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Somewhat in the nature of an experiment, this hook has been designed especially for college
students who are prospective teachers of mathematics. It serves not only to focus their attentic
upon the geometrical tool and the precise manner in which it is used, but also furnishes them wit
abundant material that can and should be introduced into high school work.

The subject matter presented here requires no preliminary knowledge of mathematics in advanc
of that acquired in the standard freshman courses of Algebra, Trigonometry, and Analytics. Few
difficulties will be encountered even if the book is studied at the freshman level.

Since there are already a number of excellent available texts dealing with modem geometry ,

this subject has been sacrificed to a large extent to make room for material believed to be more
adaptable to the needs of the prospective teacher.

The arrangement is based upon the three-hour-per-week class. It is suggested that two of
these hours be spent in the classroom, the third in the laboratory. Thus, at the average rate of
two plates per week, the material will be found ample for a year course. Since, generally, any
section is independent of the others, the course can be arranged to meet the desires of the group

s provided for a.

should make free u

eof the book can be realized only by some thought and much labor. The student
se of color in completing the drawings. The essential role of some vital parts

of a complicated configuration is more clearly presented if they appear in color. A supplementary
notebook with ring binder will bo found useful in keeping models and notes that cannot be
inserted herein.

Much depends upon the instructor. It should be clear that there is no attempt t(
mechanical perfection on the part of the student in the art of drafting. Instead, it
that this will bring a more thorough and sympathetic understanding of geometrical stn
completing drawings and making suggested models, it is hoped that the
feeling of being co-author. In the end. he will have a volume contair
creative efforts, a volume that may serve him later as a source of supplementary material

'ill develop the



The equipment for the 1 The following should \

pads).Thin colored art paper (standard

Thin tracing paper having a wax body or fii

Straightedge, Compasses, and Dividers.

Colored poster-type cardboard about 12 ply

IJrolot punch.

Sfcrolete, #2 and #3-

Although the material of this book was gathered fro

vice throughout!

a Konstruktione:n, Leipzig (1906) (Out of print),

iques, Paris (1924)

Hudson, H. P. : Kuler * Compasses, London, (1916).

Kempo, A. B. : How to Draw a Straight Line, New York (l877) (Out of print and rare).

Kow, T. S. : Geometrical ExerciBss in Paper Folding, Madras (1893) (translated by Bern

Smith, Chicago, 1901) (Out of print).

The author wishes

for compiling the index

matter of publication.

thank Professor E. H. C. Hildebrandt for many suggestions, Dorothy Blanchard

d reading proof, and George Guttner for his courteous cooperation in the
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ent features and important conations axe listed here in order that tb

ugh this broad view a general understanding of the concepts discussed h

Plane Bucliderai constructions are those which may he effected by straightedge end compasses.

Sometimes simple, sometimes complicated, they are all, nevertheless, composed of straight lines

and circles. The ultimata object of any such construction is the location of points which are

found as the intersection of two lines, a line and a circle, or two circles. Accordingly, any

equivalent to the straightedge and compasses if it is capable
tool (such a

of ineking th e fundamental const

e Suclidean constructions have for

roots are at most quadratic irrationalities,

not higher than t

called quadratic.

of degre
ieir algebraic interpretatic

For the oast part, such eq

s*) viiich will produce such a

o this classification fall the unassisted Compasses, the Parallel Euler,

the Marked Holer, the system of Straightedge and Fixed Circle, etc. Those tools which will

effect constructions equivalent to equations of degree as high as the fourth axe called quartic.

These include the Marked Euler, the Compasses and Fixed Conic, the Carpenter's Square, the

The importance of the discussion of Cubics end Quartics preliminary to the analysis of

Higher Tools cannot be overemphasized. It is shown that any quartic construction is reducible

by means of straightedge and compasses either to the trisection of a particular angle or to

the cube root of a certain segment length. The two ancient problems of Trisection and

Duplication of a Cube thus appear in roles of fresh importance.

Plane linkages (compound compasses) are very complex tools. TheiT appearance in the midst

of elementary tools is excused by an anticipation of normal curiosity. Having just completed a

section devoted to straightedge constructions, it is only natural to speculate upon the

existence of such an instrument. To say we build one straightedge upon mother as a guide is

to beg the question. A mechanical construction of a straight line or straightedge comes

naturally only through the medium of plane jointed links in the mannc

ond Kempe. In view of the fact that the simplest linkages producing

involving five bars, the tine-honored straightedge

icellier, Hart,

disturbingly complex.

Two unusual designations appearing frequently throughout the book axe (l) the use of the

contraction "hypo" (for hypothetical) to indicate a locus which is defined but may not be

drawni and (2) the notation A(B) to indicate the circle with center A and radius AB.

The author does not wish to overburden the student by insisting upon the faithful

adherence to any particular tool. For example, the location of the intersections of two

hypocircles by the Parallel Huler requires that certain perpendiculars be established. Having

already erected perpendiculars in a preliminary figure, the student may conscientiously exchange

the Parallel Huler for a more adaptable tool. Such practice, moreover, would avoid many minor

constructional elements that might obscure main issues and objectives.

This book is presented with the sincere hope that from it a wealth of pleasure and

satisfaction may be derived. Intellectual profit will then accumulate without apparent effort.



The Stmightedge i:

THE STRAIGHTEDGE AND 1-PDERN COMPASSES

(Modern Geometry)

instrument used to establish the straight . Lne passing through two give

o draw the circle with given center and give

n position" - that is, with an extremity at the center - w

postulate the ability to "carry" this radius by the compasses into position. This is, in effect

absorbing the principle of the Dividers into the compasses.

These two tools and t]

to erect any sort of
i

the fact that the pro.

elaborate a construction ma;

1, two 1

sstricted uses to which they are put seem scanty equipment indeed

structure worth the effort. This makes all the more surprising

intricate, elaborate, and certainly most valuable.

may be, it is but the location of points found as the intersectio
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CO. dTRUCTIONAX POSSIBILITIES OF STRAIGHTEDGE & COMPASSES: PLATE 1

1 constructions of plane euclidean geometry are but the location of points either as the inter-

of two lines or a line and a circle, or two circles. WE SHALL PROVE THAT, UDDER THE TWO RULES

GOiretaKG THE USE OF ' THE STRAIGHTEDGE AND COMPASSES, THESE CONSTRUCTIONS CONSIST ONLY OF THE RATIONAL

OPERATIONS OF ADDITION, SUBTRACTION, DIVISION, AND MULTIPLICATION TOGETHER WITH THE IRRATIONAL OPERA-

TION OF THE EXTRACTION OF A SQUARE ROOT OF POSSESSED GEOMETRIC LENGTHS

.

le only possible ones in straightedge and com-

CASE I: Fig. 1. When given four points determining two lines we may draw these 11

nine- their intersections with two other arbitrarily chosen perpendicular lines used

With these intercepts known, the equations of the lines are

:

x/ax + y/hi = 1
' and x/a2 + y/b2 = 1

i the a's and b'a are con&tructible lengths. The coordinates of their intersection point are the

.taneoue solutions:

x = aia2 (b2
- b^Aa^ - agb-L), y « b^g^ - a2)/( aib2 - a^)

.

Each fraction here represents a series of constructions, possible by the methods shown in Figures It, 5j

6, 7. Therefore, all line constructions lead to nothing more than the rational operations of addition,

subtraction, multiplication, and division of lengths .

CASE II: Fig. 2. A given line and a given circle have for equations:

x/a+y/b=l and, (x - h)
2 + (y - k) 2 = r2 .

find their intersections, eliminate first x, then y, obtaining

Ax2 +iBx + C = 0, Lr2 +My+N=0,

rejepnstructible by Ilgu?*. h, 5, 6, 7- The solutions , x = [-B ±X/(B
2

- UAC)]/2A

t general of these quadratics involves, In addition to the rational operationa ,

the irrational operation of extraction of square roots, but nothing f—-^

CASE III: Fig. 3. The intersection of two given circles Is the same as the intersection of their

„™mon chord and one of the circles. Thus, since the coefficients in the equation of the chord are ra-

tional functions of those in the' equation of the circles, this case reduces immediately to II, and in-

duces no new operation .

We shall now show that these five operations are possible by straightedge and compasseB and give

l of possessed lengths.

Figs. 6, 7 give methods of multiplying and dividing the lengths a and b. The construction in

her case is th,at of similar triangles, involving the construction of parallel lines.

Ig. 8. This exhibits the construction for the square root of a length a. Describe the circle on

.) as diameter and erect the perpendicular at the Junction point. The length x intercepted by the

,/a. Compare similar triangles:



FUffDAHBITAL THJDE2.S

The following theorems correspond to those selected by the National Committee on Mathematical

Requirements as of greatest importance and listed by then as fundamental . These are given to the

student in order for him to bridge the gap more aasily Between high school geometry and the materials of

this course. Locate the following theorems in a Standard text pad list the page references opposite each.

If ti d the i: Dectively to two sides

e equal respectively to three sides of the other the

use and a leg of one equal respectively to the hypot

equal, the angles opposite these s:

sector of the line

. If t

of points equally distant fro

aes are cut by a transversal s

versal, the alternate Interior

that a pair of alternate inte

lines are parallel.

the sum of the angles of a trirogle is a straight cngla. (l80°).

A parallelogram is divided into two congruent triangles by a diagonal,

12. If the opposite sides of a quadrilateral are equal, the figure is a parallelogram.

13. If two sides of a quadrilateral are equal and parallel, the figure is a parallelogram,

ansversal , they cut off equal segments

15. The area of a parallelogram is equal to the product of the base ana altitude.

16. The area of a triangle is equal to one half the product of its base and altitude.

17. The area of a trapezoid is equal to one half the product of its altitude and the sum of its bases.

18. The area of a regular polygon is equal to one-half tile product of its apothem aod its perimeter,

rsects two sides of a triangle and is parallel to the third side, it divides

20. If a line divides two sides of a triangle proportionally, it is parallel t

21. The segments cut off on two transversals by ferae or more parallel lines a

22. Two triangles -are similar if they have two angles of one equal respective!



HINDAMEHTAL THEOffiMS

Two triangles are similar if aa angle of one is equal to si1 angle of the other and the including

sides are proportional.

Two triangles are similar if their corresponding sides are proportional

.

If two chords intersect in a o .rcle v the product of the parts of one is equal to the product of

ports of the other.

. The perimeters of two similar polygons

a be divided into two triangles which a

as any two corresponding sides.

similar and similarly placed, the poly-

polygons axe similar, they can h

in angle of a triangle

adjacent sides.

5 the opposite side ii

a similar triangles a

o similar polygons ar

he squares of any two corresponding sides,

e squares of any two corresponding sides,

the hypotenus

two triangles each similar t<

square on the hypotenuse equals

other.

of the o

tral angles have equal arcs,

, equal arcs have equal central angles,

, two central angles are proportional to their a

, equal chords have equal arcs,

3 are equal their chords are equal.

., In the same circle or in equal circ

.. In the seme circle or in equal circles,

i. In the same circle or in equal circ

'. In the same circle or in equal circ

I, In the same circle or in equal circles,

I, A diameter perpendicular to a chord bisects the chord and its arc.

I. A diameter which bisects a chord (not a diameter) is perpendicular to it.

.„ A tangent to a circle at a given point is perpendicular to the radius drawn to that point

'., A line perpendicular to a radius at its outer extremity is tangent to the circle.

I, In the same circle or in equal circles, equal chords are equally distant from the center.

[, In the same circle or in equal circles, chords which are equally distant from the center

>, An inscribed angle is measured by one-half its arc.

i. Angles inscribed in the same segment are equal.

'. The area of a circle

. The circumference of

3 one half the pro

s equal to the pro

s and its circumference.



5OTDAMBHIAL CQBSTHJCTICiJS

The following is a list selected by the National Committee on Mathematical Requirements as

fundamental constructions. Make these twenty constructions, using the straightedge and compasses

as indicated at the beginning of tiiis section. Place whatever explanatory notes are necessary in

FIG. 1, Bisect the line segment and draw its perpendicular bisector

FIG. 2. Bisect the given angle.

FIG. 3. Construct the perpendicular to the given line through the given point,

. 4. Construct an angle at P equal to the given angle.

FIG. 5. Draw the line parallel to the given lino through the given point.

FIG. 6, Cbnstru

FIG. 7. Construct a triangle, given two angles end. the included sido.

FIG. 8. Construct a triangle, given two sides, a, b, end the included angle.

FIG. 9. Divide the segment KB into parts proportional to the segments a, b.

FIG.10. Give
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Construct the t

FUNDAMENTAL CONSTRUCTIONS

e in the given triangle.

agents to the given circle from the external point P.

ngent to the circle through the point P on the circle.

Construct a fourth proportional to the three given segments a, b, c

Construct a mean proportional between the two given segments a, b.

Construct a polygon similiar to the given polygon.

Construct a. triangle with, area equal to that of the given polygon.

F REFERENCE PAGES FROM A STANDARD TEXT OH THTSE CMSTRUCUCNSi

TITLE AND DATE OF REFERENCE:
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THEOBEMS OF MENELAUS & CEVA

Of prime importance to much that will follow throughout the book are the theorems of 5fenelaus sad Ceva.

FIG. 1. The Theorem- of Menelaust ANY LINE CUTS THE SIXES (prolonged if necessary) OF A TRIANGLE SO

THAT THE PRODUCT OF THREE NONtADJACENT SEGMENTS INTO WHICH THE SIDES AHE SEPARATED EQUALS THE PRODUCT

OF THE OTHER THBEE NON-ADJACENT SEGMENTS. }

Dropping perpendiculars from the

triangles:

BA/EB= xjy

f the triangle to the intersecting line, we havi

QS/QA=z/x WJSC=vh.

from similar

(AR)(QC)(TB) = (BE)(AQ)(TC) i
«

Fig. 2. The Theorem of CeraJ IF LINES AHE DRAM FROM TEE VERTICES OF A GIVEN TRIANGLE TO AN ARBITRARY

POINT 0, THEN THE PRODUCT OF THREE NON-ADJACENT SEGMENTS INTO WHICH THE SIDES ARE SEPARATED IS EQUAL TO

THE PBODUCT OF THE REMAINING NONODJACEHT SEGMENTS. THAT ISt

(AR)(BP)(CQ) = -(ER)(CP)(AQ).

B and BOQ i: 3nd Y, x tively.

PB/PC = AT/AX; ,QP/QA= EC/AY;

Multiplying these together establishes the theorem. State and prov

As applications of these theorems 6* their converses, pro

FIG. 3. The medians of a triangle meet in a point (the Centroid).

FIG. 4. The altitudes of a triangle meet in a point (the Orthocenter) ,

FIG, 5, The exterior angle bisectors meet the opposite sides of a triangle

(in connection, see Orthio Triangle, Plate 8,3).

e oollinea* points.





SBELITUBE OF CIRCLES

FIG. 1. In the two given circles, (^(rj) and 2(r2):
we draw parallel diameters. The lines joining

the extremities of these diameters meet the line of centers in the points I end E. These points

are the Internal and external centers of similitude of the two circles . Let the distance
X 2=

k.

How by similar triangles,

(O^/r^ (02l)/r2
= (0l

I-»-0
2
l)/(r1+ r

2
) * k/(r

1
+ r,,) = constant.

s independent of the position of the

M/ij. a (<y)/^S (0
X
E - 0^)/^ - r

2
) - k/(n - r

2
) = constant.

kewise a fixed point. Motlce that these centers of similitude are the intersection of

nts. Discuss the case when r = r .

FIG, 2. Draw line segments from P to the given circle* Uhat is the locus of t

segments? (Hint! Compare similar triangles).

FIG, 3. Show that lines joining P, a po

angles at P which are formed by the line

and E bisect the

FIG, 4. Construct the three external centers of similitude of the three given circles. Sb

these three points lie on a straight line. (Hint: Use the theorem of Menelaus). Notice «

pair of incenters of similitude is collinear with the other excenter of similitude,-
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PO'ffER OF A FOIST AND BADICAL AXIS

FIG. 1. We now establish a very important and fundamental theorem of geometry, hereafter described as

the Secant Property of the Circle. From a point P lines are drawn to intersect the given <*r<*e -

Since the arc subtended by ^ ACE plus that subtended by Z. ABD is the entire circumference, these

angles are supplementary end thus

Z. acd = *£m>.

Triangles PCA and PBD are therefore similar with the proportions

PB/PC 3 PD/PA or

Thus if lines mmwmMk fixed point to intersect a fixed cibcle, the pboeuct of the distances

TSOim FIXED POINT TO THE POINTS OF INTEBSECTION OF EACH LINE AND CIHCLE IS CONSTANT.

