church at 12 fathoms, and off 'lutanga at 50-60 fathoms.

E 3918, v.r.

\section*{49 Xlistoleberis variegata G. S. Brady 1880}

Brady 1880, 129, pl, xxxi, fig. 8 a-g, Idem 1890, 508; Chapman 1902, 429, Iden1 1914,43 , pl. viii, lig. 33, Idem 1915, 46, Idem 1919, 33.
The "Challenger" records for this species are: off St. Vincent, Cape Verde, at \(1,070-1,150\) fathoms; and off Tongatabu in 18 fathoms. Brady also found the species at Noumea in \(2-6\) fathoms, and in shallow water from seven localities in the South Sea Islands, in shore sands and reef pools. At Funafuti, X. variegata was found in lagoon dredgings in shallow water, and off Funamanu at 50 fathoms. Only one occurrence was noted from the "Aurora" dredgings, at Station 59, in 1,320 fathoms, near Western Tasmania. As a fossil this species was found in the Lower Miocene of the Victorian Mallee Bores (Chapman): But for the more swollen dorsal convexity, this fossil form was typical of the living form, even to the variegated surface markings. Previous "Endeavour" samples showed this species to occur at the Station 40 miles south of Cape Wiles, 100 fathoms.

E 3923, v.r.

\section*{Genus Cytherura G. O. Sars 1865}

\section*{50 Cytherura costellata G. S. Brady 1880}

Brady 1880, 134, pl. xxxii, fig. 7 a-d; Chapman 1916, 51, pl, vi, fig. 7, Iden1 1919. 34.

The "Challenger" examples came from Balfour Bay, Kerguelen Island, 20-50 fathoms. From soundings in the Ross Sea and from upthrust muds on the slope of Mount Erebus, Shackleton Expedition, the writer obtained typical examples of this striking species. It also occurred in the "Aurora" dredgings opposite Kaiser Wilhelm II Land off the Ice Barrier, and off West Tasmania. E 3918, v.r.; E 3922, vre,
51 Cytherura cryptifera G. S. Brady 1880
Brady 1880, 134, pl. xxxii, fig. \(4 a_{-} c\); Chapman 1919, 34.
When first described, this species was monotypic and represented by a single valve, which was found east of Moncoeur Island, Bass Strait, 37-40 fathoms. It was noted from previous "Endeavour" material (Chapman 1915, 46), when two valves were found in dredgings, east of Tasmania, in 777 fathonts. Since then the species has been found in dredgings by the "Aurora" (Mawson 1911-14) Expedition from the west of Tasmania at 1,300 and 1,320 fathoms. E 3918, v.r.

> Genus Cytheropteron G. O. Sars 1865
> 52 Cytimeropteron assimile. G. S. Brady 1880

Brady 1880, 138, pl. xxxiv, fig. 3 a-d; Chapman 1902, 4.31
The "Challenger" examples were dredged off Christmas Harbour, Kerguelen Island, 120 fathons, and off Heard Island in 75 fathoms. C. assimile was also found at Funafuti, in the beach sand, Avalau [slet, and in Sollas's second boring at 40 feet down.

> E 3919, v.r.; E 3920, v.r.

\section*{53 Cytheropteron danneyigi Chapman 1915}

Chapman 1915, 47, pl. iii, fig. \(2 a-c\).
The nearest relation to this form is Cytheropteron wellingtoniense G. S. B. The original type was obtained from Station 36, east of Tasmania, 777 fathoms. E 3917, v.r.

\section*{54 Cytheropteron hedleyi sp. nov.}
(Pl. vii, fig. 6. 7)
Description-Right valve subrhomboidal, anterior narrowly rounded; ventral border nearly straight, ending posteriorly in blunt wing. Dorsal margin stecply arched, posterior extremity sharply pointed. Height of carapace slightly more than half the length. Edge view of carapace broadly ovate, dorsal cdge with a distinct flange. Ornament sparsely punctate; a deep fossa near the border of the alate margin. Length of carapace, \({ }^{*} 07 \mathrm{nmm}\); thickness of carapace, 0.76 mm .

Obscreations-Both Cytheropteron wilesi Chapman and C. hedleyi are related to C. abyssorm Brady, but probably not conspecific as all three differ strongly in ornament though not in shape.

E 3915, v.ri
Genus Bythocythere G. O. Sars 1865
55 Bythocythere arenacea (G. S. Brady 1880
Brady 1880, 142, pl. xxxiii, fig. \(3 a-g\) (B. arenosa on pl, xxxiii); Chapman 1902, 432; Chapman and Crespin 1928, 171.
This species was described from a "Challenger" specimen from Torres Strait, 155 fathoms. It was obtained from Irunafuti, South Pacific, at Tutanga, 200 fathoms (Chapman). As a fossil it was found in the Kalimnan (Lower Pliocene) of the Sorrento Bore, at 605 feet (Chapman and Crespin).
\[
\text { E } 3918 \text {, v.r. ; E 3921, v!r. }
\]

Genus Pseldocytherf Gi, O. Sars 1865
56 Pseudocythere caudata G. O. Sats 1865
Sars 1865,88 ; (I. S. Brady \(1868^{2}\), 543, pl. xxxiv, fig. 49-52, pl. xli, fig. 6; Brady, Crosskey and Robertson 1874, 210, pl. ii, fig. 9; Brady 1880, 144, pl. i, fig. Ga-d; Brady and Norman 1889, 225.
Brady recorded this species from Kerguelen Island and from Prince Edward's Island. It is also a northern species, found round the coasts of Britain; also fossil, from the Pleistocene of Scotland and Ireland.

E 3917, v.r.; E 3922, v.r.
57 Pseudocytimere fuegiensis G. S. Brady 1880
Brady 1880, 145, pl. i, fig. 7 a-d; Egger 1901, 464, pl. viii, fig. 39, 40.
Brady's species was monotypic when described. from Tierro del Filego. Much interest attaches to this discovery in the Tasman Sea, for, in 1901 Egger found another single valve, at Station 90, off North-West Australia ("Gazelle"). This third specimen comes from 33 miles east by south from Green (ape; it is a right valve, agreeing exactly in form and lineate ornament with Brady's type.
\[
\text { E } 3918, \text { v.r. }
\]

\section*{Fan. CYTIIERELLIDAE}

Genus Cytherella Rupert Jones 1849
58 Cytherella mata G. S. Brady 1880
Brady 1880, 173, pl. xliv, fig. \(5 a_{-c}\); Chapman 1914, 50, pl. ix, fig. \(44 a, b\); Chapman and Crespin 1928, 171.

A widely distributed species. Recorded from the "Challenger" dredging at Culebra Island, off the Azores, Pernambuco, Torres Strait and the Ki Islands. As a fossil it has been recorded from, the Lower Miocene of the Sorrento Bore, and as a Miocene and Pliocene form from the Mallee Bores.

E 3922, v.r.

\section*{59 Cytherella polita G. S. Brady 1880}

Prady 1880, p. 172, pl. xliii, fig. \(5 a-c\), pl, xliv, fig. \(1 a-g\); Chapman 1914, 50, pl. ix, fig. \(45 a-b\); Chapman and Crespin 1918, 171.
This species was found in "Challenger" dredgings at Wellington Marbour, New Zealand, in tow-net at trawl; and at the mouth of the Rio de la llata, 13 fathoms. As a fossil it was found in the Lower Miocene to Pliocene of the Sorrento Bore, Mornington Peninsula and in the Lower Miocene and Lower Pliocene in the Victorian Mallec Bores. E 3917, r.; E 3922, v.r.

\section*{60 Cytherlela pulchra G. S. Brady 1866}

Brady 1866, 361, pl. 1vii, fig. \(1 a-d\), Idem 1880, 174, pl, xliv, fig. \(3 a, b\); Chapnan 1914, 50, pl. ix, fig. \(46 a, b\); Chapman and Crespin 1928, 171.
This minute form is here represented by a valve having a length of 0.55 mm ., against Brady's figured specimen with a length of 0.77 mm . Amongst other localities Brady has recorded it from Port Jackson. It was apparently well established in I ower Miocene times, for it occurs abundantly in strata of that age both in the Mallee Bores and that of Sorrento. E 3976, v.r.; E 3917, r.; E 3918, v.r.

\section*{61 Cytherella púnctata G. S. Brady 1866}
(Pl, ix, fig. 11)
Brady 1866,362 , pl. 1vii, fig. \(2 a, b\), Idem 1880, 174 , pl. xxxvi, fig. \(6 a, b\), pl. xliv, fig. 4a-g; Egger 1901, 469, pl. iv. fig. 34, 35; Chapman 1914, 51, pl. ix, fig. 47, Idenı 1919, 42; Chapman and Crespin 1928, 171.
The localities given by the "Challenger" are Tristan d'Acunha, Port Jackson, Ki Islands, between Sydney and Ncw Zealand, and the Straits of Magellan, Brady has figured a medio-sulcate form as C. punctata; as this seems to pass into C. irrogularis Brady, these may have to be separated from \(C\). punctata, sensu stricto. This species, C. punctata was also found in "Gazelle" dredgings, Station 90, off the North-West Australian coast.

The "Arrora" deep water dredgings which contained this species were taken off the east coast of Tasmania, in 1,180 and 1,300 fathoms. The fossil examples are quite typical and denote a Lower Miocene to Pliocenc age from both the Mallee and the Sorrento Bores.

E 3915, v.r. ; E 3916, v.r. ; E 3918, r. ; E 3920, v.r.; E 3922, v.r.; E 3923, v.c.

\section*{62 Cytherella semitalis G. S. Brady 1867}

Brady 1867, 72, pl. viii, fig. 23, 24, Idem 1880, 175, pl, xliv, fig. 2 a-c,
This species was first described from north of Java. The "Challenger" sanples containing this species were from Booby Island, 6-8 fathoms; Humboldt Bay, Papua, 37 falhoms; Nares Harbour, Admiralty Islands, 16 fathons.

E 3918, v.r.
Genus Cytherelloidea Alexander 1929
63 Cytherelloidea auris sp, nov.
(P1. ix, fig. 10)
Description-Valve (right) somewhat depressed, subrectangular, with broadly rounded extremities. Dorsal margin gently sinuous. Ventral edge
slightly concave, with rounded margin, Anterior border with an inner, sulcated rim. Central area largely occupied by a thickened oval ring, having a central fossa nearly divided transversely. This central, raised, ridge-like feature is not so definitely cochleate as in the Tertiary Cytherclloidca auricula (Chapman), of the Mallee Bore and the Sorrento Bore. Length, 0.58 mm . height, 0.34 mm .

Observations-The nearly related Cytherelloidea auricula (Chapman) (Proc. Roy. Soc. Vict., 27, pt. i, 49, pl. ix, fig. \(42 a, b, 43\) ) of the Tertiary of the Mallee and Sorrento Bores is similarly of a long rectangular shape, but the central ridgelike ring is more sinuous, narrow, and more nearly resembling the inner fold of the ear.

E 3922; v.r.

\section*{SUMMARY OF RESULTS}

\section*{(a) On Hedley's Regional Areas of the Australian Coastline}

The majority of these samples are beyond the mud-line. The present evidence, however, strongly supports the use of the terms first suggested by Charles Hedley for those regional areas that are primarily marked out by their shallower, molluscan fauna.

The Solanderian region takes in the coastline from Torres Strait to Moreton Bay, Queensland; the Adelaidean includes the south and south-west coasts of Australia, from Wilson's Promontory in Victoria to Shark Bay, and the north and west coasts of Tasmania; the Peronian, the renainder of the cast coast of Australia and Tasmania and the south coast of Victoria; and the Danpierian from Torres Strait, North-East Australia, to Houtman's Abrolhos, below Shark Bay, West Australia.

In general support of these four divisions of the coastal regions, Iredale (a) has drawn attention to the fact that, in regard to the littorul molluscan fannas, these are distinct if we take a contral point in those regional areas; Sydney showing a pure Peronian assemblage, whilst Adelaide gives a typical Adelaidean fanna. At the same time, as one would expect, there is an overlapping of regional faunas near their respective boundaries.

This regional distribution also applies to that of the microzoa (the Foraminifera and Ostracoda), especially in the littoral zone (between tide-marks) and, to some extent, in the shallow water deposits between low-water mark and the 100 fathoms linc. Two of the prescnt samples, E 3915 and E 3923 , come within that category.

Beyond the mud-line, however, including E 3916 to E3922, a remarkable number of species, of both Foraminifera and Ostracoda, are included in the present lists, many of which are recorded for the first time as Nothern or South. crn types, respectively. This particular assemblage has a distinct bearing on the Antarctic or the Torresian origin of many of the species now found in the Aus-: tralian deep water microzoic fauna. This points either to a vestigial southern or northern remanié fauna, as the case may be or, possibly, and what is perhaps more likely, the direct influence of two opposite sets of currents. The actual existence of one, the northern, has becn demonstrated by Charles Hedley, who consequently named these southward-flowing currents, the Notonectian.

For the occurrence and effect of the latter, Lledley cites several instances

\footnotetext{
(s) Results from Roy Bell's Molluscan Collections, Proc. Linn Soc. N.S.W., 49. (3), 180.
}
where tropical and northern organisms have been found as far soutli as Flinders Island. \({ }^{(6)}\)

It should, however, be borne in mind that even in the shallower soundings there are occasional stray species which show a sinular origin; but they only prove the general rule, that by far the larger number of these apparently introduced forms are to be found where the deeper currents prevail.

In the paper above quoted, Iredale rightly points out, in discussing the distribution of his gronps of mollusca, that he is there dealing only with the littoral faunas. As we have seen elsewhere, Hedley has occasionally found types of mollusca of a different or specialised character inhabiting the greater deeps of the occan below the mud-line around the east and south-east coasts of Australia.

In regard to the decper dredgings of the "Endeavour" at 470 and 505 fathons, 33 miles east by south of Green Cape, the "strangers" brought from vast distances, most likely through the agency of persistent currents, are often very much in evidence.

Within the mud-line, however, as at Babel Island, at 65 fathoms, the following is perhaps a typical selection of species that are well established on the benthic feeding ground of the mud-line itself, perhaps in association with a few adventurous Notonectian forms.

\section*{Forms Typical of a 65 Fathom Level, North-east of Tasmania}

Foraminifera-
Jenticulina cultrata
\[
\because \quad \text { sp. aff. orbicularis }
\]

Bolivina sp, aff. hentyana
beyrichi
Streblus beccarii
Epistomina elegans
Anomalina glabrata ,, aff. rotula ", vermiculata
Cibicides sp. aff. victoriensis \(\because \quad\) pseudoungerianus
Elphidium advenum verriculatum
Pelosina cylindrica

\section*{Ostracoda-}

Macrocypris decora maculata

Quinqueloculina lamarckiana
," vulgaris
Spiroloculina canaliculata
Triloculina tricarinata
Pyrgo fornasinii
Pyrgoella sphaera
Biloculinella globulus
Haplophragmoides grandiformis
Textularia conica
,, corrugata
" pseudogramen
Clavulina serventyi
Dorothia arenata
Gaudryina aff. rugosa

Bairdia amygdaloides Krithe producta
(b) Specific Elements of a Microzoic Fauna which may have becn introduced by Decper Currents beyond the Continental Shelf.
Taking the samples E 3920 , E 3921 and E 3922 at 470 to 505 fathoms as being typical of the blue, grey and green muds below the 100 fathom line, it is very enlightening to make a comparison of certain species contained thercin which have a naturally northern or southern habitat. The following, therefore, are especially regarded as having been distributed by Notonectian or Antarctic currents, respectively:
\({ }^{(8)}\) Chas. Hedley, Presidential Address, Linn. Soc. N.S.W., 1910, 30 (1), 10-12. For the Discussion of Regions, see Hedley-The Effect of the Bassian Isthmus upon the Existing Marine Fauna: a Study in Ancient Geography, ibid., 1903, (4).

NOTONECTIAN
(Philippines, Andaman Islands, Ki Islands, Torres Strait) Foraminifera-

Vaginulina legumen
Nodosaria fistuca
, catenulata
.. pyrula semirugosa
Lagenonodosaria scalaris
L.agena clavata

Rectobolivina bifrons
Bifarina fimbriata
Uvigerina sp. aff. pigmea
Parafrondicularia helenae
Sphaeroidinella dehiscens
Elphidium advenum

Ostracoda-
Cythere crispata
., goujoni
,. inconspicua
," irrorata
,, scutigera

Cornuspira foliacea
" \("\) expansa ,, lacunosa
Quinqueloculina cuvieriana
Spiroloculina canaliculata
I'tychomiliola separans
Pyrgo comata
fornasinii
Haplophragmoides grandiformis
Textularia corrugata
Dorothia arenata
Gaudryina scabra
\[
" \quad \begin{aligned}
& \text { robusta } \\
& \text { triangularis }
\end{aligned}
\]

Xestoleberis curta
Bythocythere arenacea
Cytherella lata
, punctata
,, semitalis

Loxoconcha australis
A.NTARCTIC
(Great Ice Barrier, Kerguelen Islands, Heard Island, Falklands, New Zealand)
Foraminifera-

Lagena annectens
, crenata
," distoma
,. marginata
,, melo
., orbignyana
., sulcata
Bulimina elegans
Bolivina alata
robusta
Cassidulina crassa
Ellipsolagena schlichti
Rolivinita quadrilatera v. tortilis
Fatellina corrugata
Cilbicides refulgens
Anomalina wuellerstorfi
Chilostomella cushmani
Pullenia sphaeroides
.. subcarinata
Globigerina dutertrei
,. inflata
,. pachyderma
,, subcretacea
,. triloba

Orbulina universa
Pulleniatina obliquiloculata
Globorotalia scitula
truncatulinoides
Nonion depressulus
, grateloupi
, scapha
, unnbilicatulus
Elphidium lessoni
Hyperammina novaezealandiae
Saccanmina sphaerica
Rhabdammina discreta
Planispirina bucculenta
Triloculina chrysostoma , tricarinata
Miliolinella oblonga
Pyrgoella sphaera
Haplophragmoides emaciatus
Recurvoides contortus
Reophax dentaliniformis
, distans v. pseudodistans
,, scorpiurus
Textularia conica
Trochammina planoconvexa

\section*{Ostracoda-}

Bairdia australis
Cythere dictyon
,. exilis
,. falklandi
,. foveolata
," normani
,, subrufa

Xestoleberis davidiana
,, setigera
Cytherura costellata
Cytheropteron assimile
Psendocythere caudata
," fuegiensis

\section*{(c) Evidence of Rapid Temperature Changes during the Deposition of Sample} E 3917.
The main facts leading to this conclusion are given on pp. 149, 150. These go to prove that the deposition of calcitic rhombs in such sediments must be due to fairly rapid changes in temperature which are taking place in the waters of Bass Strait.
(d) General Nature of the Sediments of the present Samples.

The majority are richly organic and largely calcareous. In four out of the nine samples there were small quantities of quartz sand present, as follows:
E 3917 A minute quantity of angular quartz grains. Could not have travelled far from source, by weathering of continental rocks.
E 3918 Occasional polished quartz grains. Probably wind-blown, and carried out to sea from desert regions.
E 3919 A small proportion of fine angular quartz sand and other terrigenous material. Deposited not far from source of origin (continental).
E 3922 Concretionary mud, stained with iron oxide. When dissolved in H(1, leaves a small residue of quartz sand (derived from continental rocks). The microzoa released by crushing are found to be marvellously perfect.

\section*{Deposition of Types and Duplicite Specinens nescribed in thif Monograíif}

The Director of the National Museum, Melbourne, Mr. D. J. Mahony, M.Sc., has kindly consented to undertake the care of the present collection. Former collections of the Microzoa described by me from the "Endeavour" soundings are also to be found in the collection of the National Museum, Melbourne.

\section*{Ack nowledgment}

The writer is greatly indebted to his friend, Walter J. Parr, F.R.AI.S. (Mines Department, Melbourne), for discussions on the taxonomic position of several species contained in this paper.

\section*{Biblography of Foraminifera}

Batscif, A. J. 1791 Conchylien des Seesandes
Bramx, H. B. 1864 Trans. Iinn. Soc., Lond., 24
Fradry; H. B. 1879 Quart. Jrn. Micr. Sci. 19
Brady, H. B. 1881 Ibid, 21
Bradyy, IL. B. 1882 Proc. Roy. Soc. Edin.
Mrady, H. B. 1884 "Challenger" Exped., Zool. 22, 9
Brady, Parker and Jones 1870 Trans. Linn. Soc. I.ond., 21
Blainville, H. 1825 Manuel Malac. et Conch.
Bornmmann, J. Gi. 1855 Zeitschr. Deutsch. Geol. Gesellschaft, 7
Burrows, H., and Holland, R. 1895 (in Jones, Parker and Brady) Pal. Soc., Mon.
Carpenter, W. B. 1868 Proc. Roy. Soc., 17

Carpenter, W. B. 1881 The Microscope and its Revelations, 6th ed.
Chapman, F. 1906 (for 1905) Trans. N.Z. Inst., 38
Chapman, F. 1907 Journ. Quekett Club, (2), 10
Chapman, F. 1907 Journ. Linn. Soc., Lond, 30
Chapman, F. 1909 Subantarctic Islands of New Zealand, 1
Cifarman, F. 1910 Journ. Linn. Soc. Lond, Zool., 30
Chapman, F. 1915 "Endeavour" Sci. Results, 3, (1)
Chapman, F, 1916 Shackleton Brit. Antarctic Exped. 1907-9. Geol. 2, (2)
Chapman, F, \(1916^{1}\) Ibid, Geol. 2, (3)
Chapman, F. \(1916^{2}\) Vict. Nat., 32
Chapman, F. 1924 Rep. Sth. Afric. Govt. Fisheries for 1922, No. 11
Chapman, F., and Parr, W. J. 1926 Journ. Linn. Soc., Lond., 36
Chapman, F., Parr, W. J., and Collins, A. C. 1934 Ibid, 38
Chapman, F., and Parr, W. J. 1935 Journ. Roy. Soc. W. Aust., 21
Chapman, F., and Parr, W. J. 1937 Mawson Antarctic Exped. 1911-14, Ser. C, 1, (2)
Costa, O. G. 1856 Atti dell' Accad, Pontan, 7, fasc. 2
Cushman, J. A. 1910 Bull. U.S. Nat. Mus., 71, (i)
Cusuman, J. A. 1911 Ibid, 71, (ii)
Cusiman, J. A. 1913 Ibid, 71, (iii)
Cusiman, J. A. 1913 Proc. U.S. Nat. Mus., 44
Cushman, J. A. 1918-31 Bull. U.S. Nat. Mus., 104
Cusimman, J. A. 1919 Proc. U.S. N̈at. Mus, 56
Cushman, J. A. 1921 Bull. U.S. Nat. Mus., 100
Cushman, J. A. 1922 Carnegie Inst., 17
Cushman, J. A. 1924 Carnegie Inst., Publ. 342
Cushman, J. A. 1927 Contr. Cushm. Lab., 3
Cushman, J. A. 1928 Contr, Cushm. Lab., 4, (i)
Cushman, J. A. 1932 Bull. U.S. Nat. Mus., 161
Cushman, J. A. 1936 Spec. Publ, No. 6
Cushman, J. A. 1937 Spec. Publ. No, 7
Cusiman, J. A. \(1937^{1}\) Spec. Publ. No. 9
Cusiman, J. A. \(1937^{2}\) Contr. Cushm. Lab., 13
Cusiman, J. A., and Ozawa, Y. 1930 Proc. U.S. Nat. Mus., 77, Art. 6
Cusiman, J. A., and White, E. M. 1936 Contr. Cushm. Lab., 12
Defrance, J. L. M. 1824 Dict. Sci. Nat., 32
Egger, J. G. 1857 Neues Jahrb. f. Min.
Egger, J. G. 1893 Foram. "Gazelle" (1874-6), Abhandl. k. bayer, Ak. Wiss., Wien, Cl. ii, 18, (2)
Fischer de Waldheim, G. 1817 Adversaria Zoologica. Mém. Soc., Imp. Nat. Moscou, 5
Fornasini, C. 1895 Contributo a la Conoscenza de la Bulimine Adriatiche. Bologna (privately printed)
Fornasini, C. 1901 Accad. Sci. Ist. Bologna, Mém., (5), 9
Fornasini, C. 1905 Ibid, Mém., (6), 2
Goës, Axel 1894 K. Svenska Vet. Akad., Handlingar, 25, No. 9
Heron-Allen and Earland 1915 Trans. Zool. Soc. Lond., 20, (17)
Heron-Allen and Earland 1922 "Terra Nova" Exped., Zool. vi, No. 2
Heron-Allen and Earland 1924 Journ. Roy, Micr. Soc., Lond.
Heron-Allen and Earland 1932 "Discovery" Reports, 4
Jones, Parker and Brady 1866 Pal. Soc. Mon., 19

Karrer, F. 1877 Geologie der Kaiser Franz-Josefs Hochquellen-Wrasserleitung, Abhandl. k.k. Geol. Reichsanstalt, 9
Lamarck, 1804 Annales du Muséum, Paris, 5 and 9
Lamarck 1811 In Parkinson's "Organic Remains of a Former World"
LAmarck 1815-1822 Histoire Naturelle des Atimaux sans Vertebres, 2 1816, 71822
Millett, F. W. 1898-1904 Journ. Roy. Micr. Soc., Lond.
Montagu, G 1803 Testacea Britannica
Montagu, G. 1804 In Brown's "Illustrated Recent Conchology"
Montrort, P. Denys de 1808 Conchyliologie Systematique, 1
Münster, \(G\). 18.38 (in Roemer, F. A.) Neues Jahrbuch iür Min.
d’Orbigny, A. 1826 Ann, Sci. Nat., 7
d'Orbigny, A. \(1839^{1}\) In Barker-Webb and Berthelot's "Histoire Naturelle Iles Canaries"
d'Orbignx, A. \(18.39^{2}\) In Ramon de la Sagra's "Histoire Physique, Politique ct Naturelle de l' Ile de Cuba"
d'Orbigny, A. \(1839^{3}\) Voyage dans l' Amerique Meridionale, (3), 5
d'Orbigny, A. 1840 Mém. Soc. Géol. France 4
do Orbigny, A. 1846 For. Foss., Vienne
Parker and Jones 1865 Phil. Trans. Roy. Soc., Lond,
Parker, Jones and Brady 1865 Ann. Mag. Nat. Hist., (3), 16
Parr, W. J. 1932 Proc. Roy. Soc. Vict., 44, (2)
Parr and Collins 1930 Proc. Roy, Soc. Vict., 43, (i)
Parr and Collins 1937 Proc. Roy. Soc. Vict., 50
Phitippi, R. A. 1844 Enumeratio Molluscorum Siciliae, 2
Reuss, A. E. 1850 Denkschriften k. Ak. Wiss., Wien, 1
Reuss, A. E. 1851 Haidinger's "Naturw. Abhandl.," 4
Reuss, A. E. 1854 Denkschr. k. Ak. Wiss., Wien, 7, (1)
Reuss, A. E. 1858 Zeitschr. d. d, Geol. Gesellschaft, 10
Reuss, A. E. \(1862^{1}\) Sitz. d. k. Ak. Wiss., Wien, 46, (1)
Reuss, A. E. 1862² Sitz. d. k. Ak, Wiss., Wien, 46, (1)
Reuss, A. E. 1864 Sitz. d. k. Ak. Wiss., Wien, 48, (1)
Scillumberger, C. 1891 Mém. Soc. (icol. France, 4
Scilwacer, C. 1866 "Novara" Exped., Geol. Theil, 2
Sidebotton, H. 1918 Journ. Roy. Micr. Soc.. Lond.
Silvestri, A. 1902 Mem. d. Pont. Accad. Romania, Nuovi Lincéi, 19
Terquem, O. 1876 Anim. sur la Plage de Dunkérque
Watiker and Bors 1784 Testacea minuta rariora . . . . in arena littoris Sandvicensis
Walker and Jacob 1798 In Adans' Essays
Williamson, W. C. 1858 Ray Society, Iondon
Bibliography of Ostracoda
Brady, G. S. 1866 Trans. Zool. Soc. Lond., 5
Rrady, (i. S. 1867 Les Fonds de la Mer.. 1
Brady, G. S. \(1868^{1}\) Trans. Linn. Soc. I.ond., 26
Brady, G. S. 18682 Antm. and Mag. Nat. Hist., (4), 2
Brany, (i. S. 1878 Trans. Zool. Soc. Lond.
Brady, G. S. 1880 "(hallenger" Exped., Zool., (iii)
Brady, G. S. 1890 Trans. Roy. Soc. Edin., 35
Brady, Crosskey and Robertson 1874 Pal. Soc. Mon.
Brady and Norman 1889 Trans. Roy, Dublin Soc., (2), 4
Bosquet, J. 1853 Crustacées fossils. Limburg
Chapman, F. 1902 Journ. Linn. Soc. Lond. Zool., 28


Polyzoa and Ostracoda, F.I.S. "Endeavour," E 3915


Ostracoda and Foraminifera, F.I.S. "Endeavour," E 3916-8
E. Chapman, del. ad nat.


Foraninifera, Ostracoda and Mollusc, F.I.S. "Endeavour," E 3919-23

Chafman, F. 1910 Journ. Linn. Soc. Lond. Zool., 30
Chapman, F. 1915 "Endeavour" Results, 3, (1)
Chapman, F. 1916 Shackleton Brit. Antarctic Exped. 1907-9, Geol. 2, (2)
Chapman, F. 1919 Mawson Antarctic Exped., 1911-14, Ser. C, 5, (7). Chapman, and Crespin 1928 (in Chapman, F.) Report on Sorrento Bore Egger, J. G. 1858 Ostrakoden der Miocan Schichten, bei Ortenburg
Egger, J. G. 1901 Abhandl. k.k. Bayern Ak. Wiss., 21, (2)
Gofis, Axel 1865 Oversigt. Norges Marine Ostracoda
Norman, A. M. 1865 Nat. Hist. Trans. Northumberland and Durham, 1
Norman, A. M. 1876 Report "Valorous" Exped., Proc. Roy. Soc. Lond., No. 173
Relss, A. E. 1855 Zcitschr. d. d. Geol, Gesellsch., 7

\section*{EXPLANATION OF PLATES}

Plate ViI
All specimens from Sample E 3915. East of Eabel Island, 65 fathoms.
Fig. 1 Retepora babelcusis sp. nov. Portion of zoarium under low power. Holotype. X 5.
Fig. 2 , , , Zoecial surface. X 18.
Fig. 3 , ", \(\quad\) Dorsal surface. X 18.
Fig. 4 Mecynoccia dannevigi sp. nov. Holotype. X 18.
Fig. 5 Macrocypris setigera G. S. Brady. X 37.
Fig. 6 Cytheropteron hedleyi sp, nov. Holotype. Valve seen from the side. X 37.
Fig. 7 , ", Dursal aspect. X 37.
Plate Vili
Fig. 1 Pontocypris bradyi (nom. mut!). Plesiotype. Left valve. E 3916. X 37.
Fig. 2 Xestoleberis davidiana Chapman. Plesiotype. Left Valve. E 3917. X 37.
Fig. 3 Cythere postcaudispinosa sp. nov. Holotype. Right valve. E 3917. X 37.
Fig. 4 Bairdia acanthigera G. S. Brady! Right valve. E 3917. X 37.
Fig. 5 Cythere acerosella sp. nov. Holotype. Left valve. E3917. X 37.
Fig. 6 Bulimina aff. marginata d'Orb. E 3917. X 88.
Fig. 7 Notorotalia decurrens sp. nov.: \(a\), superior face; \(b\), inferior face. Holotype. E 3918. X 18.
Fig. 8 Sigmoilina latissima sp. nov.; \(a\), lateral aspect; \(b\), edge view, Holotype. E 3918. X 18.
Fig. 9 Chilostomella cushmani sp. nov. Syntype Form A. E 3918. X 37.
Fig. 10 Eucythere declivis (Norman), Leit valve. E 3918 . X 88.
Plate IX

Fig. 1 Planularia australis sp. nov. E 3919. X 74.
Fig. 2 Lagenonodosaria scalaris (Batsch), var. seminuda var. nov. E 3922. Type of var. X 74.
Fig. 3 Bolizinita quadrilatera (Schwager), var. tortilis nov.
Fig. 4 Bifarina fimbriata (Millett). E 3922. X 74.
Fig. 5 Parafrondicularia helcnae sp. nov. F 3922 . Holotype. X 74 5a, Another example, longitudinal section at a bored end. E 3922. X 112.
Fig. 6 Chilostomella cushmani sp. nov. Form B. E 3923. Syntype of stage B. X 74.
Fig. 7a,b Myrfaea gabricli sp. nov. Holotypre. E 3920 . Nat. size.
Fig. 8 Pontocypris aftenuata G. S. Brady (showing spine). E 3919 . X 74.
Fig. 9 Cythere obtusalata G. S. Brady var. tenuis var. nov. E 3921 Holotype of var. X 74.
Fig. 10 Cytherelloidea auris sp. nov. F \(3922 . \mathrm{X} 55\).
Fig. 11 Cytherella panctata G. S. Brady. E 3923. X 55.

\title{
THE BROMINE CONTENT OF SOME SALINE WATERS IN SOUTH AUSTRALIA
}

\author{
By W. TERNENT COOKE
}

\begin{abstract}
Summary

There are a few references \((2,5,6)\) to be found dealing with the bromine content of the many saline waters which exist in this State. Goyder (6) examined many bore and spring waters, and mentions the absence or presence of traces of bromine in some of them, but gives no actual figures for bromine.
\end{abstract}

\title{
THE BROMINE CONTENT OF SOME SALINE WATERS IN SOUTH AUSTRALIA
}

\author{
By W. Ternent Cooke
}
[Read 10 July 1941]
There are a few references \((2,5,6)\) to be found dealing with the bromine content of the many saline waters which exist in this State. Goyder (6) examined many bore and spring waters, and mentions the absence or presence of traces of bromine in some of them, but gives no actual figures for bromine.

The growing importance of bromine is shown by the increase in output in the U.S.A., where between 1928 and 1938 the production rose from slightly more than 2 to 38 million pounds per annum. So far, apparently, Australia has not manufactured bromine commercially, and in 1938-9 nearly 100,000 pounds, valued at nearly \(£ 9,000\), were imported. This is all the more regrettable since liquors from salt works, etc., are virtually relatively concentrated bromide solutions, often as rich in bromine as those from which it was in general obtained before the present increased demand for this element arose.

\section*{Method of Analysis}

The procedure given by Docring (4) was used. The chemical basis of the method consists in oxidising the bromide present to bromate, allowing this to liberate iodine from potassium iodide, and titrating the liberated iodine with standardised sodium thiosulphate solution. Standardisation can be made directly against pure potassium bromate, or indirectly against potassium bromide by putting it through the routine process of the analysis. The method was found to be simple, cheap, quick, and quite sufficiently accurate for the present purpose; it can be carried out on 10 ml . of solution by using a 0.005 normal thiosulphate solution. Usually two portions of sample were taken, 10 ml , and 25 ml , and titrated against 0.005 N , and/or 0.05 N thiosulphate, respectively, giving values such as, e.g., 544, 541,535,549 grammes per million ml. of sample. Experiments were made with some of the samples in order to compare the volumetric method here used with the "aspiration" method of Baughman and Skinner (1). It was found that satisfactory agreement could be obtained if the time of the aspiration was increased at least three times; this increase is necessary apparently on account of the very small amounts of bromine under estimation. Also, where as in the present case, the ratio of chlorine to bromine is high, the finding of Baughman and Skinner concerning the necessity for two aspirations and absorptions was confirmed. The bromine, carrying with it some chlorine, must first be absorbed in carbonate-sulphite solution, and the bromine then aspirated from this into a solution of potassium iodide.

\section*{Results}

The results of the analyses are set out in tabular form in Table I, the bromine contents being expressed in grammes of bromine per million millilitres of the sample, or roughly pounds per 100,000 gallons. The water of the open sea, from which large amounts of bromine are today being obtained, contains from 60 to 70 parts per million. The figures for bromine actually include any iodine which may be present, but the amounts of the latter are very minute; in sea water the ratio of bromine to iodine is about 3,000 to one (3).

The results in Table I show the bromine content of the samples as received, since the main objective of the work was to ascertain what available raw materials might be considered as possible sources of commercial supplies of bromine. For
the sake of being able to make a further comparison between some of the samples, certain additional data are given in Table II, which data show the actual saline content of some of the samples, and the bromine content of the salts present in the solution, the bromine content of the solution being known from the results of Table I. The saline contents were determined by evaporation and drying of the saline residue at about \(230^{\circ} \mathrm{C}\). Admittedly the method does not give strictly accurate values of the saline contents of the liquors, since some chlorine (and bromine) is lost by hydrolysis of the halogen salts present, particularly magnesium chloride, but the method is sufficiently accurate to serve as a basis of comparison. The loss of halogens by hydrolysis can be seen by comparing column 4 of Table II, which gives the bromine content of the salts after drying (and hydrolysis), with the bromine content of the same salts as existing in the original liquors (column 3. Table II). The figures in column 4 give the proportion of bromine in the dried salts, on the basis of 100 in the dissolved salts. Column 5 gives figures for chlorine calculated on the same basis. The losses in bromine in the different samples are seen to be considerable and variable, while those for chlorine, as might be predicted, are distinctly less.

Table I



Grateful acknowledgment is hereby made of the valuable help I have received in prosecuting this investigation. Several firms have kindly collected and forwarded samples; the Education Department and some of its country officers have also been very helpful in collecting samples for analysis.

\section*{Riferences}
(1) Baughman and Skinner 1919 Ind. and Eng. Chem., 11, 954
(2) Cooke, W. T. 1917 Trans. Roy. Soc. S. Aust., 61, 39
(3) Dittmar, W. Report of "Challenger" Expedition, 1873-1876, Physics and Chemistry, 1, 89
(4) Doering, H. 1937 Zeit. f. Anal. Chem., 108, 255
(5) Fitzpatrick, A. S., and Strong, H. W. 1925 Proc. Roy. Soc. of Vict. (N.S.), 37, (1), 98
(6) Goyder, G. A. 1893 Parliamentary Paper; also Rept. S. Aust. School of Mines, 1891, 168

\title{
ON CENTRAL AUSTRALIAN MAMMALS \\ PART II THE MURIDAE \\ (Continued from 64, (I), 136, 1940)
}

\author{
By H. H. FINLAYSON
}

\section*{Summary}

RATTUS spp.
No species of Rattus was taken in the area worked over, nor reliable reports of them obtained. However, the specimens of \(R\). villosissimus described by Waite \((15,125)\) evidently came from a locality west of the Lake Eyre Basin. \({ }^{(1)}\) and two slight anomalies in the skull measurements as compared with skulls from the latter district have already been pointed out.

\title{
ON CENTRAL AUSTRALIAN MAMMALS \\ PART II THE MURIDAE
}
(Continued from 64, (1), 136, 1940)

\author{
By H. H. Finlayson
}

\author{
[Read 10 July 1941] \\ Plates X, XI, XiI, XIII \\ Rattus spp.
}

No species of Rattus was taken in the area worked over, nor reliable reports of them obtained. However, the specimens of \(K\). villosissimus described by Waite \((15,125)\) evidently came from a locality west of the Lake Eyre Rasin, \({ }^{(1)}\) and two slight anomalies in the skull measurements as compared with skulls from the latter district have already been pointed out.

The skulls have since been re-examined and the anomalies confirmed (in a reduced form). Both skulls have slightly longer molar rows, \(7 \cdot 5\) and \(7 \cdot 4\) as against a maximum of \(7 \cdot 3\) in the Lake Eyre Basin, and the male skull has an interorbital breadth of \(5 \cdot 6\) as against a maximum of \(5 * 3\). The latter skull is damaged and evidently old, and its temporal ridges are more like those of norvegicus than any other I have examined. In other dimensions and in nonmetrical characters both are in good agreement with the eastern series.

\section*{Pseldomys (Psecdomys) minnie Troughton}

This species, originally described from the Lake Eyre Basin, where it is periodically extremely abundant, was not taken in the Amadeus Basin, nor in any of the highlands adjacent to it, in the work of 1931-35; nor does it occur in any other collection from this region which I have examined. A small series, however, from the Arckaringa tablelands in the winter of 1933, about 60 milcs southwest of Oodnadatta, has already been briefly noticed (3,99).

The pelage in four is of the rich brown type common at Cordillo in 1930-31; the other two a paler grizzled buff phase approaching that of Mulka and Appamunna. Flesh dimensions of the four adults are slightly lower than the average for the Lake Eyre Basin series, but well within the extremes. The skulls are of the light and comparatively fragile type common in Appamunna collections, with both zygomatic breadth and width of brain case lower than in the larger scries; they agree with these, however, in the three critical characters of molar length, anterior palatal foramina and palate length which separate winnie from rawinnae.

The slight differences noted can have little significance as geographical variations, since specimens taken at Ooldea, 250 miles further to the sonth-west, are still closer to the Lake Eyre Basin average.

Pseudomys (Leggadina) hermannsburgensis Waite
Menki, of the Pitchenturra. Described (14, 405) in 1896 from material taken in and about the Macdonnell Ranges, subsequent work has proved its

\footnotetext{
(1) This term is used throughout these papers in the restricted sense defined by me in an carlicr paper in Trans, Roy; Soc. S. Aust., 57, 195, 1933, and excludes the greater part of the western drainage towards the lake from the Finke, Stevenson, Hamilton, Alberga, and Arckaringa Creeks. In their upper course these streams traverse areas in which the mammals are scarcely differentiated from those of the Amadeus lands, while the eastern part of the Lake Eyre Basin is a well marked natural region, distinguished both by the absence of western forms and the presence of indigenous ones.
}
range to extend north to Alexandria \((9,536)\) in approximately \(19^{\circ}\) south and \(136^{\circ} 50^{\prime}\) east; south to Ooldea ( 6,318 ) in latitude \(30^{\circ} 27^{\prime}\) south and longitude \(131^{\circ} 25^{\prime}\) east; south-west to Rawlinna ( 13,292 ), 400 miles west of Ooldea, and south-east ( 1,10 ) to the junction of the Murray and Darling Rivers in northwest Victoria. It is absent from the Lake Eyre Basin, which is probably its eastern limit in the central areas, while to the west, in these latitudes, although no specimen has been examined from beyond Ayers Rock, it almost certainly extends to the Rawlinson Range on the Western Australian border and probably far beyond. It was not taken, however, by the Canning Stock Route expedition of 1930 through the Western Sandridge Desert.

Throughout the area between the Macdonnells and Everards, personally worked over during 1931-1935, it was widely spread but nowhere very plentiful, and on the loamy grass and mulga flats where most of the collections were made, it was out-numbered by Notomys alcxis. It proved difficult to trap in the open country, with ordinary baits, largely because of the ants which swarm upon the traps in such areas. A few were got with bread baits in store tents at camps near the Basedow Range, where it had adopted the raiding habits of Mus musculus, which latter was often trapped alongside it.

The majority of the specimens were dug by the blacks from simple burrows two to three feet long and nine to twelve inches deep. Five was the greatest number taken from a tunnel, and on two occasions the gecko, Nephurus laevis, was found in occupation at the same time; the association is evidently well known to the blacks, as I had independent accounts of it from several localities. The natural diet seems to be entirely seeds, grass roots and small tubers; the chief constituent of the stomach contents in summer collections, particularly from the Basedow Range area, was a small dark-cased seed from the local succulent called Wokiti-a Portulaca species extremely abundant on flooded ground after summer rains. Sand was always present in variable, but sometimes very large amount.

The following examination is based upon 73 specimens, of which 22 are skins and skulls and the rest alcohol preserved. The series is made up of eight collections, taken at the following times and places. \({ }^{(2)}\)
(1) At two camps between Wollara and the Basedow Ranges, February and March, 1932. (2) Ayers Kock, February, 1932. (3) Wollara, in winter of 1932. (4) Alpera, at the north-west extremity of the Musgrave Range, December, 1932. (5) Erliwunyawunya, Owellinna and Ernabella on the southern side of the Musgrave Range, January, 1933. (6) Chundrinna, on the northern front of the Fverard Range, February, 1933. (7) Karmeena, on the sotuthern side of the Everard Range, winter of 1915. (8) Miscellaneous specimens from Charlotte Waters, Hermannsburg, Macdonnell Ranges, Tennant's Creek, and three unlocalized.

The conclusions as to reproductive activity which can be deduced from these records are similar to those relating to Notomys alexis; i.e, seasonal independence of such activity and its occurrence in marked form after heavy rains. At Wollara, in February, 1932, six weeks after a heavy rain, reproduction was particularly active the collection comprising numerous growth stages from aged examples to nestlings. In this batch nearly all females are pregnant, and the frequency of litters is shown by the occurrence of heavily pregnant females still suckling nestlings. In adult males the testes are generally well developed and scrotal, or have undergone very recent retraction, leaving a prominent scrotal skin flap. Uterine embryos are either three or four, asymetrically arranged with the larger number in the right horn. In the entire series sexed females predominate in the ratio 24 o : 42 ㅇ.
\({ }^{(2)}\) The bearings of these localities have been given in connection with Notomys alexis collections in Trans. Roy. Soc. S. Aust., 64, (1), 1940, 127.

A Laelaps occurs, but very sparsely; and in this respect the species is in strong contrast to Notomys alexis, which (at the same times and places) was heavily infested.

The great bulk of the material is clearly referable to the typical race, of which topotypes have been available, but in collections from the Musgraves, anomalous examples occur which fore-shadow racial differentiation; in the sequel the data relating to these has been disassociated from that of the main series, and will be considered under Section B.

\author{
A The Typical Race
}

External Characters-Size, build and general appearance much as in Mus musculus, but the head larger and broader between the orbits when seen from above. Mysticial vibrissae to 32 mm ; moderately stout at base but the larger members terminating in an extremely attenuated almost invisible tip. Ear short and conspicuously broad; maximum length, \(14 * 5\).

The manus varies in size and proportions from individual to individual, and is sometimes widely different on the two sides of the same individual. Length from base of carpal pads to apex of third digit, to 6 mm , Breadth across the base of digits \(2-5,3 \mathrm{~mm}\); ; third digit to 3 mm . Undersurface of digits lightly haired; claws moderate and lightly fringed. Palmar pads generally well developed and high, their proportions moderately constant. Carpals, generally large and squat; outer much larger in area than inner, but not markedly elongate. Occasionally, especially in subadults, the carpals may be subequal and are then smaller than usual. The first and second interdigitals small and rounded or irregularly pyriform; the third subequal or larger than second, triangular with the apex distad and sometimes with an external accessory fold or heel, but never a separate satellite. General formula of the palmar pads therefore: outer carpal \(>\) inner carpal \(>\) third interdigital \(>\) or \(=\) second interdigital \(>\) first interdigital.

The pes has length to 18 mm ; breadth across base of digits \(1-5,3 \mathrm{~mm}\). and across base of digits \(2-4,2.8 \mathrm{~mm}\), Heel narrowed by infringement of hairs from both sides, and a few bristly hairs sometimes present in the main interdigital basin. Undersurface of toes lightly haired. Claws moderate, and moderately fringed. Plantar pads well raised; highly variable in size, shape and proportion. Metatarsals, snall, round and subequal. First interdigital larger than metatarsals, but very variable, usually bluntly oval or rounded, sometimes divided into moities by a shallow vertical sulcus; second and third interdigitals generally pyriform and subequal; but in one or two examples \(2>3\) and bell-shaped; fourth interdigital obtusely oval or bell-shaped, normally much larger than two and three, but sometimes equal and occasionally with a postero-cxternal heel or satellite. Immaturity chicfly shown by the smaller size of the interdigitals 1 and 4 . The general formula of the plantar pads is, therefore: fourth interdigital \(>\) or \(=\) second \(=\) third \(>\) first \(>\) inner metatarsal \(=\) outer metatarsal.

Tail longer than the head and body except in one example, but variation as high as \(25 \%\); thin and tapering with the termination well haired, Scales on the mid-dorsum from 17 to 21 per cm . The posterior mammary nipples in functioning adults, 6 mm . from base of clitoris, the anterior 6 mm . from the posterior. The scrotum is pigmented almost black over the greater part of its area.

Pelage-The following description is drawn up from observation on living and recently chloroformed animals, supported by examination of field skins which have had no contact with liquid preservatives. Coat soft but sleek and not fluffy, texture varying somewhat with the proportion of guard hairs, which, however, are scarcely longer than the main pile; mid-dorsal length from 9 to 11 mm . On the dorsum, the basal two-thirds of all hairs is about blackish-plumbeous of

Ridgway, and the terminal one-third of the main pile varies from orange cinnamon in the brightest individuals to tawny olive in the dullest. The longer guard hairs are black-tipped and the intermingling of these three colours, in varying proportions, produces a general external colour which varies from warnt red browns near Mikado's brown to much colder and darker tones, near bistre. Midventrally the fur is 5 mm . long, the basal one-third somewhat paler than the dorsal plumbeous, and the upper two-thirds snow white, completely excluding the basal grey. The sides show a more or less decided brightening in colour due to the usual falling off in the number of guard hairs and the line of demarcation from the white belly is very sharp. Head slightly greyer that the back but still strongly grizzled; the extremity of nuzzle and upper lip greyish-white. The ears sparsely clothed within the upper margins only, with greyish-white; externally varying considerably from greyish-brown to blackish-brown. Fore and hind limbs internally like the belly, externally like the sides. Manus and pes dorsally pure white, with a slight calcaneal darkening in some examples. Tail distinctly bicolor, darker above, the colour varying like the ears from greyish-brown to blackish-brown. The scales are plainly visible mid-dorsally, but distally the hairs lengthen and are more closely set, forming at the tip a minute but distinct dark brush both above and below.

Seasonal and sexual differences nil-age variation appreciable but subject to much irregularity; in general, subadult pelages are slightly darker and colder than in adults. Short-coated nestlings are pure white ventrally, but at the head and body, 50 mm . stage, when the coat has lengthened, the basal colour ventrally may be either white or grey, but no examples of the retention of white-based belly fur in adults have been observed.

The effect of alcohol immersion upon the colouration of this species has been much less than upon Notomys alexis from the same areas, preserved under exactly the same conditions. After eight years the dorsal colour is still quite close to that of the field skins, though the white ventrum has been stained yellow.

Skull and Dentition-Twenty examined. Range in variation in non-metrical characters is wide with several anomalies in the relation of skull size to body size, and of skull size to molar wear, etc, though these are less than in Notomys alexis and Pseudomys minnie.

Nasals generally rather short and broad in subadults, longer and without additon to width in aged skulls; their contact with the frontals is fairly wide and the width increases but slightly to its maximum at the pre-maxillary margin.

Braincase romarkably variable in width and shape even in examples of the same basal length from the same locality, though the more conspicuously swollen examples are all aged skulls. The zygonatic outline shows similar and probably sympathetic variation from an almost parallel-sided condition to one in which the anterior width is little more than half the posterior. Age changes in the interorbital constriction slight or largely masked by individual variation; the mean value for subadult skulls little if at all greater than for adults, Upper and lower points of the zygomatic plate usually vertical or the lower somewhat anterior, with the free margin slightly concave or nearly straight, never convex as given by Thomas for the subgetus ( 11,604 ). In immature skulls the lowest point is decidedly anterior to the upper and the condition then quite similar to that in Ps. (Gyomys) apodomoides. Anterior palatal foramina conimaratiyely wide, the posterior extension variable; sometimes falling short of the anterior margin of \(\mathrm{M}^{4}\), but usually reaching about one-third the distance from that point to the lingual cusp of the first lamina. Mesopterygoid fossa highly variable in size and shape; parapterygoid with distinct external and internal walls, neither feature
affording any appreciable distinction from such forms as Ps. minnie, higginsi, and apodemoides, Bullae large, swollen and subject to considerable age changes. In immature skulls the inflated portion rises almost abruptly from the hamular process, but in aged examples a low-set tubular portion separates the two. In the molars the antero-internal cusp of the upper \(\mathrm{M}^{2}\) varies much in size, prominence and exact position; sometimes decidedly less lingual than as figured by Waite (14, pl. xxvi, \(5 d\) ). It is, however, unmistakably present in all examples save one which is quite normal in other characteristics.

Flcsh Dimensions-The following figures give, in mm., the range and mean value (in brackets) of: (1) adults selected as free from obvious immaturity in external characters; (2) subadults of slightly inferior bulk to Group 1 ; (3) a group definitely immature; and (4) two short-furred nestlings.

Even after minimising uncertainties as to maturity by segregation into several age groups and eliminating the geographical factor, the individual variation remains large within each group, reaching in some items as high as \(25 \%\). Moreover, the variation in any one dimension throughout the series, is complicated (as in \(N\). alexis and Ps. minnic) by disharmonies in proportion in individuals-a maximum value for one dimension not infrequently occurring with a minimum valuc for another in the same example; this is particularly noticeable in the head and body: tail ratio. The tabular arrangement of four developmental stages brings out clearly the very early attainment of maximum dimensions of the pes, and to a less degree of the ear.

Waite's \((14,405)\) comparison of size of this species with Mus musculus is rather misleading; it should be stressed that hermannsburgensis is quite equal to the former in average bulk, and the four conventional measurements of the two species overlap so widely, that distinction by this means is impossible.

Skull Dincnsions-the following figures give in mms, the range and mean (in brackets) for 6 a and 7 of skulls, extracted from examples of the series free from obvious immaturity in flesh characters and showing wear on all laminae of \(\mathrm{M}^{1}\), followed by the values for a subadult of having \(H . \& B, 69 \mathrm{~mm}\), weighing 8.5 grammes, and with unworn molars.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{(1)} & \multicolumn{4}{|l|}{(2)} & \multicolumn{4}{|l|}{(3)} & \multicolumn{2}{|l|}{(4)} \\
\hline & \multicolumn{2}{|l|}{8 *} & \multicolumn{2}{|l|}{19 ¢} & \multicolumn{2}{|l|}{5 항} & \multicolumn{2}{|l|}{79} & \multicolumn{2}{|l|}{2 \%} & \multicolumn{2}{|l|}{3 웅} &  & 안 \\
\hline Tail - & 74-90 & (81-5); & 73-97 & (84) & 72-78 & (74) & 72-86 & (79.5) & 70-72 & (71); & 67-72 & (72) & 65 & 41 \\
\hline Head and Body & 71-79 & (74) & 70-83 & (75) & 65-70 & (67); & 66-71 & (68.5). & 58-60 & (59); & 55-58 & (57) & 46 & 47 \\
\hline Pes & 17-17.5 & (17); & 16.5-18 & (17.5) & 16.5-18 & (17) ; & 16-18 & (17) & 17-17 & (17); & 16-17.5 & (17) & 16 & 14 \\
\hline Ear: length - & 13-14 & (13.5) & 13-14.5 & (14) & 13-14.5 & (14); & 13-14 & (13.5). & 12.5-12.5 & 12.5); & 12-12 & (12) & 12 & , \\
\hline Ear: breadth & 7-10 & (7.5); & 6-10 & (8) & & & & & & & & & & \\
\hline Rhinarium to Eye - & 9.5-11 & (10); & 9-11 & (10) & & & & & & & & & & \\
\hline Eye to Ear - - & 9-10 & (9) ; & 9-10 & (2.5) & & & & & & & & & & \\
\hline Weight (in grammes) & 9.5-14.5 & (12); & 8-18.5 & \({ }^{(3)}\) (12) & & & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Greatest length & - & * & - & & \(21 \cdot 6-23 \cdot 2\) & (22 & \(21 \cdot 0-23 \cdot 2\) & (22-1) & \(20 \cdot 6\) \\
\hline Basal length & - & - & - & & 17.0-19.5 & (17.9), & \(17 \cdot 6-19 \cdot 2\) & (18.4); & \(16 \cdot 8\) \\
\hline Zygomatic breadth & - & - & - & & \(10 \cdot 7-11.8\) & (11.2), & \(10 \cdot 7-12 \cdot 2\) & (11.1) & \(11 \cdot 4\) \\
\hline Braincase breadth & - & - & - & - & \(10 \cdot 4-11 \times 5\) & (10.9), & \(10 \cdot 5-11 \cdot 8\) & (10.8) & \(10 \cdot 8\) \\
\hline Interorbital breadth & - & - & - & - & 3.3-3.8 & (3.5), & \(3 \cdot 3-3 \cdot 7\) & (3-5) ; & \(3 \times 5\) \\
\hline Nasals, length & - & - & + & & \(7 \times 4-8 \cdot 2\) & (7.7), & \(7 \times 2-7 \times 9\) & (7-6) ; & \(6 \cdot 4\) \\
\hline Nasals, greatest brea & dth & - & - & & 2-0-2.5 & (2-4), & 2-1-2.6 & (2'3) & \(2 \cdot 3\) \\
\hline Palatal length & - & \(\cdots\) & - & - & 10,5-11.7 & (11.1), & \(10 \cdot 4-11 \cdot 5\) & (11-1) ; & \(10 \cdot 7\) \\
\hline Ant. Palatal Foramin & na; & & \(\sim\) & - & \(3 \cdot 8-4 \cdot 6\) & (4*3), & \(4 \cdot 0-4 \times 5\) & (4.3) ; & \(3 \cdot 8\) \\
\hline Ant. Palatal Foramin & na; & adth & - & - & 1.4-1.6 & \((1 \cdot 5)\), & \(1 \cdot 4-1 \cdot 7\) & (1-6); & 4 \\
\hline Bullae - & - & - & - & & 4-3-4.7 & (4-5), & \(4 \cdot 4-5 \cdot 0\) & (4.8); & \(4 \cdot 7\) \\
\hline Upper Molars & \(\rightarrow\) & \(\sim\) & - & & 3.4-3.9 & \((3 \cdot 6)\), & 3.4-3.8 & (3-6); & \(3 \cdot 5\) \\
\hline
\end{tabular}

\section*{B Ps. (Leggadina) mermannsburgensis cf, var, bolami Troughton}

Four specimens from the Musgrave Range are conspicuous in possessing a very long pes associated with a very long ear. The three adults (all of) have the following range of dimensions: head and body 70-78, tail 81-92, pes 18-19, ear \(15 \cdot 5-17\), and suggest affinity with the form from Ooldea, named as above by Troughton \((13,292)\). Brazenor \((1,10)\) has disputed the racial validity of this form on the grounds that local variation, both in Ooldea and in Central Australian material, is sufficiently high to embrace the dimensions given for both races, and that the pelage characters quoted for the southern form can be found much further north in specimens of normal dimensions, and the data given by Wood Jones for his Ooldea series certainly supports him so far as dimensions go. No specimens from Ooldea are available to me, but I find, on careful analysis of all relevant characters of the present series, that despite intergradation of individual characters, and a high prevailing rate of variation, the four specimens noted are casily distinguished from the rest by: (1) simultaneous occurrence of maxima for pes and ear; (2) larger size of the metatarsal pads and a more posterior site for the inner of the two, in the two specimens in which this can be tested; (3) the presence of all three of these features in a very immature example, which has head and body 66 , tail 77 , pes 19 , ear 16.5 . In pelage characters two of them are conspicuously cold in colour; the others quite normal.

This complex of characters makes an approach to bolamis as given by Troughton, and would appear to justify the view that two distinct strains of hermannsburgensis occur side by side throughout the area between Ooldea and the Musgrave Range. The absence of pure communities of bolani at Ooldea might well be due to the interdiffusion having taken place on an east-west, rather than a north-south axis, in which case its centre of origin may lie far to the west in the area from which unfortunately no specimens are available.

