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PREFACE.

This work is designed as a text-book for Common and

High Schools and Academies, and to prepare students for

entering Colleges and Scientific Schools. The book is a

complete treatise on Algebra up to and through the Pro-

gressions, and including Permutations and Combinations

and the Binomial Theorem.

The aim has been to explain the principles concisely and

clearly, bestowing great care upon the explanations and

proofs of the fundamental operations and rules. Copious

illustrations have been given to make the work intelligible

and interesting to young students ; and numerous explan-

atory notes have been all along inserted, to guard the pupil

against the errors which experience shows to be almost

universal among beginners. Thoroughness has been aimed

at, rather than multiplicity of subjects. If a student has

not time to master a complete course, it is better for him

to omit entirely subjects that are less necessary, than to

go rapidly over too many things.

In the earlier chapters, some of the most interesting

practical applications of the subject have been introduced.

Thus, a chapter on easy equations and problems precedes

the chapters on Factoring and Fractions. By this course

the beginner soon becomes acquainted with the ordinary

Algebraic processes without encountering too many of their

difficulties ; and he is learning at the same time something

of the more attractive parts of the subject. Nothing is
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more pleasing to a young student than to see and feel

that he can use his knowledge to some practical end.

Throughout the book are numerous examples fully worked

out, to illustrate the most useful applications of important

rules, and to exhibit the best methods of arranging the work.

No principle is well learned by a pupil and thoroughly fixed

in his mind till he can use it. For this purpose a large

number of examples is given at the ends of the chapters.

These examples have been selected and arranged so as

to illustrate and enforce every part of the subject. Each

set has been carefully graded, commencing with some which

are very easy, and proceeding to others which are more

difficult. Complicated examples have been excluded,

because they consume time and energy which may be

spent more profitably on other branches of mathematics.

The chief sources from which I have derived assistance

in preparing this work are the treatises of Wood, De
Morgan, Serret, Todhunter, Colenzo, Hall and Knight,

Smith, and Chrystal.

My thanks are due to those of my friends who have

kindly assisted me in reading the MS., correcting the

proof-sheets, and verifying copy.

E. A. B.

Rutoers College,

New Brunswick, N.J., June, 1888.
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ALGEBRA.

CHAPTER I.

FIRST PRINCIPLES.

1. Quantity and its Measure. — Quantity is any

thing that is capable of increase, diminution, and measure-

ment ; as time, space, motion, weight, and area.

To measure a quantity is to find how many times it con~

tains another quantity of the same kind, taken as a standard

of comparison. This standard is called a unit.

For example, if we wish to determine the quantity of a weight, we
must take a unit of weight, such as a pound, or an ounce, and observe

how many times it is contained in the quantity to be measured. If

we wish to measure area, we must take a unit of area, as a square

foot, square yard, or acre, and see how many times it is contained in

the area to be measured. So also, if we wish to measure the value of

a sum of money, or any portion of time, we must take a unit of value,

as a dollar or a sovereign, or a unit of time, as a day or a year, and see

how many times it is contained in the quantity to be measured.

2. Number.— The relation between any quantity and its

unit is always expressed by a number; a number therefore

simply shows how many times an}' quantity to be measured

contains another quantity, arbitrarily assumed as the unit.

All quantities, therefore, can be expressed by numbers.

All numbers are concrete or abstract.

A Concrete Number is one in which the kind of quantity

which it measures is expressed or understood ; as G books,

10 men, 4 days.

1



2 MATIIEMA TICS. — ALGEBRA.

An Abstract Number is one in which the kind of quantity

which it measures is not expressed ; as 6, 10, 4.

The word quantity is often used with the same meaning as number.

Numbers may be either whole or fractional. The word integer is often

used instead of whole number.

3. Mathematics.— Mathematics is the science which

treats of the measurement and relations of quantities. It

is divided into two parts, Pure Mathematics and Mixed

Mathematics.

Pure Mathematics consists of the four branches, Arithmetic,

Algebra, Geometry, and Calculus.

. Mixed Mathematics is the application of Pure Mathematics

to the Mechanic Arts.

4. Algebra.— Algebra is that branch of Mathematics in

which we reason about numbers by means of symbols. The

different symbols used represent the numbers themselves,

the manner in which they are related to one another, and the

operations performed on them.

In Arithmetic, numbers are represented by ten characters, called

figures, which are variously combined according to certain rules, and

which have but one single definite value. In Algebra, on the contrary,

numbers are represented either by figures, as in Arithmetic, or by

symbols which may have any value we choose to assign to them.

5. Algebraic Symbols. — The symbols employed in

Algebra are of four kinds : symbols of quantity, symbols of

operation, symbols of relation, and symbols of abbreviation.

6. Symbols of Quantity. — The symbols of quantity

may be any characters whatever, but those that are most

commonly used are figures and the letters of the alphabet;

and as in the simplest mathematical problems there are

certain quantities given, in order to determine other quan-

tities which are unknown, it is usual to represent the known
quantities by figures and by the first letters of the alphabet,

a, b, c, etc. ; a', V', c' , etc., rend a prime, b prime, c prime,

etc. ; ti v bv cv etc., read a one, b one, c one, etc. ; while the
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unknown quantities are represented by the final letters of

the alphabet, v, x, y, z, v', x', y', z', etc.

Known Quantities are those whose values are given.

Unknoicu Quantities are those whose values are required.

Since all quantities can be expressed by numbers (Art. 2),

it is only these numbers with which we are concerned, and

the symbols of quantity, whether figures or letters, always

represent numbers.

In Arithmetic a character has but one definite and invariable value,

while in Algebra a symbol may stand for any quantity we choose to

assign to it (Art. 4); but while there is no restriction as to the

numerical values a symbol may represent, it is understood that in the

same piece of work it keeps the same value throughout. Thus, when
we say "let a = 2," we do not mean that a must have the value 2

always, but only in the particular example we are considering. Also,

we may operate with symbols without assigning to them any particular

value at all; and it is with such operations that Algebra is chiefly

concerned.

7. Symbols of Operation.— The symbols of operation

are the same in Algebra as in Arithmetic, or in any other

branch of Mathematics, and are the following

:

8. The Sign of Addition, +, is called plus. When
placed before a number it denotes that the number is to

be added. Thus, 6 -f- 3, read 6 plus 3, means that 3 is to be

added to 6 ; a + b. read a j^us b, denotes that the number

represented by b is to be added to the number represented

by a ; or, more briefly, it denotes that b is to be added to a.

If a represent 8, and b represent 5, then a -\- b represents 13.

Similarly a + b + c, read a p/?*s b irtus c, denotes that

we are to add b to a, and then add c to the result.

9. The Sign of Subtraction, — , is called minus. When
placed before a number it denotes that the number is to be

subtracted. Thus, a — 6, read a minus 6, denotes that the

number represented by b is to be subtracted from the number

represented by a ; or, more briefly, that b is to be subtracted

from a. If a represent 8, and b represent 5, then a — b

represents 3.
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Similarly a — b — c, read a minus b minus c, denotes

that we are to subtract b from a, and then subtract c from

the result.

If neither + nor — stands before a quantity, + is always

understood ; thus a means + «.

Quantities which have the same sign, either + or — , are

said to have like signs. Thus, + « and -f- b have like sigus,

also — a and — b ; but -+- a and — b have unlike signs.

Note. — Although there are many signs used in Algebra, when the

sign of a quantity is spoken of, it means the + or — sign which is

prefixed to it; and when we speak of changing the signs of an expres-

sion, it means that we are to change + to — and — to + wherever

they occur.

The sign ~ is sometimes used to denote the difference of two
numbers when it is not known which of them is the greater. Thus,

a ~ b denotes the difference of the numbers represented by a and &;

and is equal to a — b, or b — a, according as a is greater or less than 6;

but this symbol ~ is very rarely required.

10. The Sign of Multiplication, x , is read into, or

times, or multiplied by. When placed between two numbers

it denotes that they are to be multiplied together. Thus,

a x 6, read a into 6, denotes that the number represented by

a is to be multiplied by the number represented by 6, or,

more briefly, that a is to be multiplied by 6, or that the two

are to be multiplied together. The numbers to be multiplied

together are called factors, and the result of the multiplica-

tion is called a product. Thus 5, a, and b are the factors

of the product 5 x a X b. If a represent 8, and b repre-

sent 4, then a x b represents 32 ; a and b are the factors of

the product a X b, or 8 and 1 are the factors of o'2. Simi-

larly a x b x c denotes the product of the numbers a, b,

and c. If a represent G, b represent 8, and c represent 10,

then a x b X c represents 180, and 5 x a x b x c repre-

sents 2400.

Sometimes apoint is used instead of the sign x ; or, still

more commonly, one number is placed close after the oilier
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without any sign between them. Thus, a x 6, a • 6, and ab

all mean the same thing, viz., the product of a and b ; also,

a X b x c, or a • b • c, or afrc, denotes the product of the

numbers a, 5, and c. If a, 6, and c represent 2, 5, and 10

respectively, then abc represents 100.

If one factor of a product is equal to 0, the whole product

must be equal to 0, whatever values the other factors may
have. A factor is sometimes called a "zero factor." *

The sign of multiplication must not be omitted when num-

bers are expressed in the ordinary way by figures. Thus 23

cannot be used to represent the product of 2 and 3, because

23 is used to mean the number twenty-three. Nor can the

product of 2 and 3 be represented by 2.3, because 2.3 is

used to mean tioo and three-tenths. We must therefore

represent the product of 2 and 3 by placing the sign of

multiplication between them, as follows: 2x3. When the

numbers to be multiplied together are represented by letters,

or by letters and a figure, it is usual to omit the sign of

multiplication for the sake of brevity, and write them in

succession close to each other ; thus, the product of the

numbers 7, «, b, c, and cl would be written labcd, instead of

7 x a x b x c x cZ, or 7 • a • b • c • d, and would have the

same meaning.

11. The Sign of Division, -*-, is read divided by, or

simply by. When placed between two numbers, it denotes

that the number which precedes it is to be divided by the

number which follows it. Thus, a -f- b, read a divided by 6,

or a by 6, denotes that the number represented by a is to be

divided by the number represented by &, or, more briefly,

that a is to be divided by b. If a represent 8, and b repre-

sent 2, then a -~ b represents 4. Most frequentl}*, to express

division, the number to be divided is placed over the other

* It is a common mistake of beginners to say that an Algebraic expression like

a x or x a is equal to a, by supposing it to mean a not multiplied at all ; whereas

(i x r x u signifies taken a limes, or a taken times, and is therefore equal

toO.
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with a horizontal line between them, in the manner of a

fraction in Arithmetic. Thus, - is used instead of a -r- b,
b

and has the same meaning. Also, the sign of division may
be replaced by a vertical line, straight or curved. Thus,

a [6, or bja is used instead of a -h b, and has the same

Note. — It is important for the student to notice the order of the

operations in such expressions as a + b x c and a — b + c. The
former means that b is first to be multiplied by c, and the result added

to a. The latter means that b is first to be divided by c, and the result

subtracted from a.

12. The Exponential Sign.— This sign is a small fig-

ure or letter written at the right of and above a number to

show how many times the number is taken as a factor, and

is called an exponent. Thus, a2
is used to denote a x o, or

that a is taken twice as a factor ; a3
is used to denote a x a

X a, or that a is taken three times as a factor ; a4
is used to

denote a X a X a X a, or that a is taken four times as a

factor; and an
is used to denote a x a x a x a, etc., to

n factors, or that a is taken n times as a factor. Similarly

a?b*cd* is used to denote aabbbbcddd, and 7a3cd2
is used for

laaacdd.

If a factor be multiplied by itself any number of times

the product is called a power of that factor. Thus,

a x a is called the second power of a, and is written a2
;

a x a x (Us called the third power of a, and is written «3
;

a x a X a X a is called the fourth power of a, and is written a4
;

and so on. Similarly aaabbc is called the product of the

third power of a, the second power of 6, and c, and is written

a 3b
2
c.

The second power of a, i.e., a2
, is usually read a to the

second power, or a square. The third power of «, i.e., «3
,

is usually read a to the third power, or a cube. There are

no such words in use for the higher powers ; the fourth

power of a, i e., a4
, is usually read a to the fourth power,
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or briefly, a fourth power ; and so on. "When the exponent

is unity it is omitted. Thus we do not write a 1
, but simply

a, which is the same as a 1
, and means a to the first power,

13. The Radical Sign, V
7

. —A root of a quantity is a

factor, which, multiplied by itself a certain number of times,

will produce the given quantity. The square root of a

quantity is that quantity whose square or second power is

equal to the given quantity. Thus the square root of 16

is 4, because 42
is equal to 16 ; the square root of a2

is a, of

81 is 9.

The square root of a is denoted by va, or more simply

Similarly the cube, fourth, fifth, etc., root of any quantity

is that quantity whose third, fourth, fifth, etc., power is

equal to the given quantity.

The roots are denoted by the symbols V , V ? V j etc.

;

thus, y-21as denotes the cube root of 27a 3
, which is 3a,

because 3a to the third power is 27a3
. Similarly ^32 is 2.

The small figure placed on the left side of the symbol is

called the index of the root. Thus 2 is the index of the

square root, 3 of the cube root, 4 of the fourth root, and

so on ; the index, however, is generally omitted in denoting

the square root ; thus \a is written instead of \/a.

The symbol V
7"

is sometimes called the radical sign.

"When this sign with the proper index on the left side of it

is placed over a quantity it denotes that some root of the

quantity is to be extracted.

14. Symbols of Relation.— The symbols of relation

are the following

:

The sign of equality, = , is read equals, or is equal to.

When placed between two numbers, it denotes that they are

equal to each other. Thus a = b, read a equals b, or a is

equal to b, denotes that the number represented by a is equal

to the number represented by b\ or, more briefly, that a

equals b. And a -}- b = c denotes that the sum of the
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numbers a and b is equal to the number c ; so that if a

represent 8 and b represent 4, then c must represent 12.

The sigyis of inequality, > and <, are read is greater than,

and is less than, respectively. When either is placed between

two numbers it denotes that they are unequal to each

other, the opening of the angle in both cases being turned

towards the greater number. Thus a > b, read a is greater

than b, denotes that the number a is greater than the number

6, and b < a, read b is less than a, denotes that the number b

is less than the number a.

The sign of ratio, : , is read is to or to. When placed

between two numbers it denotes their ratio. Thus a : b,

read a is to b, or the ratio of a to b, denotes the ratio of the

number a to the number b. A proportion, or two equal

ratios, is expressed by writing the sign = or the sign : :

between two equal ratios. Thus

a : b — c : d, or a : b : : c : d,

read a is to b as c is to d, or the ratio of a to b equals the

ratio of c to d.

The sign of variation, <x , is read varies as. When placed

between two numbers it denotes that they increase and

decrease together, in the same ratio. Thus x a y, read x

varies as y, denotes that x and y increase and decrease

together.

15. Symbols of Abbreviation.— The symbols of abbre-

viation are the following

:

The signs of deduction, .*. is read hence or therefore,

and •.* is read since or because.

The signs of aggregation are the bar
| , the parenthesis

( )

,

the bracket [ ] , the brace
\ \

, and the vinculum . These

are employed to connect two or more numbers which are to

be treated as if they formed one number. Thus, suppose

we have to denote that the sum of a and b is to be multiplied

by c; we denote it thus (a + b) X c or \a 4- b\ x c, or

simply (a + b) c or \a 4- b\ c; here we mean that the

whole of a + 6 is to be multiplied by c. If we omit the
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parenthesis, or brace, we have a + be, and this denotes that

b only is to be multiplied by c and the result added to a.

Also (a + b + c) X (d -f e) denotes that the result

expressed by a -f- b + c is to be multiplied by the result ex-

pressed by d -f- e- This ma}' also be denoted simply thus

(a -f- b -f c) (d -f- e), just as a X b is shortened into ab.

If we omit the parenthesis we have a + b + cd + e, and

this denotes that c only is to be multiplied by d o?J?/, and the

result added to a -f- 6 -f e.

Also V
7
(a -f 6 + c) denotes that we are to obtain the

result expressed by a -f- b -f- c, and then take the square

root of this result.

Also (ab)'2 denotes ab x ab ; and (ab) s denotes ab x ab x a&.

Also (a + & )- c) -r (d + e) denotes that the result ex-

pressed by a + b + c is to be divided by the result expressed

by d -+- e. This may also be expressed by the bracket thus

[a -f- b + c] -5- [d + e], or the brace ^a + 6 + c\ -r-
J
cZ + ef

,

a + 6 + c
or the vinculum a -f- 6 -f- c -5- d -f- e, or ^7 -, where

the line between the numerator and denominator acts as a

vinculum.

The signs of continuation are dots , or dashes

, and are read and so on.

16. Algebraic Expressions.— The four kinds of sym-

bols which have been explained are called Algebraic symbols

(Art. 5). An}' collection of Algebraic symbols is called

an Algebraic expression, or briefly, an expression. Thus

4a 4- 5b — c -f x is an expression ; 3b -f- Ac is the Alge-

braic expression for 3 times the number b increased by 4

times the number c.

The numerical value of an expression is the number

obtained by giving a particular value to each letter, and

then performing the operations indicated.

We shall now give some examples in finding the numerical

values of expressions, as an exercise in the use of the

symbols which have been explained.
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EXAMPLES.
If a = 1, b = 2, c = 3, d = 4, e = 5, find the numerical

values of the following expressions :

1. 9a + 26 + 3c - 2d.

Here we have 9a -f- 26 + 3c — 2d =
9x1+2x2 + 3x3-2x4 =
9_|_4 + 9_S = U Ans.

2. 7ac + 36c + 9d.

Here we have lae + 36c + 9d =
7x1x5 + 3x2x3 + 9x4 = 89 Ans.

3. «6cd + abce + «6de + acde + 6cde. Ans. 274.

. Aac , 86c 5cd A
4. — + — . t>.

6 d e

f>
cde 56cd _ Cade g^
a6 ae 6c

If a = 1, 6 = 3, c = 5, and d = 0, find the numerical

values of the following :

6. a2 + 262 + 3c2 + 4d2
. Ans. 94.

7. a 4 - 4a36 + 0a 2
6
2 - 4«63 + 64

. 16.

12a 3 - 62 2c2 a + 6
2 + c

8

5
3a2 a + 62 563

If a = 1, 6 = 2, c = 3, d = 5, and e = 8, find the

numerical values of the following

:

9. 6
2 (a2 + e

2 - c
2
). Ans. 224,

10. ^(26 + -Id + 5e). 8

11. (a2 + Ir + c-)(e2 - d* - c2
). 420

12. e- JV^(c + l)+2; + (c-ye)V/(c-l). 15.

13. Find the value of x'
1 — 2x — 9 when x = 5.

Explanation. — If .r = any number, as for example, ">, then xQ

(which = x- x) = 5.r, a-
3 (which = x -a*'-) = 5j'2

, a*
4 (which = .c -x ;!

) = 5x°,

etc. Hence examples like i-'< may be Bolved as follows:

EXPLANATION.

x 1 — 2x — 9 when x = 5. x- = fee

a;
2 = 5x n.r — 2.r = ?>x

Sx =,15 3.r = 15

= resuh. 3x — 9 = 15 — 9 = ft.
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14. Find the value of or
5- 50a;4- 49a;

3- lOOor- 101a? - 50,

when x = 51.

These examples may be conveniently solved as follows:

xs — 50.t4 — 49x3 — 100.1-- - 1013 - 50
51 + 51 + 51 + 102 + 102 + 51

+ z4 + 2x3 + 2x2 + x + 1 .-. result is 1.

15. Find the value of xA — liar3 — liar8 — 11.?; — 11 for

x = 12. Ans. 1.

1G. Find the value of x* - 8x3 - 19a;
2 - 9a; - 8 for

X = 10. Ans. 2.

17. Factor — Coefficient.— When two or more num-

bers are multiplied together the result is called the product,

and each of the numbers multiplied together to form the

product is called a factor of the product (Art. 10). Thus,

3 x 4 x 5 = GO, and each of the numbers 3, 4, and 5 is a

factor of the product 60. Factors expressed by letters are

called literal factors ; factors expressed by figures are called

numerical factors. Thus, in the product \ab, 4 is called a

numerical factor, while a and b are called literal factors.

The proof is given in Arithmetic that it is immaterial in

what order the factors of a product are written ; it is usual,

however, to arrange them in alphabetic order.

The numerical factor is called the coefficient of the remain-

ing factors. Thus in the expression \ab, 4 is the coefficient,

and denotes that ab is taken 4 times. But it is sometimes

convenient to consider any factor, or factors, of a product

as the coefficient of the remaining factors. Thus, in the

product 5a6c, 5a may be appropriately called the coefficient

of 6c, or bab the coefficient of c.

The coefficient is called numerical or literal, according as it

is a number, or one or more letters. Thus, in the quantities

5a; and mx, 5 is a numerical and m a literal coefficient.

When no numerical coefficient is expressed, 1 is always

understood. Thus, a is the same as la.

A coefficient placed before any parenthesis indicates that
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every term of the expression within the parenthesis is to he

multiplied by that coefficient.

Care must be taken to distinguish between a coefficient and

an exponent. Thus 4a means four times a, or a + a + a 4- ci ;

here 4 is a coefficient. But a4 means a times a times a times a,

or ax ax a x a, or aaaa (Art. 12). That is, if a = 4,

4a = 4 x a = 4 x 4 = 16,

but a 4 = a x a x a X a = 4 x 4 x 4 x 4 = 256-

18. A Term, its Dimensions, and Degree— Homo-
geneous — Similar.— A term is an Algebraic expression

in which no two of the parts are connected by the sign of

addition or subtraction. Thus 4a, 5a26c, and \xy -r- bob are

terms. 2a, 4c'
2
d, and — ba zd are the terms of the expression

2a + 4c2d - bahl.

Each of the literal factors of a term is called a dimension

of the term, and the number of the literal factors or

dimensions is called the degree of the term. Thus a 2
b3

c

or aabbbc is said to be of six dimensions or of the sixth

degree, because it contains six literal factors, viz., a twice,

b three times, and c once. A numerical coefficient is not

counted ; thus a~b 3 and b<rbs are of the same degree, i.e., the

fifth degree, since there are five literal factors, viz., a twice

and b three times.

It is clear that the degree of a term, or the number of its

dimensions, is the sum of the exponents of its literal factors,

provided we remember that if no exponent be expressed 1

must be understood (Art. 12). Thus a*b*C? is of the ninth

degree, since 3 4-44-2 = 9.

Terms are homogeneous when they are of the same degree.

Thus a*6, <t-b'\ Vuih'K are homogeneous.

Terms are similar or like when they have the same literal

part, i.e., when they have the same letters and the corre-

sponding letters affected with the same exponents. Other-

wise they are said to be unlike. Thus, the terms Sa'ft*,

i)a'b\ and — a'^b'
1 are similar, or likeJ but the terms <rb and
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ab2 are unlike, since, although the letters are the same, they

are not raised to the same power.

19, Simple and Compound Expressions.—A simple

expression consists of only one term, as oab, and is called a

monomial.

A compound expression consists of two or more terms, and

is called a polynomial, or multinomial.

A binomial is a polynomial of two terms. Thus, ab2 + 2ac

is a binomial.

A trinomial is a polynomial of three terms. Thus, a -\-b — c

is a trinomial.

A polynomial is said to be' liomogeneous when all its terms

are of the same degree. Thus oab2 + ld2b + 963
is homo-

geneous, for each term is of the third degree.

When a polynomial consists of several terms of different

degrees, the degree of the polynomial is that of its highest

term.

A polynomial is said to be arranged according to the

powers of any letter it contains when the exponents of that

letter occur in the order of their magnitudes, either increasing

or decreasing. Thus, a4 + 4a36 + Gcr62 + 4a&3
is arranged

according to the descending powers of a, and 4a63 + Ga2b2

-f- 4a 3
6 + a4

is arranged according to the ascending powers

of a.

The reciprocal of a number is 1 divided by that number.

Thus, the reciprocal of a is -. If the product of two num-
a

bers is 1, each number is the reciprocal of the other.

20. Positive and Negative Quantities.— In Arith-

metic we deal with numbers connected by the signs -f- and

— , and in finding the value of an expression such as

14-3 — 2 + 4 we understand that the numbers to which

the sign + is prefixed are additive, and those to which the

sign — is prefixed are subtractive, while the first term, 1,

to which no sign is prefixed, is counted among the additive

terms. The same thing is true in Algebra ; thus in the
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expression 5a + 76 — 3c — '2d we understand the sj'mbols

5a and 76 to be additive, while 3c and 2d are subtractive.

But in Arithmetic the sum of the additive terms is always

greater than the sum of the subtractive terms, i.e., we are

always required to subtract a smaller number from a greater
;

if the reverse were the case the result would have no Arith-

metic meaning, i.e., we could not in Arithmetic subtract a

greater number from a smaller. In Algebra, however, not

only may the sum of the subtractive terms exceed that of

the additive, but a subtractive term ma}7 stand alone, and yet

have a meaniug quite intelligible. It is therefore usual to

divide all Algebraic quantities into positive quantities and

negative quantities, according as they are preceded by the

sign + or the sign — ; and this is quite irrespective of any

actual process of addition and subtraction.

Illustration (1) Suppose a ship were to start from the

equator and sail northward 100 miles and then southward

80 miles, the Algebraic statement would be

100 - 80 a +20.

Here the positive sign of the result indicates that the ship is

20 miles north of the equator. But if the ship first sailed

80 miles northward and then southward 100 miles, the Alge-

braic statement would be

80 - 100 = -20.

clere the negative sign of the result indicates that the ship

is 20 miles south of the equator.

(2) Suppose a man were to gain 840 and then lose $36,

his total gain would be $4. But if he first gained §30 and

then lost $40, he sustained a loss of $1.

The corresponding Algebraic statements would be

$40 - $36 = +81,

$36 - $40 = -$4.

Here the negative quantity in the second case is interpreted

as a debt, i.e., a sum of money opposite in character to the
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positive quantity or gain in the first case. In Arithmetic

we would call it a debt or loss of S4. In Algebra we make
the equivalent statement that it is a gain of — 84.

(3) Suppose a man starts at a certain point and walks

100 yards to the right in a straight line, and then walks back

70 yards, he will be 30 yards to the right of his starting

point. If he first walks from the same point 70 yards to

the right and then walks back 70 yards, he will be at the

point from which he started. But if he first walks to the

right 70 yards and then walks back 100 yards, he will be

30 yards to the left of his starting point. The corresponding

Algebraic statements are

100 yards — 70 yards = 30 yards

70 " — 70 " = "

70 " - 100 " = -30 " .

Here we see that the negative sign may be taken as indi-

cating a reversal of direction. In Arithmetic we would say

the man was 30 yards to the left of his starting point. In

Algebra we say he was —30 yards to the right of his start-

ing point.

There are numerous instances like the preceding in which it is con-

venient for us to be able to represent not only the magnitude but the

nature or quality of the things about which we are reasoning. As in

the preceding cases, in a question of position we may have to distin-

guish a distance measured to the north of the equator from a distance

measured to the south of it; or a distance measured to the right of a

certain starting point from a distance measured to the left of it; or

we may have to distinguish a sum of money gained from a sum of

money lost ; and so on. These pairs of related quantities the A^e-
braist distinguishes by means of the signs -f and — . Thus if the

things to be distinguished are gain and loss, he may denote by 4 or +4
a gain, and then he will denote by —4 a loss of the same extent. In
this way we can conceive the possibility of the independent existence

of negative quantities. The signs + and — , therefore, are used to

indicate the nature of quantities as positive or negative, as well as

to indicate addition and subtraction (Arts. 8 and 9).

In Arithmetic we are concerned only with the numbers
which begin at and are represented by the symbols 0, 1.
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2, 3, 4, etc. without limit, and intermediate fractions. But

the quantities which we usually measure by numbers in Alge-

bra do not really begin at any point, but extend in opposite

directions without limit. In order therefore to measure such

quantities on a uniform system, the symbols of Algebra are

considered as increasing from in two opposite directions

;

i.e., besides the symbols used in Arithmetic, we consider

another set — 1, —2, —3, —4, etc. without limit, and inter-

mediate fractions. Symbols in one direction are preceded

by the sign + , and are called positive; and those in the

other direction are preceded by the sign — , and are called

negative. Symbols without a sign prefixed are considered

to have -f- prefixed.

These two sets of symbols may be illustrated as follows :

... -8, -7, -6, -5, -4, -3, -2, -1, 0. +1, +2, +3, +4, +5, +6, +7. +8, . . .

1 1 1 1 1 ! I i ! I I l l l I I I

I

the positive being those in the right direction from zero,

and the negative those in the left direction from the same

point.

Thus, if 4 represent a distance of 4 miles measured to the right of

a certain point, —4 will represent a distance of 4 miles measured to

the left of the same point. If +4 represent 4 degrees above zero, —4
will represent 4 degrees below zero. If +4 represent 4 years after

Christ, —4 will represent 4 years before Christ. If +4 represent a

fall of four feet, —4 will represent a rise of 4 feet. If +4 represent

a gain of $4, —4 will represent a loss of $4. In general, when we
have to consider quantities the exact reverse of each other in their

nature or quality, we may regard the quantities of either quality as

positive, and those of the opposite quality as negative. It matters
not which quality we take as the positive one so long as we take the

opposite one as negative; but having assumed at the commencement
of an investigation a certain quality as positive, the important point

is to use it uniformly and consistently throughout.

The absolute value of any quantity is the number repre-

sented by this quantity taken independently of the sign

which precedes the number. Thus, 3 and —3 have Uk
-aine absolute value.
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Negative quantities are often spoken of as less than zero.

For example, if a man's debts exceed his assets by $4, it

is said that " he is worth S-i less than nothing." In the

language of Algebra it would be said " he is worth — S-4."

A negative number is said to be Algebraically greater than

another when it is numerically less, or when it lias the smaller

absolute value. Thus —3 > — 6, since —3 is only 3 less

than while —6 is 6 less than 0, or as a person who owes

$3 is better off than one who owes $6 ; or in the case of the

thermometer, when the mercury is at 10° below (marked

— 10°) at one hour, and at — 5° at another hour, the

temperature is said to be increasing; i.e., — 5° > — 10°.

Also, in Algebra, zero is greater than any negative quantity,

as a man who has no property or debt is considered better

off than one who is in debt. Thus it is easy to see that

in the series on page 16 each number is greater by unity than

the one immediately to the left of it.

21. Additions and Multiplications may be Made
in any Order.— (1) When a number of terms are con-

nected by the signs + and — , the value of the result is the

same in whatever order the terms are taken ; thus 6 + 5

and 5 + 6 give the s'ame result viz., 11 ; and so also a + b

and b + a give the same result, viz., the sum of the num-

bers which are represented by a and b. We may express

this fact Algebraically thus, a + b = b + a. Similarly

a — b + c = a + c — 6, for in the first of the two expres-

sions b is taken from o, and c added to the result; in the

second c is added to a, and b taken from the result.

Similar reasoning applies to all Algebraic expressions.

Hence we may write the terms of an expression in any order

we please, provided each has its proper sign.

Thus it appears that a — b may be written in the equiva-

lent form — b + a. As an illustration we may suppose

that a represents a gain of a pounds, and —b a loss of b

pounds ; it is clearly immaterial whether the gain precedes

the loss, or the loss precedes the gain
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(2) When one number, whether integral or fractional, is

multiplied by a second, the result is the same as when the

second is multiplied by the first.

The proof for whole numbers is as follows : Write down
a rows of units, putting b units in each row, thus

:

I | | | |
b in a row,

I I I I I

I | | | | a rows.

Then counting by rows there will be b units in a row repeated

a times, i.e., b x a units. Counting by columns there will

be a units in a column repeated b times, i.e., a X b units.

.-. ba = ab.

These two laws are together called the Commutative Laiv,

or Laic of Commutation.

22. Suggestions for the Student in Solving Ex-
amples.— In solving examples the student should clearly

explain how each step follows from the one before it ; for

this purpose short verbal explanations are often necessaiy.

The sign "= " should never be used except to connect

quantities which are equal. Beginners should be particularly

careful not to employ the sign of equality in any vague and

inexact sense. The signs of equality, in the several steps

of the work, should be placed one under the other, unless

the expressions are very short.

In elementary work too much importance cannot be at-

tached to neatness of style and arrangement. The beginner

should remember that neatness is in itself conducive to

accuracy.

EXAMPLES.
Find the numerical value of the following expressions,

when a = 1, b = 2, c = 3, d = 4, and e = 5.

1. a*
2 + b

2 + c
2 + d1 + e

2
. Ana, 55.

2. abc- 4- bed1 - ,1m 2
. 94.

3. e
4 + <k-/r + V - lc

;i

/> - \eb\ 81.
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, &V ,
de 32 j ,q4. —- + -- — _. Ans. 12

4a 6- 6*

o.
a* + 4a»5 _+_ Cjcrb

2 + 4a&« + 64

a3 + 3a26 + 3a62 + b*

6. (a + 6) (6 + c) - (b +c) (c+d) + (c+d) (d+e) . 43

7. (a-26+ 3c) 2-(o-2c+ 3d) 2+(c-2d+3e)2
. 72

8. V^(4c
2 + Sd2 + e). 11.

9. V^e2 + cl
2 + c

2 - a2
). 7.

If a = 8, 6 = 6, c = 1, x = 9, y = 4, find the value of

11. Find the difference between a6x and a + b -f- ar, when

a = 5, 6 = 7, and a; =12. ^l»s. 39G.

12. When a = 3, find the difference between a2 and 2a,

a9 and 3a, a4 and 4a, a6 and 5a, a6 and 6a.

Ans. 3, 18, G9, 228, and 711.

13. Find the value of 3^c + 2«V
/

(2a + 6 - *), when

a = G, 6 = 5, c = 4, a; = 1. ^l//..s-. 54.

14. Find the value of (9 - y) (x -f- 1) + (x + 5) {y + 7)

— 112, when x = 3 and y = 5. -4?is. 0.

Find the value of

15. «* - 11a3 - 11.x-
2 - 13.x + 11 for x =12. -1.

16. .x
4 - x* - 4x2 - Sx - 5 for x = 3. 4.

17. x5 - 3x2 - 8 for x = 4. 90s.

18. 3x4 - 60.t-
3 + 54a;

2 + GOx + 58 for x = 19. 115.

Express the following in Algebraic symbols:

19. Seven times a, plus the third power of b. 7a -f- b
:i

.

20. Six times the cube of a multiplied by the square of b.

diminished by the square of c multiplied by the fourth power

of d. Ans. 6a862 - c
2d\

21. 3 into # minus m times y, divided by m minus n.

Ans. (3x — my) -f- (m — n).

22. Four times the fourth power of a, diminished by six-

times the cube of a into the cube of &, and increased by

four times the fourth power of b. Ans. 4a4 — Ga zb 3
-f ib\

I
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CHAPTER II.

ADDITION.

23. Addition— Algebraic Sum.— Addition in Alge-

bra is the process of finding the Algebraic sum of several

quantities. The Algebraic sum of several quantities is

their aggregate value, and it is usual to find the simplest

equivalent expression for it.

It is convenient to make three cases in Addition
; (1) when

the terms to be added are like (Art. 18), and have like signs;

(2) when they are like but have unlike signs; and (3) when

they are unlike.

24. Case 1. To Add Terms which are Like and
have Like Signs.— Let it be required to add 8a;

2
?/, ±x2

y,

and 7x2
y.

Here 8x2
y is x2

y taken 8 times, 4x2
y is x2

y taken 4 times,

and 7x2
y is x2

y taken 7 times ; therefore x2
y is taken in all

8 + 4 -j- 7 = 19 times, and hence the sum is 10x2
y.

The truth of this icill be evident to the beginner when he

remembers that the three quantities 8 lbs., 4 lbs., and 7 lbs.,

added together, give 19 lbs.

Similarly 12ab + Sab + 5ab + ab = 21ab.

Let it be required to add — oab, —7(d), and — 0o6.

Here — oab is ah taken —3 times, — lab is ab taken —7
times, and —9ab is ab taken — 9 times ; therefore ab is taken

in ail —19 times, and hence the sum is — ldab.

The truth of this will be evident from the consideration that,

if a sum of money be diminished, successively by $3, $7, and

$9, it is diminished altogether by Slit.

Therefore, to add like terms which have the same sign, add
the numerical coefficients, prefix the common sign, and annex
the common symbols.
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For example, 6a -f 3a -f- a + 7a = 17a, and — 2ab — lab

—9db = —ISab.

25. Case 2. To Add Terms which are Like, but
have Unlike Signs.— Let it be required to add 9a and

-4a.

Here —4a destroys 4 of the 9 time , a, and gives when

added to it, 5a. This is usually expressed by saying — 4a

will cancel +4a in the term 9a, and leave -f 5a for the aggre-

gate or sum of the two terms.

For if 9a denote $9 which a man has in his possession,

and —4a denote a debt of 84, then the aggregate value of

his money is $o.

In like manner if it be required to add 8a, —9a, —a, 3a,

4a, —11a, a, we find the sum of the positive terms to be

16a, and the sum of the negative terms to be —21a; now

+ 16a will cancel —16a in the term —21a, which leaves —5a
for the aggregate or sum of the terms.

Therefore, to add like terms which have not all the same

sign, add cdl the positive numerical coefficients into one sum,

and all the negative numerical coefficients into another; take

the difference of these two sums, prefix the sign of the greater,

and annex the common symbols.

For example la— 3a -f- 11a+ a— 5a— 2a— 19a— 10a = 9a,

and 5a/j— Gab-\-2ab— lab— 3ao-f-4aa= lla6— 16a6 = —hab.

We need not, however, strictly adhere to this rule, for

since terms may be added or subtracted in any order (Art.

21), we may choose the order we find most convenient.

Thus, in the last example, we may say bob added to — Gab

gives — ab; adding — ab to -{-2ab gives -{-ab; adding +ab
to — lab gives —Gab; adding —Gab to — Sab gives — dab;

adding — dab to +4ab gives —6ab, for the sum, which is the

same as was found by the rule.

26. Case 3. To Add Terms which are not all

Like Terms.— Let it be required to add 4a + 56 — 1c

-f- 3d, 3a — b -f- 2c + bd, 9a — 26 — c — d, and —a -f- 3b

+ 4c — 3d -j- e.
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It is convenient to arrange the terms in columns, so that

like terms shall stand in the same column ; and then add

each column, beginning with that on the left, as follows

:

4a + 56 — 7c + 3d

3a — 6 +2c + rod

da —2b — c — d

-a +36 + 4c -3d +e

15a -f-56 -2c +4d +e

Here the terms 4a, 3a, 9a, and —a are all like terms ; the

sum of the positive terms is IGa ; there is one negative term,

viz., —a, so that the sum of the terms in the first column by

Art. 25 is -f-15a; the sign -f- may be omitted by Art. 9.

Similarly 56 - b — 2b + 36 = 56, — 1c + 2c — c + 4c = -2c,

and so on ; there being no term similar to e, it is connected

to the other terms by its proper sign.

Therefore, to add terms which are not all like terms, add

together the terms which are like terms, by the ride in Case 2,

and set down the other terms each preceded by its proper sign.

In the two following examples the terms are arranged

suitably in columns.

xs +2x- - 3x +1 a2 + a6 + 62 -c
4.x

3 + 7ar + x —9 3a2 -3ab -762

-28* + x2 - 9x + 8 4a2 +5a& +962

9a;
2 — x — 1 9a2 — c

In the first example we have in the fust column a;
8

-f- 4ar

— 2xs — ox* = 5a;
3 — 5&3 = ; this is usually expressed by

saying the terms which involve x3 cancel each other.

Similarly, in the second example, the terms which involve

<ih cancel each other; and also those which involve 6
2 cancel

each other.

27. Remarks on Addition. — We have seen that when
two or more like terms are to be added together they may
be collected into a single term (Arts. 24 and 25). If, how-
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ever, the terms are unlike they cannot be collected. Thus

we write the sum of a and b in the form a + 6, and the sum
of a and —b in the form a — b.

From the foregoing examples it will be observed that in

Algebra the word sum is used in a wider sense than in

Arithmetic. Thus, in the language of Arithmetic, a — b

signifies that b is to be subtracted from a, and has no other

meaning ; but in Algebra it also means the sum of the two

quantities a and —b without any regard to the relative

magnitudes of a and b.

When quantities are connected by the signs -f- and — , the

resulting expression is called their Algebraic sum. Thus

the Algebraic sum of 12a — 29« -f- 14a is —3a.

In Algebra, wherever the word sum is used without an

adjective, the Algebraic sum is understood.
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S. —3x+2y+z, x—3y+ 2z
1
2x+y—3z. Ans. 0.

9. -x+2y+ 3z, 3x—y+2z, 2x+3y-z. 4a;-f4y-f-4g.

10. 4«H-3&+ 5c, — 2a+3&— 8c, a — 6+c. 3a+ 55— 2c.

11. -15a-196— 18c, 14a+ 14&+ 8c, a+ 5& + 9c. -c.

12. 25a— 156+c, 13a— 10&+4c, a-f-20&-c. 39a— 5&-|-4c.

13. -16a-10&+ 5c, 10a+ 5&+c, 6a+56—c. 5c.

In adding together several expressions containing terms

with different powers of the same letter, it will be found

convenient to arrange all the expressions in ascending or

descending powers of that letter (Art. 19).

14. 3£3+ 7-5.v2
, 2a;

2- 8 -9a;, 4a-2^+3s2 .

Arranging the terms in the descending powers of x, we
have

2x2 -9a; -8
-2a;3 + 3a;

2 +4a;

a;
3 —5a; —1 Ans.

15. 3a&2-2&8+a8
, 5a2&-a&2-3a8

, 8a8
-f56

8
, 9a26-2a8

-\-ab
2

. Ans. 3&8+3a&2+14a26+4a8
.

It will be observed that this answer is arranged according

to descending powers of 6, and ascending powers of a.

16. 2x2-2xy+ 3y
2

, 4y
2+5xy-2x2

, x2-2xy-Gy2
.

Ans. x2 -\-xy+y2
.

17. a8-a2+3a, 3a3+4a2+8a, 5a8-6a2-lla.

Ans. 9a3-3a2
.

18. x»+3x2y+Sxy2
, -3x2y-Gxy2-x\ 3x*y+4xy*.

Ans. 3x*y+xy*
19. a;

3 -2«a;2+tt2a;+a3
, x*+3ax*i 2a8— aa;

2—2a£

Ans. a2a;4-3a8.

20. 2a& - 3aa;2 + 2a2
a;, 12ab + Wax2 - 6a 2x, -8ab + ax*

— f)a'
2
x. Ans. ()<d)~9a2

a;4-7aa;2-f-aas*.

21. ar+?/ 4
-f-2

8
, -4a;2-523

, 8a;
2-7?/4

-f-102
3

, cy-0,?3
.

^lres. 5a;
2
.

22. B*-4afy+6afy«—4oy8+y4
, 4a^-12a?y+12av/8- ^i

Gxy-12xy*+(Sy\ 4xy*- 1
;>\ y\ Ans. x\
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CHAPTER III.

SUBTRACTION.

28. Subtraction— Algebraic Difference.— Subtrac-

tion in Algebra is the process of finding the difference

between two Algebraic quantities.

The Algebraic Difference of two quantities is the number

of units which must be added to one in order to produce the

other. Thus, what is the difference between 2 and 6 means
" how many units added to 2 will make 6 " ? The Difference

is sometimes called the Remainder.

The Subtrahend is the quantity to be subtracted; or it is

the one from which we measure. Thus, 2 is the subtrahend

in the above example.

The Minuend is the quantity from which the subtrahend is

taken ; or it is the one to which we measure. Thus, 6 is the

minuend in the above example.

If the minuend is Algebraicallv greater than the subtra-

hend, the difference is positive (Art. 20).

If the minuend is Algebraically less than the subtrahend,

the difference is negative.

In Arithmetic we cannot subtract a greater number from

a less one, because subtraction in Arithmetic means taking n

less number from a greater. But in Algebra there is no such

restriction, because Algebraic subtraction means finding a

difference.

29. Rule for Algebraic Subtraction.— Let distances

to the right of the zero point be called positive, and those

to the left of the same point be called negative (Fig. 1, Art.

20). Also call measuring toward the right from any point

positive, and measuring toward the left from any point

negative.
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Then the difference between 2 and means either how

many units must we measure, and in what direction, in order

to pass from 2 to 6 or to pass from 6 to 2. In the first

case we begin at 2 and measure four uuits to the right and

say 2 from 6 is -f 4. In the second case we begin at G

and measure four units to the left and say 6 from 2 is —4.

That is, if we subtract 2 from 6 the difference is 4 ; but if

we subtract 6 from 2 the difference is —4.

Also to find the difference between —1 and +1, we may

begin at —1 and measure 2 units to the right and get +2,

or we may begin at +1 and measure 2 units to the left and

get —2 ; i.e., if we subtract —1 from +1 the difference is +2,
but if we subtract +1 from —1 the difference is —2.

Similarly the difference between —2 and —7 is —5 or

+ 5, according as we measure from —2 toward the left

to —7 or from —7 toward the right to —2; i.e., if we

subtract —2 from —7 the remainder is —5, but if we sub-

tract — 7 from —2 the remainder is +5. And also, the

difference between —6 and +7 is +13 or —13 according

as we measure from —6 to +7 or from +7 to — G ; i.e., if

we subtract —6 from + 7 the difference is 13, but if we

subtract 7 from —6 the difference is —13.

Hence we see that the remainder in each case is found by

changing the Algebraic sign of the subtrahend, and then

adding it Algebraically to the minuend.

Otherwise thus. Suppose we have to take 9 + 5 from 1 G
;

the result is the same as if we first take 9 from 1G, and then

take 5 from the remainder ; that is, the result is denoted b}'

16 - 9 - 5.

Thus 16 - (9 + 5) = 16 - 9 - 5.

Here we enclose 9 + 5 in parenthesis in the first expres-

sion, because we are to take the whole of 9 + 5 from 16

(Art. 15).

Suppose we have to take 9 — 5 from 16. If we take 9

from 10, we obtain 10 — 9; but we have thus taken too

much from 1G, for we had to take, not 9, but 9 diminished
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by 5. Hence we must increase the result by 5 ; aud thus we
obtain 16 - (0 — 5) = 1G — 9 + 5.

Similarly, 16 - (6 + 4 - 1) = 16 - 6 - 4 + 1.

In like manner suppose we have to subtract b — c from a.

If we subtract b from a, we obtain a — b ; but we have thus

taken too much from a, for we are required to take, not 6,

but b diminished by c. Hence we must increase the result

a — b by c ; and thus we obtain a — (6 — c) = a — b + c

for the true remainder.

Similarly, a — (b + c — d) = a — b — c -f- d.

Suppose we have to subtract b — c -f- cI — e from a. This

is the same thing as subtracting b -f- d — c — e from a (Art.

21). If we subtract b + d from a, we obtain a — b — d ;

but we have thus taken too much from c/, for we were to

take, not b + d, but fr + d diminished by c and e. Hence
we must increase the result by c -f e, and thus obtain

a— (b—c+d— e) = a— b—d+c+e = a— b+c— d+e.

From considering each of these examples, it is evident

that subtracting a positive number is the same tiling as adding

an equal negative number, and also that subtracting a negative

number is the same thing as adding an equal positive number.

Therefore, Algebraic subtraction is equivalent to the Alge-

braic addition of a number with the opposite Algebraic sign.

Hence for subtraction we have the following

Rule.

Change the signs of cdl the terms in the subtrahend, and

then add the result to the minuend.

EXAMPLES.
1 . Let it be required to subtract ox—y+z from 4x—Sy-\-2z.

Changing the signs of all the terms in the subtrahend, it

stands as follows: — Sx + y — z. Then collecting as in

addition, we have

4x — oy + 2z — ?>x + y — % = x — 2y + z.
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2. From 3a4
-f bxs — Gx2 — Ix + 5

take 2a;
4 - 2a3

-f 5a;
2 - 6x - 7.

Changing the signs of all the terms in the subtrahend, and

proceeding as in addition, we have

3a;
4 + 5ar* - 6a;

2 - 7x + 5

-2x*.+ 2xs - 5a;
2 + 6a; -f- 7

\ a;
4 + 7a;

3 - 11a;
2 - x + 12

Rem. — The beginner may solve a few examples by actually changing

the signs of the subtrahend and going through the operation as fully as

we have done in these two examples; but he may gradually accustom

himself to perform the subtraction without actually changing the signs,

but merely changing them mentally, as in the following example.

3. From 8ab + lac -f 2c2 take bob — 4ac + 3c2 — d.

Writing the subtrahend under the minuend so that similar

terms shall fall in the same column, for convenience (Art.

26), we have , . - . „ 2n Sab + lac -f- 2ca

5ab — Aac + 3c2 — d

Sab + llac — c
2 + d

Changing the sign of 5ab from -f to — and adding it to

8a6, we have Sab ; in like manner, changing the sign of — 4ac

from — to + and adding it to lac, we have ll«c; also

changing the sign of -f-3c
2 from + to — and adding it to

2c2
, we have —

c

2
; changing the sign of — d and adding it,

we have +d.

Every example in subtraction may be verified by adding

the remainder to the subtrahend ; the sum will be equal U

the minuend.

30. Remarks on Addition and Subtraction.— In

Arithmetic addition always produces increase and subtrac-

tion decrease; but in Algebra addition may produce decrease

and subtraction may produce increase. Thus in Algebra we
may add —Aa to 8a and obtain the Algebraic sum 4a, which
is smaller than Sa ; or we may subtract —3a from ha and
obtain the Algebraic difference 8a, which is larger thau ba.
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EXAMPLES.
1. From 5x2 + xy - By2

Subtract 2a? -f 8xy — ly2

Remainder 3a? — Ixy + 4y
2

2. From x* - 2x* - 9x +
Subtract 2^4 - 3a? + lx -

Remainder — x4 — 2x* + °5x
2 — M>x 4-12

From
3. lox + Mty — 18z subtract 2x — 8y + z.

Ans. 13a; + 18?/ — lft?.

4. x — y — z subtract — 10a; — 14_y 4- 15z.

Ans. 11a: 4- 13# - 163.

5. 25a — 166 — 18c take 4« — 36 4- 15c.

Ans. 21a - 156 - 33c.

G. yz — za; 4- 37/ take — .ry 4- 72 ~ zx - ^XV'
7. —2a3 — x2 — 3x 4- 2 take a? — a; 4- 1.

Ans. -3a? - x2 - 2a? + 1.

8. 4a? - 3a; + 2 take -ojr 4- 6a; - 7. 9a? - 9a; 4- 9-

9. x9 4- 1 la? 4- 4 take 8a? — 5x — 3. a? 4- 3a? + 5as + 7.

10. -8aV 4- 5a? + 15 take 9aV - 8a? - 5.

.4ns. -17aV 4- 13^2 4- 20.

11. |a? — §a# — |y
2 take —fa? 4- xy — y

2
.

Ans. 2a? — f.r?/ — A?/2
.

13. Ja? - \x 4- J take \x - 1 4- K"- ~¥' ~ P + J-

14. fa? — fax- take J - Ja? — |a». fa? 4- Jfla; — £.

15. fa? - §xtf - y
2 take Ja??/ - f/ - \xf.

Ans. fa? — ±x2
y — £?/

2
.

31. The Use of Parentheses.*—A parenthesis indicates

that the terms enclosed within it are to be considered as one

quantity (Art. 15). On account of the extensive use which

* Afl the bracket, brace, bar, and vinculum all have the fame significance as the

parenthesis (Art. 15), the rules for their removal or introduction are the same.

12. -frr — fa — 1 take —fa'
2

-f- a — \. fa
2 -
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is made of parentheses in Algebra, it is necessary that the

student should become acquainted with the rules for their

removal or introduction.

32. Plus Sign before the Parenthesis.— When a

parenthesis is preceded by the sign +, the parenthesis can be

removed without making any change in the exjiression loithin

the parenthesis.

This rule has already been illustrated in Arts. 25 and 26
;

it is in fact the rule for addition.

7 + (12 -f- 4) means that 12 and 4 are to be added and

their sum added to 7. It is clear that 12 and 4 may be

added separately or together without altering the result.

Thus 7 + (12 + 4) = 7 + 12 + 4 = 23.

Also a + (b + c) means that b and c are to be added

together and their sum added to a.

Thus a + (b + c) = a -f b -f c.

7 + (12 — 4) means that to 7 we are to add the excess

of 12 over 4 ; now if we add 12 to 7, we have added 4 too

much, and must therefore take 4 from the result.

Thus 7 + (12 - 4) = 7 + 12 - 4 = 15.

Similarly a + (b — c) means that to a we are to add b

diminished by c.

Thus a -f- (b — c) = a -f- b — c.

Therefore Conversely : Any part of an expression may be

enclosed within a parenthesis and the sign -f- placed before it,

the sign of every term within the parenthesis remaining un-

altered.

Thus, the expression a — b + c — d + e may be written

in any of the following ways

:

a-b+c+(— d+e), a—&+(c—d+e), a+(—&-fc—d+e),

and so on.

33. Minus Sign before the Parenthesis.— When a
parenthesis is preceded by the sign — , the parenthesis may
be removed if the sign of every term within the parenthesis be

changed.
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This rule has already been illustrated in Art. 29 ; it is in

fact the rule for subtraction. The rule is evident, because

the sign — before a parenthesis shows that the whole ex-

pression within the parenthesis is to be subtracted, and the

subtraction is effected by changing the signs of all the terms

of the expression to be subtracted.

Thus a — (6 + c) = a — b — c.

Also a — (b — c) = a — b -f- c.

Therefore Conversely: Any part of an expression may be

enclosed within a parenthesis and the sign — placed before it,

provided the sign of every term' within the parotthesis be

changed. The proof of this operation is to clear the paren-

thesis introduced, and thus obtain the original expression.

Thus a — b -\- c + d — e may be written in the following

ways

:

a— b-\-c— (— cZ-f-e), a—b— (—c— cZ-f e), a— (6—c— c/-(-e),

and so on.

34. Compound Parentheses.— Expressions may occur

with more than one pair of parentheses ; these parentheses

may be removed in succession by the preceding rules.

We may either begin with the outside parenthesis and go

inward, or begin with the inside parenthesis and go outward.

It is usually best to begin with the inside parenthesis. The
beginner is recommended always to remove first the inside

pair, next the inside of all that remain, and so on. Thus

for example
;

a -f- \b + (c — d) \ = a + \b -f c - d\ = a + b + c -
a -f \b — (c - d) \ = a -f \b — c + d\ = a + b - c + d.

« - \b + (c - d) \
= a - \b -f c - d\ = a - b — c + d.

a — \b — (c — d)
I
= a — \b — c + d\ = a — b -f- c — d.

It will be seen in these examples that, to prevent confusion

between different pairs of parentheses, we employ those of

different forms; and hence we use, besides the parenthesis,

the brace, the bracket, and sometimes the vinculum (Art. 15).
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Thus, for example,

a _ p _ ic _ (d _ F=7) j] = a - [6 -
f
c - (d - e + /) ft

= a - [6 - \c - d + e - J\] = a - [6 - c + d - e + /]
= a — 6 + c — d + e— /.

Also

i -2b- [4a - 66 - §3a - c + (5a - 26 - 3a - c + 26) j]

= tt- 26 -[4a - 66

-

\3a - c + (5a - 26 - Za + c - 26) j]

= a — 26 - [4a - 66 - J3a - c + 5a - 26 - 3a + c - 26 j]

= a — 26 - [4a - 66 - 3a + c - ba + 26 + 3a - c + 26]

= a _ 26 — 4a -f 66 + 3a — c + 5a — 26 — 3a -+ c — 26

= 2a, by collecting like terms.

EXAMPLES.
Simplify the following expressions by removing the paren-

theses and collecting like terms.

1. a — (6 — c) + a-f (6 — c)+6— (a+c). Ans. a+6— c.

2. a — [6 + \a — (6 + a) J], a.

3. a - [2a - {36 - (4c - 2a)\]. a + 36 - 4c.

4. $a_(6-c)$ + f6-(c-a)}-{c-(a-6)|. 3a-6-c.
5. 2a -(56 + [3c -a]) — (5a— [6+c]). -2a—46— 2c.

6. -[a-j6-(c-a)H-[6-Jc-(a-6)n. 6 - a.

7. _(_(_(_ a;)))_(_ (
_

2/ ) )
. a._ ?/ .

8. -p.i; - (11t/ - 3a;)] - [by - (Sx - 6y)]. -5*.

9. -[15a; - \Uy - (15s + 12?/) - (10a; - 15z) J].

Ans. — 25a; + 2?/.

10. 8a;- jl6?/-[3^-(12?/-.T)-8?/]-f-.rj. 11a; -36?/.

11. -[a; - \z + (a; - z) - (a - a;) - z\ - x], 2x - 2z.

12. —[a + \a - (a - aj) - (a + a;) — a\ — a]. 2a.

13. — [a — ja + (a; — a) — (a; — a) — aj — 2a]. a.

1 i. 2a - [2a - \2a - (2a - 2a - a)j]. a.

15. 16 - a; -[7a; - \8x - (9x - 3a; — 6a;)|]. 16 - 12a;.

16. 2x - [8y - f4aj - (">// - 6a? - 7y)l]. 12a? - 15?/.

17. 2a-[36 + (2&-c) -4c+ {2a-(36-c^26)|]. 4c.

18. a- [56- \a- (5c-2c- 6 -46) + 2a - (a - 26~+c) j],

^Lts. oa — 2c.
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19. tT4_ r=4aj8_
j
Ga.2_ (4aj

_ 1; J]
_ (x*

4+ 4a;3 +r>.r2+4a; +1).
^4ns. — 8x3 — 8x.

