TOOLS

A Mathenatical Sketch and Kodel Book

Fobert C. Yates, RhD.
Loulsians Stato Thiversity

```
Mem

COPYRIGRIP 1941
Robert C. Yestes

\section*{Praicace}

Somewhat in the nature of an experiment, this hook has been designed especially for college studente who are prospective teachers of mathematics. It serves not only to focue their attention upon the geconetrical tool and the precise manser in which it is used, but also furnishes them with abundant material that can and should be introduced into high school work.

The subject matter presented here requires no prelimirary knowledge of mathematios in advance of that acguired in the standexi freshman courses of Algebra, Irigononetry, and Analytics. Few difficulties will be encountered even if tho book is studied at the freshmen level.

\begin{abstract}
Since there are already a number of excellent available toxts doaling with modern geonetry, this subject has been sacrificed to a large extent to maloo roon for material believed to be more adaptable to the needs of the prospectivo teacher.
\end{abstract}

The arrangement is basod upon the three-hour-per-woek class. It is suggested that two of these hours be spent in the classroom, the third in the laboratory. Thus, at the everage rate of two plates per wook, the material will be found ample for a year course. Since, generally, any section is independent of the others, the course can be arranged to meet the degires of the group. Furthemore, a student entering the course at the beginning of the second semester will not necessarily be handicapped if the oxier of tho book is followed.

There are approxirately 80 plates, each facod by explanatory text and each designed as a class-hour unit. Sufficient space is provided for answors to questions,

The full value, of the book can be realized only by eome thought and muoh labor. The student should make free use of color in completing the drawings. The essential role of some vital parte of a compliceted configuration is more clearly presentod if they appear in color. A supplementary notebook with ring binder will be found useful in keeping models and notes that camnot be inserted horcin.

Much depende upon the instructor. It should be clear that there is no attempt to encourago mechanical perfection on the part of the student in the art of drafting. Instead, it is hoped that this will bring a more thorough and sympathetic understanding of geometrical structure. In completing drawings and making suggosted models, it is hoped thet the atudent will develop the feeling of boing oo-author. In the end, he will have a volume containing a record of his om creative efforts, a volume that may serve him later as a source of supplementary material in his careor as a teacher.

The equipment for the laboratory is inoxpensive. The following should be ineluded:

> Thin colored art paper (standard size pads).
> Thin tracing paper having a wax body or finish.
> Straightedge, Compasses, and Dividers.
> Colored poster-type cardboard about 12 ply.
> Hyolot punch.
> Fyolets, \(\$ 2\) and \(\$ 3\).
> Phototrimer - medium or large.

Although the material of this book was gathered from many sources, the following were of special sorvice throughout:

Adlar, A. : Theorie der geonetrischen Konstruktionen, Leipzig (1906) (Out of print).
Fourrey, E. : Procédés origineux de Constructions géométriques, Paris (1924)
(at present unobtainable).
Fludson, H. P. : Fuler \& Compasses, London, (1916).
Kempo, A. B. : How to Draw a Straight Line, New York (1877) (Out of print and rare).
Row, T. S. : Geonetrical Zxerciees in Paper Folding, Medras (1893) (translated by Berman and Saith, Chicago, 1902) (Out of print).

The author wishes to thank Professor E. H. C. Hildebrandt for many suggestions, Dorothy Blanchard for compiling the index and reading proof, and George Guttner for his courteous eooperation in the matter of publication.

Baton Rouge, Louisians
June, 1941

\begin{abstract}
\section*{SBCTION I}

THE SIRA IGHTEDGE AND MODFFW COMPASEIS (Medern Geometry) Rage
Constructional Possibilities-8; Fandamental Theorems-10; Furdamental Construetions-12; Theorems of Meneleus \& Ceva-16; Similltuce of Circles-18; Power of a Point \& Fadical Axis-20; Hine-Point Circle, Puler Line, Orthocentrie Sets-22; Reflections-24; Regular Polygons-26.
\end{abstract}

\section*{SBCTIOA II}
DISSECHIOI: OF PLANE POLYGONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(34-41\)
Transformation of Polygons- 36 ; Theorem of Pythagoras- 38 .

\section*{SECTIOY III}


\section*{SECTION IV}

FOLES AMD CREASES (Geometry of Paper Folding) . . . . . . . . . . . . . . . . . . . . . . . . . 54-65
Parallels and Porpendiculars-56; Notable Points of the Triangle-58; Regular Polygons-60; Construetionel Possibilitios-62; Knots-64.

\section*{SECTION V}

THE STRAIGHTHACB (Synthetie Projective Geometry) . . . . . . . . . . . . . . . . . . . . . . . 66-81
Photography-68; Theorem of Desargues-70; Theorems of Pascal-72; Farmonie Sets-76; Poles and Polars-78; Problems.

\section*{SECTION VI}

SDOHIOM VII
THE STRAIGHTEDGE WITR IMMOVABLE FIGURE (Goometry of Poncelet-Steiner) . . . . . . . . . . . . 102-117
The Streightedge with Imovablo Cirele-104; The Straightedge with Imeovable Square-112; The Straightedgo with Imnovable Parallelogran-116.


SBCTICH IX


\section*{SECTION X}

HIGHER TOOLS ANO qUARTIC SYSTEME
The Marked Roler-146; Conchoids and Limeons-248; Insertion and Trisoction-150; Discussion of Quarties and Cubics-152; Carpenter's Square-158; Tomahwhw-160; Corapasses of Hermes-162; Two Right Angle Rulers-164: Straighteage and Compasses with Imnovable Conic-166.

\section*{SBCTION XI}


\section*{INTRODUCII CN}

Seliant features and important conclusions are listed here in order that the student might gain through this broad vien a general understending of the concepts discussed herein.

Plane Duclidern constructions are those whi ch may be effected by straightedge and compesses. Sometimes simple, sometimes complicated, they are all, nevertheless, conposed of straight lines and circles. The ultimate object of any such construction is the lecation of pointe which are found as the intersection of two lines, a line and a dircle, or two circles. Accordingly, any tool (such us the Angle Foler) is equivelent to the straightedge and cospesses if it is capable of meking these thrue fundemental constructions.

Plone Sualideen constructions heve for their algobraic interpretations equations whose zoots are at nost quadratic irrationnlities. For the most purt, such equations are of dogree not higher then the second. Tools (or systens*) which will produce such constructions are thus called quadratic. Into this cilassification fall the unassisted Compaseses, the Parallel Ruler, the Mariced Fuler, the systen of Straightedge and Fixed Circle, ete. Those toole which will effect constructions equivalent to equations of degree as high as the fourth are called quartic. These Include the Marked Puler, the Compasses and Fixed Conic, the Carpenter's Square, the Toreheakk, etc.

The iaportenoe of the discussion of Cabice and Qarartics preliminary to the analysie of Higher Tools cannot be overemphesized. It is shown that any quartic construction is reducible by muans of atraightedge and compasses el ther to the trisection of a particular engle or to the cube root of a certain segpont length. The two encient probloms of Trisection and Duplication of a Cube thus apperr in roles of fresh iuportance.

Pline Iinkngee (compound compasses) are very complex toels. Thalr appearance in the midst of elementary tools is excused by an anticipation of normal curiosity. Heving just completed a section devoted to otraightedge constructione, it is only natural to speculate upon the existence of such en instrument. To eay we build one straightedge upon another as a guide is to beg the question. A mechanicel construction of a straight lino or istraightedge comos naturally only through the medium of pleme jointed links in tho manner of Penucellier, Hart, and Kempe. In view of the fact that the simplest linkeges producing line motion are those involving five bars, the tiaehanored etralghtedge ceems dieturbingly complex.

Two unusual designations eppearing frequently throughout the book are (1) the uso of the contrection "hypo" (for hypothetical) to indicate a locus which is dofined but may not be dreani and (2) the notatiom \(A(B)\) to indicate the cirole with center \(A\) and radius \(A B\).

The eathor does not wich to overburden the student by insisting upon the faithfuI edherence to eny particular tool. For exemple, the location of the intersections of two hypocircles by the Parallel fouler roquirec that certain perpendiculars be esteblishod. Having alreedy erected perpendiculans in a preliminary figure, the student may conscientiously exchenge the Porallel Fuler for a more adaptable tool. Such practice, moreover, mould avoid meny minor constructional olements that might obscure main issues and objectives.

This book is presented with the sincere hope that froc it a wealth of pleasuxe and satisfaction mey be derived. Intellectual profit will then accumalate wi thout eqperent effort.

\footnotetext{
* Such es those diecussed in Section VII.
}

\section*{SECTIOM I}

\section*{THE STRAICHTYDGE AND MODRFN COMPASSES}
(Modern Geometry)
The Straightedge is en instrumont used to establish the straight lino pessing through two given sistinct pointe.

The ingtrument eslled the Modern Compasses is used to draw the circle with given center and given tradius. If the radius is not given "in position" - that is, with an extremity at the center - we postulate the sbility to "carry" this radius by the compesses into position. This 1 s , in effect. absorbing the principle of the Dividers into the compasses.

These two toole and the rether restricted uses to which they are put seem acanty equipment irdeed to eroct any sort of geometrical structure worth the effort. This mekes all the more surprising the fact tixat the production is intricate, elaborate, and certainly most valuable.

However olaborate a construction may be, it is but the location of points found as the intersection of

> 1. two lines;
> 2. a line and a cirele;
> 3. two circles.

\section*{BIBLIOGRAPGY AND FURITIER RIBADING}

Altshiller-Court. II : College Geometry, Fichmond (1923).
Bader \(\quad\) : Principles of Geometry, Cambridge (1922).
Casey, John i A Sequel to Euclid, Dublin (1881, 1888).
Coolidge, J. L. IA Trentisc on the Geauetry of the Cirale end the Sphere, Cembridge, (1914) Chap. I.
Dure11, C. \(\nabla\). \(\quad\) Nodern Gecmetry, London (1920).
Godfrey and Sidcions : Vodern Geometry, Cambridgê (1928).
Gailatiy, W, : Nodern Geometry of the Triangle, London (1910)
Hudson, H. P. \(\quad\) Euler and Conpasses, London (1916) 21-34: 59-69.
Jchnson, R. A. : Modern Goometry, Now York (1929).
Iechian, R. : Modern Pure Gcanetry, London (1893).
VoClelland, W. J. : Geometry of the Circle, London (1891).
Peterson, J. I Problems of Geometrical Constructions (translated by Heagensen, Mew York (1923).
Raseell, J. W. i Elenentery Fure Geometry, Oxford (1893).
Sobwarz, H. A. : Gesammelte Mathemstische Abhand lungen, II: 345.
Shively, L. S. I Modern Geometry, Wiley, New York (1939) 1-25; 44-78; 126-129.

The following pertain particularly to regular polygons.
Adler, \(A\).
Archibeld, R. C. : Gaues and the Rcgular Polygor of Seventeen Sides, American Methemetical Monthly, 27 (1920) 323-326.
Carmichael, R. D. : American Nathonatical Monthly 26 (1919) 137 ff.
Dickson, I. E, : Constructions with Ruler and Conpusses in J. Y. Young's Monographs on Modern Mathematice, Longmans Greun (1911).
Dudeney, H. E. : Modern Puzzles, London, (1926).
Huàson, H. P. \(\quad\) Faler and Compasses, London (1916) 31-34.
Lowry: J. \(\quad\) : The Kathematical Ropository, IS IV (1819) 160-168.
Richenoni, H. W. i Quarterly Joumel of Mathematics, 26 (1893) 206-207.
Smith, I. L. \(\quad\) American Mathumetical Monthly 27 (1920) 322-323.
\[
i^{Y}
\]
1.


\(i^{Y}\) 7
2.
3.

4.

6.
\(x=a \cdot b\)

5.

\(\qquad\)
O

All conatructions of plane euclidean geometry are but the location of points either as the interseotion of two linea, or a line and a circle, or two circles. WE SHALL PROVE THAT, UNDER THE TWO RULBS GOVIRNTIG THE USE OF THE STRAIGHTLLDGE AND COMPASSES, THESE CONSTRUCTIONS CONSIST ONLY OF THE RATIONAL OPBRATIONS OF ADDITION, SUGTRACTION, DIVISION, AND MULTIPLICATION TOGETHER WITH THE IRRATIONAL OPERATIOI OF THE EXTRACTION OF A SQUARE ROOT OF POSSESSED GEOMEETRIC LENGITHS.

We shell first show that these five operations are the only possible ones in straightedge and compasses constructions. The proof is concerned with these csses:

CASE I: Fig. 1. When given four points datarmining two lines we ney draw these lines and thereby datermine thair intarsections with two other arbitrarily chocen perpendicular lines ueed as rafarance axes. With these intercepta known, the equetions of the lines are:
\[
x / a_{1}+y / b_{1}=1 \quad \text { and } \quad x / a_{2}+y / b_{2}=1
\]
where the \(a ' s\) and \(b\) 's are constructible lengthe. The coardinates of their intersection point are the aimulteneous aolutione:
\[
x=a_{1} a_{2}\left(b_{2}-b_{1}\right) /\left(a_{1} b_{2}-a_{2} b_{1}\right), \quad y=b_{1} b_{2}\left(a_{1}-a_{2}\right) /\left(a_{1} b_{2}-a_{2} b_{1}\right)
\]

Bach fraction here representa a geries of constructions possible by the mathods show in \(\mathbb{F}\) gures 4, 5, 6, 7. Tharefors, all line constructions leed to nothing more than the rationsl operstions of addition, subtraction, multiplication, and diviaion of lengthe.

CASE II: P1g. 2. A given line and a given circle have for equations:
\[
x / s+y / b=1 \quad \text { and } \quad(x-h)^{2}+(y-k)^{2}=x^{2}
\]

To find their intergections, eliminate first \(x\), then \(y\), obtaining
\[
A x^{2}+B x+C=0, \quad I y^{2}+M y+N=0,
\]
where the coefficients are constructible by Figupee \(4,5,6,7\). The Bolutions, \(x=\left[-B \pm \sqrt{\left(B^{2}-4 A C\right)}\right] / 2 A\) for instance, of the most general of thess quadratice involves, in addition to the rational oparations, the irrational operation of extraction of equare roots, but nothing further.

CASE III: Fig. 3. The intersection of two given circles is the same as the intersection of their common chord and one of the circles. Thus, eince the ooefficients in the equation of the chord ars retional functions of those in the equation of the circles, this case reduces immediately to II, and introducer no new operation.

We shall now show that these five operations are pomibls by atraightedge and compasass and give the constructions.

Figs. 4, 5 indicate the obvious meane of addition and subtraction of possessed lengtha.
Fige. 6, 7 give msthods of multiplying and dividing the lengths \(a\) and \(\underline{b}\). The donstruction in efthar case is that of almilar triangles, involving the construction of parallel lines.

Fig. 8. This exhibits the construction for the square root of a length a. Deacribe the circle on \((1+a)\) as diametor and orect the perpendicular at the junction point. The length \(x\) intercepted by the arc is \(\sqrt{a}\). Compare similar triangles:

Fig. 9. Locete \(M\), the midpoint of \(O A=1\). Draw \(O B\) perpendicular to \(O A\). With \(M\) es center and \(M B\) as redius describe an arc cutting \(A O\) extended at \(C\). Calculate the lengths:

The following theorems correbpond to those selected by the Mentional Cowittea on Mathomatical Requiramente as of greatest inportence and listod by then as fundrmentel. These are given to the studant in order for hia to bridge tho gap mors ansily betwuen hish school guometry md the materisls of this course. Locate the following theorum in a Stendard text fad list the page referencer opposite sach,
1. If two triangles have two sides and the included angle of ane equal respectively to two sides fond the included ongls of the other, thoy are congruent.
2. If two triangles have two cngles and the included side of one equal respectively to two mablea and the iacluded eide of the sther, the two triengles ere congruent.
3. If two triengles have thres sides of one equal respectively to three eidas of the other the two trionglee ore congruent.
4. If tro right triongles have the hypotenuse and a leg of one oqual respectively to the hypotenuse tad a \(\log\) of the other, they are congruent.
5. If tro eides of a triangle are equal, the angles opposite those sidee are equal.
6. The lceus of points equally distant from two given polites is the perpendicular bisector of tho line joining them.
7. The locus of points equally distent from the sides of en engle is the biscotor if the angle,
8. If two parallel lines are cut by a transversal, the altamate Interior eables are equal.
9. If tro lines are cut by a trensversal so that a pair of altemeta interior angles are equal, the lines are parallel.
10. The sum of the angles of a trimglo is a strafith angle, \(\left(180^{\circ}\right)\).
11. A parallelogram is divided into two congruent triangles by a di agonal.
12. If the opposite \(s 1\) des of a quadrilateral are equal, the figure is a parellelogran.
13. If two sidee of a quadrileterel are equal and parallel, the fieure is a parallelogrea,
14. If a series of parallel lines out off equal sagmenta on one trensversal, they out off equal segents on overy transversal.
15. The area of a parallelogron is aqual to the product of the base ana altitude.
16. The area of a triangle is equal to one half the product of its baso and eltitude.
17. The srea of a trapezoid is equal to one helf the product of its altituie and the en of its bases.
18. Tho area of a regular polygon is equal to one-helf the product of ite apothem and its parimeter.
49. If a streight line intarsects tro sicas of a triengle and is parallel to the third side, it divides the two sides proportionately.
20. If a line divides tro sides of a triangle proportionally, it is parallel to the third side,
21. The segments out off on tre trensversals by three or more parallel lines ore proportional.
22. Nwo triengles are sidilex if thay have two ungles of one equal respectivily to two anglas of the other.
23. Two trianglea are similar if en engle of one is equel to en engle of the other and the including sides are proportionel.
24. Two triangles are similar if their corresponding sides are propartionel.
25. If two chords intersect in a circle, the product of the parte of one ie equil to the product of the perte of the other.
26. The perimetere of two similer polygons have the sane ratio es eny corresponding al dea.
27. If two polygons con be divided into two triangles which ate similar and siailariy pleced, the polym gons aro similer.
28. If two polygons are siniler, they can be divided into triengles which ere similar end almilarly pleced.
29. The bisactor of en angle of a triengle divides the opposite side into parte proportional to the adjecent oldes.
30. The aress of two similer triengles are to each other ens the squares of eny two corresponding sides.
31. The areas of two siulier polygons are to each other es tho equares of eny two corresponding sidies,
32. In eny right triengle the perpendiculer from the vertox of the right engle on the hypotenuee divides the triangle into two triengles each similer to the givan triengle end to eech other.
33. In eny right triangle the squere on the hypotenuse equale the sum of the squares of the other two sides.
34. In the same circle or in equal circlos, equal centrel engles heve equal arcs.
35. In the seme circle or in equal circles, equal arco have equal central engles.
36. In the seme circle or in equal circles, two centrel angles are proportional to their axcs.
37. In the seme circle or In equal circles, equal chords have equal arcs.
38. In the aame circle or in equal circles, if two arce ere equal their chords are equal.
39. A diameter perpendicular to a chord bisects the chord and its arc.
40. A diameter which Msecte a chord (not a diameter) is perpendiculer to it.
41. A tengent to a circle at a given point is perpendiculer to the radius drewn to that point.
42. A line perpendiculer to e radius at its outer extremity is tongent to the circle.
43. In the same oircle or in equal circles, equal chords are equally distent from the center.
44. In the same ofrcle or in equel circlee, chords which are equally distent from the center exe equal.
45. An incoribed angle is measured by one-helf its arc.
46. Angles inscribed in the same segment are equal.
47. If a circleis divided into equal excs, the chords of these arcs fom a regular inecribed polygon, and tangents at the points of division form a regular ci rcuascribed polygon.
48. The area of a circle is equal to one balf the product of ite radius and its circumference.
49. The circumference of a circle le equal to the product of its dioneter and pi.

\section*{TUEDAKENTAL CONSTHECTICNS}

The following is a list selected by the National Comittee on Hathematicel Requiremants as fundementel constructions. Weke these twenty constructions, using the streightedge cend compasses as indicated at the beginning of this section. Plece whatever explenatory notes are necessary in the space provided between questions.

FIG. 1. Bisect the ling segmont and draw its perpendicular bisector.

FIG. 2. Bisect the given angle.

FIG. 3. Construct the perpendiaular to the given line through the given poiat.

FIG. 4. Construct en englo at \(P\) equal to the given engle.

FIG. 5. Drew the line parallel to the givea line through tho given point.

FIG. 6. Coastruct the triangle whose si des ar, the given segrents, \(a, b, c\).

FIG. 7. Construct a trimgle, given two engles and the incluided sidu.

FIG. 8. Construct a trienglo, given two sides, \(a, b\), and the includod englo.

FIG, 9. Divide the segment \(A B\) into parta proportional to the aegments \(a, b\).

MG.10. Given the arc of a circle, find ite center.
\begin{tabular}{|c|c|}
\hline I. & 2. \\
\hline 3. & 4. \\
\hline 5. & 6. \\
\hline 7. &  \\
\hline \begin{tabular}{l}
0 \\
b \\
Ao \(\qquad\) \({ }^{B}\) \\
9.
\end{tabular} & 10. \\
\hline
\end{tabular}

\section*{FUNDANETTAL CONSTHUCTIOHS}

EIG. 11. Circupscribe a cirelo about the given triangle.

FIG. 12. Inscribe a eircio in the given triengle.

FIG, 13. Construct the temgents to the given circle from the externel point \(F\).

FIG. 14. Construct the tengent to the eircle through the point \(P\) on the circle.

FIG. 15. Construct \(a\) fourth proportional to the three given segments \(a, b, c\).

FIG. 16. Construct a mem proportionel between the two given segments ak \(\mathrm{b}_{\mathrm{a}}\)

FIG. 17. Construct a polygon eimiliar to the given polygon.

FIG. 18. Construct a, triengle with aree equal to that of the given polygon,

FIG. 19. Inscribe a square in the given circle.

FIG. 20. Inscribe a r-gular hoxagon in the given circle.

GIVE A LIST OF REFERXXCE PAGES FROM A STANDAED TENT ON THTSE OONSTEJCTICFS:
\begin{tabular}{ccccc}
1. & 2. & 3. & 4. & 5. \\
6. & 7. & 8. & 9. & 10. \\
11. & 12. & 13. & 14. & 15. \\
16. & 17. & 18. & 19. & 20.
\end{tabular}

TITIE \(A I D\) DATE OF RKWERDCES:
ATHOR: \(\qquad\)


Of prime importance to much that will follon throughout the book are the theoreas of Menelaus end Ceva,
FIG. 1. The Theorea of Menelaust AITY LINE CUIS THE SIIES (prolenged if necessery) OF A THIANGIE SO
 OF THE OTHER THEES NON-ADJACPNT SEM/EMSS:

Dropping perpendiculars from the vertices of the triangle to the Intersecting line, we have from similar triangles:
\[
\mathrm{PA} / \mathrm{EB}=x / \mathrm{y}
\]
\(\alpha C / Q A=z / x\)
\(\mathrm{FB} / \mathrm{PC}=\mathrm{y} / \mathrm{z}\).

Kultiplying,
\[
(\triangle B)(Q C)(F B)=(B R)(A Q)(B C)
\]


Stete and prove therconverse. (See Jolmeon, p. 146)

T18. 2. The Theorece of Cevas IF LINIS AFE IRAWN FFOM THE VERTICES OF A GIVEN TRIAMCLE TO AN ARBI IRARY


\[
(A R)(E P)(C Q)=-(E R)(C P)(A Q) \text {. }
\]
.

In order to prove this, droar line XAY parellel to \(B C\) meeting \(C O R\) and \(P O Q\) in \(X\) and \(Y\), respectively. The similar triengles thus formed give the following proportions:
\[
F B / P C=A Y / A X ; \quad \quad \mathrm{RA} / \mathrm{FB}=\mathrm{AX} / \mathrm{BC}
\]

Kultiplyiag these togather astablishes the theoren. State and prove the converse.

\section*{As applications of these theoroms or their converees, prove:}

FIG. 3. The madiens of a triangle weet in a point (the Centroid).
IIG. 4. The altitudes of a triangle meet in a point (the Orthocenter).

FIG, 5. The exterior engle bisectors meat the opposite sides of a triangle in three oollinear points. (In connection, see Orthio Triengle. Plate 8,3).

\footnotetext{
2 Adjacent segnents are those which terninate in the seme vertex.
* As is customary, we agree to call the ratio \(F B / P C\) negative if \(P\) liee betwoen \(B\) and \(C\).
}


\section*{SIMLITUDE OF CIRCLES}

FIG. 1. In the two given circlea, \(\mathrm{O}_{2}\left(\mathrm{r}_{2}\right)\) and \(\mathrm{O}_{2}\left(\mathrm{r}_{2}\right)\) : we draw parallel diameters. The lines joining the extrenities of these diemeters meet the line of centers in the points \(I\) and \(\mathbb{E}_{\text {. These points }}\) are the internal end oxtornal conters of similitude of the two cireles. Let the distence \(\mathrm{O}_{2} \mathrm{O}_{2}=\mathrm{k}\). Now by similar triengles,
\[
\left(O_{2} I\right) / r_{1}=\left(O_{2} I\right) / r_{2}=\left(O_{1} I+O_{2} I\right) /\left(r_{2}+r_{2}\right)=k /\left(r_{1}+r_{2}\right)=\text { constent. }
\]

Thus \(O_{1} I\) is a constent and I is accordingly a fixod point which is independent of the position of the constructed diemeters. Furthorwore.
\[
\left(\mathrm{O}_{2} \mathrm{E}\right) / \mathrm{r}_{1}=\left(\mathrm{O}_{2} \mathrm{Z}\right) / r_{2}=\left(\mathrm{O}_{2} \mathrm{E}-\mathrm{O}_{2} \mathrm{E}\right) /\left(r_{2}-r_{2}\right)=\mathrm{k} /\left(r_{1}-r_{2}\right)=\text { constent. }
\]

Thus E is ilkewise a fixed point. Notice that these centers of similitude are the intarsection of comon tangents. Discuss the case when \(x_{1}=x_{2}\).

FIG. 2. Draw line segments from \(P\) to the given circles That is the locus of the midpoints of these sognents? (Hint: Compare similar triengles).

FIG, 3. Shew that lines joining \(P\), a point of intersection of two circles, to \(I\) and \(E\) bieect the engles at \(P\) which are foraed by the lines joining \(P\) and the centere.

FIG. 4. Construct the three extemal centere of similitude of the three given circles, Show that thase three points ile on a straight line. (Hint: Use the theorem of Nenelaus). Notice that aby pair of incentera of similitude Is collinear with the sther excenter of similitude.

\footnotetext{
- The notation \(O(x)\) signifiee the circle with center 0 and radiue \(r\).
}


\section*{PONGR OF A FOINT AND RADICAL AXIS}

FIG. 1. We now establish a very importent and fundemantal theorem of geonetry, hereafter described as the Secent Property of the Circle. From a point P lines are dram to intersect the givan eircle. Since the arc subtended by \(\angle A C D\) plus that subtended by \(\angle A E D\) is the entire circumference, these mgles are supplenentary end thus
\[
\angle \mathrm{ACD}=\angle \mathrm{PBD}
\]

Triangles PCA and PBD are therefore oimilar with the proportion:
\[
P B / P C=P D / P A \quad \text { or } \quad(P B)(P A)=(P D)(P C)
\]

Thus, IF LINES ARE IRAM FRCM A FIXED POINT TO IHTGRSECI A FIXED CIRCIE, THE PRODUCI OF THES DISTANCES FFCM THE FIXED POINT TO THE POINTS OF INTERSBCTION OF EACH LINE AND CIRCLE IS CONSTANI.

FIG. 2. The constent is easily ovalunted by drawing the line through \(P\) and the center of the circle. We haver
\[
(F O-r)(P O+r)=p, \& \text { constant, } \quad \text { or } \quad(F O)^{2}=r^{2} x p
\]

The quantity \(p\) is called the power of the point \(P\) with reapect to the fixed circle. If the point \(P\) is outside, on, or inside the circle the corresponding power is positive, zero, or negative respectively.

FIG. 3. Let us look for the locus of all pointe \(P\) that have equal power with respect to two oircles, \(O_{1}\left(x_{1}\right), O_{2}\left(x_{2}\right)\). If \(P\) ie any such point, let \(E M\) be dropped perpendicular to the line of centers. Then

Thue
\[
\begin{gathered}
\left(O_{2} P\right)^{2}-r_{1}^{2}=\left(O_{2} P\right)^{2}-r_{2}^{2} \quad \text { or } \quad(P M)^{2}+\left(O_{2} M\right)^{2}-r_{1}^{2}=(P M)^{2}+\left(O_{2} M\right)^{2}-r_{2}^{2} . \\
\left(O_{1} M\right)^{2}-\left(O_{2} M\right)^{2}=\left(O_{1} M-O_{2} M\right)\left(O_{1} M+O_{2} M\right)=r_{1}^{2}+r_{2}^{2} .