It should be noted that the skull of the long-eared, long-footed example from the Musgrave Ranges, here examined, differs in no way front that of its associates. Of the three skull characters quoted for bolami at Ooldea, the interorbital width and molar length are both to be found in numerous short-eared, shortfooted examples of the typical race, from the localities listed above.

\section*{Pseudomys (Leggadina) waitei Troughton (13, 290)}

Twelve specimens examined; one adult, one subadult, and three nestlings from Wollara in the winter of 1932; one adult and three nestlings from Macdonald Downs in the winter of 1933 ; one subadult and two extra skulls unlocalized, but probably from the Macdonnell Ranges.

The Wollara specimens were obtained by a group of natives from the Petermann Range, who regarded it as a rarity and called it Anoola. Unlike hermannsburgensis
which greatly out-numbers it at Wollara, it makes no considerable burrow but lives and nests in shallow excavations at the base of Triodia tussocks.

The adult female of this batch was lactating and the three associated nestlings werc probably hers; the subadult female was pregnant with three embryos, two in the right horn of the uterus, one in the left; the Macdonald Downs female was also lactating and associated with three nestlings. Of the nine which can be sexed, seven are females. Stomach contents in the Wollara examples consisted of coarsely granular reddish vegetable matter and some sand.

External Characters-Head and body length about as in the largest examples of hermannsburgensis, but the body bulkier, thicker set, with stronger limbs, Head much as in the latter species; the ear length to 14 mm . ; mysticial vibrissae to 30 mm .

Manus large and heavy; length from base of carpal pad to apex of middle digit 7.5 ; breadth across base of digits \(2-5,3.5 \mathrm{~mm}\). ; third digit to 3 mm .; claws of moderate length and well fringed. Pads of mediun size but sharp cut and high; outer carpal longer than inner but the disproportion in area less than in hermannsburgensis, and the third interdigital rounded and not triangular, Pad formula: outer carpal \(>\) inner carpal \(>\) second interdigital \(>\) third interdigital \(>\) first interdigital.

Pcs-Short, broad and strong; length to 17.5 mm .; breadth across base of digits \(1-5\) to 3.8 mm .; middle toe to 4 mm . Pads strongly developed and high, and notable for their simple, rounded and complete outlines, without trace of heels or satellites. Somewhat variable, but in the two best preserved examples the metatarsals and first interdigital are small, round and subequal, and the second, third and fourth interdigitals larger, rounded not pyriform, and also subequal, leading to the unusual formula: fourth interdigital \(=\) third \(=\) second \(>\) first \(=\) outer metatarsal \(=\) inner metatarsal.

Tail conspicuously short, ranging from \(65-77 \%\) of the head and body length; scales, 27 per cm.

In the largest lactating example the posterior mammary nipple is 9 mm . from clitoris; the anterior 11 mm . from posterior.

Pelage-No field-made skins are available, and the following description is drawn up from material preserved in alcohol for eight years. Fur moderately soft in texture, guard hairs scarcely coarser than the main pile; fluffier and more sparse than in hermannsburgensis. Mid-dorsally the main pile reaches 9 mm . and guard hairs 11 mm .; basal two-thirds of the former coloured a medium plumbeous; followed by a subterminal band of dull ashy buff and free tips black; guard hairs black throughout. General external dorsal colour near Ridgway's buffy brown; paler, less brown and more distinctly grizzled than in hermannsburgensis. Ventrum creamy white to base (probably pure white in nature). Sides clearing somewhat but still ticked with black almost to the junction with the ventrum, where a narrow band of pale buff intervenes; transition much less sudden than in hermannsburgensis and somewhat less than in forresti of the Lake Eyre Basin. Head like the back. Ears pale in substance; within sparsely haired greyish-white towards margins; externally pale ashy buff, darkening to the anterior margin, where there is a narrow border of blackish-brown. Limbs externally like the sides, internally like the belly. Manus and pes originally white or very slightly greyed, and the latter with a small area of buffy-brown on the external aspect of the ankle. Tail well covered with moderately erect hairs, which do not lengthen towards the tip to form a brush; bicolor, the dorsum buffy over a small area near the base, then greyish-brown to end ; below greyish-white.

The northern specimens from Macdonald Downs are somewhat more olivaceous than those from Wollara but the detalled distribution of colour is quite the same. The six nestlings are all at the dark short-coated stage, but are all more buffy dorsally than hermannsburgensis nestlings of comparable growth, and the ear shows distinctly the narrow dark mark on the anterior margin.

Skill and Dentition-Two examined, both 9 ; one from Wollara, one from Macdonald Downs; they are in close agreement with one another and with the example figured by Waite ( \(14, \mathrm{pl} . \mathrm{xxv}\). fig. \(1 g-h\) ). Gencral features apparently very close to the form of forresti from the Lake Eyre Basin, of which, however, only parts of one skuil are available. Skull larger than that of hermannsburgensis in almost all dimensions, but bratucase, nasals, intcrorbital breadth and the bullae relatively smaller than in fully adult examples of that species. In dorsal aspect the zygomata are stronger anteriorly and wider spread in their middle course, and the braincase is more abruptly expanded, resulting in a squarer outline, as mentioned by Waite. Interorbital area strongly concave and supraorbital edges levelled off in a characteristic way by a marked muscular impression and not rounded and overhanging as in hermannsburgensis. Temporal and occipital muscular impressions more pronounced and in the larger of the two skulls, the former are distinctly beaded, though less so than in Waite's figure. The zygomatic plate has its upper and lower points on a perpendicular and the free margin distinctly concave in its lower course, not convex, and its completed oulline a shallow sigmoid. Anterior palatine foramina narrower, especially posteriorly, where they extend almost to the lingual cusp of the first lamina. \({ }^{(4)}\) Upper \(M^{1}\) much larger, its length exceeding the combined lengths of \(\mathrm{M}^{2}\) and \(\mathrm{M}^{3}\). A very large elongate antero-internal cingular cusp is present on the upper \(\mathrm{M}^{1}\); it is much larger and its position more apical than in hermannsburgensis. Incisors long; markedly orthodent.

Flesh Dimensions-Dimensions in mms. of (1) an adult of from Wollara, (2) an adult of from Macdonald Downs, (3) a subadult of from Wollara. Head and body, \(88,83,79\). Tail, \(59,64,52\), Pes, \(17,17 \cdot 5,16\); breadth (across base of digits \(1-5\) ) \(3 \cdot 5,3 \cdot 8\), -. Manus length, \(7 \cdot 5,7 \cdot 5,7\); breadth, 3, 3•5, 3. Ear, \(12 \cdot 5,14,12 \cdot 5\).

As shown by Waite's table and confirmed by the present material, individual variation is considerable. The dimensions of the topotype, as re-measured by Troughton, can be exactly matched in the Wollara specimens, but it should be noted that the values for head and body, tail and pes, in the type are all considerably exceeded, both in Waite's series and in the present specimens.

Skull Dimensions-Dimensions of the two above females from Wollara and Macdonald Downs, respectively; both have worn molars. Greatest length, 24*1, \(25 \cdot 4\); hasal length, \(21 \cdot 3,22 \cdot 6\); post. zygomatic breadth, \(13 \cdot 3,14 \cdot 0\); braincase breadth, \(12 \cdot 0,11 \cdot 7\); interorbital breadth, \(3 \cdot 5,3 \cdot 6\); nasals length, \(8 \cdot 2,8 \cdot 2\); nasals breadth, \(2 \cdot 3,2 \cdot 3\); palatal length, \(12 \cdot 5,14 \cdot 0\); ant. palatal foramina length, \(5 \cdot 3\), \(5 \cdot 5\); ditto, breadth, \(1 \cdot 3,1 \cdot 5\); bullae, \(4 \cdot 6,4 \cdot 6\); upper molar row, \(4 \cdot 2,4 \cdot 5\).

The Wollara specimens undouhtedly represent the typical race as defined from Alice Springs, and the agreement of the Macdonald Downs specimen is also close in essentials. It is noteworthy, however, that this specimen, like that of Troughton from the IIart Range, 50 miles south, shows minor anomalies in a longer ear and probably in colouration as well, and may foreshadow a still more marked differentiation further to the north-east. From forrest \(i(3,101)\), of the Lake Eyre Basin (to which it is mutch closer than to hermannsburgensis), it is distinguished by its darker colouration, longer and softer fur, bicolor tail, longet nasals, and, in the sonthern part of its range at least, by its shorter ear.
\({ }^{(4)}\) Waite's figure is erroneous here, as pointed out by Troughton (13, 290 ).

\section*{Laomys pedunculatus Waite 1896}

Neither specimens nor recognisable accounts of this interesting rat could be obtained during 1931-5. A special sojourn was made at lllamurta on the south side of the James Range in the hope of obtaining it, but the place is less virgin than when E . C. Cowle got his two specimens there, and trapping was without result.

In working out the relationships of the succeeding species, I have reexamined seven examples; five alcohol preserved and two skulls. Three of these are of the original series upon which Waite ( 14 , pl, xxv, fig. \(1 a-f\) ) founded pedunculatus, and the others are evidently of the second collection noted by him two years later \((15,117)\). All are from Alice Springs in the central Macdonnells, except one skull representing the variety brachyotis which is from Illamurta.

None of the males show any external vestige of a scrotum; in two females the manmary nipples are moderately prominent, but neither uteri are pregnant. The stomachs of the five in alcohol have all been skilfully extracted through a small incision in the lateral abdominal wall-probably by natives, as I have scen a similar embalming trick practiced by their children upon lizards. The sex ratio in the combined series recorded is 8 t \(: 3\) 오.

The following notes are supplementary to Waite's generally excellent description, and may serve to bring the account of this interesting species into uniformity with those dealt with in this, series of papers.

Extemal Characters-Four of the alcohol specimens are evidently adult and are uniform in bulk and dimensions; the fifth is slightly smaller and apparently subadult. Form rather stout and short-limbed, an appearance heightened by the profuse pelage and swollen tail. Head large and long muzzled with a welldeveloped though not swollen upper lip and moderately prominent rhinarium. Ears large and broad. Eye apparently prominent in life, Mysticial vibrissae strongly developed, stout basally and the longer members reaching 65 mum, smaller anterior members white, the rest black with the terminal one-quarter white. The general aspect of the head in these specimens is not especially anomalous, very much as in the larger Psendomys spp.

Manus stout, with conspicuously short digits and small though prominent pads. Length to 11 mm ; ; breadth across the basc of digits \(2-5,5 \mathrm{mmL} . ;\) middle digit, 4 mm . Backs of digits strongly haired and the short, weak claws well fringed. Paln and undersurface of digits quite naked. Outer carpal considerably exceeding miner both in length and area, and the inner faintly heeled. Interdigitals much smaller than carpals, rounded or roughly heart-shaped, and the third always with a distinct satellite postero-laterad; their relative size somewhat variable, but, in the majority: outer carpal \(>\) inner \(>\) third interdigital \(>\) second \(>\) or \(=\) first. Pes very stout and tapering strongly to heel. Length to 27.5 mm ; breadth at base of digits \(1-5 ; 6.5 \mathrm{~mm}\).; middle digit to 5.5 mm . Pads, except for lower metatarsal, short, rounded, but well raised. The lower metatarsal with a variable and low posterior prolongation and a somewhat crescentic or comma shape. The upper metatarsal much smaller and rounded; first and fourth interdigitals equal, bell-shaped or rounded, with the base heeled, especially in the fourth, where it is almost a separate satellite pad in some examples. Interdigitals, second and third bluntly pyriform, subequal, or the second the larger. Formula of pedal pads, therefore: inner metatarsal \(>\) fourth interdigital \(=\) first \(>\) second \(=\) third \(>\) onter metatarsal.

Tail slightly longer than head and body, as high as \(114 \%\). Detailed shape as given by Waite, and much as in Chuetocercus cristicauda; incrassation variable, reaching a maximum diameter of \(12 \mathrm{~mm} . ;\) scales ventrally about 12 per cnu. Integument over the swollen portion thick and fibrotis but not fragile; below the
derma the tail tissues are of normal diameter and apparently devoid of fat (in alcoholic material).

Posterior mammary nipple 6 mm . from base of clitoris, anterior 8 mm . from posterior.

Pelage-Rather harsh but quite profuse; mid-dorsally the main pile averages 18 mm , with guard hairs up to 25 mm ., but a proportion of them are co-terminous with the main pile; ventral fur 10 mm . Distribution of colour, in the main as given by Waite, but in the unfaded examples there is a marked increase in the richness of the ground colour upon the crown and nape and tail base (clay colour to cinnamon), and the resulting external colour varies from tawny olive on these parts to Saccardos umber on the mid-back. The external colour over the whole of the ventrum is creamy white; basally it is pale plumbeous on thorax and midbelly pure white on gular, sternal and inguinal areas. The dark markings on the originally buffy manus and pes are still plain in four of the five specimens. The tail brush reaches 15 mm . beyond tail tip.

Skull--The two skulls examined are those used by Waite, and of these his excellent figures are apparently based upon the larger, the measurements of which are given below. The brachyotis skull is definitely young and with less worn molars, but does not differ in any important way; its incisors have been destroyed. In general structural characters the skull of Laomys pedunculatus is quite similar to that of Leporillus (as pointed out by Thomas (10,372)), and is still closer to the larger species of Pseudomys s.str, such as higginsi. The striking molar characters of parallelism of laminae and reduction of buccal cusps are shown in about the same degree by both skulls; in the larger the incisors are stout and strongly opisthodont.

Flosh Dincusions-The following are the results of the re-measurement of (1) two adtult of and (2) two adult ot, from Alice Springs: Head and body, 137, 124; 120, 119. Tail, -, 128; 130, 126. Pes length, 27, 27*5; 27, 27; breadth at base of digits \(2-5,6 \cdot 5,6 \cdot 5,6 \cdot 5,6\). Manus length, 11,\(10 ; 11,11\); breadth at base of digits \(2-5,5 \cdot 5,5 \cdot 0 ; 5 \cdot 0,5 \cdot 0\). Ear, \(_{2} 3,22 ; 23,20\). Rhinariunt to eye, 20, 19;20,19. Eye to ear, 12,\(11 ; 13,11\).

Skull Dinensions-Re-measurement of the skulls " \(F\) " and " \(B\) " studied by Waite gives the following figures. "F" represents brachyotis from Illamurta. Greatest length, \(35 \cdot 0,36 \cdot 8\); basal length, \(28 \cdot 9,31 \cdot 1\); zygomatic breadth, \(17 \cdot 0\), \(17 \cdot 6\); braincase breadth, \(15 \cdot 6,16 \cdot 0\); interorbital breadth, \(5 \cdot 0,5 \cdot 2\); nasals, length, \(12 \cdot 6 ; 13 \cdot 3\); nasals, greatest breadth, \(3 \cdot 5,3 \cdot 8\); palatal length, \(18 \cdot 1,19 \cdot 3\); anterior palatal foramina, length, \(7 \cdot 0,7 \cdot 3\); ditto , breadth, \(1 \cdot 9,2 \cdot 1\); bulla, \(5 \cdot 1,5 \cdot 3\); upper molar series, \(6.6,6.5\).

In his key to the genera of South Australian Muridae, Wood Jones \((6,296)\) makes use of the incrassation of the tail as a differential generic character, In the five examined there is marked variation in this feature and Waite mentions that the form brachyotis is less incrassated, as is also, apparently, the later species woodwardi of Thomas. While the dermal thickening is perhaps less subject to change than the fat deposits of thick tailed marsupials, it seenis nevertheless an uncertain character to use in such a connection. The ear length of Laomys, also used in this key, is inferior to that of Ps. minnie and Ps, (auritus.

Pseudomys (Thetomys) nanus Gould
Mus nanus Gould, 1857, P.Z.S. 243 ; Waite, 1897, Proc. Roy, Soc. Vic., N.S., 10, 127 , pl. vi, fig. 4 a-d
Mastacomys sp., Waite, 1896, Rpts. Horn Expd., II, 406, pl. xxvi, fig. d-f ; ibid, 1897, Proc, Roy, Soc. Vic, N.S., 10, 128
Rattus or Pseudomys sp., Thomas, 1922, A.M.N.H., 10, (9), 550

Pseudomys (Thetomys) nanus, Wood Jones, 1925 (in part), Mamms, S. Aust., 314-315
I'seudomys (Gyomys) descrlor Troughton, 1932, Rec Aust. Mus., 18, (6), 293 Gyomys desertor, Iredale and Troughton, 1934, Check List Aust. Mamms., 79
Psoudomys (Gyomys) desertor, Brazenor, 1936, Mem, Melb. Mus., 10, 74
Seven specimens examined; two skins and skulls, three in alcohol and two skulls without skins. Of these, two were obtained in January 1933, about 10 miles south of Konnapandi on the southern front of the Musgrave Range, in an area of sandy loam covered by giant spinifex, which was being worked at the time for the Mala (L. hirsutus). One specimen was dug by a native boy from a shallow hole, and the other I trapped some days later with a witchetty larva bait set for Chactocorous cristicauduta which was plentiful in the vicinity. Of the others, one is from near Mount Crombie in the same area as the above, two more are of the Horn Expedition material from the localities in and north of the Macdonnell Ranges, listed by Waite, and two are unlocalised but are probably also from the Macdonnell Range area.

Little data is available on reproduction or habits. Of the six which can be sexed, three are \(ㅇ, t\), three \(\hat{0}\). All but one are adult or advanced subadults. Two of the males have prominent testes in conspicuously dark pigmented scrota. Stomach contents were not examined, but the modification of manus and the success of the larva bait on traps, suggests that the diet nay be partly insectivorous.

It is a species of strikingly distinctive characters, The Pitchenturra name is Entroota.

External Characters-Form in fully adult examples stout, short-limbed, powerful. The head with short pointed muzzle and bowed profile. Eye and ear small; the latter to 14.5 mm , with a breadth of 9.5 mm . across the trough of the pinna; rounded in outline and thick in substance; relatively shorter than recorded for any Gyonves. Mysticial vibrissae weak, the longest ca. 25 mm .

Mants-Details of manus and pes are based chiefly upon a subadult example in alcohol (figured) in which these features are well preserved; but the condition in adults is evidently very similar though the parts are stouter and the digits less attenuated.

Length from base of carpal pads to apex of third digit 7 mnn. ; width across base of digits \(2-5,3 \mathrm{mml}\); middle digit 4 mm . Claws remarkably long, slender, sharp, and strongly curved even in the oldest examples. Undersurface of digits naked and strongly ridged; palms dusky. Tads small but fairly high and well developed; carpals plain, the outer slightly larger both in area and length than the inner; first interdigital small, rounded; second pyriform, third crudely triangular, and with a distinct heel or satellite postero-cxternally. Outer carpal \(>\) inner \(>\) second interdigital \(=\) third \(>\) first.

The modification of the manus, in the great length of the central digits and their claws, suggests a specialization to a probing and piercing function, though this is somewhat discounted by a similar if less extreme condition in the pes.

Pcs-Tapering to the heel from an interdigital breadth of 4 mm ; third digit 5 mm . Undersurface of tocs as in manus; claws sharp and long, but less so than in the manus. Plantar surface irregularly pigmented and mottled, and the pads made conspicuous by still darker pigmentation. Pads small and weakly developed; metatarsals and lateral interdigitals bell-shaped with apex distad; second and third interdigitals elongate pyriform; fourth with a low satellite; fourth interdigital \(=\) inner metatarsal \(>\) third interdigital \(=\) second \(>\) outer metatarsal
\(>\) first interdigital. Tail shorter than head and body ; its length fron 88 to \(93 \%\) of same; mid-dorsal scales 14-15 per cm.

Pelage-The following description is drawn up from field notes upon chloroformed animals, and upon a field-made skin, having had no contact with preservatiyes.

Fur harsh, coat dense. Mid-dorsally the main pile is about. 11 mm , long, the guard hairs 18 mm . The colour of the basal half is blackish-plumbeous, the broad subterminal band about clay colour, and the extreme tip of about 1 mm . black. The guard hairs are black throughout or have the extreme tip pale buff, and the resulting external colour is a strongly grizzled rich brown near Saccados umber, but the exact colour, as in all strongly grizzled pelages, depends on the angle of view. The dorsum of head grizzled like the back, but the ground colour both here and on the rump slightly richer than mid-dorsally, Ear, both within and without, well covered with cinnamon buff hairs; externally the buff is mixed with a sprinkling of blackish-brown especially towards the anterior margin, but there is no localized dark marking on the margin. Eye conspicuously ringed with an area of rich cinnamon. Sides somewhat paler than the back but still strongly grizzled; the transition to the belly gradual. The basal colour on the ventrum for the most part paler than on the back; the external colour at the margins of the belly similar to the sides-a lightly grizzled cinnamon buff with the slate basal colour showing through, but in the centre of the belly there is an irregular-shaped area of bright unmixed cinnamon buff; remainder of ventral surface greyish buff with the basal colour showing through. Limbs externally like the sides; internally like the margins of the belly. Carpus and manus cinnamon buff with irregular markings of blackish-brown covering a large part of both; digits greyish-whitc. Pes, generally cinnamon buff but a dark blackish-brown marking on the outer aspect of tarsus; digits of pes changing sharply to greyish-white, then to black at the base of the claws. Tail well haired throughout and forming an incipient brush terminally; the basal 5 mm . a rich cinnamon on all surfaces; the rest strongly bicolor , with the dorsal hair jet black and ventral, cirnamon buff fading distally into greyish-white,

Seasonal and sexual variation apparently nil, but individual variation appreciable though not great. The orbital ring which is a very conspicuous marking in the living animal, is present in all the specimens, as are also the dark markings on manus and pes. However, in one subadult example in alcohol, the curions midventral chestnut patch is absent, and in another (skinned from alcohol) the chestnut areas of ear and tail base are grizzled with black.

Skull-Five cxamined, including specimens \(C\) and \(E\) figured by Waite. In gencral aspect and many details of structure and dentition, very unlike the skulls of Gyomys available to me. It is strongly, even massively, built and densely ossified, and in general outlinc and form of braincase and nasals reminiscent of Mur and Ratfus, respectively. The braincase is tapered anteriorly, not globular, and the interorbital space in adults is narrow and tubular, but not bevelled at the edges. The nasals peculiarly shaped, with a bulbous expansion anteriorly, from which they narrow rapidly posteriorly, terminating well in advance of the main labyrinth of the fronto-maxillary suture. The nasals and muzzle short and broad, and in profile strongly arched down. Lacrymals moderately large and rounded Zygomatic outline strongly tapered forward, the anterior width only half the posterior; the individual zygomata stout and strong. In the zygomatic plate the upper and lower extremities are vertically situated and the edge evenly concave in two, nearly straight in two others, and terminates above a well-marked masseteric tubercle. Anterior palatal foramina short and narrow, barely reaching the molars, their maximum width anterior to their mid-point. Parapterygoid fossa well developed and deep, with a well-marked external wall, in the only adult
(figured) in which this region is undamaged, shallower in immature skulls. Bullae large, broad and much inflated. Upper molars heavy and broad, with the laminae of \(\mathrm{M}^{1}\) and \(\mathrm{M}^{2}\) feebly cusped and but slightly arched; in worn examples (as figured), the laminae are almost transverse as in Laomys. A variable but sometimes well-marked cingulum extends around the posterior and lingual margins as far as the first lamina, where (in the example figured) a distinct low level cusp is developed. This is absent in the other four, where, however, rugosities are sometimes developed on the same site. In the lower molars the supplementary posterior cusp is present but very reduced. Incisors short, stout and opisthodont.

Flesh Dimonsions-The following figures give the dimensions in mm, of (1) an adult \(\delta\) from Koonapandi, (2) an adult of from Mount Crombie, and (3) an adult \(\&\) unlocalized but probably from the Macdonnell Range. Head and body, 101, 98,107 ; tail, \(88,92,97\); pes, \(21 \cdot 5,21,21 \cdot 5\); ear, \(14 \times 9 \cdot 5,14 \cdot 5,13\) ca.; rhinarium to eye, \(14,-\), -; eye to ear, 12, , -; weight in grammes, \(28.5, \ldots, \ldots\).

Skull Dinensions-The following are the skull dimensions in mm. of (1) the above of from Koonapandi, (2) the above of from Mount Crombie; (3) the § skull "E" figured by Waite. Greatest length, \(26 \cdot 6,27 \cdot 5,25 \cdot 9\); basal length, \(23 \cdot 0,23 \cdot 6,21 \cdot 8\); zygomatic breadth, post., \(14 * 3,14 \cdot 2,14 \cdot 0\); braincase breadth, \(13 \cdot 4,12 \cdot 9,12 \cdot 9\); interorbital breadth, \(3 \cdot 4,3 \cdot 5,3 \cdot 6\); nasals length, \(9 \cdot 2,9 \cdot 0,9 \cdot 1\); nasals breadth, \(2 \cdot 6,2 \cdot 8,2 \cdot 5\); palate length, \(14 \cdot 1,13 \cdot 9,13 \cdot 9\), anterior palatal foramina, length, \(4 \cdot 4,4 \cdot 6,4 \cdot 4\); ditto, breadth, \(1 \cdot 4,1 \cdot 4,1 \cdot 3\); bulla, \(5 \cdot 5,5 \cdot 6,5 \cdot 4\); upper molar row, \(4 \cdot 7,5 \cdot 0,4 \cdot 9\).

The material here reviewed undoubtedly represents the species from Central Australia identified by Waite as Muts mants Gould and re-named Pseudomys (Gyomys) desertor by Troughton in 1932 on the grounds of subgeneric unconformity with Thetomys, in which group Thomas had meantime (1910) placed Gould's nonus. I am unable at present to follow Troughton in this, however, both through doubt as to the unconfornity with Thetomys and belief in its unconformity with Gyomys.

Under the first head, the following points may be noted: (1) Gould's plate of numus illustrates the living Central Australian animal closely both in general aspect and detail; the discrepancies that exist might reasonably be attributed to omissions by the artist; the description and dimensions are also in agreement. (2) Thomas, in 1910 and in subsequent contributions, did not dispute IVaite's identification of the adult Central Australian specimens, though the immature zwere questioned. (3) No description, dimensions, or figures of the skull of nanus appear to have been published, but Thomas's definition of the Thetomys skull (with nanus as genotype) agrees with the present material in the majority of points raised; particularly in the more normal (i.c., Ratus or Mus like) form of skull, in the frequent concavity of the zygomatic plate and the deeper excavation of the parapterygoid fossa.

The evidence of the supplementary cusp on \(M^{1}\) seems to me much less conclusive of affinity here than is believed. 'Ihomas omits any mention of the number of skulls examined, and in view of the varying incidence of the cusp already shown in Notomys, Pseudonys, and even Leggadina, this doubt must continue until series are examined. It may be recalled that a cingular cusp does occur on one of the five skulls here cxamined, and that in the two examples of Thetomys gouldi which have been figured, it is quite absent from that of Waterhouse.

There is little evidence of regional variation. Specimens here noted are from localities about 300 miles south-west of the most southerly of Waite's series, but the agrement in all characters is close. Some minor differences in dimensions are evidently due to condition of material or method of observation; for example, the very short ear given by Waite is no doubt due to the older method of measur-
ing the back of the pinna, and in the holotype of desertor (a mounted specimen) to shrinkage. No really large specimens (judged by externals) seem to have been examined hitherto, though the above holotype skull is as large as any of the present five,

Brazenor has recorded an interesting extension of the range of this species, to the Murray River in north-west Victoria, nearly 1,000 miles from the Central Australian sites.

\section*{Leborillus apicalis Gould 1853}

Though the types of the species described by Gould were said to be from South Australia, its position in the fauna of the southern portions of this State remains very obscure, as records and material alike are entirely lacking, That the original specimens were from northern mallee or Upper Murray districts and not from the far north or centre is rendered very probable, partly by the circumstance that these latter were at that time for the most part unknown, and partly from the records of its plentiful occurrence ten years later in the contiguous Victorian mallee, provided by Krefft \((7,64)\) and Brazenor \((2,77)\).

The first reference to the presence of Leporillus in Central Australia (exclusive of the Lake Eyre Basin) is provided by Ernest Giles, who, in the summer of 1872-73 near Mount Peculiar in the north-west Macdonnells, records having seen nests of "Mus conditor" in a dense mixed mulga scrub. The nests were 15-20 feet in diameter and 4 feet high and contained sticks up to 3 , feet long and 1 inch in diameter \((4,101)\). A month or two later, having crossed the Amadeus Basin, he again records the presence of these stick nests along the \(26^{\circ}\) parallel between Ayers Range and the Cavanagh Range. It was not till 23 years later that specimens obtained by Mr. Field at Alice Springs enabled Waite (15, 115) to identify the species as apicalis. In 1903, Basedow recorded a nest-building rat as occurring plentifully near his camp 68, south of the Mann Range.

Recent interrogation of blacks by Mr . Bowman at Glen Helen in the western Macdonnclls indicates that it may still be extant in the country west of Mount Peculiar along the north border of the Aboriginal Reserve, and the Pintubis hereabouts call it Tweealpi, and the west Armitas Turulpa, But over the greater part of the country traversed by Giles between the Macdonnells and the \(26^{\circ}\) parallel and as far west as the West Australian border, it now seems to have become rare to vanishing point, and though the blacks are well acquainted with it still and give consistent descriptions of it, I failed to secure specimens on any of the routes personally travelled during 1931-35. Several white residents, however, particularly A. Brumby of Firnabella, who had travelled much along the southern part of the Mann and Tomkinson, assured me that some of the colonics mentioned by Basedow and Giles south of the Mann and Musgrave, were still extant, and in the winter of 1933 while conducting Dr. Cecil Hackett and Mr. N. B. Tindate through the area, he found a nest under a kurrajong on limestone country eight miles west of Mount Cronbie. From this two specimens were secured by the time-hotoured method of firing the pile and allowing the natives' dogs to sieze the inmates as they fled.

As pointed out in discussing the disappearance of \(L\) conditor from the Lake Eyre Basin, the usual explanation given by settlers of the disturbing effect of introducing stock into the rats' habitat, is quite insufficient to account for the facts. In the western centre the argunent fails altogether, since the chief known former habitats of apicalis have never been stocked. On the other hand, a sparse but active hunting aboriginal population persisted here much later than in the Lake Eyre Basin, and the stubbornly colunial and gregarious habits of the rats render them very vulnerable to the attack by fire; there seems little doubt that the native has been the chief factor in their disappearance.

All specimens of Leporillus from the western centre so far examined have proved to be apicalis, and the most westerly record for conditor in these latitudes is the west shore of Lake Eyre, 450 miles east-south-east of the locus of the specimens here described. It is quite possible, however, that formerly both species occurred in the central areas; overlappitig of their former habitats in Victoria and New South Wales seems well attested.

Foth Mount Combie specimens were adult non-pregnant fenales, with mammary nipples strongly contracted. The stomach contents were voluminous but little characteristic; for the most part finely comminuted as in such small species as Notomps alexis and quite withont recognisable vegetable fragments or sand. The rich oily seeds of the local kurrajong (Brachychiton. Gregorii) no doubt contribute to the diet. The dung pellets are short and obtusely oval* the largest about \(7 \times 5 \mathrm{~mm}\). Nio external parasites were taken upon the preserved material.

External Characters-The only alcohol prescrved material of other species available for comparison is the series bred in captivity from Lake Eyre Basin stock which I have already reviewed \((3,111)\). Compared with these, the present form is light and slender limbed. Hear rclatively longer and narrower muzzled and profile straight. On preservation the head has "set" upon the vertebral column almost at right angles and the cars are pricked, faithfully reproducing the characteristic "alert", stance apparently adopted by all the species. Far apparently of much the same relative size as in conditor; longer that in jonesi; mysticial vibrissae strongly developed, as stout as in the much larger conditor and much longer ; to 83 mm. ; black with a long attenuated white tip.

Manus-I ength to 16 mm ; breadth to 6.5 ; third digit to 6.5 . Pads relatively smaller than in conditor of the Lake Eyre Basin and their shape more angular and puckered, though this may be due to plasmolysis, Outer carpal larger than inner, both in length and arca; first and third interdigitals crudely triangular and both with heels or satellites; second crudely tetrahedral. Outer carpal \(>\) inner \(>\) second interdigital \(>\) third \(=\) first.

Pes-Much lighter than in conditor of the Lake Eyre Basin and with pads simpler, especially the lateral interdigitals which are less hollowed out at the base; differing in detail on the two sides of the same specimen. The inner metatarsal on the right side creseent-shaped with the concavity laterad; on the left side much straighter though of the same oyerall length. The outer metatarsal much smaller, evenly oval; second and third interdigitals irregularly oval, first and fourth with well marked postero-laterad heels and their completed outline bell-shaped. Fourth interdigital \(>\) second \(=\) third \(>\) first \(>\) inner metatarsal \(>\) outer metatarsal.

Tail decidedly longer than the head and body ( \(1: 1 \cdot 2\) ); rather thinly haired anteriorly; scales showing through plainly, 10 per cm.

Mammary nipples very posterior and close together; posterior 9 mm . from base of clitoris; anterior 9 mm . from posterior.

Pelage-In dealing with the colouration of the Alice Springs material, Waite limited himself to a reference to Gould's plate (5, pl, ii, 3), with which he found agreement. Brazenor (2) does not mention the preservation of his material nor its location, and Troughton's notes (12, 32) are based on old faded mounted specimens, The following description is drawn up from the skin of the larger of the Mount Crombie specimens made up after six weeks in alcohol, and it shows minor discrepancies with each of the foregoing, the importance of which it is difficult to assess at present.

Fur comparatively soft and dense and of even texture; the two constituent piles differing in length and colour, but not greatly in the thickness of the hairs.

Mid-dorsally the shorter is 18 mm . long, with its basal two-thirds dark plumbeous followed by a subterminal band of warm buff, and the extremity dark brownish black. The second pile reaches 23 mm . (though a proportion is scarcely longer than the first) and is similarly plumbeous at the basal two-thirds and the rest shining black. The resulting external colour from crown to tail base is a strongly grizzled brown near Prout's Brown, the general effect browner and less yellow than in conditor, and still more so than in jonesi. On the sides the subterminal colour fades to ivory and the black ovetlay is reduced, leading to a much paler and greyer grizzle. Belly fur 14 mm . ; creany white to base; junction with sides sharp. Dorsum of head like back or with a slightly richer ground colour ; muzzle and cheeks like the sides with a rather conspicuons paler patch infraorbitally. Chin and throat like belly. Ears very sparsely covered within with greyish-white, externally well and evenly haired with a fine grizzle of near black and silyery-grey darkening only very slightly at the anterior margin; the ear back as a whole near fuscous and much colder and darker and more contrasted with the crown than in cither conditor or jonesi. Outer aspect of fore limb like sides but with a wash of pale buff sharply interrupted by a narrow oblique grizzled black marking extending quite across the carpus; manus and digits white. Hind limb similar but with a browner wash; a grizzled black marking extending irregularly right round the tarsus, but not produced along sides of pes, which is quite white. Tail sparsely: haired proximally, but lengthening distally and culminating in a pure white pencil extending 25 mm . heyond the terminal vertcbra. Dorsum of tail blackish-brown for three-quarters of its length, changing abruptly to white without intermingling; lateral and ventral surfaces white throughout.

Skull and Dentition-Two skulls have been examined; the larger of the Mann Range specimens and one from Alice Springs figured by Waite. The former is considerably more aged, and is narrower, has narrower anterior palatal foramina and lighter molars, but the agreement in diagnostic features is close. The general structural characters of the apicalis skull are close to those of jonesi and conditor, the slight but apparently valid differences being a narrower braincase and posterior zygomatic width, narrower lacrymals, deeper muzzle, a nearly vertical and straight zygomatic plate, and anterior palatine foramina which are slightly longer than the molar rows. The lengths of molars and masals are also lower than have been recorded for other species, and the bullae are smaller. The interorbital condition is not appreciably different. Waite's reference to horn coloured molars is evidently meant to apply to incisors. His (15, pl. v, fig, \(1 \mathrm{a}-\mathrm{c}\) ) figure does not agree very well with the skull on which it is based; the outlines of nasals and zygomata are appreciably different and the bullae are less globular.

Flesh Dimensions-The following are the dimensions of the two Mount Crombie specimens, both adult \(\%\) : head and body, 184, 175; tail, 217, 238; pes length, 43,44 ; pes, breadth across base of digits \(1-5,9\); ; manus, 16, ; manus, hreadth across base of digits \(2-5,6 \cdot 5,-\); ear, 33,32 ; rhinarium to eye, 21,22 ; eye to ear, \(16,15\).

Skull Dimensions-The following are the dimensions of the skull from Alice Springs figured by Waite (re-measured), and that of the larger Mount Crombic of: greatest length, \(40 \cdot 5,43 \cdot 2\); basal length, \(35 \cdot 1,36 \cdot 2\); zygomatic breadth, \(20 \cdot 4,20 \cdot 1\); braincase, breadth, \(17 \cdot 4,17 \cdot 9\); interorbital width, \(5 \cdot 1,5 \cdot 2\); nasals, length, \(15 \cdot 5,15 \cdot 4\); nasals, breadth, \(4.5,4 \cdot 6\); palatal length, \(21 \cdot 3,21 * 8\); ant. palatal foramina, length, \(8 \cdot 0,8 \cdot 0\); ditto, breadth, \(3 \cdot 3,3 \cdot 0\); bullae, \(7 \cdot 1,6 \cdot 8\); upper molar series, \(7 \cdot 5,7 \cdot 7\).

While easily distinguished from conditor and jonesi by its much longer and pencilled tail, by its pure white belly fur and somewhat lighter build, all three, species are evidently very closely allied; one of the above specimens is larger than
has previously been rccorded and still further closes the gap in dimensions between the species; attention may be drawn to the misprint in Brazenor's dimensions. The specimens here described show certain minor discrepancies with existing accounts, which are difficult to interpret owing to the widely different condition of the material on which they have been founded. As compared with Gould's plate of the types, the Mount Crombie examples are more grizzled dorsally, their ear backs and tail tops are definitely darker and the tail much better brushed. The colouration is definitely darker and more grizzled than the specimens of conditor and joncsi available to me, and not lighter as given by Troughton (loc. cit.). and the dorsal colour is browner than the tawny olive given by Brazenor.

Brazenor (loc. cit.), who alone seems to have examined both central and south-eastern specimens, considers them identical.

\section*{Hydromys chrysogaster Geoffrey}

No specimens of this rat could be obtained, and so far as numerous enquiries show, it is unknown in the western centre by settlers and natives alike. Songer's ( 8,9 ) record, quoted by B. Spencer, applics to the Lake Eyre Basin where the prevailing form has south-eastern affinities, as I have elsewhere shown (3,114).

\section*{Introducen Species}

Of exotic murids, Mus musculus scems to be the only representative. It was comron, though much less so than in the Lake Eyre Basin and its numbers have never yet, I think, assumed plague proportions in the western centre. Those taken were ncarly all of the dark-bellied greyish, urban types and were probably recent intruders. Several examples examined had entirely unnotched incisors as in Pscudomys, and rapid distinction from the duller examples of \(P s\) s. hormannsburgnisis was not always easy.

\section*{References Cited}

1 Brazenor, C. W. 1936 Mem. Nat. Mus., Melb., (9)
2 Brazenor, C. W. 1936 Ibid, (10)
3 Finlayson, H. 11. 1939 Trans. Roy. Soc. S. Aust., 63, (1)
4 Gibes, E. 1876 Australia Twice Traversed, (1)
5 Gould, J. 1863 Mammals of Aust., (3)
6 Jones, F. Wood 1925 Mammals of S. Aust.
7 Krefft, G. 1864 Cat. Mammals Aust. Mus.
8 Songer, E. 1884 Amer. Nat. (18), 9
9 'Thomas, O. 1906 P.Z.S., London
10 Thomas, O. 1909 A.M.N.H., 8, (3)
11 '†momas, O. 1910 Ibid., 8, (6)
12 Trougiiton, E. C. G. 1923 Rec, Aust. Mus., 14, (1)
13 'Troughton, E. C. G. 1932 Jbid, 18, (6)
14 Waite, E. R. 1896 Repts. Horn. Exped., 2
15 Waite, E. R. 1897 Proc. Roy. Soc. Vict., (10)

\section*{EXPLANATION OF PLATES}

\section*{Piate X}

A: Right pes of Pscudomy's (Leggadina) hermannsburgensis cf. var. bolami. Imm. ㅇ. Erliwunvawunya. Musgrave Ranges. x 4-0. B: Right pes of Ps. (Leggadina) hormannslurgensis typicus. Adult \(\delta\). Ayers Rock. x \(4 \cdot 0\). C : Right pes oi Ps. (Lrggadina) aruitci. Adult \(\%\). Wollara. x \(4 \cdot 0\). D: Right pes of Ps. (Thetomys) vanus. Subadult \(\%\). Koonapandi. x 3.3. E: Right pes of K.aomy's pedunculatus. Adult 9 . Alice Springs. \(\times 2 \cdot 5\). F: Right pes of Leporillus apicalis. Adult 9 . Mount Crombie. x 1.7. G. Right manus of Ps. (Leggadina) hermannsburgensis typicus. Adult of. Ernabella, Musgrave Range. x 5.7 . H: Right manus of Ps. (Legyadina) zeaitci. Adult \(\%\). McDonald Downs. x 4-8. I: Right manus of Ps. (Thetomys) nanus. Subadult 9 . Koonapandi. x \(5 \cdot 5\). J: Ripht manus of Laomys pedunculatus. Adult \(\%\). Alice Springs. \(\times 3 \cdot 0\). K : Left manus of Leporillus apicalis. Adult \(\circ\). Mount Crombie. \(\times 2 \cdot 3\).

\section*{Plate XI}

A and B: Dorsal aspects of skulls of an aged and adult female, respectively, of I's. (Icgoadina) hermannshurgonsis typicus, both from Wollara; to show the extremes of variation in braincase development and zygomatic outline. x \(3 \cdot 2\) and \(3 \cdot 4\). C: Dorsal aspect of skull of Ps. (Thetomys) nanus. Adult ô. Koonapandi. x \(2 \cdot 8\). D: Lateral aspect of right manus of same. Subadult \(\circ\). Komapandi. x 11 ca . (The digits are artificially flexed for purposes of illustration.) E : Palatal aspect of B . x \(3 \cdot 4\). F : Palatal aspect of C . \(\times 2 \cdot 7\).
Piate Xif

A: Dorsal aspect of skull of Ps. (Leygadina) waitei. Adult 9. Wollara. x \(2 \cdot 9\). B : Dorsal aspect of skull of Laomys pedunculatus. Adult of. Alice Springs. x 1.9. C: Dorsal aspect of skull of Leporillus apicalis. Adult 9 . Mount Crombic. x 1.6. D: Palatal aspect of A. \(\times 2.9\). E: Palatal aspect of R. x 1.9. F: Palatal aspect of \(C . \times 1 \cdot 6\).

\section*{Plate XIII}

A: Lateral aspect of skull of Leporillus apicalis. Adult of. Mount Combie. \(\times 1.6\). B: Lateral aspect of skull of Laomys pedunculatus. Adult of. Alice Springs. \(x 1 \cdot 9\) C : Tateral aspect of skull of Ps. (Icggadina) zeraitci. Adult of. Wollara. x \(2 \cdot 9\). D: Lateral aspect of skull of Ps. (Leggadina) hermannsburgensis typicus. Adult of Wiollara. \(\mathbf{3} \cdot 4\). E; Lateral aspect of Ps. (Thetomys) nonus. Adult \(\hat{\delta}\). Koonapandi. x \(2 \cdot 8\). F: Right molars of same. Adult \(\delta\). Koonapandi. x 8.2. G: Right molars of Laomys pidunculatus. Adult \(\hat{\delta}\). Alice Springs. x \(5-7\). H : Right molars of P's. (Leggadina) waitei. Adult 9. Wollara. x \(10 \cdot 0\). I: Right manus of Ps. (Leggadina) hermannsburgensis typicus. Subadult. x \(10 \cdot 5\).



Photo by H. H. Finlayson


Photo by H. H. Fintayson


Photo by IL. H. Finiayson

\title{
NATIVE SONGS OF THE SOUTH-EAST OF SOUTH AUSTRALIA PART II
}

\author{
By NORMAN B. TINDALE
}

\author{
Summary
}

Nineteen songs obtained from Milerum of the Tanganekald tribe were described in a previous paper in these Transactions (61, 107-120, 1937). Further work has since been carried out with the same informant, whose recent death, at the age of approximately seventy-two years, removes one of the last links with the old life of the people of the South-East of South Australia

\title{
NATIVE SONGS OF THE SOUTH-EAST OF SOUTH AUSTRALIA PART II
}

\author{
By Norman B. Tindale
}
[Read 10 July 1941]
Nineteen songs obtained from Milerum of the 'langanckald tribe were descrilied in a previous paper in these Transactions (61, 107-120, 1937). Further work tas since been carried out with the same informant, whose recent death, at the age of approximately scventy-two years, removes one of the last links with the ole life of the people of the South-East of Sonth Australia.

Electrical recording devices having become more readily available in South Australia, six double-sided discs were prepared between November, 1937, and Januaty, 1938. The present paper presents the contents of five of these; the sixth forms part of a series belonging to the Crow Legend, which is being separa:ely prepared. Brief notes are included concerning fresh recordings of nine of the songs mentioned in Part \(L\).

The fifteen new songs belong to tribes between Rapid Bay and Mount Gambier. Many belong to the Buandik ['Buyanditj] tribe, but in one the subject matter belongs to Rapid Bay anong a southern horde of the Kaurna ['Kaurnal tribe, although its language is that of the Ramindjeri ['Ra:mindjeri] of Fincounter T3ay, Two are of post-European origin, one describing the opening of Murray Bridge to milway traffic (about 1886) and the other recording the making of a road at Guichen Bay (Robe) in the south-east of our State, about 1865.

Several tribes are mentioned, their boundaries being defined in a paper in the previous volume of these Proceedings; where the phonetic system used is also set out.

The older (pre-European) songs of the present series are associated with: 1. sickness and death; 2, hunting; 3, mythological and totemic stories; 4, magic; 5 , personal experiences and adventures; 6 , drama. They touch on many aspects of native life and throw much light on the culture of the vanished folk, memory of whom has lingered only in the minds of the few survivors of the aborigines.

Disc, No. 1, entitled "Clarence Long Series, 9 November 1937."
A Drfam Song
1]'gaw'ercila ðamburayal d'oropoalni 'bunareilar 'wimmayal 'wereig'galowei 'wudkeilin d'oropoalnal 'mantalayanar 'kulkeilin 'arupulnal 'yonay'galowei.

This Tanganekald song has been described as No. 12 of the first series (loc. cit. 109); there are some variations in the transcriptions of this rendering. while |'tambarngal] and [toropoalna] were also given as variants of words in the song.

Song about Death
'Mangei 'nar 'galmur
Away-in-the-west
'meiwurina: nd
set-your-mind-on-it (beware)
\begin{tabular}{ccc} 
'jere'gara: yal & 'goyayuna & 'kara'gar \\
he-made-it & listen & a-hig-noise
\end{tabular}
repeat these two lines then:
'Nukanji 'barnd
around-and-behind
(Thinking about the noise)

> 'na:'ramaỵg
what-are-they-going-to-do
'bikul'ayal
look-back
'minjuygul
minjungulum
repeat second verse. At end of the song all the men make, in unison, an explosive bo! sound.

A Marntandi (McGrath Flat) clan song, sung in Tanganekald.
This song is generally sung when people are worried and ill-at-ease, or when anyone is sick. Men and women congregate together near the camp, in the vicinity of which two rather long and heavy wooden spears have been placed up-right in the ground. These special spears [parmuri] are made of Callitris wood and decorated with tufts of emu feathers. Such a spear is in the South Australian Muscum? (registcred No. A 20696). Men and women then sing this song in unison. Milerum first heard it when, as a little boy, he sat quictly in camp, while people congregated and sang it.

The meaning is: "Away in the west he makes it; listen to the great loud noise; look around about you; what is the maldawuli going to do?"

The [maldawuli] or ancestral being referred to is ['Kulda], who in native legend is believed to have come out of Ju:ki or the Southern Cross (loc. cit., p. 112). Although we have no knowledge of the origin of this song, there is a possibility that it might be based on the recollections anongst the natives of very early casual visits to the Australian mainland by European vessels secking a way to the China Seas. The appearance of the strange "being" from the south, the reference to the great noises, and the explosive sounds made at the end of the song. tend to suggest a sailing ship whose arrival or departure from the coast was signalled by gun-fire. In the original legend about Kulda, his appearance was stated to have been followed by sickness and death, and the early smallpox epidemic which swept through the Murray River districts of South Australia in the early years of the nineteenth century was also attributed to this evil being.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Song of Murray Bridge} \\
\hline \begin{tabular}{l}
Berntein \\
"It's-coming"
\end{tabular} & 'geitjad bridge & 'nıunak': alni high-up-one & 'tu1nakutıa' equally-high \\
\hline
\end{tabular} (the railway train)
\begin{tabular}{ccc} 
ta:'rilen & we'reinday & Leenteilin \\
wonderfully & made like & Long Island \\
& & (a place name)
\end{tabular}

Tarewele'ma: mk
the cliffs opposite
Murray Bridge township
\[
\begin{aligned}
& \text { 'ditju:ndu } \\
& \text { solid }
\end{aligned}
\]
ta:'rilen 'minindjun 'ditju:ndu
wonderfully strong
This may be rendered as: "The train is coming to the great high bridge; as tall as Tarawalumank; wonderfully made like Long Island; strong and solid like Lantcilin."

This song was made between the time of the building of the first Murray Bridge in 1876 and the laying of the railway line in 1886 . It was one of the last songs made by the Tanganekald people; its author was an aborigine named George Spender. Sung at a dance, it contrasts the native crossing with the white man's bridge.


Rejoice, clear the place for dancing; make a level place-see the dust fly! we set the nets around at Watbardok; the tide rises, we climb the cliffs again.

In former times an ancestral being, now the star called [ N jepari], a great man of the Kaurna Tribe, assisted by his companions, made a dancing place on the coast at ['Watbardok], A relative of ['Tji:rbuki] (vide 'Tindale and Mountford 1936 , Rec. S. Aust. Mus., 5, 500), he was of happy disposition and was so pleased with the place after it was clear of all bushes and rubbish, that he made a dance. Today this ancestral place is covered by the sea, and even in recent aboriginal times it was a famous netting beach. The smooth sand enabled the nets to be successfully drawn during the first hour of the rising tide. To engage in fishing one climbed down the cliffs. The fish were taken, and as the tide rose men climbed the cliffs again or risked being cut off by the rising waters. At ['Jana;wij] (lit., turn back) people walking along the shore had to detour; thus the place obtained its name. ['Watbardok] is on the coast between Sections 60 and 207, Hundred of Yankalilla, close to the so-called cave of 'ljirbuki, which opens on the cliff a little to the north of it.

Disc. No. 2 (22 November 1937).
Storm Song (loc. cit., 110)
Words spoken, then sung, Milerum was a little uneasy with his voice and recording was abanduned until 25 November, when this song was repeated much more successfully.

> Mimikur or Bullroarer Song (loc. cit., 111)

This was sung as two rounds. The spoken words were not recorded.
On the reverse side.
Tanganekald Death Fear Song (loc. cit., 111)
In singing this song, Milerum was uneasy and somewhat uncertain, as was indicated by his subsequent comment: "I nearly went out of tune."

Song to Force a Widow to Re-marry (loc. cit., 117)
This was sung through and recorded twice, the second time with hand clapping; the conclusion seems rather uncertain, but Milerum claimed that it was correctly executed.

Tanganekald Growling Song (loc. cit., 117)
Milerum was well satisfied with his new rendering of this song.
Disc. No. 3-"Clarence Long Series, Coorong, South Australia, 30 November 1937."

Tanganekald Song about Ngurunderi (loc, cit., 115)
In singing this Milerum used the forms [Tonga'reinar] and ['Tanga'reinar] for the word previously transcribed as [Thuyareinar].

Tatiara Song Condemning the Tanganekald (loc, cit., 117)
At the conclusion of the new rendering of this song, accompanied by boomerang clapping, he shouted vigorously [ne'rokan], i.c., die!

\section*{Meintange \(A n s w e r\) to the Tatiara Song (loc. cit., 118)}

Tang ganekald Song wifich Embittered the: Quarrel (loc. cit., 119)
Disc. No. 4-Sanne series. Songs of the Buandik ['Bunanditj] Tribe, Robe. South Australia, 2 December 1937.

\author{
Song of Guichen Bay
}
'Endjeligatjun garum gamun 'ga;wun (repeat) 'mola'pan
Place-name-at stand-and-look-around
(mo:lakinju. to turn when walking)
\begin{tabular}{ccc} 
'IWingair & 'gaduba & 'kutjubei. \\
Place-name & moving towards & Guichen Bay.
\end{tabular}
"Standing on the hill (at Watul, swamps on Section 472. Hundred of Waterhouse), we see the winding track. To walk around to Wingau we head for Kutjubei."
'This song of the Post-European period tells of the old road to Guichen Bay (Kutjubci, as pronounced in this song) and was originated by Patpul, of the ['Buyanditj] 'Tribe, whose home was at Robe.

The old native track from Watul to Wingau wandered through the sandhills and along the beach. White men cut a new road to the Salt Lakes where it turned west towards Wingau. The construction was authorised in 1865, and this dates the song as in the late '60's. ['Wingau] is the old native camp within the present township site of Robe, beside the fresh water lake. The Tanganekald called the place Windau. ['Kutjubei] = ['Kutjubeia] (native acceptance of Baudin's name, Guichen Bay) was applied by the natives to the vicinity of the salt lake near Section 299, Hundred of Waterhouse, its former name having been lost or discarded. Incidentally, [Pa'ran:eja] or ['Purami'ja| was the name for the Bluff at Robe, the former camp was where the old jail stands.

Song of Baldin Rocks
'Turjuna
Look-out (from Kripangulu, near Mount Benson)
'gari bu:l
a few long steps
(emu strides)
full of rage
The meaning of this song, word for word, was obscure to Milerum. It has only a few words in it but "a great deal of meaning." It is connected with a legend of the "Emu and the Native Companion." The song tells how the emir people were trapped on Baudin Rocks by a sudden rise of water, supposed to have been caused by the native companions, who watched from Kripangulu and saw the enraged malc parading about ("stepping out") in a display of anger at the trick played on him by his traditional enemies.
'mor 'wayunjup 'je:garam 'mujungein they've come together woman departs from camp (seen by husband)
\begin{tabular}{ccc} 
'weijan'gori \\
weijankar & dolamboinja refuses & anjeykoinja repeat. Ne'rokan! \\
come back to her home
\end{tabular}

This song has come down from the remote past. It tells of an ancestral woman, Matujeire, who abandoned her husband and went with another man; it is a bullroarer-magic-song. sung whenever there is any trouble between man and wife which may lead to boning and revengeful killings. Matujeire left her husband; she went with another man; her friends said, "Carry on, we will keep your husband's anger away." A quarrel developed. Other friends said, "Listen to your husband, you have a good man, don't heed those bad men friends of yours." The incidents of this traditional event were enacted as a dance, made topical by being applied to new instances, "pieces" being put in to "make it fit." "Old songs properly used mean a great deal" and make the new troubles "come right." In singing the song Milerum ended it with the appropriate expression of condemnation.

As remarked previously, the force of community control was strongly fortified by the use of song and the power of ridictule in them.

\section*{'Wialpunal \\ Rise-carly}
\begin{tabular}{ccc} 
A Bungandity & Hunter's Song from Millicentr \\
'gurinje & 'galpe'mun & 'wareindji \\
good hope & crawling & thighs and knees \\
full of hope & & crawling on knees
\end{tabular}
'buri:n bar'clinje could not get near

\section*{'galajeir.}
pick up (weapons, galajera) for a quarrel.
"Early morning, rising full of hope for game, crawling on knees all in vain; evil wishes are following; pick up weapons for a quarrel."

An old song, first heard by Milerun when a youth. It was sung by old men of Recdy Creek, who obtained it from the Bunganditj people at a gathering at Millicent. It describes how early in the morning a man goes nut hunting full of hope; he smokes himselí over a fire to remove scent and evil influences, prepares and snokes his weapons also; with sufficient weapons to ensure good fortune, he sets out in high spirits; unable to come near game even hy crawling, he returns to his camp in quarrelsome mood. With its staccato and impressionistic recording of the changing moods of a hunter's day, this native song reveals a mature, if primitive, style.

This hunting song was followed by an associated dancing song:
Bunganditj Dancing Song from Millicent
\begin{tabular}{lcc} 
'Wirayinj 'go:ta & Moro'hia & Moto:n \\
What's wrong? & I'll fight him! & come here
\end{tabular} (says the wife)
'golen'en
man's name
 everyone watches

Muto:n
come here
'denmatı comes out (the other man)
laṭenje 'warai 'warai denbula 'wayan 'warai 'warai rush together
what's the trouble about (they ask)

\section*{'denbula wananji bulinji. \\ what's the trouble}
(others come to fight)
"What's wrong ?" asks the wife. "I'll fight him!" he mutters. "Come here, Golangolan." Everyone watches; out they step; they rush together. "What's the trouble?" they cry. All rush to fight. "What's the trouble?" Dust flies.

The song describes how the unsuccessful hunter vents his spleen and causes a general fight among those in camp; some rush into the scrimmage even before they have learned its origin.

\section*{Bunganditj Emu Song from Mount Renson}
(one of a type called ['Wakan'gadeik ] ([menpurumi] of the Tanganekald), sung and acted, like a staged play).
\begin{tabular}{|c|c|c|c|c|c|}
\hline 'Wayaja:ndjelay Early-morning & \multicolumn{3}{|c|}{'waiga'waren I cannot travel far (says emu female)} & \begin{tabular}{l}
'gol \\
gs \\
in me)
\end{tabular} & repeat \\
\hline lijamun beware & ' \(\mathfrak{j}\) idia eagle & \multicolumn{2}{|r|}{'gindawiri: 1 don't go far away} & \begin{tabular}{l}
'ga:wen \\
be careful
\end{tabular} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { 'pidia } \\
& \text { eagle }
\end{aligned}
\]} \\
\hline 'wayejaindjcla early morning & \multicolumn{2}{|r|}{'waiga'waren not travel far} & \[
\begin{gathered}
\text { 'gulu:r } \\
\text { eggs } \\
\text { (gol gol) }
\end{gathered}
\] & 'lijamun beware & \\
\hline 'gandawereip & & wen. & & & \\
\hline
\end{tabular} don't go far be careful.
This describes incidents in the "Story of the Emu," an important myth of the Buandik people. Two emus were walking along the Mount Benson Range. The female was heavy with eggs.
"We will go to that range and make a nest," she said. It was a rather open place with a few mallee trees and bushes. From the next range she saw a place with bracken ferns ['mol:ari], "That will do." At the same moment she saw an eagle's nest above it in the trees.
"IIe will not harm us," they said to themselves, and made their nest. One egg came. The male cagle swooped down and looked at the emu woman. The other eggs came. She used to feed all day while the male sat on the nest. He went out at night to feed, returning by devious tracks to the nest at dawn. With the young ones came trouble; the emus were kept busy defending their young from the cagle. The song is one of warning. "Women, beware of the 'eagle' who comes to look at you."