When the beginner has had a little practice the number

of steps may be considerably diminished ; he may begin at

the outside and remove two or more parentheses at once, as

follows

:

20. a - [26 + \3c — 3a — (a + b) \ + 2a - (6 + 3c)]

= a — 26 — 3c + 3a -f a + 6 — 2a + 6 + 3c

= 3a.

21. a-(6-c) - [a-6-c-2£6 + c~-3(c-a)-dj].
2lns. 6a -f 26 - 2c - 2d.

22. 2a;

-

(3y - 4z) -\2x - {Sy + \z) \
- \3y - (4z + 2a?) \.

Arts. 2x — 3y + 123.

23. -20 (a - d) + 3(6 - c) - 2[6 + c + d - 3jc + d

- 4(d — o)|]. Ans. 4a -f- 6 + c.

24. -4(a -f d) + 24(6 - c) - 2[c -f d + a - 3\d + a

- 4(6 + c)J]. Ans. -50c.

25. 2(36 - 5a) - 7[a - GJ2 - 5(a - ft) J].

^4?is. -227a -f 21G6 + 84.

26. -10Sa-6[a-(6-c)]J + G0j6-(c + a)J. -10a.

27. _3j-2[-4(-a)]| + 5|-2[-2(-a)]|. 4a,

28. -2\-[-(x - y)}\ + \-2[-(x -
y)]J. 0.

Note. — The line between the numerator and denominator of a

fraction is a kind of vinculum. Thus—-— is equivalent to \(x — 3).

Ans. -Va — 26.

30. 3^^^-^3x- 5-(7x-iy)l']+8(y- 2a?).

-4ns. 12a; - 30y.

3,|{| (o _ 6) _8 (6 -e)}-j^-^j
- ||c - a - |(a - 6) 1. -4ns. a - ^6 + Vc -
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- h!(f-!-)-HHH')HH-)}
^4?is. 0.

The terms of an expression can be placed in parentheses

in various ways (Arts. 32 and 33). Thus,

33. ax — bx + ex — ay + by — cy

may be written

(ax - bx) + (ess — ay) + (py — cy),

or (ax — bx -f ca;) — (a?/ — 6?/ + c#),

or (ax — ay) — (6ic — by) -f (ca — c?/).

Whenever a factor is common to every term within a

parenthesis, it may be placed outside of the parenthesis as

a multiplier of the expression within. Thus,

34. ax3
-+- 7 — ex — dx2 — c -f- 6a; — dxz

-f- 6a;
2 — 2x

= («a? - da;
3
) + (bx2 - c7a;

2
) + (6a; - ex - 2a?) + ( 7 - c)

= (a - a")a? + (b - (Z)a;
2
-f (6 - c - 2)sc + (7 - c).

In this result, (a — a*)* (6 — a*), (6 — c — 2) are regarded

as the coefficients of a;
3
, a;

2
, and x, respectively (Art. 17).

Hence we have here placed together in parentheses the

coefficients of the different powers of x so as to have the

sign + before each parenthesis.

35. — a2x — la + ahj + 3 — 2a; — ab

- -(a2x - a2
y) - (la + ab) - (2x - 3)

b- -(a, - 2/)a2 - (7 + 6)a - (2a; - 3).

We have here placed together in parentheses the coeffi-

cients of the different powers of a so as to have the sign —

before each parenthesis.

In the following four examples place together in paren-

theses the coefficients of the different powers of x so that

the sign + will be before all the parentheses.

36. ax* + 6a;
2 + 5 + 26a; - 5a£ + 2ar* - 3a>.

Ans. (a + 2)x* + (6 - 5)x* + (26 - 3)sc + 5.

37. 36a;
2 - 7 - 2a; + cib + Sosc8 + ca> - -l.r - 6.t-

3
.

Ans. (5tt - 6)a;3 + (36 - l)ar + (c - 2)aJ + ab - 7.

38. 2 - 7a;
3 + 5oa? - 2ca; + 9o#" + 7a; - 3a?.

Ans. (
lJa - 7).<;

3 + (5a - 8)a* -h (7 - 2c)a;
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39. 2cx5 - Sabx 4 idx - 36a;4 - aV + «*.

J.ws. (2c - a-)./;
5 4(1- 36) x4 4 (4d - 3a6)z.

In the following four examples place together in paren-

theses the coefficients of the different powers of a; so that the

sign — will be before all the parentheses.

^40. ax2 4 bx3 - o¥ - 26a;3 - 3a;
2 - bx\

Ans. -(a 2 4 b)x* - (26 - 5)a;3 - (3 - a)x2
.

41. 7x3 — oc^x — abx5 4 5cwj 4 ^"5 — obex*.

Ans. —(ah — T)^5 — («6c — l)x3 — (3c2 — 5a)x.

42. aa;
2 + a^aj

3 — bx2 — ox2 — ex3 .

Ans. — (c — a2)^ — (6 4 5 — a) a;
2
.

43. 36 2
a;

4 - fcc - ax4 - ca-
4 - dc2x - 7x\

Ans. -(fl + c + 7- 362
)a;

4 - (6 + 5c2)a?.

Simplify the following expressions, and in each result

place together in parentheses the coefficients of the different

powers of x. This is known as re-grouping the terms accord-

ing to the powers of x.

44. as?- 2ex- [bx2-\cx-dx- (bx3+3cx2

) \
- (cx2-bx)].

Ans. (a - b)x* - (6 4- 2c)x2 - (b + c 4 d)x.

45. ax2 - 3\-ax3 4 36a; - 4[£ca;3 - %(ax - 6a:
2
)] j.

Ans. (3a 4- 2c):c3 4 (o 4 8o)a;2 - (8a 4 96)x.

40. a;
5 -46.v4 --(

r
i2ax-4 hbx*-d(™- bx*\-^ax*\

Arts. (66 4 l)*5 - (a 426)a;4 - (2a 4 3c) x.

We shall close this chapter with a few examples in Addi-

tion and Subtraction.

47. To the sum of 2a - 36 - 2c and 26 - a + 7c add

the sum of a — 4c 4 76 and c — 66. Ans. 2a 4 2c.

48. Add the sum of 2y — 3y
2 and 1 — by 3 to the remainder

left when 1 — 2y
2 4 y is subtracted from by3

. Ans. —y2 4 ?/•

49. Take a;
2 — y

2 from 3a;?/ — 4?/
2

, and add the remainder

to the sum of 4xy — x2 — 3y
2 and 2a;

2
-f- 6?/

2
. ^4ns. 7a-?/.

50. Add together 3x2 — Ix + b and 2x3 4 5a — 3, and

diminish the result by 3a;
2 4 2. Ans. 2X3 — 2x.

51. What expression must be subtracted from 3a — 56 4 c

so as to leave 2a — 46 4 c? -4ns. a — 6
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CHAPTER IV.

MULTIPLICATION.

35. Multiplication in Algebra is the process of taking

any given quantity as many times as there are units in any

given number.*

The Multiplicand is the quantity to be taken or multiplied.

The Multiplier is the number by which it is multiplied.

The Product is the result of the operation.

The multiplicand and multiplier taken together are called

Factors of the product.

In Algebra as in Arithmetic, the product of any number of

factors is the same in whatever order the factors may be taken

(Art. 21). Thus, 2x3x5 = 2x5x3 = 3x5x2,
and so on. In like manner abc = acb = bca, and so on.

Also 2tt x 36 = 2 x a X 3 x b

=2x3xaxl
= Gab.

36. Rule of Signs.— The rule of signs, and especially

the use of the negative multiplier, usually presents some

difficulty to the beginner.

(1) If -fa is to be multiplied by -f-c, this indicates

that -fa is to be taken as man}' times as there are units in

c. Now if -fa be taken once, the result is -\-a; if it be

taken twice, the result is evidently -f2a; if taken three

times, the result is -f 3a ; and so on. Therefore if -fa be

taken c times, it is -\-ca or +ac. That is

+a x +c = -f ac.

(2) If —a is to be multiplied by -f c, this indicates that

— a is to be taken as many times as there are units in c.

* Thitt definltioi) i* true only t>f whole muubcib.
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Now if —a be taken once, the result is —a; if it be

taken twice, the result is — '2a ; if taken three times, the

result is —3a ; and so ou. Therefore if —a be taken c

times, it is —ca or —ac. That is,

— a x +c = —ac.

Similarly —3 X + 4 = —3 taken four times

= -3 -3 -3 -3
= -12.

(3) Suppose +a is to be multiplied by — c. "We have

illustrated the difference between +c and — c (Art. 20), by

supposing that + c represents a line of c units measured in

one direction, and — c a line of c units measured in the oppo-

site direction. Hence if +« is to be multiplied by —e, this

indicates that -fa is to be taken as many times as there are

units in +c, and further that the direction of the line which

represents the product is to be reversed.

Now +a taken +c times gives -f-ac; and changing the

sign, which corresponds to a reversal of direction, we get

—ac. That is

+ a X — c = —ac.

Similarly +3 X — 4 indicates that 3 is to be taken 4 times,

and the sign changed. The first operation gives +12, and

the second —12. That is

+3 x -4 = -12.

(4) If —a is to be multiplied by —c, this indicates that

— a is to be taken as many times as there are units in c, and

then that the direction of the line which represents the

product is to be reversed.

Now —a taken c times gives — ac; and changing the

sign, which corresponds to a reversal of direction, we get

4-ac. That is

— a x — c = +ac.

Similarly —3 x —4 indicates that —3 is to be taken 4

times, and the sign changed. The first operation gives —12,

and the second +12. That is,

_3 X -4 = +12.
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(3) is sometimes expressed as follows : +a multiplied by

— c indicates that -fa is to be taken as many times as there

are units in e, and then the result subtracted. Now -fa

taken +c times gives -|-ac, and changing the sign, in order

to subtract (Art. 29), we get — ac.

Similarly (4) indicates that —a is to be taken as many

times as there are units in c, and the result subtracted.

Now — a taken +c times gives — ac, and changing the sign,

in order to subtract, we get +ac.

Hence we have the following Rule of Signs : The product

of two terms with like signs is -f ; the product of two terms

icith unlike signs is —

.

To familiarize the beginner with the rule of signs we add

a few examples in substitution, where some of the symbols

denote negative quantities.

EXAMPLES.
If a = -2, b = 3, c = -1, x = -5, y = 4, find the

value of the following :

1. 3a26 = 3(-
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21. 2a3 - Sbs + 7nf. Ans. -54.

22. 36V - 4 &!/" - Cc4
x. 3.

23. 2\T(ac) - B\f{xy) + VT^c4
). 1.

It is convenient to make three cases in Multiplication,

(1) the multiplication of monomials, (2) the multiplication

of a polynomial by a monomial, and (3) the multiplication of

polynomials.

37. The Multiplication of Monomials. — Since by

definition (Art. 12) we have

a4 = aaaa,

and a6 = aaaaaa,

.', a4 x aG = aaaaaaaaaa

= a10
.

Also 3a2 = 3aa,

7«3 = 7aaa.

.-. 3a2 x 7a3 = 3 x 7 x aaaaa
= 21a5

.

Similarly 5a36
2 x 6a*&V = haaabb x Gaabbbbxx

= 30a5&6«2
.

• Also 4a3
c
2 x 3c3£2 x 3#2 = iaaaec x Scccxx x 3rcaj

== 30a3
c
5
.r
4

.

Hence for the multiplication of monomials we have the

following

Rule.

Multiply together the numerical coefficients, annex to the

result all the letters, and give to each letter an exponent equal

to the sum of its exponents in the factors.

For example 2a;
2 x 3a:

4 x x« = Gz2+4 + 6 = Qx1 '2
.

Also 5a2
b
3 x 262

c
4 x 3c2d4 = 30aWd4

.

Note. — The beginner must be careful, in applying this rule, to

observe that the exponents of one letter cannot combine in any way
with those of another. Thus, the expression 4a263c4 admits of no
further simplification.

The product of three or more expressions is called the

continued product.
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38. To Multiply a Polynomial by a Monomial
— Suppose we have to multiply (a + b) by 3 ;

that is, take

a + b 3 times. We have

3(a + b) = (a + b) 4- (a + &) + (a 4- b)

= (a + (H « taken three times)

together with (b + & 4- b takeu three times)

= 3a + 36.

Similarly 7 (a + b) = la + lb.

m(a + 6) = (a + a + a + taken ??i times)

together with (b + b -{- b + takeu m times)

= ma + mb. . (1)

Also m(a — b) = (a + a -f- a + taken m times)

together with (— b — b—b— taken m times)

= ma — mb (2)

Similarly

m(a — b + c) = ma — mb -f wic.

This is generally called the Distributive Law.

Hence, to multiply a polynomial by a monomial, we have

the following

Rule.

Multiply each term of the polynomial separately by the*

monomial, and collect the results to form the complete product.

For example,

4(x2 + 2xy — Az) = Ax2 + 8xy — lGz,

(4^ _ 7y - Sz3
) x Sxy2 = 12x3

y
2 - 2lxy3 - 24a#¥*.

(|a
a . i ab _ jji) x 6a262 = 4a4&3 - a8&8 - Ga 2b\

EXAM PLES.
Multiply together

1. 4a268 and7a8. Am. 28a7&*.

2. 3a4&V and 5a8&«. 15a7W.
3. 2.c

2
/y2

3 and x'tfz. 2.v\>/
8
z*.

4. a6 + be and a8&. o46a -h « 3
b
2
c.

5. 5aj + ."»// and 2a8. 10.r3 + 6afy.

be + Cf ' ~" ^6 :ii id n&c. a//V2

-f- o'dc8 — <rb'
2
C.

7. 5arfy + xy'
1 — 7^ and Sa?y. *0aY + 8»y — 56»V
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8. Ga3bc — 7aire
2 and a2b2

.
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If we consider each term in the second member of (4),

and the way it was produced, we lind that

+a x +c = +ac.

-\-a x — d = — ad.

— b X +c = — be.

— b X — d = +bd.

These results enable us again to state the rule of signs,

and furnish us with another proof of that rule, in addition

to the one given in Art. 3G. This proof of the rule of signs

is perhaps a little more satisfactory than the one given in

Art. 3G, though it is not quite so simple.

EXAMPLES.
1. Multiply x + 7 by x + 5.

The product = (x + 7) (x + 5)

= x2 + 7x -f- 5a5 +35
= x2 + 12a; + 35.

Rem. — It is more convenient to write the multiplier under the

multiplicand, and begin on the left and work to the right, placing

like terms of the partial products in the same vertical column, ar

follows

:

x + 7

x + 5

z2 + 7x

+ 5x + 35

by addition x2 + 12x + 35.

,2, Multiply 3a; - 4y by 2x - 3y.

3a; — 4y

2x — By

6a;
2 — 8xy

- Oxy + V2if

by addition Gar — Mxy + V2y*.

Here the first line under the multiplier is the product of

the multiplicand by 2a;; the second line is the product of the
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multiplicand hf~—Sy\ like terms are placed in the same

vertical column to facilitate addition.

Find the product of the following

:

Ans. x2 — 17a; 4 70.

x2 4 ?xx - 70.

x2 - I3x + 12.

x2 - 225.

x2 + 5a 4- 6.

x2 - 25.

a2 4- x - 306.

a2 - 256.

2x2 4- 13a; - 24.

6x2
4- Us - 35.

3.
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14. Multiply 3* + 4 -f-
2.r2 by 4 + 2x~ - 3a?. Arranging

the factors according to the descending powers of a;, the

operation is as follows :

2s2 + 3x +4
2a;

2 - 3x +4
4a;

4 + 6a;
3 + 8a2

- 6a3 - 9a;
2 - 12x

+ 8x* + 12a + 16

4a;
4 + 7a;

2 + 16.

15. Multiply a 2 + b
2 4- c

2 - aft - 6c — cabya+fc + c
Arrange according to descending powers of a.

a'
2 — ah — ac -\- b

2 — be + c
2

a 4- 6 + c

a8
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Whea the coefficients are fractional we use the ordinary

process of multiplication, combining the fractional coefficients

by the rules of Arithmetic*

25. Multiply \a2 - $ab 4 ^r by Ja + \b.

\ab + |b
2**'

&
-Ja

3 - larb + \ab2

+ herb - lab2 + |68

Ja3
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40. Multiplication by Inspection. — Although the

result of multiplying together two binomial factors can

always be obtained by the methods explained in Art. 39,

yet it is very important that the student should learn to

write down the product rapidly by inspection. This is done

by observing in what way the coellicients of the terms in the

product arise ; thus

(a -f 5) (a + 3) = a2 + 5a + 3a -f- 15

== x2 + 8a -f- 15.

(x - 5) (x + 3) = a2 - 5a + 3a - 15

= x2 — 2x — 15.

(x + 5) (a
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5. [x + 2)(x- 5).

6. {x -j- 9)(as - 5).

7. (a; - 8)(aj + 4).

8. (as - 6) (x + 13).

9. (a - 11) (as + 12).

10. (x - 3a) (a; + 2a).

€£ (a5 - 96)(aj + 86).

3) (*- 730(3 -8y).

-4ns



48 EXAMPLES.

Hence a2 — 2ab + b
2

is the square of both a — b and

& — a.

Rem. 1. — Equations (1), (2), and (3) furnish simple examples of

one of the uses of Algebra, which is to prove general theorems

respecting numbers, and also to express those theorems briefly.

For example, the result (a + b) (a — b) = a2 — b
2

is

proved to be true, and is expressed thus by symbols mure

compactly than it could be by words.

A general result thus expressed by symbols is called a

formula; hence a formula is an Algebraic expression of a

general rule.

Rem. 2. —We may here indicate the meaning of the sign ± which

is made by combining the signs + and — , and which is called the

double sign.

By using the double sign we ma}- express (1) and (2) in

one formula thus

:

(a ± b) 2 = a2 ± 2ab + b\ . . . . (4)

where ±, read plus or minus, indicates that we may take

the sign -f- or — , keeping throughout the upper sign or the

lower sign. Formulae (1), (2), and (3) are true whatever

may be the values of a and b.

The following examples will illustrate the use that can be

made of formulae (1), (2), and (3). The formulae will

sometimes be of use in Arithmetic calculations. Thus

EXAMPLES.
1. Required the difference of the squares of 127 and 123.

By formula (3) we have

(127)
2 - (123)

2 = (127 + 123) (127 - 123)

= 250 x 4 = 1000.

2. Required the square of 2 (

J.

By formula (2)

(29)
a= (30 - 1)- = <J00 - 60 + 1 = Sil.
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3. Required the product of 53 by 47.

By formula (3)

53 x 47 = (50 + 3) (50 - 3) = (50)
2 - (3)

3

= 2500 - 9 = 2491.

4. Required the square of 34.

By formula (1)

(34)
2 = (30 + 4)

2 = 900 + 240 + 16 = 1156.

5. Required the square of 4a 4- 3y.

We can of course obtain the square by multiplying 4a -f- 3y

by itself in the ordinary way. But we can obtain it by

formula (1) more easily, by putting 4a; for a and 3y fori.

Thus

(4a + Sy) 2 = (4a) 2 + 2(4a%) + (3#)
2

= 16a2 + 24a>/ + 9y\

6. Required the square of a -f y + z.

Denote a + y by a ; then x-\-y + z = a-\-z\ and by

(1) we have

(a + z)
2 = a 2 + 2az + z2

= (x + y)
2 + 2(a? -f y)a 4- z

2

= a2 + 2a?/ + y
2 + 2az -f 2^/z 4- s

g

Thus (a 4- V 4- z) 2 = x2 + y
2 + z

2 + 2xy 4- 2yz + 2xz.

That is, the square of the sum of three numbers is equal

to the sum of the squares of the three numbers increased by

tioice the products of the three numbers taken tivo and two.

7. Required the square of p — q 4- r — s.

Denote p—q by a and r—s by b ; then p—q+r— s=a-\-b
;

and by (1) we have

(a4-&) 2=a24-2a&4-&2= (p-Q) 2+^(p-Q) (»"-*) + (r-s) 2
.

Then by (2) we expand {p — q)
2 and (r — s) a

.

Thus (p — q 4- r — s) 2

= }t — 2pq 4-
(f- + 2 (

;?/• — ps — qr 4- r/.s) 4- ?- 2— 2rs 4- a2

= ^»'2 4- q
2 + r

2
H- s

2 4" 2^/' 4- 2(/.v — 2pg - - 2ps — 2qr — 2rs.
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8. Required the product of p— q-\-r— s and p—q— r-f-s.

Let p — q = a and r—s - b ; tben p —q -j-r — s = a-f&,

and p — q — r + s = a — b; and by (3) we have

(a+6) (o-6) =a2-b2= (p-q) 2- (r-s) 2

= p2-2pq+q2~{r2-2rs+s2
) by (2).

Thus(p—g+r—s)(p—q—r+s)=p2
-\-q

2—

r

2—

s

2— 2pq-\-2rs.

From these examples we see that by using formulae (1),

(2), and (3), the process of multiplication may be often

simplified. The student is advised first to go through the

work fully as we have done ; but when he becomes more

familiar with this subject, he may dispense with some of the

work, and thereby simplify the multiplication still more.

Thus in the last example he need not substitute a and 6, but

apply formula (3) at once, and then (2), as follows :

[(P - 9) + (r - *)] [<J> ~q)~ (r - •)] = (p - q)
2

— (r — s)
2 = p2 — 2pq + q

2 — r2
-f 2rs — s

2
.

9. Required the product of a 4- b + c, a 4- b — c,

a — 6 + c, 6-fc — a.

By (3) and (1) we obtain for the product of the first two

factors,

(a + b + c) (a + b — c) = 2ab -f a2 + 6
2 - c

2
. . ^1)

By (3) and (2) we obtain for the product of the last two

factors,

(a-b + c) (b + c-a) = 2ab - (a2 + b
2 - c

2
). . (2)

Multiplying together (1) and (2), we obtain

(2a6) 2 - (a2 + b
2 - c

2
)
2

= 2a262 + 262
c
2 + 2a2

c2 - a4 - b4 - c
4

. . . . (3)

Solve the following examples in multiplication by formulae

(1), (2), and (3).
*

f0^) (15x + 14?/)
2

. Ans. 225a;2
-f- 420.r?/ + H-6?/

2
.

Cm (7a;
2 - by2

)
2
. 49a;

4 - 7().r//
2 + 25y*.

12. (x2 + 2x - 2)
2

. a;
4 + lx» - 8a; -- 4.

13. (x2 - [)x -f 7)
2

. «4 - IOjc
8 + 39a?1 - 70a; + 49.
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14. (2x2 - Sx -4) 2
. Ans. 4.x-

4 - 12a*3 - 7x2 + 24aj 4 IB.

15. ( x 4 2y + 3z) 2
. Xs + 4y2 4 92s + 4ajy 4 6a» -f- 1 2?/z.

1G. (x-
2 + .n/ + y

2

) (a;
2 4 a# - r) . ^ + 2afy 4 x2

y
2 -y\

1 7. (x2 4^ 4 ?/
2

) (x
2 - a^ 4 r) . z4

4- ^V 4- t-

42. Important Results in Multiplication.— There

are other results in multiplication which are important,

although they are not so much so as the three formulae in

Art. 41. We place them here in order that the student may
be able to refer to them when they are wanted ; they can be

easily verified by actual multiplication.

(a 4 6) (a2 - db 4 b
2
) = a3 + b*. . . . (1)

(a - b) (a2 4 db 4 b
2
) = a3 - b\ . . . (2)

(a 46) 3 = (a+b) (a2 + 2a6 + 6
2
) = a3 4- 3a26 + 3a&2 4 &3

. (3)

(«-&)«= (a-&) (a2 - 2a& 4- &
2
) = a3 - 3a26 + 3a&2 - b\ (4)

(a 4 b 4- c)
3 = a8 4 3a*(6 4 c) 4 3a(6 4- c)

2 + (b + c) 8

= a34& 34c343a2(64c) + 36a(a+c) +3c2(a4&) +6o6c. (5)

Rem. — It is a useful exercise in multiplication for the student to

show that two expressions agree in giving the same result. For

example, show that

(a — 6)(6 - c){c - a) = a2{c - b) + 63(a - c) 4 c2 (b - a).

Here we proceed as follows: Multiplying (a — b) by (6 — c) we
obtain

(a _ b)[b - c) = ab - b2 - ac + be;

then multiplying this equation by c — a we obtain

{a - b){b -c){c- a) = cab — cb2 - ac2 4 be2 - a2b 4 ab2 4 a2c - ahr

= a2 (c - b) 4 b2(a - c) 4 c2 (b - a) . . . (0;

Show that (a - 6)
2 4 (6 - c) 2 4 (c - a) 2

= 2(c - 6)(c - a) + 2(6 - o)(6 - c) 4 2(a - b)(a - c),

By (2) of Art. 41 we obtain

(a - 6)2 + (6 - c) 2 + (c - a) 2

= a2 - 2a6 4 62 4 62 - 26c + c2 + c2 - 2ac + a2

= 2(a2 + 62 + c2 — a6 — 6c — ca) (7 ;

Now (c — 6)(c — a) = c2 — ca — cb + ab,

(6 — a) (6 — c) = 6'2 — 6c — ab + ac,

(a — 6) (a — c) = a2 — «c — a6 + 6c;
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therefore, by adding these three equations, we obtain

( c
_ b){c - a) + (6 — a)(b - c) + {a — b)(a — c)

— a2 + b'
2 + c2 — ab — ac — 6c, (8)

therefore, from (7) and (8) we have

(a _ b)2 + [b - c) 2 + (c - «)
2

= 2(c — fc)(c — a) + 2{b - a)(b - c) + 2(a — b)(a — c). (9)

43. Results of Multiplying Algebraic Expressions.

— From an examination of the examples in multiplication,

the student will recognize the truth of the following laws

with respect to the result of multiplying Algebraic expres-

sions.

(1) In the multiplication of two polynomials , when the

'partial products do not contain like terms, the whole number

of terms in the final product will be equal to the product

of the number of terms in the multiplicand by the number of

terms in the multiplier, but will be less if the partial products

contain like terms, owing to the simplification produced by

collecting these like terms.

Thus as we see in Ex. 17, Art. 39, there are tivo terms in

the multiplicand and two in the multiplier, and four in the

product, while in Ex. 13 there are three terms in the multi-

plicand and three in the multiplier, and only five in the

product.

(2) Among the terms of the product there are ahvays two

that are unlike any other terms; these are, that term which is

the product of the two terms in the factors which contain

the highest power of the same letter, and that termiuhich is the

product of the two terms in the factors which contain the low-

est power of the same letter.

Thus in Ex. 13, Art. 39, there are the terms 8a4 and 2464
,

and these are unlike any other terms ; in fact, the other

terms contain a raised to some power less than the fourth,

and thus they differ from 8a4
; and they also contain a to

some power, and thus they differ from 2464
.

(3) Wlten the multiplicand and multiplier are both homo-

geneous (Art. 18) the product is homogeneous, and the degree
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of the product is the sum of the numbers which exjjress the

degrees of the multiplicand and multiplier.

Thus in Ex. 13, Art. 39, the multiplicand and multiplier

are each homogeneous and of the second degree, and the

product is homogeneous and of the fourth degree. In Ex.

15, Art. 39, the multiplicand is homogeneous and of the

second degree, and the multiplier is homogeneous and of the

first degree ; the product is homogeneous and of the third

degree. This law is of great importance, as it serves to test

the accuracy of Algebraic work ; the student is therefore

recommended to pa}7 great attention to the degree of the

terms in the results which he obtains.

EXAMPLES.
Multiply

1. 4a2 - 3b by Sab. Ans. 12a3b - dab2
.

2. 8a2 - dab by 3a2
. 24a4 - 27as

b.

3. 3x2 - Ay2 + bz2 by 2x2
y. 6a;

4
?/ - 8x2

y
3 + 10x2yz2

.

4. x2
y
3 - y

3z
4 + z

Ax2 by x2
y
2
z
2

. x4
y

5
z
2 - x2

y
5zG

-f xYz6
.

5. 2xy2
z3 + 3x2

y
3z — hx3yz2 by 2xy2

z.

Ans. Axhfz4
-f- Gx3

y
5z2 - 10x4

y
3z3 .

6. -2a2
6 - 4«52 by -7a2

6
2

. 14a4
63

-f 28a36
4

.

7. 8xyz - 10x3yz3 by -xyz. -8x2

y
2
z
2 + I0x4

y
2
z
4

.

8. abc — a2bc — ab 2
c by —abc. —a2

b
2
c
2 + a3

6
2
c
2 + a263

c
2

.

9. x -f 7 by x — 10. x2 — 3x — 70.

10. x + 9 by x — 7. x2 + 2x — 63.

11. 2x - 3 by x -f 8. 2x2 + 13a; - 24.

12. 2x + 3 by x - 8. 2a;
2 - 13x - 24.

13. x3 - 7x -f- 5 by x2 - 2x + 3.

Ans. x5 - 2x4 - 4a;
3 + 19a;

2 - 31a + 15.

14. a2 - dab - b
2 by a2 + 5ab + b

2
.

Ans. a4 - 25a262 - 10a&3 - 64
.

15. a;
2 — xy + x + y

2 + y + 1 by ac + ?/ - 1.

Ans. x3
-\- 3xy + y

3 — 1.

16. a2 + 6
2 + c

2 -- 6c - ca - a& by a + & + c.

Ans. a3
-j- 6

3 + c
3 — 3a6c
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1 7. 2ax+x2+a2 by a2+2ax-x2
. Am. a4

-f-4a
3
a;-f 4a2

a;
2-a;4.

18. 262+3a&-a2 by7a-56. -106 3-a6 2+ 2Ga
26- 7a3

.

19. a2-a6H-62 bya2+a6-62
. a4-a2&2+2a&8-&4

.

20. 4a*-3a^-#2 by3a>-2#. 12z3 -17.v2 ?/+3a;?/
2+2?/3

.

21. a^-afy-fa^-^byaH-y. x6-xy+xY-y\
22. cc

4+2^+4^ 24-8^3 +lG^/4 bya;-2?/. a;
5 -32?/5

.

23. 9a;V
2+27a;^+81^+ 3.T?/

3 +?/
4 by3x-2/. 243a;5

-;?/
5

.

24. aj+2?f-3sbya;-2y-t-3z. a;
2-4?/2+12?/z-9z2

.

Write down the values of the following products by

inspection.

25. (x + 7)(aj + 1). -4n*. ^,2 + 8^ + 7.

26. (a> - 7) (a; + 14). x2 + 7x - 98.

27. (a + 36) (a - 26). a2 + a& - 6&2
.

28. (a - G)(a + 13). a2 + 7a - 78.

29. (2a; - 5)(x - 2). 2a;
2 - 9a; + 10.

30. (3a; - l)(a; + 1). 3a;
2 + 2a; - 1.

31. (3a; + 7) (2a; - 3). 6a;
2 + 6x - 21.

Solve the following examples by formulae (1), (2), (3) in

Art. 41.

32. (x2 -\-xy-\-y
2)(x2—xy—

y

2
). Ans. x4—x2

y
2—2xys—y*

33. (a?+xy-y2
) (x

2-xy+y2
). x*-x*y*+2xy*-tfi

34. (a;
3 +2a;2 +3a'-f l)(.«

3 -2.u2 +3a;-l). o;
6+2.r4 +5a;2-l

35. (a;-3) 2(a?+6aH-9). a;
4 -18a;2+81

3G. (a;+2/)
2
(a-

2 -2.r?/-?/2
). a;

4 -4a'V2-4a^3 -?/4

Show that the following results are true

:

37. (aa+62
) (c

2+d2
) = (ac+ bd) 2+ (ad-bc) 2

.

38. (a+b+c)*+a*+b*+c*=(a+by+(b+c)*+(c+a)\
39. (a-b) (b-c) (c-a)=bc(c—b) +ca(a-c) +ab(b—a)

40. (a-6) 8+68-a8=3a6(6-a).

41. (d2+ab+ b
2

)
2-(a 2-ab+ lr)

2=\ab(a2+b2
).

42. (a+ b+c) s-a s-bs-cs=X{a+ b)(b+ c)(c+a).

43. (a+6) 2+2(a2-62
)+ (a-&)2=4aa

.

44. (a—&)
8+(&-c) 8+(c-a) 8=3(a-6)(6-c)(c-a).
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CHAPTER V.

DIVISION.

44. Division in Algebra is the process of finding, from

a given product and one of its factors, the other factor ; or

it is the process of finding how many times one quantity is

contained in another.

Division is therefore the converse of multiplication.

The Dividend is the given product ; or it is the quantity

to be divided.

The Divisor is the given factor ; or it is the quantity by

which we divide.

The Quotient is the required factor ; or it is the number

which shows how many times the divisor is contained in the

dividend.

The above definitions may be briefly written

quotient x divisor = dividend,

or dividend -r- divisor = quotient.

It is sometimes better to express this last result as a

fraction ; thus dividend ,

.

= quotient.
divisor

It is convenient to make three cases in Division, (1) the

division of one monomial by another, (2) the division of a

polynomial by a monomial, (3) the division of one poly-

nomial by another.

45. The Division of one Monomial by Another.
— Since the product of 4 and x is 4a;, it follows that when

4# is to be divided by x the quotient is 4. Or otherwise

4iB -5- X = 4.

Also since the product of a and b is ab, the quotient of ab

divided by a is b ; that is

ab -j- a = 6.
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Similarly abc -r- a = be ; abc -f- 5 == ac ; abc -f- c = ab \

aba -r- ab = c ; abc -f- be = a ; a&c -i- ca = 6. These results

may also be written

abc _ ,
m

abc _ ,
abc _ ,

,abc
abc abc abc ,—- = c; — = a; — =&.
ao oc ca

. , „ „ n 4 36a6 SGaaaaaa . ,

Also 36a6 -^ 9a4 = = = 4aa, by remov-
9a 4 daaaa

ing from the divisor and dividend the factors common to

both, just as in Arithmetic.

Therefore 36a 6 -- 9a4 = 4a2
.

<-,..,, AK 4i o o n n.5 45aaaabbbcc
Similarly 4oa4

crc
J

-f- 9a~6c- =
daabec

Hence we have the following

Rule.

To divide one monomial by another, divide the coefficient of

the dividend by that of the divisor, and subtract the exponent

of any letter in the divisor from the exponent of that letter in

the dividend.

For example 72xb
y

3
-v- Ux*y2 = Ga?~Y~*

= Gx2
y.

Also 55a4x3
?/
5

-r- lla2xy 2 = &a*x*y*.

Rem. — If the numerical coefficient, or the literal part of the

divisor be not found in the dividend, we can only indicate the division.

Thus if 7a is to be divided by 2c, the quotient can only be indicated

by 7a -f 2e or by—. In some cases, however, we may simplify the

expression for the quotient by a principle already used in Arithmetic.

Thus if ldcflb? is to be divided by#12«6c, the quotient is denoted by

—-—-. Here the dividend = 4ab x 4a26 and the divisor = -lab x 3c;
I2abc
thus the factor 4ab, which occurs in both dividend and divisor, may
be removed in the same way as in Arithmetic, and the quotient will be

denoted by ^L2. That isJ
'3c

lfia3h2 _ 4ab x 4a -b _ 4n
n
-b

\2<lbc An!) x 8c So

by removing the common factor 4<ib.
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r
>7

Note. If we apply the above rule to divide any power of a letter

by the same power of the letter, we are led to a curious conclusion.

Thus by the rule

a3
-f a3 = a3-3 = a

;

but also «3
-r a3 = -

}
= 1,

a3

by removing the common factor a3
;

.". o° = 1;

that is, any quantity whose exponent is is equal to 1.

The true significance of this result will be explained in

Art. 115.

46. The Rule of Signs for division may be obtained

from an examination of the cases which occur in multiplica-

tion, since the product of the divisor and quotient must be

equal to the dividend.

s we have
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47. To Divide a Polynomial by a Monomial.
Since (a — b)c = ac — be

;

therefore ——— = a — b.

c

Also since (a — b) x (— c) = — «c + 6c;

,, - — ac -f- be ,

therefore ! = a — b.
—c

Also since (a — b -\- c) ab = a25 — ab 2 + a&c

;

,, £ a2
b — ab 2 + abc 7 .

therefore ! = a — b -f- c.

a&

Hence we have the following rule :

To divide a •polynomial by a monomial, divide each term of

the dividend separately by the divisor.

For example

(8a3 - 6a2
6 + 2a2c) -*- 2a2 = 4a - 36 + c.

(9a - \2y -f 3z) -:- -3 = -3x + 4y - z.

(36a36
2 - 24a2

6
5 - 20a462) -s- 4a26 = 9ab - Qb4 - 5a 2

b.

(2x2 — bxy — fa;'
2
?/
3
) -s-



TO DIVIDE ONE POLYNOMIAL BY ANOTHER. 59

is composed of all the partial products arising from the

multiplication of the divisor Ixy each term of the quotient

(Art. 39). Arranging both the dividend and divisor accord-

ing to descending powers of a, we see that the first term a3

of the dividend is the product of the first term a2 of the

divisor by the first term of the quotient (Art. 43) ; therefore,

dividing a 3 by a 2 we obtain a for the first term of the

quotient. Multiplying the whole divisor by a we obtain

a* + 3a2 for the partial product of the divisor by the first

term of the quotient ; subtracting this product from the

dividend we obtain the first remainder —a 2 — 3a, which is

the product of the divisor by the remaining terms of the

quotient, and consequently the first term — a2 of this product

is the product of the first term of the divisor by the second

term of the quotient. Dividing therefore this first term —a 2

by the first term of the divisor a2 we obtain —1 for the

second term of the quotient. Multiplying the whole divisor

by —1 we obtain —a2 — 3a for the product of the divisor by

the second term of the quotient ; subtracting this product

there is no remainder. As all the terms in the dividend

have been brought down, the operation is completed. Hence

a — 1 is the exact quotient.

The work may be arranged as follows

:

Divisor. Dividend. Quotient.

+ 3a) a3 + 2a2 — 3a (a — 1

a3 + 3a2

a2 - 3a

a2 — 3a

It will be observed that in getting each term of the

quotient in this example, we divide that term of the divi-

dend containing the highest power of a by the term of the

divisor containing the highest power of the same letter

,

and therefore, when the dividend and divisor are arranged

according to descending powers of a, any term of the

quotient is found by dividing the first term of the divisor
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into the first term of the dividend, or into the first term of

one of the remainders.

Hence for the division of one polynomial by another, we

have the following

Rule.

Arrange both dividend and divisor according to ascendinrj

or descending powers of some common letter.

Divide the first term of the dividend by the first term of

the divisor, and write the result for the first term of the

quotient ;' midtiply the whole divisor by this term, subtract

the product from the dividend, and. to the remainder join as

many terms from the dividend, taken in order, as are required.

Divide the first term of the remainder by the first term of

the divisor, and write the result for the second term of the

quotient; multiply the vohole divisor by this term, and subtract

the product from the last remainder.

Continue this operation until the remainder becomes zero,

or until the first term of the remainder will not contain the

first term of the divisor.

This method of dividing is similar to long division in

Arithmetic, i.e., we break up the dividend into parts, and

find how often the divisor is contained in each part ; and then

the sum of these partial quotients is the complete quotient.

Thus, in the example just solved, a3
-f- 2a2 — 3a is divided

by the above process into two parts, viz., a3 4- 3a2
, and

—a2 — 3a, and each of these is divided by a2 + 3a, giving

for the partial quotients a and — 1 ; thus we obtain the

complete quotient a — 1.

Note. — The divisor is often put on the right of the dividend and

the quotient beneath the divisor as follows:

Dividend. Divisor.

a2 + 2ab + b2 \a -f b

a2 + ab a + b Quotient.

ab + b2

ab + b2
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It is of great importance to arrange both dividend and

divisor according to ascending or descending powers of some

common letter ; and to attend to this order in every part of the

operation.

EXAMPLES.
1. Divide 24a;

2 — S5xy + 2\y2 by Sx — Sy.

The operation is conveniently arranged as fellows

:

8a; — oy) 24a;
2 — 65xy + 2\y

2 (ox — 7y.

24a2 - 9xy

— 06.17 -f 2hf
-56xy + 21/

Divide

2. x2 + 3.?; + 2 by x -f 1. ^4?is. a; + 2.

3. x2 - 7x + 12 by a: - 3. x — 4.

4. a;
2 - 11a -f 30 by a; - 5. a? — 6.

5. x2 - 49a; 4- GOO by x - 25. x - 24.

6. 3a;
2 + 10a; + 3 by x + 3. 3a; + 1.

7. 2a;
2 + 11a; -f 5 by 2x + 1. x + 5.

8. hx2 + Ux + 2 by x + 2. 5a; + 1.

9. 2a2 + 17a + 21 by 2a; + 3. x + 7.

10. 5a2 + 16a: + 3 by a; + 3. 5a; + 1.

11. Divide 3a4 - 10a 3
/a + 22a2

6
2 - 22a63 + 1564 by

a2 - 2ab + 362
.

The operation is written as follows.

oa - 2ofi + 362)3a4 - 10rt 36 + 22a%2 - 22ab* + 15£ 4(3a2 - 4a& + 5b-

3a 4 - G«% + 9a 262

- 4«%+ 13a%»-22aP
- 4a86+ S« 262 -12«&3

5a 262 - 10a6» + 156*

5a262 - 10a£3 + 1564

12. Divide x'
J—5x5+7xs+2x2-Gx — 2 by 1 + 2a;— 3a;

2
-f x\

Arrange both dividend and divisor according to descending

powers of x, and arrange the work as follows

:
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xi _ 5^5 _j_ 7^3 + 2x2 - 6aj - 2 |a;
4 -
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In this example we arrange the terms according to de-

scending powers of a ; then when there arc two terms, such

as a2b and crc, which involve the same power of a, we

select a new letter, as 6, and put the term which contains b

before the term which does not; and again of the terms ab~

and «6c, we put the former first as involving the higher

power of b.

14. Divide a:
4 + 4a4 by x2 + 2ax + 2a'

2
.

x* + 4 a
4 \x

2 + %ax + 2a2

x4 + 2GUE8 4- 2aV jc
2 — 2aa; 4- 2a2

- 2ax* - 2aV
— 2«a-3 — Aa 2x2 — 4a8

se

2a 2
a;
2 + 4a8

» + 4a4

2aV + 4a8a; + 4a4

Divide

15. k8 - 5a;
4 + 9:c

3 - Oa;
2 - aj + 2 by a;

2 - Sx + 2.

-4ns. jc
3 - 2x2 + x + 1.

16. x5 - 2x4 - 4a;
3 + 19a;

2 - 31a; 4- 15 by a;
3 - 7a; 4- 5.

-4ws. x2 - 2a; 4- 3.

17. a3 4- &3 4- 3a6c - c
3 by o + 6-c.

Ans. a2 — aft 4- ac 4- ^ + &c + c2 .

18. a;
4 4- 64 by x2 4- 4a; 4- 8. x2 - \x 4- 8.

19. a6 - 66 by a8 - 2tt
26 4- 2«62 - 63

.

^7?s. a8 4- 2d*b 4- 2a62
4- &3

.

When the coefficients are fractional we may still use the

ordinary process, combining the fractional coefficients by

the rules of Arithmetic.

20. Divide Jx8
4- ?W + tW b}

T

ix + to-
la;3 4- TW + A?/

3
[fo + to

Ix
3 + Jafy £ar - \xy 4- i*/

2
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Divide

21. K -
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The division can be carried no further without fractions,

because x will not go into 8. We therefore express the

result in the same way as in Arithmetic, that is, by adding

to the quotient a fraction of which the numerator is the

remainder and the denominator the divisor. Thus the result

is

Cs2 + lis + 2

x — 2
= a," 4x + 3 +

x — 2

EXAMPLES.
Find the remainder when

x* — (jx
2 + 123—17 is divided by x — 3.

3x3 — 7x — 9 is divided by x + 1.

2x* -\- bx2 — 4x — 7 is divided by x + 2.

4a3 + 7x2 — 3x — 33 is divided by 4x — 5.

27a3 + 9x2 — 3x — 5 is divided by 3a; — 2.

16s3 - 19 + 39s - 46x2
is divided by 8x - 3.

8x — 8x2 + 5x3
-\- 7 is divided by 5x — 3.

.4?is. —8.
— 5.

5.

-18.

5.

-10.

10.

51. Important Examples in Division.— The follow-

ing examples are very important ; they may be easily verified,

and should be carefully noticed.

I.

t = * + y,

— = x2 + xy + ?/
2
,

x

x — y

t
II

X9 t _ xs + x2
y + xy2

4- 2/
3
,

x — y

and so on ; the terms in the quotient all beiug positive.

II.

ft

x + y
x* - y* = xs _
x + y
x* — if

._» + y

- y,

x2
y + xy2

xh — x4
y + xPy2 xhf + «2/

4 - 2/
B
,
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and so on ; the terms in the quotient being alternately posi-

tive and negative.

x2 - xy + y
2
,

x3
-f ?y

3



a2 _ 4a + 16.
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. CHAPTER VI.

SIMPLE EQUATIONS OF ONE UNKNOWN
QUANTITY.

52. Equations— Identical Equations.— An Equation

is a statement in Algebraic language that two expressions

are equal. Thus,
2x + A = x + 8

is an equation ; it states that the expression 2x -f- 4 is equal

to the expression x -f- 8.

The two equal expressions thus connected are called sides

or members of the equation. The expression to the left

of the sign of equality is called the first side or member,

and the expression to the right is called the second side or

member. Every equation has two members.

An Identical Equation, or briefly an Identity, is one in

which the two members are equal whatever numbers the

letters represent. Thus, the following are identical equa-

tions : n n
x + 3+x + 4: = 2x+7,

(a -f x) (a — x) — a2 + x2 =
;

that is, these Algebraic statements are necessarily true,

whatever values we assign to x and a. All the equations

used in the previous chapters to express the relations of

Algebraic quantities are identical equations, because they

are true for all values of these quantities.

53. Equation of Condition— Unknown Quantity.
— An Equation of Condition is one which is true only when
the letters represent some particular value. For example,

the equation,
a + 7 = 12,

cannot be true unless x = 5, and is therefore an equation of

condition.



AXIOMS. 69

An equation of condition is called briefly an equation.

The letter whose value, or values, it is required to find

is called the unknown quantity. Thus x is the unknown
quantity in the above equation.

To solve an equation means to find the value, or values,

of the unknown quantity for which he equation is true.

These values of the unknown quantity are said to satisfy the

equation, and are called the roots of the equation.

An equation which contains only one unknown quantity is

called a simple equation, or an equation of the first degree,

when the unknown quantity occurs only in the first power.

It is usual to denote the unknown quantity by the letter x.

The equation is said to be of the second degree or a quadratic

equation when x2
is the highest power of x which occurs, and

so on.*

Thus 2x + G = x + 8,

and ax -f b = c

are simple equations.

x2 - 2x = 3

is a quadratic equation.

54. Axioms.— An Axiom is a self-evident truth. The
operations employed in solving equations are founded upon

the following axioms :

1. If equal quantities be added to equal quantities, the

sums will be equal.

2. If equal quantities be taken from equal quantities, the

remainders will be equal.

3. If equal quantities be multiplied by equal quantities,

the products will be equal.

4. If equal quantities be divided by equal quantities, the

quotients will be equal.

f

* The equation is supposed to be reduced to such a form that the unknown
quantity is found only in the numerators of the terms, and that the exponents of ita

powers are expressed by positive integers.

t If the divisors are different from zero.
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5. Like powers and like roots of equal quantities are

equal.

These axioms may be summed up in the following one

:

If the same operations be performed on equal quantities, the

results will be equal.

In the solution of equations there are two operations

of frequent use. These are (1) clearing the equation of

fractions, and (2) transposing the terms from one member

to the other so that the unknown quantity shall finally stand

alone as one member of the equation.

55. Clearing of Fractions.— Consider the equation

2! 4_ £? _i_ E — 2.
2 3 6

Multiplying each term by 2 x 3 x 6 (Axiom 3), we get

3 X 6a; + 2 x 6a; + 2 x Sx = 2 x 3 X 6 X 2,

or 18a; -f- 12a; + 6a; = 72;

dividing each term by 6 (Axiom 4), we get

3a; + 2x + x = 12,

or 6x = 12.

Instead of multiplying each term by 2 x 3 x 6, we might

multiply each term by the least common multiple of the

denominators, which is 6, and get immediately

3x -f 2a; + x = 12.

Hence to clear an equation of fractions, we have the

following

Eule.

Multiply each term of the equation by the least common
multiple of the denominators.

Clear the following equation of fractions

:

3 5
"

7
"~

Here the least common multiple of the denominators is

the product of the denominators, 3, f>, and 7. Multiplying

each term by it, we get

35a; + 21a; - 15a; = 315,

or 41a; = 315.
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Clear the following equation of fractions :

4 6 8 12

Here 24 is the least common multiple of the denominators.

Multiplying each term by it, we get

6a; + 4a; + 3x + 2a; = 96,

or 15a; = 96.

56. Transposition.— To transpose a term is to change

it from one member of an equation to the other without

destroying the equality of the members.

Suppose, for example, that x — a = b.

Add a to each member (Axiom 1) ; then we have

x — a -f a = b -f a
;

therefore, since —a and +a cancel each other, we have

x = b + a.

Again, suppose that x -f- b = a.

Subtract b from each member (Axiom 2) ; then we have

x + b — b = a — b\

therefore, since +b and —b cancel each other, we have

x = a — b.

Here we see, in these two examples, that —a has been

removed from one member of the equation, and appears

as +a in the other; and -\-b has been removed from one

member and appears as —b in the other.

It is evident that similar steps may be employed in all

cases. Hence we have the following

Rule.

Any term may be transposed from one member of an

equation to the other by changing its sign.

It follows from this that the sign of every term of an equa-

tion may be changed; for this is equivalent to transposing

every term, and then making the first and second members

change places. Thus, for example, suppose that

Ax - 8 = 2a; - 16.
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Transposing every term, we have

-2x + 16 = -4a; + 8,

or -4x + 8 = -2x + 16,

which is the original equation with the sign of every term

changed.

This result can also be obtained by multiplying each term

of the original equation by — 1 (Axiom 3)

.

57. Solution of Simple Equations with One Un-
known Quantity.— Find the value of x in the equation

x _ 18 _ x _ x

2 5 ~ 4 5'

The least common multiple of the denominators is 20.

Multiplying each term by 20, we get

10& — 72 = hx — 4x.

Transposing the unknown terms to the first member, and

the known terms to the second, we have

10a; - 5x -f- 4x = 72.

Collecting the terms, we have

9x = 72.

Dividing each member by 9 (Axiom 4), we have

x = 8.

We can now give a general rule for solving any simple

equation with one unknown quantity.

Rule.

Clear the equation of fractions, if necessary; transpose all

the terms containing the unknown quantity to the first member

of the equation, and the known quantities to the secona:, and

collect the terms of each member. Divide both members by

the coefficient of the unknown quantity, and the second member

is the value required.
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EXAMPLES,
1. Solve 9x + 35 = 75 + 5x.

Here there are no fractions ; transposing, we have

9a; — 5.v; =75 — 35.

Collecting terms, Ax = 40.

Dividing by 4, x = 10.

It is very important for the student to acquire the habit

of occasionally verifying, that is, proving the truth of his

results. The habit of applying such proofs tends to con-

vince the student, and to make him self-reliant and confident

in his own accuracy.

To verify the result, in the case of simple equations, we
substitute the value of the unknown quantity in the original

equation ; if the two members are equal the result is said to

be verified, or the equation satisfied.

Thus, in the last example, 10 is the root of the proposed

equation (Art. 53). We may verify this, i.e., we may show

that x = 10 satisfies the original equation by putting 10 for

x in that equation.

Thus 9 x 10 -f- 35 = 75 + 5 x 10,

or 90 + 35 = 75 + 50,

or 125 = 125,

which is clearly true. Hence, since the two members are

equal, x = 10 satisfies the equation.

2. Solve 5(<b - 3) - 7(6 - x) + 3 == 24 - 3(8 - x).

Removing parentheses,

5X _ 15 _ 42 + 7x + 3 = 24 - 24 + Sx.

Transposing, ox + 7as — 3a; =24 — 24 + 15+42 — 3.

Collecting terms, 9x = 54.

Dividing by 9, x = 6.

We may verify this result by putting 6 for x in the given

equation.

Thus 5(6 - 3) - 7(6 - 6) + 3 = 24 - 3(8 - 6),

or 15 -f 3 = 24 - 6,

or 18 = 18.
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3. Solve 5x - (4a: - 7) (3.x- - 5) = 6 - 3(4a; - 9) (a; - 1).

Performing the multiplications indicated, we have

bx - (12a;2 - 41a; + 35) = 6 - 3 (4a/
2 - 13a; + 9).

Removing the parentheses, we have

5x - 12a;
2 + 41s - 35 = 6 - 12a;

2 + 39a; - 27.

Erasing the term — 12a;
2 on each side, and transposing, we

have bx + 41a? - 39a; = 6-27 + 35.

Collecting terms 7a; = 14.

.•. x = 2.

We may verify this result by putting 2 for x in the given

equation.

The first member becomes

10 - (8 - 7) (6 - 5) = 10 - 1 = 9
;

and the second member becomes

6 - 3(8 - 9)(2 - 1) = 6 - 3(-l) = 9.

Thus, since these two results are the same, x = 2 satisfies"

the equation.

Note. — In the first line of the solution of Ex. 3, we did not

remove the parentheses until we performed the multiplications. The
beginner is recommended to put down all his work as full as we have

done in this example, in order to insure accuracy.

4. Solve 8a; - 5[x - \G - 5(x - 3) J] = 4a; + 1.

Removing parentheses, we have

8a; - 5[a; - 21 + 5a?] = Ax -f- 1,

8a; — 5x -f 105 — 25a; = 4a; -f- 1.

.-. -26a; = -104.

x = 4.

Solve the following equations :

5. 2a; -f 7 = 3a; -f 3. Ans. 4.

6. 24a; - 49 = 19a; - 14. 7.

7. lGx — 11 = 7a; + 70. 9.

8. 8(x - 1) + 170 - 3) = 4(4a; - 9) -f 4. 3.

9. 5a? - 6 (re - 5) = 2 (a; + 5) + 5(x - 4). 5.

10. S(x - 3) - (6 - 2a;) = 2 (a; + 2) - 5(5 - x). 3.

11. 3(169 - x) - (78 + a;) = 29a;. 13.

12. 7a; - 39 - 10a; + 15 = 100 - 33a; + 26. 5.
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13. 118 — 65a; — 123 = 15a; + 35 — 120x. Ans. 1.

14. 157 - 21 (x + 3) = 163 - l5(2a; - I). 1G.

15. 97 - 5(.r + 20) = 111 - S(x + 3). 30.

10. x _ [3 + J.r
- (3 + a;)|] = 5. 5.

17. 14a; - (5a; — 9) — |4 — 3a; - (2a; - 3) \ = 30. 2.

18. 5x - (Sx — 7) — J4 — 2a; - (6a; - 3) \
= 10. 1.

58. Fractional Equations.— The following are some

of the most useful methods of solving fractional equations.

EXAMPLES.
, o i 5a; -f 4 7x + 5 .3 x — 1
1. Solve ! — = o- —

.

2 10 5 2

5-| = -2^ ; the least common multiple of the denominators

is 10; multiplying by 10, we have

5(5./' + 4) — (7a; + 5) = 06 — o(x — 1)

;

removing parentheses,

25a; -f- 20 — 7x — 5 = 56 — 5.7; -f 5

;

transposing, 2ox — 7x + ox = 56 + 5 — 20 + 5;

collecting terms, 23.tj = 4G
;

.-. x = 2.

Xote. — Mistakes with regard to the signs are often made in

clearing an equation of fractions. In this equation the fraction

—x
is regarded as a single term with the minus sign hefore it: it

2
is equivalent to —\{x — 1). When multiplied by 10, it is well to put

the result first in the form —5(x — 1), and afterwards in the form

_.V _|_ 5, in order to secure attention to the signs.

2. Solve 4 - —— =*--!. Ans. 33.
8 22 2

3. " |(5a; + 3) - £(16 - 5a;) = 37 - 4a?. 6.

4 M Gx + 15 _ Sx - 10 = 4.v; - 7
3

11 7 5

Note. — In certain cases it is more advantageous not to clear the

equation of fractions at once by multiplying it throughout by the least

tommon multiple of the denominators (Art. 55), but to clear it of

fractions partially, and then to effect some reductions, before we

semove the remaining fractions.
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K o , x — 4 , 2s - 3 5x — 32 a; -f- 9
5. Solve H — = ^-— .

3 35 9 28

First multiply by 9, and we have

& _ i2 + 18* ~ 27 = 5 ,, _ 3

2

_ 9s + 81

35 28 '

18s - 27 , 9s -f- 81 Q ontransposing, —
1

-1-— = 2s — 20.

Now clear of fractions by multiplying by the least common
multiple of the denominators, which is 5 x 7 x 4, or 140,

and we get

72s - 108 + 45s + 405 == 280s - 2800 ;

transposing, 72s -f- 45s - 280s = -2800 + 108 - 405;

collecting terms, — lG3s = —3097;

dividing by —163, x = 19.

Solve the following equations

:

- X — 2 . X -f- 10 K a a6. — h —-— = 5. Ans. 8.

r- X -f~ 1«/ q . S

5 4' 16.

8. tli = 1 + *±I> 17.
8 18

q
4(x + 2) __ 5s

9. — - 7 + -. 13.

