

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

azco
An (as)

ADVANCED CALCULUS

A TEXT LPON SELECT PARTS OF DIFFERENTLAL CALCULUS, DIFFERENTLAL EQUATIONS, NTTEGRAL CALCULUS, THEORY OF FUNCTIONS, WITH NLMEROLS EXERCISES

BY
EDWIN BIDWELL WILSON, PH.D.
HROFESBOR OF MATHEMATICAL PHYSHCS IN THE MASSACHCSETTS NSTITUTE OF TECHNOLOGY

GINA AND COMPANY
HOSTON • NEW YORK - CHICAGO - LONDON
ATLANTA • DALLAS • COLUMBES • SAN FRANCISCO

EDWIN HIDWELI, WILSON

ALL RIGHTS RESERVED
121.6

PREFACE

It is probable that ahmost every teacher of advanced calculus feels the need of a text suited to present conditions and adaptable to his use. To write such a book is extremely difficult, for the attaimments of students who enter a second course in calculus are different, their needs are not miform, and the viewpoint of their teachers is no less varied. Yet in view of the cost of time and money involved in producing an Advanced Calculus, in proportion to the small number of students who will use it, it seems that few teachers can afford the luxury of having their own text; and that it consequently devolves upon an author to take as muselfish and unprejudiced a view of the subject as possible, and, so far as in him lies, to produce a book which shall have the maximum Hexibility and adaptability. It was the recognition of this duty that has kept the present work in a perpetual state of growth and modification during five or six years of composition. Every attempt has been made to write in such a manner that the individual teacher may feel the minimum embarrassment in picking and choosing what seems to him best to meet the needs of any particular class.

As the aim of the book is to be a working text or laboratory manual for classroom use rather than an artistic treatise on analysis, especial attention has been given to the preparation of mumerous exercises which should range all the way from those which require nothing but substitution in certain formulas to those which embody important results withheld from the text for the purpose of leaving the student some vital bits of mathematics to develop. It has been fully recognized that for the student of mathematics the work on advanced calculus falls in a period of transition, - of adolescence, - in which he must grow from close reliance upon his book to a large reliance upon himself. Moreover, as a course in advanced calculus is the ultima Thule of the mathematical voyages of most students of physics and engineering, it is appropriate that the text placed in the hands of those who seek that goal should by its method cultivate in them the attitude of courageous
explorers, and in its extent supply not only their immediate needs, but much that may be useful for later reference and independent study.

With the large necessities of the physicist and the growing requirements of the engineer, it is inevitable that the great majority of our students of calculus shoukd need to use their mathematics readily and vigorously rather than with hesitation and rigor. Hence, although due attention has been paid to modern questions of rigor, the chief desire has been to confirm and to extend the student's working knowledge of those great algorisms of mathematies which are naturally associated with the calculus. That the compositor should have set "vigor" where "rigor" was written, might appear more amusing were it not for the suggested antithesis that there may be many who set rigor where vigor should be.

As I have had practically no assistance with either the manuscript or the proofs, I cannot expect that so large a work shall be free from errors; I can only have faith that such errors as occur may not prove seriously tronblesome. To spend upon this book so much time and energy which could have been reserved with keener pleasure for various fields of research would have been too great a sacrifice, had it not been for the hope that I might accomplish something which should be of material assistance in solving one of the most difticult problems of mathematical instruction, - that of adranced calculus.

EJW゙N゙ BIDWELL WHLSON

Massachlesetts Institete of 'Technology

CONTENTS

INTRODUCTORY REVIEW

CHAPTER I
 REVIEW OF FUNDAMENTAL RLLES

section PAGE

1. On differentiation 1
2. Logarithmic, exponential, and hyperbolic functions 4
3. Geometric properties of the derivative 7
4. Derivatives of higher order 11
5. 'The indefinite integral 15
6. Aids to integration 18
7. Definite integrals 24
CHAPTER II
REVIEW OF FUNDAMENTAL THEORY
8. Numbers and limits 33
9. Theorems on limits and on sets of points 37
10. Real functions of a real variable 40
11. The derivative 45
12. Summation and integration 50
PART I. DIFFERENTIAL CALCULUS
('HAPTER III
TAYLOR'S FORMLLA AND ALLIED TOPICS
13. Taylor's Formula 55
33). Indeterminate forms, infinitesimals, infinites 61
14. Infinitesimal analysis 68
15. Some differential geometry 7 S
CHAPTER IV
PARTIAL DIFFERENTIATION ; EXPLICIT FUNCTIONS
section PAGE
16. Functions of two or more variables 87
17. First partial derivatives 93
18. Derivatives of higher order 102
54 . 'Taylor's Formula and apllications. 112
CHAPTER ${ }^{\top}$
PARTIAL DIFFERENTIATION ; LMPLICIT FLNCTIONS
19. The simplest case ; $F(x, y)=0$ 117
20. More general cases of implicit functions 122
21. Functional determinants or Jacobians 129
22. Envelopes of curves and surfaces 135
23. More differential geometry 143
CHAPTER VI
COMPLEX NLMBERS AND VECTORS
24. Operators and operations 149
25. Complex numbers 15.3
26. Functions of a complex varial le 157
27. Vector sums and products 10.3
28. Vector differentiation 170
PART II. DIFFERENTLAL EQUATIONS
('HAPTER VII
GENERAL INTRODOC(TION TO I)IFFERENTIAL EQCATIONS
29. Some geometric prohlems 179
S3. Problems in mechanics and physics 1sit
30. Lineal element ant differential equation 191
31. The higher derivatives; analytic approximations 197
('HAPTER VIHI
THE COMAONER ORIONARY DIFFERENTIAL EQUATOONS
32. Integration by separating the variables 203
33. Integrating factors 207
34. Linear "puations with eomstant coefferients 211
35. Sim?altanems linear oquatinns with eomstant corflieients 223

CHAPTER IX

ADDITIONAL TYPES OF ORDINARY EQUATIONS
SECTION page
100. Equations of the first order and higher degree 228
102. Equations of higher order 2:34
104. Linear differential equations 240
107. The cylinder functions 247
CHAPTER X
DIFFERENTIAL EQUATIONS IN MORE THAN TWO VARLABLES
109. Total differential equations 254
111. Systems of simultaneons equations 260
113. Introduction to partial differential equations 267
116. Types of partial differential equations 273
PART III. INTEGRAL CALCULUS
CHAPTER XI
ON SIMPLE INTEGRALS
118. Integrals containing a parameter 281
121. Curvilinear or line integrals 288
124. Independency of the path 298
127. Some critical comments 308
CHAPTER XII
ON MULTIPLE INTEGRALS
129. Double sums and double integrals 315
133. Triple integrals and change of variable 326
135. Average values and higher integrals 332
137. Surfaces and surface integrals $3: 38$
CHAPTER XIII
ON INFINITE INTEGRALS
140. Convergence and divergence 352
112. The evaluation of infinite integrals 360
114. Functions defined by infinite integrals 368
CHAPTER XIV
SPECIAL FUNCTIONS DEFINED BY INTEGRALS
section PAGE
147. The Gamma and Beta functions 378
1.50. The error function 386
153. Bessel functions 393
CHAPTER XV
THE CALCULL'S OF VARIATIONS
$15 \overline{5}$. The treatment of the simplest cass 400
157. Variahle limits and constrained minima 404
159. Some generalizations 409
PART IV. THEORY OF FCNCTIONS
CHAPTER XVI
INFINITE SERIES
162. Convergence or divergence of series 419
16.). Series of functions 430
16s. Manipulation of series 440
CHAPTER XVII
SPECIAL INFINITE DEVELOPMENTS
171. The trigonometric functions 453
173. Trigonometric or Fourier series 45
175. The Theta functions 467
rilapter NVIII
FUNCTHNS OF A COMPLEX VARIABLE
178. General theorems 4π
180. Characterization of some functions 482
1s:3. Conformal representation 490
1n.j. Integrals and their inversion 496

CHAPTER XIX
 ELLIPTIC FLNCTIONS AND INTEGRALS

section page
187. Legendre's integral 1 and its inversion 503
190. Legendre's integrals Ii and III 511
192. Weierstrass’s integral and its inversion 517
CHAPTER XX
FUNCTIONS OF REAL VARIABLES
194. Partial differential equations of physics 524
196. Harmonic functions; general theorems 530
198. Harmonic functions; speciai theorems 537
201. The potential integrals. 546
BOOK LIST 555
INDEX 557

ADVANCED CALCULUS

INTRODUCTORY REVIEW

CHAPTER I

REVIEW OF FUNDAMENTAL RULES

1. On differentiation. If the function $f^{\prime}(r)$ is interpreted as the curve $y=f(. r)$, * the (quotient of the increments Δy and Δr of the dependent and independent variables measured from $\left(x_{0}, y_{0}\right)$ is

$$
\begin{equation*}
\frac{y-y_{0}}{x-x_{0}}=\frac{\Delta!}{\Delta x}=\frac{\Delta f\left(r^{\prime}\right)}{\Delta r}=\frac{f\left(r_{0}+\Delta r\right)-f\left(x_{0}\right)}{\Delta r} \tag{1}
\end{equation*}
$$

and represents the shope of the sement through the points $P\left(x_{0}, y_{0}\right)$ and $I^{\prime}\left(x_{0}+\Delta x, y_{0}+\Delta y\right)$ on the curve. The limit approached hy the quotient $\Delta y / \Delta x$ when I remains fixed and $\Delta x \doteq 0$ is the slope of the tongent to the curve at the point I '. This limit,

$$
\begin{equation*}
\lim _{\Delta x \doteq 0} \frac{\Delta!!}{\Delta x^{\prime}}=\lim _{\Delta x \dot{ }} \frac{f^{2}\left(r_{0}+\Delta \cdot r\right)-f\left(r_{0}\right)}{\Delta x}=f^{\prime}\left(x_{0}\right) \tag{2}
\end{equation*}
$$

is called the derirative of $f(r)$ for the value $x=x_{0}$. As the derivative may be computed for different points of the curve, it is customary to speak of the derivative as itself a function of x and write

$$
\begin{equation*}
\lim _{\Delta x \neq 0} \frac{\Delta y}{\Delta \cdot r^{\prime}}=\lim _{\Delta x \neq 0} \frac{f^{f}(r+\Delta x)-f(r)}{\Delta x}=f^{\prime \prime}(\cdot r) . \tag{3}
\end{equation*}
$$

There are numerous notations for the derivative, for instance

$$
f^{\prime}(x)=\frac{d f(\cdot r)}{d x^{\prime}}=\frac{d y}{d x}=D_{x} f=D_{x} y=y^{\prime}=D f=D y
$$

[^0]The first five show distinctly that the independent variable is x, whereas the last three do not explicitly indicate the variable and should not be used unless there is no chance of a misunderstanding.
2. The fundamental formulas of differential calculus are derived directly from the application of the definition (2) or (3) and from a few fundamental propositions in limits. First may be mentioned

$$
\begin{align*}
& \cdot \frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}, \text { where } z=\phi(y) \text { and } y=f(x) \text {. } \tag{4}\\
& \frac{d x}{d y}=\frac{d f^{-1}(!)}{d y}=\frac{1}{\frac{d f^{+}\left(\cdot r^{\prime}\right)}{d x}}=\frac{1}{\frac{d!!}{d, r}} . \tag{5}\\
& D(\prime \pm r)=D u \pm D r, \quad D(u r)=u D r+r \cdot D u . \tag{6}\\
& D\left(\frac{l}{r}\right)=\frac{r I m-\| D)_{r}}{r^{2}}, * \quad D\left(r^{n}\right)=n \cdot r^{n-1} . \tag{1}
\end{align*}
$$

It may be recalled that (4), which is the rule for differentiating a function of a function, follows from the application of the theorem that the limit of a product is the product of the limits to the fractional identity $\frac{\Delta z}{\Delta x}=\frac{\Delta z}{\Delta y} \frac{\Delta y}{\Delta x}$; whence

$$
\lim _{\Delta x \doteq 0} \frac{\Delta z}{\Delta x}=\lim _{\Delta x \doteq 0} \frac{\Delta z}{\Delta y} \cdot \lim _{\Delta x \neq 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta y \doteq 0} \dagger \frac{\Delta z}{\Delta y} \cdot \lim _{\Delta x \doteq 0} \frac{\Delta y}{\Delta x},
$$

which is equivalent to (4). Similarly, if $y=f(x)$ and if x, as the inverse function of y, he written $x=f^{-1}(y)$ from analogy with $y=\sin x$ and $x=\sin ^{-1} y$, the relation (5) follows from the fact that $\Delta x / \Delta y$ and $\Delta y / \Delta x$ are reciprocals. The next three result from the immerliate application of the theorems concerning limits of sums, prolucts. and quotients ($\$ 21$). The rule for differentiating a power is derived in case n is integral by the application of the binomial theorem.

$$
\frac{\Delta y}{\Delta x}=\frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}=n x^{n-1}+\frac{n(n-1)}{2!} x^{n-2} \Delta x+\cdots+(\Delta x)^{n-1} .
$$

and the limit when $\Delta x \doteq 0$ is clearly $n x^{n-1}$. The result may be extended to rational values of the index n by writing $n=\frac{p}{q}, y=x^{\frac{p}{q}}, y^{q}=x^{p}$ and by differentiating both sides of the equation and reducing. To prove that (i) still holds when n is irrational, it would be necessary to late a wrorkole lefinition of irratiomal numbers and to develup the properties of such numbers in greater detail than seems wise at this point. The formula is therefore assument in accordance with the principle of permonence of form ($\$ 178$). just as formulas like ${ }^{m} 0^{m}=a^{m+n}$ of the theory of exponents, which may realily be proved for rational bases and exponents, are assumed without prof to hold also for irrational bases and exponents. See, however, $\$ 8$ 18-25 and the exercises thereunder.

[^1]3. Second may be mentioned the formulas for the derivatives of the trigonometric and the inverse trigonometric functions.
or
\[

$$
\begin{align*}
& D \sin x=\cos x, \quad D \cos x=-\sin x \text {, } \tag{8}\\
& D \sin x=\sin \left(x+\frac{1}{2} \pi\right), \quad D \cos x=\cos \left(x+\frac{1}{2} \pi\right), \\
& D \tan x=\sec ^{2} x, \quad D \cot x=-\csc ^{2} x, \tag{9}\\
& D \sec x=\sec x \tan x, \quad D \csc x=-\csc x \cot x, \tag{10}\\
& \text { D) vers } x=\sin x \text {, where vers } x=1-\cos x=2 \sin ^{2} \frac{1}{2} x \text {, (11) } \tag{11}\\
& D \sin ^{-1} x=\frac{ \pm 1}{\sqrt{1-x^{2}}}, \quad\left\{\begin{array}{l}
+\mathrm{in} \text { quadrants } \quad \text { I, IV. } \\
-" \quad \text { II, III, }
\end{array}\right. \tag{12}
\end{align*}
$$
\]

$$
\begin{align*}
& D \tan ^{-1} x=\frac{1}{1+x^{2}}, \quad D \cot ^{-1} x=-\frac{1}{1+r^{2}}, \tag{14}\\
& D \sec ^{-1}: r=\frac{ \pm 1}{x \sqrt{x^{2}-1}}, \quad \begin{cases}+ \text { in quadrants } & \text { I, III }, \\
-، & " \\
\text { II, IV },\end{cases} \tag{15}\\
& D \csc ^{-1} \cdot x=\frac{ \pm 1}{x \sqrt{x^{2}-1}}, \quad\left\{\begin{array}{lll}
-\mathrm{in} & \text { quadrants } & \text { I, III, } \\
+\cdots & \text { II } & \text { II, }
\end{array}\right. \tag{16}\\
& D \text { vers }^{-1} x=\frac{ \pm 1}{\sqrt{2 x^{2}-r^{2}}}, \quad\left\{\begin{array}{l}
+ \text { in quadrants I, II, } \\
-\cdots \quad . \cdot \\
\text { HII, IV. }
\end{array}\right.
\end{align*}
$$

It may be recalled that to differentiate sin x the definition is applied. Then

$$
\frac{\Delta \sin x}{\Delta x}=\frac{\sin (x+\Delta x)-\sin x}{\Delta x}=\frac{\sin \Delta x}{\Delta x} \cos x-\frac{1-\cos \Delta x}{\Delta x} \sin x .
$$

It now is merely a question of evaluating the two limits which thus arise, namely,

$$
\begin{equation*}
\lim _{\Delta x=0} \frac{\sin \Delta x}{\Delta x} \text { and } \lim _{\Delta x=0} \frac{1-\cos \Delta x}{\Delta x} \tag{18}
\end{equation*}
$$

From the properties of the circle it follows that these are respectively 1 and 0 . Hence the derivative of $\sin x$ is $\cos x$. The derivative of $\cos x$ may be found in like manner or from the identity $\cos x=\sin \left(\frac{1}{2} \pi-x\right)$. The results for all the other trigonometric functions are derived by expressing the functions in terns of $\sin x$ and $\cos x$. And to treat the inverse functions, it is sufficient to recall the general method in (5). Thus

$$
\text { if } \quad y=\sin ^{-1} x, \quad \text { then } \quad \sin y=x
$$

Differentiate both sides of the latter equation and note that $\cos y= \pm \sqrt{1-\sin ^{2} y}$ $= \pm \sqrt{1-x^{2}}$ and the result for $D \sin ^{-1} x$ is immediate. To ascertain which sign to use with the radical. it is sufficient to note that $\pm \sqrt{1-x^{2}}$ is $\cos y$, which is positive when the angle $y=\sin ^{-1} x$ is in quadrants I and IV, negative in II and III. Similarly for the other inverse functions.

EXERCISES *

1. Carry throngh the derivation of (7) when $n=p / q$, and review the proofs of typical formulas selected from the list (5)-(17). Note that the formulas are often given as $D_{x} u^{n}=n u^{n-1} D_{x} u, D_{x} \sin u=\cos u D_{x} u, \cdots$, and may be derived in this form directly from the definition (3).
2. Derive the two limits necessary for the differentiation of $\sin x$.
3. Draw graphs of the inverse trigonometric functions and label the portions of the curves which correspond to quadrants I, II, III, IV. Verify the sign in (12)-(17) from the slope of the curves.
4. Find D tan x and D cot x by applying the definition (3) directly.
5. Find $D \sin x$ by the identity $\sin u-\sin v=2 \cos \frac{u+v}{2} \sin \frac{u-v}{2}$.
6. Find $D \tan ^{-1} x$ by the identity $\tan ^{-1} u-\tan ^{-1} v=\tan ^{-1} \frac{u-v}{1+u v}$ and (3).
7. Differentiate the following expressions:
(c) $\csc 2 x-\cot 2 x$,
(β) $\frac{1}{3} \tan ^{3} x-\tan x+x, \quad(\gamma) x \operatorname{ces}^{-1} x-\sqrt{1-x^{2}}$,
(δ) $\sec ^{-1} \frac{1}{\sqrt{1-x^{2}}}$,
(ϵ) $\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}$,
(ら) $c \sqrt{u^{2}-x^{2}}+u^{2} \sin -\frac{x}{u}$,
(η) $a \operatorname{vers}^{-1} \frac{x}{a}-\sqrt{2 a x-x^{2}}$,
$(\theta) \cot ^{-1} \frac{2 a x}{x^{2}-u^{2}}-2 \tan ^{-1} \frac{x}{u}$.

What trigonometric identities are surgested by the answers for the following:
(c) $\sec ^{2} x$,
($\delta) \frac{1}{\sqrt{1-x^{2}}}$,
($\epsilon) \frac{1}{1+x^{2}}$,
(θ) 0 ?
8. In B. O. Peirce's "Short 'Table of Integrals" (revised edition) differentiate the righthand members to confirm the formulas: Nos. $31,45-47,91-97,125,127-128$, 181-135, 161-163, 214-216, 220, 260-269, 294-298, 300, 380-381, $886-394$.
9. If x is measured in degrees, what is $H \sin x$?
4. The logarithmic, exponential, and hyperbolic functions. The next set of formulas to be cited are

$$
\begin{align*}
I \log _{e} u^{\prime} & =\frac{1}{r}, & H \log _{a} \cdot r & =\frac{\log _{\mu_{4}} r^{r}}{r^{r}}, \tag{19}\\
I t_{r} & =r^{x}, & I r^{x} & =\pi^{x} \log _{e} \mu \cdot \dagger
\end{align*}
$$

It may be recalled that the procedure for differentiating the lograrthm is

$$
\frac{\Delta \log _{a} x}{\Delta x}=\frac{\log _{a}(x+\Delta x)-\log _{a} x}{\Delta x}=\frac{1}{\Delta x} \log _{a} x+\frac{\Delta x}{x}=\frac{1}{x} \log _{a}\left(1+\frac{\Delta x}{x}\right)^{\frac{x}{x} x} .
$$

[^2]If now $x / \Delta x$ be set equal to h, the problem becomes that of evaluating

$$
\begin{equation*}
\lim _{h=\infty}\left(1+\frac{1}{h}\right)^{h}=e=2.71828 \cdots, * \quad \log _{10} e=0.434294 \cdots ; \tag{21}
\end{equation*}
$$

and hence if e be chosen as the base of the system, $D \log x$ takes the simple form $1 / x$. The exponential functions e^{x} and a^{x} may be regarded as the inverse functions of $\log _{2} x$ and $\log _{a} x$ indeducing (21). Further it should be noted that it is frequently useful to take the logarithm of an expression before differentiating. This is known as logarithmic differentiation and is used for products and complicated powers and roots. Thus

if	$y=x^{*}$,	then	$\log y=x \log x$,
and	$\frac{1}{y} y^{\prime}=1+\log x$	or	$y^{\prime}=x^{r}(1+$

It is the expression y^{\prime} / y which is called the logarithmic derivative of y. An especially noteworthy property of the function $y=C_{e} e^{x}$ is that the function and its derivative are equal, $y^{\prime}=y$; and more generally the function $y=C e^{k x}$ is proportional to its dericative, $y^{\prime}=k y$.
5. The himporbolir fourtions are the hyperbolic sine and cosine,

$$
\sinh _{1}, r=\frac{r^{x}-r^{-r}}{2}, \quad \quad \cosh , r=\frac{r^{r}+r^{-r}}{2} ;
$$

and the related functions tanh x, (:oth x, serlh r ', eschn, , derived from them by the same ratios as those by which the corresponding trigonometric functions are derived from $\sin x$ and $\cos x$. From these definitions in terms of exponentials follow the formulas:

$$
\begin{align*}
& \cosh ^{2} x-\sinh ^{2} x^{2}=1, \quad \quad \tanh ^{2} x^{x}+\operatorname{sech}^{2} x^{x}=1, \tag{23}\\
& \sinh (\cdot x \pm!)=\sinh \cdot x \cdot 0 \text { (osh } y \pm \text { cosh }, x \sinh !/, \tag{2.4}\\
& \cosh (x \pm y)=\cosh 1 x^{r} \cosh y \pm \sinh , x^{\prime} \sinh y, \tag{25}\\
& \cosh \frac{x}{2}=+\sqrt{\frac{\cosh x+1}{2}}, \quad \sinh \frac{x}{2}= \pm \sqrt{\frac{\cosh x-1}{2}}, \tag{26}\\
& \text { I) } \sinh _{1}, r=\cosh x, \quad \text { l) } \cosh , r=\sinh \cdot x \text {, } \tag{27}\\
& \text { 1) } \tanh _{1}, x=\operatorname{sech}^{2}, x, \quad \text { 1) } \operatorname{coth}, x=-\operatorname{csch}^{2}, x \text {, } \tag{2S}\\
& \text { 1) } \operatorname{sech} x=-\operatorname{sech}, x^{2} \tanh x \text {, 1) exch } x=-\operatorname{csch} . x \text { (oth } x \text {. (29) } \tag{29}
\end{align*}
$$

The inverse functions are expressible in terms of lograrithns. Thus

$$
\begin{array}{rlrl}
y & =\sinh _{h^{-1}} x^{\prime}, & x & =\sinh y=\frac{r^{2 y}-1}{y^{\prime}}, \\
r^{\prime 2}-2 \\
r^{\prime \prime} r^{y}-1 & =0, & r^{y}=x^{x} \pm \sqrt{x^{2}+1}
\end{array}
$$

[^3]Here only the positive sign is available, for e^{y} is never negative. Hence

$$
\begin{array}{rlrl}
\sinh ^{-1} x & =\log \left(x+\sqrt{x^{2}+1}\right), & \text { any } x, \\
\cosh ^{-1} x & =\log \left(x \pm \sqrt{x^{2}-1}\right), & x>1, \\
\tanh ^{-1} x & =\frac{1}{2} \log \frac{1+x}{1-x}, & x^{2}<1, \\
\operatorname{coth}^{-1} x & =\frac{1}{2} \log \frac{x+1}{x^{2}-1}, & x^{2}>1, \\
\operatorname{sech}^{-1} x & =\log \left(\frac{1}{x} \pm \sqrt{\frac{1}{x^{2}}-1}\right), & x<1, \\
\operatorname{csch}^{-1} x & =\log \left(\frac{1}{x}+\sqrt{\frac{1}{x^{2}}+1}\right), \quad \text { any } x, \\
D \sinh ^{-1} x & =\frac{+1}{\sqrt{x^{2}+1}}, \quad D \cosh ^{-1} x=\frac{ \pm 1}{\sqrt{x^{2}-1}} \\
D \tanh ^{-1} x & \left.=\frac{1}{1-x^{2}}=I\right) \operatorname{coth}^{-1} x=\frac{1}{1-x^{2}}, \\
D \operatorname{sech}^{-1} x & =\frac{ \pm 1}{x \sqrt{1-r^{2}}}, \quad D \operatorname{csch}^{-1} x=\frac{-1}{x \sqrt{1+x^{2}}} . \tag{38}
\end{array}
$$

EXERCISES

1. Show by logarithmic differentiation that

$$
D(u v w \cdots)=\left(\frac{u^{\prime}}{u}+\frac{v^{\prime}}{v}+\frac{w^{\prime}}{w}+\cdots\right)(u v w \cdots),
$$

and hence derive the rule: To differentiate a product differentiate each factor alone and add all the results thas obtained.
2. Sketch the graphs of the hyperbolie functions, interpret the graphs as those of the inverse fmetions. and verify the range of values assigned to x in (30)-(35).
3. Prove sundry of formulas (23)-(2!9) from the definitions (22).
4. Prove sundry of (30)-(38), checking the signs with care. In cases where double signs remain, state when eath applies. Note that in (31) and (3, 3) the double sign may be placed before the log for the reason that the two expressions are reciprocals.
5. Derive a formula for $\sinh u \pm \sinh v$ by applying (24); find a formula for tanh $\frac{1}{2} x$ analogons to the trigonometric formula tan $\frac{1}{2} x=\sin x /\left(1+\cos ^{\circ} x x^{\prime}\right)$.
6. The gudermannian. The function $\phi=g \boldsymbol{c} x$. defined by the relations

$$
\sinh x=\tan \phi, \quad \phi=\operatorname{grl} x=\tan ^{-1} \sinh x, \quad-\frac{1}{2} \pi<\phi<+\frac{1}{2} \pi,
$$

is called the gudermanmian of x. Prove the set of formmas:

$$
\begin{aligned}
& \cosh x=\sec \phi, \quad \tanh x=\sin \phi, \quad \text { esch } x=\cot \phi, \quad \text { etc. } ;
\end{aligned}
$$

7. Substitute the functions of ϕ in Ex. a for their hyperbolie equivalents in (23), (26), (27), and reduce to simple known trigonometric formulas.
8. Differentiate the following expressions:
(c) $(x+1)^{2}(x+2)^{-3}(x+3)^{-4}$,
(β) $x^{\log x}$,
(r) $\log _{x}(x+1)$,
($\delta) x+\log \cos \left(x-\frac{1}{4} \pi\right)$,
(є) $2 \tan ^{-1} e^{x}, \quad$ (ら) $x-\tanh x$,
(η) $x \tanh ^{-1} x+\frac{1}{2} \log \left(1-x^{2}\right)$,
($\theta) \frac{e^{a x}(\prime \prime \sin m x-m \cos m x)}{m^{2}+u^{2}}$.
9. Check sundry formulas of Peirce"s "Table," pp. 1-61, 81-82.
10. Geometric properties of the derivative. As the quotient (1) and its limit (2) give the slope of a secant and of the tangent, it appears from graphical considerations that when the derivative is positive the function is increasing with x, but decreasing when the derivative is negative.* Hence to determine the rogions in which "funtion is iuareusing or decreasing, one may find the deriatice and determine the regions in which it is pusitiere or negutiore.

One must, however, be carcful not to apply this rule too blindly; for in so simple a case as $f(x)=\log x$ it is seen that $f^{\prime \prime}(x)=1 / x$ is positive when $x>0$ and negative when $x<0$. and yet log x has no graph when $x<0$ and is not considered as decreasing. Thus the formal derivative may be real when the function is not real, and it is therefore best to make a rough sketch of the function to corroborate the evidence furnished by the examination of $f^{\prime}(\mathcal{C})$.

If x_{0} is a value of x such that immediately \dagger upon one side of $x=x_{0}$ the function $f^{2}(r)$ is increasing whereas immediately mon the other side it is decreasing, the ordinate $y_{0}=f^{\prime}\left(\cdot r_{0}\right)$ will he a maximum or minimum or $f\left(r^{r}\right)$ will become positively or negatively infinite at r_{0}. If the case where $f(r)$ becomes infinite be ruled out, one may say that the finnction will hure "e minimum or muximm"n at "ro "roording "s the" drpitative clanges firom neyntion to pesitire or firom pesitiore to wegutior
 Hence the usual rule for determinian mosionce and minimu is to find the roots of $f^{\prime}(x)=0$.

This ruke, again, must not be applied blindly. For first, $f^{\prime}(x)$ may vanish where there is no maximum or minimum as in the case $y=x^{3}$ at $x=0$ where the derivative does not change sign ; or second, $f^{\prime}(x)$ may change sign by becoming infinite as in the case $y=x^{\frac{2}{3}}$ at $x=0$ where the curve has a vertical eusp. point down, and a minimum ; or third, the function $f(x)$ may be restricted to a given range of values $a \leqq x \leqq b$ for x and then the values $f(x)$ and $f(b)$ of the function at the ends of the interval will in general be maxima or minima without implying that the derivative ranish. Thus although the derivative is highly useful in determining maxima and minima, it should not be trusted to the complete exclusion of the corroborative evitence furnished by a rougln sketch of the curve $y=f(x)$.

[^4]7. The derivative may be used to express the equations of the tangent and normul, the calues of the subtangent and subnormal, and so on.

Equation of tangent, $\quad y-y_{0}=y_{0}^{\prime}\left(x-x_{0}\right)$,
Equation of normal, $\left(y-y_{0}\right) y_{0}^{\prime}+\left(x-x_{0}\right)=0$,

$$
\begin{align*}
& T M=\text { sulstangent }=y_{0} / y_{0}^{\prime}, \quad M N=\text { subnormal }=y_{0} y_{0}^{\prime}, \tag{41}\\
& O T=x^{\prime} \text {-intercep, of tangent }=x_{0}^{\prime}-y_{0} / y_{0}^{\prime}, \text { etc. }
\end{align*}
$$

The derivation of these results is sufficiently evident from the figure. It may be noted that the subtangent, subnormal, etc., are numerieal values for a given point of the curve but may be regardert as functions of r like the derivative.
In geometrical and physical problems it is frequently necessary to apply the definition of the derivative to finding the derivative of an unknown function. For instance if A denote the area under a rurve and measured from a fixerl ordinate to a variable ordinate, A is surely a fumetion $A(x)$ of the abseissa x of the variable ordinate. If the curve is rising, as in the figure, then

$$
M P Q^{\prime} \cdot M^{\prime}<\Delta A<M\left(Q P^{\prime} M^{\prime}, \text { or } y \Delta x<\Delta .1<(y+\Delta y) \Delta x .\right.
$$

Divide by Δx and take the limit when $\Delta x \doteq 0$. There results

Hence

$$
\begin{align*}
\lim _{\Delta x \doteq 0} y \leqq & \lim _{\Delta x \doteq 0} \frac{\Delta \cdot}{\Delta l} \leqq \lim _{\Delta x \neq 0}(y+\Delta y) . \\
& \lim _{\Delta x \neq 0} \frac{\Delta \cdot 1}{\Delta \cdot r}=\frac{/ \cdot 1}{/ / r \cdot r}=y . \tag{4.3}
\end{align*}
$$

lanlles Theorem and the Therorem uf the Menn are two important theorems on derivatives which will be treated in the next rhapter but may here be stated as evident from their geometric interpretation. Rolle"s Theorem states that: It " funrtion hels " Iforiratire "t port!

Fili. 1

Fig. 2

Fiti, 3

 derioutiore romishes. This is illustraterl in Fig. 1, in whirh there are two surh perints. The Theorem of the Mean states that: If " ffenremen
has a dericative at euch point of an interorl, there is at lerst one point in the interval such that the tangent to the curve $y=f^{\prime}(. r)$ is purallel to the chord of the interal. This is illustrated in Fig. $\stackrel{\sim}{2}$ in which there is only one such point.

Again care must be exercised. In Fig. 3 the function vanishes at A and B but there is no point at which the slope of the tangent is zero. This is not an exception or contradiction to Rolle"s Theorem for the reason that the function does not satisfy the conditions of the theorem. In fact at the point P. although there is a tangent to the curve, there is no derivative ; the quotient (1) formed for the point P becomes neratively infinite as $\Delta x \doteq 0$ from one sile. pusitively infinite as $\Delta x \doteq 0$ from the other side, ami therefore does not approach a definite limit as is required in the definition of a derivative. The hypothesis of the theorem is not satisfied and there is no reason that the eonclusion should hold.

EXERCISES

1. Determine the regions in which the fullowing functions are increasing or decreasing, sketch the graphs, and find the maxima and minima:
(α) $\frac{1}{3} x^{3}-x^{2}+2$.
(β) $(x+1)^{\frac{2}{3}}(x-5)^{3}$.
($\gamma) \log \left(x^{2}-4\right)$,
(o) $(x-2) \sqrt{x-1}$,
(є) $-(x+2) \sqrt{12-r^{2}}$.
(弓) $x^{3}+a x+b$.
2. The ellipse is $r=\sqrt{x^{2}+y^{2}}=e(d+x)$ referred to an orisin at the focus. Find the maxima and minima of the focal ratius r, and state why $D_{s} x=0$ dues not give the solutions while $I_{\phi} r=0$ does [the polar form of the ellipse being $\left.r=k(1-\epsilon \cos \phi)^{-1}\right]$.
3. Take the eilipse as $x^{2} / u^{2}+y^{2} / l^{2}=1$ ant discuss the maxima and minima of the central radiun $r=\sqrt{x^{2}+y^{2}}$. Why does 1) $r=0$ give half the result when r is expresseld as a function of,c. and why will $I_{\lambda} r=0$ give the whole result when $x=a \cos \lambda, y=b$ sin λ and the ellipse is thas expressed in terms of the ecentric angle?
4. If $y=P(x)$ is a u ulynomial in x such that the equation $P(x)=0$ las multiple roots, show that $P^{\prime}(x)=0$ for each multiple root. What more complete relationship can be statel and proved?
5. Show that the triple relation $271,2+4 a^{3} \leqq 0$ determines completely the nature of the ronts of $x^{3}+a, c+b=0$, and state what comerpmols to each possibility.
6. Define the angle θ beteren two interserting curces. Show that

$$
\tan \theta=\left[f^{\prime}\left(x_{0}\right)-g^{\prime}\left(x_{0}\right)\right] \div\left[1+f^{\prime}\left(x_{0}\right) g^{\prime}\left(x_{0}\right)\right]
$$

if $y=f(x)$ and $y=g(x)$ cut at the point $\left(x_{0}, y_{0}\right)$.
7. Find the subnomal and subtangent of the three curves
(a) $y^{2}=4 p x$.
(β) $x^{2}=4 p y$.
($\gamma) x^{2}+y^{2}=u^{2}$.
8. The pedtel curce. The locts of the foot of the perpendicular dropped from a fixell pint to a vaiable tangent of a given curve is callerl the pedal of the given curve with respect to the given point. Show that if the fixem point is the orgin. the pedal of $y=f(x)$ may be obtained by eliminating x_{0}. y_{0}, y_{0}^{\prime} from the equations

$$
y-y_{0}=y_{0}^{\prime}\left(x-x_{0}\right) . \quad y y_{1}^{\prime}+x=0 . \quad y_{0}=f\left(x_{0}\right) . \quad y_{0}^{\prime}=f^{\prime}\left(x_{0}\right) .
$$

Find the pedal (α) of the hyperbola with respect to the center and (β) of the parabola with respect to the vertex and (γ) the foeus. Show (δ) that the pedal of the parabola with respect to any point is a cubic.
9. If the curve $y=f(x)$ be revolved about the x-axis and if $T^{\prime}(x)$ denote the volume of revolution thus generated when measured from a fixed plane perpendicular to the axis ont to a variable plane perpendicular to the axis, show that $D_{x} I^{+}=\pi y^{2}$.
10. More generally if $A(x)$ denote the area of the section cut from a solid by a plane perpendicular to the x-axis, show that $D_{x} T^{\top}=A(x)$.
11. If $f(\phi)$ denote the sectorial area of a plane curve $r=f(\phi)$ and be measured from a fixerl radius to a variable radius, show that $D_{\phi-1}=\frac{1}{2} r^{2}$.
12. If $\rho . h . p$ are the density, height, pressure in a vertical column of air. show that $d p / d h=-\rho$. If $\rho=k p$, show $p=C e^{-k h}$.
13. Draw a graph to illustrate an apparent exception to the Therrem of the Mean analogous to the apparent exception to Rolle's Theorem, and discuss.
14. Show that the analytic statement of the Theorem of the IIean for $f(x)$ is that a value $x=\xi$ intermediate to a and b may be found such that

$$
f(b)-f(a)=f^{\prime}(\xi)(b-a), \quad a<\xi<b .
$$

15. Show that the semiaxis of an ellipse is a mean proportional between the x-intercept of the tangent and the abscissa of the point of contact.
16. Find the values of the length of the tangent (α) from the point of tangency to the r-axis, (β) to the y-axis. (γ) the total length intercepted between the axes. Consider the same problem. for the normal (figure on page 8).
17. Find the angle of intersection of $(\alpha) y^{2}=2 m x$ and $x^{2}+y^{2}=a^{2}$. (3) $x^{2}=4 a y$ and $y=\frac{8 a^{3}}{x^{2}+4 a^{2}}, \quad$ (र) $\frac{x^{2}}{a^{2}-\lambda^{2}}+\frac{y^{2}}{b^{2}-\lambda^{2}}=1 \quad \begin{aligned} & \text { fur } 0<\lambda<b \\ & \text { and } b<\lambda<u\end{aligned}$
18. A constant length is laid off along the nomal to a parabola. Find the locus.
19. The length of the tangent to $x^{\frac{2}{3}}+y^{\frac{9}{3}}=a^{\frac{2}{3}}$ intercepted by the axes is constant.
20. The triangle formed by the asymptotes and any tangent to a hyperbola has constant area.
21. Find the length $P T$ of the tangent to $c=\sqrt{c^{2}-y^{2}}+c \operatorname{sech}^{-1}(y / c)$.
22. Find the greatest riglit cylinder inseribed in a siven risht cone.
23. Find the crlinder of greatest lateral surface inscribed in a sphere.
24. From a siven circular sheet of metal cut out a sector that will form a cone (without base) of maximum volume.
25. Join two prints A, B in the same sille of a line to a point P of the line in such a way that the distance $P A+P B$, shall bee least.
26. Obtain the formula for the distance from a point to a line as the minimum distance.
27. Test for masimum or minimum. (α) If $f(, c)$ vanishes at the ends of an interval and is positive within the interval and if $f^{\prime}(x)=0$ has only one root in the interval, that root indicates a maximum. Prove this he Rolle's Theorem. Apply it in Exs. 22-24. (β) If $f(x)$ becomes indetinitely great at the emis of an interval and $f^{\prime}(c)=0$ has only one root in the interval, that root indicates a minimum.

Prove by Rolle's Thiorem, and apply in Exs. 2.5-26. These rules or various modifications of them geserally suffice in practical problems to distinguish between maxima and minime without examining either the changes in sign of the first derivative or the sign of the sccond derivative; for generally there is only one root of $f^{\prime}(x)=0 \mathrm{~m}$ the region considered.
28. Show chat $x^{-1} \sin x$ from $x=0$ to $x=\frac{1}{2} \pi$ steadily decreases from 1 to $2 / \pi$.
29. If $\mathrm{f}<x<1$, show $(\alpha) 0<x-\log (1+x)<\frac{1}{2} x^{2}$, $(\beta) \frac{\frac{1}{2} x^{2}}{1+x}<x-\log (1+x)$.
30. If $0>x>-1$, show that $\frac{1}{2} x^{2}<x-\log (1+x)<\frac{\frac{1}{2} x^{2}}{1+x}$.
8. Derivatives of higher order. The derivative of the derivative fegarded as itself a function of r) is the second derivative, and so on ;o the nth derivative. Customary notations are:

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{d^{2} f(x)}{d x^{2}}=\frac{d^{2} y}{d x^{2}}=D_{x}^{2} f=D_{x}^{2} y=y^{\prime \prime}=I^{2} f=I^{2} y \\
& f^{\prime \prime \prime}(x), f^{\text {iv }}(x), \cdots, f^{(n)}(x) ; \quad \frac{d^{3} y}{d x^{3}}, \frac{d^{4} y}{d x^{4}}, \cdots, \frac{d^{n} y}{d x^{n}}, \cdots
\end{aligned}
$$

The nth derivative of the sum or difference is the sum or difference of the nth derivatives. For the nth derivative of the product there is a special formula known as Leibniz's Theorem. It is

$$
\begin{equation*}
D^{n}(u \cdot)=D^{n} u \cdot v+n D^{n-1} u D \cdot+\frac{n(n-1)}{2!} D^{n-2} u D^{2} c+\cdots+u D^{n} c \tag{44}
\end{equation*}
$$

This result may be written in symbolic form as
Leibniz's Theorem $\quad D^{n}(u \cdot)=(D u+D r)^{n}$,
where it is to be understoon that in expanding $\left(D u+D_{n}\right)^{n}$ the term $(D u)^{k}$ is to be replaced by $D^{k} \|$ and $(D u)^{0}$ by $D^{0} u=u$. In other words the powers refer to repeated differentiations.

A proof of (44) by induction will be foumd in $\$ 27$. The following proof is interesting on account of its ingenuity. Note first that from

$$
D(u v)=u D v+v D u, \quad D^{2}(u v)=D(u D v)+D(v D u),
$$

and so om, it appears that $I^{2}(u x)$ consists of a sum of terms. in each of which there are two differentiations, with mmerical coefficients inlependent of u and v. In like manner it is clear that

$$
D^{n}(u v)=C_{0} D^{n} u \cdot v+C_{1} D^{n-1} u D v+\cdots+C_{n-1}^{\prime} D u I J^{n-1} v+C_{n} u D^{n} v
$$

is a sum of terms, in each of which there are n differentiations, with coefficients C independent of u and v. To determine the $C^{\circ} s$ any suitable functions u and v, say,

$$
u=e^{x}, \quad v=e^{n x}, \quad w=e^{(1+a) x}, \quad D^{k} e^{a x}=a^{k} e^{a x},
$$

may be substituted. If the substitution be marle and $e^{(1+a) \cdot c}$ be canceled,

$$
e^{-(1+a) x} D^{n}(u r)=(1+\iota)^{n}=C_{0}+C_{1} \not t+\cdots+C_{n-1} a^{n-1}+C_{n} \iota^{n},
$$ and hence the C ss are the coefficients in the binomial expansiou of $(1+1 /)^{n}$.

Formula (4) for the derivative of a function function may be . . More generally extended to higher derivatives by repeated applic weated use of (t) any desired change of rariable may be mude by the sown functions and (i). For if x and y be expressed in terms of the derivaof new rariables u and r, it is always possible to obta xpression tives $D_{x} y, I_{x}^{2}!!, \cdots$ in terms of $D_{u} u^{2}, J_{u}^{2}{ }^{2}, \cdots$, and thus anymression $F\left(x, y, y^{\prime}, y^{\prime \prime}, \cdots\right)$ may be changed into an equivalent es the $\Phi\left(\prime \prime, r^{\prime}, r^{\prime}, r^{\prime \prime}, \cdots\right)$ in the new variables. In each case that af (4) transformations should be carred out by repeated application and (j) rather than by substitution in any general formulas.

The following typical cases are illnstrative of the method of change of variab Suppose only the dependent variable y is to be changed to z defined as $y=f(z)$. Th

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\frac{d z}{r x x} \frac{d y}{d z}\right)=\frac{d^{2} z}{d x^{2}} \frac{d y}{d z}+\frac{d z}{d x}\left(\frac{d}{d x} \frac{d y}{d z}\right) \\
& =\frac{d^{2} z}{d x^{2}} \frac{d y}{d z}+\frac{d z}{d x}\left(\frac{d}{d z} \frac{d y}{d z} \frac{d z}{d x}\right)=\frac{d^{2} z}{d x^{2}} \frac{d y}{d z}+\left(\frac{d z}{d x}\right)^{2} \frac{d^{2} y}{d z^{2}} .
\end{aligned}
$$

As the derivatives of $y=f(z)$ are known, the derivative $d^{2} y / d x^{2}$ has been expr in terms of z and derivatives of z with respect to x. The third derivative won found by repeating the procesis. If the problem were to change the indepe variable x to z, defined by $x=f(z)$,

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d z} \frac{d z}{d x}=\frac{d y}{d z}\left(\frac{d x}{d z}\right)^{-1}, \quad \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[\frac{d y}{d z}\left(\frac{d x}{d z}\right)^{-1}\right] \\
\frac{d^{2} y}{d x^{2}} & =\frac{d^{2} y}{d z^{2}} \frac{d z}{d x}\left(\frac{d x}{d z}\right)^{-1}-\frac{d y}{d z}\left(\frac{d x}{d z}\right)^{-2} \frac{d z}{d x} \frac{d^{2} x}{d z^{2}}=\left[\frac{d^{2} y}{d z^{2}} \frac{d x}{d z}-\frac{d^{2} x}{d z^{2}} d y\right] \div(
\end{aligned}
$$

The change is thus made as far as derivatives of the second order are concer, the change of both dependent and independent variables was to be matle, th would be similar. Particularly useful changes are to find the derivatives of when y and x are expressel parametrically as functions of t. or when both : pressed in terms of new variables r, ϕ as $x=r \cos \phi, y=r \sin \phi$. For these see the exercises.
9. The conconit! "f "mmer ! $=f^{\prime}(\cdot r)$ is given by the table:

$$
\begin{array}{ll}
\text { if } \quad f^{\prime \prime}\left(r_{0}\right)>0, & \text { the curve is concave up at }, r=r, \\
\text { if } \quad f^{\prime \prime \prime}\left(r_{0}\right)<0, & \text { the curve is concave down at } r=r_{n}, \\
\text { if } \quad f^{\prime \prime \prime}\left(r_{0}\right)=0, & \text { an inflection point at }, r=r_{0} \cdot(?)
\end{array}
$$

Hence the riterion for distintuishing lowtreen marimu and minimu

$$
\begin{array}{ll}
\text { if } \quad f^{\prime}\left(r_{0}\right)=0 \text { and } f^{\prime \prime}\left(r_{0}\right)>0, & \text { a minimum at } r=r_{0} \\
\text { if } \quad f^{\prime \prime}\left(r_{0}\right)=0 \text { and } f^{\prime \prime \prime}\left(r_{0}\right)<0, & \text { a maximum at } r=r^{\prime} . \\
\text { if } \quad f^{\prime \prime}\left(r_{0}\right)=0 \text { and } f^{\prime \prime \prime}\left(r_{0}\right)=0, & \text { neithey max. nor min. }(\because
\end{array}
$$

The question points are necessary in the third line because the statements are not always true unless $f^{\prime \prime \prime}\left(x_{0}\right) \neq 0$ (see Ex. 7 under § 39).

It may be recalled that the reason that the curve is concave up in case $f^{\prime \prime}\left(x_{0}\right)>0$ is becanse the derivative $f^{\prime}(x)$ is then an increasing function in the neighborhood of $x=x_{0}$; whereas if $f^{\prime \prime}\left(x_{0}\right)<0$, the derivative $f^{\prime}(x)$ is a decreasing function and the curve is convex up. It should be noted that concave up is not the same as concave toward the x-axis, except when the curse is below the axis. With regard to the use of the second derivative as a criterion for distinguishing between maxima and minima. it should be stated that in practical examples the criterion is of relatively small value. It is usually shorter to discuss the change of sign of $f^{\prime}(x)$ directly, - and indeed in most cases either a rough graph of $f(x)$ or the physical conditions of the problem which calls for the determination of a maximum or minimum will immediately serve to distinguish between them (see Ex. 27 above).

The seeond derivative is fundamental in dynamies. By definition the arerage relority c of a particle is the ratio of the space traversed to the time consumed, $v=s / t$. The actual velocity v at any time is the limit of this ratio when the interval of time is diminished and approaches zero as its limit. Thus

$$
\begin{equation*}
\bar{v}=\frac{\Delta s}{\Delta t} \quad \text { and } \quad v=\lim _{\Delta t=0} \frac{\Delta s}{\Delta t}=\frac{d s}{d t} \tag{45}
\end{equation*}
$$

In like manner if a particle describes a straight line, say the x-axis, the "reprege acreleration \bar{f} is the ratio of the increment of velocity to the increment of time, and the artual acceleration f at any time is the limit of this ratio as $\Delta t \doteq 0$. Thus

$$
\begin{equation*}
\bar{f}=\frac{\Delta r}{\Delta t} \quad \text { and } \quad f=\lim _{\Delta t=0} \frac{\Delta r}{\Delta t}=\frac{d r^{r}}{d t}=\frac{d^{2} x}{d t^{2}} \tag{46}
\end{equation*}
$$

By Verton's Seernd Lrule of Motion, the foree acting on the jurtirle is equal to the rote af clarnge of momentam with the time, momentum being defined as the product of the mass and velocity. Thus

$$
\begin{equation*}
F=\frac{d(m \cdot \cdot)}{d t}=m \frac{d l^{2}}{d t}=m t^{2}=m \frac{d^{2} x}{d t^{2}}, \tag{47}
\end{equation*}
$$

where it has been assumed in differentiating that the mass is ronstant. as is usually the case. Hence (47) appears as the fundamental equation for rectilinear motion (see also ss 79,84). It may be noted that

$$
F=m \cdot \frac{d x}{d x}=\frac{d}{d x}\left(\frac{1}{2} m r^{2}\right)=\frac{d T}{d x},
$$

where $T=\frac{1}{2} m r^{2}$ denotes by definition the kinetic energy of the particle. For comments see Ex. 6 following.

EXERCISES

1. State and prove the extension of Leibniz's 'Theorem to products of three or more factors. Write out the square and cube of a trinomial.
2. Write, by Leibniz's Theorem, the second and third derivatives :
($\alpha) e^{x} \sin x$,
(β) $\cosh x \cos x$
(r) $x^{2} e^{x} \log x$.
3. Write the nth derivatives of the following functions, of which the last three should first be simplified by division or separation into partial fractions.
(c) $\sqrt{x+1}$,
(β) $\log (a x+b)$,
(γ) $\left(x^{2}+1\right)(x+1)^{-3}$,
($\delta) \cos a x$
(є) $e^{x} \sin x$
(乡) $(1-x) /(1+x)$,
(η) $\frac{1}{x^{2}-1}$,
(θ) $\frac{x^{3}+x+1}{x-1}$,
(ı) $\left(\frac{a x+1}{a x-1}\right)^{2}$.
4. If y and x are each functions of t, show that

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{\frac{d x}{d t} \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t} \frac{d^{2} x}{d t^{2}}}{\left(\frac{d x}{d t}\right)^{3}}=\frac{x^{\prime} y^{\prime \prime}-y^{\prime} \cdot x^{\prime \prime}}{x^{\prime 3}} \\
& \frac{d^{3} y}{d x^{3}}=\frac{x^{\prime}\left(x^{\prime} y^{\prime \prime \prime}-y^{\prime} x^{\prime \prime \prime}\right)-3 \cdot x^{\prime \prime}\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)}{x^{\prime 3}}
\end{aligned}
$$

5. Find the inflection points of the curve $x=4 \phi-2 \sin \phi, y=4-2 \cos \phi$.
6. Prove $\left(47^{\prime}\right)$. Hence infer that the force which is the time-flerivative of the momentum $m v$ by (47) is also the space-derivative of the kinetic energy.
7. If A denote the area under a curve. as in (43), find $d A / d \theta$ for the curves
$(\alpha) y=a(1-\cos \theta), x=a(\theta-\sin \theta)$,
(β) $x=a \cos \theta, y=b \sin \theta$.
8. Make the indicated change of variable in the following equations:
$(\alpha) \frac{d^{2} y}{d x^{2}}+\frac{2 x}{1+x^{2}} \frac{d y}{d x}+\frac{y}{\left(1+x^{2}\right)^{2}}=0, \quad x=\tan z . \quad$ Ans. $\frac{d^{2} y}{d z^{2}}+y=0$.
(β) $\left(1-x^{2}\right)\left[\frac{d^{2} y}{d x^{2}}-\frac{1}{y}\left(\frac{d y}{d x}\right)^{2}\right]-x \frac{d y}{d x}+y=0, y=e^{v}, x=\sin u$.

$$
\text { Ans. } \frac{d^{2} v}{d u^{2}}+1=0
$$

9. Transformation to potar coördinates. Suppose that $x=r \cos \phi, y=r \sin \phi$. Then

$$
\frac{d x}{d \phi}=\frac{d r}{d \phi} \cos \phi-r \sin \phi, \quad \frac{d y}{d \phi}=\frac{d r}{d \phi} \sin \phi+r \cos \phi
$$

and so on for higher derivatives. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}=\frac{\left.r^{2}+2\left(D_{\phi} r\right)^{2}-r\right)_{\phi}^{2} r}{\left(\cos \phi D_{\phi} r-r \sin \phi\right)^{3}}$.
10. Generalize formnla (5) for the differentiation of an inverse function. Find $d^{2} x / d y^{2}$ and $d^{3} x / d y^{3}$. Note that these may also be found from Ex. 4.
11. A point describes a circle with constant speed. Find the velocity and acceleration of the projection of the point on any fixed diameter.
12. Prove $\frac{d^{2} y}{d x^{2}}=2 u v^{3}+4 v^{4}\binom{d u}{d u}^{-1}-v^{5} \frac{d^{2} v}{d u^{2}}\left(\frac{d v}{d u}\right)^{-3}$ if $x=\frac{1}{v} \cdot y=u v$.
10. The indefinite integral. To integrate a function $f(x)$ is to find a function $F(x)$ the dericutive of whirh is $f(x)$. The integral $F(x)$ is not uniquely determined by the integrand $f^{\prime}(\cdot r)$: for any two functions which differ merely by an additive constant have the same derivative. In giving formulas for integration the constant may be omitted and understood; but in applications of integration to actual problems it should always be inserted and must usually be determined to fit the requirements of special conditions imposed upon the problem and known as the initial conditions.

It mnst not be thought that the constant of integration alwars appears addel to the function $F(x)$. It may be combined with $F(x)$ so as to be somewhat disguised. Thus

$$
\log x, \quad \log x+C, \quad \log C x, \quad \log (x / C)
$$

are all integrals of $1 / x$, and all except the first have the constant of integration C, although only in the second does it appear as formally additive. To illustrate the determination of the constant by initial conditions, consider the problem of finding the area under the curve $y=\cos x$. By (43)

$$
D_{x} A=y=\cos x \text { and hence } A=\sin x+C \text {. }
$$

If the area is to be measured from the ordinate $x=0$, then $A=0$ when $x=0$, and by direct substitution it is seen that $C=0$. Hence $A=\sin x$. But if the area be measured from $x=-\frac{1}{2} \pi$, then $A=0$ when $x=-\frac{1}{2} \pi$ and $C=1$. Hence $A=1+\sin x$. In fact the area under a curve is not definite until the ordinate from which it is measured is specified, and the constant is needed to allow the integral to fit this initial condition.
11. The fundamental formulas of integration are as follows:

$$
\begin{array}{ll}
\int \frac{1}{x}=\log x, & \int r^{n}=\frac{1}{n+1} e^{n^{n}} \text { if } n \neq-1, \\
\int e^{x}=e^{x}, & \int t^{x}=u^{r} / \log a \\
\int \sin x=-\cos x, & \int \cos x=\sin x, \\
\int \tan x^{x}=-\log \cos , x, & \int \cot x=\log \sin x \\
\int \sec ^{2} x=\tan x, & \int \csc ^{2} x=-\cot x \\
\int \tan x \sec x=\sec x, & \int \cot x \csc x=-\csc x
\end{array}
$$

with formulas similar to (50)-(.3) for the hyperholic functions. Also

$$
\int \frac{1}{1+u^{2}}=\tan ^{-1}, r \text { or }-\cot ^{-1}, r, \int \frac{1}{1-u^{2}}=\tanh ^{-1} \cdot x \text { or } \operatorname{coth}^{-1} r,(\tilde{b} 4)
$$

$$
\begin{align*}
& \int \frac{1}{\sqrt{1-x^{2}}}=\sin ^{-1} x \text { or }-\cos ^{-1} x, \quad \int \frac{ \pm 1}{\sqrt{1+x^{2}}}= \pm \sinh ^{-1} x \tag{55}\\
& \int \frac{1}{r \sqrt{x^{2}-1}}=\sec ^{-1} x \operatorname{or}^{\prime}-\csc ^{-1} x, \int \frac{ \pm 1}{x \sqrt{1-x^{2}}}=\mp \operatorname{sech}^{-1} \cdot x \tag{56}\\
& \int \frac{ \pm 1}{\sqrt{x^{2}-1}}= \pm \cosh ^{-1} x, \quad \int \frac{ \pm 1}{x \sqrt{1+x^{2}}}=\mp \operatorname{csch}^{-1} \cdot x \tag{T}\\
& \int \frac{1}{\sqrt{2 x-r^{2}}}=\operatorname{vers}^{-1} \cdot r, \quad \int \sec \cdot x=\operatorname{gd}^{-1} x=\log \tan \left(\frac{\pi}{4}+\frac{x}{2}\right) \tag{5S}
\end{align*}
$$

For the integrals expressed in terms of the inverse hyperbolic functions, the logarithmic equivalents are sometimes preferable. This is not the case, however, in the many instances in which the problem calls for immediate solution with regard to x. Thus if $y=\int\left(1+x^{2}\right)^{-\frac{1}{2}}=\sinh ^{-1} x+C$, then $x=\sinh \left(y-C^{\prime}\right)$, and the solution is effected and may be translated into exponentials. This is not so easily accomplished from the form $y=\log \left(x+\sqrt{1+x^{2}}\right)+C$. For this reason and because the inverse hyperbolic functions are briefer and offer striking analogies with the inverse trigonometric functions, it has been thought better to use them in the text and allow the realer to make the necessary substitutions from the table (30)-(35) in case the logarithmic form is desired.
12. In addition to these special integrals, which are consequences of the corresponding formulas for differentiation, there are the general rules of integration whicl arise from (4) and (6).

$$
\begin{align*}
\int \frac{d \pi}{d!!} \frac{d!}{d, r} & =\int \frac{d_{2}}{d_{1}}=\because \tag{59}\\
\int(u+r-u) & =\int u+\int r-\int u \tag{60}\\
u \cdot & =\int \| r^{\prime}+\int u^{\prime} \cdot \tag{ii1}
\end{align*}
$$

Of these rules the second needs no onmment and the third will be treated later. E.pecial attention should be given th the first. For instance suppose it were reguired to integrate $2 \log x / x$. This does not fall mmer any of the given types; hut

$$
\frac{2}{x} \log x=\frac{d(\log , s)^{2}}{d \log x} \frac{d \log x}{d x}=\frac{d z}{d y} \frac{d y}{d x}
$$

Here $(\log x)^{2}$ takes the place of z and $\log x$ takes the place of y. The integral is therefore $(\log x)^{2}$ as may he verified hy differentiation. In gerneral. it may be possible to see that a given interrand is separable into two factors. of which one is integrable when considered as a function of some function of x. while the other is the derivative of that function. Then (59) applies. (other examples are:

$$
\int\left(\sin x \cos x, \quad \int \tan ^{-1} x /\left(1+x^{2}\right), \quad \int x^{2} \sin \left(x^{3}\right)\right.
$$

In the first, $z=e^{y}$ is integrable and as $y=\sin x, y^{\prime}=\cos x$; in the second, $z=y$ is integrable and as $y=\tan ^{-1} x, y^{\prime}=\left(1+x^{2}\right)^{-1}$; in the third $z \doteq \sin y$ is integrable and as $y=x^{3}, y^{\prime}=3 x^{2}$. The results are

$$
e^{\sin x}, \quad \frac{1}{2}\left(\tan ^{-1} x\right)^{2}, \quad-\frac{1}{3} \cos \left(x^{3}\right) .
$$

This method of integration at sight covers such a large percentage of the cases that arise in geometry and physics that it must be thoronghly mastered.*

EXERCISES

1. Verify the fundamental integrals (48)-(58) and give the hyperbolic analogues of (50)-(53).
2. Tabulate the integrals here expressed in terms of inverse hyperbolic functions by means of the corresponding logarithmic equivalents.
3. Write the interrals of the following integrands at sight:
$(\alpha) \sin 1 x$,
(β) $\cot (a x+b)$,
(r) tanh $3 x$,
($\delta) \frac{1}{a^{2}+x^{2}}$,
(є) $\frac{1}{\sqrt{x^{2}-a^{2}}}$,
(弓) $\frac{1}{\sqrt{2 a x-x^{2}}}$,
(η) $\frac{1}{x \log x}$,
(θ) $\frac{e^{\frac{1}{x}}}{x^{2}}$,
(1) $\frac{x}{x^{2}+a^{2}}$,
(к) $x^{3} \sqrt{a x^{2}+b}$,
(入) $\tan x \sec ^{2} x$,
(μ) $\cot x \log \sin x$,
($\nu) \frac{\left(x^{-1}-1\right)^{5}}{x^{2}}$,
(o) $\frac{\tanh ^{-1} x}{1-x^{2}}$,
(π) $\frac{2+\ln g x}{x}$,
(ρ) $/ n^{1+\sin x} \cos x$,
(σ) $\frac{\sin x}{\sqrt{\cos x}}$,
($\tau) \frac{1}{\sqrt{1-x^{2}} \sin ^{-1} x}$.
4. Integrate after making appropriate clanges such as $\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x$ or $\sec ^{2} x=1+\tan ^{2} x$, division of denominator into numerator, resolntion of the product of trigonometric functions into a sum, completing the square, and so on.
(α) $\cos ^{2} 2 x$,
(β) $\sin ^{4} x$.
(γ) $\tan ^{4} x$,
($) ~ \frac{1}{x^{2}+3 x+20}$,
(є) $\frac{2 x+1}{x+2}$,
(5) $\frac{1-\sin x}{\operatorname{ver} x}$,
(7) $\frac{x+8}{4 x^{2}-5 x+1}$,
(($^{e^{2 x}+\epsilon^{x}} \begin{aligned} & e^{2 x}+1\end{aligned}$,
(1) $\frac{1}{\sqrt{2 a x+x^{2}}}$,
(к) $\sin 5 x \cos 2 x+1$,
(λ) sinh $m x$, sinlı n, x,
(μ) $\cos x \cos 2 x \cos 3 x$,
$(\nu) \sec ^{5} x \tan x-\sqrt{2 x}$.
(o) $\begin{gathered}c x+d \\ x^{2}+a x+b\end{gathered}$,
(π) $-\frac{x^{m-1}}{\left(\pi x^{m}+b\right)^{2}}$.

* The use of differentials (§ 3ir) is perhars more familiar than the nse of derivatives.

$$
z(\cdot x)=\int \frac{d z}{d x} d x=\int \frac{d z}{d y} \frac{d y}{d x} d x=\int_{d y}^{d y} d y=z[y(x)] .
$$

Then

$$
\int \frac{2}{-r} \log x d x=\int 2 \log x d \log x=(\log x)^{2}
$$

The nse of this motation is left optional with the reader: it has some adrantages and some disadvantages. The essential thing is to keep clearly in mind the fact that the problem is to be inspected with a view to detecting the function which will differentiate into the given integrand.
5. How are the following types integrated ?
$(\alpha) \sin ^{m} x \cos ^{n} x, m$ or n odd, or m and n even,
$(\beta) \tan ^{n} x$ or $\cot ^{n} x$ when n is an integer,
$(\gamma) \sec ^{n} x$ or $\csc ^{n} x$ when n is even,
(() $\tan ^{m} x \sec ^{n} \cdot \infty \cot ^{m} x \csc ^{n} x \cdot n$ even.
6. Explain the alternative forms in (54)-(56) with all detail possible.
7. Find (α) the area under the parabola $y^{2}=4 p x$ from $x=0$ to $x=a$; also (β) the corresponding volume of revolution. Find (γ) the total volume of an ellipsoid of revolution (see Ex. 9, p, 10).
8. Show that the area moler $y=\sin m x \sin n x$ or $y=\cos m x \cos n x$ from $x=0$ to $x=\pi$ is zero if m and n are merual integers but $\frac{1}{2} \pi$ if they are equal.
9. Find the sectorial area of $r=a \tan \phi$ between the radii $\phi=0$ and $\phi=\frac{1}{4} \pi$.
10. Find the area of the (α) lemniscate $r^{2}=u^{2} \cos 2 \phi$ and (β) cardioid $r=1-\cos \phi$.
11. By Ex. $10, \mathrm{p} .10$, find the volumes of these solils. Be careful to choose the parallel planes so that $A(x)$ may be found easily.
(cr) The part cut off from a richt circular cylinder hy a plane through a diameter of one base and tangent to the other.
$A n s .2 / 3 \pi$ of the whole volume.
(β) How much is cut off from a right circular celinder by a plane tangent to its lower base and inclined at an angle θ to the plane of the base?"
(γ) A circle of radius $b<a$ is revolved, about a line in its plane at a distance a from its center, to generate a ring. The volume of the ring is $2 \pi^{2} \alpha b^{2}$.
(δ) The axes of two equal cylinders of revolution of radius r intersect at right angles. The volume common to the cylinders is $16 r^{3} / 3$.
12. If the cross section of a solid is $A(x)=a_{0} x^{3}+a_{1} x^{2}+a_{2} x+a_{3}$. a cubic in x, the volume of the solid between two parallel planes in $\frac{1}{5} h\left(B+4 M+B^{\prime}\right)$ where h is the altitude and B and B^{\prime} are the bases and M is the middle section.
13. Show that $\int \frac{1}{1+x^{2}}=\tan ^{-1} \frac{x+c}{1-c x}$.
13. Aids to integration. The majority of rases of integration which arise in simple applieations of calculus may be treated by the method of $\$ 12$. Of the remaining cases a large number cannot be integrated at all in terms of the functions which have been treated up to this point. Thus it is impossible to express $\int \frac{1}{\sqrt{\left(1-, r^{2}\right)\left(1-\sqrt[r^{2}]{2},^{2}\right)}}$ in torms of elementary functions. One of the rhief reasons for introduring a varicty of new functions in higher analysis is to have means for effecting the integrations called for by important applieations. The dis(anssion of this matter eannot be taken up) leere. The problem of integration frem an elementary point of view ealls for the tabulation of some devices which will accomplish the integration for a
wide variety of integrands integrable in terms of elementary functions. The derices which will be treated are:

Integration by parts, Resolution into partial fractions,
Various substitutions, Reference to tables of integrals.
Integration by parts is an application of (61) when written as

$$
\int u v^{\prime}=u v-\int v^{\prime} x .
$$

That is, it may happen that the interrand can be written as the product $u v^{\prime}$ of two factors, where v^{\prime} is integrable and where $u^{\prime} v$ is also integrable. Then $u v^{\prime}$ is integrable. For instance, los x is not integrated by the fundamental formulas ; but

$$
\int \log x=\int \log x \cdot 1=x \log x-\int x / x=x \log x-x
$$

Here $\log x$ is taken as u and 1 as r^{\prime}, so that x is x, u^{\prime} is $1 / x$, and $u^{\prime} v=1$ is immediately integrable. This method applies to the inverse trigonometric and hyperbolic functions. Another example is

$$
\int x \sin x=-x \cos x+\int \cos x=\sin x-x \cos x
$$

Here if $x=u$ and $\sin x=v^{\prime}$. both v^{\prime} and $u^{\prime} x=-\cos x$ are integrable. If the choice $\sin x=u$ and $x=x^{\prime}$ had been made. v^{\prime} would have been integrable but $u^{\prime} x=\frac{1}{2} x^{2} \cos x$ would have been less simple to integrate than the original integram. Hence in applying integration by parts it is necessary to look uheod far enough to see that both v^{\prime} and $u^{\prime} x$ are integrable, or at any rate that v^{\prime} is integratbe and the interral of u^{\prime} ' is simpler than the origimal integral.*

Frequently integration by parts has to be applied several times in succession. Thms

$$
\begin{aligned}
\int x^{2} e^{r} & =x^{2} e^{r}-\int 2 x x^{r} & & \text { if } u=x^{2} \cdot x^{\prime}=e^{x}, \\
& =x^{2} e^{r}-2\left[x e^{r}-\int \mathrm{E}^{r}\right] & & \text { if } u=x \cdot v^{\prime}=e^{x}, \\
& =x^{2} e^{r}-2 x e^{x}+2 e^{r} . & &
\end{aligned}
$$

Sometimes it may be applied in such a way as to lead back to the given integral and thes afforl an equation from which that integral can be obtained by solution. For example.

$$
\begin{array}{rlrl}
\int e^{x} \cos x & =t^{x} \cos x+\int e^{r} \sin x & & \text { if } u=\cos x, u^{\prime}=e^{r}, \\
& =e^{x} \cos x+\left[e^{x} \sin x-\int e^{r} \cos x\right] & \text { if } u=\sin x, v^{\prime}=e^{x}, \\
& =e^{x}(\cos x+\sin x)-\int e^{r} \cos x . &
\end{array}
$$

IIence

$$
\int e^{x} \cos x=\frac{1}{2} e^{x}(\cos x+\sin x)
$$

[^5]14. For the integration of a rational fraction $f(x) / F(x)$ where f and F are polynomials in x, the fraction is first resolved into partial fractions. 'This is accomplished as follows. First if f is not of lower degree than F, divide F into f until the remainder is of lower degree than F. The fraction f / F is thus resolved into the sum of a polynomial (the quotient) and a fraction (the remainder divided by F) of which the numerator is of lower degree than the denominator. As the polynomial is integrable, it is merely necessary to consider fractions f / F where f is of lower degree than F. Next it is a fumbamental theorem of algebra that a polynomial F may be resolved into linear and quadratic factors
$$
F(x)=k(x-c)^{\alpha}(x-b)^{\beta}(x-c)^{\gamma} \cdots\left(x^{2}+m x+n\right)^{\mu}\left(x^{2}+p^{x}+q\right)^{v} \cdots,
$$
where a, b, c, \cdots are the real roots of the equation $F(x)=0$ and are of the respective multiplicities $\alpha, \beta, \gamma, \cdots$, and where the quadratic factors when set apual to zero give the pairs of conjugate imaginary routs of $F=0$, the multiplicities of the imaginary roots being $\mu . \nu, \cdots$. It is then a further theorem of algebra that the fraction f / F may be written as
\[

$$
\begin{aligned}
\frac{f(x)}{F(x)}= & \frac{\Lambda_{1}}{x-a}+\frac{\Lambda_{2}}{(x-a)^{2}}+\cdots+\frac{A_{\alpha}}{(x-a)^{\alpha}}+\frac{B_{1}}{x-b}+\cdots+\frac{l_{\beta}}{\left(x-b_{1} \beta\right.}+\cdots \\
& \quad+\frac{M_{1} x+N_{1}}{x^{2}+m x+n}+\frac{M_{2} x+N_{2}}{\left(x^{2}+m x+n\right)^{2}}+\cdots+\frac{M_{\mu} x+N_{\mu}}{\left(c^{2}+m x+n\right)^{\mu}}+\cdots,
\end{aligned}
$$
\]

where there is for each irreducible factor of F a term corresponding to the highest power to which that factor occurs in F and also a term corresponding to every lesser power. The coefficients $A, B, \ldots, M, N, \ldots$ may be obtained by clearing of fractions and equating coefficients of like powers of x, and solving the equations; or they may be obtained by clearing of fractions, substituting for x as many different values as the degree of F, and solving the resulting equations.

When f / F has thus been resolved into partial fractions, the problem has been reduced to the integration of each fraction, and this does not present serions difficulty. The following two examples will illnstrate the methed of resolution into partial fractions and of integration. Let it he reguired to integrate

$$
\int \frac{x^{2}+1}{x(x-1)(x-2)\left(x^{2}+x+1\right)} \text { and } \int \frac{2 x^{3}+6}{(x-1)^{2}(x-3)^{3}} .
$$

The first fraction is expansible into partial fractions in the form

$$
\frac{x^{2}+1}{x(x-1)(x-2)\left(x^{2}+x+1\right)}=\frac{1}{x}+\frac{1}{x-1}+\frac{C}{x-2}+\frac{1 x+E}{x^{2}+x+1} .
$$

Hence

$$
\begin{aligned}
x^{2}+1= & A(x-1)(x-2)\left(x^{2}+x+1\right)+B x(x-2)\left(x^{2}+x+1\right) \\
& +C x(x-1)\left(x^{2}+x+1\right)+(D x+E) x(x-1)(x-2) .
\end{aligned}
$$

Rather than multiply ont and equate coefficients, let $0,1,2 .-1,-2$ he substituted. Them

$$
\begin{aligned}
& 1=2 A, \quad 2=-3 P, \quad 5=14 C, \quad D-E=1 / 21, \quad E-2 I=1 / 7 . \\
& \int \frac{x^{2}+1}{x(x-1)(x-2)\left(x^{2}+x+1\right)}=\int_{2 x}^{1}-\int_{: 3(x-1)}^{2}+\int_{14(x-2)}^{5}-\int_{21\left(x^{2}+x+1\right)}^{4 x+5}
\end{aligned}
$$

In the second case the form to be assumed for the expansion is

$$
\begin{gathered}
\frac{2 x^{3}+6}{(x-1)^{2}(x-3)^{3}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-3)}+\frac{D}{(x-3)^{2}}+\frac{E}{(x-3)^{3}} . \\
2 x^{3}+6=A(x-1)(x-3)^{3}+B(x-3)^{3}+C(x-1)^{2}(x-3)^{2} \\
+D(x-1)^{2}(x-3)+E(x-1)^{2} .
\end{gathered}
$$

The substitution of $1,3,0,2,4$ gives the equations

$$
\begin{gathered}
8=-8 B, \quad 60=4 E, \quad 9 A+3 C-D+12=0, \\
A-C+D+6=0, \quad A+3 C+3 D=0 .
\end{gathered}
$$

The solntions are $-9 / 4,-1,+9 / 4,-3 / 2,15$, and the integral becomes

$$
\begin{aligned}
\int \frac{2 x^{3}+6}{(x-1)^{2}(x-3)^{3}}= & -\frac{9}{4} \log (x-1)+\frac{1}{x-1}+\frac{9}{4} \log (x-3) \\
& +\frac{3}{2(x-3)}-\frac{15}{2(x-3)^{2}} .
\end{aligned}
$$

The importance of the fact that the method of partial fractions shows that any rational fruction may be integrated and, moreover, that the integral may at most consist of a rational part plus the logarithm of a rational fraction plus the inverse tangent of a rational fraction should not be overlooked. Taken with the method of substitution it establishes very wide categories of integrands which are integrable in terms of elementary functions, and effects their integration even though by a somewhat laborions method.
15. The method of substitution depends on the identity

$$
\int_{x} f(x)=\int_{y} f[\phi(y)] \frac{d x}{d y} \quad \text { if } \quad x=\phi(y),
$$

which is alfied to (59). To show that the integral on the right with respect to y is the integral of $f(x)$ with respect to x it is merely necessily to show that its derivative with respect to x is $f(x)$. By definition of interration,
and

$$
\begin{aligned}
& \frac{d}{d y} \int_{y} f[\phi(y)] \frac{d x}{d y}=f[\phi(y)] \frac{d x}{d y} \\
& \frac{d}{d x} \int_{y} f[\phi(y)] \frac{d x}{d y}=f[\phi(y)] \frac{d x}{d y} \cdot \frac{d y}{d x}=f[\phi(y)]
\end{aligned}
$$

by (4). The identity is therefore proved. The method of integration by substitution is in fact seen to be merely such a systematization of the method based on (59) and set forth in $\$ 12$ as will make it practicable for more complicated problems. Again, differentials may be used if preferred.

Let R denote a rational function. 'To effect the integration of

$$
\begin{array}{lll}
\int \sin x R\left(\sin ^{2} x, \cos x\right), & \text { let } \cos x=y, & \text { then } \int-R\left(1-y^{2}, y\right) ; \\
\int \operatorname{tos} x R\left(\cos ^{2} x, \sin x\right), & \text { let } \sin x=y, & \text { then } \int_{y} R\left(1-y^{2}, y\right) ; \\
\int R\left(\frac{\sin x}{\cos x}\right)=\int R(\tan x), & \text { let } \tan x=y, & \text { then } \int_{y} \frac{R(y)}{1+y^{2}} ; \\
\int R(\sin x, \cos x), & \text { let } \tan \frac{x}{2}=y, & \text { then } \int_{y} R\left(\frac{2 y}{1+y^{2}}, \frac{1-y^{2}}{1+y^{2}}\right) \frac{2}{1+y^{2}} .
\end{array}
$$

'ithe last substitution renders any rational function of sin x and $\cos x$ rational in the variable y; it should not be nsed, however, if the previons ones are applicable - it is ahnost certain to give a more difficult firal rational fraction to integrate.

A large number of geometric problems give integrands which are rational in x and in some one of the raticals $\sqrt{u^{2}+x^{2}}, \sqrt{a^{2}-x^{2}}, \sqrt{x^{2}-u^{2}}$. These may be converted into trigonometric or hyperbolie integrands by the following substitutions:

$$
\begin{aligned}
& \int R\left(x, \sqrt{a^{2}-x^{2}}\right) \\
& \int R\left(x, \sqrt{u^{2}+x^{2}}\right) \begin{cases}x=a \sin y, & \int_{y} R(a \sin y, a \cos y) a \cos y ; \\
x=a \tan y, & \int_{y} R(a \tan y, a \sec y) a \sec ^{2} y \\
x=a \sinh y, & \int_{y} R(u \sinh y, a \cosh y) a \cosh y\end{cases} \\
& \int R\left(x, \sqrt{x^{2}-a^{2}}\right) \begin{cases}x=a \sec y, & \int_{y} R(u \sec y, a \tan y) a \sec y \tan y \\
x=a \cosh y, & \int_{y} R(a \operatorname{cosin} y, a \sinh y) a \sinh y\end{cases}
\end{aligned}
$$

It frequently turns out that the integrals on the right are easily obtained by methods already given; otherwise they can be treated by the substitutions above.

In addition to these substitutions there are a large number of others which are applied under specific conditions. Many of them will be found among the exercises. Moreover, it frequently happens that an integranl, which does not come under any of the standard types for which substitutions are indicated, is none the less integrable by some substitution which the form of the integrand will suggest.

Tables of integrals, giving the integrals of a large number of integrands, have been constructed by using varions methots of integration. B. O. Peirce's "Short Table of Integrals " may be cited. If the particular integrand which is desired dues not occur in the 'Table, it may be possible to devise some substitution which will reduce it to a tabulated form. In the Table are also siven a large number of reduction formulas (for the most part deduced by means of integration by parts) which accomplish the successive simplifieation of integrands which could perhaps be treated by other methofk, but only with an excessive amome of labor. Several of these reduction formulas are cited among the exercises. Although the Table is useful in performing integrations and indeed makes it to a large extent monecessary to lean the various methons of integration, the exercises immediately below, which are constructed for the purpose of illustrating methods of integration, should be done without the aid of a Table.