Disc No. 5-"Tanganekald Tribe, Coorong. South Australia, 21 December 1937."

A Second Bunganditj Emu Song, called Kupabina, from Biscuit Flat
\begin{tabular}{|c|c|c|c|}
\hline 'waya 'jandjelay & 'waigawaren & 'golu:r & a:n 'dakinjin \\
\hline Early-in-the-morning (hear noise of eagles) & & eggs & look-around-quickly \\
\hline \begin{tabular}{lr} 
'jira & dumañi \\
start-up & rush-in \\
(to guard) &
\end{tabular} & 'giraygo:nj fighting & jondinj jumps (eagle) & 'bayar 'bayar determined \\
\hline ! fawei we:r return to attack (giving no peace) &  & \begin{tabular}{l}
in \\
ind rised)
\end{tabular} & \begin{tabular}{l}
'jira \\
start up (take up) position of guard when surprised)
\end{tabular} \\
\hline
\end{tabular}
\(\begin{array}{cc}\text { dumaiyi } & \text { 'yirango }: n j . \\ \text { rush in } & \text { fighting. }\end{array}\)
This is a short song; sung through once. Sticks were used to beat time. It ends with the [wi! wo!] flourish common to several other songs.

Both male and female cmu had to share in the defence of their young; the female broke her rule of staying away and feeding all day, for both birds had to protect their young ones against the onslaughts ("jumps") of the eagle. The emu man who sang it was Patpul's brother (sociological) who was also a brother to Wati, the hero of several songs mentioned in Part I of this series.

A Third Bunganditj Emu Song, called Wirawirlk
\begin{tabular}{lcccc} 
Bapindj & garapun & manin & yidi & bapindj \\
mother & emu & havering & eagle & mother \\
warawara & garibun & emu \\
legs & moribi jawuru. & & \\
(legs fighting) & enu & deieated.
\end{tabular}

Sticks were used to beat the tince; the tempo slows towards the end and terminates with the wi! wo! flourish.

When an emu falls down on its back and strikes out with its fect it can hit with considerable effect. The ennu man who made this song watched one in combat with the eagle and sang this song about the adventure.
"The mother emu and the hovering eagle; the mother emu and her fighting legs ; the emu has defeated it."

These three cmu songs (Discs 4 and 5) form a suite which were sung at an emu dance. The names applied to them have the following significance and the same terms are, in general, used for the three recognised types of dancing song:
['kupabina]-imitative dances in which the performers simulate the movements of the entr, prancing about, growling and making noises; the song is a general accompaniment.
['wakan' yadeik -the ['menpurmmi] of Tanganekald, also called ['yuluyulukana:mb] because each part of the song is enacted. In the present case they dramatise the behaviour of the emu and the eagle when in opposition.
['wire'wiruk] - the songs of the true dancing climax; the men stand in one place with legs outspread, vibrate their legs and give loud grints as the chorus of women chant the ['wire'wiruk].

Marditjali Tribe Song of Wanangan, from Wirriga
'Gumba'wanayg 'bere 'gumba'wanayg zbere'il (repeat)
(meaning uncertain)
\begin{tabular}{lccc} 
'jurupe'na & 'wiri'gara & 'peire'gara(1) & 'wanaygan \\
for a little while & from W'irriga & for always & man's name
\end{tabular}
for a litle while from Wirriga
for always man's name
'Wiri'gara.
from Wirriga.
In the [Kangarabalak] language. It is sung through twice; the second time is merely a repeat to fill this disc.
['Wanaygan 'Wirigar], a man of Wirriga Siding (lit. Wanangan, of Wirigar), a place near Bordertown in the Marditjali (Kangarabalak) country,
left his home intending to stay for a short while on the Coorong at Woods Well to try and obtain a wife, eventually marrying a father's sister of Milerum. He was old when Milerum was a boy and never went back to his own country. There were many quarrels with his people because of his departure and because the taking of the Tanganekald woman as wife upset arrangements for marriages in his own country. Many "strong words" were said about him and there was a "native court case," The Tanganekald people would not allow their woman to be taken inland because of the trouble her marriage had aroused.

Wanangan sang this song whenever he was asked why he had left his own country. From his father's sister's husband Milerum learned this and several other songs. The refrain is probably old, having been sung in the "wild" times before the Coorong was setlled by white people.

Reqerse side.
Chadenge Song of the Pot-bellied Dwarf, Banguni


It belongs to the ['Poyora:rpuli] clan of Milang, one of the clans of the [Warki] or [Warkend| tribe on the eastern side of Lake Alexandrina. Their language is scarcely more than a dialect of ['Jarilde'kald].

Panguni, swollen belly, was a dwarf with distended abdomen and heavy hanging jaw. This song is attributed to Banguni and his brother ("men from the same fire"). The incident it records happened when Banguni challenged a group of ['Ra:mindjeri] men, from Cuolwa, his [wurek: end], who came to quarrel with lim because "of woman trouble." He had married a Ramindjeri woman natned ['Regul'dindjeri] and had severely punished and injured her in a quarrel. and they wished to retaliate.

Milerum's explanation was: "I have no fear, I don"t care for them." said Banguni, and prepared for action, "cutting capers" and "rolling himself up." ready for a spear-fight. His actions made them frightened; he stood still while they threw spears at him, never flinching although they came right up to him (i.e, to within about ten yards). "Iook at him, isn't he good at dodging them," shouted the onlookers. His enemies shouted, "Move on!-look out for side shots!" and tried to trick hin by making him glance aside. They shouted in derision, trying to break his defence. "Look at him, the frog-mouthed man with the pot-belly, it weighs him down."

Banguni proved that he was a man who could not be caught with spears; afterwards he and his brothers made this song about the incident. He lived to be a very old man and sang the song of his own prowess until his death, about. the year 1915 .

Keinindjeri asks for IIis Rrother's Widuw-A Ramindjeri Song from Encounter Bay
\begin{tabular}{cc} 
'Moncin & a: \\
Wondering & what \\
'kalde & 'einayand \\
talk: & says
\end{tabular}
wereindey
is holding
'meijga:
inside me
(ai)
her
'joroi'jot influences
(someone else's word is persuading

> 'toil'kolon
their talking
(perstasion)
'1]arail'keili
those of Ngarailkeili
(A place at or near
Section 191. Hundred
of (Vaitpinga)
wa'reindelen teibangani
holding her (they've persuaded her)
(h) iar
their camp
(teipak:ani)
'kuin'kunj
Bluff
her)
' 1 alai'keren
of Nalaikorombar
'to del
\(\therefore\) ['Loyoni| clansman, of Goolva (Ramindjeri tribe), and ['Keinindjeri], a youth of the [Kangeilindjeri] clan (Tanganckald Tribe), were made "red men," i.e, wore initiated and painted with red ochre, together. They were thus |wu'rck:ưoulu| or [wu'rek:udulu1] and called each other |we'rek:nd| or ['wurelicnd], i.e., brothers. The Longomi man received in marriage a Rapid Bay tribeswoman whose country was west of |'ṭalai'korombar) (West Island) at [Tarewarepl. This woman's totem ['naitje] or ['partjeank] was the ['ijarak;ani| or gummy-shark and her toten place was | ! jalaikorombar| (also called ['yarailkeili| and ['yalakeren] in the' song). It was in her right to give men permission to go to West Island on rafts to kill seals.

It is the privilege of a man's brother, his ['la:wari], to say whether or not he will take his brother's widow ats wie. When the Longoni man died she was Kemindjeri's by right and it was recogniced by her reatives that she should go up the Conrong to Keinindjeri when her period of mourning was over.

Keinindjeri went to Rapid Bay wo fetch her but he had no chance to get near her and was tou frightened to ask, leaving it to the woman to come to him, when she willed to do so. But she kept away.

So Keinindjeri sang this song at a gathering of people at Goolwa. He wanted to make her explain why she had not come to him when he had come to Rapid bay to marry her,

The song says:
"I wonder what holds her; holds that woman of Ngalaikaran; inside me I feel that someone is pursuing her, those people of Ngaraikeili hold her in their camp with their talk. I wait high up on the Bluff Lookout; watching for her."

In the song he mentions no names, only the woman's conntry; everyone knew for whom it was intended.

The widuw answered the challenge of this song. She said she was waiting for another old man, ['Djorok:ori| to clain her; he already had a wife but wanted the widow as well. She hadn't told Keinindjeri and now, she complained, he had made it all public jn song.

Keinindjeri then challenged Djorokori, who after a quarrel cleared himself of any imputation or intention of taking the woman as wife. It had looked rather bad for him because he had lived with the Rapid Bay people quite often. People said, "Keinindjeri is the right man." So the widow went to Keinindjeri and lived with him for many ycars; sometines together along the Coorong.

Milerum first saw this Ramindjeri woman when he was a small boy (about 10 to 12 years of age) ; she was then old and had been married to Keinindjeri for many years.

The Ramindjeri pcoplc along the south coast of Flcurieu Peninsula possessed different species of shark as totems.

In the song there are several indirect references, For instance ['Kuinkunj] meaning a "lookout"; in this instance it refers to the Bluff at Encounter Bay; the Tanganekald word is ['pop:aldi] and along the Coorong this term is applied to certain high sandhills (such as the one just above Cantara Stntion House); the term there belongs especially to inland sandhills where men kept watch and had their camps.

Song of the Swallow, Watiari and the Ring-tailed Mouse, Lepidawi 'Tawa'lanar 'garndindj 'nane'pundun 'kandjalje'arnd How-far how-much set-off-again look-back
'monak' :al the-high-up-one
(anything high up, e.g., Mt. Lofty)
'tetjo :nda stopped
'tawula'nan distant-noise-away-in-the-scrub
'tawul 'narnamb.
distant noise what is it?
(contrast with tawalan = "how far?")
This song was listed without description (loc, cit., 120).
It belonged to atn old man named ['Kaltajanuru] who originally came from the Coorong at McGrath Flat. He was a mother's brother of Milerum (classificatory, or in informant's words "near enough," as her father and his father used to "sit around the same fire").

He married a woman from "Cape Jervis, near Yankalilla," and lived with her at ['Lat :aryg]. (Section 19, Hundred of Goolwa). His father died, and his father-in-law was good to hin. I. Ie asked his son-in-law to go with him to ['Jankalja'wa: yk] (Yankalilla), where he lived for so many years that he learned to talk their language better than his own. They were good to him, and kept him. He liked thenl. When he was an old man he sang this song in his own language (Tanganckald). Men who heard him sing it were surprised because they had thought he only spoke Merildakald. Milerum saw him when he was an old man. He did not return to the Coorong until he was old, when he died there.

The song he kept as a secret for a long time, only singing it publicly when he was an old 111an; he made it because he was frightened by his experiences in a strange country. It may be frecly translated as follows:
"Hlow much further must we go? Come on-il's a long way yet. I look back to high Watarabering."
"The clatterings of the departing hunters cease; swallow and ringtail mouse break the silence. What's that strange noise? A lonely stranger-leit wondering what the noises mean."

The first part tells of his secret fears as he travels with his new kinsfolk from ['Latarng] to ['Nibielargk] (C'rozier's Hill), thence to ['Towara:yk] (a hill three miles north of Inman Post Office), passing ['Wata'bareingi] or [Watarebering], Mount Hayfield.
"How much further will they take me?" he cries, and looks back over his shoulder at the high hill which is his last known landmark. He camped at [Jankaljawa:mk]. Then his companions took him out to hunt in the wooded mountain gullies; he was a "sandhill-man," lost in the forest. It seemed that he kept on walking in the same place. He moved in circles; then he heard strange noises and became frightened. This is told to us in his song.

IIis companions found him. "Ah! Next time you had better make a smokefirc. The swallows and the ring-tailed-mice have fooled you with their noises." His fears became a song which he sang to himself as he learned to hunt in the forest, returning to his smoke-fire whenever he was in danger of being lost.

It is to the mischicvous Watiari and Lepidawi that unaccountable noises in the scrub are attributed, for it was in their totemic country, ['Watarebering], that he was wandering.

The Lepidawi and Watiari are together known as ['Watajarul], a word in the dual form, meaning "the two." The Jarildekald know them as ['lepuldawi] and ['Watiriorn]. They were ancestral men of the forest who were turned into animals.

\title{
AN ENUMERATION OF THE VASCULAR PLANTS OF KANGAROO ISLAND ADDITIONS AND CORRECTIONS
}

\author{
By J. B. CLELAND and J. M. BLACK
}

\begin{abstract}
Summary

In the Transactions of the Royal Society of South Australia, 51, 1927, we gave an enumeration up to that date of the vascular plants of Kangaroo Island. Since then a few new species have been discovered there, many new plants have been recorded for the Island and various changes in nomenclature have taken place. During the visit of the Tate Society of the University of Adelaide in January 1940, further additions, were made, and this list in part prepared. The present is an attempt to bring the list as far as possible up to date.
\end{abstract}

\title{
AN ENUMERATION OF THE VASCULAR PLANTS OF KANGAROO ISLAND ADDITIONS AND CORRECTIONS
}

\author{
By J. B. Cleland and J. M. Black
}
[ Read 14 August 1941|
In the Transactions of the Royal Society of South Australia, 51, 1927, we gave an entumeration (tup) to that date of the vascular plants of Kangaroo Island. Since then a few new species have been discovered there, many new plants have been recorded for the Island and rarions changes in nomenclature have taken place. During the visit of the Tate Suciety of the Cniversity of Adelaide in Jantary 1940, further additions, were made and this list in part prepared. The present is an attempt to bring the list as iar as possible up to date.

Introduced plants are indicated by \({ }^{*}\), and a record not appearing in the previous list by \(\dagger\). In our previous list there were 653 native species, of which \(S\) were doubtful, with 19 varieties in addition, and 72 introduced plants with 1 additional variety, giving a total of 725 species and 20 varicties.

The total now consists of 708 native species, of which 7 are very donbtitul. with 23 additional varieties, and 108 introduced plants with 2 additional varieties. Three of the 8 previonsty doubtful species, Gleichonia circinata, Casuarina Muclleriana and Ranunculus trichophyhas are now recorded.
Filiciles- \(\dagger\) Asplcnium flabellifolium Cav., Ravine de Casoars. Gleichenia circinata Swartz (previously recorded as coubtful), luxurian: (5 ft. high) at Rocky River, Breakneck River. \(\ddagger\) Todea barbara (l..) 'l', Moore, Rav. de Casoars (Rccorded by Wood, 'Trans. Roy. Soc. S. Aust., 54, 1930.
Prnaceaf-Callitris tasmanica (Penth.) Baker et Smith replaces C. Cuprossiformis var. Iasmanica.
Potanogetonaceae -†Potamogeton jazonicuts Hasskarl, Karatta (in Hlack's Flora, (4)).
Gramineae †Zoysia Matrella (L.) Merrill, not Z. pungons Willd.. as recotded in Black's JFlora; forming a dense sward in damp soil, Rucky River, Karatta, \(\dagger\) Stipa lenuiglumis Hnghes, Kingscote, near Eleanor Station, Rocky River, December, \(\dagger^{*}\) Oryzopsis miliacia (I..) Aschers et Schweinf, Many-flowered Millet Grass, Kingscote. †Amphibromas recuratus J, R. Swallen, in swamps, Vivonte Bay, December 1934. Danthonia geniculata J. M. Black (in Black's Flora (4)-replaces the record of \(D\). carphoides F. v. M.) \(\dagger\) D. somiamularis (Labill.) R. Br. (in Black's Flora (4)), Vivonne Bay. \(\dagger\) i) setacer R. Br. (in Black's Flora (4)), Rocky River, Hawk's Nest. †*Koeleria Micholii Cosson, near Eleanor Station, Deccmber 1934. †*Bromus madritonsis L. †*Bromus scoparius I..., recorded by Black (1934). Kingscote, November 1933 (coll. A. B. Caslmore). \(\dagger^{*}\) (ynodon dactylon Rich., Cape Borda. \(\dagger *\) FIordcum maritinum With.
Cyprraceae-tCyperus tonellus L.f., Cygnet River (coll. A. B. Cashmore, recorded by J. M. Black, 1935). †Schoonus foliatus (Hook. f.) S. T. Blake ( \(=S\). axillaris (R. Br.) Puir, in Black's Flora) ; Squashy Creek, 27 miles east of Cape Borda. March 1926, Rocky River. \(\dagger\) S. Carsci Chceseman ( = Tctraria (Cladiam) monocarpum J. M. Black) Breakneck River (in Black's Flora). †Elcocharis (Helcucharis) acicularis (I..) R, Br., Rocky

River (in Black's Flora), 亡E. (H.) halmaturina J. M. Black, Rocky River (in Black's Flora). E. (H.) grucilis K. Br. replaces H. multicaulis Sm. \(\dagger\) Scirpus fluitans L. var. tcrrestris F . Muell., swamp at mouth of South-West River (the type already recorded). \(\dagger S\), stellatus C. B. Clarke, Rocky River, November 1924. \(\dagger\) S. calocarpus S. T. Blake, Hog Bay River, 17 November 1883 (zide Proc. Roy. Soc. Qld., 51, No. 11, 1940, 180), S. productus (. B. Clarke, for S. imundutus (R, M.) Poir; Squashy Creck, 27 miles cast of Cape Borda, March 1926. †Cladium rubiginosum (Soland.) Domin, in Black's Flora, Breakneck River, \(\ddagger \mathrm{C}\). Hattonii \(T\), Kirk. forming extensive masses in swamp near moutl of Sonth-West River (identified by Mr. S. T., Blake). \(\dagger\) C. gracile J. M. Black, in Black's Flora for Breakneck River. Galmia hystrix J. M. Black, already recorded, also on limestone cliffs at the mouth of Rocky River, †Carex insersa R, Br, Western River (coll. A. B. Cashmore, recorded by Black, 1935).
Restionaceae-Leptocarpus tonax R. Br, already recorded, also Bull's (reek in Fliuders Chase, December 1934. †Hypolarna lateriflora (R. Mr.) Benth. (in Black's Flora (4) ), †Restio complanatus K. Br., Bull's Creek, Flinders Chase, Dccember 1934.
Centrolepidaceae-Trithuria submorsa Hook, f., already recorded, Vivonne Bay, December, Centrolepis polygyna ( \(\mathrm{K}, \mathrm{Br}\).) Hieron, already recorded, Viyonne Bay., December. tC, glabra ( \(\mathrm{I}^{*} . v . \mathrm{M}_{\text {. }}\) ) Hieron (in Black's Flora, (4) , Vivonne Bay, December.

Xyridaceae- \(\dagger\) Xyris operculata Labill. (in Black's Flora, (4)), Rocky River. Liliaceae- \(\dagger^{*}\) Asphodelifs fistulosits L., Wild Onion, Kingscote.
Orchidaceae- \(\dagger\) Orthoceras strictum R. Br., Vivonne Bay, Decenber. Pterostylis furcata Lindl., already recorded, also Rocky River (id. by Dr. R. S. Rogers). †Pterostlis pariffore R. Br., Enu Bay ('lepper Herbarium).
Cascarinaceae-Casuarina striata Macklin for C. sp. C. Muclleriana Miq., previously recorded as doubtful.
Proteaceab-IIakca aittata R. Br., already recorded, scrub near C. de Coucdi: (as shrubs up to 4 ft . high). tGreaillea muricata I. M. Black (1939), a new species collected between Vivome Bay and Kingscote, 16 November 1924, and by J. G. O. Tepper at Birchmore Lagoon and near Western Cove in 1884, \(\dagger\) G. lazandulacca Schl. var, scricca Benth., between Kingscote and American River (coll. A. B. Cashmore. recorded by Black, 1935).
Loranthaceae-tLoranthus mircuculosus Miq. var. Melalchcae Tate on Mclaleuca at MacGillivray, recorded by E. H. Ising (S.A. Naturalist. (14), 1933, 67 and 127).
Polyonaceae-†Polygomum prostratum R. Br., edga of swamp, mouth of South-West River. December.
Chenopodiaceal-- \(\dagger\) *Beta atyaris L., Common Beet, Kingscote, tSalicornia IBlackiana Ulbrich ( \(=S\). pachystachya J. M. Black) apparently, but no ripe fruits, cliffs near month of South-West River, January 1940.
AizoAceae-Carpobrotus aequilateralis (Haw.) J. M. Black instead of Mcsembrianthemum aequilatevale Haw: Disphyma australe (Soland) J. M. Black instead of M. austrate Soland. \(\dagger^{*}\) (ryophytum crystallintm (L.) N. E. Br., Hog Bay.
Caryophyllaceae - - \(\dagger\) * Silene nocturna L., Kingscote.
Ranlenculaceae-Ranuncufus trichophyllus Chaix, previously recorded as doubtful, Rocky River.

Papaveraceae-Papaver aculcatum Thunb, already recorded, also at SouthWest River, December 1934. †*Fumaria muralis Sond., Kingscote.
Cruciferae-fCardamine hirsuta L., Rav de Casoars, December 1934. †*Sisymbrium oriontale L., C. de Couedic, \(\dagger^{*}\) Diplotaxis temuifolia DC.. Penneshaw (coll. II. Rischbeith, recorded by J. M. Black, 1935). †Lepidium halmaturinum J. M. Black, a new species, discovered at Rav. de Casoars, December 1934. \(\dagger^{*}\) Rapistrum rugosum All, \(\dagger^{*}\) Cakile naritima Scop. var, pinnatifida Paoletti, Antechamber Bay (recorded by J. M. Black, 1935--the typical form already recorded).
Leguminosae- \(\dagger\) Acacia rhetinodes Schl. var. uncinata J. M. Black, growing with a few plants of the typical form at the edge of limestone at the mouth of the South-West River. Gastrolobium clachistum F. V. M, replaces Paltenaea cymbifolia J. M. Black (ride J. M. Black, Trans. Roy. Soc, S. Aust., 1939, 245). Pultenaea scabra R. Br., in opened pod, Breakneck River, Flinders Chase. (ILas also been found in opened pod in abundlance at Deep Creek, Fleurieut Peninsula, Tate Soc. Exped, December 1938). \(\dagger * T r i f o l i u m\) dubium Sibth., C. de Coutic. \(\dagger^{*}\) T. tomentosum L.., Rocky River. †*T. glomeratum L., Rocky River.
Geraniaceae- \(\dagger^{*}\) Geranium molle L., Rocky River.
Linaceae- \(\dagger\) Linum marginale A. Cuntı, Snug Cove. \(\dagger\) Linum gallicum L., Kingscote.
Retaceae-Zieria zeronicea F. v. M., already recorded, Rocky River.
Sapindaceae- \(\dagger\) Dodonaea aftenuata A. Cunn. var. linearis Benth. In Black's Flora.
Malyaceae- \(\dagger\) *Lazatera arborea L., Tree Mallow, Kingscote. *Malza parziflora L. (for M. rotundifolia L.), Rocky River.
Frankeniaceae-Frankenia pauciflora DC. var. fruticulosa Summerhayes (for \(F_{n}\) pauciflora), also mouth of Rocky River.
Thymelaecrae-Pinclaca flava R. Br., flowers and bracts yellow, rather tall upright stems, already recorded, Vivonne Bay, December 1934, \(\dagger P\). dichotoma Schlechtd. ( \(=P\), flaza var. diosmifolia Meisn.), flowers white, plants less tall and more spreading), Rocky River, December 1934.
Myrtaceae- \(\dagger\) Bacckea crassifolia Lindl., Stokes Bay (coll. A. B. Cashmore, recorded by Black, 1935). \(\dagger\) B. crassifolia var. pentamera J. M. Black (a new variety collected by \(A, B\). Cashmore and 'described by J. M. Black in 1935). †Eucalyptus remota Blakely, Mount Taylor and North Coast.

Oenotheracear-**enothera odorata Jacq., previously doubtfully recorded Rocky River.
Halorrhagidaceae- \(\dagger\) Myriophyllum integrifolim Hook f., in Black's Flora; also Vivonne Bay, December 1934. M. Muelleri Sond., already recorded; also Rocky River.
Lmbelliferae-Hydrocotyle laxiflora DC, already recorded; also Rocky River, January 1940. H. comocarpa F. V. M, already recorded; also Rav. de Casoars, in swampy ground, December 1934. H. tripartita R. Br., alrcady recorded; also Rocky River, March 1929 and Jannary 1940. Lilacopsis Brownii (L..) A. W. Hill, recorded in Black's Flora, 440, for Harriet River is considered further on 694, on Sir A. W. Hill's authority, to refer herc to L. australica (F. v. M.) A. W. Iill. L. australica also occurs at Rocky River, January 1940. \(\dagger^{*}\) Conitum maculatum L., Hemlock, Kingscote.

Epacridaceae-†Lencopogon australis K . Br.s, Rocky River, Ravine de Casoars, L. costatus F. v. M., already recorded, near Kelly's Hill Caves and mouth of South-West River, \(\dagger\) Acrotriche affinis DC., Flinders Chase. Acrotriche fasciculiflora (Regel) Benth., recorded by Tate and Tepper, appears as a small form 9 inches high, with the fruit clusters less numerous than in mainland specimens; on laterite hill tops near Bull's Creek and Rocky River, Flinders Chase; it has not yet boen found in flower and may be a new variety, Brachyloma ericoides (Schlechtd.) Sond., already recorded, Rocky River, December.
Gentianaceae-Erythraca australis R. Br., already recorded, also Rocky River (March, December). Villarsia exaltata (Sims) F. v. M., already recorded, appears at Rocky River in a large form and a small one-the latter perhaps \(V\). parnassifolia (Labill.) R . Br, but probably from the length of the corolla \(V\). exaltata.
Convolvtlaceae-t*Cdnvolzulus arvensis Ia, Lesser Bindweed, Western River, Wilsonia rotundifolia Hook., already recorded, Vivonne Bay and near mouth of South-West River, Decenlber.
Borraginaceae-i*Echium plantagineum L., Rocky River; Cape Borda, Western River.
Labiatae- \(\dagger\) *Salvia verbenacea L., Wild Sage, Kingscote.
Solanaceae- \(\dagger\) Solamem fasciculatum F. v. M., Bay of Shoals near Kingscote, January. \(\dagger^{*}\) Nicotiana glauca Grah., Tobacco Tree, Kingscote.
Scropiumariaceae - †*Linaria Elatine (L.) Mill. var. lasiopoda Vis., Pointed Toad-flax, Kingscote. t*Bartsia latifolia (L..) Sibth, et Sm., Kingscote.
Myoporaceae-†Ercmophila Weldii F. v. M., near Kingscote (in Black's Flora).
Plantaginaceae- \(\dagger\) *Plantago Coronopus L., Buck's-Horn Plantain, Bay of Shoals (J. G. O. Tepper, November 1886), Kingscote, Cape Borda.
Rubtaceae-Operctalaria hispida Spr., doubtfully recorded by J. H. Maiden, does not appear in Black's Flora for South Australia and had better be deleted. Asperula scoparia Hook. f., already recorded, also Rocky River (Dec.). A. curyphylla var. tetraphylla Shaw et Turrill replaces A. Gunnii Benth. partly. \(\dagger^{*}\) Sherardia arvensis L., Field Madder. \(\dagger^{*}\) Galium divaricatum Lamk., Vivonne Bay, December 1934. G. uustrale DC, already recorded, Kelly's Hill Caves, December 1934.
Campanulacear-Wahlenbergia multicaulis Benth.. Ravine de Casoars, Decenber 1934. This species and the next replace the record of \(W\), gracilis DC. \(\div W^{7}\), quadrifido (R. Br. A.DC., Ravine de Casoars, December 1934.

Goodeniaceae-Scaerola linearis R. Br., should be var. confcrtifolia J. M. Black.
Stylidaceae- + Stylidiunt perpusilum. Hook. f , in Black's Flora, Levenhookia pusilla R. Br., should be L. dubia R, Br.
Compositae- \(\dagger\) Lagenophora Huegelii Benth., in Black's Flora. tBrachycome neglecta J. M, Black, in Black's Flora. \(\dagger\) B. debilis Sond., in Black's Flora. Achnophora Tatei F, v. M., already recorded, Vivonne Bay, December. \(\dagger^{*}\) Erigeron crisputs Ponnet, Kingscote. Vittadinia triloba (Gaudich.) DC., for V.australis Rich, †olearia lepidophylla (Pers.) Benth., in Black's Flora. \(\dagger\) O. microdisca J. M. Black, in Black's Flora. †O. glutinosa (I.indl.) Benth., in Black's Flora. O. rudis (Benth) F.v. M., should be var. glabriuscula Benth. to. ciliala (Benth.) F. v. M., also var. squamifolia Benth., in

Black's Flora. \(\dagger^{*}\) Achillaea tomontosa L.. Kingscote, December 1934. Jannary 1940. †Centipeda minima (L.) A. Br. et Aschers., in dry swamp, mouth of South-West River, Decenmer, January. †Erechtites arguta (A. Rich.) DC., var. dissecta Benth., in Black's Flora. †Cassinia complanata J. M. Black, in Black's Flora. Helipterum demissum (A. Gray) Druce replaces \(H\). exigutm. Inclichrysum decurrens F . v. M. replaces \(H\). retusum ( aide' J. M. Black. 1939), \(\ddagger\) Rutidosis multiflora (Nces) Robin, in Black's Flora. \(\dagger^{*}\) Carthamus lunatus I.., Woolly Star Thistle, Kingsonte. \(\dagger^{*}\) Hedypnois cretica (L.) Willd. Kingscote. †*Lactuca saligna L., Willow Lettuce, Kingscote. Sonchus megalocarpus (Hook. f.) J. M. Black for S. asper var. littoralis, linestone cliffs at mouth of South-West River, Jannary. †*Sonchus asper Hill.
Doubtful Species-The following seven species, recorded in our previous list and in our total of 707 native species, should probably be deleted: Zostera tasmanica, Vallisneria spiralis, Themeda triandra, Schocnus breaifolius, Zygophyllum prismatothecum, Pimolea microcephala and Scaecola humilis.

Algae from the mouth of South-West River, Kangaroo Island:
Collected in Dccember 1934 and identified by the late A. H. S. Lucas
Lla Lactuca L. Caulerpa hypnoides ( R . Br.) Ag. Sargassum bractioloswm J. Ag. Cystophora platylobium (Mert) J. Ag. C. wifora (Ag.) J. Ag. Pachydictyon paniculatum (Harv.) J. Ag. Ecklonia radiata (Tursc) J. Ag. Perithalia incmis (R. Br.) J. Ag. Plocamium preissianu:a Sond. Ballia callibricha (Ag.) Mont. Nizymenia australis Sond.

\title{
THE VARIABILITY OF THE LENGTH OF THE RAINFALL SEASON AND THE AMOUNT OF INFLUENTIAL RAINFALL IN SOUTH AUSTRALIA
}

\author{
By D. C. WARK, M.Ag.Sc., Waite Agricultural Research Institute
}

\begin{abstract}
Summary

The concept of the "rainfall period," as a controlling factor in agriculture was developed by Trumble (1) (2). who regarded as "influential" all rain falling within that period. Under South Australian conditions the rainfall period, or "period of influential rainfall" was defined as that interval of time in which monthly rainfall exceeded one-third the monthly evaporation. The evaporation was determined from saturation deficiency records, where these were available, or was interpolated from reference sites. The State was divided into climatic zones, based on mean monthly figures for rainfall and evaporation, attention being drawn to the need for studies of variability within each zone.
\end{abstract}

\section*{THE VARIABILITY OF THE LENGTH OF THE RAINFALL SEASON AND THE AMOUNT OF INFLUENTIAL RAINFALL IN SOUTH AUSTRALIA}

\author{
By D. C. Wark, M.Ag.Sc., Waite Agricultural Research Institute
}
[Read 14 August 1941]
The concept of the "rainfall period," as a controlling factor in agriculture was developed by Trumble (1) (2), who regarded as "influential" all rain falling within that period. Under South Australian conditions the rainfall period. or "period of influential rainfall" was defined as that interval of time in which monthly rainfall exceeded one-third the monthly evaporation. The evaporation was determined from saturation deficiency records, where these were available, or was interpolated from reference sitcs. The State was divided into climatic zones, based on mean monthly figures for rainfall and evaporation, attention being drawn to the need for studies of variability within each zone.

The present paper gives the results of such studies, as applied to stations, with their locations in Trumble's edapho-clinatic zoncs (1), as follows:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Eciatino
Climatic} & \multirow[b]{3}{*}{Mgricultural and Pastural Usc} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Mearn } \\
& \text { Ranilifl } \\
& \text { Seafon } \\
& \text { (Moroths) }
\end{aligned}
\]} & \multirow[t]{3}{*}{} \\
\hline & & & \\
\hline \(\underset{\substack{\text { 7one } \\ 1-2}}{ }\) & & & \\
\hline & pastures and livestock husbandry & & Mount Gambier \\
\hline 3-4 & Livestock husbandry with seeded pasture and somic mixed farming & 7.59 .0 & Robe, Mount Barker, Cape Borda, Clare \\
\hline 56 & Heath -5- ; cereal production and mixer farming - \(\mathfrak{f}\)-. & \(6.0-7.5\) & \begin{tabular}{l}
Strathalbyn. Port Lincoln, \\
Waite Institute, Kapunda, \\
Yongala, Roseworthy \\
College
\end{tabular} \\
\hline 7 & Cereal production, with sheep and cattle & \(5.0-7.5\) & Kingscote, Snowtown \\
\hline 8 & Cereal production with some livestock & 5.0-6.0 & Streaky Bay, Fowler's Bay. Kyancutta \\
\hline 9 & Marginal & 5.0 & Port Pirie, Berri \\
\hline 10 & Arid pastoral or desert & & Farina \\
\hline
\end{tabular}

Records were examined for fifty years or for the maximmon time available. As few stations record wet and diry bulb temperatures, the choice of centres was limited. The complete absence of such records from Yorke Peninsula and from much of the South-Eastcrn and Murray Mallee districts was especial'y unfortunate.

Individual seasons were observed to be of several types:
(a) A sharp winter rainfall season as indicated from the mean monthly values.
(b) A month, in autumn or spring, with rainfall below one-third evaporation, but with uverlap of rainfall from two adjacent munths. (A dry period in autumn or spring is indicated.)
(c) A period of effective summer rainfall, in addition to the normal winter period.
(d) In zones 1-2 there are occasional summers, in which the rainfa'l exceeds one-third the evaporation for every month (i.c., the rainfall is continuously effective for more than twelve months).
(c) In zones \(9-10\) there are some ycars with the rainfall for no month exceeding one-third the evaporation.

The winter rainfall seasons, including the period of overlap under (b) above, were examined separately and the variability of the rain period and of the effective rainfall were calculated.

The percentage distributions of the periods of various length are shown for ten selected stations in fig. 1. The greater number of these curves approximate to the curves of normal distribution, and for these the mean and standard deviation were calculated. In some cases, however, it was necessary to transform the figures to a suitable form before proceeding with this calculation. For example, in the case of Port Lincoln, the square root was used; in the case of Port Pirie, the logarithm.


Fig. 1
Fig. 2
The mode, and the values which will probably be cxceeded in 20,10 and \(5 \%\) of the seasons have been determined for each centre. To conserve space, ten only of these centres are included in the Appendix, Table A. Thus, at Munnt Gambier, the majority of years have a rainfall period of the order of \(9 \cdot 3\) months. (On the average, one year in five can be expected to have a rainfall period less that \(8 \cdot 1\) months, and one year in the same five, a period greater than 10.6 months. In \(60 \%\) of the years, the rainfall season will probably be between 8.1 and 10.6 months; in \(80 \%\) between 7.4 and 11.3 months; and in \(90 \%\) between 6.8 and 11.8 months.

In the case of Farina, the large proportion of years with 110 effective rainfall precludes the use of statistical methods employed for the other centres.

The percentage distributions of the influential rainfall, for representative centres, are shown in fig. 2. Where these differ markedly from the normal distribution, the rainfall figures were transformed to a suitable value before the mean and the standard deviation were calculated.

The mode, and the values likely to be exceeded in each direction in \(20 \%\), in \(10 \%\), and in \(5 \%\) of the years are shown for ten stations in Appendix, Table B.

As certain months of the ycar may be critical for agricultural plants, each month was next considered separately, and individual wet months were grouped into (a) those within a period of winter rainfall, and (b) those forming a part of a short period of effective rainfall outside the winter period. The following examples (Table I) illustrate that only in occasional years does the rainfall period extend to the summer months (e.g., January) in the wettest parts of the State, such as Mount Gambier.

Table I
Percentage of years with rainfall for month included
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{l}
Station \\
Mt. Gambier
\end{tabular}} & \multirow[b]{3}{*}{\(\ldots\)} & \multirow[b]{3}{*}{...} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Jan. } \\
& 6 \cdot 0
\end{aligned}
\]} & & \multicolumn{2}{|r|}{相} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Sept. } \\
& 98.0
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Oct. } \\
& 86.0
\end{aligned}
\]} \\
\hline & & & & \[
\begin{aligned}
& \text { Mar. } \\
& 42 \cdot 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { April } \\
& 94.0
\end{aligned}
\] & \[
\begin{gathered}
\text { July } \\
100 \cdot 0
\end{gathered}
\] & & \\
\hline & & & & (4.0) & \multicolumn{2}{|l|}{(4.0)} & & \\
\hline \multirow[t]{2}{*}{Mt. Barker} & \multirow[t]{2}{*}{....} & \multirow[t]{2}{*}{...} & \multirow[t]{2}{*}{-} & 28.0 & \multirow[t]{2}{*}{\(80 \cdot 0\)} & \multirow[t]{2}{*}{\(100 \cdot 0\)} & \multirow[t]{2}{*}{\(100 \cdot 0\)} & \(82 \cdot 0\) \\
\hline & & & & (2.0) & & & & (4.0) \\
\hline \multirow[t]{2}{*}{Kapunda} & \multirow[t]{2}{*}{....} & \multirow[t]{2}{*}{\(\ldots\)} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{\(4 \cdot 0\)} & \(50 \cdot 0\) & \multirow[t]{2}{*}{\(100 \cdot 0\)} & \(86 \cdot 0\) & \multirow[t]{2}{*}{\(56 \cdot 0\)} \\
\hline & & & & & (2.0) & & (4-0) & \\
\hline Streaky Bay & .... & \(\ldots\) & - & \(4 \cdot 1\) & \(20 \cdot 4\) & \(100 \cdot 0\) & \(55 \cdot 1\) & \(10 \cdot 2\) \\
\hline & & & & & & (2.0) & & (2.0) \\
\hline Farina & & & - & - & \(2 \cdot 0\) & \(10 \cdot 0\) & - & \(2 \cdot 0\) \\
\hline
\end{tabular}

The figures in brackets indicate the percentage of seasons, in which the month is dry, but included in the winter rainfall season by virtue of the overlap effect.
In the agricultural districts, the winter months (e.g., July) are practically always within the period of effective rainfall. The autumn (c.g., March and April) and spring months (c.g., September and October) show a gradation from the wetter districts to the drier agricultural districts, in the percentage of years, in which they are included in the winter rainfall period. The rainfall of the arid interior is spasmodic, but that which occurs, cluring the winter months is most likely to be effective, on account of the lower cvaporation.

Short periods of effective rainfall, outside the winter rainfall period, may occur. These are of some importance during the summer months in the higher rainfall areas. At Mount Gambier, the months December, January and February have an effective rainfall of this type in \(12 \%, 5 \%\) and \(8 \%\) of the years, whilst at Robe \(16 \%\) of Decembers have an effective rainfall of this type.

Prolonged periods of favourable rainfall conditions and prolonged periods of dry weather greatly influence the production of pastures and agricultural crops, and the critical periods of the year vary from species to species. The percentage of years with the rainfall (a) continuously effective and (b) continuously non-effective (i.e., drought conditioni) for periods of two, three, four, and five months commencing with each month of the year, have been detemined. The examples shown in Table II illustrate the trends shown by the tri-monthly periods.

\section*{Table II-Tri-Montrily Periods}
(a) Percontage of years with rainfall effective for 3 months.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Station} & & & \multirow[b]{2}{*}{Dec.-Feb.} & \multicolumn{3}{|l|}{Months} & \multirow[b]{2}{*}{Aug. Oct.} & \multirow[b]{2}{*}{Sept,-Nov.} \\
\hline & & & & Ferb.npr. & March-May & June-Aug. & & \\
\hline Mt. Gambier & ... & .... & \(6 \cdot 0\) & \(12 \cdot 0\) & \(38 \cdot 0\) & 98.0 & \(84 \cdot 0\) & \(46 \cdot 0\) \\
\hline Mt. Barker & .... & \(\ldots\) & - & \(6 \cdot 0\) & \(24 \cdot 0\) & \(98 \cdot 0\) & \(76 \cdot 0\) & \(36 \cdot 0\) \\
\hline Kapunda & .... & \(\ldots\) & - & - & \(2 \cdot 0\) & 94.0 & \(52 \cdot 0\) & \(10 \cdot 0\) \\
\hline Strcaky Bay & \(\ldots\) & \(\ldots\) & - & - & \(2 \cdot 0\) & \(87 \cdot 7\) & \(8 \cdot 2\) & - \\
\hline Farina .... & .... & .... & - & - & - & - & - & - \\
\hline
\end{tabular}
(b) Percentage of years with continuous drought for 3 months.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{6}{|c|}{Month.} \\
\hline & & & Dec. Fetb. & Feh, Appr & March- Ma & June-Aug. & Aug. Oct. & Sept.Nov. \\
\hline Mt. Cambier & .... & .... & \(50 \cdot 0\) & \(4 \cdot 0\) & - & - & 2-0 & \(2 \cdot 0\) \\
\hline Mt. Barker & & .... & \(64 \cdot 0\) & \(10 \cdot 0\) & \(2 \cdot 0\) & - & \(2 \cdot 0\) & 6.0 \\
\hline Kapunda & & & \(92 \cdot 0\) & \(46 \cdot 0\) & \(6 \cdot 0\) & - & \(2 \cdot 0\) & \(8 \cdot 0\) \\
\hline Streaky Bay & & & 89.8 & 73.5 & 16.3 & - & \(2 \cdot 0\) & \(42 \cdot 8\) \\
\hline Farila & \(\ldots\) & .... & \(100 \cdot 0\) & \(96 \cdot 0\) & \(84 * 0\) & \(58 \cdot 0\) & \(90 \cdot 0\) & \(96 \cdot 0\) \\
\hline
\end{tabular}

They show that even in the wettest districts in the State only occasionally are the rainfall conditions favourable to plant growth during the three summer months, whereas a dry period of three months occurs at this time in one-half the years. All the agricultural areas are free from a prolonged dry period during the winter months.

The higher rainfall areas, such as Mount Gambier and Mount Barker. show a higher percentage of favourable conditions and a lower percentage of drought conditions at all times of the year than do the wheat-belt areas, including Kapunda and Streaky Bay.

The trends shown by the five-monthly periods in Table IIT are similar. Only in one-third of the years does a favourable period of five months occur at Straky Bay, whercas at Mount Gambier 1914 was, the only ycar in fifty in which a five month period of favourable rainfall did not occur during the winter months (May-September).

\section*{Table III-Five-Montiliy Perions}
(a) Percentage of years with rainfall effective for 5 months.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & \\
\hline Station & & & Nuv.-Mar, & Jan. May & Fer, June & May-Sept.
\[
08 \cdot 0
\] & July-Nov. \(46 \cdot 0\) & \[
\begin{gathered}
\text { Ang. Dec. } \\
14.0
\end{gathered}
\] \\
\hline Mt. Gambier & .a. & \(\ldots\) & \(2 \cdot 0\) & \(4 \cdot 0\) & \(12 \cdot 0\) & & & \\
\hline Mt. Barker & ... & .... & - & - & \(6 \cdot 0\) & \(92 \cdot 0\) & \(36 \cdot 0\) & \(6 \cdot 0\) \\
\hline Kapunda & .... & \(\ldots\) & - & - & - & \(68 \cdot 0\) & \(8 \cdot 0\) & - \\
\hline Streaky Bay & .... & & - & - & - & \(34 \cdot 7\) & - & \\
\hline Farina .... & .... & \(\ldots\) & - & - & - & & & \\
\hline
\end{tabular}
(b) Percentage of years with cominuous drought for 5 months.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & \\
\hline Station & & & Nor-Mar. & Janc-Miy & Feh. June & May- Sept. & July- \({ }^{\text {Now. }}\) & Ausr.-Dec. \\
\hline Mt. Gambier & \(\ldots\) & \(\ldots\) & \(18 \cdot 0\) & - & - & & & \\
\hline Mi. Barker & ... & \(\ldots\) & \(32 \cdot 0\) & \(2 \cdot 0\) & - & - & - & - \\
\hline Kapunda & & & \(72 \cdot 0\) & \(6 \cdot 0\) & - & - & - & \(2 \cdot 0\) \\
\hline Streaky Bay & & & \(83 \cdot 7\) & \(14 \cdot 3\) & \(2 \cdot 0\) & - & - & \(2 \cdot 0\) \\
\hline Farina .... & .... & \(\ldots\) & \(100 \cdot 0\) & \(84 \cdot 0\) & \(5+0\) & \(50 \cdot 0\) & \(82 \cdot 0\) & \(90 \cdot 0\) \\
\hline
\end{tabular}

The percentage of years in which the summer drought extends to include the month of May varies from \(0 \%\) at Mount Gambier to \(14 \%\) at Streaky Bay. At Farina prolonged droughts occur at all times of the year.

The information discussed in this paper is of value in determining the frequency with which conditions favouring the growth of specific crop and herbage plants are likely to occur. The data have already furnished information as to the suitability of areas for spring-sown flax and to indicate the limits of areas of use for the raising of fat lambs.

Space permits only a limited number of tables to be included, and those included give data for only half the stations. However, a set of tables complete for all stations, and containing information on periods of two and four months, is available at the Waite Institute and will be supplied on request.

\section*{References}
(1) Trumble, H. C. 1937 Trans. Roy. Soc. S. Aust., 61, 41
(2) Trumble, H. C. 1939 Trans. Roy Soc. S. Aust., 63, 36

\section*{APPENDIX}

\section*{Table A}

Rainfall period, expressed as the mode and the probable extremes in 5, 10 and 20 per cent. of years, together with the percentage occurrence of seasonal types.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{EdaphoClimatic Zone} & \multirow[b]{3}{*}{Station} & \multirow[b]{3}{*}{Record (ycars)} & \multirow[b]{3}{*}{Mocie} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(<20 \%\)}} & & & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\(<5 \%\)}} & \multirow[t]{3}{*}{\begin{tabular}{l}
dry sperl \\
during \\
raintall \\
period
\end{tabular}} & \multirow[t]{3}{*}{} \\
\hline & & & & & & & & & & & \\
\hline & & & & \(<\) & & \(<\) & \(>\) & & & & \\
\hline 1-2 & Mt. (iambier .. & 50 & 9.3 & 3.1 & 10.6 & 7.4 & 11.3 & 6.8 & 11.8 & 16.0 & 16.0 \\
\hline 341 & Mt. Barker & 50 & 8.5 & 7.5 & 9.6 & 6.9 & 10.2 & 6.4 & 10.7 & 12.0 & 23.0 \\
\hline & Clare & 50 & 7.6 & 6.8 & 8.6 & 6.7 & 9.1 & 6.0 & 9.5 & 22.0 & 14.0 \\
\hline & Suathalbyn & 50 & 7.5 & 6.4 & 8.5 & 5.4 & 9.1 & 5.4 & 9.6 & 33.0 & 20.0 \\
\hline 56 & Pt. Lincoln & 48 & 7.3 & 64 & 8.3 & 6.0 & 8.8 & 5.6 & 9.9 & 25.1 & 22.9 \\
\hline & Kapunda & 50 & 7.0 & 61 & 7.4 & 5.6 & 8.4 & 5.2 & 8.8 & 16.0 & 180 \\
\hline 7 & Snowtowit & 31 & 6.0 & 4.8 & 7.2 & 4.1 & 7.8 & 3.6 & 8.3 & 19.1 & 9.7 \\
\hline 8 & Streaky Bay ... & 49 & 5.7 & 49 & 6.5 & 4.5 & 6.9 & 4.1 & 7.3 & 14.2 & 14.3 \\
\hline 9 & Port Piric & 18 & 4.0 & \(2 \%\) & 6.0 & 2.1 & 7.4 & 1.8 & 9.0 & 27.9 & 22.2 \\
\hline 14 & Farina .... & .. 50 & insuff & ut & s wit & anfal & ffect & & & -- & 8.0 \\
\hline
\end{tabular}
* In addition to the Seasonal Types inclucled, 4 per cent. of the vears at Mount Gambier had contimous seasons i.c., there was no anmmer dronght. No contintous seasons occurred at the other stations. 48 per cent. of the years at Farina hat no effective rainfall. No ycar of this type occurred at the other stations.

\section*{Taple B}

Influential rainfall, expressed as the mole and the probable extremes in 5,10 and 20 per cent. of years.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Station} & \multirow[b]{2}{*}{Mode} & \multicolumn{2}{|c|}{20\%} & \multicolumn{2}{|l|}{Effective Rainfall \(10 \%\)} & \multicolumn{2}{|c|}{5\%} \\
\hline & & \(<\) & > & & \(>\) & \(<\) & \(>\) \\
\hline Mt. Gambier & 26.70 & 20.88 & \(32 \cdot 64\) & 17.76 & \(35 \cdot 76\) & \(15 \cdot 16\) & \(38 \cdot 36\) \\
\hline Mt. Ba:ker & \(28 \cdot 08\) & \(22 \cdot 05\) & 35.27 & \(19 \cdot 55\) & 38.14 & \(17 \cdot 37\) & \(41 \cdot 34\) \\
\hline Clare & \(20 \cdot 21\) & \(15 \cdot 35\) & \(26 \cdot 01\) & \(13 \cdot 11\) & \(29 \cdot 50\) & \(11 \cdot 27\) & \(32 \cdot 65\) \\
\hline Strathalbyn & 16.08 & \(12 \cdot 22\) & 15.94 & \(10 \cdot 18\) & 21.98 & \(8 \cdot 47\) & \(23 \cdot 69\) \\
\hline P'. Lincoln & \(17 \cdot 37\) & 13.77 & 21-55 & \(12 \cdot 09\) & \(24 \cdot 01\) & 10.79 & 26.20 \\
\hline Kapunda & \(15 \cdot 14\) & \(10 \cdot 51\) & 15.77 & \(8 \cdot 06\) & \(22 \cdot 22\) & 6.01 & \(24 \cdot 27\) \\
\hline Snowtowt & \(10 \cdot 49\) & \(7 \cdot 00\) & \(15 \cdot 72\) & \(5 \cdot 6 \cdot+\) & 19.51 & \(4 \cdot 70\) & 23.43 \\
\hline Streaky Bay & \(11 \cdot 26\) & 8.44 & \(14 \cdot 07\) & 6.95 & 15.56 & \(5 \cdot 70\) & 16.81 \\
\hline Pt. P'irie & \(6 \cdot 00\) & \(3 \cdot 10\) & \(5 \cdot 71\) & \(2 \cdot 27\) & \(13 \cdot 25\) & 1.73 & \(17 \cdot 35\) \\
\hline Farina & & insuf & nt years & h rai & 11 effe & & \\
\hline
\end{tabular}

\title{
ADDITIONAL NEMATODES FROM AUSTRALIAN BIRDS
}

\author{
By PROF. T. HARVEY JOHNSTON and PATRICIA M. MA WSON, University of Adelaide
}

\begin{abstract}
Summary

The nematodes recorded in this paper are mainly from water-birds. Some of the parasites were collected by Dr. J. B. Cleland, the late Dr. T. L. Bancroft (Eidsvold, Queensland) and the late Dr. MacGillivray. We are also indebted to Messrs. G. and F. Jaensch and L. Ellis for help in obtaining material from Tailem Bend, South Australia. The work was assisted by the Commonwealth Research Grant to the University of Adelaide. Types of new species are deposited in the South Australian Museum.
\end{abstract}

\title{
ADDITIONAL NEMATODES FROM AUSTRALIAN BIRDS
}

\author{
By Prof. T. Hárvey Joh yston and Patricia M. Mawson, University of Adelaide
}
[Read 14 August 1941]
The nematodes recorded in this paper are mainly from water-birds. Some of the parasites were collected by Dr. J. B. Cleland, the late Dr. T. L. Bancroft (Eidsvold, Queensland) and the late Dr. MacGillivray. We are also indebted to Messrs. Ca. and F, Jaensch and L. Ellis for help in obtaining material from Tailem Bend. South Australia. The work was assisted by the Commonwealth Research Grant to the University of Adelaide. Types of new species are deposited in the South Australian Museum.

The following is a list of the parasites studied, recorded under their hosts: Pitta mackioti Temm. (North Queensland)—Thelazia pittae n. sp.
Chlidonias leucopareia Temm. (Tailem Bend) - Cheureuxia australis n. sp.; Acuaria (s.1.) sp., larva.
Hydroprogne caspia strenua Gould (Tailem Bend)-Trichostrongylus (s.1.) incertus n. sp.; Acuaria (s.l.), sp., larva.
Pelagodroma marina Lath, (Flinders Island, Bass Strait)-Seuratia marina n. sp.

Threskiornis (Carphibis) spinicollis Jameson (Eidsvold) -Physaloptera sp., immature.
Microcarbo melanoleucus Vieill. (Adelaide; Tailem Bend)-Eustrongplides phalacrocoracis 11. sp.
Phalacrocorat carbo (Linn.) (Tailem Bend; Adclaide)-Eustrongylides phalacrocoracis n.sp.; Echinuria squamata Linst.; (Tailem Bend) Cosmocophalus jaenschi n. sp.
Anhinga novae-hodiandiaf Gld. (Burnett River)-Eustrongylides plotimus n sp.; (Thompson River) Acharia (Dispharynx) sp..
Poniceps poliocephalus Jardine and Selby (Tailem Bend) -Strcptocara recta (Linst.).
Podiceps ruficollis novae-hollandiae Stephens (Tailem Bend)—Streptocara recta (Linst.).
Chenorsis atrata Lath. (Tailem Bend)-Tetrameres australis n. sp.
Anas superciliosa Gmel. (New South Wales)-Physaloptera sp.
Brziura lobata Shaw (Tailem Bend)-Tetrameres biziutue n. sp.
Aegotireles cristata White (Tailem Bend)-Habroncma aegotheles 11. sp.
Pomatostomus superciliosus Vig. and Horsf. (Elwomple,)-Spirura (s.1.) sp., larva.

Trichostrongylus (s.1.) incertus 1 . sp .
(Fig. 1)
From the Caspian tern, Hydroprogne caspia strenua, from Tailem Bend, One male present, its anterior end missing; part available 2.9 mm . long, 06 mm . wide. Dorsal lobe of bursa small; right side of bursa rather larger than left, rays on that side stouter but similar in form. Ventro-ventral rays narrow, straight, reaching bursal edge, separated from latero-ventrals; latter tapering at extremities, bent ventrad, not quite reaching bursal edge; lateral rays not reaching bursal edge; ventro-lateral blunt-tipped; medio-lateral longest, tapering to narrow tip; postero-lateral shortest, narrowest, tip bent dorsad; externo-dorsal ray not arising
from dorsal, narrow, not reaching edge of bursa; dorsal reaching nearly to bursal edge, bifurcating near its tip into two short cloven branches. Spicules \(\cdot 12 \mathrm{~mm}\). long, with alae and ridges giving them a contorted appearance, but ending in a blunt simple tip. Gubernaculum absent. Prebursal papillae present, The form of the bursal rays and the shape of the spicules stiggest that the species is closest to Trichostrongylus, although it differs from members of that genus in the absence of a gubernaculum and in the separation of the externo-dorsal rays from the dorsal ray. In view of the condition of the material it seems unwise to attempt to assign it more definitely in the Trichostrongylidae.


Fig. 1, Trichostrongylus (s.1.) inceritts: bursa. Fig. 2-3, Eustrongylides phalacrocoracis: 2, head; 3, bursa. Fig. 4-5, Eustrongylides plotinus: 4, head; 5, bursa. lig. 6-7, Thelasia pitfac: 6, head; 7, male tail. Fig. 8-10, IIalyonema acgolheles: 8, head ; 9, lateral, and 10, ventral, views of male tail. Fig. 11-12, Physaloptcra sp., from Anas: 11, head; 12, mate tail. Fig. 13-14, Physaloptera sp. from ibis, subventral and face views of head. Fig. 1, 9, 10, 13 and 14 to same scale; fig. 2, 4,7 and 11 ; fig. 3 and 6 ; fig. 5 and 12.

\section*{Eustrongylides phalacrocoracis n. sp.}
(Fig. 23)
Taken from the subperitoneal tissue of the stomach of Microcarbo melanoleucus from Tailem Bend (type locality) and Adelaide; and from Phalacrocorat carbo from Tailem Bend. Males up to 100 mm , long, 8 mm , wide; female ranging to 130 mm . long, 1 mm . wide. Papillae around mouth very large and prominent, those of imer circle distinctly larger than those of outer circle. Six of inner circle of same size, each bearing antcriorly a short prolongation of the pulp in form of a spine; six papillae of outer circle not of equal size, the laterals taller; each papilla with small rounded prolongation of pulp anteriorly. Between each lateral and submedian papilla of outer ring is a very small rounded projection
of hypodermis forming an accessory papilla. Buccal cavity \(\cdot 12-14\) mun. long; oesophagus twisted, terminating 13 mml . from head, about one-sixth to one-eighth body length.

Bursa with finely notched edge; slight ventral cleft; cuticle roughened on insicle. Spicule very thin, 10.2 mm . long, \(1: 10\) of body length.

Anus in female terminal. Vulva not observed. Fggs \(65 \mu\) by \(40 \mu\), with pitted shells.

The species noost closely resembles E. africantus Jaegerskiold, differing in the size of the papillae, the lengthe of the buccal cavity and oesophagus, and in the shape of the eggs.

Eustrongylides plotinus n. sp.
(Fig. 4-5)
Frem Anhinga norae-hollandiue, from the Bumett River, Queensland (coll. Dr. Bancroft). Mates only present; the largest whole specinen 81 mm . long, 1 mm. wide. Ilead papillae resembling these of \(L 5\). phatacrocoracis in shape and relative sizes, but all are smaller in relation to size of body, and therefore less conspicnous. Buccal cavity \(\cdot 08-1 \mathrm{~mm}\). long, oesophagus much twisted, ocenpying first sixth of body length.

Bursa with fincly notched edge and very deep ventral cleft. Spictule 13 mm . long in 81 mm. specimen ( \(1: 6\) of body length), but in a broken worm it reathes \(15-4 \mathrm{~mm}\). The species is distinguished from E. phalacrocoratis by the relatively smaller oral papillae, the more deaply cleft bursa, and longer spicules. The two species are, however, very close, and some of the differences may be due to the nethod of preservation in case of \(E\). plotimus. Pending the examination of fresher material it is considered wiser to erect a new species for the specimens from Anhingu.

Thelazia pittae n. sp.
(Fig. 67 )
From Pitta mackloti, North Queenshand, coll. Int, MacGillivray, Males \(1+16\) min. long, 4 mm . wide; fenales \(18-20\) mmi. by \(\cdot 54 \mathrm{mm1}\). Head wiih six papillace. liuccal cavity \(25 \mu\) long and \(30 \mu\) wide in male, \(30 \mu\) long and \(35 \mu\) wide in female, with walls about \(10 \mu\) thick. Oesophagus -95-1 1mm, long in both sexes. N゙orse ring 46 mm ., cervical papillae .56 mm ., from head end.