10. »±J0 + *JL = 6 . 7 .

9 7

11. ®JzJ* + ?LzJ? + A - o. 4.
7

T
3

T
21

12 * + f) _ * + 1 = ^ + 3 1

6 9 4* 7*

13.
3-^^ - ±(X - 4) = !(.- 6) + A. 6.

16 12
v

' 5
V y

48

14. f - ±<« + 10) - (s - 3) - ^L_Z _
4|. 7.
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59. To Solve Equations whose Coefficients are

Decimals, it is advisable generally to express all the

decimals as common fractions, to insure accuracy, and then

proceed as before ; but it is often found more simple to

work entirely in decimals.

EXAM PLES.

1. Solve .6*x + -25 - Jaj = 1.8 - .75a: -
-J.

Expressing the decimals as vulgar fractions, we have

2 r i 1 _ l r _ 1 8 _ 3 v _ 1 .

clearing of fractions,

24a: -f 9 - 4a: = 68 - 27a; - 12
;

transposing, 24x — Ax + 27a? = 68 — 12 — 9

;

.-. 47as = 47
;

x = 1.

2. Solve ,375a; - 1.875 = ,12a; + 1.185.

Transposing, ,375a: — ,12a; = 1.185 + 1.875;

collecting terms, (.375 — ,12)a: = 3.06;

that is ,255a: = 3.0G
;

dividing by .255, x = 12.

3. Solve ,5a: — ,3a: = ,25a: — 1. Ans. 12.

4. " ,2a; - ,16a; = .6 - .3. 8.

5. " 2.25a: — .125 = 3a: A- 3.75. — 5£.

60. Literal Equations. — A Literal Equation is one in

which some or all the numbers are represented by letters.

Thus
ax2 + bx = ex + 4, and ax + b = ex* — d,

are literal equations. The known numbers are usually

represented by the first letters of the alphabet, as «, b, c,

etc.

* .6 denotes the repeteud .6GG0 etc. = §. Similarly .8 denotes .888 etc. = $

.



78 LITERAL EQUATIONS— EXAMPLES.

EXAMPLES.
1. Solve ax 4- b

2 = &aj 4- a2
.

Transposing, we have

ax — bx = a2 — Z>
2
,

that is (a — &)se = a2 — 62
;

dividing by a — &, the coefficient of #, we have

x = (a2 - Z>
2
) -5- (a - 6) = a + 6.

2. Solve
X

4- - = c.

a o

Multiplying by a&, we have

bx + aaj = abc,

that is, (ft 4- b)x = «&c
;

dividing by a 4- 6, the coefficient of jc, we have

a + b

3. Solve (a - x) (a 4- x) = 2a2
4- 2aa; - x\

Ans. x = —

4. Solve 2# 4- bx — a = 3a — 2c. a =

a
2*

a - 2c

& - 1

5. Solve ax — bx 4- Z>
2 = a2. a = a 4- b,

G. Solve (a 4- x) (& 4- a?) = a(& 4- c) 4- — 4- a2
.

^,9. X = —

.

6

7. Solve a(# — a) 4- &(* — b) = 2ab. x = a 4- &•

8. Solve 2(x - a) 4- 3(a> - 2a) = 2a. a = 2a.

9. Solve J(su + a + i)+ \{x + a - b) = b.

Ans. x = b — a.

10. Solve (a 4- &«)(& 4- as) = ab(x2 — 1).

2«?j

a2
4- &*'
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61. Problems Leading to Simple Equations.—
The preceding principles may now be employed to solve

various problems.

A Problem is a question proposed for solution. In a

problem certain quantities are given or known, and certain

others which have some assigned relations to these, are

required.

A Theorem is a truth requiring proof.

Axioms, Problems, and Theorems, are called Propositions.

The Solution of a problem by Algebra consists of two dis-

trict parts : (1) The Statement of the problem, and (2) the

Solution of the equation of the problem.

The Statement of the problem is the process of expressing

the conditions of the problem in Algebraic language by an

equation. The statement of the problem is often more

difficult to beginners than the solution of the equation. Xo
rule can be given for the statement of every particular

problem. Much must depend on the skill of the student,

and practice will give him readiness in this process. The

following is the general plan of finding the equation :

1. Study the problem, to ascertain what quantities in it are

known and what are unknown, and to understand it fully, so

as to be able to prove the correctness or incorrectness of any

proposed answer.

2. Represent the unknown quantity by one of the final

letters of the alphabet, say x, and express in Algebraic

language the relations which hold between the known and un-

known quantities; an equation wiU thus be obtained which can

be solved by the methods already given, and from which the

value of the unknown quantity may be found.

Xote 1. — Problems may often involve several unknown quantities,

but in the present chapter we shall consider only problems in which

there is one unknown quantity, or in which, if there are several, they

are so related to one another that they can all be expressed in terms

of some one of them.
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EXAMPLES.
1. What number is that whose double exceeds its half by

27?

Let x represent the number
;

then 2x represents the double of the number,

x
aud - represents the half of the number.

Since from the conditions of the problem the double

exceeds the half by 27, we have for the equation

2x - - = 27.
2

Clearing of fractions,

4x — x = 54,

that is, 3x = 54.

.-. x = 18.

Hence the required number is 18.

Verification, 2 x 18 - — =27.
2

2. The sum of two numbers is 28, and their difference is

Let x = the smaller number

;

then x -|- 4 = the greater number

;

and since, from the conditions of the problem, the sum is to

be equal to 28, we have for the equation

x + x + 4 = 28
;

that is 2x = 24.

.*. x = 12,

and x + 4 = 16,

so that the numbers are 12 and 1G.

Verification, 16 + 12 = 28, and 16 — 12 = 4.

The beginner is advised to test each solution by prating

that it satisfies the data of the question.

3. A has $80 and B has $15. How much must A give to

1> in order that he may have just four times as much as B?
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Let x = the number of dollars that A gives to B
;

then 80 — x = the number of dollars that A has left,

and 15 -f x = the number of dollars that B will have after

receiving x dollars from A.

But A has now four times as much as B ; hence we have

the equation

80 - x = 4(15 + x),

that is, 80 — x == 60 + Ax,

transposing and uniting, —ox = —20,

dividing by —5, x = 4.

Hence A must give 84 to B.

4. A father is six times as old as his son, and in four

years he will be four times as old. How old is each?

Let x = the son's age in j-ears,

then 6x = the father's age in }
Tears.

Also x -f- 4 = the son's age in years, after four years,

and 6o5 4- 4 = the father's age in years, after four years.

Hence, from the conditions, we have the equation

6x + 4 = 40 -f 4),

that is, 6a? + 4 == 4a; + 16
;

.•. x = 6, the son's age,

and 6# = 36, the father's age.

5. Divide 60 into two parts, so that 3 times the greater

may exceed 100 by as much as 8 times the less falls short of

200.

Let x = the greater part,

then 60 — x = the less.

Also Sx — 100 = the excess of 3 times the greater over

100, and 200 — 8(60 — x) = the number that 8 times the

less falls short of 200. Hence, from the conditions, we

have the equation

3a; - 100 = 200 - 8(60 - x),

that is, 3a; -,100 = 200 - 480 -f- 8a;,

hence, — oa; = —180.

.-. x = 36, the greater part.

60 — X = 24, the less.
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6. A line is 2 feet 4 inches long ; it is required to divide

it into two parts, such that one part may be three-fourths of

the other part.

Let x = the number of inches in the larger part,

then fas = the number of inches in the other part.

Hence, from the conditions, we have the equation

x + %x = 28,

that is, ±x + ox = 112.

.-. x = 16.

Thus one part is 16 inches long, and the other part 12 inches

long.

7. Divide $47 between A, B, C, so that A may have $10

more than B, and B $8 more than C.

Note 2. — Here there are really three unknown quantities, but it

is only necessary to represent the number of dollars the last has by a

symbol.

Let x = the number of dollars that C has,

then x -f 8 = the number of dollars that B has,

and x + 8 -f- 10 = the number of dollars that A has.

Hence we have the equation

x + (x + 8) + (x -f- 8 -f 10) = 47,

.-. 3a; = 21,

x == 7;
so that C has $7, B $15, A $25.

8. A person spent £28. 4s. in buying geese and ducks ; if

each goose cost 7s., and each duck cost 3.9. , and if the total

number of birds bought was 108, how many of each did he

buy?

Note 3. — In questions of this kind it is of essential importance

to have all concrete quantities of the same kind expressed in the same
denomination; in the present instance it will be convenient to express

the money in shillings. In Ex. G it was convenient to express the

length in inches.

Let x = the number of geese,

then 108 — x = the number of ducks.

Also 7a? = the number of shillings the goose cost,

and 3(108 — x) = the number of shillings the ducks cost
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But from the conditions of the question, the whole cost of

the geese and ducks is £28. 46-., i.e., 0G4 shillings, lleuce

we have the equation

7x + 3(108 - x) = 564,

that is, 7x -f 324 — ox = 564,

.-. x = 60, the number of geese,

and 108 — x = 48, the number of ducks.

9. A can do a piece of work in 12 hours, which B can do

in 4 hours. A begins the work, but after a time B takes his

place, and the whole work is finished in 6 hours from the

beginning. How long did A work ?

Let x = the number of hours that A worked,

then 6 — x = the number of hours that B worked.

Also
j
3^ = the part A does in 1 hour, since he can do

the whole work in 12 hours.

x
Therefore — = the part done by A altogether.

Also J = the part B does in 1 hour, since he can do

the whole work in 4 hours.

Therefore J (6 — x) = the part done by B altogether.

But A and B together do the ivhole work ; hence the sum

of the parts of the work that they do separately must equal

unity; and we have for the equation

— + -(6 - x) = 1.
12 4

V J

Multiplying by 12, we have

x + 3(6 — x) = 12,

... _2aj = -6.

x = 3.

Hence A worked for 3 hours.

Note 4. — It should be remembered that x must always represent

a number; what is called the unknown quantity is really an unknown
number. In the above examples the unknown quantity x represents

a number of dollars, years, inches, etc. For instance, in Ex. 6, we let

x denote the number of inches in the longer part; beginners often say,
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" let x = the longer part," or, " let x — a part," which is not definite,

because a part may be expressed in various ways, in feet, or inches, or

yards. Again, in Ex. 7, we let x = the number of dollars that C has;

beginners often say, "let x = C's money," which is not definite,

because C's money may be expressed in various ways, in dollars, or in

pounds, or as a fraction of the whole sum. The student must be

careful to avoid beginning a solution with a vague and inexact

statement.

It may seem to the student that some of the problems which are

given for exercise can be readily solved by Arithmetic, and he may
therefore be inclined to undervalue the power of Algebra and consider

it unnecessary. We may remark, however, that by Algebra the student

is enabled to solve all the problems given here, without any uncer-

tainty; and also, he will find as he proceeds, that he can solve

problems by Algebra, which would be extremely difficult or entirely

impracticable, by Arithmetic alone.

10. The difference between two numbers is 8 ; if 2 be

added to the greater the result will be three times the

smaller: find the numbers. Ans. 13, 5.

11. A man walks 10 miles, then travels a certain distance

by train, and then twice as far by coach. If the whole

journey is 70 miles, how far does he travel by train?

Ans. 20 miles.

12. What two numbers are those whose sum is 58, and

difference 28? Ans. 15, 43.

13. If 288 be added to a certain number, the result will

be equal to three times the excess of the number over 12 :

find the number. Ans. 162.

14. Find three cousecutive numbers whose sum shall

equal 84. Ans. 27, 28, 29.

15. Find two numbers differing by 10, whose sum is equal

to twice their difference. Ans. 15, 5.

10. Find a number such that if 5, 15, and 35 are added

to it, the product of the first and third results may be equal

to the square of the second. Ans. 5.

17. A is twice as old as B, and seven years ago their

united ages amounted to as many years as now represent the

age of A : find the ages of A and B. Ans, 28, 14.
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EXAMPLLS.
Solve the following equations :

1. 3.6- -\r -.5 = x -j- 25. Ans. 5.

2. 2a; + 3 = 16 - (2x - 3). 4.

3. 7(25 - x) - 2x = 2(3a; - 25). 15.

4. 5x — 17 + Sx — 5 = 6a; — 7 — 8a; + 115. 13.

5. 5(aJ -f- 2) = 3(> -f 3) + 1. 0.

G. 2(x - 3) = 5(as + 1) + 2x - 1. -2.

7. 2(a? - 1) - 3(a; - 2) + 4(a; - 3) + 2 = 0. 2.

8. bx + 6(a; + 1) - 7(a; + 2) - 8(a; + 3) = 0. -8.

9. (.v -f l)(2a; + 1) = (x + 3) (2a; + 3) - 14. 1.

10. O+l) 2 -(a;2-l)=a;(2a;+l)-2O-f2)(a;+l)+20.
Ans. 2.

11. G(a;2-3a;+2)-2(a;2-l)=4(a;+l)(a;+2)--24. 1.

12. 2x - o\3x - 7 (4a; - 9) \
= 66. 3.

13. 3(5 - 6a;) - 5[x - 5|1 - 3(a; - 5) J] = 23. 4.

14. (x + l) 2 + 2(x + 3)
2 = 3a;(a; + 2) + 35. 2.

15. 84+0+4)(a;-3)(a;+5) = (a;+l)(a;+2)(^+3). 1.

1G. (x-\-l)(x + 2)(x + 6) = x3 +()x2 + 4(7x- 1). 2.

17. 5 _ £ _ i. _20.
5 4

18. ?-—5 + ^-=-2 = 3. 5.
2 3

19. }(« + 1) - f (a; - 1) = 3. -5.

20. J(2 - x) - |(&B + 21) = x + 3. -2Jf.

21 t±l + i+J +i±i + 8sB , a _9A .

22. *=J - 2-ZLi = -3LziJ _ rx _ 2 ). 2±
2 3 2

V ; 2

23. ^-±-1 - 2x ~ i + H = 0. -16.
2 5

4

24.
8* + 5 - 21 + * = 5* - 15. 1.

25. 2 - T\(x - 11) = f(a; - 25) + 34. 25.
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26. l(x - 8) + ^4^ + ^-=-^ = 7 - 2

27, * - (to - ^j~j = *(&* - S7) -
f.

5

-4ns. 8.

28.
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46. Divide 105 into two parts, one of which diminished

by 20 shall be equal to the other diminished by 15.

Ans. 50, 55.

47. The sum of two numbers is 8, and one of them with

22 added to it is five times the other : find the numbers.

Ans. 3, 5o

48. A and B begin to play each with 860. If they play

till A's money is double B's, what does A win? Ans. $20.

49. The difference between the squares of two consecutive

numbers is 121 : find the numbers. Ans. 60, 61.

50. Divide 8380 between A, B, and C, so that B may
have $30 more than A, and C may have $20 more than B.

Ans. A 6100, B 8130, C $150.

51. A father is four times as old as his son ; in 24 years

he will only be twice as old : find their ages. Ans. 48, 12.

52. A is 25 years- older than B, and A's age is as. much
above 20 as B's is below 85 : find their ages. Ans. 65, 40.

53. The sum of the ages of A and B is 30 years, and five

years hence A will be three times as old as B : find their

present ages. Ans. 25, 5.

54. The length of a room exceeds its breadth by 3 feet

;

if the length had been increased by 3 feet, and the breadth

diminished by 2 feet, the area would not have been altered :

find the dimensions. Ans. 15 ft., 12 ft.

55. There is a certain fish, the head of which is 9 inches

long ; the tail is as long as the head and half the body ; and

the body is as long as the head and tail together : what is the

length of the fish ? Ans. 6 ft.

56. The sum of $76 was raised by A, B, and C together

;

B contributed as much as A and $10 more, aud C as much

as A and B together : how much did each contribute?

Ans. $14, $24, $38.

57. After 34 gallons had been drawn out of one of two

equal casks, and 80 gallons out of the other, there remained

just three times as much in one cask as in the other : what

did each cask contain when full? Ans. 103.
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58. Divide the number 20 into two parts such that the

sum of three times one part, and five times the other part,

may be 84. Ans. 8, 12.

59. A person meeting a company of beggars gave 4 cents

to each, and had 1(3 cents left; he found that he should

have required 12 cents more to enable him to give the

beggars 6 cents each : how many beggars were there ?

Ans. 14.

GO. Divide 100 into two parts such that if a third of one

part be subtracted from a fourth of the other, the remainder

may be 11. Ans. 24, 76.

Gl. Divide 60 into two parts such that the difference

between the greater and 64 may be equal to twice the

difference between the less and 38. Ans. 36, 24.

62. Find a number such that the sum of its fifth and its

seventh shall exceed the sum of its eighth and its twelfth by

113. Ans. 840.

63. An army in defeat loses one-sixth of its number in

killed and wounded, and 4000 prisoners ; it is re-enforced

by 3000 men, but retreats, losing one-fourth of its number

in doing so ; there remain 18000 men : what was the original

force? Ans. 30000.

64. One-half of a certain number of persons received 18

cents each, one-third received 24 cents each, and the rest

received 30 cents each ; the whole sum distributed was

$5.28 : how many persons were there? Ans. 24.

65. A father has six sons, each of whom is four years

older than his next younger brother ; and the eldest is three

times as old as the youngest: find their respective ages.

Ans. 10, 14, 18, 22, 26, 30.

66. A man left his property to be divided between his

three children in such a way that the share of the eldest was

to be twice that of the second, and the share of the second

twice that of the youngest ; it was found that the eldest

received $3000 more than the youngest: how much did each

receive? Ana. $1000, $2000, $1000.
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67. A sum of money is divided among throe persons ; the

first receives 810 more than a third of the whole sum

;

the second receives 815 more than a half of what remains

;

and the third receives what is over, which is 870 : find the

original sum. Ans. 8270.

68. In a cellar one-fifth of the wine is port and one-third

claret; besides this it contains 15 dozen of sherry and 30

bottles of spirits : how much port and claret does it contain ?

Ans. 90 port, 150 claret.

69. Two-fifths of A's money is equal to B's, and seven-

ninths of B's is equal to C's : in all they have 8770, what

have they each? Ans. A 8450, B 8180, C 8140.

70. A, B, and C have $1285 between them ; A's share is

greater than five-sixths of B's by 82-3, and C's is four-

fifteenths of B's : find the share of each.

Ans. A 8525, B 8600, C $160.

71. A sum of money is to be distributed among three

persons, A, B, and C ; the shares of A and B together

amount to S240 ; those of A and C to 8320 : and those of B
and C to $368 : find the share of each person.

Ans.. $96, 8144, 8224.

72. Two persons A and B are travelling together; A has

81 00, and B has $48 : they are met by robbers who take

twice as much from A as from B, and leave to A three times

as much as to B : how much was taken from each?

Ans. 888. 844.

73. In a mixture of wine and water the wine composed

25 gallons more than half of the mixture, and the water 5

gallons less than a third of the mixture : how many gallons

were there of each? Ans. 85, 35.

74. A general, after having lost a battle, found that he

had left fit for action 3600 men more than half of his army :

600 men more than one-eighth of his army were wounded
;

and the remainder, forming one-fifth of the army, were slain,

taken prisoners, or missing : what was the number of the

army? Ans. 24000.
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CHAPTER VII.

FACTORING—GREATEST COMMON DIVISOR-
LEAST COMMON MULTIPLE.

62. Definitions.— Factoring is the process of resolving

a quantity into its factors.

The Factors of a quantity are those quantities which

multiplied together produce it. A factor of a quantity is

therefore a divisor of the quantity, i.e., it will divide the

quantity without a remainder. Thus, a is a factor or divisor

of abc, and b is a factor or divisor of ab — b2
.

Note. —In Division (Chap. Y.) we had given the product of two

factors and one of the factors, and we showed how to find the

other factor. In the present chapter we shall consider cases in which

the factors of an expression can he found when none of the factors

are given.

A Prime Quantity is one which has no integral factor

except itself and unity. Thus, o, b, and a + c are prime

quantities ; while ab, and ac + be are not prime.

Quantities are said to be prime to each other or relatively

prime, when unity is the only integral factor common to

both. Thus, ab and cd are prime to each other.

A Composite Quantity is one which is the product of two

or more integral factors, neither of which is unity or the

quantity itself. Thus, ax + x* is a composite quantity,

the factors of which are as and a -f- X.

63. When All the Terms have one Common
Factor. — When each term of :i polynomial is divisible

by a common factor, the polynomial may be simplified by

the following
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KULE.

Divide each term of the polynomial separately by the com-

mon factor, and enclose the quotient within pareritheses, the

common factor being placed outside as a coefficient; then the

divisor will be one factor and the quotient the other.

EXAMPLES.
1 . Factor the expression 3a2 — Gab.

Here we see that the terms have a common factor, 3a

;

therefore, dividing* the polynomial by 3a, we obtain for the

quotient a — 26. Hence the two factors are 3a and a — 26.

.-. 3a2 - Gab = 3a(a - 26).

Similarly

2. 5a26a4 - IhaXM - 20ab*x* = 5abx*(ax - 36 - 462a).

Factor the following expressions :

3.
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EXAMPLES.
1

.

Resolve into factors a;
2 — ax 4- bx — ab.

Here we see that the first two terms contain a factor a;, and

the last two terms a factor b ; therefore we factor the first

two and last two terms by Art. 63, and obtain x(x — a)

and b(x — a). We now see that the two pairs have the

common binomial factor x — a. Dividing by x — a we

obtain the quotient x -f- o f°r the other factor.

The work therefore will stand as follows

:

x2 — ax + bx — ab = x(x — a) 4 b(x — a)

— (x — a)(x 4- b).

2. Resolve into factors 6a;
2 — dax -f- 46a; — Gab.

Gx2 — 9ax + 46a; — Gab = 3x(2x — 3a) + 2b{2x — 3a)

= (2x - 3a) (3a; + 26).

3. Resolve into factors 12a2 — 4a6 — 3aa;
2 + bx2 .

12a2 - 4a& - 3aa;2 + 6a;
2 = 4a (3a - 6) - a;

2(3a - 6)

= (3a - 6) (4a - x2
).

Note. — It is not necessary always to factor in the same way. In

the first line of work it is usually sufficient to see that each pair

contains some common factor; and any suitably chosen pairs will

bring out the same result. Thus, in the last example, we may have

a different arrangement, and enclose the first and third terms in one
pair, and the second and fourth in another as follows:

12a'2 - Aab - Sax* + bx2 = ]2a2 - Sax2 - (4a6 - bx2)
= 3a(4a — a;

2
) - b(4a - x2

)

= (4a - x2
) (3a - b),

which is the same result as before.

Resolve into factors

4£.{dl 4- a6'
;

4- ac + 6c. -4ns. (a + 6) (a + c)

5. a2 — ac -f ab — be. (a — c)(a + 6)

G. a2
c
2 + acd + abc 4- bd. (ac 4 d)(ac 4- 6)

a2 + 3a 4- ac 4- 3c. (a + 3)(a T c)

2aa; 4- ay + 26a; 4- by, (2x 4- y) (a 4- 6)

3ai» — 6a; — Bay 4 6y. (3a — 6) (x — ?/)

aa;
2 + 6a;

2 4 2a 4 26. (a 4- 6) (a;
2 4 2)

a;
2 - 3a; - xy 4 8y, (a; - 3) (as - y)
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65. To Factor a Trinomial of the Form x2+ax+b.—
Let x2

-{- ax + b be any trinomial in which the coefficient

of x2
is + 1 , and the signs of a and b either plus or minus.

Before proceeding to explain this case of resolution into

factors, the student is advised to refer to Art. 40, and

examine the relation that exists be /ween two binomial

factors and their product. Attention was there called to

the way in which, in forming the product of two binomials,

the coefficients of the different terms combined so as to give

a trinomial result.

Therefore, in the converse problem, namely, the resolution

of a trinomial expression into its component binomial factors,

we see, by reversing the results of Art. 40, that any trino-

mial may be resolved into two binomial factors, when the

first term is a square, and the coefficient of the second term

is the sum of two quantities whose product is the third term.

Hence the following

Rule

The first term of each factor is x, and the second terms

are two numbers whose Algebraic sum is the coefficient of the

second term, and whose product is the third term.

The application of this rule will be easily understood from

the following ^
EXAMPLES.

1. Resolve into factors x2
-f- 11a; + 24.

Here the first term of each binomial factor is x, and the

second terms of the two binomial factors must be two

numbers whose sum is 11 and whose product is 24. It is

clear therefore that they must be -f-S and +3, since these

are the only two numbers whose sum is 11 and whose product

is 24.

.-. x2 + 11a; + 24 = (x + S)(x + 3).

2. Resolve into factors x2 — 7x + 12.

The first term of each factor is .t, and the second terms

of the factors must be such that their sum is —7, and their
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product is +12. Hence they must both be negative, and it

is easy to see that they must be —4 and —3.

.-. x2 - 7x + 12 = (x - 4) (x - 3).

3. Resolve into factors x2 + 5x — 24.

The first term of each factor is x, and the second terms

of the factors must be such that their Algebraic sum is -f- 5,

and their product is —24. Hence they must have opposite

signs, and the greater of them must be positive in order to

give the positive sign to their sum. It is easy to see there-

fore that they must be +8 and —3.

.-. x2 + hx - 24 = (x + 8)0 - 3).

4. Resolve into factors x2 — x — 56.

The first term of each factor is x, and the second terms

of the factors must be such that their Algebraic sum is —1,

and their product is —56. Hence they must have opposite

signs, and the greater of them must be negative in order to

give its sign to their sum. The required terms are therefore

-8 and +7.
.-. x2 - x — 56 = (a; - 8)0 + 7).

Note. — In examples of this kind the student should always verify

his results, by forming the product, mentally, of the factors he has

chosen, as in Art. 40.

Resolve into factors

5.
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16. x2 — 4a? — 12. Ans. (x - G)(<c + 2).

17. x2 - x - 20. {x - 5) (a; + 4).

S a2 - 4a - 21. (a - 7) (a + 3).

1& a2 + a - 20. (a + 5) (a - 4).

52 a2 - 4a - 117. (a - 13) (a + 9).

@. a2
-f 9a; - 3G. (a; + 12) (a; - 3).

Note. — If the term containing x- is negative, enclose the whole

expression in a parenthesis with the minus sign prefixed. Then factor

the expression within the parenthesis as in the preceding examples,

and change the signs of all the terms of one of the factors. Thus

22. Factor 90 + 9a; - x2
.

90+9a;-aJ2=-(a;2-9a;-90)= -(a;-15)(aj+6)= (15-a;)(ar+6).

23. Factor 240 + x — x2
. Ans. (16 — a?) (a; + 15).

24. Factor 85 -f- 12a; - a;
2

. (17 - x) (x + 5).

/||. Factor 110 - x - x2
. (10 - x)(x + 11).

^26) Factor 152 + 11a; - a;
2

. (19 - x)\x + 8).

66. To Factor a Trinomial when the Coefficient

of the Highest Power is not Unity. — Let it be

required to factor 3a;
2 4- 14a; + 8.

The first term 3a;
2
is the product of 3a; and x.

The third term 8 is the product of 2 and 4 or 1 and 8.

The middle term 14a; is the result of adding together the

two products 3a; and 2 and x and 4, or 3a; and 4 and x and 2,

or 3a; and 1 and x and 8, or 3a; and 8 and x and 1.

Taking the first products we have 3a; X 2 + x x 4 = 10a;

;

this combination therefore fails to give the correct middle

term.

Next try the second products, and get 3a; x 4-f- x X 2 = 14a;,

which is the correct value of the middle term.

.-. 3a;
2 + 14a; + 8 = (3a; + 2)(x + 4).

The beginner will frequently find that it is not easy to

select the proper factors at the first trial. Practice alone

will enable him to detect at a glance whether any two factors

are the proper ones.
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EXAMPLES.
1. Resolve into factors 14a;2 + 29a; — 15.

Y\
r
rite down (7a; 5) (2a; 3) foi a first trial, noticing that

3 and 5 must have opposite signs. These factors give

14a?
2 and —15 for the first and third terms. But since

7x3— 2x5 = 11, this combination fails to give the

correct coefficient of the middle term.

Next try {lx 3) (2x 5).

Since 7x5 — 3x2 = 29, these factors will be correct

if we insert the signs so that the positive will predominate.

.-. 14a;
2
-f 2dx - 15 = (7a; - 3) (2a; + 5).

(Verify by mental multiplication).

It is not usually necessary to put down all these steps.

After a little practice the student will be able to examine the

different cases rapidly, and to reject the unsuitable combina-

tions at once.

In the factoring of such expressions as these the following

hints are very useful

:

(1) If the third term of the trinomial is positive, then the

second terms of its factors have both the same sign as the

middle term of the trinomial.

(2) If the third term of the trinomial is negative, then

the second terms of its factors have opposite signs.

2. Resolve into factors ox2 + 17a; + G (1)

5a;
2 — llx + 6 (2)

5a;
2 + 13a; - 6 (3)

5a;
2 - 13a; - 6 (4)

In (1) we notice that the factors which give G are both

positive.

In (2) we notice that the factors which give G are both

negative.

In (3) we notice that the factors which give 6 have

opposite si;j;ns.

In (4) wo notice that the factors which give G have

opposite signs.
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Therefore for (1) we write (5a: -f- )(x + ).

(2) we write (5a: — ) (a; — ).

(3) we write (53 2) (a; 3), noticing that

2 and 3 have opposite signs.

(4) we write (5a 2) (a: 3) , noticing that

2 and 3 have opposite signs.

Since 5x3 + 1 X 2 = 17, we see that

5a;
2 + 17a; + 6 = (5a; + 2)(x + 3).

ox2 - 17x + G = (5a; - 2)(x - 3).

And, since 5x3 — 2 x 1 = 13, we have only to insert

the proper signs in each factor.

In (3) the positive sign must predominate.

In (4) the negative sign must predominate.

Therefore 5 a;
2
-f 13a; — 6 = (ox — 2) (as -f 3).

ox2 - 13x - 6 = (5a; -f 2) (x - 3).

More generally, trinomials of the form ax2 + bx -f- c, (a

not a square) may be factored more readily as follows

:

Multiplying by a we get a2x2 + bax + ac. Writing z for

ax, this becomes z
2

-\- bz + ac. Factor this trinomial by

Art. 65, replace the value of z, and divide the result by a.

Thus,

3. Resolve into factors 6a;
2 - 13a; + 6.

Multiplying by 6 we get {&x) 2 - 13 (6a;) + 36.

Putting z for Gx we get

z
2 - 132 + 36,

which, being factored, gives

(«-»)(« -4).
Hence the required factors of Gx2 — 13a; -f- 6 are

(2a; - 3)(3a; - 2).

Ans. (Sx + 2) (a; +1),
(2a; + l)(x + 2).

(2.i« + 3)(a? + 2).

(3a; + 2)(a: + 2).

(2a; + l)(a; + 5).

J (6a; - 9) (6a; -



9.
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8. 81a4 - 4:»./-
4

. Ans. (9a 2 + 7a;
2

)
(9a 2 - 7a;

2
)

J

9a 4 - 121. (3a2 + 11) (3a 2 - 11)

x* - 25. (t* + 5)(aj» - 5)

x4a2 - 49. (x-
2a + 7) (x2a - 7)

a2 _ 54^ (a + Sx3) ^a
_ 8aj3j

68. "When One or Both of the Squares is a

Compound Expression. — Here the same method is

employed as in the last Article.

EXAMPLES.
1. Resolve into factors (2a -f b) 2 — 9a;

2
.

The sum of 2a + b and 3x is 2a + b -+ 3a;,

and their difference is 2a -f- o — 3a;.

.-. (2a + b)'
2 - 9x2 = (2a + b + 3a;) (2a + 6 - 3a;).

If the factors contain like terms they should be collected

so as to give the result in its simplest form.

2. Resolve into factors (5a; + 8y)
2 — (4a; — oy)'2 .

The sum of 5a; -f- 8y and 4a; — oy

is 5a; -f- &J + 4a; — 3y = 9a; + 5y,

and their difference is

5a; + Sy - 4a; + Sy = a; + Uy.

.-. (5a; + 8t/) 2 - (4a; - 3y)
2 = (9a; + 5y) (a; + lly).

Ans. (a +6 + c)(o + 6- c)

(a - 6 + c) (a — b — c)

(a- + ^ + 2^) (a; + y - 2z)

(a? + 2y + a)(o; + 2y - a)

(a - 2a; -f /a) (a - 2x - b)

(2x - 3a + 3c) (2x - 3a - 3c)

(2a; + y)y
y(2x - y)

(x + oy) (x + ?/)

(7a; + 3)
2 - (5a; - 4)

2
. (12a; - l)(2a + 7)

Resolve
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69. Compound Quantities expressed as the Dif-

ference of Two Squares. — Compound expressions, by

suitably grouping the terms, can often be expressed as the

difference of two squares, and so be resolved into factors.

EXAMPLES.

1 . Resolve into factors a2 + 2ax + x2 — 462
.

From (1) of Art. 41, a2
-f 2ax + x2 = (a + %)*•

.-. a2 + 2ax -f- x2 - 462 = (a + x) 2 - 4b2
,

which by Art. G8 = (a + x + 26) (a + x - 26).

2. Resolve into factors 9a2 — c
2

-f- 4cx — 4se
2

.

9aa _ g2 + 4ca. _ 4a.a _ 9aa _
( c

2 _ Acx _f_ ^
= gaa - (c - 2a;)

2 by (2) of Art. 41,

— (3a + c — 2a?) (3a — c + 2x).

3. Resolve into factors 24xy + 25 - lG.r2 - 9?/
2
.

24a;?/ + 25 - IGor - dy2 = 25 - (lG.r
2 - 24z?/ + 9?/

2

)

= 25- (4a? - 3?/)
2 by (2) of Art. 41,

= (5 + 4x - 3y)(Z - 4x + 3y).

4. Resolve into factors 2bd - c
2 - a2 + «"2 4- 6

2 + 2ac.

Here we see that the expression is composed of two

trinomials, each of which is the square of a binomial [(1)

and (2) of Art. 41].

.-. 2bd-c2-a2+d2+b2+2ac==b2+2bd+ d2-(a2-2ac+c2

)

= (b+d) 2-(a-c) 2

= (6-feH-a— c) (6+d—a+c)

.

Resolve into factors

5.
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70. To Factor an Expression which can be

Written as the Sum or the Difference of Two
Cubes.— Such expressions as these may be resolved into

factors b}' Art. 51.

EXAMPLES.

1. Resolve into factors 8a;
3 — 27y3

.

By I. of Art. 51, this is divisible by 2x — Sy.

.-. 8x3 - 27y3 = (2a;)
3 - (3y)

3

= (2x - 3?/) (4a;
2 + Gxy + 9y*) x

Note. — The middle term Gxy is the product of 2x and oy.

2. Resolve into factors 343a;6 + 21if.

343a;6
-f 21yz = (7a;

2
-f- oy) (49a;

4 - 21x2
y + 9y*),

(by III. of Art. 51).

Resolve into factors

3. 8as - 21if. Ans. (2a - Sy)(4a2 + Gay + 9>/
2
).

4. 1 - 343a;3
. (1 - 7x)(\ + 7x + 49a;

2
).

(?) as
b
3 + 512. (ab + 8) (a2

b
2 - Sab + G4).

6\ 343 + 8a;
3

. (7 -f- 2a;) (49 - 14a; + 4x2
).

(T^21G.r3 - 343. (6a; - 7) (36a;
2 + 42a; + 49).

8. 27a;
3 - G-ly3

. (3a; - 4?/) (9a;
2 + 12xy + 1G//

2
).© 64a;

6 + 125?/3
. (4a;

2 + 5?/) (16a;4 - 20x2
y + 25/).

!J0, 216a;6 - 63
. (6a;

2 - b) (36a;
4 + 6a;

2
6 + b

2
).

11. « 3 + 34363
. (a + 76) (a2 - 7a& + 496 2

).

71. Miscellaneous Cases of Resolution into Fac-
tors.— When an expression can be arranged as the differ-

ence of two squares, it may be factored either by (II.) of

Art. 51 or by (3) of Art. 41. It will be found the simplest,

however, first to factor by the second method, using the rule

for factoring the difference of two squares (Art. 67).
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EXAMPLES.
1. Resolve into factors 16a4 — 8lb4

.

10a4 - 8164 = (4a2 + 962)(4a2 - 9b2

) (Art. 67)

= (4a2 + 962)(2a + 36) (2a - 3b) (Art. 67).

2. Resolve into factors a;
6 — y

6
.

x6 - y
G = (a;

3 + f){pp - if) (Art. 67)

= (» + #) O2 - ^ + 2/

2

) (x - y) (x<2 + *9 + 2/

2

)

(Art. 51, I. and III.).

The student should be careful in every case to remove all

monomial factors that are common to each term of an ex-

pression, and place them outside a parenthesis, as explained

in Art. 63.

3. Resolve into factors 2Sx*y -f Gix3y — G0x2
y.

28x*y + 64a% - G0x2
y = Ax2y(7x2

-f- 16a; - 15)

= ix2y{lx - 5)(x + 3) (Art. 66).

4. Resolve into factors x3a2 — &y
3a2 — 4x3b

2
-f- 32ysb2

.

aft*2- St/a2-lx%2+ 32/62= «2(x'3- 8/)-W~(x3- 8y3
)

= (x3-8f)(a2-W2
)

= (x-2y)(x2+2xy+4f)(a+ 2h)(a-2b).

5. Resolve into factors Ax2 — 25 ?/
2

-|- 2a; + by.

itf _ 95/ + 2a; + by = (2x + by) (2x - by) + 2a; + by

= (2a; + 5?/) (2a;- 5//+ 1).

Resolve into two or more factors

6. a2 — y
2 — 2yz — z

2
. Ans. (a + y + z)(a — y — z)

7. Gx2 - x - 77. (3a - 11) (2* + 7)

8. a;
c -4096. (a?+4) (a;

2
-4a;-f-16) (a;-4) (a;

2+ 4a;+16)
9. a;

2 — a2
-f y

2 — 2a,'?/. (a; — y + a) (a; — y — a)

10. aca;
2 — hex -j- aefcc — bd. (ex + tf)(a» — 6)

11. (a + 6 + c)
2 - (a - 6 - c)"- 4a(6 + c)

Other expressions which, by a slight modification, can be

arranged as the difference of two squares, may be factored

by Art. 67.
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12. Resolve into factors xA + x-f + y
4

-

x* + xy -f 2/

4 = a;
4 + 2ajy + 2/

4 - a;'
2
?/
2

= (^
2 + 2/

2
)
2 - xy

= (^
2 + 2/

2 + JgO(rf + y
a -ay).

13. Resolve into factors xi — lox2f -f- 9?/
4
.

£4 - 15a?y + %4 = (z2 - 3?/
2
)
2 - 9afy

2

= (x* - 3?/
2 + 3xy)(x* - Stf - Sxy).

Expressions which can be put into the form x8 ± - may
y3

be factored by the rules for resolving the sum or the differ-

ence of two cubes (Art. 70).
o

14. Resolve iuto factors 27V5
.

of

I
-lf -(;)'- (W'

-e-*xs + ? + " ,

>
O, 2 Q

15. Resolve a2^3 x3 + -^ into four factors.

2/
3

Z/

3

aV-%2

-^3+ §-W(« 2- 1) -4(«'2-l)
i/

3
*/
3

2/

3

= (a
2-l)^-i)

16. Resolve a9 — G4a3 — a6
-j- 64 into six factors.

The expression

= a3 (a6-64)-(« 6-64)
= (a6-64)(a3-l)
= (a3+8)(a3-8)(« 3-l)
= (a + 2)(a2-2«+4)(a^2)(a2+2«+4)(a-l)(a2

-f-a+ l).

Resolve into factors

17. a**+16a?+ 256. -4w*. (^+43+16) (x*-4x+ 16).

18. a* + f - 7«y. (z2 + Sxy + y
2

)
(x2 - Sxy + if) .

19. 8la*+9a*b*+b*. (9a2+ 3o6 + &2) (9a
2 - Sab + ft

2
).

20. a**— 19aJ2y
2+25y4

. (^2+ 3xy— o^/
2

) (s
2— 3a;#— 5#

2
)

.
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By a skilful use of factors, the actual processes of multi-

plication aud division can often be partially or wholly

avoided.

21. Multiply 2a + 36 - c by 2a - 3b + c.

The product = [2a + (3b - c)][2a - (3b - c)]

= (2a) 2 - (3b - c)
2
[(3) of Art. 41]

= 4a2 - 9b2 + Mc - <S\

22. Divide the product of a,*
2 — bxy + Gy2 and a; — 4y

by x2 — Ixy + I2y2
.

We might multiply the first two expressions together and

then divide the result by the third. But by factoring the

first and third expressions, and denoting the division by

means of a fraction (see Art. 78) , the work will be much

shorter.

Thus, the required quotient

= (a*
2 - 5xy + 6y

2
) (x - Ay)

x2 — Ixy + I2y2

_ (x - 3?/) (x - 2?/) (x - 4?/)

(x - Ay) (x - 3y)

= x - 2y.

23. Divide the product of 2a,*
2 4- x — 6 and Gar" — 5a* 4- 1

by 3x2 + 5a* - 2. 4»s. (2a; - 3) (2a; - 1).

Find the product of

24. 2as—7y+3z and 2a?-f7y—Sz. 4x2—A9y2+A2yz—dz2
.

25. a*
3+2a*2

?/+ 2a*?/
2
+?/

3 and a*
3-2x2

y+ 2xy2-y3
. xc'-y c

'.

2G. a*
3 -4a;2 + 8a; - 8 and a;

3 + 4ar + 8a; + 8. a*
G - 04.

Divide

27. 2a*(a*
2 -l)(a*-f-2) by a*

2 + a*-2. 2a>(aJ+l).

28. (x2 + 7a? + 10) (a; + 3) by a;
2 + 5a* + 6. a; + 5.

29. 5a*(a*-ll)(a*2-a*-15G) by a^f-aP— 18S*. 5(a*-13).

30. a9 - b° by (a2 + ab + h-) (a8 + a868 + &e) • a - b.

31. [or + (a - &)a* - «&] [a;
8 - (a - b)x - ah] by

a2 4- (a -f- fr)a* + a&. Jj/.s. (x — a)(x — b).
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GREATEST COMMON DIVISOR.

72. Definitions.—A Common Divisor of two or more

expressions is an expression that will divide each of them

exactly.

Hence, every factor common to tico or more expressions is

a common divisor of those expressions (Art. 62).

Thus, in 4«'2&, G« 36
2

, and a4
63

, a2 occurs as a factor of each

quantity ; b also occurs as a factor of each quantity ; a2 and

b are therefore common divisors of these three quantities.

The Greatest Common Divisor of two or more Algebraic

expressions is the expression of highest degree (Art. 18)

which will divide each of them exactly.

Note. — The term greatest common divisor, which has been adopted

from Arithmetic, does not imply in Algebra that it is numerically the

greatest, but that it is the factor of greatest degree. The student is

cautioned against being misled by the analogy between the Algebraic

and the Arithmetic greatest common divisor. He should notice that

no mention is made of numerical magnitude in the definition of the

Algebraic greatest common divisor. In Arithmetic, the greatest

common divisor of two or more whole numbers is the greatest whole

number which will exactly divide each of them. But in Algebra, the

terms greater and less are seldom applicable to those expressions in

which definite numerical values have not been assigned to the various

letters which occur. Besides, it is not always true that the Arith-

metic greatest common divisor of the values of two given expressions

obtained by assigning any particular values to the letters of those

expressions, is the numerical value of the Algebraic greatest common
divisor when those same values of the letters are substituted therein,

as will be shown later (Art. 74). For this reason, some writers have
used the terms, highest common divisor, and highest common factor,

instead of the term greatest common divisor. But to avoid employing
a new phrase, and in conformity with well-established usage, wTe shall

retain the old term greatest common divisor.

The abbreviation G. C. D. will often be used for shortness instead

of the words greatest common divisor.

73. The Greatest Common Divisor of Monomials,
and of Polynomials which can be easily Factored.
— Let it be required to find the greatest common divisor of

21aVy, 35a2x*y, 28a3x2y\ andl4a5*V2
.
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By separating each expression into its prime factors, we

have 2la4a?y = 7 x daaaaxxxy,

3oa2x4
y = 7 x baaxxxxy.

28a3x-y i = 7 x 2 x 2aaaxxyyyy.

l±abx2

y
2 = 7 X 2aaaaaxxyy.

By examining these expressions we find that 7, aa, xx,

:md // are the only factors common to all of them. Hence

all the expressions can be exactly divided by either of these

factors, or by their product, 7a2x2
y, which is therefore their

greatest common divisor.

Find the G. C. D. of 4cx3 and Vex* + 4c2x\

Resolving each expression into its factors, we have

4cx3 = 2cx2 x 2x.

2cx3 + 4c2x2 = 2cx2 (x -f 2c).

Here it is clear that both expressions are divisible (1) by

2, which is the numerical greatest common divisor of the

coefficients, (2) by c, and (3) by x2
.

.-. G. C. D. = 2cx2.

Find the G. C. D. of 3a2 + dab, a3 - dab2
, a3 4 Ga2b + dab2

.

Resolving each expression into its factors, we have

3a2 + dab = 3a (a + 36).

a3 + 0a2
6 4- 9a&2 = a(a 4- 3d) (a +-36).

.-. G. C. D. = a(a 4- 36).

.Find the G. C. D. of «{a - x)\ ax {a - a)8
, 2ax{a - x)\

Resolving into factors, we have

x(a — x) 2 = x(a — x){a — x).

ax(a — x) 3 = ax (a — x)(a — x)(a — x).

2ax(a — xy = 2ax(a — x)(a — x)(a — x)(a — x).

.-. G. C. D. = x(a - x) 2
.

Hence the following

Rule.

Resolve each expression into its prime factors, and take the

product of all the factors common to all the expressions,

giving to each factor the highest power which is common to all

the given expressions.
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EXAMPLES.
Find the G. C. D. of

1. 4ab\ 2a?b, Gab3
. Arts. 2ab.

2. 3ay, x3
y

2
, x

2
y

3
. xY-

3. 6xy2
z, 8x2

y
3z

2
, 4xyz2

. 2xyz.

4. 5a3b\ loabc2
, 10a2b2

c. Mb.

5. 9x2
y

2
z
2
, 12xyh, 6x3

y
2
z3. Zxy2

z.

0. Sa% Qabxy, I0abx3
y
2
. 2ax.

7. a2
-f ab, a2 — b

2
. a + 6.

8. (x -f ?/)
-2

, ar - ?/
2

. a + ?/.

9. a3 + x2
y. x3

-f- ?/
3

. # -f ?/.

10. a3 — a?x, a 3 — ax2
, a4 — ax3

. a (a — x).

11. a;
4 - 27asas, (a; - 3a) 2

. a; - 3a.

12. a# — ?/, x*y — xy. y(x — 1).

13. ax2 + 2a23 + a3
, 2az2 - 4a2z - Ga3

, S(ax + « 2
)

2
.

yl?is. a (as + a).

74. The Greatest Common Divisor of Expressions

that cannot be Readily Resolved into Factors.—
To find the G. C. D. in such cases, we adopt a method

analogous to that used in Arithmetic for finding the G. C. D.

of two or more numbers.

The method depends on two principles.

1. If an expression contain a certain factor, any multiple

of that expression is divisible by that factor.

Thus, if F divides A it will also divide mA. For let a

denote the quotient when A is divided by F; then A = aF';

therefore mA = maF ; and therefore F divides mA.
2. If two expressions have a common factor, it ivill divide

their sum and their difference; and also the sum and the

difference of any midtiple of them.

Thus, if F divides A and B, it will divide mA ± nB. For

sinceF divides A and B, we may supposeA=aF^ and B=bF\
therefore mA ± nB = maF ± vbF

= F(ma ± nb).

Therefore F divides mA ± nB.
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We can now prove the rule for finding the G. C. D. of any

two compound Algebraic expressions.

Let A and B denote the two expressions. Let them be

arranged in ascending or descending powers of some common

letter ; and let the highest power of that letter in B be either

equal to or greater than the highest power in A.

Divide B byA ; let p be the quotient and C the remainder.

Suppose C to have a simple factor m. Remove this factor,

and so obtain a new divisor D. Suppose further, that in

order to make A divisible by D it is necessary to multiply A
by a simple factor n. Divide nA by D ; let q be the next

quotient, and E the remainder. Divide D by E ; let r be

the quotient, and suppose that there is no remainder. Then

E will be the G. C. D. required.

The operation of division will stand thus

:

A)B(P
pA

D)nA(q
qD

E)D(r
rE

First, to show that E is a common divisor of A and B.

From the above division we have the following results

:

D = rE.

nA = qD -f E = qrE + E = (qr + 1)E.

B = pA + C = pA + mD = MrE + pE
+ mrJB

=
\
—— + mr

)
E -

Therefore E is a common divisor of A and B.

Second, to show that E is the greatest common divisor of

A and B.



EXAMPLES. 109

By (2) of this Art. every common factor of A and B
divides also B — pA, that is C, and therefore D (^ince m is

a simple factor) . Similarly as it divides A and D it divides

nA — qD, that is E. But no expression of higher degree

than E can divide E. Therefore E is the greatest common
divisor of A and B.

The greatest common divisor of three expressions, A, B<

(7, may be obtained as follows

:

First find D, the G. C. D. of any two of them, say of A
and B; next find F, the G. C. D. of D and C; then F will

be the G. C. D. of A, B, C. For D contains every factor

which is common to A and B (Art. 72); and as F is the

G. C. D. of D and C, it contains every factor common to D
and (7, and therefore every factor common to A, B, and (7.

Hence F is the G. C. D. of A, B, C.

EXAMPLES.
1. Find the G. C. D. of x2-±x + 3 and 4xs- 9a;

2-15a;+18.

x2 - 4x + 3)4:c3 - 9x2 - 15a; + 18(4aJ + 7

4a3 - 16s2 + 12a?

7x2 - 21x + 18

7x 2 - 28a; + 21

x - 3) x2 - Ax + 3 (a; - 1

a2 - 3a;

- x + 3

— a; + 3

Therefore the G. C. D. is x - 3.

Explanation. — First arrange the given expressions according to

descending powers of x. Take for dividend that expression whose

first term is of the higher degree; and continue each division until

the first terra of the remainder is of a lower degree than the first term

of the divisor. When the first remainder, x — 3, is made the divisor,

we put the first divisor to the right of it for a dividend, and after

obtaining the new quotient, x — 1, we have nothing for a remainder.

Hence, as in Arithmetic, the last divisor, x — 3, is the G. C. D.

required.
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2. Find the G. C. D. of 8a;
3 - 2a;

2 - 53a; - 39 and

4^3 _ 3x2 _ 2±x (

J.

4a;
3 -
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be rejected as forming no part of the G. C. D. But the

simple factor x is common to both expressions, and is

therefore a factor of the G. C. D. and must be reserved.

Rejecting therefore the simple factors 2 and 3 as forming no

part of the G. C. D., and reserving the common factor a; as

forming a part of the G. C. D., and arranging in parallel

3a;
3 — 13ar -f 23a; 21 Oa;

3 + x2 - Ux + 21

6a;
3 - 26a;

2 + 46a; 42

27a;
2 - 90a; + 63

The first division ends here, since 27a;
2
is of a lower degree

than 3a;
3

. If we now make 27a;
2 — 90a; -f- 63 a divisor we

find that it is not contained in 3a:
3 — 13a;

2 + 23a; — 21 with

an integral quotient. But, noticing that 27a;
2 — 90a; -f- 63

may be written in the form 9(3ar — 10a; -+- 7), and remem-

bering that the G. C. D. we are seeking is contained in the

remainder 9 (3a;
2 — 10a; + 7), and that, since the two expres-

sions 3a;
3 — 13a;

2
-f 23a; — 21 and Gx3 + x'

2 — 44a; +21
have no simple factors, therefore their G. C. D. can have

none, we conclude that the G. C. D. must be contained in

the factor 3a;
2 — 10a; + 7, and that therefore we can reject

the simple factor 9, and go on with the divisor 3a;
2 — 10a; -f- 7.

Resuming the work, we have

x Sx3 - 13a;
2 + 23a; - 21

3a;
3 - 10a;

2 + 7x

21-1 - 3a;
2 + 16a;

- 3ar -f 10a;

2) 6a; 14

3a;
2

3a;
2
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As the expressions stand neither can be divided by the

other without obtaining a fractional quotient. This difficulty

cannot be obviated by removing a simple factor,'since neither

expression contains a simple factor. We may however intro-

duce a suitable factor into either expression, just as in Ex. 3

we removed a factor when we could no longer proceed with

the division without a fractional quotient. The given expres-

sions (1) and (2) have no common simjrte factor, therefore

their G. C. D. can have no simple factor, and hence cannot

be affected if we multiply either of them by any simple

factor.

Multiplying (2) by 2 and taking it for dividend, we have
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Now since the G. C. D. of these expressions is x — 1,

the factors 2x* -j- 3x -f 2, and ox2
+- x -f- 2, have no common

factor. But if we put x = 4, then

2aj» + x2 - a - 2 = 138,

and 3x* - 2x2
-f * - 2 = 162,

and the G. C. D. of 138 and 162 is 6, while 3 is the

numerical value of the Algebraic G. C. D., x — 1. Thus

the numerical value of the Algebraic G. C. D. does not agree

with the numerical value of the Arithmetic G. C. D.

The reason may be explained as follows ; the expressions

2.r
2 + 3x -f- 2 and 3x2

-f- x + 2 have no Algebraic common
factor ; but when x = 4 the}' become equal to 46 and 54

respectively, and therefore have a common Arithmetic factor

2, which, multiplied into x — 1 or 3, gives 6 for the nu-

merical value of the Arithmetic G. C. D., while 3 is the

numerical value of the Algebraic G. C. D. In the same way
it may be shown that if we give particular numerical values

to the letters in any two expressions, and in their Algebraic

G. C. D., the numerical value of the G. C. D. is by no

means necessarily the Arithmetic G. C. D. of the values of

the expressions.

We may now enunciate the rule for finding the greatest

common divisor of two compound Algebraic expressions.

Rule.

Arrange the given expressions according to the descending

powers of the same letter. Divide that expression ivhich is

of the higher degree by the other ; or, if both are of the same

degree, divide that ichose first term has the larger coefficient

by the other; and if there is no remainder the first divisor

will be the required greatest common divisor.

If there is a remainder divide the first divisor by it, and

continue thus to divide the last divisor by the last remainder,

until a divisor is obtained which leaves no remainder; the

last divisor ivill be the greatest common divisor required.
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Note 1. — Before beginning the division, all simple factors of the

given expressions must be removed from them, and the greatest

common divisor of these must be reserved as a factor of the G. C. D.

required. (See Ex. 3.)

Note 2. — Either of the given expressions or any of the remain-

ders may be multiplied or divided by any factor which does not divide

both of the given expressions. (See Ex. 4.)

Note 3.— Each division must be continued until the remainder is

of a lower degree than the divisor.

Find the G. C. D. of

5. a3 + 2a;
2 - 13a + 10, and a3 + x2 - 10a + 8.

Ans. x2 — 3a -f- 2.

6. a3-5a2-99a+40, and a3-0a2-8Ga -f 35. x'-13x+5.

7. a3-a2-5a-3, and a3- 4a2- 11a -G. a2
-f-2a-fl.

8. a3 + 3a2 - 8a - 24, and a3 + 3a2 - 3a - 9. a + 3.

9. 2a3+4a2-7a-14,andCa3-10a2-21a+35. 2a2-7.

LEAST COMMON MULTIPLE.

75. Definitions.— A Multiple of an expression is any

expression that can be divided by it exactly.

Hence, a multiple of an expression must contain all the

factors of that expression. Thus,

Qa2b is a multiple of 3 or 2 or G or a or b.

A Common Multiple of two or more expressions is an

expression that can be divided by each of them exactly

;

or, it is one of which all the given expressions are factors.

Thus, the expression ab2
c
3

is a common multiple of the

expressions, a, 6, c, ab, a&c, ab2
, &

2
c
3

, etc., or of the expres-

sion itself ; but it is not a multiple of «2
, nor of Z>

3
, nor of

any symbol which does not enter into it as a factor.

The Least Common Multiple * of two or more Algebraic

expressions is the expression of least degree which is divisi-

ble by each of them exactly.

* Called also lowest common multiple. The term, leant common multiple, Ifl

objected to by some, for a reason similar to tbo one for wbieb tbey object to tbo

term greatest common divisor.
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Hence, the least common multiple of two or more expres-

sions is the product of all the factors of the expressions, each

factor being taken the greatest number of times it occurs in

any of the expressions.

The abbreviation L. C. M. is often used instead of the

words least common multiple.

Xote. — Two or more expressions can have only one least common
multiple, while they have an indefinite number of common multiples.

76. The Least Common Multiple of Monomials,
and of Polynomials which can be easily Factored.
— Let it be required to find the least common multiple of

21aVy, 35a2a4
2/, 28a3x2

y\ and Ua\v2
y
2

.

By separating each expression into its prime factors, we
have 2\ah?y = 3 x 7a\^y,

Shcrrfy = 5



116 EXAMPLES.

which is divisible by every power of that factor occurring in

the given expressions.

3. Find the L. C. M. of 3a2 + 9ab, 2a3 - 18c*2
,

a» + Qa 2
b + 9a62

, as + 5a26 -f 6a62.

Resolving into factors, we have

3a2 4- 9ab = 3a (a + 36),

2a3 - 18a62 = 2a(a + 36) (a - 36),

a3 + 6a2
6 4- 9a62 = a(a + 36)

2
,

a3 + oa2
6 + 6a62 = a(a 4- 36) (a + 26).