EXERCISES

1. Integrate the following by parts:
(α) $\int x \cosh x$,
(β) $\int \tan ^{-1} x$,
($\gamma) \int x^{m} \log x$,
($\delta) \int \frac{\sin ^{-1} x}{x^{2}}$,
($\epsilon) \int \frac{x^{-x}}{(1+x)^{2}}$,
(5) $\int \frac{1}{x\left(x^{2}-a^{2}\right)^{\frac{3}{2}}}$.
2. If $P^{\prime}(x)$ is a polynomial and $P^{\prime}(x), P^{\prime \prime}(x), \cdots$ its derivatives, show

$$
\begin{aligned}
& \text { (a) } \int P^{\prime}(x) e^{\epsilon x x}=\frac{1}{u} e^{a x}\left[P(x)-\frac{1}{u} P^{\prime}(x)+\frac{1}{a^{2}} P^{\prime \prime \prime}(x)-\cdots\right] \text {, } \\
& \text { (} \beta \text {) } \int \Gamma^{\prime}(x) \operatorname{tas}\left(\mu x=\frac{1}{\pi} \sin \left(\mu x\left[P(x)-\frac{1}{u^{2}} P^{\prime \prime}(x)+\frac{1}{\omega^{4}} P^{\mathrm{iv}}(x)-\cdots\right]\right.\right. \\
& +\frac{1}{u^{\prime}} \cos \left(u^{x}\left[\frac{1}{t^{\prime}} P^{\prime}(x)-\frac{1}{u^{3}} P^{\prime \prime \prime}\left(x^{\prime}\right)+\frac{1}{u^{5}} I^{v v}\left(x^{x}\right)-\cdots\right],\right.
\end{aligned}
$$

3. By successive integration by parts and subsequent solution, show
$(\alpha) \int c^{a x} \sin b x=\frac{t^{a x}(a \sin b x-b \cos b x)}{a^{2}+b^{2}}$,
(β) $\int e^{(a x} \cos b x=\frac{\left.e^{a x}(b) \sin b x+a \cos b x\right)}{a^{2}+b^{2}}$,
(γ) $\int x e^{2 x} \cos x=\frac{1}{2} e^{2 x}[5 x(\sin x+2 \cos x)-4 \sin x-3 \cos x]$.
4. lrowe by integration by parts the reduction formulas
(c) $\int \sin ^{m} x \cos ^{n} x=\frac{\sin ^{m+1} x \cos ^{n-1} x}{m+n}+\frac{n-1}{m+n} \int \sin ^{m} x^{x} \cos \sin ^{n-2} x$.
(β) $\int \tan ^{m} x \sec ^{n} x=\frac{\tan ^{m-1} x^{2} \sec ^{n} x}{m+n-1}-\frac{m-1}{m+n-1} \int \tan ^{n-2} x \cdot \sec ^{n} x$,
(γ) $\int \frac{1}{\left(x^{2}+u^{2}\right)^{n}}=\frac{1}{2(n-1) u^{2}}\left[\frac{x}{\left(x^{2}+u^{2}\right)^{n-1}}+(\because n-3) \int \frac{1}{\left(x^{2}+u^{2}\right)^{n-1}}\right]$,
(δ) $\int \frac{x^{m h}}{(\log x)^{n}}=-\frac{x^{m+1}}{(n-1)(\log x)^{n-1}}+\frac{m+1}{n-1} \int \frac{x^{m n}}{(\log x)^{n-1}}$.
5. Interrate by decomposition into partial fractions:
(a) $\int \frac{x^{2}-3 x+3}{(x-1)(x-2)}$,
(,3) $\int \frac{1}{u^{4}-x^{\frac{1}{2}}}$,
($\gamma) \int \frac{1}{1+x^{4}}$,
($\delta) \int \frac{x^{2}}{(x+2)^{2}(x+1)}$,
(e) $\int \frac{4 x^{2}-3 x+1}{2 x^{5}+x^{3}}$,
(5) $\int \frac{1}{x\left(1+x^{2}\right)^{2}}$.
6. Integrate by trigonometric or hyperbolic substitution:
(c) $\int \sqrt{u^{2}-x^{2}}$.
(β) $\int \sqrt{x^{2}-u^{2}}$.
(i) $\int \sqrt{x^{2}+x^{2}}$,
(0$) \int \frac{1}{\left(11-t^{2}\right)^{3}}$,
($\epsilon \int \frac{x^{2}-u^{2}}{c}$,
(s) $\int \frac{\left(r^{\frac{2}{3}}-x^{\frac{2}{3}}\right)^{\frac{3}{2}}}{x^{\frac{1}{3}}}$.
7. Find the areas of these curves and their volumes of rewhation:
$(\alpha) x^{\frac{2}{3}}+y^{\frac{2}{3}}=u^{\frac{2}{3}}$,
(β) $u^{4} y^{2}=u^{2}, c^{4}-x^{6}$.
(i) $\binom{x}{c}^{2}+\left(\frac{y}{b}\right)^{\frac{2}{3}}=1$.
8. Integrate by converting to a rational algehraic fraction:
(c) $\int \frac{\sin 3 x}{u^{2} \cos ^{2} x+\sqrt{2} \sin ^{2} x}$,
(3) $\int \frac{\cos ^{2} 3 x}{\left(r^{2} \cos x^{2} x+b^{2}+\sin x\right.}$,
(γ) $\int \frac{\sin 2 x}{h^{2} \cos ^{2} x+b^{2} \sin ^{2} x^{2}}$.
(ס) $\int \frac{1}{u+b \cos d}$,
(є) $\int \frac{1}{a+b \cos x+c \sin \boldsymbol{x}}$,
(弓) $\int \frac{1-\cos x}{1+\sin x}$.
9. Shww that $\int R\left(x, \sqrt{11+b+x^{2}}\right)$ may he treated by trigonometric substitntion: distinguish between $b^{2}-4$ ar $\geqq 0$.
10. Show that $\int R(x \cdot \sqrt[n]{a x+b})$ is matue rational $\ln y^{n}=\frac{u x+b}{a \cdot x+d}$. Mence infer that $\int R\left(x . V^{\prime}(x-\alpha)(x-\beta)\right)$ is rationalized $\operatorname{ly} y y^{2}=\frac{x-\beta}{x-\alpha}$. This accomplishes the integration of $R\left(x . \sqrt{11+b} x+c x^{2}\right)$ when the roots of $a+b x+r x^{2}=0$ are real, that is, when $h^{2}-4$ ar >0.
11. Show that $\int R\left[x,\left(\frac{a x+b}{c x+d}\right)^{m},\left(\frac{a x+b}{c x+d}\right)^{n}, \cdots\right]$, where the exponents m, n, \ldots are rational, is rationalized by $y^{k}=\frac{a x+b}{c x+d}$ if k is so chosen that $k m, k n, \ldots$ are integers.
12. Show that $\int(a+b y)^{p} y^{q}$ may be rationalized if p or q or $p+q$ is an integer. By setting $x^{n}=y$ show that $\int x^{m}\left(a+b x^{n}\right)^{p}$ may be reduced to the above type and hence is integrable when $\frac{m+1}{n}$ or p or $\frac{m+1}{n}+p$ is integral.
13. If the roots of $a+b x+c x^{2}=0$ are imaginary, $\int R\left(x, \sqrt{a+b x+c x^{2}}\right)$ may we rationalized by $y=\sqrt{a+b+c x^{2}} \mp x \sqrt{c}$.
14. Integrate the following .
(c) $\int \frac{x^{3}}{\sqrt{x-1}}$,
(β) $\int \frac{1+\sqrt[3 /-]{x}}{1+\sqrt[4]{x}}$,
($\gamma) \int \frac{x}{\sqrt[3]{1+x}-\sqrt{1+x}}$,
(o) $\int \frac{e^{2 x}}{\sqrt[4]{e^{x}+1}}$,
($\epsilon) \int \frac{x^{4}}{\sqrt{\left(1-x^{2}\right)^{3}}}$,
(广) $\int \frac{1}{(x-d) \sqrt{a+b x+c x^{2}}}$,
(η) $\int \frac{1}{x\left(1+x^{2}\right)^{\frac{3}{2}}}$,
(θ) $\int \frac{\sqrt{2 x^{2}+x}}{x^{2}}$,
($) \int \frac{x^{3}}{\sqrt{1-x^{3}}}+\frac{\sqrt{1-x^{3}}}{x}$.
15. In view of Ex. 12 discuss the integrability of:
$(<r) \int \sin ^{m} x \cos ^{n} x$, let $\sin x=\sqrt{y}$,
(β) $\int \frac{x^{m}}{\sqrt{u x-x^{2}}}\left\{\begin{array}{l}\text { let } x=\alpha y^{2}, \\ \text { or } \sqrt{u x-x^{2}}=x y .\end{array}\right.$
16. Apply the reduction formulas. Table, p. fif, to show that the final integral for

$$
\int \frac{x^{m}}{\sqrt{1-x^{2}}} \text { is } \int \frac{1}{\sqrt{1-x^{2}}} \text { or } \int \frac{x}{\sqrt{1-x^{2}}} \text { or } \int \frac{1}{x \sqrt{1-x^{2}}}
$$

according as m is even or odd and positive or odd and negative.
17. Prove sumply of the formulas of Peiree's Table.
18. Show that if $R\left(x, \sqrt{u^{2}-x^{2}}\right)$ contains x only to odd powers, the substitution $z=\sqrt{\ell^{2}-x^{2}}$ will rationalize the expression. U'se Exs. $1(\zeta)$ and $6(\epsilon)$ to compare the labor of this algehraic substitution with that of the trigonometric or hyperbolic.
16. Definite integrals. If an interval from $x="$ to $x=b$ be divided into n surcessive intervals $\Delta r_{1}, \Delta r_{2}, \cdots, \Delta r_{n}$ and the value $f\left(\xi_{i}\right)$ of a function $f^{\prime}\left(r^{r}\right)$ be computed from some point ξ_{i} in each interval Δ_{i} and

$$
\begin{equation*}
\lim _{\substack{\lambda, 11 \\ r_{i}=\infty \\ u=\infty}}\left[f^{2}\left(\xi_{1}\right) \Delta r_{1}+f^{2}\left(\xi_{2}\right) \Delta r_{2}+\cdots+f^{\prime}\left(\xi_{n}\right) \Delta r_{n}\right]=\int_{a}^{b} f^{\prime}\left(r^{\prime}\right) r l_{1} \tag{62}
\end{equation*}
$$

when each interval becomes infinitely short and their number n becomes infinite, is known as the definite integral of $f^{\prime}(x)$ from a to l, and is designated as indicated. If $y=f(x)$ be graphed, the sum will be represented by the area under a broken line, and it is clear that the limit of the sum, that is, the integral, will be represented by the area under the rurre $y=f^{f}(\cdot r)$ and between the ordinates $x=a$ and $x=l$. Thus the definite integral, defined arithmetically by (62),
 may be connected with a geometric concept which can serve to suggest properties of the integral much as the interpretation of the derivative as the slope of the tangent served as a useful geometric representation of the arithmetical definition (2).

For instance, if n, l, c are successive values of r, then

$$
\begin{equation*}
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x \tag{63}
\end{equation*}
$$

is the equivalent of the fact that the area from " to r is equal to the sum of the areas from " to b and l to \because Again, if $د$, be considered positive when x moves from " to l, it must be considered negative when x moves from b to a and hence from (62)

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(\cdot v) d x \tag{64}
\end{equation*}
$$

Finally, if M be the maximum of $f^{\prime}(x)$ in the interval, the area under the curve will be less than that under the line !/ $=W$ throngh the highest point of the curve; and if $/ \prime$ be the minimmm of $f^{\prime}\left(r^{\prime}\right)$, the area under the curve is greater than that under $!=m$. Hence

$$
\begin{equation*}
m(l-")<\int_{a}^{b} f^{\prime}\left(r^{\prime}\right) d . r<M(l-\|) \tag{65}
\end{equation*}
$$

There is, then, some intermerliate value \quad " $<\mu<M$ such that the integral is equal to $\mu(l,-\|)$; and if the line $!=\mu$ cuts the curve in a point whose abscissa is ξ intermediate between "! and", then

$$
\int_{a}^{b} f^{2}(, r) d \not r^{r}=\mu(b-\prime)=(l-\prime \prime) f(\xi) .
$$

This is the fundamental Theorem of the Morn for definite integrals.

The definition (62) may be applied directly to the evalnation of the definite integrals of the simplest functions. Consider first $1 / c$ and let a, b be positive with a less than b. Let the interval from a to b be divided into n intervals Δx_{i} which are in geometrical progression in the ratio r so that $x_{1}=u, x_{2}=u r, \cdots, x_{n+1}=\mu r^{n}$ and $\Delta c_{1}=u(r-1), \Delta x_{2}=\operatorname{ar}(r-1) . \Delta x_{3}=a r^{2}(r-1), \cdots, \Delta x_{n}=u r^{n-1}(r-1)$; whence $\quad b-a=\Delta x_{1}+\Delta x_{2}+\cdots+\Delta x_{n}=a\left(r^{m}-1\right)$ and $r^{n}=b / a$.
Choose the points. ξ_{i} in the intervals Δx_{i} as the initial points of the intervals. Then

$$
\frac{\Delta x_{1}}{\xi_{1}}+\frac{\Delta x_{2}}{\xi_{2}}+\cdots+\frac{\Delta x_{n}}{\xi_{n}}=\frac{a(r-1)}{a}+\frac{a r(r-1)}{a r}+\cdots+\frac{a r^{n-1}(r-1)}{a r^{n-1}}=n(r-1) .
$$

But

$$
r=\sqrt[n]{b / a} \text { or } n=\log (l / 1 t) \div \log r
$$

Hence

$$
\frac{\Delta x_{1}}{\xi_{1}}+\frac{\Delta x_{2}}{\xi_{2}}+\cdots+\frac{\Delta c_{n}}{\xi_{n}}=n(r-1)=\log \frac{l}{\pi} \cdot \frac{r-1}{\log r}=\log \frac{b}{u} \cdot \frac{h}{\log (1+h)} .
$$

Now if n becomes infinite, r approaches 1 , and h approaches 0 . But the limit of $\log (1+h) / h$ as $h \doteq 0$ is by definition the derivative of log $(1+x)$ when $x=0$ and is 1. Hence

$$
\int_{a}^{b} \frac{d x}{x}=\lim _{n=\infty}\left[\frac{\Delta r_{1}}{\xi_{1}}+\frac{\Delta r_{2}}{\xi_{2}}+\cdots+\frac{\Delta r_{n}}{\xi_{n}}\right]=\log \frac{l,}{a}=\log b-\log a .
$$

As another illustration let it be required to evaluate the integral of $\cos ^{2} . x$ from 0 to $\frac{1}{2} \pi$. Here let the intervals Δ_{i} be equal and their number oxd. Chonse the ξ 's as the initial points of their intervals. The sum of which the limit is desired is

$$
\begin{aligned}
\sigma=\cos ^{2} 0 \cdot \Delta x+\cos ^{2} \Delta x \cdot \Delta c & +\cos ^{2} 2 \Delta x \cdot \Delta x+\cdots \\
& +\cos ^{2}(n-2) \Delta c \cdot \Delta c+\cos ^{2}(n-1) \Delta x \cdot \Delta x .
\end{aligned}
$$

But $\quad n \Delta x=\frac{1}{2} \pi$, and $(n-1) \Delta x=\frac{1}{2} \pi-\perp x,(n-2) \Delta x=\frac{1}{2} \pi-2 \perp x, \cdots$,
and $\quad \cos \left(\frac{1}{2} \pi-y\right)=\sin y$ and $\sin ^{2} y+\cos ^{2} y=1$.
Hence $\quad \sigma=\Delta x\left[\cos ^{2} 0+\cos ^{2} د x+\cos ^{2} 2 \Delta x+\cdots+\sin ^{2} 2 \Delta x+\sin ^{2} \Delta x\right]$

$$
=\Delta x\left[1+\frac{n-1}{2}\right] .
$$

Hnnce $\quad \int_{0}^{\frac{\pi}{2}}\left(\cos s^{2} x d x=\lim _{\lambda x=0}\left[\frac{1}{2} n \Delta x+\frac{1}{2} \Delta x\right]=\lim _{\lambda x=0}\left(\frac{1}{4} \pi+\frac{1}{2} \Delta x\right)=\frac{1}{4} \pi\right.$.
Indieations for finding the integrals of other functions are given in the exercises.
It should be poticed that the variable or which apears in the expresion of the definite integral really has wothine to do with the value of the interral hat mesely serves as a symbol useful in fomming the sum in (fis). What is of importance is the finction f and the limits a. b, of the interval wer which the integral is taken.

$$
\int_{a}^{b} f(x) d x=\int_{11}^{b} f(t) d t=\int_{u}^{b} f(y) d y=\int_{a}^{b} f(*) d * .
$$

The variable in the integrand disapmears in the integration and leaves the value of the integral as a function of the limits a and b alone.
17. If the lower limit of the integral be fixed, the value

$$
\int_{n}^{b} f^{\prime}(x) d x=\Phi(b)
$$

of the integral is a function of the upper limit regarded as variable. To find the derivative $\Phi^{\prime}(1$,$) , form the quotient (2),$

$$
\frac{\Phi(b+\Delta l)-\Phi(b)}{\Delta l}=\frac{\int_{a}^{b+\Delta b} f(x) d, x-\int_{a}^{b} f(x) d x}{\Delta b} .
$$

By applying (63) and (655^{\prime}), this takes the simpler form

$$
\frac{\Phi(l+\Delta l)-\Phi(h)}{\Delta h}=\frac{\int_{b}^{b+\Delta b} f^{\prime}(\cdot x) d \cdot r^{\prime}}{\Delta l}=\frac{1}{\Delta b} \cdot f^{\prime}(\xi) \Delta b,
$$

where ξ is intermediate between l and $l+\Delta h$. Let $\Delta b \doteq 0$. Then ξ approaches b and $f^{\prime}(\xi)$ approathes $f^{\prime}(b)$. Hence

$$
\begin{equation*}
\Phi^{\prime}(l)=\frac{d}{d l} \int_{a}^{b} f^{\prime}\left(\cdot r^{\prime}\right) d \cdot x=f^{\prime}(b) . \tag{66}
\end{equation*}
$$

If preferred, the variable b may be written as r, and

$$
\Phi\left(x^{\prime}\right)=\int_{a}^{r} f^{\prime}\left(\cdot r^{r}\right) d, r, \quad \Phi^{\prime}\left(, r^{\dot{r}}\right)=\frac{d}{\|, r^{\prime}} \int_{n}^{x} f^{\prime}\left(\cdot r^{r}\right) d, x^{r}=f(x)
$$

This equation will establish the relation between the definite intergral and the indefinite integral. For by definition, the indefinite integrat $r^{*}\left(r^{\prime}\right)$ of $f^{\prime}\left(, r^{\prime}\right)$ is any function surh that $r^{\prime \prime}\left(r^{\prime}\right)$ equals $f^{\prime}\left(r^{\prime}\right)$. Is $\Phi^{\prime}\left(, r^{\prime}\right)=f^{\prime}\left(r^{\prime}\right)$ it follows that

$$
\begin{equation*}
\int_{a}^{r} f^{\prime}(r) d x^{r}=r(x)+r \tag{6}
\end{equation*}
$$

Hence except for an additive constant, the indefinite integral of t^{\prime} is the definite integral of f from a fixed lower limit to a variable upper limit. As the definite integral vanishes when the upper limit coincides with the lower, the constant r^{\prime} is $-F^{\prime}\left({ }^{\prime}\right)$ and

$$
\int_{a}^{\prime \prime} f\left(r^{\prime}\right) r, r=F\left(l^{\prime}\right)-F((\prime) .
$$

Hence, the definite integiot "f $f(x)$ fiom "t tw is the differerene between
 limits of the detinite integmer: and if the indetinite integral of f is known, the definite integral may be obtained withont apllying the definition ($6 \underline{2}$) to f.

The great importance of definite integrals to geometry and physics lies in that fact that mony quantities connected with geometric figures or physical bodies me!y be e.rpressen simply for small portions.s of the figures or bodies and may then be obtained as the sum of those quantities taken over all the small portions, or rather, as the limit of that sum uhen the purtions luepome smaller und smuller. Thus the area under a curve cannot in the first instance be evaluated; but if only that portion of the curve which lies over a small interval Δ. r be considered and the rectangle eorresponding to the ordinate $f^{\prime}(\xi)$ be drawn, it is clear that the area of the rectangle is $f(\xi) \perp . r$, that the area of all the rectangles is the sum $\mathbf{\Sigma} f(\xi) \Delta x$ taken from " to b, that when the intervals Δx approach zero the limit of their sum is the area under the curve ; and hence that area may be written as the definite integral of $f\left(x^{r}\right)$ from " to b.*

In like manner consider the mass of a rod of variable density and suppose the rod to lie along the x-axis so that the density may be taken as a function of x. In any small length Δx of the rod the density is nearly constant and the mass of that part is approximately equal to the produet $\rho \Delta x$ of the density $\rho(x)$ at the initial point of that part times the length Δx of the part. In fact it is clear that the mass will be intermediate between the prolucts $m \Delta x$ and $M \Delta x$, where m and M are the minimm and maximmm lensities in the interval Δx. In other words the mass of the seetion Δx will be exactly equal to $\rho(\xi) \Delta x$ where ξ is some value of x in the intorval Δx. The mass of the whole rod is therefore the sum $\Sigma \rho(\xi) \Delta x$ taken from one end of the rod to the other, and if the intervals be allowed to approach zero, the mass may be written as the integral of $\rho(x)$ from one end of the rod to the other. \dagger

Another problem that may be treated by these methods is that of finding the total pressure on a vertical area submerged in a liquid, say, in water. Let w be the
 weight of a column of water of cross section 1 st , unit and of loeight 1 unit. (If the unit is a foot, $w=(62.5 \mathrm{lb}$.) It a boint h mits below the surface of the water the pressure is wh and upon a small area near that deptlo the pressure is approximately whit if A be the area. The pressure on the area A is exactly equal to $u \xi A$ if ξ is some depth intermediate between that of the tol and that of the bottom of the area. Now let the finite area he ruled into strips of height $\Delta /$. Comsider the product $w h b(h) \Delta l$ where $b(h)=f(h)$ is the breadth of the area at the depth h. This

[^6]is approximately the pressure on the strip as it is the pressure at the top of the strip multiplied by the approximate area of the strip. Then $w_{\xi}^{\xi} b(\xi) \Delta h$, where ξ is some value between h and $h+\Delta h$, is the actual pressure on the strip. (It is sufficient to write the pressure as approximately $w h b(h) \Delta h$ and not trouble with the ξ.) The total pressure is then $\Sigma w \xi b(\xi) \Delta h$ or better the limit of that sum. 'Then
$$
P=\lim \sum w \xi b(\xi) d h=\int_{a}^{b} w h b(h) d h
$$
where a is the depth of the top of the area and b that of the bottom. To evaluate the pressure it is merely necessary to find the breadth b as a function of h and integrate.

EXERCISES

1. If k is a constant, show $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$.
2. Show that $\int_{a}^{b}(u \pm v) d x=\int_{a}^{b} u d x \pm \int_{a}^{b} v d x$.
3. If, from a to $b, \psi(x)<f(x)<\phi(x)$, show $\int_{a}^{b} \psi(x) a x<\int_{a}^{b} f(x) d x<\int_{a}^{b} \phi(x) d x$.
4. Suppose that the minimum and maximum of the quotient $Q(x)=f(x) / \phi(x)$ of two functions in the interval from a to b are m and M, and let $\phi(x)$ be positive so that

$$
m<Q(x)=\frac{f(x)}{\phi(x)}<M \quad \text { and } \quad m \phi(x)<f(x)<M_{\phi}(x)
$$

are true relations. Show by Exs. 3 and 1 that

$$
m<\frac{\int_{a}^{b} f(x) d x}{\int_{a}^{b} \phi(x) d x}<M \text { and } \frac{\int_{a}^{b} f(x) d x}{\int_{a}^{b} \phi(x) d x}=\mu=Q(\xi)=\frac{f(\xi)}{\phi(\xi)}
$$

where ξ is some value of x between a and b.
5. If m and M are the minimum and maximum of $f(x)$ between a and b and if $\phi(x)$ is always positive in the interval, show that
and

$$
m \int_{a}^{b} \phi(x) d x<\int_{n}^{b} f(x) \phi(x) d x<M \int_{a}^{b} \phi(x) d x
$$

$$
\int_{a}^{b} f(x) \phi(x) d x=\mu \int_{a}^{b} \phi(x) d x=f(\xi) \int_{a}^{b} \phi(x) d x
$$

Note that the integrals of $[M-f(x)] \phi(x)$ and $[f(x)-m] \phi(x)$ are positive and apply Ex. 2.
6. Evaluate the following by the direet application of (62) :

$$
\text { (} \left.\alpha) \quad \int_{a}^{b} x d x=\frac{b^{2}-a^{2}}{2}, \quad \text { (} \beta\right) \quad \int_{a}^{b} e^{x} d x=e^{b}-\epsilon^{a}
$$

Take equal intervals and use the rules for arithmetic and geometric progressions.
7. Evaluate $(\alpha) \int_{a}^{b} x^{m} d x=\frac{1}{m+1}\left(b^{m+1}-a^{m+1}\right), \quad(\beta) \int_{a}^{b} c^{x} l x=\frac{1}{\log c}\left(c^{b}-c^{a}\right)$.

In the first the intervals should be taken in geometrie progression with $r^{m}=b / a$.
8. Show directly that $(\alpha) \int_{0}^{\pi} \sin ^{2} x d x=\frac{1}{2} \pi, \quad(\beta) \int_{0}^{\pi} \cos ^{n} x d x=0$, if u is odd.
9. With the aid of the trigonometric formulas $\cos x+\cos 2 x+\cdots+\cos (n-1) x=\frac{1}{2}\left[\sin n x \cot \frac{1}{2} x-1-\cos n x\right]$, $\sin x+\sin 2 x+\cdots+\sin (n-1) x=\frac{1}{2}\left[(1-\cos n x) \cot \frac{1}{2} x-\sin n x\right]$,
show
(a) $\int_{a}^{b} \cos x d x=\sin b-\sin a$,
(β) $\int_{a}^{b} \sin x(l x=\cos a-\cos b)$.
10. A fumetion is said to be even if $f(-x)=f(x)$ and odd if $f(-x)=-f(x)$.

Show $(\alpha) \int_{-a}^{+a} f(x) d x=2 \int_{0}^{a} f(x) d x, f$ even, $\quad(\beta) \int_{-a}^{+a} f(x) d x=0, f$ odd.
11. Show that if an integral is regarded as a function of the lower limit, the upper limit being fixed, then

$$
\Phi^{\prime}(\alpha)=\frac{d}{d a} \int_{a}^{b} f(x) d x=-f(a), \quad \text { if } \Phi(a)=\int_{a}^{b} f(x)(l x .
$$

12. Use the relation between definite and indefinite integrals to compare

$$
\int_{a}^{b} f(x) d x=(b-a) f(\xi) \quad \text { and } \quad F(b)-F^{\prime}(a)=(b-a) F^{\prime}(\xi)
$$

the Theorem of the Mean for derivatives and for definite integrals.
13. From consideration of Exs. 12 and 4 establish Ctuchy's Formulte

$$
\frac{\Delta F}{\Delta \Phi}=\frac{F(b)-F(\imath)}{\Phi(b)-\Phi(\imath)}=\frac{F^{\prime}(\xi)}{\Phi^{\prime}(\xi)}, \quad a<\xi<l
$$

which states that the quotient of the increments ΔF and $\Delta \Phi$ of two fumetions, in any interval in which the derivative $\Phi^{\prime}(r)$ does not vanish, is equal to the quotient of the derivatives of the functions for some interior point of the interval. What would the application of the Thorom of the Mean for derivatives to mmerator and denominator of the left-hand fraction give, and wherein does it differ from Canchy's Formula?
14. Diseuss the volume of revolution of $y=f(x)$ as the linnt of the sum of thin cylinders and eompare the results with those fomm in Ex. !. 1. 10.
15. Show that the mass of a rol rmming from a to b alomo the x-axis is ${ }_{2}^{1} k\left(l^{2}-a^{2}\right)$ if the demsity varies as the distance from the origin (k is a factor of proportionality)。
16. Show (a) that the mass in a rod rmming from atob isthe same as the aroa muder the eurve $y=\rho(x)$ between the ordinates $x=a$ and $r=b$. and axplain why this shouk be seem intuitively to he so. Show (β) that if the deasity in a phane shab bounderd by the x-axis, the eurve $y=f(x)$, and the ordinates $x-u$ and $x=b$ is a function $\rho(x)$ of x alone, the mass of the slab is $\int_{d \prime}^{b}!\rho(x) d x$; also (γ) that the mass of the correspromblag volume of revolution in $\int_{a}^{b} \pi y^{2} \rho(x) d x$.
17. An isoseches triangle las the altitude a and the lase $2 \boldsymbol{2} \%$. Find (α) the mass on the assumption that the density varies as the distane from the vertex (meats-
 revolving the triande about its altitule of the law of density is the same.
18. In a plane, the moment of inertia I of a particle of mass m with respect to " point is defined as the product $m r^{2}$ of the mass by the square of its distance from the point. Extend this definition from particles to bodies.
(α) Show that the moments of inertia of a rod roming from a to b and of a circular slab of radius a are respectively

$$
I=\int_{n}^{b} x^{2} \rho(x) d x \quad \text { and } \quad I=\int_{0}^{a} 2 \pi r^{3} \rho(r) d r, \quad \rho \text { the density, }
$$

if the point of reference for the rol is the origin and for the slab is the center.
(β) Show that for a rod of length $2 l$ and of uniform density, $I=\frac{1}{3} M T^{2}$ with respect to the ecnter and $I=\frac{1}{3} M L^{2}$ with respect to the end, M being the total mass of the rox.
(γ) For a miform cireular slab with respeet to the eenter $I=\frac{1}{2}$ M h^{2}.
(o) For a miform rod of length $2 l$ with respect to a point at a distance d from its eenter is $I=M\left(\frac{1}{3} l^{2}+d^{2}\right)$. Take the rod along the axis and let the point be (α, β) with $d^{2}=\alpha^{2}+\beta^{2}$.
19. A rectangular gate holds in cheek the water in a reservoir. If the gate is submerged over a rertical distance $I I$ and has a brealth l and the top of the sate is a mits below the surface of the water, find the pressure on the gate. At what depth in the water is the point where the pressure is the mean pressure over the gate?
20. A dam is in the form of an isoseeles trapezoid 100 ft , along the top (which is at the water level) and 60 ft . along the bottom and 30 ft . high. Find the pressure in tons.
21. Find the pressure on a eircular gate in a water main if the radins of the cirele is r and the depth of the ecnter of the circle below the water level is $d \geqq r$.
22. In space. moments of incritu are defined relutive to an was and in the formula $I=m r^{2}$, for a single particle, r is the perpendicular distance from the particle to the axis.
(α) Show that if the density in a solid of revolution gencraten $\mathrm{g}_{\mathrm{y}} y=f\left(x^{r}\right)$ varios only with the elistance along the axis, the moment of inertia about the axis of revolution is $I=\int_{n}^{b} \frac{1}{2} \pi y^{4} \rho(. c$) llc. Apply Ex. 18 after divining the solicl inte disks.
(β) Find the moment of incretia of a sphere about a diameter in case the density is constant ; $I=\frac{2}{3} 1 u^{2}=\frac{4}{15} \pi \rho \mu^{5}$.
(γ) Apply the result to find the moment of inertia of a spherieal shell with external and internal radii " and $b: l=\frac{2}{5} M\left(n^{3}-b^{\prime \prime}\right) /\left(n^{3}-b^{3}\right)$. Let $b \doteq 4$ and thus find $I=\frac{2}{3} M x^{2}$ as the moment of inertia of a spherical surface (shell of negligible thickness).
(δ) For a cone of remation $I=\frac{3}{10}-M^{2}$ where a is the rallins of the base.
23. If the fore of attraction exertel ly a mass m upon a point is $k m f(r)$ where r is the distance from the mass to the point, show that the attraction exerted at the origin by a ron of density $\rho(x)$ ruming from a to b aloner the x-axis is

$$
A=\int_{a}^{b} k f(x) \rho(x) d x, \quad \text { ant that } \quad A=k M / a b, \quad M=\rho(b-a),
$$

is the attration of a miform rol if the law is the Law of Nature, that is, $f(r)=1 / r^{2}$.
24. Suppose that the density ρ in the slab of Ex. 16 were a function $\rho(x, y)$ of both x and y. Show that the mass of a small slice over the interval Δx_{i} would be of the form
$\Delta x \int_{0}^{y=f^{\prime}(\xi)} \rho(x, y) d y=\Phi(\xi) \Delta x$ and that $\int_{a}^{b} \Phi(x) \Delta x=\int_{a}^{b}\left[\int_{0}^{y=f^{\prime}(x)} \rho(x, y) d y\right] d x$
would be the expression for the total mass and would reguire an integration with respect to y in which x was held constant, a substitntion of the limits $f(x)$ and 0 for y, and then an integration with respect to x from a to b.
25. Apply the considerations of Ex. 24 to finding moments of inertia of (c) a uniform triansle $y=m, x, y=0, x=u$ with respect to the origin,
(β) a miform reetangle with respect to the center,
(γ) a unifurn ellipse with respect to the center.
26. Compare Exs. 24 and 16 to treat the volume under the surface $z=\rho(x, y)$ and over the area bommed by $y=f(x), y=0, x=\|, x=b$. Find the volume
(α) moler $z=x y$ and over $y^{2}=4 p x, y=0 . x=0 . x=b$,
(β) under $z=x^{2}+y^{2}$ and over $x^{2}+y^{2}=\pi^{2}, y=0, x=0, x=($, ,
(γ) under $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ and over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, y=0 . c=0 . x=a$.
27. Discuss sectorial area $\frac{1}{2} \int r^{2} d \phi$ in polar coörlinates as the limit of the sum of small sectors rmming out from the pole.
28. Show that the moment of inertia of a miform circular sector of angle ar and radins a is $\frac{1}{4} \rho \alpha \sigma^{4}$. Hence infer $I=\frac{1}{4} \rho \int_{a_{0}}^{\alpha_{1}} r^{4} \ell \ell$ in polar coördinates.
29. Find the moment of inertia of a miform (α) lemniscate $r^{2}=a^{2} \cos ^{2} 2 \phi$ and (β) cardinid $r=u(1-\cos \phi)$ with respert to the pole. Nlsu of (γ) the circle $r=2 \alpha \cos \phi$ and (δ) the rose $r=u \sin 2 \phi$ and (ε) the ruse $r=a \sin 3 \phi$.

CHAPTER II

REVIEW OF FUNDAMENTAL THEORY*

18. Numbers and limits. The concept and theory of real number, integral, rational, and irrational, will not be set forth in detail here. Some matters, however, which are necessary to the proper understanding of rigorous methods in analysis mmst be mentioned ; and numerous points of view which are adopted in the study of irrational number will be suggested in the text or exercises.

It is taken for granted that by his earlier work the reader has become familiar with the use of real numbers. In particular it is assumed that he is aceustomed to represent numbers as a scule, that is, by points on a straicht line, and that he knows that when a lime is siven and anorigin chosen mon it and a mit of measure and a positive direction have been chosen, then to each point of the line corresponds one and only one real number, and conversely. Owing to this correspondence, that is, owing to the conception of a seale, it is possible to interchange statements about numbers with statements about points and hence to obtain a more vivid and graphic or a more abstract and arithmetic phraseology as may be desired. Thus instead of saying that the mumbers x_{1}, x_{2}, \cdots are increasing algebraically, one may say that the points (whose coorrdinates are) x_{1}, x_{2}, \ldots are moving in the positive direction or to the right; with a similar correlation of a decreasing suite of numbers with prints moving in the negative direction or to the left. It should be remembered, however. that whether a statement is eonched in genmetric or algebraic tems, it is always a statement concerning numbers when one has in mind the point of view of pure analysis. \dagger

It may be recalled that arithmetic begins with the integers, including 0 , and with addition and multiplication. That second. the rational numbers of the form p / q are introduced with the operation of division and the negative rational numbers with the operation of subtraction. Finally, the irrational numbers are introduced by rarious processes. Thus $\sqrt{2}$ occurs in gennetry through the necessity of expressing the length of the diagonal of a square, and $\sqrt{3}$ for the diagonal of a cube. Again, π is meeded for the ratio of circumference to diameter in a circle. In algebra any equation of odd degree has at least one real ront and hence mar be regarded as defining a number. But there is an essential difference between rational and irrational numbers in that any rational number is of the

[^7]form $\pm p / q$ with $q \neq 0$ and can therefore be written down explicitly; whereas the irrational mumbers arise by a variety of processes aml, althourh they may be represented to any desired accuracy by a decimal, they cannot all be written down explicitly. It is therefore necessary to have some tefinitu axioms regulating the essential properties of irrational mombers. 'The partienar axiom upon which stress will here be lain is the axiom of continnity, the use of which is essential to the proof of elementary therorems on limits.
19. Axion of Contincity. If all the prints of a lime are divided into

 This principle may lee stated in terms of numbers, as: If wll remb num-

 is called the frontier number (or point), or simply the formetipe of the two crasses, and in particular it is the "mprr fromtier for the first rlass and the lower firmtier for the second.
'To consider a particular case, let all the negative mumbers and zero constitute the first elass and all the positive mumbers the seeond, of let the negative mumbers alone be the first class and the prositive mmbers with zero the second. In either case it is clear that the elasses satisfy the enntitions of the axiom and that zero is the frontier momber such that any lesser mumber is in the tirst class and any greater in the seemal. If. howerer. one were to consiter the system of all poritive and negative numbers hut withont zero. it je chear that there would be no mumber It which would satisfy the comblitions demanden by the axion when the two classes were the newative aml positive mombers : for momatter how small a positive number were taken as . F. there wonld be smaller mumbers which would also be positive and womld not beloner to the first class ; and similarly in case it were attempted to find a neqative N. Thus the axiom insures the presence of $z e r n$ in the system, and in like manner insmes the presene of every other mumbre - a matter which is of importance becanse there is mo way of writine all (irmational) numbers in explicit form.

Further to alpreciate the contimuty of the mumber soale. consider the fome signifieations attributable tor the phase " the intereal from "to h.." They are

$$
a \leqq x \leqq b, \quad u<x \leqq b . \quad \| \leqq x<b . \quad a<x<b
$$

That is to sare both end points we either of meither may beloner the the interval. In the case ${ }^{\prime}$ is absent. the interval has morst foint : and if bis absent. there is no last point. Thus if zero is mot momemb as a moitive mumber. there is mo least positive number ; for if any least mumber were named. half of it would surely be less. and bence the absurlity. The axiom of continuity shows that if all mumbers be divided into two classes as required. there must he either a greates in the first class or a least in the serome - the frontier - but not both moless the frontier is counted twice, once in eacle class.
 sire culues $x_{1}, x_{2}, \cdots, x_{i}, x_{j}, \cdots$, the cumbinbe x is suid to "lpmourle the comstent 7 as " limit if the numerietel differemee beterepn x and l ultimately becomes, and for all surepediny rulues of : remuins, less thun uny promsisigned mumber no mutter hour
 small. The numerical difference between x and l is denoted low \mid. $|\mid$ or $| l-r \mid$ and is called the chsolute colue of the difference. The fact of the approath to a limit may be stated as
$\begin{aligned}|x-l|<\epsilon & \text { for all }, r \text { 's sulsequent to some } x \\ \text { or } \quad & x=l+\eta, \quad|\eta|<\epsilon\end{aligned} \quad$ for all x^{\prime} s subsequent to some x,
where ϵ is a positive number which may be assigned at pleasure and must be assigned before the attempt be made to find an x such that for all subsequent,r° s the relation $|, r-l|<\epsilon$ holds.

So long as the conditions required in the definition of a limit are satisfied there is mo need of bothering about how the variable approaches its limit, whether from the side or alternately from one side and the other. whether tiscontimonsly as in the case of the area of the polygons nsed for computing the area of a circle or contimonsly as in the case of a train bromgt to rest by its brakes. To speak gemetrically, a point x which changes its p^{w} sition mon a line approaches the print l as a limit if the point x ultimately comes into and remains in an assigned interval, no matter how small, surromding l.

A variable is said to berome intinite if the mumerieal value of the variable ultimately becomes and remains greater than any preassigned number k, no matter how large.* The notation is $r=\infty$, but hat best be read "ir becomes infinite," not ", er equals intinity:"

Theonem 1. If a variable is always increasing, it either leeomes infinite or approaches a limit.

That the variable may inerease indefinitely is apparent. But if it does not become infinite, there must be numbers h which are sreater than any value of the variable. Then any number must satisfy one of two comblions: either there are values of the variable which are greater than it or there are no values of the variable greater than it. Noreover all numbers that satisfy the first eondition are less than any mumber which satisfies the seeomb. All nmmbers are therefore divided into two classes fulfilling the requirements of the axiom of continuity, and there most be a momber \boldsymbol{N} such that there are values of the variable greater than any number $N-\epsilon$ which is less than N. Hence if ϵ le assigned, there is at value of the variable which lies in the interval $N^{+}-\varepsilon<x \leqq N^{\prime}$, and as the variable is always increasing, all sulseguent values must lie in this interval. Therefore the variable approaches I^{2} as a limit.

[^8]
EXERCISES

1. If $x_{1}, x_{2}, \cdots, x_{n}, \cdots, x_{n+m}, \cdots$ is a suite approaching a limit, apply the definition of a limit to show that when ϵ is given it must be possible to find a value of n so great that $\left|x_{n+p}-x_{n}\right|<\epsilon$ for all values of p.
2. If x_{1}, x_{2}, \cdots is a suite approaching a limit and if y_{1}, y_{2}, \cdots is any suite such that $\left|y_{n}-x_{n}\right|$ approaches zero when n becomes intinite, show that the y 's approach a limit which is identical with the limit of the x 's.
3. As the definition of a limit is phased in terms of inequalities and absohte values, note the following rules of operation:

$$
\text { (} \alpha) \text { If } a>0 \text { and } c>b \text {, then } \frac{c}{a}>\frac{b}{a} \text { and } \frac{u}{c}<\frac{a}{b}
$$

$(\beta)|a+b+c+\cdots| \leqq|a|+|b|+|c|+\cdots, \quad(\gamma)|a b c \cdots|=|a| \cdot|b| \cdot|c| \cdots$,
where the equality sign in (β) holds only if the numbers a, b, c, \ldots have the same sign. By these relations and the definition of a limit prove the fundamental theorems:

If $\lim x=X$ and $\lim y=Y$, then $\lim (x \pm y)=X \pm Y$ and $\lim x y=X Y$.
4. Prove Theorem 1 when restated in the slightly changed form: If a variable x never decreases and never exceeds K, then x approaches a limit N and $N \leqq K$. Illustrate fully. State aud prove the corresponding theorem for the case of a variable never increasing.
5. If x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots are two suites of which the first never decreases and the second never increases, all the y 's being greater than any of the x 's, and if when ϵ is assigned an n can be found such that $y_{n}-x_{n}<\epsilon$, show that the limits of the suites are identical.
6. If x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \cdots are two suites which never decrease, show by Ex. 4 (not by Ex. 3) that the suites $x_{1}+y_{1}, x_{2}+y_{2}, \cdots$ and $x_{1} y_{1}, x_{2} y_{2}, \cdots$ apmoach limits. Note that two infinite decimals are precisely two suites which never deerease as more and more figmes are taken. They do not always increase, for some of the figures may be 0 .
7. If the worl "all" in the liypothesis of the axiom of contimity be assumed to refer only to rational mumbers so that the statement becomes: If all rational numbers be divided into two classes..., there shall be a number N (not necessarily rational) such that ...; then the conclusion may be taken as defining a number as the frontier of a sequence of rational numbers. Show that if two numbers T, Y be defined by two such secquences, and if the sun of the numbers be definad as the number defined by the sequence of the stmis of corresponding terms as in Ex. 6 , and if the prodnct of the numbers be defined as the number defined by the sequence of the products as in Ex. 6 , then the fundamental rules

$$
X+Y=Y+X, \quad X Y=Y Y, \quad(X+Y) Z=Y Z+Y Z
$$

of arithmetic lobld for the nmbers $X . Y$. Z defined by sequences. In this way a complete theory of irrationals may be built up from the properties of rationals combined with the principle of contimity, namely, 1° by defining irrationals as fromtiers of sequenees of rationals, 2° by clefining the operations of addition, multiplication, ... as oprations upon the rational mombers in the sequences, 30 by showing that the fundamental rules of arithmetic still low for the irrationats.
8. Apply the principle of continuity to show that there is a positive number x such that $x^{2}=2$. To do this it should be shown that the rationals are divisible into two classes, those whose square is less than 2 and those whose square is not less than 2 ; and that these classes satisfy the requirements of the axiom of continuity. In like manner if a is any positive number and n is any positive integer, show that there is an x such that $x^{n}=a$.
21. Theorems on limits and on sets of points. The theorem on limits which is of fundamental algebraic importance is

Theorem 2. If $R(x, y, z, \cdots)$ be any rational function of the variables x, y, a, \cdots, and if these variables are approaching limits X, Y, Z, \cdots, then the value of R approaches a limit and the limit is $R(X, r, Z, \cdots)$, provided there is no division by zero.

As any rational expresion is made up from its elements by combinations of addition, subtraction, multiplication, and division, it is suffieient to prove the theorem for these four operations. All except the last have been indicated in the above Ex. 3. As multiplication has been cared for, division neel be considered only in the simple case of a reciprocal $1 / c$. It must be proved that if $\lim x=X$, then $\lim (1 / x)=1 / X$. Now

$$
\left|\frac{1}{x}-\frac{1}{N}\right|=\frac{|x-Y|}{|x||X|}, \quad \text { by Ex. } 3(\gamma) \text { above. }
$$

This quantity must be shown to be less than any assigned ϵ. As the cuantity is complicated it will be replaced by a simpler one which is greater, owing to an increase in the denominator. Since $x \doteq X . x-X$ may be made numerieally as small as desired, say less than ϵ^{\prime}. for all x 's subsequent to some particular x. Hence if ϵ^{\prime} be taken at least as small as $\frac{1}{2}|X|$, it appears that $|x|$ must be greater than ${ }_{2}^{\frac{1}{2}|\mathrm{I}| \text {. Then }}$

$$
\frac{|x-X|}{|x||X|}<\frac{|x-X|}{\frac{1}{2}\left|X^{2}\right|^{2}}=\frac{\epsilon^{\prime}}{\left.\frac{1}{2} \right\rvert\, X^{2}}, \quad \text { by Ex. 3 (x) above. }
$$

and if ϵ^{\prime} be restricted to being less than $\left.\frac{1}{2} \right\rvert\, X^{\prime} \epsilon$, the difference is less than ϵ and the theorem that $\lim (1 / x)=1 / \mathrm{X}$ is provet, and also Theorem 2. The necessity for the restriction $X^{\prime} \neq 0$ and the corresponting restriction in the statement of the theorem is obvious.

Theorem 3. If when ϵ is given, no matter how small, it is possible to find a value of n so great that the difference $\left|r_{n+p}-r_{n}\right|$ betweenl r_{n} and every subsequent term x_{n+p} in the suite $x_{1}, x_{2}, \cdots, x_{n}, \ldots$ is less than ϵ, the suite approaches a limit, and eonversely.

The converse part has already been given as Ex. 1 above. The theorem itself is a consequence of the axion of continuity. First mote that as $\left|x_{n+p}-x_{n}\right|<\epsilon$ for all $x^{\circ} s$ subsequent to x_{n}, the x° s cammot hecome infinite. Suppose 1° that there is some number l sueh that no matter how remote x_{n} is in the suite, there are always subsequent values of x which are greater than l and others whieh are less than l. As all the x s. after x_{n} lie in the interval 2ϵ and as l is less than some x° s and greater than others, l must lie in that interval. Hence $\left|l-x_{n+p}\right|<2 \epsilon$ for all
x 's subserfuent to x_{n}. But now 2ε can be made as small as desired because ϵ can be taken as small as desired. Hence the definition of a limit applies and the x. approach l as a limit.

Suppose $\ddot{2}^{\circ}$ that there is no such number l. Then every number k is such that either it is possible to go so far in the suite that all subsequent numbers x are as great as k or it is possible to go so far that all subsequent x° s are less than k. Hence all mmbers k are divided into two classes which satisfy the requirements of the axiom of continuity, and there must be a number N such that the x s ultimately come to lie between $\Gamma^{\prime}-\epsilon^{\prime}$ and $\Gamma^{\prime}+\epsilon^{\prime}$, no matter how small ϵ^{\prime} is. Intree the x^{*} s approach I as a limit. Thus moder either supposition the suite approaches a limit and the theorem is proved. It may be noted that maler the second supposition the x *s ultimately lie entirely unon one site of the point I and that the eondition $\left|x_{n+p}-x_{n}\right|<\epsilon$ is not used excest to show that the x° s remann finite.
22. ('onsider next a set of points (or their comrelative numbers) without any implication that they form a suite, that is, that one may be said to be subsequent to another. If there is only a finite number of points in the set, there is a point farthest to the right and one farthest to the left. If there is an infinity of points in the set, two possibilities arise. Either 1° it is not possible to assign a point K so far to the right that no point of the set is farther to the right - in which case the set is sail to he unlimiten abmere or 2° there is a point K such that no point of the set is berond K-and the set is said to be limited mbove. Similarly, a set may be limited belour or unlimited beloce. If a set is limited above and below so that it is entirely contained in a finite interval, it is said merely to he limited. If there is a point C such that in any interval, no matter how small, surrounding (' there are points of the set, then ' $'$ is called a point of 'romentensirtim of the set (C itself may or may not belong to the set).

Theorem 4. Any infinite set of points which is limited las an upper frontier (maximum:'), a lower frontier (minimun :'), and at least one point of condensation.

Before 1 noving this theorem, consider three infinite sets as illustrations:
(cx) 1. 1.9. 1.99, 1.999, \cdots.
(β) $-2, \cdots,-1.99,-1.9,-1$,
(γ) $-1,-\frac{1}{2} .-\frac{1}{4} \cdot \cdots, \frac{1}{4} . \frac{1}{2} .1$.
In (α) the element 1 is the minimmon and serves also as the lower frontier ; it is elearly not a point of condensation. hat is isolated. There is nomaximum; but 2 is the mper frontier and also al pint of condensation. In (β) there is a maximmm -1 and a minimm -2 (for -2 has been incorporated with the set). In (γ) there is a maximum and minimmo the point of condemsation is 0 . If one conld be sure that an infinite set lad a maximum and minimmon as is the case with finite sots, there wond be no need of considering mper and lower frontiers. It is clear that if the mper or fower frontier belonge to the set. there is a maximmm or minimm and the frontier is not necessatrily a point of condensation; whereas
if the frontier does not belong to the set, it is necessarily a point of condensation and the corresponding extreme point is missing.

To prove that there is an upper frontier, divide the points of the line into two classes, one consisting of points which are to the left of some point of the set, the other of points which are not to the left of any point of the set - then apply the axiom. Similarly for the lower frontier. To show the existence of a point of condensation, note that as there is an infinity of elements in the set, any point p is such that either there is an infinity of points of the set to the right of it or there is not. Hence the two elasses into which all points are to be assorted are suggested, and the application of the axiom offers no difticulty.

EXERCISES

1. In a manner analogons to the proof of 'Theorem 2, show that
(α) $\lim _{x \neq 0} \frac{x-1}{x-2}=\frac{1}{2}$,
(β) $\lim _{x \doteq 2} \frac{3 x-1}{x+5}=\frac{5}{7}$,
($) \lim _{x \doteq-1} \frac{x^{2}+1}{x^{3}-1}=-1$.
2. Given an infinite series $s=u_{1}+u_{2}+u_{3}+\cdots$. Construct the suite

$$
s_{1}=u_{1} . s_{2}=u_{1}+u_{2} . s_{3}=u_{1}+u_{2}+u_{3}, \cdots . s_{i}=u_{1}+u_{2}+\cdots+u_{i} . \cdots .
$$

where s_{i} is the sum of the first i tems. Show that Theorem ? gives: The nevessary and sufficient condition that the series sconvere is that it is possible to tind an u so large that $\left|s_{n+p}-x_{n}\right|$ shall be less than an asigned \in for all values of p. It is to be understool that a series converges when the suite of s s. approaches a limit, and conversely.
3. If in a series $u_{1}-u_{2}+u_{3}-u_{4}+\cdots$ the tems approach the limit 0 , are alternately positive and neqative. and each tern is less than the preceding, the

4. Given three infinite suites of numbers

$$
x_{1}, x_{2}, \cdots, x_{n}, \cdots ; \quad y_{1}, y_{2}, \cdots, y_{n}, \cdots ; \quad z_{1}, z_{2}, \cdots, z_{n}, \cdots
$$

of which the first mever decreasen, the sembl never increastes and the terms of the third lie between enrespmoding terms of the first two. $s_{n} \leqq z_{n} \leqq y_{n}$. Show that the suite of z° s has a pint of condensation at or between the linits apmoached by the x° and by the y°; and that if $\lim x=\lim y=l$, then the $z^{*} *$ approach l as a limit.
5. Restate the definitions and thenems on suts of pints in arithnetic terms.
6. (iive the details of the proof of Theorm t. Show that the proof as outlined gives the least point of comdensation. How would the proof be worled so as to give the greatest point of condensation?" Show that if a set is limited above, it has an upper frontier but need mot have a lower frontier.
7. If a set of points is such that hetween any two there is a thirk, the set is satul to be flense. Show that the rationals form a dense set ; also the irrationals. Slow that any puint of a lense set is a peint of condensation for the set.
8. Show that the rationale p / q where $q<K$ do mut form a dense set - in fact are a tinite set in ans limited interval. Hence in reqarding any irrational as the limit of a set of rationals it is necessary that the demominator's and also the nmmerators shouk become intinite.
9. Show that if an infinite set of points lies in a limited region of the plane. say in the reetangle $a \leqq x \leqq b$. $c \leqq y \leqq d$, there must be at least one point of condensation of the set. Give the necessary definitions and apply the axiom of continnity snecessively to the aloscissas and ordinates.
23. Real functions of a real variable. If \because be vuriuble which tulies on " rertuin set of relues of whirlh the totulity maly be: denoted by [.r ${ }^{\circ}$ [and if ! is "sseroml rompinble the collue "f which is uniquel!!
 x defined orer the set $[. r]$. The terms " limited," "unlimited," " limited above," " unlimited below," ... are applied to a function if they are applicable to the set $[y]$ of values of the function. Hence Theorem t has the corollary:

Theorem \therefore. If a function is limited over the set [x] , it has an upper frontier M and a lower frontier m for that set.

If the function takes on its upper frontier,l, that is, if there is a value x_{0} in the set $[r]$ such that $f\left(\cdot r_{0}\right)=I I$, the function has the absolute mosimum, II at x_{0} : and similarly with respect to the lower frontier. In any aise, the difference $M-m$ between the upper and lower frontiers is called the sacellution of the function for the set $[x]$. The set $[r]$ is generally an interval.

Consider some illustrations of functions and sets over which they are defined. The reciprocal $1 / x$ is definel for all values of x save 0 . In the neighborhond of 0 the function is mamited aboe for poitive $x *$ and unlimitel below for negative x.s. It should be moted that the function is not limited in the interval $0<\kappa \leqq a$ but is limited in the interval $\epsilon \leqq x \leqq \neq$ where ϵ is any assimed positive mumber. The function $+\sqrt{\prime}^{\prime}$ is definend for all pasise x° s including 0 and is limited below. It is not limited alove for the totality of all positive mumbers ; but if K is assigned. the function is limited in the interval $0 \leqq x \leqq h$. The factorial function x ! is defined only for lusitive integers, is limited behw by the value 1 . but is not limited above mess the set $[x]$ is limited above. The function $E(x)$ demoting the integer not ${ }^{\text {rreater }}$ than x on " the interral part of x^{*} is detined for all positive numbers -for instance $E(3)=E(\pi)=3$. This function is mot expresset, like the elementary functions of "aleulus. as in "formula" ; it is defined by a detinite law. however. and is just as murh of a function as $x^{2}+3 x+2 \operatorname{m}^{\frac{1}{2}} \sin ^{2} 2 x+h$ hers. Indeed it should be noted that the chementary functions themselves are in the first instanee defined by definite laws and that it is mot until after the y have becol marle "the subjeet of considerable study and have heen larsely developed ahme analstic lines that they appear as formulas. The illeas of function and formula are essentially distinet am the latter is esentially seemmary to the formere.

The definition of function as wiven abore excludes the so-called multiple-ralued functions sheh as \sqrt{x} and sint ${ }^{-1} x$ where to a given value of x comerpond more than one value of the fonction. It is watal, howerer. in treating multiple-valued funetions to resulve the functions into different parts on bronches so that each branch

of \sqrt{x}; in fact when x is positive the symbol \sqrt{x} is usually restricted to mean merely $+\sqrt{x}$ and thus beenmes a single-valued symbel. One branch of sin-1 x consists of the values between $-\frac{1}{2} \pi$ and $+\frac{1}{2} \pi$. other branches give values between $\frac{1}{2} \pi$ and $\frac{3}{2} \pi$ or $-\frac{1}{2} \pi$ and $-\frac{3}{2} \pi$, and so oin. Hence the term "function" will be restricted in this chapter to the single-valued functions allowed by the definition.
 the function $f(x)$ is said to be contimums. "t the point ir $=$ " if

$$
\lim _{x \doteq a} f^{\prime}\left(r^{\prime}\right)=f^{\prime}(\prime), \quad \text { mu mutter } l_{1 \prime \prime \prime}, x^{\prime} \doteq \| .
$$

The function is said to be rontinnoms in the introrerl if it is contimous "t erery pmint of the interorl. If the function is not contimons at the point ", it is said to lee discontinnons at ": and if it fails to be contimuous at any one point of an interval, it is said to be discontimons in the interval.

Theorem 6. If any finite number of functions are continuous (at a point or orer an interval), any rational expersion formed of those functions is continnous (at the point or over the interval) provided mo division by zero is called for.

Theorem 6. If $y=f(x)$ is continuous at x_{0} and takes the value $y_{0}=f\left(x_{0}\right)$ and if $a=\phi(!)$ is a rontinmous function of $!$ at $!=!, y_{0}$, then $\therefore=\phi\left[f\left(r^{\prime}\right)\right]$ will be a contimuous function of,r^{r} at r_{0}.

In regard to the definition of continnity note that a function cammot be contimons at a point unless it is defined at that puint. Thuss $c^{-1 / x^{2}}$ is not continnuous at $x=0$ because division by 0 is impossible and the function is umbefinem. If. however, the function be detined at 0 as $f(0)=0$. the function becomes continuous at $x=0$. In like manmer the function $1 / x$ is mot contimons at the origin, and in this case it is impussible to assign to $f(0)$ any value which will rember the function continuons; the function becomes intinite at the oripin and the very idea of becoming infinite preclubes the pwibility of approthle to a definite limit. Agrain. the function $E(x)$ is in general continums. lat is disontimons for interral values of x. When a function is discontinums at $x=\pi$. the amome of the discontenuity is the limit of the oscillation $M-m$ of the fumetion in the interval $\pi-\delta<x<\pi+\delta$ sumponding the peint a when δ approches zeron as ins limit. The diserntinuity of $E(x)$ at each integral value of s is clearly 1 ; that of $1 / s$ at the origin is infinite no matter what value is assigned tof $f(0)$.

In case the interval over which $f^{\prime}(r)$ is defined has end points. say $a \leqq s \leqq b$. the question of continuity at $x=t$ mnst of comse be decided ly allowing x to approach of from the right-hand side only ; and similarly it is a question of lefthanded approach to b. In general. if for any reasom it is desired to restrict the approach of a variable to its limit to being onc-rideal. the motations $x \doteq a^{+}$and $x \doteq b^{-}$respectively are used to denote approach throngh greater values (righthamled) and through lesior values (lefthanded). It is mot mecessary to make this specitication in the case of the culs of an interval : for it is mulerstom that x shall take on only values in the interval in question. It should be nuten that
$\lim f(x)=f\left(x_{0}\right)$ when $x \doteq x_{0}+$ in no wise implies the continuity of $f(x)$ at x_{0}; a simple example is that of $E(x)$ at the pritive interral points.

The proof of Theorem 6 is an immediate corollary application of Theorem 2. For
$\lim R[f(x), \phi(x) \cdots]=R[\lim f(x), \lim \phi(x), \cdots]=R[f(\lim x), \phi(\lim x), \cdots]$, and the proof of Theorem 7 is equally simple.

Theorem 8. If $f(r)$ is continuous at $r="$, then for' any positive ϵ which has been assigned, no matter how small, there may be found a number δ such that $\left|f^{\prime}\left(x^{\prime}\right)-f^{\prime}(\prime \prime)\right|<\epsilon$ in the interval , $r^{\prime}-\| \mid<\delta$, and hence in this interval the oscillation of $f^{\prime}\left(r^{\prime}\right)$ is less than 2ϵ. And conversely, if these conditions hold, the function is continuons.

This theorem is in reality nothing but a restatement of the definition of continuity combined with the definition of a limit. For " $\lim f(x)=f(\alpha)$ when $x \doteq a$, no matter how " means that the difference between $f(x)$ and $f(\mu)$ can be mate as small as desired by taking x sufficiently near to 4 ; and conversely. The reason for this restatement is that the present form is more amenable to analytic operations. It also suggests the geometric picture which corresponds to the usual idea of contimuty in graphs. For the theorem states that if the two lines $y=f(t) \pm \epsilon$ he drawn. the graph of the function remains between then fon at least the short distance δ on each side of $x=\pi$: and as ϵ may be assigned a value as small as desired. the graph camot exhibit
 breaks. On the other hand it should be noted that the actual physical graph is nut a curve but a band, a two-dimensional region of greater or less breadth, and that a function eould be discontinuons at every point of an interval and yet lie entirely within the limits of any given physical graph.

It is clear that δ. which has to be determined subsequently to ϵ, is in general more and more restricted as ϵ is taken smaller and that for different perints it is more restricted as the graph rises more ratidly. Thus if $f(x)=1 / x$ and $\epsilon=1 / 1000$, δ can be nearly $1 / 10$ if $x_{0}=100$, but must be sliphtly less than $1 / 1000$ if $x_{0}=1$, and something less than 10^{-6} if x is 10^{-3}. Indeed, if x be allowed to aproach zero, the value δ for any assigned ϵ also appraches zero ; and although the function $f(x)=1 / x$ is continuons in the interval $0<x \leqq 1$ and for any given x_{0} and ϵ a number δ may be found such that $f(x)-f\left(x_{0}\right)<\epsilon$ when $x-x_{0}<\delta$, yet it is not posiblbe to assign a mumber δ which shall serve uniformily for all values of x_{0}.
25. Theniman 9. If a funcfion $f^{2}\left(x^{\prime}\right)$ is continnoms in an interval $" \equiv r^{\prime} \equiv l$ with rud points, it is possible to find a δ surch that $f^{\prime}\left(r^{\prime}\right)-f^{\prime}\left(r_{0}\right)<\epsilon$ whenn $\left|r^{r}-r_{0}\right|<\delta$ for all points r_{0} : and the function is salel to be "nifurmly rontinumens.

The prow is combeten hy the methon of rednetio ad absurdum. Surpose ϵ
 arpmathes zeron a limit. Supme that mo one of thes values will serve as a δ for all perinte of the interval. Then there mat lo at least one print for which $\frac{3}{2}$ will mot serve, at least one for which $\frac{1}{1}$ will not serve. at least one for which ? will not serve, and so on indefinitely. This infinite set of pints must have at least one
point of condensation C such that in any interval surrounding C there are point: $f=n$ which 2^{-k} will not serve as δ, no matter how large k. But now by hypothesis $f(x)$ is continuous at C and hence a number δ can be found such that $|f(x)-f(C)|<\frac{1}{2} \epsilon$ when $\left|x-x_{0}\right|<2 \delta$. The oscillation of $f(x)$ in the whole interval 4δ is less than ϵ. Now if x_{0} be any print in the middle half of this interval, $\left|x_{0}-C\right|<\delta$; and if x satisfies the relation $x-x_{0}<\delta$, it must still lie in the interval 4δ and the difference $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$, being surely not greater than the oscillation of f in the whole interval. Hence it is possible to surround C with an interval so small that the same δ will serve for any point of the interval. This contradicts the former conclusion, amd hence the hypothesis upon which that conclusion was based must have been false and it must have been possible to find a δ which would serve for all puints of the interval. The reason why the proof wouk not apply to a function like $1 / x$ defined in the interval $0<x \leqq 1$ lacking an end point is precisely that the print of condensation (would be 0 , and at 0 the function is not continuous and $\left|f(x)-f\left(C^{\prime}\right)\right|<\frac{1}{2} \epsilon,\left|x-C^{\prime}\right|<2 \delta$ could not be satisfied.

Theoram 10. If a function is continuous in a region which includes its end points, the function is limited.

Theoren 11. If a function is continuous in an interval which includes its end points, the function takes on its uprer frontier and has a maximmm M; similarly it has a minimum m.

These are successive corollaries of Theorem 9. For let ϵ be aswigned and let δ le determined so as to serve unifurmly for all points of the interval. Divile the interval $b-a$ into n successive intervals of length δ or less. Then in each such interval f camont increase by more than ϵ nor decrease by more than ϵ. Hence f will he containetl between the values $f(\pi)+n \epsilon$ and $f(\pi)-n \epsilon$. and is limited. And $f(x)$ has an upher and a lewer frontier in the interval. Next consider the rational function $I /(M-f)$ of f. By Theorem i; this is continums in the interval unless the denominator vanishes, and if continuons it is limited. This. hewever. is impossible for the reason that, as M is a fromtier of values of f. the difference $M-f$ may be made as small as desirecl. Hence $1 /(M-f)$ is not continuous and there must be some value of \mathfrak{d} for which $f=M$.

Theonen 12. If $f(x)$ is continuons in the interval $" \leqq x \leqq$ with end points and if $f(\prime)$ and $f\left(\begin{array}{l}(1)\end{array}\right)$ have oplosite signs. there is at least one wint ξ, " $<\xi<l$, in the interval for which the function ranishes. And whether $f^{\prime}(\prime)$ and $f^{\prime}\left(\frac{1}{}\right)$ have opmosite signs or mot, there is a point $\xi, "<\xi<h$, such that $f^{\prime}(\xi)=\mu$, where μ is any value intermerliate be tween the maximm and minimmon of t° in the interval.

For convenience suppose that $f(1)<0$. Then in the neighorlood of $x=$ "the function will remain negative on account of its continuity ; and in the neighborhond of b it will remain msitive. Let ξ be the lower frontier of values of x which make $f(x)$ positive. suppse that $f(\xi)$ were either positive or mesative. Then as f is continuous, an interval could be ehosen surmondins ξ and so small that f remained positive or nerative in that interval. In neither case combly ξ be the lower frontier of positive valus. Hence the contradiction, and $f(\xi)$ must be zero. To
prove the second part of the theorem, let c and d be the values of x which make f a minimum and maximm. Then the function $f-\mu$ has opposite signs at c and d, and must vanish at some point of the interval between c and d; and hence a fortiori at some point of the interval from a tos b.

EXERCISES

1. Note that x is a contimums function of x, and that conserpuently it follows from Theorem 6 that any rational fraction $P^{\prime}(x) / Q(x)$, where I^{\prime} and Q are polynomials in x, must be continuons for all x :s except roots of $Q(x)=0$.
2. Graph the function $x-E(x)$ for $x \geqq 0$ and show that it is continuous except for integral values of x. Show that it is limited, has a minimum 0 , an upper frontier 1 , but $n o$ maximum.
3. Suppose that $f(x)$ is defined for an infinite set $[x]$ of which $x=\pi$ is a point of condensation (not necessarily itself a point of the set). Suppose

$$
\lim _{x^{\prime}, x^{\prime \prime} \neq a^{\prime}}\left[f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right]=0 \quad \text { or } \quad\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\epsilon,\left|x^{\prime}-a\right|<\delta,\left|c^{\prime \prime}-a\right|<\delta .
$$

when x^{\prime} and $x^{\prime \prime}$ reqarded as indenendent variables approach a as a limit (passing only over values of the set $[x]$. of course). Show that $f(x)$ approaches a limit as $x \doteq a$. By considering the set of values of $f(x)$, the method of Theorem 3 applies almost verbatim. Show that there is no essential change in the proof if it be assumed that x^{\prime} and $x^{\prime \prime \prime}$ become infinite, the set $[x]$ being mimited instead of having a perint of condensation a.
4. From the formula $\sin x<x$ and the formulas for $\sin u-\sin v$ and $\cos u-\cos v$ show that $\lambda \sin x$ and $\lambda \cos x$ are numerically less than $2|\Delta x|$; hence infer that $\sin x$ and cos x are continuons functions of x for all values of x.
5. What are the intervals of contimity for $\tan x$ and cse x ? If $\epsilon=10^{-4}$, what are approximately the largest a a ailable values of δ that will make $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ when $x_{0}=1^{\circ}, 30^{\circ}, 60^{\circ}, 89^{\circ}$ for cach? Lise a four-place table.
6. Let $f(x)$ be defined in the interval from 0 to 1 as cural to 0 when x is irrational and egual to $1 / q$ when x is ratimal and expreseed as a fraction p / q in lowest terms. Show that f is comtimons for irrational values and discontinuons for rational values. Ex. 8,1 , 39 , will be of assistance in treating the irrational values.
7. Note that in the definition of contimity a generalization may be introdnced by allowing the set $[x]$ over which f is defined to be any set each point of which is a point of conflensation of the set, and that hence contimity over a dense set (Ex. 7 abowe), say the manals or irrationals, may be defined. This is important because many functions are in the first instance defined only for rationals and are subserpently defined for irrationals by interpolation. Note that if a function is continums ower a dense set (ray, the rationals), it does not follow that it is miformly continuons over the set. Fon the perint of comblemation C which was used in the prow of Theorem 9 may mot be a point of the set (may be irrational). and the proof would fall through for the same reason that it would in the case of $1 / x$ in the interval $0<r \leqq 1$. namely, beranse it could mot be affirmed that the function was continums at ('. Show that if a function is defined and is unfomby eontinuons over a demse set. the value $f(r)$ will apmoneh a limit when x apmones any value a (not necessarily of the set, hat situated between the uper and lower
frontiers of the set), and that if this limit be defined as the value of $f(a)$, the function will remain continuous. Ex. 3 may be used to advantage.
8. By factoring $(x+\Delta x)^{n}-x^{n}$, show for integral values of n that when $0 \leqq x \leqq K$, then $\Delta\left(x^{n}\right)<n K^{n-1} \Delta x$ for small Δx 's and consequently x^{n} is uniformly continuous in the interval $0 \leqq x \leqq K$. If it be assumed that x^{n} has been defined only for rational x 's, it follows from Ex. 7 that the definition may be extended to all x 's and that the resulting x^{n} will be continuous.
9. Suppose (α) that $f(x)+f(y)=f(x+y)$ for any numbers x and y. Show that $f(n)=n f(1)$ and $n f(1 / n)=f(1)$, and hence infer that $f(x)=x f(1)=C x$, where $C^{\prime}=f(1)$, for all rational x s. From Ex. 7 it follows that if $f(x)$ is continuous, $f(x)=C x$ for all x 's. Consider (β) the function $f(x)$ such that $f(x) f(y)=f(x+y)$. Show that it is $C e^{x}=u^{x}$.
10. Show by Theorem 12 that if $y=f(x)$ is a continuous constantly increasing function in the interval $a \leqq x \leqq b$, then to each value of y corresponds a single value of x so that the function $x=f^{-1}(y)$ exists and is single-valued ; show also that it is continuous and constantly increasing. State the corresponding theorem if $f(x)$ is constantly decreasing. The function $f^{-1}(y)$ is called the inverse function to $f(x)$.
11. Apply Ex. 10 to diseuss $y=\sqrt[n]{x}$, where n is integral, x is positive, and only positive roots are taken into consideration.
12. In arithmetic it may readily be shown that the equations

$$
a^{m} a^{n}=a^{m+n}, \quad\left(a^{m}\right)^{n}=a^{n n}, \quad a^{n} b^{n}=(a b)^{n}
$$

are true when a and b are rational and positive and when m and n are any positive and negative integers or zero. (c) Can it be inferred that they hold when a and ζ are positive irrationals? (β) How about the extension of the fundamental inequalities

$$
x^{n}>1, \quad \text { when } x>1, \quad x^{n}<1, \text { when } 0 \leqq x<1
$$

to all rational values of n and the proof of the inequalities

$$
x^{m}>x^{n} \text { if } m>n \text { and } x>1, \quad x^{m}<x^{n} \text { if } m>n \text { and } 0<x<1 .
$$

(γ) Next consider x as held constant and the exponent n as variable. Discuss the exponential function a^{x} from this relation, and Exs. 10, 11, and other theorems that may seem necessary. Treat the logarithm as the inverse of the exponential.
26. The derivative. If $x="$ is "t"oint of "n intormel ouer which $f(\cdot x)$ is drfined and if the quotient

$$
\frac{\Delta f}{\Delta x}=\frac{f((1+h)-f(\prime)}{h}, \quad h=\Delta x
$$

"proaches a limit when h "ly"orches avero, nu matter hou", the function $f(x)$ is suid to be differentiable "t $x=$ " "nd the culne of the limit of the quotient is the dmpiratire $f^{\prime \prime}\left(\prime\right.$) of f^{\prime} at $x=a$. In the case of differentiability, the definition of a limit gives
where $\lim \eta=0$ when $\lim h=0$, no matter how.

In other words if ϵ is given, a δ can he fomm so that $|\eta|<\epsilon$ when $|h|<\delta$. This shows that a function differentiable at a as in (1) is contimuous at α. For

$$
|f(a+h)-f(a)| \leqq\left|f^{\prime}(a)\right| \delta+\epsilon \delta, \quad|h|<\delta .
$$

If the limit of the quotient exists when $h \doteq 0$ through positive values omly, the function has a right-hand derivative which may be denoted loy $f^{\prime}\left(u^{+}\right)$and simitarly for the left-hand derivative $f^{\prime}\left(a^{-}\right)$. At the emi points of an interval the derivative is always considered as nne-handed ; but for interior points the right-hand and lefthand derivatives must be equal if the function is to have a derivative (ungualified). The function is said to have an infinite derivative at a if the quotient becomes infinite as $h \doteq 0$; but if a is an interior peint, the fuotient must hecome pusitively infinite or negatively infinite for all mamers of approach and not jositively infinite for some and negatively infinite for others. Geometrically this allows a vertical tangent with an inflection point, but not with a cusp as in Fig. 3, p. 8. If infinite derivatives are allowed, the function may have a derivative and yet be diseontinnous, as is suggested by any figure where $f(a)$ is any value between lim $f(x)$ when $x \doteq a^{+}$and $\lim f(x)$ when $x \doteq a^{-}$.

Theorem 13. If a function takes on its maximum (or minimum) at an interior point of the interval of definition and if it is differentiable at that point, the derivative is zero.

Theorem 14. Rotle's Themem. If a function $f^{\prime}\left(r^{\prime}\right)$ is continuons over an interval $" \leqq r \leqq l$ with end points and ramishes at the ends and has a derirative at each interior point $"<r<h$, there is some point ξ, ($<\xi<l$, such that $f^{\prime}(\xi)=0$.

Theorex 1.). Theorem ut the Mern. If a function is continnons over an interval " $\leqq . r^{\prime} \leqq$ and las a derivative at cach interior point, there is some point ξ such that

$$
\frac{f^{\prime}(l)-f^{\prime}(\prime)}{l-\prime}=f^{\prime \prime}(\xi) \quad \text { or } \quad \frac{f^{\prime}(\prime \prime+l)-f^{\prime}(\prime \prime)}{l_{1}}=f^{\prime \prime}(\prime \prime+\theta h)
$$

where $\neq \prod^{\prime}-$ "* * and θ is a proper fraction, $0<\theta<1$.
To prove the first theorem, note that if $f(\mu)=M$, the difference $f(\prime \prime+h)-f(\prime \prime)$ eamnot be positive for any ralue of h and the quotient $\Delta f / h$ camnt be positive when $h>0$ and camot be negative when $h<0$. Ilence the right-hand lerivative camot be jositive and the lefthand derivative eamot be neeative. As these two must be equal if the function has a derivative, it follows that they must be zero. and the derivative is zero. The secomel theorem is an immediate corollary. For an the function is continums it must have a maximum and a minimun (Theorem 11) both of which cannet le zero unles the function is always zero in the interval. Now if the function is inentically zoro. the derivative is identically zew and the theorem in true; whereas if the function is mot identically zero, either the maximum or minimmm mat be at an interior luint. and at that peint the derivative will vanisio.

[^9]To prove the last theorem construct the anxiliary function

$$
\psi(x)=f(x)-f(\mu)-\left(x-(1) \frac{f(b)-f(\mu)}{b-a}, \quad \psi^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(\mu)}{b-a} .\right.
$$

As $\psi(a)=\psi(t)=0$, Rolle's Theorem shows that there is some puint for which $\psi^{\prime}\left(\xi^{\prime}\right)=0$, and if this value be sulstituted in the expression for $\psi^{\prime}(r)$ the solution for $f^{\prime}(\xi)$ gives the result demanded by the theorem. The pronf, however. requires the use of the function $\psi(x)$ and its derivative and is not complete until it is shown that $\psi(x)$ really satisfies the conditions of Rolle's Thenrem. namely, is continuous in the interval $" \leqq x \leqq b$ and has a derivative for every ${ }^{\prime \prime}$,int $a<x<b$. The continuity is a consequence of Theorem 6 ; that the derivative exists follows from the direet application of the detinition combined with the assmm,tion that the derivative of f exists.
27. Thenam 16 . If a function has a derivative which is illentically zero in the interval " $\equiv, r \leqq l$, the function is constant; and if two functions have derivatives equal throughout the interval, the functions differ by a constant.

Theorma 17. If $f(r)$ is differentiable and hecomes infinite when $x \doteq \pi$, the derivative cannot remain finite as $r \doteq "$.

Theonear 18. If the derivative $f^{\prime \prime}(r)$ of a function exists and is a rontinuous function of $\quad{ }^{\prime}$ in the interval $" \leqq . r \leqq l$, the quotient $\Delta f / h$ converges uniformly toward its limit $f^{\prime \prime}\left(r^{\prime}\right)$.

These theorems are conserguences of the Theorem of the Mean. For the first,

$$
f(a+h)-f(a)=h f^{\prime}(u+\theta h)=0 \text {. if } \quad h \leqq b-u, \quad \text { or } \quad f(u+h)=f(a) \text {. }
$$

Hence $f(x)$ is constant. Am in case of two functions f and ϕ with ergal derivatives, the difference $\psi(x)=f(x)-\phi(x)$ will have a derivative that is zero and the difference will be constant. For the second. let x_{0} be a fixed value near a and suppose that in the interval from x_{0} to a the derivative remained finite, say less than k. Then

$$
\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right|=\left|h f^{\prime}\left(x_{0}+\theta h\right)\right| \leqq|h| K^{\prime} .
$$

Now let $x_{0}+h$ approach ${ }^{2}$ and mote that the left-hand term becomes infinite and the supposition that f^{\prime} remained finite is contrarlicted. For the thirl, note that f^{\prime}. being continuons. must be unifumly continuous (Theorem ${ }^{9}$), and hence that if ϵ is given. a may be foum surth that

$$
\left|\frac{f(x+h)-f(r)}{h}-f^{\prime}(x)\right| \leqq\left|f^{\prime}(x+\theta h)-f^{\prime}(x)\right|<\epsilon
$$

when ${ }^{\prime} /<\delta$ anl for all x 's in the interval; and the the
Concerning derivatives of higher orler mosecial remarks are necessary. Eacla i. the derivative of a definite function - the previons derivative. If the derivatives of the first x orders (xist and are continuons. the derivative of onder $n+1$ may or may mot exist. In praction apmiations. lowerer. the functims are sen(rally inlefinitely differentiable except at certain isolated printi. The prof of Leibniz's Themem (\$8) may be revised so as to depend on elementary processes. Let the formula be assumed for a given value of n. The only terms which can
contrilute to the term $D^{i_{u}} D^{n+1-i v}$ in the formula for the $(n+1)$ st derivative of uv are the terms

$$
\frac{n(n-1) \cdots(n-i+2)}{1 \cdot \underline{y} \cdot(i-1)} D^{i-1} u I^{n+1-i} v, \quad \frac{n(n-1) \cdots(n-i+1)}{1 \cdot 2 \cdots i} \text { Di}^{i} u I^{n-i} v
$$

in which the first factor is to be differentiated in the first and the sccond in the second. The sum of the coefficients obtained by differentiating is

$$
n(n-1) \cdots(n-i+2)+\frac{n(n-1) \cdots(n-i+1)}{1 \cdot 2 \cdots(i-1)}=\frac{(n+1) n \cdots(n-i+2)}{1 \cdot 2 \cdots i}
$$

which is precisely the proper coefficient for the term $D^{i} u D^{n+1}-i v$ in the expansion of the $(n+1)$ st terivative of w_{0} by Leibniz's Theoren.

With regard to this rule and the other elementary rules of operation (4)-(7) of the previons chapter it should be remarked that a theorem as well as a rule is in-volved-thus: If two functions u and v are differentiable at x_{0}, then the product $u v$ is differentiable at x_{0}, and the value of the derivative is $u\left(x_{0}\right) v^{\prime}\left(x_{0}\right)+u^{\prime}\left(x_{0}\right) v\left(x_{0}\right)$. And similar theorems arise in comection with the other rules. As a matter of fact the ordinary proof needs only to be gone orer with care in order to convert it into a rigorous demonstration. But care does need to be exercised both in stating the theorem and in looking to the proof. For instance, the above theorem concerning a product is not true if infinite derivatives are allowed. For let u be $-1,0$, or +1 according as x is negative, 0 , or positive, and let $v=x$. Now v has always a derivative which is 1 and u las always a derivative which is $0,+\infty$, or 0 according as x is negative, 0 , $w^{\prime} p$ sitive. The product $u v$ is $|x|$, of which the derivative is -1 for negative $x^{*} s,+1$ for positive $x^{s} s$, and nonexistent for 0 . Here the product has no flerivative at 0 , althongh each factor has a derivatise. anf it would be nseless to have a formula for attempting to evaluate something that diel not exist.

EXERCISES

1. Show that if at a point the derivatise of a function exists and is positive, the function must be increasing at that point.
2. Suppose that the derivatives $f^{\prime}(1)$ and $f^{\prime}(1)$ exist and are not zero. Show that $f(\alpha)$ and $f(b)$ are relative maxima or minima of f in the interval $a \leqq x \leqq b$, ant letermine the precise criteria in terms of the signs of the derivatives $f^{\prime}(d)$ and $f^{\prime}(l)$.
3. Show that if a contimons function has a positive risht-hand derivative at every print of the interval $a \leqq x \leqq l$. then $f(h)$ is the maximm value of f. Similarly, if the right-hand derivative is megative, show that $f(l)$ is the minimum of f.
4. Apply the Theorem of the Mean to show that if $f^{\prime}(r)$ is contimnons at a, then

$$
\lim _{x^{\prime}, x^{\prime \prime \prime}=\prime \prime} \frac{f^{\prime}\left(r^{\prime}\right)-f^{\prime}\left(x^{\prime \prime}\right)}{x^{\prime}-x^{\prime \prime}}=f^{\prime}((t),
$$

. r^{\prime} and $x^{\prime \prime}$ being regarded as indepentent.
5. Form the increments of a function f for equicrescent values of the variable:

$$
\begin{gathered}
\Delta_{1} f=f(a+h)-f((\prime) . \\
\Delta_{0} f=f(u+3 h)-f(\prime \prime+f(\prime \prime+2 h)-f(u)+h), \\
\end{gathered}
$$

These are called first differences; the differences of these differences are

$$
\begin{aligned}
& \Delta_{1}^{2} f=f(a+2 h)-2 f(a+h)+f(a) \\
& \Delta_{2}^{2} f=f(a+3 h)-2 f(a+2 h)+f(a+h), \cdots
\end{aligned}
$$

which are called the second differences; in like mamer there are third differences

$$
\Delta_{1}^{3} f=f(u+3 h)-3 f(\imath+2 h)+3 f(u+h)-f(a), \cdots
$$

and so on. Apply the Law of the Mean to all the differences and show that

$$
\Delta_{1}^{2} f=h^{2} f^{\prime \prime}\left(r+\theta_{1} h+\theta_{2} h\right), \quad \Delta_{1}^{3} f=h^{3} f^{\prime \prime \prime}\left(r+\theta_{1} h+\theta_{2} h+\theta_{3} h\right), \cdots
$$

Hence show that if the first n derivatives of f are continuous at σ, then

$$
f^{\prime \prime}(a)=\lim _{h \neq 0} \frac{\Delta^{2} f}{l^{2}}, \quad f^{\prime \prime \prime}\left((q)=\lim _{k \neq 0} \frac{\Delta^{3} f}{h^{3}}, \quad \cdots, \quad f^{\prime}(n)(r)=\lim _{h \neq 0} \frac{\Delta^{n} f^{\prime}}{l^{n}} .\right.
$$

6. Courhy's Theorcm. If $f(x)$ ant $\phi(x)$ are continuous over $a \leqq x \leqq b$, have derivatives at each interior point, and if $\phi^{\prime}(x)$ does not vanish in the interval.

$$
\frac{f(l)-f(a)}{\phi(b)-\phi(a)}=\frac{f^{\prime}(\xi)}{\phi^{\prime}(\xi)} \quad \text { or } \quad \frac{f(a+h)-f(a)}{\phi(a+h)-\phi(a)}=\frac{f^{\prime}(a+\theta l)}{\phi^{\prime}(a+\theta h)}
$$

Prove that this follows from the application of Rolle's Theorem to the function

$$
\psi(x)=f(x)-f(\prime)-\left[\phi(x)-\phi((t)] \frac{f(l)-f(\prime \prime)}{\phi(l)-\phi(l)} .\right.
$$

7. One application of Ex. 6 is to the theory of indeterminate forms. Show that if $f(\alpha)=\phi(\alpha)=0$ and if $f^{\prime}(x) / \phi^{\prime}(x)$ approaches a limit when $x \doteq \alpha$, then $f(x) / \phi(x)$ will approach the same limit.
8. Taylor's Theorem. Note that the form $f(b)=f(a)+(b-a) f^{\prime}(\xi)$ is one way of writing the Theoren of the Mean. By the application of Rolle"s Theorem to

$$
\psi(x)=f(b)-f(x)-(b-x) f^{\prime}(x)-(b-x)^{2} \frac{f(l)-f(\prime)-(b)-(\prime) f^{\prime}(\prime)}{(l)-(\prime)^{2}},
$$

show

$$
f(b)=f(11)+\left(b-(1) f^{\prime}(11)+\frac{\left(b-(1)^{2}\right.}{2} f^{\prime \prime}(\xi)\right.
$$

and to $\psi(x)=f(b)-f(x)-(h-x) f^{\prime}(x)-\frac{(l,-x)^{2}}{2} f^{\prime \prime}(x)-\cdots-\frac{\left(b-x^{\prime}\right)^{n-1}}{(n-1)!} f^{(n-1)}\left(x^{x}\right)$

$$
\begin{aligned}
-\frac{(b-x)^{n}}{\left(b-(t)^{n}\right.} & {\left[f(b)-f(l)-(l)-(1) f^{\prime}((l)\right.} \\
& -\frac{(b)-(\prime)^{2}}{2} \cdot f^{\prime \prime}\left((l)-\cdots-\frac{\left(b-(1)^{n-1}\right.}{(n-1)!} f^{\prime(n-1)}((1)]\right.
\end{aligned}
$$

show

$$
\begin{aligned}
f(l)=f(\prime)+(l)-(1) f^{\prime}((1) & +\frac{\left(b-(1)^{2}\right.}{2} f^{\prime \prime}(\prime \prime)+\cdots \\
& +\frac{(b-a)^{n-1}}{(n-1)!} f^{(n-1)(\prime \prime)+\frac{\left(b-(\prime)^{n}\right.}{n!} f^{(n)}(\xi)}
\end{aligned}
$$

What are the restrictions that must be imposed on the function and its derivatives:"
9. If a continuous function over $\quad \prime \leqq x \leqq b$ has a right-hand derivative at each point of the interval which is zero, show that the function is constant. Apply Ex. 2 to the functions $f(x)+\epsilon(x-a)$ and $f(x)-\epsilon(x-a)$ to show that the maximum difference between the functions is $2 \epsilon(b-a)$ and that f must therefore be constant.
10. State and prove the theorems implied in the formulas (4)-(ti), p, 2 .
11. Consider the extension of Ex. 7, p. 44, to derivatives of functions defined over a dense set. If the derivative exists and is uniformly continoous over the dense set, what of the existence and continuity of the derivative of the function when its definition is extended as there indicated?
12. If $f(x)$ has a finite derivative at each point of the interval $a \leqq x \leqq b$, the derivative $f^{\prime}(x)$ must take on every value intermediate between any two of its values. To show this, take first the case where $f^{\prime}(\ell)$ and $f^{\prime}(b)$ lave opposite signs and show, by the continuity of f and by Theorem 13 and Ex. 2, that $f^{\prime}(\xi)=0$. Next if $f^{\prime}(a)<\mu<f^{\prime}(b)$ without any restrictions on $f^{\prime}(a)$ and $f^{\prime}(b)$. conviller the function $f(x)-\mu x$ and its derivative $f^{\prime}(x)-\mu$. Finally, prove the complete theorem. It should be noted that the continuity of $f^{\prime}(x)$ is not assumed. nor is it proved; for there are functions which take every value intermediate between two given values and yet are not continuons.
28. Summation and integration. Let $f(i r)$ be defined and limited orer the interval $" \leqq r \leqq b$ and let M, m, and $O=M-m$ be the upper frontier, lower frontier, and oscillation of $f(r)$ in the interval. Let $n-1$ points of division be introduced in the interral dividing it into n consecutive intervals $\delta_{1}, \delta_{2}, \cdots, \delta_{n}$ of which the largest has the
 length Δ and let I_{i}, m_{i}, O_{i}, and $f\left(\xi_{1}\right)$ be the upper and lower frontiers, the oscillation, and any value of the function in the interval δ_{i}. Then the inequalities

$$
m \delta_{i} \leqq m_{i} \delta_{i} \leqq f\left(\xi_{i}\right) \delta_{i} \leqq M_{i} \delta_{i} \leqq M \delta_{i}
$$

will hold, and if these terms be summed up for all n interrals,

$$
\begin{equation*}
m(l,-\prime) \leqq \sum m_{i} \delta_{i} \leqq \sum f^{\prime}\left(\xi_{i}\right) \delta_{i} \leqq \sum, M_{i} \delta_{i} \leqq M(l-(\prime) \tag{.1}
\end{equation*}
$$

will also hold. Let $s=\Sigma m_{i} \delta_{i}, \sigma=\Sigma f^{\prime}\left(\xi_{i}\right) \delta_{i}$, and $s=\Sigma M_{i} \delta_{i}$. From (. 1) it is clear that the difference $s-s$ does not exreed

$$
(M-m)\left(l-{ }^{\prime \prime}\right)=O\left(b-{ }^{\prime \prime}\right),
$$

the product of the length of the interval by the ascillation in it. The values of the sums sis: σ will evidently depenel on the number of parts into which the interral is elivided and on the way in which it is divederd into that number of parts.