(PB)(PA) = (PD)(PC).

FIG. 2. The constant is easily evaluated by drawing the

(PO - r)(PO + r) * p, a constant, or

e through P and the center of the circle.

(K))
2

- r
2
x P.

e quantityp is caUed the^ of the point P with respect to the fixed circ^H <»*££
tslde. on , or inside the circle the corresponding power is positive, zero, or ne

fi
an a t?

FIG. 3. Let us look for the locus of all p

O^r^, 2
(r

2
). If P is any such point, If

ts P that have equal power with respect to two oir(

M be dropped perpendicular to

CO,*)
2 - rx

2 = (0.P)
2 - r

2

2
or (B*)

2+ (0.M)
2 - ** - (™)

2 + (0^
2

- ,/.

Thus (0
X
M)

2
- (0

2
M)

2 = (0^ - 0^(0^ + 0^) * t* - **.

But since (0.M+ Oft) and r
2

. - r
2
2

are constants, then (C^M - 0^) must therefore be a constant.

If two quantities Lve their sum and difference boifc constants they are themselves «*->£. *»*

ingly. 0.M is constant and thus M is a fixed point for any position of P. The locus of F therefore

is a straight line perpendicular to the line of centers. Oft. It is called the Eadieal Axis of the

two circles.

FIG. 4. Show that for all points on the radical axis, the tangent lengths drawn to the circles are

equal. Notice that if the circles intersect the Eadieal Axis is their common chord.

HO. 5. For three given circles there are three radical axes. Two of them intersect at the point X,

This point accordingly has equal powers with respect to the circles Oj, and
2

as well as to 0, -'

that is, with respect to all three. It is called the Eadieal Center, Th- if,

to CHO is the radical axis of the two non-intersecting circles. This ir

ing the radical axis of two non-intersecting circles. Any circle such as Oj will produce two Hn<

intersecting on the radical axis of the two given circles.

method of eonstruct-

s of the three circles, using only one auxiliary circle. How draw

given circles. (Notel Two circles «

xe perpendicular.
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JHE HIMWOIHT CIBCLE - 3UL5R LIKE - OBTHOCKiTHIC SETS

FIG. 1. Locate the Orthocenter (intersection of altitudes)!

perpendicular bisectors of sides); and the Centroid (intersec

lie on a line called the Buler Line . (Johnson p.l65)

n of medians) , These three point

lides; the midpoints of segmenIG.2. Locate the midpoints of the

ertices; and the feet of altitudes

bat of the circumcircle and whose

Johnson p. 195).

FIG.3. Locate the orthocenter H. The four points, (the given vertices and the orthocenter H)

form what is called an orthocentric set. Show that the four triangles formed from this (or any)

orthocentric set all have the seme Lane-"Foint circle.

Draw the circumcircle and Hine-Point Circle. Verify that their internal a

of similitude are respectively the centroid and orthocenter of the given tr

np.197).

FIG. 5. Produce the sides of the Orthic Triangle (lines joining the feet of the altitudes)

to meet the opposite sides of the given triangle. The three points thus formed lie on a line

(For proof, Bee Hate 26, 5).





Lard ball makes equal angles at a reflecting

s possible.

e shortest path from P to the line and then to Q is found by reflecting Q (or P) in

d then joining the reflected point to P (or Q). Make the construction.

FIG. 3. The Triangle of least perimeter that may be insci

triangle XYZ. This triangle makes equal angles with the s

CZA are both right triangles and thus

*£. HBZ = 90° -A

rise, C, Y, H, X 1

and BXH are right angle*,

t circle, £- ZBH and

^ ZXH intercept the same arc and thus are equal. In the second circle, 4£KXY a

equal . Accordingly,

s THE ALTITUDES OF A TBIAHGLE BISECT THE AHGLES OF ITS OBTHIC TBIANGLE. (Sehwars, p. 345) •

FIG. 4. Swimmers are to jump off a circular bore ft.

r starting point. How would you pick the shortest path to win the race? (Hin

nt to the circle that is perpendicular to the line joining center and intersec

FIG. 5. The billiard ball P is to touch the four s-

Draw the path. (Hint; Eeflect P successively in t

adjacent cushions! On three?

FIG. 6. The billiard ball F Is to touch all sides of the triangular table

original position. That paths are possible?

FIG. 7. The Parabola is a curve such that any billiard ball s

the aids of symmetry will pass through a fixed point F, called

along another parallel to the axis. List some properties of t

FIG. 8. If the table is Elliptical , there ore two foci

along the line PF
2 it will pass through ^ after reflect

through the foei.





SEGUIAR POL'TOONS

of regular polygons can be carried on conveniently if u

umbers . Such numbers are of the form :

epresents the quantity: J (-1) . (i =

e shall agree to plot the point (x,y) <

he number z= x +iy.

-1, i3 = ~-i, lA= 1. *

a set of perpendicular a

:.) Tor pictorial purposes

FIG . j|. A surprising feal

Aich yCx2 + y
2
) = 1. »» inclination 6 i

x =cose, y =sinG i a

jse unit complex number

sin2G)(cose +i-sin6)= <

I z
n= (cos© + i-sin»)n = cos(nO) + i-sln(n6). I

s of this should be apparent! If z is such a number wi,th inclination 6,
1 meaning of this should be apparent!

then°z
2

, *3, A etc., axe all points upon the unit circle

respectively. It is just this property that makes them pa

represent points evenly distributed around the circle and '

By setting z
n= 1 we demand n such points with one of t.

Bepresentative Equation of a regular polygon of n sides* •

This Hepresentative Equation can always b

(z-l) (z
n-1 + z

11^ +. . . z +1) = 0.

to zero gives one vertex. The other (n-l) vertices are given by the roots

t it will not be necessary to solve this equation of degree (n-l). Tor. since

g by z
11
) as l/z

11 - 1 =0, it is obvious t

oot. Now, as may" b<

The first factor equ

of the second factor.

J? - 1 = can be rewritten (div

but its recriprocal l/z is also

sful to us since they

Lees of regular polygons,

it point. It is then the

s multiplication!verified

l/z
E * 1/(oobK» +l.SinK0) = oosi» - i.sinK©.

since l/z is the reflection of z in the line of real i

all of our polygons will be symmetrical to this line and the resulting c

lightened.

FIG. 2 . Since z+ l/z is a real number (the double of the

built on 0, z, and l/z) we may employ the substitution!

the diagonal c

dderably

the rhombus

rmzEEi from which* z
2
+ 2 + l/z2= 4^1 «

3 +3- +3/* +V*3 =

in order to aid In the algebraic solution of any Bepresentative Equation. If a value x •»»•**

mined and laid off. the corresponding vertex may be located by erecting the ordinate to meet

In the following, the student is required to solve each Representative Equation for z using these

values in the construction of the polygons, end calculate the length of a side, S. of each.

FIG. 4. The Triangle! z3 - 1 = p. s
3
= _ — *

. Notice that this equation includes





The Pentagon has for Hepresentative Equation!

Writing the second factor as

z
2
+ z + 1 + l/z + l/z

2
= 0,

we raake the substitution: z + l/z = 2x (see Plate 9,3)

4x
2
+ 2x - 1 = 0.

whose roots: x = (-1 + S/4, ("1 - S/A are the abscissas of

From these values, calculate the length of a side!

FIG. 1. Given the unit circle. Describe an arc with center at M:(l/2, 0) and radius 14., cutting the

X-axis in B. The length of its chord HB is equal to S , a side of the Pentagon. Why?

FIG. 2. Given the unit circle. The circle tp? + 4y
2
+ 2x - 1 = has its center at Hi (-l/4, 0) and

passes through Kl (0, 1/2). The tangents to this circle at the points where it cuts tho X-axis pass

through the vertices of the Pentagon. Why!

FIG. 3- The point El (0. 1/2) is joined to Pi (l. 0) . The bisector of /L CBP^ meets OP in the

abscissa of P , one vertex of the Pentagon. Establish this fact.

[Hint! tan 29 = 2tan 6/(l - tan
2
e)3





The Heptagon . The Representative Equation for a regular 7-sided polygon is:

z
7 -l=(z-l)(z

6
+ z

5 + . . . + l) = 0.

The second factor: z
3 + z + z + 1 + l/z + l/z

2
+ l/z

3 = 0, becomes, on substituting z + l/z = x:

x3 + x
2

- 2x. 1 = o.

integer

of pair

-1 s

that no other integer could possibly satisfy the equality. Thus by the foregoing t

constructible root (since neither +1 nor -1 satisfies the equation) an* the Heyt;

uctible by straightedge and compasses.

FIG. 1. A simple straightedge and compasses appro:

One-half the side of an equilateral triangle is si;

a (l80°/7) = 0.86774 C

:lops from the following.

) . The side of the Heptagon

part is committed in

i = 0.86602 (ap;

a? less ths

taking the side of the Heptagon as half that of the Triangle. 1

a (9-sides) is represented by z - 1 = (z
3 - l)(z + z

3 + l) = 0, the latter factor of which

Jith straightedge and compass

on substituting z + l/z = x. Here is another instance of an
the Enneagon is therefore not constructible. Is it possible t

an anglo of 120°?

Regular polygons of 11 and 13 sides are also not constructible. Is the 14-gon7 Give the lengths of a
side of the Decagon (10) and of the Dodecagon (l2)s

FIG. 2. °agon (15-gon) is represented by

- 1=(: DO
12 . . 10

z
J + l) = (z

:3 -l)(z- + z' + l)=0.

From an inspection of these factors, it is clear that its vertices include those of both the Triangle

and Pentagon, The central angle subtended by each side is 24°. The Triangle and Pentagon are constructed
with <£ T0A = 120 , ^L P0A = 144°. Their difference, ^ POT is 24° and thus chord PT is the side of

the regular Pentedocagon.

FIG. 3. Surprising indeed is the fact that the regular 17-gon can also be constructed by straightedge and
compasses. The construction is given without proof.! Draw the perpendicular radii 0A = 0B = 1. Upon QB

nark the point D:(0, -l/4). With two bisections locate the point E on 0A such that ^L ODE = <C (0DA)/4.

Construct ^ EDH = 45 . Draw the circle with AH as diameter meeting the line 0B in K. With E as center

and EK as radius draw the circle meeting AA' in L and M. Perpendiculars to AA' at L and M give the

vertices P and P of the regular 17-gon, A side may then be found by bisecting «£. P OF obtaining the

point P .
J 5 5 3

I See Richmond.
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Polygons of 2*. 2 .3. 2 -5. 2 .15 sides. We have shown

sides are constructible by straightedge and compasses. Sin<

angle, it follows that regular polygons of 6, 8, 10, 12, 16\

Gauss in l801 showed that there wa

of whose sides was a prime express

regular polygons of 3, 4i 5. 15

ools are capable of bisecting any

, sides are construct ible in the

sstructed was well known even to the early Greeks

3 totally unsuspected for about two thousand year

snsrkablo set of such constructible polygons: those the number

+ 1.

Now many years before the time of Gauss, Format had considered numbers of this type a!

p ware given any of the values 0, 1, 2, 3. 4. then the resulting value N was indeed a

unexplained reason, he did not find out anything concerning

know now that if p = 5, S

1 that if

r of H. Ther

of N for p greater than

wZw.W e^^is numbcrU divisible by. Ml. The labor involved in

;umed hours and perhaps **?*' If the reader iS somswiat ""?„ ^
find the value of H when p = 6, that is, H = ?* + 1, and then try

ine. An idea of the magnitude of this number can be gotten from thi

is game am his grateful king. As a reward, the king agreed to gi

first square on the board, two grains for the second, gour for tl

jer each time. The total number of grains is exactly 2 - 1. Us

size of a single grain, a standard pint would contain 9,216

Ld amount to 31.274.997.412.255 bushels. This is

the year 1935.

y of the inventor of the

re the man one grain of wheat for

3 third, and so on, doubling the

s, a gallon 73,728, and the total

;ely 7 ,000 times the world production

e has been able

e value

tigations of these Terr

alue of p greater than
nitely k

5. 6, 7, 8. 9. 11. 12. 18. 23, 36, 73

the corresponding value of S is composite - that is, divisible by some number and thus not a prune.

Nothing is known about the nature of I for p . 10, l3l 14. etc. That human beings am tfceir machines

(see Lohmer's factor machine at Lehign) are capable 'of calculating and factoring such huge «*•«•
™. ^ i- * oC *„,. i„,fanrp is composed of more than 20 trillion

borders on the miraculous. The number H tor p = 36, for instance, is composes oi ^ ^^

city of the United States.
BritanniCi auld overflow every library in every t

A general constructibility rule, gii

The only regular polygons that

proof by Gauss, follows:

;ted by straightedge and compasse those the n

the form!

H=2n.(2
2a

+ 1)(2
2

+1)(2
2

+1) . . .

i is itself a prime and any one of the lettered exponents may bo

Kuraber of Constructible Polygons. The reader has perhaps

of polygons which are constructible by straightedge and compi

non-constructible ones. For H between 100 and 300, t

to 1,000 sides, there are only 15 mores and from 1,0C

chance of naming at random a constructible polygon oi

L by this time that the totality

_ „ small compared to the totality of

:e only 13 constructible polygons-, from 300

,000,000 sides, only 154 altogether. The



BEGUIAH POLYGONS

Those constructible polygons, the number of whose sides is less than 100, are listed in the follow

table.

3 4 5 6 8 10

12 15 16 17 20

24 30

32 34 40

48

51 6o

64 68

8o

85

96

L. E. Dickson has given formulas by means of which the total number of constructive polygons below

(2 + l) sides can be determined:

If x is less than 32, the number of construotible polygons is

,(X -l)(* + 2)/2;

If x is greater than 32 but less than 128, the number of such polygons is

(32X-497).

Make a list of the construotible polygons with number of sides between 100 and 300 in a table 'below.



DISSECTION OF PLANE POLYGONS

Among the demands of Euclid we find that Polygons, particularly triangles, must he proved congruent

by superposition . Only after this is done initially do we notice that congruence may be estab]

by inference. For the purposes of this »ectlon we shall assume the ability ti

any straight line that has been previously constructed

3 transform ii

straightedge and compasses.

e methods indicated here can be obtained only by making models, preferably

to Illustrate. Even to someone little acquainted with geometry, the jig-saw

game of fitting together the pieces to form the polygons of equal area will prove diverting and stlm

ulating. Plaoe your models in envelopes for future reference. Models made of masonite with the

pieces joined by small strap hinges make excellent Illustrations. For cardboard models, use a

photo trimmer.

Grumette, M.

Hart, H.

Jackson, W. H,

Taylor, H. M.

Loomis, E. S,

Perigal, H.

Yates, E. C.
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DISSECTION OF PLANE BM3CNS

a the scalane triangle ABC. A cut Is made through the midpoints X

s will fit together to form a parallelogram in two ways, having, o

Hhy is XZ parallel and equal to half AC?

scalene triangle ABC is cut along the 1:

These pieces are

FIG 3. The scalene triangle ABC is cut into four pieces along the line ZY, where I and Z are t e

midpoints of AC and AB; along AH, the perpendicular to YZ, and along BK. where IC is the perpendicular

hisector of BC. Fit these pieces together to form successively a parallelogra

right triangle. Explain.

FIG. 4. rhe lines joining in order the midpoints of the sides of any. quadrilateral form a par,

gram. Tfcy? Find the area of this parallelogram and thus show that the area of any quadrilate.

half the product of its diagonals and the sine of their included angle.

If cuts are made along three of these lines as shown, the four pieces

a parallelogram with area equal to that of the quadrilateral. Espial]

FIG 5 . From the preceding discussion we find a method of dissecting any quadrilateral into four

pieces which will form a triangle. From the midpoint of any side, cut to the midpoints of the other

three. Bearrange

FIG. 6. Here is shown i

joining the midpoints o

third cut is from F to

lother method of reducing quadrilateral 1

through D parallel to B(

a triangle. Cut along the line

obtaining the point F. The

ssible failure of this method.





THE THEOREM OF PYTHAGORAS

FIG. 1. Tto square of side (a + t) rray be dissected into the four right triangles with legs a an

as shown and the inner square of side c. Thus, since the four triangles form two rectangles of

(a + b) = 2ab + c or a + b = c '

,

the Theorem of Pythagoras .

The Theorem of Pythagoras may be demonstrated by the following dis

ide c. Cut it into the four right triangles APE, ALB, CED, and CMB

central square then has its side equal to (a - b)

.

