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XV 

FOREWORD 

The work on acoustic scattering from the small inhomogeneities of 
the ocean suffers from a lack of cohesion. There are many diverse and appar- 
ently unrelated papers and experimental results which are nowhere treated from 
a common point of view or even in a consistent notation. 

As a result, this survey of the field has become a compromise between 
a compendium of miscellaneous material, a critique of the current state of knowl- 
edge, and a textbook. We have tried to incorporate the more mathematical ma- 
terial in the body of the report, since much of the progress in this field has been 
essentially mathematical. If the reader is primarily interested in obtaining a 
physical understanding of the subject, however, he should feél free to skim the 
mathematical detail unabashedly. We hope that the text contains sufficient con- 
tinuity without the mathematics. 

The authors wish to acknowledge here the very helpful survey by 
E. Skudrzyk covering the scattering by weak inhomogeneities. This is one sub- 
stantial portion of the subject matter which we found to be well summarized. 

Arthur D.Little, Inc. 
S-7001-03 07 
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I. INTRODUCTION 

A. PURPOSE AND SCOPE 

The purpose of this report is to survey our current understanding of 

the effect of small random inhomogeneities on the propagation of acoustic waves 

in the ocean. The inhomogeneities of interest to us are small in comparison to 

the over-all dimensions of the medium: small compared to the ocean depth or 

the depth of the principal ocean layers and small compared to the length of the 

path of propagation. In particular, we have in mind such inhomogeneities as air 

bubbles, marine organisms, surface roughness (as opposed to large-scale in- 

homogeneities such as sea mounts) and the innumerable local fluctuations of tem- 

perature, density and salinity which are commonly referred to as the ocean micro- 

structure. In practice we invariably encounter very large numbers of inhomo- 

geneities, located at random throughout the medium. Furthermore, some of 

the inhomogeneities are of an indistinct or irregular shape. This is particularly 

true of the patchy thermal structure and the irregular surface and bottom. 

The small inhomogeneities of the ocean affect a propagating sound 

wave in a number of ways. To the extent that the inhomogeneities cause back- 

scattering of the sound, they have the effect of attenuating the propagating wave 

in the forward direction. Furthermore, the back-scattering causes the sound 

to reverberate so that a pulse emitted over a short period of time is received 

during a much extended interval. Finally, the slow variation in the propagation 

constants of the medium causes the modulation of the phase and amplitude of 

the propagating signal, which results on the one hand in fading, and on the other 

in the incoherence of the signal as received by two different observers. The 

scope of this report is, therefore, to outline the theoretical models which have 

been developed to account for the above phenomena, and to compare the predic- 

tions of the theory with the often scanty experimental data. 

We hope that the report may serve as a self-contained introduction to 

the acoustic effects of small random inhomogeneities for those connected with 

underwater sound propagation but not specialized in this particular field. At the 

same time, we intend the report to pinpoint some of the strengths and deficiencies 

in the present state of knowledge and to suggest topics in this general area de- 

serving of further research. 

B. APPROACH 

We distinguish in our approach between strong and weak inhomogeneities. 

A strong inhomogeneity corresponds to a radical change of the propagating char- 

acteristics of the medium, e.g., an air bubble, a fish, or the transition from 

Arthur D Little Ine. 
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water to air at the surface. A weak inhomogeneity, on the other hand, corre- 

sponds to a slight change of the propagation characteristics of the medium, and 

is typified by the small but ubiquitous fluctuations of temperature, salinity, 

density and velocity. 

All the theoretical methods employed to attack wave propagation in an 

inhomogeneous medium must take recourse to a number of mathematical and 

physical approximations in order to handle an otherwise too formidable problem. 

Thus, the analysis is generally confined to one type of inhomogeneity at a time, 

and ignores any interaction between different kinds of inhomogeneities. In the 

case of strong inhomogeneities, the approximation is usually to regularize the 

geometry of the individual scatterers. For example, air bubbles and marine 

organisms are taken to be spherical in shape, and ocean surface waves might 

even be regarded as sinusoidal. For weak inhomogeneities, on the other hand, 

a convenient approximation scheme is furnished by the fact that the changes in 

the relative propagation characteristics are very small compared to unity, so 

that the magnitude of these relative changes can be used as a small parameter 

in a perturbation theory. 

It is therefore natural to divide the subject matter of this report into 

two parts: strong inhomogeneities; and weak inhomogeneities. The notation used 

is summarized in Appendix C. 

C. GENERAL CONCLUSIONS 

The inhomogeneities of the ocean affect a passing sound wave in a man- 

ner which can be qualitatively understood by the theory outlined in this report. 

Quantitative predictions are still somewhat less accurate than we would expect 

possible when our present understanding of the scattering mechanisms is incor- 

porated fully in the scattering calculations. 

The theoretical investigations to date have attempted to cope with the 

formidable mathematical problems encountered by making numerous analytical 

approximations. We believe that the time is ripe to place much greater emphasis 

on numerical computation based directly on our physical understanding of the 

scattering process without the many rough analytical approximations required 

for a completely theoretical development. Especially in the areas of scattering 

by the surface (Section IIID) and by the micro-structure of the index of refrac~ 

tion (Chapter IV) we would expect that an imaginative program of numerical cal- 

culation would be able to improve considerably our current ability to predict 

sound scattering in the ocean. 

We recommend, therefore, that some study be devoted to the design 

of efficient numerical procedures for carrying out these calculations, having as 

its ultimate objective a computer program capable of tracing the long-distance 

propagation of a sound wave subject to surface and volume scattering. 

Arthur D.Little, Inc. 
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Il. SUMMARY 

A. BASIC PRINCIPLES 

There are a few basic notions of wave propagation (such as incident 

and scattered wave, single and multiple scattering) which pervade this report. 

We wish to outline these ideas briefly before summarizing the separate chapters 

on strong and weak inhomogeneities. 

Throughout the report we are concerned with fields of pressure (p) or 

of velocity potential (~) caused by the insonification of an inhomogeneous medium. 

The mental picture with which we approach the analysis is invariably the following: 

1. Instead of insonifying the inhomogeneous medium, we insonify a 

corresponding homogeneous medium by placing in it a source of acoustic energy. 

The resulting field is generally referred to as the incident or exciting field 

(Pinc? Pinc): 

2. The insonification of an inhomogeneous medium by a corresponding 

source will cause a different total field (p, ~). The difference between the two 

fields is called the scattered field: 

= + = + 

Em Sine Peo’ a iain Lee 

The next step in the analysis is usually to consider a single isolated 

inhomogeneity in a perfect medium subjected to the exciting field ;,,. The 

scattered field resulting from the inhomogeneity can generally be thought of as 

caused by the surface or the volume (or both) of the scatterer acting as a sec- 

ondary source. In other words, the local values of the total field (p or () at the 

surface or throughout the scatterer cause the scatterer to emit its scattered wave. 

The scattered wave is therefore a functional of the total field: 

In most of the cases which concern us, the functional L is linear in the sense 

that a linear combination of two fields corresponds to the same linear combina- 

tion of the two individually scattered fields. The precise description of the 

Aue Bing dpe 



functional results from a detailed model of the scatterer.* The total field must 

therefore satisfy the functional equation: 

ee ? inc ee {e} Wed) 

It is usually not possible to find the exact solution to this equation, i.e., to ob- 

tain that field ~ which results when a given exciting field ~j,, is scattered by a 

known inhomogeneity characterized by L. Instead, a sequence of approximate 

solutions is obtained by a simple iterative scheme. If the effect of inhomogene- 

ities were negligible, it would be adequate to take {j,, as the total field. Sup- 

pose therefore that we choose @ (°) = inc as the initial approximation. We may 

then hopefully improve this approximation by substituting in (I-1) and obtain a 

first order approximation 

op) =o +L 419, } 
in inc 

We may repeat this procedure any number of times, obtaining, in general, a kth 

order approximation which is: 

ola GS ys iP = 5. {e,_} 

The meaning of the different terms in this expression is the following. ‘The first 

order correction to the initial approximation (choosing the exciting field as the 

total field) is the direct effect of every portion of the scatterer in scattering the 

incident field. However, this first order scattered wave gets scattered repeatedly, 

thus causing successively higher orders of scattering. In all cases with which we 

are concerned, the first order scattering approximation is an adequate descrip- 

tion of scattering from a single inhomogeneity, since we are only interested in 

the far field. 

*It might appear more natural to regard the scattered field as a functional of the 

incident field rather than of the total field, e.g., Pgc = T le In practice, 

however, one usually finds the functional L more readily than the functional T. 

Furthermore, knowledge of T would not permit as easy a formulation of the 

problem of simultaneous scattering from many scatterers as is obtained above 

by the use of the functional L. 

Arthur D Little Inc. 
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I-3 

Consider now an ensemble of very many scatterers--distinct scat- 

terers such as air bubbles or indistinct scatterers such as thermal patches. 

Suppose that the it scatterer is characterized by a scattering functional L;. 

This scattering functional describes how the scattered field due to the ith scat- 

ter may be derived from the total field in the vicinity of the ith scatterer. A 

field ~;,- incident on this ensemble of scatterers causes a total field ( which 

has a scattered component consisting of the sum of the individual scattered 

fields: 

9,28 blo} 
sc 1 1 

The total field, therefore, satisfies the functional equation 

é (Bi { } i Oe C ») (II- 2) 

Suppose we proceeded to solve this equation by the same successive approxima- 

tion scheme introduced for the single scatterer. Choosing the incident field 

again as the zeroth order approximation, we obtain a first approximation of the 

total field 

The first order correction term is therefore just the sum of the first order scat- 

tered fields from the individual scatterers. ‘This approximation is called, for 

self-evident reasons, the single scattering approximation. If we proceed to the 

second order approximation, we find a second order correction term whose 

physical meaning is that of the sum of all ways of scattering the incident field 

twice: 

p(2) = Peas 7 ey {fine a ae “i y er 2 

In other words, in addition to the direct scattering from each individual scatterer, 

the second order approximation also takes into account scattering from all pairs 

of scatterers. The next higher approximation would contain an additional term 

from all triplets of scatterers, etc. Usually the single scattering approximation 

suffices. Sometimes we can demonstrate the precise conditions under which the 

Arthur A HLittle Inc, 
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second or higher order scattering terms become negligible. Since single scatter- 

ing is invariably adequate for the far field of any one of the small inhomogeneities 

of interest to us, the question as to whether single scattering suffices for a col- 

lection of scatterers depends primarily on the number of scatterers involved. 

For very large scattering volumes, it may occasionally prove necessary to in- 

clude multiple scattering effects. 

B. SCATTERING BY STRONG INHOMOGENEITIES 

Chapter III covers the scattering from air bubbles, marine organisms 

and the ocean surface. The chapter commences with a study of the scattering 

from a fluid sphere (different from water) immersed in an infinite ocean. The 

purpose of this investigation is to give a feeling for the dependence of the scat- 

tering properties of an object on the parameters of the scattering object. It is 

found that the most important parameters are the relative size of the object and 

its relative compressibility. More precisely, the qualitative features of the 

scattering are determined by the size of the scatterer relative to the wavelength 

of the sound and by the compressibility of the scatterer relative to that of the 

surrounding water. We find that for scatterers small compared to a wavelength 

the scattering consists basically of isotropic and dipole radiation. If the scat- 

tering fluid is very compressible (e.g., a gas), the small fluid sphere pulsates 

predominantly with a breathing motion which gives rise to isotropic radiation. 

If, on the other hand, the sphere is very hard compared to the water, the prin- 

cipal motion of the sphere is that of rigid body oscillation (a sloshing motion) 

which causes the scattered radiation field to correspond to a dipole field. 

When the scattering fluid sphere is no longer small compared to a wave- 

length the scattering becomes highly directional. No simple analytical results 

describe the scattered field, and we must be content to examine some numerical 

results. In general, however, the scattering from a medium or large object 

(always comparing the size of the object to the wavelength of the incident sound) 

becomes very much dependent on the shape of the object, and the idealization of 

the object as a sphere is no longer appropriate. 

Next, in Section III-B we delve into a more detailed treatment of scat- 

tering from air bubbles. Since air bubbles are very compressible, the scatter- 

ing from a single air bubble is essentially isotropic. We may liken the pulsating 

motion of the air bubble to the oscillation of a mass on a spring. Hence, we 

would expect a resonant behavior to occur when the inertial and compressibility 

effects are matched. This is indeed what happens, and the resonant frequency 

of air bubbles can easily be predicted. 

Arthur D Little, Inc. 
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Not only does the air bubble remove energy from the incident wave to 

produce the isotropic scattered wave, but it also dissipates a certain amount of 

energy due to viscosity, heat conduction, and surface tension. All this energy 

is removed from the incident wave, and we can make theoretical estimates of 

the resulting extinction cross section for a single bubble. 

Numerous experiments have been conducted to compare the resonant 

and dissipative behavior of single bubbles with the theoretical predictions. The 

theoretical frequencies have been found to check exceedingly well with experi- 

mental results. The dissipative properties of single air bubbles check less well 

with the theory, and there is substantial difference between the results obtained 

in different experiments. Nonetheless, on the average, the theory seems to 

predict the experimental results. 

In most portions of the ocean, air bubbles (including the gas swim 

bladders of fish, which behave like air bubbles) are sufficiently widely spaced 

that the single scattering approximation is adequate. However, regions with a 

higher concentration of air bubbles do occur (for example, in fresh wakes) and 

require a treatment incorporating the effect of multiple scattering. These bubble- 

water mixtures exhibit a cooperative behavior which makes them act macro- 

scopically as a homogeneous medium with a sound velocity different from that of 

pure water and with substantial attenuation of the sound intensity. The theory of 

these bubbly mixtures is presented, and compared with the available experimental 

data. A substantial number of experiments have been performed, but all under 

controlled laboratory conditions rather than in the ocean. In view of the experi- 

mental difficulties encountered in producing bubble screens of uniform properties, 

the agreement between theory and experiment is quite good. 

Section III-C treats scattering from marine organisms; these are 

idealized either as a sphere of a different fluid or else as a sphere of different 

fluid contained in an elastic shell (e.g., crustaceans). Obviously, the spherical 

model does some violence to reality, but one might hope that the model would 

suffice to explain the main features of scattering from a collection of organisms 

all of somewhat different shapes. Unfortunately, the experimental evidence 

from marine organisms is inadequate to draw conclusions about the theoretical 

calculations. 

One interesting aspect of the ocean which might be explainable in terms 

of the behavior of marine organisms is the so-called deep scattering layer. It 

appears that the properties of this layer, which change with time of day, can be 

attributed to scattering from fish with gas bladders. The plausibility of different 

hypotheses regarding the contraction and expansion of these swim bladders as the 

fish change depth are discussed in the light of the resonant frequencies that would 

result. : 

Arthur DLittle Inc. 
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Scattering from the surface of the ocean poses a very different prob- 

lem. The spectrum of the ocean surface covers a large range of wavelengths. 

Ordinary ocean waves range in order of magnitude between wavelengths of one 

meter to those of 100 meters. Small ripples may be of the order of one centi- 

meter, and tidal waves may be as long as 1000 kilometers. The ocean surface is 

a stochastic function, varying both in space and intime. A realistic description 

of this surface involves the space-time spectrum, and the interaction between 

the spatial and temporal components cannot be ignored. As is well known, sur- 

face waves of different lengths propagate at different speeds. 

To obtain an understanding of scattering from this surface, one usually 

studies a very much simplified model. In fact, the most widely used idealization 

is the reflection of a plane wave from a stationary sinusoidal surface, a problem 

first posed by Lord Rayleigh. Figure II-1 shows a plane wave propagating towards 

the sinusoidal surface. 

> Yo 

S 
~N 

“AY, 

Yo= specular reflection 

Z 

FIGURE II-1 SCATTERING OF A PLANE WAVE BY A SINUSOIDAL SURFACE 
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Z = h cos px 

and inclined to this surface at an angle 9 whose cosine is equal to a. It can be 

proven that the scattered wave will consist of the so-called specular reflection 

term whose angle of inclination has a cos 9 = - a, plus successively higher 

orders of scattering. The successively higher orders of scattering are inclined 

to the surface at an angle cos 8 = - a + =e where k is the wave number of 

the incoming wave and m runs through the positive integers (12,...). If the sur- 

face were completely flat (p = 0), the entire scattered wave would consist of the 

specular reflection alone. Several approximation methods have been devised to 

obtain the amplitude of the higher order components of scattering, but all appear 

to be limited to ranges of surface height and surface wavelength much smaller 

than the incident wavelength. Most cases of interest in the ocean are not in this 

category, and the theory therefore gives, at best, a qualitative explanation. It 

turns out that the higher order scattered terms are important for incident waves 

near normal incidence. If the incident wave makes a small angle with the horizon- 

tal, i.e., for grazing angles 9 << 1, the specular term dominates. This general 

conclusion appears to apply also under actual ocean conditions. 

If the movement of the surface wave is taken into account, the signal 

received will no longer be a reflected version of the incident wave, but will be- 

come phase-modulated since the path length to the receiver is changing in time. 

Some recent work by Marsh examines scattering from the surface based 

on a more realistic spatial spectrum of the surface. His work, and some exten- 

sions of it are reported here. This treatment, too, is limited bythe condition 

that the height of the surface wave must not be too large compared to the wavelength 

of the incident sound. Nonetheless, for fairly low sea states and low frequency 

sound, the theory permits the calculation of the attenuation due to surface reflec- 

tion. The scanty data available from ocean experiments seems to confirm the 

theoretical predictions. It should be pointed out that this is an important area in 

which good experimental results under ocean conditions are very sorely lacking. 

Scattering from the bottom is not treated in this report. 

C. SCATTERING BY WEAK INHOMOGENEITIES 

Chapter IV treats scattering by the weak inhomogeneities which result 

principally through the turbulent breaking up of the layered structure of the ocean. 

As a consequence of the turbulence, the sound velocity, density, etc., of the ocean 

medium fluctuates in space and in time. Of these, the fluctuations in sound velocity 

are the most important, so that the main aspects of the propagation of sound are 

still governed by the wave equation 

Arthur DLittle Inc. 
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However, the velocity of sound c is now a space - time dependent quantity which 

differs slightly from its average value Cy 

(S 

== (29 Go) 

Here y is the fluctuating part of the index of refraction, CoV; and is much less 

than unity. The usual approximation scheme for weak inhomogeneities is to re- 

gard Vv as very small, and to ignore all effects which are quadratic or higher 

order in v. 

The time fluctuations of the index of refraction are very slow compared 

to the passage time of sound waves. From the point of view of propagating sound 

waves, therefore, the medium has a spatial structure which is stationary. In the 

course of time this micro-structure changes slowly, causing corresponding slow 

changes in the amplitude and phase of the transmitted sound. In a theoretical 

analysis, therefore, we may confine ourselves to the problem of sound propagation 

through a stationary medium whose micro-structure is any one of the many de- 

tailed micro-structures which occur in sequence in the course of time. The ex- 

pected values to be measured in an experiment are then obtained by taking an aver- 

age over the ensemble of possible micro-structures. 

The sound field consists again of an incident and a scattered wave 

The scattered wave is now a functional of the detailed micro-structure v; in fact, 

the functional must be linear if we keep only first order terms: 

7 sc F efac {voo} 

We desire to determine the mean square fluctuations of the amplitude and phase 

of (). These correspond to the variances of the slow fluctuations of amplitude 

and phase to be expected in the received signal due to slow changes in the structure 

of the medium. We therefore wish to evaluate averages over the ensemble of pos- 

sible micro-structures which are of the form: 

2 2 5 
| : 7 q ? sc ty} » ensemble of v's (Wes) 
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The theoretical problems encountered in this task are twofold: 

1. It is necessary to characterize the ensemble of micro-structures 

which represent the slowly changing details of the medium. 

2. We must find some means for evaluating explicitly the averages of 

the field over this ensemble. 

The micro-structure of the ocean consists essentially of patches whose 

local sound velocity is somewhat higher or lower than the average. The most ap- 

propriate way of characterizing this structure is by giving the spectrum of the 

index of refraction. This spectrum is a measure of the relative number of patches 

of any given size. From a knowledge of the spectrum we may derive such measur- 

able properties of the medium as the correlation function of the index of refraction 

at two different points, or the mean square difference of the index of refraction at 

two separate points. Until the last few years, it was usual to employ an empirical 

spectral correlation function which had little theoretical justification but made it 

convenient to evaluate the averages over the ensemble required under step 2 above. 

Recently, some of the work has begun to make use of our knowledge of the turbu- 

lent mechanism which generates the ocean micro-structure, thus basing the scat- 

tering theory on spectra which are physically justified. 

The evaluation of averages over the ensemble leads to analytical dif- 

ficulties which usually require mathematical approximation. Giving a physical 

meaning to the results, we may distinguish two cases, as shown in Figure II-2. 

Consider a number of neighboring patches with an effective radius R scattering 

an incident wave of wave number k. For any one patch, the magnitude of the scat- 

tered wave is small compared to the incident wave. Furthermore, if the wave- 

277 
length of the incident wave (Fee is much less than the size of the scatterer R, 

the scattered wave can be shown to be highly collimated (see Section IV-B). In 

this case, the scattered wave consists either of a slightly divergent shadow zone 

or a slightly convergent zone of somewhat higher intensity, depending on whether 

the local index of refraction is larger or smaller than unity. Thus the scattered 

beam is essentially in the shape of a cone subtending a conical angle which may 

be shown to be of the order of = It is clear that this angle will be very much 

smaller than unity as long as the incoming wavelength satisfies the condition 

kR>> 1 mentioned above. Otherwise, if the incoming wavelength becomes of the 

same order of magnitude or greater than the size of the scatterer, the scattered 

sound has an omnidirectional nature. We see from Figure II-2 thatif the fre- 

quency of the incident sound is sufficiently high, the ''focusing"’ distance of the 

patch for a parallel beam of sound would be of the order of Ly ~ kR®. Fora 

range L substantially less than L, the principal effect of the inhomogeneities is 

therefore the focusing or defocusing of the sound. On the other hand, for a range 

L much larger than L, the scattered waves from the different inhomogeneities 

overlap, and interference effects dominate. This range is therefore called the 

interference range. 

Arthur D Little Inc. 
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INTERFERENCE Lo = FOCUSING RANGE 

FIGURE II-2. SCATTERING BY THE OCEAN MICRO-STRUCTURE 

Inside the focusing range we might expect an analysis in terms of ray 

acoustics to be adequate, since the scattered waves are all in phase. Rays are 

focused or defocused by individual inhomogeneities but do not interfere with one 

another. Beyond this range, wave acoustics become necessary. In Chapter IV 

we treat the general scattering formulation and obtain both the ray and inter- 

ference results as limiting expressions. An excellent treatment based on ray 

acoustics alone and applicable in the focusing range may be found in Chernov, 

Part I. 

The scattering from a single weak inhomogeneity is examined in Sec- 

tion IV-B. It is shown that the scattered pressure field is indeed highly direc- 

tional when kR>> 1. The ratio of the scattered to the incident pressure in the 

forward direction, i.e., in the direction of propagation of the incident plane 

wave, is shown to be 

(II- 4) 
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where L is the range (the distance from the scatterer at which we observe the 

field), and T is the scatterer's volume (proportional to R°). The constant of 

proportionality depends a bit on the shape of the scatterer but is generally of the 

order of magnitude of unity. One could almost arrive at (II- 4) by the following 

very simple dimensional argument. The linearity of (II-4) in | v | is the result 

of using | v | as the parameter of smallness and ignoring all terms of second or 

higher order. The scattered sound is in the nature of a directional spherical 

1 
wave, and the field should, therefore, decay as L It is not unreasonable that 

the total scattering should be proportional to the volume of the scatterer. The 

only remaining parameter which can enter the expression is the wave number k 

characterizing the incident wave, and if the resulting expression (II-4) is to be 

dimensionless (as the ratio of two pressures must be) the wave number must 

enter quadratically. 

On the basis of this result for a single scatterer, we may derive, ina 

very heuristic fashion, the principal conclusions of Section IV-D for a large col- 

lection of scattering patches. In the following, we shall present these intuitive 

arguments, aimed at determining the order of magnitude of the ratio of scattered 

to incident power. It should be clearly understood that these arguments are to be 

regarded only as an after-the-fact explanation of results obtained by somewhat 

more rigorous methods in the body of this report. 

Consider first the case of low frequency sound, i.e., sound whose wave- 

length is much greater than the radius of the typical scatterer (kKR<<1). In this 

case, the scattered pressure from a single inhomogeneity will be omnidirectional, 

and the ratio of the scattered pressure to the incident pressure is given by (II- 4) 

in every direction. Suppose we were to insonify by a plane wave a half space of 

an inhomogeneous medium packed densely with inhomogeneities all of radius R, 

as shown in Figure II-3. We wish to determine the ratio of the scattered pressure 

to the incident pressure a distance L inside the inhomogeneous medium. To this 

end we divide the inhomogeneous medium into slabs, each slab one scatterer thick 

(i.e., a slab thickness of 2R). Consider now the scattered pressure due to the 

scattering from a single slab. Clearly this pressure is independent of the distance 

behind the slab at which it is observed. It can, therefore, depend only on the 

properties ofthe individual scatterer (| y | and R) and on the wave number of the 

incident sound k. Since each of the inhomogeneities of the slab has a scattering 

strength proportional to | ) | the whole slab should have a scattering strength which 

is also proportional to | Vv | . Similarly, since the ratio of scattered to incident 

pressure for the single scatterer is proportional to the square of the frequency of 

the incoming sound, one would expect the same behavior for the slab. Asa result, 

one is led at once by a dimensional argument to the expression 

Hof 2 pa) ee (11-5) 
inc | 
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In a distance L the incident sound is scattered by 5 such slabs. The scattered 

sound arriving at the observer from the different slabs is uncorrelated since its 

phase depends on the detailed constitution of each slab. Therefore, the power 

observed by the observer is the sum of the scattered powers from each of the 

slabs.* It is common practice in underwater acoustics to deal with the square 

root of the ratio of scattered power to incident power; this is called the coefficient 

of variation. Its meaning is clearly that of the ratio of a typical scattered pres- 

sure amplitude to the amplitude of the incident wave. According to the above con- 

siderations, the coefficient of variation will be the product of the square root of 

the number of slabs and the scattering strength from each individual slab (i.e., 

powers add): 

P 
EEC eee 2p2 = 2 p3/2,1/2 e va = Vi [Ol eRe Sly) ReREY Se (II- 6) 

inc 

Thus, we see that the scattered pressure a distance L inside the inhomogeneous 

medium will be proportional to the square root of L. 

So much for the low frequency situation. At the other extreme, when 

the frequency of the incoming sound is high, the scattering from an individual 

scatterer will be very directional and we must therefore distinguish two cases 

corresponding to an observer inside the focusing range and an observer in the 

interference range. 

Let us consider first the behavior to be expected in the interference 

range, i.e., L>>kR*. Since we are considering the high frequency range 

(kR>> 1), the scattering of a single inhomogeneity is confined to a cone with 

half-angle = Therefore, an observer located a distance L inside the medium 

observes the scattered fields from those inhomogeneities which are located in a 

cone of half-angle a with its apex at the observer. (See Figure II-4.) We 

again slice this cone into disks of thickness 2R. A circular disk a distance L 
2 

from the observer will have a surface area proportional to (=) . The number 

*The argument that, in the case of a number of uncorrelated scattered pressures, 

the sum of the individual powers add, may be made more appealing to the sta- 

tistically oriented by thinking of the pressure as a stochastic variable. The scat- 

tered pressure is a stochastic variable with zero mean; the scattered power is 

just the variance of the variable and hence the argument that the variance of a sum 

of such uncorrelated variables has a variance which is the sum of the individual 

variances becomes obvious. 
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of scattering inhomogeneities in this disk will therefore be proportional to 
L 

K2 Rt The power scattered by the disk will again be the sum of the power 

scattered by the individual scatterers in the disk which, using (II-4) for the in- 

dividual scatterer, yields: 

ee | Si IRS Te 
power scattered by disk~ | ap aT Teh ihn | WIE RER! — Ghie7) 

Bi tid Et dns: “a AG 
There are again oR disks, and the total coefficient of variation (the square root 

of the power ratio) therefore becomes: 

iL 
hy ‘Ee |v| Rk~|v| kf RL (II-8) 

We observe that the coefficient of variation is again proportional to the square 

root of the range, but that the dependence on the frequency of the incoming sound 

and the size of the scatterer is quite different from that in the low frequency case. 

Finally, we turn to the near (focusing) range for high frequency scat- 

tering. The physical situation is depicted in Figure II-5. The scattered pressure 

L 
received by an observer is now due to a portion of each of oR single scatterers 

lined up in a row. Only part of the total volume of each of the scatterers con- 

tributes to the sound received by the observer. In fact, the contributing scatter- 

ing volume for a scatterer a distance L from the observer is now given by: 

iL, NZ [2 = a Biba OE ct 
ek (a ) 7 eR R Ce) 

The power received by the observer is again the sum of the individual scattered 

powers from these portions of the single file of scatterers; therefore, the coef- 

ficient of variation becomes: 

ee eau ol). weve! : We Abn ae ase (II- 10) 

Inside the focusing range, therefore, the scattered power is independent of the fre- 

quency of the incoming sound and increases as the three-halves power of the range. 

This is the result that would be obtained by a ray-acoustics analysis for the stand- 

ard deviation of the phase of the received signal. 
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The general behavior derived above has been substantiated pretty well 

by experimental evidence. As an example, we show in Figure II-6 some measure- 

ments of the coefficient of variation, which exhibit the dependence as the square 

root of the range to be expected outside the focusing range. There is quite a wide 

scatter about the curve, and this is typical for any ocean measurements of scat- 

tering phenomena. 

In conclusion, we show in Figure II-7 some measurements of the coef- 

ficient of variation made by the Ordnance Research Laboratory both for a signal 

traveling along the direct path and for the same signal traveling along the surface- 

reflected path. The coefficient of variation along the direct path increases effec- 

tively as the square root of the range. At short ranges, the surface-reflected path 

has a much greater coefficient of variation (i.e., a much greater percentage of 

scattered power). This is due to the effect, which we discussed earlier, of rela- 

tively high diffuse scattering from a corrugated surface near normal incidence. 

As the range gets longer and the angle of incidence becomes smaller, the higher 

order non-specular terms of reflection become less important. Finally, for very 

small grazing angles, the power scattered by the inhomogeneities of the surface 

become negligible, and the coefficient of variation along the surface- reflected 

path approaches that along the direct path. 
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Ill. STRONG INHOMOGENEITIES 

A. SCATTERING OF SOUND FROM A FLUID SPHERE 

Before we examine the actual strong inhomogeneities of the ocean, we 

would like to specify the equations of sound propagation in water and study the 

very idealized model of a plane sound wave scattering from a fluid sphere. This 

will help to give us some insight into the effect of the scatterer's physical prop- 

erties (size, hardness, density) on the characteristics of the resulting scattered 

sound (scattered power, directivity). 

The passage of an acoustic wave through ocean water changes slightly 

the local state of the pressure, density and water velocity. We shall designate 

the unperturbed state by (po, Po, Uo) and denote the incremental fluctuations 

of pressure, density and velocity caused by the sound wave by (p, 9, u). The lat- 

ter are in general functions of position x and time t, e.g., p = p(x, t). Through- 
out this chapter the unperturbed state variables (po, Po, Uo) will be regarded as 

constant in the region of space filled with water, i.e., outside the strong inhomo- 

geneities. In fact, the unperturbed velocity uo is invariably set to zero; all analy- 

sis is performed in a frame of reference in which the unperturbed water is stagnant. 