TuEnhem 19. If n^{\prime} additiomal prints of division he introducel into the interval, the sum s" comstrmeted for the $n+n^{\prime}-1$ points of division
camnot be greater than s and cannot be less than s by more than $n^{\prime} 0 \lambda$. Similarly, s^{\prime} camot be less than s and cannot exceed s by more than $n^{\prime}(1)$.

Tinemem 20. There exists a lower frontier L for all possible methods of constructing the sum s and an upper frontier l for s.

Theorem 21. Donboues Theorem. When tis assigned it is possible to find a Δ so small that for all methods of division for which $\delta_{i} \cong \nu$, the sums si and s shall differ from their frontier values L and l by less than any lreassigned ϵ.

To prove the first theorem note that although (A) is written for the whole interral from a to b and for the sums constructed on it. yet it applies equally to any part of the interval and to the sums constructed on that part. Hence if $s_{i}=M_{i} \delta_{i}$ be the part of slue the interval δ_{i} and if s_{i}^{\prime} be the part of $s^{\prime \prime}$ due to this interval after the introduction of some of the additional points into it. $m_{i} \hat{o}_{i} \leqq s_{i} \leqq s_{i}=M_{i} \delta_{i}$. Hence r_{i}^{\prime} is not sreater than sich as this is true for each interval δ_{i}, $s^{\prime \prime}$ is not wreater than s) and. moreover. $S_{i}-S_{i}^{\prime}$ is mut greater than $O_{i} \delta_{i}$ aml a fortiori mot greater than 0. As there are only n^{\prime} new puint., not nore than n^{\prime} of the intervals δ_{i} can be affected, and hence the total decrease $S-S^{\prime}$ in S camot be more than $n^{\prime} O \Delta$. The treatment of s is anabogous.

Inasmuch as (.1) shows that the smms si and s are limited, it follows from Theorem 4 that they possess the frontiers required in Theorem 20 . 'To prove Theorem 21 note first that as L is a frontier for all the sums s, there is some particular sum s which differs from L by as little as desiret. say $\frac{1}{2} \epsilon$. For this slet n lee the nmmber of divisions. Now consider s' as any sum for which mach \hat{o}_{i} is less than $\Delta=\frac{1}{2} \epsilon / u O$. If the sum s" he constructel lis alding the n points of division for os to the points of division for s'. s"e cannot be oreater than stand hemee camot differ from L by so much as $\frac{1}{2} \epsilon$. Alsu s" camot be greater than s^{\prime} and camot be less than s^{\prime} by more than u()د. which is $\frac{1}{2} \epsilon$. Ass" difiers from L by less than $\frac{1}{2} \epsilon$ and s^{\prime} differs from $\aleph^{\prime \prime}$ ly less than $\frac{1}{2} \epsilon \mathrm{~s}^{\prime}$ rannet difier from L by more than ϵ, which was to be powed. The treatment of and l is analugons.
29. If indices are introdured to indicate the interval for whels the frontiers L and $/$ are calculated and if β lies in the interval from " to 7 , then L_{a}^{β} and 7_{a}^{β} will he funetions of β.

Theorem 2:2. The etpations $L_{a}^{b}=L_{a}^{b}+L_{c}^{b}, \quad "<1<l_{1}: L_{a}^{b}=-L_{b}{ }^{n}$: $L_{a}^{b}=\mu\left(b-{ }^{\prime \prime}\right), m \leqq \mu \leqq M$. hold for L, and similar equations for l. As functions of β. L_{a}^{β} and l_{a}^{β} are rontinuons, and if $f^{\prime}(\cdot)$ is continnous, they are differentiahle and lave the common derivative $f^{\prime}(\beta)$.

To prove that $L_{a}{ }^{\prime \prime}=L_{a}{ }^{c}+L_{\text {a }}{ }^{\prime}$. consider c as one of the points of division of the interval from "t t) Then the sums s will satisfy $s_{c}^{\prime \prime}=s_{a}^{c}+s_{c}^{b}$. and as the limit of a sum is the sum of the limits. the correspombling relation must hold for the frontier L. To show that $L_{a}^{b}=-L_{b}^{n}$ it is merely necessary to mote that $\stackrel{N}{a}_{b}^{b}=-\boldsymbol{s}_{b}^{a}$ becalse in passing from 7 , 1 , at the intervals δ_{i} must be taken with the sign opmosite to that which they have when the direction is from a to b. From (A) it appears

Hence there is a value $\mu, m \leqq \mu \leqq M$, such that $L_{a}^{b}=\mu(b-a)$. To show that L_{a}^{β} is a continnous function of β, take $K^{\prime}>|M|$ and $|m|$, and consider the relations

$$
\begin{array}{ll}
L_{a}^{\beta+h}-L_{a}^{\beta}=L_{a}^{\beta}+L_{\beta}^{\beta+h}-L_{a}^{\beta}=L_{\beta}^{\beta+h}=\mu h, & |\mu|<K, \\
L_{a}^{\beta-h}-L_{a}^{\beta}=L_{a}^{\beta-h}-L_{a}^{\beta-h}-L_{\beta-h}^{\beta}=-L_{\beta-h}^{\beta}=-\mu^{\prime} h, & \left|\mu^{\prime}\right|<K .
\end{array}
$$

Hence if ϵ is assigned, a δ may be found, namely $\delta<\epsilon / K$, so that $\left|L_{a}^{\beta \pm h}-L_{a}^{\beta}\right|<\epsilon$ when $h<\delta$ and L_{a}^{β} is therefore contimons. Finally consider the quotients

$$
\frac{L_{a}^{\beta+h}-L_{a}^{\beta}}{h}=\mu \quad \text { and } \quad \frac{L_{a}^{\beta-h}-L_{a}^{\beta}}{-h}=\mu^{\prime},
$$

where μ is some number between the maximum and minimum of $f(x)$ in the interval $\beta \leqq x \leqq \beta+h$ and, if f is continuons, is some value $f(\xi)$ of f in that interval and where $\mu^{\prime}=f\left(\xi^{\prime}\right)$ is some value of f in the interval $\beta-h \leqq x \leqq \beta$. Now let $h \doteq 0$. As the function f is continuons, $\lim f(\xi)=f(\beta)$ and $\lim f\left(\xi^{\prime}\right)=f(\beta)$. Hence the right-hand and left-hand derivatives exist and are equal and the function L_{a}^{β} has the derivative $f(\beta)$. The treatment of l is analogons.

Theorem 23. For a given interval and function f, the quantities l and L satisfy the relation $l \leqq L$; and the necessary and sufficient condition that $L=7$ is that there shall he some division of the interval which shall make $\boldsymbol{\Sigma}\left(\boldsymbol{M}_{i}-m_{i}\right) \delta_{i}=\Sigma \boldsymbol{O}_{i} \delta_{i}<\boldsymbol{\epsilon}$.

If $L_{a}^{b}=l_{a}^{b}$, the function f^{\prime} is saicl to be integrable orer the interval from a to b and the integral $\int_{a}^{b} f\left(x^{r}\right) d, x$ is defined as the common value $L_{a}^{b}=l_{a}^{b}$. Thus the definite integral is defined.

Theorem 24. If a function is integrable over an interval, it is integrable over any part of the interval and the equations

$$
\begin{gathered}
\int_{a}^{a} f^{\prime}\left(\cdot x^{r}\right) d, x+\int_{c}^{b} f^{\prime}(\cdot x) d x=\int_{a}^{b} f^{\prime}(\cdot x) d x \\
\int_{a}^{b} f\left(\cdot x^{r}\right) d x=-\int_{b}^{a} f^{\prime}\left(\cdot x^{r}\right) d x, \quad \int_{a}^{b} f(x) d, r=\mu(l,-1)
\end{gathered}
$$

loold; moreorere, $\int_{a}^{\beta} f^{\prime}(\cdot r)+x^{x}=F^{\prime}(\beta)$ is a continuous function of β; and if $f^{\prime}\left(r^{\prime}\right)$ is continnous, the derivative $F^{\prime \prime}(\beta)$ will exist and be $f(\beta)$.

By (A) the sums s and s constructed for the same division of the interyal satisfy the relation $s-s \equiv 0$. By Darboux's Theorem the sums s and s will approach the vahes L and l when the divisions ate indefinitely decreasen. Hence $L-l \geqq 0$. Now if $L=l$ and at Δ be fomm so that when $\delta_{i}<\Delta$ the inequalities $S-L<\frac{1}{2} \in$ and $l-s<\frac{1}{2} \epsilon$ holl, then $s-s=\Sigma\left(M_{i}-m_{i}\right) \delta_{i}=\Sigma O_{i} \delta_{i}<\epsilon$; ant hence the condition
 that $\mathrm{V}_{i} \delta_{i}<\epsilon$, them $\mathrm{s}-\mathrm{s}<\epsilon$ ant the lesser quantity $L-l$ must alsin be less than ϵ. But if the difference between two monstant guantitiess can be made less than ϵ, where ϵ is arbitrarily assigned, the constant quantities are equal ; and hence the
condition is seen to be also sufficient. To show that if a function is integrable over an interval, it is integrable over any part of the interval, it is merely necessary to show that if $L_{a}^{b}=l_{a}^{b}$. then $L_{\alpha}^{\beta}=l_{\alpha}^{\beta}$ where α and β are two points of the interval. Here the condition $\Sigma O_{i} \delta_{i}<\epsilon$ applies; for if $\Sigma O_{i} \delta_{i}$ can be made less than ϵ for the whole interval, its value for any part of the interval, being less than for the whole, must be less than ϵ. The rest of Theorem 24 is a corollary of Theorem 22.
30. Theorear 25. A function is integrable over the interval " $\leqq x \leqq 7$, if it is continuous in that interval.

Theomen 26. If the interval $a \leqq x \leqq b$ over which $f(x)$ is defined and limited contains only a finite nomber of points at which f^{\prime} is discontinuons or if it contains an infinite nmmber of points at which f^{\prime} is discontinuous but these points have only a finite number of points of condensation, the function is integrable.

Theorear 27. If $f^{\prime}(x)$ is integrable over the interval " $\equiv, \quad \leqq$, the sum $\sigma=\Sigma f^{\prime}\left(\xi_{i}\right) \delta_{i}$ will approach the limit $\int_{a}^{b} f^{\prime}\left(r^{\prime}\right) d, r^{\text {w }}$ when the individual intervals δ_{i} appoach the limit zero, it being immaterial how they approach that limit or how the points ξ_{i} are selected in their respertive intervals δ_{i}.

Theorem 28. If $f(x)$ is continnous in an interval " $\leqq r$, then $f^{\prime}\left(x^{\prime}\right)$ has an indefinite integral, namely $\int_{a}^{x} f^{\prime}\left(x^{\prime}\right) d x^{x}$, in the interval.

Theorem 25 may be reduced to Theorem 23 . For as the funetion is continums, it is possible to find a Δ somall that the secillation of the function in any interval of length Δ shall be as shall as ilesired (Theorem !). Supmese D le chosen so that the oscillation is less than $\epsilon /(t)-a)$. Then $\Sigma O_{i} \delta_{i}<\epsilon$ when $\delta_{i}<\perp$; and the function is integrable. 'To prove 'Therem 2ft take first the case of a tinite number of discontinuities. Cut ont the discontinnities smmanding each value of x at which f is discontinuons by an interval of length δ. As the uscillation in each of these intervals is not greater than O, the contribution of these intervals to the smm $\Sigma O_{i} \delta_{i}$ is not greater than On δ, where n is the mmber of the diseontimuties. By taking δ small enough this may be mate as small as desired, say less than $\frac{1}{2} \epsilon$. Now in each of the remaining parts of the interval $" \leqq x \leqq b$, the function f is continuons and hence integrable, and consequently the value of $\leq O_{i} \delta_{i}$ for these $p_{\text {wrtions may }}$ me made as small as desired, say $\frac{1}{2} \epsilon$. Thus the sum $\leq \sigma_{i} \delta_{i}$ for the whole interval ean be made as small as desired and $f(x)$ is integrable. When there are points of comblensation they may be treated just as the isolated points of discontinuity were treated. After thes have been surrounded by intervals, there will remain over only a finite munber of discontinuities. Further details will be left to the reader.

For the proof of Theorem 27. appeal may be taken to the fundancental relation (A) which shows that $s \leqq \sigma \leqq s$. Now let the mumber of divisions increase indefinitely and each division become indefinitely mall. As the function is interrable, s and s approach the same limit $\int_{a}^{b} f(x) d x$. and conseguently σ which is included lotween them must approach that limit. Theorem 28 is a cornlaty of Theorem 24
which states that as $f(x)$ is contimmons, the derivative of $\int_{a}^{x} f(x) d x$ is $f(x)$. By definition, the indefinite integral is any function whose derivative is the integrand. Hence $\int_{a}^{x} f(x) d x$ is an indefinite integral of $f(x)$, and any other may be obtainerl by adding to this an arbitrary constant (Theorem 16). Thus it is seen that the proof of the existence of the indefinite integral for any given continuons function is made to depend on the theory of definite integrals.

EXERCISES

1. Rework some of the proofs in the text with l replacing L.
2. Show that the L obtained from $C f(x)$, where C is a constant, is C times the L obtained from f. Also if u, v, w are all linited in the interval $u \leqq x \leqq b$, the L for the combination $u+v-w$ will be $L(u)+L(x)-L(x)$, where $L(u)$ lenotes the L for u, etc. State and prove the corresponding theorems for definite integrals and hence the corresponding theorems for indefinite integrals.
3. Show that $\Sigma O_{i} \delta_{i}$ ean be matle less than an assigned ϵ in the ease of the fumetion of Ex. $6, p, 44$. Nute that $l=0$, and hence infer that the function is integrable and the integral is zero. The proof may be made to depend on the fact that there are only a finite number of valnes of the function greater than any assigned valne.
4. State with eare and prove the results of Exs. .3 and 5, 1, 29. What restriction is to be placed on $f(x)$ if $f(\xi)$ may replace μ ?
5. State with eare and prove the results of Ex. 4, p. 29, and Ex. 13, 1). 30.
6. If a function is limited in the interval $a \leqq r \leqq b$ and never decreases. show that the function is integrable. This follows from the fact that $\Sigma 0_{i} \leqq 0$ is finite.
7. More generally, let $f(x)$ be such a function that ΣO_{i} remains less than some number K, no matter how the interval be divirled. Show that f is intequable. Such a function is called a function of limitel variation (\$ 127).
8. ('hange of variuble. Let $f(x)$ be continuons over $a \leqq x \leqq b$. Change the variable to $x=\phi(t)$, where it is sulpmene that $a=\phi\left(t_{1}\right)$ and $b=\phi\left(t_{2}\right)$, and that $\phi(t), \phi^{\prime}(t)$, and $f[\phi(t)]$ are continnoms in t over $t_{1} \leqq t \leqq t_{2}$. Show that

$$
\int_{a}^{b} f(x) d x=\int_{t_{1}}^{t_{2}} f[\phi(t)] \phi^{\prime}(t) d t \quad \text { or } \quad \int_{\phi\left(t_{1}\right)}^{\phi(t)} f(x) d x=\int_{t_{1}}^{t} f[\phi(t)] \phi^{\prime}(t) d t
$$

Do this by showing that the derivatives of the two sides of the last equation with respect to t exist and are equal over $t_{1} \leqq t \leqq t_{2}$, that the two siles vanish when $t=t_{1}$ and are equal, and henee that they mast he equal thronghont the interval.
9. Osgool's Theorem. Let α_{i} be a set of quantities which differ uniformly from $f\left(\xi_{i}\right) \delta_{i}$ by an amoment $\zeta_{i} \delta_{i}$, that is, suppose

$$
\alpha_{i}=f\left(\xi_{i}\right) \delta_{i}+\zeta_{i} \delta_{i}, \quad \text { where } \quad\left|\zeta_{i}\right|<\epsilon \quad \text { and } \quad u \leqq \xi \leqq b .
$$

Prove that if f is integrable, the sum $\Sigma \alpha_{i}$ approaches a linit when $\delta_{i} \doteq 0$ and that the limit of the sum is $\int_{a}^{b} f(x) d x$.
10. Apply Ex. ! to the case $\Delta f=f^{\prime} \Delta r+j \Delta x$ where f^{\prime} j.s emotimanms fo shmw
 to Ex. 8 to prove the rule for chamge of variable.

PART I. DIFFERENTLAL CALCULUS

CHAPTER III

TAYLOR'S FORMULA AND ALLIED TOPICS

31. Taylor's Formula. The oljject of Taylor's Formula is to express the value of a function $f(x)$ in terms of the values of the function and its derivatives at some one point $x=$. Thus

$$
\begin{gather*}
f(x)=f(\prime \prime)+\left(\cdot n^{\prime}-\prime\right) \cdot f^{\prime}(\prime \prime)+\frac{\left(x-(\prime)^{2}\right.}{2!}-f^{\prime \prime}(\prime)+\cdots \\
 \tag{1}\\
+\frac{(x-\prime)^{n-1}}{(n-1)!} f^{(n-1)}(\prime \prime)+R
\end{gather*}
$$

Such an expansion is necessarily true because the remainder $?$ may be considered as defined by the equation; the real significance of the formula must therefore lie in the possibility of finding a simple expression for R, and there are several.

Theonem. ()n the hypothesis that $f(x)$ and its first n derivatives exist and are continuons over the interval " \leqq 。 $\leqq b$, the function may be expanded in that interval into a polynomial in $r-{ }^{\prime}$,

$$
\begin{gather*}
f(r)=f^{\prime}(\prime \prime)+\left(r-(\prime) f^{\prime \prime}(\prime \prime)+\frac{\left(r-(\prime)^{2}\right.}{2!} f^{\prime \prime}(\prime \prime)+\cdots\right. \\
 \tag{1}\\
+\frac{\left(r-(\prime)^{n-1}\right.}{(n-1)!} \cdot f^{\prime(n-1)}(\prime \prime)+l!
\end{gather*}
$$

with the remainder R expressible in any one of the forms

$$
\begin{align*}
R=\frac{(x-n)^{n}}{n!} f^{7^{(n)}(\xi)} & =\frac{l^{n}(1-\theta)^{n-1}}{(n-1)!} f^{(n)}(\xi) \\
& =\frac{1}{(n-1)!} \int_{0}^{h} t^{n-1} f^{(n)}(n+l n-t) d t \tag{2}
\end{align*}
$$

where $h=x-"$ and $"<\xi<r^{\prime}$ or $\xi=\|+\theta h$ where $0<\theta<1$.

A first proof may be made to depend on Rolle ${ }^{\text {s }}$ Theorem as indicated in Ex. 8 , P. 49. Let x be regarded for the moment as constant, say equal to b. Construct
the function $\psi(x)$ there indicated. Note that $\psi(a)=\psi(b)=0$ and that the derivative $\psi^{\prime}(x)$ is merely

$$
\begin{aligned}
& \psi^{\prime}(x)=-\frac{(b-x)^{n-1}}{(u-1)!} f^{(n)}(x)+n \frac{(b-x)^{n-1}}{(b-a)^{n}}\left[f(l)-f(a)-(b-u) f^{\prime}(t)\right. \\
&\left.-\cdots-\frac{(b)-(k)^{n-1}}{(n-1)!} f^{(n-1)}(a)\right] .
\end{aligned}
$$

By Rolle's Theorem $\psi^{\prime}(\xi)=0$. Inence if ξ be substitnted above, the result is

$$
f(l)=f(a)+(l)-(u) f^{\prime}(a)+\cdots+\frac{(b-a)^{n-1}}{(n-1)!} f^{(n-1)}\left((a)+\frac{(b-a)^{n}}{n!} f^{(u)}(\xi)\right.
$$

afterstriking out the factor $-(b-\xi)^{n-1}$, multiplying by $\left(b-(i)^{n} / n\right.$, and transposing $f(b)$. The theorem is therefore proved with the first form of the remainder. This prog does not require the continuity of the nth derivative nor its existence at a chal at b.

The second form of the remainler may be fomm by applying Rolle's 'Theorem to

$$
\psi(x)=f(b)-f(x)-(b-x) f^{\prime}(x)-\cdots-\frac{\left(b-x^{\prime}\right)^{n-1}}{(x-1)!} f^{(n-1)}(x)-(b-x) P
$$

where P is determined so that $R=(b-a) P$. Note that $\psi(b)=0$ and that by Taylor's Formula $\psi(九)=0$. Now

$$
\psi^{\prime}(x)=-\frac{(l-x)^{n-1}}{(n-1)!} f^{(n)}(x)+I^{\prime} \quad \text { or } \quad P=f^{(n)}(\xi) \frac{(b-\xi)^{n-1}}{(n-1)!} \quad \text { sinee } \quad \psi^{\prime}(\xi)=0 .
$$

Hence if ξ be written $\xi=a+\theta h$ where $h=b-a$, then $b-\xi=b-a-\theta h=(b-a)(1-\theta)$.
Aıd $R=(b-a) I^{\prime}=(b-a) \frac{(b-a)^{n-1}(1-\theta)^{n-1}}{(u-1)!} f^{(n)}(\zeta)=\frac{(b-a)^{n}(1-\theta)^{n-1}}{(n-1)!} f(n)(\zeta)$.
The second form of R is thas fumbl. In this work as before, the result is proved for $x=b$, the end point of the interval $a \leqq x \leqq b$. But as the interval armbl be considered as tominating at any of its points, the pron eleamy applies to any x in the interval.

A second pronf of Taylor's Formma, and the rasiest to remember, eonsists in intergating the u th derivative n times from a to x. The snecessive results are

$$
\begin{aligned}
& \left.\int_{a}^{x} f^{\prime}(n)(x) d x=f^{n-1}(x)\right]_{r e}^{x}=f^{(n-1)}(x)-f^{(n-1)}((t) . \\
& \int_{a}^{x} \int_{a}^{x} f^{\prime(n)}\left(x^{\prime}\right) d \cdot t^{2}=\int_{t}^{x} f^{(n-1)}(x) d, x^{t}-\int_{a}^{r^{r}} f^{\prime(n-1)}(u) d t^{t} \\
& =f^{(n-2)}(x)-f^{(n-2)}(1 t)-(r-\|) f^{(n-1)}(\pi) \text {. } \\
& \int_{a}^{x} \int_{n}^{x} \int_{n}^{r^{r}} f^{(n)}(x) d x^{3}=f^{(n-3)}(x)-f^{(n-3)}(n)-(x-n) f^{(n-2)}(n)-\frac{\left(x-(l)^{2}\right.}{2} f^{(n-1)}(n) \text {. } \\
& \int_{l}^{x} \cdots \int_{a}^{\cdot r} f^{\prime(n)}\left(x^{\prime}\right) d x^{n}=f\left(x^{\prime}\right)-f(11)-\left(x-(1) f^{\prime}(11)\right. \\
& -\frac{(x-a)^{2}}{2!} f^{\prime \prime \prime}(a)-\cdots-\frac{(x-a)^{n-1}}{(n-1)!} f^{(n-1)}((l) .
\end{aligned}
$$

The formmba is therofore prowed with R in the form $\int_{n}^{r} \cdots \int_{n}^{x} f^{\prime \prime}(n)(x) d x^{n}$. Totranis-
 $m\left(x-(1)<\int_{a}^{r^{\prime}} f^{(n)}(x) d x<M(x-u), \quad m \frac{(x-1!)^{n}}{n!}<\int_{a}^{l} \cdots \int_{a}^{r} f^{\prime(n)}(x) d x^{n}<M \frac{(x-\|)^{n}}{n!}\right.$,
where m is the least and M the greatest value of $f(n)(x)$ from a to x. There is then some intermediate value $f^{(n)}(\xi)=\mu$ such that

This pronif requires that the nth derivative be continuous and is less general.
The third proof is ohtained by applying successive integrations by parts to the obvions identity $f(a+h)-f(a)=\int_{0}^{h} f^{\prime}(u+h-t) d t$ to make the integrand contain higher derivatives.

$$
\begin{aligned}
& \left.f(u+h)-f(a)=\int_{u}^{h} f^{\prime}(u+h-t) d t=t f^{\prime}(u+h-t)\right]_{0}^{h}+\int_{0}^{h} t f^{\prime \prime \prime}(u+h-t) d t \\
& =h f^{\prime}(u t)+\left.\frac{1}{2} t^{\prime 2} f^{\prime \prime}(u+h-t)\right|_{0} ^{h}+\int_{0}^{h} \frac{1}{2} t^{2} f^{\prime \prime \prime}(u+h-t) d t \\
& =h f^{\prime}(a)+\frac{h t^{2}}{2!} f^{\prime \prime \prime}\left((t)+\cdots+\frac{h^{n-1}}{(n-1)!} f^{(n-1)}\left((1)+\int_{0}^{h} \frac{t^{n-1}}{(n-1)!} f^{(n)}(\imath t h-t) d t .\right.\right.
\end{aligned}
$$

This, however, is precisely Taylor*s Formula with the third form of remainder.
If the point a aloont whicl the funcetion is expanderl is $x=0$, the expansion will take the fomm known as Manlanins Fommula:

$$
\begin{align*}
& f\left(r^{\prime}\right)=f(0)+\cdots f^{\prime \prime}(0)+!r^{2} \quad f^{\prime \prime \prime}(0)+\cdots+\frac{x^{n-1}}{(n-1)!} f^{\prime(n-1)}(0)+R, \tag{3}\\
& R=\frac{n^{n}}{n!} f^{2(n)}\left(\theta \cdot r^{\prime}\right)=\frac{r^{n}}{(n-1)!}(1-\theta)^{n-1} f^{(n)}\left(\theta \cdot x^{\prime}\right)=\frac{1}{(n-1)!\int_{0}^{x} t^{n-1} f^{2(n)}\left(x^{x}-t\right) d t . ~ . ~ . ~}
\end{align*}
$$

32. looth Taylor's Formula and its speriall case, Matdanin's, express a function as a polynomial in $h=r-{ }^{\prime}$, of which all the coefticjents except the last are constants while the last is not constant but delends on ho both explicitly and throngh the unknown fraction θ which itself is a function of $\%$. If, however, the nth derivative is contimusus, the coefti(ient $f^{(n)}(11+\theta l) / n!$ nust remain finite, and if the form of the derivative is known, it may be possible actually to assign limits hetween which $f^{(n)}(11+\theta h) / n$! lies. This is of great importamee in making apmoximate calculations as in Exs. 8 ff. below; for it sets at limit to the value of l for any value of n.

Thenem. There is only one possible "xpansion of a function into a polynomial in $h=r-h$ of which all the coefticients except the last are constant and the last finite; and hence if such an expansion is found in any manner, it must be Taylor's (or Maclaurin's).

To prove this theorem sonsider two polymomials of the utherder $c_{0}+c_{1} h+c_{2} h^{2}+\cdots+c_{n-1} h^{n-1}+c_{n} h^{n}=C_{0}+C_{1} h+\zeta_{2} h^{2}+\cdots+C_{n-1} h^{n-1}+~_{n}{ }_{n} h^{n}$. Which represent the same function and hence are equal for all values of h from 0 to $b-a$. It follows that the eoefficients must be equal. For let h approath 0 .

The terms containing h will approach 0 and hence c_{0} and C_{0} may be made as nearly equal as desirel ; and as they are constants, they must be equal. Strike them out from the equation and divide by h. The new equation must hold for all values of h from 0 to $b-a$ with the possible exception of 0 . Aqain let $h \doteq 0$ and now it follows that $c_{1}=C_{1}$. And so on, with all the coefficients. The two developments are seen to be identical, and hence identical with Taylor"s.
'To illustrate the application of the theorem. let it be required to find the expansion of $\tan x$ about 0 when the expansions of $\sin x$ and $\cos x$ about 0 are given.

$$
\sin x=x-\frac{1}{6} x^{3}+T_{12}^{1} x^{5}+P x^{7}, \quad \cos x=1-\frac{1}{2} x^{2}+\frac{1}{2} x^{4}+Q x^{6}
$$

where P and Q remain finite in the neighborhood of $x=0$. In the first place note that tan x clearly has an expansion; for the function and its derivatives (which are combinations of $\tan x$ and $\sec x$) are finite and continuons until x approaches $\frac{1}{2} \pi$. By division,

$$
\begin{aligned}
& \left.1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+Q x^{6}\right) x+\frac{1}{8} x^{3}+\frac{2}{1} x^{2} x^{5}+\frac{1}{12} x^{5} x^{5}+I^{3} x^{7} \\
& \frac{x-\frac{1}{2} x^{3}+\frac{1}{2} f x^{5} \vdots+Q x^{7}}{\frac{1}{3} x^{3}-\frac{1}{30} x^{5}:+\left(I^{\prime}-(V) x^{7}\right.} \\
& \frac{\frac{1}{3} x^{3}-\frac{1}{6} x^{5}}{\frac{-2}{15} x^{5}}+\frac{1}{2} x^{7}+\frac{1}{3}\left(2 x^{9}\right)
\end{aligned}
$$

Hence $\tan x=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{s^{\prime \prime}}{\cos x} x^{7}$, where S is the remainder in the division and is an expression containing P, $($, and powers of x; it must remain finite if P and Q remain finite. The quotient $\mathcal{S} / \cos ^{x} x$ which is the coefficient of x^{7} therefore remains finite near $x=0$, and the expression for tan x is the Maclaurin expansion up to terms of the sixth order, plus a remainder.
In the case of functions compounded from simple functions of which the expansion is known, this methol of obtaining the expansion by algebraic processes upon the known expansions treated as polymmials is generally shomter than to obtain the result hy differentiation. The eomputation may be abridged by omitting the last terms and work such as follows the dotted line in the example above ; but if this is done, care must be exereisel against carrying the algebraic uperations ton far or not far enough. In Ex. 5 below, the last terms should be pat in and carried far enough to insure that the desired expansion has neither more nor fewer terms than the circmmstances warrant.

EXERCISES

1. Assume $R=(b-u)^{k} P$; show $R=\frac{l^{n}(1-\theta)^{n-k}}{(n-1): k} f^{(n)}(\xi)$.
2. Apply lix. 5, p. 29, to compare the third form of remander with the first.
3. Obtain, by differentiation and substitution in (1), three monvanishing terms:
(x) in $n^{-1} x \cdot u=0$.
$(\beta) \tanh x, t=0$.
(γ) $\tan x \cdot a=\frac{1}{4} \pi$.
(δ) $\operatorname{sic}, x, a=!\pi$.
(ϵ) $\epsilon \sin r, \quad 11=0$.
(5) $\log \sin x \cdot u=\frac{1}{2} \pi$.
4. Fim the nth derivatives in the following cases and write the expansion:
$((x)$ sin $\cdot d=0$,
$(\beta) \sin x: u=\frac{1}{2} \pi$,
(γ) $\cdot a=0$.
(δ) $\mathfrak{c} \cdot a=1$.
(є) $\log x, \quad \ell=1$,
(j) $(1+x)^{k}, u=0$.
5. By algebraic processes find the Maclaurin expansion to the term in x^{5} :
(α) see x,
(β) $\tanh x$,
(r) $-\sqrt{1-x^{2}}$,
($\delta) e^{x} \sin x$,
(ϵ) $[\log (1-x)]^{2}$.
(弓) $+\sqrt{\cosh x}$,
(η) $e^{\sin x}$,
(θ) $\log \cos x$,
(c) $\log \sqrt{1+x^{2}}$.

The expansions needed in this work may be fomm by differentiation or taken from B. O. Peirce's "Tables." In (γ) and (ζ) aphly the linemial theorem of Ex. $4(\xi)$. In (η) let $y=\sin x$, expand c^{y}, and substitute for y the expansion of $\sin x$. In (θ) let $\cos x=1-y$, ln all cases show that the coefficient of the term in x^{6} really remains finite when $x \doteq 0$.
6. If $f(a+h)=c_{0}+c_{1} h+c_{2} h^{2}+\cdots+c_{n-1} h^{n-1}+c_{n} h^{n}$, show that in

$$
\int_{0}^{h} f(u+h) d h=c_{0} h+\frac{c_{1}}{2} h^{2}+\frac{c_{2}}{3} h^{3}+\cdot \cdot \cdot+\frac{c_{n-1}}{n} h^{n}+\int_{0}^{h} c_{n} h^{n} d h
$$

the last term may really be put in the form $P l_{b^{n+1}}$ with P finite. Apply Ex. Ej, p. 29.
7. Apply Ex. 6 to $\sin ^{-1} x=\int_{0}^{x} \frac{d r}{\sqrt{1-d^{-2}}}$, ete.. to find developments of
(α) $\sin ^{-1} x$,
(β) $\tan ^{-1} x$,
(γ) $\sinh ^{-1} x$.
($\delta) \log \frac{1+x}{1-x}$,
(є) $\int_{0}^{x} e^{-s^{2}} d x$.
(ร) $\int_{0}^{x} \frac{\sin x}{x} d x$

In all these cases the results may be fom if desired to n terms.
8. Show that the remainder in the Maclaurin development of ϵ^{x} is less than $x^{n} e^{r} / n$: ; and hence that the error introluced by disregarding the remainder in eomphting e^{x} is less than $r^{n} e^{r} / n$. IIow many terms will suffice to compute e to four decimals? How many for c^{-5} and for $\epsilon^{n, 1}$?
9. Show that the error introluced by disregarding the remainder in computing $\log (1+x)$ is mot greater than x^{n} / n if $x>0$. Hlow many torms are renuired for the computation of $\log 1 \frac{1}{2}$ to four places? of $\log 1.2$? Compute the latter.
10. The hypotemse of a triangle is 20 and one angle is $31^{\text {P }}$. Find the sides by expanting $\sin x$ and cos x about $a=\frac{1}{8} \pi$ as linear functions of $r-\frac{1}{6} \pi$. Examine the term in $\left(r-\frac{1}{6} \pi\right)^{2}$ to find a maximum value the the eror introsuced by neglecting it.
11. Compute to 6 places: ($\alpha)^{\frac{1}{3}}$, (β) Lus 1.1. (γ) $\sin 30^{\prime}$, (ô) cos 30^{\prime}. During the computation one place more than the desired number should be earried along in the arithmetic work for safety.
12. Show that the remainder for low $(1+x)$ is less than $r^{n} / n\left(1+x^{n}\right)^{n}$ if $x<0$. Compute (c) log 0.9 to 5 phaces. (3) $\log 0.8$ to 4 phaces.
13. Show that the remainder for $\tan ^{-1} r$ is less than $.^{n} / n$ where n may always be taken as orlic. Compute to 4 places tan ${ }^{-1} \frac{1}{3}$.
14. The relation $\frac{1}{4} \pi=\tan ^{-1} 1=4 \tan ^{-1} \frac{1}{3}-\tan ^{-1} \frac{2^{\frac{1}{3}} \pi}{3}$ enables $\frac{1}{4} \pi$ to be found easily from the series for $\tan ^{-1} x$. Find $\frac{1}{4} \pi$ to 7 places (intermediate work carried to 8 places).
15. Computation of logarithos. (α) If $a=\log \ln _{n}^{10} \cdot h=\log \frac{2}{2} \cdot\left(c=\log : \frac{1}{2} \cdot\right.$, then $\log 2=7 a-2 b+3 c, \quad \log 3=11 a-3 b+5 c, \quad \operatorname{lng} a=16 a-4 b+7 c$.

Now $a=-\log \left(1-\frac{1}{1_{0}}\right), b=-\log \left(1-\frac{\Gamma^{4}}{100}\right), c=\log \left(1+\frac{1}{x_{0}}\right)$ are readily computed and hence $\log 2, \log 3, \log 5$ may be fomm. Carry the calculations of a, b, c to 10 places and deduce the logarithms of $2,3,5,10$, retaining only 8 plates. Compare Peirce"s "Tables," p, 109.
(β) Show that the error in the series for $\log \frac{1+x}{1-x}$ is less than $\frac{2 \cdot r^{n}}{n(1-x)^{n}}$. Com pute $\operatorname{lng} 2$ corresponding to $x=\frac{1}{3}$ to 4 places, $\log 1 \frac{2}{3}$ to 5 places, $\log 1 \frac{2}{5}$ to 6 paces.
(γ) Show lug $\frac{p}{q}=2\left[\frac{p-q}{p+q}+\frac{1}{3}\left(\frac{p-q}{p+q}\right)^{3}+\cdots+\frac{1}{2 n-1}\left(\frac{p-q}{p+q}\right)^{2 n-1}+R_{2 n+1}\right]$, give an estimate of $I_{2_{n+1}}$, and compute to 10 figures $\log 3$ and $\log 7$ from $\log 2$ and $\log 5$ of leirce's "Tables" and from
$4 \log 3-4 \log 2-\log 5=\log \frac{81}{80}, \quad 4 \log 7-5 \log 2-\log 8-2 \log 5=\log \frac{71}{7^{4}-1}$.
16. Compute Ex. $7(\epsilon)$ to 4 places for $x=1$ and to 6 places f ($r x=\frac{1}{2}$.
17. Compute sin $n^{-1} 0.1$ to secomis and sin ${ }^{-1}{ }_{3}^{1}$ to mimutes.
18. Show that in the expansion of $(1+r)^{k}$ the remanaler, as s is $>$ or <0, is
$R_{n}<\left|\frac{k \cdot(k-1) \cdots(k-n+1)}{1 \cdot 2 \cdots n} x^{n}\right|$ or $R_{n}<\left|\frac{k \cdot(k-1) \cdots(k-n+1)}{1 \cdot 2 \cdots n} \frac{x^{n}}{\left(1+x^{n}\right)^{n-k}}\right|, n>k$. Hence compute to 5 fighres $\sqrt{103 \cdot}, \sqrt{18}, \sqrt[3]{28}, \sqrt[5]{2.50}, \sqrt[10]{1000}$.
19. Sometimes the remainter camot be readily fonm! but the terms of the expanion appear to be diminishing ser rapidly that all after a certain puint appear
 (estimated) the values of tan f^{2}, lus cos 10°. ase 3^{3}, sue 2^{2}.
20. Find to within $1^{\prime \prime}$ the area under cos $\left(x^{*}\right)$ and sin $\left(x^{2}\right)$ from th the $\frac{1}{2} \pi$.
21. A mit masnetic $l^{\text {whle }}$ is ldaced at a distane L from the center of a macnet of pole strength $1 /$ and longth $2 l$. Where $1 / L$ is small. Find the force on the pute if (α) the pole is, in the line of the marnet and if (β) it is in the perpendiembr bisector.

22. The formula for the distance of the horizon is $T=\sqrt{3 / h}$ where T is the distance in miles and h is the altitule of the ohserver in foet. Prowe the formula and show that the error is alont $\frac{1}{2}$, for heights m to a fow miln. Take the radius of the eartly as $3!60$ miles.
23. Find an appoximate formula for the dip of the horizon in minute ledew the herizontal if h in feet is the height of the ohserver.
24. If s is a cireldar are amd f its chow and o the chord of hatf the are, prove

25. If two cquatitios differ from tach other ly a small fraction e of their value. show that their semmetric mean will differ from their arithmetic mean hy about ${ }_{\frac{1}{3}} \epsilon^{2}$ of its value.
26. The aldehnac method mar be applied to findinge expansions of some functions which berome infinite. (Thas if the series form (o)s and win it be divided to find eot x, the initial term is $1 / x$ and becomes infinite at $x=0$ just as cot x does.

Such expansions are not Maclaurin developments hut are analognos to them. The function $x \cot x$ would, however, have a Maclanrin development and the expansion foum for ent x is this development divided by x.) Find the developments ahout $x=0$ to terms in x^{4} for
(c) $\cot x$,
(β) $\cot ^{2} x$,
(γ) $\csc x$,
($\delta) \operatorname{esc}^{3} x$,
(є) $\cot x \csc x$
(ङ) $1 /\left(\tan ^{-1} x\right)^{2}$,
(7$)(\sin x-\tan x)^{-1}$
27. Obtain the expansions:
(a) $\log \sin x=\log x-\frac{1}{6} x^{2}-{ }_{1}^{1} \frac{1}{5} x^{4}+I ; \quad$ (β) $\log \tan x=\log x+\frac{3}{3} x^{2}+\frac{7}{90} x^{4}+\cdots$, (γ) likewise for \log vers x.
33. Indeterminate forms, infinitesimals, infinites. If two functions $f^{\prime}(\cdot r)$ and $\phi(, r)$ are defined for,$r=\pi$ and if $\phi(\prime \prime) \neq 0$, the quotient f^{\prime} / ϕ is defined for $r="$. liut if $\phi(\prime \prime)=0$, the quotient f^{\prime} / ϕ is not defined for $"$. If in this case f and ϕ are detined and continnous in the neighborhood of " and $f^{\prime}(\prime) \neq 0$, the quotient will become infinite as $r^{\prime} \doteq$ " whereas if $f(\prime \prime)=0$, the behavior of the quotient f^{\prime} / ϕ is not immediately apparent but gives rise to the indeterminate form $0 / 0$. In like manner if f^{\prime} and ϕ hecome infinite at ", the quotient f^{\prime} / ϕ is not defined, as neither its numerator nor its denominator is definet ; thus arises the indeterminate form \sim / \sim. The question of determining or evaluating an indeterminate fom is merely the guestion of finding out whether the grotient $\boldsymbol{j}^{\circ} / \phi$ aproarches a limit (and if so, what limit) or beromes positively or negatively infinite when x approarches $"$
 give rise to the indeterminate form 0,0 or κ / ∞ when $r="$, are ormtimous and differentiable in the interval $"<a \leqq b$ and if $/$ wan he taken so near to " that $\phi^{\prime}(, r)$ dres not vanish in the interval and if the 'pootient $f^{\prime \prime} / \phi^{\prime}$ of the derivatives approarless a limit or leeromes positively or neqatively infinite as $x^{\prime} \doteq$ ", then the quotiont f^{\prime} / ϕ will alproarh that linnit or become positively or negatively intinite ats the case

Ci-e I. $f\left({ }^{\prime \prime}\right)=\phi(\prime)=0$. The proof follows from Canchy's Formula, Ex. fi. p. 49.
For

$$
\frac{f(r)}{\phi(x)}=\frac{f(x)-f(\prime)}{\phi(x)-\phi(\prime)}=\frac{f^{\prime}(\xi)}{\phi^{\prime}(\xi)}, \quad a<\xi<t
$$

Now if $x \doteq{ }^{\prime}$. so must ξ. which lies hetween x and $"$. Inence if the quotient on the right approaches a limit or becomes positively or negatively intinite, the same is trine of that on the loft. The necessity of inserting the restrictions that f and ϕ shall be continuons and differentiable and that ϕ ' shall not have a root indefinitely near to of is apparent from the fact that Canchy's Formula is proved only for functions that satisfy these conditions. If the deriver form $f^{\prime \prime} / \phi^{\prime}$ should also be indeterminate, the rule combld again be apmied and the quetiont $f^{\prime \prime \prime} / \phi^{\prime \prime}$ would replace $f^{\prime} / \phi^{\prime}$ with the understanding that proper restrictions were satistied by $f^{\prime}, \phi^{\prime}$, and $\phi^{\prime \prime}$.

Cise II. $f(\mu)=\phi(\mu)=x$. Apply Cauchy's Formula as follows:

$$
\frac{f(x)-f(b)}{\phi(x)-\phi(b)}=\frac{f(x)}{\phi(x)} \frac{1-f(b) / f(x)}{1-\phi(b) / \phi(x)}=\frac{f^{\prime}(\xi)}{\phi^{\prime}(\xi)}, \quad \begin{array}{ll}
& a<x<b, \\
x<\xi<b,
\end{array}
$$

where the middle expression is merely a different way of writing the first. Now sumpose that $f^{\prime}(x) / \phi^{\prime}(x)$ appoaches a limit when $x \doteq a$. It must then be posible th take b so near to a that $f^{\prime}(\xi) / \phi^{\prime}(\xi)$ differs from that limit by as little as desired, no matter what value ξ may have between \boldsymbol{q} and b. Now as f and ϕ hecome infinite when $x \doteq a$, it is p^{∞} sible to take x so near to a that $f(l) / f(r)$ and $\phi(l) / \phi(x)$ are as near zero as desiren. The seemol equation above then slows that $f(x) / \phi(x)$, multiplied by a quantity which differs from 1 loy as little as desired, is equal to a cuantity $f^{\prime}(\xi) / \phi^{\prime}(\xi)$ which differs from the limit of $f^{\prime}(x) / \phi^{\prime}(x)$ as $x \doteq$ a by as little as desired. Hence f / ϕ must approach the same limit as $f^{\prime} / \phi^{\prime}$. Similar reasoning f would apply to the supposition that $f^{\prime} / \phi^{\prime}$ beeame pusitively or nesatively infinite, and the theorem is proved. It may be noted that, by Thenrem 16 of $\& 27$, the form $f^{\prime} / \phi^{\prime}$ is sure to be indeterminate. The adrantage of being able to differentiate therefore lies wholly in the posibility that the new form be more amenable to algebraic transformation than the old.

The other indeteminate forms $0 \cdot x, 0^{n}, 1^{\infty} \cdot x^{n}, x-\infty$ may be reduced to the foregoing ly varions deviees which may be indicated as follows:
$0 \cdot \infty=\frac{0}{\frac{1}{\infty}}=\frac{\infty}{\frac{1}{0}}, \quad 0^{n}=e^{\log 00}=e^{0 \log 0}=\epsilon^{0 \cdot \infty}, \cdots, \quad \infty-\infty=\log \epsilon^{\infty-\infty}=\log \frac{e^{\infty}}{e^{\infty}}$.
The case where the rariable becomes infinite instead of approaching a finite value t is covered in Ex. 1 below. The theory is therefore completen.

Two methonk which frecquent? may be used to shorten the work of evaluating an inketerminate form are the methon of E-functions and the applicution of Taytor"s Formula. By definition an E-fuction for the point $x=a$ is any antimuous function which "pporoches a finite limit wher then 0 when $s \doteq=$. Suppose then that $f(x)$ or $\phi(r)$ or buth may he written as the products $E_{1} f_{1}$ and $E_{2} \phi_{1}$. Then the methon of trating indeterminate foms need be applied only to f_{1} / ϕ_{1} and the result multiplied ly lim E_{1} / E_{2}. For example,

$$
\lim _{x \neq a \sin (x-11)} \frac{x^{3}-\pi^{3}}{\lim _{x \neq \pi}\left(x^{2}+\pi x+\pi^{2}\right) \lim _{x \doteq n} \frac{x-\pi}{x=1 n(x-\pi)}=3 a^{2} \lim _{x=\pi} \frac{x-a}{x=11}(x-\pi)}=3 a^{2} .
$$

Again, sulpose that in the form 0/0 lwoth munerator and demoninator may be dereloped about $x=u$ by Taylor's Fomma. The evaluation is immediate. Thus

$$
\frac{\tan x-\sin x}{x^{2} \log (1+x)}=\frac{\left(x+\frac{1}{3} \cdot r^{3}+R \cdot r^{5}\right)-\left(x-\frac{1}{6} \cdot r^{3}+\left(2 x^{5}\right)\right.}{x^{2}\left(x-\frac{1}{2} x^{2}+R x^{3}\right)}=\frac{\frac{1}{2}+\left(P-(2) \cdot r^{2}\right.}{1-\frac{1}{2} x+R x^{2}}
$$

and now if $r \doteq 0$. the limit is at men shown to he simply $\frac{1}{2}$.
When the functions become infinite at $r=r$, the eomelitions reguisite for Taylors Formula are not present and the fe is mo Taylor expansion. Neverthelese an expanWinn may sometimes be ohtained by the algehraie methex (s 32) and may frequently he used to advantage. Ton illustrate. let it be reguired to evaluate eot $x-1 / x$ which is of the form $x-x$ when $r \doteq 0$. Lere

$$
\text { cot } r=\frac{\cos r}{\sin r}=\frac{1+\frac{1}{2} \cdot r^{2}+P r^{4}}{r-\frac{1}{3}, r^{3}+\left(r^{3}\right.}=\frac{1}{x} \frac{1}{1}-\frac{1}{3}, r^{2}+r^{2}+r r^{2}+r^{4}=\frac{1}{r}\left(1-\frac{1}{3} x^{2}+x x^{4}\right),
$$

where s remains finite when $x \doteq 0$. If this value be sulstituted for cot x, then

$$
\lim _{x=0}\left(\cot x-\frac{1}{x}\right)=\lim _{x=0}\left(\frac{1}{x}-\frac{1}{3} x+S x^{3}-\frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(-\frac{1}{3} x+S x^{3}\right)=0 .
$$

34. An infinitesimal is a rariable which is ultimately to "lymormh the limit apro: an infinite is a curiable arlieln is to brome vithor insitirely (1, negatively infinite. Thus the increments $\Delta!$ and Δx are finite quantities, but when they are to serve in the definition of a derivative they must ultimately approach zero and hence may be called infinitesimals. The form $0 / 0$ represents the quotient of two infinitesimals: * the form ∞ / ∞, the quotient of two infinites; and $0 \cdot \kappa_{\sim}$, the produrt of an infinitesimal by an infinite. If any infinitesimal x is chosen as the fmimerr!! infinitesimul, a second infinitesimal β is said to be of the sume order as α if the limit of the quotient β / α exists and is not zero when $\alpha \doteq 0$; whereas if the quotient β / α lecomes zero, β is said to be an infinitesimal of higher orror than α, but of Inuror ombre if the quotient beromes infinite. If in particular the limit β / κ^{n} exists and is not zero when $\alpha \doteq 0$, then β is said to be of the nthe order relatire to α. The determination of the order of one infinitesimal relative to another is therefore essentially a problem in indeterminate forms. Similar definitions, may be given in regard to infinites.

Theorma. If the quotiont β; x of two infinitesimals approaches a limit or becomes infinite when $\alpha \doteq 0$, the quotient β^{\prime} ', x^{\prime} of two infinitesimals which differ respectively from β and x h infinitesimals of higher order will approarl the same limit or berome infinite.

Theonem. Dhlumpl's Thoorem. If the sum $\mathbf{\Sigma} x_{i}=x_{1}+r_{2}+\cdots+x_{n}$ of n positive infinitesimals approarhes a limit when their number n heromes infinite, the sum $\leq \beta_{i}=\beta_{1}+\beta_{2}+\cdots+\beta_{i}$, where cath β_{i} differs uniformly from the corresponding x_{i} ly an infinitesimal of higher order, will approach the same limit.

As $\alpha^{\prime}-\alpha$ is of higher order than α and $\beta^{\prime}-\beta$ of higher order than β,

$$
\lim \frac{\alpha^{\prime}-\alpha}{\alpha}=0, \quad \lim \frac{\beta^{\prime}-\beta}{\beta}=0 \quad \text { or } \quad \frac{\alpha^{\prime}}{\alpha}=1+\eta . \quad \frac{\beta^{\prime}}{\beta}=1+\zeta
$$

where η and ζ are infinitesimals. Now $\alpha^{\prime}=\alpha(1+\eta)$ and $\beta^{\prime}=\beta(1+\zeta)$. Hence

$$
\frac{\beta^{\prime}}{\alpha^{\prime}}=\frac{\beta}{\alpha} \frac{1+\zeta}{1+\eta} \text { and } \lim \frac{\beta^{\prime}}{\alpha^{\prime}}=\lim \frac{\beta}{\alpha},
$$

provided β / α approaches a limit ; whereas if β / α becomes infinite, so will $\beta^{\prime} / \alpha^{\prime}$. In a more complex fraction such as $(\beta-\gamma) / \alpha$ it is not permissible to replace β

[^10]and γ individually by infinitesimals of higher order ; for $\beta-\gamma$ may itself be of higher order than β or γ. Thns tan $x-\sin x$ is an infinitesimal of the third order relative to x althourg tan x and sin x are only of the first order. To replace tan x and sin x by intinitesimals which differ from them by those of the second order or even of the third order would generally alter the limit of the ratio of $\tan x-\sin x$ to x^{3} when $x \doteq 0$.

To prove Dulamel's Theoren the β 's may be written in the form

$$
\beta_{i}=\alpha_{i}\left(1+\eta_{i}\right), \quad i=1,2, \cdots, n, \quad\left|\eta_{i}\right|<\epsilon,
$$

where the η s are infinitesimals and where all the η ss simultaneonsly may be made less than the assigned ϵ owing to the nuiformity required in the theorem. Then
$\mid\left(\beta_{1}+\beta_{2}+\cdots+\beta_{n}\right)-\left(\alpha_{1}+\alpha_{2}+\cdots+\left(\gamma_{n}\right)|=| \eta_{1} \alpha_{1}+\eta_{2}\left(\alpha_{2}+\cdots+\eta_{n} \alpha_{n} \mid<\epsilon \Sigma \Sigma \alpha^{2}\right.\right.$.
Hence the sum of the β 's may be made to differ from the sum of the α 's by less than ϵ ¿r, a quantity as small as desired, and as Ear appoaches a limit hy hypothexis, so $\Sigma \beta$ must approach the same limit. The theorem may clearly be extended to the case where the are are all positive provided the smm $\Sigma\left|\alpha_{i}\right|$ of the also $)$ lute values of the a's approaches a limit.
35. If $y=f(r)$, the differential of ! is defined as

$$
\begin{equation*}
d_{y}=f^{\prime}(\cdot r) \Delta x, \quad \text { and hence } \quad d, r^{r}=1 \cdot \Delta x \tag{4}
\end{equation*}
$$

From this definition of $d y$ and $d x$ it appears that $d y / d x^{x}=f^{\prime}(x)$, where the (quotient dy/d.r is the quotient of two finite quantities of which d. x^{2} may be assigned at pleasure. This is true if x is the independent variable. If x and !/ are both expressed in terms of t,
and

$$
x=x(t), \quad y=y(t), \quad d \cdot r=l_{t^{\prime}} r^{\prime} d t, \quad d y=l_{t}, y d t ;
$$

$$
\frac{l_{!}}{I_{1, r}}=\frac{I_{t}!\prime}{I_{r} r}=1 I_{n}!, \quad \text { by virtue of }(1), \S 2 .
$$

From this appears the impordant theorem: The quotient dy/d.er is the
 mer! bee. It is this theorem whieh really justities writing the derivative as a fraction and treating the component differentials areording to the rules of ordinary fractions. For higher derivatives this is not so, as may he seen lyy refornce to Ex. 10.

As $\Delta!$ and Δx are regarded as infintesimals in defining the derivative, it is matumal to fergand d!y and d, r as intinitesimals. The difference $\Delta y-d y$ may be put in the form

$$
\begin{equation*}
\Delta_{y}-\lambda_{y} y=\left[\frac{f^{\prime}\left(x^{\prime}+\Delta x^{\prime}\right)-f\left(x^{\prime}\right)}{\Delta x}-f^{\prime}\left(\cdot x^{\prime}\right)\right] \Delta x, \tag{array}
\end{equation*}
$$

wherein it apmears that, when $\Delta x \doteq 0$, the bateket approaches zore. Hence arises the theorem : If ir is the indenembent rorialle "mm it $\Delta!$
 itrsimal uf hiyhore order thon a re This has an applation to the
subject of (hange of variable in a definite integral. For if $x=\phi(t)$, then $d x=\phi^{\prime}(t) d t$, and apparently

$$
\int_{a}^{b} f(x) d l^{x}=\int_{t_{1}}^{t_{2}} f^{\prime}[\phi(t)] \phi^{\prime}(t) d t
$$

where $\phi\left(t_{1}\right)="$ and $\phi\left(t_{2}\right)=l$, so that t ranges from t_{1} to t_{2} when,r ranges from " to $\%$.

But this sulastitution is too hasty; for the dre witten in the integrand is really Δx, which differs from h_{x} ly an infinitesimal of higher order when a is not the independent variable. The true condition may be seen loy comparing the two sums

$$
\sum_{i} f^{\prime}\left(r_{i}\right) \Delta r_{i}, \quad \sum f^{-}\left[\phi\left(t_{i}\right)\right] \phi^{\prime}\left(t_{i}\right) \Delta t_{i}, \quad \Delta t=d t
$$

the limits of which are the two integrals alowe. Now as Δx differs from $d r^{*}=\phi^{\prime}(t) d t$ by an infinitesimal of higher order. so $f^{\prime}\left(x^{r}\right) \pm . r^{\text {will }}$ differ from $f^{\prime}[\phi(t)] \phi^{\prime}(t)$ dt by an infinitesimal of higher order, and with the projer assumptions as to continuity the difference will be uniform. Hence if the infinitesimals $f(x)$ د. r be all positive, Duhamel's Theorem may he appled to justify the formula for change of variable. To avoid the restriction to positive infinitesimals it is well to replace Duhamel's 'Theorem by the new

Theomean. (Matgodis Therorem. Leet $x_{1}, x_{2}, \cdots, x_{n}$ be n infinitesimals and let x_{i} differ miformly by intinitesimals of higher order than $د$.r from the elements $f^{\prime}\left(\cdot r_{i}\right) \Delta x_{i}$ of the integrand of a definite integral $\int_{a}^{b} f^{\prime}(r) d x^{\prime}$, where f^{\prime} is continnous; then the sum $\leq x=r_{1}+r_{2}+\cdots+r_{n}$ approaches the value of the definite integral as a limit when the numbber n becomes infinite.

$$
\text { Let } r_{i}=f\left(r_{i}\right) \Delta r_{2}+\zeta_{i} \Delta r_{i} \text {. whorr }\left|\xi_{i}\right|<\varepsilon \text { owing to the miformity demanded. }
$$

Then

$$
\left|\sum u_{i}-\sum f\left(r_{i}\right) \Delta r_{i}\right|=\left|\sum j \Delta x_{i}\right|<\epsilon \sum \Delta x_{i}=\epsilon(b-a) .
$$

But as f is eontinuons, the definite integral exists and one can make

$$
\left|\sum f\left(x_{i}\right) \Delta r_{i}-\int_{a}^{b} f(x) d x\right|<\epsilon, \quad \text { and henee } \quad \mid \sum\left(x_{i}-\int_{a}^{b} f(x) d x \mid<\epsilon(b-a+1)\right.
$$

It therefore appears that $\Sigma\left(r_{;}\right.$may be made to differ from the integral hy as little as desired, and Σr_{i} must then approach the integral as a limit. Now if this theogem be applied to the case of the change of variable and if it be assumed that $f[\phi(t)]$ and $\phi^{\prime}(t)$ are continuons, the infinitesimals Δr_{i} and $d x_{i}=\phi^{\prime}\left(t_{i}\right) d t_{i}$ will differ miformly (compare Theorem 18 of $\S 27$ and the above theorem on Δy - 14) by an infinitesimal of higher orler, and so will the infinitesimals $f\left(r_{i}\right) \Delta r_{i}$ and $f\left[\phi\left(t_{i}\right)\right] \phi^{\prime}\left(t_{i}\right) d t_{1}$. Hence the change of variable suggested by the hasty substitution is justifierl.

EXERCISES

1. Show that l'Hospital’s Rule applies to evaluating the indeterminate form $f(x) / \phi(x)$ when x becomes infinite and both f and ϕ either become zero or infinite.
2. Evaluate the following forms by differentiation. Examine the quotients for left-hand and for right-hand approach ; sketch the graphs in the neighborhood of the points.
((c) $\lim _{x=0} \frac{\alpha^{x}-l, x}{x}$,
(β) $\lim _{x=\frac{1}{4} \pi} \frac{\tan x-1}{x-\frac{1}{4} \pi}$,
(r) $\lim _{x \rightarrow 0} x \log x$,
($\delta) ~ \lim _{x=\infty} x e^{-x}$,
(ϵ) $\lim _{x=0}(\cos x)^{\text {sin } s}$,
(ら) $\lim _{x=1} x^{\frac{1}{1-x}}$.
3. Evaluate the following forms by the methot of expansions:
(cx) $\lim _{x=0}\left(\frac{1}{x^{2}}-\cot ^{2} x\right)$,
(β) $\lim _{x \rightarrow 0} \frac{e^{x}-c^{\tan x}}{x-\tan x}$,
(ช) $\lim _{x=1} \frac{\operatorname{lng} x}{1-x}$,
($\delta) \lim _{x \dot{x}=0}(\operatorname{csch} x-\csc x)$.
($\epsilon) \lim _{x=0} \frac{x \sin (\sin x)-\sin ^{2} x}{x^{6}}$,
(5) $\lim _{x=0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x}$.
4. Evaluate by any method:
(a) $\lim _{x \neq 0} \frac{e^{x}-e^{-i r}+2 \sin x-4 x}{x^{5}}$,
(β) $\lim _{x=0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x^{2}}}$,
(γ) $\lim _{x \rightarrow 0} \frac{x \cos ^{3} x-\log (1+x)-\sin -1 \frac{1}{2} x^{2}}{x^{3}}$,
($\delta) \lim _{x \rightarrow \frac{1}{2} \pi} \frac{\log \left(x-\frac{1}{2} \pi\right)}{\tan x}$,
(є) $\lim _{x \rightarrow \infty}\left[x\left(1+\frac{1}{x}\right)^{x}-c x^{2} \log \left(1+\frac{1}{x}\right)\right]$.
5. Give definitions for order as applied to infinites, noting that hirher order wonld mean becomines intinite to a greater degree just as it means beemming zero to a greater derree for infinitesimals. State and prove the theorem relative to quotients of infinites analowns the that given in the text for infinitesimals. State and prove an analosons theorem for the product of an infinitusimal and infinite.
6. Note that if the unotient of two infinites las the limit 1 , the difference of the infinites is an infinite of lower order. Aply this th the prof of the ratalation in partial fractions of the quotient $f(r) / F(r)$ of two polynomials in case the ronts of the denominator are all real. For if $F(r)=(r-a)^{R} F_{1}(r)$. the drotient is an infinite of orthr k in the neithbormond of $r=a$: but the difference of the dutotient and $f(a) /(r-u)^{k} F_{1}^{\prime}(t)$ will be of lower intecral order - and st on.
7. Show that when $x=+\infty$. the fmetion x^{x} is an infinite of hicher order than r^{n} mu mater low large u. Hence how that if $I^{\prime}(x)$ is any polynonial. $\lim _{x \rightarrow \infty} P^{\prime}(x) e^{-x}=0$ when $x=+x$.
$x=\infty$
8. Show that (lons $x)^{m}$ when x is infinite is a weaker infinite than x^{n} mumattur how large m w low small n, sumposed positive. may be. What is the rraphical interpretation?
9. If P^{\prime} is a lulymomial, show that $\lim _{x=0} P\left(\frac{1}{x}\right) e^{-\frac{1}{r^{2}}}=0$. Hence show that the Maclaurin development of $e^{-\frac{1}{r-2}}$ is $f(x)=,^{-\frac{1}{2}}=r^{n} f^{\prime \prime}(n)(\theta, r)$ if $f(0)$ is detined as 0 .
10. The higher differentials are defined as $d^{n} y=f^{(n)}(x)\left(d_{x}\right)^{n}$ where x is taken as the independent variable. Show that $d^{k} \boldsymbol{k}=0$ for $k>1$ if x is the independent variable. show that the higher derivatives $D_{x}^{2} y, D_{x}^{3} y, \cdots$ are not the quoticnts, $d^{2} y / d x^{2} . d^{3} y / d x^{3}, \ldots$ if x and y are expresset in terms of a third variable, but that the relations are
$D_{x}^{2} y=\frac{d^{2} y d x-d^{2} x d y}{d x^{3}}, \quad D_{x}^{3} y=\frac{d x\left(d x d^{3} y-d y d^{3} x\right)-3 d^{2} x\left(d x d^{2} y-d y l^{2} x\right)}{d x^{5}}, \cdots$
The fact that the quotient $d^{n} y / d x^{n}, n>1$, is not the derivative when x and y are expressed parametrically militates against the usefnlness of the higher differentials and emphasizes the advantage of working with derivatives. The motation $d^{n} y / d x^{n}$ is, however, used for the derivative. Nevertheless, as indicated in Exs. 16;-19, higher differentials may be used if proper care is exercised.
11. Compare the conception of higher differentials with the work of Ex. 5, p. 48.
12. Show that in a circle the difference between an infinitesimal arc and its chorl is of the third order relative to either are or chord.
13. Show that if β is of the uth order with respect to α. and γ is of the first order with respect to α, then β is of the nth order with respect to γ.
14. Show that the orler of a protuct of infinitesimals is equal to the smm of the orders of the infinitesimals when all are referred to the same primary intinitesimal α. Infer that in a product each infinitesimal may be replaced by one which differs from it by an infinitesimal of higher order than it without affecting the order of the product.
15. Let A and B be two points of a mit circle and let the angle $A O B$ subtended at the center be the primary infinitesimal. Lee the tangents at A and B meet at T. and $O T$ ent the chomd $A B$ in M and the are $A B$ in (${ }^{\prime}$. Find the trignmmetric expression for the intinitesimal difference $T^{\prime}-C^{-}, \mathrm{M}$ and determine its order.
 the differential of the differential. Thms find the second derivative of s sin x if x is the independent variable and the second derivative with respect to t if $r=1+t^{2}$.
16. Compute the first, secoml, and third lifferentials, $d^{2} x \neq 0$.
(a) $x^{2} \cos x$
(β) $\sqrt{1-x} \log (1-x)$,
(i) $s t^{2} x^{2}$ sin x.
17. In Ex. 10 take y as the indencmlent variable am hence express $J_{x}^{2} y . J_{0}^{3} y$ in terms of D_{y} r. D_{y}^{2} r. Cf. Ex. 10, p. 14 .
18. Make the changes of variahle in Fxs. 8, 9, 12, p. 14. hy the methou of differentials, that is, ly replacing the derivatives by the correpmoling differential expersions where s is not assumed as independent variable and her replacing these differentials by their ralues in terms of the new variables where the higher differentials of the new indepement varialle are set equal to 0 .
19. Reconsider some of the exercises at the emp of Chap. I. say. 17-19. 22. 23. 27 , from the pint of view of Osgonl:s Theorem instead of the Theorem of the Ma: an.
20. Find the areas of the bomming smfaces of the solide of Ex. 11, 1, 14.

22．Assume the law $F=k \mathrm{~mm}^{\prime} / \mathrm{r}^{2}$ of attraction between particles．Find the attraction of ：
(α) a circular wire of radius α and of mass M on a particle m at a distance r from the center of the wire along a perpeudieular to its plane；$\quad \operatorname{lns} . k \operatorname{Mm} \cdot\left(4^{2}+r^{2}\right)^{-\frac{3}{2}}$ ．
（ β ）a circular disk，etc．，as in (α) ；Ans． $2 k$ Mmu $u^{-2}\left(1-r / \sqrt{r^{2}+u^{2}}\right)$ ．

（ δ ）a finite rom upon a particle not in the line of the rod．The answer should be expressed in terms of the angle the rod subtembs at the partiche．
（ ϵ two parallel equal rods，forming the omposite sides of a rectangle，on eath other．

23．Compare the methot of ilerivatives（\＄ 7 ）．the methon of the Theorem of the Mean（s 17），and the methot of intinitesimals above as applied to ohtaining the for－ mulas for（cr）area in pular coördinater．（ β ）mass of a rod of rariable delnsity．（ γ ）pres－ sure on a vertieal subnerged bulkhead．（o）attraction of a ronl on a particle．Wha⿱亠䒑⿱口儿， the results．by each method and state which methow serms preferable for carlh case．

24．Is the substitution $d x=\phi^{\prime}(t) d t$ in the inlufinite intergal $\int f^{\prime}(r) d x$ to ohtan the indefinite interral $\int f[\phi(t)] \phi^{\prime}(t) d t$ justifiable immediately ：

36．Infinitesimal analysis．To work rapidly in the applications of calculus to prohlems in geometry and phesies and to follow reatily the books written on those suljeets，it is newessary to hare some familiarity with working direetly with infinitesinalc．It is possible he making use of the Theorem of the Mean and allied theomens to retain in every ex－ pression its complete exart value ：but if that expression is an infini－ tesimal whin is ultimately to enter into a photient or a linit of a sum． any infinitesimal which is of higher order than that which is ultinately kept will not influence the result and may be diswamed at any stasu of the work if the work may thereby lee simplifiet．I few themoms worked through he the infinitesimal methon will serve fartly to show how the methond is used and partly to extalnhish results which may he of use in further work．The theorems which will lee elosen are：

1．The inerement x^{2} and the differential dre of a variable differ bey an intinitesinal of higher oreler than either．
 to the tamgent is of highere order than the distane from the font of the per ${ }^{2}$ madienlar to the point of tangener
 higher order relative to the are

4．If one angle of a trimele，nome of whose angles are infinitesimal．
 anm if ϕ is another angle of the triangle．then the sime＂ponsite ϕ is ／，sin ϕ exerep for an infinitesimal of the seront onder anm the atianent side is h cos ϕ exeeft fur an infinitesimal of the first orders．

The first of these theorems lias been proved in § 35. The second follows from it and from the idea of tangency. For take the x-axis coineilent with the tangent or parallel to it. Then the perpendieular is Δy and the distance from its foot to the point of tangency is Δr. The cuotient $\Delta y / \Delta x$ approaches 0 as its linit because the tangent is horizontal ; and the theorem is proved. The theorem would remain true if the perpendicular were replaced by a line making a constant angle with the tangent and the distance from the point of tangency to the foot of the perpendiculur were repluced by the distunce to the foot of the oblique line. For if $\angle P M N=\theta$,

$$
\frac{P M}{T M}=\frac{P Y \csc \theta}{T Y-P Y \cot \theta}=\frac{P Y}{T Y} \frac{\csc \theta}{1-\frac{I^{2} V}{T Y} \cot \theta}
$$

and therefore when P apmonernes T with θ comstant. $P / T / T$ approaches zero and $P M$ is of higher order than TMF.

The third theorem follows without difficulty from the assumption or theorem that the are has a length intemediate between that of the chord and that of the sum of the two tangents at the emels , if the chome. Let θ_{1} and θ_{2}, be the angles between the chord and the tangents. Then

$$
\begin{equation*}
\frac{s-A B}{A M+M B}<\frac{A T+T B-A B}{A M+M B}=\frac{A M\left(4 \cdot c \theta_{1}-1\right)+M B\left(\sec \theta_{2}-1\right)}{A M+M B} \tag{f}
\end{equation*}
$$

Now as $A B$ apmonches 0 . beth see $\theta_{1}-1$ and soes $\theta_{2}-1$ approch 0 and theis corfficients remain necessarily finite. Hence the difference betwem the are aml the chord is an infinitesimal of higher order than the chorel. As the are and chord are therefore of the same order. the difference is of higher order than the are. This result emables one to replace the are ly its chore and viee versa in disemssines intinitesimals of the first order, and for suclu purpeses to consiler an infinitesimal
 are as straight. In disensing infintesimals of the seceme order. this substithtim wombl mot be permissible exerght in wiow of the further theerem given belaw in $\$ 37$. and even then the substitution will hoh only as far the the lengths of ares are concerned and not in recrarl to directions.

For the fourth theorembet θ be the angle by which ('delarts fron 9$)^{\circ}$ and with

$$
\begin{aligned}
& A C^{\prime}=1 M+M C^{\prime}=M \cos \phi+M M \text { tan } \theta \\
& B C^{\prime}=h \sin \phi+B M(\cdot \operatorname{\theta ot} \theta-1)
\end{aligned}
$$

Sow $\tan \theta$ is an infinitesinalal of the finst moles with respect to θ; for its Maclaurin development berins with θ. And sece $\theta-1$ is an infinitesimal of the secoms order; for its development begins with at term in θ^{2}. The theorem is therefore provell. This theorent is frecucntly applical to infinitesimal triangles.
 that is. triangles in whicht h is to apmoreh 1 .
 nition the lenuth of the are of a curve is the imint of the lemith of an inscribed pulysun. namely.

$$
s=\lim _{n=x}\left(\sqrt{r_{1}^{2}}+\lambda_{1}^{2}+\sqrt{\Delta r_{2}^{2}+y_{2}^{2}}+\cdots+\sqrt{\mu_{n}^{\prime 2}+\Delta y_{n}^{2}} .\right.
$$

Now

$$
\begin{aligned}
\sqrt{\Delta x^{2}+\Delta y^{2}}-\sqrt{d x^{2}+d y^{2}} & =\frac{\Delta x^{2}+\Delta y^{2}-d x^{2}-d y^{2}}{\sqrt{\Delta x^{2}+\Delta y^{2}}+\sqrt{d x^{2}+d y^{2}}} \\
& =\frac{(\Delta r-(l x)(\Delta x+d x)+(\Delta y-l y)(\Delta y+d y)}{\backslash x^{2}+\Delta y^{2}+\sqrt{d x^{2}+d y^{2}}}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\sqrt{\Delta x^{2}+\Delta y^{2}}-\sqrt{d x^{2}+d y^{2}}}{\sqrt{\Delta x^{2}+\Delta y^{2}}} & =\frac{(\Delta x-d x)}{\sqrt{\Delta x^{2}+\Delta y^{2}}} \frac{\Delta x+d x}{\sqrt{\Delta x^{2}+\Delta y^{2}}+\sqrt{d x^{2}+d y^{2}}} \\
& +\frac{(\Delta y-d y)}{\sqrt{\Delta x^{2}+\Delta y^{2}}} \sqrt{\Delta x^{2}+\Delta y^{2}+\sqrt{d x^{2}+d y^{2}}}
\end{aligned}
$$

But $\Delta x-d x$ and $\Delta y-d y$ are infinitesimals of higher wrocr than Δx and Δy. Hence the risht-fand sille mast approach zero as its limit and lemee $\Delta x^{2}+\Delta y^{2}$ differs from $\sqrt{ } d x^{2}+d y^{2}$ hy an intinitesimal of hisher order and may replace it in the stm

$$
s=\lim _{n=\infty} \sum \sqrt{\Delta x_{i}^{2}+\Delta y_{i}^{2}}=\lim _{n=\infty} \sum \sqrt{d x^{2}+d y^{2}}=\int_{x_{0}}^{x_{1}} \sqrt{1+y^{\prime 2}} d x
$$

The length of the are measured from a fixed point to a variable pront is a function of the npper limit and the differential of are is

$$
d s=d \int_{x_{0}}^{x} \sqrt{1+y^{\prime 2}} d x=\sqrt{1+y^{\prime 2}} d x=\sqrt{d x^{2}+d y^{\prime 2}}
$$

To find the order of the difference between the arc and its elowd let the origin be taken at the initial point and the x-axis tangent to the enree at that point. The expansion of the are by Maelaurin's Formula gives

$$
s(x)=s(0)+x s^{\prime}(0)+\frac{1}{2} \cdot x^{2} s^{\prime \prime}(0)+\frac{1}{6} x^{3} s^{\prime \prime \prime}(\theta x)
$$

where

$$
s(0)=0, \quad s^{\prime}(0)=\sqrt{1+y^{\prime 2}}{ }_{0}=1 . \quad s^{\prime \prime}(0)=-\frac{y^{\prime} y^{\prime \prime}}{\left.\sqrt{1+y^{\prime 2}}\right|_{0}}=0 .
$$

Owing to the choice of axes, the expansion of the curve rednces to

$$
y=f(x)=y(11)+x y^{\prime}(0)+\frac{1}{2} x^{2} y^{\prime \prime}(\theta x)=\frac{1}{2} r^{\prime 2} y^{\prime \prime}(\theta x)
$$

and hence the chord of the curve is

$$
c(x)=\sqrt{x^{2}+y^{2}}=r \sqrt{1+\frac{1}{4} x^{2}\left[y^{\prime \prime}(\theta x)\right]^{2}}=x\left(1+x^{2} P\right),
$$

where P is a complicated expresion arising in the expansion of the radical by Maclaurin's Formula. The difference

$$
s(x)-c(x)=\left[x+\frac{1}{6} x^{33} s^{\prime \prime \prime}(\theta x)\right]-\left[x\left(1+x^{2} P\right)\right]=x^{3}\left(\frac{1}{6} s^{\prime \prime \prime}(\theta x)-I^{\prime}\right)
$$

This is an infinitesimal of at least the third order relative to x. Nuw as both $s(x)$ and $c(r)$ are of the first meler relative to x. it follows that the difference $s(x)-r(x)$ must also be of the third order relative to either s (x) or $r(x)$. Note that the prof assumes that $y^{\prime \prime}$ is finite at the point considered. This result. which has been fomm analytioally. follows more simply thongh perhaps less rigoronsly from the fact that sece $\theta_{1}-1$ and sece $\theta_{2}-1 \mathrm{in}(t)$ are infinitesimals of the second oreler with θ_{1} :uml θ_{2}.
38. 'The theory of romtort of plome romeres may le treated lyy inteans of 'Taylor"s Formmlat anm stated in termes of intinitesimals. Let two curver $y=f^{2}(x)$ and $y=y(x)$ be tangent at a given point and let the
origin be chosen at that point with the x-axis tangent to the curves. The Maclaurin developments are
$y=f\left(\cdot r^{\cdot}\right)=\frac{1}{2}, f^{\prime \prime \prime}(0) x^{2}+\cdots+\frac{1}{(n-1)!} \cdot x^{n-1} \cdot f^{(n-1)}(0)+\frac{1}{n!} \cdot x^{(n)} f^{(n)}(0)+\cdots$
$y=y\left(\cdot r^{\prime}\right)=\frac{1}{\underline{2}} y^{\prime \prime}(0) x^{2}+\cdots+\frac{1}{(n-1)!} \cdot \cdot^{n-1} y^{(n-1)}(0)+\frac{1}{n!} \cdot r^{n} y^{(n)}(0)+\cdots$
If these developments agree up, to lout not including the term in x^{n}, the difference between the ordinates of the curves is

$$
f(\cdot x)-g(\cdot x)=\frac{1}{n!} \cdot \cdot^{\prime \prime \prime}\left[f^{(n)}(0)-y^{(n)}(0)\right]+\cdots, \quad f^{(n)}(0) \neq y^{(n)}(0),
$$

and is an infinitesimal of the nth order with respect to i. The curves are then said to have conturt of order $n-1$ at their point of tangencor. In general when two curres are tangent, the derivatives $f^{\prime \prime \prime}(0)$ and ! $y^{\prime \prime}(0)$ are unequal and the curves have simple contact or conturt of the first order.

The prohlem may be stated differently. Let PM be a line which makes a constant angle θ with the r-axis. Then, when P approarlhes T, if RQ be regarded as straight, the proportion

$$
\lim \left(P R: P(Q)=\lim \left(\sin \angle P Q R: \sin \angle P^{\prime} R Q\right)=\sin \theta: 1\right.
$$

shows that $P^{\prime} R$ and $P(\&$ are of the same order. ('learly also the lines $T M$ and $T N$ are of the same order. Hence if

$$
\lim \frac{P R}{(T N)^{n}} \neq 0, \infty, \text { then } \quad \lim \frac{P^{P} Q}{(T U)^{n}} \neq 0, \infty
$$

Hence if two curves have contant of the ($n-1$) st ordur, the segment of a lime interepten butween
 the two curres is of the nth order with respere to the distance from the point of timgency to its foot. It would also hes of the nth order with respect to the perpendicular Tr from the point of tangency to the line.