FIG. 3. From the point of view of dissection, the Theorem of Pythagoras is a clue to the process of

adding two squares to make one . To dissect and add, place the given squares, ABCD and AEFO, so that

two of their sides form the legs of a right triangle as shown. Vakc a cut in the larger square from

B perpendicular to the hypotenuse followed by the cut perpendicular to that as shown. In the smaller

to the hypotenuse. These five; pieces will form a single square.

extremely simple addition is the following elegant dissection. Place the

given squares so that a right triangle is formed as shown. Cut through the center of the larger

re along lines parallel and perpendicular to the hypotenuse. This produces four congruent pieces

h may be reassembled at the corners of the sum-square leaving a center hole into which the

ler square may be fitted. Explain.





FIG. 1. To i ansfor.

DISSECTION OF PLANE POLYGONS

lelogiBi *^le

ogram of specified shape . Suppose the two sides of the required parallelogram are x an

point X in BC such that AX = x; then construct DY = y. Cuts are made along AX and DT t

which will form the required parallelogram. For, no matter where X is selected en BC,

fixed base and constant altitude equal to that of the given parallelogram. Thus its ar

the parallelogram and accordingly,

, Cut along AX and X

given parallelogram t

side. The line AX produced to meet DC in W

triangle ATZ equals triangle XWC. Explain.

is y(ah). We must thus construct a c

nal between a and b. Accordingly, locate the point K so that MB eq

construct a semicircle. Extend CD to P. Then PC = 7(ab). Swing t

the point X. Cut from X to C, then from B perpendiculai

FIG. 4. A famous dissection problem is that c

equal area. Let the triangle have side equal

equilateral triangle i

pendicular to ZP. Thes

(and that of the required square) :

if AB and AC respectively. With a constructed length % as radius, describi

cuts BC in P. Locate Q so that PQ = 1. Cut along ZP, then from T and Q

1 four pieces form the square. Why?

FIG. 5. A reversion of the dissection of Fig. 4 is the more general reduction of a quadrilateral ABCD to

a specified triangle. Let X. T, Z, W be the midpoints of tho sides. The parallelogram XYZW is half the

area of the given quadrilateral. Thus, for any point P on Xtf, triangle FYZ is one-fourth the area of the

quadrilateral. If P be selected such that PY and PZ are equal, cuts along XW, PY, and PZ will reduce the

quadrilateral to an isosceles triangle , whose base is the length of the diagonal HD. Explain.

angle 8. Cut along FQ v

then along AB' where HE 1

triangle with the same 1

re P and Q arc the midpoints of

s parallel to BX and E is the mi

e and specified angle 8, Explai

f Fig, 6 apply to the reduc

e base, AC, and a specified

long BX whore angle BXP = 9,

ese four pieces form the

possibility of the dissectic





SECTION III

THE COMPASSES

(Geometry of Kaschero

y be effected "by a

It should be noted that although the straig

alone, yet an infinitude of arbitrary point

lection of two such hypo-lin

solely by the compasses. The fact that it

is established by finding the intersection

ni, a protege of Napoleon, in 1797- Hecent

cipated about one hundred years by Georg Mohr.

line as a whole cannot be constructed by compasses

ay be located upon it. It is remarkable indeed that the

given only by two pairs of points, may be determined

capable of producing all plane euclidean constructions

3. two hypo-lines

(which is immedia

(Plate 18)

(Plate 18).
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THE COMPASSES

FIG. 1. With a single npening of the compasses draw a set of circles whose inters

a rectangular network of pnfot...

f P in the hypo-line* AB. (Hints Use A, B as centers).

. 3- Construct other arbitrarily selected points on the hypo-line AB. (Hint: Sel<

point P not on the line and reflect. Then use arbitrary radii)

.

IG. 4. Find the point C collinear with A and B such that AB = BC. (Hint! Recall the Hexagon).

members of the family of circles all of which pass through A

rford "Hypothetical".





iwmsiw

he interpretation of a fundamental study of plane geom-

FIG. 1. Given ta a apart. Two other points, U, V, are in-

they aro oollinear w

(00) (OT) = (OA)
2
=

This idea of inverse points may be enlarged to include inverse curves! If V tr

a specified curve, its inverse U travels along a corresponding curve, and the
;

traces the circle with radius a. We shall call this circlo the base circle .
I

points that are inverse to themselves*

If we take the point as the origin of a system of polar coordin

as polar axis so that 00 = r, 0V = s, then

FIG. 3. To find the e of a given point V with respect to the circle 0(a) . draw an arc w

g through and meeting the bass circle in P

of radius a. Those meet; at and again at \

e lines from P to t 0, and V. Triangles CRT and. PV0 ore isosceles and

• have a common base angle POT = 0. Thus the proportion:

. The base circle is given with radius 1. Using its cent

(which passes through the pole)i 4r = 3.cos9 . In

and give the polar equation of the inverse figure.

n the lines tan© = E I

s and give their inverse equations.





FIG. 1. Given the points A, B. locate th

invert in A(b)1) How many circles

How many radii? __.

What statement can you make regarding the inverse of any circle orthongal to the

. 3 . Plot points upon the Lemniscate r = cos2S. Notice that the curve is tangent to

tho unit base circle. Locate points upon the inverse of this curve a"d give its polar

and rectangular equations:

In the following use r = 1 as tho base circle!

FIG. 4. Plot points upon the Limacon and its inverse for a = 1, b = l/2. Identify,

FIG. 5. Plot points upon the Limacon and i

FIG. 6. Plot points upon the Limacon and its inverse for a = 1

• A(B) is the circle with center A passing through B.





THE COMPASSES

Pints, A. B. C . With c

common chord, 3C' , obtaining poir

circle A(b), obtaining 0. This is the center <

reflection of B in AO, is the remaining intersi

have then, AB = A

e hypo-line AB -ml the given circle, simply r

r in AB and with thu

the given circle. Th

ions are the desired j>

FIG. 3. To determine the intersection of b e pairs of points A,B;

irele of inversion, both lines nay bi

' inversion. These circles intersect in one further

e desired intersection of the hypo-lines. Ifeke the

bs As discussed in preceding plates, the constructions possible by straightedge and
ses are but combinations of the three fundamental oness the intersections of two circles

;

tersections of a circle and a line ; and the intersection of two lines. Wo have shown by
nstructions of this plate that the plane geometry of Euclid may be executed by means of th





THE COMPASSES

Construct the vertices of a square op AB as a side , (Hint: Draw the circle with

radius AB, center at B. Let A, G, H, C, be four consecutive vertices of the inscribed

hexagon. With AH as radius draw arcs with centers at A and C which intersect in P.

Then HP is the diagonal of the required square). Complete the construction and explain.

ections with the given circle of the hypo-line .joining P and the cen-

P as center and an arbitrary radius, draw an arc intersecting the g:

Draw circles A(0) and B (0) . With as center draw the arc with

ng circles A(0) and B(0) in D and E. With W as radius and centers i

s intersecting at G. With OG as radius and D as center draw an arc

e given circle at F, the point desired). Prove this.

of the given circle.

FIG. 4. Find the inverse of the point P where CP is less than half the n

inversion. (Hint; Let the radius of inversion equal 1. There i

in assuming OP > 1/4. Find Q such that OQ = 2(QP). Then i]

H. Locate S such that 03 = 2(CE) . S is the required point

•. 5. Construct the circle of inversion for which the given lino and circle are inverse

figures

.





a creasing a sheet of paper, a point A of one portion (the upper) of the sheet is folded over

coincident with a point B of the other (under) portion. *hUe these points are held fast with

finger of the left hand, the thumb and finger of the right hand are placed on the upper and

tions. If the hands are now pulled opart with the right thumb and finger sliding, the points

d lower) upon which they slide axe equidistant from A and B. Eventually this leads to a single

n the crease which is thus equidistant from A and B. As the thumb and finger form this crease

on keeps the distances on the two portions equal and the crease is thus the locus of all points

eet which are equidistant from A and B, Obviously this can be considered as the straight line

of the segment AB,

I Place one poin ; of the sheet upon another and th

a straight lin

II Establish the crease through two given distinct

II Place a given point upon a given line so that t'

point.' (This implies the ability to fold a cr

Abraham, B. M.

Aviso, U. d'.

Cajorl, F,

Dyck, W.

Fourrey, E.

Klein, F.

Leeming, J.

Iotka, A, J4

Lotka, A. J.

Iotka, A, J.

iforley, 1. V.

Morley, JP» V.

Morley and Morley

Row, T. S.

This crease i.

I Winter Nights Entertainment, Hew York, (1939).

t Traite' de la Sphere, Borne (l682),

I History of Elementary Mathematics, Hew York (l92l) 265.

I Katalog Munchener Math. Ausstellung (l893) Uachtrag 52-54.

: Procedes orisinaux de Constructions geometrlques, Paris (1924) 113-139.

I lanous Problems in Elementary Geometry (translated by Beman and Smith) Boston

(1897) 42.

« Fun With Paper, Kew York, (1939).

t School Science and Mathematics, TO, 595-597-

» Messenger of Mathematics, 34 (1905) 142-143.

1 Construction of the Conic Sections (Scientific American Supplement) (1912) 112.

t Hecreations I&theWtiques, It, 202.

t American Mathematical Monthly, 31 (1924) 237-239.

« Proceedings of the London Mathematical Society, 22 (1924) xxxvii,

t Inversive Geometry, London (1933) 174-176.

» Geometrical Exercises in Paper Folding, Madrae (l893) (translated by Beman

& Smith, Chicago, 1901).

: American Mathematical Monthly, 31 (1924) 432-435.

I American Mathematical Monthly, 47 (1940) 398.

* We assume the point and line are so situated that this may be accomplished. See Plate 22, 5.





itlons, using sravll*
e following the student is required to make the folding construt

aper with irregular edges and .paste thorn (so they may be unfolded) on the

colored art paper (an inexpensive package) provides excellent lllustra. i<

d a line L. Establish the eroase through P perpendicular to L

Given a point P and a line L. Establish the eroase through P parallel to L.

3. Form two perpendicular c t the edge into e. plane curve. When

s symmetrical to both crei

Select (crease) a triangle ABC with right anglo a

and whose radius is A3.

3 foot, D, of the altitude

D of the altitude from B. Fold t

(a) The sum of the angles of a tritvnglo i

(b) The line joining midpoints of two sides is parallel and equal to half the third

(c) The area of a triangle

-r 9 square inches.





Select (crease) a triangle and obtain its incenter (intersection of angle-bisectors).

Select a trianslo and obtain its orthocenter (intersection of altitudes)

.

triangle and obtain H

The Parabola is the locus of points equidistant from a. given fixed point called the Focus

and a given fixed line called the Directrix . A familiar property is that any tangent

bisects the angle between the focal radius and the lino from tho point of tangency

perpendicular to the directrix.

Thus, given a line L (a crease 01 olge) and a point F (a comer for instance) in a sheet of

paper, move F along I and form tho creases. Those creases are all tangent to tho Parabola

(i'ote that Postulate III grants the ability to establish tj

that is tangent to the parabola defined by the line and th<

lies within the parabola the construction is impossible)

.





FPUS AMD CREASES

1. Establish a Square by creasing. Then fold the corners to the center end crease. These

creases form a square inscribed to the first. Continue this to illustrate the sequence:

1/2, 1/4. 1/8. 1/16, l/2
n

From a selected square, fold and crease the inscribed square. Find t

creases bisecting the angles between the sides of the inner and outer

intersections are vertices of a Regular Octagon . Explain.

3. Creaso the quadriscctors of the angles of a squaro and thus obtain the vertic

Regular Octagon . Explain and compare areas.

in Equilateral Triangle by creasing. (Hints Obtain the perpendicular bisector

of a selected segment).

&. Refer to Plate 10 and crease the Regular Pentagon





FOLDS A11D CREASES

Intersections of a Riven line end hypocircle . The intersections of the crease t a

the hypocircle 0(A) are found at once through Postulate III by folding OA so that

lies upon L at the points X and Y.

STG, 2, The intersections of two hypocircles 0(K) and O'(A' ) nre found by first establishing

their radical axis . Proceed as follows. Transfer the radius OK to OA along a pexallel

to O'A'. Since lines joining extremities of parallel diameters, AOB and A'O'B', aeet

in a center of similitude, (see Hate 5,l) the creases AA' and BB' raeet in this point

E. The CTeesa EA meets the second circle again in C« (found by folding the crease per-

pendicular to BE through B'). Crease EB meets the first circle in D.

How A, D, B', C» fora a quadrilateral with right angles at a pair of opposite vertices.

These four points thus lie on a circle, Z, vhi* cuts the circle 0(A) in A, B( and the

circle O'(A') in B«, C». Thus creases AD and B«C are the cooraon chords of Z and 0(A);

and of Z and 0'(A<). Accordingly, (see Plate 6,5) AD and B'C» meet in X, a point of

the radical axis of 0(A) end O'(At). The crease through X perpendicular to 00' is this

radical axis.

dieal axis, its intersections irith either circle, Fig. 1,

BEMABKSl TO HAVE PBDVBD THAT, UKDSB THE OHOSEfl POSTOLATES, ALL COKSTHtJCTIOlIS OF PLANE SJCLIDEAH

GEOMETRY CAS BE EXECUTED BY MEANS OF CHEASES.





extended if, in addition to the foregoing,

arc parallel. (The mathematical

s hoped that the reader will not he confuse

The possibilities of folding and cr

we admit a process of knotting a paper str

definition of "tightness" is difficult to

over the meaning of the word).

In each of the following, knot the re^ok* polygons and paste your rodcls

provided. Half-inch strips cut the length of a standard sheet are serviceable.

into a knot that is striotly ti^ht o

FIG. 2. To form t!

first knot in tyi%. e

the set of trapezoid:

strip. (The over-hand knot is t]

i creasing flat, unfold and cons

To form the Heptagon , (m

to knot the Pentagon. Bi

through it as shown. Or

tightening, unfold and a

trapezoids in the given :

construct ible by straightedge and compasses) use a single strip

ore tightening, however, pass the lead under the knot and then

carry the lead through the sequence of numbers indicated. After

mine the trapezoids formed by the creases. Locate these

To form the Octagon, first tie a loose over-hand V

going from 1-2-3-4-5 . With a second strip of the

and 3-4. Bend (do not crease) up at 7, p-ssing ui

at 8. Pass under 3-4, over 1-2, and under (,-"]. I

7-8 and 4-5 . emerging at 10.

t in one strip, here the striped one

me width, start at 6 passing over 1-5

r 4-5 and 1-2, an! bonding up again

d up at 9 and pass oner 3-4. under





c Projoc o Geometry)

The instrument considered here has 1

ing Euclid, its use is restricted t.

established points. We have thus no

area, parallelisma the like conn

of a line on two points and tho poi:

win.; -. lino of icicfiuitu lf'i.,:t'i through two given or

a interpreted. Our only ability will lie in tho identification

a two lines.

Although quite useful as an auxiliary instrument in gjnerj.l construction w

certainly does rot appear very powerful. Surprising, however, is the fact that it is capable of solving

complicated and elaborate problems of construction. Ar. exanplo of this is the remarkable o

of the tangent to any )<lven conic (including the circle) from an external poi o 3. 13).

Tho Projective Geometry of Desar/mes, de la Hire, Poncelet, Steiner, Pascal, and Plucker developed in

part through a need for a more descriptive element in painting and etching. More particularly ,
this

and other non-Euclidean geometries arose as a result of repeated failures to prove tho Euclidean

postulate of parallels. The growth oi the subject was experienced in two phases: tho first beginning

properly with the noteworthy treatment offered by Dcsarguos and tho Sir roocl.ir,,, theorem of Pascal;

tho second Was the revival occasioned by tho publication by Poncelet in 1822 of his famous notes !K.de

uuring a military imprisonment in Bussia. A considerable time about the middle of tho 19th century

was spent in an academic war botw. en those who advocated synthetic treatment entirely (the pure

caometors) and those who believed that the only approach was through the medium of analysis. The

result was for from injurious either to analysis or to geometry.

The yrinciplo of duality was received wr

principle "an already vast empire of gea

tho Plucker coordinates, j.oomctry need a

firmly on its two equal supports.

do la Hire, P.

Desargues, G.

eartiost of welcomes. With tho establishment of this

s doubled in extent".* Sylvester remarked that with

stumble along o: i that it cou

Fourrey, E.

Graustein, W

Holgate, T.

O'Bsra S Ward

Pascal, B.

Plucker J.

Poncelet, J. V.

Sanger, B. G.

Servois T. J.

Shivefr L. S.

Steiner J.