Malc-Tail curved rentrad, \(18-2 \mathrm{~mm}\). long; single median and seven to ten pairs preanal papillas. four or five pairs postanal. Spicules \(\cdot 18-2 \mathrm{~mm}\). and .26 mm . long; the longer very fine, not strongly chitinised; the shorter blunt and massive.

Female Tail \(\cdot 2 \mathrm{~mm}\). long; vulva \(\cdot 75-9 \mathrm{~mm}\), from head ent. Uteri containing larvae.

The species is distinguished from others of the genus by the number and position of the caudal papillae and by the relative lengths of the spicules.

Habronema aegotheles n. sp.
(Fig. 8-10)
Fron the owlet nightjar, Aegotholes cristata, from Tailem Bend. Male 2.5 inm., fenale 4.8 mm ., in length. Lateral lips trilobed, with long dorsal and ventral processes; interlabia not seen since head viewed only from lateral elevation, hut probably short and simple. Vertical thickened ridges (probably two) on inside of each lip, projecting anterincly as teeth. Buccal capsule \(27 \mu\) long in male, \(33 \mu\) long and \(10 \mu\) wide in female. Anterior part of nesoplagns -2 mm . long in female; - 14 mm , in male; posterior part -81 mm . in male.

Malo-Candal alae not wide, united posterior to end of body. Spicules \(\cdot 18 \mathrm{~mm}\), and \(\cdot 7 \mathrm{~mm}\). in length; the shorter with rounded ip; the longer needlelike. Four pedunculated preanal papillae on same side as shorter spicule, six on
other side; one pair small sessile papillae immediately posterior to antus, and a pair large pedunculated papillae behind these. Male tail bent dorsad. Anus \(70 \mu\) in front of rounded tip of tail.

Female-Tail \(\cdot 16 \mathrm{~mm}\). long, narrowing suddenly after half length. Position of vulva not seen. Body filled with thick-shelled eggs, \(20 \mu\) by \(45 \mu\), containing embryos.

The species nosi closely resembles \(H\). magnilabiatum Maplestone in the shape of the lips. The worms are however, shorter, the lateral lips more deeply lobed; the spicule lengths, and the ratio between them, are different, and there are more caudal papillac in the male of \(H\). acgothcles.

\section*{Physalopterasp. \\ (Fig. 11-12)}

From Anas superciliosa (New Sonth Wales). One male present, so preserved that only lateral views of the head and tail could be obtained. Lips each bearing two bipartite teeth in dorsal and ventral positions; in median position an outer single tooth and an inner much smaller one, cither bipartite or quadripartite. Collar at base of lips, shallow, Exact position of anus and length of spicules not determined satisfactorily. At least four pairs pedunculate preanal papillae and three pairs shorter postanal papillae. Spicules at least 3 mum, and \(\cdot 6 \mathrm{~mm}\). Iong, the longer very fine and poorly chitinised. It is possible that the worm is not a normal parasite of ducks. We have refrained from naming it. The presence of prominent bicuspid teeth in dorsal and ventral positions on lips has not been described for any species of Physaloptera from birds.

\section*{Physaloptera sp., immatire}
(Fig. 13-14)
From the black ibis, Throskiornis spinicollis, from Eidsvold, Queensland, coll. Dr. Bancroft. Immature specimens up to 15 mm . in length, .52 mm . wide. Head with very loose "collar" and shallow lips. Each lip with two papillae externally and three teeth internally, latter in dorsal, ventral and median positions. Oesophagus 2.24 mmn . long. Tail conical, 56 mm . long. The arrangement of the teeth is apparently unique anong Physaluptcra from birds.

Acuarta (Dispharynx) sp.
Thrce poorly preserved specimens from Anhinga norac-hollandiac, Thompson River, Qucensland. Length, \(19-23 \mathrm{~mm}\). Cordons about. \(9-1.5 \mathrm{~mm}\). long, recurrent end reaching mouth region. Vestibule -25 mm , long, anterior part of ocsophagus 6 mm . long, termination of posterior part not seen. In 19 mm . specimen, vulva 2.4 mm . from tip of tail; latter \(\cdot 12 \mathrm{~mm}\). long. Recurrent branches of cordons apparently longer than in previonsly described species, but in view of the condition of the material it is considered wiser, not to erect a new species.

\section*{Echinliria squamata Linst.}
(Fig. 15-19)
A young male 3.3 mm . long, a toung female 4.4 mm . long, a female 20 mm . long, and the anterior end of another large female, from Phalacrocorax carbo, Tailem Bend; and a young male from same host species from the Hope Valley Reservoir, Adelaide. Lips prominent, each with two papillae and an amphid. Cervical papillae large, tricuspid, 35 mon. from head in male, 4 mm . in young female, 1.1 mm . in adult female. Cordons prominent, wider posteriorly, not recurrent, uniting immediately anterior to cervical papillac. Cordons striated transversely, each stria consisting of a row of about eight posteriorly-directed spines; spines on dorsal or ventral respective edge of each cordon larger than others in the row and sometimes bifid. At junction of cordons, spines single and
large, Lateral alac extend from immediately posterior to cervical papillac. Vestibule with striated walls, \(140 \mu\), \(150 \mu\), and \(480 \mu\), long in male, young female, and adult female, respectively. Anterior part of oesophagus \(\cdot 26 \mathrm{~mm}\), long in young female, 25 mm . in male; posterior part slightly wider, \(2 \cdot 35 \mathrm{~mm}\). 1 long in young female. Nerve ring 16 mm . and 18 mm . from head end in young male and young iemale, respectively. Excretory pore 27 mmL . from head.

Male-Caudal alac wide, 28 mm . long, meeting posterior 10 body. Cloaca . 09 1nm. from tip of tail. One median sessile preanal papilla, four pairs preanal and seven pairs postanal pedunculated papillae (fig. 18). Spicules -45 n111. and


Fig. 15-19, Echinuria squamuta: 15, male head; 16, female, and 17, male anterior cuds; 18, male tail; 19, part of a cordon. Fig. 20-21, Cheircuraia australis, anterior end, showing, 20, vestibulc; 21, corduns. Fig. 22-24, Cosmoceptahus jachschi: 22-23, anteriur end; 24, male tail. Fig, 25-27, Scurahis marina: 25, lateral, and 26 dersal. vews of head; 27, male tail. Fig. 28-29, Streptocara recta: ventral and latcral vifwh of head. Fig. 15 and 19 to same scale; fig, 17, 18 and 20; fig. 21, 22, 24, 25, 26 and 27 ; fig 28 and 29.
\(\cdot 07 \mathrm{~mm}\). in length, shorter spatulated and blunt tipped; longer tubular in proximal fuarter, remainder needle-like almost to the end which is somewhat broadened.

Female-Body much wider posteriorly, tapering to head, Anus subterminal. \(V\) ulva 18 mm , from posterior end. Eggs thick-shelled, \(33-35 \mu\) by \(24-25 \mu\).

The present specimens agree with the limited description of the species given by Linstow (1883), whose spccimens came from Phalacrocorax carbo, from Central Asia.

\section*{Chevreuxia australis n. sp.}
(F:g. 20-21)
One female 12.3 min. long, obtained from a marsh tern, Chlidonias lentopareia, from Tailem Rend. Two large lips cach with anterior projection and two large papillae. Caticular "collar" extending backwards from level of cervical papillae, -34 mm. from head, for -18 mm. Each of the dorsal and ventral cordons joining laterally on free border of this collar. Cuticle over cordons not striated, but somewhat twisted; inter-cordon area markedly striate. Vestibule 17 mm . long, \(5 \mu\) wide except near mouth where it widens. Anterior part of oesophagns 61 mmn . Iong, posterjor part obscured by ateri, Tail - 36 mm . long, tapering to blunt point. Viviva 6.3 mm. from head end, i.c., just posterior to middle of body. Eggs thichshelled, \(18-19 \mu\) by \(30-31 \mu\).

The species is closcly related to C. rovoluta (Rud.) from Himantopus, the distinguishing features of the new species being the unstriated cordons, striated inter-cordon atcas, and the rather longer and less conspicuous "collar," or cuticular flap, which characterises the genus These differences are, however, mall.

\section*{Cosmocephalus jaenschi n. sp.}
(Fig. 22-24)
From Phalacrocorat carbo, Tailem Bend. Two males present, about 10.5 minn, long, Lips shallow, each with prominent anterior projection and two large papillas. Rounded cuticular expansion dorsally and ventrally between cordons. Cordons volunninons, scalloped on inner edge, forning immediately after origin on lips a postero-lateral narrow loop about \(30 \mu \mathrm{long}\), then continuing back to a point \(\cdot 39 \mathrm{~mm}\). From head; front of recurrent loop 9 min. fron head. Cervical papillae tricuspid, 46 mm . from head end. Vestibule 39 mm . long, \(20 \mu\) wide. Anterior part of ocsophagns 9 mm., posterior \(3 \cdot 7\) minn., in length; nerve ring -45 man, and excretory pore -53 nm. from head end. Spicules 61 mm . and 15 mm . in length. Catdal alac present, supperting foutr pairs preanal and live pairs postanal pedunculated maphac, the linal pair being stonter than the others. Tail 29 mm, long.

The species resembles C. capollar Yamaguti rery closely in getieral features but differs in the lengths of the spicules and in the mumber of postanal papillae. It differs from C. admous (Creplin) in the length of the cordons; from C. asturis Y. and 3 . in the shape of the cordons, length of the vestibule and the position of the excretory pore; and from \(C\). obvolala (Creplin) in the length of the vestibtile relative to the cordons and cervical papillae and in the number of postanal papiliac and the relative lengths of the spicules.

\section*{Seuratia marina n. sp.}
(Fig. 25-27)
From the stormy petrel, Pelagodroma marina, from Flinders Tsland, Bass Sirait. coll. Dr.. Cletand. Spinous collar and large tricuspid papillae as in S. shiployi; collar with about 34 teeth on each side. Leper border of cervical papillac \(130 \mu\) from head in femalc, \(90 \mu\) in maie. Hooks on body in four sublateral rows, small. Mouth surrounded by six shallow lips, two laterals each with a prominent papilla. Vestibule in female \(180 \mu\) long, transversely striated; walls about \(5 \mu\) thick, lumen \(9 \mu\) wide; in male, \(140 \mu\) long. Anterior part of oesophagus - 62 mun, long in female, posteriot part at least 1.6 mnn., its posterior end obscurcd by other organs. Nerve ring - 23 mma , and excretory pore \(\cdot 31 \mathrm{nmm}\), from head end in female.

Malc- \(-5 \cdot 5-6 \mathrm{~mm}\). long; tail with narrow alae supporting two pairs preanal and four pairs postanal papillae. No other caudal papillae observed. Spicules
1.4 mm . and 2.4 mm . in length, longer tapering to a point, shorter more massive with large head and blunt tip.

Female-7.4-8 mm, long, \(\cdot 42 \mathrm{~mm}\). wide. Anus about \(\cdot 1 \mathrm{~mm}\). from rounded posterior end; vulva \(\cdot 4 \mathrm{~mm}\). in front of anus; eggs about \(18 \mu\) by \(40 \mu\).

The species differs from \(S\), shipleyi as described and figured by Stossich and by Seurat, in the relative positions of the posterior end of the vestibule and the cervical papillae; in the number of preanal papillae in male; in the position of vulva; and in the absence of a terminal multicuspidate papilla in male.

\section*{Streptocara recta Linstow \\ (Fig. 28-29)}

This species was taken from Podiccps poliocch halus and P. ruficollis nozachollandiac, Tailem Bend. Figures are given of the atterior end of a female to show the vestibule.

\section*{Acuaria (s.1.) sp., larvae \\ (Fig. 30)}
(a) From a marsh tern, Chlidonias leucopareia, from Tailem Bend. Anterior end conical, apparently protected by two cuticular "plates" posterior borders of which are shaped to uncover four submedian papillae. Long vestibule present; oesophagus divided into anterior and posterior parts; nerve ring just posterior to vestibule. Tail tapering, its tip wrinkled and ending bluntly. This larva occurred in the same host as Chourcuxia australis described above.
(b) From a Caspian tern, Hydroprogne caspia strcnua, from Tailem Bend. Appearance identical with (a).


Fig. 30, Acharia (s.1.) larva: from Retropinna, anterior end. Fig. 31-35, Tetrameres biziurae: 31, anterior end of male; 32, male tail; 33, tail of larva; 34, young female; 35, adult female. Fig. 36-38, Tetrameres australis, male: 36, head; 37, anterior end; 38, tail. Fig. 31, 32, 33, 37 and 38 to same scale; fig, 30 and 36. a, anus; c, cloaca; g, gubernaculum; v, vulva.

The larvac found in terns had probably been ingested with small fish.
(c) From a fresh water fish, Retropinna semoni, Murray Bridge, South Australia (fig. 30). Appearance identical with (a) and (b).

Although cordons were not seen on any of these larvae, it is possible that the worms are young stages of one of the species of Acuariinae found in birds of the Tailem Bend region. The measurements in mm. of our specimens are given below.


Spircra (s.1.) sp., larva
From Pomatostomus superciliosus, Elwomple (near Tailen Bend). Length 5.68 mm ., breadth \(\cdot 24 \mathrm{mmin}\); anterior end rounded, without lips or papillae. Buccal capsule \(80 \mu\) long. Tail 48 mm . long, ending in rounded knob.

Tetrameres biziurae n. sp.
(Fig. 31-35)
From the musk duck, Bisiura lobata, from Tailem Bend. Material comprises males, females, and fourth stage larvae.

Male-4.2-4.4 mm . long; lateral alae present; in each a long spine bifid posteriorly, its termination 08 mm . from head, a structure apparently similar to that described by Seurat (1918) for T. fissispina and suggested by him to be a specific character. Four longitudinal rows of spines beginning at level of tips of the bifid spines, and extending throughout body length. Cervical papillae at slightly different levels, 15 and \(\cdot 16 \mathrm{~mm}\). from head end. Four distinct lips. Buccal capsule \(30 \mu\) long, about \(4 \mu\) wide. Oesophagus 1 mm. long; nerve ring \(\cdot 2 \mathrm{~mm}\). from head. Tail -15 mm . long, narrowing suddenly near tip. Four ventral and three lateral papillae on each side of tail. Spicules \(\cdot 25-.26\) and \(\cdot 07 \mathrm{~mm}\), in length.

Fonalc-Lips not distinguished; buccal capsule more subglobular than cylindrical. Young female: body very little swollen; dimensions as follows: 2 mm . long, 2 mm . wide; oesophagus \(\cdot 8 \mathrm{~mm}\). long; tail \(\cdot 15 \mathrm{~mm}\). long, vulva \(\cdot 22 \mathrm{~mm}\). from posterior end. Two long ventral spines \(60 \mu\) fram tip of tail, and two terminal spines. Adult female with following dimensions: body longer than wide; narrow projecting anterior part 6 mm . long, posterior part \(\cdot 15 \mathrm{~mm}\). Swollen part 1.5 mmn . long, 1.2 mm . wide. Buccal capsule \(20 \mu \mathrm{long}, 10 \mu\) wide at centre, narrower at top and bottom. Swollen part almost entirely filled by saccular intestine containing dark granular material. Vulva at posterior end of swollent part; anus 5 mm . fron tip of tail. Eggs not visible.

Larrac-About 2.4 mmn , long; no spines on body except group of five at end of tail and two prominent, subventral spines \(60 \mu\) from tip of tail. Buccal capsule \(18 \mu\) long; oesophagus 73 mm . long; nerve ring at \(\cdot 15 \mathrm{~mm}\)., and cervical papillae at \(\cdot 09 \mathrm{~mm}\)., from hcad end.

The species is apparently very close to \(7^{\circ}\). fissispina (Diesing), differing in the length of the bifid spines as described by Scurat, the length of the buccal
capsule, the position of the most anterior body spines, the length of spicules (shorter than observed for T. fissispina by any author), and the size of the femalo worm. T. fissispina has been recorded by Canavan (1931) from the Australian pied goose, Anscranas scmipalmata, from the Zoological Gardens, Philadelphia, L.S.A.

Tetrameres australis n.sp.
(Fig. 36-38)
From Black Swan, (henopsis atrata, from Tailem Bend. Malc worns collected, \(7 \cdot 8-9 \mathrm{~mm}\). lang. Lateral alae from \(\cdot 02 \mathrm{~mm}\). behind head to \(\cdot 15 \mathrm{~mm}\). Two rows sublateral spines on each side of boty; spines closer together and larger anteriorly, becoming very thin and sparser posteriorly. Spine-like corvical papillae \(170 \mu\) behind head; body spines beginning \(140 \mu\) from head end. L ong bifid spines in lateral alac (observed by Seurat in \(T\). fissispina) present in this species, though not so well marked. IIcad bearing six lijs; mouth leading into chitinized buccal cavity \(28 \mu\) long, \(10 \mu\) wide. Several (3-5 pairs) small teeth on inner side of lateral lips; dorsal and ventral lips with large papillae, others with smaller. Oesophagus 1.7 mm . long. Longer spicule needle-like, proximal end about \(30 \mu\) posterior to oesophagus, i.c., leugth about \(5 \cdot 8-6 \cdot 3 \mathrm{~mm}\). Shorter spicule wider. 8 mm . 10 ng , with blunt tip. Gubernaculum present, \(20 \mu \mathrm{by} 15 \mu\). Tail 3 mm . long. Body spines anterior to cloaca small and blunt, those posterior modified into papillae and lying in lateral or subventral lines. Tip of tail bearing several (probably five or six) small spincs, as described for fourth stage larva of \(T\). fissispina and \(T\). biziurac. In the relative lengths of the spicule and body, ihis species comes closest to T. telrica Travassos 1917. It is, however, much shorter than that species, and differs also in the number of candal papillae in the male.

\section*{l.iterature}

Cram, E. R. 1927 Bu1l. N.s. Nat. Mus., 140
Cinayan, II. P. 1931 Parasitol., 23, 196-226
IIsë, H. F. 1932 Peking Nat. Hist. Bull., 7, (2), 99-116
linstow, (). Arch.f. Naturg., 49, 274-314

\title{
THE SOILS AND VEGETATION OF PORTION OF KANGAROO ISLAND, SOUTH AUSTRALIA
}

\author{
By J. G. BALDWIN and R. L. CROCKER
}

\begin{abstract}
Summary

This paper deals with the principal vegetation and soil relationships of the Hundreds of Menzies, Cassini, Duncan, Seddon, Newland and MacGillivray, Kangaroo Island. It is the result of two reconnaissance surveys; the first carried out by J. G. Baldwin in 1939, and the second by R. L. Crocker in November, 1940.
\end{abstract}

\title{
THE SOILS AND VEGETATION OF PORTION OF KANGAROO ISLAND, SOUTH AUSTRALIA
}

\author{
By J. G. Batrowin and R. L. Crocker
}
[Read 14 August 1941|
Plates XIV to XVIL

\section*{Intronuction}

This paper deals with the principal regetation and soil relationships of the ITundreds of Menzies, Cassini, Duncan, Seddon, Newland and MacGillivray, Kangaroo Island. It is the result of two reconnaissance surveys; the first carried out by J. G. Baldwin in 1939, and the sccond by R. L. Crocker in November, 1940.

\section*{Geology and Pinsiography}

The dominant physiographic feature of this portion of the island is the lowlevel lateritic pencplain. This is the backbone of the island, although it has in places undergone considerable dissection. This platean capping of lateritic ironstone gravel and laterite overlics altered Precambrian sedimentaries-micacoons sandstone, schists and quartzites. Recent calcarcous dunes are prominent along the southern coast, particularly in the neighbourhood of Cape Gantheanme, where they rach their greatest development. They overlie an older consolidated dune formation which is exposed to the north and which gradually gives way to lateritic ironstonc and solonetzic soils, Consolidated dune limestone also occurs widely in the area surmounding the Ray of Shoals. Limited Upper Tertiary basalt, principally on platean remmants, the Gap Hills, and glacial beds of doubtful Permocarboniferous age occurs in the Huncred of Menzies. Polyzoal Miocene limestone, apparently of erratic occurrence, is found in this area also.

The rocks exposed on the break-away from the peneplain aleng the north coast, Hundred of Cassini, are largely sandstones, conglomerates and sandy shales, considered by Wade (4) as of doubt ful Cambrian age.

Along the southern coast, west of Vivonne Bay. there are numerous small outcrops of pegmatite and granite.

\section*{い Limate:}

The whole of Kangaroo Island has been placed by Davidson (2) in his warm lemperate semi-humid zone with \(\mathrm{P} / \mathrm{E}>0.5\) for seven months of the year. One of the notable featurcs of the climate of the island, however, is its milder winter and much cooler summer temperatures than adjacent regions on the manland. This considerably extends the actual growing period and period of effective rainfall.

Unfortunately, rainfall records of a reliable nature and extending over a sufficient length of time are very limited. Great difficulty, therefore, attends the establishment of any relationship between rainfall and vegetation, but several local rainshadow effects, as that along the coast near the Middle River Kange, are paralleled by vegetation clanges and supported by lucal rainfail records. The average annual rainfall at Kingscote is 19.10 inches, but it is very much higher on the lateritic plateau, and in the area under consideration here reaches its maximum in the vicinity of the headwaters of Middle River (Starvation Creel), Hundred of Duncan, where it is probably about 27-28 inches.

\section*{The Soils}

The soils of this area can be considered as falling into six large groups:
A The lateritic soils of the peneplain and the slopes:
(1) elevated peneplain;
(2) gravelly slopes;
(3) grey sandy slopes with variable lateritic gravel.
\(B\) Grey and light grey siliceous sands.
C Brown soils associated with older sedimentary rocks,
D) Solonetz soils.

E Soils associated with dunes:
(1) consolidated dunes;
(2) unconsolidated calcareous duncs,

\section*{F Basaltic soils.}

\section*{A The Latcritic Soils.}

Soils characterised by considerable percentages of lateritic gravel are very widespread and are associated with the old peneplain that forms the backbone of the island. The sonthern slope from the old peneplain level is more gradual than the northern where the old level frequently extends almost to the coast before dropping away suddenly. The principal soils associated with this area show some variation in texture and amount of lateritic gravel, while phosphoric acid and nitrogen levels are of the same order-exceedingly low. This and the constancy of the associated vegetation indicate quite clearly that most of these variations are not significant agriculturally, and from the point of view of future development can be considered as one general type. (The very shallow soils associated with dense conglomerate laterite and some of the sandy grey soils of valleys are excluded from this generalisation.) This general type has a grey-brown loamy sand to loam surface soil with variable amounts of lateritic gravel, and increases in texture with depth to a yellow and yellow-grey clay at usually less than 27 inches. The upper clay horizons almost always include much gravel, but this decreases with depth. The clay frequently shows red-brown inclusions or is mottled. The analytical data on the profiles sampled within this type are given in Tables I, II and III. The type is invariably associated with dry sclerophyll forest or, towards its drier limits, sclerophyll scrub.

Very dense ironstone gravel and laterite, exposed at or very near the surface, and associated with a rare mallee, Eucalyptus romota, occur in the north-west portion of the Hundred of Newland and south-west Hundred of Duncan and become increasingly important in the adjacent western areas.
B Grey and Light Grey Silicous Sands.
The sandier grey soils associated with slopes and valleys where the lateritic pencplain is dissected frequently support modified vegetation associations. These soils, however, usually contain some ironstone gravel and are very closely related to the latcritic soils described above. Their phosphoric acid and nitrogen status is of the same order, though slightly lower.

In the vicinity of Mount Taylor and Mount Stockdale grey, light grey and, white sands overlic dense cemented ironstone gravel, known locally as "conglomerate ironstone." The overlying sand is of very variable depth but most frequently about 30 inches, and may include some ironstone gravel. Sometimes it shows evidence of slight organic staming and the development of an organic gravel pan above the conglomerate ironstone. These soils are the poorest sampled, with nutrient levels ranging between \(0.002-0.003 \%\) phosphoric acid and \(0.033 \%\) nitrogen. They support a very depauperate and open stringybark (E. Baxteri)
and white mallee ( \(E\), diversifolia) association which, because of the sparseness and stunted nature of the dominants, often appears heathlike. These grey and white siliceous sands are probably re-sorted (aeolian) leached upper horizons of the consolidated dune limesitone to the south. They were first recognised by Wade (loc. cit.) as "blown sand."

\section*{C Brown Soils Associated with some of the Underlying Sedimentaries.}

The rocks underlying the lateritic gravels on the peneplain belong to an older sedimentary series that has undergone slight metamorphism. For the nost part they are altered shales and sandstones and quartzites. Sonie of these rocks produce a brown loamy snil usually overlying brown or even red-brown clay at a shallow depth. Although varying in profile they are characterised by considerably higher fertility than the ironstone types and are associated with a savannah dominated by sugar gume ( \(E\), cladocalyx). These soils are principally developed on the Middle River Range and near Stokes Bay. In two very different profiles sampled, the fertility levels are considerably higher than any of the lateritic types (see Table I). There is a remarkable difference in relative proportions of the replaccable cations in these two profiles (Table II).
D Solonetz Soils.
In much of the Hundred of Menzies solonetz soils carry narrowleaf mallee ( \(E\), cncorifolia) and black mallee ( \(E\), rugosa). The suriace is usually a brownishgrey and yellow-grcy sandy loam which overlies a well-structured columnar and nutty clay usually at less than 10 inches. Sometimes the sandy loam horizon is lacking, and in this case the soils may show "molon-holey" tendencies. There is usually evidence of some free lime in the subsoil, and for the most part. these soils are developed over limestone or boulder clay. No laboratory analyses have yet been made of this type, although analyses have been made of the solonetz soils associated with narrowleaf mallee and broombush.

Shallow solonetz soils also occur int the flat, fairly low-lying areas between the Cygnet River (Hundred of Menzies) and the pencplain in the IIundred of MacGillivray and are associated with stunted narrowleaf mallee (E. cheorifolia) and brombush (Melaleuca uncinata).

On most of the Hawk's Nest-Dirchmore Lagoon area (Hundred of MacGillivray) there are solonetzic soils with variable admixture of ironstone, But there is also considerable complexity in this region and it is frequently difficult to distinguish these intermediate soils from the ironstone gravel soils carrying white mallee. Every gradation between the two types exists and the delineation on the accompanying vegetation nap should not be interpreted too rigidly.

\section*{E Soils Associuted with Duthes.}

Near the coast in the Hundreds of Machillivray and Seddon there are extensive calcareous sand duncs. These arc fairly well known because of "coastiness" in sheep itssociated with then. Although containing an appreciable percentage of quartz sand, the dune material is predominantly calcareous. Being principally composed of nurine shell fragments, they are particularly high in phosphates. These duncs abut against and overlie the older consolidated formation. The distribution and extent of these dute formations are shown on the accompanying vegetation map.

Some consolidated dume limestone also nccurs in the Hundred of Menzies near the Bay of Shoals.
F Basaltic Soils.
Limited areas of basaltic soils occur in the Wisanger-Retties Bluff region (the Gap Hills) Hundred of Menzies and near The Bluff, Bay of Shoals, but they are relatively unimportant and have not been sampled.

Table I
Range of Phosphoric Acid, Copper and Nitrogen Content and pH of Principal Soil Ciroups
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Locality \\
(Hundreds)
\end{tabular} & Vegetation & Soil Groups & \begin{tabular}{l}
Soil \\
Phases
\end{tabular} & \[
\mathrm{P}_{2} \mathrm{O}_{5}^{*}
\] & \[
\underset{\text { puph }}{\mathrm{Cu}}
\] & \[
\begin{gathered}
N \\
\%
\end{gathered}
\] & \[
\begin{gathered}
\text { phf } \\
\text { Surface }
\end{gathered}
\] & \[
\underset{\text { Sulisoil }}{\mathrm{pH}}
\] \\
\hline \multirow{5}{*}{\begin{tabular}{l}
Seddon, \\
Uuncan, \\
Cassini, \\
Newland
\end{tabular}} & \multirow[t]{2}{*}{\(\left(\begin{array}{l}\text { Stringybark } \\ \text { forest }\end{array}\right.\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Lateritic \\
gravel \\
soils
\end{tabular}} & (a) & 0.009-0.021 & 4-14 & 0.045-0.C83 & 6.1-6.5 & 5.0-6.2 \\
\hline & & & (b) & 0.003-0.005 & 0.5-1 & 0.074-0.0.7 & 5.25 .9 & 5.4-5.6 \\
\hline & & & & & & & & \\
\hline & \multirow[t]{2}{*}{(Mallec} & Lateritic & (a) & 0.096-0.013 & 412 & c.069-0.109 & 6.4 & 5.4-6.7 \\
\hline & & \begin{tabular}{l}
gravel \\
soils
\end{tabular} & (b) & 0.1) \(04-11.00{ }^{5}\) & 1-3 & 0.044 & 6.8 & 5.6 \\
\hline \begin{tabular}{l}
Newland \\
(MIt. Tixylor)
\end{tabular} & Derauperate stringylark forest & \begin{tabular}{l}
Acolian grey \\
siliccous sands
\end{tabular} & - & 0.0020 .003 & 0.3-1 & r.033 & 5.9 & 5.8 \\
\hline Menzies & Siunterl narrowleaf mallee and broom & Solonetz & - & 0.003-0.005 & 0.41 & 0.040 & 6.6 & 7.0-8.4 \\
\hline Maichilivray & Yarrowleaf mallee and l.rorm & Solonetz & - & 0.003-0.706 & 0.31 & 0.037 & 6.4 & 7.5-5.9 \\
\hline \begin{tabular}{l}
MacGillivray \\
(South)
\end{tabular} & Black mallee (E. \(77 \pi, e s a)\) & \begin{tabular}{l}
Calmarconst \\
dune sand
\end{tabular} & - & 0.120 .09 & - & 0.020 .01 & 8.2 & 8.6 \\
\hline Cassini & Sugar fum associations & Brown Soils on old Scdimentaries & - & 0.013-0.039 & 5.8 & 0.1380 .152 & 6.36 .9 & 4.7-5.2 \\
\hline
\end{tabular}

\section*{Laboratory Examination of the Soifs}

Standard methods of analysis were used for the determinations to be briefly described.

\section*{Mcchanical Analysis.}

Mechanical analyses of 92 samples from 15 profiles show a consistent predominance of fine sand over coarse sand. The analyses of representative protiles are given in the appended tables. The high purcentage of lateritic gravel is a feature of most types.
Soil Reaction.
Soil reaction, pII, for surface soils is alkaline in the calcareons dunes but in all the other types is acid. The highest value recorded is \(\mathrm{pH} 8 \cdot 2\) for the upper horizons of the calcareous dunes, and the lowest \(\mathrm{pH} 5 \cdot 2\) for siliceous sandy soil in the lateritic regions. The markedly alkaline subsoils of the solonetz soils is a noteworthy feature and contrasts strikingly with the other soil types.
Nitrogen.
Total nitrogen determined on a number of surface and subsurface soils is extremely low. The low figure of \(0.033 \%\) was recorded for the siliccous sands in the neighbourhood of Mount Taylor and Mount Stockdale.

The determinations are summarised in Table I.

\section*{Phosphoric Acid and Potash.}

Analyses of hydrochloric acid extracts for phosphoric acid ( \(\mathrm{P}_{0} \mathrm{O}_{-}\)) and potash ( \(\mathrm{K}_{.2} \mathrm{O}\) ) were made on a number of samples. The phosphates ( \(\overline{\mathrm{P}}_{2}, \mathrm{O}_{-1}\) ) are very low excep in the case of the brown, sugar gum suils, where they are low 10 moderate, and the calcareons dunes in which they are high for Australian soils. Potash ( \(K, O\) ), as to be expected, shows a general relationship with clay content. It is lowest in the grey siliceous sands of the Mount Taylor-Mount Stockdale region, and the mixed grey sandy and lateritic soils. The solonetz soils are also fairly low in potash. The potash levels in the brown and grey-hrown lateritic soits, and the brown soils associated with sugar gum, however, are moderate to high. For example, one lateritic gravelly soil analysed, ranged between \(0.184 \%\) \(\mathrm{K}_{2}\) ( O in the suriace horizon \(t 0.0 .735 \%\) in the clay of the \(\mathrm{B}_{2}\) horizon at \(12-14\) inclies.

\section*{Copper.}

Spectrochemical analyses for copper were made on the hydrochloric acid extracts of a number of samples from 15 profiles. There are two well-marked levels for copper. The grey-brown and brown lateritic gravel soils, and the brown soils associated with sugar gum arc higher with 4-14 parts per million of copper over the lirst foot. The grcy and whie siliceons sands and the solonetz soils range between 0.3-1 p.p.m, at the lower level. The copper status of the mixed lateritic gravel and siliceons sand soils is intermediate between these two. The analyses arc sumnarised in Table I.

\section*{Soluble Salts.}

Total soluble salts and chloride content is low and practically negligible, The highest value recorded was in the decp subsoil of a solonetz soil sampled near the old AlacGillivray School, but even here at a depth of \(17-30\) inches there was only \(0.272 \%\) total soluble salts and \(0.115 \%\) chlorides (as (1).

\section*{Replaceable Bases.}

Representative results of some of the replaceable base analyses are set out in Table II. Magnestum is the dominant base, although the proportion of calcium cations is frequently higher in the surface horizons. Potassium is more prominent than sodium in the ironstone (lateritic) soils and the brown (sugar gun) soils, but the proportion of replaceable sodinm cations is greater in the solonetz types.

Table 11
Replaceabie Bases in Kangaroo lsland Soils


Table III
Mechanical Analysis of Kangaroo Island Soils
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Soil Type} & \multicolumn{6}{|c|}{Lateritic gravelly soils (E. Baxteri-E. obliqua)} & \multicolumn{6}{|l|}{\begin{tabular}{l}
Lateritic gravel soil \\
(E. diversifolia-F., cosmophyila)
\end{tabular}} \\
\hline Locality & .... & \multicolumn{6}{|l|}{Junct. Border Rd. Wallis Rd. (Hd. Duncan)} & \multicolumn{6}{|c|}{Eleanor Stn., Hd. Scddon} \\
\hline Soil No. & & 6088 & 6089 & 6090 & 6091 & 6092 & 6093 & 6101 & 6102 & 6103 & 6104 & 6105 & 6106 \\
\hline Depth (inches) & & 0-2 & 2-7 & 7-12 & 12-14 & 14-18 & 19-26 & 0-2 & 2-7 & 712 & 12-17 & 17-22 & 22-40 \\
\hline Gravel & & \[
\begin{aligned}
& \% \\
& 35.3
\end{aligned}
\] & \[
\begin{aligned}
& \% \\
& 42.7
\end{aligned}
\] & \[
\begin{gathered}
\% \\
70.6
\end{gathered}
\] & \[
\begin{gathered}
\% \\
58.6
\end{gathered}
\] & \[
\begin{gathered}
\% \\
13.1
\end{gathered}
\] & \[
\begin{array}{r}
\% \\
28.1
\end{array}
\] & \[
\begin{gathered}
6.4 \\
63.4
\end{gathered}
\] & \[
\begin{gathered}
\% \\
77.7
\end{gathered}
\] & \[
\begin{gathered}
\% \\
77.6
\end{gathered}
\] & \[
\begin{gathered}
\% \\
81.0
\end{gathered}
\] & \[
\begin{gathered}
\% \\
18.8
\end{gathered}
\] & \[
\begin{aligned}
& \% \\
& 3.6
\end{aligned}
\] \\
\hline Cuarse sand & & 19.0 & 17.6 & 20.3 & 20.2 & 7.4 & 4.6 & 10.4 & 11.1 & 16.9 & 28.7 & 9.4 & 6.6 \\
\hline Finc sand & .... & 58.0 & 55.7 & 52.0 & 43.8 & 22.2 & 13.5 & 47.3 & 39.6 & 53.5 & 47.2 & 25.1 & 15.1 \\
\hline Silt .... .... & .... & 7.9 & 7.0 & 7.0 & 6.9 & 6.8 & 8.1 & 13.5 & 10.8 & 6.1 & 6.7 & 7.9 & 7.8 \\
\hline Clay .... . & & 9.7 & 13.5 & 15.5 & 24.0 & 50.7 & 60.4 & 17.2 & 24.6 & 18.0 & 13.2 & 45.9 & 55.6 \\
\hline L. on acid treat. & ... & 1.2 & 1.2 & 0.7 & 0.2 & 0.4 & 0.9 & 1.3 & 1.0 & 0.6 & 0.4 & 0.4 & 0.3 \\
\hline Moisture .... & .... & 1.9 & 3.9 & 4.0 & 5.5 & 13.4 & 13.3 & 5.2 & 10.4 & 4.6 & 3.9 & 12.3 & 15.2 \\
\hline L. on ignition & .... & 5.5 & 5.0 & 4.5 & 5.1 & 9.0 & 11.0 & 9.7 & 9.5 & 4.5 & 4.9 & 9.2 & 10.4 \\
\hline Total sol. salts & .... & 0.020 & 0.027 & 0.023 & 0.021 & 0.023 & 0.060 & 0.014 & 0.014 & 0.006 & 0.005 & 0.012 & 0.011 \\
\hline Chlorides (Cl) & .... & 0.008 & 0.010 & 0.008 & 0.008 & 0.011 & 0.009 & 0.040 & 0.037 & 0.022 & 0.020 & 0.032 & 0.023 \\
\hline Reaction pH & \(\ldots\) & 6.1 & 6.2 & 6.1 & 5.8 & 5.7 & 5.0 & 6.4 & 6.3 & 6.6 & 6.9 & 6.7 & 6.8 \\
\hline
\end{tabular}

Table III (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Soil Type .... & "** & & Siliceo & ous sa & and & & & & Solonet & & & \\
\hline Locality .... & \(\ldots\) & Mt. Sto & ckdale & (Hd. N & Vewland; & & & ct. 3, H & Hd. Ma & acGillivr & & \\
\hline Soil No. & \(\ldots\) & 6154 & 6155 & 6156 & 6157 & 6165 & 6166 & 6167 & 6168 & 6169 & 6170 & 6171 \\
\hline Death (inches) & .... & 04 & 4-8 & 8-12 & 1218 & 02 & 24 & 46 & 6-11 & 11-12 & 12-17 & 17-30 \\
\hline Gravel & .... & \% & \[
\begin{aligned}
& \% \\
& 1.8
\end{aligned}
\] & \[
\begin{gathered}
\% \\
37.5
\end{gathered}
\] & \[
\begin{gathered}
\% \\
73.1
\end{gathered}
\] & \[
\begin{gathered}
\hline \% \\
44.4
\end{gathered}
\] & \[
\begin{array}{r}
\% \\
49.8
\end{array}
\] & \[
\begin{array}{r}
\% \\
67.0
\end{array}
\] & \[
\begin{aligned}
& \%_{0} \\
& 46.9
\end{aligned}
\] & \[
\begin{gathered}
\% \\
3.1
\end{gathered}
\] & \[
\begin{aligned}
& \% / r \\
& 3.4
\end{aligned}
\] & \[
\begin{aligned}
& \% \\
& 4.0
\end{aligned}
\] \\
\hline Coarse sand & .... & 29.5 & 29.7 & 30.3 & 31.8 & 18.7 & 14.7 & 13.3 & 13.7 & 5.7 & 2.7 & 1.6 \\
\hline Finc sand . & \(\ldots\) & 65.1 & 66.3 & 65.5 & 61.6 & 72.1 & 77.9 & 79.6 & 77.6 & 26.9 & 12.0 & 9.1 \\
\hline Silt .... & \(\ldots\) & 0.4 & 1.0 & 0.8 & 1.1 & 3.4 & 3.5 & 3.8 & 4.8 & 3.1 & 1.8 & 1.3 \\
\hline Clay .... & .... & 2.3 & 2.6 & 5.3 & 4.9 & 3.8 & 3.0 & 2.9 & 3.6 & 50.5 & 67.6 & 68.6 \\
\hline L. m acid treat. . & .... & 0.2 & 0.2 & 0.3 & 0.4 & 0.4 & 0.4 & 0.3 & 0.4 & 1.2 & 1.4 & 5.3 \\
\hline Mristure . & .... & 0.4 & 0.3 & 0.3 & 0.5 & 1.1 & 0.6 & 0.6 & 0.7 & 11.3 & 15.1 & 14.7 \\
\hline L. on ignition . & .... & 1.9 & 1.2 & 1.2 & 1.7 & 2.4 & 1.6 & 1.3 & 1.1 & 6.9 & 7.9 & 9.7 \\
\hline Total solubic salts & .... & 0.02 .3 & 10.029 & 0.020 & 0.020 & 0.922 & 0.020 & 0.020 & 0.022 & 0.122 & 0.182 & 0.272 \\
\hline Chlorides (Cl) & .... & 0.014 & 0.010 & 0.005 & 0.004 & 0.006 & 0.004 & 0.004 & 0.005 & 0.060 & 0.086 & 0.115 \\
\hline Reaction \({ }^{\text {p }} \mathrm{H}\) & .... & 5.9 & 5.8 & 5.8 & 5.8 & 6.4 & 0.7 & 7.0 & 7.3 & 7.7 & 8.2 & 8.9 \\
\hline
\end{tabular}

Table III (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Suil Type ... & \(\ldots\) & & .... & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Brown soil (sugar gum) \\
Sect. 38. Hd. Duncan
\end{tabular}}} & \multicolumn{4}{|l|}{Brown soil (sugar gum)} \\
\hline Locality & & & .... & & & & & & & & \\
\hline Suil No. & & & ... & 6172 & 617.3 & 0174 & 6175 & 6176 & 6177 & 6178 & 6178 A \\
\hline Depth (inclies) & .... & & .... & \(0-1\) & 1.4 & 4-13 & 13-2i1 & \(0-2\) & 2-5 & 5-10 & 10-17 \\
\hline Gravel & & .... & \(\cdots\) & \[
\begin{gathered}
\% \\
\% \\
39.9
\end{gathered}
\] & \[
\frac{\%}{32,1}
\] & \[
\begin{gathered}
\% \\
\% \\
29.9
\end{gathered}
\] & \[
\begin{aligned}
& \% \\
& 12.0
\end{aligned}
\] & \[
\begin{aligned}
& \% \\
& 13.6
\end{aligned}
\] & \[
\begin{aligned}
& \% \\
& \% \\
& 13.9
\end{aligned}
\] & \[
\begin{gathered}
\% \\
13.9
\end{gathered}
\] & \[
\stackrel{\text { \% }}{7.1}
\] \\
\hline Coarse sand & \(\ldots\) & & \(\ldots\) & 16.4 & 14.2 & 11.0 & 6.4 & 1.3 .1 & 15.3 & 7.9 & 5.3 \\
\hline Fine sarnd & .... & .... & .... & 47.5 & 44.4 & 41.2 & 44.7 & 37.8 & 60.0 & 28.0 & 15.7 \\
\hline Silt .... & & .... & .... & 22.4 & 28.3 & 30.5 & 34.8 & 7.2 & 7.2 & 7.1 & 3.8 \\
\hline Clay .... & .... & \(\ldots\) & .... & 6.8 & 9.0 & 14.1 & 14.9 & 12.6 & 12.2 & 47.5 & 59.6 \\
\hline L. on acid treat. & \(\ldots\) & \(\ldots\) & \(\ldots\) & 1.8 & 1.5 & 1.1 & 0.4 & 1.0 & 0.9 & 0.7 & 1.4 \\
\hline Moisture .... & .... & .... & \(\ldots\) & 2.5 & 2.7 & 2.6 & 1.7 & 4.5 & 2.8 & 9.7 & 14.0 \\
\hline L. on ignition & \(\ldots\) & .... & .... & 8.0 & 6.0 & 6.0 & 5.0 & 6.6 & 3.9 & 7.5 & 8.8 \\
\hline Total soluble salts & & .... & \(\ldots\) & 0.025 & 0.024 & 0.034 & 0.028 & 0.025 & 0.024 & 0.034 & 0.028 \\
\hline Chlorides (Cl) & .... & .... & .... & 0.011 & 0.010 & 0.015 & 0.011 & 0.011 & 0.010 & 0.015 & 0.011 \\
\hline Reaction pH & \(\cdots\) & \(\ldots\) & \(\cdots\) & 6.9 & 5.3 & 4.6 & 4.7 & 6.3 & 6.2 & 6.2 & 5.5 \\
\hline
\end{tabular}

\section*{The: Vegetation}

The ecology of Kangaroo Island has always been recognised as a very complex problem. This has been due to the scarcity of accurate soil and climatic data and the fact that many of the dominant species have a wide potential edaphic habitat, though under the prevailing climate and the very poor soil conditions they frequently border their environmental limits. The principal factors controlling the distribution of vegetation in the six Iundreds surveyed are undoubtedly edaphic. Climate is of secondary import and has a more gradual effect as species reach their edapho-climatic limits. As specics approach these limits they become more depauperate and stunted and slowly disappear altogether. If soil changes were as gradual as climatic progression, their effect on regetation would doubtless be similar, but they are usually more clear-cut.

The general ecology of Kangaroo Island has already been included in a paper by Wood (5). The emphasis, however, was then on climatic control and the soils were not understood. The paper was of great importance in elucidating the geographical affinities of the flora and the light it threw on vegetation migrations. It stressed the very high percentage of endemic species on the island and their concentration in the central and western regions. A detailed ecological survey has been made in the very complex area about Hawk's Nest Station by Cashmore. \({ }^{(1)}\) Professor J. B. Cleland has also collected very widely in the region.

Unfortunately, very widesprcad bushfires swept over more than a third of the arca some six months before this survey was conducted and made the establishment of soil and vegetation relationships exceedingly difficult and the floristics far from complete.

Eleven important associations are recognised in this central portion of Kangaroo Island and are summarised below in Table IV. Most of them are mapped on the accompanying vegctation map, but as climatic complexes \({ }^{(2)}\) are involved the boundaries are in these cases somewhat arbitrary.

Table IV
The Vegetation Associations
\begin{tabular}{|c|c|c|c|}
\hline Association & Soil Type & Edaphic complex or climatic complex & Formation \\
\hline & Lateritic soils & E. Baxteri-E. cosmophylla climatic complex & Dry sclerophyll forest \\
\hline E. Baxteri-E. cosmophylla E. diacrsifolia-E. cosmo- & \begin{tabular}{l}
Lateritic soils \\
(with some siliceous sand)
\end{tabular} & climatic complex & forest \\
\hline \begin{tabular}{l}
phylla \\
E. remota
\end{tabular} & (heavy laterite) & E. Baxteri-E. cosmophylla —E. diéersifolia edaphic & Sclerophyllous \\
\hline E. Baxtcri-E. diversifolia & Siliceous sand & complex & scrub \\
\hline E. cosmophylla-M. uncinata & Cambrian (?) sedimentaries & & \\
\hline E. cneorifolia - Matalcuca uncinata & Solonetz & \begin{tabular}{l}
I. cheorifolia \\
M. uncinata
\end{tabular} & \\
\hline E. cncorifolia-E. rugosa & Solonetzic & \begin{tabular}{l}
F. cncorifolia- \\
E. rugosa
\end{tabular} & Mallee scrub \\
\hline E. diarrsifolia-E. rugosa & & E. nugosa-E. diversifolia & Sclerophyllous \\
\hline E. rugosa & Calcarcous dunes & edaphic complex & mallee scrub \\
\hline E. cladocalyx (sugar gum) & Brown soils (old sedimentaries) & E. cladocaly:r & Savannah woodland \\
\hline
\end{tabular}
(1) Cashmore, A. B.-Unpublished Report.
\({ }^{(2)}\) The concept of clinatic complex is used where soil type remains relatively uniform and vegetation association changes are an expression of climatic factors. This may be considered analogous to Wood's cdaphic complex.


\section*{1 E. Bartori-E. cosmophylla climatic complex.}

This complex is associated with the lateritic and gravel soils and their variants admixed with grey siliceous sands, on the platean and platean slopes. Where rainfall conditions are high enough \(\left(24-25^{\prime \prime}\right)\), \(E\), obiiqua becomes a co-dominant with \(E\). Barteri and tuder optimum conditions may replace it altogether, as in the Starration Creek area (not mapped sepatatcly).

Over a great part of the plateau region E. Baxtcri, E. obliqua and E. cospophylla are co-dominatis, although frequently stunted. The undershrubs are typically sclerophyllous. Of the taller undershrubs Casuarina striuta (bulloak) is ofteri abundant and may form a dense society, varying between three and eight feet ligh. Other tall shribs of wide occurrence are Banksia marginata (honeysuckle), Bunksia ornala (broad-leaved honeysuckle), Hakoa rostrata and Xanthorrhocu Tatcana. Although these taller shruls are frequently conspictous and nay give the association a particular physiognomy, there is no definite demarkation into an? "upper and lower" shrub stratum, The lower shrubs most inportant are Daviesia genishifolia, D. brevifotia, Adenanthos torminalis, hotakva glaberima, I'hyllota pleurandroides, Pultcnaca thscidula, Logania ordta, Spyidun spe, Petraphita multisecta, Isopogon cevatophylus, Tetraheca hahmatirina, T. cricifolia, IIbbertia stricta, H. sericea, H. Jusciothta, Lepidosperma carphoides, Lepidosperma sp, Gumpholobitm minus ated Lehcopogon comomits.

Other plants present, thongh usually of less abundance, are Melalcuct gibbosa, Canstis phatandra, Pluglolium obtasangulum, Spardham thymifohan, Conospermun patens, Leptospermum mxainoides, Libberhu stricta var. glabriuscula,
 serica, Pultwaed trinerets and Dillawna flortynda. This arociation, with minor floristic differcnces (principally the absence of species endemic to Kangaroo Islatid. is the same as that deseribed by Adamson and ()shom on Flemen Peninsula (1).

As has heen mentioned earlier, lhere is a good deal of admixture of gravel soild with grey sificeous sand in parts of the phated region. As can be seen from reference to Table 1, the phosphoric acid and cupper leyels are sonewhat lower in the siliceons types but nitrogen and pll are of the sant order, these grey soils carry an ahnost identical association-there are, however, changes in the frefucncy of species, and the greater importance of Leptosponum marsiofodes (tea-tree), Adchanthos sericoa and Platylobion obtusangum is noticeable some new

 are rarely, if ever, inportant.

Loudonia Rehrii is very widespread on the istand, paticularly following fite, or some other severe setback to an association, like charing.

2 E. Burtort-E. ditersifolia-E. Cosmoplyta edaphic complex.
E dicersifolia -E. cosmophylla itsociation.
Where the rainfall is too low (probably below 21") for E. Burleri (stringybark) dry scleropliyll forest, it gives place to a selerophyll scrub dominated by Fatcalptus dioursifolia (white mallee) and E. cosmophylla (swamp or cup gum). Many, indeed most, of the associated underslirubs renain and the transition with gradually decreasing rainfall is very gradual, the E. Buteri first becoming very stunted and sonetimes mallee-like in habit before disappearing altogether. The profile characteristics of the soil reman apparently the same, there still being much adnixture of ironstone gravel. The fertility levels of the soils as shown in Table I, are of the same order.

The most important and consistently associated plants are Xanthorrhoed Tateana (yacca), Melaleuca uncinala (broombush), Casuarina striata, Banksia marginata, Hakca rostrata, Daviesia genistifolia, D. brevifolia, Lhotzkya glaberrima, Calythrix tetragona, Adenanthos terminalis, Tetratheca ericifolia, Melalenca gibbosa, Petrophita multisecta, Lepidosperma concaum, Hibbertia spp., Spyridium spp. (principally S. spathulatun), Leticofogon concurvis and Isopogon ceratophyllus.

The grasses Stipa semibarbata and Ilanthonid setacfa are usually present very sparingly, but in the first year following fire may become locally prominent.

Eucalyptus leptophylla (narrowleaf mallec) nccasionally occurs as a codominant, but the edaphic variation of which it is indicative is not yet fully understood. F. fasciculosa (pink guma) also occurs occasionally but is tusually confined to slopes where there is a tendency for the older sedimentaries to break through,

\section*{Eucalypths remota association.}

On the very shallow soils over dense laterite which occur in north-west Itundred of Newland, and which become more extensive further west, is a sclerophyllous scrub association dominated by the restricted mallee, \(E\). romota (bastard mallee), Edaphic conditions, owing to the shallowness of the soil and the apparent denseness of the laterite, must be too severe for stringybark. The rainfall is probably between 23-26 inches.

The sclerophyllous undershrubs are largely those common throughout the selerophyll association; most prominent are Hakca rostrata, Banksia marginata, B. ornata, Adenanthos terminalis, Pctrophila multisecta, Phyllota pleurandroides, Crcoilla quinquenerris and Hibberiia spp., Tetratheca spp., Leucopogon spp., ete. Pallenaca canaliculata var latifolia and \(P\). viscidula are of somewhat irregular occurrence. The association is often given a marked physiognomy by the prevalence of Banksia ornata.

\section*{Eucalyptus Baxteri-E diaersifolia association.}

On the grey and grey-white siliceots sands which overlie "conglomerate ironstone" in the Mount Stockdale-Mount Taylor region, Hundred of Newland, is a very open association dominated by dwarfed \(E\). Baxteri, \(E\), diwersifolia and E. cosmophylla. These soils are the poorest sampled on the Island (sec Table I). and the association is so open and the dominants frequently so depauperate that it becontes heathlike. Phosphates ( \(\mathrm{P}_{2} \mathrm{O}_{5}\) ) are as low as \(0.002-0.003 \%\). It is interesting to note that E. Baxteri is enabled to grow further south, on this soil type, which allows it to exploit a lower rainfall, than on the brown lateritic gravel soils. There is further evidence for this on the island. On the spur that extends from the Middle River Range towards Stokes Bay, and lies within a rain shadow of the Range, \(F:\). Baxteri is associated with E. diversifolia on the grey and grey-white siliceous sands but docs not grow on the adjacent ironstone (lateritic) gravel soils,

This demonstrates clearly that the edapho-climatic range of a species may vary considerably. The distribution of an association depends entirely on the potential edapho-climatic limits of its individual species and the variability of soil and climate. The E. Baxteri-E. diversifolia association has very definite sclerophyll affinities and many plants of the plateau sclerophyll communities occur here. The chief associated plants are Petrophila nultisecta, Xanthorrhoca Tateana, Hakca rostrata, Banksia ornata, B. marginata, Leptospermum mursinoides, Ihotakya glaberrima, Hypolaena fastigiata, Caustis pentandra, Casuarina Muelleriana, Adenanthos sericea, Calythrix tectragona, Dambiera lancolata, Lepidosperma caphoides, Lepidosperna sp., Platylobinm obtusangulum and Grevillea quintquencrins, This association appears to have definite affinities with the E, Baxteri
heathlands of Ifundreds of Laffer and Willalooka, South-East, South Australia (Taylor (3)).

3 E. cncorifolia-Melalenca manata edaphic complex.
E. cneorifolia-M. uncinata association.

Solonetzic soils occur widely it the Hundred of MacGillivray and south of the lower Cygnet River. Hundred of Menzies. They are associated with an assemblage of plants doninated by stunted E. cncorifolia and M. wninata. There are two main variationts within the association - (a) low-lying solonetz soils south of Cygnct River, between the river and the plateau, and (b) elevated solonetz soils of the Birchmore Lagoon-MacGillivray area, very frequently admixed with a little ironstone gravel.
(a) The associated plants are Thryptomene ericaea, Lhotskya glaberrina, Hakea ulicina, Dodondea hexandra, Adcnanthos terminalis, Grevillea ilicifolia, Petrophila multisecta, Spyridium sp, Melaleuca gibbosa, Brachyloma ericoides, Calphrix tetragona and Casuarina striata. Stunted E. rugosa occurs very sparingly.
(b) In the MacGillivray area there is considerable complexity and in places much lateritic gravelly soil with E. diversifolia and E. cosmopholla occurring sparingly. The solonetz soils are not as clear-cut as in (a) and there is consequently a greater number of scleroplayll types associated. The principal species occurring in addition to the dominants (E. cheorifolia is less stunted here) are Thryptomone ericara, Lhotzkya glaberrinua, Dodonaca Buteri, Casuarina striata, Xanthorrhoca Tateana, Hakca rostrata, I. rugosa, Lacmopogon rufus, Grezillca ilicifolia, Adenanthos terminalis, Calythrix tetragona and Lasiopetalum. Baucri.
F. cosmophylla-M. uncinata association.

On the slope from the platean level to the coast adjacent to the Stokes. BayDashwood Bay region older sedimentaries, sandstones and shales are exposed, and the soil cover is fairly thin. Here an association occurs which is given a particular facies by the dominance of awarfed \(F\), cosmophylla and \(M\). uncinata, The associated plants are selerophyllous mudershrubs and shrubs, Casuarina striata, Xanthorrhoca Tatcana, Adenanthos, Petrophila, ctc). E. fascicultasa is sparingly present and proceeding back from the coast the association merges gradually into the E. Bartori-E. obitiqu on the platean proper.
4 E. ancorifolia-E. rugosa edaphic complex.
Over a great portion of the Hundred of Menzies developed over glacial clays and limestones are soils with well-stewctured clays and apparently solonetzic. They all appear to have free lime in the subsoil. Although most of this area has been cleared for agricultural development, there is sufficient vegetation remaining along roads to define the association. The soils have not been fully investigated and no analyses have been made on the soil samples collected.

This cdaphic complex is a typical mallee one dominated by two tall mallees, \(E\) cucorifolia and \(E\). rugosa (black mallec), both of which frequently grow to 25 feet high.

The principal associated plants are Dodonate Bateri, Mtelaleuca actuminata, Acacia armata, Choretrun glomeratum, Dodonata sp, Thryptomone ericaea, Acacia acinacca, Acacia sp., Prostanthera spinosa, Ercmophila glabra, Goodenia varia, Helichrysum retusum, Calythris tetragona, Senctio odoratus, and Melaleuca gibbosa. The chief grasses are species of Stipa and Danifonia.

On the old dune limestone that occurs in the North Cape and Bay of Shoals region this association is replaced hy a very mixed mallee association which has
closer affinities with the E. ditersifolia-E. rugosa association of the consolidated dunes.

5 E. rugosa-E, dizersifolia edaphic complex.
This complex occurs on the consolidated and unconsolidated dunes of the southern portions of the I Iundreds of Newland, Seddon and MacGillivray and on consolidated dunes elsewhere.

\section*{E. diversifalia-E. rugosa association.}

The dominant mallee on consolidated dunes is E, dizersifolia, but E. rugosa is frequently present. E. olcosa? is also found very sparingly. Associated with the mallees are a large number of sclerophyllons shrubs and undershrubs, principal of which are Grovillea ilicifolia, Lhotmky glaberrima, Spyrdintm halmaturintm (var.), S. spathulatum, Hakea utlicina, \(H\), rittata, Templetonia retusa, Bcyeria Leschenaultii, Lasiopetalan Schulamii. Pultenaca acerosa, \(P\). canaliculata, Goodenia sp. (near Gr, varia), Dampiera lanccolata, Leucopogon costutus, Acacia myrifolit, Olcaria ciliata var. squanifolia, Stylidium Tepperianmm, Microcybe paucifora, B. marginata, Petrophila multisecta, Daviosia genislifolia, Calythrixteiragona, Xanthorrhoea Tatfana (rarely), Prostanthera aspalathoides and Chorctrum glomeratum.