\end{gathered}
\]

But since \(\left(O_{1} X+O_{2} M\right)\) and \(r_{1}^{2}-r_{2}{ }^{2}\) are constants, then \(\left(O_{1} M-O_{2} M\right)\) mast therefore be a constent. If two quantities have their sum and difference both constents they are themselves constants. Accordingly, \(O_{1}\) 娄 is constent and thus \(M\) is a fixed point for any position of \(P\). The locus of \(P\) therefore is a straight line perpendicular to the line of centers, \(\mathrm{O}_{1} \mathrm{O}_{2}\). It is called the Redical Axds of the two circles.

FIG. 4. Show that for all pointe on the redical axis, the tangent lengthe dram to the circles are equal. Notlce that if the circles intersect, the Fedical Aris is their common chard.

FIG. 5. For three given of rcles thare are three radical axas. Two of them intersect at the point \(X\). Thls point accordingly has equal powers with respoct to the circlos \(\mathrm{O}_{2}\) and \(\mathrm{O}_{2}\) as well as to \(\mathrm{O}_{3}\) and \(\mathrm{O}_{2}\); that 1s, with respect to all three. It is celled the Radical Center. The linc through \(X\) perpendicular to \(\mathrm{O}_{3} \mathrm{O}_{3}\) is the redical exis of the two non-intersecting circles. Thls indicates a method of conetructing the radical exis of two non-intersecting circles. Any eircle such as \(\mathrm{O}_{2}\) will produce two Ilnes intersecting on the radical arls of the two given circles,

FIG, 6. Construct the radical axes of the three circles, using only one auriliary oircle. Now draw the circle orthogonal to all three given circles. (Hotet Two circles are orthogonal if their tengents at a point of intersection are perpendfcular.


FIC. 1. Locate the Orthocenter (interseetion of altitudes); the Clircumeenter (intersection of perpandicular biscotors of sides) : and the Centroid (intersection of medians), These three points lie on a line called the Euler Line. (Johnson p.165)

FIG.2. Locate the midpoizts of the siden the midpoints of segments joining orthocenter to vertices; and the feet of altitudes. These nine points lie on a circle whose radiue is helf that of the circumcircle and whose center is midway between circuncenter and orthocenter. (土ahnson p,195).

FIG.3. Locate the orthocenter H. The four points, (the given vertioes and the orthocenter H) form what is called on orthocentric set. Show that the four triengles formed from this (or ony) orthocentric set all have the same NinemFoint circle.

FIG. 4. Draw the circuncircle and Nine Foint Circle. Verify thet their interalal and extemal certors of similitude are respectively the centroid and orthocenter of the given triengle. (Johnson p.197).

FIG. 5. Produce the sidee of the Orthig Triangle (lines joining the feet of the altitudes) to meet the opposite sides of the given triangle. The three points thus formed lie on a line. (Zor proof, aee Plete 26, 5).

\section*{REFLDCIIONS}

We essume that the path of a light ray or a billiard ball makes equal engles at a roflecting surface. This path generally is the shortest one possible.

FIG. 1. The shortest path from \(P\) to the line and then to \(Q\) is found by reflecting \(Q\) (or \(P\) ) in the line and then joining the reflected point to \(P\) (or \(Q\) ). Neke the construction.

FIG. 2. Find the shortest path from \(P\) to one of the linee, then to the seoond, and then back to P. (Hint: Reflect \(P\) in eech line).

FIG. 3. The Trimgle of least porimeter that may be inscribed in a triangle \(A B C\) is the orthic triengle XYZ. This triemgle makes equal ungles with the sides of ABC. For, tritagles BYA and CZA are both right triengles and thus
\[
\angle H B Z=90^{\circ}-A=\angle H C Y
\]

 \(<2 X H\) intercept the same aro and thus are equal. In the second of rele, \(\angle \mathrm{HXY}\) and \(\angle E C Y\) are equal. Accordingly,
\[
\angle Z X H=\angle H X Y
\]

Thas THIE ALPITUDES OF A TRUANGLE BISBCT THE AMGLES OF ITS ORIHIC TEIANGLE. (Schmerz, p. 345).
FIG. 4. Swimmers are to jume off a cireular flest, swio to shore \#1, then to ahore \({ }^{\#} 2\), and then beck to their sterting point. How mould you pick the shortest path to win the rece? (Hints Dram a tengent to the ofrcle that is perpendicular to the line joiring conter and intersection of shore lines),

FIG. 5. The billiard bell \(P\) is to touch the four suocessive cushions 1,2,3,4, and retam to \(P\). Draw the path. (Hint: Reflect P successively in the sides). Cen you make a return shot on two edjecent cushions? On three?

FIG, 6. The billiard ball F is to touch all sides of the triengular table end return to its originel position. What paths axe possiblel

FIG. 7. The Parabola is a curve such that any billierd ball such as \(P\) traveling parallel to the axis of symetry will pass through a fixed point \(F\), called the focus, and then be reflected along another parallel to the axis. List some properties of this curve and your reference.

FIG. 8. If the teble is Elliptical, there are two foch, \(F_{1}\) and \(F_{2}\). If the ball \(P\) be shot elong the line \(E F_{2}\) it will pass through \(F_{1}\) after reflection and then continue to travel alternately through the foer.


\section*{REGUAR POLYGONS}

The discussion of regular polygons een be cerried on conveniently if use is mede of complex numbers. Such nuibars are of the form \(x+i y\) whore \(x\) and \(y\) are real numbers and the letter i represents the quantity: \(\sqrt{ }(-1) .\left(i^{2}=-1, i^{3}=-1, i^{4}=1\right.\), etc.) For pictorial purposes we shall agree to plot the point \((x, y)\) on a set of perperdicular axes as a rapresentation of tl.e number \(z=x+i y\).
FIG. 1. In this discussion wo need consider only those points which lie on the unit circle; that is, those for which \(\sqrt{ }\left(x^{2}+y^{2}\right)=1\). The inclination \(\theta\) is found from tom \(\theta=y / x\). Thus: \(x=\cos \theta, \quad y=\sin \theta ; \quad\) and \(\quad=x+i y=\cos \theta+i \cdot \sin \theta\). FIG. 2. A surprising feature of these unit couplex numbers is discovered on raising them to powers:
\[
z=\cos \theta+i \cdot \sin \theta,
\]
\[
\begin{aligned}
& z^{2}=(\cos \theta+i \cdot \sin \theta)^{2}=\cos ^{2} \theta+2 i \cdot \sin \theta \cos \theta+i^{2} \sin ^{2} \theta=\cos 2 \theta+1 \cdot \sin 2 \theta, \\
& z^{3}=(\cos \theta+1 \cdot \sin \theta)^{3}=(\cos 2 \theta+i \cdot \sin 2 \theta)(\cos \theta+i \cdot \sin \theta)=\cos 3 \theta+i \cdot \sin 3 \theta,
\end{aligned}
\]
and generally:
\[
z^{n}=(\cos \theta+1 \cdot \sin \theta)^{n}=\cos (n \theta)+1 \cdot \sin (n \theta)
\]

The geometrical meening of this should be apparenti If \(z\) is such a nuwber with inclination \(\theta_{1}\) then \(z^{2}, z^{3}, z^{4}\), etc., are all points upon the unit circie with inclinations \(20,30,4 \theta\), etc.. respectively. It is just this property that makes then particularly usoful to us since they represent points evenly distributed around the circle and thus are vertices of reguler polygons. By setting \(z^{n}=1\) we denend \(n\) such points with one of them at the unit point. It is then the Reprosentative Equation of a regular polygon of n sides.,

This Representative Equation cen alwaye be factored into the forms
\[
(z-1)\left(z^{n-1}+z^{n-2}+\cdots \quad z+1\right)=0
\]

The first factor equated to zero gives anc vertex. The other ( \(\mathrm{n}-1\) ) vertices are given by the roots of the second fector. But it will not be necossary to solve this equation of degree (n-1). For, since \(z^{n}-1=0\) cen be rewritten (dividing by \(z^{n}\) ) as \(1 / z^{n}-1=0\), it is obvious that not only is \(z\) a mot but its recriprocel \(1 / \mathrm{z}\) is also a root. Now, as may be verified by crose multiplication:
\[
1 / z^{K}=1 /(\cos K \theta+1 . \operatorname{Sin} K \theta)=\cos K \theta-i, \sin K \theta .
\]

Therefore, since \(z\) is any vertex and since \(1 / z\) is the reflection of \(z\) in the line of real nuabers, then all of our polygons will be symmetrical to this line and the resulting construction is considerably lightened.
HIG. 2. Since \(z+1 / z\) is a real number (the double of the abeolssa of \(z\) or the diagonal of the rhorbus built on \(0, z\), and \(1 / z\) ) we may employ the substitutions
\[
z+1 / s=2 x \quad \text { from whichs } z^{2}+2+1 / z^{2}=4 x^{2} ; \quad z^{3}+3 z+3 / z+1 / z^{3}=8 x^{3} ; \text { eto.. }
\]

In order to aid in the algebrate solution of say Hepresantative Equation. If a value \(x\) cen be determined and lafd off, the correspanding vertex pay be located by erecting the ordinate to meet the eirele.

In the following, the atudent is required to solve each Represantative Equition for \(z_{\text {, }}\) using thesc values in the construction of the polygons, and calculate the length of a eide, \(S\), of each:

FIG. 4. The Triangle: \(z^{3}-1=R\). \(\qquad\)
\(s_{6}=\) . Metice that this equation includios FIG. 6. The Hexagon: \(\mathbf{e}^{6}-1=0\) \(s_{8}=\) \(\qquad\) . Notice that this equation includes FIG. 7. The Octagon: \(z^{6}-1=0\) the vertices of the Square.


The Pentagon has for Representative Equation:
\[
z^{5}-1=(z-1)\left(z^{4}+z^{3}+z^{2}+z+1\right)=0
\]

Writing the second factor as
\[
z^{2}+z+1+1 / z+1 / z^{2}=0
\]
we nake the substitutiont \(z+1 / z=2 \pi\) (see Plate 9.3) and obtain
\[
4 x^{2}+2 x-1=0
\]
whose roots: \(x=(-1+\sqrt{5}) / 4, \quad(-1-\sqrt{5}) / 4\) ere the abscissas of pairs of vertices of the Pentagon, Frem these values, calculate the iength of a side:
\[
\mathrm{S}_{5}=
\]

FIG. 1. Given the unit circle. Describe an arc with center at \(M:(1 / 2,0)\) and rudius M, cutting the \(X\)-axis in \(B\). The length of its ohord \(A B\) is equal to \(S_{5}\), a side of the Pentagon. Why?

HIG. 2. Given the unit circle. The circle \(4 x^{2}+4 y^{2}+2 \pi-1=0\) has its conter at H: \((-1 / 4,0)\) and passos through \(\mathbb{K}:(0,1 / 2)\). The tangonts to this circle at the points whero it cuts tho X-axis pess through the vertices of the Pontagon. Whyt

FIG. 3. The point B: \((0,1 / 2)\) is joined to \(P_{5}:(1,0)\). The bisector of \(\angle O B P_{5}\) meets \(O P S_{5}\) in the abscissa of \(P_{1}\), ons vertex of tho Pentagon. Establish this fact.
[Hint: \(\tan 2 \theta=2 \tan \theta /\left(1-\tan ^{2} \theta\right)\) ]


For the discussion to follow, we borrow a theoram fromi Algebra, stated without proof":
FAS MO INTEGER ROON THEN IT HAS HO RCON CONSTRUCTIBLE BY STRAIGTIEDGE AND CONPASSES.

The Eeptagon. The Representative Equation for a regular 7-5ided polygon is:
\[
z^{7}-1=(z-1)\left(z^{6}+z^{5}+\ldots+1\right)=0
\]

The second factor: \(z^{3}+z^{2}+z+1+1 / z+1 / z^{2}+1 / z^{3}=0\), becomes, on substituting \(z+1 / z=x\) :
\[
x^{3}+x^{2}-2 x-1=0
\]

The roots of this equation are the double abecissas of pairs of vertices of the Heptagon. If this equation has an integer root, that root must be either +1 or -1 since on dividing by \(x\) :
\[
x^{2}+x-2=1 / x
\]
we see that no other integer could possibly satisfy the equality. Thus by the foregoing theorem there is no constructible root (oince neither +1 nor -1 satisfies the equation) shi the Heptagon is not constructible by streightedge and compasses.

FIG. 1. A simple streightedge and compesses approximate construction develops from the following. One-balf the side of an equilateral triangle is \(\operatorname{cin} 60^{\circ}=0.86602\) (approxa). The side of the Heptegon is \(2.5 \mathrm{in}\left(180^{\circ} / 7\right)=0.86774\) (approx.). Thus, an error less than a thousandth part is comitted in taking the side of the Eleptagon as half that of the Triangle. Nake the construction.

The Znneagon (9-sides) is represented by \(z^{9}-1=\left(z^{3}-1\right)\left(z^{6}+z^{3}+1\right)=0\), the letter factor of which reduces to:
\[
x^{3}-3 x+1=0
\]
on substituting \(z+1 / z=x\). Here is enotier instance of an equation with non-constructible roote, and the Bnneagon is therafore not constructible. Is it possible to trisect with straightedge and compasses an anglo of \(120^{\circ}\) ?

Regular polygons of 11 and 13 sides are also not constructible. Is the 14 -gon? Give the lengths of a side of the Decagon (10) and of the Dodecagon (12):
\[
s_{10}=
\] - \(S_{12}=\) \(\qquad\) \(\sim\)
FIG. 2. The Pentedecagon ( 15 -gon) is represented by
\[
z^{15}-1=\left(z^{3}-1\right)\left(z^{12}+z^{9}+z^{6}+z^{3}+1\right)=\left(z^{5}-1\right)\left(z^{10}+z^{5}+1\right)=0
\]

From en inspection of these factors, it is clear that its vertices includo those of both the Triangle and Pentagon. The central arigle subtended by each side is \(24^{\circ}\). The Triangle and Pentagon are constructed with \(\angle T O A=120^{\circ}, \angle P O A=144^{\circ}\). Their diff sence, \(\angle P O T\) is \(24^{\circ}\) and thus chord PT is the side of the regular Pentedecagon.

FIG. 3. Surprising indeed is the fact that the regular 17 -gon can aloo bo constructed by straightedge and compasses. The construction is given without proof. I Drew the perpendicular medii \(Q A=C B=1\). Upon \(\mathbb{O B}\) mark the point \(D_{:}(0,-1 / 4)\). With two bisections locate the point \(E\) on \(O A\) such that \(\angle O D E=\angle(O D A) / 4\). Construct \(\angle \overline{Z D E}=45^{\circ}\). Draw the circle with \(A \mathbb{A}\) as diameter meeting the line \(O B\) in \(K\). With \(E\) as center and EK as radius draw the circle meeting AA' in \(I\) and \(M\). Perperdiculars to \(M A^{\prime}\) at \(L\) and \(M\) give the vertices \(P_{3}\) and \(P_{5}\) of the regular 17 -gon, A side may then bo found by biseoting \(<P_{5} O_{3}\) obtaining the point \(\mathrm{P}_{4}\).

\footnotetext{
- See Diakson, p.33.
i See Rifchmond.
}


Polygens of \(2^{n}, 2^{n} \cdot 3,2^{n} \cdot 5,2^{n}, 15\) sidas, We have shown that the regular poiygens of \(3,4,5,15\) sides are constructible by streightedge end carpasses. Since these tools are capaile of bisecting any angle, it follows that regular polygons of \(6,8,10,12,16,20\), etc., sides are constructible in the same sense. The fact that these polygons could be corstructed was well kows even to the early Greeks. However, otber possibilities including the 17 -gon were totally ursuspected for about two thousani years. Gause in 1801 showed thet there was a remarkablo set of such constructible polygons: those the number of whose sides wis a prime exprossible in the form:
\[
\mathrm{N}=2^{2^{\mathrm{p}}}+1
\]

How many years before the time of Gauss, Fomat had considered mumbers of this type and found that if p were given any of the values \(0,1,2,3,4\), thon the resulting value \(\mathbb{N}\) was indeed a prine. For some unexplained reason, he did not find out anything concorning the nature of \(\mathbb{V}\) for p groater then 4 . We kenow now that if \(p=5\), \(\mathbb{Z}\) is \(4,294,967,297\) and this numbor is divisible by 647 . The labor involved in this calculation must have consumad hours and porbapy days. If the reader is sonewhat sikeptical, let him find the valuo of \(\mathbb{N}\) whon \(p=6\), that is, \(\mathbb{N}=2^{64}+1\), and then try to find a divisor of \(\mathbb{N}\), Thero is one. An idee of the magnitude of this rumber can be gotten from the story of the inventor of the chese game anc his grateful king. As a revard, the king agreed to give the man one grain of wheat for the first square on the bcard, two grains for the socond, four for the third, and so on, doubling the rumber each tino. The total rumber of grains is exactly \(2^{64}-1\). Using a conservative estimate for tho size of a single grain, a standard pint would contain 9,216 grains, a gallon 73,728, and the total would amount to \(31,274,997,412,295\) bushele. This is appraximately 7,000 times the world production fer the year 1935.

The extent to which the investigations of these Fermat mumbers have boon carried is anazing. But no one has been eble to find a valuo of \(p\) greator than 4 which makes \(y\) a prime. It is definitely known that if \(p\) is any of the values:

\section*{\(5,6,7,8,9,11,12,18,23,36,73\)}
the corresponding value of \(\mathbb{N}\) is composite - thet is, divisible by some munbur and thus not a prime. Nothing is kolows about the nature of 2 for \(p=10,13,14\), etc. That human beings and thuir rachines (see Iohmer's factor machins at Lehigh) are capable of calculating and factoring such huge mumbers borders an the miraculous. The mumber \(\mathbb{V}\) for \(\mathrm{p}=36\), for instance, is composed of more than 20 trillion digits. According to Lucas, the strip of paper upon which the number is written would encircle the earth. If we should print such an incoriceivable number as \(\mathbb{V}\) for \(\mathrm{p}=73\) in volumes tho size of the Encyclopedia Britannica, these books would overfiow every library in every tom and city of the Onited States.

A gereral constructibility rule, given without proof by Gausb, follows:
The only regular polygons thet can be construoted by etraightedge and compasses arc those the mumber of whose sides can be oxpressed in the form:
\[
\mathrm{V}=2^{\mathrm{n}} \cdot\left(2^{2^{a}}+1\right)\left(2^{2^{b}}+1\right)\left(2^{2^{c}}+1\right) \cdots
\]
where cech mumber in parenthesis is itself a prime and any one of the lettered exponents may be zere, with \(\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}\).

Number of Constructible Polygons. The roader has perbaps realized by this time that the totality of polygons which are constructible by straightedge and compasses is emall compared to the totality of non-constructible ones. For \(1 \mathbb{1}\) between 100 and 300, there are only 13 constructible polygone; from 300 to 1,000 sides, thore are only 15 more; and froci 1,000 to \(1,000,000\) sides, onily 154 altogethor. The obance of raming at random a constructible polygon of less than a million sides is thus about one in five thousand.

Those constructible polygons, the number of whose sides is less than 100 , are listed in the following table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & 3 & 4 & 5 & 6 & & 8 & & 10 \\
\hline & 12 & & & 15 & 16 & 17 & & & 20 \\
\hline & & & 24 & & & & & & 30 \\
\hline & 32 & & 34 & & & & & & 40 \\
\hline & & & & & & & 48 & & \\
\hline 51 & & & & & & & & & 60 \\
\hline & & & 64 & & & & 68 & & \\
\hline & & & & & & & & & 80 \\
\hline & & & & 89 & & & & & \\
\hline & & & & & 96 & & & & \\
\hline
\end{tabular}
L. E. Dickson has given formulas by means of which the total number of constructible polygons below \(\left(2^{x}+1\right)\) sides can be determined:

If \(x\) is less than 32 , the mumber of constructible polygons is
\[
(x-1)(x+2) / 2
\]

If \(x\) is greater than 32 but less than 128 , the number of such polygons is
\[
(32 x-497)
\]

Nake e list of the oonstructible polygons with number of sides between 100 and 300 in a teble below:

\section*{SECZION II}

\section*{DISSDCHIOM OF PLANE FOLYCONS}

Aoong the denends of Buelid we find thest Folygons, particulerly triengles, must be proved congruent by superpeaition. Only after this is done initially do we notice that congruence pay be established by inference. For the purposes of this aeetion we shall assume the abillty to transform into a out any straight line that has been previously constructed by atrai ghtedge and compasses.

The maximun velue of the methods Indicated here can be obtained anly by making models, preferably with colored cardboard, to 111 ustrate. Even to scmeone little ecquainted with geometry, the jigmew geme of fitting together the pieces to form the polygons of equal aree will prove diverting end stinulating. Flece your wodels in envelopes for future reference. Models made of masonite with the pleces jolned by smell strap hinges meke excellent illustrations. For cardboard models, use a photo trimpor.

\section*{BIELIOGRADHY AND FURIHIR FDADTNG}

Bell. T. T. \(\mathrm{F}_{0}\) : Mathenatical Recreations end Issays, (revised by Coxeter) New Yoric (1940) 87-94.
Boon, F. C. : A Compeninn to Khenentary School Nathematicr, Iondrap (1924) 100 m 111.
Coxeter, H. S, \(u_{\mathrm{i}}:\) : M. Math. Manthly (1940) 490.
Dodemey, H. E. . : The Desly Mall, Indon (1905) Feb. 1. 8,
Dudeney, H, \(Z_{0}\) : Acruscenents in Mathenatics, Now York, 1917.
Grunette, \(M_{*} \quad\) Geonetricks, Mew York (1939).
Hert, H. IVessengor of Kathenatics, VI, (1877) 150-151.
Jeckson, श. H. : Americen Joumal of Yathomaties, (1912) 383-390.
Teylor, H. \(u_{0}\) : Messengor of Kathematics (1905-6) 81-1r1.
Temple, J. ithe Matheratical Correspondent (1804).
Loomis. E. S. : Pythagoreen Theorem, Cleveland, (1927).
Perigal, H. I Messenger of Mathenatics, II (1873) 103-106; IV (1875) 103-104.


\section*{DISSDCTION OF PLAHE FOLYGOAS}

FIG. 1. Given the scaleme triangle ABC. A cut is mado through the midpoints \(X, Z\), of two sides. The two pleces will ift together to form a parellelogran in two ways, heving, of course, the seme area es ABC. Thy is \(\overline{X Z}\) parallel and equal to hali AC?

FIG. 2. The scelene triengle \(A B C\) is cut along the lines joining the midpoints of its sides into four pieces. These piecos are nill congruent. Why?

IIG. 3. The scalune triengle \(A B C\) is cut into four pieces along the line \(Z Y\), where \(Y\) and \(Z\) are the nitapoints of \(A C\) and \(A B\); alang \(A H\), the perpendicular to \(Y Z\) and along 取, where \(M \mathbb{C}\) is the perpendieular bisector of BC. Fit these pieces togother to form successively a parallelogram, a reotengle, and a right triemgle Explain.

FIG. 4. The lines joining in order the midpointe of the eldes of any quadrilateral form a parellelogran. Why? Find the aroa of this parallelogram and thrus show that the nrea of any quadrilateral is half the product of its diagomals and the sine of their ineluded angle.

If cuts are mede along three of these lines es shown, the four pieees may be fitted together to form a parallelograe with area equal to that of the quadrilaterel. Axplein.

IIG. 5. From the preceding discussion we find a method of dicsecting any quadrilateral into four pieces which will form a trienglet From the midpoint of eny cide, eut to the midpoints of the other three. Reerreage these to form the triongle end explain.

FTG. 6. Here is shown enother method of reducing the quadrilateral to a triangle. Out along tho Inne joining the midpoints of \(A B\) and \(A D\). Now ait through \(D\) parallel to \(B C\) obtasining the point \(P\). The third cut is from \(P\) to the midpoint of CD. Explafn and discuss the possible failure of this method.


IIG. 1. The square of side \((a+b)\) way be dissected into the four right triangles with legs a and \(b\) as shown and the inner square of side c . Thus, since the four triangles form two rectangles of dimensions a end b:
\[
(a+b)^{2}=2 a b+c^{2} \quad \text { or } \quad a^{2}+b^{2}=c^{2},
\]

\section*{the Theorem of Pythagoras.}

FIG. 2. The Theoren of Fythagoras may be denonstrated by the following dissection. The square \(A B C D\) is of side c . Cut it into the four right triangles \(A P D, A T B, ~ C N D\), and CNB with sides a and b. The smaller central square then has its side oqual to \((a-b)\). Thus
\[
c^{2}=2 a b+(a-b)^{2}=a^{2}+b^{2} .
\]

FIG. 3. From the point of View of dissection, the Theorem of Pythagoras is a cluo to the process of adding two squares to make one. To dissect and add, place the given squares, ABCD and ABFG, so that two of their sidee form the legs of a right triengle as shown. Nako a cut in the larger square from B perpendicular to the hypotemuse followed by the cut perpendicular to that as shown. In the smaller square cut from \(G\) perpendicular to the hypoternse. These fivo pioces will form a single equarc. Explein.

FIG. 4. An alternate and extromsly siaple addition is tho following elegant dissection. Place tho two given squares so that a right trianglo is formed es shown. Cut through the center of tho larger square along linos perallel and perpondicular to the hypotenuse. This produces four congruont piocos which may be reessembled at the cornere of the sun-square leaving a center hole into which tha smaller square may be fittod. Ioxplain.


FIG. 1. Te transform the given parallelogram \(A B C D\), with sides \(a_{2} b\), ana angle \(\theta\), to another parallelggram of specified shape. Suppose the two sides of the required parallelogram are \(x\) and \(y\). Lecate the point \(X\) in \(B C\) such that \(\Delta X=x\); then construct \(D Y=y\). Cuts are made along \(A X\) and \(D Y\) to give three pieces which will form the required parallelogram. For, ne matter where \(X\) is solected \(\mathrm{cn} B C\), triangle \(A X D\) has fixed base and constant altitude equal to that of the given perallelogram. Thus its area is balf that of the parallelogram and accordingly,
\[
\mathrm{ab} \cdot \sin \theta=x \cdot y \cdot \sin \phi .
\]

FIG. 2. Here is given a second method of reducing a given parallelogram to a specified parallelogram. Let \(\overline{X X}\) be constructed equas to a desired side. The line AX produced to meet \(D C\) in \(W\) gives \(I W\) as the second side. Out along \(\Delta X\) end \(Y\) where triangle AYZ equals triangle XWC. Ixplain.

FIG. 3. To roduce a given rectangle \(A B C D\) with sides a and \(b\) to the square to equal area. Since the area of the required square is \(a b\), its side is \(\sqrt{(a b)}\). We must thus construct a cut whose length is the mean proportional botween a and b. Accondingly, locate the point \(M\) so that MB equals \((a+b)\). On this as a diemeter construct a semicirclo. Bxtend \(C D\) to \(P\). Then \(P C=\sqrt{(a b)}\). Suing this ofi with \(C\) as oenter locating the point \(X\). Cut from \(\mathbf{X}\) to \(C\), then from B perpeniicular to \(C X\). Show that \(B Y=\sqrt{( }(\mathrm{eb})\). (In case \(Y\) does not fall within the rectangle, mere cuts are requirai.)

FIG. 4. A fancus dissection problen is that of transforming an equilateral triangle into the square of equal area. Iet the triangle have side equel to 2 . Then its ares (and that of tho required square) is \(\sqrt{3}\). Let \(Z, Y\) be the midpoints of \(A B\) and \(A C\) respectively. With a constructed length \(\sqrt{3}\) as radius, describe an arc with center at \(Z\) which cuts \(B C\) in \(P\). Locate \(Q\) so that \(P Q=1\). Cat along \(Z P\), thon from \(\bar{Y}\) and \(Q\) perpendicular to ZP. These four piecas form the square. Why?

FIG. 5. A reversion of the dissection of Fig. 4 is the morc genoral reduction of a quadrilateral ABCD to a specified triangle. Let \(X, Y, Z, W\) be the midpoints of the sides. The parallelogram XYZN is balf the area of the given quadrilatoral. Thus, for any point \(P\) on XW, triengle PYZ is onemfourth the area of the quadrilateral. If \(P\) be selected such that \(P Y\) and \(P Z\) ars equal, cuts aleng \(X W, P Y\), and \(Y Z\) will reduce the quadrilatoral to an isoscoles triangle, whose base is the length of tho diagonal ED. Explain.