The equations of motion of the medium for acoustic (very small) disturb- 

ances are well known and consist of an equation of mass conservation (continuity) 

and three equations of momentum conservation: 

P, =P Che = 0 (mass conservation) (III- 1) 

PQ, i ° ar jo) i = 0, j = 1,2,3 (momentum conservation) (IIT- 2) 

In addition to these equations of motion, there is an equation of state which relates 

the local pressure in the medium to the local density.* Since the square of the local 

sound velocity, os ,is just the derivative of the pressure with respect to the density 

(at constant entropy), and since p and Pp are small variations of the unperturbed 

values po and Po, we may write at once: 

p= Ce © (equation of state) (III- 3) 

*All motions are of sufficiently low amplitude and frequency that strictly adiabatic 

compression and expansion occurs when a sound wave passes. 
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Equations III-1 through III-3 govern the wave motion. A little manipulation of 

these shows that p, p and u all satisfy the ordinary wave equation. For ex- 

ample, we may obtain the wave equation for p by taking the partial derivative 

of (III-1) with respect to t, and then substituting for p from (III-3) and for 

Oo u; + from (III-2). This yields: 
jt 

2 Pp =) ng = O (III- 4) 
fo) 

We shall usually start with (III-4) as the basic equation of motion, and use (III-2) 

and (III-3) to derive u and p from p. 

The time dependence of the acoustic variables will almost always be 

harmonic. We shall therefore introduce state variables which are functions of 

position x only, according to: 

SEM=nOe omen ma —nai=n@ (cs) 

It should be noted that the physical values of p, p and u are given by the real 

parts of (III-5). The resulting space-dependent state variables satisfy the anal- 

ogous equations of motion: 

-iWO + Po Uj,j = 0 (III- 1a) 

OS Wy 8199 = 0 (III-2a) 

p= coe (III-3a) 

w? w 
—Ppt+p .,=k? ptp .. = 0 (where k = — = wave number) (III- 4a) 
Co JJ JJ Co 

A word should be said about the flow of energy associated with the wave 

motion of p, 9 and u. The amount of work done across unit area of the jh co- 

ordinate plane* in a time interval dt is**: 

SW. = | Re pts0)| E uy, 09 | dt 

*The coordinate plane with normal in the x; direction. 

**Re preceding a complex number means "Real Part of'; Im is "Imaginary Part of." 
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In the case of harmonic time dependence, e 1”, we may compute the rate of 

energy flow (i.e., work done) across unit surface of a coordinate plane by aver- 

aging the above over one cycle in time: 

277 /wW 

A fs Don | dt [Ree | | Re 4, | 

0 

If we carry out the integration over time, using (III-5), and express u in terms 

of p by means of (III-2a), we find (using an asterisk to denote complex conjugate): 

Ree ei gyejec nk Gell aya Oho ies 3 P(&) a (x) =5 5p Ge LY WS (a) P (x) (III- 6) 

The simplest solution of (III-4) is the plane wave. For a plane wave 

propagating with wave number vector k (i.e., propagating in the direction of k 

4 Ww : 
with wave number k = | k | = Ane we may write: 

Po ie) 

picaolehpie Ss Sy AUF (III-7a) 

These are, for different values of k, all the different possible "separable" solu- 

tions in Cartesian coordinates. The energy flux in the direction of propagation 
De 

220 Co 
(i.e., k) is seen from (III-6) to be 

If we ask for the separable (i.e., product form) solutions in spherical 

coordinates, we obtain another very useful set of solutions. Specifically, let r 

be the radial coordinate (r = | x | ), 8 be the polar angle, and @ the azimuthal 

angle. Normally, we deal with problems whose solution is independent of ¢, in 

that we treat scattering of waves incident along the polar axis on objects with com- 

plete ¢ symmetry. We may then take as a complete set of wave functions: (! 

zi -iwt 
Pin St) =P_ (cos 8)j_ (kr) e 

m=0,l1,..., ©° (III-7b) 

ae -iwt 
Pin (x,t) = Be (cos 9) ne (kr) e 

1. P. M. Morse, "Vibration and Sound." 
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where P,, is the mth order Legendre polynomial, and the radial functions j,, 

and n,, are related to the Bessel functions according to: 

pe | ales : Eh ee J (cx) = mer Jon + 1/2) %)3 2, (2) -{ de Nan + 1/2)" a-7e) 

It should be noted that, for large kr, j,, behaves like eosis) and n,,, like 

sin (kr) 

ka 

We can now proceed to tackle the scattering of a plane wave (III-7a) incident on a 

fluid sphere consisting of a different material and imbedded in an infinite space of 

water.* Let the density and sound velocity inside the fluid sphere be given by 

954 and cg. Any sound wave inside the fluid sphere will have to satisfy acoustic 

equations just like (III-la) through (III-4a) but with 99 and co replaced by 6 

and cg. Suppose the incident plane wave is approaching along the polar axis and 

has pressure amplitude p,,-: 

oikr cos 8 - iwt 
& (III- 8) 

Pinc 54) = Pin 

This incident wave causes both a scattered wave, pgc, outside the sphere and an 

internal wave, p', inside the sphere. The total acoustic pressure outside the fluid 

sphere is therefore pj,,. + Dec: 

Each of the three pressure distributions pj,~, Pg and p’ may be ex- 

pressed in terms of the elementary wave functions (III-7b) since there is complete 

@ symmetry. In particular, the scattered wave must be strictly an outgoing wave, 
eikr 

and since the r dependence must be like = for large (kr), is therefore of the 

form: 

Proc (x,t) = De Ae (cos 8) [ in 2) +i nn (kr) | eat (III-9a) 

m=0 

*Our treatment will follow Anderson, Ref. III-2. 
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The wave internal to the fluid sphere must remain finite at the origin; therefore, 

it must be expressible in terms of j,, alone: 

p’ (x,t) =) Bice (cos 9) i, r) ae (III- 9b) 

m=0 

w 
Note that k'’ = Pa is the appropriate wave number inside the fluid sphere corre- 

fe) 

sponding to an angular frequency W. Finally, the incident plane wave may be ex- 

panded in spherical harmonics as: 

Pinc (Oxo) = Pie Sy (ie Orne i) Ree (cos 8) flan (aaote (III-9c) 

m=0 

It remains to apply the appropriate boundary conditions on the surface of the sphere. 

These are that both the pressure and the normal component of velocity must be con- 

tinuous across the boundary. If the sphere has radius a, continuity of pressure 

requires: 

Pinc(®) Te Pe (4) = p' (a) (III- 10a) 

The continuity of the normal velocity at the boundary is equivalent to the continuity 

of the normal (i.e., radial) derivative of the pressure, as may be seen from (III-2a). 

Hence, we have as the second boundary condition: 

ro) ro) PS) 

vate +— = — p' 
a 

dr Pinc Ete Da, eee (a) (III- 10b) 

We substitute (III-9a) - (III-9c) into (III-10a) and (III-10b) and separate* terms for 

each value of m. From the resulting pairs of simultaneous equations, we solve for 

Ay and find: 

_ . fie SCI Gm) 
m Toad © (Me) 

m 

*This is permissible, because the Legendre polynomials are orthogonal. 
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where 

a fk'adn (ka) = ein B tka) ik a) 

Cm @ (ka)j_ (ka) = gho._ (ka) j_ (a) (IMI- 11a) 

and 

a mn > = (2m-+ 1) 5 san ee (kr) ; 8 most) = = (2m+ 1) —— 5 = ) n fk) : (III- 11b) 

eee 
PUGS On oy 

The resulting expression for pg, is, of course, hopelessly complicated. How- 

ever, we are interested only in the far field, for which the asymptotic form of 

jm + i Dm applies (showing the character of an outgoing spherical wave): 

ikr 

(ay i mK?) Pi n_(kr) | = ies fork r>>1 (III- 12) 

If we substitute (III-11) and (III-12) in (III-9a), we find for the far field scattered 

sound the expression: 

piss Oe 
a i (-1)" (2m + 1) iL 

Peo) Dia og P_ (cos 8) Ta sie (III- 13) 

The sum in (III-13) has the effect of a directivity factor; it indicates the dependence 

of the amplitude of the spreading wave on the polar angle 9. For small values of 

ka andk'a, i.e., for a sphere with a circumference small compared to the wave- 

length of the sound in either medium, the coefficients C,, may be approximated 

quite conveniently by using the first term in the series expansions of j,, and n,, 

(in the case of jo we need the first two terms to be able to compute Qo, ): 

m 
: ee (ka) a 

ENC em ocie es Ghai ee eS 

n_ (ka) = ++ 3 ms) cline SA Olea: 
m (ka) 

Zen (kag 
jo Ch = aes 
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Substituting these in (III-1la), we obtain for the Cu: 

3gh* 

Co (kay® (1- gh)? 

et (me mGns 0)l| (Ome) oo +s Ome mle 
m tee m(1 - g) 

C Sm 

(III- 14) 

Returning now to the sum in (III-13), we observe that for ka << 1 and k'a<<1, 

the first two terms in the sum (m = 0 and m = 1) are of order (ka)*. All the 

other terms are of higher order in ka; in fact, successive terms increase in 

order by (ka)*. For small ka, therefore, the first two terms of (III-13) should 

suffice. Using (III-14) to compute approximations for Co and C,, and recogniz- 

ing that Po = 1, P, (cos 9) = cos 9, we obtain: 

ikr-iWt 

Poo(%O) 5 
a || Le cin® . ther SS ee ne 6 = Ps ac KA) ah? ae cos | (III- 15) 

Fortunately, (III-15) may be given a relatively simple physical interpretation if we 

take the vantage point of the sphere. Since the sphere is very small compared to 

a wavelength, the passing sound wave has the effect of slowly raising and lowering 

the pressure in the entire vicinity of the sphere. In response, the sphere will ex- 

pand and contract uniformly, as if it were breathing. However, since the mechan- 

ical properties of the fluid sphere are different from those of the surrounding water, 

the fluid sphere will expand and contract with a different amplitude from that which 

would be experienced by an equivalent sphere of water. The result is the emission 

of a pure spherical sound wave, corresponding to the first term in the square brack- 

ets of (ITI-15). 

Arthur DLittle Inc. 
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If gh* = 1, the mechanical impedance of the fluid sphere becomes 

identical with that of an equivalent sphere of water, since the impedance of a fluid 

sphere to a "breathing" mode of motion* is 

Agee” 

ia W 

And indeed, the breathing mode in (III-15) vanishes when gh* = 1. 

The second term in (III-15) corresponds to a "sloshing" type of motion, 

due to the pressure differential across the sphere. The pressure across the sphere 

is not quite constant, and the resultant force on the sphere causes it to oscillate as 

a rigid body along the polar axis. Since the density of the fluid sphere differs from 

that of the surrounding water, the amplitude of the resulting motion of the sphere 

will be different from what a corresponding sphere of water would experience sub- 

ject to the same pressure gradient. As a consequence, the fluid sphere will oscil- 

late as a rigid body relative to the surrounding water in the direction of the incom- 

ing wave. The normal velocity of this motion at the surface of the sphere depends 

on § as cos 9; the pressure wave that is emitted will therefore be of the form 

eikr-iwt 

cos 8, which corresponds to the second term in (III-15). Note also that 

this term vanishes, as it should, when g = 1, i.e., when the mass densities of 

the fluid and of the water are the same. 

A number of qualitative conclusions may be drawn from (III-15). 

1. If gh® <<1, i.e., the fluid sphere is much more compres- 

sible than water, the breathing term completely dominates 

the sloshing term and isotropic scattering results. 

*This may be seen as follows. The overpressure in the fluid sphere is related to 

the "overdensity" according to (III-2a), i.e., p = cd”. The change in volume 

resulting from a normal velocity at the boundary relates the ''overdensity” to the 

boundary velocity according to 

3 1 

= Po u = -iwo 
t a 

; Ae: 30666" 
for harmonic motion. Substituting one in the other yields p = anal 

ia 

as the linear relation between the harmonic driving velocity and the resulting 

harmonic pressure. The constant of proportionality is the mechanical impedance, 

where we make the analogy with electric networks by associating "velocity" with 

“current” and "pressure" with "voltage." 

Arthur D Uittle Inc. 
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2. The breathing mode also dominates if the fluid has approxi- 

mately the same density as water (g~1). Note that this 

condition is necessary (at least on the average) if the scat- 

terer is to remain suspended in the water. 

3. If the sphere is very hard (gh® >> 1), the sloshing mode 

will dominate. 

The arguments leading to a breathing and a sloshing mode may be ap- 

plied quite generally to the first two terms of (III-13), even in the case where ka 

is not very small. The first term is an outgoing spherical wave corresponding 

to a breathing motion, and the second term has the cos § dependence associated 

with rigid body harmonic oscillation along the polar axis. The higher order 

terms (m 2 2) correspond to non-spherical deformations of the sphere and not- 

quite-rigid-body motions due to the finite size of the sphere. 

In order to gain some insight in the general case (III-13), we must re- 

sort to numerical calculation. The properties of the scattering sphere which in- 

terest us most are the directivity of the scattering and the fraction of the incident 

power which is scattered. Both of these may be studied by comparison with uni- 

form scattering from a perfectly reflecting sphere (commonly called geometrical 

scattering). In this case, the total energy intercepted by a sphere of radius a 

from an incident plane wave of pressure amplitude pjy, is considered to be scat- 

tered uniformly through a solid angle of 41. The pressure amplitude of the geo- 

metrically scattered wave at a distance r from the sphere may be written as 

af) 
Ta® a 

7 || Aare? Pinc ~ 2r Pinc 

Using this as a standard, a reflectivity factor can be defined for large r by using 

(III- 13): 

Punif 

pa sc Ny m (2m+ 1) ce : R. = le 8e_ a P_ (cos 8) (-1) Gric.) (III- 16) 

_ This determines the directivity of the scattering. The total power scattered by 

the sphere (in comparison to geometrical scattering) is also of interest. Since 

the total power in a geometrically scattered wave is just that arriving at the sphere 

through a cylinder of radius a, the ratio of total scattered power to geometrically 

scattered power is 

cia dik eta bee 

ai mi Ove i |Psc | 
: S) 

where S is a large sphere. 

Arthur D Little, Inc. 
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Using the orthogonality of the Legendre functions over the surface S, 

we find from (III-13): 

4 (2m + 1) 
Ml = 9B 8 » +c) (III- 17) 

m=0 

The quantity I] is a measure of the fraction of incident power diverted from the 

original wave by the scatterer. The product (II: A) gives the total scattering 

cross section of a sphere whose geometric sectionis A units. Because of the 

complexity of the terms, it is not possible to do much further analysis with the 

mathematical expressions. However, Anderson has computed values of Rg — 9 

(backward scattering) and II] for many cases. Figure III-1 shows the value of 

R/(ka)*® for various choices of relative density and sound velocity when 

ka << 1, and corresponds to (III-15). 

THE QUANTITY R/(ka/* IS 
PRESENTED AS A FUNCTION 
OF THE RELATIVE DENSITY g, 
AND THE RELATIVE SOUND 
VELOCITY A OF THE SCATTERING 

SPHERE. 

(ka)? 

FIGURE III-1 RAYLEIGH SCATTERING FROM SMALL FLUID SPHERES 

IN THE BACKWARD DIRECTION (AFTER ANDERSON) 

aL 
3gh? * 

the density and the speed of sound decrease in the scattering sphere. As g and 

h become large, the situation compares to an incompressible fixed sphere and 

_ 2 2 R= & (ka) : 

As g and h both become small, R increases to This happens when both 

Arthur D. Little, Ine. 
$-7001-0307 
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As the value of ka approaches 1.0, the simple Rayleigh solution (III-15) 

no longer holds and more terms of the series solution must be considered. In 

this region, which may be termed the critical region, some of the general char- 

acteristics of the backscattering in the Rayleigh region are still apparent. Fig- 

ures III-2a and III-2b show the dependence of R on the relative sound velocity h 

and acoustic radius (ka), while Figures III-3a and III-3b show the dependence 

of R on the relative density g and acoustic radius. Comparing the figures, the 

most striking difference is the presence of large slopes for the small values of 

h compared with the gradual rate of change of R with the relative density g. 

The difference between the dependence of R on h and g seems to become even 

more pronounced in this region than in the Rayleigh region, particularly for the 

larger values of (ka). 

SSS 

FIGURE III-2 THE REFLECTIVITY R AS A FUNCTION OF THE RELATIVE SOUND 

VELOCITY h AND ACOUSTIC RADIUS Ka (AFTER ANDERSON) 

1 R4 

65 
82S 
apt 

4° =#66 1.0 1.4 2.0 3.0 40 4 (6 10 14 20 3.040 

h=10 ka h=1.2 ka 

FIGURE III-3 THE REFLECTIVITY R AS‘A FUNCTION OF THE RELATIVE DENSITY 

g AND THE ACOUSTIC RADIUS Ka (AFTER ANDERSON) 

Arthur A Aittle Inc. 
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Values of R as a function of ka for other fluid spheres are shown in Figure III-4. 

Figure III-5 shows the corresponding values of II. 

6 

R 3 

2 

1 

ce) 

CURVE A - g:1.0, h-08 CURVE C - g:20, h=2.0 
CURVE B - g:1.0, h=1.2 CURVE D - g:0.5, h=0.5 

FIGURE III-4 THE REFLECTIVITY R AS A FUNCTION 

OF THE ACOUSTIC RADIUS Ka (AFTER 

ANDERSON) 

The effect of scattering in other than the backward direction is illustrated in 

Figure III-6for a number of spheres with g = 1. As might be expected, these 

semi-transparent spheres scatter chiefly in the forward direction--this is due 

to the effect of refraction, which makes the spheres act as lenses. In general 

these patterns possess lobes, the number of lobes increasing with increasing 

ka and with decreasing h. It should be recalled that the quantity Rg does not 

give directly the diffraction pattern due to a spherical obstacle; it represents 

only the pressure amplitude in the spherically scattered wave and must be 

combined with the incident plane wave to give the true diffraction pattern. 

Arthur D.Uittle, Inc. 
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B. SCATTERING FROM AIR BUBBLES 

i Small air bubbles may be found throughout the ocean, and appear very 

often in conjunction with other scatterers. For example, they occur immediately 

below the surface of the ocean, due to the breaking of surface waves or the in- 

cidence of spray or rain on the surface; they are generated in the wake or turbu- 

lent boundary layers of ships; they may even take the form of gas bladders in 

fish. Typical air bubbles are quite small, usually less than one centimeter in 

diameter even though an occasional piscine bladder may be somewhat larger. 

The density of air bubbles is normally quite low, but their effect on the scatter- 

ing of acoustic waves is far greater than one would expect from their low frac- 

tional volume. 

We may obtain a general idea of the effect of air bubbles on sound 

waves through the analysis of the previous section. Consider the air bubble 

simply as a small sphere of air surrounded by an infinite expanse of water. We 

are concerned primarily with sound of 100 cps to 10, 000 cps, in other words, 

sound with a wavelength in water of between 15 centimeters and 15 meters. 

Since the air bubbles are very small compared to the wavelength, we are indeed 

in a situation analyzed in the preceding section for the case ka<< 1. 

From that analysis emerged Equation III-15, which showed that the 

scattering of a plane wave from a small fluid sphere consists of 'breathing"’ and 

a "'sloshing"’ mode. For the case of air in the ocean, just below the surface, the 

two parameters g and h (the ratios of the densities and sound velocities of air 

and water) are given approximately by g = 93/Po = 1.3x10 °, h =cd/co =0.2. 
In this case, therefore, the relative compressibility gh® is so small (ONS Ea 1Olie) 

that the breathing mode will completely dominate. The aie aro ae wave 
a 

3 gh* Pinc 

by (III-15). From this it would appear that the scattering strength of the bubble 

increases quadratically with the frequency of the incident sound. This is indeed 

true for sufficiently small ka, but not for the entire range ka<<1. If ka be- 

comes of the same order of magnitude as 3 gh*, so that the amplitude of the 

scattered wave would appear to be approximately the same as that of the incident 

wave, we must consider a more careful approximation of the breathing mode. 

According to (III-13), a plane incident wave of the form given in (III-8) will pro- 

duce a spherically scattered "breathing" mode wave: 

is isotropic, and its amplitude at the surface of the bubble is as given 

i pee etkr-iw t P. eikr-iwt 
SS ———— ——— eee = 1 

Hove) EG.) es G, oi kr te 
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The coefficient Co can be found from (III-11a) to any desired degree of accuracy, 
since the spherical Bessel functions of order zero are given in terms of the simple 
trigonometric functions: 

¢ _ sin ka =) cosika enka) i fa? Ho (ka) = eESee 

We can therefore develop Co ina power series in ka, and if we keep all terms 
up to and including (ka)°, we find for the coefficient of (III-18): 

2 

= ceayt [eR HE +E 5 - Fea) Cia)? +0 («x2)*)] 
Cain 63 Fe] ROM TT een VRS. cae aaa (III-19) 

ES i a 68 ~ 3) ka)” - i(l-gh*) aot 0 (ia ) 

For sufficiently small ka, all but the zero order terms may be ignored, and we 
find that the scattered amplitude behaves indeed as the square of the frequency. 
This is the approximation equivalent to (III-15). We notice, however, that as 
ka increases (though remaining much less than 1), the second order term in the 
denominator approaches the zeroth order Kom when (ka)* approaches 3 gh*, 

since the coefficient of the second term a - (1/6)g - 1/3 is essentially - 1/3 

for the combination of air and water. Let us therefore investigate (III-19) more 
carefully in the neighborhood of (ka)? = 3 gh? ~1.50x10 *. In this neighbor- 
hood, the value of the numerator remains essentially unity, since all other terms 
are of the order of magnitude of gh®. The denominator must be kept to third 
order in ka since the zeroth and second order terms can be made to cancel. In 
this way we obtain the approximation: 

3 i Sa —— +. for (ka)? ~3 gh? (III-20) Gi Sele ecu aka) gh* - 3 (ka) Ble van 

If we examine the magnitude of the scattering strength, we find that the scattered 

1 

ea | 
passes through a maximum. This may be seen most easily by observing that the 
square modulus of the coefficient is bounded by unity and reaches its upper bound 
at the point of resonance: : 

wave passes through resonance when (ka)® is 3 gh®. In other words, | 

Arthur DHittle Inc. 
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2 

1 (1/9) (ka)® 
2 

lass) Te & gre 5 tka)? | 

The bubbles therefore have a resonant wave number ko (or resonant frequencies 

rT) 
f_) such that ko = eiitow sel 
: Cs Co 

+ikr-iwt 
S 

Psc r 

resonant wave number or the resonant angular frequency as: 

2 

*Pinc (ka) 

sc 

(ky a)° - (ka)? - i(ka)® 

If we write the scattered wave as Dey (r,t) = 

, then the amplitude of this wave can be expressed in terms of the 

(III-21) 

The resonant angular frequency may be given in terms of the physical variables 

describing the situation according to: 

2 

2 2 2 3 h2 C5 
Wr = k5 CR = 4 me 

At resonance, (III-21) becomes purely imaginary so that the scattered wave is 

Py 2 

By) Ca 
2 (III- 22) 

90° out of phase with the incident wave. It will be shown later that the imaginary 

term in the denominator corresponds to the energy that is removed from the in- 

cident wave and, in fact, is radiated out to infinity as the scattered wave. The 

real part of the denominator of (III-21) corresponds to the exchange of energy be- 

tween the bubble and the incident wave. During part of each cycle the bubble is 

compressed and stores up energy which it returns during the remainder of the 

cycle. Thus, in this model there is no dissipative mechanism within the bubble 

itself; the only way it can remove energy from the incident wave is by radiating 

this energy in the form of an outgoing scattered wave. 

Mechanical Analogue 

This behavior of the bubble is often compared to a simple mechanical 

analogue. Consider a mass M attached to a spring with spring constant K moving 

with a displacement x(t) in and out of a dashpot which offers a resistance force 

D x proportional to the velocity of the mass. If this configuration is subjected to 

an harmonic exciting force F e~i¥t, the equation of motion becomes that of the 

damped harmonic oscillator: 

Arthur D Little, Inc. 
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ae : -i1W Mexch Kex oD soe Relat 

It has as its solution: 

-iWt : 
Fe F/K)e1¥t K 

x = = ESE = phen we nr (III-23) 

K-Mw? -iDw yeti Dian: te 
we K 

We note the correspondence in the form of the resulting motion with (III-21). The 
2 

only difference is the replacement of (the resistance term) =e - 1 by the term 
w 

2 w F 
1 - me However, for W near Wo, i.e., near resonance, these two terms are 

Wo 

approximately equal. Because of the damping term introduced by the dashpot, we 

frequently refer to the imaginary term in the denominator as the damping constant 

5 -UD_ wa 
K Co E 

Equivalent Physical Model 

The expression for the scattering amplitude (III-21) which was deduced 

from the general analysis of the preceding section could equally well have been ob- 

tained from a more direct physical model of the bubble. Since only the breathing 

mode contributes substantially to the scattered wave, it suffices to regard the in- 

cident sound pressure as spatially uniform near the bubble and varying in time as 

e!¥t. In other words, spatial gradients in the incident pressure field may be ig- 

nored when we do a strict breathing mode analysis. Thus, the incident wave 

' et ikr-i wt 
Pe e!t causes a scattered wave IS = and an interior wave (also 

uniform throughout the bubble) p' e Wt The pressure at the boundary of the bub- 

ble must be continuous, and this requires that: 

pie eee Fale ek (III-24) 

Arthur A Little, Inc. 
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Thus, we have one relation between the three amplitudes pinc, Pg¢ and p’. A 

second relation may be obtained from the equation of motion of the water just 

outside the bubble boundary. Consider (III-2a) in radial coordinates, with u, 

as the radial component of the velocity: 

UD i, We =D se (I-25) 

Since the incident wave does not depend on r, the gradient of the pressure on the 

bubble surface may be obtained entirely from the scattered wave: 

js ika-iwt 

DWE) Boece aADen Choa) ie (III-26) 

It remains to evaluate the radial velocity u, in terms of p' by analyzing the thermo- 

dynamics of the interior of the bubble. For a perfect gas undergoing adiabatic com- 

pression, the volume V is related to the total pressure p = po + p’ according to 

p ~ V’Y where y is approximately 1.4. The volume for a bubble with radius 

a + da is given by V = 4/37 (atda)> ~ Vo (1+3 >) where Vo is the unper- 

turbed bubble volume F ta’. It follows that pressure changes inside the bubble 

are related to changes of bubble radius according to: 

eee Og) (III-27) 

The acoustic fluctuations dp = p' and da are very small compared to the stagna- 

: ‘ dave : E 
tion values p, and a. Since are ve just the radial velocity u, of the bubble surface, 

we can rewrite (III-27) to first order in the acoustic quantities as: 

wi dp' — - 3 u — - iw p' aN (III- 28) 
Dey Gk a 1p Pp 

Arthur DUittle Inc. 
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We substitute (III-28) and (III-26) in (III-25) and obtain a relation between the 
amplitude of the scattered wave and the amplitude of the interior bubble pressure: 

a ika 

BA liga Pa (1-ika) 

2 
W Do 
fa 

= 31D, (III- 29) 

From (III-24) and (III-29), we can solve for P,, in terms of p;,,, and obtain the 
same result as (III-21) if we use the identifications of (III-22). This simple 
physical model and the associated mathematical approximations are therefore 
equivalent to the approximations of the breathing mode of a fluid sphere leading 
to (III-21). 

In the above analysis we have ignored the effect of dissipation; the 
only loss of energy from the incident wave has been due to the radiation of the 
scattered wave. If we introduce heat conduction inside the bubble and viscosity 
in the water, and enclose the bubble in an elastic membrane which corresponds 
to the surface tension of the water, we can still carry through the calculations 
that lead to (III-21), using the same type of analysis shown in (III-24) and (III-29). 
Such a procedure has been carried out by Spitzer* and results in a more com- 
plicated expression for the scattered amplitude. Nonetheless the expression 

has the same essential features exhibited by the simple models of a damped 

oscillator or a dissipation-free bubble. We show all three models for easy com- 
parison in Table III-1, and catalog them for future reference as: 

Model I - damped harmonic oscillator 

Model II - dissipation-free bubble 

Model III - bubble with conduction, viscosity and surface tension 

We wish next to compare these three models with each other and with 

the available experimental data. If we compare the resonant frequencies pre- 

dicted by Models II and III, we find that the effect of the dissipative mechanisms 

included in Model III is small for frequencies below 20,000 cps. The two curves 

for the resonant frequency are shown in Figure III-7 together with some data from 

a number of experiments which are in generally good agreement with the theoret- 

ical predictions. The anomalous results reported by Exner and Hampe were ap- 

parently caused by dust particles in the water. It is not surprising that the resonant 

frequency predicted for Models II and III should turn out to be so similar. After all, 

resonance comes about through the matching of the inertial properties of the sys- 

tem (i.e., the mass of the bubble and a portion of the surrounding water) and the 

compressibility of the system. 

*L. Spitzer, Ref. III-38. 
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(WITH CORRECTION 

A TEU SEL FOR CASE III) 
MEYER AND TAMM 
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001 
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We note that in the range of frequencies from 100 to 10, 000 cps, the 

bubbles which are resonant will have radii between 0.03 cm and 3 cm. This coin- 

cides with the range of bubble size most commonly found in the ocean. It is ap- 

parent from Figure III-7 that within this range of frequencies, the expression 

1 3 YD, 
Epics a ; is a very good prediction of the resonant frequency. 

fe} 

The damping constant §, on the other hand, may be expected to depend 

very heavily on the dissipative mechanism. We show in Figure III-8 how the 

damping constant 6 varies as a function of frequency for four typical bubbles. 

These curves were computed according to Model III for the bubbles whose radii 

and corresponding resonant frequencies (at sea level) are indicated below. 

a = Radius (cm) f, = Resonant Frequencies (cps) 

1.0 326 

OF 3,240 

0.01 31, 000 

0.001 260, 000 

We have shown on each curve the frequency at which the bubble is resonant. Near 

these resonant frequencies the dissipative and radiative mechanisms combine to 

produce a minimum value of 6. In other words, the contribution of the dissipative 

mechanism to 6 decreases with increasing frequencies. The contribution of the 

radiative mechanism to 6 increases with increasing frequencies, and both con- 

tributions are important in the neighborhood of the resonant frequency since they 

conspire to produce a minimum in that range. 

The damping constant has been studied extensively under a wide range 

of frequencies and by means of several different experimental techniques. One 

commonly used technique involves measuring the amplitude of the scattered wave 

for various frequencies of the incident wave. The logarithmic decrement is then 

given by 

where f_ is the resonant frequency (maximum amplitude) and Af is the difference 

of the two frequencies at each of which the response is one half of its maximum. In 

the literature, experimental results are expressed in terms of either A or 6 ; 

in this report all values are converted to 6. 

Arthur A ALittle Ine. 
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Figure III-9 shows the experimental results for 6 at resonance as de- 

termined by several authors as well as the corresponding theoretical values ob- 

tained from Model III. The contributions to 6 due to viscous damping, radiation 

damping, and heat conduction damping are shown separately. Allowing for differ- 

ent experimental techniques and limits of error, the results generally confirm 

the theory. Exner and Hampe seem to have done the best and most extensive ex- 
perimental work, and their results are probably the most accurate. Unfortunately, 

this work was done at very high frequencies. Lauer's work and Exner's work at 
low and intermediate frequencies, respectively, though done under less carefully 
controlled conditions, also agree with the theory in these ranges. 