The principal grasses are Danlhonid sctacea and Stipa sp. (probably S. eremophila).

In the Bay of Shoals-North Cape region Prostanthera aspalathoides, Eremophila glabra, Dodonaea Baueri and Mclaleuca fubescens are prominent. M. pubescons is also very important on the Woakwine Range, a consolidated dune range in the lower South-East of South Australia.

\section*{E. rugosa association.}

This association has only been investigated at two places, but on the unconsolidated dunes. where examined, there is a community dominated by E, rugosa, while E. diversifolia and E. oleosa (?) also ocent, though much less prominently. There is not the wealth of associated species as on the consolidated dunes, and as one approaches nearer the coast the mallees become very dwaried and much sparser and there are increases in the number of purely coastal species.

The major species recorded were Dodonaca humilis, Mclalcuca pubcscents, Acacia ligulata, Lasiopetalum discolor, Spyridium phylicoides, Chorctrmi gloneratum, wicrocybe pauciflora, Gahnia deusta and Scaczola crassifolia.

6 Eucalyptus cladocalyx (sugar gum) edaphic complex.
E. cladocalyx is prominent both on alluwial soils along creeks and on some of the soils derived from the old sedimentaries, as on the Middle River Range and near Stokes Bay. The association along creeks is very variable owing to both varying fertility and water relationships.
E. cladocalyr association.

The fertility levels of the red-brown and brown soils associated with the sugar gum are noticeably higher than of the lateritic gravel type of the platcan. Here E. cladocalyx reaches its highest development in a savannah woodland, which may at times be almost closed. Undershrubs and shrubs are rare and grasses are scattered with only a rare tendency to form a continuous ground cover.

Acacia pyonantha, \(A\). obliqua and \(A\). armata are of frequent and usual occurrence. Other prominent species inclucle Olcaria teretifolia, Putlenaca daphnoides and the low sclerophyllous undershrubs Hibbertia stricta, H. acicularis


Fig. 1 Eiucalyptus obliqua association-1 mile east of Archway Lagonn, Hundred of Gosse


Fig. 2 Eucalyphus cncorifolia-E. rugosa association, Hundred of Mcnzies


Fig. 1 Eucalyphus cosmophylla-E. diversifolia association


Fig. 2 Eucalyptus cncorifolia-Mclalcuca uncinata association, Hundred of MacGillivray




Fig. 2 Eucalyptus remota association, IIundred of Gosse


Vis. 1 Eucalyptus cladocalyr association-Middle River Range, Hundred of Duncan


Fig. 2 Eucalyptus diversifolia-E. ruyosa association on consolidated dune limestone
var. sessilifora, Astroloma conostephioides and Acrotriche depressa. Slipa ercmophila and Danthonia setacea are the most frequent grasses.

In many places, as an expression of varying and probably intermediate edaphic conditions, certain conspicuous members of the sclerophyll communities may be prescnt ; the most noticeable of these are Xanthorrhoca Tateana (yacca), Casuarina striata (bulloak), Melaleuca gibbosa, Grevillca ilicifolia, Leptospermum myrsinoides and Lepidosperma concaz'!m.

Vegctalion of the Salt Szeamp.
In Hundred of Menzies there is a linited anomet of salt swamp and tidal salt marsh unfit for agriculture. The ecology of this area has not been studied closely. The saltwater tea-trec (Melaletca Lalmaturoram) is of common occurrence, together with samphires, principally Arthrocnenum halocnomoides var. porgrantatum and the natlike Wilsonia rotundifolia.

Acknowleidiment
It is desired to acknowledge a great deal of help from Mr. T. H. Strong and Mr. J. K. Taylor, both of the Division of Soils, (.S.I.R. Miss C. M. Eardley assisted with the identifications. The encalypt identifications ware made by Mr. W. F. Blakely. Mr. A. C. Oertel, Division of Soils, carried out the spectrochemical analyses for copper.

\section*{References Cited}
(1) Adamson, R. S., and Osborn, 'T. G. B. 1924 Trans. Roy. Soc. S. Aust., 48
(2) Davidson, J. 1936 Ibid, 60
(3) Taylor, J. K. 1933 Bull. 76, C.S.I.R. (Aust.)
(4) Wade, A. 1915 Bull. 4, Mines Dept. of S. Aust.
(5) Wood, J. G. 1930 Trans, Roy. Soc. S. Aust., 54

\title{
BATHERS' ITCH (SCHISTOSOME DERMATITIS) IN THE MURRAY SWAMPS, SOUTH AUSTRALIA
}

\author{
By T. HARVEY JOHNSTON, University of Adelaide
}

\section*{Summary}

In 1937 was described Cercaria jaenschi from the pond snail, Amerianna pyramidata, \({ }^{(1)}\) from Tailem Bend (Johnston and Cleland, 1937).

\title{
BATHERS' ITCH (SCHISTOSOME DERMATITIS) IN THE MURRAY SWAMPS, SOUTH AUSTRALIA
}

\author{
By T. Haryey Johnston, University of Adelaide
}
[Read 11 September 1941]
In 1937 was described Cercaria jacnschi from the pond snail, Anerianna pyramidata, (1) from Tailen Bend (Johnston and Cleland, 1937).

It was shown to belong to Miller's (1923; 1926) Group C. of brevifurcate, apharyngeate distome cercariae and to be closely related to C. douthitt Cort (1915) from North America. This group, together with Group A (which includes the himan schistosomes), Group 13 (Schistosomum spindale), Group D (C. ocallata, C. elvae) and certain others, all belong to the Schistosomatidae. Faust, in 1920, published his criteria for the differentiation of schistosome larvae. C, douthiti was re-studied by Miller (1924) and has since been shown by Price (1929; 1931) to be the larva of Schistosomatium douthitti, which occurs in small North American rodents. Penver (1939) has carried on further experinental work with the species. The life history of a related bloodflukes, S. pothlocopticum was traced by Tanabe (1923), who obtained the adult stage by experimental infection of mice. In view of the fact that \(C\). douthitti was reported by Cort \((1928 b)\) to be a cansative agent, of bathers' itch in Michigan, L.S.A., it was suggested by Johnston and Clcland (1937) that a similar dermatitis might occur in South Australia.
C. jaenschi has been found in Amcrianna pyramidata on many occasions between October and May, 1937 to 1941, since its description was published. An additional host is \(A\). pectorosa from Robe. We have attempted, without success, to infect rats and pigeons.

In 1939 was published an account of another South Australian schistosome cercaria, C. parocellata from Limuaca lessomi from Swan Reach Uohnston and Simpson 1939). It was shown to belong to Miller's Group D, and to be closely related to C. ocellata from Europe and \(C\). elvae from U.S.A. Attempts to infect a duck were unsuccessful. C. ocellata has been shown by Brumpt (1931; 1936) to be the larva of Trichobilharsia ocellata, and closely related to it is the cercaria of Bitharaiclla polonica, both of these schistosomes occurring in ducks. C. parocollata is probably the larva of a Trichobilharsia, A species of that genus has been found on a few occasions in the intestinal veins of the black swan, Chenopis atrata, in the sante swamp at Tailem Bend as the cercaria, and will probably prove to be the adult stage of \(T\). parocellata. C. parocallatia has been recognised only twice since originally described, having been collected from Limnaea lcssoni at Trailem Bend in December 1940 and February 1941. It should be stated that the host species has been relatively uncomnon in the locality during the past few years, since the Murray Barrage has affected the level (and perhaps the chemical composition) of the water in the river and swamps. Attempts to infect a duck, pigeons and rats have not succeeded.

As a result of cnquiries made since the publication of the aceount of C. jacnschi it has been ascertained that bathers' itch occurs at times during summer and autumn in the swampy areas adjacent to the Murray Riyer at Tailem

\footnotetext{
(1) Couton and Godfrey (Gastropoda of South and Central Australia, 1938, 36) indicated that Ancrianna Strand 1928 is the correct name for the freshwater gastropod genus Ameria nom praeocc, The terms Butinus, Bullinus, Physa and Isidora have all heen applied to this group of snails in Australia.
}

Bend and at Mannum. Mr. G. Jaensch and several members of his family have from time to time reported to us that they have been subjected to an irritating itching while wading or bathing in the swamp at Tailem Bend. but not when bathing in the main river. The itch was at first regarded as due to attacks by aquatic insects and was recognised as tistinct from the effects of bites by the local leeches such as Limnobdella ausiralis. The condition was more common at times wherr the "bubble snail," Lintnaca lessoni, had been blown close to the shore by winds which had caused the snails to accumulate in certain parts of the swamp. On one occasion Mr. Jaensch, who was then collecting L. lessont for our work, had a large number of them, together with some Ancrianina spp., in an open tank near his home, awaiting our arrival. We observed that his forearms showed the typical small rounded reddish lesions and pustules just like those figured by Brumpt (1936, fig. 362 bis) as occturing in France as a result of invasion by C. ocellata; and by Cort (1928 a) as caused by C. eltac in Michigan. Attempts by the author and members of his staff to infect their arms in the same tank were tunsuccessful, and subsequent attempts, using C. paroccllata from snails brought back to Adelaide, were also incffective. The result of cercarial attack has been stated by American observers to depend on the number of larvae penetrating at the time, as well as on the individual susceptibility of the person attacked.

Mr, B, C. Cotton, Conchologist, South Australian Musetun, reported that he and his brother had experienced a pronounced attack in February 1930, while wading itı order to collect mussels (IVyridella anstralis) in a small billabong adjacent to the Murray River at Mannm. An intense itching had developed, then followed red lesions like those caused by biting insects, the urticaria increased, scratching led to some bleeding, and methylated spirits were applied to the affected parts (from the waist to the fect) in the hope of relieving the irritation. The sufferers had been unable to sleep during the night, but the condition began to subside next day and disappeared the following day, Mr. Cotton stated that he had had sinilar (thongh less marked) symptoms while collecting molluses in the swamps at Tallem Bend. Mr. L. Ellis, of Tailem Bend, informed us of prickling sensation, followed by pronounced itching, experienced by him while wading during duck-shooting in the local swamp.

The symptoms seen or" described were similar to those reported by Cort (1928; 1936). Matheson (1930), Taylor and Baylis (1930), Togel (1930) and Brumpt (1936). Since the three cercariac especially responsible, as had been proved experimentally by these authors, in North America and Furope were \(C\). elata, \(C\). stagnicola and \(C\). ocellatas we have little doubt that \(C\). parocellata which is very closely related to them, is the main agent in the Murray swamps. It has been mentioned that Brumpt \((1931 ; 1936)\) proved that \(C\). acollata reached maturity (as a Trichobilharsia) in Etropean ducks. Mathias (1930) succeeded in infecting fowls as well as ducks with it. We regurd the Trichobitharaia occurring in the local black swans as likely to be the adtult stage, though an attempt to infect Limnaca has not yet succeded. C. jaensehi is probably able to canse schistosome dermatitis in view of its close similarity to \(C\). douthitti, which is a minor causative cercaria in U.S.A.. Since Schistosomatimm douthitti has been found experimentally and naturally infecting small North American rodents (H. Price 1929; 1931-Penner 1938; 1939), it seems likely that the adnlt stage of C. joonschi will be found in the Australian water rat, Hydromys lemcogaster, which occurs in the swamps and is the only aquatic rodent in the area, It should be mentioned that F. Price (1929) described Paraschistosomatitum anhingae from a darter, Anhinga anhinga, from Texas, and stated that the genus was closest to Schistosonatium. Anhinga nozachollandiae occurs in the Murray swamps.

The first to investigate schistosome dermatitis seems to have been Cort (1928 a. b), who proved that C. olvae Miller \((1923 ; 1926 ; 1927)\) was an important
causative agent in Michigan. He described the condition and stated that the larva entered harotugh the hair follicles. He referred to a similar dematitis occurting in Japanese rice fields and known as "Kabure," which was regarded by some investigators (Narabayashi 1916; Matsunta 1909) as caused by invading cercariae of Schistosoma japonicum, but other workers (Miyagawa 1913; Faust and Meleny 1924) did not accept that vicw. Fualleborn (1932) regarded it as due io invasion by non-hiuman schistosomes. Cort considered the severity of bathers' itch to be due, at least in part, to reactions of an abnormal host,

Cort (1928b) proved that C. douthitti could, under experimental conditions, produce lesions similar to those cansed by \(C\). cheae. He had already indicated that \(C\). douthitti could utilise suails belonging to the gencra Linunaca and Phisa (Cort 1918). Christenson and Greene (1928) found C. Chate to be responsible for bathers' itch in Minmesota.

Szidat, in 1930, recorder the occurrence of a dermatitis in East Prussin and suggested that the agent might be the cercaria of Bitharaidla polonica, but he suldsequently informed Cort (1936) that that larva did not penetrate human skin, this statencnt being supported by the experience of Brumpt (1936).

Dermatitis was reported in 1930 as occurring in a small artificial lake at Cardiff, England, by Matheson (1930) who regarded the organism as C. etode, and by Taylor and Baylis 1930 who identified the cercaria as C. accllata. Vogel (1930) repoted many cases in morth-western Germany and proved by means of sections that \(C\). uccllata had penetrated the skin in experimental inlections. Brampt ( \(1931(a, b)\) reported the latter cercaria to bo the cansative agent in France, and traced its life history. Wesenberg-J and (1934) referted to earliet records of dermatilis in Forope and North Anetica and reported an outbreak in Denmark in 1931. most probably due to C. ocolluta which was knowat do ocent in the same area.

McLeod (1934) recorded dermatitis as common in parts of Manitoba, Canafla, where over \(50 \%\) of bathers were at times affected, the agents were stated to be C. chac, Cormdlo and C. bajkoti. La Rue (1935) discussed the ecolngy of the condition in Michigan.

In 1936 Cort and his associates began to publisht a series of studies on schistosome dermatitis. In the first contribution Cort (1936a) gave a review of the literature. IIe, pointed out that penctration of the human skin by cercariae of the three hinnan schistosomes seldom produed a significant dernatitis. At least five non-human schistosonce cerarie had been shown experimentally to be ablic to produce dermatitis-C. ocollala, \(C\), douthitti, \(C\). flata, \(C\). physellat and \(C\). staguicolac. The cercariae reported by him in 1928 as \(C\). ela \(C\) were stated to have heen probably \(C\). . physellac and \(C\). stagnicolata. Of the five species mentioned by Cort, all but \(C\). douthitfi were very similar in structure and lad the same flatic cell pattern and number of penctration glands, and possessed fin folds on the tail furcae. He went on to state that it seemed possible that the penctration of the human skin and the production of a dermatitis would be found to be a characteristic of all cercariac belonging to that group, and that anty new species found with the same general morphology should be placed under suspicion. He remarked on the great variation in susceptibility of individuals to invasion. The character of the skin lesions suggested that the invading cercariae were definitely walled off by the host reaction (a delensive nuchanism) and did not reach the deeper tissues or blood strean. The available evidence siggested that the severity of the dermatitis was a manifestation of the natural imnnuity of man to a nonspecific species of parasite, this view beitg supported by the fact that no comparable dermatitis was ordinarily produced by the cercariae of any human schistosone when they penetrated the skin of man, their natural host.

Watarai (1936) discussed the reaction caused by the cercarine of \(S\). japonicum when applied to the skin of anmals. Culbertson and Talbot (1935; 1936), as well as Tubangui and Masilungan (1936), had drawn attention to an antagonistic property of normal scta, the cercaricidal action. The production of a histolytic ferment by certain furcocercariae, permitting their penetration of tissucs, was studied by Davis ( \(1936 a, b\) ), and FIunter and Hunter (1937) showed that such a ferment occurred in the cercaria of Cryptocotyld.

Talbot (1936) carried out life history studics on thrce of the cercariae mentioned by Cort (1936a), C. ehate, C, stagnicolac and C. physellae, the last two being described by Talbot as new. Attempts to infect ducks, gulls, pigeons and rats with eaclr of the three kinds of cercariae were minsuccessful. Cort and Talbot (1936) then gave an acconnt of their observations on the behaviunt during their free life of the three species just referred to, as well as \(C\). douthitti, Swales (1936) reported C. ctace, C. sp. (determined by Talbot as C. stagnicolat) as causing dermatitis in Manitoba, and cousidered that Mcleod (1934) was in error regarding C. acurdlei and \(C\). bajkowi as agents, these latter being strigeid larvae. Futher information concerning the distribution of schistosome dermatitis in Canada and U.S.A. was given by Cort (1936 b), who reported that a similar condition occurred in Iowa, Norih Dakota, Illinois, Texas, Florida and Washington. Corl also mentioned that Miller had infonmed him that C. tuckerrnsis, deseribed by Miller (1927) as a nember of the dade group, ocourring commonly int Planorbis in the State of Washington, was able to produce dermatitis experim mentally.

Brumpt (1936) gave a very orief acconnt of several schistosome larvae known to be capable of cansing humat dematitis, and included \(C\). wardloi and C. bajkoni because of McLeod's statements (1934). In the account of C. cheae Brumpt was in error in stating that a pharynx occurred in that species, thus constituting a difference between it and C. ocellata.

Mclacod (1936) published further notes on cercarial derntatitis in Manitoba, stating that the condition was common in many parts of Canada, from Quebec to the Rocky Mountains. Ile described wo new species of Microbitharatia from ducks (Nyrora), but their life history was urknown. Next year he gave an account of two more schistosoncs from water hirds, Psaudobilharsiolla querquedulde from a teal (Sucrquedula) and Ornithobitharsia lari from a gull. Cercariae causing demmatitis were abundant in the same locality as also were their known molluscan hosts, Limnafa and Stagnicola, and it was suggested that \(P\). querquedulas might be the adult of one of the local dermatitis-producing cercariae (Mcl.cod 1937).

Cort, MeMinllen and Brackett, in 1937, published their ecological studies on the cercariae occurring in the common beach snail, Stagnicola emarginata, in Michigan, this suail being the vector for \(C\). sfagnicolac which is responsible for most of the swinmers' itch: in that state. Buckley (1938) reported that the cercaria of Schistosoma spindolis of cattle catsed a dermatitis known as Sawah itch in workers in Malayan rice fields. Edwards and Brackett (1938) referred to swimmers' itch in Wisconsiti as a schislosome dermatitis, and in 1939 Brackett indicated methods for control. Cort (1939) gave a bricf survey of the condition as a public health problem in U.S.A., and stated that of the five known cansative agents, \(C\). donthitti was the only one whose life history was known. MeMtullen, Rezin and Allison (1939), in disctessing the distribution and epidemiology of the dermatitis in Wichigan mentioned that \(C\). physellag was the chief agter: there.

Brackett. (1940 a) described two new schistosome cercariae, C. gyrauti and \(C\). dongota, from Wisconsin, The fomer was stated to be closely related to C. clvae, \(C\). physellae, \(C\). stagnicolaf and \(C\). ocellata; and \(C_{n}\) clongata to be neat
C. douthitti. He reported that one, perhaps both, of these cercariae were able to produce dermatitis. Brackett ( 1940 b ) discussed the prevalence of bathers' itch in Wisconsin. Cort (1940), in an address on helminth diseases, referred to swimmers \({ }^{\text {stch in }}\) Michigan, and stated that the State Board of Health had organised a special unit of research workers to study the problem with a view to formulating control measures against the dermatitis that had become so common on certain beaches as to constitute a real menace to the tourist husiness which was the second most important industry of that State.

Brackett ( 1940 c ), who was one of the members of the tetm referred to by Cort, paid special artention to the behaviour of the cercariae concerned and reported that a rapid rise in temperature along the bathing beaches caused an increased emission of cercariae from infected snails. The cercariae were ail positively attracted towards light, and thus reached the surface layers of the water exen from snails living in deeper water. Some of the cercariae were found to be able to swim a metre in three minutes, and to cover a distance of at least 10 metres. He also referred to C. tuckerensis as a known agent of dermatitis but its habits were different from the others since it crawled along the floor and was perhaps not aflected by light.

Cort, MeMullen, Olivier and Brackett (1940a) discussed particularly the relation of \(C\). physellae and \(C\). stagnicolno to their respective host species, to their environment, and to the seasonal inedence of dernatitis on the shores of Lake Michigan. These sane authors ( 1940 b) published detailed information regarding the seasonal incidence of \(C\). siaguicolare in relation to the life cycle of its snail host, and discussed the epideniology of the dermatitis caused by that species of cercaria which was commonly comeentrated in shallow warm water. The species apparcntly penetrated when water containing them dried in the luunan skinhence the restlting dermatitis was usually worse in children who played in shallow water and in adults who entered and left the water repeatedly. "I he great increase in prevalence of swimmers itch was probably due to the increase in the use of the beaches for bathing purposes rather than to any increase in infection of the smails by schistosome cercariac.

Brackett ( 1940 d ) dealt with the life cycle of the stails concerned in Wisconsin and studicd the relation of young and adult molluses to the occurrence of swimmers itch. The cercaria of Schistosomatium pathlocoption was not known to be able to cause dermatitis, and though \(S\). douthitti larvac could do so. Bracketl thought the latter species was not of mportance in coninection with the outbreaks, but that the cercariae of avian schistosomes were responsible for most of the dermatitis amongst bathers in the Great Lakes region. He brought forward reasons for suggesting that Pseudobilharsiclla querquedulae McLeod (1937) from ducks might be the adult of \(C\). physellae, while \(C\). gyrauti or \(C\). elongata might belong to an undescribed schistosome from a grebe. The natural host for the adult of C. etuce was unknown, but was probably a gull; the adult stage (as yet undescribed) had been obtained experimentally in pigeons.

Mcleod (1940) published his further studies on cercarial dermatitis in Manitoba. ITe drew attention to the differences in human resistance to invasion by schistosome cercariae. The latter could be distributed amongst four groups, according to their reactiont: (a) those which did not respond positively to the presence of man in water; ( \(b\) ) those responding positively but unable to penctrate the human skin; (6) those which responded and penctrated the skin, but owing to lack of balance between the host and parasite did not enter deeply, the result being a localised skin reaction; and (d) those which responded positively, penetrated the skin, and eventually reached the portal vein and its branches to reach sexual maturity, this group commonly causing no skin reaction, To group (d) belong
the human schistosomes, while those causing dermatitis are in group (c). In addition to the cercariac already mentioned as causative agents, McLeod added C. pseudo-ocellata Szidat 1933 and C. dermolestes, a new species which he described from Stagnicola. The latter belonged to the elvac group. He reported that his \(C\). bajkoth should be suppressed, since it was based on a confusion of two specics; and \(C\). Trardlei was a strigeid larva and did not produce dermatitis. He described two new species of Ornithobitharsia (from ducks and gulls respectively.

Consideration of the observations and investigations in America and Europe leads one to expect that, in addition to \(C\). parocellata, several other closely related species are likely to be found in Australia capable of causing dermatitis. The chief transmitters elsewhere are pond snails belonging to the Limnacidac (Limnaca, Stagnicola), but Physidae (Physa, Physella) and Planorbidae (Planorbis, etc.) are also concerned. "The commonest Australian pond snails are Physidac. In the great Murray watershed Limnaca and Planorbis are also present. but are much less frequently met with than are specics of Ameriana and related genera of Physidae. For the present, all pond snails must be considered suspect. Detailed systematic examination of such molluses for the presence of schistosome or any other kind of cercariae has not becn carried out anywhere in the Commonwealth except in the one region in South Austratia, where our investigations have led to the incrinnation of two (probably three) species -Linnaca lessoni, Ancrianna pramidata and apparently also \(A\). pectorosa. By far the great majority of furcocercariae occurring in our pond snails have proved to belong to the Strigeata whose larvae are not known to be able to penetrate human skin.

In U.S.A. and Canada dermatitis is especially prevalent in the region of the Great Lakes and the associated rivers. In these areas there are many latge centres of population, the inhabitants using the beaches of the lakes as tomist and bathing resorts because of the remoteness of occan beaches, In Anstratia conditions are not quite similar. Our population is located mainly in the coastal region and there are relatively fow large centres associsted with our huge Murray dranage system, and the main towns along the Murray, Darling and other tributaries in Sew Sonth Wales and Victoria are generally far apart. Except for Lakes Alexandrita, Alheri and Victoria there are no extensive freshwater lakes except such as have resulted from the water conservation schemes associated more particularly with the Murray waters, c.g., at Barmera. We may then expect to hear occasionally of dermatitis as a result of bathing or wading in lakes, billabongs and swamps, provided these are rather shallow, with plentiful plant life suitable as food for pond snails, especially if Limnaea be ptesent.

If the various coastal lakes or lagoons of Eastern Australia be sufficiently fresh to permit pond snails to flourish in them, dermatitis may be expected there, too, since Physidac and Planorbis are common in the eastern coastal streams and pools, though Limnaea lessoni apparently does not occur in them.

Areas of freshwater which afford a suitable habitat for native ducks and black swans, as well as associated birds (terns, gulls, pelicans. etc.) should be regarded as possible regions ior dermatitis, if used by human beings for bathing or wading (unless suitably protected). Anseriform and larifonm hirds are probably the main hosts for the adult stages of the derinatitis-producing cercariae issuing from the appropriate pond snails. E. Price (1929), in his valuable synopsis of the Schistosomatidae, indicated that five specics of hoodflukes, distributed amongst four genera, were known from ducks, and four species (belonging to three genera) from terns and gulls. To Price's list from duckst and gulls must be added those described by Micheod. Only one species of native bloodfluke has been described from Australia, Austrobilharzia terrigalensis S. J. John-
ston, from the common gull, Larus novachollandiae, at Terrigal, New South Wales. This schistosome has been met with several times in the same host species on the Adelaide beaches, but not, as yct, in gutls from the swanps and rivers.

We have not yet found Limnaca lessom the the man stream of the Murray which is too deep for the favonted food plants, but the snail occurs in the shallow, slowly moving or still swamps and bywaters where plenty of suitable food is available for pond smails as well as for bird life. Such waters, because of their shallowness, become very warn under the influence of the bright Australian sunn in summer and autumn. Such conditions of increased water temperature and intensity are known to cause a rapid increase in the rate of development of cercariae and their emission from infected snails, as well as in the activity of such cercarite while free-swimming. The effect of a suitable wind in wafting shorewards Limnara Icssoni which, if detached from the water weeds, readily floats (hence the popular local name of "bubble snail" for it), is an important factor in the occurrence of dernatitis.
(herry (1917), in his article relating to human schistosomiasis, mentioned funding cyeless apharyngeate fork-tailed cercariae in Bulinuss tenuistriathe near Melbournc. Dradley (1926) deacribed Ceraria greere from Bulinus brazicri near Coona, New South Wales, but was unable to give a satigfactory account of its glands. He believel that a pharynx was ahsent. In the same paper bradley described a new Xiphidiocercaria, C. pellucida, found commonly in limuaca brasteri aud less frequently in Bulinus brazteri. It was stated to belong to the Polvadena gronp and to be near C. brevicacca Cori. It is probably the Jarva of a Plagiorchid, Since the specific name had been used previonsly by Fatust (1917) for a trioculate monostone cercaria from Montana, U.S.A., Bradley's form is now renaned C. bradleyi notn. nov. and Limnaca brasieri is considered as its type host. In a later paper (1933), Bradley ref̈erred again to his C, pellucida and C. greeri, calling the latter a schistosome latva. His figures (1926) indicate C. grecri to be a longifurcate cercaria with well-developed subequal suckers and apparently with small gland cells in preacetabular position. All known schistosome cercariae belong to the brevifureate group. The presence of a pharynx is sometimes detected only with difficulty and may have been overlooked by Bradley. C. grecer seents to be a strigeid larva. The only strigeids known to be devoid of a pharynx are species of Apharyngostrigea, a genns which occurs in herons in Anstralia and clsewhere If a pharyux be present and the glands be situated in front of the acetabulinn, then the cercaria may belong to a species of Cotylurns. Ross and Mackay, in 1929, mentioned finding \(C\). grecri and \(C\). pellucidat in Limnaca brasicri in New South Wales.

\section*{Acknowlengmext}

Grateful acknowledgment is made to Messts. G. Jaensch, I. Fillis and R. C. Cotton for permission to publish their experiences; and to two of my colleagues, Mrs. E. R. Simpson and Miss L. M. Angel, for assistance in identifying cercariae. The investigation has been assisted by the Commonwealth Research Grant to the University of Adelaide.

\section*{Summary}
1. 'The occurrence of bathers' itch in the swamps of the Lower Murray at Tailent Bend and Mannum, South Australia, is reported.

2 A review of the recorded occurrences of, and olservations on, schistosome dernatitis and of its relation to pond snails in other parts of the world is given.

3 The probable relation of Cercaria jaensthi from Amerianna pyramidata and C. parocellata, from Limmara lessoni to the South Australian occurrences is discussed.

4 It is suggested that these latter cercariae are the larval stages of schistosomes occurring in birds (probably ducks and black swans) frequenting the swamps.

5 Amerianna pectorasa is recorded as an additional snail host for Cercaria jaenschi.

6 The presence of the bloodluke, Austrobilhareia terrigalcnsis, in gulls (Larus nozachollandiac), in St. Vincent Gulf is recorded.

7 Cercaria bradleyi nom nov., is proposed for C. pellucida Bradley 1926 (nce Faust 1917), probably a Plagiorchid larva, from Limnaca brasiori in New Suuth Wales.

8 Cercaria grecri Bradley appears to belong to the Strigeata instead of the schistosomes.

\section*{I. iterature}

Brackettr, S. 1939 Jour. Amer. Med. Assoc., 113, 117-121
Brackett, S. 1940 a Jour. Parasit., 26, 195-200
Prackett, S. 1940 b Amer. Jour. IIyg., 31, D, 49-63
Brackett, S. 1940 c Ibid, 31, D, 64-73
Brackett, S. 1940 d Ibid, 32, D, 85-104
Bradley, B. 1926 Med. Jour. Austr., (2). 573-578
13ranley, B. 1933 Ibid, (1), 245-251
Jorumpt, Li. 1931 a C. R. Acad. Sci., Paris, 193, 253-255
Jorumpt, E. 1931 b Ibid, I'aris. 193, 612
Brompt, E. 1936 I'récis de Parasitologie, Paris, 1
Buckley, J. (C. 1938 Jour. I Ielin., 16, 117-120
Cherry, T. 1917 Pamphlet Commonw. Defence Dept.. Melbame
Christenson, R. O., and Greene, W. P. 1928 Minnesota Medicine, 573-575
Cort. IV. W. 1915 Ill. Biol. Monogr., 1, (4), 86 pp.
Cort, W. W. 1918 Jour. Parasit. 14, 171-174
Cort, IV. W. 1928 a Jour. Anmer. Med. Assoc., 90, 1,027-1,029
Cort, W. W. 1928 b Science, 68, 388
Cort, II. IV. 1936 a Amer. Jour. Hyg., 23, 349-371
(ort, W. W. 1936 b Ibid, 24, 318-333
Cort, W. W. 1939 Volumen jubilare pro Prof. Sadao Yoshida, 2, 101-107 (Osaka, Japan)
Cort, W. W. 1940 Amer. Joutr. Trop. Med., 20, 183-198
Cort, W. W., McMuleen, D. B., and Brackett, S. 1937 Jour. Parasit., 23, 504-532
Cort, W. M., McMulem, D. B., Olivier, I.., and Brickett, S. 1940 a Revista Med. trop. y parasitologia, Habana, Cuba, 6, (2), 5564
Cort, W, W... McMutiter, D. R., Olivier, I., and Brackett, S. 1940 b Amer. Jour. Hyg., 32, D, 33-69
Cort, W. Wr., and Talbor, S. B. 19.36 Ibid, 23, 385-396
Cumbertson, J. T. 1935 Scicince, N.Y., 82, 526-526
Culbertson, J. T., and Talbot, S. B, 1936 Parasit., 22, 111-125
Davis, D. J. 1936 a Ibid, 22, 108 -110
Davis, D. J. 19366 Ibid, 22, 329-337
Edwards, A. C., and Brackett, S. 1938 Wisconsin Med. Jour., July, 1938
Faust, E. C. 1917 Jour. Parasit., 3, 105-123
faust, E. C. 1920 Ibid, 6, 192-194
Faust, E. C., and Meleny, H. E. 1924 Amer. Jour. Hyg. Monogr. 3, 1-339
F゙̈̈lleborn, F. 1932 Hant1). d. Haut- 11. Geschlechtskrankheiten (pp, 708-800) Hunter, G. W., and Hunter, W. S. 1937 Jour. Parasit., 23, 572

Johnston, T. H., and Cleland, E. R. 1937 Trans. Roy. Soc. S. Aust., 61, 202-206
Johnston, T. H., and Simpson, E. R. 1939 Ibid, 63, 63-68
La Rue, G. 1935 Michigan Public ITealth, 23, 87-90
McLeod, J. A. 1934 Canad. Jour. Res., 10, 394-403
Mcleod, J. A. 1936 Trans. Roy. Soc. Canada, Sect. V, Ser. 3, 30, 39-48
Mcleod, J. A. 1937 Jour. Parasit., 23, 456-466
McLeod, J. A. 1940 Canad. Jour. Res., 18, D, 1-28
McMullen, I). B.. Rezin, P. F., and Alitson, L. 1939 Jour. Parasit., 25, Suppl., p. 24 (abstract)
Matheson, C. 1930 Trans. Roy. Soc. Trop. Med. Hyg., 23, 421-424
Mathias, P. 1930 Ann. Parasit., 8, 151-160
Matsuura,.U. 1909 [In ]apanese| Mitt. Med. Ges., Kyoto, 6, (4)
Miller, II. M. 1923 Jour. Parasit., 10, 35-46
Miller, H. Mr. 1924 Trans. Amer. Micr. Soc., 43, 145-151
Miller, H. M. 1926 Ill. Biol. Monogr.. 10, (3), 1-103
Miller, H. M. 1927 Parasitcl., 19, 61-83
Mivagawa, Y. 1913 Centr. Baki.. I. Orig., 69, 1,32-142
Penner, L. R. 1938 Jour. Parasit., 24, Suppl, 26 (abstracts)
Penner, L. R. 1939 Jour. Parasit., 25, Suppl. 8-9 (abstracts)
Price. E. VV. 1929 Proc. U.S. Nat. Mus., 75, (18), 1-39
Price, H. F. 1929 Jour. Parasit., 16, 103
Price, H. F. 1931 Amer. Jour. Hyg. 13, 685.727
Ross, I. C., and Mackay, A. C. 1929 C.S.I.R., Commonw. Austr., Bull. 43
Swales, IV. E. 1936 Canad. Jour. Res., 14, D, 6-10
Talbot, S. B. 19.36 Amer. Jour. Hyg., 23, 372-384
Tanabe. B. 1923 Jour. Parasit., 9, 183-189
Taylor, E. I... and Baylis, II. A. 1930 Trans. Roy. Soc. Trop. Med. Hyg., 24, 219-244
Tubangui, M. A., and Masilengan, V. A. 1936 Philipp. Jour. Sci., 60, 393398
Vogel, II. 1930 a Dermatol. Wochenschr., Leipzig, 90, 577-581
Vogel, H. 1930 b Klin. Wochenschr., Berlin, 9, 883-886
Vogel, H. 1932 Arch. f. Schiffs- u. 'Tropenhyg., 36, 384-399
Watarai 1936 Jap. Jour. Exp. Med.. Tokyo, 14, 1-18
Wesenberg-lund, © 1934 Mem. Acad. Roy. Sci., Lett. Danemark, Sect. Sci., 9, 5, (3), 1-223

\title{
LIFE HISTORY OF THE TREMATODE, PETASIGER AUSTRALIS N. SP.
}

\author{
By T. HARVEY JOHNSTON and L. MADELINE ANGEL, University of Adelaide
}

\section*{Summary}

Petasiger australis n. sp. is a minute echinostome occurring in the grebes, Podiceps ruficollis novaehollandiae Stephens and P. poliocephalus Jardine and the swamps at Tailem Bend, South Australia. For assistance in collecting this material we are indebted to Messrs. G. and F, Jaensch and L. Ellis, of Tailem Bend. Our investigation has been assisted by the Commonwealth Research Grant to the University. Type material deposited in the South Australian Museum.

\title{
LIFE HISTORY OF THE TREMATODE, PETASIGER AUSTRALIS n. sp.
}

\author{
By T. Harvey Johnston and L. Madeline Angel, University of Adelaide
}

\section*{[Read 11. September 1941]}

Petasiger australis n.sp. is a minute echinostome occurring in the grebes, Podicets rufcollis novaehollandiae Stephens and \(P\). poliocephalus Jardine and Selby, in the swamps at Tailem Bend. South Australia. For assistance in collecting this naterial we are indebted to Messrs, \(G\) and \(F\). Jaensch and L. Ellis, of Tailem Bend. Our investigation has been assisted by the Commonwealth Research Grant to the University. Type material deposited in the South Australian Museum.

The largest parasite measures about 7 mm . long, with its maximum breadth ( 28 mm .) at the midacetabular level, Other dimensions are: width at sex pore, -2 mmn ; at level of ovary, 26 ; across tésticular zone, \(\cdot 2-25\); at marrowest part of neck, 12 ; across head collar, "17. The anterior part of the body (except the head) is rather flattened and minutcly spiny, with spinules arranged in closely-set rows. The posterior region is much thicker and devoid of spines. The reniform head bears 19 spines, 11 of them evenly spaced in a single unbroken series, and two pairs in each ventral angle, arranged more or less transversely to the long axis of the worm. One of each pair is slightly longer than the other, lengths .054 and \(\cdot 047 \mathrm{~mm}\). respectively, while the remainder are about 025 mm . long. The oral sucker is alnost terminal and 045 mm , broad by -05 long. The acetabulum lies mainly in the hind-body, its anterior border being just in front of the midlength of the worm; it measures 17 mm . broad by 16 mm . long, the sucker ratio being about \(1: 3 \cdot 7\) : sex pore near end of first third of body.

The prepharynx is about . 02 mm . long, the pharynx \(\cdot 04\) 1nnin, the oesophagus about 1 mm . and extending almost to the genital pore. The crura at. first diverge widely to skirt the border of the cirrus sac, metraterm and acetabulum, terminating a shom distance behind the level of the posterior testis.

The anteriur testis is " 11 by \(\cdot 07 \mathrm{~mm}\), and obliquiely placed on one sicle of the worn; the posterior testis is -12 by 08 mm, and the two glands are in contact along part of their inner surfaces. Both testes and ovary are in the posterior third of the body length. The large cirrus sac, 13 mm. in length by \(\cdot 11\), occupies, the region between the crura and the anterior border of the acetabulum on the same side of the body as the ovary and posterior testis. A considerable part of the sac is occupied by deeply-staining prostate cells, but a large seminal vesicle lies in its posterior portion.

The spherical ovary, 06 mm . in diameter, lies dorsally between the posterior testis and the acetabulum. The shell gland is nearly median, beside and partly aloove the anterior testis. The uterus has two or three short convolutions. The metraternt lies on the opposite side of the acetabulum from the cirrus sac. The eggs are large ( \(085-04\) by \(\cdot 05 \sim^{\circ} 06 \mathrm{~mm}\).) and few (one to seven, usually about four:). Yolk glands obscure the intestinal crura and extend from just behind the level of the sex pore almost to the end of the worm, the opposite vitelline fields: joining in a narrow zone behind the testes. They lie above and below the crura, as well as laterally from then. The transverse yolk duct is just in front of the posterior testis and above the anterior testis.

The smallest worm measured 48 mm . long; the longest which had not yet becone egg-bearing was -57 mm . The smallest parasites containing each a single cgg were -59 and \(\cdot 61 \mathrm{mm1}\). long. Most specimens were \(\cdot 66 \mathrm{mm1}\), long.

Pehasiger australis differs from P. exaeretus (Dietz, 1909; Davies, 1934) and \(P\). zariospinosus Odhter 1911 from Phalacrocorat carbo in the number of
collar spines (27 in each) and position of the testes. Several species, all with 19 collar spines, are known from grebes. The nearest known relative of \(P\). atestralis is P. nitidut Linton 1928, redescribed by Beaver (1939), From Colymbus auritus from Massachusetts, but the two differ in the dimensions of the body, organs and collar spines and in the sucker ratio. Yamaguti (1933) described P. lobatus from Podiceps ruficollis japonicus, but that species differs from the Australian in the sucker ratio and especially in the form and arrangement of the testes, The account of \(P^{2}\). notemdecin Lutz 1928 from a Venezuelan Phalacrocorat is not available to us. Pa fungons (Linstow), fron Colymbus nigricans in Central Europe, differs (judging Pron the sumnary account given by Lähe 1909) in gencral forn, length of oesophageal region and the arrangement of the testes.

We have studied a large-tailed species of echitiostome cercaria which agrees in general structure and reactions, with that described by Beaver (1939) as being the larva of Petasiger mitidus, which, as already mentioned, is a 19 -spined form from a Nortlt American grebe. Our cercaria obviously belongs to a species of Petasiger, closely related to \(P\), mitidus. All known species possessing 19 spines have been taken Irom grebes, a group to which Podiceps sppa belong. We have not recognised Pefosiger amongst the trenatodes found in any other birds so far examined by us. The adnlt worns and the cercariae were found at the same time and in the same s,wamp. In view of these facts we have little doubt that they belong to the same species, though our attempt to infect a canary with metacercarial cysts in the hope of obtaining adult stages proved unsuccessful. Until actual proof has been establishod, we deen it advisable to describe the larval stages (redia, cercaria and metacercaria) under a distinctive wane, Cercaria gigantura n. sp.

\section*{Cercaria gigantura n. sp.}

Of 2,500 Amerianua pyramidata collected in Fehruary 1941 from the Murray swamps at Tailem Bend, 10 were found to be infected with a new type of echinostome cercaria. In the following Marcli one of 424 of the snails was infected, in April none of 148, in May none of 64, and in June one of 27 . Thus from April 1937 (when routine examination of the swamps was commenced) to June 1941, this cercaria has been found on only three occasions. We have found only 12 out of \(3,163 \mathrm{~A}\). ptranidata infected, i,e, under \(4 \%\) during the summer and autumn of 1941 . The distinctive feature of the cercaria is the relatively huge tail, which makes the swimming action clumsy. The tail does not appear to propel the body by the figure of eight movement characteristic of most echinostome cercariae, but lashes the water with a strake-like movement. The animal frequently hangs vertically with tail straight and body downwards, in which position it sinks gradually, though the resting period is not as a rule longer than six seconds. The cercariae emerge from the snail over-night (probably in the early morning) and up till midday, and have been observed to live for at least 30 hours. Although eyespots are not discernible, the cercariae exhibit positive phototropism,

Probably hecaise of the thickness of the tail, the cercaria does not perform sucker-to-sucker creening movements under the compression of a coverslip. A pressure which will flatten the tail and keep it almost still, will allow a fair range of movement of the body, while sufficient pressure to cnable the body to be studied in detail results it the loss of the tail. With only slight compression the animal oscillates about one axis, the tip of the tail describing almost \(180^{\circ}\), while the body has a more limited range, probably a swimming movement limited to one plane.

\section*{Redta}

The pale orange rediae are closely packed within the liver of the snail, where the individuals are clearly visible to the naked cye by reason of the black intestine. They vary in length from 0.8 to 1.4 num., while the diameter is from 150 to \(200 \mu\).

Fach redia generally contains five or six cercariae. The birth pore was not seen, but a short distance behind the anterior end the collar shows as a definte protuberance. The foot processes are prominent, and behind them is a narrow terminal part, with somewhat the appearance of a tail. In this region there are generally a number of fairly large germ balls, and it seems probable that the nearly


Fig. 1-6, Cercaria gigantura: 1, tail; 2, excretory system from living cercaria; 3 , 4, formalinised cercariae (in fig. 4 arangement and size of spines probably not precisely accurate-errors due to difficulty of determination, compression of cercaria, etc.) : 5, redia; 6. cyst. Fig, 7, Petasiger australis: ventral view. Vitellaria not indicated. Fig. 1, 5, to same scale. g.b., germ balls.
mature cercariae do not remain in this region but migrate anteriorly, which would explain the smaller diameter of the part. The gut varies from half to seveneighths (commonly three-quarters) the length of the redia.

\section*{Cercaria}

For measurements, the cercariae were killed by the addition of an equal volume of boiling \(10 \%\) formalin to the water containing them. This standard method resulted in the cercariae being fixed in different positions, from one of maximum contraction to one of great extension. In the former catse the body measured 105 by \(100 \mu\), while the most extended specimen was 267 by \(70 \mu\). Actual range in ten specimens measured 105 to \(267 \mu\) long by 50 to \(100 \mu\) wide.

Between the body and the tail proper is a relatively short neck, the diameter of which is less than that of the body. Most of the central part of the neck is occupied by an extension of the excretory bladder. The neck region is coloured by the same orange pigment as is present in the cystogentous cells of the body; it varies from 50 to \(167 \mu\) long by 17 to \(54 \mu\) wide. The rest of the tail, the measurements of which are necessarily only approximate becanse of the distorted positions in which it is fixed, varies from 434 to \(584 \mu\) long by 134 to \(200 \mu\) at the widest point. There is a definite apical region in the tail, which narrows suddenly, the tip so fomed (which is very obvious in the resting position) ranging, in fornalinised specimens, from 83 to \(192 \mu\) by 33 to \(42 \mu\).

The tail has a transparent, glassy appearance, ahthongh at the margin, which is notched at intervals, the cuticle has a greenish tinge. The central third is occupied by longitudinal muscle fibres which appear to have their origin at the junction of the tail proper with the neck, and taper off towards the tip. Abundant myoblasts are associated with these fibres. A number of fine radial muscle fibres, arising from just beneath the cuticle, insert in the central longitudinal strand. In addition to the longitudinal and radial muscles, there is a somewhat complex system of fibres. Each unit of this system. forms a reticulum which has its mid-point at one of the marginal notches and cnds on cither side about midway between notches, while centrally the muscle strands attach to the longitudinal fibres. About half-way fown the tail this systen forms a more or less continuous reticulum (fig. 1). Laterally to the mait longitudinal muscles on either side is a very fine thread which continues thronghout the length of the tail nearly to the tip, and is connected occasionally with the margin as well as with the central muscle strands.

The entire body is beset on both dorsal and ventral surfaces with parallel rows of spines. 'There are many cystogenous cells which are filled with long rodlike crystalline bodics of a bright orange colour. These cystogenous cells, which are arranged in a serics of bands running longitudinally from the post-pharyngeal region to the pusterior end of the hody, are even more resistant to the passage of light than is ordinarily the case in echinostomes, and details of anatomy are consequenty difficult to determine. No gland cells cat be seen, even with intra-vitam staining, but what appear to be four very fine ducts are present in the region of the oral sucker. The collar region is more distinct than in other echinostome cercariac we have cxamined. The spines are afranged in a single row; uninterrmpted dorsally; the total mumber is 19 , of which four on each side form a comer group. There is tho obvious differentiation in the size of the spines, the length of each being about \(13 \mu\).

The acetabulunt is slightly larger than the oral sucker, whe diameter in formalinised specimetts ranging from \(28 \mu\) across the transverse diameter by \(21 \mu\) lengthwass to 38 by \(30 \mu\) for the acetabulum, and from 21 to \(30 \mu\) for the round oral sucker. The acetabulum is situated slightly behind the mid-line of the body, the ratio of length of the body in advance of the acetabulum to that part including the latter varying from \(5: 4\) to \(3: 2\).

The alimentary system is not obvinus; there is a short prepharynx, and the oesophagus and intestinal crurat are very narrow and filled with finely granular material. The crara extend almost to the posterior end of the body.

The excretory system conforms to the plan of the typical echinostome. The pre-acctabular part of the main excretory tubes is very prominent; each contains 12-14 large round or oval excretory bodies with doubly refractive margins. In some cases two or three granules, though maintaining their individuality, are enclosed in a common refractive covelope. In addition, there may be 4-6 smaller single granules. The anterior part of each main tube does not form a distinct triangle, as is usually the case in echinostomes, but each tube forms a small loop as it turns posteriorly. The posterior collecting tube is short and unites with the anterior tube at the side of the excretory bladder. Examination of the cercaria in equal parts of horse serum and water enabled us to see a number of flame cells which were invisible by other means. Even with this help it was not possible to demonstrate the exact connections of all the flame cells. but we are satisfied that they are arranged in groups of three, and we think that there are five or six groups on each side of the body, making a total of \(30-36\) flame cells. There is an cxtension of the bladder in the "neck" of the tail, but we could sce no excretory tube in the tail itself. The excretory pore probably opens on the dorsal surface at the junction of the body with the tail.

The genital anlage, which stains deeply with haematoxylin and other permanent stains, is represented by two matses of tissue, anterior and posterior respectively to the acetabulum and connected by a narrow string of cells.

\section*{Cyst and Metacercaria}

The cercaria was found experimentally to encyst in the following Australian native fish, Retropinna scmoni, Philypnodon grandiceps, Nannoperca australis, young Tandanus tandanus; and in the aquariutn fish, Phalloccros caudo-maculatus, Orywias latipes, Carassius auratus and Gambusia affuis. Oi a large number: of fish from the River Mturay swamps which have been examined, none were found to be naturally infected with cysts of Coraria gigantura. I Iowever, these cysts were found in Namoperca australis from the River Fimmis (collected in March 1941). In all cases the cysts were linited to the wall of the oesophagus and the pharyngeal region. Negative results followed attempts to infect tadpoles, Lymnodyastes spp; the shrimp, Paratya anstraliensis; a triclad; and the molluses, Planorbis isngi, Limnaca lesson and Corbictlina angasi. A few of the host snails (Ancrianna pyramidata and \(A\), pectorosa) contained a number of cysts in the liver. Those snails which were examined in the summer contaned no cysts, and we suggest that the occurrence just mentioned may not be a normal event, lut was probably due to the lateness of the seasori, coupled with the fact that the snails had been isolated daily for sone considerable time in snall tubes, when the cercariae must encyst in the suail from which they had emerged, or perish.

The small, oval, rather flat cysts are remarkably uniform in size, being about 125 by \(75 \mu\). They have thick walls through which the pale orange colour and the large dark excretory granules of the contained metacercaria show clearly.

In general features, the metacercaria shows no advance on the cercarial stage. Orange pigment is still present in the body, and cannot, therefore, be associated only with the cystogenous cells in the cercaria; it appears to be mainly in the hind end, and relatively scarce anterior to the acetabulum. The metacercaria could not be expressed from the cyst sufficiently intact to enable us to study it in the living state, and hence we have obtained no information regarding the excretory system. The collar spines are more definite than in the cercaria.

Cercaria gigantura resembles C. Petasigeri-nitidi Beaver 1939 very closely. If it should prove (as we anticipate) to be the cercaria of Petasiger australis it will be evident that here is a type of echinostome life-history in which the structure of the cercaria, apart from the collar spination, is an indication of the genus of the adult, the number of spines being a specific or group character.

Other characters in which the two cercariae are in general agreement are the following: length of life; resting and swimming action; positive phototropism; size; collar spination; relative sizes of oral sucker and acetabulum. They differ, however, in the following features: C. Petasigeri-nitidi colourless, C. gigantura orange-yellow; prepharynx long in former, short in latter; three pairs of gland cells present in former, not visible in latter; 20 to 25 excretory granules in C. Petasigeri-nitidi, 12 to \(14 \mathrm{in} \mathrm{C}. \mathrm{gigantura;} \mathrm{dorsal} \mathrm{collar} \mathrm{spines} 5\) to \(6 \mu\) in former, \(13 \mu\) in latter. They also differ in the shape of the bladder and in the flame cell formula. In C. Petasigeri-nitidi the longitudinal bands of the tail musculature are poorly developed and circulo-diagonal bands well developed, while in C. gigantura the longitudinal muscle is well developed, and there is no circulodiagonal musele; and there is no dorso-ventral flattening of the tail as in C. Petasigeri-nitidi.

The two rediac agree in most features; that of C. gigantitra is probably smaller and the collar is not divided into four distinct folds. We confirm Beaver's observation that great masses of cercariae consistently were found free in the tissues, from which Beaver concluded that the cercariae apparently require a period of maturing in the snail's tissues, after emerging from the rediae.

For the cysts, Beaver states that, exclusive of host tissues, they vary round 85 by \(68 \mu\); this makes the ratio of length to breadth \(5: 4\), but his figure shows a ratio of \(5: 3\), which corresponds with the ratio given by our measurements for C. gigantura ( 125 by \(75 \mu\) ). As with \(C\), gigantura, the cyst of \(C\). Pctasigeri-nitidi is slightly flattened.

Beaver mentioned four other described species of large-tailed echinostome cercariac, all of which closely resemble C. Petasigeri-nitidi. We have examined, the accounts of these cercariae-C. magnacauda O'Roke 1917.(1) G. caudadena Faust 1921, C. cita Miller 1925 (not described till 1929) and C. oscillatoria Brown 19.31 -and find that C. giganttira differs from each of them. Since Beaver has listed the features separating them from \(C\). Petasigeri-nitidi, in many of which they differ also from \(C\). gigantura, we do not propose to distinguish between them specifically. C. cita appears to resemble C. gigantura most closely, but the description of the former does not include either the number of collar spines or the flame cell formula, and Miller did not find the cyst. In addition to this, C. cita is described as having gland cells from the acetabulum to the pharynix, and this in itself we regard as sufficient to separate it from \(C\), gigantura, in which it was not possible for us to identify any gland cells.

Szidat (1937) described Cr gigantocerca, which he regarded as belonging to the Psilostomidae, near Sphaeridiotrona; the body of this cercaria, as figured, was very sinilar to that of an echinostome cercaria, but lacked collar and spines. The tail was huge, and though the figure is lacking in microscopic detail the relative sizes of the tail and body in C. gigantura and \(\bar{C}\). gigantocerca Szidat appear to be comparable, white the absolute sizes are very similar. The close resemblance of these two forms is further evidence of the relationship between the Echinostomidae and the Psilostomidae.

In describing \(C\), oscillatoria, Brown stated that he found cysts in the tissues of the cercarial host snail, and that they appeared to be the encysted stage of
(1) O'Roke described \(C_{7}\), magnacauda as a megalurous cercaria, but Miller who examined a slide of C. magnacauda (in 1929) lent him by O'Roke, identified it as an echinostome.
C. oscillatoria. Beaver (1939) thought that Brown probably observed another species of echinostome-evidently on the grounds that he (Beaver) did not expect this type of cercaria to encyst in a snail. However, we have indicated that C. gigantura will encyst in the snail host. The main point of difference is that Brown's cyst was spherical, while the cysts of C. gigantura and C. Pelasigeri-nitidi are of the same oval, partly flattened, type. However, Brown stated that the compound nature of the calcareous concretions in the inain collecting tubules was suggestive of \(C\). oscillatoria, and we are inclined to agree that the cyst was the encysted form of \(C\). oscillatoria.

The occurrence of these cercariae, which have been definitely identified as echinostome larvac, obviously calls for some modification of the accepted classification scheme for echinostome cerca-iae. Brumpt (1936), following I.uhë's classification (Luhë 1909), which Brumpt says has been adopted by most authors, lists echinostome cercariae under Leptocercariac, with tail narrower than the body. In cercariae of the magnacauda group the tail is greater in length, breadth and thickness than the body, and these cercariae must be regarded as an aberrant type which develops into a typical echinostome cyst and adult. Sewell (1922) proposed three sub-groups for the echinostome cercariae, but this separation appears to us to be no longer satisfactory in view of the large number of echinostome cercariae which have been described since then.

In an effort to obtain the adult of \(C\). gigantura experimentally, a canary and two pigeons were fed with cysts of the cercaria over a number of days, but on dissection of the birds some fortnight later no trematodes were found.

\section*{Summary}

1 Pctasiger australis n. sp. is described (from hosts Podiceps ruficollis novachollandiae and \(P\). poliocephalus) from South Australia.

2 A large-tailed echnostome cercaria, C. gigantura, is recorded (from Ancrianna pyranidata) from the same locality, and is considered to be the larval form of Petasiger australis.

3 The redia, cercaria, cyst and metacercaria of \(C\). gigantura are described, and their intermediate hosts recorded.

4 C. gigantura is compared with other known large-tailed echinostome cercariae.

5 The rclationship of the Psilostomidae with the Echinostomidae is further shown by comparison of C. gigantocera Szidat and C. gigantura.

\section*{Literativere}

Beaver, P. C. 1939 Jour. Parasit., 25, 268-276
Brown, F. J. 1931 Parasitol., 23, 88-98
Brumpt, F. 1936 Précis de Parasitologie, 1. Paris
Davies, E. 1934 Parsitol., 26, 133-1.37
Dietz, E. 1910 Zool. Jahrb., Suppl.. 12, (3), 265-512
Faust, E. C. 1921 Jour. Parasit., 8, 11-21
Linton, E. 1928 Pr. U.S. Nat. Mus., 73, 1-36
Luife, M. 1909 Die Susswasserfauna Deutschlands, 17
Lutz, A. 1928 Estudos de Zoologia y parasitologia venezolanos. Rio d. Janeiro Miller, H. M. 1929 Trans. Ann. Mier. Soc., 48, 310-313
Odhner, T. 1911 Res, Swedish Zool. Exped. Egypt and White Nile, (4), 1-166
O'Roke, E. C. 1917 Kansas Univ. Sc. Bull,, 10, 161-180
Sewell, R. B. S, 1922 Ind. Jour. Med. Res,, 10, Suppl., 1-371
Szidat, L. 1937 Z. f. Parasitenk., 9, 529-542
Yamaguti. S. 1933 Jap. Jour. Zool., 5, (1), 1-134

\title{
THE RED-LEGGED EARTH-MITE (ACARINA, PENTHALEIDAE) OF AUSTRALIA
}

\author{
By H. WOMERSLEY, F.R.E.S., A.L.S., South Australian Museum
}

\section*{Summary}

Family PENTHALEIDAE Oudemans 1931
This small family of mites is of considerable economic importance to Australian agriculture, for it includes at least two species which are major pests of pasture and fodder in this country. It includes four genera, all of which are represented here by at least one species in each.

\title{
THE RED-LEGGED EARTH-MITE (ACARINA, PENTHALEIDAE) of aUstralia
}

\author{
By II. Womersley, F.R.E.S., A.L.S., South Australian Museum
}
[Read 11 September 1941]
Family PEN'THALEIDAE Oudemans 1931
This small family of mites is of considerable conomic importance to Australian agriculture, for it includes at least two species which are major pests of pasture and fodder in this country. It includes four gencra, all of which are represented here by at least one species in each.

The earth-mites are small soft-bodied and soft-skinned animals of a black colour, with or without red dorsal patches, and with bright red legs and mouthparts. They are phytophagous in habit, many living in moss, but those of economic importance occur in immense numbers in pastures and vegetable gardens, where they become a serious nuisance.