Hence the L. C. M. = 6a(a + 36)
2 (a - 36) (a + 26)

Hence the following

Rule.

Resolve each expression into its prime factors, and take

the product of all the factors, giving to each factor the highest

exponent ivhich it has in the given expressions.

If the expressions are prime to each other, their product

is the least common multiple.

EXAMPLES.
Find the least common multiple
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X
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common multiple of aF and bF, or of A and B, from (1) is

abF, by inspection. That is

M = abF (2)

But from (1) we have

AB = abFF

= MF, from (2) (3)

or M = —-.
F

Rule.

The least common multiple of hvo expressions may be found

by dividing their product by their G. O. D. , or, by dividing

either of the expressions by their 67. C. D. and multiplying the

quotient by the other.

From (3) we see that the product of any two expressions

is equal to the product of their G. C. D. and L. C. M.
To find the least common multiple of three expressions, A,

J5, C. First find M, the L. C. M. of A and B. Next find

iV, the L. C. M. of M and 0; then N will be the required

L. C. M. of A, B, C.

For N is the expression of least degree which is divisible

by M and C, and M is the expression of least degree which

is divisible by A and B. Therefore N is the expression of

least degree which is divisible by all three.

In a similar maimer we may find the L. C. M. of four

expressions.

Note. — The theories of the greatest common divisor and of the

least common multiple are not necessary for the subsequent chapters

of the present work, and any difficulties which the student may find

in them may be postponed till lie has read the Theory of Equations.

The examples however attached to this chapter should be carefully

worked, on account of the exercise which they afford in all the

fundamental processes of Algebra.
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EXAMPLES.
Resolve into factors

1.
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34. 3 + 11a; - 4a;
2

. Ans. (3 - x)(l + 4a;).

35. 6 + 5x - 6a;
2

. (2 + 3.x) (3 - 2a;).

36. 4 - 5a; - 6x2
. (4 + 3a;) (1 - 2a;).

37. 5 + 32a; - 21a;
2

. (1 + 7a;) (5 - 3a;).

38. 20 - 9a; - 20a;2 . (5 + 4a;) (4 - ox).

39. (1811)
2 - (689)

2
. 2500 x 1122 = 2805000.

40. (8133)
2 - (8131) 2

. 16264 x 2 = 32528.

41. (24a; + yY - (23a; - y)
2

. 47a; (.-c + 2//).

42. (5a; + 2y)
2 - (3.x - y)

2
. (8a; + y)(2x + 3y).

43. 9a;
2 - (3a; - by) 2

. 5y(6as - by).

44. 16a;
2 - (3a; + l) 2

. (7a; + l)(x - 1).

45. a6 + 72963
. (a2 + 96) (a4 - 9a*b + 8162

).

46. xhf - 512. (xy - 8)(x2
y

2
-f Sxy + 64).

47. 500a;2
?/ - 20ys

. 20y(bx + y)(bx - y).

48. (a+by-1. [(a+6) 2+l](«+6+l)(a + 6-l).

Find the greatest common divisor of

49. GGaW, 44aW, 24aW. 2aW.
50. x2 + x, (x + l) 2

, a;
3 + 1. a; + 1.

51. a;
8
-f 8?/

3
, a;

2 + xy — 2y
2

. x -f- 2?/.

52. 12a;
2 + x - 1, 15a;

2 + 8a; + 1. 3a; + 1.

53. 2a;
2 + 9a; + 4, 2a;

2 + Hx + 5, 2a;
2 -3a;-2. 2»+l.

54. 3a;
4 -3a;3 -2a;2-a;-l, 6a;

4 -3a;3 -a;2-a;-l. 3a;
2+l.

55. 2a;
3 - 9ax* + 9a2

a; - 7a3
, 4a;

3 - 20aa;2 + 20a2
a; - 16a3

.

Ans. x2 — ax -f- a2
.

56. 4a;
5 -fl4a;

4 +20a;3+ 70a;
2

, 8a;
7+ 28a;6- 8a;

5- 12s4+ 56a8.

Ans. 2ar (2a; 4-7)

Find the least common multiple of

57. 35aa;2
, 42a?/2

, 30az2
. 210ax2

y
2z

2
.

58. a;
2 - 3a; + 2, a;

2 - 1. (x + l)(.r - 1 ) (a; - 2)..

59. a?
a - 5a; + 4, a;

2 - 6a + 8. (a; — 4) (a? — 1) (a; — 2)

.

60. a;
2 - 1, a;

3 + 1, a;
3 - 1. xc

' - 1.

61. a;
2 - 1, ar + 1, a;

4 + 1, a;
8 - 1. a;

8 - 1.

62. X2 - 1, SC
8 + 1, K8 - 1, X* + 1. .r

1 '- - 1.

63. »8+2«2-3aJ, 2a;
8+ 5ar-3a;. »(»-!) (aj+3)(2aj-l).
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CHAPTER VIII.

FRACTIONS.

Note. — In this chapter the student will find that the definitions,

rules, and demonstrations closely resemble those with which he is

already familiar in Arithmetic.

78. A Fraction — Entire and Mixed Quantities.

— A Fraction is an expression of an indicated quotient by

writing the divisor under the dividend with a horizontal line

between them (Art. 11). In the operation of division the

divisor sometimes may be greater than the dividend, or may
not be contained in it an exact number of times ; in either

case the quotient is expressed by means of a fraction.

Thus, the expression - indicates either that some unit is

b

divided into b equal parts, and that a of these are taken, or

that a times the same unit is divided into b equal parts, and

one of them taken.

In an}' fraction the upper number, or the dividend, is

called the numerator, and the lower number, or divisor,

is called the denominator. Thus in the above fraction -
b'

which is read a divided by 6, a is called the numerator and

b the denominator, and the two taken together are called the

terms of the fraction. Thus the denominator indicates into

how many equal parts the unit is to be divided, and the

numerator indicates how many of those parts are to be

taken.

Every integer or integral expression may be considered as

a fraction whose denominator is unit}' ; thus,

a
, 7 a 4- b

a = -, a -f- b = —?— .
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An entire quantity or integral quantity is one which has no

fractional part ; as ab or a2 — 2ab.

A mixed quantity is one made up of an integer and a

x
fraction ; as b -\—

.

a
A proper fraction is one whose numerator is less than its

denominator ; as
a + x

An improper fraction is one whose numerator is equal to

or greater than the denominator ; as - and -
x

.

a a
The reciprocal of a fraction is another fraction having its

numerator and denominator respectively equal to the denom-

inator and numerator of the former.

79. To Reduce a Fraction to its Lowest Terms.

— Let - denote any fraction, and —- denote the same frac-
b mb

tion with its terms multiplied by m.

Now - means that a unit is divided into b equal parts, and

that a of these are taken (1)

And— means that the same unit is divided into mb equal
mb

parts, and that ma of these are taken (2)

Hence b parts in (1) = mb parts in (2).

.*. 1 part in (1) = m parts in (2),

and .*. a parts in (1) = am parts in (2),

that is,

Conversely,

Therefore, the value of a fraction is not altered if the

numerator and denominator are either both multiplied or both

divided by the same quantity.

a

b
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When both numerator and denominator are divided by

all the factors common to them, the fraction is said to be

reduced to its loicest terms.

Hence to reduce a fraction to its lowest terms we have the

following

Rule.

Divide both numerator and denominator by their greatest

common divisor.

Dividing both terms of a fraction by a common factor is

called canceling that factor.

EXAMPLES.

Reduce the following fractions to their lowest terms.

6a2bc2 2ac
b cJab'2c 3b

The greatest common divisor 3abc of both terms is can-

celed.

g-^ lx2yz = J_
\J 2Sx3yz2 Axz

The factor Ixhjz, which is the greatest common divisor of

both terms, is canceled.

24a3c
2x2 24as

c
2x2 4ac2

180*3? - 12oV Sa2x2(3a - 2x) 3a - 2x

Here 6a2x2
is canceled since it is the greatest common

divisor of both terms.

Note. — In each of these examples, the resulting fractions have

the same value as the given fractions, but they are expressed in a

simpler form. The student should be careful not to begin canceling

until he has expressed both terms of the fraction in the most con-

venient form, by factoring when necessary. Thus,

[Q ex2 - Sxy -=
2x (Sx ~ *a) = ^

9xy — 12y2 3y(3x - Ay) 3y

Instead of reducing a fraction to its lowest terms by

dividing the numerator and denominator by their G. C. D.,



124 EXAMPLES.

we ma}- divide by any common factor, and repeat the process

till the fraction is reduced to its lowest terms. Thus,

: 24aW 12a2bc2 6ac 2a

36aW 18ab2
c
2 9bc 36

ce the

Scrbc2

12ab2cd

3a2 - Gab

Reduce the following fractions to their lowest terms.

2crb - 4ce6
a

2~ Ax2 — Oy

4x2
-f 6xy

£ 20 (x3 - y
3

)

10.

5a2 + 5xy + by2

x3 — 2xy2

Ans. ——

.

Sbd
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and denominator so as to show 8a — 7 as a factor, we have

the fraction

_ a?(3x - 7) - 2x(3x - 7) + 3 (3a; - 7)

5a? (3a; — 7) — a?(3a; — 7) — 3 (3a; — 7)

= (3a; - 7) (a;
2 - 2x + 3) = x2 - 2a; + 3

(ox — 7) (oar — x — 3) bx* — x — 3

When either the numerator or denominator can readily be

factored we may use the following method :

12. Reduce to its lowest terms — —'/ ~—
.

7a;
3 - 18ar + 6x + 5

The numerator = x(x2 + 3a; - 4) = x(x + 4)(x - 1).

The only one of these factors which can be a common
divisor is x — 1, since the denominator does not contain a;,

and 5 the last term in the denominator does not contain 4.

(See Art. 66.) Hence, arranging the denominator so as to

show x — 1 as a factor,

the fraction = — *(*+*j(*-l) = *(*+*)
.

7a;
2 (a;-l)-lla-(aj-l)-5fa-.-l) 7.

Reduce to lowest terms

13. : . Ans. .

a 4- 26

14-
^

15.

a3 — a2
b — ab2
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Hence we have the following

Rule.

Multiply the entire part by the denominator, and to the

product add the numerator with its proper sign; under this

sum place the denominator, and the result will be the fraction

required.

EXAMPLES.
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EXAMPLES.
Reduce to whole or mixed quantities the following

:

1. —

.

Aits, da H
7 7

2
a8 + 3ab

a + 2o6

a + b a + b

360C + 4Q
4f(c

4c

9 9

4.
8«1±3& 2a + 36

4a 4a

5.
* + »+». x +

35 + 3 a + 3

G.
2*2 -6^-1. 2c - X

JB — 3 a; — 3

^ + ^ + £+1+ 2

a; — 1 95—1

82. To Reduce Fractions to their Least Common

Denominator. — Let it be required to reduce — , — , — to
yz zx xy

equivalent fractions having the least common denominator.

The least common multiple of the denominators is xyz.

Dividing this L. C. M. by the denominators, yz, zx, and xy,

we have the quotients x, y, and z, respectively.

By Art. 79, both terms of a fraction may be multiplied by

the same number without altering its value ; therefore we
may multiply both terms of the first fraction by x, both terms

of the second fraction by y, and both terms of the third

fraction by z, and the resulting fractions will be equivalent

to the given ones.

tt a_ __ cm b_ __ by_ c_ _ cz_

yz xyz* zx xyz
1

xy xyz

(ix bi/ cz
That is, the resulting fractions— , —%-, and — have the

xyz xyz xyz

same values respectively as the given fractions — , — , and —

,

yz zx xy

and they have the least common denominator xyz. Hence,
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for reducing fractions to their least common denominator,

we have the following

Rule.

Find the least common multiple of the given denominators,

and take it for the common denominator ; divide it by the

denominator of the first fraction, and multiply the numerator

of this fraction by the quotient so obtained; and do the same

with all the other given fractions.

Note 1. — It is not absolutely necessary to take the least common
denominator. Any common denominator may be used. But in

practice it will be found advisable to use the least common denomina-

tor, as the work will thereby be shortened.

Note 2. — It frequently happens that the denominators of the

fractions to be reduced do not contain a common factor. Thus, the

? I /
therefore the least common denominator of these fractions is bdf, the

product of all their denominators.

EXAMPLES.

Reduce the following fractions to their L. C. D.

Ans — — —US
' V2x3 ' 12z3 '

12a,*
3
'

a(x -\- a) x(x + a) a2

x'
2 — a 2 x2 — a 2 x2 — a2

83. Rule of Signs in Fractions.— The signs of the

several terms of the numerator and denominator of a fraction

relate only to those terms to which they are prefixed, while

the sign prefixed to the dividing line relates to the fraction

as a whole, and is the sign of the fraction. Tims, in the

fraction —

—

-— , the sign of a, the first term of the numer-
a + b

ator, is -f understood, the sign of the second term b is —

,

and the sign of each term " and b of the denominator is +>
while the sign of the fraction itself is —

.

1.

2.
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The symbol means the quotient resulting from the— b

division of —a by — b\ and this is obtained by dividing a

by b, and prefixing -{- , by the rule of signs in division (Art.

40).

Therefore — = +- = - (1)

Also, ^— is the quotient of — a divided by b ; and this is

obtained by dividing a by b, and prefixing — , by the rule of

signs.

Therefore ^— = —- (2)

In like manner, —— is the quotient of a divided by — b

;

— b

and this is obtained by dividing a by b, and prefixing — , by

the rule of signs.

Therefore — = -- (3)— b b

Hence, we have the following rule of signs :

(1) If the signs of both numerator and denominator be

changed, the sign of the whole fraction remains unchanged.

(2) If the sign of the numerator alone be changed, the sign

of the whole fraction will be changed.

(3) If the sign of the denominator alone be changed, the

sign of the whole fraction will be changed.

Or they may be stated as follows

:

(1) We may change the sign of every term in the numera-

tor and denominator of a fraction without altering the value

of the fraction.

(2) We may change the sign of a fraction by changing the

sign of every term either in the numerator or denominator.
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EXAMPLES.

a — b —a -f- b
1.

3.

—m -f- »

— b + ft

2a

3a?

b
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84. Addition and Subtraction of Fractions.— Let

it be required to add together - and -.

c c

Here the unit is divided into c equal parts, and we first

take a of these parts, and then b of them; i.e., we take

a 4- b of the c parts of the unit ; and this is expressed by

the fraction ———

.

a

c
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Hence we have the following

Rule.

To add or subtract fractions, reduce them to the least

common denominator ; add or subtract the numerators, and

write the result over the least common denominator.

EXAMPLES.

i X -it a -\- c a — c , a -+- d
1 . Arid —:z— , , and —;—

.

b b b

Here the fractions have already a common denominator,

and therefore need no reducing. Hence we have

a + c f — c a -\- d _ a + c + a — c + a + d _ 3a + d

b b 6 " b
"~

b

-2. Add 2-^±^ and *JLz^.
3a 9a

Here the least common denominator is da. Hence we

have (Art. 82)

2x + a . 5x — 4a _ 3 (2x + a)
,

5a; — 4a

3a 9a 9a 9a

6rc + 3a + 5x — 4a 11a; — a

9a 9a

^ 4a — 26 . , 3a — 3b
3. From - - take -

c c

4a - 2b _ 3a - 3b _ 4a - 26 - (3a - 3b)

c c c

4a — 26 — 3a + 36 a + 6

Note 1. — To insure accuracy, the beginner is recommended to put

down the work in full; and when a fraction whose numerator is not a

monomial is preceded by a — sign, he is recommended to enclose Its

numerator in a parenthesis us above before combining it with the

other numerators.
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4:.) Add —^— and
a , b

b — a

Here —— = — (Art. 83),
b — a a — b

a b a b

,

a — b b — a a — b a

_ a — b _ .

" a - b
~

Add *~*
a

3y ~ q
, and

2a ~ 3*

The least common denominator is «a^.

# — 2y Sy — a 2a — 3x

xy ay ax

a(x - 2y) + «(3^ - a) + y(2a - 3x)

axy

ax — 2ay -f- 3a?/ — ax -\- 2ay — 3xy
= 0,axy

since the terms in the numerator destroy each other.

-g? From ^+-^ take
*

a — b a -\- b

The least common denominator is a2 — b2
.

•
a + 6 _ a ~ b -- (a + & )

2

_ (g ~ 6 )
2

a - 6 a + 6 a2 - 62 a2 - 62

_ a2 + 2ab + b2 - (a2 - 2ab + b2
)

a2 - b
2

= 4ab

a2 - b
r

^ Add ?^^ and
x — 2a x — a

The least common denominator is (x — 2a) (x — a).
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Hence we have

2x - 3a _ 2x — a _ (2s — 3a) (x — a) — (2x — a) (x — 2a)

x — 2a x — a (x — 2a) (x — a)

_ 2x2 - bax + 3a 2 - (2x2 - bax + 2a2
)

(x — 2a) {x — a)

_ 2z2 - bax + 3a2 - 2x2 + 5a.x - 2a2

(x — 2a) (x — a)

a2

(a: — 2a) (a; — «)'

Note 2. — In finding the value of an expression like

— (2x — a){x — a),

the beginner should first express the product in parentheses, and then

after multiplication, remove the parentheses, as we have done. After

a little practice he will be able to take both steps together.

Note 3. — In practice, the foregoing general method may some-

times be modified with advantage. When the sum of several fractions

is to be found, it is often best, instead of reducing at onoe all the

fractions to their L. C. D., to take two or more of them together, and

combine the results.

o c- i.- a + 3 a 4- 4 8
8. Simplify—! !—

.
1 J

a - 4 a - 3 a2 - 16

Here, instead of reducing all the fractions to the least

common denominator at once, we may take the first two

fractions together, as follows :

a + 3 _ q + 4 _ 8 _ q2 -9-(a2 -16)
a — 4 a — 3 a2— 10

9. Simplify

(a — 4) (a — 3) a 2— 16
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of reducing all the fractions to the least common denom-

inator, we proceed as follows :

The first two terms

The first three terms

a + x — (a — x) _ 2x
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Reducing the fractions to the least common denominator,

the given expression becomes

a(b — c) — b(a — c) -f c(a — b)

(a — b) (a — c)(b — c)

_ ab — ac — a& + be -f ac — 6c _ n
(a - b) (a - c) (b - c) "~ "

The work is often made easier by completing the divisions

represented by the fractions.

11. Simplify 1 + 2fl? + 1 - ^±-5 .J
2a; - 2 2a; + 2

We have by division

1 + 1 + —§— - 2 - 3

2x - 2 2a; + 2 2a - 2 2a; + 2

- 3a; + 3 - a; -f 1

2or - 2

- g ± 2

a;
2 - l'

12 5a; ~ 1 _ 3a; — 2 ac — 5 ,__ 25a; — 61

8 7
4"

2a; + 5 _ x + 3 _ 27

a; 2a; 8a;'
2

x — 4 _ x — 7

x — 2 a; — 5

4a' + fr
2 _ 2a - &

4a2 - &2 2a -f-
6*

^ _J> 3a2_ _ 4 - 13s

1 + 2a; 1 - 2x 1 - 4a;
2

'

18.

a; — 2 3a; + 6 a-
2 — 4

3a 2 2

1 — a2
a; — 1 a; + 1*

Ql +
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85. To Multiply a Fraction by an Integer.—
Rule.

Multiply the numerator by that integer; or divide the

denominator by that integer.

The rule may be proved as follows

:

(1) Let - denote any fraction, and c any integer; then

will - x c — — ; for in each of the fractions - and — the
b b b b

unit is divided into b equal parts, and the number of parts

taken in — is c times the number taken in -.
b b

(2) Let -— denote any fraction, and c any integer ; then
OG

_- XC = -,by(l),

= % (Art. 79).
b

86. To Divide a Fraction by an Integer.

—

Rule.

Divide the numerator by that integer; or multiply the

denominator by that integer.

The rule may be proved as follows

:

ac
(1) Let — denote any fraction, and c any integer; then

will —- -T- c = -
; for — is c times - (Art. 85) ; and there-

o b b b

fore - is the quotient of — divided by c.
b b

J

(2) Let - denote any fraction, and c any integer ; then

? = f£(Art.79).

a ac « i /i\

b be be
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87. To Multiply Fractions.— Let it be required to

multiply ^ by



EXAMPLES. I3g

o -m- i±- 1
2n 2

, (a + b) 2

2. Multiply — by J r
m

'
.

J!/ '
J

a- - b
2 J

4o?6

2a2 (a + &)
g _ 2a 2 (a + 6) (a + 6)

a? - b
2 4a2

6 (a + 6) (a - b)±a2
b

a + b

2b(a - b)'

>y canceling those factors which are common to both numer-

ator and denominator.

3 J Multiply '
a
and

~—- together.1 J
4a3 12a + 18

°

2a2 + 3a 4a2 - 6a = a (2a + 3) 2a (2a - 3)

4a 3 12a + 18 4a 3 (2a + 3)6

_ 2a - 3

12a

4. Multiply 2 + ^ + 1 by - + --1.
& a -6 a

+»+!= "2

+ V + g» (Art. 84),
b a ab

, a . b 1 a2
-f ft

2 — ab
and - H 1 = —-*-—

.

6 a ao

*+»+«» x g±g=?g = ^+*>y-^
[(3) of Art 41]

a 6 a6 a~&2

a4 + &4 + a2b2

a2
b2

Otherwise thus

:

= ^L
2

4- i
2

_l 1
a4 + b4 + a262

&2 a2 a2
&2

Simplify

^ *+i *+j JL-i_ ^ —

i

- x-l x2 - 1 (a + 2)
2 (a-l)(a! + 2)

^ x + a \a a;/
x — a.
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a2W

(•+AX6 ---^> a2 - b

x(a — x) a (a + %) ax

a2
-\r 2a# + x2 a2 — 2ax -f x2 a2 — or*'

88. ^o Divide Fractions.— Let it be required to divide

a v c

i
by
?

Denote the quotient by x. Then, since the quotient mul-

tiplied by the divisor gives the dividend (Art. 44), we have

c a
x X - = -.

d b

Multiplying by -, we have
c

a c b c

Therefore, Art. 87, and canceling factors common to the

numerator and denominator, we have

ad
X = .

be
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ah - Ir - 6

(«
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EXAMPLES.
1

1. Simplify -, -, and -.

b b b

Here i=U* = l X - = -.
« b a a

- = a-=-- = ax6 = ab.
1 b

1 a b a 1 a"

The student should be able to write down the above results

readily without the intermediate steps.

Simplify %..

lis fraction = (x + -\ -f- (x - —\This

a;
2 + a2

re
4 — a4

__ x2
-f a2

a;
8

.r
2

•— ——— x
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a2 + b2

Simplify
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:,. Simplify
3x ~ 8

x-1 1

4 -f x

In the case of Continued Fractions, we begin with the

lowest complex fraction, and simplify step by step. Here
multiplying both terms of the fraction which follows x — 1

by 4 -}- x, the given fraction becomes at once

Sx - 8 3a; - 8

. 4 + x
=

~
4-f-a;'x — 1 — ! a; — 1 —

—

4 -f- a; — a; 4

and now multiplying both terms by 4, we have

4 (3a; - 8) _ 4 (3a; - 8) = 4
4 (a; - 1) — (4 + x) "

3a; - 8

Simplify

1
a;

6. Ans. x — 1.

1 + ±
a;

I __ 1. 1
X X2 x3 x -f- 1

a;

7.

90. A Single Fraction Expressed as a Group of

Fractions.— Let it be required to express the fraction

5a;
2
?/ — 10a;?/

2 + 15?/
3 — 5a;

8

10a;
2
?/
2

as a group of four fractions.

The fraction = ^L _ 1°2£ + i&l _ _^1_
10a;

2
?/
2

10a;
2
?/
2

10a;
2
?/
2 lOafy2

= J_ _ 1 3?/ a^_

2v/ x 2x'~ 2y'z
'
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Express each of the following fractions as a group of

simple fractions in lowest terms.

1
3x2y -f xy* — y

3

dxy



46



EXAMPLES. 147
- \

Perform the additions and subtractions indicated in the

following examples

:

^y a; + 2/ x- - y
2

*Z^\ a 3a 2ax

a — x a -\- x a2 — a2

/Q 3 5_ _ 2x - 7

jb 2x — 1 4.y'
2 - 1*

30. _2L- + -JL- + 4ft2&2

a — 6 a + b a4 — 64

31. _J_ _ *~ 3 +

32.

Ans.
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40.

41.

+

EXAMPLES.

b2

+
(a-b)(a-c) (b— a)(b— c) (c-a)(<:-b)

Ans. 1,

{a-b)(a-c){x-a) {b-a){b-c)(x-b) (c—a)(c-b){x—c)

Ans.
(x — a)(x — b){x — c)

Simplify the following examples in multiplication and

division

:

42>
2a;

2 + 5x + 2
x

a2 + 4x

x2 - 4 2x2 + 9a + 4
Ans.

43 2a2 - x - 1 4a2 + a - 14

2a2 + 5a + 2 16a2 - 49

a — 2

a - 1

4a -f
7*

x.
-^ s2+a-2 a^

2 + 5a + 4 . / a2 + 3a+2 a + 3\

J'* a;
2-a-20 ^ _ x ^-2oj-15 a2 /

45 x* - 8a a2 + 2a + 1 _^ a2 + 2a + 4
j"

a2 — 4a — 5 a3 — a2 — 2a a — 5

(a + ?>)2_ c
2
^ ft

x
(ft-6) 2 - C2 1

a2 +a& — ac (a-f-c)
2 —

6

s ab — b
2 — bc b'

Sx x — 1

2 3

46.

47.

48.

,3-(a+l)-|- 2*

(1 + aa) 2 _ (a + a) 2
' ^\1 - a 1 + »/

49. 1

1 +

50. 1 +
1 + a + _2a*_

1 - a

a + 1

1 -f a

1 + a2
'

' \x + y x-y a2 - y
2

) \x + // a J - y
2

/

. a.
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CHAPTER IX.

HARDER SIMPLE EQUATIONS OF ONE
UNKNOWN QUANTITY.

91. Solution of Harder Equations.— We shall now

give some simple equations, involving Algebraic fractions,

which are a little more difficult than those in Chapter VI.

These may be solved, by help of the preceding chapter on

fractions, and by the same methods as the easier equations

given in Chapter VI.

The following examples worked in full will sufficiently

illustrate the most useful methods.

1 . Solve

EXAMPLES.
6x - 3 Sx - 2

2x + 7 x + 5

The L. C. M. of the denominators is (2x -f 7) (x -f 5).

Clearing the equation of fractions by multiplying each

term by (2x -f 7) (as + 5), we have*

(6a; - S)(x + 5) = (3a; - 2) (2a; + 7),

or 6x2 + 27a; — 15 = Qx2 + 17a; - 14
;

.-. lO.v = 1 ; .*. x — -j^-.

We may verify this result by putting ^ for x in the

original equation, as in Chapter VI. ; it will be found that

each member then becomes —J.

Note 1. — When the denominators of the fractions involved con-

tain both simple and compound factors, it is frequently best to multiply

tbe equation by the simple factors first, and tben to collect the integral

terms; after this the simplification is readily completed by "multi-

plying across " by the compound factors.

* This is called " multiplying across."
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2 Solve
8x + 23 - bx + 2 = 2x + 3 - 1

20 3a; 4- 4 5

Multiplying by 20, the L. C. M. of the simple factors in

the deuominators, we have

8a; + 23 - 2Q(5a; + 2) = 8a; + 12 - 20.
3a; + 4

™ • Q1 20 (5s + 2)
Transposing, 31 = — ! *-»

3x -f- 4

Multiplying across by 3a; 4- 4, we have

93a; + 124 = 20(5a; 4- 2),

or 84 = 7a;; .-. x = 12.

We may verify this result as before .; it will be found that

each side becomes -2^.

Note 2. — The student will see that, even when the denominators

of the fractions contain all simple factors, it is sometimes advanta-

geous to clear of fractions partially, and then to effect some reduc-

tions, before removing the remaining fractions.

„ c . x 4- 6 2a; - 18 . 2a; 4- 3 rl ,
3a; 4-4

3 . solve_ _+___=: 51 4-—

^

Multiplying by 12, the L. C. M. of 3, 4, 12,

12 (a + 6 ) _ 4 (2a; - 18)+ 3(2»+ 3)= 16 X 4 + 3x+ 4,

or
12(a? + 6) _ gaj + 72 + 6a; -f 9 = G4 4- 3a; 4- 4.

Transposing and reducing, we have

12 (* + 6
) - to - 13.

11

Multiplying by 11, we have

12(aj 4- G) == ll<5as - 13),

or 12a; 4- 72 = 55a; - 143
;

.-. 43a; = 215; .-. x = 5.

We may verify this result as before.

Notk 3. — When two or more fractions have the same denominator,

they should be taken together and simplified.





152 EXAMPLES.

Note 5. — This example may also be solved very neatly by writing

the equation at first in the form

x — 10 + 2 x — 6 + 2 _ x — 7 + 2 x — 9 -f- 2

x — 10 a — ~~ x — 7 X — 9 *

Reducing each fraction to a mixed number (Art. 81), we have

1 +—-— + 1 + —— = 1 + —£-= + 1 + _!L_,
^jc-10 a - 6 ^x-7^ x-9'

which gives 1 = ——- +

Transposing,

a _ 10 z — 6 x — 7 x — 91111
10 x — 7 a — 9 x — 6

3 3

(x - 10) (* - 7) (x - 9)(a - 6)'

and the solution may be completed as before.

c c< , 5a; — 64 2x — 11 4a; — 55 a; — 6
6. Solve — = .a-13 jj — 6 a-14 x — 7

Proceeding as in the second method of Ex. 5, we have

5 + -L_ _ /2 + _L\ = 4 + _L_ - (i + -L-)
a; -13 \ a; -6/ a; -14 \ a; - 7/1111

a; — 13 a — 6 a; — 14 a; — 7

Simplifying each side separately, we have

7 7

(a; - 13) (a- - 6) (a- - 14) (a- - 7)

Clearing of fractions, or, since the numerators are equal,

the denominators must be equal, we have

(x - 13) (a - 6) = (a- - 14) (a- - 7);

.-. a2 - 19a + 78 = a2 - 21a + 98

;

.-. x = 10.

Solve the following equations

:

@
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)

6-^t-8 - 2x + 38 = 1. Jns. 2.

2a; + 1 a; + 12

lTj) A(2a;-10)—
r
1
T (3a;-40) = 15-J(57-x). (See Note 2).

Ans. 17.

f2)^-!tJ+ 15-^=h!-7 (See Note 2). 5.J 4 32 40 2
b v '

13. iL±J = * + 5
. 6.

3a; - 8 3a; - 7

u Gx + 13 _ 3a; + 5 = 2a?
(gee Note jv 20.

^_IV 15 5a; - 25 5
v '

<T7> 3a; - 1 Ax - 2 x 7

.--V9a; + 6
12

12a; + 8
T

17.— — =—- ^L. (See Note 3). 1.
a;+3 a?+l 2a;+6 2a;+2

v '

18.
x_-L l + x_-L^ = x L̂ A + x_-_2^

(See Ex. 5). 4.
a; — 2 a; — G a; — 5 x — o

x — 1 _ x — 2 _ a; — 5 _ a; — 6 . t

as — 2 a; — 3 x — 6 x — 7' *"

6a; +1 2a; - 4 2a; - 1

15 . 7a; - 16
-2.

92. Harder Problems Leading to Simple Equations
with One Unknown Quantity.— We shall now give

some examples which lead to simple equations, but which

differ from those of Art. 61 in being rather more difficult.

The statement of the problem is rather more difficult than in

the examples of that Article, and the equations often involve

more complicated expressions.
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EXAMPLES.
1. A alone can do a piece of work in 9 days, and B alone

can do it in 12 days : in what time will they do it if they

work together ?

Let x = the number of days required for both to do the

work;

then - = the part that both can do in one day.
x

Also J = the part that A can do in one day,

and y1^ = the part that B can do in one day.

Since the sum of the parts that A and B separately can

do in one day is equal to the part that both together can do

in one day, we have

Clearing of fractions by multiplying by 36#, we have

Ax + 3x = 36; .-. x = 5£,

which is the number of days required.

2. A workman was employed for 60 days, on condition

that for every day he worked he should receive $3, and for

every day he was absent he should forfeit $1 ; at the end of

the time he had $48 to receive : required the number of days

he worked.

Let x = the number of days he worked

;

then 60 — x = the number of days he was absent.

Also 3x = the number of dollars he received,

and 60 — x = the number of dollars he forfeited.

Hence, from the conditions of the problem, we have

3a; - (60 - x) = 48.

.-. Ax = 108. .-. x = 27.

That is, he worked 27 days and was absent 33 days.

3. A starts from a certain place, and travels at the rate

of 7 miles in 5 hours ; B starts from the same place 8 hours

after A, and travels in the same direction at the rate of 5
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miles in 3 hours ; how far will A travel before he is over-

taken by B ?

Let x = the number of hours A travels before he

is overtaken
;

then x — 8 = the number of hours B travels before he

overtakes A.

Also |- = the part of a mile which A travels in one

hour,

and f = the part of a mile which B travels in one

hour,

Therefore \x = the number of miles which A travels in x

hours,

and f (as — 8) = the number of miles which B travels in

x — 8 hours.

Since, when B overtakes A, they have traveled the same

number of miles, we have for the equation

lx = f(*-8).

.-. 21a = 2bx - 200. .-. x = 50.

Therefore fa = J X 50 = 70 miles, the distance which A
travels before he is overtaken by B.

4. A cistern could be filled with water by means of one

pipe alone in 6 hours, and by means of another pipe alone

in 8 hours ; and it could be emptied by a tap in 12 hours if

the two pipes were closed : in what time will the cistern be

filled if the pipes and the tap are all open?

Let x = the required number of hours.

Then £ = the part of the cistern the first pipe fills in

one hour

;

therefore - = the part of the cistern the first pipe fills in

x hours.

And J = the part of the cistern the second pipe fills

in one hour

;

therefore - = the part of the cistern the second pipe fills

in x hours.
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Also -jW = the part of the cistern the tap empties in one

hour

;

therefore — = the part of the cistern the tap empties in x

hours.

Since in x hours the ivhole cistern is filled, we have, repre-

senting the whole by unity,

6 8
""

12
=

Multiplying by 24, we have

Ax + 3a; — 2x = 24.

... a = 4f
5. A smuggler had a quantity of brandy which he ex-

pected would bring him Si 98 ; after he had sold 10 gallons

a revenue officer seized one-third of the remainder, in con-

sequence of which the smuggler gets only $1G2: required

the number of gallons he had at first, and the price per

gallon.

Let x = the number of gallons
;

198
then — = price per gallon in dollars.

x — 10—
o
— = the number of gallons seized ;

x — 10 198
and * x -1- = the value of the quantity seized in

3 x
dollars.

Hence we have the equation

x ~ 10
x — = 198 - 162 = 36.

3 x

Clearing of fractions

66(z - 10) = 36a>.

.-. 3QaJ = 660.

x = 22, the number of gallons

;

19S 198 <>a .1 II

anc[
= = $9, the price per gallon.

x 22
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6. A colonel, on attempting to draw up his regiment in

the form of a solid square, finds that he has 31 men over,

and that he would require 24 men more in his regiment in

order to increase the side of the square by one man ; how
man}' men were there in the regiment?

Let x = the number of men in the side

of the first square
;

then x2
-{- 31 = the number of men in the regiment.

Also (x + l) 2 — 24 = the number of men in the regiment.

Hence, we have the equation

X2 + 3i = rx + iy _ 94,

or x2 + 31 = x2 + 2x - 23. .-. x = 27.

Hence (27)
2

-f- 31 = 760 is the number of men in the

regiment.

Note 1. — In this example it was convenient to let x represent the

number of men in the side of the first square instead of the number
of men in the whole regiment

7. At the same time that the up-train going at the rate of

33 miles an hour passes A, the down-train going at the rate

of 21 miles an hour passes B : they collide 18 miles beyond

the midway station from A : how far is A from B ?

Let x = the distance from A to B in miles

;

then - = half the distance.
2

Also - + 18 = the number of miles the up-train goes,

and - — 18 = the number of miles the down-train goefv
2

Now distance in miles = fte t[me in hoM8
rate in miles per hour

^ + 18

Therefore ——— = the time the up-train takes,
33

- - IS
2

and = the time the down-train takes.
21
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Hence, since these times are equal, we have the equation

* + 18 - - 18
2 2

33 21

Solving, we get x = 162, which is the distance from A to

B in miles.

8. A cask, A, contains 12 gallons of wine and 18 gallons

of water ; and another cask, B, contains 9 gallons of wine

and 3 gallons of water : how many gallons must be drawn

from each cask so as to produce by their mixture 7 gallons

of wine and 7 gallons of water ?

Let x = the number of gallons to be drawn from A
;

then 14 — x = the number of gallons to be drawn from B,

since the mixture is to contain 14 gallons.

Now A contains 30 gallons, of which 12 are wine ; that is,

J-J of A is wine. Also B contains 12 gallons, of which 9 are

wine ; that is, T
9^ of B is wine.

Hence \%x = the number of gallons of wine in the

x gallons drawn from A ;

and x%(14 — x) = the number of gallons of wine in the

14 — x gallons drawn from B.

Since the mixture is to contain seven gallons of wine, we
have 1^ + ^(14 - X) = 7;

that is, \x + f(14 - a;) = 7.

Solving, we get x — 10, the number of gallons to be drawn

from A,

and 14 — x = 4, the number of gallons to be drawn

from B.

9. At what time between 4 and 5 o'clock is the minute-

hand of a watch 13 minutes in advance of the hour-hand?

Let x — the required number of minutes after 4 o'clock ;

that is, the minute-hand will move over x minute divisions of

the watch face in x minutes ; and as it moves 12 times as

fast as the hour-hand, the hour-hand will move over —
1 2>

minute divisions in x minutes. At 4 o'clock the minute-hand
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is 20 minute divisions behind the hour-hand, and finally the

minute-hand is 13 minute divisions in advance ; therefore, in

the x minutes, the minute-hand moves 20 -f- 13, or 33,

divisions more than the hour-hand.

Hence x = — + 33
;

12

therefore lis = 12 x 33. .-. x = 3G,

or the time is 3G minutes past 4.

If the question be asked, " At what times between 4 and

5 o'clock will there be 13 minutes between the two hands?"

we must also take into consideration the case when the

minute-hand is 13 divisions behind the hour-hand. In this

case the minute-hand gains 20 — 13, or 7 divisions.

Hence X =
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Hence we have the equation

(10 x 2x + 3a?) + 18 = (10 x 3a; + 2x),

or 20x + 3x + 18 = 30a + 2x.

x = 2;

.-. 2.x- = 4, and 3x = 6;

therefore the number is 46.

11. A hare takes 4 leaps to a greyhound's 3, but 2 of the

greyhound's leaps are equivalent to 3 of the hare's ; the hare

has a start of 50 leaps : how many leaps must the greyhound

take to catch the hare?

Let 3x = the number of leaps taken by the greyhound
;

then 4x = the number of leaps taken by the hare in the

same time.

Also, let a denote the number of feet in one leap of the hare
;

then §a denotes the number of feet in one leap of the

greyhound.

Therefore ox x §« = the distance in 3x leaps of the grey-

hound
;

and (4a; -f 50) a = the distance in 4a; -f- 50 leaps of the

hare.

Hence we have the equation

%ax = (4x + 50) a.

Dividing by a and multiplying by 2, we have

9a; = Sx -f 100. .-. x = 100.

Therefore the greyhound must take 300 leaps.

Note 3.— It is often convenient to introduce an auxiliary symbol,

as a was introduced in the above example, to enable us to form the

equation easily; this can be removed by division when the equation is

formed.

12. A person bought a carriage, horse, and harness for

$600 ; the horse cost twice as much as the harness, and the

carriage half as much again as the horse and harness : what

did he give for each? Ans. $360, $160, $80.

13. In a garrison of 2711 men, there are two cavalry

soldiers to twenty-five infantry, and half as many artillery

as eavalry : find the numbers of each. Ans. 2150, 1%, 1)8.
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14. A and B play for a stake of So ; if A loses he will

have as much as B, but if A wins he will have three times

as much as B : how much has each? Ans. $25, S15.

15. A, B. and C have a certain sum between them; A
has one-half of the whole, B has one-third of the whole, and

C has $50 ; how much have A and B? Ans. $150, $100.

16. A number of troops being formed into a solid square,

it was found that there were 60 over • but when formed into

a column with 5 men more in front than before and 3 less in

depth, there was just one man wanting to complete it : find

the number of men. Ans. 1504.

17. A and B began to pay their debts ; A's money was at

first f of B's ; but after A had paid $5 less than § of his

money, and B had paid $5 more than J of his, it was found

that B had only half as much as A had left : what sum had

each at first? Ans. $360, $540.

18. In a mixture of copper, lead, and tin, the copper was

5 lbs. less than half the whole quantity, and the lead and

tin each 5 lbs. more than a third of the remainder : find the

respective quantities. Ans. 20, 15, 15 lbs.

19. A and B have the same income ; A lays by a fifth of

his ; but B, by spending annually $400 more than A, at the

end of four years finds himself $1100 in debt: what was

their income? Ans. $625.

20. There are two silver cups and one cover for both ; the

first weighs 12 ozs., and with the cover weighs twice as much
as the other cup without it ; but the second with the cover

weighs a third as much again as the first without it : find the

weight of the cover. Ans. 6f oz.

21. -Two casks, A and B, contain mixtures of wine and

water ; in A the quantity of wine is to the quantity of water

as 4 to 3 ; in B the like proportion is that of 2 to 3. If A
contain 84 gallons what must B contain, so that when the

two are put together, the new mixture may be half wine and

half water? Ans. 60.
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EXAMPLES.
Solve the following equations.

-. x — 2 . , 2x — 1
,, «

1. -f 4 = a; . -a?is. —6.
4

3
3

2
43; + 17

.

Sx ~ 1Q = 7 2.

a; + 3 <c - 4

3. *^zA + (« - l)(a? - 2) = a;
2 - 2a; - 4. 7.

o

4
3(7 + 6g) = 35 + 4#

j
2 + 9a; 9 + 2x

'

x + -i- = i. 2.
a; + 2 x + 6

„ 2a? — 5 . a? — 3 4a? — 3 ., « K

5 2a? - 15 10
"

7 4^ + 3) = 8a; + 37 _ 7a? - 29
6

9 18 5a; - 12*

8
7 ™ = 10^ L_ -10

a; - 4 5a; - 30 3a; - 12 a? - 6

3a;
2 _ 2a; - 8 _ (7a; - 2) (3a? - 6)

2
5 35

11. -?- + -i- = -*-. iff.
2a; -3a;- 2 3a; + 2

2J

19 a? — 4 _ a; — 5 _ x — 7 _ a; — 8 »

a; — 5 a; — x — 8 a; — 9

is. -2- + Ln» = idtl + °L^3. 4.
x — 2 x — 1 x — \ x — G

- . 3 — 2a; 2a; — 5 . 4a?
2 — 1 -

14. = 1 — -. — 1.

1 — 2a; 2a; — 7 7 — lGa? + \s~

7 3 2 6
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.Sx - 1 .5 + 1.2a?
34.

,5a; - A 2x - .1

35>
(.to - 2) (.3a; - 1) _ i{Sas _ 2) _ Ax _ 2 20<

• uX — J.

36. a2 (x — a) + b
2 (x — b) = a&a. a + 6.

Q7 2a; + 3a _ 2 (3a; + 2a)
Dim • Of

x + a ox + a

38. |g + A = |g - lY 17a.

s9 . W*-„)-(^ = ?(*-§} §.

40. a;
2 + a(2a - x) - — = (x - 5Y + a2

# a + 6#

41. (2a-a)(a>+—^= 4a/--aA-|(a-4a;)(2a+ 3a>).

42.

43.

44.

X
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4S. There is a number of two digits, whose difference is

2, and if it be diminished by half as much again as the sum

of the digits, the digits will be reversed : find the number.

Ans. \~>.

49. Find a number of 3 digits, each greater by 1 than

that which follows it, so that its excess above a fourth of the

number formed by reversing the digits shall be 36 times

the sum of the digits. Ans. 654.

50. A can do a piece of work in 10 days, which B can do in

8 ; after A has been at work upon it 3 days, B comes to help

him : in how many da}T
s will they finish it? Ans. 3J days.

51. A and B can reap a field together in 7 days, which A
alone could reap in 10 days : in what time could B alone

reap it? Ans. 23| days.

52. A privateer, running at the rate of 10 miles an hour,

discovers a ship 18 miles off, running at the rate of 8 miles

an hour : how many miles can the ship run before it is over-

taken? Ans. 72.

53. The distance between London and Edinburgh is 360

miles ; one traveler starts from Edinburgh and travels at the

rate of 30 miles an hour, while another starts at the same time

from London and travels at the rate of 24 miles an hour:

how far from Edinburgh will they meet? Ans. 200 miles.

54. Find two numbers whose difference is 4, and the dif-

ference of their squares 112. Ans. 12, 16.

55. Divide the number 48 into two parts so that the excess

of one part over 20 may be three tunes the excess of 20 over

the other part. Ans. 32, 16.

b(j. A cistern could be filled in 12 minutes by two pipes

which run into it, and it could be filled in 20 minutes by one

alone : in what time would it be filled by the other alone ?

Aus. 30 minutes.

57. Divide the number 90 into four parts so that the first

increased by 2, the second diminished by 2, the third multi-

plied by 2, and the fourth divided by 2, may all be equal.

Ans. 18, 22, 10, 40.
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58. Divide the number 88 into four parts so that the first

increased by 2, the second diminished by 3, the third multi-

plied by 4, and the fourth divided by 5, may all be equal.

Ans. 10, 15, 3, 60.

59. If 20 men, 40 women, and 50 children receive $500

among them for a week's work, and 2 men receive as much

as 3 women or 5 children, what does each woman receive for

a week's work? Ans. 85.

60. A cistern can be filled in 15 minutes by two pipes, A
and B, running together ; after A has been running by itself

for 5 minutes B is also turned on, and the cistern is filled in

13 minutes more : in what time would it be filled by each

pipe separately? Ans. 37J, and 25 minutes.

61. A man and his wife could drink a cask of beer in 20

days, the man drinking half as much again as his wife ; but

^| of a gallon having leaked away, they found that it only

lasted them together for 18 days, and the wife herself for

two days longer : how much did the cask contain when full ?

Ans. 12 gallons.

Let x = the number of gallons the woman could drink in a day.

62. A man, woman, and child could reap a field in 30

hours, the man doing half as much again as the woman, and

the woman two-thirds as much again as the child : how many

hours would they each take to do it separately ?

Ans, 62, 93, 155.

Let 2x — the man's number of hours, Sx = the woman's, and 5x =
the child's.

63. A and B can reap a field together in 12 hours, A and

C in 16 hours, and A by himself in 20 hours : in what time

(1) could B and C together reap it, and (2) could A, B, and

C together reap it? Ans. 21 fT hours, 10J§ horn's.

64. A can do half as much work as B, B can do half as

much work as C, and together they can complete a piece of

wen-kin 24 days: in what Lime could each alone complete

the work? Ans. 168, 81, and 42 days.
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65. There are two places 154 miles apart, from which two

persons start at the same time with a design to meet ; one

travels at the rate of 3 miles in two hours, and the other at

the rate of 5 miles in four hours : wheu will they meet?

Ans. At the end of i~)6 hours.

66. Three persons, A, B, and C, can together complete a

piece of work in 60 days ; and it is found that A does three-

fourths of what B does, and B four-fifths of what C does

:

in what time could each one alone complete the work?

Ans. 240, 180, 144 days.

Let x = C's time of completing the work, in days.

67. A general, on attempting to draw up his army in the

form of a solid square, finds that he has 60 men over, and

that he would require 41 men more in his army in order to

increase the side of the square by one man : how many men
were there in the army ? Ans. 2560 o

68. A person bought a certain number of eggs, half of

them at 2 for a cent, and half of them at 3 for a cent ; he

sold them again at the rate of 5 for two ceuts, and lost a

cent by the bargain : what was the number of eggs ? Ans. 60.

69. A and B are at present of the same age ; if A's age

be increased by 36 years, and B's by 52 }'ears, their ages

will be as 3 to 4 ; what is the present age of each? Ans. 12.

70. A cistern has two supply pipes which will singly fill it

in 4J hours and 6 hours respectively ; and it has also a leak

by which it would be emptied in 5 hours : in how many hours

will it be filled when all are working together ? Ans. 5^.
71. A person hired a laborer to do a certain work on the

agreement that for every day he worked he should receive $2,

but that for every day he was absent he should lose $0.75 ; he

worked twice as many days as he was absent, and on the whole

received $39 : how many days did he work ? Ans. 24.

72. A sum of mone}' was divided between A and B, so

that the share of A was to that of B as 5 to 3 ; also the

share of A exceeded five-ninths of the whole sum by $200:

what was the share of each person? Ans. $1800, 1080.
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73. A gentleman left his whole estate among his four sons.

The share of the eldest was $-1000 less than half of the

estate ; the share of the second was $G00 more than one-

fourth of the estate ; the third had half as much as the

eldest ; and the youngest had two-thirds of what the second

had : how much did each son receive ?

Ans. $11000, $8100, $5500, $5400.

Let x = the number of dollars in the estate.

74. A and B shoot by turns at a target ; A puts 7 bullets

out of 12 into the bull's eye, and B puts in 9 out of 12;

between them they put in 32 bullets : how many shots did

each fire? Ans. 24.

75. Two casks, A and B, are filled with two kinds of sherry,

mixed in the cask A in the proportion of 2 to 7, and in the cask

B in the proportion of 2 to 5 : what quantity must be taken

from each to form a mixture which shall consist of 2 gallons

of the first kind and 6 of the second kind? Ans. 4|, 3 J.

7G. How many minutes does it want of 4 o'clock, if three-

quarters of an hour ago it was twice as many minutes past

2 o'clock? Ans. 25.

Let x = the number of minutes it wants of 4 o'clock.

77. At what time between 3 o'clock aud 4 o'clock is one

hand of a watch exactly in the direction of the other hand

produced? Ans. 49^ minutes past three.

78. The hands of a watch are at right angles to each other

at 3 o'clock : when are they next at right angles?

Ans. 32T
8
T minutes past three.

79. At what time between 3 and 4 o'clock is the minute-

hand one minute ahead of the hour-hand?

Ans. 17y\ minutes past three.

80. An officer can form his men into a hollow square 4

deep, and also into a hollow square 8 deep ; the front in the

latter formation contains 16 men fewer than in the former

formation : find the number of men. Ana. 640.
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CHAPTER X.

SIMULTANEOUS SIMPLE EQUATIONS OF TWO
OR MORE UNKNOWN QUANTITIES.

93. Simultaneous Equations of Two Unknown
Quantities.— If we have a single equation containing two

unknown quantities x and ?/, we cannot determine any thing

definite regarding the values of x and y, because whatever

value we choose to give to either of them, there will be a

corresponding value of the other.

Thus, from the equation,

2x + 3y = 24, ..... . (1)

we may deduce the equation,

24 - 2x
y =—3— ;

but we cannot find the value of y from this equation unless

we know the value of x. We may give to x any value we

choose, and there will be one corresponding value of y ; and

thus we may find as many pairs of values as we please which

will satisfy the given equation.

For example, if x = 3, then y = (24 — 6) -*- 3 = 6.

If x = 6, then y = (24 - 12) -s- 3 = 4.

3 = 2.

3 = -5i,

If a; = 9, then?/ = (24 - 18)

If x = 20, then y = (24 - 40)

and so on.

Any one of these pairs of values f
~~

), ( ), I ~ Y
V/ = <7 ^= 4/ V/ = 2/

etc., substituted for x and ?/ in (1) will satisfy the equation.

Hence a single equation containing two unknown quantities

is not sufficient to determine the definite value of either.
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Suppose we have a second equation of the same kind,

expressing a different relation between the unknown quanti-

ties, as for example,
3s + 2y = 26 ; (2)

then we can find as many pairs of values as we please which

will satisfy this equation also.

Now suppose we wish to determine values of x and y
which will satisfy both equations (1) and (2) ; we shall find

that there is only one pair of values of x and y, i.e., only

one value of x and one value of y that will satisfy both

equations. For, multiply equation (1) by 2, and equation

(2) by 3, and the equations become

4a. + Gy = 48, (3)

and 9x -f- 6y = 78 (4)

The coefficients of y are now the same in (3) and (4) ;

hence if we subtract each member of (3) from the corre-

sponding member of (4) , we shall obtain an equation which

does not contain y : the equation will be

5a; = 30

;

therefore x = 6.

Substituting this value of x in either of the two given

equations, for example in equation (1), we have

12 -f By = 24.

.-. Sy = 12.

••• y = 4.

Thus, if both equations are to be satisfied by the same

values of x and ?/, x must equal G, and y must equal 4 ; and

the pair of values (

x
) is the only pair of values which

\y = 4 /

will satisfy both the given equations.

Simultaneous Equations are those which are satisfied by

the sa,me values of the unknown quantities. Thus,

Since (1) and (2) are satisfied by the same values of a

and ?/, they are simultaneoiis equations.
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Independent Equations are those which express different

relations between the unknown quantities, uud neither can

be reduced to the other. Thus,

Equations (1) and (2) are independent, because they ex-

press different relations between x and y. But 2x — oy = 4,

and 8a; — 12?/ = 1G, are not independent equations, since

ilie second is derived directly from the first, by multiplying

both members by 4.

Hence we see that tiuo independent simultaneous equations

are necessary to determine the values of two unknown quan-

tities.

94. Elimination.— In order to solve any two simulta-

neous equations containing two unknown quantities, it is

necessary to combine them in such a way as to deduce a

third equation which contains only one of the unknown
quantities ; and this equation containing only one unknown
quantity can be solved by the method given in Chapter IX.

When the value of one of the unknown quantities has thus

been determined, we can substitute this value in either of

the given equations, and then determine the value of the

other unknown quantity.

The process of combining equations so as to get rid of

either of the unknown quantities is coiled Elimination. The

unknown quantity which disappears is said to be eliminated.

There are three methods of elimination in common use :
*

(1) by Addition or Subtraction; (2) by Substitution; and

(3) by Comparison.

95. Elimination by Addition or Subtraction.

—

1 . Let it be required to determine the values of x and y in

the two equations

8.r + "ty = 100 (1)

12.1* - oy = 88 (2)

* There ie also a method by Undetermined Multipliers, which sometimes has the

advantage over either of these three methods, ^specially in Higher Mathematics.

—

See College Algebra, Art. W, Note.
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If we wish to eliminate y we multiply (1) by 5, and (2)

by 7, so as to make the coefficients of y in both equations

equal. This gives

40a; + 35?/ = 500 (3)

84x - 35y = 616 (4)

Adding (3) and (4), we have

124a = 1116. .'. x = 9.

To find y, substitute this value of x in either of the given

equations. Thus in (1)

72 + ly = 100.

.-. ly= 28.

••• y= 4
j.

and x — 9 j

In this solution we eliminated y by addition.

Otherwise thus: Suppose that in solving these equations

we wish to eliminate x instead of y. Multiply (1 ) by 3, and

(2) by 2, so as to make the coefficients of x in both equations

equal. This gives

24a; + 21?/ = 300 (5)

24a: - lOy = 176 (6)

Subtracting (6) from (5), we have

31?/ = 124. .-. y = 4.

In this solution we eliminated x by subtraction.

Note 1.— The student will observe that we might have made the

coefficients of x equal by multiplying (1) and (2) by 12 and 8 respec-

tively, instead of by 3 and 2; but it was more convenient to use the

smaller multipliers, because it enabled us to work with smaller

numbers.

2. Solve 2x -h Sy = 31 (1)

12x - 17?/ = -59 (2)

Here it will be more convenient to eliminate a\
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Multiplying (1) by C, to make the coefficients of x in both

equations equal, we have

12a; 4- 1% =186; .... (3)

and from (2) !2z - I7y = -59 (4)

Subtracting (4) from (3), 35^ = 245.

.-. y = 7.

Substituting this value of y in (1), we have

2x + 21 = 31.

. •
. x = 51

and y = 7j

Note 2. — When one of the unknown quantities has heen found, it

is immaterial which of the equations we use to complete the solution,

though it is sometimes more convenient to use a particular equation

on account of its being less involved than the other. Thus, in this

example, we substituted the value of x in (1) rather than in (2),

because it rendered the process simpler.

In these two examples we have eliminated by addition and

subtraction. Hence to eliminate an unknown quantity by

addition or subtraction, we have the following

Rule.

Multiply the given equations, if necessary, by such numbers

as ivill make the coefficients of this unknown quantity numeri-

cally equal in the resulting equations. Then, if these equal

coefficients have unlike signs, add the equations together; if

they have the same sign, subtract one equation from the other.

Rem. — It is generally best to eliminate that unknown quantity

which has the smaller coefficients in the two equations, or which
requires the smallest multipliers to make its coefficients equal. When
the coefficients of the quantity to be eliminated are prime to each

other, we may take each one as the multiplier of the other equation.

When these coefficients are not prime to each other, find their least

common multiple; and the smallest multiplier for each equation will

be the quotient obtained by dividing this L. C. M. by the coefficient in

that equation. Thus, in Ex. 1, first solution, 7 and 5 (the coefficients

of y) are prime to each other. We multiplied (1) by 5 and (2) by 7.