Winger, K. M.
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s that of Projective Geometry , a product

y. The definiti on of soma terms follows!

a lino. Hie line is called a Carrier .

point consists at all lines that nay be drawn through that

TIG. 3, Defines Projection . lines drown from a point P (the eye, for instance) to the various

points of a set, Q, are cut by a plane n The points of Intersection of it and these

lines ore called the projections of the points of Q onto the plane. It should be clear

that lines project into lines and the intersection of two lines projects into the inter-

section of the two projected lines. Ihy?

t advantageous to have two eyes? (Heoall the old fashioned stereoptican)

,

ie geometry that 01 s inThis geometry, as indicated in Fig, 3. seems the

photography. The parallel railroad tracks may appear to meet or to vanish at a certain

pointj- rectangles may appear as parallelograms) circles may appear as ellipsesi lengths

are destroyed by projection, Ihe quality that does not change is called an invariant

and it is this phase of the matter that is of interest, The parallel edges of the

building in Fig. 4. intersect at P end P', called vanishing points . The line HP' is,

naturally, the horizon .

From a oagaaine, select a photograph illustrating the principles of projection. Paste

it in the space provided here.' Some early artists were ignorant of this representation

end as a result created flat and shallow pointings. Illustrations will not be hard to

find.

The plane sections of a circular cone are the Circle. Ellipse . Parabola, and Hyperbola.

% placing the eye at the vertex of the cane these curves all appear alike. Thus in

Projective Geometry there is no distinction among theo and they ore all indicated by the

single terms conic . f&st of their characteristics studied in Analytic Geometry are

measurable properties. These will not appear as such in the present section. However,

certain of their features of a projective nature will come to light in our investigations

and these may later be translated into metric terminology*
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of Projec

Euclid:

TH7 STRAIGHTEDGE

letry is

F TTO VBWm&S, 1, 2, 3, and 1\ 2', 3', MB
fflHffi SEVSHAL VE3TICES HSCI IN A FOIOT P ET1: OH- :?S?

THFEE POINTS X, Y, Z, "HICE AH7. COLLINEAB. Bie line

P the center of perspective , and the tvn triangles ai

(d..;-iargs) Theorem which is credited

SUCK POSITI'II THAT THREE LIKES JOIOTG

S SIDES* PK0.KSD MEET IK

if L

FE007) Consider the situation in space, ''e have then th

too planes 1,2,3 uad I ',2' ,3'. These two planes (generally) meet in a line L. Li

l',2' lie in a plane through P and thus intersect in some point Z. This is a poi

since these same lines lie in the planes 1,2,3 "^ i'»2\3'- Similarly for X and Y. The

whole space configuration am. now he projected to e plane) points going into points and

lines into lines with no chsige in our results. Thus the theorem is established and L

As an application, draw the line throiigh X and the inaccessible intersect

lines, *., b. (Hint! Through X draw two arbitrary lines seating a and b in

respectively. Select an arbitrary point P on 33' .-is the csnter of porspec

arbitrary line from P meets X,3 in 2 end £,31 in 2'sa third line frora P me

716. 3. Draw a line through X parallel

Given two pairs of lines a,_b and x^ which have a pair of in

Draw the line through these intersections. (Hint: Select a

the dlagoncsl of the given quadrilateral, using a,i find _b,y .

perspective triangles. This locates one point of the desire

716. 5. Lines drawn frora the vertices of a triangle to a point

and C . The triangle of these latter points is called t

of any pedal triengle meet the opposite sides of the 01

points. Make special mental note of this for P as the

orthocenter . etc. (See Plate 4). Discuss carefully th<

approach ttie position of the centroid .

the pedal oi P. Show that the sides

ngle in three collinear

circumcent r,the incents r, tho

Additional Problems! Verify that three given ssible intersection

ch the straightedge cannot be

* Corresponding Vi

corresponding vi

8 with P. Corre:





THE STBAIGHTESGB

FIG. 1, Six

by Enseal at the agi

trary points

Lines are d:

its X, T, Z

2\ 3'.

of the

1 te 2' and 3

>f intersection of 2,3'

holds. State it.

umbered arbitrarily 1, 2, 3.

to 1' 4nd 3'! fro<»3 to 1' a

etc., lie on a line. The co

Interchange two of the numbers in Fig. 1 and construct the new Pascal line. By renunbe

ing in all ways six such given points we may obtain (0 Pascal linos. For a study of

this set of linos see W. H. Bunch, Am. Math. Monthly, Vol. XL, p. 251, 1983-

conic may be drawn through any five given points, no three of which are co

instruct one further point upon the conic whiohpasses through the five points of Fig

(Hint: Using Pascal's theorem, draw any line L through 2 which is to contein the

isired point 1'. This lino L meets 1,2' in Z. The lines 2',3» and 2' ,3 meet in X. .

te Pascal lino, meets 1,3' in Y. The line 3,Y cuts L in V). Other points of the c

•e located by varying the chosen line. Thus by moans of the straightedge alone we a

able to construct

hich the thsorcm of Pascal n

;. 4 if five points i

It is said that P.iseal deduced o- c theorem. Give some





TH2STBA.IGHTEDGE

FIG. 1. Given five points 1, 2. 3, 1', 2'. no three of which M
tangent at any one of these points to the conic detenu
Suppose that the missing point 3

1 has merged with point
approaches the position of a tangent to the conic. The
line by finding two points on it - the intersection of
How the line l',3 cuts this Pascal line in a point Y. '

desired tangent).

so doing, the line 1,3'

establish the Pascal

',2>andof (2,3<

f also passes 1,3' , the

3).

dnts 1,2= l',3i 2 ' and a tangent to the

(and consequently "all") further points on the conic. (Hint: (

2' -uid l',2 is Z, a point of the Pascal line. Draw tiny line th:

.e conic in 3'. This line is cut by 1' ,3 in Y, a second point o:

' ,3 cuts the Pascal line in X and since 2,3' passes through thli

of 1,3' ',3 is

A degenerate case of Pascal's theorem leads to an interesting theorem on inscribed
quadrilaterals. Of six points on a conic, let 3* norge with 2 and let 3 merge with 2*.

The Pascal line then is determined by the intersections of the three pairs of lines:
(l',2;l,2«), (l,3';l',3), and (2,3»;2' j3), tho test pair being tangents to the conic.

Thus the theorem:

THE OPPOSITE SEES OF A QU&DKILITERAL IESCRL3ED IH A COMIC TOGETHER WITH THE PAHS OF
TANGEKT3 AT OPPOSITE VERTICES MEET DT FOB COILLHBffi POINTS.

One further degenerate case produces a theorem on inscribed triangles. Lot the sis

points on a conic merge together in three pairs: l'=3, 1=2', 2=3'. Then lines 2,3';

1,2' i
and 1' ,3 are tangents to the conic. Tho Pascal line is determined in the usual

way, bringing to light the theorem!

IF A TBUKGIE IS INSCRIBED IK A COSIC. THE TANGHSTS AT THE VERTICES MEET THE OPPOSITE
SUES IN THREE COLLIHEAR POINTS.
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THE STRAIGHTEDGE

FIG. X. Number .

ur points 1, 2, 3, 4 are given. Six linos and three further points aro formed by

g them in all possible ways. This configuration is called a complete quadrilateral

ints 1, 2, 3, 4 are its vertices ; the lines 1, 2; 1.4: 2.3: 34; 1.3s 2.4 are its

and X, Y, Z are its diagonal points .

FIG. 3. IF FIVE PAIBS OF CORRESPONDING SUES OF TWO CJIABRIIATERAIS (l,2; X'2*)i (3Al 3'4')i

(1,3; l',3«). (2,3; 2< ,3'), (1,4; 1'4') INTERSECT IN POINTS A', A, C, B, D' OKA HUE,

THEK THE SIXTH PAIS (2, 4; 2'
, 4') INTEES3CTS IN D, A POINT CF THE SAME LINE.

PROOFS Consider triangles 123 and 1'2'3'. Since their corresponding sides intersect i:

three points A'.B.C on a line then by Desarguos theorem they are in perspective from soi

point P. For the same reason, P is the center of perspective for the other throe trian,

of each quadrilateral, all having the seme axis of perspective. Now since two correspoi

ing sides of triangles 124 and 1'2'4' ™eet in A* and D' their third corresponding sides

(2,4; 2'. 4') intersect in B, a point of the same line.

In Fig. 3 let A' approach A and D' approach B. The preceding argument and theorem would

in no way be affected. Fig. 3 then reduces to the pair of quadrilaterals shown where the

line AD on which the five pairs of corresponding sides intersect is the diagonal line AB

(see Fig. 2) of either quadrilateral. By the foregoing theorem, IF THE COLLINSAR POINTS

A, B, C BE SELECTED THEN POINT D IS UNIOJJELY DETERMINED AS A POIHT OF THEIR LINE AND IS

JETiEFENDEIlT OF THE "SUPERSTEUCTURE" O

These four collinear points so related are said

the symbol; (AB; CD). We say that each pair is

Given any three of the points, the fourth tanner

straightedge alone. Sets of harmonic points haii

Given the three points A, B, D to a line. Locate C so that (ABjCD) is harmonic. (Hint;

The location of the poirjt C is independent of the particular superstructure used. Thus

draw two arbitrary lines from A meeting a lino drawn arbitrarily from D. Then draw two

lines from B forming a quadrilateral with the lino through D as a side.. The sixth sido

of this complete quadrilateral produces the point C)

.





TEE STRAIGHTED3E

FIG. 1. If fee harmonic set (AB;CD) and its complete quadrilateral superstructure be projected

from anoint P in space upon a plans tt a new quadrilateral and correspondir-g harmonic set

of points A'.B'.C'.D' axe formed. It is thus evident that RJORHMMWIC POINTS REMAIN

HAffiONIC WEB PROJECTED. (A point of projection on the line of harmonic points is excluded),

Tor example, the harmonic points (AB;QD) Bay be projected from point 1 onto the line 2,4, the

points A.B.C.D projecting into 2.4, X, and B, respectively. Thus the set (2.4'.XD) is hamonic.

Linos joining a point and each of four harronic points are themselves called harmonic.

FIG. 2. Draw two secant lines from any selected point X to the given conic cuttir* outjhe quadri-

lateral 1,2,3,4. This complete quadrilateral has the diagonal points X,Y,Z.
.
Each side of

this diagonal triangle X.Y.Z. is the polar of its opposite vertex with respect to the conic .

A vertex is called a pole . The triangle XTZ is said to be self-^polar to the conic.

From Pascal's theorec on inscribed quadrilaterals, the tangents at 2 and 4 meet on the line

TZ at the point L. Now (KMjYZ) are harmonic and by Fig. 1. so Is the set (KXs2,4)harmomc.

Thus by drawing a single secant 2,4 through X we nay determine K so that. (KXS2.4) is

harmonic. The point L is determined by the tangents at 2 aud 4- K™s the polar KL of X

second secant 1,3. This latter line may be tan entirely

one of the second secants may be drown through X in order

to locate the polar aid the first secant could be drn» arbitrarily.

FIG. 3. Because of the preceding argument: THE POL/S OF P IS THE LOOTS OF THE INTERSECTION OF THE

CROSS-JOINS OF POINTS ^HEHE SFCAPTS THBOOGE F COT THE CURVE. It should be noticed froa the

remarks under Fig. 2. that if the arbitrary line P,l,2 cuts the polar in Q then (PQjl,2) „is

a harmonic set of points . State this in other wards J

FIG. 4. Discuss Tig. 3. as the secant through P qjproaches the positioc

How construct the tangent from P to the curve in Fig. 4- 84* straightedge construction of

a tangent to a conic from an external point is remarkably simple and noteworthy.

FIG, 5. In Fig. 3. we saw feat a secant through the pole cuts fee curve and the polar line in three

points hormnic with fee pole. If we select any point Q on the given line Z of Fig. % end

form its polar then this polar line must pass through the pole P of £. In other words. W
Q LIES ON THE POLAR OF P THEN P LIES Oi! THE POLAR OF Q. Froa this construct the pole of the





•THE STPAIGHTFUGE

oivcd by Poncelet

m of Pascal into the one that bears

ription took place over 150 years a

f the ca

of poi

rrior.

noiplc

responds 3

of duality

used by

Unfortui.-.tely p

*° tbC

e three points lie on the Pa:

- 'the pole of the Pascal 1:

ribe the theorem of Pascal into poles am polars. Each

: of the Pascal configuration has for polar the tenant

.roduce a six-sided figure circumscribing the conic, each

, side of Pascal's incribed figure. The point of

ling sides of Pascal's figure transcribes into its polar

.^-nding vertices of the circumscribed figure.

ie. Their polars accordingly pass through a

established t

if a hex&got caamsms a otic tk? three urns joisik apPOsm^ r̂^
KKJOCBA PODIT. Draw the figure, using different colors for t e wo

FIG. 3. We define a diameter of a conic

29. (, we saw that the infinitely

with the midpoint M of AB a pail

the locus of midpoints of a set

s the polar of an infinitely distant point. In Plate

x r'l! clords of the conic. Any two non-parallel

• of the conic. What is the polar lino of the center?

Draw the figure.

FIG. 5- Using the

FIG. d. Draw a





The nost proraii

spiled

improperly lubricated

lim 1CTI0H LIUKAGHS

nt notion is circular. The conversion of the easily attained oirculax n

traight line is of prime importance to the engineer and mechanic. * This

o when modern machinery was in its formative stage. Sterna hod recently

. water vehicles but poorly riveted boilers and dura

ployed havoc with life and limb.

The generation of line notion was no doubt of concern to mathematicians since the time of Archimedes

raid, because no solution was apparent, many confused the problem with squaring the circle. A solution

was first given by Sarrus in I853, another by Peaucellier in I864, both of T*ich lay unnoticed until

Lipkin, a student of Tschobyscheff, independently recreated Peoucellier's mechanism.

Fanned by Sylvester's enthusiasm, interest in general linkwork immediately fl;oed high to attract the

attention of sen like Cayley, Xempe, Hart. Darboux, Clifford, Eoenigs, Sir HUisa Thompson, Darwin,

Mannheim, cod a host of lesser minds. The epidemic was so fierce end so universal that fee subject wis

drained almost completely dry in the short span of five or Sax years. The drop in interest followed

Sylvester's departure for America and Keape's proof of the remarkable theorem that any algebraic curve,

no matter htm complex, can be described by a link^e.

, III!

f Sylvester's somewhat justifiable enthusiasm is the following quotat s Coll«cted

"It would be difficult to quote any other discovery which opens out such vast and voriei

as this of Peaucellier - in one direction, as has been shown, descending to the wants c

shop, the simplification of the stewa engine, the revolutionizing of the millright's to

amelioration of garden-pumps, imd other domestic convonieaaxs(the sun of science 'glorif;

shines upon), and in the other soaring to the subliuest heights of the most advanced dc

modern analysis, lending aid to, and throwing light from a totally unsuspected quarter

searches of such Gen as Abel, Biemann, Clebsch, Grossman, wod Cayley. Its head towers

clouds, while its feet plunge into the bowels of the earth."

Although the drawings given here seem to indicate otherwise., there is

be straight. Indeed, this would beg the question. The line joining two joints

distance end the only requirement is that all bars bo plane, inextensiblo mambei

iity tl

In making models

about 12-plyj en

#3 to join three

Kampe, A. B

Kenpe, A. B

Peaucellier

Peaucellier

s of the .

f the vsrious linkages, the student should obtain colored cardboard (poster board)

yelet punch; and boxes of #2 and #3 eyelets. Use the #2 eyelet to join two links;

r four links. Cut the cardboard into strips about one-half inch wide wf
""

the model on a cardboard background. To insure greater accuracy, two

be punched simultaneously,
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THE BE&UCELLIEH CELL

HO. i'and 2. The Spear Head and Kite are formed of jointed bars which are equal in pairs.

Let

QA = C8 = a; £P = BC} = FB = .4Q = b.

FIG. 3 . The Spear Head and Kite may be combined to give the six-bar linkage of Fig. 3 in which the

joints 0, P, Q are always collinear. Let M be the midpoint of FCj. Then

(CM)
2
- (FM)

2
. a

2
- b

2
.

The left member may be written as the product!

(CM - FM) (CM + FM) = k
2

,

,
(a } b). Since FM = MJ, this last equation may be rewritten as:

mm = k
2

.

This, as may be recalled (see Flate 16,2), is the fundamental principle of inversion. With this

By fixing and attaching a seventh bar, MP, as shown so that P describes a circle through 0, the
;

Q traverses a straight line. To see this in an elementary fashion, let the linkage be placed in a
arbitrary position as indicated. Draw a line through Q perpendicular to the line CM of fixed poin

It is evident that the right triangles OSP and QKQ are similar; thus

2 _ 2 2

But (GP) J3Q) is constant and so therefore is (QR)(0S). Since S is a fixed point and this product i

constant, then B is accordingly fixed and the point Q lies always on the perpendicular at B. This

the celebrated discovery of Feauceliier in 1864.