The four genera may be separated by the following key:
1. Cuticle strongly reticulated, punctured or ruguse. Body not globose

Gen. Stereotydeus Berl, and Leonardi 1901 incl. Tectopenthalodes Tragdh. 1907
Cuticle smooth or at most faintly hexagonally patterned in punctured lines. Body more or less globular.
2. Anus dorsal. Cuticle smooth. Gen. Penthalcus Koch 1835
\(=\) Notophallus Canest. 1886
Anus ventral. Cuticle sometimes hexagonally patterned. Gen. Penthalodes Murray 1877
\(=\) Penthalcus Koch 1835 (in part)
Anus terminal. Cuticle smooth.
Gen. Halotydeus Berl. 1903
\(=\) Penthalous Koch 1835 (in part)
Genus Pentilaleus Koch 1835 (in part)
In Panzer, l)eutschl. Crust., Hft. I. tab. 12, 1835.
\(=\) Notophallus, Canest., Atti Ist., Veneto., (6), 4, 697, 704, 1886.
Pentifaleus major (Duges 1934)
Tctranychut major Iuges 1834, in Ann. Sci. Nat., (2) 2, Zool., 53.
For further synonymy see Womersley 1935, Bull. Ent. Res., 26, (2), 163.
This is an introduced species, abundant in many agricultural areas in Australia, where it is an important pest on pasture and fodder crops. It also occurs in certain areas in South Africa. Its separation from the following species is discussed hereunder.

Penthaleus minor (Canestrini 1886) Fig. A-C
Notophallus minor Cancst. 1886 Acarof. ital., 211, tav. 18, fig. 16; Berl. 1892, A.M.S. ital. rept., fasc. 61, No. 5.

I have known of the occurrence of this second European species in Ausiralia for some time but have not hitherto recorded it. It is rather smaller than the preceding and can be distinguished as follows:
1. Moyable finger of chelicerae slender and stylet-like for its whole length, and with a right-angled base; basal portion of fixed finger broadly membrancous. Apical segment of palp as long as penultimate. P. major (Duges 1834)
2. Movable finger of chelicerae without right-angled base; basal half uniformly wide and wider than apical half. Apical segment of palp shorter than penultimate.
P. minor (Canest. 1886)

Localitics-South Australia: Morialta Gorge, Adelaide, September 1934 (H. W.). Western Australia: Katanning, June 1940 (K. R. N.).

Genus Haloty dfus Berlese 1891
Berlese, A., A.M.S. ital, rept., fasc. 60, No. 9.
Halotydels destructor (Jack 1908)
Jack, R. W. 1908 Cape of Good Hope Agric. Jour., No. 31.
Tucker, R. W. E. 1925 Entom. Mein., No. 3, Dept. Agric., S. Africa. Womersley, H. 1933 Trans. Roy. Soc. S. Aust., 57, 108

A common and well-known pest on subterranean clover and vegetables in most cultivated areas in Australia, as well as in South Africa.


A-C Penthalcus minor Canest., A palp, B mandible, C tarsus IV; D-T, ITalotydeus egregits Berl., D entire, E palp, F mandible, (i tarsus I, H tarsus IV, I dorsal seta; J-M Penthalodes australicus sp.n., J palp, K Mandible, L tarsus I, M tarsus IV.

Halotydeus egregius Berlcse 1891 Fig. D-I
Penthaleus egregitus Berlese, A., A.M.S. ital. rept., fase. 60, Nos. 1 and 3.
In fase. 60, No. 3, Berlesc (loc. cit.) does not figure or refer to the position of the anus, but this is clearly shown as terminal in fig. 5 of fasc. 60 , No. 1 , so that
there is no doubt but that this species should be placed in this genus. The differences between this and \(\mathrm{H}_{*}\) destructor are to be found in the mandibles, palpi, and setae of the legs and body, as figured.

I am indebted to Mr. K. R. Norris, of the Division of Economic Entomology, C. S. \& I. R., for the following colour description of the living mites:
"Legs red, basal two segments pale. Mouth parts red. Body black, shining, but may have pale blotches ventrally near the genital aperture. The lips of the genital aperture and a small patch surrounding the uropore vary in colour irom red to whitish. In one specimen a pale pinkish streak extended about hall-way along the dorsunn from the uropore, whilst ventrally it continwed to connect the uropore and genital aperture."

The species has been taken by Mr. Norris in the following localities in Western Australia: Hovea, September 1935, 1936; Penberton, November 1936; Katanning, in winters of 1939, 1940 and 1941; Narrogin, July 1937; Cranbrook, 1937; Kalgan River, July 1937; Donnybrook, November 1937. April 1938.

\section*{Genus Penthalodes Murray 1877}

Murray, A. 1877 Econ, Aptera.
This genus differs from the others in the ventral position of the anus as given in the key, In 1931 Ondenians made a separate family, the Penthalodidae, for it, and this was recognised by Sig Thor (Das Tierreich 1933) who separated it, in a key, on the basis of the hexagonal patterning of the cuticle. Vitzthum (Handbucher Zoologie 1931) did not recognise the Penthalodidae but retained Penthalodes in the Penthaleidae.

The cuticular patterning of the genotype of Penthalodes ( \(P\). oqratus: Koch) is, however, very different from that of members of the genus Stercolydeus, also placed in the Jenthaleidae by Vitzthum (loc. cit.). The description in this paper of a new species of Penthalodes which lacks any cuticular patterning whatever, further suggests the untenability of the fanily Penthalodidae.

Penthalodes australicus n. sp. Fig. J-M
Description-Large species. Colour black with red mouth-parts and legs. Length 2.25 mm ., width 1.36 mm . Legs I 2.89 mm1.. II 1.445 m1mı, III 1.645 mm. ., IV 2.125 mm . Dorsal and leg setac very numerous and mainly simple; on dorsum \(64 \mu\) long. Mandible \(270 \mu\) long, as figured. Palpi as figured, ultimate segment less than half the length of pentultimate. Tarsi I and IV as figured. Genital opening with the usual two pairs of discs. Anus ventral.

Locality—Type specimens front moss, Summers' Park, Acheron Way, Victoria, Jan. 1937 (H, W.) ; West Tanjil, Victoria, July 1941 (R, T, M, P.).

Genus Stereotypeus Berlese and Leonardi 1901
Berlesc and Leonardi 1901 Zool. Anz., 25
Womersley. H. Proc. Linn. Soc. N.S.W., 60, 79-82
This genus and the three Australian species have been previously discussed by the writer (loc, cit.), It was then placed in the Pcnthalodidac but, as noted above, this fanily is not satisfactorily separated from the Penthaleidac.

The Australian species may be distinguished by the following key:
1. Segment IV of palp longer than 11I. Dorsum with an areolation of pitted hexagonal markings. Median lobe of epirostral plate narrower than lateral lobes.
S. arcolatus Womersley 1935
2. Dorsal surface strongly rugose. Legs 5 -segmented. S. occidontale Womersley 1935 Dersal surface more finely rugose. Legs 6 -scgmented.
S. australicus Sig Thor 1934

\title{
THE WILPENA POUND FORMATION AND UNDERLYING PROTEROZOIC SEDIMENTS
}

\author{
By D. MAWSON, D.Sc., F.R.S.
}

\begin{abstract}
Summary

This contribution is a further investigation into the nature and thickness of the sediments immediately underlying the fossiliferous Cambrian strata of South Australia. Details of the record in two new areas are given.
\end{abstract}

\title{
THE WILPENA POUND FORMATION AND UNDERLYING PROTEROZOIC SEDIMENTS
}

\author{
By D. Mawson, D.Sc., F.R.S.
}
[Read 11. September 1941]
This contribution is a further investigation into the nature and thickness of the sediments immediately underlying the fossiliferous Cambrian strata of South Australia. Details of the record in two new areas are given.

\section*{Tile Succession at Wilpena Pound}

The land form so splendidly illustrated by Wilpena Pound is determined by the existence in that locality of a very thick, arenaceous, basin-shaped, sedimentary formation, The tectonic structure of the Flinders Range is primarily that of a folded system of extremely thick sediments of Proterozoic and Cambrian age. There are represented some remarkable examples of domes and anti-domes.

Wilpena Pound is the most notable example of the anti-domes. It is one of the remnants left after long continued sub-aerial crosion of the fold system. The basin of the anti-dome now stands in high relief, ringed all around by a towering battlemented scarp. The sediments which are horizontally disposed under the centre of the basin are quaquaversally dipping inwards around its entire margin. Proceeding outwards in all directions from the Pound, tho underlying strata are presented in descending order of age. The locality is therefore ideal for detailed study of the sedimentary formations involved, and has been made the locus of this further study of the late-Proterozoic


Fig. 1
Map of the vicinity of Wilpena Pound, indicating the location of lines of section. scdiments of South Australia.

Preliminary field reconnaissance ascertained that the sequence of beds is comparatively little disturbed in the region between the Pound and Appealinna ITill, which latter is a prominent feature figuring in the structure of the next dome succeeding to the nurth-mortheast (fig. 1). This dome we refer to as the Oraparinna Dome, since it is mainly comprised within the area of Oraparinna sheep station.

Herewith in tabular form, are details of the strata encountered along this line of section from a point 17,548 feet stratigraphically below the topmost beds of the Pound Formation, It will be observed (fig. 1) that the section has been moasured in two divisions; namely, the Pound Formation along the line A-B and the underlying beds along the line C-DI. Fig. 2 graphically represents the strata encountered. The field work was conducted with the assistance of advanced students of geology at the University, amongst whom IV. B. Dallwitz and R, C. Sprigg were most helpful.
The formations are numbered from below upwards, and the succession illustrated begins above the fluviu-glacial shales and greywackes of the waning Proterozoic ice age.

\section*{Detuils of Section North-East from the Pound}

114 ft . of flaggy, silty shale. Dip \(23^{\circ}\), strike N. \(30^{\circ} \mathrm{W}\).
18 ft. Calcarcous sandstone.
284 ft . of flaggy siltstone. Dip \(23^{\circ}\).
48 ft . Sandstone, slightly calcarcous. Dip \(22^{\circ}\), strike N. \(30^{\circ} \mathrm{W}\).
105 ft . Sandy limestone passing upwards into mottled cryptozoonic limestonc.
58 ft . of soft shales with thin calcareous bands.
225 ft . Sandy limestone with some bands of argillaceous limestone and of calcarcous shale. Near the base of this scction curious markings appear on the weathered face of the sandy limestone. Dip \(23^{\circ}\).
50 ft. of shate.
20 ft . of sandy limestone.
151 ft . Grey fissile shale. Dip \(25^{\circ}\).
125 ft . Calcarcous sandstone with some grey fissile shale bands near the base. Towards the upper limit the proportion of sand gradually diminishes until the upper 8 ft . is of the nature of a sandy limestone. Dip \(26^{\circ}\).
17 ft . of sandstone. Dip \(27^{\circ}\).
45 ft . of calcarenus shale.
440 ft . Shale, only slightly calcareous. Dip \(28^{\circ}\).
100 ft. (a) Grey, calcareous shale. Thickncss, 60 ft .
(b) Argillaceous limestone with impurities showing as traceries on the weathered surface. Thickness, 10 ft .
(c) Grey, calcareous shale. Thickness, 30 ft .

240 ft . of grey shalc. Dip \(30^{\circ}\), strike N. \(35^{\circ} \mathrm{W}\).
12 ft . of sandy limestone. \(\mathrm{Dip} 32^{\circ}\).
140 ft . Grey shale. Dip \(34^{\circ}\).
3 ft of grey limestone with cryptozoonic traceries.
620 ft . Reddish shale, showing a transition at the base from grey below to red above.
684 ft . Soft, grey shale, showing a transition at the base from red colour to grey above. Dip \(34^{\circ}\), strike N. \(41^{\circ} \mathrm{W}\).
108 ft . of hard shale. Dip \(35^{\circ}\).
318 ft . Hieroglyphic limestone bands in a hard, calcareous shale formation.
216 ft . of calcareous beds. Dip \(38^{\circ}\).
228 ft . (a) Even-grained, buff-coloured sandstone strongly cemented. Thickness, 50 ft .
(b) Hard, reddish sandstone, gritty in places. Dip \(40^{\circ}\), strike N. \(40^{\circ} \mathrm{W}\). Thickness, 178 ft .
3.195 f1. (a) Reddish to chocolate-coloured shale. Dip \(43^{7}\), strike N. \(43^{\circ} \mathrm{W}\). Thickness, \(2,670 \mathrm{ft}\).
(b) Sandy, chocolate shale. Dip \(42^{\circ}\), strike N. \(75^{\circ} \mathrm{W}\). Thickness, 525 ft .
893 ft . (a) Grey shale somewhat buckled. The dip of undulations in these beds ranges between \(35^{\circ}\) and \(48^{\circ}\) with an average of \(45^{\circ}\). The strike ranges from \(70^{\circ}\) to \(82^{\circ} \mathrm{W}\). of N . Thickness. 586 f1.
(b) Shale with some interbedded sandstone flags which make their appearance in the upper section. Dip \(54^{\circ}\), strike N. \(68^{\circ} \mathrm{W}\). Thickness, 307 ft .

28598 ft. (a) Flaggy sandstone with interbedded sandy shale. Dip \(54^{\circ}\). Thickness, 318 ft .
(b) Sandstonc with some shale bands. Thickness, 187 ft .
(c) Strong quarizite with some intersecting veins of micaceous haematite. Dip \(52^{\circ}\) strike N. \(68^{\circ} \mathrm{W}\). 'Thickness, 51 ft .
(d) Hard sandstonc. Clay gall impressions appear at the base of this section. Dip \(45^{\circ}\), strike N. \(68^{\circ} \mathrm{W}\). Thickness, 42 ft .


Fig. 2
Cross section of the Wilpena Pound Range and underly ing sediments.

29 2,277 ft. (a) Soft, chocolate shale. Dip \(38^{\circ}\). Thickness, \(1,290 \mathrm{ft}\).
(b) Somewhat sandy, chocolate shale. Thickness, 274 ft .
(c) Thin-bedded, moderately indurated chocolate shale. Dip \(36^{\circ}\). Thickness, 713 ft .
30700 ft . Shale, non-calcarcous below to moderately calcareous above, Dip \(36^{\circ}\).
31 1,090 ft. (a) Flaggy, calcareous shale in which the calcareous element increases above, Dip \(31^{\circ}\). Thickness, 150 ft .
(b) Thinly latninated, calcareous shales and argillaceous limestone with "micro-cryptozoon" structure and bands of intraformational conglomerate. Near the upper limit some reddish, sandy shale appears. Average dip \(25^{\circ}\), strike N. \(50^{\circ} \mathrm{W}\). Thickness, 940 ft .
430 ft . Reddish, sandy flags with a little shale, the latter becoming increasingly calcareous below. Dip \(20^{\circ}\) strike N. \(40^{\circ} \mathrm{W}\).
325 ft . Soft, red flaggy sandstone. Dip \(30^{\circ}\), strike \(52^{\circ}\).
\(1,225 \mathrm{ft}\). Red sandstonc. Dip \(27^{\circ}\).
\(2,556 \mathrm{ft}\). (a) White sandstonc. Dip \(25^{\circ}\), strike N. \(46^{\circ} \mathrm{W}\). Thickness, 2.213 ft .
(b) White sandstone. Dip \(20^{\circ}\), strike N. \(50^{\circ} \mathrm{W}\). Thickness. 80 ft .
(c) White quartzite. Dip \(18^{\circ}\). Thickness, 106 ft .
(d) White sandstone. Dip \(17^{\circ}\), strike N. \(50^{\circ} \mathrm{W}\). Thickness, 157 ft .

17,548 ft. Total thickness.
Below this thick pile of sediments are several thousands of feet of postglacial slates, fluvio-glacial sands and slates as woll as the tillite (Sturtian in age) itself. Some details of these will be published at a later date.

\section*{The Succession at the Druid Range}

The broader tectonic features of the country to the south-east of Wilpena Pound are displayed in fig. 3 , which is a cross-section along the line E-F recorded on the map (fig. 1). Notable faulting in the area has been observed only where the beds approach verticality. There is good reason to believe that a fault extends


Fig. 3
along and nearly parallel to the north face of the Druid Range. This has probably truncated the Cambrian beds and may have reduced the apparent thickness of the quartzite formation of the Druid Range. Evidence of faulting is best seen at the eastern end of the Chace Range where it cuts in to join the Druid Range, Clear evidence of such a line of fault was observed on one of onn field excursions by' R. C. Sprigg when viewing the area from the summit of the Chace Range near Mount Havelock.

Both the Chace Range and the Druid Range are constituted of the Pound Formation which originally arched over from Wilpena Pound, then dived down
almost vertically as the Chace Range. The Pound Formation is again met nearby to the south as the Druid Kange which extends approximately parallel to the Chace Range over a length of more than 16 miles. The road from Hawker to Martin's Well runs along the valley between these two great walls. Where tra-

Fig. 4 Section across the Druid Range and underlying sediments.
versed by the line of section (fig. 1) this valley has a width between the quartzite walls of 2,500 yards, but narrows towards the east-north-east and widens in the opposite dircction. It is occupied by steeply dipping Cambrian limestones and shales. Massive, grey Archaeocyathinae limestone which flanks the Chace Range passes upwards into a soft, dark-coloured slate which occupies the central portion of the valley: Close to the eastern end, where the Chace Range closes in on the Druid Range, the Cambrian formation is alnost entirely climinated.

Strike faulting has played a part in the parallel arrangement of these two outcrops of the Pound Formation. How much the repetition is also due to the original folding of the beds is yet uncertain. It is possible that the soft beds immediately on the south side of the Range are affected by strike faulting, but as the outcrops are considerably hidden over a wide belt the existence of such was not established. The general regularity of the outcrops in that locality actually suggests the absence of faulting.

The country to the south-soth east from the more easterly extension of the Druid Range is but little disturbed, and is thus a region where the order of succession of the beds is well exhibited and faulting is at a minimum. In that direction a good section can be obtaincd, extending from the Pound Formation of the Druid Range downwards to the Proterozoic glacial beds.

The succession along the line of section \(\mathrm{E}-\mathrm{F}\), through a thickness of 15,741 feet of strata stratigraphically below the top of the Pound Formation is detailed herewith (fig. 4). The still lower glacial and post-glacial tillite, fluvio-glacial beds, greywackes and slates will be dealt with in another publication. In the field work prosecuted in this area some font years ago, my chief student assistant was L. W. Parkin.

Dctails of Section South-East of the Druid Range
185 ft . Massive sandy limestone.
2585 f1. (a) Flaggy, calcareous argillite. Thickness, 345 ft .
(b) Resistant flaggy argillite, only slightly calcareous. Thickness, 20 ft.
(c) Flaggy argillite, somewhat calcareous. Thickness, 220 ft .

3270 it. A strongly developed grey compact limestone. Much of it is oolitic and some is arenaceous. One zone has a poorly developed coarse cryptozoonic marking. Dip \(72^{\circ}\), to N. ; strike \(\mathrm{S} .70^{\circ} \mathrm{W}\).
4695 ft . (a) Poor exposures, but underlying rock appears to be a calcareons argillite. Thickness, 230 [t.
(b) Grey flags somewhat calcareous. Dip \(75^{\circ} \mathrm{N}\) : Thickness, 465 ft.
6 ft . Oolitic grey limestone.
6 870 fi . Slates.
7180 ft . Hard, flaggy slate, chocolate to grey in colour. Dip \(80^{\circ} \mathrm{N}\).
8250 rt . (a) Shales and soft sandstone with interbedded limestone. One band is 5 feet thick and chocolate-coloured. Thickness, 190 ft .
(b) Calcareous bands alternating with slate and soft sandstone. Strike \(S .65^{\circ} \mathrm{W}\). Some of the limestone exhibits a poorly developed hicroglyphic structure. Thickness, 60 ft .
\(9 \quad 570 \mathrm{ft}\). (a) Red slate and soft red sandstone. Thickness 125 ft .
(b) Soft, very fine-grained, reddish sandstone. Thickness, 45 ft .
(c) Soft, slaty argillite of a general reddish coluur. Thickness, 400 ft .

10680 ft . (a) Resistant grey slates. Thickness, 360 ft .
(b) Grey slate; somewhat calcareous with a couple of minor bands ( 2 ft . wide) of arenaccous limestone. Thickness, 210 ft .
(c) Grey slate, weathering to small chips. Thickness, 110 ft .

11 2,550 it. (a) Hard, chocolate-coloured slate. Thickness, 850 ft .
(b) Reddish flaggy slates and siltstones. Dip \(86^{\circ}\) to \(\mathrm{N}^{\text {; }}\); strike S. \(54^{\circ} \mathrm{W}\). Thickness, 830 ft .
(c) Dark reddish sittsione with some argillaceous element, particularly near the base, Current bedding is well illustrated at certain horizons, also concentrations by currents of iron sand are to be observed. Strike S. \(61^{\circ} \mathrm{W}\). Thickness, 870 ft ,
12780 ft . of hard mudstone slate, in places arenaceous, colour grcy. These beds are standing vertically.
13580 ft . (a) Flaggy slate with some bands of hard sandstone, Strike S. \(65^{\circ} \mathrm{W}\). Thickness, 340 ft .
(b) Flaggy sandstone with interbedded bands of somewhat argillaceous sandstone. 'Ihickness, 240 ft.
\(1,690 \mathrm{ft}\). (a) Red shales weathering to chips at the surface. Thickness, 540 ft .
(b) Grey shales standing alnost vertical. Thickness, 750 ft .
(c) Chocolate shales. Thickness, 400 ft .

450 ft . of flaggy, argillaceous limestone, calcareous shale and occasional belts of more massive and purer limestone. "Micro-cryptozoon" structure appears in this section.
17480 ft . Yellowish to grey shales weathering to chips. Most of the outcrops obscured by alluviation.
\(2,470 \mathrm{ft}\). (a) Hard quartzite forming a precipitous face. Thickness, 400 ft .
(b) Hard quartzite forming rugged knobs. Dip \(90^{\circ}\), strike \(64^{\circ} \mathrm{S}\). Thickness, 180 ft.
(c) Quartzite slope on south side of the summit of the Druid Range. Dip \(89^{\circ}\), strike \(\mathrm{S} .70^{\circ} \mathrm{W}\). Thickness, 710 ft .
(d) Quartzite of slopes on north side of the stmmit of the Range. Thickness, 380 ft .
(e) Quartzite of the steep northern face. Dip \(80^{\circ}\). Thickness, 370 ft .
(f) Hard quartzite of the steep face. Dip \(75^{\circ} \mathrm{S}\). Thickness, 280 ft .
(g) Flaggy sandstone along the foot of the north face of the Druid Range. Dip \(75^{\circ} \mathrm{S}\)., strike S. \(70^{\circ} \mathrm{W}\). Thickness, 150 ft .
\(15,741 \mathrm{ft}\). Total thickness.

In the upward succession beyond this horizon there is a further considerable thickness of soiter, arenaceous and argillaccous beds before arriving at the Cambrian Archaeocyathinae limestone.

Items (18) and (19) of the above section are evidently equivalents of the main body of the great Wilpena Pound Formation. Here, however, the sandstone of the red section of the Pound Formation is poorly represented, but there is a corresponding increase in argillites. It thus appears that the depositions of this horizon, in the area where the Druid Range beds were accumulated, were more argillaceous than their equivalents further to the west nearer to the old Cambrian shore line.

The general accordance of the sedimentary record at the two localities dealt with above is obvious and well shown in the following summarized statement.
\begin{tabular}{|c|c|c|}
\hline The arenaccous Pound Formation & \[
\begin{gathered}
\text { Pound } \\
4,106
\end{gathered}
\] & \[
\begin{gathered}
\text { Druid } \\
3.740
\end{gathered}
\] \\
\hline Thickness between the top of the ABC & & \\
\hline Quartzite and the base of the red arenaceous stage of the Pound Formation & 4,387 & 4,100 \\
\hline Thickness of sediments between the thick & & \\
\hline colitic limestone and the top of the ABC & & \\
\hline Quartzite & 7,003 & 7,061 \\
\hline & 15,496 & 14,901 \\
\hline
\end{tabular}

\section*{Comparison witif Data from Other Localities}

In carlier publications there are recorded measurements from other areas in the Flinders Range (see refercnces 1 to 4) of the same range of sediments as detailed in the foregoing section at Wilpena Pound and the Druid Range. Considering the broader stages in this sedimentary series, we can now make some general comparisons.

The Pound Formation is always presented as two divisions; an upper lard white sandstone of more uniform thickness and a minor, lower red division which fluctuates considerably in thickness from locality to locality. The red section, in some areas, is less arenaceous and correspondingly more argillaceous. In view of its variability this lower red portion of the Pound Formation and the underlying beds as far down as the calcareous horizon with "Micro-cryptozoon" need further investigation.

Where it is well represented the thickness of the upper, white division is of the order of 2,500 feet. Actually it is given as 2,556 feet at Wilpena Pound, 2.470 feet at the Druid Range, and 2,640 fect at Brachina Creek. At the TenMile Creek on Oraparinna (Mawson 4) and at Parachilna Gorge (Mawson 1), the apparent thickness is greatly reduced by faulting and overlap.

The red section of the Pound Formation is also of considerable thickness, namely, 1,550 fect at the Pound, 1,270 feet at the Druid Range, and 1,010 feet at Parachilna. At Brachina Creck a fault truncates this red, arenaceous formation.

Next in descending order are passage beds bridging the gap between the red, arenaccons beds above and the calcareous formation below. A mean thickness of about 350 feet is indicated here.

The "micro-cryptozoon" limestone formation and underlying grey shales as far down as the junction of the upper chocolate shales occupies a thickness of 1,790 feel at the Pound, 1,930 feet at the Druid Range, 1,215 feet at Brachina Creek, and 1,457 feet at the Ten-Mile Creek. A greatly reduced thickness is recorded at Parachilna Gorge, probably a result of faulting.

The upper chocolate shales are 2,277 feet thick at the Pound, 1,690 feet at Druid Range, 2,195 feet at Brachina Creek, and 1,287 feet at Parachilna Gorge.

The ABC Sandstone (considering only the upper entirely arenaceous portion) is 270 feet at the Pound, 240 feet at Druid Range, 390 feet at Brachina Creek, and 178 feet at Parachilna Gorge.

From the base of the hard, upper section of the \(A B C\). Sandstone to the upper limit of the hieroglyphic limestone horizon amounts to 4,860 feet at the Pound, 4,820 feet at Druid Range and 3,582 icet at Brachina Creek.

From the upper limit of the hieroglyphic limestone horizon to the top of the first thick oolitic limestone formation below the lower chocolate shale horizon is 1,873 feet at the Pound, 2,001 feet at Druid Range, 1,953 feet at Brachina Creek and 2,628 feet east of Mount Caernarvon.

From the top of the above oolitic limestone to the top of the first thick arenacoous limestone above the post-glacial slates is 1,483 feet at the Pound, 1,710 feet at Brachina Creek and 1,610 feet at the Mount Caernarvon section.

I had hoped to have been able to compare the thickness of these sediments of the central Flinders Range with that of the same formations in areas mapped by K. W. Segnit (5). However, this is not possible, for it is apparent that in the preparation of his maps he has failed to recognise the great thickness and diversity of the sediments involved and has accepted rocks of superficially similar lithological characters as identical horizons, whereas in actuality they may be far removed in the stratigraphical sequence. This misconception has introduced awkward problems necessitating the assumption of hypothetical (actually nonexistent) faults introduced to explain apparent anomalies.

\section*{Biograpinical References}

1 Mawson, I. 1938 T
2 Mawson, D. 1938 Trans. Roy. Soc. S. Aust., 62, (2)
3 Mawso.v, D. 1939 Reports A.N.Z.A.A.S., 24
4 Mawson, D. 1939 Trans. Roy, Soc. S. Aust., 62, (2)
5 Segnit, R. W. 1939 Bull. 18 Gicol. Surv. S. Aust.

\title{
MIDDLE PROTEROZOIC SEDIMENTS IN THE NEIGHBOURHOOD OF COPLEY
}

\author{
By D. MAWSON, D.Sc., F.R.S.
}

\begin{abstract}
Summary

The late Pre-Cambrian sequence in the central region of the Flinders Range has been dealt with recently (Mawson 6). Below the beds there described comes a thick series of sediments deposited during a severe glacial period (Sturtian) and its prolonged waning phases. An account of this section is in preparation.
\end{abstract}

\title{
MIDDLE PROTEROZOIC SEDIMENTS IN THE NEIGHBOURHOOD OF COPLEY
}

\author{
By D. Mawson, D.Sc., F.R.S.
}

Plates XVIII and XIX
[Read 11 September 1941]
The late Pre-Cambrian sequence in the central region of the Flinders Range has been dealt with recently (Mawson 6). Below the beds there described comes a thick series of sediments deposited during a severe glacial period (Sturtian) and its prolonged waning phases. An account of this section is in preparation.

At a still lower horizon, underlying the tillite and fluvio-glacial beds, is another thick series of sediments distinguished by the inclusion therein of a remarkable development of dolomite, some horizons of which, in certain areas of the State, exhibit in their outcrops progressive enrichment in magnesium cven to the stage of pure magnesite.

This dolomite-rich section of the South Australian Proterozoic record is part of the Adelaide Series, the general sequence of which for the Adelaidc area was worked out by Howchin many years ago (Howchin 2). The range of sediments now under discussion corresponds in Howchin's succession with the Thick Quartzite and the beds overlying it up to the advent of the ice age.

It is a matter of note that Howchin had not recognised the presence of dolomite in this range of sediments, but he stressed the occurrence of an horizon referred to as the "Blue Mctal Limestone." This was shown by Barnes and Kleeman (1) to be dolomite. The latter authors also indicated the existence of repeated bands of dolomite among the slates of this section in the area near Adelaide, which they examined,

Scgnit (7), in geological maps of various areas of the State, has encountered portions of this series of beds, which he has referred to as the Middle PreCambrian. Ife indicates the occurrence therein of dolomitic limestones, some characterised by chert nodules. While we yet have no exact basis for fixing the age of this series of beds, I ant of the opinion that it cannot be regarded as older than Middle Proterozoic, since we have in South Australia at least one still older division (Mawson 4) of the Proterozoic.

One of the least disturbed exposures of this division of the South Anstralian Proterozoic butts against the western margin of the Triassic hasin at Copley. This latter locality is some 222 miles in an air-line north of Adelaide and 20 ninles east of Lake Torrens. There the beds which strike in a north-west to south-east direction extend unbroken for miles. Attention has already been drawn to this occurrence (5). Since then, on account of the growing importance of the magnesite deposits included therein, Seguit (8) has visited the field and reported upon the distribution of that mineral in the area. His report makes reference to several earlier inspections by other members of the Mines Department staff. Details are now submitted of the sedimentary succession determined on a line of section across the strike of the country extending far about \(3 \frac{1}{4}\) miles in length. The section commences at a major strike-fault which abruptly terminates the eastward extension of the Mount Scott Cambrian basin at a point about 1,000 yards to the south-west of Aroona Waters. From there the direction of traverse extends north-easterly until the margin of the Triassic basin is reached.

As already mentioned, the beds outcrop with amazing regularity over a length of many miles and are singularly free from notable faulting. There is therefore offered a splendid opportunity for making a detailed study of the beds.


The lowest formation in the sequence exposed to view is the quartzite of the Mount Aroona ridge. All beds below this horizon are cut off by the great strikefault, which is defined by a wide shatter zone. Segnit (7), dealing with the Cam-
brian and Pre-Cambrian sediments of this neighbourhood, indicates the existence of this strike-fault. His map, which is principally of the region to the southwest of the fault, also includes most of the Mount Aroona quartzite. The latter he has assumed, on superficial lithological grounds, to be a repetition of the Pound Formation (Segnit's D7 horizon) well represented locally in the Mount Scott Range. We, however, have not been able to establish this correspondence; on the contrary, some of the leading characteristics of the Pound Formation are unrepresented iti the psamites of the Mount Aroona belt. However, they do have in common the fact that both are extremely massive formations. That at Mount Aroona is the thickest arenaceous horizon of which we have any record in the South Australian region. It therefore well deserves the title which Howchin conferred upon its greatly attenuated equivalent of the neighbourhood of Adelaide, namely, the Thick Quartzite (or Mount Lofty Quartzite).

Resistance to weathering and the great thickness of the Mount Aroona quartzite have resulted in the line of outcrop standing out boldly. It extends on the same line of strike for some miles to the south-east and can be clearly traced with the eye, receding in the distance to the north-west as far as Termination Inill, a distance of 21 miles.

In the detailed account of the beds submitted below, the strata are dealt with in rising order from the base upwards. The scquence of strata along this line of section extends through some 16,000 feet of beds from the base of the Thick Quartzite below upwards through a thick formation in which dolomite and magnesite figure prominently; then on through sediments of the ice age (Sturtian) to a stage in the post-glacial ribbon slates over 3,600 feet above the base of the tillite before it is abruptly terminated against the Triassic basin.

A matter of some importance has been the establishing of the degree of dolomitization and of magnesitization represented in the varions carbonate horizons. This has been done by a partial analysis of samples from selected beds. The finely powdered rock was subjected to a prolonged leach with hot concentrated hydrochloric acid. The undissolved residue was recorded as "insoluble." Magnesium and calcium were detemmed in the solution and calculated as carbonate. These chemical tests were executed for me by J. H. Shepherd.

\section*{Details of a Cross-Section through Aroona Waters}
\(15,217 \mathrm{ft}\). (a) Quartzite which shows evidence of having been disturbed and cracked by severe shock, though finally reconsolidated. Thickness, 50 ft.
(b) Hard quartzite. The quartz grains in this and indeed the whole of this quartzite formation are more or less angular and commonly exhibit shadowy extinction. Thickness, 990 ft .
(c) Quartzite, Dip of \(54^{\circ}\) to the north-east. Thickness, 730 ft .
(d) Quarizite with some slightly argillaccous bands. \(1,112 \mathrm{ft}\).
(e) Quartzite forming the high wall immediately above Aroona Waters. Dip \(60^{\circ}\), strike N. \(50^{\circ} \mathrm{W}\). Thickness, 265 ft .
(f) Quartzite. Thickness, 520 ft .
(g) Felspathic quartzite passing upwards into felspathic sandstone. Dip \(61^{\circ}\), strike N. \(50^{\circ}\) W. Thickness, \(1,550 \mathrm{ft}\).
250 ft . Outcrop obscured; evidently a soft formation, in all probability calcareons argillite.
341 ft . (a) Very fine-grained, red marble containing \(44.8 \% \mathrm{CaCO}_{3}\), \(39.8 \% \mathrm{MgCO}_{3}\) and \(13.75 \%\) insoluble residue. 1 foot only.
(b) Buff-coloured dolomite, found to contain \(47 \cdot 7 \% \mathrm{CaCO}_{3}\), \(40.3 \% \mathrm{MgCO}_{3}\) and \(12.3 \%\) insoluble residue. Thickness, 40 ft .
\(4 \quad 110 \mathrm{ft}\). (a) A medium, grey micaccous siltstone conveniently referred to as greywacke. Strong hydrochloric acid took into solution \(1.79 \% \mathrm{CaO}\) and \(4.51 \% \mathrm{MgO}\), leaving \(82.45 \%\) insoluble residue. Thickness, 65 ft .
(b) Outcrop obscured. Thickness, 45 ft .
\(5 \quad 140 \mathrm{ft}\). Sandstone; for the most part soft and reddish but with some thin beds of coarser white felspathic sandstone.
\(61,185 \mathrm{ft}\). (a) Silty and sandy calcareous shales. A buff-coloured specimen was found to contain \(95.5 \%\) insoluble residue, and traces only of Ca and Mg carbonates. Thickness, 540 ft .
(b) Sandstone below and sandy laminated beds above. Thickness, 300 ft .
(c) Laminated sandy beds passing upwards through sandy shales to a narrow bar of quartzite at the top. Thickness, 345 ft .
\(7 \quad 180 \mathrm{ft}\). of shale, partly calcareous.
8190 ft . Marly and dolomitic shale, with some narrow seams and patches of magnesite. Evidence of secondary silicification in places.
922 ft . of magnesite as a solid rock stratum. Dip \(63^{\circ}\).
45 ft . Soft, marly shale.
5 ft . A wall-like outcrop of dolomite seamed with ferruginous and siliceous traceries.
12390 ft . (a) Soft, marly shale and some dolomite; outcrop mostly hidden bencath surface debris in which are magnesite nodules and fragments of chert. Grey dolomite ( \(\mathrm{CaCO}_{3} 54 \cdot 5 \%, \mathrm{MgCO}_{3}\) \(43.0 \%\), and insoluble \(2.5 \%\) ) outcrops at the base of this section. Among the fragments shoaded down the sloping surface of the ground are pieces of edgewise intraformational conglomerate. Thickness, 210 ft .
(b) Mainly soft, thinly laminated, argillaccous, dolomitic shale shedding blocks of magnesite over the outcrop. The base of this section is a stratum of dolomite with marked silicification of its upper margin. Thickness, 180 fi .
1310 ft . The underlying rock is completely hidden by soft, springy surface debris. The nature of the underlying bed is uncertain, but may conceivably be gypsum.
14271 ft . (a) Sandy marl passing upwards into very fine-grained calcarcous sandstone. At the base is a cellular metasomatized belt. Thickness, 50 ft .
(b) A highly metasomatized zone. Ferruginous below and chertified above. Nature of the original rock obscured by debris. Thickness. 25 ft.
(c) A bed of magnesite. Thickness, 2 ft .
(d) Soft marls and flaggy dolomite with one thin band of magnesite and terminating above in a further bed of magnesite 18 inches thick. Thickness, 78 ft .
(e) Soft marl and thin, flaggy dolomite. Outcrop much obscured by alluviun carrying shoaded chert nodules. Dip \(64^{\circ}\). Thickness, 116 ft .
\(1512 \mathrm{ft} . \Delta\) bed of massive. argillaceous dolomite. Contains about \(27 \%\) \(\mathrm{CaCO}_{3}, 25 \% \mathrm{MgCO}_{3}\), and \(48 \%\) insoluble residue.

179 ft . (a) Medium-dark-grey dolomite of the following composition: \(54 \cdot 1 \% \mathrm{CaCO}_{3}, 43 \cdot 1 \% \mathrm{MgCO}_{3}\) and \(3.06 \%\) insoluble matter. Dip \(65^{\circ}\) to the north-east, strike N. \(43^{\circ} \mathrm{W}\). This bed forms the crest line of a ridge. Thickness, 7 ft.
(b) Grey, crystalline magnesite of low grade. Thickness, 2 ft .

109 ft . of calcarcous shales becoming less calcareous in later depositions.
61 ft . Dolomite interbedded with flaggy, laminated, siltstone shale. Also
a thin bed of sandstone is included here. The dolomite is
61 ft . Dolomite interbedded with flaggy, laminated, siltstone shale. Also
a thin bed of sandstone is included here. The dolomite is considerably affected by silicification.
358 ft . (a) Laminated, dark grey dolomite with chert nodules. The dolomite gave on analysis \(53.5 \% \mathrm{CaCO}_{3}, 42.5 \% \quad \mathrm{MgCO}_{3}\), and \(3.88 \%\) insoluble residue. Thickness, 32 ft .
(b) A bed of light grey, pisolitic magnesite of the following composition: nil \(\% \mathrm{CaCO}_{3}, 97 \cdot 25 \% \mathrm{MgCO}_{3}\), and \(2 \cdot 75 \%\) insoluble residue. Thickness, 3 ft .
(c) Shaley, dolomitic marl with thin seams of magnesite. 88 ft .
(d) A bed of greyish white, pisolitic magnesite of the following composition: \(54 \cdot 14 \% \quad \mathrm{CaCO}_{3}, 42 \cdot 72 \% \quad \mathrm{MgCO}_{3}\), and \(3 \cdot 82 \%\) insoluble residue. Associated with this horizon are pockets of white powdery magnesite. Thickness, 4 ft .
(e) Grey, dolomitic, shaley marl. Thickness, 83 ft .
(f) A massive bed of grey crystalline dolomite. Thickness, 4 ft .
(g) Shaley marl with thin bands of dolomite and semi-magnesite. Chert appears at intervals as nodules and irregular bands. Outcrop partly obscured by alluvium. Thickness, 144 ft .

408 ft . (a) Flaggy, grey dolomite with argillaceons bands. 46 ft .
(b) A bed of medium grey, low grade magnesite. Thickness, 2 ft .
(c) Flaggy, dolomitic marl with thin seams of magnesite. Thickness, 179 ft .
(d) A belt of thin, platy magnesite. Thickness. 3 ft .
(e) Shaley marl from which shoaded magnesite nodules are shed. Thickness, 32 ft.
(f) A solid bed of magnesite. Dip \(65^{\circ}\). Thickness, 2 ft .
(g) Soft, marly shales with occasional thin seams of magnesite. Thickness, 95 ft .
(h) Dolomitic, silty shale with wavy bedding planes, 45 ft .
(i) A bed of nodular magnesite. Thickness, 4 ft .

19387 ft . (a) Flaggy, argillaceous dolomite. Thickness, 61 ft.
(b) Dense, dark grey dolomitic, silty flags. Thickness, 8 ft .
(c) Dark grey, flaggy dolomite. Amongst the lower portion of this section are some bands of dark dolomitic magnesite and of nodular magnesite. A specimen of dark grey rock with subconchoidal fracture was found to contain only a trace of CaO , \(2.8 \% \mathrm{MgO}\), and \(84.5 \%\) of insoluble residue. 317 ft .
(d) A band of hard, laninated, medium grey, crystalline magnesitic dolomite. Thickness, 1 foot only.

285 ft . (a) Somewhat calcarcous shales distributed through which are ten minor bands of dolomite. Thickness, 120 ft .
(b) A strongly developed bed of dolomite. Thickness, 2 ft .
(c) Argillite, somewhat calcareous, with four thin bands of dolomite. Thickness, 115 ft .
(d) A bed of pinkish grey dolomite containing \(45.0 \% \mathrm{CaCO}_{3}\) and \(33.7 \% \mathrm{MgCO}_{3}\). Thickness, 3 ft .
(e) Grey, argillaceous shale with a thin seam of argillaceous dolomite at the upper limit. Thickness, 45 ft .
23608 ft . (a) Grey, atenaceous shale distributed through which are a few bands of sandstone from 8 inches to 12 inches thick. Thickness, 230 ft .
(b) Greywacke siltstone of a remarkably uniform character. The rock is structureless, there being 10 visible laminations. Thickness, 370 ft .
(c) A hard, grey, siliceous siltstone with fine laminations disturbed by currents during deposition. Thickness, 8 ft .
183 ft. (a) Calcareous, argillaceous shale. Thickness, 80 ft .
(b) \(\Lambda\) bed of argillaceous dolomite containing \(29 \cdot 8 \% \mathrm{CaCO}_{3}\), and \(30 \cdot 8 \% \mathrm{MgCO}_{3}\). Thickness, 3 ft .
(c) Shaley argillite with occasional arenaceous bands, one of which is of calcareous sandstonc. Thickness, 90 ft .
(d) A belt of hard argillacenus, yellow dolomite containing \(28.3 \%\) \(\mathrm{CaCO}_{3}\) and \(28.6 \% \quad \mathrm{MgCO}_{3}\). Dip \(65^{\circ}\), strike N. \(47^{\circ} \mathrm{V}\). Thickness, 10 ft .
25640 ft . (a) Argillaceons shale. Thickness, 245 ft .
(b) Greywacke shale, slightly calcareous and distinctly laminated. Thickness, 315 ft.
(c) Argillaceous to sandy greywacke, laminated. 80 ft .
\(26 \quad 15 \mathrm{ft}\). of laminated, light-coloured, sandstone defining the crest of a ridge.
420 ft . of hard, dense, greywacke siltstone. On examination this was found to contain no wore than a trace of soluble Ca() and only \(3 \cdot 2 \%\) of soluble MgO . The insoluble residue amounted to \(80.4 \%\).
620 ft . (a) Argillaceous shale alternating with bands of a buff-coloured dolomite. Thickness, 215 ft .
(b) Alternations abont every 40 fect of hard, grey, calcareous shale and buff-coloured, argillaceous dolomite. Dip \(65^{\circ}\), strike N. \(45^{\circ} \mathrm{W}\). Thickness, 315 ft .
(c) A soft, glaucous-grey-coloured mudstone with some bands of buff-coloured, impure, ferruginous dolomite. Dip \(70^{\circ} .90 \mathrm{ft}\).
29235 ft . (a) A bed of dolomite. Thickness, 3 ft .
(b) Grey shale. Thickness, 34 ft .
(c) A bed of dolomite. Thickness, 6 ft .
(d) Grey, silty shalc. Thickness, 56 ft .
(e) Puff-coloured argillaceous dolomite containing \(40.9 \%\) (aCO , \(29 \cdot 1 \% \mathrm{MgCO}_{3}\) and \(17 \cdot 0 \%\) insoluble residuc. 6 ft .
(f) Grey siltstone. Thickness, 50 ft .
(g) Laminated shale and siltstonc. These are calcareous and apparently dolomitic in part. Dip \(71^{\circ}\), strike N. \(50^{\circ} \mathrm{W}\). Thickness, 80 ft .
\(30 \quad 115 \mathrm{ft}\). of laminated and slightly calcareous shale. Thin partings of intraformational conglomerate appear in this section; the thickest observed band of which was 6 inches across. This latter was found to contain about \(85 \% \quad \mathrm{CaCO}_{3}, 1 \% \quad \mathrm{MgCO}_{3}\), and \(14 \cdot 28 \%\) of insoluble matter.
\(31 \quad 140 \mathrm{ft}\). (a) Calcareous sandstone. Thickness, 3 ft .
(b) Soft, argillaceous shale. Thickness, 21 ft .
(c) Fine-grained, calcareous sandstone. Thickness, 6 ft .
(d) Mainly laminated shale, a little calcareous in places and with cherty bands and patches. Near the upper limit are some thin beds of sandstone alternating with shale. This section ends at its upper limit in a 2 -ft. thick stratum of sandstone \(\operatorname{Dip} 65^{\circ}\), strike N. \(45^{\circ} \mathrm{W}\). Thickness, 110 ft.
50 ft . of grey tillite. This has a characteristic rock-flour base and is studded with erratics, many of them exhibiting glacial striae. Some of the erratics appear to be fragments of the underlying formation, one piece being chert. Other erratics noted were several types of quartzite, coarse siliceous conglomerate and one porphyry.
\(33 \quad 70 \mathrm{ft}\). of fluvio-glacial sandstone.
\(34 \quad 27 \mathrm{ft}\). of fluvio-glacial ribbon slate with some embedded grit and pebbles.
35347 ft . of tillite with some fluvio-glacial shale bands. This tillite is lightcoloured and somewhat more sandy than the more typical Protcrozoic tillite of South Australia, Also, it weathers more readily than usual.
36118 ft . Very coarse-grained fluvio-glacial, arkosic sandstonc. 10 ft .
(b) Fluvio-glacial shale with gravel bands and erratics. 7 ft .
(c) White fluvio-glacial felspathic sandstone. Thickness 30 ft .
(d) Fluvio-glacial shale with erratics. Thickness, 33 ft ,
(e) Coarse fluvio-glacial, arkosic sandstone. Thickness, 8 ft .
(f) Fluvio-glacial, ribbon shale with occasional erratics of quartzporphyry, etc. Thickness, 30 ft.
37300 ft . (a) Laminated and in part varved fluvio-glacial shale distributed through which are occasional strata of 3 to 6 inches in thickness of highly calcareous argillite. Dip \(68^{\circ}\), strike N. \(50^{\circ} \mathrm{W}\). Thickness, 140 ft .
(b) Laminated shale with occasional thin, flaggy bands of impure limestone. Onc of these, about 2 inches in thickness, was found to contain \(46 \% \quad \mathrm{CaCO}_{3}, 30 \% \quad \mathrm{MgCO}_{3}\), and \(20 \%\) insoluble residuc. Thickness, 160 ft .
(c) A harder and slightly lighter-coloured phase of the laminated shale. Thickness, 235 ft .
(d) A softer phase of the laminated shale, with several thin bands of calcareous, intraformational breccia coming in near the upper limit. Dip \(67^{\circ}\) to the N.E., strike N. \(45^{\circ} \mathrm{W} .471 \mathrm{ft}\).
\(381,946 \mathrm{ft}\). (a) Laminated shales. Thickness, 690 ft .
(b) A somewhat softer and darker-coloured phase of the laminated shales. Dip, \(69^{\circ}\), strike N. \(50^{\circ} \mathrm{W} .550 \mathrm{ft}\).
3929 ft . (a) A more arenaceous phase of laminated shale. 27 ft .
(b) Intraformational breccia, somewhat calcareous. 2 ft .
\(40 \quad 800 \mathrm{ft}\). of laminated shale.
16.132 ft . Total Thickness.

Reference should be made to the fact that the lower horizons of the tillite carry as erratics fragments of chert, siltstone and dolomite resembling such rocks of the underlying series. This, therefore, appears to be further evidence that in the Sturtian Ice \(\Lambda\) ge, the whole land surface was submerged under an ice-sheet.

On examining the details of strata listed above, it is to be observed that an outstanding feature of the series of beds underlying the tillite is its richness in dolomite. A rough analysis of the data secured when malking the above traverse indicates that there was observed an aggregate thickness of about 50 feet of magnesite and 650 feet of dolomite, with the probability that an additional 250 feet of


Fig. 1
A general view of the outcrop of the central portion of the Thick Quartzite in the vicinity of Aroona Waters. View looking north, taken from Aroona Creek just below Aroona Waters.


Fig. 2
The clift face, several hundred feet in height, overtooking Aroona Waters. This is the central section of the Thick Quartzite.


Fig. 1
View at a point E. \(10^{\circ} \mathrm{N}\). from M.t. Aroona, looking north-east across the strike of the dolomitic series. Outcropping on the scrubby hillslope in the distance are to be seen items 13 to 17 of the cross-section.


Fig. 2
Magnesite outcrops in flat country located about \(2 \frac{1}{2}\) miles east-southeast of Mt. Parry, near Myrtle Springs Head Station. In the area between the white linear magnesite outcrop visible on the right and the distant figure there are three other parallel magnesite beds.
more or less argillaceous dolomite is represented in the areas where outcrops were obscured. This indicates a total thickness of dolomite and magnesite approaching 1,000 feet.

Until it has been mined to some depth there is no knowing to what extent the magnesite of the outcrops traversed persists in depth. The progressive enrichment in magnesium of some dolonite outcrops undergoing slow subaerial weathering in arid localities is well known. It is therefore to be expected that the magnesite outcrops will, for the most part at least, change over in depth to dolonite. There are, however, features in certain of the ontcrops suggestive that the nagnesitization of the dolomite is not entirely a present-day development from weathering.
R. C, Sprigg assisted me in the above traverse and, more recently, he was chiefly responsible with other students in running a second traverse across the same beds at a point 10 miles distart, further to the north-west, along the strike. This second line of section was carricd through Myrtle Springs Head Station. In that locality the upward succession of the beds continues to a higher horizon in the Proterozoic before being obscured by later formations. There, also, I was able to get further details of the glacial sediments which, together with the overlying beds, will be considered in a later publication.

A comparison of the two cross-sections respectively at Aroona Waters and at Myrtle Springs demonstrates the general regularity of the beds. The thickness of the Thick Quartzite at Aroona Waters was determined as 5,217 feet, but at Myrtle Springs only 4,600 feet. The difference in thickness can be accounted for by the fact that its base in both cases is affected by the line of faulting to which reference has been made, On its western side, at Myrtle Springs, the quartzite disappears beneath the plain, so that the absolute basennent is not seen. Stated in round figures, the thickness of that notable formation may be taken as about 5,000 feet.

The extensive series of marly argillites, sandstone and dolonites with magnesite which occupies the gap between the Thick Quartzite and the Tillite is shown as a total of 7,858 feet in the Aroona Waters section, and 7,701 feet in the Myrtle Springs section, Comparing the detail of strata in these two sections, it is found to vary somewhat, but the main thene is the same. The multiplicity and abundance of the intercalations of dolomite and dolomitic limestone, and a certain regularity in the occurrence of chert nodules in association with some of these horizons, is a constant characteristic. A notable feature near the upper limit where the Tillite is approached is the existence of a marked recurrent alternation of arenaceous beds with argillaceous and dolomitic bands.

This same series of dolomitic and magnesitic beds anderlies the Tillite in the neighbourhood of Mount Warren IIastings (sce Mawson 3). There, beds of this series are thrown down in relation 10 beds further east by a great north to south fault which breaks the sequence in the vicinity of the Ammonia Cave Hill. This fault was not recognised when I submitted the section on page 190 of that contribution.

\section*{Bibliografhy References}
(1) Barnes, T. A., and Kleeman, A. W. 1934 Trans. Koy. Soc. S. Aust, 58, 80
(2) Howchin, W. 1906 Trans. Roy. Soc. S. Aust., 30, 227
(3) Mawsox, D. 1934 Trans. Roy. Soc. S. Aust., 58, 187
(4) Mawson, D. 1939 Trans. Roy. Soc. S., Aust., 63, 69
(5) Mawson, D. 1940 Australian Journal of Science, 3, (2), 25
(6) Mawson, D. 1941 Trans. Roy. Soc. S. Ausi., 65, (2), 295
(7) Segnit, R. W. 1939 Geol. Survey, S. Aust., Bull. 18
(8) Segnit, R. W. 1940 S.A. Dept. of Mines: Mining Review, No. 72, 75

\title{
AN UNRECORDED METHOD OF MANUFACTURING WOODEN IMPLEMENTS BY SIMPLE STONE TOOLS
}

\author{
By C. P. MOUNTFORD, Hon. Assistant in Ethnology, South Australian Museum
}

\begin{abstract}
Summary

This paper describes a method of making wooden implements by unworked stone tools. The observations were made at Aparina Springs in the Musgrave Ranges of South Australia by the writer during the 1940 Adelaide University Expedition.
\end{abstract}

\title{
AN UNRECORDED METHOD OF MANUFACTURING WOODEN IMPLEMENTS BY SIMPLE STONE TOOLS
}

\author{
By C. P. Mountford, Hon. Assistant in Ethnology, South Australian Museum
}
\[
\text { Pifate } X X
\]
[Read 9 October 1941]
This paper describes a methorl of making wooden implements by unworked stone tools. The observations were made at Aparina Springs in the Xusgrave Ranges of South Australia by the writer during the 1940 Adelaide University Expedition.

The particular implement manufactured was a wooden speat-fhrower, such as is in common use over a wide area in Central Australia (text fig. 1, A, B). The aborigines who carried out the work were mombers of the Pitjendadjara or Pitjendara Tribe, whose country centred around the Mann Ranges of South Australia (text fig. 1, L).

This tribe has, perhaps, the simplest and most primitive material culture in Australia, their only possessions being a spear, spear-thrower, digging stick, wooden dishes, grinding stones, a simple bobbin for the manufacture of fur string, and several articles of personal adornment. An adze stone is used on the end of the spear-thrower, but there are indications that this is the most modern tool possessed by these people. All the sacred engraved sticks \({ }^{(1)}\) seen by the writer have been obtained by barter from the tribes to the north. Adornment, except for septum pegs, hair string and occasional pubic ornaments, is confined to body painting.

\section*{Methol of Manuracture}

This can be divided into two main and several subsidiary stages.

\section*{A Cutting the rough Slabs from the liang Tree}

1 Silection of the required Tools-The tools employed were natural stones of various shapes collected from the adjacent hillsides; those having some form of cutting edge were tried out, and the unsuitable ones discarded. Several were broken in an endeavour to obtain a good cutting edge, but all these were rejected as ineffective. The one most suitable in weight and cutting edge (text fig. \(2, \mathrm{~A}, \mathrm{~B}\), C) was used for about \(90 \%\) of the time. It was composed of epidotic gneiss, and weighed seven pounds.

2 Making the preliminary Cut-The operator chose a mulga tree (Acacia aneura) about eight inches in diancter, and at about three feet six inches from the ground made an acute angled cut (text fig. 1, E). The tool was held mostly by two hands, occasionally only one. In general, there were only two directions of striking, the grasp being unchanged; one in which the blows were delivered in a downward direction with the point of the tool, to remove the wood from the arms of the triangle ( \(\mathrm{pl}, \mathrm{xx}, \mathrm{C}\), and text fig, \(1, \mathrm{E}\) ) ; the other, with blows delivered at right angles to the axis of the tree, to cut the wood away at the apex of the triangle ( \(\mathrm{pl}, \mathrm{xx}, \mathrm{D}\), and text fig. 1, F). Tn the former the grip was as shown in pl . xx, C, but in the latter, although the method of holding was not changed, the left hand was depressed, the right raised, and the stone turned on its side (pl. xx, D).

The task of making the preliminary cut in the tree was slow and laborious and lasted for over an hour. Several older mon took turns in wielding the "axe,"

\footnotetext{
(1) These are equivalent to the tjurninga of the Aranda.
}


Fig. 1
Details of wooden spear-thrower and methods of manufacture.
but soon became exhausted, the bulk of the work being carried out by a young aborigine ( \(\mathrm{pl} . \mathrm{xx}, \mathrm{A}, \mathrm{C}\) ).

3 Splitting off the Slab-When the cut was about one and a half inches deep one of the older aborigines, taking a large stone, struck the tree with considerable force, at right angles to its axis and near the upper part of the cut (sce arrow, text fig. 1, E), until a small vertical crack appeared. Ie then made two crude wedges from dead sticks lying nearby, and inserted one on the left hand side of the split and drove it in until the other wedge could be inserted in the right side. They were then alternately driven home until a rough slab of wood was removed (in this case the crack had conveniently tapered upward). The wood was then stripped of its bark and roughly chopped into shape by using the long edge of the cutting stone (text fig. 2, O, P), before being taken into camp. All


Fig. 2
A, C, D, F, side clevation; B, end clevation of unflaked stone, used in the manufacture of a wooden spear-thrower; E , method of sharpening adze stone.
stones used in these series of operations were left behind by the aborigines. The point utilised for cutting is indicated at \(\mathrm{L}, \mathrm{M}, \mathrm{N}\), text fig. 2.

\section*{B Shaping and finishing the Imploment}

1 Remoral of the Heart-reood-In this case unflaked but much smaller stones were used. When no longer serviceable, they were discarded for new ones. Several were broken in halves to obtain a better cutting edge, but rejected after a short trial. D, F, text fig. 2, illustrates the tool most used, although it was one of perhaps ten stones employed during the process. It consisted of a highly siliceous gneiss and weighed three pounds.

The rough wooden slab was first laid flat on the ground, and a series of blows delivered across the grain of the wood ( \(\mathrm{pl}, \mathrm{xx}, \mathrm{B}\) ), and in the direction of the
arrow (text fig. 1, D), until the upper side of the new \({ }_{1}\) spear-thrower was slightly concave. When this stage was reached this method of striking was abandoned, because of the liability of brcaking the outer edges.

The crude spear-thrower was then held in a more or less vertical position, with the end resting against the heel of the operator, and the cutting carried out in the direction of the grain (pl. xx, A; text fig. 1, J. H.), until the dense darkcoloured heart-wood was removed and the implement roughly the shape of a finished spear-thrower.

2 Smoothing and shaping with the Adze Stone of a Spear-thrower-[n smoothing and shaping, the end of the implement, suppotted by the left hand, was held against the heel, using the latter as an anvil. The right hand operated a cutting adze stone, mounted in the end of another spear-thrower. The latter was held at anl angle of about \(30^{\circ}\) (text fig. 1, J. K), and the pressure applied on the downward



Fig. 3
Rough flakes of stone suitable for use as adze stones of spear-thrower. Scale, full size.
stroke. It acted generally as a plane or scraper, although chopping blows were occasionally used. In planing, shavings several inches long were often removed. This was continued, on both convex and concave sides, until the new implement was about three-sixteenths of an inch thick and crescentic in section (text fig \(1, \mathrm{~A}, \mathrm{~B}\) ).