FIG. 6. To transform a given triangle \(A B C\) to another trianglo with tho same baso, \(A C\), and a specified angle \(\theta\). Cat along \(P Q\) wherc \(P\) and \(Q\) arc the midpoints of two sides, then along \(B X\) whero angle \(B X P=\theta\), then along \(A R^{\prime}\) where \(\mathrm{HR}^{\prime}\) is parallel to BX and R is the midpoint of \(A C\). These four pieces form the triangle with tho sene base and specified angle \(\theta\). Explein and discuss the possibility of the dissoction yielding mere piecos.

\footnotetext{
How does the dissection of Fig. 6 apply te the reduction of a polygon of \(\underline{n}\) sides to one of ( \(\mathrm{n}-1\) ) sides?
}


\section*{THE COMPASSES}
(Gecmetry of Mascheroni)

It is proved here the the entiro plane geonetry of Euclid may be effected by means of the carpasses alone. This was the important contribution of Mascheroni, a protege of Napoleon, in 1797 . Flecent aisclosures, however, indicate that Mascharoni was anticipated about one handred years by Georg Mohr.

It should be noted that although the straight line as a whole cannot be constructed by compasses alone, yet an infinitude of arbitrary points may be located upon it. It is remarkeable indeed that the points of intorsection of two such hypo-lines, given oniy by two peirs of points, may be dutermined solely by the compasses. The fact that it is capable of producing all plano euclidean constructions is established by finding the intersection of:
\begin{tabular}{lc} 
1. two circlee & (which is immediate) \\
2. a hypo-line and circle & (Plate 18) \\
3. two hypo-lines & (Plate 18).
\end{tabular}

The idea of inversion is introduced here primarily as a service. However, the subject is of interest in itself and reappeare in Section VI with a mechanical interpretation.

\section*{BIBLIOCRAPHY AND FURIPHER READIMG}

Adler, A. : Theorie der geometrischon Konstruktionon, Leipzig (1906) 37-58; Chapt. III.
Cajori, F. : Anerican Mathematical Monthly, 36 (1929) 364-365.
Carnaban, W. E. i School Science and Mathenatice, XXXII; (1932) 384-390.
Ceyley, A. i Messenger of Mathenatics, 14 (1884-5) 179-181.
Fourrey, E. : Procédés originaux de Constructions gécmétriques, Paris (1924) 95-112.
Goldberg, M. I School Science and lathematics, XXV (1925) 961-955.
Eudson, H. P. : Fuler \& Compasses, London (1926) Chapt. VIII.
Lenascol, A. Q, de
Hescharoni, I.
Mohr, G. : Buclidos Danicus (1672). Royal Denish Scientific Society at Kopenhagen, A. F. Host and Son, (1928).

Mational Mathematice Magazino, XIII 392-399; XIV, 418.
Shively, I. S. : Moiern Gecmetry, Now York (1939) 80-92; 132-135.

\section*{THE COPPASSHS}

FIG. 1. With a single apening of the compasses drew a set of circles whase intersectims form a rectangular network of points.

FIG. 2. Construct the reflection of \(P\) in the hypo-line* AB. (Hint: Use \(A, B\) as centers).

FIG. 3. Construct other arbitrarily seleoted points on the hypo-line AB. (Hint: Select any point \(P\) not on the line and reflect. Then use arbitrary radii).

FIG. 4. Find the point \(C\) collinear with \(\triangle\) and \(B\) such that \(\Delta B=B C\). (Hint Recall the Hexagon).

FIG. 5. Drew members of the family of circlice all of which pass through \(A\) and \(B\).
1.


The Compasses is a natural instrument for the interpretetion of a fundrmental study of plane geometry called Inversion.

FIG. 1. Given two solccted points, \(O, A\), at a distance espart. Two other points, \(U\), \(V\), are inverse to each other with respect to OA ifr
and
1. they are collinear with 0 and \(A_{\text {, }}\)
2. \((\alpha)(O)=(O A)^{2}=a^{2}\).

FIG. 2. This idea of inverse points may be calarged to include invorse curvesi if \(V\) travels along a. specified curve, its inverse \(U\) travels along a corresponding curve, and the point A traces the circle with radius \(e\). We shall call this circlo the bese oircle. Locatc the points that are inverse to themselves.

If we take the point 0 es the origin of s. systen of polar coondirates and an arbitrary line as poler axis so that \(\omega=r_{1} \quad O V=5\), thon

unoresses the condition for irverse points.

FIG. 3. To find the irworse of a given point \(V\) with rospect to the circle \(O(a)\), draw an arc with center at \(V\) passing through 0 and meeting the beso circle in \(P\) and \(P^{\prime}\). With \(P\) and \(P^{\prime}\) as centers, drow arcs of radius a. These mect, at 0 ara again at \(U\), tho inverse of \(V\). For the proof, consider the lines from \(P\) to \(O_{4} U\), and \(V\). Triangles OFU nd FVO are isosceles and similar since they have a common bese angle \(P O V=\phi\). Thus the propertion!
\[
\alpha / a=t / O V_{1} \quad \text { or } \quad(\alpha)(O V)=a^{2}
\]

FIG. 4 The base circle is given with redius 1 . Using its center as the pole, drew the circle (which passes through the pole): \(4 r=3\) - \(\cos \theta\). Invert scveral points of this circle and give the polar oquation of the inverse figure.

What is the inverse of the circlet \(r^{2}=A \cdot r \cdot \cos \theta+B \cdot r \cdot \sin \theta+C\) ?

FIG. 5. Given the lines \(\tan \theta=X\) and A. I. \(\cos \theta+B\) r.sine \(=C\). Construct several points on thoir inverse curvos and give their invorse equations,


FIG. 1. Given the points \(A, B\). Locate their sidpoint. (Hint, Find \(C\) such thst \(A B=B C\), then invert in \(A(B)\) ) How many cirolos nced be drawa to solve the problcm? \(\qquad\) How wany radi1? \(\qquad\) \(=\)

FIG. 2. Draw the circle \(r^{2}-(5 / 2) r \cdot 006 \theta+1=0\) which is arthogonal to the base circle, \(r=1\). What is its inverse with respect to this besc circlef \(\qquad\) What statement can you make rogarding the inverse of any circle orthangal to the base ofrcle?

FIG. 3. Plot points upon the Lemiscate \(r^{2}=\cos 2 \theta\). Notice that the curve is tengent to tho unit base oirole. Locate points upon the inverse of this curve e-d give its polar ard rectangular equations:

The lines tangent to the Lemiscatc at the origin ere perpendicular. Into what do these invert and what is their relation to the inverge curve?

A polar equetion of the Limacon is \(r=a+b \cdot c o 6 \theta\). What arc the roctangalar and polre equstions of its invorsof

In the following use \(\mathrm{r}=1\) as the basc oirolc:
FIG. 4. plot points upon the Limacon and its inverse for \(a=1, b=1 / 2\). Identify,

FIG. 5. Plot points upon the Limecon and it6 invorse for \(a=1, b=1\). Identify.

FIG. 6. Plot points upon the Limeon and its inverse for \(a=2, b=2\). Identify.
- A(B) is the circle with center A passing through B.

FIG. 1. To drav the circle throuph throe given points, \(A, B, C\). With center at \(A\) dras the eircle through B. Invert \(C\) in \(t^{\prime}\) is ois cirelc, obtcining tho point \(C^{\prime}\). The Lypo-lino DC' is the common chord of the base circle and the desired circle. Why?

How reflect \(A\) in this comon chond, \(3^{\prime}\), obtaining point \(A^{\prime}\). Wc have then, \(A B=A^{\prime} 3\). Invert \(A^{\prime}\) in the some circle \(A(B)\), obteining \(O\). This is the contor of the desired cirele. For, \(B^{+}\), the rofloction of \(B\) in \(A D\), is the rcmaining intersection of the coconon chord and the circlu of invorsion and is thus a point on the cosired circle. But the point \(O\), by construction, is equidistant fron \(B, A\), and \(B^{\prime}\) nod theroforo is the desirod cantor.

FIG. 2. To find tho interscctions of the bypo-1ine \(A B\) and the given circle, simply reflect the center 0 in \(A B\) and with, that point as conter, describe the eircle with the sure mailus as the \(\bar{G}\) iven eircle. These two circles bave \(A B\) ts radical axis and thoir intersections arc the desired points.

FIG. 3. To doternine the intorscetion of two hypo-lines given by the pairs of points A, \(B\); and XY. Using an arbitrary circle of inversion, both lines may be inverted into circlos through the center of irwersion. These circles intersect in one further point, \(P\), viose inverse is the desired intersection of the hypo-lines. Nese the construction.

FESKARK: As discussod in preceding plates, the oonstructions possiblo by straightedge and compasses are bat combinations of the throe fundementel ones: tho intorsoctions of two circles: the interseotions of a circle and a line: and the intersection of two linee. Wo have shown by the constructions of this plite that the plane goometry of Euclid my bo oxocutai by means of the compassea alone.
A.

FIG: 1. Corstruct the vertices of e square on \(A B\) es a sidc. (Hint: Drew the circle with radius \(A B\), center at \(B\). Let \(A, G, F, C\), be four consecutive vertices of the inseribed hexrgon. With \(A H\) as radius draw arcs with oenters at \(A\) and \(C\) which intersect in \(P\). Then \(E P\) is the diagoral of the required square). Complete the construction and oxplain.

FIG. 2. Find the intersections with the given circle of the hypo-line joining \(P\) and the center 0. (Hinti With \(P\) as conter and an arbitrary mdius, draw an arc intersecting the given circle in \(A, B\). Drew circlee \(A(0)\) and \(B(0)\). With 0 as center draw the are with redius \(A B\) cutting circles \(A(0)\) and \(B(0)\) in \(D\) exi \(E\). With \(D B\) as redius and conters at \(D\) and \(E\), drew ares intereecting at \(G\). With \(O G\) as radius and \(D\) as conter draw an are intersecting the given circle nt \(F\), the point desired). Prove this.

FIG. 3. Find the conter of the given circle, (Hint: Draw an arbitrany circle of invorsion with center on the given circle).

FIG. 4. Find the invorse of the point \(P\) where \(O P\) is loss than balf the xedius of the circle of inversion. (Hint: Iet the maius of inversion oqual 1 . There is no loss of genemility in assuming \(O P>1 / 4\). Find \(Q\) Guch thet \(Q=2(O P)\). Thon invort \(Q\) obtaining the point R. Locete \(S\) such that \(O S=2(O R)\). \(S\) is the required point. Explain.

FIG. 5. Construct the oircle of invorsion for which tho givon line and circle are invorse figures.


\section*{SECHION IV}

\section*{FOLDS AMD CREASBS}

In creasing a sheet of paper, a point \(A\) of one portion (the upper) of the sheet is folded over and held coincident with a point \(B\) of the other (under) portion. While these points are held fest with thumb and finger of the loft hend, the thumb and finger of the right hend are placod on the upper mad lower portions. If the bands are now pulled epart with the right thumb and finger sliding, the pointe (upper end lower) upon which they slide are equidistent from A and B. Eventually this leads to a aingle point \(C\) on the crease which is thus equidistent from \(A\) end \(B\). As the thanb and finger form this creruse the tension keeps the distances on the two portions equal end the crense is thus the locus of all pointa of the sheet which ere equidistant from A end B. Obviously this com bo considered as the etraight line bisector of the segment \(A B\).

\section*{POSTULATES}

We assune the ablity tot
I. Place one point of the sheot upon another and thus crente a crease. This crease ia assumed to be a etraight line.
II. Retablish the crease through two diven dietanct pointe.
III. Plece a given point upn a given line so that the resulting creese pesses through a second given point. (This implies the ability to fold a crease over upon another or upon itself).

\section*{BIBLIOGRAFHY AND FURIHITR READING}
\begin{tabular}{|c|c|}
\hline Abraher, \(\mathrm{F}_{*}, \mathrm{M}\). & : Winter Nighte Ehtertainment, Hew Tork, (1939). \\
\hline  & \(\pm\) Truite \({ }^{\text {d }}\) de In Sphère, Rome (1682). \\
\hline Cajori, \(\mathrm{F}_{\text {c }}\) & : History of \#hementary Mathematice, Ner Yoric (1921) 265. \\
\hline Dyck, \({ }^{\text {Br }}\), & 1 Katalog Munchener Math. Ausctellung (1893) Machtrag 52-54. \\
\hline Fourrey, E. & - Prucédós oríginaux de Constructions géométriquee. Pari a (1924) 113-139. \\
\hline Klain, \(\mathrm{F}_{\text {。 }}\) & : Fanous Problens in Elementary Georetry (treaslated by Bacean and Saith) Boston (1897) 42. \\
\hline Leeming, \(J_{*}\) & : Fun Whth Peper, Wer Tork, (1939). \\
\hline Iotke, \(A, J_{*}\) & * School Soince and Mathenatics, VII, 595-597. \\
\hline Lotka, \(A_{3} J_{\text {, }}\) & i Messenger of Mathenatics, 34 (1905) 142-143. \\
\hline Iotke, \(A_{4} J_{\text {c }}\) & : Construction of the Conic Sections (Scientifio Anericmi Supplenent) (1912) 112. \\
\hline Inces, E. & - Récréations Lath cnaté quee, II, 202. \\
\hline Morley, \(\mathrm{F}_{\text {c }}\) V* & t Araricen Mathemati cal Monthly, 31 (1924) 237-239. \\
\hline Morley, \(\mathrm{F}_{4} \nabla_{0}\) & : Proceedings of the London Mathenatical Society, 22 (1924) mavili, \\
\hline Morley and Morley & ( Inversive Geonetry, Iondon (1933) 174-176. \\
\hline  & : Geometrical Exarcises in Peqer Folding, Madras (1893) (tronsinted by Bemen \& Smisth, Chicaso, 1901). \\
\hline Fupp, \(C_{4} A_{*}\) & 1 Amoricen Nathematical Monthly, 31 (1924) 432-435. \\
\hline Starice, E. \(\mathrm{P}_{5}\) & - Anericon Methematioel Monthly, 47 (1940) 398. \\
\hline
\end{tabular}

\footnotetext{
- We nssume the point and line exe so sid tuated that thle nay bo eccomplished. See Plate 22, 5.
}

\section*{FOLNS AID CERASES}

In the following the studcnt is required to make the folcing constructions, using smoll \(11^{*}\) pieces of paper with irregular edgec and paste thon (so they may be unfolded) on the opposite page. Thin colons. art paper (an inexpensivo packengo) providos excellent illustrations.
1. Givon a point \(P\) and a line L. Betablish the eroese througl: \(P\) parpondicular to \(L\).
2. Given a point \(P\) and a line L. Esteblish the crceso through: \(P\) parallel to \(L_{\text {. }}\)
3. Form two perpendicular oreases. Then with seissors cut the edge into e plano curve. When unfoldad, the curve is symetricel to both orecises.
4. Solect (orease) a triangle \(A B C\) with right anglo at \(B\) and obtain the foot, \(D\), of the altitude from B. Show that D and \(C\) ere inverse points with respeet to the ofrcle whose ounticr is \(A\) and whose redius is AB.
5. Seloct tho ecalene triangle \(\triangle B C\) and obtain the foot \(D\) of the eltitude from \(B\). Fold the verticos A, B, C, over to D. From this modol, show:
(a) The sum of tho angles of a trianglo is \(180^{\circ}\).
(b) Tho line joining midpoints of two sides is perallel and equal to half the thind sía.
(c) The arce of a trianglo is half the proiuct of a side end its altituide.

\section*{FOIDS LND CFRASES}

Make models of the following ond pasto on the opposite prge. In ench eunstruction mako noto of the postuletos used.
1. Select (creaso) a triunglo and obtein its incenter (intersection of unglo-bisectors).
2. Solect a trianglo and obtain its orthocontor (intirsoction of altitudes).
3. Solect a triangla and obtain its circuncenter (intersection of porpundicular bisectors of sides.)
4. Solect a triangle anci obtain its centroid (intorsoction of̂ modians).
5. The Parabole is the locus of points equidistent from e given fixod point called the Focus anc a given fixed line called the Directrix. A fendliar property is that uny tengorit bisects the angle botwcen tho focal raciius and the line from tho point of tengency perpendicular to the directrix.
Thus, givon a lino L (a croese or cige) rand a point \(F\) ( F . corner for instance) in a sheet of peper, move \(\bar{I}\) elong I and form the creesus. Those cruases aro all tangent to the Parabola having \(F\) as focus and \(I\) as directrix. They are said to "envolope" the curve, Explain.
(Yote that Postulato III grants the ability to establigk tine cróeso through e givon point that is tengent to the parabola dofinod by the lino nad the othor point. Ii tine first point lies within the perabale the construction is impoesiblo).

\section*{YOLDS AND CFEASES}

Wake models of the following and pastc on the sproeite page. In each eonstruetion mekc note of the postulates used.
1. Establish a Square by creasing. Then fold the corners to the oenter end oreaso. These creasos fome a square inscribed to the first. Continuo this to illustrato the soquence:
\[
1, \quad 1 / 2,1 / 4,1 / 8,1 / 16,1 / 2^{n}
\]
2. From a selected square, fold and croase the inseribed square. Fird the intersections of oronses bisocting the angles botwoen the sides of the inner and outer equare. These intcrsections are vertices of a Rogular Octagon. Explain.
3. Crease the quairisectors of the angles of a squaro and thus obtain the vertices of a Regular Octagon, Explain urd compare areas.
4. Establish an Equilateral Trianglo by oreasing. (Hintt Obtain the perpondicular bisector of a solected segment).
5. Fold the comers of a equilateral trianglo to the center and obtain the Hegular Hexagon. Compary arees of the two polygons.
6. Refor to Plate 10 and crease the Rogular Pontagon by some method given there.

\section*{FOLDS AND CREASES}

FIG. 1. Intorsoctions of o given lins and hypocircle. The intersections of the creese \(L\) and the hypocircle \(O(A)\) are found at once through Fostulate III by folding \(O A\) so thit A lies upon \(I\) at tho points \(\mathbb{X}\) end \(\mathbb{Y}\).

FIG. 2. The intereections of two hypocircles \(O(X)\) and \(O^{\prime}\left(A^{\prime}\right)\) rre found by flrst eatablishing their radicnl axis. Frocead es follows, Trenefer the radius OK to OA alang a perallel to \(O^{\prime} A^{\prime}\). Since lines joining extrenities of parallel dismeters, \(A O B\) and \(A^{\prime} O^{\prime} B^{\prime}\), aset in a contor of similitude, (see Piate 5,1) the creases AA' and KR' neet in this point \(\mathrm{E}_{\text {. The creese }} \mathrm{TA}\) peets the secand circle agein in \(\mathrm{C}^{*}\) (found by folding the creace perpendicular to \(B E\) through \(B^{\prime}\) ). Crease \([8\) meets the first circle in \(D\).

Now \(A, D, B^{\prime}, C^{\prime}\) fom a quadrilateral with right onglee at a pair of opposite vertices, These four pointe thus lie on e circle, \(Z\), which auts the circle \(O(A)\) in \(A_{1} D_{i}\) and the circle \(O^{\prime}\left(A^{\prime}\right)\) in \(B^{\prime}, C^{\prime}\). Thus cranses \(A D\) and \(B^{\prime} C^{\prime}\) nre the comnon chords of \(Z\) and \(O(A)\); and of 2 and \(O^{\prime}\left(A^{\prime}\right)\). Accordingly, (see Plate 6.5) AD and \(B^{\prime} C^{\prime}\) moet in \(X\), a point of the redicel axis of \(O(A)\) and \(O^{\prime}\left(A^{\prime}\right)\). The crease through \(X\) perpendicular to \(0 O^{\prime}\) is this radiceal axia.

Having thus entablished the redical axis, its intersections with ef ther circle, Fig. 1, are the required points.
 GDOMESTR CAET BE KXDCUTAD BY MEANS OF CREASES.



\section*{KNOTS}

The posoibilities of foliing and oreasing may be extonca if, in aditition to the foregoint. we admit a process of kotting a paper strip whose edges are pamallel. (Tbe matheartical definition of "tichtncss" is aifficult to state and it is hoped that the reacor wiil not be confused over the meening of the word).

In cach of the following, knot thee malur polygons and paste your frodols in the spaces provided. Half-irch strips cut the longth of a standani sheet are servicocble.

Neither the Triangle nor Square can be formed into \(n\) lanot that is striotly ticht or sclisupporting.

FIG. 1. A Square tay bo formed with two strips of the same width. Fold each over upon itsolf and insert an end of one strip into the fold of the other.

FIG, 2. To fom the Pontason, tio an over-heni knot in a sincle strip. (Thic over-band knot is the first knot in tyinc. a shoo string.) ifter tightening and oreesing flat, unfold and consider the set of trapezoids formed by the creases.

FIG. 3. To form the Hexagon, tic the sailor's reef or gouare bnot with two strips of the same width as shown. (Tuck the oxds of each strip into the loop of the othor.)

FIG. 4. To form the Heptagon, (not constructible by straightedge and eompassos) use a single strip to knot the Pontagon. Before tightening, however, pass the lead under the knot end then through it as shown. Or, cerry the lapd through the sequence of numbers indicated. After tightening, unfold and cearrine the trapezoids formed by the oreases. Locate these trapezoius in the given figume.

FIG. 5. To form the Octagon, first tie a loosc ovar-hand knot in ore strip, here the striped aie going from \(1-2-3-4-5\). With a second strip of tho B me wiath, start at 6 passing over \(1-2\) and 3-4. Bend (co not oxseso) up at 7, p ssing umior 4-5 and 1-2, ani bending up asain st 8. Pase under 3-4, ovur 1-2, and under 6-7. Bend up at 9 end pase owor \(3-4\), under \(7-8\) and \(4-5\), cmerging at 10 .
\begin{tabular}{|c|c|}
\hline &  \\
\hline &  \\
\hline \(\cdots\) &  \\
\hline &  \\
\hline &  \\
\hline
\end{tabular}

\author{
(Syntlotic Prujectivo Gocnetry)
}

The instrunent considerod here hate but one straight ajo upon whic: thore ore no graduations. Follow-

 area, pamllelism saci the like carnot bo interpreted. Our only ebility will lis in the iuontification of es line of two points and the point on two lines.

Although quite usoful es an auxilinry instrument in goner: 1 censtruction work, the Streinhtecigo certainly docs rut eqpeter very powerful. Burprising, however, is the fact thest it is capable of solvirs. complicatod und oirborate problens of construction. An exmple of this is the remarkeblo construaticti of the teangont to exy givan conic (includin; the oircle) from an externil point. (Sec Plato 3, 13).

Who Frojective Geonctry of Desariuee, de la Hire, Poncelet, Stciner, Pasczl, noi Pluclar aeviloped in part through a need for a narc ioscriptive elenent in painting ans etchinc. More particularly, this and other now-ibuclideen geonetries aroes as a rosult or rupostod failures to prove tho Bucliwan postulate of parillels. The grerth of the subject was cxporionoed in two phases: the first bozilunin: proporly with the noteworthy truatmant offerai by Decarguon and tho firx ronel ir, theorom of Pascal; tho second was the rovival cocisioned by the publication by Porcelet in 1822 of his fanous notes onde suring a military imprisonnent in Russia. A consiamble time about tho qidele of the 19th ccntury was spont in on acaderic war botwion those who envocated synthetic trantant rastirily (tise purc pounotors) and tiose who beliuvod that the oniy ryproach wes thrcaph the nedium of analysis. Tho result wes far from injurious cither to aralysis or to pounotry.

The principlo of duality was roceived with the heartiost of welocace. Witt tho ostablishment cf this princijlo "an elrocdy vest eapire of ceomotry was ioublai in extent". Sylvcstor rumarkod that with tho Plucker coorilintes, teomotry necd no longer stumblo rlon; on one foet, thet it could strice forth fimily on its two oqual supports.

\section*{BIBLICGRAPHY A \({ }^{\circ}\) D TURTHER READING}

Akler, A. : Theorie dur geomotrischon Zonstruktionon, Ioipzit (2906) 74-í0; 147-174.
Carnokan, Y. H. : School Scienoo and Mathamtios, XXXVI, 182-189.
do In Zire, P. : Suctionos cunicte (16é).
Desarguee, G. : Brouillon project . . . (1639).
Enriques, F. : Vorlesungen uber projective Geonetrie, Leipzig (1903, 1915).
Enriques, F. : Fragen der Elemontargeometrie, Leipzig (1907) 95 if.
Fourrey, E. \(\quad\) : Pxooéás origimaux de Constructions gécmétriquas, Parie (1924) 3-23.
Greustein, W. C. : Higher Goomotry, New York (1937).
Holgato, T. F. I Projoctivo Furu Geonetry, New York (1930),
Hưobon, H. P. \(\quad\) I Iuler \& Compasscs, London (1916) 1-21; 35-58; 102-112.
Irohlan, B ,
Lambert, J. H. 1 Fraie Pcrspectivo, 2 ed., Zurich (1774) II. 169.
Lohmor, D. V. i Slomoniery Projootive Goomotry, Boston (1917).
Longchanps, de : Essei sur la Góonótric de la regle et do \(I^{\text {t́áquerre, Paris (I8go). }}\)
 Chicago (1898) 66-58.
OtHare \& Ward : Projectivu Geometry, axford (1937).
Fagcal, B.
Plucloor, J. I Analytische-goomotrischo Zntwickelungen (1831).
Poncalot, J. V. i Tralte dos propriétés projectivcs dos figuros, Parls (3822).
Sanger, R. G. : Synthetic Projoctive Ceanotry, Hew York (1939).
Servois, P. J. : Solutions pou conmuos do difforons probloms do goomotrio-pratique... A. Netz, An XII (1804).
Shively, L. S. I Kodern Goomotry, How York (1939) 25-42; 94-125; 129-130.
Stelner, J. : Systonatieche Ehtwickolung der Abhangiegkuit geouetrischen Gcstallen von cinender(1832)
Vinger, R. M. . \({ }^{2}\) Projective Goonctry, New York (1923).
* i. I. Bell in The Developent of Matbematice "Mem Yoric (1940) \(3 \overline{16}\).

\section*{TFTS SIRAIGTEFDE}

Afiold in which the Straightedge plays a natural role ie that of Projective Geonetry, a product of Dícer, da Vinol, and others following the 15th century. The definition of some terms followst

FIG. 1. A Range of Pointe is a set of points lying upan a line. The line is criled a Carrier.
IIG. 2. A Pencil of Lines through a point crasiets of ell lines that pay be drem through thut point. We speak of then es "lines on a point".

FIG. 3. Defines Projection. Iines drun froa a point \(P\) (the eye, for instence) to the verious points of a set, \(Q\), are cut by a plane \(\pi\). The points of intersection of \(\pi\) and these lines are oulled the projocticns of the pointe of \(Q\) onto the plens. It should be olegr that lines project ints lines and the intercection of two linee projecta ints the intersection of the two projected lines. Why?

Why is it edventageous to have two eyeo? (heoall the old frabioned aterooptioan),

FIG. 4. TMs goometry, as indicated in Fig, 9. seens then to be the goometry thst oecurs in photogreqhy. The parallel railrond tracks may appear to meet or to vemich at a certain point; rectangles asy appear as parallelograng; olrcles any appear es ellipses; lengths are destroyed by projection. The qwality that does not chenge is called em inveriant and it is this phase of the matter that is of interest. The parallel odges of the building in Fig. 4. intorsect at \(P\) and \(P\) ', called vanishing points. The line PP' is, neturelly, the horizon.

IIG. 5. From a nagasine, select a photograph illustrating the principles of projection. Paste It in the spece provided here: Some early artists were ignerant of this representation and as a reault croatcd flat and challow paintinge, Illustrations what be hard to find.

FIG. 6. The plane sections of a olvcular cone are the Chrele, Blipas, Parabola, and Eyperbole.耳y placing the eye at the vertex of the cone these curves all appear alike. Thus in Projective Germetry there is no distinetion mang theo and they are all indlented by the single torat conig. Most of their chrractoristi cs stualled in Analytic Goometry aro measurable properties. These will not appeer as such in the present soction. However, cortein of their features of a projective nature will cone to IIght in our investigations and these mey later be tremslated into metric terainolocy.


FIG. 1. A cornorstone of Projective Geometry is Desargues' (dis-zargs) Theorim whith is credited by Prapus to Euclid:

 THRES POINIS \(X, Y, Z\), "HICH ARE COILINEAR, Tho linu XYZ is oulled the exis of perspective, \(P\) the centur of perspective, end the two triangles ore eaid to bo in perspective from \(P\).