In riew of these results it is not neressary to assume that the two (urves have a sperial relation to the axis. Let two curves $y=f^{\prime}(r)$ aml $y=g\left(r^{\prime}\right)$ intersect when,$r="$, and assume that the tangents at that point are not parallel to the y-axis. Then

$$
\begin{aligned}
& y=y_{0}+\left(\cdot n-(\prime) f^{\prime}(i n)+\cdots+\frac{(. r-n)^{n-1}}{(n-1)!} f^{(n-1)}(n)+\frac{\left(r-(1)^{n}\right.}{n!} f^{(n)}(n)+\cdots\right.
\end{aligned}
$$

will be the Taylor developments of the two curves. If the difference of the ordinates for equal values of x is to be an infinitesimal of the nth order with respert to $x-a$ which is the perpendicular from the point of tangency to the ordinate, then the Taylor developments must agree up to but not including the terms in $x^{\prime \prime}$. This is the condition for contact of order $n-1$.

As the difference between the ordinates is

$$
f\left(\cdot w^{\prime}\right)-y\left(\cdot x^{\prime}\right)=\frac{1}{n!}(x-u)^{n}\left[f^{(n)}(\prime \prime)-y^{(n)}(\prime)\right]+\cdots
$$

the difference will change sign or keep its sign when x passes through " according as n is odd or even, because for values sufficiently near to .r the higher terms may be negleated. Hence the "uross will aross furle where if the order of rontret is "ren, but will not corsss parle other if ther wrder of conterct is ord. If the values of the ordinates are equated to find the points of intersection of the two curves, the result is

$$
0=\frac{1}{n!}\left(\cdot r-{ }^{\prime \prime}\right)^{n}\left\{\left[f^{\prime(n)}\left((\prime)-y^{(n)}(\prime \prime)\right]+\cdots\right\}\right.
$$

and shows that $r=u$ is a root of multiplicity n. Hence it is said that two corres have in common as many coincident proints as the order of their contact plus one. This fact is usually stated more graphically by saying that the comeres lowre n eonserutier puints in common. It may be remarked that what Taylores development carried to n terms does, is to give a polynomial which has contact of order $n-1$ with the function that is developed by it.

As a prohlem on contact consider the determination of the eivele which shall have contact of the second orler with a curve at a given joint (${ }^{\prime \prime}, y_{0}$). Let

$$
y=y_{0}+\left(r-(\prime) \cdot f^{\prime}(u)+\frac{1}{2}\left(r-(1)^{2} \cdot f^{\prime \prime}(\prime \prime)+\cdots\right.\right.
$$

be the development of the curve and let $y^{\prime}=f^{\prime}(\pi)=\tan \tau$ the the slope. If the circle is to have contact with the curve, its center must be at some point of the normal. Then if $I R$ themes the assmmen ratius, the engation of the eirele may be written as

$$
\left(r-(a)^{2}+2 l \sin \tau(x-a)+\left(y-y_{0}\right)^{2}-2 l a(0,1) \tau\left(y-y_{0}\right)=0 .\right.
$$

Where it matins to determine l su that the develomment of the circle will coincide with that of the curve as far ats written. Differentiate the equation of the "irche.
aul
is the development of the circle. 'The equation of the coefticients of $\left(x-()^{2}\right)^{2}$.

$$
\frac{1}{f \cos ^{3} \tau}=f^{\prime \prime}\left((u) \text {. gives } \quad R=\frac{\sec ^{3} \tau}{f^{\prime \prime}(u)}=\frac{1+\left[f^{\prime}(u)\right]^{2} 2^{3}}{f^{\prime \prime}((u)} .\right.
$$

This is the well known formula for the radius of currature and shows that the circle of curvature has contact of at least the seconel order with the curve. The circle is sometimes called the osculating eirele instead of the cirele of curvature.
39. There theorems, one in geometry and two in kinematics. will now la proved to illustrate the direct application of the infinitesimal methods to such problems. The choice will be:

1. The tangent to the ellipse is equally inclined to the foral matlif drawn to the point of contart.

2 . The displarement of any rigid hody in a plane may loe regarded at any instant as a rotation through an infinitesimal angle about some point muless the body is moving parallel to itself.
3. The motion of a rigid body in a plane may he regarded ats the rolling of one curve upon another.

For the first problem consider a secant $I^{\prime \prime}$ whith may be convertell into a tangent $T^{\prime} T^{\prime}$ by letting the two peints apmoach mall they enincide. Draw the focal ranlii to P^{\prime} and P^{\prime} and strike ars with F and F^{\prime} as (enter's. 人: $F^{\prime} P^{\prime}+P F=F^{\prime} P^{\prime}+P^{\prime} F=2$ a. it follows that $N P=W I^{\prime \prime}$. Now consider the two trianeles $P P^{\prime} M$ and $I^{\prime \prime} P N^{\prime}$ neady right-angled at M amd N. The sides P' P^{\prime}. M. I'N. P'M. $P^{\prime N}$ are all intinitesimals of the sane order and of the same order as the anmes at F and F^{\prime}. Ber propenition 4 of

$$
M P^{\prime}=I^{\prime} P^{\prime \prime}(\cdots) \angle P I^{\prime} M+\epsilon_{1} . \quad N P^{\prime}=I^{\prime} P^{\prime}(\cdots) \angle P^{\prime} P^{\prime} N+\epsilon_{2}
$$

and the two angles $T P^{\prime} F^{\prime}$ and $T^{\prime} P F$ are proved to bererual at derisent.

 is known. Lee the $\mathrm{i}^{m i n t-} \mathrm{A}$ and 7 ? w the burle be deseribing chrves A.J'and $B B^{\prime}$ so that, in an infinitesinal interval of time the line $A B$ takes the meighboring posi-
 A. I' ant Bh' and let them intersect at (). Then the tri-

 ergual to the theres sictes of the other ame are egual. and

 A'apmothes at and 3^{\prime} apmoches 13 . The perpentientar hisectons will apmoach
the normals to the ares $A A^{\prime}$ and $B B^{\prime}$ at A and B, and the point O will approach the intersection of those normals.

The theorem may then be statel that: At any instant of time the motion of a rigid body in a phane may be considered as a rotation through an infinitesimal anyte about the intersection of the normals to the paths of any two of its points at thut instant; the amount of the rotution will be the distance ds that any point mores divided by the distance of that point from the instantaneous center of rotation; the angular velocity about the instantaneous center will be this amownt of rotution divided thy the interval of time att, that is, it will be r / r, where x is the relority of uny point of the boily coud r is its distance from the instantaneous conter of rotation. It is therefore seen that not only is the desived theorem proved, but numesons other details are fomm. As has been staterl, the point about which the body is rotating at a given instant is called the instentereous center for that instant.

As time goes on, the position of the instantaneons center will generally chance. If at each instant of time the position of the center is marked on the moving plane or body, there results a locus which is called the moring rentroble or body centrode : if at each instant the pesition of the center is also marked on a fixed plane over which the moving plane may be considered to glide, there results another loces wheh is called the fixed rentrode or the spure controne. From these datinitions it follows that at each instant of time the benly centrone anl the space eentronle intersect at the instantaneons center for that instant. Consider a series of positions of the instantancoun center as $P_{-2} P_{-1} I^{\prime} I_{1} P_{2}$ marked in space and $Q_{-2} Q_{2}\left(\frac{1}{2}\left(Q_{1} Q_{2}\right.\right.$ marked in the body. At a given instant two of the points, say P and Q, coincide; an instant later the body will have moved so as to bring (ℓ_{1} into coin-
 cidence with P_{1} : at an earlier instant (Q_{-1} was coincident with P_{-1}. Now as the motion at the instant when P and Q are together is one of rotation through an infinitesimal angle about that peint, the angle between $P P_{\mathrm{t}}$ and ($Q Q_{1}$ is intinitesimal and the lengthe: $P P_{1}$ and $Q\left(Q_{1}\right.$ are equal ; for it is by the
 it follows 1° that the two centrontes are tangent and 2^{2} that the distances $P^{\prime} P_{1}=(Q)_{1}$ which the point of contact moses along the two curves during an infinitesimal interval of time are the same. aml this means that the two curves roll on we annther without sliping - becanse the very idea of slipping implies that the pint of contact of the two curses shomli move by different amounts along the two curves. the difference in the amomes. being the amment of the slip. The thim thenrem is therefore proved.

EXERCISES

1. If a finite parallelogram is no arly motangled. what is the orler of intinitesimals nestected ly taking the area as the promet of the two sides? What if the figure were an istsectes traperoid! What if it were any rectilinear ymadriateral all of whose angles liffer from right angles hy intintesimals of the same orter?
2. On a sphere of ratins, the area of the zone between the parallets of latitule λ and $\lambda+d$ is taken as 2 orese λ. med the perimeter of the hase times the shat height. Of what corles relative to dx is the intinitesimal neolected!' What if the perimeter of the midhle latitude were taken so that $\because \pi \pi^{2}$ (assumed :'
3. What is the order of the infinitesimal nealected in taking $4 \pi r^{2}$ ar as the volume of a bollow sphere of interior radius r and thiekness $d r$? What if the mean radius were taken instead of the interior radius? Wond any particular radius be best?
4. Discuss the length of a space eurve $y=f(x), z=g(x)$ analytically as the length of the plane curve was discussed in the text.
5. Discuss proposition 2. p. f8. by Maclaurin:s Formula and in particular show that if the second derivative is continums at the point of tangener. the infinitesimal in question is of the second orler at least. How about the ease of the tractrix

$$
y=\frac{a}{2} \log \frac{a-\sqrt{1^{2}-r^{2}}}{a+\sqrt{1^{2}-x^{2}}}+\sqrt{a^{2}-x^{2}},
$$

and its tangent at the vertex $x=$ "? How about $s(r)-c(r)$ of 87 ?
6. Show that if two curves have eontact of omer $n-1$. their derivatives will have contact of order $n-2$. What is the order of contact of the kth derivatives $k<n-1$?
7. State the ennditions for maxima. minima. and points of inflection in the neighborhow of a ${ }^{\text {wint }}$ where $f^{\prime(n)(n)}$ is the first derivative that does not vanish.
8. Determine the order of contact of these curves at their intersections:
(c)
$\sqrt{2}\left(r^{2}+y^{2}+2\right)=3(x+y)$
$\therefore x^{2}-\left(5 y+y^{2}=8:\right.$

(i) $\begin{aligned} & x^{2}+y^{2}=y \\ & x^{3}+y^{3}=x y .\end{aligned}$
9. Show that at points where the radius of eurrature is a maximum or minimum the enatact of the osculating cirche with the curve mast be of at least the third order and must always be of odd oreder.
10. Let I 'S be a nomal to a curve and P'N a neighbenine momal. If O is the renter of the ospulating direle at P '. show with the aid of Ex. 's that ordinarily the perpemtioular from () th $L^{\prime} N^{\prime}$ is of the secomd orter relative th the are $I^{\prime} I^{\prime}$ and that the distance on is of the first order. Hence interpret the statement : Consecutive normals to a eurve ment at the center of the neculating cirele.
 the oneulating cirelos at neighburing lninto of the curve intersect in real peints:
12. In the hyperbela the foed radii drawn to any peint make equal angles with the tangent. P'rove this and state and prove the eorresponding thenrem for the I rarabola.
13. Given an infinitesimal are $A B$ cut at C by the perpendicular bisectn of its chord $A B$. What is the order of the difference $A C-B C^{\prime}$?
14. Of what order is the area of the seqment inclurled between an infinitesimal are and its chord compared with the square on the chord?
15. Two siles $A B . A C$ of a triansle are finite and differ infinitesimally : the ancle θ at A is an infinitesimal of the same order and the sile $B C$ is rither rectilinemr or curvilinear. What is the order of the neglected infinitesimal if the area is assumed as $\frac{1}{2} \overline{A D^{2} \theta}$? What if the assumption is $\frac{1}{2} A B \cdot A C \cdot \theta$?
16. A eycloid is the locus of a fixed point upon a circumferenee which rolls on a straight line. Show that the tangent amb momal to the cycloid pass through the highest and lowest points of the rolling eircle at each of itsinstantaneons positions.
17. Show that the incerement of are Δs in the eycloid differs from $2 a$ sin $\frac{1}{2}$ Ad θ by an intinitesimal of higher corder and that the inerement of area (hetween twn consecutive normals) differ: from $3 \|^{2}$ sin ${ }^{2} \frac{1}{2}$ Ald b_{y} an intinitesimal of higher onder. Hence show that the tutal length and area are 80 amd $3 \pi \mu^{2}$. Here π is the radius of the generating eircle and θ is the angle subtembed at the center by the luwent point and the fixed point which traces the cyeloin.
18. Show that the radins of curvature of the excloid is hisecter at the lowest point of the generatiner circle and hence is $4 u$ in $\frac{1}{2} \theta$.
19. A triangle $A B C$ is circmomseriben about ans wal eurve. Show that if the side $B\left(\begin{array}{l}\text { is bisected at the peint of contact, the area of the triangle will be chansed }\end{array}\right.$ by an infinitesimal of the second order when $B C$ is replaced by a neighboring tangent $B^{\prime} C^{\prime \prime}$, but that if $B C^{\prime}$ be mot bisecterl, the change will he of the first omper. Hence infer that the minimum triangle ciremoseribed abont an ural will have its thee sides lisected at the perints. wf contanet.
20. If a string is wrapped about a circte of radius 4 and then mwomm sus that its end describes a eurve. show that the lembth of the curve and the ara between the curve, the circle, and the strine are

$$
s=\int_{0}^{\theta} u \theta_{1} d \theta, \quad 1=\int_{0}^{A} \frac{1}{1} u^{2} u^{2} \theta^{2}, l \theta, \quad \mid
$$

where θ is the angle that the unwinding strine has tumed thenoth.
21. Show that the motion in space of a rigid body one point of which is fixen may he recarded as an instantaneons rotation about some axis thensh the given buint. Twho this examine the displacements, of a wnit onhere surroundime the fixed b"int as center.
 a the surfommine the r-idxis. Let the velocity of the flum be a funtion $x(x)$ of r. show that during the intinitesimal time ot the diminution of the amonnt of the thuid which lies between $r=u$ and $x=u+K$ is

$$
r[r(u+h) I(u+l i) \delta t-v(u) I)(u) \delta t] .
$$

 condition that the flow of the fluid shall not change the demity at any rint.

are the areas of the ciremmseribed trapezoid, the enrve, the inseribed trapezoid. Hence infer that to compute the area under the curve from the inseribed or circumseribed trapezoids introduces a relative error of the orfer δ^{2}. but that to compute from the relation $S=\frac{1}{3}\left(2 s_{0}+s_{1}\right)$ introduces an error of only the order of δ^{4}.
24. Let the interval from a to b be divided into an even number $2 n$ of equal parts δ and let the $2 n+1$ orinates $y_{0} \cdot y_{1}, \cdots, y_{2} n$ at the extremities of the intervals be drawn to the curve $y=f(x)$. lnseribe trapezoids by joining the ends of every other orimate begiming with $y_{0} . y_{2}$, and going to $^{2} y_{2 n}$. Ciremmeribe trapezoirls by drawing tangents at the ends of every other ordinate $y_{1}, y_{3}, \cdots, y_{2 n-1}$. Compute the area moler the curve as

$$
\begin{aligned}
s=\int_{a}^{b} f(x) d x=\frac{b-l_{n}}{6 n}\left[4 \left(y_{1}\right.\right. & \left.+y_{3}+\cdots+y_{2 n-1}\right) \\
& \left.+2\left(y_{0}+y_{2}+\cdots+y_{2 n}\right]-y_{0}-y_{2 n}\right]+l
\end{aligned}
$$

 This methor of comphtation is known as simpsonis Rule. It habally givers aceorratey sutficiont for work to four or even five firures when $\delta=0.1$ and $b-a=1$; for $f^{\prime}(\mathrm{iv})(x)$ usually is small.
25. Compute these intesrals by Simpson's Rule. Take $2 n=10$ equal intervals. Carry mumerical work to six tignes except where tables must be used to find $f(x)$:
$(x) \int_{1}^{2} \frac{d . x}{x}=\log 2=0.69315$.
(β) $\int_{0}^{1} \frac{d l \cdot r}{1+x^{2}}=\tan ^{-1} 1=\frac{1}{4} \pi=0.785 \% \%$.
(γ) $\int_{0}^{\frac{1}{2} \pi} \sin x d \cdot x=1.00000$,
(o) $\int_{1}^{2} \log _{10} r d x=2 \log _{10} x-M=0.16766$,
(є) $\int_{0}^{1} \frac{\operatorname{lox}(1+r)}{1+x^{2}} d x=0.27220$,
(弓) $\int_{0}^{1} \frac{\log (1+r)}{x} d x=0 . \times 2247$.

The answors here wiven are the true valus of the integrals to five places.
26. Show that the 'quandrant of the elligne $r=a \sin \phi, y=h$ eos $\phi \mathrm{i}$.

$$
x=u \int_{0}^{\frac{1}{2} \pi} \sqrt{1-t^{2} \sin n^{2} \phi} d \phi=\frac{1}{2} \pi \| \int_{1}^{1} \sqrt{\frac{1}{2}\left(2-t^{2}\right)+\frac{1}{2} c^{2} \cdot u-\pi n} d u .
$$

Compute to fomb figures by Simpson's lanle with six divisioms the gharlamts of the ellipses:

$$
(\alpha) e=\frac{1}{2} \sqrt{3}, \quad s=1.211 a, \quad(\beta) e=\frac{1}{2} \sqrt{2}, \quad s=1.3,1 \pi
$$

27. Expand s in Ex. 26 into a series and disenss the remainder.

bistimate the mumber of temms necessary to compute Ex. 26 (β) with an error not Ereater than 2 in the last place and compare the labor with that of simpons Rule.
28. If the eecentricity of an ellipse is $\frac{1}{n}$. find to five decimals the pereentage error made in talking $2 \pi t$ as the perimeter.
-1us. $0.00604,0$
29. If the catenary $y=c$ cosin (r / r) wives the shape of a wire of length L suspemed between two mints at the same level and at a distance l nearly equal tw L. find the first approximation comnecting L. l. and d, where d is the dip of the wire at its lowest point below the level of support.
30. At its midale print the parabolic calle of a suspension bridse 1000 ft . Inner lotween the supports sags 50 ft . below the level of the ends. Find the length of the eable conrect to inches.
31. Some differential geometry. suppose that between the increments of a set of variables afl of whinh depend on a single variahle t 1 here exists an equation whinh is true exeret for infinitesmals of higher order than $\Delta t=1 t$, the 11 the equation will be exactly true for the differentials of the variahles. Thus if

$$
j \Delta x+g \Delta y+h_{1} \Delta z+l \Delta t+\cdots+\rho_{1}+r_{2}+\cdots=0
$$

is an equation of the sort mentionerl and if the coefficients are any functions of the variables and if $e_{1},{ }_{2}, \ldots$ are infinitesimals of ligher order than att, the limit of
is

$$
f \frac{\Delta r}{\Delta t}+g \frac{\Delta!}{\Delta t}+1, \frac{\Delta}{\Delta t}+1 \frac{\Delta t}{\Delta t}+\cdots+\frac{\rho_{1}}{\Delta t}+\frac{\rho_{2}}{\Delta t}=0
$$

$$
f l_{i} x+!l_{n} l y+l_{1} l_{n}!+l_{n} l t=0 ;
$$

and the statement is pored. This mosult is rery useful in writing down rarious differential formmas of geometry where the aproximate relation letween the increments is ohvions and where the true relation between the differentials san therefore la fomed.

For instane in the case of the differential of are in reetangular coor'dinates, if the increment of are is known to differ from its chord ly an infinitesimal of higher orker, the Pythagorean theorem shows that the (chuation

$$
\begin{equation*}
\Delta r^{2}=\Delta r^{2}+\Delta y^{2} \quad \text { or } \quad \Delta r^{2}=\lambda r^{2}+\lambda y^{2}+\Delta r^{2} \tag{1}
\end{equation*}
$$

is true exeret for infinitesimals of higher orter: amel hemeo

$$
\begin{equation*}
d x^{2}=\pi r^{2}+d y^{2} \quad \text { or } \quad d x^{2}=17 r^{2}+17 y^{2}+17 x^{2} \tag{-1}
\end{equation*}
$$

In the ('ase of phane pelar roombinates. the triangle Pl'N (see Fig.)
 anglet at x. The Pythaserean theorem may he applied to a comvilinear triancle. or the triangle may be rephaned be the reetilinear triangla Prov with

 lowing at the fignre, it is easily sem that the equation $\lambda r^{2}=\Delta r^{2}+r^{2} \Delta \phi^{2}$
which the figure suggests differs from a true equation by an infinitesimal of higher order; and hence the inference that in polar coördinates $d s^{2}=d r^{2}+r^{2} d \phi^{2}$.

The two most used systems of coördinates other than rectangular in space are the polor or spherical and the rylindrimbl. In the first the distance $r=O P$ from the pole or center, the longitude or meridional angle ϕ, and the colatitude or polar angle θ are chosen as coör-
 dinates; in the second, ordinary polar coordinates $r=O M$ and ϕ in the $x y-1$ lane are combined with the ordinary reetangular a for distanes from that plane. The formmlas of transformation are

$$
\begin{array}{ll}
z=r \cos \theta, & r=\sqrt{r^{2}+y^{2}+r^{2}}, \\
y=r \sin \theta \sin \phi, & \theta=\cos ^{-1} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}, \tag{8}\\
x=r \sin \theta \cos \phi, & \phi=\tan ^{-1} \frac{!}{x},
\end{array}
$$

for polar coördinates, and for cylindrical coördinates they are

$$
\begin{equation*}
z=\pi, \quad y=r \sin \phi, \quad r=r \cos \phi, \quad r=\sqrt{r^{2}+y^{2}} \quad \phi=\tan -1 \frac{y}{x} \tag{9}
\end{equation*}
$$

Formulas such as that for the differential of are may be obtained for these new councrlinates by mere transformation of $\left(r^{\prime}\right)$ according to the rules for change of variable.

In both these cases, howerer: the value of ls: may be fomnd readily by direct inspertion of the figure. The small parallelepiped (figure for polar (ase) of which Δs is the diagonal has some of its edges and faces curved instearl of straight: all the angles, howerer, are right angles,
 and as the edges are infinitesimal, the equations certainly suggested as holding except for infinitesimals of higher order are

$$
\Delta s^{2}=\Delta r^{2}+r^{2} \sin ^{2} \theta \Delta \phi^{2}+r^{2} \Delta \theta^{2} \quad \text { and } \quad \Delta r^{2}=\Delta r^{2}+r^{2} \Delta \phi^{2}+\Delta r^{2} \quad(10)
$$

$$
O r^{*} \quad d s^{2}=d r^{2}+r^{2} \sin ^{2} \theta: / \phi^{2}+r^{2} d \theta^{2} \quad \text { and } \quad d s^{2}=d r^{2}+r^{2} / \phi^{2}+d i^{2} . \quad\left(10^{\prime}\right)
$$

To make the proof complete，it would he neeressary to show that noth－ ing lut infintesimals of higher order have heen neglected and it might actually be easier to transform $\sqrt{d_{r^{2}}+d y^{2}+d i^{2}}$ rather than give a rigorons demonstration of this faret．Indeed the infinitesimal method is seldom used rigoromsly ；its great use is to make the facts so celear to the rapid worker that he is willing to take the evidence and omit the proof．

In the phane for rectangular coordinates with rulings parallel to the ！／－axis and for polar＇oorrlinates with moling：issuing from the pole the inerements of area differ from

$$
\begin{equation*}
d .1=!\mu l . r \quad \text { and } \quad \quad l .1=\underset{2}{1}, r_{1}^{2} / \phi \tag{11}
\end{equation*}
$$

respectively by infinitesimals of higher order，and

$$
\dot{I}=\int_{2_{0}}^{r_{1}} y r_{1} \text { and } A=\frac{1}{2} \int_{i_{0}}^{\phi_{1}} r^{2} / l \phi
$$

are therefore the formalas for the area unter a curve and between two ordinates，and for the area leetween the eurve and two radii．If the plane is ruled by lines parallel to both axes or bey lines issuing from the pole and by cireles coneentrice with the pele，as is customary for double inte－ gration（s⿱夂⺀：131，131），the inerements of area differ respectively lyy infinitesimals of higher order from
and the formulas for the area in the two＂ases are

$$
\begin{align*}
& A=\lim \sum د A=\iint A A=\iint d \cdot d!, \\
& A=\lim \sum D A=\iint A 1=\iint \operatorname{r} d \cdot d \phi
\end{align*}
$$

where the double integrals are extembed ower the area desired．
The elements of volume whith are repuired for triple interation （ 5133,134 ）over a volume in spere may remlily be whiten down for the three eases of rectangular，polar，and wlimbian coriminates．In the
 $\because=r$ perpendienlar to the axes and spered at infinitesimal intervals：in
 with the peole．the phanes $\phi=1$ therogh the polar axis．and the comes $\theta=0$ of revehtion atome the polan axis：in the thime abse ly the erlin－ ders $r=\pi$ ，the manes $\phi=h$ ．and the plames $\because=r$ ．The infinitesimat
volmmes into which space is divided then differ from

$$
\begin{equation*}
d \cdot=l_{d} \cdot d!d l i, \quad d \cdot=l^{2} \sin \theta \cdot l \cdot d \phi d \theta, \quad d r=m d n d \phi d \tilde{z} \tag{13}
\end{equation*}
$$

respectively lyy infinitusimals of higher order, and
are the formulas for the volumes.
41. The direction of a line in space is represented hy the there anges Which the line makes with the positive directions of the axes or be the ensines of those angles, the direction cosines of the line. From the definition and figure it aprears that
are the direction eosines of the tament to the are at the point: of the tangent and not of the chord for the reason that the increments are rephaced hy the differcantials. Henre it is seen that for the dirertion rosines af the trongrat the proportion
holds. The equations of at share eurve are

$$
r=f(t), \quad!l=!(f), \quad \because=h(f)
$$

in terms of a varialle parametur t. At the pont (ir, y_{0}, ion where

As the ersine of the ande θ hetween the two dire etions given he the dirention cosimes $7.7 \prime, n$ and $7^{\prime} . \prime^{\prime} . n^{\prime}$ is

$$
\begin{equation*}
\cdots \cdot n s \theta=\eta^{\prime}+n^{\prime} m^{\prime}+n n^{\prime} \text {, so } \quad \eta^{\prime}+m \prime^{\prime}+m n^{\prime}=0 \tag{16}
\end{equation*}
$$

is the combition for the ferlentionlarity of the lines. Now if (.r, !/ a)

[^11]The tingent plane to the curve is not determinate: any plane through the tangent line will be tangent to the curve. If λ be a parameter, the pencil of tangent phanes is

$$
\frac{x-x_{0}}{f^{\prime}\left(t_{0}\right)}+\lambda \frac{y-y_{0}}{y^{\prime}\left(t_{0}\right)}-(1+\lambda) \frac{z-z_{0}}{h_{1}^{\prime}\left(t_{0}\right)}=0 .
$$

There is one particular tangent plane, called the osruluting plune, which is of especial importance. Let
with similar expansions for y and z, lee the Taylor developments of .r, y, a about the point of tangence. When therse are substituted in the equation of the plane, the result is

$$
\begin{aligned}
\frac{1}{2} \tau^{2}\left[\frac{f^{\prime \prime}\left(t_{0}\right)}{f^{\prime \prime}\left(t_{0}\right)}+\lambda \frac{!^{\prime \prime}\left(t_{0}\right)}{g^{\prime}\left(t_{0}\right)}\right. & \left.-(1+\lambda) \frac{l^{\prime \prime}\left(t_{0}\right)}{h^{\prime}\left(t_{0}\right)}\right] \\
& +\frac{1}{6} \tau^{3}\left[\frac{f^{\prime \prime \prime}(\xi)}{f^{\prime \prime}\left(t_{n}\right)}+\lambda \frac{!^{\prime \prime \prime}(\eta)}{g^{\prime}\left(t_{0}\right)}-(1+\lambda) \frac{l^{\prime \prime \prime}(\zeta)}{l^{\prime}\left(t_{0}\right)}\right] .
\end{aligned}
$$

This expression is of course proportional to the distance from any point x, y, z of the curve to the tangent plane and is seen to lee in general of the second order with respect to τ or ds. It is, howerer, possible to choose for λ that value which makes the first bracket ranish. The tamgent plane thus selerted has the property that the distroner of the "mire
 "nd is rolled the asiruluting plane. The substitution of the value of λ sives
or
as the equation of the osirnlating phane. In "ase $f^{\prime \prime \prime}\left(t_{n}\right)=!y^{\prime \prime}\left(t_{\ldots}\right)=l^{\prime \prime}\left(f_{N}\right)=0$, this equation of the osenlating phane vanishees ifentienlly and it is neressary to push the development further (Ex. 11).
42. For the ease of pane curses the rurrotmer is defined as the rate at which the tangent turns compered with the deseripition of arr: that is, as $/ \phi / \boldsymbol{i}_{\text {s }}$ if If denotes the differential of the angle thengh which the tangent turns when the point of tangeney advanes along the eurve les. The radins of curvature R is the recipmonal of the cursature.

where accents denote differentiation with respect to x. For space curves the same definitions are given. If l, m, n and $l+d l, m+d m, n+d n$ are the direction cosines of two successive tangents,

$$
\cos d \phi=l(l+d l)+m(m+d m)+n(n+d n)
$$

But $l^{2}+m^{2}+n^{2}=1$ and $(l+d l)^{2}+(m+d m)^{2}+(n+d n)^{2}=1$.
Hence $\quad \| l^{2}+d m^{2}+\pi n^{2}=2-2 \cos d \phi=\left(2 \sin \frac{1}{2} d \phi\right)^{2}$,

$$
\frac{1}{R^{2}}=\binom{d \phi}{d s}^{2}=\left[\frac{2}{2 \sin } \frac{1}{d} d \phi\right]^{2}=\frac{d l^{2}+d m^{2}+d n^{2}}{\left(l s^{2}\right.}=l^{\prime 2}+m^{\prime 2}+n^{\prime 2},\left(19^{\prime}\right)
$$

where aceents denote differentiation with respecet to s.
The torsion of a space corree is defined as the rate of turning of the osculating plane comprech with the increase of are (that is, // $/ / / s$, where (ψ is the differential angle the normal to the oscolating phane turns through), and may (learly be calculated by the same formula as the curvature provided the direction cosines $L, I T, N$ of the normal to the plane take the places of the direction cosines l, m, n of the tangent line. Hence the torsion is

$$
\begin{equation*}
\frac{1}{R^{2}}=\left(\frac{\| \psi}{l / s}\right)^{2}=\frac{d L^{2}+d M^{2}+d N^{\prime 2}}{d s^{2}}=L^{\prime 2}+M^{\prime 2}+N^{\prime 2} \tag{20}
\end{equation*}
$$

and the radius of torsion R is defined as the reciprocal of the torsion, where from the equation of the osernlating plane

$$
\begin{align*}
& =\frac{1}{\sqrt{\text { sum of spuares }}} .
\end{align*}
$$

The actual computation of these phantities is somewhat tedions.
The vectorial discussion of curvature and torsion ($\$ 77$) gives a better insight inter the principal directions comeeted with a space eurve. These are the direction of the toment, that of the momal in the wembating plane and directed towards the concave side of the comse and callenl the principal normut, and that of the nomal to the ownlating pane drawn unom that sile which makes the thee directions form a dight-handed system and called the limormel. In the notations there givell. combined with those aloove.
$\mathrm{r}=x \mathrm{i}+y \mathbf{i}+z \mathrm{k}, \quad \mathrm{t}=\lambda \mathrm{i}+m \mathrm{j}+\lambda \mathrm{k}, \quad \mathrm{c}=\lambda \mathrm{i}+\mu \mathrm{j}+\nu \mathrm{k}, \quad \mathrm{n}=L \mathrm{i}+\mu \mathrm{j}+\lambda \mathrm{k}$, where $\lambda . \mu$. ν are taken as the direction cosines of the mincipal normal. Now dt is parallel to c and in is parallel to -c . Hence the results

$$
\begin{equation*}
\frac{d l}{\lambda}=\frac{d m}{\mu}=\frac{d n}{\nu}=\frac{d s}{R} \quad \text { and } \quad \frac{d L}{\lambda}=\frac{d V}{\mu}=\frac{d N}{y}=-\frac{d s}{R} \tag{21}
\end{equation*}
$$

follow from $d \mathrm{t} / \mathrm{d} \mathrm{l}=\mathrm{C}$ and $\mathrm{ln} / d s=\mathrm{T}$. Now $d \mathrm{c}$ is perpendicular to c and hence in the plane of \mathbf{t} and n ; it may be written as $d \mathrm{c}=(\mathrm{t} \cdot d \mathrm{c}) \mathrm{t}+(\mathrm{n} \cdot d \mathrm{c}) \mathrm{n}$. Lut as $\mathrm{t} \cdot \mathrm{c}=\mathrm{n} \cdot \mathrm{c}=0$, $\mathrm{t} \cdot \mathrm{d} \mathrm{c}=-\mathrm{c} \cdot \mathrm{dt}$ and $\mathrm{n} \cdot \mathrm{l} \mathrm{c}=-\mathrm{c} \cdot \mathrm{dn}$. Hence

Hence $\quad \frac{d \lambda}{d s}=-\frac{l}{l i}+\frac{I}{R}, \quad \quad d \mu=-\frac{m}{l}+\frac{M}{R}, \quad \frac{d \nu}{d s}=-\frac{n}{l_{i}}+\frac{N}{R}$.
Formalas (22) are known as Frentes Formults: they are nsually witten with $-\mathcal{R}^{2}$
 an ofd function, changes its sign when all the axes are reversed. If aceents denote differentiation by s.

EXERCISES

1. Show that in polar coordinates in the phane the tangent of the inclination of the eurve to the ratins vector is rd $/ \phi / d{ }^{\text {a }}$.
2. Verify (10), (10') by direct transfomation of chiordinates.
3. Fini in the steps omitter in the text in rearad w the men of of (10). (10) iy the methor of intinitesimal amalysis.
4. A rhmmb line on a sphere is a line whirh cuts all the meridians at a eonstant
 Henee find the equation of the linte. show that it conls imbefinitels aromme the poles of the sphere and that its total hemath is $\pi r \rightarrow+c$
5. Show that the surfaces remesentel hy $F(\phi, A)=0$ and $F(r, \theta)=0$ in bular

6. Show accurately that the expresion wiven for the thiferential wf area in fular coobrlinates in the phate and for the diverentials of volume in frelar amb cylinflical comolnates in space differ fom the corropmoling ineremento by intinitwimals of hiohere orter.
 space corve lelative to the malins. meridian. and parailel wf latitmbe.
7. Find the tangent line ant nummal phane of thene chaves.
(c) $d^{\prime}!z=1 .!^{2}=r$ at (1. 1. 1).
(弓) $r=$ (rost. ! $=$-int. $z=$ lit.

(є) $!=r^{2} \cdot z^{2}=1-!$.
(ら) $x^{2}+y^{2}+z^{2}=u^{2} \cdot x^{2}+y^{2}+2\left(1, x^{2}-()\right.$.
 that if er is the imlemermathtariahle. the equation of the phane is
8. A space curre passes through the origin, is tangent to the x-axis, and has $z=0$ as its oseulating plane at the origin. Show that

$$
x=t f^{\prime}(0)+\frac{1}{2} t^{2} f^{\prime \prime}(0)+\cdots, \quad y=\frac{1}{2} t^{2} y^{\prime \prime}(0)+\cdots, \quad z=\frac{1}{0} t^{3} l^{\prime \prime \prime}(0)+\cdots
$$

will be the form of its Mackurin development if $t=0$ gives $x=y=z=0$.
11. If the 2d. 3d..... (n-1)st derivatives of $f . g, h$ vanish for $t=t_{0}$ but not all the uth derivatives vanish, show that there is a plane from which the eurve departs by an infinitesimal of the $(n+1)$ st order and with which it therefore hats contate of order u. Such a plane is called a lypperoseulating plance. Find its equation.
12. At what points if any do the curves (β). $(\gamma),(\epsilon),(\zeta)$. Ex. 8 lave hyperosenlating planes and what is the degree of contact in each case?
13. Show that the expression for the ratins of curvature is

$$
\frac{1}{l_{i}^{\prime}}=\sqrt{x^{\prime \prime 2}+y^{\prime \prime 2}+z^{\prime \prime 2}}=\frac{\left[\left(y^{\prime} l^{\prime \prime}-k^{\prime} y^{\prime \prime}\right)^{2}+\left(l^{\prime} f^{\prime \prime \prime}-f^{\prime} h^{\prime \prime}\right)^{2}+\left(f^{\prime} y^{\prime \prime}-g^{\prime} f^{\prime \prime}\right)^{2}\right]^{\frac{1}{2}}}{\left[f^{\prime \prime 2}+y^{\prime 2}+k^{\prime \prime 2}\right]^{3}}
$$

where in the first case accents denote differentiation by x, in the second by t.
14. Show that the radius of curvature of a space curve is the radius of curvature of its projection on the wenlating plane at the pint in question.
15. From Frenet's Formulas show that the successive derivatives of x are

$$
x^{\prime}=l, \quad x^{\prime \prime}=l^{\prime}=\frac{\lambda}{l i}, \quad x^{\prime \prime \prime}=\frac{\lambda^{\prime}}{l_{i}^{\prime}}-\frac{\lambda l^{\prime}}{l^{2}}=-\frac{l}{l i^{2}}-\lambda \frac{l^{\prime}}{l^{\prime}}+\frac{I}{l i \mathbb{R}},
$$

where accents drmote differentiation bes. Show that the results for y am z are the same execpt that $m, \mu, V_{\text {or }} u, \nu, V$ take the paces of l, X, L. Ilence infer that for the uth derivatives the results are
$x^{(n)}=M I_{1}+\lambda I_{2}^{\prime}+L P_{3}^{\prime} . \quad!^{(n)}=m I_{1}+\mu I_{2}^{\prime}+M P_{3} . \quad z^{(n)}=u P_{1}+\nu P_{2}+N P_{;}$, where $I_{1}^{\prime}, P_{2}^{\prime}, P_{\mathrm{g}}^{\prime}$ are rational functions of R and R and their derivatives by s.
16. Apply the foremine th the expanion of Ex. 10 to show that

$$
x=s-\frac{3}{6!i^{2}} x^{3}+\cdots, \quad y=\frac{s^{2}}{2 l i}-\frac{l^{\prime}}{6 l i^{2}} x^{3}+\cdots, \quad z=\frac{s^{3}}{6 l R R}+\cdots
$$

Where R and R are the salues at the migin where $:=0, l=\mu=\lambda=1$. amt the other six direction cosines m, n, λ, ν, L, h vaninh. Fime s and write the expansion of the curve of Bx. $8(\gamma)$ in this. form.
17. Note that the distance of a point on the enre as expanded in Ex. 16 from

$$
\begin{aligned}
& \sqrt{x^{2}+(y-l)^{2}+\left(z-l l^{\prime} R\right)^{2}}-\sqrt{\prime} l^{\prime 2}+l^{\prime 2} R^{2} \\
&=\frac{\left(r^{2}+y^{2}-2 R y+z^{2}-2 l^{\prime} R z\right)}{\sqrt{r^{2}}+(y-l)^{2}+\left(z-l R^{\prime}\right)^{2}+1 l^{2}+l^{\prime 2} \mathrm{R}^{2}}
\end{aligned},
$$

and consempently is of the fonth order. The corve therefore has eontact of the third order with this sphere. ('an the equation of this sithere be derived by a limiting process like that of Ex. 18 as aphlien to the osculating phate
18. The osculating plane may be regarded as the plane passed through three consecutive points of the curve ; in fact it is easily shown that
$\lim _{\substack{\delta x, \delta y, \delta z \\ \Delta x, \lambda y, \rightarrow z \\ \text { approach } 0}}\left|\begin{array}{llll}x & y & z & 1 \\ x_{0} & y_{0} & z_{0} & 1 \\ x_{0}+\delta x & y_{0}+\delta y & z_{0}+\delta z & 1 \\ x_{0}+\Delta x & y_{0}+\Delta y & z_{0}+\Delta z & 1\end{array}\right|=\frac{1}{2}\left|\begin{array}{lll}x-x_{0} & y-y_{0} & z-z_{0} \\ (d x)_{0} & (d y)_{0} & (d z)_{0} \\ \left(d^{2} x\right)_{0} & \left(d^{2} y\right)_{0} & \left(d^{2} z\right)_{0}\end{array}\right|=0$.
19. Express the radius of torsion in temns of the derivatives of x, y, z by t (Ex. 10, p. 67).
20. Find the direction, enrvature, osentating plane, torsion, and osculating sphere (Ex. 17) of the conical helix $x=t \operatorname{tos} t . y=t \sin t, z=k t$ at $t=2 \pi$.
21. Upon a plane diagran which shows $\Delta x, \Delta x, \Delta y$, exhibit the lines which represent $d x, d x$, $d y$ moler the different hypotheses that x, y, or s is the independent variable.

CHAPTER IV

PARTIAL DIFFERENTIATION ; EXPLICIT FUNCTIONS

43. Functions of two or more variables. The definitions and theorems about functions of more than one independent variable are to a large extent similar to those given in Chap. II for functions of a single rariable, and the changes and difticulties which occur are for the most part amply illustrated by the case of two varialles. The work in the text will therefore be confined largely to this case and the generalizations to functions involving more than two rariables may be left as exercises.

If the value of a variable a is miquely determined when the values $(. x$, , $)$) of two variables are known, $: \therefore$ is said to be a function $a=f(x, y)$ of the two varialles. The set of values $\left[\left(x^{\prime}, y\right)\right]$ or of points $P(x, y)$ of the $x y$-plane for which at is defined may be any set, but usmally consists of all the points in a certalin area or region of the phane bounded by a curve which may or may not belong to the region, just as the emel points of an interval may or may not belong to it. Thus the function $1 / \sqrt{1-x^{2}-y^{2}}$ is defined for all points within the cirche $x^{2}+y^{2}=1$, hut not for points on the perimeter of the circle. For most purposes it is sufficient to think of the boundary of the region of definition as a polygon whose sides are straight lines or such eurves as the geometric intuition maturally suggests.

The first way of reperenting the function $\approx=f\left(r^{r}, y\right)$ geometrically is by the surfure $z=f^{\prime}(x, y)$, just as ! $=f(r)$ was represented by a rurve. This method is not arailable for $"=f^{\prime}\left(x^{\prime}, y, z\right)$, a function of three rariables, or for functions of a greater number of rariables; for space has only three dimensions. I second method of representing the function $\therefore=f\left(x^{\prime}, y\right)$ is by its rontour lines in the $x y$-plane, that is, the curves $f^{\prime}(. r,!\prime)=$ const. are plotted and to each curve is attarched the value of the eonstant. This is the method employed on maps in marking heights above sea level or depths of the ocean below sea level. It is evident that these contour lines are nothing but the projections on the $x y$-plane of the curves in which the surface $a=f(x, y)$ is cut by the phanes $z=$ const. This method is applicable to functions $\|=f(x,!/, z)$ of three variables. The contour surfores $"=$ const. which are thus obtained
are frequently called pruiputentinl surfaces. If the function is single valued, the contour lines or surfaces cannot intersect one another.

The function $z=f^{\prime}(\cdot, y)$ is continumus for ($(1, b)$ when either of the following equivalent conditions is satisfied:
$1^{\circ} . \quad \lim , f^{\prime}(r, y)=f^{\prime}\left(\ldots, l_{1}\right) \quad(,, r \lim , f(, s, y)=f(\lim , r, \lim y)$,

$$
\left|f(\cdot, \cdot, y)-f^{\prime}(\cdots, b)\right|<\epsilon \quad\left\|\cdot l_{n} \cdot n \quad|r-\||<\delta,|y-b|<\delta .\right.
$$

Geometrically this means that if a square with (i, b) as center and with sides of length 2δ parallel to the axes be drawn, the prortion of the surface $\hat{z}=f^{\prime}(, r$, i) aloove the
 Wr if contour lines are used, no line $f\left(f^{\prime},, t\right)=$ const. where the constant differs from $f^{\prime}(1$, ,,) ly so much as ϵ will cut into the square. It is clear that in phare
 of a square sumpounting (", l) a circle of radins δ or any other figure which lay within the square might be used.
44. Comtionity rerminet. From the definition of contimity just given and from the correspunding definition ins $\frac{24}{}$, it follows that if $f(x, y)$ is a continuous function of r and y for ($(6, b)$, then $f(x, b)$ is a contimums. function of r for $s=a$ and $f(x, y)$ is a contimuns. function of $y f(u r y=h$. That is. if f is continuous in x and y jointly. it is. continums, in x and y severally. It might he thonght that
 be continums in (r. y) fow ($(6.3$. $)$. That is, if f is continums in s ann y severalls, it womld be continums in os anm y jointly. A simple example will show that this is not necessarily true. Consider the case

$$
\begin{aligned}
z=f(r, y) & =\frac{r^{2}+y^{2}}{x+y} \\
f(0,0) & =0
\end{aligned}
$$

and examine z for continuity at (1). (1). 'The functions $f($ (r. (1) $)=r$.
 ant $f(0 . y)=y$ are surely continuons in their wipective variahles. But the surface $z=f(x, y)$ in a monical surface (except

 splare. ne matter low small. concentriw with the oriqin. If P^{\prime} apmonaches the oriwin alome one of these lines. z remains crastant and its limitins value is that comstant.

 the conlitions of continuity are not at all fultilled loy z at (0), 0).

Double limits. There often arise for consideration expressions like
$\lim _{y=b}\left[\lim _{\substack{x=a}} f(r, y)\right] . \quad \lim _{\substack{ \\x \neq a}}\left[\lim _{\substack{y=b}} f(r, y)\right]$,
where the limits exist whether x first approaches its, limit, and then y its limit, or vice versa, and where the question arises as to whether the two limits thus obtained are equal, that is, whether the order of taking the limits in the double limit may be interchanged. It is clear that if the function $f(x, y)$ is continuons at ($(x, y$,) the fimits approached by the two expressions will be etgal ; for the limit of $f(x, y)$ is $f(\mu, l)$ no matter how (κ, y) approaches ((\ldots, b). If f is discontinums at ((n, b). it may still happen that the order of the limits in the double limit may lee interchanged, as was true in the case above where the vahe in either order was zero; bont this cannot lee aftimed in general, and special considerations must be appliend to each case when f is discontinuous.

I'arieties of regions.* For both pure mathematies and physics the classification of regions according to their comnenticity is important. Comsiter a finite rewion $l i$ bounded by a curve which nowhere cuts itself. (For the present purposes it is not necessary to conter upon the subtleties of the meaning of "chrve" (see $\S \S 127-128$); wrlinary intuition will suffice.) It is elear that if any closed curve drawn in this region had an minimed tendenes to eontract, it conla draw together to a point and disappear. (on the other hand. if $l{ }^{\prime}$ be a reqion like R except that a portion has been remosed so that R^{\prime} is bounded by two curves one within the other. it is clear that some closed curves, namely those which did not facircle the portion remover, could shrink away to a point, whereas other
 closed curves. namely those which encircled that portion, could at most shrink down into coincidenee with the boundary of that portion. Again, if two portions are removen so as to give rise to the region $l^{\prime \prime}$, there are cireuits around each of the portions
 which at most can only shrink down to the boundaries of these
 portions and circnits aromel buth pertions which ean shrink down th the boundaries and a line joining then. A region like l. where any mosed curve or circuit may be shrmb away to nothing is called a simply connected region ; whereas regions in which there are circnits which cannot he shmok away to mothing are called multiply connected regions.

A multiply comected regim mas be made simply comected by a simple de vice and convention. For suppose that in $l{ }^{\prime}$ a line were drawn connecting the two bounding curves and it were agreed that no eurse or circhit draw within h^{\prime} shouk crose this line. Then the entire region would be surmonded by a single boudary, part of which would be comed twice. The figure indicates the situation. In like mamer if two lines were drawn in $F^{\prime \prime}$ comectins both interior boumbaries the the exterion on comecting the two interior beondaries toresther and either of them the the coter
 bomdary. the region would be remberal simply commecten. The fatire rexion would have a single bomblary of which parts wond be eomed twis. and any circuit which did not cros the lines could be shank away to nothing. The lines

[^12]thus trawn in the region to make it simply comected are callerl cuts．There is no need that the region be finite；it might extend off indetinitely in some directions like the region between two parallel lines or between the sides of an angle．or like the entire half of the $x y$－phane for which y is positive．In sueh cases the cuts may be drawn either to the boundary or off indefinitely in such a way as not to mect the bountary．

45．Wultiple couluell fiunctions．If more than one value of z corresponds to the pair of values（e．y ）．the function z is multiple valued．and there are some note－ worthy differences between multiple valued functions of one variable and of several variables．It was stated（ $\$ 23$ ）that multiple valued functions were diviled into branches each of which was single valued．There are two cases to consider when there is one vari－ able．and they are illustrated in the figure． Fither there is no value of x in the interval for which the different values of the function are equal and there is consequently a number I）which gives the least value of the lifference

 between any two branches，on there is a value of x for whith different branches have the same value．Now in the first ease，if x changes its value continumsly and if $f(x)$ be constrained also to change continuonsly，there is no possibility of pasing from one branch of the function to another ：but in the secome case such change is gusible for．when x pases throurh the value for which the branches have the same value．the function while constrained to change its．value continnously may turn off onto the other branch，although it need not do so．

In the case of a function $z=f(x, y)$ of two variables，it is not truse that if the values of the function nowhere become equal in or on the bombary of the region over which the function is detinel，then it is imposible to pass continnously from ome branch to another，and if $P(x, y)$ describes any continums elosed curve or circnit in the reaion，the value of $f(x, y)$ changing eontinuonsly must return to its original value when P has completed the descrip）－ tion of the eirenit．For sumpese the function z bee a luelicoidal surface $z=0$ tan－(y / x) ，or mather the por－ tion of that surface between two cylimitieal surfaces moncentrice with the axis of the holiconid．as is the ease of the surfate of the serew of a jack．and the cirenit le taken aromul the imererlinder．The multiple mum－ borine of the contome lines indicates the fact that the function is multiple valued．Clearly．each time that
 the eirenit is deseribed．the value of z is increanell hy the anmunt betweren the－Nu－ orsive branches or leave of the surface（an deereased by that amonnt if the cirenit
 ammesterl and the circuit camme he shrunk to mothing－which is the key to the situation．

TuEnsen．If the difference between the different values of a continums mul－ tiple valued function is never less than a finite mumber l）for any set（．c．y）of values of the variahle whether in wr urn the bematary of the rexim of detini－ tion．then the value $f(r ., y)$ of the function，constrained to change continumsty，
will return to its initial value when the point $P^{\prime}(x, y)$. deseribing a closed curve which can be shrunk to nothing, completes the circuit and returns to its starting point.

Now owing to the continuity of f throughout the region, it is possible to find a number δs so that $\left|f(x, y)-f\left(x^{\prime}, y^{\prime}\right)\right|<\epsilon$ when $\left|x-x^{\prime}\right|<\delta$ and $\left|y-y^{\prime}\right|<\delta$ no matter what points of the region (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ may be. Hence the values of f at any two points of a small region which lies within any circle of radius $\frac{1}{2} \delta$ cemmot differ by so much as the amoment I. If, then, the circuit is so small that it may be inclosed within such a circle, there is no possibility of passing from one value of f to another when the circuit is described and f must return to its initial value. Next let there be wiven any eireuit such that the value of f starting from a griven value $f(x . y)$ returns to that value when the circuit has
 been eompletely described. Suppose that a modification were introluced in the cireuit by enlarging on diminishing the inclosed area by a small area lying wholly within a cirele of radius $\frac{1}{2} \delta$. Consither the circuit $1 B C D E=1$ anc the moditied circuit $A B(" D E A$. As these circuits coincide except for the ares $B C=1)$ and $B(" D)$, it is only necessary to show that f takes on the same value at D whether 1) is reached from B by the way of C^{\prime} or by the way of (". But this is necessarily su) for the reason that both ares are within a circle of ratints $\frac{1}{2} \delta$. Then the value of f must still retum to its initial value $f(x, y)$ when the modified circuit is described. Now to emmplete the proef of the theorm. it suffices to note that any cirenit which ean be shrunk to nothing can be made up by piecing together a monber of small circuits as shewn in the firure. Them as the
 change in f around any whe of the shall cireuits is zero. the change must be zero around $2,3,4 . \cdots$ adjacent eirenits. and thus finally aromul the complete lare circuit.

Reducibility of circuits. If a cireuit can be shrunk away to mothings. it is said to be reducible; if it camme, it is said to be irreducible. In a simply commeted rerion all eirenits are reducible ; in a multiply emnected rewim there are an intinity of irrelucible circuits. Two circuits are said to be equicatent or reducible to eacla other when either ean be expanded or shrunk into the otloer. The change in the value of f on passing arounl two equivalent circuits from . 1 to 1 is the same, provided the circuits are described in the same directim. For consider the figure and the equivalent circuits A 1 ' 1 and If"A deseribed as indicated by the large armow. It is clear that either may be modified little by little, as indicated in the prow above. until it has been changed into the other. Hence the
 drange in the value of f aromel the two cirenits is the same. (br, as another proof, it may be observed that the combined circuit Ac:A ". 1 . Where the secomd is described as indicated by the small arrows. may be reqarded as a reducible cirenit which tonclese itself at 1 . Then the change of f aromel the cirenit is zero and f must lose as much on pasing from it to A by $C^{\prime \prime}$ as it gains in pasinger from a to I by C. Hence om pasing from 1 to A by $C^{\prime \prime}$ in the direction of the large arrows the gain in f must he the same as on passing hy C.

It is mow possible to see that any ciruit A BC may he reduced to cirruits armend
 boundaries. The figure shows this; for the circuit ABC"B.ADC"D. 1 is dearly
redurible to the cirmit 1 (1 . It must mot be forgoten that although the limes $A B$ and $B A$ coincible, the salues of the function are not necessarily the same on $A B$ as on BA but differ by the amomet of ehamge introduced in f on passing aromel the irreducible cirenit BC" 33 . Whe of the cases which arises most frequently in practice is that in whiel the suceesive hranches of $f(x, y)$ differ by a constant amount as in the ease $z=\tan ^{-1}(y / x)$ where 2π is the differ-
 ence between suceresive values of z for the same values of the bariables. If now a circuit such as A A 13 (" 33.1 be considered, where it is imagined that the orixin lies within $B C^{\prime \prime} B$, it is clear that the values of z along $A B$ and along $B . I$ differ by 2π. and whatever z gains on paswing from ito B will be lost on gassine from B to . 1 , although the values thongh whieh z chanses will be different in the two cases by the amount 2π. IIence the cireuit $1 B C^{\prime \prime} B$, wives the same changes for z as the simpler cireuit $B C^{\prime \prime} B$. In other words the result is obtained that if the different calues of a multiple vorhed function for the same culues of the cariables deffer by a comstant independent of the culues of the cariables. any cireuit ma!! be realuces to circuits about the bound-
 aries of the portions remored; in this case the lines going from the point i to the boundaries and back may be discarded.

EXERCISES

1. Draw the eomome lines amd sketeh the surfaces eomespondines to

$$
(\alpha) z=\frac{x+y}{x-y}, \quad z(0,0)=0 . \quad(\beta) z=\frac{r!}{x+y}, \quad z(0.0)=0 .
$$

Note that here and in the text whly one of the contour lines pases through the orisin althomgh an infinite mumber have it as a frontier point between two parts

2. Draw the contom lines and sketele the surfaces corresponding to

$$
(\alpha) z=\begin{array}{r}
r^{2}+y^{2}-1 \\
2 y
\end{array}, \quad(\beta) z=\frac{y^{2}}{x}, \quad(\gamma) z=\frac{r^{2}+2 y^{2}-1}{2 x^{2}+y^{2}-1}
$$

Examine partionlarly the behavion of the function in the nejefherhood of the apparent puints of intersertion of differemt eontour lines. Why apparent ?
3. State amb prowe for funtions of two independent variables the eremeraliza-
 for two variahles hy the aplication of Ex. 9. p. 40. in almost the ilentical mamer as for the cend of one varialble.
4. Ontline definitions and therems for functions of three variables. In particular inticate the contour surfoces of the functions

$$
\text { (r) } u=\frac{r+y+2 z}{r-y-z}, \quad(\beta) u=\frac{r^{2}+y^{2}+z^{2}}{r+y+z}, \quad(\gamma) u=\frac{r y}{z},
$$

 all the contom lines of z will eonvere toward the pe pints: amd conversely show
that if two different contour lines of z apparently cut in some juint. all the contur lines will converge toward that point, P and Q will there vanish, and z will 1 e undefined.
6. If D is the minimum difference between different values of a multiple valuen function. as in the text, and if the function returns to its initial value plus $I H^{\prime} \geqq I$ when P^{\prime} describes a circuit, show that it will return to its initial value phus $D^{\prime} \geqq I$ when P describes the new circuit formed by piecing on to the given circuit a small region which lies within a circle of radius $\frac{1}{2} \delta$.
7. Study the function $z=\tan ^{-1}(y / x)$, moting especially the relation between contour lines and the surface. To eliminate the origin at which the function is mot defined draw a small circle about the puint (0.0) and wherere that the region of the whole $s y$-plane outside this circle is not simply connected but may be made su by drawing a cut from the circumference off to an infinite distance. Study the variation of the function as P^{\prime} deseribes varions circuits.
8. Study the contour lines and the surfaces due to the functions

$$
(\alpha) z=\tan ^{-1} x y, \quad(\beta) z=\tan ^{-1} \frac{1-x^{2}}{1-y^{2}}, \quad(\gamma) z=\sin ^{-1}(x-y)
$$

Cut out the points where the functions are not definerl and follow the changes in the functions about such circuits as indieated in the figures of the text. How may the region of definition le made simply commected?
9. Consider the function $z=\tan ^{-1}(P / Q)$ where I^{\prime} and $(z$ are pelynomials and
 hat are not tangent (the polynomials have common solutions, which are not multiple roots.). Show that the value of the function will change hy $2 k \pi$ if (r, y) describes a circuit which includes k of the points. Illustrate by taking for P / Q the fractions in Ex. 2.
10. Consider regions or volumes in space. Shw that there are regions in which some circuits canme be shrmk away to mothing ; also regims in which all circuits may he shrunk away hut not all clowed surfaters.
46. First partial derivatives. Let $\because=J^{2}(x, y)$ l x a single vahnerl function, or one branell of a multiple valued finnetion, defined for (", l, and for all points in the neightorloon. If !/ be given the value $\%$. then a becomes a function $f^{\prime}\left(r^{\prime}\right.$, 1) of a alone, and if that function has a

 "fual to " and if $f^{\prime}(\prime$, !/) has a derivative when $!=3$. that derivative is alled the partial derivative of \because with respert to !/ at (", /) . To obtain these derivatives formally in the ase of a given function $f^{f}(, r, y)$ it is merely necessary to differentiate the function by the ordinary rules, treating ! as a constant when finding the derivative with respect to , r and r as a constant for the derivatire with respert to \% Notations are
for the x－derivative with similar ones for the y－derivative．The partial derivatives are the limits of the quotients

$$
\begin{equation*}
\lim _{h=0} \frac{f^{\prime}(\prime \prime+h \cdot l)-f^{\prime}(\prime, l)}{l}, \quad \lim _{k=0} \frac{f^{\prime}(\prime \prime l, l i)-f(\prime \prime, l)}{l_{i}} \tag{2}
\end{equation*}
$$

provided those limits exist．The applation of the Theorem of the Mean to the functions $f^{\prime}(, r, l)$ and,$f^{\prime}(1,!)$ gives

$$
\begin{array}{ll}
f(\prime \prime+l, l)-f^{\prime}(\prime, l)=l_{1} f_{l}^{\prime \prime}\left(\prime+\theta_{1} l_{1}, l\right), & 0<\theta_{1}<1 \tag{3}\\
f\left(\prime \prime, l+l_{1}\right)-f^{\prime}(\prime, l)=l_{i} f_{y}^{\prime}\left(\prime \prime, b+\theta_{2} l_{i}\right), & 0<\theta_{2}<1
\end{array}
$$

under the proper but evident restrictions（see
Two comments may be made．First．some writers denote the partial derivatives by the same symbols $d z / d x$ and $d z / d y$ as if z were a function of only one variable and were differentiated with respeet to that variable；and if they desire especially to call attention to the other variables which are held constant，they aftix them as sulneripts as shown in the last symbel given（p．98）．This notation is particularly prevalent in themodrnamics．As a matter of fact，it would monably be impos－ sible to devise a simple notation for partial derivatives which should he satisfac－ tory for all purposes．The only safe rule to adopt is to use a notation which is sufficiently explicit for the purposes in hand，and at all times to pay careful atten－ tion to what the derivative actually means in each ease．Secomb，it shomble moten that for points on the boundary of the region of definition of $f(x, y)$ there may be merely right－hand or left－hand partial derivatives or perhaps nome at all．For it is necessary that the lines $y=b$ and $x=a$ cut into the resion on che side on the （ther in the neighborthool of（ c, b ）if there is to be a derivative even one－sided ； and at a comer of the boundary it may happen that neither of these lines ents into the region．

Theorem．If $f^{\prime}(x, y)$ and its derivatives $f_{x}^{\prime \prime}$ and $f_{y}^{\prime \prime}$ are eontinuous fune－ tions of（ r ，，I）in the neighhorhood of（ 1, ，b），the increment Δf^{\prime} may be written in any of the three forms

$$
\begin{align*}
& \Delta t=f^{\prime}\left(\prime \prime+l, l+l_{i}\right)-t^{\prime}(\prime \prime, l) \\
& =l_{1} t_{s}^{\prime \prime}\left(11+\theta_{1} l_{1}, l_{1}\right)+l_{i} t_{y_{y}^{\prime \prime}}^{\prime \prime}\left(11+l_{1} \cdot l_{1}+\theta_{2} l_{i}\right) \\
& =l_{1} t_{n}^{\prime \prime}\left(\prime \prime+\theta l_{1} l_{l}+\theta l_{i}\right)+l_{i} t_{n}^{\prime \prime}\left(\prime \prime+\theta l_{i} l_{1}+\theta l_{i}\right) \tag{4}\\
& =l_{1} f_{n}^{\prime \prime}\left(\prime \prime l_{1}\right)+l_{1} f_{y}^{\prime \prime}\left(\prime \cdot l_{1}\right)+\zeta_{1} l_{1}+\zeta_{2} l_{1},
\end{align*}
$$

where the θ sin aroner fractions，the ζ 路 intinitesimals．
To prove the first form，add and subtrant $f\left(\right.$（ $1+h$ ．l_{1} ；then

$$
\begin{aligned}
& =h_{1} f_{x}^{\prime}\left(11+\theta_{1} h_{\cdot} h_{1}\right)+h_{1} t_{y}^{\prime}\left(1+h_{1} l_{1}+\theta_{2} l_{i}\right)
\end{aligned}
$$

by the apmication of the Theorem of the Mean for funtions of a single variable （ss 7，26）．The application maty be mate beraluse the function is continuman and the indieated derivatives exist．Now if the derivatives are alse comtimums，they may be expressed at
where ζ_{1}, ζ_{2} may be made as small as desired by taking h and k sufficiently small. Hence the thind form follows from the first. The second form, which is symmetric in the inerements h, k, may be obtained by writing $x=a+t h$ and $y=b+t k$. Then $f(r . y)=\Phi(t) . \Lambda \mathrm{s} f$ is continuous in (x, y), the function Φ is continuous in t and its increment is

$$
\Delta \Phi=f(a+\overline{t+\Delta t} h, b+\overline{t+\Delta t} k)-f(a+t h, b+t k) .
$$

This may he regarled as the increment of f taken from the point (x, y) with $\Delta t \cdot h$ ant $\Delta^{t} \cdot k$ as increment: in x and y. Hence $\Delta \Phi$ may be written as

$$
\Delta \Phi=\Delta t \cdot h_{1} f_{n}^{\prime}(t t+t h, b+t k)+\Delta t \cdot k f_{y}^{\prime}(a+t h, b+t k)+s_{1} \Delta t \cdot h+s_{2} \Delta t \cdot k .
$$

Now if $\Delta \Phi$ be divided by Δt and Δt be allowed to approach zero, it is seen that

$$
\lim \frac{\Delta \Phi}{\Delta t}=h f_{x}^{\prime}(t a+t h, b+t k)+k \cdot f_{y \prime}^{\prime}(n+t h, b+t k)=\frac{d \Phi}{d t} .
$$

The Theorem of the Mean may now be applied to Φ to give $\Phi(1)-\Phi(\theta)=1 \cdot \Phi^{\prime}(\theta)$, and hence

$$
\begin{aligned}
\Phi(1)-\Phi(0) & =f\left((\prime+h \cdot b+k)-f\left(a, l_{1}\right)\right. \\
& =\Delta f=h_{1} f_{s}^{\prime}\left((t+\theta h, l+\theta k)+k \cdot f_{y}^{\prime}((t+\theta h, b+\theta k) .\right.
\end{aligned}
$$

47. The furtiol difforments of f may lee defined as

$$
\begin{align*}
& d_{y, f} f^{\prime}=f_{y}^{\prime \prime} \Delta y, \quad \text { so that } \quad d_{!}=\Delta y \quad \frac{\|_{y,} f^{2}}{d_{y}}=\frac{\hat{c} f}{c!}, \tag{5}
\end{align*}
$$

 /f respertively are alone allowed to vary in forming the corresponding partial differentials. The totul difforontial

$$
\begin{equation*}
\jmath_{f}=\lambda_{x,} f+\|_{y, f}=\frac{\hat{c} f^{2}}{\hat{c}, t^{\prime}} d x^{x}+\frac{\hat{c} f}{\hat{c} y} d y \tag{i}
\end{equation*}
$$

which is the sum of the partial differentials, may le defined as that sum ; but it is better defined as that part of the increment

$$
\begin{equation*}
\Delta f^{\prime}=\frac{\partial f^{\prime}}{\partial \hat{c}, r} \Delta r^{\prime}+\frac{\hat{c} f^{\prime}}{\bar{c} y} \Delta!y+\zeta_{1} \Delta x+\zeta_{2} \Delta! \tag{7}
\end{equation*}
$$

Which is ohtained her neglecting the terms $\zeta_{1} \Delta x+\zeta_{2} \Delta!/$ whith are of higher order than Δx and Δy. The total differential may therefore be romputed hy finding the partial derivatives, multiplying them respectively $1 y$ d, x and d!, and adding.

The total differential of $a=f(r, y)$ may be formed for $\left(r_{0}, y_{0}\right)$ as

$$
\begin{equation*}
z-z_{0}=\left(\frac{\hat{\partial} f}{\hat{c}_{1}}\right)_{0}\left(. r-x_{0}\right)+\left(\frac{\hat{\partial} f}{\hat{c} y}\right)_{0}\left(y-y_{0}\right) \tag{8}
\end{equation*}
$$

where the values $x-x_{0}$ and $!/-y_{0}$ are given to the independent differ-

the erpation of a plane since i and y are independent. The difference $\Delta f-d f f^{\prime}$ which measures the distance from the plane to the surface along a parallel to the $\hat{\sim}$-axis is of higher order than $\sqrt{\Delta r^{2}+\Delta y^{2}}$; for

$$
\left|\frac{\Delta f^{2}-!f^{2}}{\sqrt{\Delta r^{2}+\Delta y^{2}}}\right|=\left|\frac{\zeta_{1} \Delta r+\zeta_{2} د!!}{\sqrt{\Delta_{1} r^{2}+\Delta!y^{2}}}\right|<\left|\zeta_{1}\right|+\left|\zeta_{2}\right| \doteq 0
$$

Hence the plane (8) will be defined as the trompht plane at (x_{0}, y_{0}, z_{0}) to the surface $a=f(r, y)$. The nomal to the plane is

$$
\begin{equation*}
\frac{r-x_{n}}{\left(\frac{\partial f}{\partial, r}\right)_{0}}=\frac{!!-!n_{n}}{\left(\frac{\tilde{c} f}{\tilde{c}!!}\right)_{0}}=\frac{\tilde{a}-\tilde{n}_{n}}{-1} \tag{9}
\end{equation*}
$$

which will be defined as the normol to the surifore at $\left(r_{0}, y_{0}, z_{0}\right)$. The tangent phane will cut the planes $!=!y_{0}$ and,$r=x_{0}$ in lines of which the slope is $f_{x_{0}}^{\prime \prime}$ and $f_{y_{l_{1}}}^{\prime}$. The surface will cut these planes in curves which are tangent to the lines.

In the figure, $P Q S R$ is a portion of the surface $a=f(x, y)$ and $P T^{\prime} T T^{\prime \prime}$ is a corresponding portion of its tangent plane at $P\left(r_{0}{ }_{0},!_{0}, \hat{A}_{0}\right)$. Now the various values may be rean off.

$$
\begin{aligned}
& P^{\prime} P^{\prime}=\Delta, r, \quad P^{\prime} r=\Delta_{x_{1}} f, \\
& P^{\prime} T^{\prime} / P^{\prime} P^{\prime}=f_{r}^{\prime \prime}, \quad P^{\prime} T^{\prime}=l_{v} f, \\
& l^{\prime} P^{\prime \prime}=\Delta!, \quad \quad P^{\prime \prime} l i=\Delta_{y} f^{\prime}, \\
& P^{\prime \prime} T^{\prime \prime} / I^{\prime} l^{\prime \prime}=t_{y}^{\prime \prime}, \quad P^{\prime \prime} T^{\prime \prime}=l_{y}, f^{\prime}, \\
& P^{\prime} T^{\prime}+I^{\prime \prime} T^{\prime \prime}=N^{\prime \prime} T, \quad N^{\prime \prime} \stackrel{\prime}{\prime \prime}=\Delta f, \\
& N^{+} T=\left\|_{t} f^{\prime}=\right\|_{\mu_{0}} t^{\prime}+\|_{y,} t_{t} .
\end{aligned}
$$

48. If the variables . r and ! are expressed as,$r=\phi(t)$ and ! $y=\psi(t)$ so that $f^{\prime}\left(. r^{\circ}\right.$, //) beromes a function of t, the derivative of $f t^{\circ}$ with respect to t is found from the experssion for the increment of f :
or

$$
\begin{gather*}
\frac{\Delta t}{\Delta t}=\frac{\bar{c} t^{\prime}}{\overline{c, r}} \frac{\Delta r}{\Delta t}+\frac{\bar{c} f}{c!!} \frac{\Delta!}{\Delta t}+\zeta_{1} \frac{\Delta r}{\Delta t}+\zeta_{2} \frac{\Delta!}{\Delta t} \\
\lim _{\Delta t=0} \frac{\Delta f^{\prime}}{\Delta t}=\frac{r t^{\prime}}{\prime t}=\frac{\bar{c} f^{\prime}}{\bar{c}, r} \frac{1, r}{d t}+\frac{\bar{c} f^{\prime} \|!!}{\bar{c}!!} \frac{d t}{d t} \tag{10}
\end{gather*}
$$

The conclusion requires that r and!/ should have finite derivatives with respeet to t. The differential of f^{\prime} as a function of t is
and hemere it appears that the differontiol hos the sorme form "s the totel differential. This result will be generalized later.

As a particular case of (10) suppose that x^{r} and y are so related that the point (x, y) moves along a line inclined at an angle τ to the $x-a x i s$. If s denote distance along the line, then

$$
\begin{gather*}
x=x_{0}+s \cos \tau, \quad y=y_{0}+s \sin \tau, \quad d x=\cos \tau d s, \quad d y=\sin \tau d s \tag{12}\\
\frac{d f}{d s}=\frac{\partial f}{\partial r} \frac{d x}{d s}+\frac{\partial f}{\partial y} \frac{d y}{\partial y}=f_{x}^{\prime \prime} \cos \tau+f_{y}^{\prime \prime} \sin \tau . \tag{13}
\end{gather*}
$$

and
The derivative (13) is called the divectionnt derimetive of f in the direction of the line. The partial derivatives $f_{x}^{\prime \prime}, f_{y}^{\prime \prime}$ are the particular directional derivatives along the directions of the x-axis and y-axis. The directional derivative of f in any direction is the rate of increase of f along that direction ; if $z=f(\cdot, r, y)$ le interpreted as a surfare, the directional derivative is the slope of the curve in which a plane throngh the line (12) and ${ }^{2}$ perpendicular to the,$? y$-plane cuts the surface. If $f(x, r, y)$ be represented hy its contour lines, the derivative at a point (x, y) in any direction is the limit of the ratio $\Delta f / \Delta s=\Delta r^{\prime} / \Delta s$ of the increase of f ', from one contonr line to a neighhoring one, to the distance between the lines in that direction. It is therefore evident that the derivative along any contour line is zero and that the derivative along the normal to the contour line is greater than in any other direction beeanse the clement in of the normal is less than d_{s} in any other direction. In fact, anart from intinitesimals of highere order,

$$
\begin{equation*}
\frac{\Delta n}{\Delta s}=\cos \psi \cdot \quad \frac{\Delta f}{\Delta s}=\frac{\Delta f^{\prime}}{\Delta n} \cos \psi, \quad \frac{d f}{d s}=\frac{d f^{\prime}}{d n} \cos \psi . \tag{14}
\end{equation*}
$$

Hence it is seen that the derirntire "lon,y "my, direction mu!y be formad by multiphying the derirutire cllony the normul hiy the cosine of the rayle, between that direction and the normol. The derivative along the normal to a contour line is called the nommil deriuntire of f and is, of course, a function of (x, y).
49. Next suppose that $u=f(\cdot x, y, \hat{\imath}, \cdots)$ is a function of any mumber of variables. The reasoning of the foregring paragrathos may bee repeatel without change except for the additional number of variables. The increment of f f will take any of the forms

$$
\begin{aligned}
& \Delta f=f((\prime+l, b+l, r+l, \cdots)-f(\iota, l, r, \cdots) \\
& =l_{1} f_{n}^{\prime \prime}\left(\mu+\theta_{1} h, l, c, \cdots\right)+l_{i} f_{y}^{\prime}\left(u+h, l+\theta_{2} k, c, \cdots\right) \\
& +l f_{z}^{\prime \prime}\left(\prime+h, l_{1}+l_{i} \cdot\left(+\theta_{3} l_{1}, \cdots\right)+\cdots\right.
\end{aligned}
$$

$$
\begin{aligned}
& =l_{1} t_{n}^{\prime \prime}+l_{!} t_{!\prime}^{\prime \prime}+!t_{=}^{\prime \prime}+\cdots+\zeta_{1} l_{1}+\zeta_{1}!+\zeta_{!}!+\cdots
\end{aligned}
$$

and the total differential will naturally he defined as

$$
\begin{equation*}
d f=\frac{\hat{c} f}{\hat{c}, r} \pi x+\frac{\hat{c} f}{\hat{c} y} d y+\frac{\hat{c} f}{\hat{c} z z} d z+\cdots, \tag{16}
\end{equation*}
$$

and finally if x, y, a, \ldots be functions of t, it follows that
and the differential of f as a function of t is still (16).
If the variables $, r, y, a, \ldots$ were expressed in terms of several new variables $r . s, \cdots$, the function f would become a function of those variables. To find the partial derivative of $f t$ with respert to one of those variables, say r, the remaining ones, s, \cdots, would be held constant and f would for the moment lecome a function of r alone, and so would,r, y, a, \cdots. Hence (17) may be applied to obtain the partial derivatives
and
These are the formulas for clunge of rarienthe analogous to (t) of $\stackrel{s}{s} 2$. If these equations be multiplied $b_{i} \Delta_{r}, \Delta x, \ldots$ and adden,

$$
\begin{aligned}
& \frac{\hat{c}_{f}}{\hat{c}_{r}} \Delta_{r}+\frac{\hat{c}_{f}}{\hat{c}_{s}} \Delta_{s}+\cdots=\frac{\hat{c}_{r} f^{\prime}}{\hat{c}_{r}}\left(\frac{\hat{c}_{r} r}{c_{r}} \Delta_{r}+\frac{\hat{c}_{r} r}{\hat{c}_{s}} \Delta_{r}+\cdots\right)+\frac{\hat{c}_{r} f}{\hat{c}_{!!}}\left(\frac{\tilde{c}_{!}}{c_{r}} \Delta_{r}+\cdots\right)+\cdots, \\
& \text { Or }
\end{aligned}
$$

for when r, s, \ldots are the independent variables, the parentleses alove

Tuensem. The expression of the total differential of a function of
 a, \cdots are the independent variables or functions of other indepombent variables r, s, \cdots : it heing assumed that all the derivatives which oremr, whether of f^{\prime} by $, x, y, z, \cdots$ or of x, y, z, \cdots hy r, s, \cdots, are antinnous functions.

By the same reasoning or he virtue of this theorem the rules
of the differential calculus will apply to calrulate the total differential of "ombinations or functions of several variables. If hy this means. or any other, there is atitine and expersion

$$
\begin{equation*}
d f=P(r, s, t, \cdots) d r+s(r, s, t, \cdots) d s+T(r, s, t, \cdots) d t+\cdots \tag{20}
\end{equation*}
$$

for the total differential in which $;, s, t, \ldots$ are indepmulent variables, the coefficients R, s, T, \cdots are the derivatives

$$
\begin{equation*}
R=\frac{\hat{\partial} f}{\hat{\partial r} r}, \quad s=\frac{\partial f}{\partial s}, \quad T=\frac{\hat{c} f}{\hat{\partial} t}, \ldots \tag{21}
\end{equation*}
$$

For in the equation $l f=R_{2} d l^{2}+S d s+T d t+\cdots=f_{r}^{\prime} d r+f_{s}^{\prime} d s+f_{t}^{\prime} d t+\cdots$, the variables r, s, t, \cdots, being independent, may be assigned increments absolutely at pleasure and if the particular choice $d r=1, l_{s}=d_{t}=\cdots=0$, be made, it follows that $R=t_{1}^{\prime \prime}$: and so on. The single equation (20) is thus equivalent to the equations (21) in number erfual to the number of the indelenendent variables.