Several times during this operation the adze stone was retouched or given a new cutting edge, by holding the spear-thrower in the right hand, with its adze stone resting against the palm, and tapping its flat face with the wooden blade of a spear until miniature flakes were broken off (text fig. 2, E),

3 Fitting the Adze Stone to the newe Spear-throzer-A lump of spinifex. gum was warmed by the fire until one end became softened, then made into pellets, which were stuck on the handle of the new spear-thrower until a mass of gum about two inches long, one inch wide, and about half an inch in thickness, was formed. This was then held over the fire until soft enough for a flake of finc grain stone to be pressed into it. The gum was then moulded around the adze stone with wetted fingers, until only about one-eighth to three-sixteenths of an inch of the stone projected.

No special shape of adze stone was preferred, any flake of a suitable size and with a cutting edge being used. To test this an aborigine was requested to break a number of flakes from a small boulder of white chert. Some 30 flakes in all werc handed to six men, with a request to pick out only those suitable for mounting. Fight flakes were selected of varying shapes and sizes, the only similarity being the existence of a sharp cutting edge (text fig. 3). Whilst trayelling with the Pitjendadjara aborigines the author often saw a man pick a natural flake from the ground and store it in his hair for future use. The adze stone on the new spear-thrower described above was taken from the operator's liead-dress.

4 Fitting the Throwing, Peg-The throwing peg is about one and a quarter inches long, a quarter-inch thick, and, when in use, fits into a corresponding cavity in the end of the spear. One end was rounded, and the other cut to an angle of \(30^{\circ}\) to the axis. The operator attached a softened pellet of spinifex gum to the end of the spear-thrower and embedded the wooden peg in it. The surplus gum was then scraped away, and the peg securely bound to the implement by a lashing of kangaroo or emu tendons. \({ }^{(2)}\) Considerable care was taken to be sure that the axis of the throwing peg coincided with the central line of the spear-thrower. The implement was then rubbed all over with powdered red ochre, and the operations were complete. The time occupied in its manufacture was from three to four hours. \(\Lambda\) cinefilm, showing all stages of manufacture, is stored in the records of the Board for Anthropological Research of the Adelaide University.

\section*{C Description of Spear-ilhroater}

The wooden spear-thrower of the Pitjendadjara tribe is by far the most important tool in their culture. It has four niain uses: (a) as a spear-thrower; (b) as a cutting tool; (c) as a small dish, the hollow body forming an excellent receptacle; and (d) as a firemaking tool in which the edge of the spear-thrower is rubbed rapidly across a cleft stick until the powdered wood-dust ignites.

This type, with its adze stone, has a wide distribution in Central Australia and is probably the most modern implement possessed by the Pitjendadjara.

\section*{Discussion}

This paper records one of the most primitive examples of the use of stone tools, a remarkable instance of a survival of man's early realisation of the use of stone.

Although the stage of lithoclastic culture reached by the Pitjendadjara is not clear, \({ }^{(3)}\) it is evident, from observation and information obtained, ithat before the introduction of the mounted stone adze these people could have made satisfactory spear-throwers, spears and carrying dishes with morked stones sinilar to those figured.

Further, as such discarded tuntrimmed stones would bear no recognisable trace of haying been used by man, it would be possible for a people with a similar material culture to that of the Pitjendadjara to become extinct, yet leave no trace behind.

\section*{Acknowledgment}

The author is indebted to Mr . L., E. Sheard for his companionship and help; to Miss A. Harvey for her assistance in the production of the drawing; and to Mr. II. V. V. Noone for his criticism and help in the preparation of this paper.
\(\left.{ }^{( }{ }^{( }\right)\)The leg-tendons of emus, kangaroos and wallabies are dried, stored in the hair, and when required softened by chewing,
\({ }^{(3)}\) In the collection of artifacts, made by \(N\). B. Tindale and by Harry Balfour in the Musgrave Ranges, are a mamber of pirris and crescent-shaped microliths. It is not clear, however, whether thesc are a part of the culture, or have reached this area by trade rottes.



\title{
THE LIFE HISTORY OF ECHINOSTOMA REVOLUTUM IN SOUTH AUSTRALIA
}

\author{
By T. HARVEY JOHNSTON and L. MADELINE ANGEL, University of Adelaide
}

\section*{Summary}

In December 1940 eight specimens of Amerianna pyramidata collected from the Murray swamps at Tailem Bend were found to be infected with a 37 -spined echinostome cercaria, the anatomy of which suggested Cercaria Echinstomirevoluti as described by Beaver (1937). These cercariae were found by experiment to encyst in molluscs and tadpoles, and the cysts were then fed to two pigeons. Subsequently adult echinostomes were recovered from one pigeon, and young stages from the other. These were identified as Echinostoma revolutum (Froëlich).

\title{
THE LIFE HISTORY OF ECHINOSTOMA REVOLUTUM IN SOUTH AUSTRALIA
}

\author{
By T. Ilaryey Johnston and L. Majeline Angel, University of Adelaide
}
[Read 9 October 1941]
In December 1940 cight specimens of Amerianna pyramidata collected from the Murray swamps at Tailem Bend were found to be infected with a 37 -spined echinostome cercaria, the anatomy of which suggested Ceraria Echinostomirevoluti as described by Beaver (1937). These cercatiae were found by experiment to encyst in molluses and tadpoles, and the cysts were then fed to two pigeons. Subsequently adult cehinostomes were recovered from one pigeon, and young stages from the other. These were identified as Echinostoma revolutum (Froelich).

Although E. revolutum has been reported from North Queensland, the cercaria and cyst stages, as such, at any rate, have not previously been recorded from Australia. Johnston and Cleland (1937) considered it very probable that Cercaria catellae Bradley 1926 was the larval form of E. revolutum. Bradley thought that C. catellae was the larval stage of an echinostome, though he had not observed collar spines and, indeed, did not seem to expect them in the cercariae of echinostomes, although he had noted their presence in cysts. Bradley mentioned that it was quite possible that he had included two or more related species of cercaria under the name of \(C\). catellae. He had found \(C\). catellae in Bulinus brazicri and Limnaca brasieri, and in the same snails were large numbers of cysts measuring from 130 to \(160 \mu\) in diameter. These cysts appeared to be identical with those which Bradley occasionally observed C. catellae forming on the slide. He made no mention of the number of spines present in the metacercariae, and the description of the cercaria itself is obviously too generalised to permit definite identification. The most that can be said is that, as far as measurements are concerned, the cercaria and cyst could be the larval forms of Echinostoma reaolutum. It should be mentioned that in six months' examination of Cercaria Echinostomirevoluti, we have never observed the cercaria encysting on the slide; but it is probable that Bradley did not use such great compression as we find necessary to examine the cercaria.

We have found C. Echinostomi-revoluti in the Murray swamps from December 1940 to May 1941, in both Amorianna pyramidata and A. pectorosa. It was present in cight of 520 of these snails collected in December, eight of 861 in January, three of 2,470 in February, one of 424 in March, one of 142 in April, three of 64 in May, and nil in 25 in June. Cercariae collected from six A. pectorosa from Filinders Chase, Kangaroo Island, in February 1940, have now been identified as C. Echinostomi-reooluti. In April and August 1939, two snails (Ancrianna sp.) from the Murray swamps yielded spherical echinostome cysts of the same size as those of Echinostoma rovolutum, and with 37 spines and approximately the same number of excretory granules. They are probably cysts of C. Echinostomi-revoluli.

Since April 1937, when these investigations were commenced, we have examined ten different kinds of echirostome cercariae from the River Murray, and of these only two have been 37 -spined forms, C. Echinostomi-revoluti, atid another (as yet not described) which is quite distinct on account of the much greater size of the cercaria and cyst.

\section*{Redia}

The liver of the infected snail is coloured bright orange by the rediae which are closely packed throughout. The most common size is about 900 by \(200 \mu\), but
there are many much larger, some measuring as much as 2.7 mm , by \(184 \mu\). In the very small rediae no orange colouring is present. In some specimens the collar is prominent as a broad band at whose junction with the body the birth pore may be seen. The gut is short, in most cases extending little further than the posterior border of the collar; its walls are composed of large flat cells. Foot processes are present, and may be quite prominent. Flame cells were not seen,

\section*{Cercarta}

The cercariae emerge from the host before noon, and have a free life of less than 24 hours. The size of the body in formalinised specimens ( 284 to \(350 \mu\) long by 92 to \(109 \mu\) wide) agrees with the measurements given by Beaver ( 323 by \(95 \mu\) ), but the length of the tail is appreciably less in our specimens ( 284 to \(384 \mu\) long by \(38 \mu\) at the widest point) than in Beaver's ( \(450 \mu\) long). The actual sizes of the suckers in our specimans (oral \(37 \mu\) across by \(44 \mu\) long, acetabulum \(48 \mu\) in diameter) are less than the sizes given by Beaver (oral 41 by \(46 \mu\), acetabulum \(58 \mu\) ), but the ratio of breadth of suckers (approximately \(3: 4\) ) corresponds fairly closely. The acetabulum is situated well behind the middle of the body.


Fig. 1, redia; 2, 3. cercaria; 4, head end of cercaria; 5, fin-fold of tail, seen in specimen immobilized with neutral red; 6, cyst; 7, metacercaria. Fig. 2 and 7 to sante scale; fig. 4 and 6; 3 and 5 sketches. eb, excretory bladder; f. fin-fold; g , gut; pg, ? penetration glands; ug, unicellular glands. In fig. 4 and 6 shape and size of spines not necessarily exactly accurate, duc to difficulty of determinationt; in fig. 4 the arrangement is accurate.

The collar spination agrees with Beaver's description, namely, a group of five corner spines followed by six lateral spines in a single row, and fiftecn dorsal spines arranged in two alternating rows. Cuticular spination is not obvious. Beaver's method of examining fixed specimens cleared in glycerine to which a small amount of methylene blue has been added fails to show any spination, though Beaver describes it as being then distinctly cvident. Staining with picric acid shows a roughening over both dorsal and ventral surfaces, giving the appearance of very fine sand rather than that of spination.

The cystogenous cells, present throughout the body, are fincly granular. Opening on the anterior end of the body are eight narrow ducts, which are clearly visible as far back as the posterior border of the oral sucker. It is thought that the gland cells associated with these are arranged in two rows of four each, in the region of the prepharynx. These cells are small and inconspicuous and were seen only in a few favourable specimens ; their nuclei were not detected. Staining with some intravitam stains, of which neutral red is the best, shows up a number of apparently unicellular bodies in the anterior half of the body. These rather coarsely granular "cells" extend from the anterior end of the body to the anterior border of the acetabulum in a single chain on either side of the alimentary canal, and in addition there are a few scattered cells (fig, 3). They appear to open on the ventral surface of the body, and, though their function is unknown, it is suggested that they are gland cells of some kind. Beaver has noted twelve ducts associated with the oral sucker, which, he says, are outlets of a group of gland cells situated laterally to the oesophagus. Further, he says that the cells and ducts are arranged in two groups, an anterior one opening on the dorsal lip of the oral sucker, and a more posterior second group whose ducts are more coiled and much smaller. We have been unable to find any gland cells laterally to the oesophagus, We think it unlikely that the structures we have described as unicellular gland cells are the same structures as those referred to by Beaver as the coiled ducts of his posterior group of gland cells. Beaver quotes Brown (1926) and Wesenburg-Lund (1934) as having noted ducts and gland celis for Cercaria echinata similar to those he described, but both these authors refer only vaguely to the cells, stating that their structure is obscured by the overlying cystogenous gland cells, and neither of them gives figures of the cells. Moreover, Beaver states that C. echinata, "which is generally accepted as the larya of Echinostonum revolutum," cannot be distinguished from the cercaria of Echinoparyphium aconiotum Dietz as described by Riech (1927) and Dubois (1928), and that it is very different from the cercaria of Echinostoma reciolutum.

For studying the excretory system, intravitam, staining with basic fuchsin in normal saline gave best results for flame cells and ciliary patches, while for the tubes orange \(G\) following neutral red was best. We consider that the total number of flame cells is almost certainly 36 , the arrangement being; six single flame cells connected with the anterior collecting tubule, and four groups, each of three flame cells, the first group situated to the side of the anterior border of the acetabulum, and the foutth at the posterior end of the body. The junction of anterior and posterior collecting tubules is slightly in advance of the bladder, and at the junction opens the common duct from a group of flame cells; but it is difficult to state whether this group belongs to the anterior or the posterior collecting tubule, and the flame cell formula can be expressed as \(2[(6+3)+(3+3+3)]\) or \(2[(6+3+3)+(3+3)]\). Although 36 is the number of flame cells suggested by Beaver, the arrangement he gives is different from that we have described. He found no flame cells in the "opaque" region between the two suckers, but indicated an extra group of thrce flame cells in the region posterior to the acetahulum. We could not see any trace of excretory duct in the tail, and observed ciliary patches in the main arms of the bladder only as far as the anterior border of the acetabulum, but we agree with Beaver in finding 40 to 80 excretory granules in the enlarged portion of the excretory trunks. Near the acetabulum there are one to two granules across the diamcter of the tube, but anteriorly, as the tube narrows, the granules become smaller, and there are two to three across the diameter.

In stained preparations the genital rudiment was clearly defined. A darklystaining mass of cells posterior to the acctabulum was connected by a finc string of cells with another mass of cells beneath, and extending to the anterior border of the acetabulum.

In the tail, the only muscles visible are radial; these are regularly spaced throughout the length of the tail, but end a short distance below the tip. They arise somewhere in the central strand, and insert just below the cuticle, with myoblasts more or less evenly distributed. The delicate fin-fold appears, in specimens compressed with a coverslip, to be divided into several parts, lying alternately to right and left of the tail. But in specimens which have been more or less immobilized by strong neutral red, the fin-fold is seen to be attached in the midline of the dorsal surface, and its free border convoluted. It is colourless and apparently structureless, except for a very fine granulation.

Beaver examined the type material of Cercaria trizolvis Cort 1914, and reported it to be identical in all features with his awn specimens (i.e., C. Echinostomi-rezoluti). Miller (1936) stated that the many large cystogenous glands of \(C\), trizolvis were filled with elongated refractile bodies arranged in bundle-like formation. As stated previously, the cystogenous glands in our species have a fine, granular structure. It is our experience that the structure of the cystogenous glands is a constant character in any one species. Beaver did not mention this character for C. Echunostomi-revoluti, but it is possible that C. trizolvis (or, at least, the material described by Miller as such) is not a synonym of C. Echinostomi-revohti. However, Miller also noted a row of six swollen openings along the anterior lip of the oral sucker, each of which extended posteriorly as a small fibre-like structure. Each fibre was swollen near the dorsai median side of the oral sucker. He thought that possibly each of these fibres was an undeveloped duct which connected with the penetration glands of the cerearia. Similarly. Beaver stated that in about half of the toto mounts of the adult worms "these larval structures" (,\(i_{0}\), the ducts of the penetration glands) were still noticeable as six minute papilla-like structures along the anterior border of the oral sucker.

\section*{Cyst}

We found, as Beaver did, that the cercaria encysts in molluses and tadpoles. Of the former, those subjected to experimental infection and giving positive results were the hosts, Amerianna pyramidata and \(A\). pectorosa (in which the cysts occurred in the liver), Planorbis isingi and Limnaea lessoni (in the mantle chamber), and Corbiculina angasi. In tadpoles, Lymnodynastes sp, it is found in the kidney, though two cysts were also free in the intestinc. No encystation occurred in the fish Phalloceros caudomaculatus, Gambusia affinis, Oryzias latipes or a young specimen of the catfish, Tandanus tandanus, though Beaver recorded the cyst from the American catish, Aneiurus melas.

The cyst is spherical or sub-spherical, yarying in diameter from 117 to \(125 \mu\) in the former case, and in the latter from 117 by \(100 \mu\) to 121 by \(109 \mu\), and has the typical echinostome appearance. Within the outer cyst wall formed from the host tissues, it is enclosed in a thick glassy wall which is resistant to pressure. Beaver did not mention the size of the cyst, but in accounts given by other workers it seems to be somewhat larger than in our specimens. "Tubangui (1932), who found then abundant in the connective tissues and teproductive organs of snails, gave the diameter as 150 to \(160 \mu\). Lutz (1924) found them in the neighbourhood of the heart in Physa ratalis, and gave \(170 \mu\) for the outside measurement and \(150 \mu\) for the inside. Rankin (1939), who found them "in various species of pulmonate suails," does not give the measurements, but from his figure the cyst is \(180 \mu\) in dianteter.

Fielder (1896) described briefly a cyst found by himself in Victoria in Isidora ( = Amerianna) texturata and Limnaca lessoni. He stated that it had 37 spines, and the scale below his fig. 2 indicates a cyst about \(330 \mu\) in diamter, which could not be that of Echinostoma revolutun, though Johnston and Cleland (1937) had suggested that it might be so. The cyst from Isidora texturata, I. aliciac and Limnaca lessoni, shown in Fielder's fig. 1, is about the same size as
that of Echinastoma revolutum, but the number of spines present was not mentioned.

\section*{Metacercaria}

We were rarely able to express the metacercaria undamaged fron the cyst but, strangely enough, metacercariae which had encysted in Planorbis isingi very often emerged spontaneously from the cysts when the snail was dissected, It is probable that they were unable to form so thick a cyst wall in this host as in others.

The metacercaria does not exhibit any great structural differences from the cercaria. The genital rudiments are perhaps a little larger, but show no further differentiation. The acetabulum is still situated behind the midlength of the body. The spination extends over the whole body surface, but is more pronounced in the region between the acetabuluni and the anterior end of the body. The excretory system is similar to that of the cercaria, except that the main arms of the bladder are greatly expanded (fig. 7). Many ciliary patches throtghout the main tubes can be seen very clearly.

\section*{Anult}

On five different occasions, from 18 July to 4 August, two pigeons (Colmba livia) were fed with Simnata Lessoni which had been subjected to infection with cercariae of \(C\). Echinostomi-roroluti for periods of thrce to nine days. The number of cysts in each snail would not have been great, as at this time we had only one snail which was giving off ccrcariae.

Pigeon "A" was killed on 13 August, and from the rectum were recovered four adult specimens (in which ripe eggs were present) of E. recolutum. These measured 11-12 mm. long by 1 mm . wide, with the ovary at midlength of the worm, post-testicular region one-third of the body length, and pre-acetabular region approximately onc-sixth body length, The eggs measured from 100 to \(108 \mu\) by \(67 \mu\) (Beaver's measurements from all hosts, 91 to \(145 \mu\) by 66 to \(83 \mu\) ).

Pigeon "B" was killed on 14 Angust, and from it four younger specimens, withont cgss, were fonnd. Measurments of the youngest: 5 mm . long by \(\cdot 75 \mathrm{~mm}\), broad, post-testicular zone nearly one-third body length, ovary just in front of midlength, preacetabular fegion nearly onc-fourth bofy length, and vitellaria not developed. The others were about 7 mm . long and possessed numerots small yolk follicles.

The adult stage of E. rcoolutun was recorded from North Quensland from Anas superciliosa by \(\mathrm{S} . \mathrm{J}\). Johnston in 1913: from Anseranas semipahnta. Nettontes puthethes and Chenopis atrata by Nicoll in 1914; and from the domestic duck by Roberts in 1939. We now record it from the following anseriforn birds from Tailen Bend, South Australia: Biauma lobata, Spatula whuchotis, Anas superitiost and Ghenopis atrala; as well as from Biainral lobata from Sandgate, Queensland, and Anas superciliosit foun Xew South Walew, To these hosts should be added Casarcab tadornoides from Cooma, New South Wales, the record having been made by Johnston and Cletand (1937) on the basis of Bradley's accont and figures ( 1927 ). Bradley belicyed the echinostonites from the mounthin duck to be the adult stage of his Comaria catallar.

Beaver (1937) considered that the description oi E. aculicaudu Xicol1 1914 front Carphibis spmicollis frum North Qucensland, did not pernit the spectes 10 be distinguished from \(A\), raolitum, Xicoll's form, as indicated by his figure, is much more slender, white the utcrus, ovary and testes occupy different positions in relation to the Iengti of the worm from those of E. rewhmm. The ovary is at the end of the lirst third of the hody, the testes are almost entirely in the antcrior half, and the distance betwecn the ovary and the posterion enge of the acetabulum (i.as the math fgg contaming region) is less than one-sixit of the tutal length of the worm. There is also at sharply pointed tip to the tail.

As in previous papers dealing with our studies of the life-cycles of Australian trematodes, we desire to acknowledge our indebtedness to Messrs. G. and F. Jaensch and L. Ellis of Tailem Bend; as well as to the Commonwealth Research Grant to the University of Adelaide, for assistance.

\section*{Scmmary}

1 Corcaria Echinostomi-rezoluti is recorded for the first time from Australia, its known hosts being the pond snails. Amerianna pyramidata and A. pectorosa.

2 Its possible synonymy with C. catellae Bradley is discussed.
3 The cercaria is described, and the account contrasted with Beaver's description (1937).

4 The cyst stage is found in various molluses and tadpoles. Its size appears to be less than that recorded by workers elsewhere.

5 The adult stage was obtained by feeding cysts to pigeons.
6 Its occurrence in various Australian anseriform birds is recorded.

\section*{References}

Beaver, P. C. 1937 Illinois Biol. Monogr., 15, 1-96
Bradley, B. 1926 Med. Jour. Austr., 2, 573-578
Bradley, B. 1927 Med. Jour. Austr., 1, 673-676
Brown, F. 1926 Parasitol., 18, 21-34
Dubors, G. 1928 Bull. Soc. Sc. nat. Neuchâtel, 53, 1-160
Fielider, M. 1896 Vict. Naturalist, 13, 24-28
Johnston, T. H., and Cleland, E. R. 1937 Trans. Roy. Soc. S. Aust., 61, 191-201
Lutz, A. 1924 Mem. Inst. Oswaldo Cruz., 17, 75-93
Miller, E. L. 1936 Illinois Biol. Monog., 14, (2), 1-125
Rankin, J. S. 1939 Jour., Parasit., 25, 309-328
Riech, F. 1927 C. Bakt. Parasit. I. Orig., 103, 279-290
Roberts, F. H. S. 1939 Queens. Dept. Agric. Stock. Advis. Leaflet, 6
Tubangui M. 1932 Philippine Jour. Sci., 47, 497-513
Wesenberg-Lund, C. 1934 Mem, Acad. Roy. Sci., I.ett., Danemark. Sect. Sci.. Ser. 9, 5, (3), 223

\title{
NEW SPECIES OF GECKOBIA (ACARINA, PTERYGOSOMIDAE) FROM AUSTRALIA AND NEW ZEALAND
}

\author{
By H. WOMERSLEY, F.R.E.S., A.L.S., South Australian Museum
}

\begin{abstract}
Summary

The family Pterygosomidae contains a number of genera of mites which are confined to lizards, particularly of the families Geckonidae, Agamidae, Zonuridae and Gerrkosauridae. The general taxonomy and classification of the family has been admirably and fully dealt with by Hirst (A.M.N.H. (8), 19, 136-143, 1917; J. Linn. Soc., (Zool.), 36, 173-200, 1924) and Lawrence (Parasitology, 27, (I), 1-45, 1935; ibid, 28, (I) , 1-39, 1936).
\end{abstract}

\title{
NEW SPECIES OF GECKOBIA (ACARINA, PTERYGOSOMIDAE) FROM AUSTRALIA AND NEW ZEALAND
}

\author{
By H. Womersley; F.R.E.S., A.L.S., South Australian Museum
}

\author{
[Rcad 9 October 1941]
}

The family Pterygosomidae contains a number of genera of mites which are confined to lizards, particularly of the families Geckonidae, Agamidae, Zonuridae and Gerrkosauridae. The general taxonomy and classification of the family has been admirably and fully dealt with by Hirst (A.M.N.H. (8), 19, 136-143, 1917 ; J. Limn. Soc., (Zool.), 36, 173-200, 1924) and Lawrence (Parasitology, 27, (1), 1-45, 1935; ibid, 28, (1), 1-39, 1936).

The genus Geckobia is confined to the Geckonidae and as yet is the only one known to occur in Australia or New Zealand. Previously only one specics ( G. clelandi Ilirst. loc, cit., 1917, 138, 1924, 175) has been recorded from Australia and none \({ }^{\text {(1) }}\) from New Zealand. G. clelandi was found on Gymnodactylus platurus from Narabeen and Sydney, New South Wales, by Dr, J. B. Cleland.

In some parts of the world, notably South Africa. New Guinea and India. this group of acarina is well represented, much more so than in Australia or New Zealand; hut doubtless in the latter countries this is due to lack of collecting. A second species is now described from Australia and two from New Zealand.

The I'terygosomidae occur upon various locations of their hosts, and particular locations appear to be restricted to particular species of mite. They may be found in the folds of skin around the eyes, in the tympanum, between the toes and in the armpits, and also under the scales.

Of the early stages little is known, but Lawrence has described the larvae and nymphs of several South African species. In the present paper the nymph and a subsequent pupal or resting stage in the new Australian species are described and figured.

The genera of the Pterygosomidae may be separated thus:
1 Dorsal scutum present, sometimes divided into two lateral portions. Dorsal scutum entirely wanting.
Dorsum with few sctae, these very long. Body longer than wide. Gen. Pimeliaphilus Trgdh., 1905
Dorsum with numerous setac, these shorter. Body usually wider than long. Gcı. Geckobia Megnin, 1878
3 Apex of hypostome much enlarged. Dorsum with few setac.
Hypostome subparallel. Dorsum with numerous setae.
4 Body longer than wide. Size larger. Skin leathery. Gen. Ixodiderma Lawrence, 1935 Body much wider than long. Size smaller. Skin not leathery.

Gent. Scaphothrix: Lawrence, 1935
3 Body very much wider than long.
6 Dorsum with a dense anterior patch of setae on each side of mouth parts. Eyes absent.
Gen. Pierygosoma Peters, 1849
Dorsum without such patches of setae. Eyes present.
Gen. Zonurobia Lawrence, 1935

\footnotetext{
( \({ }^{(1)}\) In 1919 (N.Z. Jour. Sci. and Tech., 2, 163) A. B. Dove refers to the occurrence of "small red ticks" on species of Lygosong. The microphotographs shown, however, prove that these are not "ticks" but a species of Geckobidae.
}

7 Setae on dorsum few.
Gen. Hirsticlla Berlese, 1920
Setae on dorsum numerous and somewhat enlarged distally.
Gen. Geckobiello Banks 1905


Fig. 1
Geckobia gymnodactyli n. sp.: A, dorsal view; B, posterior ventral setae; \(C\), right coxae; D, pupa; \(E\), nymph from above; \(F\), nymplial coxa.

Genus Geckobla Megnin
Megnin, P. 1878 Bull. Soc. ent. Fr., (5), 8.
Geckobia gymnodactyli 11. sp
(Fig. 1, A-F)
Description, Femalc-Colour in life red. Body rather depressed, wider than long, \(425 \mu\) by \(310 \mu\), Gnathosoma basally hidden beneath body, \(50 \mu\) long, Scitum wider than long, as figured, \(175 \mu\) by \(86 \mu\), posterior margin medially slightly concave, sctac 10 in number, rather short, stout and ciliated, \(30 \mu\) long, arranged 6 along anterior and 4 along posterior margin; in addition there is a pair of similar setae just off the posterior concavity. Eyes, one on each side at the extreme lateral angles of the scutum. Palpi and mandibles normal for the genus, as figured for \(G\). haplodactyli; palpal femur with a thick, ciliated seta. Dorsal setae of two forms as figured; marginal and on postcrior fourth simple, thick and rather blunt tipped, to \(55 \mu\); remainder similar to but rather smaller than scutal setae. Ventrally without scales, the first four rows of close-set setae similar to anterior dorsal setae; those on remainder of venter rather close-set and as figured, to \(55 \mu\) in length.

Leegs without any special protuberances, fairly and uniformly thick, I \(135 \mu\), II \(162 \mu\), ILI \(200 \mu\), IV \(216 \mu\); second and third segments of I and second of II, III, and IV with a ciliated thick seta; coxa in two conjoined pairs as figured, I and II with two long fine setae, and two thick ciliated setac; III and IV with 5 stout ciliated setae; claws typical oi the genus and as ligured for \(G\). haplodactyli.

\section*{Pupa or Resting Stage:}

This stage was found within the cuticle of the ? protonymph, and the slightest pressure caused the cuticle to split dorsally and the pupa to be extruded. The pupa was as figured, \(300 \mu\) wide by \(260 \mu\) jong, with the processes, in which the future legs would develop, plainly showing. No development of the next stage, however, was evident in any specimen.

\section*{? Protonymph or Prepupal Stage:}

Similar in shape and chaetotaxy to the adult. Width \(310 \mu\), length \(270 \mu\). Dorsal setae similar to, but fewer than in adult. Coxae IIL and IV with only 4 thick ciliated setae as described by lawrence for the nymph of \(G\). phyllodactyli. Scutum \(140 \mu\) wide, \(75 \mu\) long, its setae \(27 \mu\). Posterior dorsal setae \(40 \mu\). Coxal setae \(16 \mu\)
locality-A number of adult females and nymphs from between the toes of a gecko, probably Gymnodactylus morio, from IIumbug Scrub, near Adclaide, South Australia, 1 October 1938 (J. S. W.).

Remarks-Differs from the only other known Australian species, G. clolandi Hirst, in shape, chaetotaxy, and the longer fourth pair of legs. Comes nearest to G. malayana Hirst from the Malay Peninsula, but differs in the entire scutum and the arrangement of setae on the scutum.

Geckobia haplodactyli 11. sp
(Fig. 2, A-H)
Description, Femalc-Colour in life red. Body longer than wide, \(1100 \mu\) by \(900 \mu\), not depressed. Gnathosoma well in front of body, \(255 \mu\) long. Mandibles and palpi as figured; palpal setac simple. Dorsal scutum short and wide, as figured, \(85 \mu\) by \(390 \mu\) with numerous thick and blunt apically serrated setae. Eyes at extreme lateral corners of scutum. Dorsal setae numerous but not so mumerous
as in the following species, to \(54 \mu\) long, thick and slightly tapering to blunt point, without serrations. Dorsum medially just behind scutum and posteriorly devoid of setae.


Fig. 2
Geckobia haplodactyli n. sp.: A, dorsal view: B, palp; C, tip nf mandible; \(D\), scutal seta; \(E\), dorsal seta; \(F\), right coxae; \(G\), tip of tarsus and claws from side; H , tip of tarsus from above, claws omitted.


Fig. 3
Geckobia naultina 11. sp.: A, dorsal view; B, dorsal scutum; \(C\), scutal scta; D , right coxae.

Legs fairly slender and uniform without any special protuberances, I \(380 \mu\), II \(370 \mu\). Il I \(420 \mu\). IV \(480 \mu\). no ciliated setae on basal segments; coxac as figured, I and Ii with two fine and two thick simple setac; III and IV with four thick simple blunt setae. Ventrally without scales and chaetotaxy similar to dorsum.

Locality-From the skin folds of the eyes of Haplodactylus duraucellii from New Zealand. I am greatly indebted to Mr. N. G. Stephenson, of Takapuna, Auckland, New Zealand, for the loan of the gecko from which these specimens were obtained.

\section*{Geckobia naultina n. sp.}
(Fig. 3, A-D)
Description, Female-Colour in lifc ? red. Body about as long as wide, \(760 \mu\) by \(760 \mu\), not depressed. Dorsal scutum small, as figured, \(256 \mu\) wide by \(108 \mu \mathrm{long}\), with many long, thick and blunt setae. Eyes ?. Gnathosoma entirely projecting in front of body, \(220 \mu\) long. Palpi and mandibles normal, no ciliated seta on palpal femur. Dorsum with very mumerous uniform setae which are rather thick and indistinctly serrated in apical half, to \(70 \mu\) in length. Legs fairly slender, I \(270 \mu\), II \(310 \mu\), III \(335 \mu\), IV \(380 \mu\), without ciliated stout setae; third segments of I, II, and III with a long setae. Venter without scales, with chaetotaxy similar to dorsum; coxae as figured, I and II with two fine and two stout incrassate serrated setae, \(30 \mu \mathrm{long}\), III and IV with four such.

Locality-Several specimens from a gecko, Naultinus sp, from Auckland, sent by Mr. N. G. Stephenson.

\title{
SOME OBSERVATIONS ON THE EMBRYONIC DEVELOPMENT OF AUSTROICETES CRUCIATA SAUSS. (ACRIDIDAE) IN THE FIELD
}

\author{
By H. VEVERS STEELE \({ }^{(1)}\)
}

\begin{abstract}
Summary

In South Australia the grasshopper Austroicetes cruciata Sauss. has one generation a year. The eggs are laid in November and hatch the following September. In the summer development is inhibited by an embryonic diapause The diapause does not disappear (even slowly) when the eggs are incubated constantly at a temperature above the developmental zero. In this the eggs of A. cruciata resemble those of Circotettix verruculatus Kirby and differs from those of M. mexicanus differentialis Thomas (Carothers 1923) and M. mexicanus Sauss. (Parker 1930). This paper is a description of the development of the external form of the embryo of Austroicetes cruciata in the field. The internal anatomy was not studied.
\end{abstract}

\title{
SOME OBSERVATIONS ON THE EMBRYONIC DEVELOPMENT OF AUSTROICETES CRUCIATA SAUSS, (ACRIDIDAE) IN THE FIELD
}

\author{
By H. Veyers Steele \({ }^{(1)}\)
}
[Read 9 October 1941]

\section*{Intromuction}

In South Australia the grasshopper Austroicetes cruciata Sauss has one gencration a ycar. The eggs are laid in November and hatch the following September. In the summer developnent is inhibited by an embryonic diapause. The diapruse does not disappear (cven slowly) when the eggs are incubated constantly at a temperature above the developmental zero. In this the eggs of A. cruciata resemble those of Circotettin rerruculahs Kirby and differs from those of Mclanoplus differcntialis Thomas (Carothers 1923) and M. moxicants Sauss. (Parker 1930). This paper is a description of the devclopment of the external form of the embryo of Attritoicetes cruciuta in the field. The internal anatomy was not studied.

\section*{Material and Methods}

The eggs were collected at Orroron and Wilmington at intervals during 1939 and 1940, the latter by Mr. 1. C. Birch. Usually they were fixed within two or three days of being collected; those collected on 3 February and 3 March 1939 were kept at \(25^{\circ} \mathrm{C}\). for 10 days before fixing. Staining was chiefly with boraxcarmine; for temporary mounts Wheeler's quick method for embryos with Delafield's haematoxylin proved most useful (Wheeler 1893).

\section*{Blastokinesis}

Blastokinensis may be conveniently described under two headings; anatrepsis and katatrepsis. During anatrepsis the embryo moves tail first towards the anterior pole of the egg; during katatrepsis it moves head first around the posterior pole and then continues towards the antcrior pole.

Throughont its development the embryo remains on the surface of the yolk. At the stage shown in fig. I and A the embryo may be beneath or either slightly to the dorsal or slightly to the ventral side of the micropyle cap. \({ }^{(2)}\) From this position it moves over the surface of the yolk tail first towards the anterior pole of the egg (fig. A -K ). The tail may become slightly bent or folded during the earlier stages-probably due to the resistance, offered by the yolk (fig. Fa). The dorsal surface of the embryo is always next to the yolle. In the majority of cases the embryo is on the ventral side of the egg (fig. A-Fa, G and K ) ; in about \(30 \%\) it is on the dorsal surface (fig. Fb ) ; in a few it may occupy an intermediate position, lying on the lateral, dorso-lateral, or ventro-lateral surface of the egg (fig. IIa and IDb). The embryo continues to move tail first towards the anterior pole of the egg, until the middle of the embryo lies just posterior to the middle of the egg and the anterior end of the embryo is about one-eighth of the length of the egg away from the micropyle cap. This stage marks the end of anatrepsis (fig. Ha, Hb and K).

During katatrepsis the embryo moves in the opposite direction. The anterior region is strongly flexed backwards, the embryo climbs head first around the posterior boundary of the yolk and muves lowards the anterior pole of the egg.

\footnotetext{
\({ }^{(1)}\) Mrs. H. G. Andrewartha.
(2) In Mclanoplus the germ band develops directly beneath the chorion at the posterior end of the egg (Slifer, 1932). I was unable to observe the development of the germ band in Austroicetes. Fggs collected at Wilnington in November, three days after they were laid, had not yet developed a blastoderm.
}

When this movement begins there is usually a lot of clear ammiotic fluid at the micropyle end of the egg; the posterior boundary of the yolk may be separated from the micropyle cap by about one-fifth the length of the egg (fig. XI-XII).* As the head continues to move forward the abdomen straightens out. The embryo continues to increase in length and to move forward until the head reaches the anterior pole of the egg. Those embryos which have been on the ventral side of the eggs execute a longitudinal "corkscrew" roll which brings the ventral side of the embryo against the ventral side of the egg (fig. XIII-XIV). All the embryos finish up in this position, irrespective of the position they occupied during anatrepsis.

\section*{Deyelohment of Body Form}

The youngest embryo examined was froni eggs collected on 3 February 1939, about \(0 \cdot 1 \mathrm{~mm}\). in diameter. It was not possible to distinguish the posterior from the anterior end (fig. I).

Iater, constrictions develop which divide the embryo into protocephalic and protocormic regions and divide the protocephalic region into procephalic lobes (fig. II). The protocormic region grows long and ribbon-like and the procephalic lobes expand laterally (fig. III-V). Segmentation sets in at the anterior end and gradually extends to the posterior end. In the protocormic region there are thrce gnathal, three thoracic and eleven aboloninal segnents (fig. IV-VII), The embryo increases two- of three-fold in width during the latter part of anatrepsis, but is only about \(10 \%\) longer at the end of anatrejsis than it was when primitive segmentation was taking place (compare fig. \(V\) and \(X\) ). At the end of anatrepsis the embryo is still comparatively flat but the lateral walls have begun to encircle the yoll: The embryo covers about one-quarter of the transverse circumference of the egg.

During katatrepsis the embryo again increases in length and the side walls grow up to cngulf the yolk after the embryo has completed its journey around the posterior boundary of the yolk. The body walls gradually mect and fuse along the mid-dorsal line, beginning at the posterior end of the embryo and finishing at the anterior end of the procephalic lobes (fig. XI-XIII). After yolk engulfment is complete subsequent development consists largely of an increase in the differentiation and complexity of the body parts (fig. XIV-XVI).

\section*{Tire Serosa}

The serosa encloses the embryo and yolk from the time it becones separated from the ammion to the time the embryo begins to revolve aronnt the posterior end of the yolk. Inmediately beneath the micropyle cap a group oi serosal cells becomes specialised to form the "hydropyle cells" of Slifer (1938) or the "grumulus" of Miller (1940). Towards the end of antrepsis the serosa is pulled away from the cuticle at the posterior end except where it is attached to the hydropyle cells. As the cmbryo begins to revolve the head of the embryo breaks through the serosa; the head lobes curve around the strand of serosa which remains attached to the grommlus until eventually it breaks. During katatrepsis the embryo moves throngh the tear in the serosa (fig. XI). Ultimately the embryonic membranes are engulfed with the yolk as the body walls of the embryo meet in the mid-dorsal line, The last patt of the scrosa disappears between the head lobes.

\section*{The Eyfs}

A specialised ocular region in the procephalic lobes can be recognised first in the stage shown in fig, IV; it becomes well marked in that shown in fig. VIII. Eye pigment was first observed in the stage shown in fig. IX.

\footnotetext{
* Numbers in Roman are printed in Arabic in text figure.
}

\section*{Thf Appendnges}

\section*{The Iabrum}

The labrum develops as a small suelling between the procephalic lobss early in anatrepsis (fig. III). At first it has a notch in its anterior margin (fig. IV), but subsequently appears as a single median lobe (fig. V). Later a notch develops in the posterior margin (fig. VII). The labrum migrates in a ventro-posterior direction until it covers the mouth (fig, VII). By the end of anatrepsis it is begiming to be differentiated from the clypeus (fig. X ), and this differentiation is completed during katatrepsis and later stages (fig. XIV-XVI).

\section*{The Antonnae}

The rudiments of the antennae anpear at an carly stage as lobular swellings posterior to the opening of the stomadaeum (fig, IV). Their subsequent development can be traced in the figures. By the end of anatrepsis they have migrated to a position anterior to the mouth and have begun to segment.

\section*{The 'Mouthparts}

The mandibles, maxillac and labium (second maxillae), arise as paired swellings from the first three segments of the protocornic region. The rudinents of these appendages appear before segmentation has been completed in the rest of the tail. These swellings elongate (fig. VI to VII) ; they migrate to their final positions around the month, and gradnally assume the form which they have in the nymph (fig. VIII-XVI). The mandibles become toothed on the posterior margin towards the end of anatrepsis (fig, IX). The maxillae are bilobed (fig, VIII) ; and a five-segmented maxillary palp can be recognised towards the cnd of anatrepsis. The appendages of the thitd protocormic segnent migrate forwards and inwards and fuse to form the labium (fig. IX). This bears a threcsegmented labial palp. The hypopharynx develops as a small bulge beneath the labiunn. It can be detected between the bifurcation of the labrum when the embryo is in the stage shown in fig. IX.

\section*{The Legs}

The legs develop as lateral swellings on the thoracic segments early in anatrepsis (fig. IV). Further development consists largely of an increase in size, migration to the ventro-lateral surface and segmentation. Their development can be followed in fig. V-XVI. Constrictions appear which indicate the boundarics of future segments (fig. VIII): the tiliae become forwardly flexed (fig. X). The length of the hind femora is a useful guide to the development of the embryo in the later stages. At the end of katatrepsis the femora extend to about the fourth abdominal segment. When the embryo is ready to hatch the femora reach to about the end of the abdomen.

\section*{The Abdoninal Appendages}

Ephemeral rudimentary appendages develop on all, the abdominal segnents. They arise similarly to the gnathal and thoracic appendages as lateral swellings on cach segment (fig. V-IX). All but the glandular pleuropodia, which are the appendages of the first abdominal segment and the cerci which are appendages of the eleventh abdominal segment, disappear before anatrepsis is complete (fig. X). The pleuropodia are left attached to the egg cuticle when the nymph hatches.

\section*{Development in the líield}

The rate of development in the field can be determined by reference to chart and text fig. The fig. I-XVI have all been drawn to the same scale, so that they give a picture of the increase in size as well as the increase in complexity of the embryo. The slowness of development during the summer is striking.

The embryo required 10 weeks to reach stage [II. Stage X was reached after 26 weeks. Diapause disappears in the field about mid-June when the embryo has reached stages XI-XIV. Eggs collected on 16 June 1939, hatched in five days at \(30^{\circ} \mathrm{C}\). In the field low temperatures after May retard development. Nevertheless, the embryo develops from stage X to stage XVI in about 15 weeks-about half the time required to reach stage X. The embryonic diapause in Aus, cruciata is strongly developed. Eggs incubated at \(25^{\circ} \mathrm{C}\). by Mr. I.. C. Birch when the embryo was at various stages between I and X developed a little further, but none hatched. Nevertheless, in the field a slow development continues during diapause. This may be associated with the relatively low temperatures at night.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Cimart of Developmental Stages in the Field} \\
\hline Date & Town & Stage & Position \\
\hline (3) 3-2-39 & Wilmington & I-III & \(A-B{ }^{(1)}\) \\
\hline 15-2-40 & Wilmington & II-IV & \(B \longrightarrow C\) \\
\hline (3) \(3--3-39\) & Wilmington & IT-V & B-E \\
\hline 11-3-40 & Wilmington & IIT-VI & E \\
\hline 11-3-40 & Orroroo & IV-VII & D-F \\
\hline 21-3-39 & Wilmington & VII & F \\
\hline 20-4-39 & Wilmington & VIII-IX & G \\
\hline 17-4-40 & Wilmington & VIII-IX & G \\
\hline 30-4-40 & Orroroo & 1X & Ha \& b \\
\hline 1-5-40 & Wilmington & IX & Ha \& 1) \\
\hline 16-5-40 & Orroroo & X & Ita \& 1) \\
\hline 16-5-40 & Wilmington & X & Ha \& 1 \\
\hline 28-5-40 & Orroroo & \(\mathrm{X}-\mathrm{XI}\) & I \& as in XI \\
\hline 28-5-40 & Wilmington & X-XII & I \& as in XII \& XIII \\
\hline 16-6-39 & Wilmington & XIV & \(\int 23\) ventral, 1 lateral \(\&\) \\
\hline 19-6-40) & Wilmington & XIV & \{ 4 ventro-lateral \\
\hline 19-6-40 & Orroroo & XIV & 3 dorsal, 1 lateral \& 8 ventral \\
\hline 18-7-40 & Wilmington & XV & \[
\left\{\begin{aligned}
& 23 \text { ventral, } 4 \text { latero-ventral } \& \\
& 1 \text { dorsal }
\end{aligned}\right.
\] \\
\hline 18-7-40 & Orroroo & XV & 13 ventral, 1 latero-ventral \\
\hline 2-9-39 & Wilmington & XVI & ventral \\
\hline
\end{tabular}

\section*{References}

Carothiers, E. E. 1923 Trans. Amer. Ent. Soc., 49, 7-24
Milifer, A. 1940 Ann. Ent. Soc. Amer., 2, 437-477
Parker, J. R. 1930 Univ. Montana Agr. Exp. St., Bull. 223
Slifer, E. H. 1932 Jour. Morph., 53, 1-21
Slifer, E. H. 1938 Jour. Micros. Sc., 80, (3)
Wheeler, W. M. 1893 Jour. Morph., 8, 141

\footnotetext{
(3) The eggs collected on 3 February 1939 and 3 March 1939 were kept at \(25^{\circ} \mathrm{C}\) for 10 days before they were fixed.
(4) About one-third of the cmbryos have the "tail" developing on the dorsal surface and about two-thirds on the ventral surface throughout. The two-thirds majority appear to roll over to the ventral surface after blastokinesis, but I was unable to test this on live eggs.
}


Stages in the development of Austroicetes cruciata Sauss.
A-K and 11-13* positions of the embryo in the egg at the various stages. As the embryo develops through the stages 1-11 it occupies the positions shown in A-L; ph, protocephalic region; pt, protocormic region; lr, labrum; lb , labium, st, stomadacal opening; an, antenna; mb, mandible; e, eye; il, internal lobe of 15 t maxilla; el, external lobe of 1st maxilla; mp, maxillary palp; 1p, labial palp; hp, hypopharynx; cp, clypeus; 1 st , 2 th , 3 th, thoracic legs; \(1 \mathrm{mx}, 2 \mathrm{mx}\), rudiment of 1 st and 2 nd maxillae; \(1 \mathrm{ab}, 2 \mathrm{ab}\), 1 st and 2 nd abdominal segments; pl, pleuropodium;
* Fig. Nos. in Arabic are printed in Roman in text.

\title{
ADDITIONS TO THE FLORA OF SOUTH AUSTRALIA NO. 40
}

\author{
By J. M. BLACK, A.L.S.
}

\section*{Summary}

The six following species of Stipa will be described in English in the revised Part I of the Flora of South Australia.

\title{
ADDITIONS TO THE FLORA OF SOUTH AUSTRALIA
}

No. 40

\author{
By J. M. Black, A.L.S.
}
[Read 9 October 1941]
Griminae

\section*{Stipa}

The six following species of Stipa will be described in English in the revised Part I of the Flora of South Australia.
S. dura nov. sp. Gramen glabrum ad 60 cm . altum; folia pleraque basilaria; vaginae arctae absque suprena amplectante; laminae subulatae rigidae junciformes \(10-20 \mathrm{~cm}\). longae ; ligula \(2-3 \mathrm{~mm}\), longa ciliolata; nodi pubcruli ; panicula \(15-25 \mathrm{~cm}\). longa, 1-2 mm. lata, angusta densa, ramis \(3-4 \mathrm{~cm}\). longis; spiculae pallidae angustae; prima gluma \(14-15 \mathrm{mmn}\). longa, acmminata 3 -nervis, secunda 12-13 1 mm . longa sub-5-nervis; gluma florifera apice integra 8 mm. longa (cum callo 2 mm . longo) albo-pubescens; arista gracilis leviter bigeniculata \(7-8 \mathrm{~cm}\). longa; columna \(2 \frac{1}{2} \mathrm{~cm}\). longa; palea glumam floriferann aequans.

Nullarbor Station (near Fowler's Bay), 1911.
Differs from \(S\). flazescens I abill, and \(S\). juncifolia Lughes in the longer glumes awn and colimin and in the lobeless flowering glume.
S. multispiculis nov. sp. Caulis, rigidus \(50-70 \mathrm{~cm}\). alus, versus basin geniculatus; nodi pubescentes; vaginac laxae, infimae pubescentes; laminae rigidac subulatae vel prope basin latiusculae minute scabrae, usque ad 40 cm . longae; ligula brevissima ciliolata; panicula laxissima \(20-30 \mathrm{~cm}\). longa, \(3-6 \mathrm{~cm}\). lata, ramis multiforis quaternis ad sexternis 6-12 cm. longis; spiculac angustac pallidae demum hiantes; prima glumat 10-12 nmm . longa 3 -nervis, secunda \(8-10 \mathrm{~mm}\). longa sub-5-nervis; gluma florifera 6-8 mm. longa (cum callo acuto 1-2 mm. longo) albo-pubescens; arista gracilis leviter vel rectangule bigeniculata; columna 18-25 min. longa; seta recta.

Morialta, Oct. 1925, J. B. Cleland; Port Noarlunga, Nov. 1926, J. B. Cleland; Ardrossan (Yorke Peninsula), Nov. 1932, E. C. Black.

Differs from \(S\). tonitighmis Hughes chiefly in the very loose, many-flowered panicle.
S. mundula nov. sp. Caulis gracilis \(20-30 \mathrm{~cm}\), altus inferne geniculatus; folia glabra pleraque basilaria; vaginae arctae suprema basin paniculae amplexans; laminae filiformes pleraçuc curvatae 6.8 cm . longae: ligula oblonga glabra truncata 2-3 mun, longa; modi pubescontes; panicula angusta sed laxula \(5-8 \mathrm{~cm}\). longa 1-2 cm. lata, ramis circa 3 cm . longis bi-trifloris; spiculae angustae parum hiantes; glumae acmminatae hyalinae. prima \(14-16 \mathrm{~mm}\). longa 3 -nervis, secunda 10-11 min. longa sub-5-nervis; gluma florifera 7 mmn . longa (cum callo acuto \(2 \frac{1}{2} \mathrm{~mm}\). longo) albo-pubescens; arista gracillima \(\sigma_{2}^{2}-7\) cm, longa fere recta; columma \(26-28\) mon. longa; palca glumam floriferam acquans.

Chatncy's Line (N. of I.ake Alexandrina), Oct. 1938, J. B. Ctcland.
A small neat grass, with a short narrow erect few-flowered panicle, and a rather conspicuous oblong glabrous ligule.
S. breviglumis nov sp. Gramen robustum glabrum rigictun nisgue ad 1 m. altum, ad nodos glabros saepe ramosum; vaginae, absque supremâ arctâ, laxae latae marcescentes ; ligula oblonga truncata glabra \(2-3 \mathrm{~mm}\). longa; laminae fili-
formes \(10-20 \mathrm{~cm}\). longae; panicula cylindrata densiuscula cito exserta \(10-18 \mathrm{~cm}\). longa, \(2-3 \mathrm{~cm}\). lata, ranis erecto-patentibus \(4-5 \mathrm{~cm}\). longis spiculas fere ad basin gerentibus; spiculae in medio turgidae; glumae exteriores subaequales \(5-6 \mathrm{~mm}\). longae 3 -nerves; gluma florifera 4 mm. longa (cum callo obtuso brevissimo) albo-pubescens, arista tenuissinna obtuse semel geniculata \(2_{2}^{1}-3\) cm. longa; columna circa 15 mm . longa; seta recta; palea glumam floriferam aequans,

Lyndoch, Oct. 1927, I. B. Cleland; Mount Brown, Nov. 1881 (in Tate Herb, ).

Distinguished by very short outer glumes, conspicuous glabrous ligules and stont branching stens. Its broad outer glumes place it in Miss Hughes's section, Turgidulac.
S. falcata Hughes, nov. var. minor. Variat glumis exterioribus \(6-7 \mathrm{~mm}\). longis mucronato-obtusiusculis, columnâ \(8-10 \mathrm{~mm}\). longâ.

Flinders Range.
S. plagiopogon nov. sp. Caulis robustus circa 1 in. altus; vaginae laminaeque inferiores molliter pubescentes; summae vaginae annulo pilorum cinctae; laminae longae subulatae canaliculatae; nodi pubescentes; ligula brevissima ciliolata; panicula exserta densa \(15-25 \mathrm{~cm}\). longa, 2-3 cm. lata, ramis \(4-5 \mathrm{~cm}\). longis; spiculae angustae pallidae non hiantes; glumae exteriores ad nervos scabrae, prima 20-25 mm. longa 3-nervis, secunda \(18-21 \mathrm{~mm}\). longa sub-5-nervis; gluma florifera \(8-9 \mathrm{~mm}\). longa (cum callo 3 mm . longo) albo-pubescens; palea aequilonga; arista gracilis \(8-10 \mathrm{~cm}\). longa, leviter bigcniculata; columna unilatere plumosa, \(2-3 \mathrm{~cm}\). longa, pilis secus setan rectanı per \(1-2 \mathrm{~cm}\), productis.

Victor Harbour; Inman Valley. 1926, J. B. Cleland; Mount Pleasant, 1933, E. C. Black; Wilpena Pound, 1930, J. B. Clcland.

S . indeprensa nov. sp. Caulis rigidus circa 1 m . altus; folia pleraque basilaria; vaginae arctae pubescentes; laminae rigidae subulatae vel canaliculatae scabrae \(12-25 \mathrm{~cm}\). longac; nodi pubescentes; ligula brevissima ciliolata; summae vaginae annulo brevi pilorum cinctac ; panicula exserta subdensa \(20-30 \mathrm{~cm}\), longa, \(1-2 \frac{1}{2} \mathrm{~cm}\). lata, ramis \(4-6 \mathrm{~cm}\). longis; spiculae angustae pallidae subhiantes; glumae exteriores ad nervos scabrae, prima \(14-15 \mathrm{~mm}\), longa 3 -nervis, secunda \(12-13 \mathrm{~mm}\). longa sub-5-nervis; gluma florifera \(7-8 \mathrm{~mm}\). longa (cum callo 2 mm . longo) albopubescens; arista gracilis 6 cm , longa bigeniculata; columna unilatere plumosa 16-18 mm. longa, pilis per fere dimidium sctac rectae productis.

Minnipa (Eyre Peninsula), 1915, J. M. Black.
Both these species are near S. hemipogon Benth. but differ in the larger size of the panicle and other parts of the plants, and in the scabrous outer glumes.

\section*{Polygonaceae}
*Rumer roseus L. I'ink Dock. An annual with broad pink wings to the fruiting valves.

Oratunga. near Blinman, Scpt. 1941, H. M. Cooper. "Spreading rapidly in that district during the last few years." It was collected on waste land near a subturb of Adelaide about 1915, probably as a garden escape.

\title{
ROYAL SOCIETY OF SOUTH AUSTRALIA (INCORPORATED).
}

Receipts and Payments for the Year ended September 30, 1941.

\section*{ROYAL SOCIETY OF SOUTH AUSTRALIA (INCORPORATED)}

Receipts and Payments for the Year ended 30 September 1941

\section*{RECEIPTS}

To Balance, 1 Oct 1040 "Subscriptions
" Ginvt. Grant for Printing " University of AdelaideContribution to Cost of Printing Paper ", Use of Room by other Societics . .... ,, Sale of Publication ... 0136 , Interest - Transferred from Endownent Fund

\section*{モ}

\section*{PAYMENTS}

By Transactions (Vol. 64, Pt. 2, and
\begin{tabular}{lcccccr} 
& Vol. 65, & Pt. 1) & - & \\
Printing & \(\ldots\). & \(\ldots\) & \(\ldots\) & 326 & 15 & 10 \\
Illustrating & \(\ldots\) & \(\ldots\) & \(\ldots\) & 92 & 3 & 6 \\
Publishing & \(\ldots\) & \(\ldots\) & \(\ldots\) & 15 & 15 & 3
\end{tabular}
\(43414 \quad 7\)
.. Librarian .... ...... 38 0 0
,, Library, Fittings, etc....
\(44 \quad 5 \quad 1\)
,, Sundries-
Conversazione .... .... 10 1 8
Lighting and Epidiascope .... .. 4145
Printing, Postages, and
Stationery .... .. \(27 \quad 4\) 6
Petties, Bank Fce, etc. 493
Insurances .... .. . . 610 0
521910
,, Balances, 30 Sept. 1941-
Savings Bank of S.A... . 26931
Bk. of Aust. \(f 1915 \quad 5\)
Less Out-
stand. Chqs. 400
\(\begin{array}{lllrrr} \\ \text { Cash to Bank } & \ldots & \ldots . & 15 & 15 & 5 \\ 2 & 2 & 0\end{array}\)

ENDOWMENT FUND as at 30 September 1941
(Capital-Stocks at Cost Price .... \(£ 5,7986 \mathrm{~s} .1 \mathrm{~d}\).)


Audited and found correct. We have verified the Govermment Stocks at the Registries of Inscribed Stock, Adelaide, and the respective Bank Balances.
O. GLASTONBURY, F.A.I.S., A.F.I.A.
F. M. ANGEL
\(\}\) Hon.
HERBERT M. HALE, Hon. Treasurer

Adelaide. 7 October 1941

\title{
AWARDS OF THE SIR JOSEPH VERCO MEDAL
}

\section*{LIST OF FELLOWS, MEMBERS, ETC. AS ON 30 SEPTEMBER 1941}

Those marked with an asterisk (*) have contributed papers published in the Society's Transactions. Those marked with a dagger ( \(\dagger\) ) are Life Members.
Any change in address or any other changes should be notified to the Secretary.
Note - The publications of the Society are not sent to those members whose subscriptions are in arrear.

\author{
AWARDS OF THE SIR JOSEPH VERCO MEDAL \\ 1929 Prof, Walter Howchin, F.G.S. \\ 1930 Joinn McC. Black, A.L.S. \\ 1931 Prom: Sir Docglas Mawson, O.B.E., D.Sc., B.E., F.R.S. \\ 1933 Prof. J. Burton Cifland, M.D. \\ 1935 Prof. T. Harvey Johnston, M.A., D.Sc. \\ 1938 Prof. James A. Prescott, D.Sc., A.I.C.
}

\section*{LIST OF FELLOWS, MEMBERS, ETC. \\ \section*{AS ON 30 SFPTEMBER 1941}}

Those marked with an asterisk (*) have contributed papers published in the Society's Transactions. Those marked with a dagger ( \(\dagger\) ) are Life Members.

Any change in address or any other changes should be notified to the Secretary.
Note -The publications of the Suciety are not sent to those members whose subscriptions are in arrear.
Date of Honorary Fellows.
1910. *Bragg, Sir W. H., O.M., K.B.E., M.A., D.C.L., LL.D., F.R.S., Director of the Royal Institution, Albemarle Street, Tondon (Fellow 1886).
1926. *Chapman. F., A.L.S., "Hellas," 50 Stawell Street, Kew E4, Victoria.
1894. *Winsoy, Prof. J. T., M.D., Ch.M1., F.R.S., Cambridge University, England.