In the second solution of Ex. 1, the L. C. M. of 8 and 12 (the coeffi-

cients of x) is 24; and henco the smallest multipliers of (1) and (2)

are 3 and 2 respectively, which we used in that solution.
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3. Solve nix - 213?/ =642 (1)

114a - 326?/ =244 (2)

Here we see that 171 and 114 contain a common factor 57
;

so we shall make the coefficients of x in (1) and (2) equal

to the least common multiple of 171 and 114 if we multiply

(1) by 2 and (2) by 3.

Thus, 342a - 426?/ = 1284

342a; - 978?/ = 732

Subtracting, 552,?/ = 552.

-• y= i,l

therefore x = 5. J

Note 3. — The solution is sometimes easily effected by first adding

the given equations, or by subtracting one from the other. Thus,

4. Solve 127a + 59?/ = 1928. . . . (1)

59a + 127?/ = 1792. ... (2)

By addition 186a + 186?/ = 3720.

... x + y = 20 . . . . (3)

Subtracting (2) from (1), 68a - G8y = 136.

••• x- y = 2 .... (4)

Adding (3) and (4), 2a = 22. .-. a = 11.

Subtracting (4) from (3), 2?/ = 18. .-. y = 9.

Note 4. — The student should look carefully for opportunities to

effect such reductions as are made in this example. He will find as he

proceeds that in all parts of Algebra, particular examples may be

treated by methods which are shorter than the general rules; but such

abbreviations can only be suggested by experience and practice.

Solve the following equations by addition or subtraction :

5. 3a -f- 4y = 10, 4a + ?/ = 9. Ans. a = 2, ?/ = 1.

6. x + 2y = 13, 3a + V = 14. a = 3, y = 5.

7. 4a + ly = 29, a + By = 11. a = 2, y = 3.

8. 8a — ?/ = 34, x + Hy = 53. a = 5, ?/ = 6.

9. 14a — 3?/ = 3!), Gx + 17// = 35. a = 3, ?/ = 1.

10. 35a -f 17/y = 86, 56a - 13// =17. x = 1, y = 3.
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11. 15a> + 77y = 92, 55a; - 33y = 22.

^l?is. a; = 1, ?/ = 1.

12. ox + 2y = 32, 20a; — 3# = 1. x = 2, y = 13.

13. 7a; + 5# = 60, 13a; — 11# = 10. a; = 5, y = 5.

14. 10a; + 9y = 290, 12.x- - 11?/ = 130. a; = 20, y = 10.

96. Elimination by Substitution.— Find the values

of x and y in the equations

4a; + 3y = 22 . . . . . . (1)

5a? — ly = 6 (2)

Transpose 3y in (1), 4a; = 22 — 3y ;

t -i i j 22 - 3w
divide by 4, a; = ;

4

substitute this value of x in (2), and we obtain

,/22 - 3y\ ^ «

5(—J—)-^= 6;

multiply by 4, 5(22 - 3y) - 2% = 24.

.-. t/= 2.

Substitute this value of y in e#7ier (1) or (2), thus in (1)

4x + 6 = 22.

.-. a; = 4)

and

In this solution we eliminated x by substitution.

Otherwise thus: from (1) we have

3y = 22 - 4a;

;

v a u a 22 — 4a;
divide by 3, ?/ = ;

o

substitute this value of y in (2),

--ff*)-"
multiply by 3, 15a; - 7(22 - 4a;) = 18;

that is, 15a; — 154 + 28a; = 18.

.•o x = 4.
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Substitute this value of x in either (1) or (2), thus in (1)

16 + % = 22. .-. y = 2.

Here we eliminated ?/ by substitution.

Hence, to eliminate an unknown quantity by substitution,

we have the following

Rule.

From either equation, find the value of the unknown quan-

tity to be eliminated, in terms of the other ; and substitute this

value for that quantity in the other equation.

Solve by substitution the following equations

:

2. 3a; — Ay = 2, 7x — dy = 7. Ans. x = 10, y = 7.'

3. \lx - ly = 37, Sx + % = 41. a; = 4, y = 1.

4. 6a; — ly — 42, 7a; — 6# = 75. x = 21, y == 12.

5. 3a; - 4?/ = 18, 3a; + 2?/ = 0. x = 2, y = -3.

6. 4a; - 2 = 11, 2a; - 3?/ = 0. a; = 3, y = 2.

7. 2a; — y — 9, 3a; — ly = 19. a; = 4, ?/ = — 1.

8. 15a; + ly = 29, 9a; + 15?/ = 39. a; = 1, y = 2.

9. 2a; + y = 10, 7a; -f 8?/ = 53. a; = 3, y = 4.

97. Elimination by Comparison.— Find the values

of x and y in the equations

2a; + 3y = 23 . . . . . . (1)

5a? - 2y = 10 (2)

Finding the value of x in terms of y from both (1) and

(2), we have,

from(l), x= 23 ~ 3y
, ...... (3)

and from (2), a; = 10 + 2y
(4)

5

Placing these two values of x equal to each other, we have

10 + 2?/ _ 23 - :\y

5 2
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Clearing of fractions, by multiplying by 10, we have

20 -f 4y = 115 - Voy.

.-. Vdy = 95. .-. y = 5.

Substitute this value of y in either (3) or (4), thus in (4)

10 + 10
x = = 4.

5

In this solution we eliminated x by comparison.

Otherwise tints: find the values of y in terms of x from

(1) and (2).

23 - 2x /K .

2/= o ' (°)

Therefore
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subtraction is the most simple and elegant. When either of the un-

known quantities has 1 for its coefficient, the method by substitution

is advantageous. When there are more than two unknown quantities,

it is often convenient to use several of the methods in the same

example.

Solve by comparison the following equations

:

2. 7x — 5y = 24, Ax — oy = 11. Arts. x=\l, y = 19.

3.
x
- + Sy = 7, ^-i^ = 3t/ - 4. x = 3, y = 2.

3 5

4. Gx - by = 1, 7a; - 4?/ = 8|. x= 3|, ?/ = 4.

5. ?L±J + a = 15,
x̂ y + y = 6. a? = 10, y = 5.

3 5

6. 2* + by = 13, 2aj + 4 "" 7y = 33. a =19, y = 2.

19 2

7. 2aj + ^=-? = 21,4v+^=i = 29. a? = 10, ?/ = 7.

5 6

98. Fractional Simultaneous Equations of the

Form 12 + 8 = g (1)
x y

21 - 12 = 3 (2)
« y

If we cleared these equations of fractions they would

involve the product xy of the unknown quantities ; and thus

they would become quite complex. But they may be solved

by the methods already given, as follows

:

Multiply (1) by 3, — + — = 24.
x y

Multiply (2) by 2, — - — = G.
x y

Add

Divide by 30, - = 1. ,\ x = 3.

90
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Substitute this value of x in (1),

12
"3
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Solve the following literal equations by either method of

elimination

:

2. x + y = a + b, bx -f ay = 2ab. Ans. x = a,y = b.

3. (a + c)x — by = be, x + y = a + b. x = b, y = a.

, , 7 x ac be
4. x -h y = c, aa? — by = c(a — b). x = —— , ?/

5.

a -f 6 a -j- b

? + |
= l,| + 2 = l. * = -J£_,

j, = A.
a 6 b a a + b a + b

a a 4.2/- r
x _^-0 x- ah2°

v - a2&c
"•

1 7
— C

' 7 — U " ~
" 2 i J.2' " 2.72*

a 6 6 a a2 + & « -h &

7. The sum of two numbers is a and their difference is b :

find the numbers. Ans. Greater - + - ; less - — -.
Z L 'Z 'Z

When the known quantities in a problem are represented

by letters, the answer furnishes a general result or Formula

(Art. 41) ; and a formula expressed in ordinary language,

furnishes a Rule. Thus, in the present example, we have

the following

Rule. The sum and difference of two numbers being given,

to find the numbers : The greater number is equal to half the

sum plus half the difference ; the less number is equal to half

the sum minus half the difference.

100. Simultaneous Equations with Three or More
Unknown Quantities. — In order to solve simultaneous

equations which contain two unknown quantities, we have

seen that we must have two equations (Art. 93). Similarly

we find that in order to solve simultaneous equations which

contain three unknown quantities, we must have three equa-

tions. And generally, when the values of several unknown

quantities are to be found, it is necessary to have as many

simultaneous equations as there are unknown quantities.

Simultaneous simple equations involving three or more

unknown quantities, may be solved by either of the three

methods of elimination explained in the preceding articles

;
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but the most convenient method of elimination is generally

that by addition or subtraction. The unknown quantities

are to be eliminated one at a time by the following

Rule.

If there he three simple equations containing three unknown

quantities, eliminate one of the unknown quantities from any

two of the equations, by the methods already explained (Arts.

95, 96, 97) ; then eliminate the same unknown quantity from

the third given equation and either of the former two ; two

equations involving two unknown quantities are thus obtained,

and the values of these unknown quantities may be found by

the rules given in the 'preceding Articles. The remaining

unknown quantity may be found by substituting these values

in any one of the given equations.

If four equations are given involving four unknown quan-

tities, one of the unknown quantities must be eliminated

from three pairs of the equations. Three equations involv-

ing three unknown quantities will thus be obtained, which

may be solved according to the rule. If five or more equa-

tions are given, they may be solved in a similar manner.

Note 1.— Either of the unknown quantities may be selected, as

the one to be first eliminated; but it is best to begin with the quantity

which has the simplest coefficients; and when an unknown quan-

tity is not contained in all the given equations, it is generally best

to eliminate that quantity first.

EXAMPLES.
1. Solve Gx + '2y — hz = 13, (1)

Zx + 3y - 2z = 13, (2)

7x + by — 3z = 26 (3)

Choose y as the first quantity to be eliminated.

Multiply (1) by 3, and (2) by 2,

18s -\- 6y — \bz = 39,

Gx + Gy - 4z = 26.

subtracting, 12a; - 1U = 13 (4)
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Multiply (1) by 5, and (3) by 2,

30a; + 10y - 25z = 65,

Ux + 10?/ - 6z = 52.

subtracting, 16# — 192 =13 (5)

We have now to find the values of x and z from (4) and (5)

.

Multiply (4) by 4 and (5) by 3 (Art. 95, Rem.),

48z - 44z = 52,

48z - 57z = 39.

1.

thus

\ x = 2.

subtracting, 13z = 13.

Substitute this value of z in (4)

12# - 11 = 13.

Substitute these values of x and z in (1) ; thus

12 + 2y - 5 = 13.

.*. 2/= 3,

and z = 1,

as = 2.

Note 2.— Although the method of elimination given by the rule

is generally the best, yet in particular examples solutions may be

obtained more easily and elegantly by other means, which the student

must learn by experience. After a little practice he will find that the

solution may often be considerably shortened by a suitable combination

of the given equations. Thus, Ex. 1 may be solved as follows

:

Add (1) and (2) and subtract (3),

2x - 4z = 0,

or x = 2z (6)

Substitute this value of # in (1) and (2), and we get

2y + 7z = 13,

3y + 4z = 13.

Subtracting, y - 3z = 0.

.-. y = 3z .

Substitute these values of x and y in (1)

12z + Gz - 52 = 13.

.-. z= 1;

therefore from (G) and (7), x = 2,

2/= 3.

(7)

thus
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2. Solve k* JL
Ay
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with two unknown quantities, which is not sufficient to

determine the definite value of either (Art. 93). The

anomaly here arises from the fact that one of these three

equations is deducible from the others ; in other words, that

the three equations are not independent (Art. 93).

Note 3. — Sometimes it is convenient to use the following rule:

Express the values of two of the unknown quantities from two of

the equations in terms of the third unknown quantity, and substitute

these values in the third equation. From this, the third unknown
quantity can be found, and then the other two : thus

4. Solve Sx + 4?/ - I62 = 0, (1)

5x - 8y + 10z = 0, (2)

2x + 6y + 72 = 52 (3)

Multiply (1) by 2 and add to (2) ; thus

IIoj — 222 = 0. .-. x = 22.

Multiply (1) by 5, and (2) by 3, and subtract ; thus

44t/ - 1102 = 0. .-. y = —.

Substitute these values of x and y in (3) ; thus

42 + 1^2 + 72 = 52.

.-. 2 = 2, 1

and x = 4, \

y = 5.
J

Note 4. — The rule in Note 3 is especially convenient when all of

the unknown quantities occur in only one equation; thus

5. Solve a,*-f?/ + 2 = a-f6-r-c, . . . -(1)

x — y =: b — a, (2)

x — z — c — a (3)

From (2) we have y = x -+- a — b (4)

From (3) we have z = x + a — c (5)
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Substitute these values of y and z in (1),

x -{- x -\- a — b + x + a — c = a + b -\- c.

.-. 3a; = —a + 26 + 2c.

from (4)

from (5)

x = | (a + b + c) — a,
]

z - |(a + b + c) - e. j

Solve the following equations s

G. 7a; + 3# — 22 = 10,

9.

10.

2a; + 5?/ + 3^ =
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ties in terms of one unknown quantity, and thus to require

but a single equation. In the problems of the present

chapter the relations between the unknown quantities are

not so simple, and the solution will give rise to simultaneous

equations ; and in all cases the conditions of the problem

must be sufficient to furnish as many independent equations

as there are unknown quantities to be determined (Art. 100).

EXAMPLES.
1. Find two numbers such that the greater exceeds twice

the less by 3, and that twice the greater exceeds the less by

27.

Let x = the greater number,

and y = the less number.

Then from the conditions,

x — 2y = 3,

and 2x — y = 27.

Solving these equations, we have x = 17, y = 7.

2. If the numerator of a fraction be increased by 2 and

the denominator by 1, it becomes equal to f ; and if the

numerator and denominator are each diminished by 1, it

becomes equal to \ : find the fraction.

Let x = the numerator,

and y = the denominator.

Then from the conditions,

x + 2

y + 1

_ 5

, X — 1 tand = £.

Solving, we have x = 8, y == 15.

Hence the fraction is ^.

3. A man and a boy can do in 15 days a piece of work

which would be done in 2 days by 7 men and i) boys : how
iou£ would it take one man to do it?
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Let x = the number of days in which one man would do

the whole,

and let y = the number of days in which one boy would do

the whole.

Then - = the part that one man can do in one day,

and - = the part that one boy can do in one day.

Then from the conditions of the question, a man and a

boy together do y^th of the work in one day ; hence we have

'£+£«* (!)
x y

Also, since 7 men and 9 boys do half the work in a day,

we have -
Q

- + - = i (2)
x y

Mult: plyiug (1) by 9, and subtracting (2) from it, we have

! = * ••• a: = 20 -

Thus one man would do the work in 20 days.

4. A railway train after traveling an hour is detained 24

minutes, after which it proceeds at six-fifths of its former

rate, and arrives 15 minutes late. If the detention had

taken place 5 miles further on, the train would have arrived

2 minutes later than it did. Find the original rate of the

train, and the distance traveled.

Let x = the original rate of the train in miles per

hour

;

and y = the number of miles in the whole distance

traveled.

Then y — x = the number of miles to be traveled after

the detention.

- = the number of hours in traveling y — x

miles at the original rate,

Q fy np\

and -^ '- = the number of hours in traveling y — x
6#

miles at the increased rate.
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Since the train is detained 24 minutes, and yet arrives only

15 minutes late, it follows that the remainder of the journey

is performed in nine minutes less than it would have been if

the rate had not been increased ; hence we have

S^.S^-ji
x bx

If the detention had taken place 5 miles further on, there

would have been y — x — 5 miles left to be traveled after

the detention ; hence we have

(2)

or

y — x — 5
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Let x = the number of persons,

and y = the number of dollars which each received.

Then xy = the number of dollars to be divided, and from

the conditions, we have

(0 + 8)0,- 1) = xy,

and (x- 2)(?/ + 1) = xy.

Solving, we get x — 12 and y = 5.

7. A train traveled a certain distance at a uniform rate ;

had the speed been 6 miles an hour more, the journey would

have occupied 4 hours less ; and had the speed been 6 miles

an hour less, the jouruey would have occupied G hours more :

find the distance.

Let x = the rate of the train in miles per hour,

and y = the time of running the journey in hours.

Then xy = the distance traversed, and from the conditions,

we have (x -j- 6) (y — 4) = xy,

and (x - 6) (y + 6) = xy.

Solving, we get x = 30, and y = 24. Hence the distance

is 720 miles.

8. A, B, and C can together do a piece of work in 30

days ; A and B can together do it in 32 days ; and B and C
can together do it in 120 days : find the time in which each

alone could do the work.

Let x = the number of days in which A could do it,

. y = the number of days in which B could do it,

and z = the number of days in which C could do it.

Then we have from the conditions,

i+i
x y
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9. Find the fraction which is equal to f when its

numerator is increased by unity, and is equal to \ when

its denominator is increased by unity. Ans. §.

10. A certain number of two digits is equal to five times

the sum of its digits ; and if nine be added to the number

the digits are reversed : find the number. Ans. 45.

11. If 15 lbs. of tea and 17 lbs. of coffee together cost

ST. 86, and 25 lbs. of tea and 13 lbs. of coffee together

cost $10.34, find the price per pound of each.

Ans. The tea cost 32 cents, and the coffee cost 18 cents,

alb.

12. If A f

s money were increased by $36 he would have

three times as much as B ; and if B's money were diminished

by $5 he would have half as much as A : find the sum
possessed by each. Ans. A has $42, B has $26.

13. Find two numbers such that half the first with a third

of the second may make 32, and that a fourth of the first

with a fifth of the second may make 18. Ans. 24, 60.

14. A farmer parting with his stock, sells to one 9 horses

and 7 cows for $1200 ; and to another, at the same prices,

6 horses and 13 cows for the same sum : what was the price

of each? Ans. $96, $48.

15. Having $45 to give away among a certain number of

persons, I find that for a distribution of $3 to each man and

$1 to each woman, I shall have $1 too little; but that, by

giving $2.50 to each man and $1.50 to each woman, I may
distribute the sum exactly : how many were there of men
and women? Ans. 12, 10.

16. Find three numbers, A, B, C, such that A with half

of B, B with a third of C, and C with a fourth of A, may
each be 1000. Ans. 640, 720, 840.

17. A person spent $1.82 in buying oranges at the rate of

3 for two cents, and apples at 5 cents a dozen ; if he had

bought five times as many oranges and a quarter of the

number of apples he would have spent $5.30 : how many of

each did he buy? And. 153, 192.
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EXAMPLES.
Solve the following equations :

1. 5x — ly = 0, 7x + by = 74. ^4?is. x = 7, ?/ = 5.

2. 5x = 7y — 21, 21a; — 9?/ = 75. x = 7, y = 8.

3. G>/ - 5a; = 18, 12a; - 9y = 0. x = 6, y = 8.

4. 7a; + 4y = 1, 9x + 4?/ = 3. x = 1, y = —If.

o. x - lly = 1, 111?/ - 9a = 99. a; = 100, y = 9.

6. 8x — 21y = 5,6x+14y= — 26. x= —2,y= — 1.

7. 39a? — 8y = 99, 52a; — loy = 80. x = 5, y = 12.

8. 3a; = ly, l'2y = 5a; — 1. x = — 7, ?/ = —3.

9. 93x + Iby = 123, 15x + $dy =201. x= l,y = 2.

10. - + * = 1, - - %L = 3. x = 4, y = -3.
2 3 4 3

J

11. ?-±J + B = 15
'

1JL
ir
1 + 2/ = 6. x = 10, 2/ = 5.

12. f +f =
34,f+|= f+12. * = 12,„ = 12.

13. lziS£ + fci = 2) 3£±l/ + 9 . ^57.
7 o 11

14. |—i(2/~2) -i(a;-3) =0, x-£(y-l) -*(*-*) =0.
z

.4ns. x = 3f , y = 6f

.

- K x-2 v+2 ft
2x— 5 11 — 2?/ n „ - ,

15. 2-L- = 0, 2 = 0. a;=o, ?/= 2.

3 4 5 7

16. -+ 2 = 3x-7y— 37,3x^-7y=37. x= 3,y= -4.

17. (x+i)(y+5)=(x+5)(y+l),xy+x+y=(x+2)(y+2).

^tzs. a; = —2, y = —2.

18. xy - (y - l)(x - 1) = 6(y - l),x - y = 1.

vl?is. a; = 2-J, y = 1J.

19. L±J* = L+J! = "+-• + y. » = 8, » = 16.
3 5 7

*
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20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

31.

32.

33.

EXAMPLES.

.3x + .125?/ = x - 6,3# - .5?/ = 28 - .25?/.

^4ns. sc = 10, y = 8.

.08z-.21?/ = .33, .12# + .7?/ = 3.54. a= 12,^ = 3.

?_4 = 25
18 + 8 =10>

x y x y

2,5 .3
- + - = 7,-
x y x

= 11

2/

^ — TT9> 2/

» + O 7 ° 2 (_ = 2' OX — "3

y y

2x - -= 3, 8x + — =
2/ 2/

a+ ^-3

x = 2|, y = 2f.

-19.

a; = 3, y = 6.

_ 1 7/ _ 3

+ 7 = 0>
3,v-10(g-l) + g=J > + 1 = 0j

# — 5 6 4

^l?is. a; = 4, ?/ = 12.

® + I = 2, bx - ay = 0.
a 6

x = a, y = 6.

a(a> + 2/) + &(# — y) = 1, a(x — y) + b(x + y) = 1.

1
^4ns. a; -;> 2/ = 0.

a + 6

x + ?/ = a H- 6, aa; — 6?/ + a2 — 62 = 0.

Ans. x — 26 — a, ?/ = 2a — b.

(a+b)x + (a— b)y = 2ac, (6+c)a; + (b—c)y= 26c.

^4?is. x = y = c.

x + 2y - 3z = 6,

2ic -f 4?/ — 72; = 9,

Sx — y — 5z — 8.

2x — y + 2s 4,

5x + y + 3z = 5,

2x - 3?/ + 4z = 20.

x + 4?/ + 3z = 17,

3x- + 3y + 2 = 16,

2a + 2?/ + z = 11.

y = H,
[z = 3.

U = -1,

j
.'/
= -2,

[z = 4.

( x = 2,

y = 3,

I * = 1.



EXAMPLES. 19:

34.
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45. What fraction is that, to the numerator of which if 7

be added, its value is § ; but if 7 be taken from the denom-

inator its value is § ? Ans. -^.

46. A rectangular bowling-green having been measured,

it was observed that, if it were 5 feet broader and 4 feet

longer, it would contain 11G feet more; but if it were 4

feet broader and 5 feet longer, it would contain 113 feet

more : find its area. Ans. 108 sq. ft.

47. A party was composed of a certain number of men
and women, and, when four of the women were gone, it was

observed that there were left just half as many men again as

women ; they came back, however, with their husbands, and

now there were only a third as many men again as women

:

what were the original numbers of each? Ans. 12, 12.

48. The sum of the two digits of a certain number is 6

times their difference, and the number itself exceeds 6 times

their sum by 3 : find the number. Ans. 75.

49. Divide the numbers 80 and 90 each into two parts, so

that the sum of one out of each pair may be 100, and the

difference of the others 30.

Ans. 30, 50, and 70, 20 ; or 60, 20, and 40, 50.

50. Four times B's age exceeds A's age by 20 years, and

one-third of A's age is less than B's age by 2 years : find

their ages. Ans. A 36 years, B 14 years.

51. In 8 hours A walks 12 miles more than B does in 7

hours ; and in 13 hours B walks 7 miles more than A does

in 9 hours : how many miles does each walk per hour?

Ans. A 5 miles, B 4 miles.

52. The sum and the difference of a number of two digits

and of the number formed by reversing the digits are 110

and 54 respectively: find the numbers. Ans. 28, 82.

53. In a bag containing black and white balls, half the

number of white is equal to a third of the number of black
;

and twice the whole number of balls exceeds three times the

number of black balls by four: how many balls did the bag

contain? Ans. 8 white, 12 black.
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54. Twenty-eight tons of goods are to be carried in carts

and wagons, and it is found that this will require 15 carts and

12 wagons, or else 24 carts and 8 wagons: how much can

each cart and each wagon cany? Ans. § tons, f tons.

55. The first edition of a book had GOO pages, and was

divided into two parts ; in the second edition one quarter of

the second part was omitted and 30 pages added to the first

;

the change made the two parts of the same length : what

were they in the first edition? Ans. 240, 360.

56. If A were to receive $10 from B he would then have

twice as much as B would have left ; but if B were to receive

$10 from A, B would have three times as much as A would

have left: how much has each? Ans. 822, $26.

57. A farmer sold 30 bushels of wheat and 50 bushels of

barley for S75 ; he also sold at the same prices 50 bushels

of wheat and 30 bushels of barley for $77: what was the

price of the wheat per bushel? Ans. $1.

58. A certain fishing rod consists of two parts ; the length

of the upper part is to the length of the lower as 5 to 7

;

and 9 times the upper part together with 13 times the lower

part exceeds 11 times the whole rod by 36 inches : find the

lengths of the two parts. Ans. 45, 63.

59. A certain company in a tavern found, when they came

to pay their bill, that if there had been 3 more persons to

pay the same bill, they would have paid $1 each less than

they did ; and if there had been 2 fewer persons they would

have paid $1 each more than they did : find the number

of persons, and the number of dollars each paid.

Ans. 12, 5.

60. There is a rectangular floor, such that if it had been

2 feet broader, and 3 feet longer, it would have been 64

square feet larger ; but if it had been 3 feet broader, and 2

feet longer, it would have been 68 square feet larger : find

the length and breadth of the floor. Ans. 14 ft., 10 ft.

Let x = the length, and y = the breadth, of the floor in feet; then

xy = the surface of the floor in square feet.
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61. When a certain number of two digits is doubled, and

increased by 36, the result is the same as if the number had

been reversed, and doubled, and then diminished by 36

;

also the number itself exceeds 4 times the sum of its digits

by 3 : find the number. Ans. 59.

62. Two passengers have together 560 lbs. of luggage,

and are charged for the excess above the weight allowed 62

cents and $1.18 respectively ; if the luggage had all belonged

to one of them he would have been charged $2.30 : how

much luggage is each passenger allowed without charge ?

Ans. 100 lbs.

63. A farmer has 28 bushels of barley at 56 cents a

bushel ; with these he wishes to mix rye at 72 cents a bushel,

and wheat at 96 cents a bushel, so that the mixture may
consist of 100 bushels, and be worth 80 cents a bushel : how
many bushels of rye and wheat must he take? Ans. 20, 52.

64. A and B ran a race which lasted 5 minutes ; B had a

start of 20 3*ards ; but A rau 3 }-ards while B was running 2,

and won by 30 yards : find the length of the course and the

rate of each per minute.

Ans. 150 yards, 30 yards, 20 yards.

65. A and B can together do a certain work in 30 days

;

at the end of 18 days however B is called off and A finishes

it alone in 20 days more : find the time in which each could

do the work alone. Ans. 50, 75.

66. A, B, and C can together drink a cask of beer in 15

days ; A and B together drink four-thirds of what C does ;

and C drinks twice as much as A : find the time in which

each alone could drink the cask of beer. Ans. 70. 42, 35.

67. A and B run a mile ; at the first heat A gives B a

start of 20 yards, and beats him by 30 seconds ; at the

second heat A gives B a start of 32 seconds, and beats him

by 9 T
5
T yards : find the rate per hour at which A runs.

^ins. 12 miles.

68. A and B are two towns situated 24 miles apart, on

the same bank of a river. A man goes from A to B in 7
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hours, by rowing the first half of the distance, and walking

the second half. In returning he walks the first half at

three-fourths of his former rate, but the stream being with

him he rows at double his rate in going ; and he accomplishes

the whole distance in G hours. Find his rates of walking and

rowing up stream. Ans. 4 miles walking, 3 miles rowing.

G9. A railway train after traveling an hour is detained 15

minutes, after which it proceeds at three-fourths of its former

rate, and arrives 24 minutes late. If the detention had

taken place 5 miles further on, the train would have arrived

3 minutes sooner than it did. Find the original rate of the

train and the distance traveled.

Ans. 33^ miles per hour, 48J distance.

70. The time which an express train takes to travel a

journey of 120 miles is to that taken by an ordinaiy train as

9 to 14. The ordinary train loses as much time in stopping

as it would take to travel 20 miles without stopping. The

express train loses only half as much time in stopping as the

ordinary train, and it also travels 15 miles an hour faster.

Find the rate of each train. Ans. 45, 30 miles per hour.

71. A and B can perform a piece of work together in 48

days ; A and C in 30 days ; and B and C in 26§ days : find

the time in which each could perform the work alone.

Ans. 120, 80, 40 days.

72. There is a certain number of three digits which is

equal to 48 times the sum of its digits ; and if 198 be sub-

tracted from the number the digits will be reversed ; also the

sum of the extreme digits is equal to twice the middle digit

:

find the number. Ans. 432.

73. A man bought 10 horses, 120 oxen, and 46 cows.

The price of 3 oxen is equal to that of 5 cows. A horse,

an ox, and a cow together cost a number of dollars greater

by 300 than the whole number of animals bought ; and the

whole sum spent was $93GG. Find the price of a horse, an

ox, and a cow respectively. Ans. $420, $35, $21
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CHAPTER XI.

INVOLUTION AND EVOLUTION.

102. Involution is the process of raising an expression

to any required power. Involution is therefore only a

particular case of multiplication, in which the factors are

equal (Art. 12). It is convenient, however, to give some

rules for writing down the power at once.

It is evident from the Rule of Signs (Art. 36) that,

(1) No even power of any quantity can be negative.

(2) Any odd power of a quantity will have the same sign

as the quantity itself. Thus,

(-a) 2 = (_ a ) (-a) = +a2
,

(_a) 3 = (-a)(-u)(-a) = +a\-a) = -a3
,

(_a) 4 = (-a)(-a)(-a)(-a) = (-a3)(-a) = -f-a
4

;

and so on.

Note. — The square of every expression, whether positive or

negative, is positive.

103. Involution of Powers of Monomials.— From

the definition, we have, by the rules of multiplication,

(a2)
8=(a2)(a2)(a2) = a2 + 2+2 = a6

.

(_a3
)
2=(-a3)(-« 3)=a3 + 3 = a6

.

(_3a3
)
2=(-3a3)(-3a3

) = (- 3)
2 (a3

)
2 = 9a6

.

Generally,

(a"')"= am • am • am • am . . . . to n factors

_ am + m+m+m
£Q n termg

= amn .

(ab) m=ab • a& • ab torn factors

= (aaaa .... tom factors) X {bbbb .... torn factors

= a" lbm .

Hence Cab)"1 = a"'6
,n

,
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and so on for any number of factors. Thus, the mth power

of a product is equal to the product of the mtk powers of its

factors.

Hence (axW<? )
m = (ax)

m (bv
)
m
(cz)

m

_ axmfyjmczm

Hence, to raise any power of a quantity to any other

power, we have the following

Rule.

liaise the numerical coefficient to the required power by

Arithmetic, multiply the exponent of each factor by the

exponent of the required power, and give the proper sign

to the result.

V



200 INVOLUTION OF BINOMIALS.

104. Involution of Binomials. — We have already

proved by actual multiplication (Art. 41), the two following

cases of the involution of binomial expressions :

(a + b)
2 = a2 + 2ab + b

2
. . . . (1)

(a - b)
2 = a2 - 2ab + b

2
. . . . (2)

If we multiply (1) and (2) by a + b and a — b respec-

tively, we have

(a + b) 3 = a3 + Serb + Sab2 + b5
. . . (3)

(a - b) 3 = a3 - Serb + Sab2 - b3
. . . (4)

If we multiply (3) and (4) by a -f b and a — b respec-

tively, we shall have

(a + 6)
4 = a4 + 4a 3b + 6a2

b
2 + 4a&8 + &

4
-

(a - 6)
4 = a4 - 4a86 + 6a2

6
2 - 4a&8 + 64

.

Ify multiplying these two results by a -f- 6 and a — b

respectively we should obtain {a -f b) 5 and (a — 6)
5

; and

by continuing the process we could obtain any required

power of (a + b) or (a — 6). Hence the following

Rule.

Multiply the binomial by itself, until it has been taken as a

factor as many times as there are units in the exponent of the

required power.

This rule, however, would be very laborious in finding any

high power, for instance (a + b)'
20

. In Chapter XVII we
shall prove a theorem, called the Binomial Theorem, by the

aid of which any power of a binomial expression can be

obtained without the labor of actual multiplication.

Since the above formulae are true for all values of a and 7>,

we can write down the squares and the cubes of any binomial

expressions. Thus,

1. (a4 - b<)
2 = (a*)* + 2(a4)(-&4

) + (-b iy
= a 8 - 2a4

64 + b*.
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Show that

2. (2a; + Zyf = 4a-
2 + I2xy + 9t/

2
.

3. (3a; + 5#)'2 = Oar + 30a;?/ -f 2oy2
.

4. (aj - 2y)
3 = a;

3 - Ga% + 12a;?/
2 - 8y\

5. (2a6 - 3c) 3 = 8a363 - 36a2
6
2
c + oiabc2 - 27c3.

6. (5a2 - 362

)
3 = 125a6 - 225a4

6
2 + 135a264 - 2766

.

105. Involution of Polynomials. — We may now

apply the formulae of Art. 104 to obtain the powers of any

trinomial or polynomial. Thus from (1)

(a + b + cy =
[(a + b ) + cy

== (a + b)
2 + 2(a -f b)c + c

2

= a2 + b
2 + c

2 + 2a6 + 2ac -f- 26c . (1)

In the same way we may prove

(a+b+c+dy2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd . (2)

We observe in both (1) and (2) that the square consists of

(1) the sum of the squares of the several terms of the

given expressions

;

(2) twice the sum of the products two and two of the

several terms, taken with their proper signs.

The same law holds whatever be the number of terms in

the expression to be squared. Hence the following

Rule.

To find the square of any polynomial, write the square of

each term together ivith twice the product of each term by each

of the terms following it.

From (3) of Art. 104 we obtain the cube of a trinomial as

follows

:

(a+b+cf = [a+(&+c)]3

= a8+3a2(6+c)+3a(6+c)2+(6+c)a

= a3+ 63+c3 +3a 2
(6+c)+36^ + c)+3c2(a+6)+6a&c . (3)
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Hence to find the cube of a trinomial we have the following

Rule.

Write the cube of each term, together ivith three times the

product of the square of each term by the sum of the other

two, and six times the product of the three terms.

Formulae (1), (2), and (3) may be used for obtaining the

squares and cubes of any polynomial expressions, as ex-

plained in Art. 104. Thus, if we require (1 — 2x -f 3a;
2
)
2
,

in formula (1) we put 1 for a, —2x for 6, and 3a;
2 for c, and

obtain

1. (l-2x+3x2

)
2

= (l) 2+(-2a;) 2+(3^) 2+2(l)(-2.T)+2(l)(3rr2
)+ 2(-2a;)(3a;2)

= 1 + \x-+ 9aJ*-4a+ 6x2- 1 2a;
3

= l-4a;+10a;2-12a;3+9a;4 .

Similarly by (3) we have

2. (l-2z+3a;2

)
3

= (l)3+ (_2o;) 3+ (3a;
2

)
3+3(l) 2(-2a;+3a;2)-}-3(-2a;) 2(l+3ar

Q

)

+3(3a;2
)

2(l-2a;)+G(l)(-2a;)(3a;2
)

= l_8a;3+27a;6+3(-2a;+3a;2
) + 12a;

2 (l+3a;2
)

+27a!*(l-2aB)-36a^

= l_6a;+21a;2-44a;3+G3a;4-54a;5+27a;6
.

Show that

3. (1 — x + x 1

)
2 = 1 - 2x + 3a;

2 - 2a;
3

-f- x*.

4. (1 4 $x+2x*)* = 1 4 Gx + 13a;
2 4- 12a;3 + 4aA

5. (* - 26 4 -Y = - + 46a 4 — - 2ab + — - be.

\2 4/ 4 1G 4

6. (|^ _ x + |)i = il_ _ *£ + 3aj
i _ 3a . + J.

J o

7. (1 4- & 4- a;
2

)
3 = 1 4 3a + Gar 4 7a-

3 4- Gx4 4 3a-
5
-f aj

6
.

8. (1 + x — ar) 3 = 1 4- ox - r>- ;i
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EVOLUTION.
106. Evolution — Evolution of Monomials. — Evo-

lution is the operation of finding any required root of a

number or expression. A root of any quantity is a factor

which being multiplied by itself a certain number of times

produces the given quantity (Art. 13). Hence Evolution is

the inverse of Involution (Art. 102).

The symbol which denotes that a square root is to be

extracted is \J~ ; and for other roots the same symbol is

used, but with a figure called the index written above to

indicate the root (Art. 13).

By the Rule of Signs (Art. 36), we see that

(1) any even root of a positive quantity may be either

positive or negative;

(2) every odd root of a quantity has the same sign as the

quantity;

(3) there can be no even root of a negative quantity.

Thus, (l)a x a = a'
2

, and (— «)(—«)= a% > therefore there

are two roots of a2
, namely, -fa and —a.

(2) (— «)(— «)( — a) = — a3
; therefore the cube root

of — a3
is —a.

(3) There can be no square root of —a2
; for if any

quantity be multiplied by itself, the result is a positive

quantity.

There can be no even root of a negative quantity, because

no quantity raised to an even power can produce a negative

result. Even roots are called impossible roots or imaginary

roots.

Since the n ih power of am is amn (Art. 103), it follows that

the n* root of amn is am .

Also, the mth power of a product is the product of the mth

powders of its factors (Art. 103) ; hence, conversely, the

mth root of a product is the product of the mth roots of its

factors. Thus,

>Jabc = v'a ft sjc ; 1/ab = 7a V&.



204 EVOLUTION OF MONOMIALS.

Again, we have (Art. 103)

(cfV'c2 . . . . )
m = a™ bym c™ ....

;

therefore, conversely,
n
\Ja

x,H
b*
m
<f
m

. . . . = ax&<f

Hence to extract any root of a monomial, we have the

following

Rule.

Extract the required root of the coefficient by Arithmetic,

then divide the exponent of every factor in the expression by

the index of the root, and give the proper sign to the result.

Thus, for example,

Vo1 = a2
; sfa

1
!? = a3b2

; V^ = -x3
; y/x™ = x2

;

Vl6a2&4 = ±ab2
', V-8aW2 = -2a2b3

c*.

To obtain any root of a fraction : Find the root of the

numerator and denominator, and give the proper sign to

the result.

This is the converse of the rule in Art. 103.

^ , 4
s/— 27a6 3a2

i or example, \ = .
1 'V 6463 46

Note 1. — Since every positive quantity has two square roots equal

in magnitude but opposite in sign, it is customary to prefix the double

sign ±, read plus or minus, to a quantity when we wish to indicate

that it is either + or — . Thus

y256ajy = {/SbY = ±4xf.

Note 2. — Any quantity whose root can be extracted is called a

perfect power. When the square root of an expression which is not

a perfect square, or the cube root of an expression which is not a

perfect cube, is required, the operation cannot be performed. Thus
we cannot take the cube root of a- since the exponent 2 is not divisible

by the index 3. At present we can only express the result thus (*/a2 .

Also, ya, \a?, ya6
, cannot at present be otherwise expressed ; and

similarly in other cases. Such quanl it ies are called nurds or irrational

quantities, and will be considered in Chapter XII.
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EXAMPLES.
Show that

1. \aHrci2 = ±a 46c6

2. \04xY s = ±8
2-a

' V 81a;
10 9z5

'

4. V^ToW = Scrbc3
;

5- V-343a12
6 18 = -7a4

6
6

;

V 64/3 4/1
'

7. Va^yy = aj
2
#

83
;

v- ltK
i^io _ —ary

107. Square Root of a Polynomial. — Since the

square of a + 6 is a2 -h 2a6 -f 6
2

, the square root of

cr + 2ab -+- b2
is a + b. We may deduce the general rule

for the extraction of the square root of a polynomial by

observing in what manner a + b may be derived from

a 2
-f 2ab + &2.

Arrange the terms of the square according to the descend-

ing powers of a ; then the first

term is a2, and its square root is ft2 + 2ab + & 2
|fl -f- &

a, which is the first term of the ^

required root. Subtract its square, 2a -f- b)2ab -f- b2

a2
, from the given expression, and 2ab + b2

bring down the remainder, 2ab + ft
2
.

Thus, 6, the second term of the root, will be the quotient

when 2a&, the first term of the remainder, is divided by 2a,

i.e., by double the first term of the root. This second term,

6, added to 2a, twice the first term, completes the divisor,

2a + b ; multiply this complete divisor by 6, the second

term, and subtract the product, i.e., 2ab + b
2

, from the

remainder, and the operation is completed.

If there were more terms we should proceed with a -f b

as we have done with a ; its square, a2
-f- 2ab + &

2
, has

already been subtracted from the given expression, so we

should divide the remainder by twice the first term, i.e., by

2(a 4- &), for a new term of the root. Then for a new

subtrahend we should multiply the sum of 2 (a + b) and the
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new term by the new term. The process must be continued

till the required root is found.

Hence to extract the square root of a polynomial, we have

the following

Rule.

Arrange the terms according to the powers of some letter;

find the square root of the first term for the first term of the

square root; place this on the right, and subtract its square

from the given polynomial.

Double the root already found for a tried divisor; divide

the first term of the remainder by this trial divisor for the

second term of the root, and annex this second term to the root

and also to the trial divisor for the complete divisor.

Multiply the complete divisor by the second term of the root,

and subtract the product from the remainder.

If there are other terms remaining, repeat the process until

there is no remainder, or until all the terms of the root have

been obtained.

EXAMPLES.
1. Find the square root of

4a;
4 - 20a;3 + 37a;

2 - 30a; + 9 |2a;
2 - 5x -f- 3.

4a;

4a;
2 — 5a; - 20a;3 + 37a;

2

- 20a-3 + 25a;2

4a;
2 - 10a; 4 3 12a;

2 - 30a; + 9

12a;
2 - 30s 4 9

The expression is arranged according to the descending

powers of x.

The square root of 4a;
4

is 2a;
2

, and this is placed at the

right of the given expression for the first term of the root.

By doubling this we obtain 4 a;
2

, which is the trial divisor.

The second term of the root, —ox, is obtained by dividing

— 20a-3 , the first term of the remainder, by •l.r
2

. and this new

term has to be annexed both to the root and divisor. Next
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multiply the complete divisor by — 5x and subtract the

product from the first remainder.

We then double the root already found and obtain

Ax2 — 10a for a new trial divisor. Dividing 12a2
, the first

term of the remainder, by 4a;'
2

, the first term of the divisor,

we get 3, which we annex both to the root and divisor. We
now multiply the complete divisor by 3 and subtract. There

is no remainder, and the root is found.

2. Fiud the square root of

15aV - 6aa5 + a6 - 20a3a3 + a6 + 15a4a2 - Ga5x.

Arrange in descending powers of x.

jB
6-6ajB5+15a3aJ*-20aV+ 15a4a2-6a5a+a 6 \x3-3ax2+3a2x-a*

2x3-3ax2 -6aa5+15a2a4

6ax5+ 9a2a4

2x?-6ax2+3a2x 6aV-20aV+15a4
aj
2

6a2a4-18a3a3+ 9a4a2

2xs-6ax2+6a2x-a 3 2a3x3+ SaW-Stfx+a*
2a3x3+ 6a4a2-6a5a+a6

Note. — All even roots admit of a double sign (Art. 106). Thus
the square root of a 2 + lab + b2 is either a + b or — a — b, as

may be verified. In the process of extracting the square root of

a2 + 2ab -\- b2, we begin by extracting the square root of «2
, and this

may be either a or —a. If we take the latter, and continue the

operation by the rule as before, we shall obtain — a — b. A similar

remark holds in every other case. Thus, in Ex. 2 the square root of

the first term x6 is either x3 or —

x

3
. If we take the latter, and continue

the operation as before, we shall obtain —x3
-f- 3ax

2 — 3a2x -f a3
.

Since the fourth power is the square of the square, the

fourth root of an expression may be found by extracting

the square root of the square root. Similarly the eighth root

may be found by three successive extractions of the square

root ; and so on.

For example, required the fourth root of

16a4 - 96afy + 216x2
y
2 - 21Gav/3 + 61y\
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By the rule we find that the square root is 4a,*
2 — 12xy -f- 9y

2
;

and the square root of this is 2x — 3?/, which is therefore

the fourth root of the given expression.

3. Find the square root of

16y Sx :r
24 + ^f - - + - - 3̂2?/

x* y y x

Arranging in descending powers of ?/, we have

16.v
2

32?/ Sx_ ^i + 24 - — + -
a
*y - 4 + •

x
- 4
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n 64SB2 . 32.x* . . A 8a; . n
9. -\ h 4. Arts. h 2.

%* 3^ 3z/

10. — + - H aa; + — - 2. - H .

4 cr a; ar 2 a* a

108. Square Root of Arithmetic Numbers.— The
rule which is given in Arithmetic for extracting the square

root of a number is based upon the method explained in Art.

107.

Since 1 = l
2

, 100 = 10 2
, 10000 = 1002

, 1000000 = 10002
,-

and so on, it follows that the square root of a number

between 1 and 100 is between 1 and 10; the square root of

a number between 100 and 10000 is between 10 and 100

;

the square root of a number between 10000 and 1000000

is between 100 and 1000, and so on. That is, the square

root of a number of one or two figures consists of only one

figure ; the square root of a number of three or four figures

consists of two figures ; the square rout of a number of five

or six figures consists of three figures ; and so on. Hence

the

Rule.

If a point is placed over every second figure in any number,

beginning with the units' place, the number ofpoints ivill show

the number of figures in the square root.

Find the square root of 5329.

Point the number according to the rule. Thus, it appears

that the root consists of two places of figures, i.e., of tens

and units. Let a denote the

value of the figure in the tens' 5329(70 + 3 = 73.

place of the root, and b that 4900

429

429

in the units' place. Then a

must be the greatest multiple 140 -f 3

of 10 whose square is less than

5300; this we find to be 70. Subtract a2
, i.e., the square

of 70, from the given number, and the remainder is 429,

which must equal {2a -f- b)b. Divide this remainder by the
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trial divisor, 2a, i.e., by 140, and the quotient is 3, which

is the value of b. Then the complete divisor, 2a + b, is

140 + 3 = 143, and (2a 4- o)b, that is, 143 x 3 or 429

is the number to be subtracted ; and as there is now no

remainder, we conclude that 70 -f 3 or 73 is the required

square root.

In squaring the tens, and also in doubling them, the

ciphers are omitted for the sake of brevity, though they are

understood. Also the units' figure is added to the double of

the tens by merely writing it in the units' place. The actual

operation is usually performed as follows

:

If the root consists of three places of figures, let a repre-

sent the hundreds and b the tens ; then hav-

ing obtained a and b as before, let a represent 5329(73

the hundreds and tens as a new value ; and 49

find a new value of b for the units ; and in 1 43 \ 429
general, let a represent the part of the root 429
already found.

Hence for the extraction of the square root of a number,

we have the following

Rule.

Separate the given number into periods of two figures each,

by pointing every second figure, beginning at the units' place.

Find the greatest number ivhose square is contained in the

left period, and place it on the right; this is the first figure

of the root ; subtract its square from the first period, and to

the remainder bring down the next period for a dividend.

Double the root already found for a trial divisor, and see

how many times it is contained in the dividend, omitting

the last figure, and annex the result to the root and cdso to the

tibial divisor.

Multiply the divisor thus completed by the figure of the root

last obtained, and subtract the product from the dividend.

If there are more periods to be brought down, continue the

operation as before, regarding the root already found as one

term.
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Extract the square root of 132496, and 10246401.

1. 132496(364 2. 1024640i(3201

9 9

66)424 62)124

396 124

724)2896 6401)6401

2896 6401

As the trial divisor is an incomplete divisor, it is sometimes

found that the product of the complete divisor by the corre-

sponding figure of the root exceeds the dividend. In such

a case the last root figure must be diminished. Thus, in

Ex. 1, after finding the first figure of the root, we are re-

quired by the rule to divide 42 by 6 for the next figure of

the root, so that apparently 7 is the next figure. On multi-

plying however 67 by 7 we obtain a product which is greater

than the dividend 424, which shows that 7 is too large, and

we accordingly try 6, which is found to be correct.

The student will observe in Ex. 2 that, in consequence of

the dividend, exclusive of the right hand figure, not contain-

ing the trial divisor, 64, we place a cipher in the root and

also at the right of the trial divisor 64, making it 640 ; we
then bring down the next period and proceed as before.

109. Square Root of a Decimal. — The rule for

extracting the square root of a decimal follows from the rule

of Art. 108. If any decimal be squared there will be an

even number of decimal places in the result; thus (.25)
2 =

.0625, and (.111)
2 = .012321. Therefore there cannot be

an exact square root of any decimal which has an odd

number of decimal places.

The square root of 32.49 is one-tenth of the square root

of 3249. Also the square root of .0361 is one-hundredth of

that of 361. Hence, for the extraction of the square root

of a decimal, we have the following
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Rule.

Separate the given number into periods of two figures each,

by putting a point over every second figure, beginning at the

units' place and continuing both to the right and to the left of

it; then proceed as in the extraction of the square root of in-

tegers, and point off as many decimal places in the result as

there are periods in the decimal part of the proposed number.

If there be a final remainder in extracting the square root

of an integer, it indicates that the given number has not an

exact square root. We may in this case place a decimal

point at the end of the given number, and annex any even

number of ciphers, and continue the operation to any desired

extent. We thus obtain a decimal part to be added to the

integral part already found.

Also, if a decimal number has no exact square root, we

may annex ciphers and obtain decimal figures in the root to

any desired extent. ^_ ^
Find the square root oij 12 ; and also or .4 to three deci-

mal places.

12.00o6o6(3.464 .400006(.632

9 36

64)300 123)400

256 369

686)4400 1262)3100

4116 2524

6924)28400

27696

Note. — We see here in what sense we can be said to approximate

to the square root of a number. The square of 3.464 is less than 12,

and the square of 3.405 is greater than 12. Also the square of .032 is

less than .4, and the square of .033 is greater than .4.

No fraction can have a square root unless the numerator and

denominator are both square numbers when the fraction is in its low-

est terms. But we may approximate to the square root of a fraction

to any desired extent. Thus,
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Let it be required to find the square root of ^.

Here (Art. Ill) y/| = j|
Therefore we find the square root of 5 and also of 7, ap-

proximately, and divide the former by the latter.

Or, we may reduce the fraction | to a decimal to any

required degree of approximation, and obtain the square

root of this decimal.

Otherwise thus

:

X^7 \^5 x 7 V^35.

vf-v/i X 7 v^7 x 7 7

then find the square root of 35 approximately, and divide

the result by 7. Either of these last methods is preferable

to the first.

// the square root of a number consists of 2n + 1 figures, when
the first n + 1 of these have been obtained by the ordinary method, the

remaining n may be obtained by division.

Let N represent the given number ; a the part of the square root

already found, i.e., the first n + 1 figures found by the rule, with n

ciphers annexed; and x the part of the root which remains to be

found.

Then yfy = a + x
\

N = a2 + 2ax + x2
\

... *^ = x + t (1)
2a 2a

Now N — a2 is the remainder after n + 1 figures of the root, rep-

resented by a, have been found; and 2a is the corresponding trial

divisor. We see from (1) that N — a2 divided by 2a gives x, the rest

x2

of the square root required, increased by —
2a

x2

Now — is a proper fraction, so that by neglecting the remainder
2a

arising from the division, we obtain x, the rest of the root. For, x

contains n figures by supposition, so that x2 cannot contain more than

2n figures; but a contains 2n + 1 figures (the last n of which are ciphers)

r,
2

and thus 2a contains 2n + 1 figures at least; therefore — is a proper
2a

fraction.

From this investigation, by putting n = 1, we see that at least two

of the figures of a square root must have been obtained in order that
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the method of division may give the next figure of the square root

correctly.

We will apply this method to finding the square root of 290 to five

places of decimals. We must obtain the first four figures in the square

root by the ordinary method ; and then the remaining three may be

found by division.

290 (17.02

1

27) 190

189

3402) 10000

6804

3196

We now divide the remainder 3196, which is N — a2 , by twice the

root already found, 3404, which is 2a, and obtain the next three

figures. Thus,
3404) 31960 (938

30636

13240

10212

30280

27232

3048

Therefore to five places of decimals, y/290 = 17.02938.

In extracting the square root, the student will observe that each

remainder brought down is the given expression minus the square of

the root already found, and is therefore in the form N — a2
.

EXAMPLES.
Find the square roots of the following numbers

:

1.
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noraial by observing in what manner a + b may be derived

from a3 + 3d2
b + 3ab 2 + b\

Arrange the terms of the cube according to the descending

powers of a ', then the first term is a3
, and its cube root is a,

which is the first term of the required root. Subtract its

cube, a 3
, from the given expression, and bring down the

remainder Sa 2
b -f- 3ab2

-b 63
. Thus, 6, the second term of

the root, will be the quotient when 3a2
6, the first term of the

remainder, is divided by 3a 2
, i.e., by three times the square

of the first term of the root.

Also, since 3a 2
b -f Sab2

-f 63 = (3a2 + 3a5 + b
2
)h, we

add to the trial divisor Sab -f 6
2

, i.e., three times the

product of the first term of the root by the second, plus

the square of the second, and we have the complete divisor

3a2 + 3ab -f- b
2

; multiply this complete divisor by 6, and

subtract the product, 3a2
6 -f- 3ab 2 + 63

, from the remainder,

and the operation is completed.

The work may be arranged as follows

:

a3 + 3crb + 3ab 2 4- b
s
[a + b

a3

3a2 + Sab + b- Serb -f 3a62 + &
Sa 2b -f Sab2 + &1

If there were more terms, we should proceed with a -f- b

as we have done with a ; its cube, a 3 + 3a2
6 + Sab2 + o3

,

has already been subtracted from the given expression, so

we should divide the remainder by three times the square of

the first term, i.e., by 3 (a + 6)
2

, for a new term of the root,

c say. Then for a new complete divisor we would have

3 (a + 6)
2 + 3 (a + b)c -f- c

2
; and this multiplied by c

would give us a new subtrahend ; and so on. Hence the

following

Rule.

Arrange the terms according to the poicers of some letter;

find the cube root of the first term for the first term of the

cube root; and subtract its cube from the given polynomial.
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Take three times the square of the root already found for a

trial divisor ; divide the first term of the remainder by this

trial divisor for the second term of the root ; annex this second

term to the root, and complete the divisor by adding to the tried

divisor three times the product of the first and second terms

of the root and the square of the second term.

Multiply the complete divisor by the second term of the rooty

and subtract the product from the remainder.

If there are other terms remaining, take three times the

square of the part of the root already found for a new trial

divisor ; and continue the operation until there is no remain-

der, or until all the terms of the root have been obtained.

EXAMPLES.
1. Find the cube root of 8a;

3 — S6x2
y + 54a;?/

2 — 27if.

The work may be arranged as follows

:

8x3-36x2y+54;xy2-27y3 \2x - Sy

8a;
3

3 (2a)
2 =12a2

S(2x)(-3y) = -IS*?/

(-3y) 2= +v
12x2-18xy+dy

c
<

2. Find the cube root of

-3Gx2y+5±xy2-27y3

-36x2y+54xy2-27y3

|3+4z-2.r2

27+ 108;s+ 90a;
2- 80a*3- G0a;4 -f- 48a;

5-8a;c

27

27+36a;+16a;2

27+ 72a+48a;2

-18a;2-24a-3

108a;-f- 90a;2- 80a;a

108a;+144a;2+ G4a;a

+4a*4

27+ 72a«+30a;2-24a;3+la; 4

54a;
2- 144a;3- C0a-

4
-f48a-

5-8a;e

_r)Jar2-144a-3-60.r4 +lS.r
r,

-8a;6

Explanation. — The root is placed above the given expression for

convenienee. When we have obtained two terms in the root, "J + 4x,
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we form the second divisor as follows: take 3 times the square of the

root already found for the trial divisor, 27 + 72x + 48a;2 ; divide —54a;2
,

the first term of the remainder, by 27, the first term of the trial

divisor; this gives the third term of the root, — 2.r
2

. To complete the

divisor we add to the trial divisor 3 times the product of (3 + 4./ ) and
—2x2

, and also the square of — 2x~. Xow multiply the complete divisor

by —2x2 and subtract; there is no remainder and the root is found.

Find the cube root of each of the following

:

3. a9 4- 3d2 4- 3« 4- 1. Ans. a + 1.

4. 64a3 - Uicrb + lOSab 2 - 276s. 4a - 36.

5. x* 4- Sx5 4- 6x4 4- 7x3 4- Oar + Sx + 1. x* + x + 1.

6. l-6x+21x2-Uxs+63xi-5±x5+ 27xQ
. l-2x+3x2

.

111. Cube Root of Arithmetic Numbers.—The
rule which is given in Arithmetic for extracting the cube root

of a number is based upon the method explained in Art. 110.

Since 1 = l
3

, 1000 = 10 3
, 1000000 = 100 3

, and so on, it

follows that the cube root of a number between 1 and 1000

is between 1 and 10; the cube root of a number between

1000 and 1000000 is between 10 and 100 ; and so on. That

is, the cube root of a number of one or two or three figures

consists of only one figure ; the cube root of a number of

four or jive or six figures consists of two figures ; and so on.

Hence the

Rule. If a point is placed over every third figure in any

number, beginning with the units
7

place, the number of points

will show the number of figures in the cube root.

Find the cube root of 614125.