The only serious disagreement with the theory is in the work done by 

Meyer and Tamm, Carstensen and Foldy, and Fox, Curley and Larsen. In all 

cases the authors found values for the damping constant which were larger than 

those predicted by the theory. Fox, Curley and Larsen's single observation at 

65, 200 cps is about five times that predicted by theory. Carstensen and Foldy, 

and Meyer and Tamm report values of 6 for low and intermediate frequencies 

which are roughly two to three times the theoretical values. 

These differences should not be considered as contradictions of the 

theory. The higher values were generally obtained indirectly in the course of at- 
tenuation studies and were needed to account properly for the observed attenuation. 
The theory is otherwise well supported; therefore, it seems that some significant 

factors were not considered when working backwards from the attenuation experi- 

ments. 

2 2 

In order to see how the variation in 6 * compares with that of 2 =] ) 
f 

we have plotted in Figure III-10 the ratio 

2 

NS donee jf 

ee iN 

as a function of f for a = 1.0, 0.10, 0.01 and 0.001 cm. One would like to be 
2 2 

able to conclude that in the neighborhood of f = f, the value of ( = =i 

varies much more rapidly than§”, i.e., that 6° may be considered relatively 

constant in the neighborhood of the resonant frequency. Outside this neighborhood, 

6° is not very important. In later calculations of cross sections, we would then 

be able to view 6 as being constant over the full range of frequencies. Unfortunately, 

the horizontal nature of the curves in the neighborhood of the resonant frequency pre- 

cludes this possibility. 
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The intensities of the incident and scattered sound are given by (see 

Equation III- 6): 

= eee I = 

and the total scattered energy at the distance r is 47 we I,,~: The scattering 

cross section ogc is defined by the expression 

that is, it is the area such that the total incident energy crossing this area ina 

perpendicular direction is equal to the scattered energy. Then O,, is given by 

The scattering cross section does not provide all the information wanted in the 

case of an actual bubble, since the incident energy is reduced by both scattering 

and absorption. Let Sage be the sum of these energies, i.e., the total energy 

extinguished from the incident wave. Then an extinction cross section can be 

defined analogously by 

@_ It. F 
ex inc ex 

The quantity Fy, is equal to the work done, per unit interval of time, on the 

bubble by the incident sound beam. Then, for a bubble of radius a, we have 

a ae da. 
Lee = (Rep. ic (t)) (47 a®~ ) (Re aa) 

Arthur DLittle, Ine. 
S-7001-0307 



III-29 

where Pjnc is the pressure of the incident sound and the bar denotes the time 

average. The radial velocity of the air bubble we “ satisfies (III-25), and 

using (III-26), we obtain: 

ika-iwt 
é = mn : IL & 
WP, Uy = Pgoyr = Pgc (ik - 5) S 

Determining u,. from this, calculating the time average, and dropping terms 
of order (ka)®, we find: 

I 
Pinc ie Poco 

ex i 0, fy 

This demonstrates our earlier statement that the imaginary part of p__ deter- 
mines the rate of energy transfer from the incident to the scattered wave. The 
extinction cross section now becomes: 

2 S. Im Pec 
5 = 
ex : f 

Pinc 

Using the models for Ps, discussed before, we obtain the scattering and extinc- 
tion cross sections shown in Table III-2. The scattering and extinction cross 
sections according to Model III for the four typical bubble sizes (a=1cm, 0.1cm, 
0.01cm, and 0.001 cm) are shown in Figures III-11 and III-12. The resonant 
behavior of the bubbles is clearly demonstrated by the maxima of their cross 
sections. Below resonance the bubbles tend primarily to absorb energy, while 
above resonance the bubbles act principally as scatterers. 

Arthur D Little, Inc. 
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Multiple Scattering 

In most regions of the ocean, the density of air bubbles is very low. 
Usually the spacing between air bubbles is so great that, when a sound wave 
passes through the medium, the scattered spherical wave from any one bubble 
is negligible compared to the sound field by the time the scattered wave reaches 
the bubbles nearest to it. In this situation, each bubble scatters the incident 
wave, and multiple scattering can be ignored. If there are n bubbles per unit 
volume, each with extinction cross section Oe, the total extinction cross section 
per unit volume will be no,. A sound wave progressing in the x-direction with 

I intensity I(x) will be attenuated according to < = Nog I; therefore, I(x) = 

I(0)e""°eX. The scattered energy will be in the form of many incoherent spheri- 
cal wavelets, and attenuation of the sound wave will be the dominant phenomenon. 

Occasionally there are regions of relatively high air-bubble density, 
amounting to a fractional volume of air of perhaps up to 10°*. We have already 
mentioned certain regions of high air-bubble density such as fresh wakes, schools 
of fish with air bladders, or patches immediately under the ocean surface due to 
rain and spray. If the fractional volume of air is 1073, the bubble spacing must 
average on the order of 16a (where a is, as usual, the bubble radius). We have 
noted earlier that the sound frequency at which a bubble is resonant corresponds 
to a wave number k, such that (k, a) = 3 gh? ~1.5 x 10 *, so that the 
resonant wavelength is approximately \ 9 200 a. With a fractional volume of 
air of 10 °, we therefore find that a resonant wavelength measures approximately 
30 bubble spacings. Under these circumstances, we may expect the sum of the 
amplitudes of the scattered wavelets arriving at a bubble from its nearest neigh- 
bors to be of the same order of magnitude as the wavelet the bubble scatters itself-- 
for a bubble may have some 10 nearest neighbors, which are 10 to 20 bubble radii 
removed from it and all more or less in phase with it (since there are + 30 bubble 
spacings to a wavelength). Near resonance, the amplitude of the scattered wave 

at the bubble surface - | Des | tends to be an order of magnitude greater than 

the amplitude pe ¢ | of the "incident" wave. This may be seen from Figure 
III-9, which gives the damping constant at resonance. At resonance, we see 

from Table III-1 that - | Poo | = | p /6. But, from Figure III-9, we see 
inc 

that6 is typically between 0.01 and 0.2 for frequencies between 100 cps and 
10, 000 cps, which proves the above assertion. 

In the immediate neighborhood of each bubble, therefore, the bubble's 
own scattered wave is of the same order of magnitude as the sum of the scattered 
waves received from neighboring bubbles, and an order of magnitude greater than 
the “incident'’ wave. However, since the bubbles and the bubble spacing are much 
smaller than a wavelength, we might expect the medium to exhibit some more or 

Arthur D Little Inc. 
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less homogeneous cooperative behavior in transmitting (and attenuating) a sound 

wave. In other words, we might hope that the medium, viewed macroscopically, 

could sustain an over-all wave motion even though microscopically (i.e., on the 

scale of the individual bubbles) the local field would be anything but a simple at- 

tenuating plane wave. 

Suppose, therefore, that plane waves of the form eikx-iWt could 

propagate in such a medium. The "wave number" k must now be complex; its 

real part corresponds to the phase velocity of the motion (which is not going to 

be c, ), and its imaginary part gives the attenuation of the wave amplitude. 

Ww 
There should be a corresponding complex sound velocity c = Kk: How do we 

determine c? 

Consider an element of volume, V,, which is fairly large compared 

to a bubble spacing but fairly small compared to a wavelength (say three bubble 

spacings as a typical dimension). Let p, , which is the density of the water, 

also be the density of the mixture--the error will be very small when the frac- 

tional volume of air is approximately 10°*. Let the bubble density be n bubbles/ 

cm’, so that there are N = nV, bubbles in V,. To begin with, let all bubbles 

have the same radius a; later we shall study the case where there is a distribu- 

tion of bubble sizes. 

Suppose an (average) pressure wave is passing through the medium. 

The volume element V, is sufficiently small that we may think of the (incident) 

overpressure as homogeneous throughout V,, and represented by Ap(t) = 

Ap e 1¥%t Asa result of this macroscopic sound wave, the volume of the ele- 

ment changes according to AV(t) = AVe™!™€ and its density according to 

Ap(t) = Ape it, Conservation of mass of the element requires that 2, Ve = 

(9, +40) (V, + AV) so that to first order 

Ap = AV Po o = = V. 

If the "applied" pressure Ap causes a density change Ap, the sound velocity in 

the mixture is given by: 

V, 
( — (III-30) 

i) 

i) i | Il 1 

alle <td 

Arthur D Little Inc. 
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The variations in the volume AV consist of two parts--the change in water 

volume AVy and the change in the air volume A Vel euneretone: 

SV NV NV (III- 31) 

Let us examine AV, and see how it depends on Ap. Note that AVg is just the 

sum of the volume changes of each of the N = n V, bubbles in V,._ Now, whereas 

the macroscopic picture is that of a sound wave, Ap(x,t) = Ape! ee propa- 

gating through the mixed medium, the microscopic picture is quite different. As 

a result of Ap, each bubble is caused to pulsate. Suppose the internal pressure 

inside the bubble is caused to vary as Ap'(t) = Ap'ei“t, and suppose further that 

oat Deer ; oY) 
this gives rise to a scattered wave, Ap(t) = ND) os kt a e (where k, = a = 

10) 

wave number in pure water and r is measured from the bubble center), in the 

Ap 
vicinity of each bubble. Near resonance, both Ap’ and are much greater 

than Ap. However, we know from Table III-1 that ARoc is proportional to Ap 

according to: 

for models II, II 

Ap. = g(a)Ap where g(a) = (III- 32) 

2 for model I 
Ww } 

1-| — | - 16 
Wo 

We also note from (III- 29)that the internal pressure Ap’ is proportional to the 

Ap 
22 , and in fact near resonance almost equal to it: scattered pressure 

A 2 3 
3y ; PB w ika 

Ak ip noisy EE || 22.) | Gee (III-29a) p Pp A a 

Arthur D Little, Ince. 
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Hence, if we substitute (III-32) in (III-29a ) and ignore terms of order (ka)? , 

we find that the internal pressure Ap' is proportional to Ap: 

3yp_ g(a) OH) \\2 
Nps ee py = || 2 ate) Ap (III-33) 

Since we know the variation in internal pressure, we can calculate the variation in 

4 
volume of each bubble. The undeformed bubble has a volume Vp ae 1 a®; when 

its internal pressure is changed adiabatically from P, t P, + Ap', its volume 

must change so as to keep pVY constant, so that: 

V 
oy No 

AV. ete pare Sees 

b Vy Dy 

The total change in the volume of air A Mie is therefore (using Equation III-33): 

NV, Ap’ 3g (a) NV, 4mnV, g (a) 

AV = NAV. = - — = - —— = - ———— Ap (III- 34) 
a b Py v w2 2, a2 wy? , 

We can now evaluate the complex velocity of propagation c according to (III-30). 

It is a little easier to compute its inverse: 

The first of the two terms on the right is seen to be the inverse square of the 

sound velocity in pure water, cue ; the second term may be simplified by using 

(III-34). Therefore, we find 

C8 = ee 4 See (III- 35) 
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This is the fundamental result for bubble-water mixtures with substantial 
bubble-bubble interaction: a sound wave in such a medium propagates with an 
effective velocity of propagation given by the real part of c, and an effective 

A s ; : Ww attenuation given by the imaginary part of k = an 

A few comments are in order about this result. First, the same re- 
sult may be obtained by a somewhat more rigorous method which considers in 
detail the combined effect of the many scattered wavelets. The method, due to 
Foldy, is given in Appendix B. Second, several authors have obtained (III- 35), 
and all use the form of g(a) which corresponds to Models II and III. Meyer 
and Skudrzyk derived a slightly different expression, which caused them to use 

the mechanical analog (Model I) form of g(a). In their paper they use as 

the total pressure on the air bubble, instead of Ap’. We see from (III-29) that 
2 

W 
this would lead to a result which differs from ours by a factor ey , and in- 

deed they obtain c? = e + aun (a) instead of (III-35). However, since 
Ww 

ie) 
2 

they choose Model I for g(a), they introduce a compensating factor of ( — ) ; 
° 

and their end result is therefore equivalent to that of other authors, provided 
their damping constant is properly interpreted. 

Equation III-35 is easily modified to take into account a bubble popula- 
tion which consists of different size bubbles. Suppose there are n(a)da bubbles 
per unit volume each, with radius in the range between a and a+da. The con- 
tribution of this portion of the bubble population to the change in total air volume 
would be identical to that of (III-34) but with n replaced by n(a)da. The total 
change in air volume is then found by integrating over da, and this therefore 
modifies the final result for c™? to: 

Cie = cae + etl fe n(a) g(a) (III- 36) 
ie) w? 

From (III-35) or (III-36) we can compute the relative sound speed in the bubbly 
Cc 

mixture as the real part of Fa and the attenuation of the intensity (which is 

w twice the attenuation of the pressure) as twice the imaginary part of eu In 

particular, we may write (III-35), using the Model III expression for g(c) as: 

Arthur D.Little, Inc. 
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32 

i NO Lia cal Jeera Yabo 
w? Ww 2 2 

=O }} oi || 6° w (III-37) 

c 2 c 2 
Re{ —2 = ee 

Cc mixture sound velocity 

3 

Bn Praeger ne 
2 (1 + x)? (III- 38a) 

w 2 32 

2I = = | intensity attenuation 
lan \\ 

3 2 
= 9 ff (1+x) |] -1+ — 

Co (arE9)" (III-38b) 

We can compare these results with the limiting case of very low air bubble 

densities. This means that x and y are both much less than 1, so that (III-38b) 

yields: 

4un oe a6/w F : : Ww 
intensity attenuation ~ — y = ay SEER CRA TLE oP 

Cy W a 
Ante) =a + §® 
Ww 

From Table III-2 we note that this is precisely no, (for either Model II or 

Model III), as we would expect. 
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Experimental Evidence 

The expressions for the phase velocity and attenuation are generally 
in good agreement with experiment. In particular, we have the following body 
of experiments: 

(1) Meyer and Skudrzyk (Ref. II-29) calculated the theoretical at- 
tenuation for uniform bubble mixtures which were resonant at 12 kc and fora 
mixture having a uniform distribution of bubble sizes. These agreed qualita- 
tively quite well with experimental results. 

(2) Carstensen and Foldy (Ref.III-3) measured attenuation and re- 
flection for a bubble screen in a lake. Screens of both constant and varying 
bubble sizes were used. The results agreed qualitatively with the theory. 
The mixtures were generally resonant at 15 kc. 

(3) Laird and Kendig (Ref. III-19) measured attenuation in a bub- 
ble screen having various sizes of bubbles. Although the reported results ap- 
pear to be in good agreement with the theory, the nature of the experiment 
was such that there may be considerable error in the results. The screen as 
a whole was resonant at 8 kc. 

(4) Fox, Curley and Larson (Ref. III-9) measured phase velocities 
and attenuation for a bubble screen resonant at 60 kc. The results agreed 
quantitatively with the theory. 

(5) Macpherson (Ref. III-26) measured attenuation for a very care- 
fully controlled, almost idealized, bubble screen. The bubbles were all of the 
same size and were resonant at 30 kc. The results agreed very well with the 
theory. 

(6) Silberman (Ref. III-37) measured attenuations and phase veloc- 
ities for screens which were resonant in the range 1 kc to 10 kc. The results 
generally agreed well with the theory. 

The net result is that the theory for propagation of sound through an 
air bubble-water mixture is well supported by experimental work. Deviations 
from the theory can usually be explained by experimental conditions or im- 
proper use of a parameter, such as the damping constant, in comparing the 
theory with measurements. The following gives details on the experimental 
work. 

Arthur D Little, Inc. 
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Meyer and Skudrzyk made certain calculations of the expected at- 

tenuation and phase velocities for sound passing through water interspersed 

with air bubbles. For their calculations they used a damping constant given by 

f 
6 = | 0.015 + 11xl0°f 2. 

o f 

where f, is the resonant frequency of the bubble. This expression is based on 

the experimental work of Meyer and Tamm; however it gives damping constants 

which are larger than those given by other theories and found in other work, as 

may be seen by comparison with Figure III-9. As a result, many of Meyer and 

Skudrzyk's theoretical attenuation figures may be too high. 

Figure III-13a shows the theoretical sound damping (in db/cm) as a 

function of the frequency, for a screen of gas bubbles which are all roughly the 

Same size and have a resonant frequency of 12 kc. The radii of the bubbles are 

approximately 0.026 cm. The parameter is the relative gas content (by volume), 

which, in this graph, ranges from 10 © to 10°”. The strongest damping takes 

place at the resonant frequency. The curves are symmetrical for small gas 

content and unsymmetrical for large; thus the higher frequencies are more 

strongly influenced. The maximum damping is 0.3 db/cm at a gas concentra- 

tion of 10°° and 95 db/cm at 10°*. This means that for the first example ap- 

proximately one air bubble occurs per 100 cm®*, while in the second case ap- 

proximately 100 bubbles occur in 1 cm®. 

Figure III-13b shows the calculated phase velocity of the bubble- 

water mixture for three concentrations, with the bubbles resonant at 10 kc. 

The velocity in the bubble-free medium c, was taken as 1400 meters/sec. 

An experimental screen of fairly uniform bubbles was created by 

forcing air through a porous plate. The results of attenuation measurements 

for such screens are shown in Figure III-13c. A number of screens corre- 

sponding to different volume concentrations were generated by varying the in- 

put rate of air from 160 to 500 liters per hour. The resonant frequency of the 

bubbles appears to be approximately 15 kc. The measured curves for the vari- 

ous quantities agree qualitatively with the theoretical curve of Figure III-13a. 

When the diameters of the gas bubbles are distributed over a sizable 

range, we must use the integral form of the theory. As a special case, Meyer 

and Skudrzyk consider a screen made up only of bubbles whose resonant fre- 

quencies lie between 10 kc and 100 kc, i.e., bubbles whose radius lies between 

0.033 cm and 0.0033 cm. In this band, the volume concentration, v, of the bub- 

bles was taken to be constant; thus, there are very few large bubbles, but very many 

small ones. Figure III-14 shows the sound damping under these conditions, as 

a function of frequency. 

Arthur D.Uittle Inc. 
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FIGURE III- 14 THEORETICAL ATTENUATION 

THROUGH A BUBBLE SCREEN WITH 

A DISTRIBUTION OF BUBBLE SIZES 

(AFTER MEYER AND SKUDRZYk) 

Figure III-15 illustrates examples of damping measured on screens 

generated by electrolysis. Physical observation showed immediately that, in this 

case, no uniform bubble mixture was present; rather, very small bubbles of dif- 

ferent sizes arose, together with a few large bubbles. Comparison of the curves 

for Figures III-15a, b, and c, with Figure III-14 shows great similarity. In fact, 

it is possible in both figures to connect the measured points of a series of measure- 

ments for a fixed current density directly by a calculated curve, as shown for the 

curves in Figure III-15a and Figure III-15b for 60A and 15A respectively. The gas 

concentrations on which these calculations were based are 4.8 x 10 ° and9.2x10 °, 

very close to the concentrations expected from a study of the electrolytic process. 

It should also be pointed out that in the electrolysis experiments Meyer 

and Skudrzyk used the damping constant for air, although measurements were 

actually made on hydrogen bubbles. 

Carstensen and Foldy made a series of measurements on the attenuation 

of sound through a screen of bubbles and the amount of reflection from such a screen. 

The measurements were made under two classes of screen conditions: relatively 

few bubbles in the screen but all of essentially the same radius, and relatively large 

numbers of bubbles having a considerable range of radii. The device which produced 

the bubbles was suspended 10-1/2 feet below the surface of a lake and produced a 

Arthur DHLittle Ine. 
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screen of bubbles having a cross section of about 17 inches by 3 - 6 inches ex- 

tending various lengths in the vertical direction, depending on the experimental 

conditions. The incident waves were in a direction which made an angle of 35 

degrees with the normal. A reflection and transmission hydrophone were placed 

on opposite sides of the screen in mirror image position; thus, reflection and 

transmission could be measured simultaneously. 

Bubbles were allowed to rise either uniformly or in short pulses. In 

the latter case, differing rates of rise for different bubble sizes separated the 

pulse so that at any one time all the bubbles on the acoustic axis would have ap- 

proximately the same radius. Bubble radii and rates of rise were measured 

by determining the resonance frequency and elapsed time from the time the 

pulse was released. This data was then used to determine distributions of bub- 

ble sizes and the amount of air entrained in bubbles for various screen condi- 

tions. Typical data is shown in Figure III-16. Note in particular the small 

amount of air in the bubbles and the smaller number of bubbles on the axis at 

any one time for the pulses relative to the continuous release. © 

The experimental data was compared with the theory. To obtain 

theoretical values for the reflection coefficient, it was necessary to consider 

specific wave forms. These were taken as configurational averages, in the 

sense of Foldy's theory. Except for reflection, only the coherent terms were 

considered. In order to simplify the expressions, several assumptions were 

made concerning bubble distribution and the complex propagation constant. The 

net result is that the expressions used to calculate theoretical results are several 

approximations removed from the already approximate expressions of Foldy's 

theory. 

Very few experimental results are presented. Those that are given 

show a fairly good correspondence between theory and experiment for the screens 

of essentially uniform bubble size. For such screens, attenuations and reflec- 

tions were measured at frequencies corresponding to the theoretical resonance 

frequency of the bubbles along the acoustic axis at the time the sound was trans- 

mitted. Figures II-17a and III-17b illustrate the results obtained, giving a com- 

parison of the theoretical and observed values. An estimate for the probable 

error is indicated for the experimental points. Carstensen and Foldy remark 

that the agreement between observed and calculated values "must be considered 

highly satisfactory in view of the difficulties of measurement and the approxima- 

tions made in the theory." 

The results of measurements of attenuation and reflection for continu- 

ous-flow screens are illustrated in Figures III-17c and III-17d. In the case of at- 

tenuation, the maximum measurable attenuation, due to equipment limitations, is 

also shown. The theoretical and experimental agreement here is not very satis- 

factory. A partial explanation for the reflection results possibly lies in the ap- 

proximation that the screen has sharp boundaries. In the experiments, there was 

Arthur DHLittle Inc. 
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actually a fairly sharply defined core of larger bubbles in the middle with a 

gradually tapering distribution of smaller bubbles in the front and back. In the 

case of attenuation, the equipment limitations make a good comparison of theory 

and experiment difficult. 

The Laird and Kendig experiments were designed to confirm, if pos- 

sible, the very high attenuations predicted by Foldy's theory. In order to elim- 

inate the effect of a reflected beam, both the projecting and receiving trans- 

ducers were placed in the bubble field and measurements were made for vari- 

ous separations of the transducers. A bubbly medium with a 2- by 6- foot cross 

section was produced by forcing air through a taffeta screen located 12 feet be- 

low the surface of a lake. 

Measurements of the attenuation were made at frequencies ranging 

from 2 kc to 16 kc, and with the transducers separated by 1-1/2, 3, 4-1/2, and 

6 inches. Figure III-18 illustrates the data obtained. The vertical lines repre- 

sent maximum fluctuations and the horizontal mark is an estimated average. 

The random fluctuations in the bubble distribution caused the attenuation to vary 

by as much as 40 db over a 10 second interval. 

For each frequency, the attenuation (in db per inch) was obtained by 

plotting the attenuation data for the various separations, with the separation 

distance along the x-axis and the attenuation (in db) along the y-axis. If the 

data lie along a straight line, then the attenuation follows an exponential law, 

and the slope of the line gives the attenuation in db per inch, which is then in- 

dependent of the separation. Laird and Kendig remark that the data did not lie 

perfectly along a straight line and that a "certain amount of judgment'’ was used 

in fitting the straight lines. 

The data were analyzed in terms of Model III, by a procedure parallel- 

ing that of Carstensen and Foldy. Again, only the first coherent term was con- 

sidered. The expected and observed attenuations are compared in Figure III-19. 

The bubble screens contained many different bubble sizes; consequently 

it was necessary to use the integral representations for the complex propagation 

constant. The experimental data for bubble distribution, n(R), and bubble volume 

ratio, u(R), were well fitted by the distributions shown in Figure III-20. These 

give the modal value of the number of bubbles per cm® as 0.89 and the bubble 

volume ratio 4.5 - 10°*. The Poisson distributions were used in calculating the 

necessary integrals. Note that the resonant frequency of the bubbles correspond- 

ing to the maximum value of u(R) is 6 kc, while that for bubbles corresponding 

to the maximum of n(R) is 8.8 kc. 

Arthur D.Little, Ine. 
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The values of the damping constant used in these computations were 

those obtained by Carstensen and Foldy. Since no data was available for the 

damping constant at off- resonant frequencies it was assumed to depend only on 

the resonant frequency. In the light of other evidence, the damping constant 

used in these experiments seems high; however Laird and Kendig report that 

if at 12 kc 6 is assumed to be 0.06 instead of 0.12, the theoretical attenuation 

is increased by only 4%. Thus the attenuation is relatively insensitive to the 

damping constant. 

Figure III-21 gives a plot of the computed values of the phase velocity. 

At low frequencies, this is about one-third that of bubble-free water, while at 

higher frequencies it approaches the velocity in bubble-free water. Some at- 

tempts were made to verify these phase velocities experimentally, but the wide 

fluctuations in phase and amplitude of the transmitted signal made this impos- 

sible. Measurements at frequencies above 50 kc were possible and showed 

that at these frequencies the phase velocity in bubbly water is "essentially the 

same" as that in bubble-free water. 

Comparing Laird and Kendig's computed phase velocity with the cal- 

culations and measurements of Meyer and Skudrzyk and of Fox, Curley and 

Larson indicates that Laird and Kendig's peak phase velocity is much too high. 

Fox, Curley, and Larson measured the behavior of the phase velocity 

and the absorption in bubbling water for various frequencies. A bubble screen 

was created by forcing air through a porcelain bacteriological filter. It was 

found that the large majority of the bubbles had radii in the range of 0.012 + 

0.004 cm, and would, therefore, have resonant frequencies of approximately 

60 kc. Figure III-22 shows a distribution of the air volume contained in bub- 

bles of various sizes. The average volume was found to be (2 + 0.5) (iLO) cc 

of air per cc of water. In order to eliminate any boundary effects, the trans- 

ducers were located in the bubble screen and separated by 2-1/2 cm. 

In the analysis of the data, the damping constant 6 was taken as 0.5, 

although theoretically it should be 0.12. Such a large value of 5 was required 

in order to make the theoretical predictions correspond at all with experimental 

results. 

The experiments are summarized in Figure III-23. The dashed lines 

represent the theoretical prediction when all bubbles are assumed to be of the 

same size, while the solid lines correspond to the integral forms of the theory 

and take into account the distribution of bubble sizes. The precision of phase 

velocity measurements is estimated to be within 5%, while the precision of at- 

tenuation experiments is within 2 db/cm. Each point represents an average 

reading. 

Auth DALYAN. 
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Macpherson's experiments involved measurements of reflection and 
attenuation through carefully controlled bubble screens having a large number 
of bubbles of uniform size and spacing. Bubbles were generated in a laboratory 
tank by electrolysis and had average radii of 0.008 to 0.025 cm, depending upon 
the electrode used. For any particular experiment, the standard deviation of 
the radius was approximately 7% of the mean. Ina vertical plane, the screens 
had the form of one or more, essentially two-dimensional, slowly rising lat- 
tices. The lattice spacings ranged from about one bubble in 10 cm® to 40 bub- 
bles in 10 cm*. Measurements were made for one-millisecond sound pulses 
with angles of incidence equal to 0° and 45°. The isonified area was 15 cm®. 

Theoretical values were calculated following the approach of Carsten- 

sen and Foldy. None of the incoherent terms were considered. 

Figure III-24a shows the measurements and expected values of attenua- 
tion produced by a single bubble screen of approximately 4 bubbles per em”, As 

can be seen, the agreement with the theoretically predicted curves is good. The 

slight spread of the experimental points outside the theoretical curves is ascribed 

to the small nonuniformity of the bubbles. Similar results were obtained with 

other spacings. Macpherson measured the damping constant 6 at 30 kcps as 

0.080 + 0.003. This corresponds closely to the theoretical value of 0.082 and 

contrasts sharply with the poor agreement obtained by Carstensen and Foldy. 

Macpherson also mentions that the "frequency variation of § at resonance over 

the range 15-40 kc, and the off-resonant behavior were in close agreement with 
the theory." 

For theoretical evaluations with more than one screen, it is assumed 

that the attenuation is strictly additive, with no interaction between the screens. 

This is justified by the fact that the spacing between screens is of the order of 

4 cm, which corresponds to a wide spacing of bubbles and is analogous to the 

case in which the bubbles were widely spaced in the lattice. In this latter case, 

it was seen that the bubbles could be treated as independent scatterers, and by 

the same argument, the successive screens can be considered independently. 

Figure III-24c shows the result of placing two screens of slightly different bub- 

ble sizes one behind the other, separated by a distance of about 4 cm. As can 

be seen, the condition for no interaction is upheld inasmuch as the attenuation 

and phase shifts add algebraically. The steady state reflection measurements 

were made on screens similar to those used for transmission. The results for 

a screen of 4 bubbles per cm® are shown in Figure III-25 and can be seen to 

agree very well with the theory. 

To provide experimental justification for calculating the theoretical 

curves from the coherent term only, some measurements were made to show 

the presence of the incoherent wave system. It was possible to show that about 

10 cm from a nearly resonant screen of 4 bubbles per cm” the measured inten- 

sity of the incoherent component was of the order of magnitude given by the 

theory, namely about 12 db. Away from resonance or further away from the 

bubble screen, it was not possible to detect this component at all. 

Arthur DULittle Inc. 
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Silberman made measurements of phase velocity and attenuation for 

sound traveling through air bubble-water mixtures in vertical pipes. The pipes 

were made of steel with inside diameters of 2 and 3 inches and lengths of 8 and 

6 feet, respectively. Because of the small pipe size and the frequencies used, 

the pipe diameter was less than half a wavelength; consequently the sound could 

be viewed as plane waves. 

Two configurations of experimental equipment were used. In the first, 

the pipe was fastened to a base containing the sound generator, and bubbles were 

introduced by a tube through the base. In the second apparatus, the bottom of 

the tube was open, and the sound generator was supported independently. Bub- 

bles were generated by a number of needle orifices positioned outside the tube. 

The entire apparatus was suspended in a water tank. Problems arising in bubble 

production were responsible for changing from the first apparatus to the second. 

With the first, there was considerable difficulty in obtaining bubbles of uniform 

size and spatial distribution. 

Measurements were made by recording the pressure at various points 

along the tubes. For standing waves, the pressure at a point x is given by 

Fe 1/2 
p(x) = 2e at | cosn® (Ui ex) ENcosie = (4 - | 

{e) 

where 

a = attenuation constant 

4 = length of the column 

fo = frequency of the sound 

c = velocity of sound 

Using this equation and the pressure measurements, the experimental 

attenuation constant can be determined. Phase constants were determined by 

measuring the half wavelength distances between successive nodes or antinodes, 

and the phase velocity was calculated from the equation 

where \ is the measured wavelength. The effects of elasticity of the pipe wall 

and of viscosity were small enough to be neglected. Corrections were made to 

allow for the variation in hydrostatic pressure at various points along the tubes. 

Arthur D.Little Inc. 
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Typical velocity measurements obtained in one series of experiments 

are shown in Figure III-26. Bubble sizes for this series varied appreciably; 

however, no details are given. No information is given regarding the frequency, 

but since all velocities are less than that of sound in pure water, we can infer 

that the frequency was always less than the resonant frequency of any major frac- 

tion of the bubbles. 

