TRANSACTIONS OF THE
 ROYAL SOCIETY OF SOUTH AUSTRALIA

 INCORPORATED
CONTENTS

Kott, Patricia The Ascidians of South Australia I. Spencer Gulf, St. Vincent Gulf and Encounter Bay 1
Harris, Wayne K. New form species of pollen from southern Australian early Tertiary sediments 53

TRANSACTIONS OF THE ROYAL SOCIETY OF SOUTH AUSTRALIA INC.

VOLUME 96, 1972

PART 1, 29 FEBRUARY

Kott, Patricia The Ascidians of South Australia I. Spencer Gulf, St. Vincent Gulf and Encounter Bay 1
Harris, Wayne K. New form species of pollen from southern Australian early Tertiary sediments 53
PART 2, 31 MAY
Preiss, W. V. The systematics of South Australian Precambrian and Cambrian Stromatolites. Part 1 67
Mawson, Patricia M. The nematode genus Maxvachonia (Oxyurata: Cosmo- cercidae) in Australian reptiles and frogs 101
Mawson, Patricia M. Three new species of the genus Cloacina Linstow (Nema- toda: Strongylata) from macropod marsupials 100
Schodde, R., Mason, I., \& Wolfe, T. O. Further records of the Pitted-shelled Turtle (Carettochelys insculpta) from Australia 115
Wollaston, Elise M. The morphology and relationships of Muellerena wattsii (Harvey) Schmitz (Ceramiaceae: Rhodophyta) 119
PART 3, 31 AUGUST
Smith, Meredith J. Small fossil vertebrates from Victoria Cave, Naracoorte, South Australia. II. Peramelidae, Thylacinidae and Dasyuridae (Marsupialia) 125
Mawson, Patricia M. The genus Acuaria Bremser (Nematoda: Spirurida) in Australia 139
Milnes, A. R., \& Bourman, R. P. A Late Palaeozoic glaciated granite surface at Port Elliot, South Australia 149
Tyler, M. J., \& Parker F. Additions to the hylid frog fauna of New Guinea, with description of a new species, Litoria timida 157
PART 4, 30 NOVEMBER
Kott, Patricia The Ascidians of South Australia II. Eastern Sector of The Great Australian Bight and Investigator Strait 165
Dubois, Georges, \& Angel, L. Madeline Strigeata (Trematoda) of Australian Birds and Mammals from the Helminthological Collection of the Uni- versity of Adelaide 197
OBITUARY: KEITH RODNEY MILES 216
Annual Report of Council, 1971-72 220
Award of the Sir Joseph Verco Medal 221
Balance Sheet 222
List of Fellows 223

THE ASCIDIANS OF SOUTH AUSTRALIA I. SPENCER GULF, ST. VINCENT GULF AND ENCOUNTER BAY

by Patricia Kott

Summary

A large and representative collection of Ascidiacea from St. Vincent Gulf and adjacent locations is discussed. Fifty-nine species are represented, of which Pyura scoresbiensis and Ctenicella antipoda are new to science. Ascidia aclara Kott, previously known from other Australian locations, and Aplitiium colelloides Herdman, previously known only from South Africa, are recorded from the area for the first time.
The fauna of St. Vincent Gulf is typically of the Flindersian marine biogeographic region, but includes several endemic species. Morphological characteristics accounting for the success of certain species and groups of species sharing a habitat are indicated.

THE ASCIDIANS OF SOUTH AUSTRALIA 1. SPENCER GULF, ST. VINCENT GULF AND ENCOUNTER BAY

by Patricla Kott ${ }^{*}$

Abstract

Summary A large and representative collection of Ascidiacea from St. Vincent Gulf and adjacent lactions is discussed. Fifty-nine specics are represented, of which Pyufa scorestiensis and Ctenicella amtipuda are new to science. Ascidia aclara Kotr, previously known from other Australian locations, and Aplidium colelloides Herdmar, previously known only from South Africa, are recorded from the area for the first time.

The fauna of St. Vincent Gulf is typically of the Flindersian marine biogeographic region, but includes several cndemic species. Morphological characteristics accounting for the success of certain species and groups of specics sharing a habitat are indicated.

Introduction

This large collection of ascidians, mainly From St. Vincent Gulf, South Australia, was made by Mr. S. A. Shepherd of the Department of Fisheries and Fiquna Conservation, South Australia. It is a valuable and representative collection and demonstrates the value of SCUBA collections of this benthic group from otherwise inaccessible localities. Colour notes made by the collector provide most useful data for comparison with the preserved specimens in which colours are generally lost or change completely. The large number of individuals of most species that are avallable in the collection has demonstrated a wide variability in certain characters and some synonyny has been established.

Information on the environmental conditions operating in various locations, also supplied by the collector, has been related to the morphology of the species present to contribute to an assessment of selective mechanisms affecting the ascidians. Full station lists of species are also given to facilitate consideration of the faunal associations and their ecological telationships.

The specimens are deposited in the South Austratian Museim.

The following species have previously been recorded from South Australia (Kott 1952, 1957a, 1962, 1963) but were not in the present collection.

> Polyclinum теріипіит
> Polyclinum marsupiale Aplidium flavolineanum
> Aplidium oustraliensis
> Lisioclinum ostrearium
> Dielemmum furritum
> Didemnum augusti
> Didemnum pseudodiplosama
> Trididemumm natalerise.
> Trididemnum cevebriforme
> Leptoclinides imperfectur
> Symplegma viride
> Styele lohata
> Asterocurna cerea
> Pyura stolonifera

Zoogeography

The fauna is typically that of the Flindersian marine region, together with Distaplia virtdis which is also recorded from Port Phillip Bay, Ascidia aclara which has been taken from similar sheltered locations on the Victorian, New South Wales, and Queensland enasts, and A plidium colelloides; previously recorded from South Africa. The new species, Pyuta scoreshiensis and Ctenicella antipoda, may be endemic.

The records of A, rolelloides from off South Africa and South Australia suggest a circumpolat distribution, as demonstrated for many ascidian species (Kott 1971a). A wide dispersal of laryae, however does not provide a satisfactory explanation for this pattern of dis-

[^0]tribution since, for successful sexual reproduction, minimal population densities of adults are requited. The existence of so many circumpolar species in the extant fauna may be the result af a slow rate of evolution and the persistence of relict forms in cettain areas.

Habit of the Ascidian Fauna

In the present collection, ascidians have been taken from a wide variety of locations, especially in St, Vincent Gulf, The terminology qualifying the conditions encountered is partly that described by Shepherd \& Womersley (1970) and Womersley \& Edmonds (1958), as follows:
(1) "Rough Coast Subformation" (R.C.S.) refers to coasts exposed to the southern ocean swell (wave periods $10-12$ secs.).

Water movement resulting from this swell is strong and pulsatile on the surfuce but decays with depth so that surge is moderate at 15 m and slight at 25 m depth.
(2) "Shehered Coast Subformation" (S.C.S.) (see Womersley \& Edmonds 1958) refers to sheltered coasts where there is no swell and the coast is subject to waves of short period (up to 5 seconds) which decay rapidly with depth. Much of the coast-line in both Spencer Gulf and St. Vincent Gulf is of this type.
(3) "Offshore Benthic" locanions are those away from the shore where water movement results from tidat current rather than wave action. In St. Vincent Ginff tidal currents are generally about $1 \mathrm{~m} / \mathrm{sec}$, except over Tapley Shoal where they are $1-2 \mathrm{~m} / \mathrm{sec}$.

Fig. 1. Map showing locations in and adjacent to Spencer Gulf and St. Vincent Gulf.

These different locations provide environmental conditions favouring an ascidian fauna of very varied habit. For each species its shape, or size, or mode of fixation, or growth characteristics appear to operate as selective mechanismis contributing to its success in the envirommental conditions aperating:
(1) In Rough Coast Subformations, at depths less than 15 m where surec io moderate to stiong (Wright \mathbf{t}., West 1.]. the dominant ascidian fauna is adapted to the conditions by virtue of their colonial form, their viviparous larvae, their usually well-developed cloacal systerns, and either
(a) an ericrusting habit providing a large surface area for fixation (Atapozoa fantasiand, Cystodytes dellechiajeh, Didemmum candidum, Leplocfinides ru/us. Lissoclinium sp., Oculinaria ansmolis. Borrylloides півли") : or
(b) smail staks or sessile habit and cylindrical body form enabling them to occupy sheltered crevices (e.g on Ecklonis holdFasts under ledges, etc). The stalks of these species are thick, and the colonies do not move freely with the currents (Podociavella cylinarica. Psendodisomat rereum, Riterelfu herdmania, Synoicium papilliferum).
(2) In Rough Coust Subformations, at 15 m and greater depths (Wright I.. West I.), the strong surge at the surface is reduced to moderate to slight water movement. Species with pliable stalks form a dominant eomponent of the ascidian fauna and are best able to exploit the changing direction of the water movements by moving with the water so that their branchial openings ate presented to the oncorming current which thus reinforces the ciliary feeding mechanism. Only some of these species have viviparous Jurvae (Borylloides magnicoecus. A. Veachl, Polycarpa pedunculata, P. claveta, Pyuru cuturulis),
(3) In Rough Coast Subformations, at all depths, are large species fixed by a relatively small part of their surface. At shallow depths, they appear to be more offen on vertical rock fuces or in caves, where firm fixation can be nehieved, while at greater depths they are on the bottorn (Polycior giganteum, Sevela pedata, Gnemidocarpa etherldgii, Herdinantia momus).
(4) Io Ofshore Benthic locations with moderate currents and sandy bottoms and some sediment. there are aguin, stalked species that are raised above the substrate and sometimes, by
virtue of a pliable stalk. move with the current so that the branchial aperture is presented to the oneoming flow (Aplidtum colelloides: Polrcarda clavala, Pyura vooresbiensis. Ps spinifera. P. ausiralis).
(5) In Oftshore Benthic locations with sluggish 10 slow currents, there are:
(a) Large species lying on or partly embedded in, or fixed to, rocky bontoms or to solid objects in sandiy, often mobile, bottoms. These iodividuals and colonies are oriented to take maximum advantage of the prevaiting current flow by differential growth nt the colony or of the cest, espacially in the region of the siphons (Sycazon terehisformis. Ascidia spp., Phallusia siepresmescula, Ctenicellar antipoda, Herdemanie momus). Sycozoa cercedriformis, which is abundant on the bottom, especialty in upper St. Vincent Gulf, has its "fans oriented to receive maximum current" (S. Shepherd, pers comme. Its stalk is thick, shost. and not pliable, and the species adapts to the direction of prevailing current flow by growth of the colony. In large sessite and partly embedded species, the orientation of the siphons in relation to the eurrent is ettected by their tifferential growth (e.g. Phallusia deprestiuseifala, Ascidia aclara. which is recorded only from sandy substrates in which if is probably partly embedded, is especially interesting in the presence of cylindrieal tubes round the apertures creating a constant micro-environment.
(b) Species with a leathery rest sometimes produced into soots, in a sometimes mobilc sandy hottom or attached to the fibrous roots of the sea-grass Posidonia ausirvis. These species offen form aggregates of individuals. (Polycarpa pedunculata, Pyura irregularis, P, vithatt, Halocynthia hispida, Microcosmus: spp.).
(6) In Sheltered Coast Subformations with shight wave action at the surface and no sediment. collections huve been made from 3 to 25 m. The species present represent all the groups previously distinguished:
(a) Stalked species common in Offshore Benthic locations and in Rough Coast Subformations where there is moderate to slight surge.
(b) Leathery aggregated specimens common at Offshore Benthic locations where the curfents are slight to slugish.
(c) Aplousobranch species which, in more exposed conditions, are present in shehered niches or erevices or have an encresting habit iPodoclavella eyfindricu, Destapla pirdes. Leplochitides rufus. Polusyncraton orbiculum, E'ehinoclinum verrillt, Ritterelle heramemia, Svhoientm papilliferum).
(d) The large stolidobranch and phleboheanch species which exploit cican (vertical) rocky substrates or protected lotations it Rengh Coast Subformations and which are also present in Offshore Benthic locations where the current is slight. These large individuals are mote often found at shallower depths and in less protected niches in these Sheltered Coast Subformations than in Rough Coust Subformations (Ascidia spp.. Rfyendramba inrcicumt, Corella eumyota, Herdmantu momus).

The presence of some of the larger phlebobrameh and stolidobtanch individuals at shallower depths in certain areas where surge is greater, bit where clean stony substrate is available for selffement, suggests that it is the strengit of the current flow in telation to the type of fixation which can he achieved that is the crotical factor in site selection for these species rather than depth or hight conditions. On the other hand, aplousobranch and stolidebranch encrusting species, and others whose shape enables them to exploit narrow erevices. caves and ledges, appear to be affected more by light and their depth range is more limited. These species occur at shalluw depths both in turbulent tocations and in Sheltered Coast Subformations, and are not often taken in Offshore Benthic locations. They all have viviparous I arvae and light semsitive organs which infuence their settement, and elficient adhesive apparatus which is needed where surge and uutbulence is great. They are also common in areas of gentle water movement, together with the large phlebohranch species not usually found at shallow depths in more turbulent areas.

Seventy-six species are now reconded from St. Vincent Gult and Spencer Gulf. "This indicates a great diversity of ascidian species and suggests that conditions may be especially favourable for them. Reconds are mure numerous, however from Gulf regions than from the "open" coast. probably because more collecting has been done in these locations. It is not possible, therefore, with the information available, to compare the faunal diversity on

The open coast with that in Spencer Gulf sud St. Vincent Gulf.

Suborder APLOUSOBRANCHIA Family Clavelinidat
 Subfamily or-avelininae

Clavelina baudinensis Kotr. 1957as 87. Millar T_{T} 1966: 363.
Nell Records: Carickalinga Head, Rapidt Hend Previous Records: W Aust, (Rottnest Island)-Kote 1957a, Vic. (Balnatring Beach, Tavertor Bay, Williamstown)-Kott 1957a; Millat 1966. Recorded from the intertidal to 6 m .
Deseription: Two or more Ilat-topped tabse of variable size, joined by a common bise that is equal in height to that of the lobes. Height of the colony to 4 cm , maximum diameter of at lobe 0.6 cm . The test is firm, gelatinous and transparent. Zuoids are blue Thorax rounded, 1.5 mm long: abdomen 2.5 mm long. with a well-developed posterior abdominal stolon. Zooids are parallel to the height of the colony. The bratuchial aperture, from the sntero-ventral corner of the thorax, is directed to the side. The attial aperture fron the antero-torsal corner of the thorax is directed vertically. There are 17 longitudinal muscles on each side of the body radiating from the apertures. 6 yentral to the branchial siphon. 7 extending along it, and 4 extending atong the atrial siphon. Dark pigment spots are present, anterior to, posterior to. and on either side of the base of the atrial siphon. There afe about 16 rows of about 30 stigmata in the branchial sac: Nine obscure indentations are present around the margin of the branchial siphom, athough the border of the atrial siphon is smooth and entire. The transverse vessels of the branchial sac expand into triangular languets as they cross the dorsal line. The oesophagus is long, the stomach twothirds of the disfance down the abdomen is rectangular with 4 folds. Each zovid projects slightly abowe the flat 10 p of each colong. Gonads are present in the gut loop-
Remarks; Clavelina maturensix Tokiokis. from the Arafura Sea. has similar colonies with zooids opening on the upper surface of the lobes, but is distinguished by the presence of distinet transverse muscles. Oxycoryntid lascicularis Tokioka, 1952, also has similar zooids but there is a smooth stomach and zooids open all around a stalked head, thus dixtinguishirig it from the prevent species. Two different types of larvac have heen described from specimens
previously ascribed to this species, and it has been suggested (Kot 1969) that some colonies may in fact have been colonies of species belonging to the genus Pyenoclavella, distinguished from Cluvelina by the fertilisation of cggs at the base of the oviduct. Those colonies with large numbers of eggs sit the same stage of development in the peri-branchial cavity and apparently fertilised there, belong to the genus Clavelina as described. No other distingujshing character has been identified and as neither developing eggs nor larvae were present in these colonies, this point has not been claritied.

In St. Vincent Gulf the species is taken from sheltered locations where surge and wave action is slight. The record from Rottnest I. (Kott 1957a) is from the intertidal area where it could sometimes be subjected to surge and wave action typical of the Rough Coast Subformation. In such localities it would be found in shelered cavey and erevices as it forms large soft colonies and is unlikely to occur in atheas where it is exposed to sand or wave action. The red colour of the preserved specimen from Rapid Head is probably the result of contamination front a sponge on which the specimen whis growing, ats all other colonies are hluish in preservative.
Podoclavella cylindrica (Quoy \& Gaimard). Koti, 1957n: 91. Millar, 1960: 64: 1963: 716; 1966: 364.
Polyctinum cylindrica Quoy \& Gaimard, 1834: s. 18.

Claveling cylindrica. Michaelien, 1930: 475 and synonymy.
Nem Records! West Beach. Hallett Cove, Port Noarlunga, Aldinga, West 1. Coedipus Point), Wright I. Previour Records: W. Aust. (Albany to Rottnest I.)-Michaetsen 1930; Kutt 1957a, Millar 1963. Vic. (Westemporl, Port Phillip Bay. Bass Strait Quoy \& Gaimard 1834: Millar 1960, 1963. 1966: MacDonald 1858.

Fig. 2

Deseriphions Zooids separate, joined by common basal test ino which posterior abdominal stotons extend. Occisionally zooids branch off around a central common axis (Wright I.). In immature colonies from Aldinga reef "drop ofl" there is a central vascular stolon extending up into each lobe and very numerous enlarged terminal ampullac surrounding the central vessel along its length. The abdomen may be equal to or less than the length of the thorax. When the thorax is contracted along the dorsal line, the oesophagus originates fron half way along the length of the thorax.

There is a dorsal pigment spot at the base of the atrial siphon, and some pigment on either side of the dorsal line at the base of the branchial siphon. The atrial aperture is terminal with a funnel-shaped siphon. The branchial aperiure exiends laterally from the anteroventral corner of the thorax. Ahout 20) muscles croos the thorax obliquely front the ventral to the postero-dorsal camer of the thorax and continue along both sides of the abdomen. When the dorsal line of the zuoids is strongly contracted, the muscles on the ifiorax lie almost at right angles to the rows of stig mata. The oesphagus is long and there is it prestomach swelling halliway along Its length. The stomach is large and squarc, Clumps of 18 or more embryos are present in brood pouches formed at the postero-dorstl torner of the thurax. Gonads are present in the gut loop, Larme: About 1.2 mm lang. Anteriorly thene is a llat fronlal plate hearing three adhesive pupillac with accessory cup. arranged in at triangle. The larval thorax is characteristically decp.
Remarks: This species is especially common. The relatively short abdomen, the prestomach. the form of the colonics, and the presence of pigment spots on the anterior past of the thorax are characteristic.

The colonies fourish only in protected caves or erevices and generally from-vertical faces in areas where there is no sill or sediment. It the Rough Coast Subformation. the species is found at depths of $10-22 \mathrm{~m}$, and in the Sheltered Coast Subformation at $3-10 \mathrm{nt}$ deep,

Podoclavella moluccenns Sturter, 1904: 5, Hastings. 1931: 82 and synonymy Koti. 1963: 90.
New Record: Tipata Reef (Spencer Gulf).
Previous Records: W. Aust. (Cape Boileau.
Garden Island, Rottpest 1.)-Sluiter 1895:
Kott 1963. S. Aust. (Port Lincoln)-Kot 1963. Qld. (Great Barticr Reef)-Hastingy 1931.

FIG. 3
Descriphion: The colonies form extensive mats consisting of a basal membrane supporting a dense array of upright lobes, each consisting of a single zooid enclosed in a soft transpiretst test. Occasionally the basal half of adjacent lobes is fused. The zooids are pale to dark bluc and there is no spectial accumulation into specific pigment spots around the apertures. The zooids are closely iutherent to the rest and extena the full length of the free lobe for

Fig. 2. Podoclavella cylindrica, (Hallett Cove. 8 m). Colony.
Fig. 3. Podoclavella moluceensis. (Tipara Reef). Thorax showing museles.
Figs. 4, 5. Atapozoa fantasima, (Wright 1.). Fig, 4.-Contracted zooid. Fig. 5.-Zooid with brood pouch and embryo.
Figs. 6, 7. Distaplia viridis. (Reef of Hallett Cove, 8 m). Fig. 6-Z Zooid with mature 9 gonads and brood pouch. Fig. 7-Zooid with mature σ gotidds.
Figs. 8. 9. Polycitor giganteum. (Port Noartunga). Fig. 8.-Immature larva. Fig. 9.-Mature Jarva. Figs. 10-12. Endistoma renieri. (Wright I., 10 m). Fig. 10.-Zooid, Fig. 11.-Immature larva. Fig. 12.-Mature Jarva.
their whole length. The atrial aperture is terminal and the branchial aperture from the antero-ventral part of the thorax is inelined at a slight angle to it but is not recurved. There are about 30 transverse muscles extending from the ventral to the dorsal border of the thorax and anastomosing with one another both vensrally and dorsally. About 6 of the most anterior transverse muscles extend from the short siphons to cross the dorsal line. The most posterior transverse muscles terminate around the region of the ocsophagus. No muscles were detected on the abdomen. There ate 17 rows of ahout 50 stigmata. There is a small prestomach entargemem half way down the ocsophagux. The stomach is smooth walled, large and rounded half way down the abdomen.
Remarks: The specimens ire easily confused whith Podaclavella cylindrica, from which P. moluccersis is distinguished by the extensive basal membrane. the abxence of a recurved hranchial siphon, the very large number of transverse muscles which do not extend along the abdomen, by the close adherence of the body wall to the lest. and by the absence of distinet pigment spots around the apertures.

Shepherd (pers. comm.) states that this specier at Tipara Reet is seasonal, appearing in carly winter and dying off duting carly summer.

Subfamily holozoinae.

Atapozoa fantasiana (Kott)
Eudhsuma fantasiono Kntt. 19573: 76; 1967: 187.

New Record: Wright I. Previous Records: S. Aust. (Recyesty 1.)-Kott 1957a.

$$
\text { FIGS, 4, } 5
$$

Description: Flat itregular investing colonies about 0.5 cm thick. Test soft, jelly like, semitranspatent. Both apertures of zooids open separitely to the exterior. The postero-dorsal aspect of the peribranchal cavity is expanded into a brood pouch with two embryos at different stages of development. Black pigment is scantied throughout the test, but the colony is a light purplish colour. Zoolds up to 3 mm in length. Zooids have 16 to 20 fine longitudinal muscle bands forming a wide open meshwork with the transverse bands on the tharax, There are 3 rows of up to 25 elongate stigmata: the ocsophagus is long, the stamach strooth and oval, and there is a rounded posterior stomach. The apettures are sniall and the 6 labes of the margins lindistinct.
Lurvec: Largc, as previously described, with
characteristically slongate areas of adhesive cells.
Remerke Even in the absence of the completely distinctive larvae and brood pouches, athe species is characterised by the closely set spertures and short atrial siphon, by the open meshwork of muscles on the thoras, by the comparatively short zooid, and by the very large namher of stigmata in each row.
Distaplia viridis Kot, 1957a: 96. Millar, 1966: 365.

New Records: Hallen Cove. Port Noarlunga Reef, Carickalinga Head Previous Recordr. S. Aust. (Victor Harbour, Reevesby 1.) Kott 1957a. Vic. (Port Phillip Bay)Millar 1966.

FIGS. 6, 7

Descriphion: Living colonies from Hallett Cove had a transparent matrix with orange zooiss. While these specimens are groenish in preservative due to the greenish colour of the enclosed zooids. Preserved colonies from Port Nourlunga are also grecrish but the living colonies were blue-black with white markings. Test is semi-transparent and very solt. Zooids closely placed more or less in double rows. Colonies are irregular and investing about 4 mm thick. The surface is always smooth. There are no sand inclusions. Common cloneal upertures are randomly distributed over the surface of the colony and zooids are arranged on either side of very shallow and narrow common cloacal canals. A brood pouch is developed from the postero-dorsal cornes of the thorax and contains only a single embryo. The atrial lip is sometimes tridentate at the tip with a longer median lobe. This, however, may be abscured is the atrial lip is widely extended. In younger colonies the zooids may be in circular systems. of 5 to 14 zooids. There are 4 rows of stig. mata with para-stigmatic vessels. The sinmach has glandular folds internally but externally is smooth. There are about 10 testis lobes in a rosette in the loop of the gut, and a single egg protrudes from the right side of the abdoment. A conspicuous gastric reservoit is also present in the loop of the gut.

The single embryo present in the hrood pouch is as previously described. The tail of the larval form is especially shot and extends only half way along the ventral surface. The farval lest has a foamy appearance.
Remarks: The species conforms with specimens previously taken from Victor Harbour and Reevesby I., South Australia and the pre-
served colonics have the same grecoish tinge in formalin resulting from the colous of the zooids. Colours present in the livine specimens, however, appeas to vary. The single embryo in the brood pouch is apparently characteristic of the species which is common in St. Vincent Gulf and Spencer Gulf nlthough is has not heen recurded from other localities.

Sycozoa serebriformis (Quoy © Gaimard). Brewin, 1953: 58 nid synonymy. Kott, 1957a! 99. Millar ${ }_{4}$ 1966: 365. Aplidie vereluriforme Quoy \&e Gaimand: 1834; 625.

New Rerords: Off Trouhridge 1. Orontes Bank (off Port Vincent), upper St, Vincent Uull, Halletc Cove, Carickalinga Head. West 1. (Toad Head), Wright 1. Previous Retords: Nonh west Aust.-Hartmeyer 1919. S. Aust. (Victor Harbnur, Port Linculn)-Kott 1957a; Canlery 1908. Vic. (Balnarring Beach. Westernport, Point Lonsdale) - Quoy © Citimand 1834: Caullery 1908: Michacken 1924; Kott 19573; Millar 1966. N.S.W. ICunnamatta Bay. Jervis Bay, Port Jackson, Port Stephens) - Herdman 1899; Kotl 1957a. South Africa-Hartmeyer 1912; Michaelsen 1933a
Bescription: Colonics from fan-shaped to curved lamellac. Zooids arranged in (louble rows down both sides of these lamellac, branchial apertures opening to the exterior Cloacal aperturex, however. as is ustal in this genus, open into common cloacal canals ex. tending vertically down both sides of the colony. These cloacal canals open separately around the edge of the narrow flat top of the colony.
Remarks; In Sycouza sigillinuiden leessot, from the Antaretic (sec Millar 1960; Kott 1969), it has been foumb that the cusmmon coloacal savio lies open into a ring canal mund the gnterion emul of the colony and this ring canal is part of a common cloacal cavity onening by a terminal aperturc. Brewin (1953) characterised the genus Symana by the condition of the cloacal camads opening separately around the anterion border of the colony, Roth Miltar (1960) and Kott (1969), working with specimens of Sycouna sigillinnider from the Ansarctic, did not accept this interpretation of the cloacal openings and suggevted that Brewin's colonies were diztended to expose the openings in the cloacal cavity. Brewins observations for both Sycozon cerefriformis and far. S. senuicaulis ate accurate. 'The situation in S.
sigillinoides; however, indicates that separate openings of the canals is not a character shaned by all species of the genus syonzod.

Colonies have been observed with their wide fins. from the short, stardy stalk, oriented bit ward the oncoming current (\mathbf{S}. A. Shephent pers comin.). The stalk is not nexible as in S. Jenulcaulis, and the orientation of the colony is unlikely to ulap to changes in direction of current flow. The species is mest cummon athached to shell or rock surfaces at locations where there are slow to sluggish cursents, and where the light intensity is not great due 10 depth and sediments, Larvae have an utolith but no ocellus (Caullery 1908). They have relatively short tails. their free swimming existence is short and they are probably not strong swimmers.

The species thesciore is well adapted 10 ant existence in lucations with show to sluggish currents where it is most commonly found, The low light intensity it these stations, due to depth or sediment, is ecoincidental and wot likely to directly affect settlement of these lightinsensitive larvac.

The specins is laken from the Rough Coast Subformation at Werit and elsewhere in conditions of moderate surge, either at depth or in crevices, or under houlders where it is prolected. Again. the low light intensity is only coincidentat with the nccasional oecutrence of this species in these situations where light sensidive aplousohranch larvae that are atteucted into shate are more common.

Sycozoa temuicaulis (Herdmart). Brewir, 1953: 57. Kont, 1957a: 99. Millar, 1963: 707. Covella tenatambis Hesdman. 18 ged bit Now Record: Off Broadwny, Previons Recordf: W. Aust--Millar 1963. Vic. (Port Phillip Bay. Lakes Entrance:-Koll 1957a. Millar 19G3. Tils. (D'Enuecasteux Channel, Fumeaux Group)-Millir 1963: Kott 1457, N.S.W. Botany Bay. Jeryis Bay. Broken Bay, Port Stephens, Port Jackwon)Herdman 1899: Millar 1963; Kott 1957a.
Descriprion: A single colony only is available and is the usual flattened inverted cone. fixed by a lone stalk with busal hair-like motlezs. Zonids are present in closely set double rows along the length of the head. The longitudinal common cloacal canals extend the length of the bead between efich double now of rooids and open by a wide opening around the outsicte margin of the flat iop of the head as freviously descrited by Brewin (1953).

Remarks: The observations by Brewin on the separate cloacal openings around the top of the head are confirmed in the present colony. The species is distinguished from the superficially similar Antarctic species. S. vigillinoides Levson; by these separate openings of the common cloacal cunals, which, in S, sigillinoides open into a terminal chamber with a single common cloacil opening on the centre of the upper fyee surface of the head (Millar 1960: Kott 1969). The species are also distinguished by the flattened head and by the tuft of hair. like noots in S_{2} femuicuulis (see Millar 1963).

Records of S. feruicratis are confined to Australia, and at present the species is known only from fairly protected bays. It is possible therefore that its isolation has resulted in spe. ciation separating it from the more widely disiributed circum-polar S. sigilinoides. The latter is also known from South Australian loca. jhiles (Kott 1969),

Brewin (2953) states that all records of this species are from deep water, Although this is not strictly accurate, there are indecd no records ayailable from the inter-tidal region. Specimens have been taken from at depth of 4 m (Millar 1963) to 50 m (Kott 1967).

Shepherd (pers. cormm.) has observed that it is fairly common at sub-littoral locations in deeper water, with tidal currents up to 0. 5 $\mathrm{m} / \mathrm{sec}$, fone knot/. The larva of this species does not have a light sensitive ocellus (Brewin 1953) and would he at disadvantage in seeking suitably protected locations for setflement in waters where there is appreciable wave uction or surge but, like S, sigilineides isee Kot 1969), is, well adapted for an existence on the sax floor.

Family POLYCTCORIDAE

Polycitor gigantemm (Herdman).
Polvilinum sigaricum Herdman, 1889: 79. Potoclinum globowum Hendman. 1899: 80. Polycifor gciarimusu Kott, 1957a: 83. Mon Palycitar xigantrom Sluiter. 1919: 10 1Diasma giganteums Sluiter).
New Records: Tapley Shoal, Hallett Cove. Port Noarlunga, Aldinga, West I. (Toad Head), Wrighe 1. Previous Recordy: W Aust. (Rotinest 1.). S. Aust. (Port NoarJunga). Vic. (Balnarring Beach, Lakes Entrance, North Brighton)-Kott 1957 a . N.S.W. (Jervis Bay, Port Jackson)-Herdman 1899: Kotl 1457a.

FIGS. 8. 9

Description: Large fan-shaped or rounded lobes of varying size; sometimes smaller lobes occur logether fixed to a common basc. The test is firm. gelatinous without sand inclusions. and is semi-transparent and almost glassy in appearance. Zooids can be seen radiating from the basal constriction ot the colony to oper an the rounded upper surface. Living zonils are cream to bright orange but are pinkish in preservative. The diameter of the colony is gradually reduced toward the base where f is fixed to the substrate. In the colony from Tapley Shoal, two lohes branch from a common base and the test of the upper part of each late is coalesced. There are 15 longitudinal muscles per side continuing ass 3 bands along each side of the abdomen. The stomach has 4 folds and there are $10-12$ rows of 22 to th stigmata.

There are 3 to 9 developing embryos in the atrial eavity and in the distal portion of the oviduct. Larvae are large, about 1.2 nmm and large ampullae develop around the base of the 3 median papillae is previously described for P. siganreum.

Remurks: A je-examination of the type specimens of P_{s} gelatinosa from Rottoest l.o has shown that the colonies are slighty smaller than most colonles of P_{1} giganieum. The zooids and the lest are, however identical with thase of P. gigameum. Further investigation of larvae from typical colonies of P: giganteam has also shown that in the less mature Jarvae the antcrior ampullac ure not developed and these Jarvae appear identical with those deacribed for P. gelutinosa (Kott 1957a). As there is so much variation in the shape and size of colonies of P. हigarreum. from spherical individual lobes to numerous pyriform tobes from a common base, this cannot be regarded as a valid character on which to separste the two species. The gelntinous test, latge zooids and larvae are chanacteristic.

[^1]Elescriminn: Rounded lohes, narrowing to warde the base where the test expands into a basal plate from which several heads may rise, Sand is absent from the unter 5 mm of lest on the upper half of the colony but is present internally and is also present through the test in the hasal lialf of the lotics. Maxinum dia. meter of head is 4 cm . The lent is firm and gelatimous. The colony is grey in preservalive, 7.ooids are present, upening over the upper surfuce of the head. They are arranged th circular systerns, with the ahnal apertures opening separatcly in is circle in the centre of the auker circle formed by the branchial openings. Each itrial aperture is protected by at lobe of lest that covers the opening from its dorsal surface and it appears that the excurrent stream from each zooid would the directed towands the eentre to reinforce the excurtent stream from zooids in the same circular system. The incurfent ciliary stream is probably drawn from an aress inmediately adjacent to the hranchial aperture. This arrangement of apervares jefrextnks a stane before the developmeat of true cloacal systems.

7 onids ure 5 to 7 nm long, of which ihe thotid is only. I mm, They cross one anothes in the test. Both siphons are well developed, ameriorly directed. and are surmunded with sircular museles to form a distinct sphincter. The atrial sphincter is especially well deve1npeif. There are about 20 jongitudinal museles. on the thorax although thene may be redued (a) 12 in contsucted specimens. The lransverse musculature is Tiirly xtmong.

These are 3 rows of about 9 to 12 kignala. The stomacls is smonth and lounded and in contrated specimens the intestine behind the stomach forms in "S" hend as previously deserihed for this species. The recturn losms the ascending limth of the gut loop.
Remurks: Specimens of Tudistoma are notorionsty dificult to characterise and the variable condition of the intestine in the present spectmens suggests that this feature. previously regated is a diagnostic feature is dependent on the degrece of tontraction of the abdomen. Specimeris identificed as fr. pyriforme from Henon I, and Norlt West I. (Capricom Group) have been examineri. Zooids are artanged in similit systems to those described ahove, atthough these may be obseured by sand in the surlace lest: the proximal part of the intestine forms cither an " S " hend or-s loop, and pig. ment is prexent ill splerical colls in the surface lest. Despite the variarion in the external
appearnnces of thece colonies they all appear to belong to E. pyriforme, characterised mainly by the condtition of the sharacic musculature. the loing oesophagus. the atrial sphincters and the arrangement of woids in the colony. These characters ate. to some extent, shared by ather species and it is possible chat mose than a single species is sepresented by the records ancrihed. fo this species.
Eudistoma renicri (Hartmeyer). Michaelsen, 1923a: 10. Kote TH57a: 74. Millar, 1962: 160.

Pohlefint penion Harpmeyer, 1912: 3199.
New Record: Outside Wight I. Previores Records: W. Aust. (Point Peron) Kols 1957a. South Africa-Hartmeyer 1912: Michaelsen 1923a: Millar 1962,

FIGS. 10-12

Descripion: Fleshy investing colony, 0.6 cm thick Text semiotransparcht with reddish to black pignent celis in strealss on the surfice. The surface of the test is smooth, without forcign bodies or sand, and is stepressed over the zooids. Zonids are arranged in circles of about 4 mm diameter the brinchial openings around the periphery of the circle and the atrial openings toward the cenire, protected by lobes of test. The atrial openings are in a pigmentfree area. The kowids do not cross one snother in the lest. The abdomen is about twice the length of the tharaxi. The alrial aperture is on at eylindrical siphon which is about three times the length in the hrinchial xiphon. The body wall is farity muscular with at least 12 longiqudinal muscle hamis of 4 to 5 strands crossing riumerons transverse bands. The longitudinal bunds appear in separate out into scparate serands. When not so strongly contracted, the sircular muscles around the utrial siphon are strong and conspicuous allhough they are spreat along the siphon rather than forming of large sphincter muscle. There ars shout 20 long rectangular stignata in each paw. The rounded smoth stomich is halfway down the atatomen. There is at long duodenal area nond a short round posterior stomach. The part of the iniextine distal to the stomach is sometimes kinked in contracted specimerns. The gonads are in the gut loop. There is an expansion from the dorsal aspect of the posterior end of the thorax accommodating a loosp of the oviduct with one la two embryas, and although the brood pouch is not sepamted from the thorax by a narrow stalk as in the true brond pouch of the Holozoinae, it is sstucturally homologuas.

Che laryae are about 1 mm long, typically polycitorid, with the 3 median papillac developing on shoth stalks from depressions in the centre of rounded swelings around the anterios end of the larva. The margins nt these depressions become attenuated in the middine to form median ampullae at the base of the papillary stalk. The area of adhesive cells in these papillac is tengthened longitudinally to different extents for each papilla. This lengtbening is reminiscent: of the condition in Afapozod larvae.
Remarksz Distinctions between Eudiszoma spp. are not alogether sutisfuctory and nany characters such as the body musculature. length of gut, and looping of the intestine, all vary with the degree of contraction of the body. The present species is idenified by the gelao tinous nature of the fest, by the targe number of stigmata, by the long oesophagus and the position of the slomach mid-way down the abdomen. The extended adhesive areal of the larval papilase was not recognised previously (Kott 1957a). A re-examination of Nolls specimens from Point Peron, Western Australiar has demonstrated that dre papillae are identical with those in the present collection. This character therefore appears to be distinctive for the species.

The zooids of the Australian specintens resemble Harmeyer's (1912) South African specimens, although the colony of the South Austratian specimens is thinner. Millas's (1962) specimens appear to differ in mants chatacters, however; rotably in the reduced sire of the thorax. in the position of the stomach at the posterior end of the ahdomen. in the number of muscle bands and rows of stigmata in the length of the atrial siphon, and in the eylindrical form of the colony.
Cystodytes dellechiajei (Della Valle). Kott. 1954: 154 and synonymy. Tokioka, 1950: 120. Millar, 2953: 2R4; 1960: 82; 1962: 143: 1963: 713: 1966: 365.
Distoma dellechiajian, Deltis Vitlc. 1877: 40. ? Apliditum lobatum; Delle Chiajc. 1841:30 (not Savigny 1816).
Cyspodyres dellachaine Kotl 1997a: 68. Cysundytes Delle C'hiajci. Pénés, 1948: 171.
Nen Record: West I, (near Penguin Rack)
Previous: Rerords; W. Aust (Dampier Archipelago to Alhany)-Michaelsen 193n: Kott 1954, 1957a\% Millar 1963. Vic. (Port Phillip Bay. Barwon Heads - Millar 1966. Tas. (Maria Jo)-Knti 1954: Pacific (Palao 1s.)-Tukinka 1950. New Zealand (North
L. Chatham is, -Michaelsen 1924:

Brewin 1948, 1951, 1952a; 1956: Millar 1960, Californa (Coronade I., Paerto Esconido)-Van Name 1945. Indian Ocean (Ceylon)-Herdman 1906. Medittepanean -Della valte 1877; von Drasche 1883: Lahille 1890, Harant 1925. 1929. Africa (Mozambique, Gold Cons. Camesoons. Sene-gal)-Michaelsen 1915: Péris 1948: Millar 1953. 1962. The species is also known from the Allantic Occan, slong the cast coast of the American continent from Paagonia (Millat 1960) to the Caribbean and from the Azores (Michaslsen [923:1), the Cinalry 1 (Hartmeyer 1912) and Virgin Js. IVan Name 1945). It has been taken intertidally and to a maximum depth of 736 m (ofl Hracil. Herdman (886).

Usscrimtion: Irregular investing colonies. Living colonies gurple with colouriess "splotches". but in formalin the colonics are hrown with white blothes where zooids are present in the test surrounded by the calcarcous spicules thal are typical of this species. The species is especially constant and the present colonies and zooids conform exictiy with previously described specimens. Larvat are present in hroed pouches attachet to the parent zooid or trec in the test. The larvac have the usual large papillae surrounded by ectodermal ampullitic which have conalesced distally to form a circle around the papilla as described previously for the species (Kntt 1954. 1957a).

Temmily POLYCLINIDAE
 Subfamily ruherbmavinate

Ritterella herdmaula Kott, 1957a; 102 (nom. nov.): 1963; 78 and synonymy.
Now Rerord: Port Noarlunga. Previous Reconds: W. Aust. (Green Pools)-Koll 1957a. N,S.W. (Newpoth. Port Jackwn, Wattamolia -Herdman 1899; Kott 1957a. 1963.

FIGS. 13-17

Description: Sandy finger-like lobes joined tasally. The lobes are long and slender, spoonshaped terminaliy, with itn 5 zooids in each lobe. The hranchial apertures open into the concavity of each Johe and the utrial apertures open round the convexity of the anterior tin of the lobe: Both aperiures are 6-lobed and on very short kiphons. The branchial aperture is terminal and the atrial aperture rises from opposite the first row of stigmata. There are circular siphomat muscles, bery deliente longitudinal musiles and some weak transverse
muscles on the thorax. There are five rows of N fo its sligmatit in the branchiat sac: sometimes, in the larger zooids, parastignatic yessels the prevent in some of the rows of stig. mats and appear to bisect them horizontally to forth extra pows. Tpiangular langucts are present in the mid-dursal line expanded Irom both the transverse vessels and the para-stigmatic vessels. Smaller roumbed papillace are atso present in the midde af each transverse vessel on either site of the branchial wac: These papillae have not previously been descrihed for this genus. The fact that they do not arise on the parastigmatic vessels suggests that they may be present as relices of papillae supporting longitudinal vessels in the branchial sac and homolugous with the papiltae present in the Anturetic genus 7yohremehion.

The condition of the stomach variex according to ith degrec of contraction and when extended there are apparenty four to six stomach folds. but these are not always diso zinct. Four folds sometimes appear to be present only in the anterior part of the stomach There is aiso a small posterior stomach is previously described. The posterior abdonten may he very lung and threaddike and testin follicles ate arranged in it in a single row. The extended thame and nbilumen wgether masure 4-5 mm. The posterior abdomen is considerathly longer

Larvice are present in the thoracic cavity of some of the zooids. They have 3 anterion napillae in the median line alternating with paired anterior ampullae. Dorsally and venifally paired rows of ampullary vexicles extend postefiosly. Thare is an otolith and ocellus.
Remerke: ' The Vuriations in the number of rows of stigmata resulting from their hisection by parantigmatic vessels and the increase in the size of the zooid-bsaring lobes, both of which uscur with increasing maturity suggests that confusion coutd arise regarting the identity of specimens assigned to this and to related. species. Pant al the type colony of Ruterella usymetcetrea Millar, 1966. from Port Phillip Bayp has been examinex. The externat appearance of the colony sesembles R. herdmania and the 10 roww of stigmata could have resulted from the bisection of 5 primary rows by para. asigmalic vessets, as the triangular dorsal lan-gucts-are of two altarnating sizes. There are rim papillate on the transverse vessels in Millar"s species, howevers and the stomach folds are alxo distinctive.
tive primary sows el stigmata appear to be characteristic of most Rinerella spp. although the number cisn be incerased prohably by subdivision with parastigmatic vessels which subsequently are not distinguished from primary eransverse vessels. Rinerella herdmumia, R predunctutate 'Tokioka and R. vesteres Millar. 19611 (frum North [. New Tealand) have parastigmatic vessels and sometimes jnercased numbefs of rows of stigmati, \mathcal{R}. protijerus (nkai) $1 \rightarrow$ R. dispar Kott, 1957al from Japan and from the central gast conast of Australiat \{see Tokioka 1953x; Kott 1957, 1963), and R. wisilliroides Brewin. 1958is from Stewast I. bave only the 5 primary row of stigroata and no parantignatic vesacts: R. assmmersea Millar has increased numbers of rows nt sligmata and apparently no parastignatic vessels.

The type species of the genus Esherdmania. E. Cluvilormis (Kitter) (sec Van Name 1945). together with E. nolidm Millar. 1953 from the Africtan Gold Coast. E. vierezt Millar, 1961 from Brazil, and E. dizikarn Millar, 1963 Jrom borthwestern Australia are easily distinguished by a long oesophagus, a large number of rows of stignata and the absence of parastigmatic vessels and, where their farvase me known, hy the modified adhesive organs as described for this genus and for Placernela spp. (Kot 1969). Eatherdmania cumstalls Kott, 1957a, however. From South Austratia, Victuria ind New Sunih Wales, has a short ocsophagus. 12 10 13 sows of ktigmata, parastigmatic versche, zanst a papillan in the midde of the transverse vessels no each side of the body. It ix dsinguished from R. herdmanta by the single zooid in each lohe of the colony, the ahmence of stomach folds. the number of rows of stigmaka and the levif follitev which ante bunched in the posterior abdomen.

Larvede are known for R. poliferus and R. herdmanich, and are typically polyelinid whith ampulary vesicles.

In the present species and in fi. nuxtralis the panillae on the transverse vessels are reminiseent of Tylobronchion and related genera. and probathly represent a primitive chazacter.
Pseudodistoma cereum Michaelsen, 1924: 364. Kott, 1963: 77 and kyonymy. Monniot, 1969: 437
New Record: Nora Creina Bay. Previous Records: NS.W. (near Eders-Kots 1963. New Tealand (Stewart I. (Patcrson Inlet), Foveaux Strnit Oragu cuast, Büle Papanui. Gireat tiarrier 1.)-Michaelsen 1924; Brewin

1950c. 1958. Atamac Ocean (Dakar)Muntiot 1969. The species is knownt inter. tidally and down to 87 m .

FIGS. $1 \%, 19$
Disu ciprine: Soft. getalinous, yemi-tenaparent. rounded of cylindrical hends of slighty greater diumeter than the more letthery stalk of up os 5 cm lengh. In some specimens the stalk is espanded into a thick mat from which numerous heads arise: The rooids are numerous and open nll ground the head by separate f-lobed branchial and atrial openings. The cumbacied thoray and abdomen logether measure only 2 cm . Fine fongitudinal masele bunds on the thorax number 20 in .30 and thete extend along both sides of the abdomen. There are 15 to 20 rows of sligmata in each ot the 3 Jows. The 4 stomach folds are obscure and may be dutefacts resulting from the collapse of the stomach. A duodenal swelling and a rounded posterior stomach are also present. There is a long ovary, with numerous eggs more than halfway down the abdomen, hut no terais polliclen were present in the colonles from these stations, Thefe is a single developing cmbsyo in a brood pouch from the postero. dorsal corner of the thatas.
Remburks; The sencral form of the colonies. arrangement of body musculature the branchial sac, gut and the situation of the pyary some distance down the nösterior abdomen; all agre with the previously deseribed speciment. All other species of the yonus have a similar situation for the ovary some distance along the posecrior abdomen: Pa ufricturm Millar. 1954. 1962, P. fragilia Tokiok. 1958: P. cymasense Péres, 1952: \%. untinbola Tokioka, 1949; f. up̈ctas Brewin, 1950c; Po bivient Pérès, 1949. The stalked colonies of P. africanum are also reminisent of the present species in the presence of a single developing embryo in a thotacie brood pouch and ace distinguished only by a smaller number of longitudinal tharacie museles. As there has been considerahle variation demonstrated in this character. the distinction is father doubtial, and the species or its zelatives: appear to have a wide circumpotar distribution in the southern semperate. region as Monniot (1969) has alresdy indicated.

Subfamily malyclinimate

Aplidium plicilerums (RedikorzzW) Kott. 1963: 10h
Amarohciun sififerimm Redikotzey, 1927: 190. Tokiokit, 1953a! 183; 1962: 2: 1967: 32. Aplidium phartas. Millar, $1966: 359$.

New Records: Troubridge Shoal, Halleil Cove. Previons Records: W. Aust. (Pnint Peron, Rottnest 1.) Kott 1963. Vic. (Prort Phillip Bay)-Millar 1966. Japan (Coastal Water of Honshu. Shikoku and Kyushu and the Inland Sca)--Redikorzev 1927; Tokioka 1953a, Hawailan is. (Auau Channel)Tokiuka 1967.
[FG. 20
Descriphiont Rounded, meft. sessile colonies. I cm in diameter. In life the colonics are brighe yellow. The surface of the colony has deep durrows marking it off into extensive romaden arcess with up to 3 common cloacal openings from which douhle mow systems rudialte Test transparene. zooids orange in the liying specimen. Thorax and ahdomen are of cyual dength and logether measure 2.5 mm . The posterior abtomen is Jong. up to 8 mon. There are a well-defined branchial lobes, a strong circular hranctial sphincter and 8 fine longitudinal mutcle bands which extend down each side of the thoras: The upper border of the atrial opening is extended into a small pointed lip somelimes isidentate There are 8-10 rows of ahout is stizmata. The oesophagus is long and the stomach, about half way dows the athdemen, has 191025 well defined follts. There is is duodenal swelling and a small posterior shamich. Two developing eminyos are preseni in is brood pouch lormed by the expansion of the distat end of the bviduct as the postcre. dorsal cotner of the thorax. The ovary is preseat about halfway down the posterior abdo. men and asingle series of pyriform testis lobes attached to a single duct are present behind the ovary. Larvac have the usual three median suckers with three ampulise heaveen the suckers and many small ampulary vesicies in two rows from erch lateral line as described previously for specimens from Western AllsIralia (see Koll 1963),
Renlupks: The species is closely related io Apli. dition phortax (Michaelsen) from Now Zealand, which has a similar number of fine longi. cudimal muscle bands, and stomach fold and also hisk a brood pouch. Consequently. thene has been some conlusion hetween these species. Uniontunately, Michaelsen (1424) did not describe larvac from his species. Aplidiunt plicifertm (sce Kott 1963) from Western Ausiralia has smaller zooids thorat and abdomen together aboul I mm long. posterior abdomen 2 mm) and are denvely distributed in the test. largely obocuting the systems. In Apliditim phorfal (fee Kot 1963) trom eastern Australia

Figs. 13-17. Ritterella herdmania, (Port Noarlunga). Fig. 13--Young zooid, contracted thorax, Fig. 14.-Extended thorax of young zooid. Fig. 15.-7.oid with contracted thorax showing parastigmatic vessels, Fig. 16.-Thorax of more mature zooid showing parastigmatic vessels successively subdividing rows of stigmata, Fig. 17:-Portion of colony.
Figs. 18, 19, Pseudodistoma cereum (Nora Creina). Fig. 18.-Dutline of colony, Fig. 19.-Zooid with brood pounch.
Fig. 20. Aplidium pliciferum, (Hallett Cove, 8 m). Zooid.
Figs. 21, 22, Aplidium colelloides. (Taplcy Shoal, of Troubridge Light, 17 m). Fig. 21.-Colony. Fig. 22.-Zooid.

Hig. 23. Synoictum papilliferum. (West I., sheltered coast, 3 m). Z.ooid (showing muscles on thorax only).
and the pacific the larger zooids (Lhotas ama abdonten togetiee 3.5 mm fong and posterior whdomen 1.5 mm long) are arranged in circular systenis. sometimes extending into more clongste and double row systems radiating from the common cloacal openings. in all Kott's (1963) specimens the test is gelatinous and xemi-transparent with redupurple spherical pigmant cells, and the lartae provide the main distinguishing character between the two species A, phormax has larvae with il limited number of ampullary vesicles and a complete atsence of median ampullac, while the larvae of A. phiciferum retain median papiliac and have many small ampultary vesicles from the lateral lines either side of the three madian suckers. Millar (1966) described specimens from Port Phillig Bay as A. phorrax. He points out that Ai phariax (see in Kott 1963), is not apparently the sams species as his colonies allthough he can only distinguish then by the different laryal form. He apparently overfooked the similarity in the size and form of the Iarvac of bis specimert ant of d . picijermen (Redikorrev): Tokioka 1953a: Kott 1963: and hised his identification on the ratio of Iength to dep:h of the larvae of Michaelscr's species and his own specimens from Port Phillip Bay. However, Kolt (1963) has already indicated that larvac of A. phoriax (Brewin 1946) from New Zealind, do have the same rounded form ins the larvac of specimens of A. phortax (Kott 1963) from eastern Australis. It is apparent. therefnec, that specineens from Port Phillip Bay were eromeously identified by Millar.

The adult zooids ean definitely be distin. guthed hy the longer posterior abdomen. the smaller size and the greater crowding of zooids of A. plivijenm

The specimen from Hallett Cove was zaken with a spocimen of Distaplia wividis in which the zooidx ire the same orange colour. The specimen from Troubridge Shoal was taken from à sping cratb.

Aplldlum ruhricollum Kott. 1963: 103. Noth Record: Uppes St: Vincent Gulf. Previous Records: W. Aust. (Rottnesi 1.). S, Aust, (Revesby 1.). Vic. (Balnatring Beach)-Kott 1963.

Descriptiose: The single colony is flattened, atooll 0.7 cm thick and 3.5 cm in maximum diancter, The hanters of the colony are
robundect. Sand is present basally and some is enclosed in the common test but the surface is smooth and without sand. The common cloacal apertures with frilled and protuberans lips are present on the surface of the colony about 0.3 cm from one another. Spherical pigment cells are present in the test and zooids show as clear points herween the pigmented test: In this preserved specimen the pigment cellis are palc-pink. Zooids are small. up to 2 mm long. There are 10 longitudinal thoracie muscles. A short pointed atrial languet arises from the dersal surface just antetior to the atrial opening which is generally on a shont protuberams sirhen surrounded by a cilcular sphincter muscle. There are If rows of 6-8 stigmata, and f stomach folds.

Rempurs: The species is distinguished by the form of the atrial aperture and lip. by the narrow branchial sac with relatively few stignatis in each row and by the body musculature and stomach folds. In ithe present specimen the test is not sn thickly invested with samd as previously described for this apecies

Aplidimm colelloides (Herdman): Millar. 1962; 125.

Amarnaciam colnllowles Herdnan. 18:5: 223, Nen' Recorl: Of Troubtidge 1. Prewion Records: South Africa \{Cape of Coond Hopel - Herdman 1886: Millar 1962.

FIGS. 21.22
Uexcriphion: Rounded gelatinous heads on at long hatd stalk. The head is up 104 cm in length and 2 cm in diumeter. The stalk. up to 21 cm in length, is hardened by dense sand inclusion in the surface lest which fates out in the lest of the head region. 'the salk is branched basally into short rent-like procesyes. Tooids are minute, opening around the surface of the head. Lony threith-like posterior abdomina criss-cress in the centre of the head and sometimes extend down intn the stalk. Some common clovical apmortures are evident soround the head and some longiludinal cloacal camals were identifien, although the form of the systems is obscure and dificult to distinguish. The thond and abdomen are of equal length and rogethes measure only about 1.5 mam: The fong, thread-like post-abdomen is at least rour times the combined length of the thorax and abdomen: There are about 6 dellcate longitudinal musclas on the thorax. The
bramehial labes are distinct and rounded. The utrial apcrure is sometimes produced un a faisly long cylindrical stohon but in anothes colony is sessile. the upper border of the atriad apertur: produced into a pointed languct, There are 18 rows of thour 10 short aval stigmuth. The oesophagus in long, the stomach is present halfway down the atdomen and bas 15 yery distincs folds. The gonads are nut developed in these specimens and it is nue knows to what extent whey fill the long posterior abdomen in mature zooids.
Remarks: This is the unly species of Aplidiam known with a long stilk. The size and form of the colony, the size-of zoolds and their arrange, ments. in que present colony are identical with the South Aftican specimens previously described, The delicate langitudinal thoracje muscles and the stomach roulds are similar. The present specimens differ from those des cribed from South Africa only in the larger number of tows of stigmata. This does met represent a sufficient difference on which to establish a mew speciex and an view of the great similarity in most charactery the specimens probahly fepresent ane species with a wide circumpolar distribution in the southern colltemperate region.
Synoiciun papiltiferum (Michaelsen), Kots, 1963: 87. Millsr, 19nti: 360.
Mekpollonime prpilliferrom Michaelsen, 1930: 530.

New Reerards: Port Noartunga reel, West 1. (near Penguin Rock); Pretiostar Recores: W. Aust. (Bunbury to Nornalup)-Michaglsen 1930; Kott 1963. Vic. (Ncpean Penin-sulit)-Millar 196ib. The species is known intertidally and to 1 k m .

FIG. 23
Deseription: In life the coluny is slatk red or bright hrick red. Flat-toppal to mounded colonies. narrowing basally to a common stall or encrusting. Zooids lie parallet in the test and open on the upper surface. 'Whe colony is firm, gelatinous. There are circular systems artuond protuberant common cloacal apertures. The branchial aperture has 6 small pointed lobes and there is at small sitcular sphincter muscle at the base of the branchial siphon. The atrial aperture is upposite the first to sccond row of stigmata. It is surrounded by a well tev=loped circular sphincter muscle. and is exiended into is short cylindrical siphon. The anterior bonder of the atrial aperture is produced into a long minscular lip, broken into 3-4 minute pointed
lobes lerminally; There are 10 very tine longitudinal muscle bands on the tharax which is very delicate and transparent. There are 10-12 yows of about 10 stigmats in each row. The body wall below the aitid aperture is produced into the small rounded papillae characteristic of Synoicum spp. The wall of the slomach is raised imo faint mulberrylike swel. lings. The pasterior abdomen is short and there is no consiriction between it and the abdomen.
Remarker: Both colany and zoalds contorm with previous descriptions in all characters except the reduced number of rows of stignuta. The species has been recorded from south-western Auszalia along the south coast of Australia to the Nepean Peninsula in Vic. coria (Mitar 1966).

Family DHbMMNIBAE

:'Irididemmun spiculatums Kon, 1962: 281.
New Record: West I. (neat Penguin Rock). Previones Records: W. Alst. (Rottnest T. Point Peron). S. Aust. (Outer Harbour) Tas. (Wreck Hisy). Qld. (Heron I.)-Kott 1962.

Déscriphion: Living colonics pale pink, enctusting. Small, almost spherical spicules with up to 12 points in optical iramsverse section, evenly distributed throughout the test, and uesasionatly large spiculas with fewer rays. There are small thoracic common cloneal eavi-tiex- Zooids are small with thrce rows of sitg. mata. The atrial aperture is wide- cxposing a barge part of the branchial sac. Gonady ate nut mature in the present specimens.
Rerturth: Colonies generally anform with specimens preyiously assigned to this species, atthough the proportion of amalles burr-like spicules to Jarger stellate spicules with about 8 ruys in opticul section, is greater in the present specimen. Colonies with mature zoulds are desirable for positive identification.
iseptoclinides rufus (Sluiter). Tokiokt, 1452: 92. Kott. 1962: 286 and synonymy. Eldfodge, 19n3: 221.
Palysyneraton rafus Sluiter, 1909: 72; 1913: 77.

New Records: Off Port Gawser Hallett Cove, Port Noarlunga, kapid Head, West I. Wright I, Previous Records; S, Aust. (Port Noartunga). Vic. (Shoreham). Tist (Maria 1.). N.S.W, (Port Hekson)-Kolt 1962. Qld. (Heron I.) -Hastings 1931. New Zealand r?Greal Barriep I.- I.. shuterik-Brewin 1950b: ("Stcwart I., L. nolvizzêtandipe)-

Browini 1958, (?Chatham Rise, f. astan-tichs)-Brewin 1956: (North 1.)-Wishnelsen 1924: Brewin 1958b; Millar 1960. IndoPincifie (Arafura Sea, Indonesia, HawathTokioki 1952; Sluiter 1909: Eldredgo 1987. The species is known intertidally and to 36 m1 (Stuiter 1909).
Dencriphon: Encrusting colonies J.iving specimens: whte matril wath grey or dark animals, or orunge to light fawn PPort Noarlungat: of dark reddish brown folf Halteks Cove), motted white to uniform light grey colour (Wright 1.). In preservative all colonies are white to orange-white or streaked and blotched with grey. the coloniss are investing. somatimes extensive Cloacar cavities padiate from randomly distributed aperlures. Zooids are sometimes present in the roof of the common cloacal cavity. Spicules are present in the surface sed but basally the test is jelly-like and tramsparent. There are 9 longitudinal muscles on the thorax. The posteriorly directed atrial siphon hass at wide circular sphincter muscte. There are 4 rows of 10 so 12 stigmata. There is a superticial layer of bladder celly and amall oval to spherical pigment cells are present amongst the surface layer of spicules. A lateral organ is present opposite the midule of the fourth row of stigmata. Cloacal apartures are present. especially around the burders of the colony. Camats at thoracic level radiate from the cloacal aperiures between clumps of zooids although sometimes they cxtend deeper to ahdominal level. The closacil cansals around the border of the colony ure often completely suhsibdominat. The spicules are of the usual stellate form, $0.01-0.04 \mathrm{~nm}$ in diameter. larve arc present in some culunies from Haslett Cove. They are of usual form, fairly deep with 4 pained impullace. In one colony from Hallett Coye (dark nedklish brown in life) so common cloacal cavities were present and zooids were not mathre, not were zooid openings to the exterior detected. The arfangement of spicules is chatacteristic of this species and it is prabable that the colony is one in which sexual reproduction is completed and new vagetative buils are developing
Remarks: The species is distinguished by the complete absence of spicules from the basit layer of the test, sometimes giving the colony a very fleshy appearance. The charncteristic common cloacal system and the distinct musculature on the thorax, together with the postexiorly directed atrial siphon and the spherical to oval pignent cells are distinctive.

Leptuclinides kingi Michaclsen.
 Hartmeycr, 1919: 136.
Lenfaclinidur whiuy f. Limei Michaelsen. 1930: 507. Kott 146? 289
New Record: Upper St: Vincent Gulf. P'revions Records: W. Aust. (Eremante, Alhany) -Michaolsen 1930. Old. (Sathat-Kolt 1962. Philippinex (Jolu Lighl) - Van Name 1918. The species is known intertidulty anu to 18 m .

FIGS, 24, 25
Descriprion: The colony is massive with the supface raised inio mounds and single chacal apertures at the apex of each mound. Each mound is lurmed by thickened basal test offen with embedded parasites. Zonids are present in the suriace test above the very extensive poskerior abdominal spares around the centre of each tohe or mound. The zooids are large with 4 rows of about 12 stigmatia. There are 9 very fine longitudinal muscles on the thoras. The spicules are very small, 0.61 to $0,02 \mathrm{~mm}$. and are fanged in a shallow layer at the level of the branchil siphons. They are only very spanse elsewhere in the lest. These is a surface layer of bladder cells.
Remarkn: The elevation of the surface of this coluny into mounds or lobes with terminal common closeal apertures characterises this species, which was previously reganjeq as a form of Leptorlinides subius (Sluiter)_ Leenteclinides nuhiuv is distinguished from she present species by its larger spiculcs and by the artangement of cominon cloacal sysum with openings around the margins of each estony, is in Le rufus. In L kingi larse cloacal sys. tems with terminal openings develop from the contre of the colony, As both forms have lieen recorded nore or less over the same geogranhic range it is unlikely that they represent geographic subspecies of the ons specics, and in view of the different development of the common coacal systems it is probabic that they reprement difterent species. The long gut loop which is bent anteriorly to form a double boop is a character shared with Leproclinides dubius. Pusteriorly dirceted atrial siphons of the zooids open into the common cloacal cavities and canals. The openings sometimes appear 5 lobed due to the arrangement of spicules around the apcrture. The genus Askondes Kott. 1962, tharefore cannot be distinguisthed from Leproclinides and A. imperiectus and A. crelemeranus are distinguished from other species of Leptoctinider only by the extent to
which zooids open directly into the common cloucal chamber tather than into cloacal canals. Their relations are set 001 in the following key:
1: Single sysems develop around central commor cloacal cavities with lerminal open. ings.

2

1. Nunserous systems develop around periphesy of colony

3

- Spicules accumulated in surface layer of rest spicules 0.01-0.02: Jarvae with 4 pairsd ampulfae: тnost zooids open into cloacal carrals
L. Kingi

2. Spicules throughout; spicules 0.04-0.08; lirvie with relluced ampullae; most zooids open direct into common cloacal envily
L. coetemeratus
and L. imper/echis
3. Spicules $0.01-0.02$: double gut toop
L. dubius
4. Spicules 0.02-0.04: simple gut toop

> L. rufus

Ueptoclinides reficulatus \{Slwiter\}. Kott. 1962: I85 and synonymy.
Didemmun reficingimen Shuiter, 1909: 60.
New Record: Tipata Reci. Previous Reiverf: Qlet (Noosa to Mackay, Heron I. Low 1x.) -Hastinge 1931: Kolt 1962, New Zeatand (North 1.)-Michatelsen 1924, Japan-Okat 1927: Tokiokn 1953ar 1953 b. findonesia-Shuter 1909. PPhilippines-Van Name 1918. Indian Ocean (Ceylon)-Herdman 190%.

FIG. 26

Descriplion: Young colonies were taken investing Microcesmus schumiger and Pyura irregue laris. Frequent enmmon cloacal openings are scatterect over the surfiace. There is at superficial luyer of bladder cells with orange and black pigment in stellate cells forming streaks on the surface. Spicules are present benentin this superficial layes and are reduced in densily toward the basp of the colony. The spibules are sicllato with nbou 7 conical tays in optical transverse section and from 0.03 th 0,05 min in optical section.

The primary cloweal canals ane deep, but in these specimens do not extend posterior to the woids. The zonids are small with the usubl 4 rows of suigmata and il large posterioris directed atrial siphon. There are 4 testis lohes and $4 t$ coils of the vas deferens.
Remurks! This is the most southerly record for this consplicuous and widespread specics, distinguished by its unique stellate pigment celis which form the chatnelerstic "Eiger-like" markings on the surfice.

1sdemaum tambitumi (Sluter). Kou, 1962: 317 and synonymy, 1971: 19.
Didomnoides lambitum Stulter, 1900, 18,
Nesw Record: Aldinga "drop oft". Previous Recordsl N.S.W.--Kurt 1954. 1962. New Zealand (Chatham I. North I.. South I.) Sluiter (1900; Michaclsen 1924: Koll 1971: and unpubished records from Otago (call R. Crump) and Stewart I, (coll. Sot Borham): Descrjphion: Two clavate lobes arise from a common hase. Muximum dirmeter 1.5 cm and maximum height 3.0 cm . There are teaces of orange pigment in the sturdice tew, but no superficial layer of bladder cells. There is st layer of spicules in the surface rext which ceases uhruptly at ocsophageat level. Thin layers of spiculies line the common cloncal canal. Spicules are ubsent at the abdominal level of the rooids, und in the central rest oore. They are 0.01 to 0.05 mm and stellate Ternuinal cloucul aperfure noens into the characteristic common cloacal cavity smrromding the central corc of test. Zooids are small and crowded in the surface layer of test. The atrial aperture is wide and open. There are $8!$ coils of the vas defcrens around a single festis lohe.

Didemnum patulum (Herdman), Leptockindon pmblifon Herdmon, 1899: 42.
Nem Record: Aldingat Previous Records: Vic, (Port Phillip Bay)-unpublished recora N.S.W. (Port Jackson) Herdman 189\%.

FIG. 27

Bexcription: Tough, investing colonies. In preservative the specimens are white with grey streaks and blothes formed by patches of stellate nigment cells in the surface test, especially in the region of the common cloacal carals The surface of the colonv is marked off intu slighty raised romnded ancas where solid pillate of test thaverse the commun choacal conity, Zooids are embedded in the periphery of these pillars of cest and open to the surfite around the raised srea. The cloacal cavity is thoracic. The surface layer of test is especially thick and the zooids have especially loag and muscular branchial siphons which extend through this surface layer of test: Spicules often form a plug inside the branchial siphon-possibly caused when the superficial layer of test is pulled down into the aperture as it is cerncted into the surface of the test The branchial siphon is alnost the sitme length as the rest of the thorax. The atrial opening is wide, exposing is purt of the slorsal surface of the branchial sinc. The amerior borier of the atrial opening
is produced into a narrow pointed languet sometimes bidentate it the tip. There aro conspicuous circular muscles in the branctial siphon, in addition to the usual longitudimal museles that extend down the length of the thorisk and into the test to form a short tetracfor muscle. The abdomen, of the usual form lor this genus is especially smatl. Vesophaged buds are present but the gonads are not mature.
Remurks: The grey veins in the sufface iventify this specimen with Herdmanis species. The fong branchial siphon and atrial lip are also distinctive. The species is expecially common in. Port Prillip Bay, but is not common in St. Vincent Gulf. The species also strongly resembles 0, whbubum Sluiter from the East Indics and Aru I. (see Sluiter 1913; Kot 1962).

Didemnum moveleyi (Herdman). Van Name, 1918: J51. Tukioka, 1955a: 212: 1955b: A4: 1959: 226; 1961: 106. Kote. 1957b; 136: 1962: 328 and synon\}my, Eldredge. 1967: 213.
Leprocimam mrespleyi llendman, lisk: 272. Lupferclimters imeantum Hendman. 1899090. Herdman \& Riddell, 1913: 888.
Ners Recordt: Goose 1. Corichalinga Head. West 1. Preulout Records: Wi Aust. (Rotenest 1., Poinl Perm, Trige I.). S. Aust. (Reevesby I.). Vic. (Balnarting Beach)Kott lygz. Tas. (Spring Bay, Marta I.I. N.S,W, (Port Jackson, Port Stepliens, Coffs Harbour)-Herdman 1899; Kott 1962. Indian Occan (Southern Arabla)-Kott 1957\%. Indonesio (Arafura Sea)-Sluites 1914. 1913: Tokloka 1955m: Pacifle Ocean (Patau 18., New Caledonin. Philippines. Handalian Is, Marshall Is.)-Hendman 1886: Van Name 1918; Tokioka 1955b. 1961. Eldredge 1967.

FIG. 28
Description: Investing sheets, There is a very thin layer of surface test which is often raised into spicule-filled comical papillise between the branchial apertures. The cloacal casity is thoracic and the thoraces of foold are enclosed in an iodependent test sheath. The atrial opening is wide, in all cases exporang the branchial sac to the cloacal canal: Spicules are 0.02 to 0.04 mm in diameter with no more than 10 pointed rays in optical zransverso section and are densely distributed throughout. Zooids are colourless. They are minute, the hrunchial sace especially small with four rows of only 6 stigmata. The vas defereny coils $6!$ times around a single undivided testis follicle. In the
specimens from West I. and Carickalingal Hew there is a small hateral organ opposite the lasi two tows of sligmata.
Remuther Eldredge (1967), Ulscussing the dificuties in distinguishing between the present species and D. candicfon, has suggested that in D. candidum the surface test is always smooth. the atrial aperture is a small slit ind hateral argans are always absent. He has not been able to confirm ahe presence of Iarger numbers of Yas deferens coils for D. cirndidirm (Kout 1962) nor is the condition of any of these characters constant dio specimens previously inscribed to the species. Only the tegulady stellate spicules and dark pigmented roosids of the present specimens uppear to distinguish them from D. moveley; which has a variely of differcot types of spicules.

Didemnum candidum Savigny, 1816: 19才, Michactsen. 1924: 358 and synonymy. Van Nanie. 1945: 83. Hastings, 1931: 94. Bewin, 1946ir 98; 19501: 55: 1950b: 245; 1951: 104: 1952b: 188; 1996: 122: 1457: 577; 196in 119. Tokioka, 1954:1\% $246 ; 1955 a: 45$. Kott. 1954: 162: 19fiz: 327. Eluredger. 1967: 213.

The above synonymy refers only 10 Indo. Pacifie records. For full lise ot synonsms see Eldredge 1967: 213
New Recordy: West T., Wrigh 1. Primian Rerords: South-Western Abursila, Tasmania, north-eastern Australio, the English Channel. Irish Sea, West Africn, South Africa and East Africu, Red Sca, Mediterramean Sea. New Zealand, west and mid-Pacific Ocean (Marshall is. and Hawailan Is , the Carib. bean and West Indics and the enst coast of the U.S.A. Records are lacking from the rorth Pacific and west coast of the American continent: but elsewhere the species becups widely in temperate and tropical regions.

FIGS, 29. 30

Deserription: Colonies arc liat and investing. small and rounded or more extensive sheets. The test has dense spicules throughout. In preservative the zoolds are brown and show through the white spicules. The common claacal civity is thoracic but extensive and limited only by thin layers of surface and slighty thicker basal test in which the abdonina of the zooids are embedikdi Thoraces crosis the common cloacat cavity in an independent sheath of lest, Spicules are dense throughout. They are 0.02 to 0.03 mm in diameier

and demonstrate the same range in form pre-almost cylindrical marginal rims stiffened by viously described for this species with up to 15 the dense spicules enclosed in the test. Zooids or more rays in optical transverse section. Con-are very small. There are 4 rows of about 8 spicuous common cloacal apertures present onstigmata. No gonads were distinguished in the the surface are surrounded by protuberant present colonies.

Rumarks: The present colonial sywems ane typical of the species although no gonads appeared to be mature. It was not posxible to confirnt Eldredge's observations concerning the slit-like atrial upening 45 , is the extented zonils of the present colonies, these were wide open, exposing a great part of the dorsal aspect of the branchial sac. The varitely of spicules. thereforc, remain the principal distinguishing character for this specics. Carliste (1954) has characterised specimens of D. conduburn Savigny from the North Sca, the English Channel, north-west Alvici, the Meditertancan and the Red Sea (type Rocality) by the absence of the third athesive papilla in the larvace and Lafargue (1968) confirms the condition for apecimens from the Fyench conas. The specimens agree in all olher respects with thowe described from New Zealand, Ausiralia, Malaysia. Japan and the Aalamic coast of Americet. Carliste concludes, therefore, that: "D. candidium is a tropical and tempertice species extending from the West Tadies to the East Indies, New Zealand and Japatr".

However. liter workers hisve nol observed the universal ahsence of a third adbesive papilla in lurtae from these localities. white thare are the usual threc larval papilbace in Austalian. Now Zealand and Japanesc specimens. It is pussible, therefore. that two separate species are involved.

Polysyneraton orbiculum Knote. 1962: 300.
New Record; Rapid Head. Prcvions Records: W. Aust. (Ruthest B.), S. Aust. (Porz Norarlunga) - Kott 1952.
Descriphion: The preverved colony is ligh pinkish brawn, owing to the darkly pigmented rooids seen through the single layer of spicules present in the thin surface test. The dark coloured zooids are also seen through the branchial openitign clearly marked on the surface tex. There aro the unuat vesicular cells arranged ito a complete circle around the branchial npenings, and interrupting the otherwise even distribution of the spicules in the surface test. There is an extensive horacie
cloacal catyly, crossed hy the thoraces of the zooids, each with a discrete ventral sheath of lest. There is is lateral organ about halfway down the thoracic lest sheath. The zooids are small. swith 4 rows of stigmata. There is a long retricior miscle. These specimens conform with those described previuusly (Kott 1962). in all respects; however, the gonads are not malure in the present souids.
Remuks: The condition of tho cloacal cavity. the dark pigmented zooils, the rather large stetlate spicules and the unique. large transparent vesicles in regular circles in the surface. logether, charmberise the species.
Echinoclinum verrilli Van Namc, 1902: 372. Kott. 1462: 312 and synonyms.
Diphosnma lhisonclimume verrilli. Fildredge. 1967: 242.
New Records: Hallet Cove The species has been obsorved investing the underside of rocks al at depth of 5-20 in at many locations in St_{5}. Vincent Gull where conditions are quiel. The colonics are so fragile however, that they usually break up when romoved (S. Shepherd, per's. cumm.) Previouir Records: Tis, (West Coast)-Kon 1954. America (West Indies, Florida)Van Name 1902, 1945; Hartmeyer. 1 yin11: Plough \& Jones 1937 Alrica (Accta) -Millar 1953. Japan ISagami Bay)Tokioka 1958.

FIGS. 31-35
Descripliurs: Living colony soft. White, jeliylike. In prescrvative che present colony is deficate and solf. It appears to be investing but is, unfortumately, damaged and its exact form could not the determined. Spiculcs are mosily G-rayed, hut there are atso spicules with 4 aml with 3 rays. They form a dense spiny, tough capsule around the abdomina of the zooids but ure sparse in the remainder of the ettheny. Zooids ate arranged more or less-in the double rows previously described (Van Name 1945) although common cloacal openings were not detected. The cloacal canals spread und heneath the zonads which are retained in the

Fige 24, 25. Leplocinides kingi. (Unper St. Vincan Gulf, IU-12 m). Fig. 24.-Spiculen Fis. 25. Gut loop.
Fis. 26. Lepructinders reticulaths, (West I_{14} under houlder), Snicules.
Fig. 27. Didennum pasulhert. (Aldinga "drop-off, 28 m). Thosax diagrammatic, showing mas-
Fig. 28 - Didemnem morefryi, (Carickalinga Head, $5-6$ m), Spicules
Figs, 29, 30, Diffmimm rundidim. (Wright Ta rough coash, 10 m). Fis, 24 -Disuram of colony Fig 30 -Spicules.
Figs, 31-35. Erhimarlinw werilli. (Hallei Cove, 8 m) Fig. 31. Spicules Figs. 32, 33, 34.-Larvae of increasiog maturily. Fig. $35,-\mathrm{Matur}$ untertor ampulhe of latwise.
vurface tést Zooids are smatll with large lateral organs on cach side of the thoras.
larvad fire large with a short tail which. When extended, is only hall the total length of the lirvas. There is a larecocellus and an otolith. At least one precocious bad is present athough the exact nmmer is ohscured by the layer of spherical to oval gramulate bodies that extend around the posteriot half of the hody of the larva.

Antermory there are the urwat three adhesive papillase in the anedian line and 14 ampultate from the lateral lines on either side of the suckeps. Inilially these bateral ampultae are very small and sessite. Subsequently they facreate in size and hecome "rear-drop" in shate supporical by very narrow stalks from whe lateral line

Remates 11 is unformate that the present colony is so damaged that its shape cannol be disecined. Although previously described specimens have been clavale (Kott 1954; Van Name 「Y451 the present damaged colony is investug and living colomies have bown observed investing the under-surface of rocks. It is possible therelon that two distinet species mary be imvolved, characterised by a differgice in the consistency of the test and in the shape of the colony:

The soft nature of the colony athe its tendency to break up has probably been the canse of the lack of records of this forms, which is reported ax common in St. Vincent Guff.

Eldrealge (1967) has suggested that the genus is synonymous with Diplosama (Lirsmflimmis), due to the similarity of the cloacal systems and the fact that tetrabedral spicules are not uniquo in the family Didemnidac. Eldredge's contention camnot he maintainct, The common cloneal eavity in the two genera is extensive and extends posterior to the zumids which remain connected to the hasal lest by surandy of lest. However, the clonean system in Echmoclinum tiffers from that in Diplayoma (Lissoclimmen) in the absence of the secondiary cloacal spaces around the shoraces of the zooids which remain connected to ant in the surface test in continuous rows. In Diplowoma (Liesen (flinum) the secondary cloacal spaces sepacate cilher the thomaces, or the whole fooids, from one another Further, the spicules in Echinoclinum are very much larger ($0.05-0,1 \mathrm{~mm}$) than those generally round in other genera of the famlly and, in addition to theit unusuat form and size, their distribution in the colony
differs entirely from wher weners of the Hidemnidac. The capsules formed around the zooids by the spicules are reminiscent of the capsules formed in Custodyres sppa and in no other pents of the Didemndate do the spicules remain in such an intimate relationship with the enoid.

The genus is further distinguished by a unique larval form with i. multiplicity of narrow-stalked epidermal ampultae and prectcious buds. The larvae of P_{0} sasmortarmm and D. (Lissoctinum) app, show a similis mothed increase in the number of lateral umpullue. The ampultice in Echinoclinum are unique, however, "in sheir distinct "teas-drop" shape, their narrow stalls and their discrete origin from the lateral line without subscquent subdivision. Precocious budding generally occurs in the tarvae of Diplosomp spp, and in Ω. (llsmclinum) spp. However. it also nccurs in Didemunam (D. pscridodiplornmu- Kott 1962. and D. semurthum-Koit 1566) and in Polys) neraton (P, aspicwlatum-Korr 1962) so cannot be considerded characteristic of any single genus.

The grahular bodies present in the larval test are indeed similar to those found in D. 1 Li.880clinami traglle-Eluredge 1907 and D. LLissaclinmm) astreariun-Kout 1962. They do not tike up hucmatoxylin stains (Eldredge 1967) and thus do not appear to be calcarcous spicules nor their prechrsars, as Kott (1962) hat suggested. However, tlespite the relationshir with D. (Iissoctinumb) indiented by these enclosed granules, the genus is distinct from wher genera in the Didemnidae und emtifely iustities its taxonomic position as a monotypic genus in that family.

Didematime sp.

Hervard: West I, (near Penguin Rock). Decriptions: Living colony "yellow, crustuse". In prescrvative the investing colony is a light fawn colour. These are common clownerl apertures with large spicule-filled lips seattered over the surfuce of the cotony. Zovids are suspended between the basal and surface layers of test by conilecting columins. of test in which the abdomina are embedded in clumps, althusugh the zooids are separated from sue anather in their own diserete sheath of Lest, open to the common cloacal cavity on the storsum. Stellate spiculer are thick throughout the test. The branchial siphons are tairly fong with distinct ciretlar muscles. There are large ovat taictal organs on either side of the thorax. There are four sows of stigmata.

Remarks: The goniads ate not developed and 3 slefinitive identification of the genus is therefurd not possible. The condition of the colony with a well developed posicrior abdominal cloacal canal is remioiscent of certain species of Dideminum.

Suborder PHLEBOBRANCHIA Family CORRLLIDAE Sulfianily Riodosomatinat:

Khorfnsmma lurcicuni (Savigny). Kotr, 1952: 317 and synonymy. Tokioka, 1952: 111: 19538: 230.
Phathowe hetcice Sidigny. 1816: 102, Rhoifusoma papillosum, Van Nasme, 1418: 193 and synonymy. Harineyer. 1919: 95.
Now Record: Hallert Cove. Prerions Records: N.W. Aust. (Cape Jubert)-Hartmeyer 1919. S. Aust. (Port Noarlunga). Qid.-Kiott 1952. Indonesia-Sluiter 1904: (Aratura Sea)-Tokioka 1952. Indian Oceari (Ceylon)-Fierdman 1906. Pacific Occan (Philippines. California) - Van Name 1918, 1945; (Chile)-Traustedt. 1882, 188.5 : (China)-Stimpson 1855; (Japan)-Oka 1927: Hartmeyer 1906: Tokioka 1953a. Red Sea-Khrenberg 1828. Mediterranean -Lacaze-Duthiers 1865. The species is also reconded from the Citribbean fegion (Van Name 1945)

Remarks: Nuthing further can be added to the description of this exmmopolitan but rave species. It is never taken in harge numbers. not is it taken very utten. The species is. however, not inconspicuous, It is probable that, with its highly developed closing mechat. nism, it may exhipit a high degree of vivipary. In which case it is probalile thit relatively few larvac are incubated. and that the frec-swimmine time of larvae is short "the eitispersal of Farvas could be. therefure, limited, and the survival of the apparently small populations of the species erthanced by farval settlement close to the parent zooids, The specics has heen taken from a wide variety of depths. Unfortunately, little is known of the current conditions at locations from which the species has been taken, but it is possible that it favours less turbulent conditions where shere is minimal current flow so that the larvac would be even less exposed to disperșal.

OnJy a single specimen is prexent in this collection.

Subfamily corerinana

Corellas cumyota Traustedt. 1882: 271. Kóll. 1969: 84 und synonymy: 1971: 20
Now Records: Hallett Cove, King Beach. Previous Recurds: W, Aust (Trige J_{6}) Kott 1952 Vic, (Buharring Beach, Frankston) - Koll 1952? Millar 196ik, Tas. (D) Fntecasteaux Chamel!) New fealand (North and South 18.)-Sluiter 1898 : Michaelsen 1922: Brawin 1946. 1948. 1954. 1957. 1960. Sourh Africa-Smiter 1898 ki Michuelsen 1915; Millar 1955. 1962. The species also has at wide circumpolar distribufion in the Antaretic (Kott 1969).

FIG. 36
Lescripuion; The living specimens wero noted as cransparent ant no colour was recorded. There are both separate individuals and individuals aggregated lugether more or less in a line. Zoods are generally fixed to one another or to the substrate by atmost the whole of the right side. The sest is thick, gelatinous and semi-transparem. On the right side of the body where it is fixed to the sulistrate the bolly wall is especiatly thin and there are no muscles except those which radiate a shorr dispunce from the branchial siphon. On the upper or left side of the body there are mostly trinsvetse muscles branching and familying and some short and more regular transverse muscles in a single row extending around the ventral border. The bratschial sighon is terminal and on a short cylindrical siphon. The atrial aperture is sessile and from the posterior third of the dorsal border. "The branchish sike, gut and gonads are of the usuat form charucteristic of the genus.
Remarks: These specinams do not differ in any way from other specimes of this uhiquitous species which has been recorded in very burge numbers from open sca locations in circumpolar waters of the Antaretic and the sulsAntatctic (Koll 1969, 1971). The norihern extent of the recorded fange is at Trige 1 (Kott 1962) on the western coast of Australia, tut the species has not heen takers on the eastern coant of the Australian mainland: the most casterly record on the Austratian chast is. at Erankstor in Victuria (Millar 1966).

Family ASCIDIIDAE

Phalluxia depreasiuscula (Hellef). Koti, 1972: 8 and synonymy.
Ascoith deprensinseula Heller, 1878: E. Hesdmat. 1906: 305. Aserdia julinea, Vasseur, 1967: 129.

New Records: 'Sapley Shoal dill Porl Gawler. oft Giringe, of West Beach, Halleat Cove, off Port Stanvac, Wright I. Previoas. Records: W. Ausi. (N.W. Ausl., Shark Bay. Fremsntle)-Harmeyer 1919; Michachend Hartmeyer $592 \mathrm{H}_{\text {; }}$ Millar 1963. N.S.W. (Porl Jackson)-Herdman 1899. Old. (Great Marsier Reef)-Hastings 1939\% Kott 1952. 1966. Bass Strait (Ens Moncoeur 1.) -Heraman 18s2. Pacific (Philippines, Palao Is. New Caledonia)-Van Name 1918: Tokioka 1450: Vasseur 1967. IntoMalaya (Ceylon, Indonesia, Arafufa Sea) Heller 187\%; Heblman 1906; Sluiter 1919: Tokiuka 1952. The species is known intertidally and to 52 m .

Description: Living specimens from ofl Hallell Cuve ate noted as large, white or transparent. and common on sandy bottom. Many liviang specimens. however are hluish, with black and yellow markings. The preseryel specimens may be whitish, or blackish grey und may have black spots in the surface test. The test is thick and lirm, smooth on the surface with rounded ridges and swellings. The individuals reach a large sire. The present specimens exhibit the range of variation described by Kott (1966) for the species.

Remurks: The relutionship of Phallusia jutinen Sluier to the present species remains in doubt. the specimens in the present collection have the aftal aperture from the anterior thind of the body while specimens of P jutinoa have been distinguished by the position of the atrial aperture from the postcrior third of the body.

Ascidiat sydneyensis Stimpson (?part), 1885: 387. Kotr, 1972 and synonymy.

Nes Rerards: Tapley Shoal. Hallet Cove, Bun Noaflunga, Wrighi I, Prrvious Records: W, Ausi (Cape Jaubert to Albany) - Hartmeyer 1919; Michatelsen \& Hatmeycr 1928; Millar 1963. S. Aust. (Victor Harhor, Port Noaklunga) - Vic. (Malnarring Beach, Point Lco. Port Phitip Bay -Kott 1952; Millat 1960: 1963: 1966. 'las (Spring Bay). N.S.W, (Pon Jackson')-Stimpson 1855; Herdman 1882, 1899. Q|d. (Caloundra to Townsville)-Schmeliz 1879; Kout 1962. 1966. Indonesia (Arafura. Sca)-Sluiter 1886. T004; Tokloka 1952. Pacific OccanTranstedt IS 8.5 : (Patio Is., New Caledonia) -Tokioki 1950; Vasseur 1967. Japan-

Hartmeyef 19UG: Tokioka 1953a. 1454b. Indian Ocean (Seychelles) - Michaelsen 1918: (Zanzibar)-Traustedt \& Weltner 1R94; (East A(ricis)-Millar 1956. South Africa-Heller 1878i Hirtmeyer 1911. 1913: Stuier 1398: Millar 1955. 1962. The species is also reconded from the Caribbean regiur (Van Name 1e43). It is taken intertidally and to 30 m ,

FIGS. 37. 38
Descrimion; The living specimens are transpatent and tieshy. The laryest specimens in the present collection are 20 cm long and 12 con wide. The test is thin, but firm and longh, and in larger specimons slightly leathery. There is sometimes especially on the larger specimens, a very sparse cnerustation of weed and wom tubes. Both the branchind and arial apertures are on shart cylindrical siphons and are usually about hulf the body. length distant from une another. Specimens may be lixed to the substrate by the pokterior, ventral, or left side of the body. The branchial siphon is turned -away from the arrial siphon to sarying extents. There is at row of shurt transwerse muscle bands around the dorsal and ventral borders of the right side of the body. The gut is always filled with mud, which, appasers to accumulate during the life of the individeal until in lirger specimans the gut is so swollen with mud that the branchial sate is occluded and confined to a smail arca to the right and dorsal to the mud-filled gut. This mud hegins in eollect, in smaller xpecimens, in the descending limb of the primary gus loop, heyond the stomach, and it extends from there into the rectum and continues to accumulate ion these sections of the intestine.

Remarks: The physiolagical significance of the nud-filled gut which appear to be characteristie of this species is not known. It has been noted in specimens from all parts of the yacific. Abbott (pers: comm. 19.55) noted that it appears to be associated with the termination of the typholosole it the tope of the gut swelling inslead of extending further down the intextine. The stomach appeary to he free from the mud accumulation, but distal to the stomacin the gut becomes sn distended and the whole bedy inside the test becomes so compressed by it that it is difficult to imagine normal feeding and respiratory functions proceeding. Some or the mud must lee lost through the anus and

Fig. 36. Curella eumyota. (Halletl Cove, 25 m). Individual removed from test.
Figs. 37. 36. Arridia sydneyensis. Fig. 37.-Individual from Tapley Shoal, 13 m . Fig. 38.-Individual from Wright $\mathrm{I}_{\mathrm{I}}, 10 \mathrm{~m}$.
Figs. 39. 40. Ascidia gemmata, (Upper St. Vincent Gulf. $10-12 \mathrm{~m}$). Fig. 39, -Individual removed from test. Fig. 40,-Diagrammatic section through branchial papiliae.
Figs. 41-43. Ascidia thompsoni. Fig. 41.-Dorsal lamina. Fig, 42.-Individual removed from test (Carickalinga Head, $5-6 \mathrm{~m}$). Fig, 43.-Individual in test (off West Beach, 8 m).
Figs. 4t. 45. Ascidia aclara. (Off Seacliff, 16 m). Fig. 44.-Whole individual. Fig. 45.-Individual removed from test.
atrial opening and untit ubsecyations are made on living specimens. it mus? be astumed that the property of the distal patt of the gut to distend itselt in this way is characteristic of the species and results in the acemablations of gut contents at a greater rate than they are semoved from the budy.
Ascidia gemmata Sluiter, 1895: 177. K0h, 1965: 296 and synunymy. Cokioka, 1967 : 140.

Nely Records: Upper St. Vincent Gulf, off Port Cinwler. off Glenely. Previous Becoriv: W. Aust (Cape Jubert lo Almany)-Hartmeyer 1919: Michaelsed \& Hartmeyer 1928: Kolt 1952. Vic. (Port Phillip Bay)-Koll 1052: Millar 1966. N.S.W: (Port Jacknon. Arraw, rra^{2})-Herdman 1894; Kutt 1952. Qld. (Hfervey Bay)-Kott 19ng. IndaPavific (Indonesia)-Shiter 1904; Tukinki 1952; (badao Is.a New Coledonía, Matianas Ix.. Camline 1s. Wake Is.) - Tokioka 1950, 1961. 19ヶ7.

Ficis. 34. 40

Deneription: Eaternally the test is fairly thin and flaceid and is stighty irtegular. The hranchial aperture is termmal on a short cylindrical siphon. The atrial aperture is on a similas but genceally shorter siphon froni the anterotorsal aspect of the body. Both siphons are regulanly grooved extermally along their length. Individuals are attached by almost the whule of the left side. [ntesnally the atrial siphon arises from hati way down the hody and is aspecially long. The branchial siphun is also long internally, There are circular and longitudinat muscles tround both the siphons and these extend enly it short distance pusterior to the siphonss on the left sude of the body where there is no musculature. On the right side of the body the longiutulinal muycles from the siphons mingle with the irregular meshwork of smuscles which occupy the whole body wall on the right side. There is only a very narrow prebranchial area terminated anteriorly by very numetous hranchial tentacles, and covered with mimute papiltae. The sorsal tubercle is :1 fairly latige circular cushion with at U-shaped stit turned to the right and with the porterine hatn turned in. The peritubercular attect is shallow ant is completely filled by the dorsal tubercle. The donsal lamina is a broad, single membranc, strongly ribhed on both sides. "The ribs of the dorsal lamina extend into pointed languets on the free marein, There is a long neural gland almost one-litird of the body distant frant the
dorsal tubercle. The branchial sac is simply folded hetween each lungitudinul vessel dund hats 4 to 8 stigmata in each mesh. There are large spatulate papiltae at the junctions of the longitudinal and transverse vessel and these ure eapanded into rounded expansions on either side of their base. The gut forms a theen double loop encloxing the gonads in the primary loop. The pole of the gut loop in the laree speciment availabie in this collection does not catend snierior to the buse of the atrial siphon and is level with the antus. There is however some variation acconding to the size of the specimens and in smaller specimens (Michaelsen \& Harmeyer 1928: Millar 1966) the gat loop evtends anteriur to the strital siphon and occupiex a relatively larger portion of the left side.