As an example, consider the case of the function $\tan ^{-1}(y / x)$. By the rules (19,$)$,

$$
d \tan ^{-1} \frac{y}{x}=\frac{d(y / s)}{1+(y / s)^{2}}=\frac{d y / s-y d x / x^{2}}{1+(y / x)^{2}}=\frac{r x l y-y d x}{x^{2}+y^{2}} .
$$

Then

$$
\frac{\hat{c}}{\hat{c} x} \tan ^{-1} \frac{y}{x}=-\frac{y}{x^{2}+y^{2}}, \quad \frac{\hat{c}}{\hat{c} y} \tan ^{-1} \frac{y}{x}=\frac{x}{x^{2}+y^{2}}, \quad \text { by (20)-(21). }
$$

If y and c were expressed as $y=$ sinh sot and $s=c$ conh ost, then
and

$$
\frac{\frac{\partial f}{i r}=-\frac{s t}{\cosh 2 r s t}, \quad \frac{i f}{i s}=\frac{r t}{\cos \sin 2 r s t}, \quad \frac{i f}{i t}=\frac{r s}{\cosh 2 r s t} .}{} .
$$

EXERCISES

1. Find the partial derivatives $f_{y^{\prime}}^{\prime}$, f_{y}^{\prime} or f_{x}^{\prime}. f_{y}^{\prime}. f_{z}^{\prime} of these functions:
(c) $\log \left(x^{2}+y^{2}\right)$.
(阝) ex cosy y in z.
($\gamma) x^{2}+3 x y+y^{3}$,
($\delta) \frac{x y}{x+y}$,
(є) $\frac{e^{r y}}{e^{x}+\epsilon^{y}}$,
(5) $\ln \leq\left(\sin x+\sin ^{2} y+\sin ^{3} z\right)$.
(η) $\sin ^{-1} \frac{y}{i}$,
(θ) $\frac{z}{d} \frac{y}{x}$,
((1) $\tanh ^{-1} \sqrt{2}\binom{x y+y z+z s}{x^{2}+y^{2}+z^{2}}^{\frac{1}{2}}$.
2. Apply the definition (2) directly to the following the find the partial derivatives at the inlicated points:

> (a) $\frac{x y}{x+y}$ at $(1.1), \quad(\beta) x^{2}+3 x y+y^{3}$ at (0.0), and (γ) at $(1,1)$,
> ($\delta) \frac{x-y}{x+y}$ at (0.0) : also try differentiating and sul)stituting $(0,0)$.
3. Find the partial derivatives and hence the total differential of :
$(c x) \frac{e^{x y}}{x^{2}+y^{2}}$,
(β) $x \log y / z$,
(γ) $\sqrt{\prime}^{\prime} x^{2}-x^{2}-y^{2}$.
(8) $e^{-x} \sin y$.
(ϵ) $\epsilon^{\varepsilon^{2}}$ winh $x y$,
(5) $\log \tan \left(x+\frac{\pi}{4} y\right)$,
(η) $\left(\frac{y}{z}\right)^{x}$.
(θ) $\frac{x-y}{x+z}$,
(1) $\operatorname{lng}\left(\frac{3 x}{y^{2}}+\sqrt{1+\frac{z^{2} \cdot x^{2}}{y^{2}}}\right)$.
4. Find the general equations of the tangent plane and normal line to these surfaces and find the equations of the plane and line for the indicated $\left(x_{0}, y_{0}\right)$:
(α) the helicoid $z=k \tan ^{-1}(y / x)$,
$(1,0),(1,-1),(0,1)$,
(β) the paraboloid $4 p z=\left(x^{2}+y^{2}\right)$,
$(0, p),(2 p, 0),(p,-p)$,
(γ) the hemisphere $z=\sqrt{a^{2}-x^{2}-y^{2}}$,
$\left(0,-\frac{1}{2} a\right),\left(\frac{1}{2} a, \frac{1}{2} a\right),\left(\frac{1}{2} \sqrt{3} a, 0\right)$,
(δ) the cubic $x y z=1$, $(1,1,1),\left(-\frac{1}{2},-\frac{1}{2}, 4\right),\left(4, \frac{1}{2}, \frac{1}{2}\right)$.
5. Find the derivative with respect to t in these cases loy (10):
(c) $f=x^{2}+y^{2}, x=u \cos t, y=b \sin t$,
(β) $\tan ^{-1} \sqrt{\frac{y}{x}}, y=\cosh t, x=\sinh t$,
(γ) $\sin ^{-1}(x-y), x=3 t, y=4 t^{3}$,
(o) $\cos 2 x y, x=\tan ^{-1} t, y=\cot ^{-1} t$.
6. Find the directional derivative in the direction imlieated and obtain its momerical value at the pointsis indicater :

$$
(\alpha) x^{2} y, \tau=45,(1,2), \quad(\beta) \sin ^{2} x y, \tau=60^{\circ},(\sqrt{3},-2) .
$$

7. (α) Determine the maximum value of $d f / d$ from (13) by regarding τ as variable and aphying the ordinary rules. Show that the direction that gives the maximum is

$$
\boldsymbol{\tau}=\tan ^{-1} \frac{f_{y}^{\prime}}{f_{x}^{\prime}}, \quad \text { and then } \quad \frac{d f}{d x}=\sqrt{\left(\frac{\bar{c} f}{\hat{c} x}\right)^{2}+\left(\frac{\bar{c} f}{\frac{c}{c} y}\right)^{2}} .
$$

(β) Show that the sim of the sifures of the derivatives along any two perpendicular directions is the same and is the symare of the nomal derivative.
8. Show that $\left(f_{x^{\prime}}^{\prime}+y^{\prime} f_{y}^{\prime}\right) / \sqrt{1+y^{\prime 2}}$ and $\left(f_{s}^{\prime} y^{\prime}-f_{y}^{\prime}\right) / \sqrt{1+y^{\prime 2}}$ are the derivatives of f along the curve $y=\phi(x)$ and momal to the curve.
9. If $d f / d n$ is defined by the work of Ex. $7(\alpha)$, prove (14) as a consequence.
10. Apply the formulas for the change of variable to the following cases:
$(c r) r=\sqrt{ } x^{2}+y^{2}, \phi=\tan ^{-1} \frac{y}{x}$.
Find $\frac{\hat{c} f}{\hat{\partial} x}, \frac{\hat{c} f}{\partial y}, \sqrt{\left(\frac{\hat{c} f}{\partial x}\right)^{2}+\binom{\hat{c} f}{\hat{c} y}^{\prime}}$.
$(\beta) x=r \cos \phi, y=r \sin \phi$.
Find $\frac{\hat{f} f}{\hat{i},}, \frac{\hat{c} f}{\hat{c} \phi},\left(\frac{\hat{c} f}{\hat{i} r}\right)^{2}+\frac{1}{i^{2}}\left(\frac{\hat{c} f}{\partial \phi}\right)^{2}$.
(γ) $x=2 r-3 s+7, y=-r+8 s-9$. . Find $\frac{\bar{c} u}{i r}=4 x+2 y$ if $u=x^{2}-y^{2}$.
(δ) $\left\{\begin{array}{l}x=x^{\prime} \cos c x-y^{\prime} \sin \alpha, \\ y=x^{\prime} \sin \alpha+y^{\prime} \cos \alpha,\end{array}\right.$

(є) Prove $\hat{c}_{\hat{i} f}^{\hat{f}}+\frac{\hat{c} f}{\hat{f}}=0$ if $f(u, r)=f\left(x-y, y-r^{r}\right)$.
(ら) Lutt. $x^{\prime}=u x^{\prime}+b^{\prime} y^{\prime}+r^{\prime} z^{\prime} \cdot y=u^{\prime} x^{\prime}+b^{\prime} y^{\prime}+r^{\prime \prime} z^{\prime}, z=u^{\prime \prime} \cdot x^{\prime}+b^{\prime \prime} y^{\prime}+r^{\prime \prime} z^{\prime}$, where $\left\|, b, c^{\prime},\right\|^{\prime}, l^{\prime}, c^{\prime}, \|^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}$ are the direction cosines of mew rectangular axes with respece to the ohd. This transformation is salled an orthogemel trensformution. Show

$$
\binom{\hat{c} f}{\hat{i}, x}^{2}+\binom{\hat{c} f}{\hat{c} y}^{2}+\binom{\hat{c} f}{\hat{c} z}^{2}=\binom{\hat{c} f}{\hat{c} x^{\prime}}^{2}+\binom{\hat{c} f}{\hat{c} y^{\prime}}^{2}+\binom{\hat{i} f}{\hat{c} z^{\prime}}^{2}=\left(\frac{d f}{d m}\right)^{2} .
$$

11. 12) dime dimetional derivative in space; alse momal derivative and (stabblish (14) for this case. Find the nomal derivatixe of $f^{\prime}=r^{r} y z$ at ($\left.1, ~ 2, ~: 3\right)$.
1. Find the total differential and hence the patiald derivatives in Exs. 1, :3, and
(cx) les: $\left(x^{2}+y^{2}+z^{2}\right)$,
(β) y / x,
(r) $x^{2} y e^{r y y^{2}}$,
(8) $x y z \log x y z$,
(ϵ) $u=x^{2}-y^{2}, x=r \cos s t, y=s \sin r t$. Find ìu/èr. ìu/is, $\hat{c} u / \hat{c} t$.
(乡) $u=y / x, x=r \cos \phi \sin \theta, y=r \sin \phi \sin \theta$. Find $u_{r}^{\prime}, u_{\phi}^{\prime}, u_{\theta}^{\prime}$.
(η) $u=e^{x y}, x=\log \sqrt{r^{2}+s^{2}}, y=\tan ^{-1}(s / r)$. Find $u_{r}^{\prime}, u_{s}^{\prime}$.
2. If $\frac{\hat{c} f}{\hat{c} x}=\frac{\hat{c} g}{\hat{c} y}$ and $\frac{\partial f}{\hat{c} y}=-\frac{\hat{c} g}{\hat{c} x}$. show $\frac{\hat{c} f}{\hat{c} r}=\frac{1}{r} \frac{\hat{c} g}{\hat{c} \phi}$ and $\frac{1}{r} \frac{\hat{c} f}{\partial \phi}=-\frac{\hat{c} y}{\hat{c} r}$ if r, ϕ are polar coördinates and f, y are any two functions.
3. If $p(x, y, z, t)$ is the pressure in a fluid, or $\rho(x, y, z, t)$ is the density, depending on the position in the fluid and on the time, and if u, v, w are the velocities of the particles of the fluid along the axes,

Explain the meaning of each derivative and prove the formula.
15. If $z=x y$, interpret z as the area of a rectangle and mark $d_{x} z, \Delta_{y} z, \Delta z$ on the figure. Consider likewise $u=x y z$ as the volume of a rectangular parallele pripel.
16. Small crors. If $f(x, y)$ be a quantity intomined loy measurements on x and y, the error in f due to small errors $d x, d y$ in x and y may be estimated as $d f=f_{x}^{\prime} d x+f_{y}^{\prime} d y$ and the selative error may be taken as $d f \div f=d \log f$. Why is this?
(cr) Suppose $S=\frac{1}{2}$ a l, sin C be the area of a triangle with $t=10, b=20, C^{\prime}=30^{\circ}$. Find the error and the relative error if a is subject to an crror of 0.1 . Ans. $0.5,1 \%$.
(β) In (α) suppose C were liable to an error of 10^{\prime} of are.
Ans. $0.27, \frac{1}{2} \%$.
(γ) If a, b, C are liable to errors of 1%, the combined error in s may be 3.1%.
(δ) The radius r of a eapillary tube is atemmined from $13.6 \pi r^{2} l=w$ by fimding the weight w of a cohmu of mereury of length l. If $w=1$ gram with an error of $10^{-3} \mathrm{mr}$. and $l=10 \mathrm{~cm}$. with an error of 0.2 em.. dotemine the possible error and relative error in r. $\quad A n s .1 .05,0,5 \times 10^{-4}$, mostly due to error in l.
(ϵ) The fommata $r^{2}=a^{2}+b^{2}-2$ abcos (' is used to detumine ${ }^{2}$ where $a=20$, $b=20, C=60^{\circ}$ with posible eroms of 0.1 in α and b and $30^{\circ} \mathrm{in}\left({ }^{\prime}\right.$. Find the posible absolnte and relative errors in c.

Ans. $\frac{1}{4}, 1 \frac{1}{4} \%$.
(ζ) The possible percentage (rror of a proluct is the sum of the percentage errors of the factors.
(η) The constant g of gravity is determined foom $g=2$ st-2 by wherving a body fall. If s is set at 4 ft . and t detemined at abont $\frac{1}{2}$ see., show that the error in $\frac{1}{}$ is amost wholly due to the crror in t, that is, that s can be set very mueh more aceurately than t can be determined. Fon examble, find the ervor in t which would make the same error in y as an error of ${ }_{8}^{1}$ inch in s.
(θ) The constant g is determined by $g t^{2}=\pi^{2} l$ with a pendulum of length l and period t. Suppose t is determined ly taking the time 100 see. , if 100 beats of the penflum with a stol, watels that measures to $\frac{1}{5}$ sec. and that l may be measmred as 100 cm. aecurate to $\frac{1}{2}$ millimeter. Discuss the errors in y.
17. Let the courdinate x of a particle be $x=f\left(q_{1} \cdot \psi_{2}\right)$ and depend on two independent variables φ_{1}, φ_{2}. Show that the velocity and kinctic energy are

$$
c=f_{q_{1}}^{\prime} \frac{d \psi_{1}}{d t}+f_{\psi_{2}}^{\prime} \frac{d \psi_{2}}{d t}, \quad T=\frac{1}{2} m v^{2}=u_{11} \dot{q}_{1}^{2}+2 u_{10} \dot{q}_{1} \dot{q}_{2}+u_{22} \dot{q}_{2}^{2},
$$

where dots denote differentiation by t, and a_{11}, a_{12}, u_{22} are functions of (q_{1}, q_{2}). Show $\frac{\hat{c} v}{\hat{c} \dot{q}_{i}}=\frac{\partial x}{\hat{c} q_{i}}, i=1$. 2. and similarly for any number of variables q.
18. The helix $x=a \cos t, y=a \sin t, z=a t \tan \alpha$ cuts the sphere $x^{2}+y^{2}+z^{2}=$ $a^{2} \sec ^{2} \beta$ at $\sin ^{-1}(\sin \alpha \sin \beta)$.
19. Apply the Thenrem of the Mean to prove that $f(x, y, z)$ is a constant if $f_{x}^{\prime}=f_{y}^{\prime}=f_{z}^{\prime}=0$ is true for all values of x, y, z. Compare Theorem $16(\$ 27)$ and make the statement aceurate.
20. Transform $\frac{d f}{d x}=\sqrt{\left.\frac{\hat{c} f}{\partial r}\right)^{2}+\left(\frac{\hat{c} f}{\partial y}\right)^{2}+\left(\frac{\hat{c} f}{\hat{c} z}\right)^{2}}$ to (α) cylindrical and (β) polar coördinates ($\$ 40$).
21. Find the angle of intersection of the helix $x=2 \cos t, y=2 \sin t, z=t$ and the surface $x y z=1$ at their tirst intersection, that is, with $0<t<\frac{1}{4} \pi$.
22. Let f, y, h be three functions of (x, y, z). In cylindrical coürdinates ($\S 40$) form the combinations $F=f \cos \phi+g \sin \phi, G=-f \sin \phi+g \cos \phi, I I=h$. Transform

$$
\begin{array}{lll}
\text { (c) }) \frac{\hat{c} f}{\hat{c} x}+\frac{\hat{c} y}{\hat{c} y}+\frac{\hat{c} h}{\hat{c} z}, & \text { (阝) } \left.\frac{\hat{c} h}{\hat{c} y}-\frac{\hat{c} y}{\hat{c} z}, \quad \text { (}\right) \frac{\hat{c} y}{\hat{c} x}-\frac{\hat{c} f}{\hat{c} y}
\end{array}
$$

to cylindrical coördinates and express in terms of $F, G, I I$ in simplest form.
23. (iiven the functions y^{x} and $\left(z^{y}\right)^{x}$ and $z^{\left(y^{x}\right)}$. Find the total differentials and hence obtain the derivatives of x^{x} and $\left(x^{x}\right)^{x}$ and $x^{\left(x^{x}\right)}$.
50. Derivatives of higher order. If the first derivatives be again differentiated, there arise four derivatives $t_{s, \prime \prime}^{\prime \prime \prime}, t_{s, \prime \prime}^{\prime \prime \prime}, t_{y \prime \prime}^{\prime \prime \prime}$, $t_{\prime \prime \prime \prime}^{\prime \prime \prime}$ of the seroml order, where the first subscript denotes the first differentiation. These may also be written
where the derivative of $c f / c!/$ with respect to r is wittrn $\hat{c}^{2} f^{\prime}$ ere! with the variables in the same order as required in $I_{s} I_{y} f^{\prime}$ and opposite to the order of the subseripts in $f_{y x}^{\prime \prime \prime}$. This matter of order is usually of

 $f_{s y}^{\prime \prime \prime}\left(\cdot r_{0} \cdot!_{1,}\right)=f_{y, r}^{\prime \prime \prime}\left(\cdot r_{11} \cdot!_{0}\right)$.

The theorem may be provel by repeated application of the Theorem of the Mean. Fur

$$
\begin{aligned}
& {\left[f\left(x_{0}+h_{2} y_{0}+k\right)-f\left(c_{01} \cdot y_{10}+k\right)\right]-\left[f\left(x_{0}+h_{0} y_{0}\right)-f\left(c_{10} \cdot y_{10}\right)\right] }\left.=\left[\phi\left(y_{1}\right)+k\right)-\phi\left(y_{1}\right)\right] \\
&=\left[f\left(x_{0}+h_{0} \cdot y_{0}+k_{i}\right)-f\left(x_{0}+h \cdot y_{0}\right)\right]-\left[f\left(r_{10} \cdot y_{0}+k\right)-f\left(x_{0} \cdot y_{0}\right)\right]=\left[\psi\left(x_{0}+h\right)-\psi\left(x_{0}\right)\right]
\end{aligned}
$$

where $\phi(y)$ stamls for $f\left(x_{0}+h . y\right)-f\left(x_{0} . y\right)$ and $\psi(x)$ for $f\left(x . y_{0}+k\right)-f\left(x, y_{0}\right)$. Now

$$
\begin{aligned}
& \phi\left(y_{0}+k\right)-\phi\left(y_{0}\right)=k \phi^{\prime}\left(y_{0}+\theta k\right)=k\left[f_{y}^{\prime}\left(r_{0}+h \cdot y_{0}+\theta k_{i}\right)-f_{y}^{\prime}\left(r_{11} \cdot y_{11}+\theta k_{i}\right)\right] . \\
& \psi\left(x_{0}+h_{1}\right)-\psi\left(r_{0}\right)=h^{\prime} \psi^{\prime}\left(r_{0}+\theta^{\prime} k\right)=h_{[}\left[f_{x}^{\prime \prime}\left(x_{0}+\theta^{\prime} h_{0} y_{0}+k_{i}\right)-f_{x}^{\prime}\left(r_{0}+\theta^{\prime} k \cdot y_{0}\right)\right]
\end{aligned}
$$

by applying the Theorem of the Mean to $\phi(y)$ and $\psi(x)$ recrarded as functions of a single variable and then substituting. The results obtained are necessarily equal to each other ; but each of these is in form for another application of the theorem.

$$
\begin{array}{cc}
& k\left[f_{y}^{\prime}\left(x_{0}+h, y_{0}+\theta k\right)-f_{y}^{\prime}\left(x_{0} . y_{0}+\theta k\right)\right]=k h f_{y x}^{\prime \prime}\left(x_{0}+\eta k, y_{0}+\theta k\right), \\
& h\left[f_{x}^{\prime}\left(x_{0}+\theta^{\prime} h . y_{0}+k\right)-f_{x}^{\prime}\left(x_{0}+\theta^{\prime} h . y_{0}\right)\right]=h k f_{s y}^{\prime \prime}\left(x_{0}+\theta^{\prime} h, y_{0}+\eta^{\prime} k\right) . \\
\text { Hence } & f_{y, \prime}^{\prime \prime}\left(x_{0}+\eta h, y_{0}+\theta k\right)=f_{y_{y \prime} \prime \prime}^{\prime \prime}\left(x_{0}+\theta^{\prime} h, y_{0}+\eta^{\prime} k\right) .
\end{array}
$$

As the derivatives $f_{y,}^{\prime \prime}$. $f_{x y}^{\prime \prime \prime}$ are supposed to exist and be continuous in the variables $(x . y)$ at and in the neighborhood of $\left(x_{0}, y_{0}\right)$, the limit of each side of the equation exist, as $h \doteq 0, k \doteq 0$ and the equation is trne in the limit. Hence

$$
f_{y x}^{\prime \prime}\left(x_{0} \cdot y_{0}\right)=f_{x y}^{\prime \prime}\left(x_{0}, y_{0}\right)
$$

The differentiation of the three derivatives $f_{s \prime \prime}^{\prime \prime}, t_{r y}^{\prime \prime \prime}=f_{t \prime \prime}^{\prime \prime \prime}, f_{y, \prime \prime \prime \prime}^{\prime \prime}$ will give six derivatives of the third order. Consider $f^{\prime \prime \prime \prime \prime}$ and $f_{x, \prime \prime \prime}^{\prime \prime \prime}$. These may be written as $\left(f_{x}^{\prime \prime}\right)_{y y}^{\prime \prime}$ and ($\left.f_{s}^{\prime \prime}\right)_{y s}^{\prime \prime}$ and are erpual by the theorem just poved (provided the restrictions as to continuity and existence are satisfied). A similar conclusion holds for $t_{y, y}^{\prime \prime \prime \prime}$ and $f_{y m x}^{\prime \prime \prime \prime}$; the mumbre of distinct derivatives of the third order redures from six to four, just as the number of the serond order reduces from four to three. la like mamer for derixatives of any order, there rellue of the deriowtere deproms not on

 poperet torell, and the result may be written with the differentiations collected as

Analogous results hold for functions of any mumber of rarialbers. If sereral derivatives are to be found and added together, at symbolic form of writing is frequently advantageons. For example,

51. It is sometimes neressary to whnye the romernlo in higher derisatises, particularly in those of the second orderr. This is done by a repeated apmlieation of (18). Thus $f_{r=r}^{\prime \prime \prime}$ would be found byy differentiatinge the first equation with resuret to r, ancl $f_{s=\prime \prime \prime}^{\prime \prime}$ bey differentiating the first ly s or the serome by r, and so one (ompare]. 1 ". The exereise below illustrates the methom. It may be remarked that the use of highor "litforentiols is often of andrantage, although these differentials, like the ligher differentials of functions of a single variable (Exs. 10, 16-19, 1. (90). have the disadrantage that their form depends on what the independent varialles are. This is also ilhstrated below. It should be partionlarl home in minat that the wreat value of the first differential
lies in the facts that it may be treated like a finite quantity and that its form is independent of the variables.

To change the variable in $r_{x x}^{\prime \prime}+r_{y y}^{\prime \prime}$ to polar coürdinates and show

$$
\frac{\hat{i}^{2} v}{\hat{c} x^{2}}+\frac{\hat{\lambda}^{2} v}{\hat{c} y^{2}}=\frac{\hat{c}^{2} v}{\hat{c} r^{2}}+\frac{1}{r} \frac{\hat{c} v}{\hat{c} r}+\frac{1}{r^{2}} \frac{\hat{c}^{2} v}{\hat{c} \phi^{2}}, \quad \begin{cases}r=r \cos \phi . & y=r \sin \phi . \\ r=\sqrt{x^{2}+y^{2}}, & \phi=\tan ^{-1}(y / x) .\end{cases}
$$

Then

$$
\frac{\hat{c} v}{\hat{c} x}=\frac{\hat{c} v}{\hat{c} r} \frac{\hat{c} r}{\hat{c}}+\frac{\hat{c} v}{\hat{c} \phi} \frac{\hat{c} \phi}{\bar{c},}, \quad \frac{\hat{c} v}{\hat{c} y}=\frac{\hat{c} v}{\hat{c} r} \hat{c} y+\frac{\hat{c} y}{\hat{i} \phi} \frac{\hat{c} \phi}{\hat{c} y}
$$

ly applying (18) directly with x, y taking the place of r, s, \cdots and r, ϕ the place of x, y, z, \cdots. These expressions may be reduced so that

$$
\begin{aligned}
& \frac{\hat{c} v}{\hat{c}, t}=\frac{\hat{c} v}{\hat{c} r} \frac{x}{\sqrt{x^{2}+y^{2}}}+\frac{\hat{i} c}{\hat{c} \phi} \frac{-y}{x^{2}+y^{2}}=\frac{\hat{c} t}{\hat{c} r} \frac{\hat{r}}{r}+\frac{\hat{c} x}{\hat{c} \phi}-y .
\end{aligned}
$$

Next

The differentiations of r / r and $-y / r^{2}$ mas lee perfomed as indicated with respect to r, ϕ, remembering that, as $r . \phi$ are independent. the derivative of r by ϕ is 0 . Then
lu like manner $\hat{c}^{2} \boldsymbol{i} / \hat{c} y^{2}$ may be fomm, and the sum of the two derivatives rednces to the desired expression. This methon is long and tedions thongh straishtforward.

It is considerably shonter to stant with the expression in phar courrhates amb transform by the same method to the one in rectangular woidrtinates. Thas

$$
\begin{align*}
& \hat{i v}, \cdots \phi-\frac{\hat{i}}{\hat{C}!} \sin \phi . \\
& \text { Then } \\
& \text { Mr } \tag{23}
\end{align*}
$$

 wiven for purtiel differentiols of the secomed ordor. "ath of which would ranish if f
 them. 'fhus the secont differentials of the inderemdent variables are zero. The
second total differential would be obtained by differentiating the first total differential.

$$
d^{2} f=d d f=d\left(\frac{\hat{c} f}{\hat{c} x} d x+\frac{\hat{c} f}{\hat{c} y} d y\right)=d^{\hat{c} f} d x+d \frac{\hat{c} f}{\hat{c} y} d y+\frac{\hat{c} f}{\hat{c} x} d d^{2} x+\frac{\hat{c} f}{\hat{c} y} d^{2} y
$$

but

$$
d \frac{\hat{c} f}{\hat{c} x}=\frac{\hat{c}^{2} f}{\hat{c} x^{2}} d x+\frac{\hat{c}^{2} f}{\hat{c} y \hat{c} \cdot x} d y, \quad d \frac{\hat{c} f}{\hat{c} y}=\frac{\hat{c}^{2} f}{\hat{c} x \hat{c} y} d x+\frac{\hat{c}^{2} f}{\hat{c} y^{2}} d y,
$$

and

$$
\begin{equation*}
d^{2} f=\frac{\hat{c}^{2} f}{\hat{c} x^{2}} d x^{2}+2 \frac{\hat{i}^{2} f}{\hat{c} x y} d x d y+\frac{\hat{c}^{2} f}{\hat{c} y^{2}} d y^{2}+\frac{\hat{c} f}{\hat{c} x} d^{2} x+\frac{\hat{c} f}{\hat{c} y} d^{2} y . \tag{24}
\end{equation*}
$$

The last two terms vanish and the total differential reduces to the first three terms if x and y are the independent variables; and in this case the second derivatives, $f_{x x}^{\prime \prime}, f_{x y}^{\prime \prime}, f_{y,}^{\prime \prime}$, are the coefficients of $d x^{2}, 2 d x d y, d y^{2}$, which enables those derivatives to be found by an extension of the method of finding the first derivatives ($\$ 49$). The method is particularly useful when all the second derivatives are needed.

The problem of the change of variable nay now be treated. Let

$$
\begin{aligned}
d^{2} v & =\frac{\hat{c}^{2} v}{\hat{c} r^{2}} d x^{2}+2 \frac{\hat{\tau}^{2} v}{\hat{c} x^{2}} d x d y+\frac{\hat{c}^{2} v}{\hat{c} y^{2}} d y^{2} \\
& =\frac{\hat{c}^{2} v}{\hat{c} r^{2}} d r^{2}+2 \frac{\hat{c}^{2} v}{\hat{i} r \dot{c} \phi} d r d \phi+\frac{\hat{c}^{2} v}{\hat{c} \phi^{2}} d \phi^{2}+\frac{\hat{c} v}{\hat{c} r} d^{2} r+\frac{\hat{c} v}{\hat{c} \phi} d^{2} \phi,
\end{aligned}
$$

where x, y are the independent variables and r, ϕ other variables dependent on them - in this case, defined by the relations for polar coürdinates. Then
or $\quad d r=\cos \phi d x+\sin \phi d y, \quad r d \phi=-\sin \phi d x+\cos \phi d y$.
Then $\quad d^{2} r=(-\sin \phi d r+\cos \phi d y) d \phi=m \phi l \phi=r^{2}\left(\phi^{2}\right.$,
$d r d \phi+r d^{2} \phi=-(\cos \phi d x+\sin \phi d y) d \phi=-d r d \phi$,
where the differentials of $d r$ and rld have been fomnd sulbject to $d^{2}, x=d^{2} y=0$. Hence $d^{2} r=r l^{2}$ and $r l^{2} \phi=-2 d r d \phi$. These may be sul)stituted in $d^{2} c$ which becomes

Next the values of $d r^{2}$, drd $d \phi \phi^{2}$ may be substituted from (2.0) and

$$
\begin{aligned}
& +\left[\frac{\hat{c}^{2} v}{\hat{c} r^{2}} \sin ^{2} \phi+\frac{2}{r}\left(\frac{\hat{c}^{2} v}{\hat{c} r^{\hat{c}} \phi}-\frac{1}{r} \frac{\hat{c} v}{\hat{c} \phi}\right) \cos \phi \sin \phi+\left(\frac{\hat{c}^{2} v}{\hat{c} \phi^{2}}+r^{\hat{r}} \frac{\hat{c}}{\hat{c} r}\right) \frac{c^{2} x^{2} \phi}{r^{2}}\right] d y^{2} .
\end{aligned}
$$

Thus finally the derisatives $v_{x x}^{\prime \prime}$. $x_{s y}^{\prime \prime}$. $x_{y, \prime \prime}^{\prime \prime}$ are the three hrackets which are the "oetticients of $d x^{2}, 2 d x d y, d y^{2}$. The value of $c_{y, \prime \prime}^{\prime \prime}+x_{y,}^{\prime \prime}$ is as found before.
52. The condition $f_{r r y}^{\prime \prime \prime}=f_{y, \prime \prime \prime}^{\prime \prime \prime}$ which subsists in acrordance with the fundamental theorem of sis gives the mondition thent

Lee the totul differential of some fiunrtion $f(. r$, , I). In fuct
(17l

$$
\begin{align*}
& \frac{\hat{c}}{\hat{c} y} \frac{\hat{c} f}{c_{1},}=\frac{\hat{c} M}{c_{y} y}=\frac{\hat{c} I}{\hat{c}_{1} r^{\prime}}=\frac{\hat{c}}{c_{0}, r} \frac{\hat{c} f}{\hat{c} y} \tag{26}
\end{align*}
$$

The second form, where the variables which are constant during the differentiation are explieitly indieated as subseripts, is more common in works on thermodynamis.s. It will be proved later that conversely if this relation (20) holds, the expression Mol. + Nil! is the total differential of some funetion, and the method of finding the function will also be given (ss ! $2,1 \geq 4$). In case Mar + Noly is the differential of some function $f^{f}(, r$, !) it is usually alled an formt differentiol.

The applieation of the condition for an exact differential may lee made in conmertion with a prohlem in the modynamies. Let $i s$ and U be the entropy and energy of a gas or rapor inclosed in a receptatele of volume $r^{\text {a }}$ and suljereted to the pressure f^{\prime} at the trmperature T. The fundamental equation of thermodrnamios, emmeeting the differentials of energy, entrops, and volme, is

$$
\begin{equation*}
d U=T d s-p d r ; \quad \text { and } \quad\left(\frac{d T}{d r}\right)_{s}=-\left(\frac{d p^{\prime}}{d s}\right)_{v} \tag{27}
\end{equation*}
$$

is the condition that 11° he a total differential. Now, any two of the five quantities l°. s. r^{\prime}, T^{\prime} may be taken as indelendent variahles. In

 ratiation to express the condition (26) womle wive rise to a relation between the derivatives.

If p. T were desired as independent variables. the change of variable
with

$$
\begin{aligned}
& d s=\left(\frac{d x}{d_{p}}\right)_{T} d_{p}+\left(\frac{d s}{d T}\right)_{p} d T, \quad d x=\binom{d_{p}}{d_{p}}_{V} d_{p}+\left(\frac{d x}{d T}\right)_{p} d T
\end{aligned}
$$

whould be matle. The expression of the combition is then
or

$$
\begin{aligned}
& \left.\left\{\begin{array}{c}
d \\
d T
\end{array} T\binom{d s}{d_{p}}_{T}-\mu\binom{d x}{d_{p}}_{T}\right\}_{p}=\left\{\begin{array}{l}
d \\
d_{p}
\end{array} \left\lvert\, T\binom{d s}{d T}_{p}-p\binom{d e}{d T}_{p}\right.\right]\right\}_{T}
\end{aligned}
$$

where the differentiation on the left is mate with p^{\prime} 'onstant and that on the right

 whitly give

$$
\begin{equation*}
\left(\frac{d s}{d p}\right)_{T}=-\left(\frac{d x}{d T}\right)_{p} \quad \text { or } \quad \frac{1}{T}\left(\frac{T l d}{d p}\right)_{T}=-\left(\frac{d v}{d T}\right)_{p} . \tag{28}
\end{equation*}
$$

The importance of the test for an cxact differential lies not only in the relations obtained between the derivatives as above, but also in the fact that in applied mathematies a sreat many expressions are written as differentials which are not the total differentials of ayy fimetions and which must be distinguished from exact differentials. For instance if all denote the infinitesimal portion of heat added to the gas or varur above considerem. the fundamental equation is expressed as $d I I=d l^{*}+p d x$. That is to say, the amount of heat alded is equal to the increase in the enerey plus the work hone by the gas in expanding. Now dIl is not the differential of any function $H\left(C^{*}, ~ v\right)$; it is $d 心=d H / T$ which is the differential, and this is one reason for introlucing the entrops S. Asain if the forces T, Y act on a particle. the work dome during the displacement through the are dss $=\sqrt{d . c^{2}}+d y^{2}$ is written dll = Xik + Ydy. It may happen that this is the total differential of some function; indeed, if
where the nesative sign is introlnced in acerrdance with eustom, the function V^{r} is called the potentinl eneroy of the particle. In general, howeser, there is no potential enersy function V, and $d W$ is not an exact differential ; this is always true when part of the work is due to forces of frietion. A notation which should distinguish between exact differentials and those which are not exact is much more needed than a motation to distinguish between partial and ordinary derivatives; but there appars to be none.

Many of the physical magnitudes of thermodynanics are expressed as derivatives and such relations as (2(9) establish relations between the magnitules, Some definitions:

$$
\begin{aligned}
& \text { specific herat at constant pressume is } \quad \prime^{\prime},\binom{a I I}{h T}_{p}=T\left(\frac{d s}{d T}\right)_{p} \text {, } \\
& \text { latent heat of expansion } \\
& \text { coefficient of culvic expansion } \\
& \text { i.s. } \quad L_{r}=\binom{d I I I}{d v}_{T}=T\left(\frac{d s}{d v}\right)_{T} \text {, } \\
& \text { is } \quad \alpha_{p}=\frac{1}{v}\left(\frac{d v}{l T}\right)_{p} \text {, } \\
& \text { modulus of (lasticity (isothermal) is } E_{T}=-v\left(\frac{l_{l^{\prime}}}{l v}\right)_{T} \text {, } \\
& \text { monkulus of clasticity (adiabatic) is } \quad E_{s}=-v\binom{n_{2}}{d r}_{s} .
\end{aligned}
$$

53. A prelymmial is said to be homogrenems when earle of its terms is of the same order when all the variathes are eonsidered. A deftuition of homogeneity whirll indudes this cetse and is applionhle to mone

out is called the order of homogeneity of the function. In symbols the condition for homogeneity of order n is

$$
\begin{equation*}
f\left(\lambda . x, \lambda y, \lambda_{z}, \cdots\right)=\lambda^{n} f(x, y, z, \cdots) \tag{29}
\end{equation*}
$$

Thus

$$
x e^{\frac{y}{x}}+\frac{y^{2}}{x}, \quad \frac{x y}{z^{2}}+\tan ^{-1} \frac{x}{z}, \quad \frac{1}{\sqrt{x^{2}+y^{2}}}
$$

are homogeneons functions of order $1,0,-1$ respectively. To test a function for homogeneity it is merely necessary to replace all the variables by λ times the variables and see if λ factors out completely. The homogeneity may usually he seen without the test.

If the identity (29) be differentiated with respect to λ, with $x^{\prime}=\lambda x$, etc',

$$
\left(x \frac{\partial}{\partial x^{\prime}}+y \frac{\partial}{\partial y^{\prime}}+z \frac{\partial}{\partial z^{\prime}}+\cdots\right) f(\lambda r, \lambda y, \lambda z, \cdots)=n \lambda^{n-1} f(x, y, \approx, \cdots) .
$$

Λ second differentiation with resject to λ wonld give

$$
\begin{aligned}
& \left(x^{2} \frac{\hat{\partial}^{2}}{\partial x^{12}}+x y \frac{\hat{\partial}^{2}}{\partial x^{\prime} \partial y^{\prime}}+x a \frac{\hat{c}^{2}}{\partial x^{\prime} \hat{c} z^{\prime}}+\cdots\right) f+\left(y x \frac{\hat{\partial}^{2}}{\partial y^{\prime} \hat{c}, x^{\prime}}+y^{2} \frac{\partial^{2}}{\partial y^{2}}+y y^{z} \frac{\hat{c}^{2}}{\partial y^{\prime} \partial z^{\prime}}+\cdots\right) f \\
& +\left(\approx x \frac{\partial^{2}}{\partial z^{\prime} \partial x^{\prime}}+\cdots y \frac{\partial^{2}}{\partial z^{\prime} \partial y^{\prime}}+\approx^{2} \frac{\partial^{2}}{\partial z^{\prime 2}}+\cdots\right) f+\cdots=n(n-1) \lambda^{n-2} f(x, y, \approx, \cdots) \\
& \text { or }\left(x^{2} \frac{\partial^{2}}{\partial x^{\prime 2}}+2 x y \frac{\hat{c}^{2}}{\partial x^{2} \hat{c} y^{\prime}}+y^{2} \frac{\hat{\partial}^{2}}{\hat{c}, y^{\prime 2}}+\cdots\right) f=n(n-1) \lambda^{n-2} f(x, y, z, \cdots) \text {. }
\end{aligned}
$$

Now if λ be set equal to 1 in these equations, then $x^{\prime}=x$ and

$$
\begin{gather*}
x \frac{\partial f}{\partial, r}+y \frac{\partial f}{c y}+i \frac{\partial f}{\partial z}+\cdots=n f(r, y, z, \cdots), \tag{30}\\
r^{2} \frac{\hat{c}^{2} f}{\partial r^{2}}+2 r y \frac{c^{2} f}{\partial, r y}+y^{2} \frac{\partial^{2} f}{\partial y^{2}}+2, r, \frac{c^{2} f}{c, r}+\cdots=n(n-1) f(\cdot r, y, z, \cdots) .
\end{gather*}
$$

In words, these equations state that the sum of the partial derivatives each multiplied by the variable with respect to which the differentiation is performed is n times the function if the function is homogeneons of order n : and that the smm of the second derivatives each multiplied by the variables involved and by 1 or 2 , arcording as the variable is repeated or not, is $n(n-1)$ times the function. The general formula ohtained hy differentiating any number of times with respect to λ may be expressed symbelically in the comemient form

$$
\begin{equation*}
\left(\cdot \cdot I_{x}+!I I_{y}+\ldots I I_{z}+\cdots\right)^{k} f=n(n-1) \cdots(n-k+1) f \tag{31}
\end{equation*}
$$

This is known as Eintors formmlu on homogeneons functions.
It is worth while noting that in a eertain sense every equation which represents a seometric or physial relation is homogenems. For instance. in geometry the magnitudes that arise may he lemgeths, areas, volumes, or angles. These magnitheles are expressed ats a momber times a unit; thas, $\sqrt{2} \mathrm{ft} .9 \mathrm{sq} . \mathrm{yd} ., \pi \mathrm{ch} . \mathrm{ft}$.

In adding and subtraeting, the terms must be like quantities; lengths admed to lengths, areas to areas, ete. The fundomentul unit is taken as length. The muits of area, volmme, and angle are derived therefrom. 'Thus the area of a rectangle or the volume of a rectangular parallelepiped is
$A=a \mathrm{ft} . \times b \mathrm{ft} .=a b \mathrm{ft}^{2}=a b \mathrm{~s}_{\mathrm{f}} \mathrm{ft} ., \quad V^{r}=a \mathrm{ft} . \times b \mathrm{ft} . \times c \mathrm{ft} .=a b \mathrm{ft} .{ }^{3}=a b c \mathrm{cu} . \mathrm{ft} .$,
and the mits sif. ft., ell. ft. are denoted as $\mathrm{ft} .{ }^{2}$, $\mathrm{ft} .^{3}$ just as if the simple unit ft . had been treated as a literal quantity and included in the multiplieation. An area or volume is therefore considered as a compound quantity consisting of a number which gives its magnitute and a mit which gives its quality or dimensions. If L denote length and $[L]$ denote "of the dimensions of length," and if similar notations be introduced for area and volume, the equations $[-1]=[L]^{2}$ and $\left[\mathrm{V}^{*}\right]=[L]^{3}$ state that the dimensions of area are squares of length, and of volumes, cubes of lengths. If it be reealled that for purposes of analysis an angle is measured by the ratio of the are subtemed to the ratins of the eirele, the dimensions of angle are seen to be nil, as the refinition involves the ratio of like magnitules and mast therefore be a pure mumber.

When geometric facts are represented analytically, either of two alternatives is open: 1°, the equations may be reqarded as existing between mere numbers ; or 2°, as between actual magnitudes. Sometines one method is preferable, sometimes the other. Thus the equation $x^{2}+y^{2}=r^{2}$ of a circle may be interpreted as 1°. the stim of the scpures of the coordinates (numbers) is eonstant ; or 2 , the sum of the spuares on the legs of a right triangle is equal to the square on the hypotemuse (l'ythagorean Theorem). The second interpretation better sets forth the true inwardness of the equation. Consider in like maner the parabola $y^{2}=4 p x$. Generally y and x are regarded as mere numbers, but they may equally be looked upon as lengths and then the statement is that the square upm the ordinate equals the rectangle npon the abseissia and the constant length $4 p$; this may be interpreted into an actual construction for the parabola, because a sutare equivalent to a rectangle may be constructed.

In the last interpretation the constant p was assigned the dimensions of length so as to mender the equation homogeneons in dimensions. with each term of the dimensions of area or $[L]^{2}$. It will be reealled, however, that in the detinition of the parabola, the guantity p actually has the dimensions of length. being half the distance from the fixed point to the fixed line (focus and dimetrix). This is merely another corroboration of the initial statement that thr erpations which actually arise in comsidering geometric problems are homogeneons in their dimensions, and must be so for the reason that in stating the first equation like magnitudes must be eompared with like masnitudes.

The question of dimensions may be earried along through such processes as differentiation and integration. For let y have the dimensions [y] and x the dimensions $[x]$. Then Δy, the difference of two y s, mnst still have the dimensions $[y]$ and Δx the dimensions $[x]$. The gnotient $\Delta y / \Delta x$ then has the dimensions $[y] /[x]$. For exanple the relations for area and for volume of revolntion,

$$
\frac{d .1}{d x}=y, \quad \frac{d \mathrm{~V}^{r}}{d x}=\pi y^{2}, \quad \text { give }\left[\frac{d .1}{d x}\right]=\frac{[\Lambda]}{[L]}=[L], \quad\left[\begin{array}{c}
d \mathrm{~V}^{r} \\
d, x
\end{array}\right]=\frac{\left[\mathrm{J}^{+}\right]}{[L]}=[L]^{2}
$$

and the dimensions of the left-hand side check with those of the right-hand side. As integration is the limit of a smm. the dimensions of an intergal are the product
of the dimensions of the function to be interrated and of the differential $d x$. Thus if

$$
y=\int_{0}^{x} \frac{17 x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c
$$

were an integral arising in actual practice. the very fact that a^{2} and x^{2} are added would show that they must have the same dimensions. If the dimensions of x be [L], then

$$
\left[\int_{0}^{r} \frac{u l x}{u^{2}+x^{2}}\right]=\left[\frac{1}{u^{2}+x^{2}}\right][d x]=\frac{1}{[L]^{2}}[L]=\frac{1}{[L]}=[y]
$$

and this checks with the dimensions on the right which are $[L]^{-1}$, since angle has no dimensions. As a rule, the theory of dimensions is neglected in pure mathematics: but it can nevertheless be made excerelingly useful and instructive.

In meehanies the frombementel units are length, mass. and time : and are denoted by $[L] \cdot[M] \cdot[T]$. The fullowing talnle eontains some derived mits:

$$
\begin{array}{lllll}
\text { velocity } & \frac{[L]}{[T]}, & \text { acceleration } & \frac{[L]}{[T]^{2}}, & \text { force }
\end{array} \frac{[M][L]}{[T]^{2}},
$$

With the aid of a table like this it is eass to convert magnitures in ome set of mats as ft., lb., sec., to another system, say em.. \&m.. sece. All that is nesersary is to substitute for each inclividnal mit its valae in the mew system. Thus

$$
y=32 \frac{1}{6} \frac{\mathrm{ft} .}{\text { sec. }^{2}}, \quad 1 \mathrm{ft}=30.48 \mathrm{~cm} . . \quad y=32_{1}^{1} \times 30.48 \frac{\mathrm{~cm} .}{\text { sec. }^{2}}=980 \frac{1}{2} \frac{\mathrm{~cm} .}{\text { sec. }^{2}}
$$

EXERCISES

(α) $\sin -1 \frac{y}{x}$,
(अ) $\ln \frac{x^{2}+y^{2}}{x y}$,
($\gamma) \phi\left(\frac{!!}{r}\right)+\psi(\cdot r y)$.
2. (ompute $i^{2} x / \bar{c} y^{2}$ in polar corimbantes by the straightforwarl methot.
3. Show that $n^{2} \frac{\hat{c}^{2} v^{2}}{\hat{c} x^{2}}=\frac{\hat{c}^{2} \hat{c}^{2}}{\hat{c} t^{2}}$ if $x=f(x+u t)+\phi(x-u t)$.
4. Show that this equation is unchanged in form by the transformation :

$$
\frac{\hat{i}^{2} f^{\prime}}{\hat{c} t^{2}}+2 x y^{\hat{c}} \frac{\hat{c} f}{\hat{c},}+2\left(y-y^{3}\right) \frac{\hat{c} f}{\hat{c} y}+x^{2} y^{2} f=0 ; \quad u=r y . \quad x=1 / y
$$

5. In polar ctänlimates $z=r$ (")s A. $r=r \sin A$ cos $\phi .!/=r \sin A \sin \phi$ in space

$$
r=r_{1} \text { rns } \phi . \quad!=r_{1} \sin \phi . \quad \text { mn } \quad z=r \cos \phi . \quad r_{1}=r \sin \phi .
$$

show $Z=\frac{1}{r} \frac{\hat{c} \ell}{\partial}, \quad X \cos \phi+I \sin \phi=-\frac{1 \hat{\imath} Q}{r} \hat{\imath} z \quad F \sin \phi-G \cos \phi=\frac{1}{r} \frac{\hat{c} \ell}{\partial}$,
where $r^{-1}(\ell=\hat{c} f / \hat{c}$. (of impmance for the Hertz ascillator.) Take $\hat{i} f / \hat{c} \phi=0$.
7. Aplly the test for an exact differential to each of the following, and write by inspection the functions corverponding to the exact differentials:
(c) $3 x d x+y^{2} d y$.
(β) $3 x y d x+x^{3} d y$.
(1) $x^{2} y d x+y^{2} d y$,
($\delta) \frac{r d c}{} \frac{r d d y}{x^{2}+y^{2}}$,
($)^{x d x-y d y} \begin{gathered}x \\ x^{2}+y^{2}\end{gathered}$,
(5) $\frac{y d x-x d y}{x^{2}+y^{2}}$,
(7) $\left(4 x^{3}+3 x^{2} y+y^{2}\right) d x+\left(x^{3}+2 x y+3 y^{3}\right) d y$.
(θ) $x^{2} y^{2}(d x+d y)$.
8. Expmess thu comelitions that $P(x, y, z) d x+(x(x, y, z) d y+R(x, y, z) d z$ be an exact differential $d F(x, y, z)$. Apply these comblitions to the differentials:
(c) $3 \cdot x^{2} y^{2} z d x+2 x^{3} y z d y+x^{3} y^{2} d z, \quad(\beta)(y+z) d x+(x+z) d y+(x+y) d z$.
9. ohtain $\left(\frac{d_{p}}{d T}\right)_{k}=\left(\frac{d s}{d i}\right)_{T}$ and $\left(\frac{d x}{d s}\right)_{p}=\left(\frac{d T}{d p}\right)_{s}$ from ($2 \bar{i}$) with proper variables.
10. If three functions (called thermodynamic potentials) be defined as
and express the conditions that $d \psi . d \chi$. $d \zeta$ be exact. Compare with Ex. !.
11. State in words the definitions corresponding to the defining formulas, p. 107.
12. If the sum $(M r d x+N d y)+(P d x+(x d y)$ of two differentials is exact and one of the differentials is exact, the other is. Prove this.
13. Apply Eulers Formula (31), for the simple ease $k=1$, to the three functions ($2 \cdot 9$) and rerify the formula. Apply it for $k=2$ to the first function.
14. Verify the lomogeneity of these functions and determine their order:
(1) $y^{2} / x+x(\operatorname{lng} x-\log y)$,
(β) $\frac{x^{m} y^{n}}{\sqrt{x^{2}}+y^{2}}$,
(1) $\frac{x y z}{u x+b y+c z}$,
(o) rye, $z^{2}+z^{2}$.
($\epsilon) \sqrt{r} \cot -1 \frac{y}{z}$,
(5) $\frac{\sqrt[5]{x}-\sqrt[5]{y}}{\sqrt[4]{x}+\sqrt[4]{y}}$.
15. State the dimensions of moment of inertia and convert a unit of moment of inertia in ft - -1 b . into its equivalent in cme.tim.

 If T^{\prime} dennte $T^{\prime}=T$. where T^{\prime} is comsidered as a function of p_{1}. p_{2} while T is considered as a function of $\dot{q}_{1} \cdot \dot{q}_{2}$. prove from $T^{\prime \prime}=\dot{q}_{1} p_{1}+\dot{q}_{2} p_{2}-T$ that

$$
\frac{\hat{i} T^{\prime}}{\hat{i} 1_{i}^{\prime} i}=\dot{\varphi}_{i}, \quad \frac{\hat{\imath} T^{\prime}}{\hat{i} \psi_{i}}=-\frac{i T}{\hat{i} \Psi_{i}} .
$$

19. If (x_{1}, y_{1}) and (x_{2}, y_{2}) are the coürlinates of two moving particles and

$$
m_{1} \frac{d^{2} x_{1}}{d t^{2}}=X_{1}, \quad m_{1} \frac{d^{2} y_{1}}{d t^{2}}=Y_{1}, \quad m_{2} \frac{d^{2} x_{2}}{d t^{2}}=X_{2}, \quad m_{2} \frac{d^{2} y_{2}}{d t^{2}}=Y_{2}
$$

are the equations of motion, and if $x_{1}, y_{1}, x_{2}, y_{2}$ are expressible as

$$
x_{1}=f_{1}\left(q_{1}, q_{2}, q_{3}\right), \quad y_{1}=g_{1}\left(q_{1}, q_{2}, q_{3}\right), \quad x_{2}=f_{2}\left(q_{1}, q_{2}, q_{3}\right), \quad y_{2}=y_{2}\left(q_{1}, q_{2}, q_{3}\right)
$$

in terms of three independent variables q_{1}, q_{2}, q_{3}, show that
where $T=\frac{1}{2}\left(m_{1} v_{1}^{2}+m_{2} v_{2}^{2}\right)=T\left(q_{1}, q_{2}, q_{3}, \dot{q}_{1}, \dot{q}_{2}, \dot{q}_{3}\right)$ and is homogenens of the second degree in $\dot{q}_{1}, \dot{y}_{2}, \dot{y}_{3}$. The work may be carried on as a generalization of Ex. 17, p. 101, and Ex. 17 above. It may be further extenfed to any number of particles whose positions in space depend on a number of variables q.
20. In Ex. 19 if $p_{i}=\frac{\hat{c} T}{\hat{c} \dot{q}_{i}}$, generalize Ex. 18 to obtain

$$
\ddot{q}_{i}=\frac{\hat{c} T^{\prime}}{\hat{c} p_{i}}, \quad \hat{c} T^{\prime}=-\frac{\hat{c} T}{\hat{c} q_{i}}, \quad Q_{1}=\frac{d p_{1}}{d t}+\frac{\hat{c} T^{\prime}}{\hat{c} q_{1}} .
$$

The equations $Q_{i}=\frac{d}{d t} \frac{\hat{c} T}{\hat{c} \dot{q}_{i}}-\frac{\hat{c} T}{\hat{c} q_{i}}$ and $Q_{i}=\frac{d p_{i}}{d t}+\frac{\hat{i} T^{\prime}}{\hat{c} q_{i}}$ are respectively the Lagrangian and Ifamiltonian equations of motion.
21. If $r r^{\prime}=k^{2}$ and $\phi^{\prime}=\phi$ and $v^{\prime}\left(r^{\prime} . \phi^{\prime}\right)=v(r, \phi)$, show

$$
\frac{\hat{c}^{2} v^{\prime}}{\hat{c} r^{\prime 2}}+\frac{1}{r^{\prime}} \frac{\hat{c} v^{\prime}}{\hat{c} r^{\prime}}+\frac{1}{r^{\prime 2}} \hat{i} \hat{c} \phi^{2} v^{\prime}=\frac{r^{2}}{r^{\prime 2}}\left(\frac{\hat{c}^{2} v}{\hat{\hat{r}}{ }^{2}}+\frac{1}{r \hat{c} v}+\frac{1}{r^{2}} \hat{c}^{2} v\right) .
$$

22. If $r r^{\prime}=k^{2}, \phi^{\prime}=\phi, \theta^{\prime}=\theta$. and $v^{\prime}\left(r^{\prime}, \phi^{\prime}, \theta^{\prime}\right)=\frac{k}{r^{\prime}} v(r, \phi, \theta)$, show that the expressiom of Ex. 5) in the primed letters is $k r^{2} / r^{\prime 3}$ of its value for the unmimed letters. (Liseful in § 198.)
23. If $z=x \phi\binom{y}{x}+\psi\left(\frac{y}{x}\right)$, जhnw $x^{2} \frac{i^{2} z}{i^{2} x^{2}}+2 x y \frac{i^{2} z}{\hat{i} x y}+y^{2} \frac{\hat{c}^{2} z}{\hat{c} y^{2}}=0$.
24. Make the indicated chanres of variable:

(β) $\frac{\left.\hat{c}^{2}\right\}^{-}}{\hat{c} u^{2}}+\frac{\hat{i}^{2} V^{2}}{\hat{i} v^{2}}=\left(\frac{\hat{i}^{2}-T^{+}}{\hat{i} x^{2}}+\frac{\hat{i}^{2} T^{+}}{\hat{c} y^{2}}\right)\left[\left(\frac{\hat{c} f}{\hat{c} u}\right)^{2}+\left(\frac{\hat{i} f}{\hat{i} v}\right)^{2}\right]$. where

$$
x=f(u, v), \quad y=\phi(u, v), \quad \frac{\hat{i} f}{\hat{c} u}=\frac{\hat{i} \phi}{\hat{i} v}, \quad \frac{\hat{i} f}{\hat{i} v}=-\frac{\hat{c} \phi}{\hat{i} u} .
$$

25. For an orthogomal transfomation (Ex. 10 (s). p. 100)
26. Taylor's Formula and applications. The development of f $f(, r$, ,) is found, as was the Theorem of the Mean, from the relation (p. 9.5)

$$
\Delta f^{\prime}=\Phi(1)-\Phi(0) \text { if } \Phi(t)=f\left(t+t h, b+t l_{i}\right) .
$$

If $\Phi(t)$ be expanded by Maclanrin's Formula to n terms,
$\Phi(t)-\Phi(0)=t \Phi^{\prime}(0)+\frac{t^{2}}{2!} \Phi^{\prime \prime}(0)+\cdots+\frac{t^{n-1}}{(n-1)!} \Phi^{(n-1)}(0)+\frac{t^{n}}{n!} \Phi^{(n)}(\theta t)$.
The expressions for $\Phi^{\prime}(t)$ and $\Phi^{\prime}(0)$ may be found as follows by (10) :
then

$$
\Phi^{\prime}(t)=l_{i} f_{x}^{\prime \prime}+k_{i} f_{y}^{\prime \prime}, \quad \Phi^{\prime}(0)=\left[l_{1} f_{x}^{\prime \prime}+l_{i} f_{y \prime \prime}^{\prime \prime}\right]_{\substack{x=a \\ y=b}},
$$

$$
\begin{aligned}
& =h_{n}^{2} f_{r x}^{\prime \prime}+2 h_{i} l_{i} f_{y \prime}^{\prime \prime \prime}+l_{i}^{2} f_{!n}^{\prime \prime}=\left(l_{1} D_{x}+l_{i} D_{n}\right)^{2} f^{2}, \\
& \Phi^{(i)}(t)=\left(h I_{r r}+h_{l} J_{y}\right)^{i} f_{t}, \quad \Phi^{(i)}(0)=\left[\left(h I_{x}+l_{i} I_{y}\right)^{i} f\right]_{\substack{r=h \\
y=h}} .
\end{aligned}
$$

And $f^{\prime}\left(\prime \prime+l, h+l_{i}\right)-f(\prime \prime, l)=\Delta f=\Phi(1)-\Phi(0)=\left(l_{l} l_{. r}+l_{i} l_{\eta}\right) f_{l}\left(\prime \prime, l_{l}\right)$

$$
\begin{align*}
& +\frac{1}{2!}\left(h D_{x}+l_{i} D_{y}\right)^{2} f(\prime \prime, l)+\cdots+\frac{1}{(n-1)!}\left(l_{l} D_{x}+l: l_{y}\right)^{n-1} f^{\prime}(\prime \prime, l) \\
& +\frac{1}{n!}\left(l D_{x}+l_{i} D_{y}\right)^{\prime \prime} f^{\prime}\left(\prime+\theta l_{1} l+\theta l_{i}\right) . \tag{32}
\end{align*}
$$

In this expansion, the increments h and l may be replaced, if desired, by $x-$ " and ! $-b$ and then $f(, r, y)$ will be expressed in terms of its value and the values of its derivatives at (", \quad) in a manner entirely analogrous to the case of a single varialle. In particular if the point (", b) about which the development takes place be $(0,0)$ the development becomes Maclaurin`s Formula for $f(x, y)$.

$$
\begin{align*}
& f(x, y)=f(0,0)+\left(x D_{x}+y D_{y}\right) f(0,0)+\frac{1}{2!}\left(, r I_{x}+y D_{y}\right)^{2} f^{\prime}(0,0)+\cdots \\
& \quad+\frac{1}{(n-1)!}\left(r D_{x}+y l_{y}\right)^{n-1} f(0,0)+\frac{1}{n!}\left(x l_{x}+y D_{y}\right)^{n} \cdot f^{\prime}\left(\theta_{r}, \theta!y\right) .
\end{align*}
$$

Whether in Mardaurin's or 'Taylor's Formula, the suceessive terms are homogeneous polynomials of the 1 st, $2(l, \cdots,(n-1)$ st order in r, If or in $x-\|, y-b$. The formulas are mique as in \& 32.

Suppose $\sqrt{1-x^{2}-y^{2}}$ is to be developed about $(0,0)$. The successive derivatives are

$$
\begin{aligned}
& f_{c}^{\prime}=\frac{-x}{\sqrt{1}-x^{2}-y^{2}}, \quad f_{y}^{\prime}=\frac{-y}{\sqrt{1-x^{2}-y^{2}}}, f_{x}^{\prime}(0,0)=0, \quad f_{y}^{\prime}(0,0)=0, \\
& f_{x x}^{\prime \prime}=\frac{-1+y^{2}}{\left(1-x^{2}-y^{2}\right)^{\frac{3}{2}}}, \quad f_{y y}^{\prime \prime}=\frac{x y}{\left(1-x^{2}-y^{2}\right)^{\frac{3}{2}}}, \quad f_{y \prime \prime}^{\prime \prime}=\frac{-1+x^{2}}{\left(1-x^{2}-y^{2}\right)^{\frac{3}{2}}}, \\
& f_{y_{3}^{\prime \prime} \prime \prime}^{\prime \prime}=\frac{\frac{3}{2}\left(1-y^{2}\right) x}{\left(1-x^{2}-y^{2}\right)^{\frac{5}{2}}}, \quad f_{x^{\prime 2} y}^{\prime \prime \prime}=\frac{y^{3}-2 x y^{2}-y}{\left(1-x^{2}-y^{2}\right)^{\frac{5}{2}}}, \quad \cdots,
\end{aligned}
$$

and $\quad \sqrt{1-x^{2}-y^{2}}=1+(0 x+0 y)+\frac{1}{2}\left(-x^{2}+0 x y-y^{2}\right)+\frac{1}{6}\left(0 x^{3}+\cdots\right)+\cdots$, or $\quad \sqrt{1-x^{2}-y^{2}}=1-1\left(x^{2}+y^{2}\right)+$ terms of fourth order $+\cdots$.

In this case the expansion may be found by treating $x^{2}+y^{2}$ as a single term and expanding by the binomial theorem. The result would be

$$
\left[1-\left(x^{2}+y^{2}\right)\right]^{\frac{1}{2}}=1-\frac{1}{2}\left(x^{2}+y^{2}\right)-\frac{1}{8}\left(x^{4}+2 x^{2} y^{2}+y^{4}\right)-\frac{1}{16}\left(x^{2}+y^{2}\right)^{3}-\cdots
$$

That the development thus obtained is identical with the Maclaurin levelopment that might be had ly the method above, follows from the uniqueness of the development. Some such short cut is usially available.
55. The condition that a function $a=f^{\prime}(r$, , /f) have a minimm on maximmon at $(1,7)$ is that $\Delta t^{\prime}>0$ or $\Delta f^{\prime}<0$ for all values of $\neq \Delta, r^{\prime}$ and $k=\Delta!$ which are sufficiontly small. From dither geometrical or analytie considerations it is seen that if the surface $\because=f\left(. x^{\prime}\right.$, ! $)$ has a minimum or maximm at (". li). the corves in which the planes !/ $=l$ and,$r="$ cont the surface have minima or maxima at,$r="$ and $!=0$ respectively: Hence the partial derivatives , $t_{\text {" }}$ and $t_{1, \prime \prime}^{\prime \prime}$ must both vanish at ($1,(1)$, proviled, of comse, that exerepions like those mentioned on page \boldsymbol{T} be made. The two simultaneous equations

$$
\begin{equation*}
f_{c}^{\prime}=0, \quad f_{l,}^{\prime \prime}=0 \tag{:3:3}
\end{equation*}
$$

corresponding to $f^{\prime}\left(r^{\prime}\right)=0$ in the case of a function of a single variable, may then be solved to fimd the positions (or : If) of the minima and maxima. Frequently the geonetric or physioal interperation of $\therefore=f(\cdot r,!)$ or some sperial deviee will then determine whether there is a maximum or a minimum or neither at carle of these perints.

For example lot it he required to find the maximom rectangular parallelepiperl which has three faces in the coordinate planes and one vertex in the plane $x / a+y / b+z / c=1$. The volume is

$$
\begin{aligned}
& \mathrm{V}=r y z=r x y\left(1-\frac{r}{\prime \prime}-\frac{y}{b}\right) .
\end{aligned}
$$

The solution of these equations is $x=\frac{1}{3} u, y=\frac{1}{3} h$. The corremponding z is $\frac{1}{3}$ a and the whume V^{\prime} is therefore whe/9 or $\frac{2}{3}$ of the volume cht olf from the first oftam hey the plane. It is evident that this selution is a maximam. Themere ather solutions of $V_{x^{\prime}}^{\prime}=1_{y}^{\prime \prime}=0$ which have been discarded becatse they give $V^{\prime}=0$.

The ronditions $f_{s}^{\prime}=f_{y}^{\prime \prime}=0$ maty le enstablished analytieally. Fon

$$
\grave{t} f^{\prime}=\left(t_{n}^{\prime \prime}+\zeta_{1}\right) \Delta r^{\prime}+\left(f_{y}^{\prime}+\zeta_{2}\right) \Delta!
$$

Now ats ζ_{1}. ζ_{2} are infinitesimals, the signs of the parent heses are determined hy the signs of $f_{r}^{\prime \prime}$. $f_{y}^{\prime \prime}$ muless these dorivatives vanish: and herner

 "net in like monne, $t_{3}^{\prime \prime}=0$. "onsiderations lik" those will serve to establish a criterion fon distinguishing between maxima ams minimat
analogous to the criterion furnished by $f^{\prime \prime \prime}(r)$ in the caste of one variable. For if $t_{x}^{\prime \prime}=f_{y}^{\prime \prime}=0$, then

$$
\Delta f^{\prime}=\frac{1}{2}\left(l_{1}^{2} f_{x x}^{\prime \prime}+2 h_{l} l_{i} f_{x y}^{\prime \prime}+l_{i}^{2} f_{y y}^{\prime \prime}\right)_{x=a+\theta h, y=b+\theta k},
$$

by Taylor"s Formula to two terms. Now if the second derivatives are continuons functions of (r, y) in the neighborhood of (", \quad) , eath derivative at $(\prime+\theta h, b+\theta / i)$ may be written as its value at $(", b)$ phas an infinitesimal. Hence

$$
\Delta f^{\prime}=\frac{1}{2}\left(l_{1}^{2} f_{x x}^{\prime \prime \prime}+2 l_{1} l_{i} t_{s y}^{\prime \prime \prime}+l_{i}^{2} f_{y, y}^{\prime \prime \prime}\right)_{(n, b)}+\frac{1}{2}\left(l_{1}^{2} \zeta_{1}+2 l_{1} l_{i} \zeta_{2}+l_{i}^{2} \zeta_{3}\right)
$$

Now the sign of Δf^{\prime} for sufficiently small values of h, k must be the same as the sign of the first parenthesis provided that parenthesis does not vanish. Hence if the quantity

$$
\left(l_{i}^{2} f_{x x}^{\prime \prime \prime}+2 l_{1} l_{i} f_{n y}^{\prime \prime \prime}+l_{i}^{\prime 2} f_{y \prime}^{\prime \prime \prime}\right)_{(a, b)}>0 \text { for every }\left(l_{l}, l_{i}\right), \text { a minimum }
$$

As the lerivatives are taken at the point ((1, l), they have certain constant vahues. say A, B, C. The ghestion of distinguishing between minima and maxima therefore reduces to the dischssion of the possible signs of a quadrutic form $A h^{2}+2$ bhk $+\left(k^{2}\right.$ for different values of h and k. The exammes

$$
k^{2}+k^{2}, \quad-k^{2}-k^{2}, \quad k^{2}-k^{2}, \quad \pm(k-k)^{2}
$$

show that a quadratic form may le: either 1^{1}. pusitive for every (h.k) except (0.0);
 and negative for others and zerofor others: on tinally t. zewo for values other than (0.0). but either never negative or mer positive. Monener, the four posibilities here mentimet are the only cases conceivalle exem 5 . that $A=B=(:=0$ and the form always is 0 . In the first case the form is callen a definite possitice form. in the secomd a definite negutive form. in the thiml an indetionte form. and in the forrth and fifth a singutur form. The first case assures a minimm, the secomb a maximum, the thist neither a minimum mow a maximun (sometimes eatled a minimax) : but the case of a singular form leaves the question entirely undecideal just as the combition $f^{\prime \prime}(x)=0$ did.

The conditions which distinguish between the different bossibilities may he expressed in terms of the enetficiento $1.2, C$.

The conditions for distinguishing letween maxina and minima are:

It may be noterf that in alplyine these conditions to the case of a definite form it
 sarily have the vane sign.

EXERCISES

1. Write at length, without symbolic shortening, the expansion of $f(x, y)$ by Taylor's Formula to and including the terms of the third order in $x-u, y-b$. Write the formula also with the terms of the third orter as the remainder.
2. Write by analogy the preper form of Taylor"s Formula for $f(x, y, z)$ and prove it. Indicate the result for any number of variables.
3. Obtain the guadratic and lower terms in the development

$$
(\alpha) \text { of } x y^{2}+\sin x y \text { at }\left(1, \frac{1}{2} \pi\right) \text { and }(\beta) \text { of } \tan ^{-1}(y / x) \text { at }(1.1) \text {. }
$$

4. A rectangular parallelepiped with one vertex at the origin and three faces in the courdinate phanes has the aposite rertex upon the ellipsoid

$$
x^{2} / u^{2}+y^{2} / b^{2}+z^{2} / r^{2}=1 .
$$

Find the maximum volume.
5. Find the point within a triangle such that the sum of the squares of its distances to the vertices shall le a minimm. Note that the point is the intersection of the medians. Is it obvious that a minimum and not a maximum is present?
6. A floating anchorage is to be made with a cylindrical body and equal conical ends. Find the dimensions that make the surface least for a given wolume.
7. A eylindrical tent has a conical roof. Find the best dimensions.
8. Aphly the test by second derivatives to the problem in the text and to any of Exs. 4^{-7}. Discuss for maxima or minima the following functions:
(c) $x^{2} y+x y^{2}-x$,
(β) $x^{3}+y^{3}-x^{2} y^{2}-\frac{1}{2}\left(x^{2}+y^{2}\right)$,
($\gamma) x^{2}+y^{2}+x+y$
(δ) $\frac{1}{3} y^{3}-r y^{2}+r^{2} y-x$,
($\epsilon) x^{3}+y^{3}-!x y+27$,
(5) $x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}$.
9. State the conditions on the first derivatives for a maximum on minimm of function of three or any monber of variables. Prose in the case of three variables,
10. A wall tent with rectangular body amd gable roof is to be son eonstructed as to use the least amome of tenting for a given volume. Find the dimensions.
11. (iiven any mumber of masses $m_{1}, m_{2}, \cdots, m_{n}$ situated at $\left(c_{1}, y_{1}\right),\left(r_{2}, y_{2}\right), \cdots$, $\left(x_{n} . y_{n}\right)$. Show that the peint about which their moment of inertia is least is their center of gravity. If the points were $\left(x_{1}, y_{1}, z_{2}\right), \cdots$ in space, what point would make Smr a mininum?
12. A test for maximum or minimum analogons to that of Ex. 27. p. 10. may be given for a function $f(x, y)$ of two varialles, namely: If a function is positive all oser a region and vanishes upm the emonem of the reqiom, it must have a maximm within the rerion at the $p^{\text {wint }}$ for which $f_{s}^{\prime}=f_{y}^{\prime \prime}=0$. If a function is tinite all over a reginn and becomes intinite over the content of the region, it must have a minimum within the region at the point for which $f_{s}^{\prime}=f_{y}^{\prime \prime}=0$. These tests are sulbeet to the proviso that $f_{s}^{\prime \prime}=f_{n}^{\prime \prime}=0$ has only a single solution. Comment on the test and apply it to exareme abowe.
 circle. the pramid of attitude h constractent on the triangle as base will have its maximum surface when the surface is $\frac{1}{2}\left(a+b+() \sqrt{2+k^{2}}\right.$.

CHAPTER V

PARTIAL DIFFERENTIATION ; IMPLICIT FUNCTIONS

56. The simplest case ; $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y})=0$. The total differential
indicates

$$
\begin{align*}
& d F=F_{x}^{\prime} d_{x}+F_{\prime_{\prime}^{\prime}}^{\prime} l_{y}=d 0=0 \\
& \frac{d_{y}}{d d^{\prime}}=-\frac{F_{x}^{\prime}}{F_{y}^{\prime}}, \quad \frac{l_{x}}{d_{y}}=-F_{y}^{\prime} F_{x}^{\prime} \tag{1}
\end{align*}
$$

as the derivative of $y b y x$, or of x by y, where y is defined as a function of x, or x as a function of y, by the relation $F(x, y)=0$; and this method of obtaining a derivative of an implirit function without solving explieitly for the function has probably been familiar long before the notion of a partial derivative was oltatined. The relation $F(, r, y)=0$ is pictured as a curve, and the function $!=\phi(x)$, which would be obtaned by solution, is considered ats multiple valued or as restricted to some definite portion or branch of the curve $F(, r, y)=0$. If the results (1) are to be applied to find the derivative at some point $\left(r_{0}, y_{0}\right)$ of the curve $F\left(. r^{\prime},!\right)=0$, it is neceessary that at that point the denominator F_{y}^{\prime} or F_{s}^{\prime} should not vanish.

These pirtorial and somewhat vague notions may be stated precisely as a theorrom susieeptible of proof, namely: Let x_{0} be any real value of,x^{\prime}
 such that 1°, the equation $F\left(r_{0}^{\circ}, y\right)=0$ has a real solution y_{0}; and 2°, the function $F(x$, , j) regarded as a function of two independent variables $\left(r^{\prime}, y\right)$ is continuous and has contimous first partial derivatives $F_{s}^{\prime}, F_{y}^{\prime}$ in the neighborheod of $\left(r_{0}^{\circ},!_{0}\right)$; and 3°, the derivative $F_{y}^{\prime}\left(r_{0},!y_{0}\right) \neq 0$ does not vanish for ($x_{0}, \%_{0}$) ; then $F(. r$. ! $)=0$ may be solved (theoreti"ally) as $y=\phi(x)$ in the vicinity of $r=r_{0}$ and in such a manner that $y_{0}=\phi\left(r_{0}\right)$, that $\phi(r)$ is continuous in r, and that $\phi(r)$ has a derivative $\phi^{\prime}\left(\cdot r^{\prime}\right)=-F_{s}^{\prime} / F_{y}^{\prime}$: and the solution is unique. This is the fundamental theorem on implieit functions for the simple case, and the proof follows.

By the conditions on F_{x}^{\prime}. F_{y}^{\prime}. the Theorem of the Mean is applicable. Hence

$$
\begin{equation*}
F(x . y)-F\left(s_{1}, y_{0}\right)=F(s, y)=\left(k F_{x}^{\prime}+k F_{y}^{\prime}\right)_{x_{0}}+\theta h, y_{0}+\theta k . \tag{2}
\end{equation*}
$$

Furthemore, in any square $|h|<\delta,|k|<\delta$ surrounding $\left(r_{0}, y_{0}\right)$ and sufficjently small. the continuity of F_{s}^{\prime} insures $\left|F_{s}^{\prime}\right|<M$ and the continuty of F_{y}^{\prime} taken with
the fact that $F_{y}^{\prime}\left(r_{0} \cdot y_{0}\right) \neq 0$ insures $\left|F_{y}^{\prime}\right|>m$. Consider the range of x as further restricted to values such that $\left|x-x_{0}\right|<m \delta / M$ if $m<M$. Now consider the valun of $F(x, y)$ for any x in the jermissible interval and for $y=y_{0}+\delta$ or $y=y_{0}-\delta$. As $\left|k F_{y}^{\prime}\right|>m \delta$ but $\left|\left(x-x_{0}\right) F_{, x}^{\prime}\right|<m \delta$, it follows form (2) that $F\left(x, y_{0}+\delta\right)$ has the sign of $\delta F_{y,}^{\prime}$ and $F\left(x, y_{0}-\delta\right)$ lais the sign of $-\delta F_{y}^{\prime}$; and as the sign of F_{y}^{\prime} dues mot change, $F\left(x . y_{0}+\delta\right)$ and $F\left(x . y_{0}-\delta\right)$ have (1nmsite signs. Hence ly Ex. 10, p. 45, there is one and only one value of y between $y_{0}-\delta$ and $y_{0}+\delta$ sulh that $F(x, y)=0$. Thms for eacle r in the interval there is one and only one y such
 that $F(x, y)=0$. The equation $F(x, y)=0$ hats a mique solution near $\left(r_{0}, y_{n}\right)$. Let $y=\phi(r)$ temote the solution. The solation is continuons at $x=x_{0}$ because $\left|y-y_{0}\right|<\delta$. If $(x . y)$ are restrictenl to values $y=\phi(x)$ sumb that $F(x, y)=0$. equation $(\underline{2})$ sives at once

$$
\frac{k}{h}=\frac{y-y_{0}}{x-x_{0}}=\frac{\Delta y}{\Delta x}=-\frac{F_{x}^{\prime}(x+\theta k \cdot y+\theta k)}{F_{y}^{\prime}(x+\theta k \cdot y+\theta k i)}, \quad \frac{l_{y}}{d x}=-\frac{F_{k}^{\prime}\left(x_{0} \cdot y_{0}\right)}{F_{y}^{\prime}\left(x_{0}, y_{0}\right)} .
$$

As $F_{s}^{\prime} . F_{y}^{\prime}$ are contimuns and $F_{y}^{\prime} \neq 0$, the fraction k / h approaches a limit and the derivative $\phi^{\prime}\left(r_{0}\right)$ exists amd is given by (1). The same reanoming would apply to any point s in the interval. The theorem is completely poved. It may be admed that the expression for $\phi^{\prime}(x)$ is such as to show that $\phi^{\prime}(x)$ itself is contimuon.

The values of higher derivatives of implicit functions are obtainable ly sucerssive total afferentiation as

$$
\begin{align*}
& F_{y}^{\prime}+F_{y}^{\prime \prime} \prime^{\prime}=0,
\end{align*}
$$

ete. It is moteworthy that these sumessine erpations may he solyed for
 not to ranish. The question of whether the function $!=\phi(. r)$ defined implieitly $F(x, y)=0$ has derivatives of order highere than the first may be seen ly these equations to depend on whether $F^{(}$(.r, !/) has higher jartial derivatives which are continuons in (ir, if).
57. To finel the murtimn "nht mimim" of ! $=\phi\left(r^{\circ}\right)$. that is, to finm the points where the tangent to $F(x,!/)=0$ is pamallel to the a-ixis, observe that at surel prints $!\eta^{\prime}=0$. Equations (\because) give

$$
\begin{equation*}
F_{r}^{\prime}=0, \quad r_{\mu}^{\prime \prime}+r_{r}^{\prime \prime} \prime^{\prime \prime}=0 . \tag{1}
\end{equation*}
$$

 the "ase $F_{\sim}^{\prime \prime}=0$ still mematus mentecident.

For example if $F(x, y)=x^{3}+y^{3}-3 a x y=0$, the derivatives are

$$
\begin{array}{ll}
3\left(x^{2}-a y\right)+3\left(y^{2}-a x\right) y^{\prime}=0, & \frac{d y}{d x}=-\frac{x^{2}-a y}{y^{2}-a x}, \\
6 x-6 a y^{\prime}+6 y y^{\prime 2}+3\left(y^{2}-a x\right) y^{\prime \prime}=0, & \frac{d^{2} y}{d x^{2}}=-\frac{2 a^{3} x y}{\left(y^{2}-a x\right)^{3}} .
\end{array}
$$

To find the maxima or minima of y as a function of x, solve

$$
F_{\therefore}^{\prime}=0=x^{2}-a y, \quad F=0=x^{3}+y^{3}-3 a x y . \quad F_{y}^{\prime} \neq 0
$$

The real solutions of $F_{s}^{\prime}=0$ and $F=0$ are $(0,0)$ and $(\sqrt[3]{2} a, \sqrt[3]{4} a)$ of which the first must be discarded because $F_{y}^{\prime}(0,0)=0$. It $(\sqrt[3]{2} d, \sqrt[3]{4}$ d $)$ the derivatives F_{z}^{\prime} and $F_{s, r}^{\prime \prime}$ are positive ; and the point is a maximmm. The curve $F=0$ is the folinm of Descartes.

The rôle of the variables x and y may be interchanged if $F_{s,}^{\prime} \neq 0$ and the equation $F(x, y)=0$ may be solved for $\cdot \boldsymbol{r}=\psi(!/)$, the functions ϕ and ψ being inverse. In this way the vertioal tangents to the curve $F=0$ may be discussed. For the points of $F=0$ at which hoth $F_{r}^{\prime}=0$ and $F_{y}^{\prime}=0$, the equation camot be solved in the semse here defined. such points are called singular puints of the cmrve. The (phestions of the singular points of $F=0$ and of maxima, minima, or minimax (s. J. of the surface $\ddot{x}=F(x, y)$ are related. For if $F_{x}^{\prime}=F_{y}^{\prime}=0$, the surface has a tangent plane parallel to $\approx=0$, and if the condition $a=F=0$ is
 has a maximum or minimm at its point of tangency with $z=0$. the surfare lies entirely on one side of the plane and the point of tangeney is an isolated point of $F\left(\cdot r^{\prime},!\right)=0$: whereas if the surface lass a minimax it cuts though the plane $a=0$ and the point of tangenney is not an isolated point of $F\left(r^{2},!\right)=0$. The shape of the erure $F=0$ in the neighborhood of a singular point is discenssed lyy developing $F(. r$, !/) about that point hy Taylor"s Formula.

For example. consider the curve $F(x, y)=x^{3}+y^{3}-x^{2} y^{2}-\frac{1}{2}\left(x^{2}+y^{2}\right)=0$ and the surface $z=F(r, y)$. The commom real solutions of

$$
F_{y}^{\prime}=3 x^{2}-2 x y^{2}-x=0 . \quad F_{y}^{\prime}=3 y^{2}-2 x^{2} y-y=0, \quad F(x, y)=0
$$

are the singular points. The real solutims of $F_{n}^{\prime}=0 . F_{\gamma}^{\prime}=0$ are (0. 0). (1. 1). (2, $\frac{1}{2}$) and of these the first two satisty $F(x, y)=0$ but the last dues not. The
 shows that (0.0) is a maximun for $z=F(s, y)$ and hence an isolated point of $F(x, y)=0$. The test also shows that (1.1) is a minimax. To discuss the curve $F(x, y)=0$ near (1.1) andy Taydors Formula.

$$
\begin{aligned}
0=F(x, y) & =\frac{1}{2}\left(3 k^{2}-8 h k+3 k^{2}\right)+\frac{1}{0}\left(6 h^{3}-12 k^{2} k-12 h k^{2}+6 k^{3}\right)+\text { remainder } \\
& =\frac{1}{2}\left(3 \cos s^{2} \phi-8 \sin \phi \cos \phi+3 \sin ^{2} \phi\right)
\end{aligned}
$$

$$
+r\left(\cos ^{3} \phi-2 \cos ^{2} \phi \sin \phi-2 \cos \phi \sin ^{2} \phi+\sin ^{3} \phi\right)+\cdots
$$

if polar coördinates $h=r \cos \phi, k=r \sin \phi$ be introluced at $(1,1)$ and r^{2} be canceled. Now for very small vahes of r, the equation can be satisfied only when the first parenthesis is very small. Hence the solutions of

$$
3-4 \sin 2 \phi=0, \quad \sin 2 \phi=\frac{3}{4}, \quad \text { or } \quad \phi=2417_{-}^{1}, \text { (i5.) } 422_{2}^{1^{\prime}},
$$

and $\phi+\pi$, are the directions of the tangents to $F(x, y)=0$. The equation $F=0$ is

$$
0=\left(1 \frac{1}{2}-2 \sin 2 \phi\right)+r(\cos \phi+\sin \phi)\left(1-1 \frac{1}{2} \sin 2 \phi\right)
$$

if only the first two terms are kept. and this will serve to sketch $F(x, y)=0$ for very sin:ll raluen of r, that is, for ϕ very near to the tangent directions.
58. it is important to obtain conditions for the maximum or minimum of a function $a=, f^{\prime}(r$, , I) where the variables , r, ! are comneeted by a relation $F(x, y)=0$ so that a really beromes a function of x^{r} alone or ! alone. For it is not always possible, and frequently it is inconvenient, to solve $F\left(r^{\prime}, y\right)=0$ for either variable and thus eliminate that variable
 are thus comested, the minimmon or maximma is called a momstmined
 them the minimmen or maximmm is callonl fire if any designation is needed.* The comblitions are obtamed hy differentiating $i=f(x$, , $)$ and $F(, r,!)=0$ totally with de'speect ion. r. Thus
and
 and the serond is added to insure at minimm or maximum, are the eonditions desireal. Note that all singulan points of $F(, r,!)=0$ satisfy the finst condition identically, but that the poress by means of which it was obtained exelneles surlo peints, aud that the ruke cammot be experted to atruly to them.

Anothere methot of treating the problem of constramed maximat and minima is to introduce "moltiplire amm form the fundion

Now if this function \because is to have at lee maximan or minimum, then

$$
\begin{equation*}
\Phi_{u}^{\prime}=t_{n}^{\prime \prime}+\lambda F_{n}^{\prime}=0 . \quad \Phi_{y}^{\prime}=t_{n}^{\prime \prime}+\lambda F_{n}^{\prime}=0 . \tag{i}
\end{equation*}
$$

These two ergations taken with $F^{\prime}=0$ anstitnte a sett of there from which the there values er, !/, λ may le ohatamed hey solntion. Note that.

[^13]λ cannot be obtained from (\widetilde{r}) if both F_{x}^{\prime} and F_{y}^{\prime} vanish; and hence this method also rejeets the singular points. That this method really determines the constrained maxima and minima of $f^{\prime}(\cdot$, , !/) suloject to the constraint $F(x, y)=0$ is seen from the fact that if λ be eliminated from (9) the condition $f_{x}^{\prime} F_{y}^{\prime \prime}-f_{y}^{\prime \prime} F_{x^{\prime}}^{\prime}=0$ of (5) is obtained. The new method is therefore identionl with the former, and its introdnction is more a matter of convenience than neressity. It is possible to show direetly that the new mothod gives the constraned maxima and minima. For the conditions (7) are those of a free extreme for the function $\Phi\left(r^{\prime}\right.$, ! $)$ which deperds on two indelemelent varialles (.r, !!). Now if the equations (7) be solved for ($x,!/$), it appears that the position of the maximum or minimum will be experessed in terms of λ as a parameter and that ronserfuently the point $(r(\lambda)$, ! (λ)) camot in general lie on the curve $F(. r,!/)=0$; but if λ be so determined that the point shall lie on this curve, the function $\Phi(x, y)$ hats a free extreme at a point for which $F=0$ and hence in partienlar mast have a "onstratined extreme for the paticular values for which $F(r, y)=0$. In sueaking of (7) as the comditions for an extreme, the eomelitions which shonld be imposed on the seeond derivative have heen dispegarded.

For example, supme the maximm radins vector from the origin to the folim, of Descartes were desired. The poblem is to render $f(x, y)=x^{2}+y^{2}$ maximman subject to the condition $F(x, y)=x^{3}+y^{3}-3 u^{\prime} x^{\prime} y=0$. Hence
or

$$
2 x+3 \lambda\left(x^{2}-(u y)=0, \quad 2 y+3 \lambda\left(y^{2}-\left(x^{2}\right)=0, \quad x^{3}+y^{3}-3 u x y=0\right.\right.
$$

are the combitions in the two cases. These equations may be solved for (0,0), ($1 \frac{1}{2}$ (1. $1 \frac{1}{2}$ (1) and some imaginary values. 'The value (0.0) is singular and λ cannot be determined, but the point is evidently a minimum of $x^{2}+y^{2}$ by inspection. The print ($1 \frac{1}{2} \mu, 1 \frac{1}{2}$ u) wives $\lambda=-1 \frac{1}{3}$ u. What the point is a (relative constrained) maximinn of $x^{2}+y^{2}$ is also seen by inspection. There is no need to examine $d^{2} f f^{\prime}$. In most patical problems the examination of the comditions of the seemed order may he wated. This example is ome wheh may be treated in polat moibrimates by the ordinary methoms ; hut it is motementhy that if it could mot be treated that way, the methen of solatom by eliminating whe of the variables by solving the (rubic $F\left(r^{r}, y\right)=0$ would be mavaitabh amb the methods of eonstraned masima would be reepuired.