Comparisons are made with the predictions of the preceding theory 

and Wood's theory. The latter states that the velocity in a bubbly mixture is 

given by 

c VO. c vo' 
(<2) = (:- vs 438s) (1 -v+ | 

: € oO Po 

where v is the volume of air per unit volume of mixture, 0, and €’ are the 

density of the water and gas, cy is the sound velocity in water, and P_ is the 

pressure (including atmospheric). The results agree well with both theories 

and indicate that: 

(1) The phase velocity is relatively independent of the frequency 

when the incident frequency is less than the resonant frequency of a significant 

fraction of the bubbles. 

(2) The phase velocity depends strongly on v, the fraction of air in 

the mixture, with the velocity c (in feet per second) being given roughly by 

c = 100 (10v)}/2 

The results of more carefully controlled experiments are shown in Fig- 

ure III-27. Here, phase velocity and attenuation are plotted as functions of fre- 

quency and are compared with theoretical values given by Equation III-38. The 

calculations were based on a single average bubble size (r) and air concentra- 

tion. No information on the variations in bubble size or air concentration was 

given. The figures are in order of decreasing concentration and decreasing 

bubble size. Each plotted point was obtained by averaging 2 to 14 separate de- 

terminations. Each experiment was made with a single bubble size, except for 

the experiment whose data are shown in Figure III-27d; this latter experiment 

was made with a mixture of two bubble sizes. Static pressure variation is ac- 

counted for by the separate theoretical curves for each mixture depth. 

Arthur DHittle Inc. 
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FIGURE III-25 REFLECTION OF NORMALLY INCIDENT SOUND FROM 
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Most of the velocity measurements were confined to frequencies less 

than the resonant frequency for the air bubbles in the mixture, but some were 

also made at greater frequencies. (See Figures II-27c and III-27g.) The agree- 

ment between theory and experiment can be considered satisfactory. The results 

confirm the theoretical predictions that 

1. as the incident frequency approaches the resonant fre- 

quency from below, the phase velocity decreases rapidly 

2. for incident frequencies above resonance, the phase 

velocity is greater than in the bubble-free water. 

Attenuation measurements did not always compare as satisfactorily 

with the theory as velocity measurements, but the theory certainly provides a 

useful estimate. The percentage discrepancy is considerably larger for fre- 

quencies at or above resonance than for lower frequencies, which might be over- 

looked because of the logarithmic scale. Some of this may be due to the equip- 

ment, which was not designed to handle such high attenuations. For frequencies 

below resonance, the attenuation measurements are generally a little larger 

than the theory predicts. Some of this was attributed to the noise level in the 

system. 

C. SCATTERING BY MARINE ORGANISMS 

Scattering in the ocean is due in part to marine objects such as fish, 

plants and debris. The principal effect of these scatterers is to cause volume 

reverberation (i.e., back scattering) and attenuation of the propagating sound. 

A convenient method of measuring such scattering is to radiate the 

sound in a succession of pulses, each of which is short compared with the in- 

terval between pulses. The transducer receives back-scattered energy be- 

tween pulses which has come from scatterers farther and farther from the 

source as time-after-pulse increases. It is expected that, since the pulse of 

sound forms an expanding spherical shell of constant thickness, it will gener- 

ally be scattered by many objects in the water and numerous scattered waves 

will arrive simultaneously at the receiver. The usual treatment is based on 

this assumption; that is, at any instant, scattering from many individual objects 

is superposed. It is convenient to define a scattering coefficient, m, of a unit 

volume, analogous to the back-scattering cross section of an individual scat- 

tener 

The phenomenon of volume reverberation has been studied at great 

length. Considerable data have been amassed, which have been very well sum- 

marized by Urick and Pryce (Ref. III-41) and will not be presented here in detail. 

Arthur D Little, Ince. 
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Much of the work has been directed towards studying the variation of m with 

changes in volume and frequency. The nature of the data collected varies 

greatly from study to study, but usually the reverberation level is found to 

peak at certain frequencies. These peaks are believed to be caused by scat- 

tering from marine organisms. The data also show a gradual decrease in the 

volume scattering coefficient with increasing depth, except for a pronounced 

peak corresponding to depths in the range of 200m-400m. This has led to the 

discovery of the so-called deep scattering layer which is believed to consist 

of marine organisms. 

To explain the experimental data, we must take recourse to the models 

of scattering from a fluid sphere or an air bubble treated earlier in this chapter. 

Admittedly most marine organisms are not exactly spherical, but for small scat- 

terers (ka << 1) shape is not too important, and for larger scatterers (ka ~ 1) 

whose scattering is shape-dependent we still have no better guide. 

The model based on a fluid sphere does not take into account the flex- 

ural properties of the skin or carapace of marine organisms. To consider the 

effect of this, Machlup (Ref. III-25) studied scattering from a spherical elastic 

shell containing a fluid. His theoretical results indicate that for incident wave- 

lengths of the order of magnitude of the radius of the sphere, the behavior for 

thin shells is similar to that of the fluid sphere alone. For longer wavelengths, 

a correction may be computed, good to terms in the first power of the ratio of 

the thickness to the diameter of the shell. 

These models, though they apply strictly to spheres, may be used as 

a qualitative guide for testing the properties of various possible sound scat- 

terers. For instance, Hersey and Backus(!) cite work which points out that 

certain euphausids contain a globule of oil which might account for the scatter- 

ing observed from deep scattering layers. This oil was found to be 15% more 

compressible than water at the same depth. The globule has a radius of the 

order of 10°? m. Based on (III-15), its back-scattering cross section(2) would 

be of the order of 2°10°**m® at 20 kc/sec. Based on the scattering or rever- 

beration levels detected, this would require a population density of about 10* 

to 10° such scatterers per cubic meter. Such concentrations are extremely 

unlikely, and the euphausids' oil globules are, therefore, a very improbable 

explanation of the deep scattering layer. 

The TeOll, I8eii6. MMS) 

2. In this case half of the scattered energy is back scattered. 

a 

Arthur D Little, Inc. 
$-7001-0307 



III-64 

Another example is furnished by the swim-bladders of fish. A previous 

section of this report considered the scattering of sound by air bubbles. Fora 

single bubble, the scattered intensity has a peak at the incident frequency f, 

given by (III-22), which may be rewritten as 

3Yp 
ihe = S \ 2 (III- 39) 

(e) a 5 

where a is the radius of the bubble, Ds the pressure on the bubble and 0, is the 

density of the water. The intensity of sound scattered in the ocean often has a 

pronounced peak at some particular frequency; thus, there is strong reason to be- 

lieve that the scattering is caused by gas-bubble scatterers. Likely candidates are 

fishes having gas-filled swim-bladders. The swim-bladders are not generally 

spherical in shape, but nevertheless the properties of spherical bubble scatterers, 

as a function of hydrostatic pressure and bubble size, are a useful guide for specu- 

lation about the size of the fish and their behavior during migration in depth. 

Suppose that the gas-filled swim-bladders are spherical in shape and be- 

have acoustically like free bubbles. As the fish swims from a shallow to a deeper 

depth, its bubble is compressed and its buoyancy decreases. Consequently, it may 

take gas from solution in the water and increase the gas in its swim bladder to ad- 

just its buoyancy on the way down. If it reacts to keep its swim-bladder the same 

size, then its resonant scattering frequency will vary as 0) ® As it returns to 

shallow depth, it must then vent or absorb gas from the swim-bladder to maintain 

approximately neutral buoyancy. A second possibility is that the fish allows its 

bubble to compress and expand with descent and ascent. This implies that the fish 

can tolerate being heavy at maximum depth. Assuming constant temperature, 

4 E 
TT 3 a? p is a constant, hence 1/a varies as ps, from which we have 

/e 

ae ee | (III- 40) 

since the density changes very slowly with depth. Generally, large migrations in 

depth amount to considerable changes in temperature as well. Almost everywhere 

the ocean temperature decreases with increasing depth below the isothermal layer. 

The effect of temperature on 1/a is approximately as T “°. Usually the tem- 
perature change will have the effect of reducing the frequency change by a small 

amount--of the order of 2% for a temperature change of 20°C. 
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The swim-bladders of bathypelagic fishes are not generally spherical 

but are more nearly prolate spheroids. Furthermore, they probably do not be- 

have strictly as ''free"’ bubbles but are constrained by the body of the fish. Scat- 

tering by a prolate spheroidal bubble can be shown to have a resonant frequency 

which varies as De ? if the bubble size and shape remain constant. If the gas 

content remains constant and the bubble is free to compress in all directions, 

then the resonant frequency varies as p® ® as for the spherical bubble. How- 

ever, if the bubble is constrained so that it will not shorten its major diameter, 

but will compress by becoming "slimmer," then the resonant frequency varies 

very nearly as p. The latter possibility is likely, because the structure of the 

fish leaves it freer to compress in this way. 

The above two possible modes of behavior for the swim-bladder require 

considerably different biological mechanisms. There is considerable controversy 

as to whether such behavior is anatomically at all possible, and if so, which, if 

either, exists in the types of marine organisms picked up in dragging operations 

in the deep scattering layer. Further details are given in Hill (Ref. III-15). 

No experimental studies have been made of single specimens over a 

sufficiently great frequency range to permit-the evaluation of simplified theo- 

retical models. Some scattering cross sections have been reported by Albers 

(Ref. III-1). No frequencies are given, but presumably these are the resonant 

cross sections. The values given by Albers are 

Shrimp (Palaemonetes) Doe, © iO) 

Shrimp (Panaens) 6E 561s 10s 

Scup 368 © IO > 

Squid 5533 - 10m 

Sea Bass 4.4 -10% 

Hersey and Backus (Ref. III-15) have studied the relationship between 

peak sound scattering frequency and depth during the vertical migration of deep 

scattering layers. The relationship that would hold if the swim-bladder and its 

gas were responding passively to changes in ambient pressure (III-39) was ob- 

served during both a sunrise and sunset migration. This seems to imply that the 

gas content of the swim-bladder is kept constant, even though this causes the fish 

to be at neutral buoyancy only at one point of its depth range. 

The relationship between variation in pressure and frequency of maxi- 

mum scattered intensity that would be expected if the swim-bladder contents were 

being adjusted to maintain neutral buoyancy was observed only during sunset mi- 

gration. Thus, it seems that some bathypelagic fish are able to absorb swim- 

bladder gas at a rate which would allow them to maintain neutral buoyancy during 

Arthur D Little, Inc. 
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an ascent of 200 meters in about one hour. It is probable (though not observed) 

that such an animal can effect the converse operation during a sunrise descent. 

Scattering by Many Organisms 

Up to now we have considered only scattering by single marine organ- 

isms. We proceed to consider scattering by many organisms. The approach is 

more qualitative than in the case of air bubbles. A scattering or reverberation 

coefficient m is defined as the power scattered by a unit volume per unit inten- 

sity of an incident plane wave, with the scattering being equal in all directions. 

There is some physical evidence from dragging operations to indicate that the 

population density of scatterers causing volume reverberation is normally of 

the order of 10-15 per cubic meter, and may occasionally be as high as a few 

hundred scatterers per cubic meter. This is low enough so that interaction be- 

tween scatterers, or multiple scattering, can be ignored. If there is no inter- 

action between scatterers, then the volume reverberation coefficient, m, is 

simply the sum of the scattering cross sections of the scatterers in aunit volume. 

Consider a transducer located at the center of a spherical coordinate 

system (r, 6, @) and assume that the energy emitted by the source per unit solid 

angle (8, ~) is described by F(T, 8, ~), where T is measured from the beginning 

of a pulse. The intensity of volume reverberation at the receiver at time t is re- 

lated to m(r, 8, @), the volume scattering coefficient of the medium, by 

FANS 2s 8, ) mx, 6 9)b@, 0) Ay rite) 
r? ge 

V 

where b(8, () describes the directional properties of the transducer as a re- 

ceiver and r = (c/2)(t- 7), where c is the velocity of sound in sea water. 

The following assumptions are implicit in Equation II]-41: 

- The sound velocity in the medium is constant. 

- The definition of m has the effect of averaging the 

contributions of individual scatterers. 

- A volume element begins to scatter sound at the 

instant it is insonified and stops when the pulse has 

passed--i.e., there are no time lags or storage of 

energy in the scatterer. 

S-7001-0307 
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- Scattering cross sections are small enough to neglect 

multiple scattering. 

- The average reverberation intensity at the receiver is 

equal to the sum of the average intensities due to in- 

dividual scatterers. 

- The backward scattering coefficient is independent of 

the direction of incidence of the beam. 

In general, one must solve or invert (III-41) to determine volume scattering co- 

efficients from measured reverberation intensities. 

Reverberation of a sinusoidal wave train radiated from a''search light" or 

piston-type transducer (i.e., ma directional source having one radiation lobe, the 

main lobe, much stronger than all others) and received by the same transducer has 

been analyzed by UCDWR (Ref. III-39). The directional radiating and receiving proper- 
ties of the transducer are considered to be identical, that is, F(T, 8, ~) can be written 

F(T) b (8%). Assuming a sinusoidal pulse of the form Po sin WT, we then have 

P. sin® 2n(ft-rf) 
ORONO ee ene 10* (III- 42) 

where p_ is the instantaneous pressure in dynes/cm® at a range r = 1 meter. 

Assuming the transducer has axial symmetry, we have b(®, 9) = b(®). If m is 

assumed to be independent of position 

TT 

2 
, 4 p 

iG) = See Oo om || BeGe (111-43) 
ct? 2pc 0 

fo) 

Using the experimental data, this equation was solved for m to give peak values 

close to3- 10” at depths of about 400m in the frequency range 10-80 kc. 

Machlup (Ref. III-15) has treated the problem of back scattering of the 

omnidirectional shock wave from a nearby explosion to both omnidirectional and 

searchlight receivers. Let F(T) represent the energy flux of the shock wave per 

unit solid angle. Assuming T<<tso that r = ct/2, the r integration can be 

performed. The total energy in the shock wave can be written as 

foo} 

E = 4n | F(t) dt (III- 44) 

{e) 
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Then (III-41) reduces to 

TT 

I(@) = ee [ee cos §)b (8) sin§8 d®@ (III- 45) 
A= 

(e) 

where r = ct/2 and m(rcos 8) = m(r, 8, ¢) if we assume that the scattering 

properties are layered horizontally and choose the vertical direction as the polar 

axis. Machlup then assumed b(8) = cos 9 and was able to carry through the 

analysis to solve for m in uote of I and une other parameters to obtain peak 

values of m ranging from 10 °m~? to 10 °m’?. Figure III-28 shows a graph 

of m versus depth, based on measurements of 15-ke components of the explosive 

sound. Further details, together with an excellent bibliography, are given by 

Hersey and Backus (Ref. III-15). 

DEPTH (m) 
150 200 300 400 600 800 1000 

Toh ele to 
neyoume ~~ 
COEFFICIENT 

0.1 OS) OP ONT OS OS 10 ~ 2.0 
TIME AFTER SHOCK WAVE (sec) 

FIGURE III-28 VARIATION OF VOLUME SCATTERING 
CROSS SECTIONS (AFTER HERSEY AND 
BACKUS) 

D. SCATTERING FROM THE SEA SURFACE 

Scattering from the irregularities of the sea surface plays a dominant 

part in the propagation characteristics of the ocean. Unfortunately, however, a 

realistic description of the ocean surface makes the analysis of sound scattering 
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extremely difficult. The irregularities of the surface are typically of the same 
order of magnitude as the wavelength of the sound, i.e., between 15 cm and 

15 m, and we have observed earlier for volume inhomogeneities that this is a 
bothersome range for analysis. In this range, scattering is highly directional, 
and dependent on the detailed shape of the scatterer. At the same time, the 
surface is constantly changing shape, and a realistic description must be sto- 
chastic in nature. Finally, the motion of the surface causes regions of turbulence 
just below the surface, and disturbances such as white caps or rain (spray) cause 
air bubbles in the surface layer. Reflection from this composite surface naturally 
defies an accurate analysis. 

As a consequence, the work in this field divides sharply into two kinds: 
on the one hand, experimental work on scattering from the real ocean surface; 
on the other, theoretical analyses of scattering from anidealized surface (usually 
sinusoidally corrugated) supported by controlled experiments in pools. The one 
notable exception is the recent work by Marsh, et al. (Ref. III-27) which attempts 
to analyze scattering from a stochastic surface and < compares in a very limited 
way its theoretical results with the experimental data obtained in the ocean. 

The ocean experiments have been well summarized in review articles 

by Urick and Pryce (Ref. III-40), and will therefore not be described here. Very 
little has been added since their survey in this area. Instead, we shall concentrate 
on giving some unity to the disjointed theoretical treatments, and hope that this 
will enhance understanding and stimulate the application of the present theory to 

explain scattering experiments from the actual ocean surface. 

All authors attack essentially the same theoretical problem. Consider 
a plane wave* in the water 

# i k@x+8y+yz) - iwt 
Pine (x,y,z,t) = Pinc © (III- 46a) 

(Note: k = == OPP? Sil) ; 
{e) 

*The upward vertical direction is taken to point along the z-axis, and the sea sur- 

face is on the average parallel to the (x,y) plane. Because of the special signif- 

icance of the z-direction, we shall employ (x,y,z) coordinates rather than 

OS es ). The water lies below the surface, i.e., z <S (x,y) denotes a point 

in the water. The z-component of the propagation vector of the incident wave 

points upward along the z-axis. 
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which is incident on the ocean surface 

ZnS) XH) (III- 46b) 

The ocean surface supposedly changes shape only very slightly during one cycle 

of the incident sound wave, so that the motion of the surface may be ignored in 

the scattering analysis. The pressure distribution of the resulting scattered 

Wave Deo (x,y,z,t) must satisfy the wave equation. Furthermore, the total 

acoustic pressure p = Pinc * Psc must satisfy an appropriate boundary con- 

dition on the surface S(x,y). Because of the very poor impedance match between 

water and air, the boundary condition is approximated very closely* by requiring 

the total overpressure at the surface to vanish, i.e., letting the surface be a 

pressure release and allowing no sound to be transmitted to the air. Finally, 

p_. must be an "outgoing" wave, i.e., its energy must flow from the surface 

downward, and Dea must remain finite as z>- ©. ‘These three conditions 

iy 72g ei fa 8°Psc 

sc Ce @) ee 
oO 

- + = = 2 Pinc Poo O on z = S(x,y) 

Be P., is outgoing and remains finite (the so-called radia- 

tion condition). 

completely define the theoretical problem. ‘The question of interest is: how does 

Pg, depend on the characteristics of S(x,y)? 

*This may be seen by studying reflection of a sound wave pj;,. = eik(ax+yz)-iwt 
from a plane interface between water and air. We recall from Section III-B that 

the ratios of density and sound velocity for water and air are approximately 
’ 1 

9) c 

g=—> esxlOMoe h= = = 0.2. The incident wave causes a reflected and a 
(e) 

transmitted wave, Prefl = Dep eik(2x-yz)-iwt and Dicey =O Uy Cay AMIME, 

If we require the total pressure and normal velocity to be continuous at the inter- 

-a2 

1-gh J 

: ; ileln ei 5 -3 
face, we find readily thatp, = =———~==——5. Since gh ~ 0.26x10 “, the 

hee 
reflected wave has a pressure which lies between 99.948% and 100% of the incident 

pressure, depending on a. 
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Most authors share the same general approach to the problem. They 

regard the scattered wave as a superposition of plane waves emanating from the 

surface and having the same frequency W as the incident wave. If they are to 

satisfy the wave equation, these plane waves must have the form: 

elk x+U y+vz)-iwt 
Panel. r where h® +u? +v? =1 (III- 47) 

In particular, for given 4 and , we must choose the root v such that 

the radiation condition is satisfied. This means that we desire: 

T (i.e., V negative) if v real 

arg V = arg Ss Wie 
3m 
9 (i.e., iv positive) if v imaginary (III- 48) 

The scattered wave is now written as a superposition of such plane waves: 

ikl NeDUP) 1 

-c 

Psc 

Finally, we apply the boundary condition that the total pressure vanishes at the 

surface, and obtain an integral equation for ¢ (A ,u), given S(x, y): 

fee) 

: 2 2 

elk (axts y+vS(x,y)) + \| dA dud, ryelk Pxtny+stoy) ae -U. ‘Lg 

INE (III-50) 
-@ 

Different authors use different schemes for obtaining approximate solutions to 

(II1I-50). All are especially interested in the value of $ (2, 8), i.e., the strength 

of the scattered wave in the specularly reflected* direction. Most authors confine 

themselves to sinusoidal surfaces, although their approaches are generally valid 

*The direction in which a plane wave is reflected by a plane interface. 
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for periodic surfaces and could therefore be used as well for the more or less 

cnoidal surfaces* to be expected from the theory of propagation of surface waves. 

Marsh, however, obtains an approximate solution in terms of the correlation func- 

tion (or equivalently the spectrum) of the surface. 

1. Periodic Surfaces 

When the surface S(x,y) is periodic, the scattered wave p_. can be 

represented by the superposition of a countable number of plane reflected waves. 

In other words, the function ¢ (,U) becomes discrete. This may be seen as 

follows. 

For simplicity in the argument, let us restrict ourselves to a "cor- 

rugated" periodic surface, generated by straight line generators parallel to the 

y-axis and periodic with period § in the x direction. The geometry is illustrated 

in Figure III-29. 

z=S (x) zt x 

kan€) 

WwW 
P, =(x+n€,z, t+ 

FIGURE III-29 SCHEMATIC DIAGRAM OF A PLANE WAVE INCIDENT 

ON A CORRUGATED SURFACE 

If the plane wave 

elk @xtyz)- iwt 
? AU =, IlI-51 

Pinc C2) Pinc ( ) 

Bucs fen A -iwt 
is incident on this surface, it causes a scattered wave Pee (x,z)e 

*]. J. Stoker, ''Water Waves," Interscience Publishers 1957. 
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Suppose that we irradiate the surface instead with the retarded incident wave 

t 
fesse e eae : elk ( x+y Z)-iWt +i =p, Ooz.tel (111-52) (7) iz 

Pinc (x,2,t) Pinc 

In other words, Pinc is identical at the two space-time points Fe = (x,z,t) and 
kan§& 

Ww 
Dey = (GrannllS. 945 (iar ). The incident wave will produce a scattered wave which 

has also been retarded by T: 

T) 
c p: (x,z,t) = Poc (zen vere (III-53) 

Instead of shifting the time axis, we could consider a translation of the x-axis by 
an integral number of periods n§. This translates the surface into itself. The 
corresponding incident wave is 

ikan & i ote ar = (§) =p ik (ax an§+yz)-iwt 2s Dyas (x,z,t)e (III-54) 
inc inc 

and causes a scattered wave 

iwt -i + Den (xtn§,z)e gitee e (III-55) 
SC 

(n§) 
inc 

sion of Pinc? retarded by an amount T = kan§&/w. The surface has remained 

However, we note that p could equally well be regarded as a retarded ver- 

the same, since S(xtn§) = S(x), and so we expect that the scattered waves 
will be the same, i.e., 

ME) SV kenb/ a) (III-56) 
Pc sc 
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We could alternatively have written (III-56) as: 

= 4 +) = Proc (x,Z,t) Poo (xtn§, z, ttkan€/w) (III-57) 

Thus, the scattered wave is the same at P, and P,. Substituting (III-53) and 

(I1I-55) in (III-56), we find: 

akn & 
i = Pog Z)E = p,m, z) (III-58) 

It follows that Devs (x,z)e 1% must be a periodic function with period §; there- 

fore, it can be expanded in a Fourier series: 

oa Gepig SORE = se A (@) aos (111-59) 
nh=- fee) 

However, (x,z) must satisfy the Helmholtz equation 
Psc 

oes + oi + k? = 0 III-60 
Ox” Psc dt Psc Escim C60) 

and this permits us to solve for the functions A,(z). In fact, each of the terms, 

a (z) eae elkax must satisfy (III-60) separately, since the functions 

(22 jen = elkOX are linearly independent. Consequently, An (z) satisfies: 

a i 2 Denia \ ; 

x a ; = IlI-61 dz? A_() k (: Zk ) 1 A) 0 ( ) 

Let us introduce the sequence of direction cosines: 

2Tn 

n Ek 
= 3 = yA Mere) (III-62) 
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As stated in (III-42), the y, must be chosen so that 

Y SO tees @ (III- 63) 
n n 

iy 2 O che il SC <0) 
Nn nh 

Then 

A (2) = Ayn (III-64) 

The scattered wave may therefore be written as 

eo 

ik(a x+ (ei) = se A elk Tne (II1- 65) 
n=-© 

The components corresponding to values of n for which 1- am 2 0 are plane 

waves propagating downward with direction cosines (a n? Veale For n such that 

1-a, <0, the corresponding component of scattering is a plane wave propagat- 

ing in the x direction but with an amplitude decreasing exponentially as z de- 

creases. 

In order to solve the scattering problem in this setting, it remains 

to obtain the coefficients A_. There are several ways of doing this, depending 

upon the approximations used and the assumptions concerning scattering ina 

neighborhood of the surface. One usually studies the sinusoidal surface 

z = S(x) = h cos px (III- 66) 

irradiated by an incident wave 

oy Big eee tia) (III-67) 
inc 
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277 
The wavelength of the surface is § = D> hence the direction cosines, 4p, 

are given by 

CO Ola are (III- 68) 

iwt 
? Since this wave is travelling upward and the time dependence is given by e 

we must have y = 0. The boundary condition which must be satisfied is 

Pinc (x,S(x)) + Poo & SCO) = 0 (III- 69) 

An expression giving any particular coefficient A, in terms of the others can be 

obtained by first factoring out the term eik(@x+Y~Z) from the sum PineuueDace 

Then, on the surface z=h cos px, the boundary condition gives 

2 os ; 
elk (Y Yh COS PX | ys Ae [> k(y Y Jn cos m| 6 (111-70) 

n=-2 

Using the expansion 

ah She dsy px > i cee easy (@) (III-71) 
m=-2 

it can be shown that 

t n 
i So = = i - I-72 A, =-Jo[y,- v= DP ALT, |v, - Yet (111-72) 

n=-2 
6 

n7f-t 

If kh is so small that all the terms involving a Bessel function of order greater 

than zero may be ignored, we obtain the so-called Rayleigh approximation 

A Sey, [i ve (111-73) 
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A different approach to this same problem requiring a less strenuous 

assumption on the Bessel functions is used by La Casce and Tamarkin (Ref. III- 

18). If we factor out the term eikax note at the same time that Mee ae anrVis the 

boundary condition (III-69) becomes 

. 1 + 

Bt eS COS DE oy > NGC om ie 3 \ h COs px _ (I-74) 
m = =O 

m #0 

Using (III-71), this may be written as 

m inpx .-m inpx _ yy jue PJ (kyh)+ A, + > we A nem KOM TY) e 0 
n=-0 n=-o - =-0 

“ae (III-75) 

For n = 0, -1, 1, we have the following: 

n= 0 

Pt 1 (2kyh) + A, +iA Jylkncy_, +y)]+i A, J -.[kn(y, +) 

_-m + > NY [kn (y + y)] ="0 (III-76a) 
mm m 

m=-@ 

|m|= 2 

n=1 

: -2 iJ, (@kyh) +A, J, fin cv, i: y+ AL. J {kn + v)] 

a = III-76b oe PT ao ee (I1I-76b) 
m=-@ 

ple 2 
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Nee (2kyh) +i? A, J_ [kh (v3 + y+ A_,Jo{kh(y_, +y)] 

foe) 

- » 1 ANS 20 ws + v)}= 0 (III-76c) 
m=-@ 

| m[> 2 

Then La Casce and Tamarkin assume that kh is so small that Bessel functions. 

of order greater than one (instead of zero as before) can be neglected. Further- 

more, they assume that A, is also very small. Then, from (III-76c) and (III- 

76a) one obtains the approximations 

(III-77) 

A oT Mey (2kh vy) 
al, 

These expressions for A_ and A_ , indicate an interaction between the specu- 

larly reflected and higher order components. For frequencies so low that y, 

is complex, A, is given only by 

A, ~~ J, (2khy) (III-78) 

i.e., there is a cutoff frequency below which the specular magnitude is given 

simply by the Rayleigh approximation. 

Heaps has determined values of the A, under the assumption that 

A,=0 for n such that yy, is imaginary. This is equivalent to assuming that 

all the reflected radiation is in plane undamped waves. For any particular 

surface, Equation III-72 becomes a finite set of linear equations for the A,, 

which may be solved by the usual methods. 
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Following an approach similar to that used to obtain the equations for 

the A,, it can be shown that MS (|p|), the mean square value of the total pres- 
sure p at the surface, is given by 

cs) fo) 
2 

Ms|pl= >, | Jn fen y, > v9] + se An J, -_{kh(y,~ ej] all-79) 
m=" n=-0© 

Since p = 0 on the surface, it follows that MS(\p|) =0. The evaluating (III-79) 
with the values of A, obtained from the finite set of linear equations shows the 

effect of neglecting the damped plane waves. 

From (III-6), the intensity, I,, in the z direction of a plane wave 

elk (axt YZ) v 

2 
Povo 

2 
=/\ is given by I, = |A| . The difference between the 

energy incident on the surface and that reflected in plane undamped waves is 

therefore proportional to 

ag ST Al” y, (III- 80) 
nh 

where the summation is over n such that | a ea <1. Then 1 - = is the frac- 

tion of the incident energy contained in the plane undamped waves and (E/y) is 

the fraction absorbed. 

Table III-3 gives the results of some calculations done by Heaps (Ref, 

III-13) for a surface of the form S(x) = h cos px with h = 0.15 cm and p = 3.08 

cm~*. The coefficients Is were obtained from (III-72), where the summation 

is only over n such that lo as | < 1. The appearance of non-zero values of 

MS (| p|*) is a consequence of neglecting terms in (III-72) involving larger values 

of n. The value of 1 - E/y gives the fraction of the incident energy reflected in 

plane undamped waves. The figures in parentheses are the corresponding quanti- 

ties using the Rayleigh values for AL 

From Table III-3a, it is apparent that at normal incidence (6=0°) the 

listed values of A, satisfy the condition MS| p|* = 0 (and so also the condition 
of zero surface pressure) much better than the Rayleigh values do and, in fact, 

account for about 90% of the incident energy, whereas the Rayleigh theory ac- 

counts for only 68% of the energy. Table III-3b suggests that, at an angle of 

incidence of 40°, there is little to choose between the two theories. In either 

case, an appreciable portion (10% or more) of the incident energy must be re- 

flected in other than plane undamped waves. 
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TABLE III-3 

REFLECTION COEFFICIENTS AL FOR THE 

SURFACE S(x) = 0.15 cos 3.08x AND INCIDENT ANGLE 8 

(a) 

6 =0° 

(Normal Incidence) 

kh 0.5. 0.924 MB250) ,fodisa 78 

A. 0.864 0.868 0.019 0.240 0.376 

iAy 09 =0.684 0.575 0.8 -0.188 

ae 0.973  -0:453 0.587 -0.558 

aH; -0.241 -0.364 

Ms| p|” 0.0 0.019 0.037 0.0 0.023 
(0.053) (0.086) (0.062) (0.053) (0.064) 

1-E/Y 0.898 0.824 0.900 0.918 0.808 
(0.664) (0.677) (0.686) ~—- (0.684) (0.683) 

(b) 
8 = 40° 

AG -0.840  -0.496 D198 0.178 0.016 

-iA_, 0.354 0.520 0.520 0.514 0.326 

iAy -0.650 -0.539 
Sis 0.263 O.893 0.460 -0.491 

iA-s 0.065 0.168 0.254 0.331 

Reg O82 0.088 -0.149 

APs 0.009 0.036 

Ace -0.002 

Ms| p|? 0.139 0.354 0.467 0.064 0.059 
(0.138) (0.357) (0.479) — (0.095) (0.167) 

1-E/ y 0.860 0.683 0.610 0.885 0.740 
(0.710) (0.810) (0.691) ~—- (0.768) (0. 802) 
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Using the expresssions (III-67) and (III-65) for Pinc and Pog to- 
gether with (III-71), it can be shown that for a surface of the form 
S(x) = h cos px, the boundary condition DEE = 0 is also equivalent to 

co 

PA yon In (KA Ye) = -™ J (kh y) (III-81) 
n=-0 

: = i t Then, assuming AL to be of the form AL = an (kh) , Heaps (Ref. III-14) 

shows that A__is given by | t} =| a 

t 

ne: (iy )7 A a = -(iy) - n-j n-j, t-r (III- 82) 

2 e¢een) |! [B¢em) | “ret 2" [Berty | [a(e-g) 11 

where j is such that|j] s r, |n-j| $ t-r, with r and j both even or odd. 
Neglecting (kh)* and higher powers, this gives 

A, =  -1+#(kh)? y (yi + y.1) 

=1 Ag, = i(khy) - i(kh)® y EF Wt a(yvatyat Yar Yeo) - # Yan * 3 Yea ] 

Aug = #(kh)* y va, (III-83) 

1 Lis 
Ag, = ~ i(kh)? y [57 VER Va ae Yen | 

Heaps (Ref. III-14) also considered the problem of scattering from a sinusoidal 
surface when the incident wave is a spherical wave centered a finite distance d 
below the surface. The scattered wave is represented in the form 

ikr 

p.=ky al B encyim (III- 84) 

m=-0 

When powers of (kh)* and greater are neglected, the B., are given by expressions 
similar to (III-83) except that instead of kh, the term i appears, and instead of 
Xho the terms 
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anal 

g = [k? - (a-np)® - b? iF (III-85) 

appear, where a=k sin 8 cos ¢ and b=ksin §sin 4, and(r, 6, 6) are a system 

of spherical coordinates. No computations or experimental results are given. 