Fel.ows.
1935. Adanr, D. B., B.Agr.Sc., Waite Institute (Private Mail Bag), Adelaide-Council, 1939 .
1925. Adey, XV. J., M.A., C.M.G., 32 High Street, Burnside, S.A.
1927. *Alderman, A. R., Ph.D., M.Sc., F.G.S., Liniversity, Adelaide-Council, 1937-,
1931. Andrew, Rev. J. R., 5 York Strect, Henley Beach.
1935. *Andrewartha, H. G., M.Agr.Sc., Waite Jnstitute (Pritate Mail Bag), Adelaide.
1935. *Antrewartha, Mrs. H. V., B.Agr.Sc., M.S., 29 Clarcmont Avenue, Netherly, S.A.
1929. Angel, F. Ms, 34 Fullarton Road, Parkside, S.A.
1930. *Angel, Miss T. M., M.Sc., Liniversity, Acklaide.
1936. Barrien, Miss B. S., M.Sc., University, Adelaide.
1932. Begg, P. R., D,D.Sc., L.D.S., 219 Norti Terrace, Adelaide.
1939. *Berait, R, M., S.A. Museum, Adelaide.
1928. Best, R. J., M.Sc., F.A.C.I., Waite Institute (Private Mail Bag), Adelaide.
1940. Birch, L. C., B.Agr.Sc., Waite Institute (Private Mail Bag), Adelaide.
1934. Black, E. C. M.B., B.S., Magill Road. Tranmere, Adelaide.
1907. *Brack, J. M., A.L.S., 82 Brougham Place, North Adelaide-Verco Medal, 1930 ; Council, 1927-1931; President, 1933-34; Vice-President, 1931-33.
1040. Ronヶthon, Sir J. Laytngiov, 263 Fast Terrace, Adelaide.
1923. Bermon, R. S., D.Sc.. University, Adelaide. S.A.
1922. *Campbrle, T. D., D.D.Sc., D.Sc., Dental Dept., Adclaide Hospial, Adclaide-Rep.-Governor, 1932 33; Council, 1928-32, 1935; Vice-President, 1932-34; President, 1934-35.
1907. *Cifapman, Sir R. W., Kt., C.M.G., M.A., B.C.E., F.R.A.S., 23 High Street, Burnside, S.A.-Council, 1914-22, 193941.
1929. Christir, W., M.B., B.S., Education Department, Adelaide-Treasurer, 1933-8.
1895. *Cleland, Prof. J, B., M.D., University, Adelaide- Verco Medal, 1933; Council, 1921-26, 1932-37; President, 1927-28; 1940-41; Vice-President, 1926 27, 1911-.
1929. Gicland, W. P., M.B., B.S., M.R.C.P., Dashwod Road, Bcaumont.
1930. *(Of,QuHous, T. T., M.Sc., Waite Institute (Private Mail Bag), Adclaide.

1ヶ07. *Cowe, IV. T. D.Sc., A.A.C.I., University Adelaide-Council, 1938-1941, VicePresident, 1941-.
1938. *Condon. H. T., S.A. Muscum, Adelaide.
1929. *Corton, B. C., S.A. Muscum, Arfelaide.
1924. ne (rf.splgiy, Sir C. T. C., I).S.O., M.D., F.R.C.P., 219 North Terrace, Adelaide.
1937. *Crocker, R. L., B.Sc., Waite Institute (Private Mail Rag), Adelaide.
1929. *Dacmson Prof, J., D.Sc., Waite Institute (Private Mail Bag). Adelaide-Council, 1932-35: Vice-President, 1935-37, 1938-39; President, 1937-38; Rep. Fauna and Flora Board, 194G-.
1927. *Davirs, Prof. lí. H., Mus.Doc., The University, Adelaide.

Date of
Election.
1930.

Dix, E, V., Hospitals Department, Adelaide, S.A.
1932. Dunstone, H. E., M.B., B.S., J. P., 124 Payneham Road, St, Peters, Adelaide.
1921. Dutton, G, II., B.Sc., 12 Halsbury" Avenue, Kingswood, Adelaide.
1931. Dwyer, J. M., M.B., B.S., 25 Port Road, Bowden. (A.I.F. abroad.)
1933. *Eardrey, Miss C. M., B.Sc., University, Adelaide.
1902. *Edquist, A. G., 19 Farrell Street, Glenelg, S.A.
1938. *Fvans, J. W., M.A., D.Sc., Government Entomologist, Hobart, Tasmania.
1917. *Fenner, C. A. E., D.Sc., 42 Alcxandra Av., Rosc Park, Adelaide-Rep. Governor, 1929-31; Council, 1925-28; President, 1930-31; Vice-President, 1928-30; Secretary, 1924-25; Treasurer, 1932-33; Editor, 1934-7.
1935.
*Fenner, F. Jo, M.B., B.S., 42 Alexandra Avenuc, Rose Park. (A.I.F. abroad.)
1427.
1923.
*Finlayson, H. H., 305 Ward Strect, North Adelaide-Council, 1937-40.
* Fry, H. K., D.S.O., M.D., B.S., B.Sc., F.R.A.C.P., Town Hall, Adelaide-Council, 1933-37; Vice-President, 1937-38, 1939-40; President, 1938-1939.
1932. *Gibson, E. S. H., B.Sc., 297 Cross Roads, Clarence Gardens, Adelaide.
1935. *Glastonbury, J. O. G., B.A., M.Sc., Dip.Ed., No. 1 Service Flying Sch., Pt. Cook, Vic
1919. †Glastonbury, O. A., Adelaide Cement Co., Grenfell Strcet, Adelaide.
1927. Godfrey, F. K., Robert Street, Payncham, S.A.
1935. †Goldsack, H., Coromandel Valley,
1939. Goode, J. R., B.Agr.Sc., Waite Institute (Private Mail Bag), Adelaide. (A.I:F. abroad.)
1925. †Gosse, J. H., Gilbert House, Gilbert Place, Adelaide.
1910. *Grant, Prof, Kerr, M.Sc., F.I.P., University, Adelaide.
1933. Gray, J. H., M.D., B.S., Orroroo, S.A.
1930. Gray, J. T., Orroroos S.A.
1933. Greaves, H., Director, Botanic Gardens, Adelaide.
1904. Griffitr, H. B., Dunrobin Road, Brighton, S.A.
1934. GUnter, Rev, H. A., 10 Broughton Strect, Glenside, S.A.

1922:
*Hale, H. M., Director, S.A. Museum, Adelaide-Council, 1931-34; VicePresident, 1934-36, 1937-38; President, 1936-37; Treasurer, 1938-.
1939. Harvey, Miss A., B.A., Dequetteville Terr, Kent Town, Adelaide.
1927. Holden, The Hon, E. W., B.Sc., Dequetteville Terrace, Kent Town, Adelaide.
1933. Hosking, H. C., B.A., 24 Northcote Terrace, Gilberton, Adelaide.
1930. *Hosking, J. S., B.Sc., Waite Institute (Private Mail Bag), Adelaide.
1924. *Hossfeld, P. S., M.Sc., Northern Australia Survey, Box 24, P.O. South Brisbane. Qld.
1928. Ifould, P., Kurralta, Burnside, S.A.
1918. *Jennison, Rev, J. C., 7 Frew Street, Fullarton, Adelaide,
1910. *Johnson, E. A., M.D., M.R.C.S., "Tarni Warra," Port Noarlunga, S.A.
1934. Johnston, J., A.S.A.S.M., A.A.T.C. A.A.C.I., Sewage Treatment Works, Glenelg, S.A.
1921. *Johnston, Prof. T. H., M.A. D.Sc., University, Adelaide--Verco Medal, 1935 Rep. Governor, 1927-29; Council, 1926-28, 1940-: Vice-President, 1928-31; President, 1931-32; Secretary, 1938-40; Rep. Fauna and Flora Board, 1932-59. Verco Medal, 1931 ; Rep. Governor, 1933-40; President, 1924-25; Vice-President, 1923-24, 1925-26-Council, 1941-.
1938. *Mawson, Miss P. M., M.Sc., Lniversity, Adclaide.
1920. Mayo, H., LL.B., K.C., I6 Pirie Strect, Adelaide.

Date of

\section*{Election.}
1934. McCloughry, C. L., B.E., A.M.I.E. (Aust.), Towtı Hall, Adelaide.
1929. McLaithhlin, E-r M.B., B.S., M.R.C.P., 2 Wakeficld Street, Kcit 「own. Adelaide.
1907. Melrose, R. T., Mount Pleasant, S.A.
1939. Mixcham, V. H., Beltana, S.A.
1925. †Mitcherl, Prof. Sik W., K.C.M.g., M.A., D.Sc., Fitzroy Ter., Prospect, SA.
1933. Mitchell, Prof, M. L., M.Sc., University, Adelaide.
1938. Moorholse, F. W., M.Sc., Chief Inspector of Fisheries, Flinders Street, Adelaide.
1924. Morison, A. J. Town Clerk, Town ITall, Adelaide.
1940. Mortlock, J. A. T. 39 Curric Street, Adelaide.
1936. *Mountrord, C. P., 25 First Avenue, St. Peters, Adelaicle.
1925. †Murray, Hon. Sir G., K.C.M.G., B.A., LL.M'., Magill, S.A,
1930. Ockenten G, P., Public School, Norton's Summit, S.A.
1913. *Osborn, Prof. T. G. B., D.Sc., University, Oxfurd, England-Council, 1915-20, 1922-24: President, 1925-26; Vice-President, 1924-25, 1926-27.
1937. Pankın, I., W., M.A., B.Sc. c/o Nth. Broken Till Led., Box 20 C , Broken Hill, N.S.W.
1929. PAull, A. (x., M.A., B.Se., Fglinton Terrace, Mount Gambier.
1928. Pitprs, I. F., Ph.D., B.Agr.Sc., Waite Institute (Private Mail Bag), Adelaide.
1926. *Pipar, C. S., M.Sc., Waite Institute (Private Mail Bag), Adelaide.
1925. *Prescott, Prof. J. A., D.Sc., A.I.C., Waite Institute (Private Mail Bag), AdelaideVerco Medal, 1938; Council, 1927-30, 1935 39; Vice-President, 1930-32; President, 1932-33.
1926.
1937.
1925.
1905.

Price, A. G., C.M.G., M.A., Litt.D., F.R.G.S., St. Mark's College, Vorth Adelaide.
*Rait, W, L., M.Sc., St. Peter's Collcge, Adelaide.
Richardsons A. E. V., C.M.G., MT.A., D.Sc., 314 Albert Strect, Fast Mclbourne,
*Rogres, R.S., M.A., A1.D., D.Se., F.L.S., 22 Itutt Street, Adclaide-Council, 1907-14, 1919-21; President, 192122 : Vice-President, 1914 19, 1922-24.
1933. Schnemer, M., M.B., B.S., 175 North 'lerr., Aclelaide.
1924. *Spanit, R. W., Mr.A., B.Sc., Assist. Govt., Geol., Flinders St, Adelajde-Secretary, 1930-35; Council, 1937-38: Vice-President, 1938-39, 1940-41; President, 1939-40.
1925. *Sheard, H., Niuriootpa, SA
1936. *Shearn, K., S.A. Museum, Adelaide.
1934. Simexfeld, R. C. Salisbury, S.A.
1938. *Simpson, Mrs, E. R,, Mi.Sc., Warland Road, Burnside.
1924. Stmpson, T. N. Piric Strectr Adclaide.
1925. †Smith, T. E. Barr, B.A., 25 Currie Street, Adelaide.
1930. Sortmwoon. A. R., M.D., M.S. (Adel.), M.R.C.P., Wooto
1936. Sprtag, R. C., Toddville Street, Seaton Park, Adelaide.
1938. Sthphexs, C, G., M.Sc, Waite Institute (Pribate Mail Bag), Adelaide.
1935. Stricktand, A. G., M.Amt.Sc., 11 Wontoona Tert., Glen Osmonul, Adelañle.
1932. Swan, D, C., M, Sc, Waite Institute (Private Mail Fag), Adelade-Secretary, 1940-.
1934. Svmins, I. G., Murray Street. Mícham.
1929.
*Taylor, J. K., B.A., M.Sc., Vaite Institute (Private Mail Bag), Adelaide-Council, 1940 .
1940. Thomson, J. M, 302 The Terrace, Port Piric, S.A.
1923. *Tindale, N. B., B.Sc., South Australian Musehm, Adelaide-Secretary, 1935-30.
1937. *Trumbre, H. C., D.Sc. M.Agr.Sc., Waite Institute (Private Mail Bag), Adelaide.
1894. *Turner, A. J., M.D., F.R.E.S., Dauphin Tert., Briabane, Qld.
1925. Turner, D. C., National Chambers, King William Street, Adelaide.
1933. Walkley, A., B.A. B.Sc., Ph.D., Waite Institute (Private Mail Bag), Adelaide.
1912. *WARd, L. K.. B.A. B.F... D.Sc.. Govt. Geologist, Flinders Strect, AdelaideCouncil, 1924-27, 1933-35* President, 1928-30: Vice-President, 1927-28.
1941.

1936. Waterhouse, Miss L. M., 35 King Street, Brighton, S.A.
1932. Weeding, Rey, B. J.. Eudunda.
1931. Wilson, C.E. C. M.B., B.S., "Woodfield," Fisher Street, Fullarton, Adela"de.
1938. *Wrlson, J. O., Nutration Tahoratory, University, Adelaide.
1935. Winkter, Rev, M. T.. B.A., ID.I)., 20 Austral Terrace, Malvern, Adelaide.
1930. *Woarfrsley, H. F.R.E.S., A.L.Sn, Muscum, Adelaidc-Secretary, 1936-37; Editor, 1937-.
1923. *Wood, Prof. J: G., D.Sc., Ph.D., University, Adelaide-Council, 1938-40: VicePresident, 1940-; Rep. Fauna and Flora Board, 1940-; President, 1941-.

\section*{GENERAL INDEX.}
[Generic and specific names in italics indicate that the forms described are new to science.]

\section*{GENERAL INDEX}
[Generic and specific names in italics indicate that the forms deseribed are new to science.]

Acacia rhetinodes v. uncinata, (2), 246
Acarids: Rediscovery of one of Canestrini's
Australian, Womersley, H., (1), 28
Achillaca tomentosa, (2), 248
Achuophora Tatei, (2), 247
Acrotriche affinis, fasciculiflora, (2), 247
Acteon scrobicularis, (1), 101
Actinoscelis astricta, (1), 15
Acuaria flindersi, (1), 31; (Dispharynx) 5p., (2), 257; (s.1.) sp., (2), 260

Adelacerithium, merultum, (1), 90
Adrmitrella, insolentior, (1), 96
Aenicteria termiticola, (1), 23
Acoloscelis chrysophocnicea, hipparcha, sphragidota, thiostola, puchyecros, (1) 18
Agiten idioptila, (1), 24
Aglossa, (1), 92
Anmotracuites agglutinans, (2), 156, 191
Amphibromus recurvatus. (2), 244
Amphistegilia lessonii, (2), 155, 177
Angel, L. M., and Johnstont, T. H., Life Cycle of the Trematode Diplostomulum murrayense, J. \& C., (1), 140
Aligel, L. M., and Johnston, T. H., Life Histury of the Trematode Petasiger australis 11.sp., (2), 285

Angel, L. M., and Johnston, T, H., Tithe Litehistory of Echinostoma revolutum, (2), 317
Anomalina colligera, glabrata, gletulowa, polymorpha, alf. rotula, vermiculata, (2), 154, 175
Archacogastropocla, (1), 82
Architectunica wamonensis, (1), 100
Arcoperna rececis, (2), 148
Arsilloccia badia, (2), 156, 194
Ashly, Edwin; Obituary, (1), 1
Asperula scoparia, euryphylla \(r\). tetraphylla, Gumnif, (2), 247
Asphodelus fistulosus, (2), \(2 \nmid 5\)
Aspidobranchia, (1), 82
Asplenium flabelliferum, (2), 244
Astacolus crepidula, (2), 153, 159
Astele fanaticum, (1), 86
Astlicnotoma subtilinca, (1), 100
Astraca (Bellastraed) aster, (1), 100
Ataxocerithium concatenatum, (1), 100
Aulica tabulata, (1), 100
Austrocerus, (1), 37, emarginatus, (1), 39
Austrodrillia trucidata, decencostata, (1), 98
Austroharpa sulcosa, (1), 100
Austroictes cruciata Sauss. in the Field; Some Observations on the Fmbryonic Dcvelopment of, Stecle, H. Vevers, (2), 329
Austromitra angusticostata, (1), 9\%, schomburgki, scalariformis, (1), 100
Ausironirequa flaztus, (1), 41
Austrotriton armatus, woodsi, (1), 100
Baeckea crassifolia, v. pentanera, (2), 246
Bairdia acanthigera, amygdaloides, zustralis, cf. expausa, (2), 156, 195; fuvelata, fusca, minima, (2), 156, 196
Balanus (Chirona) zelandicus, amphitrites, acutus, (1), 101

Baldwin, J. Gr,, and Crocker, R. L., The Soilis and Vegetation of l'ortion of Kangaroo Island, South Australia, (2), 263
Ballia callibricha, (2), 248
Bancraftincma dentatum. (1), 33
Bartsia latifolia. (2), 247
Baryspira pseudaustralis, tatei, (1), 100
Bathers' Itch (Schistosome dermatitis) in the Murray Swamps, South Australia; Johinston, T. H., (2). 276
Bathy toma adeludensis, (1), 97
Berndt, R. M., and Vogelsang, T, Comparative Vocabularies of the Ngunjuri and Dieri Tribes. Sonth Australia, (1), 3
Beta vulgaris. (2), 245
Bifarina fimbriata, (2), 154, 167
Biloculinella globulus, 2), 156, 190
Black. J. M., Additions to the Flora of South Australia, No. 40. (2), 333
Black, J. M., and Clefand. J.B., An Fnumeration oi the Vascular Plants of Kangaroo Islaud, Additions and Correction's (2). 244
Bolivina alata, aff, hentyana, beyrichi, (2), 154, 166 ; limbata, punctata, robusta, (2), 154,167
Bolivinclia folium, (2), 154, 169
Bolivinita quadrilatera, x. tortilis, (2), 154, 169
Brachycome neglecta, debilis, (2), 247
Brachyloma ericolides, (2), 247
Brachysiphon corbuliformis, (2), 155, 184
Bromine Content of Some Saline Waters in South Australia, The; Cooke, W. T., (2), 212
Bromus madritensis, scoparius, (2), 244
Buccinacea, (1), 96
Bulimina aculeata, elegans, (2), 154, 165, aff. marginata, notocala. (2), 154, 166
Buliminella sp., (2), 154, 165
Bythocypris reniformis, (2), 156, 195
Bythecythere arcnacea, (2), 157, 203
Bythoscopidae, (1), 36
Cabcrea grandis, (2), 146, 151
Cacozcliana cé. granaria, (1), 100
Cadulus mucronatus, acuminatus, (1) 101
Cakile maritima v. pimatifida, (2), 246
Calcitic crystals, in Marine Deposits, (2), 149
Calicotis, microgalopsis, sialuta, crucifera, triploesta, (1), 16
Callitris tasmanica, Cupressiformis v. tasmanica, (2), 2+4
Calthalotia nitidissima, (1), 83; fictilis, (1), \(8+\)
Cancris aturicula, (2), 154, 174
Capulus circinatus, (1), 100
(archarias (Prionodoni), actuleatus, (1), 101
Cardamine hirsuta, (2), 246
Carex inyersa, (2), 245
(arditella cf., (2), 150
Cardium pulchetinm, (2), 148
Carnobertus aectuilateralis, (2), 245

Carthamui lamatus, (2) 248
Cassidulina crassa, lacvigata, subglohosa, v. proditcta, (2), 154,168
Cassimia complanata, (2), 248
Casuarina striata, Muelleriana, (2), 245
Catcricclla sp., (2), 151
Caulerpa hyphoides, (2), 248
Cavolina telcmus, (2), 151
Casolina inflexa, 152
Collaria darwini, temnirostris, (2), 146 : rigida \(v\) vemusta, (2), 140,149 , rigida \(v\). perampla, (2), 151; gracilis, (2), 150, 151
Ccllequra fossa, (2), 147
Centspeda minima, (2), 248
Controlepis polygyna, glabra, (2), 245
Cercaria giganhera, (2),280
Cerithiacea, (1), 89
Cerihiclla trigeminata, (1), 100
Cerithidae, (1), s9
Cerithiopsis perclongatus, (1), 90
Chapman, \(F\), Report on Foraminiferal Somudings and Drerighngs of the L.J.s. "Endeavour" along the Contincital shelf of the Suuth East Coast of Australia, (2), 145
Cheilea adelaidensis, (1), 94
Cheileacea, (1), 94
Cheileidae, (1), 94
Chevrcuxia australis, (2), 259
Chilostomella cushmani. (2), 155, 177
Chamys famigerator (2), 148
( ihbicides aknerianus, lobatulus, aff. victorion" sis, psoudoningerianus, (2), 155,176 ; refulgens, wuelerstorfi, (2), 155, 177
Cladium ruhiginosum, Huttonii, gracile, (2), 245
ClanuJua guadricingulatus, (1), 22; rucarinathis, (1), 83
CTavulina serventy \(3,(2), 156,192\)
Cleland, J. B., and Black, J. Mir Als Fnumeration of the Vascutar Plants of Kangaroo Island, Additiona and Currecticns, (2), 244
Cho pyramidata, (2) \(, 150,151 ; \mathrm{sp}_{\mathrm{m}}(2), 151\)
Clypeomorus bitaricatus, mublitatas, (1), 89
Cocculina praecompressa, (1), 100
Conescharchlina biarmata, (2), 146; philippithensis's, (2), 146, 151
Conitum maculaturn, (2), 246
Contracaecum spiculigerum, (1). 111, hançofti, (1), 112; clelandi, simuldhiatum, (1), 113 : magnicoltare microcephaluny, tricuspe, (1), 114
Conts hamiltonensis, (1), 101
Convolvulus arvensis, (2) , 247
Cooke, WV, 'T., The Bromine Comtent of some Saline Waters in South Australia, (2), 212
Coracistis erythrocosma, (1), 26
Curnuspira foliacea, V. expansa, lacmosa, \(^{2}\) striolata, \((2), 155,185\)
Cosmocephalus jacuschi, (2), 259
Crassipira cf. lactcola, (2), 148
Crepidula hainsworthi, dubitalis, tmguiformis, (1). 100

Creseis virguta, (2), 150
Crisia scalaris, (2), 147 ; acropora, (2), 149. 150, 151

Crocker, R. L., Notes on the Geology and Physiograply of South-cast Alstralia with reference to Jate Climatic History, (1), 103

Crocker, R., L., and Baldwin, J. Gi, The Soils and Vegetation of Portion of Kangarou Island, South Australia, (2), 263
Crocker, R. L., and Skewes, H. R., 'lle Principal Soil and Vegetation Relationshing on Yuduapinua Station, North-west South Australia, (1), 4
Cryophytum crystallinunt, (2), 245
Cylichnella cuncopsic, cf. angustata, (1), 101 ; protumida, (2), 148
Cynatiella adeladdonsis, (1), 04
Cymatidac. (1), ot
Cynodon dactylon, (2), 244
Cypracacea, (1), 94
Cyperus tenellus, (2), 244
Cystophora platyohium, uxifera, (2), 248
Cythere accroscllo, canaliculata, (2), 156, 196 , crispata, cristatella, cytheropteroides, dasydernta, demisad, dictyon, exilis, (2), 156, 197: falk!andi, foveolata, goujeni, (2) \(, 156,198\); inconspicua, irrorata, multitatis, nommani, (2), 157, 198; obturalata v. temis, oralis, postandispmosa, rastromarginata, (2), 157, 199; scutigera, subruia, ietrica, (2), 157, 200
Cytherefla lata, \((2), 157,203\); polita, pulchra, punctata, semitalis, (2), 157, 204
(ytherelloidea auris, (2), 157, 204
Cytheropteron assimile, (2), 157, 202; dantevigi, hedloyi, (2), 157, 203
Cytherura castellata, cryptifera, (2), 157, 202
Danthonia geniculata, semiannularis, setacea, (2), 24+

Dentalina communis, fistuca, (2), 153, 159; aff, consobrina, soluta, (2), 153, 160
Dentalium (Patadentaliun) howchini, (Fessidentalium) bifrons, (1), 101; sp., (2), 151
Diactia trispinosa, (2), 151
Dialidac, (1), 92
Dicri Tribes, South Australia; Comparative Vocabularies of the Nexadjuri and Berndt, R, M., and Vogelsang, T", (1), 3
Dipleslonta globulosa, (2), 148
Diplostomultam murray ense J. \& C. ; Life-cycle of the Trematode; Johnston, T. H., and Argci, 1.. \(11 .,(2), 285\)
Diplotaxis tenuifolia, (2), 246
Discorbis australis, bertheloti, (2), 754; 171, dimidiatus, disparilis, opercularis, orbicularis, rarescens, rosacea, (2), 154,172 ; rugosa, globularis. (2) 154,172
Displiyma austrate, (2), 245
Ditupa cornca, wormbetiensis, (1), 101
Dodonaca atienuata \(Y\). lincaris, (2), 246
Doliacea, (1) 94
Dolicrossca labiata, (1), 88, 100
Dolophrosync balteata, (1), 25
Dorothia arenata, (2), 156, 192; scalira, (2), 156, 193
Dyncibicides biserialis, (2), 155, 177
Earth-mites (Acarina, Penthaleidac) of Anstralia, The Red-legged; Womersley, H., (2), 292

Fchinostoma revolutum; "The Life-history of Johnstur, T. H. ., and Angel, L. M., (2), 317
Echinuria squamata, (2), 257
Echium plantagineum, (2), 247
Eecklonia radiata, (2), 248
Eglisia triplicata, (1), 100
Whocharis acicularis, (2), 244, halmaturina, gracilis, multicaulis, (2), 24.5
Ellatrivia zuirrata, (1), 94
Ellipsolageta schlichti, (2), 154, 169
Eiphdium advenum, crispum, inperatrix, \(\mathfrak{j} \in 11-\) seni, (2), 155, 182; lessontif, nacellum, pueyanum, verriculatum, (2), 155,183
Emargimula candida, delicatissima, dematiti, (1), 100

Epigrus chrysalidus, cylindracetis, (1), 100
lopistomina clegans, (2), 154, 174
Epitonium ef. interstriatum, (1), 100
Eponides kursteni, repandus, (2), 154, 173
lirechtites arguta \(\gamma\). dissecta, (2), \(2+8\)
Erenuphila W"cldii, (2), 247
Eremocera, (1), 25; chrysias, cyanaugus, dioctis, flavicincti, coracopis, (1), 26
Firythracidae, (1), 61
Frythraed australis, (2), 247
Whtrea cf bicolor, (1), 100
Ethirastis sideraula, (1), 15
Ethmmoha pergfobosa, (1), 86
Fituema perarmena, (1), 99 ; pracspura, (1), 101
Eucalyptus remuta, (2), 246
liucythere declivis, (2), 157, 200
Fugenon crispus, (2), 247
loulima tundiconicu, minaticonion, (1) 93
Finlimidac, (1), 93
Euscelidac. (1), 40
Eustrongylicks phalacrocortis, (2), 25.3; plotinus, (2), 256
Eutettix passifforar, (1), +10
Evans, J. W., New Australian Leat-hoppers, (1), 36

Fessonia, (1), 61; papillosa, (1), 62; prominens, (1), 63
Filodrillia dilectoides, (1), 100; Sp., (2), 1+8
linlaysun, H. H., ()in Central Australian Mammals, P't. II, Muridae, (2), 215
Fissurellidae, (1), 82
Fiora of South Anstralia, No. 40; Additions to: Black, J. M, (2), 333
Foraminiferal Soundings and Dredgings of the L".L.S. "Endeavour" along the Continental Shelf of the South-east Coast of Australia; Report on: Chaprnan, \(\mathrm{F},(2)\), 145
Frankenta pauciffora v. fructiculosa, (2), 246
Fulgoraria ancilloides, ( 1 ), 100
Fumaria muralis, (2), 246
Fusinus diclyotis, (1), 100
(rahnia hystrix, (2), 245
Galium devaricatum, australe, (2), 247
Gastropoda fromt the Abattoirs Bore, Adelaide, South Australia, together with a list of some Miscellancons Fossils from the Bore, Ludbrook, N. H., (1), 79

Gastrolobium clachistum, (2), 240
Geckobia (Acarina, I'terygusomidet) from Arstralia and New Zabland, Now Species of; Womersley, H., (2), 323
Geckobia clelandi, \((2), 323\) : whmodoctyli, haplodactyli, (2), \(325 ;\) naulthm, (2), 328
Geology and Physiograpliy of Suthti-east South Australia with referace to late Climatic listory; Nutes on the: : ("rocker, R. L. (1), 103

Geranium molle, (2), 246
Glandulina laevigata, (2), 153, 165
(fleichenia circinata, (2), 24
Glohigerina bulloides, conglomerata, duter. trasi, inflata, pacliyderma, subcratacea, (2), 155, 179
Globigerinella aequilateralis, (2), 155, 180
Globergermoides trilobus, (2), 155, 1E0
Globorutalia hirsuta, scitula, truncatulinosdes, (2), 155, 181

Globulina ghba v. glolusia, (2), 153, 165
Goniocidarsis mortensi, (1), 101
Gsacilaria, xanthopharella, (1), 27
Grevillea muricata, lavandulacea v. sericea, (2), 245

Guraleus suhnitidus. (1), 99
Guttulima communis, lactea, problema, regona, yabes. (2), 133, 164

Habronema paraleplopera, (1), 32; woyothetes, (2), 256
1 lakea villata, (2), 245
I aliotis macrosoides, (1), 104
Halotydeus destructor, cgregius, (2) 293
Hamatospiculum sp., (1), 35
Haminoca of. sp, (2), 151
Haplophragmoides craciatus, grandiformis, (2), 156, 190

Thattakia cf, movarcusis, cf, demessa, (1), 100
Hedymois cretica, (2), 248
Helichrysum decurrens, retustum, (2), 248
Heliortindac (Lepidoptera) ; A Revision of the Australian: Turner, A. I., (1), 14
Heltoslinites princeps, (1), 24
Helipterum demissum, exiguum, (2), 248
Herpetopoma pliocenica, (1), 87
Ifcterakis chenonettae, isolonche; (1), 115
Hieromantis ephodophora, albata, (1), 16
Hirstinsoma scalaris, tasmaniensis, (1), 69; novac-hollandiae, (1), 71
Hordeum maritinum, (2), 244
I Yydrocotyle laxiflora, coniocarpa, tripartita, (2), 246

Iydromys chrysogaster, (2), 231
Hyperammina novae-zealandiae, (2), 155, 183
Hypocassis textilis, (1), 100
Hypolaena laterifora, (2), 245
Hypotrochus penetricinctus, of. monachus, (1), 100

Idiocerella obscura, (1), 39
Idioccridae, (1), 37
Idiocerus szenaî, flindersi, macropensis, insularis, (1), 37
Idioglossa metalochrysa, (1), 15
Idmonea mihteana, (2), 147

Influential Kainfal1 in Suth Australia; The Varianility of the Length of Rainfall Scason and the Amount of; Wark, D. C., (2), 249

Inguisitor detrittos, (1), 98
Isorrhoa atmozona, pandani, ancistrota, emplecta, aetheria, hydrograplia, implicata, loxuschema, actochyta, cuzona, (1), 18

Jassidae, (1), 41
Johnston, T, H., Bathers' Itch (Schistosome dermatitis) in the Murray Swamps, South Australia, (2), 276
Johnston, T. H., and Angcl, L. M., Life-cycle of the Trematode, Diphostomulum murraycuse J. \& C. (1), 140
Johnston, T, \(\mathrm{H}_{\text {H }}\), and Angel, 1.. Mc, Life-his. tory of the Trematode Petasiger anstralis 12. Sp., (2), 285

Johnston, T, H., and Angel, L, M1, The Tife history of Echinostoma revolutum, (2). 317

Johnston, T. H., and Mawson. P. M., Some Nematodes from Australian Birds of Prey; (1), 30
Johiston, T. Hh, and Mawsor, P. M., Asearoid Nematodes from Australian Birds, (1), 110

Johnctor, T. H., and Mawson, P, M., Additional Nematoles from Australian Birds, (2), 254

Kaumilla, denotata, (1), 88
Kuapped Flint; Analysis of ant Australian Ahoriginal's Hoard of: Tindale, N. B., and Noone, H. V. V., (1), 116
Kocleria Michelii, (2), 244
Krithe producta, (2), 157,200
Lactuca saligina, (2), 248
Laetifautor obliquicancellatus, spinicarinatus, (1) \(84 ; \mathrm{sp}\), crebrimodilasus. sp. \(2, \mathrm{sp} .3\), (1), 85

Tagena annectans, apiculata, clavata, (2), 153, 161; costata, crenata, distuma, globosa, hexagoma, lacunata, (2), 153. 162; lagenoides, marginata, melo, orbignyana, striata, suicata, variata, (2), 153, 163
Lagcnonvdosaria scalaris, v. scominuda. (2), 153, 161
Lagenophora Hugelii, (2), 247
Lanmys pedunculatuc, (2), 223
Tavaterat arborea, (2), 246
Leaf-loppers; New Australian: Evans, J. W. (1), 36

Lenticulina clecricii, (2), 153, 157; aff, convergens, cultrata, gibba, rotulata, aff. articulata, aff. orbicularis, zff. subalata, (2), 153, 158
I.cporillus apicalis, (2), 228

Leptncarpus tciax, (2), 245
Lepidium halmaturinum, (2), 246
I. cucopogon australis, costatus, (2), 247

Levenhookia pusilla, dubia, (2), 247
Lilatopsis Brownii, australica, (2), 246
Ifimacina inflata, (2), 150
Linaria Elatine v. Lasiopoda, (2), 247
Linum marginale, gallicum, (2), 240
Liotella capitata, (1), 100

Liotiidae, (1), 38
I.iotina lamellosa, (1), 100

Lissared rubricata, (2), 150
Lissocarena, (1), 23 ; semicuprea, (1), 24
Listerella sp., (2), 156, 193
Loranthus miraculocus v. Melaleucae, (2), 245
Love. J. R. B., Worora Kinship Gestures, (1), 108

Loxoconcha australis, (2), 157, 200; auellana, (2), 157, 201
I.oxostomum karrerianum, (2), 154, 167

Leulbrook, N. IL., Gastropoda from the Abattoirs Bore, Adelade, South Australia, together with list of some Miscellancous Fossils from the Bore, (1), 79

Macrocallista planatella, (2), 148
Macrocecrus minnutus, (1), 39
Macrocypris decora, (2), 156, 104; setigera, (2) \(, 156,195\)

Macropsidac, (1), 40
Macropsis tividicces. variabilis, (1), 40
Malva parviflora, rotundifolia, (2), 246
Manulona, arrugosa, lirasuturalis, (1), 91
Matpingia acutispira, (1), 99
Marginclla moana, sp, (1), 97, kitsoni,wentworthi, glohiformis, muscarioides, tasmanica, kalimnae, (1), 100 ; inconspicua, gatlifi, (2), 148
Marginellidae, (1), 97
Marginulina glabra, (2), 153, 159
Mawson, D., The Wilpena Pound Formation anri Undcrlying Proterozoic Sediments, (2), 295

Mawson, D.s Middle Proterozoic Sedimemts in the Neighbnorthoot of Coplcy, (2), 304
Mawson, P. M.e and Johnston, T. H., Some Nematodes from Australian Birds of Prey. (1), 30
Mawson, P. M., and Johnston, T. H,, Ascaroid Nematndes from Australian Birds. (1), 110

Nawson, P. M, and Johnston T. H., Additiomal Nematodes from Australian Birds, (2), 254

Mcesmecia (Fintalophora) dannexigi, (2), 147, 149
Melitodes cf. rugusus, (2), 151
Mercer, \(F\). V., Atmosnheric Pollen in the City of Adelaide and Einvirons, (1), 11
Mereldia incommoda, (1), 92
Merelina of, suprasculpta, (1), 100
Microsmaris, (1), 61
Miliolinella oblonga, (2), 156, 188
Mississippina concentrica, ( 2 ) \(, 154,174\)
Mitra rhodia, glahra, fodinalis, (1), 100; cf. stadialis, (2), 148
Mitridae, (1), 96
Molybdurga metalluphora, (1), 26
Mountiord, C. P., An Unrecorded Method of Manufacturing Wooden Implements by Simple Stone Tools, (2), 312
Myliobatis moorabbinensis, (1), 101
Myodora aff. antipodum, (2), 148
Myriophyllum integrifolium, Muelleri, (2), 246
Myrtea gabricli, (2), 148, 151
Myrtea bractea, botanica, (2), 152

Murex peramaughs, (1), 95; biconicus, (1), 100
Muricacea, (1), 95
Muricidac, (1), 95
Muridac, Pt. If; On Central Australian Mammals; Finlayson, H. H., (2), 215

Natica hamiltonensis, (1), 100
Nassarius tatei, (1), 100 ; semigranosus, (2), 148 ; tasmanicus, (2), 151
Nematodes, Some, from Australian Birds of Prey; Johnston, ' I , H ., and Mawson, P. \(\mathrm{M}_{\text {. }}\) (1), 30
Nematodes, Ascaroid; from Australian Birds, Johnstor, 'T, H., and Mawson, P. M., (1), 110
Nematodes from Australian Birds; Additional, Johnston, \(T . H_{3}\), and Mawson, P. M, (2), 254

Neodiastoma provisi, (1), 100
Neritacea, (1), 88
Ngadjuri and Dicri Tribes, South Australia; comparative vocabularies of the; Berndt, R. M., and Vogelsang, T., (1), 3

Nicotiana glauca, (2), 247
Nirvaniidac, (1), 41
Niso psila, (1), 100
Nizymenia australis, (2), 148
Nodogencrina bradyî, insolita, (2), 154, 170
Nodosaria catenulata, calomorpha, pyrula, v. semirugosa, vertebralis, (2), 153, 160
Nonion depressulus, gratcloupi, (2), 155,181 ; scapha, umbilicatulus, (2) 155,182
Noone, H. V. V., and Tindale, N. B.; Analysis of an Australian Aborigixal's Fuard of Knapped Flint, (1), 116
Notorotalia clathrata, (2), 154,173 : decurrons, (2), 154, 174
Nucula obliqua, (2), 151
Nuculana pala, (2), 150, 151
Oamaruia tateí, (1), 100
Obtortio livatus, (1), 90
Odontaspis contortidens, (1), 101
Odostomia of. deplexa (1), 100
Oenothera odorata, (2), 246
Olivella nymphalis, (1), 100
Olearia lepidophylla, microdisea, glatinosa, rudis \(v\), glabrisscula, ciliata, squamifolia, (2), 247

Oncousis norrisi, (1), 40
Opercularia hispida, (2), 247
Ophthalmidjum circularis, (2), 155,186
Orbulina universá, (2), 155,180
Orthoceras strictum, (2), 245
Oryzopsis miliacea, (2), 244
Pachydictyon paniculatum, (2), 248
Pachyrhabda, (1), 16: punctifera, campylosticha, argyrites a arrascia, bacterias, (1), 17, liriopis, (1), 18
Papaver aculeatum, (2), 246
Parablocratus australis, citrinas, (1), 36
Parafrondicularia helenac, (2), 154, 170
Partubiola depressispera, varilirata, (1), 87
Patcllina corrugata, (2), 154, 171
Patellînella inconspicua, (2), 154, 171
Pectinibranchia, (1), 88

Pelosina cylindrica, (2), 155, 184
Penthaleus major, minor, (2), 292
Penthalodes australicus, (2), 294
Perithalia inermis, (2), 248
Petasiger australis n. sp; Life-history of the T'rematode, Johnston, 'I. H., and Angel, L, M., (2), 285
Phanolophus, (1), 61
Phasianella demnanti, (1), 100
Phasianotrochus laxcgemanatus, subsimplex, (1), 83

Phenacolepadidae, (1), 88
Phenacolepas tela, (1), 88
Philobrya pectinata, (2), 150
Phyllacnistis enchalca, enchatcoa, (1), 27
Physaloptera hieracideac, (1), 31 ; sp., (2), 257
Pimelaea flaya, dichotoma, (2), 246; microcephala, (2), 248
Planispirina bucculenta v. placentiformis, (2), 155, 186
Plantago Coronopus, (2), 247
Planularia australis, (2), 153, 158
Planulina biconcave, v, unguiculata, (2), 154, 176 ; haliotis, (2), 155,176
Platypoda, (1), 88
Plocamitam preissianum, (2), 248
Polinices balteatellus, substolidus, subvarians, huttoni, (1), 100
Pollen, Atmospheric; in the City of Adelaide and Environs, Mercer, F. V.: (1), 11
Polvgonum prostratum, (2), 245
Pontacypris bradyi, (2), 156, 193; attenuata, simplex, subreniformis, (2), 156, 194
Poroleda spathulata, (2), 148 ; ensicula, (2), 151
Porrocaecum circinum, (1), 30; reticulatum, (1), 115

Potamogeton Javanicus, (2), 244
Prescott, J. A., and Skewes, H. R., An Examination of Some Soils from Tropical Austraha, (1), 123
Proterata australis, (1), 100
Proterozoic Sediments in the Neighbourhood of Copley; Middle: Mawson, D., (2), 304
Psendaegeria phloginat (1), 24: squamicornis, polytita, hyalina, (1), 25
Psendocythere caudata, fuegicnsis, (2), 157, 203
Pscudoglandulina rotundata, (2), 153, 163
Pscudomys (Pscudomys) minnie, (Leggadina) hermannsburgensis, (2), 215 ; hermannsburgensis \(v\), bolami, (L..) waitei, (2) , 220; (Thetomys) nanus, (2), 224

Ptychomiliola separans, (2), 156, 187
Pterostylis furcata, parvifora, (2), 245
Pulchrastele planiconicum, tuberculatum, (1), 86
Pullenia sphaeroides, subcarinata, (2), 155, 178
Pulleniatina obliquiloculata, (2), 155, 180
Pultenaea cymbifolia, scabra, (2), 246
Pyramidellidae, (1), 92
Pyrene sp., (2), 151
Pyrenidac , (1), 96
Pyrgo comata, elongata, fornasinii, sarsi, (2) 156,189 ; vespertilio, (2), 156, 190

Pyrgoella sphacra, (2), 156, 190

Quinqueloculina auberiana, australis, crassa, cuvicriana, (2), 155,186 ; lamarkjatia, seminulum, vulgatis, (2), 155, 187

Rachiglossa, (1), 25
Rainiall Seasont and the Amount of Influcntial Rainfall in South Australia; The Variability of the Length of: Wark, D. C., (2), 249

Ranunculus trichophyllus, (2), 245
Rapistrum rugosum, (2), 246
Rectobolivina bifrons, (2), 154, 167
Recurvoides contortus, (2), 156, 191
Rhabdanmina discreta, (2), 155, 184; irregularis, (2), 155, 185
Rhipidoglossa, (1), 82
Rissoacea, (1), 88
Rissoidac, (1), 88
Rissoina clegantula, nivea, (1), 100
Reophax dentaliniformis, distans v. pseudodistans, scorpiurus, (2), 156, 191
Restio complanatus, (2), 245
Retepora babelensis, (2), 147
Retusa Iongispira, apiculata, (1), 101 ; cf. cumieri, (2), 148
Koxan:a bullaeformis, (1), 101
Rumex roscus, (2), 334
Rutidosis multiflora, (2), 248
Sabia conica, (1), 100
Saccammina sphacrica, (2), 155,184
Salicornia Blackiana, pachystachya, (2), 245
Salvia verbenacea, (2), 247
Saracenaria italica, navicula, (2), 153, 159
Sarcpta obolclla, (2), 150
Sarepta tellinaeformis, (2), 147
Sargassumi bracteolosum, (2), 248
Scaphander tatci, (1), 101
Scatevola lincaris v, coniertifolia, (2), 247; humilis, (2), 248
Schocnus foliatus, axillaris, Carsei, (2), 244 ; brevifolias, (2), 248
Scirpus fluitans y. terrestris, stellatus, calocarpus, productus, inundatus, (2), 245
Scila (Notoscila) crocea, (1), 100
Scmiacteon microplocus, (1), 101
Somicassis transema, radiata, (1), 100
Semiyertagus capillatus, (1), 100
Serratospiculum guttatum, (1), 34
Scuratia marinct, (2), 259
Sturalinena brevicaudatum, (1), 33
Sheradia arvensis, (2), 247
Sigmoilina latissima, (2), 155, 187; schlumbergeri, (2), 156, 187
Sigapatclla crassa, (1), 100
Sigaretotrema subinfundibula, (1), 100
Silene nocturna, (2), 245
Siliquaria australis, (1), 100
Sisymbrium orientalc, (2), 246
Skewes, H. R., Crocker, R. I., and; The Principal Soil and Vegetation Relationships on Yudnapinna Station, North-west Suuth Australia, (1), 44
Skewes, H. R., and Prescott, J. A., An
Examination of Some Soils from Tropical Australia, (1), 123
Smaridia, (1), 61
Smarididac, (1), 61

Smarididac (Acarina), of Australia and New Zealand; Notes on: Womersley, \(\mathrm{H}_{\text {., }}\), and Southeott, R. V., (1), 61
Smaris squamata, papillosa, promiscus, (1), 61, 63; depilata, (1), 62 ; ampulligera, (1), 61, 62
Snellenia lineata, hylaea, multicrossa, capnera, (1), 25
Soil and Vegctation Relationshins on Yudnapinua Station, North-west South Australia; The Principal; Crocker, R. L., and Skewes, H. 12., (1), 44
Soils Irom Tropical Australia; An Fxamination of Some; Prescott, J. A., and Skewes, H. R., (1), 123

Soils and Vegetation of Portion of Kangaroo Island, South Anstralia; The: Batdwin, J. G., and Crocket, R, L., (2), 263

Solanum facciculatum, (2), 247
Soláriclla strigata, (1), 100
Solenosmilia variabilis, (2), 151, 152
Sonchus megalocarpus, asper, asper \(\mathrm{v}_{\mathrm{N}}\) Jittoralis, (2), 248
Songr, Native: of the Sonth-east of South Australia; Tindale, N. B., (2), 233
Sophismalepas nigrita, (1), 100
Sontheott, R. V... Womersley, H,, and; Notes ont the Smarididar (Acarina) of Australia and New Zealand, (1), 61
Sphaeroidina bulloides, (2), 155, 178
Sphateroidinella dehiscens, (2), 155, 180
Splacrotarsus ripicolus, (1), 73; leptopilus, (1), 75: allmani, claziger, (1), 76

Spirillina inacqualis. (2) \(, 153,1,5\)
Spiroloculina canaliculata, (2) , 155, 187
Stathmopoda melanochra desmoteles, Tethonnoa, acromolybla, chalybeis acontias, chalchotypa, cyanopla, sphendonita, holohapta, rastraodes, (1), 19; ecphalaea, anathodes, astrapeis, mesombra, hyposcia, notosticha, iodes, doratias, sentica, xanthoma, metopias, isoclera, callichrysa, ischnotis, crocophancs, ptycholdankra, (1), 20; marmarasticha, bathrodelta, citroptila, trichopecla, arachnophthora, basixantha. tritophaca, mimantha, xanthocrana, 1 riselena, trimochla, platymipha, diclidias, pantarches, mannophora, nitida, grammatopis, rhythmota, (1), 21; dimochla, canonica, megathyma, liporrhoa, rubripicta, zalodes, effossa, nephrocentra, aphanosema, trifida, pampolia, ceramoptila, zophoptila, recondita, (1), 22; rhodocosma, nymphenteria, (1), 23
Steele, H. Vevers; Some observations on the Embryonic Development of Austroicctes cruciata Sauss. in the Ficld, (2), 329
Stenoglossa, (1), 95
Stcreotydeus areolatus, occidentale, australicus, (2), 297
Stipa tenuiglumis, (2), 244; dura, multispiculis, mundula, brevighmis, (2), 333; plagiopogon, indeprensa, (2), 334
Stomatellidac. (1), 87
Streblus beccarii, (2), 154, 173
Streptocara recta, (2), 260
Streptoneura, (1), 82
Struthiolariidae, (1), 89

Stylidium perpusillum, (2), 247
Subulura sp., (1), 34
Syrnola acrisecta, (1), 92; sp., (2), 151
Tacnioglossa, (1), 88
Technitella cf. legumen, (2), 155, 184
'Teinostoma depressula, (1), 100
Tenuipalpus (Acarina, Tetranychidae); Revisional Notes on the Australian Species of: Womersley, H., (1), 42
Tenuipalpus californicus, phochicis, australis, vitis, (1), 42
Terebra subspectabilis, angulosa, additoides, (1), 101

Terebralia fallar, (1), 91; adelaidensis, (1). 100
Tetrameres bizurac , (2), 261; australis, (2). 262
Textularia conica, (2), 156, 191; corrugata, pseudogramen; sagittula, (2), 156,192
Tharra leai, (1), 41
Thelazia aquilina, (1), 34 ; pittac, (2), 256
Themeda triandra, (2), 248
Tindate, N. B., and voone, H. V. V.; Analysis of an Australian Aboriginal's Hoard of Knapped Flint, (1), 116
Tindale, N. B.; Native Songs of the Southeast of South Australia, (2), 233
Todea barbara, (2), 244
Toxoglassa, (1), 97
Trichostrongylus incorius, (2), 254
Trichotropsis accresens, (1), 100
Trifarimá bradyi, (2), 154, 168
Trifolium dubium, tomentosurn, glomeratum, (2), 246

Triloculina chrysostoma, circularis, quadrilateralis, tricarinata, trigonta, (2), 156 , 188
Triphora spp., (1), 92
Triphoriidac, (1), 92
Trithuria submersa, (2), 245
Triviidac. (1), 94
Trochacea, (1), 82
Trochammenina planoconvexa, (2), 156, 192
Trochidac, (1), 82
Trychmopepla discors, (1), 23
Tubiolidac, (1), 87
Tudicla sinotecta, (1), 97
Tudiclidac, (1), 97
Tugale infortunainm, (1), 82; cicatrieosa. (1), 100

Turbonilla mitcostala, (1), 92; 5n., subfusca, (1), 93 ; radicans, liraecostata, cf, mariae, (1), 100

Turner, A. J.; A Revision of the Australian Heliodinidae (Lepidoptera) * (1), 14
Turridae, (1), 97
Tutritellä (Gamazeda) acricula, adelaidetsis, sulacricula, (Maoricolpus) murrayana subrudis, sp. aff. platyspira, (1), 100; atkinsoni, (2), sinuata, (2), 151
Tylospira coronata marwicki, (1), 89
Typhis laciniatus, (1), 100
Ulva Lactuca, (2), 248
Uropoda spinulipes, (1), 29
Uvigerina aff. pygmea, (2), 154, 168

Vaginulina legumen, (2), 153, 159
Vallisnerea spiralis, (2), 248
Vanicela xenodelpha, dentigera, tricolona, (1), 16

Vascular Plants of Kangaroo Island: An Tinumeration of; Additions and Corrections; Cleland, J. B., and Black, J. M., (2), 244

Venericardia amabilis, (2), 148
Vermicularia flava, (2), 148
Villarsia exaltata, parnassifolia, (2), 247
Virgulina subsquamosa, (2), 154, 166
Vittadinia triloba, australis, (2), 247
Vogelsang, T., Berndt, R. M. and; Comparative Vocabularies of the Ngaduri and Dieri Tribes, South Australia, (1), 3
Voluta uncifera, illipsoidea, (1), 100
Volutacea, (1), 96
Volvula rostrata, (2), 150
Volvulella rostrata, (1), 101
Wahlenbergia multicaulis, quadrifida, (2), 247
Wark, D. C.; The Variability of the Length of the Rainfall Season and the Amount of Influential Rainfall in South Australia, (2), 249

Widutugha crassiflicala, (1), 95
Wilpena Pound Formation and Underlying Proterozoic Sediments, The; Mawson, D., (2), 295

Wilsonia rotundifolia, (2), 246
Womersley, H.; Rediscovery of one of Canestrini's Australian Acarids, (1), 28
Womersley, H.; Revisional Notes on the Australian Species of Tennuipalpus (Acarina, Tetranychidae), (1), 42
Womersley, \(\mathrm{H}_{\text {, }}\), and Southcott, K . V.; Notes on the Smarididae (Acarina) of Australia and New Zcaland, (1), 61
Womersley, H.; The Red-legged Earth-mites (Acarina, Penthaleidae) of Australia, (2), 292

Womersley, \(H\).; New Species of Geckobia (Acarina, Pterygosomidae) from Australia and New Zealatnd, (2), 323
Wooden Implements by Simple Stone Tools, An Unrecorded Method of Manufacturing', Mountiord, C. P., (2), 312
Worora Kinship Gestures, Love, J. R. B., (1), 108

Xestoleberis curta, davidiana, Margaritca, nana, polita, (2), 157, 201; setigera, varicgata, (2), 157, 202
Xyris operculata, (2), 245
Zaratha trisecta, crotolitha, (1), 15
Zeacumantus diemenensis, (1), 100
Zemitrella menkeana, Hincolnensis, cf , tayloriana, (1), 100
Zemitrella muscula, (1), 96
Zeugobranchia, (1), 82
Zieria veronicea, (2), 246
Zostcra tasmanica, (2) 248
Zoysia Matrella, (2), 244
Zygophyllum prismatothecum, (2), 248
PART I
Page
Obituary-Edwin Ashby ..... 1
Berndt, R. M., and Vogelsang, E.: Comparative Vocabularies of the Ngadjuri and Dieri Tribes, South Australia .. ..... 3
Mercer, F. V.: Atmospheric Pollen in the City of Adelaide and Environs ..... 11
Turner, A. J.: A Revision of the Australian Heliodinidae (Lepidoptera) ..... 14
Womersley, H.: Rediscovery of one of Canestrini's Australian Acarids . ..... 28
Johnston, T. H., and Mawson, P. M.: Some Nematodes from Australian Birds of Prey ..... 30
Evans, J. W.: New Australian Leaf-hoppers ..... 36
Womersley, H.: Revisional Notes on the Australian Species of Tenuipalpus (Acarina, Tetranychidae) ..... 42
Crocker, R. L., and Skewes, H. R.: The Principal Soil and Vegetation Relationships on Yudnapinna Station, North-west South Australia ..... 44
Womersley, H., and Southcotr, R. V.: Notes on the Smarididae (Acarina) of Aus- tralia and New Zealand .. ..... 61
Ludbrook, N. H.: Gastropoda from the Abattoirs Bore, Adelaide, South Australia, together with a List of some Miscellaneous Fossils from the Bore ..... 79
Crocker, R. L.: Notes on the Grology and Physiography of South-east South Aus- tralia, with reference to late Climatic History ..... 103
Love, J. R. B.: Worora Kinship Gestures ..... 108
Johnston, T. H., and Mawson, P. M.: Ascaroid Nematodes from Australian Birds .. ..... 110
Tindale, N. B., and Noone, H. V. V.: Results of the Harvard-Adelaide Universities Anthropological Expedition, 1938-39. Analysis of an Australian Aboriginal's Hoard of Knapped Flint ..... 116
Prescott, J. A., and Skewes, H. Ri: An Examination of some Soils from Tropical Australia ..... 123
Johnston, T. H., and Angel, L. M.: Life-cycle of the Trematode, Diplostomum, murrayense J. \& C. ..... 140
PART II
Chapman, F.: Report on Foraminiferal Soundings and Dredgings of the F.I.S. "En- deavour" along the Continental Shelf of the South-east Coast of Australia . ..... 145
Cooke, W. T.: 番的, Bromine Contert of Some Saline Waters in South Australia ..... 212
Finlayson, H. H.: On Central Australian Mammals, Pt. ii. The Muridae (continued) ..... 215
Tindale, N. B.: Native Songs of the South-east of South Australia, Pt. ii ..... 233
Cleland, J. B., and Black, J. M.: An Enumeration of the Vascular Plants of Kangaroo Island. Additions and Corrections ..... 244
Wark, D. C.: The Variability of the Lengh of the Rainfall Season and the Amount of Influential Rainfall in South Australia ..... 249
Johnston, T. H., and MiAwson, P. M.: Additional Nematodes from Australian Birds .. ..... 254
Baldwin, J. G., and Crocker, R. L.: The Soils and Vegetation of Portion of Kangaroo Island, South Australia .. ..... 263
Johnston, T. H.: Bathers' Itch (Schistosome dematitis) in the Murray Swamps, South Australia ..... 276
Johnston, T. H., and Angel, L. M.: Life-history of the Trematode, Petasiger australis n. sp. ..... 285
Womersley, H.: The Red-legged Earth-mites (Acarina, Penthaleidae) of Australia ..... 292
Mawson, D.: The Wilpena Pound Formation and underlying Proterozoic Sediments ..... 295
Mawson, D.: Middle Proterozoic Sediments in the Neighbourhood of Copley ..... 304
Mountford, C. P.: An Unrecorded Method of Manufacturing Wooden Implements by Simple Stone Tools ..... 312
Johnston, T. H., and Angel, L. M.: The Life-history of Echinostoma revolutum in South Australia ..... 317
Womersley, H.: New Species of Geckobia (Acarina, Pterygosomidae) from Australia and New Zealand ..... 323
Steele, H. Vevers: Some Observations on the Embryonic Development of Austroicetes cruciata Sauss, in the Field ..... 329
Black, J. M.: Additions to the Flora of South Australia, No. 40 ..... 333
Balance-sheet ..... 335
List of Fellows, etc. ..... 336
Index ..... 339```


[^0]:    76 S. platynipha Turnı, P.R.S.Vict, 1923, p. 78. (Townsville.)

[^1]:    (i) An effort was made in the first instance to map the extent of the erosion, and to estimate it in a broad quantitative way, after the methods employed by the Soil Conservation Service in U.S.A. and set out under their printed "Procedure for making Soil Conservation Surveys." The method was found impracticable at Yudnapinna and, in the author's opinion, would be found so in most types of country. The variation in depths of horizons in any natural soil type is so great that it is impossible to estimatc with any accuracy and consistency the percentage loss of A horizon, even though there are only three major divisions; less than $25 \%, 25-75 \%$, and over $75 \%$. Furthermore, assessing erosion in such detail only applies at the actual time the specific area is surveyed. By the time the survey is completed and the maps published the position might be very different. 'This was so to some extent at Yudnapinna following a modest rain in September, 1939.

[^2]:    Trans, Roy. Soc, S.A., 65, (1), 25 July 1941

[^3]:    (1) Dr. Singleton"s recent publication, "The Tertiary Geology of Australia," Proc, Roy. Soc. Vict., 53, (1), (1.s.s.), 1941, cane to hand after the present paper had been submitted for publication.

[^4]:    * Species (not necessarily subspecies) oceurying in Kalimnan or Lower Plioceme,
    $\dagger$ Species previously recorded only from Rarwowian.
    ** Species occurting among "Murray Desert" fossils.