Remerks: This species has been recorded often fron locations around Alstrulia extending north in Indonesta and into the Pacific (Tukioki. 1467). The speciek is slistinguixhed by the ibsence at intermediate papillae in the branchial sac, hy the heavily ribbed broal dorsal lamina, and by the orisin of the atrial siphou from the middle of the body. Athough in the presert specimens the atrial siphon is long and disected anteriorly, in specimens prevously tescribed there is a great vartation both in the length ut the atral siphon and in its orientation (Michaelsen \& Hartmeyer 1928)Specimens have been dexeribed with sessite externat apestures and it is probatic that the present specimens with short groaved cylinders tepresent more mature individuals. Extemally the spocies resemble both at. sydncyensis and A. Thempsoni and it is prubable that in all these species the test is firmor and relatively thickel and the extemal siphons less crident in the younger specimens, while in older specimens the test becomes ruugher externally and Ies. transparent, and the extergal siphons develop as short grooved cylunders. The body musculature. concentrated on the right and on the siphons, is so afrangel that the left side, fixed to the substratc. does not cuntract aver the volunainous gut. In these species the gut ozenpies a relatively smaller proportion of the body wall as the insividuat increases in size. in A. gemsmen growth appears to increase the propurtion of the body anterior to the gut, and although the point of origin of the atriat siphon remains about one hale to thwo thirds of the distance down the body. the gut does not appear to increase in sive at the same rate as the rest of the bodly. The orientation of
the eectum and the curvature of the gut loup is therefore reduced ist growth pruceeds. II is also possible that this clifferential growth eatses the variations that have been observed in the length and orientation of the atrial siphon, atholyth this may also the affected by the oricntation of the bouy on the substrate,

Ascidia malacea ansiralienwis Hartmeyer. $l 428$, resembles the present species in the presence of of hroad ribbed dorsal lamina with the Ifee margin produced into painted projections corresponding to the ribs. Haueter. the species is distinguishod by the specially long cxternal siphonn by the dorsal ganglion whict is only unc-ninth so onc-thirteenth of the body length from the alorsil tubercle, and by the small stumpy conc-like branchial papillac as opposed to the sparulate papillac of A. weme mbar. Hatrimeyet's subspecies was recondel from a seasonally hrackish cnvironnent in Freshwater Bay, a considerable distance up the Swan River cstuary from Fremantle Harbour and he regarded it as an isolated sntemic species.

Ascidia thempsoni Kote 1952: 312.
New Recordr: Off West Beach. Hullett Cove. Carickilinsa Head, Previeus Records: Tas.
\{Greal Taylor Biy \}--Kott 1952.

FIGS. $41-13$

Descripiols: In smaller specimens the test is firm and almost glassy und transparent. Anterionly, expanded terninal ampullate of the test vesuels ate ciearly visithe through the test. Individuals from 2107 cm long are aviblable in the present collcction. Boik apertures ane sessilc. the branchial aperture temminal ind the attial apesture two-thirds of the disiance down the dorsul surfice. Most individuals are firmly fixed by the whole of the left side. however the specimen froni Carickalinga Head is fixed posteriasty - The body musculature is present mily on the fight side consisting of at mesh of trinsverse and longitudinal vesscls Internilly the nifial aperture is on at siphon of variable length tising oppesite, anterior or postcriot to the extcrnal opening. The atrial viphon shous the sime variations in length and orientation at have becu described previously for A. geminutu (Michaelsen \& Hartmeyer 1928: Millar 1966). Both wiphons are well equipped with circular and longitudinal muscles. There are about 40 brinchial tenlacles, a papillated prebranchial arean as shallow peritubercular area completely filled by the dorsil tubercle which generally has st simple

U-shaped opening. In an especially lurge and opaque specimen from West Eatach (at 8 m) linere is a second opening to the rieht of the larger U.chnped opening. The dorsal ganglion is about half the hotly distant from the darsal ubercle. The dorsul lamina is st wide men. brine. tusibte for about one-sixth of its length. The right section of the double membrane is plain, the lefi scction is ribbed un the left. For the remainder of its length the dorsal lamina is a single membrane ribbed on the left side. ilthough these tibs do not extend to the outer matgin ol the membrane. There are minute and irregular papilla-like expansions from the frec border of the membrane in its posterior extent. Intermediate branchial papillise are generally present, especially in the posterior pati wi the branchist sac. The intermediate hramehial papillae are half the wise of the primury papillae, snal both are pointod. The gul is voluminous and forms a deep stouble loop which varies slightly in relation to the utrial siphon as the individual grows, is in A. gernmuru.
Remarks: 'The druble dorsal lamina with slightly irregular membranaus border nosteriorly and the form of the intermediate and prinatry branchial papillate distinguish this species irom the very similat A. kemmata with Which ils geugraphic sunge werlaps. The origin and the variable arienintion of the atrial siphon are staned by the two species, and in hoth, owing to differentinl yrowth of she body, the gut loop is confincd to the poxterior half of the left side in larger specimens. It is of considerable interest that the present species has been rccorded only from firirly sheltered cernstal cnvironments (subject however to some wave action 1 in the present collections. while A. semmera was taken only from Otfishore Benthic lacations subjece in currents in midalle and upper St: Vincent Gulf

Ascidia aclara Koll. 1953: 309. Millar, 1963: $721^{\prime \prime}$.
New Record: OF Scaclif. Previons Recorde: Vic, (Lakes Entrance, Port Phillip Bay)-Kolt 1957: Millar 1963. Old. (Moreton Bay)-unputished fecurds.

[IGS. 44, 45

Descrimion: There are two specimene in the present collection. maximum length 17 cm and 10 cm high. The budy is slightly dorso-yentrally flattened. The test is figid ahd incrisied with sind and shell particles and is produced Into two nigid cylindrical tubes from around
the hranchial and intrial apertures at the anterior ent of the dorsal surface and rom about oncthird of the distance along the dorsal suriace nespectively, The tipertutes ate completcly sesside-and lie at the base of these tuhes. The hody muscubature, within this sigid rest, in reduced to stroug bands ucross the dorsal surfice posterior to the utial aperture and hetween the atrial and branchial apertures. fintermally the specimens are exactly as picviously described with the branchial sute forming a fold across the dorsal tubercle.. The gut forms the usual simple open loop, opening adjacent to the atrial upercure.
Remarks: This unustal species appears to be highly specialised for an existence on a samdy bottom, with the figid tubes extending vertically from the apertures forming it permancady open channel ithrough she layer of mand io which the species is probably buried. It is probible that the immediate environment outside the aportures is modified by these permanently open chamhers to fucibitate a less internupted reeding process and confer distinct mdvantumes In locations where steady flowing currents and afxenece of sedimentation pertain. Tiue specier is salso of considerable interest in that ils records are confined to the benifenclosed waters indicared above. It is possible that there is as wider, more contimons distribution on the continental shelf or, alternatively, that it represcuts-a telice poputation of a species which once hald such a Dontinnous distribution on the open coast.

Suthrier STOLIOOBRANCHIA Family STYELADAE

Subfatuily polyzorners

Stolonity australis Michaclaen, 1927: 202. Michaelsen \& Harmeyer. 1928: 352. Kon. 1952, 253.
Nuy Records: Tipara Recf. Port Noarlungat. Provinus Recorrls: W. Aust. (Albany) Michacisen 1927: Michielsen \& Hartmeyer 1928 Tas, \{Spring Bay - Kout 1952

$$
\text { FICi, } 46
$$

Dexcripulon: Rounded, sandy. stalked or sessile individuals connected to hasal stolons, 0,in to 0.7 cm maximum diameter. The colonios in the present collection ure encrusting specimens of Pyurs irpegularis and Polycarpa pedencslome The apertures are both sessile on the upper surface. There ate two lolds on either side of the branchial wac with 6 to 9 internal tongitudian vessels. The gut loop is simple
and open with a gastro-intestinal ligament. enclosing a rounded endocarp in the pole. The shorestomach hat shout 18 folds. It is reduced in diameter at either end and has a thick pyloric cascuin of moderate length. Gonads are not mature in the present specimens and their arrangetient could not be determined. The ligaments anchoring the gut to the body wall extend in it row along the lateral aspect of the intestine. There are also large ligaments. anchoring the stomach and the proie of the gut loop.
Remurkere This species appeisis to he confined to the sowthern coat of sustrathia, but has been recarded only from locations away from the open coust. It is inconspicuous however, and it is possible that for securrence in protestos locations on the open coast has been overlooked. In the absence of mature gonads the species mily be dislinguished from dmphicarna dipeyd ha the low rounded brametial folds. the presence of a curved pyloric caecum and the less developed musculature.
Stolonica carnosa Miltar. 1963: 734.
Ne'w' Recurd: 'lipara Reef. Previous Record; W. Aust. (Cotiesloe).

HiG. 47

Lescriphem: The colony is oval, 3 cm long. 2 con wide and 1 cm thick intal, as in the type specimen, has developed asound in algal stcm. The 4 -lobed apertures of wooids are close oggether on stight swellings all around the outer suffice which is encrusled with sand. Thers is no sind inside the colany, Euch imtivatual is dorso-ventrally ifhtened and most of its left side is tirected toward the centre of the colony: There are 2 folds on eacls side of the branctual sate wioh internal longithatinal yessel according to the following formula: $\mathbf{E} \quad(5)+(5) 1 \mathrm{DL}$, There are only 5 stigmata hetween the entiostyle and the veniral fold.

The gut forms as munded loop and the sectum turns anteriorty and dessally at a sharp angle. The stomach is pyriform, narmowest at the cardiac end. has ${ }^{5} 5$ natrow folds and a very long, curved pyloris calcelum in the pole of the gut roop. There is a gatroointestimal lizament and ligaments connecting the gul hoop to the body wall as in Dispomus diptycho (sce Koll 3952). The anus is 2 -lipped. The gomads are in single sows on each side of the endostyle. The testes are nask-shaped and the ovaries contain 3 eggs of varying sizes, and a testis and an ovary arc generally loosely associnted to that thero are 6107 hermaphrodite gonatis on each side of the body.

Rpmarks: Although in Millat's spocimen the testes and ovaries appeared often to bo sepispate, the condition and the arrangement of the gonads in the present molony suggest that this is mole apparent than real. and may depend on the relative stages af develomment af the ovary

In Millar"s specinen the stomach is folded internally has externally the tokds were prohably obscured by the membranc covering them. The course of the rectum in the present specimen also differs from Millar's specimen and is bent back against the gut loop. prohably hy dorsoventral flattening of the individual. The extent of shis thossioventral flateening. therefore, is an indiwidual, suther than it specilic. character.

Oculinaria australis Gray, 1808 564. Kou. 1952: 251 and symonyny. Mlliar, 1463: 734; 1966: 369.
New Recordy: West 1. (Scal Rock), Wright 1. Previnus Recerdx:- W, Aust. (Fremantle to Albany 1-Gray 1868; Michaelsen \& Harl. meyer 1928: Kott. 1952; Millar 1963, Vic. 1 Port Phillip Ray)-Millar 1966.

Dascription: Colonies of the usual form with numerous ropids closely coalesced, identified only by the paired apertures on wartolike siptons from the auterior surface of eacts 7.onid which project slightly from the otherwise compact colony. The test is very britte and completely impregrated with sand. There are 4 branchiar tolds on each side of the body with 4 to 8 longitudinal vessets on each Fold and about 4 between the folds. The gut loop is us previously described, with about 18 spiral folds in the stomach wall. No pyaric caecum has heen detected. Thege is an elongate gastric gland reservoir extending between the stomseh and the intestine. There are up to 9 long gonads on the right: side of the hady, a larger number than hus previously been recorded for this species. There is a single row of testis lobes beneath cuch short ovary.
Remarke: The species is well adapied, by its compacted form, for the nocupation of turhulene locationss and, in fact, it has been recorded only from the exposed open coast. Extermally it resembles colonties of Polyandrocarpa spp. from which it is readily distingushed not only by the location of the gonads on ome side of the body, bui also by the spirith course of the stomach folds. the presence of a sastro-intestinal reservoir and the form of the gat loop

Subfamily hotryleanae

Botrylloldes leacht (Savigny). Michaplsen \& Hastmeyer, 1928: 341 atad bynnnymy Millar, 1952: 24:1962: 177 Kut. 1952: 258: 1966: 297
Botryllus leachii Savigny, 1810?: 7
New Records: Tipara Recf, Port Nöarlunga, West 1, Wright 1. Previons Recordv: W. Aust. (Geradutun to Albany)-Michaelien \& Hartmeyer 1928: Kott, 1952, N.S.W. (Port Jackson)-Herdman 1899. Old. (Morelon Bay)-Kiate 1952: (Sarina)-unpublished record, Northern Terriwory (Darwin)Kott 196ti. New Zealand (Haturaki Gulf) Michaelsen 1921; Brewin 1948: (Stewan 1.) -Michaelsen 1921: (French Pass)-Sluiter 1900: (Otago Harbour)-Bewin 1946; |Auckland I.)-Bovien 1921. South Africst -Harmeyer 1912; Millat 1962. The spe. cies is also known from the North Allantic. the North Sca and the Mediterrancan and Adriatic (nee Hartmeyer 1923, Airnbülck 1923, and Millar 1952).
Descrintion: Living colonics froms Ocdipus Point, West I. have a colourless matrix and red zooids, while in those from Pors Nourlunga the malrix is transparent ind the zoolds yellow. bright orange. All the colonies have transo lucent test and purple zooids in prescrvative Colonics form Mattenced. long fohes with at shore walk. There are circular to oval systems of closcly' packed rooids. The test is firm and transpanent. The system of zooids are arranged in rows along the length of the heash, These systems may appear to be confluent and form almost continuous rows, but in fact separate cloacal openings remain in the centre of 3 limited number of zooids and Jiscrete cireular to oval systems are miantained. There are 9 to 12 rows of aboul 20 stigntata. The stomach is long, with 10 folds and s very shors catcum.
Remarks: The fors of the colonies is very similar to those of B, mugnicoectim bul the circular systems and firm test, with common cloacal npenings along the sides of the bobes are distinctive. The shape of the stomach and the form and length of the pyloric caecum is similar to the condition found in B, nigrum. However, the smailer number of nows of stigmata with more stigmata in cach ruw also distingulshes this species from both B. magnicorcum and from B. nigrom. Records for this species extend from the North Atiantic to the Melliterrancan and Pucilic Occans, and from ull around Australia. It is lith known from the

Indiun Oceam beyond Ilie West Australian coast nur is it known from the Suuth Atlantic.

Botrylloides nigrum Herdman, 1886: 50, Van Name. 1445: 227 and synonymy Kott, 1552: 257
Surculnow thohlos mekswaianam Licrdman. 1899: 102.
Mipconhursilosides pammaymen Heruman. 1899; 105.

New Hecords Port Gawler, olf West Beach. off Neacliff. Carrockalinga Head, Rapid Head, West I. (near Penguin Rock, Seat Rock). Wighu 1 brewions Records: W, sust., S. Aust. Ví-Kott 1952. N.S.W. (Port Jack-sont-1leremart 1899; Kott 1952. Qld.-
Kote 1952. Indu-Malaya (Ceyton)-Herdman 1906: (Red Scal-Michaelsen 1919. Ease Africa-Shuter 1895: Michaclsen 1918. South Africa-Hartmeyer 1912. The specles is also reconded from the Caribbern region (Van Name 1945);
Dexcripuion: Colunies investing shects sonictimes extended ino irregular lobes. The zouidh ate arranged in long double row systems well separated from onc another with transpurent test between. In preservative the zooids are pouple-llack with the pigment contained in cells in the hody wall. The colour of the preserved spevimens docs fot geflect the variuthons in colour of the living specimens which arc: "dark hlue and bright purple" zooids (West 1.): ar "vellow and mustird" (off West Beach). There are 16 rows of aboth 12 stimmata with 3 internal longitudinal vexsels on each side of the heanchial sac. The atrial opening exposes the anterior half of the dursal surface of the brant chial sac, but the lip from the anterior border of this oprening is mot especially pronounced. The stomach is the ustat lone organ characrefistice of inis species, with 10 tolds. It is wher at the cardiac end and reduced in width at the pylorie end where there is a very shon caecum.
Remarks: Alhough the variation in colour arnl the irsegularity of the colunies make this species dillicull in blentify in the tieks, the shane of the stomach with its shurt caccum and the widely spaced stouble rows of zooids are distinctive. Its zecorded distribution is wide in the Imlian Ocean and from the West Indics. At this stage there is no known character available to indicute that all these records refer to more than the one specics with an almost circumpolar distribution. in the southern temperate regions athent only from the midite and castern Pacific Ocear.

BoryHoides magnicuecum Hatmeyer. Kut. 1952: 258. Milisr, 1966: 368.
Buswflowdes mertm var. magnichecum Hatrmeyer, 1912; 271.
Komylhs masnicarcus. Michatelsen. 1923b: 30: 1923c: 6 Michaclsen \& Hiwtmeyer: 1928; 331 and synunymy. Hastingy. 1931: 79. Bretion, 9951 : 109. Millar. 1955: 195; 19riz: 175. Tokioka. 1967: 153.

Dodryllur zuceps Michaselsen \& Hailoneyer. 1928: 335. Millar, 1963=736. Palbeyerns mitus Oka- 1927: 608 Helryilur reftus: Tokinka 1953b: 240
New Rorords: Off Weat Beach. Weat lo. Wright 1. Previnus Records; W. Aust (Shark Bay')-Michatelsen of Harmeyer 192s. So Aust. Tas,-Koll 1952. Vic (Port JPhittin Bay?-Millar 1963, 1966. N.S.W. (Port Jackson) -Herdman 1891: Millar 1963. Qld. (Great Barricr Reci)Hastings 1931: New Zéaland (North 1.) Michaelsen 1921: Brewin 1951. JapanTukirka 1952: Oka 1927. Chinu (Hons Kongl-Michacisen 1923a: Tokioka 1967. Indian Otean (Paumbur) - Micfaclsen 1923a. South Africa-Hartmeyer 1912; Millar 1955, 1962. South West Arric:Hartneyer 1913: Michaclsen 1915. NutalMichaelsen 1918, 1921: Eutrope (Portugal) ?var-Michaclen 1923b: (Mcditerranean) :Nar. Mlchaclsen 1923b.
Descrptone The living colonics from West 1. are "bright yellow" ulthough other specimens are "greyish with pate zooids", In prescruative, frowever. all the colonies art purple owing to the pigmentation of the zovids which shows through the very solt transparent test. The colonles in this collection always consist of solf, long. narnow, llittened. stalked lobes with zooids arranged in closely set double rows ruming paratlel to the length of the lobes Zooids are absent from the sinlks. In preservest specimens there is always ath accumalation of dark pignent at the top of the entortyle and on either side of the base of the branchial aperture Common clonsal openings are always present around the free cand of the lobe as in Sycozons sp.

There are 14 rows of stigmata in the present specintens with 3 to 4 stignata between the longitudinal pessels. The stomach is shost und rounded with 9 folds and a long caccum curving into the pole of the gul loop.
Ramurfs: Millar (1963). regards the form of the colony of the Australian specimetr (lons stalked lobes) as providing is character which distinguishes it from the South Airican forms which are irregularly jobed and imvectings as
are Brewinis specimens lrom New Zealund, The closely set double row branching systems are present in all the specimens represented in the synonymy above and all thase specimens have the characteristic shori, rononded, stomach with a long curved caccum. dixtinguishing them from nther species of the genus. It is possible that the Ausirilitan members of this species may represent at geographic suhspecies chazacterised by the parlicular form of the colony with lerminal cloacas apertures and close-sct double sows of zooids paralles to the longiindinal axis of the head. Boyrsilhides leackl coblonies are similarly lobed but the cloacal aperturex are present along the side of the head hetween the double row oll parids.
Bouryllus schlosseri (Pallas). Van Name, 1945: 220 and synonymy; Kott. 1952: 259 (pars).
Alcymiam whlosstyi Pallas. 1766: 155.
Noil hueryhus sembassery. Kort, 1952. from llamelin Bay and Green Pools, W.A.
Ne'sy Record: oli Hallett Coved Prmioms. Revords: W. Aust. (Shark, Bity, Fremante)Hartneyer \& Michaelsen 1928: Koll 19.52 Vic, (barl Phillip Bay)-Millier 1966. Elsewhere the species has a wide distribution from the Ficroe Is and southern Norway. the Britist Ixice, the North Sea. the Meditertanean. Altriatic and Black Sea; Pront the castern and western seahoards of the U.S.A. and from New Zealand (see Van Name 1945).

The frect ubtindance of zhis species and its occurrence on wharf piles, ship hulls, buoys, ctc. in shullow water has been pointed out by Van Name (1945). This wide cosmopolitan slistribution suggests that, like Ciona intessinwhis, the species favours sheltered locations and as transported largely by ships:
Descrintion: The spectmens are delicate and invest the vea grass Pasidomia dusizalis, The test is almost completely transparent and the zooids are pale grey, zooids form small circular systems which arc crowded close together in the tent. The exwoids are relatively shor. with only about 8 rows of stigmata. The atrial aperture is on is siphon produced to a varying extent and the upper margin of the aperture is produced into a lip. There is is conspicuous pyloric caccum with a large bulblike expansion on its frec end. The stomatich has about io very fine folds. is longer than wide, and is only of slighty greater diameter That the rest of the gut. Developing emiryons are present in the peribranchial cuvity of some
of the zooids, but on the right side of the hods onfy.
Remmarks: The cooids in a colony of the prexent specimens are identical with those described for Boppuller-gracilis Hurnacyer \& Michaclien. 1528; Millar, 1966, from Shark Hiy, Western Australia and from loort Phillip Bay. Millar (1966) regards this type of thin transparent solnny tes a species distinat from B. zahlossert. Juvenile colonies of B3, schfousen as deverithed by Verrill (Verrill \& Smith 1273) are identical with the aresent colony and the zooids are identical with those previousily described for this species especially in regard to the atrial opening. stomach and pyloric caecums and it in unlikely that B. gracilis is distinct from B. schlosxeri.

Subfamily styecinage

Cnemidocarpa ctherldgii (Herdman)
Stuch erheridsit Heraman, 1899_{i} 38, Kolt: 1952: 219 and syoonymy: 1964: 139 (f. pers(matm). Millar. 1966: 370.
New Rorords: Tupley Shoal, oft West Beach. West I. (off Oedipus Point), Wsight I. Provvious Records: W, Aust. (lirigg 1) S. Ause. (Sipeneer Gulf and Si. Vincent Gulf). Vis. (Phillip 1.7-Kott 1952: (Pori Mhillip Bay) - Millar 1906. Tus. (D'Entressitcaus Channelt-Kott 1952. N.S.W. (Porl Juckson, Port Stephens)-herdman 1809. QlJ. (Morcion Bay)-Kott 1964. The species is known intertidally and down so 30 m . It is aburdant in St Vincent Gulf on samd! boltoms at $7-20$ in with slow earrents, and on open consts in deceer water of $20-30$ m (Shepherd, pers. comm.).

FIGS. 48, 44
Description: Individuals are large dip to 11 em high. roundert and of greatest diameter pasteriofly. gradually reducing in diameter to the terminal branchial aperturc. The erminal hranchial aperture is sometimes curved. The atrial aperture is on a slighe rounded projection from about half way along the dorsal surface Colour of living spocimens varies from pale cream to bricht veltow fmost often the latter). In preservative the lest is white and opaque, with longirudinal furrows converging to the branchial apertute on that part of the tondy anterior to the atrial apenure. The cest is thin and leathery; There are up en 25 inter. nal longitudinal vessels on the folds and up to 7 betwecn, although in snme specimens there are as lew is 4 internal tongitudinal vessela between the folds. There are 6 stigmats per mesth.

Fig. 46. Sulonica mestralis: (Tipara Recti), Gut loop.
Fige 47. Sholonica carnoses. ('liparn Reef). Right side of hody removed to show urgans an lefl hody wall.
Figs. 48. 49. Cnemidororpa rheridgii. (Tapley Shoat, 13 m). Tig. 48. Whole individual. Fig. 49. .Individual bistect flong the ventral surface, hinathial suc removed, showing gomads and entacarps in body wall.
Fig. 50. Polvcarpa clavate. Whate indiyjdual.
Figs, 51, 52. Polycorpa pupillata. (Off Glenelg, 15 m). Fig. 53 . - Hody wall on left shuwing gut loop, ponuds and endocarps. Tig. 52.-Individual showing gonads on right side of the body.
Fige 53-56. Polycarpa pechenculala. Fig. 53-Individual from Aldinga ($10-25 \mathrm{~m}$). Fig. 54 - indivi. dual from Tapley Shoal 124 m$)$. Fig. 55 , Individual from West J. (25 m). Fig. $56,-$ Gut loup and cndocarp.

The gut forms is gently curved, fairly narrow loop aeross the left side of the posterior end af the body, encloxing a long marrow curved codocarp which is continuous with the body wall on both the right and left side. The gut loop is almost entirely posterior to the bran-
chial sac: the clongate stomach and proximat part of the intestine forming the proximal limb of the gut loop lie almost in the mid line pos-tero-ventrially and the distal limb of the gut loop passes to the left of the posterior end ol the branchial sac. The gut loop is slmost
entirely embedded in the thickened body wall and is coveces by endocarp which encloses the left gonad (in the curve of the gut) and extends ventrally across the pole of the gut loop to juin the shickened budy wall ventrilly and posteribrly. The pole of the gut loop thus projects into is nucket in the thickened body wall. The ovesophagus is short and the stomach is long and elliptical with internal longitudinal glundubar lolits. The anal opening has a smooth berder.

There ure one or two flask-shaped gonads on the night side of the body. On the left the gunad is embededed in th single large endocarpal thickening of the body wall. Hece there may he at single branched gonad with single 5 and 9 ducts emerging from tie endocatp and directed to the utrial aperture "This condition may have resulted from the fusion of two gonads. In stwother specimen there are iwo dixerets gonads embedded in the left side of the body with their uwn sets of and and ducts emerging from the endocarp. The restis lobes are enclosed by the ovarian tube as is characteristic af this genuls.

Remarks: The present large specimens conform with those ascritied (Kort 1952) so the "erphriefgit" condition of this species, it is nost probable that this distinction relates only: so the stage of maturity of the individual, where the "persimmen" condition represents iess mattre individuals. Both forms have been taken from the same locations in both cast and western Austialia.

Polycaspa clavata Hartmeyct. Millar. 1963: 723.

Polvarpa wanm (Qucy k Gaimart) f Phemes Hatmeycr. 1919: 40. Miclactsen \& Hartmeycr, 1928: 363. Kott, 1952: 23 6. Tolobioki. 1961: 123. Vasseur. 1967: 133.
New Records: "Tapley Shon, near Marion Light, off Troubridge Light. Provions Records: W. Alst, |Bathurst I, tn Ruttnest 1.)-Hartmeyer 1919; Kort 1952: Millar 1963. Pucific (Noumed. New Caledania) Jinkinka 19ft: Vasseur 1967.

HiC. 50
Description: Large stalked specimens from faws in reddish-brown The test is very soft and gelatinous and the surface is marked with rounded longitudinal ridges which are sometimes interrupted horizontally. The brimethial aperture ix un a shore sinhom from the bash wne third of the dorsal sufface. directed to-

Ward the substrate. The atrial aperture is sessile and inconspicuous fron the midde third of the dorsul surface. The upper, or pasterior. end ot the hew is high und rounded. The stalke about the same length as the head. is also thick and lleshy", wider toward the base in the larger specimen, and bulbous, or. in smaller specimens. (Murion light) (airly nartow In the smalles specimens there are randomly dixLribuled coneavilies, surpounded by well defined lips, on the sides and base of the stalk. Thene concovities are richly supplied with bloud vessels which end in terminat amplllac in the baye and lips of the concavily. It is possible that these organs are involved in the fixing of these individuats to the substrate, especiatly its they do not appear to be presem in the larger specimen where the surfinge sest of the stalk is uniformly transverscly fidged.

The nutulature is rather diffuse in the thich: body wall which is produced into a tonguc-like projection extending sbout one third of the distance down into the stalk. The stalk is com. posed of solft test thateriat for the remainder of its length. The dorsal tubercle is large. completely billing the perituherenker aret and has a complicated, convoluted and interrupted apen. ing. There are 4 branchisl folds on either side of the body. sonctimes only apparent ax an accumbtation of longitudinal versels. The branchial sac does not project into the anterior tongue of the body wall where it proiedels into the stalk.

The gut forms a double loop conffined to the poxterior part of the body. The anal horder has small mounded lobes. Endocarps encloned in ule gut anop may he subdivided termually into two ar more branches. Gonads more or less in 3 rows down each side of the body wall. are "foot" shaped fixed to the body wall by the netaphorical "ankle". with the "toc" pointing soward the utrial aperture.

There aro numerous uprighe endocarps sisto ereal over the body wall between the gonuds

Remarks: The dursal luhercte of Polysurpa pedua Herdman (Siyela pedata) which Hantneyer $\{1914$ p listed as a synonym of the presemt species is distinguishod by the presence of numerous pit-like apenings while the dorsal tubercle of the present specics. although complieated has a convoluted slitolike opening interrupted several times along its leneth. The present species apparan elosely related th Polycurpa longifarmis Tokioka (Koti 1906).
which has similat gnouds and appeurs to be distinguished onfy by the orientation of the hedy, the ahvence of the distinctive stalh and the simple opening of the neural gland. Folxruppa verollemt Hertman (1399) hats as similar convoluted opening on the dorsal tubercle, somerimes broken into steverit opunting along its Jength. The gonads in Pampollms, however. are utright.

Milfar (1963) drew attention to the difference hetween P. airata (Quay \& Guimard) and the present species first described as P. auruse charwil Hatmeser.
19. Gemafd; Hastinge. 1931, is described as agrecing well "with Hartmeyer's (1919) und Herdman's (P^{2}. sulculai Herdman 1880) descriptions". Hanmeyer's deseription, however.
 and it if with P. aratim ($>\boldsymbol{P}$ sulcalen) that Hasting's specimen is jucrtical. A re-examimafion of the type specimen of P. autara vald phema Herdnam. 1899 from Port Jickson has shown that its monade are also the usual short polycurps of P. auener which is now knowa from Port Jucksm and the Great Barrier Rect and from the Indian Occan. Malayn, and Indonesia. The range of P_{-}currotrs, therefore does not overtag that of P. charma.

Polycarpa papiliata (Sluiter).

Srafte purillula Sluiecr. 1886: 192. Tokimha, 1952: 117. Vascut, 1969: 925.
Piflesargu infegrinater Kott. $1932=23 \mathrm{~K}$.
Nelw Recomfo: Tipara Reet, off Port Gawler, ufl Giemelg. Aldinga "Jrop-off". Previnus Records: N.S.W, (Port Inckwn)-Kont 1452. Indian Ocean (Madagasear)Vasscur 1969, Indnnesia sluiter 1886. (Arafura Seal-Tokioka 1952.

FIGS. 51, 52
Description: Shtall aggregates of individuals. the posterior test sometimes exiended into a short slatk. The hrianchial aperture is terminal. the alrial aperture one third to one balf of the distance adong the dorsal surface, Both uperthres are sespile. The text is tough, rough and wrinkled externully, with some sand and algae irregularly adhering but generally the surface test is naked. The body musculature consists of a moderately thick cunlinuous external coat of circular muscles with lorgitudinal bands incernally. The dorsal tubercle is a large blisterlike swelling with a simple U-shaped opening: it completely fills the V of the peri-tubercular anca. Thete rece 4 wide ovellapping folds with abrout 15 internal longitudinal vessels ant eich
fold and 3 to \& beiween folds. There are 4 ks 8 stigmata in cach mesh. Anteriorly the endostyle follows at winding couthe. which is effected by the subdivision of eransyerse wessels and mulliplication of the number of rows bl sligmatis ventrally, in a locilised region along the anterior exiche of the condostyle. The gut forms a hotizontal loop in the posterior end of the hody. The stomach is elliptical with longitudinat striations. The rectum extends anteriotly toward the atrial opening. The anal border is broken up into 14 long finger-fike lobes. Tall endocarps are present in the gut toop and scattered over the body wall. Seven to 12 oval to elongate polycarps are present in 1 to 2 rows in the centre of cach side of the hody, directed toward the atrial aperture. These polyeargs are fixed to the body wall along their whote length. In snsalter specimens with smaller inmature gonads there are more often 2 fows of polycarps, and. as the gonads increase in length and the body length increases. these rows appeat of merge into at sithele irregthar row, while in a single specimen with well developed gonads there is only a single regulat row.
Kemark: The present species resembles Polycarpis clavath (Hartmeyer), Pomelfurnis Tokioka and P_{0} arollems Herdman, in the tall endocarps encluxed an the gut loop, bit is distinguished by the rows of teeumbent ganads fixed alsng their whole length to the body wall. The anal lobes also resemble those of P. alolleres and P.iongiformis.

The form of the body, the position of the atrial aperture, the form of the dorsal tubercle. and the form and arrangement of the gonath
 1967. which is distinguished by its short oysil stomachs. greater number of lows of gonads and greater number of internal lentigutimal vesubls hetweell the branchial folds.

Chemidocarpa madagasierbismsiy mendastas. corrensis Hartmeyer from Madagascar and C. madagascarioutis regulim. Michaelsen from New 7ealand (sec Kott 1971a) niso sesemble the present species in externat appearance and in the arrangement of gonads, and ape thistingujshed principally by the greater length of the gut loop and greater number of internal longitudinal vessels. between the branchial folds The papillac on the branchial sac descrited by Stuiter (1886) are not present cither in the South Australian specimens or in the specimens from lice Arafura Sea (Tokioka 1952). Ir is possible that Sluter mistook patticles adhering to the branchial sac for pamillae.

The species has a wide gexyraphical dixribufion from Imbonesia and apparently aronnd the cast coast of Australid. from rocky substrates In sheltered lucalifies, or in Oifshore Benthic focitions where there are slight eutrents.

Populations of this spiciees de not appear to led dense and records are few.
Polyearpa pedunculata Heller, 1878: 106. Kott. 1952; 232 and synonymy. Miliar. 1966: 369.

Pelyevfra ohscura, Kotr. 1452: 245 and хупипупу.
Podycurpa sephenensis Herdman. 189y; 25. Kult, 1952: 232. Millar. 1965 ; 726.
Pobicarpu meehil. Kull, 1952: 244 and symo19уmy: 1966: 299. Vassens. 1967: 136.
Polscetpu ahiecta. Kote. 1952t 242 Inat P. ohrcon Trnustedt).
Non Records: Tipara Reef. Taptey Shoal. near Marion Izighr. apper St: Vincent Gulf. off Purt Gowler. off Semaphore, off Grange. off West Beach, off Glenclg, of Broatway. nff Hatleft Cove Port Noarlunga, Aldinga, Ciriskalinga Hean. Ripid Head. West I., Wright fo Previons Records: W. Aust. (Cape bablert to Bunbury)-Huremeyer 1919: Michastsen \& Harrmeyer 1928: Kott 1952. 5. Aust, (Recvesby 1.). Vic, (Baloarring Beach-Kutt 1952; (Bass Strait)-Heller 187\%: Michatsen 19(15; (Pott Phillip Bay) - Millar 1V06. N,SW. (Port Jackson, TwuCold Bayl-Herdman 1881. Qhd. (Moreton Bay)-Koll 1964. The species hav alsu been recorded from New C'aledonia (Vasscur 1967).

FIGS. 53-56
Deacriphion: This is hy far the most commant ascidian in St. Vincent ciulf amd is very variable in extemal appeatance. The colour of living specimens from Port Nuarlunga has heen described at "brighe to pale yellow"- "These specimens ure black to greenish in preservative. Most often living specimens are sandy with as "sedulish singe" to "reddishy brown" becoming brown to purplish brown when preserved in formalin. They are slightly laterally flatened and ilmust oval shaped, and are most often 3 to 4 cm long and 2103 cm wide, larger specimens up to 8 cm long are usually grecnishblack in preservitive. The aportures are sessile, the branchival aperture terminal but direcled slightly to the side, away from the dorsat surface, and the atrial aperture one-third of the distance down the dorsal surface.

The test is tirm and gelatinous and the surface is generally smunti and naked. There is often. however, a light encrustation of sand
or the test may be more heavily encrusicd. or may hecome almost brittle with included sand. In larger specimens the lest hecomes thinner. more flaccid and leathery.

Postcriorly the lest may he produced into a narrow stalk up to hatf the Jength of the hody. or the body may taper gradually from a straight upper or anterios surtace where the branchial aperture is central and the atrian aporture is on the antero-dorsal cormer. The posterior end of Ulso body, with or without is stalk. may bre produced into ront-like structures, or the insividual may be fixed to the substrate by the postero-sentral surface.
the body wall is lighe tu dark hrown. hrownish-grecn. gleenish-black, or black. It is not very thosely adherent to the pest and is thick, firm and very muscular with internad longitudinat bands and a cominuous thick external coat of circulat muscles. Both layerg of musculatitre are often embedded in fieshy non-muscular tissue and wenerally spherical yosicles ate umbelded in the mutele loyers interrupting the regutarity and continuty of the libres. The hody wall is more flaceid in larger specimens.

There athe about 100 simpic tentacles of al lease a ordcrs. The prephatyngeal area hiss small papillise and is of moderate width. The dorsal tuberele varies and is cometimes small. in the centre of a fairly large peritubescular spea. It is sometimes much larger but never complecely fills the peritubercular area. The apening forms a U with borns turned in or out and directed to the side, anteriorly or posteriurly and in larger specimenx may be jnterrupted. The dorsall lamina is a plain edged narrow membranc. The branchial folds are low and rounded with 2 to 3 thick internal longitudinal vessels hetween the forlds and 11 to 13 oll the folds. There are fo to 8 stigmatia in each mesh between the folds but on the folds the internal longitustinal vessels are more crowded wogether. There are oftell vesicles, similar to those embedded in the body wall. entbeddal in the branchial vessels and in the dorsal subercle. The gut is confined to the posterior cad of the body distal to the atrial aperture. The intestine forms a short tounded loop enclosing is circulat endocarp. The stomach itself is elliptical with pronounced fulds. There may be at second small endocarp separating the rectum from the aesophagus as the former extends anteriorly toward the base of the atrial opering. In smaller specimens the anal horder. is broken into 7 sometimes subdivided rounded
lobes. In larger specimens there ire un to 2s lohes. "The circular enducurp coclosed by the gut appears to be the misor mechanism anchoring the yut loop to the bady watl that ix confluent with the connective tissuc surroundinu the gut. There ure 20 6\% 50 shurt ovat polycarps on the left and 29 to 610 on the right. These are sometimes, but not nlways, enbeddel completely in the botly witl. When compleidy emhedded only the openings of the ducts ane upparent is holes in the inner surface of the hody wall. Primarily there appent to be about 3 losevtudinal rows of polycarps on ench site of the butly. As enth polyciap incerases in length it sulb-diwites and new gronothets open frum the proximal hatf to form secondary rows of gonad overlapping the prinury tow cloxext to the atrial opening. If is possible that this prowss, restling in increases in the mumber of pulycarys present, explains the gecat variation in tho number recorded for this species.

Remurks: Mishuclsen \& Hartmeyer \{1928\} drew. aftention to the similarity between specios lisice in the synonymy above and suggest that P. obsellen is a variely of P : mednatilata $P P$. Fiptdist. Michuclsen regarded Polycurna m, ${ }^{\text {mis }}$ however, is a distinct species charastorimed by differences in the gut and gonuds. In this collection there are indivaluals demonstritiog every condition previously describid for po. pedumenther, p moebu, P obscurs and P. Nrphienehres. There atre specimens demonstrating every condition from stalked or routed 10 messile individuals; every colour and cvery condition of the test is found and there is considerable vatiation in the runther of polycarps dinil the extent to which they are embediled. The gut loop is alwity eonntant and encloses the circuitar chlocprp which hus at pornted lip dousally, The thick internul longitudinal ves sely of the franchial sac. their criveling on the harrow lalds. the spherical vesicles embedded in the horachial sace am hody wall. the thick layer ot circhift musele, and the pupillated prefranchial area can be regutded as cliameteristic of this otherwise highly variable single species: The extent to which gontdis ure embedded in the body wall. and the extent to which the hody wall is marked of inth areas probably indicates tnore milure spectomens.

Polvcarga mucnimer Hartmeyer, 1906, has a similar envincarp enclosed by the gut loop and the same type of vesicles embedded in the body wall. It is dintinguished fram sto prevent specits, however, by the weaker musculature
which also distinguishes if from the West Indian species P. ahiceite Itakstedt.
P. pedmuculum is the most common ascidian in St. Vincent Gulf and generally bott exeenish and feddish hrown specimens oceut. Lures black specimens were also laken from Sial Rock. Wesc 1. from Hallett Cove, int from Tipley Shoul. There is 110 apparent borreht fism hetween the sype of enviromment and the colour of the individuals it cach Stution. A cuse of geretic polymorphism it Ascidiacen has been described for Bufromia ovifers (L) (Pough 1969). This dominunt in the ascidian population of the Ciulf of Maine, hats colours ranging from whice to crimson red in a single haul. :nd variations in leas iexture and in muscle band colour and thickness can be related to these colour variations. It has been sugucsted that the specics demonstrates genctic segregution of the ablity of inctividusls 10 fecumulate pigments. The situation in folscarpe pedunculan may bindicate a similar senctic segregation.

Family JYURIDAR.

Pyura scoresbiensis n.sps.
Tupc Locution; Off Semaphore: 1.8 m , is sparve Posidonim, 27.1.69 (Holotype: Soluh Austalian Museum, registration number En76). F'uriher Records: OII Tapley Shoul. 18 m .22 m

FIGS. 57-59
Descrimion: Ronneled lieads on stalks of warying length. sometmer thick and no longer than tho heat, but sometimes long and narpow (up to 20 cml . supporting at hend 8 cm lang ind 3 cm wide. The heal is more or lest cygshaped with is grestest diameter bastlly hefore barrowing dbrupily to the stalk. The apcriures are both sessilc. cither side of st mure or leas pointed projection forming the interior apex of the hesd. The atrial aperture is slightly more potierior than the branchial aperture

The test is thin, thand and tough with is dense vinuly encrustation on the outer surface of the head and the slolk. The hody wall is thim and semidtarsparcnt with moderately ateveloped fine and diffuse musculature, with nusele bands mosl closely placed around the sherfior part of the branchial satc ind siphon.

The branchial rentacles hive it large Hanged axis. fairiy short primisy brinches. sumps secondaty branches and minute tectiast branches and are not very bushy. The siphons are lined with kong neetle-like spines, clonely set, 4 po 0.1075 mm long. Ticere are no spl.
cules in etther the lest ur the body wall. The thorsal tuluercle is a simple U-shaped opening with both horns murned inwards. The dorsal lamina has pointed danguets but is very shont owing to the close-set hranchial and arrial siphoss and contracted dorsum. 'The branchial sac is delicate with 6 high. overlapping folds on each side of the body with up to 20 internal bongitudinal vexsels on the lolds and only ? ur 3 between. There are 4 to 6 stigmats in cach mesh.

There is a simple and tairly narnow sul duop enclosing the gonad on the left. The gunad on the right occupies corresponding position. T here are very asborescent liver lobules in the region of the stomach. The gonad may consist of an undulaing ovarian tuhe with tringing testix follicies along huth sides with the testis ducts extending atong the mexial surfuce of the ovary. In same specimens the undulations of the nvarian lube extend out into pinnate branches with cencis folficles around their exiremilies. Thest pinnate branches nay subsequently separite of into separate nolyearp sace on either side of a ventral duct. The anal hurder is divided into 3 lirge shallow Iohes,
Remurks: Specimens dentonstrate the development of the polycurp sace of the pyurish gonati from the continuous tubulat styelid type of gonad. All stages of this development can be observed in the specimenszuailable and it may he that the condition of the goniad tudicates the age of the individuil: The stalk of this specien alko shows great variation in length and thick-ness- Despite these variutuns. the species is characterised by the relatively smooth test, sand encrusted, but withoul wheriles os furrows. and by the constant position of the apertures. The position of the apertures, on the upper end of the head. Faisly close fogether, with the branchial and atrial epenings on oppovile sides of the apex. is unusual in a stalked species of the Asciliacea, where, more generully, both apertures are on the dorsal side of the head with the branchial ancerture directed downwards, and the atrial uperiure uppermosi and dieceted upwards.

The relationship of this species are indicated by the siphonal spines, which resemble those described for Pyuret albanyonsis. Michaelsen d Harmeyer. 19N. from Oyster Harbour. Albany. Western Australis, in which aperture are atso separated by at cushion of test in the middle of the upper surface and in which the dorsal suifuce of the hakly is very much contracted and the dorsal lamina consequently very
shom. Hypra albangellsis has, however, charasteristic papillae on the convex bonier of the sCabresthaped siem and primary branclues of the branchial tentacles.

Pyura cervigona Tokioku. 1967, from the Palao 15. is a similar cluscly related apecics. sometimes stalked, with a similar arrangement of endocarps, gonads and gut. The anus, however, has many lobes and the fong (2.75 mim) siphanal spines extend outside the siphons onto the Jobes surrounding the apertures as in fiyned virtera (present in this collections. The necdle-like siphonal spines found in the present species are not found in the various forms of the pyura pachydermatina group of stalked species. In a specimen from Tapley Shoal \{Station 6) there are barnacles growing around the liranchina aperture.
Pyura viltata (Slimpxon). Pérès, 1949: 195. Tokioka, 1953: 137: 19534: 273: 1967: 202. Millar, 196n: 126. Koll, 1964; 142: $1466=300: 1969: 133$. For further syдonymy and literature to the species in the Atamic and West Indies see Varn Nime 1945: 321.
C'ymbits viltater stimpson. 1852: 230.
Pyura jocatrenis.-Kott, 1952: 273: 1054: 127. Millas. 1960: 125.
Neur Records: Tapley Shual, of Troubridge Light. Previous Records: W, Allst. 8S.W: Aust-)-Kott 1952, Tas.-Kioll 1954. Qld -Kot 1964. 1966. Pucific (Arafura Sca) -Tokioka 1952: (Palao Is.)-Tokiofa 1967: (Japan)-Tokioka 1953a: Van Name 1945, Atlantic-Van Name 1945: Pérés 1949: Millar 1960. Suk-antarctic (Masquarie 1.)-Kott 1954, 1969: (Kerguelen 1.1 -Kott 1954; (Mation 1.)-Millat 196\%.
The speceics has a wide circumpolar diskribution in the southern bemisphere and extends nowth through the Indo-Malaysin regon to Japan. It is atso found in the Altantic and in the Carihhean (see Van Name 1945\}.

FIC. (6)
Description: Only a sincle indivadual is available. 3 cm long with a terminal hranchint sperture and the ulrial opening hale the distance along the dorsal surface. Both apertures are almost sexsile. "The external surface of the test is tough and has sand and foreign mirticles adhering. The viphuns are lined with fong needle-like spines, 0.1 mm to 11.2 min hang overlapping. These extend onto the outer surSace of the siphons- cover the lobes hordering the siphons and extend ono the nuter layer uf test, The spines have a slight indencence

Which eonfers on this outer stphonial atea at greenish tinge. The siphon is lined with red siripes it the preseryed specimen.

The test is thin. leathery and firm. The dorsal tubercle is a rounded eushon filling the peritubercular orea with is simple Uahaped sill With both hosns turned in. The bronchial tentacles are not bushy and have omiy primary branches und very shon secondary branches. The internai siphuns sre fairly long. Longrutinal muncle bands radiate from both siphons but to nol extend very far down the body on the feft. Circular muscles lurm a fairly irre. gular network aver the jight side of the fody: becoming more sparse poweriorly. They are practically ubsent from the posterior hall of the body on the lefe sids, over the git loop. The branchial sae is fairly delicate. It has 18 internal longitudinal vessels on each told and 4 between. There ate 6 stigmata per mesh The gut forms the usual toons enclosing the leit gonad. The anal botder is smooth and hilabiate. The gonads cunsist of the usual centtral ovarian cube with pinmute branches on both sider terminating in polycarp-like sace. Rado-Earn-ike tissue is present on the free surfence of the gonads where it is broken up into lotics.
Rentarks: The syponymy of this widespread sperics hat been very confusing owing to the variation in the length of the siplsonal spines and the variation in the condition of the anal horder. It appears however, that Sluter's specie fromi Indonesiat ind Northern Australia (t :jucutrensiss. with very much stmaller siphonal ypines that do rot extend onto the outer surface of the apertures may be at distinct species despite the spines of intermediate length that are present in specimens from the Palau labiads TTakioka 1954: nee Kott li971: Pyuta curvigom 'Iokioka. 1967, from Palao Iso, is inUther elosely relasted species in which the very tung (2.75 mm) siphorul spines extens onto the outer surfice of the apenures. In Pyara alhamychsis Michaelsen \& Hartmeyer. 1928. and P_{i} weoressidensis nowp: the siphonal spines exsend sp to 0.275 mm . only slightly fonger than the present species. Howeyer, these siphonal spines to not extend onto the outer surface uf the apertures.
Hyura irregularis (Herdman). Kolt, 1952: 271 Millar. 1963: 739: 1966: 370.
Cunhin iresulapis Herdmum. 1881: 60; 1882 : 141
New Records: 'Tipara Reef, off Beach Hur, I km off Por Vincent, upper Si, Vincent Ciulf. off Girange, off West Beach, off Glen-
elg. Port Nourlunge Alding "drup-ufn". Carchalinget thead. Premphe Ricords: S. Aust. (Outer Harthour), Vic. (Port Phillip Ray)-Millar 1483. 1466. Tas (D'Enirccasteats Chamel)-Kott 1952. N.S.W | Port Juckson)-Herdinan 1883. The species fos not previousty beun taken if waten of less than 25 m in depth
Descriptim: living specimens are red. orange tu light fawf. Externally the test is vesy hurk. leathery and wrinkled and thickened into small ineltgonal plates. These are also wartlike protuberances, essecially anteriorly.

Individuals are usually clomped together in right aggregiter and the shape of the body is consequemly very itregular. The maximim: body length is about 25 cms . Both apertures are present at the end of Eatrly long siphons which are genefilly oriented away from one another. The test is very strong with internal longitulinat and outce circular muscle bands ish in all species of Pyuridsc.

Delicalte cup-shaped scales, 0.02 mm langline the siphons. There inse is brinchial tentaclex with khout sparse primary hranches and minute sccondary branches. The primary opening from the netiral gland is U-shaped with horas lurnex ith or out. The dursal wherele is blister-like and there is often itn accessory opening from the neural gland. The rubercte is not always Ionginudinally attenuatelf. however the perifubercular are is 别wity a very deep V-shape and generally the tuthercle does extend down inlo it. "The neural gungliun is especially longe extending moxt of the tivtance along the dorsal lamina. The dorsul baminu has a donble rov of langucts. Thexe are fine atal pointed. closcly sel on the leff. and on the right shey are stonter and mere sparsely arranged.
'Chere are from of to 10 branchial liolds an each side of the body with ahout 12 longitudinal vessele on the folds and 2 between. There are 6 to 8 stigmata in each mesh crocsed by parastigmatic vessels. The ent loop is simple and curved and encloses the left gonad which is subuivided into 15 10 23 separatc pulyearp sàcs arranged on either side of centfal malo and fenale ducts. There is a corres ponding gonat un the right.
Remords: This species resembles very closels the Antarctic species Pyura discoveryi Herdman (see Kout 1969). The tough, wrinkled exicrnal ted with embedded polygonal thickeninge is also iemminisent of the Antaretic Pyura squamata llerdman although the polygonal
scalce and the boty shape of r_{0} sqummate are more highly specialised than in either P_{0} discobsert or in the present species The branchiall tentacles with their sparse brantices und the long siphons are atsa similar to those of f divioveryd and it is passible that the protection afforded the individual by these jone siphons may be assncianed with the absence of the more busthy tentacles usually found in this yenus.

The individuals are never very parge and their leathery test and hahit of occursine in nggreghtes suggests on species adopted for very turbulent conditions. The present records do not support this, however, as they are either Iform Ofishore Benthic lecations in St. Vincent Gulf. of from reefs in sheltered coastal locas liens.

Pyura australis (Quoy \& Gaimard) s.sp- ausirn. is Quoy \& Gaimard.
Aneidien uastrulia Ouoy \& Cisinaard. 1834: 614. flyma suarralls fo syprica. Koll. 1952: 26ns and synonymy,
Ysurut unstralis. Millar; 1963: 739.
Nen Records: Tipata Reet. Tapley Shoal. near Mation Light, off Wext Beach, off Brondway. of Hallell Cuve, off Yankalilla Bin: West I.; NiW, of Robc. Previous Records: W. Aust. (Gieradtom to Albany) - Quay \& Gaimard 1834: Michaeken \& Hatencyer 1928: Kou 1992: Millar 1963. Vic, (Westemport, Flinders)-Quuy \& Gaimard 1834: Kots 1952. Jus. (D'Entrecasteaux Channel, Tinderbox)-Koll 1952.

FIG. 61
Descriphion: Specimess of all sides un to a maximum of 4 cm long head with a stalk of 30 cm . "the lest is usually without foreign badies adhering, though its one specimen there are some cirripedes growing on the stalk. The surlince of the test is marked with variable longitudinal furnows and ridges but is somesines almost smooth. In preservative the spesimens are piakish-fnwn, although living specimens are usunlly dark red snd oceawidnally, yellow. Both apertures are close together on the dorsal surface, the atrial aptro ture directed upwards and the branchial aperture directed balsilly. The lobes of the atrial upersure are cloarly continuous with the ridges in the dorsat part of the test

There are stellate spicules of aboul $0,02 \mathrm{~mm}$ diameter wieh 6 rays in optical transverse sectiom in the body waft, and the siphons are lined by conical spines of 0.02 mim maximum hejght from base to apex.

The brusichial sisic, gut loop and gonal are as previously described and there are 18 long flattened characteristic lobes fringing the anul burder (see Kout 1952).

Hemarks: Nothing can be added to provious descriptions of this constant species which appears to occupy it wide range of conclitions in exposed to shettered luestions from Geraldton, in Wentern Australia, to Flinders in Vic. soria. It is common in wave beaten areas from the low wiler mask to 22 nm .
 269 and synonymy.
Astudio spanfera Quoy \& Gaimard, 1834; 617. Cynthir muffiralicala Herdman. 1849: 30.
Ner Recorels: Upper St, Vineent Gule, off Hallett Cove. Aldinga. Provienter Records: W. Ausr. (Albany) - Quoy \& Gaimarad 1834. Vic. (Buss Strait)-Michatelsen 1905; Heller 1878. N.S.W. (Poti Jackson. Port Hacking)-Ilerdman 1891. 1899; Kott 1952.

FIGS: 62. 63
Dexcription: Specimens with head to 8 cm long and 4.5 cm widc. Stalk is of very variable length. Maximum 20 cm . Extcrnally the rest is smooth without longinudinat turnows. but with characteristic tubercles, yarying in theip density, and sometimes. expecially in larger specimens, absent ultogether, The head is often completely erveloped by an investing sponge which in specimenx from olf Hallett Cove has becn noted in the lich as yeliow.

Minute overlapping scales, 0.05 mm maximum length from posterior part of the base to their apex. line localised areas where thick. ened lohes of the test project into the siphons. Otherwise, there are no -spicules in the text or in the hody wall. There atre 7 branchial tolds on cither side of the body wall in the larger specimen but only h on cach side in bueragesized to smaller specimens. There are abous 25 branchial tentacles alternating with subimentary tentacles. The larger tentacles have regular pinnate primary branches with seoun. dary brinches and minute tertiary branches and are very bushy. The dorsal tubercie has it thouble soiled opening both hurns coiled inwards and the inner spirals of each coil are slightly convoluted. There is at short dorsal lanyiba with pointed languets,

There are up to 30 internal Jongitudinal ves. sels on the folus and 2 to 3 hetween, In larger specimens the under sides of all the mufidr

Figs. 57-59. Pyura scorenhicusis. Fig. 57. -Tndividual (off Semaphore, 18 m). Fig. 58. Siphonal spines. Fig. 59.-Gut and gonads.
Fig. 60. Pyura viffata. (Tapley Shoal, off Troubridge Light, 17 m). Siphonal spines.
Fig. 61. Pyura australis. (Hallett Cove, 8 m). Spicules embedded in siphomal lining, and siphonal spine.
Figs. 62, 63. Pyura spinifera. (Jpper St. Vincent Gulf, 10-11 m). Fig. 62.-Dorsal tubercles. Fig. 63. - Papillac from inner body wall.

Fig. 64. Microcoşmus nichollsi. (Of Yankajilla Bay, 20m). Siphonal spines and scales.
Fig. 65. Microcosmus squamiger. (Off Semaphore, 18 m). Siphonal scales.
Fig. 66. ${ }^{2}$ Microcosmis slolohifera. (Port Noarlunga, $5-6 \mathrm{~m}$). Siphonal spincs.
Figs. 67. 68. Ctenicella antipoda. (Yankalilfa Bay, $12-20 \mathrm{~m}$). Fig. 67.-Dorsal tubercle. Fig. 68-Inner body wall showing gonads anj gut loop and heart on left and right tespectively.
blood vessels and the transverse vesscls (but not the parastigmatic vessels) support minute
pointed langucts to form a fur-like covering. These projections also cover the gonads and
the whole jonce surfuce of the bolly wall extending into the buse of the atrial siphon alhough hene they are reduced in densily.

The sut forms a narrow curved loop encloring the lell gonad. The sight gonad forms a corresponding curve on the right side of the bady. The anus is bordered by 12 shallow lobes. There is a mass of orange arboresecnt liver lobes. in Jarger specimetir there is a blister-like structure on erther site of the atrial opening, extending into the curve of the gut loop anct into the curve of the gonad on the left and right sides of the body rexpectively. This ulso has a fur-like surfuce format by dense. small, pointed projections. The inner cavity of this blister-like organ is continuous into the lumen of the atrial siphon and prestimably, if swatlen or distended could aechate the Jumen of the siplon. There are also two flaps of tissue, intcrior and pastenor to the atrial opening to form an iltrial velum.
Remarks; This distinctive speciex, in which variation in extersal appearance involves only the number of tubercles on the test and the length of the stalk has, in St. Vincent Gulf, only been taken from faisly sheltered siluations; Other secords, howaver. suggest that the species sould accupy gicater depths in offshote situations from which it was uprooted only with turbutcnce occurring during stomm. The large head supported on the thin but tough stalk does not appear to favour yexy rough conditions, although it could be an advantage in locations where there is steady current flow or surge.
Halocyuthia hispida (Herdman). Kott, 196s: 37 and synonymy.
Crnthin hispide Herdman 1882: 146
Boldorynthice cartus: Vassemr, 1967; 144.
New Records: Tipara Reef, Tapley Shnal, neas Marion I ight off Beach Hut, Port Vincent. upper St. Vincent Gult. off Outer Harbour, off Wess Beach, off Glenelg, off Pors Stunvac ("The Barges") Aldingas. Carickalinga Head. ofl Yankalitla Bay, Rapid Hend, Previons Records: Sce Kott, 1968.

Remarky: This species apparently occupics a wide variety of conditions but generally favours sheltered bays or cstuaries (see Kott 1968, for description and further discussion of this and related species).
Herdusuia momus (SaVigny) Michaelsen, 1919: 30 and synonyimy,

Cyntia mumas Savigny: 189f: 143.
 1919:37.

* Pyirra momus f. pmanm Michaclsen. 1919: 31.
 1919: 54.
Fyura imontu foralai Michnelsen \& Hut meycr, 1927: 194: $1928: 443$.
Pyura momius Savigny \mathbb{I}_{1} srandis. Michatsen E llarimeyer 1928: 44.
Hracharaiu momus. Van Nante, 1945: 341
Herdmanion ammun 1, calei. Koli. 1952 281.
Tokioka, 1961: 132; 1967: 205
Therdmania momms f eromdit. Kou. 1952: 279: 1964: 142; 1965: 30t - Aillat 1960: 876: 1963: 740; 1966: 374. Tokiokae 1949: 61: 1952: 137: 19539 277: 1967:206.
- flerdmania momus f. curvote Konf, 195z: 282: 1964: 143.
New Records: ("grandis" type)-Tiparia Recf, off West Beach, off Glencle, Carickn. Jinga Head, N.W. of Robe ("sulee" type)Goose 1., upper St. Vincent Gulf, Addingat Reef, West I. Wrighl I. Pretrous Recards ("sreundis" type): W, Aust. (Fremantle to Albany) - Michaclen \& Harmeyer 1928° Millar 1963. Vice (Port Phillip Bay, Wes-teraport)- Millar 19611, 1963, 1966. N.S.W (Bort Jackson)-Heller 1878; Hesdman 1882; von Drasche 1884; Tokioka 1967: MilIar 1963. Old. (Bowen) -Kott 1952 Indonegia (oll West 1rian-Heriman 1886; Aridfura Seal-Tokioka 1952. Jupan-Tokiokat 1949. Pucific (1iji Is.)-Herdman 1882; Palan, Tahiti)-Heller 1878. Indian Occan (West Indian Ocean)-Michiclsen 1908; Heller 1878: (Red Sea)-Michuctsen 1919: Savigny 1815; (Dar-es-Salaam)-Michael. sen 1905: (Ceylon) Herdman 1906. Africu (Cape of Goor Hope. Simons Bay)-Herdman 1882. West Indies (Jamaica)Helles 1878. ("galef" type)-W. Aust. \{Shark Bay: Point Charles, Dirk Hartog 1.\} -Michaclsen \& lartmeyer 1927. 1928. Tas. N.S.W. (Port Stephens), Old. (Bower. Nelson's Bay)-Kott 1952. Pacific (Mela-ncsia)-Tokioka 1963: (Marianas Is.)Tokioka 1967: (Japan)-Takioka 1967. (For records of specimens recortided as "pruthita" form, see Van Name 1945).
Michaeken (1919) has oonsidered, in some deaid. the distribution of all the forms of this species. Apari lrom certain forms represented by single records, many of the sanges overlap and no separate geographic ranges can be assigned.. The rantge of the species, represented by the range of the form pallide, for which there arc most records is cifcumtropicad, and extending south to the Cape of

Givod Hope, Forms from the suuth coast of Australia have been described os forma griandis. This fom is not, however, distinct
 whether there in justification for separating any of the specimens assigned to the specics. Their morphological variations are most probably indicative of different stages of maturity.
Description: The distribution of the severial forms, II. Momsus \&. grandix. H. momes f pallidard II. momen f, gatef, overlaps and in the gresent collection als forms have beels taken from the same location and it is apparent that H_{1} momes if sromadis with an opaque whilish lest, it convoluted dorsal tuhereular opening and with testis follicles covering the ovary, represents mature individuals of at species in which the juvenile specimens have at frimsmatent to eranslucent test with the testes follicles arranged regularly around the perithery of the ovary (8 , gatei). Sometimes in intermediato sized xpecimens the oyarian lube undulates along its length and the testis folficles may remain cluse to the ovary (as desctilhed fixl fo pallider: Van Name, 1945). In other specimens in this collection (3 km off Glenteg the testis follicles form an even bonder around an area in which the ovarian lubre in undulating, In the smallest specimens the unal lohes are rudimentary, faler develops inio cven fingerlike lintlened Jobes, which become less regular and may be absent in larger specinens. but are sometines present in two clumps at elther side of the opening.

Remurks: It is apparent from the present collection that the katki, spordia and pallida forms of this species represent different stuges of maturity of a single species. The retationship of the present forms, in which the ovaries undulate with the testes follicles which somelimes cover it. to H: momut f. typica Savigny ($>\mathrm{H}$, momus f. rurvan Kott, 1952: 1964) in which the sestes follictes are arranged in an undulatine line alone the ovary, is problema. tical However it is probable that the undulafion of the ovarian tube could have forced the léstes follictes into is similarly undulating line.

Microcosmas nichullsi Kotr, 1952: 290,
Now Records: Off Beach Hut. 1 km olf Post Vincent. off West Beach off Hallett Cove. Natingat Carickalinga Head, West I., Wright 1. Previous Record: Vic. (Flinders)-Kiont 1452

FIG. 64

Descriptions: Test generally thick. whitish and coriaccous with pinkish colour around siphun but sometimes lough and almost lathers externally: with rounded ridges or thin. siff. rough and embedded with sand. moveren and marked by homy scale-like arwas. Exturnally both apertures are scssile and elose together on the upper surface, eath surrounded by taised. rounded projections of the lest. Posteriorly the test may be produced into root-like processes. There is a network of longitudinal anal rectanuplar muscles.

The sinturn are long and the siphonal gru:culature is especialy strong, Outcr circulat spluncter muscies surround the base of each siphon and the longitudinal museles extend across the body but ant absent trom the region over the gut. Pointed conical spines and smaller spines and more numerous sestes line the siphons. There are sometimes ealeareous spicules embedded in the hoty wall and in the pentacler and branctial sac. Branchial tentacles have primary, secondary and minute terliary branches. The dorsal tubercle is U-xhaped with hurns bupned in. The dorsal gangion is slongate, half the length of the wide plaineedged thorsal tamima. There is a pronounced branchial velum. On tuch side of the body will there are high overlapping branchial folles with up an in internal longitudinal vessels on the folds and f to 3 hetween. There are about 10 stigmata per mesh. hetween the folds, crossed by parastigmatic vessels. The gut forms is simple closed and narrow loop around the ventral horder of the body enthsing the icrminal lube of the gonad in its loops The dexcending limb is crossed by yunad. There is a zomach enfargement ohscured by liver lamellate which are smaller at the pyloric end of the stomach. Minute finger-like projections from the surface of the liver lamellase give it a fursy sippeastance. The anus is borliered by 12 rounded lobes.

On the rights, the gonad curses around the ventral border" and on the left curver into the loop of the gue just distal to the liver lobes The gunads ate broken into 2 rounded clumps on the right and 3 wn the left, often covered by enduciar.

Rentarks: The small siphonal seates and the gonad acrose the gut loop, together with the whitish and more gelatinous lest: of the smaller specmeng, distinguish the specizs from M. soloniferm.

Microcosmus stuamiger Michaeken.
Micmeresmus claudiconss suls, sp. squatmiger Michaelsen \& Hartmeyer, 1928: 405. Microcosmus comastaratus sth. sp, anamalls. Michuelsem, 1908: 272 F 1918: 63 (in par, cxelidine M, ellivinilis Hérdman, and M. proprsevi Herdmant).
Neny Recondsa Tipara Recf, off Semaphore, off Wext Heach, off Glenelg. Prevorrs Reorrods: W. Aust. (Shark Bay to Albany) -Michaclsen \& Hermeyer 1928, N.S.W. (Sydney)--Michalefon 1908. Qld. (Bowen. Rockhaniton)-Michqeisen 1908. Red Sea -Michseken 1918.

Hici. 6.5

Deseripliort; Small. keathery, pinkish specimens, aggregated toetther. The surface of the test is raised imo ridges and mounds. The body watl is very muschar. The dorsal tuhencic is late with a touhle spiral opening. There are the usual 8 branchial folds on each side of the body and the left gonad crosses into the gut loup. The gonad on such side of the hody is divided into 3 clumps. There are close-ser liver litmelise, Closely set curved seales 0.02 mm long line the branchial siphon.
Remarky: 'there has been some confusion between M. exasperains, A. musiralis, and the present species, all common anound the Australiar coast and all demonstrating a faisly wide diversity in external appearance. The reddish colour ind aggregated hahit, the large number of bough branchial folds, the deeply curved gut loop and the gorrad crossing into the gut loop, ate chariacters shared by all three species, Microcosmuts syumbuyer is disionguished by flattened scale-lite siphonal scales. whike hoth Microcosmus unsimalis Herdman andi M. exasperatus have pointed spines.

Microcusmus stolonifera Kult, 1952: 291.
New Records: Tipara Reef. Pore Noatlunga. Previous Record: Tas. (Tiny K., Eist const)
-Kott 1952.

FIC. 66

Descriplion: Onty two specimens are available. They are very irregular externally, and nowteiorly are produced into rood-like processes. The upertures are on siphons of variable length. turned away from one another and, in the fargest specimen available (2 cm greatest dimensioni the siphons are especially long. The test is very rough, hard and leathery. There are large (about 0.1 mm) pointed spines. arsanged in faifly regular horizontal rows. lining the siphons. The branchiad lentacles are bushy. The heanchial sac has 7 high and deli-
cate overlapping folds, with a single interntal longitudinal yessel in the interspace. The gut forms is narrow curved loop with the usual clongate liver lamellae with short finger-like papiltac from its surface. The gowds firm a single sounded mass in the curve of the gut loop un the left but do not extend intor the primary sut loop. On the right there may be a corresponding single rounded mass or the right gonad is sometimes divided into tho rounded lohes joined by tho dimbal ducts.
Remarks: Tho zest of thes species is harder and levs scgular than all other species of this genus. It is further distinguished by the long siphonal spines, the large munded gonad that does not develop inside the gut loop, and the high deljcate overlapping folds of the branchial sac.

It docs not appear to be si very common species and the only two reconds wife from the southern coast of Australia. Ifowever the tough and roughened test, forming if very strong attachment. causes the species we inconspicuous and difficult to collect.

Microcosmus belleri Herdman, 1880: 54; 18821 131. Stuiter, 1895: 184. Harmeyer 1919: 19. Michaelsen \& Hatmeyer. 1928: 397. Kott. 1952: 工92; 1972: 12. Milhor, 1463: 742 .
Microrasmery goantus Michaelsen, 1918: 12 New Records: Tapley Shoal, olf Beach Hut (1 kn off Par Vincenl). Prevlows kecords: W. Aust. (Cape Jablent to Fremantle) Harmeyer 7919; Michaclsen \& Harmmeyel 1928: Koll 1953: Millat lyb3. Qdd (Ciseat Barrier Recf)-Kotl 1452; (Turres Strait) -Herbman 1882. Malaysia-Sluiter 1895 Portugese East Africa (Delagoa Boy) Michaelsen 1918.
Qescription: The single spherical spocimen from Tapley Shoal is 6 cm in diameter. This large diancter is contributed to by a 1 en thick costing of sand held together by terminitly hranching and coalescing projectians from the test to form a thich dense laycr enclosing in space around the body. This coating is interrupted to form is single opening above the apertures. The specimen from off Beach Hut is more typically rough externatly and is a purple colous. The apertures are sessite, onethisd of the body circumference spart. At the Gase of the branchial siphon there are 3 flaplike projections.

The body musculatuse is of the usual pyurid lype with muscle bunds from each of the siphons crossing one another on borth sides of
the body. There are very strong circular mascles circling each tiphor,

Branchial tentacles have primary and secondiary branches, and wide, flat, membrameous extensions from their anterior or concave border. The dorsal lamina is plain. Thete anc 6 high, overlapping folds on cach side of the body. with up io 18 internal longitudinal vessels on the folds and 3 between. The gut forms the usual hong, narrow ittencated loop. typieal of the species. and the proximal lote al the 3 luhed left gonad is atceommodated in the open pole of the otherwise closed gut loop.

Remurk: The lough tlap-like projections in the beimehial siphon sometimes appear as cones. These structutek, tugether with the gut loop and hituchial sace, distinguish the species.

The sandy couting tros not been deseribed previously for this species but has been des. cribed for Pyurn conerllate Brewin from New Zealand (aee Kott 1971) and for Pyurat tunicu Koth, 1969 from the Anturctic. This condishou demonstrates the versatility of the ascillian test which in thix specimen rexponds to the substrate by growing out to eniangle sand grains as there is no firm substate onto which it can directiy be fixed.

Cicnicella antipoda n.sp.

Type Loccality: Off Yankalilla Bay. at 12 to 20 mm (2 specimens): in Amphibulis community with limestone outcropping occasionally: Holoryes: South Australian Mustum (reg. no. E877). Further Rectarst: Tipara Reef.

filcis. 67. 68

Descriptinn: Specimens are up to 10 cm Jong. slightly dorsu-ventrally flattened. Externally they are very itregular and covered with nodule whicta also protect the sessile apertures on the dorsal or upper surfiace. The test is up the 1.5 cirn thick, gelatinous but entirely Impregnated with sand sa that it is hard and ngid. It is antartimes produced into a nidee sars. roanding the siphons: There are hard brown papillie stound the sessile apertures but there are no spines lining the siphons.

The budy musculature is strong on the upper half of the body with lorgitudinal bunds radisling from the siphons and inner circular hands around the siphons and at their base. However. on the lower half of the body the musculature is almoks emirely absent and is represened by two vertical rows of very thon parallel bands.

There are 15 large compound branchial tentacles with primary, secondary, and minute tertiary branches atternating with rudimentury tentacles. The dorsal tubercle is at the base of the tentactes anterior to the V of the perituhercular arca. The opening is a double spirat slit turned to the left. The dorsal famina is very shott and has close-set slender. pointed languets.

The branchial sac has 6 high, overlapping folds on euch side of the body, widely spreath at their base. Longitudimal vessels ine arranged as follows:
DL 3(26)3(33)5(25)4(26)3(24)2(15) [
There ate about [2 migmatia in each menh. They are rectangular, and crossed by para. stighatic venselx. The ineshics are wider than fong and there is no sign of itregularity in the stignata which do not coil nor form infundibula.

The gut forms it narrow, closed and deeply curved loop with branched liver Jobules extending alorg the inside of the gut loop for its. whine lengh. The liver is apongy with short mouded finger-like papillac projecting from its surface. and supporting tiswe between the livet lobules.

The intertine is filled with mud. "The anal fobreder has abour 30 or more rounded lobes. On the right site of the body there is ulong curved hypertrophical heart in the position occupied by the kidney in Molguliduc. There is a single gonad on each side of the boty paraliel to and lying against the long conspicuous heatt on the right and on the lefl extending parallel to the descending line of the primary gut loop. The left monad descenils into the keeondary gut loop where its short ducts thern dorsaily doward the attial aperture. The avary is central and tubular while the especially small pyriform testis lobes extend into folds in its wall. giving the appeatance of being embertited in the ovary. In one of the specimens from 'Tipara reel the gonadk are intmalure and groups of very minute testis lobes are arranged around the upper ind outer surloce of both sides of the ovary, Yasa efferen. tia from each groun of follicles join together to open into the vas deferens along the median surface of the ovary.

Remarks: C'fnicella Lacaze Duthicrs (Typf Specles: Cienicelia appendiculata (Helier\%. fsnm the Meditertanean), has fow known spocies, although a number uf Malgula spa-
have been crisncously ascrihed to it. The genus is charaterised by the presence of dorsal langucts, straight stigmata, a kidney on the right and the lefl gonad outside the primary gut loop. In uddition to the type species which is: distinguished by its long recurved siphons, Cienicella indulute Tokioka, 1949, from Japan, has it posterior stalk and a folded stomach.

Hupmeprofa Ritter was also thought to be intermediate between Pyuridae and Molgulidac. with pyorid branchiat suc, siphonal spines, a smooth Lorsat lamina and the left gonad partly in the gut loop (as in certain species of Microcosmus). Monniot (1969) has shown; however, that what was thought to be a kidney, is in fact an hypertrophied heart and that Hartmasyerir is without doubt a pyurid genus telated to Mirrncosmus and with in liver similar to that of Hulocynthia with longitudinal plications prusimally and branched bubules distally. Harimeyerid differs from the present spectes in its smooth dorsal hamina and siphonat spines, and in the position of its left gonad which crosses into the gut loop. It is probable that
the kidney, which has been deseribed for Crenicella sutdulata and C'vappendentara is, in ract, an hypertrophical heart, as described for Hermeserit and as demonstrated for the pre. sent species.

The identity of crenicella anduluta Tokioka is puzzling as it has dorsal languets and the gonads on the left and right respectively in the usual position for the genus, sutside the gat loop and adjacem to what has been dekcribed as an excretory organ. However, the stomach appears to have proximal glandular folds and distal arborescent lohes as described for Harrmeverin and Halocymhlus and it has a Hewlmeyera type of stalk. Therefore, both Crmicella and Harmeyesiad appear to be genera of the Pyuridae, distinguished from Pyura, Hizhcynthia and Microcosmus by an hypertrophied heart. They appear to be distinguished from one unother only by the absence of siphonal spines, the presence of dorsal languets and by the positon of the gonad ouside the primary gut loop in Cipemicella spp. The relationstips of these pyurid gencra are shown in the following Table.

TABIE
Compuriush of Churticteristics of the Generst of the Fumity Purridae

	Pymrr	Hulocynlhia	Ctenicella	Hortmeyeria	Microcosmus
Siphunal spines	preverit	present	none	present	present
Dorssil lanlina	languets	languth	languets	smooth	smouth
f iver hissuc	artaresceni lohes	long folds and arhorexcent labes	arborescen lobes 11 species with long fold atna arbaresceni lobes	long folds and irtiorescent lolves	alborescent lohes
Cromads	in prithaig sut loup	dross git loop	nutside gut loop	cross gut loop	crass gitut loup

Faniliy MurgULIDAE

Malgufa mollis Herdman, 1899: 54. Kott, 1952: 298; 1964: 144.
Molgute syifereensis Herdman. 1899: 55.
Molgula janis Kott, 1452: 295, Millar, 1966 374.

Nes Record: Carickalinga Head. Previous Renords: NIS:W. (Port Jackson, Sydney) Herdman 1899; (Twofola Bay) - Kot 1952. Qld. (Gladstone io Moreton Bay)-Koll 1964.

Descriprion: Small, rounded, laterilly Mattened specimen of 0.6 cm diameter. The apertures are present anteriorly in a depressed, sand. free areas of lest, surrounded by aindy pro. ruberances and hairs from the thin test.

The dorsal tubercle is aval $\mathrm{wil}_{\mathrm{i}} \mathrm{H}_{2}$ a longitudinal, more or less S-shuped slit, The neural gland is conspicuous beneath the lubercle,
The branchial sac has 7 . folds on each side of the hody with only 2 internal longiludinal vessels along the top of each fold. Stigmata coil to form infundihula projecting into the folds and subdiviting into two in the summit of the fold. Bctween the folds there are some interstitial stiymatal coils but no primary infundibula, The spirals of the primary coils are interrupted in their median longitudinal and transyerse planes and their arrangement. expecially at the base of the spiral between the folds. is obseured.

The ponads are hask-shaped and the lestis folicles form a circle around the proximal ent of the ovary, with it connective fiom the centre of this cipcle as previonsily describad (Millar 1966).

Retmark: The species is characterised by the
small number of longitudinal vessels on one side of the branchial folds. There is some variation it the development of the hollow extensions of the test which Kott (1952) bitd thought distinguished M. Jams.s. it is elcall. howwever, that the speceics is synonymuns with M. molls.

References

Arniback-Chrisite-Linue, Adgusba (1923). Northern and arelic invertibrates in the collection of the Swedlsh State Museumt, VIII.
 Aknd. Hisull. 63 (9). 125.
Bovien. P. (191221. -Ascidiac from the Auckland and Ciampbell tsiands chinloswations forms: (Hapmes from Dre Th. Mortemsen's Pacific Expedtion 1914-1916 vo. 1 V$)$. bidensk. Medde dunsk mumarde Fomen. 33. 33-47.
Brewin, Rrry!. I. (1916),-Assidisng in the viainie of thic Porfobello Marite Biological Siaton. Otagn Harhour. Iruns, R. Snce N.Z. 76 (2). 87.131

HREWN, BfkYe 1. (1948):-Ascidians of the Hatrukî Gulf, Part 1. Jruns. R. Soc. NZ. 77 (1) 115-138.

BREwIN. HKRY!. 1. (1950: $)$-Ascidians fram Otigo cosslal waters. Trims. Ro Joer Ni.7. 78 (1) $54-53$

Hretwis, Brave I, (1950b)-Ascidians of Nes Zealand, Part iY. Accatians in the visaity of C'mistchurch: Trans. R. Soro, N.Z., 78 (2-3). $344-393$.
Fhrwiv. Berys 1. 14s0:)-Ascidians onf New Kalund. Part V. Ascidians fron the casi enast of Greal Barsler flund. Trems. R. Suc. N.7. 98 (2-3), 354×362.

Bretwif. Beryl I_{i} (1951),-Ascidians of the Hhuraki Gulf, Part 2. Trunst R. Sos. N.Z. 79 (1) 104.113

Brawin, Beryi I, (1952a),Akidians of New Lealand, Parl VII. Ascidians from Olaso coustal waterg: Pari II, Trans, R. Soc. NiT. 79 $(3-4), 452458$.
Bnetvin. Beryz l. (1952 b)-Ascidians of New Zealand, Part VIII. Ascidians of the East Cape legion Truk, R. Soc. No 80 (2). 187-195.
Brewin Triye \&. (1953),-Australian ascidians of the subofnnily Holozointa and at review of the sulbrianils. 7 ramso R. Sice. N.Z., 81 (1), 53-64,
Brtwin, Beryt f. (1956):-Ascidians from the Chatham Lulands and the Chatham Rise. Tmans. R, Sai N. 7.84 (5), 121-137,
Briwin, Beryc 1. (1957)-Ascilians of New Zcaland Part X. Asciulians from North Aucklantl. Ihens. R, Sew. N.Z. 84 (3), 577-580.
Brewint Beryi. I. (1958a)--Ascidians of New Zealand., Part XI. Ascidians of the Sicwart Istand region. Trues. R, Sor. N.Z. 85 (3). 439-453.
BRHWIN, BEHYL L (1958b),-Ascidians of New Zealand. Part XII. Ascidians of the Hawraki Gulf, Patt 3. Trans. R. Sor. N.Z. 85 (3), 455-458.
Bobwity Brayt, I. (1960),-Aschlians of New Zcaland. Hact XIII. Ascidians of the Cook:

Stail segion. Trany: \& Sive N,2. 88 (1). 165-120.
CARLISLI, D. B, (1554):-Notes on the Didem. nidse (Ascidiacea) IIL. A tomparison of Didemmum mat blewim. D. candidum, D. helgolanelitume unel Trididemumen alloni. $\%$ mer., hiol. Ass. U.K. 33. 313-324.
Chuelers. M1. (1901),-Réchereher sur la famille
 1.59.
 delyi animali invertcbrati della Sicilia ossen vatí negli anui $1 \times 22-30$, Napoli $18.1-44,3$. 13-46.
DEGA Varna A (1877), -"Contribuzioni all storla maturale dello ascinfie composte del golfo dis Napoli con la descricione di alcanc gnecie e varicta mimve e di blite posio note." (Tip. Comunis Napoll)
Dinaribl. R. von (1883). "Dic Symatidian der buche von Rovigno (Istrien). Ein beitrar zur. tauna der Adria," (Wien,)
Drascors. $R_{\text {, }}$ von (1884),-Ueher tinite neve und Whifer gekannte ausserearnpaische einfache Ascidien. Denksehr. dkad. Wiss," Wien. 48 369-387.
Findreber i. C. (1967) - A taxanomic review of Indo-pacific didemnith ascidians and descrip. licim of ewenty-htece central Pacific specie.s. Mhrmentin 2. | $61-2 \mathrm{k} \mid$.
Ehht Nhekg. C. G. (1828)-Prncfatio. in Sym. hotice physicae r , Zoologisa (Berolini) 1 (A) I-4.
Grav. i- I. (1868) - Note on Oculinaria, a new genus of aincial Ascidia. Proc. zooh Saf. Lond. 1868. 564-565.
HARANT. H. (1925):-Ascidics recoltées au cours des campagnes scientifiques die S. A.S. If Prince Albert 1 er de Monaen (note prélimi-
 pp.
Harint: H. (1929). -Ascidies provenant des eraisieves du Prince Alhert I er de Monaco. Result. Camp. seipetl. Foince Albert 1. 75 T-112.
Hartmpyn. R. (1906), -Tin beiltas zue kemotniss der jamanischen uscidicnfanma. Zont, An: 11. 1.30 .

Hartmeyer, R. (1909-11).-Ascidien (Continuation of work by Secligera) In 11. G. Bronn. "Klavsen und Ordmungen dea Tier-rejehen." 3. supph (89-98). 1281-1772 (Leipzig). (Alsstract, tepeating lists of species by A. Scheproieff in Arals. Natargesch,i 1911.6. 3-27.)
Hartmeyik. R. (1911).-Die ascidien det doutschen súdnolar Expedition 191J-1902. DP, Shdpol-E.rped. 12, 408-60G.

Iftkistrith, K. (1912)-Dic ascident der dencschert tiefsec Expedition. Wiss Ergion. dp

HABImeyer, R. (1917). Imbicata. Jя I. Schultze 7ool. U, unthrop. Ergebnissee Forsthungkeise in Sudafrika, Bi, 5. Lft 2. Donksche met,-mump. Cors. Jemt 17: 125 144.

Harimeyer. R. (1919)-Aschico. Resulis of Dr, F: Mjoberg's Swedish scientifi: expeditruns io Australia 191(1-13. A°. speriska Fromat-Akuf, Hembl. 60 (4). 1-j50.
Habtmeyer. R. (1923), Accidiacea, pall 1. Lugleich tine uherwiche tiber dic anktiche und boreale ascidientiana auf liergeographischer Giundlage, Ingolf.Expedi 2 (6), 1-365.
Hakiffeyrk, R. (1928),-sce Michaclsen \& JInr. meyer 1928.
Hastings AnNa B. (1931), -Tmictata. Scienf. Rep. Gt Bumitt Reef Exped. 4 (3). 69109.
H(1) niss der hunienten. Sber. Akud. Wisw. Wirn 37 111 - $2-28,+\mu / 5$.
Heabatin W. A. EIB811,-Preliminary repopt on the Tunicata of the Chatlenger expedition. Cynnhidac, Molgulidac, Proc, R. Sric: Edruth 11 (3), 52.88: (4), 233-240.
licruman, $W_{1} \Lambda_{1}(18 k 2)$ - Report or the Tuni. cishat collected durine the voyage of H.M.S. Challenger during the vearn $1873-1876$. PL. I, Ascidiae simplices. It Repart on the seientinic resulls of H.M.S. Challenger during the years 1873.1876. 7oology o (17). 1.296 (Tidinburgh).
Heribatan, W. N. (18kG)-Repont on Tunichita sollocted during voyage uf H.M.S. "Challenger" during yeurs 1873-76 P\%. II. Avcidiae compnaitac. In Report on the Sciersifice resolis of H.M.S. "Chmllenger" during the years 1873-1876. Zoolosy 14 (38). 1-425. (Exin. (burgis).
liEhusyan. W. A. (1891).-A revised classitication of the Tunicata. with defmitions of the srders, sub-grders, fromilies, but-families and ecnerg, and pnalytical keys to the species. form. Soc. 23. 558-fi25.
Hendmay. W. A. (1899),-Despripive calalogue of the 'Tunicatth in the Ausitatian Museum. Austrahan Mnsetm, Sydney, Cataloguc 17. 1-139
HERDMiN. W, A. 119061 -Kepart on the Thuiicala, Ceyton Ireart Oyster Figheries, Suppl, Rept No. 39. 295.748
Herdmiv: W. A. \& RuDdel. Wi Wi (1913). - The Tinnicata of the "Thefia" Expedifion, io Sciontific resulta of the trawl expedition Thetis Part 17. Mren. Aiss. M/n. 4, \$73-889.
Kottr Patmicia (1952), -The ascilians of Australia. 1. Siolidobranchiata and Phicho. hranchiata. Aust. J. Mrre Frewh. Res. 3 (3). 206-339

Koti, Psthicia (1954).-Tunicata, Rep. B.A.N.Z. Embitrel. Res, Expedt 1 (4), 121-182.
Kотt. Pankeat (1957y). The ascidians of Aus ivalta, II. Aplousobranchiara Lahille: Clavelinidae Forbes and Hanly and Polyclindac Verrill. Allsf. mar. Freshu, Res. 8 (i), G4. 110.

Kints. Patricta (1957h),-The sersile Tunicald. Sciens. Rep, Johr Mfuruy Eypre. 10 (4), 129-150.
hove Patricia (1962), -The ascivians of Austratia, IU. Aplousobranchiata Labille: Didemnitac Gialu. Aust. I. nowe Ereathe: 18 CP 13 (3), 2t5-3.34.
Kотt. PA'racsa (1963) -The ascivians of AusTralia, $1 V$ - Aplousobranchiata Iahitle: Polyclinidat Veymil (coninued). Alist. I- mur. Freshe: Kes: 14 (1), 74-118.
Kurr parbicai (1964) --Stolivimanch snd phicbuhmach uscitimes of the Quesnsland const. Pup. Dcp. Luet. Unh, Qu. 2 17. 127.152.

Korr. Pophrcin (196fi).-Ascidians of noth AusHitia. Pap, DeP. Zual. Vmin. Ud. 2 (15). 274-304.
Kon'r, Phtructa (1967)--Atopozat (ske) deventu (Sluiter): o discussian of the relationship us the genus und specics. Fions. Lime firm. N.S.W. 91 (3). 185-188.

Kots, Paikicia (1968)-A ieview of the genus Halocynhta Versild 1897. Proce. Limb Soc. N.S.W. 93 (1). 76.89.

Kotre Hatricta (IV6y) - Antarctic Abtidiaceu. A monggraphic account of the known specics based on spesimens collecied undes U,S. auspices 1947 to 1963. Ahtorct. Res. Sow 13. i-xv, 1-239.
Korty Patricis (1971) Antarclec Aseidiucea 11. Collections made south of $40^{\text {n }}$ soulh lathinde $1963 / 67$, principally by the US.S.N.S. Eltanin. Aharce Rer. Ser Biology 16 (4), j-iii, 1-50.
Kitr Pathicix (1972)-Fialina of the Guif uf Curpentalia: Z. Ascidiacea (Cliordita: Tunicata1. Fish. Notes Nis; 3 (2), 1-15.
 genre "मoucan diascidien. le ctiebrewhus callensis. Lac-Duth. Amm, Fro nat. 15), 7 nol. 4. 243-316.

Lafaritue. F. (1968).-Les peuplenamts scspiles de L'Archipel de Gilenan. It Les Thideminds -Symématique-Ecalgie. Tie Alilien il (2-A), 353-416.
I.917L1. F. $\quad(1890)$ - Kécherches sull Ies lumi. ciers des côtes de France." Toulouse.)
Mar'Dovald, 1. D. (1858).-Arntomlcal obsctvations on new form of convolind Tunicata (Chomirustachys). Anh, Mas. notr. Ilw. Ser. 3. 1, 401-406, M, 11.

Himaejsen, W. (1905)-Revision von Helter's ascidien-lypen olls dem Musemm Godefiroy. Zool. Jh. (smmi) 8, 71.120.
Mighersen. W. (1908)-Die Pyuriden 1 Huldeynthiden) des Nalurhistorischen Moseum 24 Hamburg. Jb, hamb. wisr Anst, $35(2)$, 227-287.
Micharisfa, W. (1915).-Tunicaten. /l" "Hcitrige zur kenntnins der mecresfituna West Alricas". pp. 325.518. (Humburg.)
Michaelsen, W. (1918).-Die plychohranchen und dikryobranchen sseidien des wextlichen Tndischen Ozans, th hromis. Wiss Ausp. 35. 1-71.

Mrehatlan: W, (1919),-Expediiion S.M. Schit "Pola" in dis Rote Mecr mürdtiche und suidliche hialkse 1895/9h-1897/98 roologische cigetnisse, xxxil, Ascidia Plychobranchia und Dietyobranchia des Roten Meeres. Denkstim Akiml. Wisw, Wien 95, 1-124.
Michaelsent, W. (1921). Die Bullylliden und Didemniden der Nordsee und der zur Osisee führenden meereseribiete. Wis.s. Morverstemers., 97-124.
Micharlstin, W. (1922)-Ascidiae Ptychobramchise und Diktyobranchsise ton Neusseehans und den Chatham-Itheln. (Papers foom Dr, Th. Moriensen: Pasticic Expedition 1914-16. No. X1) biderast. Mevide lionsk naturh fop 나. 73, 359-498
MiChaELSEN, W. (H2Jal--Stulafrikanische ascidian. Gibeborge Ro. Vetensk. 6. Vittert Samh. Hamill. Ser 8: 36 (8), 1-23.
Mirqaflsen. W. 11923 h$)$.-Neuc Uńd althekamate asedtien aus den Kechsmuseum zu Stockholnt. Mits zunl Simsh, Harth, 40, 1-60.
Micialisen. W. (1923c), Ascidien rom wexilichen Indischen Ozean itus dem Recichainuselum 28 Sinckholm. Arh. Konl. 13 (23). 1-25.
MICHAELSEN, W. (1924)-Ascidiae Krikubranchiue von Neuseeland, ders Chathan und dea Auckiand Jnseln. (Papers from Dr. Th. MorIensen's Pasific Tixpedition 1914-16. No. Kxil. Widensk. Meditr dunisk naturh, Fopen. 77. 263.434

Hochatiste wo (1927i-Einige ncue wext utsiralisehe ntychoom anchiate asceidien. Fool. A142. 71. 194-2013.
 chiae Bomba shduest-Anst, 5 (7), 463-55\%
Micilaflists, W., \& Hakimeyer. R. (1927). - Tur kenumis phlebebsanctieta und dikryotranchiatia Ascidien, Mill. zovel Mas-Bert. 13 150-19\%.
Michaflsen. W \& Hartmeyer. R. (1928), Msciliue dikkobranchise und ptychotranclviae Forme südinestollist. 5, 251-460.
AlusAR. R. H. (19.52)-Littoral ascidians of Areyll. Serohish Nompaluet 64, 19-25.
Minsth R. H. (1953)- On a collection of ascidiane from the Gold Cobat. Proce hool Sire. lond 123 (23. 277.329.
Mular, K. H. (1955). Un a collection of asceidiins Pram South Africi. Prese, zuel Sar. Lued. 125 (1). 169-221
Mutar, R. H. (1056)-Nintes ure same ascinians from Siertal Lene and Gambia: Amm, Alag. not Hlys (12) 9. 400-417.
 Res. $\mathbf{3 0}$, I- 1 fío.
 new spasies of ascidian from Brazil. Amu. Moge nat Hint 4 (13), 143-147.
MHLAH, R. 11 . (1962) - Further descriptions of South Afrie:sn uscidians. Anm, S. Afr, Mus, th (7), 113-221.

