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1 . Introduction

In the statistical literature, three basic principles are available

for hypothesis testing, namely the likelihood ratio (LR) , Wald (W) and

Lagrange multiplier (LM) (or score) principles. Their asymptotic

equivalence under the null hypothesis and under local alternatives is

well known. The purpose of this paper is to examine the additivity and

separability properties of these tests.

Additivity focuses on the optimal way of combining tests of different

hypotheses and indicates a joint test statistic can sometimes be obtained

by adding up the component statistics. Alternatively, rather than

applying a joint test, the individual tests can be applied separately

and the overall significance level can be calculated. An interesting feature

of LM statistics is that they are sometimes additive, that is the LM test

for testing a joint hypothesis is the sum of LM statistics testing the

components of the null hypothesis separately. This kind of additivity was

first noted by Pesaran (1979). He found that the LM test for testing

the dynamic specification of the deterministic and stochastic parts (of

the linear regression model) simultaneously can be decomposed into two

independent parts. This holds even for more complicated cases; for

example, the tests developed in Bera and Jarque (1982) for different

combinations of normality (N) , homoscedasticity (H) , serial independence

(1) of the regression disturbances and functional form (F) were found to

be additive. There are some cases where additivity fails, e.g., if a

lagged dependent variable is introduced into the Bera and Jarque (1982)

framework, the tests will not be additive nor can the LM test derived in

Jarque and Bera (1982) for testing H : u ^ NH against non-normality (N)

and heteroscedast ic i ty (H) , where u is the disturbance term in a limited

dependent variable model, be decomposed into independent parts. In this

paper, we provide the necessary and sufficient conditions for LM tests to

be additive in this sense and also examine the additivity properties >>:" the
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Aitchison (1962) introduced the concept of separability which is

a useful piece of information because it may mean that For large samples the

computations required for hypothesis testing can be considerably reduced. If two

hypotheses are separable and the sample is large, while testing one hvpothesis

we may be able to ignore the other hypothesis, that is, the test is robust

to whether the other hypothesis is true or not. We relate the concept

of separability to additivity in the context of these three testing

principles

.

2. Additivity and Separability

Let £. (6) denote the log-density function for the ith observation,

where 9 is a px 1 parameter vector. Say we have N independent

N
observations, then the log-likelihood function is I = 1(d) = E . , £.(9).° i=l l

Assume the hypothesis to be tested is H : h(9) = where h(G) is an
o

r* 1 vector function of 9 and it is assumed that H = H(9) = 3h(9)/99

has full column rank i.e. rank(H) = r. The LM statistic can be written

as [see Breusch and Pagan (1980, p. 240)]

LM = d'i
_1

d = X'H'i
-1

HX (1)

where d = d(9) = 9Z/39 is the efficient score vector, I = 1(6) = E(~3 11/3839*1

is the information matrix , \ are the Lagrangian multipliers

satisfying the equation d + HA = and """" indicates the quantities have

been evaluated at the restricted maximum likelihood estimate of 9 say

If we partition H into H : h, (6) = H : h
? (0) = with a

similar partition for H = [H : H-], then the LM test for testing H will

be additive between the two hypotheses H A and H„ iff II ' I H is block
'
v A B

(

(

As pointed out in Davidson & McKinnon (1983) and Bera & McKenzie (1984)

a number of alternative asymptotically equivalent forms o\ the information
matrix are available. For these alternative forms, additivity will on\w
be asymptotic

.
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diagonal between the Lagrange multipliers for the two hypotheses, that

is h:

i

_1
h
9

= 0.

If we partition the parameter vector into 9 = (6 ! , 6 A) ' and

consider testing hypotheses of the form H : 8 9
= 8 9

then the LM test

for testing H will be additive between all the individual hypotheses if

~22
I is block diagonal between the testing parameters of the two hypotheses,

-22 ~ -

1

where I refers to the (2,2) block of I . This can easily be seen by

writing the LM test as [see Breusch and Pagan (1980, p. 241)]

lm = d;[i
22

-i
21
i^i

12 ]

_1
d
2

- '-22-
= d

9 I d
9 (say)

where d
9

= 3?.(6)/36
2

and I = E

r r 3 &

1 36 .

f 34. -\ '-]

= i i

k

Obviously, the necessary and sufficient condition for additivity is the

~22
block diagonality of I . Under H and appropriate regularity conditions

[see e.g. Serfling (1980, p. 144-5)], 3£/36 9
asymptotically follows a

multivariate normal distribution with mean zero and variance-covar iance

matrix I 00-I 01 I. . I. n . Therefore, the block diagonalitv of I no -T 01 I
.

, I . ~

,

22 21 11 12 o
. 22 21 il 12

i.e. zero covariance between the two components of 3£/38
9

corresponding

to the two hypotheses, implies asymptotic independence of the different

components of 32./30
9 and the LM test is based on this vector.

Additivity of the LM test can easily be related to Aitchison's (1962)

concept of separability. In our example, separability means ">: lar-j

sanples, tests of H : h^O) = against H: h,(0) f O|h
2
(0) - and

1!