Using this model, Heaps also obtains expressions for the intensity and average 

intensities of the resultant field. 

The so-called Rayleigh approximation requires that the surface irregu- 

larities are small in comparison with the wavelength of the incident radiation. 

Brekhovskikh (Ref. III-18) has developed a theory which permits large irregulari- 

ties, but assumes that at the irregular surface the sound field can be specified in 

terms of the laws of geometric acoustics. At each point on the surface, the sound 

field is assumed to be the same as if the reflection from that point were to occur 

from an infinite plane tangent to the surface at the specified point. In other words, 

the distribution of the scattered field over the surface is assumed to be that which 

could be expected on the basis of considering only one incident wave while neglect- 

ing secondary scattering from individual sectors of the surface. By specifying the 

field at the surface in this manner, it is possible to use the Green (or Helmholtz) 

formula to compute the field at points away from the surface. 

Consider a surface of the form z = S(x) and an incident wave given by 

~ ik(axt yz) (III- 86) 

At the surface the scattered wave p n is given by the boundary condition: 

Pinc Ix S(x)_ ¥ Pe x S(x) | Sc 

Thus, we have 

elk [ax+ yS(x)] (111-87) 
Psc E s(x) | a. 

° Psc 
vara where the derivative is taken along the normal to the sur- 

face. Using the condition of locally specular reflection, this derivative is given 

on the surface by 

We also require 

op : 
* SW eye) eik [ax + yS(x)] (III- 88). 

where (a,c) are the direction cosines of the normal to the surface. Let r = 

X1, yi, S(x1) | be a point on the surface, r = (x, y, z) be an arbitrary observation 

point, and k= (k,, ky k,) be an arbitrary propagation vector. We use the 

relation 
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el igorml ey A ' bean Gane bowel ae ae e 1 \ { eB x y uf | : W (III- 89) 

Z -c© -o@ 

in the Helmholtz formula 

1 Poof x lz-n y fk lexi 
P5o(% y, 2) aire aii Tal SD Ee a TT ds_ (III-90) 

S 

and substitute (III-87) and (III-88) to yield: 

1 

abs Sp) = 4m | 
\ k | (a-a')at(y- y')c | sens tS) 

Pee, Z C 
S = = 

(III-91) 
i(ka “Kap gk ya + (ky - k,) S(x,) 

-e Sy dys 

where (a', 8', y') are the direction cosines of x'=4,. If the function S(x) 

describing the surface is periodic, with period zl , we can set 

oo 

i(ky - k_) S(x,) inpx, 
_k | (a-a')at(y-y')c Z ~ Sk Ik | : e Ae (III-92) 

Z N=-@ 

Substituting this in (III-91) gives 

‘ Poe i(k xtk y+k, 2) (III-93) 
Pe. OG y,Z)h= \ { \ Ae y 

4n? 7 
n=-~7 S§ -0w -a 

i(ka-k +np)x1 ak Ya 

5 dx, dy, dk. oe 
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Then using the properties of the delta function, we obtain 

is ik(o,,x+y,,2) (III-94) 
Poo SY 2) = ) Ae 

n=-o 

with a, and y, given by (III-62). Thus, we obtain an expression giving p,, as 

a sum of plane waves having the direction cosines obtained for general reflection 

from a periodic surface. In particular, suppose the surface is given by 

S(x)=hcos px. Since Je Sap ses is the generator for the Bessel function, cf (III-71), we 

can write (III-92) as a series in Bessel functions. Substituting this in (III-93), 

and after some analysis, we obtain the coefficients 

(oa yay sy) 
A. ee EF [«v-y,)xn] (III-95) 

n 2 n n 
2p (Y=) 

The basic limitation of this approach is associated with the shape of the uneven 

surface. The nature of the irregularities must be such that overshadowing does 

not occur, i.e., the surface should be locally flat.. Overshadowing is assumed 

to occur when the angle of incidence is greater than the angle between the normal 

to the plane z=0 and the tangent to the surface at the point of maximum slope. 

The larger the slope, the smaller must be the angle of incidence to prevent over- 

shadowing. The criterion of local flatness, when applied to those portions of the 

surface with the least radius of curvature, can be shown to reduce to the in- 

equality 

a cos 4>> 6 es (III-96) 

where a is the angle of incidence. 

We first discussed the Rayleigh formulation which was based on the 

assumption that kh<< 1, where k is the wave number of the incident sound and 

h is the height of the surface roughness. The Brekhovskikh model just con- 

sidered assumes that in a neighborhood of the surface the reflected sound follows 

the laws of geometric acoustics and behaves as though scattered from a plane 

tangent to the surface. Another formulation, due to Lysanov (Ref. III-22), is 

based on the assumption that the scattering surface satisfies the conditions 

= — 1 5 kh — -97 
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where the surface S is generated by lines parallel to the y axis and (25) 
max 

is the maximum value of the slope. The total field p = Pras +P hee at an arbitrary 

point (x, z) can be expressed in terms of the field and its normal derivative on the 

scattering surface, using Green's formula. For the two dimensional case, this 

is given by 

s i SC) (2), \ 8p 
p(x, z) = Pinch Zz) + 7 \ p Sai H (kr,) Hy (kri) > ds (III-98) 

S 

where r, is the distance between the point of observation (x, z) and the variable 

point (x,, S(x,)) on the surface. The integration is along the curve obtained by 

cutting the uneven surface S(x) by the plane y = 0. 

The boundary condition used in this model is the same as in the others, 

i.e., p=0 for z = S(x). Then, the scattered wave is given by 

i fh 
Poe pi. 4 | H ) (kr,) f(x;) dx, (III-99a) 

where 
dpa 1 dp See Mize =e III-99b 

f(x) dn n. OF a dn ( 

For this we must know f(x,). This is obtained by solving 

PinclX2? S(x5)) = 7 j HB (k ry) f(x,) dx, (III- 100) 

where (xz, S(xz)) is another arbitrary point on the surface, and r, is the distance 

between (x,, S(x,)) and (xz, S(xz) ). 

Using the approximation (III-97), (III-100) can be written as: 

Ping (x2? S(x2) ) =5 ] Be (k| x2- x,| ) f(x.) dx, (III- 101) 

In order to solve this expression for f(x,) explicitly, suppose the incident wave is a 

plane wave of the form 

i -102 Bisbee Bye eik(ax + yZ) (III-102) 

inc 
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20 eiky S(x) 
If the surface S(x) is periodic of height h and period a ; may be ex- 

panded in the form 

ik YS i ee > Bieues (III- 103) 
n=-o& 

Then PinclX2? S(x2) ) may be written as 

(es, SOG) = Bg (111-104) 
Pine eo pee n 

n=-o 

al . 

np 2\2 ; ; 
= —., = - ? > where oO a+ k Let Ve (1 a) As in the previous cases, when On 1, 

a is chosen so that i Th >0. Then, using (III-99b), we can obtain an expression 

for f(x,). Substituting this in (III-101), and after some analysis, we find that Pec 

is given by 

= ik(a x + Y 2) 

Pool Z)) = ) AL e (III-105a) 

n=-0 

where 2 i 
1 " 

aah Nig » : Blot te Vests (III-105b) 
==—0 

NI : ; 
If S(x2) is of the form S(xz) =h cos pxe, then B = (i) J (kh i ine B is of 

order (kh ye Neglecting terms of order greater than (kh Y)* and assuming 

ee ne S F 
Vert ~ y(i.e., k>1), we obtain 

A ~ -1+(khy)? 
0 

Ree ot III-106 BN a ~ ikhy ( 06) 

1 2 
AL. ~ 5 (kh Y) 
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The different approaches thus far described can be summarized as 
follows. The Rayleigh-La Casce and Tamarkin-Heaps approaches basically 
start with the scattered wave p,, expressed as a sum of plane damped and un- 
damped waves. The surface is assumed to be of the form S(x) = h cos px. Using 
the condition that the total field must be zero at the boundary and employing the 
expansion (III-71), an infinite ‘set of simultaneous equations is obtained for the 
coefficients A,. Explicit solutions for the first few coefficients are calculated 
for small values of (kh). 

Brekhovskikh and Lysanoy initially express Pg¢ in terms of a Helmholtz 
integral. Then, assuming periodicity of the surface, they also obtain an expression 
giving po, as the sum of plane waves. The coefficients A_ are obtained as explicit 
functions, i.e., they are not expressed as functions of each other. The Lysanov 
formulation gives the coefficients as an infinite series involving Bessel functions, 
while the Brekhovskikh approach expresses the coefficients in terms of a single 
Bessel function. 

Parker (Ref. III-33) has approached the surface scattering problem by 
using the spectral representation of the scattered wave given in (III-49). Without 
the time dependence, this is 

o.. = \ oe Oe ed) tn (III-107) 

where h* +" +\ = 1 and v2 0 if 1-* - u? = 0 and i v>0 otherwise, cf. (I-48). 
As in the other treatments, tHe incident wave is taken to be a plane wave of the 
form 

’ i II-108 ses olk(ax + yz) (III- 108) 
inc 

Then, the boundary condition that Pinc + Pgc = 0 at the surface becomes an integral 
equation for 4(A, UW), as given in (III-50). 

In his development, Parker works primarily with (x, y), the Fourier 
transform of ¢(\,uU). With z = S(x,y), he first shows that 

lim (x, y) = 8 (x,y) = - eK%% (11-109) 
S-0 
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when the incident wave is given by (III-108). Then, a representation for $ is 

assumed which is of the form 

iku(x, y) $ (x, y) = $5 (x, y) e (III-110) 

where u(x, y) goes uniformly to zero as S(x,y) vanishes. After considerable 

analysis, u is found to be given by 

gate 2 SOCHy i Deane eae (III-111) 

1 + S(x, y) » (se y) 2) aha 

n=1 

where § = tan (cos~'y) and (5. y) = ‘ signifies that the operator S(x, y)e= 

is to be applied n times. To obtain this result, it is assumed that certain terms 

can be neglected in solving a non-linear differential equation and that truncation 

of certain Taylor series expansions is permissible. 

The spectrum ¢(A,U) can then be written as 

1 a Teale, 3) ik LQ - a)x Hy | 

(A, u) = - ne \ \ e Ne dx dy (III- 112) 

=c 

If the surface S(x, y) can be expressed as a periodic function of x, with period 

= , then u also will be periodic and can be written as 

se) > } Baca (III-113a) 
n=-© 

with = 

es iku(x) _inpx 2 
BT rigs { e e d(px) (III-113b) 

“inf 
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Substituting (III-113) into (III-112) gives 

a(t) = = 261) s B 6() 5 G.e 2) (III-114) 

n=-o0 

which, when substituted into (III-107), gives 

= ik(a x + Y,2) 

Dae (az) = ) BO e (III-115a) 

n=-0 

where 

= wy) 
oo ‘ k 

(III-115b) 

ac 
ll 

CS 

1 3 

3% 
n—_— 

wir 

with the usual conventions (III-48) on the sign of y_. This is exactly the type of 

expansion obtained in the other approaches dealing with periodic surfaces. The 

coefficients are given as the Fourier coefficients of the function eikuQ) as in 

(11-113). 

Parker's development requires that S(x, y)= 0; thus, a sinusoidal one 

dimensional surface may be given by 

S(x) = h(1-cospx) (III-116) 

Then, it turns out that 

= > -1 ku Cy + Cc. sin(npxtb_) (III-117a) 

n=1 

where Dh a. 

CS a (III-117b) 
n 1 

_14(ph)? le 
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and @=tan(cos’*y). The quantities a, and b, are functions only of the parame- 

ter ph@. These functions are somewhat complicated and are given by Parker (Ref. 

III-33, pg. 680). If we assume phé <1, we need consider only the term for n=0, 1, 2 

in (III-117). Therefore 

ku(x) = Cy + c, sin(px + b,) + cg sin (2px + ba) (III- 118) 

Using (III-71), gu can be expanded as the product of two series of Bessel functions. 

Substituting this in (III-113b), B, is given by 

= -i(2b, - bz) 
Bane > Jen(e1) J, (ce) € (III-119) 

n=-0 

Recall that in terms of our usual notation, By =- Ao: Furthermore, for phés1, 

it turns out that 2b, - bz ~-27, and thus we have 

Al=- e Jon (C1) In (Ca) | (111-120) 
n=-0 

Since Cais of the order of kh, it follows that for kh small enough (kh<<1), we may 

ignore Bessel functions of order 2 or greater and therefore 

A, => Io (cr) Jo (ca) (III-121) 

This first coefficient is the only one for which Parker obtains even an approximate 

expression. 

As mentioned earlier, no work seems to have been done in relating the 

above theories to scattering observed in the sea. However, laboratory experiments, 

with artificially constructed wave surfaces give at least qualitative support to the 

theories. La Casce and Tamarkin (Ref. III-18) used a corrugated cork surface 

floating on water to give the sinusoidal pressure release. Several surfaces were 

used, with the incident sound at 10 kc intervals over the range 80 kc - 300 kc and 

various angles of incidence. Leporskii (Ref. III-21) made similar measurements 

using a totally submerged thin glass foil as a reflecting surface. 
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In both cases, very close agreement was found between the theoreti- 

cal and experimental scattering directions. La Casce measured these by noting 

the directions which corresponded to peaks in the reflected sound. He found the 

observed angle generally to be within 2° of the expected angle; only rarely was 

the difference as large as 3°. Leporskii, using a more precise technique, found 

even closer agreement. Leporskii's results are shown in Figure III-30, which 

compares the expected and experimental angles. The data reported is for inci- 

dent sound with k ~1.7mm_~* (for several different scattering orders), and for 

surfaces with p=~0.41 mm~*, h~1.0 mm. Figure III-30a refers to surfaces 

with sinusoidal corrugation, while Figure III-30b deals with sawtooth corruga- 

tions. (Other data of Leporskii relating to scattering directions is shown in 

Figures III-39 and III-41). 

Figures III-31 through III-38 show some of La Casce and Tamarkin's 

experimental results and compare these with the various theories. The data is 

for the amplitudes A, and A-,. Two surfaces are considered, each of the form 

S(x) =h cos px. Surface A has p = 3.12 cm~*, h =0.24 cm while surface B has 

p = 3.08 cm-* and h=0.15cm. Measurements were made at 0° and 40° angles 

of incidence. The order of presentation is as follows: 

Figure Component Surface Angle of Inc Theoretical Models Compared* 

III-31 A, A Ve pA Sho! 

III-32 Ay B 0° Ie Fy ohh 2 © 

III-33 A, A 40° PA Biya 

III-34 A, B 40° Is Zp Gy Sy 

III-35 IN A @e 2 8 

III-36 Boo B (aye LRP2EISeID 

IlI-37 ING A 40° ep2 eS 

III-38 A., B 40° i, 258 O 

*1. Rayleigh 3. Brekhovskikh Speileaps 
2. Rayleigh (La Casce) 4. Parker 

The experimental data exhibit a peaking, or nodal, behavior. All of 

the theoretical models predict this fairly well, suggesting that the Bessel func- 

tions used in the models are appropriate for describing the scattering magni- 

tude. All the models predict roughly the same behavior, and there is nothing 
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in the experimental data which indicates any one as being the most suitable. 

Heaps' approach, which neglects the damped waves, seems to give the best re- 

sults. The poorest agreement occurs for the larger angle (40°) of incidence. 

In general, experimental results for surface B agree with the theoretical pre- 

dictions better than those for surface A. This is to be expected; since B has a 

smaller value of h, the condition on (kh) and the slope will be better satisfied. 

Leporskii has compared his experimental data with the predictions of 

the Brekhovskikh (Ref. III-21) and Lysanov (Ref. III-22) models. Since the sur- 

faces and frequencies are quite different, the data cannot be compared directly 

with La Casce's. Furthermore, since results are presented for only a few fre- 

quencies, we cannot observe the variation in scattering amplitudes with changes 

in frequency, as shown in Figures III-39 through III-41. On the other hand, 

Leporskii's technique permits him to observe several of the scattering orders. 

Figure III-39 illustrates the theoretical and experimental agreement 

for the Brekhovskikh model, with the dotted lines giving the theoretical values 

and the solid lines the experimental results. The dashed lines are the bounda- 

ries of the sectors within which the Brekhovskikh theory is claimed to be valid. 

The arrows pointing towards the center of the pattern show the direction of the 

incident wave; the arrows pointing away show the direction of specular scatter- 

ing. As can be seen from the figure, the agreement is qualitatively good; how- 

ever, in each case there is significant disagreement for the magnitude of some 

scattering order. The conditions of the theory were well satisfied in the experi- 

ment; hence some inadequacy apparently remains in the theoretical development. 

Figures III-40 and III-41 compare the prediction of the Lysanov model 

with Leporskii's experimental results. Figure III-40 compares the magnitudes 

of the expected and observed amplitudes for various orders of scattering surfaces, 

frequencies and angles of incidence. Though not stated, the conditions are pre- 

sumably the same as in the analysis of the Brekhovskikh model. Figure II-41 

illustrates the scattering of various orders. As with the Brekhovskikh model, 

the agreement is qualitatively good; however, the scatter shown in Figure III-40 

suggests that there may still be significant discrepancies between theoretical 

expectation and experimental observations . 
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SURFACE A 
ANGLE OF INCIDENCE = 0° 

—o—RAYLEIGH 

———RAYLEIGH (LA CASCE) 

—°—BREKHOVSKI KH 
AT TERING 

—v— PARKER 6 MPLITUDE x EXPERIMENTAL DATA 
Ao x (LA CASCE) 

FIGURE III-31 EXPERIMENTAL AND THEORETICAL MAGNITUDES OF A, 

FOR SURFACE A 
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SURFACE B 

ANGLE OF INCIDENCE =0° 

—o—RAYLEIGH 

———RAYLEIGH (LA CASCE) 

—o— BREKHOVSKI KH 

SCAT TERING —v— PARKER 

AMPLITUDE ¢ —e— HEAPS 
x EXPERIMENTAL DATA 

(LA CASCE) Ao 

FIGURE III-32 EXPERIMENTAL AND THEORETICAL MAGNITUDES OF A, 

FOR SURFACE B 
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SURFACE A 

ANGLE OF INCIDENCE =40° 

—o— RAYLEIGH 

———RAYLEIGH (LA CASCE) . 

—°— BREKHOVSKIKH 

—*— PARKER ra 
x EXPERIMENTAL DATA (LA CASCE) 

CAT TERING 

AMPLITUDE 

Ao 

EXPERIMENTAL AND THEORETICAL MAGNITUDES OF FIGURE III-33 
A, FOR SURFACE A 
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SURFACE B 
8 ANGLE OF INCIDENCE = 40° 

—o—RAYLEIGH 
i —— RAYLEIGH (LA CASCE) 

2AT TERING —o—BREKHOVSK!I KH 
APLITUDE © pS EPIER 

Ao —e—HEAPS 
2 x EXPERIMENTAL DATA 

(LA CASCE) 

FIGURE III-34 EXPERIMENTAL AND THEORETICAL MAGNITUDES OF Ao 

FOR SURFACE B 
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9 

| SURFACE A 
8 ° ANGLE OF INCIDENCE= 0° 

—— RAYLEIGH 
7 ——— RAYLEIGH (LA CASCE) 

: x EXPERIM wipelera : : (LA CASCE) 

5 

4 

3 

2 

0 

FIGURE III-35 EXPERIMENTAL AND THEORETICAL MAGNITUDES OF 
A_, FOR SURFACE A 

S-7001-0307 



M-99 

SURFACE 

8 ANGLE OF INCIDENCE = 0° 
—o— RAYLEIGH 

U ——— RAYLEIGH (LACASCE) 

SCAT TERING —e— BREKHOV SKIKH 

AMPLITUDE & —s— HEADS 

A-| x EXPERIMENTAL DATA 

; (LA CASCE) 

FIGURE III-36 EXPERIMENTAL AND THEORETICAL MAGNITUDES OF 

A_, FOR SURFACE B 
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SURFACE A 

ANGLE OF INCIDENCE=40° 

—O— RAYLEIGH 

———RAYLEIGH (LA CASCE) 

CATTERING , —o—BREKHOVSKIKH 
AMPLITUDE fay x EXPERIMENTAL DATA 

A SOON Ma (LA CASCE) 

FIGURE IlIl-37_ | EXPERIMENTAL AND THEORETICAL MAGNITUDES OF 
A_, FOR SURFACE A 
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SURFACE B 
8 ANGLE OF INCIDENCE=40° 

——— RAYLEIGH (LA CASCE) 
7 

SCAT TERING 2 ine DE 
AMPLITUDE 6 —e— HEADS 

A- x EXPERIMENTAL DATA 
; (LA CASCE) 

y hk 

FIGURE III-38 EXPERIMENTAL AND THEORETICAL MAGNITUDES OF 

A_; FOR SURFACE B 
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AE sEXPERIMENTAL 
SCATTERING 
MAGNITUDE 

0.1 0.3 0.5 
Am = THEORETICAL SCATTERING MAGNITUDE 

FIGURE III-40 COMPARISON OF THEORETICAL AND EXPERIMENTAL SCATTERING 
MAGNITUDES FOR THE LYSANOV THEORY (AFTER LEPORSKII) 

p= .41 mm 

e=E XPERIMENTAL res mm 

pighes =1.34mm! 
Sheu napa 

0.2 04 0.2 04 .41 mm 

x EXPERIMENTAL h= 50mm 
e = THEORETICAL SAWTOOTH SURFACE k=1.75 mm! 

90 \ 90 y 90 
60 120 60 120 60 120 

ny Ke 
30 SO 150 

0.3 0.6 Q3 0.6 03 a6 

FIGURE III-41 THEORETICAL AND EXPERIMENTAL SCATTERING PATTERNS FOR 

THE LYSANOV MODEL (AFTER LEPORSKII) 
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2. Stochastic Surfaces 

The foregoing developments have all assumed that the sea surface 

possesses a definite functional description z = S(x, y). This description was 

generally taken to be one-dimensional and periodic in nature; that is, the sur- 

face was generated by a family of lines parallel to one of the coordinate axes. 

In such a situation, the scattered wave resulting from a plane incident wave 

could be expressed as the sum of plane waves. To obtain the magnitude of the 

scattered plane waves, we studied the surface z = S(x) = h cos px. 

In reality, the sea surface is extremely complex and varying in time. 

Generally it is not locally periodic nor one dimensional, although it may be ap- 

proximately so when considered from a macroscopic viewpoint. As mentioned 

earlier, there may also be inhomogeneities near the surface. Accordingly, any 

results based on a model such as S(x) = h cos px can only be suggestive of the 

true scattering behavior. 

Marsh, et al. (Ref. III-27) have approached the problem of scattering 

from the surface by using a spectral description of the sea. In particular, they 

use the Neumann-Pierson spectrum A*(), where A*(w) dw gives the contribution 

to the mean square wave height due to surface waves having frequencies between 

wand wt dw. The surface is furthermore assumed to be isotropic, i.e., the 

correlation of the surface height at two points depends only on the distance be- 

tween them. This means that the surface waves have (on the average) no well 

defined direction. Using such a description of the surface, Marsh obtains an 

approximate expression for the intensity scattered in the specular direction. 

Since his treatment is a little obscure, and contains some numerical’ errors, 

we shall present it in some detail. 

As in the other treatments, the incident wave is a plane wave, of the 

form 

ik(a x + 8x + vz) (III- 122) 
Pine ¥ 2) = & 

and the scattered wave is represented by 

SWEET VE) Gn ai du, CIle122) Po (% y; Z) Fi | 

where \, u, v are direction cosines satisfying (III-48). 
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Suppose that we have such a representation for the scattered wave, 

i.e., we have found a ¢(\,u) such that (III-123) is true. Then 

foe) lee) 

P.. % y) = Py, 0) = \ f SENSED OL wn) Gu (III-124) 

gives the scattered wave in the plane z =0. (The coordinate axes are assumed 

to be oriented so that the plane z =0 lies completely below the surface.) If we 

use the notation @ to denote the Fourier transform of $, then (III-124) also states 

that Pee = 6. 

(1) The autocorrelation function of pj. is given by 

YCSW) W055 = 1) (05) = | { De (So i) P,(5+ x, Nt+y) d&dn_ (III-125) 

Let /\(1, u) = ¥(\, uw) be the Fourier transform of Y(x, y), i.e., 

) 

IK Os w= nea | \ Bp ee) vey addy (III- 126) 

Since the Fourier transform of the autocorrelation function (p' * Dy) is the 

absolute square of the transform of Daves it follows also that 

/\(, w) =| pL, ull. (111-127) 

1. We are using * to denote the convolution of two functions, and a superscript 

bar to indicate complex conjugate. 
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However, p! = § , hence p'_ = § = $, and therefore 
sc sc 

IX (Noid) SO Opty? (11-128) 

Consequently /\(X, U) is the absolute square of the amplitude of the scattered 

wave traveling in the (1, u, v) direction, and therefore, /\(\, u) is proportional 

to the power scattered in the (A, u, ) direction. 

It is now necessary to obtain an expression for $(, u). We introduce 

the nondimensional coordinates §, 1 given by 

kx =€, ky=n (III- 129) 

Let the surface be described by S(x,y). (The explicit form of this func- 

tion will not be required.) In terms of these new variables, the surface can be 

cescribded by the normalized function, ¢(§,7), such that: 

KSi@cpy) iy =O Gan CESn mi) (III- 130) 

where > = kh and h* = <S*(x, y)> denotes the mean square height of the surface. 
Then . 

poo [sv SC y)] -| | ef DStHNE VCE. May nar ay (III-131) 

As in the other developments, we have the boundary condition that 

Pane 2 ¥ 8% y)| + Po. oy Sx wy) =O 

Hence 

8 oye tr | i 

-cO 
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Let $(A,u) be expressed as a power series in oO in the form 

@ 

6(A,u) = o (uu) (111-133) 
n= 

Since (III-132) must be true for all o, it then follows that 

elude ny) a 8+ Bn) been) Di j j URI Cn nodet 

(III-134) 

Solving this for o (1,u) for m=0, 1, 2, we have 

$,(.u)=- 6(X-a) 6-8) (III-135a) 

SNC) shy) elses sa es (I11-135b) 

$2(A,u) =2y[6(8,n) |> bf: (Se ycuee on) (I11-135c) 

= Ven 
where f | denotes the inverse Fourier transform of f and f*g denotes the 

convolution of f and g. 

To see how these are obtained, we consider the solution for $3(\,u), 

assuming 8 (A,u) and 4, (A, u) have been obtained as given above. Then writing 

out (I1I-134) for m= 2, we have 

Ih + I, + Is + I, =0 (III-136a) 

where ; 

[oe pce bn) (11-1360) 
2! 
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! 2 Bale 
he Lic. n)J \ { z i(X8+ Bn) we 8 (hu) ad du (III-136c) 

Ie (Een) | e METHM 8, (Au) dh di Oecd) 

vi j | SM Fes Qa) a ai (II1-136e) 

Substituting for $, (X,u) in (III-136d), we have 

iy SHC (2, a) i * Diy [< @mews sy) (111-137) 

Substituting (III-135a) in (III-136c), and recalling that \* +u® + © = 1, we see that 

I, +1, =0. Then Iz +1; =0, and -Iz is the Fourier transform of $3 (A,u). From 

this we have 

& (Lu) -[-b]° 

=+2 vc (é, ny |” (s [< (ale em) | 5) (III-138) 

The first three terms $,, $,, $2 must be considered to obtain the lowest 

order correction to the intensity in the specular direction. With $= $6, +0 4, + 

CeplOag tect suv! , the component % is associated with the specular direction and $, 

with the non-specular direction. The energy in the non-specular wave must come 

from the incident wave and be ~0* é° cto ce evade ; hence, the energy in the specular 

direction must be al- co %#+..... (where the incident plane wave has unit amplitude). 
Conseguently, there cannot be a correction of order o to the specular term, for this woulc 

require an energy correction of order o--since [1 - O (0)]* =1 - 2[0(c)} + O(07). 

Arthur D Little Inc. 
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For the rest of the analysis, it is assumed that all terms involving a 

factor 09, where n2= 3, may be ignored. It is difficult to determine whether 

this assumption is warranted; however, if the m = 2 specular correction is small 

compared to the m= 0 component, we might have confidence in the adequacy of 

3 terms. The wave number k is given by k = 2mf/c where c = 150,000 cm/sec 

is the speed of sound in water. For f = 1000 cps and small waves (h = 100 cm), 

we have 0~4. We will have o0>1 whenever fh> 50,000, which happens for 

most sea states and sound frequencies of interest. Thus we see that this trunca- 

tion is valid only when the magnitudes of the $,(i, u) decay rather rapidly--e.g., 

exponentially. 

Using this truncated form for $, the amplitude of the scattered wave 

in the plane z =O, is 

Die (Bo) | j SSD Sle ih) a Glan 

eo Mast 8n) -i(a& + Bn) + 2iyoC(E,n)e (III- 139) 

-2 yo C (E, >| o¢e.m* cus. n) e las + anil 

where y is the Fourier transform of y. The autocorrelation function ¥ (&, 7) of 

Pe (§, nm) is given by 

¥(E,n) = = Nee Ba) F abv @ 74((S, n)| 

sen Ses . (III- 140) 

-4yo° \ | v(A,u) Z(A,u) da du 

where Z(&, 1) is the autocorrelation function of C (& 1) and Z is the Fourier trans- 

form of Z. The Fourier transform of ¥(&, 7) then gives /\(\,u), the intensity, as 

S-7001-0307 
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/\ Q,u) = la -4yo? { \ v(4, m) Z(t-a,m-8)ddm | &(A - a) & (u-8) 

e (III-141) 
SW om VAN Cine Ie))e 

The term 4 ¥ o* Z(A-a,u - 8) gives the intensity of the nonspecular waves, 

while 

Q Siled yo" | j v(2,m) Z(t - a, m-8)dtdm (III- 142) 
spec 

gives the intensity in the specular direction, where 42 +m? +" =1. We will now 

concentrate on an analysis of this latter term. 