MfleLAR, R. HI. (1963),-Australian ascidians in the British Mbseugl (Natural History). Proe. inol. Sor. Lomd 141 (4). 689-746.
MLLtak. R. II. (1966)-Aseidiacea. Port Phillp Survey Mrm natt. Mfus. Vict 27, 357-375,
Monvier: F. (1969)-Sut une collction dascidies compesées de Dakar. Mcm. Mas. Marm lliss. Mar, Paris 41 [2), 426-457.

Ons. A. (1927)-hur kenmbiss der japanishen Borryllidac. Proce impo Ared snper 3 (9). fiv-huy.
Pallas, 1' S: 117661 -Fienchi 70ophytorum, Highe-comitun, 352-357.
 atAseidies de ha zorie mitercoldate de Dakar Butl, Mus, natro. Mist. Jaden Paris Ser. 2, 30 (1). 91.
prakes J. M. $119+9$). Contributiun at pitude des ascidies de la côte oscidentade d: A Prique. Bull Inst. fr. Aff, enifer 11. 159-207
f'eres. T. M1 (1952).-Msivies the ha whe fito torale Cotic. Ren, obar mur- d'Endenteme 6. 35-44.
('nectil, H. H. (1969). Gentic polymeyphism in at staked uscldian from the cintf of Muine. J. Hered, 60 (4), J3.3-2us,

Plough, H, H, \& Joniso N. (1937), Inventigations on ascidians, I'le Cimneghe insen Wash. 36. 1000101
 dexcouvertes de J'Astrolibe $182 \mathrm{~h}-29$. Mol Susques, Znologie 3, 559-6220: 4, 304.3106
 "Fests-hrift fiir knipowisch." pp. 51-3.53. 2 fixs. (Moscow.)
Sivkint: 1, C. ! ! 18.101 - 1 Phtean systemalique des ascidié, thut simple une cumposéeg. 1-7 (Pativ.)
Stivgry, ! C. $1(816$)- Mémoires sur les noimaux sans vertebres P1. 2 (Paris.)
Schmeliy, f. D. 「E (1866-79), -Muscoms GodHfifoy 7 vols. (Cutalogues) 战. Hamhare 3 (1866). $+2-43!4$ (1864) - $117-118.5$ (1974) (8) 18286 (1877). $98: 7$ (1874), $84-90$.

Shmmera. S. Ao Wempras.fy, H. B. S. 81070$\}$ -The sublifloral ecofogy of West Jstand. Soull Alseralia: I, Fnvironmental leatures and algal ecalsery. Trems H^{\prime}. Yoce S. Austo 94. 105.137

Siustre, C, IP (1886)-Ucher einige عinfachen sustidien von der Imsel Bitliten. Alte. Tipiserhs.
 figs. $1-4$.
 Zonlogimete fomschugsicisen in Alsaralicn (lled dean Molagischern Archlpel. Wowhischr: med. mithme cirs. fora 8, lsi3-166.
stuter. C. P. (1698). -Beitrite zur kenntais) dey fatma von Suldarice, II. Toulcaten, Zemol. 15. (5yslematik) 11, 1-6.f.

SluIIER, C P, (1900).-Tuncaten ans dem Sillen Oevan 2nod. Jo. (Systematik) 13. 1-35.
Ssum: C. P. (1904)-Die Tunitaten der Sitoga-Fxpedition. Pr, Dic socialen und holusomen Ascidien. Sinum Exper. 56 A . i-126.
Slutitre. C. P. (1909)-Dic Tunicaten der Sibegat Expoditions. PL. 2. Die merosomen ascidien fihosa Eitpod. $56 \mathrm{~B}_{1}$ 1.112.
Sluther, C P(1913).-Axcidich von den AruInseln Ahre senckenh, naturforsch. Gess. 35 65-78
Sunter, C. y, (1919) —Oher cinige alte and neue nscidien aus lem Zoofogischen Musetut voll Amsterdam. Bijidr, Dierk 21, 1-12.

Stimpson．W．（18．22）．－Several new uscidians from the coast of the Uitited Slates．Proc． Howlon Soc，nat．Hisf \＆．228－232．
STMMPSON．W．（1855），－Description of some new marine invertebratu from the Chinese and Japathese Sets．Pros．Acod．naf．Sci，Philtid． 7, 375－384．
Toxions，＇T．（1944）－Comiributions to the Japan－ cse ascidian Fatuna 11．Notes on some asci－ Jiuns collected chiefly along the coast oy Kuo peninsulis．Pwhs Seks mar blol．Lah．1（2）， 39－fid．
Tokloke，T．（1950）－Ascidigns from the Pislau Is．en 1．Puhis sceas mur．Woh，Lath． $1\{3\}, 115-$ 150.

Toxioka．T．（1952）－Ascidisus collected by Mesers－Kenzi Weds and Seivi Wadm from the pearl uysler beds in the Arafura Sca in 1941）． Pathls Scto pmer brol，beeb． 2 （2），91．142．
Tоктокая（：（19534）－－－＂Ascidians of Sagams Hay＂．（Jwanami Shotent＂Iokyo）．
Tukroka．T．（1953b）－Cuntributions to Japanesc ascidiat！fatma．Vo Aveidimes coliceted near the marine hinfogical Jabotatory of JIirashimm University in the Inland Sen．Publs Seso thar． bied．Lah： 3 （1）．1－25．
Tokinks．T．（ 19549 ）－－Contributions to Tapanese ascidian fauna VII．Inverichrate fanoa of the incestidal zone of the＇lohita Islands VII， Areidiand．Puths．Seto mur．bioh，Lab． 3 （3）， $23 y-264$.
rokimat．T．（1954b）Contributions to Japanexe ascidian found X ．Notes on some ascidians collected Oatk Buy（2），Hubts Sefo mar． bish．Lah． 4 （1），75－98．
Tokioxt．T．（1955st）．－Contribuions to Japanese asciulian fatuma XI．Sporisdie mernoranda 12）． Puhle Sero pmar．tiul．Iah． $4(2-3), 205-222$.
Toktoki．T－（ 1955 b ）－Ascidtans from the Palan INands 11．Pitbis 5 efo mar．biol．Lith． 5 （1）． 43.57.

Trкsoks，＇T，（1958）－－Cuntributions to Japancse ascidint fauna XIT．Sporadic memoranda． Pibis Setn mat brioh Lab． 6 （3），गl 3－325．
Toxioka，To（1959），－Contribulions to Japanese ascidian fauna Xll．Sparsdic memoranta． Publo Sers maf，bư，Lab－ 7 （2），229－236．
Tnkioks 1．（1961）－－Axcidians collected during the Melanesion Expedition of The Oxske Muscum of Natural History．I．Ascidians pec－ sented by Dr．R．L．A．Catala of the Aqua－ rium of Noumea．Pudls sew mar．hiof：Lab． 9 （1）：104－138．
Tokioks T，（1962）－Contribuliuns to Japanere ascidian fauna XVIII．Ascidians from Sado Island and some recards from Sugami Bay Prbbls Seto mar，biult Lab． 10 （ 11. － $1-20$.
Tokinks．7．（1967）－Pacific Tunicata of the United Statcs National Museum．Bulf．U．S． math．M1us．251，1－212．
Transtedr，M．．P．A．（1882）），－Vestindiske asci－ diae simplices，forste ardeling Phallusjadac． Yidensk．Meddr darask mathik．Foren．IRSI． 157－288．
Tullstatit．M．H．A．（1585），－Ascidiae simplizes fra der stille Ocean．Videnst．Meddr dannt nasurh．F口⿰阝⿻上丨．1884．1－60

Thaustrat，M．P．Al，\＆WELinth，W，（1894）－ Berichl ïber die von Herr Dr．Sunder pesum－ melten tunicaten．Arch．Naturgesch． 60 （1）， 10－14，pl． 2.
Van Namte，W．G．（1902），－The Ascidians of the Bermida lskands．Trans．Conn．Icol．Atris S＇ci．11．325－412．
Van Name．W．G．（1418），－Ascidians from the Philippines，and adjacent．witers．Hu／f．U．S． natr：Mies． 100 （1），49．174．
Van Name：W G (1945)－The North and Sourh American Ascidians．Brll．Am．M／ms．mat． ／ 1 ist ．84，1－476．
Vassantr P．（1467）．－Ascidies de Nauvelle－Cale－ donic．Editions de la Fondation Singer－ Polignac，127－146， 2 pls．
Vasseur．P_{0}（1969）－Denxicme conisbution is létude thes ascidice de Madagascar region de Tulear．Mtint．Mis．sumn．Plist－wity Puris $(1968), 40(5), 912.933$
Veurili－A．Fi，SMmt．S．J．$\{1871$ ）．－Kepoit upon the inyerietrate animals of Vineyarts hound and the adjacent waters．Rep．II．S． Comprentr Fish 1，311－513，698－707．
WOMERSLEY，11．B．S．，\＆Himonos，S．J．（1958）． －A general ascount of the indertidal ccology of the Suuth Auntralian coant．Aust．S．merr． Freshw．Res， 9 （2）．217－260．

Appendix I－Station list

A．ROUGH COAST SUDFORMAIION

Wxar Islanni on granile hsually an vertical facio or in caves．
1．Region $\lambda_{\text {：r rough IShepherd \＆Womerstey }}$ 1470 ）：depth indicatert for cicts species．
Padoclawella eylindrhea 25 ns
Lepmadindes rifors 16 m
Buarylloides magnlones as：22－25m
Botrolloides dexchi In 25 m
Bopryllaides misrum $\quad 12-20 \mathrm{~m}$ Ocelinariк ansiralls $12-25 \mathrm{~m}$ C＇nemidocurpe ctherridgii 25 m Pubycarpa peduncidata 16－2．5 m P＇vum anstralis 12－20） 18
 Jerdmania momus $16-22 \mathrm{~m}$
2．Region B：moderately mugh fsthephetd \＆ Womersley 1979）；depth 15 m ．
Symozoncercturiformis
Polycior giganterm：
Borrvlloides loswhi
3．Region D：sheltered（Shepherd \＆Wurnersley 1970）：depth 2－5 ni：27．n．́6．
Poidoclevelle cylindica
Cysterdyser delle chiajei
Synoticium papillifersum
Didurnmam candidum
Didermum maselfyi
Trisldemulern spiculatem Didemmemsp． Leprocilloiders rafus Botrylloides nigrium
Wurint island：roagh coasl，stiong surges，on ver－ ical granite fatess depth 10 m； $28 \times x .66$.
podocelow lla cylindrlea

Syeozon cervebrifurnts
Atapozon fantastant
Polyciror giganterm
Elidispumar remieni
Didemmum condidum
Łpposdinides rulas
Phrilhuvia depressifusealdo
Ascidia dy dreyensis
Botrylloides leachi
Botrylloides nigrum
Ocminaria austrnlis
Cremidotarpa etherisgii
Polycrapa pedmenteta
Mictucespmes niehollyi
Herumante momus
King Beacir, Enzounter Bity: under bớulder on intertidal reed.

Corellit amynon
Nora Crlina Bay, deat Robe: on roof of cave; strong surge: depih $10 \mathrm{~m} ; 11.167$.

Fundistoma sp.
Psendodintoma vercapt
24 KM NORTH-WEST: OF Robé, South Australia: ol acolianite; slight surge; attached to red algae; depth 40 m.: $20 . \times 1.68$.

Pyrra australis
Herelmonia momms

B. SHEITERED COAST' SUBFORMATION

OfF Hallett Cove un reet: rocky boltom: depth $8 \mathrm{~ms} 26, x i l, 66$.

Podoclavella evindriea
Distaplise viridis
Sycozourerebriformis
Paticiror signnicum
Apifinum pliciferum
Ceptechinidess fufirs
Erhhnaclinum iegrilli
Rhadosiemer Iurcicitm
Comella cumyota
Phallasia ilepressinmala
Aiscidios thomproni
Ascidio sydneyensis
Polycurpa pedunculana
Mirmersmus nichollsi
INSIDE PORT NOARIdingi REEF: moderate slirge; in caves or on verical frees, depth $2-5$ mi 20.xi. 66 .

Podoclareflasilimdrica
Distapliar viridl.s
Rilerella herrimanias
Synoicirm papilliferum
Lepreachides fufus (sometimes invosting Pyura
irteggelatis and Micmensmuss stolonffers)
Ascidia syuncyernsis
Boirvilomidety leuchi
Stolonica mustralis
Polycarpa pedunculata
Pybre irregklaris
Mficruresmus stolonifera
ALDINGh KEEF AT "Drop-OFF": rocky bottom; slight surge: depth 10-25 m; 12.xii.6.6.

Podoclavella cylindrica
Polvcirss дiganteumt
Didemnum lambirum
Didemnum paluham
Polpcarper papillata
Pulycurpa pedumewata
Pyurnirregularis

Pyura spinifara
Halocynthia hispita
Herimianid momus
Microcosmins michollst
Carickalinga Head: in caves and on vertical rock
faces, moderale surge* depth $5-6$ mi; 18.ii. 67.
Clardina bentimensis
Distaplia viridis
Sveozon wermeiformis
Didemurim moseleyi
-Ascidia thampsonit
Botrylloides nigrum
Ponlyersima widenernumb
Py Pra itreghlaris
foredmumia momus
Hatectanhite hispida
Microtosmus nichullsi Mulgula mollis
Rapio Heabs on vertical faces and under ledges:

Clapelina badinersis
Polysyntrafon arhiculim
Leptochinides rufus
Böryllofdes nigrum
Polyearpa pedmnenTaia
Hatocynthia hispida

OFFSHORE BENTIIC LOCATIUNS

Goosk 1. Spenecr Gulf: on roeky boltom; depih 3-5 m: 1.x.66.

Didemum maseleyi
Herlmisnia momus
Tipara Reef, Spencer Gulf:
I. on travertine vertical faces and under ledges: depth 6 m : 24.v. 69.
Podoclavelle moluterasi
Stolonicd auntralis (aggregates)
Holyedrpa pedunculata
Ppura irregatoris
Herdmunic momus
Mirrostormus squamiger
2. on surface of rocks; slow eurgent; depth 6m; 24.7.69.

Leproclinides rericuians
Phullisia depressinsimilo
Ascidias soducyensis
Stolonicarmmosa
Polycarpa papillata
Polycarpa nedancralata
Pyura enstralis
Pyura irreghlaris
ITalocynthia hispide
Microcosmus stolonifera
Mierowasmes sqummiper
Ctenicipll antipoda
3. epizoic on Amphiholis anfarcrica; moderate current. $2 \mathrm{~m} / \mathrm{sce}^{\circ}$ depth $12 \mathrm{~m} ; 19 . \mathrm{v}_{\text {; }} 71$.
Rourylloides leachi
Pvura australis
Herdprania momu.r
Opf Beacti Hurx l km aff Port Vincent: on travertine; no wave action; slight current: depih $4 \mathrm{~m} ; 24$, ii.69.

Ascidia sydneyensis
Pyura iryegularis
IIalocyinthio hispida
Microcosmus nicholls)
Mithocrmus helleri

Orontes Rank, off" Pórt Vincent: 20 nt: 2hiiii. 6 g. Syenzoa cerebriformis

I'apiey Shoal, St Vincent Gible deph indicated for eaclu species; Feb. 1969.

1. Sluggish current, şandy bottom. Phallusia depressiuscula 16 m Astidia sydncyeusis 12 m Polycarpa pedunculata 16 m Cnemidectarpa ethertagli 12 m Pvurancomeshiensis 16 m Hedlocynhtia hispida $12 \mathrm{mt}, 16 \mathrm{~m}$ Nicrevesmus brlach 12 m
2. Modernte curcat (to 1 m/sec); travertine bottom covered by shallow sand; depth indicated for each species.
Aplidian colelloides 18 m
Pedycurpatavata 20 m
Polysarpa prehumerlata $18 \mathrm{~m}, 20 \mathrm{~m}, 22 \mathrm{~m}$
Phera nustralis 20 m
Halncyuthia hispida
Pyomáscorchichais 22 m
3. Mastly sand with some 1ravertine outcrops; depth 23 m.
Syunton errebriformis (on rock)
Aplidiam ceslalloizes
Polycarpac clavata
Pyura tillata
f. Sitrong current (to Zm/sẹc) in sheet triverlinc; depth 24 m .
Polycitor giganteum
Aphidinm plicilerum
Palycurpa pedmendata
Pyura anstralis
Upper St: Vincent Gulr: on sandy botiom in Pasidmuit amsfralis community moderate current ($\mathrm{m} 1 \mathrm{~m} / \mathrm{scc}$.) ; depth $10-11 \mathrm{~m}$ 4it. 67 .

Leptochnifles F Fhei
Pyura spinifera
\boldsymbol{P}^{2} wara irregularis
Malorymthia hisprida
and growing on razor shell Pirna dolohrata:
Sycuzzon cresbilormis
Aplidinn ruhricollsm
Ascidia gemmata
Pblycarpa pedoncwlara
Heremania momps

Qrf: Purt Gawler, St. Vincent Guif: growing on Pinna and on Cellcpora spp: slow current: depth 18-20 mis 11.11.67.

Sycosoa cerebriformis
Leptoclinides mifus
Phallusia depressiusenilat
Ascidia gemmata
Botrylloides nigrum
Polycarpar papillota
Polycarpa pedinculuse

Ofe Outer Harmour, St. Vincent Gulf: m Pimta: slow curpert; depth $8 \mathrm{~m} ; 2$,xii, 68 .

Halocymhia hispida

Orf Shmaphore: St. Vincent Gulf: in sparse Poridonice community, silly bottom, slow cursent: depth 31 m ; 27i69.

Polycarpa pedumbillata
Pyura scoresbiensis
Microcosmus squarmiger
Off Semaphorey. Sy. Vincent Gulf; silty botom: slow Eurremi: dcpth $24 \mathrm{~m}, 28$ xii. 6 x .

Polycarpa pedwiculaia
Or1: Ghange, St. Vincent Gulf: rocky bothom: stow curtent depth 18 mit $7 \times \times i 1.6 \%$.

Phallusia depressinscula
Polscurpa peduncilata
Orf Gkabiw, St. Vincent Gulf, int Povidohit community on shell: deplh of mi 7.xii.68.

Pyura irragularis
Ofe West Bedch (abone 3 km), Si. Vincent Gule: an rocky bothom: depth 10 m ; Hvi.68.

> Ascilfia thempsoni
> Bolrylloides magnicoecus
> Polyearpa pellumeulato
> Cremidocarpa etheridgii
> Halocynthia hispida
> Pyura aussralis
> Pywa irrentharis (aggregates)
> Microcasmust thamigst
> Micracasmus michrallsi

Ore West Eeach (aboiut 7 km), Sb . Vincent Gulf: in Poxidonia community, slow current; depth 12 20 m .27 xii. 66.

Eudirtoma pytilorme
Phallusio depressituscula
Batrylloides nigrrm
Polycarpa pedinculrta
Pyura nustralis
Herdmania momas
Halocymhia hispida
Orf West Beach (about 9 km), 5 t . Vincent Gulf: an silty bottomi slow current; depth $20-25 \mathrm{~m}$; 27. ※ї.66.

Ihallusia depressiumerian
Off Broiamway of Glenelus (sevcral stations). St. Vincent Gulf: on sandy bottom; slow current: deplhs indicated for each species: 10×1.68.

Syemzoa tenutcuulis (on scallop shell: 22 m)
Palycarpa pedinerihita $6,16 \mathrm{~m}$
Pysmaautralis 12π
Halncynthia hispida 6 m
OpF Glenfiti (5 km). St. Vincent Gulf: focky batlom; slow current. depth 13 m ; $13 . \mathrm{v.67}$.

Ascidia gemmata
Polycarpa papillota
Polycarpa pedenculata
Herdmania mumus
Off Glenelfi (1.5 km), Si. Vincent Gulf: on Posidomia toots; depth 6 m; 30.v.70.

Polycerpa pedimenlata
Pyurn irregulatis
IIalocyuthia hispida
Microcosmus squamiger

Off Glenelg (18 km). St. Vincent Gulf: depth $35 \mathrm{~m} ; 4 \mathrm{ix} .69$.
 Herdmania momus

Ort Seacliff, St, Vincent Gulf: in Posidonia community, on sandy bottom, fair sediment, slow current: depth $16 \mathrm{~m}: 21.1 .69$.

Ascidia aclara
Orr Sedcliff, St. Vincemt Gulf: on Amphihohis onfarctica;' slow currents depth 9 m ; $28.1 \times, 68$.

Botrylloides nigrum-with sponge
Off Haitaty Cove ($3-5 \mathrm{~km}$), St. Vincent Gulf: on silty bottom; sluw current; depth 15-22 m; 27.xii. 66.

Mhallasid depressiuscula

Botryllus schlossert
Polycarpa pedunchlata
Pyura australis
Pyura spinifera
Off Port Stanvace (6.4 km), St. Vincent Gulf: on sleel wreckage ("The Barges"), slow cursent; depth $30 \mathrm{~m}: 26 \mathrm{ilii} .66$.

Phallusiu depressifuscula
Malocynthia hispida
Orf Yankalilla Bay. St. Yincent Gulf: in Amphiholis community, sandy boltom: slight surge; depth as indicated: 18.ii.67.

Pyaru anstralis 20 m
Haforynhtia hispida 20 m
C'tenicelle umipoda 15 m

Index to Genera and Species

Page Page
Aplidium colelloides
Aplidium pliciferum
Aplidium rubricollum
Ascidia aclara
Ascidia gemmata
Ascidia sydneyensis
Ascidia thompsoni
Atapozoa fantasiana
Botrylloides leachi
Botrylloides magnicoecum
Botryllaides nigrum
Botryllus schlosserì
Clavelina baudinensis
Cnemidocarpa etheridgii
Corello elmynta
Clenicella antipoda n.sp.
Cystodytes dellechiajei
Didemnum candidum
Didemnum lambitum
Didernnum moselcyi
Didemnum patulum
Distaplia viridis.
Echinoclinum verrilli
Eudistoma pyriforme
Eudistoma renierí
Halocynthia hispida
Herdmania momus
Leptocinides kingi
Leptoclinides reticulatus

15 Leptaclinides rufus ※... 16
13 Microcosmus helleri 43
15 Microcosmus nichollsi 42
27 Microcosmus squamiger 43
26 Microcosnus solonifera : ... 43
24 Molgula mollis . . 45
27 Oculinatia musiralis 29
7 Phallusia depressiusculat 23
29 Podoclavella cylindrica 5
30 Podoclavella moluccensis - . . . 5
30 Polycarpa clavata 33
31 Polycarpa papillata
4 Polycarpa pedunculata 35
31 Polycitor giganteum. 9
23 Polysyneraton orbiculum 21
44 Pseudodistomis cereum 12
II P'yura australis 39
19 Pyura irregularis 38
18 Pyutia scoresbicnsis n.sp. ... 36
19 Pyura spinifera 39
18 Pyura viltata 37
7 Rhodosoma turcicum 23
21 Ritterella herdmania ..: 11
9 Stolonica australis -i.. 28
10 Stolonicil carnosa 28
41 Sycozoa cerebriformis 8
41 Sycozoa tenuicaulis 8
17 Synoicium papilliferum . . ." ... 16
18 Trididemnum spiculatum 16

NEW FORM SPECIES OF POLLEN FROM SOUTHERN AUSTRALIAN EARLY TERTIARY SEDIMENTS

by Wayne K. Harris

Summary

Sixteen new form species of dispersed pollen grains; Sparganiaceaepollenites barungensis, Amosopollis dilwynesis, "Triorites" psilatus, Tricolporites valvatus, Triporopollenites gemmatus, Ericipites crassiexinus, Sapotaceoidaepollenites rotundus, Proteacidites confragosus, P. tripartitus, P. kopiensis, P. tortuosus, P. clintonesis, P. fromensis, P. varius, P. wilkatanaensis, and P. concretus and one new form genus, Gambierina, are described from early Tertiary sediments from southern Australia.

NEW FORM SPECIES OF POILEN FROM SOUTHERN AUSTRALIAN EARLY TERTIARY SEDIMENTS

by Wayne K. Harris*

Abstract

Summary Sixteen new form species of aispersed nollen grainss: Sparganiaceupgullenites barmorensis, and one new form genus, Gamhierina. are described from early Tentary sediments from wuhbern Australise.

Introduction

This paper describes several new species and a hew genus, Gombierina, that were mentioned as manuscript names by. Harris (1971) in an account of the palynology of 'Tentiary sediments in the Otway Basin. These forms were considered to have some biostratigraphic significatice.

Previous taxonomic studies of Tertiary abgiosperm pollen from Alstratia are limited to the works of Cookson (1947, 1950, 1953, 1954. 1957 \& 1959), Cookson \& Pike (1954) and Harris (1965a). Dettriann \& Playford (1968) described four new angiosperm pollen species from Upper Cretaceous sediments from eastern Australia and some of these probably extend into the carly Tertiary.

The preparation technique is that outlined by Harris (1965 x) and the descriptive terminology is largely adapted from Erditman's glossary (1952). Dimensions are based on fiflecr or more specimens. Biostratigraphic data are based in part on unpublished studies by the author and in Harris (1971) and McGowran. lindsay \& Hatris (1971). Sample data ture presented in the appendix.

All co-ordinates are from the Leitz Orthoplan (715494) microscope in the Palynology Laboratory of the Gcological Survey of South Australia and Holotypes (catalogue numbers prefixed Py) are deposited in the Ceological Survey Palaeontological collection.

Systematic Palynology
 Genus Sl'ARGANIACEAEPOLLENITES Thiergart 1937

Type species: Sparganlareappollenites molyganulis Thiergart 1937: 307.
Sparganiaceaepollenites barungensis sp. nov.
FIGS. 1-3
Pollen monoporate, sphucroidal to slightly bilateral. Pore circular ($3-4 \mu \mathrm{~m}$ diam.) with incrassate margin 1-1.5 $\mu \mathrm{m}$ wide.. Exine $2 \mu \mathrm{~m}$ thick, sexine is thick as nexine, reticulate. Reticulum undifferentiated over the grain. lumina $1-1.5 \mathrm{pm}$ diant. Dimensions: Equatotial diam. 18 (22) $25 \mu \mathrm{~m}$.

Holotype: Preparation and slide numberST325/15, \$2.1: 110.S. Py 195. Figs. I. 2 Type localify: Hd Haninga Bore 4 at 65.5 m . Clinton Formation, ?Lower Miocene.
Distribution: This species first occurs in the Upper Eocene and continues through to the Upper Tertiary.
Comparison and affimiys: The pollen figured by Couper ($1960, \mathrm{pl}, 9$, figs. 21, 22) us Typha sp. appears to be very similar to S. barungensis. S_{e} barangensis differs from Aclaoreidier Erdiman in not having a differentiated reticulum. "Monoporices" suhrevicuitata Cookson has a wider tim to the pore. The species here descrihed appcared under this generic name in Harris (1971) and McGowran, Lindsay \& Harris (1971). St magnoider Krutzsch (1970)

[^2]approaches S b harumpensis in size but haw a wider meshed reticulum. $\$$. bathngensis is very simbilar to pollen of Typha and Spargesnium.

Genus AMOSOPOLLIS Cookson \& Baime 1962

Type species: Amwsorollis enuciformis Conk. son \& 13silme 1962: 97.
Amosopollis dilwynensis sp; noy.
FIGS. 4. 5
Synnymy: Amampolis. eruciformis sensu Harris 1965a: 97. Mb 29, fig. 26,
Pollen griains in shomboidal tetruds. Indjvidual grains prolate to sub-prolatc. Fixine 2 .fme thich, pribate to seabrate itnd tincly grantlate. except netis the margins of the aperture where grana $7-1,5 \mathrm{ym}$ diam are present. Aperture is a long gaping sulcus extending the full length of the grain. Margins of sulcus not raged. Dimensions." (10 specimens) Overall diam. of letrat 50 (60) 68 mm . Individwal arains 22 (34) 40 j mm diam.

Holobye: Preparation and wide numberST209/2, 39.3: 100.7 . Py 015 Figs. 4. 5.
Typer focality: Dilwyn Bay, Vicionin, Pebble Point Formation, Paleocenc.
Dinvihuion: A. Aliwomensis is a rate species thut has been observed in Palcocene sediments from the Murray and Otway Basius. and a similar finen has been reported (Harris (965h) from Queensland in sediments of similar age.
Comperiwsen und affiniry: A. diburnensis is in gencial farger than the genotype but can alko be distinguished by the psilate-scabrate sculpture and more imporhintly by the stratight masgins of the sulcus.

Genus TRIORITES Cobkson ex Couper 1453 Type species (hy subsequent dexignation of Couper 1953, p. 60): Triorites magnificus Cookson 1950.
"Triorites" psilatus sp. nov,
HigS. 6.7
Pollen radiosynimetric, isopolar, oblate, trioratc. Amb sub-triangular, sides straight to slightly convex. Ora sunken, $2-4 \mu \mathrm{~m}$ wide, circuar Exine 2μ, mexcept around apertures where it thickens to 3 or $4 \mu \mathrm{~m}$. Exine psilate. Lsmensions: Equatorial diam, 24 (32) 40 pm .

Holotype: Preparalion and slide number$5564 / 1.32 .8: 100.6$, Py 411 . Fig. 6.
Type locality: Polda No. I Bore at 55.1 m . Poulpenal Formation, Mibldle Eocene.
Distribunion: "this spectes is as very common form throughout the Lower Tertiary in southern Australia. it first appears in the Paincetown Member and ranges through to the lower Mocene. The upper limit has not been determined.
Comparivon and affimity "T" psilants is comparable and mag be conspecifle with "T." seabrunas Couper. The ornamenk on the latter however is scabrate. This species would more appropriately be placed in shew genus (see section on Triorites below).

Genus I'RICOLPORITES Cookson 1947

Iype spacies: Tricolporhers sphatrira Cooknon 1947: 195; genus monntypie when proposed.
Triculporites valvanus sp. nov,

FIGis. 8 , 9

Pollen radionymmetric, prolate tricolporate Amb in equatorial view ellipsoidal. Apertures compound, colpi reaching to within 3 or $4 \mu \mathrm{~m}$ of the poles, margins strongly invaginated to about $\$ \mu \mathrm{~m}$. Equatorial aperture ofate, s-8 $\mu \mathrm{ml}$ diam. Fxine $2-3 \mu \mathrm{~m}$ thick unormamented. Dimensionv: Polar dlum. 45 (52) $55 \mathrm{\mu m}$, equ:itorial diam $30(35) .39 \mu \mathrm{~m}$.

Holorype: Preparation and stide numberST241/12, 35.1: 95.1. Py 176. Fig. 9.
Then localits: Lake Torrens Bure 3A at 247.8 nт. "Wiknama Fonmation", Midalc Eocene.
Distributions Common in the "Wilkatama Formation" but less common in other Midalle Fincene (Prolencidites confromosins Zonule) assemblages.
Comparison and affinity: The strongly invaginated colpi and psilate exine make this a very distinctive species. Its natural affinities are unknown.

Genus ERICIPITES Wodehousc 1933
Type species: Fricipicy lontisticalis Wode. house 1933:517.
Ericipites crasxiexinus sp. nov.
FIGS. 15, 16
Pollen united in tetrads. Individual grains indistinety tricolporate, tetrathedral in shape
and strongly united in the tetrad. Exine 2535 mm thick, sexine as thich as nexine psilate. Apertures complex; colpi about 14 pm long and $1.5 \mu \mathrm{~m}$ wide. Pores indistinct and difficult to detcet. $2 \mu \mathrm{~m}$ diam. Dimensions: Overall dham. 35 (42) $53 . \mu \mathrm{m}$. Individual grains 24 (31) 35 mm diam.

Holorype: Preparation and slide numberS660/1. 52.9: 96.9. 1'y 415, Fig. 15.
Typer Inraluy: Bose, Hd, Cummins at 35.743.3 m . Wanillu Formation. Middle Eосепе.

Dismlbution: Often a very common form in middle and upper Eocene sediments.
Compariven and affimisy; The psilate nature of the exine and the larger. size of this species dissinguishes it from is scoteratus Harmes Pollen of this type characterise the Order Ericales.

Genw TRIPOROPOLLENITES (PПlug)
 Thomson \& Pfiug 1953

Typu species: Triporopollenites soryloides Pllug in Thomk \& Pfl. 1953: 84.
Iriporopollenites gemmatus sp, nov. FlGS, 10, 11, 13, 14
Pollen occasionally free but most commonly united in tetrads. Tertads 34-40 $\mathrm{\mu m}$ in overall diam. Individuall pollen radiosymmetric. oblate, sub-isopolar, triorate. Amb sub-triangular with straight to convex sides. Exine 4-5 am thick (including omament), Sexine and rexine difficult to separate but nexine appears to be thicker than sexine. Exine covered with verrucae $2-3$, min wide, sphacrical and $2 \mu \mathrm{~m}$ high. Verrucate separated from each other (by 2-3 $\boldsymbol{\beta}^{2}$) by granulate ormament. Apertures obscused by omament, porate or orale opening 1.5-2.5 $\mu \mathrm{m}$ wide, Dimensions: Individual pollen, equatorial diam, 25 (29) $31 \mathrm{\mu m}$.
Holatyp: Preparation and slide number\$547/1. 31.7: 98.4. Py 720. Fig. 11.
Type locality: Lake Cootabariow Bore 2 at 163.4 m . Great Artesian Basin. Murn. peowie Formation. Upper Eacene.
Bispriburion: Appears to be sestricted to Midale and middle-upper Eocene sediments from the Pirie-Torpens and Great Artesian Basins and Eyre Peninsula.
Comparison and afinisy; T. gemmartus is similar to T'. bullir Gruas-Cavagncto (1966) From the Sparnacian of the Paris Bosin but this
species is more or less circular and appears to have in mane strongly thickened sim to the aperture.

Genus GAMBIERINA gen. nov.

Type species: Triorites edwardsia Cookson de Pike (in pirt) 1954: 214, pl. 2. figs. $101_{\mathrm{F}} 105$. 106.

Diagnosix: Pollen sadiosymmettic, nblatc, iohate. angulaperturate, triorate. Apertures sunketl. Sexine imperforate tectate, thinner than nexine, the two separated by a fainty discernable baculate layer, which forms " "nick" point in the apertural region, Aperture formed by sexine larger than that of the nexime. Nexine thickens more rapidly than sexinc about the apertures. Exine psilate.

Figurad specimen: Fig. 12,

Remarkr: The characters of the exine, the apertures and general shape distinguish this genus from Triorites. As Detumann \& Mayford (1968, p. 86) have pointed out. the species figured by Cookson \& Pike (1954, particularly figs. 104 and 105) as T. edwardsii is distinct in being untrickened about the apertures.

Detmann \& Playford (1968) summarised the present status of the genus Triorises but chose to continut using the diagnosis of Couper (1953) pending a review by the present author.

Potonie (1960) clearly indicated that the two species T_{0} mugnificu. Cookson and T. clavarus Cookson were morphologically comparable and distinct from other forms allocated to the genus. However, Potonic gave no indication as to where these other forms should be placed.

It is clear that T. magnificus and T. clavarns. are very closely related morphologically and perhaps phylogenetically, Indeed Caokson (1957, pr 49) goes so far as to state that "there is little or no doubt that they wete produced by closely related plants. Both species have the same shape, type of ora and cxine stratification, and structure. . " Thus these two species lorm a natuzal grouping and all other species assigned to the genus are better accomodated elsewhere. Couper's (1953) diagnosis is too broad and suggestive of a suprageneric category. Mildenhall \& Harris (1971) have reached simifar conclusions.

Gents LiAPOTACEOIDAEPOLLENITES

Pol. Thoms. \& Therg 1950
Type species: Sapatacesiduepollenites (al. Pallennitest manifesms (Potonici) 1931:3.
Sapotacenidappollenites rotundus sp. nov. FIGS. 17. 18
Pullen radiosymmetric, subsphacroithal to sub-protates four and less frcquently three apertures. Apertures compound. Colpii 2/3 lengh of polar axis, $20-3 \mathrm{~mm}$ wide. Equaterial aperture more or less circular, "5-h am diam. and shighly elongate in an cquatorial direction, Apertural margin prominenly rimmed and thickened, Exine 2-2.5 $\mu \mathrm{m}$ thick, nexine about as thick as sexine. Sexine psilate to tinely scabrate. Dimensions: Polar diann, 30 (36) 39 amm , equatorial diam. 28 (33) $35 \mathrm{\mu m}$.

Holotype: Preparation and slide number ST241/3. 45,7: 102.8. Py 167. Fig. 17. Type focaling: Lakc Torrens Bore 3A at 247.8 m. "Wilkatana Formation". Middle Fucene.
Distihution: The species Arst appears in the Midthe Eocene and continuss on into the mid-Tertiary.
Comaparison and uffinity: The closest resemblance of this species is with Tricolparopollenifsw huizonturs McIntyre 1968, which is most comnuonly 3 -aperturate, hase it longer polar/ equatorial axis ratio and has a hroad thickened zone of the exine in the equatorial region. The species is very similar to pollen of the Sapotaceae.

Gimus Prottiacioltes Coukson ex Couper 1953

Type species: Protercidizes tulenamhoides Cookson 1950: 172, designated by Couper 1953: 42.
Rernapks, The genus Proteacitites atconmatas it presern a wide variety of forms described from both the Southern and Northern Hemispheres. Some from the latter clearly do not belong in this genus but until is review of the Australion forms by the author is complete (and on present evidence the genus will be split into three or more genera) comment on thesic is reserved. Although the following now specics show a wide variation in form with regard to aperture construction and exine stratification and ormamentation they wilt be described under this genus but will be forther reviewed in a torshcoming papur.

Proteacidites comfragosus sp . nov.
FIGS, 19-2?
Pollen sub-isupulat, angulaperturate, oblate. viporate. Anub triangular with slighty convex sides. Pares simple subcircular $6-7 \mu \mathrm{~m}$ diam. obscurc. Exinc $4-5 \mu \mathrm{~m}$ thick. Sexine thrce limes as thict its nexire. heavily ornamented with a dense teliculum, luminal 3-4 $\mu \mathrm{m}$ diam. polygonal hud made up of single ruws of disfinct bacula $1-1.5 \mathrm{um}$ itism. Dintensfons: Equatortal diani. 34 (60). 69 am.

Holorype: Preparation and slide numberS'「241/9, 41.4: 105.7. Py 173. Figs. 19. 21, 22.
Type loculify: Lake Torrers Bote 3A 41 247.8 mm . "Wilkutana Fornation". Middle Eocenc.
Distribution: An index form for Miadle Eoccne sediments. P_{1} confragorms has heen recorted from the North Maslin Sands, the Remmark, Poelpena and Wanilla Formations and the Burrungule Member of the Knight Formation.
Comparison ind uffinty: This is a striking species and is elearly distinet from noy other known in the senus.

Proteacidites iriparditus sp, nov,
Hicis. 2325
Pollen suthisopolar, oblate. angulaperturate, triporate. Aint triangular with more or less straight: sides. Apertures sub-circular, simple but obscure $2-2.5 \mu \mathrm{~m}$ wide. Exinc $2.5-3 \mathrm{~mm}$ thick. Sexine halt as thick noxine, foveolate. dumina ca. 1 jum diam. slightly smaller at the poles and dowards the apertures. Muri $2-3 \mu \mathrm{~m}$ wide. Nexinc thickens to $5 \mu \mathrm{~m}$ at 10 $\mu \mathrm{m}$ (rom the aperares. Pore "canal" $7-8 \mathrm{fm}$ long. Dimemions: Equatorial diatm, 27 (30) $34 \mu \mathrm{~m}$.

Holosye: Preparation and slide numberS650/1, 32.2: 99.8. Py 406. Figs. 24, 25 Type localioy: Ho Cummins Bure at $114-$ 116.4 in. Wanilla Formation, Midalle Eocene.
Distribution: The species first appears very high in the Princetown Member of the Dilwyn Formation but does not hecome common until the Middle Eocene.
Compurison and affinity: The detail of the apertupes clusely resemblex that found in p, latrobensis Harris and P. concretme but is dislinguished hy the characteristic ornament,

Proteacidites hopiensis $s p$, nov

FIGS. 26, 17
Pollen sub-isopolun oblare angulapirnurate, Iriponte. Arbb triaggular. sides struight or nearly so. Apertuncs subcircular. simple. 7-8 pm diam. Exine 2 am thick and slighty thicker in the equatofial inter-aperturate regions. Sexine about half as thick as nexine, ormamented with a reticulum. Muri $1-1.5$ fm Wide. Lumina 2-3 $\mu \mathrm{m}$ diam, at the equator and decreasing gradualty to 1 um lowards the apertures and polar regions. Dimensions: Equatorial diam. 36 (40) $47 \mu \mathrm{~m}$.

Holosipe: Preparation and sltill numberS5nor 1, 26.1: 106.9. Py 393. Fig. 26.
Type locality: Polda No. I Bore as $37,5 \mathrm{~m}$. Poelpena Formation. Middle Encene.
Disuthution: The species is present in the uppermost section of the Princetown Member of the Dilwyn Formation and continnes in all hasins into the middle-upper Eocene. It does not appear to range higher than the
Triorites magniliens Zonule,
Comparison and affinieg: This species is readily distitguished from other Protencidires spp. by the characteristic ornament patern.

Proteacidites forthosks sp , nov.
Flas. 28. 29
Pollen sub-isopolar, oblatc, angulaperturate. triporate. Amb rounded triangular, sides convex. Pares simple $13-15 \mu \mathrm{~m}$ wide. Exibe 5 pmithick. Nexine thicker than sexine. Sexine ornamented with scattered verrucac, $2 \mu \mathrm{~m}$ wide and up to $6 \mu \mathrm{~m}$ long, rolinted in optical section and $2 \mu \mathrm{~m}$ high. Areas between these elements psilate, Dimension,s: Equatorial diam. 53 (55) $58 \mu \mathrm{~m}$

Holorype. Preparation and slide numberS563/2. 32.2: 99,8. P5, 409. Fiss. 28, 29.
Type locultery: Pulda No, 1 Bore at 55.1 m . Poelpena Formation, Midde Eocene.
Distribution: This species has heen recorded from Midalc Eocene sediments on Eyre Peninstula, Poelpena and Wanilla Forma. tions.
Comparison and affinity: The large distinctive verrucae, thick exine and rounded sub-triangular shape separate this species from other spacres deseribed here. P s fortuosus differs from P- euburculabur Cookson in being smaller. The vernieas are not arrsnged in u reticuloid pattern and are not confined to as ophencal shape

Proteatidites climionensis sq- nov.
FIGS. 30.3. 4
Pollen ath-isöpolar, oblate ingulaperurate. triporate, Amb more or less triangular with concave sides. Pores circular 20-35 um in diam. Exine 3 pm thick, sesine slightly thinner than nexine. Capita of bacula coalesce to form groups $\mu \mathrm{p}$ to $7 \mu \mathrm{~m}$ wide and shrow an LO pattern. Elements munded in optical section. Nexinc in region of pores. alternately thick, und thin. The sexine is readily lost by corrosion. Dimensions: Equatorial diam. 62 (75) $98 \mu \mathrm{~m}$.

Holonthe: Preparation and stide number\$705/1, 31.3:105.2. By 405. Figs. 32-34. Type-loculity: Payniz Bore, Hd. Fittrick it 94.5 m . Renmark Beds, midale-upper Eocenc.
Diswhution. The species is almost ubiquicous in Eocene sediments and is particularly common in the Triortes stugnificus Zonule It ranges from Midfle Eocenc to at least Lower Miocene.
Comparison emd allinity: This species is similar to P_{1} rectonutagimes Cookson hut has much larger ppertures and strongly concave sides. Figure 30 more clusely resembles r. recto. marginus with its lines ornament, larger size and straighter sides. It is possible that the two forms intergrade. Cookson's figure (1950) fig. 27) of fer rectomurghus appears to show some thickening of the nexine about the opertures. The species is distinguished from P. incurverius hy the nature of the sculpture and the characreristic aperture. The exine does not thin markedy near the apertures ay it does in P. incurvatus.

Proteacidites fromensis sp. nov.
FIGS 35-38
Pollern sub-isopolar, oblate, angulaperturate. triporatc. Amb trianyular, sides strongly coneave. Pores simple, circular $5 \mu \mathrm{~nm}$ in diam. Exine 2,5-3 μ mu thick. Sexine slighty thinner than nexine in the inter-angles and thins to. wards the angles, evenly granulate to seabrate. Nexine thickest in the inter-angles, Diment sions: Equatorial diam. 61 (65) $70 \mu \mathrm{~m}$,
Holotype! Preparation and slide numberS17/2, 35.1: 101.4. Py 408, Figs. 35-37.
Type locality: Lake Eyre Bore 20 at 73.2 m . Murnpeowie Formation, Paleocene.
Distributiott: μ. jromensis is restricted to and characteristic of Palacocene sediments ambl is most cormmon in the Mustay and Great Artesian Basins.

Comparison and affinity: The strongly concave sides of the amb, wire, and the scabrate ornament separate this species from others in the genus. It differs from P. granoratres Couper ins that the ornament does not become coarser araund the apertural region.

Proteacidites varius sp. nov,
FIGS. 39-42
Pollen small, sub-isopolar, peroblate, angulaperturate. Amb triangular with straight or slighty concave sides. Apertural pores, three, $2.5 \mu \mathrm{~m}$ diam. Exine 2-2.5 $\mu \mathrm{m}$ thick. Sexine much thinner than nexine and thins markedly near the mpertures. Nexinc thins toward the apertures with loss of ?endonexiue elements near the uperture. Otnament $0.5 \mu \mathrm{mi}$ high, consisting of fused groups of bacula ca. $1 \mu \mathrm{~m}$ diam. Groups becoming smaller to absent sicar stpertures. Dimensions: Equatorial diam. 20 (25) $37 \mu \mathrm{~m}$.

Holotype: Preparation and slide numberS705/1, 37.2: 111.0. Py 399, Figs. 39, 40.
Typer locality.. Poyntz Bore, Hd. Ettrick it 94.5 m . Renmark Beds, Upper Eocene.

Disrribution: A common species in midale and upper Eocene assemblages in the Murnpeowie and Poelpena Formations an particular.
Compurison and affiniry: The nature of the ornament distinguistes the species from P. rediculatus Cookson and P^{2} symphyotemoides Cookxon. The chatracteristic nexinc structure (see particularly Fig, 41) is distinctive. The relutionship of this species, to P, obscures Cookson is riot clear. Her figured specimens (Cookson 1952, figs. 30. 31) have lost most of the sexine, The specics described here shows thinning of the exine about the apertures Tather than slight thickening and is not "lancetshaped" as described for P. olescurus.

Proteacidites wilkatanacusis sp , nov. FIGS, 43-47
Pollen sub-isopolar, oblatc, angulaperturate, triporale. Amh triangular with straight to concave sides slightly bulging about $10 \mathrm{\mu m}$ from aperruies. Apertures circular $4-6 \mu \mathrm{~m}$ dian.

Exine $4 \mu \mathrm{~m}$ thick, thiming rapidly near the apertures. Nexine about 3 times as thick as sexine, thinaing and apparently losing the basat layer near the apertures. Sexine consists of a thin baculate layer and an ectosexinous layer formed of united baculate elements. giving a huw rugulate ornmerit. Rugulae $1-3$ um longe less than $1 \mu \mathrm{~m}$ wide. Dimensions: EquaLorial diam. 51 (55) 61 km .

Rolonye. Preparation and aslide numberS227]/4, 44.1: 106.7. Py 720. Figs, 43. 44.

Type locality: trore neat Ediacara at 280,4 283.5 m . "Wilkatana" Formation, middleupper Eocenc.
Disiribmion: The species is commonly abserved in middle-upper Eocene sediments in most basins.
Comparison and affinity: The species differs from P. incumptus Cookson and P. clintonenvis in not heing puncti-tegillate: The ornament is similar to that of P_{5} varius but the species is much larger and does not show the characteristic structure of the nexine around the apertures.

Proteacidites concretus sp.. nov.
FIGS. 48. 49
Polien sub-isopolat, oblate, angulaperturate, triporite. Amb triangular with strnight sides: Apertures circular $1.5 \mu \mathrm{~m}$ diam. Exine $2 \mu \mathrm{~m}$ thick but thickens in the region of the aperture to. $4 \mu \mathrm{~m}$ and forms a pore "canal" $5 \mu \mathrm{~m}$ long. Exinc faintly and evenly scabrate to fincly spinulate. LO pattern distinct. Dimensions: Equatorial diam. 25 (2B) $32 \mu \mathrm{~m}$.

Holorype: Preparation and slide numherS360/2, 35.8: 705.5. Py 404. Fig. 48.
Type loculity: Kopi Anomaly KR9 it 41 mm . Pcolpena Formation. Midale Eocene.
Distribution: A common species in moxt Eoeene-sediments.
Cumparisont und affinity: This species; is most closely similar to P, tatrobensis Harris, particularly in the nature of the aperiure. It differs. however from this species by the nature of the ornament. (P. larrobersis has a scrobiculate pattern.)

References

Balme. B. E. (1962):-Amasopollis cruciformis gen. et sp. now. a pollen tetrad from the Cretaceous of Wentern Australia. J.R. Soc. West. Aust. 45, 97.99.
Conkov, I. C. (1947).-On fossil leaves (Oltaccae) and a new type of fossil pollen grain from Australian brown coal deposits. Proc, Limf. Soc. N.S.W. 72, 183-197.
Cookson. 1. C. (1950)-Fossil pollen grains of proteaceous type from I'crtiary deposits in Ausiralia. Aust. J. Scient. Res., B, 3, 166-176.
Cookson. 1. C. (1953), -Difference in microspore composition of some samples from sote at Comarm, South Australia. Aust. S_{1} Bai. 1, 462-472.
Cooksun, I. C. (1954).-The Cainozoic nceurrence of Acucifs in Australia, Aust. .7. Bot. 2, 52-59.
Cookson, L. C. (1957),-On some Australian Tertiary spores and pollen grains that extend the geological range and geographical distribuion of living genera. Proc. R. Soc. Vict. 69, 41-53.
Cookson, I. C. (1959):-Fossil pollen grains of Nothofagus from Australia. Proc: R. fince. V/ict. 71. 25-30.
COOKSON, I. C \& PAE, K. M. (1954) --Some dicistylednous pollen types from Cainozois deposits in the Australian tegion, AHSK. J. Bot. 2, 147-219.
Couper. K. A. (1953)--Unper Mesozoic and Cainozoic spore and pollen grains from New Zcaland. N.2. grol. Siry, paleont. Bull. 22, f.77.

Couper, R. A. (1960):-New Zealand Mesozoic and Cainozoic plant microfossils. N. Z yent. Surs. poleont Binl. 32, 1-87.
Dittmann, M. E., \& Peaytord, G. (1968). Taxnonony of some Cretaceous spores and pollen grains from castern Australia. Proc. R. Sot. Vict, 81, 64-94.
Erotman, G. (1952) - Pollen morphology and plant taxonomy" Angiosperms." (Almquist \& Wihsell: Stockholm,
Gruas-Cavagnetto, Cro (1966), Complexes sporopolliniques du Sparnacien du phare dAilly (Ouest de Dieppe Seinc-Maritime). Rev. Micropaléuntol. 9, 57-67.
Harris, W. K (19650)-Basal Tertary microfioras from the Princctown area, Victoria, Australis, Palueontographicr B. 115. 75-106.

Harkis, W. K. (1965b).-Tertiary microsoras from Brisbane, Quccusland, Geol, surv. Qutensland. Repr. 10, 1-7.
Hafkis, W. K. (1971).-Tertiary stratigraphic palynology, Otway Basin. Ch. 4 in ${ }^{-1}$ he Otway Basin of south cast Australia ${ }^{\text {a }}$ Spec. BuIf, Geol. Suris. S. Aust. \& Vicd, 67-87.
Krutzsch, W, (1970)-Atlas der mittel-zind jungleriaren dispersen Sporen-und Pollen sowie der Mikroplankionformen des nördlichen Mitteleuropas. Lieferung V11" (Veb Gustay Fischer Verlag: Jena.)
MicGowran, B., Lindsay, J. M. \& llarris, W. K. (1971).-Altempted reconciliation of 'Icrtiary biosrraligraphic systems, Otway Basin. Ch. 14 in "The Otway Busin of south east Australia." Spece Bull. Gml Survs. S. Aush, de Ficto 273281 .
Mclntyre, D. J. (1968),-Further new pollen species from New Zealand Tertiary and uppermost Cretaceous deposits, N. Z . J/ Bot. 6 , 177-204.
Mtloeneali, D. C., \& Harris, W, F: (1971)Status of Haloragacidites (al, Triorices) harrisil (Couper) Harris comb nov and Haloragacidites trioratus Couper, 1953. N.Z. J/ Bot. 9, 297-306.
Potonie, R. (1931),-Pollenformen aus tertiåren Braunkohlen, 3. Jh. preuss geol. Landesanst, Rerg.tkad. 52, 1-7.
Pótunie, R. (1960) - Synopsis der Gattungen der Spurae dispersme, 111 Teil Reih geal. J1. 39. 1-189.
POTONIE, R $_{1}$ THOMSON, P. W., \& TITLRGART, F. (1950).-Zar Nomenklatur und Klassifikittion der neogenen Sporomorphae (Pollen und Sporeñ. Geal. Jh. 65. 35-70.
Thiergart: F. (1937).-Die Pollenilara der Niederlousitzer Braunkohle, besonders im Piofil der Grube Margaz bei Senfenberg. Jhpresse. geol. Landesanst. BergAtad. 58, 282356.

「Homson, P We \& Prluc, H. (1953),-Pollen und sporen des mittelcuropäischen Tertiärs. Palaconfograplica $B, 94,1=138$.
WoDehouse, R. P. (1933),-Terliary pollen If. The oil shales of the Eocene Green River formation. Bull, Torrcy Bof. Club, 60. 479. 524.

APPENDIX

sample data

Bore name (or blitcron)	Depth in metres (feet in parenthesis)	Formation	Hasin	Lowalits	Type of Sample	Sample $\mathrm{No} .$
Nullabor No. 6	105-122 (344-400)	Pidinga	Eucta	Lat. $31^{\circ} 09^{\prime} 00^{\prime \prime} \mathrm{S}$ Long. $131^{\circ} 12^{\prime} 30^{\prime \prime \prime} \mathrm{E}$	Percussion sludge	S623
Polda No. 1	37.5 (123)	Poclpens	Pulda	Lat. $33^{\circ} 33^{\prime} 00^{\prime \prime} \mathrm{S}$ Long. $15^{\circ} 20^{\prime} 00^{\prime \prime} \mathrm{E}$	Core	S566)
Polda No. 1	51.8 (170)	Poelpenz	Polda	Lat. $33^{8} 33^{\prime} 00$ " S Long. $135^{\circ} 20^{\circ} 00^{\prime \prime} \mathrm{E}$	Core	S562
Polda No.	55.1 (181)	Poetpena	Polda	Lat. $33^{\circ} 33^{\prime} 00^{\prime \prime} 5$ Long. $135^{\circ} 20^{\prime} 00^{\prime \prime} \mathrm{E}$	Core	556.
Polda No. 1	57.9 (190)	Foelman	Polda	Lat. $33^{\circ} 33^{\prime} 00^{\prime \prime} \mathrm{S}$ Lonr. $135^{\circ} 20^{\prime} 00^{\prime \prime} \mathrm{E}$	Core	S564
Komi Anomaly K.R. 9	6) (200)	Puelpena	Unamed	Lat. 33 ${ }^{\circ} 24^{\prime \prime} 10^{\prime \prime} \mathrm{S}$ Long. $135^{\circ} 84^{\prime} 45^{\prime \prime} \mathrm{E}$	Core	5360
Hu. Cummins (W.Con. Res. adj. Sec 16)	35.7-43.3 (117-142)	Wanilla	Cummins	Lat. $34^{\circ} 15^{\prime \prime} 10^{\prime \prime} \mathrm{S}$ Long. $135^{\circ} 40^{\prime} 45^{\prime \prime} \mathrm{E}$	Percussion sludge	S660
HU, Cummins (W.Con.Res. adj. See 1 in	114-116.4 (374-382)	Wanilla	Cummins	Lat. $34^{a} 15^{\prime} 10^{\prime \prime} \mathrm{S}$ Long. $135^{\circ} 40^{\circ} 45^{\prime \prime} \mathrm{E}$	Percussion sludse	S650
Cummins school fesidence	32-39 (11.5-128)	Wanilla	Cummins	 Lons, $135^{\circ} 43^{\prime} 20^{\prime \prime} \mathrm{E}$	Percussion sludge	S741
Lake Torrens Bore 3A	247.8 (813)	"Wilkatama**	Piric- Tortens	$\begin{aligned} & \text { Lat. } 31^{\circ} 14^{\circ} 00^{85} \mathrm{~S} \\ & \text { Long. } 138^{\circ} 01^{\prime} 45^{\prime \prime} \mathrm{E} \end{aligned}$	Core	S241
Near Ediacara	280.4-28.3.5 (920-9.30)	"Wilkatana**	Hiric- Torrens	lat. $30^{\circ} 48^{\prime} 34^{\prime \prime} \mathrm{S}$ Long. $138^{\circ} 07^{\prime} 30^{\mu \mathrm{H}} \mathrm{E}$	Cuttings	S2273
Hd, Barunsa Bore 4	65.5 (215)	Clinton	St, Vincent	Lat. $33^{\circ} 45^{\prime \prime} 55^{\prime \prime} \mathrm{S}$ Long. $138^{\circ} 13^{\prime 3} 35^{\prime \prime} \mathrm{E}$	Core	S325
Lake Cootabarlow Bore 2	(63.4 (536)	Marneowle	Great Artesian	Lat. $30^{\circ} 16^{\prime \prime} 30^{\prime \prime} \mathrm{S}$ Long. $140^{\circ} 08^{\prime 3} 30^{\prime \prime} \mathrm{E}$	Core	S547
E. A. Rudd Bore 5	116.1 (381)	Murneowle	Great Artesian	Lat. $31^{\circ} 13^{\prime \prime} 00^{\prime \prime} \mathrm{S}$ Long. $139^{\circ} .52^{\prime} 50^{\prime \prime} \mathrm{E}$	Core	S1986
Lake Eyre Bore 20	73,2 (240)	Murnebwie	Great Artcsian	Lat. $28^{\circ} 48^{\circ} 0 u^{\prime \prime} \mathrm{S}$ Long. $137^{\circ} 30^{\prime} 20^{\prime \prime} \mathrm{E}$	Core	517
Payntz Bore, Hd. Ettrick	94.5 (310)	Renmark Beds	Murray	Lat. $35^{\circ} 00^{\circ} 30^{\prime \prime} \mathrm{S}$ Long. $139^{\circ} 31^{\prime} 45^{\prime \prime} \mathrm{E}$	Percussion sludge	\$705
S.E. side of Dilwy Bay	1.8 m ahove base of formation	Pebute Point	Otway	Lat. $38^{\circ} 44^{\prime} 00^{\prime \prime} \mathrm{S}$ Long. $143^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{E}^{-}$	Outcrop	S208
S, E. side of Dilwyn Bay	1.2 m above base of formation	Pebble Point	Otway	Lat. $38^{\circ} 44^{\prime} 00^{\prime \prime} S$ Ling. $143^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{E}$	Onterop	S20\%

Note: Unless otherwise specified the figures are X500 in normal transmitted light. NDIC refers to Nomarski Differential Interference Contrast.

Figs. 1-12
Figs. 1-3. Sparganiaceaepollenites barungensis sp. nov., X 1250. Figs. 1, 2.-ST 325/15, 42.4: in N.W quadrant. High focus. Fig. 2.-Mid focus. Fig. 3.-S $325 / 3,39.7: 96.8$. Pore in N.W. quadrant.
Figs. 4, 5. Amosopollis dilwynensis sp. nov. Py 015, 38.7: 100.1. Fig. 5, X 1250. Notice the

Figs. 8,9, Tricolporites valvatus sp. nov. Fig. 8.-ST 241/12, 39.0: 98.2. Fig. 9.-Py 176, 35.1: 98.1, X 1250, NDIC.

Figs. 10, 11. Triporopollenites gemmatus sp. nov. Fig. 10.—S650/1, 43.4: 104.5, single grain. Fig.
Fig. 12. 11.-S547/1, 31.7: 98.4, tetrad.
Fig. 12. Gambierina edwardsii (Cookson \& Pike) Harris comb. nov. ST 208/2, 32.1: 103.7.

Figs. 13-25
Figs. 13, 14. T. gemmatus sp. nov. Fig. 13.-S547/1, 31.7: 98.4, X 1250 high focus. Fig. 14.S741/2, 38.6: 106.8.
Figs. 15.16. Ericipites crassiexinus sp. nov. Fig. 15.-S660/1, 52.9: 96.9. Fig. 16.-S560/1, 19.2:
Figs. 17, 18. Sapotaceoidaepollenites rotundus sp. nov. Fig. 17.--Py 167, 45.7: 102.8, X 1250, NDIC. Fig. 18.-S564/1, 29.5: 106.4.
Figs. 19-22. Proteacidites confragosus sp. nov. Figs. 19, 21, 22.-ST 241/9, 41.4: 105.7. Fig. 21, 22, X 1250. Fig. 9 focused on ornament, fig. 10 focused on apertural region. Fig. 20 , -ST 241/4, 35.6: 104.7.
Figs. 23-25. Proteacidites tripartitus sp. nov. X 1250. Fig. 23.-S560/1, 27.7: 100.8, NDIC. Figs. 24, 25.-S $650 / 1,32.2: 99.8$, sectional and high focus respectively.

Figs. 26-37
Figs. 26, 27. Proteacidites kopiensis sp. nov. Fig. 26.—S560/1, 26.1: 106.9, X 1250, NDIC. Fig. 27.-S623/1, 16.6: 109.3, NDIC.

Figs. 28, 29. Proteacidites tortuosus sp, nov. S563/2, 32.2: 99.8. Median and high focus respectively.
Figs. 30-34. Proteacidites clintonensis sp. nov. Figs. 30, 31.-S741/2, 47.8: 96.3. Fig. 31, X 1250, high focus on polar region. Figs. 32-34.-S705/1, 31.3: 105.2. Fig. 33, X 1250, high focus on polar region; fig. 34, focus on apertural region.
Figs. 35-37. Proteacidites fromensis sp. nov, S17/2, 35.1: 101.4. Figs. 36, 37, X 1250. Fig. 36. high focus on polar region; fig. 37, median focus on interapertural region.

Figs. 38-49
Fig. 38. Proteacidites fromensis sp. nov. S1986/2, 27.0: 99.3.
Figs. 39-42. Proteacidites varius sp. nov. X 1250. Figs. 39, 40.-S705/1, 37.2: 111.0. High and mid focus respectively. Fig. 41.-S547/1, 22.7: 96.0. Fig. 42.-S705/1, 98.8: 44.3.
Figs. 43-47. Proteacidites milkatanaensis sp. nov. Figs. 43, 44.-S2273/4, 44.1: 106.7. Mid and high focus respectively. Fig. 45.-S705/2, 22.8: 105.9. Figs. 46, 47.-S2273/3, 33.2: 107.1. High and mid focus respectively.
Figs. 48, 49. Proteacidites concretus sp. nov. X 1250 . Fig. 48.—S360/2, 35.8: 105.5. Fig. 49.-

$$
\begin{aligned}
& B \Delta \Delta \\
& \Delta \Delta \Delta \\
& \Delta \Delta \Delta \\
& \Delta 0 \Delta
\end{aligned}
$$

TRANSACTIONS OF THE ROYAL SOCIETY OF SOUTH AUSTRALIA

 INCORPORATED
CONTENTS

Preiss, W. V. The systematics of South Australian Precambrian and Cambrian Stromatolites. Part 1 67
Mawson, Patricia M. The nematode genus Maxvachonia (Oxyurata: Cosmo- cercidae) in Australian reptiles and frogs 101
Mawson, Patricia M. Three new species of the genus Cloacina Linstow (Nema- toda: Strongylata) from macropod marsupials 109
Schodde, R., Mason, I., \& Wolfe, T. O. Further records of the Pitted-shelled Turtle (Carettochelys insculpta) from Australia 115
Wollaston, Elise M. The morphology and relationships of Muellerena wattsii (Harvey) Schmitz (Ceramiaceae: Rhodophyta) 119

THE SYSTEMATICS OF SOUTH AUSTRALIAN PRECAMBRIAN AND CAMBRIAN STROMATOLITES. PART 1

by W. V. Preiss

Summary

The methods of field study and detailed morphological analysis using three-dimentional reconstructions and thin sections, developed by one Russian school, were applied to the abundant Precambrian and Cambrian stromatolites of the Adelaide Geosyncline. Although other schools either demand formal taxonomy for algal remains only, or use informal descriptive nomenclature of morphologies which they believe are determined entirely by environment, it is concluded that valid and consistent stromatolite form-taxa can be distinguished by these studies. The recognition of stratigraphically restricted taxa suggests biostratigraphic subdivision and intercontinental correlations.
New forms Acaciella angepena. A. augusta, Baicalia burra and Boxonia melrosa, and an indeterminate form of Acaciella, are described.

THE SYSTEMATICS OF SOUTH AUSTRALIAN PRECAMBRIAN AND CAMBRIAN

STROMATOLITES. PART 1

by $\mathrm{W}: ~ V, P_{r e l s s}{ }^{*}$

Abstract

Summary The methods of field study and detailed morphological analysis using three-dimentionsl deconstrutions and thin sectiuns, developed by one Russian sehool, were applied to the abundant Precambrian and Cambian stromatolites of the Adelaide Geosyncline. Although other schools either demand formal laxonemy for algal remains only, or use informal descriptive nomenclature of mospholugies which they believe are determined entircly by environment, it is concluded that valid and consistent stromatolite form-taxa can be distinguished by these studies. The recognition of stratigraphically restricted taxa suggests biostratigraphic subdivision and intercontinental correlations.

New forms Acaciella angepena, A. ungusta, Balralia burra and Boxemia melrosa, and an indetermintere form of Acnciella, are described.

Introduction

Stromatolites are laminated structures formed in sediments, mosely carthonates, by the trapping and precipitation of sediment by mats of algae and bacteria. They are known through out the sedimentary record, and are particularly abundant in otherwise unfossiliferous Pre. cambrian sequences. This observed abundance and the diversity of forms have made stromatolites potentially useful as index fossilis, provided that taxa can be defined which have stra. ligraphically restricted time-ranges; \wedge group of Russian stromatolite specialists has been engaged in the systematic description and classification of stromatolites for the past fifteen years and their results stimulated this study of Soun Australian stromatolites in an attempt to apply biostratigraphic methods to the problems of the age and correlation of the Precambrian sequence in the Adelaide Geosyncline.

This paper is hased on the systematios section of a thesis submitted for the degree of Ph.D., University of Adelaide, It is necessary here to briefly discuss the taxonomy of stromatolites and particularly to formalize several new taxal netided for subsequent discussions of biostratigraphy and palacoccology. This paper the firnt of three, will inclute an buttine of previous studies, consideration of some tasonomic principles and problems. and descriptions of four new forms and one indeterminate form. The other palts will comprise descriptions of further forms and a discussion of the stratigraphic distribution of stromatolites. Stroma
tolite forms will be described in alphabetical order.

Background

This histary of the early study of stromatolites was comprehensively reviewed by Masloy (1960), Although most rescarchers prior to 1914 sought an animal origin for these structures, for example Hall's Cryptozoon (1883) and Steinmann's Gymnosolen (1911), Wilcott's (1914) discovery of filamentous microfossils in Precambrian stromatolites from the Belt. Series of Montana paved the way for the understanding of stromatolite formation by algae.

Later workers clarified the role played by the algace In particular, Black (1933) established that the algal mats of the Bahamas are polyspecific and that the mucilaginous filaments of the blue-green algae present trap detrital grains. Pis (1926) recognized the rock-building propesties of modern blue-green algac. Algal filaments were also found by Bradley (1929) to oceur in stromatolites of the Eocene Green River Formation of Wyoming.

In Australia, Mawson (1925) recognired stromatulites in the Flinders Ranges, and started a collection which was patty used in this study. Duping the 1930 's fossil stromatolites were described by numerous authors, the most important being Young (1933a, [933b, 1935), Fenton \& Fenton (1931, 1933. 1936, 1937. 1939), Johnsum (1937, 1940) and Maslov (1937a, 1937b, 1938, 1939a, 1939b). The work of others were reviewed by Masloy

[^3](19a0). Most of these authors tacilly accepted the validity of a farmal binomial nomenclathe for stromatulites.
clund (1942) was the first to question the validity of such a classificution, arguing that stromatolites ate buile by associations of algal species. Similarly, Johnson (1966) las more recently rejected the use of this nomenclature, and suggested rather that only actual algul species should be named, if they are present. Nuvesthcless, Rezak (1957) found it useful to retain at binomial nomenclature and usta the duined taxa successfully for inarabasinal correlation.

Since the controversy regarding the classification of stromutolites arose, it deist threc schools al thought have ceolved. Firstly, a small group of Russian students (c.g. Vologdin 1962), like Johnson, considered that only actual algul remains can be vatidly named, But algace ate very rarely preserved in Precambian strametolites, and most of the micra-structures referred hy Vologdin to fossil algae are very thathtully of organic origin.

X second group rejects the concept af biological cunirol over stromatolite morphology. and uses purcly descriptive classificatoons to aid environmental interpretations. For cxample, Masloy (1960) used "genesice" names sucts as Collenia. Compplayon and Glebulella, but he modified these by a series of deacriptive Latin arljectives. Kogan, Rezak \& Ginsburg (19゙64) used symbols and formulae to describe various features of stromatolites, which they showed to be influenced by the local enviconment. Both Maslov's multinomial nomenclature and the variable descriptive formulae of Logan et at lend to be cumbersome, and cannot in themselves describe all the useful characters of stromatolitcs. Some of the simpler formulac. ate. Jowever. very useful in routine lich descriptions. Hofmanin (1969a) found difliculty in applyiog a binomial nomenclature to the stmmatolites of the Gunflint Iron Formation, and Jater (Hofmann 1969b) discussed the significance of various characters of stromatolites, conefuding that dilferent morphologies are mose likely to be environmentaliy than bio. logieally controllca, Iloffman (1967, 1969) gave an outstanding cxample of the use of stromathlitex in paliencurrent deternination

The third school is a Russian group which describes and classifies suramalites on the basis of morphology and microstructure. and uses them for Nostritigraphy, Their first resultes

Were reported by Kaller et al. (1960). Despite differences of emphasis today between different workers, all use a binomial nomenclatise with the Jorm taxi "group" (analogous to genus) and "form" (analogous to species). Thoy have found that the time ranges of the defined taxa are revtricted, ant this allowed them to subdivide and oorrelate Late l'recamhrian sections throughour much of the USSR. The biostratigraphy was supported by numerous radiometric dntings, both K -Ar determinations on glauongites and $\mathrm{K}-\mathrm{Ar}, \mathrm{Rb}-\mathrm{Se}$ and $\mathrm{U}-\mathrm{Th}-\mathrm{Pb}$ determinations on intrusives. The subdivision is is follows:

Cambriam	$570 \pm 10 \mathrm{mig}$.
Vendian	
Lute Riphean	$680 \pm 20 \mathrm{mby}$
Middle Riphean	$950=50 \mathrm{mof}{ }^{\circ}$
Early Riphean	

The approach of this group was applied to Australian stomatolites; and it was found that many ot the Russian laxu do occur here in at similar order of succession (Glacssner, P'seiss \& Walter 1969: Preiss 1971). The resulting correlations with the datcd Russian miquences wete in agreement with must of the tadiometric evidence available for the Austration Precambrian.

The successful use of stromatolites in biostratigatiphy implies that their morphology is at least partly conirolled by genetic characters of aleas which cvolve in time. The concept of biological control is supported by some studies of modern algal mats (Lardky 193\%: Hommeril \& Rioult 1965; Monty 1967). Each of these authors has shown the partial dependence of mat type on the predominating algal species presen?. This in turn affects the nicrostmas. cure and lamina shape of the stromatolite, :mat jodirectly, the gloss morphology. Thus, deciding which characters are genetically determined and which arte directly shaped by local environmental factors becomes the major difliculty in classifying stromatolites.

The Russian work of tecent years has shown that it is mainly the columnar stromatolites which ate of value in biostrutigraphy, Only Komat (1966) has given a detailed account of latcrally linked stromatolites but their usefulnexs has not been confirmed to the extent of that of columatr fursus. In this study, atten-

Fig.li

DIAGNOSTIC TERMINOLOGY

Fig. 1. Diagnostic terminology found useful in the description of stromatolites, The diagrams illustrate features discussed in the Appendix.
tion was also concentrated on columnar forms since these have the moxi chafacters allowing them to be elassitiel. Therelore the binnmial momenclature has been applied only to these.

The terms used here to describe strombolite characters, are largely bused on translations of Russizn terms, with minne alterations and additions. Most of the new terms introduced by llofmann (1969h) are unnecessary from the point of vick of this study. The diagnostic iceminulpgy proposed by Glaesiner er al, (1969, Fig. 1) tas been expanded (Fig. 1), and the terms used in the deseriptions are defined in the glossary, Appendix I.

Thuxenomy

Ia general the methods of simmatolite study and classification used by the Russtane Krylov (1963. 1967), Semikhatov (1962), Nuzhnay (1967) and Komar (1966) have been spplied here, including hinomial nomenclature. Although maty of the grous names have been accepted in paliseohotanical literature as penera, c.g. Baicalit, Conophym and Gswnowolen by Andrews (19710), it is considered that retention of the terms groun and form emphansiles the distinction between stromatolites as organo-sedimentary structures and actual fragmenditry plant semains to which the lerms form erms und form species may bo dpplisable. Whike similar aroups of chatacters are studied for cach stromatolite, the relative taxanonie significance atachol to any particulab chanacter may viry trum tixon fil bixon, thepending on its diagnostic value. Mostly. sronps are deffert on the basis of gloss morphology. column shope, beanching and margin structure. Lamina shape and microstructurc are frequently useful in the distinction uf forme. But sometimes these features are diannostic at group level-Conophyton, for example, is diag. rosed by its lamina shape, and is characterized by pathoularly distinet Jamination, Baiculias tentis In he charaterized by banded lanination. exeept wbere altered by diagenexis. Although the presence it an wall is a dingmstic differenos: betheen some groupy. Walter (1970)' has descrihed single stronmotiles which are unwalled in their lower parts and walled at the top, in which case other leatures are diagnowic. No similar situation is known from South Australia.

It is considened unneccssary to use catcrories highes than the group iss Raaben 19964.

1969a, 1969b) has done Her higher taxa are somewhat arbitrary and several alternative unes coukid be proposed, but all are cqually questionithte. On the other hand, the variery ats at subdivision of the form is useful in cases where finer subdivisions can be made. and is thereLuse retained for Conophztort aruganictin.

It could be argued that a single name would be suticient in characleriae a particular atromatolite, but the value of a binomial nomenclature is that it indicates teal similatites and differences hetween various torms. Thus groups contain one or more forms which all shate a number of characters considered diagnostic for that group. Forms are distinguished within a group whenever there ate suflicient grose or microstructural differences, But the essential comparison between clusely related furms wolld be lost without a binomial somenclature.

The chief silliculty in the tixaromy of stromatolites is the isolation of disenete character combinations, where intergradation is common. Thus, subjective chaice may he required in some cascs. Where the morplology remains unifurm throughout a particular occurrence a single name can casily be spplied, but if there is variation within the occurrence, the delinition must be brodencd. Whether or mot the morpinkogy of a stromatolite Pm another escurrence falls within this range of variation is diflicult tu decide. Conversely, if a signiticantly dilterent morphology oceuts as a discrete portion of an secturrence, is thix to be classified separately"? Jxampies of stromatolites with a broad range of varistion ate Tumgensia erina ami Cinelle munyalling. Bouth of these shaw an spectrum of intergrading branching types and columen shapes, even within single nutcrespes, so that the range of variation between specimens of different areas lies within the range of varia thon in one locality, and these are therefore included is the ene form.

It has heen fomst that many charactets overlap. and distinctions must be made evert at yroup level on the most commanly accurting cxpression, i.e. the mode. of each character. Shis is especially true of hranching Bowonin is characterized by a-paralled and some β-paraltel branching, while γ-parallel is sare In Ciymnosoleat o-parallel predominates, but not to the total exclusion of the other lypes. Similarly. there is overlap between the branching styles of Baiculiug (the forms of which show a tremen-

Unanblished Ph.D. thesis. University of Adelaide.
toutis vanation of branching ats shown by Kryluv 1967) and that of Tungussia. Hut while Baicalia hay predominamty slighty to moderately divergent branching in Tougussia matkedly divergent branching predoninates.

Although it is often easy to recognize groups on the basis of ever limited reconstructions and longitudinal sections, the identification of forns is more difficull and subjective. Forms are disfinguished on minur leatures of colnman morphology: Iarnina shape, or microstructure. Micsostructure is the most dinieult chatacter to use, prattly because different types intergrade to some extent and partly because it is so easily altered by diagenesis. The distinctive lamination of Conophyton is somewhat exceptional, and is amenable to statistical analysis. Although Raaben (1969a) has attentpted sinilar studies on Juzeria and Semikhatov, Komar \& Serebryakov (1970) have measured the sizes of clots and pellets in Buxomid, it is uncertain whether or not the structures measured are primary.

The laminab of most South Australian columnar branching stromatolites are too diffuse and variahle to allow a detailed alatiotical study, although the well-preserved representatives of the banded microstructure of Baicalia burta might be amenable.

Stromatolites can be elassified onty on the basis of combinations of characters, and, as Walter (1970, unpublished) has also concluded, the elussificatory significance of charac: ters must vary to some extent from taxon to taxon. The classification has been found em . pirically to be useful in that the resulting taxa are lemporally testricted. The question arises. as to the fundamental meaning of these taxa. and why they are so restricted. Several possibilities exist:
(1) Each form is huilt by a particular association of algal species, and forms change as the content of the associations changes.
(2) Each form is built by a dominant algal species, in insociation with other species that have little effect on stromatolite motpholugy.
(3) The environment, and not the algal composition, entincly controls the sitomatolite monghology.
If (3) were trus, we should expect it temporal restriction of forms only if the environment has systematically evolved in time. It is difficult to see how local factors such as current activity or sediment accumutation which could
conccivably control stromatolite murphology, can exhibit continent-wide, if not world-wide. unidirectional change. On these gruunds, this possibility must. at present be rejected. If (1) were true, we could expect the morphology to change gradually as the overall algal coniposition changes, one species replacing anothes in the association. On the other band, if onc species controls the morphology, it rapid change would be expected. At present, it is nut possible to lell which of (1) and (2) is carrect and possibly both apply; the first possibibity may explain the intergradations sometimes onserved hetween taxa, when classificatha becomes difincult.

Although Hommann (1969h) regarded Conophytor as apaiz from other stromatolites. recent work has ahown that conuplaytons possibly intergtade with columar branching forms such as Baicalia (Shapovalova 1968). Similarly Bertrand (1968) describod intergradations of Conophyion and branched forms. While the taxonomic significance of these changing mopphologies and their relationship to environmental factors bas not been fully determined, it is clear that Conophyton is not fundamentaily different from other stromatolites.

It is concluded that stromatolites must be defined on combinations of characterg, the significance of each of which may vary in different taxs. The fact that some taxa bave much broader ranges of variation than others results from the necessity of grouping intergrading morphologies present in single stromalolite occurrences.

Methods

Stromatolites wese studied both in the field and in the laboratory, but ficld observations were often limited by outcrop conditions and lichen cover on fock sumaces. Where possible. the mode of occurrence; column sbape and arrangement and branching were obscrved in order to gain an impression of the tutal variability.

The varishle nature of stromataliles necessitates sampling of sufficient material to determine the modal expressions of characters present Depending on the sire of columns, Jarge specimens weighing from $4-70 \mathrm{~kg}$ were collected, and the relative position and arsentation were moted. Ideally, bioherm centres and margins were both sampled.

The diasnostic gross features of columnar stromatolites can only be determined from a
three-dimensional view of the stmeture. This is achieved by the method of "graphical recon. struction" described by Krylov (1963), A series of 10 to 15 serial longitudinal slabs 2 to 6 mm wide were cut on an oil-cooled 60 cm diamond saw with a saw cut about 2 mm wide. Thes columns were outined in pencil on the slabs and traced on to a block diagrand framework on tracing paper, each longitudinal section heing parallel to the fromt face of the block. The reconstructions were retraced with shading to show surface morphology and finally redrafted by stippling.

Latwins shape, margin structure and micmostructure were studied in large, longitudinal. thin sections, up to 20 cm long. Their thickness varies with the mature of the rock, hut in general they must be thicker than petrologieal sections to preserve the distinctness of the structures. Carbonates were inostly identified by staining with Alizarin Red S; but were frequently ehecked by X-ray diffaction powd̉er photographs.

Symennatics

For each group from which forms are described, a diagnosis, a list of the known constituent forms and the stratigraphic and geographic distributions are presented. Forms are diagnosed only if described here for the first time. Desctiptions are given under the headings mode of occurrence, colume shape and arrangement. branching, margin stracture, lamitua shape and microstructure. The interspace sediments and the rature of secondary altetation are also described since they provide important clucs to the depositional environment and diagenelic history.

The distribution of forms refers to both theis geograpfic distributions and to the tuck-strathigraphic units (Thomson ef al. 1964) in which they occur. Reference is made for each locality and stratimraphic unit to the relevant geological sheet (either 1:63:36n or 1:250,000 map sheets, Geological Atlas of South Australia).

It was found onnvenient (Preiss 1971.) to subdivide the Adelaidean into two time units: the Early Adclaidean, represented by all sediments up to the pre-fillite unconformity. and the 1 ate Adelaidean, represented by sediments Erom the base of the lower tillite to the base of the Camhrian. This suhdivision reflects both a climatic change and a major change in stromatolise assemblages. Ages of stromatolites will be referred to as Early or I.ate Adelaidean,
but the probable corsclations with the subdivisions of the Riphean will he noted in each case.

Type specimens are kept in the Department of Geology and Mineralngy, University of Adcuside, catalogued under munibers prefixed by S.

Group ACACIELLA Walter

Walter has supplied the group name dea. ciella and the following dingrosis,
"Tyre Form: Acaciella austrullca (COrypoozoon etustralleum Howchin 1914).
Hiagnosis: Nearly straight, parallel or radislly amanged sub-cylindrical columms with as, β. and rately $y^{-p a r a l l e}$ and very slightly divergent multiple branching. On column margins are numerous low bumps and occasional small cornices and peaks; small areas of wall occur inErequently: Laminae dominantly aje rectangular. shombic of gently domed and are not markedly wavy or wrinkled; the mierostructure is streaky."

Comberu: Acacichle australica Watter. A angenená f. nov. and A, augusta f. nov.
Age ard Disrribmion: Adelaidean to Early Cambrian: Loves Creek Member of the Bitter Springs Formation, Centenl Austo the Lower Cambrian of S. Aust.; the Wundowic Limestone and Brighton Limestone equivaIent. Umberatana Group. S. Aust. and as epratics in the lower (Surtian) glacialy, S. Aus.

Acaciella angepena F_{0} дov:
FIGS. 2. $\left.10_{1} 1\right]_{0}$
Marerint: Forty-seven specinels from hine localities.
Ifolorype: 5460 (Fins. 23, 10c). Lower Cambrian $\mid \mathrm{km}$-south of Angepena M.s.. Nurthern Flinders Raneess.
Name: Aftes the type docality.
Ducgnasis: Acaciefle with verlical ar radially arranged columns or pseudocolurnis, which may branch upwards from either flat-laminated or stnall cumulate stromatolites. Columos may branch upwards into minute, irregular colums. Bridging is extremely common. Microstructare is regularly banded, with thin continuous Jaminae. Vermiform microstructure may be developer.

Descripzion

Monde of necurpence: Cambrian stromatonlites were studied in outcrop only in the Angepena area, where Ienticular stromatolite beds consist of closely spaceat ellipsoridal and domed bioherma 3 to 50 m wide. These overlie flaggy,
laminated, dark grey limestones with irregular emaional contacis. Cumblate or pacudo. columnar stromalolite individuals commence growth ypan the erosional high, and pass up inturadially arranged ar parallel shors columns with very numerous bridges, At bioherm marsins, columns and pseudacolumns become huridontal and laminac are deflexed parallel to the overhanging sides of the bioherm. su that here growth actually. proceeded downwands (Fig. 10 a \& b , showing longitudinal sections of a bioherm margin). Where adjacent bioherms become contigunus. they ate overlain by a domed bostromal layer of columitar, preudocolumnar and columnar-layered stromatolites, similar to those of the hioherm. At the edge of a stromatolite bed, the terminal hiohern has an abrupt vettical margin and the laminae bend downwards only slighty. The surrounding sediment of dark lime mud accumulated synchronously twith stromatolite growsh, and vecasional ingal laminae are jntercalated with jt: the bioberal probaibly never hat more than in em of rellef aver the surmunding sediment surface Also, there is evidence of contemporanenus compaction of the lime mud the bioherm resis upon (Fig, luc): the lower layerm of the susrounding muds are depressed, while the upper ones simply abut against and coves the bionerm.
Colomn Shape und Argangement: Column shane is highly variable it single biotierms, nainly due to different degrees of coalescing and bridging. The structures vary from latcrally linked psendocolumns with some discrete small comuli (Fig. 10d) to frequently bridged and coalescing columns (Fig 114), w Jiscretc. patrallel sufcylindrisal columns (Figs, 2d, E, g: 10f). The latter chiefly ruake up Mawsan's (1925) sollection from Halowie Ciorge. In all specimens where columns ate reasonably discrete, they are smiooth to slightly bumpy, sorietimess with pointed terminations (Fig. 2b, j)。 while ohers branch into minute columns 1 to 3 sm wide. Columns art commonly less than 1 ctir diam., hut brofid, eumbatic columns up to 10 cm diam, have been observeal. Tratnsverse sections of columns are round. rounded polygonal or lobate (Fig. 2d, f. g), Columns may be vertical or ridially artanged, especially on the magins of contiguous bioherma. Dolomitimation of interspaces frequently ubscures the original margins of the minute columas 50 that their shape cannot be accurmety devermined
Bronching: Branching is most commonly a-of B-paralled, ucessionully yopatalleq. Culumns fro-
quenlly branch into natrowes columns which do not regain the former diameter. Some branches are in the form of thin pointed projections (Fig. 2j). Al bioherm masints, hrunching may remain parallel (Fig, 1ne) or heorme rathal (Fig. 106), but ticre the stromatolites are largely pseudocolumar.
Afusgins Stracture: Columa matgins ine rarely preserved intact. Commonly they are corroded by dolonite stombs, if the interspaces are dolomitized; otherwise very stre styfolites may he devcloped. Bridging is extremely oommon in all specimens except those from Mawson's collection from Italowie Gorge. in which the columns are mostly disctere. These also have the smoothest margins, with only slight, aceasional bumns and ribs-Columns are altoajs unwalled, the laminae thinning oniy slightly near the columo margin. Liminae may alightly overhang the margin, bue long peaks and corsices are absent.
Lamfine Shape: Fig. Ba illustrates common lamina shaper! most are gently convex. Of 108 Jamina measured, 69 管 have height to diameter ratios (h/d) beneath 0.2 and 0.4, only 7\% have ratios greater than 0.6 ($\mathrm{Fig}_{\mathrm{c}} \mathrm{ga}$), Laminue are smoothly domed, without sharp changes in shape from lamina to lamioa, A few of Mawsun'y specimens from Italowie have wavy Iaminae, of wavelength 3 to 10 mm , amplitude 110.3 mm (Fig. 10 f)

Microstricture; Mierostructute in all specimens is regularly, thinly banded, zuith continuous laminac of unitorm thickness acnoss \& columm width. In most specimens thete is lithe comrast between dath and light laminae, except in the amount of organic pigment. Some specimens, espechally from Angepena, have irregulariy tubular sinuous. anastomosing vermiform sparry patches, 0.05 to 0.1 mm thick and up to 0.6 mm long, crossing the dark 3 aninac. Dark laminae, varying in thickness from 0.03 100.07 mm , consist of xenotopic calcite of grain size varying from 0.003 to 0.81 mms , stained with groy organic pigment, but in some specimens, subhedral dolonite rhombs of erain size 0.01 to 0.02 mm are interspersed, Minor subangular $\ddagger u a r t z$ silt may be present, Individual laminac ate contimous. and of constan? thickness acrose the colunnt width. but may be markedly sasy. In specimens with verntiform micrastructure, dark laminac are gencrally thicker, up to 0.3 mm , but remmants of finet luminutron dre utten nesetved. The Lumadaries of the sparry patches are often irregular and theit orientation varies from perpendicular to
gentity inclined to the lamination, but is commonly at a high angle to it. The vermiform microstructure may be consistendly developed preferentially on one sude of a colamn. Transverse sections of the tubutex are round to clongated. irregularly oriented mif amastomosing. The tuhules may be interpreted as algal borings in the rine, lime mud laminae, but not the Whole sediment was affected. since homogeneous and bored laminae occur side by side This fact also makes it unlikely that they are casts of actual algal fitaments. The distribution of borings on one side of columns may be envirusntentally determined. Bathurst (8966, F. 201 illustrated a sequenes ol events invalved in boring by algac; if the process were stopped at stage (2), and the borings infilled with sparty cakcite, a structure similat to the vermiform micrnstucuste of A. angeponer would pesult, Light laminac are 0.03 to 0.1 mm thick. frequenty indistinct, but contínouk ucrass a colum width. They are especially poorly differentared in specimens with verniformb microstructure. where the tubnles may pass neross the lightedark lamina bothataries. Light laminac consist of xenompic calcite, aften with interlocking erestals 0.015 to 0.03 mm in diameter. Subhedral is cuhedral 0.16 sim dotomite phombs are scattered throughout the light lamanae in sume specimens.
threrspaces: Paterspaces are filled cilture with altered micrite ar fine sandy and silly micrite Specimens from Irafowic (Mawson's collection) have bery narrow interspaces filled with sparse, ungular quarz silt, suppored by as nicrite matrix (Fig 10f), xomelimes evers. sively duhumitized, with inequigranular hypidioropic dolomite ranging in grian size fonn fl, 1 is 100.1 mm . Extremely finely disseminated bacmatite may be present in interspaces. Stromas. solites from Angepena also have sandy interspaces. but these are more frequently interbupteu by bridging Jaminae, Subangular to suh rounded quarts. grains vacy in diameter from 0.08 to 0.5 mm , and may be pertiatly or whally replaced hy calcite. Opids and smalt intraclasts occur very rarcly.
Sircourdery Alferation: Dolomitization is common in all specimens, and is probably of late diagenetic origin. Within columis, thembs purstdute the vermiform mierostructure and have also formed in the micrile of interspaces. and in places, interspaces may be totally dolomitized. Here spirry calcite occurs as irregular patencs between dolomite rhombs perhaps filling a secondary porosily. The grain size and
depsity of dolomite shombs decrease markedly across the column margins: perhaps interspaces Werc uriginally more porous, to cause the preferential solomitization (in Figs 106 note the dark calcite coluthns and the white, dolomitic interspaces). Seylolises may follow colume masgins, or may be grossly cross-cuteing. Haenatitc disperserf through curbonate is probably sceondaty. In Isalowic spacimens, it is concernerated in interspaces which pass inta firte stylolites. Minute irnegulas calcite veins cut the whole mack, ipparently predating ine najiot dolominization. Large patches ol coarse spary calcite ure hounded by markedly lobate fine seyblites, suggesting their arigin as solution savities.

Comparisan

In gross mospholagy (mode of occurrence. columa shape, branching and margin structure) the sirumatulites from Italowie are sinilar to Acaciefle Weller. Columns are lexs discrete in wher atwas, due to frequent bridging and coalescing, hut their columsar portions ate similar to hois of Italowie specimens. Nicrostruchures are uniform, excepe for the local vermifom structure interpreted as ulgal horing. Madiguabres muwsoni Walter, from the Midule Cambrian Jay Crech I intewtone of the Amat deus Belsin: also has vermiform microstmenure. but here the tubules are more consistently teveloped, ansl are complexly interwined. the intervening micritic atels heirg reduced 10 chots. The grose form of Menthanites mumsont is similar to same Aemerello angegenes in having numerous irregular frequently bridged columns and peendecolunits: however, it lacks the subcylindrical, parallel branching, discrete columns smund at itatowic. Acucsello armepertas resembles Voretla suchhasica Krylov in having esenly bainded lamination and wide columas branching intu nurrow columms, bul has fagged colunn margins and hack the wall of p^{p}. nserbbaricu. Ulicter compovitu Sidorov is similare in also nossessing vermifurm micmatructure. but is dixtinguished by its vety smooth, walled. chlapmes. At this shage it is dilficule of be cerbain of the content of the form Acuctella ungepena. Despite some variation oft columen shape (specimens from Italowic have predominantly subeytindrical, diserete columne, while those from Angepena have numerous bridges and less regular column margins, all the aptcimens studied sre included in the one form. since these column morphologies intergrade and the microstructures renain consthm. The stremptolites are assigned to the group Acreteller on

Fig. 2

 1 km S. of Angepena H.S; th)-54.9. 1 hil $\$$ of Angepena H.S.: (c). (e) \& fil-S459. 1
 Douglar Mawnonl; if)-S4A, $4.8 \mathrm{~km} W$. of lolowie Corge (cullccied by Sir Douglas Alawsnn): (h)-Hsoballe A. unfefenti, heas Old lirrealpa (enliected by Mr, p, G, Haslelb: (i) Possible .t. Mrgepent 4.8 km W - of Tialnwie Gnrze.
the basis of gross mosphology. They are dil. ferentialed from other forms of the group by their thin, contimuously banded microstructures and by fequent development of bridges and pseudocolumns. The very narrow. minute columns into which broader columns branch are absent in other forms

A ferrugnous specimen from Old Wirrealpa is problemitucal. 1 s dark laminate are strongly haematitic, the hacmatite being in part distribured into minute dendrites. The smail columes branch from busal cumuli, the interspaces being biled with recrystallized biomicrite thyolithils, spange spicules, archacocyathan and brachiopad fiagments may be recognized) : Although the gross morphology resembles that of Acociello ungepeth (Fig. 2h), the extremely regular lamination is atypical of stromatolites, and the possibitity of an inarganic orggin for the structure cannot be excluded

Diprifuntion: Widespread in the dark limestones of the Lower Cambrian at Angepena. Old Wircalpa, near Point Well. at Mern Merna, Beltana Hill, Chace Range, near Narina HS, Moro Springs south of Balcanonna. and 4.6 km west of Italowic Gorge; Flinders Ranges, South Australia. (COPLEY and PARACHILNA $1: 250,000$ map sheet arcas.)
tope: Early Cambrian.