(|
: h 9 (0) = against H: h 9 (.) 4- 0|h.(6) = use the same critical regions

as tests oi H h.(0) = against H: h,(9) i and H : h 9 (8) = ^

li ' ai:,:U H: l^V') 4 respectively. Aitchison (1962) provided a sufficient

condition for two hypotheses to be separable with respect to all '<'. thrr,
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Statistics - the LR, \< and LM. Suppose we want to examine whether

H : h,(0) = and H : h o (0) = are separable. A sufficient condition

is that HJl~ H
?

= for all satisfying 11,(0) = and h 9 (9) = 0.

2

This condition is identical to the necessary and sufficient condition for

the LM tests to be additive. Therefore additivity of the LM test implies

separability of the LM test and since Aitchison's result applies to all the

three test principles this also implies separability with respect to the LR

and W tests.

Given the additivity of the LM test, it is interesting to investigate

whether the LR and W tests share this propertv. Let l. n . 2. , — , l- n and "•.--
v v AB AB AB AB

be the log-likelihood values when both H. and H D restrictions, onlvAd
H, restrictions, onlv H restrictions and no restrictions are imposed
A - B '

respectivelv . If LR. D is the joint LR test of both restrictions, LR.
Ad n

the LR test of H, restrictions and LR„ the LR test of H n restriction.;
A D D

then

LR
AB

= 2|?
AB - W

LR
A " 2[1

AB " W
B

^ lx
AB "AB J '

Now

LR AD = LR, + LR
t ,AB A B

iff I— = I- + I - - I
AB \\B AB

X
AB

In genera], the above relation is not true in either finite or large sampL

Strictly speaking the conditions are not identical. For additivity wt

need Hjl~ H = which is implied by H'l" H = for all 6 satisfying

h(9) = 0, but not vice-versa. However, without loss of generality, we

can assume that the parameter space over which H,l 11^, = has measure

zero. Then we can sav that the conditions are almost surely identical.
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But if we rewrite it as

[ \\B " S\B J

=
^AB £

AB^

i

i.e., LR
Ag

= LR
A

where LR - is the test of the H restriction without imposing the H..
A D A D

a a
restrictions. Separability implies LR — = LR , where = denotes

AB A

asymptotic equivalence. Therefore separability of the LR test implies

the LR test will be additive in an asymptotic sense.

Turning to the question of the additivity of W it is easy to show

that, given separability, a sufficient condition for W to be additive is

that H'l H
?

= where """ indicates the quantities have been evaluated

at the unrestricted maximum likelihood estimate of 9 say 0.

w
AB

= h(9) , [H , I~
1H]" 1

h(e)

= h
1
(e)

, (H^i"
1
H
1
)"1h

1
(6) +h 9 (9)

, (H*i"
1
H
2
)h

2
(e)

given H:i
_1

H
2

=

= h
L
(b) ' (H[i"

1
H
1

)" 1
h
1
(9) + h

2
(8)

*
(H

2
l"

1
H
2
)h

2
(6)

by separability

W
A

+ W
B

where "•" and denote the quantities have been evaluated at the

restricted maximum likelihood estimates with the restrictions fu(0) =

and h.(9) =0 imposed respectively. 1 f we partition the parameter vector

9 as berore and consider testing restrictions of the form H : 3~ = ^
,

where 9„ is i vector of fixed constants, then the W test will be additive

« 22
it I" is block, diagonal with respect to the testing parameters, where

-12 ~-l
I denotes the (2,2) block of 1 . In the next section, we provide some

examples o\ the additivity and non-add i t ivi ty o( the LR, W and l.M tests.
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3. Some Examples

Consider the following linear regression problem

y . = X ! + u

.

i - 1 , 2 , . . . , N
'i l i

where X. is a kx 1 vector representing the i
tn observation on k

l

fixed regressors, 8 is a kx 1 vector of fixed unknown parameters, u.

are assumed to be serially correlated (I) and generated by a first order

autoregressive (AR) process u. =pu. ,+e., p < 1 where e. are assumed
l l-l i' '

'

l

to be normally and independently distributed but heteroscedas t ic (H) with

2 2
the form V(e.) = aT = a +a'Z. where Z. is an ix l vector representing1111 '

:he i tn observation on I fixed variables and a an Z < 1 rector ot

fixed unknown parameters. 1 f we let H : u ^ HI and denote LM,, T , LM,,
o III H

and LM T to be the LM statistics for testing H against H: u ^ HI

,

I ° o

H: u ^ HI and H: u ^ HI respectively then Bera and Jarque (1982) have

shown that LM^ = LM + LM . Our results indicate that the LR test will

also be additive. For this example, when u ^ NHI we have [calculated from

the derivatives (A.2)-(A.5) given in Appendix A]

X.X!
l i

i
"

2
a .

i

HZ;

2 L

a .

i

v a .

i

hi

1 V
2 '-

fz!l
i

"
4 I

c .