EXERCISES

1. By total diffematiation and division obtain d!/dx in these cases. Do not substitute in (1). luth hise the method by which it wat derived.
(d) $a x^{2}+2 h x^{2} y+c y^{2}-1=0$,
(β) $r^{4}+y^{4}=4 r^{2} x y$,
($\gamma)(\cos x)^{\prime \prime}-(\sin y)^{x}=0$,
(o) $\left(r^{2}+y^{2}\right)^{2}=u^{2}\left(r^{2}-y^{2}\right)$,
(є) $r^{\prime \prime}+e^{\prime \prime}=2 \cdot x y$,
(̧) $x^{-2} y^{-2}=\tan ^{-1} x y$.
2. Obtain the second derivative $d^{2} y / d x^{2}$ in Ex. $1(\alpha)$. (β). (ϵ), (($)$ by differen-

3. Prove $\frac{d^{2} y}{d c^{2}}=-\frac{F_{y}^{\prime 2} F_{x x}^{\prime \prime}-2 F_{r}^{\prime} F_{y}^{\prime} F_{x y}^{\prime \prime}+F_{x}^{\prime \prime} F_{y y}^{\prime \prime}}{F_{y}^{\prime 3}}$.
4. Find the radias of curvature of these curves:
(، $r) x^{\frac{2}{3}}+y^{\frac{2}{j}}=u^{\frac{2}{3}}, R=3(u \cdot r y)^{\frac{1}{3}}$,
(β) $r^{\frac{1}{2}}+y^{\frac{1}{2}}=u^{\frac{1}{2}}, r=2 \sqrt{(x+y)^{3} / u}$,
($\gamma) b^{2} x^{2}+u^{2} y^{2}=u^{2} b^{2}$.
(o) $x y^{2}=u^{2}(u-x)$.
(ε) $(1, c)^{2}+(l y)^{\frac{2}{3}}=1$.
5. Find $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}$ in case $x^{3}+y^{3}-3 u x y=0$.
6. Extend equations (3) to (h)tain $y^{\prime \prime \prime}$ and reduce by Ex. 3.
7. Find tangents parallel to the x^{2} axis. for $\left(x^{2}+y^{2}\right)^{2}=2 a^{2}\left(x^{2}-y^{2}\right)$.
8. Find tangents lamellel the theaxis for $\left(r^{2}+y^{2}+u^{2}\right)^{2}=r^{2}\left(r^{2}+y^{2}\right)$.
9. If $h^{2}<\pi c$ in $u c^{2}+2 h, x y+c y^{2}+f . x+g y+k=0$. viremmscribe about the corve a rectangle parallel to the axes. Check algebracally.
10. Sketch $x^{3}+y^{3}=x^{2} y^{2}+\frac{1}{2}\left(x^{2}+y^{2}\right)$ near the singular point $(1,1)$.
11. Find the singular points and discuss the curves near them:
(c) $x^{3}+y^{3}=3 u r y$,
$(\beta)\left(x^{2}+y^{2}\right)^{2}=2 u^{2}\left(x^{2}-y^{2}\right)$,
($\gamma) x^{4}+y^{4}=2(x-y)^{2}$.
(δ) $y^{5}+2 x y^{2}=x^{2}+y^{4}$.
12. Make these functions maxima or minima subject to the given conditions. Discuss the work both with and without a multipher:
(a) $\frac{a}{u \cos x}+\frac{b}{v \cos y}, \quad a \tan x+b \tan y=c$.

$$
\text { Ans. } \frac{\sin x}{\sin y}=\frac{u}{v} .
$$

(β) $x^{2}+y^{2}, \quad \quad u x^{2}+2 h, r y+r y^{2}=f$.
Find axes of conic.
(γ) Find the shortest distance from a peint to a line (in a plane).
13. Write the seome and third tetal difierentials of $F(x . y)=0$ and compare with (:3) amd Ex. 5. 'Try this mothom of calculating in Bx. 2 .
14. Show that F^{\prime} rl $x+F_{y}^{\prime}(y=0$ does and whond give the tangent line to $F(x, y)=0$ at the points (x, y) if $(x=\xi-x$ and $d y=\eta-y$. where ξ. η are the coordinates of points wher than (ro, y) on the tangent line. Why is the equation inaphicable at singular peints of the curve?
59. More general cases of implicit functions. The prohlem of implinit functions may be gemeralized in two ways. In the first plare a greater momber of variables may ocrour in the function, as

$$
F(r,!l, \pi)=0, \quad F(, r,!, \therefore, \cdots, \prime \prime)=0
$$

and the question may be to solve the equation for one of the variables in terms of the others and to determine the partial derivatives of the rhosen dependent variahle. In the semond plane there may be several equations connerting the varialles and it may be reduired to solve the equations for some of the variahles in terms of the others and to determine the partial derivatives of the ehosen dependent variables
with respect to the independent variables. In both cases the formal differentiation and attempted formal solution of the equations for the derivatives will indicate the results and the theorem under which the solution is proper.

Consider the case $F(r, y, z)=0$ and form the differential.

$$
\begin{equation*}
d F(, r, y, z)=F_{r}^{\prime} d, r+F_{y}^{\prime} d y+F_{z}^{\prime} d z=0 . \tag{8}
\end{equation*}
$$

If z is to be the dependent variable, the partial derivative of $z b y, x$ is found by setting d! $=0$ so that $/$ is constant. Thus
are olstained by ordinary division after setting dy $=0$ and dir $=0$ respectively. If this division is to be legitimate, F_{z}^{\prime} must not ranish at the point considered. The immediate suggestion is the theorem: If, when real values $\left(x_{0}, y_{0}\right)$ are chosen and a real value \tilde{z}_{0} is ontained from $F\left(*, x_{0}, y_{0}\right)=0$ by solution, the function $F(, r$. !. a) regarded as a function of three independent variahles (. r. !/ a) is continuous at and near ($r_{0}, y_{0}, \ddot{n}_{0}$) and has continuons tirst partial derivatives and $F_{z}^{\prime}\left(x_{0}, y_{0}, \ddot{z}_{0}\right) \neq 0$, then $F(, r, y, \quad, \quad=0$ may lu solver umiquely for $z=\phi(x, y)$ and $\phi(. r, y)$ will l_{n} contimons and lave lartial derivatives

The theorem is aqdin proved by the Law of the Mean, and in a similar maner.

$$
F(x, y, z)-F\left(r_{0}, y_{11}, z_{0}\right)=F(x, y, z)=\left(h F_{y}^{\prime}+k F_{y}^{\prime}+\mid F_{z}^{\prime}\right)_{\cdot n}+\theta r_{1}, y_{n}+\theta k_{,}, z_{0}+\theta l \cdot
$$

As $F_{x^{\prime}}^{\prime} . F_{y}^{\prime}$. F_{z}^{\prime} are continumus and $F_{z}^{\prime}\left(r_{0}, y_{1,}, z_{10}\right) \neq 0$, it is pusible to take δ so small that, when $|h|<\delta .|k|<\delta .|l|<\delta$, the derivative $\left|F_{z}^{\prime}\right|>m$ and $F_{n}^{\prime}\left|<\mu .\left|F_{y}^{\prime}\right|<\mu\right.$. Now it is desired sn to reatrict h, k that $\pm \delta F_{z}^{\prime}$ shall determine the sign of the parenthesis. Let

$$
\left|x-r_{0}\right|<\frac{1}{2} m \delta / \mu, \quad\left|y-y_{0}\right|<\frac{1}{2} m \delta / \mu, \quad \text { then } \quad\left|h F_{x}^{\prime}+k F_{y}^{\prime}\right|<m \delta
$$

and the signs of the parenthesis for (r.,$\left./, z_{0}+\delta\right)$ and $\left(r, y, z_{0}-\delta\right)$ will be oposite since $\left|F_{z}^{\prime}\right|>m$. Hence if (r, y) be hehd fixel, there is one and only one value of z for which the parenthesis vanishes between $z_{0}+\delta$ and $z_{0}-\delta$. Than z is iefined as a single valued function of $(r . y)$ for sufficiently small values of $h=r-r_{0} . k=y-y_{10}$.

Alsi) $\quad \frac{l}{h}=-\frac{F_{x}^{\prime}\left(r_{0}+\theta h \cdot y_{0}+\theta k \cdot z_{0}+\theta l\right)}{F_{z}^{\prime}\left(x_{0}+\theta h \cdot y_{0}+\theta k \cdot z_{0}+\theta l\right)}, \quad \frac{l}{k}=-\frac{F_{y}^{\prime}(\cdots)}{F_{z}^{\prime}(\cdots)}$
when k and h respectively are assignell the values 0 . The limits exist when $h \doteq 0$ or $k \doteq 0$. But in the first case $l=\Delta z=\Delta_{z} z$ is the increment of z when x alone varies, and in the second case $l=\Delta z=\Delta_{y} z$. The limits are therefore the desired partial derivatives of z by x and y. The proof for any mumber of variahtu would be similar.

If none of the derivatives $F_{x}^{\prime}, F_{y}^{\prime}, F_{z}^{\prime}$ vanish, the equation $F(x, y, y, z)=0$ may le solved for any one of the variables, and formulas like (9) will express the partial derivatives. It then appears that

$$
\begin{equation*}
\left(\frac{d z}{l, r}\right)_{y}\left(\frac{d, r}{d z}\right)_{y}=\frac{\hat{c} z}{\bar{c}, r} \frac{\hat{c} r}{\hat{c} z}=\frac{F_{x}^{\prime}}{F_{z}^{\prime}} \frac{F_{z}^{\prime}}{F_{x}^{\prime}}=1, \tag{10}
\end{equation*}
$$

and
in like mamer. The first erpation is in this ease identieal with (t) of $\boldsymbol{s} \boldsymbol{2}$ becraluse if ! is constant the relation $F(\cdot r, y, z)=0$ reduces to $f\left(x, z^{\prime}\right)=0$. The second equation is new. lis vintue of (10) and similar relations, the derivatives in (11) may he inverted and transfomen to the right side of the equation. As it is assumed in themodynamis; that the pressure, volume, and temperature of a given simple substance are comected ly an equation $F(p, r, T)=0$. walled the chararteristic equation of the sulstance, a relation between different thermodynamimagnitudes is furnished les (11).
60. In the next place suppose there are two equations

$$
\begin{equation*}
F\left(, r^{\prime}, y, \prime \prime, r\right)=0, \quad r(, \cdot,, y, \prime \prime, r)=0 \tag{1:2}
\end{equation*}
$$

between four varialdes. Let carll equation be differentiated.

If it le desired to comsider' ", r as the demendent variables and .5 as indelendent, it wond be natural to solve these coplations for the differentials l^{\prime} and l^{\prime} in terms of l^{r} and $\|_{l}$: for example.

$$
\begin{equation*}
d u=-\frac{\left(F_{x}^{\prime} r_{x}^{\prime}-F_{r}^{\prime} f_{x}^{\prime}\right) l_{r}+\left(F_{n}^{\prime} i_{n}^{\prime}-F_{n}^{\prime}\left(i_{n}^{\prime}\right) l_{!}\right)}{F_{u_{u}^{\prime}}^{\prime \prime} i_{v}^{\prime}-F_{r}^{\prime \prime} i_{u}^{\prime}} . \tag{1:3'}
\end{equation*}
$$

The differential dr would have a different mumerater lint the sane dunominator. The sohution requires F_{n}^{\prime} ($i_{r}^{\prime}-F_{r}^{\prime}$ fín$\neq 0$. This suggests the

 - it heing assumed that F and i^{i} regartod ats functions in four variahn are centinuons and have continuons first partian derivatives at and mar $\left(r_{n}, \%_{0}, \|_{0}, r_{n}\right)$: moreover, the total differentials, ll, dr are given ly (13') :anl a similar enuation.

The proof of this theorem may be deferred (s 6t). Some olservations should be made. The equations (13) may he solved for any two variables in terms of the other two. The partial derivatives
of "by x or of x lyy " will naturally depend on whether the solution for $"$ is in terms of $(r,!/)$ or of (r, r), and the solution for,r is in $(\prime \prime, r)$ or (", !). Noreover, it must not he assmmed that $\partial u / \partial, r$ and $\hat{c}, \bar{f} / \bar{\prime}$ are reciprocals no matter which maming is attached to each. In obtaining relations between the derivatives analogons to (10), (11), the values of the derivatives in terms of the derivatives of F and $; i$ may be found or the effuations (12) may first be eonsidered as solved.

Thus if

$$
\begin{array}{ll}
u=\phi(r, y), & d u=\phi_{x x}^{\prime} l x+\phi_{y^{\prime}}^{\prime} l y, \\
v=\psi(. r, y), & d v=\psi_{x^{\prime}}^{\prime} l x+\psi_{y}^{\prime} l y .
\end{array}
$$

Then

$$
d x=\frac{\psi_{y}^{\prime} \prime u-\phi_{y}^{\prime} / l v}{\phi_{x^{\prime}}^{\prime} \psi_{y}^{\prime}-\phi_{y}^{\prime} \psi_{x}^{\prime}}, \quad d y=\frac{-\psi_{r}^{\prime} d u+\phi_{y^{\prime}}^{\prime} d v}{\phi_{x^{\prime}}^{\prime} \psi_{y}^{\prime}-\phi_{y}^{\prime} \psi_{x}^{\prime}}
$$

:1114

Hence

$$
\frac{\hat{c} r}{\hat{c} u}=\frac{\psi_{11}^{\prime}}{\phi_{x}^{\prime} \psi_{y}^{\prime}-\phi_{y}^{\prime} \psi_{r}^{\prime}}, \quad \frac{\hat{c} v}{\hat{c} v}=\frac{-\phi_{y}^{\prime}}{\phi_{s}^{\prime} \psi_{y}^{\prime}-\phi_{y}^{\prime} \psi_{x}^{\prime}}, \text { etc. }
$$

$$
\begin{equation*}
\frac{\hat{\partial} u \frac{\hat{c}}{\hat{c} x}+\frac{\hat{c} u}{\hat{c} \cdot} \cdot \hat{c} r}{}=1 \tag{15}
\end{equation*}
$$

as may be seen hy direct substitutiom. Here u, v are expressed in torms of $x . y$ for the derivatives $u_{s,}^{\prime}, v_{y}^{\prime}$; and x, y are considered ans expressed in terms of u, v for the derivatives s_{u}^{\prime}, s_{n}^{\prime}.
61. The questions of free on eonstramed maxima and minima, at any rate in so far as the determination of the conditions of the first orter is concerned, may now be treated. If $F^{\prime}(r, y, z)=0$ is given ant the maxina and minima of is as a function of (r, !/) are wanted,

$$
\begin{equation*}
F_{x}^{\prime}(r, y, z)=0, \quad F_{y}^{\prime}(, r, y, z)=0, \quad F(, r, y, z)=0 \tag{16}
\end{equation*}
$$

are three equations which may be solved for.x, $\%$. If for any of these solutions the derivative F_{z}^{\prime} does not vanish, the surfare $i=\phi(, \cdot$, , if $)$ hats at that point a tangent plane parallel to $: z=0$ and there is a maximum, minimum, or minimax. To distinguish between the possibilities further investigation must be made if necessary ; the details of such an investigation will not he outlined for the reason that spectial methods are usually avalable. The conditions for an extreme of 11 as a function of (r, y) defined implieitly by the ermations (13') are seen to be

$$
\begin{equation*}
F_{x}^{\prime} r_{r}^{\prime}-F_{r}^{\prime}\left(r_{r x}^{\prime}=0, \quad F_{y}^{\prime} r_{r r}^{\prime}-F_{r}^{\prime} r_{y}^{\prime}=0, \quad r^{\prime}=0, \quad \quad ;=0\right. \tag{1i}
\end{equation*}
$$

The foum erpuations may be solved for x; ! , 1 , a or merely for ,r, !/

Suppere that the maxima, minima, and mimimax of " $=f(., r ; \%, i)$ subject either to one equation $F\left(\cdot r^{\prime},!, a^{*}\right)=0$ or two equations $F^{\prime}(\because, y, y)=0$, $f_{i}\left(r^{\prime}, y, a\right)=0$ of ronstraint are desired. Note that if only one ergation of constraint is imposed, the function $"=f^{\prime}(\cdot r$, /, as) beeonues a funetion of two varialles; whereas if two equations are imposed, the function " really contains only one variable and the grestion of a minimax does not arise. The methond of multipleers is again employed. Consider

$$
\begin{equation*}
\Phi(, r,!/, \therefore)=f+\lambda F \quad \text { or } \quad \Phi=f+\lambda F+\mu G \tag{18}
\end{equation*}
$$

as the case may be. The conditions for a free extreme of Φ are

$$
\begin{equation*}
\Phi_{s}^{\prime}=0, \quad \Phi_{y}^{\prime}=0, \quad \Phi_{z}^{\prime}=0 \tag{19}
\end{equation*}
$$

 will then be expressed as functions of λ or of λ and μ acoorting to the case. If them λ or λ and μ le determined so that $(r,!\%, a)$ satisfy $F=0$ or $F=0$ and $(i=0$, the constramed extremes of $\prime \prime=f(r,!, *)$ will be fomm exeept for the examination of the conditions of higher orders.

Ss a pohlem in constranell maxima amd minima let the axes of the section of an ellipatid by a plane through the orisin be determined. Form the function

$$
\Phi=r^{2}+y^{2}+z^{2}+\lambda\left(\frac{r^{2}}{r^{2}}+\frac{y^{2}}{l y^{2}}+\frac{z^{2}}{r^{2}}-1\right)+\mu(l x+m y+n z)
$$

hy adding to $x^{2}+y^{2}+z^{2}$. which is whe made extreme. the equations of the ellipoid and plane. which are the equations of constraint. Then apply (19). Hence

$$
x+\lambda \frac{x}{y^{2}}+\frac{\mu}{2} l=0 . \quad y+\lambda \frac{y}{l j^{2}}+\frac{\mu}{2} m=0, \quad z+\lambda \frac{z}{c^{2}}+\frac{\mu}{2} n=0
$$

taken with the embations of ellipmin ant lane will determine $r . y, z, \lambda, \mu$. If the ("quations are multiplied by r. y. z and reduced by the equations of plane and (eliipund. the wolution for λ is $\lambda=-r^{2}=-\left(r^{2}+y^{2}+z^{2}\right)$. The three equations then lewome

$$
x=\frac{1}{2} \frac{\mu l l^{2}}{r^{2}-n^{2}}, \quad y=\frac{1}{2} \frac{\mu m l^{2}}{r^{2}-r^{2}}, \quad z=\frac{1}{2} \frac{\mu m u^{2}}{r^{2}-r^{2}}, \quad \text { with } \quad l x+m y+n z=0 .
$$

Hener

$$
\begin{equation*}
\frac{r^{2} r^{2}}{r^{2}-r^{2}}+\frac{m^{2} l^{2}}{r^{2}-r^{2}}+\frac{n^{2} r^{2}}{r^{2}-r^{2}}=0 \quad \text { fletermines } r^{2} \tag{20}
\end{equation*}
$$

The two gonts for r are the major and minor axe of the ellipes in which the phane

$$
\frac{\mu^{2}}{4}=\left(c^{\prime \prime \prime}-1^{2}\right)^{2}+\left(\begin{array}{c}
r^{2}-l n^{2} \tag{21}
\end{array}\right)^{2}+\left(\frac{m}{r^{2}-c^{2}}\right)^{2} \text { since } \frac{r^{2}}{n^{2}}+\frac{y^{2}}{1 y^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

EXERCISES

1. Obtain the partial derivatives of z by x and y directly from (8) and not by substitution in (9). Where does the solution fail?
(cr) $\frac{x^{2}}{u^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$,
(阝) $x+y+z=\frac{1}{x y z}$,
(γ) $\left(x^{2}+y^{2}+z^{2}\right)^{2}=a^{2} x^{2}+b y^{2} y^{2}+c^{2} z^{2}$,
($\delta) x y z=c$.
2. Find the second derivatives in Ex. 1 (α), (β), (δ) ly repeated differentiation.
3. state and powe the theorem on the solution of $F(x, y, z, u)=0$.
4. Show that the product $a_{p} E_{T}$ of the corethicient of expansion by the morlulus of elasticity $\left(\S_{2}\right)$ is equal to the rate of rise of pressure with the temperature if the volume is constant.
5. Establish the proportion $E_{S}: E_{T}=C_{p}: C_{c}^{\prime}$ (see $\S 52$).

6. Wr rite the equations of tangent plane and nomal line to $F(x, y, z)=0$ and find the tangent planes and momal lines to Ex. $1(\beta)$. (o) at $x=1, y=1$.
7. Find. by using (13), the inticated derivatives on the assumption that either x. y or u, v are dependent and the other pais inderemdent:
$(x) u^{5}+x^{5}+x^{5}-3 y=0 . \quad u^{3}+x^{3}+y^{3}+3 x=0, \quad u_{r}^{\prime} . u_{g,}^{\prime}, u_{r y}^{\prime \prime}, v_{r, x}^{\prime \prime}$
$\left.(\beta) x+y+u+r=u, \quad r^{2}+y^{2}+u^{2}+r^{2}=1\right) \quad r_{u}^{\prime} \cdot u_{x}^{\prime}, v_{y}^{\prime}, v_{r y}^{\prime \prime}$
(γ) Find $d y$ in both cases if $s . c$ are independent ramables.
8. Prove $\frac{\hat{c} u \hat{c} y}{\hat{c} u}+\frac{\hat{c} v}{\hat{c} x} \overline{\hat{c}}=0$ if $F(x, y, u, v)=0, c_{i}(x, y, u, v)=0$.
9. Find du and the derivatives $u_{,}^{\prime}$. $u_{y,}^{\prime}$. u^{\prime} in case

$$
x^{2}+y^{2}+z^{2}=u c . \quad x y=u^{2}+v^{2}+u^{2}, \quad x^{\prime} y z=u c u .
$$

11. If $F(x, y, z)=0, f_{i}(x, y, z)=0$ define a curve, show that

$$
\frac{x-x_{0}}{\left(F _ { y } ^ { \prime } \left(r_{z}^{\prime}-F_{z}^{\prime}\left(r_{y}^{\prime}\right)_{0}\right.\right.}=\frac{y-y_{0}}{\left(F^{\prime}\left(G_{y}^{\prime}-F_{y}^{\prime} G_{z}^{\prime}\right)_{0}\right.}=\frac{z-z_{0}}{\left(F_{y}^{\prime} r_{y}^{\prime}-F_{y}^{\prime} \prime_{i, \prime}^{\prime}\right)_{0}}
$$

is the tangent line to the curve at $\left(x_{11}, y_{1}, z_{10}\right)$. Write the momal plance.
12. Formulate the problen of implicit functions necuriner in Lx. 11.
13. Find the perpenticular distance from a point to a plane.
14. The sum of thee pesitive mumbers is $x+y+z=N$. where N is given. Determine x, y, z so that the protuct $x^{r} y z^{7} z^{r}$ shall be maximum if p, q. r are siven. Ans, $x: y: z: \mathcal{N}=p: q: r:(p+q+r)$.
15. The sum of three positive mmbers and the sum of their squares are both given. Nake the proluct a maximum or minimum.
16. The surface $\left(x^{2}+y^{2}+z^{2}\right)^{2}=a x^{2}+m y^{2}+c z^{2}$ is cut by the plane $l x+m y+n z=0$. Find the maximum or minimum radius of the section. $\quad 1$ ns. $\sum_{1-1}^{l^{2}-1}=11$.
17. In case $F(x, y, u, v)=0, G(x, y, u, v)=0$ eonsider the differentials

$$
d v=\frac{\hat{\partial} v}{\hat{c} x} d x+\frac{\hat{\partial}}{\hat{c} y} d y, \quad d x=\frac{\hat{c} x}{\hat{c} u} d u+\frac{\hat{\partial} x}{\hat{c} v} d v, \quad d y=\frac{\hat{\partial} y}{\hat{c} u} d u+\frac{\hat{c} y}{\hat{c} v} d v .
$$

Substitute in the first from the last two and obtain relations like (15) and Ex. 9 .
18. If $f^{\prime}(x, y, z)$ is to be maximmm or minimmm subjert to the constraint $F(x, y, z)=0$, show that the eonclitions are that $d x: d y: d z=0: 0: 0$ are incteterminate when their solution is attempted from

$$
f_{x}^{\prime} d x+f_{y}^{\prime} d y+f_{z}^{\prime} d z=0 \quad \text { and } \quad F_{y}^{\prime} d x+F_{y}^{\prime} d y+I_{z}^{\prime} d z=0 .
$$

From what geometrical considerations shonk this be obvious? Diseuss in comection with the problem of inseribing the maximum rectamukur parallelepiped in the ellipsoid. These equations,

$$
d c: d y: d z=f_{y}^{\prime} F_{z}^{\prime}-f_{z}^{\prime} F_{y}^{\prime}: f_{z}^{\prime} F_{x}^{\prime}-f_{y}^{\prime} F_{z}^{\prime}: f_{r}^{\prime} F_{y}^{\prime}-f_{y}^{\prime} F_{x}^{\prime}=0: 0: 0
$$

may sometimes be used to alvantare for such prohlems.
19. Given the eurve $F(x, y, z)=0, ~(i(x, y, z)=0$. Dischss the conditions for the highest or lowest points, or more wemerally the points where the tangent is parallel to $z=0$, by treating $u=f(x, y, z)=z$ as a maximum or minimum sub) ject to the two comstraning equations $F=0, G=0$. Show that the eondition $F_{x}^{\prime} C_{y}^{\prime}=F_{y}^{\prime} C_{x}^{\prime}$ which is thas obtaned is ergivalent to setting $d z=0 \mathrm{in}$

$$
F_{x}^{\prime} d x+F_{y}^{\prime} d y+F_{z}^{\prime} d z=0 \quad \text { and } \quad G_{r}^{\prime} r d x+G_{y}^{\prime} d y+G_{z}^{\prime} d z=0
$$

20. Find the highest and lowest points of these chrves :
$(\alpha) x^{2}+y^{2}=z^{2}+1, x+y+2 z=0, \quad$ (β) $\frac{x^{2}}{u^{2}}+\frac{y^{2}}{l_{2}^{2}}+\frac{z^{2}}{c^{2}}=1, l x+m y+n z=0$.
 is the tangent phane to the surface $F^{\prime}(x, y, z)=0$ at (x, y, z). Jpply to Ex. 1.
21. (iiven $F^{*}(x, y, u, x)=0,(f(x, y, u, r)=0$. ()htainthe (xhtations
amd explain their sisnifieance as a sort of partal-tatal diftrentiation of $F^{\prime}=0$ and $O_{t}=0$. Find u_{x}^{\prime} from them and compatre with (18'). Write similar equations where x, y are eonsidered as functions of (u, r). Honce prose, and compare with (15) and Ex. 9,

$$
\begin{array}{ll}
\hat{c} u \hat{\imath} y \\
\hat{c} y \hat{c} \|
\end{array} \begin{array}{ll}
\hat{c} v \hat{\imath}!y \\
\hat{c}!\hat{c} \hat{c}
\end{array}=1, \quad \hat{c}, \vec{c} r+\hat{c} u \hat{c} r=0 .
$$

23. Show that the differentiation with respeet to x and !y of the four equations under Ex. 22 learls to cight equations from which the eight derivatives
maty he obtamed. Show thus that formally " ", $=u_{y \prime \prime}^{\prime \prime}$.
24. Functional determinants or Jacobians. Let two functions

$$
u=\phi(r, y), \quad r=\psi(\cdots, y)
$$

of two independent variables be given. The continuity of the functions and of their first derivatives is assmmed throughout this discussion and will not be mentioned again. Suppose that there were a relation $F\left(n, c^{\circ}\right)=0$ or $F(\phi, \psi)=0$ between the functions. Then

$$
\begin{equation*}
F(\phi, \psi)=0, \quad F_{u}^{\prime} \phi_{x^{\prime}}^{\prime}+F_{r}^{\prime} \psi_{x}^{\prime}=0, \quad F_{u}^{\prime} \phi_{y}^{\prime}+F_{v}^{\prime} \psi_{y}^{\prime}=0 \tag{23}
\end{equation*}
$$

The last two equations arise on differentiating the first with respect to x and y. The elimination of F_{u}^{\prime} and F_{v}^{\prime} from these gives

$$
\phi_{x}^{\prime} \psi_{!}^{\prime}-\phi_{y}^{\prime} \psi_{y}^{\prime}=\left|\begin{array}{l}
\phi_{y}^{\prime} \tag{24}\\
\phi_{y}^{\prime}
\end{array}\right|=\frac{\hat{\prime}(1, r)}{\bar{c}(x, y)}=J\left(\frac{n, r}{r, r}\right)=0 .
$$

The determinant is merely another way of writing the first expression: the next form is the rustomary short way of writing the determinant and denotes that the elements of the determinant are the first derivatives of 11 and c with lespecet to, r and !/. This determinant is called the functional determinent or . Jorolvian of the functions u, r or $\phi . \psi$ with respect to the varialles. r, If and is deneted by.J. It is seen that: If there is a fionerionul mlation $F(\phi, \psi)=0$ liptwren twro finnetions, ther
 values of the variables (ir, !f) under consideration.
 region for (x, y), the finkrtims "ree romuertell by finnetiomel, reletion. For, the functions $", r$ may be assmmed not to reduce to mere comstant: and hence there may be assumed to be points for which at least one of the partial derivatives $\phi_{x}^{\prime} . \phi_{y,}^{\prime}, \psi_{s}^{\prime}$. ψ_{y}^{\prime} does not vanish. Let ϕ_{x}^{\prime} he the derivative which does not vanish at some particular point of the region. Then $u=\phi\left(x^{\prime},!\right)$ may be solved as $x=\chi(n, y)$ in the vicinity of that point and the result may be substituted in r.

$$
r=\psi(\chi \cdot!), \quad \frac{\hat{c}_{\prime}}{\hat{c}_{y}}=\psi^{\prime} \frac{\hat{c}^{\prime} \chi}{c_{y}}+\psi_{y}^{\prime}=\psi_{x}^{\prime} \frac{\hat{c}_{, r}}{c_{y}}+\psi_{y}^{\prime} .
$$

But

$$
\frac{\hat{c}_{x}}{\hat{c}_{y}}=-\frac{\hat{c}_{11}}{\hat{c}_{y} \hat{c}_{x} x} \quad \text { and } \quad \frac{\hat{c}_{1}}{\hat{c}_{y}}=\frac{1}{\phi_{x}^{\prime}}\left(\phi_{x}^{\prime} \psi_{y}^{\prime}-\psi_{\prime}^{\prime} \phi_{y}^{\prime}\right)
$$

by (11) and substitution. Thus $\hat{c} \cdot / \hat{\partial} y=. J / \phi_{r}^{\prime}$; and if $J=0$, then $\tilde{c}_{1} \cdot \tilde{c}_{!}=0$. This relation holns at least throughout the region for which $\phi_{r}^{\prime} \neq 0$, and for points in this region $\hat{c} r / \hat{c}_{!}$vanishes identirally. Hence - does not depend on !/ but becomes a function of " alonk. This establishes the fact that r and u are functionally comerterl.

These considerations may be extended to other "ases. Let

$$
\begin{equation*}
u=\phi(r, y, z), \quad r=\psi(r, y, z), \quad \pi=\chi(r, y, z) . \tag{25}
\end{equation*}
$$

If there is a functional relation $F\left(n, r,{ }^{\prime}\right)=0$, differentiate it.
or

$$
\begin{aligned}
& \frac{\hat{c}(\phi, \psi \cdot \chi)}{\hat{c}\left(r^{\prime},!!\cdot a\right)}=\frac{\hat{c}(\prime, r, \|)}{\hat{c}(r,!, a)}=J=0 .
\end{aligned}
$$

The result is obtaned hy etiminating $F_{n}^{\prime}, F_{r}^{\prime}$, $F_{r,}^{\prime}$ from the thee equations. The assmmption is made. here as above, that $F_{n}^{\prime}, F_{n}^{\prime}$. $F_{n, \prime \prime}^{\prime}$ to mot all vanish; for if the y did, the three equations would mot imply $I=0$. (on the other hand their ranishing would imply that F did mot contain ", r. ", -as it mast if there is really a relation between them. And now ronversely it may he shown that if I ranishes incentically. therer is a func-

 their, Juroliann ranish.

The prow of the eonserse part is about as before. It may he assumed that at
 $\phi_{,}^{\prime} \neq 0$ be that derivative. Then $u=\phi(x, y, z)$ may lue sulvel as $x=\omega(u, y, z)$ and the result may be substituted in x amd of as

$$
r=\psi(r, y, z)=\psi(\omega, y, z) . \quad u=\chi(r, y, z)=\chi(\omega, y, z)
$$

Next the Jarohian of x and ur redative to ? and z may be written as
 also vanishes. Hence hy the case previonsly discused there is a fumemonal relat
 be consistered ats a fonmonnal relation butween u, v. ur.

$x y$-plane. If there is a functional relation $u=F(r)$, that is, if the Jacobian vanishes identically, a constant value of c implies a constant value of u and hence the locus for which c is constant is also a locuss for which u is constant; the set of c-cmres coincides with the set of u-cirves and no true network is formed. This (ase is uninteresting. Let it be assumed that thee Jacolian does not vanish identically and even that it does not ranish for any point $(., r, y)$ of a certain region of the $x \%-1$ lane. The indications of $\$ 60$ are that the equations (22) may then be solved for x, , $/$ in terms of $", r$ at any point of the regrion and that there is a pair of
 the curves through earli point. It is then propur to consider (1, r) as the coordinates of the points in the region. To any point there correspond not only the rectangular coorrdinates ((r, y) but also the curerilinear croïrdinutes ($11, r$).

The equations comerting the rectangular and curvilinear coorminates may be taken in wither of the two forms

$$
\begin{equation*}
u=\phi(r, y), \quad r=\psi(\cdot, r, y) \quad \text { or } \quad, r=f^{\prime}(\prime, r), \quad y=y(\prime, r), \tag{2昱}
\end{equation*}
$$

each of which are the solutions of the other. The Jacobians

$$
\begin{equation*}
J\left(\frac{\prime \prime, r}{r,!}\right) \cdot J\left(\frac{r r,!}{\prime \prime, r}\right)=1 \tag{27}
\end{equation*}
$$

are reciprocal earla to cach; and this relation may be regarded as the analogy of the relation (t) of \& 2 for the case of the function $y=\phi(\cdot \cdot)$ and the solution $x=f(y)=\phi^{-1}(y)$ in the case of a single variable. The differention af are is

The ditforentiml "f' urem included hetween two neighboring u-curves and two neighboring e-emres may be written in the form

These statements will now be proved in detail.

To prove (27) write ont the Jacobians at length and reduce the result.

$$
\begin{aligned}
& J\left(\frac{u, v}{x, y}\right) J\left(\frac{x, y}{u, v}\right)=\left|\begin{array}{ll}
\frac{\hat{c} u}{\hat{c}} & \hat{\partial} v \\
\hat{c} x \\
\hat{c} u & \hat{c} v \\
\hat{c} y & \hat{c} y
\end{array}\right| \cdot\left|\begin{array}{ll}
\frac{\hat{c} x}{} & \frac{\hat{c} y}{\hat{c} u} \\
\frac{\hat{c} u}{\hat{c} v} & \frac{\hat{c} y}{\hat{c} v}
\end{array}\right|
\end{aligned}
$$

where the rule for multiplying determinants las been applied and the reduction has been made by (15), Ex. 9 above, aml similar fommats. It the rule for multiplying determinants is unfamiliar, the Jacobitms may be written and moltiplied without that notation and the reluction may be male by the same fommulas as before.

To establish the formula for the differential of are it is only necessary to write the total differentials of $d x$ and $d y$, to square and add, and then collect. 'Fo obtain the differential area between fomr adjacent curves consider the triangle determined by $(u, v),(u+d u, v),(u, v+d v)$, which is half that area, and domble the result. The determinantal form of the area of a triangle is the best to use.

The subscripts on the differentials inclicate which variable changes ; thas $a_{u} x, d_{u} y$ are the coördinates of $(u+d u, r)$ relative to (u, r). This methorl is easily extmond to detemmine the analogous quantities in three dimensions or more. It may be noticed that the triangle does not look as if it were half the area (excon for intinitesimals of higher order) in the fisnue ; but see Ex. 12 below.

It should bee remarked that as the differential of area d. 1 is usually considereel positive when du and de are positive, it is usmally loetter to replace . J in (29) loy its absolute value. Insteal of recarling (1, r) as curvilinear coordinates in the , ry-plane, it is posibiln to phet them in their own "r-plane and thus to establish ley (ex') a tronstormertion of
 becomes a small area in the "r-phane. If $J>0$. the transformation is called direct; but if $J<0$, the transformation is called perverted. The significance of the distinction can be made elear only when the question of the signs of areas las been treaten. The trans formation is calleel comformul when clements, of are in the neighborheod of a peint in the ry-flane are proportional to the rements of are in the neighborlood of the eorresponding point in the "r-phane, that is, when

$$
\begin{equation*}
1 x^{2}=1, r^{2}+11 y^{2}=1:\left(111^{2}+1 i^{2}\right)=7: 1 \sigma^{2} \tag{30}
\end{equation*}
$$

For in this case any little triangle will be transformed into a little triangle similar to it, and hence angles will be unchanged by the transformation. That the transformation be conformal requires that $F=0$ and $E^{\prime}=G$. It is not necessary that $E=G=\%$; be constants; the ratio of similitude may be different for different points.
64. There remains outstanding the proof that equations may be solved in the neighborhood of a point at which the Jacobian does not vanish. The fact was indieated in $\wp 60$ and used in $\stackrel{\Sigma}{ } 63$.

Thensm. Let f " 'puations in $n+f$ variables be given, say,

$$
\begin{equation*}
F_{1}\left(x_{1}, r_{2}, \cdots, r_{n+1}\right)=0, \quad F_{2}=0, \cdots, F_{p}=0 . \tag{31}
\end{equation*}
$$

Let the 1 functions be soluble for $x_{10}, x_{2 n}, \cdots, x_{p_{0}}$ when a particular set $x_{(p+1)_{0}}, \cdots, x_{(n+\mu)_{0}}$ of the other n variables are given. Let the functions and their first derivatives be continuous in all the $n+p$ variables in the neighborhood of ($\left.x_{10}, r^{\prime}{ }_{20}, \cdots, r_{(n+p)_{0}}\right)$. Inet the Jacobian of the functions with respect to $x_{1}, r_{2}, \cdots, r_{1}$,

$$
I\binom{F_{1}, \cdots, r_{p}}{r_{1}, \cdots, r_{p}}=\left|\begin{array}{ccc}
\frac{\partial F_{1}}{c r_{1}} & \cdots & \frac{\partial F_{p}^{\prime}}{\partial r_{1}} \tag{32}\\
\vdots & & \vdots \\
c F_{1}^{\prime} & & \frac{c F_{p}^{\prime}}{r_{p}} \\
\overline{c \cdot r_{p}} & & c, r_{p}
\end{array}\right|_{r_{10}}, \cdots, x_{(n+p)_{0}}
$$

fail to ranish for the partieular set mentioned. Then the p equations may be solved for the 1 , variables $x_{1}, x_{2}, \cdots, x_{p}$, and the solutions will be contimons, misure, and differentiable with contimons first partial derivatives for all values of $r^{\prime}{ }_{p+1}, \cdots, r_{n+p}$ sufficiently wear to the values $:_{(p+1)_{0}} ; \cdots, r_{\left(n+p_{0}\right.}$.

Tumonem. The neressary and sufficient condition that a functional delation exist between f^{\prime} functions of f^{\prime} variables is that the Jaeobian of the functions with resperet to the variables shall vanish identically, that is, for all values of the variables.

The proff of these themems will maturally be given be mathematical intuction. Each of the the mems hats been proved in the simplest ceases and it remains only to show that the thenems are trie for p functions in case they are for p - 1 . Expmat the determinant.J.

$$
J=J_{1} \frac{\hat{F_{1}}}{\partial x_{1}}+J_{2} \frac{\hat{F_{1}}}{\hat{\partial} x_{2}}+\cdots+J_{p} \frac{\hat{\partial} F_{1}}{\hat{\partial} p_{p}}, \quad J_{2}, \cdots, J_{p,}, \text { min(ons. }
$$

For the first theorem $I \neq 0$ and hence at least me of the minons $J_{2}, \ldots . J_{1}$, monst fail to vamish. Let that one be J_{1}, which is the Jacohian of $F_{2} \ldots . F_{p}$, with resperect to $x_{2}, \ldots . r_{p}$. By the aswmption that the theorm holds for the case $p-1$, these $p-1$ equations may be solved for $x_{2} \ldots, x_{p}$ in terms of the $n+1$ variabics x_{1},
x_{p+1}, \cdots, x_{n+p}, and the results may be substituted in F_{2}. It remains to show that $F_{1}=0$ is soluble for x_{1}. Now

$$
\frac{d F_{1}}{d x_{1}}=\frac{\hat{c} F_{1}}{\hat{c} x_{1}}+\frac{\hat{c} F_{1}}{\hat{c} x_{2}} \frac{\hat{x_{2}}}{\hat{c} x_{1}}+\cdots+\frac{\hat{c} F_{1}}{\hat{c} x_{p}} \frac{\hat{c} x_{p}}{\hat{c} x_{1}}=J / J_{1} \neq 0 .
$$

For the derivatives of x_{2}, \cdots, x_{p} with respect to x_{1} are obtained from the equations

$$
0=\frac{\hat{c} F_{2}}{\hat{c} x_{1}}+\frac{\hat{c} F_{2}}{\hat{c} x_{2}} \frac{\hat{c} x_{2}}{\hat{c} x_{1}}+\cdots+\frac{\hat{c} F_{2}}{\hat{c} x_{p}} \frac{\hat{c} x_{p}}{\hat{c} x_{1}}, \quad \cdots, \quad 0=\frac{\hat{c} F_{p}}{\hat{c} x_{1}}+\frac{\hat{c} F_{p}}{\hat{c} x_{2}} \frac{\hat{c} x_{2}}{\hat{c} x_{1}}+\cdots+\frac{\hat{c} F_{p}}{\hat{c} x_{p} x_{p}} \frac{\hat{c} x_{1}}{}
$$

resulting from the differentiation of $F_{2}=0, \cdots, F_{p}=0$ with respect to x_{1}. The derivative $\hat{c} x_{i} / \hat{c} x_{1}$ is therefore merely J_{i} / J_{1}, and hence $d F_{\mathrm{i}} / d x_{1}=J / J_{1}$ and does not ranish. The equation therefore may be solved for x_{1} in terms of x_{p+1}, \cdots, x_{n+p}, and this result may be substituted in the solutions above found for $x_{2} \cdots, x_{p}$, Hence the equations have been solved for $x_{1}, x_{2}, \cdots, x_{p}$ in terms of x_{p+1}, \cdots, x_{n+p} and the theorem is proved.

For the second thenrem the procedure is analogons to that previonsly followed. If there is a relation $F\left(u_{1}, \cdots, u_{p}\right)=0$ between the p functions

$$
u_{1}=\phi_{1}\left(r_{1}, \cdots, x_{p}\right), \cdots \quad u_{p}=\phi_{p}\left(r_{1}, \cdots, r_{p}\right)
$$

differentiation with respect to $x_{1} \cdots . s_{p}$ gives p equations from which the derivatives of F by $u_{1} \cdots \cdots u_{p}$, may be eliminated and of $\binom{u_{1}, \cdots, u_{\mu}}{x_{1}, \cdots, r_{p}}=0$ becomes the condition desired. If conversely this Jacobian vanishes identically and it be assumed that one of the derivatives of u_{i} by x_{j}, say $\hat{c} u_{1} / \hat{c} c_{1}$. dues suot vanish, then the solution $x_{1}=\omega\left(u_{1} \cdot x_{2}, \cdots, x_{2}\right)$ may be effected and the result may be substituted in u_{2}, \cdots, u_{p}. The Jatobian of $u_{2} \ldots . u_{p}$ with respect to $x_{2} \ldots . s_{p}$ will then turn out to be $J \div \bar{c} u_{1} / \bar{c} x_{1}$ and will ranish becanse J ranishes. Now. however. only $p-1$ functions are involverl, and hence if the theorem is true for $p-1$ functions it must be trile for p functions.

EXERCISES

1. If $u=a x+b y+p$ and $x=\|^{\prime} x+b^{\prime} y+r^{\prime}$ are functionally depemdent, the lines $u=0$ and $x=0$ are parallel : and empersely.
2. Prove $x+y+z \cdot x y+y z+z r . r^{2}+y^{2}+z^{2}$ functionally dependent.
3. If $u=a x+b y+c z+n \cdot x=a^{\prime} x+b^{\prime} y+a^{\prime} z+d^{\prime} \cdot v=a^{\prime \prime} x+b^{\prime \prime} y+c^{\prime \prime} z+l^{\prime \prime}$ are functionally depembent. the planes $u=0, x=0, w=0$ are parallel to a lime.
4. In what senses are $\frac{i c}{\hat{c} y}$ and $\psi_{\prime^{\prime}}^{\prime}$ of (24^{\prime}) and $\frac{d F_{1}}{d c_{1}}$ and $\frac{i F_{1}}{\hat{c} x_{1}}$ of (3, $)$ partial or total derivatives? Are not the two afts completely analergons."
5. Given (2.5). sulppser $\begin{array}{cc}\psi_{y}^{\prime} & x_{y \prime}^{\prime} \\ \psi^{\prime} & x^{\prime}\end{array} \neq 0$. Solve $\tau=\psi$ and $w=\chi$ for y and z, suls,ti-

6. If $u=u(x, y), x=r(x, y)$. and $x=x(\xi, \eta), y=y(\xi, \eta)$, prove

$$
J\binom{\mu \cdot r}{x, y} \cdot f\binom{r \cdot \eta}{\xi \cdot \eta}=J\left(\frac{n \cdot v}{\xi \cdot \eta}\right) .
$$

State the extension to any mmber of variable. Ilow may (20) be used to fowe

7. Prove $a V^{r}=J\left(\frac{c \cdot y \cdot z}{u, v \cdot w}\right)$ dudtrdw $=$ dudtorw $\div J\left(\frac{u \cdot v, w}{x \cdot y, z}\right)$ is the element of volme in space with cmrvilinear coordinates $u, v, w=$ consts.
8. In what parts of the plane can $u=x^{2}+y^{2} \cdot x=s y$ not be used as eurilinear coördinates:" Express ds for these coürdinates.
9. Prove that $2 u=x^{2}-y^{2}, v=x y$ is a conformal transformation.
10. Prove that $x=\frac{u}{u^{2}+v^{2}}, y=\frac{v}{u^{2}+c^{2}}$ is a conformal transfumation.
11. Define conformal transformation in space. If the transformation

$$
x=a u+b x+c^{\prime} u, \quad y=u^{\prime} u+b^{\prime} x+r^{\prime} u, \quad z=u^{\prime \prime} u+b^{\prime} x+c^{\prime \prime} w
$$

is conformal, is it orthogonal? See Ex. $10(\zeta), 1,100$.
12. Show that the areas of the triangles whose vertices are
$(u \cdot v) \cdot(u+d u, v) \cdot(u, v+d v)$ and $(u+d u \cdot v+d v),(u+d u, v),(u, v+d v)$ are infinitesimals of the same order, as sugrested in s i $; 3$.
13. Wonk the combition $F=0$ in (28) mean that the set of curves $u=$ const. were perpendicular to the sot $x=$ const. "'
14. Express E. F. (fin (28) in terms of the derivatives of u, x by r, y.
15. If $x=\phi(s, t), y=\psi(x, t), z=\chi(x, t)$ are the paranetric equations of a surface (from which s. t couk bee eliminated to obtain the equation between x, y, z), show

$$
\frac{i z}{\partial x}=J\left(\frac{\chi \cdot \psi}{x \cdot t}\right) \div J\left(\frac{\phi \cdot \psi}{x, t}\right) \text { and find } \frac{\partial z}{\partial y} .
$$

65. Envelopes of curves and surfaces. Let the equation $F(x, y, \alpha)=0$ be considered as representing a finnily of eures where the different corves of the family are olitamed by assigning different values to the parameter a. such families are illustrated by

$$
\begin{equation*}
\left(r^{r}-x\right)^{2}+y^{2}=1 \quad \text { and } \quad a r^{r}+y / r=1 \tag{3:3}
\end{equation*}
$$

which are direles of unit radius rentered on the er-axis and lines whieh rat off the arear $\frac{1}{2}$ a from the first chathant. Is x changes, the cireles remain always tangent to the two lines $y= \pm 1$ and the point of tangency traces those lines. Again, as of changes, the lines (33) remain tangent to the hyperbola r y $=k$, owing to the poperty of the herperbola that a tangent forms a triangle of constant area with the assmptotes. The lines $!= \pm 1$ are called the "mrelnop of the system of "ircles and thre hyrerthola
 $\therefore!y=l_{i}$ the enverope of the set of lines. In wemeral, if there is a rmere

the encelope (or part of the envelone if there aro several such curves) of the fimil! $F(x, y, a)=0$. Thus any eurve may be reganded as the envelope of its tangents or as the envelope of its circles of curvature.

To find the equations of the envelope note that by definition the enveloping eurves of the family $F^{\prime}\left(r^{\prime},!, r\right)=0$ are tangent to the envelope and that the print of tangeney moves along the enselope as ar varies. The erpuation of the envelope may the refore be written

$$
\begin{equation*}
r=\phi(, k), \quad y=\psi(r) \quad \text { with } \quad F(\phi, \psi,(x)=0 \tag{:34}
\end{equation*}
$$

Where the finst equations express the dependenee of the points on the (anerope upon the parameter x and tha last equation states that earh point of the envelope lies also on some curve of the family $r(x, y, x)=0$. bifferentiate (34) with resperet to α. Then

$$
\begin{equation*}
F_{\alpha}^{\prime} \phi^{\prime}(x)+F_{c}^{\prime} \psi^{\prime}(x)+F_{\alpha}^{\prime}=0 . \tag{35}
\end{equation*}
$$

Now if the point of contact of the envelojee with the curve $F=0$ is an manary point of that curve, the tangent to the come is

$$
r_{u}^{\prime}\left(r^{\prime}-x_{0}\right)+r_{y}^{\prime}\left(!!!_{0}\right)=0 ; \quad \text { sud } \quad F_{u}^{\prime} \phi^{\prime}+F_{y}^{\prime} \psi^{\prime}=0,
$$

since the tangent dirertion r!! : dra $=\psi^{\prime}: \phi^{\prime}$ along the enrelone is bey dafinition identioal with that along tha envelopingerere: and if the
 lhence in either case $F_{a}^{\prime}=0$.

$$
\begin{equation*}
F\left(r^{r},!l, x\right)=0, \quad l_{a}^{\prime}(!,!l, x)=0 \tag{.36}
\end{equation*}
$$

 "mperge. Fom instane if the comers of the family $F=0$ have simglar points and if $r=\phi(a),!=\psi(i)$ be the lowns of the simgular fuints
 rate for finting the mavelope therefore fints alson the lowers of singulan
 the elimination. It is therefore imporant tor test graphically or anallytioally the sulution ohtained ber aplying the rule.

$$
F(r .!r \cdot a)-(r-a)^{2}+y^{2}-1=0 . \quad F_{a}^{\prime}-\geq(r-a)=0 .
$$

geometrically evident that these are really envelopes and not extranenus factors. But as a seconnl example consider $\alpha x+y / a=1$. Here

$$
F(x, y, \alpha)=\alpha x+y / \alpha-1=0, \quad F_{\alpha}^{\prime}=x-y / \alpha^{2}=0 .
$$

The solution is $y=\alpha / 2, x=1 / 2 \alpha$, which gives $x y=\frac{1}{4}$. This is the envelope; it could not be a locus of singular points of $F=0$ as there are none. Suppose the elimination of ce be made by sylvester"s method as

$$
\begin{array}{r}
-y / \alpha^{2}+0 / \kappa+x+0 \alpha=0 \\
0 / \alpha^{2}-y / \alpha+0+x \alpha=0 \\
y / \alpha^{2}-1 / \alpha+x+0 \alpha=0 \\
0 / \alpha^{2}+y / \alpha-1+x \alpha=0
\end{array} \quad \text { and } \quad\left|\begin{array}{rrrr}
-y & 0 & x & 0 \\
0 & -y & 0 & x \\
y-1 & x & 0 \\
0 & y & -1 & x
\end{array}\right|=0 ;
$$

the reduction of the detmminant gives $x y(t x y-1)=0$ as the diminant, and contains not only the envelnge $4 x y=1$, but the factors $x=0$ and $y=0$ which are obvionsly extrameons.

As a third problem find the envelno of a line of which the length intercepted between the axes is emstant. The necessary equations are

$$
\frac{x}{\alpha}+\frac{y}{\beta}=1, \quad \alpha^{2}+\beta^{2}=K^{22} . \quad \frac{x}{\alpha^{2}} d \alpha+{ }_{\beta^{2}}^{y} d \beta=0, \quad \alpha d \alpha+\beta l \beta=0 .
$$

Two parameters α, β eomeeted by a relation have been introduced; both equations lave been differemiated totally with respect to, the parancters; and the problem is to eliminate α, β, der, d β from the equations. In this case it is simpler to carry both parameters than to introduce the radicals which would be reguited if only one parameter were used. The elimination of dix, dis from the last two equations gives $x: y=\alpha^{3}: \beta^{3}$ or $\sqrt[3]{x^{\prime}}: \sqrt[3]{y}=\alpha: \beta$. From this and the first cupation,

$$
\frac{1}{\alpha}=\frac{1}{x^{\frac{1}{3}}\left(x^{\frac{2}{3}}+y^{\frac{2}{3}}\right)}, \quad \frac{1}{\beta}=\frac{1}{y^{\frac{1}{3}(}\left(x^{\frac{2}{3}}+y^{\frac{2}{3}}\right)}, \quad \text { and hence } \quad x^{\frac{2}{3}}+y^{\frac{2}{3}}=h^{\frac{2}{3}} .
$$

 be an ordinary boint of $x=a_{0}$ and (,$r_{0}+\left(i, r^{2}, y_{0}+1!!\right)$ of $x_{0}+$ dre. Whan

$$
\begin{align*}
& F\left(x_{0}+\left\|, r^{\prime},!_{0}+\right\|!l_{,} x_{0}+\| x\right)-F\left(x_{0},!!_{0},\left(x_{0}\right)\right. \tag{:37}
\end{align*}
$$

holds exerept for infinitesimals of highere order. The distame from the point on $x_{0}+$ dre to the tamgent to x_{0} at $\left(r_{0}, I_{0}\right)$ is
except for infmitesimals of higher order. This distance is of the first orler with dre and the nomal derivative da/dn of sis is finite except when $F_{a}^{\prime}=0$. 'The distanee is of highere order than dre, and dra/dn is

 rially from the faet that the distane from a peint on a doure to the
tangent to the curve at a neighboring point is of higher order (§ 36). singular points have been ruled ont hecause (38) beromes indeterminate. In general the locus of singular points is not tangent to the curves of the family and is not an envelope but an extraneous factor; in exceptional cases this lorus is an envelope.

If two neighboring curves $F(x, y, x)=0, F(, r, y, x+\Delta x)=0$ intersect, their point of intersection satisfies both of the equations, and henee also the equation

$$
\frac{1}{\Delta(x}\left[F(x,!,(x+\Delta x)-F(x, y, x)]=F_{a}^{\prime}(x, y,(x+\theta \Delta x)=0\right.
$$

If the limit be taken for $\Delta x \doteq 0$, the limiting position of the intersection satisfies $F_{\alpha}^{\prime}=0$ and hence may lie on the envelope, and will lie on the envelope if the common point of intersection is remote from singular points of the curves $F(, r, y, x)=0$. This idea of an emerenper "s the limit of perints in which neighburing curess of the fomely intersert is valuable. It is sometimes taken as the definition of the envelope. But, unless imaginary proints of intersection are considered, it is an inadequate definition; for otherwise $y=\left(x^{-}-x\right)^{3}$ would have no enveloper acording to the definition (whereas $y=0$ is obvionsly an envelope) and a eurve could not be regarded as the envelope of its osculating eireles.

Care must be used in applying the rule for finding an envelope. Otherwise not only may extraneons solutions be mistaken for the envelope, but the envelupe may be missed entirely. Consider

$$
\begin{equation*}
y-\sin \alpha x=0 \quad \text { or } \quad \alpha-r^{-1} \sin ^{-1} y=0 . \tag{39}
\end{equation*}
$$

where the second form is obtained by solution and contains a multizle valued fonetion. These two families of forves are indentical, and it is seometrically clear that they have an envelnpe. mamely $y= \pm 1$. This is precisely what would he fomm on applying the rule to the first of (39) ; hat if the rule be applime th the second of (3:3), it is seen that $F_{\alpha}^{\gamma}=1$, which does not vanish and hence indicates mo (mvelope. The whole matter should be examined earefully in the light of implicit functions.

Hence let $F(x, y, x)=0$ be a contimums single valued function of the these variables (r. \%. α) and let its derivatives F_{σ}^{\prime}. $F_{y}^{\prime \prime}$. $F_{a}^{\prime \prime}$ exist and be comtinums. (omsider the behation of the curves of the family hear a point $\left(x_{0}, y_{0}\right)$ of the emperen
 that the derivative $F_{\alpha}^{\prime}\left(x_{0}, y_{0},\left(x_{1}\right)\right.$ dones mot vanish. As $F_{\alpha}^{\prime} \neq 0$ amd wither $F_{s}^{\prime} \neq 0$
 that $F(r$. . g. $(\gamma)=0$ may be selved for or $=f(r$. y) which will be single valued and differentiable: and the region may further be taken sumall that $F_{\text {ar }}^{\prime}$ of $F_{y,}^{\prime}$ remains different from 0 thengunt the region. Then thengh arery peint of the region there is one and mily one eure $\alpha=f(x . y)$ and the curves have mo sinentar perints within the rexion. In fartioular wo two curves of the fanily can be tangent to each other within the rewinn.

Furthermore, in such a region there is no envelope. For let any curve which traverses the region be $x=\phi(t), y=\psi(t)$. Then

$$
\alpha(t)=f(\phi(t), \psi(t)), \quad \alpha^{\prime}(t)=f_{x}^{\prime} \phi^{\prime}(t)+f_{y}^{\prime} \psi^{\prime}(t) .
$$

Along any curve $\alpha=f(x, y)$ the equation $f_{x}^{\prime} d x+f_{y}^{\prime} d y=0$ hokls, and if $x=\phi(t)$, $y=\psi(t)$ be tangent to this curve, $d y=d x=\psi^{\prime}: \phi^{\prime}$ and $\alpha^{\prime}(t)=0$ or $\alpha=$ const. Hence the only curve which has at each point the direction of the curve of the family through that puint is a curve which eoincides throughout with some curve of the fanily and is tangent to no other member of the family. Hence there is no envelope. The result is that an envelope can be present only when $F_{\alpha}^{\prime}=0$ or when $F_{x}^{\prime}=F_{y}^{\prime}=0$, and this latter cass has heen seen to be incholed in the condition $F_{\alpha}^{\prime}=0$. If $F(x, y, \alpha)$ were not single valued but the branches were separable. the same conclusion would hold. Hence in case $F(x, y, \alpha)$ is not single valued the luei over which two or more values become inseparable must be added to those over which $F_{\alpha}^{\prime}=0$ in order to insure that all the loei which may be envelopes are taken into aceount.
67. The preceding considerations apply with so little change to other cases of envelopes that the facts will merely be stated without proof. Consider a fanily of surfaces $F\left(x^{\prime}, y, \therefore, \alpha, \beta\right)=0$ depending on two paraneters. The envelope may be defined by the property of tangency as in $\$ 6.5$; and the comblitions for an envelope womld be

$$
\begin{equation*}
F\left(r^{\prime}, y, \approx, x, \beta\right)=0, \quad r_{\alpha}^{\prime}=0, \quad r_{\beta}^{\prime}=0 . \tag{40}
\end{equation*}
$$

These three equations may be solved to express the envelope as

$$
x=\phi(r, \beta), \quad!=\psi(\pi, \beta), \quad \therefore=\chi(\pi, \beta)
$$

parametrically in torms of α, β; or the two parameters may be eliminated and the envelope may be found as $\Phi(x, y, a)=0$. In any case extrancous loci may lee introduced and the results of the work should therefore be tested, which graerally may be done at sight.

It is also possible to determine the distance from the tangent phane of one surface to the neighboring surfaces as
and to define the envelope as the locas of points such that this distance is of higher order than $|\lambda x|+|/ \beta|$. The equations (40) wonk then alsn follow. This definition wouk aphly only to ordinary points of the surfaces of the family, that is, to perints for which not all the derivatives $F_{u}^{\prime \prime}, F_{y}^{\prime \prime}, F_{z}^{\prime}$ vanish. But as the elimination of α, β from (40) would give an erguation which inchaded the loci of these singular points, there would he no danger of losing such loci in the rare instances where they, too, happened to be tangent to the surfaces of the family.

The application of implicit functions as in sit conld also be moule in this case and would show that no chvelope eould exist in regions where no singular points. ocenred and where either F_{α}^{\prime} or F_{β}^{\prime} faiked to vanish. This work combld be based either on the first lefinition involving tangency directly or on the secome definition which involves tangency indirectly in the statements concerning infintesimals of higher order. It maly bedmed that if $F(x, y, z, \alpha, \beta)=0$ were mot single valued, the surfaces over which two values of the function become inseparable shoult be auded as possible envelopes.

A family of surfares $P(x, y, z, x)=0$ depending on a single parameter may have an envelope, and the encelope is formel firme

$$
\begin{equation*}
F(\cdot r,!/, \approx, x)=0, \quad F_{c}^{\prime}(r,!/, z, \alpha)=0 \tag{42}
\end{equation*}
$$

by the elimination of the single parameter. The details of the deduetion of the rule will be omitterl. If two neighboring surfaces intersect, the limiting position of the curve of intersection lies on the envelope and the envelope is the surface gencrated by this curve ats of varies. The surfaces of the family touch the envelone not at a point merely but along these curves. The eurves are called rommeroristios of the fanily. In the case where consecutive surfaces of the fanily do not intersenet in a real rurve it is necessary to fall batek on the conception of imarginaries or on the definition of an melope in terms of tangency or infinitesimals; the characteristic curves are still the curves along which the surfares of the family are in contact with the envelope and along which two consecutive surfares of the family are distant from each other ley an infinitesimal of higher erder than dre.

A particular case of importance is the envelope of a plane whele depends on one parameter. 'The equations (ti2) are then

$$
\begin{equation*}
A x+I \prime y+\left(n^{\prime}+I\right)=0, \quad I^{\prime} x+B^{\prime}!y+\left(^{\prime} \because \because+D^{\prime}=0,\right. \tag{1.3}
\end{equation*}
$$

where A, B, C, B are functions of the parameter and differentation with respect to it is denoter by acrents. The ease where the plan moves parallel to itself or turns abeut a lime may le excluded as trivial. As the intersection of two planes is a line, the characteristics of tim system are straight lines, the envelope is a rulvel swiffere, and "thmer trengent to the swifices at one point of the lines is tom!rent to the swefare throwghout the ulowle extrot of the line. Cones and eylinders are examples of this sort of surface. Another example is the surfate enseloner by the nsoulating planes of a curve in space ; for the osculating plane depends on only one prameter. As the osculating plane (s f1) may he regarded as passing through three conserntive points of the curve, 1 wn consecutive osconlating planes may he consinterm as having two conserutive points of the eurro m eommon amd hane the chanacteristies are
the tangent lines to the corre. Surfares whirh are the envelopes of a plane which depends on a single parameter are alled dromoperble surfiners.

A family of curves dependent on two parameters as

$$
\begin{equation*}
F\left(r^{\prime},!, \therefore, r, \beta\right)=0, \quad G_{x}\left(r^{\prime}, y, \pi, r, \beta\right)=0 \tag{14}
\end{equation*}
$$

is called a rongruenre $f f^{\circ}$ rorros. The curves may have an envelope, that is, there may le a surface to which the corves are tangent and which may be regarded as the locus of their points of tangency. The envelope is obtained hy eliminating α, β from the equations

$$
\begin{equation*}
F=0, \quad F_{i}=0, \quad F_{\alpha}^{\prime}\left(r_{\beta}^{\prime}-F_{\beta}^{\prime} G_{\alpha}^{\prime \prime}=0\right. \tag{4,5}
\end{equation*}
$$

To see this, suppese that the thind condition is not fultilled. The erpar
 ing like that of fif now shows that there (amot possibly lee an enveloge in the region for which the solntion is valin. It may therefore be inferred that the only possililities for an envelope wre contained in the equations (45). Is various extraneons loci might be introduced in the elimination of r, β from (40) and as the solutions should therefore be tested individually, it is hardly necessary to examine the general question further. The envelope of a congruence of conves is called the
 with the envelope are ealled the fiomblyints on the curves.

EXERCISES

1. Find the envelopes of these familis of curves. In cach case test the answer or its individual factors and check the results hy a sketel :
(a) $!=2\left(r x+\alpha^{4}\right.$,
(β) $y^{2}=c(r-a) . \quad(\hat{r}) y=a r+k / a$.
(o) $\alpha(y+c r)^{2}=x^{3}$,
(ϵ) $y=\alpha(r+a)^{2}, \quad(\xi)!l^{2}=r\left(r(r-a)^{3}\right.$.
2. Find the envelope of the ellipese $x^{2} / w^{2}+y^{2} / f^{2}=1$ muler the combition that (α) the sum of the axes is constant or (β) the area is constant.
3. Find the envelnge of the cireles whone center is on a given parabula and which pass through the vertex of the parabola.
4. Circles pass throng the origin and have their centers on $x^{2}-y^{2}=c^{2}$. Find their envelope.

Ans. A lemniscate.
5. Find the envelopes in these cases:

$$
\begin{gathered}
(\alpha) x+x y \alpha=\sin ^{-1} x y, \quad(\beta) x+\alpha=\sqrt{x}: x^{-1} y+\sqrt{2 y-y^{2}}, \\
\text { (i) } y+\alpha=\sqrt{1-1 / x} .
\end{gathered}
$$

6. Find the envelopes in these cases:

$$
\begin{array}{r}
\text { (} \alpha) ~ \\
\alpha x+\beta y+\alpha \beta z=1 . \quad \text { (} \beta \text {) } \frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{1-\alpha} \\
\text { (}) \frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}+\frac{z^{2}}{\gamma^{2}}=1 \text { with } \alpha \beta \gamma=k^{3} .
\end{array}
$$

7. Find the envelopes in Ex. $0(\alpha)$, (β) if $\alpha=\beta$ or if $\alpha=-\beta$.
8. Prove that the envelope of $F(x, y, z, x)=0$ is tangent to the surface along the whole characteristic beswing that the normal to $F(x, y, z, c)=0$ and to the eliminant of $F=0, F_{a}^{\prime}=0$ are the same, namely

$$
F_{x}^{\prime}: F_{y}^{\prime}: F_{z}^{\prime} \text { and } F_{x}^{\prime}+F_{\alpha \alpha}^{\prime} \frac{\hat{c} \alpha}{\hat{c} x}: F_{y}^{\prime}+F_{\alpha \alpha}^{\prime} \frac{\hat{c} \alpha}{\hat{c} y}: F_{z}^{\prime}+F_{\alpha \alpha}^{\prime} \frac{\hat{c} \alpha}{\hat{c} z},
$$

where $\alpha(x, y, z)$ is the function obtained by sulving $F_{a}^{\prime}=0$. Consider the problem also from the point of view of infinitesimals and the normal derivative.
9. If there is a curve $x=\phi(\alpha), y=\psi(\alpha), z=\chi(\alpha)$ tangent to the curves of the family defined by $F(x, y, z, \alpha)=0, G(x, y, z, \alpha)=0$ in since, then that curve is called the envelope of the family. Sbow. hy the same reasoning as in $\$ 65 \mathrm{f}$ (m the case of the plane, that the fome conditions $F=0, G=0, F_{\alpha}^{\prime}=0$. $G_{\alpha}^{\prime}=0 \mathrm{mmos}$ be satisfied for an envelope: and hence infer that ordinarily a family of curves in space dependent on a single parameter has no envelope.
10. Show that the family $F(x, y, z, a)=0 . F_{a}^{\prime}(x, y, z,(x)=0$ of curves which are the characteristics of a family of surfaces hats in general an envelope given by the three efulations $F=0, F_{c c}^{\prime}=0, F_{\alpha \alpha}^{\prime \prime}=0$.
11. Derive the condition (45) for the envelupe of a two-parametered family of curves from the idea of tangence, as in the case of one parameter.
12. Fint the envelope of the nomals to a phane curve $y=f(x)$ ant show that the envelope is the loeus of the center of curvature.
13. The locus of Ex. 12 is called the evolute of the eurve $y=f(x)$. In these cases find the evolute as an envelope:
(a) $y=x^{2}$,
(β) $x=a \sin t . y=b \cos t$.
(γ) $2 r y=u^{2}$,
(o) $y^{2}=2 m \cdot$.
(ϵ) $x=u(\theta-\sin \theta) .\|=\|(1-\cos \theta)$,
(弓) $y=\cosh x$.
14. (iiven a surface $z=f(x, y)$. Construct the fantily of normal lines and find their entelope.
15. If rays of light issuing from a pint in a phane are reflecterl from a curve in
 of the reflected rays is called the comstie of the "mow with resuen the the pement. Show that the caustic of a circle with renect to a peint on its circumference is a carliciul.
16. The eurve which is the ehechere of the characteristic lines. that is, of the rulings, on the developalde surface (4:) is walled the cuspeitelt edefe of the surfare. show that the equations of this curve may be fomblarametrically in temms of the parameter of (43) by solving simultamemsily

$$
A x+B y+C^{\prime} z+D=0.1^{\prime} x+B^{\prime} y+r^{\prime \prime} z+I^{\prime}=0 . A^{\prime \prime} x+B^{\prime \prime} y+C^{\prime \prime \prime} z+D^{\prime \prime}=0
$$

for $x . y . z$. Consiler the exceptional cans of emment cylinders.

 tengthes in the phence. that is. the map may be malle withone distortion of size ow shape. In the case of comes or evlinders this map may be math he slittine the cone (1) "rlimer along an clement and ronins it out upen a plane. What is the analytie statement in this case? In the case of any developable surface with a chipidal

the length of are upon the surface may he written as $\left(l \sigma^{2}=(d t+d s)^{2}+t^{2} d s^{2} / R^{2}\right.$, wheres denotes are measured along the compidal emge and demotes distance along the tangent line. This form of d σ^{2} may be obtained gemetrically by infinitesimal analysis or analytically from the equations

$$
x=f(s)+t f^{\prime}(\cdot s), \quad y=y(s)+t g^{\prime}(\cdot), \quad z=h(s)+t h^{\prime}(\cdot s)
$$

of the developable surface of which $x=f(\mathrm{~s}), y=g(x), z=h(x)$ is the cuspidal edge. It is thas seen that do ${ }^{-2}$ is the same at corresponding peints of all cherelopable surfaces for which the radius of curvature l of the cuspidal edre is the same function of s without regard to the torsion ; in particular the torsion may be zero and the developable may reduce to a plane.
18. Let the line $x=\| z+b, y=c z+d$ depend on one parameter so as to generate a ruled surface. By incntifying this form of the line with (43) obtain by substitution the comations
as the eombition that the line renerates a developable surface.
68. More differential geometry. The repesentation

$$
\begin{equation*}
F(. r,!,:, i)=0, \quad \text { or } \quad \approx=f(r:!) \tag{46}
\end{equation*}
$$

or

$$
r=\phi(11, r), \quad y=\psi(11, r), \quad \because=\chi(11, \cdot)
$$

of a surface may le taken in the unsolval. the solved, on the parametric form. The parametrib form is equivalent to the solved form provided ". . We taken as .r: \%. The notation
is adopted for the derivatives of at with resuect tor and !\% The application of Taylor's Formula to the solved form gives

$$
\begin{equation*}
\Delta z_{i}=\mu_{1} l_{1}+\eta_{i}+!\underline{2}\left(r_{1}^{2}+2 \cdots k_{i}+t k_{i}^{2}\right)+\cdots \tag{47}
\end{equation*}
$$

 ential dia and represent that part of the inerement of a which wouk be obtaned by replaring the surfare hy its tangent phame. Apart from infinitesimals of the third order, the distance from the tangent plane up, or down to the surfare alomg a paralled to the a-axis is wiven by the (fuatratic terms $\frac{1}{2}\left(\cdot \%^{2}+2 \cdots h_{i}+t i^{2}\right)$.

Hence if the quadratic terms at any boint are a positive definito form
 if the form is negative definite. the surface lies below its tangent phane and is concare down or contex mb. If the form is indefinite but not singular. the surfare lies partly abore and partly below its tangent plane and may he callemt conmatheronvex, that is, it is saddle-shapert. If the form is singular mothing 'an be definitely stated. These statements
are merely generalizations of those of \&5.5 made for the case where the tangent plane is parallel to the r y-plime. It will be assmmed in the further work of these articles that at least one of the derivatives r, s, t is not 0 .

To examine more closely the hehavior of a surface in the vicinity of a particular point upon it, let the $x y$-lane be taken in coincilene with the tangent plane at the point and let the point be taken as origin. Then Maclantin's Formula is available.

$$
\begin{align*}
\approx & =\frac{1}{2}\left(r r^{2}+2 \sin y+t y^{2}\right)+\text { terms of higher order } \tag{48}\\
& =\frac{1}{2} \rho^{2}\left(r \cos ^{2} \theta+2 \sin \theta \cos \theta+t \sin ^{2} \theta\right)+\text { ligher terms, }
\end{align*}
$$

where (ρ, θ) are polar coordinates in the aty-plane. Then

$$
\begin{equation*}
\frac{1}{R}=r \cos ^{2} \theta+2 s \sin \theta \cos \theta+t \sin ^{2} \theta=\frac{d^{2} \cdot v}{d \rho^{2}} \div\left[1+\left(\frac{d i z}{d \rho}\right)^{2}\right]^{\frac{2}{2}} \tag{19}
\end{equation*}
$$

is the curvature of a nomal sertion of the surface. The smon of the curvatures in two normal sections which are in perpemdicular phanes may be oftained by giving θ the values θ and $\theta+\frac{1}{2} \pi$. This sum reduces to $r+t$ and is therefore indeperdent of θ.

As the sum of the curvatures in two perpendicular normal planes is constant, the maximm and minimm ralues of the corvature will h_{k} found in perpendicular planes. These values of the curvature are called
 conrenture and the sections in which they lie are the principul sertions. If $s=0$, the principal sections are $\theta=0$ and $\theta=\frac{1}{2} \pi$; and conversely if the axes of x and y had becon chosem in the tangent plane so ass to he tangent to the prineipal sections, the derivative s, would have vanished. The equation of the surface would then have taken the simple form

$$
\begin{equation*}
z=\frac{1}{2}\left(r x^{2}+t y^{2}\right)+\text { higher terms. } \tag{.50}
\end{equation*}
$$

Thee principal curvatures would be merely r and t, and the curvature in any nomal section would have had the form

$$
\frac{1}{R_{2}}=\frac{\cos ^{2} \theta}{l_{1}}+\frac{\sin ^{2} \theta}{l_{2}}=r \cos ^{2} \theta+t \sin ^{2} \theta .
$$

If the two principal curvatures have opposite signs, that is, if the signs of r and t in (50) are opposite, the surface is sathle-shapech. There are then two directions for which the curvature of a normal section vanishes, namely the directions of the lines

$$
\theta= \pm \tan ^{-1} \sqrt{-R_{2} / R_{1}} \quad \text { or } \quad \sqrt{|r|} x= \pm \sqrt{+} \mid y
$$

Thesere are called the "isymptotir dirertions. Along these direertions the surface departs from its tangent phane by infinitesimals of the thirel
order, or higher order. If a curve is drawn on a surface so that at eareh point of the curve the tangent to the curve is along one of the asymp)totic directions, the curve is called an "s!ymptotic curve or line of the surface. As the surface departs from its tangent plane by infinitesimals of higher order than the second along an asymptotic line, the tangent, plane to a surface at any point of an asymotic line must be the osenlating plane of the asymptotic line.

The character of a point upon a surface is incleated hy the Thpin indientrix of the point. The indicatrix is the conic

$$
\begin{equation*}
\frac{r^{2}}{l_{1}}+\frac{y^{2}}{l_{2}}=1, \quad \text { cf. }: z=\frac{1}{2}\left(r r^{2}+t!r^{2}\right) \tag{51}
\end{equation*}
$$

which has the prineipal directions as the directions of its axes and the square roots of the absolute ralues of the principal radio of corvature as the magnitudes of its axes. The conic may he regarded as similar to the conic: in which a plane infinitely near the tangent plane cuts the surfare when infinitesimals of order higher than the second are neglected. In case the surface is concavo-cmex the indieatrix is a hyperbola and should be considered as either or both of the two conjugate hyperholas that would arise from giving a positive or negative values in (.,1). The point on the surface is called elliptic, hyperbolic, or parabolie acoording as the indicatrix is an ellipse, a hyperbola, or a pair of lines, as happens when one of the princijal convatures vanishes. These classes of points correspond to the distinctions definite, indefinite, and singular applied to the puadratie form $h^{2}+2{ }^{2}$ shi $+k_{i^{2}}$.

Two further results are noteworthy: Any curve drawn on the surfate differs from the section of its osculating plane with the surface by infinitesimals of higher order than the second. For as the osculating phat passes through three consecutive points of the corve, its intersertion with the surfare passes through the same three consecutive points and the two coures have contare of the second order. It follows that the radius of corvature of any eqree on the surface is idention with that of the curve in which its osculating phane cuts the surface. The other result is Meusnires Theorem: The radius of curvature of an obligue section of the surfare at any point is the projection upon the plane of that section of the radius of curvature of the nomal serefion which passes through the same tangent line. In other words, if the radins of curvature of a nomal sertion is known, that of the ohlique sections through the same tangent line may be obtained by multiplying it by the cosine of the angle between the plane normal to the surface and the plane of the obligue section.

The proof of Meusnier"s Theorem may be siven by reference to (48). Let the r-axis in the tangent plane be taken along the intersection with the oblique plane. Neglect infinitesimals of higher order than the seenncl. Then

$$
\begin{equation*}
y=\phi(x)=\frac{1}{2} \pi x^{2}, \quad z=\frac{1}{2}\left(r x^{2}+2 s x y+t y^{2}\right)=\frac{1}{2} r x^{2} \tag{48'}
\end{equation*}
$$

will be the equations of the curve. The plane of the section is $a z-r y=0$. as may he seen by inspection. The radius of curvature of the curve in this plane may be found at once. For if u denote distance in the plane and perpendicular to the r-axis and if ν be the angle between the normal plane and the oblique plane $u z-r y=0$,

$$
u=z \sec \nu=y \csc \nu=\frac{1}{2} r \sec \nu \cdot x^{2}=\frac{1}{2} a \csc \nu \cdot x^{2} .
$$

The form $u=\frac{1}{2} r \sec \nu \cdot r^{2}$ sives the curvature as r see ν. But the curvature in the momal seetion is r by (48^{\prime}). As the curvature in the oblique section is sec ν times that in the nomal section, the radins of curvature in the obligue section is cos ν times that of the normal section. Mensniers Theorem is thus proved.
69. These investigations with a special choice of axes give geometric properties of the surface. but do not express those properties in a convenient analytie form ; for if a surface $z=f(c . y)$ is given, the thansormation to the special axes is difficult. The idea of the indieatrix or its simitar conic as the section of the surface by a plane near the tangent plane and paralle! to it will, however, determine the general conditions readily. If in the expansion

$$
\begin{equation*}
\Delta z-d z=\frac{1}{2}\left(r h^{2}+2 s h k+t k^{2}\right)=\text { const. } \tag{52}
\end{equation*}
$$

the guadratic terms be set equal to a comstant, the conic obtained is the projection of the indicatrix on the $x y$-planc. or if (52) be rewarled as a cylinder upon the $x y$-plane. the indieatrix (or similar conic) is the intersection of the eylinder with the tangent plane. As the eharacter of the conic is unchanged by the projection. the point on the surfare is elliptia if $s^{2}<r$. huperbolia if $s^{2}>r$. and puratobic: if $x^{2}=H$. Moreover if the imbicatrix is hypermic. its asymptotes must project into the asymptotes of the conie (52), and hence if d k and $d y$ replace h and k, the equation

$$
\begin{equation*}
r l r^{2}+2 \because l n d y+t n y^{2}=0 \tag{53}
\end{equation*}
$$

may he resarded as the differchtinl equition of the projection of the asymptotir lines on the $x y$-phtore. If r. x, t he expresed as functions $f_{s, r}^{\prime \prime}$. $f_{s y}^{\prime \prime \prime}$, $f_{y+\prime}^{\prime \prime \prime}$ of (x, y) and (53) be factored, the integration of the two equations $M(x, y) d x+N(x, y) d y$ thens fomm will give the tinite equations of the pmoections of the asymptotic lines amd, taken with the equation $z=f(x, y)$. will sive the curves on the surface.

To find the lines of curvature is not quite so simple : for it is necessary to determine the limertions which are the projections of the axes of the indicatrix. and these are mot the axes of the projeeted conic. Any radinn of the indieatrix may be regarded as the intersection of the tangent plane and a plane perpendicular to the $x y$-plane throush the radins of the projected comic. Hente

$$
z-z_{0}=p\left(r-x_{0}\right)+u_{1}\left(y-y_{0}\right) . \quad\left(r-x_{0}\right) l_{:}=\left(y-y_{0}\right) h_{h}
$$

are the two phanes which intersect in the radins that projects along the direetion determined by h, k. The direction cosines

$$
\begin{equation*}
\frac{h: k: p h+4 k}{\sqrt{k^{2}+k^{2}+\left(k^{\prime} k+4 k\right)^{2}}} \text { ant } h: k: 0 \tag{54}
\end{equation*}
$$

are therefore those of the radius in the indicatrix and of its projection and they determine the cosine of the ande ϕ between the rallus and its projection. The square of the radius in (52) is

$$
l^{2}+k^{2}, \quad \text { and } \quad\left(l^{2}+k^{2}\right) \sec ^{2} \phi=l^{2}+k^{2}+(p h+q k)^{2}
$$

is therefore the square of the corresponding radius in the indicatrix. To determine the axes of the indicatrix, this raditis is to be made a maximum or minimum subject to ($5 \ddot{2}$). With a multiplier λ,

$$
h+p h+q k+\lambda(r h+s k)=0, \quad k+p h+q k+\lambda(s k+t k)=0
$$

are the conditions required. and the elimination of λ gives

$$
h^{2}\left[\cdots\left(1+p^{2}\right)-p q q^{2}\right]+h k\left[t\left(1+p^{2}\right)-r\left(1+q^{2}\right)\right]-k^{2}\left[t\left(1+q^{2}\right)-p q t\right]=0
$$

as the equation that detemmes the projection of the axes. or

$$
\begin{equation*}
\frac{\left(1+y^{2}\right) r d x+p q d y}{r d x+s d y}=\frac{p q d x+\left(1+y^{2}\right) d y}{s d x+t d y} \tag{55}
\end{equation*}
$$

is the differential equation of the projected lines of currature.
In addition to the asymptutic lines and lines of curvature the gendesic or shortest lines on the surface are inmortant. These. howerer. are better left for the methods of the calembs of variations ($\$$ lis). The attention may therefore be tumed to fiminis the value of the radins of curvature in any nomal section of the surface.

A reference to (48) and ($4 \cdot 1$) shows that the envature is

$$
\frac{1}{l^{\prime}}=\frac{2 z}{\rho^{2}}=\frac{m h^{2}+2 s h k+t k^{2}}{\rho^{2}}=\frac{m k^{2}+2 s h k+t k^{2}}{h^{2}+k^{2}}
$$

in the special case. But in the general case the normal distance to the surface is $\left(\Delta z-1(z) \cos \gamma\right.$. with sec $\gamma=\sqrt{1+\mu^{2}+i^{2}}$, insteall of the $2 z$ of the special case. and the ratins ρ^{2} of the ejuecial ease becomes $\rho^{2} \sec ^{2} \phi=h^{2}+k^{2}+\left(p^{2} h+h^{k}\right)^{2}$ in the tangent phane. Hence

$$
\begin{equation*}
\frac{1}{l_{1}}=\frac{\ddot{2}(د z-1 z) \cos \gamma}{h^{2}+k^{2}+(\mu h+u k)^{2}}=\frac{r^{2}+2 n m+t m^{2}}{11+p^{2}+\mu^{2}}, \tag{5ti}
\end{equation*}
$$

where the direction cosines $l . m$ of a radins in the tangent phane have been introduced from (5t). is the general expresion for the emrature of a normal section. The form

$$
\frac{1}{l_{i}}=\frac{m h^{2}+2 s h k+t k^{2}}{k^{2}+k^{2}+(p h+q k)^{2}} \frac{1}{\sqrt{1+1^{2}+4^{2}}}
$$

where the direction $h . k$ of the projected radins remains, is frepuently more convenient than (ofi) which eontans the direction cosines l. Im of the oriminal direction in the tangent plane. Nensuitros Theorem may now be witten in the form

$$
\begin{equation*}
\frac{c o s \nu}{R}=\frac{r^{2}+2 \cdot s m+t m^{2}}{\sqrt{1+l^{2}+q^{2}}} \tag{.57}
\end{equation*}
$$

Where ν is the angle between an obigue section and the tangent plane and where l. m are the direction cosines of the intersection of the phanes.