Araciella nugusta § nov:

FIGS $3 \mathrm{a}-\mathrm{m}, 11 \mathrm{~d}, 12$
Marerial: Thirteen specimens trom two localities plus eight specimens of uncertall idendification from a further two localitics.
Frodoipe, S4us (Fige 3c. e.: (20). Brithton Limestone equivalenh. Depol Creek, Southern Fliduders Ranges.
Name: After the city of Pore Augusta, 32 km south of the typu nccurrence.
Diagnesiv: Acuciellar with extremely frequent coalescing and bridging of columns at all levols, and with broad und narrow colums closely associated. Coluntit margins bear shor ribs, Jow humps und shorl cornices. Laminae are gently to moderately steeply convex or recangluar, and of distinct segulesty streaky microstructure.

Description

Mride of Ocrumente: The stromatolites iorm lenticular and tonguing bioharms (Fig 12a) varying on thickness from 3 m lo 50 m , and cxtendigg laterally for up to nearly 2 km , intercalated at varying statigraphic tevels within
the Brighton Limestone equivatent. Most commonly. growith commences an sobstrate of noid and intraclast gratnstones, as laterally linked stromatolites, up to 3 m thick; these gradually devclop interspaces to form broad, bridging and coalescing columss (Fig. 11d). At various levels. these columns branch into marrower columns 1 to 3 cm wide, frequently with parallel hasal snd slightsy divergent upper branches (Fig. 12c). Occasionally, natrow columns arise direcily from an undulatory or Dat-Jaminated base (Fig 11f). Columns repeatedly atternate with continuous undula. tory or flat-faminated stromatolites, which commonly intertongue with the adjacent sediment; they apparently mark periods of reduced influk of coarse sediment. At bioherm margins. columne become slighty inclined. Rarely. There are hemisphesical bioherms with columns strongly inclined at their margins.
Column Shape and Arrangemens: Basal columns are up to 20 cm wide, of irregular shipe; with frequent coalescing and bridging Their margins are frequently inclined, although laminae remain subtorizontal. The narrow collums are 1 to 3 cm wide, and up to 10 cm long between branches (Figs. 3a-j: 12b-d). Transyerve sections are mound, rounded polygonal, clongated. or complexly lobate, At least some of the clongation is of tectonic origit Colutins ate straight of gently curved, with slight swellings and constrictions (Fig. 3a-j): a lew are short and narrow, and ferminate their growth after a few centimetres (Tig. 3e). Coatescing is so frequent that almost all columns are interconnected, one specimen contains numeroun itregular, shori fiequently bridged and coalescing columns.
Brumflimg: Branching is frequent at alt levels. and generally multiple (Fig 3a-j). Broad basal colunins divide by a-parallel branching anto namower columns, which irequently branch again at intervals of less than 10 cm t this branching is usually o^{-}or β-parallel, occasionally yparallel, or slighty divergent (Fig. $3 e-c, g$). Near points of coalescing branching temis to be more irregular; gammaeparallel or divergentiy branched columns approach each other and coalesce (Fig 3d).
Margin Structure: The lateral susfaces of all columns bear relatively low bumps, shor discontinuous ribs, and a fcw peaks and cornices (Fig. 3a-j), In places, bridges, varying from delicate bridges only ove or two laminac thick to mastive, thick bridges (Fig 3g), are very frequent; in other places. columns remain rela-

Lively unalfected by trideing throughout most of their tength. Colurns ure unwalled, and between bridges and cornices their matgins are lelatively smonth. Depending on the degree of convexity. Jaminac approach the margin it various angles.
Saminks Shrape: Lamina shape varics accordine to column thametcr: narrow columns have moderately canvex or sometimes steeply can. vex, laminac. h/d greater than 0.6 being rate. Broad columus have very gently conves to rectamyular laminae (Fig. 8b), Of all laminae mea. surod, 70 符 have h / d hetween 0.2 and 0.6 (Fig, 9b), Laminae are most frequently smooth, but sumetime broidly wasy, esnccially belore branching. Laminae frequenalf become doubly-bicated before branching (Fig, $12 \mathrm{~b}-\mathrm{d})$. hut the interspace so formed may to hridged over, in which case the colunin resumes its former growth pattern.

Misrossructure: In the best preserved specimeps. distinct, regular light and dark (green) laminabe and in places macrolaminae up to 4 mm thrick, alternate forming a regular streaky microstructure (Fig. 12c), Dark haminde: varying his thickness from 0.05 mm to 2 mm . are sתiooth to gently wavy, occasionally wrinkled. and have parallel ipper and lower boundaries. Single laminae have tolatively constant thickness across the column width, but frequently lens out They consist chicfly of hypidiotopic to idiotopis dowomile of grain size rangine [rom 0.005 to 0.02 mm . The crystals are equidimensional, commonly enthedral, and stained pale green. which gives the laminac their colour. Dolomite crystals are densely packed in the dark taminae. leaving only occasional irregular undolomitizen pratches, consisting of xenotnpie calcite, ranging in grain size from 0.003 to 0.01 mm . Lighf laminate vary in thickпess from 0.07 to 2 mm , single Jaminar having constant thickness. They ate sparsely dolomitized, and comsist of xenatopic to hypidiotipic calcite, varying from 0.01 to 10.12 m in in grain size, with scattered euhedral dolonite shombs. 0,005 to 0.04 mm long. Laminae are frequently grouped into hroad macrolaminae. up to 4 mim thick, in which very thin, lenticular, either light or dark laminae predominate. In places, laminae are slightly wrinkled, or thaped over underlying irreguariliess in one case laminae are domed over lenses of sparry calcite, probably open space fillinga (Fig. 11e). In a few places small scour structures up to 2 mm decp are cut into the tops of dark laminac: Occasional euthedral ion suhhedral red.
dielh trows limonite grains of (0.01) $10.0,02 \mathrm{~mm}$ diameter (possible pseudomorphs after pyrite) occut in both lamina types.
Bherspaces: The distance between colmmis varies from it to 10 mm . Interspaces are filled with handed limestone, layers of finicrite 1 to 6 mm thick alternating with thicker intervals of partiatly dolomitized intramicrite, laminae in the interspace commonly abut against the colunm margits, hawing accumulated after the growth of that part of the column (kiig. I2c)
The micrite laminac, consisthe of xenotopic calcite of grain size varying Srom 0.003 ta 0.01 mm . are frequently silty, and slighty graded, gencrally with shatp upper bnundaries, and are ovestain by matrix-suppored intramiesites and some oomicrites. This sedment may nriginally have been more porous, as it is extensively dolomitized: the dolomite is of similar texture tis that in columns. All remnant calcite is recrystallized to a hypidiotopic sparry mosaic; no micrite matris semains. Alcernatively, this calcite may reptesent infilling of valds left by bolomitization. Intraclasts, which may bo preserved as undalomitixed micrite, or enirely ithintopic dolomite, are from 1 to 10 mm loug. and up to 1 man thick, and may represent croded fragments of algal mat. Strongly recrystallized dolomitized oolites are occasionally present. Intraclasts, which communly lis at a high angle to the bedding may have Ance gramed laninae draped over them. Coarse sediment influx was periodic: columns may havelad up to 2 cm of relief over the interspace sediment or a bridec, then the interspaces were filled rapidy with intraclasts and finer catcaroous sediment. During periods of ichative quilescence. lime mul accumulated to form thin layers. In some specimens, bridging is yety frequent. so that there never was more than shoul a centimetre of relief.
Secondary Alicraion: Lille is preserved of the primary dufference between the light and the dark (green) laminse, which now difler in the extent of dolomitization: The dolonnite is cquigranular, idiotopic, and probaldy secondiay, although a detrital origin cannot he nuled chet If the dolomite originated by replacement of calcite, the preferential dolomitization of dark laminne may indicate that they were originally more porous. Small irregular parclies of soarsely crystalline sparry calcite within both columns and interspaccs poyt-date dolomitization, and are ascocialed with fine calcite veills. Styblites are very rare, being restricted 10 a few which ate concordant With lize Taminalion or
wolurnn margins. The green-staining of tolonuitc crystals oxiclizes under subnerial weathering to form fincly disseminated limonite, whien may be concentrated along column margins or stylolitex. Columas are commonly slightly fiattened parallel to an axial plane cleavage, which is better developed sowth of Depot Creek and at Muntialios Creek. The cleavage is an irrogular fracture which passes around, not through, sirimatolite columns and is commonly expressed as stylolites in the carbunate rucks. A specimen from Mundallio Crcek contains light laminse with prominent rethiating structures. these consist ot tolomite erystals aligneet in rows almest perpendicular to the damination (Fic 12d), and maly represene a dolomitized, eaflier acicutar texture. In specimens from the Wundatyie Limestune (Wundowic Bore and Copley), column margins have been ulmost completely removed by styiolites. leading io uncertionly of identification (Fig. 3k, 1 \& ili).

Comparisuns.

The predominantly parallel hranching laparaliel at hase, then β - or rarcly o-patallel) and almose total absence of a wall. identify the stromaterites as Acacielle.

Acerciella dergusta is distinguixhed fronz A. amsralice ty the sarity of disencte. broad, hasal calumbs. by its mode of octurrence (lentictifar and unguitg bioherms instead of tabutars and domod hiostromes), by its extremely frequent coalescing and bridginge and hy its very distinct miserostructure. The mose of occuprence and microstructure also distinguish it from A - angepena. A. angusta has many wayy, sometimes lenticular laminae, and prominent macrolaninac, the dark latminae being preferentially dolomitized, A, augusia is very similar in gross morphulugy to Eucupsiphora paras disa Cloud \& Senwikhatoy, from the Paradise Creek Formation ucar Mt. Isa, N,W, Queensland. E. paradise is diflicutc to distinguish on the basis of the published description. but apparently has a patchy wall.

Specimenk of pootly preserved surgmatolites from the Wondowie Limestonc near Copley and Wundowie Borc. originally tentalively identified as Linefla monyalime (Psciss unpubl) are better assigned to Acacialion angusa on the basis of culumn shape, branching and micrositructure. Where column margins are not removed by stylolites. they are unwalled.

Diseriburion: Brighton Limestone, Depol Creek and Mundalko Creek, Southern Finders Ranges, alnd possibly the Wundiowie 1 imestone near Copley ant Wundowic Bore.

Northerm Flinders Ranges (PORT AUGUSLA and COPLEY 1:250.000 map sheet arass),
Age: Late Adeldidean. corcclated with the Late Riphean of the USSR.
Acaciella forms indet.

FIGS. $3 n-4 ; 11 b, c)$

Murerial: Two speimens from one focality. Description
Morle of Occurrente: Both stromatolite specimens are erratic huakders in the lower (Sturtian) glacias; their provenanec is unknown.
Colum Shape amd Arrancenrem: One speci-
 irequently bridged columns, oriented subparallel to slightly radianding, and grassing later-ally-inco flat-laminated stromatolites (Fig. I Is) The uther specinten (S534) cunsists of rather smooth, erect, parallel. cylindrical, discrete columns. $1-5$ cin wide. Tranverse sections are round ar rounded polygonal (Fig. $3 n-\mathrm{p}$).
Branchinge: Hranching is commonly a- or β^{-} parallel; columns either setain their width or widen graduatly before branching. Axes of branching columns may he very slightly diverenent (Fig. 11b). Specimen $\$ 539$ shows only dichotomous branchime, but $\$ 509$ has sume multiple. a-parallel branching.
Marrgin Simefures - \$539 has if rather smouth margin structure. with dow bumps and id few very short peaks and overhanging laminac (Fig. $3 n-p$). There is no wall; baminac simply terminale, withenst appreciatle thinning, at the column margins. Bridges are extrencly frequent in $\$ 509$, hut otherwise colame margins are similar to $\$ 539$. Few columns in S 509 are entirely discrete.
Inmina shupe; All laminac are gently conves (Fig. 8c). hrd never excecding 0.5. and 848 off laminat mensured have h / d hetween 0.2 and 1)4 (Fig ye) Laminae are smoothly curved. rarcly rectangular, and without wrinkles of shap llesures Occasionally laminae are slightly wavy, and belore branchang ilways develop multiple creats (Fig. 11b, c), Laminat are not normatly dellexed at the column margins.
Microserbeures Miffostructure cansists of very smooth or brosully wary, light and dark- dolomitic, striated to bandel, laminae. 'I here is little contriat between laminac. Daft laminae are 0.05 to 10.5 mm thick. and commonly pinch and swell slightly across the column, and in places shey ate lenticular, but otherwise, they have smooth, paralled boundaries. They cousing

Fig. 3

Fis. 3. (a)-(j): Arathelh anensich, Brighton Limestone equivalent, Umberatana Group, Flinders Hanges. (a), (b) (d) \& (i)- $\$ 404$, Deper Cruak. Southern Minders Ranges; (c) \& (c)Hulotyne, S401, Despot Creek: (t) $\$ 538$, Mundallin Creek, Soutbern Filinders Ranges; (\mathcal{E})
 Wundowie Limestone Nember, Wusdowie Bort. Northern Flinders Ranges; (n). (0) \& (p)
 Diapit. (g)-SS09, Aracialla f. indet, from the same localily. Sketch traced from a thin section.
of pale grey stained hypidiotopic tolomite of grain size varsing from 0.003 to 0.015 mm . B.eske lumbtate vary in thickness from 0.05 to 1.0 mm , generally with lible change across a cotumn. thinning only slightly towards colunin margins. They consist of hypiliotopic to idiotopic transparent, unstuined dolomite of grain size varying from 0.015 to 0.06 mm . Very characteristic of $\$ 539$ is the presence of very fine. limoniterich solution surfiocs, concordant with the laminac. Although these are probably stylolites, surfaces with litte or no wrinkling, which follow the fine-scale xtructure of laminac exaclly, are especially common (Fig. 11b). In places these are only about 0.5 mm apart, and light faminae maty be separnted by them, with. out intervening dark laminae.
Inerspaces: Interspace sediment is complefely dolomitized, consisting of equigranular, idiotopic solomite of grain size ranging from 0.01 to 0.05 mm . There is little contrast between columns und interspaces, but small amounts of subangular quartz silt are present in the interspaces. Fragments of slightly darker suaned dolomite of similar texture to the matrix, probably represent original intraclists. The nature of the matrix cannot be determined, but the sparsity of intraclasts suggests that these were mud supported. Intraclasts are better preserved in S 509 .
Secondary Alteration: Dulomitization of the stromatolites and interspaces is clearly secondary, as indicated by the general idiotopic, equigranular texture, and poor prescrvation of the finest structures. Stylolites are of at least two generatious: the earliest stylolites are almost perfecty concardanl, without lobes or wrinkles: these possibly predate the dolomite euhedra, which in places cut into them, and certainly predate a relatively coarse grained dulomite pein (grain size up to 0.1 nmm). The vein is ifself cat by more prosounced, slighty discortant seylolites. Occasionaly cross-cutting sfylolites cut interspaces and columss. some following column margins: Dolomitization almoss certalaly predates the crosion and deposition of the clasts into the glacial sediments.

Compurisons

The straight, chielly a- 10 - β-paralled branching unwalled columns allow assignment to the group Acaciella; They are clearly distinguisbed fram Acuedella augusia by the discrete, rather smooth, more cyllndrical columns; although bridging and coplescing oceur in S504, this specimen is considered to represent the basal part of the stromatolite bed. The distinct, sub-
cylindrical columns with relatively smooth margins and gently convex laminae are similar io A. ampralica Walter, but the specimens are inadequate for identification.

Distribution: As clasts in the lower (Sturtian) glacials, on the Hunks of Enorama Dispir, 6.4 km North of Oraparinna HS. CelnIral Elinders Ranges IPARACHIINA $1: 250,000$ map sheet area).

Age: Probably Adelaldean, but not younger than the Sturtian glacials

Group IBAICAIAA Kryloy
Boliculid Rerylov 1963. 64. Semikhatoy 1962: 198. Komar 1966: 82. Kryloy 1967: 25. Nuzhnov 1967: 135. Cloud \& Semikhatov 1964: 1035.
Type Form: Baicalier baicalica (Muslow) Krylov. from the L'luntuy Suite of the Pribaikalyc [based on Collenia baicalicu Maslow 1937a: 2871.
Diagnasis: Tuberous, bumpy, swelling and consuricting. parallel to markedly divergent branching columss, generally without wall, with frequent overhanging laminae. Lamination is distinclly banded.

Comem; B, baicalica (Maslov) Krylov, B. Eirglsica Krylov, H. ruma Semikhatov. B. unera Semikhatov, B, prima Semikhatov, B. unpla Semikhatov, B, strilenses Nuzhnov. B. maica Nuthnov, B. ainica Nuzhnov. B. mimure Komar, B. ceprcormia Walter and B. burra \& . nov.

Age: Middle Riphean to carly Late Riphean.
Baiculia burra f. nov.
FIGS. 4, 5, 6. 13, 14, 15a-c
ficucarlide spp. Glacssner, Preiss \& Water 1969:1056.
Marerial: Thitythree specimens from test locatities.
Helowpe: S222 (Fygs. 139 \& d) Skiflogalce Dolomite 3.2 km west of Yalima, Southem Flinders Ranges,
Name: From the Burta Group in which the stromatolites oceur.
Diaghomis: Buicalia with moderately fraquent, slighily to markediy divergent branching irtegular. coalcscing columns with highly variable lamina shaper and continuous. distinctly banded microstructure.

Description

Mode of Occurrence: Two modes of occurtences have been noted: biostromal and biohermsl. the latter occurting orly at one locality
(Yatinal) Iliustrames wary in thickness J'ram 0.3 to 2 sm , the stromatolites being eventy distributed throughout their cytent; they have been follownt for 100 m or more, without lensing. before the oulcmp disappears under soil cover. Biostromes are frequently interbedded in green shales (c.g. Myrtle Spsings, Willouran Ranges), platy tolomites (c.g, Arkarooh h, Worumbit) or massive solomites (cog Burra). The bioherms it Yatian are restricted to two thin beds; they are small lenticular stromatolitic mounds, approximately 20 to 30 cm thick and up to 1 m wide (Fig. 13a). interbeddod with and surrounded laterally by platy and shaly dark grey dolomites. The overlying sediment is draped oyer the mounds, showing that the stromalalites had at lease 10 cm relief aver the surrounding surface. Colunins arise from substrates in scucrat ways: (1) Flat-laminotes stromatorite passes grndually up into undularory and pseudocolumnare stromptoliter, then info diserete, verical ta inclined columns, often with stecply domed luminac (e.g. Burri, Weas Mount H(s) ; (2) Columas arisc directly from croded surfaces of laminated or intraclastic dolomites (e.g, Vatina, Fig. 4al); (3) Columns arise from ilat-laminated stromatolite vial broad chmuli \{c.g. Wcat Mount Hut). The degrees of discreteness of columns varies greatly; in some bede columns are alnost immedigtely tridged over by laterally linked stromatolites, but usually columns remain discrete for 20 to 30 emb. In sorne arcas new sets of columns may arise from psentocolumns. The upper surfaces of biostrontes vary from flat (c, go in the willouran Ranges, Birra) to bwadly undulating (e.c. Worumba).

Colum Shape and Arrangement: Columns ate tubcrous, varying from subcylindricai to irregulitr, with round, oval and irregular cross see tions (Figs. 4. 5, 6), Elongated or Rattened enlurns are varionsly oriented. The dianteter of columns varies Erom 1 to 10 cm , most commanly $3-5 \mathrm{~cm}$, with sapid swellines and constrictions. Colunans are $2-15 \mathrm{~cm}$ high between branches. Some but not all columns atre constricted at the point of branching (Figs. 4c, f: 5 c , d). The arientation of collmne virite greaty from vertical to inclined, and is sometimes sub-horizontal for short distances (Figs. *e, Sj). Column nxes vary from straight to strangly curved. In some specimens, the uppermost columns swell markedly upwards and become bridged over by laterally linked stromatolites. Adjoining columns coaleste very frequently, even in the discrete portions, but speci-
mens lrom Burra show the lenst cualescing and bridging. In the Willouran Rangex, column growth is ficgucntly intermped by penecorteniporancoux crosion: columna may grove over hroken-ofi Iragments of earlier columns, ctmtriburing to the irregularity of the structute.
Branahing: The most common form of hranching is moderately divergent (Fig, io io 6t) though some sub-paraliel branching (Fig. AE, g. mi and some very markedly divergent branching occurs (Fiss- 4a, 5d \& j). is some specimens several branches arise from nearly one point (Fig, 4a). Branching is moderately [requent, the langth of column between branches commonly being only a iew centimetres; bsi at any one point of branching it is usually dichotomous or Icss afien srichata. mous. In some specimens brinches arise at a high angle to the main columbs, and then tum sharply upwards. Some columns arise from the side of a main column (Fig. 14d). Great vatiation is seen even in single outerons.
Murgit Sirsechue: The lateral surface valies from surooth to very irregular, laninae approaching the column margins at various angles. Some specimens have very patchy walls, while the intervening unwalled areas ate smools of only slighty fringed with small peaks and cornices for example those from Burra (Fig. 14d), Yatima (Fig. 4il), River Broughton (Fig. 5c), Arkaroola (Fig. 5d, c). Willoutan Kanges specimens contain both smoth and highly irregular edges, with large overhanging peaks composed of one of more Jaminae (Fig, 6b \& c) Firequently large swelljogs ate composed of numerous Jaminae overhanging a constricted potion of is collamn (Fig Ac). Bridges between columas are cepecially common near the lops and boltoms of biositumes ($\mathrm{Pi} \mathrm{g}, \mathrm{Ge}$).
Lamina Shape: The lamina shape is most commonly gently convex, but varies in single spenimens from very gently convex to flearly confo call; many laminide fare steply convex. Micfounconformities ate espentally prominent in speciment from the Willouran Ranges, bul occur to some extent in all areas. In places. branching commences upon a partly eroded column surface (Fig, 15b). Fig \&d illustrates the more commenly occurring lamina shaper, 92% of Tamina have h / d between 0.1 and 0.6 . the mode being h/d between 0.3 and 11.4 (28\%) (Fig 9d). Gencrally, the widest columns have the most gently convex laminat. while strongly efongated celumas have faminae gently convex in the section parallel to the long

Fig. A. Batmlia hura. Skiltogale Dulomie. Burra Gronp. Southern timdera Kanges: (a) \& (c)Holotyne. S2,2, 3.2 km W, of Yilina: (b) -5218 . same locality; (d) $5151,13 \mathrm{~km}$ S.W. of Werunita H.S.: (oi \& (f) Sish. same lucality, (g), (i) \& (j) - S221. Duttor's Trough H.S., 14 kmi S. of Burna; (h) \& (1)—S314. rame locality; (h)-S534. sume loculity; (n)-float specimen, Kiver Broughion, W, of Spalding.

Fig. 5. Buculie burra, Skillogalec Dolomite, Burm Group: (a) -S533. Dution's Trough H.S. 14 km S. of Burra (b)-S534, same locality, (c) 5383. River Hroughon, W. of Spalding: (d) S456. 6.4 kns S. of Arkaroola: (E) S457, same locility: (f)-S491, 24 km E of Myrte Springs H.S. (upper member of Skillogalee Dolomite): (g) -S489. same locality (h) S 490 , same locality: (i) - $S 488,1.6 \mathrm{~km}$ E. of Ayrlle Springs H.S. llower member of Skillogalce Dolomite); (j) - 5487 , same locality; (k) - $\$ 319$, the Avondale Mine, Lyndhutst (collected by Mr. P. J. Binks); (1)-S302, West Mount Hut, Willouran Ranges; (m) - S99, same locality (collected by Mr. C. R. Dalgamo): (n) -S97. пеar Chintananna Well, Willouran Ranges (collected by Mr. C. R, Dalgarno).

Fig, h. Baicallo burra, Skillogalee Dolomite, Burra Group, morth-western pat of the Adelaine GeroSyncline: (a), (b) \& (f)- 596 , Chintapana Well, Willourar Runges (collected by Mr. C. R. Dalgarno): (5) $\$ 98$, West Mount Hut, Willouran Ranges (conlected by Mr C. R. Dulgarno); (1) - $\$ \mathbf{s} 9(6,4.8 \mathrm{~km}$ W. of Conley; (e) - $\$ 301$. Weat Mnunt Hut, Willouran Ranges.
axis ind steeply convex at right angles to it. Rarety do laminace turn over shargly and thim at the column margins, to form a wall. Genesally. where a patchy wall is present, it is formed by the edges of steeply monver sor masathelic laminae (Fig. 14c). Frequently, laminae develop two crests, anticipating branching immediarely above (Fig. 4a, m) 。 On a smaller scalc, lamina shape virics from smouth and regularly curved to slighly wavy, with disconfinuous curvature and shatp crests. Both types occur in single specimens (Fig, 14).

Microsirdidure: The microstructures and textures ohserved in the different arens vary considerably depending on the deyse of recrystallization. In the best preserved specimens, the layering comprises atternating refatively thick: continuous. very distinct. light and dark laminae, giving a banded appearance. Some are single homogeneous thick lityers, while others are macrolaminac consistiog of several very thin light-dart lamination pairs, Most commonly single laminac traverse the whole colunsa widts, excopt where cut by microunconformikies. Onids nr other detrital grains may be included in the laminac. Upper and lower boundaries of laminae are usually smmoth and even, sometimes wavy or broadly wrinkled, bus always more or less parallel. Fxceptions accur only where erosional scous has taken place during growils, Rarely; lenticular swellings occur. Jifght haminae vary in thickness from 0.02 to 0.5 sim , very rarely to 1.0 man. Mase lighe laminac thin towards the column edges, but rarely lens out. In the best preserued specimens, the sparry dolomise fornsing them is inequigranular, xenotopic, and of yrain size rangiag frotn 0.005 to $0,06 \mathrm{~mm}$. With greater recrystalization an cquigranular mosaic of 0.05 so 0.2 mm grain size results (e.g. Burra). The light lamine usually have sharp and smooth upper boundaries, hut sometimes arade town into grumous textured laminac, consisting of irregular and interconnected micritic patches un to 0.7 mm siam. set in xenotopis equidimensional sparry dolonute wilh a grain size of about 0.01 to 0.03 mm , i.c. partidly recsystillized dark laminace. In some specimens (e.g. Yatina, West Mount Hut Worumba), the light laminac contain deteital granules including small fiat imerclasts, up to 0.5 mm tong and safe onids up to 0.3 mm in diameter. Overlying laminae are draped over the lager dethtat grains. Laminae in the Copr ley specimen may be pelletal (Fig. 14e). Derk laminne occur either singlys alternating with
light laminae. or in dark macrolaminae. Thin Wath laminae are commonly 0.04 io 0.3 mm thick, but unacrolaminae range up ta 2.5 mm in thickness, generally consiant actoss the column, or thinning slightly trwards the margins. They are cither continuous, or consist of a series of aligned lenses, each up 50.2 mm long. In well preserved specimens the dark laminae have smooth, sharp, parallel boundaries: rarely, single laminae may be wrinkled, suggesting intraformational cnampling during growth. Well preserved dark 1aminac consist of dense, brownishapignepted xenolopic dolomite, uf equidimensional grains 0.003 to 0.01 mm diam., but vertical and lateral gradations from unaltered to grumous rextures are common. Where dark laminae are grouped into macrolaminae, they illernate with very thin, discortinunus light laminas, and frequenty fuse to form solitl. thick dark laminac.

Interspuces: A ticw specimens have interspaces filled preilominantly with bedded dolomite mnd (e.g. Burra), but generally the sediment is untreduled intrasparite or oospasite, less comnonly intramicrite, frequently, intraclasts are derived from the erosion of stromatolitic columns: in places, a large fragment lors from a columin has acted ds a base for new growth. Intriclasts are: flat to gently curyed tabular dolonite pebbles up to 3 cm long, 1 to 2 mm thick, and only slightly rounded. Many ate Eragile and could have survived very lithe transport. They contuin the typieal internat Iaminations of the associated stromatolites. and are probably derived dinectly from them. Occasional hat pebbles stand vertically, but generally they lie flat or imhricated, Ooids vary in shape from round to oval, $0.2-1.0 \mathrm{~mm}$ diam., and consist of one dark-rimmed spurry liver coating a micritic core or less rammanly. several spary layers. Mast commonly, allochems are closely micked and cemened by a clear, sparry dolomite cement. Some specimens contain significani amounts of dolnmite mus, variously recrystallized, forming a matrix between allochems; in these cases the sediment is poorly laminated.

Secondary dileradion: Secondary diteratiou has extensively modified the texturcs and often the microxtructutes of stromatnlites from many areds. The following four stages of alteration may be iecognized:
(1) Peneconemparaneous. The face that dolomite consistently constitutes the while ravk to the exclusion of calcite, while still preserving line structures, sugecsts very early dolomitiza-
fion, duriog the growth of the stromatolites, It is alsn porsihle that penecontemporancously dalomitized lime muds were reworked and trapped in the algal nats. During, growth, crosion by strong currents scoured the living surraces of columns, creating micro-uncontormities. In some specimens (c.g. West Mount Hui), laminne may be separated by lenticulas vughs, later filled with spatry dolomile (fig. 12c), These voids were probably formed by arching up of taminac, perhaps tue to latetal expansion is growth of the algal mats building the sindmatalites, or to partial desiceation.
(2) Eiarly Dhagenesic. Black chert very eummonly replaces potions of wromatolites and interspace sediments. Sometimes dark laninae ane preferentially silicified, perhaps during growth but more commonly, silicification nosidites the growth of the columis (e.g, one side of a colunn may be replaced). In places, silis. cilien laminae are broken by minute dolomite filled cracks.
(3) Lute Diazemetic. Dask daminac and nacrolaminac thay be receystallized to grumuns texluress, consimting of patches of dark, deuse micritic inlomite (remnants of the original catbonate) varying greatly in size from 0.005 to 0.1 mm . set in a matrix of xenolupic sparry dolomite, of equidimensional grains ranging in size from 0.01 to 0.03 mm . Light laminate arc commonly slightly secrystallized and sparry, consisting uf hypidiotopic to idiotopic equidimensional dulomite grains of similar size to those of the sparry matrix of the grumous icxlures. Cuarscly recrystallized laminae also oceur, in places cutting icross the fine surucfurse of primary laminale and corsenting theit boundaries. They consist of idiotopic transparent undomite uf grain size up to 0.1 mul.
(4) Tecronic. The only specimens affected by lectonic deformation are from the Burrat region. Herce columns ate slightly blatterted and barninate athe cronulated along is slight tectonic [oliation These ase also the most highly metamorphused, displaying the greatest degree of recrustallization. Teosional joints tilled with coarsely crystalline dolumite are common in most areas.

Compartrons

The stromatolites are assigned to the group Haicalia on the hasis of their tuberous, swelling and constricting, humpy, variously oriented columnk general absence of wall, numerous overhanging peaks and short cornices, and gencrally divergent branching. Some specimens
have horizontal colomns for short distimes reserobling Tungusia, but are distinguished by the absence of the multiple horizontal branching claracteristic of Twugussia, and hy their gencrally nurre ragged column margins. Boicinlia buth is distinguished from B. prima Semikhatov, B. aimica Nuzhnov, and B. cupricorno Walter, by its frequently Uivergent hranching and general complexity of columns, and from \mathbf{B}, minnus Kumar by its larger size and more complex stineture. Sone specimens resemble B, baicalirr (Mastov) Krslov, but most have more inclined and irtegular columne B. lacera; A. rark, B. ampla and B. ustux Semikhatov are not adcountely illustrated for reliable comparixom, and the illustrated microstructures are badly ullered: single specimens ofi B. burra may show microstructures simular to 8 . sura, A - frecrec, and especinlly the pelletal laminat of B. rarer; Some specimens have long overhanging peaks and thus resembie H. insilerves Nuzhov, but are distingushed by more frequent and divergent branching. B. Duren most closcly sesembles B. rarr Seraikhatev and b, maicu Nuthnoy: it is distinguished from B. rarg in that neither pelietal faminee nor kneextsaped tiends in columna are consistently developed, and from B. metica by its more irregular and coalescing columns, and its more conlinuous laminate.

Distribmion: Widespresd in the Skillogalce Dolonite, Murra Groups Dutton's 'Drough H.S. 16 km south of Burra; Scrubby Range. 27 km south of Hurra; 3 km west of Yatina; River Broughton. 8 km west of Spalding: 11 km wuth-wece of Wortmina; 11 km south of Arkaroola; 3 km west of Copley: 3 km east of Myrte Springs. H.S. near leigh Creek: West Mount Hur. 27 km west of Witchelina H.S. and Chintapanna Well, aboue 16 km weat of Witchelina II.S. Possihle Ω. butrei occurs also in the Skillogaloc Dolonite. Depot Creek, lsut these have not been studied in detail. Specimens from possible River Wakefield Group, Catrielon (Fig. 15c) ate inadequate for identification, but are possibly to he included I BIJRRA, ORROROO. PARACHILNA. COPLEY. ANDAMOOKA And CURDIMURKA 1:250.000 man sheet areasy,
Ager Eatly Adetaideaft, correlated with the youngest Middle Riphean of the USSR.

Group BOXONIA Korolyuk
Boxania Kaanlyuk 1960:139 Komaz 1966: Ty. Cloud \& Scmikhatov 1969:1036. Citacksner. Preiss \& Walter 1969:1056

TyRe Farm: Boxomiz Rrarifis Korolyuk. from the Bokson Suite, Eastern Sayan.
Diganosis: Straight, sutheylindrical columas with moderarefy frequent α^{-}to β-paraltel branching and smooth, walled mangin stracture.

C'ontent: B. gracilis Korolym, Be lissa Komar. B. krasivica Golovanov. B. allahjoniree Komar \& Semikhatav, B. ingilica Kumar \& Semikhatov, B_{i} biunces Rablon and B. pertuknurrie Walter. Ruaben (1969a) places B. gramulosa Komar into partial synonymy with B. gracilis Koro. lyuk, B, diverata Sidorov has only a patchy wall and may therefore be excludet.
The South Australian form is Bexportic medrowe.
Age: Late Riphean and Vendian.
Bnxonian melrasa fo nov,
FIGS. 7ath. 15d-f
Mancrial: Four specimens trom one locality.
 km west of Melrose township. Scuthern Flinulers Ranges.
Numes After the type locality.
Diagnosir: Boxnnia wish long, narrow, closely spaced columns. a and β-parallel branching. withoul very broad basal columns, with occasional rounded projections, and with indisilncty banded. moderately convex, Iaminac lacking pelletal microstrucuit.

Description

Mode of Occurrence: 'The stromatolites are relatively poorly exposed in a faulted area, so that relationships are not clear. AI. least two bioherms occur, preserved as grey or pale buff diblonsite 'The beds are overturned, dipping south at about 40°. The narrow, parallel columms arise difectly from laterutly linked stromatolites, partly pseudocolumnar, the base of which is has exposed. The overlying; columnar portion is approximately 6 mt thick and consists of vertical columns near the centse of the biuterm, and inclined columas at the margios, where they pass laterally into paeudocolumnar stromatolites. Columns ane overiain hy wavy laninated stromatolites, which cover the whole bioherm. Biohermes are of cumulate shape, hroadily domed, up to 60 m loug, and are surrounded by fat-bedded dolomite.
Column Shape and Arrangement: Columns are straicht, ereet, subcylindrical. smooth to gently bumpy. with circular or slighlly lobale,
rounded polygonal cross-sections, $\mathrm{J}-5 \mathrm{~cm}$ dian. ($\mathrm{Fig} .7 \mathrm{a}-\mathrm{h}$) . The diameter of a single column generally remains constant throughout its length. Columns may reach a length of up to 20 cm between branches, but some columns are only a few sentimetres high, occasionally in the form of sounded projections
Bronching: Branching varies from a^{-}to β parallel; γ-parallel branching is rave (Fig. 7h). Commonly - $3-5 \mathrm{~cm}$ column divides into lwo or three narrower, parallel, very closely spaced columns, $1-2 \mathrm{~cm}$ diam, (Fig. 7e,d,f). Occasionally, two narrow columns may coalesce ($\mathrm{Fig}, \mathrm{ze}$). Not all branches develop into long columns; some terminate their growth only a few eentimetres above branching (Fig. 7d).
Mirgin Structure: The lateral sufface is even. smoolh ar with low. broad bumps, up to several centimetres wide. with a relief of $1-5$ mm . Peak and cornices are entirely absent, but very rarely bridges up to 1 cm thick oceur hetween adjacent columns. A multi-daminate wall is almust ubiquitous. At the margins of columns laminae are poosly preserved, bur in plices up to 10 laminae may be seen to comprise the wall. Single laminac gencrally extend for at dissance of $1-2 \mathrm{~cm}$ down the column margin (Figs. 15d-f).
Lomina Sharco: Laminate are must cummonly moderately conver, hemispherical, in places approaching rectungular (Fig. 8e). Frequently they are slightly asymmetrical, especially in inctined columns. Betore branctiog laminae usually develop two crests. The degree of convexity, h / d, is moderately constarh, even int columns of differing widths. Of laminae neasurted, 91% have h/d between 0.3 and 0.7 , the mode (39%) being $0,5-0.6$ (Fige 90). The shape of crests varies from tighty arcuate to gently rounded (bige, He). Most laminae are broadly wavy (wavelength up to 8 mm , anplitude $1-2 \mathrm{~mm}$) bus nor wrinkled.
Microsimucture. Mierostructure is poorly preserved in both pale and dark specimens; laminac are broadly continuous, with smooth. paratlel upper and lower boundariex, but naty he broken into a series of clots and lenses by recrystallization, and even whese theic continuity is preserved, they are extensively cmbayed by recrystallzed carbonate. Microstructure is indistinctly banded with alernating darker and lighter laminac. Ligh iuminue vary in thlckness from $0.08-0.4 \mathrm{~mm}$, bat usually thin towards column margins. Continuity is usually refained across a column, although the linest laminac frequently lose their identity by
recrystallization. The luminac consist of transparent, slightly inequigranular (of grain size $0.01-0.04 \mathrm{~mm}$) equidimensional dolomite of polygonal, hypidotopic texture. Within this occur irregular 0.05-0.1 mm segregations of darker, greyish pigment with no relation to grain boundaries- These are apparcatly remתants of pligment left by partial recrystallization,
as they maty grade into more or less continutous laminae, Distinct round to oval pellets (as in Russian Buxomul are absent. Dark laminue are less continuots, and often diffuse. Their thickness varies from $0.08-0.3 \mathrm{~mm}$; towards the margins they frequently thin or lens out completely, and do not take part in the formation of the wall. (The layering in the wall is

Fig. 7

Fig. 7. Boxonid melrow, Brighton Limestone equivalent, Umberdtana Grupp, 1.6kn W. of Melrose: (a), (c), (g) \& (h)-S502; (b). (c) \& (d)-Hololy[re, S503: (c)-S504.

Fig. 8

Fif. 8. Representative examples of lamina shape: (a)-Acaciella ansepenar; (b)-A. aughsta; (c)fenciells f. indet.: (d)-Baitalim burrai (e)-Boxonia mẹlrosr.
extremely indistinct), In places, they lens out also within the central part of a column. Dark laminae are composed of equidimensional. xenotopic, equigranular dolomite (of grain size ranging from $0,003-0.01 \mathrm{~mm}$), and in places, are disrupted into a series of irregular clots and lenses separated by sparry dolomite.
Interspaces: Interspaces between columns are extrencty narrow (usually less than 5 mm1). ifnd are filfed with patially recrystallized dolomite mud, now latigely of fincly grumous texture, containing in places, round or ovoid clastic pellets, $0.2-0.7 \mathrm{~mm}$ diam. Much of the sedi. ment is vaguely faminated, the laminat abutting against the walls of columns, which they post. date.
Secondary Alteration: Stromatolite columns and interspaces consist of dolomite, considered to result from the replacement of original calcium carbonate. Most fine structure has been lost; dark laminae are outlined mainly by segregations of dark pigmented dolomite, but recrystallization has partly embayed and partly oblitcrated the fine datk laminae. The irregular distribution of pigment is due to recrystallization. In places, coarser, sparry laminae of grain size up to 0.08 mm occur, and may contain dismembered remnants of dark laminae. Stylolites are moderately frequent, and usually discordant to the lamination. In places they follow
column margins for shor distances, removing the wall. Occasional thin dolomite veins follow the path of stylolises. Some stylolites are paruliel to overall bedding, and displace column axes slightiy (Fig. 7c).

Comparisons

The stromatolites are assigned to the group Boxonia on the basis of their longe smooth walled columns with moderately frequent aand β-paralle! brunching. Katavia Krylov and Acaciella Walter havé similar gross structure; Kotavia is distinguished by its very prominent humps, while Acaciella generally lacks a a wall. Minjaria Kryloy also has parallel straight columns but is distinguished by its less frequent branching. Most other described forms of Boxonia have well defined pelletal microstructuress forms are largely distingutshed on the basis of the size of the pellets. A spocimen of B. gracilis sent by M, A. Semikhator and I. N. Krylov, has pellets consisting of rounded carbonate grains with dark, fine-grained rims. These are absent in B. melrosa, which also has less wrinkled Iaminae. B. melrosa is distinguished from B, ingilica Komar \& Semikhatov by its ubiquitous wall and straight columns: B : allahizmica Komar \& Semikbatov apparently has some complex branching. B, lissa Komar, B. gracilis Korolyuk, B. grumulosa Komar, B. bianca Raaben and B. Rrasivica Golovanoy

Fig: 9

Fig. 9. Histograms of lamina convexities. The convexity of a lamina is the ratio of the beight of that lamina to its diameter (h / d). Histograms are plotted for each stromatolite form at inlervals of $0.1 ;$ is is the mumber of reeasurements made for each form: (a)-Acacjella angepens: (b)-A. augusta; (c)-Acaciella f. indet.; (d)-Baicalia burra; (e)-Boxonia melrasi.
may all be symonymous. B. melrosa is distinguished from B. perraknurra Walter (in press), which also lacks a pelletal microstructure, by its more stecply convex laminae, its occusional shurt, projection-like columns and by the absence of well defined hroad basal columns. B. melrosu most resembles B. lissa, from which it is distinguished by the absence of pelletal
microstructure, and by the presence of some short, projection-like columns.

Distribution: Brighton Limestone equivalent. 1.6 km west of Meiruse (ORROROO 1:250,000 map sheet areat).

Age:- Late Adelaidean, correlated with the late Riphean of the USSR.

Acknowiedgements

1 am intebleat to Prof. M. F. Glassuer for supervising this study at the University of Adclaide, and to Dr. B. McGowran for his critical reading of the manuscripk. Many of the concepts consiacered arose from discussions with
sny colleague, Dr. M. R. Walter, now of Yale University. The Gigures were drafted by Mr. B. firost, Deparment of Mines, and by my wife.

The paper is published with the permission of the Director of Mines.

References

Attken, I. D. (1967),-Classibitation and cnvironmenfal significance of crypialgal limestunts and dolomites, with illustrations front the Cambrian and Ordovician of southwesten Alberta: J. sedim. Pitrof, 37, $116 \mathrm{i}=1178$.
Andrews, S, H. N. (1970),-Inder of Gcneric Namer of fossil phants, $1820-1965$. Bull. U.S. Reoh. Surv. 1300, 1-354.
Bathurstr, R. G. C. (1966)-Boring algae. mertie envelopes and lithitaction of molluscan biospalites. Lponl Manchr grol. J. 5, 15-32.
Bertrand, J. (1968).-Les Edifices stromatalitiques précambricns de la "Séric à stromaonlices" du Nord-Ouest de I Ahagenr (Sahara) Bull Suc: Rext. Fr. 7(10), 168-178.
Besck. M, (1033)-The algal sediments of Andros Island, Boinamas. Phil. Trons. R. Soc, .Nor- B. 222 1 | S -192.
Bradiey, W. H. (1929),-Algae reefs and oolites of the Green River Formation, Prof. Pap. U.S. genl. Surv. 154, 203.223.

Cisim, P. E. (1942) - Notes on stromatolites. dm. J. Sri. 240, 363-379.
Cinud. P. B., \& Semikhatov. M. A, (19к9),Proteroznic stromalolite zomation. Am. S. Sei. 267, 1017-1061.
Conts, K. P., Herwinz, R. C... Cbawford, A, K.. CAMPANA, B, (HкTCHPR, D. (1969).Mount Painter Province, Gcological Athas of South Australia, Special Series, $1: 125,000$. (Ged. Surv. S. Aust. Adelaide.)
Ehrdey, A. J, (1938)-Sediments of the Cireat Salt Like, Utab. Bull. Am. Ass. Petrol. Geom. 22, 1305-1411.
Fentone C. Lit \&Enton, M. A. (1931),-Algas ond alegal beds in the Bett Scries of Glacier Notional Park. J. Genl. 39, 670-686.

Frnmon, C. L. \& liqniun, M. A. (1393)--Agal seely or bioherms in the Bell Series of Montlund, Hull keol. Sue. An!, 44, 1135-1142.
Eienton, C. Le Fenton; M. A. (1936).-Walcorts "Prexambrian Algonkian algal flora" and associated animals. Bull. woul. Soc. Am. ब7, 609-620.
 algue ts cnvironment indications and index fossils. Int. Geol. Congress, 17/f, Muscow, Ahsiruchs, P. 215.
TinNend, C. L., \& Fenion, M. A. (1939).-PreCambian and Palacozoic algac. brill, keol. Snc. A m, 50, 89-125.
Gidarsindr. M. To: Peelsy, W. Vo. \& Walttr, M. R. (1969)-Precambrian columnar hiseninolites in Australia: morphological and stratigraphic analysis. Sciente, $\mathbf{1 6 4}$, lus61058.

Hall. T. D. (1883).-Cryphesoms (pruliserim)
 \& Eaption.
Horfman, P. F. (1967)-Algal stromalulices: use in stratigraphic cursclation and palcocurrent determidation. Scirner 157, 1043-1045.
Hoerman, P. Fs (1969), - Proterozole nalcocurrents and denositional history of the East Arm fold belt, Great Slave Take, Northwert revitovies. Cin. J. Earth Sci. 6, 441-462.
How mann, 1f: d. (1969a) -Stromatolites from the Protermooic Animikic and Sibley Grount. Oritario. Geol. Surv. Pap, Can., 68-69. 1-77.
Hommanns, 11. S. (19690),-Atrilhutes of siromatoliter, Ficol. Surw. Pap. C'un. 69-39, 1-58
 In fixation des sédiments nevbles par deux algnes marines: Rhodotramnictla flurietula (Dillwyn) 3. Feldm, et Micmandens chtonoplastre Thur Marine Geol. 3, 131.155.

Howchiv, W, (14/4) -The occuprence of the Genus Cryptezene in tbe (?)Cambrian ul Austratia, Trens. R. Soc. S. Ausi 3S, 1-10.
Jonnson. I. $\mathrm{H}_{\mathrm{i}}(1937)$-Algae and alpal limestune from the Oligoone of Sonith Park. Colorado. Bull. geol. Soc. Am. 48, 1227-1236.
forfsom, I If (1940)-Lime-secreting algae and a/gal limestomes from the Pennsylvanian of Ceniral Colorato, Bull. zol. Soc. Apı, $\$ 1$, 571-516.
IUHNSUN, 1. H. (1966)-A feview of ibe Cam brian sigac. Colo. Sch. Mines, Q. 61, 1-162.
KER, ER, Bo Mo, Kı7akov, G. Ao Krylav, 1. N., Nu, hriov, s. V. \& SEAnKHatov. M. A, (1)360), - Novyc dannye po stratigrafit fifeyskoy grunpy (Verktniy Proterozoy). (New das on the stratigraphy of the Riphean Group (Upper Prolenuoic), Pev. Afind. Ninuk. SSSR Ser Geor 1960. 12. 2641. (Transl. rev. Hoal Sei USSK geol. Ser. 1960. 12. 21-34).
Kоmar, V. A. (1966),-Styonatolity verkhmodokembriyskikh ollozheniy severa Sihiskoy platformy ioh stratigraticheskoe znachenie (Stromatulites of the upper Precambrian denoxils af the Nusth Siberian platform and theit stratigraphic significance). Trudy, genf inst. Lermemer. 154. 1-122.
Kosiar, V. A., Rasbin, M. Ens \& Statmhatoy M. A. (196.5). Konnfitony Relfeya SSSK a ikh stratigroficheskoc znachenie (Conophytpons of the kimhean of the USSR atid their slritio. graphis significance). Trudy. gool. Sast.. Lening7. 131, 1-72.
Korolvuk, Ii K. (1960\}.-Stromatolity nishnezo kembriya i proterozoya Itkutskogo amfiteatra istromathites from the lower Cambrian and Proterozoic of the Irkut Amphitheatre). Trudy Insp, Gsol. Razrab, Giorshorh. Jhoje. thwi. Numk. SSSR. 1. 1-161.
Kerloy. R. N. (1963)-Stolhchatye vetuyashchiesya stromatolity sifeykikh otlozheniy Yuzhnugo Urala i ikh znachenic dlya stratigafis verkhnego dokembriya. (Columnar brancting stromatolites of the Riphear deposits of the Swuthem Urats and their signifio cance for the stratigraphy of the Upper Pie(ambrian.) Trudy. geot. Inst., Lemingr, 69, [-133.
Karum: I: N. $\{1967\}$-Rifeyskie i nizhnekem. bryskic stmmalolity. Tyan' Shanya i Karatau (Riphean and Lower Cambrian stromatolites of Tien-Shan and Karstau). Trudy. grol. Inve-, Sevimis. 171. 1-76.
 (1964)-Classification and environmental ricrificance of atgal stromatolites. J. Cool. 72. 68.83.

MasLoy. V. P. (1937a),-Nizhpe-palcozoyskie gorodoobrazuyushchie vodorosli vostochnow Sibini (I uwer Palaeozoic rock-building Alyac of Eastern Siberia)- Problemy Paleond. 2.3. 249-31.4, (Engl, summary, 314-325.)
Mascov, V, P. (1937b) - O rasprostranenil karhonatnylh vodorasley v vostochnoy Sibiti. On the distribution of the calcareous algae in Eastern Siberia.) Problemy Pateond. 2-3. 327342
hfaslev, V, P. (1938) - 0 phirode stromatolita Conophition. (On the mature of the stromitelite Conuphysori) Problemy Pilcons. A. 325-112.
Brisinv. V. P. f1939a)-Popytis vourastoogo opredelenlya nemykh rolshch uftla, pome shetiyu stromatolitov. (An atrernpt of the age deternination of unfossiliferous beds of the Urals with the aid of stromatolites-). Prohlemy Pulenve. 5. 277-281. (Ene. Iransl 281-284.)
Maslov, V. P (1939b)-Rod Collenia. (The genus Ceftenia.) Probemy Palkont. 5, 297319.

Mascov, V. P. (1960) - Stromatolity (ikh genezis, metok izucheniya swyaz's fusiyami i geologicheskoe zaachenie nat pritriere ordovika sibiroskoy plationmy): [stronatolites; their genesis. mathods of study. comnection with facies and geologic signiticance in the example of the Ordovician of the Siherian Platform.) Trudy. Geol. Inst., Leningro 41, 1-188.
Mstwson. D. (1925),-Evidenace and indications of algal contributons in the Cambriar and Precambrian Limestone of Sousth Australin. Trumis, R, Soc, So Alser. 49, 186-190.
Nonty, C. C. V. (1967), Distribution and sime ture of Recent stromatolitic algal mats, castern Anders Islanu, Bahismas. Anmls. Soce stiol. Bele- 90 (3), 55-99.
Nfestin, H, F, HROWN, C. W., \& Granemanto J. H. (1962)-Skeletal limestone classificalion. Im Ham, W. F (Es), Classification of Carhorate Rocks, as symposium, Am. A.ts. Peirol. Grol, Mem. 1, 224.252.
Nizanov. S. V. (1967)-Rifeyskie ototheniva yughevastok Sithirskoy plafformy. (Riphean depasits of the southeast Sibetian platform, imsir Geoh Yakwts. Fifinal sifirsk. Otdel. Akat. Nauk SSSR; Montiow, 1-76U.
PlA. D. (1926),-"Pflamzen ats Gesteinbildnct:" (Berlin.)
Preiss. W. Y. (1971)-Stromatotite biostratio graphy in the late Prceambrian Qauth, geot Notes, grol, Surn, S. Awsi, 38, J-11,
RAaben, M. E. (1964)-Stromatolily verkhtego sifeya Polyudoya Kryazha i ith ventikal'muye saspredelenie. Stromatelites of the Ureer Riphean of the Polyudor Mountuins and heir vertical distribution.) Bywll. mork. Obsich. Papyr, Prip, Oed gealoo 39 (vyp. 3). 8G-109.
Raanen, M. E (1969a) - Stromatolity verkhnego rifeya (Gimnosolenidy). (Upper Riphean slromatulites (Gymmesolenida)-) Trudy- send. sincro, firningr. 203, 1.100
Radaftoi. M. E. 1 (4696),-Columnar siromaiolites and Late Precambrian siratigraphy. Am. J. Sei. 267, J-18.
Rezak. K. (1937).-Suromatolites of the Hels Series in Glacier National Park and vicinity, Montana. Pruf, Papo U.S. geol. Sury. 294D, 127-154.
Semmatray, Mi. A. (19Ћ2), -Rifey nizhniy kembriy Yeniseykogo Kryazha. The Riplesia and Lower Camhrian of the Yenisei asnuaLains.) Trudy Reot Sost. Leningr. 68, 1-242
Sertichatuy, M. A., Komar, V. A. \& Seheary. kov. S. N. (1970)-Yudarnskiy Kompleks
shatotipicheskoy mestiosti. (The Yulumian Complex of the strato-typicat aren.) Akno. Name S3NR Trudy. 210, 1-207.
Sifarovaluya, 1. Q. (1968).-O noyoy emppe stromatolitov Jacutophyton ix: varkhnego proterozoya Yostochnogo shiona Aldanketsy unteFlizy. (On a new group of stromatolites facutophyion from the Upper Prolerazoic of the castern slopes of the Aldan antectize. I "Tektonika, strulisrafiya it litologiya osadochnykh Cormatsiy Yokntin Dokl. 17 nauch. Sess. Yakmo. Fil. Sibir. otd. Akad. Nunk SSSH 97103.
 seyi, cine Coclenterate von der Malbinsel Kamin, bull, Soe geogr. finland 31, 18-23
Thomson, B. Po, Cohis, R, Pe, Mismms. R. C. Fonnt.к, R. C. Dalcarno, C. K. \& Jonsgon, J. E (1464)-PTEcumbrian rock grouns in the Adclaide Geosyncline. A new ruhdivision. Qiser. ged. Notes, gevi, Surt. S. Alyst, 9, 1-19.

VologDiN, A. G. (1962)-"Drevacyghe Vodorexli SSSR". (The most ancient algae of the USSK. (Eed, Akad. Nauk SSSR Mnscow.)
Walcolt. C. D. (1414):-Cambrian Geology und Palaeontology 11: Yrecambrian Algonkian algal llora. Smithsun. mise. Cullns. 64, 78-156.
Wattru, M. R. (1972) Stromatolites and the biostratigraphy of the Australian Precambrian ant Cumbrian. Palerontology, Spec. Paper (in press).
Konung. R. B. (1933a). -The uccurgence of 8150natolithic or blgal limestones in the Campbell Kand Scrics. Griquatand West. Trans. gen!, Snc. S. Afr. 35, 29-36.
Yuuno, K. B. (1933b) -Cooditions of Ueposition of the Dolamite Series. Trans. Heol. Sos: S. Alr: 36, 121-135,
Yitunic, R, B. (1935). A cumpuson of sertain sirnmatolithic racks in the Dolumite Sicries of Suuth Arica, with modern algal sediments in the Bahamses. Truns. seol. Soes Si Afr, 37, 155.16\%.

Appendix 1. Clossaxy

Axtr: The centre-line of at column.
Biolerrmf A circnmsctibed organo-sedimentary structure whose minimunt with is less than or cqual to ote hundred limes its naximum thichness, cmberued in mocks of tifferent lithology. Note: the definitions of the tecms Brohem and Biostronto arc hased on those gives by Nelson, Brown \& Brincman (11562) but since, at deakt in stromatolites, the two integrade, an arbitary limit must bu set.
Tabufor biohorm: have parallel upper and lower xurlaces, while demed hinliems have gently convex upper surfaces. Subspherical biohernis bad the highest growth relief relative to their width.
Tanguing hinhermp are bioherms which had filte of no growth selicf, ant therefore intertongue at their margirs wits the sursounding sedinent.
Blastrome: A stratitorm organo-scdimentary atmecturo whose minimum width is more that one humtred times its lhichacss. Note: in praclice if is rarely possihle to see the direc dimensionat shape of the structure ju outcrop. The distinction hetween biohermis and biostronies mist therefore be based on the dimensions visible in outcrop. If the butcrup is inadegutate, the informal fern) "ked" is used.
Jabular buastrames have marallel Inwer and urner surfaces. Domed blustrames eithes may cunsist of jutiaposed domed binhetms or may be continumus with jnxtaposed domes on their upper surfaces.
Branching: The division of a colunx into ncw, dispete colimn. The columns bocome discrete when they nee first separated by an interspacc. In parallel branchine the ayes of the new columns are parallel imost commonly they ate also patallel to the axis of the original columal.
a-parallel broncliong is paralle branching in which the width of the individual remaits cunstant. In N-paralle branchink the originai conums widens gradually before branching, while in y-parallfl branching, it widens abruptly beluse branching. In shighly thergent branching, the aver of the new columns diverge at less shan 45\% While in marhedhy divergont brapochins they diverge at mume Lian 45°. Dichoramows branctiong is brgnehing intis mure than two colluman it approximately one level.
Bridgus A stronstolitte lamina or set of laminae linkiog adincent columns.
Bump: A low. rounded protorsion on the side of a cสlamn.
Coulestmg monfrmas: Adiacent columms which join and conture growtio as ane enlumn.
Conlumm: A disente stromatulite structure, with the dimension in the direction of growth areates that at leasl one of the trmanerse dimensions. Colimn shipe and attanentent often vary acconding of the position in the biotserm.
Columnar-layeted sirimumfite: A stromatalise in which short columnar and laterally linked (usually psewtocolumnar) partions alternate.
Conentes: Peripheral ovethsnging pottion af a lamina of set of laminie. shongated hausverscly In the solumn axis.
Creof: The summit of an upward-conves damina.
Cerspol line: The lite jointing the crestg of succersive laminate
Ciment Eshe: The envituns of the erestal line. In Compephron, the crestial xame is specifically the rone uf thickening and contortion of the laminae: the width of the crestal pone is the width of the thickened and/or contortal porfinns of laminno. Thrce types of crestal zones of Comophotore were distlnguished by Komas et af (1965).

Cumutare stromutulit: A rounded prutrueding nencolurnar stromutolite.
Domed: With approximately constant radius of curvalure.
Flut-hminated sfromatolite: Non-columnar sirnmatolite with flat continuons laminae. Aitkent (1067) has pronosce the term cryptatgalaminate for stromatotites wilf planar damination.
Gienthe contex hamina: \wedge lamina whoge xatio of height to diameter is less than or equal to 0 . $\overline{1}$. Measuremenks of this gatio are best ireated statistically by plotting on a histogram.
Gperled column: A column with large bumps
Grumons: A mineral texture in which fine-grained patuces ate surrounded by coarser grains, interpreted io have formed by partial recrystallizalion.
leypidiofopic: A mineral lexture intermediate between xenotopic and idiotopic.
Bthorovit: A lexture in which the mineral grains are hounded hy crystal faces.
Jindividuth: A single discrele stromatolite within whicts either the laminac are continuous or which comprises ag group of columss arising from a single basal colunm.
Interspate: The space between columas, usually filled with sediment.
Lamina: The smallest unit ot daycring in a stromatolite.
lancenlare: An clongate transverse section of it column tapering at both ends.
tatceally linhed sfromandite: Stronatolite with wavy laminae whicla aic continuous between crests.
Matrolamina: A distinct set of laminae.
Aficrorprorture: the fine-seate stricture of the sitonalolite lamination in particular the distinetness, continuity, thickness and composition of the laminae.
Banded microstructure is characterized by very enntimunns laminae With sharp, distinct, noore or less panallel houndaries. In stredky nticmatrutture less distinet and continusus laminac fieguently geade into une amother. The diarker laminse ate usually more dlstinct.
Spiated mierestruciure consists of primary chafas of lenses, oriented parallet to the lumina. liun (1his excludes cases whicre originally con. Linuous daninae are disrupted by recrysidliza. tion).
Vermijarm micrastmeture consists of narrow, simnous, pale culsured areas (usually of sparty
carbonate) surrounded by darker, wsually finer grained areas.
Aicro-unconformity: Surface of lumination dis. cordance due to penecontemporancous erusion withiir à stromatolite.
Niche: A deep indentation in the side of a colomn.
Parabolic lamimo: A lamina whose axial longitudinal sector approximates a parabola.
Pead: Overhanging portion of a lamine or set of laminac with a small dimension lransverse to the columa.
Pellet: Oyoid to sub-ovoid micritic carbunate grain of silt or sand size, lacking internal structure
Piganent: Organic or inorgsnic colouring mather.
Plazy cultimet a stroundy transyersely elengated columa.
Proivection:* A small columar or conical outgrawth from the side of a column.
Psemelucolurnar, stromatolite: 1.atcrally linked stromatolite in which successive crests are superimposed, forming zolumn-like structures (pseudocotumns):
Rectangular lamina: Lamina which in a longithdinal scetion of a column is flat-lopped with edges deflexed at about 90°.
Khumbic laminat $1.4 m$ ma which in a loughtudinal section of a column is flat-topped but has subparnlel edges not perpendicular to the top.
Rist A law, rounded protrusion which is elongated transversely to the column on whith it ozenrs.
Sehrapes An unlaminates conting on column miarging, Possible explanations for this include (a) micritization by algal boring; (b) inorganic precipitation of limes (c) a thin tigal fitm on columin maigins durine growth. In some forms a sclvage-like structure is probably the result of differential recrystallization of a wall.
Streply Conver laminas A lamina whose ratio of height io diameter is greater than 0.5 .
resherous collumpt A column with prominent expansions anu constrictions,
Wwil: Structure at the margin of a column formed by one or more laminae from within the column bending down and coating the margin for at least ashort distance
Wavy lamina: A lamima with ficsures of wavelength greater than 2 mm .
Wrinkfod hamina: A lamina with flexures of wavelensth greater than 2 mm .
Thdulatory Mromuthlite: Laterally linked stromarolite in which suceessive crests are pol superimpused.
Xernotepice fexture A texture in which the mincral graine are anhedral or irregularly shaped, i.e. not boutuse by crystal faces:

Fig. 10. Aruidta angrnena, Irom Lower Cambrian limestones, Flinders Ranges: sections perpendiculas to bedding. showing mode of occerrence and niletostrmetures: (a) - Marginal section of a biahetm. Note that the laminae are completely scarved under the biuthem eatige. The suecithen is in sim. The ball-muim pen in 16 cim long. Angepena: (b)-Etchad section of $53(1)$, the rechwed margin of the bioherm in (a) cut at right angles to bedding. Note that here growih partly procerded downwards. Specimen is 15 cm wide; it was collected from the ourcrop shown in (a); (e)-l.ateral termination of a bioherm, which parily sank into the soft substrate during growth, the whik areas are dolomatized. Width of secumen (54611) is 20 cm . Angepernt: (1)-Psendocolumns with rare interspaces. Note the domed baminac grown upon partly turied ineradasts, and the exatemely continucus lammation. Than section. Aneepena (S462): (e)-Tivenly laminated ferrusindus structure, probahly the stronatolite A. ungepera affected by skeondary ferruginization, Tbin sectuon, fomm ne, Old Wirrealpa. The dark lamiare are gullined by finely disseminated hematile. (SSGt, collecten by Mr. P. G. Haslet1); (f) - FYenly lanhinated discete collunnar form from Latowie Gorge (Sir Douglas Mawson's aperimen).
 15458. Angepena). Nete the sermiform micrastructure withits parts ot collums, here imserproted ds due to algat boting, disrupting the normally very even. Cuntinuaus lamination; (b) \& (c)-Acrewlla fo imdet. Both specimens ate etratics from the Stinian glaciak noth of the Emorama Diapir. Thin sechons. Note the very mumerons concordant atylaliter in (b). (5539
 amanshu, Brighton Limestone equivalent. Depht Creeh. Vertical sections showang mode of owurrence amb microstructure: (d)-Deqails of fransiloon from broad, frequenily tridged hasal columns to upper nartury discrcte columas. Broad colurnns in lewer highthand corner have inclined margins and subhariznntat lamimaf: iel-Lenticular upen spaces between !uminate, pessibly representing orizinal gat vesicles ($\$ 163$): (6) - Portion of a bioherm showinge the intercalationi of columnar and laterally linked stronatolites.
 and unictostructures (a)-Margin of a bioherm (pale coloured at right of photograph) interlonguing lalerally with massive ourparite (af left); (h) \& (c)-S404 \& S401 respechecly. The gross shape and brans hing of columns. Ihe interspaces ure filled with interlayered micsite and intranicitite, in 0.5101 .0 cm bands. Ses is matusal size. In (h). lantinae become doubly crested before branching, but in the senure of the photegaph (c) is an example of at stort interspace belween crests biliged by the sverlying lamiane: the collumn then resumes its former giowth patcrn; (d)-Recryslallized specimen from Mundallio Creek (5538), illustrating ra-

Fig. 13. Butrokith hurru, Skillogalee Dolomite, Sechons perfendicular to bedding, showing hie mode of accurcence and microstructurc: (a)-Small lenticular bioherme interbedded in thinly hedded dolumites, Yatina; (b)-Partion of a hiontrume inlerbedded in massive, fine glained dolumutes. Diturn's Truagh, H.S. Longitudinal nevilian of partially silicified columns. The section is parallal to the tateonic cleavage, in the plane of tastening of the columms: (c)-Iresgular columns with numerous microt-uncontermitiss and highly variable lamina shape, West Mount Hut: SN-Modernely divergent branchine columns, with aome pelletal laminas. Thin section, Yatina is222, holorypel: (c)-Slighly divergent branching in regular, yub-çlendrical columns. Thin section, $S 533$, Duton's Trough H.S.; the specimes is taken from the biostrume shown in Fig. 13 (h)
Fig. IN. Buthatin hurra, Skillogalce Dalomite: (it)-Tuberous and inclined colunns with evenly handed mictostructure and high-angle micro-unconformities. Thin section, S487, Myrtle Scrings; (b) B. barra with minnr pelletal laminae. Thin section. S190. Worumhat, (c)-Subcylindrical columns with steeply dumed evenly handed lanimas. Thin section, S302. West Mownt Hen: (1)-Branching of barrow columny from the sides of a main wide column. Cut slab. S534. Dutlon's Trough H.S. The specimen is taken from the blostrome thown in Fip. I3 (b) (e)- Us, hupra wilh predominantly pelletal laminue. Thin section, S496, Copley: IE, - Complex branching of columns from Arkaroola. Thin yection, $\$ \$ 57$.

Fig. 15, \{a)-bisicalion hursa with finely silicifiod laminas. Thin secrion, naturai size. S15t. Wunumbs. Nute the vertical lectonic dolomite veins; (b) -b. hurra. Cut slab dilustrating sub-paraltel hranching columns with high-angle micro-unconformilies and bunded landination. S9b. near Chinlapanna Well. specimen collected by Mr. C. R. Dalgama. Note the overgrown stroma. colite fragment in the lower left quaurant, and the branch arixing from sin eroiled column in the upper right; (0 \} - Indeterminate stromatolite possibiy Baicalia furra. Thin section. S32?, near Cartichon; (d), (e) \& (f)-Boxonia melrose, Brjehton Limestone equivalent. Melrace: (d)-Hand specimen illustrating longituaimal sations of colunins: (e) - Thin section of holaPype. 5503. The lamination is indistinctly handed, and beconics diffuse in the wall zone. (ρ) -Thin section illustrating lamination and wall stracture, S177, natural size. Note that the upper left and lower left cosmers of the thin section are composed ot highly weathered rock.

FIG. 10

-2 cm was sturd C

FIG. 11

,
C

FIG. 13

W V PREISS

Dil. 15

THE NEMATODE GENUS MAXVACHONZA (OXYURATA: COSMOCERCIDAE) IN AUSTRALIAN REPTILES AND FROGS

by Patricia M. Mawson

Abstract

Summary The genus Maxvachonia Chabaud \& Brygoo, 1960, previously known only from reptiles in Madagascar, is now recorded in Australia and New Guinea. New species described are M. chabaudi from 7 species of skinks, 1 species of gecko, and 1 species of snake (? from food); M. brygooi from 5 species of agamid lizards; and M. ewersi from a frog, Litoria nasuta, from New Guinea. M. fiindersi (Johnston \& Mawson) [syn. Aplectana flindersi J. \& M.J, is recorded from 5 species of Australian frogs and one introduced species, Bufo marinus. The genus Austrocerca Inglis, 1968, is regarded as a synonym of Maxvachonia.

THF. NEMATODF GENUS MAXVACHONIA (OXYURATA: COSMOCERCIDAF) IN AUSTRALIAN REPTILES AND FROGS

by Patricia M. Mawson*

Abstract

Summary The genu: Maxvachoniu Chabaud \& Brygoo. 1960 , previously known only from reptiles in Madagascar, is now sccorded in Ausiralia and New Guinea New species described are M. chabataj Irom 7 species of skinks. I species of gecko, and 1 specicy ot snake (7 from food): As brygooi from 5 speches of agamid lizands; and M. cowersi from a frog, Litorid nayuta, from New Guinea. M. flindersi (Johnston \& Mawsun) [syn. Aplectarie findersi). \& M.J, is rocorded from 5 species of Australian frogs and one introduced specics, Bufo marimes the genus Austmeerer Inglix, 1968, is regarded as a synonym of Mawachoria.

Intruduction

Muxvachonia dimorpha Chabaud \& Brygou (1960, p. 129) was first described from Chambeleon pardalis, and later also from C". rustrale (Chahaud, Gi R. Cabaliero, \& Brygoo 1964, p. 846) , in both cases from is small ishand. Nossi-Bé, about 20 km front the mainland of Madagascar. It has since been recorded from one chameleon and two other specles of lizards (Zonosaurus moximus and Mobuin gravenhortii) on Madagascar itself. (G. Caballero 1968. D. 192.)

Alhough the genus was not revognised until recently, and doss not appear to be cormmen in any host speciex, it is surprisingly widespread. The seventen species of Australian lizards imon which Maxtachonia sppp, ate recorded in this paper belong to the fanuities Scincidae ${ }_{\text {s }}$ Agamidae, and Gekkonidae, and they come from a wide geographical range. One collection was made from the stomach of a snake, but as this also contained some semidigested skinks, the snake may not be a true host record.

The genus is not confineat to reptiles. Auspracerces Inglis (1968, p. 164) appears to be a synonym of Maxvachonia. Inglis recorded id. findersi (lohnsion \& Mawson) (syn. Aplectana findersi) from tbrce frog species in Wistarn Australia. It has now been secognised from five mure frog species from various parts of Australia, and from al toad, Bufo maritus, introluces into Qucensland sugar cane fiedds in 1934. Another species is recorded from a frog from New Cuinea,

The males and females of Maxvachonia spp. ate very ditterent in size, but the morphologs
of the anterior end is similar in the two sexes. Both males and females are casily distinguished from other cosmocercoid genera, the female by the great distance of the anus from the posteriot ent of the body, and by the shape of the cgegs und the male by the shape of the gubernuculum, which is very large and bears two prominent projections near its proximal end.

The differentiation of species within the genus is rather more difficult. The presence or absence of lateral alae on the anterior part of the body in the female anpears to be a specific character. There is a wide variation in the body leogth of the female within a species, although fully adult specimens from the same host animal are usually about the same size The ratio of the hody length to that of the oesophagus varies conssiderably, possibly, duc at least in part to the degree of contraction of the body in different collections. The ratio of body to sail length in the adult is more constant, and may be of specific signtificance. The egg size is similar in all specimens available, but there is some variation in the shape of the projection on the egg shell and of the envelope which surrounds the eyg in the vagina, and these appear to have specific yalue.

The male worms are rare compared with the lemale, so that it is even harder to assess the specific value of any character. The body length and that of the ocsophagus are very similar among all tho specimets examined. There is some variation in the lengtbs of spicules and gubernaculum but even these vary almost as much between two spocimens from the same hose animal (in the only case where two males were found in one host) as among all the milles collected in Australia

[^4]On these slenter exiteria three species have heen distinguished from Australian repiles, one (M, Hindeni) from Australian frogs, and onc from a New Guinea froy. The general body form is simitar in sll species, and agrces generally with the desctiptions of Chabaud \& Brygoo (1450) and Chabaud et al (1964) and of Inglis (1968). Some duditional obseryations and distingushing characters are noted under the species. Neasurements are given in Tables I and II. Iype-specimens will be deposited in the Snuth Australian Museuni.

Maxpachuniá ehathauti m.sp.

FIGS. 1-6
Hosts and lucalities: Murettitu lineoncellara (Duméril \& Bibron), lype hest: Lecrisa housumimilii (Gray). Cienolny leas (Boulenger). Pscufonaja ? affinis Guinther, all from Eyre Peninsula, S. Sust; Cermorus hbillarderl (Gray) from Pemberton, W. Aussi: Hemiergis perondi (Fitzinger) Irom Pemberton and Esperance, W. Aust.: Sphenomorphus anctralts (Gray) from Wilgarup, W, Aust: S. koschuskoi (Kinghorn) from the New England Jistrict, N.S.W.: Egernian whited (Lacepide) from Penola, S. Aust.i
 Aust.
Must uf these coslections consist of fermale worms aulut and/or jovenile (i.e. with or without embryonated eggs). There are five males, two from Ctenolus. beat, one from Lerista lineoncellarus and one in cach of two H. promith in these last two there were no femules, and as this species of Maxvachonis is scparated from others by chatacters of the fernale, the inclusion of the males is atbirpary.

Alac are present in both sexes. There are three lips, the inner border of each projecting as a cuticular lamella. The mouth is triangular, of tritadiate. Each dip is strengthened by a chitinous bar, the three hars macting to form a triangle around the anterior end of the buccal caviry, The shorl triangular buceal capsule rests against the anterior end of the oesophagus Thice well-defined teeth project from the nesophageal lining into a depression in the anteriog cnl of the nesophagus.
Fimale: Lateral alate extend from the level of the nerve ring to about the mid body. The posterior end of the hody ends in a more or less distinct mucro, which is rugose. The vulva, a transverse slit. lies at about the level of the isthmes of the oesophagos. The zwo ovaries commence shortly in front of the anus, pass
backwards nearly to the posterior end of the body where each enters a shon oviducl, leatitig to a slighty wider, sometimes almoss spherical, thicker-walled sectum i? seminal recegtacled from which the uterus lads forward. The two uteri pass forward stilis by side. uniting to form the vagina at about s quarter of the body length trom the anterior end, or a litile in front of this.

Eges in the anterior parts of the utcri each contain a coiled Jarva. The cegs are joughly sphericul, slighty longer in the axis through the knob on the shell. In the vagina, where they ate less crowded, they ate neen to be surrounded by a spongy or seticulate nraterial which forms a loose envelope atuched to the shell by, or at, the apical kinot, more or less open at the uppo stie pole (Fig. 5) and often trailing two ribbonlike pieces from the open end. This envolope was noted in the arginal description of Motwachonia dimarpha.
Mate: The lateral alat exiend for most of the body length. from the fevel of mid-nesophagus to shurtly in front of the stnus. The posterior end of the body is strongly curved ventrally. The gubernaculum is large and heavily huit, with a pair of lateral processes near the proximal end. The spicules are slender. well chitinised, and blunt-tipped. The closical apening is on an clevation of the body wall. The thirtsen pairs of caudal papillac are arranged as shown in Fig. 6.

The species is distinguished from M. dimorpler chiefly because of the presence of lateral alae in the female. The lemules atte ill shorter, and the males about the same size. as those of M. dimerpha but the spictiles and gubernaculum are larger.

Muxachunis brygoui n.sy\%,

$$
\text { FIGS. } 7-10
$$

Hosts ind Jocalities: Amphbholurus decresis (Dumerril \& Bibran), type hosi; ad. maculasis (Gray), both from Eyre Peninsula. S. Aust.i A. inermis (De Vis) Irum Yuendunu, Northcon Territory: A, muricauns (Shaw) and A. hurbatus (Cuvier) from N.S.W.
Only femiles have heen taken from these agamid lizards. All of them, however, differ from those from skinks in the abyence of lateral alac. In other respects they are very similar.

Although this distinction is slight, it is constant Notwithstanding the fact that agamids and skinks nccurred in the same tocality in Hincks National Park an Eyte Peninsula, Maxvaehonda spp. Irom the agamids were alway's

Figs. 1-6. Maxvachonia chabaudi. Fig. 1,-Oesophageal region. Figs. 2, 3.-Lateral and en face views of head, to same scale. Fig, 4.-Posterior end of femalc. Fig. 5.-Egg. Fig. 6.Posterior end of male.
without alae, while those from the skinks had alac. In view of this it is thought safer to regard the two groups as separate specics, at least until more specimens, especially males, are found.

Maxyachonia sp,

Host and locality: Marethia taeniopleura, Mornington I. Gulf of Carperstaria.
Only onc female was collected from this host; it is very similar to females of M. chabaudi but the ratios of oesophagus and tail 10 the body length differ markedly (Table 1).

Maxvachonia filndersi (Johnson \& Mawson) FIGS. 11-13
Aplectana findersi Johnston \& Mawson, 1941: 148, from Liroria ewingi (syn. Hyla jervisensix) from Kangaroo L., S. Aust.

Austrocerca findersi (Johnston \& Mawson) Inglis, 1968: 165, from litoria coelarhyncha. Heleioporus barycrugus and H. peammophilus, from W. Aust.
Host and localities: Bufo marimus Linn. from Queensland; Iimnadynastes dorsalis (Gray) from Adelaide, S. Aust:; Heleioportus inornatus Lee \& Main, Litoria moorei Copland, L. adeladensis (Gray) from near Perth, W. Aust: I a caerulea (White) from Alice Springs, N.T.
All the hosts listed above are new records for M. findersi. The new male specimens agree closely with the earlier descriptions, both in size and appeatance, but the females are distinctly larger, even those from related hosts in Western Australia. Through the courtesy of

9

Fign. 7-10. Muxvachonia brygooi. Figs. 7, 8.-I ateral and en face views of head. Fig. 9.-Posterior end of female. Fig. 10.-Egg.
Figs. 11-13.. M. Aindersi. Fig. 11.-Anterior end of female, Fig, 12.-Posterior end of female. Fig. 13.-Egg.

Dr, W. G. Inglis and of the Western Australian Museum it has been possible to compare all the kiown specimens, and no significant difference other than size was observed. 'The details of the female reproductive system have now been studied, and these agree generally with the form in other species of the genus. The ovaries begin shortly in front of the anus. The eggs in the uteri are enclosed in the characteristic outer envelope. which in some specimens is very dark. The cnvclope is in the form of a bell atmened to the knob of the shell at its apex and open at the other end: from the open end come two long ribbons of material similar to that of the cnvelope. In one case an egg lying just outside the body of the female was still attached by one of these ribbons, which passed into the vulva.

Maxvachonia finderst differs from M. dimorphu in the presence of well developed lateral alac in the female, and from both M. dimarpha and M, ewingi (see below) in the shape of the seminal receptacle. The size of the spicules and gubernaculum vary greatly in the few male specimens known, but the gubernaculum is always distinctly longer that the spicules,

Maxuachonia ewyersi n.sp.
FIGS. 14-20
Host and locality: Liroria nasura (Gray) from Brown River, New Guineq.
The material consists of three female and one male worms. The general body form is very similar to that of M. Aindersi and other species of the genust measurements are given in Table 2.

The characters distinguishing this species from M. Jlindersi are the following:

1. The oesophageal teeth are much smaller (Fig. 15).
2. The spicules are distinctly longer than the gubernaculum.
3. There are only two pairs of preanal papitlae in the male. The other caudal papillae are arranged as in M. flinderst.
4. In the female the posterior end of the hody appears rouaded, because the extreme tip is slightly withdrawn forming a dimple.
5. The arraigement of the reproductive organs in the female is slightly different. The ovaries start much further forward at about

Figs. 14 20. Maxvachonia ewersi. Fig. 14.-Desophageal region female. Fig. 15-LLateral view of head Fig. 16.-Posterior end of female. Fig. 17.-Fge. Figs. 18, 19.-Two viewh of apical extension of egy shell, to same scale. Fig. 20. Posterior end of male, o, ovary: $\Gamma_{\text {i }}$ seminal receptacle; ${ }^{\circ}$, uterus.
two-thirds the body length from the head, and the seminal receptacle is not so much wider than the uterus and ovcjector.
6. The shape and size of the eggs are different. The knob on the shell is shorter, and appears conical on one axis, but broad and grooved on an axis at right angles to this; the egg itself is slighty flattened in this latter view. The coils of the larva lie in the
plane of the wider diameter. The envelope surrounding the egg is thinner than in other species, although it is dark in colour, and forms a bell, attached at knob end of the egg, similar to those of M. flindersi, but more definite in shape (in these specimens at least). In eggs furthest from the vulva (but in the vagina) the mouth of the bell is open, but in those nearest to the vulviz it is closed.

Acknowledgements

Several of the collections examined were made by Dr. John Hickman of the Zoology Deparment, University of Tasmania; specimens from Litoria nasula were sent by Dr. W. Ewers of the University of Papua and New Gumea. To both these helpers I am most grateful. I also wish to thank Dr. W, G. Inglis, then Direcior of the South Australian Museum, because I would not have examined any frog
material for Maxvachonia sp. had he not pointed out that his genus Austracerca is a synonym of Maxvachonia.

I an afso indebted to oflicers of the South Australian Muscum, Mr. M, Tyler, Hon. Associate in Herpetology, and Dr. T. Houston, Curator of Amphibia and Reptiles, for information on the nomenclature of the hosts.

References

Cabcleero, G. R. (1968),-Contributions a la connaissance des nématodes da sauriens Malgaches. Arnls. Parasit hum. comp. 43, 149200.

Chabaud. A. E. \& Brygon, E, R. (1960)... NémaIndes parasites de caméléons malgaches. I. Mem, Ihst. Scient. Madagascar A. 14, 125159.

Chabayd, A, E. \& Brygoo, E. R. (1962).-Nématoules parasites de caméléons malgaches. Deuxième Note. Annis. Parasit, hum. comp. 37, 569-602.

Chabrud, A. C., Caballero, G. R., \& Brrguo, E. R. (1964).-Affinilés entre les genres Skrjabineluzia (Ascaridida Seuratnidea) et Maxvachonia (Ascaridida Cosmocercoidea): Bull. Mus. Nat, Hist. Not., Paris 36, 844-848.

Inglis, W, G. (1968).-Nematodes parasitic in Western Australian frogs. Bull Brit. Mus, nat. Hist. Zoology. 16. 163-183.
Johnston, T. H., \& Mawson, P. M. (1941),Some nematodes from Kangaroo Island, SA. Rec. S. Aust. Mus. 7, 146-148.
TABLE 1

Species	M. chabaudt						M, sp.	M. brygoo		
host group	Skinks				Geckos	Snake	Skink	Dragons		
locality	Type host, S. Aust.	Others, S. Aust.	W. Aust.	N.S.W.	S. Aust.	S. Aust.	$\begin{gathered} \text { Qld. } \\ \text { Mornington. } \\ \text { I. } \end{gathered}$	S. Aust.	N.S.W.	N.T.
δ^{4} Length (mm)	2.5	2,3, 2.5	2.4, 2.7	-	-	-	-	-	-	-
Oesophagus	380	520,500	450,370							
L/Oes. length	6.6	5,1, 5.0	5.3, 7.3							
A-nr	145	330, 300	165, \sim							
-ex.p.	330	200, 200	300, 310							
Spicules	120	120, 125	120, 130							
Gubernaculum	130	160, 160	135, 150							
O Length (mm)	7.3-8.7	6.0-15.5	9.6-10.3	11.7-13.7	7.5-14.9	7.2-9.6	8.5	9.3-10.8	8.8-12.9	8,11.9
Oesophagus	720-800	570-980	800-880	890-950	570-920	720-890	500	800-900	620-770	750, 1080
L/oesoph. length	10.2-11.0	9.3-16.8	11.6-12.5	13.1-14.4	12.6-17.9	10-11.8	17.0	10.3-13	13,5-16.7	10.6,11.0
A-nr	150-180	160-280	220-270	220-270	-320-	240-300	160	250-270	210-220	--,250
-ex.p.	270-370	300-630	410-500	450-560	400-600	400-450	240	370	350-420	- 550
-vulva	380-500	380-800	520-600	600-700	500-600	530-650	350	$490-$	500	-,780
Tail (mm)	1.9-2.6	1.5-4.2	2.0-2.3	2.9-3.3	1.5-3.8	2,1-2.9	0.92	2.3-2.9	2.1-3.1	1.6,3.1
L/Tail length	3.3-4.2	3.6-4.2	4.5-5.1	3.9-4.5	4.1-4.2	3.7-4.1	9.2	3.5-4.9	3.9-4.2	5.0, 3.8

TABLE 2
Measurements of Maxvachonia spp. from Australian frogs: unless otherwise indicated, measurements are given in $\mu \mathrm{m}$.

Species	M. findersi						M. ewersi
locality	S. Aust.	W. Aust,	W. Aust	W. Aust.	N.T.	Qld. (introduced)	N.G.
host	Limnodynastes dorsalis	Heleioporus inornatus	Litoria moore?	L. adelaidensis	L. coerulea	Bufo marinus	Litoria nasuta
δ Length (mm)	-	-	-	2,2	2.35	--	2.4
Oesophagus				370	380		350
L/oes, length				5.9	6.2		6.9
A -nr				190	170		
-ex.p.				230	290		
Spicule				100	150		120
Gubernaculum				120	180		100
\%. Length (mm)	8.9-11.1	6.7-9.8	8.1-9.0	11.2-11.3	6.2-9.0	8.8-11.1	11.0-16.3
Oesophagus	680-900	750-870	710-820	720-780	$700-750$	680-800	700-900
L/oesoph.	9,9-15	8.9-12.1	10.4-11.4	14.5-15.7	8-12.1	11.3-13.9	14.7-17.2
$\mathrm{A}-\mathrm{nr}$	230-270	230-270	250-290	220-290	200-210	200-290	250-330
-ex.p.	430-550	430-550	450-540	450-500	350-420	400-510	320-420
-vulva	570-720	540-690	600-690	580-640	470-550	530-630	450-540
Tail (mm)	1.8-2.5	1.3-2.2	1.7-1.8	2.5-2.8	1.5-2.2	1.6-2.3	2.3-3.3
L/tail	4.5-5.5	4.5-5.1	4.9-5.0	4.0-4.5	4.1-4.7	4.8-5.9	4.7-4.8

THREE NEW SPECIES OF THE GENUS CLOACINA LINSTOW (NEMATODA: STRONGYLATA) FROM MACROPOD MARSUPIALS

by Patricia M. Mawson

Summary

Three new species of Cloacina are described: C. mundayi from Macropus rufogriseus, from Tarraleah, Tasmania, characterised by the presence of a dorsal buccal tooth associated with the duct of the dorsal oesophageal gland; C. clarkae from M. eugenii, from Kangaroo Island, South Australia, characterised by the shape of the cephalic papillae and the structure of the oesophagus; C . edward,vi from M. bicolor, from Sunday I., Victoria, characterised by the presence of oesophageal 'plumes', very short spicules and very short vagina.

THRLE NEW SPECIES OF THE GENUS CLOACINA LINSTUW (NLMATODA: STRONGYLATA) HROM MACROPOD MARSUPIAS

by Patricla M. Mawson*

Abstract

Summary Three new species of Clougho are descrihed: C. muntayi from Macropus rifogriseus, from Impafeah, Tasmania, chatacterised by the preaence of a dorsal buccal tooth asmeiated with the dut of the dorsul oesophageal gland; c. clarkat from M. eugenii, from Kangaroo Island, South Australia, characterised by the shape of the cephalic papillae and the structure of the oesophagus: C. ednerdat Lrom M, hicoler, from Sunday I., Victoria, characterised by the presence of oesophageal "plumes", very shore spicules and very short vagina-

Cloacina mundayi n,sp.

$$
\text { FIGS. } 1-7
$$

Host and locality: Mncromu rufogriser, from 'Larraleah, Tas.
This species is :1 relatively shore srout nemawode. The material consists of four males and four females The submedian papillae are small, with the distal segment much smaller than the proximal, The long threadlike cercival papillae are close to the anterior end.

The shallow huceal ting is somewhat hexit gonat in shape, and is unevers in depth, A small dersat oesophageal tooth projects into the buccal cavity, und is traversed by a delut Erom the thrsal nesophageat gland the serophagus is cylindricad, wislening only slightly at the pos. teriod end. No teeth are present in the lumen The nerve ring is at about the mid-length of the nctophagus, and the excretory pore shortly hehind it.

The posterior end of the female tapers from in front of the vulva to the dip of the tail: the distanec from the amus to the vulya is about equal to the wit length. The yatgina is slightly ionger than the tail. The eggs are 110 by 65 μ^{131}.

The spicules are about $1 / 2,5-3,0$ of the body length. The dorsal lobe of the bursa is unusually long for the genus, and the ventral lobes are united. The bursal rays are as shown in Figs. 6 and 7, The genital cone is short and conical, and on either side of it there is at cuticular inflation. No accessory cone can be seen, Mcasurements are gived in Table 1.

This species is distinguished from all others so far described in the shape of the bursa and in the presence of a dorsal wooth in the buccal
capsule. In describing C dahhi. Linstow (1897, p. 287) mentions the presence of a gland (seen in T.S.) in the dorsal wall of the ocsophagus. with a duct opening torsally (presumably yoto the lamen of the oesophagus or into the mouth). Such a distinct gland has not been noted in descriptions of nther species of the genus, nor in re-examination of fresh malerial of various species. It is not present in C. clarkue or C. edbripdst. In the description of C. Atunti there is no indication of a dorgal tooth associnted with the gland.

Cloacina clarkae n.sp.
FIGS. 8-13
Host and locality: Macropes eugcnit, frons Kangarou I
This is a large worm from the stomach of the host. The submedion mapillac are lofig and slender, and the distal segment of euch is disLinctly longer, but not wider, Han the proximal one. The cuticle is thickened just behint the cervical groove. The threadlike cervical papillue are relatively close to the anterior end. The buccal ring is decp, its walls relatively thin, and sloping outwards towards the anterior ends the anterior margin is lobed.

The oesophagus is long and slender, except for a distinct terminal huib ${ }_{2}$ It in clearly divided into fout regions-(1) in the anterior half there are 9-11 distinctive equidistant places where the lining appears to be creased; (2) in the rest of the cylindrical part of the oesophagus the cuticle is more or less featureless: (3) just below the terminal bulb, the desophagus and its lurnen are slightly wider, and in this region about 8 well developed teeth project

[^5]'Irank. R. Sac. S. Aust. Val. 96. Fant 2, 31 May 1972.

Figs, 1-7, Cloacina mundayi. Fig. 1.-Oesophagcal region. Fig, 2,-Head, lateral view, Fig. 3,Head, en foce. Fig. 4-T.s. anterior end shottly behind buceal ring. Fig. 5, -Posterior end of female. Figs. 6, 7. Interal and ventral views of bursa.

Figs, 8-13. Cloacing clarkae. Fig. 荈.-Lateral view of oesophageal region; Fig. 9. Head, ventral views. Fig. 10. Par of oesophagus showing teeth in lumen. Fig, $11,-1$ ateral view of bursa. Fig. 12-Dorsal fay and genital cone. Fig. 13--Posterior end of female.
Figs. 14 22. Choacma edrardsi. Figs. 14, 15,-Lateral and en Jace views of head. Figs. 16, 17 : Oesophageal regions of male and female respectively. Fig. 18. -Part of oesophngus showing plumose structures, Fig, 19,-T,S. oesophagus in region of plamose stuctures, Fig. 20.-Posterior end of female. Figs. 21, 22. - Noral and lateral views of bursa.

Figs. 8. 13, 16, 17 and 20 to scale beside Fig. 13. Figs. 9 and til in scale beside Fig i 10.

Figs. 14, 15, 18 and 19 to scale beside Fig. 19. Figs. $2 t$ and 22 to scale beside Fig. 22.
ntio the lumen (Figs. 8,10 ; (4) the terminal bulb. The nerve ring lies at about a third the length of the oesophagus from the head, and the excretory pore at the level of the anterior end of the oesophageal bulb.

In the fentate the tait is conical and pointed, and the vulua is athoit half the tial longth in from of the ants. The vagina is rather longer than the distance from the vulya to the tip of the tail. and is somewhat convoluted. The eggs dre abouk $173 \times 80 \mathrm{~mm}_{\text {, }}$ and contain a "tadpole" stage larva.

The bursa is much shorter ventrally than dotsaliy. The arrangement of the rays is shown in Figs. 11 and 12. The genital cone is well devcloped and hears dorsally a short pair of appendanges, The spicules are a little more than a quarter of the body length: it gubernaculum is present.

The species is among the medium-large sized Chacina spp-a and can be distinguished by the characters of the head and ocsophagus. It is perhaps closest to C. communis Johnston \& Mawson (1939), which however is larger, and in which the oesophageal tecth are arranged differently (Mawson 1961, p, 196).