;

i

z . z

:

i i

2i
N(l+ I P"

J

)

1

J

vn t>r t' X. = (X . -cX . _. ) /a . . From the above expression, it is easily seen

th.it I = O so that W also will be additive asymptotically
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If the regressor set includes a lagged dependent variable, say

v ,, then I t 0, but the information matrix is still block diagonal
i-1 oo

2
between (8,p) and (a ,a) so that the inverse will also be block

diagonal. Hence the tests for heteroscedasticity and serial correlation will

3

still be additive . The introduction of a lagged dependent variable, >'•_]'

into Z will not alter the structure of the information matrix nor
i

invalidate the additivity result.

The assumption of normality or, more importantly, the assumption that

3
E(e.) = is however critical. If this assumption is relaxed then

l

2
I ,, I. ^ but block diagonality between (3,o ,a) and p holds.
„ 2 Ba
so

If, in addition, v. . is introduced into the regressor set then I_
' l-l Bp

is also non-zero and b.ock diagonality is lost. Similarly if, instead of

appearing in the regressor set, v. -, appears in Z. then I is alsoJ i-l i ap
h

non zero and block diagonality is lost . In both these cases, additivity

no longer holds.

From the previous example with only fixed regressors we can see that

if h
1
(0): RB « 0, h

2
(0): a = or 11.(9): R8 = 0, h

2
(0): p - that

these hypotheses will be additive and separable since H'l H„ = \/ 3

.

This implies that, under normality, if the sample is large while testing

the restrictions RS = we can ignore the presence of autocorrelation

or heteroscedasticity . Also the different test statistics can simply be

added to form a joint test. This additivity will disappear for the first

hypothesis it the regressor set includes y. , and in the second case if

E(e
3

)
i

t 0.

?

For any v
i-,- j '

1,1, -
• o

.

13 p
i,

Block diagonality is not Lost if the lagged dependent variable appearing
in the regressor set or Z. is v. ., i > I.

i - i-

j

For example, Phillips and McCabe (1983) have shown the Independence of the
common testis for stability ol --gression coefficients (linear restriction)

>»»!! 1IMI Mil II
,|,.^~~i-M .W_n-^,.M~-_WMM
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In the following example, the LM and LR tests are additive but the

W test is not necessarily. Consider testing u "^ N(0,1) in the following

framework

d£
i
(c

1
,c ? ) c

l
_u

i

du. . 2
1 l-c,u.+c~u.

1 l 2 l

whe re one would test H : c, = c n = 0. It is shown in Bera and Jarque
o 1 1 n

(1981) that LM = LM + LM so that LR will also be additive.
C
1
C
2 °1

C
2

However I will not in general be zero so that W nay not be additive.

The last example is the case where none of the three tests are

additive. This is the case of testing the null hypothesis that the

disturbance term in a limited dependent variable model is normally distributed

and homoscedastic against the alternative hypothesis of non-normality and

heteroscedastici ty [see Jarque and Bera (1982)].

4. Conclusion

Additivity of the LM test implies asymptotic additivity of the LR

test but not in general additivity of the W test. This shows another

computational advantage of the LM test. After carrying out one-direct iona

i

LM tests, a joint test can be obtained when additivity applies simply by

adding up the component statistics or a number of test statistics can be

combined to form a joint test. For the LR (and sometimes for W) tests

such an operation is valid only for large samples. Here we should also

mention Lh.it since all three statistics are asymptotically equivalent under

the null hypothesis and for local alternatives, additivity of the LM test

implies asymptotic additivity o\ both the W and LR tests under the null

hypothesis and for local alternatives.
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Pagan and Hall (1933) claim that a major disadvantage of examining

the additivity properties through the information matrix is that the

calculation of the information matrix is dependent on certain distributional

assumptions, e.g. symmetry of the disturbances, and that additivity of

the tests may merely reflect this fact. One of our examples in section 3

illustrated the importance of the distributional assumptions and that

account can be taken of them in the information matrix based approach.
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APPENDIX

For our model 6 = (3'. a ,a' p)
'

, H : a = 0, p = and the log-
o

likelihood function l(Q) is given by

N N N e
2

U9) = Z I. (9) = -(N/2) Jin 2tt - h I In o . - h Z ~ (A.l)

i=l
1

1-1
X

i=l o".
i

2 2
where a. = a + a'Z. and e. = u. -pu. . with u. = y. -X|8. From

l i 11 l-l l
J
i i

the above equation following first order derivatives are easily obtained

9^(6) j

IB
- "~2 (x

i- pX
i-i

)e
i

(A ' 2)

o .

1

3*. (6) . e
2

— =
J
+— (A - J )

3a 2a. 2a.
i l

311.(0) Z. e
2
Z.

-T— ---iT + -i
7
i (A.4)

3a „ 2 „ 4
2a . 2a

.

l l

3£ (9

)

and —- = \ ( y -X!
1
B)e, . (A. 5)

3p 2 y l-l l-l l
a

.

i

Taking cross-products of the derivatives and then taking expectations,

we obtain the information matrix.
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