Point the number according to the rule. Thus it appears

that the root consists of two places of figures, i.e., of tens

and units. Let a denote the value of the figure in the tens'

place of the root, and b that in the units' place. Then a

must be the greatest multiple of 10 whose cube is less than

614000 ; this we find to be 80. Subtract a3
, i.e., the cube

of 80, from the given number, and the remainder is 102125,

which must equal (3a2 4- oab 4- b'
2
)b. Divide this remainder

by the trial divisor, 3a'
2
, i.e., by 19200, and the quotient is 5,
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which is the value of b. Then adding Sab, or 1200, and b
2
,

or 25, to the trial divisor 3a2
, or 19200, we obtain the com-

plete divisor 20425 ; and multiplying the complete divisor

by 5 and subtracting the product 102125, there is no remain-

der. Therefore 85 is the required cube root.

614125
1

80 -f 5

512000

3a2 = 3(80)
2 = 19200

Sab = 3(80) (5) = 1200

b2 = (5)
2 = 25

20425

102125

102125

In cubing the tens the ciphers are omitted for the sake of

brevity, though they are understood.

If the root consists of three places of figures, let a repre-

sent the hundreds and b the tens, and proceed as before.

See Art. 108.

Hence for the extraction of the cube root of a number,

we have the following

Rule.

Separate the given number into periods of three figures

each by pointing every third figure, beginning at the units'

place.

Find the greatest number whose cube is contained in the left

period, and place it on the right; this is the first figure of the

root; subtract its cube from the first period, and to the re-

mainder bring down the next period for a dividend.

Take three times the square of the root already found for

a trial divisor, and see hoio many times it is contained in the

dividend, omitting the last tivo figures, and annex the result

to the root. Add together, the trial divisor with two ciphers

annexed; three times the product of the last figure of the root

by the rest, ivith one cipher annexed ; and the square of the

last figure of the root.
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Multiply the divisor thus completed by the figure of the root

last obtained, and subtract the product from the dividend.

If there are more peiiods to be brought down, the operation

must be repeated, regarding the root already found as one term.

Extract the cube root of 109215352.

109215352(478
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If there be a final remainder in extracting the cube root

of any number, integral or decimal, it indicates that the

number has no exact cube root. We ma}' in this case, as in

the extraction of the square root (Art. 109), annex any

number of ciphers, and continue the operation to any desired

extent.

Extract the cube root of 1481.544

1481.544 | 11.4
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11. (1 — &t + 3a;
2

)
2
. 1 - 6a: + 15a;

2 - 18a" + 9a4
.

12. (2 + 3.7j+4.r2
)
2+(2-3.i-+4a;2

)
2

. 2(4+ 25ar+16a;4
).

13. (1 + 3x + 2a;
2
)
3

.

^4?*s. 1 + 9a; + 33ar + 63a;
3 + GGo;

4
-f 36a5 + 8a;

6
.

14. (2 + 3a- + 4a;
2

)
3 - (2 - 3s + 4a;

2

)
3

.

4«s. 2(36a; + 171a,-
3 + 144a,-

5
).

15. (1 + 4a! + 6x2 + 4xs
-f a;

4
)

2
.

>/is. l+8a;+28a;2+56x'3 +70aj4+5Ga5+28a;6+8a;7 +a;8
.

Show that

18. y/-32a;iy5 = -2x2y\16. y/32xPyw = 2a;?/
2

17. y/256a f
19.

V
eg

= 2aar. V 527^

Find the square roots of the following expressions :

20. 9a-
4 - 12or3 - 2a-

2 + 4a; + 1. Ans. 3ar - 2x - 1,

21. 16a;
6 + 16a;7 - 4a;

8 - 4a-
9
-f a;

10
. 4a;

3 + 2a;
4*-

a;
5

,

22. 25a?
4—30aa*+49aV— 24a8a;+16a4.

23. x* - 4a3 + Sx + 4.

24. x*+ lax5— lOaV-f 4a5
a; + a6

. a;
3

oar 3aa;+4a2
.

0;2 _ 2.7; _ 2.

2«a*2— 2a?x—as
.

25. a;
4 - 2«a;3 + (a2 + 2b2)x2 - 2db*x + b\ x2 - «a; + b

2
.

26. 16 - 96a; + 216a? - 216a-3 + 81a-4 . 4 - 12a; + 9.r.

27. 9a-
6 -12a;5

-f 22a-
4+ar+12a; + 4. 3a-

3- 2a:
2+ 3a- + 2.

28. 4a;
8 - 4a;

6 - 7a-
4 + 4a;

2 + 4.

29. 1 — xy — ^x2

i/

2 + 2a-y + 4«y.

2a:' a- 2.

30. + 4x-
2
-f

4 3

Find the square roots of

31. 165649. Ans. 407.

32. 384524.01. 621.1.

33. 4981.5364. 70.58.

34. .24373969. .4937.

35. 144168049. 12007.

?,-3

36

4cue

3
'

1 - \xy — 2a-y2 .

x- - 2x + C
'-

2 3

.5687573056. Ans. .75416.

37. 3.25513764. 1.8042.

38. 4.54499761. 2.1319.

39. 196540602241. 443329.
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CHAPTER XII.

THE THEORY OF EXPONENTS — SURDS.

113. Exponents that are Positive Integers. —
Hitherto we have supposed that an exponent was always a

])ositive integer. Thus, in Art. 12, we defined am as the

product of m factors each equal to a, which would have no

meaning unless the exponent was a positive integer.

When m and n are positive integers, we have

am= a • a • a . . . tom factors
;

and an= a • a ' a . . .ton factors.

.
•

. am x an= (« • a • a . . .to m factors) x(a-ci'a . .ton factors)

= a • a a . . . to m-\-n factors

= am + n by definition (Art. 12) (1)

. , _ „ am a • a • a . . . to m factors
Also am -i- an = — =

an a • a • a ... to n factors

= a -a- a . . . to m — n factors

= a"'-'
1

(2)

From Art. 103 we have

(a"T = «™ (3)

and am X b
m = {ab) m (4)

These four fundamental laws of combining exponents are

proved directly from a definition which has meaning only

when the exponents are positive and integral.

114. Fractional Exponents. — It is often found con-

venient to use fractional and negative exponents, such as a*,

a-5 , which at present have no intelligible meaning, because

we cannot write a \\ times or —5 times as a factor. It is

very important that Algebraic symbols should always obey
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the same laws ; and to secure this result in the case of

exponents, the definition should be extended so as to include

fractional and negative values. Now it is found convenient

to give such definitions to fractional and negative exponents

as will make the relation

am x an = am + n
(1)

always true, whatever m and n may be.

To find the meaning of a*.

Since (1) is to be true for all values of ra and n, we must

have

ca x cP = ct2 + 2 = a1 == a.

Thus oh must be such a number that its square is a. But

the square root of a is such a number (Art. 13). Therefore

a* = >/a (2)

To find the meaning of a*.

By (1) a$ x ah X oh = as + i + l = a1 = a.

Hence as must be such a number that when taken three

times as a factor it produces a ; that is, as must be equivalent

to the cube root of a.

.-. a* == Va (3)

To find the meaning of a*.

By (1) a* x at x at x a* = a3
.

... at = Va5
. . . . (4)

To find the meaning of an
, where n is any positive integer.

% (1)

a » x a* x a" X . . . to n factors = a «
+ » + »+ - •

*" tcrU19 = a1= a ;

therefore a" must be such that its nth power is a.

.-. a" = Va (5)

To /t/icZ Me meaning of a", w/tere m a?ia* n are any positive

integers.
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By (1) a" x a" x a" x to n factors

— + —

I

1- ton terms= a" " " = am

m

therefore a" must be equal to the nth root of am ; that is,

m

a n = vV* (6)ill 5
Also, « n x a" x a* X ...... to m factors = a n

;

therefore a" rueaus also the mth power of a" ; that is, from

(5)
m

a' = (VST (7)
m

Therefore from (6) and (7), a" = V«m = (Va)
m ... (8)

m

Hence a n means the nth root of the m th power of a, or the

m th poiver of the nth root of a; that is, in a fractional

exponent the numerator denotes a power and the denominator

a root.

Examples. o:r = \Jx
h

, a'§ = \la
5

, 4§ = V? = V^i = 8.

115. Negative Exponents. — (1) To find the meaning

of a\

By (1) of Art. 114, a x a" = a + n = a";

.-. a = a n
-7- an = 1 . . . (1)

Hence, any number whose exponent is zero is equal to 1.

(See Art, 45).

(2) To find the meaning of a _n , ivhere n is any positive

number.

By (1) of Art. 114, an X a~ n = an ~ n = a = 1 [from (1)].

Hence an = , and a~ n = — . . . . (2)a— an v

Tints ive see that any quantity may be changed from the

numerator to the denominator, or from the denominator to

the numerator, of a fraction, if the sign of its exponent be

changed.
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Examples. x~ 2 = —; = x* = \/x; —- = x% = Vza
;

— - aWx-iy- 3 = -

xy3 a~ 2b~ sxy3

27-i = -L = J= = -L = I = | (by (8) of Art. 114).
2?l V27

2 V36 3
2

Otherwise thus: -L = J=-
a
= 1 = f

(3) To _p?'o-ye i/tai am -j- an = am_n /or aM va^es o/ m
cmd" n.

am -7- a* = — = am x a~ n = am_n , by the fundamental

law.

Examples, a8
-r- a6 = a3-8 = a -2 = -.

a2

a -7- a~* == a1 + 5 = a 5
.

2«* X al X 6a-$ = j^+l-J+f-l = |a -i = ±.
9a-^ X a* 3a

'a;
3 x

V?/~~
2 x Vx^ y~* Xx*

x* x y\ = rf-ljl+t = afy ?/•

Note. — It appears that it is not absolutely necessary to introduce

fractional and negative exponents into Algebra, since they merely

supply us with a new notation in addition to one we already had. It

is simply a convenient notation, which the student will learn to

appreciate as he proceeds.

EXAMPLES.
Express with positive exponents

:

3.
a^ xaClxVS.^m. 8lyl.

^" 8

1. 2x *a 3. Ans. -7 ,

x*a*

2
2a>* x 3a:- 1 G

V*8
4. Va-« -h Va7

.
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Express with radical signs :

5. ha lx *b *. Ans. -=.

6. o~* X 2a"i -L

7. a; 3 _^ 2a *. Ans.

8. 7q~* X 3a"

4K*

116. To Prove that (am)" = amn is Universally True
for All Values of m and n.

1. Ze£ n 6e a positive integer, and m have any value.

Then from the definition of a positive integral exponent

(am )
n = am x am x am x to n factors

m +m + m+ ton terms= a'

= amn (1)

2. Let n be a positive fraction *-, ivhere p and q are

positive integers, and m unrestricted as before. Then
p

(am )
n = (am )

q = V(am )
p (Art. 114)

= 9va^ by (1)
mp

= aT (Art. 114)

= amn (2)

3. Let n be negative, and equal to —p, where p is a positive

integer, and m unrestricted as before. Then

1
(a*)" = (am)~ p =

(ory
(Art. 115)

-^ by (1) and (2)

= a _rnp == an
(3)

Hence (am)
n = (an

)

m = amn for cdl values of m and n.

4. Let n =

Then we have

(am )~» = (a") m = a* (4)
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That is, the nth root of the mth power of a is equal to the mth

power of the nth root of a.

5. Let m = — and n = -.
m n

(am)» = (a")" = a™ (5)

That is, the nth root of the mth root, or the mth root of the nth

root of a is equal to the mnth root of a.

Examples. (&!)* = b*
x % = &*.

(ifsy = (3*)
8 = 3* = y/3.

tySW = [(27a3)*]* = [(27«3)3]^ = \ftoe.

117. To Prove that (ab) n = anbn for Any Value of

n.— This has already been shown to be true when n is a

positive integer (Art. 103).

1. Let n be a positive fraction ±_, where p and q are
9

positive integers. Then
V

(ab) n = (ab) q
.

p

Now \_{ab) qY = (ab) p (Art. 116)

= a*bp (Art. 103)

p p

= (a qb q
)
q

.

... (ab) q = aW (1)

2. Let n have any negative value, say — r, where r is a

positive integer. Then

(ab) n = (ab)~ r = —1—

ar
b'

which proves the proposition generally.
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In this proof the quantities a and b are wholly unrestricted,

and may themselves have exponents.

P _ !
Let — — -. Then from ( 1 ) we have

q n v '

(ab) n = a nb n
.

.'. \ab = Va • y& (3)

That is, the nth root of the product is equal to the product

of the nth
roots.

EXAMPLES.

1. (e%~2)3 ^_ (#
2
2/

-1
)

-
^ == x*y~$ -7- x~%jp x$y~\

Express with positive exponents

/27^\-§
\8a-*)

farjV 2

W) '

Ans.
2x*y*

4

9aV"

16ac4
.

5. (xay- bY(xY)~ a
-

Ans.

6. VxVx-K

7. (4a~ 2 -- 9«2)-i

8. Vab-^-'2 x (a-^- 2c- 4)-i

9. v'a
46^6 X (cAb-1)

10. (a-^)~ s X V^Va^6
.

11. V(a + &)
5 X (a + &)~~ §

.

a +36

3cwc

2
"

a?"

a + 6.

Rem. — Since the laws of the exponents * just proved are universally-

true, all the ordinary operations of multiplication, division, involution,

and evolution are applicable to any expressions which contain frac-

tional and negative exponents.

Called the index laws.
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The reason for the arrangement in Ex. 3, Art. 107, may
now be seen. Thus the descending powers of x are

ryO /yi2 /y» "I ^_
.*/ , Jj , ^/, J. , , , ,

X XJ X*

as may be seen (Art. 115) by writing the terms as follows

:

/y»3 /yi2 /-v^l /y»0 ^yi 1 /y>
—2 rv%

-** 3

12. Multiply 3a;- 1 + a; + 2xf by x? — 2.

Arrange in descending powers of x.

x + 2xf -J- 3x~^

a* - 2
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SURDS (RADICALS).

118. Surds. Definitions.— When the indicated root of

a quantity cannot be exactly obtained, it is called an irra-

tional quantity or a Surd.

Thus, v'2, ?4, Va®, V«2 + b\ at, are surds.

When the indicated root can be exactly obtained, it is

called a rational quantity. Thus y.i*
6

, V9, v«4
?
are rational

quantities, though in the form of surds.

The order * of a surd is indicated by the index of the root.

Thus y$ fa are respectively surds of the third and fifth

orders.

The surds of the most common occurrence are those of

the second order ; they are sometimes called quadratic surds.

Thus 03, *Ja, \lx + y are quadratic surds. Surds of the

third and fourth orders are called cubic and biquadratic surds

respectively.

When the same root is required to be taken, the surds are

said to be of the same order. Thus, ya, Va -f- 6, and 5s are

all surds of the third order or cubic surds.

Surds are said to be like or similar when they are of the

same order, or can be reduced to the same order, with the same

quantity under the radical sign.

Thus, 4<Sl and os/l are like or similar surds ; also 5^2 and

SVTG are like surds ; 2^3 and 3^2 are unlike surds.

A mixed surd is the product of a rational factor and a

surd factor. Thus 4^5, and 3^7 are mixed surds.

When there is no rational factor outside of the radical

sign, the surd is said to be entire. Thus V^2 and V^3 are

entire surds.

The rules for operating with surds follow from the propo-

sitions of the preceding Articles of this Chapter.

* Sometimes called degree.
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119. To Reduce a Rational Quantity to a Surd

Form.— It is often desirable to write a rational quantity in

the form of a surd. Thus

a =)Ja
2 = y/^ = V^5 3 = fi - V^7-

In the same way the form of any surd may be altered.

Hence the

Rule.

Any rational quantity may be expressed in the form of a

surd of any required order by raising it to the poiver corre-

sponding to the root indicated by the surd, and prefixing the

radical sign.

Examples. 5 = 0!5 - \/i25 = y/?.

(a + b) = y/(a + by = V(« + &)
3

-

120. To Introduce the Coefficient of a Surd under
the Radical Sign.—We have

3^2 = y/9 x \/2 (Art. 119)

= \/9 x 2 [(3) of Art. 117] = ^18.

2y/5 = V2
5 X V* = V23 X 5 = V^O-

x\2a — x = \2ax2 — xz
.

Rule. Reduce the coefficient to the form of the surd and

then multiply the surds together,

EXAMPLES.
Express as entire surds.

1. lly/2. Ans. y/242.

2. 5y/6. YnO.

3. 14y/5. Ans. \/980.

4. 6'V5. V^£
121. To Reduce an Entire to a Mixed Surd.

—

We have

y/32 = y/l6 x 2 = y/To x y/2 = 4y/2 ;

also ]/M = y/"
6 X V& = a, V*«
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Rule. Resolve the quantity under the radical sign into two

factors, one of which is the greatest perfect power correspond-

ing to the root indicated; extract the required root of this

factor, and prefix the result as a coefficient to the indicated

root of the other.

When a surd is so reduced that the smcdlest possible integer

is left under the radical sign, it is said to be in its simplest

form. Thus,

The simplest form of \/l28
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and reduce the expressions under the radical signs to their

simplest forms.

Note. — In this way, surds of different orders may be_coinpared.

Thus, if we wish to know which is the greater, >fb or f/ 11, we have

only to reduce them to the same order, as above; we see that the

former is greater because 125 is greater than 121.

EXAMPLES.
Express as surds of the twelfth order, with positive ex-

ponents :

1. xk Ans.
1y^ 4. cta.

1

2. a-1 -r- a *. ii7=-
ya6

3. -3- *V*.
a~* v

Express as surds of the same lowest order :

Ans. y/x9 .

x"y.5. yafyi.

6. yss x v«
-1^"2

- v ^

7. \/a,]/a*. Ans.'y/a^^a10
.

10. y^6*,Va&. t^,*^.
1 1 . Which is the greater y/l4 or ^6 ? ^6.

123. Addition and Subtraction of Surds.— Let it

be required to find the sum of \Jl2, ^75, — \A±8, and ^50.

Here we have (Art. 121)

V/l2 + y/75 - y/48 + ^50 = 2\/3 + 5^3 - 4^3 + 5^2

= (2 + 5 - 4)y/3 + 5^2

= 305 + 5y/2.

Rule. Reduce the surds to their simplest form; then add

or subtract the coefficients of similar swds and jwejix the result

to the common surd, and indicate the addition or subtraction

of unlike surds.

Thus, 3^20 + 4y/5 + y/j + V^5

= Gy/5 + 4\/5 + Jy/5 + 5^5

= lO-Jy/5 + 50$.
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EXAMPLES.
Find the value of the following

:

1. 3v/45 + 7v/5 - v/20. Ans. U\fi.

2. 4^63 + 5^7 - 80*8. ft.

3. y/44 - 5y/l76 + 2^99. -12\/n.

4. 2y/363 - 5\/243 + ^192. - 15^3.

5. 2VJ + 8VS- 3V2.

6. V40 - iV^20 + V135 - 3 V5 -

124. Multiplication of Surds.— (1) When the surds

are of the same order.

To multiply a
n
^x by b \y.

_ 11
Here a\x x b

n
\/y = cra^ x %" [Art. 114, (5)]
1 1 1

= afruy1 = ab{xy) n (Art. 117)

= ab
n
^xy.

(2) TPVien £/*e surc7s are o/ different orders.

To multiply a \x by 6 y^.
_ _ i i

Here ayx x b\jy = axn x fo/
m

m n

= abxmny™ (Art. 122)

= ab(xmy
n)™ (Art. 117)

= aft
m
\Jx

m
y
n

.

Rule. TFAen Me surds are of the same order, multiply sep-

arately the rational factors and the irrational factors. When
the surds are of different orders, reduce them to equivalent

surds of the same order, and proceed as before.

Thus, 3^2 x 7y/6 = 21^12 = 42^3.

5^2 x 2y/5 = 5V* X 2^
= 10

6

v/500.

A compound surd is an expression involving two or more
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simple surds. Thus 20i — 30>, and y/a -f- V& are compound

surds.

The multiplication of compound surds is performed like

the multiplication of compound Algebraic expressions.

Multiply 20c - 5 by 30c.

The product = 30c(20c — 5) = Gx — 150c.

Note.— To multiply a surd of the second order by itself is simply

to remove the radical sign ; therefore \Jx x sjx = x.

Multiply 605 - 50> by 20$ -f 302.

The product = (60$ - 50!)(20$ + 302)

= 36 + 18 ^6 - 10\/6 - 30 = 6 + 803.

The following case of the multiplication of compound

surds deserves careful attention. The product of the sum

and difference of any two quadratic surds is a rational quan-

tity. Thus

(303 + 40$) (303 - 403) = (305)
2 - (403)

2

== 45 - 48 = -3.

Also (0z + 00 (0^ - V?)
= (00 s - (0O

2 = a - b.

A binomial in which one or both of the terms are irra-

tional, is called a binomial surd.

When two binomial quadratic surds differ only in the sign

which connects their terms, they are said to be conjugate.

Thus _
303 + 4^3 is conjugate to 3^5 — 4^3.

Similarly, a — 0t'2 — b
2

is conjugate to a + 0r — b

The product of two conjugate surds is always rational

EXAMPLES.
Find the value of

1. 20U x 0*1. Ans. 1405.

2. 304 x 05. 120$.

3. 20L5 x 30L 3003.

4. y/l^xVl47. Ans. 14
8

0).

5. 03 x \fi. V^8-
6. VixVlxVixVif V*
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7. (3y/ic — 5) x 2y/#. ^dns. 6x — 10y^. .

8. (\?x — y/a) x 2^. 2a; — 2^ax.

9. (V^7 + 5v
/

3)(2v
/7 - 403). 6^21 - 46.

10. (3\/5 - 4y/2)(2v/5 + 3V2). 6 + y/lO.

11. (5 + 3y/2) (5 - 3\/2). 7.

12. (3^ + ^ - 9a ) C3^ - V^ - 9a). 18a - x.

125. To Rationalize the Denominator of a Frac-
tion. — The process by which surds are removed from the

denominator of any fraction is known as rationalizing the

denominator.

(1) Wlien the denominator is a monomial.

_2_ _ 2y/3
= 2^/3

y/3 y/3 x^a 3

i
3/? = 4

s
/
2 x 9 = ^/H = v51

V 3 V 3 x 9 V 27 3
'

Rule. Multiply both terms of the fraction by any factor

which will render the denominator rational.

(2) When the denominator is a binomial quadratic surd.

b2

Rationalize the denominator of
\'a2 + b2 + a

The expression = h*

x ^ + * ~ a

\Jar + b2 + a ija2 + b
2 — a

(a2 + 6-) — a2

Rule. Multiply both numerator and denominator of the

fraction by the surd which is conjugate to the denominator.

When the denominator of the fraction is rationalized, its

numerical value can be more easily found. Thus, the numeri-

/- 2
cal value of |y3 can be found more easily than that of -y=-
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29
Given y/o = 2.2360G8, find the value of = ^7=-

~~ ^y/5

It might seem at first sight that we must subtract twice

the square root of 5 from 7, and divide 29 by the remainder

— a troublesome process, as the divisor would have 7 figures.

We may avoid much of this labor by rationalizing the de-

nominator. Thus,

29 = 29(7 + 2y/5)

49 - 202y/5

7 + 2y/5

= 11.472136.

EXAMPLES.
Rationalize the denominators of

1.4.

2. vi.

VI-

2 + V^5

^5 - l"

Aiis. jV15 -

iV/6.

iVw-

3^57 +

0.

7^3-5^2

7.
10Vg ~ 2Vg. 8 - v^i.
3^6 + 2^7

y/7 + y/2
_

9 + 2y/u'

V?-^

126. Division of Surds.— Since a
n
^x X b

n

^y — ab \xy
(Art. 124), therefore

ab
n
yjxy -~- ayfi = b

n

}Jy.

Rule. When the surds are of the same order, divide

separately the rational factors and the irrational factors.

When the surds are of different orders, reduce them to

equivalent surds of the same order, and proceed as before.

Then the denominator may be rationalized (Art. 125).

Thus, 4^75 -*- 25^56 = ^L = 4 X 5V^L
25030 25 x 2^14

21/3 2* I]±— -&VT4 — syyy
X 14

X 14

012
35'
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The only case of division of a compound surd which we
shall consider is that in which the divisor is a binomial

quadratic surd. We may express the division by means of

a fraction, and then practically effect the division by ration-

alizing the denominator. Thus,

Divide ^3 + sjl by 2^3 - ^2.

The quotient = V^_+ ^ = (V^ + V^) (2^3 + y/2)

2y/3 - \J2 (2\/3 - y
/2)(2\/3 + ^2)

= 8 + 3y/6 = 8 + 3y/6

12-2 10 *

EXAMPLES.
Find the value of

1. 21^384 --
8v/98.

Ans. 3y/3.

2. 5^27-^-3^24.

3. -13^125 -- oy/65.
_

Ans. —^13.

4. 6y/l4 -h 2^21. ft.

11 - 3y/7

2

19 - Cy/2

17

2 + Vfa

5. 29 -=- (11 + 3^7).

6. (3y/2 - 1) - (3y/2 + 1).

7. (2^3 + 7^2) -=- (5y/3 - 4y/2).

8. (2a - fa) - (2\/^- 2/).

127. Binomial Surds. Important Propositions.

(1) The square root of a rational quantity cannot be partly

rational and partly a quadratic surd.

If possible, let ya = b + \/c.

Squaring, we have a = B? + 26y/c -f c.

V
26

that is, a surd is equal to a rational quantity, which is

impossible.
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(2) In any equation consisting of rational quantities and

quadratic surds, the rational parts on each side are equal,

and also the irrational parts.

If x -f- yjy = a + \/6, then will x = a, and y = b.

For if x is not equal to a, suppose x = a + m ;

then a + m + y/y = a -f y/&;

that is, m + \Jy = \/b,

which is impossible by (1). Hence x = a, and therefore

y/y = \lb.

Note. —When z + \[y = a + \^>> we can conclude that x = a and

>Jy z= \[b only when VV and 0> are really irrational. We cannot, for

example, from the relation 6 + ^4 = 5 + y/9, conclude that 6 = 5 and

(3) If Va + Sib = sfx + )/y, then Va - \lb = sjx - \[y.

For by squaring the first equation we have

a + sib = a; + y + 2^xy.

.-. a = x -\- y, and y/& = 2^xy.

Subtracting, a — ^b = x — 2\jxy + ?/

;

.-. \la - ^b = tfx - Vy.

128. Square Root of a Binomial Surd.— The square

root of a binomial surd, one of ivhose terms is rational, may
sometimes be expressed by a binomial, one or each of ivhose

terms is a quadratic surd.

Let a -f- \/& be the given binomial surd.

Assume V^a + V& = >fx + V^- • • • 0)

By (3) of Art. 131, \la - \/& = V^ - V& ... (2)

Multiplying (1) by (2),v/cr - 6 = x - y (3)

Squaring (1) a + \lb = x + 2\lxy + y. . (4)

Therefore by (2) of Art. 127, a = x + y (5)
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Hence, from (3) and (5), by addition and subtraction, we
have

" + y ~ \ (6)

y - ° ~ y ~ \ (?)

which substituted for x and y in (1) and (2) will give the

values of \ a 4- \Jb and SI a — ^b.

Find the square root of 16 -f- 2y
/ o5.

Here a == 16, and ^6 = 20*5.

Then aa - b = 256 - 220 = 36,

which in (6) and (7) gives

x = |(16 + 6) = 11.

y = £(16 - 6) = 5.

Hence Y^16 + 2^55 = V^ -f Vo.

From the values of x and y in (6) and (7), it is clear that

each of them is itself a complex surd unless \a2 — b is

rational ; and the expression \Jx + \y will be more compli-

cated than V a + \Jb itself. Hence the above method for

finding the square root of a + y/& fails entirely unless a'
2 — b

is a square number ; and as this condition is not often satis-

fied, the process has no great practical utility.

TJie square root of a binomial surd may often be found by

inspection. For we see from (4) and (5) that we have to

find two numbers whose sum is a and whose product is b ;

and if two rational numbers satisfy these conditions, they

can generally be found at once by inspection. Thus

1. Find the square root of 11 + 2^30.

We have only to find two numbers whose sum is 11, and

whose product is 30j and these are evidently 6 and o.

Hence 11 + 2^30 = 6 + 2\/6 x 5 + 5

_ = (y/6 + foy. __
.*• y^ + V5 = the square root of 11 + 2^30.
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2. Find the square root of 53 — 12^10.

We must write the binomial so that the coefficient of the

surd is 2. Thus

53 - 12y/l0 = 53 - 20560.

The two numbers whose sum is 53 and whose product is

360 are 45 and 8.

Hence 53 - 2y/360 = 45 - 2^45 x 8 + 8

.-. ^53 - 12V/10 = \/45 - V^8 = 3V^5 - 2^2.

EXAMPLES.
Find the square root ot

1. 7 + 2\/l0. Ans. \/5 + \fi.

2. 13 + 2y/30. VlO + y/3.

3. 5 + 2y/6.
\/J

+ V^«

4. 47 - 4y/33. 2^11 - *fo

5. 15 + 2y/56. V^8 + y/7.

The cube root of a binomial surd may sometimes be found

by a method similar to the one just given for obtaining the

square root. But the method is very imperfect, and is of no

practical importance.

129. Equations Involving Surds. — Equations some-

times occur in which the unknown quantity appears under

the radical sign. In the solution of such equations, special

artifices are often required. We shall here consider only a

few of the easier cases, which reduce to simple equations.

These can generally be solved by the following

Rule. Transpose to one member of the equation a single

radical term so it will stand by itself; then on raising each

member to a poiver of the same degree as the radical, it will

disappear. If there are still radical terms remaining, repeat

the process till all are removed.
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EXAMPLES.

1? Solve 2\Jx - s/ix - 11 = 1.

Transposing, 2^x — 1 = ^ix — 11.

Squaring, 4x — 4ysc + 1 = 4a; — 11.

Transposing and dividing by —4, yx = 3. .•. x = 9.

/1y Solve SJx — \[\~^x + V
7
^ =

Transposing, \x — \1 — x = — sfx.

— 2^x -f a;.

— 4y/a; + 4a;.

6a;.

Squaring, x — \L--x =

Canceling a; and squaring, 1 — x =
Transposing and squaring, 25a^ =

Dividing by 25a;, x = |§.

When radicals appear ji a fractional form, the equation

should be first cleared of fractions in the usual way before

performing the involution.

3. Solve
6V^- U = 2^ + \

S^x \x + 6

Clearing of fractions

6x + 2d\Jx - 66 = 6a; + 3\/x.

.-. 22^ = 66. .-. x = 9.

Solve the following equations.

4. y/a~7, = 3# ^HS . 14.

^ \JAx - 7 = 5. 33.

(g) y/5a> - 1 = 2\Jx + 3. 13.

((7) 13 - Voa? - 4 = 7. 44.

^ 2\/3 - 7a; - 3\/8a; - 12 = 0, {.

d) \1 + V3 -f- sjtx = 2. 6.
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EXAMPLES,
1. Multiply a~* by a<L



EXAMPLES. 245

21. a^" 1 - a-5&.

22. a- sb~? + 3a?6-t.

,4ns.

oV&

1 - xt.

x2 - l.

Multiply

23. 1 + x$ + x* by 1 - sb*.

24. x* — x$ 4- x^ — af"£ by a$ _|_ #1.

25. cc* + &* 4- 1 by cc
_n + a~£ + 1.

^Ins. af
1

4- 2a£ + 3 + 2z
-

2 4- »~*.

26. 1 - 2
s
^x - 2^ by 1 - \Jx. 1 - jc* — 2»± 4- 2A

27. 2 V«
5 - a* - - by 2a - 3y/i - a~i

-4?is. 4a3 - 8a* - 5 4- 10a~* 4- 3a~i
Divide

28. 16a~ 3 4- 6a" 2 + 5a" 1 - 6 by 2a" 1 - 1.

Ans. 8a~ 2 + 7a" 1 4- 6.

29. 21a3x + 20 - 27ax - 26a2x by 3a* - 5.

Ans. la2* 4- 3ax — 4.

30. 8c~ n - 8cn 4- 5c3* - 3c~ 3" by 5c* - 3c- n
.

Ans. c
2" — 1 4- c" 2*.

31. i _ y/a _ 2a 4- 2a2 by 1 - a*. 1 - 2a - 2ak

32. x* — xy* 4- oj¥^ — y* b}r #? — y*. x 4- 2/«

33. ai4-&l -c^4-2a£&*bya*4-&*4-ci a* 4- &* - c*.

Find the values of

«• [(4-*M^-")
-4ns. 1 4- (1 - X2

)*-

35. (a-^'-^a-iT) 3
. aar 3 4- 8a**- 1+ Ba'^x 4- a" 1**.

36. (la* - a"*) 2
. JaS - | 4- a~i

37.

38.

a* - 8ah

«H 2V«6 4- 4^'

a; — 50c — 14 - ( + &'
a^(a i _ 263).

1.
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2ix~ la + 16a- 2a2
,

Find the square root of

39. 4:X
2a~ 2 - Wxa- 1 + 25 -

Ans. 2xa~ x

40. x? — 4a5*» + Ax -f- 2x* — 4x* + a$. Xs — 2x* -f x

41. 4a - 12a^ + 96? + 16aM - 24&M + i6ci

-4?is. 2a' — 36' + 4c^

3 + 4x~ 1a.

4

Express as entire surds

2a

9a2
6

43.
2a */27x\

3x\ a2 '
8ax.

44

45
a;"V 2/

3 V y

Express in the simplest form

:

46.
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62. 5y/T28 x 2y/432. Ans. 2AOy/4.

63. sijb x 4y/a- 12
12
y/«^"4

.

64. ^2 X V^ X yi.
12

y/648000.

65. 4y/5 X 2 Vll- 8y/l5125.

a;Y a; V 2a4 a

67. (2y/3 + 3v/2)
2

. 30 + 1205.

68. (y^ + >Jx - l)\!x - 1. flj - 1 + \Jx
2 - x.

69. (y/z -f a — y/a; — a)^x -fa. a -f a — \Jx
2 — a2

.

70. (y/2 + V^3
- \^)(V^ + V/3 + \/5). 2^6.

71. (Vl2 + y/l9)(Vl2 - y/19). 5.

72. (x2 + x\/2 + l)(x2 - x\/2 + 1). x4 + 1.

Rationalize the denominator of

2j/£+3v/I ^ 3^2 _ 2^,
5 + 2^6

y^5 + y/3

75. ?Jl^. i(7 + 3y/5)

73.

74.

76.

77.

f

X2

Six* + a2 + a

y/i + jg - yr

X —
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si.
vfc + 0? .

4 -f- y/i5

Find the value of

82. *M + JL.
2^98 7y/22

Aras. V5 - -y/3 = .50402.

*§

83
3018 . 6^84

50L12 ' 0592*
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CHAPTER XIII.

QUADRATIC EQUATIONS OF ONE UNKNOWN
QUANTITY.

130. Quadratic Equations.— An equation which con-

tains the square of the unknown quantity, but no higher

power, is called a quadratic equation, or an equation of the

second degree.

A Pure quadratic equation is one which contains only the

square of the unknown quantity ; it is sometimes called an

incomplete quadratic equation. An Adjected, or Affected?

quadratic equation is one which contains both the square and

the first power of the unknown quantity ; it is also called a

complete quadratic equation.

Thus, 2a,*
2 = 50, and ax1 + 6 = 0,

are pure quadratic equations ; and

2x2 — bx = 4, and ax2 + bx -f- c = 0,

are affected quadratic equations.

131. Pure Quadratic Equations.— A pure quadratic

may be solved for the square of the unknown quantity by

the method of solving a simple equation.

Let it be required to solve

x'
2 - 13 . x2 - 5 a—3— + ~io-

= 6 *

Clear of fractions,

10.^
2 - 130 -f Sx2 - 15 = 180.

.-. 13a;
2 = 325.

x2 = 25.

Extracting the square root x = ±5.

* The terra aclfected, or affected, was introduced by Vieta, about the year 1600, to

distinguish equations which involve, or are affected with, differeut powers of the

unknown quantity from those which contain one power only.
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In this example we find that x2 = 25. Therefore x must

be such a number that if multiplied by itself the product is

25; i.e., x must be the square root of 25; we prefix the

double sign to 5 because the square root of a quantity may
be either positive or negative. [Art. 106, (1)].

Note. — In extracting the square root of the two members of

the equation x2 = 25, it might seem at first that we ought to prefix the

double sign to the square root of each side, and write ±x = ±5. An
examination however of the various cases shows this to be unneces-

sary, because we obtain no new results in so doing. Thus, if we
write ±x = ±5, we have the four cases:

-\-x = +5, +x = —5, —x = +5, —x = —5;

but the last two are equivalent to the first two, and become identical

with them on changing the signs. Hence there are no new results

obtained, and therefore when we extract the square root of the two

members of an equation, it is sufficient to put the double sign before

one member only. Thus the equation has two roots, and only two.

A pure quadratic equation can always be reduced to the

form
ax2 + b = ;

for all the terms containing x2 may be reduced to one term,

as ax2
; and the known terms to another, as b.

By transposing b, dividing by a, and putting q = , the

equation may be written

Such an equation is called a binomial equation, because it

has but two terms.

Solving this equation by extracting the square root of each

member, we have

x = ±vV

That is, Every pure quadratic equation has two roots,

numerically equal, but toith contrary signs.

Hence, for the solutiou of a pure quadratic equation we

have the following
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Rule.

Find the value of the square of the unknown quantity by the

rule for solving a simple equation, and then extract the square

root of both members.

EXAMPLES.
Solve

1. ll.r2 - 44 = b:c- + 10. Ans. x = ± 3.

2. (x + 2)
2 = \x + 5. x = ± 1.

3. —— + —-— =25. x = ± .3
1 - 2x 1 + 2x

4. 14 - \Jx
2 - 36 = 6. a; = ±10.

132. Affected Quadratic Equations. — An affected

quadratic equation can always be reduced to the form

ax2 + ox + c = ;

for all the terms containing x~ may be reduced to one term,

as ax3 ; those containing x to one, as bx ; and the known

terms to another, as c.

b c
If we divide bv «, and put » = -, and cr = — -, the equa-

a a
tion may be written

x2 + pas = g,

where /> and q are positive or negative. This is called the

General Quadratic Equation.

Let it be required to solve this equation. If the first

member of this equation were a perfect square, we might

solve it by extracting the square root, as in Art. 131. To

ascertain what must be done to make the first member a per-

fect square, let us compare it with the square of the binomial,

x + *-, which is x2
-\- px + — •

2 4

Thus, we see that x2 -+- px is rendered a perfect square by

the addition of %-
; i.e., by the addition of the square of half

4
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rr
the coefficient of x. Hence, adding A— to both members, to

preserve the equality, we have

x2 + px + ^ = q +£4 4

This is called completing the square.

Extracting the square root of each member, we have

* + t:f -**£+£

= -i ±v/*+£ (i)

Thus there are too roots of a quadratic equation.

Note 1. — When an expression is a perfect square, the square terms

are always positive. Hence, the coefficient of x1 must be made +1, if

necessary, before completing the square.

1. Solve x2 + 6x = 27.

Here half the coefficient of x is 3 ; add 32
,

x2 + 6x + 32 = 27 + 9 = 36.

Extracting the square root,

x + 3 = ±6.

.-. x = -3 ± 6 = 3, or -9.

We may verify these values as follows

:

Putting 3 for x in the given equation, 9 + 18 = 27.

Putting —9 for x in the given equation, 81 — 54 = 27.

These results being identical, the values of x are verified.

It will be well for the student thus to verify his results.

2. Solve 7x = x2 - 8.

Transposing, so that the terms which involve x are alone

in the first member, and the coefficient of a;
2
is +1, we have

x2 — 7x = 8.
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Here half the coefficient of x is —f

;

completing the square,

x2 - 7x -h (J)
2 = 8 + ^ = ¥•

/v. 7 4.9

.-. a; = |; ± f = 8, or -1.

Note 2. —We indicate (I)
2 in the first member.

3. Solve 32 - 3x2 = 10a.

Transposing, changing signs, and dividing by 3, so as to

make the coefficient of x'
2 unity and positive,

O*
2 -I- 10 •>• — 32 .

completing the square,

* + V* + (I)
2 = ¥ + ¥ = 1fL

-

.-. * + f = ±V-.
.-. x*= -J ± V = 2, or -5f

Note 3.—We add (^)
2 and not (if)

2
, to complete the square.

4. Solve 5a;
2 + lis = 12.

Dividing by 5, x2 + ^-x = ^;
completing the square,

x2 4- -i-i x 4- fliV — -1-2 -4- J-2A — 3.61* T^ 5
'C ^ VlO;' — 5 t ioo - 10"0'

«. i ii _ -Lin
. . x -f To- — x ro

-.

.-. x = -1} ± ig =
f, or -3.

Hence, for solving affected quadratic equations, we have

the

Rule I.

Reduce the equation so that the terms involving the unknown

quantity are alone in one member, and the coefficient of x'
2

is +1 ; complete the square by adding to each member of

the equation the square of half the coefficient of x; extract the

square root of both members, and solve the resulting simple

equation.

Note 4. — There are other ways of completing the square of an

affected quadratic, which are convenient in special cases, and some of

which will be given as we proceed; but the method just explained is

the most important, and will solve every case.
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Instead of going through the process of completing the

square in every particular example, it is more convenient to

apply the following rule deduced from formula (1) of this

Article

:

Rule II.

Reduce the equation to the general form, x2 + px = q.

Then the value of x is half the coefficient of the first power

of x tvith a contrary sign, plus or minus the square root of
the second member increased by the square of half the same

coefficient.

Note 5. — The student should use this method in practice, and
become familiar with it, but at the same time be careful that he does

not lose sight of the complete method.

5. Solve S6x - Sx2 = 105.

Transposing, changing signs, and dividing by 3,

x2 - 12a = -35.

Therefore by Rule II, x = 6 ± N/-35 + 36 = 1.

.-. x == 6 ± 1'b 7, or 5.

6. Solve
Sx ~ 2 =— 2.
2x — 3 x -f 4

c . rf . Sx - 2 Sx - 8
Simplifying, = .

1 J ° 2x - 3 x -f- 4

Clearing of fractions,

3x2 + 10a; - 8 = Gx2 - 25x + 24.

Reducing, x2 — 3
¥
5
-.c = — ^-.

Therefore, Rule II, x = %5 ± V
7- 3

;,

2
- + ifjp = %%

1-.

.-. x = V±¥= 10§, or 1.

7. Solve x2 — 4x = 1.

Rule II, x = 2 ± ^1+4 = 5.

.-. x = 2 ± 2.236 = 4.236, or -0.236.

These values of x are correct only to three places of

decimals, and neither of them will be found to satisfy the

equation exactly.
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If the numerical values of the unknown quantity are not

required, it is usual to leave the roots in the form

2 + VE, and 2 - V&
8. Solve x2 - 10.C = -32.

Rule II, x = 5 ± V-32 + 25 = -7.

.-. x = 5 ± V^7.

But —7 has no square root, either exact or approximate

(Art. 106) ; so that no real value of x can be found to

satisfy the given equation. In such a case the quadratic

equation has no real roots ; the roots are said to be imagin-

ary or impossible.

In the examples hitherto considered, the quadratic equa-

tions have had tivo different roots. Sometimes however,

there is only one root. Take, for example, the equation,

x2 — 10a; + 25 = ; by extracting the square root we have

x — 5 = ; therefore x = 5. It is found convenient how-

ever in this and similar cases to say that the quadratic has

two equal roots.

EXAMPLES.
Solve

9.
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Transpose c and divide by a,

2 ,
b c

xr H

—

X
a

Rule II, » = _ b

2a
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Determine the nature of the roots of

2. x2 4- ox + 1 = 0. Ans. Real and surds.

3. 3a;
2 - 4x -4 = 0. Rational.

4. If the equation x2 + 2(k + 2)x + dk = has equal

roots, find k. Ans. k = 4, or 1.

When an equation is in the general form ax2 + bx + c = 0,

instead of solving it by either of the rules in Art. 136, we
may make use of formula (1) above as follows

:

5. Solve ox2 + lis = 12.

Here a = 5, b = 11, c = —12; substituting these values

in (1)

x _ -11 ± y
/(ll)^-4.5(-12)

10

_ -11 ± v/361 _ -11 ±19 4 Q~
To ~ To ~ f '

OT ~ 3 '

which agrees with the solution of Ex. 4, (Art. 132).

Solve b}7 this method the following

:

6. 3a;
2 = 15 - ix. Ans. §, -3

7. 2a;
2 + 7jb = 15. ], -5

8. 5a;'
2 + 4 + 21a; = 0. -4, -I

9. Sx2 = x + 7. 1, -J
10. 35 4- 9a; - 2a;

2 = 0. 7, -f
Note 2. — Though we can always find the roots of a given quad

ratic equation by substituting in formula (1), yet the student is advised

to solve each separate equation either by the method given in Art. 132,

and embodied in Rule II, or by one of the two following.

134. Hindoo Method of Completing the Square.
— When a quadratic equation appears in the general form

aar2 4- bx 4- c = 0, the first member may be made a complete

square, without dividing by the coefficient of a;
2

, thus avoid-

ing fractions, by another method (called the Hindoo method),

as follows

:

Transpose c, and multiply by 4a,

4a'
2
a;'

2 4- ±abx = — 4ac.
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Now since the middle term of any trinomial square is

twice the product of the square roots of the other two (Art.

41), the square root of the third term must be equal to the

second term divided by twice the square root of the first

term. Hence, dividing Aabx by twice the square root of

4a2#2
, i.e., by 4a#, and adding the square of the quotient,

b2
, to both members, the first becomes a perfect square.

Thus,
4a2x2 + iabx + b

2 = b
2 — 4ac.

Extracting the square root,

2ax + b = ± sjb'
2 — 4«c.

-b ± \lb'
2 - Aac

.-. x =
,

2a

which are the same values we obtained in (1) of Art. 133.

Rule.

Reduce the equation to the form ax2 + bx -f- c = 0. Mul-

tiply it by four times the coefficient of x2
; add to each member

the square of the coefficient of x in the given equation; extract

the square root of both members, and solve the resulting simple

equation.

Note. — This method may be used to advantage when we wish to

avoid fractions in completing the square, and it is often preferred in

solving literal equations. (See Note 4 of Art. 132.)

1. Solve 2z2 - bx = 3.

Multiply by four times 2, or 8,

IGa;
2 - 40z = 24.

Add to each side 5 2
, or 25,

16a;
2 - AOx + 25 = 49.

Extract the square root,

4x - 5 = ±7.

.-. x = 5-±-Z = 3, or -\.
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Solve by the Hindoo method the followingo

2. 3a;
2 + ox = 2. Ana. }, -2.

3. 6a? - 12 = x. li, -li.

4. 3z2
-f 2a; = 85. 5, -5f.

5. acx2 — te 4- acfa = bd. -, —

.

a c

135. Solving a Quadratic by Factoring.— There is

still one method of solving a quadratic which is often shorter

than either of the methods already given.

1. Consider the equation x'
2 — 2x — 15 = 0.

Resolving this into factors (Art. 65), we have

[x - 5) (a; + 3) = 0.

Now it is clear that a product is zero when any one of its

factors is zero ; and it is also clear that no product can be

zero unless one of the factors is zero. Thus ab is zero if a

is zero, or if b is zero ; and, if we know that ab is zero, we

know that either a or b must be zero ; and so on for any

number of factors.

Similarly the product (x — 5) (x 4- 3) is zero, when either

of the factors, x — 5, x + 3, is zero, and in no other case.

Hence the equation

O - 5)(x + 3) = 0,

is satisfied if x — 5 == 0, or if x + 3 =\0 ; i.e., if x = 5,

or if x = —3, and in no other case.

Therefore the roots of the equation are 5, and —3.

2. Solve x2 - 5x + 6 = 0.

Resolving this into factors, we have

O - 2)(x - 3) = 0.

The first member is zero either when x — 2 = 0, or when

x — 3 = ; and in no other case. Hence the equation is

satisfied by x = 2, or 3 ; and by no other values ; thus, 2

and 3 are the roots of the equation.

From these examples it appears that when a quadratic

equation has been simplified, and has all its terms in the
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first member, its solution can alwa3's be readily obtained if

the expression can be resolved into factors. Hence for the

solution of such an equation, we have the following

Rule.

Reduce the equation to its simplest form, with all its terms

in the first member; then resolve the whole expression into

factors, and the values obtained by equating each of these

factors separately to zero will be the required roots.

3. Solve x2 — 4x = 0.

Factoring, we have x(x — 4) = 0.

The equation is satisfied if x = 0, or if x — 4 = 0, and

in no other case. Hence we must have either

x = 0, or x — 4 = 0.

.-. x = 0, or 4.

Note 1. — In this example we might have divided the given

equation by x and obtained the simple equation x — 4 = 0, whence

x = 4, which is one of the solutions. But the student must be parties

ularly careful to notice that whenever we divide every term of an

equation by x, it must not be neglected, since the equation is satisfied

by x z= 0, which is therefore one of the roots.

Note 2. —When the factors can be written down by inspection,

the student should always solve the example in this way, as he will

thus save himself a great deal of unnecessary work.

Solve the following by resolution into factors :

4. (3x - l)(3x + 1) = 0. Ans. ±J.

5. x2 - lias = 0. 0, 11.

6. aj
2 — Bx + 2 == 0. 1, 2.

(% x2 - 2x = 8. 4, -2.

8. or
2 - lax + 4a6 = 2bx. 2a, 26.

9. x2 - 2ax + 8x = ICa. 2a, -8.

Note 3. — When the student cannot factor the equation readily by

inspection, he should solve it by Rule 11, Art. lo2, or by Art. lo4.
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136. To Form a Quadratic when the Roots are

Given.— We have seen (Art. 135) that if

x2 + px -\- q = {x — a) (x — b),

then a and b are the roots of the equation

x* +px + q = (1)

Conversely, if a and b are roots of (1), then x — a and

x — b are factors of the expression x2
-J- px -f- q, which

ma}7 be proved as follows :

Since a is a root of (1), we have

a2 + pa + q = (2)

Hence x2
-f Vx + </ = ^2 + p# + <? — («

2 + i*^ + <?)

= (» — a) (x + a + 2?)

.

.-. cc — a is a factor of x2 + jpaj + ^.

Hence, if a is a root of (1), x — a will be a factor of

x2 + 1KB + q-

Similarly it may be shown that if b is a root of (1), then

x — b will be a factor of x2 + px + g.

Now SB
2

-\- px -\- q cannot have more than two factors of

the form x — a, for the product of any number of factors

of the form x — a must be of the same degree in x as the

number of the factors ; also x2
-\- px -\- q clearly has no

factors not containing x.

Hence x2
-(- px -+- q = (x — a) (x — b) . . . (3)

Performing the multiplication in (3), we have

x2
-f- px + q — x2 — (a + b)x + ab.

Hence we have a + 6 = —p \
,*\

ab = q.

That is, wi a quadratic equation where the coefficient of x2
is

unity and all the terms are in the first member, the sum of the

roots is equal to the coefficient of x with its sign changed, and

the product of the roots is equal to the third term.

Thus, dividing the general equation by a, it becomes

x2 + h + ± = . . . . . . (5)
a a
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Adding together the two roots of (1), Art. 133, we have

x^ -\- x
2
—

;

and by multiplication we have

4a2 a

which confirms the proposition.

Hence any quadratic may be expressed in the form

x2 — (sum of roots) x + product of roots = . (6)

By this principle we may easily form a quadratic with

given roots. Although we cannot in all cases find the roots

of a given equation, it is easy to solve the converse problem,

namely, the problem of finding an equation which has given

roots.

These relations are useful in verifying the solution of a

quadratic equation. If the roots obtained do not satisfy

these relations, we know there is some error in the work.

Relations analogous to those above hold good for equations

of the third and of higher degrees. But we defer the proof

to a subsequent chapter.

When we know one root of an equation, we may by

division lower the degree of the equation. Thus if a is one

root of an equation, we may divide it by the factor x — a.

Note 1. — In any equation the term which does not contain the

unknown quantity is frequently called the absolute term.

A quadratic equation cannot have more than two roots. For

no other value of x besides a and b can make (as — a)(x — b)

in (3) equal to 0, since the product of two factors cannot

equal if neither factor is equal to 0.

It may therefore be inferred that a cubic equation has three

and only three roots ; and that in any equation the number of

roots is equal to the degree of the equation.

Note 2. — The student must carefully distinguish between a quad-

ratic equation and a quadratic expression. Thus, iu the quadratic

equation x- -\- px + q = 0, we must suppose x to have one of two
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definite values, or roots, but when we speak of the quadratic expres-

sion x2 + px -f- q, without saying that it is to be equal to zero, we may
suppose x to have any value we please.

EXAMPLES.
Form the quadratic equation whose roots are

1. 2 and 3. Am. x2 — 5x + 6 = 0.

2. 3 and -2. a* - x - 6 = 0.

3.. 2 + S/3 and 2 - V^. x2 - Ax +1 = 0.

4. 6 and 8. x2 - Ux + 48 = 0.

5. 4 and 5. x2 - 9x + 20 = 0.

137. Equations Having Imaginary Roots. — It was

shown (Art. 133) that when b
2

is less than 4ac, i.e., when

b2
c—

- is less than -, the two roots are imaginary. Hence, from
4a2 a

(5) and (6) of Art. 136, the roots are imaginary ivhen the

square of half their sum is less than their product. Now it

is impossible to have two numbers such that the square of

half their sum is less than their product, which may be

shown as follows

:

Let a represent any number ; and suppose it to be divided

into two parts - + x and - — x. Then the product is

a2
2

r - * '

which is evidently the greatest when x2
is the least. But

when x2 or x = the parts are each - ; thus the product of

two unequal numbers is less than the square of half their

sum. Hence,

The square of half the sum of tivo numbers can never be

less than their product.

If then any problem furnishes an equation of the general

quadratic form xM + px + q = 0, in which q is positive and

greater than the square of *-, we infer that the conditions of
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the problem are incompatible with each other, and hence the

problem is impossible. Thus,

Let it be required to divide 6 into two parts whose product

shall be 10.

Let x = one of the parts,

then 6 — x = the other.

.-. a(6 — a;) = 10,

whence x = 3±V— 1.

Thus, the roots are imaginary. Now we know from the

preceding proposition, that the number 6 cannot be divided

into any two parts whose product will be greater than 9.

Hence when we are required to divide 6 into two parts whose

product is 10, we are required to solve an impossible problem.

Thus, the imaginary root shows that the problem is impossible.

138. Equations of Higher Degree than the Second.
— There are many equations which are not really quadratic,

but which may be reduced to the quadratic form, and solved

by the methods explained in this Chapter. An equation is

in the quadratic form when the unknown quantity is found in

two terms, and its exponent in one term is twice as great as

in the other. Thus,

x* - 9x2 = -20, (x2 + x) 2 + i(x2 + x) = 12,

ax2n + bxn + c = 0, etc.,

are in the quadratic form, and may be solved by either of

the preceding rules ; care however should be taken to use

the one best adapted to the example considered.

1. Solvere4 - 9x2 = -20.

Here we may complete the square and solve by Rule I,

Art. 132, or we may write out the value of x2 at once by

Rule II, Art. 132 as follows

:

x2 = § ± V
7- 20 + V = i

= \ ± \ = 5, or 4.

x = ±V/
;">, or ±2.

Thus there are four roots, ±V5, ±2.
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Otherwise thus.

Transposing and factoring the first member,

(a:
2 - 5) (a2 - 4) = 0.

.•. x2 — o = 0, giving x = ±Vo,

or x'
2 — 4 = 0, giving a; = ±2.

2. Solve as* + 6a?" + c = 0.

Transpose and divide by a,

x2n + -x» = - c
-.

a a

Art. 132, Rule II, xn = -— ±J-- + —
2a V a 4tr

b2 — 4\ac

4a2

-5 ± S/b
2 - 4ac

2a

from which x may be found by taking the nth root of both

members.

Note 1. —If the student prefers, he may let xn = y\ then x2n = y2
.

Substituting, the equation becomes

oy2 + by + c = 0.

After solving for y, he may replace the value of y.

3. Solve x* - 6.r
3 = 16.

Art. 132, Rule II, Xs = 3 ±^2h = 3 ± 5 = 8, or -2.

.-. se = 2, or — y2.

4. Solve a;
-

* + a:
-5 = 6.

Solving for aT±, x~* = — | ± V
/6 + J = 2, or -3.

.-. a;-
1 = 1G. or 81.

••• * = A> of A-
5. Solve vV + 12 + Vx2

-j- 12 = 6.

Solving for yar +12,

fo2 + 12 = -\ ± s/6 + i = -i ± f = 2, or -3.

.-. x2 + 12 = 16, or 81.

.-. x2 = 4, or 69.

.-. a* = ±2, or ±^69.
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6. Solve x -f \/dx +10 = 8.

By transposing x, and squaring,

bx 4- 10 = 64 - 16a; + x\

.-. x2 - 21a; = -54.

Solving, we get x = -^ ± ^ = 18, or 3.

If we proceed to verify these values of x by substituting

them in the given equation, we shall find that 3 satisfies

the equation, but that 18 does not, while it does satisfy the

equation

x — sjbx + 10 = 8.

Now the reason is this : the equation x2 — 21a; = —54,

which we obtained from the given equation by transposing

and squaring, might have been obtained as well from

x — \5x + 10 = 8, since the square root of a quantity

may have either the sign -|- or — prefixed to it; i.e., the

resulting equation x2 — 21a; = —54, of which 18 and 3 are

the roots, would be obtained, whether the sign of the radical

be 4- or — . Hence we see that when an equation has been

reduced to a rational form by squaring, we cannot be certain

without trial whether the values which are finally obtained

for the unknown quantity are roots of the given equation.