FROOF: Consider the siturtion in space. We have then the pyramid with vertex \(F\) out by tho two plenes \(1,2,3\) and \(1^{\prime}, 2^{\prime}, 3^{\prime}\). These two planes (generally) weot in a lino L. Linus 1,2 and \(1^{\prime}, 2^{\prime}\) lie in a plame through \(P\) and thus intersect in some point \(Z\). This is a point of \(I\) eince these arme lizes lie in the plemes \(1,2,3\) and \(1^{\prime}, 2^{\prime}, 3^{\prime}\). Sinilarly for \(X\) and \(Y\), The whole space confliguration an wow be projected to e plene; points goine into points and lines into lines with no chenge in our results. Thus the thoorem is established and \(L\) is the axis.

FIG. 2. As an epplication, drem the line through \(X\) and the ineccessible intarsection of two given lines, 上, 3. (Hint: Through \(X\) drear two arbitriry lines aeeting \(\underline{a}\) and \(b\) in 3 and \(3^{\prime}\), respectively. Select an arbitrexy point \(P\) on \(33^{\prime}\) is the canter of porspective. A second arbitrary line from \(P\) moets \(X, 3\) in 2 and \(F, 3\) in \(2^{\prime}\); 4 third line from \(P\) meets \(E\) in 1 and b in \(1^{\prime}\) ).

EIG. 3. Draw a lino through \(X\) parellel to the two givan parallel lines.

FIG. 4. Given two peirs of lines as bend 존 which have a pair of inaccossible intersections. Dram the line through these intursections. (Fint: Select a point of perepective upon the diegonal of the given quadrilateral, using \(\underline{a}, \underline{\pi}\) end \(\underline{b}, y\) is corresponding sides of perspective triongles. This locates one point of the desircd lins. A repetition cocipletes the construction).

FIG. 5. Lines drewn from the vertices of a triengle to a point \(P\) meit the oppocite sides in \(A^{\prime}, B^{\prime}\), and \(C^{\prime}\). The triangle of these latter points is cellod thio pedrl of \(P\). Show that the sides of any pedal triengle neet the opposite sides of the original trisagle in three collinuan points. Nake specisi mental noto of this for \(P\) as the circurscenter, the incenter, the orthoocmter, otc. (See Plato 4). Discues carefully the situation re \(P\) is ellowed to epproach the position of the controid.

Additional Problens: Verify that three given lines with em ineocessible intersection are concurrent.
A given line cuds et exi obstruction upon whid the streightedge cannot be placed. Fome a continuation of the line boyond the obstacle.

\footnotetext{
* Correspending vertices are those whica lio collineor with \(P_{\text {. }}\). Corresponding sides join corresponding vertlices.
}


\section*{THE STRAIGRTEDGE}

We introduce bere one or tho most firmaching and beautiful theorons in guonetry a theorem discovered by Pascal at the eqe of 16 and published in 1640 . It is given without proof:

FIG. 1. Six arbitray points are selectad upon a conic and numbored erbitrarily \(1,2,3,1\), \(2^{\prime}, 3^{\prime}\). Lines an drawn frum 1 to \(2^{\prime}\) and \(3^{\prime}\) : from 2 to \(1^{\prime}\) and \(3^{\prime}\); from 3 to \(1^{\prime}\) and \(2^{\prime}\). Tho points \(X, Y, Z\) of intersection of \(2,3^{\prime}\) and \(2^{\prime}, 3\), otc., liv on a lins. The conversc of the thoorom also holds. State it.

Intorchange two of the sumbers in Fig. 1 and construct the now Pescal line. By renumbering in ell ways six such given points we may obtain 60 Pescal lines. For a study of this set of lines sce W. H. Bunch, An. Math. Monthly, Vol. XI, p. 251, 1933.

FIG. 2. A conic may bo drawn through ary five given points, wo three of which aro collinoar. Construct one furthor point upon tho conic whicijasses through the fivi pointe of Fig. 2. (lint: Using Pascal's theorcm, draw any lina I through 2 which is to contain the dosired point \(1^{\prime \prime}\). This lino \(I\) meots \(1,2^{\prime}\) in 2 . The lines \(2 ; 3^{\prime}\) and \(2^{\prime}, 3\) moot in \(X\). \(X Z\), the Pasces lino, meets \(1,3^{\prime}\) in Y. Tho line \(3, Y\) cuts \(L\) in \(1^{\prime}\) ). Othor points of the conic are luditud by varying the chosen lize. Thas by meens of tho stresightedgo slonc wo nre able to construct e conic "pointwise."

IIG. 3. The given circle is e special conic upon which thio theoram of Pascal must nocesearily holc. Choose a sot of six points at mandom upon this circle and construct a Prscel linu. of the sct. (The converse of Phsesi's theoren does not hold for the circle).

FIG, 4. A conic may dogenorate into a peir of linos. Scloct thrce points upon each linc of Fig. 4 and esteblish of Pascal lino.

Consider the construction of Fig. 4 if ifive points are sclocted upon ane line and the sixth on the othor.

It is said thest Paserl doducod over 400 corollerics from his conic theorom. Givo some historical notos:
 1.

3.
2.
 4.

\section*{THE STRAICHTEDGE}

FIG. 1. Given five points \(1,2,3,11,2\), no threo of whick pre collinorr. Construet the tangent at any one of those points to the conic detorsinci by the five points. (Hint: Suppose that tho missing point \(3^{\prime}\) hes mergod with point 1. In so doing, the line 1,3' approaches the position of a tangent to the eonic. Therotore, ostablish tho Pascal line by finding two points on it - the intersection of \(\left(1,2^{\boldsymbol{t}} ; 1^{1}, 2\right)\) ana of \(\left(2,3^{\prime} ; 2^{\prime}, 3\right)\). Now tho line \(1^{\prime}, 3\) cute this Fescal line in a point Y. Through Y also passos 1,3', the desired tangent).

FIG. 2. Given four points \(1,2=1 t, 3,2^{\prime}\) and a tengent to the circumeonic at one of theec pointe. Construct one (nad consequently mell") further points on the conic. (Hint: Ticc, intursection of \(1,2^{\prime}\) and \(1^{\prime}, 2\) is \(Z\), a point of the Pnscel line. Drew ory line through 1 which is to moct the conic in 31. This line is cut by \(1^{1}, 3\) in Y , a socord point of the Preal lino. Line \(2^{\prime}, 3\) cute the Prseal line in \(X\) una sinco \(2.3^{\prime}\) passes through this samo point, the intersection of \(1,3^{\prime}\) and \(1^{\prime}, 3\) is deterninad.

FIG. 3. A dcgenerate case of Pascal's thoorem lcads to an interesting thoorcm on inscribed quadrilaterals. Of six points on a conic, let \(3^{\prime}\) morge vith 2 and let 3 merge vith \(2^{\prime \prime}\). The Pascal line then is determinod by tho intorsections of the throe pairs of lines: \(\left(1^{\prime}, 2 ; 1,2^{\prime}\right),\left(1,3^{\prime} ; 1^{\prime}, 3\right)\), and \(\left(2,3^{\prime} ; 2^{\prime}, 3\right)\), tho last prir boing tangonts to the conic. Thus the tizeoren:
TRE ORPOSITE SIDES OF A GUADRILITRRAL IISGRIBED IH A CONIC TOGBNHER NTIT THE PAIRS OT TANGRMS AT OPPOSITE VERCICDS MEB IN FCUR COILIMAR POIMSS.

PIG. 4. One further degonerate ease procuces a theoren on inscribed trianglas. Let the six points on a conio mergo together in throc pairs: \(1^{\prime}=3, \quad 1=2^{\prime}, 2=3\). Then 11 nus \(2,3^{\prime}\); 1,2'; and 1',3 ere tangents to tho conic. The Fuscel line is deternined in the usual wey, bringing to light the theorent
 SIDES IN THREE COLLINEAR POMIS.
(

\section*{THE SIRAIGFTEDGE}

FIG. 1. Nunber dififorently each set of pointe \(1,2,3,4\), so that ono sot is not a cyolic cingret of another. Join these points in succession. Bech figure now reprosonts a simplc quadrileterel.

FIG. 2. The four points \(1,2,3,4\) are given, Six lines and three furthcr points arc formed by joining them in all possiblo weys. Tisis configuxation is called a complete quadriln tersi. The poiuts \(1,2,3,4\) ere ite vertices; the lines 1,\(2 ; 1,4 ; 2,3 ; 3,4 ; 1,3 ; 2,4\) are its sidos; and \(X, Y, Z\) are its diagonal points.

FIG. 3. IF TIVE PAIRS OF COREPSFOMDIMG SIDES OF TWO quanfilatirais ( 1,\(2 ; 1^{\prime} 2^{\prime \prime}\) ), \(\left(3,4 ; 3^{\prime} A^{\prime}\right)\), \(\left(1,3 ; 1^{\prime}, 3^{\prime}\right),\left(2,3 ; 2^{\prime}, 3^{\prime}\right),\left(1,4 ; 1^{\prime} 4^{\prime}\right)\) INTERSECT IN PONIS \(A^{\prime}, A, C, B, D^{\prime}\) ON A LIMS, THEN IHE SIXITH PAIR \(\left(2,4 ; 2^{\prime}, 4^{1}\right.\) ) INTERSECNS IN \(D, A\) PONIT CF TaE SAME LINE.

FROOF: Consider triangles 123 and \(1^{\prime \prime} 2^{\prime} 3^{\prime}\). Since their corresponding sides intersect in
 point \(P\). For the same reuson, \(P\) is the center of porspoctive for the other throe triengles of each quadrilatoral, all having the seme axis of perspective. Now since two corresponding sides of triangles 124 and \(1^{\prime} 2^{\prime} 4^{\prime}\) nect in \(A^{\prime}\) and \(D^{\prime}\) their third corresponding siacs \(\left(2,4 ; 2^{1}, 4^{1}\right)\) intersect in \(D\), a point of the same line.

FIG. 4. In Fig. 3 let \(\Delta^{\prime}\) spprcach \(A\) and \(D^{\prime}\) approach B. The precoling exgument and theorom woald in no way be affooted. Fig. 3 then reducos to the poir of quadrilatorels shom where tho line \(A D\) on which the fivo pairs of corresponiing sices intersect is the diagonal lino \(A B\) ( 000 Fig .2 2) of oither quadrileteral. By the foregoing thoorem, IF THE COILINZAR PONTS



These four collincar points so rclatio are seid to bo harmonic, the pairing indicated by the syabol; ( \(\mathrm{AB} ; \mathrm{CD}\) ). We say that eack peir is coniugente with respect to the other. Given ery throc of the points, the fourth kumonic point may bo located by macens of the stroightedge alona. Sets of harmonic points have irportant meaning in actrical geonctry.

FIG. 5. Given the throe points \(A, B, D\) on a line. Locate \(C\) so thst ( \(A B, C D\) ) is harmonic. (fint: The location of tho point \(C\) is independont of the perticuler superstructure used. Thus draw two arbitrary lines from \(A\) meeting a line drawn arbitrarily from \(D\). Then drew two linos from \(B\) forming a quadrilateral with the lino through \(D\) as a side. The sixth 3 ido of this complete quadrilateral produces the point C).

FIG. 6. Given that \(M\) is the midpoint of the segment \(A D\). Locate \(N\) such that ( \(A D ; N \mathbb{N}\) ) is hamonic. Discuss carofully frcm the metric viewpent.


YIG. 1. If the harmonic set ( \(\mathrm{AB} ; \mathrm{CD}\) ) and ite complate quadrilateral superstructure be projected fron \(n\) point \(P\) in space upon a plone \(\pi\) a new quadrilateral and corresponding hamonio set
 HAEMONIC THES PROTECTED. (A point of projection on tho lime of hamonic points is excluded). For example, the harmonic points ( \(\mathrm{AB} ; \mathrm{CD}\) ) yny be projocted from point 1 onto the line 2,4 , the points \(A, B, C, D\) projecting into \(2,4, X\), and \(D\), respectively. Thus the set \((2,4 ; \times D)\) is hamonic,

Linus joiniag a point and each of four barmic points are theisselves called hermonic.

FIG. 2. Drew two secent Iines fron eny selected point \(X\) to the given conic cutting out the quadrileteral 1,2,3,4. This complete quadrilateral has the diugonal pointe \(X, Y, Z\). Each side of this diagonel triensle \(X, Y, Z\), is the poler of its opposite vortex wi th regpect to the conic. A varter is celled a pole. The trimgle XYZ is said to bo self-poler to the conic.

From Pascel'e theorem on inscribod quadrilatarals, the tengents at 2 and 4 moot on the line YZ et the point L . Now ( \(\mathrm{KM} / \mathrm{YZ}\) ) are karoonic and by \(\mathrm{Fig}_{\mathrm{g}}\). 1 . so is the set ( \(\mathrm{EX} \mathrm{X}_{\mathrm{j}} 2,4\) ) hamacnic. Thus by draming a single secrat 2,4 through \(Z\) wa my detemino \(K\) so that ( \(Z X ; 2,4\) ) is harmonic. The point L is detemined by the tingents at 2 ad 4 . Thus the poiar KL of \(X\) is located ori thout recourse to the second secent 1,3. This latter ling mey be drema entirely et rendoia, On the other hand, eny one of the sacond eaconts any be dram through \(X\) in order to locate the polear and the first sceent could be drame arbitrarily.

 remarics under Fig, 2, that if the arbitrary ine P, 1,2 cuts the poler in \(Q\) thun (PQil, 2) is a harronic set of points. Ste.te this in other wordst

FIG. 4. Discuse Fig. 3. as the secant through F approaches the position of o tengent.

Now construat the temgent frou \(P\) to the ourve in Pig. 4. Miss streightedge construction of a temgent to a conic from en extemal point is remarkably sitmple med notomorthy.

FIG. 5. In Fig. 3. we sam that a seemt through the pole auts the carve and the poler line in three pointe harmonic with the pole. If we select ay point \(Q\) on the given line \(p\) of Fig. 5. and fom its poler then this polar line aust pass through the pole \(P\) of \(P\). In other words, IF \(Q\) ITES ON TEE POLAR OF \(F\) THEN \(P\) LIRS OA THE FCLAR OF \(Q\). FKom this construct the pole of tho line p.


\section*{THE STRAIGHTEDCE}

FIG. 2. For each point \(P\) in the pline of 3 fixcl ocnic thore corresponcis a linc, its poler \(p\); and to the line \(P\) correspords a iufinito point P. To a range of points correoponds 3 pencil of polar linos all pessing tirrough the pole of the cirrior. This is a reciprocel affeir betweon points and lines which. forms the fanros principlo of duality first conceived by Poncelot in a Russien prison nd usod by Brianclon to transcribo the theorem of Puscal into the ono thet bears his rame. Unfortantoly portaps, this trenseription took place over 150 yoars after Pascal.

FIG. 2. After Brianchon, let us transoribe the theoram of Fascel into poles and polars. Eeck. of the six points on the conic of the Pascal configuration has for pollr the tongent lia, at that foint. Thus wo produce s six-sided figure circunscribing the conic, erch vortes of which is a pole of "s side of Peacel's ineribod figure. The point of iritorsection of two corresponing sides or Pascell's fipure trunscribes into ite polar linci trat is, the join of two corresponding vertices of the circunscribod figurc. These throe points lie on the Pascal line. Their polars accoruingly pess through a point - the pole of the F.sce:l line. We have thus ostablished the thooren of Brianchon:
 THIROUEX i POINT. Draw the figure, usine different colors for the two reciprocel theorums of Pescria and Briarci:en.

FIG. 3. We define a dianutcr of a conic as the pelar of an infinitely distant point. In Plate 29.6 we sow that the infinitely distrant print on the extension of the sogment \(A B\) formed with the aidpoint \(M\) of \(A B\) a peir of puints hemonic with \(A, B\). Theretore, a dianeter is the locus of midpoints of a set of parallol chords of the conic. Ary two non-parallel diameters intersect in the conter of the conic. What is the polar line of the conter?

FIG. 4. A conic my degonerate into e pair of lincs as shown. The polar of a point \(P\) with respect to such \(n\) special conic prsses through tho intersection of the two lines. Why?

Drew the figure.

FIG. 5. Using tho ideas presonted here, solve apsin and in a uifferent manber (Sed Plate 26,2) tho problem of drawing a line through X and the ineccessiblo intersoction of two given lines,

FIG. 6. Draw a lino through \(\bar{X}\) parollel to tho two given parallel lines.


\section*{LIAE VCTIOM LTAKAGES}

The nost proninent notion is oirculer．The conversion of the ensily nttained circuler motion into motion along a straight line is of prime importence to the cobinear rud mechenic．This was eepecially true 75 years ago when nodern puchinury wes in its formative atago．Stexer hod recoritiy buen eqplied both to land and mater vohiclee but poorly mifeted boilers and clumay lovers inproperly lubrionted ployed hawoc with life and limb．

The generation of line motion was no doubt of concern to wathematiciens since the timo of Archimedas end．becense no solutioc was ryparent，dany confused the problen with oquaring the circle．A solutions wris first given by Sarrus in 1853，mother by Peaucellior in 1864，both of which lay unnoti ced until Lipkin，a student of Tschotyocheff，independently recreated Peoucellier＇s mechraism．

Fanned by Sylvestor＇s enthusiasn，interest in generel linkwork iooediatcly flrmed high to attract the ettention of Den like Cayley，Kestipe，Hart，Derboux，Clifford，Koenigs，Sir Filliea Thonpsom，Darvin， Yennicisis，and a hoet of leesar cilnds．The epidenic mas so fierce and so umiversel that the subjoct wis drained elinont completaly dry in the short apen of five or Eix years．The drop in interest followed Sylvester＇s dsperture for Americe and Karpe＇s proof of the remrkeble theorca that eny algebraic curva， no petter low cooplex，ceas ba described by a linknge．

Bridencc of Sylveter＇s conewhat justifiable catimsiesu is the following quotation from he e Collected Work，III：
＂It vould be difficult to quote eny other di ocovery wich opens out suck vest and voried horizons es this of Peascellier－in one direction，os has buch chown，desconding to the wrints of the sork－ shop，tho siuplificution of the sters engine，the revolutionizing of the millright＇s trade，tho maelioretion of garden－pueps，and other domostic convonicnasi（the oun of ecienco＇slorifiee all it shince upon）．and in the other soaring to the subliuest haights of the noet ucvoncod doctrines of modern enalysis，lending uid to，and throwing light from a totolly unsuspected quarter on the re－ searches of such men es Abel，Risenam，Clebsch，Grasgmen，wad Cayley．Its head towers ebove the clouds，whide its feet plunge into the bowele of the corthe＂

Although the dremings given hore ceen to indicate otharwise，there is no necossity that bars or links be straight．Indeed，this mould bee the question．The line joining two joints is the effective distenoe end the only requireacnt is that all bers be plene，inaxteasiblo membere．

In arking models of the verious linjeages，the atudent should obterin colored onsdboard（poster bourd） ebout 12－ply；eyelet punch；rad boxes of 籼 and 䉼 ayeluts．Uce tho 籼 cyelet to join two links；所 to join three or four links．Cut the curdboard into stripe about one－balf inch wide with e photo－ trimer and mount tha model on ecoudborard beckground．To insuro greator eccuracy，two bers of the \(s\) sme langth should be punchod eimaltenleously．

\section*{bialiocraphy md yurtik respmig}
\begin{tabular}{|c|c|}
\hline \(\mathrm{Harta}_{4} \mathrm{H}\) & 1 Neseenger of Mathenatice，wS 5 （1876） 35 \＄19 \\
\hline Hart，H． & ，Procoudings London Methematical Society， 9 （187\％）266ff． \\
\hline Hilsenreth，J． & ：Mathenatics Feacher，XXX（1937）277－284． \\
\hline Kemayems & 1 Tohoku Kathenetics Journal， 37 （1933）294－319（bibllograpky）． \\
\hline Kome，A，B & ：Mossengor of Matheratics，TSS 4 （1875）121－124． \\
\hline Kampe，A，B． & \％Hour to Draw a Straight Line，New York（1877）． \\
\hline Eerpe，A，B． & ：Proceodings Landon Eloyal Socioty，xaIII（1875）565－577． \\
\hline Peancallier & 1 Mouv，Amm．de Math．（1864） 414. \\
\hline Pocucallior & ：Nouv，Ams，de Math，XII（1873）71－78． \\
\hline Roon，J．D．C．de & ：Linkeges，New York（1879）． \\
\hline Sarrus & \begin{tabular}{l}
i Camptes Rendus， 36 （1853）1036－1038．Flcported ont 1125－1127． \\
－Ihilosophical Irensactions，VI S IX（1905） 803.
\end{tabular} \\
\hline Sylvestor，J．\({ }_{\text {S }}\) & ：Proceadings Foyal Institate，VII（1874） 179 ff． \\
\hline
\end{tabular}

\footnotetext{
＊The reverse problea of convorting line zotion into circular motion is a simple one．
}

IIG. i' and 2. The Spear Head and Kite are formed of jointed bars which are equal in pairs. Let
\[
O A=O B=a ; \quad A P=B Q=P B=A Q=b .
\]

FIG. 3. The Spear Head and Kite may be combined to give the six-bear linkage of Fig, 3 in which the joints \(O, P, Q\) are always collinear. Let \(M\) be the midpoint of \(F Q\). Then
\[
(O M)^{2}+(\Delta M)^{2}=a^{2}: \quad(D M)^{2}+(A M)^{2}=b^{2} ;
\]
which give, by subtraction:
\[
(O M)^{2}-(E M)^{2}=a^{2}-b^{2}
\]

The left member may be written as the product
\[
(O M-P M)(Q M+D M)=k^{2}
\]
where \(k^{2}=a^{2}=b^{2},(a>b)\). Since \(P M=M\), this last equation may be rewritten ae:
\[
(O P)(Q Q)=k^{2}
\]

Whis, as may be recallud (see Plate 16,2 ), is the fumamental principle of inversion. With this mechanism then we may obtain the irverse of any given curve - where the circle of inversion has radius \(k\), i.e., the distance from 0 to \(P\), when \(P\) and \(Q\) are coincident.

FIG. 4. In particular, we may obtain line motion by inverting a circle which pesses through the origin. By fixing \(O\) and attaching a seventh ber, MP, as shown so that \(P\) describes a circle through \(O\), the point Q traverses a straight line. To see this in an elementary fashion, let the linioage be placed in an arbitrary position as indicated. Draw a line through \(Q\) perpendicular to the line \(\mathbb{M}\) of fixed points. It is ovident that the right triangles \(O S P\) and \(C \mathbb{R} Q\) are similar; thus
\[
O P / Q R=Q S / Q Q \quad \text { or } \quad(Q R)(O S)=(Q P)(\infty) .
\]

But ( \(O P\) ) ( \(O Q\) ) is constant and so therefore is ( \(O R\) ) (OS). Since \(S\) is a fixed point anit this product is constant, then \(R\) is accordingly fired and the point \(Q\) lies always on the perpendicular at R. This is the celebrated discovery of Peaucellier in 1864.

IIG. 5. presents the negative Peeucellier cell. Derive the fundemental relation for this arrangement and attach an extra bar for line motion. Inplain.

TIG. 6. This is the symmetrical double Peaucellier cell formed of either two kites or two spoar heads. What combination of the points \(O, P, Q\), I gives the inverse property?



FIG. 1. This is the assemblage of a Kite and a Spear Head in reverse positions. The imverse property is preserved if we extend \(H O\) and \(S O\) equal lengths to \(A\) and \(B\) and then add the equal bare \(A P, B P\) so that \(Q A\) and \(A P\) are proportional to \(O R\) and Eq. Since \(\angle F Q S=\angle A P B ; \angle A O B=\angle\) ROS, this arrangement has the inverse property and the product of the instances \(Q P\) and \(Q Q\) is constant.

If \(O\) is fixed and \(P\) be rade to move on a circle through \(O\), then \(Q\) deseribes a line. The motion nere is a much faster one than given by the nochanism of Plate 32.4 .

Find the value of the constant \((O P)(O Q)\) if the spear head is half the size of the kite.

FIG. 2. Iet two proportional kites be arranged as shown so that \(A P / P R=R O^{\prime} / O^{\prime} S\) with AP \(=\) AT; \(P R=R O^{\prime}=R T ; O^{\prime} S=S \%\). Lot \(\angle T A P=20=\angle\) TRO' and \(\angle A F A=\phi=\angle A T R=\angle\) RO'S. Then \(\angle\) YAOt \(^{2}=2 \pi-2 \phi-4 \theta\). Since triangle FOrR is isosceles, \(<\mathrm{FO}^{+}=\phi+2 \theta-\pi / 2\) and therefore \(<A O^{\prime}=\pi / 2-2 \theta\). Thus, since \(\angle P A M=2 \theta\), PAM is a right trinnyle with the line joining \(P\) and \(O^{\prime}\) Always perpendicular to the bar AP. Accondingly; if we fix \(O^{\prime}\) and move AT parallel to itself then \(P\) will describe a line perpendicular to 40 . To do this, attach tho bar \(O A\) equal in length eni parallel to \(0^{1} \mathrm{~S}\) and \(f \mathrm{fx}\) the point 0 .

What is the path described by any selected potnt of PR? By a point \(Q\) on FR oxtonded such that \(F R=E Q ?\)

Remove the bar \(O A\), free the point \(O^{\prime} f_{r a n}\) the glana, and \(f i x P\). Then attach one ond of a bar to I which is equal in length to AP. Fix its other ond to the plane at \(Q\) such that \(P Q=A T\). This arrangement perpits \(O^{\prime \prime}\) to move on a line perpomicular to \(P Q\). Bstablish this fact.

1.


Zack of the linieages givon here employs a doublo kite arrangement. There are four kites, the larger equal ones proportiomil to the smaller ones. In the first the bar \(P Q\) moves in line with the three collinoar fixod pointe \(A, 3, C\). In the second, \(P Q\) moves always pamilel to the line of fixed points. Sstablish these facts for the too mechanisms.

SIG. 1. (aint: Prove \(B, C\), and \(P\) oollinear.)

List some possible applications of this 1inkage.

FIG. 2.

List sone possible applications of this linkege.


FIG. 1. Cunsiuer a circular disk whose diameter equals the radius of a fixed circle athin which the Lisic rolis. Drav the lines \(O^{\prime} P^{\prime}\) cutting the aisk at \(P\) and let \(\angle L^{\prime} P=\theta\). Then are \(L P^{\prime}=a \theta\), where a is the redius of the circle. Now \(I O^{\prime 2}\) is a right trianile with \(L A=I O^{\prime}=F P=a / 2\). Thus arc IP \(=\mathrm{a} \theta\) and evidently this is the position of the disk after rolline on the larger circle through the arc length \(\mathrm{LP}^{\prime \prime}\), with the crigiral position of P at \(\mathrm{P}^{\prime}\). Thus the point P , fixed on the rim of the aisk, travels elone the diameter \(P\) 'In. Since \(P\) is any point on the rim, owory point trawis on a diameter of the larger circle. The line segment path may be thought of as the two cusped momber of the Hypocycloid family.

TIG. 2. Presented her is a different scheme for the samo motion as that of Fig. 1. To the cinter of the disk (and underneath) is attached a ber equal in length to the radius with its other crai fixed to the plane at \(O^{\prime \prime}\). If some point \(P\) on the rim of the disk is moved along a line throuph \(0^{\prime}\) thun every point on the rim novos on a line through \(O^{\prime}\). The action is just as if the disk were rollin, inside a circle twico its size.

FIG. 3. Adapting the iduas of Figs 1 and 2 to the nechanism of Plato 33,2 , the bar Fil of 33,2 is roplacod by the aisk baving PR for radius. is the linkage is dcformod, P travols on a line throurb 01. By tho above principles, every other point on the rim does likewise ana the disk novos as if it weru rolling within the imacinery circlo.

What is the peth of any point \(F\) of the aisk? (Recall tho tramol of Arehimedes).

Construct some soxt of mochanism, followin; \(\mathrm{Fi}_{\mathrm{C}}\). 1. to give the threcocusped Deltoid; thic fourcusped Astroid: with disk radius onemthird arci onc-fourth, ruspectively, of the radius of the larger circle.


I.
2.


FIG. 1. Two sets of ecual hars \(i C=E D, F C=F D\) are joined as shotm. Th; points \(A\) and \(B\) are tixed to a base plane. If ve move \(P\) so that the angles at \(C\) ari \(D\) are almays ecuth, then trianeles APC and BPD are contruent ana AF always eausls \(\operatorname{BP}\). Thas, reouires tlyst \(P\) lie diviys on the perpemicular bisector of the secment AB.