FIG. 6. This is the symmetrical double Peaucellier cell formed of either two kites or two spear heads.

What combination of the points 0. P, Cj, 1 gives the inverse property?





THE PEAUC3U-EE CELL

PIG. 1. This is the assemblage of a Kite and a Spear Head ;

is preserved if we extend EO and SO equal lengths to A and I

that OA and AP are proportional to OH and BQ. Since £. B$

arrangement has the inverse property and the product of the

reverse positions. The inverse property

ind then add the equal bars AP, EP so

= <£APB; £_ AQB = ^ KB, this

If is fixed and P be rrade to move o:

ls a much faster one than given by the mechanism of Plate 32,4*

Pind the value of the constant (OP)(0Q)

sle through 0, then Q
nism of Plate 3

the spear head i

jo proportional kites be arranged as s

0«S = ST. Let £_ V&= 26 <«£ SB

-20-46. Since triangle PO'H is iso

- 26. Thus, since ^ PAT = 26, PAM

,own so that AP/PH = B0«/°'s with AP = AT;

I' and .£ APR = = ^ATB= ^ ED'S. Then

;celes, *£ HPO* = + 26 - Tt/2 and therefore

s a right triangle with the line joining P and

always perpendicular to the bar AT. Accordingly, if we fix 0'

will describe a line perpendicular to AT. To do this, attach

to O'S and fix the point 0.

What is the path described by any selected point of PHt Hy a

callel t self then P

length a rallel

such that PR = K}?

Remove the bar 0A, free the point 0' from the plane, and fix P. Then attach one end of a bar to I

which is equal in length to AP. Pix its other end to the plane at Q such that BJ = AT, This arrange-

ment permits 0» to move on a line perpendicular to PQ- Establish this fact.





equal ones proportional to the s

collinear fixed points; A, 3, C.

Establish these facts for the tw

THE ES&UCELLIEH CELL

ploys a double kite arrangement. There

Her ones. In the first the bar KJ move

n the second, PQ moves always piraliel t

inechanisms.

e possible application

e applications of this linkage.





rCELUEK CELL

circular disk whos

k roi.::

where a is the redius 01 the circle. Now LO'P

arc LP = a6 and evidently this is the position

through thu arc length LI" , with the original p

ri.T. of the aisk, travels along- the diameter P'T

travels on a diameter of the larger circle . Th

Presented here is a different scheme f

fixed to the plane at 0* . If some point P on tj

: at P ana let «1 LO'P = 6. Then i

; a right triangle vith 13 = 1(0' = :

: the disk after rolling on the lar,

it ion of P at P« . Thus the point 3

line segment path may be thought o

o the radiu

ion is just

s other end

ine through 0"

s disk were

j its s

3. Adapting the ideas of J?i £

ICed by the aisk having PS fol

. By the above- principl<

were rolling within the imagine.]

What is the path o

sort of mechani to give the three-cusped Deltoi





FIG. 1. Two sets ot equal bars AC = ED. FC = PD are joined as shown. Th:= points A am B are fixed

to a base plane. If wo move P so thai the angles at C and D are always equal, then triangles APC

and BPD are congruent ana. AP always ecuals 3P. This rewires that P lie always on the perpenaic-

arrange mechanically for th; ar-;-les at C ai D to be always equal,

the case.

Let AC = ED = a, PC = PD = b. Then select two points H and S on the bars AC and ED respectively,

EC = SD = b/a.

Then EC/PC = (b
2
/a)/b = b/a = PC/AC.

Thus ^.PAC= /1EPC = ^.SPD = ^PHD = x. Furthermore, ^. APH = *£ FHC = d. EPS = y

.

Sow since PF. = PS; PA = PB; and 4- EPS = x + y + z = /L AFB, then triangles ;JB and EPS are similar.

Accordingly

,

FB/Fa = ES/AE = EC/PC = b/a.

Thus if we take the constant distance AB = c, then

SS = Ic/a.

That is, if P describes the bisecting lino of AB then the distance between tho movin.;, points H and

S is constant. Cwnvorsqly, tho angles at C and D will remain eqii-l and "he point P will qesenbo

a line if E ana S be joined by a bar of tho proper length.

FTC. 2. In building the linkage, take the five links: AC = BD = a; PC = PD = FS = b; attaching-

b
2
= ac.

(It will be found convenient to tnke those distances as 2, 4. and 8 inches)

Before attaching the linkage to a base, lay it open so that P is at the uppermost point. The

mechanism then forms the letter "A" . In this extreme position fix the points A and B along any

desired line.

What is the path of any point of the bar PDT





THE HAHT CELL- IOTESOB

selected on the bars of the Hart cell in a line parallel

the cell is deformed. Draw the circle through A. P,

cular bisector of PQ,, the liae of symmetry of A and C,

circle. let the circle cut the bar A3 in the point

3. For, by the secant property of the circle, (i'ls

This point

raber, DA. is constant and ttos T oust be a

itions, A, I , P, Q, C - point s fixed on the

D is a fixoc point of AD, we have also by i

(0P)(0Q) = (0T)(QA) = Constant.

Thus, since the product of the variable distances CP and OQ, is constant, this remarkable four-tar

mechanism has the same invcrsive property as that of the Ptauccllier cell of Plate 32,3- For

line motion then, following; the principle of Plate 32,4, w may fix to the plane and cause Q to

move on a circle through 0. Thus P describes a line.

The extra fifth bar 0*Q is

t is the constant value of (CPj(0(j) if 0D = (AD)/2; if CD = (Ai>)/3'

Compare this cell with the double Peauccllier cell w





The parallelogram of Figure 1 is fori

the ordinary pantograph, lazy tongs,

Flatess 72 & 73) Notice that if a

Thus a door which is fastened to its

3 2 is the same parallelogram in its crossed position. It

tion, the configuration is endowed with unusual and surpri

b throughout all deformations, the angles at A and C are c<

In Figure J one end of the Kite is attached to the plane. If the two egual bars AH and A

to rotate about A in opposite directions at equal rates, then obviously, the point P will

along a straight line through A. By means of the Hart cell, this can be accomplished.

Figure 4 shows the union of two contra-parallelograms, the short bar of the larger cell a

other as the linkage is deformed. If the points A and D are

AB rotates about A in one direction, the bar FA rotates in the opposite direction. If it is

possible to make AB and AE rotate at equal rates, then by combining the kite mechanism of Fig. 3

with this, wo will have a linkage for line motion. If wo demand that an^le FAD bo always equal fe

angle DAB, then the two cells must be similar. This means, of course, that their corresponding

sides should be proportional.

Thus

For angle FAD to equal angle DAB.

Figure 5 shows the linkage built as the combination of Fig. 3 and Fig. 4. The bar AD of Fig. 4 has

been removed and the two points, A and D, are attached at the proper distance (AD = SF = BC) to the

will be found convenient to take the followin

AE= 2 = ED

AD = 4 = EF = BC

AB = 8 = AG = CD





the following lengths!

AD = DC' = CD' = C'P

From the selected lengths, quadrilaterals ABCD and ADC'D

angle. Thus the angles of the first, x, y, z, are equal

CDC = 2- x = £. C'FC by v

and ^1 C'D'P = H - z =

AD' = a.

i. We shall show that P lie

,ue of the spearhead PCDC'

.

C C'PD'.

«£. CPD' = (z - x) + (tt - z) =

What is the path of a

bilinear. Consequently, P must move on the stu

ion of PC such that CQ = PC?





A KSMEE LINE M3H0K

FIG. 1. We combine two similar quadrilaterals ABCD and ADC"D' , whose anples are

it ABC = s = <- ADC"

sC ADC = y = ^ AD'C"

.

Select the following lengths:

AB = BC = CD=4a; DA = DC" = CD* = 2a; AD' = a,,

the smaller quadrilateral thus being half the size of the larger one. In the quadrilateral A

we express (in two ways) the length of the diagonal AC by the law of Cosines:

(AC)
2
= (AB)

2
+ (BC)

2
- 2(AB)(BC)cos x = (DC)

2
+ (DA)

2
- 2(DC)(M)cos y.

.

which reduces to: 32a - 32a cos x = 20a - 16a cos y,

s x ~ cos y = 3/4.

CP, each equal to 2a; and the bar PC' = da. Thus CPC'D a:

o DC', it ic. parallel to D'C" and their projections on the

H= 3M + MR = BM + HD' = da.c

2a(2cos x - cos y) = 3a/2, a constant.

3d B are fixed on a line, then E is a fixed poizit ana ? will describe
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SECTioir v:i

EE STPAIGHTEDGE WITH MtOTABLE FIGUHE

(The Geometry of Ponce let-Steiner)

The constructions of this section are those which can be made with the movable straightedge when

given somewhere in the plane a figure already drawn. Such constructions have been of interest to

mathematicians for several hundred years.

It should be carefully noted that the system composed of immovable circle and movable straightedge

is equivalent to movable straightedge and compasses only if the center of the circle is given,

(It has been proved that the center of a circle cannot be located by means of the straightedge

alone. See H. Steinbaus, tfatheroatical Snapshots, New York, 1938, 44).

BLBLICGBAPHT AMI ITOTHER BEADING

The Straightedge and Immovable Cir

Poncelet, J. 1

Shively, L. S

Steiner, J.

Theorie der geometrischen Konstruktionen, Leipzig (1906) 83-91.

Procede's originate do Constructions geWtriques, Paris (1924) 32-41.

Buler & Compasses, London (1916) U8-I3O.

Tiaite des proprid'tes promotives des-figuros (1822).

Modem Geometry, Hew Tork (1939) I3O-I32.

Constructions geWlriqucs (1833) .

The Straightedge and Immovable Square or Parallelogram i

Adlor, A
Child, J M.

Fourrey, E.

Gravesenle, W. J. :

Poncolet J. V

Hussell, J. W«

Steiner, J.

Traehtenberg

,

M. I.i

Theorie dor geometrischen Konstruktionen, Leipzig (1906) 81-63.

Ifethematical Gazette V (1910) 283-284.

Procedes originaux de Constructions guWtriques , Paris (I924) 24-31.

Oourvcs philosophiques, Amsterdam (1774) I™ partio, P 312, p. 174.

Applications d'analyse et dc geWtrie, Paris (l8&) 437-439'

An Elementary Treatise on Pure Geometry, Oxford (1905) 3x8.

Constructions ge'ome'triques executies au moyen do la ligno droits

et d'un cercle fixo (1833).

Mathematical Gazette XT (1908) 334 ff.





THE STRAIGHTEDGE WITH IMMJ7ABIS CIBCTE

FIG. 1. Draw through P a parallel

later constructio

. 2. Draw through P a line parallel to t

From P draw a parallel to M3 meeting th

se two points. The lines thus joining the

cut the line L in a bisected segment.)

FIG. 3. Draw the diameter of the fixe

an arbitrary line through meeting L

to QA cutting the circle in two points

first two, thus obtaining a bisected s

29.6.)

iraeter AOB of the fixed circle. (Hint: The c

5 29,6.) Bote that the fixed circle here play

- a concept that will prove of frequent use i

L. (Hint: From any point M of L dr

o points. Draw the cross diameters f

f these diameters are both parallel t

to the given line L. (Hint: Draw

nt B of I, draw a second line parallel

tablish a third line parallel to the

ction is completed according to Plate

Then the lines BA'

and external centers of similitude of the given fixed c

nd passing through the point A'. (Hint: The internal c

on the line of centers 00' . Draw the diameter BOA that

d AA' determine and required points.)

* The word "hypocircle" is a contraction of "hypothetical circle". It will be frequently used to

denote the circle determined by its center and one of its points. Although it cannot be drawn except

when tho compasses are allowed, the student should indicate it by dotted lines or by its colored





THE STRAIGHTEDGE WITH IMOTABLE CIBCIE

FIG. 1. Given the fixed circle with center 0. Firai the intersections of the given line L with t

hypocircle 0>(A'). (Hint: Determine the external Denter of similitude, E, of the fixed circle a

the hypocircle. Extend A'O' to meet L in B' . Draw the diameter AOK parallel to A.'0' . The line

EB' meets AOK in B. Through B draw line M parallel to L which meets the fixed circle in X« and X

Lines EX' and EY' cut L in the desired points).

and »'.

rsections of the fixed circle with center and the hypocircle 0'(A')-

A and A< would not he such that 0A and O'A' are parallel. However, in order

f the student, the radii are here given parallel. (Hint: Proceed to locate

e two circles and find its intersections with the fixed circle. First

imilitude E. Let FA cut the two circles in C and C and let EB cut them in

perpendicular to EA and A'D' is perpendicular to EB. Thus quadrilateral BCA'D 1

le since its opposite angles are right angles. The circle drawn about this

circles in B,C and A' ,D' and the lines BC and A'D' are therefore
quadrilateral meets the two given c

its radical axes with the given circles. Sine

(see Plate 6,5), the intersection of BC and A'

circles. The line through this point perpend:

points). (See Plate 23,2).

dical a





THE STBAIGHTEDGE WITH

ter parallel to AB by Plate 4L3-)

The diagonals of a rhora

perpendicular at P.)

rallel to the given line. Draw the

(Hint: Draw an arbitrary chord AB of the

meter AOC. Then BC is parallel to the desin

FIG. (,. Find the center

f the perpendicular Msec f the sides of t





FIG. Find the i:

THE STSAIGHTSDOE WITH MOTABIE CESCIE

o hypocircles C(A) and C'(A'). (Hint:





GHTEDGE WITH MOTA3LE SQUABS

FIG 1 Draw e lin through the CO rner C c f the

The. po nts B, D and he center of th 2 square

Thi i a dir appl cation of Plate 29,6.)

FIG. 2. Establish the midpoint of the side BC of the given square. (Hi

arbitrary line through B. Then construct the polar of this point with r

lines AD ani BC.)

FIG. 3. Construct a rectangular network of lines. (Hint:

then draw lines through vertices and midpoints of sides.)

f the given square;

r of the given square parallel b

FIG. 5. Draw the li

the given square. T

bisected segment.)

FIG. 6. Draw the line through P parallel to the given line L. (Hint: A neat solution is afforded

by the theorem of Desargues. Obtain triangles in perspective as follows: produce A'D and A'D' to

meet L in B" and C respectively. Select an arbitrary point H on Hie diagonal AA' .
Let the point

of intersection of B'H and AD' be B; that of EC' and AD be C. Then BC is parallel to L. Why?

,s completed by Plate 31,6.)





;

.

< "
' .-,:.:

FIG. 1. The line XY is drawn through the center C of the given square,

through 0. (Hint: Through I draw the parallel to 3D, meeting 3C in U.

to DC meets AD in ¥. The line WO is perpendicular to XT. Wry?)

FIG. 2. Draw the perpendicular from P ti Draw through the center of the

ssitility of finding the centroid o

FIG, 4. Discuss the possih

t the point P in the given lino L. (Hii

to L. The segment through tho center oi

. be projected onto PP' , thus determining

t P' lies on tho perpen-

tiply tho given angle 8





THE SEBHGOTEDGE WISH BMJVABIS PA2ALUSL0GEAM

,1 through P the line parallel to the diagonal BD of the given parallelogram. (Hint: B,

snfcer of the parallelogram offer a bisected segment parallel to the desired line.)

i parallelographic network of lines. (Hint!

IS. 3. Construct the parallel line to L through P. (Hint! See Plate 45.^0

second projection.)

(Hint: Extend the segment AD I

nts onto a line parallel to IM ai

ore is a rhombus. Construct a rectangular network of lines. Beyond

is fixed direction, does the rhombus offer any possibilities in

e general parallelogram?





ction are those that nay bo accomplished by the Straightedge and Collapsible

and Bigid Compasses , the Straightedge and Rigid Dividers .

The compasses of Euclid and Plato differs from the modern instrument in that theoretically it collapses

when lifted from the plane. Thus it nay not be used to transfer distances from one part of the plane to

another and may be used to establish a circle only when given its center and a point upon its circum-

ference. The collapsible compasses is proved ecuivalent to the modern compasses by showing that it is

possible to draw a circle whose radius is not given in position. (See Plate 48t5-)

(After completing the work of Plate 48, refer to Plates 2 and 3. See how you would need to change your

3. fixed opening and may bo used to draw circles with arbitrary center

Obviously, this would put us in possession of a fixed circle, which, '

Straightedge and Variable Compasses. (See Section Til.) Howe

constructions will bo found somewhat different from those of Poncelet-Stein,

Pappus reports that the ancient Greeks wore themselves concerned with the Rigid Compasses; ffascheroni

found it of practical use when he employed several compasses in his constructions, Laying a fixed one

aside until he had to use the same radius again. This was claimed to produce greater accuracy than

setting and resetting a. single pair of compasses for circles of different radii.