7. Solve x2 - 7x + \Jx
2 - 7z + 18 = 24.

Add 18 to both members in order that the equation may be

in the quadratic form.

x2 - 7x + 18 -f- V^2 - 7a; + 18 = 42.

Solving, \x2 - 7a; 4-18 = -J ±V42 + J

= —J- ± ^ = 6, or -7.

.-. x2 - 7a; 4- 18 = 36, or 49.

Solving the first quadratic, we obtain a; = 9, or —2.

Solving the second quadratic, we obtain x =
-J
(7 ± Vl73).

Only the first two values are roots of the given equation
;

the other two are roots of the equation

x2 - 7x - Var - 7a; -f 18 = 24.



SOLUTIONS BY FACTORING. 207

8. Solve x4 - 4.r
3 - 2a-

2 + 12a; - 10 = 0.

We proceed to form a perfect trinomial square with the

first two terms and a part of the third. The square root of

this square is evidently (ar — 2x), the square of which is

x* — 4x? + 4x2
; having added 4ar to the equation we must

now subtract 4x2
. Hence the equation becomes

xA - 4a;
3 + 4ar - Gx2 + 12a; - 10 = 0,

or (a? - 2x) 2 - 6(x2 - 2x) = 10,

which is in the quadratic form, and may be solved as those

above.

Hence x2 — 2x = 3 ± VlG + 9 = 8, or — 2.

.-. x = 1 ± ^8 + 1, or 1 ± yJ-2 + 1.

.*. x = 4, or —2, or 1 ± v— 1.

Solve the following

:

9. x4 - 13a-
2 + 30 = 0. Ans. ±2, ±3.

10. x2 + V^2 + 9 = 21. ±4.

11. 9y/x* - 9a; + 28 -f- 9a; = x2 + 36. 12, -3.

12. of" -f- ^ = 1050. 64, (-33)*.

13. (a;
2 - 9)

2 - ll(a? - 2) = 3. ±5, ±2.

14. x4 - 8x* + 10a? -f 24a; -f 5 = 0. 5, -1, 2 ± \[b.

139. Solutions by Factoring.— By the principles of

Art. 135, many equations of a higher degree than the second

may be solved, which cannot be reduced to the quadratic

form. If an equation can be reduced to the form

(x - a)X = 0,

in which X represents an expression involving a;, we have

either A v nx — a = 0, or A = ;

therefore x = a, is one value of x ; and if we solve the

equation X = 0, we shall have the other values of x. Hence

whenever we have one factor of an equation, we have at

least one root, and by division we may lower the degree of

the equation by one (Art. 130). Thus
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1. Solve (x - h){x2 - Sx 4 2) = 0.

Here the first member is zero either when x — 5 = 0, or

when x2 — 3x -f 2 = ; and in no other case. Hence we

have
x - 5 = 0, or x2 - Sx + 2 = 0.

From the first we have aj = 5 ; and the other roots of the

equation are those given by

a;
2 — Sx + 2 = 0,

that is, (a? - 2) (a; - 1) = 0.

Thus the cubic equation (x — 5) (ic
2 — 3# + 2) = has

the three roots 5, 2, and 1.

The difficulty to be overcome in this method consists in

resolving the equation into factors ; and facility in separat-

ing expressions into factors can be acquired only by experi-

ence.

2. Solve xs - 1 = 0.

Since xs - 1 = (aj - l)(x2 + x -f- 1),

we have (x — 1) {x2
-f x + 1) = 0.

... x - 1 = 0, or x2 + x + 1 = 0,

the roots of which are 1, or —J ± V— f.

Hence there are three roots of the equation x3 = 1, one

being real and the other two imaginary. Thus there are

three numbers whose cubes are equal to 1 ; that is, there

are three cube roots of 1.

3. Solve x— 1 = 2 4- ~. Ans. 4.

Sx

4. " 2a;
3 - x2 - Gx = 0. 0, 2, -f.

5. " x3 + x2 - 4x = 4. -1, 2, -2.

G. " a;
3 - 3aJ = 2. -1, 2.

7- - *
2 -

3

2

,

= 1 »- -fKi±Vio);
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140. Problems Leading to Quadratic Equations

of One Unknown Quantity.— We shall now give some

examples of problems which lead to pure or affected quad-

ratic equations of one unknown quantity.

In the solution of such problems, the equations are found

on the same principles as in problems producing simple

equations (Art. 61).

EXAMPLES.
1. Find two numbers such that their sum is 15, and their

product is 54.

Let x = one of the numbers,

then 15 — x = the other number.

Hence from the conditions, we have

#(15 — x) = 54,

or x2 — 15a; = —54.

Solving, we sjet x = 9, or 6.

If we take x = 9 we have 15 — x = 6 ; and if we take

x = 6 we have 15 — x = 9. Thus, whichever value of x

we take, we get for the two numbers 6 and 9. Hence,

although the equation gives two values of x, yet there is

really only one solution of the problem.

2. A man buys a horse which he sells again for 896 ; he

finds that he thus loses one-fourth as much per ceut as the

horse cost him : find the price of the horse.

Let x = the price of the horse in dollars,

xl

then -— = the man's loss in dollars.
400

Hence from the conditions, we have

x2

JL = x - 96.
400

Solving, we get x — 240 or 160.

That is. the price was either $240 or Si 60, for each of

these values satisfies the conditions of the problem.
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3. A train travels 300 miles at a uniform rate ; if the rate

had been 5 miles an hour more, the journey would have taken

two hours less : find the rate of the train.

Let x = the rate the train runs in miles per

hour

;

then 300 -r- x = the time of running on the first sup-

position
;

and 300 -i- (x -+- 5) = the time of running on the second

supposition.

300 300 — —

.

x -f 5

Solving, we get x = 25, or —30.

Only the positive value of x is admissible, and thus the

train runs 25 miles per hour.

Note. — In the solutions of problems it often happens that the

roots of the equation, which is the Algebraic statement of the relation

between the magnitudes of the known and unknown quantities, do

not all satisfy the conditions of the problem. The reason of this is

that the Algebraic statement is more general than ordinary language;

and the equation, which is a proper representation of the conditions,

will also express other conditions. Thus, the roots of the equation

are the numbers, whether positive, negative, integral, or fractional,

which satisfy that equation ; but in the problem there may be restric-

tions on the numbers, expressed or implied, which cannot be retained

in the equation. If for instance, one of the roots of an equation is a

fraction, it cannot be a solution of a problem which refers to a number
of men, for such a number must be integral. Thus

4. Eleven times the number of men in a group is greater

by twelve than twice the square of the number : find the

number of men in the group.

Let x = the number of men ; then we have

11a; = 2x2 + 12,

or 2x2 - 11a; = -12.

Solving, we get x = 4, or 1£.

Thus, there are 4 men ; the value 1J is plainly inadmissi-

ble.



EXAMPLES. 271

5. Eleven times the number of feet in the length of a rod

is greater by twelve than twice the square of the number of

feet : how long is the rod ?

This question leads to the same equation as Ex. 4, only

here we cannot reject the fractional result, since the rod may
be either 4 feet long or H feet long.

6. The square of the number of dollars a man possesses

is greater by 600 than ten times the number : how much has

the man?
Let x = the number of dollars the man has.

Then x* = 10a: + 600.

Solving, we get x = 30, or —20.

Both these values are admissible, since a negative posses-

sion is a debt (Art. 20).

7. The sum of the ages of a father and his son is 80 years ;

also one-fourth of the product of their ages, in years,

exceeds the father's age by 240 : how old are they?

Let x = the father's age in years

;

then 80 — x = the son's age in years.

Hence Jz(80 - x) = x + 240,

or x2 — 76x = —960.

.*. x = 60, or 16.

Thus the father is 60 and the son 20 years old.

The second solution 16 is not admissible, since it would

make the father younger than his son.

Note. — The student should examine each root of every equation

to see if it satisfies the conditions of the problem, and reject those

which do not.

8. A cistern can be filled by two pipes in 33J minutes ; if

the larger pipe takes 15 minutes less than the smaller to fill

the cistern, find in what time it will be filled by each pipe

singly. Ans. 75 and 60 minutes.

9. A person selling a horse for S72, finds that his loss per

cent is one-eighth of the number of dollars that he paid for

the horse : what was the cost price? Ans. §80, or §720.
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10. Divide the number 10 into two parts such that their

product added to the sum of their squares may make 76.

Ans. 4, 6.

11. Find the number which added to its square root will

make 210. Ans. 196.

12. A and B together can do a piece of work in 14f days
;

and A alone can do it in 12 clays less than B alone : find the

time in which A alone can do the work. Ans. 24 days.

13. A company dining together at an inn, find their bill

amounts to $35 ; two of them were not allowed to pay, and

the rest found that their shares amounted to $2 a man more

than if all had paid : find the number of men in the company.

Ans. 7.

14. The side of a square is 110 inches long : find the length

and breadth of a rectangle which shall have its perimeter

4 inches longer than that of the square, and its area 4 square

inches less than that of the square. Ans. 126, 96.

Note. —We will conclude this chapter with the following examples.

In solving them care must be taken to select the method best adapted

to the example considered. Many of them may be solved by special

methods (Arts. 133, 134, 135); but the methods of Art. 132 are the

most important, and will solve every example.

EXAMPLES OF QUADRATICS.

1. xy(j + x2 = 1 + x2
. Ans. ±J,

7a?
a + 8 x2 + 4

21 8a;
2 - 11 3

±2.

1 1 X —
4

' * + <jt=*
+
<»--va--*

=
*' ±v/3 "

5. x2 — 5a; = —6. 2, 3.

6. x2 — 10a,* = -9. 1, 9.

7. x2 + 12a; = 13. 1, -13.
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Qn x — 1 . x — 2 2x + 13 A - n .
26. = — Ans. 5, — 1A.

x + 1 a; + 2 a; + 16
°

w- 3L+1 + - + « s gg + 13.
5 lh

x - 1 a? — 2 a; + 1 ' 5

28.
2^~ 1 + 8*~ 1 = 5* ~ U

. 5, -U.
x + 1 a; + 2 a;— 1

14r — 9 r2 — 3
29. a; - — = 2«, 0.

8a; - 3 a; 4- 1
3

,1 i i
1

a? + - 1 + -

30. 5 + 2 = 8*. S, -If.
a; 1

a; a?

si. v^+_2 = *-_y* 4 .

4 + y/a; y/a;

32. oV - 2a3
a; + a4 - 1 = 0. a ±-.

a

33. 4a2x = (a2 - b 2 + x) 2
. (a ± b)

2
.

34 - - + - = - + -
±v/a6.a a; 6 a; v

35. (3a2 + b
2){x2 - x + 1) = (36

2 + a2
) (a

2 + a> + 1).

a — b a + b

36. —| =1 + 1 + 1. _«, -6.
a + o + x a b x

37.
a + c (a 4- a?) a + «? _. g _ a «(1 4- c)

a 4- c(a — x) x a — 2ca; ' c(2c + 3)

x , a 2
38. = + = - - = 0. 1 ± y/i _a«

•7. 01*. fI. »

39. -—5

—

F - (a* -&*)»= -* -• a
>

~ & -



EXAMPLES. 275

Form the equation whose roots are

40. 1 ± 5. Ans. x2 - 2x - A = 0.

41. -£, f. 35ar + 13a; - 12 = 0.

42
-

f-^| -J^|- (p
2 - s

2
)*

2 + *pq* - v
l + g

2 = o.

43. 7 ± 2y/5. a;
2 - 14a; 4- 29 = 0.

44. ±2y73 - 5. a2 + 10a; + 13 = 0.

45. -p ± 2y/2g. x2 + Spg + p
2 - 8g = 0.

Show that the roots of the following equations are real

:

46. x2 - 2ax + a2 - b2 - c
2 = 0.

47. (a — b 4- c)a;
2 + 4 (a — b)x + (a — b - c) = 0.

For what values of m will the following equations have

equal roots?

48. x2 - 15 - m(2x — 8) = 0. -4ws. 3, 5.

49. x2 - 2£(1 + 3m) 4- 7(3 4- 2m) = 0. 2, —

V

-.

EXAMPLES OF EQUATIONS REDUCIBLE TO
QUADRATICS.

50. a;
4 - 5a;

2 + 4 = 0. Ans. ±1, ±2.

51. (a;
2 - a;)

2 - 8(a;
2 - a;) -f 12 = 0. 3, -1, ±2.

. -1 ± sJ-27
52. (a;

2 + x) (x2 + x + 1) = 42. 2, -3,

53. ^ + IJ + 4^ + ^=12. 1,-3±2V^.

54. a;
2 4- 3 - ^2x2 - 3x + 2 = §(<c 4- 1). 1, i-

55. x4 4- 2a;
3 - 11a;

2 + 4a; 4- 4 = 0. 1,2.

56. x4 4- 4afa = a4
. --£ ± ^2^2_- 1

§

y/2 ^2

(i + xy *

4ns. 1 4- y/3 ± y/3 + 2 y3> 1 - V^ ± V3 - 203.
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73. A rectangular court is ten yards longer than it is

broad; its area is 1131 square yards: find its length and

breadth. Ans. 39 and 29.

74. One hundred and ten bushels of coal were divided

among a certain number of persons ; if each person had

received one bushel more he would have received as many

bushels as there were persons : find the number of persons.

Ans. 11.

75. A cistern can be supplied with water by two pipes -,

by one of them it would be filled 6 hours sooner than by the

other, and by both together in 4 hours : find the time in

which each pipe alone would fill it. Ans. 6, 12.

76. Two messengers A and B were sent at the same time

to a place 90 miles distant ; the former by riding one mile

per hour more than the latter arrived at the end of his

journey one hour before him : find at what rate per hour

each traveled. Ans. 10, 9 miles.

77. A person rents a certain number of acres of land for

$280 ; he keeps 8 acres in his own possession, and sublets

the remainder at $1 per acre more than he gave, and thus he

covers his rent and has 88 over : find the number of acres.

Ans. 56.

78. From two places 320 miles apart, two persons A and

B set out in order to meet each other. A traveled 8 miles a

day more than B ; and the number of days in which they

met was equal to half the number of miles B went in a day

:

find how far each traveled before they met. Ans. 192, 128.

79. A certain number is formed by the product of three con-

secutive numbers, and if it be divided by each of them in turn,

the sum of the quotients is 47 : find the number. Ans. 60.

80. A boat's crew row 2>h miles down a river and back

again in 1 hour and 40 minutes : supposing the river to have

a current of 2 miles per hour, find the rate at which the crew

would row in still water. Ans. 5 miles per hour.

81. A person rents a certain number of acres of land

for $336 ; he cultivates 4 acres himself, and letting the rest for
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$2 an acre more than lie pays for it, receives for this portion

the whole rent, $336 : find the number of acres. Ans. 28 acres.

82. A person bought a certain number of sheep for &140
;

after losing two of them he sold the rest at $2 a head more

thau he paid for them, and by so doing gained $4 by the

transaction: find the number of sheep he bought. Ans. 14.

83. A man sends a lad to the market to buy 12 cents'

worth of oranges ; the lad having eaten a couple, the man
pays at the rate of one cent for 15 more than the market

price : how many did the man get for his 12 cents? Ans. 18.

84. A person drew a quantity of wine from a full vessel

which held 81 gallons, and then filled up the vessel with

water ; he then drew from the mixture as much as he before

drew of pure wine ; and it was found that G4 gallons of pure

wine remained : find how much he drew each time.

Ans. 9 gallons.

85. A certain company of soldiers can be formed into a

solid square ; a battalion consisting of seven such equal

companies can be formed into a hollow square, the men
being four deep. The hollow square formed by the battalion

is sixteen times as large as the solid square formed by one

company : find the number of men in the company. Ans. 64.

86. Find that number whose square added to its cube is

nine times the next higher number. Ans. 3.

87. A courier proceeds from one place P to another place

Q in 14 hours ; a second courier starts at the same time as

the first from a place 10 miles behind P, and arrives at Q
at the same time as the first courier. The second courier

finds that he takes half an hour less than the first to go 20

miles : find the distance from P to Q. Ans. 70 miles.

88. A vessel can be filled with water by two pipes ; by

one of these pipes alone the vessel would be filled 2 hours

sooner than by the other; also the vessel can be filled by'

both pipes together in 1J hours: find the time which each

pipe alone would take to fill the vessel. Ans. 5 and 3 hours.
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CHAPTER XIV.

SIMULTANEOUS QUADRATIC EQUATIONS.

141. Simultaneous Quadratic Equations.—We shall

now consider some of the most useful methods of solving

simultaneous equations, one or more of which may be of a

degree higher than the first. It should be remarked that it

is, in general, impossible to solve a pair of simultaneous

quadratic equations ; for, if we eliminate one of the unknown
quantities, the resulting equation will be of the fourth degree

with respect to the other unknown quantity, and we cannot, in

general, solve an equation of a higher degree than the second.

There are several cases however in which a solution of

two equations may be effected, when one or both of them

are of the second or some higher degree. Various artifices

are employed for the solution of such equations, the proper

application of which must be learned by experience.

142. Case I. When One of the Equations is of

the First Degree. — This case may be solved by the

following

Rule. From the simple equation find the value of one of

the unknown quantities in terms of the other, and substitute

this value in the other equation.

1. Solve 3a; + 4y = 18 (1)

5x> - 3xy = 2 (2)

From (1) we have y = '-
; (3)

4

and substituting in (2),

&* - 3*< 18 ~ 3*> = 2.
4

.-. 20a? - 54a; + 9s2 = 8,

or 29a? — 54a; = 8.
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Solving, we get x = 2, or — 2%;

and by substituting in (3), y = 3, or -
2
^
6
g
7

.

Solve the following

:

2. 3a; — 4?/ = 5, Arts, x = 3, or —if1 ,

3a;
2 - xy - Sy2 =21. ?/ = 1, or - A£.

3. 5x — ?/ = 17, a; = 4, or —
f,

a# =12. y = 3, or - 20.

4. 2<e — 5y = 3, x = 4, or — -2
T
5
-,

a;
2 + ^ = 20. ?/= 1, or -|f

5. 4a; — 5?/ = 1, a; = 4, or — f§,

2a;
2 - a# + 3?/

2 + 3a; - Ay = 47. 2/ = 3
>

or - ti-

143. Case II. Equations of the Form x ± y = a
t

and xy = b ; or jr
2 + /

2 = a, and xy — b.

1. Solve a? + y = 15 . . . . (1)

ay = 36 .... (2)

Square (1), x2 + 2oy + 2/
2 = 225

;

. . . (3)

multiply (2) by 4, Axy = 144

;

. . . (4)

subtract (4) from (3), x2 - 2xy + y
2 = 81

;

extract the square root, x — y = ±9. . . . (5)

Combining (5) with (1), we have the two cases

x + y = 15,) x + y = 15,)

x - y = 9.) x - y = -9.

J

from which we have a?=12,) » = 3,)

2/= 3.1 2/= 12.
J

2. Solve a2 + ?/
2 = 25 (1)

*W = 12 (2)

Multiply (2) by 2 ; then by addition and subtraction we have

a;
2 + 2a7/ + f = 49,

a;
2 — 2xy + y

2 = 1.

.-. x + ?/ = ±7,

x — y = ±1.
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We have now four cases to consider, namely,

x + y=7) x + y= 1\ x + y= — 7) <c + y=-7)
x — y = 1 ) .T-?/=-lf x-y = 1

J
a; — y = — 1

J

From which the values of x are 4, 3, —3, — 4
;

and the corresponding values of y are 3, 4, —4, —3.

Thus there are four pairs of values, two of which are given

by x = ±4, y = ±3, and the other two by x = ±3, ?/ = ±4,
it being understood that in both cases the upper signs are to

be taken together, and the lower signs are to be taken

together.

These are the simplest forms that occur, but the}' are

specially important, since the solution of a large number of

other forms is dependent upon them. Our object, as a rule,

is to solve the given equations symmetrically, by finding the

values of x -f- y and x — y, which we can always do as soon

as we have obtained the product of the unknown quantities

and either their sum or their difference.

Any pair of equations of the form

x- ± pxy + y
2 = a2

(1)

x ± y = b (2)

where p is any numerical quantity, can be reduced to one

of the forms above considered ; for by squaring (2) and

combining with (1), we obtain an equation to find xy \ the

solution can then be completed by the aid of equation (2).

Thus

3. Solve x2 + xy + y
2 = 333 (1)

x-y = 3 (2)

Square (2), x2 - 2xy -f- y
2 = 9 (3)

Subtract (3) from (1), Sxy = 324.

.-. xy t= 108 (4)

Add (1) and (4) and extract square root,

x + y = ±21 (5)

From (2) and (5) x = 12, or —9.

y = 9, or -12.



282 SIMULTANEOUS QUADRATIC EQUATIONS.

4. Solve - - - = i (1)
x y

h + h = i (2 >
x2 y2

Square (1), \ - i- + \ = J (3)
x2 xy y

Subtract (3) from (2), — = | (4)

Add (2) and (4) and take the square root,

l + i= ±1 (5)
a; ?/

From (1) and (5), - = |, or -J.
as

3, or -f.
1 _ i

2/

.-. x = |, or —3, and ?/ = 3, or —f

.

Solve the following

:

5. x — y = 12, Ans. x = 17, or — 5,

xy = 85. y = 5, or —17.

6. re + y = 74, & = 53, or 21,

xy = 1113. y = 21, or 53.

7. a + ?/ = 84, a; == 71, or 13,

xy = 923. y = 13, or 71.

8. x2 + ?/
2 = 97 > a; = 9, or 4,

a + ?/ = 13. ?/ = 4, or 9.

9. x + ?/ = 9, a; = 5, or 4,

x2 + xy + y
2 = 61. y = 4, or 5.

144. Case III. When the Two Equations Con-

tain a Common Algebraic Factor.

Rule. Divide one equation by the other, and cancel the

common factor.
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1. Solve coy + y- = 133 (1)

V
2 = 95 (2)

.7'
2 „2

Divide (2) by (1) and cancel the common factor x + y,

x ~ V _ 95 _ 5

y ~ ** ~ 7 *

X = 12
iftri (3)

and substituting in (1)

iff + y
2 = 133.

Solving, we get y = ±7

;

and by substituting in (3), cc = ±12.

Note. — This includes the case where one equation is exactly

divisible by the other.

2. Solve x? + y
s =18xy. . . . . (1)

x + y = 12 (2)

Divide (1) by (2), x2 - xy + y
2 = fa#.

••• x*-%xy + f = (3)

Subtract (3) from the square of (2),

%xy = 144.

.'. i^y =16 (4)

Add (3) and (4) and take the square root,

x - y = ±4 (5)

From (2) and (5) x = 8, or 4,

?/ = 4, or 8.

3. Solve x4 + ajy + ?/
4 = 2613 (1)

x2 + xy + if = 07 (2)

Divide (1) by (2), x2 - xy + y
2 = 30 (3)

Add (2) and (3), x2 + ?/
2 = 53.

Subtract (3) from (2), a# = 14.

.*. x = ± 7, or ±2,

y = ± 2, or ±7.
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Solve the following

:
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product of the other and a third unknown quantity, called

an auxiliary quantity.

2. Solve 2y
2 - Axy + Sx2 = 17 (1)

y
2 - x2 = 16 (2)

Put y = wc, and substitute in (1) and (2). Thus

x2 (2v2 - 4v + 3) = 17 (3)

x2
( v2 - 1) = 16 (4)

By division,
2v2 -4^ + 3 _ i7

v2 - 1
" **

.•. 32-u
2 - 64v + 48 = 17v2 - 17;

or I5v2 - 64v = -G5.

Solving, we obtain v = f , or -^.

Take v = f, and substitute in either (3) or (4),

From (4) x2{^ - 1) = 16; .-. x2 = 9.

.*. x = ±3, and y = «a? = faj = ±5.

Again, take v = V, «^(W — 1) = 16 ; .-. x2 = ^.
.*. x = ±f, and y = vx = ± 1£.

Any pair of equations which are o/ £/ie second degree and

homogeneous, can be solved by either of these methods,

though the second is usually preferred.

Solve the following

:

3. x2 + 3xy = 28, Ans. x = ±4, or if 14,

a$ + 4y
2 =8. y = ±1, or ± 4.

4. a2 + a# + 2/ =74, x = ±8, or ± 3,

2x2 + 2a# -f ?/
2 = 73. y = ^5, or ± 5.

5. x2 + a?y— 6?/
2 = 24, a; = ±6,

a;
2 + 3xy - 10y2 = 32. y = ±2.

6. a2 + a# - 6/ =21, a; = ±9,

#?/ — 2y
2 =4. ?/ = ±4.

Note. — Many examples of homogeneous equations of the second

degree are easily solved by Case II or III. Only those examples of

this class are to be solved by Case IV that cannot be solved by either

Case II or III.
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146. Case V. When the Two Equations are

Symmetrical with respect to x and /.— An expres-

sion is said to be symmetrical with respect to two letters when

these letters are similarly involved, i.e., when they can be

interchanged without altering the expression. Thus, the

expression a3 + a2x + «^2
-f- #3

is symmetrical with respect

to a and x, since if we write x for a, and a for x, we get the

same expression. Also a;
4 + 3x2

y -f 3xy2 + ?/
4

is symmet-

rical with respect to x and y.

Examples of this class may frequently be solved by

substituting for the unknown quantities, the sum and differ-

ence of two others.

1. Solve a4 + y* = 82 (1)

x - y - 2 . . . : I . (2)

Put x = u -+- v, and y = u — v,

(2) becomes (u -f v) — {u — v) = 2 ; ,-. v = 1.

(1) becomes (w + l) 4 + (u - l) 4 = 82.

.-. 2(w4 + 6it
2 + 1) = 82;

or u* + 6u2 - 40 = 0.

Hence, Art. 135, (u2
-f- 10) (tt

2 - 4) = 0.

.*.
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Hence (1) becomes (8 + 2V2) (16 + 12v2
) = 280,

or (4 + V2
)(4 + 36-) = 35.

... tf + J^LyS = n,

.'. v2 = -I ± ^= 1, or -If.

= ±1, or ±v/--
1
3
9--

.-. a = 3, 1, 2 ± y/- 1^
y = 1,3, 2 T y/31^.

Solve the following

:

3. a? — y = 2, and a;
5 — y

5 = 242.

^4ns. a; = 3, or — 1 ; ?/ = 1, or —3.

4. x — ?/ = 1, and a5 — if = 781.

.4tts. £ = 4, —3
; y = 3, —4.

5. a; -f y = 3, and a5 + y
5 = 33.

Ans. x = 1, 2; y = 2, 1.

147. Special Methods.— The preceding cases will be

sufficient as a general explanation of the methods to be

employed ; but in some cases special artifices are necessary.

One that is often used with advantage consists in consider-

ing the sum, difference, product, or quotient, of the two

unknown quantities as a single quantity, and first finding its

value. Other artifices may also be used with advantage, but

familiarity with them can be obtained only by experience.

1. Solve x2 + Axy + 3x = 40 - 6y - Ay2
. . . (1)

2xy - x2 = 3 (2)

From (1) we have x2 + Axy + 4y
2 + 3x + Gy = 40

;

or (x + 2y)
2 + S(x + 2y) - 40 = 0.

Consider x + 2y as a single unknown quantity, and find

its value from this quadratic. Thus,

(Art. 135), [(a + 2y) + 8] [(a + 2y) - 5] = 0.

.-. x + 2y = -8, (3)

or x + 2y = 5
v
. • . . . (4)
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From (2) and (4) we obtain

x = 1 , or f

;

y = 2, or J.

From (2) and (3) we obtain

x =
~ 4 ± V15

,

2

-12 T y/To
*

2

2. Solve x*y* - 6jb = 34 - Sy (1)

Bxy + V = 18 + 2x (2)

Multiply (2) by 3 and subtract the result from (1),

x2

y
2 - 9xy -f 20 = 0.

.-. (xy - 5)(xy - 4) = 0.

.-. xy = 5 . .
v

. . (3)

xy = 4: . . . . (4)

From (2) and (3) we obtain

x = 1, or -f,
?/ = 5, or -2.

From (2) and (4) we obtain

x =
~ 3 ±

V^
17

, and ?/ = 3 ± \/l7.

Solve the following

:

3. x2 + y=73 -3x-2xy, Ans, x = 4, 10, -12 ± ^58,

y
2 +x=U-3y. 2/=5, -7, -1 q: ^bS.

4.
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148. Simultaneous Quadratic Equations with
Three Unknown Quantities.

1. Solve xy + xz = 27 (1)

yz + yx = 32 (2)

gS -+- 3# = 35 (3)

Add (1) and (2) and subtract (3) from the sum,

2xy = 24; .-. xy = 12 . . . . (4)

Subtract (4) from (1), a» = 15 (5)

Subtract (4) from (2), yz = 20 (G)

Multiply (4) and (5), x2yz =180 (7)

Divide (7) by (G), x2 = 9 .. x = ±3.

Hence from (4), y = 12 h- (±3) = ±4.

And from (5), z = 15 -*- (±3) = ±5.

Thus x = ±3, y = ±4, 2 = ±5,

all the upper signs being taken together.

Solve the following

:

2. 3yz -h 22KB — 4txy = 16, Ans. x = ±1,

2#3 - 3za -f a# =5, ?/ = ±2,

4?/z — z.r — Sxy = 15. 2 = ±3.

3. 6(3? + 2/
2 + z

2
) = 13(a; + y + z) = ±§±, x = f , |,

a# = z
2

- 2/ = h li

2 = ±2.

149. Problems Leading to Simultaneous Quad-
ratic Equations.

1. The small wheel of a bicycle makes 135 revolutions

more than the large wheel in a distance of 2G0 yards ; if the

circumference of each were one foot more, the small wheel

would make 27 revolutions more than the large wheel in a

distance of 70 yards : find the circumference of each wheel.

Let x = the circumference of the small wheel in feet,

and y = the circumference of the large wheel in feet.

Then the two wheels make — and — revolutions respec-
x y

tively in a distance of 2GU yards.
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Hence
780



PROBLEMS LEADING TO QUADRATIC EQUATIONS. 291

Hence -+ -£— = 5J (1)

Similarly —?^- = 3f (2)

From (2) x = *$(y + 1) (3)

From (1) x(2y - J) = V^/0/ -4) (4)

Substituting (3) in (4),

¥(y+ i)(2z/ - i) = Vz/(2/ - i).

.-. 28y2 - 89y = -15.

Solving, we obtain y = 3, or 5
5
F .

Substituting ?/ = 3 in (3), we find a; = i 5̂
. The other

value of y is inapplicable, because by supposition y is greater

than J.

Hence the whole distance to the summit is 15 miles, and

the rates of walking are 3, 2J, and 4 miles per hour.

3. The sum of the squares of two numbers is 170, and

the difference of their squares is 72 : find the numbers.

Ans. 11 ; 7.

4. The product of two numbers is 108, and their sum is

twice their difference : find the numbers. Ans. G ; 18.

5. The product of two numbers is G times their sum, and

the sum of their squares is 325 : find the numbers.

Ans. 10 ; 15.

6. A certain rectangle contains 300 square feet ; a second

rectangle is 8 feet shorter, and 10 feet broader, and also

contains 300 square feet : find the length and breadth of the

first rectangle. Ans. 20 ; 15.

7. Find two numbers such that their sum may be 39, and

the sum of their cubes 17199. Ans. 15 and 24.

8. The product of two numbers is 750, and the quotient

of one divided by the other is 3^ : find the numbers.

Ans. 50 and 15,
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EXAMPLES OF SIMULTANEOUS QUADRATICS.

Note. — In the great variety of simultaneous quadratic equations,

it is impossible to give rules for every solution. The artifices employed

in Algebraic work are very numerous. The student is cautioned not

to go to work upon a pair of equations at random, but to study them

until he sees how they can be reduced to a simpler equation by

addition, multiplication, factoring, or by some other process, and then

to perform the operations thus suggested.

Solve the following

:

1. x + Ay = 14,

if + Ax = 2y "+ 11.

2. Sx + 2y = 16,

xy = 10.

3. x + 2y = 9,

Sy - 5ar = 43.

4. 3a; — y = 11,

3ar -if = 47.-

5. Ax 4- 9?/ = 12,

2a;
2 + xy = Gy'

2
.

6. 3a; + 2y = 5a;?/,

15a; — Ay = Axy.

7. x + y = 51,

xy = 518.

8. x — y = 18,

xy = 1075.

9. x2 + y
2 = 89,

xy = 40.

10. x2 + y
2 = 178,

x + y = 16.

11. a;
2 + ?/

2 = 185,

» - ?/ = 3.

Ans. x =



10,
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26.
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5 ± vT7

2 '

5 =F Vl7

42. a; + ?/ = 5, ^Ltis. a? = 6,-1,

4xy = 12 - a;
2
?/
2
. y = — 1, 6,

43. x2
y
2 + 5a# = 84, a? = 7, 1, 4 ± ^28,

x 4- y = 8. y = 1, 7, 4 T ^28.

44. z2 + 4f + 80 = 15a; + SOy, x = 4, 3, 6, 2,

^ =6. y= }, 2, 1,3.

45. 9s2 + ?/
2 - 63s- 21y+ 128 = 0, x = 2, |, 4, -§,

a?y= 4. ?/ = 2, 6, 1, 12.

46. a4 + 2/

4 = 14*y, a =
^

(

(1 ± \/3), ?/l ± -IV

x + y =a. ^-fa TVS). Kit A).

47. Find two numbers whose difference added to the

difference of their squares is 14, and whose sum added to

the sum of their squares is 26. Ans. 4, 2.

48. Find two numbers such that twice the first with three

times the second may make 60, and twice the square of the

first with three times the square of the second may make
840. Ans. 18 and 8, or 6 and 16.

49. Find two numbers whose sum is nine times their

difference, and whose product diminished by the greater

number is equal to twelve times the greater number divided

by the less. Ans. 5, 4.

50. Find two numbers whose difference multiplied by the

difference of their squares is 32, and whose sum multiplied

by the sum of their squares is 272. Ans. 5, 3.

51. Find two numbers whose product is equal to their

sum, and whose sum added to the sum of their squares is 12.

Ans. 2, 2.

52. Find two numbers whose sum added to their product

is 34, and the sum of whose squares diminished by their

sum is 42. Ans. 4, 6.
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5?. A number consisting of two digits has one decimal

place ; the difference of the squares of the digits is 20, and

if the digits be reversed, the sum of the two numbers is 11 :

find the number. Ans. 6.4, or 4.6.

54. A man has to travel a certain distance ; and when he

has traveled 40 miles he increases his speed 2 miles per

hour. If he had traveled with his increased speed during

the whole journey he would have arrived 40 minutes earlier

;

but if he had continued at his original speed he would have

arrived 20 minutes later. Find the whole distance he had to

travel, and his original speed. Ans. 60, 10.

55. A and B are two towns situated 18 miles apart on the

same bank of a river. A man goes from A to B in 4 hours,

by rowing the first half of the distance and walking the

second half. In returning he walks the first half at the same

rate as before, but the stream being with him, he rows 1J
miles per hour more than in going, and accomplishes the

whole distance in 3^ hours. Find his rates of walking and

rowing. Ans. 4J walking, 4^ rowing at first.

56. A and B run a race round a two mile course. In the

first heat B reaches the winning post 2 minutes before A.

In the second heat A increases his speed 2 miles per hour,

and B diminishes his as much ; and A then arrives at the

winning post 2 minutes before B. Find at what rate each

man ran in the first heat. Ans. 10, 12 miles per hour.

57. Find two numbers whose product is equal to the dif-

ference of their squares, and the sum of their squares equal

to the difference of their cubes. Ans. £0), 1(5 + 0>).

58. The fore-wheel of a coach makes 6 revolutions more

than the hind-wheel in going 120 yards ; but if the circum-

ference of each wheel be increased 1 yard, the fore-wheel

will make only 4 revolutions more than the hind-wheel in the

same distance : find the circumference of each wheel.

Ana 4 and 5 yards



RATIO— DEFINITIONS. 207

CHAPTER XV.

RATIO—PROPORTION—VARIATION.

150. Ratio— Definitions.— The relative magnitude of

two quantities, measured by the number of times which the

first contains the second, is called their Ratio.

The ratio of a to b is usually written a : b ; a is called

the first term, and b the second term of the ratio. The first

term is often called the antecedent, and the second term the

consequent.

Magnitudes must always be expressed by means of num-

bers; and the number of times which one number contains

the other is found by dividing the one by the other. Hence

the ratio a : b may be measured by the fraction -.

Thus, the ratio a : b is equal to -, or is -.

b b

Concrete quantities of different kinds can have no ratio to

one another ; thus, we cannot compare pounds with yards,

or dollars with days.

To compare two quantities, they must be expressed in

terms of the same unit. For example, the ratio of 4 yards

to 15 inches is measured by the fraction

4 x 3 x 12 48

15
5
~*

A ratio is called a ratio of greater inequality, of less in-

equality, or of equality, according as the antecedent is greater

than, less than', or equal to the consequent.

Ratios are compounded by multiplying together the ante-

cedents of the given ratios for a new antecedent, and the
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consequents for a new consequent. Thus, the ratio com-

pounded of the three ratios,

3a : 26, 4a6 : 5c2
, c : a,

is 3a X Aab x c : 26 x 5c2 x a, or 6a : 5c

When the ratio a : 6 is compounded with itself, the result-

ing ratio is a 2
:
6'2

, and is called the duplicate ratio of a : 6.

Similarly, the ratio a 3
: 63

is called the triplicate ratio of a : 6.

Also the ratio a^ : 6- is called the subcluplicate ratio of a: bo

If we interchange the terms of a ratio, the result is called

the inverse ratio. Thus

b : a is the inverse of a : b.

The inverse ratio is the reciprocal of the direct ratio.

When the ratio of two quantities can be exactly expressed

by the ratio of two integers, the quantities are said to be

commensurable; when the ratio cannot be exactly expressed

by the ratio of two integers, they are said to be incommen-

surable.

Although we cannot find two integers which will exactly

measure the ratio of two incommensurable quantities, yet we

can always find two integers whose ratio differs from the

required ratio by as small a quantity as we please.

For example, the ratio of a diagonal to a side of a square

cannot be exactly expressed by the ratio of two whole

numbers, for this ratio is y/2, and we cannot find any

fraction which is exactly equal to y/2 ; but by taking a suf-

ficient number of decimals, we may find y/2 to any required

degree of approximation. Thus

y/2 = 1.4142135

and therefore y/2 > gUlU and < MI±M±.

That is, the ratio of a diagonal to a side of a square lies

between ioyJ-ooo an<^ ioooooo *
ai1^ therefore differs from

either of these ratios by less than one-millionta ; and since

the decimals may be continued without end in extracting t\w
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square root of 2, it is evident that this ratio can be expressed

as a fraction with an error less than any assignable quantity.

In general. When a and b are incommensurable, divide b

into n equal parts each equal to x, so that b = nx. where n

is a positive integer. Also let a > mx, but < (m -f- l)x\

then

a mx , (/ii4- l)x-> — and < - ———
;

b nx nx

that is, - lies between — and —
; so that - differs from

b n n b

971 1— by a quantity less than -. And since we can choose x
n n

(our unit of measure) as small as we please, n can be made

as great as we please, and therefore - can be made as small
n

as we please. Hence two integers, m and n, can be found

whose ratio will express the ratio a : b to any required degree

of accuracy.

Note. — The student should observe that the Algebraic definition

of ratio deals with numbers, or with magnitudes represented by

numbers, while the Geometric definition of ratio deals with concrete

magnitudes, such as lines or areas represented Geometrically, but not

referred to any common unit of measure.

151. Properties of Ratios.— (1) If the terms of a

ratio be multiplied or divided by the same number the value of

the ratio is unaltered.

Por - = — (Art. /9).
b mb K J

Thus the ratios 2:3, 6:9, and 2m : 3m, are all equal to

each other.

Two or more ratios are compared by reducing the fractions

which measure them to a common denominator. Thus, sup-

, t 7 rr^i ci ad c be
,

pose a : b and c : d are two ratios, ihen - = -— , - = —
;

b bd d bd

hence the ratio a:b >, = , or < the ratio c : d, according as

ad >, = , or < be.
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The ratio of two fractions can be expressed as a ratio of

Thus the ratio - : - is measured by the fraction - or — ;

b d c be

and is therefore equivalent to the ratio ad : be.

(2) A ratio of greater inequality is diminished, and a ratio

of less inequality is increased, by adding the same quantity to

each of its terms; that is, the ratio is made more nearly equal

to unity.

Let a : b be the ratio, and let a + x : b + x be the new

ratio formed by adding x to each of its terms.

Then - - a + X = ^ ~ ^
;

b b -h x b(b -h x}
1

and a — b is positive or negative according as a is greater

or less than b.

Hence
a + x

<, or > - according, as a >, or < b ;
that is,

b -f x b

the resulting ratio is brought nearer to unity.

For example, if to each term of the ratio 3 : 2 we add 12,

the new ratio 15 : 14 is less than the former, because Jf = ly1^

is clearly less than § = 1|.

Also, if to each term of the ratio 2 : 3 we add 12, the new

ratio 14: 15 is greater than the former, since y| is clearly

greater than }.

(3) Similarly, it can be proved that a ratio of greater in-

equality is increased, and a ratio of less inequality is dimin-

ished, by taking the same quantity from both its terms.

(4) The following is a very important proposition concern-

ing equal ratios.

If^ = - = -= , then each of these ratios
b d f

_ lpan + qcn + ren + . . . .V
~

\2)bn + qd» + rf* + /

where p, q, r, n are any quantities whatever*
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het
* = c = « = = k .

b d f

then a = bk, c = dk, e = fk, ;

therefore pan+qcn+ ren+ .... =pbnkn+qdnkn+ rf
nkn+ . . „ .

\P&+ q&+ rf
n + )

~
b d f

{ }

By giving different values to p, g, r, w, many particular

cases of this general proposition may be deduced ; or they

may be proved independently by the above method.

Suppose b=1, then we have from (1)

a _ c _ e _ _ pa + qc + re -f- . . . . ,^\

b~ d~ f~ -~fb + qd + ff+ ' { }

Suppose n = 1, and p = q = r = , then (1) becomes

a _ c _ e _ _ rt + c + e . . . . ,ox

b~d~~f~ & + <*+/ '

K)

That is, when a series of fractions are equal, each of them is

equal to the sum of all the numerators divided by the sum of

cdl the denominators.

EXAMPLES.

1. If - = |, find the value of — -.

y 7x -{- 2y

DX
q

5x - 3y y __ y - 3 __ 3

7x + 2y 7x + 2
2J + 2

2/

2. If a : 5 be in the duplicate ratio of a + re : 6 -f- x, prove

that jc
2 = ah.

From the condition
,

la + a?\
2 _ a

V& + a/
=

" &'

. a2
b + 2a6a? + bx2 = ad2 -f- 2a6aj + aa?

2
.

.-. x2 = ab.
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Find the ratio compounded of

3. The ratios 4 : 15 and 25 : 36. Ans. 5 : 27.

4. The ratio 27 : 8, and the duplicate ratio of 4 : 3. 6:1.

5. The ratio 169 : 200, and the duplicate ratio of 15 : 26.

Ans. 9 : 32.

6. If 4#2 + y
1 — 4xy, find the ratio x : y. 1:2.

7. What is the ratio x : y, if the ratio Ax + by : 3x — y is

equal to 2 ? Ans. 7 : 2.

8. If Ix — 4y : 3x + y = 5 : 13, find the ratio x : y.

Ans. 3:4.

PROPORTION.

152. Definitions. — Four quantities are said to be in

proportion when the ratio of the first to the second is equal

to the ratio of the third to the fourth ; and the terms of the

ratios are said to be proportionals.

a c
Thus, if - = -, then a, &, c, c7, are called proportionals,

or are said to be in proportion. The proportion is written

a: b = c : d,

or a : b :: c : d,

which is read " a is to b as c is to d."

The Algebraic test of a proportion is that the two fractions

which represent the ratios shall be equal.

The four terms of the two equal ratios are called the terms

of the proportion. The first and fourth terms are called the

extremes, and the second and third, the means. Thus, in

the above proportion, a and d are the extremes and b and c

the means.

Quantities are said to be in continued proportion when the

first is to the second, as the second is to the third, as the

third to the fourth, and so on. Thus a, b, c, (/, e, /, . . .

are in continued proportion when

a:b = b:c = c: d = d; e = e:f =



PROPERTIES OF PROPORTIONS. 303

If a, b, c, be in continued proportion, b is said to be a

mean proportional between a and c ; and c is said to be

a third proportional to a and b.

If «, b, c, d be in continued proportion, b and c are said

to be two mean proportionals between a and d ; and so on.

153. Properties of Proportions.— ( 1 ) If four quan-

tities are in proportion, the product of the extremes is equal

to the product of the means.

Let the proportion be a : b = c : d.

Then by definition (Art. 156), - = -.

b d

Multiplying by bd, ad = be (1)

Hence if any three terms of a proportion are given, the

fourth may be found from the relation ad = be.

Note. — This proposition furnishes a more convenient test of a

proportion than the one in Art. 152. Thus, to ascertain whether

2 : 5 : : 6 : 16, it is only necessary to compare the product of the means

and extremes; and since 5 x 6 is not equal to 2 x 16, we see that

2, 5, 6, 16, are not in proportion.

If b = c, we have from (1), ad = b
2

; .*. b = sfac.

That is, the mean proportional between tivo given quanti-

ties is equal to the square root of their product.

(2) Conversely, If the product of two quantities be equal

to the product of tivo others, tivo of them may be made the

extremes, and the other two the means, of a proportion.

For let ad = be.

Dividing by bd, ^ = -
;

that is, a : b : : c : cl.

In a similar manner it "may be shown that the proportions

a : c : : b : d,

b: a : : d : c,

bid : : a: c,

c : d : : a : b, etc.,

are all true provided that ad = be.
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If four quantities are in proportion they will be in propor-

tion by

(3) Inversion.— If a : b : : c : d, then b : a : : d : c.

For - = -
; therefore 1 -- - = 1 -- -

;

b d b d

that is, - = -
; or b : a : : die.

a c

(4) Alternation. — If a : b : : c: d, then a: c : : b : d.

For ad = be ; therefore -— = —-;
ca ca

that is - = -
; or a : c : : b : d.

c d

(5) Composition. — If a : b

:

: c : d, then a-{-b:b:: c+d : d.

For - = - ; therefore - + 1 = - + 1
;

b d b d

that is—!— = —!

; or a + o : b : : c -f d : a.
b d

(6) Division. — If a : b : : c : cZ, then a — b : b : : c — d : d.

For - = -
; therefore 1 = 1

;

& d 6 d

. u . . a — 6 c — d ,, ,,
that is = ; or a — 6 : b : : c — d : d.

b d

In a similar manner it may be shown that the sum (or the

difference) of the first and second of two quantities is to the

first as the sum (or the difference) of the third and fourth

is to the third.

(7) Composition and Division. — If a : b :: c: d, then

a -\- b: a — b :: c + d : c — d.

For by (5) and (G),

a + b c + d a — b c — d
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(8) If three quantities are in continued proportion , the first

is to the third in the duplicate ratio of the first to the second.

For if a : b : : b : c, then - = -.

b c

^ a a b a a a 2

c b c b b b 2

Hence a: c : : a2
: b2

.

Similarly it may be shown that if a : b : : b : c : : c:d,

then a : d : : a 3
: b3

.

(9) Quantities ivhich are proportional to the same quanti-

ties, are proportional to each other.

If a:b::e:f, and c: d: : e : f, then
ty:

b : : c : d.

v a e , c e ., - a c
ror - = — , and - = — : therefore - = -,

& / d /' & d'

or a : 6 : : c : d.

(10) 77* e products of the corresponding terms of two or

more proportions are in proportion.

For if a : & : : c : (7, and e : / : : g : h,

then — = — , and — = ":

b d f h

therefore — = — ; or ae : bf : : eg : dh.
bf dh

(11) When four quantities are in proportion, if the first

and second be multiplied, or divided, by any quantity, as

also the third and fourth, the resulting quantities will be in

proportion.

For if a : 6 : : c : d, then - = -

;

' b cf

therefore — = — ; or ma : wo : : nc : w«.
?»& nd

Similarly it may be shown that —: — ::-:-.
m m n n
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(12) In a similar manner it may be shown that if the first

and third terms be multiplied, or divided, by any quantity,

and also the second and fourth, the resulting quantities will

be in proportion.

(13) If four quantities are in proportion, the like powers,

or roots, of these quantities will be in proportion.

a c
For if a : b : : c : d, then - = -

;

b a

therefore ?- = ^ ; .'. an : b
n

: : c
n

: d\an _ c
n

.

b"
~ dn '
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EXAMPLES.
1. If a : b :: e : d,

show that a 2 + ab : c
2 + cd : : 62 — 2a6 : a*

2 — 2cd.

a c
Let - = - = x ; then a = bx, and c = dx.

b d
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8. If 'a : b : : c : d : j e -: /, prove that

2a2 + 3c2 - 5e2
: 262 + 3d2 - 5/

2
: : ae : 6/.

n c . ., ,. a;
2 + a; — 2 4.t

2 + 5s — 6
9. Solve the equation '- = .

1
x — 2 bx — 6

^b*s. x = 0, —2.

10. Find x in terms of ?/ from the proportions x : y : : a3
: 63

,

and a : 6 : : Vc + a> : \/d + 2/. ^,IS . )T
— £«

11. If a, 6, c, cZ are in continued proportion, prove that

aid:: a3 + bs + c
3

: 63 + c
3 + d8

.

VARIATION.

154. Definition. — One quantity is said to vary directly

as another when the two quantities depend upon each other

in such a manner that if one be changed the other is changed

in the same proportion.

Thus, if a train moving uniformly, travels 40 miles in an

hour, it will travel 80 miles in 2 hours, 120 miles in 3 hours,

and so on ; the distance in each case being increased or

diminished in the same ratio as the time. This is expressed

by saying that when the velocity is uniform, the distance is

jwojiortional to the time, or more briefly, the distance varies

as the time. We may express this result with Algebraic

symbols thus : let A and a be the numbers which represent

the distances traveled by the train in the times represented

by the numbers B and b ; that is, when A is changed to any

other value a, B must be changed to another value 6, so that

A : a : : B : b ; then A is said to vary directly as J5, or

more briefly, to vary as B.

Another phrase,* which is also in use, is "A is proportional

to Br
* Strictly Bpeaking, this phrase is better than the one " varies as," which is

somewhat antiquated ; but in deference to usage we retain it. The student must not

suppose that the variation here considered is the only kind. We are not here

concerned with variation in general, but merely with the simplest of all the possible

kinds of variation.
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This relation is sometimes expressed by the symbol oc, so

that A oc B is read c
' A varies as B. '

'

It will thus be seen that variation is merely an abridged

method of expressing proportion, and that four quantities

are understood though only two are expressed.

If A varies as Z?, then A is equal to B multiplied by some

constant quantity.

For suppose that a, av a2, . . . . , b, bv 6
2 , . . = . . are

corresponding values of A and B.

Let a and b denote one pair of these values, so that when
A has the value a, B has the value b ; then we have by the

definition, A : a : : B : 6. Hence

A = -B = mB,
b

where m is equal to the constant ratio a : b.

155. Different Cases of Variation. — TJiere are four

different kinds of variation.

(1) One quantity is said to vary Directly as another when
the two increase or decrease together in the same ratio.

Thus,

A cc B, or A = mB (Art. 154).

For example, If a man works for a certain sum per hour,

the amount of his wages varies as the number of hours

during which he works.

(2) One quantity is said to vary Inversely as another when

the first varies as the reciprocal of the other. Thus A varies

inversely as B is written

Aoo —, or A = —, where m is a constant.
B B

For example, If a man has to perform a certain journey,

the time in which he will perform it varies inversely as his

speed. If he doubles his speed, he will go in half the time
;

and so on.
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(3) One quantity is said to vary as two others Jointly,

when the first varies as the product of the other two. Thus

A varies as B and G jointly is written

A oc BC, or A = mBG, where m is a constant.

For example, The wages to be received by a workman will

vary as the number of days he has worked and the wages per

day jointly.

(4) One quantity is said to vary Directly as a second and

Inversely as a third, when it varies jointly as the second and

the reciprocal of the third. Thus A varies directly as B
and inversely as C is written

7? ~RA oc — , or A = ra — , where m is a constant.
G G

For example, The base of a triangle varies directly as the

area and inversely as the altitude.

In the different cases of variation just defined, to deter-

mine the constant m it will only be necessary to have given

one set of corresponding values.

Example 1. If A oc B, and A = 3 when B = 12, we have

A = mB\ .-. 3 = m x 12
;

or ra = J ;
.-. A = \B.

2. If A varies as B and inversely as (7, and A = 6 when

B = 2 and C = 9, we have

A = m- ; .-. G = m x f ;

C

or m = 27; .-. A = 27^.
G

156. Propositions in Variation.— The simplest method

of treating valuations is to convert them into equations.

(1) If A oc J5, and 75 oc C, then iaC.
For let A = ??i75, and 5 = nC (Art. 154),

where ra and n are constants.
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1

Then A = mnC
;

.*. A oc (7, since ran is constant.

In like manner, if A cc B, and Z? cc — , then ^4 cc —

.

c c

(2) If .1 oc C, and 5aC, then .1 ± B cc C, and \/Ze cc C.

For let A = mC, and Z> = ?iC,

where m and ?i are constants.

Then A ± B = (m ± n)C.

.*. .4 ± B cc C\ since m ± ?* is constant.

Also V^4£ = Vm/iC"2 = CVwmi.

V-4I2 cc C, since V"*/* is constant.

(3) If A cc £C, then J5 cc 4 and C cc -.

For let ^1 = mBC; then JB = i -.
m (7

.-. 5 cc 4. Similarly C ex A
(J B

(4) If A* B, and C « Z>, then AC <x 3Z).

For let ^4 = m5, and C = ?iZ).

Then .4C = mnBD. ,-. ^10 oc SZ>.

(5) If A cc 5, then .4* cc £ !

.

For let A = ra£ ; then An = m"^.

.-. An azB\

(6) If A cc B ichen C is constant, and Ace C ichen B is

constant, then A cc BC ichen both B and C are variable.

The variation of A depends on the variations of the two

quantities B and C. Suppose these latter variations to take

place successively, each in its turn producing its own effect

on A.

Let then B be changed to b, and in consequence let A be

changed to a', C being constant ; then, by supposition,

A = B
a! h'
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Now let C be changed to c, and in consequence let a' be

changed to «, b being constant ; then, by supposition,

rf_ G
a c

Hence 4 X <*- = | X 2,
a a o c

or d = BC.
... ^cciSC.

a oc

The following are illustrations of this proposition.

The amount of work done by a given number of men varies

directly as the number of days they work, and the amount

of work done in a given time varies directly as the number of

men ; therefore when the number of days and the number

of men are both variable, the amount of work will vary as

the product of the number of men and the number of days.

Again, the area of a triangle varies directly as the base

when the height is constant, and directly as the height when

the base is constant ; hence when both the base and the

height are variable, the area will vary as the product of

the base and height.

In the same manner, if A varies as each of any number of

quantities, B, C, D, . . . when the rest are constant, then

when they all vary A varies as their product. Also, the

variations may be either direct or inverse.

Note. — This principle is interesting because of its frequent

occurrence in Physical Science. For example, in the theory of gases

it is found by experiment that the pressure p of a gas varies as the

"absolute temperature" t when the volume v is constant, and that

the pressure varies inversely as the volume when the temperature is

constant; that is,

p cc t, when v is constant;

and p cc -, when t is constant.
v

From these results, we should expect that, when both t and v vary,

we should have the formula

p cc -, or^ = a constant,
v t

which by actual experiment is found to be the case.
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/l. /If y varies inversely as #2 — 1, and is equal to 24 when
cc = 10, find y when x = 5.

Since ?/ oc — , y = — , by (2) of Art. 159.
X" — 1 x — 1

As y = 24 when x = 10, we have

24 = — . .-. m = 24 x 99.
99

Hence, when a: = 5, we have

24 x 99

x* - 1

2. The pressure of a gas varies jointly as its density and

its absolute temperature ; also when the densit\T
is 1 and the

temperature 300, the pressure is 15. Find the pressure

when the density is 3 and the temperature is 320.

Let p = the pressure, t = the temperature, and d = the

density.

Then, since p oc ft?, we have p = mtel, by (3) of Art. 159.

As p = 15 when t = 300 and d = 1, we have

15 = m x 300 x 1. .". m = ^j.

Hence, when d = 3 and £ = 320, we have

p = ^ x 320 x 3 = 48.

3. The time of a railway journey varies directly as the

distance and inversely as the velocity ; the velocity varies

directly as the square root of the quantity of coal used per

mile, and inversely as the number of cars in the train. In a

journey of 25 miles in half an hour with 18 cars, 10 cwt. of

coal is required : how much coal will be consumed in a

journey of 21 miles in 28 minutes with 16 cars?

Let t = the time in hours, d = the distance in miles,

v = the velocity in miles per hour, q = the quantity of coal

in cwt., and n = the number of cars.

Then we have t oc -, and v cc —^.

v

dn . dn_, or t — m—.
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As d = 25 when t = f , n = 18, and g = 10, we have

. 25 x 18 VlO ,.^10 dn
* = ra —— . .'. ra =

—

, and t= — -.
2

^10 25 X 36' 25 X 36y/g

Hence, when d = 21, 2 = f§, and n = 16, we have

28 = v^io x 21 x 16 = y/Io X 28

25 X 36y/g 25 x 3^q'

... V5 = ffi * 28 * 60 = WJQ.*
25 X 3 X 28

5

.-. g = ¥_ = 6f .