Marsh,et al. describes the surface by using the Neumann-Pierson energy spectrum 

A? (w) = aA e ” § % om? sec (III- 143) 
Ww 

where 

@ = 41,8 (lO) Gut? seer? 

g = acceleration due to gravity = 980 cm sec-* 

s = wind speed in cm sec™* 

Ww = angular frequency in rad. sec™* 

Using the assumed isotropy of the surface they find that Z(r), the normalized 

autocorrelation function of the surface, is given by 

Z (r') = Ae i, ( : ) A? (w) dw (III- 144) 

oe 

Arthur DHittle, Inc. 
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where h* is the mean square wave as Jo is the zero order Bessel function 

of the first kind, and r'® Se + 7°. Marsh also shows that Zin m) can be 

written as 

7A, i) = x { Ag. |e = v2)2 | x’ ar’ (II- 145) 

0 

Substituting (III-145) for Z(4, m) in (III-142), and (III-144) for Z(r'), gives 

ab, 
2 1 (ier) 

( vo* (L ) wr! 

spec h2 ft eon 0 kg 
Oe oily ediem=) =. 0 

& 

- A? (w) iF ie E -y*(L-a, m- 8) |° r’ dw dt dm dr' (III- 146) 

; ww? ’ : : 
Making the change in variable t = ee and using the identity 

j qdq F(t) J,(at) J, (ap) t dt = F(p) (III-147a) 0 0 
0 0 

with the correspondence 
a, 

IN@) = Alege)" 
32 

t 

q=r' (III- 147b) 

2 
p f - | v(e-am- =| 

one obtains + 
1 (1-m*)® 5/2) Ss - 

Oudreree ae 8. { y(t, m) [sep) 7] oe am (III-148) 
spec 2 3 

s p = Il —{(ihsan)) 

Arthur DLittle Inc. 
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Note that p is a function of £ and m. Using the change of variables 

i 

ee Tl = Wey coe 

4, 

8 = (1 - y?)* sin® 

wl Led = Vy)" cos (+ @) 

SL 
m =o Gl = WP sin@©® = @) (III- 149) 

we obtain 

I Ain 

5/2 3 2 al 2] 

Q Sy iat Ee fi we dy dé (III-150a) 
spec Z) Ww 

00 

where 

2 2 2 2 Bo Nis we SA s Ve ow oR Cl a V) (Ls we) cos 6 (III- 150b) 

Using the substitution 

2 
ee ee (III-151) 

2g 

the Neumann-Pierson sea surface spectrum can be written as 

2 2 3 c “aw 
A* (w) = A* |(kgw) ~]= Caw e (III- 152) | 

Therefore, 

Lo Ain l 

10/8 Haan 
Q 2 i> SL | | ww  @ dvd (mEn53) 
spec 2° (2a) 2 

OO 

where, we recall, 

g = acceleration due to gravity = 980cm sec * 

c = aconstant = 4.8(10* ) cm® sec ° 
1 

s = wind speed in cm sec 

Arthur D.Little, Inc. 
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Let I denote the integral in (III- 153). Since w (-8) = w (@), I can be written as 

in 
aw 

I if | wanrade e d6(vdv) (III- 154) 

0-0 

In evaluating the integral analytically, we assume y = 0 in the expression for w. 

This corresponds to a grazing angle of incidence for the incident sound. Letting 

B®= 1-Y”, wethen have w2 = 1 + B® - 2Bcos@. With (B, @) as the vari- 
ables of integration, we have the domain illustrated below. 

Then B? = 1 + w? - 2wcos 28 andso y* = 2w - w® - 4wsin® ¢. Writing 
the integral I in terms of the variables w and ¢, the element of area vy dvd®@ be- 

comes wdw d(2¢). For any particular value of w, ¢ can range from 0 to bo such 

thately— ol -tawie Ww, Cosi20s ines. to %% such that sin $)=(2-R)/4. In terms of these 

variables and limits, I becomes* 

l 
-7/2 Poser 

l= 4 {| vw ee OW raigcdw (III- 155) 

-7/2 aera 
= a *Marsh reports I = | | Vw eunrne a @ dw. Apparently a factor of 2 was 

0 0 

omitted in reducing the range of the original variable 9 or in changing the variable 
of integration. 

Arthur D.ULittle Inc. 
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After some analysis, which requires that a>> 1, Marsh obtains* 

ley 338a- = lesoa! (III- 156) 

Recall thata = ks*/2g, where Ss is the wind speed. With an incident frequency 

of fee kilocycles and a wind speed of Speers in knots, a is given by 

= 0. 2 = A= O08 Sy (III- 157) 

For a typical condition of 2 kc sound and 10 knot winds, we have a = 10, which 

satisfies the necessary condition thata>> l. 

With the value of I given in (III-156), the expression for 2 

the scattered sound in the specular direction, becomes, 

spec ° the intensity of 

Qsnec = 1 - Soe (Geasiac) 4 les6a) (III- 158) 
2p°(2a)® 

This expression can be written in terms of the variables H and b, where H is 

the average trough to crest wave height in feet, b = fH, (and f is the frequency 

of the incident sound in kilocycles). We require the following relations for the 

sea's behavior: . 

eB} 2), 0 2 ail we) 0 (Sie) (III- 159) 

Int = bo 7/7Ao 

Neglecting the term 1.86a (a® is large compared to a, since a>> 1) and sub- 

stituting (III-159) in (III-158), we have 

Mae = le Owen? Be eo vy (II1- 160) 

*The expression for I given in (III-156) is two times that reported by Marsh. 

This results from the error mentioned in the preceding footnote. 

(1)Marsh reports 2 spec = 1 - 0.485 b® /2 yy1/10 y. Part of the difference is ac- 
counted for by the factor of 2 omitted in evaluating I: this is partly compen- 

sated for by a second arithmetic error by Marsh. Though not stated explicitly, 

Marsh presumably also drops the linear term in I, for otherwise another term, 

with different exponents for the variables, would appear in the expression for 

2 6 
spec 

Arthur DULittle Ine. 
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In the analytical evaluation of I, y was taken to be zero. Careful numerical 

evaluation(2) of I shows that for large a (a>> 1), y can have an appreciable 

effect on the value of I. Table III-4 shows the value of I obtained by numerical 

methods, and the analytical approximation for y = 0 over a broad range of a. 

The generally close agreement illustrates the accuracy of the analytical approxi- 
mations. 

TABLE III-4 

COMPARISON OF NUMERICAL AND ANALYTICAL INTEGRATION OF I 

AT y = 0 

I 

I Analytical 

an, Numerical Approximation 

Oral 0.0002 =), 152 

05 0.302 -0 .087 

10 7s Oil Loa 

2 0 10.43 9.8 

5.0 76.73 Uo 

10.0 321.54 319.40 

50.0 8395 8357 

100.0 33742 33614 

Figure III-42 shows the effect of a nonzero value of y in the evaluation 

of I. Let I (a) denote the value of I for y = 0. Then, for nonzero y, I(a) can 

be given by 

Ka) = (a, y) 1 (a) (III- 161) 

For certain y , the values of o(a, y) are plotted in Figure III-42. As an example 

of the effect of a nonzero value of Y, suppose y = 0.2. This corresponds to an 

angle of incidence of 11.5°. At a= 10 (typical sea conditions), the true value of 

Tis 483, which is 50% more than the value obtained assuming y = 0 when 

evaluating the integral.. 

(2) Unpublished work by R. F. Meyer and L. Lawrence. 

Arthur D Little Inc. 
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It may be well at this point to restate the assumptions used in this 

development. 

(1) The development giving the general expression for the scattered 

intensity depended upon: 

(a) The representation of the scattered wave as an 

integral sum of plane waves. 

(b) The existence of a convergent expansion in powers 

of (kh) for ®?, the weighting function in the foregoing 

integral sum. 

(c) The applicability of certain Fourier inversion theorems. 

(d) A description of the sea surface as a single-valued 

function of position in a plane parallel to and below 

the surface. This precludes certain curling condi- 

tions in ocean waves. 

The operator representation and theorems from generalized harmonic analysis 

used by Marsh are not needed for the further developments. The entire develop- 

ment is formalistic in nature, consisting of the manipulation of formulas on 

functions to which they may or may not be applicable. No attempt is made to 

ascertain the applicability of these operations, either by physical arguments or 

analytical considerations. 

(2) In applications, the sea surface is assumed to be isotropic--i.e., 

no particular direction to the waves--and the sea surface spectrum is given by 

the Neumann -Pierson model 

a 2.2 ss 22° /w*s A? (w) = = (III-161) 

where c is a constant (not the velocity of sound). This expression is needed to 

obtain the autocorrelation function of the sea surface. 

(3) In applications, it is assumed that in the power series expression 

for ®(\, W), 

m 

> ge Voll) (III- 162) 

Arthur A Little Ine. 
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terms form > 3canbeignored. This appears to be somewhat doubtful, and 

Marsh offers no substantiating arguments. For frequencies and wave heights of 

interest, o is often larger than one. Furthermore, nothing is mentioned about 

the behavior of the $,,(1, u). Since these involve inverse transforms of the 

function describing the sea surface, they may have large values for certain h 

andu. In summary, we cannot rely on the bounded or decaying nature of the 

3 (4, u) or small values of o to assure the legitimacy of truncating the series 

after the first three terms. 

(4) In the reduction of certain integrals, it is assumed that 

a = (ks°/2q) = (0.0564)(£, is NZ (II1- 163) 
knots 

is "large." Marsh's analysis, as presented, does not indicate how large this 

should be. He does assume later that a® is large relative to a (an order of 

magnitude of more). For one kilocycle sound, we need a wind speed of 15 knots 

or more for this to be so. This in turn requires © to be larger than one, making 

assumption (3) questionable. 

(5) The mean square surface height, h® , is related to the wind speed 

by 
(h iP = 2A o lO? © \P (III- 164) 

feet knots 

and the average trough to crest wave height, H, is related to h by 

Is) = Wo 7A (III- 165) 

Marsh applies the foregoing analysis to the case of a wave field which 

can be viewed as the composition of a finite number of rays with substantially 

plane wave fronts which impinge on the surface and undergo scattering. The 

medium is assumed to be an isothermal surface layer of depth L. The limiting 

ray for a surface source and receiver is denoted by [g, with [j denoting the other 
rays which are reflected from the surface. The diagram below illustrates the 

situation. 

SPEED OF 

lL. SOUND 

FIGURE III-43 SKETCH OF LIMITING SOUND RAY BENDING 

Arthur DHittle Ine, 
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Ifthe soundwaves make several surface contacts, it is clear that the only signi- 
ficant propagated mode is that involving the specularly reflected waves. The 
nonspecular components are incoherent, undergoing three-dimensional scattering. 

Let Jj be the intensity of the ray, {j, at some point just prior to a 
reflection, and Jj the intensity of the specularly reflected ray just after reflec - 
tion. Then yA = dA Qspec - The total field is the sum of all terms Jj which cor- 
respond to rays reaching a given point by specular reflection. Marsh asserts 
that it has been well established that a reasonable account of scattering losses 
can be obtained by considering only the limiting ray. In this, the losses attributed to scattering are partitioned equally over the number of surface contacts made by 
the limiting ray. 

In terms of the above diagram, we have for the limiting ray, 

Ses G2 SE CL, Gh (111-166) cos 6, Cy Ci C1 

where 

Cz = speed of sound at the depth i 

Ci = speed of sound at the surface 

G = increase in the speed of sound due to the pressure increase, 
per unit distance. 

Then 

CcOSg ~ | - co (III- 167) 
Cy 5 

and so 

Va \ z 

i 2 Ge a oe) (11-168) 5 \ Cy ; 

Using c, =~ 5000 ft sec" and G=0.018 sec, we have 

Y = Sil OB Bo7 2 10 in, 3 (III- 169) 

Arthur D. Little Inc. 
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For the limiting ray - the transmission loss (in db per bounce) due to scatter- 

ing is given by 

J, 
a. =" LOMog: Tr (III- 170) 

O 

Using the above value of y, we have* 

a, = -l0log [1 - 0.00143 bY? Ht/ 201+ /2 | (III-171) 

The factor H*/*” varies only a little over a large range of possible sea states. 
The term L*/® is also relatively insensitive, compared to the factor b*/?. Using 
typical values of L = 200 ft and H = 3 ft, we have 

— 

| 
a, = -10 log 1-0.0226 pe/2 | (11-172) 

— = 

Considering the extreme values of H = 6 ft, L = 300 ft at one end, and H = 2 ft, 
L = 100 ft at the other, we obtain 

G 4 
a, = -l0log 1 - 0.0297 pe (III-173a) 

and pat ps) 

a = -10 log |1 - 0.0153 b?/? | (III-173b) 
7 Us + 

respectively. 

Recapitulating the basis of the last part of this development, we 

assumed that: 

(1) Sound is traveling in an isothermal layer for which the velocity 

gradient (due to increasing pressure is 0.018 sec’. 

(2) Only the sound in the limiting ray is considered. 

(3) For (I1I-172), which is used in most of the later material, 

the depth, L, of the layer is taken as 200 ft and the average 

trough to crest wave height, H, as 3 ft. The sensitivity of this 

is shown by (III-173a) and (III-173b), which give analogous 

expressions for H = 6 ft, L = 300 ft. for one extreme and H = 2 ft, 

L = 100 ft. for the other. 

*This differs from dg = -10 log (1 - 0.0013 b?/2H* Ao 1/2| as reported by 
Marsh because of the different coefficient (0.528 instead of 0.485) in the expres - 

sion for 2 spec. 

Arthur DUittle Inc. 
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Figure III-44 graphs the above expressions for the surface loss per 

bounce. The experimental data points are taken from (Ref. I-27). Marsh 

comments that although the scatter is considerable, it is not surprisingly so, 

and that the over-all fit is good. As pointed out before, Marsh's original re- 

sult apparently has several numerical errors. Using the corrected form, we 

obtain somewhat higher theoretical estimates. These tend to provide a better 

fit to the experimental values. 

Arthur D Little, Ine. 
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3 
#—~a=10 LOG [i-0.297b 2}: 300, H=6 

° 

a= ie 

ATTENUATION ° a=10 LOG [I-.0z266 | 
3 zee 

db PER BOUNCE H=3,L=200 | 

a=10 L0G [1.0243b%] H=3, L=200 (MARSH) 

2 4 6 8 10 20 40 60 80 100 

b=fH, f= FREQUENCY (kc), H= TROUGH TO CREST HEIGHT (ft) 

FIGURE III-44 SEA SURFACE SCATTERING LOSS IN SPECULAR DIRECTION 

FOR EMITTING RAY IN ISOTHERMAL LAYER 
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IV. WEAK INHOMOGENEITIES 

The properties of the ocean medium, as encountered by a sound wave 
passing through it, are constantly varying even in the absence of the strong 
inhomogeneities discussed in the previous chapter. The pressure, salinity, 
and temperature exhibit small variations both in the horizontal plane and in the 
vertical direction. The variations in the vertical direction tend to exhibit a 
layer structure, whereas the horizontal variations are more in the nature of 
random patches. In this chapter we shall examine the effect of these inhomoge- 
neities on the propagation of sound waves. 

A. THE WAVE EQUATION FOR AN INHOMOGENEOUS MEDIUM SN NESE) UAL 

The derivation of the acoustic wave equation appropriate for an ocean 
medium with slightly varying properties has been dealt with in considerable detail 
by previous authors, including a report in the present series. 1 The variations in 
pressure, salinity, temperature, and gravitational field introduce a number of 
corresponding additional terms beyond those appearing in the ordinary wave 
equation for a homogeneous medium. An analysis of the order of magnitude of the 
different additional terms under actual ocean conditions indicates that the dominant 
effect for the analysis of sound propagation comes from the spatial variations of 
the velocity of sound c caused by the variations in temperature and salinity. The 
magnitude of this effectexceeds the effects of spatial variations in density by at 
least a factor of 10. For our purposes, therefore, it will be adequate to confine 
ourselves to a wave equation with a slightly varying velocity of sound: 

ie cipe yess (IV-1) 
Ca CRESD aha Me 

The velocity of sound, c , is a slightly varying function of position and time. Let 
Co be a typical average value of the sound velocity in the spatial region in which we 
wish to study acoustic wave propagation. We may then introduce the local index of 
refraction of the medium, n, as the ratio of the average sound velocity to the 
local sound velocity: 

Cc 

n(x, t) = = ilar Us, ©) (IV-2) 
ee OED 
c(x, t) 

1. Arthur D. Little, Inc., Ref. IV-4, Part A, Section 1-14 
Chernov, Ref. IV-2, Part II, Chapters III and IV 

Arthur D Hittle Inc. 
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Note that we are using the vector notation x = (x,, Xg, Xs) to indicate 

position coordinates of a point. We shall also have occasion to denote the length 

of the vector x by | x | = x (see Appendix C - Notation). The variation in the 

index of refraction is supposed to be extremely small: 

lw) eei (IV-3) 

Typical values of the variations in the index of refraction for the ocean are of the 

order of magnitude of 10-* or less. 

The problems of practical interest are of two kinds: 

(a) An incoming plane, spherical, or cylindrical wave hits a region of 

inhomogeneities and is scattered. 

(b) A source of acoustic waves is situated inside an inhomogeneous 

region, and the waves emitted by the source are distorted by the inhomogeneities. 

For sufficiently small regions of space, these problems can be attacked 

by a formal perturbation theory using the magnitude of the variations in the index 

of refraction as the parameter of smallness. We may write the index of refraction 

as unity plus a very small multiple of a function of space and time: 

nes ) 2 ios UGS O) S are Mes @) (IV- 4) 

where 

Age ih, || Mi) oi (IV-5) 

We can now consider a family of problems depending on the parameter €. For 

€ = (0, the solution to the problem is just the corresponding solution for the homo- 

geneous medium. If the pressure distribution is an analytic function of € near €=0, 

we may expand the pressure in a formal power series in the parameter of smallness: 

p=p “Pp Gyo) + € p + + 2 -e (IV-6) 

In this case, the wave equation (IV-1) becomes: 

v2 Gotan aD ek @ Goa) = SE (p +P ep? +--+) (Bier) 
oO 

Arthur D Little Ine. 
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By collecting terms of the same order in € in (IV-7), we find a hierarchy of 

equations for the successively higher-order terms in the power series for the 

pressure: 

il 02 ©) 
We p() = caus == (IV- 8a) 

oO 

Woe pey aw eae) 
Bo eee ae 6 Peas (IV-8b) 

oO 

The first of these equations has as its solution the pressure distribution in the 

homogeneous medium. The equation for the first order correction is also a wave 

equation, but with a nonzero inhomogeneous term. This term shows how, to 

first order, the inhomogeneities of the medium interact with the unperturbed 

pressure distribution and thus act as sources of secondary waves. 

In all the problems of interest, we shall be concerned with a pressure 

distribution that has harmonic time dependence: 

iwt 
p(x, t) = p(xje (IV-9) 

Also, we shall usually be concerned with either a plane or spherical incoming wave: 

) (G3) = AS aa (plane wave) 

ikx 
(IV-10) 

p\?) (x) aa. : (spherical wave) 

(Note that x =|x| andk=|[k| = = 

O 

In either case, the equation governing the first order correction term to the pres- 

sure satisfies a Helmholtz equation with a distributed source function: * 

V2? pC) + k? pC) = - auk? p(o) (IV-11) 

*Since the temporal variations in the index of refraction occur very slowly compared 

to the time required for the acoustic wave to pass by a typical inhomogeneity, we 

may regard U (x, t) as constant during the passage time. 

Arthur D Little Inc. 
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The incoming (zero- order) wave, therefore, provides the energy to generate a 

source distribution for the first-order wave. We shall see later that this 

corresponds to a single scattering approximation, in the sense of Chapter II. 

In other words, the power series expansion in terms of a slight correction to 

the index of refraction not only approximates the quadratic expression for the 

index of refraction in (IV-7), but also removes higher orders of scattering from 

the first-order approximation. 

The solution to (IV-11) is given (see Appendix A) by the integral: 

47 

2 ikr 

sp @ 22 if dé vu (8) p &) = (IV-12) 

V 

The geometry required to explain the nomenclature of (IV-12) is shown in Figure 

IV-1. A scattering element at § acts as a secondary source emitting a spherical 

wave to an observer at x. The volume of the scattering element is denoted by 

d& = d§, d§2 d§s in rectangular coordinates. The integral in (IV-12) runs 

over the entire portion of space containing inhomogeneities (i.e., that portion 

of space for which v # 0). The vector running from the scattering element to the 

Observer isicalledis ts = xan— anor. 

X3 

OBSERVER 

SCATTERING ELEMENT 

Xo 

xy 

FIGURE IV-1 THE GEOMETRY OF SCATTERING 
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We may see that this corresponds to a single scattering approximation 

by following a different procedure yielding the same result. If we introduce the 

harmonic time dependence of p (IV-9) into the wave equation (IV-7), we can 

make the approximation: 

Vp + k*p = - (2 eu + 6? U?) k*p~ -2 ek? p (IV-13) 

This approximation involves only the assumption of weak inhomogeneities, i.e., 

€<<1. We may integrate (IV-13) to give an integral equation for the pressure 

distribution: 

Qe K oikr 

BQ)! = BG) | ae) pe) — (IV-14) 

Vv 

This solution is obtained by the following reasoning. WhenU = 0, the desired 

homogeneous solution to (IV-13) is the original incoming wave p(°), The inhomo- 

geneous (or scattered) portion of the solution is obtained by regarding the right 

side of (IV-13) as a source function emitting spherical waves of the appropriate 

strength. The distinction between (IV-12) and (IV-14) is that V-14) contains the 

unknown function p under the scattering integral rather than the known incident 

field po). As usual, the solution for (IV-14) may be obtained by successive 

iteration starting with an initial guess. If we use p\° as the initial approximation, 

one iteration of (IV-14) will then yield (IV-12) as the single scattered pressure. 

It is clear that the single scattering approximation will be valid only as long as 

the twice-scattered power is small compared to the once-scattered power. In fact, 

one would expect the single scattering approximation to hold only when the single 

scattered power is small compared to the incident wave. For the actual conditions 

encountered, we shall show later that the single scattering approximation is adequate 

as long as the radius of the scattering region (R) satisfies: 

10, 000 Roc (IV-15) 

where the radius of the scattering region is to be measured in kilometers and 

f denotes the frequency of the sound in kilocycles. In most practical cases, we 

do not exceed this region. For sufficiently high frequencies, e.g., frequencies 

above the 10 kilocycle range, we may be interested in propagation through regions 

of inhomogeneities greater than those permitted by (IV-15). For example, accord- 

ing to the above, the single scattering approximation for sonar at a frequency of 

40 kc is certainly invalid at ranges in excess of 7 km. We shall therefore want to 

develop an approximation scheme which is more uniformly valid, in the sense that 

Arthur D Little Ince. 
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the first-order correction term giving the first approximation to the scattered 

pressure remains a good approximation also for large distances of propagation. * 

This is done as follows: In a medium without inhomogeneities, the waves of 

interest (plane, spherical, cylindrical) may be represented in terms of their 

amplitude and phase by: 

iS (x) dnA +iS if (x) 

D@eA @e "se “ “ee” (IV-16a) 

where 

aes) = 5. (x) - i tnAs() (IV-16b) 

The functions A, and S, are both real functions representing, respectively, the 

amplitude and phase of the wave as a function of position. We observe that a sur- 

face on which So is constant is a surface of constant phase; such a surface can be 

regarded as awave front for our purposes. If a source of wave motion, which 

would have resulted in a pressure distribution (IV-16a) in a homogeneous medium, 

is placed in an inhomogeneous medium, the resulting wave will have the same 

general form but will differ in detail. The resulting wave can always be represented 

as: 

iS(x) _ , W(%) 
Pes) SEG) E (IV- 17a) 

where 

V (x) = S(x) - i MAX) (IV-17b) 

The function } represents the complex phase of the wave and will turn out to be 

very useful in the analysis. We can always represent the complex phase of the 

perturbed wave in terms of the complex phase function of the original homogeneous 

wave plus a perturbation term: 

y= A + Wha (IV-18) 

The perturbation }; is now not necessarily small compared to ),. In other words, 

we permit the inhomogeneous wave to have a large difference in amplitude and phase 

from the unperturbed homogeneous wave. To compare this approach with the 

approach used for very small perturbations, we observe that if ), is small: 

iy ivy 
P=e e = De eal Was suc cic) (IV-19) 

*Chernov - Chapter V, Section 16. 
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For small perturbations, we may therefore identify the correction term of (IV-6) 

with the corresponding term of (IV-19), which yields: 

ep @) ip, Wy (IV-20) 

When the perturbations are indeed small, the approximation theory about to be 

developed should go over into the small perturbation theory according to the 

relation (IV-20). 

From (IV-18) we conclude that: 

= . A 
Wi =¥ - Nee (= Ss) -itn A, (V2) 

We may, therefore, identify the changes in phase and logarithm, i.e., amplitude 

due to the inhomogeneities of the medium: 

AS = (S- Ss) = Rei (IV-22a) 

A 
\tnA = 4nZ— =Im\ (IV-22b) 

oO 

The wave in the inhomogeneous medium must satisfy the wave equation (IV-1), and 

if we introduce harmonic time dependence (IV-9) and the definition of the index of 

refraction (IV-2), we obtain the wave equation for the pressure: 

V2 nk p= 0 (IV-23) 

The complex phase function must, therefore, satisfy an equation which is obtained 

by substituting (IV-17a) in (IV-23). After a little manipulation, we find that ¥ is 

governed by: 

iV? y - (Vy)? + n2k2 = 0 (IV-24) 

Since Po is the solution of the wave equation with an index of refraction of unity, 

the complex phase function ), must satisfy equation (IV-24) with n = 1: 

iv? y, - (Vv UP + 72 = @ (IV-25) 

If we substitute (IV-18) in (IV-24) and make use of (IV-25), we obtain an equation for 

the correction to the complex phase function jy: 

iV?¥, - VW)? - 2V U8 Ua) Ge = IK = © (IV-26) 

Arthur D Little, Inc. 
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From this equation, we would like to eliminate those terms which we can legiti- 

mately regard as being of second-order importance even if }1 itself is not 

necessarily small compared to unity. To this end, we shall make two approxi- 

mations. 

1. Since the variations of the index of refraction are small, we may 

certainly make the approximation: 

n® - 1 = v(2+0v) ~ 2v (IV-27) 

If we make this approximation, we are dropping a term vU* k® from (IV-26), and 

we are, therefore, making explicitly the assumption: 

v<<2 (IV-28) 

It is clear that this approximation is always permissible if the inhomogeneities 

are indeed weak. The approximation corresponds entirely to the one made in 

(IV-13) and does not restrict us to the small scattering approximation which we 

wish to avoid. . 

2. If we want to remove those terms from (IV-26) which would be of 

second order if !; were small, we must also remove the square of the gradient 

of Wi, i.e., (Vy)*. This entails the assumption that the size of the gradient is 

comparable in order of magnitude to the term just neglected above: 

(Vy)? ~ v? k? (IV-29) 

Because of (IV-28), this assumption is tantamount to the condition on the 

gradient of ),: 

| Vitin| << Be (IV- 30) 

Let us examine the physical meaning of (IV-30). If the magnitude of the gradient | 

of the complex phase function is to be sufficiently small, both its real part and 

its imaginary part must be small enough to satisfy (IV-30). In other words: 

; TT 
| V tn <- << 2k, or since k = =n , we require that 

fo) 

: A 
| Vv tn al << 41 (IV-3la) 

(6) 5 

| ¥(S — 8) ) <<) 2k (IV-31b) 

} 

Arthur DLittle, Inc. 
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The last expression in (IV-3la) may be interpreted as follows: the gradient of 

the logarithm of the relative amplitude is a measure of the rate of change of the 

relative logarithmic amplitude with distance. If this is multiplied by the wave- 

length of the undisturbed wave, we obtain a measure of the change of the relative 

logarithmic amplitude over one wavelength. The change in the relative log- 

arithmic amplitude encountered in going one wavelength must, therefore, be small 

compared to 4m. This condition is always satisfied for any of the typical wave- 

lengths and scattering strengths encountered in the ocean. 

The condition (IV-3lb) is considerably more restrictive. To understand 

its implications, we observe that the surfaces So (x) = constant andS (x) = constant 

are the wave fronts, respectively, of the undisturbed and the perturbed waves. 

The gradient vectors V S, and V S will point in the direction of wave propagation in 

both cases. The magnitudes of VS and VS, must be of the order of magnitude of the 

wave number k, since S and S, are the local phases of the waves, and since the 

AS 2a 
aR fc anes k. The 

meaning of (IV-3lb) is, therefore, that the difference between two unit vectors 

pointing in the direction of propagation of the undisturbed and perturbed wave must 

be very small compared to 2, even though the phase and the amplitude of the two 

waves may differ greatly. 

phase changes by an amount 21 in going one wavelength, i.e. 

If we make these two approximations and remove the corresponding terms 

from (IV-26) we find that the correction to the complex phase Wi is governed by: 

Dike Sein Ve Wa ses a a (IV-32) 

We may reduce this to the ordinary inhomogeneous wave equation by introducing 

the function W according to: 

Pre em rang (IV-33) 
6 

If we substitute (IV-33) into (IV-32) and use (IV-25) to simplify the expression, we 

obtain: 

We Ty ce SY = Pw Po (IV-34) 

In the homogeneous case (i.e., U = 0), we know that the appropriate solution of 

(IV-34) is W = 0, since in that case we desire that ); = 0. Weare, therefore, only 

interested in the inhomogeneous solution to (IV-34) which, subject to the condition 

of giving an outgoing wave, must be: 

W(x) = 2k7i fe 

V 

e v &)p, &) (IV-35) 
r : 5 
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The relevant vectors are those shown in Figure IV-1, and r is again the vector 

connecting the scattering element and the point of observation. We now obtain 

the correction to the complex phase by substituting the above expression for W 

in (IV-33): 

a ikr p_ (§) 
ta (x) = -- f dé = v @)— (IV-36) 

Py (x) 

V 

First of all, we observe that for small values of ¥,, (IV-36) and (IV-12) do indeed 

correspond according to the correspondence principle given in (IV-20). Second, we 

note that the integral to be evaluated either in the small perturbation theory in 

(IV-12) or in the "smooth" perturbation theory leading to (IV-36) is essentially the 

same. What differs is the interpretation of the integral. 

In the small perturbation theory, the integral essentially represents the 

first order correction of the pressure as a result of the inhomogeneity. In the 

more uniformly valid approximation, the integral corresponds, loosely speaking, 

to the correction to the complex phase resulting from the inhomogeneity. Depending 

on the situation, we shall avail ourselves of either interpretation. In much of the 

later work of this chapter, however, we shall be concerned with integrals of this 

type and therefore introduce the symbol p; to connote the integral: 

é ye etkr 

ps &) = ep ()() = ip @h@=-Z-]ds= v&)p ©) (IV-37) 

B. SCATTERING FROM AN ISOLATED INHOMOGENEITY 

The micro-structure of the ocean consists of a multitude of weak inhomo- 

geneities of every size and shape. The statistical description of the inhomogeneities 

encountered in the actual ocean medium will be studied in the next section. In the 

present section we shall confine ourselves to the diffraction of a plane wave by a 

single inhomogeneity (of the refractive index) in an otherwise entirely homogeneous 

ocean. In particular, we wish to determine the far field of the scattered wave and to 

gain some insight into the dependence of the far field on the characteristics of the 

scattering inhomogeneities and the frequency of the incoming plane wave. 