The Rigid Dividers has a fixed opening and may be used to transfer a constant length from one portion

of the plane to another. If the carrying operation be restricted to placing the fixed length upon a

line already drawn, the system of straightedge and rigid dividers is not equivalent to straightedge

and compasses. (Compare Plate 59-)

Since the unit of measure is arbitrary, wo select as the unit the length of the open ing of either

Rigid Compasses or Rigid Dividers,

BIBLIOGRAPHY AHD FURTHER HEADING

The Straightedge and Collapsible Compasses:

Heath, I. L. 1 Thirteen Books of Euclid, I, 244.

Hudson, H. P. : Ruler and Compasses. London (19l0-

national Ifethematics l%gazine, XIV (1940) 487.

The Straightedge and Rigid Compasses:

Benedctti : (A work covering the subject) (1553) •

da Vinci, L. : (l£th Century)

.

Durer, A. ; (lfith Century).

Ferrari s Traite general des nombrcs et measures, (1548).

Fourroy, E. 1 Procedes originaux de Constructions geomotriqucs , Paris (1924) 74-94

Mischeroni, L. 1 Geometria del Compasso (1797) (French translation by A M. Carette).

Wafa, Aboul : Hecueil de Constructions goometriqu^s (10th Century).

The Straightedge and Rigid Dividers:

Fourroy, S. : Procedes originaux de Constructions geometriques , PariE (1924) 47-59.

Hudson, H. P. i Ruler and Compasses, London (V)l6) 70-71.
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D COLIAPSEIS CCMPAS33

ular from P to the line

Draw the parallel from P to the line L. (Hint:* With center at a Delected point A on L

o circle A(P) which meetr. L in B. Draw circle B(A) meeting P(A) in X.) Compare other known

of drawing parallels. How many circles are used in the construction?^ •

y radii! .

FIG. 3. Bisect the given angle.

nsfer the distam

FIG. 5. The collapsi

A(0) meeting at C. Draw lino:

t is possible to draw the

, Make tha construction.

circle A(E) meeting AC





5HE STBAICTTEDGE AND HIGH) COMPASSES

FIG. 1. Draw the parallel to L through P. (Hinti Ass

greater than the distance from P to L, draw the circle '

center, draw the circle cutting the line PX in 0. With

cut CBT in Q. Then PQ is the desired parallel. Why?)

pening of the compasses to be

at P meeting L in X. With X a

r, cut L in Y. With T as cente

Erect the perpendicular to L at P. f

With B as center, draw the semicircle ra

clo meeting the line 3C in X. Then XP

int! With P as center, draw .the circ

sting the first circle in C. With C

s the desired perpendicular. Why?)

FIG. 3. Divi

A and B. Upc

Their joins *

i the given segment AB into three equal parts. (Hint: Erect perpendiculars

each of these perpendiculars, lay off three equal segments in opposite direc

.1 meet AB in the specified points.)

Extend the segment AB to C such that AB = BC. (Hint:

ch two equal segments AX, XY are laid off. Th parallel

t the perpendicular to AB at A

XB through Y meets AB extended

FIG. 5. Find the intersections of the given line L and the hypocircle 0(A). (Hintt In order to

the student, we have already drawn the circle with the rigid compasses having its center at 0.

Proceed as follows. Let B he the foot of the perpendicular from to L, Draw the linos AB and A

the latter meeting the drawn circle in C. Draw the parallel to AB through C meeting OB in D.

Through D draw the parallel to I, which moots the drawn circle in X and Y, The lines OX and 0Y m

I in the desired points of intersection. Why?)

FIG, 6. From P upon L lay o i length equal to the given segment AB.



Plate H9.
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DG2 ADD HIC-ID COMPASSES

j through 0' parallel t

FIG. 2.

Produce e bisector of angle C

A solution differing from that of th

t P cutting L in A and B. Draw the se:

he circle with center at C. This meet



°o



THE STRAIGHTEDGE AND RIGID OTHERS

FIG. 1. Draw the parallel to L through P. (Hint: Apply

segment.)

idcrs twice to L obtaining a

to L. (Hint: Lay off the bisected segment AQB upon L. Then

with one point of the dividers at 0, lay off arbitrarily two further points C, D. Thus, A, B, C, D

lie on a circle with center at 0,. and accordingly AC is perpendicular to BC; HD is perpendicular to

AD, Therefore, if AD and BC be produced to meet in E then the intersection of BD and AC is the ortho-

center of triangle ABE. The altitude through E is perpendicular to AB. Its parallel through P is

the desired line.)

FIG. 4. Transfer the given segment AB onto

L.^ay off the divider length AX upon AB a:

ine AB* parallel toL. (Hint: Draw tl

Then triangle AXY is isosceles.

AB' . Two parallel lines through



p

p

L~ L
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L
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SECTIOH g

BgUin AID AKSLE POTERS

The- Parallel Ruler is defined as an instrument of indefinite 1

The width of the Huler shall be designated as the unit of meas,

following two ways:

I. To determine the line through two given points and its parallel at a unit's di:

line determined by the other edge of the ruler).

II. To determine a line through each of two giver, points, A, B, at a unit's distara

ruler may bo placed so that an edge passes through each of the two points, A, I

AB is greater than unity. This may be done in two ways.)

ance (i.e., the

apart . (The

I. To i

II. To i

d angle with a give

n points making wit

D COMPASSES AMD ABE

BIBLIOGBAHg AID 2UBTHSR HSADIKS
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Coatpont, de
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: Houv. Correspondence Mathcreitique (1879)

.

: II bolletino di mathcaatiche o di scienzc fisiche o natural!, Bologna,

III, (1901) 225-237.

: Kouv. Correspondence Hathematique, III (lo77) 204-203; 7 (1879) 439-442;

vi (1880) 34-35.

: Process originaux de Constructions ge'ome'triouos , Paris (1924) 42-46.

: Huler 4 Compasses, London (1916) 74-76.

: II bolletino di mathematicho o di scionzo fisiche o natural!, Bologna,

II (1900) 129-145.

: Traite des proprieties projectivas des figures, Paris (1822)

.

Angle Huler :

Adler, A.

Hudson, H. p.

Poncelet, J. V.
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FIG. 1. Draw the perpendicular to I at P. (Hint! Pla

edge passing through P. Draw along the edgos. Then mo

edge passes through P. This gives a bisected segment X

edge passes tlirough the points X i".nd I, Thi:

a rhombus with one diagonal as the line L, ti iagonal passing through P.)

the parallel to L through P. (Hint

follows. Either obtain a bisected s

uler along L and draw along the othe

of Plate 31,6 may be applied.)

FIG. 4. A very simple construi

one edge through P and move so

meeting the middle line in F.

parallel. Why?)

FIG. 5. Draw the perpendicular to 1 through P. (Hint: Fir

given line, then apply Fig. 1.)

iraw a lino through P parallel to the

FIG. 6. Determine o

in Fig. 1, locate th-

diculars dropped froi

r points upon tho hypocircle with center and passing through A. (Hint: As

ther extremity B of the diameter ACB. Then find the intersections of perpen-

upon arbitrary lines through B .

)
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THE PARALLEL ED1EB

FIG. 1. Bisect the angle ACB. (H

edge along 03. This establishes a

he ruler first with one edge along QA, then

e diagonal is the desired bisector.)

on OC such that Qi/CB = OC/OD. (Hint!

m angle. Then draw throi

FIG. 4. Let the width of the ruler be the unit. Find the points of intersection of the line L with

the hypo unit circle with center at 0. (Hint: Employing the idea of poles and polars, select any

point P upon L. From P draw tho tangents to the unit circle by placing the ruler with one edge

through P and the other edge through 0. Draw the perpendiculars to these tangents from and call

the points of tangency thus found A and B. Let Q be the point of intersection of the perpendicular

from upon L with AB. Then Q is the polar of L with respect to tho unit circle. Accordingly,

place the ruler between Q and and establish the tangents from Q which meet L in the desired points.

Explain further.)

FIG. 5. Find the points

width of t

tha unit circle with

parallel from B whic

by Fig. 4, with the

Explain.)

le hypocircle 0(A). (The dis

assumed to be unity.) (Hint: Find B the „.„_

, Let C be the foot of the perpendicular from upon L. Draw AC a

sets CC in D. Draw the parallel to L through D and find its inters

1 circle. If these be P, and P . then OP, and 0P„ meet L in the de





THE PaRALIEL HIEEH

FIG. Find the i

their radical ax

previous plate.

explain.

)

the two hypocircles 0(A) and 0'(A'). (Hint; Proceed to establis:

e distance O'A' onto a line through 0" parallel to Q

litude of the given circles. Complete the construct:





THE ANGLE HULER

FIG. 1. Draw the parallel to L through P. (Hint: With om

other edge passing through P. Then slide the ruler along t:

through P.)

FIG. 2. Draw the perpendicular from P to L.

Place the ruler in Wo opposite positions on

reflect the positions in L. This produces a

A parallel through P is the desired line.)

inf. Select two arbitrary po

side of L so that the vertex

nbus one of whose diagonals i

FIG. 3. Extend the segment AB to C such that AB = BC. (Hint

position with its edges passing through A and B. How place i

the other edge passing through B.)

What is the path of the vertex o:

FIG, 5« Locate arbitrary

ouch:

jn the hypocircle 0(A). (Hint: Locate B. tho other extremity of the

vertex at B and one edge along AOB. The line determined by the

perpendicular from A in P, a point of the hypocircle. If the ruler is now moved

and P, the vertex describes the hypocircle.)





FIG, 1. Find the inte: 3 L with the hypocirclc 0(a) .

FIG. 2. Find the intersections of the two hypocircles 0(a) and 0*(A'). (Hint: Establish their

radical axis.)





THE EIGHT AEGIE BJIEH

FIG. 1. Establish the perpendicular from P to I.

FIG. 2. Draw the parallel to L through P.

FIG. 3» Extend the segment AB to C such that AB = BC.

o edges in contact with the fixed points A and B. Deter

. 5, Determine the intersections of the line L with the hypocircle 0(A),
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THE HIGHT AHGLE H

.e AB. (Hint: locate the point C o

s edges through A

roles 0(A) AMD 0'(A').





The Marked Ruler

SECTION X

HIGHER TOOLS AND QUARTIC SYSTEMS

s lungth upon the edge ofaightedge of i

are marked. We shall take the distance

following three ways:

I. To establish the line upon two given points and to mark upon this line successive unit lengths;

II. To fix Q at a given point of the plane and rotate the ruler until P falls upon a given line;

III. With the straightedge passing through a given point of the plane, to move 0, along a given line

until P falls upon a second given line.

IT IS SHOWN THAT TEE MARKED RULER IS EQUIVALENT TO STRAIGHTEDGE AND COMPASSES IF USED UNDER ASSUMPTIOHS

I AND II; AND IF USED UNDER I, II, AHD III IT IS CAPABLE OF SOLVING ALL PROBLEMS OF A QDARTIC NATURE.

IT IS ALSO SHOWS THAT THE CAHPEHTEB'S SJIAKE, THE TOMAHAWK, TWO EIGHT ANGLE RULERS, AHD THE COMBINATION
OF COMPASSES WITH IMMOVABLE CONIC ARE EACH QPAETIC TOOLS OE SYSTEM . THE IMMOVABLE .CONIC WITH STRAIGHT-

S A QUADRATIC SYSTEM (ECJJIVALEmT TO STRAIGHTEDGE AND COMPASSES).

Marked Ruleri

Adler, A.

Bussey, W. H.

Dickson, L. E.

Fourrey, S.

Gloskowski

Schooten

Schwenter

Yates, E..C.

Carpenter's Squarei

Bussey, tf. H.

Enriques, F.

Nicholson, J. W.

Roberts, S.

Scudder, H. T.

Theorie der geometrischen Konstruktionen, Leipzig (1906) I38-I43.

American Mathematical Monthly (1936) 265-2&O.

Theory of Equations (1939) 3O-4I.

Precedes origiraux de Constructions geome'triques , Paris (1924) 47-59-

(a work sometime between I626 and l£)0).

The Foundations of Geometry, Chicago (1910)

.

Elementary Mathematics from an Advanced Standpoint, New York (1932) 52-55.

Exercises Mathematiques (1656).

Geometrie pratique (l£l8).

National Mathematics Magazine, XV (I94O) 64-70.

American Mathematical Monthly, 43 (1936) 265-260.

Fragen der Elemontargeomotrie, Leipzig (1923) 212-215.

The Analyst, 10 (1883) 41.

Proceedings London Mathematical Society, II (18$) I25-I36.

American Mathematical Monthly, 35 (1928) 25O.

National Mathematics Magazine, XV (194O) 70-72.

Morley and Morley ;

Compasses of Hermes ;

de la Soci/te' des Sciences physiques et naturelles do Bordeaux, II (1863).

ic Amusements (Ho date. This translation and revision of tho early 19th

edition appeared about 1937.)

e Geometry, London (1933) 173.

Fragen der Elementargeometrie , Leipzig (1923) Chap. VII.

Wissenschaftlich-praktische Losung der Winkeldrittelung auf Grund der Kreislehre,

Hoffman Z XXII (189I) 4OI-4O9.

Theorie der geometrischen Konstruktionen, Leipzig (1906) Chap. VIII.

Fragen der Elementargeometrie, Leipzig (1923) Chap. VII.

La Geometrie, livre II (Oeuvr

Memoires de la Societe des Sc
Konstruktionen und Approximat

roblem, Baton Rouge. La. (1941).

y C. Adam et P .Tannery ,VI,Paris,1902,p39l),

et naturelles de Bordeaux, II (I863).

cher Darstellung, Leipzig (19U) 141,





FIG. 1. Draw the parallel to L through P.

d Ruler employed under Assumption 1

Draw the perpendicular to 1 through ?,

Through P draw .he line making the give

on side OY drop J erpendiculars upon OX e

C respectively. Draw the perpendiculai

P. Mike the con tructionand explain.)

i angle XOY with the line L. (Hint!

Kl upon the line through parallel to

Transfer the dist e AB (^ l) to the line L fro; n point P. (Hinti See Plate 51,4.)

Assumption I is capable of const

d multiplying angles. Its powoi

es are considerably amplified, fc

FIG. 5. Find the

acting parallels and perpendiculars, transferrin

are not as extensive as those of the compasses

rfever, if we employ Assumption II, as followsi

FIG. (,. Find the intersec

0*A' onto a line through

establish the radical axis

s of the two hypocircles 0(A) and 0' (A'

ralicl to QA, locate the external cente

in previous plates. See Plato 50,1.)
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Under Assumption III, the Ife-rked Ruler moves with one of its points upon a given lino or circle while

the edge, FQ extended, passes through some fixed point. We inquiro into the analytical implication of

TO, 1. Find the path of P as (J moves along the. given line L with the edge, B} extended, passing

through the fixed point at a distance a from L. (Hint! Since the points of the ruler are arbitrarily

named, the problem implies that P might move along I and it is required also that we find the path of Q.

Accordingly, the problem is equivalent to the following. The unit circle moves with its center (J on

the line L. Find the path of the intersections of this circle with the line joining its center and a

fixed point 0. Take the fixed point as the pole of a system of polar coordinates and the line through

parallel to L as polar axis. Then P has the coordinates (r, 6) and directlys

r= 1 + 0Q= 1 4

If the point E b

These are the two branches of the Conchoid of Eicomedes. The Mirked Ruler arrangement to

replaced by a circular wheel rolling upon a line one unit below the given line L, to the

which is attached a straightedge passing always through a sleeve pivoted at the fixed po

the rectangular equation of this curve by taking X- and Y-axes through the point 0.

. 2. Find the path of P as Q moves along the given circle of diameter a, with the edge,

sing through the fixed point A lying on the circle. (Hint: Take the fixed point A as po

e through A and the center of the circle as polar axis. Lot P have the coordinates (r,

ce the distance AQ = a. cos 6,

This will be recognizi as thd equation of the Limacon of Pascal , introduced in Plate 17. The Jfarked

could be replaced by the system of two linked bars shown. The bar FQ slides

i at A. Obtain the rectangular equation of the curve by choosing X- and Y-axes

y the fixed lines L and the points 0. In Fig. 3i

In sketching, draw a series of unit circles with

ction with lines joining their centers and the poi
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THE MARKED HJLER

FIG. 1, Let us assume the ability to move P along one given line and Q at the same time along another

such that the line FQ,, extended if necessary, shall pass through a given fixed point. We take the

given lines as coordinate axes and the fixed point as (h. k) . Then if the distance PQ is 1 and its

intercepts are x, y:

2 2 ,

x +y =1.