Hence the quantity of coal is 6| cwt.

4. ^4 varies as .B, and A is 5 when B is 3 ; what is .4

when J3 is 5 ? ^l?is. 8J.

5. ^4 varies inversely as 5, and ^4 is 4 when 5 is 15 ;

what is A when 5 is 12? Ans. 5.

6. If x oc y and y cc z, show that #2 cc ?/
2
.

7. If x oc -, and 2/ oc -, prove that 2 oc n\

8. If # oc z and ?/ cc z, prove that x2 — y
2

<x z\

EXAMPLES.

Find the ratio compounded of

1. The ratio 32 : 27, and the triplicate ratio of 3:4.

Ans. 1 : 2.

2. The ratio 6 : 25, and the snbduplicate ratio of 25 : 36.

Ans. 1 : 5.

3. The triplicate ratio ol xiy, and the ratio 2y
2

1 3x2
.

Ans. 2x : By.

4. If x: y = 3|, find the value of (x - By): (2x - 5y).

Ans. 1 : 5.

5. If - = }, and - = #, find the value of
Sax ~ 6

-
?/

.

b
4

V Aby — lax

Ans. 17:7.

6. Find x : y, having given x2 + 6y
2 = bxy. 2 or 3.
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7. Find two numbers in the ratio of 5 to 6, and whose

sum is 121. Ans. 55 and G6.

8. For what value of x will the ratio 15 + x : 17 + x

be J? Ans. -13.

9. Find x in order that x + 1 : £ -f 4 may be the duplicate

ratio of 3 : 5. -4n*. 11 : 16.

10. Two numbers are in the ratio of 4 : 5, and if 6 be

taken from each, the ratio is that of 3:4: find the numbers.

Ans. 24, 30.

11. Find two numbers in the ratio of 5 : 6, such that their

sum has to the difference of their squares the ratio of 1 : 7.

Ans. 35 : 42.

12. Find x so that x : 1 may be the duplicate of the

ratio 8 : x. Ans. 4.

13. If 2x : 3# be in the duplicate ratio of 2x — m : 3y — to,

prove that to
2 = 6xy.

14. II A: B be the subduplicate ratio of A — x : B — x,

prove that x = AB : (A 4- B)

.

lo. Prove tuat if -1—!
A- = --—] c = -3—!—L

, each

of these ratios is equal to 1 + x : 1 -f- ?/, supposing

a
i + a

2 + a
3
D0^ *° ^e ZCr0 '

.« t» a - 6 6 — c c — a a + 6 + c
lb. II = = = : *

a
ty + bx bz + ca; c^/ + az ax + &?/ 4- cz

prove that each of these ratios = 1 : x + y + 2, supposing

a 4- 6 4- c not to be zero.

17. Find a mean proportional between a36 and ab3
.

Ans. a2
b
2

.

18. Find a third proportional to (a — b)
2 and oa — b

2
.

Ans. (a + &)
2

.

19. If a:b::c:d, prove that

(1) 2a + 3c :3a 4- 2c:

(2) /a 4- to& : pa 4- 76

:

(3) \/a^T^ : V'-
2
4- d 2

:

(4) a2
c 4- «c2

: b
2d 4- &#

:

2b 4- 3c7 : 36 4- 2d.

Ic 4- ww2 : pc 4- ?<*•

V«
3 + ^ : V? 4- d\

(a 4- c)
3

: (6 4- d)\



316 EXAMPLES.

Find the value of x in each of the proportions

:

20. 3» - 1 : 6x - 7 : : 7x - 10 : 9x + 10. ^4??s. 8 or |.

21. x2 — 2x -f- 3 : 2x — 3 : : x2 — 3x + 5 : 3x — 5. 2 or 0.

22. 2z — 1 : x + 4 : : x2
-f 2a; — 1 : x2 + a; + 4. 5 or 0<

23. (V^+l+V^-l) : (VaM-I-V^-l)::4a;-l:2. 1J.

24. If a : b : : c : d : : e r/, prove that

a3 _|_ c
3 _|_ e

3 . &3 + d 3 + y3 . . ace .^
25. If a : b : : c : d, prove that

(1) «(c + c?) = c(a + &)•

(2)
(a + c) («

2 + c
2
) _ (6 + d) (b

2 + d2
)

(a - c) (a2 - c
2
) (6 - d) (b

2 - cZ
2
)

,„. pa2 + g«& + ?'ft
2 _ pc2 + QCf? + rd2

la
2 + m«6 + nb2

lc
2 + ma? + nd2

'

26. If a; and y be unequal and x have to ?/ the duplicate

ratio of x + z : y + 2, prove that 2 is a mean proportional

between x and y.

27. If a: fr ::»:?, prove that a2
-f&

2
:
-^— ::p2+g2

:
-^—

.

a+ & p+g
28. If four quantities are in proportion, and the second is

a mean proportional between the third and fourth, prove

that the third will be a mean proportional between the first

and second.

29 If
a + h + c + d = a + b-c-d

^ prove that
a — b + c — d a — b — c -\- d

6, c, d are in proportion.

30. Each of two vessels contains a mixture of wine and

water ; a mixture consisting of equal measures from the two

vessels contains as much wine as water, and another mixture

consisting of four measures from the first vessel and one

from the second is composed of wine and water in the ratio

of 2:3. Find the proportion of wine and water in each of

the vessels.

Ans. In the first the wine is
J

of the whole ; in the

second §.
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31/ If x oc ?/, and y = 7 when a; = 18, find x when y = 21.

-i//.v. 54.

32y'lf x oc -, and y = 4 when as = 1 5, find y when a; = 6.

y An*. 10.

33. J. varies jointly as 7? and C; and ^1 = 6 when 5 = 3

and C = 2 : find ^L when 5 = 5 and C = 7. 4w*. 35.

34. A varies jointly as 5 and C; and A = 9 when 5 = 5

and C = 7 : find £ when A = 54 and C = 10. Am. 21.

35. A varies directly as 5 and inversely as C ; and ^4=10
when 5=15 and C = 6 : find A when 5 = 8 and C = 2.

Ans. 16.

36. If 3rt + 76 oc 3a + 136, and a = 5 when 6 = 3. find

the equation between a and 6. Ans. 3« = 56.

37. .1 oc 5, and A = 2 when B = 1 ; find ^1 when 5 = 2.

Jj>s. 4.

38. If A2 + 52
cc ^4

2 - 52
,
prove that A + B cc A - B.

39. 3J. + 55 oc 5A 4- 35 ; and .4 = 5 when 5 = 2: find

the ratio A: B. Ans. 5:2.

40. A oc »5 + C; and .4 = 4 when 5 = 1 and C = 2
;

and J. = 7 when 5=2 and (7 = 3: find ». ^4??6\ 2.

41. If a?
2

cc ?/
3

, and a; = 2 when ?/ = 3, find the equation

between a; and y. Ans. 27x* = 4y
3

.

42. If ?/ varies as the sum of two quantities, one of which

varies as x directly, the other as x inversely, and if. y = 4

when x = 1. and ?/ = 5 when a; = 2, find the equation

between a; and y. ^ = ^ + 2

43. If ?/ = the sum of two quantities, one of which varies

directly as a*, and the other inversely as SB
2

; and if y = 19

when a? = 2, or 3 ; find y in terms of a?. A _ _ r„ ,
36

J
X 1

44. If ?/ varies as the sum of three quantities of which

the first is constant, the second varies as a;, and the third as

x2
; and if y = when x = 1 , ?/ = 1 when a; = 2, and

y = 4 when a; = 3 ; find ^/ when a; — 7. Ans. 36.
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CHAPTER XVL
ARITHMETIC, GEOMETRIC, AND HARMONIC

PROGRESSIONS.

ARITHMETIC PROGRESSION.

157. Definitions — Formulae. —A number of terms

formed according to some law is called a series. Quantities

are said to be in Arithmetic Progression* when they increase

or decrease by a constant difference, called the common

difference.

Thus, the following series are each in Arithmetic Progres-

sion :

2,5,8, 11, 14, 17,

J, /, o, «j, i, — i, — o, — o, •••••
a, a -f- d, a + 2d, a + 3d, a -f 4c?,

The letters A. P. are often used for shortness instead of

the term Arithmetic Progression.

The common difference is found by subtracting any term

of the series from that which immediately follows it. In the

first series above the common difference is 3 ; in the second

it is — 2 ; in the third it is d.

The series is said to be increasing or decreasing, according

as the common difference is positive or negative. Thus, the

first series above is increasing, and the second is decreasing.

If we examine the third series above, we see that the coef-

ficient of d in any term is less by one than the number of the

term in the series.

Thus the 2d term is a -f d,

3d term is a + 2d,

4th term is a + 3d,

* Called liliso Arithmetic /Series.
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and so on. Hence if n be the number of terms, and if I

denote the last, or »th term, we have

I = a + (n - \)d (1)

Let S denote the sum of n terms of this series ; then we
have

S = a + (a + d) + (a + 2d) +...+(/- 2d) + (l - d) +J

;

and, by writing the series in the reverse order, we have

S = I +(l - d)+ (l - 2d) + . . . +(a + 2d) + (a + d) + a.

Adding together these two equations, we have

2S = (a + + (a + I) + (a + I) + to n terms

= n{a + 0-

.-• ^ = |(a + i) (2)

By (1) and (2) we have S = ^[2a + (n - l)d] . . (3)

"We have here three useful formulae, (1), (2), (3), which

should be remembered; in each of these any one
t
of the

letters may denote the unknown quantity when the other

three are known. For example, in (1), we can write down
any term of an A. P. when the first term, the common dif-

ference, and the number of the term are given. Thus, if the

first term of an A. P. is 5 and the common difference is 3,

the 10th term = 5 + (10 - 1)3 = 32,

and the 20th term = 5 + (20 - 1)3 = 62.

Also in (2), if we substitute given values for S, n, I, we

obtain an equation for finding a; and similarly in (3).

Thus,

1. Find the sum of 20 terms of the series 1, 3, 5, 7, . . .

Here a = 1, d = 2, ?i = 20 ; therefore by (3)

S = -22°-[2 + 19 X 2] = 10 X 40 = 400.

2. The first term of a series is 5, the last 45. and the sum

400 ; find the number of terms, and the common difference.
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Here a = 5, I = 45, S = 400 ; therefore by (2)

400 = -(5 -f- 45) = 25?*. .-. n = 16.

By (1) 45 = 5 + 15d. .-. d = 2§.

When any two terms of an A. P. are given, the series can

be completely determined ; for the data furnish two simul-

taneous equations, with two unknown quantities, which may
be solved by methods previously given.

3. The 10th and 15th terms of an A. P. are 25 and 5

respectively ; find the series.

Here 25 = a + 9cZ

;

and 5 = a -f 14(7.

By subtraction, 20 = — bd. .-. d = —4.

Then a = 5 - 14cZ = 61.

Hence the series is 61, 57, 53,

4. Find the sum of the first n odd integers.

Here a = 1, and d = 2 ; therefore by (3)

* £ = ?

^[2 + (» ~ 1)2] = ^ X 2,i = n\

Thus the sum of any number of consecutive odd integers

beginning with unity, is the square of their number.*

Find the last term and sum of the following series

:

5. 14, 64, 114, to 20 terms. Ans. 964, 9780.

6. 9, 5, 1, to 100 terms. -387, -18900.

7. h ~b ~b to 21 terms. -9|, -99f.

Fiud the sum of the following series

:

8. 5, 9, 13, to 19 terms. 779.

9. 12, 9, 6, to 23 terms. -483.

Find the series in which

10. The 27th term is 186, and the 45th is 312.

Ans. 4, 11, 18,

Thin proposition WM known to the Greek geometers.
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11. The 9th term is -11, and the 102d is -150J.

Ans. 1, — £, — 2,

12. The 16th term is 214, and the 51st is 739.

Ans. —11, 4, 19,

158. Arithmetic Mean.— When three quantities aro in

Arithmetic Progression, the middle one is called the Arith-

metic Mean of the other two.

Thus if «, 6, c are in A. P., b is the arithmetic mean of a

and c ; and by the definition of A. P. we have

b — a = c — b;

... h = l(a + C).

Thus the arithmetic mean of any two quantities is half their

sum.

Between any two given quantities any number of terms

may be inserted so that the whole series thus formed shall

be in A. P. ; the terms thus inserted are called the arithmetic

means.

For example, to insert four arithmetic means between 10

and 25.

Here we have to find an A. P. with 4 terms between 10 and

25, so that 10 is the first and 25 is the sixth term.

By (1) of Art. 157,

25 = 10 + M; .-. d = 3.

Thus the series is 10, 13, 16, 19, 22, 25
;

and the required arithmetic means between 10 and 25 are

13, 16, 19, 22.

In general. To insert n arithmetic means between a and b.

Here we have to find an A. P. with n terms between a and

6, so that a is the first and b is the (n -f- 2)
th term.

By (1) of Art. 161,

b = a + (n + 2 - \)d = a + (n + l)d

, b — a
.-. d = -.

n + 1
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Thus the required means are

b — a 6 — a „ . b — a
n 4- 1 n + 1 n 4- 1

1. Find the sum of the first p terms of the series whose
nth term is Sn — 1.

By putting n = 1, and n = p respectively, we obtain

first term = 2, last term = Sp — 1.

Hence by (2), Art. 157, S = £(2 + 3p - 1) = £(3p + l).

In an Arithmetic Progression when a, #, and d are given,

n is to be found by solving the quadratic (3), Art. 157.

When both roots are positive and integral, there is no diffi-

culty in interpreting the result corresponding to each.

2. How many terms of the series 24, 20, 16, must

be taken that the sum may be 72 ?

Here a = 24, d = -4, S = 72. Then from (3), Art.

157, we have

72 = -[2 x 24 + (n - l)(-4)] = 24?i - 2n(n - 1).
Ld

.-. 'V - 13m + 36 = 0, or (n - 4)(n - 9) = 0.

,\ 7i = 4, or 9.

Both of these values satisfy the conditions of the ques-

tion ; for if we take the first 4 terms, we get 24, 20, 16, 12
;

and if we take the first 9 terms, we get 24, 20, 16, 12, 8, 4,

0, —4, —8, in either of which the sum is 72; the last 5

terms of the last series destroy each other, so that the sum

of the first 4 terms is the same as the sum of the first 9

terms.

When one of the roots is negative or fractional, it is inap-

plicable, for a negative or a fractional number of terms is,

strictly speaking, without meaning. In some cases however

a suitable interpretation can be given for a negative value

of 71.
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3. How many terms of the scries —0,-6,-3,
must be taken that the sum may be 66 ?

Here 66 = '-[-18 + (n - 1)3].

.-. n" — In — 44 = 0; or (n - 11) (n + 4) = 0.

.-. n = 11, or —4.

If we take 11 terms of the series, we have

-9, -6, -3, 0, 3, 6, 9, 12, 15, 18, 21
;

the sum of which is QQ.

If we begin at the last term and count backwards four

terms, the sum is also 66. From this we see that, although

the negative solution does not directly answer the question

proposed, we are enabled to give it an intelligible meaning

as follows : begin at the last term of the series which is

furnished by the positive value of », and count backwards for

as many terms as the negative value indicates ; then the

result will be the given sum. We thus see that the negative

value for n answers a question closely connected with that

to which the positive value applies.

4. How many terms of the series 26, 21, 16,

must be taken that the sum may be 74?

Here 74 = |[52 + (n - l)(-5)].

Solving, we get n = 4, or 7j.

Thus, the only applicable value of n is 4. We infer that

of the two numbers 7 and 8, one corresponds to a sum

greater, and the other to a sum less than 74.

5. Insert 3 arithmetic means between 12 and 20.

Arts. 14, 16, 18.

6. Insert 5 arithmetic means between 14 and 16.

Ans. 14$, 14f

7. Insert 17 arithmetic means between 93 and 69.

Ans. 91|, 90$, 70$.



324 GEOMETRIC PROGRESSION.

How many terms must be taken of the series

8. 42, 39, 36, to make 315? Ans. 14, or 15.

9. -16,-15,-14, to make -100? 8, or 25.

10. 20, 18}, 17J, to make 162±? 13, or 20.

11. The sum of three numbers in A. P. is 39, and their

product is 2184 ; find them. Ans. 12, 13, 14.

12. The sum of 10 terms of an A. P., whose first term

is 2, is 155 ; what is the common difference? Ans. 3.

GEOMETRIC PROGRESSION!

159. Definition — Formulae. — Quantities are said to

be in Geometric Progression when they increase or decrease

by a constant factor, called the common ratio.

Thus, the following series are each in Geometric Progres-

sion (G. P.):

3, 6, 12, 24, 48,

Q 1 111
°» X

» "3' 9' 27'

a, a?% «r2
, a/*

3
, or

4
,

The common ratio is found by dividing any term of the

series by that which immediately precedes it. In the first

series above the common ratio is 2 ; in the second it is ^ ; in

the third it is r.

The series is said to be increasing or decreasing, according

as the common ratio is greater than 1, or less than 1.

Thus, the first series above is increasing, and the second is

decreasing.

Note 1. —An Arithmetic Progression is formed by repeated addition

or subtraction; a Geometric Progression by repeated multiplication or

division.

If we examine the third series above, we see that the

exponent of r in any term is less by one than the number of

the term in the series.

Thus, the 2d term is ar,

3d term is ar2 ,

4th term is ar3
,
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and so on. Hence if n be the number of terms, and if I

denote the last, or ?<
lh term, we have

I = or"- 1
(1)

Let S denote the sum of n terms of this series ; then we

have

S = a + ar + ar2 + + cu"- 2 + at*' 1
;

multiplying by r, we have

Sr = ar + ar2 + + «/-n
" 2 + a/-

71- 1 + ar9.

Hence by subtraction, we have

Sr — S = «/•" - «
; _ or (r - 1)6' = a(r" - 1).

^ ^ = a (/- - 1 }
>
Qr

«(1 - ^)
(2)

r — 1 1 — >'

Multiplying (l)~by r, and substituting in (2), we get

rl — a a — vl /oxS = -, or -, .... (3)
T — 1 1 — T

a form which is sometimes useful.

Xote 2. — It will be found convenient to remember both forms

given in (2) for S, and to use the first form in all cases when r is

positive and > 1, and the second when r is negative or < 1.

1. Find the 8th term of the series — J, J,
—

f ,

Here a = —
-J.

n = 8, r = \ -h ( — -J)
= —|: therefore

by (i)
7 1/ S\> 1 ( 2187\
1 — —2\~2) — ~3\ T38V

= xf§ = the 8th term -

2. Sum the series 1, 3, 9, to 6 terms.

Here a = 1, n = 6, r — 3 ; therefore by the first form

of (2), = #_! = 720 - 1 = 364>3-1 2

3. Sum the series 81, 54, 36, to terms.

Here a = 81, n = 9, r = 54 -=- 81 = | ; therefore by the

second form of (2),

S = 81 C 1 ~ (jQ = 243[1 - (|)
9
]

1 ~~ I
— 9 1Q 512, _ 9?,fi55+° 8 1 "" - ,JU

8 1*
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4. Sum the series 2, — 3, f , — to 7 terms.

Here a = 2, n = 7, r = — | ; therefore by the second form

°f(2)
' ^_ 2fl -(-|) 7

1 _ 2fl + \W1
l-(-f) I

= I X Ws5 = 14H-
5. Find the 6th term of each of the following series

:

(1) 9, 3, 1, etc.
; (2) 2, -3, |, etc. ; (3) d\ ab, b

2
, etc.

Ans. (1) J
? ; (2) -W; (8) £ft

Sum the following series :

6. 1, 4, 1G, to 6 terms. -4ns. 1365.

7. 25, 10, 4, to 4 terms. 40§

.

8. |, -1, |, to 7 terms. ^-.
9. 3, -1, i, to 6 terms. 2-§£.

160. Geometric Mean. — When three quantities are in

Geometric Progression the middle one is called the Geometric

Mean between the other two.

Thus if «, 6, c are in G. P., b is the geometric mean

between a and c ; and by the definition of G. P., we have

b _ c.

ft 6'

.-. b
2 = ftc; .-. 6 = V^c.

Thus, £/*e geometric mean between any two quantities is the

square root of their product.

Quantities which are in G. P. are in continued proportion,

and the geometric mean between two quantities is the same

as their mean proportional (Art. 152).

Between any two given quantities any number of terms may

be inserted so that the whole series thus formed shall be in

G. P. ; the terms thus inserted are called the geometric means.

For example, to insert three geometric means between 2

and 32.

Here we have to find a G. P. with 3 terms between 2 and

32, so that 2 is the first and 32 is the fifth term.

By (1) of Art. 159, 32 = 2/-4
;

.-. r = 2,
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Thus the series is 2, 4, 8, 16, 32, and the required

geometric means between 2 and 32 are 4, 8, 16.

In general. To insert n geometric means between a and b.

Here we have to find a G. P. with n terms between a and

b, so that a is the first and b is the (n -f- 2)
th term.

By (1) of Art. 159,

b = or**1 : .-. r"+1 = -:

V a
(1)

Ans. -28, 14, -7, 1

Thus the required means are ar, ar2
, ar", where r

lias the value found in (1).

1. Insert 4 geometric means between 160 and 5.

Ans. 80, 40, 20, 10.

7

_7 7
4' 8*

3. Insert 4 geometric means between 5J and 40J.

Ans. 8, 12, 18, 27.

161. The Sum of an Infinite Number of Terms.—
From (2) of Art. 159, we have

s = a
(
l - r") = _^ ^L 0)
1 - r 1 - r 1 - r

Now suppose r is a proper fraction, positive or negative;

then the greater the value of n the smaller is the absolute

ft/*
71

value of ?•", and consequently of ; and by taking n

sufficiently large rn can be made as small as ice please.

Hence, by taking n large enough, the sum of n terms of the

series can be made to differ from by as small a quan-
1 — r

tity as we please.

Thus, the sum of an infinite number of terms of a decreas-

ing Geometric Progression is ;

or more brief!}', the sum to infinity is .
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This quantity, , which we call the sum of the series,

is the limit to which the sum approaches, but never actually

attains ; that is, although no definite number of terms will

amount to ,
yet by taking a sufficient number, the sum

1 — r

will reach it as near as we please.

1. Sum the series
-J, J, J,

For n terms we have by (2) of Art. 159,

S = V !v = i _ 1.
i-i

From this result it appears that however many terms be

taken, the sum of this series is always less than 1. Also we

see that by taking ?i large enough, the fraction — can be

made as small as we please. Hence by taking a sufficient

number of terms, the sum can be made to differ from 1 by

as little as we please ; and when n is made infinitely great we

have 8 = 1.

This may be illustrated geometrically as follows:

A\ 1 1 1 1 \B

Px P* Ps A
Let AB be a line of unit length. Bisect AB in P

x ; bisect P
X
B in

P 2 , P 2B in P 3 , P 3B in P 4 , and so on indefinitely, always bisecting

the remaining distance. It is evident that by a series of such bisections

we can never reach B, because we shall always have a distance left

equal to half the preceding distance; but by a sufficient number of

these bisections we can come nearer to B than any assigned distance,

however small, because every bisection carries us over half the remain-

ing distance. That is, if we take a sufficient number of terms of the

series Ap
^ + p^ + p^ + p^ + ?

we shall have a result differing from AB, i.e., from unity, by as little

as we please. This is simply a geometric way of saying that

1 + I + 1 + to oo = 1.

2
t 2a I"

2» -r
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Sum the following series to inanity

:

2. 1,^,1 Am. 2.

3- 9, -6, 4, - 5f
4. 1, -i, J, f.

5- 1, 1, A, ft.

162. Value of a Repeating* Decimal.— "Repeating

decimals furnish a good illustration of inlinite Geometric

Progressions.

1. Find the value of .423.

.423 = .4232323

= A + ^ + !3
10 108 10s

= ±+ ?8/i + _L + JL + \
io io3

v io2 io4 /

102/

= 4 23 100 4 23 = 419

10 103 99 10 990 ~ 990'

which agrees with the value found by the usual rule in

Arithmetic.

The value of any repeating decimal may be found by the method

employed in the last example; but in practice it maybe found more

easily by a general rule, which may be proved as follows

:

Let P denote the figures which do not repeat, and suppose them p
in number; let Q denote the repeating period consisting of q figures.

Let S denote the value of the repeating decimal ; then

8 = .PQQQ ;

.-. IO?* = P.QQQ ;

and 10P+QS = PQ.QQQ ;

Called also recurring and circulating.

=
Io
+ U^—"^
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by subtracting,

(IOp+7 — 10p)S = PQ— P;

that is, 10^(10? - 1)S = PQ - P;

PQ - PS -
(10« 1)10"

Now 10^ — 1 is a number consisting of q nines; therefore the

denominator consists of q nines followed by p ciphers. Hence, for

finding the value of a repeating decimal, we have the following

Kule. Subtract the integral number consisting of the non-repeating

figures from the integral number consisting of the non-repeating and

repeating figures, and divide by a number consisting of as many nines

as there are repeating figures followed by as many ciphers as there are

non-repeating figures.

Find the value of the following repeating decimals :

2. .151515 .... Ans. ^,

3. .123123123 . . .
JUL
333'

4. .16 .

5. .037.

HARMONIC PROGRESSION.

163. Definition.— A series of quantities is said to be in

Harmonic Progression when their reciprocals are in Arith-

metic Progression.

Thus, the following series

fill anA 12121 l "3' "5> 7' anU 4' 71 31 p »

are each in Harmonic Progression (II. P.) because then

reciprocals,

1, 3, 5, 7, and 4, 3J, 3, 2£, . . . . . .

are in A. P.

The following is therefore a general form for a H. P

1 1 1 1

a a + d a + 2d a + (n — l)d

because the reciprocals of the terms are in A. P.

From the above definition it follows that all problems

relating to quantities in II. P. can be solved by taking the
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reciprocals of the quantities and using the formula? relating

to A. P. This makes it unnecessary to give any special

rules for the solution of problems in H. P.

If a, 6, c be three consecutive terms of a II. P., then we
have by definition,

1 _ 1 = 1 _ 1

b a c b

a — 5 _ 5 — c

ab be

.'. a — b :b — c: : a: c . . . . (1)

Thus, if three quantities are in Harmonic Progression, the

difference between the first and the second is to the difference

between the second and the third as the first is to the third.

Sometimes this relation is taken as the definition of Har-

monic Progression.

1. The 12th term of a H. P. is J, and the 19th term is

-j
3
2 ; find the series.

Here the 12th and 19th terms of the corresponding A. P.

are 5 and %2
- respectively. Therefore by

(1), Art. 161, 5 = a + lid,

and -2
3
2 = a + I8d.

Solving, we get d = }, a = f

.

Hence the A. P. is f , f, 2, f, {

and the H. P. is hbhhh
Find the last term of the following harmonic series

:

2. 4, 2, 1|, to G terms. Ans. -§.

3. 2J, lif, 1 T̂ , to 21 terms. &•

4. 1$, lfi, 2T
2
3 , to 8 terms. -4.

164. Harmonic Mean. — When three quantities are in

Harmonic Progression, the middle one is called the Harmonic

Mean between the other two.
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Thus if «, 6, c are in H. P., b is the harmonic mean

between a and c ; and by the definition of H. P. we have

1 _ 1 = 1 _ 1.

b a c b

• h i + 1-
b a c

, 2ac
.*. b =

a -\- c

Thus, the harmonic mean between any two quantities is

twice their product divided by their sum.

Between any two given quantities any number of terms

may be inserted so that the whole series thus formed shall

be in H. P. ; the terms thus inserted are called the harmonic

means.

For example, to insert 5 harmonic means between -§ and

A-
Here we have to insert 5 arithmetic means between |

and Jjf . Hence, by (1) of Art. 157,

1 5 _ 3 i a r] . . r7 _ 1
-g" — "2 i

Da
» * *

u — TO"*

Thnsj flip A P i<s 3 2 5 26 27 28 29 15.

and therefore the required harmonic means between f and ^
« rp 1616161616clie "25' "215"' 27' 28' "29*

In general. To insert n harmonic means between a and b.

Here we have to insert n arithmetic means between - and
a

i. By Art. 158, these will be

11 1 _ 1

1 . b a 1
, 9

b a
+ :—— '

~ + 2
a n -\- 1 a n + 1

\)b + (a - fr) (n + 1

(ji -f- l)ab {n H- 1)«6
that is,

{n + 1)?) + (a ~ ?v) (*-H-l)ft + 2(a-5)
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and therefore the required harmonic means between a and b

are the reciprocals of these, that is,

(n + I) (ib (n + l)ab

(n + 1)6 + (a - by (n + 1)6 + 2(a - 6)'

1. Insert 2 harmonic means between 4 and 2. ^4?is. 3, Jg2
.

2. Insert 3 harmonic means between
-J
and T̂ . ^, ^, -^.

3. Insert 4 harmonic means between 1 and G. 1 J, lj, 2, 3.

165. Relation between Arithmetic, Geometric, and
Harmonic Means.

(1) If A, G, H be the arithmetic, geometric, and har-

monic means between a and 6, then (Arts. 158, 160, 164),

A = <±±± (1)
2

v '

G = </ab (2)

#=^V (3)
a + b

Therefore AH = °^±^ X -^- = ab = £2
;

2 a + 6

that is, G is the geometric mean between A and H.

Hence the geometric mean between any two real positive

quantities, a and 6, is also the geometric mean between the

arithmetic and the harmonic means between a and b.

(2) From (1) and (2) we have

A _ G = <±st± -^ = i(v/- - ^)
2

;

and from (2) and (3),

a + b a f b

Now if a and b are both positive, s/a and s/b are both real

;

therefore (Va — V^)
2

is positive ; also \fab and a + b are

both positive. Hence A — G and G — II are positive.

Therefore -4 > C? > if.
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That is, the arithmetic, geometric, and harmonic means

between any two real positive quantities are in descending

order of magnitude.*

Three quantities, a, b, C, are in A. P., G. P., or H. P.,

according as

a_j—— _ a^ a^
Qr

a^
respectively.

b — c a b c

The first follows from the definition of A. P. (Art. 157).

In the second, 6 (a — b) = a(b — c) ; .*. b2 = ac.

See Art. 160.

The third follows from (1) of Art. 163.

Harmonic properties are interesting chiefly because of their im-

portance in Geometry and in the Theory of Sound. If there be a

series of strings of the same substance, the lengths of which are

proportional to 1, ?, %, \, £, &, and if these strings are stretched tight

with equal force, and any two of them are sounded together, the effect

is found to be harmonious to the ear.

Notwithstanding the comparative simplicity of the law of

its formation, there is no general formula for the sum of any

number of terms in harmonic progression.

EXAMPLES.

Find the last term and sum of the following series

:

1. 1, 1.2, 1.4, to 12 terms. Ans. 3.2, 25.2.

2. 3|, 1, -1J, to 19 terms. —41$, -361.

3. 64, 96, 128, to 16 terms. 544, 4864.

Sum the following series :

4. 4, 5J, 6J, to 37 terms. 980J.

5. -3, 1, 5, to 17 terms. 403.

6. 3a, a, —a, to a terms. a2
(4 — a).

7. H, **i *h to n terms.
5" ( °

12

~ ?0
*

* These two proposition* were known to the Greek geometers.
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8. 1±, m, 2§f, to n terms. Ans.
n
(
17 + 7n

).

9. —J
, V^, —J , .... to 7 terms. 7(^2 + 2).& + 1 v/2 - 1

Find the series iu which

10. The 15th term is 25, and the 29 th term 46.

Ans. 4, 5J, 7,

11. The 15 th term is -25, and the 23 d term -41.

Ans. 3, 1, —1,
12. Insert 14 arithmetic means between — 7J and — 21.

Ans. -6«, -6&, -2TV
13. Insert 36 arithmetic means between 8J and 2£.

4**. 8J, 8J, 2§.

How manj' terms must be taken of the series

14. 15|, 15J, 15, to make 129? Ans. 9, or 86.

15. — 10|, -9, -7J, ... to make -42? 7, or 8.

16. -6§, -6f, -6, .... to make -524 ? 11, or 24.

17. The sum of three numbers in A. P. is 33, and their

product is 792 : find them. Ans. 4, 11, 18.

18. An A. P. consists of 21 terms ; the sum of the three

terms in the middle is 129, and of the last three is 237 : find

the series. Ans. 3, 7, 11, 83.

19. The first term of an A. P. is 5, and the fifth term is

11 : find the sum of 8 terms. Ans. 82.

20. The sum of four terms in A. P. is 44, and the last

term is 17 : find the terms. Ans. 5, 9, 13, 17.

21. The seventh term of an A. P. is 12, and the twelfth

term is 7 ; the sum of the series is 171 : find the number of

terms. Ans. 18, or 19.

22. A sets out from a place and travels 2^- miles an hour.

B sets out 3 hours after A, and travels in the same direction,

3 miles the first hour, 3J miles the second, 4 miles the third,

and so on. In how many hours will B overtake A? Ans. 5.

23. In the series, 1, 3, 5, etc., the sum of 2n terms : the

sum of n terms ;: x i 1; find the value of x, Ans. 4.
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24. Find an A. P. such that the sum of the first five terms

is one-fourth the sum of the following five terms, the first

term being unity. Ans. 1, — 2, —5, —26.

25. If the sum of m terms of an A. P. be always to the

sum of n terms in the ratio of m2 to w2
, and the first term be

unity, find the ?i
th term. Ans. 2?i — 1.

26. If 2w + 1 terms of the series 1, 3, 5, 7, 9, .... be

taken, show that the sum of the alternate terms, 1, 5, 9,

will be to the sum of the remaining terms 3, 7, 11,

as n -f- 1 to n.

27. On the ground are placed n stones ; the distance

between the first and second is one yard, between the

second and third three yards, between each of the remain-

ing stones five yards : how far will a person have to travel

who shall bring them one by one to a basket placed at the

first stone ?

Ans. 5 n? — 17 n -j- 16 yards.

28. Find a series of arithmetic means between 1 and 21,

so that their sum has to the sum of the two greatest of them

the ratio of 11 to 4. Ans. 9 means, 3, 5, 7, 19.

29. Find the number of arithmetic means between 1 and

19 when the second mean is to the last as 1 to 6. Ans. 17.

30. If the second term of an A. P. be a mean proportional

between the first and the fourth, show that the sixth term

will be a mean proportional between the fourth and the

ninth.

Find the last term of each of the following geometric

series

:

31. 2, —6, 18, to 8 terms. Ans. —4374.

32. 2, 3, 4J to 6 terms. -\\
3-.

33. 3, -3 2
, 3 3

, to 2n terms. -32\

Sum the following scries :

34. 1, -}, a, to 12 terms. Ans. Jf}£.

35. 9, -6, 4, to 7 terms. 5|f.
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36. 2, -4, 8, to 2/) terras. Ans. f(l - 2 2
*).

37. \/2, V^6, 3^2, to 12 terms. 364(^6 + V^2).

38. Insert 3 geometric means between 486 and 6.

Ans. 162, 54, 18.

39. Insert 4 geometric means between J and 128.

Ans. }, 2, 8, 32.

40. Insert 3 geometric means between 1 and 256.

Ans. 4, 16, 64.

41. Insert 4 geometric means between 3 and —729.

Ans. -9, 27, -81, 243.

Sum the following series :

"648"

2

42. f,
i, £, to 6 terms. ^l?is.

43. 1, — J, J, to infinity.

44. 6, —2, |, to infinity. 4-£.

45.
-J, §, 2

4
t? t° infinity. 1.

46. |,-1, |, to infinity. ff.

47. .9, .03, .001, to infinity. fJ.

Find the value of the following repeating decimals

:

48. .4282828 . . . Ans. f|f. I 50. .16. Ans. £.

49. .28131313 . . . T%^. I
51. .378. §£.

52. The sum of three terms in G. P. is 63, and the

difference of the first and third terms is 45 : find the terms.

Ans. 3, 12, 48; or 36, -54, 81.

Let a, or, ar2 denote the numbers.

53. The sum of the first four terms of a G. P. is 40. and

the sum of the first eight terms is 3280 : find the series.

Ans. 1, 3, 9,

54. The sum of three terms in G. P. is 21. and the sum

of their squares is 189 : find the terms. Ans. 3, 6, 12.

55. A person who saved every year half as much again as

he saved the previous year had in seven years saved 8102.95 :

how much did he save the first year? Ans* §3.20.
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CHAPTER XVII.

PERMUTATIONS AND COMBINATIONS— BINOMIAL
THEOREM.

PERMUTATIONS AND COMBINATIONS.

166. Definitions. — The different orders in which a

number of things can be arranged, either by taking some or

all of them, are called their Permutations.

Thus, the permutations of the letters a, 6, c, taken one at

a time are three, viz., a, 6, c; taken two a time, are six,

viz., a6, 6a, ac, ca, be, cb ; and taken three at a time, are

also six, viz.,

abc, acb, bca, bac, cab, cba.

The Combinations of things are the different groups or

collections which can be made, either by taking a part or all

of them, without reference to the order in which the things

are placed.

Thus, the combinations of the letters a, 6, c, taken two at

a time are three, viz., a6, ac, be; ab and 6a, though differ-

ent permutations, form the same combination, both consisting

simply of a and 6 grouped together.

It appears from this that in forming combinations we are

concerned only with the number of things each group con-

tains ; while in forming permutations we have also to consider

the order of the things which make up each group ; thus the

above six permutations of the letters a, 6, c, taken three at

a time, form but one combination.

167. The Number of Permutations.— To find the

number of permutations of n different things, taken r at a

time.

Let the different things be represented by n letters, a, 6,
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r, Set a aside ; write down the other n — \ letters

in a line
;
put a before each of them in succession ; we thus

obtain ab, etc, ad, etc., or n — 1 permutations, each of two

letters in which a stands first. In the same manner there

are n — 1 permutations, each of two letters in which b

stands first. Similarly there are n — 1 permutations,

each of two letters in which c stands first ; and so on for each

of the other letters ; and as there are n of them, the whole

number of permutations of the n letters, two together, is

n(n - 1).

Again, set a aside, and group the other n — 1 letters, two

and two ; as has just been shown, there are (n — 1) (to — 2)

such groups. Put a before each of them, and we have

(to — 1)0* — 2) permutations, each of three letters in which

a stands first. Similarly there are (n — 1)(to — 2) per-

mutations, each of three letters in which b stands first ; and

so on for each of the other letters. Therefore the whole

number of permutations of n letters taken three at a time is

n (n _ i)(„ _ 2).

Proceeding thus, and noticing that at any stage, the

number of factors is the same as the number of letters in

each permutation, and that the negative number in the last

factor is one less than the number of letters in each permu-

tation, we shall have the number of permutations of n things,

r together equal to n(n — 1) (n — 2) to r factors
;

and the rth factor is n — (r —1) or n — r -f- 1-

Hence, the whole number of permutations of n things taken

r at a time is

n (n _ i)( 7l _ 2) (to — r + 1) . . (1)

If all the letters are taken together, r = to, and (1)

becomes
w(to - 1)(to - 2) 3-2-1 . . . (2)

Hence, the number of permutations of n things taken all at

a time is equal to the product of the natural numbers from 1

up to n.
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It is usual to denote this product by the symbol In, which

is read " factorial ?*." * Thus,

Factorial 6, or [6, means 6 • 5 • 4 • 3 • 2 • 1, or 720
;

factorial 5, or 15, means 5 • 4 • 3 • 2 • 1, or 120.

From the law of formation it is clear that [7 = 716.

More generally, \n -f 1 = (n -f- 1)[^«

Thus
|
n + 1 contains all the factors of In, and one factor,

n + 1, additional.

Denoting the number of permutations of n things taken r

at a time by the symbol nPr , we have from (1) and (2)

BPr=n(n-l)(n-2) (n-r+1); and nPn=[n.

Thus, BP4
=n(n— l)(n—2)(»—3).

Also »P
6
= nP4(n— 4} =n(n- 1) (n— 2) (n— 3) (n-4) ;

and so on.

1. Four persons enter a railway carriage in which there

are six seats ; in how many ways can they take their places ?

Here n = 6, and r = 4 ; then by (1) we have

6
P

4
= 6 • 5 • 4 • 3 = 3G0.

2. Required the number of changes which can be rung,

(1) with 5 bells out of 8, and (2) with the whole peal.

Ans. (1) 6720; (2) 40320.

3. Required the number of different ways in which 6

persons can be seated at a dinner table. Ans. 720.

168. The Number of Combinations. — To find the

number of combinations of n different things taken r at a

time.

The number of permutations of n things taken rata time

is

n(n - l)(n — 2) (n - r + 1). (Art. 167).

But each combination of r things taken r at a time will

* It is also sometimes denoted by n !.



THE NUMBER OF COMBINATIONS. 341

make \r permutations, by (2) of Art. 167; therefore there

are \r times as many permutations as combinations. Hence,

calling mGr the required number of combinations, we have

n(n- l)(n-2) (n-r+1)

This formula for nCr may also be written in a different

form ; for if we multiply the numerator and the denominator

by the product of the natural numbers from 1 up to n — r,

it becomes

_ n(n-l)(n-2 ) (n-r+l)(n-r) 2-1

[r.(n-r)(»-r-l) 2-1

The numerator is now the product of the natural numbers

from n to 1, or is In (Art. 167); the denominator is the

product of the natural numbers from /* to 1, and from n — r

to 1. Hence we have ,

_ & (2)
»°' - [r\n-r V

'

It will be convenient to use (1) for nCr in all cases where

a numerical result is required, and (2) when it is sufficient

to leave it in an Algebraic shape.

Note 1. — If in (2) we put r — n, we have

\n \

but nCn = 1, so that if the formula is to be true for r = n, the

symbol 10 must be considered as equivalent to 1.

The number of combinations of n things taken r at a time

is the same as the number of them taken n — r at a time.

For the number taken n — r at a time is, from (2),

a - \

n
- ^ m

n n ~ r

{

n - r ,n - {n - r)
\

n - r
\
r '

K '

which = RCr , from (2).

The truth of this proposition is also evident from the

consideration that for every different group of r things taken

out of n things there is always left a different group of



342 TO DIVIDE 111 -h n THINGS INTO TWO CLASSES.

n — r things. Hence the number of groups of r things out

of n must be the same as the number of groups of n — r

things. Such combinations are called complementary.

Note 2. — Put r = n; then from (2) and (3), nCn = nC = 1.

The proposition just proved is useful in enabling us to

abridge Arithmetic work. Thus,

1. Required the number of combinations of 20 things

taken 18 together.

The required number is the same as the number taken 2

t0S°ther -

n 20 X 19 , Qn

If we had used the formula
20O18 , we should have had to

reduce an expression whose numerator and denominator

each contained 18 factors.

2. From 12 books, in how many ways can a selection of 5

be made when one specified book is always excluded?

Since the specified book is always to be excluded, we have

to select the 5 books out of the remaining 11. Hence

= 11.10-9.8.7 = 462 ,
11 5 1.2.3.4.5

3. How many combinations may be made of 10 letters

taken 6 at a time? Ans. 210.

4. From 11 books, in how many ways can a selection of

4 be made? Ans. 330.

169. To Divide m + n Things into Two Classes.

— To find the number of ivays in which m + n different

things can be divided into two classes, so that one may contain

m and the other n things.

This is equivalent to finding the number of combinations

of m -f n things m at a time, for every time we select one

group of m things, we leave a group of n things behind.

Hence by (2) of Art. 168,

\m -h n
The required number =

[m [n
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In a similar manner it may be shown that the number of

ways in which m + n + p different things can be divided

into three classes containing m, n, p things respectively is

\m 4- n + p
\m \n \p

1. There are three bookshelves capable of containing 14,

22, and 24 books ; in how many ways can 60 books be

allotted to the shelves?

Here we have to divide 60 things into groups of 14, 22,

and 24 things.

160
Hence the required number = =

.1 \U
J

22
1

24

2. From 7 Englishmen and 4 Americans a committee of

6 is to be formed, containing 2 Americans ; in how many
ways can this be done ?

Here we have to choose 2 Americans out of 4, and 4

Englishmen out of 7. The number of ways in which the

Americans can be chosen is
4
<7

2 ; and the number of ways in

which the Englishmen can be chosen is
7
C

4
. Each of the

first groups can be associated with each of the second.

Hence the required number of ways is

« »
x ,Ci =

fi
x

jig
=

j2]2|§
= 210,

3. In how many ways can the 52 cards in a pack be

152
divided among 4 players, each to have 13? Ans. _

—
.

° F J
[[13]

4

170. Permutations of n Things not all Different.

— To find the number of permutations of n things taken all

at a time, when they are not all different.

Let there be n letters ; and suppose p of them to be a, q
of them to be b, r of them to be c, and the rest to be

unlike.
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Let P be the required number of permutations. If in

any one of the actual permutations, the p letters a were all

changed into p letters different from each other and from

all the rest, then from this single permutation, without alter-

ing the position of any of the remaining letters, we could

form \p new permutations. Hence if this change were made
in each of the P permutations, there would be P X \p per-

mutations.

Similarly, if in any one of these new permutations, the q

letters b were changed into q letters different from each other

and from all the rest, then from this single permutation we
could form to new permutations. Hence the whole number

of permutations would now be P X \p X \q.

In like manner, if the r letters c were also changed so that

no two were alike, the total number of permutations would

be P X \p X [g X |r. But this number must be equal to

the number of permutations of n different things taken all

together, which is \n. Hence

Px[pX[gx|r = [».

... p- L»

\p\q\r_

And similarly any other case may be treated.

1. How many different permutations can be formed out of

the letters of the word Mississippi taken all together?

Here we have 11 letters, of which 4 are i, 4 are s, and 2

are p.

|H
•*• P =

[4 |4>
= 11 -10-9. 7-5 = 34650.

2. How many different permutations can be made out of

the letters of the word assassination taken all together?

Ans. 10810800.

3. How many different permutations can be made out of

the letters of the word Heliopolisf Ans, 453600.
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BINOMIAL THEOREM.
171. Positive Integral Exponent.— The method of

raising a binomial to any power by repeated multiplication

has been explained in Art. 104. We shall now prove a

formula known as the Binomial Theorem,* by which any

binomial can be raised to any power without the labor of

actual multiplication.

To 'prove the Binomial Theorem for a positive integral

exponent.

By actual multiplication we obtain

{x + a) (x + b) — x2 + (a + b)x+ab,

(x+a) (x+b) (x+ c) = xs+ (a + b + c)x2 + (ab + ac + bc)x + abc.

In th^st, r~ alfs we see that the following laws hold

:

1. The number of terms on the light side is one more than

the number of the binomial factors on tJie left side.

2. The exponent of x in the first term is the same as the

member of binomial factors, and decreases by one in each

successive term.

3. The coefficient of the first term is unity ; of the second

term, the sum of the letters a, b, c; of the third term, the sum

of the products of the letters a, b, c, taken two at a time; and

the fourth term is the product of all the letters.

We shall now prove that these laws always hold whatever

be the number of binomial factors.

Suppose these laws to hold for n — 1 binomial factors, so

that

{x+a) (x+b) . . [x+Tc) =xn~l+Axn-2+Bxn-*+Cxn-A+ . . K, (1)

where A — a + b + c + ....+k, the sum of the secoud

-erms,

B = ab + ac + be + , the sum of the products

of these terms taken two at a time.

C — abc + abd + , the sum of the products of

these terms taken three at a time.

K = abed fe, the product of all these terms.

*This theorem was discovered by Newtou.
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Multiply both sides of (1) by another factor (x + l); thus,

(x+a)(x+b) {x+k)(x+l)=x«+{A+l)x*-1

+ (B+Al)xn-2+(C+Bl)xn-*+ +KI. . . (2)

Now i + / = a + 6 + c+ + k + 1

= the sum of all the terms a, b, c, I.

B + Al = ab+ac+bc+ . . . +al+bl+cl+ . . . + kl

.= the sum of the products taken two at a time.

C + Bl = abc + abd -f . . + abl + acl -f bcl + . . .,

= the sum of the products taken three at a time.

Kl = abed . . . kl = the product of all the terms

a, 6, c, .... I.

Also the exponent of x in the first term is the same as the

number of binomial factors, and decreases by 1 in each suc-

cessive term. •

Hence if the laws hold when n — 1 factors are multiplied

together, they hold when n factors are multiplied together

;

but they have been proved to hold for 3 factors, therefore

they hold for 4 factors, and therefore for 5 factors, and so

on, generally, for any number whatever.*

Now let 6, c, d, ?, each = a ; then the binomial

factors are all equal, and the first member of (2) becomes

(x+a) (x+a) . . . = (x+a) taken n times as a factor = (x+a)n
;

and the second member becomes

A + l = a + a + a + .... = a taken n times = na.

B + Al= aa + aa +• . . . = a2 taken as many times as there

are combinations of n letters taken 2 at a time = n ^n ~ '

(Art. 181). IA

C + Bl = aaa + aaa -f = a 3 taken as many
times as there are combinations of n letters taken 3 at a

time = "(»- \Hn-2) and go Qn
H

* Tins method of proof in called Mathematical Induction.
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Kl = aaaa . • • • = a taken n times as a factor = an.

Substituting in (2), we obtain

(x + a) n = as" -f nax"- 1 + n l ~ *) aV"*

+ n(n-l)(n-2)
fl
^. < + B>>rfl § (8)

E
This formula is called the Binomial Tlieorem; the series

in the second member is called the expansion of (x + a) n
.

In this expansion we observe the following

Rule.

(1) Tlie exponent of x in the first term is the same as the

exponent of the power, and decreases by unity in each succeed-

ing term; the exponent of a begins with one in the second

term, and increases by unity in each succeeding term.

(2) The coefficient of the first term is 1, that of the second

is the exponent of the power, and if the coefficient of any

term be multiplied by the exponent of x in that term, and the

product be divided by the number of the term, the quotient

will be the coefficient of the next term.

By changing x to a and a to x, we have

(a + x) n = an + na n ~ lx + n (n ~ ^ o"-

V

+ n(n-l)(n-2)
fl
„. a, + >>>af § (4)

If we write —a for a in (3), we obtain

(x - a) n = af - nax"- 1 + n (n = ^aV- 2 - (5)

Thus the odd powers of a are negative and the even powers

positive, and the last term is positive or negative according

as n is even or odd.

Suppose a = 1, then (4) becomes

/i i \n -I . .
n(n — l) o . w(n— l)(n— 2) • ,' - //>>.

|2 [3

which is the simplest form of the binomial theorem.
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1. Expand (x + a) 5
.

By the rule, we have

(x + a) 5 = x5 + bxAa + 10A2 + lOara3
-f 5xa* + a6

.

Similarly

2. (a-2a;) 7=a7-7a6 (2a;)+21a5 (2a;)
2-35a4

(2«)
8+35a3(2x;:

-21a2
(2a;) 5+7a(2a;) 6-(2a;) 7

.

=a7-14a6a;+84aV-280a4
a;

3+560a3
a;
4

-672a2
a;
5+448aa;6-128a;7

.

Expand the following by the Binomial Theorem :

3. (jc _ 3)5. Ans. x5- 15a;
4
-f 90a;3 - 270a;2 + 405a; - 243.

4. (Sx+2y)K 81x* + 2l6x3
y + 2Wx2

y
2 + 96xy* + 16y4

.

5. (a;
2 + a;)

5
. a;

10
-f 5a;

9 + 10a;
8 + 10a;

7 + oxG
-f a;

5
.

6. (2 -fa;
2
)
4
. 16 - 48a;2 + 54a;4 - 27a;6 + f£a;

8
.

The sum of the coefficients in the expansion of (1 + x)* is 2n. For

put x = 1 ; then

(1 + x)» = (1 + 1)» = 2» = 1 + n + ^LgliJ + etc.

If

ss sum of the coefficients.

Also, by putting x = — 1, we have

(l-l)» = l-n + 2iiL^l>-etc;

.*. = sum of the odd coefficients — the sum of the even ones;

i.e., the sums of the odd and even coefficients are equal, and therefore

each = 1x2" = 2n~\

172. The rth or General Term of the Expansion.
— In the expansion of (a; + a) n

, we see that the second

terra is nxn ~ 1a ; the third terra is
n ^n "~~—'xn ~ 2a2

; and so

If

on ; the last factor in the denominator of each term being

one less than the number of the term to which it applies, one

greater than the negative number in the last factor of the

numerator, and the same as the exponent of a ; and also
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that the exponent of x is found by subtracting the exponent

of a from n. Hence the

n(n - l)(n- 2) (n - r + 2)jfl - r + 1ar ~ 1

»•'' term
r - 1

This is called the general term, because by giving to r

different numerical values, any assigned term may be ob-

tained.

Tlie coefficient of the r*
h term from the beginning is equal to

the coefficient of the i*1 term from the end.

The coefficient of the ?*th term from the beginning is

n(n — l)(n — 2) (n - r -f 2)

By multiplying both terms by \n — r 4- 1 , this becomes

\n
. See (1) and (2) of Art. 168.

\r - 1 \n - r + 1

The ?
,th term from the end is the (n - r + 2)

th term from

the beginning, and its coefficient is

n(n — 1) r . . . , \

n— '-
, which also = , .

\n — r + 1 \r - 1
\

n - r + 1

Therefore the coefficients of the latter half of an expansion

may be taken from the first half.

1. Find the fifth term of (a -f 2x3
)
17

.

Here n — 17, r = 5 ; therefore the

5th term = 17 * 16 ' 15
'
14
oM x ltx* = 38080a13

x'
12

.

1-2.3.4

2. Find the 14th term of (3 - a) 15
. Ans. -945au.

3. Find the 7th term of (a3 + 3ab) 9
. 61236a 156

G
.

4. Find the 5th term of (a2 - &
2

)

12
. 495a16

6
8
.

5. Find the 5th term of (3x* - 4^) 9
. 126 x 3 5

u:-
: IV
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Rem. — In the demonstration (Art. 171) we assumed n to denote a

positive integer. But the Binomial Theorem is also true when n is

a positive fraction, or a negative quantity whole or fractional. For
the proof of the Binomial Theorem for fractional or negative values

of n, the student is referred to the College Algebra (Art. 192).

EXAMPLES.
1. How many different numbers can be formed by using

six out of the nine digits, 1, 2, 3, 9? Ans. 60480.

2. Required the number of changes which can be rung

upon 12 bells taken all together. Ans. 479001600.

3. Required the number of combinations of 24 different

letters taken 4 at a time. Ans. 10626.

4. Out of 14 men, in how many wa3*s can 11 be chosen?

Ans. 364.

5. How many different products can be formed with any

three of the figures 1, 3, 5, 7, 9? Ans. 10.

6. In how many ways can 6 copies of Horace, 4 of

Virgil, and 3 of Homer be given to 13 boys, so that each

boy may receive a book? Ans. 60060.

7. Out of 7 consonants and 4 vowels, how many words

can be made each containing 3 consonants and 2 vowels ?

Ans. 25200.

8. How many parties of 12 men each can be formed

from a company of 60 men? [60
AnS

' [12 [48*

9. Out of 12 Republicans and 16 Democrats, how mauy
different committees could be formed, each consisting of 3

Republicans and 4 Democrats? 112 |16
Ans. 'TTn x

10. Out of 10 consonants and 4 vowels, how many words

can be formed, each containing 3 consonants and 2 vowels?

Ans. 86400.

11. There are 10 candidates for 6 vacancies in a com-

mittee : in how many ways can a person vote for 6 of the

candidates? Ans, 210.
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12. In how man)- ways can a cricket eleven be chosen out

of fourteen players? Ans. 364.

13. In how many ways could 2 ladies and 2 gentlemen be

chosen to make a set at tennis from a party of 4 ladies and

gentlemen? Ana. 90.

14. In how many ways could 2 ladies and 2 gentlemen be

chosen to make a set at tenuis from a party of G ladies and

8 gentlemen? Ana. 420.

15. From 6 ladies and 5 gentlemen, in how many ways

could you arrange sides for a game of croquet, so that there

would be 2 ladies and one gentleman on each side ?

16 16
Ans. > 2 \aJ3 '

or 180°*

16. Out of G ladies and 8 gentlemen, how many different

parties can be formed, each consisting of 3 ladies and 4

gentlemen ? 16 18
Ans.

ULLiL m±
17. If the number of permutations of n things taken 4

together is equal to 12 times the number of permutations of

n things taken 2 together: find n. Ans. 6.

18. In how many ways can a party of 6 take their places

at a round table ? Ans. 60.

19. How many words of 6 letters may be formed with 3

vowels and 3 consonants, the vowels always having the even

places? Ans. 36.

Expand the following by the Binomial Theorem.

20. (2x - y)
5

.

Ans. 32x-5 - 80x*y + 80xY - 40a,-y + lOxy* - if.

21. (3a -|) 6
.

Ans. 729a6 - 972a5 + 540a4 - 160a3 +— -— +—

.

3 27 729

22. (1 + 2x - x2
)\

Ans. 1 +8z+20z2+8£8-26:c4-8£6+20a;6-8.c7 +a;8
.

23. (3z2-2«z+3a2
)
3

.

Ans. 27a6-54az5+117a2z4-l 16aV+117a4
a;
2-54a6a:+27a6

.
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Expand to 4 terms :

24. (1 - «)i

25. (1 - 3x)K

26. (1 - 3x)~K

27-(i+ iT-
28. (1 + i«)-

4
.

29. (8 + 12a)5.

30. (9 - 6x)~K

31. (4a - 8a)-i

Write down and simplify :

32. The 4th term of (x -
33. The 10th term of (1 -

34. The 4th term of

Ans. 1 — \x — -^x2 —
T2T^
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