The specific mame is given in recognition of the work of Miss Helen Clark who isolated the worm, and who included a study of the eurly stages of the life history in work for an Honours Degree in this Department.

Cloacinaz edsardsi n.sp.

$$
\text { FIGS. } 14-22
$$

Hnst. and locality: Wallatia himon, from Sunday In Vic:
This apparently nety species of the gepus CPoncina helongs to the group in which the disLal segments of the submedian cephatic paplliac
are much larger than the proximal segmerns. The cuticle behind the head is thick, becoming less so towards the base of the oesopiragus. The long threadike cervical papillac. lie shortly in front of the level of the newe sing. The buccal ring is short, wide and stoutly built, the walls oval to triangular in section.

The oesophagus is short, more or leas cylint drical, with a small lerminal swelling in the fenate, but not in the male "There are no teerh in the lumen. but thete arre three very distinat "plumose" arear, one on each of the three walls of the fumen (Figs. 18. 19), in the region just anterior to the nerve ting. These areas are formed by confluent ridges on the cuticle lining, the Jumen. They appear to be similar in form to suct structures figured and deseribed for sonve Marwhidia spp. frome elephants and rhinnceros, but have not praviously been described from Alstratian trichonematines.

The nerye ring surrounds the ocsophagus at or just behind its midength. and the everetory pose is just jostrosophageal.

The posterior and of the [amale tapers grhdually from ahout the vulva, endang in as stender pointed tail; the vulva is rather more than a tail length in Cront of the anus. The vagina is very shor, The ceggs are $\$ 3 \times 50 \mu \mathrm{~m}$.

The xpicules are untsually short for Cloachm spp., sbout $1 / 14$ of the hody lengtite a gubermaculum is present. The gental cone is well developed, conical, with two small projections forming the ascessory cone. The forminat arraugement af the bursal rays are shown in Figs. 21 and 22.

This species is, distinguisfed trom any previously described by the presence of the plumose structures in the cesophagus, as well as by the untisually short spiculen and the very short vagina.

Acknowlengements

L ant very much indebted to the people after whom the species are named, who have collected theste the other nematodes and sent them io me-Mr. Barry Mundey of the Mt. l^{M} leasant Laboratories of the Tasmanian Department of

Agriculture, Launceston, Tasmania, Miss Helen Clark of Adehide, and Mr. Gcofl Edwards. a post graduate student (1969) in the Department of "Loology, Monash Universty, Victoria.

References

Johnchin T. H. \& Mawson, P. M. (19.39)Strongyle nematodes from Central Austroliant kangarnos and wallabies, Trms. R-Sor, os. Ansio $62,263-28$.
LINSTOW, 0 . VON (1857),-Nemathelminthen gesammelr vou Herm Pral. Dr. Fi, Datl im

Bismarck-Archipel. Archit, f. Naturges. 63. 287-291.
Mawson, P. M. (1961), -A note on she occursence of nesophogeal iceth in species of the genus Chouing (Nematnda: Strongyloilea) Trans, R, Suc. S. .thsp, 85, 85-89.

TABLE 1
Measurements of Cloacina edwardsi, C. mundayi and C. clarkae; unless otherwise indicated, measurements are in $\mu \mathrm{m}$

	C. edwardsi		C. mundayi		C. clarkae	
	male	female	male	female	male	female
Length (mm)	6.3	$6.5-7.7$	$3.1-3.4$	$4.4-5.0$	$8.8-9.2$	$12.3-13.6$
Oesoph. length	480	$470-520$	$470-490$	$470-570$	$1100-1220$	$1250-1350$
Antr. end—nerve ring	260	$250-290$	$250-260$	$250-320$	$300-350$	$300-350$
\quad-cervical pap.	220	$170-200$	100	$80-90$	$115-160$	$110(3 \times)$
\quad excret. pore	550	$480-610$	$250-340$	$330-350$	$890-900$	$930-1020$
Spicule length	430	-	$1100-1150$	-	$2400-2600$.	-
Tail length	-	$290-300$	-	$210-250$	-	$260-350$
Vulva postr. end	-	$680-730$	-	$410-500$	-	$430-500$
Length/oesoph.L	13	$13-15$	$6.5-7.1$	$8.6-9.3$	$7.2-8.5$	$9.5-10.7$
Length/spic. L	14.6	-	$2.8-3.0$	-	$3.4-3.7$	-

FURTHER RECORDS OF THE PITTED-SHELLED TURTLE (CARETTOCHELYS INSCULPTA) FROM AUSTRALIA

by R. Schodde, I. Masonand T. O. Wolfe

Abstract

Summary Further records of the Pitted-shelled Turtle, Carettochelys insculpta, including the first breeding record, are reported from northern Australia. It is concluded that the species occurs in river systems right around the landward margins of the Sahul Shelf. The stone fruits of Pandanus, whenever they are available, appear to comprise an important item of the turtle's diet.

FURTHER RECORDS OF THE PITTED-SHELLED TURTLF
 (CARETTOCIIELYS INSCULPTA) FRON AUSTRALAA

by R. Schodde,* I. Masan,* and T. O. Wolfe*

Abstract

Summary record, ace peported from onothern Australia. It is concladed that the species oceurs in river systems right around the dadward margins of the Sahul Shelf. The stone fouts of Pandmas, whenever they are available. appear fo comprise an important item of the lursle's diel.

The Pitred-shelled 'Turtele Carmochelys thectipet Ramsay, sole Jivirgs specics of is Family, Caretochelyiduc, that apparently occurned widdy in pabacarctic and nearctic regions up until early Tertiary times, was known only from the river systems of swathern New Guinea until 1969 (de Rooij 1915, $1922:$ Wermuth \& Mertens 1961). In that year, the first specimens were recorded for Australia (Cogerer 1970). Ten specimens were captured. all in the Daly River, Northern Territory, in freshwater reaches about 13 kns above tidal influenco. Because the single specimen examined did not appear io differ significantly from New Guincan specimens, and ho evidence of breeding was found. Cogece (1.c.) specutated on whether of not the Daly River turtes represented mercly a non-breeding outlier of a parene fapuan population. All apecimens were relatively small, ranging in carapace length from about 20 to 38 cm . It Was alise determined from faeces that food ingested by one of them comprised figs and freshwater snails.

A second verified record now eomes from the South Alligator River system. approximately 400 km east of the Dilly River site. There, in Ysllaw Waters billatong on Jinn Jim Creck, a single female (CSIRO R No, 320) Way camght by is CSIRO tanal survey leum un 5 November 1971. The specimen (Fig. 1). Ueposited irr the museum of CSIRO's Divisiun of Wildlife Research, Cantserat, is large, having a carapace length of 45.6 cm . This compares with rat $48-50.5 \mathrm{~cm}$ for the largest New Guinea specimens (Walther 1922: Schultze-Westrum 1963). Other dimensions, taken from life, are: carapace breadth (inelud-
ing marginats) 36.5 cm : total heipht (carapace + plastron) 14.8 cm hearl tengh (ou base of crown) 15 cm ; head width 8.1 cm ; head + neck length (10 gulat strichth of plastron) 18:5 cnu: fore-limb length (posterins margin of nipper) 26.4 cm : hind-linth length (anteriot margin of hlipper) 25.3 em tail (to hase uf anal shiedds of plastron) 16.9 cm long. with 12 or 13 dorsal seute bands solt part colours: shell. limbse head and tail. mid to dark olive. brown dotsally, grading to tream ventrally (fleshy cream on plastron): iris mid blue-gieengrey. Except for the reduced number of candal scutes. quoted at 1416 for New Guincan specimens by Je Rooij (1915), the South Alligator specimen appears to be identical with New Guinean forms.

The condition of the reproductive tracts showed the femate to be in the process of laying: at large number of emarged megalecithal ova were present in the ovaries (Fig. 21, Mim) follicies also appeared to have ruptured recently, and both oviducts wete markedly swotlen. The large unshed ova were dmost the size of shelled eges according to she dimentions for the latter illustrated by de Rooij (1915. Fige 102). Because Yellow Waters billabonge ca 30 km up stteam above tidal inlluence on the South Alligator sysum, had been landlocked between April and Noyember during the monsoonal diry season, there can be no domith that eges had been deposited somewhere along the billabong. This represents the first evidence that the species breeds in Australia.

While kept allive for a fime in water. the furtle definceated large quantities of partly digested husks of the stone fruits of Pandumes. as well is a fow shoot leaves (Mehternos and

[^6]

Fig. I, The Pitted-shelled Turlle. Combtucheds'a insculpta (CSIRO specimen K, No. 320)

Fis. 2 Reproductive tract of ovulating Caretochelys inscnifits (CSIRO specimen R. No. 320).

Leguminosac .spp,), seeds, roots, pieces of aerenchymatous plant stem, and traces of animal mater. The animul matter, comprising ed I to of the defaceated material, included fershwater snails (Thiaridae sp.), water-hoarmen (Corixidaes sp.), the water bectics Homeodyes scdtellaris Germ. (Dyaiscidate) and Hydrophilus fatipalpus Cast, (Hydrophilidac). and ants (itribomyrmers sp.). Upon dissection. the collon and lower intestine of the turtle were found to be paeked with Pourdanus fruit husks. Perianth segments remained attached to many of the husks, indicating that the turtle had presumably - broken and caten hard, green. fruiting cones with its jaws-no mean feat. T. G. Schultze-Westrum (pert., commo) hus also observed the species reeding on pandan truit in New Goinca. Thus, although turiles have proved io be sotnewhat omnivorous (Schulize-Westrum 1963: Cogger 1970; J. Cann. pers, comm.), the fruits of Pandams, whenever falling from trees of the various species of the genus that conmonly line and ovephang the cstuarine and lower freshwater reaches of tivers in both southem New Guinea and northem Australias would appear to constitute a ratber significant item of their dier.

There have heen numerous other feconds of "freshwater turtles" in nörthern Australian rivers in recent years (cf. Cogger 1970) and. though in one case unsupported by specimens. at least two appear to be of authentic Carerporithelys insculpia. One is of specimens exumined by d . Cann (pers. comm.) from the upger reaches of the Daly River about 140 km abuve tidal influence in the Northern Territory. A carapace of ore of the specimens has been placed in the Australian Museurn, Sydacy
(Keg. No. R.31717), The other, published meid dentally hy St, John (1967, p. 527) and Parker (1971), is of observations made by the late A. de lestang who observed "herds of turteg" devouring the fallen fruits of Pandiapus (P. de. lestengit Si . John) in perennial rivers southwest of Burketown in north-western Queensland ind/or caltern Northern "「erritury. As all ather freshwater chelonians in the region are cutnivorous, it seems probable that de l.esting's observations refer to Capurochelys.

These records suggest that the Pitted-shelled Turte occurs in the lower (to upper) neaches of major river systems across northern Alstrislia, at leakt from the Victoria River District of the Nurthern Territory to as far east as the Gulf country of Queensland and guthraps western Cape York Peninsula. From local information, J. Cann (pers. comm.) helieves the turtle to be rather common in most coastal rivers flowing into the Joseph Bonapatie und Van Diemen Gulfs, In overall distribution, then, the species apparently occum in river systerns along the landward margins of the Sahul Shelfi Little is yet known of its oceurrence or movements in the intervening Arafura Sen.

Acknowlerlgements

We are indebled to Messrs. W. Vestjens and 1. H. Culaby CSIRO Division of Wildife Rexearch, for assistance with measurcments and examination of the CSIRO specimen and in the preparation of the text of this paper; and to Drs T. G. Schultze-Westrma, and Mr. I Cann of Yarca Road, phillip Bay, Sydney for auditional obscreations on Cirtethochelys insrmpta. Mr. \&. Slater, CSIRO Division of Wildlife Research. took the photographs.

References

Cogger, H. C. (1970).-First reand ne the Pitted-shelled Turtle, Carffrochels: inseripha. from Australia. Scareh 1, 41.
DE Kooki. N. (1915) - "The reptiles of the IndoAusiralian archipelago. 1, Lacertilis, Chelonia. Emydosauria." (Brill; Leiden.)
De Rools, N. (1922), -Reptiles (Lacertifia, Chelonia and Eimydosautia). Now (ithinea 13. <ool. 133-153.
P'ans:n. S. A. (1971)-Association hetweer the Sulphur-crested Cockatos and Pomdomus. IF.A. Nammalist 12, 23.

Schultze-Westrem, T. (1963).-Die Papia. Schildkröte auk Neuguinea, Notur umbl Musemm: 93, 1.19-127.
St. Johs, H. (1967):-Revision of the Genus Pandamue Stickman, Pt. 23. Threc Australisi Snecies of Pandanis. Pucif. Sci- 21, 523.530.
WACTHER, W. G. (1922)-Die Neu-GuineaSchildkrötd Caprthochelys insculpar Ramsay. Nova Guiner 13, Zuols, 607-704.
Wermurh, H., \& Mertens, R. (1961) - "Schildkroten. Krokodile, Bruckenechsen." (Gustav Fischer: Jena.)

THE MORPHOLOGY AND RELATIONSHIPS OF MUELLERENA WATTSII (HARVEY) SCHMITZ (CERAMIACEAE: RHODOPHYTA)

by ELISE M. WOLLASTON

Abstract

Summary The morphology and life history of Muellerenu wattsii (Harvey) Schmitz is described and its relationships discussed. It is recognized as belonging to the tribe Crouanieae (Ceramiales, Rhodophyta) on the basis of thallus morphology and stages in development of the procarp and carposporophyte. Features including regularity of branching pattern and elaboration in development of the involucre surrounding the carposporophyte suggest a probably phylogenetically advanced condition.

THE MORPHOLOGY AND RELATIONSHIPS OF MUELLERENA W'ATTSH (HARYEY) SCHMITZ (CERAMJACEAE: RHODORHYTA)

by Elise M, Wollaston*

Abstract

Summary The morphology and life history of Matelerena watshi (Harvey) Schmitz is described and jts reatumshins discussed, It is recognized as belonging to the tribe Crounaienc (Cramiales. Rhodupherta) on the busis of thallus morphology and stages in development of the procarp and carposporoplyte. Features including regularity of branching pattern and elaboration in development of the involucte surrounding the carposporophyte suggest a probahly phylagenctically advanced conalition.

Introduction

Muelherma wathsii (Harvey) Schmitz in Schmicz \& Houptfleisch was descrihed as Croumtin Halnii by Harvey (1863), who considered it closely sllied to ('s agardhima |now Pilocladia wrardhiama (Harvey) Wollastoin 1968]. Schmitr (1889) listed the species is belonging to a new genus Miseltarella which, however, he formally stescrited (in Schmite \& Hatupttcisch 1897) as Muellerena with M. wifmif as the type species.

Muellereha is a monorypic genus scemingly quite slistinct from other closely related genera. Schnitic (1889) placed it in the Dasyphileas but Kylin (1956) suggested that it was prolobbly more closely related tor Cromania and considered it to be insufticiently known for corece placement. Hommersand (1963). ufter examining specimens of M. warsil in TCD. concluded that it was probably correctly placed in Dasynhilesce. However, detailed study of both vegetative and ecproductive fentures show that it is best placed in the Crmunnicte.

Matcrial used for investigution has been mainly drift plank collected at Stinky Bay. Nors Creina, S. Aust. (Wollastom, 14.xi.1955: ADC: A20004: Wollaston, 19.v.1964; ADU, A27924) and at Seal Bay, Kangatoo T. S. Aust. Womerslen, 21,1965: ADU, A28819), These collections included both tetrasporingial and carposporangial plants.

Muellerena wattsii (Hurvey) Schmitz in Sclumitz * Hauptfleisch 1897: 496. De '10ni 1903: 1388; 1924; 490. Luces 1909: 50. Lucas \& Perrin 1947: 344. Mazza 1911: No. 397.

> Crounnia watsif Harvey 1863: synop. No. 637. pl: 291. J. Agardh 1876: 86. Tisdall 1898: 503.

> Afucllerglla wattsit Schmitz 1889: 451 (nomen nudum), Kylin 1956: 397.
thallus to 13 cm high with terele, sparinglybranched axes bearing alternate. distichons latcral branches up to scveral em lone find usually pinnutely branched in the outer part (Fig. 1): laterals borne from allernate axial cells. accasionally with at shorter branch (less thare 1 cm long) opposite or between the longer laterits (Iig, 2). These shorter bratnches are anitisted on the basal cell of an original whorl-branchlet and develop in its place. Axial cells are l-t $\frac{1}{2}$ times as long is broat with cells of the central mature thallus usuatly $350-400 \mu \mathrm{~m}$ long. Each axial cell bents from its upper part th whorl ol 5 whori-brabchlets (Fige 3ii, 4), with the exception that those cells which hear lateral branches often produce only 3 whorl-litanchlets and 1 latcral branch (Fig. 3i, 1 ii).

Growth takes place by transverse divisions of an apical cell and whorlhranchicts are initiated usually on the sub-apical cell (Fig. 5) with the first-formed initial of each whor in stateral position, the second and third to the right and left of it respectively and those lastformed opposile the lirst one (Fig 3ii). During carly development; lateral branches are characleristically curved due to their having the firstformed and hence the Iongest whorl-hranchlets borne on the nbaxial (outer) side, while she shortest most immature ones are adaxial in position (Fig, 5). However, after initial elongation of 1 -scveral mm , each young lateral produces at its tip further alternate distichous

[^7]

Fig, 2. Type specimen, TCD (Warmambool, Vic., cast ashore, Wunts. Sepl. I8ro, Harvey 221). Regular. distichous arrangement of short tateral branches and occasional shorter batnches opposite of between the longer ones.
bateral tranches on olternate axial cells. On each of these axial cells the lateral branch in initiated first followed by whorl-branchlets to the right and deft of it and the Jast formed one opposite the lateral branch (Fig. 3i, iii. iv). Mout lateral branches cease growth carly but as few conthue to clongate and form indeterminate thallus branches (Fig. 2). Young cells enlarge rapidly and gland cells and tetrasporangia may oceur very close to branch tips.

Mathre whothranchlets consist of several censecutive di of tri-chotomous whorls of cells, find ferminate in whon, 2 - or 3 -celled chasins of small cells. cach up to 7 дm siam. atien terminased hy a slender, elongate hair to $184) \mathrm{am}$ long (Fig. 4). (ells of whort-branchless atre 1-2 times ats long as broad and up to 60 fom long in the central part of mature whorl-brinchlets. Whorl-wanchicts are enmmonly lost fron onder axes and particularly from the upper and lower axial face between the distichously-arranged branches.

Axes aro corticated, except when vers voung, by descending, branched filamentous shizoids of elongate cells which arise from the hasal cells of whori-hranchlets (tigig 2 6) and intertwine to form a dense axial covering wilh short. horizontal branches. composed of s chain of several small eells, projecting outwardly. In older parts of the thallus the axial edle become very thim-walled and may be almost indistinguishable within the cortical cylinder.

Ovoid to pyriform gland cells up to 16 an long, each within a thick gelatinous sheath, occur as homogencous, refringent saructures borne in place of outer bramches of whorlbranchlets and seattered, sumblimess abun danily, over the thallus (Fig. 7). Cells of the thallus appear to be uninucleate althotgh pro. perly fixed material has not been availuble for study with specific nuclear shains. Rhodoplasts. vary from small and rounded in young cells to reticulate and finally to elongate in mature cells (Fig. 8i-iii).

Procurp and Carposperonhyte-Carpogonial branches, 4 -celled when mature, are initiated singly on as supporting cell which is one of a whort of 4 cells borne from the upper part of the terminat cell of a shott $2\{-3\}$-celled special fertile branch (Fig, 9). The sertite branch is produced at the outer end of the basal for second) cell of a whorlbranchlet and replaces one branch of the normal di- or trichotomy. The sub-apical cell of the ferdite brinch also bears a whorl of (4-)5 cells (Fig. 9). Ench fertile branch is initiated near the tip of a branch axis, so that a suceession of maturing procarps and carposporophyzes is produced as the branch axis elongates. Cells of the carpogonial branch ate formad by thansverse divi. soons of an initial cell which is cut off outWardly from the supponing cell (Figs. 10-13). The lowes three cells stain densely and appear honrogeneous in structure while the carpogonium is smaller, often with a densely-staining protoplast concentrated in one portion of the celt, and bears an elongate trichogyne, io $90 \mu \mathrm{~m}$ long, usually swollen at its base and its sip (Figs. 12-14). A sterile cell is formed on the upper side of the supporting cell after initiation of the curpogonial branch and is usually well-developed by the time the carpogonial branch is mature (Figs. F1-13).

Following fertilization, the carpogonium enlarges ind becomes rounded in form while the trichogyne degencrates and an ausiliary cell develups from the upper part of the supporting cell (Fig 15). At this stage the three sterile cells. making up the whorl which includes the supporing cell of the carpogonial branch, commence to enlirge and ench becomes roughly triangular in shape; the sicrilo cell borne on the supporting cell divides to form a chain of several cells (Fig. 15) while the cells forming the whot on the sub-apical axial cell elongate and produce rerminally the tirst cells of branched involucral filaments (Fig. 16). Fusion takes place by means of a connecting cell between the earpogonium and the upper part of the auxiliary cell, leaving only one or two small cell fragments in place of the carpogonium on the degenerating carpogonial hranch (Fig 17).

Branched involuceal hilaments formed from the enlarged sterile cells on the apical and subapical ixial cells of the fertile brincts develop rapidy, and loosely surround the developing carposporophyte (Fig. 17). The lasal cells of the upper whofl of filaments remain characteristically triangular and farger than other ceila
of these branches (Fig, 17). The auxiliary cell cuis off a gonimoblast cell fiom its upper side and simultaneously forms a pit-connection with the apical cell of the fertile branch axis (Fig. 18). Through this conncction nutriment is possibly conveyed more directly to the carposporophyte, while the old supporting cell acts as the basal cell of an involucral filament. Gonimolobe initials, which each give rise to a rounded groun of carposporangia, develop successively with the first onic of two gonimatohes producet in a Pateral position. Further gonjmolohes ate produced without regular ordes so that a cotal of 6 or more groups af carposporangia nt various stages of devclopment may be present at the one time (Fig. 19). As the first carpospmrangia mature, the nowly formed pit-connection between the axial cell and auxiliary cell gradually wideas and the connection between the lower part ot the ausiliary cell and the supporting cell remains small and probably non-functional or is fisally broken (Fig. 19). The invofucril filaments, ench brunched several times, curve upward and loosely surround the mature carposporophyre.
Spermatangia-not recorded.
Tetrasporangia-Sphericat, tetrahedrally-divided tetrasporangia, seddom greater than 25 $\mu \mathrm{m}$ لiam, are home on the outer celts of whorl-branchters in place of vegetalive branches (Fig, 20), in a similar position to gland cells. They may occur on any patt of the thalles but are usually moxt abundant on young brunches.

Tripe Localisy-Warrnambool, Vic. (Wans: Scpr. 1860).
Holotym-TCD. Harvey Alg. Ause. Exs. No. 221.
Disarihaion-From West I_{i} and Kangaroo I. S. Aust. to Warrnambool, Vic.

Disenssion

Midllerente tyatisii is characterized hy the fullowing vegctative and reproductive features:
(a) a consistent branching pattern and short luteral branches developed regularly from the outer end of axes.
(b) whorl-branchiets in whorls of 5 on each axial cell, except on those which bear shore lateral kranches,
(c) fusion between the lower part of the auxi. liary cell and the fertile axial cell during carposporophyte developmeni,
(d) a distince filpmentous involucre sursounding the carposporophyte and involying the
original supporing cell of the carpogonial branch.
Vegetative features such as the alternate-dis. lichous arrangement of shust Luteral btanches at tho tip of each previously-fornted latcral. the form of axial cortication, atnd the consistency in arrangement and number of whorlbranchleis on each axiad cell, suggest a telationship with the Psilachadia group of the Ciohanisac. These features were regarded by Wollaston (1968, p-404) us indicative of a phylogenclicadly adivatuced thallus form. Hommersand (1963) stated that Muellerent wattsii Way quadriverticiltate and be considesed the order of inithation of whorb-branchlets in a thoslomelacesn sequence (the first abaxial, the next two to the right and left of the first and the fourth one adaxial) to be a signiffeant taxonomic feature characteristic of the Dasyphileae. However. M. warsil has in fact 5 whorl-branchlets per whorl except where shutt lateral branches are produced, and in these Whorls the order of develogment of the 4
initials could have arixen from : crouaniois sequence in which the second branchlet is fotmed opposite the first and the third and fourth at right angles to them, Suppression of the adaxiad branchlet wheo adjacent to anothet axis is commonly found in a number of taxa, for example, in species of Platyhumbion J. Agandh and Amnenothamnion Wollaston (Wollaston 1968). In Muellerend Whetsiv this could explain development of the intermediate whorl-branchlets of each whorl prior to initiasion of the adasial whart-buanchlet(s). Whish at times is completely lacking at the base of lateral branches. M. Warsii clearly crolved a stable pattern of branching and on this basis is probably vegetatively advanced.

Severa? other vegesative features af M. waptsil also suygest relationship with the Crouanitate group. Gland cells, hot previously recorded for M. wansii, are similar in form to those found in Peilocludia australis (Itarv.) Wollaston, P. vestitn (Hary.) Wollaston and Gulronker ambulara. Harvey, although they lack

Tig. 3. i-iv. Artangemens and sequence of initiation of short larcral branches (L) and whosl-branchlety in whorls on successive axial cells near the tips of axes. (Diagrammatic.) i , ii, iii ropresene in transverse section the 3 cells shown in iw.
Fig 4. Transverse section of axial cell bearing a whorl of 5 whorl-brancblets with telrasporangia.
Fig. 5. Tip of branch axis showing afternase, distichous arrangement of youny lateral bsanches ($L_{1}-L_{4}$) on alternate axial cells and abaxial initiation of first-forroed whorl.branchiets on cells of lateral brancll ates. (Wilut-brathelats on faces of axes onitted for clatity.)
Fig. fi. Branched, descending cortical rhizoids botne on hasal cell (b) of a whorl-branchlet.
Fis. 7. Glads-celly borne in plaxe of branches of whotd-branchlet.
Fig. 8 Rhodaplasi mructure (i) young cell with tounded rhodoplasta, (ii) enlarging cell with reliculate rhodoplasts, (iii) mature cell with elongate thodoplasts. (Diagramnintic.)
Tig. 9. Carpegonial branch un opecial z-ectled fertate banch borne in place of a whit-banchlet brinch on busal (or secind) cell of whorl branchlet.
Fig. ©0. Cupogoniat bsanch luitial cut off ourwardiy from supporing sell.
Fig. 11. Young carpogonial branch, 3 celled stage, un supputing cell which also bears at amald sterile cell ((s)
Fig. 12. C'isrgugonial branch, 4celled, with developint trochogync.
Fig. 13. Carpogonial branch with fully elongated trichagyne.
bile. 1中, pusion of spermatiun (sp) with mature trichegyne
Fig. 15. fuxiliary exll (a) formed from upper side of supporling cell; carpogunial branch with enlarging crorogonium (c) and terminal remmant of brichogync; sterile cell (s) bearing first cells of involucral filameni.
Fig. 16. Carpogonium (c) enlarged just prior to fusion with autiliary cell (a); invellucral filatrents commencing to form from celis, including the sumporing call, of whoris on axial cells ($2 x_{1}$, ader) of the festile branch.
Fig. 17. Procrusion on auxiliary cell (a) marking pusition of fusion with connecting cell from carpagonium: small cell fragment xemaining in place of carpogonium on degenerating carpogonial brancb: mathed increase in develupment of involucral tilaments.
Fig. 18. Formation of git-comnection between lower part of auxitiary cell (a) and axial cell (axp) prior to breaking of comnection betwech auxiliary cell and supporting cell; initials of 2 datesal groups of carposporangia formed on gonimoblast cell (g).
Fig. 19. Enlarged fusion between lower part of anxiliary cell (a) and axial cell ($a x_{1}$); succession of angosporangial groups forming on goninoblast cell: supporting cell. free fron carpospurophyte, bearing involucral filament.
Fig. 20. Tetrasporangia and gland-cell borne in place of vegetative branches of whorl-branchlet.

the erystallike inclusions recorded for these specics. Branched cortical filaments bearing shart olfwatdy-orientated chains of cells are similar to those found in Puimeindia mulctra Soltder and a tendency towards distichous branching of the thallus; well defined in Misellerend wassia, is also characteristic of the Cromanieae group and is beat developed in species considered to be phylogenetically adsianced.

Development of the procarp and carpospornonhyte also husically tesembles that found in genera of Crouanieac. The 4-celled carpogonial branct is borne on a special fertite branch as in Gulsomia. The connecting cell involved in fusion between the carpogonium and auxiliary eell is much Larger in Mesellevena watssii than in genera of Croumniese, but subsequent development of the carposporophyte with literal initiation of the two firstoformed groups of carposporangia is similar to that seen in species of Pillocladict, Gulsonia and Paptionchadia Wollasinn. Mollellerena wattsii differs. however, in elahoration of the involucre which surmunds the carposporaphyte and in the sccondary development of a pir-connection linking the lower part of the ausiliary cell to the axial cell upon which the procarp was developech. Following this fusion, the original connection between the supporting cell and the lower part of the auxiliary cell is usually broken so that the supporting cell functions as an cillarge d basal cell of an involucral filament simnilar to its sisterecells of the whurt. The involucrat filament bome on the supporting eefl is tritisted as in kterile cell on the supporting cell during enlargement of the carpogoniat tranch ant elongates at whout the same lime as the other involucral branches commence to

Wevelon. These eyents probably allow a better notritional supply to the carposporophyte while at the same lime providing for developnieat of the filamentous involucre. Although Muellesena warsii differs from species of Pitocladian in having a more consistent braching pattern. 5 whort-branchlets per whorl, fusion between the auxiliary cell and fertile axial cell and a more claborate involucre surbunding the carposporophyte, the two genera are basically similar in both vegetative and reproductive features, This similarity was noted by De Toni (1903) when be placed two species now recognised as Pilocladia pulchira Sunder and P. agardhiora (Haryey) Woll in the genus Miejperena. M. Natsiit is also similar to Gufsonia in the presence of gland cells and the development of aspecial fertile branch twaring the procarp and. Jater, the carposporophyte. Thus it seems likely that Paflocladie, Gulsoria and Muellevena are closcly related and Mvellerema, showing greate consistency in vegetalive fedtures. and elathoration in carposporophyte organization, is phylogenetically the most highly ativanced. The sange of features alrearly known for gencra of the Crouanieac cowers a possible evilutionary sequence leading to the increased organization and stability of thallus featurer characteristic of Mwellerena. No similar relationship can be uraced in the Dasyphileat or olher group of the Ceramiaceate and it thus scens logical to include Midellerera in the tribe Crouanieae of the Ceramiacear.

Acknowledgements

I am gratefil for the lean of specimens thom the National Herbarium, Victoria, and for technical assistance providet by it grime from the Australian Research Gmas Committee.

Refercnces

Ababdib $^{\text {(1. G. }} 18876$).-Specices Genera et Ofdines Algatma 3 (1). pp. 1-724. Epictisis Systemain. Florideurum. (Lund.)
Dre Toni, J, $\boldsymbol{R}_{1}(1903)$ - Syllage Alganom omninm hueusque Cognitarum 4. Florideac, Sect. 3. pr. 775-1521. (Padua,)
De Iont. J. B. (1924) -Syloge Algarum omnium hueusque Cognitarum 6. Floridehe. (Padua.)
HakVey, W, H. $\{1863\}$, Phygologla Australica 5 , Plates 241-300, synup. pp. 1-73. (London.)
Hоммтиsaкп, M. H. (196.3),-The marpholegy and classification of some cramiaceac ind Rhodontaceac Univ. Cofif. J'ubl. Dot. 35 (2). 165-366.

Krisw. H. (1956)-Die Gaftungen die Rhodophyceor. (Lund.)
Lucas. A. H. S. (1909), -Rerised list of the Focoideae and Fiorideac uf Australír. Proe Lilln. Soc. N.S.W. 34, 9-60.

Jucas, A. H. Sol \& Pratin, F. (1947):-The Seaweeds of South Allstratin. Part II. The Res Seaweeds, pp: 107-458. (Giuvh. Printer: Adelaide.)
Mar7s. A. (1911)-Daggio di Atgologia Deennica, Numy Numarisio 22, Nas, 3 69-414.
Schmizz, $F_{\text {。 }}$ (1889)--Systenalische Lebersicht der bisher bekannten Gaitungen dep Ploridech, florr 72, 435-456, N1, 21.
 miacese, fol A. Engerer \& K. Panntz. "Die Nanislichen Planzenfamilien ${ }^{n}$ I (2), 481504. (Leirzie)

Tiscull 11. T. (1898) -The algat of Victoria. Rep, 7 1h Meet, Aust Azs Adv. Sci, Sydney, 1898. pp. 493-516.

Wollaston, E. M. (1968),-Morphology and Exanomy of southest Ausuralian Eeners of Crouanicae Schnilz (Ceramiaceac, Rhodiophyta). Aust. I. Bnt. 16, 217-417. pis. 1-10.

TRANSACTIONS OF THE ROYAL SOCIETY OF SOUTH AUSTRALIA INCORPORATED

CONTENTS

Smith, Meredith J. Small fossil vertebrates from Victoria Cave, Naracoorte, South Australia. II. Peramelidae, Thylacinidae and Dasyuridae (Marsupialia)125
Mawson, Patricia M. The genus Acuaria Bremser (Nematoda: Spirurida) inAustralia139
Milnes, A. R., \& Bourman, R. P. A Late Palaeozoic glaciated granite surface at Port Elliot, South Australia 149
Tyler, M. J., \& Parker, F. Additions to the hylid frog fauna of New Guinea, with description of a new species, Litoria timida 157

SMALL FOSSIL VERTEBRATES FROM VICTORIA CAVE, NARACOORTE, SOUTH AUSTRALIA

II. PEAMELIDAE, THYLACINIDAE AND DASYURIDAE (MARSUPIALIA)

by Meredith J. Smith

Abstract

Summary Abundant fossil remains of marsupials and rodents have been found in Victoria Cave, near Naracoorte, South Australia. The presence of certain large, extinct herbivores in the assemblage suggests that the deposit may be of Pleistocene age. This paper describes remains of Isoodon obesulus (Shaw, 1797), Perameles gunnii Gray, 1838 and P. bougainville Quoy \& Gaimard, 1824 (Peramelidae); Thylacinus cynocephalus (Harris, 1808) (Thylacinidae); Dasyurus maculatus (Kerr, 1792), D. viverrinus (Shaw, 1800), Antechinus flavipes (Waterhouse, 1838), A. swainsonii (Waterhouse, 1840), A. stuartii Macleay, 1841, Sminthopsis murina (Waterhouse, 1838) and S. crassicaudata (Gould, 1844) (Dasyuridae). Extensions of the previously known ranges of P . bougainville and A stuartii are noted. The larger species are represented mainly by juveniles and it is suggested that the small mammal remains were accumulated by owls.

SMAI.i. FOSSIL VERTEBRATES FROM VICTORIA CAVE, NARACOORTE, SOUTH AUSTRALIA

11. PERAMELIDAE, THYLACINIDAE AND DASYURIDAE (MARSUPIALIA)

by Mereditit J. Smith*

Abstract

Summary Abundant fossil remains of marsupials and rodents have been found in Victoria Cave, near Naracoortc, South Australia. The presence of certain large, extinct herbivores in the assemblage suggests that the deposit may be of Pletstocene age. This paper describes remains of Isoodon obesulus (Shaw, 1797), Pirameles gumnii Gray, 1838 and P. bouguintille Quoy \& Gaimard, 1824 (Peramelidae); Thy/acinus cynocephalus (Harris, 1808) (Thylacinidae); Dasyurus maculaus (Kcrr, 1792). D. viverinus (Shaw, 1800), Antechinus favipes (Waterhouse, 1838), A. swainsonii (Waterhouse, 1840), A. stmartii Macleay, 1841. Sminthopsis murima (Waterhouse, 1838) and S. crassiciadata (Gould, 1844) (Dusyusidac). Extensions of the previously known ranges of P. bougainville and A. stharsif are noted. The larger species are represented mainly by juveniles and it is suggested that the small mammal remains were accumulated by owls.

Introduction

Vietoria Cave, in Tertiary limestone near Namcoorté (lat, $37^{\circ} 0^{\circ} \mathrm{S}$, long- $149^{\circ} 48^{\circ} \mathrm{E}$) has been open to tourists for many years. In 1969, the Cave Exploration Group of Soud? Aus, tralia (CEGSA) discovered further extensive ramifications of the cave and, in one chamber, a silt deposit containing abundant skeletal remains of large animals. Many of these were Iater identified as remains of extinct tharsupial herbivores (sthenurines and diprotodontids) and of the marsupial lion, Thylacoleo sp . (Wells, pers comm.). The sthenurines and diprotodontids are believed to have become extinct at the end of the Pleistocene (Tcdford 1967). and the deposit in Victoria Cave is therefore probably of Pleistocene agc.

Bone chips occur in cores taken as deep as 2.5 m but the maximum depth of excavation at preseat is 80 cm .

The potorolacs (Macropodidae), petaurids and burramyids have been described previously (Smith 1971); the present paper describes the peramelids a thylacinid and the dasyutids.

Methods

The methods of sieving the bony remains from the silt, and their subsequent cleaning and preservation have been described (Smith 1971). Measurements of teeth bave been made
in the way described in that paper, with the cxceplion that, in the peramelids only, the maximum, anteroposterior lengths of mandibulat molar teeth were measured on the lingual side. (The slope of the anterior cingulum from lingual side to buccal side hindered accurate measuring on the buccal side.) Additional mandible measurements were raken as follows: Lergth of ascending ranus: Distance between anterior and posterior borders of the ascending ramus, from the midpoint of the posterior border and perpendicular to the ramus midline.
Breathl ar Mis: Thickness of mandible below Mo.
Height at Mo: Distance from alvedar margin at middle of Mes to inferior border of mandible. and perpendicular to the inferios border.

The taxonomy used is that of Ride (1970) unless stated otherwise.

Tamily Peramelidae

Isoodon obesulus (Shaw, 1797)
The following features were used to dis* tinguish fragmentary remains of Isoodon from Penameles.
(i) The hypocone of each maxillary molar (except M^{4}) is well developed in lsoodon so that in horizontal section these teeth appear as rounded

[^8]blocks. In Perameles the hypocones are much smaller and $\mathrm{M}^{1}, \mathrm{M} \%$ and M3 appear as trincated triangles. tapering lingually. The mular alveoli reflect the shape of the tectb, the lingual mot relative to the buccal length of the tooth being much longer in Jsoodon than in Perameles.
(ii) In the mandible of 1 soodon, the anterior edge of the ascending ramus makes an obtuse angle with the horizontal rinnus, whereas in Perameles the horizontal and ascending portions of the ramus join in a continuous smooth curve (Merrilees 1965) (Figs. 1. 2, 3).
(iii) In Isoodon the lingual extremity of the anterior cingulum is almost as high as the apex of the paraconid of Me, Mis, and M_{4}, whereas in Peran meles the greatest height of the anterior cingulam is much less than that of the paraconid.
Isoodon was not abundant in the deposit and adults and juveniles- were thbout equally represented (Table 1).

Modern specimens of I. obestlus in the Squth Australian Museum vary greatly in size, and wide variations occur even in adult specimens of the same sex and locality. The length of $\mathrm{M} 1 \mathrm{l}, 3$ varica from 9.2 to 11.4 mm (mean 10.19, s.d. 0.72) in eight South Australian mainland specimens and the length of $\mathrm{M}_{1}-1$ from 12.7 to 15.8 mm (mean 14.49, s.d. 1.08). Victoria Cave specimens are smaller than modern mainland specimeris (Table 2) and are almost as small as the insular subspecies, 1. o. noutictis where, in nine specimens, the length of M^{1}-景 sanged from 8.4 to 9.5 nm (mean 8.68, s.d. 0.35) and the length of $\mathrm{M}_{1}-4$ from 11.8 to 12.5 mm (mean 12.20, s.d. (3.28). The teeth of Victorit Cave Isoodon are morpholugically similar to thase of modern $/$. ohesulus.

Wakefield (1966b and in Mulvancy et al. 1964) referred to a distinct, small form of I. oberulur from Mildura and from the Fromm's Landing archaeological excavaton on the River Murray, but he gave no measurements of this form, nor of the "much larger form abundant in S. Victortia', Pleistocene specimens of \boldsymbol{I}. obesulue from Mammoth Cave. Western Aus-

TABLE 1
Mandibular and muxillary frayments of pryamelid species fommel the Victoria Cave Naracnorte. Mamy isolatel tecth were collected but have not heen included in the ruble.

Species	Maxillae				Mandibles				Minimum ro. of individuals
	Adult		Juvenile ${ }^{\text {* }}{ }^{\text {- }}$		Adult.		Juvenile*		
	Right	Left	Right	Left	Right	Left	Right	Left	
Isoodon obesmirs	4	4	-	-	8	10	7	4	17
Peramelex gunnit	9	7	1	-	16	23	54	46	77
P. bobgainville	15	7	5	8	30	38	32	27	70
Not determinable	2	2	3	3	5	6	9	5	15

* A specimen was considered lo be juyenile if P4 and/or M4 were not fully ermpted.

TABIE 2
Some dimensions of mandibles and reeth of Isoodon ohesulus from Vicroria Cave.

Dimension	Number of Specimens	Range (mm)	Mean (mmi)	Standard error	Coeficient of varibiton
Length of ascending ramus	7	6.3-7.3.	6.79	0.146	5.7
Breadth at ME	6	2.4-2.8	2,58	0.075	7.1
Height at Mes	6	$3.6-4.5$	4.10	0.152	9.1
M 3 S length	3	9.0-9.2	9.10	0.057	1.1
P/lergth	5	$2.3-2.6$	2.44	0.060	5.5
P_{4}^{\prime} breadth	5	1.2-1.5	1.38	0.049	79
M $4-4$ length	6	1.147-12.8	12.27	0, 0.158	32

Iratia, are sifnllar in size to modern specimens from the same area (Merrilecs 1965)

1. shesulus still occurs in the Naracontte distrieh.

Genus PERAMELES

Perameles was represented by many toothless mandibles and afew looth-bcaring maxillae and mandibles. Adult mandibless, in which $P / 4$ and \mathbf{M}_{4} were erupted, could clearly be separated on size into two species, distinguished by depth and thickness of the mandible, length of ascending ramus, und length of teeth (compare Figs 2 and 3 i and Tables 4 and 5). Juvenile mandibles of the two species overlapped in size but could be separated by the lengit, and especially by the width, of their molar alveoli. Maxillae, hoth adult and juvenile, were identificd by the stze of the molar alveoli.
Peranneles gunnis Cray, $1 \$ 38$
Live specimens of the two large long-nosed bandicoots, P. grmmii and P. nasuaz Genffory. 1804. appear quite dissimilas, the rump of gruntit heing barred itnd that of nasura being uniformly coloured (Ride 1970), However the skulls of the two species are similar in morphology. size and proportions. 13, provides the main difference, is of Rimmii being double sooted, anterosposteriorly long and buccolingually compressed. whereas 15 , of nasuta is single rooted and caniniform (Freedman 1967), This diagnostic feature could not be used on

Victoria Cave material as no premaxillae were preserved, Additional differences atc that the mandible is more slender in P. gumil, My is shorter buccally and M_{-}is shorter anteroposteriorly (Table 3). The figures gived in Table 3 do not confirm Tate's (1948) statement that $P \cdot y$ is much broades in P. gunnii.

Rcmains of the large Perameles from Victoria Cave conform in size with modern P. gumit (Tuble 4) and no morphological differences were detected between fossil and modern specimens. Remains of juvenile P. sunnii were relatively abundant. tout few adult specimens were found (Table 1):
P. gunnii is not included in a list of the modern native mammals of South Australia (Aitken 1970) although three speclmens of P. gurniif in the South Australian Museum are registered is from South Australia (M160) from Mt. Gambier, M1613 from "Suuth Allstralia" and M3956 from the Rocks, Kougat. south-east of South Australia). All wefe collesled between 1891 and 1893. The present range of P. grmuii is sonthera Victoria and Tasmania (Rite 1970).

Remains of P. gunnii twere found in an aboriginal midden at Mt. Burr, South Australia (Finlayson 1966, unpublished") and in a late Recent deposit in the Bad Cave at Nuracorrte (Tidemann 1967).

TABLE 3

 $1,2 \mathrm{~A}$ and 2 A of freedman a Joffe 1967 b .

Dimension examined	Perimmeles masuta			Perameles yunhti		
	N	Mcan (mm)	95% confidence linuits of mean	N	Mean (mm)	95% confidence limits of mean
Length of asecnding ramus	69	8.79	8.52-9.06	40	6.34	6.23-6.46
Bradih ut ME	71	3.54	$3.43-3.65$	41	2.82	$2.76-2.90$
Heiglat at Mis	71	6.71	6,49-6.91	41	5.88	$5.70-6.06$
Pf lenglh	6.5	375	3.65-3.84	40	3.34	3.26-3.43
Ps Width	HI	2.10	$2.06-2.15$	40	2.13	2,09-2.17
Mt widit	81	2.71	$2.66-2.75$	42	2.75	$2.68-2.82$
$\mathrm{M}\rangle$ Buccal leagith	81	3.63	3.56-3.7才	43	3.09	3.03-3.15
M 4 Lingual lengith	82	1.53	1.50-1.56	43	1.44	$1.40-1.48$
Mf Anterior width	91	2.37	2.34-2.39	46	2.16	2.13-2.18
M_{4} Posterior willh	86	1.60	1.58-1.63	46	1.51	1.48-1.55
Mis length	85	4.64	$4.58-4.70$	45	4.01	396-4.06

[^9]Perameles bougainville Quoy \& Gaimard, 1824
The small bandicoots from eastern, central and Western Australia have been described as several different species, but Tate (1948) suggested that P: bougainville, fasciata, notina and ereminne might be local races of a single widespread species. Generally this has been aceepted (e.g. Wakefield 1966a) although Ride (1970) retained eremiant as a distinct species. Mean measurements of skulls and teeth are mostly
larger in the south central population, notina, than in the western population, bougainpille (sens, strict.), but few of the differences are significant (Freedman \& Joffe 1967b).

Remains of the small species of Perameles. from Victoria Cave are similar in size and morphology to modern specimens of P. bowgainville in the South Australian Museum and to specimens from the Fromnt's Landing archaeological excayation (Table 5).

TABLE 4
Comparisons of some dimensions of teeth and mandibles of Perameles gunnii from Fictoria Cave, with those of a modern sumple from Tasmania. C.V. - Coeffient of variution.

Dimension	Modern P. gumit from Tasmania					P. granii from Victoria Cave					
	n		Standard lean error		CV.	π	Range (mm)	Standard			
		Range (m			Mean			crror	C.V.		
M ${ }^{4}$ Width	10	3.6-4.1	3.91	. 057		4.6	3	$3.6-3.7$	3.63	. 033	1.6
M + buccal length	10	2.8-3.2	3.03	. 032	3.3	3	2.9-3.0	2,97	.033	1.9	
M \downarrow lingual length	10	1.3-1.6	1.47	. 037	7.9	3	1.0-1.3	1.20	.100	14.4	
M1,-3y alvedar length	10	11.4-12.4	11.86	.105	2.8	4	11.4-12.4	11.80	. 245	4.2	
Lengih of ascending tamus	10	6.1-7.4	6.70	. 127	6.0	10	$5.2-6.2$	5.75	. 100	5.5	
Breadth at M6	10	2.6-3.2	2.99	. 060	6.4	9	2.3-2.8	2.54	. 055	6.6	
Height at Mg	10	$5.8-7.6$	6.66	. 153	73	8	$4.5-6.4$	5.57	. 140	9.7	
Mif alveolar length	10	$3.6-4.1$	3.90	. 056	4.5	9	3.4-4.0	3.73	. 078	7.15	
Mi-4 alyeolar length	10	$14.6-16.6$	15.57	. 172	$3: 5$	5	$15.0-15.5$	15.18	. 086	1.3	

TABIE 5
Comparisons of some dimensions of teeth and mandibles of Perameles bougainville from Victoria Cave with those from Fromm's Landing (specimens collected in levels 0-9).

Dimension	$\begin{gathered} 1 \\ \pi \end{gathered}$. hougainville from Fromm's Landing				P. brugainuille from			Victoria Siandard etrot	Cove C.V.
		Runge (man)	Meitr	Stundard etror	CV.	II	Range (mm)	Mean		
MJ-3 length	-	-	-	-	-	4	$9.1-10.4$	9.50	. 334	7.6
licngth of ascending тamus	8	3.8-5.5	4.65	.201	12.2	16	4.4-5.6	4.99	. 082	6.5
Breadth at M ${ }_{\text {\% }}$	18	2,0-2.7	2.24	-044	8.4	25	1.8-2.5	2.16	+043	10.0
Height at M ${ }^{\text {b }}$	16	3.4-5.4	4.46	. 128	11.5	24	$3.6-5.4$	4.33	: 115	13.0
Pst length	6	$2.4-2.8$	2.58	.060	5.7	7	2.2-2.8	2.66	.081	8.1
Millenglh	2	2.9-3.0	2.95	. 050	2.4	5	2.7-3.2	2.96	. 087	6.6
M1 post. widih	3	1.8-2.0	1.90	. 058	5.3	5	2.0--2.3	2.12	. 058	6.2
M ${ }_{\text {ctength }}$	5	$3.0-3.3$	3.18	. 058	4.1	8	3.2-3.6	3.48	. 049	4.0
Merg post. width	4	2.1--2.4	2.25	. 065	5.7	8	2.2-2.4	2.34	.032	3.9
M ${ }^{\text {a }}$ length	8	$3.0-3.4$	3.19	. 058	5,2	8	$3.0-3.4$	3.23	. 041	3.6
M post. width	8	1.9-2.2	2.09	. 040	5.4	8	2.0-2.3	2.13	. 037	4.9
Mitength	5	3.2-3.5	3.32	. 049	3.3	12	3.2-4.9	3.47	. 067	6.7
Mf post width	5	0.9-1.4	1.20	.n95	17.7	12	1.0-1.7	1.19	. 031	9.1
M ${ }_{1}-\frac{1}{\text { l }}$ length	3	11.9-12.4	12.1	. 152	$2: 2$	5	12.4-13.7	12.88	. 218	3.8

OE twelve Victoria Cave examples of M_{1}, one showed a short but distinct anterior cingular shelf, sir showed a slighe depression in the anterior bucsal acgion and in five the unterior wall was continuously smooth. Merrilees (1965) found that one Victorian specimen and two of fifteen from Western Australia showed the anterior-buecal depiession on M_{1}. Oes the basis of ono Victorian specimen of P. sunnrif Merrilecs (1965) believed that a 5 mall cingular shelf on M_{1} might be characceristic of that species. but this is not confirmest by my examination of eleven Tastnanan specimeas in the South Australian Museum in which none has a distinct cingular shelf and only three have an inaterior-buceal depression,
P. bouguinvilik was equally abundant in the deposit as P. gumnii, but a much higher proportion of P.bougainville, the smaller species. was adult (Table 1).

The eastetn Australian range of P. bougainwille at the time of European settlement is poosly known. It occurred on the Liverpool Plains in eastern New South Wales (Ride 1970) and it was apparently abudant near Mildura on the River Muray (Wakefield 1966al. Its remains were found in an owl pellet aecumulation of uncertain age in the Grampians, Yictoria (Wakefield 1963), but tout in other western Victorian cave deposifs (Wakefield 1964), In the Fromm's Landing anchacological excavation. it was found from sutface Ievel whers radiocarbonodated at 2105 ± 85 yeary 13P (Wakefich in Mulvaney et al. 1964) but it was not represented in the Mt. Burr archaeological excayation, àthough Pb gunnil and 1 . obesathes occurred there (Finlayson 1966 [foothute ${ }^{\text {1] }}$] and personal observations). The Victoria Cave specimeny therefore extend the known range of the species in [ormer times into southeeastern South Australia.

In Western Australia, P. houralnville survives today only on Berbier and Dorre Islands in Shark Bay (Ride 1970). However, its remains have been found in several caves on the Nullarbor Plain and alung the southem half of the west coast of Western Austratia (Lamitlius 1960, 1963) and in a Plcistocene teposil in Mammoth Cave (Merrilecs 1965). It oceured as a modern species in central and wewtern Australis (Ride 1970).

Family THYTaACINIDAE

Thylaciuus cyuocephalus (Harnis, 1808)

Three isolated teeth are tentatively assigned to this species.
S.A.Mr. Plal20d is a worn canine probably from a right mandible, with much of the enamel broken away and the root broken. The stize (max: anters-postcrior length of root 11.9 mm , mas, widih of noot $\$.5 \mathrm{~mm}$) is similar to that of modern specimens of 7. cyrscephet-
 modern specimens the cnown is not severely worm, for the upper and lower canines do not meet direaly; bue the crown of the fossil touth has cither been severely worn, or was broken befure death. There is no anterior war surface. such as orcurs in many modern specienens of T- eynocephatus where 1t mats the lower canime. The fossil tooth is wider relative to its length than are the canines of the dingo (Canks komitiurris Linnaetus, 1758 , var. dingo Blumenbach, 1780), its enamel is smooth rather than erenulated as in phocids, and it is more robust than canines of Sercophiks harrisib (Boitard. 1841). I have not examined any S. laniarks (Oven, 1838).
S.A.M. P16120h is an incisor, probably a right $1+3.9 \mathrm{~mm}$ wide, 4.3 mm long and with a crown theight of 4.6 mm . The root is cobust, curved and entered the ptemaxilta to a tepth of 12.9 mm . The occlusal surface is in two planes. the farger surface being the plane of wear against l_{3}, the amaller heing the contact surface with the lower canine. The fossil tooth lacke the lateral cuspules found in incisors of C.f. dingo, lacks the transverse groove of phocitls and is more cuboid than the incisors of S : harnivil, where the incisors are crowded and commressed latcrally.

A second incisor tooth, S.A.M. Pl6120), is probably a right 1_{1}. It is 4.3 mm wide, 5.1 mm long and the crown is 3.9 mm higit, The root is deep and straighes the tip bas been losi. The wear suttace is fareted in two planes, the larger being the wear surface agaiast I\% the smaller that against I3. In neither C. fo dinso nor phocids are the lower incisors faceted, and in S. harrisil the lower incisors are compressed like the uppers.

Additional teeth of T. cymoceplatus were found associated with remaios of a Protemnodon (c.f. P, brehus) in a rock pile a short distance from the silt deposit. These teeth were almost cettainly sierived from one individual. and comprise two upper canines, a left mandibular canine, six of the eight upper incisors and all six lower incisors: All are comparable in size to those of modern adult male T, eynocephatus in the Soulb sustrdian Muscum but are larger than those of modem adul! femates.
(2. cynocephatus is strongly sexually dimorphic (Ride 1964).)
T. cynocsphalus has been extinct on mainland Australia since before Europeath settlement, although it existed then in Tasmania. During the Pleistocene, however, it was widespread on the mainland, as sbown by its remains in cave deposits in Victoria, New South Wales, South Australia and south western Australisa (Ride 1964).

Family DASYURIDAE

Dasyurus maculatus (Kerr, 1792)

The only identified fragment of D. inaculatas is a broken lefi maxilla (S.A.M. P16115i) containing the canine alveolus and the six check teeth. These do not differ in size of morphology from those of modern specimens: Some tooth dimensions of the fossil are: P 1 , Jength 3.3 mm , width $1.8 \mathrm{~mm}, \mathrm{P}, 14.4 \mathrm{~mm}$, iv 2.5 mm ; M1, buceal length $6.1 \mathrm{~mm}_{\text {, w. }} 4.3 \mathrm{~mm}$; M\% bt 6.6 mm . w 5.3 mm , 3, bl 6.6 mm , w $6.6 \mathrm{~mm}_{;} \mathrm{M}_{\frac{1}{4} \text {, bl } 1.6 \mathrm{~mm}_{\text {, }} \text { w } 7.2 \mathrm{~mm}_{7} \mathrm{M}_{1}^{1} \text { 管, }}$ 119.5 mm .
D. maculatus was not rare in the south-east of South Australia early in this century (Jones 1923. p. 88) but is now extinct in this state (Aitken 1970).
Dasyurus viverrinus (Shaw, 1800)
The skull of D. viverrinus can be distin. guished from that of the similar-sized D. geoffroii Gould, $1841_{\text {, }}$ by the posterior palatal vacuitics which ure small in viverritus but farge
in geoffroit (Thomas 1888). The posterior palate is not preserved in any Victoria Cave specimen.

The teeth of specimens of the two species in the South Australian Museum, and of Victoria Cave specimens, are similar in size and morphology (Fig. 4), and there is overlap in all linenr dimensions of individual teeth and of toothrows. The ratio of the distance from protocone to anterior stylar cusp, to the distance from protocone to posterior stylar cusp, is significantly greater in M1 and M3 of D. geoglroii than in D, viverrinus. ($M \frac{1}{5}$ D. viverrimus, ratio $=0.525, D$. geeffroii, $0.570, \mathrm{P}<05$ (t test) M $=D$. viverrinus, $0.659, D$ geoffroid, 0.634, not significant; M3: D. viverrinus, $0.664, D$. gea)froii, 0.733, P<.05 (l test)). The ratios in the Victoria Cave specimens are closer to those of D. wiverrims (Victorid Cave M1 ratio, 0.507, M $\frac{1}{5} 0.623, \mathrm{M}^{3}, 0.686$) and because of this similarity, the Victoria Citve specimens are referred to $D_{\text {. }}$ viverrimus. Examination of more complete material could possibly alter this decision.

Twenty-one maxillary fragments and 34 mandibular fragments were recovered. Most of the later lacked tecth and although many isolated teeth were found, none could be litted to any particular jaw with certainty. Twentytwo of the fragments were from aduls, 33 from juveniles. \uparrow minimum of seven adults and 12 juveniles are represented. Some dimensions of the teeth are given in Table 6.

TABI.F 6
Some dimutsions of teeth and alvertl of Dusyurns viverrinus from Victoria Cave

Dimension	π	Range (mm)	Mean	Standard ettot	Coefficient of Variation
Mf length	3	$5.0-5.7$	5.30	.208	6.8
M ${ }_{f}^{2}$ length	6	$5.0-5.5$	5.15	. 076	3. 11
M ${ }^{\text {l }}$ length	2	5.3-5.4	5.35	. 050	13
M ${ }^{\text {dength }}$	1	1.2	-	-	-
M1, \rightarrow diveolar length	4	14.5-3 5. 1	14.68	. 152	2.1
Pf: alyeolar length	4	$3.1-4.0$	3.4	. 196	115
$\mathrm{M}_{\text {i }}$ alveolar length	10)	3.9-4.9	4.25	. 111	8.2
Mid alveolar length	10	4.2-5.0	4.5.	. 174	5.2
M ${ }_{6}$ alveotar length	14	4,0-5,1	4.44	.071	6.0
M/i alveolar Jenglh.	5	4.3-5.3	4.72	.166	7.8
M - - alvcolar length	4	18.0-20.1	19.10	.528	5.5

D. viverrintus is found in many cave deposits in Western Victoria. (Wakefield 1964) and has heen found in the Bat Cave, Naracoorte (Tidemann 1967). The species was formerly common in South Ausitralis (Jones 1923, p. 91) but it is now extint in this state (Aitken 1970).

Genus ANTECHINUS

Specimens of Antechinus were distinguished by the following criteria.
(i) The maxillary molars are more robust, and less compressed antero-posteriorly than in Sminthopsis.
(ii) The mandibular fourth premolar is teduced and is always smaller than P_{3}, whereas in Sminthopsis and Anechinomys \mathbf{P}_{4} is larger than P_{3}.
(iii) Generally the mandible is more robust than in Smimhopsis and the masseteric fossi wider. However, some small mandibles of A. sthartii are similar in size to those of large S, murina.
(2v) The entuconid is always well-developed as it is in Smimhopsis creasticaudata. It is much reduced or absent in other speciey of Sminthopsis and in Antechinomys (Bensley 1903).

Antechinus flavipes (Waterhouse, 1835)
The mandibular molars of modern specimens of A, Navipes in the South Australian Museun ate robust, the average width of M_{6} heing. 1.34 num and that of $\mathrm{M}_{3}, 1.42 \mathrm{~mm}$ (Table 7). The length of $\mathrm{M}_{-}-\frac{\text { is }}{}$ equal to or greater than 7.2 mm and the length of Mi-3 equal in or greater than 5.5 mm . The premolar teeth are broad and crowded, leaving no spaces between adjacent teeth (Fig. 5).

From Victoria Cave, 10 maxillary and 40 mandibular fragments from a minitrum of 13 individuals were indistinguishable in morphology and size from those of the modern specimens of $A_{\text {: favipes (Table 7). All were }}$ adults. I have not examined skulls of Phascogole calura Gould, 1844 and from published descriptions I cannot exclude the possibibity that some of the Victoria Cave mandibles are of that srecies.

Antechinus fautpes inhabits rainforest, dry sclerophyll forest and woudland, where the animals obtain their insect food from the trectrunks and large limbs, and from logs. Isolated populations are found in north-eastern Queensland and in south-western Western Australia, while the main population ranges from southeastern Queensland through eastern New South Wales to Victoria and south-eastern Australia, its distribution being mainly on the inland side of the Great Dividing Range, but extending to the coast at both the northern and south. western extremities (Wakefield \& Warnele 1967). Naracoorte is within this range. Re. mains of A. Alovipes have been found in the Wombeyan Caves. New South Walcs, in a deposit that is probably Upper Plaistocene in age (Ride 1960), but have not been found in Pleistocenc (nor Recent) layers of McEachern's Cave, in the extreme south-west of Victoria (Wakeneld 1967).

Antechinus stuariii Macleay. 1861

The dentliton of A. shurrefif is identical morphologieally with that of A. favipes and, atthough the former species is on the average much smaller, there is overlap in ath dimensions of skull and teeth (Wakeficld \& Warneke

TABLE゙ 7
Comparhows of nome dimensions of tecth and mandlhles of Antechinus Havipes from Fictoria Cave with mose if a modern sampla from somhern Sonil A Astrulia and south-western Victaris.

Dimension	A. flavipes from Victoria Cave					Modern A. flavipes (π - 18)			
	a	Range (mm)	Meun	Standard ceror	$\mathrm{C} . \mathrm{V}$.	Range (mm)	Mean	Standard ertor	CV.
$\begin{gathered} \text { ML-S alveolar } \\ \text { tength } \end{gathered}$	6	5.9-6.1	5.98	, 031	13	5.5-6.9	6.12	:087	6.6
M \% widh	5	2.1-2.4	228	.n58	5.7	2.1-2.6	2.36	[1030	5.5
l.engh of uscending tanus	19	8.5-5.9	5.11	. 096	8.2	4.5-5.7	5,19	077	5,3
Me widh	76	1.2-1.4	1.12	016	s.0	1.2-1.4	1.34	. 017	5.2
As widh	23	1.7-1.5	1.37	. 013	4.6	1,3-7.5	1.42	.189	5.5
MI alveolar length	23	1.5-1.9	1.75	. 022	5.9	1.8-2.0.	1.88	. 015	3.3
M\{-j alvaplir length	21	7.2-8.1	7,54	, 0 S	3.0	7.2-8.1	7,5\%	:Oñ	3.7

1967）：After measuring modern specimens of both species I have arbitrarily chosen to dis－ tinguish is stuartii all specimens in which the alveolar length of M^{1} p ${ }^{3}$ is equal to or less than 5.7 mm and that of $\mathrm{M}_{1}-1$ is equal to or less than 7.1 mm ．In both modern and fossil man－ dibles the premolars ure markedly crowded （Fig．6），with $1 / 4$ often being set obliquely to the line of the jaw．

Six maxillary and 16 mandibular fragments， from a minimum of 11 animals，have heen found in Victoria Cave．All but one are adults． They are similat in morphology and size to moderis specimens（Table 8）．

A．sharilh has net heen recorded previously from South Australia，although its present range extents us far west ins Portland in Vic－ tnria，only 70 km east of the South Australian border（Wakefied \＆Wameke 1967）．lts re－ maina are common in cave denosits in western Victoria where in McEachern＇s Cave in the exterme south－west，it is tound in foth Pleisth－ cene（ 15,200 ： 320 years $B P$ ）and Reeent layers（Wakenield 1964，1967）．

The present ranges of A ，stectatit and A ． Reviper ate complementary，the distribution of shaursii being coastal to that of flavipes，but overlap docs occur．c．g．in western Vietoria （Wakefield \＆Warneke 1967）．
Antechinus swainsonii（Waterhouse，3R40）
A．swainsonii und A．minimus（Gcoffroy． 1．803）ate characterized by their long claws and long snouts．The molar teeth are as long as，or nearly as long as，those of A ，fluvipes le．g．in 3 specimens of A．swainmmif（S．A．M． M2421，M7047 and M7496），M123，$-5.5-$
6.0 rum（mean 5．73）， $\mathrm{M}_{1}-1=7.5-7.8 \mathrm{~mm}$ （7．6）］．but ate much narrower $\left[\mathrm{M}^{3}=1.9\right.$ $2.0 \mathrm{~mm}(1,97) . \mathrm{ME}=1.1 \mathrm{~mm}$（in all 3 specimens）． $\mathrm{M}_{3}-1.1-1.2 \mathrm{~mm}(1.17) 7$ ．The premolars 100 are much narrower than in A ． flawipes and are not crowded，adjacent teeth ofter being separated by a space．In addition． the mandibular premolars have long talenids with sharp postcrior cuspules，whercas the talonids of A．Havipes premolars are short with blunt cuspules．The mandibles of A．swainsonti and A ．minimus are more slender than those of A．flavipes，and longer than those of Smin－ mogsis（Fig．7）．

Nine mandibles，from a minimum bi five animuls，conformed with the swainsoniomint－ nas．chamacteristics，and I have sentatively classificd them as A．swainonii bechuse all have as long mandibular symphysis，extending pokterior to the front to P ．＂The symphysis in A．minitnas is shorier（Tate 1947）．In addition，the greatest breadth of the masseteric toesa in four victorba Cave specimens ranges fiom 4.2 to 5.0 mm ，whereas in A．minimus． its greatest breadth does nol excect 4.2 mm （Thomas 1888）．In Victoria Caye specimens， the mean width of M_{3} is $1.13 \mathrm{~mm}(3 \mathrm{spec})$ ， mean whith M_{4} is 1.22 mm （4 spec．）and lengit Ma－Manges from 6.7 to 7.2 min imean 7．0）in four specimens．

A．swainkmii has not been recorded alive in Souti Australia（Aitken 1970），but its re－ mains were found in a late Recent deposit in the Bat Cave．Naracoorte（Tidemann 1967），A single，incomplete，toothless niandible from level I of the Fromm＇s Landing archaeological exeavation on the River Murray wis assigned

TABLE 8
 thase of as medern somple from Bondo．N．Si．W．

Dimensiom	A．sthurfil from Victoria Cave					Modern A－stunrth（ $\mathrm{n}-10$ ）			
	π	Ranse（nm）	Mcan	Standard crob	C．V．	Range（mm）	Менп	$\begin{gathered} \text { Standanit } \\ \text { emror } \end{gathered}$	C．V_{1}
	4	5．1－5．7	5.50	． 141	5.1	5．3－5．9	5.57	． 068	3.9
M3 widith	3	2．0－2．2．	2.13	067	5.4	1．9－2．1	196	． 022	$3 . ⿱ ㇒ ⿺ 𠃊 ⺊ 口$
Length of ascent－ ing．татия	5	4．2－5．4	4.60	207	10.1	$\begin{gathered} 3.9-4.4 \\ n 7 \end{gathered}$	4，19	．083	5.2
Mh width	3	1．1－1．3	1.22	． 037	6.9	1．9－1．3	1.20	． 015	3.4
M widh	7	12－－1．3	1.24	． 020	4.3	1．2－1．3	1，27	.015	3.8
Mis alveular length	10	1．6－1．8	1.72	－025	4.6	1，5－1．8．	1，69	． 038	7.1
M－ 1 －alvcolas length	7	5．8－7．1	6．67	． 180	72	6，5－7．0	6，85	＿052	2.4

to this species (Witkefield in Mulvancy et al, 3964). A, swaimemia is commonly found in cave depósils in western Vistoria (c.g. Wakefick 1964, 1967). On the Australian mainland, A. minimur has a limiled range around the South Australian-Victorian border near the coast (Wakefield \& Warneke 1963).

Genus SMINTHOPSIS

Fragments of Sminthopsis ware identified by the relatively large P, and by the greater antenoposterior compression of the maxillary mulats than in Antechious. The mandible is gencrally more slender than in Antechinus and the ascending ramus shotter antero-posteriorly, but there is overlan hesween S. muthita and A. sharriai in mandible size.
Sminthopsis murina (Waterhouse, 1838)
Mandibles of S_{5} murina may be distinguished from those of S. crassicaudatu (Gould. 1844) by differences in the morphology of the talonids. The entoconids are reduced or absent in S. marima but well-developed in S. crassicaudata (see Bensley 1903). In the maxillae, interdental fenestrae are smaller and less numerous in S. maring than in S_{0} crassicaudata (pers. comm. Michael Archer. Western Australian Museum),

In Anuechinomys leniger (Gould, 1856), which also lacks the entoconid, the posieroexternal shelf of the lower molars is much broader than in S. murina, The dentition of S. leucomes is said to be distinguishable from S. murina by the presence of spaces belween adjacent pretoolar leeth (Thomas 1888), but this character is variable in the specimens of S. murina in the South Australian Museum.

Sixtenn maxillary and 57 tooth-bearing mandibular fragmenis from a minimum of 31 animals were found; Only two were juveniles. A further 61 toothless mandibles 32 right and 29 left, are probably referable to this species. Some dimensions of the adult specimens and of a modern stmple arce given in Tatile 9. The maxillary interdental fenestrae occupied a larger proportion of the intendental space than in many modern specimens and the entoconid Was not present in any Victoria Cave mandible. Adjacent premolars, both maxillary and mandibular, usually touched; there was never a conspicuous gap between the premolars (Fig. K).

In addition to the specimens fisted above, one small adult mandible (S.A.M. P16118z) was found that is morphologically identical with S. murina but is much smaller. the leneth of $\mathrm{M}_{1}-4$ being only 4.8 min .
S. murina is widespread in South Australia but is nowhere common (Jones 1923, p. 118 , Aitken 1970). There is a specimen in the South Australian Museum from Bondertown but Tidemann (1967) did not find this species in a late Recent deposit in the Rat Cave, Naracoorte. The morphologically-stimilar species, S, leucuptes (Gray, 1842), is found in Recent, but not Pleistocene layers in McEachern's Catre, extreme south-westert Victoria and in other cave deposits in south-western Victoria (Wakefield 1964: J967).
Sminthopsis crassicandata (Gould, 1844)
S. crassicaudeter was represented by only three mandibles and one maxilla from an minimum of three individuals, all adult. Some dimensions of these are: length of M 1 , 3. 4.8

TABLE 9
Comparisons of some dimensions of tech and mandibles of Snunthopsis murina from Vichorife Cave with those of a modern sample from Soulh Anstralia.

Dimension	5. merina from Victoria Cave					Modern S. minince ($n=10$)			
	n	Ratese (mm)	Mean	Standard ernur	CW.	Range (mm)	Mean	Standait errer	C.V.
$\begin{gathered} \mathrm{M}_{1}^{-r} \text { - alveolar } \\ \text { length } \end{gathered}$	9	4,6-5,0	4.74	. 050	3.2	4.5-5,2	4.76	062	4.1
M ${ }^{\text {a }}$ width	9	1,9-21	1.98	. 222	3.4	1.7-2.0	1.85	. 027	4.6
Length of ascend ing ramblus	15	3.5-4.6	4.06	. 077	7.3	3.4-4,6	4.05	. 137	10.7
Mry widh	17	1.0-1:1	1.05	. 012	4.9	0.9-1.1	1.00	. 015	4.7
May widh	23	1.1-1.2	1.14	. 010	4.4	$1.0 \cdot 1.2$	1.09	. 028	8.0
Mis alvenlar length	20	1.4-1.7	1.48	014	5.2	1.4-1.8	1596	037	7.5
length	36	5.6-6.3	5.98	. 033	3.0	55-6.2	5.88	. 677	4.2

mm; length of ascending ranius (3 specimens). 3.6-3.9 max \{hean 3.73); M width (3). 1.0 nim: M_{4} alveolar length (3), 1.4 .1 .5 mm (1.43) i alvectar lengut $\mathrm{M}_{1}-1$ (3), 5.5-5.7 mim (5.65).

This species has as wide range in southern Westem Ausstralia. South Austhinhi, Victoria, Western Now South Waler and south-western Queensland (Ride 1970), and in the South Australian Museun there are many specinuens Irom the southeest of Soath Australia, It Wis found in the Bat Cave deposit, Naracoorte (Tidcmann 1967) and in Recent trove deposits in south western Victoria (Wakefield 1464. 1467).

Discussion

Aethod of acermmutation of the sinall vertchrate romains.

Analysis of the temains of each species, inte adults and juveniles, shows that there is considerable vatiation between species in the proportion of adults. Tho larger species, Bathnegia penicillobd and Poturons: apicalis, are represented almost entirely by juveniles (Smith 1971), as is the large bandicoot, Perameles sumbit. Altults and joveniles of smaller species, such as Isoodon obesulus and poorous phatyops, were found in isboul equal numbers. while the small dasyurists (Antechimes and Smimhopoxis) and the petaurids and burramyids were nearty all adults. Slower cruption of the teeth in the lared species may ascount for sume of this Variation, hut it thes not account for the wide variutions seen between two speciks of the one genus. Fur example, within Peromeles no more Ihan one quarter of the larger P. gummit were adults. but more that half of the smaller P. tousaimrills were adults.

The biased age situcture suggests that the cave dial now act an a simple pitfoll trap. but that the bones were brought in liy petiaturs able to capture mimals ans large as on abult ?. Ammainuille or Potorous platyopsio or a juvenile P. sunnii or bettong Mammal produtors that inthabil dens usually dio within thent
occasionally. 7 \%yfacinus eynuecpholus was able 10 sake larger prey (Ride 1970) and so the predators could hive been dasyurids, Datyuries maculatus wr D, viverthus, or owls. The very fow incidence of D. maculatiss suggexis. that this species was nut the predator. 0 . viverrinus is better sepresented but the high proportion of juvenites indicates that it was a prey species rather than a predator. The small manmaln therefore probably accumulated from owl pel. lets. The method an decumulation of the Jarge herbivares in the depasil is not yet known.

Clunutic intrexpresalions

Modern populations of the seansorial species Antechimus havipes and A. shamiti-are sympatiit in areas of dry selerophylf rorest such as at Glenlofty, western Victoria, where siringybatk (Eucelypnus macrorrigneme) and box (ε :
 with sparse ground cover of \$nwscilge (Gahmio radula) and lussock grass \{Peri\} (Wakefield \& Warnelie 1967). Populations uf the ground-dwelling A swainson if are densest in wet sclerophyll lorest, but they also wecur in other hahitais such as open woodland and stunted coastal encalype serub with thasom grass (Waketicld \& Warneke 1963).

Modern Sminhopmis murma and S. eraskicathedese inhabis hoth wet and arid areis and liste is kurw of thete habitat requitements. Peramoles bougulavilh wis similarly whe ranging al the heginning of Eurupenn exphoration, and its habitat requirements are also unknown,

Pa.gunnii and 1. obesuluc oceur sympatrically in Tasmania. Both species require scrub tor nesting and the fond of both consists mainly of eillitworms and insect larvae. However. Bsoodon rumains within the scrub to jeed. Wherear Perrmeles foragen far unl into open areas (Heinsohn 1966). if the Plestocene Perametes and fsowdon had simifal ccotogical requifements to their modern dewcendants, one might infel Lhat the apparent: scarcity of foodom indicated that the vegetation of the anca was an open woodlond, with little dense scrub. On the other hand, the greater abur-

[^10]
danee of Peramales might bo un artelate of selective predation, for enimals foraging in seruh would be less susceptible to owl attack than animals faraging in the open. However in the Mammoth Cave deposit, B, bougaint ille is about twice as abundiant as 1 . obeswher. This is believed to be a trae reflection of a larger population of Pecramele's in the Pleistocene, for the deposit does not seetio to have originated from owl pellets, but appears to have been a talus deposil, ucemmulating as antmads tell throust holes in the roof (Merritees 1965).

The conbined evidence of the represented species of poloroines, petaurids and burramyids (Smith 1971) and of the peranelids and dasyurids indicutes that at the time of aceumulation of the deposit Victorial Cave was surromided by dry sclerophyll forest

Ackaswledgements

Excavation of the deposal would not have proceeded without the enthusiastic help of CEGSA members in duging and sicving Tramport conte for these helpers were detrayed by a grint from the foroth Australian Government Tourist Bureatr. The hate Mr. AZ. Maddock ably mediated heiween CEGSA and the Tourist Bureau and uctively nssisted in the working of the deposit.

I am gratefll to Mr, P.. F. Aitken, Mr. M. Archer and Mr. R. I. Wells for many helpfal discussions and for their critieism of the manuseripl. To Mr. Archer I am especially grated for his advice on the separation of spectes of Ablechmurs and Sminthopsis. St te photographo were prepared by the Photography Department. University of New Fingland ($\mathrm{F}^{7} \mathrm{~g}, 1-5,7$) and Mr. E. Sangater (Fïs hand |) $) ~$ |
| :---: |

References

 Alstrailan Yeal Book 1970", ph 42-49. ICommenwenth Bureath of Census und Stathso ties: Adelaide.)
Hrnsley, B, A. (1903). -On the evolation of the Anstralian marsupials with temarks on the relationships of marsunalas in gencras. Troms, Limn sik. (imul. (Joool.) y, 82-216.
Fremomin. 1. (1967),-Skill and suoth varimion in the genus Percomeles. Part 1: Anatomical featules. Rece dust. Alate 27 (6), 147-1fi6.
 and forth watiotion in the genus fercumeles. Path If: Mecrical featmes of Po nasurn, Roce

Frembian, L.o \& Jombr. A. D. (1967b) - Skull and tooth variation in the genus Derumeles. Part III: Mctrical fealutes of P^{\prime}, gumbif and
 197-212.
Hrinmuin. G. E. (1966),-Ecolugy and reproducLion of the Tammanian bandiconts (Perameles Eumnii and Ispoden ohesstlus) + Uhip. Calif. Pudf. Rovo. 80, 1-9to.
Inors. F. W. (1923).-"The Mammals of Soush Alsitralia". Part 1. The Monotremes and the Carfuvornts Mursupials. (Goversment Prinier: Adelaide.)
r.unotrive, E 1. (1960)_Post Plejstocene fiumal sucesssion in Western Austrulia and its climatic interpremation. International Geological Congress. XXI session. Part IV, Chronoloyy and Climatology of the Quarternaty. pp. 142-153
1 binolues, E 1. (1963) - Venctarate remains From the Nullarbor Caves. Western Auspenlia, J. R. Soe W. Abst, 46 (3), $75-80$.

MrRkILETS, D. (1965) - Forsil bataticouts (Matsupialia, Peramelidač) from Mumnoth (ave. Western Australion. and their climatic hmplico.

 C. R. (1964).-Nthaenlogienl excavation of roeh sitelter No, 6 Jromme's Lincling, Sould Australlia. Preme, R, Soco Jici, 77, 479.516.
Rume, W. D. 1. (1960)--The fissil matrmallian fauna at the Buwamys purvus breccia from the Womberan Cates, N.S.W. I. R. Sox. II: dinf. 43 (3), 74-80.
Rose. W. D. L. (1964).-A revicw ol Aushraliat fuscil marsupials-J.. R. Sec. W. Aust. 47 (4), 97-131.
Kimy W. D. L. (197(1) \rightarrow^{42} A githed to the srative manmals of Alstralito © Oxford Univeraity Press: Melburne.)
Smbtif, Mareolail (1971)-Small fossil vertebrate from Victoria Cave, Naracoatle, Snuth Aussralia. I. Potominac (Nacropodidate). Petauridae and Burraniyidac (Alarsupialia)Troms. R. Sers: Si: Aust. 95 (4). 185-148.
TATE, G. H. IH. (1947),-Results of the Archtolut Expeditions No. Sho On the antatony and classification of the Dasyuridae (Marsupidial). Bull. Amer. Mlus. Nul. Hish, 88, 47-15f.
Ta1F. G. H. H. (1948)--Results off the Archbold Expeditions No. 60. Sudies in the Peramelidate (Marsupialia). Bull. Aner. Aths. Niwo Hisr. 92, 313-346.
Troford, R. 14, (1967), -The fossil Macnopodidae from Lake Menindec New South Wales. Univ. Calit. Puhl. Geal Scl. 64, 1-156.
Thomas, D. (1888),-"Cutalogue of the Mansupialia and Monotremata in tho eollections. of the British Muscum (Natural History)." (l.ondon.)

Tidemann, C. R. (1967),-Some mammal remains from cave deposits in the south-east of South Australia. S. Aust. Nat. 42, 21-26.
Wakefield, N. A. (1963),-Mammal remains from the Grampians, Victoria. Vict. Nat. 80, 130-133.
Warefield, N. A. (1964),-Recent mammalian sub-fossils of the basalt plains of Victoria. Proc. R. Soc. Vict. 77 (2), 419-425.
Wakefieldr N. A. (1966a).-Mammals of the Blandowski expedition to north-western Victoria, 1856-57. Proc. R. Soc. Vict. 79 (2), 371-391.

Wakefield, N. A. (1966b),-Mammals recorded for the mallee, Victoria. Proc. R. Soc. Vict. 79 (2), 627-636.
Wakefield, N. A. (1967).-Preliminary report on McEachern's Cave, S.W. Victoria. Vict. Nat. 84, 363-383.

Wakefield, N. A., \& Warneke, R. M. (1963).Some revision in Antechinus (Marsupialia) I. Vict. Nat. 80 (7), 194-219.
Wakefield, N. A.4 \& Warneke, R. M. (1967) -Some revision in Antechinus (Marsupialia) 2. Vic. Nat. 84 (3), 69-99.

THE GENUS ACUARIA BREMSER (NEMATODA: SPIRURIDA) IN AUSTRALIA

by Patricia M. Mawson

Abstract

Summary This paper lists all the known Australian species of the genus Acuaria (sens. str.). The degree of infestation in families of passerine birds is indicated in a table. New species described include A. petterae of which males, with or without females, are recorded from Lalage leucomela (type host), Meliphaga virescens, M. plumula, Cracticus nigrogularis, Artamus melanops, Cinclosoma cinnamomeum, Myiagra inquieta, and Drymodes brunneopygia, and females, probably of this species, from Acanthogenys rufogularis, Anthochaera carunculata and Oreoica gutturalis. Other new species are Acuaria colluricinclae from Colluricincla rufiventris; A. microecae from Microeca leucophaea; and A. mirafrae from Mirafra javanica. Measurements and some redescription are given of A. anthuris from Corvus melanops, C. coronoides, C. bennetti and C. orru; A. streperina from Strepera versicolor; and A. skrjabini from introduced aviary finches, Tïaris canora, Lonclzura malacca and Estrilda melpoda. Characters considered useful in distinguishing species of this genus are cordon length and pattern, the shape and ratio of the lengths of the spicules, and the number and arrangement of the caudal papillae of the male. A key to most of the known species, based on male characters, is also given.

THE GENUS ACUARIA BREMSER (NEMATODA: SPIRURJDA) IN AUSTRALIA

by Patricia M. Matrson*

Abstract

Summary This paper lists all the known Australian species of the genus Acuaric (sens. str.). The degree of infextation in families of passerine birds is indicated in a table. New species descrithed include A. Fiftrent of which males, with or without females, are recorded from Laluge leuconnela (type host), Meliphaga vireserns, M. plumula, Cructicus nigrogularis, Artamus malanops, Cinclosnme cinnamomeum, Alyangu inghit'a, and Drymoders brumeopygia, and females, prohably of this species, from Acanthoginss rufoguhais, Anthochacta carmentana and Oreoica putheralis. Other new species are Acmaria rohnuthnclae from Colluricincta rufiventris: A. microceas from Microcea lencophafa; and A. nirafrae from Mirafra javapica. Measurements and some redewcription are given of A. anthuris from Corvas molimops, C. coronoides, C. benneti and C. orru; A. streperina from Sfrepera versicolor: and A. skrinbini from introduced aviary finches. Tîuris cunoru, Lonelura molacorr and Estrilda melpoda.

Characters considered useful in distinguishing species of this genus are cordon length and patecin the shape and satio of the lengths of the spicules. and the number and arrangement of the cautal papillae of the male. A key to most of the known specjes, based on male characters, is also given.

Intruduction

Almost all known species of the genus Acuaria Bremser (sens. str.) are from passerine birds of the order Oscines there appears to be only one exception to this: A. apupa Rasheed, 1960, from the coraciform bird Upupa epaps from India. Actario spp. have been recorded from galliform and gruiform birds, and from cormorants, herons and birds of prey, but all specics, of which the male is described, are found to belung to rekited acuariid gencra. Where only the female is described, identification of the genus is uncertain, but may be inferred from the cordon structure. if this is described.

The incidence of Ariuaria (sens, str.) species in hiris dissected in this department is shown in Table 1. Crows are by far the most commonly infected and are also the most heavily infested birds. perhaps however, only because of the greater size of the gizzard, Of the 21 smaller passerines listed, belonging to 14 species, none yielded more than three specimens, and eight birds contained only fomales. Under these ennditions (and these apparently pertain also in other places-see Chabaud \& Penter 1961), it is almost impossible to be certain of the variation withiri at species. However, in the present !materiat, two species are present in

TABLE 1
Incidence of Acuaria spppo and of nematodes gencrulty, in "land birde" dissected. Numbers pefer to specimens, hot species.

	Number	With	With
Bird group	dissected	nemitorics	Acuarlo sp.
Pasmeriformes	958	360)	71
Alaudidat	2	1	1
Campeplagidae	16	11	2
Turdidue	18	6	4
Monlirchidut	4	2	1
Muscicapidae	41	11	1
Pachycephalidae	37	16	2
Falcunculidae	7	7	1
Meliphagidae	189.	45	4
Attamidac	10	2	2
Cracticidae	100	53	3
Corvidate	77	69	50
Othét families	457	137	
Caprimalgiformes	18	11	-
Coraciiformes	28	14.	-
Sitigeiformes	2.5	17	\square
Accipitrifotmes	61	38	
Cucultiformes	21	5	-
Columbiformes	43	1	-
Psitaciformes	157	4	-
Galliformes.	7	3	
Gruiformes	56	17	-

some numbers. A anthuris from Corvus spp:, and \mathcal{A}_{1} skajabinl from imported finches (cagebirds) among which a heavy infestation occurred. Within each of these species there is a close agreement in certain characters: the

[^11]cordon lengths in male and femate (different in the two sexes), the shape, size and length ratio of the iwo spicules, and the number and arrangenent of the caudal papillae of the male.

Specirnens from other Australian hosts were grouped together according to these characters; in an attempt to compase them with species already described, a key to most of the known species, based on these characters, was compiled. 'this is given below.

Examination of the shapes ol the cuticular bossey in the cordons of the Australian species shows that these may be ustiful in comparing them. The detailed structure of the enrdons, especinally is seen in transverse section, has been suggested by Skrjabn et at (1949) as a useful geneste chatacter in the Acuaridae. Williams (1930) and Rasheed (1960) give figutes of the surfice patterr in some species (though those in the tatter publication are too much reduced to be of critical value). The patterns in each of the Australian species are similas in all specinters, of both sexes.

Acuaria species from Austruliten birds

Alaudidas
MIRAF゙RA JAVAN/CA Horsfiell. Acuarin mirafiae n. sp .
Campephagidae
f.ALAGi: LEUCOMELA Vig. $\&$ Hos. A. pet. merac misp.
Turdidae
DRYMODES BRUNNEOPYGRA Gould. A perferge n. sp.
Monarchidase
MYGACKA SNQHMTSA (Tatham)- A. petterae n. sp.

Ealcunculidnc
OILEOICA GUTTURATAS (Vig. \& Hors.), A. petterace n. 3p.
Mclinhagidae
melifllaga firescens Vicillot. a- peqterme π. sp.
M. PLUMULA Gould A petterac n. 5 p.

ACANTHAGENYS MUFOGULARMS Gould A. perteraen. sp.

Artamidac
ARTAMUS CANEREIS Viciloh. A. petleme n. sp .

Pachycephalidas
COILUURJCINCLA HARMONICA WHITES
Malhews. A. crolluricinclue It. sp.
Cracticidae
CRACTICUS NIGROGUIARIS (GBuld). A. petterace n.s.
STKEPERA VERSJCOLOR (Latham). A. streperina Johnston \& Mawson
Muscicapidae
MICROECA LAUCOFHAFI (Tatham). A. microctar n. sp .
Corvidse
cORvClS CORONODDES Yig, Hors. anthrin's (Rud.)
C. MRI.forl Mathewn. A. amtluris (Rur.)
©. HENNEEIZ? North A. andheris (Rud.)
C. OKRU Bonsparic. A. anihuris (Rud.)

Key far ielentilication of male specimens uf Асжагіа spp .

The descriptions of A. gagensis Bisseru and A. iwashkini Erhardover are not available to me; as full description has not been seen of A. eremophita Erkulov. A: demuir Duj. has been onitted because the cordon length and the number and arrangement of the catdal papillac are not known; if falls among speciex below choice 14 in the key, Species from crows, A atcontita (Rud.), A. ornate (Gendre). A. Imgicoudat Hoeppli \& Hsii , and A. scupara Maplestone, and synonyms of thesc, have been assigned to one group, the "A: anthuris complex". It is probable that examination of the iypes of all deseribed species sittrituted to Acharion wobld show Ensiderahle synonymy, and might also indicate more important differences hetween some species thati are reveulcd by cxisting descriptions.

1. Left spicule longer ilas 190 . m2
2. Teft spicule shoter than 190 km 9
3. Spicule ratiu 1.1-1.1 3
4. Spicule ratio d.5. or more 5
J. Cordons very long, extending well past neto.phayus
"A. anlhuris Complex"
5. Cordons very shost, not extending much piat excrubsy pure
6. Body length \& $6 i \mathrm{~mm}$. spicule ration 1.7
A. muyari Lent, Freithe \& Proenca
7. Body lengiti $10-11$ mim, spicule ratio $1.1-$ 1.4 A, sordafte (Mivelles)
8. T.efi spicute less than $230 \mu \mathrm{~m}$ long6
9. Lcht snicve more than 250 um long $?$
10. Cortons end ubout midlength of muscular sesophagis.
A. subula (Dui.)
11. Cordons nearly as long as nesmphagus
A. culluricimblae u. sp.

7. Lell spicule 262 mig

A. onedi (Wang)
7. Lefi spicule over 300 Am
\&. Fitst pair of postanal papiltue shout a hird lail leugth from second pair
A. cyanocilla (Buyd)
B. First and second paire of postanal pimillae not much separated. A. sifeperinu. J. \& M.
9. Spicule rallo 1.5 or over
9. Spicule ratio less than 1 , 5

14
10. Cordons reach to end of muscular vesophagus. A. conich Maplestone
10. Coritons very shori, not much past exentory pore11
11. Six puirs of nostanal papillato 12
11. Scyen pairs of postanal papillae 13

12 Left spicule 165 k mt long ."
A. stalied Williams
12. Leff spiculc 150 km lone
A. лмитilljera limsi.
13. Teft spicule $140 \mu \mathrm{~m}$ long. A. paragailtardi Ch \& \mathbf{P}.
13. Left spicule $170 \mu \mathrm{~m}$ fong
13. Lefi spicule $170 \mathrm{\mu m}$ long A. parorioli Ch \& P .
14. Cordons more or less to end of glandulat Desophugus ili in .in in in
14. Curkons hardly longer than muicular oesaphagus 10
15. Four pairs of preanal papillae - 16
15. Fewer than four pairi of preanal popilae is
16. Left spicule $129 \mu \mathrm{~m}$ long
A. cromi Rasheed
16. Left spicule langet than $150 . \mu \mathrm{m}$13
17. Left spicule slightly grooved near tip
A. patsont Williams
17. Lefl spicule deeply grooved hiroughout length

A miner Williams
18. Three pairs of preanal papillae.

A-hrevispiculfa Maplestone
18. Two pairs of preanal papillae
19. Seven pairs of postanal papillae A. alit Rasheed
19. Six pairs of poxtanal papillae
20. Spicule ralio close to 1.0

20, Spicule тыlio t.1-1.4 ... 25
21. Spicule length Jess than $130 . \mu \mathrm{m}$.......... 22
21. Spicules longer than $130 \mathrm{\mu m}$
22. Six paircis of pestanal papilise
A. rremopilio Erkuloy
22. Seven pairs of preanal papillae23
23. Cordons not much past nerve sing
fo kung singh
23. Cordons reach about to end of musaular oesophagus .. : : . . A. microctne n. sp.
24. Cordons nut past netve ring
A. martinaslial Le Roux
24. Cordons nearly to end of muscular oesophagus

1 uрира Rasheed
25. six pairs of postanal papillae 26
25. Seven pairs of postanal papillae 31
26. Postanal papillae in two groups of threc pairs

27
26. Postanal papillae not in two dislinct 29
27. Spicule ratio ybout 1.1 A. mirafpae n. sp.
27. Spicule ratio 1.3-1.4

28
28. Caudal alae widen at midlength

A- prefscula witilams
23. Candal alae about same width throughout \mathcal{A}, dollfusi Ch. \& Petter
29. Cordons reach onty to cervical papillas
39. Cordons reach further than cervical ceflive Hsü papillae
30. Right spicule grooyed for most uf ils
3n. Righth spicule simple A. Ararilis (Gendre)
Indichara Rasheed

3n. Right spicule simple A. dicpura Rasheed
31. Three paits of preanal papillac

A, brumpth Ch. \& Petter
31. Four pairs of preanal papillae 32
32. L.eft spicule less than $125 \mu \mathrm{~m}$ long
A. gallatedi Ch. \& Petter
37. Befl spicule more than $135 \mu \mathrm{~m}$ long … 33
33. End of fight spicule enlarged A.e. Akriabio Ozerska
33. Tip of right spicule withont prominent enlargersent

34
34. Cordonis reach past excretory pore, and smere than half dixtance between bead and posterior end of muscular oesophagus.
A. butmerae Ch. \&x Petter
34. Cordons shorter, legss than haif this distance.