It would seem cifficult inieg to arrange mechanically for the angles at \(C\) and \(D\) to be always evual. Surprisingly enouch, such is not the case.
For,
Let \(A C=B D=a_{1} \quad P C=P D=b\). Then select taso points \(R\) and \(S\) on the bars \(A C\) and \(B D\) respectively, se that
\[
\mathrm{SC}=\mathrm{SD}=\mathrm{b}^{2} / \mathrm{a} .
\]

Then
\[
\mathrm{RC} / \mathrm{PC}=\left(\mathrm{b}^{2} / \mathrm{a}\right) / \mathrm{b}=\mathrm{b} / \mathrm{a}=\mathrm{PC} / \mathrm{AC}
\]

Thus \(\angle P A C=\angle H P C=\angle S P D=\angle F E D=x\). Furthcrmor,,\(\angle\) APA \(=\angle P R C=\angle\) IPS \(=y\).
Now since \(P E_{i}=P S ; P A=P B ;\) and \(\angle F P S=x+y+z=\angle A F B\), thun triangles iFB and FIFS are similar. acoordinely,
\[
\mathrm{PR} / \mathrm{Ra}=\mathrm{FS} / \mathrm{AD}=\mathrm{RC} / \mathrm{PC}=\mathrm{b} / \mathrm{s} .
\]

Thus if wo take the conetant cistance \(A B=c\), then
\[
\text { IS }=b c / a .
\]

That is, if \(P\) describes the bisecting line of AB then the cietance between tho movin. points \(A\) and
 a line if A and S bo joinod by a bar of tho proper lent th.

FIG. 2. In building the linkenge, take the five linics: \(A C=B D=3 ; \quad P C=P D=E S=b ;\) attuchind the link \(\operatorname{FS}\) to R und S such the't the distence \(\mathrm{FC}=\mathrm{DS}=\mathrm{c}\), whero
\[
b^{2}=s C
\]
(It will be found convenient to tike thets distancos as 2, 4, and 8 inchos)
Beroro atteching the linloge to a base, lay it open so the F F is at the uppermost point. The mochernisen thon forms the letter "AM". In this cxtrome pesition fix the points a eni \(B\) clonis any desired lino.

What is the poth of any point of the bar FDi


FIG. 1. If any four points, \(O, P, Q, R\) be selected on the bars of the Birt cell in a lins parellel to \(B D\) an. \(A C\); they will remain in a line as the cell is deforme. Draw the circle through \(A, P\), and. Q. Since its center is on the perpendicular bisector of Fq, the liae of symetry of \(A\) and \(C\). thon \(C\) also lies on the circle. Let the circle cut the bar \(A D\) in the point \(T\). This point is \(E\) fized point of the bar \(A D\). For, by the secant property of the circle, (ilate 6,1):
\[
(\mathrm{DF})(\mathrm{MA})=(\mathrm{DP})(\mathrm{DC})_{1}
\]
in winch the rigat member is a constant since \(D, P\), and \(C\) are fixed points of the bar. In the left member, \(A A\) is constant and thus \(T\) wust be a fixed point of \(A D\). Thest is, throughout all uciomutions, A, T, P, Q, C - points fixed on the several beare - are clways concyclic.

Since 0 is a fixed point of \(A D_{1}\) we tave also by the secent froperty:
\[
(O R)(O Q)=(O R)(O A)=\text { Constant. }
\]

Trus, since the product of the variable distanecs \(O P\) and \(O Q\) is constant, thils renarkablu four-hur mechanism has the same inversive property as that of the Peaccolllar cell of Plate 32.3. For line motion then, iollosing the principle of Plate 32,4 , we may fix 0 to the pland ard cause Q to qove on a circle tirxouge. 0 . Thus P iescribes a linc.

FIG. 2. shows the arrangement of tho Hart cell for line notion. The extra fifth kar \(0^{\prime} Q\) is attached so that \(Q\) travels on a circle through the fired point 0 .

What other aispositions of the points \(O, F, Q\), A can be mad to proiuce line notion?

What is the constant value of \((O P)(O Q)\) if \(O D=(A D) / 2 ; \quad\) if \(O D=(A D) / 3\) ?

Gompare this cell with the doublo Puaucollier all which has twice as mary bars.

1.


The parallelogram of Figure 1 is formed of four bars waich are erual in pairs. Use is mance of it in the ordinary pantograph, lazy tongs, otc. Outside of that it is comperatively sterile. (aut see Plates: 72 \& 73) Notice that if a rhombus be formed ani flattened, it may be opened at either ond. Thus a door which is fastened to its irame by a jointed rhombus may be swung open from cither side.

The Hart cell of Figure 2 is the same parallelogram in its crossed position. It is rather remarkable that in this position, the configuration is endowed with unusual ani surprisin properties. It will be noticed that throughout all deformations, the angles at \(A\) and \(C\) are equal to each other while those at D and B are also acual.

In Firure 3 one end of the Kite is attached to the plane. If the two equal bars \(A H\) and \(A K\) be made to rotate about A in opposite circctions at equal rates, then obviously, the point \(P\) will travel alonf: a straight line through A. By means of the Hart cell, this can be accomplished.

Figuro 4 shows the union of two contra-parsilelograms, the short bar of the larger cell acting as tine long bar of the smaller one. Notice that the angles at \(E, D\), and \(B\) are ulways equal to each otber as the linkage is doformod. If the points \(A\) and \(D\) are attached to the plane, then as the bar \(\triangle B\) rotates about \(A\) in one direction, the bar \(Z A\) rotates in the opposite direction. If it is possible to mako \(\Delta B\) and \(A E\) rotate at equal ratus, then by combinine the kito mechanisa of Fig. 3 with this, wo will have a linkago for line motion. If we demand that angle \(\mathbb{E A D}\) bc always cqual to angle DAB, then the tivo celle must be similar. This moans, of coursu, thav their corresponding sides should be proportional.

Thus
\[
\Delta E / A D=A D / \Delta B \quad \text { or } \quad(A D)^{2}=(A B)(A B)
\]

For angle IAD to equal angla DAB.
Figure 5 shows the linkago built as the combination of Fig. 3 an Fig. 4. The bar AD of Fig. 4 has been recoved and the two points, \(A\) and \(D\), are attached et the proper distance ( \(A D=E F=B C\) ) to the plane.

In constructing the model of Figure 5, it will be found convenient to take the following lengths:
\[
\begin{aligned}
& A E=2=E D \\
& A D=4=E F=E C \\
& A B=8=A G=C D
\end{aligned}
\]


As shown in the figure, we select the following lencths:
\[
A D=B C=C D=C F=4 a ; \quad A D=D C^{\prime}=C^{\prime} D^{\prime}=C^{\prime} P=2 a ; \quad A D^{\prime}=a
\]

The points \(A, D^{\prime}\), ani B are attached in a stagight line to the base plane. We shall show that \(P\) lics always on this line.

From the selected lergeths, quadrilaterals \(A B C D\) and \(A D C^{\prime} D^{\prime}\) are similar since they contain a common ancle. Thus the angles of the first, \(x, y, z\), are equal to those of the second at corresponding vertices.

Moreover, \(\angle A D C^{1}=x\). Then \(\angle C^{\prime} D C=z^{\prime-}=x=\angle C^{3} F C\) by virtue of the spcarhcad FCDC'.
But, \(\quad \angle A D^{\prime} C^{1}=z \quad\) and \(\quad \angle C^{\prime} D^{\prime} P=\pi-2=\angle C^{\prime} P D^{\prime}\).

Accordingly :
\[
\angle C P D^{\prime}=(z-x)+(\pi-z)=\pi-x
\]
and therefore the points \(B, P\), ano \(D^{\prime}\) are collinest. Consequently, P must move on the siraight line \(\mathrm{AD} \mathrm{D}^{\prime}\).
1. What is the peth of a point \(Q\) on the oxtension of \(P C\) such that \(C Q=F C\) ?
2. Replace the bar CP by a circular disk of radius CP hoving its center at the movable point \(C\). What is the path of any point of the disk? Of the rim of the disk?


FIG. 1. We combine two similar quacrilaterals \(\triangle B C D\) and \(A D C C^{\prime}\), whose ancles are
\[
\begin{aligned}
& \angle A B C=\mathrm{A}=\angle A D^{n} \\
& \angle A D C=y=\angle A D^{\prime} C^{n} .
\end{aligned}
\]

Select the following lengths:
\[
A B=B C=C D=4 a ; \quad D A=D C^{\prime \prime}=C^{\prime \prime} D^{\prime}=2 a ; \quad A D^{\prime}=a_{1},
\]
the smaller guadrilateral thus being half the size of the larger one. In the cuadrilateral \(A B C D\), we express (in two ways) the length of the diagonal AC by the Law of Cosines:
\[
(A C)^{2}=(A B)^{2}+(E C)^{2}-2(A B)(B C) \cos x=(D C)^{2}+(D A)^{2}-2(D C)(D A) \cos y
\]
which reduces to:
\[
32 a^{2}-32 a^{2} \cos x=20 a^{2}-16 a^{2} \cos y
\]
or
\[
\begin{equation*}
2 \cos x-\cos y=3 / 4 \tag{1}
\end{equation*}
\]

Now add the baxs \(\mathrm{DC}^{4}, \mathrm{D}^{\prime} \mathrm{C}^{1}\), and CP , each equal to 2 a ; and the bar \(\mathrm{PC}^{\prime}=4 a\). Thus \(\mathrm{CPC}^{\prime} \mathrm{D}\) and \(D^{4} D^{\prime} C^{n}\) are parallelograms.

Since CP is parallel and equal to \(D^{\prime}\), it is parallol to \(D^{\prime} C^{n}\) and the ir projections on the baso line, \(A B\), are equal. That is,
\[
\mathrm{Na}=1 \mathrm{ND}^{\prime} .
\]

Thus
\[
B R=E M+M R=E M+N D^{\prime}=4 n \cdot \cos x+2 a \cdot \cos (\pi-y) .
\]

By virtue of (1), this becomes:
\[
\text { AR }=2 \mathrm{a}(2 \cos x-\cos y)^{\circ}=3 a / 2, \quad \text { a constant. }
\]

Accordingly, if \(A, D^{\prime}\), and \(B\) are fixed on a linc, thon \(R\) is a fixed point ana \(F\) will doscribe the perpendicular bisceting line of \(5 D^{1}\).

FIG. 2. In building the linkege, the original bars \(D C^{n}\) and \(D^{\prime} C^{n}\), which are of no servico, may be discardod. It will bo found convenient to take \(\underline{\underline{日}}=2\) inchos.


2.

\section*{THE STRAIGITEDGE NITH IMNDVABLE FIGURE \\ (The Geometry of Poncelet-Steiner)}

The constructions of this section are those which can be nede with the rovable straightedge when given sonewhere in the plane a figure already drawn. Such constructions have been of interest to matbematicians for several hunired years.

It should be carafully noted that the system composed of immovable circle and movable straightedge is equivalent to movable straightedge and compasses only if the center of the circle is given. (It has been proved that the center of a circle cannot be located by meane of the straightedge alone. See H. Steinhaus, Nathematical Srepshote, New York, 1938, 44).

In orier to shorten the labor in complicated constructions, it is suggested that the student omit those prelimirary constructions already mede which would confuse the picture or obscure the main objective.

\section*{BIBLICGRAFIT AND MURTHER FTSADMG}

\section*{The Straightodge and Imnovable Circlet}

Adler, A. : Theorie der geometrischen Konstruktionen, Leipzig (1906) 83-91.
Fourrey, E. : Procédés origiraux de Constructions géonótriques, Paris (1924) 32-41.
Hudson, H. P. : Puler \& Ccupasses, Iondon (1916) 118-130.
Poncelet, J. V. : Traite des propriétés projectives dee-figuros (1822).
Shively, I. S. : Modern Geometry, Mew York (1939) 130-132.
Steiner, J. : Constructions gémétriqucs..... (1833).

The Straightedgo and Imnovable Square or Parallelogramt
Adler, A. :Thoorie dor geonetrischen Konstruktionen, Leipzig (1906) 81~83.
Child, J. M. : Mathematical Gezetto V (1910) 283-284.
Fourrey, B. \(\quad\) Proḉaés origineux de Constructions gúonstriques, Paris (1924) 24-31.
Gravesonde, W. J. : Oourves philosophiques, Aasterdan (1774) Ire pertio, P 312, p. 174.
Poncolet, J. V. : Applications d'aralyso et do géométrie, Paris (1862) 437-439.
Russell, J. W. : An Elementary Troatiso on Fure Geometry, Oxford (1905) 318.
Steiner, J. : Constructions góométriques excecutióes au moyen de la ligne droite ot \(\mathrm{d}^{\prime}\) un cercle fixo (1833).
Trachtenberg, M. I.: Mathearatical Gazette IV (1908) 334 ff.

FIG. 1. Draw through \(P\) a perallel to the given dieneter \(A O B\) of the fixed circle. (Hint: The construction is exactly similar to that given in Plate 29,6 .) Note that the fixed circle bare plays only the role of presenting a bisected segment \(A C B\) - a concept that will prove of frequent use in later constructions.

FIG. 2. Draw through \(P\) a line parallel to the given line L. (Hint: Trom ary point \(M\) of \(I\) drak ND. From P draw a parallel to ND meeting the circle in two points. Drak the cross diametcrs from these two points. The lines thus joining the extrenitics of these diameters are both parallel to MO and cut the line \(L\) in a bisected segmont.)

FIG. 3. Drew the diamuter of the fixed circle that is parallel to the given line L. (Hint: Draw an arbitrary lino through \(O\) meeting \(L\) in A. Fron any other point B of \(L\), drak a second linc parallel to OA cutting the circle in two points. By oross diameters, establish a third lino parallel to the first two, thus obtaining a bisected segment on I. The construction is campleted according to Platc 29.6.)

FIG. 4. Locato the internal and external centers of sinalitude of the given fired circle and the hypocircle \({ }^{*}\) with center \(0^{\prime \prime}\) and pessing through the point \(A^{\prime}\). (Hint: The int rmi conter, I, and the exterral center, \(E\), lie on the line of centers \(00^{\circ}\). Draw the diameter \(B O A\) that is parallel te \(0^{\prime} A^{\prime}\). Then the Iines \(B A^{\prime}\) and \(A A^{\prime}\) dotermine and required points.)

\footnotetext{
*The word "hypocircle" is a contraction of "hypothetical circlo". It will be froquently used to denote the circle determined by its conter and onc of its points. Although it cannot be drawn except when the compasses are allowed, the student should indicate it by dotted lines or by its colored. interior.
}


FIG. 1. Given the fixod circle with center O. Find the intcrsections of the given line \(L\) with the hypocircle \(0^{\prime \prime}\left(A^{\prime}\right)\). (fint: Determine the external center of similitude, \(E\), of the fixed circle and the hypocircle. Bxtend \(A^{\prime} O^{\prime}\) to meet \(L\) in \(B^{\prime}\). Draw the diametcr \(A O K\) parallel to \(A^{\prime} O^{\prime}\). The line E8' meets \(A O K\) in \(B\). Through B draw line \(M\) parallel to \(L\) which meets the fixed circle in \(X^{\prime}\) and \(Y^{\prime}\). Lines RX' and EY' out \(L\) in the desired points).

FIG. 2. Find the intersections of the fixed circle with center 0 and the hypocircle \(O^{\prime}\left(A^{\prime}\right)\). Generally, the points \(A\) and \(A^{\prime}\) would not be such that \(O A\) and \(0^{\prime} A^{\prime}\) aro parallel. However, in order to shorten the labor of the student, the redil are here given parellel. (Hint: Proceed to locate the radical axis of the two circles and find its intersections with tho fixed circle. First locats the center of similitude \(\mathbb{E}\). Let \(\mathbb{E A}\) cut the two circles in \(C\) and \(C^{\prime}\) and let 88 cut them in \(D\) and \(D^{\prime}\). Then \(E C\) is perpendicular to \(E A\) and \(A^{\prime} D^{\prime}\) is perpundicular to \(\mathbb{E B}\). Thus quadrilateral \(B^{\prime} A^{\prime} D^{\prime}\) is inscribed to a circle since its opposite angles are right angles. The circle drawn about this quadrilateral meete the two given circles in B,C and \(A^{\prime}, D^{\top}\) and the lines \(B C\) and \(A^{\prime} D^{\prime}\) are therefore its radical exes with the given circles, Sinco the radical axes of three circles moet in a point (see Plate 6.5), the intersection of BC and \(A^{\prime}, D^{\prime}\) is a point on the madical aris of the two given circles. The line through this point perpendicular to \(00^{\prime}\) meets the fixed circles in the required points). (See Plate 23,2).


FIG. 1. Bisect the givon segment \(A B\). (Fint: Draw the diancter parallel to \(A B\) by Plate \(41,3\). )

FIG. 2. Construst a rectangular network of lines. (Hint: The diagorals of a rhonbus are perpendicular.)

FIG. 3. Bisect the given engle ABC. (Hint: Draw diameters DOF and GOH parallel to \(A B\) and \(E C\), respectively. The line 低 is parallel to the desired bisector. Whyi)

EIG. 4. Erect a porpondicular to the given line at P. (Rint: Drew an arbitrexy ohand \(A B\) of tho given circle parallel to the given line. Drak the dianeter AOC. Thon BC is perrallel to the desirud porpondicular at P.)

FIG. 5. Transfer tho distance \(0^{\prime} A^{\prime}\) onto the given lino L. (Hint: Locate the conter of similitude E of the given circle and the hypocirele \(O^{\prime}\left(A^{\prime}\right)\). Then drow the parallel to I through 0 .)

FIG. 6. Tind the center of the olrcle which pesses through A, B, and C. (Hint: The circuncenter of \(A B C\) is the intersection of the perpeniticular bisectors of the sides of the triangle \(A B C\).)


FIG. Find the intersections of the two hypocircles \(C(A)\) and \(C^{\prime}\left(A^{\prime}\right)\). (Hint: Proceed to establish their radical axis. First transfer the distance \(C^{\prime} A^{\prime}\) to a line parsllel to CA. Then locate the exterral center of similitude \(E\) of the two hypocircles. Complete the construction accoriing to Plate 23,2.)

\(c^{\prime}\) 。
- \(A^{\prime}\)

FIG. 1. Draw the line through the corner \(C\) of tho given square parallel to the diagonsl bi. (Hint: The points \(B, D\), an the center of the squaro form a bisuoted segment parallol to the desirod line. This is a diroct application of Plate 29,6.)

FIG. 2. Establich the midpoint of the side BC of the given square. (Hints Extend DC to mect an arbitrary lino through B. Then construct the polar of this point with respect to the two parellol lines \(A D\) and \(B C\).)

FIG. 3. Construct a roctangular network of lines. (Hint: Bxterd the sides of the given square; then draw linos through vertices and midpoints of sides.)

FIG. 4. Dram e line through the center of the given square parellel to e sido.

FIG. 5. Draw the line tiorough \(P\) parallel to the given line L. (Hint: Join \(P\) with the center \(O\) of the given square. Then construct parsilols to PO through the vertices \(B, D\). These lines cut \(L\) in e bisectod segnert.)

FIG. 6. Draw the line through \(P\) parallol to the given line L. (Hint: A neat solution is afforded by the theorem of Desargues. Obtain triangles in perspective as follows: produce \(A^{\prime} D\) and \(A^{\prime} D^{\prime}\) to meet L in \(B^{t}\) and \(C^{t}\) respectively. Select an arbitrary point \(B\) on the diagoral \(A A^{\prime}\). Let tho point of intersection of \(B^{\prime} H\) and \(A D^{\prime}\) be \(B\); that of \(R C\), and \(A D\) be \(C\). Then \(B C\) is parellel to \(L\). Why? The construction is completed by Plato 31,6.)


FIG. 1. The linc XY is drawn through the ocnter \(O\) of the given syuaro. Jraw the pirpendicular to XY through 0 . (Hint: Through \(Y\) draw the parallel to \(B D\), meeting \(3 C\) in \(U\). The line through \(\mathrm{T}_{\mathrm{J}}\) parallel to \(D C\) jeets \(A D\) in \(W\). The line WO is perpenicular to \(X Y\). Why?)

FIG. 2. Draw the porpendicular from \(P\) to the given line L. (Hint: Draw through the center of the square the line parallel to I.)

FIG. 3. Discuss the possibility of finding the centroid of triangle \(A B C\).

FIG. 4. Discuss the possibility of finding the orthocunter of trinngle ABC.

FIG. 5. Discuss the possibility of finding the circumeenter of triangie ABC.

FIG. 6, Refloct the point \(P\) in the given ling L. (ijint: The refloctod point P' lies on the perpandicular from \(P\) to \(L\). The segment through the center of the squara peraliel to PP' offers a bisected length that can be projected onto \(\mathrm{PP}^{1}\), thus detormining \(\mathrm{P}^{\prime}\).)

FIG. 7. Wultiply tho given engle \(\theta\). (Hint; Refleot an arbitrary point of ona side of the angle in the other sidc.)


FIG. 1. Drav through \(P\) the linc parallel to the diagoml \(B D\) of the given parallelogram. (Hint: \(B\), \(D_{1}\) and the center of the parallelogram offer a bieectod segment purullol to the dosirod line,)

FIG. 2. Construct a parsllolographio network of lines, (Hint: Bisect tho sides.)

FIG. 3. Construct the parallel line to I through P. (Hint: Sse Plate 45,6.)

FIG. 4. Divide the given scegront lu into throe equal parts. (Kint: Fxtend the segment \(A D\) to throc times its length by Fig. 2 thbove. Project these equal sognents onto a line parallol to IM end corplote the construction with a scoond projoction.)

YIG. 5. The given parellelogrem here is a rhoabus. Construct a rootangular nctwork of lines. Beyond drawing these perpendiculars in this fixed direction, does the rhombus offer eny possibilities in eddition to tioosc obtained with the gonoml parillelogrea?

5.

\section*{SECTION VIII}

\section*{THE ASSISTED STRAIGHIEDGZ}

The constructions of this section are those that may be accomplished by tine Straightedge and Collepsible Compasses, the Straightodge and Rigid Compasses, the Straightodge and Rigid Dividers.

The corpasses of Buclid and Plato differs fron the modorn instrument in that theoretically it collepses whon lifted from thes plane. Thus it may not be used to tranofer distances from one part of the plane to anwther and may be uscd to establish a circle only when given fts conter and a point upon its circum ferenco. The collapsible compasees ie provod onuivelent to the modern compesses by showing that it is possible to draw a circle whose radius is not given in position. (See Plate 48.5.)
(Aftcr cowpleting the work of Plate 48, rofler to Platoe 2 and 3. See how you would nesd to change your construction there if required to use the colleppsiblo compassoc.)

The Rigid Compassos hes a fixed opening and may bo used to dxaw circles with arbitrary centers all having the sano radia. Obviously, this would put us in possession of a fixed circla, which, with the Streightodge, is oquivalont to Straightodgo and Variable Compasses. (Soe Soction VII.) Howevir, tho constructions will be found aomewhat different iron those of Poncelet-Steinor and offer added interest,

Peppus reports that the ancient Grecks wore thenselves concerned with the Rigid Compasses; Mascheroni found it of prectical use whon he employed severel corpesecs in his constructions, laying a fised ane aside until ho had to uso the same maius gain. This was cleimed to produce greater ecouracy than setting and resotting is singlo pair of compesses for circles of different radit.

The Rigid Dividers has a fixed opening and may be used to transfer a constant length fron one portion of the plane to anotber. If the carrying operation be restricted to placing the fixed length upon a line already drewn, the system of straightedge and rigid dividers is not equivalent to straightedge and compasses. (Compare Plate 59.)

Since the unit of measure is arbitrary, we select as tha unit the length of the openirs of oither the Migid Compasees or Rigid Dividers.

\section*{BIBLIOGRAPHY ANTD FURTHZR READITG}

\section*{The Straightedge ard Collapsible Compassee:}

Heath, T. L. : Thirtoen Books of Euclid, I, 244 .
Hhudson, H. P. : Fhulor and Corpasses, Lundon (1916).
Natioral Mathemat ics Magazine, XIV (1940) 487.

\section*{The Straightedzo and Rigid Compesses:}
\begin{tabular}{|c|c|}
\hline Benedatti & : (A work covering the subject) (1553). \\
\hline de Vinci, \(L\). & : (16th Century). \\
\hline Difer, A. & 1 (16th Cortury). \\
\hline Porrari & - Traité génóral des nombres et moasurcs, (1548). \\
\hline Fourroy, E. & 1 Procédés originaux de Constructions géonótriques, Paris (1924) 74-94. \\
\hline Mascherani, I. & 1 Gaomotria del Compasso (1797) (French trenslation by A. W. Carette). \\
\hline Wafa, Aboul & 1 Recueil do Constructions geonétriqus (10th Century). \\
\hline
\end{tabular}

The Straightedgo and Rigid Dividers:
Fourrey, 8. : Procódés origipsux de Constructions géamótriques, Paris (1924) 47-59.
Huason, K. F. : Fulor and Compasses, London (1916) 70-71.
Mairheed, R. F. I Nathematical Gazette, 3 (1905) 209-211.

FIG. 1. Drew the perpendicular from \(P\) to the line I.

FIG. 2. Draw the parallel from \(\dot{R}^{\circ}\) to tho line L. (Hint:* With center at a selected point A on L drew the circle \(A(P)\) which meets \(I\) in \(B\). Draw circle \(B(A)\) meeting \(P(A)\) in \(X\).) Coupere other known mothods of drawing parsilols. How rany circles are used in the construction? \(\qquad\) How meany maiti? \(\qquad\) .

FIG. 3. Bisact the given angle.

FIG. 4. Tranefor the distance \(A B\) to the line L. (Hint: Locate the intersection of L and AB.)

FIG. 5. Tho collapsibla compassus is equivalent to the modern compessee if it is possible to dreas the circlo with center at 0 and madius \(A B\), where noither \(A\) nor \(B\) coincidas with \(O\). Nakn tho construction. (Hint: Drew circlos \(O(A)\) and \(A(0)\) moeting at \(C\). Draw linos \(C C\) and \(A C\). Drow circle \(A(B)\) meeting \(A C\) in D. Drow circlo \(C(D)\) moeting \(\propto\) in \(D^{\prime}\).)

\footnotetext{
* \(A(P)\) indicates the circlo with center \(A\) and passing through \(P\).
}


FIG. 1. Drew the parallel to \(L\) through 9 . (Hintt Assuming the opening of the compesses to be greater than the distance fron \(P\) to \(I\), draw the circle with center at \(P\) meeting \(I\) in \(X\). With \(X\) as center, draw the circle cutting the line PX in \(O\). With 0 as center, cut L in Y . Hith Y as center, cut OX in \(Q\). Thon FQ is the desired parallel. Whyt)

FIG. 2. Erect the perperdicular to \(I\) at \(P\). (Hint: With \(P\) as center, draw the circle cutting \(L\) in \(\mathrm{A}, \mathrm{B}\). With B as center, draw the semicircle meeting the first circle in C. With C as conter, draw the circle moeting the line \(B C\) in \(X\). Then XP is the dasired perpendicular. Why \(\uparrow\) )

FIG. 3. Divite the given segnent \(A B\) into throo equal parts. (Fint: Irect perpendiculars to \(A B\) at A and B . Upon each of these perpendiculars, lay off three equal segments in opposite directions. Their joins will meet \(A B\) in the spocified points.)

FIG. 4. Ehtend the aegment \(A B\) to \(C\) such that \(A B=B C\). (Hint: Firect the perpendicular to \(A B\) at \(A\) upon which two ogual segronte \(A X, X Y\) aro laid off. The parallel to \(X B\) through \(Y\) moets \(A B\) extendod in C.)

FIG. 5. Find the intersections of the given line \(I\) and the hypocircle \(O\) (A). (Hint: In order to aid the student, we bave already drawn the circle with tho rigid conpassos haring its conter at 0 . Procecd as follows, Let \(B\) bo the foot of the perpendicular from \(O\) to \(L\). Draw the \(l\) inos \(A B\) and \(A O\), the latter meeting the dramn circle in \(C\). Draw the parallel to \(A B\) through \(C\) meeting \(Q B\) in \(D\). Through \(D\) draw the parallel to \(I\), which mects the drawn circle in \(X\) and \(Y\). The lines \(O X\) and \(O Y\) meet I in the desired points of intersection. Why?)