To simplify the geometry ofthe problem, we shall locate the scattering inhomo- 

geneity so as to include the origin ofthe coordinate system. The incoming plane wave 

of unit amplitude is taken to propagate in the positive x, direction(see Figure IV-2). 

Arthur A Hittle Inc. 
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Xo 

OBSERVER 

SCATTERER 

INCIDENT 

PLANE WAVE 8= SCATTERING ANGLE 

FIGURE IV-2 SCATTERING COORDINATES 

-jW 

If we drop the time dependence e it (see IV-9), the incoming plane wave is 

represented by: 

ikx IV-38 
Of 

The inhomogeneity is represented by a distribution vu (§) << 1 which is the deviation 

from unity of the index of refraction. The scattering integral to be evaluated is 

therefore obtained by substituting the incoming plane wave (IV-38) into the scatter- 

ing integral (IV-37): 

tke (ESS 7) 

prcx)i= = ae fozs v(8) (IV-39) 

V 

To evaluate this integral in the far field (i.e., at a distance from the inhomogeneity 

which is large compared to the characteristic size of the inhomogeneity), we must 

approximate the distance r which is given by: 

aE fz SL. 

r=|x - &| = (@? +8? -2x-€)#=x(l+3-2=.-=)% (IV- 40) 

Arthur DUittle Inc. 
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We note that the vector * is a unit vector in the x direction, i.e., pointed from 

the origin at the observer. For the far field, the magnitude of the vector § must 

be small compared to x. In other words: 

2 2ei (IV-41) 
x 

We may, therefore, approximate r, as given in (IV-40), to first order in by: 

ees | (=). = Jen) 18 (IV- 42) 

In order to obtain an approximation to (IV-39) which is correct to the zeroth order 

of & , we must approximate the exponent (r+ §,) of (IV-39) in a fashion which is 

accurate to first order im , but we may use the zeroth order approximation 

r ~x to approximate the denominator in (IV-39). The first order approximation 

to the exponent to (IV-39) may be rearranged by introducing a unit vector eC 

pointed in the x; direction. In that case we may, using (IV-42), approximate the 
distance r+ &, by: 

eS Byes |S eee) =x-§-d (IV- 43) 

In the above, we found it convenient to introduce a vector d which is the difference 

between a unit vector pointing at the observer and a unit vector pointing in the x; 

direction: 

al = -e (t) (IV- 44a) 
[I 

Recall that the x, direction is the direction of propagation of the incident wave so 

that d represents a measure of the difference between the observer position and 

the forward direction of scattering. If we introduce the angle 9 as the angle between 

the observer direction x and the x; direction (see Figure III-2), we may write the 

length of the vector d as: 

L 
1 \2 

d=|d| = poe e |} = | 2. - cos 8) | = sins (IV-44b) 

Arthur D Little Inc. 
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We now introduce the approximation (IV-43) into the scattering integral (IV-39) and 

obtain for the far field the expression: 

2 _ikx a 

a eager J ag e232 ye (IV-45) 
V 

Equation (IV-45) leads to the following observations: 

1. The scattered pressure field has the nature of a spherically spreading 

wave with a multiplicative directivity pattern which depends on the angle 9. In 

particular, the forward direction of scattering the vector d is zero, and the pressure 

is given by: 

2x2 eh 
AT xy 

S ghee 
Pi (x1) = - d& v(€) = - a (IV- 46a) 

W 

In this equation, we have introduced the parameter S as the forward scattering 

strength of the inhomogeneity. We note that the forward scattering strength is pro- 

portional to the square of the frequency and to the total volume integral of the 

correction to the index of refraction. The pressure distribution in the far field in 

any direction may now be written in terms of a directivity pattern as: 

ikx 
e 

x 
Pi (x) = SD (9, 4) (IV-46b) 

Here we have introduced D(9, 4), the directivity pattern of the scattering, * which 

corresponds to the ratio of the integrals in (IV-45) and (IV-46b). 

2. We recognize the integral in (IV-45) to be the Fourier transform of the 

refractive index v (6) evaluated at a wave number vector kd which has a magnitude 

2k sin. The Fourier transform of v (€), e.g., N (x), represents the amplitude of 

the decomposition of vu (€) into waves with wave-number vector Xx; in other words, it 

is the spectrum of vu (§). If the spectrum N (x) is large in vicinity of X, it corresponds 

to an inhomogeneity with a substantial Fourier component of wave-number x. Equation 

IV-45 tells us that the scattered field will be large for a scattering angle § such that 

the spectrum N (x) is large at x = 2k sin 0 If the spectrum of v (§) is large only for 

values of x much less than k, it is clear that the substantial portion of the scattered 

field will be confined to a small angle 9 ~s - In other words, inhomogeneities which 

* 6 and 4 are the polar and azimuthal angle of a spherical coordinate system, 

x = (x, 9, 4) with x; as polar axis. 
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are very large compared to the wave length of the incoming sound, and whose index 

of refraction changes very smoothly, will scatter the sound in the forward direction 

in a narrow cone. This means that a large and smooth scatterer will cause a 

collimated beam of scattered pressure. Conversely, if the spectrum of v (5) is 

substantial for values of x of the same order as or larger than k, the scattering 

will essentially be omnidirectional. 

3. It is instructive to examine the above in some detail for a spherically 

symmetric pattern: 

vu (§) = v () (IV- 47) 

To evaluate (IV-45) in this case, it is convenient to introduce a spherical coordinate 

system for the vector § using the vector d as the polar axis, § = (6, op 9): 

In this coordinate system, 

Sod = dase. = 2s ene cos 8 (IV- 48) 
Sakae fe) 2 O 

(IV-45), therefore, becomes: 

@ TT 211 

ikx 9 
2k e" 2 -2ik§ sin — cos 8 

= - —__ 9) in® v 2 Pi (x) Ts fesfas, [as,¢ sin be 0 

: 2 2 (IV- 49) 

2K? @lkX os ees jes E sin (CE) v €) 
aXe 

O 

where we have performed the o and oe integrations and introduced ! according to: 

iia sin 5 (IV- 49a) 

In this case, the directivity pattern defined above becomes a function of 6 (or 

equivalently of [) alone. We recall that the meaning of the directivity pattern is the 

ratio of the scattering integral p; at a point x divided by the value of p, at a point 

located at the same distance x in the forward direction. For the spherically 

symmetric case, the directivity pattern is given by: 

DIG)i je € sin (Lf) ves fae By (8) (IV-50) 

oO Oo 
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If the scatterer is very small compared to ae the quantity [§ will be much less than 

unity for any § located inside the scatterer.X We note that Sin!§ ~1 for [E<<1; 

thus, in this case, the directivity pattern becomes Speen 1 in all directions. 

Such a very small scatterer, which causes essentially isotropic scattering, is 

called a classical or Rayleigh scatterer, and bears out our earlier conclusions that 

very small scatterers will in general produce omnidirectional scattering. We find 

very large scatterers producing a collimated beam. 

The scattering strengths and directivity patterns for a few typical spher- 

ically symmetric scatters are listed in Table IV-1. The directivity patterns are 

also shown graphically in Figure IV-3 on a decibel scale. We observe from Figure 

IV-3 that the directivity pattern, D(8), drops by about a factor of 10 (20db) as Ta 

is increased from zero to about 4. There is some variation, depending on the details 

of the refractive index distribution, but all directivity patterns drop a factor of 10 

between [a = 0 and a value of ['a greater than 2% and smaller than 6. We may, 
therefore, conclude that the principal scattered energy for a large scatterer (ka>> 1) 

is confined to an angle for which: 

Da = Ale el sin 5 <4, or equivalently §< = (IV-51) 

TABLE IV-1 (after Skudrzyk) 

SCATTERING STRENGTHS AND DIRECTIVITY PATTERNS 

OF SPHERICALLY SYMMETRIC SCATTERERS 

Deviation of Index of Refraction Scattering 

(Inhomogeneity) Strength Directivity Pattern 
8) Remarks 

spherical 

3 (sint'a-lacoslfa) [scatterer with v (6) = sine cop cun : 
0 for§>a 10) a constant soun 

vu for § <a 

for § <a (4-652 +2 cosla}idecaying 

Ae 30 (Ta) 
or a 

5 = inhomogeneity 

v (8) = O decaying as 

(1 + (€/a)?)® (E/a)-4 

Note: [=2k sin =. 
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C. THE WEAK INHOMOGENEITIES OF THE OCEAN 

The temperature distribution of the ocean exhibits a layered structure 

in the vertical direction. This structure is largely the result of the energy input 

due to weather conditions at the surface of the ocean (such as heat radiation of 

the sun and evaporation) and the heat conduction of the water. The detail of the 

layered structure changes with the time of day and with the seasons. A typical 

pattern of variation during the course of a day is shown in Figure IV-4. The 

figure shows, for several times of day, the temperature distribution as a function 

of depth, expressed in terms of a characteristic length scale which is the square 

root of the product of the diffusivity of the heat conduction and the length of a day. 

The resulting curves are seen to produce a surface layer of the order of 200 feet 

in which the temperature fluctuates substantially with the time of day, and in 

which the temperature gradients are negative during part of the day. These re- 

verse gradients cause an unstable configuration which results in turbulent mixing. 

As a consequence, the macroscopic structure of the uppermost layer of the ocean 

has an isothermal character, although under examination in detail it will exhibit 

innumerable patches of various sizes which result from the turbulent mixing 

process. This top layer (of the order of magnitude of a few hundred feet) is called 

the isothermal layer, although it is isothermal only in the large. Below the iso- 

thermal layer, there is a region, called the thermocline, in which the temperature 

gradient is practically constant. 

In addition to the instabilities occurring relatively near the surface of 

the ocean, turbulence is caused by large scale internal waves and currents. In 

all cases, the effect of the turbulence is to break up the systematic layered 

structure of the ocean into a random, patchy structure. 

The resulting micro-structure of the temperature gives rise to a corre- 

sponding micro-structure of the index of refraction, which is the principal type of 

random inhomogeneity affecting wave propagation. 

The general range of sizes of the patches to be encountered may be 

obtained from the following considerations. The largest patches to be encountered 

at a depth h below the surface should be those resulting directly from the original 

layered structure, and can therefore be expected to be patches extending between 

the ocean surface and the depth of 2h. If these largest patches are more or less 

spherical, we would expect their diameters to be of the order of 2h. The smallest 

patches, on the other hand, would be determined by the heat conductivity of the 

water. To quote Batchelor, who has investigated theoretically the statistical 

properties of the microthermal structure: "The dominant feature of the action of 

the turbulent motion on the temperature distribution is a continual reduction of the 

length-scale of temperature variations ... The continual increase in the magnitude 

of temperature gradients due to random convection will ultimately be checked by the 

Arthur D Little. Inc. 
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smoothing action of thermal conduction, and no further refinement of the tempera- 

ture distribution can occur; in this way, a length-scale characterizing the smallest 

temperature ‘eddies’ is determined." 

Some recordings of the microthermal variations at various depths are 

shown in Figure IV-5. 

DEPTH: 25ft 

| ee DEPTH: 170ft 
40 YD 

FIGURE IV-5 MICROTHERMAL VARIATIONS AT 

VARIOUS DEPTHS (AFTER URICK 

AND SEARFOSS) 

The scale and amplitude of the dominant fluctuations are seen to be substantially 

greater at a depth of 110 ft than at a depth of 25 ft, as would be expected by the 

above argument; in fact, a dominant patch diameter of the order of twice the 

depth seems to be in general agreement with the recordings shown. Note that at 

a depth of 170 ft the amplitude of the patches appears to have decreased somewhat, 

indicating that the microthermal structure is again more uniform. The dominant 

patch diameter has been plotted versus the depth for a fair number of such 

recordings, and the resulting plot is shown in Figure IV-6. The outer scale of the 

patches is seen to agree quite well with two times the depth of the observation. 
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The micro-structure of the ocean changes with time. The rate of 

change is very slow compared to the passage of an acoustic wave, but the change 

can be expected to be substantial over a period of the order of minutes, and un- 

recognizable over a period of hours. We desire, therefore, a statistical 

description of this micro-structure. Clearly, the most we can hope for would 

be the joint probability density of the values of the index of refraction at sets of 

points in the ocean. Some measurements have been made of the probability 

distribution of the temperature differential between pairs of points in the ocean. 

Two such measurements are shown in Figure IV-7 and indicate that the tempera- 

ture difference between two fixed points in the ocean tends to have a normal dis- 

tribution. 

2 in. 
THERMISTOR 

10 SPACING 

50 
PERCENT OF 60 

FLUCTUATION 70 

LARGER THAN 8° 
ABSCISSA 90 

a 64 in. 

THERMISTOR 
2 SPACING 

TEMPERATURE DIFFERENTIAL — 

FIGURE IV-7 PROBABILITY DISTRIBUTION OF TWO- 

POINT TEMPERATURE DIFFERENCE 

It is very likely, therefore, that the joint probability density function of the index 

of refraction is multivariate normal. In most applications, the principal char- 

acteristic of the index of refraction VU (x) required is the so-called structure 

function: 

CS (p@)-vee+n)?> (IV-52) 
ensemble or time 
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This function measures the mean square difference of the index of refraction at 

two fixed points. The mean must be taken over the ensemble of different micro- 

structures which occur in the course of time. The structure function is, therefore, 

in general a function of the coordinates of the two points involved, or as in (IV-52), 

a function of the position of one of the points and of the vector connecting the two 

points. Note further that the subscript U on the structure function indicates that 

this is the structure function of the index of refraction. Later in this chapter, it 

will be desirable to deal with the statistical properties of the fields of turbulent 

velocity (u) or of the field of convected temperature (T). The current discussion 

is equally applicable to the u and T fields. The field being considered will always 

be indicated as the subscript of the structure function, correlation function, 

spectrum, etc. 

The micro- structure of the ocean is clearly not stationary in space. In 

other words, the structure function of (IV-52) can certainly be expected to depend 

on the depth of the observation x3. However, the structure function will usually 

be stationary in the horizontal plane. For a particular depth, we may therefore 

write: 

B& ©) = B (x3, r) (IV-52a) 

If, for reasons of convenience, we desire to ignore the dependence of the structure 

function on the depth of the observations, we shall simply suppress the x3 depend- 

ence and write B (r). 

The structure function is also not isotropic, in that the mean square 

fluctuations in the vertical direction may be expected to be somewhat different 

from those in the horizontal direction. Thus, if we introduce cylindrical coordinates 

for the vector r(_r = (r, 9, rg) ), the structure function may be expected to depend 

both on r and onrs. This is another way of stating that the patches, instead of being 

spherical on the average, may have a tendency to be lenticular. In general, therefore, 

the structure function depends on the three variables x3, r, and rs: 

J) (6x5 oe) SS 1 (Gey, se, a) (IV-52b) vo = U 

Unfortunately, not enough is known about the vertical anisotropy and nonstationarity 

of the micro-structure. From the little calculation that has been done, it is pretty 

clear that their effect on scattering is substantial. However, we shall usually ignore 

both effects and deal with a structure function B (r) which depends on the distance of 

the two points alone. 

Arthur D Uittle, Inc. 
$-7001-0307 



HEPVeRaeGaan Cee eee e a core SURGE Soaseant Be 
PONE COE 

ECS TiMLME SE THY A Sot 

01° c | 

5S meters 

R (r) 

ON NCONNE4ONNNGONNNIEO) 100) "120 
rom 

FIGURE IV-8 TEMPERATURE FLUCTUATIONS AND 

ASSOCIATED CORRELATION FUNCTION 

(AFTER LIEBERMANN) 

IW=23 

S-7001-0307 



IV -24 

If the fluctuations of the index of refraction are stationary, we can intro- 

duce the usual correlation function: 

<u (x) U(xt+r)> 
ZOE (IV-53) Gg) 

The correlation function is related to the structure function according to: 

i @) Sc ( @) = w win)? >= DAF SS) (: - R,0) (IV-54) 

We note that the mean square fluctuation of the index of refraction is independent 

of position in the stationary case; thus, we may just write SURE, 

The original experimental studies of the correlation of the temperature 

fluctuations in the ocean were made around 1948 by Urick and Searfoss, and were 

followed in 1951 by further experiments by Liebermann. Some of Urick and 

Searfoss' temperature recordings have already been presented in Figure IV-5. 

In Figure IV-8 we present a temperature recording near the surface made by 

Liebermann, together with its corresponding correlation function. The points of 

Figure IV-8 suggest that the use of an exponential correlation function may be quite 

appropriate for correlation distances between a few centimeters and a few meters: 

r/a 
R (r) = e. (IV-55) 

Because of the heat conductivity of the water, the use of an exponential 

correlation function is certainly not appropriate for very small correlation 

distances, i.e., a few centimeters or less. We shall see later that the slope 

of the correlation function must go to zero as r approaches zero if the micro- 

structure is to be continuous; clearly the thermal conductivity will prevent any 

discontinuity in the temperature from occurring. Whenever the fine structure of 

the patches is important (i.e., in the range below a few centimeters), it may be 

preferable to use a Gaussian form of the correlation function: 

(IV-56) 
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Both (IV-55) and (IV-56) are strictly empirical correlation functions, but both have 

been used extensively in the literature. Neither reflect the turbulent mechanisms 
which generate the thermal micro-structure of the ocean, and it was not until the 
last five years that attempts have been made to base the scattering calculations 
on a correlation function which does reflect the physical mechanisms responsible 
for the ocean micro-structure. 

A substantial amount of effort has been devoted during the past 10 years 
to the statistical investigation of turbulence, aimed both at representing the tur- 
bulent velocity field and at describing the resulting micro-structure of the 
distribution of the temperature and of the index of refraction. We shall merely 
sketch the principal conclusions from this research; two excellent surveys with 
considerably greater detail may be found in the book by Tatarski (Part I) and in 
the paper by Batchelor. 

To describe the micro-structure resulting from turbulence, it is con- 

venient to use a spectral representation of the fields involved. Consider the 

representation of the covariance function of the index of refraction in a stationary 
medium in terms of its Fourier transform: 

<u(x)U(x + r)> = <v*> R (x) piesa 3 =S (k) (IV-57a) 

The function S,, is the Fourier transform of the covariance function, and it indi- 
cates the amplitude of each spectral component present in the covariance function. 
The spectrum itself is therefore given by: 

a ail IS 6 ae <a 
S. (k) ~{{ fare = = R, (x) np (IV-57b) 

The above merely reflects the Fourier transform theorem. If the turbulence is 

isotropic. i.e., the correlation function depends on the distance r alone, the 

spectrum S, (k) will also be isotropic, i.e., depend only on the magnitude of the 
wave number (k). To show this, we introduce spherical coordinates for the vector 

r in ([V-57b) using (k) as the polar axis of the coordinate system: 

r = (r, 9, 4) such that Igoe Sle 1 COS ©) (IV-58) 

The element of volume in the integral now becomes d r= 2m r* sin 9 dr d0, and 
(IV-57b) may be rewritten as: 

© TT 

S (k) = | dr ( ae GO ee Oe (r)<u?>  (IV-59) 
y= J (27) 0) 

O oO 
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We observe that the spectrum in the isotropic case indeed depends only on (k). 

The integration over 9 can be performed and yields: 

fee) 

1 dr *y OS) 
S) (k) = 40k. 2 ie (kr) sin (kr) R (r) <*> = “ank= (IV -60) 

O 

In the above, we have defined a function E,, which is very closely related to the 

spectrum S, and which, in fact, has the property that: 

S., (k) dk = S (k) (411k*)dk = E(k) dk (IV- 60a) 

In other words, if we wish, in the isotropic case, to deal with a spectrum relative 

to a wave number interval rather than relative to a wave number volume element 

(as we must in the nonisotropic case) we should use E,, as the isotropic spectrum. 

Henceforth, whenever we refer to the spectrum under conditions of isotropy, we 

shall always mean E,,, defined according to 

@ 

E(k) = 2 { & (kr) sin (kr) R, (r) <v?> (IV-61a) 

0) 

The inverse relation to the above may be found by using a spherical coordinate 

system to permit the integration of (IV-57a); proceeding in a manner entirely 

analogous to the above, we obtain: 

ZWP SR HE fe sine) > RVG) 
v kr VU) 

Oo 

A number of generally valid statements may be deduced from this pair of transforms 

relating the spectrum and the covariance function. We expect the correlation func- 

tion essentially to vanish for values of r greater than some large distance R. 

Similarly, we expect the spectrum (E\)) to be cut off at some high frequency (K) 

corresponding to spatial gradients so steep that the heat conductivity of the water 

will destroy them. In other words, both the correlation function and the spectrum 

exhibit cutoffs at large distances and large wave numbers, respectively. Consider 

now (iV-61a) for wave numbers much less than L i.e., wave numbers correspond- 

ing to spatial wave lengths greater than the maxfnum correlation distance. It 

follows that in this case (kr) will always be much less than 1, and the sine in(IV-6la) 

may be approximated by its argument. Thus, we find that near k = 0 the spectrum 

has the form: 

Ze 2> 

E(k) ES a r? R(r) (IV-62) 

oO 
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In other words, the spectrum vanishes quadratically near k = 0, and the range 

for which this quadratic behavior is appropriate is somewhat less than R 

Because of the definition of the correlation function (IV-53), the value 

of the correlation function for zero correlation distance will be unity. It follows 

from (IV-61b) that the mean square fluctuation of the index of refraction is just 

the total area under the spectrum: 

<uU°> = dk E. (k) (IV-63) 

fo) 

Just as we were able above tofind the behavior for the spectrum for small values of k 
based on the known behavior of the correlation function for large values of r, so 

we may also determine the behavior of the correlation function for small values of 

r from the known behavior of the spectrum for values of k larger than K. In fact, 

for any correlation distance r substantially less than 1 , we may approximate 

(IV-61b) as follows: K 

foe) 

2 2 
<u = R= fa (al Ros -++) E, (kK) =<? > - 5 [o k* E(k) (IV-64) 

fo) fo) 

We observe that the expansion of the correlation function near r = 0 does not con- 

tain a term proportional to r, which substantiates our earlier assertion that an 

exponential correlation function cannot possibly be applicable for very small 

values of r, the correlation distance, if there is a cutoff frequency of the spectrum 

due to conduction. We may also obtain the structure function for very small values 

of r through the substitution of (IV-64) in (IV-54): 

B, (r) = 2<v?> E -R. (x) | a9 (IV-64a) 

For small values of r, the structure function therefore behaves like r*. 

The above argument will hold equally well for the spectrum and structure 

function of the turbulent velocity (u) or of the temperature distribution (T). To find 

the spectrum in the intermediate range of wave numbers, we must appeal to 

Kolmogoroff's general theory of turbulence as described, for example, in Tatarski. 

We shall content ourselves with a general dimensional argument providing some 

justification for the final results. 
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Consider a fluid which is maintained by some means or other in an 

unstable state, i.e., a state which results in the occurrence of turbulence. Suppose 

that an external source of energy provides a power P per unit mass of the medium. 
2 2 

The dimensions of P are power per unit mass = ‘ : = = = We suspect the 

existence of a spectrum of the velocity of the turbulent motion which is pretty uni- 

versal, i.e., a spectrum which, at least for a substantial portion of the frequency, 

is independent of the details of the energy source and independent of the detailed 

properties of the medium, but subject only to the condition that turbulence is main- 

tained. The resulting spectrum E, (k) can, if it is to be universal, depend only on 

the variables k and P: 

E. = E(P, k) (IV-65) 

3 

The dimensions of k are a The dimensions of the spectrum Ey are-= , as may 

be seen from the definition of a spectrum as in (IV-64), with the realization that 

for the velocity spectrum the mean square velocity fluctuations < u” > must be 

used instead of <vu* >. There is clearly no dimensionless combination of P and k, 

and we are, therefore, looking for a combination of P and k which is dimensionally 

consistent with 131 

a3 22m-n 

Ea Baga Or eae ee arrme (IV-66) 

It follows at once that m = 2/3 and n = -5/3, and in the range of interest, the 

spectrum must be of the form: 

2/3 -5/3 

1 Se k (IV-67) 

The above is the Kolmogoroff law of turbulence, stating that for ranges in which 

a universal law of turbulence is applicable, the spectrum must decrease as the 5/3 

power of the wave number. Clearly, the above law can only be expected to be valid 

for values of the wave number below the viscous cutoff. In other words, for tur- 

bulent eddies so small that the viscosity of the medium becomes important, the 

spectrum will in general also depend on the viscosity, and the above dimensional 

argument will no longer be applicable. Suppose that the eddy size for which this 

occurs is 4yj5¢; we shall call this the inner scale of the turbulence and would 

expect the Kolmogoroff spectrum for the velocity to be valid for wave numbers less 

27 
than 

Avisc 
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We desire the spectra of the fluctuations of the temperature and the 

index of refraction rather than of the velocity field. It turns out, however, that 

one may again expect a range of frequencies for which a universal spectrum 

decaying like the -5/3 power of the frequency is applicable: 

B wk 8 (eke ) (IV-68) 
cond 

The meaning of we and L is the following: 
ond 

In the case of sea water, the heat conduction cutoff of the spectrum occurs at lower 

wave numbers than the viscous cutoff; in other words, the viscosity of the water 

can support smaller eddies than the thermal conductivity. The range of validity 

of (IV-68) is therefore cutoff at the high wave number end by the scale determined 

by heat conduction. At low wave numbers, i.e., for large patches, we would cer- 

tainly not expect a universal law of turbulence for patch diameters of the order of 

magnitude of the layer thickness of the originally layered structure which was 

broken up by the turbulence. The outer scale L of the thermal micro- structure 

will therefore be of the order of twice* the diameter of the largest patches, which 

has been shown earlier (see Figure IV-6) to have a diameter of the order of twice 

the depth. We would, therefore, expect the outer structure L to be of the order of 

four times the depth. For wave lengths of the order of magnitude of the largest 

patches, the details of the original layered structure become important. We show 

in Figure IV-9 the general shape of spectrum that is to be expected. For very small 

wave numbers, the spectrum starts at zero and increases quadratically. For slightly 

larger wave numbers, the spectrum is more or less flat, going through a maximum 

corresponding to the dominant patches resulting directly from the breaking up of the 

original layers. For the intermediate range of wave numbers, corresponding to 

wave lengths between the depth of the measurement and a few centimeters, the 

spectrum obeys the Kolmogoroff law. Finally, for very large wave numbers in the 

conduction range, the spectrum decreases very rapidly. 

We may also obtain the structure function corresponding to the Kolmogoroff- 

spectrum. According to (IV-54) and (IV-61b), the structure function is given by: 

B (r)=2< > [1 2 R, (x) | =2 fo (yoo a) (ieee (LV 69) 

*"twice" because L is a full wavelength, containing both a patch with v > 0 and a 

patch with vu <0. 
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For intermediate values of the correlation distance, i.e., Ceond << r << L, the 

main contribution of the integral will come from the part of the spectrum in the 

range = ck< so that: 
cond 

2 cond ue ; ; 4 ae 

B (r}~2 Te ee SE dé (1 _ Sinbes b= 2/3 dé ( - Sint ye 

U kr E E 

27/L 271r/L fo) 

(where § = kr) (IV-70) 

For the Kolmogoroff law, the structure function behaves as the 2/3 power of the 

distance of separation. Figure IV-10 shows a number of measured structure 

functions for the thermal fluctuations, which appear to substantiate the 2/3 power 

law in the intermediate range. 

For purposes of calculation, and in the absence of better experimental 

information, we shall make use of a fairly bold approximation to the spectrum of 

the index of refraction as shown in Figure IV-9, an approximation of the form: 

0 fork<e 

= <k< E) (k) Ey fore <k Ky (IV-71) 

Ko 5 /3 
E. (—) fork>k One 0 

In other words, above some wave number kg we shall use the Kolmogoroff spectrum. 

Usually there will be no need to introduce the conduction cutoff at very high fre- 

quencies. For wave numbers below ko, we shall assume the spectrum to be flat, 

down to some very small wave number € corresponding to the largest patch size to 

be expected. The spectrum is assumed to vanish below ¢. We may usually take 

the order of magnitude of € to be a factor of 10 smaller than kp. Based on the 

spectrum (IV-71), we would, therefore, expect a mean square fluctuation of the 

refractive index, see (IV-63): 
@ 

3 
> = => = = o <v #00 a Ey ky +5 Ey ky DS) Ey ky (IV-72) 

Oo 

We can, therefore, eliminate Ey from (IV-71) and write the spectrum strictly 

in terms of the mean square fluctuation and the critical wave number Ky ; 
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KOLMOGOROFF CASE 
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Ignoring the very low wave number range, we obtain the form of the Kolmogoroff 

spectrum which we shall henceforth use: 

il f < or k ko 

0.4<vU*> 
k 
0 Ky 5 /3 

@ fork<k 

E(k) = (IV-73) 

0 

In Figure IV-11, we show a number of actual measured correlation functions, in- 

cluding the fairly long range portion of the correlation function, as compared with 

a correlation function of the Kolmogoroff type. The general qualitative agreement 

seems to be very good, certainly much better than the exponential or Gaussian 

approximation, which turns out to be an appropriate approximation only for relatively 

small values of the correlation distance. As we shall see in the next section, the 

low wave number (large wavelength) portion of the spectrum is very important in 

most scattering calculations. 

To summarize the results of this section, we present below a table of the 

three correlation functions, and their associated spectra, that have been used as 

various degrees of approximation of the micro-structure of the index of refraction. 

TABLE IV-2 

OCEAN MICRO-STRUCTURE CORRELATION FUNCTIONS 

AND ASSOCIATED SPECTRA 

Co lati F ti R rrelation Function yp Spectrum E (k) Remarnics 

sera (ka)? Exponential (1+(ka)*) ae TT 

2 

2a <u> (sa) 

VT 2 
Gaussian 

2 IL fork<k 
‘ <u> 0 

See Figure IV-1lc 0.4 Kolmogoroff 
k 5 /3 > 

(ky/k) for k ky 
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D. SIGNAL FLUCTUATION AND CORRELATION RESULTING FROM THE 

OCEAN MICRO-STRUCTURE 

We now have at our disposal the tools required to examine the statisti- 

cal properties of the pressure fluctuations of a sound wave propagating through an 

inhomogeneous medium. As a first step, we consider the distribution of scattered 

power from a relatively small region of inhomogeneities at a distance large com- 

pared to the size of the region. The geometry of the situation has already been 

shown in Figure IV-2 for the individual scatterer, and we need merely replace the 

individual scatterer by a region of scatterers to make this figure applicable to the 

present discussion. We found in our analysis of the geometry of Figure IV-2 an 

expression for the first order scattered pressure which was: 

2 _ikx ; 

PY) ge TE | agers 2 u(e) (IV-45) 

V 

We recall the meaning of the vector d to be the difference between the unit vector 

directed at the observer and the unit vector in the positive x, direction, i.e., the 

direction of propagation of the incident sound. The magnitude of the vector d was 

shown earlier to be d = 2 sin 9/2, where 9 is the scattering angle separating the 

direction of the observer from the direction of propagation. 

The volume V is to be regarded as large compared to any single inhomo- 

geneity, but small compared to the distance between the region and the observer. 