35
35. Parasitic in African oriole
A. arioll Ch. \& Petter
35. Parasitic in Australian passerines
A. petterae n . sp .

Descriptions of Species

The general motphology of Acharia spp, is so similar that only the special features of each spocies will be deseribed. Mcasurements are given in Table 2, those of parts of the ocsophagus are taken from the antetior cod of the body to the end of the organ in questions the spicules are measured in lateral view coften very different from those taken in ventral view).

Acuaria anthuris (Rudolphi, 1819)
FIGS. 1-3
Hosts and localities: Corvus condmoides from Adelatide and $\mathrm{Pt}_{\text {, }}$ Augusta, S . Aust; C_{1} mellori from Balgowan, S. Aust. and Launceston, 'Tas.; C. bennenti from Lock, S. Aust and Erldunda, $\mathrm{N}_{\mathrm{c}} \mathrm{T}$; C . erru from Plenty River. N.T.: C. sp. from Pearson I:, S. Aust
Aciucarid anthuris has been recorded many limes from different parts of the world; reference lists and discussion of its synoymy may be found in Skrjabin et al (1965) and Chaboud \& Petter (1961). The present study deals only with the variations observed in the Australian spocimens. The species is quite common in Australian crows and ravens. Mcasurements are given in Table 2. The general appearance, except where noted below, agrees with descriptions given by Singh (1948), Rasheed (1960) and Chabaud \& Petter (1961).

The cordons exiend well past the oesophagus in both sexes. reaching it little under it third of the body length in the male and a litule more than this in the female, but never quite reaching to the vulva, The cordon structure (Fig. 1) i.: different fram that figured hy kasheed.

The papillae on the male tail are usually more or less symmetrical, comprising four pairs and one median preanal papillae, and six pairs of postanal papillac, atranged as three pairs on the anterior half of the sail and three paiss of rather smaller papillae on the last
TABLE 2
Measurements of Acuaria spp. Unless otherwise stated all measurements ave in $\mu \mathrm{m}$,

		Acuaria anthurisrange (mean)		Acuaria skrjabini	Acuaria streperina	Acuaria pe range	$\begin{gathered} \text { etterae } \\ \text { (mean) } \end{gathered}$	Acuaria colluricinclae	Acuaria microecae	Acuaria mirajrae
Male	Length (mm)	9.7-13.4	(11.4)	7.1-9.0	-	5.1-6.9	(5.9)	6.8	4.6	
	Oesophagus	2500-4400	(2900)	1200-1900		1000-1500	(1259)	2300	1500	1330, 1760
	Musc. vesoph.	700-1080	(924)	420-730		400-610	(514)	700	460	480,620
	Vestibule	200-280	(248)	130-170		150-180	(165)	170	120	150, 170
	Antr, end-nerve ring	300-360	(323)	150-215		175-225	(202)	200	165	185, 210
	-cerv. pap.	270-430	(330)	140-200		160-210	(193)	190	170	175, 200
	-exer. p.	380-530	(461)	220-330		240-320	(276)	330	260	270, 280
	L. spicule	230-310	(274)	190-200		140-185	(171)	210	100	140,140
	R. spicule	190-270	(226)	110-140		110-140	(130)	130	100	130,125
	L. spic./R, spic.	1.1-1.4	(1,2)	1.4-1.7		1.2-1.4	(1,3)	1.6	1.0	1.1. 1.1
	Cordon length	3200-4500	(4100)	200-330		120-295	(197)	2000	460	270,330
	L/besoph. length	2.8-4.8	(3.9)	4.5-6.0		4.0-6.3	(4.7)	2.9	3.0	4.5, 4.3
Female	Length	19.1-30.3	(25.4)	23.9-28.4	16.8	16.0-24.9	(21.5)	12.4	2 L 1	-
	Oesophagus	3000-5000	(4200)	1500-2000	3200	1620-2600	(2096)	3.5	2.6	
	Musc, oesoph.	1000-1500	(1291)	$600-1200$	830	$800-980$		1200	900	
	Vestibule	250-350	(302)	160-200	210	210-230	(219)	250	160	
	Antr. end-nerve ring	300-530	(408)	180-240	300	260-300	(274)	320	225	
	-cery pap.	320-600	(437)	180-240	330	200-300	(266)	290	190	
	- excr.p.	550.800	(662)	260-330	450	$320-400$	(371)	420	330	
	-vulva (mm)	8.8-14.9	(11,5)	11.2-14.9	\$2.8		(10.8)	6.6	10.9	
	Ante-Vulva, as \% length	43-50\%	(45.6%)	44-52\%	52.4\%	46.8-50.8	(48.4\%)	53.2	51.6	
	I /oesoph length	4.9-7.6	(6.2)	12.8-15.7	5.5	8.7-14.4	(10.7)	3.6	8.1 1600	
	Cordon length	5600-9200	(8400)	200-450	1900	250-380	(350)	2500	1600	

quarter of the tail, as well as a pair of yery small phasmids almost terminally. The members of a postanal pair are not always strictly opposite to one another Individual variations from this occur, some specimens having one or two papillac missing from one side or the other of 85 male worms examined 18 showed some abnormality in the caudal papillae. Most of these were one papillae more or less on one side or the other; in a few there was one papilla more or less in the terminal group of postanal
papillac: In three specimens there were six pairs in the preanal group, the most posterior of these lying just posterior to the anus, so that they could be regarded as an extra postanal pair except that they continued as a closely spaced line of small preanal papillac on each side and were quite separated from the larger papillae of the anterior group of postanal papillae which were further apart. Except for these three specimens, all had six pairs of postand papillac, of which the anteriormost lay

Acuuria anthuris. Fig. T.-Part of a cordon, Fig, 2.-Right spicule. Fig. 3.-Tail of fernale,
Figs. 4-5. A. streperina, Fig. 4.-Pare of a cardon. Fig. 5.-Posterior end of male.
Figs. 6-9. A. skriabini. Fig. 6.-Part of a cordon. Fig. 7.-Anterior end of male. Fig. Br-Posterior end of mule. Fig. S.-'Tail of female.
Figs. 10-13. A petretae Fig. 10,-Anterior end of male. Fig. 11.-Parl of a cordon. Fig. 12.Posterior end of male. Fig. 13.-Tail of femalc,
Figs. 2, 5, 7, and 13 to scale besile $2 ;$ figs. $8,10,12$, and 13 to scale beside 12.
some distance hebind the anus. 'The spicules are trooved (as described by Singh 1948) and slate (Fig. 2). The left spicule is larger thain the right excepl al the lip and the expanded punts of the alae ano wider.

Chabaud \& l'ettes (1961. p. 210) report A. anthuris of swo sypes; the first (from Giaruhus glandarims and Ricu meal, rather smalles, with six pairs of postanal papiltie in the male, the second (Irom Corphs corone). larger and with seven pairs of postanal papilfas, in addition to the phasmids. The only measuremene given is that the mates of the smaller specimens are less than 12 mm long. The smaller specimens agrec with Rudolphis specimens selected from material (apparently confaining more than ont species), by Schneider (1866) as the type for A. unthuris: The Austratian moterial, though perhaps a litte longer, agrees with these types
Acuarla staeperina Johnston \& Mawson, 1941: 254.

FIGS. 45
llosi and locality: Sirceperas versicoler mekuoptera from Waikerie, S. Aust.
The type specimens of A : streperina have been sieckumined und the orginal descriphon must how be amended; they are old specimens. poorly fixest and much contracted. The length given for the nesuphagus, $7611 \mathrm{\mu m}$ in the male and $800 \mu \mathrm{~m}$ in the female, is that of the muscular patt of the organ; the end of the glandulat part is 2.1 mm from the head in the female. which is stongly contracted, and 1.4 mim in the male, which is less so. The condons reach nearly to the end of the oesoghagus in the female, and in the end of the nuscular oesophatus in the nate. There are six (not tive) paits of postcloacal papillac in the malc, atranged with three well spaced pairs on the proxinal wo-thirds of the tail and three pairs. closer together, on the distal third. The papillae of the latter group are much smuller and barder to find. The spicules each have an enlarged proximal end. which is less heavily ohitinised and was apparently not included in the original measurements. The spicules sre $380 \mu \mathrm{~m}$ and 1 RO , $\mu \mathrm{m}$ long, with no ratio of 1:1.7. The largest ecgas are $45 \times 28 \mathrm{fm}$.

A singte female worm from the type host species is referreil tor A. streperina. It was collected and fixed after death and so is in a relaved condition. Its measurements are cliffer. ent in those of the type femate largely because of this. Eges in this specimen are not cmtryonaled and are thin-shelled, Measurements are given in Table 2.

The species is very close to A. crumorifla (Boyd, 1950) but is distinguished by the anangement of the pastanal papillae in the male

Acuaria skrjabini Oecrstac. 1926: 103-111: whele Skrjabin er al. 1965: 114.

HICS. 6-9
Hosts and locality: Exotic aviary finches from New South Wales: Tiuris conora, Lonchum molacera and Fistrilds melpodna,
These specimens occuried in large numbers in many specimens of the finctes and were considered by the owner of the aviary to lue the cause of the death of the birals. They agres generally with the figures and description of A. skrinbin by Ozerska and alse by Singh (194s). the principal differences being that there are 7 pairs of postanal papillac in the male. as described by Singh. not six ay shown by Geershis; the spicule ratio is nearer that in Ozerski's specimens than those of. Singh. There is at distinct enlategement at the distal end of the jight spicule.

The cordons in the male reach to, and usually beyond, the excretory pore, and those of the female are longer reaching to about half the distance from the head in the end of the muscular oesophagus.

The caudal alae the the mule une sistinctly wider anteriorly. There is only a slight distinction in spacing between the first four nustcloacal pipillace and the last three. In some specimens the posteloacal pairs ate not arranged sysntwetrically and in a few ane member of a pair is absent; Both spicules are indented at the tips and this is clearer in the right spicule as ir ents more broadly;

The cge size is $40-43$ by $23-24 \mu \mathrm{~m}$: this is tather shorier than Ozurskits measurements, and distinctly larger that thase of Singh.

Acuaria petterae is. sp.
FIGS. 10-13
Husts und Jaculities: Paluge lentomelo frum Katherine Gorge, N.T. type hnst; Meliphuget virescens. M. phumula and Cracsicus migmgularis from the Petermann Ranges, N.T. Arfanus melanops from Alice Springs. N.T.: Cinclesoma cinnumomeum from Tubetmory Stn. N.T.i Myidgraf inquidn and Drymodes hrumneopygius from Blancherown. S. Aust.
Probable hosts and localities, (only females present): Acanhorenys mifogularis from Blanchetown. S. Ausbo Ampochesera curur-
culate from Vertan, S. Austi- Anemus medernons from Port Angusta, S. Ause.; Oreofica surturatis from the Petermann Ranges. NiT.
Although the houts listed above cover it witic range of bird groups, and a wide geographical range, there appear to be no specific differences among the specimens from each. Although there is some variation in the position of the cevvical papillac, and in the fength of the corlons in the male, there is often as much variation besween specimens from one host as beiween speciments from different hosts.

The cordons are short. They do not exicnut ais far as the nerve cing, in the male, or further than the excretory pore in the female.

The vulva is at about the mid-budy, juss in front of or just behind this. The vagina passes hackwards. Egss are 38-39 by 21-23 jm.

The cudalalat of the male spe stender and onil: slightly wider in their anterior halves. There are typically four pairs and nne median proanal papillac, seven pairs of postumal papillae and a pair of very small phasmids. The pastanal papillae are not arranged in two groups hut lic progressively cloger logether towards the tip of the tail. In some specimens there are monc or fewer papillac on one side or the other, but thase appestr to be abnormalitics. The spicuics are unequal; the tips of both are blunt and rounded. The species appears to be very close to A. orioli Chabaud $\&$ Petter (1951), hased on specimens from an otiole fmm Dahomey, which hat been placed (with reserve) by Gendre (1912) in his species A. gmailis, from Buchanga atya from the same fincality. Gendre states that ahe specimens from the oriole were in nearly all points similar 10 those from the drongo, distinguished only by the number of postanal pupillae in the male, and the shape of the tip of the male tail. The cortons of A. orioli are longer in both sexes, than those of the Australian specimens. In the absence of more information about A. orioll, the Australisu specimens are regarded as a dislinct species. In some ways it resembles A. skrjabini but differs from this species in the more siender build of the spicules. the unenlarged tip to the right spicule the shape of the caudal alae, and the detailed strueturc of the corituns.

Acuaria colluricinclae n. sp. FIGS. 14-16
Hoss and localty: Colluipicincla mfivenivis from Eyre Peninsula, S. Aust,

The material consists only of one male ame one fcmale specimen, but these differ distinctly from A. pettenae which appears to to the commonest species of the genus in Australian passerines. Mcasurements are given in Tuble 2.

The cofdons extend ncarly to the posterior end of the glandular oesophagus in both seles, at little nearer in the female. Detall of the cor. don structure are shown in Fig. 14.

The spicules are unequal in length; the fight spicule ends in a swollen tip. There are fous pairs and one median preanal papillac, $\overline{6}$ pairs of postanal papillae, and one pait of phasmids. The postanal papillae are asymmetrical (Fig 1S), presumably an abnomal conditon; the lirst 3 pairs are well spaced and spread over the anterior $220 \mu \mathrm{~m}$ of the $280 \mu \mathrm{~m}$ long tail, while the last 3 pairs are smaller and lie on the terminal $50 \mu \mathrm{~m}$.

The species is distinguishad from other Australian ones by the ratio of the spicules, the structure of the right spicule, the groupting of the postanal payiltac, and the cordon length. It is distinguished from other close species is shown in the key to species.

Acuaria microecac n, sp.

FIGS. 17-20
Host and locality: Mieroeca leumphaed troni Waikerie, S. Aust:
The measurements of this species, of which onty 1 male and ! [emale are presenf are given in Table 2.

The cordons of the male reach to the end of the muscular oesophagus; those of the female to about halfway between the bead and the posterios end of the glandular oesophagus.

There are four paiss and one median preanal papillae, scven pairs of postanal papillae and is pair of subterminal phasmids. The postanal papillae on each side are more or less evenly spaced along the tail, the posterior ones slighty closer together. The spicules are equal in length and similat in build; each has a pair of short alae towards the distal end, and the rounded tip is bent vertrally.

The vulva is stightly bebind the midbody? the eggs are $35 \times 2 \mathrm{I} \mu \mathrm{m}$.

The species is distinguished Irom others from Australia by the presence of equal spicules, It differs from other species in which the spicules are equal and in which there anc ? pairs of postanal papillac, in having longer cordons and in the very short spicules.

17

Figs, 14 16. Acuaria colluricinclae. Fig. 14.-Part of a cordon. Fig. 15.-Posterior end of male, Fig. 16.-Tail of female.

Figs. 17-20. A. microecae. Fig. 17.-Anterior end of male. Fig. 18,-Part of a cordon. Fig. 19.Posterior end of male. Fig- 20-Tail of female
Figs. 21-23. A. mirafraé, Fig. 21.-Anterior end of male. Fig. 22,-Patri of al tordon. Fig. 23Posterior end of male.
Figs. 15, 19, and 21 to scale heside 21: figs. 16 and 20 to scale heside 20; figs. 17 and 23 to scale heside 23 ; figs. 18 and 22 to scale beside 22 .

Aruaria mirafrae n. sp.

$$
\text { FIGS. } 21-13
$$

Host and locality: Mirmin farantion fiom the Northern Ierritory.
This collection comprises only two whole and one hroken malc worms. Measurements are given in Table 2

The cordons extend a short distance behind the excretory pore. 'The detail of the cordon pattem (Fig. 22) is somewhat similar to that of A. pesterues.

There are four pairs and one median preanal papillac, sil pairs of postitnal papiltae and ad pair of subterminal phasmids. The postanal papiliat are arranged in two groups of three pairs. The cight spicule ends bluntly and the tip is slighty indented.

The species is distinguished from A. putherde by the number of postanal papillae and by the rather longer cordons. It is close to A. yrachis.

Gendre in the body measarements, bus uiffers in the spicule zatie and the arrangement of the postanal papillate.

Acknowledgements

Many of the birds dissected were given by the Suth Australian Museum or by the Northern Territory Muscum. I 7 m most grateful to the olficers of these muscums, who took a great deal of trouble to get the bodies to me. The Tasmanian pitvens were sent by Mr. Barry Munday of the MI. Pleasant Laboratories of the Tasmanian Department of Agriculture, Launceston. Specimens from exotic finches camic from Dr. D. M, Murray of the C.SIR. O. McMaster Laboratory. Sume hosts wero collected for me by collcagues-Mrs. Joan Paton and Dr. Michael Smyth. The single worm from Corvus sp. from Pearson 1. was obtained in 1923 by the Wood-Ioncs Expedition. T an greatly indebted to atl these helpers.

The work was done in part under a Rusal Credits Development Grant.

Refarences

Bovo E. M. (1956), -'Two new xpecies of stomsish worms (Nemateda: Sgituroidea) from the Blue Jay, Cyanocits distan L Proe. Helm, Stes. Wash 23, 70-74.
Chataud; A, Ge \& Pbtter. A. (1961),-Nema. indes ith genre Acharia de la faune de Fxance. Amms. Parasit, ham-Lomp 35, 40y-424.
Dusakoin, Fo (1845), -"Histoire naturelle ices Helminthes su vers intesinaux", [Paris]
Enkucov, K. (1969), - IA new nengatode, sctwarin dremophin (Spirtrath: Acuaridide) from the share lark. 1 Mofer nemeh. Knof exies. Ohshat, Get'min, Year 1969, P6. I, 339-343. (In Russian.)
Gembra E. (1912),-Sut quelques espectas de Dispharager du Dabuncy- ProćereVertbea Snc. Limpernne de Dordenar 81. 23:31.
HSU WEt-NaN (1963) --Studis on some parasilic nentatodes of the ordci Spirtidia Chilwood. तew Zool, Sinime 15. S44-532.
Jolnsmn, T. H., \& MAWSON, P. M, (1941), Same nemitode parasites of Australian binds. Pric Limu Soc. N.S.W. 6. 250.256
IENT. Hois Fritas J. F. To, \& Proenct, M. C (1945)-Algnins heimintos de aves colatonaday oo Paraguai. Afem. Ins. Onvaldo Crut. 43. 271285.
 maftinugliai sp. nowo) from a South Africon Weaver (Hyphantornis sp.). 16th Repors Direct. Veter. Serv. Arimal Indust. Union South Africa, 211-215.
Ltastow, O. von (1878) - Ncue Benhachlungen an Helminthen, Arch Nature 44, 218.245.
Maplestone, P. A: (1931)-Parasitic niematodes ohtained from animals dying in the Calcutta Zonlogical Gardens. Pts, 4-8. Rec. Tnd. Mar. 13. T1-171.

Maplestonti, P. A. (1931), -Parusilic nematodes obtained from animats dying in the Calculla

Zoological Gardens. M15. 9-11. Berc. And. Minh 34. 229261.

Mutrafr. A (1897)-Melminthologische with feilumgen. Arch, Narurg, 68, 1:26.
Ozerska. Y. N. (1926).-Zur fauna der paad sitischen Würmer det Hausperlinge des Dongehicis: Tunty Gor. Inst. Reksp, Vet; 2. 102-108.
Rushem, S. (1960), The nematode paratires al the oirds of Hyderabad (India), Bichesim, Lahore 6. 1-1/6.
Resplphi C: A. (1819),-"Entozoorun synopais cut accuunt mantissa duplex el intieses locoplelissimi," [Rerolini.]
Semcth S. N. (1948) Stuilies on the belminth parasites of birds in Hyderabad Stafe. Nemtausda 11.1 . Helminth 22, 199-218.
Skrtabin, K. I., Shikhoumpova, N. P., \& Sobboley A. A. (1949)-[Spirusata nut Fllariata] Opredilitel parazilicheshikh nemtad. Vol. 1 . (Moscow. Akad. Sci. Li.S.S.R.) (In Rusfium,
Skriabin, K. I., Sobolev, A. A., \& IVishikin. V. M. (1965),-[4Principles of nematology. Yol. If, Sperurata of animals hnd sァan and the diseases caused by them. $\mathrm{PL}_{1} \mathrm{Z}_{\text {, }}$ Acuariidae."' (Moscow Acad. Sci. U.S.S.R,) (In Russian.)
Skriabin K I. Sobolev, A. A. \& Ivashkin. V. M. (1967).- "Primeiples of nematology," Vol 19. Spiruratir P1. 5 (addendum) 1 (Mos. sow Acadl. Sci, U.S.S.R.) (In Russlan.)
Wang. P. C. (1966)- Notes on Acuarioidea of hirds from Fukien. China. Acta parasiol. Sinica 3. 1529.
Wilzhems, o L. (1929) - A erucial analygis of the specific charheters of the genus Actiario. mematodes of birus will descriptions of new Anietican spaies, Univ. Calif, Bubls. Zabr. 33. 69-107.

A LATE PALAEOZOIC GLACIATED GRANITE SURFACE AT PORT ELLIOT, SOUTH AUSTRALIA

by A. R. Milnes and R. P. Bourman

Summary

A glaciated granite pavement, discovered at Port Elliot, South Australia, shows features that indicate an east to west movement of Late Palaeozoic ice, and thus significantly extends the known area of approximate east to west ice movement on Fleurieu Peninsula. The granite pavement and the profusion of granite erratics, together with the probable existence of an originally extensive pluton of Encounter Bay Granites, suggest the possible dissection of the pluton during the glaciation to form the present outcrop distribution.

A LATE PALAEOLOIC GLACIATED GRANITE SURFACF AT PORT ELLIOT, SOUTH AUSTRALIA

by A. R. Midnes ${ }^{\text {* }}$ and R. P. Bourmant \dagger

Abstract

Sumunary A glaciated granite pavement. discovered at Port Elliot, South Australia, shows features that indisute an east to west movement of Late Palaeozoic ice, and thus significantly extends the known area of approximate cast to west ice movement on Fleuricu Peniosula. The granite pavement and the profusion of granite erratics, together with the probable existence of an origiaslly extensive pluton of Encounter Bay Granites, suggest the possible dissection of the pluton during the glaciation to form the present outcrep distribution.

Introduction

Fleurieu Peninsula, South Australia, has for many years been studied from the point of view of its scaltered exposures of glacigene sediments (now known to extend over a large proportion of South Australia) and its Jandforms, many of which have been accorded a glacial origin. Such investigations (e.g. Howchin 1898a, 1898b, 1908, 1910a, 1910b, 1926, 1929: Campana \& Wilson 1955) were initiated by the discovericy of glaciated Cambrian and Protcrazoic bedrock surfaces in the loman Valley (Selwyn 1859) and at Hallett Cove (Tate 1889). Crowell \& Frakes (1971) nummarised and in part reinterpreted many of the eatier investigations in the contexi. of a regional study of the late Palacozoc glaciation in Australia.

The age of the glacigene sediments in many Iocalities in South Australia was detcrmined by Ludbrook ($1956,1967,1969$ a,th) from foraminiferal studies as 1 nwer Permian, Tentative evidence for a Late Carboniferous to Lower Permian age for the glaciation, in the form of a possible Late Carbonilcrous microfiora in glacigene sediments in the Lake Phillipson bore in north-west South Australit, was recorded by Balme (1957): Harris \& McGowran (1971)
recently described palynomorph assenblages of Permian age in glacigenc sediments from several localities adjacent to Fleurieu Peninsula, and in addition, recorded a reworked Devonian microflora in glacigene sediments from Watertoo Bay on Yorke Peninsula. For the purpose of the present paper, we will refer to the age of the glaciation as Late Palaeozoic.

Our contribution was initiated by the discovery of. a glacjated granite surface at Port Elliot, and other glacial fentures throughout Fleuricu Peninsula. These finds have provided siguificant information on the local effects of the Late Palaeozoic glaciation, and the direction of movement of the ise.

The Encounter Bay Granites

The Encolinter Bay Granites ${ }^{1}$ crop out in the Encounter Bay area as discontinuous masses along the coastline, and on the adjacent small islands. The contact of the granites with the surrounding Kanmantoo Group metasedimentary rocks is exposed in only two loca. lities, Rosetta Head and Wrighi Island, In alt other localities, it is obscured cilher by Late Palaeozoic to Recent sediments, or by the sea. Several large xenoliths of unaltered Kanman. too Group metasedimentary rocks within the granites are possibly roof pendants, and may

[^12]
STRIAE DIRECTION OF LATE PALAEOZOIC glaciation-FLEURIEU PENINSULA

Fig. L. Map showing the known occurrences of Permo-Carboniferous glacialed pavements and corresponding striae directions, Flemieu Peninsula, South Australia.
indicate the close proximity of the present level of exposure to the roof of the original intrusion. Thus, the granites from West Island to Port Elliot appear to have originally formed part of the north-western wall and roof of a large pluton, which may have extended for some distance eastwards in the present position of the Southern Ocean and the western portion of the Murray Basin.

The gramite outcrops show considerable modification as a result of surface weathering and erosion. Features such as sheeting, flared slopes, and gnammas, all of which are charac-
teristic of inselberg structures, have been observed in many localities, In addition, a marked development of tafoni, micropediments, and corestones has been noted.

The Glacial Pavement and Associated Features

 at Port ElliotAn undulating smoothed and polished granite surface oceurs at the edges of a pathwisy excavated across the top of the promontory between Knights Beach and Green Bay, Port Elliot (Cigs. 1-3). The surface is poorly cxposed (Figs. 4, 5) but crops out intermiltently

Fig. 2. Low level oblique aerial photograph of the promontory between Knights Beach and Green Bay, Port Elliot, on which the glaciated granite pavement is exposed.

Fig. 3. Geological sketch of the same locality as shown in Fig. 2.
over a distance of approximately 30 m , and is extremely variable in orientation. It is overlain by thinly to very thinly bedded silts.

The aren of exposure, corresponding to the easternmost extent of the pavement, is less than 1 m square. However, its extension for at least 1 m further westwards has been proved by minor excavation. Well preserved striations and grooves and possible crescent-shaped gouges were observed on the pavement in this exposure only (Fig, 4), and indicate at direction of movement of the glacial ice from approximately east to west (255° to 260°). These surface features have been partly obliterated (probably by traffic along the pathway) on those parts of the pavement exposed for some length of time, but are extremely well preserved on that part of the pavement recently exhumed from beneath a cover of silts.

The sediments overlying the pavement are well exposed in the cutting at the edge of the pathway across the top of the promontory, and are simidar to sediments described by carlier workers as glacigene from other parts of Fleurieu Peninsula. They consist of thinly to very thinly bedded brown to red and greyish white coloured silts with minor grit bands and lenses. Many beds show extremely fine laminations. Bedding attitudes vary from horizontal to a shallow dip towards the north-west, but in view of the variability of the underlying surface, are interpreted as primary depositional attitudes.

Immediately beneath the granite pavement, there is a weathered zone of varying thickness characterised by the presence of innumerable small-scale fractures which appear to have mainly developed parallel to the pavement surface (Fig, 5). In addition, a skin of gocthite up to 1 cm thick has formed on parts of the pavement (Fig. 6). Thesc features are a result of recent weathering.

The glacigene silts are directly overlain by a calcarcous conglomerate, up to 1 m thick, which infills fractures in the uppermost beds of the silts (Figs. 7, 8). The conglomerate is in turn overlain by a consolidated calcarcous beach sandstone which crops out spectacularly in the cliffs at the back of Knights Beach. The sandstone is capped by a layer of massive to nodular calcrete, and this laps directly on to the granite on the western and eastern margins of the promontory (Figs. 2, 3).

The pavement and overlying glacigene silts are presently about 10 m above sea level. However, it is clear that they have been at or below

sea level beculuse of the nuture of the neer. lying sedinichts. "The conglomerate is interpreted is the result of reworking of both the glacigene sediments and the beach sandstonc, prior to the formation of the calcrete crust. Furthermore, it seems likely that the reworking occursed after the main period of heach deve. lopment, bur in a similar although somewhat mure sheltered environment, pethaps protected from the lull crosive capacity of the sea hy the outcropping granite. In wiew of the thick developmeat of sandstone immediately inland from the granite, it is probable that as considerable proportion of the glacigene sediments ori. ginally present in this locality has been removed.

The pavement apparently defines part of the southern margin of a local glacigese sedimentfillal basin, which occupies the aress between the granite outcrops at Port Elliot and the hills nf Kanmantoo Giroup metasedimentary rocks 3 km to the north. Glacigene sediments have been logged to depths of 175 m and 91 m in two bures drilled in this basin to the northcast of Port Ellios (Crawford \& Thomson 1959): However, the sediments do not crop oue at the surface-as mapped on the Encounter 1 -mile sheet, being elfectively blanketed by noore recent deposits including outwash, alluvium and, ncarer the coastline, consolidated (\%) Pleistocene beach-dune sandstones and un. consolidated present-day beach and dune sands.

Other Glacigenc Sediments in the Port Elliot District

Further outcrops of glacigene sediments, consisting of very thinly laminated white 10 buft coloured clays and associated sands with sporadic erratics, occer in a narsow northeasterly treading valley just over 4 km gorth of Pont Flliot township. The erratics inctude
exotic granites, gneisses and quartzites, together with boulders of locally deriyed metasandstone. but there is no evidence of erratics of the nearby Encounter Bay' Granites. One boukder of coarse grained gneisa contains bluc opalescent quartz, and is smitar to tock-1ypes cound in the older Proternanic basement inliers north-west of this locality.

Discussion

The glaciated granite pavement at Port Ellot is significunt with regara to an interpretation of the Late Palseozoic to Recent geologicial and geomorphological history of the Encounier Bay aren, especially in relation to the mature and distribution of the outcrops of Encountet Bay Granitcs. The pavement links with the glacisterl Kunmantoo Group metasedinentary rock pavements throughout Flcurica Peninsula in revealing glimpses of a recently exhumed Late Palaeozoic landscape. Furthermorc, it indicates that the Encounter Bay Granites were expowid at the carth's surface during and possibily prive to the glaciation, and near the same level within the intrusion as presently exposed. Adatitional evidence for their exposure is provided by the profusion throughout Fleurieu Peninsula of erratics of Encounter May Granites, which are distinguished by their characteristic opalescent blue quartz crystals.

The direction of ice movement determimed from the surface features preserved on part of the pavement is consistent with the directions determined in a similar fashion from 12 glaclated Kanmantoo Group metawedimentary rock surfaces (Fig 1) on a wide variety of topographical features. (Howchin 1926; Brock 19642; Mand 1967°., and umpublished lield observations), and thus swe are able to extent the knowia srea of approximate east to west novement of the Late Palacozojc ice. At

[^13]Fig. 4. The eastern-most exposure of the glaciated granite payement, showing parallel striac.
Fig. 3. Steeply dippine portion of the granite pavement (Pv) exposci edgeon near the cente of photograph. Zone of disintegrating granitc (Dg) between the paventent and fresh gramile (Fg). Scale represents 20 cm .
Fig: 6. Contact between glaciated granite pavement and overiying glacigene silts (G.s). Thin ekin of goethite (Go) covers the pavement surface at the base of silts. Disintegrating granite $\left\{\mathrm{D}_{\mathrm{E}}\right.$ \} beneath pavement. Scale represents 10 cm .
Fig. 7. Calcareous conglomerate (Ce) infilling fractures in upper beds of glacigene silte (Gs). Sale тергеsents 10 sm .
Fig. 8. Section showing glacigene silts (Gs) at base (dipping at shaltow angle in the west), overlsin by calcarcous conglomerate (Co) and a maissive calcrete (Ca) crust. Scale represents 30 cm ,

Denneshaw (Christmas Cove) on Kangaroo fland, Ward (1922) pecorded a restricted exposure of glacigene sediments and is smoothed and striated Kanmanton Group metasedimentary rock surface that also indicated all "east-west direction" of iee movement. This dinecthon, however, is at variance with that measured at Hallett Cove (Howchin 1926: Cowe! \& Firakes 1971) on one ot the two other glaciated pavements in South Australia for which there is published information. Here the indiented direction of jec movement is toWards the north-north-west: Pritchard (1892) describen glaciated surfaces with similar northsonth oriented striac on Cambrian limestone heesar Curramulks on Yorke Penincala. Although there are glacigene sediments in the area (Crawford 1960), the origin of the typical that limestone outcrops hax been misinterpreled try Pricthard.

Siriae dixechiuns un the Hallers Cave pavements are Homalons when compared with thote measured from the numerous pavement: In the south. Moreover, Halletl Cove is senarated from the pavement localities of Fleuricu Peninculat ly at least two major faults, slong which there has been tharked vertical displatement during the Tertiary (Thomson \& Horwitz 19623. Pinviding there has been mo pusiglaciat rotation of the Proterozoic rocks, the striat directions and the occurrence of erratics of Encounter Bay Granites at Hallets Cove inay liave resulted from either:
(a) the stuth to norits movement of an initid continental ice sheet over Fleurieu Penmsulas and its immediate environment as suggested hy Cowell fermkes (1271), followed by the later developHIEnt $\mathrm{ti}^{\text {a }}$ a Westerly moving ice shect; or
(b) the elfect of topography on a gorthwesterly moving ice sheer.

The hirst possibility requires thate northotrenclong striac initially devcloped on bedrock surPnces on Meurieu Peninsula were ohliterated in all localitics but Hallett Cove by younger westerly nuwing iee It thus introduces the cent eept of multipic glaciation, but thene is its yet no uncquivocal evidence for this in South Aus. Iralin. Neilher the crossing striae observell on many pavements. nor the striated pavement developed on glacigene sandstone neat the bank oft the finniss River (l'ig. 1) requite multiple glaciation (Flint 1953). The semarkalite aunsistency of striae dircctions on Fleurisu Peninsula and eastern Kangarno Island uver
varied topography does not sunnort the concept of asystern of ircgular valley glacies propused by Campana \& Wilsom (1959) and Cruwall \& Firakes (147.), hut the movement of a thick und extensive ice sheet.

Evidence for the direction of see muvement. in auddition to striae which are usually only reliable indicators of local ice movement, is provided by the disinibution of certain erratics. In pasticular, the necurrence in glacigene sediments on Fleuricu Peninsulib of a distinctive feldispar-quariz purphyry and of coarse yrained non-folinted red granites, appapenily derived from the suite of granitic sucks that crons but hetween Murray Bridge and Dergholm (southwestern Victoria), indicates an overall morthwesterly ice movement, if we assume that the present oulcrop distribution of these gntites approximates to their real extent. 'this direstion is close to the average of the Flyurict Peninsula and the Hallett Coye striae directions.

This. although the siviat un Fleuricu Peninsula pavements are ennstant in dircction over considerable topographic relief, lofography of a much gitater magnitude suring the Latt Patacozoic could have channelled nurthWenterly hoving iee in a westerly direction acmss Fleurion Peninsula. The possiluitity of deflection of the ice by a noth-easterly rending valley at Hallett. Cove has long been considered (Sprigg 1942). Such topographic influences on th north-westerly brenting ice shect seem to account for the observed facts.

We inturpret the present distribution of the outcrops of Encounter Bay Granikes as the result of dissection of an originally cxtensive ploton by the exploitation, either of Bruesural fcatums such as joiming or of pre-cxisting alruinuge valleys, hy westerly moving falle Palacozoic ice. Evidence for glacial ernsion inclutes the pavenem it Pors Elliot and the abundance of granite erratics within the glacigene sediments throughout Fleuricu I'eninsulis. Iri fuch, the granite outerups seem to have been preserved until secently beneath a cover of glacigene sediments the rewarking at which bas produced the conspicunus boulder ficlds sen for example near Roseta Heat and King Beach: The occurrence of many granite lypes foreign to the Encounter Bay Granites in these fields docs not: support the sugecstion by (rowell \& Vrakes (1971) that the bouldens in these levealities were derived from neapby outcrops by mass-wasting of by the action of xtarm wives.

Conclusions

The smoothed and striated granite surface at Port Elliot, logether with 12 glaciated Kanmantoo Group metasedimentary sock surfaces throughout Fleuricu Peninsula and one on Kangaroo Island, exhibit a remarkable consistency of striae directions over a variety of tupographic forms. This can only be the effect of a hick ice sheel, which is shown to have maved westwards over Flcurieu Peninsula. The striae dircelions measured from glaciated surfaces at Hallett Cove ate tnomalous in this
regard. However, these dilferences may reflect ropographic influcnces.

The present broad distribution of outcrops of Encounter Bay Graniles is interpreted primarily as the result of ice action. although there is abundant evidence of considerahle later modification of some outcrops.

Acknowiedgements

We wish go achonowledge the helpful critscism of Mr. G. Blacklourn. and the comments of Dr. V. Gastin and Dr. B. Daily our an early draft of the paper.

References

Halmi, B. E. (1457).-Ljpper Palaenauic microfloras in sedimenis from the Lake Phillipson Bore. South Austratia. Abst. J. Sci. 20, 61-62
Cambina, Be \& Whsone B. (1955),-Tillites and relateu glacial topography of South Australia. Eiflig. gevh Heln. 48, 1-30.
CRAWRORD, A. K. (1960)-MAITLAND map shece. Gcologicsl Atlas of South Australia, 1 iz50.000 series, (Geol. Surv. S. Aust:: Ade laide)
 Enfeminter map sheel. Gebtogisal Allas of South Allstraliat lifi, 360 seties. (Geot, Sity. S. Aush, Adelaide_1
 Pisherazoic Glaciation of Australia. is, geol. Soe. Alus. 17. 115-155.
Daschi E. J., MLINEs, A. Re, \& Neshitt, R. W. (1971)-Rubidium-Strontiunt geochronolagy of the Encounter Bay Granite and adjacens mactasedimentary rocks, South Australia. . geol. Sidy Anst, 18, $254-266$.
Flint. K. Fi, (1957), "Glacial and PJeistocene Gcotogy (Wilcy; New Yotk.)
Harras. W. K. \& McGemfan; B. (197L)-Permian and reworked Devonian microfosily from the Trouhridge Basin. Quart. seol. Noten, Grol, Surs S. Aust. 410, 5-11.
Howcins. W. (I898a),-Firther discoverims of Rlacial remains in South Australia, Trons, \mathcal{K}. Sec. S. Atzith 22, 12-17.
Bowerins W. (18986)-On the evidence of glacial achime in the Poyt Yistor and Inman Valley districts, South Abstralia. Rep, Alust. Ass. Adverte Sci. 7. 114 127.
Howcritn, W, (1908). - Report on Cambrran and (2) Pernoo-Carboniferous glaciations in South Australia Rep. Aust, Ane Advans Sci. 11. $264-272$.
HowCHm, W. (1910a), The glacial (PermoCarboniferous) moraines of Kosetta Head and King's Point. South Australia. Trats, R. Sice 5. Arist, 34, 1-12.
Howcrins, W. (1910bi.-Description of a new and axtensive area of Permo-Carbmifernus

Gacial 山eposits in South Australia. Trans. R. Suc. S. Alms. 34, 231-248.
Howchis, W. (1926), -The geology of the Vietor Harbour, inman Valley and Yankalilla dis. tricts, with special reference to the gereal Inman Valley glaciex of Permo catboniferous Age, Trulls. Ro Sor. S. Ahst- 50, 89.j19.
Howcinn: W, (1929)-Geology of the Encounter Bay Disteict S: तust. Nato 10, 53-55.
Lunbrook, N, H. 1956)--Permian foraminifera in Souih Australia, Austo J. Sct, 19, |6T-162.
Luprrook, N. H. (1967),-Permian deposils of Sunth Alsisalia and their fauna. Trans. R. Sing, S. Alut. 91, 55 -92.
Lewarodk, N. H. (19693)-Permian of Sollth Anstralia-a Review. Spec. Publs. geot. Sor. fons. 2, 39-45.
Lubnrnok N. H. (19696) - The Permian Period, in L. W. Parkin (ed.) "Handbook of South Australiin Geolugy"pp. 1/7-132. (Government Printer: Adclaide.)
Pritchard a. H. 1 1892-On the Cambrian Rockg at Cursamulkí Trans, R. Suco S. Justo 15. 195-182.
SifivanoA. R. C. 1359) - Preliminary эcpout by A. R. Selwyn of a geological survey of portions of South Australia. Parl. Pup. S. Axes Nio. 19.
Sprigu, R.C. (1942), The Geology of the Fden. Moana Hault Block. Transo R. Serr, S, Aids. 66. 185-214.

Tare, R. (1889)-Glacial phenomicni in South
 231-232.
Thomson. B. P., \& Horwarz, R. C. (1902), BARKER map shet. Geological Atlas of Suuth Australia, f:250,000 series. (Ocul. Surv, S. Austo: Adelaide,
Ward. 1. K. (1922)-Notes whi the Prospects of the American Beach ($\mathrm{K} \mathrm{H}_{\mathrm{o}}$) Oil Company. N. L., at the Bore Site within Section 134 : Hundred of Didley. Min. Rev. Adelaide, 35, 64-66.

ADDITIONS TO THE HYLID FROG FAUNA OF NEW GUINEA, WITH DESCRIPTION OF A NEW SPECIES, LITORIA TIMIDA

by M. J. Tyler and F. Parker

Abstract

Summary Litoria timida, a new species of New Guinean hylid frog of the Litoria dorsalis group, is described and reported from five localities, ranging from the headwaters of the Fly River to the vicinity of Port Moresby. Three additional species of Litoria, formerly known solely from Australia, are reported from localities adjacent to Torres Strait. The diagnostic characters of each species are described, together with notes on habitat preferences and habit.

ADDITIONS TO THE HYLID EROG FAUNA OF NEW GUINEA. WITH DESCRIPTION OF A NEW SPECIES, LITORIA TIMIDA

by M. J. Tycer* and F. Parkerí

Abstract

Stummary fiforior timidis. : new species of New Guinean hylid frog of the litoria dorsalis group, is described and repoted from five localities. rangitg from the headwaters of the Fly River to the vicinity of Port Moresby. Three additional specics of Litorin, formerly known solely l'rom Australia, are reported fiom localities adjacent to Torres Sprait. The diagnostic characters of each species sre described, together with nutes on habitat prefercoecs and habit.

Introduclion

The portion of the island of New Guinca adjacent to Australia, now within the Western District of Papua, is of considerable zougeographic interest because of the close faunal similarity with the Cape York Peninsula of Queensland. Although the first publication on a collection of frogs from this part of New Guinca appeared nearly a century ado (Macicay 1878), this and subsequent contributions (Roux 1920; Loveridge 1956) dealt with very small sampics and, until recently, the extent of the frog faunal similarity to Queenshand remained uncertain (Tyler, in press).

During three yeirs residence at Daru one of us (F.P.) das collected several thousand frogs throughout the Western District. Here we confine our attention to some of the representatives of the Hylidac in this collection, reporting details of the distributions and habitats of tbree species formerly known to occur only in Anstralif, and describing one new species. Details of the field expeditions that tesulted in the collection of some of the specimens have been published elsewhere (Parker 1970).

Methods

The specimens foming the subjeit of the puper are deposited in the collections of institutions abbreviated in the text as follows: American Muscum of Natural History (A.M.N.H.): Australian Museuni (A.M.); Museume of Comparative Zoology (M.C.Z.); Papua and New Guinear Museum (P.N.G.M.): South Australsan Museum (S.A.M) ; Department of Biology, University of Papua and New

Guinea (U.P.N.G.). The letrers F.P. in parentheses preceding specimen teference numbers indicate that these are field numbers for cutrently unregistered material.

Methods of measurement and morphological and gengraphical descriptive terminology follow those of Tylet (1968a) for species then referred to the cosmopolitan genus Hyla. Such species from New Guinca and Ausiralia comprise an endemic genus for which the name Lioria bas been proposed (Tyler 1921). The descriptive abbreviations used are E-N (distance between the cye and the natis); IN (internarial span); HL, (heali length); HW (head width): $\mathrm{S}-\mathrm{V}$ (snout to vent length): Tr. (tibia length).

Western District localities cited in the text are shown in Figure 1.

Litoria timida n . sp .
Holotypes S.A.M. 11658. An adull male coliected at Menemsorac, Western District, Papua New Guinea by F. Parker on 30 March, 1969.
Definition: An cxiremely small lowland species (males 21.3-23.9 mm; females 26.3 mm) characterised by its elongated head, curved and extremely sharply defiried canthus rostralis, large and prominent eyes, unwebbed fingers and reduced webbing between the toes.
Description of Holotyple: The head is fattened, angular and distinctly longer than broad (HL/HW T, 246), its length equivalent to more than one-third of the snout to vent length. The snout is extrancly prominent and angular when viewed from above, prominent and projecting.

[^14]

Tjg. 1. Collecting sites in the Western District, Papua.
far beyond the anterior limit of the mandible in profile. The nustrils are dorso-lateral, their distanco from the end of the snout being considerably less than that from the eye. The distance between the eye and the naris is yery much greater than the internarial span (E-N/ IN 1,527), The canhus rostralis in long, well defined and curved, and the loreal region steeply sloping. The eve is very large and prominent, its diameler slightiy less than the distance between eye and maris The tympanm is prominent, having a diameter equivalent to appoximately one-hatf of the eye diameter, and separated from the eyc by a distance cquivatent to one-balf of the diameter of the tympanum. The vomerine leeth are on two prominent, raised and slightly oblique series hetween the choanac. the tongue is smatl and circular.

The fingers are Jong, slender, unwebbed and lack liateral fringes, in decreasing order of length $3>4>2>1$. The terminal dises are large, the diameter of the dise of the third finger being twice the diameter of the penultimate phalanx.

The hind limlas are long and slender with : TL/S-Y ratio ol 0.605 , and toes in decreasing order of length $4>5=3>2>1$. The webhing between the toes is reduced, reaching the subarticular tubercle at the base of the penulimate phalanx on the third and on the tifth toe. There is a prominent, elongate inner mutatarsal tubercle and a prominent round outer metatarsal tubercle.

The dorsal surfaces of the head, body and limbs bear seattered and poorly developed tubereles. The throat and chest ure smooth, and the abdomen and posterior ventral surfaces of the femora granular.

This male specimer hats a single, submandibular vocal sac and ghadular. but unpig* mented, nuptial pads.

The dorsum is dull brown and motled with slightly darker and irregular patches. The ventral surfaces are very pale cream with a brown reticulum on the throat and chest. There is fine light stippling on the ventral and posterior surfaces of the thighs. Dimensions: Snout to vent length 21.5 mm ; tibia length

Fig. 2. Litoria timida, paratype (M.C.Z. 82390).

13 mm ; head length 8.6 mm ; head width 6.9 mm ; eye to naris distance 2.9 mm ; internarial span 1.9 mm ; eye diameter 2.7 mm ; tympanum diameter 1.5 mm .

Variation: The paratype series consists of sixteen adult males and one gravid female: M.C.Z. 82380-90, S.A.M. 11659-61, collected at Menemsorae with the holotype M.C.Z. 82400, Derongo; M.C.Z. 82377-78, Yongtau. The series forms a remarkably homogeneous group, the snout to vent length range of the sixteen males being only $21.3-23.9 \mathrm{~m}$. The snout to vent length of the female is 26.3 mm . Similarly, there is scant variation in their proportions: $\mathrm{TL} / \mathrm{S}-\mathrm{V} 0.605-0.647$ (mean 0.627), E-N/IN 1.381-1.722 (1.577), HL/HW 1.1141.348 (1.245), HL/S-V 0.376-0.413 (0.399).

In all specimens the canthus rostralis is consistently a prominent feature, the cyes are large and protruding and vomerine teeth are present.

With two exceptions the paratypes are brown dorsally with or without faint and irregularly shaped paler markings. The exceptions are grey; one uniformly so, whilst the
other (M.C.Z. 82400) bears two very broad and clearly demarcated, pale, dorso-lateral stripes extending from the eye to the groin. Pigmentation of the ventral surface of the throat and body varies from a very light stippling to extensive dark brown reticulations on the throat, chest and anterior half of the abdomen.

In life the dorsum is brown with paler markings, and the posterior surfaces of the thighs are dark brown with or without a few yellow spots. The labial stripe is white, and the iris a reddish bronze, being palest around the pupil. The flanks vary from brown to pale yellowish, and the groin is bright yellow. The ventral surfaces are yellow and the ventral markings reported above are brown.

Ten additional specimens have been collected from localities to the east of the Western District: M.C.Z. 82379, Oroi, Purari River [Lat. $7^{\circ} 23^{\prime}$ S., Long. $\left.145^{\circ} 11^{\prime} \mathrm{E}.\right]$, Gulf of Papua (obtained by F.P.); S.A.M. 10656-8, 11657; U.P.N.G. 2510-11, 2581-3, Brown River Forest Rescrve, north of Port Moresby (collected by J. I. Menzies). They differ from

The type series in the Tollowing respects: the posterior surlaces of the thighs and the groin bear a striking pattern of yellow markings on a dark brown background, and several ushibit a very narrow, light. mid-vertehtal stripe,

Comparisan win other species: Litoria timida is a member of the Litorio dorsalis group, defined by Tyler (1968). Which contains L. dormalis of New Guinea and L. microbetos of northern Queenstind. The membors of the group whare long, sender, unwebbed fingers, reduced interdigital webbing of the toes and extreniely small udult size.

Lionia timider is lurger thant L. dorsellis and L. microbelos fmaximum adult size of mates and fenales: dorsalis 21 mm and 22 nmm: microbelos 19.4 min and 18.9 mm). The fealure by which these species can be thelingushed most readily is the canthus rostralis: stpongly curved and sharply defined in simida. but springht or slightly entred and got a
 betos (Fig. 3), From L. mierobelos the new species is further distinguished by its colourathom: eranmples of L. mirrobelos are uxually only very slighty stippled and there is it ten dency for the dorsodateral surfices to be diaker than the dorsal. In L. Fimbld pigmentaLion is more extensive, and in the andy specibien in which the thorso-titheral surtaces dilfel from the dorsal, the dorsal portion is darkest. Limrin microbelas lacks vomerime leeds (nfesent in L. fimide) and has ruch shorter find limbs, as indicated by a comparison of the tanges of the TLL/SiV ratios: $0.605-0.647$ in 2. vininder, $0.5000-0.579$ in it Nerios of thirteen To. miorohelos from Caine-S A.M. $12571-4$. M.C.Z. (Uncit.),

Fig. 3. Heads of A. Limoria hmidn and B. L. darsulis demmistrating the ditterence in Wee shape of the efunthos rostralis. Both specimens are malos and there is mo avidence of sexual dimorphism.

Limria dorsolis resembles L. miernhelos mure closely than it does L. Dimidd. Prattenn of pighment on the dorsum of L Le dorsoliss most conmonly tends to form broad and slighty conirasting, longitudinally arranged. light and dark stripes, Vomerine iceth itre present but difficult to detee when devations of the vonerine bones are absent. The bange of TL/ S-V ratios is intermediate between those of L. dimider and L. quicrobelos (0.541-0.621).

The only other hylid species recorded from the Southern Inwlands of New Girincal (recoglised als a faunal unit by Tyler (1968is), and jncluding the Western District of Papua) which approximate the siee ol L. nimned are f. hicolor ant associated spocios. Such species are usually uniformbly bright green dorsally. and can be fusther distinguistred from L. dimita by possession of webbing between the lingers. lintetill fringes on the fingers. and fully webhed toes

The high T1./S-V ratio of Le tmidet illo. protelics that of C. masula. Becanse the first coltplet in the relevant key to hylid species compiled by Tyler (1968u) involves separation of specics on the bissis of a 1 TL/S-V ratio higher than or Inwer than 0.65, comparison with L_{o} marura is secessary. In babitus these species are quite distinet. L. Huswh heing much larger and huving a very long. slender hend and body Adult 1 . mesema sittam at ans (makes) and 55 mm (lemales): juveniles (und adules) Can be readily tistinguished by their possession of longiadinal skin folds on the diorsum.
Hahmar: The type locality of Menensorate and Derongo and Yonglat wite in the vicimity of Ningerum the the hedwaters of the ly kiver in the extrense mothwestern part of the Wevtern District (Eig 1), and etre within dense rain forest. The lertain is gently undulating to the woth of Ningerum and hilly to the north. The serice from Menemsurac were collected on the leates of plants adjacent to. or averhanging. the water of a permanent swomp in the lorest.

Orai is stluafal in tronical raintorent partly cleared to form garden areas. It is believed that the specimen obtained there had heen collecter it the extensive adjacent sagn swamps. The Brown River Forest Reserve similarly proviles an extremely moist habital.
Call: Calling mules twere observed occupying a horivontal position on leaves close to the water. Wo lack tape recordiugs of the emilx, but note
that uudibly they are readily distinguishable. 'The call of L : timida was likened to tivo short clicks, each followed by a pause, and then a sequence of rapid notes: "tik tik Lititititil". In contrast the call of L. dorsalis comprises a series of from six to twenty short, "woodeny buzzes", and that of L. microbelor a low, insect-like "creeeek", beçoming progressively higher pitched.

Noles: It was noted that indigenees of the Ningcrum area did not recognise the new specics, They consistently considered specimens to be juveniles of larger species such as L. thesuurensis or L. amboinensis.

The specific name proposed for the species alludes to the timid nature of the animal. When disturbed it rapidly attempts to escape.

ADDITIONS TO THE PAPUAN HYLID FROG FAUNA

Litoria nigrofrenata (Guntker)

Until recently this species was known solely from the types collected at an unspecificd locality on the Cape York Peninsula, reexamined by Moore (1961) and Tyler (1968b). Auditional specimens were kubsequently collected by the second author on the Cape York Peninsula at Endeavour River.

Leggits (Jones) Lagoon and Big Tithleland (all within a 15 km radius of Cooktown).

The accurrence of this species in New Guinea is hased on the lollowing nineteen specimens:

Boze, Binaturi River: M.C.Z. 81097; Kuru: M.C.Z. 81094-96, P.N.G.M. (F.P.) 438 (2). S.A.M. 11408: Morehead: M.C.Z. $84549-50$. S.A.M. 11316 -19, 10660,11407 (3): Old Zim. Oriomó River: M.C.Z. 79723-24, S.A.M. 10621 (2); Weam: M.C.Z. 79725-26. These localities ate all situated to the south and southwest of the outlet of the Fly River and are within 60 km of the coast.

The diagnostic characters of this species are as follows: Size moderate (maximum snout to vent lengths: males 41 mm , females 42 mm). Head elongate with the snout projecting in profile; head consistently longer than broad. First finger Jonger than second; fingers without webbing; fourth toe webbed to base of penultimate phalans; terninal dises small, Dorsal surfaces of the head, body and limbs uniform palc hrown, with a broad, uark browin stripe exiending from the tip of the snout to a position posterior to the tympanum. These is a horizontal white bar anterior to the cye partially bisccting this dark lateral band (Fig, 4).

Because few detailed comparisons of such disjunct populations have been undertaken and none previously published, meakurements and propotions of specimens of L. ingrofremata

Fige 4. Lateral view of head of Litoria nigrofrenate
from New Guinea nod Australia are presented below.

	AUSTRALTA	NEW GUBVFA
Number	12	5
S-V (nsalces)	$\begin{aligned} & 37.2-41 \\ & (\text { mean } 38.2) \end{aligned}$	$\begin{aligned} & 36.9-38.8 \\ & (\operatorname{msin} 36.0) \end{aligned}$
$\mathrm{S}-\mathrm{V}$ (females)	$\begin{aligned} & 38.9 \cdot 41.3 \\ & \text { (ח9 car 40.1) } \end{aligned}$	$\begin{aligned} & 41.8 \\ & (123 \operatorname{can} 41.8) \end{aligned}$
TT. $/ 5-y$ (ponleal)	$\begin{aligned} & 0.541-0.697 \\ & (\text { mean } 0.629) \end{aligned}$	$0,58400.6$ к6 (ment 0.632)
I: $\mathrm{N} / 1 \mathrm{~N}$ (rooled)	$\begin{aligned} & 0.925-1.162 \\ & (\text { mean } 0.999) \end{aligned}$	$\begin{aligned} & 0.97 .-1.083 \\ & \text { (mean 1.007) } \end{aligned}$
H1. HW (paoted)	$\begin{aligned} & 1.078-1.309 \\ & (m \times 3 n) \mathrm{f} .180) \end{aligned}$	$\begin{aligned} & 1.181-5.262 \\ & (\operatorname{mecan} 5.230) \end{aligned}$
$\mathrm{HL} / \mathrm{S}-\mathrm{V}$ (ponlcd)	$\begin{aligned} & 0.360-17.398 \\ & (\text { mcan } 0.376) \end{aligned}$	$\begin{array}{cc} 11.387 & 0.404 \\ (\text { inem } & 0.396) \end{array}$

In life the dursal surfaces vary from a pate yellowish-brown io reddish-hrown: adalts are immaculate, but juveriles are speckled with darker pigment.

Liverias nigrofennata exhibits considerible variation in leg length and individuals with TU/S-V satios equal to or exeeding 0.65 key out in Tyler's (1968u) kcy of lowland species to L. hishat. Specimens with lower TL/S-V rations key out to Lo vagubunda.

Litorit masutor is similar in habitus to L. migrofrenter but is distinguishable by pusxession of Jongitudinal skin folds on the dorsal surface of the hody and by lack of a lateral head stripe, in contraki, t_{0}, bagaluteda is a broadheaded species with short limbss (Th/S-V of allotype - $(1.513$) (Tyler 1968a), hitnoire vadubomed is dark blue in preservative and so prohably green in life.
lifrmin nignofrenuer was collected in sparsely forested areas and savannat; and particularly in open patches of grass on damp or swampy ground. Same specimens were taken beside airstrips and others in grass-covered clearings burdering tritks through the forests. It is in extrencly timil nociurnal species. leaping rapidly towards the conver of tense vegetation when disturbed. By day it behaves similutly when found sheltering in tall grass.

Ititoria ruthi (ue Vis)

Lllosid nolfi is a member of the L, preonit species group. Until feccontly it was regarded as identices with L. peroni which. In reality. it. replaces in northeast Ausfralize (I: R. Straughar, personal communication).

The New Guinei material consists of the folfowing specimens: Gnao, Pahoturi River: M.C.Z. 84551: Old Zini. Oriomo River:
M.C.Z. 79727; Wipim: S.A.M. 10623: Buee, Hinatior River: M.C.Z 79728. \$1613-15. P.N.G.M. (F.P.) 150 : Weam: M.C.Z. 79729. S.A.M. 13113: Morehead: M.C.Z. (P-P.) 37605 (3). P.N.G.M. (F.P.) 561. S.A.M. 13111-12.

This arboreal species is charncterised by the following features: size moderate (maximum shout tor vent lengit of males $=42 \mathrm{~mm}$. females 44 mm) ; fingers approximately onethirat webbed with flattened, dilated terminal discs; tympanum partially hidden hy pronounced supratympanic fold; dorsal surfaces of preserved specimens dull brows, sometimes with poorly defined, irregulir natehes; back of thighs black, with two or three uniformly shaped, pale cream markings. There ate black markings in the inguinal and axillary regions, and a black line along the joferior margin of the supratympanic dermal fold: inis (in tife) dull ied aboye the pupid. and pale grey or pate gold beluw it.

The only member of the $L_{\text {to }}$ permin species group lormerly known to occur in the southern lowlands of New Guinea is L. amhoinonsiv, reported by ryler (1968a) from Mabilatol on the Ok Sihll River ilr West friato, and more recently found by ano of us (H.IP.) to cocxist with L. roth in the Western District: Lirnim amboinensis is a much larger specics with fully wetbod fingers. and lacks the black thigh markings of 8 ... mini.
A.itoriu rohth was found in spansely wonted arete atid in monsoon forest. It was commonly collected nt night on leives of plants within 2 m of the ground; the series collected at huse were on the leaver of an ornamental cromson near village bunses. During daylight it was found wiblin curled leaves, under bark int in siniilar refuges.

1.itoria rubella (Giray)

Lloria mhello is a where-ranging species in Austrafis. occurring in diverse hathitats over the entire northern Jalf of the continent. Ht presence in New Ciumesi has been established by the collection of the following 77 specimens: Darus islund: M.C.Z. (F.P.) 311592: Weam: M.C.Z $\left\langle 1: 1^{\mathrm{B}} ;\right\rangle$ 31467. 81609-12, 81099.81100° Morehcad SiM.N.II. S4527. S.A.M. 10630 ($21,13120-23, \quad 13125-29$, P.N.G.M: (F.P.) 334, (F.1P) S(i2, M.C.Z (F.P) 30936 (2), (F.P.) 30937 (2), (F.P. $)$ 30338 (14), (F, P,) 37606, (F,P,) 37507 (30), A.M. 32709-14.

The characteristic foaturcs of the species are: small size (maximum S-V of males 32 mm , females 34 nom) and squat habitus with very short hind limbs expanded digital dises; fingers approximately one-third webbed and toes extcusively webhed; colouration brown with broad, darker brown dorso-lateral stripes on the body. In life the dorsal surfaces are brown, suffused with a greyish, yellowish or reddish tinge. All specimens taken at Morehead were densely matked with small black flecks, but such markings were absent it those from other localities, The postertor surfaces of the thighs are either immaculate yellow or unpigmented but for a fine brown stippling.

Of the species occurring in New Guinea and
recognised by Tyler (1968a), L. rubella is most closely related to L. congenita, from which it is readily distinguished by its possession of the dark dorso-lateral stripes, and by shorter hind limbs (TL/S-V range for rubella - 0.335 0.432: 0.477-0.520 for congenita, vide Tyler 1968a, p. 72).

Liroria rubella was collected mainly in open. man-made grasslands within lightly forested country. Most specimens were collected on airstrips. It is a nocturnal species, hiding by day in situations such as cracks in fence posts and amongst plant leaves. At night it was found within 2 m of the ground, and consistently did not make any attempt to escape when illuminated by a spot light,

Acknowledgements

We are greatly indebted to Dr W. G. Inglis, Dircetor of Environment and Conservation, South Australia, for constructive criticisn of the manuscript, and to $\mathrm{Mr} \mathrm{J}_{1} \mathrm{I}$. Menzies.

Department of Binlogy. University of Papu and New Guinea for specimens of L. timide from Brown River Forest Reserve.

References

LOVERUGGE. A. (1956),-Rediscovery of Hyla dorsalis and Lechriodus papiuanus in New Guinea. Breviora (55), 1-4.
Macreay, W. (1878),-The batrachians of the "Chevert" Expedition. Proc. Linn. Suc. N.S.W. 2 (2), 135-138.

Moore J. A. (1961).-The frogs of Eastern New South Wales. Bull Amer. Mus. Nat. Hist. 121 (3), 153-385.

Parker, F. (1970)-Collecting reptiles and amphibians in New Guinea, Aust. Nat. Hist. 309:314.
Rotx. J. (1920)- Note sur la pre̊sence dul genre Crinta, amphibien cystignathide en NouvelleGuinée. Kev. Suissé Zool. 28 (5), 115-117.

Tyler. M. I. (1968a).-Papuat hylid frogs of the gentus Hyla, Zool. Verh. (96), 1-203.
TYere, Mr J. (19686).-A laxonomic study of hylid frogs of the Hyla lesueuri complex occurring in norith-western Australia. Ree. S. A
Tyler, M: J; (1971)-The phylagenetic significance of vocal sac structure in hylid frogs. Univ, Kansais Publ. Mus, Nat. Hish. 19 (4), 319.360.

Tyler, M. J. (in press). -An analysis of the lower vertebrate faunal exchange between Australia and Ncw Guinea. in D. Walker (Ed.), "Torres Strait: disjunction or no barrier" (Australian National University: Canherra,)

TRANSACTIONS OF THE ROYAL SOCIETY OF SOUTH AUSTRALIA

 INCORPORATED
CONTENTS

Kott, Patricia The Ascidians of South Australia II. Eastern Sector of The Great Australian Bight and Investigator Strait 165
Dubois, Georges, \& Angel, L. Madeline Strigeata (Trematoda) of Australian Birds and Mammals from the Helminthological Collection of the Uni- versity of Adelaide 197
OBITUARY: KEITH RODNEY MILES - 216
Annual Report of Council; 1971-72 - 220
Award of the Sir Joseph Verco Medal - 221
Balance Sheet - 222
List of Fellows - 223
PUBLISHED AND SOLD AT THE SOCIETY'S ROOMS STATE LIBRARY BUILDING NORTH TERRACE, ADELAIDE, S.A. 5000

THE ASCIDIANS OF SOUTH AUSTRALIA II. EASTERN SECTOR OF THE GREAT AUSTRALIAN BIGHT AND INVESTIGATOR STRAIT

by Patricia Kott

Summary

Seventy-two species of ascidians from South Australian waters are discussed. Fourteen of these are new and 42 have previously been reported from South Australian gulf waters. Morphological convergence to exploit the environment is evident in many of the forms present. The data support the existence of a marine faunal boundary at the eastern end of the Great Australian Bight. It is suggested that there are ecological factors responsible for the difference between the South Australian gulf and open coast ascidian fauna.

THE ASCIDIANS OF SOUTH AUSTRALIA I. EASTERN SECTOR OF THE GREAT AUSTRALIAN DIGHT AND INVESTIGATOR STRAIT

by Patricia Kott*

Abstract

Suntmary Seventytwo species of ascidians from South Australian waters ase discussed. Fouteen of these are new and 42 have prevnously been reported from South Australian gulf waters, Morphological convergence to explait the environment is cyident in many of the forms present. The data support the existence of a marine faunal boundary at the eastern end of the Great Australian Bight. It ix suggested that there are ecological factors responsible for the difference between the South Australian gulf and open coast ascidian fauna.

Intruduction

Collections of ascidians have been previously made from St. Vincent and Spencet Gulfs (Kot 1972a) and from Port Phillip Bay and other locations on the Victorian coast (Millar 1966). The present collections are the first reported on from the southern coast of Australia between Middleton Beach. Albany (S.W. Aust.) and Spencer Gulf.

Seventy-two species of the Class Ascidiacea from South Australiun locations (Fig, 60) are recorded. Of these, 42 had already been renoried from St, Vincent Giulf, Spencer Gulf and Encounter Hay (Kott 1972a). Fourteen new species are described.

The association of species in the areas being considered difiers from that in the gulf areas (Kott 1972:). Colonies in which each zooid maintains independent openings to the exterior are apparently favourcd and many species demonstrate convergence in their adaptations to exploit the environment. especially in regard to their siphonal apparstus.

The large number of species taken, and especisilly the large proportion of new species, reflects the new habitats that ate now being explored by SCUBA diving.

Type specimens are deposited in the South Australian Mustum (SAM) or the National Nuscun of Victoria (NMV).

Order ENTEROGONA Suborder APLOUSOBRANCHIA Family CLAVELINIDAE Subfamily Clavelininate

Clavelina mirabilis n.sp.
Type Location: Waldegrave I.: in gravelly sand, attached to limestone, 23 m , Shepherd.

Holotyne: SAM, K902. Paratypes: SAM. E903.

FIGS 1, 2
Dexcripion: The colonies consist of a spherical, sand covered, base from $2-5 \mathrm{~cm}$ in diam. with a thick naked, branching stalk arising therefrom. The thoraces of zooids extend from the terminal branches. each enclosed in its own test covering. The living specimen is buff or yellow brown. In preservative, however, the test of the stalk is reddish-purple, although the terminal, free thoracic parts of the zooids are almost. transparent. The gravel and sand anached to the spherical basal pan forms a firm outer coat.

The zooids are up to 4 cm in length and extend parallel to one another down through the stalk portion inte the base of the colony: The atrial aperture is sessile although the branchial aperture is on a short siphon. When the thorax is contracted, the atrial apertute is withdrawn to the midile of the dorsal surface, while the branchial aperture remains terminat, When the zooid is extended, however, the atrial aperture is produced to the anterior end of the zooid, more or less level with the branchial aperture. There ate 15 longitudinal thoracic muscle bands extending from the ventral surface, from the branchial aperture and from the mid liae between the branchial and atrial apertures. These extend towards the posterior end of the thorax, and continue in a wide band on cither side of the abdomen. There are 18 rows of about 45 rectangular stigmata. The stomach is present in the posterior cad of the abdomen and it has 4 thickenings in its wall.
Remarks: 'The zooids of this species are larger thats other colonial species of the Clavelinidac. and the specjes is unusual in that the zooids

[^15]extend the whole length of the colony and are hot confined to the upper free purt an in μ odo. clawallas cylindrica; nor are they completely cmbedded as in Clavelina bundinensis (see below).

Most specics of the fimily are atheched to is subitrate by the hotom of the stalk, in the present specics, however, the unique adhesive property of the sides, as well as the bottorn of the basal part of the colony, has resulted in un encristation of sand, shell und other foreign particles to torn its distinctive hard, spherical. surface which appeats to have heen emhedded in the substratc to anchor the colony. The habit is most unustal since the splerical shape of the base of the colony does noz appear to provirle it rigid attichment on root system and there could be some movement of the colony in the suhatrate.

The habit nay be conypated with that of certain Siolidubranchia and lislehobranchio Where adherent sand forms a hard protective envelope around liree-living individuals that are not fixed to the substrate

Clavelinis nodula m.sp.

Type Locaion: Oft Waldegrave 1. Shep. herd. Holotype: SAM, ES98, Parstypes: SAM. E9OB.

FIG. 3
Deseriftion: The colony consists of it firm. fransluccut branchiog stalk of 1.0 cm in diam. The zooids, separate 5 rom one another and cach in its independent coverine of delicate, compleiely Ironsparent. Lent, are crowded around the free ends of the common stalk and its hranches. The living zaoids ate bright orange in the centre but colourless in preservative, In the present npecimens the zooids \quad tre mostly Ictracted into the comnon stalk. They are 4.8 cm lung, depending on theit degree of contraction. The abdomen is many tinces longer than the vary short thorax. "There ire up to 20 oblique or longitudinal (sometines coilescing') muscle bands un the thotw, of which $5-10$ cross the mid-ventral line pasterior in the branchial siphon. The thuracic inuseulawre extends to the postero-dorsal corner of the thoras and continues in wide bands along nither side of the abdomen. There are three rows of about 20 stigmata. The gut loop may he relatively long. Tho stomach is in the posterior end of the ahdomen and its glandular lining is divided into four sections.
Remarbs: The zooids of this species, although smaller texemble closely those of Pyonocluvella

stignata in the present specics 'The culory form provides the main distinction between the species, In P. diminutia zooids are ghathel Io ore another, and mity be entürely independent although the lest of adjacent zooids may fuse or he confluent for vacying distunces from the basc to form as stalk. In Clarefing nodula the zouids are not parallel to one wnother, but radiate from around the tree end of a distinct conmmun stalk. Clumps of protruding zoolds at difficent points along the stalk precede the formation of at branch and appear to contributc to the later development of that branch. The adtation of new zooids sicveloping from vascular stolons. within the statk, do not directly allect its diameter although they are accomnodated in the stalk when withdrawn from the surface as in the prescat preserved rpecimens.
Cluvelius haulinensis Kott, 1957; 87 (kpecimens with small larvat, frem Rottnest 1. athl l.averlon Ray). ?Millar. 19fif: 363. Nor Clurelinu haudinessis Kolt, $9972 a:$ 4.

New Recond: Ellistun Bay, irevious Recrords: W, Nust (Rotuest I.): Vic. (Lavertot Bay)-Kott 1957.
Bexcription: Snual capitate colony cunsusling ot an alinost sphericill heind and short wide stalk The test of the heat is very delicate inn completely ransparent while that of the stalk is firmer. Zoolds art embeddel completely und open ill around the suriace of the head from which they sadiate in toward the stalk. 'The pre3erved roaid is transparent with pirment spots in the mid linc, dorsal and Ventral to both apertures. "There are uhout 12 . longitudiaal muscle bands in the thorax, of which only ? extend across the mich line ventral to the branchial siphon. There are 16 rows of ahout 40 stiginata, The silomath is about balf way down the abdomen and is smatl, with its inmer glandular wall divisted into four distinct seclions.
Remurks: A reexamination ol specimens previously identificd as this species. (Kott 1957) has shown that indeed there are two species sepreseated. suggested by different larvae (Kott $1 \mathrm{Y}_{6} \mathrm{H}_{11}$), and that (6. hamfinensis is diotinguisbed by its slighty smaller zooicis, with mure rows of stigmatu hui with fewer longitudinal muscles on the thorid and croxsing the ventral mid line. Fonids in the present species aisor tend to radiate in from the sutince of the head in conirast in it more parallel arrangoment observed in other specsmetrs that sep
tesent a distinct now species to be described in "1ater Wark (Kall, in press (3)).

Podoclavela molurvensis Sluiter. Koth. 1972a: 5 and synonymy,
New Records: Elliston Bay, For Previous Records. Descrippion, see Kolt 1972a.
Remurks: The zooids cising from the basement membrane are-separate from one another for their whole extent. There are four pigment spots dorsal and ventral to and on either side of the branchial aperture.

Podnclavelia cylindrica (Quoy de Gaimard). Köth, 1927a: 5 and synonymy.
New Record: Waldegrave 1. For Previons Records, Descriphiont, sea Kott 1972s.

Podclavelta meridionalis Herdman, 1891: 603; 1899: 4. Hartmeyer 1919: 1114. Hastings, 1031: 81. Kott, 1957: 91.
New Record: Pearson I. Previons Recorlls: W. Aust: (Cape Boilcall. Cape Jaubert)Hammeyer 1919. Qld. (Great Barrier Reel. Mackay -Hastings 1931. Kott 1957. N.S.W. (Porl Jackson, Nelson's Buy, Port Steptitns)-Herdmar 1899.

$$
\text { FIG. } 4
$$

Bexcerpmions: Orily a single specimen is available. This consists of a long stalk and rounded head slighty shorter than the length of the stalk. The whole zooid is about 10 cm high, The leat is saft, transparent and gelatinous on the head but the test of the stalk is tougher. The real surrounding the siphons is especially delicate. The body wall of the zooid is pigmented blue in black and is easily seen through the transparent test. The branchial aperture is terminal and recurved so that the opening is directed laterally and downwards. "The smaller atrial aperture from the antero-dorsal corner of the head is difected upwards. There are 3 rows of branchial sentacles at the base of ahe branchial siphon. The largest tentacles in the mast posterior row alternate with moderate-sized rentacles in the middle tow, white in the thind and most anterior row there are twice the number of small tentacles. There is no true dorsal lamina although triangular fanguets ane expandel from the transverse vessels at ahe side of the mid-dorsal line. There are 34 rows of at leass 100 stigmala on each side of the hody, The dorsal tubercle has an undulating longirudimal slit. In the ppesent specimen the abdomen is very contracted and the course of the get obscured. The stomach
is identified as a region where the gut wall has a glandulà appearance but does not enpear to be of greater diametes than the rest of the intestine. The hody wall is thick and heavily pigmented Longitudinal muscles extend from both siphong and choss one another on tbe thorax and extend down both sides of the abdomen.
Remuks: Although records of this species are few, il has a circum-Austratian disuilution. It could be a conamon component of the frumn in sheitered caves and reep ovethangs where hitherto it has been inaccessible to collectors.

Oxycorynia arenusa n.sp.

Type Lnention: Investigator Strait iStio, Yi8). low, flat reef. 30 тा., . Whaman, Holosype: NMV, H168. Paratypes: NMV, H169.

FIGS. 5-7

Descriphion: "The colomes form cylinarical or finger-like lobes only very slightly expanded at their free end, They are $1.0-1.75 \mathrm{~cm}$ in diam. and up to 9 cm long. They sometinics branch ulong their lengh or rise from a common base. The surface of the central Jobe is sandy to a depth of ahou: ? 7 mm , although the anterior portion of the zooids protendes through the sandy layer and is covered by ot itrin layer of sand-free, itunsparent test. The contral parn of each lohe inside the satidy layer of test ts soft and exanspanent. In preseryative, the zooids have black pigment cells in the thorax which confer the dapk colour seen through the sandy biser. Fonids open all around the surface of the cylinatrical lobes for their whote length, 7norids extend toward the interior of the colony and their long posterior abdominal stolots continue down along the length of the lobe and into the base of the colony. The branchial and atrial openings are plain-rimmed und may be fummel-shaped. There are 12 broad longitudinal bands of muscle fibres on each site of the thorax extending along both sides of the abdomen. There are 6 rows of 20 long rectangular stigmata. The abdomen is about twice the length of the thorax with al long oesophagus and a spherical stomach in the posterior end of the aldomen. The zooid is omly about 0.5 cm Jong.
Remarks: The small number of tows of stigmata and the irrangernent of the zooids radiating in from all around the cylindrical stalk distingulshes this species [rom most others in the family where there are ustsally more rows of stigmatik ind the zooids open on the free ends of lotes and extend lurough the colony
parallel to one another. The parallel fongisudinal thoracic muscles extend from both siphons along the length of the body and to not, as in the other species of this family, cxtend from across the endostyle. Oxycominion furcicularir (Drasche) (see Michaelsen 1930 for synonymy). does have zooids radiating from around the head of the colony but here there is a distinct, zooid-free stalk distinguishing if from the present specier and the zooids are campletely embadded.

Subfamily holozonas

Atapezaa marshi Brewin, 1956: 31. New Record: Investigator Stsait (Stns. Y14. 17). Previous Recorl! W. Aust. (Trigg 1.) -Brewin 1956.

FIGS. 8. 9

Dexcription: The colonics form lobes of vary $=$ ing lenglh up to 6 cm and from 1 to 2 cm in diam. The zooit-free basal stalk is more or less the same diameter as the head of the colony, although it does not have adhering sand and is of a slightly firmer consistency. There is a very thin encrustatiun of sand on the surface rest around the head of the colony. The zooids open th the surface by separate, folohed branchial and atrial apcrtures. There is a brown pigment spot thove the dorsal tuhercle. There are about 15 longitudinal nuseles on the thoras and three rows of 1.5 stigmata. The nesophagus is short. The rounded stomach is especially simall and is smooth-walled. There is a large group of male follicles to the left of the gut hoop. In one colony there is a single immature enbryo contaned in a brood pouch from the postere dorsal curner of the thorax. Remarks: The colony is sinular to that of Oxycorysius favicularis (Drische) (see Michaelsen 1930), and the shape of the coloniex in bolh species varies in a similat lashion. The zooids, however. distinguish the specios.
Atapozoa mitabilis n.sp.
Typa Bricatimn; Cllistun Bay. tloor of cave. 6 m. Otfer Records: Eliston Bay, 11 m , Shephorrd Holaype: SAM, E899, Paraype: SAM. E896.

FIG. 10
Descriphion: The colony consists of hallow tobes and lamellat enalescing with one another to form a thick and convoluted mass ahour 15 cm lang and 4 cm high, trayersed by passages and spaces. There are large common clacal aperiures present, findomly distributed around
the lobes, und these are often, but not always, near the top of the coslony. The zonidis are randomly arranged und do not appear to be in rows. They ane seen as whise dots in the semi-transpareat and very so[t test. The zooids apen by their branchial aperturas onto the outer sutince of the colony, while the atrial apertures, dirceted posteriorly, open into the intermal connecing cavitics of the lobes and lamellac. Both apertures are 6 -tobed and sipported on siphoms of which the branchial is half the length of the posteriorly directed atrial siphon. There is at shurt nhtomen about the same length as the thorax and as bulburs vascular process exiends from the pasterior end of the abdomen. This process variek greatly in length in different zooils. Zuoids are 2-3 cm lons. The thorax has a layer of fine circular muscle hands continuous around the siphons. and there atc fine longitudinal muscle bandx internal to she circular muscles. These extend down the thorax and join into bands along either side of the dorsal surfice of the abdomen and along cither side of the vascular appentage, there are 3 guws of branchial tentacles, and 3 rows of 8 long rectangulur stigmath. The dorsal lamina is represented by: 2 pointed languets opposite the transverse vessets. There is no sign of the gunads in the gut loop in the present specimen, The stomuch is sphesieal and smooth-watled and is present half-way down the ahommen. The oesophagus is fairly long. The rectum is often turned over into the proximal part of the posteriorlyodirected atrial siphon, which is often blown out into what appeark to be a large balloom-like reservoir.
Remurks: Both the colony and the zooids resemble fimposona decrata (Sluiter) and A. vasto (Millar) (see Koll 1967). The hranchaval aperlure in the present species, however, is not so long the zooids are not protected by funtows and thilges of the test as ith A. aleerata. and there is no contral mass of test around which the cloacal spaces ramify. since liete the centre of each tobie is oceupled hy at largo common eloneat space. The vascular process bas ulso becn described previously for species of this genus (see Nigillina decrara Hastings (931),

Aupowean fantasiana (Kott), Kott. 1972as: 7 and syñorymy.
New Record: Denial Bay: For Previous Reconds; Descriptions see Kutt 1972a,
Rapiapls: In one specimen from Denial Ray, there is some pusple pigment scattered through-

Figs. 1. 2. Clavelina mirabilis. Fig. 1.-Colony. Fig. 2-Thorax of zooid showing musculature.
Fig. 3. Clavelina nodulr. Colony,
Fig. 4. Podoclavella meridionalis. Individual.
Figs. 5- 7. Orycorynia arenosa. Fig. 5.-Portion of colony showing zooids. Fig. 6.-Outline whole colony. Fig. 7.-Zooid.
Figs. 8. 9. Atapozoa marshi. Fig. 8.--Colony. Fig. 9.-Zooid showing posterior ahdominal musculature.
Fig 10. Alapozoa mirabilis. Zogid.
Figs. 11, 12, Distaplia distomoides, Fig. 11,-Colony. Fig, 12.-Zooid,
Figs. 13.14. Pyenodavella diminubd. Fig. 13.-Colony. Fig. 14.-Zooid; musculature removed from afdomen.
Fig. 15. Polycitor abéfiscum. Zooid.
uut the test and in the other specimen from the same station the test is sembotransparent and there are distinct rings of black pigment in the surface round each of the spertures. Otherwisc hoth are similarly cather fleshy, flat ind invesiing colonies and the zooids are identical.

Distaplia distomoides (Herdman).
Anaroncium distomoides Herdman. 1899: 7.5.

New Records: Waldegrave 1 Elliston Bay Prepiour Kecord: N.S.W. (Port Jackson).

FIGS. 11.12
Dewstiption: The colonies are cone-shaped and supported on a thick fleshy stalk. Living specimens nre rusty-brown or brilliant purple. inthough in prescryative they are eream to lyuff coloured. The rest is solt and there is no malfarent nand or forcign particles. 'The zooids are atranged in circular to oval systems all inround the heid. The stalk is zooid-free. There sire longitudinal io oblique muscles on the thorax and there is the ustal wide aurial opening protected by iz well produced anterior lip. There are \& longitudinal and oblique muscle bands on the thorax. There are + mows of ubout 12-15 5tigmata crossed by parastigmatic vessels. The stomach is shield shaped and has 8 rounded ridges intemally. The oesophagus is relatively short and there is a posterior stominh in the bescending portion at the gut loop. 'There is a large rosette of male follifiten to the right of the gat loop. As the colony becomes larger: the stalk is reduced. and the largest coloniey are ulmost entirely sessile as in Herdnan's type specimen.
Rembuts: 'The present species resembles Dowlupla vallis Herdman \$see Van Nunc 1918) especiaily in the shape ol the colony, and in the reduction in the lenglt of the stalk is the yooid bearing hend increases in sise. It 9 distinguished by the small number of Niggratit its each row and the 8 conspicuous ghandular stomach folds. Herdman's typo speximeff ol this species is redeserihed in Koll (in press (2)).

Distaplla stylifera (Kowalcvsky). Brewin. 1453: 60 and synonymy. KロR. 1957:95. Millat. 1963: 713.
Didemmmm stvifera Kowalcuaky 1 K74: 443.

Netr Recorel: Narth of Waltegrave I: Pre Ẅ̈ns Reconds: W. Aust. (Cape Jaubert to Ffemtatle). Qld (Pote Tennyson)-Kott
1457. Also the Reã Sca, South Africin, ind the cast coast of north Americn (see Urewin 1953).

Descripiont: The colony consists al d sounded head 1 cm tone, on at stalk of Jess diameter but approximately equal length. There are 4 rows of 12 stigmatio and the zooids are arranged in oval to circular systems opening svenly aruund the head, Mature gonads are not present.
Rramorks; Allhough the shape of the colony and the cooids are identicul with those of n, wrifera, the absence of the diagnostic gonseds in a sac scparated from the abdomen prevents the posilive ikenititation of this sitgele specimen.

Sycozon pedunculata (Quuy \& Gamart)). Komt. 1972b: 234 and synonymy.
Aphidie peduncuftmm Quey \& Gaimard. 1834: 626.
New Record: Investigator Sirait (Sin. Y16)
For Previnus Rermadr, Destription, see Kott 1972b.
Remarks: A single small specimen only is ayailable.

Sycozoa cerebrilormis 1 Quay de Gumard), kott 19726:8 and synonymy.
New Recordsi Denial Bayr near Cedund. Ellision Bity. For Prwions Recordy, Dusevifu lion, see Kou 197Za.

F*mily IOI TCTRORIDAE

I'ycmoclavella diminuta (Kon). Millar. 1963: 715.
<-luvelima alurimula Kott: 1987: 89.
Nem: Records: Elliston Bay. Spencer Gulf (Lipara Reet), Sl. Vincem Cibll (afi Porl Voarlunda, 15 ml depth, on rock or cpizoic on other ascidians). Previons Records: W. Aust. (Cape Boileau, Rottnest I.) -Kott 1957: Millar J9ti.3.

FIGS: 13, 14

Description: Calonies are 2 cm high. Two or more zooids misy be fused bisilly hul anteriorly the thoraces of the zooids are always independent. The lest is semi-trinsparent throughout and contains spherical, dark bodics, especially anterindy, There are 3. rows of stigmata and about 12 fine longitudinal musele luauls on the very short thorax, extending inlong the ventral surfice of the abdomen. The sbdomert is ithout twice the length of the thmos.

The stomach, in the posterior end of the abdomen, is rounded and smoothowalled externally hut there anc some longitudinal interruptions in the glandular watl. Some of the theracic muscle bunds extend across the codostyle while the more dorsal bands extend from the atrial aperture and from scross the middine between the apertures. The specimens are identicis! with the type specimens lirom Rotmest L and are larger than those from Cape Buileal (Millar 19637.

Funther colonies, appatiently of this species. were collected from Tipara. Roel in Spencer Gulf (Shepherd, If m., 20.vili.1971). The living zooids are yellow. As in Millar's specimens, the zooids wre only 1 cm high, of which the upper onc quarter is clear glassy test with the usual enclosed dark spherical bodies. The remainder of ench zooid is encrusted with sand and is wherent to atjacent zooids. Bakally, the lest tapers intu fine root-like stoton with fine side tranches and the basal patt of the colony is at tangled mass of these stolons. There does not appear to be any organic continuity helween the stolons of adjacent zooids and there is no basement mentbrane as in previously described specimens. The zooids have only 5 thoracic muxcle bands which extend along buth sides of the abdomen in fine bands: and allhough there are the usual 3 roins of stigmata, there are only 16 stigmatis in cacts half tow, Numbers of both muscle bands and stigmata are therefore much reduced in these specimens from Tipars Recr, The stomach is of the usual form, Embryos stant their development at the base of the ovilhuct as is characteristic of this genus. Well aleveloped embryor taken from the ovidues ahoul bals way up the abdomen are 1.3 mm long, the tail is wourd once around the body, there is an ocellus but no otolith. and there ure three "tube"-like papillae sharacteristic ul the genus (Truson 1963).
Hepmurbt: All specimens share the pyenoclavelid characters of short thoras and Jarge egge which are fectilized at the base of the oviduct. developing as they pass up toward the attrial aperture. The absence of the hasal membrane in the apecimens from Tipara Reef could be a response to the sandy substrate in which they are rooted. There is consideratbe viriation. nowever. in the number of ktigmatia and the number of iongitudinal musele bands in the specimens. which is not related to the size of the zooid, Further collecting may demonstrate that more that it single species is involved.

Polycitor giganteum (Herdman). Kolt, 192きa: 9 and synonymy
New Recovels: Waldegrave 1., Elliston Bay. Pearsun lis Investigator Strait 〈Stns, X15. 21). Pirvious Records: See Kon 1972 a.

Description: The present colonics vary 1 rom small, conical and sessile, to large and spherical, constricted irom a sandy base. The basal test is translucent but the test of the head is almost glassy and transparent. Zoolds open sith round the head and radiate inta the base of the colony as is usual for the species. There are 15 longitudinal thoracie muscle bands extending in it wide bated along the veatral half of the abdomen, There are 10 rows of ahour 20 stigmata. The stonach, in the posterior end of the abdomen, has four folds. Gonads are present in the gut loon.

Polycitar oheliscman nsp.

Type Localsy: Investigator Strail (Stm, Y(8), 30. m. On a low, fitt reef, W wison. Holosyme: NMV, HI67.

FIG. 15
Resription: The colony forms a pointed. sessale cont. The rest is gelatinous and firm, and there is sand basally. Zooids open all around the susface and appear to be arranged more or less in longitudinal bines. Zooids radiate in from the surface to the base of the colony. The abdomen is about four times the length of the thorax, Both apertures are 6 lobed and the atrial afperture is no a shori oiphon. There ate 20 longitudinal thoracic muscles and some transyerse muscles on the thorax. There atie 5 rows of about 12 stig. mith. The stomach which is present in the postefior third of the abdomen is latge and smoothowallod although it may be collapsed into folls. There is is small, rounded, posterior slomach.
Remarks: A colony of this species superficially resembles that of Distanlia distomoides: The zooids, hwweyer, are typically of the genus Polycirom and are distinguished froti other species in thut genus by the very small number of rows of stigmata.

Ludistoma remieri (Hartmeyer). Koll, 1972a: 10 and synonymy,
New Record: Elliston Bay, Hecrious Records: see Konl 1972 a.
Descripsion: The present colony forms an irregularly elongate or oval to circular cushion with rounded walls. It is un 10.5 cm high
and 3 cm in diam It is fixed by most of the basal surtace and the upper surface is smooth. In the lliving oolony, the circles of zovids show as hright red stars in a pale test. However, in preservative. the stars are colourless and the lest is blakk, the pigmatt being contained in the round cells in the test. The zoaids are arranged in circies of up to 6 . with the atrial upenings adjacent to one another in the centre of the sircle forming id preuto-cloacal onening. There are strong longitudiaal muscles on the siphon but there is no conspicuous circular sphincter, There are 15 strong. muscle bands on the thorax extending along either side of the ahdomen. There are 15 stigmata in each of the three rows.
Remindes: The arrangement of the zoolds in circles is usual for thls and other related species of the genus. The fleshy tirm consistency ol the colony is sypical of the species.

Csstodytes dellechiajei (Liclla Valle). Kott. 1972: 11 and synonymy.
New Recrord: Ëlliston Bay. For Previous Recards, Description, see Kolt 1972 an.

Family polvelividate

Sublamily mutmpomanitian

Euherdmania australis Kott, 1957: 103. New Remords; Filiston Hiyy off Waldegrave 1., Thvesligator Steait (Stn. Y19). Previous Records: Vic. (Port Yhillip Heads). N.s.W. (Camden Hilven)-Koll 1957.

FIGS 16-18
Discription: The colonics are formed of the usual sandy. finger-like. lobes containing ת single zonid. The nirial aperture is sessite in the midule of the obliquely flattened to coneave free end of the lohe. The branchial apertute is just ventral to the flattended free end and is protected ahove by it treseentic flap of sand-stiffenerd test which covers the opening. The apcrture itself is in a sand-free area covered by this flap. There are 13 rows of stigmata with parastigmatic vessels. Branchial papillate ure present in the middle of the primary and parastignatic transverse vessels on each side of the body. The anus is present lale way up the thorav and has 10 pointed lobes on the border. The stomach is small, with about 16 sather irregular and often branching fulds. In the specimens from Waldeglave J. about 8 developing embryos are present in the thors"cic part of the sviduce the most
mature embryo being present toward the distal end of the duct. The eggs are therefore fertilised at the base of the oviduct and appeat to start their development as they move up toward the opening. Testes are bunched in the shoft posterior abdomen, Muscles are present. especially round the dorsal border of the branchial aperture, but do not extend fax duwn the thorax. When the anterior part of the zooid is contracted the lower part of the thoras is pulled upwards, placing the opening of the oviduct opposite the atrial opening.
Larvat: The larvae are 0.9 mm long. They have 3 shallow, wide, mapillae in the middints Sets of 3 median ampullac are provent in the intervals between the пapillae, and in each set the middle ampulla is larger and its free cond is flattened, while the dorsal and ventral ampullae in each set are smatler and conical. Small vesicular cells are supported all oyer the body wall of the larvac,
Remarks: The larya is of the polyclinid type, developisg ampulary vesiclex and with the usual papillary cells surrounded by atecessory cun-like suckers. The napillae are not modificat as in other species of this and the related genus, Phurchatelit (see Kout 1969a).

Ritterella herifmania Kote. 1957: 102: 1972a: 11 and synonymy.
Nem Recrod: Elliston Bay, Prevoros Records: sec Kout 1972
Descriphion: The colories consist of small slebiter Joher. 1 cm long, with expranded spatulate tips, joined basally, Minute zooids open atound the border of the lobles. There are 5 rows of sligmata and 5 stomach folds. Papillac are present on the transverse vessel.

Preudodistoma australls Koth. 1957: 101: 1963! 78.

New Records: Waterloo Bay. Waldegrave 7. Previnur Recrirds: W. Aust (Rotmest J, YKoll 1957. 1963.