FIG, 6. Fron P upon L luy off a length oqual to the given segnunt AB.


FIG. 1. Find the interscetions of the two hypocirclos, \(O(A)\) and \(O^{\prime}\left(A^{\prime}\right)\). (Hint: Proccod to find the radical axis by first trunsforring the distance \(O^{\prime} A^{\prime}\) to the line through \(O^{\prime}\) parallel to Oil. Then locate tho extcrral centcre of similitude. For convenience and uniformity, the circle drawn with the rigid compasses is alroady given with its center at \(\mathrm{O}_{\text {. }}\) )

FIG. 2. Drow the line through P parallel to L. (Hint. A solution differing from that of the previous plate is as follows: with the rigid compasses, draw the circle with centor at \(P\) cutting \(I\) in \(A\) and \(B\). Produce EP to mect the circle in C. Then construct the bisector of angle CPA.)

FIG. 3. Drew the perpendicular to \(I\) at \(P\). (Hint: A solution differing from that of the previous plate is at follows: draw tho circle with center at P cutting \(L\) in \(A\) and B. Draw the semicircle with \(\Delta\) as ocnter meetitg the first circle in C. Draw the circle with center at C. This meets the first circle in D. Druw the circlo with center at \(D\). These last two circles meet in \(X\) such that \(P X\) is the required perperdicular.)

1.
\(\square\)
L
2.

3.

FIG. 1. Draw tho perallol to I through P. (Hint: Apply the dividors twice to \(L\) obtaining a bisected sogment.)

FIG, 2. Drew the porpendicular from \(P\) to L. (Fint: Ley off the bisected sogment \(A G B\) upon L. Then with one point of the dividers at \(O\), lay off arbitrarily twe further points C, D. Thus, A, B, C, D lio on a circle with center at \(O\), and accondingly \(A C\) is perpendicular to \(B C\); \(E D\) is perpordiculer to \(A D\). Therefore, if \(A D\) and \(B C\) be produced to meet in \(E\) then the intersection of \(E D\) and \(A C\) is the orthoconter of triangle \(A\) RE, The altitude through \(E\) is perpendicular to \(A B\). Its parallel through \(P\) is the desired linc.)

FIG. 3. Bisect the given anglo. (Hint: Starting at the vertex \(O\), lay off two consecutive lengths \(O A B\), \(O C D\) on the sides with the dividers, The intersoction of \(A D\) and \(B C\) lies on the bisocter.)

FIG. 4. Transfer the given segment AB onto the given linc L. (Hint: Driw the line AB parallol to L. Nay off the dividor longth \(\Delta X\) upon \(A B\) and \(A Y\) upon \(A B^{1}\). Then triangle \(A X Y\) is isosooles. Draw the parallel to \(X Y\) through \(B\) pocting \(A B^{\prime}\) in \(B^{\prime}\). Then \(A B=\dot{A} B^{\prime}\). Two parallel linos through \(A\) and \(B^{\prime}\) meot \(L\) in the desired length.)
(4.

\section*{SECTION IX}

\section*{ZARALIEM AND AMCIE RULEXS}

Tho Parallel Ruler is defined as on instrunent of indefinito length having two jarillel stritight edges. The width of the Ruler shatll be dosigrated as the unit of neasurcment. It she 11 bo used in tho following two ways:
I. To detemine the line through two given points and its pamllel at a unit's distance (i.e., the ling determinca by the other edge of the ruler).
II. To deternine a line through each of two given points, A, B, at a unit's distance epart. (The rulor may bo placed so that an odge passes through each of the two points, \(A\), B if the distence \(A B\) is greator than unity. This may be done in two ways.)

The Angle Fuler is àefined as an instrumont of indefinito extont having two straight eages which form a constant angle. Bosides its servico as a simplo straightodge, it shall be used:
I. To deternine a lino making the fixed argle with a given lino.
II. To detemine lines through two givon points making with erch other the fixod nngle (i.e., with an edge through each point).



\section*{BIBLIOGRAPGY AND IURTMEK ROADITG}

\section*{Parallel Ruler:}

Adler, A. ETheorie der geomotrischon Konstruktionen, Leipzig, (1906) 123-132.
Archibald, R. C. : American Mathomitioul Monthly (1918) 358-360.
Coatpont, de : Houv. Corresponionce Matidonatiquu (1879).
Concina, U.
De Tilly : Nouv. Correspondence Mathémetiọuc, III (1877) 204-208: V (1879) 439-442; VI (1880) 34-35.
Fourrcy, E. : Procédes origiraux ie Construotions gécmétric̣ues, Paris (1924) 42-46.
Hudson, H. P. : Ruler \& Compasses, Iondon (1916) 74-76.
Karonghi, C. : Il bolletino di mathematicke e di soionzo fisiche o raturali, Bologm, II (1900) 129-145.
Poncelot, J. V. : Treite des propriétós projectives des figares, Parls (1822).

Angle Fuler
A己ler, A. : Thoorie der goomotrischen Konstruktionon, Loipzig, (1906) 132-138; 177-180.
Huxisors, H. P. I Ruler \& Congasses, London (1916) 76-77.
Poncelet, J. V. : Eraito dos propriéters projectives dos fizures, Paris (1822).
Yates, B. C. : Inticml Mhtheratios Megrainc, XV (1940) 61-64.

FIG. 1. Drew the porpendicular to Lat P. (Hint: Plece the ruler in in arbitmary position with one edge passing through \(P\). Drew along the edgos. Then move it parcllel to itself so that the other edge passes through P. This gives a bisected segment XPY, Now pluce the ruler so thit cocifferent edge pesses through the points \(X\) and \(Y\). This may be tione in two ways - the two positions determining a rhombus with one diagoral as the line \(L\), the other diagonal petssing through \(P\).)

FIG. 2. Construct a rectanguler network of linee.

FIG. 3. Drew the perallel to \(L\) through P. (Xint: This any be dore in a number of ways, two of which are as follows. Either obtijn a bisected segment upon \(L\) a.L. follow Plate 29.6; or place one edge of the ruler along I and drow along the other edge thus obtaining two parallel lines to which the construction of Plate 31,6 mey be appliod.)

FIG. 4. A very simple construction for the paralloI to \(L\) through \(P\) is shown. Place the ruler with one edge through \(P\) nod move so as to establish the equidistant points \(A, B, C, D, E\), upon \(L\). Draw \(A P\), moeting the alddle line in F. Drew FE meeting the line through \(D\) in \(Q\). Then \(F Q\) is the rocuired parallel. Why?)

FIG. 5. Drew the perpendicular to \(L\) through \(P\). (Hint: First draw a lino through \(P\) parallel to the given line, then apply Fig. 1.)

FIG. 6. Detemine other points uron the hypocircle with conter 0 end peassing through \(A\), (Hints As in Fig. 1, locato the other extrenity B of the dimmotor ACB. Then find the interscotions of porpendiculars droppod from A upon arbitiony linos througt B.)
1.

FIG. 1. Bisect the angle \(A O B\). (Hint: Place the ruler firat with one edge along \(0 A\), then with one edge along CD . This establishes a rhombus those diagonal is the desired bisector.)

FIG. 2. Locate the point \(D\) on \(O C\) such that \(O A / O B=O C / O D\). (Hint: Join \(A\) and \(C\); then draw its parallel from B.)

ZIG. 3. Trensfer the distance OA onto OL . (Fint: Construct as in Fig. 1 the rhombus upon the sides of the givon angle. Then draw through \(A\) the parallel to a diagorel of the rhombus.)

EIG. 4. Let the width of the ruler be the unit. Find the points of intersection of the line L with the hypo unit circle with center at 0 . (Hint: Employing the idea of poles and polars, selact any point \(P\) upon L . From P draw the tangents to the unit circle by placing the ruler with one edgo through \(P\) and the other edge through 0 . Drew the perpendiculars to these tangents from 0 and call the points of tengency thus found \(A\) and \(B\). Let \(Q\) bc the point of intersection of the perpendicular from 0 upon \(I\) with \(A B\). Then \(Q\) is the polar of \(I\) with respect to the unit circle. Accordingly, place the rulex botween \(Q\) and 0 and establish the tanyonts from \(Q\) which moct \(I\) in the desired pointe, Explain further.)

FIG. 5. Find the pointe of intersoction of \(I\) with the hypocircle \(O(A)\). (The distance \(O A\) is not equel to the width of the ruler which is assumod to be unity.) (Hint: Find B the point of intersection of the unit circle with OA. Let \(C\) be the foot of the perpendicular from \(O\) upon \(L\). Draw AC and its parallel from \(B\) which meete \(O C\) in \(D\). Drew the parallel to \(L\) throug \(D\) and find its intersections, by Fig. 4, with the unit circle. If these bo \(P_{1}\) and \(P_{2}\), then \(O P_{1}\) and \(O P_{2}\) moet \(I\) in the desired points. Bxplain.)

3. 4.

FIG. Find the intersoctions of the two hypocircles \(O(A)\) and \(O^{\prime}\left(\Lambda^{\prime}\right)\). (Hint; Procoed to establish their radical axis, thon find the intersection of this axis witt either circle according to the previous plate. First trensfer the distance O'A' onto a line through of parallel to Ol. Then locate the exterral center of similitude of the given circles. Complete the construction and explsin.)
\[
A_{0}
\]
\[
0^{\circ}
\]
\[
0^{10}
\]
\[
{ }^{\circ} A^{\prime}
\]

FIG. 1. Draw the parallel to I through P . (Hint: With one edge of the ruler along L , draw along the other edge passing through \(P\). Then slide the ruler along this line until the first edge passes through P.)

FIG. 2. Draw the perpendicular from \(P\) to L. (Hint: Select two arbitrary points \(A\) and \(B\) upon \(L\). Place the ruler in two opposite positions on one side of \(I\) so that the vertex is at A and \(B\). Then reflect the positions in \(L\). This produces a rhombus one of whose diagorsis is perpendicular to \(L\). A parallel through \(P\) is the dosired line.)

FIG. 3. Brtend the segment \(A B\) to \(C\) such that \(A B=B C\). (Hint: Place the ruler in an arbitrary position with its edges passing through \(A\) and \(B\). Now place it parellel to its origiral position with the other adge passing through B.)

FIG. 4. What is the path of the vertex of the ruler if its edges recrain in contact with the fixed points \(A\) and B? Explain.

FIG. 5. Locate arbitrary points upon the hypocirclo O(A). (Hint: Locate B, the other extremity of tho diameter ACB. Place the rulor with vertex at \(B\) and one odge along \(A C B\). The lino deternined by the other edge meets its perpendicular from A in \(P\), a point of the hypocircle. If the ruler is now noved with these edges touching \(A\) and \(P\), the vertex describes the hypocircle.)


138

\section*{TFE ANGIE HULX}

FIG, 1. Find the intersections of the line L with the mypocircle O(A).

EIG. 2. Find the intersections of tho two hypocircles \(O(A)\) and \(O^{\prime}\left(A^{\prime}\right)\). (Hint: Establish their radical axis.)
\(A{ }^{\circ} \quad{ }^{\circ}\)

FIG. 1. Establish the perpondicular from \(P\) to \(I\).

FIG. 2. Drew the parallel to I through P.

FIG. 3. Bxtend the segment \(A B\) to \(C\) such that \(A B=B C\).

FIG. 4. The ruler moves with its two edges in contact with the fixed points \(A\) and \(B\). Determine the peth of the vertex.

FIG. 5. Determine the intersections of the line I with the hypecircle \(O(A)\),
(1.

FIG. 1. Transfer the distance \(O A\) onto \(O B\) and biscct the anglo \(A C B\). (Hint: Locate the other extresity C of diameter AOC.)

FIG. 2. Construct an equilateral triangle with side \(A B\). (Hint: Locate the point \(C\) on \(A B\) extended such that \(A B=B C\). Place the ruler with its edges through \(A\) and \(B\) so that its vertex lies upon the perpendicular bisector of \(A B\).)

FIG. 3. Find the intersections of the hypocircles \(O(A) A N D O^{\prime}\left(A^{\prime}\right)\).

3.

\section*{SBCIIOS X}

\section*{HIGHRE TOOIS AND QUARTIC SYSTEMS}

The Marked Fosler is a straightedge of indefinite lungth upon the edge of which tio arbitrary points, \(P, Q\), are marked. We shall take the dietance \(P Q\) as the unit of meneure. The ruler shall be used in the following three weye:
1. To establish tho line upon two given pointe and to mark upon thie line successive unit longths;
11. To fix Q at a given point of the plane and rotate the ruler until P falle upoa a given line;
III. WIth the etraightedge passing through a given point of the plane, to movo \(Q\) along a given line until P falls upon a second given line.
 I AND II; AND IF USED UNMER I, II, AND III II IS CAPABLE OF SONVING ALH FROBLINS OF A GUARTIC MATURE.
 OR COMPASSES WITH MMOVABLE COMIC ARE FACH GJAFTIC TCOIS OR SYSIENS. THE IMOVVABIE CONIC WITH STRAIGER-


\section*{BIBLIOGRAFAY AND FURTHIA FENDTAG}

\section*{Markod Euler:}

Adler, A. : Theorie der gecmetrischen Konstruktionen, Ieipzig (1906) 138 -143.
Bussoy, W. H. Amarican Kathemstical Monthly (1936) 265-280.
Dickson, I. E. Theory of Equations (1939) 30-41.
Fourrey, 8.
Procédes originaux de Constructions góomótriquee, Paris (1924) 47-59.
Glocikowski
(a work sametime botween 1626 and 1650).
Hilbert, \(D\).
The Foundations of Gocmotry, Chicago (1910).
Klein, F .
Elecentary Mathematics from an Advanced Standpoint, New York (1932) 52-55.
Schooton
Zxercises Mathematiques (1656).
Schwenter
Góomótrle pratique (1618).
Yate6, R. C.
Netional Mathematice Magazinc, XV (1940) 64-70.

\section*{Carponter's Square:}

Bussey, W. H. Bnriques, \(F\). Wicholson, J. W. Robarts, \(S\).
Scudder, H. T. Yetos, R. C.

American Vathematical Monthly, 43 (1936) 265-280.
Fragen dor Elemontargeamotrie, Leipzig (1923) 212-215. The Anelyst, 10 (2883) 41.
Proceedings London Mathematical Society, II (1869) 125-136.
American Methematical Monthly, 35 (1928) 250.
Hational Mathematics Nagazino. XV (1940) 70-72.

Tomahasik:
Glotin : Mémoiroe do la Sociétó des Sciences physiquos et natuxelles do Bordeaux, II (1863).
Good, Arthur Scientific Arrusements (\#lo datc. This translation and revision of tho carly 19th century edition appeared about 1937.)
Morley and Morlsy : Inversive Geometry, London (1933) 173.

\section*{Compesser of Eermes:}

Enriques, \(F\).
Fragen der Elementargeometrie, Leipzig (1923) Chap, VII.
Hermes, H. I Wiceenschaftlich-praktische Lösumg dor Winkeldrittelung auf Grund der Kroislehre, Hoffnen Z XXII (1891) 401-409.
Two Right Angle Rulers:

AdIor, A.
Enriques, \(F\).

\section*{Prisection:}

Descarter, \(R\), Glotin
Vohlen, T.
Yates, R. C.

Thoorie der geometriechen Konstruktionen, Leipzig (1906) Chap. VIII.
Fragen der Elemontargeometrie, Leipzis (1923) Chap. VII.

Wo first consider the possibilities of the harked fulor omployud undor Assumption 1. The distance bitween the points \(P\) and \(Q\) upon the Palor is taken as the unit sistanoo.

FIG. 1. Draw the parallel to \(I\) through \(P\).

Fig. 2. Dran the perpendicular to I through P. (Hint: See Plate 51,2.)

7IG. 3. Through \(P\) draw the line malding the given angle \(X O Y\) with the line \(L\). (Hint: Frors ayy selucted point \(B\) on side or drop perpsndiculars upon \(O X\) and upon the line through 0 parallel to \(L\) meeting them in \(\triangle\) and \(C\) respectively. Draw the perpendicular from 0 to \(A C\). This is parallel to the desired line through P. Kake the construction and expiain.)

FTG. 4. Transfer the distance \(A B(\neq 1)\) to tho line \(L\) from the given point P. (Hint: Soe Plate 51,4.)

The Varked Auler under Assumption I 15 capable of constructing parallels and perpendiculars, transferring distances, bisecting and multiplying angles, Its powors are not as extonsive as those of the compasses alone. The possibilities are considerably amplified, however, if we employ Assumption II, as followsi

FIG. 5. Find the intersections of the line 1 with the hypocircle \(O(A)\) where \(O A \neq 1\).

FIG. 6. Find the intersections of the two mpocircles \(O(A)\) and \(O^{\prime}\left(A^{\prime}\right)\). (Hinti Transfer the distance O'A' onto a line through O' parullel to CA, locatc the extorral centcr of similitudo, ani proceed to ostablish the radical axis as in provious plates. See Plato 50,1.)


Under Assumption III, the Mariked Muler noves with ono of its points upon a given lino or circlo while the edge, FQ extended, passes through sore fixed point. Wo inquiro into tho aralytical implication of this ascuaption.

TIG. 1. Find the path of \(P\) as \(Q\) moves along tho given 1 ine \(L\) with the odge, \(P Q\) extended, passing through the fixed point 0 at a distance a from \(L\). (Hint: Since the pointe of the ruler are arbitmarily manod, the problem implies thet \(P\) aight move along \(L\) and it is required also that we find tho path of \(Q\). sccordingly, the problem is equivalent to the following. The unit circle moves with its conter \(Q\) on the line L. Find the path of the intersections of this circle with the line joining its conter and a fired point 0 . Take the fixed point 0 ac the pole of a systen of polar coordinates and the line through 0 parallel to \(L\) as poler exis. Then \(P\) has the coordinatee \((r, \theta)\) and directlyt
\[
r=1+\infty=1+\mathrm{a} \cdot \csc \theta
\]

If the point \(R\) be considered with coondinates ( \(r, \theta\) ), we have
\[
x=-1+a . \csc \theta
\]

These are the two branches of the Conchoid of Nicomede6. The Marked Fuler arrangonent here could be replaced by a circular wheel rolling upon a line one unit below the given line L , to the center of which is attached a straightedge passing always through a slceve pivoted at the fired point 0 . Obtain tho rectangular equation of this curve by taking \(X\) - and \(Y\)-axes through the point 0 .

FIG. 2. Find the path of \(P\) as \(Q\) moves along the given circle of diameter \(\underline{E}\), with the edge, \(\mathbb{F}\) extended passing through the fixed point A lying on the circle. (Hint: Tako the fixed point A as pole, the line through \(A\) and the center \(O\) of the circle as polar axis. Lot \(P\) have the coordinatee ( \(x, \theta\) ). Then, since the distance \(\Delta Q=a \cdot \cos \theta\),
\[
r=1+a \cdot \cos \theta
\]

This will be recognized as the equation of the Limacon of Pascal, introduced in Plate 17. The Marked Fuler arrangement here could be replaced by the system of two linked bars shown. Thu tar PQ slides through a sleeve pivoted at \(A\). Obtain the rectangular equation of the curve by choosing \(X\) - and Yeaxes through the point \(A\).

FIG. 3. 4. 5. Sketch the Conchoids defincd by the fixed lincs \(L\) and the points 0 . In Fig. 3, take \(a=1 ;\) in Fig. 4. \(0<a<1\) i in Fig. 5, a \(\rangle\) 1. In sketching, draw a scries of unit circles with thoir conters on \(L\) and mark their points of intersection with lines joining thoir centors and the point 0 .

FIG. 6, 7, 8. Skutch the Limacons defined by the fixed points \(A\) and the givon circles of diamotor a, passing through \(A\). In Fig. 6 , take \(\underline{e}=1\); in Fig. 7. \(\underline{a}=1 / 2\); in Fig. \(8, \underline{a}=3 / 2\).


FIG. 1. Let us assume the ability to move \(P\) along one given line and \(Q\) at the same time along anothar such that tho line \(\mathrm{PQ}_{\mathrm{s}}\) extended if necescary, shall pass through a given fixed point. We take tine given lines as coordinate axes and the fixed point as ( \(h, k\) ). Then if the distance \(F Q\) is 1 and its intereepts are \(x\), \(y\) :
\[
x^{2}+y^{2}=1
\]

Fron similar triangles,
\[
\begin{aligned}
& y=k x /(x-h) . \quad \text { Using this to eliminate } y \text {, We havo: } \\
& x^{4}-2 h x^{3}+\left(h^{2}+k^{2}-1\right) x^{2}-2 h x-h^{2}=0 .
\end{aligned}
\]

Thus, since there may be four real solutions here, there are four possible positions of the segnent PQ . Draw them. Can you locete the point ( \(h, k\) ) such that there will be but two real solutions? No real solutions? This fitting of the segment \(P Q\) between two given curves is know as the insertion principle.

FIG. 2. The segment \(E Q\) is here inscrted botween a given lino and a circle so that it passes through the fixed point ( \(h, k\) ). This also leads to a quartic equation (as may be verified by an appropriate selection of referenco axcs). Skotch in the other three positions of the segment \(P Q\). Locate the point ( \(h, k\) ) such that there will be but two real solutions of the quartio and thus but two positions of the segnent; such that there will be no solution.

FIG. 3. Tho anciont and famous problem of Triseeting the Angle has for its algebraic interpretation an equation of the third degree. For, lot the given angle be \(A O B=30\) whose cosine is a. Suppose that one of the trisecting lines, On, is already drawn. Lot \(O A=1\) and draw \(A C\) parallol to OF. Then \(\angle A C O=6\). Locate the point \(D\) so that \(C D=1\). Then since trianglo \(A O D\) is isoscelcs, \(\angle D A O=\angle A D O=2 \theta\). But angle \(A D O\) is the exterior englo of trianglo \(O D C\) and, since \(\angle D C O=\theta, \angle D O C=6\). Thas \(D C=1\).

Let \(\mathrm{HA}=2 \mathrm{y}, \quad \infty=x\). From similar trianglos CND, CNA, and CIO, all right triangles with equal angles at \(C\), we have:
\[
x / 2=(x+a) /(1+2 y)=(1+y) / x
\]
which givee on eliminating \(y\) :
\[
x^{3}-3 x-2 a=0 \quad \text { where } \quad|a| \leq 1
\]

Accordingly, the problon of trisection is equivalent to the solution of an algobraie equation of third dogreo, for if we con construct the value \(x\) that satisfics this oquation the angle is triseeted geometrically by drawing parallel linee.

FIG. 4. Trisect the given anglo \(A O B\) by noans of the insertion principle. (fint: Let the distance botween the rarks \(P, Q\) on the ruler be OL, chocen arbitrarily on COB. Biscet OL to obtain the point K. Draw FM parallel to \(O A\) and \(K N\) perpendiculer to \(O A\). Place the segrent \(E Q\) eo that \(P\) falls on \(M M\) with \(F Q\) extonded pacsing through \(O\). Now move the ruler until \(Q\) falls on \(K N\). When this happens, the line \(P Q\) trisects \(<4 \mathrm{CBB}_{\text {. Draw }}\) the figure and prove by inspecting angles. Thet is, if \(H\) be the midpoint of \(E Q\), then \(H K=O K=H Q=H P\).

FIG. 5. Triscet the given anglo \(A O B\) by means of the insortion principle. (Fint: Takc \(O B\) as the arbitrary distance \(F Q\) and draw the circle \(O(B)\), whick weats \(Q A\) in \(D\). Place the ruler so that \(Q\) falls an \(B 0\) extended, \(P\) upon the circle, with FQ extended passing through D .)


\section*{QUARCICS}

Consider
\[
x^{4}+a x^{3}+b x^{2}+c x+d=0
\]
where \(a, b, c, d\) are
given or constructed geonetric lengths. If we let \(x=y-a / 4\), this equation reduces to
\[
\begin{equation*}
y^{4}+A y^{2}+B y+C=0 \tag{2}
\end{equation*}
\]

Calculate the following in terme of \(a, b, c, d\) :
\[
\begin{aligned}
& \Delta= \\
& B= \\
& C=
\end{aligned}
\]

All of these will be foum as quantities constructible from \(a, b, c, d\) by straightedge and compasses.
How let
\[
y=u+v+v
\]
so that
\[
y^{2}=u^{2}+v^{2}+w^{2}+2(v w+u w+u v)
\]
\[
y^{4}=\left(u^{2}+v^{2}+w^{2}\right)^{2}+4\left(u^{2}+v^{2}+w^{2}\right)(v w+u v+u v)+4\left(v^{2} w^{2}+u^{2} v^{2}+u^{2} v^{2}\right)+8 u w(u+v+w) .
\]

These quantities substituted in (2) give:
\[
\begin{array}{r}
\left(u^{2}+v^{2}+w^{2}\right)^{2}+4\left(v^{2} w^{2}+u^{2} w^{2}+u^{2} v^{2}\right)+A\left(u^{2}+v^{2}+w^{2}\right)+C+ \\
\quad 2(v w+u w+u v)\left[2\left(u^{2}+v^{2}+w^{2}\right)+A\right]+(u+v+w)(8 u v w+B)=0 . \tag{3}
\end{array}
\]

By introducing these three quantities \(u, v, w\), in place of \(y\) we have allowed ourselves considerable froedon of selection. We exercise this freedon in choosing;
\[
\begin{align*}
& u w w=-8 / 8 \\
& u^{2}+v^{2}+w^{2}=-A / 2 \\
& v^{2} w^{2}+u^{2} w^{2}+u^{2} v^{2}=\left(A^{2}-4 C\right) / 16 \tag{4}
\end{align*}
\]

So that equation (3) will bo satisfied. Now we may think of the quantities \(u^{2}, v^{2}, v^{2}\) as the roots of a cubic:
\[
\left(z-u^{2}\right)\left(z-v^{2}\right)\left(z-w^{2}\right)=0,
\]
or
\[
z^{3}-\left(u^{2}+v^{2}+w^{2}\right) z^{2}+\left(v^{2} w^{2}+u^{2} w^{2}+u^{2} v^{2}\right) z-u^{2} v^{2} w^{2}=0
\]

In the 11 ght of equations (4), this cubic may be written as:
\[
\begin{equation*}
z^{3}+A z^{2} / 2+\left(A^{2}-4 C\right) z / 16-B^{2} / 64=0 . \tag{5}
\end{equation*}
\]

Thus fer we have reduced the origiral quartic to an equivalent equetion of third degree. This equation is called tho resolvent cubic. (Compare: The solution of a quadratic depends on a resolvent linear equation; the solution of a cubic depends on a resolvent quadratic.) If the three roots of (5) are \(z_{1}, z_{2}, z_{3}\), then
\[
\begin{array}{lll}
u^{2}=z_{1} & \text { or } & u= \pm \sqrt{2} 1 \\
v^{2}=z_{2} & v= \pm \sqrt{2} \\
w^{2}=z_{3} & w= \pm \sqrt{2} 3
\end{array}
\]

But not all combirations of the algebraic signs here arc pemisaible. These values of \(u, v, w\) must setisfy the set of equations (4).

Thus
\[
\begin{aligned}
& x_{1}=\sqrt{z_{1}}+\sqrt{z_{2}}-\sqrt{z_{3}}-a / 4 \\
& x_{2}=\sqrt{z_{1}}-\sqrt{z_{2}}+\sqrt{z_{3}}-a / 4 \\
& x_{3}=-\sqrt{z_{1}}+\sqrt{z_{2}}+\sqrt{z_{3}}=a / 4 \\
& x_{4}=-\sqrt{z_{1}}-\sqrt{z_{2}}-\sqrt{z_{3}}-a / 4
\end{aligned}
\]

Now, since equation (5) has coefficients which are constructible from \(a, b, c, d\) by straightedge and compasses, this reduction of a quartic to its resolvent cubic demands no other tools. Write equation (5) for the sake of brevity as:
\[
z^{3}+D z^{2}+D z+F=0
\]
(where \(D, E, F\) are straightedge and coapasses constructible) and \(\operatorname{lot} 2=s-D / 3\).
The cuble becones
\[
\begin{equation*}
s^{3}+H s+K=0 . \tag{6}
\end{equation*}
\]
where
\[
\begin{aligned}
& \mathrm{H}=\mathrm{E}-\mathrm{D}^{2} / 3 \\
& \mathrm{X}=2 \mathrm{D}^{3} / 27-\mathrm{I} / 3+\mathrm{F}
\end{aligned}
\]
quantities which are themselves constructible in the same sonse. Now let \(s=K t / H_{0}\). Equation (6) becomes:
\[
\begin{equation*}
t^{3}+m(t+1)=0 \tag{7}
\end{equation*}
\]
where \(m=H^{3} / K^{2}\). This quantity \(m\) is a constructible function of tho constructible quantities \(H\) and \(K\),
Accordingly,
 THE ORLY AICFERAIC CIPERATIONS INVOLVED ON THE GIVEN COEFFICIEMTSOF THE QUARTIC ARE THOSE THAT ARE EqUIVATEMT TO STRAICHTMIGE AND CORPASSES CONSTETOTIONS.