The work here civen has depenuled for its relative simplicity of statement upm the assumption of the surfact (4ti) in solved form. It is merely a problem in implicit partial afferentiation to pase from p. q. r.s. t to their eruivalents in terms of $F_{x}^{\prime}, F_{y}^{\prime} . F_{z}^{\prime}$ or the derivatives of ϕ, ψ, χ by $\alpha . \beta$.

EXERCISES

1. In (49) show $\frac{1}{R}=\frac{r+t}{2}+\frac{r-t}{2} \cos 2 \theta+s \sin 2 \theta$ and find the directions of maximm and minimm l_{2}. If h_{1} and l_{2} are the maximm and minimm yalnes of R, show

$$
\frac{1}{L_{1}}+\frac{1}{l_{i_{2}}}=r+t \quad \text { and } \quad \frac{1}{L_{1}} \frac{1}{l_{2}}=r t-s^{2}
$$

Half of the sum of the eurvatures is called the mern curcuture; the product of the curvatures is called the totul curvature.
2. Find the mean curvature the tetal envature and therefrom (by construeting and sulving a quanatic equation) the principal malio of emrature at the orivin:
(a) $z=s y$,
(β) $z=x^{2}+x y+y^{2}$.
$(\gamma) z=x(x+y)$.
3. In the surfaces $(\alpha) z=x y$ and (β) $z=2 x^{2}+y^{2}$ find at (0 . 0) the rallins of curvature in the sections made by the planes
(c) $x+y=0$.
(β) $x+y+z=0$.
($\gamma) x+y+2 z=0$.
($\delta) x-2 y=0$.
(є) $x-2 y+z=0$,
(s) $x+2 y+\frac{1}{2} z=0$.

The oblique sections are to be treated by aphlying Mentinier*s Thenem.
4. Find the asymptotic directions at (0.0) in Exs. . and 3.
5. Show that a developulte surfuce is ecerymere pertholic. that is. that it $-s^{2}=0$ at every \quad eint ; and conversely. Todo this consider the surface as the envelne of its tangent plane $z-p_{0} x-q_{0} y=z_{0}-p_{0} r_{0}-y_{11} y_{0}$. where $p_{0}, y_{0}, r_{0}, y_{0}$. z_{0} are functions of a single parameter or. Hence show

$$
J\left(\frac{p_{10} \cdot y_{01}}{x_{0} \cdot y_{0}}\right)=0=\left(r t-s^{2}\right)_{0} \quad \text { and } \quad J\left(\frac{p_{0} \cdot z_{01}-p_{10} r_{11}-y_{11} y_{11}}{r_{0} \cdot y_{0}}\right)=y_{0}\left(s^{2}-r t\right)_{0} .
$$

The first reault proves the statement ; the secomel. its conserse.
6. Find the differential equations of the asmpithtic lines and lines of curvature on these surfaces:
(c) $z=x y$.
$(\beta) z=\tan ^{-1}(y / r)$,
(γ) $z^{2}+y^{2}=$ crish x,
(ס) $x y z=1$.
7. Show that the mean comvature and total empature are

9. An umbilic is a print of a surface at whel the principal ratii of curvature

 thee ellipmond with semiaxes u, b, c.

CHAPTER VI

COMPLEX NUMBERS AND VECTORS

70. Operators and operations. If an entity $"$ is rhanged into an

 as the symber of the operation, the result may be written as $r=f^{\prime \prime}$. For brevity the symbol f is often called an "peromom: Vimious sorts of operand, operator. and result arr familiar. Thus if " is a positive number n, the appliantion of the oprerator $\sqrt{ }$ gives the square root; if " represents a range of values of a variablar, the expression $f^{\prime}\left(r^{\prime}\right)$ of f.r demotes a function of a; if "he a function of r, the operation of differentiation may lee symbolized hy $1 /$ ancl the sesult I It is the derivative: the symbol of definite integration $\int_{u}^{b}(*) / / *$ converts a function "(.r) into a manher' and so on in sreat variety.

The reason for making a short stmuly of oprerators is that a considerahbe number of the eonerepts and rules of arithmetio and algelna may
 tions whirl| is of fregurnt usi in mathernaties: the single application to

 ss, that

$$
\begin{equation*}
f^{\prime}\left\|=r ; \quad!\prime \cdot=!f^{\prime}\right\|=\left\|, \quad!f^{\prime}\right\|=\| \tag{1}
\end{equation*}
$$

 promber. The transtomations of turning the ery-plane orer on the
 $!\prime^{\prime}=!$, may he rewardex as onerations: the combination of these operat tions gives the transformation $x^{\prime}=-x, y^{\prime}=-!$ which is equivalent to rotating the flane throngh 180° about the origin.

The products of arithmetie: and algeba゙a satisfy the commututior lan
 is mot true of operators in gemeral, as may be seen from the fart that
$\log \sin x$ and $\sin \log x$ are different. Whenerer the order of the factors is immaterial, as in the case of the transformations just considered, the operators are said to be commututire. Another law of aritlumetic and algenra is that when there are three or more factors in a product, the factor's may be grouped at pleasme without altering the result, that is,

$$
h\left(!f f^{\prime}\right)=(h, y) f^{\prime}=l_{l y} f .
$$

This is known as the mssorintire lon and operators whinh obey it are ralled "ssorcintire. Only associative operators are ronsidered in the work here given.

For the repetition of an operator several times

$$
\begin{equation*}
t_{t}^{\prime \prime}=t^{\prime 2}, \quad f t f f=t^{\prime 3}, \quad f^{\prime m} f^{2^{n}}=t^{\prime m+n} \tag{3}
\end{equation*}
$$

the usual notation of powers is used. The low at imlires rlenrly holds; for $f^{\prime m+n}$ means that f^{\prime} is applied $m+n$ times suceresively, whereas $f^{m} f^{n}$ means that it is applied n times and then m times more. Not applying the operator f at all would matmally le denoted ly $f^{* \prime}$, so that $f^{\circ} \neq=11$ and the operator f^{20} would be equivalent to multiplication by 1; the notation $f^{\circ}=1$ is adopted.

If for a given operation f there can he fomed an operation !f such that the product $f^{\prime} y=f^{\circ}=1$ is equivalent to $n 0$ operation, then g is called the incerse of f and notations suth as

$$
\begin{equation*}
f^{\prime} y=1, \quad!=f^{t^{-1}}=\frac{1}{t^{\prime}}, \quad f f^{-1}=f^{2} \frac{1}{t^{\prime}}=1 \tag{4}
\end{equation*}
$$

are regularly horrowed from arithmetie and algema. Thus the inverse of the square is the square root, the inverse of sin is sin ${ }^{-1}$, the inverse of the logarithm is the exponential, the inverse of l is \int. some operations have no inverse : multiplication lỵ 0 is a case. ant so is the square when applied to a negative monber if only real mumbers are considered. Other operations have more than one inverse : integrat tion, the inverse of I, involves an arlitrary ahlitire eonstant, and the inverse sine is a maltiple valued funetiom. It is therefore not always true that $f^{-1} f^{+}=1$, hat it is customary to mana he t^{-1} that partioular
 defined lyy the equation $t^{-n}=\left(t^{-\frac{1}{1}}\right)^{n}$, and it reatily follows that $f^{\prime \prime} f^{-n}=1$, as may lie seen by the example

$$
f^{3} \cdot f^{-3}=f f\left(f^{2} \cdot f^{-1}\right) \cdot t^{-1} \cdot f^{-1}=f^{\prime}\left(f^{\prime} \cdot f^{-1}\right), f^{-1}=, f^{-1}=1 .
$$

 in so far ats $f^{\circ}{ }^{1} f^{\circ}$ maty mot be eqpald to 1 and maty be ferpured in the reslurtion of $t^{\prime \prime \prime \prime} t^{\prime n}$ to, t^{m+n}.

If u, r, and $u+r$ are operands for the operator f and if

$$
\begin{equation*}
f\left(\prime \prime+r^{\prime}\right)=f^{\prime \prime}+f^{\prime} \tag{5}
\end{equation*}
$$

so that the operator applied to the sum gives the same result as the sum of the results of operating on each operand, then the operator f is called linemp or distidntice. If f demotes a function such that $f^{\prime}\left(x^{\prime}+!\prime\right)=f^{2}\left(x^{\circ}\right)+f^{\prime}(y)$, it has been seen (Ex. 9, p. 45) that f must be equivalent to multipliation by a constant and $f^{\prime} x=C^{\prime} x$. For a less sperialized interpretation this is not so; for

$$
J(\prime+r)=I m+m \quad \text { and } \int(\prime+r)=\int \prime+\int r
$$

are two of the fundamental formulas of calculus and show operators which are distributive and not equivalent to multiplication by a constant. Nevertheless it does follow hy the same reasoning as used before (Ex. 9, 1. 4\%), that $f=m=n f^{\prime} \prime$ if f is distributive and if n is a mational mumber.
some operators have also the property of addition. suppose that " is an operand and f, g are oneratoms surh that f fond ! fle are things that may be added together as $f^{\prime \prime}+!\prime \prime$, then the s"m of the operators, $f+!$, is defined by the equation ($\left.f^{\prime}+!/\right) \prime=f^{\prime \prime \prime}+g^{\prime \prime}$. If furtliermore the oferator's t, If h ate distributive. then

$$
\begin{equation*}
h(t+!g)=l_{1} t+l_{n}!\quad \text { and } \quad\left(t t^{\prime}+!!h=f^{\prime} h+!g h,\right. \tag{6}
\end{equation*}
$$

and the multipliation of the operators beromes itself distributive. To prove this fant, it is merely necessary to consider that

$$
l_{\prime}\left[\left(f^{\prime}+g\right) \prime \prime\right]=l_{\prime}\left(f^{\prime \prime \prime}+!\prime \prime \prime\right)=l_{\prime \prime} f^{\prime \prime \prime}+l_{\prime \prime \prime \prime} \prime \prime
$$

and

$$
(f+g)\left(l_{1 \prime \prime}\right)=f f_{1} \prime+g l_{1 \prime}
$$

Oporutors whirh "mpe ussmintire, rommututiop, distributive, ant ublieh

 of the assoriative. commutative, and distributive laws, and the law of indiees that ortinary algelnab polynomials are rearranged, moltiplied out. and factored. Now the obe Nations of multijliation ley eonstants and of differentiation on partial differentiation as alplied to a function

Ifenee, for example. if !/ be a function of er, the expersion

$$
I^{n}!y+"_{1} I^{n-1}!!+\cdots+"_{n-1} I m_{!}+"_{n!}!
$$

where the orofficients one comstants. may be writton as

$$
\begin{equation*}
\left.\left(I I^{n}+"_{1} I^{n-1}+\cdots+!_{n-1} l\right)+"_{n}\right)! \tag{8}
\end{equation*}
$$

and may then be factored into the form

$$
\left.\left.\left.\left[(I)-\left(\alpha_{1}\right)(I)-\alpha_{2}\right) \cdots(I)-\alpha_{n-1}\right)(I)-\alpha_{n}\right)\right]!
$$

where $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ are the roots of the algebraic polynomial

$$
r^{n}+{ }_{1} \cdot^{\prime \cdot n-1}+\cdots+{ }_{n-1} \cdot r^{n}+{ }_{n}=0 .
$$

EXERCISES

1. Show that $(f y f)^{-1}=h^{-1} g^{-1} f-1$, that is, that the reciprocal of a product of operations is the product of the reciprocals in inverse order.
2. By definition the userator qfy-1 is called the transom of f by g. Show that (α) the transform of a probluct is the product of the transforms of the factors taken in the same order. and (β) the transiom of the inverse is the inverse of the transform.
3. If $x \neq 1$ but $s^{2}=1$. the operator s is by definition said to be intolutory. Sluw that (cx) an involutory onerator is. entual to its wwin inverse ; and conversely (β) if an "recator and its inverse are equal, the operator is involuthry ; and (or) if the
 ton $y^{\text {: }}$: and empersely (δ) if the product of two inventory operators is insolutory. the enperators are commutative.
4. If f and y are both distributive. so are the prontucts fy and of f.
5. If f is distributive and u ratiomal. show fru $=u f u$.
6. Expand the following oferatons first by wdinary formal multiplication and second by aphying the neratons succesively andicated, and whe the results are inentieal by translatine both into familiar forms.

$$
P(I) \cdot(\cdots, y=, \cdots P(I)+\cdots)!\%
$$

Aprly this to the following and whek the results.

71. Complex numbers. In the formal solution of the erpation $r_{1} r^{2}+b x+r=0$, where $b^{2}<4$ ne, numbers of the form $m+n \sqrt{ }-1$, where m and n are real, arise. Such numbers are called romplest or imuyinury: the part m is called the reenl purt and $n \sqrt{-1}$ the p"rre imueginury purt of the number. It is customary to write $\sqrt{-1}=i$ and to treat i as a literal quantity subject to the relation $i^{2}=-1$. The defmitions for the rapality, cddition, and multipliration of romplex numbers are

$$
\begin{gather*}
n+b i=r+d i \text { if and only if } \quad \prime=r, b=d, \\
{[\prime+l i]+[r+d i]=(\prime+r)+(l+d) i} \tag{9}\\
{[\prime \prime+l i][r+d i]=(n r-b l)+(n l+l r) i}
\end{gather*}
$$

It readily follows that the rommutntire, "ssacintires, amb distributive lues's lubd in the domain of romplex numbers, namely,

$$
\begin{align*}
\alpha+\beta & =\beta+\kappa, & (x+\beta)+\gamma & =\alpha+(\beta+\gamma), \\
\alpha \beta & =\beta r, & (\varkappa \beta) \gamma & =\alpha(\beta \gamma) . \tag{10}\\
\alpha(\beta+\gamma) & =r \beta+\kappa \gamma, & (\kappa+\beta) \gamma & =a \gamma+\beta \gamma .
\end{align*}
$$

where Greak letters late bern used to denote complex mantres.
Sheision is areomplished by the method of rationalization.

This is always possible exopt when $r^{2}+r^{2}=0$, that is, when both r and d are 0 . A romplex mumber is definet as 0 whem and only when its real and pure imaginary pats aw both zow). With this detinition 0 has the ordinary groperties that $x+0=\pi$ and $x 0=0$ and that of 0 is
 For sulurse

$$
[\prime \prime+l i i][r+\| i]=(\prime r-l m)+(\prime \prime l+l m) i=0 .
$$

Then

$$
\begin{equation*}
a r-l m l=0 \quad a m d \quad \quad n l+l_{r}=0 \tag{12}
\end{equation*}
$$

from whirh it follows that ritlere $"=h=0$ or $\quad \prime=\|=0$. Firom the fact that a product camot vanish unless one of its factors vanishes follow the orthary laws of "ancellatiom. In brief, "ll, the "lomentar!!

By assmming a set of Cartesian coordinates in the r!y-plane and asso-
 is oltained which is the comnterlart of the momber soale for real mumbers. The point (1, l) alonse on the direeted line from the origin to the point (1, b) may be considered as represcnting the munher "the If of and "d are two dirented lines reporenting the two mmbers $"+h i$ and $r+d i$, a referennee to the figure shows that the line whirh
represents the sum of the numbers is ond, the diagonal of the parallelo-

 lenurin is the pumonloplogromen luri. A segment A $1 B$ of a line possessess magnitude, the length 1 l , and direction, the direction of the line .18 from 1 to B. A I quentity whirh hens mugniturne and dierestion is

 bers may therefore be regarded as ceertors.

From the figure it also appears that of and Pla have the same maynitude and direction, so that as rectors they are equal although the y stant from different points. As oP $+P^{\prime} h$ will be regarded as equal to oP + ors, the definition of addition may be given as the triangle law instead of as the parallelogran law; namely, from the terminal emb I
 les joining the initial end of of the first reator to the teminal end R of the second. The whsoluter rolne of a complex monkere "this the
 the sum of the shuares of its real part and of the coetticipent of its pure inaginary part. The alsolute value is demoted by $\mid=+$ hi as in the case of reals. If α and β are two complex numbers, the rule' $\alpha+\beta$ § ${ }^{\prime} \kappa+\beta$ is a conserpurese of the fact that one side of a triangle is less than the sum of the other two. If the alsolute value is given and the initial eme of the rector is fixed, the terminal and is therebse (e)nstraineel to lie

72. When the romplex nmulers are laid off from the origin, pelan coorrdinates maty le used in phane of Carterian. Tham

$$
\begin{equation*}
r=\sqrt{n^{2}+r^{2}}, \quad \phi=\mathrm{t}_{\mathrm{i}} \mathrm{~m} 1^{-1} b_{,} \prime^{*}, \quad \|=r \cdot \cdots, \quad b=r \sin \phi \tag{18}
\end{equation*}
$$

ank

$$
\prime+i n=r(\cdots) s \phi+i \sin \phi) .
$$

The alselute value r is oftem "alle the thenturlus or mayniture of the
 munlur and suffers a eertain indenemination in that $\ddot{2} n \pi$. Wherer n is

 prownem and quotients. For if
thun

$$
\begin{equation*}
\left.\left.\alpha=r_{1}(\cdots), \phi_{1}+i \sin \phi_{1}\right) . \quad \beta=r_{2}(m) \phi_{2}+i \sin \phi_{2}\right) . \tag{1+}
\end{equation*}
$$

[^14]as may be seen by multiplication aceording to the rule. Hence the

 general rule being proved by induction.

The interpretation of multipliration lig " romplear mutmer "ss "n opere"tion is illuminating. Let β le the multiplicand and x the multiplier. As the product $\alpha \beta$ has a magnitude equal to the product of the magnitudes and an angle equal to the sum of the angles, the factor x used as a multiphire may be interpreterl as effecting the rotation of β through the angle of α and the stretehing of β in the ratio $\left|a^{\prime}\right|: 1$. From the geometric: view]oint, therefore, multiplimetion by " romples number is "ne "proution of rotrition "nd stretrline! in the" plane. In the case of $x=\cos \phi+i \sin \phi$ with $r=1$, the operation is only of rotation and hence the fartor ros $\phi+i \sin \phi$ is often callen a cyelio factor or versors. In particular the number $i=\sqrt{-1}$ will efferet a rotation through $\left(10^{\circ}\right.$ when used as a multiplier and is known as a quadrantal wersor. The series of powers $i, i^{2}=-1, i^{3}=-i, i^{+}=1$ giwe rotations through 90°, $180^{\circ}, 20^{\circ}, 360^{\circ}$. This fart is often given as the reason for laying off pure imaginary numbers bi along an axis at right angles to the axis of reals.

As a partieular protuct, the nth prowe of a complex number is

$$
\left.\alpha^{n}=(11+i)^{n}=[\mu(\cdot n \phi+i \sin \phi)]^{n}=r^{n}(\cdots) \cos n \phi+i \sin n \phi\right)
$$

and

$$
(\cdot 0 \cos \phi+i \sin \phi)^{n}=\cos n \phi+i \sin n \phi
$$

which is a sperbal case, is known as Im Morions Theonem and is of use in evaluating the functions of $n \phi$: for the hinomial theoren may be appled and the real and imaginary larts of the expansion may lee equated to $\cos n \phi$ and $\sin n \phi$. Hence

$$
\begin{align*}
\cos n \phi= & \cos ^{n} \phi-\frac{n(n-1)}{2!} \cos ^{n-2} \phi \sin ^{2} \phi \\
& \quad+\frac{n(n-1)(n-2)(n-3)}{4!} \cos ^{n-4} \phi \sin ^{4} \phi-\cdots \tag{16}\\
& \sin n \phi=n \cos ^{n-1} \phi \sin \phi-\frac{n(n-1)(n-2)}{3!} \cos ^{n-3} \phi \sin ^{3} \phi+\cdots
\end{align*}
$$

As the nth roon $\sqrt[n]{x}$ of x must be a nmmber whirll when raised to the nth power gives a the nth ront may le written as

$$
\begin{equation*}
\sqrt[n]{x}=\sqrt[n]{i}\left(\left(\cos \phi^{\prime} n+i \sin \phi / n\right)\right. \tag{1i}
\end{equation*}
$$

The angle ϕ, however, may have any of the set of values

$$
\text { ф. } \quad \phi+\because \pi . \quad \phi+1 \pi . \quad \cdots . \quad \phi+\because(n-1) \pi,
$$

and the nth parts of these give the n different angles

$$
\begin{equation*}
\frac{\phi}{n}, \quad \frac{\phi}{n}+\frac{2 \pi}{n}, \quad \frac{\phi}{n}+\frac{4 \pi}{n}, \cdots, \quad \frac{\phi}{n}+\frac{2(n-1) \pi}{n} . \tag{18}
\end{equation*}
$$

Honce there may be found just n different nth roots of any given complex number (including, of course, the reals).

The roots of unity deserve mention. The equation $x^{n}=1$ has in the real domain one or two ronts acording as n is odd or even. But if 1 be regarded as a complex momber of which the pure imaginary part is zero, it may be represented by a point at a mit distance from the origin umen the axis of reals; the magnitule of 1 is 1 ath the angle of 1 is $0,2 \pi, \cdots, 2(n-1) \pi$. The nth ronts of 1 will therefore have the magnitude 1 and one of the angles $0,2 \pi / n, \cdots, 2(n-1) \pi / n$. The $u n$th roots are therefore

$$
\begin{gathered}
\text { 1. } \quad a=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}, \alpha^{2}=\cos \frac{4 \pi}{n}+i \sin \frac{4 \pi}{n}, \cdots, \\
a^{n-1}=\cos \frac{2(n-1) \pi}{n}+i \sin ^{2} \frac{2(n-1) \pi}{n},
\end{gathered}
$$

amb may be evaluaterl with a table of matural functions. Now $x^{n}-1=0$ is factorable as $(x-1)\left(r^{n-1}+r^{\prime \prime}-2+\cdots+x+1\right)=0$, and it therefore follows that the uth rowts other than 1 must all satisfy the eduation fommen by setting the secome factor efpal to 0. As or in particular satisfies this equation and the other roots are a^{2}, \cdots, e^{n-1}, it follows that the simm of the $n u$ th rowts of mity is zero.

EXERCISES

1. Wrove the distributive law of multiplication for complex mumbers.
2. By definition the pair of imatrinaties $4+b i$ and $a-b i$ are called rompugte imeginaries. Prove that ((x) the sum and the product of two conjugate imaginaries are real ; and emmonely (β) if the sum and the procluet of two imaginaries are both wat, the imminaries are compugate.
3. Show that if $I^{\prime}\left(x^{\prime}, y\right)$ is a symmetric polymomial in x and y with real coefti(icnts so that $I^{\prime}(x, y)=I^{\prime}(y, ~ r a)$, then if comjugate imaginaries be substituted for x and y. the value of the pellymmat will be real.
4. Show that if $11+7 ;$ is a rocet of aln algehmaic crpation $l^{\prime}(x)=0$ with real

 antation for every number "onernal and for the answer:
(r) $(1+i)^{3}$.
(β) $(1+\sqrt{3} i)(1-i)$.
$(\gamma)(3+\sqrt{-2})(4+\sqrt{-5})$,
(() $\begin{aligned} & 1+i \\ & 1-i\end{aligned}$
(E $^{1+i \sqrt{3}} \begin{aligned} & 1-i \sqrt{3} \\ & 1\end{aligned}$,
(ら)
i
12-iv:
(η) $\begin{aligned} & (1-i)^{3} \\ & (1+i)^{3}\end{aligned}$,
(A) $\begin{gathered}1 \\ (1+i)^{2}\end{gathered}+\begin{gathered}1 \\ (1-i)^{2}\end{gathered}$,
(6) $\binom{-1+\sqrt{-3}}{2}^{3}$.
5. Plot and time the mondus and angle in the following cases:
(ci) -2,
(;5) $-2 \sqrt{-1}$.
$(\gamma): 3+1 i$,
(0) $\underset{-1}{2}-\frac{1}{2} \backslash-\overline{3}$
6. Show that the motulus of a quotient of two numbers is the quotient of the module und that the angle is the angle of the numerutor less that of the denominator.
7. Carry out the indicated operations trigonometrically and plot:
(α) The examples of lix. 5 ,
(β) $\sqrt{1+i},{ }^{\prime} 1-i$,
(γ) $\sqrt{-2+2 \sqrt{3}} i$,
(δ) $(\sqrt{1+i}+\sqrt{1-i})^{2}$,
($\epsilon) \sqrt{\sqrt{2}+\sqrt{-2}}$.
(5) $\sqrt[3]{2+2 \sqrt{3}} i$,
(η) $\sqrt[4]{16\left(\cos 200^{2}+i \sin 200^{\circ}\right)}$,
(θ) $\sqrt[5]{-1}$,
(1) $\sqrt[6]{8 i}$.
8. Find the cquations of analytic geometry which represent the transfomation equivalent to multiplication ly a $x=-1+\sqrt{-3}$.
9. Show that $|z-c x|=i$. where z is a variable and α a fixed complex number. is the equation of the circle $\left.(r-1 t)^{2}+(!-l)\right)^{2}=r^{2}$.
10. Find cosis and coss $8 x$ in terms of cos x, and sint $f x$ and $\sin 7 x$ in terms of $\sin r$.
11. Obtain to four decimal places the fise ronts $\sqrt[5]{1}$.
12. If $z=x+i y$ and $z^{\prime}=x^{\prime}+i y^{\prime}$, show that $z^{\prime}=(\cos \phi-i \sin \phi) z-c$ is the formula for shifting the axes through the vector distance $d x=18+i b$ to the new origin (a, b) and turning them through the angle ϕ. Deduce the orlinary equations of transformation.
13. Show that $|z-\alpha|=k \mid z-\beta^{\prime}$. where k is mal, is the equation of a circle: specify the position of the circlu carefulls. Tise the theorem: The loens of points. whese distancesto two fixed perinte are in a comstant ration is a virele the diameter of which is divided internally and extemally in the same ration hy the fixed peints.
 is ealled the general linetr lransformution of z intu z^{\prime}. Shosw that.

$$
\left|z^{\prime}-\alpha^{\prime}\right|=k\left|z^{\prime}-\beta^{\prime}\right| \text { becomes }|z-\alpha|=k_{n^{\prime} \beta+l}^{r(1+!} \cdot|z-\beta| .
$$

Hence infer that the transfomation carties circles into cibcles. and pmints which divide a dianeter internally amb externally in the same ratio into mints which divile some diameter of the new circle similarly, hut generally with a lifferent ratio.
73. Functions of a complex variable. Let $i=r+i!$ ber anmplex variable representable geonctrically as a variable point in the ar!-plate, which may be called the romplear planes. As a determines the two deal numbers,r^{\prime} and !/, any function $F^{*}\left(r^{\prime}:\right.$! $)$ which is the sun of two single valued real functions in the form

$$
\begin{equation*}
F(x, y)=X(r, y)+i Y^{\prime}(r, y)=R(\cos \Phi+i \sin \Phi) \tag{19}
\end{equation*}
$$

will be completely determined in value if \boldsymbol{z} is given. Such a function is called a romplrar function (and not a function of the complex variable, for reasons that will appear later'). The magnitude and angle of the function are deternined by

$$
\begin{equation*}
r_{i}=\sqrt{\Lambda^{2}+Y^{2}}, \quad \cos \Phi=\frac{V}{R} \cdot \sin \Phi=\frac{Y}{R} \tag{20}
\end{equation*}
$$

The function F is continuous ly definition when and only when buth X and Y are continuous functions of $(x, y) ; ~ l$? is then continuous in $(\cdot r, y)$ and F (an vanish only when $R=0$; the angle Φ regarded as a function of (r, y) is also contimons and determinate (except for the additive $2 n \pi$) unless $l=0$, in which case \mathcal{I} and Y also vanish and the expression for Φ involves an indeterminate form in two variables and is generally neither determinate nor continuons ($\$ 44$).

If the derivative of r with respect to z^{\prime} were sought for the value $z=a+i$, the procedure would be entirely amalogous to that in the case of a real function of a real rarialle. The increment $د:=\Delta x+i \Delta!$ would be assumed for z and ΔF would be connputed and the quotient $\Delta F / \Delta z$ would be formed. Thus. les the Theorem of the Mean ($(\stackrel{16}{ }$),

$$
\begin{equation*}
\frac{\Delta F}{\Delta z}=\frac{\Delta Y+i \Delta Y}{\Delta x+i \Delta y}=\frac{\left(Y^{\prime}+i Y_{r}^{\prime}\right) \Delta r+\left(X_{y}^{\prime}+i Y_{n}^{\prime}\right) \Delta y}{\Delta r+i y}+\zeta, \tag{21}
\end{equation*}
$$

where the derivatives are formed for ($(1, l)$) and where ζ is an infinitesimal complex number. When Δz approaches 0 , both Δ and Δy must aproanh 0 withont any implied relation loetween them. In general the limit of $\Delta F / \Delta z$ is a donlle limit (s 44) and may therefore elepend on the way in which Δ and Δy approwh their limit 0 .

Now if first $\Delta!\doteq 0$ and then sulsequently $د^{\prime} \doteq 0$, the value of the
 $\Delta^{\prime} \doteq 0$ and then $\Delta_{y} \doteq 0$, the value is $-i X_{y y}^{\prime}+r_{y y}^{\prime \prime}$. Hence if the limit of $\Delta F / \Delta:$ is to lee independent of the way in which Δz approaches 0 , it is surely necessary that

$$
\frac{\hat{\partial} I}{\partial x}+i \frac{\partial Y}{\partial \cdot y}=-i \frac{\hat{c} X}{\partial y}+\frac{\partial Y}{\partial y}
$$

or

$$
\begin{equation*}
\frac{\partial I}{\partial, r^{\prime}}=\frac{\hat{\partial} Y}{c_{!}} \quad \text { and } \quad \frac{\hat{\partial} I}{c!!}=-\frac{\partial Y}{\partial, r^{\prime}} \tag{22}
\end{equation*}
$$

And conversely if these relations are satisfied, them

$$
\frac{\Delta F}{\Delta z_{i}}=\left(\frac{\bar{c} I}{\hat{c}_{, r}}+i \frac{\hat{\partial} Y}{\hat{\sigma}_{, r}}\right)+\zeta=\left(\frac{\hat{\partial} Y}{\hat{\sigma}_{y},}-i \frac{\hat{\partial} Y}{\hat{c}_{Y},}\right)+\zeta ;
$$

and the limit is $x_{r}^{\prime \prime}+i Y_{r}^{\prime}=Y_{n}^{\prime \prime}-i x_{y}^{\prime \prime}$ taken at the point (${ }^{\prime \prime}, l$) , and is independent of the way in which Δz approaches zero. The desirability of having at least the ordinary functions differemtialle suggents the

 In thie case the invioutives is

$$
\begin{equation*}
F^{\prime}(z)=\frac{l F^{\prime}}{l_{i z}}=\frac{\hat{\partial} X}{\hat{c} \cdot r}+i \frac{\partial Y}{\hat{c}, r}=\frac{\partial Y}{\partial y}-i \frac{\hat{\partial} I}{\partial y} . \tag{23}
\end{equation*}
$$

These conditions may also be expressed in polar coördinates (Ex. 2).
A few worls about the function $\Phi(. r . y)$. This is a multiple valued function of the variables (r, y). and the difference between two neighloming branches is the ermstant 2π. The application of the discussion of $\S 4.5$ to this case shows at once that, in any simply connceted region of the complex plane which contains no point (a. ${ }^{\text {a }}$) such that $l^{\prime}\left(t_{0}, l_{1}\right)=0$, the different branches of $\Phi(x, y)$ may bee entively separated so that the value of Φ must return to its initial value when any closed curve is deseribed by the point (.r. !/). If, however, the region is multiply comected or contains. points for which $l^{i}=0$ (which makes the region multiply emonecterl because these points must be cut out), it may hapen that there will he wisents. for which Φ, although changing contimmoly. will mot retmon to initial value. Indeed if it can be shown that Φ dres mot retum to its initial value when changing comtimumsly as (r, y) Ifexabes the bomblaty of a region simply commected except for the excised points, it may lee infervel that there must be points in the region for which $l i=0$.

An application of these results may be made to sive a very simple demonstration of the fundemental thenem of alyebrel thint ecery equation of the nth degree has at least one root. Consider the funtion

$$
F(z)=z^{n}+u_{1} z^{n-1}+\cdots+\mu_{n-1} z+\mu_{n}=X(x, y)+i Y^{*}(r . y),
$$

where X and Y are fombly wringe z as $s+i y$ and expmong and rearranging. The functions X an I will be polymmiak in $(x . y)$ and will therefore be everywhere finite and continums in (x, y). Comsiner the angle of of F. Then
$\Phi=$ ang. of $F=$ anr. of $z^{n}\left(1+\frac{\mu_{1}}{z}+\cdots+\frac{\mu_{n-1}}{z^{n-1}}+\frac{\mu_{n}}{z^{n}}\right)=$ anr. of $z^{n}+$ ang. of $(1+\cdots)$.
Next draw about the wrisin a cirele of ranlins r so large that

$$
\left.\left|\begin{array}{c}
u_{1} \\
z
\end{array}\right|+\cdots+\frac{\mid u_{n-1}}{z^{n-1}}+\frac{a_{n}}{z^{n}} \right\rvert\,=\frac{\left|u_{1}\right|}{r}+\cdots+\frac{\left|u_{n}-1\right|}{r^{n-1}}+\frac{\left|a_{n}\right|}{r^{n}}<\epsilon .
$$

Then for all points z upou the circumference the angle of F is

$$
\Phi=\operatorname{ancr} \text {. of } F=u(\operatorname{anc}, \text { of } z)+\operatorname{ang} \text {. of }(1+\eta) . \quad|\eta|<\epsilon .
$$

Now let the print (r. y) describe the circumference. The ansle of z will change by 2π for the complete circuit. Hence Φ must change by $2 u \pi$ and does not return to its initial value. In mee there is within the "ircle at least one peint (n. b) for which $l_{i}(u, h)=0$ amb conscquently for which $X^{-}(a, l)=0$ and $Y^{\prime}\left(u . l_{0}\right)=0$ and $F(u, b)=0$. Thens if $\alpha=\|+$ it, then $F(a)=0$ and the equation $F(z)=0$ is seen to have at least the ome ront α. It follow that $z-c$ is a factor of $F(z)$; and hence by induction it may lee seen that $F(z)=0$ has just n roots.
74. The discussion of the algelna of complex numbers showed how the sum, differemee, produrt, quotient, real powers, and real roots of such numbers could ha fomad. and hence made it possible to compute the valum of any given algenate expersion on funtion of a for a given value of \because. It remams to show that any algebraic expression in \tilde{z} is
really a function of a in the sense that it has a derivative with respect to $\because:$, and to find the derivative. Now the differentiation of an algetraie function of the variahle r was made to depend upon the formulas of differentiation, (6) and (7) of $\leqslant 2$. I glance at the methods of derivation of these formulats shows that they were proved by ordinary algebraic manipulations such as have been seen to be equally possible with imaginaries as with reals. It therefore may be eoncluded that on whelmonir

 than algehaic is different; for these funetions have not been defined for complex varialles. Now in seeking to define these funetions when at is complex, an effort should be marle to define in such a way that: 1° When \approx is real, the new and the old definitions berome identical : and 2° the rules of operation with the function shall be as newly as posisible the same for the complex doman as for the real. Thus it would be desirable that $1 m^{z}=r^{z}$ and $r^{z+m}=r^{z} e^{\prime \prime}$, when \because and $"$ are complex. With these ideas in mind one may proceed to define the elementary functions for eomplex arguments. Let

$$
\begin{equation*}
e^{z}=I!\left(r^{\prime}:!/\right)\left[\cos \Phi\left(r^{\prime} ;!/\right)+i \sin \Phi\left(r^{\prime} \cdot!/\right)\right] . \tag{24}
\end{equation*}
$$

The derisative of this funtion is, he the tirst rule of (2?3),

$$
\begin{aligned}
& \mu_{r^{z}}=\frac{\hat{r}}{r, r^{r}}\left(l \left(\cdot(\sin \Phi)+i \frac{r}{r_{i r}}\left(l_{i} \sin \Phi\right)\right.\right. \\
& =\left(R_{i}^{\prime}\left({ }^{\prime}\right) \Phi-R_{i} \sin \Phi \cdot \Phi_{s}^{\prime}\right)+i\left(R_{s}^{\prime} \sin \Phi+R_{i} \cdot() s \Phi \cdot \Phi_{s}^{\prime}\right),
\end{aligned}
$$

and if this is to be identical with, almoe, the "duations

$$
\begin{array}{ll}
l_{n}^{\prime} \cdot\left(\infty \Phi-l \Phi^{\prime} \sin \Phi=l^{\prime} \cdot n \Phi \Phi\right. & l_{i}^{\prime}=l_{i}^{\prime} \\
\left.l_{i}^{\prime} \sin \Phi+l \Phi^{\prime}+0\right) \Phi=l_{i}^{\prime} \sin \Phi & \Phi^{\prime}=0
\end{array}
$$

must hold. where the seeoncl pair is olitained hes sulume the first. If

$$
l_{i_{s}^{\prime}}^{\prime}=l_{i}^{\prime}, \quad l_{i y}^{\prime}=0, \quad \Phi_{s}^{\prime}=0, \quad \Phi_{1 /}^{\prime}=1
$$

 satisfied if $R=r^{r}$ amm $\Phi=!\% .^{*}$ Honme dufine

$$
r=r^{r+i n}=r^{\prime \prime}(n \cdot 0 n+i \sin !)
$$

[^15]With this definition $D_{r^{z}}$ is surely e^{z}, and it is readily shown that the exponential law $e^{z+w}=e^{z} e^{u}$ holds.

For the special values $\frac{1}{2} \pi i, \pi i, 2 \pi i$ of \because the value of θ is

$$
e^{\frac{1}{2} \pi i}=i, \quad e^{\pi i}=-1, \quad e^{2 \pi i}=1
$$

Hence it appears that if $2 n \pi i$ be adderl to A, r^{z} is unchanged ;

$$
\begin{equation*}
e^{z+2 n \pi i}=i^{z}, \quad \text { period } \quad 2 \pi i \tag{26}
\end{equation*}
$$

 $\sin x$ have the real period 2π. This relation is inherent; for
and $\quad \cos y=\frac{r^{\prime \prime \prime}+r^{-y i}}{2}, \quad \sin y=\frac{1^{\prime \prime \prime}-r^{-!/ i}}{2 i}$.
The trigonometrie fundions of a real variable g may le expuessed in terms of the exponentials of ! $/ i$ and $-!/ i$. In the exponential hats beren defined for all complex values of \therefore, it is matmorl to use ($2-$) to define the trigonometric functions for eomplex values as

$$
\begin{equation*}
\cos z=\frac{p^{2 i}+1^{-z i}}{2}, \quad \sin z=\frac{r^{-i}-1^{-z i}}{2 i} \tag{-1}
\end{equation*}
$$

With these definitions the ordinary formulan for \cdot os $(\because+\| \cdot)$, $]$) sin \because, \ldots may be obtained and he smen to hold for complex arguments, just as the

Is in the case of reals, the logarithm log a will he defined for complex numbers as the inverse of the exponential. Thus

$$
\begin{equation*}
\text { if } \quad, \quad=\quad=\quad \text { then } \quad \operatorname{lor} \pi=\ddot{g}+2 n \pi i \tag{2S}
\end{equation*}
$$

where the periondicity of the function shows that the loymithom is not
 rollores, just as $\tan ^{-1}$ a almits the addition of $n \pi$. If $\boldsymbol{\sim}$ is written as a complex number $\quad \prime+i \cdot$ with morlulus $r=\sqrt{n^{2}+r^{2}}$ and with the angle ϕ. it follows that
and

$$
\begin{equation*}
\|=\|+i r=i(m \phi+i \sin \phi)=r^{r, m i}=r^{n, m+\phi} ; \tag{29}
\end{equation*}
$$

is the expression for the logathom of " in torms of the monlulus ant

To this point the expression of a power " where the expenent b is imaginary, has had no definition. The definition hay now be given in terms of exponentials and logarithms. Let

$$
u^{\prime}=e^{h \log \xi^{\prime}} \text { or } \quad \log u^{3}=l, \log u^{\prime \prime} .
$$

In this way the problem of computing μ^{b} is reduced to one already solved. From the very definition it is seen that the logarithm of a power is the product of the exponent by the logarithm of the hase, as in the case of reals. To indicate the path that has been followed in defining functions, a sort of fanily tree may be made.

EXERCISES

1. Show that the following complex functions satisfy the conditions (22) and are therefore functions of the complex varialle z. Find $F^{\prime}(z)$:
(a) $x^{2}-y^{2}+2 i x y$,
(3) $x^{3}-3\left(x y^{2}+x^{2}-y^{2}\right)+i\left(3 x^{2} y-y^{3}-6 x y\right)$,
(γ) $\frac{x}{x^{2}+y^{2}}-i \frac{!}{x^{2}+y^{2}}$,
(δ) $\operatorname{lng} \sqrt{x^{2}+y^{2}}+i \tan ^{-1}!$,
(ϵ) $e^{x} \cos !+i \epsilon^{r} \sin !/$,
(5) sin x sinh $y+i$ msit ersh!
2. Show that in polar comblinates the comblions for the existemef of $F^{\prime}(z)$ are

$$
\frac{\hat{\partial} I}{\hat{\partial} r}=\frac{1}{r} \frac{\hat{c} Y}{\hat{c} \phi}, \quad \frac{\hat{c}}{\hat{c} r}=-\frac{1}{r} \hat{c} \mathrm{i} \phi \quad \text { with } \quad F^{\prime}(z)=\left(\frac{\hat{c} I}{\hat{i} r}+i \frac{\hat{c} Y}{\hat{c} r}\right)(\cos \phi-i \sin \phi)
$$

3. Ise the combitions if Ex. 2 to show from 1$) \log z=z^{-1}$ that $\log z=\log r+\phi i$.
4. From the definitions siven above prove the formulas

$$
\begin{aligned}
& (\alpha) \sin (x+i y)=\sin x \cosh !+i \cos x \sinh y, \\
& (\beta) \cos (x+i y)=\cos x \cosh y-i \sin x \sinh y \\
& (\gamma) \tan (x+i y)=\frac{\sin 2 x+i \sinh 2!}{\cos 2 x+\cosh 2!}
\end{aligned}
$$

5. Find to three decimals the eomplex mumbers whinh oxpmes the values of:
(c) $e^{\frac{1}{4} \pi i}$
(3) i^{i}.
(i) $e^{\frac{1}{2}+\frac{1}{2}} \sqrt{-3}$.
(o) $)^{-1-i}$.
(ϵ) $\sin _{1}^{1} \pi i$.
(3) (asi.
$(\eta) \sin \left(\frac{1}{2}+\frac{1}{2} \backslash-3\right)$.
(4) tan $(-1-i)$.
($) \log (-1)$.
(к) lugi.
(λ) $\operatorname{lng}\left(\frac{1}{2}+\underset{2}{1} \backslash-i\right)$.
(u) $\operatorname{lom}(-1-i)$.
6. Owing to the fact that lowe is multiple valued. "t is maltiple valued in such a manner that any me value may be multiplied hy énoti. Find whe value of each of the following aml several values of one of them:
(α) 2^{i};
$(\beta) i^{i}$,
(γ) $\sqrt[i]{i}$,
(o) $\sqrt[i]{2}$,
(є) $(3+1 \sqrt{-3} \sqrt{-3})^{\frac{3}{\pi} i+1}$.
7. Show that $D_{a^{z}}=a^{z} \log a$ when a and z are complex.
8. Show that $\left(u^{b}\right)^{c}=a^{\text {buc }}$; and fill in such other steps as may he suggested by the work in the text, which for the most part has merely been sketched in a broal way.
9. Show that if $f(z)$ and $g(z)$ are two functions of a complex variable, then $f(z) \pm g(z) . \alpha f(z)$ with α a complex constant. $f(z) g(z), f(z) / g(z)$ are also functions of z.
10. Obtain logarithmic expressions for the inverse trigonometric functions. Finl :in $^{-1} i$.
11. Vector sums and products. As stated in s? 71 a vertor is a duantity whirh lats magnitule and direction. If the magnitudes of two reetors are equal and the direetions of the two vertors are the same, the reators are said to bee equal inrespertire of the position which they oreupy in spare. The sector $-c$ is ly definition a vector which has the same magnitude as α hat the opposite direction. The rector mere is a rector whirch has the same direction
 long. The law of vertor or grometric: addition is the parallelogran or triangle law (ss a fond is still appliabble when the beetors do not lie in a plame hut hare any directions in suare: for any two vero-
 tors brought end to emd determine a phane in which the eonstruction maty be carried out. Vextors will he designated he (ireek smadlletters or bey letters in heary trou. The relations of equality or similarity between triangles establish the rules
$x+\beta=\beta+x, \quad \varepsilon+(\beta+\gamma)=(x+\beta)+\gamma, m(x+\beta)=m \times x+m \beta(30)$
as true for vectors as well as for nombers whether real or complex. I vector is sald to le zero when its magnitude is zemo and it is writtell 0 . Fronn the definition of addition it follows that

 allel to ally thee given ventoms α, β, γ which are not panallel to any one plate. For let a parallelepiped he constructed with its edges gamallel to the theree
 given berons and with its diagomal egral to the fertor whose components are desired. The edges of the parallelepiped are then erertain
multiples $x \alpha, y \beta, a \gamma$ of $\alpha, \beta, \gamma:$ and these are the desired components of ρ. The vertor ρ may be written as

$$
\begin{equation*}
\rho=r \alpha+!\jmath \beta+z \gamma .^{*} \tag{31}
\end{equation*}
$$

It is clear that two equal rectors would necessarily have the same components along three given directions and that the eomponents of a zero vertor would all be zero. Just as the equality of two complex numbers involved the two equalities of the respertive real and imaginary parts, so the erquality of two remors as

$$
\begin{equation*}
\rho=w^{\prime} \alpha+!\beta+\because \gamma=, r^{\prime} x+y^{\prime} \beta+\because^{\prime} \gamma=\rho^{\prime} \tag{31'}
\end{equation*}
$$

involves the three erguations $, r=r^{\prime}, y=y^{\prime},: z=n^{\prime}$.
As a problem in the use of wecturs let there be given the three vectors $\alpha, \beta . \gamma$ from an assumed oriwino ot three vertices of a parallelogram; requirel the vector to the other vertex. the rector expressions for the sides and diagonals of the paralIelogram, and the proof of the fact that the liagmals hisect each other. Consiluer the figme. The side $A B$ is, by the triangle law, that vecter which when added to $0.1=\alpha$ gives $O B=\beta$. and hence it must le that $A B=\beta-\alpha$. In like mamer , It $=\gamma-\alpha$. Now $O D$ is the sum of OC and $(' D)$, anll $(' l)=A l ;$; henee $(O)=\gamma+\beta-\alpha$. The diag-
 onal $A D$ is the difficrence of the wetens $O D$ and $O A$ and is therefore $\gamma+\beta-2 \alpha$. The diaronal $B C$ is $\gamma-\beta$. Now the vector from O to the middle point of $B C+$ may be fomul by alding to of one half of $B C$. Itence this vector is $\beta+\frac{1}{2}(\gamma-\beta)$ or $\frac{1}{2}(\beta+\gamma)$. In like mamer the vector to the middle puint of AD is seen to be $\alpha+\frac{1}{2}\left(\gamma+\beta-2(\gamma)\right.$ w $\frac{1}{2}(\gamma+\beta)$. which is inentical with the fomer. The two middte points therefore coineide and the diagonals bisect eath other.

Let α and β be any two vectors, $\alpha \mid$ and $|\beta|$ their respective lengths, and $\angle(r . \beta)$ the angle luetween them. For convenience the vectors may he eonsidered to lwe laid off from the sane orisin. The product of the lengths of the rectors ley the cosine of the angle between the vectors is "alled the sorilar formhert,
of the two rectors and is donoted lis phang a dut luetween the letters.
 Is β ons $\angle(\alpha, \beta)$ is the projerion of β upen the direction of α. the samar product mas loe stated to le equal to the product of the length of either vector be the lengeth of the farojertion of the other upen it.
 would the the projection of the other upon it, with proper regard for

[^16]the sign ; and if both vectors are unit restors, the produrt is the cosine of the angle between them.

The scalar product, from its definition, is rommutrtire so that $\kappa \cdot \beta=\beta \cdot \kappa$. Moreover $(m \alpha) \cdot \beta=\alpha \cdot(m \beta)=m(n \cdot \beta)$, thus allowing a numerical factor m to lee combined with either fartor of the product. Furthermore the distributiry lan

$$
\begin{equation*}
\alpha \cdot(\beta+\gamma)=n \cdot \beta+n \cdot \gamma \quad(1) \quad(x+\beta) \cdot \gamma=n \cdot \alpha+\beta \cdot \gamma \tag{33}
\end{equation*}
$$

is satisfied as in the "ase of mmanns. For if a low witten as the pronduet "ro of its length " by a veretor' x_{1} of mit length in the direction of α, the first equation leeomes

$$
\left\|\alpha_{1} \cdot(\beta+\gamma)=\right\| n \tau_{1} \cdot \beta+\| \varepsilon_{1} \cdot \gamma \quad \text { or } \quad \quad \varepsilon_{1} \cdot(\beta+\gamma)=\alpha_{1} \cdot \beta+\kappa_{1} \cdot \gamma
$$

And now $\alpha_{1} \cdot(\beta+\gamma)$ is the projextion of the sum $\beta+\gamma$ upon the direction of α, and $\alpha_{1} \cdot \beta+n_{1} \cdot \gamma$ is the sum of the projoctions of β and γ upon this direction: by the law of projections these are equal and hemere the distributive law is pored.

The associative law does not hoh for scalar poducts: for (or β) γ means that the vertor γ is multiplied hy the mmber a β. whereas $\alpha(\beta \cdot \gamma)$ means that α is multipliod ls $(\beta \cdot \gamma)$. a very different matter: The laws of eancellation (ammot hold: for if

$$
\begin{equation*}
\alpha \cdot \beta=0, \quad \text { the } 31 \quad \mid x^{\prime \prime} \beta(\cdot 0) \angle(\alpha, \beta)=0, \tag{3!}
\end{equation*}
$$

and the vanishing of the scalar product $\alpha \cdot \beta$ implies either that one of the factors is 0 or that the two wotors are perpersherular. In fant $\alpha \cdot \beta=0$ is called the romation "ft perpemelionlarit!. It should be noted, howevor, that if a vertor ρ satistios

$$
\begin{equation*}
\rho \cdot \imath=0, \quad \rho \cdot \beta=0, \quad \rho \cdot \gamma=0 \tag{3.5}
\end{equation*}
$$

three conditions of perpendirularity with three restors as, $\beta . \gamma$ not parallel to the same plane. the inferemer is that $\rho=0$.
76. Another produret of two viretors is the rertore fromblat,

$$
\begin{equation*}
\text { vector } p^{n o d u c t}=\kappa \times \beta=v^{\prime} r \mid \beta \text { sin } \angle(\pi, \beta) \text {. } \tag{3i}
\end{equation*}
$$

where v represents a vertor of unit lusplamal to the plane of α and β upon that side on which rotation from ot to β through an angle of less than 1 so \boldsymbol{o}° aplumas jusitive or comaterelorkwise. Thas the vertor produrt is itself a vertor of whirh the direretion is per perndioular to earh fartom, and of whirh thr magni-
 tude is the product of the magnitudes into the sine of the inelumed amgle. The magnitude is therefore arpal to the area of the parallelogram of which the vectors a and β are the sides.

The vector product will be represented ly a arosin inserted between the letters.

As rotation from β to a is the opmosite of that from ar to β, it follows from the definition of the semere proluet that

$$
\begin{equation*}
\beta \times \pi=-n \times \beta, \quad \text { mst } \quad n \times \beta=\beta \times n, \tag{37}
\end{equation*}
$$

and the product is not rommmatione the moler of the factors must be carefully observed. Furthermore the equation

$$
\begin{equation*}
\imath \times \beta=v \quad \alpha \beta, \sin \angle(\kappa, \beta)=0 \tag{38}
\end{equation*}
$$

implies either that one of the factors vanishes or that the verors α and

 and since $\alpha \times \beta$ is per 2 endicular to the plane of x and β. the vertore ($\alpha \times \beta$) $\times \gamma$
 tor ${ }^{\prime} \times \times(\beta \times \gamma)$, ly similar reasoning. must lic in the phane of β and γ : and
 Where carl was parallel to β whill is common to the two phates.
 allowing the tramsferenere of : mumerial faton to any pesition in the product, does hold : and sorloes the distrilutior lon

$$
\begin{equation*}
\alpha \times(\beta+\gamma)=r \times \beta+(i \times \gamma \quad \text { :11cl } \quad(, \varepsilon+\beta) \times \gamma=r \times \gamma+\beta \times \gamma . \tag{3!}
\end{equation*}
$$

the froof of which will le given below. Tn expandine :urordine to the (listributive law (are must loe exererisel to kerp the order of the fantors in eard verotor product the same on looth sides of the ergation, owing to the failure of the commanative law: :an interelame of the
 oferations where so many of the laws of elementary alsernat fail as in the "ase of recen perducts womd le too destricted to loe very useful: that this is not so is due to the astomishangly great mumher of prohlems in whirh the allal ysis call he catried on with only the laws of athlition and the distributive law of multiplication whmbined with the lwsibility

 made. If the arta is part of a surfar inclosing a fertion of spare, the
normal is taken as the exterior normal. If the area lies in an isolated plane, its positive side is determined only in connection with some assigned direction of description of its bounding curve; the rule is: If a person is assumed to walk along the boundary of an area in an assigned direction and upon that side of the plane which causes the inclosed area to lie upon his left, he is said to be upon the positive side (for the assigned direction of description of the loundary), and the vector which represents the area is the normal to that side. It has been mentioned that the vector poduct represented
 an area.

That the projection of a pane area mon a given plane gives an area whirh is the original area multiplied hy the cosine of the angle between the two planes is a fundamental fact of projection, following fron the simple fart that lines parallel to the intersection of the two planes are mehanged in lengtla whereas lines perpendiculan to the intersection are multiplied by the cosine of the angle between the planes. Is the angle between the normals is the same as that hetween the planes, the
 resenting the "reat "pon the normul to the plone "rere "tuiralent. The projection of a rlosel area upon a plate is zero; for the area in the projection is corered twice (or an even manber of times) with opposite signs and the total algenaice sum is therefore 0 .

To prove the law $a \times(\beta+\gamma)=r \times \beta+r \times \gamma$ amd illustrate the nse of the vertor interperation of areas, emstruet a triangular prism with the triangle on β. γ, and $\beta+\gamma$ as hast and of as lateral edge. The total vector experession for the surfane of this prism is

$$
\beta \times \kappa \alpha+\gamma \times \kappa \alpha+r \times(\beta+\gamma)+\frac{1}{2}(\beta \times \gamma)-\frac{1}{2} \beta \times \gamma=0,
$$

and ranishes beranse the surfare is clesed. A cancellation of the e equal and opmosito terms (the two hases) and a simple transposition eombined with the rule $\beta \times r=-r \times \beta$ gives the resinit

$$
r \times(\beta+\gamma)=-\beta \times r v-\gamma \times r v=r \times \beta+\kappa \times \gamma .
$$

A systemu of refors of erformere which is partioularly useful consists of three ventors $\mathrm{i}, \mathrm{j}, \mathrm{k}$ of unit length directerl along the axes $\mathrm{X}, \mathrm{I}, ~ Z$ drawn so that rotation from \bar{X} to Y appears positive from the side of the rey-phane nyon whieln Z lies. The components of any vecter \mathbf{r} drawn from the origin to the point (or: !\% a) are

$$
\because \mathrm{i} . \quad / / \mathrm{j} . \quad \therefore \mathrm{k} . \quad \therefore m \mathrm{l} \quad \mathrm{r}=. r \mathrm{i}+!/ \mathrm{j}+\pi \mathrm{k}
$$

The products of $\mathrm{i}, \mathrm{j}, \mathrm{k}$ into canh other are, from the definitions,

$$
\begin{gather*}
i \cdot i=j \cdot j=k \cdot k=1, \\
i \cdot j=j \cdot i=j \cdot k=k \cdot j=k \cdot i=1 \cdot k=0, \tag{40}\\
i \times i=j \times j=k \times k=0, \\
i \times j=-j \times i=k . \quad j \times k=-k \times j=i, \quad k \times i=-i \times k=j .
\end{gather*}
$$

By means of these products and the distributive laws for sealar amd vector products, any given products may be expanded. Thus if
then

$$
\begin{align*}
& \mu="_{1} \mathrm{i}+\mu_{2} \mathrm{j}+\mu_{3} \mathrm{k} \text { and } \beta=l_{1} \mathrm{i}+l_{2} \mathrm{j}+l_{3} \mathrm{k}, \tag{41}
\end{align*}
$$

by direct multiptication. In this way a passage may be made from vector formulas to Cartesian formulas whenerer desired.

EXERCISES

1. Prove geometrically fhat $(\gamma+(\beta+\gamma)=(\kappa \gamma+\beta)+\gamma$ amd $m(\kappa+\beta)=m a x+m \beta$.
 divides Al' in the vatio $m: n$, shaw that the vector to (' is $\gamma=(m a r+m \beta) /(m+n)$.
2. In the paralleduram $A B C 7$ show that the line $B E$ commerting the vertex to the midelle print of the "phosite side ('l) is trisected by the diagomal $1 l$) and triserets it.

 divides $I_{1} I^{\prime}$, inversely as the masses. Noreoser if C_{1} is the erenter of mass of a momber of masses of which the total mass is M_{1} and if (ize is fle centes of mass of a momber of othor masses whose total mass is X_{2}, the same rolle applitel to M_{1} and H_{2} and (i_{1} and f_{2} gives the renter of gravity G_{i} of the fotal momber of masses. show that.
 show

 sides. Show that the thime of these ath be derived as a romblination of the other
 perpendianlas from the vertiees of a triangle meet in a print.
3. Solve the problem analogons to Ex. 7 for the prememicular bisecters of the sides.
4. Note that the length of a vector is $\sqrt{\alpha \cdot c \gamma}$. If α, β, and $\gamma=\beta-\gamma$ are the three siles of at triangle, expand $\gamma \cdot \gamma=(\beta-\alpha) \cdot(\beta-\alpha)$ to obtain the law of cosines.
5. Show that the sum of the squares of the diagonals of a parallelogran equals the simm of the squares of the sides. What does the aifference of the squares of the diagomals equal!"
 dicular to a by showing 1° that these vectors have the right direction, and ≥ 0 that they have the right magnitude.
6. If α, β, γ are the three edges of a parallelepiped which start from the same vertex, show that $(\alpha \times \beta) \cdot \gamma$ is the volme of the parallelepiped, the wolme being consibered positive if γ lies on the same side of the phane of or and β with the vector $\alpha \times \beta$.
7. Show by Ex. 12 that $(\alpha \gamma \beta) \cdot \gamma=\alpha \cdot(\beta \times \gamma)$ ant $(\gamma \times \beta) \cdot \gamma=(\beta \times \gamma) \cdot \alpha ;$ and hewere infer that in a product of there vectors with cross and dote the persition of the eross and dot may be interehanged and the order of the fincoms may be permoted eyelieally withont altering the value. Show that the vanishing of $(\alpha \times \beta) \cdot \gamma$ on any of its equivalent expressions denotes that α, β, γ are parallel th the same phane; the combition $\alpha \times \beta \cdot \gamma=0$ is called the condition of complamarity.
8. Asmming $\quad \alpha=u_{1} \mathrm{i}+u_{2} \mathrm{j}+u_{3} \mathrm{k}, \quad \beta=b_{1} \mathrm{i}+l_{2} \mathrm{j}+l_{3} \mathrm{k}, \quad \gamma=c_{1} \mathrm{i}+c_{2} \mathrm{j}+r_{3} \mathrm{k}$, expand $\alpha \cdot \gamma, \alpha \cdot \beta$, and $\alpha \times(\beta \times \gamma)$ in terms of the conefticients to shem

$$
\alpha \times(\beta \times \gamma)=(\alpha \cdot \gamma) \beta-(\alpha \cdot \beta) \gamma ; \text { and henc" } \quad(\alpha \times \beta) \times \gamma=(\alpha \cdot \gamma) \beta-(\gamma \cdot \beta) \kappa \text {. }
$$

15. The formulas of Ex. 14 for expanding a protuct with t wo erosses amb the mule of Ex. 13 that a dot and a cross may be interehamem may be aphion to expand

$$
(a \times \beta) \times(\gamma \times \delta)=(a \cdot \gamma \times \delta) \beta-(\beta \cdot \gamma \times \delta) \alpha-(\alpha \times \beta \cdot \delta) \gamma-(\alpha \cdot \beta \cdot \gamma) \delta
$$

anl

$$
(\alpha \times \beta) \cdot(\gamma \times \delta)=(\kappa \cdot \gamma)(\beta \cdot \delta)-(\beta \cdot \gamma)(\gamma \cdot \delta) .
$$

 to the er-axis. show that

$$
\varepsilon=\mathbf{i} \sin \theta+\mathrm{j} \sin \theta . \quad \beta=\mathrm{i} \cos \phi+\mathrm{j} \sin \phi ;
$$

and fom the fact that $\alpha \cdot \beta=$ ons $(\phi-\theta)$ and $\alpha \times \beta=\mathrm{k} \sin (\phi-\theta)$ whan bey matipheation the trigomometric formulat for sin $(\phi-\theta)$ and cos $(\phi-\theta)$.
17. If l, m, n are direction cosines, the vector $l i+m \mathrm{j}+n \mathrm{k}$ is a vector of mit length in the direction for which $1 . m$. n are direction cosines. Show that the comdition for perpendiculaty of two directions (l, m, n) :an $\left(l^{\prime}, m^{\prime}, u^{\prime}\right)$ is $l l^{\prime}+m m^{\prime}+m n^{\prime}=0$.
18. With the same notations as in Ex. 14 , how that

19．Compute the scalar and vector protucts of these pairs of vectors：
（c）$\left\{\begin{array}{l}6 \mathrm{i}+0.3 \mathrm{j}-5 \mathrm{k} \\ 0.1 \mathrm{i}-4.2 \mathrm{j}+2.5 \mathrm{k},\end{array}\right.$
（ β ）$\left\{\begin{array}{l}i+2 j+3 k \\ -3 \mathrm{i}-2 \mathrm{j}+\mathrm{k},\end{array}\right.$
（ $) ~\left\{\begin{array}{l}i+k \\ j+i .\end{array}\right.$

20．Find the areas of the parallelograms define ly the pairs of vectors in Ex．19．Find also the sine and cosine of the angles between the vectors．

21．Prove $\alpha \times[\beta \times(\gamma \times \delta)]=(\alpha \cdot \gamma \times \delta) \beta-\alpha \cdot \beta \gamma \times \delta=\beta \cdot \delta \cdot \gamma \times \gamma-\beta \cdot \gamma \alpha \times \delta$ ．
22．What is the areat of the triangle $(1,1,1),(0,2,3) .(0,0,-1)$ ？
77．Vector differentiation．As the fundanmental rules of differentia－ tion depend on the laws of sultranetion，multipliation ly a number， the distributive law，and the rules permittiner remangement，it follows that the rules mast be applimable to expersions rontainimg veretors without any changes exeeplt those implied hy the fart that $\alpha \times \beta \neq \beta \times n$ ． As an illustration comsider the applagation of the definition of differen－ tiation to the vector product $\mathbf{u \times v}$ of two vectors which are supposed to be functions of a numerical variable．say r ．Then

$$
\begin{aligned}
& \Delta(\mathbf{u} \times \mathbf{v})=(\mathbf{u}+\Delta \mathbf{u}) \times(\mathbf{v}+\Delta \mathbf{v})-\mathbf{u} \times \mathbf{v} \\
& =u \times \Delta v+\Delta u \times v+\Delta u \times \Delta v, \\
& \frac{\Delta(\mathfrak{u} \times \mathrm{v})}{\Delta r}=\mathfrak{u} \times \frac{\Delta \mathrm{v}}{\Delta r}+\frac{\Delta \mathfrak{u}}{\Delta r} \times \mathbf{v}+\frac{\Delta \mathfrak{u} \times \Delta \mathrm{v}}{\Delta r},
\end{aligned}
$$

Were the ordinary rule for a produrt is seen to hold．exoplt that

The interperation of the derivative is impertant．Leet the variable vector r lee regarded as a function of some variable saty ．and suppose r is laid off from an assmerl origin so that．ats ar varies the temaninal point of r deseribes a curvo．The inmer－

 Ther deriaratio．

$$
\begin{equation*}
\frac{/ r}{/ / \pi}=\lim \frac{\Delta r}{\Delta . r} \quad \frac{/ / r}{/ / s}=\lim \frac{\Delta r}{\Delta r}=\mathrm{t} \tag{4:}
\end{equation*}
$$

 the variable or were the atres．the derivative would have
 the magnitude mity amb womld bo a mat veetor tangent to the＂onve．

The derivation of difforential of a vorone of＂onstant lemeth is per－ pendicular to the vertor．This follows from the fart that the vector
then describes a circle concentrie with the origin. It may also be seen analytically from the equation

$$
\begin{equation*}
d(\mathrm{r} \cdot \mathrm{r})=\| \mathrm{r} \cdot \mathrm{r}+\mathrm{r} \cdot / \mathrm{r}=2 \mathrm{r} \cdot / \mathrm{r}=d \text { const }=0 \tag{43}
\end{equation*}
$$

If the vector of constant length is of length unity, the increment Δr is the chord in a unit cirrle and, apart from infinitesimals of higher order, it is erqual in magnitude to the angle sulstended at the center. Consider then the derivative of the unit tangent t to a curve with respert to the are s. The magnitude of it is the angle the tangent turns through and the direction of , $/ \mathrm{t}$ is normal to t and hence to the curve. The vector quantity,

$$
\begin{equation*}
\text { curvature } \quad \mathrm{C}=\frac{d \mathrm{t}}{d / s}=\frac{d^{2} \mathrm{r}}{d / \mathrm{s}^{2}} \text {, } \tag{44}
\end{equation*}
$$

therefore has the magnitude of the curvature (he the definition in \& 42) and the direction of the interior normal to the curve.

This work homs equally for plane or space curves. In the case of a space curve the plane which contains the tangent \mathbf{t} and the curvature C is called the onculating plane (s 41). By definition ($\left(\begin{array}{c}\text { 42 }\end{array}\right)$ the torsion of a spuce curce is the rate of turning of the osculating plane with the are. that is, de/dx. To find the torsion by vestor methonds let c be a mit vecton $\mathrm{C} / \mathrm{C} \mathbf{C} \cdot \mathrm{C}$ alomer C . Then as t and c are perpendicular, $\mathrm{n}=\mathrm{t} \times \mathrm{c}$ is a unit vectur perpendicular to the osculating plane and dn will equal $d \psi$ in magnitule. Hence as a vector guantity the forsion is

$$
\begin{equation*}
\mathrm{T}=\frac{d \mathrm{n}}{d s}=\frac{d(\mathrm{t} \times \mathrm{c})}{d s}=\frac{d \mathrm{t}}{d \cdot} \times \mathrm{c}+\mathrm{t} \times \frac{d \mathrm{c}}{d \cdot}=\mathrm{t} \times \frac{d \mathrm{c}}{d \cdot}, \tag{45}
\end{equation*}
$$

where (since $\mathrm{dt} / \mathrm{d}: \mathrm{s}=\mathrm{C}$. and C is pamallel $^{\text {th }} \mathrm{C}$) the first term drops ont. Next mote that on is perpendientar to n leceanse it is the differential of a mit vector. and is perpmomicmar tu t because $d \mathrm{n}=d(\mathrm{t} \times \mathrm{c})=\mathrm{t} \times 1 \mathrm{c}$ and $\mathrm{t} \cdot(\mathrm{t} \times 1 \mathrm{l})=0$ simee t . t . Ic are
 to c . It is convenient to cansider the torsion as peritive when the osenlating plane seme then then the poitive direction when
 viewed from the side of the nomal plane upen which thes. An inspection of the figure shows that in this case in has the directinn - c and mot +c . As c is a mit vector, the mumerical value of the torsim is therefore - c .T. Then

$$
\begin{align*}
& =-\mathrm{c} \cdot \mathrm{t} \times\left[\frac{d^{2 \cdot} \mathrm{r}}{d w^{3}}-\frac{1}{\mathrm{C} \cdot \mathrm{C}}+\mathrm{C} \frac{\mathrm{l}}{d \cdot}-\frac{1}{\sqrt{C} \cdot \mathrm{C}}\right]=-\mathrm{c} \cdot \mathrm{t} \times \frac{d \mathrm{l} \frac{1}{d s^{3}} \vee \mathrm{C} \cdot \mathrm{C}}{} \\
& =\mathrm{t} \cdot \mathrm{C} \cdot \mathrm{C}^{\times d^{d^{3}} \mathrm{r}} \mathrm{r}^{3}=\frac{\mathrm{r}^{\prime} \cdot \mathrm{s}^{\prime \prime} \times \mathrm{r}^{\prime \prime \prime}}{\mathrm{r}^{\prime \prime} \cdot \mathrm{r}^{\prime \prime}},
\end{align*}
$$

where differentiation with respect to s is denoted by accents.
78. Another sort of relation between rectors and differentiation comes to lisht in connertion with the normal and dirertional derivatives (8 4). If $F(, r: y, i z$) is a function which has a definite value at
wach point of space and if the two noighboring surfaces $F=C$ and $F=(:+d e$ are considered，the nomal derivative of F is the rate of change of F along the normal to the surfaces and is witten $1 / F / / / n$ ．The rate of change of F along the normal to the smface $f=('$ is more mpid than along any other direction：for the change in r be－ tween the two surfares is $/ F F=d{ }^{+}$and is constant，
 whereas the distance dn between the two surfares is least（apart from infinitesimals of higher order）along the normal．In fact if dre denote the distance along any other direction，the relations shown by the figure are

$$
\begin{equation*}
d r=\sec \theta \theta_{1} / n \quad \text { and } \quad \frac{d r}{d r}=\frac{d r}{d n} \cos \theta \tag{46}
\end{equation*}
$$

If now n denote a vector of mit length normal to the surface，the
 and the direction of most rop，id increase of $1=$ ．Lect

$$
\begin{equation*}
\mathrm{n} \frac{d F}{d n}=\Gamma F=\operatorname{grad} F \tag{47}
\end{equation*}
$$

be the symbolice expressions for this vertor，where ΓF is read as＂del l＂， and grad F is read as＂the gradient of r＂．If dr be the veretor of whirh
 it follows that

$$
\begin{equation*}
/ \mathrm{r} \cdot \nabla F=\| F \quad \text { and } \quad \mathrm{r}_{1} \cdot \Gamma F=\frac{d l \cdot}{d /} \tag{18}
\end{equation*}
$$

where r_{1} is a mit veeter in the diecection／r．The seeond of the evpat tions shows that the dirertiment deviratiore in＂n！derertion is the rom－ pement on frespertion of the arontient in that dirertione．

From this fact the experession of the gratient may le found in terms of its components along the axes．For the derivatives of F along the
 along the direetions $\mathbf{i}, \mathbf{j}, \mathrm{k}$ ，the result is

Hットリ

$$
\begin{align*}
& \Gamma=\mathrm{i} \frac{\mathrm{r}}{c \cdot r}+\mathrm{j}_{r!/}^{r}+\mathrm{k} \frac{\mathrm{r}}{r:} \tag{19}
\end{align*}
$$

may be regarded as a symbolir vector－difforentiating operator which when applied to Fe gives the ermelient of $l \therefore$ The product

$$
\begin{equation*}
d \mathrm{r} \cdot \Gamma l=\left(d \cdot \frac{r}{c, r}+\|!\frac{r}{c!!}+d: \stackrel{r}{r \cdot i}\right) r=\| r \tag{50}
\end{equation*}
$$

is immediately seen to give the ordinary expression for dre From this form of grad F it does not appear that the gradient of a function is independent of the choice of axes, but from the mamer of derivation of ∇F first given it does appear that grad r is a definite vertor quantity independent of the choice of axes.

In the case of any given function F the gradient may lo found by the application of the formula (49) : hat in many instaneres it may also be found by means of the important relation $/ \mathrm{r} \cdot \Gamma \mathrm{F}^{\circ}=d \%$ of (48). Fon instance to prove the formula $\Gamma\left(F(i)=F \Gamma C_{i}+G \Sigma F\right.$, the relation may be applied as follows:

$$
\begin{aligned}
& \mathrm{dr} \cdot \Gamma\left(F_{i}\right)=\|\left(I_{i} H_{i}\right)=F_{i} l_{i}+I_{i} l_{i}
\end{aligned}
$$

Now as these equations hold for any direction dr, the ar may be caneeled by (35), p. 165, and the desired result is obtained.

The use of vector motations for treating assignompractical problems inwowing computation is not great, but for handing the gemem theory of such parts of physics as are essentially concerned with direct quantities, meclanics, hydromechanics, electromagnetic theories, ete., the antual hise of the vector algorisms tomsiderably shortens the formulas and has the added adrantage of prestinu directly mpon the magniturles involved. At this pint some of the elements of meehanies will be developed.
79. Aceording to N゙ewtons Second Law, when a foree acts upon a particle of mass m. the rente of "han!fe oft momentem is elderl to the
 appeas that the rate of ehange of momentma and momentmm itself are to be rexarded as vector or direrted magnitudes in the applisation of the seromel Law. Now if the vector r. lated off from a fixed origin to the point at which the moving mass mis sitmated at any instant of time t. be differentiated with respert to the time t, the derivative dr/dt is a vector, tangent to the curve in which the partiele is moving and of magnitmbe aqual to ds/it or r, the velocity of motion. As reetors*, then, the velority V and the moment mand the fore may be written as

$$
\begin{gather*}
\mathrm{v}=\frac{d \mathrm{r}}{d t}, \quad m \mathrm{v} . \quad \mathrm{F}=\frac{d l}{d /(m \mathrm{v})} \\
\text { Hence } \quad \mathrm{F}=m \frac{d \mathrm{v}}{d t}=m \frac{d l^{2} \mathrm{r}}{d t^{2}}=m \mathrm{f} \quad \text { if } \quad \mathrm{f}=\frac{d \mathrm{v}}{d t}=\frac{d l^{2} \mathrm{r}}{d t^{2}} . \tag{i}
\end{gather*}
$$

From the equations it apmeans that the fore F is the pronduet of the mass w hy a vertor f which is the rate of change of the velocity resencter

[^17]as a rector. The vertor f is called the arcelemtion: it must not be confused with the rate of thange $/ \sqrt[l]{ } / d t$ or $r^{2} s / d t^{2}$ of the speed or magnitule of the velocity. The eomponents $f_{c}^{\prime}, f_{y,}, f_{z}^{\prime}$ of the acceleration along the axes are the projections of \mathbf{f} along the directions $\mathbf{i}, \mathbf{j}, \mathbf{k}$ and may be written as $\mathrm{f} \cdot \mathrm{i}, \mathrm{f} \cdot \mathrm{j}, \mathrm{f} \cdot \mathrm{k}$. Then by the laws of differentiation it follows that
or
\[

$$
\begin{aligned}
& f_{x}=\mathrm{f} \cdot \mathrm{i}=\frac{d \mathrm{v}}{d t} \cdot \mathrm{i}=\frac{d(\mathrm{v} \cdot \mathrm{i})}{d t}=\frac{d t_{x}}{d t}, \\
& f_{x}^{\prime}=\mathrm{f} \cdot \mathrm{i}=\frac{t^{2} \mathrm{r}}{d t^{2}} \cdot \mathrm{i}=\frac{d T^{2}(\mathrm{r} \cdot \mathrm{i})}{d t^{2}}=\frac{t^{2}, r}{d t^{2}} \\
& f_{x}=\frac{t^{2} \cdot t^{2}}{d t^{2}}, \quad f_{l /}=\frac{d T^{2} \|}{d t^{2}}, \quad f_{z}=\frac{t^{2} \pi}{d t^{2}},
\end{aligned}
$$
\]

Hence
and it is seen that the components of the arceleration are the arcelerations of the components. If X, Y, Z are the components of the foree, the equations of motion in rectangular coördinates are

$$
\begin{equation*}
m \frac{d r^{2} \cdot r}{d t^{2}}=X, \quad m \frac{d^{2}!}{d t^{2}}=Y, \quad m \frac{r^{2} \varepsilon}{d t^{2}}=Z \tag{5}
\end{equation*}
$$

Instead of resolving the aceeleration. force, and displaremont abong the axes, it may be convenient to resolve them along the tangent and normal to the curve. The velority v may be witten as it. where e is the magnitude of the velocity and t is a unit rector tangent to the curve. Then

But

$$
\begin{align*}
& \mathrm{f}=\frac{d \mathrm{v}}{d t}=\frac{d(\cdot \mathrm{t})}{d t}=\frac{d / \cdot}{d t} \mathrm{t}+\cdots \frac{d \mathrm{t}}{d t} . \\
& \frac{d \mathrm{t}}{d t}=\frac{d \mathrm{t}}{d s} \cdot \sqrt{d t}=\mathrm{C} \cdot=\frac{1}{R} \mathrm{n},
\end{align*}
$$

where l is the radius of eurvature and n is a mit normal. Hence

$$
\mathrm{f}=\frac{d^{2} s}{d t^{2}} \mathrm{t}+\frac{r^{2}}{l_{i}^{2}} \mathrm{n}, \quad f_{t}=\frac{r^{2} s}{d t^{2}}, \quad . t_{n}=\frac{r^{2}}{l_{i}}
$$

It therefore is sern that the component of the arex eration along the

 are the compmonts of the fome along the tangent and normal to the curve of motion, the equations are

$$
T=m f_{t}=m \quad \frac{T^{2} s}{d t^{2}}, \quad N=m f_{n}=m \frac{r^{2}}{l_{1}}
$$

It is notewnethy that the foree mast lie in the oserulating phane.

$\Delta \mathbf{A}=\frac{1}{2} \mathbf{r} \times(\mathbf{r}+\Delta \mathbf{r})=\frac{1}{2} \mathbf{r} \times \Delta \mathbf{r}$, and is a vector quantity of which the direction is normal to the plane of r and $r+\Delta r$, that is, to the plane throngh the origin tangent to the curve. The rate of description of area, or the aremb cemerity, is therefore

$$
\begin{equation*}
\frac{/ \mathrm{A}}{d t}=\lim \frac{1}{2} \mathrm{r} \times \frac{\Delta \mathrm{r}}{\Delta t}=\frac{1}{2} \mathrm{r} \times \frac{/ / \mathrm{r}}{d t}=\frac{1}{2} \mathrm{r} \times \mathrm{v} . \tag{54}
\end{equation*}
$$

The projections of the areal relocities on the coordinate planes, which are the samu as the areal velocities of the projection of the motion on those planes, aro (Ex. 11 below)

$$
\frac{1}{2}\left(y \frac{d z}{d t}-\because \frac{d!}{d t}\right), \quad \frac{1}{2}\left(\because \frac{d, r}{d t}-r \frac{d \pi}{d t}\right), \quad \frac{1}{2}\left(x \frac{d!!}{d t}-y \frac{d \cdot r}{d t}\right) .
$$

If the fore F arting on the mass m passes through the origin, then r and F lis along the same direction and $r \times F=0$. The equation of motion may then be integrated at sight.

$$
\begin{array}{ll}
m \cdot \frac{d \mathbf{v}}{d t}=\mathbf{F}, & m \mathbf{r} \times \frac{d \mathbf{v}}{d t}=\mathbf{r} \times \mathbf{F}=0, \\
\mathbf{r} \times \frac{d \mathbf{v}}{d t}=\frac{d}{d t}(\mathbf{r} \times \mathbf{v})=0, & \mathbf{r} \times \mathbf{v}=\text { const. }
\end{array}
$$

It is seren that in this case the rate of description of area is a constant vector; whisoln means that the mate is not only constant in magnitude but is constant in dirertion, that is, the path of the particle m must lie in a phane through the orgin. When the force passes through a fixed point, as in this case, the foree is said to be erenterl. Therefore when a particle moves under the artion of a central forere, the motion takes plare in a phane passing through the eenter and the rate of description of areas, or the areal relocity, is constant.
80. If there are several particles, sar n, in motion, each has its own equation of motion. These equations may he combined by addition and subsequent reduction.
and

$$
\begin{align*}
& m_{1} \frac{t^{2} \mathbf{r}_{1}}{l t^{2}}=\mathrm{F}_{1}, m_{2} \frac{l^{2} \mathrm{r}_{2}}{d t^{2}}=\mathrm{F}_{2}, \cdots, m_{n} \frac{l^{2} \mathbf{r}_{n}}{d t^{2}}=\mathrm{F}_{n}, \\
& m_{1} \frac{d^{2} \mathbf{r}_{1}}{d t^{2}}+m_{2} \frac{d^{2} \mathbf{r}_{2}}{d t^{2}}+\cdots+m_{n} \frac{d^{2} \mathbf{r}_{n}}{d t^{2}}=\mathbf{F}_{1}+\mathbf{F}_{2}+\cdots+\mathbf{F}_{n} . \\
& m_{1} \frac{d^{2} \mathbf{r}_{1}}{d t^{2}}+m_{2} \frac{d^{2} \mathbf{r}_{2}}{d t^{2}}+\cdots+m_{n} \frac{d^{2} \mathbf{r}_{n}}{d t^{2}}=\frac{d^{2}}{d t^{2}}\left(m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}+\cdots+m_{n} \mathbf{r}_{n}\right) . \\
& m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}+\cdots+m_{n} \mathbf{r}_{n}=\left(m_{1}+m_{2}+\cdots+m_{n}\right) \mathbf{r}=M \overline{\mathbf{r}} \\
& \hat{\mathbf{r}}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}+\cdots+m_{n} \mathbf{r}_{n}}{m_{1}+m_{2}+\cdots+m_{n}}=\frac{\Sigma m \mathbf{r}}{\Sigma m}=\frac{\Sigma m \mathbf{r}}{M} . \\
& M_{d t^{2}}^{d^{2}-\mathrm{r}}=\mathrm{F}_{1}+\mathrm{F}_{2}+\cdots+\mathrm{F}_{n}=\sum \mathrm{F} \text {. } \tag{55}
\end{align*}
$$

Let
or

Then
But

Now the vector r which has been here intromeed is the ventor of the center of mass or center of sravity of the partices (Ex, 5, 1), 168). The resutt (55) states, on eomparison with (51), that the conter of erravity of the n mases moves as if all the mass M were concentrated at it and all the forces appled there.