IFG. 19
Deveriphion: Colonics are soft sumbled and sessilc, up to 2 cm in diam, and no nore than 0.5 cm thich. The test is exprecially sert and scmi-transparcnt. The zeoids may be orangehrown with flecks of black, and in the preserved colony spherical black pigment-cells remain. Zooids open over the upper kurface by two separate, 6 -lobed openings. There are 3 rows of ahout 20 stigmath, There are 15 strong longitudinal muscle bands on the thorax
which extend as a single band down the ventral side of the abdomen and onto the posserior ahdomen. The stomach is small and smooth walled. with a distinct typhlosolar line. and is present half way down the abdomen. The oesophagus is failly short. The thoracic muscles extend down the ventral side of the abdomen and to the left of the intestinal loop onta the pasterior abdomen, which, in thexe specimens, appears to arise from the left side of the intestinal loop owing to the strong conuraction of the body musculature. "The thorax, athdomen and posterior abdomen ale of equal length. Gondeds are not developed in the present specimens. In specimens Irom Waldegrave 1, there is occasionally a large balloon-like hrood prouch,
Reanarks: The specimens have been compared with the type specimen of Pseudodistoma ansuratis and found to be identical, atthough in the rype the posterior abdomen is better developed with mature gonads. Pseludodistoma cyrnusense Pérès, 1952, and P. fraolls Tokioki, 1958, are related species with a sessile colony; short abdomen and oesophagus. small smonth stomach, and the testis follicles bunched at the posterior end of the posterior abdomen. 8 rymuserse has only 12 stigmata per row, white both P. australis and P. jrakilds have 20 m mare stignata per row. P. frogifis is distinguished from the present species by the presence of u to to 3 emhryas in a broad panch, while in P. auraralis only a single embryo has been found in the brood pouch that is consiricted from the postero-dorsal aspect of the thoras (sec Kott 1963).

Psendodistoma cyrnusense Pérc̊s, 1952: 37.
New Record: Ellistorn Bay. Previens
Recordss Mediterranean-Péres 1952.
FIG. 20
Uescriphion: The colony is a very soft. irregufarly sounded, inverted saucer shape, 8 cm in diam. and about 1 cm high in the cemtre. The surface is very smooth and there are no ad. herent or included foreign bodies. The test is silightly eransparent, cloudy and of creamish colour. Zooids open separately to the exterios over the upper surface. The siphons are failly muscular and there are 12 fine Jongitudinal muscle hands on the thorgx extending atong both sides of the abdomen and posterior abdo. men. 'There are 3 nows of stigmata with about PI stigmata per sow, The abdomen is slighty longer than the thorax, atthough the posterior abdomen is aboul 3 times the length of the
abdomen, The stomach is half way down the abdomen and externally is smooth, although internally there appear to be 4 glandular ridges. There are minute mulberry-like colls in the common test, from 0.01-0.02 smm it diam.
Remarks: It has not been possible to separate the present colony from Pêrès' Mediterranean species. The colony form and consistency, the numher of stignoata, and the size and shape of both the stomach and of the zooid are identical. Psoudodistoma aurea (Brewin 1957) and f. manritiana Vasseur, 1967, both form large fleshy colonies. However, in these forms, the abdomen is very much longer than the thorax and the oesophagus is especially long. Psentodistomu fragilis (Tokoika, 1958) and P, ausirrifis also form fleshy investing colonies but they are much thinner than the present specimen and have 25 stigmata in cach now distinguishing them from the present specimen which has only 12. The present colony is considerably more extensive than specimens of P. cuestralis so fat available.
Psendodistoma cercum Michaelsen, Kott, 1973a: 12 and synonymy,
New Mecords: Elliston Bay, Waldegrave I. St, Francis 1. For Previour Records. Describtion, sec Kott 1972a.

$$
\text { FIGS. 21, } 22
$$

Remarks: The speries is distinguished from wher stathed forms by the relatively large number of thoracic muscies $\{30-10\}$. The ssomach is rather capacious and has its internal glandular wall divided into four sections (see Michaelsen 1924). This also helps 10 distinguish the species from P. australis in which the stomach is especially small, shallow and smooth walled

The presen colonles from Waldegrave I. are loog, with a long stalk and head, while those from Elliston Bay are no more than 2 cm high with a round soft head on it short thick atalk This range in the form of the colonies has been observed in specimens from New Zealand isee Sigilinaria nova-zwamilue Brewin. 1950, a symonym of the present species, and P. cereum, Brewin 1958).

Placentela ellistoni n.sp.
Type Locality: Elliston Bay; inside caves. outhide bar, 14.v.1971, Shapherd, Holmype: SAM, E901. Paraypes: SAM, EgOU

FiGiS. 23. 24
Description: The colonies form narrow, funshaped Joher, rounded at the free elge and narrowing to the base. The lobes are 5 cm tall

PATRICIA KOTT

Figs. 16-18. Edhardmanha attspalis. Fig. 16.-1ndividual. Fig. 17w-Individual removed from test. Fig. 18.-I arva.

Fig. 19. Pseudodistomin mustralls. Cooid.
Fig. 20. Hserdodistomu cyfraiense. Spicules from test.
Figs. 21, 22. Pscudodisloma cercum. Fig. 21,-Colony, Fig. 22.-ooid.
Figs. 23, 24. Platenta ellistoni, Fig. 23.-Calony. Fig. 24.-Vonit.
Figs. 25. 26. Polvalinum neptinimn. Hig. 25.-Individual. Fig. 26.-Portion of branchial sac showing papillae produced from transverse vessel.
Figs. 27. 28, Aplidilim colellende's. Fig. 27.-Colony, Fig 28-Lurva.
Fig. 29. Aplidum pantherinstm. Thorax.
Fie. 70. Aplidium flavineatrm. Intva.
Fie. 31. Splidimm elatmm, Looid.
Fig. 32. Symoicium papillifermm Zooid.
and aboul 2.5 cm broad across the free end. which is the widest part of the eolony. There are sand-covered swellings projecting back from the counded free horder of the finn, and overlapping both sides of the colony. The test is very stify and sandy: Branchial apertures are arranged in an are protected by the overlap from the rounded free border of the fan. Each aperture is sessile and in a sand-free area of fest, The aurat sperturce on the opposite xide of the colony are in a groove slightly further back than the corresponding are of hranchial apertures. Each atial aperture is on a small mound and, as with the branchial apertures is covered by the overlapping rim of the rounded free border of the fan. Zonids ate arranged in only a single laver at the top of the colony but is they extend sown tnwards the base, they overlap und cross one another and here the colony is narrower hut thicker to secommodate the posterior ends of the zooids. The 6 lobes around hoth apertures are minute and very pointed. There is a mesh-woris of circular and longitudinal muscles on the thofax, extending up around the siphons. There is a wide muscle band on the left kjde of the abdomen and on the torsal side of the posterior abdomen, formed by very fine longiludinal bunds from the thorax which all cross to the left side of the body across the poxierosventrat part of the thorax. There are 17 rows of ahout 35 rectangular stigutata. The nesophagus is very short and the stomach is smooth and shielashaped. The ibdomen is only about half the length of the thorax. The posterior abdomen is of similar length and contains a large numbar of male follicles bunched together posterior to the ovary. It appears from the specimens examined that the branchial aperlunc may be contracted back along the ventral surface of the thorax so that the atrial siphon is derminal. Thus by virture of the strong body musculature; the whole top rim of the colony probably moves up and down or from side to sile according to whether the are of hranchial apertures or the are of atrial apertures is to be openced ar whether both are simultaneously to be opened or closed.
Remarks: Tho species is unusual and although the arrangement of zooids within the colony pexembles that found in Riperelia herdmania. the zooids themselves are distinguished by their strong Ihoracic musculature, by the smooth stomach (which resembles the type found in the genus Symoicirmi). and by the darge numbef of nows of stegmala.

Subramily folvclininaf

Potyclimum meptunium Hatmeyer, 1912: 331
Ko11, 1963: 83 and synonymy,
New Recordy: Elliston Reef. Elliston Bay. Provious Records: W. Aust (Shark Bay to Athany')-Michaelsen 1930; Kort 1963, S. Aust. (Rcevesby I.)-Kott 1963. South Africa-Hartmeyer 1912. Millar Jy62.

$$
\text { FIGS. 25, } 26
$$

Deseriphion; Colanies of Iarge investing streets or sessile, almost hemispherical lobes. 4 zmm high in thickest part and from 2 cm in siam. There is in dense sands coat excermally athsent only where branchial apertures open to the exterior. The common cloacil aperturts atre present on the surface, on or at the side of slight rounded elevalions. Zooids are in round. to elongate or long. double now systems along either side of thallow, narrow, common closeal canals. There is no sand in the internal test, which is semidransparent and soft but tough. There are sometimes, but not always, black spherical pigment cells in the hody wall. especially in the atrial languet and around the branchial aperture. There are 6 small very pointed branchial lobes, The atrial languet. rising from above the sphincter muscle. may be polned or long and with at llat terminal border fringed with up to 7 minute, pointed. lobes. The shape of the utrial languet is associated with the location of the zooid in relation to the cloacal canals or with the common cloacal openings, and ikt tip may be incorporated in the border of the opening. There may be a minute papilla from the bodjo wall below the aperture. There ate 6 patalite. Jongitudinal muscle bands in the atrial fanguct although these may coalesee or divide at any point thong their length. These are crossed by very fine traverse muscles. There are 10 longitudinal muscles radiating from the siphons and extending dows the thorax, although they may be difficult to detect in the posterior half of the thocax. There are 10 mows of $t 6$ stigroata and a similar number of flat. rounded lobes, confluent at their base, sup. ported along the transverse vestels. The stomach is small and smooth externaliy hat with glandular papillee internalty. The posterior abdomen is long and innguc shaped.
Remarks: The relationships of species within this genus have always been difficult to determine, owing to the homogeneity of the zooids and variability of the colony form and atriad languets. The present specimens have been idendified by the relarively large number of
branctial papillat, by which the species is distinguished from P.. macrophyllum (see Michaeisen 1930). There are also fewer rows of stigmata than in P. macrophyllum, although the number of stigmata in each row is greater. The internal test is also lougher than is rasual for this genus.

Aplidium lobatum Savigny, 1816: 182. Kote, 1963: 97 and synonymy, Tokiokis, 1967 : 22.

New Kecord: Elliston Bay. Previous Recurds: see Kott 1963: Van Name 1954.
Description: Specimens are almost spherical and 1 cmin diam. The lower balf is sandy and there is a more or less hatlenest upper surface through. which the orange zooids are clearly seen through the transparent test.. Sparse sand is present throughout the remainder of the lesi. The zooids are very small, with a fleshy tripartite atrial languet from the upper border of the opening. There are 6 rows af about 10 stigmata and 5 pronounced stomach folds.
Remarks: The small zooids, the attial aperture, the small number of stigmata and 5 stomach folds charncterise the species.

Aplidium colelloides (Kerdman), Kotr 1972a: 15 and synonymy.
New Records: off. Waldegrave 1. Investigator Strait (Sin. Y21). Previous Records: sec Kott 1972a.

FIGS. 27. 28
Description: There is a rounded, firm, gelatinous head supported by a lough leathery stalk about 17 cm long. Zooids are minute and aranest allong both sides al nurrow, branching, longitudinal canals. Large common cloacal openings are randomly disiributed over the head. The languet from the anterior border of the arial aperture is very small and poinied. There are $16-18$ rows of 10 elliptical stigmatil and 15 stumath folds. In the present specimens, there are 2 enbbryos contained in the posterior part of the peribranchial cavity. One is almost mature while the other is at an early stage of development. This aificrence in the stage of development of the embryos is observerd in all the zouids in which embryas are present.
Larvar: Mature larvae are large, 1.5 mm long. There are small, crowded, cpidermst vesicles projecting from the anterior part of the larva around the base of the papillic. and extending along the ventsal surface.

Aplidiam pantherinum (Sluiter). Kott, 1963:98 and synmymy.
Fsammaplidinan puntherburn Sluiter. 1898: 26.
Nen Record: Elliston Bay. Previsus Records: W. Aust. (Rotinest 7. to Hamelin Buy) -Kott 1963. Si Africa-Sluiter 1898; Millar 1955. 1462.

FIG. 29

Descriptime: The colony is oval in outline, 2 crin thich and 5 cm long. It in fixed by a sinall fart of jts basc. The base and walls are even and sandy. The surface is marked oft into irregulatly circular depressed areas that are often free of sand. These are about 5 mm in diam, and are separated from one another by raised sandy fidges about 0.5 cm wide which form a network over the surface and sharply overhang the periphery of the depressed areas. Common cloacal apertures are present in the centre of these depressed areas, and are surrounded by the branchial openings of the zooid. There is sand enclosed throughout the otherwise gelatinous test, thus creating a rather hard colony. Zowids are minute and crowded and radiate down into the base of the colony. The branctial aperture is surrounded hy 6 well-defined lobes: The atrial aperture is on a muscular siphon from about half way down the thorax, protected by a long, pointed, hip rising from the hody wall anterior to the siphon. The thorax is muscular with a well developed circular sphincter muscle at the base of the branchial aperture. 'There are ahout 20 very fine longitudinal muscle hands on the thorax. There are 16 rows of 6 stigmata. The abdomen is about the samc length as the thorax, with the small stomach half way down the ahdomen, The stomach wall has 5 distinct folds.
Remarks: The form of both colony and zooids is unusual, but does resemble Aplidiun erratiferum Sluiter, 1909; Van Name, 1918. from the Philippincs, which is distinguished however by its 10-12 stomach folds.

Aplidium subricullum Kott, 1963: 103; 1972a: 15.

New Record: Pearson 1. Por Prevlous Recards: Destription, see Kott 19727.

Aplidium flavolineatum (Sluiter). Kott. 1963: 105 and synanymy. Anuroucium fapolintitum Sluiter. 1898: 30.

New Records: Elliston Byy off Waldegrave 1. Previous Recurds: W, Aust., S. Aust., Yic., N.S W.-Kot 1963. S. Africa-Sluiter 189:: Michaedsen 1934; Millat 1955: Tokioka 1959.

FIG. 30
Description: The colonies form fow, rounded. cushions about i cm high and I cm in diam. with a santly basal half sometimes narrowed to a short thick stalk. In the preserved specimens the zooids are orange, and open onto the transparent upper surfacs. They ate arranged in circular to oval systems of 5-12 zooids. There may be some sand in the surface test between the systems. There are 3 pointed languets from the upper border of the alrial opening. There are about 20 longitudinal muscles on the thorax, continuous along both sides of the ahdomen and posterior abdomen. There are 10-15 sows of 12-15 stigmati. The stomach is small and rounded with about $25-$ 30 very narnow folds. slightly oblique and extending anteriorly towand the mid linc on both lateral and mestal aspects of the stomach. The ahdomen and posterior abdomen are of equal length, although the thorax is smaller. Zooids are very small and usually sio not exceed a mm.
Lanvac; These are present in the peribranchial cavity. They ate 0.8 mm long and the tail swinds three-quatters of the way around the body. There are median ampullae between the 3 suckers with lateral branches from the buse of cach median ampulla. The medium umpuilide are not always paired as they have been described previously, not are there posterior vesicles. There has been some variation observed in the form of shis larva hewever (see Kott 1963) and the differences are not thought to be significant.

Aplindient elatum n.sp

Type Locolisy: Elliston Bay, outside bar, very strong surge. 13 m, 12.i.1971. Shepherd. Flolofyot: SAM E906. Puraypesi E905.

FIG. 31
Desrejpionf: The colonies form tall. undulat. ing, finnoshaped, fiattened lamellae and lobes which are sometimes fused. Each lamella is is muaimum of 1 cm thick. The maximum heighe from the buse to the free rounded border is 6 cm , The surfiace is sandy hut marked off into stighty prominent. rounded, swellings corres ponding to the antesior ends of the minute zooids, which open or both surfaces antl on
the free edge of the lameltae. The test is samdy throughout and the colong firm and hatd. Common cloacal apettures are present from place to place over the surface and zooids are arranged in double rows sadiating from then. The zowids and especially the antetior part of the thotax and the endostyle are orange in the preserved specimens. Zooids are about 3 mm long. The thorax and posterior nbdomen are of about equal length and slightly longer than the abdomen. The branchial aperture is terminal with 6 sharply pointed lobes. The atrial aperture is opposite the 4 th-hith row of stignota and its anterior lip is produced into 3 almost foliated lips. These are not always of equal size. but they are always very muscular with longitudinal bonds extending along their length. There are about 12 fine longitudinal thoracic muscles. These are k rows of 8 stigmata. The stomach is very short with about 15 distinet folds.
Remarks: The colonies ure very like Aplidium solidum (Herdman) (see A. arboraprum Kott nom. nov, 1963). The species differ howevet in the number of stomach folds, in the length of the posterior abdomen, and in the length and form of the atrial langucts. The colony and the atrial lobes are similar to those of A. saraxinorum Millar, 196,2, from S. Alrica. However, the body musculature and stomach folds difter. Aplidium mulliphicanime (see Koll 1963) forms jelly-like to firm, investing. colonies and has minute 7ooids, a hranchal sac resembling that of the present species and abour the same number of stomach folds. Again, however, the muscular large atrial tanguet and dense sand inclusion, distinguish the present species.
Synoicium papiliferum (Mjchacken). Kur. 1972a: 16 and synonymy.
New Record: Waldegrave II freviosts Recwreds: see Kull 1972a.

FIG. 32
Descripsion: The colony is rounded, fohed and brunched. The diameter of a single lobe is about 1.0 cm . The zooids are parallel to one another and ste rieht angles to the surface all amund the colony, which does not appear to be fixed. Thene is a sparse coating of sand grains on the surtace and throughout the test: The atrial aperture is on a short muscular siphon and protected by a long pointed lip which is produced from the anterior border of the opening. There is the usual protuberant papilla from the bonly wall posterior to the arial siphon. There ate 8 fire longitudinal
muscles on the thorax and there are 9 rows of 111 stigmati, The stomach is the usual shieldshape and has mulberry-like glandular swellinge.
Remurks: The form of the atrial siphon the papilla and the stomach with its mulberry-like swelling ane characteristic of the species.

Fimily DIDEMNIDAE

Trididemmum cercbriforme Hartmeyer; 1913: 139. Kott, 1962: 275 and synonymy.

New Revords: Ellistor Bay, Investigutor Strait isin. X17). Previous Records: see Kote 1962.

FIG. 33
Descyfplon: There are very extensive pusterior abdominal comanon clonal calvitics and secondary conumon cloacal canals at the thuracic level. There is a very thin hasal layet of test. Zooids are suspended between the basal and surfite hayer of lest by pillar-like strands in which the abdomina are embedded. and through which the thoracic vecondary cloacal canals extend. Spicules are sometimes evenly distributed throughoul the lest atherugh they may be thick in the surface layer but sparse below thoracic level. They are lurge. $0,03-0,06 \mathrm{~mm}$ in diam, with $5-7$ conical pointed rays in optical transverse section. Zooids have an minute thorax. with 3 rows of stigmata and a wide atrial opening. There atte fi coils of the vas deferens around a singlo testis follicle.
Remurks The species is identified by the extensue posterior abdominal cloacal system and by the open atrial aperture rather than a posteruorly directed siphon, usually associated with this type of cloacal systens

Trididemnum spiculatum Kott, 1972a: 16.
Now Record: Elliston Bay. Previour Recorels: sce Kott 1.972n,

$$
\text { FIG: } 34
$$

Descripion: The colonies are white and invest stalles and leaves of seaweeds. Deep primary cloacal canals extend around clumps of zooids but the secondary cantuls remaire at thoracic tevel. There is a long lateral organ. There are 3 lows of stigmata and $5 \frac{1}{2}$ coils of the ves defcrens around a single testis follicle. The spicutes are stellate, with $5-7$ says in optical section, 0.01-0.03 mmin diam.
Remarks: The smaller stellate spicules and the absence of a latge posterior abdorainal cloncal cavity disthnguish the species.

Polysyncraton magnilaryum Millar, 1962: 165. New Recoml: Invesuguor Strail tStns XIS. Y'6). Preswour Records: Natal-Millar. 1962.

Fig. 35
Dexcription: The colonies are irregularly lobed, large and lleshy, and are supported by a very shorl and relatively narrow stalk. Each lobe may te up to 2 cm in diam, and a maximum uf 25 cm in length. There are no spicules. There is ax sunfice layer of badder cells and bene:th this sume pigment sells which become less frequent internally athough they congregate uround inclusions and parasites in the test. The zooids are conitined to a thin layer of surtace test gbout 1 mm thick, and the centre of each lobe consists of gelatinuus. firm. test withou zooits, The consistenty of the colonies vacies from firm und gelathous to hand and lough, but it is thought that this may rellect the pecservation of the specimens. Common cloacal apertures üre randomly placed over the surface and zooids are arranged on citber side of long cloncal canals radiatiag from the apertures. The surfise of the colony is marked by these long branching canals in the surface layer of test. The zooids are minute and have a loug oesophageal neck. The thorax is especially small, 0.5 mm long. The branchial aperture has the usual 6 pointed lobes and there is a wide, open, atrial aperture. Thete are 4 mows of 6 sigmatio 'liere are 8 - testis follicles with $2 t-5 \frac{1}{2}$ coils of the vais deferens. The ventral surface of each zowid is cmbedded in the common test so that the surface of the preserved colony is marked intu small ruinded mounds surrounded by a narrow depsession Where the thin sturface lest is depressed over the common cloneal canal to which the atrial apertures ate expoxed.
Remarks: The species is distinguishoal by its lleshy colony and hy the large number of testis follicles and small number of vas weferens coilk. toplysyncraton aypiculatum Tokoida, 1949, fornis flat investing colonies and is often without spicules, hut has a long bilid atrial lip which is absent in the present species.

Polysyncraton paradoxum Nott, 1892: 318.
New Record: Elliston Bay. Previous Recond: New Tealand-Noll 1892.

Descriphon: The Jiving colonies are brilliant orange hut in the mreserved specimens only streaks of orange remain on the surface. There
are stellate pigment ceils seathered amongst the spleules. There is a sutface bayer of bladder cells. then a dense layer of spicules which besume less dense in the oesophageal region of the wooids ind are absent completely lrom the lest at thic abdominal level and in the basal lest. The common cloacil canals are very shallow and thoracic. There are 8 stigmata per row. There are 5 testis follicles and the was deferens coils $6 \frac{f}{7}$ times around them. The apicules are spellate, $0.01-0.03 \mathrm{~mm}$ in diameter.
Remarkis: P. paradoxum yar. maherum Michaelsen, 1920, from the Seyshelles probably repsesents a distinct species since it has only $2 \frac{1}{3}$ coils of the vas deferets and the spicules have 24 points in optical section. The shallow thoracic common cloacal systemi and the arrangement of the spicules beneath the superficiat bladdet cell layer is chatacteristic of the present form. Owing to the very shallow thoracic common cloacal space, the colony is especially firm.

Didemnum candidum Sirvigny, Kott. 1972a; 19 snid synonymy.
New Revord: Elliston Bay, Previnus Recotds: see Kotr 1972a.
Uevcription: The present colonies have the usual dark-brown zooids with brownish-black prement cells, The surface iest is thin thet the basal test is slightly thicker. The cloaeal syslem is thoracic although the primury canals may extend more deeply. The thorax of each zoord is enclosed in its own test sheath as it crosses the common cloacal space. There is sometimes, a lateral organ near the posterior end of the thorax. There are $8 \frac{1}{2}$ coils of the vas deferens around the single undivided testis tollick. Dense spicules are present throughout. They are $0.03-0.05 \mathrm{~mm}$ in diam. and show the characteristic runge from burr-like to stellate. Vesicular cells previousiy deseribed for Polysyncrazon orhicuhum (sce Kott 1972a) are present in circles around the branchial apertures.
Remners: The pigmented zooids and form of the cloacal cavily, and the single testis follicle with a large number of vas deferens wils around it, have been used to identify this species. The presence of the vesicular cellis previously thought to he diagnostic of P. arthichum is puzzling. However, although they have not previously been descrihed for Didemnmm candidum, they dave previously been found randomly distributed over the surface of Didemnum moseley (see Kat 1972a).

Didemnam moseleyi (Herdman). Kotr, 1972a: 19 and synonymy.
Nen-Records: Elliston Bay, Emu Bay (Kangaroo 1.). Investigator Strair (Sins X7. 27. Y'?. Previour Recards: see Kott 1272. Deseripion: The colonies are of the nsual form with dense white stellate spicules, stallow thoracic common cloacal cavity, and large fateral organs. Living specimeny from Walciloo Bay are yellow-orange, encrusting red algas,

Didemnum patulum (Herdman), Kott, 1972a: 18 and symonymy.
Now Record: Emu Bay (Kangaroo 1.), For Pievious Recotds, Description, see Kull 1972a.
Remarks: The colony forms a taree inveating shest marked with the usual blue grey lines to give a marbled appearance.

Didemnum (crnatanum (Gottschald). Kott 1966: 257 and synonymy. Tokioka, 1967: 77.

Didemniodes ternatamuat Gotrschaldt. 1894: 648.
New Record: Elliston Bay, freviouls Records: see Kom 1966; Tokioki 1967

FIG. 36
Description: The living colony is bright arange although this is lost in preservative. The spiculcs are small and sphericat with many very short conical spines projecting trom tho supface, $0.02-0.03 \mathrm{~mm}$ in diam. and very dense throughout the test. The suriace of the colony is raised into mounds und ridges with common cloacal apertures on the apex of the thickenings. The primary cloacal canals extend almost to the basal test and usually ate posterior abdominal. while there are thoracic secondary canals. Zooids accur in large clumps anchored to the busal test by solid lest material in which the abdomina of the zooids are embedded. while in the thoracis region there are separate text sheaths enclosing each zooid and continuous with the susface test. The surface test is fairly thick. The mounds that are apparent on the surface of the test are therefore created by the great proliferation of zooids in these ateas, between the primary cloaed canals. There are $5 \frac{t}{2}$ colls of the vas deferens around a single testis follicle. There is a long, oval lateral organ on each side of the thorax. The branchial siphon is faitly long with dissinct circular muscles
Remarks: Although the common cloacal cavity in these specimens is mot as well developed
as has been previausly described for the species, the smistl spherical spicules help to distinguish il, Kott (1972b) was not able to identify a "yellow crustose" specimen of the limuly Didemnidae frons West I. (near Penguin Rod). Although the gonads were not mature in the West I_{1} specimen it has been compared with the present colonies from Idiston and is iskmicul in every respect. In patticulad, the cloacal system and the distrihufion and form of the spicules ane identical,

Leptoclinides reticulalus (Biltuiter), Kott, 1972a: 18 and synonymy.
New Record: Invessigator Strait (Stn. Y6). Pyevious Recordis: see Kott 1972a.
Descriptiont: Spindle and stellate, purple and orange, pigment celts are present in the surace layer of rest. Common cloncal openings are frequently and evenly dissributed over the surface The common cloacal system is extensive at the oesophageal and posterior abdominal level. The zonids are of the usual form with a posteriorly directed atrial siphon.

Leptoclinides fungiformis n.sp.

Type Loculisy: Outside Pearson 1 , on gravelly bottoni moatly attached to shell or mek fragments, 9.i. $1969,50 \mathrm{~m}$, Shepherd. Holoypre und Cotype: SAM E9l1.

FIGS. 37, 38

DescrpH1OH: Two specimens are available frum the type locality. They are about 6 cm ligh with a rounded head. There is a single cloncal aperure terminally. There is a chick dense layer of spicules in the surface text it the level of the branchial siphons, Spicules are less dense elsowhere in the head. In the stalk. the spicales are snore evenly and denscly distrjbuted throughout. There is no surfisce layer of bladder cills. The test is firm but rot toughi. The test in the stalk is similar in consistency but is perforated by longirudinal spaces. The primary claacal systom consists of extensive cavities posterior to the superficial zooid Jayer surroumbing a ceniral core of test. Secondary canals reccive the onenings of the posterionly directed strinl siphons and open thto the prinuary cloacal cavily. Zouids open to the surface of the colony by a 6 -lobed aperture. The atrial apertures ate potheriorly directed from the posterior third of the thorax and have distinct circular niusele bands forming a sphincter. A circular sphincter muscle is present on the branchial siphon, hut is not quite so apparenk There are also fine longltatinal
musclek on the thorax. These are 4 rows of ahout 8 stigmata on each side of the thorax. Eggs are large. The testis Follicle is apparently undivided and the vas deferens is wound around il. The stomach is smalt and jounded. The zonids in these colonies are budding from the oesophagat region. Embryos are present in a layer hencath the zooids, but none were sufficiently mature to discern their form. The posteriorly directed atrial siphons open into the secondiry cloucal camits rather than directly into the common cloacal chamber.

Kemurks: Spicules are stellate and are fairly hivere. Although closely related to Aeptoclinides kinse in the development of the cloacal system. the present species is distingumbed by ils larger spicules and smaller zonids, by the single testix follicle and by the smaller intestinal loop. The present species is further distinguintod hy its weil developed stalk, No other stalked species of Leplochinides has previously been dexcrihed.

Sulnider PHIEBOBRANCHIA
 Fabrily!

Recmrds: As well as the species of this sub. order listed below, specimens of an undescribed colonial species have been taken from stitionk YI8, Y19 and from two wher locations. all in Investigator Straif. The species will be described and its phylogeny discussed in a subrequent publicalion (Kott. in press (3)).

Family ASCIDIDAE

Ascidia thompsoni Knti, 1972a: 27.
New Record: Elliston Bay. Previous. Records: sce Koll 1972a.
Descriprion: Individuns are the usual onval, laterally flattened shape, lying mostly on the lefi wide. The body is piokish and shuws through the firm transtucent deas. Thene are no muscles on the left side of the hody. Body musculature is present as an irregular network ot the right or upper side of the bosly, stopping abruptly at the endosayle, and no miscles swere telected on the left side of the boily. There is not as row of short parallel bands around the ventral and dorsal border as in A. yrdncyensi.s. The peritubercular area is very shallow. The torsal lamina is double in its anterior part and is sibbed on the left side omly The branchial sac is simply folded between each tongitudinal sessel and the e are simple papillae at the juncbion of the longitudinal and transverse vessels.

Fig. 33. Trididemnum çrcuriforme. Spicules.
Fig. 34. Trididemnim spiculatum. Spiculess.
Fig. 35. Polysyncraton magnilarvum. Colony.
Fit. 36. Didemnume rernatanum. Spicules,
Figs. 37, 38. Leptoclinides fungiformis. Fig. 37.-Colony. Fig. 38.-Spicules.
Figs. 39-41. Metondrocarpa indica. Fig. 39. - Tndividual, Fig. 40-Mesial aspect of stomach. Fig. 41. -Later aspect of stomach.
Fig. 42. Symplegma arenosa. Individual.
Fig. 43. Stolonica australis. Gut loop and stomach.
Figs. 44-46. Stolonica mrincata. Fig. 44.-Individual. Fig. 45.-Body removed from test to show body musculature. Fig. 46.-Gut, gonads.
Figs, 47. 48, Polyandrocarpa simulans. Fig. 47.-Colony. Fig. 48.-Cut, gonads,

Remurks: The present species is distinguished by the coudition of the dorsal lamina and the bolly musculature.

Axcidia sydncyensils Stimpson: Kott: 19723: 24 and syronymy.
New Recorids: Elliston Bay. Investigator Staill (St1. Y18). For Previour Records, Descripion, see Kott 1972,

Order PLEUROGONA Suburder STOLIDOBR.ANCHLA Family sTyELIDAE

Subfamily polrzonnac:

Methnalrneargs indica n.sp.
Type Lexution: Jnvestigator Suath (Stn. Y6). 23 m . seatered low recf with shell sand patches and stronge strge. Watron. Briorype: NMV, H159. Pavaype: NMV. HISR.

FIGS. 39-41
Description: The colonies consite of sessile, sound. laterally flattened, sandy Individuals 5 strn in diam., fixed to a common basal stalk which sonceimes expands into a wider membrame. The present colonies invest in algal stem. The zooids are slose to one another but each is entire and separate and the tests dn not sdhere. The test is thin and failly brittle with embedded sand, Both apertures are anterior and faisly clowe together. The branchial aperture is sessile and the atrial aperture is on a pointed siphon directed away from the hranchial aperture, The body wall is very delicate and closely adherent to the test. It has a fairly clase mesh of yery fine muscle fihres continuous all over the body. The branchial sac has 4 internal longitudinal yessels on each side with ei- 8 stigmata per mesh, crossed by patustigmatio vessels, and there are 9 such rows of stignata, The gue forms a simple open loop across the pasteriur and of the body and the rectum is produced anteriorly toward the hase of the atrial siphon. The stomach is large and has about 10 conspicuous stomach folds. There is a longitudinal ridge along the lateral aspect of the stomach, which continues to form a long curved caecurn in the gut loop. On the posterior side of this longitudinal ridge, the Momach folds are parallel to it., The folds on the anterios aspect of the stomach, howeves, extent more obliquely and terminate againsa this caecal ridge so that they do not extend continuously from tie pylotic to the cardiac
end of the stamach, "The anal border is sntaoth. The dorsal lamina is plain. Unfortunately no gonads were detcited.
Remanks: Species of the genus Meturdrocarpos Michatisen, 1922, have been deseribed with S-10 internal longitudinal vessels, und male and female gonads un both sides of the body. Although the present species has only 4 intermal longitulinal vessels and the gonads are not developed. juts stomach is similat to that found in M. elara (Riller) and M michareseni (Ritter \& Forsyth) both from California (see Yian Name 1945). In both these species the stomach has a longitudital fidge continuous with the pyloric caecum and agrinst which the stomach folds termunte. in other generat of Polyzoinue, e.g., Allocorarma, Sheorureflot and Polyzod, although there may sometimes be as smisll number of internal dongilutinat vessets, the stomach is barrele shaped with parallel longituctimal folde.

Symplegna arenosa n.sp.
Tyme Locarin: Oft Waldegrave I. Shepherd. Holorpas SAM, HeOn, Parmype: SAM i=985.

Fild. 42

Geseriphon: The colonies are formed of sensile, strady individuals, more or Jess pillarshaped but faterally flattened. the zooids taller than their with. They ate fairly closely placed but ane entively separate and arise from a sandy busal plater formed of a tangle of basal stolons. Both apertures are elove zogether on the upper tree end of the body in a circulas. sand-free, area of very thin test. The rest of the test is encrusted with sand. When the zosoids are contracted, the stiffer, sandenerusted, lest oll either side of the aportures is drawn together across the openings which Lhes appeat to be depressed in a longitudinal slit on the supper surface. The body wall haw strong muscles around the anterior part of the body, consisting of longitudinal bands raciating from thoth the siphons athat stort transverse hands extending across the mid line donsel and ventral is both of the siphons. These short transverse bands (as in Agnesia slaciate: Kott 19fi9h) are instrumenlai in drawing together the protective test across the aperture. There ate 4 internal longitudinal vessels on each side of the body and 15 rows of stigmata. These are nol crossed by parastigmatic vessels. There are 6-8 stigmatia in each mesh. The longituding museles extend noly abous a third of the distance down the
hody. The gul iarms a very short loop across the posserior end of the hody and the rectum is long and extends anterioply poward the hase of the atrial siphon. The stomach is shor and barreloshaped with about 14 longitudinal foids and there is a short straight pyluric eacum connected to the anterior limb af the gut loop by a divided ligament and blood vessets (see Symplegnu oceanüa Tokioka, 1961). There is also it cannective between the stomach and ibe intestine. Unfortunately no gonads are develoned in the present specimens.
Reisarks: Although the present species resembies Metandrocurpa indica in the presence of 4 internal longitudinal vessels in the branchial sat and in the shape of the body. it differs in the body apertures, the body muscularure, the shape of the stomach and pyloric caecum, and in the length of the gut loop. In the present species, the stomach. as well as the number of internal longitudinal vessels, rescmble the condition in the genus Sym. plegna; and in Symplegma vecania Tokioka, 1961, from Noumes. the arrangement of the pylaric caecum and its ligaments and the connective between the stomach and the amestine are identical with the present species. Although Symplegmu spr. are not usually uptight as in the present species, they are joined to basal stolone which form a mesh and cross one another and an lipright form has been descrithed once previnusly, viz: Symplegme viride stolonica Verrill (see Van Name 1945).

The condition of the spertures is very specialised and the disposition of the body musculatur to serve the protective device described above has not previously been reconded in the family Styelidae, although similar mechanismis ate developed in the families Agnesidae (see Kott 1969b) and Molgulidae (see Kot 1972b).

Stolonica australis Michaelsen, Kott, 1972a: 28 and symonyny.
New Record: Elliston Bay. Previour
Recordr: see Kott 1972a.

FIG. 43

Dercriptinn: In colonies recently collected from Lipata Reef (Spencer Gulf), there is a single roy of hermaphrodite gonads anteriodly on both sides of the body, bat posterisely there are rather irregular scattezed series of simple testis follicles: There is some wayiation in the apparent shape of the stomach. from pyriform to barrel-shaped depending on the condition
of the trody wall covering the cartiac end, The caecum is unly of moderate size and cursed

Stolonica truncatit n.sp.

Type Lncaion: I km norithowest nf Waldegrave I. on rocky botiom with sand patches, $23 \mathrm{~m}, 11 . v 1971$, Shephork- Molatype: SAM, E893. Parifypes: SAM E894, E909.

FIGS: 44-46
Description: Colonics comprise jounded, sandy, individuals joined by basal stoluus. Each individual is spherical, sessile, and about 1 cm in diam. The apertures are both anterior on the free end of the body, and are presenk in conspicnous transverse intertuptions to the rather solid sand enerusted test, so that each aperture is surrounded by delicate. thin test which can be withdrewn and covered over by protective sand-strengthened lips. The body wall is taifly muscular, with longitudinal bands radiating from both siphons, extending over the rest of the body. There is a broad band of circular fibres around the anterior end of the budy and associated with the protective closing mechanism described ahove. There are also circular fibres around the posterior end ut the body. There are 3 branchial folds on the right and 3 on the left, allough they all tend to tado out posteriorly, especially the most dorsal folds. The internal longitudinal vessels are arranged accurding to the following formula:

DL 0(10)519)5(6)6E

Thene are $\frac{1}{2}-2$ stigmata per mesh, although these are sel slightly obliqucly in relation to the internal longitudinal vessels. The gut forms a simple transverse loop with the rectum turning slightly anteriorly. The stomach has a large number of very fine longitudinal fold s, and the whole extent of the anterior border of the stomach is produced into a tube of gradually decrassing diameter lined internally with glandular folds in paralle] with those lining the sest of the stomath wall. This tube forms a curve in the gut loop and serminates in a pointed caecum. The anus is bilabiate. On the left hand side of the body, anteriar to the gui loop, there may bo 5-6 elongate and sometimes branching testis follicles, terminating distally in the long slender duct directed toward the atrial apersure. On the right hand side of the body, thete ase similar testis follicles arranged around the postetior half of the ventral border and around the posterior border of the body. Same of ithese restis follicles are alco arsociated with an oyary
of 2-3 cygs. lying on the mesial surface of the distal end of the testis and opening by a short wide oviduct, while the seminal duct curves arouind and for most of is length liss free in the peribranchiat cavity. There are up to o hermaphrodite gonads of this type in the ceate of the row of gonads on the sight side of the body, Larvac are present in the right peribranchial cavily. They have uicadiate papillae ansl appear to be of the type generally associated with the Polyzoinac (see Millat 1960%)
Remurks: The most unusual production of the anterior sppect of the stomach to form the long curved exccum in the gut loop is quite disfinctive, The jung branching testis follicles are also unusual f white extertally the highly speciallsed devies to protecs the apertures, cach located in at transversely oriented strip of unmodified test, by withdrawing them beneath the firm sand-hatdened lest is unipuc. Cloxing mectranisins as described ubove for Symplegma arenose n.sp., and for species in the familias Molgutidae and Agnesidiae, usually involve both apertures simultancously. The test is black und can be seen through the encrusting sand.

Oculuaria australis ciray. Koll, 1972a: 29 and synonymy.
New Record; Ofl W'aldegrave [., Elliston Bay, For Previous Records. Deseription, see Knu 1972a.

Potyandrocarpa situulans n, sp .
Type Localon: Investigator Strait eStr. YB. Y19); 23 m , on scatiered low-recl with shell sand patches and strong surge, Watson. Fiurdier Records: Jnvestigator Strait (Stn. Y19), Eliston Bay. St. Francis I. Holooype: NMV. HIG2. Pararypes: NMV, llifo. H16I. HI63.

FISiS. 47, 48
Descrintion: The colonies form tight aggregates of intividuals ibout 1 em in diam, The living specimens are reddish brown, tipped with black, altheugh meserved specimens are black. The test is thick with a slight sand encrustation, although this os nut present intermally where the test of adjacent zooids is confluent. Both spertutes are sessile: The branchial ancture is terminal and the atrial aperture anterodorsal. The body wall is very museutar, with afmosi continuons layers of longitudinal and cireolar muscle bands. The branchiat sae has 4 low fullds with crowded. very thick. internal longitudinal vessels. The tranxverse hranchial
venxels ure also thick so that the branchial sac is a very tough organ in thix species. Longitudinal versels are arranged according to the following formula:

$$
\text { E } \quad 1(6) 7(9) \Gamma(8) \int(9) 0 \mathrm{D} I
$$

The body musculature is espectally thick around the aperares. The gut Jorms a 5 mall closed loop in the posterior end of the body and the rectum extends finrward to the atrial aperture to form a sccondary loop. A round fitt-lupped, entucarp completely nccupics the primary gut loop as in Polycappe predentenleth. The smatl, pearashaped slomach has internal glandular folds. The anal boider has 4 sometimes indented rounded labes. The gonads are llat, hask-shaped ovaries opening by a short. wids, oviduct directed towards the atrial aperlure and overiying two sows of testis follicles with 5-6 follicics in each sow. The ducts of each sestis follicle join a common duct that runs along tuch side of the nvary in join logether and open into the peribranchisal cavidy on the nesesial aspece of the shure midnec. 'The goninds atre umbedded in thick body wall. There ate up to 5 of these gornads on the deft side of the bonty, usually in a single row anterior to the gut loop. On the right, there are up in 9 gonads usually arranged in 2 rather irregulars rows.
Remark: This species is very seminiscent of Polycurpa pedunculatn. In view of the tight aggregater and confluent test and the absence of sund between astjacent individuals. howcver, it is clear that colonics form by vegetative reproduction sather than hy aggregation of a number of solitary individuals. The process of Vegetative budding io form these colonies is probahly associated with the small site of the mature individusis, thus limiting, the number of internal knginidinal vessels in the branchial sae and the number of gonath on the body wall.

Polyandrocarpa lapidovs (Herdman). Kott, 1952: 250. Millar, 1963: 730.
(isnodirier lapidosa Herdman, 1899: 99.
New Recors: Investigator Strait (Stn. Y19), l'revidess Rarosds: Vie. (Purt Phillip Heads. Westemport)-Millar 1963. N.S.W. (l'ort Jackson)-Henteran 1899; Kott 1952.
Descripion: The present specimen is a Jirge, sandy, plate-like colony with the upper surface slightly concave 9 cm in diann. with a maximum thickness of 2 cm , fixed by a large pant of the basal surface. The surface of the colony is smooth and sandy withent conspictous
swellings of furrows. The zooids are long, but both openings are on the upper surface. There are 4 long branchial folds of very varying height and internal longitudinal vessels ate arranged according to the following formula:

DL (10)1(3)1(7)1(4)1 E
The gut extends in a simple are from the posturior end of the body to the anterior atrial aperture: There are 12 internal longitudinal stomach folds. The gonads are elongate and arranged along either side of the endostyle.

Sulfamily botryz.lnate

Botrylloides leachi (Savigny), Kott, 1972a: 29 and synonymy.
New Records: Elliston Bay, off Waldegrave I. For Ptevious Recort's, Descripuim, sec Kori 1972事.

Botrylloides magnicoecum Hartmeyer, Kott. 1972a: 30 and synonymy.
New Records: Waldegrave Io, Pearson T. For Previous Records. Descripsion see Kout 1972a,

Botryllus schlosseri (Pallas). Koll, 1972a: 31 and synonymy.
New Record: North of Waldegrave I. For Previous Records, Descripuions see Koul 1972d.

Sublumily streljnae

Styela plicata (Lesueur), Kott, 1972b: 239 and synonymy.
Ascidia pllcatu Lesucut, 1823:.5.
Nora Record: Collin Bay, For Previons Records, Description, sec Kott 1972b.

Styela pedata (Herdman).
Posyearpa pedota Herdntan. -1881: 71. Tokioka, 1958: 322 and synoдymy. Ǩott, 1964: 137.
Pandocia pediura Harmeyer. 1909-11: 1360.

Segek whiteleghi Kott, 1952: 213.
Telhymen whitelegii Hartmeyer, 19n9-112 1.364.

New Recordy: Off Waldegrive I. Pearson I. Previour Records: N.S.W. (Port Jackson, Port Stephens, Port Cnrtis)-Herdman 1899; Kotl 1952. Old. IMorcmon Bay, Great Barrser Reefl-Hastings 1931: Kot 1964. Indonesia-lizon 1908. Phillipines-Herd-
man 1881: Van Name 1918. JapanTokioka 195R.

FIGS. 49. 30
Description: The preserved specimen is orange. the test ix tough and leathery, with longitudinal ridges withoul any forcign bodies altached. The body is of characteristic shape. expanded postero-dorsally. Both apertures are directed upwards and the branchial aperture, on at siphon continutous with the upright ventral surface, is often recurved. The atrial aperture is also on a short siphon above the posterodorsal expansion of the body. Basally the test is extended into prop-like roots. The body wall is muscular. The dorsal tuberele is oval with numerous separate circular openings giving it a prouous, sponge-like appearance.

Up to 21 internal Iongitudinal vessels are evenly spaced on the folds, and 3-7 internal longitudinal vessels are present between the folds. There are 6-8 stigmata per mesh. The gat forms a fairly wide loop with tall endocatps enclosed by the loop. The stomach is etliptical with longitudinal internal glandular folds. The anal bonder is lohed.
There are 3 branched atnd ramifying gonads on the left above the gut loop and up to 9 on the gight. The gonads are cmbedued in and occupy most of the body wall cexcept where the gut is present on the left. Tall endocarps are present over the body wall between the branches: of the gonad. The gonads have testis follicles closely applicd to either side of the ovary.
Remarks: The gonads and endocarps of this species are very similar to the much branched and ramifying gonads of S. ramificala Kott, 1952, which has also heen recorded from Moreton Bay. S: ramificata is, however, a very much smaller species heavily encrusted with sand and shell, with a continuous V-shaped opening on the dorsal tubercle, a narnow gut loop and a longer rectum than in the present specics. A similar dorsal tubercle is present in Polyedrpa aurata (Quoy \& Gaimard) (see Vat Name: 1918) which is also similar to the present species in other characters. It is dislinguished mainly bs its short, 1ypically polycarp gornath in contrast to the long ramifying styelid gonads of the present species, Soyelot reilata, therefore, has a wide distribution from she Pbillipincs and Japan and around the eastern scaboard of Australia to the Great Australian Right It averlaps with μ_{-}aurate in the Phillipincs and on the east coast of Australia.

Polycarpa tinctor (Quoy \& Gaimard), Kuth. 1954: 134 and synonymy.
Ascidia tinctor Quoy \& Guimard, 1834. 608.

New Record: Off Waldegrave I. Previone Records: see Koll 1964.
Deseriprion: A single specimen only is available. It is large and slightly damaged, The test, howevce, has the usual hard, brittle, sandenerusted form characteristic of the species. The specimen is laterally flattened, with the atrial pperture hall way down the dorsum, The aportures ate sessile. The dorsal tubercle is large with a complementary slit, The hranchial sac has 4 very narrow folds. Gonads were not detected in the present specimen.
Remarks: The present specios bad not previously been taken further south than Port Jackson. It does accur commonly on the nusthWest and northeast Ausiralian coast, in the East Indics, and off Japan. The form of the dorsal tuhercular slit, broken into sceveral parts, has previously been described in specimens from lapan ind the East Indies.

Polycarpa pedunculata Heller. Kott, 1972a! 35 and synonymy.
New Records: Elliston, N-W of Waldegrave I., 22 m of Waidegrave $I_{\text {., Peatson 1., Inves- }}$ tigator Strait (Stns. X9, 15, 19, 21, 25, 27; YG, 12; 23; Z9, 11), Emu Bay (Kangaroo I.). For Previous Records; Descripuion, see Kott 1972a.

FIG. 51

Remarks: Specimens in this collection demonstrate the full range in external appearance, from sessile to stalked individuals, from brownish to black individuals. Jn general, the slalk of specimens lirony Investigator Strait is longer than that found in specimens rrom $\mathrm{Sf}_{\text {, Vincent }}$ Gulf, and many of the specimens are superficially very similar to apecimens of Pyura vooreshiensis with which they ocear demonstratilg convergence in their cxtemal appearance related to the environment.
Polycarpa clavala Harlneyer, Kott 1972a: $^{2} 3$ find synonymy.
New Retords: Wallegrave 1.322 m off Waldegrave I. Pcarson I. Investigator Strait (Sth. Y21). For Prevīous Records, Deseription, see Kott 1972a.

Fantily PVURIDAE

Pyurn spinifern (Quoy \& Gainard), Michaciscin. 1922: 390 (part: Porl Jackson specimens), Kott, 1952: 269:1972a: 39.

Ascidia spirifera Quoy \& Gaimand, 1834: 617.

Aolenitt aussraliensis Carter, 1885: 197.
Boltenia nuberculaha Herdman. 1891: 511 ; 1899: 17.
Ciymhin multradicara Herdman, $1899:$ 30.

Bohenis spinifert Michaelsen. 3905: 72 (part: not D. gihbosa)
Bolienia spinosa var. Intermedia Michaedsen, 1908: 390.
Pyira sibbosa Yar. imsermedia Michaelsen, 1922; 390.
Pyura australiensis fo sppices Michaelsen \& Hurtmeyer, 1928; 410.
New Records: Off Waldegrave 1. Investigator Strail (Sins. Y1D, Z7), Previous Recrreds: W. Aust. (Albiny)-Quoy \& Guimard 18.34. S. Austo (St, Vincent Gulf) - Rott 1972a. Vic. (Port Phillip Heats, Portland Harbour, Cape Woolani. Bass Strait)-Cartes 1885; Michaclsen 1905. N.S.W. (I'ort Jicksan\}-Herdman 1899; Kott 1952

FIG. 52
Remarks: Minute scale-like spines are present on localised ridges in the branchial siphon. The branched keratose fibres (sec Carter 1885) and Michaelsen \& Hartnever 1928) ate present in the body wall and tatk. They are similar to spicules found in Pyurce stolorigera (see Millar 1962). The specimens are invariably covered with a sponge (Halisarca; see Carter 1885).

Pyura australis (Quny © Gisimard),
Fyura ausprafis subspecics unsiralis Kent. 1972a: 39 and synonymy,
Pyura mustralis war. parvispinatis Kati, 1952: 268.
Bultemia \&ihhosa Herdnan. 1849: 19.
New Records: Off Wildegrive I. N.W. of Waluegrave I., St. Francis I., Pcarsen I., $^{\text {I }}$ Investigator Strait (Sins. X27, $\times 21$), Enlu Bay (Kangarow 1.). For Prevlous Records. Descripulor, see Kott 1972.

$$
\text { HIG. } 53
$$

Remarks: The principal character on which the distinction between the two subspecies. P. sucstralis typica and P. austrulia purvivpinatis. wass basced is the condition of the anal border: A carefin examination has shown that in this grouns of specits the Lerminal part of the reetal wall ulways has fat folds projesting inso the
lumen as described for \boldsymbol{P}. elmstrolis mavis. pimalis Koth. 1052. These Folds ane usually extended beyond the unal border into rounded lober which are often long and finger like and sometimes suhdivided. Occasionally. however, they do not extend outcide the anal rim. There is no constant condizion observed for any group of specimens in tegard to the nall horder and it is concluded that subspecies are nor indicated. The slight difference in the lenget of the branchial spines (Kott 1952) is not significanis. These are conical and only slightly enryed and urise from a Iong oval base 0.02-0.03 mim dong, and their length along the spine is $0,02-0,04 \mathrm{~mm}$. The langest spines are hearest to the apertures. Typical stellate spicules, 0.02 mm in diam, are always present in the test and siphonat lining and distinguish the species.

Pyura pachydermatina (Heruman) s,sp. draschii

 nerm, nor.Bolsenter pachydermatinn Herdman, 1S81: N1. Drasche, 1884: 370. Herdmatr. 1899: 16. ?Herdman \& Riddell. 1913: 875.

Pvarar narhydermarina wror. sibbose Kott. 1952: 265.
New Records: Waldegrave I.. Elliston Bay. Previona Recards: W. Ause (Colteslac in Albany), Vic. (Julia Percy T., Fliducts, Wallerville)-Kott 1952. N.S.W. (Kisma. Port Sackson)-Drasche 1884; further specimens in Austealian Museum:

$$
\text { FlGS, S4, } 55
$$

Descripion: Typical specimens with dumbebell shaped spicules and iringed anal lobes. The siphonal spines are produced into a long pointed hate which is distinct from the rounded base in P. austrelds: or the flattened scale-like base in P. xpinifert, Michaclsen (1905, 1908. 1922) and Michaelsen \& Hartmeyer (1928) attempied rationalisation of the relationships of the specics Pyurd pachyblermertina, P. sibbosa and P_{2} spinifera and their synonyms, on the basiv of extemal appearance. condition of the staik and of the dorsl tulsercle, and the presence or abxence at spicules. A study of the group in Australia has shown that the form of the spicules ark siphoral spines, supported, withia certain limits, by the form of the anal border, provides the only reliable character on which to distingluish the species. Michuelsen \& Harmeyer (1928) characterise fo puchydermation by the presence of a smooth anal borter, complicared dorsal tubercle, and dumbbell shaped spicules. This is anly true, however. for the New Zealand suhspecies P.
paciadernatince typice since although the dunb-bell shaped spicules are athwas pesent. the Australian formss never have a smooth unal border. The dorsal tubercle may be a less complicated double spiral cone. Thus Pyurt gibhnsat: Michaelsen \& Hartmeyer 1928 (type specimen: Cymhia gibbasa Heller, 1878, from Bass Strait) with anal fobes and dumb-bell shaped spicules tialls within the definition of P. pachivitermatind and Heller's specimen becomes the type of the subspecies P. pachyder. manime sibbosa (not P. pachydermatima var. sibhosa Kott, 1952), Pyura gibhost infernedia Michaelsen. 1922 (3P spinifera fmerntedia Michaésen, [905) trom Backstaïrs Passage, S, Aust, together with P_{-}spinifera rypters (part: ?. Bubercututa Herdmani from New South Wales, neither of which have dumb-bell shaped nor stellate spicules, ano consequently syn. onyms of P, spimiferd, rather than of P poultodermatina sibbove. Pyura sachydermatina drachif is distinguished from P_{1} pachodermutine gibhose ($>p_{\text {; }}$, nachydermeatina internedia; Kote 1952) (which has shallow anal lobes) by its fringed anal border. P. Perchyder marina gihhesa overlaps the present subspecies from Bass Strait to Port Jackson, ant extends further to the noth. The western limit for P. pachydermatinu draschii is not at Walkenvilie, Victoria, as Kott (1952) had suggested, since it extends to Western Australia.

Pyura scoreshiensis Kott 1972a: 36.
New Rerords: Pearson I_ Investigator Strait (Suns. Xi9, 11. 15, 17, Y14). Previous Records; see Kott 1972a.
Description: Specimens avaitable show a wide pange in the length of stalk-and in the development of the rowting processes at the base of the stulk. These sometimes form large sandy lamellac as the roots spread and sand adheres to them. The apertures are always close logethet on the upper surface, although the pronounced ridge between the apertures previously described (Koll 1972a) is not always present.

Pyura irregularis (Herdman), Kott, 1972a: 38 and synonymy.
New Recorf: Investigator Strail (Stn. Yb) For Pievious Reconds, Descriphon. see Kont 1972a.

Pyura tendata д.кп.
Type Luchion: Investigator Sirait (Stu, Y21), 30 m , scattered, low, on pebble reef

Figs. 49-50. Styela pedata. Fig. 49.-Individual. Fig. 50 - Gonads from left side of bady.
Fig. 51. Polycarpit pedunculatio. Gonad showing flask shaped ovary and testis follicles.
Fig. 52, Pyura spinifera, Fig. 52a.-Brarmehing spicules from body wall. Fig. 52b-Branchial spines.
Fig. 53. Pyura austratis. Spicule and branchial spines.
Figs. 54, 55, Pyura pachydermatina. Fig, 54,-Dumhell shaped spicule and branchial spines. Fig. 55. -Anal border showing internal folds from rectal wall.
Figs. 56. 57. Pyura iendata, Fig. 56.-Longitudinal section to show sandy coaling around body.-Fig. 57 -Body opened around ventral surface, branchial sac removed to show branchial velum, tentacles, dorsal ganglion, gut and gonads: branchial sac (bs); body muscles. (bm); branchial velum (v), branchial tentacles (bt); dorsal tubercle (dt); dorsal ganglion (dg): dorsal lamina (dI); intestine (i); gonad (g); base of the atrial siphon (as); anal opening (a).
Fig. 58. Merdmenia momers. Individual.
Fig. 59. Molgula allistoni, Gonads, gut loop and kidney on inner surface of body wall.
with sand patches, A. Waeson. Aolotype: NMV. HI56.

FIGS, 56, 57
Dencriphion: The species appears to occur in aggregates. The holotype, however, is the only eomplete specimen available and only small patts of at least two others were obeained when the specimen was broken Irom ajts substrate. The outline of the individual is not obvious superficially, since it is completely surrounded by at sandy coat 1 cm or more thick. The tese is very thin, without wrinkles, and minute hair-like extensions of the test are seen extendios actoss ai narrow space botween the samby coating and the test. It is probably these hairs which enmesh the sand forming the thick coating amund the body, The narrow space between the outer surface of the test and the sandy coating is occupied by various commensal worms and echinoderms.

The animal itself consists of a club shaped hody narrowing to a long terminal bratchial siphon. The atrial siphon is twice the length of the branchial siphon and extends forwards from the dorsal horder of the body in the anterior part of the posterior third of the body length and opens level with the branchial opening Excluding the sandy coat, the body is] cm deep from its dorsal border at the base of the atrial siphon to its ventral horder. The length of the atrial siphon is $2 \mathrm{~cm}_{\mathrm{r}}$ Owing to the gradual narrowing of the body to the base of the branchial siphon, the body appears to have two long diverging siphons of equal length.

The body wall is very muscular. Branchial tentacles are present at the baise of the branchial siphon half way between the exterbal aperture and the bilse of the atrial siphon. Just anterior to the ring of branchiat tentacles, which are 3 times hranched, there is a large muscular velum protuding into the lumen of the branchial siphon. The donsal tubercle is in the base of at very long narrow peritubercular areat extending half way down the branchal sse. If is a very small, simple U. The elongate dorsal gangliou is associated with the base of the atrial siphon just posterior to the dorsal tubercle. There are 9 branchial folds with internal longitudinal vessels arranged as follows:

[(4)0(7) $0(13) 1(15) 2(16) 3(2) 1(16) 2(13) 0(7) \mathrm{DL}$

The gut forms a simple loop in the posterior end of the hody. There are suinute, branched, liver zubules in the pyloric region and the body wall conering the distal portion of the
rectum is produced into a pronounced monmuscular urial velum so that the bilabiate anus actuatly opens into the base of the atrial siphon heyond this velum. The branchial velum has very strong circular muscles in its basal halit. The body musculature is very strong. with outer circular bands forming an almost continuous coat external to strong well-spaced longitudinal suuscle bands. The gonads tonsist of about 7 or 8 paits of polycien-like stass either side of central ducts in the put loop on the left and in it corresponding position on the right side of the body,
Remurks: This quite extraordinarily modifled species is in most essential aspects typleally pyurid and resembles Pyana cancellain Brewin (see Kolt 1971) in the thick sundy coating created by anand enmested by the long lest taiss all around the body. Its most conspicuous character is the very long atrina siphon and the natrowing of the anterioc part of the hody so that the branchial aperture is isko produced upwards to a Jevel with the arrial siphont. so that the incurrent ciliary stream is not ohstructed by the sand being accumulated around the body; The thick, sandy coating is so dense and so rigil that it is hard to imagine how the animal is able to increase in size. It is probable, however, that the commensals present between the sandy coating and the test constanily irfigate this arca and thus maintain the space into which the animal can expand as it growe These commensals are therefore probatily essential to such sand covered species (see also Pumret cancellafa; Kott 1971).
Halocynthia hispida (Herdman). Kote 1968; 76 and synonymy; 1972a; 41.
New Recard: Investigutor Sirail (Stn. X19). For Previous Records. Descriprion, see Kald 1968.

Herduania momus (Savigny). Kuth, 19713; 41 and synonymy.
New Records: Of Waddegrave I. St. Ftancis I, Perrson 1., Investigator Strail (Sta, X17). Spencer Gulf, For Prevhouv Reconds. Description, see Kott 1972s.
Remarh:s: There is the usuat great range in size ot individuals. Smaller specimens are more of less upright with transparent test and sbon furrowed siphons. Larger specimens become Baccill and npaque.
Ctenicella antipoda Kott, 1972a: 44.
New Record: Investigator Strait (lubel illegible). Fint frevlous Records. DescripHons see Kott 1972a.

Remarks: The distal part of the gut loop is distended with mud. In ome large specimen the gonads on the left side of the body are caclosed in the gul lnop. In view of the ayreernent wifis the type specimen in all other aspects, this must be regarted us an indivitual variation.

Motgula ellistoni nsp.

Type Localon: Elliston Bay; in caves outside bar, zuhject in strong swell, 14.v.1971. Holotyper and Puraryes: SNM. E907.

$$
\text { FIG. } 5!
$$

Bescription: Small suandy spherical individuals were found adhering to Euftrdmania cusspatis und sometimes forming aggregates. Hath apertures are present fairly close together on the upper suttace and are directed uway from one another. Very delicate muscles radiate out from the siphons. There are internal circulat muscies around the branchial and atrial siphons. 'Shere afo 7 branchial folds on each side of the body, with 6 meshes along each fold. Each mesh contains a primary spiral infundihulum, which subdivides inke two half way up into the fold. 'there are 3 internal longitudinal vessels arranged along the fold, There is the asual fong gut loops open at the pole and a short curved kidncy on the right side of the body. The gonads consist of a circular ovary with a short, wide duct directed dorsalty. Textis folticles are present along the pmxional border of the ovary and join into a very shost vas deferens which opens into the peribranchial cavity on the mesial surface of the ovary. The right gonad is in the middle of the hudy wall and the left gonad is in the secondary gut loop. The specimens are abour 0.5 cm in diam.

Remarks: "Ite position and firm of the gamads with the very short vas deterens opening on the surface of the ovary are distinctive. Amaral embryos itre present in the peribranchial cavity.

Molgula sabulasa Quoy \& Gainard 1834:613. Koll, 1972b: 248 and synnnymy.
New Řerprel: Elliston Bay, For Previous Bocords, Descriontion, see Кои 1972 b.

Characteristiey of the Finama

At outstanding feature of the fauna is the large number (23) of species in the relatively primitive Aplousoluranchis. Tolycioridae, Clavelinimae and Fuhardmaninace in which
common cloacal systems tue not developed. A further \vec{p} species are scondarily wolonial species of Styelidac; one is at colonial phebobranch species; three are uggregated pyarids: and there are two aggregated species of the family Molgulidne. Thus about hall of the species present, although colonial hothabit. pisserve their own independent. npenings, and do not form cloacal systems. They do, however, demonstrate rematkuhie morphological adaptations in the arrangement, orientation athe operation of their apermes to maximise their teactions. with the environment Colonies of Rincrella herdmania, plucervela dllisoomi n-sp., and the new colonial phlebohranch spresies are of special interest in that the yooils are arranged in parallel, wo that their branchial and arial apertures are respectively located on different sides or it different cinds of the colony. Some benefit can accordiagly ba derived trom mulual reinforcement of feeding currents. One would expect that the exact orrentation of these culonies would te such that prevailing currents could also reinfore the incurtent and excurpent ciliary stresms.

These species and many of the Clawelininac. logether with the new species Mofudimerarga indicen. Symplegma atrenosa and Slolonsta trimcaum, all have specially hdapted body muselslature to operate sophisticated siphonst apparatuss: Alluptation of the nervous systera to serve the specialised musculature can also be expected. In lact, ins both Pyura tembun and in the new colonial phtebobranch species, the neutal gland und gatglion are located posteriorly in association with ath unusual posterior position of the atrial siphon.

None of the species discussed above ano enctusting and most, favone habitats under ledges and in crevices or caves. There are anly is species with bighly evalved clowed systems that have achieved a degrec of indopendence of the environment ind, with only 4 exceptions (Didenumm condidum, D. maselcy, Trididemmum spiculanum and botryllus sefhlowserz), these are also buiky or stalked (rather than encrusting and favoup Intritats under ledges ar in crevices or caves:
the majority of the sultitary stolidobeatich species that are present are stalked and able to maximise their reactions with the environment hy maving on their stalk with the current. There are only few solitary botom-living species (Ascidia sppo, Polvarpa tinctor, Crenicella untipoda) or large fixed species (sserdmania momas. Slyelo pedala).

Fig, 60. Map of South Australian lacutions from which specimens are recorded.

Zoogeography

The known ranges of Atapozod marstit and Pseudodistoma australis have heen extended from Western Australia to the eastern end of the Great Australian Bight where they overlap with Distaplia distomoides, Euherdmania aussralis. Pseudodistoma cereum and Polyandrocarpa lapidosa, whose ranges have been similarly extended from the east. The ranges of Aplidium rubricollum and Polyclirtum neptunium from the west, and Ascidice thomipsoni, Pyura irregularis and P. stolonifera (sec Kott 1952) from the cast, are also known to exiend into either Spencer Gulf or St. Vincent Gulf. Thus the distribution of these ascidian species across the south coast supports the existence of a marine faunal boundary at the eastern end of the Great Australian Bight, separating the Flindersian marine fitunal Psovince from the Maugean Province to the east (Knox 1963). There is less evidence however for a western boundary of the Flindersian Province futher south than Cockburn Sound in Western Aus-
tralia. It is possible that the 15 new species deseribed hereid will subscquently be found to have wider ranges across the Australian coast and provide further data relating to the western boundary of the Flindersian Province to help resolve the question of the existence of a Western Australian Province (Baudinian of Kott, 1952; see Knox 1963).

The ascidian fauna of Gulf waters of South Australia includes only a limited number of the species that occur along the open coast. Of the species discussed above which terminate their range off the eastern South Australian coast, only Aplidiam rubricoltum, Polyclinum nepruntum, Ascidia thompsoni, Pyura irregularis and P. stolonifera extend into gulf waters. Podoclavella meridionalis, Distaplia veyliferd, Didemnum ternatanum, Seyela pedata, Polycarpa tinctor, and Pyura pachydermatina are also apparently absent from gulf waters although their geographic range around the Australian coast is wide. It is probable, thercfore, that some ecological factor inhibits the
spient of the nscisian fiann Erom the open const into gulf waters. It is possibly the same factor that favours the occurrence of Distaplin vividis, Aplidium pliciferem, Diedenmun lumsbilten. 1. pseudodiplowoma, Leptoclinides rufus. T. kingi, Eedinaclintm verrill, Ascidia aclasa, Polvarga pupillata, Pyura cataphracia ind Microcosmus nichollsi in St. Vincent Gulf and other embayments to the east and nonth around the Australian coast, although they have not been recorded from the open coase. The ascidian fauna of gulf waters of South Australia is therefore distinct from that of the adjucent constal waters and has no special znogeographic antinty with either the filimetsian or the Maugean Provinces.

There are is further 42 spocies discussed herein that are recurded from both cuastal and gulf waters. The majority of these have a wide cosmopulition distritution or in extended
sange from Western Australia to cither the houndary of the Maugeat marine faunal region in Buss Strat (Hedley 19(04. Knox 1963) or further up the castern Australiank coast. Also included in this group of apecies, however, are C'renicelta antipade, Pyurce scorcsbienseis and A Papozoa formasianer, previously thought endemic to St. Vincent and Spencel Gulfe, and Aplidium colelloides (see Koul 1972a).

Acknowledgements

Gratcful thanks are the lu Mrs. I Watson, who collected the material from Investigater Strait for the National Museunt wif Victoria, and Mr. SS. A. Shepherd. of the South Ausirnlian Department of Fixheries and Fatua Conservation, who makle the collections from most other locations.

I he work was done while the author was the recipient of A.R.G.C. Gran D65/153RM.

References

Brlwin. Brryl 1, (1950)-Ascidians of New New Zealand, Part V. Ascidients from the east coast of Great Barrier Istand. Truns. R. Soc. N.Z. 78 (2-3). 354-362.
Brawin, Aervs IV (1953),-Ausuralian ascidians of the sub-fanily Holozainse and e review of the suthofamily, teans- R. Soc N.Z. 81 (1). 53.64.
 cumpould ascilian front Western Australta. P.R. Sine. W.A. $40\{1\}, 31-3$ 2.

HREIVIN, BERYL 1. (1957) -Arcidiand of New Tealand, Part X. Axcidians from Nonth AuckJand. T'runs. R. Suc. N.Z. 84 (3) - $377-580$.
Bremin, Berys I. (1958).-Ascidiuns of Nest Zeidand, Pat X1, Ascidans of the Stcwart Island region. Trank, R. Soc. N.Z. B5 (3). 439-453
 sponger from the neighbourhood of Port Phillip 14 cads. South Alustralia. continued. TMM, Map, nat. Wist. 15 (5), 197-198.
DKSCHE, K. VON (1884). - Uber einige reve uns weniger hekannte auswer-europaische cintiche Ascidien. Deaksedro Aheed: Wiss. Wien 48. 369-386i.
Ciotrschaldt. K. (18yy),-Syascidien von ternate. Abh. Screkenh. naburforseif. Ges. 24. 6.41-666
 tion of work by Seeliger). Pr H. G. Bronn, "Klussen und Ordmugert des Ther-scuhes." 3, suppl (89-98), 1281-1772. (Leitrigi') (Ahstrach, repeating liste of species by A. Schenolieff in Arch. Nothrgesch., 1911. 6. 3-271.
Hakimprea R. (1912).-Dis ascidien der deutschen lietsee Expedition. Wiss, Exgehn, dr, Tichsee-Exped Valdivia 16 (3), 223-392.
Hsttmever R (1913),-Tunicata In Lo Schultse. Jont u. anthrop. Lreabnissec Forschunysteise in Sudnfrika. RA 5, 1.ft 2. Dentacher. med. matrer. Gies. Jenta 17, 12s-144.

Hakimeyth, R. |1919),-Ascidien. Results of Di E. Mjubere's Swedish scientific expedilions to
 Hardl, (4) (4),]-150.
Hasbinges. Anent R. (1931):-Tunicata, Súrimb. Kip. Git Barricr Kecf Exped. 4 (3), 69-109.
lleutey. C. 1.19041 . -The effect of the Bmwian lathmits woon the existing matine favas: sludy in ancient geography, Mroc. Limm, Soc. N.S.W, 28. 876.

Hnu.r. C. (1878)-Beiträge 2ur nïhern kenstnisf der tunleaten. Sber. Akud. Wisy Wien 77 (1), 83-110.
Herdman. W. A. (1881-p'ellininaty depott on the Tunicats of the Challenger Fixpedtion. [ynthidare- Molgulidze. Prov- K. Sus, Eilinib, 11 \{3\}. 52-88: (4), 233-240.
Hrmoman, W. A., (1891),-A tevised clansificio tiot of the lunicata, with definitions of the onders, sub-orders, fimilies, suh-families : trd peracta, and sinalytieal keys to the specties. 3. Lim. Sic. 23, 558-625.

Heromin. W. A. (1899)-L)escriptive catalogue of the Tunicatin in the Aastralian Museam. Australlan Muscum, Sydncy. Cablogue 17. [-134.
Hramms, W: Λ. and Riminfis, W. (1913), -The funicals of the "Thetis" expedition. In Scicntifie Rewults of the Trawl Txpedition Thetis. Mem. Alwh. Mirs, \& 873-889,
Knox. Ci. A. (1963),-Biogcography and intertidal ccolugy. of the Australasian coasts. Occanngr, mar, Bial. amn. Rer= 1. 341 404
Kott. Patricta (1952)-The aseldians of Auso tralia. 1. Stoldoberanchiata and Phleboheranchlata. Airs7. So Mnr. Firgatur, Kes, 3 (9): 206-333.
K'ott, Patrich (1957),-The ascidians of Aus. tralia 11. Aptousobranchata Lathille; Claye. linidae Porthes and Hanly and Polyctinidac
 K4-110:

Kotr Parkrcin (1962)--The ascidians of NusIralia 111. Aplousobranchiata It thille: Ditisnnldae Giard, Ausf. J. map treshm. Rer. 13^{3} (3). 265-334.

Kort. Patricia (1963)-The nseidians of Australid IV. Aplousobtanchiata Lahille; Polyclimidue Verrili (continued); of hest: J, mare. freshwo. Res. 14 \{1), 70-118.
KOTt, Pathacia (1964), Stolidohsanch and phlebobranch ascidians of the Queenaland coast. Fop. Dep Zoul. Unir. Qd. 2 17), 127-152.
Kott, Phtrecta (1966), -Ascidisns of north Austritic Pur. Dep. Zovi, Umiv. (ded 2 (1s), 279-304
Kกтт. Patricta (1967)-ARumazaa (sicl derafe (Sluiter): A discushion of the velationship of the genus and apecics. Proc. Lirll, foe. N.S.W. 91 (3). 185-188.

Kont: Patricis (1968)-A veview of the genus Halacynihia Verrill, 1879. Prou; fime Soc. N.S.W. 93 fi>. 76-49.

Kort. Patricis (19692):-Anturctic Ascidiacea. A monographic account of the knows species hased on specimens collected inder íS. Government suspless 1947 to 1963 . Amtarcs. Res Ser. 13. i-xv, 1-239.
Kott, Patricl. (1969b);-A review of she family Agnesiddte Huntsman 1912, with spevial referenee to immaid ghatinta. Proc. Linn. Soc. N.S.IF 93 (3), 444-456.
Kotri Patrich (1971).-Antarctic Ascidiacea 1t. Collechions made south of 40° south latitult 1963/67, principalty by the U,S.N,S. Tiltumin. Amparce. Res. Ser. Biology 16 (4), 1-in. 1-60.
Kott, Patrich (197 Ta) - The ascidians of Souch Ausirala 1: Spencer Gulf, St, Vincent Culf, and Encounter Bay Trons. R. Sic. S. Aur. 96 (1). 1-52.
Kott. Pstricta (1972b).-Some sublitlopal ascidlins, in Moreton Bay, Queensland, Men, Mits. 2d. 16 (2), 233-260.
Kutt. Patricia (in press, 1).-Plurellidae, a new phtebohranchiate family of the Ascidiacca. Pror Jimm. S'ne: N.S.SF.
Kerit, Patricid (in press, 2),-Notes on some Ascidians fron Port Jackson, Butạny Bay and Porl Hackitg. Now Siruth Waleq. Proc. Einn. Sor. N.S.W.
Korty, Patricta (in press. 3), Aschelians from Westernenrt and adjacent Jocations. Mem. nath. Mus. y'ep. 34.
Knwaliwsky, A. O. (1874),-Teher तie Ǩña. pung der Aseidien. iscir. mikrost. imul. Entw. Mfei, 10 (1), 141-470.
Lesurur, C A. (1823):-Deacpipifitis af scveral new species of Ascidia. \mathcal{A} Accel. Jom. Sri. Philact. 3. 2-8.
Michaelsen, W, (1905),-Revision yon Hellects Aseidien-Typan aus dem Museum Godeffoi. Zool. 1b. (suppl.) 8, 71-120.
Michaelsen, W. (1908).-Die Pyuriden (Halocynthiden) des Nathithistorischen Muscumx 2.4 Hamburg. $j b_{0}$ hemht. wiss, Ansp 25 (2). 227-287.
Mickaelsen, W. (1920) -Dia krikupranchef ascidien Ues westlichen Tolischen ozans: Didemmiden. 86 , homb. wiss, inst, 37, 1-74.

Michaelsen. W. (1922).-Ascidjac Piychobranchiae und Diktyobranchiae von Neuseeland und dem Chatham-Inseln. Pispers finm 15. Th. Moretensen's Pacific Expolition 191416. No. Xll. Fidensk. Meddiz dansk jutmin. Faren. 73. $359-498$.
Mrchaelsen. W. (1924).-Ascidiae Kriko branchiae van Neusosland, den Chatham und den Auckland Inseln. (Pupers from Ur, Th. Martensen's Pacific Expedition 1414 16. Na. XXIf. Videngh. Meddr. dansk ranari. Fiaren. 77. 263-434.
Michaelsen. W. (1930).-Arcidiac krikobranchiae. Fauna simavest-Aluss, 5 (T). 46.3558.

Michaelakn, W. (1934).-The ascidjany of the Cape Province of Solith Africa. Frans. R, Sus. Afr. 22 (2), 129-163.
Micharlsev. H. And Hartmeyfr, R. (1928)Ascidiae diktyobranchise und prycho. branchase. Fawna Sidwestofirst. 5. 259-460.
Mular, K. H. (7955)- On a culleclion of ascidians fram South Africa. Prmivanal. Suc Lond. 125 (1). 169-221.
Millar, R. H. 41960)-Axidihcea, 'Disenpery' Hep-30, 1-60.
Mrlık, R. H. (1962.)-Further descriptinns of Soath Alrican ascidians. Ann. So Afr. Mirs. 46 (7), 113-221.
Milan, R. H, (1963),-Australian ascidiantin the Rritisth Muscum (Natural History). J'rac. zool. Soc. Lond. 141 (4), 689-746.
millak, R, H. (1966).-Ascidiacea Rot Philip Survey, Micm, nath, Mus. Vicf, 27. 357-375
Nnit. J. ro (1892).-O7 the composile ascidians of the North Shore Reef. Trims. N. Z. 7nur. 2f. 365-334.
Peris. J. M. (1952)-Arcities de Ia jooche littorale Corse. Nec. Star. Mar. J'Endomne 6. $35-44$.
Bizuna A. (19018)-Ascilies d'Amboine. Rer Skiss 2001. 16. 195-248.
Quny. J. \& Gammad. A. (1934),-Voyages de decoutvertes de i-hstralube $182 \mathrm{f}-29$, Mullusgue Zoologie 3, 559-626: 4, 304-306.
Snvigny. 3. C. (1816)-"Ménoires suf les aлimaut sans vertcbres," $\mathrm{PL} \geq$ 。(Panis.)
Srumbr. C. P. (1898), - Reiträge zur kenntniss die Fauma von Sudafrica II. Tunicaten. Enios. Jb, (Systematik) 11, 1-64.
Sluher. C. P. (1909) -Die iunicafen der Sitorga Fxpedition Pt. 2. Die merosominn asidian Siboga Exped, 5618, 1-112.
Trusoma, T. (1949]-Contributions to the Japanese uscidian Fauna II. Notes on some ascidians collected chiefly along the const of Kai Peninsula. Probls. Seto mar, bralo Lab, i (2), 39-64.

Tof:10RA. T \{1958) Comtributions io Iapanese ascidian fauna XII. Sporadic memoranla. Publs Seto mar hhi. Lab, 6 (3), 31t-325,
Towiese. T (1959).-Amaronciums orvitrucum Michaelsen. a comoound Ascidian from the Cane Province, 1 Blolozical Resulis of the Jupanese Antarclic Rercanch Expedition 5). Spec, Puhls Seso mat. biol Lab. (329).

Tokiona T (1961)-Asedians collected daring the Melanesia Expedition of the Oraka Museum of Natural History, 1. Ascidians presented by Dr. R. L. A. Catala of the Aquarium of Noumea. Publs, Seto mar. biol, Lab. 9 (1), 104-138,
Tonions, $T_{:}$(1967),-Pacific Tunicata of the United States National Museum. Butl. U.S. nath. Mhs. 251, 1-242.
Trason. W. B. (1963),-The life cycle and affinities of the colonial ascidian Pycno
clavelia Manleyi. Univ. Calif. Publs Rool, 65 (4), $283-326$.

Van Name. W. G. (1918),-Ascidians from the Philippines and adjacent waters. Buh. U.S. лаก, Мия, 100 (1). 49-174.
Vay Name, W. G. (1945). The North and South American ascidians: Bull. Am, Mus. nat. JIist. 84: 1-476.
Vasselr, P. 11967,-Ascidics de NouvelleCaledonie. Editions de la Fondation SingetPollgnac, 127-146, 2 pls.

Appendix 1-Station List

Stations are listed in the order north to south and west to cast.

DENIAL BAY. (Coll. 1. Thomas). Lat. $32^{\circ} 13^{\prime} \mathbf{S}^{\prime}$ Long, $133^{\circ} 38^{\prime} \mathrm{E}$.

Near Ceduna; in Posidonia community; depth $10 \mathrm{~m}+1965$.

- Ataplosor fantasiana

Sycōzon corehriformis
OFF ST. FRANCIS I. (Coll. S. Shepherd). Lat. $32^{\circ} 31^{\prime} \mathrm{S}_{5}$ Long. $133^{\circ} 15^{\circ} \mathrm{E}$.

Rocky bottom; slight current; depth $\$ 5 \mathrm{~m}$; 8.1 .1971.

Psendodishoma ceremm
Polyandrocarpa simulans
Pyura australis
Herdmania momus
WALDFGRAVF ISI.AND. (Coll. S. Shepherd).
Lat $33^{\circ} 36^{\prime}$ S; Long. $134^{\circ} 46^{\prime} \mathrm{E}_{\text {。 }}$
Strong surge: depth 20 m ; 17.1v. 1970 .
Distaplia distomoides
Synoiciurn popiliferum
Batrylloides magnicaccum
Buiryllus schlosseri (22 m)
Pyuras ausiralis
Rocky hotion; strong surge; depth 22 m ;
23.x.1970.

Evherdmania australis
Aplidium enlellaides
Ocedinaria unspralis
Botryllotder leachi
Styela peduta
Polycurpa tinctor
Pyura nustralis
Pyuru spimifera (covered with sponge)
Pyura pachydermatina
Herstrrania momiss
1 Km N.W. OF WATDEGRAVE T, (ANXIOUS HAY). Lat. $33^{\circ} 33^{\circ} \mathrm{S}$; Long. $134^{\circ} 46^{\circ} \mathrm{E}$.

Rocky bottom: slow current; depth 23 m : $11 . V_{1} 1971$.

Clavelina mirabilis (altached to limestone).
Distaplia distomoldes
Distaplia stylifera
Sumplegma arenosa
Botryllus schlosweri
Slolemica Iruncala
Holozoinae sp. (growing on ted algae)
Pulycarpa clasam (growing on brown or ted algae: Sargassum or Osmindaria)

Herdmania momus: (with red algae attached) Rocky bottom with sand patches slow current; depth $23 \mathrm{~m} ; 11 . \mathrm{y}$.1971.

Pedocrevella cylindrica
Synotcium papiltiterum
Stolonica Immeata
Polvcarpa pedimerlata
Pwira austrulis
Kacky botom; slight surge; ilcpth 22 m; 23.x. 1970 .

Clavelina nodula
Polycilor gigantern
Pareadedingamar anstrulis
Psendodisroma cereum
Aphidim flavolinearmm
Symplegna arenosa
Pobycarpa clarata (attached to rock)
Palycarpa medmenlata

WATERLOO BAY (ELLISTON) (Coll, S, Shepherd). Lut $33^{\circ} 38^{\circ}$; T.ong. $134^{\circ} 51^{\prime} \mathrm{E}$.

Roof of caves; strong surge; depth 6 m ; 13.v. 1971.

Clavelina baudinenais
Podoclavella molacecrusis
Disarlias Uistomevides
Endistoma renieri
Psetulodistomed ceream
Aplidisen hohatim
Polvsyrseraton paractexum
Didemnиm enmoidum
Bidennutim moseleyi
Ascribict thompsoni
Asridiog sydneyensis
Polyceldracarpa simulatys (growing on Ascidia wodney ansir)
Ohtside bar; very strong surges denth 17 m ! 12.4.1971.

Sycozoar cerubriformis
Polyclinum neplunirm
Anfidium viatum
Drminaria australis
Pyura pachydermasima
Outside bar, in caves: strong swell; depth 17 m: 14. Y 1971.

Pycnociletella diminuta
Euherdmanist mustrills
Kifferella herdmanio
Placenteta ellistomi
Trididemanom cerehriformie (investing P. diminua)
Stolonica australis (arnund base of Euhernmamia arstralis)
Molgula ellistoni (adhering to E. Australls)

Inside bar: depth 6 m; 12.v.1971.
Polycitor gigantelum
Psendodistomed australis
Didemnum moseleyi
Polycarna pedurcitlata
lnside bar; strong surge: on vertical face; depth
$6 \mathrm{~m}: 12 \mathrm{v} .1971$.
Aplidium panticrinmm
Neir entrance to bay, in caves: depth 3 m ; 14.v.1971.
$\mu_{\text {sendodishoma eyrunsense }}$
Polvatimum meptunirm
Mrulenla subulosa
Hoot of cave; depth $16 \mathrm{~m}: 12 . \mathrm{v} .1971$. Atapazera mirabilis
Centre of buy; depth $11 \mathrm{~m}: 12 . \mathrm{V}_{1} 1971$. Alapozon mirahifis
On root of caves depth 3-5 m: 14.v. 1971. Aplidiurn flabulineahm
Elliston Bay
Cystordyters dellechiujei
Trididemnim spicularmm
Didermum ternatamum
Ocmlinaria atustralis (with E. endstralis and M. ellisronis
notrylloides leachi

PEARSON ISI.AND. (Coll. S. Shepherd). Lat. $33^{4} 5 \kappa^{\prime}$ S; Long. $134^{4} 15^{\prime} \mathrm{F}$,

Rough-water coast, 400 m offshore on gravelly boltom, attached to shell or sock fragments;
moderate surge depth 50 n1: 9.i.1969.
Lcruteclinides fungiformis
Polvcarpar rlavatat
Pyira aistralis
Herdmonia momus
Rough-water coast in caves moderate surge;
depth $35 \mathrm{~m} ; 10 . \mathrm{i} 1969$.
Podocinvella meridionrilis
Aplidium rubricollum
Styela pedaia
Pulvetrpa pedunculath
Herdmania momus
Sandy bottom between Dorothee and Veteran
Is, Lat. $34^{\circ} 1^{\prime} S_{\text {i }}$ Long, $134^{\circ} 15^{\circ} \mathrm{E}$. Slight surge:
depth 70 me $11 . i_{1} 1969$.
Polycitor piganicum
Botry llaides magnicorchm
Polycarpa pedunculata
Pyhen scoresbionsis
Dutside Hearson I; depth 35 m ,
Podociavella neridionulis
Leptoclinides fungiformis
Styefa pedara

COFFIN BAY. (Coll. S. Shepherd). Lat. $34^{\circ} 38^{\prime}$ S:
Long. $135^{\circ} 30^{\circ} \mathrm{F}$
Oyster Trays, at low water; slow currents; no sedinients: October 1970.

Spyela plicata

SPENCER GULF, (Coll. S. Shepherd), Lat. $34^{\circ} 2^{\prime} S_{\text {; }}$ Long. $137^{\circ} 23^{\circ} \mathrm{E}$, Tiparat Reef, depth 11 m: 20, viii. 1971.
pisenectervelia dimimens
Herelmania momus

INVESTICATOR STRAIT (Coll. J. Watson).
Station X7: depih 30 m* 10.i.1971. Lat.
$35^{\circ} 16^{\prime} S^{\prime}$ Long, $137^{\circ} 30^{\prime} \mathrm{E}$.
Didemmunt moseleyi

Long. $137^{\prime} 30^{\prime} \mathrm{F}$.
Pobscarpa pedunculata
Pyiral scoresbichsts
Stalion X11; depth $30 \mathrm{~m} ;$ 19i.1971, 1.al.
$35^{\circ} 19^{*} \mathrm{~S}$; Longe $137^{\circ} 30^{\circ} \mathrm{F}$.
Pyurn scoresbiensis.
Stailion X15; depth 32 m ; 19, 1971. 1.at.
$35^{\circ} 23^{\prime \prime} 5_{;}^{\prime}$ Long $137^{\circ} 30^{\circ} \mathrm{E}$.
Polycitor gigantelum
Polvsyncraton mugnilarvum
Polycarpa pedunchlata
Pyura scaresbiemsis
Station X?? 19.i. 1971.
Polvandracarpa simulan,
Station X17; depih 35 m : 19.i.1971. Lat.
$35^{\wedge} 24^{\prime}$ S; Jong, $137^{3} 30^{\circ} \mathrm{E}$.
Trididemnum cerebrijarme
Pyura scorcibiensim
Herdmania momus
Stalion X19; depth $34 \mathrm{~m} ; 20 . \mathrm{i}_{1} 1971$. Lat.
$35^{\circ} 26^{\prime} S^{-}$Long. $137^{\circ} 30^{\prime} \mathrm{F}$.
Euhardmania australis
Colonial stolidobranch-Gen. and sp?
Ascielia sydneyensis
Polycarja pedhnernata
Malorynhia hirpida
Station K21; deptt $34 \mathrm{~m}: 17.1971$. Lat.
$35^{\circ} 28^{\prime} \mathrm{S}$; Long. $137^{\circ} 29^{\circ} \mathrm{E}$
Polycitor giganteum
Polycarpa pedinctidate
Station X25: depth $35^{\circ} \mathrm{m}: 17.11971$. Lat.
$35^{\circ} 31^{\prime}$ S; Long $137^{\circ} 29^{\circ} \mathrm{E}$.
Polycarpd pedunculam
Station X27; depth 31 m: 17.j.1971. Lat.
$35^{\circ} 33^{\prime} \mathrm{S}$; Long. $137^{\circ} 29^{\circ} \mathrm{E}$.
Didemnam moseleyi
Polycarpa pedumendan
Pyura uastralis
Station Y6; depth 23 m ; 38.i.1971, Lat. $35^{3} 17^{\prime} \mathrm{S}$;
Long. $137^{\circ} 16^{\prime} \mathrm{E}$ 。
Leptrelimides reliculatris
Pobesyucraton magnilarvum
Metandrocarpa indica
Polyandrocarpa simulans.
Pulycarpa peduncrilaia
Pynfa irregularis
Station Y12; denth 33 m ; 24.i.1971. T.at
$35^{\circ} 23^{\prime}$ S: Long $137^{\circ} 17^{\circ} \mathrm{E}$.
Polycarpa peduftuluta
Station Y14: depth 32 m ; 23.1.1971. Lat.
$35^{\prime} 25^{\prime} \mathrm{S}^{\prime}$, l.ong, $137^{\circ} 17^{\prime} \mathrm{E}_{\mathrm{I}}$
Alapozoa marshi
Pyura seopesbicusis
Station Y16; depth $35 \mathrm{~m}_{3}^{3}$?i.1971. Lal.
$35^{\circ} 26^{\prime}$ S; Long $137^{ \pm} 17^{\prime} \mathrm{E}$.
Sycraza pedunculata
Station Y17; depih 34 mi 20.i.1971. Lat
$35^{\circ} 27^{\prime}$ S; Long. $137^{\circ} 18^{\prime}$ E. Alapozoa marshi

$35^{\circ} 28^{\circ} \mathrm{S} ; 1$ ong. $137^{\circ} 18^{\prime} \mathrm{E}$.
Oxycorynia arenosa
Pofycitor abeliscum
Colonial stolidohranch-Ged. \& \$p.?
Ascidial sydneyensis

Station Y19; depth $33 \mathrm{~m} ; 20.1 .1971$. Lat. $35^{\circ} 29^{\circ} \mathrm{S}$; Long. $137^{\circ} 18^{\prime} \mathrm{E}$. Polyemdrocarpa lapidosa Polyandrocarpa simulans Pyura spinifera
Station Y21; depth 32 m ; 20.i.1971. Lat. $35^{\prime \prime} 32^{\prime}$ S Long. $137^{\circ} 18^{\prime} \mathrm{E}$.

Aplidium colelloides
Polycarpa clavala
Pyirer austoulis Pyura Jendata
Sintion Y23; depih 32 m ;
$35^{\circ} 33^{\prime} \mathrm{S}$; Tongo $137^{\circ} 18^{\prime} \mathrm{E}$. Polycarma pedunculata
Station Y?: 20.i.1971.
Didemnum moseleyi

Station Z?
Colonial stolidobranch-Gen. \& sp.? Pyura spinifera
Stations 29, 11; depth 38 m ; 25.1.1971. Lint. $35^{\circ} 30^{\prime} \mathrm{S}$; Long, $137^{\circ} 8^{\prime} \mathrm{E}$.

Pobycurpa pedunculater
? (Lahel illegible)
Colonial stolidobranch-Gicn, \& sp.?
Cimicella anipoda
KANGAROO ISI.AND. (Coll. I. E. Watson). Lal. $35^{\circ} 35^{\prime}$ S; Long. $137^{\circ} 31^{\prime}$ E. Off Emu Bay. 22.1. 1971.

Didemnum moseley:
Didemniom patulum
Polycarpa pedunculata
Pyura australis

Index to Genera and Species

STRIGEATA (TREMATODA) OF AUSTRALIA BIRDS AND MAMMALS FROM THE HELMINTHOLOGICAL COLLECTION OF THE UNIVERSITY OF ADELAIDE

by Georges Dubois and L. Madeline Angel

Abstract

Summary An important collection of Strigeata of birds and mammals has been made by the Department of Zoology of the University of Adelaide. The present work records thirty species, of which seven are new. Descriptions of the new species with additional information on some of the others are given. The new species from birds are: Apatemon (Apatemon) vitelliresiduus (from Biziura lobata), Cardiocephaloides ovicorpus (from Phalacrocorax melanoleucos brevirostris and P. varius), Cotylurus (Cotylurus) magniacetubulus (from Cygnus atratus), Diplostomum (Diplostomum) parvulum (from Hydroprogne caspia and Pelecanus conspicillatus), Neodiplostomum (Neodiplostomum) lanceolaturn (from Ninox novaeseelandiue). The new species from mammals are: Neodiplostomum (Triloborchidiplostomum) diaboli (a new subgenus, for which the diagnosis is given) (from Sarcophilus harrisii) and Pharyngostomoides dasyuri (from Dasyurus viverrinus).