Find the quantity \(\underline{m}\) in terms of the given quantities \(\underset{\sim}{u}, \underline{b}, \underline{c}, \underline{d}\).

\section*{arics}

Consider the cubic (Iquation 7 of Pege 153):
\[
\begin{equation*}
t^{3}+m t+m=0 \tag{1}
\end{equation*}
\]
where \(m\) is a given or constructed length and, of course, real. Let \(t=u+v\). Ne have:
\[
\left(u^{3}+v^{3}\right)+m+(3 u v+z)(u+v)=0,
\]
an equation that is satisfied if
\[
\left.\begin{array}{rl}
u^{3}+v^{3} & =-m  \tag{2}\\
u v & =-m / 3
\end{array}\right\}
\]

If v be eliminated between these last two equations, we have:
\[
27 u^{6}+27 m u^{3}-m^{3}=0 .
\]

This equation is a resolvent quadratic in the quantity \(u^{3}\). A solution is
\[
\begin{equation*}
u^{3}=(m / 2)[-1+\sqrt{(1+4 m / 27)}]=R \tag{3}
\end{equation*}
\]

Show that the other root of the quadratic is \(v^{3}=-n^{3} / 27 u^{3} \quad[\) from (2)].

The three cube roots of (3) are \(u\), wh, \(\omega^{2} u\) where \({ }_{\omega}^{3}=1\) and the corresponding valuee of \(\nabla\) (such that \(u v=-m / 3)\) are: \(-m / 3 u,-m / 3 \mathrm{~cm},-m / 3 u^{2} u\). Thus, since \(t=u+v\), the three roots of (1) are:
\[
\begin{equation*}
t_{1}=u-m / 3 u ; \quad t_{2}=u-m / 3 \omega u ; \quad t_{3}={ }^{2} u-m / 3 \omega_{0}^{2} u \tag{4}
\end{equation*}
\]

The Discriminant, \(\Delta\), of an algebraic equation is defined as the square of the product of the differences of its roots taken in pairs. For the cubic (1) above:
\[
\begin{equation*}
\Delta=\left[\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)\left(t_{2}-t_{1}\right)\right]^{2} \tag{5}
\end{equation*}
\]
which from (4) ist
\[
\begin{aligned}
\Delta & =\left(\omega u-\omega^{2} u-m / 3 \omega u+m / 3 \omega^{2} u\right)^{2}\left(u-\omega^{2} u-m / 3 u+m / 3 \omega^{2} u\right)^{2}(u-\omega u-m / 3 u+m / 3 \omega)^{2} \\
& =\left(\omega-\omega^{2}\right)^{2}(u+m / 3 u)^{2}\left(1-\omega^{2}\right)^{2}\left(u+m / 3 \omega^{2} u\right)^{2}(1-\omega)^{2}(u+m / 3 \omega u)^{2},
\end{aligned}
\]
and sincow, \({ }^{3}=1, \quad 1+\omega+\omega^{2}=0\),
\[
\Delta=-27(u+m / 3 u)^{2}\left(u+m / 3 w^{2} u\right)^{2}(u+m / 3 u u)^{2}=-27\left(u^{3}+m^{3} / 27 u^{3}\right)^{2}=-27\left(u^{3}-v^{3}\right)^{2} .
\]

Frox equation (3) this is:
\[
\begin{equation*}
\Delta=-m^{2}(27+4 m) \tag{6}
\end{equation*}
\]

The value of this discrimimant onablee us to trill the character of the roots in advance of the solution. For, frore an inspection of (5):
I. All roots are real and unequal if \(\Delta>0\), i.e. \(27+4 m<0\) or \(m<-27 / 4\).
II. If two or more roots are equal, \(\Delta=0\), and either \(m=0\) or \(m=-27 / 4\).
III. If but ono root is real, the other two are conjugate complex and their difference is pure iraginary. Thus \(\Delta\) is negative and \(27+4 m>0, m>-27 / 4\).

Retuming to \(\quad t^{3}+m t+m=0, \quad\) let \(t=r, \sqrt{(-m / 3)}\).
which is a real transforation only if \(m<0\). Substitution gives
\[
x^{3}-3 x-3 \sqrt{ }(-3 / m)=0
\]

This equation wlll be a Trisection Equation (sae Plate 61,3) if the constant term lies between -2 and +2 . That is, if
\[
-2 \leq-3 \sqrt{ } /(-3 / m) \leq+2 .
\]

The valuee of in that satisfy this inequality aret
\[
m \leq-27 / 4
\]

But this is just the condition that the original cubic have all real roots. Accordingly,
GVEFY CUBIC BCUATION WHICH HAS THREE REAL FOOTS CAN BE SOLVED BY A MAEKED KILBR IN THE TRLSECIION MANAER,

In the three spaces below, skatch the function \(t^{3}+m t+m\) for a particular value of \(m\) within the range spocified.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & \\
\hline
\end{tabular}

If \(27+4 n>0\), the radical in Equation (3), Plate 62 , is the square root of a positive quantity and thus real. Accordingly,
\[
u^{3}=R
\]
where \(A\) is a real yuantity constructible from the givon coeffioient \(\underline{g}\) by straightodge and compassos. The throe roots of this are:
\[
3 / 2, \quad \omega \cdot \frac{3}{1}, \quad 3_{1}^{2} \cdot \sqrt{n},
\]
and one of the roots, \(t_{1}\), of \(t^{3}+m t+m=0\) is thus real. This root may be deternined by the mariked ruler construction that follows:

FIG. 1. Drew a eircle with eenter 0 and radius \(F Q=1\), upon which the chori \(X Z\) of length \(R / 4\) is markod. Extend \(X Z\) to \(K\) so that \(Z K=X Z=R / 4\), and draw \(K O\). Now draw \(X X X\) parallel to \(K O\) and insert the marked rulor so that \(P\) falls on the \(l i n o X Z\) while \(Q\) falls on \(X M\) with \(P Q\) extended through \(O\). The distanco PX is then tho cube root of R. Fer,
if we let \(E X=x ; \quad P Y=y\); we havo from similar triangles:
\[
\begin{equation*}
(P X) /(P Q)=(X K) /(C O) \quad \text { or } \quad x=F / 2 y \tag{1}
\end{equation*}
\]
(sinco \(Q 0=1+Q Y=P Q+Q Y=P Y=y\) ).
From the secant property of the circle, bowever:
\[
\begin{equation*}
(\mathrm{PX})(\mathrm{FZ})=(\mathrm{PY})(\mathrm{PW}) \quad \text { or } \quad x(x+\mathrm{R} / 4)=y(y+2) \tag{2}
\end{equation*}
\]

Combining (1) and (2) to eliminato \(y\), we have:
or
\[
\begin{gathered}
x(x+k / 4)=(R / 2 x)(R / 2 x+2) \\
\left(x^{3}-B\right)(4 x+B)=0,
\end{gathered}
\]
ono of whose solutions is \(x=3 / 4\). What is the position of the ruler corresponding to the factor \((4 x+R)=0\) ?

Notice that the foregoing construction solves the problem of inserting two geometrie mears between the quantities \(l\) and \(\mathbb{B}_{\text {; }}\) that is, two quantities \(x\) ond \(x\) such that \(1, x, x, B\) shall form a geometrio progression.

Sunariz: We have thus establishod the following inportant theorem:


 or a Crachan Cube rocrs.

Detemaine the character of the roots of the following cubies, then give markod ruler solutions in the allotted spaces:
FIG. 2. \(t^{3}-27 t-27=0\) (Hint: Let \(t=3 x\).)

FIG. 3. \(4 t^{3}+21 t+21=0\).


The Carpenter's Square cansidered here has parallel edges. We shall assume the ability to move ane corner along a fixed line while an odge of the Square passes always through a fized point. We take the width of both portions as unity; that is, in Fig. 1, \(\mathrm{PP}=\mathrm{PD}=\mathrm{DE}=1\).

HIG. 1. In order to trisect a given angle BOF, first construct with the Souar the line ID parallel to OF at a unit's distance from it. Then move the Square so that its corner \(D\) travels along DD' while the inner odge \(P O\) pesses through 0 . When the other corner \(B\) fills on tho scoond side of the given angle, this angle is trisected. Why?

FIG. 2 Newton (see Bariques and S. Roberts) used the Square undor the same sliding process to draw tho Cissoid of Diocles. The corner \(D\) moves along a fixed line \(C D\) while the outcr edge \(B A\) passes through the fixed point \(A\), located 2 units distaris froc CD. The path of the midpoint \(P\) of \(E D\) is the eissoid. Let \(A C\) be the \(X\)-axis and its perpendicular bisoctor be the \(Y\)-axis. Then
\[
B D=A C=2 \quad \text { and } \quad A B=D C \text {. }
\]

Lat \(P=(x, y) ; \quad B=(h, k) ; \quad D=(1, z)\). Then, \(P\) being the midpoint of \(B D\) wo heve:
\[
\begin{equation*}
x=(1+h) / 2, \quad y=(z+k) / 2 \quad \text { or } \quad h=2 x-1, \quad k=2 y=z \tag{I}
\end{equation*}
\]

Now in all positions \(A B=C D\). Acoordingly, \((1+h)^{2}+k^{2}=z^{2}\), or, using (1):
\[
\begin{equation*}
x^{2}+y^{2}=y z \tag{2}
\end{equation*}
\]

Since \(A B\) is perpendicular to \(A D\) their slopes are negative reciprocals. Thus
\[
k /(1+h)=(1-h) /(k-z) \quad \text { or using }(1) ; \quad(2 y-z)(y-z)=2 x(1-x)
\]

Substituting here the value of \(a\) from (2), whe have firally:
\[
y^{2}=x^{3} /(2-x)
\]
the equation of the Ciesoid having \(x=2\) as Asymptate and cusp at \((0,0)\).
FIG. 3. The cube root of a segment \(R\) may be determined by the Carpenter's Square. Iet \(O L=2\) and its perpendicular \(C M=R\), \(O T=2 R\). Drew If and mavo the Square through \(A\) as in Fig. 2, until \(P\) lies on If. Draw MRP. Then
\[
I M=3 / 4
\]

Proof: The equation of the Cissoid derived ebove ray be rewritten in the form:
\[
(y / x)^{3}=y /(2-x)
\]

Now a line US; \(y / x=m\) through the origin \(O\), cuts tho curve in a point \(P\) whose coordinates \((x, y)\) satisfy
\[
m^{3}=y /(2-x) .
\]

But this equation may also be thought of as a 1 ine through \((2,0)\) and \(P\); that is, the lino IT. Its \(Y\)-intercopt is \(O I=2 \mathrm{~m}^{3}\). Since \(I S=2 \mathrm{~m}\) and \(I N=(I S) / 2, O M=(O I) / 2\), then
\[
(\mathrm{W})^{3}=C M=R .
\]

Thus: THE CARPENTER'S SQUARE USED IN THE MMMER TNOICATED IS CAPABIE OF SOLVIMG ALL PROBLMS OF THE



FIG. 1. A semicircle upon \(B O C\) as diamoter is attached to the straightedge \(T B\) such that \(T B\) is its tangent at \(B\). \(A, B, O\), and \(C\) are collineer with \(\Delta B=B O=\varnothing C=1\).

FIG. 2. Trisect a selected angle by means of the Tomahaw. (Hint: See Plate 64,1.)

FIG. 3. Take the cube root of a selected segment by means of the Tomahawk. (Hint: Sce Plate 64,3.)

Is the Tomahask capable of producing solutions of all quartic equations? \(\qquad\) -


FIG. 1. Consider the compassos with three feet given by F. Herwes in 1883. Here two points, \(P\) and \(Q\), attached to one leg of the compasses at a constant distance apart, are always in line with \(A\), the foot of the other leg.

FIG. 2. Use the Canpages of Hermes to trisect a selected angle. (See Plate 61,5.)

FIG. 3. Use the Compasses of Hermes and the straightedge to take the cube root of a solected segment. (See Plate 63,1.)

Is the Compasses of Hermes a quartic tool? \(\qquad\) - Explain.

Plate 66.


We have soen that the right angle ruler is capable of accooplishing all straightedge-compasses constructions (see Plate 58). All quartics with given langths as coefficients can be reduced to cubios of the sort
\[
x^{3}-p x-q=0
\]
by rational trensformations and this reduction may be effected by a single right angle ruler.

FIG. 1. We are able to solve cubice with two right angle rulers if we assume the ability to nove the vertices of the rulcre along selected lines. Upon the two pexpendicular lines \(X, Y\), lay off \(A O=1\), \(\mathrm{CB}=\mathrm{p}, \mathrm{BC}=q\). Place one edge of one ruler through \(A\), an edge of the other through \(C\) so that thoir two other edges are together. If they are adjusted so that the vertex of the first ruler liee upon the line \(X\), thet of the second upon \(Y\), then \(C M=x\) is a root of the given cublc. For, since the right triangles OAM, OREA, and BNC are similar:
or eliminating \(z:\)
\[
\begin{array}{ll}
x=(p+z) / x=q / z & \text { (where } z=8 x) \\
x^{3}-p x-q=0 . &
\end{array}
\]

FIG. 2. The extraction of a cube root is obtained by taking \(A O=1, \propto=a\) (the foregoing situation for \(p=0\) ) and adjusting the rulers as shown. It is not difficult to see that
\[
x=3 / a .
\]

FIG. 3. With two right angle rulers, trisect \(60^{\circ}\).

FIG. 4. With two right angle rulers, duplicate a cube.


In accondance with the elexentary geometry of Poncelet-Steiner, wa sball assume a fixed conic located sonewhere in the plans and a movable straightedge or novable coapasses.

FIG. 1. Let the conic be ruprosented by the equation:
\[
y^{2}+a x^{2}+b x+c=0
\]
where \(a, b, c\), are given uralterable constants. The wovable straightedgo puts us in possession of all lines
\[
y=m x+p
\]
where mand \(p\) are at our disposel. The \(X\)-coordinates of the intersections of such lines with the conic ave, eliminating \(y\) between the two equations:
\[
\left(m^{2}+a\right) x^{2}+(2 m p+b) x+\left(p^{2}+c\right)=0
\]

Evidently, by the selection of the quantities mand \(p\), this quadratic may be madc to represent all quadratice. Accordinely,

\section*{THE STRAIGHIEDGE AND SIXED CONIC WILL SOLVE ALL CONSTBUCIIONS OF A QUADRATIC TIATURE.}

FIG. 2. Given a fixed conic and a variable compaseos. As the fixed conic, we take the parabolat
\[
y=x^{2}
\]

The compasbes gives all circles: \(x^{2}+y^{2}-2 h x-2 k y+h^{2}+k^{2}-x^{2}=0\), with centers ( \(h\), \(k\) ) and radii \(r\). The parabola moets the varieble circle in points whose abscisses are given by
\[
\begin{equation*}
x^{4}+(1-2 k) x^{2}-2 h x+b^{2}+k^{2}-r^{2}=0 \tag{1}
\end{equation*}
\]

These coefficients may take on all valuos and since every quartic with constructible cocfficients is reducible to one of this type with constructible coefficients, then

THE COMPASSES AND FIXBD PARABOLA (OR CONIC) WILL SOLVE ALL COISTHUCIIOIS OF A QUARIC WATURE.
FIG. 3. To illustrate, trisect \(60^{\circ}\) with the compesses and fixed parabala. The trisection Bquation for \(60^{\circ}\) is (see Plate 61,3):
\[
x^{3}-3 x-1=0
\]

Bquation (1) above will reduce to this if
\[
r^{2}=h^{2}+k^{2}, \quad h=1 / 2, \quad k=2 ;
\]
that is, if the circle passes through the origin with centor at \((1 / 2,2)\). The velues \(x\) satisfying the trisection equation are the abscissas of tha points of intersection of this circle and the given parabola. Nake the drawing of the parabola and the circle shotring the angle \(60^{\circ}\) and its trisection. (See Plate 61.) In how many points does tho circle eut tho parabola? Explain.

FIG. 4. Daplication of the Cube: Construct the length \(x\) such that \(x^{3}=2\). (Hint: In Equation 1, select
\[
\left.r^{2}=h^{2}+k^{2}, \quad h=1, \quad k=1 / 2 .\right)
\]

Nakc the construction. In how many points does the circle cut the parabola? Brplain.

Plate 60.


1.
4.
3.

\section*{SBCIION XI}

\section*{GREIRAL PIANE LIUKAGES}

This section introduces the subject of general linkege motion. It is to be unaerstood that time and space do not perait elaboration and further study from the given references must be made in orier to catch sonething of the breadth and spirit of the subject.

The fimplest linkage - the Three Bar mechanisn - is especjally interesting. The curves generated by the various forms of this linkage offer a challenging anslysic that has attracted many of the best mathematical minds. A thorough knowledge of this linkage very often presents the key to understanting more involved mechaniems.

Althaugh the subject matter has been investigatod exhaustively, there etill remain some unanswored questions. Two of these are the following:
1. What simple linkages vill sorve to transform the circle into an airfoll? (The mechaniom must, of course, be practical.)
2. What linkage vill describe the conic through five mamed points? (An answer to this ray well cone through the theorem of Pascal.)

In making models of the various linkeages, the etudent should obtain colerod cardboard about \(12-\mathrm{ply}\); an ayelat punch; and booces of \#2 and \#3 eyelets. Use the 新2 cyelct to join two links; 䉼 to join thres or four links. Cut the cardboard into strips about one-half inch wide with a phototrimmer and mount the model on a cardboard background. To insure greater accuracy, two bars of the same length should be punched simultanoously.

\section*{BIBLIOGRAFAY ASD FURIHINR FEADING}
\begin{tabular}{|c|c|}
\hline Bennett, G. T. & : Proceedings London Matheratical Society, 20 (1921) 59-84. \\
\hline Ceylog, A. & 8 Proceedings Ionden Mathemstical Society, III (1870) \(100 \mathrm{ff}\). \\
\hline Durboux \& Koonigs & : Comptes Rondus, 109 (1889) 49-51. \\
\hline Emah, A. & \% Anmls of Mathoratice, I (1899) 81-92. \\
\hline Emah, A. & Transactions Ancrican Nathomatical Soçicty, III (1902) 493 ff. \\
\hline Hart, H. & 2 Proceedings Iondon Mathematical Society, 6 (1874) \(137 \mathrm{ff}\). \\
\hline Hart, H. & \% Nessonger of Vathematics, ITS IV (1875) 82-88; 116-120. \\
\hline Hart, H . & Messenger of Nathetatics, wS \(V\) ( 1876 ) 35 ff . \\
\hline Hart, H. & : Messengor of Kathematios, NS VI (1877) 169m172. \\
\hline Hobbert, C. M. & American Mathematical Monthly, 22 (1915) 12-13. \\
\hline Hilsonrath, J. & 1 Nothematics Tcacher, XXX (1937) 277-284. \\
\hline Kippesley, R. L. & Linkages, Encyclopedia Brittanica, 14th Xd., XIV. 163-1 \\
\hline Kenayama & Tehoku Methomatical Journa1, 37 (1933) 294-319. (Bibliograp \\
\hline Zempc, A, B. & : Proceedings London Mathomatical Society, 7 (1876) \(213 \mathrm{ff}\). \\
\hline Kompe, A, B. & : Proceedings Lordon Wethematicel Socicty, 9 (2878) 233-147. \\
\hline Leavens, D. \(\overline{\text { H. }}\) & : American Metbematical Monthly 22 (1915) 330 ff . \\
\hline Tannheim & : Proceedings London Kathumatical Society, 6 (1874) 35 ff . \\
\hline Morloy, F. V. & : American Nathomatical Nonthly 31 (1924) 71-77. \\
\hline Peaucollior & 1 Nouv. Ann. de Vath. (1864) 493 ff ; XII (1873) 71-78. \\
\hline Roes, J. D. C. de & : Linkages, New York (1879). \\
\hline Roberts, S . & * Proceedings Londen Wathematical Socicty, 7 (1875) \(14 \mathrm{ff}\). \\
\hline Sylvester, J. J. & : Procoedings Roymal Institute, VII (1874) 179 ff. \\
\hline Sylvostor, J. J. & : Nature (1875) 168; 214-216. \\
\hline Yates, R. C. & : Mathomatics Toacher, XXXIII (1940) 301-310. \\
\hline
\end{tabular}

FIG. 1. The 3 -bar linkage shown was devised by James Watt, of steam engine fare, about 1784 . The midpoint \(P\) of the traversing bar describes an approximately struight line. In some lettere Watt said: ". . .about 5 feet in the height of the (engine) house nay be saved in 8 foet strokos which I look upon as a capital savingi..." and "...though I am not over anxious after fame, yet I am more proud of the parallel motion than of any other invention I have ever made."

Show that if
\[
A B=2 a ; \quad C P=P D=a ; \quad A C=B D=a / 2,
\]
the path of \(P\) is the Lemniscate.

FIG. 2. This mochanism, devised by Mrehebyscheff about 1850, is a better line approximation than the one of Watt. Here \(A B=4 a ; \quad P P=P C=a ; A C=E D=5 a\) and \(P\) traces the spproximately etraight line.

FIG. 3. A still better approximation to line motion is that path of \(P\), attached to the plato shown, where \(A C=P C=P D=D B\) and \(A B=2(C D)\). Thia was devised by \(H\). Roberts about 1860 .

FIG. 4. The genomal 3-bar mochanism produces a complicated curve of tho sixth degree. If the triangle \(A B C\) be formed similar to the plate PGR, the circumcirclo of ABC will pass through the double points of this seatic curve. (See Morley, F. V. Road this artiole and appond some notes here.)

FIG. 5. This exhibitis a most remariable property of the 3-bar linkage. Seleot a triangle \(A B C\) and any intemal point \(P\). Dras linos through \(P\) parallel to the sides of \(A B C\), thus determining a triple 3-bar mochaniem as shown. (The 3-bar part ABEQR of Fig. 5 might, for axample, be the same as that in Fig. 4 when extended.)

Now, no matter how tho linknork be deformed, triangle ABC remains elways similar to itself. That is, for instanco, if \(A\) and \(B\) are fired, \(P\) deeoribes a 3 -bar curve, and the free point \(C\) remains at rest. Or, if \(A, B\), and \(C\) are fixed to the plene, sll three of the 3 -bar mechanisme produce the same curve in matual harmony and cooperation.


FIG. 1. Consider the trapezoid, \(A B C D\) of Fig. 1. Let altitudes \(h\) from \(B\) and \(C\) be dropped to the points \(M\) and \(\mathbb{M}\). Obviously, \(B C=M \mathbb{N}, A M=\mathbb{D D}=u\). Let \(A C=B D=2 \mathrm{~b} ; A B=C D=2 \mathrm{a}\), where a \(>\mathrm{b}\). Then from the figure:
\[
h^{2}+u^{2}=4 b^{2} ; \quad(A D-u)^{2}+h^{2}=4 a^{2}
\]

\section*{Subtracting these:}
or
\[
(A D)(A D-2 u)=(A D)(B C)=4\left(a^{2}-b^{2}\right) .
\]

EIG. 2. The Fart crossed perallelogrep shown here with one bar \(A B\) attached to the plane, is a trapezoid. As it moves, the product of the variable distances \(A D\) and \(B C\), according to the preceding paragraph, remains constant and equal to the differonce of the squares of the lengths of radial arm and travorsing bar.

We select a fixed point \(P\) on the traversing bar and draw the line \(O P\) parallel to \(A D\) and \(B C\). It is clear that \(O P\) remeins parallel to these lines and \(O\) is thus a fixed point of the line \(A B\).

Let \(O P=r ; \quad O M=c\), whers \(M\) is the midpoint of \(A B ;\) and angle \(P C B=\theta\). Thon from the figure:
\[
\begin{gathered}
r=2(c+z) \cos \theta \\
B C=2(\mathrm{BC}) \cos \theta=2(\mathrm{a}-z) \cos \theta \\
A D=2(\mathrm{AT}) \cos \theta=2(\mathrm{a}+2) \cos \theta .
\end{gathered}
\]

From the lest two equations:
\[
(B C)(A D)=4\left(a^{2}-z^{2}\right) \cos ^{2} \theta=4\left(a^{2}-b^{2}\right) .
\]

Combining thio result with the first equation to eliminate \(z\), we have:
\[
a^{2} \cos ^{2} \theta-(x / 2+c \cdot \cos \theta)^{2}=a^{2}-b^{2}
\]

This is the polar equation of the path of P. The quantity \(\underline{g}\) is detexmined, of course, as coon as tho point \(P\) is solected.

Taking a \(>b\), eelect three points \(P\) on your apparatus and doacribe tho curvee:
1. When \(b>c\),
2. Whan \(b<c\),
3. When \(b=c\).

Give the polar equation of the curve and idontify when \(0=0\) end \(a=b / 2\).



The threo-ber curve of Plate 70, traced out by a point P on the traversing bar is
\[
a^{2} \cos ^{2} \theta-(r / 2-c \cdot \cos \theta)^{2}=a^{2}-b^{2}
\]

Where \(2 a\) and \(2 b\) are the lengths of traversing bar ( \(C D\) ), and racial bar ( \(A C=B D\) ), respeotively, and \(c\) is the distance of the tracing point from the center of this bar (CD).

If we invert this curve, taking 0 as the center of inversion, so that the transformation is

We obtain
\[
a^{2} s^{2} \cos ^{2} \theta-\left(k^{2}-\cos \cdot \cos \theta\right)^{2}=s^{2}\left(a^{2}-b^{2}\right) .
\]

This inverted curve is a conic section which may more easily be reoognized by transferring to rectangular coorditates, using
\[
\operatorname{s.cos} \theta=x, \quad \text { s. } \sin \theta=y, \quad s^{2}=x^{2}+y^{2} .
\]

Thus, we have:
\[
\left(c^{2}-b^{2}\right) x^{2}+\left(a^{2}-b^{2}\right) y^{2}-2 c \cdot k^{2} x+k^{4}=0
\]

Now, eince \(a>b\), the coefficient of \(y^{2}\) ie positive an the character of the conic is determined entirely by tha coefficient of \(x^{2}\). Thus the curve is
\[
\begin{aligned}
& \text { I. a Parabola if } c=b \\
& \text { II. an Ellipse if } c>b \\
& \text { III. an Hyperbola if } c<b \text {. }
\end{aligned}
\]

In all three of the accompanying figures, we have arbitrarily taken \(a=2 b\). The point \(P^{\prime}\) traces the conic.

FIG. 1. shows the linhage for a parabole with \(\mathrm{B}=2 \mathrm{~b}=2 \mathrm{c}\). Thus \(\mathrm{PD}=\mathrm{A} A 0=\mathrm{b}\). The point \(P\) is inverted to pl by means of the Peaucellier cell where \((\mathrm{OE})^{2}-(\mathrm{PK})^{2}=2 \mathrm{k}^{2}\). Give rectangular and poler equations.

FIG. 2. is the arrengement for an ellipae, where \(2 a=4 b=3 c\). For the sake of variety, \(P\) is inverted to pl by the Hart cell BFGH. Give rectangular and polar equatione.

FIG. 3. gives the arrangement for an hyperbola where \(a=2 b, c=0\). ( \(P\) is the midpoint of CD.) Give rectangular and polar equations.

Discuss the limkage in which \(a=b\). Consider \(c=0\); \(\quad c \neq 0\).



FIG. 1. Consider the rhombus AMP'N with two adjacent legs extended to points 0 and \(P\) so that \(O, P^{\prime}, P\) are collinear and \(O M=A M\). Thon triengles OMP' and OAP are always similur and thus
\[
O X / O A=1 / 2=O P^{\prime} / O P, \quad \text { or } \quad O P=2\left(O P^{\prime}\right)
\]

Accordingly, if \(O\) be fired and \(P\) be moved on sone curve, the point \(P\) ' traces a curve similar and similarly placed to the first and reduced in size by \(1 / 2\). This is the form of the oriimary Pantograph.