From similar triangles, y = kx/(x - h). Using this to eliminate y, we have:

x
4

- 2bjr + (h
2
+ k

2
- l)x

2
- 2hx - h =0,

Thus, since there nay be four real solutions here, there are four possible positions of the segment BJ.

Draw them. Can you locate the point (h, k) such that there will be but two real solutions? Ho real

solutions? This fitting of the segment BJ between two given curves is known as the insertion principle

PIG. 2. The segment PC; is here inserted between a givon line and a circle so that it passes th

the fixed point (h, k). This also leads to a quartic equation (as may bo verified by an approp

selection of reference axes). Sketch in the other throe positions of the segment PQ. Locate t

point (h, k) such that there will be but two real solutions of the quartic and thus but two pos

of the segment; such that there will bo no solution.

FIG. 3. Tho ancient and famous problem of Trisecting the Angle has for its algebraic interpretation an

equation of the third degree. For, let the given angle be ACB = 36 whose cosine is a. Suppose that one

of the trisecting lines, Off, is already drawn. Lot CA = 1 and draw AC parallel to OT. Then £. ACO = 8,

Locate the point D so that CO = 1. Then since triangle ACT) is isosceles, ^ DAO = ^ ADO = 26. But

angle ADO is the exterior anglo of triangle ODC and, since j£ DCO = 6, <£ DOC = 6. Thus DC = 1.

Let DA = 2y. CC = x. From similar triangles CM), CM, and CIO, all right triangles with equal

angles at C, we have I

x/2=(x + a)/(l + 2y)=(l+y)/x,

which gives on eliminating y!

x3 - 3x - 2a = where |
a| £ 1.

Accordingly, tho problem of trisection is equivalent to the solution of an algebraic equation of third

degree, for if we can construct the value x that satisfies this equation the angle is trisected

geometrically by drawing parallel lines.

FIG. 4. Trisect tho given anglo ACB by means of the insertion principle. (Hint: Let the distance

between the marks P, Q on the ruler be 0L, chosen arbitrarily on OB. Bisect OL to obtain tho point K.

Draw KM parallel to 0A and KH perpendicular to 0A. Place the segment PQ so that P falls on KM with H}

extended passing through 0. Now move the ruler until (J falls on KH. Mien this happens, the line PQ

trisects ^ A0B f Draw the figure and prove by inspecting angles. That is, if H be the midpoint of FQ,

then HK = OK = HQ = HP.

•. 5. Trisect the given angle AQB by means of tho insertion principle. (Hint: Tako OB as the

itrary distance FQ and draw the circle 0(b). which meets QA in D. Place the ruler so that Q falls

extended, P upon the circle, with FQ, extended passing through D.)
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Q.UAHHCS

Consider x + ax + bx + ex + d = where a, b, c, d are

given or constructed geometric lengths. If we let x = y - a/4, this equation reduces to

y
4 +Ay

2
+By + C = (2)

Calculate the following in terms of a, b, c, d:

A =

B =

C =

All of these will be found as quantities constructible from a, b, c, d by straightedge and compasses.

How let y = u + v + w

so that y
2
= u

2
+ v

2
+ w

2
+ 2(vw + uw + uv)

y
4 = (u

2
4- v

2
+ w

2
)

2
+ 4 (u

2
+ v

2
+ w

2
)(vw + uw + uv) + 4(vV + uV + uV) + 8uw(u + v + w).

These quantities substituted in (2) give:

(u
2

v
2

w
2
)

2
+ 4(vV + uV + uV) + A(u

2
+ v

2
+ w

2
) + C +

2(vw + uw + uv)[2(u
2
+ v

2
+ w

2
) +A] + (u + v + w)(8uvw + B)_=_0 ^

By introducing these three quantities u, v, w, in place of y we have allowed ourselves considerable

freedom of selection. We exercise this freedom in choosing:

uvw = -B/8

u
2
+ v

2
+ w

2
= W2

vV +„V + uV = (A
2
- 40/16 (4)

So that equation (3) will be satisfied. How we nay think of the quantities u , v , w as the roots of

(Z -u
2
)(z-v

2
)(z-w

2
)
= 0,

Z3-(u2
+ v

2
+wV + (v

2
w
2
+ u

2
w
2
+ u

2
v
2),-u

2
v
2
w
2
= 0.

In the light of equations (4), this cubic may be written as:

z
3 +Az

2
/2 + (A

2
- 4CWl6 - B

2
/«4 = 0. (5)

Thus far we have reduced the original quartic to an equivalent equation of third degree. This

equation is called the resolvent cubic. (Compare: The solution of a quadratic depends on a resolvent

linear equation! the solution of a cubic depends on a resolvent quadratic.) If the three roots of (5)

are z^ *,,, y then

u = ±^
v
2
= z

2
v =

jyZ2



These values of u, v, u

x = */z - ,& + ,/j - a/4.

x
3
= -V^j +^2

+7*
3

- a/4-

Now, since equation (5) has coefficients which are constructible from a. b, c, d by straightedge and
compasses, this reduction of a quartic to its resolvent cubic demands no other tools. Write equation (5)
for the sake of brevity as:

(where D, E, J are straightedge and compasses constructible) and 1.

The cubic becomes s^ + Hs + K = 0.

H - » - B
2
/3

K b 7S?/n - DE/3 + I

Now let s = Kt/H. Equation (6)

.......(7)

quantities H and K,

S + m(t + 1) =

where a H'/jT. This quantity m is a constructible function of t]

Accordingly,

TEE GENERAL OJIAETIC IS ALWAYS REDUCIBLE TO A RESOLVENT CUBIC DEPENDENT UPON A SINGLE CONSTANT, WHEREIN
THE ONLY ALGEBRAIC OPERATIONS INVOLVED ON TEE GIVEN COEFFICIENTSCOF THE QJIARIIC ARE THOSE THAT ABE
KJUIVAIENT TO STRAIGHTEDGE AND COMPASSES CONSTRICTIONS.

Eind the quantity m i: entities a, b, c, d.
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CUBICS

Consider the cubic (Equation 7 of Page 153):

t
3 +mt+» = 0. (1)

where m is a given or constructed length and, of course, real. Let t = u + v. We haves

(u
3 +v3)+m+(3uv + n)(u + v) = 0i

an equation that is satisfied if

If v he eliminated between these last two equations, we have;

27u
6
+ 27J- ra

3 = 0.

This equation is a resolvent quadratic in the quantity u . A solution is

u
3 =(m/2)[-l+y(l+4n>/27)]=H (3)

Show that the other root of the quadratic is v3 = -m
3
/27u [from (2)]

.

The three cube roots of (3) are u, ^u, o> u where „ = 1 and the corresponding values of v (such

that uv=-m/3)are: -m/3u, -a/3 «* . -*/3»u.
Thus, since t = u + v, the three roots of (l) are:

t = u - m/3uj t = u - m/3u,u , t = \ - m/3 «u.
1 2 3

(4)

The Discriminant, A, of an algebraic equation is defined as the square of the product of the differences

of its roots taken in pairs. For the cubic (l) above:

A=[(t -t)(t -t)(t -t)f ............(5)

which from (4) is:
J i

A=(on - ,^-m/3 W +m/3a.
2
u)

2
(u-,?u - m/3u + m/3 </u)

2
(u - <* - m/3u + m/3 ^f

= ( u> - w
2

)

2
(u + ,/3u)

2
(l -„

2
)

2
(u + m/3, ;

2
u)

2
(l -„ )

2
(u + m/3om )

2
,

and sinceoi' =1, 1 + ft) + to s 0,

A = -27(u + m/3u)
2
(u + *ty***)% + m/3 <«i)

2
= -27(u

3 + m3/27u
3

)

2
= -27 (u

3
- v3 )

2
.

Fro* equation (3) this is:

A=-m2
(27 + 4») («)

The value of this discriminant enables us to toll the character of the roots in advance of the

solution. For. from an inspection of (5):

I. All roots are real and unequal if A > 0, i.e. 27 t 4* < or m < -27/4.

II. If two or more roots are equal, A = 0, and either m = or m = -27/4
•.

III. If but one root is real, the other two are conjugate complex and their difference is pure

imaginary. Thus A is negative and 27 + 4m > 0, m > -27/4.



which is a real transformation only if m<l 0. Substitution giv

r3 - 3r - 3 vt-3/o) =

This equation will be a Trlsection Equation (see Plate 6l,3) i

That is, if

a lies between -2 and + 2.

-2 6 -3y(-3A0^+2.

The values of m that satisfy this inequality are!

m 6 *27/4.

But this is just the condition that the original cubic have all real roots . Accordingly,

EVERY CUBIC EQJATION WICH HAS THREE HEAL HOOTS CAN BE SOLVED BT A MARKED HOLER IN THE TRISECTION MAHHER.

n the three spaces below, sketch the function t? 4. mt + m for a particular value of

ange specified.

-•

. * 4. -27/4 -27/4 = > -27/4



fficieat a by traightedgc

o.

2
.a&.

aaX. This roo my be de

1. Drew a circle with center and radius PQ = 1, upon which the chord XZ of length R/4 i

3d, Extend XZ to K so that ZK = XZ = E/4, and draw KO. Now draw XM parallel to KO and ins.

narked ruler so that P falls on the line XZ while Q falls on XM with PQ extended through 0.

if we lot FX = x; PY = yj we havo from similar triangles!

(PX)/(F0j = (XK)/(Q0) or * = F./2y

(sinoo Q.0 = 1 + QY = FQ + QY = FY = y),

(PX)(FZ) = (PY)(PW) or X<x + H/4) = y(y + 2)

Combining (l) and (2) to eliminate y, wo have:

x(x +H/4) = (E/2x)(K/2x + 2)

or (x
3 -H)(4x +H) = 0,

ono of whose solutions is x = $t. What is the position of the ruler corresponding

(4x + H) = 0?

tion solves the problem

SUMMARY: We have thus established the following important theorem:

ALL GEOMETRICAL CONSTRUCTIONS WHOSE ANALYTICAL FORMULATION LEADS TO CUBIC OB QUARTIC EQUATIONS WHOSE

COEFFICIENTS REPRESENT GIVEN OH CONSTRUCTED LENGTHS CAN BE SOLVED BY COMPASSES AND MARKED RULER IN THE

"INSERTION" MAKER; that is, EITHER AS A PROBLEM OF TRISECTION OR AS ONE DEPENDENT UPON THE EXTRACTION

3 following cubic



R/4 / R/4



THE CAHPENTTTt'S SQUARE

The Carpenter's Square considered here has parallel edges. We shall assume the ability to more one

corner along a fixed line while an edge of the Square passes always through a fixed point
.

We take

the width of both portions as unity; that is, in Fig. 1. HP = PD = DE = 1.

FIG. 1. In order to trisect a given angle 30F, first construct with the Square tho line DD' parallel

to OF at a unit's distance from it. Then move the Square so that its corner D travels along DD' while

the inner edge PO passes through 0. When the other corner B falls on the second side of the given

angle, this angle is trisected. Why?

FIG. 2 Newton (see Enriques and S. Boberts) used the Square under the same sliding process to draw tho

Cissoid of Diodes. The corner D moves along a fixed line CD while tho outer edge BA passes through

the fixed point A. located 2 units distant from CD. The path of the midpoint P of ED is the cissoid.

Let AC be the X-axis and its perpendicular bisector be the Y-axis. Then

.BD = AC = 2 and AB = DC.

Let P = (x, y); B = (h, k); D = (l, z) . Then, P being the midpoint of BD, we have:

x=(l + h)/2, y=(z + k)/2 or h = 2x - 1. k = 2y - z .— (l)

Now in all positions AB = CD. Accordingly, (l + h) + k = z ,
or, using (l):

..(2)

negative reciprocals* Thus

using (1). (2y-z)(y-z) = 2x(l-x).

the equation of the

k/(l + h) = (1 - h)/(k - ,)

icre the value of z from (2), we have finally:

y
2
= x3/(2 - x)

iving x = 2 as Asymptote and cusp at (0 , 0)

.

FIG, 3. The cube root of a segment R may be determined by the Carpenti

perpendicular CM = E, OT = 2B. Draw LT and move the Square through A as in Fig.

Draw MNP. Then

LN = $t

:e. Let OL = 2 and i

Proof: The equation of the d derived above a

(y/*)
3 = y/(2-*>

the fori

through the o

But this equation may also be thought of as a line through (2, 0) and Pi

Y-intcrcept is OT = 2m
3

. Since IS = 2m and LN = (lS)/2, 0M=(0T)/2,

, the line LT. Its

Thus: THE CARPENTER'S SQJJAHE USED IS THE MMBEB INDICATED IS CAPABLE OF SOLVING ALL PROBLEMS OF

FOURTH DESHEE WHOSE BEPBESENTATWS EQUATIONS HATE POSSESSED LENGTHS AS C0EFFICIE8TS

.





THE TOMAHAWK

FIG. 1. A semicircle upon BOC as diameter is attached to the straightedge TB such that TB i

tangent at B. A, B, 0, and C are collinear with AB = BO = OC = 1.

FIG. 2. -Trisect a selected angle by means of the Tomahawk. (Hint: See Plate 64,1.)

s of the Tomahawk. (Hint: See Plate (4,3-)





THE COMPASSES OF HEMS

HO. 1. Consider the compasses with ti

attached to one leg of the compasses a
foot of the other leg.

FIC-. 2. Use the Com; selected angle. (See Plate 61,5.)

FIG. 3. Use the Compass

(See Plate 63, 1.)

Hermes and the 1 tedge to take the cube root of a selected Si





TWO BIGHT AHGL3 H

f rational transfontatio single right angle

FIG. 1. We are able to solve cubics with two right angle rulers if we assume the ability to move

vertices of the rulers along selected lines. Upon the two perpendicular lines X, Y, lay off AO =

OB = p, BC = q. Place one edge of one ruler through A, an edge of the other through C so that t]

two other edges are together. If they are adjusted so that the vertex of the first ruler lies up.

the line X, that of the second upon Y, then OM = x is a root of the given cubic. For, since the

right triangles QAM, OMB, and BUG are similar!

p = 0) and adjusting t:

«><p + .)/>«9/ ( z m BK)

,

x3 - px - q 0.

;ained by taking A 3=1, CC = a (the foregoing

s as shown. It is not difficult tO S6e that

«.&

FIG. 3. With two right angle rulors, trisect 60 .

FIG. 4. With two t angle rulers, duplicate a cube.





S STRAIGHTEDGE AND COM

In accordance with the elementary geometry of Ponoelet-Steiner, wc shall assume a fixed conic located

somewhere in the plane and a movable straightedge or movable compasses.

FIG. 1. Let the conic be represented by the equation:

e given unalterable e movable straightedge puts u:

i lines with the c

Evidently, by the s

(m + a)x + (2mp + b)x + (p + c) = 0.

the quantities m and p, this quadratic may be made

THE STRAIGHTEDGE AKD FIXED OTIC ¥ILL SOLVE ALL COt-BTSUCTIONS OF A QUADRATIC HATUHE.

FIG. 2. Given a fixed conic and a variable compasses. As the fixed conic, we take the parabola:

The compasses gives all circles: x + y - 2hx - 2ky + h + k - r =0, with centers (h, k) and

radii r. The parabola meets the variable circle in points whose abscissas arc given by

x4 + (1 - 2k)x
2

- 2hx + h
2
+ k

2
- r

2
= 0. (1)

These coefficients may take on all values and since every quartic with construct ible coefficients is

reducible to one of this type with constructible coefficients, then

THE COMPASSES AKD FIXED PARABOLA (OH COIJIC) WILL SOLVE ALL CONSTRUCTIONS OF A QUAKTIC NATURE.

JO with the compasses and fixed parabola. The trisection Equation for

will reduce to this if

h = 1/2,

that is, if the circle passes through the origin with center at (l/2, 2) . The values x sat

trisection equation are the abscissas of the points of intersection of this circle and the
,

parabola. Make the drawing of the parabola and the circle shoving the angle 60° and its tr

(See Plate 6l,) In how many points does tho circle cut the parabola? Explain.

e Cube: Const

h + k
2

,

length x such that x (Hint: In Equation 1,

k=l/2.)

le parabola? Explain.





SECTION XI

GE83BAL PIAHE LINKAGES

s the subject of general linkage i

breadth and s;

ierstood that t

f the s

The simplest linkage - the Three Ear mechanism - is especially interesting. The curves genera-

the various forms of this linkage offer a challenging analysis that has attracted marry of the 1

mathematical minds. A thorough knowledge of this linkage very often presents the key to under-

stanting more involved mechanisms.