If we consider an ensemble of scattering volumes differing from each other in their 

micro- structure but all characteristic of the micro-structures which might be en- 

countered in sequence over a long period of time, we would like to know the statistical 

properties of the scattered pressure p, averaged over such an ensemble. Since the 

average of the refractive index < v (§ )> over the ensemble must be zero, it is clear 

that the average fluctuation of the pressure must also vanish ( < p; > = 0). We would 

like to compute the variance of the fluctuations of the pressure, which is analogous 

-to computing the distribution of scattered power: 

e -i (.)_2(2) 

Sk are [2a ee Ge) ener) 

Vv Vv 

=_K ae) ge(@rettd BP)- 8) ese al). el) 
(211)* x* ¥ 

VV 
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To obtain (IV-74), we multiply pi, as given in (IV-45), by its complex conjugate 

and average over the ensemble of different micro-structures, making use of the 

correlation function of the refractive index (IV-53). _We may simplify (IV-74) by 

introducing the difference coordinates § = aes (2), since the integrand depends 
only on these coordinates. Let us retain & () as the other coordinate of integration. 

The only problem is then to determine the volume of integration for the § coordinate. 

We realize, however, that because the volume V is much larger than the 

"correlation volume" of the correlation function R,,, the integration over § may 

just as well be taken over all of space. Making these substitutions in (IV-74), we 

obtain: 

<| pi | 2>= aire ( [2 ae ) | dg eo MEEeue>R 6) (IV-75) 

The first integral in (IV-75) is seen to be the volume of the scattering region V. 

The second integral is the spectrum of the refractive index refined in (IV-57b). 

We therefore obtain for the scattered power the following very simple relation 

involving the spatial spectrum of the fluctuations of the refractive index: 

OD) ai Pe WY 
<| pil*> = ages S (kd) (IV-76) 

The scattered power is seen to be proportional to the volume of the scattering 

region; thus, the power scattered by two adjacent volumes must be added to give 

the power scattered by the two volumes combined. For the far field, therefore, 

the power scattered from two different volumes, each large compared to an individ- 

ual inhomogeneity, is uncorrelated, as asserted in Chapter Il. 

When the scattering volume is isotropic, we may use the isotropic spec- 

trum E, as defined in (IV-60). Since the magnitude of the vector d is 2 sin 6/2, 

the angular distribution of the scattered power is given by: 

BE, (2k sin 8/2) 
2 = 

Sle = ae (2k sin 9/2) Coa) 

For practical purposes, we can select the spectrum corresponding to the exponential 

Gaussian, or Kolmogoroff correlation function from Table IV-2 and substitute in 

(IV-77). We observe that the directivity of the scattered power in the far field 

’ scattered by a volume with a-statistically distributed index of refraction is exactly 

the same as the directivity resulting from scattering by a single inhomogeneity with 

a determinate distribution of the refractive index equal to the correlation function. 
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(IV-77) shows that the larger patches of the inhomogeneities are important in 

determining the forward scattering properties, whereas patches of the order of 

half the wavelength of the incoming sound dominate in determining the back 

scattering. 

The total power scattered by a unit volume of scattering inhomogeneities 

may be obtained by integrating (IV-77) over the surface of a semisphere: 

De 742 E (2k sin 8/2) 
= 6 Ze 2> i = 4 1 6 = Poo sss 27 | dO x | Pi (x1 9)| sin§=tk | d9 sin (2k sin 6/2)" sin 0/2) (IV-78) 

oO oO 

Because of the trigonometric identity cos 9 = 1 - 2 sin® 9/2, we can write the 

differential sin 8d § as 2dsin® 9/2. We therefore introduce the new variable 

y = (2k sin 6/2)° in (IV-78) and obtain a very simple expression for the total power 

scattered forward by unit volume of scatterer: 

2k 
sata BE (vy) 

— wee ———E V- 

T raremralaed 2 s ay y ene) 

O 

Consider now a plane wave incident on an infinitely extended slab of scatterers, the 

slab having unit thickness. A moment's reflection will make clear that (IV-79) must 

also be the total scattered power received per unit of surface at any point behind the 

slab. If the slab hasathickness L, the total scattered power will be: 

2 

nee 3h) 
Ss > —— IV- P aL | ay (IV-80) 

oO 

since we may simply add the scattered power from each of the individual slabs of 

unit thickness. Thus, an observer, embedded at a range L from the surface of 

an inhomogeneous half-space will find that (IV-80) determines the scattered power 

which he receives from forward scattering of the intervening medium if a plane sound 

wave is normally incident on the inhomogeneous half-space. With the use of 

Table IV-2, we may work out the details of (IV-80) for the case of an exponential 

and a Gaussian correlation function. These are presented in (IV-81). 
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2k® 

Exponential: P__ = 2<v®> a’ k°L dyin Abe aukele 
(1t+a?y)? 1+2a°k? (IV-81a) 

Oo 

2k ya* k* a2 

3 =o —_— - 

Gaussian: Bee = Tk? loa <v*> [ov oe = ne taePa(t -e 2 

@ (IV-81b) 

We may take the high and low frequency limits of these expressions to obtain the 

approximate expressions for the scattered power shown in Table IV-3. These are 

seen to agree with the qualitative discussion of Chapter II. Furthermore, the exact 

expressions for the entire frequency range in (IV-81) permit us to examine the 

range of validity of the high and low frequency approximations. Thus, Table IV-3 

also shows ranges of frequency for which the approximation can be tolerated. In 

this context, we have chosen a relative error of approximately 1/3 as the maximum 

allowable error for the approximation to be applicable. It should be emphasized 

that all of these results are good only for the far field where the geometric approxi- 

mations leading to (IV-45) are valid. Furthermore, the scattering volume must 

not be too large if the single scattering approximation under which all of this was 

devised is to remain tenable. In other words, the range L must be sufficiently 

small that the scattered powers shown in Table IV-3 are small compared to unity. 

TABLE IV-3 

THEORETICAL SCATTERING FOR TWO TYPES OF 

CORRELATION FUNCTION 

ka >> 1 (high freq.) ka << 1 (low freq.) 

Exponential | P  ™2ak? <v?> L P ~4ak* <u> L 
sc sc 

applicable when ka > 1 applicable when ka < 3 

Gaussian PD Cyr ale ve > iL, 
sc 

applicable when ka > 2 
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For the high frequency case, this yields the condition (IV-15) which has been 

used earlier without justification. To obtain order of magnitude estimates of the 

quantities involved, we may assume a typical value for < VU > in the ocean to be 

of the order of 5x 10™°. A typical value of the patch radius a is of the order of 

1 to 10 meters, depending on the depth of the measurement. The results of 

Table IV-3 were obtained for the first time by Mintzer in 1953 for the case of a 

spherically spreading wave in a medium with a Gaussian correlation function. 

Mintzer compared the behavior of the scattered power as linearly depending on 

the range with experimental data obtained by Sheehy. (See Figure 1V-12.) The 

coefficient of variance (the square root of the mean square power) is seen to 

behave very much more as the square root of the range than as the three-halves 

power of the range which would have been predicted by ray acoustics. The above 

arguments do not give us the near field, which is important at high frequencies 

when the focusing range can be quite large. Also, the measurements under actual 

ocean conditions are usually not measurements of the scattered pressure by itself 

but rather of the total pressure, i.e., of the sum of scattered and incident pres- 

sures, which are not normally in phase. The measurements usually recorded by 

instruments are either proportional to the square of the amplitude of the local 

pressure or else measurements of the phase of the pressure. Let us first consider, 

therefore, the type of results required to estimate the mean square fluctuations 

of the amplitude and the phase of the total acoustic pressure at a point in the medium. 

It is appropriate to perform the analysis on the basis of the 'smooth'’ method of 

approximation rather than the method of “'small" perturbations, since the fluctuations 

can be large. We recall from (IV-16a), (IV-19) and(IV-36) that the incident pressure, 

the total pressure, and the correction to the complex phase may be expressed as 

follows: 

Po (x) = AO (x) Se) (IV- 16a) 

p (x) =p, (x) e we (IV-19) 

Goma ge Po (5) it : 
plo = aa | dis x »O5& a Si - iB, (IV-36) 

V 

In the above version of (IV-36), we have defined the quantities S, and B, as the real 

and the negative imaginary parts of 1, respectively. We note here that their 

physical meaning, according to (IV-22a) and (IV-22b), is that of the fluctuation of 

the phase and of the logarithmic amplitude, respectively. The phase angle of the 

total pressure is therefore given by: 

S (x) = Arg (p(x) ) = S, (x) + Si (x) = Sx) + ReWa (x) (IV-82) 

Arthur D Little, Inc. 
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It is clear from the above that the expected value of the phase will be just the phase 

of the incident wave Sg. The variance of the phase is therefore given by <aSie 

and this is one of the averages which we must calculate. 

We are also interested in the variance of the amplitude of the total pres- 

sure. The literatureis full oferroneous derivations* of the variance, and we shall 

therefore take some time to develop an expression which has somewhat wider 

applicability. 

Since (IV-36) shows the fluctuation of the complex phase to be the sum of 

a large number of independent contributions (independent if we divide the volume V 

into a number of sub-volumes each of which are still large compared to a single 

patch), we would expect, according to the central limit theorem, both the real and 

the imaginary part of !, to obey a normal distribution. In fact, we have pretty 

good evidence (see Figure IV-7) that v itself is already normally distributed, which 

would even make the invocation of the central limit theorem unnecessary. S, and 

B, therefore obey a multivariate normal distribution with a characteristic function 

which is: 
<Si >< Sy) Bi fo} 

-(0,8) 
* : 2 

Xe Meee tt ae A aN (IV-83) 

The computation of any averages involving the total pressure or its amplitude is 

much facilitated by the use of this characteristic function. We observe that the 

amplitude of the pressure is given by 

B A@® =|p@| = A,@et® (IV-84) 
Averaging this expression over the ensemble, we obtain: 

25 2> 

2A ai Gels a (Gy aye ea (IV-85) 

*The common practice is to regard the total amplitude as very little different 

from the amplitude of the incident wave, expand the total amplitude to first order 

in the small quantity, and then square it to obtain the square of the amplitude. 

Taking the average, the first order term drops out and there remains the second 

order term. This second order term is incorrect, since it does not include the 

product of the zeroth and second order terms of the original expression of the 

total amplitude. 

Arthur D Little Ine. 
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We note that the expected value of the amplitude is now no longer the amplitude 

of the incident wave but rather a slightly larger number. Note also that the 

logarithm of the amplitude fluctuation B, is normally distributed, so that the 

amplitude itself, as given by (IV-84), should be expected to have a log normal 

distribution. 

The mean square value of the amplitude can be obtained similarly by 

averaging the square of (IV-84): 

2<B,°> 
2S = AS < ef By (x), = Ay X (©, -2i) = ae e _ (IV-86) 

We therefore obtain for the square of the coefficient of variation of the amplitude 

the expression: 

2 2 eee +2 <R.2> 
v= pee . ‘P| =e By =1=<B,"> (IV-87) 

| 

We had earlier computed the coefficient of variation for the entire field p for the 

interference range. Using the present scheme, the average of the total field is 
given by: 

i + — ab < Os 2 25. we > 

apa eer Peo bape hs Se a) 

(IV-88) 

Similarly, the coefficient of variation becomes: 

aysiipliaalkepale =6 (GE Pel) | SSB Sal CIV 89) 
p Sj) 

As we show later, the mean square fluctuations of S; and B; become equal in the 

far field, and this explains, see (IV-88), why the magnitude of the total pressure 

became equal to the amplitude of the incident wave. It is clear from the above that 

we should like to evaluate the following averages over the ensemble: 

<B.°> = < (Im Wi) >, Sie = <(Re Ve <S,B,>=-<Ret Im > (IV-90) 

Arthur A ALittle, Inc. 
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We could just substitute the real and imaginary parts of 1 as given by (IV-36), 

but would find that the resulting integrals are very difficult to evaluate. In the 

high frequency (k a> > 1) case, a general evaluation of the integrals has been 

performed, and may be found in Chernov (Ref. IV-2, following p.66) where he 

considers rigorously the problem of a plane wave incident on an inhomogeneous 

half-space as shown in Figure II-3. The significant approximation to be made in 

the high frequency case is the result of the high directivity of the scattering from 

any small scattering volume. The signal received by an observer located at a 

point x (see Figure IV-13) comes principally from those scatterers which are 

located in a narrow cone with the observer at its apex. The distance between an 

element of scattering volume and the observer may therefore be approximated 

according to: 

r= J/(m - 1) +0 ~(m -&1)+%8 —— s—+---:- (IV-91) 

where 0° = (Xp - a) +(x - &3)" 

The definition of p may be seen from Figure IV-13. If we substitute this approxi- 

mation in (IV-36) and take the real and imaginary parts we obtain 

xX. eo) 

K in| 02/2 ? 

Sy = | dE | | dE. dé sin | ko*/2Ga = &) | : - = SN ) (IV-92a) 

oO -0O 

ke as " cos| k p*/2(x, - & ) | 
Bes || dé d§_ d&s cos | p°/2( - £3) | eZ IL 9 @) (IV-92b) 

2m 2G > Ey i 
(@) -© 

These expressions can be used to obtain the averages given in (IV-90) in a fairly 

simple form. Since all averages involve taking an average of the product of the 

index of refraction at two different points, all of these averages will ultimately 

be in terms of the correlation function describing the inhomogeneity of the medium. 

The computation of the averages remain a formidable exercise in integration, and 

may also be found in Chernov. The resulting integrals can be approximated depend- 

ing on whether the observer distance L is in the focusing or in the interference range. 

In other words, the nature of the approximation depends on whether the wave param- 

eter D= aS is much less or much greater than unity. Following Chernov, we 

Arthur D Little Inc. 
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FIGURE IV-13 GEOMETRY FOR HIGH FREQUENCY SCATTERING 
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obtain the results shown in Table IV-4 for the mean square values of the phase and 

the amplitude. We note that amplitude and phase fluctuations become equal in the 

interference range. We also observe that the coefficient of variation of the ampli- 

tude in the focusing range behaves as the three-halves power of the range. This 

is just the result to be expected for ray acoustics and was already hinted at in 

Chapter II. It is possible in a similar fashion to evaluate the cross correlation 

between the phase and amplitude fluctuations at a given point, <B,; S, >. Itis 

more interesting, however, to evaluate the cross correlation coefficient between 

the logarithmic amplitude and the phase: 

R = a BIB ISH Ze (IV-93) 

WS | Wen Ss 2s 

Chernov shows that for a Gaussian correlation function this cross correlation 

coefficient becomes, in the two extreme ranges: 

Ris = 056 for D<<1 (focusing range) (IV-94a ) 

R = LED) for D<<1 (interference range) (IV-94b) 

TABLE IV-4 

THEORETICAL AMPLITUDE AND PHASE FLUCTUATIONS 

D> > 1 (Interference Range) D<< 1(Focusing Range) 

cfow i R (r) dr p2<P> 8 LR ar 

O 0 

bl il 

(e) 

| ea: po<v>L [ee seme 

| J ; 
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The phase and the amplitude fluctuations at a point are therefore essentially 

uncorrelated for ranges of propagation long compared to the focusing distance of 

the inhomogeneities. On the other hand, they are quite strongly correlated in- 

side the focusing range. 

We can also calculate the cross correlation of the amplitude or the phase 

at two distinct points in space. Chernov computes some typical correlation dis- 

tances (i.e., distances over which the correlation is appreciable) for two receiving 

points. We must distinguish between two points located relative to each other in 

the longitudinal direction of wave propagation and two points located transversely, 

i.e., in a constant phase plane of the incident plane wave. We find that a typical 

distance of longitudinal correlation is of the order of magnitude of the focusing 

range, which is approximately ka”. 

Longitudinal correlation can therefore extend over appreciable distances. 

In the transverse direction, however, the correlation distance of the single fluctua- 

tions is of the same order of magnitude as the correlation of the refractive index, 

i.e., of the order of magnitude of a. Figures 1V-14 and IV-15 show some trans- 

verse correlation functions of the phase and the amplitude computed by Chernov 

on the basis of a Gaussian correlation function of the index of refraction. These 

quantitative conclusions about signal correlation appear to be borne out by experi- 

mental evidence such as that shown in Figure IV-16 (after Skudrzyk). 

S$-7001-0307 
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Rp 

\/a 

THE TRANSVERSE AUTOCORRELATION FOR 

THE CASE OF SMALL D (D <<1): 1. The auto- 

correlation coefficient of the amplitude fluctua - 

tions; 2. The autocorrelation coefficient of the 

phase fluctuations, identical with the autocorre- 

lation coefficient of the refractive index fluctua- 

tions. (After Chernov) 

FIGURE IV-14 
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FIGURE IV-15 THE TRANSVERSE AUTOCORRELATION FOR 

THE CASE OF LARGE D (D= 10): 1. The 

autocorrelation coefficient of the amplitude 

fluctuations; 2. The autocorrelation coefficient 

of the refractive index fluctuations; 3. The 

autocorrelation of the phase fluctuations. 

(After Chernov) 
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APPENDIX A 

SOME SOLUTIONS OF THE WAVE EQUATION 

We shall summarize here some well known facts about the solutions of 

the scalar wave equation: 

vot ko = 0 (A-1) 

- 1) 

The time dependence e ah is suppressed. If we wish a spherically symmetric 

solution, (A-1) becomes: 

zird O iow = © (A-2) 

It is readily seen that both £ and = satisfy (A-2), and if the suppressed 

; ya eAWE : es 
time dependence is e , the outgoing wave is given by: 

eikr 

~p = (A-3) 

At the origin, this wave function blows up, and Vv? (is ill-defined. In fact, we 

must resort to the definition of the divergence as a limiting ratio of flux to volume 

to evaluate V* ¢ at the origin. Given any vector function v(r), the divergence is 
usually defined as: 

CIV AVA Vag elim + fy +2 ao (A- 4) 

where: 

=F I = small volume element containing the point at which div v is to be computed 

O = surface enclosing T 

local normal to 0 Is 
" 

Hence, for V* 0, we substitute v = grad » = Vq@ in (A-4) and obtain: 

vo = lim S| a6 (A-5) 
T0 ee 

Arthur D Little, Inc. 
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Take T to be a small sphere with radius € about the origin. Then the normal 

derivative is the radial derivative oe , and this is constant over the surface of 
or 

the sphere: 

2 2 CK 3 elke 
V~ mMm=li — =li — = 5 oo = lim qa ney 32 aa lim ees (-1l+ike) 

E70 €-0 

ike 
me 3e fr : | 
Sea Wed L 47+ 41 ik eé (A-6) 

T 
Hence V* ¢ blows up at the origin as , and the limiting volume integral of 

V* ( over a small sphere about the origin will remain finite: 

lim dt Vp-- 47 (A-7) 
TO 

T 

Note that the volume integral of k* ~ over 7 does approach zero, even though 

() itself blows up. Asa result, 1 as given in (A-3) does not satisfy (A-1) at the 

origin, but satisfies the modified problem: 

Veotko = - 4178 (r) (A-8) 

where 6 (r) is zero everywhere, except at the origin where it becomes infinite in 

such a way that { dt 6(r) = 1. Such a function has the property that i) dt f(r)6(r)= 
ng 

T a 

f(o) for any f. 

If the singularity is at a point r' rather than at the origin, a shift of origin 

will show that: 

(Ge as) = Males op (A-9) 

satisfies: 

Vy +k’ y = - 5(r- 2’) (A-10) 

Arthur D.Little, Inc. 
S$-7001-0307 



The function given in (A-9) is known as the Green's function and permits solution 

of both the homogeneous and inhomogeneous wave equations through the use of 

Green's theorem. We shall, therefore, discuss briefly: 

1. Green's theorem 

2. the general solution to the homogeneous wave equation 

3. the general solution to the inhomogeneous wave equation. 

1. Green's Theorem 

It follows from the definition of the divergence that, for any volume V 

bounded by a surface S with local normal n, the volume integral of the divergence 

of a vector function v is related to the outward flux by: 

favy dV “al v. nds (A-11) 

Suppose the vector function is given in terms of two arbitrary scalar functions 

~ and | according to: 

YS OV = WY w (A-12) 

Application of (A-11) then yields: 

{v. (pv y -¥7u)av= [vs -~)V@) -nds 

V S 

Both sides may be simplified to yield Green's theorem: 

oy aa Jae) oS (A-13) [eee v - ¥ V? »)dV ={ (st 

Vv S 

Arthur D Little, Inc. 
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2. Solution to Homogeneous Wave Equation 

Let ( be a solution to the homogeneous scalar wave equation (A-1) every- 

where in some volume V, bounded by a surface S. Let ) be the solution (A-9) of 

the inhomogeneous equation (A-10). In summary: 

Vo ele oS O 
ik 

Oo || ses ae) Wee) te pe y Y anb aor = 0 \()— 1!) wheres) = 

Multiply the first of these equations by |, the second by ©, and subtract: 

VV? o- ov y= (r- x’) 

Integrate both sides over the volume V. The left side can be changed to a surface 

integral by Green's theorem. The right side simply selects & at the point r', so 

we obtain: 

9 (r') “ff (, 2) 9 yw ve, a) ds (A-14) 
N) 

n 

This is the Helmholtz formula, which gives the value of the wave function inside 

a closed surface in terms of a distribution of simple and dipole sources on the 

surface. 

3. Solution to the Inhomogeneous Wave Equation 

If ~ is a solution of the inhomogeneous scalar wave equation 

Ve otk @ = f(x) (A-15) 

we can again use the same Green's function (x, r') which satisfies 

VPy+k y = d(r-r') (A-9) 
to obtain a solution. Again we multiply (A-15) by ¥, (A-9) by ©, subtract, integrate 

over a volume V, and apply Green's theorem. This yields: 

o(r)={ [ (x, reo. (x) — V(x, | dS “fav f(r) ¥ (x, xr’) (A- 16) 

S 

Thus we see that ~ consists of a solution to the homogeneous wave equation plus a 

particular solution to the inhomogeneous equation. This particular solution has 

the form of a volume distribution of simple sources. 

Arthur D Little, Inc. 
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APPENDIX B 

THE MULTIPLE SCATTERING OF WAVES 

The following development, due to Foldy,* deals with scattering of an 

incident wave by a random distribution of scatterers. The treatment is in terms 

of general wave theory. The scatterers may be arbitrary in number and char- 

acter, except that the scattered wave is assumed to be spherical and with an 

amplitude proportional to that of the wave exciting the scatterer. The constant 

of proportionality is assumed to be specified completely by the frequency and a 

single parameter of the scatterer, denoted by s. 

If we have a collection of N scatterers and are given for each its 

position, rm, ..., rn, and its scattering properties as specified by si, ..., SN, 

then we shall say that we have a particular configuration of the scatterers. The 

ensemble of configurations in which we are interested may be described by a 

probability distribution function P(r,... >In Sao . SN) So that 

P(r1,..-, ITN, Si,---,Sn)dri...dry dsi...dsyy represents the probability of 

finding the scatterers in a configuration in which the first scatterer lies in an 

element of volume dr, about the point r; and has a scattering parameter lying 

between s, and s; + ds,, and so on for the other scatterers. The average of a 

physical quantity over the ensemble of configurations is called a configurational 

average. Thus, for a function f(y peeeyTnp Saree SN), the configurational average 

is 

<f> ={ ffs, 2 S1,.--Sn)P(m,.-, rn, S1,---Sn)dri.-drydsi . .dsyy 

Veve’ Vv 
(B-1) 

Subscripts will be used to indicate when the integration over one or more of the 

scatterers is to be omitted; thus <f>,; indicates that the integration over qj and 

s. is to be omitted. In the following we will also assume that the scatterers in an 

ensemble are independent of each other with respect to position and scattering 

parameter. In this case, P can be written as (1/N) * n(ri, S1)n(r2, Sz). . -n(rpySq), 

where n(r, s)ds is the average number of scatterers per unit volume in the 

neighborhood of the point r having scattering parameters laying between s and s+ds. 

We will then consider the steady state scattering of waves of a single 

frequency ™, so that the value of the scalar wave function at the point r and 

time t can be represented asp(r)e~it. In the absence of scatterers, p(r) will 

satisfy the wave equation Vp + Ke p = 0, where ky = (W/cg) and cy is the 

wave velocity in the scatterer-free medium. The scatterers are assumed to behave 

-as point scatterers, scattering spherically symmetrical waves; thus in the neighbor- 

hood of the j-th scatterer the wave function will behave like BE (xr, Xj); where 

*L. L. Foldy (Ref. III-8). 
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atiko| aes | 
(eS shore niece aii (B-2) 

— 

and B. is a complex number. The external field acting on the j-th scatterer is 

defined as 

p(x) = p(x) ; B E(r, x) (B-3) 

The scattering properties of the scatterers are furthermore assumed to be char- 

acterized by the relationship Bj = g(sj; Ww) P(r; ), making the strength of the 

scattered wave proportional to the external field acting on it. The value g(s.,) 

will be referred to as the scattering coefficient for the j-th scatterer and will be 

abbreviated to g.. All the models for pulsating air bubbles suspended in water 

satisfy this eee For the adopted model (Model! III) 

inc — 

(all adie on 

where Wo and 6 (a, W) are functions only of the bubble radius a, the frequency of 

the incident sound &, and various parameters of the gas in the bubble and the 

surrounding medium. Then the bubble radius is the scattering parameter and 

ae) =§§ SS 
W 

(-2] S548, @) 
W 

The basic problem is then the following: Given the function g(s, W), the distribu- 

tion function n(r, s) for the scatters and the wave function p_, (r) which is present 

in the medium in the absence of the scatterers, find < p(x)>, the configurational 

average of p(r), in the presence of scatterers. 

Consider a particular configuration of scatterers. Then 

p(x) = p (+5 BG) a) Sp G@)>.) BG, ay) (B-4) 
9 J J @ J J 

j : (Gi) 

represent the total field and the incident field on the j-th scatterer. Substituting 

the relationship Ei = g, p (x) in the above gives 

pa) =p,@)+)) gp) BG, x) (B-5) 

Arthur D Aittle Inc. 
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— iy - p(x) Ae) 8. P (r,.) BG Zr.) (B-6) 

J AU) 

These represent the fundamental equations of multiple scattering. The direct 

method would then consist of solving the set of simultaneous linear equations (B-6) 

for the pi(x.) and substituting these in (B-5), thus giving p(x) as a function of the 

positions and scattering parameters of the scatterers. Then taking the configura- 

tional average of this quantity would give the desired results. Unfortunately, it is 

not possible to carry this procedure through because of the complexity of the 

integration. The alternative method used by Foldy involves finding equations 

satisfied by <p(r) > and then solving these equations for the desired averaged 
quantities. 

Taking the configurational average of both sides of(B-5), we have 

ne : s; ») 

<(r) >= <p(r)> 22 Ne a Se Ge ies) State Ga 

= poo) a <pi(x)> EG, x)dr 
Vv 

where 

G(x) = { ats, w)n(x,s) ds (B-8) 
J 

The quantity <p! (x,) >, represents the external field acting on the j-th scatterer 

averaged over all possible configurations of all the other scatterers. The only 

rigorous way of evaluating it seems to be to solve the set of equations (B-6); sub- 

stituting these in (B-7) and carrying out the necessary integrations would then give 

<p(r)>. As stated before, this does not appear to be feasible. Thus, we resort to 

approximating <pl(x,)>; by the average field which would exist at r. if the j-th 

scatterer were not present. This last quantity differs. from <p(r.)> only by a term 

of order 1/N. Thus, if Nis large, we may substitute <p(rj )> for <pi (x; Val in (B-7), 

obtaining the integral equation 

< p(t) ~p(r) + FG) <p(x') > E(r, r')dr' (B-9) 

Arthur D Little Inc. 
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Consider now the operator Vv + ke and note that (V* + KS ) E(r, 2) = Sil § (Gen): 

Applying this operator to both sides of (B-9) gives 

V? <p(r)> + ko <p(r)> = - 41 G(r) <p(r)> (B-10) 

With k(x) = Ke + 41G(r), we see that We j9\(26)) 29 ar k* (zr) <p(r)> = 0, and so <p(r)> 

satisfies the wave equation in a "continuous medium" in which the velocity of 

propagation depends upon the scattering coefficients and density of the scatterers 

and is, in general, a function of position. This is an important result, which gives 

the same characterization for propagation as obtained by considering the complex 

compressibility of a bubbly medium. 

The problem of finding < p(r) > has thus been transformed to solving a 

boundary value problem for the wave equation, where the boundary conditions 

depend on G(r). If G(r) is everywhere continuous and approaches a constant value 

or zero at infinity, then the boundary conditions are that < p(r) > - pg (r) be every- 

where continuous, have a continuous gradient, and at infinity, represent outward 

traveling waves. It should be noted that, in principle, it is possible to solve the 

integral equation (B-9) directly by using the Liouville- Neumann method of successive 

approximation. Repeatedly substituting for < p(r) > we have 

<p(x)> = p,(2) *) > pale) where p(x) =f ee’), VEG) x')dr" (B11) 
m=1 V 

This also gives the desired solution, if the series converges uniformly. 

In order to interpret these results, it is useful to consider the case of a 

single scatterer (the following discussion does not rely on any approximations). In 

this case the wave function becomes 

p(x) = P(X) a SP, (21) E(r,1)) (B- 12) 

which is the sum of the incident wave and the spherical scattered wave. Consider 

a plane incident wave 

p(x) =A aS yies (B-13) 

Then 

Poo(t) = 1 P (41) E(e, nm) (B-14) 

represents the scattered wave. 
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ing its flux, p* V = VED h f A d Integrating its flux Peay Pee Pic Y Pac OVEr @ Sphere of area centered about 

x, , we find that the total flux is 

nik, | ge: Ae (B-15) 

Dividing this by i kg A”, the flux per unit area normal to ky in the incident wave, 

we obtain the scattering cross section 

= 2 Ont. =47 | 81 | i (B-16) 

Integrating the flux per unit area caused by both incident and scattered waves over 

the same sphere, gives 

i) is @ “A*+ 47 (gy - git) A® (B-17) 

The negative of this quantity represents the net inward flux. Dividing this by the 

incident flux per unit area gives the absorption cross section 

= -4n|g,? - “unte) (B-18) 
0) 

va 

Expressed in terms of the cross section, the scattering coefficient g, is 

os KS Re ; c as “ex 

NS ion | aa GU) 
where Og, = Sah + Ogc is the extinction cross section. The scattering cross 

section per unit volume, S,,(r), is given by 

Soc) = J egc(o)aee s) ds = 4nf|e(s) | *n(r,s)ds . (B-20) 

Similarly the extinction cross section per unit volume is 

k 
Sox(D) = fc.(srndns) ds = - ae Im ‘as)| n(r,s)ds = - a Im G(r) . 

(B-21) 
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APPENDIX C 

NOTATION 

The Cartesian coordinate system is usually designated by (xj, Xs, Xs), 

and the resulting position vector x has length x. Occasionally, especially if 

one coordinate direction has particular significance, we use the coordinates 

(x, y, Zz), designate the position vector by r and its length by r. Differentiation 

with respect to a spatial coordinate is designated either by comma (tensor notation) 

or by explicit differentiation signs, e.g.: 

Repeated subscripts should be summed over, in the usual tensor notation fashion. 

WS Wh, Usp Ug) = Che, Uy, uz) is the velocity field, its divergence is given by: 

x y Z Ae 
ox dy OZ 

When there can be no confusion, differentiation with respect to time is occasionally 

indicated as a subscript t: 

op 
a eee tans 

The same might be done for differentiation with respect to x, y or z, e.g., the 

one-dimensional wave equation: 

0” p 1 ie ’ main 
Oa = oa San becomes Ber = on es 
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