FIG. 2. This is an obvious extension of the Pantograph with multiple tracing points. What are the reduction factore for \(\mathrm{P}^{\mathbf{\prime}}\) ? \(\qquad\) - P"? \(\qquad\) , \(\mathrm{p}^{\mathrm{H}}\) ? \(\qquad\) -

FIG. 3. Referring to Fig. 1, the bar NPt may be extended to neet an additional bar OB without affecting the character of the linkage. Thus the bar \(N \mathbb{P}^{\prime}\) nay be discarded as in Fig. 3 to give the Fantograph built upon the genoral parallologran ORA, with \(O, P^{\prime}\), and \(P\) collinear.

PIG. 4. Five rhombuses are jointed together as shown. In all positions, \(M\) is the midpoint of BC, while \(G\) is the lower trisecting point of \(A M_{0}\). Thus \(G\) is always the centroid of tho variable triangle \(A B C\).

FIG. 5. The linkege shown is the crossed parallelogram OABC rith a short side, OC, fixed to the plano. As the mechanism movos, the burs OA and BC slide ovor each other and thoir point of intersection \(P\) describes an ellipse with 0 and \(C\) as fooi. For,
\[
O P+P C=O P+P A=O A=\text { constant } .
\]

But, for like reasons, \(P\) lies alweys on an ellipse of the same size having \(A\) and \(B\) as foci. This secord cllipse touches the fixed ellipse at \(F\) and the motion is that of one allipse rolling upon another.

What is the path of a focus of an ellipse that rolls upon a fixed ellipse of the same size?

FIG. 6. Horc ono of the longer bers, OA , of the crossed parallelogran is fixed to tho plane. Show that the lines \(O C\) and \(A B\) exterded mect on an hyperbola with 0 and \(A\) ns foci.

Notico that the two positions in which \(O\) and \(A B\) aro parallel definc the directions of the asymptotes. The motion here is that of one hyperbola rolling upon another. Sheotch them in for the position of the linkege shown.


FIG. 1. The linkago shown is formed of two parallelograms. If 0 and \(O\) are fixed to the plane so that the horizontal and vertical projections of 00 are \(h, k\), the point \(P\) may be moved (within the limits of the mechanism) to any position in the plane. The position of the point \(P\) is deternined by \(P\). It is clear from the figure that:
\[
x^{\prime}=x+h \quad y^{\prime}=y+k
\]
the rolation between \(P\) and \(P^{\prime}\). This is simple translation that is met in the study of enslytic geometry.

FIG. 2. Considor the perellelogram, two of whose adjecent legs arc replaced by positively similar plates. Lat \(r\) bc the matio of the lengths of the sides of the plates which fora tho angle \(\theta\) and let the point 0 be a fixed origin of the complex number system. Denote the erds of the bars by the complex veriables a, b, and the unjointed vertices of the plates by \(W:\left(x^{\prime}+i y^{\prime}\right), ~ z:(x+i y)\). Then, since the plates are eimilar:
\[
W-a=E b, \quad a=K(Z-b) \quad \text { where } K=r e^{i \theta}
\]

Acoondingly,
\[
W=E Z .
\]

Thus the length \(O V\) is a constant multiple ( \(r\) ) of tho length \(O Z\) while the anglo WOZ is slways cqual to \(\theta\). In other words, triangle woZ remains always bimilar to the triangular plates. The muchanism is the Skew Pantograph of Sylvestur.

If \(r=1\), the foregoing relation is
\[
\begin{gathered}
W=e^{i \theta} z \\
x^{\prime}+i y^{\prime}=(\cos \theta+i \sin \theta)(x+i y) .
\end{gathered}
\]

Equating rosels and imaginaries:
\[
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta \\
& y^{\prime}=x \sin \theta+y \cos \theta
\end{aligned}
\]
the equations of rotation which play on important rolo in Anelytics.

Combine the liniages of Jigs, 1 and 2 to obtain a mechenism for simaltancous translation and rotation.

What is the reture of the trinngular plates whon \(r=1\) ?

What effoct is there on the relation \(X=X Z\) if th lengths \(a\) and \(b\) r.re altered?

I.


EIG. 1. In the figure, let \(O K=K R=b, \quad C M=M P=V \mathbb{R}=a\), and lot \(O\) and \(K\) be fixed to the plane. We wibh to find the path traced out by the point \(P\) at tho extremity of tho bar FP .

Since the points \(P, O\), and R aro always equidistant from \(M\), they lie on tho circle with centur at M. Accordingly, \(P C R\) is always a right anglo. Using a system of polar coordinates with \(O\) as pole and. OK as polar axis, let \(\mathbb{C P}=8\). Then:

But
\[
\alpha R=2 b \cdot \cos \left(90^{\circ}-\theta\right)=2 b \cdot \sin \theta .
\]

Thus
\[
s^{2}=4 a^{2}-4 b^{2} \sin ^{2} \theta,
\]
the polar equation of the path of P.

FIG. 2. Let us invert this curve by means of a Peaucellier cell whose fundamental relation is:
\[
\mathrm{r} \cdot \mathrm{~s}=2 \dot{k}^{2} .
\]

We shall have
or
\[
\begin{aligned}
& k^{4} / r^{2}=a^{2}-b^{2} \sin ^{2} \theta, \\
& a^{2} r^{2}-b^{2} r^{2} \sin ^{2} \theta=k^{4},
\end{aligned}
\]
as the polar equation of the inverted curve. Transferring to rectangular coordinates with \(x, \cos \theta=x\), \(x \cdot \sin \theta=y\) :
\[
a^{2} x^{2}+\left(a^{2}-b^{2}\right) y^{2}=k^{4}
\]
the equation of the path of \(\mathrm{P}^{1}\) in Fig. 2. Thie is a central conic whose character is detemined by the sign of the coefficient of \(y^{2}\). Thus
\[
\begin{array}{ll}
\text { an Ellipse } & \text { if } \quad a>b \\
\text { an Hyperbols } & \text { if } \\
a<b .
\end{array}
\]

Discuss the linlerge and the paths of \(P\) and \(P^{\prime}\) if \(a=b\).

Give in terms of \(\underline{a} a n d \underline{b}\) the coordinates of the foci of the conics.

1.


FIG. 1. The members of the Limacon Family may be generated in the manner of the Ppicycloids - that is, from one circle rolling upon another without slipping. Jyon the fixed circle of radius e, rolls another of the same radius. Any point F, rigidly attached to the moving circle at a distance b irom its center, generates a Limacon.

Let the origimal position of \(\mathrm{B}^{\prime}\) be B . Then arc \(\mathrm{BI}=\) arc \(\mathrm{B}^{\prime \prime} \mathrm{T}\), where T is the point of tangency, and eccordingly angle \(A C B=\) angle \(C A B^{2}=\theta\). Take the origin of coordingtes at \(O\), a distance \(\underline{b}\) fron \(C\) on \(C B\). Dropping perpendiculars from 0 and \(P\) upon \(A C\), it is clear that
\[
r=2 a-2 b \cdot \cos \theta
\]
is the polar equation of the path of P. The three types of this family are defined when
\begin{tabular}{ll}
\(b<a\) & (P interior to the rolling circle) \\
\(b=a\) & (P on the rolling circle) (The Cardioid) \\
\(b>a\) & (P exterior and attached to an extension of a diameter)
\end{tabular}

Sketch a Limacon of each type on the given diagran.

FIG. 2. Two similar (proportional) crossed parallelograms are attached as shown with
\[
\mathrm{DB}^{1}=\mathrm{EA}=\mathrm{a} ; \quad \mathrm{AD}=\mathrm{CB}=\mathrm{c} ; \quad \mathrm{AB},=\mathrm{DE}=\mathrm{FC}=\sqrt{ }(\mathrm{BC}) .
\]

Then (see Plate 38,4 ), angles \(F D E=M P^{\prime}=F C E=C A B^{\prime}=\theta\). Accoringly, if \(F\) and \(C\) are fixed, while \(A C\) moves through an angle \(\theta\) about \(C\), the bar \(\Delta B^{1}\) swings about \(A\) through the same angle. This is the action of the rolling oircles explained in Fig. 1 and thus any point \(P\) of \(A B^{\prime}\) describes a Limacon.

Draw the circles to fit the mechanism and locate the point P that describes the Cardioid.

FIG. 3. A very similar linkage is given by Hebbert. Again two similar crossed parallelograms FCDK and OGED, are taken to produce equal angles \(\theta\) at the fixed point \(C\).

Upon the bars \(C \mathcal{E}\) and \(C D\) is erected a parallelogram CHJA of arbitrary size, one of whose sides, JA, is extended to \(P\). Then angle HUA \(=\) angle CAP \(=\theta\). This produces the came action as displayed in the two preceding figures and thus \(P\) describes the Liracon.

Draw two circles to fit the mechanism.


\section*{CISsoms}

FIG. 1. Consider the arrangement of the Peaucellier cell shown. The points \(D\) and \(Q\) are fixed to the plane so that \(D O=D Q=c ; \quad Q=O B=a ; A Q=Q B=B P=P A=b\). Te take the line \(D Q\) as axis, \(Q\) as pole, and find the polar equation of the path of \(P:(r, \theta)\). From the fundamental property of the cell:
\[
(\infty)(\infty+r)=a^{2}-b^{2}, \quad(a>b)
\]

But, since \(O D Q\) is an isosceles triangle, \(\quad Q=20 \cdot \cos \theta\). Accordingly,
\[
\begin{equation*}
r=\left(a^{2}-b^{2}\right) / 2 c \cdot \cos b-2 c \cdot \cos \theta, \quad \text { or } \quad y^{2}=x^{2}\left(4 e^{2}-a^{2}+b^{2}+2 c x\right) /\left(a^{2}-b^{2}-2 c x\right) \tag{1}
\end{equation*}
\]

These are pember: of the Cissoid family. What are their inverses with respect to the origin?

FIG. 2. The same curves may be generated with a fifth bar attached to the Hart cell as shown. The points \(Q\) and \(D\) are fixed, 0 travels on a circle through \(Q\), while \(P\) trecos the curve. ( \(O, Q, P\) are collineer and \(\propto . O P=k^{2}\).)

FIGG. 3, 4, 5. Sketch the three meabers of the family of Cissoids, Equations ( 1 ), for the relative values indicated. (Take, for instance, \(\mathrm{e}=5, \mathrm{~b}=3, \mathrm{c}=3,2,1\).) What is the rature of the curve at the origin in each instance?

FIG. 6. We have already shown that the Cissoid may be used to oxtract the cube root of a segront F. (See Plate 64,3.)

To trisect a given ansle \(A O B\), procecd as follows: Draw the unit circle mecting the sides of the angle in \(A, B\) and establish its cosine: \(a=O B\). Upon a line through \(O\) perpendicular to 03 , let \(O T=1 / a\). Let \(C M=(C B) / 2\). Through the point \(P\), where the line \(\mathbb{M}\) meets the Cissoid, draw \(\mathbb{P}\) produced to meet the line \(y=1 / 2\) in \(Y\). Drop the perpendicular fron \(T\) to \(O B\) meoting the circie in \(X\). Then
\[
\operatorname{arc} \mathrm{EX}=(\operatorname{arc} B A) / 3 \text {. }
\]

Por,
If CB and OF are coordinate axes, the path of P: \(y^{2}=x^{3} /(2-x)\) meets the line OY: ry \(=x\) in a point whose ordinate is:
\[
y=2 / r\left(1+r^{2}\right)
\]

The line \(\mathrm{ry}=\mathrm{x}\) meets MI:
\[
a y=1-2 x \quad \text { in }
\]
\[
y=1 /(a+2 r) .
\]

If these points fall together at \(P\), then \(\quad 2 / r\left(1+r^{2}\right)=1 /(a+2 r)\), or
\[
r^{3}-3 r-2 a=0
\]

This is the Trisection Equation where \(r=2 \cos (A O B / 3)\). But \(r=\cot (Y O B)=2\) ( SY ). Then, sinoe \(\cos (X O B)=S Y\), the statement is ovident.


It is well known that if a point moves in a plane so that the sum, difference, quotiont of its distanoes to tion fixed points in the plane is constant, the locus genersted is, respeotively, an ellipse, hyperbola, circle.

FIG. 1. The Ovals of Cassini are defined as the locus of a point \(P\) moving so that the product of its distances to two fired points \(A, A^{\prime}\) (at a distance a apart) is constant ( \(=c^{2}\) ).

Take the midpoint 0 of \(A A^{\prime}\) as origin and \(A A^{\prime}\) as axis. Find the polar and rectangular cquations of the Ovals. Identify the curve for \(a=2 c\).

Sketch in colors the locus for each of the conditions: (1):a>20: (2):a \(=20 ; \quad\) (3):a \(<20\).

FIG, 2. The linkago shown has \(A B=A C=O A^{1}=a / 2 ; \quad B C=C O=C Q=Q D=O D=b / 2\) with \(A\) and \(O\) attached to tho plane.

Take AOA' as axis and let the coordinates of \(Q\) and \(P\) be \((s, \theta)\) and \((r, \theta)\), respectivoly. Since \(B C=O Q=O C=b / 2\), the points \(B, O\), and \(Q\) lic on a circle with center at \(C\). Thus the lines \(B O\) and \(Q Q\) are always at right angles and \(\angle B O A=\angle O B A=90^{\circ}-\theta\). Then, from the right triangle BOQ:
\[
(O Q)^{2}=(B Q)^{2}-(Q B)^{2}
\]
or
\[
s^{2}=b^{2}-a^{2} \sin ^{2} \theta .
\]

Now tho equation of the path of \(P\) is obtainod froxn this last relation through the fundamental property of the Panoellier cell:
\[
x(x-s)=k^{2}, \quad \text { whero } \quad k^{2}=(C Q)^{2}-\left(C_{Q}\right)^{2} \text {. }
\]

That is, olimimeting s:
\[
\left(x^{2}-k^{2}\right)^{2}=b^{2} x^{2}-a^{2} x^{2} \sin ^{2} \theta
\]
or in rectangular coordinetes:
\[
\left(x^{2}+y^{2}\right)^{2}-\left(2 k^{2}+b^{2}\right) x^{2}+\left(a^{2}-b^{2}-2 k^{2}\right) y^{2}+k^{4}=0
\]
which can be identified es the Owals of Cassini, with the fised points (foci), A, A' .
Find relativo valuos of \(a, b, k\) which will produce the Lemniscate. For these veluos what happens to the Paucellier cell?

I.


\section*{PRDATS}

The FRMAL of a curve \(f(x, y)=0\) with respect to a fixed point \(P\) is the locas of the intersection of a tangent to the curve and its perpendicular from \(P\) as the tangent moves arcurd the curve.

FIG. 1. The tangent to the Parabola \(y^{2}=4 a x\), for all values of \(\underline{m}\), is \(y=m x+a / m\). Its perpendiculars fron the vertex, \(V\), and focus, \(F\), ere respectively \(4 y+x=0\) and \(म y+x=a\). Elimirate \(m\) to find
(1) The pedal of the Parabola with respect to its focus;
(2) The pedal of the Parabola with respect to its vertex.

What is the asymptote of the pedal of (2)? Sketch both pedals in colors.
FIG. 2. The Pedal of the Ellipse \(b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}\) with respect to a fecus: \(\left[\sqrt{ }\left(a^{2}-b^{2}\right)\right.\), 0] is the locus of intersections of the tangent \(\left.y=a x+\sqrt{(m a} a^{2}+b^{2}\right)\) and the perperdicular from \(\left.F: m y+x=\sqrt{(a} a^{2}-b^{2}\right)\). zliminate \(\mathbb{m}\) to find its equation, sketch and identify.

FIG. 3. The peasl of the Rectangular Hyperbols \(x^{2}-y^{2}=a^{2}\) with respect to its center is found from the tangent: \(y=m x+a /\left(m^{2}-1\right)\) and the perpendicular line: my \(+x=0\). Obtain the equetion of this pedal in both rectangular and polar coordirates, sketch and identify.

FIG. 4. The line: \(k x+y /\left(1-k^{2}\right)=a\), for all values of \(k\), is tangent to the oircle: \(x^{2}+y^{2}=a^{2}\). Find the pecial with respect to the points?
A: \((a / 2,0)\)

B; \((a, 0)\)

C: \(\quad(2 a, 0)\)

FIG. 5. Tho similar proportional crossed parellelograns, ABCD ard ADEF, are joined to produce equal angles \(\theta\) at \(A\). The ber \(A F\) is extended to \(P\) so that \(A P=A 3 ; D A\) is extended to \(O\) so that \(Q A=A B\), Two other bars, \(00^{\prime}\) and \(O^{\prime} B\), are sdded to forn the parallelogran shown.

Since \(A D\) bisects angle \(P A B\), it is perpendicular to the line \(F B\) and evidently \(F B\) is always tangent to the circle described by B. The point \(B\) is taken collinear with \(O\) and \(O^{1}\) so that \(H O=C 0^{\circ}\). Then \(E P\) is parallel to \(O B\) and \(O^{\prime} B\) and it is therefore perpendicular to \(E B\) at \(P\). The path of \(P\) is then the pedal of the circle \(O^{\prime}(B)\) with respect to H , a curve identified above as a Liracon,

Show that CD trisects the arbitrary angle PCO1. (See R. C Yates, Nat. Math. Mag., XII, 1938, pp. 323-324.)

3.



A. B. Kempe (on a General Method of Describing Plane Curves of the \(n^{\text {th }}\) degree by Linterork, Proc. Lon. Math. Soc.. VII, 1876, pp. 213-216) has given the following proof that any algebraic curve may be described by a linkage.

Consider the algebraic curve: \(f(x, y)=0\).
The parallelogram of Fig, \(I\) has sides \(\underline{\underline{I}}\) and \(\underline{n}\) which make angles \(\theta\) and \(\phi\) with the \(X\)-exis. The vertex \(P\) is a point of the curve. Its coondirates are then:
\[
\begin{align*}
& x=m \cdot \cos \theta+n_{\cdot} \cdot \cos \phi \\
& y=m \cdot \sin \theta+m_{\cdot} \sin \phi=m_{\cdot} \cdot \cos (\pi / 2-\theta)+n_{\cdot} \cos (\pi / 2-\phi) . \tag{2}
\end{align*}
\]

How the sine of any angle can be written as the cotine of its complement. Furthermore, the products and powers of cosines can be expressed as the sum of cosines. Thus, if we substitute equations (2) in (1), we shall have a sur of terms of the sort:
\[
\begin{equation*}
f(x, y)=\Sigma[A \cdot \cos (a \phi \pm b \theta \pm \beta)]+C=0_{0} \tag{3}
\end{equation*}
\]
where \(A\) and \(C\) are constants, \(\underset{a}{ }\) and \(\underline{b}\) are positive integers, and \(\beta\) equals \(\pi / 2\) or 0 . (If \(a\) and \(\underline{b}\) are rational fractions, a common denominator may be found and the function changed to integral multiples of \(\phi\) and \(\theta\).)

FIG. 2. The Multiplicator shown is composed of similar crossed parellelograme, discussed in previous pletes. By weans of mechaniswe such ac this we may obtain integral multiples of any angle; e.g. a o or b \(\theta\).

FIG. 3. Joining one multiplicator to anotber will produce the combination \(\alpha \phi \pm b \theta\). This is the mechanism shown where the plate BOK with angle \(\beta\) is connected rigidly to the end bar. Thus we build up a linkage to produce \(\angle B O X=a \phi \pm b \theta \pm \beta\). If, in Fig. \(3, O B\) is taken equal to \(A\) (equation 3), then the \(x\)-coordinate of the point \(B\) is
\[
A \cdot \cos (a \phi \pm b \theta \pm \beta)
\]

TIG. 4. The Translator shown is composed of parallelograms with \(O B\) pivoted at 0 . Within the limits of the mechanism, the bar \(O^{\prime} B^{\prime}\) can be moved freely in the plane, remining always parallel to \(C B\).

FIG. 5. By combining the linkages of Figures 1, 2, 3, and 4, we may erect a chain of links \(O B, B_{1}, B_{1} B_{2}, \cdots\), as shown, whose end point, \(B_{n}\), has \(x\)-coordinate:
\[
\begin{align*}
X & =\Sigma A \cdot \cos (a \emptyset \pm b \theta \pm B) \\
& =f(x, y)-C(b y \text { virtue of equation } 3) \tag{4}
\end{align*}
\]

But if \(P\) is noved along the given curve, then its coordinates \(x, y\) satisfy: \(f(x, y)=0\). Accordingly, the locus of the end point, \(B_{n}\). of the chain is
\[
x+c=0
\]
a streight line parallol to the Y -exis. Conversely, if B is noved aleng this line (with the help of a Peaucellier cell, for instance) tho point P will generate the curve \(f(x, y)=0\).


\section*{I NDEX}
(Shabers refer to pages)

Addition by straightodge and compassec, 9
Adjacent segrents, 16
Adler, A., 3
Angle ruler, \(128,136,138\)
Archimedec, \(82,90,118\)
Astroid, 90
Axis of perspective, 70
Bace Circle, inversion, 46-52
Bibliography, \(6,34,42,54,66,82,102,118,128\), 144,168
Brianchon, 80
Bunch, W. H., 72
Cardioid, 182
Carpenter's square, 144, 158
Carrior line, 68
Cayley, 82
Center of perspective, 70
Center of similitude, 18, 104
Centroid, 16, 22, 58, 114
Ceva, theoram of, 16
Circle, similitude of 18 ; nire-point, 22; bese, inversion, 46, 48, 52; fired, with straightedge, 104-110
Circular motion, linkages, 82-100
Circumcenter, \(22,58,70,114\)
Cissoid, 158, 184
Clifford, 82
Compasses, 6, 8; imversion by, 46-52; collapsible, with etraightedge, 118-120; rigid, with straightedge, 118 -124; with imnovable conic, 144
Complex numbers, 26, 178
Conchoid, 148
Congruence of polygons, 34-38
Conic, 66-74; by linkerges, 174-180
Conjugate points, 76
Constructions, fundamental, 12
Creases, folds and, 54-62; knats, 64
Cube root, extrections by: Marked Ruler, 156; Carpenter's Square, 158; Tcmahawk, 160; Compasses of Hermes, 162; Two Right-Angle Rulers, 164
Cabic oquations, 152-156
Darboux, 82
da Vinci, 68
Darwin, 82
Decagon, 30
Deltoid, 90
Desargues, 70, 112
Diagonal points of quadrilateral. 76
Diameter of conic, 80
Dickson, 30, 33

Diocles, 158
Directrix, 58
Discriminant of cubic equation, 154
Dividers, 6; with straightedge, 118, 126
Dissection, 34-40
Dodecagor, 30
Duplication of cube by Two Right-Angle Rulers, 164; by coapasses and conic, 166
Durer, 68
Duelity, 80
Ellipse, 24, 68; by 1 inkages, 174,276 ; pedal of, 188
Thneagon, 30
Enriqucs, 158
Epicycloids, 182
Bquations, representative, of polygons, 26; Constructible by etraightedge and compasses, 30 ; polar, 46, 48; quartic, \(150,252,164\)
Euclid, 34, 50, 62, 70, 118
Baler line, 22
Family of circles, 44
Fermat mambers, 32
Focus, 24, 58, 176, 180
Folds and creases, 54-62; knots, 64
Fourrey, E. 3
Fundemental constructions, 8, 12; operetions, theoreme, 10

Geuse, 32
Harmonic points, 76,78
Hart, 82, cel1, 94, 96, 172, 184
Elebbert, C. M, 182
Eeptagon, 30, 64
Heragon, 26, 60, 64, 80
Hudson, H. F., 3
Hyperbola, 68; by linkergos, 274, 176; pedal of, 188
Hypo-, def., 44
Hypocircle, intersection of, 62, 104-110, 222, \(124,130-142,146\)
Hypocycloid, 90
Hypolines, intersectien of, 42,44,50,52
Incenter, 58, 70
Invariant, 68
Inverse curves in linkages, conics, 174, 280; cissold, 180
Inversion, 46-52
Insertion principle, dof., 150
Irrational operations, 8
(Thubors refer to pages)

Johnson, 26, 22
Kempe, 4. B., 3, 82; 1 inkages, \(98,100,182,290\)
Kite, \(84-88\)
Koenigs, \&2
Knots, 64

Lemniscate, 48, 170, 186
Limacon, 48, 148, 182; as pudal, 188
Lines, hypow, 42, 44,50,52; folde and creases, 54; carrier, 68; pencil of 68 ; Pascal, 72; Eulor, 22
Line motion linkeages, 82-100
Linkages, line motion, 82-100; general, 168-188; general theorem of, 190; threo-ber 170, 172
Lipkin, 82
Varnhoitw, 82
Marked ruler, 144-150
Mascheroni, geometry of, 42, 118
Medians, 22
Menclaus, theorem of, 6
Modern compasses, 6
Mohr, Georg 42
Morloy, P. V., 172
Multiplication by straightedge and compasses, 9
Multiplicator, 190
Newton, 158
Nicomedes, 148
Ninemoint circle, 20
Non-adjacent segpents, 16
Numbers, Fermat, 32
Octagon, 26, 60, 64
Orthic triangle, \(16,22,24\)
Orthocenter, 16, 22, 58, 70, 114
Orthocentric set, 22
Orthogonal circles, 48
Ovals of Cassini, 186

Pantograph, 176
Pappus, 70, 118
Pambols, 24, 58, 68, 174, 188
Parallel ruler, 128 -134
Parallelogran, 36, 40, 96; with straightedge, 216; es 1 inkage, 176,178
Pascal, theorem of, \(72,80,168\) i limacon, 148
Pcaucellier, 82; coll, 84-90, 94, 184, 186
Pedals, 70, 188
Pencil of lines, 68, 80
Pontagon, \(28,60,64\)
Pentedecagon, 30
Perspective, 112; axis of, 70; center of, 70
Plato, 118
Points, network of, 44
Polar equations, \(46,48,148\)

Polos and polars, 78, 80, 112, 132
Folygons, 26, 30; of 7. 15, 17 sidies, 30; of \(2^{n}, 2^{n} \cdot 3,2^{n} \cdot 5,2^{n}, 15\) sides, 32 ; manber of constructible, 32; plane, dissection of, 34, 36; reduction from n to \(\mathrm{n}-1\) sides, 40
Poncelet, 80, 102, 166
Power of a point, 20
Princzple of duality, 80
Projection, 68, 78
Projective Geametry, 66, 68
Pyramid, 70
Pythagoras, 38
Quadratic equation, solution by straightodge and comic, 165
Quadratic syston, 144
Quadrilatorit. dissection of, 36, reduction to triangle, 40; Pascal's theoren, 72: simple, complete, 76; linkages, 98, 100
Quartic equations, 150; reduction to cubic, 252. 164; roots by: Coupesses and I/arked Puler, 156; Carpenter's Square, 158; Torshhawk, 160; Compasses of Hermes, 162; Two Right-Angle Pulers, 164; Compusses and Conic, 166
Quartic systen, 144
Radical axis, dof., 20
Padical center, def., 20
Reange of points, 68,80
Rational operations, 6
R.ctangle, 36, 40

Rectaryular network of points, 44
Reference axces, 6
Heilections, \(24,44,50,114\)
Rogular polygons, 26
Represontative oquations of polygons, 26
Thombus, 116, 132; as linkage, 176
Ricbrworil, 30
Right-Angle ruler, 140-144
Roberts, 左., 170
Roberts, S., 158
Row, T. S., 3
Sarrus, 82
Similitude, of circles, 18 ; contcr of, 18, 62, 104-110, 12.4, 134
Skek pantogruph, 178
Spearhead, 84, 86
Square, \(26,38,40,52,60\); knots, 64; with
straightodgc, 112, 114
Square root, by straightedge and compasses, 9
Steinor, 102, 166
Steinhuus, H., 102

Straightedge, 6, 8, 66-80; with fixed circle, 104-110; square, 112, 114; parallclogram, 116; conic, 166
Straightedge and coupasses, 8, 9
Subtraction by straightedge and compasses, 9
Superposition of polygons, 34
Sylvester, 82; skew pantograph, 178
Tangent to conic, 74,78
Theorems, fundarental, 10; Ceva, 16; Desargus, 70; Menolaus, 16; Pascal, 72; Pythagoras, 38; Genural, of liniages, 190
Thongson, Sir William, 82
Tomabawk, 144
Trapezoid, 172
Translation with liniage, 178
Translator, 190
Trianfle, right, 36,38 ; aquilateral, dissection, 40 ; equilatoral, folds and crcasos, 60 ; inscribed in conic, 74; polar, 78
Trisection, by: Marked Bulor, 150; Carpenter's Square, 158; Tomahawk, 160; Compasses of \#ernos, 162; Two Right-Angle Bulers, 164; Compasses and Fixed Conic, 166; Cissold, 184

Vanishing points, 68
Watt, James, 170

Tates, B. C., 188```