Although the subject matter has been investigated exhaustively, there still remain some unansw,

questions. Two of these are the following:

rcle into an airfoil? (The mechanism la-

in making models of the various linkages, the student should obtaj

eyelet punch; and boxes of #2 and #3 eyelets. Use the #2 eyelet t

four links. Cut the cardboard into strips about one-half inch wid

model on a cardboard background. To insure greater accuracy, two bars

punched simultaneously.
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HO. 1. The 3-bar linkage shown was devised by James Watt, of steam engine fame, about 178

midpoint P of the traversing bar describes an approximately straight line. In some letters

said: "...about 5 feet in the height of the (engine) house pay be saved in 8 feet strokes w

look upon as a capital saving;. .." and "...though I am not over anxious after fame, yet I

proud of the parallel motion than of any other invention I have ever made."

Show that if

e path of P is the Lemniscate.

0. 2. This mechanism, devised by Tschebyscheff about I85O, is a better line approximation than the

e of Watt. Here AB = 4ai HP = PC = a; AC = HD = 5a and P traces the approximately straight line.

ion is that path of P, attached to the plate shown,

s devised by B. Roberts about i860.

HO. 4. The general 3-bar- mechanism produces a complicated curve of the sixth degree. If the triangle

ABC be formed similar to the plate PQR, . the circumcircle of ABC will pass through the double points of

this sextic cutvs. (See Morley, J. V. Read this article and' append some notes here.)

5. This exhibits a most remarkable property of the 3-bar linkage. Select a triangle ABC and

internal point P. Draw lines through P parallel to the sides of ABC. thus determining a triple

,r mechanism as shown. (The 3-bar part ABHJB of Fig. 5 might, for example, be the same as that

, no matter how the linkwork be deformed, triangle ABC remains 1

instance, if A and B are fixed, P describes a 3-bar curve, and

if A, B, and C are fixed to the plane, all three of the 3-bar

mutual harmony and cooperation.

e point C remains at rest

ms produce the same curve





A SPECIAL TH5EE-BAR LHXASE

FIG. 1. Consider the trapezoid, ABCD of Fig. 1. Let altitudes h from B and C be dropped to the points

MandH. Obviously, BC = MH, AM = HD = u. Let AC = BD = 2b; AB = CD = 2a, where a > b. Then
from the figures

h
2
+ u

2
= 4t

2
i (AD - u)

2
+ h

2
= 4a

2
.

(«D)
2
-2u(AD) = 4(a

2
-b

2
).

<» (AD) (AD - 2u) = (AD) (BC) = 4(a
2

- b
2
) .

FIG. 2. The Bart crossed parallelogram shown here with one bar AB attached to the plane, is a
trapezoid. As it moves, the product of the variable distances AD and BC, according to the preceding

paragraph, remains constant and equal to the difference of the squares of the lengths of radial arm

and traversing bar.

We select a fixed point P on the traversing bar and draw the line OP parallel to AD and BC. It is

clear that OP remains parallel to these lines and is thus a fixed point of the line AB.

Let OP = r; 0K= c, where M is the midpoint of AB; and angle PCB = 6. Then from the figure;

r = 2(c + z)cos 6

BC = 2(BT)cos 6 « 2(a - z)cos 6

AD = 2(AT)cos 6 = 2 (a + z)cos 6.

From the last two equa

(BC)(AD) = 4(a
2

- z
2
)cos

2
9 m 4(a

2
- b

2
)

.

Combining this result with the first equation to eliminate z, we have:

2 2„ , , „.2 2 2
a cos 6 - (r/2 » c.cos 6) = a - b .

select three points P a apparatus and des

Give the polar equatio:

1. ¥hen b > c,

2. When b < c,

3. When b = c.

rve and identify when c = and a = ty2.





The three-bar curve of Plate 70, traced out by a point P on the traversing bar is

a
2
cOS

2
6 - (r/2 - c.cos 6)

2
= a

2
- b

2
,

where 2a and 2b are the lengths of traversing bar (CD) , anci radial bar (AC = HD) , respectively, and

c is the distance of the tracing point from the center of this bar (CD)

.

If we invert this curve, taking as the center of inversion, so that the transformation is

aVcos
2
e - (k

2
- c.s.cos 6)

2
= s

2
(a

2
- b

2
).

,ic section which may more easily be recognized by transferring to rectangular

(c - bV + (a" - bV - 2c.kV. + k* = 0.

positive and the character of the a

In all three of the accompanying figures, we have arbitrarily taken a = 2b. The point P' traces the

FIG. 1, shews the linkage for a parabola with a = 2b = 2c. Thus, PD = A0 = b. The point P

inverted to P* by means of the Poaucellier cell where (0E) - (PE) = 2k . Give rectangular a
polar equations.

FIG. 2. is the arrangement for an ellipse , where 2a = 4b = 3c For the sake of variety, P i

inverted to P' by the Hart cell EFGH. Give rectangular and polar equations.

FIG. 3. gives the arrangement for an hyperbola where a =

Give rectangular and polar equations.

s the midpoint of CD.)

s the linkage in which a = b. Consider

Discuss the linkage if





PABAXLEL0GPAM3

ts and P so that 0, P* , P

and thus

CM/OA = 1/2 = OP '/OP. °r op = 2 (op '

)
•

e curve, the point P' traces a curve similar and

e by l/2. This is the form of the ordinary Pantograph .

n obvious extension of the Pantograph with multiple tracing points. What are the

FIG. 3. Referring to Fig. 1, the bar HP' may be extended to meet an additional bar OB wi

affecting the character of the linkage. Thus the bar MP' may be discarded as in Fig. 3 tc

Pantograph built upon the general parallelogram OBA, with 0, P' , and P collinear.

FIG. 4. Five rhombuses are jointed together as shown. In all positions, M is the midpoint of BC, while

G is the lower trisecting point of AM. Thus G is always tho centroid of the variable triangle ABC.

FIG. 5. The linkage shown is the crossed parallelogram OABC with a short side, 0C, fixed to the plane.

As the mechanism movos, the bars QA and BC slide over each other and their point of intersection P

t-PC = 0P + PA = QA=ci

What is tho path of a

P and the motion is that of one ellipse r

at rolls upon a fixed ellipse of the same

FIG. 6. Here

s that of one hyperbola rolling upon another





PARAIIELCGRWE II

FIG. 1. The linkage shown is formed of two parallelograms. If and 0' are fixed to the plane s

the horizontal and vertical projections of 00' are h, k, the point P may be moved (within the lia

the mechanism) to any position in the plane. The position of tht point P* is determined by P. I

clear from the figure that:

x' = x + h y' = y + k

PandP'. This the study of analytic

roetry.

FIG-. 2. Consider the parallelogram, two of whose adjacent legs are replaced by positively simi

plates . Let r be the ratio of the lengths of the sides of the plates which torn the angle 6 ar.

the point be a fixed origin of the complex number system. Denote the ends of the bars by the

complex variables a, b, and the unjointed vertices of the plates by W: (r.< + iy'), Z:(x + iy).

since the plates are similar: ..

W - a = Kb. a = K(Z - b) where K = re
1

Accordingly, W = KZ.

Thus the length W is a constant multiple (r) of the length 0Z while the angle WOZ is always eq

In other words, triangle '/JOZ remains always similar to the triangular plates. The mechanism is

Skew Pantograph of Sylvester

.

' = (cos 6 + isin 8)(x + iy).

y' =xsin 6 +ycos 6

hich play an important role in Analytic

Combine the linkages of Figs . 1 and 2

What is the nature of the trianf when r = 1?

What effect is there: if the lengths a





THE CEHTRAI CQRICS

Since the points P, 0, and B are always equidistant from M, <

Accordingly, KB is always a right angle. Using a system of

as polar axis, let QP = s. Thent

r = (2b) - (aa).

..cos (90° - e) = 2t. sin e.

the polar equation of the path of P«

n&. 2. Let us invert s curve "by means of a Peaucellier cell whose fun

r.s = 2k
2

.

_

n of the inverted c Transferring to rectangular c

J x. ,J . v
2
V.

2 _ .4

Ellipse if

Hyperbola if

s the linkage and the paths o





FIG. 1. The members ay be generated in the manner of the Epicycloids -

slipping. Upon the fixed circle of radius a, rol

gidly attached to the moving circle at a distance

from one circle rolling upon another wi

another of the same radius. Any point i

its center, generates a Limacon.

Let the original position of B* be B. Then arc BT = arc B'T, where T is the point of tangency,

accordingly angle ACE = angle CAB' = 6. Take the origin of coordinates at 0, a distance b_ froi

CB. Dropping perpendiculars from and P upon AC, it is clear that

is the polar equation of the path of P. The three

b < a (P interio,

b = a (P on the ,

b > a (P exterio:

Sketch a Limacon of each type on the given diagram

types of this family are defined

to the rolling circle)

oiling circle) (The Cardioid)

and attached to an extension of

FIG. 2. Two similar (proportional) cro:

JB< = EA m a

d parallelograms a attached as shown with

SBi =IE= FC = y(ac).

Then (see Plate 38,4), angles IDE = EDB' = FCE = CAB' = 6. Accordingly, if P and C are fixe

moves through an angle 6 about C, the bar AB' swings about A through the same angle. This i

of the rolling circles explained in Fig. 1 am thus any point P of AB' describes a Limacon.

circles to fit the mechanism and locate P that describes the Cardioid.

FIG. 3. A very similar linkage is give

CGED, are taken to produce equal angles

by Hebbert. Again d parallelograms FCDK and

on the bars CG and CD is erected a parallelogram CHJA of arbitrary s

tended to P. Then angle HJA = angle CAP = 9. This produces the sam

eceding figures and thus P describes the Limacon.

aw two circles to fit the mechanism.





FIO. 1. Consider the arrangement of the Peaucellier cell shown. The points D and Q are fixed to the

plane so that DO = IQ=c; CA = CB = a; ACj = Q3 = BF = PA=b. ''Je take the line DQ as axis, Q,

as pole, and find the polar equation of the path of I:(r, 6). ITrom the fundamental property of the

But, s

(CH)(lXt + r) = a - b ,

.e, 0Q= 2c. cos 8. Acco

:os 6, or y = x (4c

(a > t).

ingly,

r=(/-b')/2c.cc

Ihese are members of the Cissoid family. What are the:

e? + b
Z
+ 2c*)/<a - * -**>•

(

ith respect to the origin?

FIG. 2. The same curves may be generated with a fifth bar attached to the Hart call as shown. Th

points Q and D are fixe^, travels on a circle through Q, while P traces the curve. (0, Q, F are

FIGS. 3, 4, 5. Sketch the three members of the family of Cissoids, Equations (l),for the relative

values indicated. (Take, for instance, a = 5, b = 3, c = 3, 2, 1.) What is the nature of the curve

the origin in each instance?

t the cube root of a segment
j

FIO, (,. We have already shown that the Ciss

(See Plate 64,3.)

To trisect a given angle AOB , proceed as follows: Draw the unit circle meeting the sides of the angle

in A, B and establish its cosine: a = CB. Upon a line through perpendicular to OB, let PT = l/a.

let CM = (QB)/2. Through the point P, where the line ME meets the Cissoid, draw QP produced to meet the

line y = 1/2 in T, Drop the perpendicular from T to CB meeting the circle in X. Then

arc BX = (arc BA)/3.

-fhoso ordinate is:

path of P: y = x7(2 - x)

r *2A(l + r
2
).

y=l/(a + 2r).

then 2/r(l + r
2
) = l/(a + 2r), or

r
3

- 3r - 2a = 0.

e r = 2cos(AOB/3). But r = cot(YOB) = 2(SY) . Then, s



o'- tf=4c
g

4.



OTAIS OF CASSIH

It is well known that if a point moves in a plane so that the

to two fixed points in the plane is constant, the locus gener

hyperbola , circle .

FIG. 1. The Ovals of Cassini are defined as the locus of a p
o two fixed points A, A' (at a distance a apart) i

its distances

e product of its

. colors the locus f h of the conditions: (l):a > 2cj (2);a = 2c; (3) 'a ^ 2

linkage shown has AB = AO = 0A' = a/2; = CO = CQ = QD = QD = b/2 with A and a

Take ACA' as axis and let the coordinates

BC = 00, = OC = b/2, the points B, 0, and Q
always at right angles and .«£. BOA = *£ 0.

d P be (s, 9) and (r, 8), respectively. Sin

l a circle with center at C. Thus the lines :

90 - 8. Then, from the right triangle B

(as)
2
= (eq)

2
- (cb)

2
.

r(r-s)=^,

That is, elimireting ss (r - k )

2 = b

relation through the fundamental property of

k
2
- (cp)

2
- (cq)

2
.

2 2 2 . 2
fi

(x
2
+ y

2
)

2
- (2k

2
+ bV + (a

2
- b

2
- 2k

2
)y

2
+ k

4 =

which can be identified as the Ovals of Cassini, with the fixed points (foci), A, A'.

hich will produce the Lemniscate. For these values wh

What is the path of V





f(x, y) = with r,

FIG. 1. The tangont

i focus, I, are respectively

(l) The pedal of the Parabola with respect

(2) The pedal of the Parabola with respect to its v.

asymptote of the pedal of (2)? Sketch both pedals in c

J. 2. The Pedal of the Ellipse bV + aV = aV with respect to a focus: [7(a - b )
, 0] is tte

cus of intersections of the tangent y = mx + ,/(mV + b ) and the perpendicular from Ft my + X =/(a - * )

FI

Fi

J. 4.

rid th rii
1

A: (a/ .0)

B- (a. 0)

C (2a 0)

circle described by B, The point J

parallel to 0D and O'B and it is t

the circle 0' (B) with respect to H

al crossed parallelograms, ABCD and AHEF, are joined to produce equal

xtended to P so that AP = A3; HA is extended to so that QA = AB.

e added to form the parallelogram shown.

is perpendicular to the line PB and evidently FB is always tangent to th'

collinear with and 0' so that HO = 00' .
Then HP is

erpendicular to FB at P. The path of P is then the pedal

angle POO". (See H. C. Tat th. Kug., XII, 1933, PP- 323-324 •)





GENERAL THEOREM OF LMKAGES

A. B. Kempe (on a General Method of Describing Plane Curves of the n degree by Linkwork, Proe. Lon.

Math. Soo., VII, 1876, pp. 213-216) has given the following proof that any algebraic curve may be

described by a linkage .

Consider the algebraic curve! f (x, y) = 0. (l)

Ihe parallelogram of Fig. 1 has sides m and n which make angles 6 and with the X-axis. The vertex P

y = m.sin 6 + m.sin </, = m.cos(n/2 - 6) + n.cos(n/2 - 0)

.

(2)

How the sine of any angle can be written as the coGine of its complement. Furthermore, the products

and powers of cosines can be expressed as the sum of cosines . Thus, if we substitute equations (2)

in (l), we shall have a sum of terms of the sort:

f(*. y)=S[A.cos(a0 + b6 + e)]+C = O, (3)

where A and C are constants, a and b_are positive integers, and g equals ti/2 or 0. (if a and b_ are

rational fractions, a common denominator may be found and the function changed to integral multiples

of and 9.)

FIG. 2. The Multlplicator shown is composed of similar crossed parallelograms, discussed in previous

plates. By means of mechanisms such as this we may obtain integral multiples of any angle; e.g., alj) or b

FIG. 3- Joining one multiplicator to another will produce the combination aj$ + b9. This is the mechanis

shown where the plate BOK with angle g is connected rigidly to the end bar. Thus we build up a linkage

to produce /L BOX = slf) + b8 + g. If, in Fig. 3, OB is taken equal to A (equation 3), then the

x-coordinate of the point B is

A.cos^ + be + g).

FIG. 4. The Translator shown is composed of parallelograms with OB pivoted at 0. Within the limits of

the mechanism, the bar O'B 1 can be moved freely in the plane, reunining always parallel to OB.

FIG. 5. By combining the linkages of Figures 1, 2, 3, and 4, we may erect a chain of links

OB, BB , BB , . . ., as shown, whose end point, B , has x-coordinate:

X = EA.cos(a0 + be + g)

= f (x, y) - C (by virtue of equation 3) (4)

But if P is moved along the given curve, then its coordinates x, y satisfy: f(x, y) = 0.

Accordingly, the locus of the end point, B , of the chain is

X +C= 0,

a straight line parallel to the Y-axis. Conversely, if B is moved along this line (with the help of a





NDBX

(ihimbers refer to pages)

Addition by straightedge and compasse . 9 Diodes, 158
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Straightedge, 6, 8, 66-80; with fixed circle, 104-110;
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