STRIGEATA (IREMATODA) OF AUSTRALIAN BIRDS AND MAMMALS BROM THE HELMINTHOLOGICAL COLLECTION OF THE UNIVERSITY OF ADELAIDE

by Georges Dubuis* and L. Madeline Angelij

Abstract

Summary An important collection of Strigeata of birds and mammals has heen made by the Departonent of Zonilags of the University of Adelaide.

The present work records thirty species, of which seven are new. Descriptions of the new species with additional information on some of the others are given, Cardiocephadosdes owicorpus (from Phalacrocorax melanoleacos hrevirostris and P. varius), Cofyluras (Conyfurias) magniactubulus (from Cygnus arrarus), Diplostomum (Dipinsiomum) parvium (from Hydraprogne cospia and Pelecames conspicillatus). Neodiplostomum (Ncodiplostomum) lancenlatum (from Ninox novaescelendiué).

The new species from mammals are: Nemdiplostomurn (Triloburchidiplostormum) diabolf (at new sthgenus, for which the diagnosis is given) (from Surcophillus harrisii) and Phanngostomoides danyuri (flom IDasyuras viverpinks)

Abstract

\section*{Resume}

Une importante collection de Strigeala dOiseauk et de Mummifêres a été constituéte au Déparlew ment de 'coologie de l'Université d'Adelaide

Le présent travail compread la deseription ou la mention de 30 especes, dont 7 sont nomvelles: Aparcmon (Apatcmon) vishlliresidmus, Cardiocephuloides avicornus, (otylurus (Corylurus) musniacetiLulus, Diplostomum (Diplosternum) parvalum, Nendiplostumum (Neodiplostombrm) loncenlatum. Nentiplostomum (Trilohorchidiplostomum) diabofi (n subgeno. donl Ja diagnose est proposée) el Pharysgostumoides dasyuri. Ces cleux demières espèces sont parasites de Marsupiaux (Dasyurinés). тespcetivernent de Sracophilus harrisil el de Dasyurus viverrinus.

Introduction

An important collection of Strigeata from hirds and mammals has been made by the Dcpartment of Zoology of the University of Adelaide. It consisted of 92 lubes with spirit specimens, and 3 stides.

Collections and identifications made before August, 1951, are the valuable contribution of the late Professor T. Harvey Johnston, to whose memory this work is dedicated. Since that time Mrs. P. M. Thomas (Patricia M. Mawson) has done most of the collecting One of us (L.M.A.) collected the remainder. Dr. J. C. Pearson, of the University of Queensland. Brisbane, contributed 5 specimeas (Pharyngosromoides dasyuri) from Tusmania.

Some of the specimens are valueless, either because of poor preservation or because young stages cannor be identified with adults.

The holotypes of all the new species described in this paper have been deposited in the South Anstralian Museum (SAM). Pararypes. where isvailahle, are in the South Aus. tralian Museum, and in the Helminthological

Collection of the Institute of Zoology, Univer. sity of Neuchatel (G.D.). Preparations of the rest of the material are deposited in the Uni. versities of Adelaide and of Neuchiteh.

The present publication is a continuation of 3 previous accounts of Australian Strigeida (Dubois 1937; Dubois \& Pearson 1965, 1967).

Thirty species ate described or recorded. Seven, one of which belongs to a new subgenus, are new. Twrenty-seven are recorded as avian parasites and the other three are from manimals.

Family STRIgEIDAE Raillict
 Subfumily strugetnae Railliet

Apharyngostrigen simplex (S, J. Johnstun, 1904). Dubois, 1968: 35, figs, 19-21. Dubois \&e Pearson; 1965: 79, figs, 1-3. S. J. Johnston, 1904: 112, pl. 7. ties. 1-3.

Rost and origin: Ardea novachollandiace Latham. from Tailem Bend, River Murray. S. Aust, 1,v, 1940 and $9, x i i, 1940$ (2 specimens); from the Australian Museum, date? (one specimen).

[^16]Hahitat: upper intestise.
Descriphion: These -apecinems, taken from the typu-host, measune 2.8-1,0 mm; eggy 92-90 by $61-68 \mu \mathrm{~m}$.
Parastrigea repens (Chase, 192j), Dubois, 1968 ; 68, fig. 51. Chase, $1421: 500$, fig. 1 and pl. 26, figs. 1-5.

FIGS. 1. 2
Hust and urigin; C'ircus approximans Peale, from Tailen Bend, S. Aust.. 10.iv. 1950 (1s adult and I immakure speciment ind Dec. 1938 (10 youns specimciss).
Hahime: duodenum.
Chase (1921) found three specimens of this strigeig in the intestinc of Natophoys novaehoollantice (Latham) from Terrigal, N.S.W. The holotype, which is registored in the Austhatian Muscum (W544), was seexamined by Dr, 1, C: Pearson (see Dubois 1968, p. 68, footnote 1). On the basis of this examination, the specjes was remnved firmm the genus A phesyngaseriged Ciureat to Parastrigea Sxidat. Descripion: The smallest specimens with few eges in the uteri measure $1,6-2,2 \mathrm{~mm}$. Fully mature worms are $5-6 \mathrm{~mm}$ long. Suckers weakly developed: oral sucker marginal, 60$115 \mathrm{\mu m}$ in average diameteri wentral sucker 92$165 \mu \mathrm{~m}$, near oral sucker, Average tatio of the oral to the ventral sucker neatly $2: 3$. Leugth of forebody from 9-19 (iverage 14) times that of oral sucker. Protcolytic gland elongated, oval or fusiform, 190-220 by $80-$ 110 fm , composed of closely ayyrcyated lobules and lying between the two concentrations of the viteline follicles.

Ovary kidney-shaped and testes multi-lobed, occupying second half of the hindbody. Vitellarin of forcbody extending dorsally up to ventrat slicker, concmerated in lateral semicordiform expansions of dorsal lip of tribocytie organ. (No follicles in ventral lipt, which is as long is forehodiy). Scattered follicles in wall of segment, extending further forward dorsally tham ventm-laterally, in hindbody, virclline follicles concentrited in front of uvary, absent dorsally over the gonads, and extending yentrolaterally to the bursa copulatrix. Ejaculatury duct joining with olerus at entrance to genital conc. Eggs sumerous. 90-105 by к0-68 $\mu \mathrm{m}$.
Relimionships: Parastrigea repens, P. intermedial' Tulangui, 1932, and μ. plexilis (Dubois, 1934) are closely related apharyngeal strigcids:
in the theenee of pharynx they are distinguishable from all known members of the genus. Their normal hosis anc binds of prey (Ealconiformes). P^{2}. internedis (Irom the Philippines) differs from F. repens in that the small suckers are subcutat, and in the size of the eggs (100) 112 by $71-79 \mu \mathrm{~m}$). $P_{\text {u }}$. Hexilis is distinguished from the Australian species by having fewer cges, and by a gcographical distribution restritud to the holarstic zone of Eirmpe and Asis.

Parastriges :sp

Hosi and orisin: Thwerkiomis mulneara (Cuvier) from Qucensland, 26-vi.1911 (4 contrated specimens. collected hy A. Breinll.
Hadilut: unknown.
Descrimion: Body lengh $1: 4-2.4 \mathrm{~mm}$. Fiorehody 0.88-1.08 by 0.94-1.15 mm (dorsonver. tral diam.), with two well-developed laterat expansions. Hindizody 0.75-1.40 by 0,81-1.05 mm . Bursa copulatrix small.

These worms exhibit a striking similarity to H. rolusia Sridat.

A specific diagnosis is reserved until better spacimens are ohtained.
Strigea baylisi Dubois. 193\%: 1968: 82. 5 g. 6fl 61.
Hows ama oriste: Threskiornis nolucerd (Cuvier), from Taikem Bend, S. Aust., 28.iii. 1942 (one specimen), Platalea flanipes Gould, from Taitem Bend. 24.iis 1943 (23 specimens') and $10 . x i f 1947$ (6 specimens). Habihur: intestine.
Relationships: Sirigera boylisi, which appears to be a parasite of Platalcidac, is distunguish uthe from S. moniscma Nicull hy its smanter size, the smallness and the weakness of the pharynx ($50-60$ by $37-47 \mu \mathrm{mi}$), the extension of the vitclaria to nearly as far as the posterior extremity, and the absemee of follicles from the veatral wall of the antcrior segneat.
Strigen цlandutoka Dubois, 1977: 244, fige 9: 1968: 101, figs. 82-84. Duhuis \& Pearsun. 1965: 82, lige 4-5.
Sitiget falconis Duhois, 1937: 217, fig. 10 (not Szidat, 1928).
frows and origim: (iorsus upprosimats l'eale. from Tailem Bend, S. Atst,, 15,xii. 1938 (2 yourge specimens). Hulitasfur spherurus (Vicillot), from Tailem Bend, Dec 1938. (1

[^17]specimets) and $18 . \mathrm{vi} 1941$ (2 macerated specimens). Falco subniget Gray from Meningic. S. Aust. G.v. 1945 (4 specimens). Habirat: intestine.
Description; Body up to 2.8 mm in Jength (when extended). The smaflest specimen, with eges in the uterus, measures only 1.4 mm . Oral sucker terminal, often prominent, 120140 by $90-125$ mm? pharynx roundel. very muscular, 95-1115 by 901-105 $\mu \mathrm{m}$; ventral sucker 160-190 by $150-175$ ر 0 m: protcolysic gland well developed, aval, strongly lobulated, 145-210 by 170-250, am, lying it base of fore. body.

Ovary reniform. Mehtis gland intertesticular. well developed. Fggs $89-102$ by $57-69 \mu \mathrm{~m}$, very numberous in mature specimens, in which the uterus may the distended into sinuous or tortuous curves and even indo loops.
Relationships: Strigea slowhwow differs from S. froeonis Szidat in its small size and in the greal development: of the prolcolytic gland relative to the jength of the body,

Strigea nicolli (Dubois, 19373. Dubois, 1968: 114. figs. 101-102.

Sirigea sumoni Duhois, 1937: 237, figs 57.

Host and origin: Gymmorhina vibleen [Latham) from Canbersi, A.C.T., April 1969 (4 specimens) and 27.vii,1960 (1 specimen; collected by R. Mykylowycr), Flobirat: duotenum and intestine.
Descriptinn: Length $1.40-1.62 \mathrm{~mm}$, Oral sucker 120 -16i2 by $155-177 \mathrm{\mu m}$: pharyme S5105 by 75-90 umi ventral sucker 190-230 by 215-230 $\mu \mathrm{m}$. Eggs 108-115. by 65-72 $\mu \mathrm{m}$.
Relarimships: Strigea nicolli resembles $\$$. kaylivi Dubois in general anatony, but differs in the sixes of the suckers and the pharynx, which are definitcly larger, and in the minor development of the atrial ring-shaped musculature.
Strigea promiscua Nicoll. 1914: 347, Dubois, 1968; 119, figs. 107-108. Duhois \& Peatsол, 1967: 18.
frawis and origin: Nino.r novaenselundiac (Gmelin) (syn. N hoobook) From Yalkuri. S. Allstu, 24.viih. 1957 (1 specimen, deseribed helow) Nָ̄. nrenum (Gould) Prom Eidsvold, Qkt, 1 ivid 1919 (22 specimens, very contracted; collected by M. J. Bancnoft).
Hubirmit intestine.
On June 9, 1965, DP. I. C. Pearann collected the species from the small intestine of Ninox. movaesedandiap in Brishatic, Qld, The species
has now been found four tinnes, always from the same host genus.
Description: Length 2 mm . Body very contractile, nearly as wide as long when strongly contracicd (as in 1,vi.1919 material), Oral sucker 160 by $185 \mu \mathrm{~m}$, pharynx 115 by 105 $\mu \mathrm{m}$, ventral sucker 230 by $210 \mu \mathrm{~m}$; proteolytie glind 190 by $215 \mu \mathrm{~m}$, multilobed.

Ovary reniform, 170 by $260 \mu \mathrm{~m}$. Testes roughly lobed. the anterior measuring 285 by $390 \mu \mathrm{~m}$, the povterior 320 by $400 \mu \mathrm{~m}$. Vitellaria extending from cephalic margin to tevel of equator of genital conc. The latter is robust, well differentiated. larger than she ovary, 260 $\mu \mathrm{m}$ in diam. when retructed. Genital atrium spacious, 180 to 240 km in depth, with tingshaped musculature well developed. Eggs 104 1 IS by $75-80$ ر $\mathrm{mm}, 6$ in number.

As at present known, it seems that Semequa promiscut is restricted to the Sirigiformes. especially to the ariental type Nimex.

Apatemon (Ajatemon) vitelliresiduus n.sp.

FIG. 3
Hoss used origin: Biziurn lobata (Shaw) from Tailem Hend. S. Aust. 10.xil. 1937 and 9.xiu. 1940 (35 specimens): Sandgate, Qld., 22ix.1918 (1 specimen): Purnong and Calort, R, Murray, S. Ausl., 20.vi. 1958 (10 specimens, obtained from two hosts) (type material).
Habitar: intestine.
Holorype: length 2.6 mnt. SAM, E927 (with 3 paratypes. E928, on same silule\}.
Descripsion: Body cambered dorsalky, 2.2-2.6 mm long. Forebody ovoid or cup-shaped, 0.710.90 mim in length by $0.51-0.64 \mathrm{men}$ in dorsoventral diam., delimited by constriction from hindbody. Hindbody twice as long, bananashaped, with small bursal region slightly delincated. $1.48-1.70 \mathrm{~mm}$ long by $0.50-0.56 \mathrm{~mm}$ in diam. at the level of the icstes. Ratio of hinabody to forebody ranging from 1.9-2.1. Orul sucker $115-160$ by $110-127 \mu \mathrm{~mm}$, terminal in positione pharynt smaller, 85-93 by 70-75 $\mu \mathrm{n}$. wentral sucker postequatorial, nelatively large, 190-210 by 165-180 $\mu \mathrm{m}$. Proteolytic gland simall, rounded and lobed situated dorsally near base of forebody, 65-80 by 60-70 $\mu \mathrm{m}$.

Ovary 140-150 $\mu \mathrm{m}$ long $180-190 \mu \mathrm{~m}$ thick. located at anterior third (27-36/100, average 33/100) of hindborly: Tcstes lasee, approximately equal in size (first, 260-330 by $240-$ $300 \mu \mathrm{~m}$, second $300-370$ by $260-30 \mathrm{nt} \mu \mathrm{m}$), ovoid, roughly lobed, obliguely orientated with

lobes directed forward. Vitellaria are confined ventrally in hindhody, especially well developed in front of gonads, extending to near posicrior extremity of worm, but not masking bursa copmatrix laterally; erratic follicles extend mine or less far into ventral wall of forebody, but do not go beyond acetabular level. Vitelline reservoir lies in intertesticular space. Mehlis' gland is situated dorsally and a litie anteriorly. Genital cone of medium size, $190-200$ by $150-$ $180 \mu \mathrm{~m}$, not well differentiated. Vesicula seminalis S-shaped and voluminous, lying posterodorsal to second testis. Sinuous cjaculatory duct npens into icrminal part of uterus at entrance to cone, to form a rectilinear, not pleated, hermáphroditic canal, Egas $87-45$ by 58-67 fum, average 92 by $63 \mathrm{\mu m}$.
Relasionships: This new species closely resembles Amarmon (A.) fuligulac Yamanuti, 1933. in general morphology, but differs essentially in the presence of erratic vitelline follicles in the ventral wall of the anterior segment. This rembant appears to constitute an archaic character. In A. fuligulae the eggs are larger ($100-120$ by $6(2-66 \mu \mathrm{~m})$.

Apatemon (Australapatemon) intermedius

(S. J. Johnston, 19n4). S. J. Johaston, 1904: 109, nl, v, fias. 7-10. Dubois, 1968: 169. figs. 162-164. Dubois \& Pcarsén, 1965: 85, figs, 6-7. Johnston \& Angel. 1951: 66, figs, 1-28.
Hosts and origin: Oxymrat austratis. Gould. from Tailem Bend, S. Aust, 15.i.194t and 28.i.19 1 (11 specimens), Accipifer fas ciarus Vigors \& Horsfield from Mallala, 5. Aust., March 1965 \{20 small ovigerous specimens) (Johnston \& Angel (1951) tound this snecies in 5 of 17 Cygrus arrarus (Latham) from Tailem Bend).
Habisat: unknown.
Descriprion: Body length $1.5-2.8 \mathrm{~mm}$ (specimens from Oxyurt unsiralis). This species is characterised by the structure and size of the genital cone; this organ measures $240-320$ by $160-200{ }_{\mu 87}$ when retracted, thus being ahout one fifth the total length of worm, A wide strongly folded hermaphrodite duct passes through the cone Laurer's canal descends from
oviduct where the latter leaves the ovary, and reaches the dorsal surface on a level with antetior lestis. Egirs 94-99 by 60-68 $\mu \mathrm{m}$.

The specimens from Accipirer farciatus (possibly an abnormal hast) measure 1,2 to 1.9 mm . Eggs $90-45$ by 55-63 mm .

Cardiocephaloides hilli (S. J. Johaston, 19(14). Duboisy 1968: 180, figs. 175, 176; 1970: 722. S. 1. Jolinston, 1904: 110, pl. VI. figs. 1-\$.

FIGS. 4. 6

Hest and origin: Larus novmehollondiae Stephens, from Glenelg, S. Aust:, Z.inii. 1934 120 specimens, from 2 hosts); West 1., S. Aust., $14 . v i .1958$ (4 specimens): St. Kilda, S. Aust. 5-19.ix. 195) (2 specimens, Irons intestinal residucs of four birds).
Habiter: duoderum, intestine.
The onty previous record of this strigeid is that of S. J. Johnston (1904) who descrihed it from the Australian gull. Larke novaehollundiae from Jervis Bay, NS.W. There is only one syntype (deposited in the Heiminthological Collection of the London School of Hygiene and Tropical Medicine (No. 244)) known, The following description is based on the examination of 15 specimens, slightly smaller than those of Johnston, from the Glenelg material.
Descriprion: Bods length $3.5-6.2 \mathrm{~mm}$ (6.98.2 mm according to lohnston\}. Forebody nvoid in lateral viciv, subcordiform in ventral siew, with feebly devcloped lateral expansions, $0.74-1.12 \mathrm{~mm}$ long, $0.55-0.70 \mathrm{~mm}$ thick. Hindbody elongated, cylindrical and usually Hexed dorsally, with bursal region set off from temiunder by a more or less definite constriction, $2.80-3.18 \mathrm{~mm}$ long, $0.52-0.80 \mathrm{~mm}$ in dlam. at level of testes, $0.65-0.76 \mathrm{~mm}$ in harsal zone. Ratio of hindtody to forebody rang. ing from 2.9-3.8, averaging 3.4- Oral sucker terminal or subterminal, of medrum size. $95-$ 117 by 85-106 jemi pharynx smaller, spherical. $80-95$ by $75-95 \mu \mathrm{~m}$ i caeca exending back close to zenital conc (fig. 6); ventral sucker, $95-130$ by $115-145 \mu \mathrm{~m}_{2}$ lying usually just in front of middie of forebody.

Figs. 1. 2. Parastrigea repens, from Circus agproximans, Fig. :-Length 5.5 mm , flattened mature specimen. Fig. 2.-Length 1.8 mm , young specimen wilh two eggs.
Fig. 3 Apatemon (Apatemon) vitellivesidurs n.sp., from Bizurn lebata. Holotype: length 2.6
Fig. 4. Candiocephaloides hilli, from Lapus novac-hallandiae. Length 3.64 mm ,
Fig. 5. Capdracentalnides mascuhnsus, from Hydraspogne raspin, Outline. Lempth 6.6 nmm. Neuch. Univ. (G.D.) No. VJT.

Ovar's, $1301-151 \mid$ hy $1401-200 \mu \mathrm{~m}$, sittated as. abous mid-leneth of hindbouy, in frome of relatively smali testes (litit 190 by $210-250$ $\mu \mathrm{m})$, wheh are ovoil and roughty lobed. Vitchiria confined to this segment, where they appeap profuscly deseloped up to gonads. then restricted to vento-hateral fiedid they do not penetrate bursa copulatrix. Vitelline rescrvoir lies in intertesticular space. Dilatable hursa copuatrix large, quite often larger than Farebody; uccupying lavt thard or quarter of himalbody, and encloxing powerfully built genital cone. which measures $520-740$ by $340-500$ pmo inner watl of cunce when setracted, thrown into a number of tolds delimiting sinums spaces. Uierus and nuscular ciacuatory duct. the walls of which are S-80 arim thick, enter the cone, proced side by side and unite to lorm a very shorl hermaphroditis canal which discharges into darge genital atrium. There are two sphintsers. onc at orifice of cone; the ohier surrounding aperture of bursa. The numenaus cygs measure $115-125$ by $75-84 \% \mathrm{~m}$, averuge 119 by $80 \mu \mathrm{~m}$; shell thin $(3-4 \mu \mathrm{~m})$.

Cardlocephaloides muscolosus (S. J. Johnston. 19114). S. J. Inhmston; 1904: 112, pl. Vil, figs 49 . Uubois. 1968.: 188, tig. 185.

HIGS. 5, 7

Bostr and origins Chidionias hybridu (Pallas), [rom Tailem Bend. S. Aust, 27.x.1948 (6 specimens). Bydroprogne anspia (Pallas), from Townsville, Old, $20 . v i i 1.1468$ (1 specimen).
Habitat: small istestine.
The only Australian record of this trigeid is that of S. J. Johnston (1904), whe described it from the crested tern. Sterne hergit Lichtenstein, from Broker Bay, NoS.W, The type material collected ty Dr. J. P. Hill canmot be found. As a result of the examination of thes: new specimenx. süme additional structures have heen seen.
Description: Body up to 6.8 mm long. Fosebody shors and cordiform, or pear-shaped (seen side view), with latge lateral expansions in last two thirds, 1,43-1.57 mm long, 1,60-
1.65 man wide, $0.69-0.87 \mathrm{~mm}$ thick across the cephatic cupuls, 0.95-1.15 mon at level of expinsions. Hindbody chongated, suhcylindrical and slighty ffexed torsally, graduatly increasing in dinm Lowards posterior end where it is truicated, especially jum in front of bursat copulartix. 4.4-5.2 mm jong 0.72-11.87 mm in diam. anteriosty, $1.05-1.25 \mathrm{~mm}$ posterionly; Ratio of hindhody sin foreholy from 3-3.5. Oral sucker spherical of mediun size, measuring $\mathbf{1 3 0}$-1fin! $\mu \mathrm{m}$ in diam.j pharyns smallers $125 \mathrm{\mu m}$; ventral sucker. $130-140 \mu \mathrm{~m}$. lying much in front st midde of lorebody (about at onc-lhind is lenght, where letter begins to dihate. Caeca extending laterally to level nf: genital atuium.

The ovary and the testes-the latter lobed and approximately equal in size ($300-350 \mu \mathrm{~m}$ long and wider than long)-oecupy about the middle third or third quarter of the hindbode. Vicellatia cuntinces to hindbody, profusely developed in small follicles, uthcuring the contents, tiown to the gonads. then restricted to swo ventro-fateral fields, and extendity down to cap of the genital cone, laterally beyond its eytator. Vitelline iexervoir between getzes. Latge bursa copulatix a trubcated cone. occupyinge a litte less than last quarter af hindbody, deliseated by a slight constriction. gradually inereasing in diam., with wide upen ferminal aperture; enclosing a powerfully built ovoid genital cone. $1250-1600$ by $950-1166$ $\mu \mathrm{m}$, clearly delined by its own musculature. When withdrawn, its walls are thrown inte. " number of folds surrounded by parenchyma and muscle fibres, and delimiting sintuous spucts. A slack sphineter surrounds orifiec of conc. Uterus entering cone anteriorly and connecting with ejuculatory duct, Epes. numerous in both exsending and dexcenting limbs of uterus neasure $150-122$ by $73-50 \quad \mu \mathrm{nz}$; shell thin ($3-4 \mu \mathrm{~m}$).
Relaionships: Cartiocephaloides musculosus differs from C C. hilli (Johnston) in the strongly muscular nature and bulk of the genital conc. and in the presence of "very strong bands ol longitudinal musele" in the hundbody (S. J.

Fig. bi. Cardiocuphatoides hilli. from Iares anmahollamtiac. Second half (measuring 2.1 mom) of posterior segment.
Fig. 7. Cardiocephatoides muschlesua, from rhidianiar dyhridn. Tength 6.3 mm, ventral view.
Figs. 8-11. Cardincephalohdes uvicormans nas Fie 8.-. Fiom an unknown host. Holotype: lengh 5.4 min, ventral vicw. Fig. 9.-- Sketch of an unmounled specimen, from Phatuevoromar drarias I.ength 3.6 mm , dorsal viow, Fie, 10.-Sketh of an namounted specemen from an un-
 Sagittit section of poskerior region of al paratype.

Johaston $1904, \dot{p}, 714)$. Ratio off lenglt of postcrior segment/genital cone $=3.0-3.7 \mathrm{in}$ C. Andethlosas (average 3.3) and $1.01-5.3$ in C. hilli (averate 4.8). The two species occur in Latifotimes. the first in terns. the setond in gulls.
Curdincephatuides micorjux n.sp.
FICS. 8-11
Hosts und origin: Phulacrocarar melanoleacos herevirasiris Gould, from Bunedin, New Zexland. 20.iti. 1940 (6 specimens. collected hy Miss M. Syfe, Olago University). P. wuriur (Gmelint. from Port Gawler, S, Ause 29-vi.193k (severul specimens, from twa birds). Unknown host (18 attached and free spectimens) (type moterial).
Habilat: intestinc.
Holenype: lengts 5.4 mm . SAM, E929.
Pararypes: E930, (Sections in Neuchåtel University and Adedaide Universiny collections).
Descrintion: Hody medium-sized, divided into distinct antcrior and posterior scgments. Total iength 2-7.6 mm. Specimens which have recently begun agg production $2.5-3 \mathrm{~mm}$ long. Anterat segment, 0.98-2.46) by 1.4(1-2.80 mm, comprising from three-tenths to fotr-tenths of the budy length, subcordiform, with two dilated and dorsally incurved lateral expansions in its secord half, which appear with their ventral ennnection like a reniform collar surrounding base of cephatic cupule: latler spherical or a truncated conc. Posterior scgment 1.5-5.4 by $1.1-2.6 \mathrm{~mm}$, ovoid to spindleshaped, sometimes eylindrical (fixed in extended state). often slighliy arched, dumpy, massive in contracted state (greatest diann, at level of testes). narrower in athial zone of bursa (0.74-1.75 mm) which is delineated by a more or less definite constriction at the last fifth, wixth on seventh of the segment. Ration al hindbady to forebody ranging from 1.4-2.5, averaging 1.96 Orul sucker (marginal), pharynx and ventral sucker all small; ventral sucker a Dittle latedes than oral, situaled it mid-length of lorebody or in front of it $(42-45 / 100)$. Otal suckes 140-200 by $110-200 \mu \mathrm{~m}$, pharynx 85-180 by 75-127 $\mu \mathrm{ni}$ and ventral sucker $180-210$ hy 120-200 $\mu \mathrm{m}$. Cineca encloxeti in muscular ventro-lateral bundes and extending as far as equatof of genilal cone, i.e. positerior limit of vilellaria. Tribucytic organ well developal. often protruding anterior to anargin of Jorebodiy, and penelating ino the lateral cxpansions. A layer of lakge cells delimits the whole nctive
surfuce of this organ. Protcolytic glands distrihuted in numertur small, relatively scattered bunches, as shown by Bacr (1964, fig. 41 .

Ovary ovoid. 320 hy $230 \mu \mathrm{~m}$, sithited dutsally hetween 27th and 31st hundredths of iength of hindlody. 'lestes mulilobed, the mass uf which measures 2100 by $1300 \mu \mathrm{~mm}$. Vitellaria are confined fo himdbody profusely developed and obscuring its contents: lyinge in a large field along ventra-lateral surfice up to constriction delineating genital atrium. (Last follicles $420-890$ нm diskut from poskerior end, having their limit hetween 77th and 85th hundredths of this part of hody.) I'ield widest anteriut io gomads, whese finlicles extend towards dorsal surface. Vitelline reseivart intertesticulatr. Mehlis' gand well developed, lateral and posterior to ovary. Buta eopatatrix eniloping a Hental cone, 450-980 by 420-920 رnis (320-1000 $\mu \mathrm{m}$ in diam. inade the urium). Ceniral part of this cone appears less muscular. but mose spongy and coloured; its inner wall thonw imu a few folds delimiting sinuous spaces. Uterus extending ineo first thind ot hindboty, where it develops several convolutions, then descends ventrally: behime seminal vesicte. at maker a conspieunus right angled bend to open into genital cone. Sinuous thetus cjaculaturius, walf of whith is $5-16 \mu \mathrm{~m}$ thick. opens neas entrance of uterus to genital sone. Eggs very numerous, $120-130$ by $78-94 \mu \mathrm{~m}$ (thickness of shell $4-5 \mu \mathrm{~m}$, นp to 8 8 $\mu \mathrm{m}$ it the non-operculate pole).
Relutionshps: The new species renembles C. phymalis (Lutz, 1926) [syn. C. saidelti (Hastwich, 1954)], us figured ty Duhos (1968 , figs 187-188) and tediscovered by Baer (1469) in the intestinc of a cormorant from Pern (Gianйape Islendes), but C. physalis differs from it in having a mucts bigger bursa contlatrix, lege with very thick shell ind vitellaria cxtending only ag far as the beginning of the hursa. and in the geographic distribution.
Cotyhurns (Cotylurus) magulacetaitulu* n.sp.

FIG. 12

Hoss and origin! ('yenur abratus (1,athant), from Tailem Bend. S. Ausp. 25.x. 1945176 specimens).
Habidaf: lower intestine.
Holorype: Length 2 mm SAM, E931 (with 5 paratypes. E932, on same slide! and is sccond slide, F.932l.
Deseripioms Body very muscular, with meridian museles in walls of porebady and ciscular tibres surrounding the oblique open.
tage at beghnimg of hindbody are Iongitudinal musckes ilursally, gathered into several bundles which suread out al level of reproductive organs, dorsal one reaching posterior end of yorm.

Body 2, (0-2.6 mm Jong. Forebody cupuliform, hemispherical to spheroidat, obliquely truncated in front, with ventral border nearly rectio Jinear and shorter than strongly incurved dorsal border. $0.60-0.71$ by $0.74-0.86 \mathrm{~mm}$, well inarked ofl from the gradually attenuated cucumiform hindbody. 1.34-1.65 by 0.53-0.67 mm, which is eccentrically fastened to the former. Ratio of hindbody to forebody from 2-2.6. Oral surker $105-127$ by $130-755 . \mu \mathrm{m}$; ventral sucker much larger, cupuliform in profilc. $180-240$ by $160-190 \mu \mathrm{~m}$ (ratio of the average diams, of the latter to the former $1.35-$ 1.74, average 1.47): phatymx teebly muscular. 80-45 by 64-35 $\mu \mathrm{m}$.

Ovary reniform, $130-160$ hy 175-210 1 m . situated between 17 th and 244 h hundredths of hindbody. Testey trilobate, with lobes directed posteriorly, the first measuring 210-350 hy 275-320 mm , the second a litho smaller. 210320 by $265-300 \mu \mathrm{~m}$. Vitellaria very profuse through hindbody, and extending anteriorly into the two lips of tribocysic organ Cerratic follicies): vitelline reservoir and Mehlis gland intertesticutar. Seminal vesicte lying dorsally; ejaculatory duct and ulerus (which extends to intersegmental constriction) unitiog and opening through a short common duct (Jength $70-$ $80 \mu \mathrm{~m}$) into atrium. Genital bulh, $140-170$ fum in diam., provided with a conspicuous muscular thickening at its base, on the dorsal side. Egex from 30 to 60 in the uterus. 84-99 hy 58-72 $\mu \mathrm{m}$ (average 89 by $63 \mathrm{\mu mit}$.
Relarionships: This new species elosely resernbies C. stristoides Dubois. 1958, but differs from it in the larger-size of the aceta. bulum, relative to the ofal sucker (satio of the average diams. $1.10-1.13$ in C. srigeoider), in the ovary being more distant from the beginning of the hindbody ($7-8 / 100$ in C. srigeoides), and in the geographic locality,
Schwarizitrema pandubi (Pantu, 1939). Dubois. 1968: 248. figs. 257-260. Dubois \& Jear*on, 1965; 90, fies. 8, 9: 1967: 190. Pande. 1939: 26, figs 3, 4.

Figs. 13. 14
Hosss and origin: Phalurnearax carbo (Limm) from Toilem Bend, S Aust. 21.5 .1941 (4 specimens). P. shicirostris (Brands), from Tailens Bend, 15.i.1941 (16
specimens. of which 10 ovigerous), 153.1941 and 26, iii. 1943 (numerous. cysts, some excysting, from stomach, along with fish nemains), p_{1} melonoleucos (Vieillot), from Tailem Bend, 2S.x-1945 (11 imnutwre specimens), 30 .iut. 1938 and 24 iin. 1943 (24 specimens) and 6.vi. 1945 (40 specimens) Batritat: intestioc.
Descriphor: Body length $0.7-1.4 \mathrm{~mm}$ (ovi. gernus specimenx).
Remarks: This parasite appears to be common in cormorants at Tailem Bend (cf. Dubois \& Pearson 196.5. 1967).

Tha tetracotyles found in the stomach of P. sukderostris were both encysted and encupgulated. The cysts are dark, strong, ovoid, helmetshaped. with a subconical pole and a circular opposite aperture. They measure $400-450$ by $320-360 \mu \mathrm{~m}$ (230-320 $\mu \mathrm{m}$ at the level of the opening). The cyst wall varies from $40-90$ sem in thickness (71)-130 $\mu \mathrm{m}$ at the pole). At this stage the structures in the forebody of the tetracotyle are clearly differentiated, and the conical hindbody is separated by à masked constriction. The characteristic processcs of the pacudo-suckers are in a conspicuuss position (Fig. 13.). The cysts ate often surrounded by a thin layer of hyaline secretion ($5-18 \mu \mathrm{~m}$ in thickncss, 8-24 μ tr at the pote).

The cysts were also found tree in the stomach and proventriculus of grebes, Fudiceps novachollamhiae Stephens (24.ii. 1943 and 14.iv,1943), Pe potiocephalus Jardiae \& Seltry (14.iv.1943) and P. crissatas (Limn.) (24.xi, 1947) , all from Tailem Beads from the stomach of Pelecamus conspicillatis. (Temminck) atong with fist and the crustacean. Cherax desiructor \{27.i.1942, 25,v.1942, 17.ivil944), from Tailem Bendis in the stomach of Platalea flavipes Gould, along with fish (24iii.1943), from Tailem Bend, and from fish remains. With estaping metacercariae. in Boraurus poiciloptilus (Waglet) (20.vil1949) from Mannum, River Murray, S. Aust.

Family DIPLOSTOMIDAE Poirier

Subfamily diplostominae Montzzelli

Bolbophorus confusus (Krause). Dubois, 1970: 266, fiss. 272-276, 278 (metacercasia). Dubois \& Pearson, 1965: 95, fig، 13.
Host and arigin: Pelecanus conspicilialus (Temminck) from Tailem Bend, S. Aust. April 1938, Dee. 1938. 27.i.1942, 25.v.1942. $23 \times 1.1442,17,0 v, 1944,20 . \mathrm{iii} .1950$ (40
mature specimens, and 20 metacertarite and young specimens).
Hahirat: stumach and intestines.
Uescrip:lor: Body Iength $1.5-2.2 \mathrm{~mm}$.
Reniarks: The lint Australian recurd of this cosmopolitan species is that of Dubois \& Pearson \$1965). who observed in acetabulum measuring $42-65$ by $48-92 \mu \mathrm{~m}_{\mathrm{k}}$ In the mature specimens of the present collection, this organ is smaller. $32-40$ by $42-50 \mu \mathrm{~m}$.

:Hiplostomm (Diplostomum) amygdalum

Duhois \& Pearsott, 1965: 90, figs. 10-11. Dtbois. 1970: 300. figs. 297-298.
Hest vined brigin: Nymicorres caledonicus (Gmelin). from Tailem Bend, S. Nust, 1.vi.1940 (9 Immature sgecimens).

Hobivat: unknown.
Hewrimien: Hody length $11.55-11.66 \mathrm{~mm}$. The vitellaria are not yet developed. This spocies, adapted to the Ardejdae commonly occurs in Erishanc, Qld, (Botanical Gandens).

Diplostomnm (1)ipiostomsm) paryulum 刀.яр, PIGS. 15, 16
Hostr and orjgin; Hydmpmogre empio (Pallas). from Tailen Bend, S. Aust. Jec. 19.39 (Type matarial: 5 specimens) Pelecruиs conspicilluns i Temminel) from Tailem Hend, date? (4 specimens).
Hahital: intextine.
Walorype leagth 0.56 mm. SAM. E933, With 2 ar 3 (?) putaylpes (C934) on same slide.
The sype-ruaterial was olbtaned from a Cuspuint lem at Tailent Bend. Another collection has becn lound in a pelican from the wime placc: this is prohahly a case of crratic parasitism. the worms being mixed wilh metucer Lurite s) Bolhophonas confusus (Krause).
Descriphtoll: Body $0.42-0.87 \mathrm{~mm}$ Inng, more ur tess shistinctly divided in two segments. Forebody $0.25-0.53$ by $0.24-10.34 \mathrm{~mm}$, oval in outline, rolitiorsh, spoon-shaped with posterior mateis curved pentrally. Hindtherly nomit, bent dorsatly, $0.16-0.34$ by $0.21-0.27$ nim (dornoventral diam. $0.21-0.32 \mathrm{~mm}$). Ratio of length
of kecond veyment to firsp Irom 0.62-0.75 (average 0.67). Oral sucker rounded. promiatnt. 50-62 by 52-63 $\mu \mathrm{m}$; vintral sucker atmost equal in size to the oral or smaller, broader than long, $45-52$ by 55-63 $\mu \mathrm{m}$: pharynx elongited, $50-52$ by $24-3010 \mathrm{~m}$ (its antero-posterior diatm. is often equal io that of oral sticker); mesophagus short $15-25 \mu \mathrm{~m}$; intestinal cacea nistrow ($5-10 \mu \mathrm{~m}$), conspricuous in forchody und entering hindbody to serminate not far from posteriot end. Pseudo-suckels semilunar or kidney-shaped, thicker anteriorly, 73-90 by by $37-60 \mu \mathrm{~m}$. Tribucytic argan approximatels' sireular, with a median cleit, 75-100 by 75$120 \mu 8 \%$ proteolytic gland bilobed, with mas. sive bean-shaped lobes, lying transversely at bask of interior segment.

Ovary submedian, situated at beginming of hinelbody, 35 by $60 \mu \mathrm{~m}$. Anterior testis asymmetrical, $45-55$ by $130-170 \mu \mathrm{~m}$: posterior tesis hilohed, $60-75$ by $220-250 \mu \mathrm{~m}$. Vitellaria cxtending from posterior margin of veneral sucker or front of tribocyic organ io caudal extremity of bodyp with the greater density in pretarticular zone, reducing beyond is iwa medio-venteal sowings of follicles at leveb of lestes, and abutting ngainst the rather compact latcro-terminal accuntulations behind these; vitelline feservair intertesticular. Bursn copulatrix small, the pore being dorsal and sublerminal (is $50-6.5 \mathrm{~mm}$ from posierior extremity): genital cone absent, Eggs few in number $(1-3), 89-95$ by 55-65 μ th.
Relaiontships: This diplostome is churicterized by its very small size, being the smallest of those described in the subgenus Diplostonutm. It closely fextmbles the South American species O. binumum Szidat, from Larus dominicanur lichenstein, hul differs from it in the size of the eges and in the relative diameters of the orin and veniral suckets, (In the latter, the cges incasure 110 by $70 \mu \mathrm{~m}$, sud the ventrat sucker is lirger than the oral.)
'Hhere were yel larger diplastnmes in the collection from llydroprogne cuspia. They measure 0.7 to 1.0 mm in the contracted state.

Fig. 12. Cobylurus (Cothlurus) magniacchabulas $0 . s$, from Cygnts atratus. Holotype: Jengh 2 min.
 Length 0.67 mm . Fig. 14,-Cyst, fron stonsch of P. sudcirnstris, 420 by $320 \mu \mathrm{~m}$.
Fige 12, 16. Diplosmmum (Diplosiormm) parvahm n.sp. Fig. 15.-Fiom Hydroprogne caspia. Holo-
 mm., dorsal view.
 Lengeth 1.7 mm , ventral vlew.

Ratio of massive hinduody to forcbody from $0.91-1.25$ (avernge (.02). We winld have difiteulty in describing them. Perhaps they hetong to the tormer species, but the pharynx is obviously larger ($60-70$ by 47-52 am), and the ventral sucker (89 hy $65 \mathrm{\mu min}$) is greater than the oral sucker (68-75 by 57-65 (4 m).
Dighostomum (Hiphostomum) spathaceum murraycuse (Johnston \& Cleland. 1938). Johnston \& Cileland, 1938:127, figs. 1-10 (ecrearis). Dubois, 1966a: 40; 1970; 341, fis. 355, Disbois \& Pearson, 1965: 93, fig. 12. Johnston \& Angel. 1941: 140 , figs. 1in (iife cycie). Johnston \& Simpson, 1939: 230, figs. 1-6 (diplostomulum).

FIG. 17

Hest anal origin: Larus novachollandiae Suephens, from Swan Reach. River Muray, S. Austo 14 xiii- 1937 (12 specimens): 'Tallem Bend. S. Aust., 8.iii. 1940 (8 specinens). [4.iii. 1941 (12 specimen*), 19.v.1941 (20 specimens) - 27.i.1942 13 specimens) and 23.iii.1942 (13 specintens): Valkuri, S. Aust. 24.viil. 1957 (one specimen). Hahima: intestine.
Remarks: Johnston \& Simpson (1939) believed that the adale would be lound in Iariform birds, most probably in the silver gull, Larus novaehullandiac, Honvever: Johnston \& Angel (1941) reported having found young and adult diplostomes in the marsh tern, Chlidonias hybridn (Pallas) [C lelucopareia], and successfulty infected Limmach lesmani Deshayes with eggs from the adult flukes. Later recovering cere carine (Cerenria murvayonsis) trom this snail. From the occurrences reconded above, it seems that the silver gull is no cqually, if not more important. definitive host for this parasite.
Diplostomum (Tylodelphys) podicipinum podicipinun Kozicka \& Niewiztumska, 5960. Duboir, 1970: 38s. figs. 420-421.
lig. 1s
Host ind origin: Podicepy twiturks (linno.) from "'ailem Bernt. S', Aust. 2.4, xi, 1947 (16 (specimers).
Habicut: unknnwan.
Descripfion: Body lengtla 1.32 mm .
Remarks: Ithis is the tirst Australian record of this parasitc originally described from Polanu, collected from Slowakia and U.S.S.R., and characterized by the greal relative diameter of the acetahulum 190 by 95 . 1 mm , caqual to al quarter of the body breadith, elon-
gate pseulo-suckers (170 mm), the patio of length of body to pscudo-sucker (7.7), athe the presence of a conspicuous atrial sphincler:
Hysternmorpha platalea Dubinin \& Dubinino, 1940. Dubois, 1970: 397, tigs, $430-435$. Diplostommar ardeformium Odening. 1962.

FIG. 19
Host and urigin: Threskiomis molucea (Cuvicr), from Qld. 26.vi.191! (1\% specimens: Cull. A. Breint).
Plubitat: unknown.
In I 1940 this minute tremntode was described hy Dubinin \& Dubinina from the Intestine of a spoonbill. Platalen leucoradia Lin is U.S.S.R. (the Volga delta). Its presence in Indiu was reported by Odening (1962), who considered it as a new species designated by the name of Diplostonuem ardeiformium, from Pserrlibis prpillosa (Temm.). The present tecond is the first Australian relerence to this parasitc.
Descriphons Body lenyth 0.58-0.76 mm. Forebody $0.33-0.40$ by $0.36-0.51 \mathrm{~mm}$. Hindbody shartly ovoid, 0.23-0.37 hy $0.34-0,44 \mathrm{~mm}$, scarcely demarcated from forebody by at weak constriction. Ratio of hindbotly 10 Jorebody $0.66-0.94$. Oral sucker 52-68 by 57-75 $\mu \mathrm{m}$; pharynx 42-52 by $40-45 \mu \mathrm{~m}$; ventral suckes strull, almost cqual in size to phatyon. 42.47 by 47-30 $\mu \mathrm{m}$, masked by a well-developed tribocytic organ, 210-265 by $170-225 \mu \mathrm{~m}$. Protealytic gland oval in outline, crescent. shaped, strongly lobulatiod, 95-125 by 110125. $\mu \mathrm{m}$.

Ovary 45-55 by $95-135 \mu \mathrm{~m}$, situated at inecsegmental level. Anterion testis asymmeltical, 70-105 by $150-210 \mu^{\mu} \mathrm{m}_{\%}^{-}$posterior testis bilolod, $80-125$ by $29(1-390 \mu \mathrm{~m}$. Vitelfartis wall developed throughout most of hody; follicles distributed in the folbincerons foreboly, expecially at its base. and in trihocytic nrgan, where they are arranged in the form of as semicircle: restricted in hinsbody to at medio-yentral field. which widens out to constitute twu latero-terminal clasters. Vitel line reservoir intertesticular. Mehlis gland listerat, opposite anterior testis, Eggs, from $3-$ 10 in the uterus. 95-112 by 58-68 am faverage 103 by $62 \mu \mathrm{~m}$).
Relatonshipse Hysteromorpha planten shows a close resemblance to II. Iflloba (Rud.), bul the latter appcars to be higger (up to 2.2 mmi) whereas its cges are smaller ($75-99$ by $48-75$ $\mu \mathrm{m}$) and more numernis. The acctabulum of 13. triltutur is always lareer than the olal suckers and the hosts afe vatious apecies of commorants.

Hysteromorphas triloba (Rudoiphi, 1819). Dubois, 1970: 400, figs. 436-439. and 440 (cercaria). T. H. Johnston, $8942: 23 \mathrm{k}$, Diplossomithin corpl Hughes. 1929 (metacercalia).
Diplosnmum granulosun Goss, 1441.
Parustrisea slovacica Rysayy, 1958
Hars and origin: Pidfecrocards melanofertos (Vielloti), from Tailem Bend, S. Ausl.. date?' (7 specimens).
Sabinat: unknown.
The first recond of this cosmopolitan para. site is that of Miss O. M. Goss (1941) who described it as Diplosiomunt granulosum, from Phalacracoraz suleirostrit (Brandi) [-Pater] from Perth, W. Aust. T, H. Johniton (1942) recorded it from vanous cormorants, especially from Tnilem Bend.
Descripiton: Body $1.03-1.18$ by $0.56-0.67$ min. Ventral sucker $90-92$ by $94-98 \mu \mathrm{~m}$: oral sucker 70-79 by 83-84 $\mu \mathrm{m}$; pharynx 50 by 47 jm . Exgs 92-95 by 63-68 $\mu \mathrm{m}$. Tribocytic oryan rounded, fumel-shaped when protruded. Proseolytic gland hilobed and trapczoidal.

Neodiplostomum (Conodiplostomum) brachyurum (Nicolls 1914). Nicoll, 1914: 346, pl. 24, fig. 9. Duboix, 1937: 333, figs, 11-12: 1970: 41s. figs, 451-452.
Hosse and origint Ninax novaesechmataue (Gmelin), from Yalkuri, S. Aust., 24.vjii. 1957 (18 specimens, collected by W. H. Ewers). Tyo albu (Scopoli), from Point Turton, Votke Peninsula, S. Aust. 12.ix. 1970 (3 specimens).

Hablicu: intestine.
Description: Body length $1.5-3 \mathrm{~mm}$.
Romorks: This species is characterized by the large size of the ventral sucker, 72-105 by $73-110 \mathrm{\mu m}$ (average 87 by $90 \mu \mathrm{~m}$), and by the fact that it occurs is the Strigiformes. The testes are large and symmetrically developed. The vitelline follicles have their maximum density in the forebody, where they quite often reach to the level of the intestinal bifurcation.

Neodiplastomuax (Conodiplostomum) spathula ausiralieuse Dubois, 1937: 337, figs. 131\%: 1970: 42 R_{5} figs 465-468. Dutois \& Pearson, 1967: 146, గ̀g. 3 .
Hosts and origin: Circus approximans Peale. Erom Tailem Bend, S. Aust, Dec. 1938 (3 specimens). Halicerus Rewcogaster (Gmalin). from Wauraltee, Yorke Pen., S. Ausc. 21.viil 1960 (3 specimens). Falco percerifus Tunstall. from Naracoorte, S.

Aust, $12 . \mathrm{vi} 1956$ (24 specimens). Fo. Suhniger Gray, from Meningle, S. Aush, 6.v. 1945 (19 specimens): Accipirer ciriocephalus (Vieillot), from Townsville, Qild, 1911 (one specimen, collected by T. H. Johnston)..
Habirat: duodenism and intestine.
Description: Body length 1.0-1.75 $1 \pi m$, Vites. latia densest in forebody, sometimes reaching the intestinal bifurcation.
Relationships. The size of the ventral sucker (45-68 by $57-75 \mu \mathrm{ml}$, average 57 by $67 \mu \mathrm{~m}$) constitutes a useful specific chatater, In this respect Neodiplostomum spathuia is distin. guishable from N_{i} brachyursm (Nicoll),

Ncodiplostomum (Neodiplostomum) lanceolatum ग.sp.

FIGS. 20, 21
Host and arigia: Ninox moraeseclandtae (Gmelin) from Adelaide, S. Aust., April. 1959 (1d specimens).
Habirat: intertine.
Holorype: length 1.25 mmi. SAM. E935 with 4 paratypes. E936. and another sline, E936.
Descripzion: Body distinctly bisegmented. 1.25-1.52 mm long. Forebody flattened. lanceolate, $0.79-1.01$ by $0.29-0.38 \mathrm{~mm}$ with posterior border, where it is wider, curved ventrally, Hindbody subcylindrical to claviform. stways shorter than forebody, $0.40-0.61$ by $0.18=0,21 \mathrm{~mm}$. Ratio of hindbody to forehody from $0.50-0.68$, averaging 0.56 . Oral sucker $38-47$ by $42-50 \mu \mathrm{~m}$; ventral sucker slightly targer, $36-52$ by $47-57 \mu \mathrm{~m}$, siluated between the 50 th and 5 th hundredths of Jength of forebordy. Short prepharynx ($10-15 \mu \mathrm{~m}$); phatynx ellipsoidal and muscular. $37-45$ by $26-32 \mathrm{pm}$: acsophagus reaching length of $40-52 \mu \mathrm{~m}$; caeca natrow (about $5-10 \mu \mathrm{~m}$) in their visible section. Tribocytic organ narrowly ellipsoidal or almond-shaped, $150-210$ by $80-125 \mu \mathrm{n}$.

Ovary oval or rounded, submedian, located at heginning of hindbody between 16 th and 21 st hundredths, $55-63$ by $63-75 \mu \mathrm{~m}$. First testis appears asymmetrically developed. $80-110$ by 120-140 $\mu \mathrm{m}$: second testis clearly bilobed fwith a posterior median indentation), s0-110 by $150-185 \mu \mathrm{~m}$. Vitelline follicles very con. spicuous, with a maximum density at base of forcbody: from thence invading iribocytic organ and, separated in longitudinal bands, extending beyond ventral sucker, pith their limit on median line between the 241% and 48th hundredths of this part of boly; densely
distributed on ench side at beginning of hindbody: then receding from dorsal area in hecrome is wide ventral ribbon which ends in two latero-terminal or subsermimal accumulations. Vilelline reservoir simated at mid-length of hindbody, Mchlis' gland Imteral, on level with second half of firmt testis, Hermaphrodite canal, which prolongs the incurved uierus, dnes wot traverse a yenital cone. Crenital pore dorsal and subterminal, at $65-1001 \mu \mathrm{~m}$ from posterior exfremity of bolly. Eygs. few in number (up to 13), 94-115 by 63-72 $\mathrm{\mu m}$ (average 1114 hy to $\mu \mathrm{Tr})$.
Kelationsthips: live species it the sulbernus Neodplosiomum are parasites of night-birds and have vitelaria passing beyond the ventral sucker; N. ammeritumum Chandler \& Ratusch. N_{0} rmalicalarmm (Nicolld. N. joponicum Dubuis. N. romesselodi Dubois and N. raveassosi Duhnive Amony then, only the rirst has an elliphoidat tribocytic organ, but the ovary is situthed al the junction of the two segments of the hody. and the ventral sucker is losated hesween one third and two firthe of the lorebody. This American species reaches 2.9 mm .

Nicodiplestomum (Neodiplostounm) subaerfupartitum Duhois \& Pearson, 1967; 144. fig. K. Buhois, 1970: 484, fig. 555.

TIG. 22
Hosb and vrigint Hadiasar sphannurax Vieillob), from Tailem Bend. S. Austi。 Dec. 1938 (22 specimens), 1 K.vi.1941 (ynung specimens)
Habfras: intestine.
Dercription: Body $1.16-1.30 \mathrm{~mm}$ long, divided into two. Hearly equal segments, Forebody $0.61-0.68$ by $0.36-0.49 \mathrm{~mm}$: hindbody $0.55-$ 0.63 by $0.38-0.43 \mathrm{~mm}$. Ration of the hindbody to forchody from $0.80-1.02$ (average 0.93). Oral tuluker 47-55 hy $4552 \mu \mathrm{~m}$; pharynk 4,552 by $36-52 \mu \mathrm{mi}$, ventral sucker a litte litrger
than orul, 52-65 by 54-68 $\mu \mathrm{m}$. situated between 45th and 50 th hundredths of length of forebody; tribocytic organ $170-240$ by $160-$ 210 am.

Ovary ovaid or ellipwoidal, Jying at begitning of hindbody, $95-110$ by $130-170 \mu \mathrm{~m}$. Anterior tevis. Iaterah, asymmetrical, cunciform or oyoid. 125-150 by $140-210 \mu \mathrm{~m}$; posterior teatis hilohed, dumb-hell-shapted, 120150 by $260-320 \mu \mathrm{~m}$. with greater lolse obliquely opposite first testis, Eggs few in number sone wh fous). 84-92 by 58-65 pim.

Ncodiplostomum (Triloborchidiplostonum)

 diabuli n. subgen., th.sp.FIGS. 23. 24
sonst and origit: Surcophifras harvisii (Hoitart). from Tasmania, Oct. 196) (2 specimens).
Habiter: muknown.
Holotype: length $2.05 \mathrm{~mm} . \$ \perp \mathrm{M}, 10937$. l'atutype in Neuchâtel University.
Description: Bady $1.95-2.05 \mathrm{~mm}$ longe divided by a constriction into anterior and posterion segments. Forebody broadly elliptical. spatheshaped, $0.50-0.93$ by 0.70-0.73 mm , deeply concave posteriorly, with lateral edges obliquely curled ventrad and continunus wilt tiath wher bchind tribocytic organ. Hindbody lone ovoid. or conical, $3.05-1.12$ by $0.45-0.56 \mathrm{~mm}$, widest at testicular level. Ratio of hindbody to forcbudy, 1:2, Oral sucker spheroida, 90-92 by 93-95 $\mu \mathrm{m}$; pharyna celliptical in outine, much larreer than oral sucker and very muscular. 122-130 by $118 \mu \mathrm{~m}$. Ratio of lengths: oral sucker t- pharynxiforebody, 0.20, Cacca terminating in front of genitai stium, i.e. tn posterior limit of vitellirigs Ventral sucker (ca. $75 \mu \mathrm{~ms})$ masked by large tribocyic organ. 460480 by $500-525 \mu \mathrm{~mm}$, irregularly rounded, with a very narrow slit"; its frontal border siluated hetween one sixth and one tenth of the leagth of the forcbody, more or less overlupping the pharynx.

Fig. IR, Diphasummm (Tylodelphys) pudicipinum podicipinam, from Pndiceps eristatus. Pasterint and with atriul sphincter.
Fig. 19. Hysponomprohe platultu, from Threskiornis malucca, Lenglt 0.64 mm, dorsal vjew.
Figs, 20. Il. Neodiplostomum (Nendiplostomnm) lonccolatum nosp.. from Ninmx moverseefandiae Fjg. 20.-Holotype: length 1.25 mm , dolsal view. Fig. 21. - Lateral view of hindbody,

Fig. 22. Neohiplostormum (Neodiplostomum) subacuapurtium. Outline of ponteriose extramity of budy.
Tigs: 23, 24. Nponhmonemmem (1riloharchidiplostomum) diaheli n.sp. . Irom Saronphhus harrish. Fig. 23. Hololyp: : lemgth 2.05 mm , ventral view. Tig. 24.-Morphology and topography of genital glands of holotypes dotsal view.
 mm, dorent view.

Ovary uvuid, itansverscly slongate, median or submedian, $130-140$ by $180-221 \mathrm{~mm}_{3}$. lying at junetion of forebody and hindbody: Testes Iritolate IWith one dorsal lobe and two lateroventral lobes), occupying with uvary, first thee fifits of segment: anterior testis contiguous With ovary, asymmetrical, $140-200{ }_{\mu} \mathrm{m}$ on left, $240-320 \mu \mathrm{~m}$ on right, and $350-430 \mu \mathrm{~m}$ in transverse dimension. Second testis $200-230 \mu \mathrm{mt}$ and $275-2 \$ 0 \mu \mathrm{mh}$ on two of its lobes, and 330$410 \mathrm{\mu} \mathrm{~m}$ transversely; posterior hurder uf this testis situated between 56ith and 630d mundredths of lengh of hindbody, Seminal vesicle well deyeloped, pustlasticulat: Vielline follicles having their maximum density at junction of two segments and in second half of forchody, penctrating tribocyric organ and extending forward to level of pasterior hoider of pharynx; from beginning of hindbody less abundant, covering ventral ruce in form of two submedian fields which widen slighty at level of seminal vesicte (distunce (rom list follicles to posterior end of the body is $200-270 \mu \mathrm{~m}$. "The anterion border of the bursa copwatrix is founst hetween the 87 th and the 90th hundredths of length of hindbody. The collapsed eggs of the paralype measure approx, 125 by $70 \mu \mathrm{~m}$.
Relatonstips: This parasite from the Tasmanian devil is reathly distinguished from all other species of the genus Nendiplostomum hy the Irilobale shape of the lestis?, with the exceptiont of Neodiplossomum ramarini Dubois, 19i6. of which the pusterior testix alvo develops three lobes (two dateroventral and one medio-dorsall. This mopphological chajacter justifies the establisbment of a new subgente for which we propose the name TriloDorcildiplosrommm, with the type species N (T.) dinholi pusp.3. A second chatacter commou tor the two species is the ration of the lenuths of oral sucker + pharynx/forcbody. which varies between 0.20 and 11.25 .
TR11.OISORCHIUIPLOSTOMUM n. subgen. Dhazrosis: Neodiplostomum with the two lestes ur unly the wecond testis trilobate. Complex of oral sucker and pharynx nisually hetween one-lifith and mex-yaster of length of forebody. Tribocytic organ tending to hypertrophy. Inlestinal parnsires of mammals.

Type specles: $N_{0}\left(T_{0}\right)$ diaboll n.sp, in Sartophihes harrisio (Boitard). fiom Tasmania. Consubseneric: specties: $N_{0}\left(T_{1}\right)$ samorini Dubois, 1966 in Kcontocebus nigricollis (Spix), from South America.

Neodiplustomulum sp.

Sover and origins Notechis scmunt (l'eters) rophidial, from Tailem Bend, S. Nust, 1.v. 1940 is specimens and 2 sysis), Psesedechls porphyniacus (Shaw) [Ophidia], (rum Ablaide Zoo, Sxi. 1457 (5 specimens).
Hahitat: digestive trucl, and subperitoneum.
Deseriplion: Body oval. 255-475 by 210-285 $\mu \mathrm{m}$. Caeca gradually and irregularly distemded, filled with a yellowish substance. Cysts oval, 350-380 by $300-320 \mu \mathrm{~m}$. Cyst wall fibrous, 25-40 $\mu \mathrm{m}$ thick.
Remurks: Onc specimen only of this mettcercaria (335 by $245 \mu \mathrm{~m}$) was fourd in the intestine of Grullima cyanolenca (Latham) [Passeriformes] from Tuilem Bend, 22,iii, 1943 ,

Postisodiplostomum ausirale Duhois, 1937e 1970: 510, 「igs. 585-588, Dubois \& Pearvors. 1967: 201, fige 9.
Hosis and origin: Phalactocomx suicmoseris (Brandi), from 'Jailem Bend, S. Aush. $26 . \operatorname{iii} .1943$ IZ specimens), P_{9} mefanolencos (Vieillat), from Tailem liend, fivi.1945, $31 . \operatorname{iii} 19+8$, Oct. 1960 (27 specimens) and $25 . x 1945$ (4 young specimens). Pblacamus conspicillahas (Temminck'), from Tailem hend, date? (7 specimens). Hydroprogne carspia (Pallas) from Tailem Bend, Dec. 3939 (2 specimens). Figretha alhas (Iinn.), from Tallent Bend, Junc 1937 (one specimen!. Ardra novaehollandiap 1.atham, from Tailem Bend. 1.v.1940. 24.ii.1943, 6.vi. 1945 and $31 . v .1949$ (14 specimens); Swan Reach, S. Aust., 15 :xii. 1937 (14 specimens): Tallem Hend, May 1938, l.v.1941), 24iii.1943 (27 young specimens escaping and escaped from cysuts). Nycticorax entedomichs (Gmelin) tron Mary River, Northern Territory, May 1942 (17 apecimens).
Hadisat: Stomach amd intestine.

[^18]Description: This common species is characterized by its small size: the owigerous specimens measure $0.42-698 \mathrm{~mm}$ (ane to nine cegs in uter us). In Hife, there is "orange colout anound mudsucker". Oral sucker 28-31 hy 3037 fm : pharynx $26-30$ by $19-15 \mu \mathrm{~m}$: vencral sucker 42-68 by $45-65 \mu \mathrm{~m}$.

Ovary siluated al beginning of posterior segnenl. First testis asymmetrically developed; second testis bilobed, sub-cordiform, with an anterior concavity, Vitellaria very dense at base of forcbody. extending anterionly heyond ventral sucker, in some specimens to a level sbout equicistant from ventral and aral suckers: in hindbody, extending on ventral side io postcrior border of secund testis, or only to intertesticular region. Uterus ventrai, bending dorsad until it arrives anterior to the bursa copulatrix, and then cnters genital cone. Eggs $73-94$ by $48-63 \mu \mathrm{~min}$ (average 82 by $54 \mu \mathrm{~m}$).

Cyst transparent, ellipsoidal, 340 by 220 pm, having at thit wall (6 to $8 \mu \mathrm{~m}$ in thicknesx),

Subfamily ararmana Hall \& Wigdor

Fibricnta futermedius (Pearson, 1959). Pearson, 1959: 111, fiss. 1-8: Dubois, 1970: 637.気 72\%.
Hast and orfinim Byedromys chrymgasier Cooffioy, (rom River Torrens, Adelaide, S. Aust, Buly 1923 (21 specimens, some of which have one cgeg in the uterus).
Hahirat: intestine.
Description: Bodly length 0.75-0.98 nim.
Retollonthips. This species, the lype-host of which is Raturs assimllis. was found in the water rat. Hydrompse chrysogaster, by Pearson (1961). It differs from F. minor Dubois (also from H. chrysoguster) in having erratic vitelline follicles in the hindbodys they form swo distinct lateral bands which extend as for as the zone of the second testis, and even beyond.

Phargngostomoldes dasyuri n.sp.
FIG. 25
Hows and origin: Dasyurns wiverrink (Shawi) from Icena kistate. Tas., 9, xī. 1966 (5 specimens).
Habilat: small intestine.
Holorype: length 0.62 mm . SAM. Ey38. paratypes \{ 3 slides) E939.
Dereription: Body oval, indistinetly biseg. mented. $0.58-0.67 \mathrm{~mm}$ long. Forebody marsupiform. 0.33-0.40 by 0.45-0.48 mm (when coniracted), with lateral and posterior margins
foided ventrally. Hindbody mare or less conical. 0.23-0.27 by $0.35-0.4 \mathrm{~L}$ min (when contracted). Oral sucker suticrminal, 63-78 by $75-94 \mu \mathrm{~m}$; pharyms ellipsoidal, móre muscular hat smaller than orat sucker. 57-63 by 40-48 $\mu \mathrm{m}$: ventral sucker bigger, elliptical in outlinc. $58-78$ by $95-110, \mu n$, usually partially covered by zribocytic organ: oesophagus shorl. Pseudosuckers eupuliform. 68-75 by $60-63 \mathrm{\mu m}$. Tribocytic otgan well devcloped, clliptical in outline. 155-195 by 125-150 $\mu \mathrm{m}$, with longitudinal slit-like opening.

Ovary ovoid. $50-75$ by $85-110 \mathrm{~mm}$ submedipn, focinell dorstlly dit base of forebody. Testes munded of ovold, approsimately equal in size, $1001-140$ by $130-180 \mu \mathrm{~m}$, situated side by side in anterior pratt of hindbody, close rogether Seminal vesicic well developed. posttesticular. Vitelline follicles confined to forebody, with a dense distribution from level of anterior margins of testes, grodually decreasing forwards, penetrating tribocytic organ and extending medially almoss to hifureation of oesophagus. laterally to level of ventral sucker. Vitelline reservoir pretesticular, median or submedian, at junction of anterior and posterior segments. Eggs $115-118$ by $60-63 \mu \mathrm{~m}$. Fresh material is needed for a description of the laurss copulatrix.
Addendum. On 23 rd Junc, 1972, Dr. G. 2 Gregory collected 64 uncontzacted specimens from the intestine of Daryuress maculuras (Kerr), at Ben Nevis. Tusmania. These ane described below.

Body length $1.22-1.53 \mathrm{mmn}$ Furelbody cochleariform $0.68-0.90$ by $0.73-0.95 \mathrm{~mm}$, Hindbody conical, rounsted at extremity, $0.52-0.71$ by $0.50-0.71 \mathrm{~mm}$ at level of testes, Ventral sucker 75-104 by 95-117 $\mu \mathrm{mn}$ (average 90 by $130 \mu \mathrm{ml}$), subequal 10 or larger than oral sucker, t, 5-95 by $85-115 \mu \mathrm{~m}$ (average 80 by 95 fnil, but more muscular. Psuda-suckers cupuliform, with prosdetic glands well develaped. Tribocytic organ $300-340$ by $210-300$ $\mu \mathrm{m}$ (230-350 hy $265-430 \mu \mathrm{~m}$ when completely protruded). Pharynx small, $55-73$ by 52-65 $\mu \mathrm{m}$.

Osary suhmedian, $110-135$ by $120-160 \mu \mathrm{~m}$. Testes spherical or ovoid. situated side by side, 180-255 by $200-300 \mu \mathrm{~m}$. Seminal vesicle inter- and post-testicular, discharging through innscular cjaculatory duct (ejaculatory pouch alsent), which unites with descending limb of uterus, (Asecnuing limb of latter reaching mid-portion of tribocytic organ.) Vualline follicles confineal to forcbody, distributed in two
fateral massts sonfuent interiorly at accfabular level, divergent backwards where they terminate in contact with the testes. extending medially to level of antestimal bifuration (just posterior to pharynx). In the thiangulaf space between these two masses are the longitudinal aperture of tribocytic organ, the ovary and the vitelline reservoir (median and pretesticulat). Bursa copulatrix muscular, rounded, $220-300 \mu \mathrm{ml}$ in diamı., occupying second half of poxicrior segment, with dorsal, subterminst aperture and deep genital atrium. Egegs 1 so $15,110-130$ by $65078 \mu \mathrm{~m}$ (1 ingest 130 by 78 $\mu \mathrm{mi}$), average 118 by $71 \mu \mathrm{~m}$.
Relintionships: Pharyngostomaides dasyuri n.sp. seems to be closely related to Pa procyonis Harkerna, 1942, but dilfers in the smaller body. the inequality of the suckers, the position of the ovary, the ahsence of ejaculatory pouch, the extension of the vitellaria up to level of intestinal hifurcation, the greater dimensiuns. of the eggs, and the geographic distrihution. it is probably juentical with Pharynportomoiles sp, of Sandars (1957, p. 263). recovered from the inlestime of a Tasmanian tiger cat. Dasyurus maculans (Kcre).

Iomily PROHEMISTOMIDAE \{Dubois, 1938\} Sudarikov. 1941

Suhfammily prohembstominaf. I.ute

Mestestephanus haliasturist Tubangui \& Masiluñgan, 1941: 138, pl. 3. Jug. 3. Dubois \& t'earson, 1965: 96, fig 14 ($\mathbf{1 r o m}$ Halias(ir): 1967: 202 (from Pelecanus).
Misasirphamus minor Dubois \& Peatson, 1965.

Hose and origin: Pelecanus conssivillates.s (Tonminck), from Tailem Bend. S. Aust., date? (24 macerated specimens).
Hulisat unknown.
Tubangut \& Masilungan reconded thisspeciess
from the smatl intestine of Hullewthr insermediets Blyth from the Pampanga Province (Llazor: Philippines). Dubois \& Pearson (1965) 1edescribed it by the name of Mescostephammes mifroy tron Hodiastur sphemurus (Vicillot) From Brisbitne, Qld, ind subsequently (1967) from Pelecumas conspicillaus (Temminck) and Anhinga novachollandiae (Goukd), from Mackity und Kola, Old. The fishing-kite is probably un vecasional host:
Description: Body oval, with small caudal appendix. 0.9-1.5 man lang by 0.3-0.5 3mm in maximum width; anterior part well expanded. slightly concave ventrally, with lateral horders more or less rolied up into a gutter atad mecting posteriarly. Oral sucker $38-52 \mathrm{pm}$; ventral sucker slightly larger, $37-55$ by $40-60 \mathrm{~mm}$. situated belween the 40 th and 45 th hundredths of the length of the body; pharynx. ellipsoidal. 32-50 by 24-40 $\mu \mathrm{m}$; oesophagus 47-52 $\mu \mathrm{m}$ long. Tribocytic urgan oval in shape, 2110-2113 by $150-160 \mu \mathrm{~m}_{1}$ with a longitudinal slit.

Ovary globular, $60-80 \mu \mathrm{~mm}$, level with second half of anterior testis. slightly to one side of median line, oppoxile cirrus sac. Testes subglobular to ovoid, close behind one another, 110-190 by $90-130 \mu \mathrm{~m}$. Vitellaria compused of fairly large follictes disposed in an eceentrie wreath (diameter $300 \mathrm{l}-520 \mu \mathrm{~m}$) around tribocytic organ. The two characteristics of the species ate that vitellaria (1) do not reach acetabular lovel (limit 44th to 50 th hundredths of length of body, i, e distans $28-3.5 \mu \mathrm{~m}$ from posterior border of ventral sucker). and (2) overlap unly first half of posterior testis. Ratio of the length of the body to the diam. of the vitelline wreath ranging from 2,7-3.2 (average 3). Cirrus sac well developed, elongated, cluhshaped, $310-530$ by $50100 \mu \mathrm{~m}$, extending forwards to zone of first testis or even beyond. Ulerus shorl, with vaginal sphincter conspicuous. 20-40 by 29-55 $\mu \mathrm{m}$. Eggs one to six in nusnber 90.99 by $65-73 \mu \mathrm{~m}$.

Referencer

Baer. J: G (1964)-Un Thematode parasite du Carmarsn Phefarnororax boughinville ii (Less.) des illes Guañape, Pérou, Furuzlfo Sh. 24. 7 15,

Chase E. E (1921)-A new syian tuemate. Proi. Linn. Suc. N.5.W. 15, 500-504.

Dulimin. V. B., and Durinind, M. No (1/44) 1 Parasitofaune Ueb Otiscaux coloniaux des
féscrves die la région d'Astrakan. druety. astrakh. yers. Tidhov 3, 190-29R.
Dupots, G. 11937), Etude de quelques Sinus deds d'Australie al nute sur le xenre Fifricola Duthois 1432, Anmls. Parasio. Smme combro 15, (3 4). 231-247, 333-353.
DıAยแร, G. (1938).-Monngraghic des Strigeida (Trematodz), Mèm. Sve, neuchur. Sci. nut.o. 6. 535 pp.

[^19]Dubors, G. (1966a).-Du statut dc quelques Strigeata La Ruc, 1926 (Trematoda). II. [German and English summaries]. Bull Sors neuchảrel. Sci. nat. 89. 19-56.
Dubors, G. (1966h),-Un Néodiplostome (Trematoda: Diplostomatidae) chez le tamarin Leonfoccaus nighicollis (Spix). Revne suisse Zool., 73 (2), 37-42.
Durọts, G. (1968),-Synopsis des Strigeidae al des Diplostomatidae (Trematoda). Première Partie, Mém. Soc. neschat. Sci. nut, 10 (1). 1-258.
Durois, O. (1970) - Synopsis des. Slrigeidac et des Diplostomatidae (Trematoda). Deuxieme Partie, Mém. Soc. neuchât. Sci. nat. 10 (2), 259-727.
Dubois, G. \& I'earson, I. C. (1965).-Wuelques Strigcida (Trematoda) d'Australie Brll. Soc. newchâtel. Sci. nat. 88, 77-99.
Dubors G. \& Pearson, d. C. (1967).-Quclques Sirigeida (Trematoda) d'Australie, II, Ibid., 90, 185-204.
Goșs, O. M. (1941).- Platyhelminth and Acanthocephalar parasites of Jocal shags. J. R. Suc, Wis Attit. 26, 1-14.
Hartwich, G. (1954)-Darmheiminthea von Larus modestus und Puffinus grivens aus Peru, Betr. Vogelk. 3 (6), 258-270.
Jounston, S. J. (1904)-Contributions to a knowledge of Australian entozoa, No, III. On some species of Holosiomidae from Λ ustralian birds. Proc. Limn. Sac. N.S.W, 29, 108-116.
Johnston T. H. (1942).-Trematodes from Ausiralian binds. I. Cormorants and darters. Trins. \mathcal{R}. Soc. S. Aist. 66, 226-242.
Jolinston, T, H. \& Angre, L. M. (1941)-Life cycle of the trematode Diplostomum murry-
ense J. \& C. Trans R. Sac: S. Aust. 65. $140-144$.
Johnston, T. H. \& Angel. L. M. (1951),-The morphology and life cycle of the trematode Apatemon intermedius, from the black swan. Trans. R. Soc. S. Aust. 74, 66-78.
JOinston, T. H., \& Cleland, $\mathbf{F}_{6} \mathbf{K}_{4}$ (1938) Larval trematodes from Australian terrestrial and freshwater molluscs. Part IV Cercaria (Furcewercaria) muprayensis n.sp. Trans, R. Soe S. Aust 62 (1), 127-131.

Johnsion, T. H., \& SImpson, E. R_ (1939),-The diploslomulum stage of Cercaria murroyensis. Trans, R, Soc, S. Aust, 63, 230-237.
Nicoli, W. (1914):-The trematode parasites of North Queensland 1. Parasiology 6, 333-350.
Onening, K. (1962),-Trematoden aus Indischen Vogelo des Rerliner lierparks, 2. Purastikde. 21. 381-425,

Pande, B. P. (1939). -Two new species of trematodes from Anhinga melanogaster, the Indian darter or snake-bird. Proc: natn. Acad. Sci, India 9, 22-28.
Pearson J. C. (1959),-Neodiplostomum intermedium n.sp. from the allied rat, Rarius assimilis, with remarks on the genera Neodiplostomum and Fibricola (Trematoda: Diplostomatidae). Parasirology 49, 111-120.
PPAksons J. C. (J961),-Observations on the morphology and life cycle of Neodiplostomum intermedium (Trematoda: Diplostomatidae). lbid., 51, 133-172.
SANDARS, D, F, (1957):- A new strigeid trematode from an Australian marsupial. J. Helminh. 31. 257-264.

Tubakgut, M. An and Masilungan, V. A. (1941). -Trematode parasites of philippine vertebrates, IX. Flukes fron the domestic fowl and other birds. Phillpp. J. Sci. 75, 131-140.

OBITURARY: KEITH RODNEY MILES

Summary

Keith Rodney Miles died on $25^{\text {th }}$ March 1972 after an illness which took him intermittently from duty over the previous six months. He was born in Western Australia on $8^{\text {th }}$ April, 1915.

KEITH RODNEY MILES,
D.SC.. F.G.S.

OBITUARY

KEITH RODNEY MILES, D.Sci, F.G.S.

Keith Rodncy Miles died on 25th March, 1972 after an illness which took him intermittently from duty over the previous six mopths. He was born in Western Ausiratia on 8 th April, 1915.

He completed his formal education in Perth. graduating B.Sc. in 1937 from the University of Western Australia, with Honours in Economic Geology. He was also at this time lecturing in the School of Geology.

The next six years was spent on the staff of the Geological Survey of Western Australia. during which time he completed a thesis for the degree of Doctor of Science, to which he was admitted in 1942. His thesis covered the jasper hars and banded iron formations of Western Australia.

Miles joined the Geological Survey of South Australia in 1944. This was the beginning of the period of growth and development of the Survey under S, B. Dickinson, and Miles was the first of a group of new appointees comprising in addition T. A. Barnes, R. C. Spriges and the present writer.

He spent some ten years with the South Australian Survey at this stage and left in 1954, firstly to accept an appointment as Deputy Cbief Geologist with Australasian Oil Exploration Limited and subsequently for private practice as a consultant. He rejoined the Department of Mines in 1963 as Chief Geologist. hecame Deputy Director in 1970 and at the time of his death was Acting Director of Mines.

Miles' professional carcer took him through a very wide range of geological interests. His first project-the ironstones-led him later to a detailed study of the Middleback Ranges, followed by a Bulletin on this subject He undertook many hard rock mineral exploration projects, several maiot dam site studies and geohydrology investigations. He travelled widely throughout Australia and New Zealand and undertook an extensive overseas assignment for the Goverament in 1970.

Miles was responsible for some sixty published works, including three major Bulletins of the Geological Survey of South Ausiralia, and a great many unpublished reports A selected bibliography is given below.

Miles was a conscientious member of many professional organisations and made a contribution at Committee and executive level whenever called upon to do so. He was a Fellow of the Geological Sociely of London a Member of the Geolagical Society of America, a Member of the Society of Economic Geologists, a Member of The Australasian Institute of Mining and Metallurgy and a past Chairman of the Adclaide Branch, a member of the Geological Socicty of Australia, a member of the Professional Division of the Australian Petroleum Exploration Association. He was a Feflow (Life Member) of the Royal Society of South Australia and served as a Council member from 1963-66, Vice President 1966-67 and 1968-69. and President 1967-68.

So much is the official record.
As a collengue, close friend and confidant of nearly thirty years, Keith Miles' death is a personal loss. Much more than this however, is the loss of his experience and judgement at the moment when he was in a position to ofer these to greatest effects at both administrative and scientific levels. Keith was fiercely loyal to his colleagues and staff and took great care to ensure that those for whom he was responsible had every opportunity for scientific development.

He was jealous for the status of the profession of Geology and set the highest standards of probity and workmanship in all that he undertook and in his dealings with his fellows.

A geological family becomes accustomed over the years to frequent and sometimes long periods of separation. We offer to his wife and daughter sincerest sympathy for this the Jongest and most difficult separation of all

L. W. Parkin.

Bibliography

1937 Lancefield Group Report on Beria main tode. G.M.L 22161 Mt Margatet G.F. Auh, Rep. geol. Supv. Wrat Aust. 1938, 20-21
1938 The geology and physiograpby of the Lower Chillering area 1. Proc. R. Soc West, Alust. 24, 13-41.
1938 Giadiator (tate Augusla) Gold Mines. Mh. Margaret goldficld. Ann. Rep. geol. Surv. West Anse. 1938. 27-28.
1938 The Muty Mac Gold Miges, G.M.L 22ifT, Laverton, Ann. Rep. geol. Surt: West. Aust 1938. 28-29.
1938 Notes on the gealogical structure of portion of the Mt. Margaret Goldficld. Ann. Rep. geod. Sury. West. Alys. 1938, 29-31.
1938 Notes on banded Jaxpillites ol the Mt. Mor-gans-Mt. Margatet District. Mit, Margaret Goldfield. Am. Rep. geoh Surv. Wes. Aust. 1938. 3b-32.

1939 Notes on sorue mining grouns the the Mt, Margaret G.F Amm. Rep, geol. Stery. West. Aust. 1939, 43-56.
1940 Notes on "Platy" and "Massive" types of Jaspillites from Evarston. Arow Rep arot. Surk. West Aust, 1940, 17-18.
1940 Summsary of petrological notes on same rocks from the Yilgarn Goldfield. Ann. Rep. geol. Sary. Wesk Alus(0 1940, 18.
1941 Magnetite-hematile relations in the banded irot formations of Western Australia. Proec, Ausiralas. Inst. Min. Merall. 124. $193-201$.
1942 Repart on a petiologlcat Investigation of netasomatism near the Corimthian ore body. Ann. Rep. gevol Suev. Wegt, Arst. 1942, 7.
1942 The genlogy of Tindals, Coolgardie Goldfield Ami. Rep. seol. Spre Wess. Aust. 1942, 7.
1942 Two repured fron are depasits in the vicinity of Albany, S.W. Ann. Rep. geol. Surv, West. Aus. 1942, 7.
1942 The Hill 60 locle, M1. Magnet Gold Mines. Litd Mt Magnet. Ann. Rep. geol. Surs. Wesh. Aush 1942, 8.
1942 A supposed manganese and hematite depesit near Wallangie, Coolgardic Goldfield. Ann, Rep, weol. Surk West, Ahtr, 1942, 8.
1942 Geological notes on boring in the Mt. Palmer district. Yilgarn GiF, Jun. Rem. geol. Surv. Wext. Aust- 1942, 8.
1942 Metasomatism near the Corinthian ore bady. Western Australia. Proc. Auspakes. Inst. Min. Metall. 125, 71-83.
1942 The blue asbestos bearing handed iran formations of the Hamersley Ranges, W.A. Bull, stol, Surv. Wert, Aust. 100, 4.37.
1943 Grunerite in Western Australia, Aorn. Miner. 28. 25-38.

1943 Jasper bats and cconomic geology in Westurn Australia. Procs Austrolas. Trist. Min. Mesall. 131-132, 187-204;

1943 Some kyanite-bearing rocks from the Eastern Goldficlds, Western Australia. J. Proc. R_{0} Soe, West, Aust; 27, y-2.
1943 Bentonite at Mardrages. Weslern Australias Ann. Rep. geol, Suri West. Aust. 1943, 24.
1943 Notes on a salt deposit near Wyalkatchem. S.W. Div. Auh, Rep, geol. Surp, West. Anst. 1943, 24
1943 Nates on the Salt Lake:-Campian District. Ahn. Rep. Heol. Surv. West Aust. 1943, 24-25,
1943 Scheelite deposits in the Central Goldfields. Western Australia, Ann, Rep. geol. Surv. West. Aust, 1943, 25-29.
1943 A lepidolite deposit near Tantalite Hill. Londonderry, Coolgardie G.F. Ann. Rip. seol. Surv. West, Aust, 1943, 29-30.
1944 Noles on an inspection of quart2 crystal deposits, Goomalling, Morawa and Payne's Find. Ath. Rep. geal. Surv. West Aast. 1944, 50.
1944 Preliminary repart on limestone prospects - Commonwealth land south of Fremanile. Ahter Rep. grol. Sterv. West, Armst. 1944. 50-53.
1944 Notes on sampling Douro Kd. Iimestooe quarry, South Fricmanile. Ant. Rep. Areol. Surv, Wess. Aust. 1944, 53.
1945 Report on the Hill 60 lode. Mi Magnet Gold Mines Ltd. Mt. Magnet. Aun. Rep. seot. Sterk. West. Allst. 1945. 41-43.
1945 Geological notes on boring in the Mi. Palmer district. Yilgarn ©., F, Ann. Rep. seal. Surv. West Aust. 1945, 43-46.
1945 Report on the geology of Tindats, Coolgardie O.f. Ann. Rep. Red. Sign: Wesh. Ausr. 1945, 47.56.
1945 Tantalum and niobimm. Rall, Dep Mines Mincr. Resour. West. Aust, 3, (with D. Carioll \& H. P. Rowledge)
1946 Metakornatixm of jasper bars of Western Nusiralia, Quart. 7. geol, Soc. Lond 102, 115-155.
1946 Investigation of some phosphatic nodutes from Dandaragan, Western Austrilia. I. Proc. R. Suci Wesd. Acal. 30, 75-82.
1946 Limestone deposits at Hallelt Cove. Min. Rev. Adelaide, 82, 68-75.
1947 Precambrian granites and gramitisation with special reference to Western Australia and South Australia. Truns. R. Sou. S. Aus. 71, 54-66.
1947 tr: Mathesen, R. S. The Mining Groups of the Yilgarn Goldfield north of the Great Eastern Railway. hall. geot, surv West. Aust., 101, 9, 15. 27, 29-31, 41, 54. 216 . 242.

1948 In: Matheson, R. S. The Dandaragan phosphate deposits. Dall. Dep. Mine.r. Miner. Resour, Wesh. AHst, A,
1949 In ; Hobsun, R. W. \& Matheson, R. S.. Grcenbushes mineral field, Bufl geol, Surw West, Anst, 102, 26. 42-58, 88-85, 123. 195, 302, 2m.

1949 Diamond drilling marble deposits at Penrice near Angaston. Min. Rev. Adelaide, 88, 103-134.
1950 Use of banded iron formations in a geological approach to prospecting in the Western Australian Goldfields. Proc Australas. Inst. Min. Metall. 156-157, 47-53.
1950 The geology of the South Para Dam project. Bull. geol. Surv. S Aust. 24,
1950 In: Johnston, W., A geological reconnaissance survey. Bult. geol. Surv. West. Aust. 106, 55-56.
1950 Geology of portion of the Mt, Margaret G.F., and, Garnetised gabbors from the Eulaminna district, Mt. Margaret G.F. Bull. geol. Surv. West, Aust 103 (with R. W. Hobson \& R, S, Matheson).

1950 Moulding sands. Bull. Dep. Mines Miner. Resour. West. Aust. 5 (with H. A. Stephens).
1951 Origin and salinity distribution of artesian water in the Adelaide Plains, South Australia. Econ. Geol. 46, 193-207.
1952 Tertiary faulting in northeastern Eyre Peninsula, South Australia. Trans. R. Soc. S. Aust. 75, 89-96.
1952 Geology and underground water resources of the Adelaide Plains area. Bull geol. Surv. S. Aust. 27.
1952 Middleback map sheet, Gcological atlas of South Australia, $1: 63,360$ series. (Gcol. Surv. S. Aust.: Adelaide.)
1952 McGregor map sheet, Geological atlas of South Australia, 1:63,360 serics. (Geol.

Surv. S. Aust.; Adelaide.) (With J. R. Eley.)
1952 Roopena map sheet, Geological atlas of South Australia, 1:63,360 series. (Geol. Surv. S. Aust: Adelaide.) (With R. K. Johns \& M. Solomon).
1953 Banded iron formations in Western Australia. Proc, Fifth Emp. Min. Metall. Cong. Aust. N.Z. 1, 59-71.
1953 Koolyanobbing iron ore Proce Fifth Emp. Min. Metall. Cong. Aust. N.Z. 1, 172-176.
1953 Wildic Mia Weld Range iron ore. Proc. Fitih Emp. Min. Metall. Cang. Ausi. N.Z. 1. $242-244$.

1953 Iron ores of the Middleback Ranges, South Australiá. In Geology of Australian Ore Deposits. Proc. Fifth Emp. Min. Metall. Cong. Aust. N.Z. 1, 449-463. (With E. A. Rudd.)
1954 In McGrath, J. C. \& Gray, N. M., The geology of the country about Coolgardie. Coolgardie, G.F., W.A. Bull geol. Surv. West. Aust, 107, 58, 78.
1954 The geology and iron ore remomees of the Middleback Range area. Bull. geol. Sirv. S. Aust. 33.
1969 Geological conditions and arbitration of dredged channel and turning basin, Bluff, New Zealand. In G. A. Kiersch \& A. B, Cleaves (Eds.), "Engineering Geology Case History No. 7-Legal Aspects of Geology in Engineering Practice?, pp- 21-32. (Division on Engineering Geology of the Geological Society of America: Colorado.)
H. WOPFNER.

ROYAL SOCIETY OF SOUTH AUSTRALIA INCORPORATED

Patron:
HIS EXCELLENCY THE GOVERNOR OF SOUTH AUSTRALIA, SIR MARK OLIPHANT, K.B.E.

OFFICERS FOR 1972-73
\qquad

President:
K. E. LEE, D.Sc.

Vice-Presidents:

H. WOPFNER, Ph.D.
G. F. GROSS, M.Sc.

Secretary:
C. J. M. GLOVER, M.Sc.

Editor:
H. B. S. WOMERSLEY, Ph.D., D.Sc.

Librarian:
N. H. LUDBROOK, M.A., Ph.D., D.I.C., F.G.S.

Assistant Editor: W. K. HARRIS, M.Sc.

Programme Secretary:
J. CARRICK, B.Sc.

Members of Council:

Hj. EICHLER, Dr.rer.nat.
P. J. M. GREENSLADE, M.A., Ph.D., D.I.C.
R. H. FISHER, A.U.A.
J. W. HOLMES, M.Sc. I. M. THOMAS, M.Sc., M.I.Biol. M. J. TYLER

Auditors:
Messrs. MILNE, STEVENS, SEARCY \& CO.

[^0]: * Zoology Department, University of Queensland, Qld.r. Australia 4067.

[^1]: Fudistoma pyriforme (Herdman), Hastings. 1931: 84. Koit, 1957a: 75, Tokiola, 1950: 120; 1967: 110. Vasseur, 1969: 918.

 PsammanNidium prriforme Hendman, (886: 419.

 Nety Record: Off West Beach. Previouts Records: S. Aust. (Port Noarlunga) - Kots 1957a Qld. (Great Barrier Reef, Flinders Passage)-Herdman 1886. Pacific (Palao 1s, Gilbert L, - Tokioka 1950, 1967. Indian Ocean (Mudagascar)-Vasseur 1969.

[^2]: ** Geological Survey of South Australia, 169 Rundle Street. Aclelmide, S.Aust. Soum
 Published with the permission of the Acting Director of Mines.

[^3]: * Cienlogran Survey, South Aushalian Deparmont of Mines, Box 38. Runde Surest b'O. Adedaide somb

[^4]: - Zomlogy Departancht University of Adelaide. Adelaide, S. Aust. 5000.

[^5]: - Deparment of Zoology. University of Adelaide, Adelaide. S. Aust. 5000.

[^6]: *Division of Widdife Research, CSIRO. P.O. Box. B4, Lyneham, A.C.T. Joul, Ausiralia.
 I Known locally in the Northern Terstary by the appropriate vernaculat of "pig-nased lurte" (f. Cinns. pers. comm.).

[^7]: * Depariment of Botany; Unibersity of Adelaides. 5. Aust. 5001.

[^8]: *48 Leabrcok Drive, Rosirevar. S. Aust. 5073.

[^9]: ${ }^{1}$ Finlayson. H. H, in Campbell, T. D., Edwards, R. \& Hośsfeld, P. S. (1966).-Archacolugicel excavalions in the Southeast of South Atsiralia. It pp. Transcripl. Australian Institule of Aboriginal Studies Library, Canbersa.

[^10]: Fig. 1- Iefic mandible of soodon obamius (S.A.M. Plfil2x) from Victoria Cave.
 Fig. 1. Riche mundihle of Peramoles sumhit (S, A M, 1'J6104v) from Victoria Cave
 Fig. i. Teft mandible of Perameles houmainville (S.A.M. PIfin3f) from Victeria Cave.
 M) 10 Mt .

 Fig. 5, Kight unadible of Antechinus Aawipts (S.A.M. Plouolj) from Vicloria Cave.

 Fig. 7. Right mandible ul Anlechinus suminroni (S.A.M. Pl G1099) Proal Victoria Cave.
 Zie, \%. Rijut mandihle of Smimhopsis murim (S.A.M. PlôO2la) from Victoria Cave.

[^11]: 2 Zoology Department, Uniyersily of Adclaide, S. Aust 5000.

[^12]: * CSIRO, Division of Soils, Glen Osmond, S. Aust. 5064. Formerly at: Deprament of Gcology and Minesalogy. The University of Adelaide, S. Aust.
 it Department of Geography, The University of Adelaide, Adelaide, S. Aust. 5000.
 ${ }^{1}$ Encounter Bay Grmites is the term used to describe collectively the several related varieties of aranitic rocks that crop out in the Encounter Bay area and at Capc Willoughby, Kanganoo Island. It is intended that it replace the kynonymous term "E゙Hcnunter Ray Granite" defined by Dasch. Milnes \& Nesbitt (1971).

[^13]: "Bnocki E. 1. (1964)-The denudation thronology of Fleurieu Peninsula. M.A. thesis Untiv. Adclaide (partly unpublished).
 ${ }^{\text {s Maud, R. R. (1967)-The Permian of the srea anound Mount Compass. (Unpublisfted manucripl, }}$ C.S.I.R,O, Division of Sails, Adelatde.)

[^14]: - Smath sustratiar Museum, North Terrace, Adelaide, S. Auxt. 5000.
 +1.0. Box 52. Datr, Western Distritl. Papua New Guinea.

[^15]: - Zoology Department, University of Qucensland. Qld. Australia 4067:

[^16]: * Tustilut de Zoologic, Universitẻ de Neuchâtel, Suisse.

 1 Denartment of Zoology, University of Adclaide, Adelside. S Anst. 5000

[^17]: 1 One of us iG.D.j. having examined litee syatypey of P. interpredia, has not found any hace of a Hharyax.

[^18]:
 ster and Wollesng (tf. Dubois 1970, fise 699-700).
 II In rhmionlo snreophifa Sanclats 1957, the pusterior teskis is "characteristically bilubed". The fure busly is "lypricalty" Innger than tha hindlandy, and the tribocylic orean "is uswally hetween onequarier and one-third of the lemull ut the antcrior ecentert".

[^19]: - fuccerreq uriginal spolling balingsurus.