The force F_{i} acting on the ith mass may be wholly or partly due to attrations, repulsions, presimes, or other actions exerted on that mass by the or more of the wher masses of the system of n partieles. In fact let F_{i} be written as

$$
\mathbf{F}_{i}=\mathbf{F}_{i 0}+\mathbf{F}_{i 1}+\mathbf{F}_{i 2}+\cdots+\mathbf{F}_{m}
$$

where $\mathrm{F}_{i j}$ is the force exerted on m_{i} hy m_{0}, athe $\mathrm{F}_{i n}$ is the fore dur to some adorney external to the u masses which form the system. Now by Newtoms Thint daw, when one particle atets pone a second, the seeoml reacts upen the first with a fonce which is erpal in manitute and olyosito in direction. Ilenoe to $\mathrm{F}_{i j}$ above there will correxpond a foree $\mathrm{F}_{j i}=-\mathrm{F}_{i j}$ exerted by m_{i} on m_{j}. In the sum ご F_{i} all

 The motion of the center of messs of a set of particles is as if wht the mass were conerontrated there and all the external fores were applied there (the internal forees, that is, the fores of mutual action and reation between the partieles being entirely neglected).

The moment of a fore about a given point is defined the the probe of the foree by the perpendirular distane of the fome from the perint. If r is the vector from the perint as orixin to any perint in the line of the fore the moment is therefore $\mathrm{r} \times \mathrm{F}$ when eonsidered as a vertor quatity, and is perpembenker to the pane of the line of the fore and the origin. The equations of n mowing mases may now be combined in a different way and redued. Multiply the equations by $\mathrm{r}_{1}, \mathrm{r}_{2}, \cdots, \mathrm{r}_{n}$ and add. 'Then

$$
\begin{align*}
& m_{1} \mathbf{r}_{1} \times{ }_{d t}^{d \mathbf{v}_{1}}+m_{2} \mathbf{r}_{2} \times{ }_{d!}^{d \mathbf{v}_{2}}+\cdots+m_{n} \mathbf{r}_{n} \times{ }_{d!}^{d \mathbf{v}_{n}}=\mathbf{r}_{1} \times \mathbf{F}_{1}+\mathbf{r}_{2} \times \mathbf{F}_{2}+\cdots+\mathbf{r}_{n} \times \mathbf{F}_{n} \\
& m_{1}{ }_{l l}^{d} \mathbf{r}_{1} \times \mathbf{v}_{1}+m_{2}{ }_{d l}^{l l} \mathbf{r}_{2} \times \mathbf{v}_{2}+\cdots+m_{n}{ }_{l d}{ }_{l d} \mathbf{r}_{n} \times \mathbf{v}_{n}=\mathbf{r}_{1} \times \mathbf{F}_{1}+\mathrm{r}_{2} \times \mathrm{F}_{2}+\cdots+\mathrm{r}_{n} \times \mathbf{F}_{n} \\
& { }_{d l}^{d}\left(m_{1} r_{1} \times \mathbf{v}_{1}+m_{2} r_{2} \times \mathbf{V}_{2}+\cdots+m_{n} r_{n} \times \mathbf{v}_{n}\right)=\Sigma \mathbf{r} \times \mathrm{F} . \tag{.54}
\end{align*}
$$

This equations shows that if the areal velereties of the difterent masses are multipuled

 being arkleal ats vertor fllatitios.

 promet is formerl from the momentum in exatily the same way that the moment is formerif from the foree, and it is eabled the moment of momentum. Hemee the equation (56) become's

$$
\frac{d}{d t}(\text { total moment of momentmm }=\text { moment of external forces. }
$$

Hence the result that, as veetor quantities: The rute of chonge of the moment of momentum of a system of portirles is cqual to the moment of the extornol fores (the forces between the masses being entirely nespeeted under the assumption that action and reaction lie along the line eomecting the masses).

EXERCISES

1. Aphly the detinition of differentiation to pore
(a) $\mathrm{l}(\mathrm{u} \cdot \mathrm{v})=\mathrm{u} \cdot \mathrm{l} \mathrm{v}+\mathrm{v} \cdot \mathrm{du}, \quad(\beta) \mathrm{l}[\mathrm{u} \cdot(\mathrm{v} \times \mathrm{w})]=(\mathrm{l} \cdot(\mathrm{v} \times \mathrm{w})+\mathrm{u} \cdot(l \mathrm{v} \times \mathrm{w})+\mathrm{u} \cdot(\mathrm{v} \times \cdot l \mathrm{w})$.
2. Differentiate mador the assmontion that vectors denoted by early letters of the alphabet are constant and those designated by the later letters are variable:
(cr) $\mathrm{u} \times(\mathrm{v} \times \mathrm{w})$,
(β) a ers $t+\mathrm{b} \sin t$,
$(\gamma)(u \cdot u) u$.
($\delta) ~ \mathrm{u} \times{ }_{d \mathrm{l}}^{\mathrm{l}, \mathrm{v}^{2}}$,
(є) $u \cdot\left(\begin{array}{ll}l u & l^{2} \mathbf{u} \\ l l & \times \\ d x^{-2}\end{array}\right)$,
(s) $\mathrm{c}(\mathrm{a} \cdot \mathrm{u})$.
3. Apply the rules for change of variable torshow that $\frac{d^{2} r}{d s^{2}}=\frac{r^{\prime \prime} s^{\prime}-r^{\prime} s^{\prime \prime}}{s^{\prime 3}}$, where arents denote differentiation with respect to x. In ease $\mathrm{r}=x \mathrm{i}+!/ \mathrm{j}$ show that $1 / \checkmark$ C.C takes the usual form for the ratins of enrvature of a plane curve.
 show that the rallins of emrature is $\left(a^{2}+b^{2}\right) / \mu$.
4. Find the torsion of the lelix. It is $b /\left(u^{2}+1,2\right)$.
5. Change the variable fom sta some ot her variable t in the formmatar forsion.
6. In the following cases finl the erandent either by applyine the formula which

$$
\begin{array}{ll}
\text { (a) } \mathrm{r} \cdot \mathrm{r}=r^{2}+y^{2}+z^{2}, \quad(\beta) \operatorname{logr}, & (\gamma) r=\mathrm{r} \cdot \mathrm{r} \\
\text { (o) } \operatorname{lo} \leq\left(r^{2}+y^{2}\right)=\log \left[\mathrm{r} \cdot \mathrm{r}-(\mathrm{k} \cdot \mathrm{r})^{2}\right], & (\epsilon)(\mathrm{r} \times \mathrm{a}) \cdot(\mathrm{r} \times \mathrm{b}) .
\end{array}
$$

8. Prove these laws of operation with the symbol Γ :

$$
(\alpha) \Gamma(F+G)=\Gamma F+\Gamma f_{i}^{\prime} . \quad(\beta) \quad\left(i_{i}^{2} \Gamma\left(F / \sigma_{x}^{\prime}\right)=1 ; \Gamma F-F \Gamma f_{x}^{\prime}\right.
$$

 ratius. Thus differentiate $\mathrm{r}=\mathrm{r}_{1}$ twice and seprate the result inth connpments along the radius sector and perpendiendar to it so that

$$
f_{r}=\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \phi}{d t}\right)^{2}, \quad f_{\phi}=r^{d^{2}-\phi} \frac{d t^{2}}{d 2} \frac{d \phi}{d t} \frac{d r^{*}}{d t}=\frac{1}{r} d t\left(r^{2} \frac{d \phi}{d t}\right)
$$

10. Prove conversely to the text that if the vector late of des.riptinn of area is constant, the force must be erntral, that is, $\mathrm{r} \times \mathrm{F}=0$.
11. Note that $\mathbf{r} \times \mathbf{v} \cdot \mathbf{i}$, $\mathbf{r} \times \mathbf{v} \cdot \mathbf{j}$. $\mathbf{r} \times \mathbf{v} \cdot \mathrm{k}$ are the projections of the areal velocities lipen the planes $x=0, y=0, z=0$. Hence derive (ot') of the toxt.
12. Show that the Cartesian expressions for the magnitude of the velocity and of the acceleration and for the rate of change of the speed $d v / d t$ are

$$
v=\sqrt{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}} . \quad f=\sqrt{x^{\prime \prime 2}+y^{\prime \prime 2}+z^{\prime \prime 2}}, \quad x^{\prime}=\frac{x^{\prime} x^{\prime \prime}+y^{\prime} y^{\prime \prime}+z^{\prime} z^{\prime \prime}}{\sqrt{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}}},
$$

where accents denote differentiation with respect to the time.
13. Suppose that a borly which is rigid is rotating about an axis with the angular velocity $\omega=d \phi / d t$. Represent the angular velocity by a vecter a drawn along the axis and of magnitule equal to ω. Show that the velocity of any point in space is $\mathbf{v}=a \times r$, where r is the vector drawn to that point from ans puint of the axis as origin. Show that the acceleration of the point determined by r is in a plane through the point and perpendicular to the axis. and dhat the emmpenents are

$$
\mathbf{a} \times(\mathbf{a} \times \mathbf{r})=(\mathbf{a} \cdot \mathbf{r}) \mathbf{a}-\omega^{2} \mathbf{r} \text { toward the axis, } \quad(d \mathbf{a} / d t) \times r \text { perpendicular to the axis, }
$$

under the assumption that the axis of rotation is invariable.
14. Let \vec{r} denote the ennter of gravity of a system of particles and r_{i}^{\prime} dennte the vector drawn from the center of gravity to the ith particle so that $\mathrm{r}_{i}=\overline{\mathrm{r}}+\mathrm{r}_{i}^{\prime}$ and $\mathrm{v}_{2}=\overline{\mathrm{v}}+\mathrm{v}_{i}^{\prime}$. The kinetic energy of the ith particle is by definition

$$
\frac{1}{2} m_{i} v_{i}^{2}=\frac{1}{2} m_{i} \mathbf{v}_{i} \cdot \mathbf{v}_{i}=\frac{1}{2} m_{i}\left(\overline{\mathbf{v}}+\mathbf{v}_{i}^{\prime}\right) \cdot\left(\overline{\mathbf{v}}+\mathbf{v}_{i}^{\prime}\right) .
$$

Sum up for all particles and simplify by using the fact $\Sigma m_{i} \mathrm{r}_{i}^{\prime}=0$, which is due to the assumption that the origin for the vector: r_{i}^{\prime} is at the eenter of gravity. Hence prove the important theorem: The totulkinetic coneryy of a system is equal the the kinetic energy which the total muss would have if moving with the center of grateity plus the cnergy computed from the motion relative to the conter of grucity as origin, that is,

$$
T=\frac{1}{2} \Sigma m_{i} r_{i}^{2}=\frac{1}{2} M i^{2}+\frac{1}{2} \Sigma m_{i} r_{i}^{\prime 2} .
$$

15. Consider a rigid body moving in a plane. which may be taken the the syplane. Let any point r_{0} of the benly be marked and other puints be denoted redative to it by r^{\prime}. The motion of any point r^{\prime} is compounded from the motion of $\mathbf{r}_{\boldsymbol{\prime}}$ and from the angular velecity $\mathrm{a}=\mathrm{k} \boldsymbol{\omega}$ of the body about the puint r_{4}. ln fact the velocity v of any print $\mathrm{is} \mathrm{v}=\mathrm{v}_{0}+\mathrm{a} \times \mathrm{r}^{\prime}$. Show that the velocity of the joint domoted by $\mathrm{r}^{\prime}=\mathrm{k} \times \mathbf{v}_{\mathrm{n}} / \omega$ is zero. This puint is known as the instantanems center of ration
 the origin of the vectors r are

$$
r=\mathrm{r} \cdot \mathrm{i}=r_{0}-\frac{1}{\omega} \frac{d y_{n}}{d t}, \quad y=\mathrm{r} \cdot \mathrm{j}=y_{0}+\frac{1 d r_{0}}{\omega d t} .
$$

16. If sexeral forces $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{n}$ act on a buly the sum $\mathrm{R}=\Sigma \mathrm{F}_{i}$ is called the resultent and the sman $\Sigma \mathrm{r}_{i} \times \mathrm{F}_{i}$, where r_{i} is drawn from an origin of to a puint in the line of the foree F_{i}. is called the resultent mement about o. Show that the resultant. mement. M_{O} and M_{6}, about two peints are comeected by the relationt $\mathrm{M}_{0^{\prime}}=\mathrm{M}_{0}+\mathrm{M}_{0^{\prime}}\left(\mathrm{R}_{0}\right)$. where $\mathrm{M}_{0}\left(\mathbf{R}_{()}\right)$means the moment about o' of the resultant \mathbf{R} comsidered as abplied at O. Hiner that moments athent all prints of any lime parallel to the resultant ase ednal. Show that in any phane perpendioular to R there is a peint ()' wiven $\mathrm{r}=\mathrm{R} \times \mathbf{M}_{0} / \mathbf{R} \cdot \mathrm{R}$. where () is any point of the phane, steh that M_{6}, is parallel to R .

PAR'T II. DIFFERENTIAL EQUATIONS

CHAPTER VII

GENERAL INTRODUCTION TO DIFFERENTIAL EQUATIONS

81. Some geometric problems. The application of the differential calculus to plane curves hats given a means of determining some geometrie properties of the curves. For instance, the length of the sulmormal of a curve ($\overline{8}$) is $!y!y / d x$, , which in the case of the parabola $!y^{2}=4 p, r$ is $2 p$, that is, the sulnomal is constant. Nuppose now it were desired conversely to find all curves for which the sulmormal is a given "onstant m. The statement of this problem is evidently contained in the equation

$$
y \frac{d!y}{d \cdot x}=m \quad \text { or } \quad y y^{\prime}=m \quad \text { or } \quad y{ }^{\cdot} l^{\prime} y=m d . r .
$$

Again, the radius of curvature of the lemniscate $r^{2}=u^{2} \cos ^{2}-\phi$ is found to lee $l=\pi^{2} / 3 n$, that is, the radius of curvature varies inversely as the radius. If conversely it were desired to find all comes for which the radins of curvature varies inversely as the radius of the curve, the statement of the problem would the the equation

$$
\frac{\left[r^{2}+\left.\left(\frac{d r}{d \phi}\right)^{2}\right|^{3}\right.}{r^{2}-\frac{r^{2} \cdot r}{d \phi^{2}}+\because\left(\frac{d r}{d \phi}\right)^{2}}=\frac{l}{r}
$$

where $l_{\text {: }}$ is a comstant called a factor of propertionality.*
Equations like these are unlike ordinary algelnaie equations leeanse, in addition to the variables , r, !/ or r, ϕ and certain constants om or l, they contain also derivatives, as $d y / d \|$ or $d r / d \phi$ and $d^{2} \|^{\prime} / \phi^{2}$, of one of the variables with respert to the other. An equation which contains

[^18]derivatives is called a differentinl mumtion. The morner of the differential equation is the order of the highest derivative it contains. The equations above are respectively of the first and second orders. A differential equation of the first order may be symbolized as $\Phi\left(x^{\prime}, y, y^{\prime}\right)=0$, and one of the second order as $\Phi\left(x^{\prime}, y, y^{\prime}, y^{\prime \prime}\right)=0$. A function $y=f\left(r^{\prime}\right)$ given explicitly or defined implieitly by the relation $F(x, y)=0$ is satid to be a solution of a given differential equation if the equation is true for all values of the independent variable x when the expressions for y and its derisatives tre substituted in the equation.

Thus to show that (mb, matter what the value of a is) the relation

$$
4 a y-x^{2}+2 a^{2} \log x=0
$$

gives a solution of the differential equation of the second order

$$
1+\left(\frac{d y}{d x}\right)^{2}-x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=0
$$

it is merely necessary to form the derivatives

$$
2 u^{\prime \frac{d y}{d x}}=x-\frac{\pi^{2}}{x}, \quad 2 u^{d^{2} y} \frac{d x^{2}}{d \cdot x}=1+\frac{u^{2}}{x^{2}}
$$

and substitute them in the given equation tore ther with!! th see that

$$
1+\left(\frac{d y}{d x}\right)^{2}-r^{2}\left(\frac{t^{2} y}{d x^{2}}\right)^{2}=1+\frac{1}{4 u^{2}}\left(r^{2}-2 u^{2}+\frac{u^{4}}{x^{2}}\right)-\frac{r^{2}}{4 u^{2}}\left(1+\frac{2}{u^{2}} \frac{u^{2}}{x^{2}}+\frac{u^{4}}{x^{4}}\right)=0
$$

is charly satistied for all values of r. It appears therefore that the given mation for $!$ is a solution of the wiven whation.

Tow interfrato or seler a differential equation is to find all the fundions Whinh satisfy the ergation. (iemmetratally speaking. it is to find all the cures whiel have the prenerety expersiel hey the equation. In meeham. ies it is to timd all prosible motions arising from the siven forese 'Tlue method of integrating or selving aldiferential equation depernts largely upon the ingronity of the solver. In mathy atses. hewerer, some metherl is immerliately ghacons. Fer instame if it be pessible to sermatere the
 alone and dre ly a function of atome ats in the equation

$$
\begin{equation*}
\phi(!!) d!!=\psi(, \cdot) d, r, \quad \text { then } 11 \quad \int \phi(!/) d!!=\int \psi(, r) d, r+\cdots \tag{1}
\end{equation*}
$$

will elearly he the integral or solution of the differential expation.
As an example. let the enrese of constant submormal he determinet. Ifere

$$
y_{n} l!!=m, t, t \quad \text { and } \quad y^{2}=2 m, t+1
$$

 are parabolas with semi-latns reetum "olual to the constant and with the axis
coincident with the axis of x. If in particular it were desired to determine that curve whose subnomal was m and which passed throngh the origin, it womld merely be necersary to substitute (0.0) in the equation $y^{2}=2 m$. what particular value mast be assigned to C in order that the emrve pass through (0. 0). The value is $C=0$.

Another example minht be to determine the chrves for which the x-intereept varies as the abseissa of the point of tanerency. As the expression (\$ 7) for the x-intereept is $x-y d x / d y$, the statement is

$$
r-y \frac{d x}{d y}=k \cdot \quad \text { or } \quad(1-k) x=y \frac{d x}{d y}
$$

Hence

$$
(1-k) \frac{d!}{!/}=\frac{d s}{x} \text { and }\left(1-k_{i}\right) \log y=\log x+C .
$$

If desired. this expression may be chanotel to another form by msing each site of the equality as an exponent with the base e. 'I'leen

$$
\epsilon^{(1-k) \log y}=\epsilon^{\log x+C^{\prime}} \quad \omega^{\prime} \quad y^{1-k}=e^{\prime} x=C^{\prime} x .
$$

As ('is an arbitury constant, the eonstant $C^{\prime \prime}=e^{C}$ is also arbitrary and the solution may simply be witten as $y^{1-k}=$ C x. where the aceent has been omitted from the (onstant. If it were desired to piek out that particular emve which passed thromgh the point (1,1). it womblately be necessary to determine (' from the erguation

$$
1^{1-k}=C^{\prime} 1, \quad \text { and hernce } \quad C^{\prime}=1
$$

As a thind example let the curves whose tanerent is comstant and equal to a be detemined. The lenerth of the tament is $/ / \sqrt{1+y^{\prime 2}} / y^{\prime}$ and hence the equation is

$$
y \frac{\sqrt{1+y^{\prime 2}}}{y^{\prime}}=a \quad \text { or } \quad y^{2} \frac{1+y^{\prime 2}}{y^{\prime 2}}=\| \quad \text { or } \quad 1=\frac{\sqrt{1^{2}-y^{2}}}{y} y^{\prime}
$$

The variables are the refore separable and the rosult: are

If it be desired that the tangent at the origin be vertionl su that the enrve passes
 ats desedibed by a calf drasqed at the emel of a rope by a person walkime along a straight line.
82. Problems which involve the radins of corvature will leat to differratial erpations of the seromb order. The mether of solving surh
 For the seeond derisative may loe written as
and

$$
\begin{gather*}
!^{\prime \prime}=\frac{\prime!!^{\prime}}{!!\cdot r^{\prime}}=\frac{\pi!!^{\prime}}{!!!!^{\prime}} \\
R=\frac{\left(1+!!^{\prime 2}\right)^{2}}{!!^{\prime \prime}}=\frac{\left(1+!!^{\prime 2}\right)^{3}}{\frac{\left(!!^{\prime}\right.}{!!a^{\prime}}}=\frac{\left(1+!!^{\prime 2}\right)^{\frac{3}{2}}}{!!^{\prime} \frac{!!!^{\prime}}{!!!}}
\end{gather*}
$$

is the expression for the radius of curvature. If it be given that the radius of curvature is. of the form $f^{\prime}\left(r^{\prime}\right) \phi\left(y^{\prime}\right)$ or $f^{\prime}\left(y^{\prime}\right) \phi\left(y^{\prime}\right)$,

$$
\begin{equation*}
\frac{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}{\frac{d y^{\prime}}{d x}}=f(x) \phi\left(y^{\prime}\right) \quad \text { or } \quad \frac{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}{y^{\prime} \frac{y^{\prime} y^{\prime}}{d!y}}=f^{2}(y) \phi\left(y^{\prime}\right) \tag{3}
\end{equation*}
$$

the variables x and y^{\prime} or y and y^{\prime} are immediately separable, and an integration may be performed. This will lead to an ergation of the first order ; and if the variables are again separable, the solution may be completed ly the methots of the above example's.

In the first place consider curves whose radins of curvature is constant. 'Then

$$
\frac{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}{\frac{d y^{\prime}}{d \cdot c}}=a \text { or } \frac{d y^{\prime}}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}=\frac{d x}{a} \text { and } \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=\frac{s-C^{\prime}}{u} \text {, }
$$

where the constant of integration has been written as - C/a for future convenience. The equation may now be solved for y^{\prime} and the variables become separated with the results

$$
y^{\prime}=\frac{x-(}{\sqrt{1^{2}-\left(x-()^{2}\right.}} \text { or } \quad d y=\frac{\left(x-r^{\prime}\right)}{\sqrt{1^{2}-\left(r-c^{\prime}\right)^{2}}} d x \text {. }
$$

Hence $\quad y-C^{\prime \prime}=-\sqrt{u^{2}-\left(r-C^{\prime}\right)^{2}}$ or $\left(x-\left(^{\prime}\right)^{2}+\left(y-\left(^{\prime}\right)^{2}=a^{2}\right.\right.$.
The curves, as shombl be anticipated. are circles of radins a and with any arbitrary point ($C^{\prime}, C^{\prime \prime}$) as center. It shond be ment that. as the solution has requirent two successive integrations, there are two arbitrary constants. C and $C^{\prime \prime}$ of integration in the result.

As a second example consider the curves whese ratitis of curvature is double the normal. As the length of the normal is $y \geq 1+y^{\prime 2}$, the equation becomes

$$
\frac{\left(1+y^{\prime 2}\right)^{3}}{y^{\prime} \frac{y^{\prime}}{d y}}=2 y \sqrt{1}+y^{\prime \prime} \quad \text { or } \frac{1+y^{\prime 2}}{y^{\prime} \frac{d y^{\prime}}{d y}}= \pm 2 y \text {. }
$$

where the double sign las: been introduced when the radical is removed by cancellation. This is necessary; for before the cancellation the signs were ambigums and there is no reason to assume that the ambiguity disappears. In fant. if the curve is concave up, the secom derivative is pesitive and the ratins of warvante is reckoned as prositive, whereats the nomat is pesitive or nesative acemeling an the curve is above or lelew the axis of s : similarly, if the corve is comeave down. Let the neqative sign be chasen. This comperpolste th a curve abose the axis amb eoncate down of below the axis and concave mp, that is, the nomal and the matins of emrature have the same direction. Then

$$
\frac{d y}{y}=-\frac{2 y^{\prime} d y^{\prime}}{1+y^{\prime 2}} \text { and } \log y=-\log \left(1+y^{\prime 2}\right)+\log 2\left({ }^{\prime}\right.
$$

$$
\begin{aligned}
y\left(1+y^{\prime 2}\right)= & 2 C \quad H^{\prime} \quad y^{\prime 2}=\frac{2 C-y}{y} \quad \text { or } \frac{y!l!}{\sqrt{2 C y-y^{2}}}=d x . \\
& x-C^{\prime \prime}=C \text { vers }-1 \frac{y}{C}-\sqrt{2 C y-y^{2}}
\end{aligned}
$$

'The curves are cycloids of which the generating eircle has an arbitrary radins ${ }^{\prime}$ ' and of which the ensps are upon the \boldsymbol{x}-axis at the points (" $\pm 2 k \pi C^{\prime}$. If the positive sign had been taken in the equation, the enrves wonll have been entirely different ; see Ex. $5(\alpha)$.

Tle number of arbitrary constants of integration which enter into the solntion of a differential equation depends on the number of integrations whirl are performed and is equal to the order of the equations. This results in giving a family of "arves, dependent on one or mom parameters, as the solution of the equation. To prek ont any partienlar member of the family, additional conditions must be given. Thus, il there is only ons constant of integration, the comere may be reaplered to pass through a given point ; if there are two constants. the rurre may be reduired to pass themern a given point and hare a given sloper at that point, or to pass thaough two given points. 'Theser atditional
 tions are very important; for the point reached by a particle describing a curve under the action of assigned forces deleends not only on the forees, but on the point at whirh the praticle startad and the valocity with whieln it started. In all uases the distinetion lwtwern the romstants of integrotion and the gitrn momstants of ther problem (in the foregoiner examples, the distinction between (', (" and m. hi, "i) shonld lw kept (rlearly in mind

EXERCISES

1. Verify the solutions of the aifferential eraluations:
$(\alpha) x y+\frac{1}{2} x^{2}=\left(\therefore y+x+r y^{\prime}=0 . \quad(\beta) x^{3} y^{3}\left(3, r^{r}+C^{\prime}\right)=1 . r y^{\prime}+y+r^{4} y^{4} r=0\right.$.

(η) $y^{\prime \prime \prime}-y=x^{2} \cdot y=\left(t^{x}+e^{-\frac{1}{2}, r}\left(\left(_{1} \cos \frac{x^{x} \backslash 3}{2}+\left(_{2}^{2}+\sin \frac{x \backslash 3}{2}\right)-x^{2}\right.\right.\right.$.
2. Determine the curves whirh have the following properties:

(β) The right thiangle fommed by the tangent. subtament. amd ombinate has the constant area $k / 2$; the hyperbmas $x!y+(y+k=0$. Show that if the curve panses through (1, 2) and (2.1) , the arhithay constant (is 0 and the given k is -2.
(γ) The normal is constant in lenuth : the circles $\left(x-e^{\prime}\right)^{2}+y^{2}=k^{2}$.
 If in particular the curve is perpembicular to the y-axis. $\prime^{\prime}=0$.
 inversely proportional to the shote; the cireles $\left(t-\prime^{\prime}\right)^{2}+r^{2}=k$.
3. Determine the curves which have the following properties:
(cr) The angle between the raditis veetor and tangent is constant; spirals $r=C^{\prime} e^{k \phi}$.
(β) The angle between the radins rector and tangent is half that between the radius and initial line ; cardioids $r=(\cdot(1-\cos \phi)$.
(γ) The perpendicular from the pole to a tangent is comstant ; r cos $\left(\phi-\left(^{\prime}\right)=k\right.$.
(δ) The tangent is erpally inclined to the radins vector and to the initial line ; the two sets of parabolas $r=U /(1 \pm \cos \phi)$.
(e) The rudins is equally inclined to the normal and to the initial line; circles $r=C \cos \phi$ or liness $r \cos \phi=(:$.
4. The are s of a curve is proportional to the area A, where in rectangular eoordinates d is the area under the curve and in polar coïrdinates it is the area included by the enrve and the radius vectors. From the equation $d s=d .1$ show that the curves which satisfy the condition are catenaries for rectangular coördinates and lines for polar coördinates.
5. Determine the curves for which the radins of curvature
(α) is twice the nomat and oppositely directed ; parabolas $\left(x-\left(^{\prime}\right)^{2}=C^{\prime \prime}\left(2 y-C^{\prime}\right)\right.$.
(β) is cequal to the normal and in same direction ; circles $\left(x-c^{\prime}\right)^{2}+y^{2}=C^{\prime 2}$.
(γ) is equal to the normal and in oppesite direction ; catenaries.
(δ) varies as the cube of the nomal ; conics $l^{\prime} C^{2} y^{2}-\left(^{22}\left(x+C^{\prime}\right)^{2}=k\right.$.
(ϵ) progecten on the x-axis equals the abseissa ; catemaries.
(ζ) projected on the x-axis is the negative of the abseissa ; circles.
(η) projected on the x-axis is twife the abscissal.
(θ) is propertional to the slope of the tangent or of the normal.
6. Problems in mechanics and physics. In many physimal problems the statement involves an eqpation between the refe of change of some quantity and the value of that quantity. In this way the solution of the problem is made to depend on the intergration of a differential equation of the first order. If x denotes any quantity, the rate of increase in,r is d. $r /$ dt and the rate of decrease in a is - dra r dt ; and consecquently when the rate of change of x is a function of r, the varialles are mamediately separated and the integration may be performed. The "onstant of integration las to le determined from the initial eonditions ; the (onstants inherent in the problem may be given in arlvane on their values may be determined hy comparing er and t at some subsequent time. The exerexises offered below will exemplify the treatment of such problems.

In other physical problems the statement of the question as a differcontial agmation is mot so direct and is carried ont by an examination of the problem with a view to statines a relation between the incerments or differentials of the deperment ame independent variables, as in some
 temsion in a fope whapred around at "ylindrieal post disenssed below.

The method may be further illustrated by the deriration of the differential equations of the curre of equilibrimm of a flexible string or ehain. Let ρ be the density of the cham so that $\rho \Delta s$ is the mats of the length Δx; let X and Y le the components of the force (estimated fer unit mass) acting on the elements of the cham. Let T denote the tension in the cham, and τ the inclination of the clement of chain. From thee figure it then appears that the components of all the forces arting on Δs are

$$
\begin{aligned}
& (T+\Delta T) \cos (\tau+\Delta \tau)-T \cos \tau+N \rho \Delta s=0 \\
& (T+\Delta T) \sin (\tau+\Delta \tau)-T \sin \tau+5 \rho \Delta s=0
\end{aligned}
$$

for these must be zero if the element is to be in a position of equilibrium. The erpations may lee written in the form

$$
\Delta(T \cos \tau)+\lambda \rho \Delta s=0, \quad \Delta(T \sin \tau)+I \rho \Delta k=0 ;
$$

 zero, the result is the two equations of equilibrimm

$$
\begin{equation*}
\frac{d}{d s}\left(T^{\prime} \frac{d_{r}}{d_{s}}\right)+\rho X=0, \quad \frac{d}{d_{s}}\left(T^{\prime} \frac{d_{!\prime}}{d_{s}}\right)+\rho Y=0 \tag{4}
\end{equation*}
$$

where cos τ and sin τ are replated ly their values $7 . \mathrm{m}_{\text {/ }}$ de and dy/ds.
If the string is acted on only liy forees paralled to a given directiom, let the !/-axis be taken as parallel to that divection. Then the compment It will be zero and the first equation may be integrated. The remult is

$$
\frac{d}{d x}\left(T_{d x}^{d, x}\right)=0 . \quad T_{d x}^{d, x}=e^{\prime} . \quad T=c_{d x}^{d x}
$$

This ralue of T may be substituted in the secoml equation. There is thus obtained a differential equation of the second order

$$
\frac{d}{d s}\left(c^{\prime} \frac{d y}{d x}\right)+\rho Y=0 \quad \text { or } \quad\left(c^{\prime} \frac{y^{\prime \prime}}{\sqrt{\prime}+y^{\prime 2}}+\rho Y^{\prime}=0\right.
$$

If this equation can lo interratem, the form of the curve of equilibrime maty be foumd.

Another problem of a different nature in strings is to consider the variation of the tension in a rope wound around a celinder withont arerlapping. The forees acting on the eloment Δ of the rope are the tensions T and $T+\Delta T$, the nomall fresiure on reaction R of the cylinder, and the force
 of friction which is promortional to the presure. It will bee assumed that the nomal reaction lies in the angle $\Delta \phi$ and that the coefficient of friction is μ s. that the force of friction is μl. The compenents along the rawlius, and along the tangent are

$$
\begin{aligned}
& (T+\Delta T) \sin \Delta \phi-R \cos (\theta \Delta \phi)-\mu R \sin (\theta \Delta \phi)=0 . \quad 0<\theta<1, \\
& (T+\Delta T) \cos \Delta \phi+R \sin (\theta \Delta \phi)-\mu R \cos (\theta \Delta \phi)-T=0 .
\end{aligned}
$$

Now discard all infinitesimals except those of the first order. It must be borne in mim that the pressure l is the reaction on the infinitesimal are Δs and hence is itself infinitesimal. The substitutions are therefore $T l_{\phi}$ for $(T+\Delta T)$ sin $\Delta \phi . R$ fur $l \cos \theta \Delta \phi .0$ for $l i n \theta \Delta \phi$, and $T+d T$ for $(T+\Delta T)$ cos $\Delta \phi$. The equations therefore reduce to two simple equations

$$
T l d \phi-l i=0, \quad d T-\mu l i=0
$$

from which the manown $l i$ may be eliminated with the result

$$
d T=\mu T l \phi \quad \quad \text {,r } \quad T=C^{\prime} \epsilon^{\mu \phi} \quad \text { or } \quad T=T_{v} e^{\mu \phi},
$$

where T_{0} is the tension when ϕ is 0 . The tension therefore runs up exponentially ant afforls ample explanation of why a man. by winling a mope about a post, can roalily hoh a ship or other object exerting a wreat foree at the other ent of the
 thms. if the man exerts a force of a hmadredweight.
84. If a ronstant mass m is moving along a line muler the influence of a forse F arcting along the line. Newton's seronel Law of Motion (1. 1:3) states the problem of the motion as the differential equation

$$
\begin{equation*}
m f^{2}=F \quad \text { or } \quad m \frac{t^{2} x}{d t^{2}}=F \tag{5}
\end{equation*}
$$

of the second order: and it therefore appears that the complete solution of a problem in reatilinear motion refuires the integration of this equaltion. The arceleration may be written as

$$
f=\frac{d d^{2}}{d t}=\frac{d_{1} \cdot d_{2} \cdot}{d_{d^{\prime}} \cdot d t}=\cdot \frac{d d_{r}}{d_{d} \cdot}:
$$

and hence the equation of motion takes either of the forms

It now appears that there are serear cases in which the tirst integration may he performed. For if the forer is a fumetion of the selority or of the imme on a prodnct of two surh functions, the variahles are sumatech in the tirst form of the equation: whereas if the foree is a function of the velority on of the "oirdinate ar a prodnet of two surll fumetions. the rariahles atre separated in the seeond form of the equation.

When the first intergration is performed aroording to either of these methonk, there will arise an equation hotween the velority and either the time t or the coördinate r. In this equation will be contathed at (onnstant of intergation whiel may he determined her the initial comeditions. that in, hy the knowherse of the velowity at the start. whether in
time or in position．Finally it will be possible（at least theoretically） to solve the equation and express the velority as a function of the time t or of the position r ，as the case may be，and integrate a second time． The carrying through in pactice of this sketch of the work will be exemplified in the following two examples．

Suppose a particle of mass m is projected vertically upwarl with the velocity I ． Solve the problem of the motion under the assumption that the resistance of the air varies as the velocity of the particle．Let the distance be measured vertically upwart．The fores acting on the particle are two．－the force of gravity which is the weight $\|^{\circ}=m g$ ，and the resistance of the air which is ke．Both these forces are negative becanse they are directed toward diminishing values of s ．Hence

$$
m f^{*}=-m g-k x \quad m^{*} \quad m \frac{d x}{d t}=-m y-k x .
$$

where the first form of the equation of motion has been chosen．atthough in this case the second form wouk be equalls a vailable．Then intecrate．

$$
\frac{d v}{g+\frac{k}{m} v}=-d t \text { and } \log \left(g+\frac{k}{m} v\right)=-\frac{k}{m} t+C
$$

As by the initial conditions $x=V$ when $t=0$ ，the constant r is found from

$$
\log \left(g+\frac{k}{m} v^{v}\right)=-\frac{k}{m} 0+r ; \text { hence } \frac{g+\frac{k}{m} c}{g+\frac{k}{m} 1}=e^{-\frac{k}{m} t}
$$

is the relation between r and t fombl by sumatituting the walue of 6 ．The solution for v gives

Hence

$$
\begin{aligned}
& v=\frac{d \cdot r}{d t}=\left(\frac{m}{k} g+r\right) e^{-\frac{k}{m} t}-\frac{m}{k} g . \\
& r=-\frac{m}{k}\left(\frac{m}{k} g+r\right) e^{-{ }_{m}^{k} t}-{ }_{k}^{m} y t+r .
\end{aligned}
$$

If the particle starts from the origin $r=0$ ．the constant（＇is fomurt to be

$$
\ddots_{k}={ }_{k}^{m}\left(\frac{m}{k} g+i\right) \text { and } r=\frac{m}{k}\left(\begin{array}{c}
m \\
k
\end{array} g+r\right)\left(1-e^{-\frac{k}{m} t}\right)-\frac{m}{k} g t .
$$

Hener the position of the partide in expressed in terms of the time and the prob－ lemt is solved．If it he desired to find the time which elapes lefore the partide （romes to fest and starts to drop hack．it is merely nemesary tu substitute $e=0 \mathrm{in}$ the relation comnecting the velocity and the time．and solve for the time $t=T$ ： and if this value of t be substituted in the expresion for x ，the total distance X conered in the ascent will be found．The results are

$$
T=\frac{m}{k} \log \left(1+\frac{k}{m g} V^{v}\right) . \quad X=\left(\frac{m}{k}\right)^{2}\left[\frac{k}{m} v^{2}-g \log \left(1+\frac{k}{m m} r^{v}\right)\right]
$$

As a secomb example eomsider the motion of a garticle vibrating up and down

elastic strings the force exerted by the string is proportional to the extension of the string over its matural lemsth, that is. $F=k \Delta l$. Let l be the lemgth of the stringe. $\Delta_{0} l^{\text {the }}$ extension of the striner just suffiement to hold the weight $\|^{*}=m$ at rest so that $k \Delta_{0} l=m$, and let x measured downward be the additional externsion of the string at any instant of the motion. The fore of sravity mg is positive and the force of eanatieity $-k\left(\Delta_{0} l+s\right)$ is negative. The second form of the equation of motion is to be ehosen. Ilence

Then

$$
m v \frac{d v}{d x}=m g-k\left(\Delta_{v} l+s\right) \quad \text { or } \quad m v \frac{d v}{d x}=-k r, \quad \text { since } \quad m g=k \Delta_{0} l
$$

Suppose that $x=\|$ is the amplitume of the motion. su that when $x=a$ the velocity $v=0$ and the particle stoprsand stants back. Then $C^{\prime}=$ lat'. Hence
and

$$
\begin{aligned}
& v=\frac{d x}{d t}=\sqrt{\frac{k}{m}} \sqrt{t^{2}-x^{2}} \quad \leftrightarrow \quad \frac{1 \cdot r}{\sqrt{a^{2}-x^{2}}}=\sqrt{\frac{k}{m}} d t, \\
& \sin ^{-1} \frac{x}{a}=\sqrt{\frac{k^{\prime}}{m}} t+C \quad \text { or } \quad x=r \sin \left(\sqrt{\frac{k}{m}} t+U\right) .
\end{aligned}
$$

Now let the time be measured from the instant when the particle pases through the position $r=0$. Then (' satisties the equation $0=$ us sin (' amol mity be taken as zero. The montom is therefore wiven by the equation $x=\pi$ sin $\sqrt{k / m}$ amb is periodic. While t ehanges hy $2 \pi \sqrt{m / k}$ the particle eompletes an entire weillation. The time $T=2 \pi \backslash m / k$ is called the periodir time. The motion ennsidered in this example is charaterized by the fact that the total force - liar is bropertional to the displacement from a errain wrigin and is directerl townd the migin. Motion of this sort is callerl simple humomie motion (brjetly S. II. M.) and is of great importance in mechanics and physies.

EXERCISES

 that the interest slatl be combumbeled at tach instant. Show that the sum will

2. (iiven that the rite of teromponition of an ammont at of atven substamee is
 problem of the deemprosition and determine the constant of interatition and the physital annatant of propertionality it $x=5.11$ when $t=0$ ant $x=1.46$ when $t=f 011111 . \quad \mathrm{I} / \mathrm{s} . \mathrm{s} . \mathrm{k}=.0305 \mathrm{O}$.

 the amomat at the stant when $t=0$ amb the (ennstant of furportionality amblemb
 will rematir.

 satisties the feplation $1 / I_{n}=1-4.15 \%$.
5. Suppose that amounts a and b respectively of two substances are involvel in a reaction in which the velucity of transfomation dx/at is proportional to the pronuct $(a-x)(b-x)$ of the amounts remaining untransformed. Integrate on the supposition that $\| \neq b$.
determine the product $k(a-l)$.
6. Integrate the equation of Ex. 5 if $u=b$, and determine a and k if $x=9.87$ when $t=15$ and $x=13,69$ when $t=5.5$.
7. If the velocity of a chenical reaction in which three substances are involved is proportional to the continued product of the amounts of the substances remaining, show that the equation betweens and the time is

$$
\frac{\log \left(\frac{a}{r-s}\right)^{b-r}\left(\frac{b}{b-r}\right)^{c-a}\left(\frac{c}{r-r}\right)^{a-b}}{(a-l)(b-c)(c-a)}=-k t \text {. where } \quad\left\{\begin{array}{l}
x=0 \\
t=0 .
\end{array}\right.
$$

8. Solve Ex. 7 if $a=b \neq c$; also when $a=b=c$. Note the very different forms of the solution in the three cases.
9. The rate at which water runs out of a tank through a small pipe iswuiner horizontally near the bottom of the tank is propertional to the surare root of the height of the surface of the water abowe the pipe. If the tank is cylindrical and half empties in 30 min.. show that it will completely empty in about 100 min.
10. Discus, Ex. 9 in case the tank were a right cone or frustum of a cone.
11. Comsiles a vertieal colmm of air and assume that the pessure at any level is due to the weight of the air abme. Slow that $p=p_{1},{ }^{-k h}$ gives the presure at any height h. if Buyles Law that the density of a gats varies as the pressure be used.
12. Work Ex. 11 muder the assumption that the adiabatic law $p \times \rho^{1.4}$ reper sents the comlitions in the atmosphere. Show that in this sase the persure would beome zero at a finite height. (If the proper numerical data are inserter, the height turns out to be abont 20 miles. The adiabatic law seems to correnpond better to the faets than Boyle saw.)
13. Let l be the natural length of an matic string. let Δl he the extemion, and assume nowkes Law that the fore is promptomal the extension in the form $\Delta^{\prime}=k l F$. Let the string be held in a vertical pusition so as to elongate under its, own weinht 15 . Show that the elongation is $\frac{1}{2} k \not 17 \%$.
14. The demsity of water under a presiupe of p atmosplaces is $\rho=1+0.00004 p$. show that the surface of an ocean six mike deep is about 6,0 ft. below the montion it whald have if water were incompresible.
15. Show that the equations of the curve of equilibrime of a string or chain are
in polar coindinates, where $?$ and Φ are the components of the foree along the radius vector and perpendicular to it.
 rimm of at sting if l is the radius of curvature and s and N are the tandential and momal compronents of the forces.
17.* Show that when a miform ehain is supportmat two points and hangs down betwen the points maler its own weight, the curve of equilibrim is the eatenary.
16. Suppose the mass ofm of the element ds of a chain is propurtional to the profiection dre of de on the x-axis, and that the chain hans in the field of eravity. show that the cure is a parabola. (This is essentially the problem of the shape of the cables in a suspension bridge when the roadoed is of miform linear density; for the wedght of the cables is negligible compared to that of the roablben.)
17. It is desired to strins upon a cond a seat many mifom heary rools of varying lengths so that when the eord is hung up with the rods dangling from it the roobs will be equally spaced along the homzontal and have the ir lower ends on the same level. Required the shape the eord will take. (It should be motell that the shape must be known before the rods ean be cut in the proper lengths to hang as desired.) The wejght of the cord may be neglected.
18. A manmry arch carries a horizontal roatberl. On the asomption that the material betwern the and and the radmen is of miform density and that each Clement of the areh supports the weight of the material above it, find the shape of the areh.
19. In erfations (t^{\prime}) the interration may be carved through in terms of qualratures if ρY^{\prime} is a function of y alone : and similaly in Ex. 15 the interration may be carieal throngh if $\Phi=0$ and ρR is a function of r alone so that the field is central. show that the results of thus carring thengh the interation are the fommas

$$
x+\epsilon^{\prime \prime}=\int \frac{C^{\prime} d!}{\sqrt{\left(\int \rho Y^{\prime} d y\right)^{2}-\epsilon^{\prime 2}}}, \quad \phi+C^{\prime \prime}=\int \frac{r^{\prime} d r / r}{\sqrt{\left(\int \rho R^{\prime} l_{r}\right)^{2}-C^{\prime 2}}} .
$$

22. A particle falls from rest through the air, which is assumed to offer a resistance pronentional the the vecity. Solve the ponbem with the initial eonditions $r=0, r=0, t=0$. Show that as the particle falls, the velocity does not inerease indefinitely, lant apmonches a detinite limit $I^{r}=m y / k$.
23. Shan Ex. 22 with the initial comblions $c=r_{0} . x=0 . t=0$. where x_{0} is sreater than the limiting velocity l^{2}. Show that the particle shows down as it falls.
24. A particle rises throng the air. which is assumed to resist proportionally to the siplare of the velocity. Solve the motiom.
25. Solw the poblem anatowns to Ex. 24 for a falling partiole. Show that there is a limitine volocity $V^{r}=1$ ma/li. If the particle were projecten down with an initial wemedy greater than H°. it wouk show dewn as in Ex. 23.
26. A paticle falls towardsa point which attracts it inversely as the square of the

[^19]27. A particle starts from the origin with a velocity I° and moves in a medium which resists proportionally to the velocity. Fint the relations between velocity and distance, velocity and time, and distance and time ; also the limiting distance traversed.
$$
v=V-k x / m, \quad v=I e^{-\frac{k}{m} t}, \quad k x=m I^{-}\left(1-e^{-\frac{k}{m}}\right), \quad m \Gamma / k
$$
28. Solve Ex. 27 under the assumption that the resistance varies as \sqrt{v}.
29. A particle falls toward a pint which attracts inversely as the cube of the distance and direetly as the mass. The initial eonditems are $x=\|, v=0 . t=0$. Show that $x^{2}=u^{2}-k t^{2} / u^{2}$ and the total time of descent is $T=u^{2} / \bar{k}$.
30. A cylindrieal spar buny stands vertically in the water. The buoy is pressent down a little and released. Show that, it the resistance of the water and air be neglected, the motion is simple harmonic. Integrate and determine the constants, from the initial conditions $x=0, v=I, t=0$, where x mensures the displacement from the position of equilibrium.
31. A particleslides dnwn a rough inclined phane. Determine the motion. Note that of the force of grasity only the component $m y \sin i$ acts down the plane, whereas the component my cos i acts perpendiculaty to the plane and develops the foree $\mu m g$ ens i of friction. Here i is the inclination of the plane and μ is the coetficient of friction.
32. A bead is free to move upon a frictionless wire in the form of an inverted cycloid (vertex down). Show that the component of the weisht along the tangent to the eycloid is proportional to the distance of the particle from the vertex. Hence determine the motion as simple harmmis and fix the constants of intersation by the initial conditions that the particle starts from rest at the thp of the eyeloid.
33. Two equal weishts are hanging at the enul of an chastie strines. One drops off. Determine empletely the motion of the partiele remaining.
34. (he end of an clastic springe (such as is usted in a spring balance) is attached rigidly to a point on a horizontal talle. To the uther end a particle is attached. If the particle be lewd at such a point that the spring is elomgated by the amome a and then releasent, determine the motion on the assumption that the enethicient of friction between the particle and the table is μ; and disenss the possibility of different cases according as the force of friction is small or harge relative to the force exerted by the sprins.
85. Lineal element and differential equation. The idea of a curve as made up of the points mon it is familiars. Points, however. have no extension and therefore must be regarded not as pieces of a curve hut merely as positions on it. Strictly speaking, the pieces of a conve are the elements.Δ of arr: but for many purposes it is convenient to replace the complicated element Δx le a piece of the tangent to the "urve at some point of the are λ se, and from this point of view a curre is made ${ }^{1} 1$, of an infinte nmmber of infinitesimal rements tangent to it. This is analogons to the point of view hey which a curve is regardel as made
up of an infinite number of infinitesimal chords and is intimately related to the eonception of the eurve as the envelope of its tangents ($\binom{65}{$\hline} . A point on a curve taken with an infinitesimal portion of the tangent to the curve at that point is called a lineml elemont of the curve. These concepts and definitions are clearly equally available in two or three dimensions. For the present the corves under discussion will be plane courves and the lincal elements will therefore all lie in a plane.

To sperify any larticular lineal element three
 mö̈rlinutes x, , I, 1 will be used, of which the two (r, , I) detemmine the point through which the element passes and of which the thind P is the slope of the element. If a ("mrve $f\left(\cdot{ }^{\prime}\right.$, , ! $)=0$ is given, the slope at any point may be found by differentiation,

$$
\begin{equation*}
l^{\prime}=\frac{d_{!}}{d_{1}, r}=-\frac{\bar{c} t^{\prime}}{\hat{c}_{1}} / \frac{\bar{\partial} f}{\bar{c}_{y}}, \tag{6}
\end{equation*}
$$

and hence the third coordinate 1 of the lineal elements of this partioular corve is experssed in terms of the other two. If in place of one courve $f^{\prime}(r,!)=0$ the whole family of curves $f^{\prime}(\cdots,!/)=(\prime$, where (' is an arhitrary constant, had been given, the slope /" would still be fomed from (6), and it therefore aprears that the thime coordinate of the lineal elements of such a family of conves is axpressible in tems of ar and !

In the more general case where the fanily of eurves is given in the masolved form $F^{\prime}\left(r^{\prime},!, \prime^{\prime}\right)=0$, the slope f is fomm by the same formula but it now deprends apparently ("inaldition to on and g. Il, however, the constant ' lee elininated from the two erfuations

$$
\begin{equation*}
F\left(r, y, r^{\prime}\right)=0 \quad \text { and } \quad \frac{c r}{c \cdot r}+\frac{\hat{r} l}{r!} \prime \prime=0 \tag{1}
\end{equation*}
$$

 of any "ame of the fanily with the wörclinates (.r. (/) of any peint throngh whieh a donve of the family passes and at whish the shope of

 insteat of the parameter 6^{\prime}.

As an example of the climination of a comstant, comsider the case of the parabolas

$$
y^{2}=\left(\begin{array}{lll}
x & 10 & y^{2} / r
\end{array} r^{\prime} .\right.
$$

The differentiatim of the equation in the seemm form gives at once

$$
-y^{2} / x^{2}+2 y p / x=0 \quad \text { or } \quad y=2 x p
$$

as the differential equation of the family. In the masolved form the work is

$$
2 y p=C, \quad y^{2}=2 y p x, \quad y=2 x p
$$

The result is. of comrse, the same in either case. For the family here treated it makes little difference which method is followed. As a general rule it is perhaps best tus solve for the constant if the solution is simple and leads to a simple fom of the function $f(s, y)$; whereas if the shlution is not simple or the form of the function is eomplicated, it is best to differentiate dirst becalse the differentiated equation may be simpler to sulve for the constant than the original equation, or becanse the elimination of the constant between the two erpations can be conducted advantaceurisy.

If an equation $\Phi\left(x,!/ \rho^{\prime}\right)=0$ (omnerdins the threse coordinates of the lineal element be givan, the elements whinh satisfy the equation may
 may he asisumed and sulstituted in the equation, the equation may then lee solved for one or more values of ρ. and lineal elenents with these

 tarherl elemonts are of interest and signitioanee ehicfly from the fant that they can lee "ssormbled intw rorros, - in fact, into the corves of a family $F^{\prime}\left(r^{\prime},!, \prime^{\prime}\right)=0$ of which the equation $\Phi\left(x^{\prime},!/, I^{\prime}\right)=0$ is the differmatial equation. This is the comberse of the problem treated abowe and meguires the integration of the dilferential equation $\Phi\left(r^{\prime},!/, \|^{\prime}\right)=0$ for its solution. In some simple asos the assembling may le aceomplisherd intuitively from the geonetrie poperties implied in the "rhation, in other cases it follows from the integration of the equation by analytia: means, in other cases it can be done only approximately and by methods of computation.

As an example of intuitively assembling the lineal elements into curves, take

$$
\Phi(r . y, p)=y^{2} p^{2}+y^{2}-r^{2}=0 \quad \text { or } \quad p= \pm \frac{\sqrt{r^{2}-y^{2}}}{y} .
$$

The quantity $\sqrt{r^{2}-y^{2}}$ may be interpreted as one leg of a right triangle of which y is the ot $]_{\text {er }}$ lear and r the hrpotemse. 'The slope of the hypotenuse is then $\pm!/ \sqrt{r^{2}-!^{2}}$ armming to the position of the figure and the elifferential equation $\Phi(r . y . p)=0$ states that the courdinate p of the lineal element which satisties it is the negative reciprocal of this slope. Hence the lineal element is perperniculan th the hypmonnes. It therefore appears that the lineal elements are tanment th cir-

$\left(x-r^{\prime}\right)^{2}+y^{2}=r^{2}$. and this is therefore the integral of the differential equation. The correctness of this integral may be checked by direct interration. For

$$
p=\frac{d y}{d x}= \pm \frac{\sqrt{r^{2}-y^{2}}}{y} \text { or } \frac{y / l y}{\sqrt{r^{2}-y^{2}}}=d x \text { or } \quad \sqrt{r^{2}-y^{2}}=x-C \text {. }
$$

86. In geometric problems which relate the slope of the tangent of a rurve to other lines in the figure, it is clear that not the tangent but the lineal element is the vital thing. Among surh problems that of the (nthogomelt torjertmios (or trajertories under any angle) of a given family of raves is of esperial importanee. If two families of curves are so related that the angle at which any corve of one of the families cuts any curve of the other family is a right angle, then the curves of wither family are said to be the orthogonal trajestories of the eurves of the other family. Heme at any point (r, ,I) at whieh two curves belonging to the different families interseret, there are two lincal elements, one helonging to earh curve. which are perpendirular. As the slopes of two perpendicular lines are the negative reeprocals of each other, it follows that if the coordinates of one lineal element are (r,,$/, f^{\prime}$) the coörchates of the other are (r, $!/,-1 / \prime^{\prime}$) : and if the coordinates of the lineal clement $\left(r^{\prime}, y, l^{\prime \prime}\right)$ satisfy the equation $\Phi\left(x,!, l^{\prime}\right)=0$, the coonrdinates of the orthogonal lineal element must satisfy $\Phi\left(r^{\prime},!/,-1 / l^{\prime}\right)=0$. Therefore

 be noted that if $\mathscr{F}^{*}(z)=X(, r, y)+i Y^{*}(x$, ! $)$ is a function of $a=r^{r}+i!$

As a problem in orthogonal trajectories find the trajectories of the semicubical parabolas $\left(x-()^{3}=y^{2}\right.$. The differential equation of this family is found as

$$
3(x-C)^{2}=2 y p . \quad r-C=\left(\frac{2}{3} y p\right)^{\frac{1}{2}} . \quad\left(\frac{2}{3} y y^{\prime}\right)^{3}=y^{2} \quad \text { or } \quad \frac{2}{3} p=y^{\frac{1}{3}} .
$$

This is the differential equation of the given family. Replace p by $-1 / p$ and integrate:

$$
-\frac{2}{2 p}=y^{\frac{1}{3}} \quad \text { or } \quad 1+\frac{8}{2} p y^{\frac{1}{3}}=0 \quad \text { or } \quad d x+\frac{3}{2} y^{\frac{1}{3}} d y=0 \text {. and } \quad x+\frac{n}{8} y^{\frac{4}{3}}=r^{\prime} .
$$

Thus the differential "quation and finite equation of the orthogomal family are fomd. The curves lowk something like parabolas with axis horizontal and rertex towarel the right.
(iisen il differential equation $\Phi\left(. r^{\prime},!/, l^{\prime}\right)=0$ or; in solved form,

 "e wend from the "ruation and a lineal element $P_{0} P_{1}$ may be drawn, the length being taken small. As the lineal element is tangent to the durve, its end point will not lie ulon the rurve but will depart from it by an infinitesimal of higher order. Next the slope μ_{1} of the lineal element which satisfies the equation and passes through P_{1} may be found and the element $P_{1} P_{2}$ may be drawn. This element will not be tangent to the desired solution but to a solution lying near that one. Nuxt the element $I_{2} I^{\prime}$, naty be drawn,
 and so on. The broken line $I_{0} I_{1} I_{2} I_{3} \ldots$ is clearly an approximation to the solution and will be a better approximation the shorter the elements $I_{i} I_{i+1}$ are taken. If the ratins of 'urvature of the solution at I_{6} is not great, the "urve will be bembing rapidly and the elements must be taken fairly short in order to get a fair aphorimation; hut if the ralius of curvature is great, the elements need not be taken so small. (This methorl of approximate graphical solution indicates a methon which is of ralue in proving by the method of limits that the equation $I^{\prime}=\phi\left(r^{\prime}\right.$, g) actually has at solution ; but that matter will not be treated here.)

Let it be required to plot approximately that solution of $y p+x=0$ which pases through (0,1) amd thas to time the wrinate for $r=0 . \%$ am the area moler the curve and the length of the eurve the this peint. Instead of assuming the lengeths of the successive lineal elements. let the lengths of successive increments δ or of x lie taken as $\delta x=0.1$. It the start $x_{0}=0 . y_{0}=1$. and from $p=-r / y$ it follows that $p_{0}=0$. The increment δy of \&s acquired in movine ahone the tanwent is $\delta!!=f, \delta x=0$. Hence the new point of departure $\left(r_{1}, y_{1}\right)$ is (0.1 .1) and the new slope is $p_{1}=-r_{1} / y_{2}=-0.1$. The resuits of the work, as it is continned. may be gromed in the talle. Hefme it ampears that the final ordinate is $y=0.90$. By adding up the traperatics the area is compmend as 0.48 . and by finding the elements $\delta x=1 \delta x^{2}+\delta y^{2}$ the length is fomm an 0.51 . Now the particular equation here treated can be interrated.

$$
y y^{\prime}+x=0 . \quad y l_{y} y+x, x^{\prime}=0 . \quad r^{2}+y^{2}=r^{\prime} ; \quad \text { and hence } x^{2}+y^{2}=1
$$

is the solution which passes thonth (1). 1). The ortinate. area, and lemuth fomm from the curve are the refore 0.87. 0.ts. 0.52 mederty. The froms in the
 had been chusen as 0.01 and fonl places hand been kept in the computations. the error- woth have been smaller.

EXERCISES

1. In the following eases eliminate the constant ℓ to find the differential equation of the family given:
($\alpha) x^{2}=2 C y+C^{2}$,
(β) $y=C x+\sqrt{1-C^{2},}$,
(γ) $x^{2}-y^{2}=C x$,
(δ) $y=x \tan \left(x+c^{\prime}\right)$,
($\epsilon) \frac{x^{2}}{a^{2}-\theta}+\frac{y^{2}}{b^{2}-\theta}=1$.
Ans. $\left(\frac{d y y}{d x}\right)^{2}+\frac{\left(x^{2}-y^{2}\right)-\left(x^{2}-1 j^{2}\right)}{x y} \frac{d y}{d x}-1=0$.
2. Plot the lineal elements and intuitively assemble them into the solution:

$$
\text { (} \alpha) y p+x=0, \quad(\beta) x p-y=0, \quad \text { (}) r_{d,}^{d \phi}=1 .
$$

Cheek the results by direct integration of the differential equations.
3. Lines drawn from the points $(\pm r, 0)$ to the lineal clement are equally inclined to it. Show that the diflerential equation is that of Ex. $1(\epsilon)$. What are the curves:'
4. The trapezoidal area moler the lineal element equals the seetorial area formed by joining the origin to the extremities of the element (disregarding intinitesinals of higher order). (α) Find the differential equation and integrate. (β) Solse the same problem where the areas are equal in magnitude but opposite in sign. What are the curves?
5. Find the orthogonal trajeetories of the following families. Sketch the curves.
((x) parabolas $y^{2}=\geq$ ((r.
(β) exponentials $y=\left(C^{k s s}\right.$,
(γ) circles $\left(x-\left(^{\prime}\right){ }^{2}+y^{2}=u^{2}\right.$,
($\delta) x^{2}-y^{2}=r^{\prime 2}$,
(ϵ) $C^{\prime} y^{2}=x^{3}$.
(5) $x^{\frac{2}{3}}+y^{\frac{2}{3}}=r^{\frac{2}{3}}$.

Ans. ellipses $2 x^{2}+y^{2}=C^{\prime}$.
Ans. parabolas $\frac{1}{2} k y^{2}+x=0$.
Ans. tractrices.
6. Show from the answer to Ex. $1(\epsilon)$ that the fanily is self-orthogenal and illustrate with a sketeh. From the fact that the lineal element of a pamama makes equal angles with the axis and with the line drawn to the foens, derive the differential equation of all conxial confocal parabolas and show that the family is selforthogonal.
7. If $\Phi(x, y, p)=0$ is the differential equation of a family, show

$$
\Phi\left(x, y, \frac{p-m}{1+m p}\right)=0 \quad \text { and } \quad \Phi\left(x, y, \begin{array}{c}
p+m \\
1-m p
\end{array}\right)=0
$$

are the differential equations of the family whese curves cot thene of the given family at tan $^{-1} \mathrm{~m}$. What is the difference between these two cases.?
8. Nhow that the differential ergations

$$
\Phi\left(\frac{d r}{d \phi}, r, \phi\right)=0 \quad \text { and } \quad \Phi\left(-r^{2} \frac{d \phi}{d r^{\prime}}, r, \phi\right)=0
$$

dedine orthogronal families in pelar moirlinates, and write the equation of the family which cuts the first of these at the constant angle tanter m .
9. Find the orthegralal trajectorics of the following fanilics. Sketeh.
(x) $r=\cdots$.
(β^{\prime}) $r=I^{\prime}(1-(1) s \phi)$,
$(\gamma) r=C \quad \phi$,
(δ) $r^{2}=\left({ }^{2} \cos ^{2} 2 \phi\right.$.
10. Recompute the approximate solution of $y p+x=0$ under the conditions of the text but with $\delta x=0.05$, and carry the work to three decimals.
11. Plot the approximate solution of $p=x y$ between $(1,1)$ and the y-axis. Take $\delta x=-0.2$. Find the ordinate, area, and length. Check by integration and comparison.
12. Plot the approximate solution of $p=-r$ throngh (1, 1). taking $\delta x=0.1$ ant following the curve to its intersection with the x-axis. Find also the area and the length.
13. Plot the solution of $p=\sqrt{x^{2}+y^{2}}$ from the point $(0,1)$ to its intersection with the x-axis. Take $\delta x=-0.2$ and find the area and length.
14. Plot the solution of $p=s$ which starts from the origin into the first quadrant (s is the length of the are). Take $\delta x=0.1$ and cary the work for tive steps. to find the tinal ordinate, the area, and the length. Compare with the true integral.
87. The higher derivatives; analytic approximations. Although a differential equation $\Phi\left(., r, y, y^{\prime}\right)=0$ does not determine the relation between. rand :/ without the application of some process equivalent to integration, it does afford a mems of computing the higher derivatives simply ly differentiation. Thus

$$
\frac{l \Phi}{c, c^{\prime}}=\frac{\hat{c} \Phi}{\overline{c, r}}+\frac{i \Phi}{\bar{c} y} y^{\prime}+\frac{\bar{c} \Phi}{\bar{c}, y^{\prime} y^{\prime \prime}}=0
$$

is an equation which may be solved for ! !" as a function of x, y, y; and !/" may therefore loe experssed in terms of ,r and ! by means of $\Phi\left(r^{\prime},!, y, y^{\prime}\right)=0$. A further differentiation wives the equation

$$
\begin{aligned}
& +\frac{c^{\prime} \Phi}{\partial!y^{\prime 2}} y^{\prime \prime 2}+\frac{\tilde{c} \Phi}{\hat{c} y} y^{\prime \prime}+\frac{\bar{c} \Phi}{\bar{c} y^{\prime} y^{\prime \prime \prime}}=0,
\end{aligned}
$$

which may he solved for $y^{\prime \prime \prime}$ in terms of $, x, y, y^{\prime}, y^{\prime \prime}$; and hence, by the preceding results, $y^{\prime \prime \prime}$ is expressible ats a function of a^{r} and y; and so on to all the higher derivatives. In this way any property of the integrals of $\Phi(, r,!, y \prime)=0$ which, like the radius of eurvature is experesilow in terms of the derivatives, may be fomm as a function of, and y

As the differential muation $\Phi\left(r, y, y^{\prime}\right)=0$ defines y^{\prime} and all the higher derivatives as functions of , r, !, it is clear that the values of the
 Hemer it is pessille to write the series

$$
!=!y_{0}+y_{n}^{\prime}\left(r_{1}-r_{0}\right)+\frac{1}{2}!y_{n}^{\prime \prime}\left(r-r_{0}\right)^{2}+\frac{1}{n}!_{n}^{\prime \prime}\left(r^{r}-x_{0}\right)^{3}+\cdots
$$

If this pewer soriens in $r-r_{0}$, enverses. it definess y as a function of x for values of,r neear r_{0} : it is indeed the Tirylor dereturnment oft the

funtion $y(\$ 167)$. The convergence is assumed. Then

$$
y^{\prime}=y_{0}^{\prime}+y_{0}^{\prime \prime}\left(r^{r}-r_{0}\right)+\frac{1}{2}!_{0}^{\prime \prime \prime}\left(r-r_{0}\right)^{2}+\cdots
$$

It may be shown that the function !/ defined by the series actually satisfies the differential equation $\Phi\left(, r, y, I^{\prime}\right)=0$, that is, that
$\Omega\left(r^{\prime}\right)=\Phi\left[r_{0}, y_{0}+y_{0}^{\prime}\left(r^{r}-r_{0}\right)+\frac{1}{2}!_{0}^{\prime \prime}\left(. r^{\prime}-r_{0}\right)^{2}+\cdots, y_{0}^{\prime}+y_{0}^{\prime \prime}\left(r^{r}-r_{0}^{\circ}\right)+\cdots\right]=0$ for all values of anear ar . To prove this acemately, however, is lexomi the scope of the present discossion: the fact may be taken for granted. Hence an analytic expansion for the integral of a differential equation has been found.

As an example of computation with higher derivatives let it he required to determine the ranins of curvature of that solution of $y^{\prime}=\tan (g / x)$ which passes thrmgh $(1,1)$. Here the slope $y_{(1,1}^{\prime}$ at $(1,1)$ is $\tan 1=1.557$. The second derivative is

$$
y^{\prime \prime}=\frac{d y^{\prime}}{d x}=\frac{d}{d x} \tan \frac{y}{x}=\sec ^{2} \frac{y}{x} \frac{x y^{\prime}-y}{x^{2}} .
$$

From these data the radius of curvature i.s found to be

$$
R=\frac{\left(1+y^{\prime 2}\right)^{3}}{y^{\prime \prime}}=\sec \frac{y}{x} \frac{x^{2}}{x y^{\prime}-y}, \quad l_{(1,1)}=\sec 1 \frac{1}{\operatorname{tinl1} 1-1}=3.2 \cdot 0 .
$$

The equation of the circle of curvature may also be found. For as $y_{(1,1)}^{\prime \prime}$ is pusitive. the eurve is coneave up. llence ($1-3.250$ sin $1,1+3.250$ cos 1) is the center of enrature ; and the cirele is

$$
(x+1.73 .5)^{2}+(y-2.7 .5)^{2}=(3.2 .50)^{2} .
$$

As a seeme example let fom terms of the expansion of that intergal of $x \tan y^{\prime}=y$ which paseses throngh (2.1) be fomm. The differential equation may be solved ; then

$$
\begin{gathered}
\frac{d!}{(l \cdot r}=\tan -1\binom{!\prime}{d}, \quad \frac{d^{2} y}{d x^{2}}=\frac{r^{\prime}!^{\prime}-y}{r^{2}+y^{2}} \\
\frac{d^{3}!}{d x^{3}}=\frac{\left(x^{2}+y^{2}\right)\left(x^{2}-1\right)!^{\prime \prime}+\left(?!^{2}-x^{2}\right)!^{\prime}-2 x!!y^{\prime 2}+2 x y}{\left(r^{2}+y^{2}\right)^{2}}
\end{gathered}
$$

Now it must be moted that the problem in mot wholly determinate: for y^{\prime} is multiple valued amb any one of the values for tan ${ }^{-1} \frac{1}{2}$ may be taken as the slope of a whlution through ($\because, 1$). Suppen that the angle be takenim the tirst puadrant: then

$$
!=1+0.4\left(i=(x-2)-0.0054(x-2)^{2}+0.018(x-2)^{3}\right.
$$

88. Pieard has given a mether for the intergation of the equation
 theoretir value and importane, is not partioulaty suitable to analythe
uses in finding an approximate solution. The method is this. Let the equation $y^{\prime}=\phi(. r$, , $)$ be given in solved form, and suppose $\left(r_{0}, y_{0}\right)$ is the point through which the solution is to lass. To find the first approximation let ! be held constant and equal to y_{0}, and integrate the equation $y^{\prime}=\phi\left(r^{\prime}, y_{n}\right)$. Thus

$$
\begin{equation*}
d y=\phi\left(x, y_{0}\right) d x^{x} ; \quad y=y_{0}+\int_{x_{0}}^{x} \phi\left(\cdot, y_{0}\right) d x=f_{1}(x) \tag{9}
\end{equation*}
$$

where it will be notired that the constant of integration has been chosen so that the curve passes through $\left(r_{0}, y_{0}\right)$. For the second approximation let ! have the value just found, substitute this in $\phi(\cdot r$, y), and integrate again. Then

$$
y=y_{0}+\int_{x_{0}}^{x} \phi\left[r, y_{0}+\int_{x_{0}}^{y_{0}} \phi\left(x, y_{0}\right) d x\right] d x=f_{2}(x)
$$

With this new value for !/ contimue as before. The surcessive determinations of y as a function of r actually ronserge towarl a limiting function which is a solution of the erpuation and whieln passes through $\left(x_{0}^{*}, y_{0}\right)$. It may \boldsymbol{l}_{x} moted that at wach step) of the work an integration is requirecl. The aliftioulty of actually performing this integration in formal practice limits the usefulness of the method in such casps. It is (rlear, however, that with an integrating machine such as the integraph the method could be applied as rapidly as the curves $\phi\left(r^{\prime}, f_{i}\left(\cdot r^{\prime}\right)\right.$) couln lee plotted.

To see how the methorl works. consiler the interration of $y^{\prime}=x+y$ to find the integral through $(1,1)$. For the first approximation $y=1$. Then

$$
d!=(x+1) d x . \quad!!=\frac{1}{2}, r^{2}+r+r^{\prime} . \quad!=\frac{1}{2}, r^{2}+r-\frac{1}{2}=f_{1}(r)
$$

From this value of y the next apmoximation maty be fomm. and then still another:

$$
\begin{array}{ll}
d y=\left[x+\left(\frac{1}{2} \cdot x^{2}+x-\frac{1}{2}\right)\right] d r, & y=\frac{1}{6} x^{3}+r^{2}-\frac{1}{2} x+\frac{1}{3}=f_{2}(x), \\
d y=\left[x+f_{2}(x)\right] d x, & y=\frac{1}{2} x^{4}+\frac{1}{3} x^{3}+\frac{1}{4} x^{2}+\frac{1}{3} x+2^{\frac{1}{2}} .
\end{array}
$$

In this case there are no difficulties which wom prevent ans number of applications of the methom. In fact it is wident that if ! is a ${ }^{\prime}$ wlymmial in of and y, the result of any number of applications of the methot will be a pelymomial in x.

The methorl of andetermined rocfiticients may often be employed to adrantage to develop the solution of a differential erpation into a series. The result is of course infentieal with that ohtained by the appliation of suceessise differentiation and Taylors series as above: the work is sometimes shorter. Let the equation be in the form $y^{\prime}=\phi(0$, , !) ant asisume an intergral in the form

$$
\begin{equation*}
y=y_{0}+{ }_{1}\left(r-r_{0}\right)+\prime_{2}\left(r-r_{0}\right)^{2}+n_{3}\left(r-r_{0}\right)^{3}+\cdots \tag{10}
\end{equation*}
$$

Then $\phi(r, y)$ may also be expanded into a series, say,

$$
\phi(\cdot, y)=A_{0}+A_{1}\left(x-x_{0}\right)+A_{2}\left(x-x_{0}\right)^{2}+A_{3}\left(x-x_{0}\right)^{3}+\cdots
$$

lout by differentiating the assumed form for y we have

Thus there arise two different expressions as series in $x-x_{0}$ for the function y^{\prime}, and therefore the eorresponding coefficients must be equal. The resulting set of equations

$$
\begin{equation*}
a_{1}=A_{0}, \quad 2 u_{2}=A_{1}, \quad 3 a_{3}=A_{2}, \quad 4 a_{4}=A_{3}, \quad \cdots \tag{11}
\end{equation*}
$$

may he solved successively for the undetermined coefficients $a_{1}, a_{2},{ }_{3}$, ${ }^{+}, \cdots$ which enter into the assumed expansion. This method is particularly useful when the form of the differential equation is such that some of the terms may be omitted from the assumed expansion (see Ex. 14).

As an example in the use of undetermined eoefficients eonsider that solution of the equation $y^{\prime}=\sqrt{x^{2}+3 y^{2}}$ which passes though $(1,1)$. The expansion will profeed aceording to powers of $x-1$, and for convenience the variable may be changed to $t=x-1$ so that

$$
\frac{d y}{d t}=\sqrt{(t+1)^{2}+3 y^{2}} . \quad y=1+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+\cdots
$$

are the equation and the assmed expansion. One expression for y^{\prime} is

$$
y^{\prime}=u_{1}+2 u_{2} t+3 u_{3} t^{2}+4 u_{4} t^{3}+\cdots
$$

To find the other it is necessary to expand into a series in t the expression

$$
y^{\prime}=\sqrt{(1+t)^{2}+3\left(1+u_{1} t+u_{2} t^{2}+a_{3} t^{3}\right)^{2}}
$$

If this had to be done by Maclaurin's series, nothing would be gained over the method of $\widehat{8} 87$; but in this ant many other cases algelmaic methouls and known expansions may be applied ($\mathbf{S} 32$) . First square y and retain only terms np to the third power. Henet

$$
y^{\prime}=2 \sqrt{1}+2_{2}^{1}\left(1+3 u_{1}\right) t+\frac{1}{4}\left(1+\left(3 u_{2}+3 u_{1}^{2}\right) t^{2}+\sum_{2}^{3}\left(u_{1} u_{2}+u_{3}\right) t^{3} .\right.
$$

Now let the quantity moler the radical be called $1+h$ and expand so that

$$
y^{\prime}=2 \sqrt{1+h}=2\left(1+\frac{1}{2} h-\int_{8}^{1} h^{2}+1_{1}^{1} h_{0}^{3}\right) .
$$

Finally mase h to the indicated powers and collect in powers of t. 'Then

Hence the successive equations for determining the coefficients are $a_{1}=2$ and

$$
\begin{aligned}
& 2 a_{2}=\frac{1}{2}\left(1+3 a_{1}\right) \text { or } a_{2}=\frac{5}{4} . \\
& 3 a_{3}=\frac{1}{4}\left(1+6 a_{2}+3 a_{1}^{2}\right)-\frac{1}{15}\left(1+3 a_{1}\right)^{2} \text { or } a_{3}=\frac{15}{15} . \\
& 4 a_{4}=\frac{3}{2}\left(a_{1} a_{2}+a_{3}\right)-\frac{1}{15}\left(1+3 a_{1}\right)\left(1+6 a_{2}+3 a_{1}^{2}\right)^{2}+\frac{1}{64}\left(1+3 a_{1}\right)^{3} \text { or } a_{4}=\frac{1}{2} \frac{1}{5} \frac{1}{6} .
\end{aligned}
$$

Therefore to five terms the expansion desired is

$$
y=1+2(x-1)+\frac{7}{4}(x-1)^{2}+\frac{15}{15}(x-1)^{3}+\frac{1}{2} \frac{1}{5} \frac{1}{5}(x-1)^{4} .
$$

The methods of developing a solution by Taylor"s series or by undetermined coetficients apply equally well to equations of higher order. For example consider an equation of the second order in solved form $y^{\prime \prime}=\phi\left(x^{\prime}, y, y^{\prime}\right)$ and its derivatives

$$
\begin{aligned}
& y^{\prime \prime \prime}=\frac{\hat{c} \phi}{\hat{c} x^{\prime}}+\frac{\hat{c} \phi}{\hat{c} y} y^{\prime}+\frac{\hat{c} \phi}{\hat{c} y^{\prime}} y^{\prime \prime} \\
& y^{\mathrm{iv}}=\frac{\hat{c}^{2} \phi}{c u^{2}}+2 \frac{\hat{c}^{2} \phi}{\hat{\partial} x^{\prime} y} y^{\prime}+2 \frac{\hat{c}^{2} \phi}{\hat{c} \dot{c} y^{\prime}} y^{\prime \prime}+\frac{\hat{c}^{2} \phi}{\hat{c} y^{2}} y^{\prime 2}+2 \frac{\hat{c}^{2} \phi}{\hat{c} y \hat{c} y^{\prime}} y^{\prime} y^{\prime \prime} \\
& +\frac{\hat{c}^{2} \phi}{\hat{c} y^{\prime 2}} y^{\prime \prime 2}+\frac{\hat{c} \phi}{c} y^{\prime \prime}+\frac{\hat{c} \phi}{\bar{c} y^{\prime}} y^{\prime \prime \prime} .
\end{aligned}
$$

Evidently the higher derivatives of y may be obtained in terms of x, !/, y^{\prime}; and y itself may be written in the expended form

$$
\begin{align*}
y=y_{0}+!y_{0}\left(x^{\prime}-x_{0}\right)+\frac{1}{2}!y_{0}^{\prime \prime}\left(x^{r}-x_{0}\right)^{2} & +\frac{1}{6}!_{1}^{\prime \prime \prime}\left(x^{\prime}-x_{0}\right)^{3} \tag{12}\\
& +y_{2}^{1} y_{n}^{y_{0}}\left(x^{r}-x_{0}\right)^{4}+\cdots,
\end{align*}
$$

where any desired values may be attributed to the ordinate y_{0} at which the curve cuts the line,$\quad r^{\prime}=r_{0}$, and to the slopee $\%_{0}$ of the coure at that
 that ther depend on the assmmed values of ! "and !/0. It therefore is seen that the solution (12) of the differential eduation of the second order really involves two arhitrary constants, and the justification of writing it as $J^{\prime}\left(x^{\prime},!, r_{1}^{\prime}, f_{2}^{\prime}\right)=0$ is rlear.

In following ont the method of undetermined coefficients a solution of the equation would be assumed in the form
$y=y_{0}+y_{1}^{\prime}\left(\cdot r-x_{0}\right)+\prime_{2}\left(r-r_{0}\right)^{2}+\prime_{3}\left(r-r_{0}\right)^{3}+\prime_{4}\left(r-x_{0}\right)^{4}+\cdots$,
from which !' and !" would be obtained by differentiation. Then if the series for $!$ and ! \prime^{\prime} be sulstituted in $!^{\prime \prime}=\phi\left(r^{\prime},!!\right.$! $\left.!^{\prime}\right)$ and the result arranged as a series, a second expression for !" is obtainct and the comparison of the coettionents in the two series will afford a set of equations from which the sucerssive coetfie ients may lo found in terms of If and y_{0} hy solution. These results may elearly l_{s} generalized to the rase of differential equations of the nth order, whereof the solutions will depend on n arbitrary constants, namely, the values assumed for y and its first $n-1$ derivatives when $x^{\prime}=r_{0}$.

EXERCISES

1. Find the radii and circles of curvature of the solntions of the following equations at the points indicated :

$$
(\alpha) y^{\prime}=\sqrt{x^{2}+y^{2}} \text { at }(0,1), \quad(\beta) y y^{\prime}+x=0 \text { at }\left(x_{0}, y_{0}\right)
$$

2. Find $y_{(1,1)}^{\prime \prime \prime}=(5 \sqrt{2}-2) / 4$ if $y^{\prime}=\sqrt{x^{2}+y^{2}}$.
3. Given the equation $y^{2} y^{3}+x y y^{\prime 2}-y y^{\prime}+x^{2}=0$ of the third deqree in y^{\prime} so that there will be three solntions with different slopes thromgh any ordinary point (x, y). Find the ratlif of curvature of the three solntions throngh (0.1).
4. Find three temm in the expansion of the solution of $y^{\prime}=e^{\prime \prime}$ abont $\left(2, \begin{array}{l}1 \\ 2\end{array}\right)$.
5. Fint four terms in the expansion of the sulution of $y=\log \sin x y$ abont $\left(\frac{1}{2} \pi, 1\right)$.
6. Expand the solution of $y^{\prime}=x y$ about $\left(1, y_{0}\right)$ to five terms.
7. Expand the solution of $y^{\prime}=\tan (y / x)$ about (1,0) to four terms. Note that here x should be expanded in terms of y. not y in terms of x.
8. Expand two of the solutions of $y^{2} y^{\prime 3}+x y y^{\prime 2}-y y^{\prime}+x^{2}=0$ about $(-2,1)$ to four terms.
9. Ohtain fonr successive apmoximations to the integral of $y^{\prime}=s y$ throngh $(1,1)$.
10. Find four succesive approximations to the integral of $y^{\prime}=x+y$ through (0. y_{0}).
11. Shuw by successive approximations that the integral of $y^{\prime}=y$ throngh $\left(0, y_{0}\right)$ is the well-known $y=y_{1} e^{e r}$.
12. ('arry the appoximations to the solntion of $y^{\prime}=-x / y$ through (0.1) as far as you can integrate, and plot eath approximation on the same figure with the exact integral.
13. Find by the method of undetermined coefticients the number of terms indicated in the expansions of the solutions of these differential equations abont the porints given :
(α) $y^{\prime}=\sqrt{x+y}$, five terms. (0,1) ,
(ふ) $y^{\prime}=\sqrt{x}+y . \mathrm{f}$ (1m1 twrms. (1, 3),
$(\gamma) y^{\prime}=x+y \cdot n$ terms. $\left(0, y_{0}\right)$.
($\delta) ~ y^{\prime}=\sqrt{x^{2}+y^{2}}$, form terms. $\left(\frac{3}{8}, \frac{1}{4}\right)$.
14. If the sulation of ane equation is to be expanded abont (0. ! 0_{0}) and if the change of x intes $-x$ and y^{\prime} into $-y^{\prime}$ deres not alter tle "pration, the sulution is necessarily symmetrie with respeet to the y-axis and the expansion may be asomed to contain only exen powers of x. If the solution is to be expanded about (0 . 0)
 is symmetrie witl respect the the origin and the expansiom may be assmmed in orda powers. Ohtaln the expansions to fome torms in the following (aste and ampare

 application of Marlanrin's series:

$$
\begin{aligned}
& (\alpha) \|^{\prime}=\frac{r^{t}}{\sqrt{r^{2}+\eta^{2}}} \text { almut (0, 2) , } \\
& \text { (} \gamma \text {) } y^{\prime}=e^{2 y} \text { about (1). (1). } \\
& \text { (} \beta \text {) } y^{\prime}=\text { sin } x y \text { abrut (} 0.1 \text {), } \\
& \text { (} \delta \text {) } y^{\prime}=x^{3} y+x y^{3} \text { abxut (0. 0). }
\end{aligned}
$$

15. Fixpand to and ineluding the torm r^{4} :

CHAPTER VIII

THE COMMONER ORDINARY DIFFERENTIAL EQUATIONS

89. Integration by separating the variables. If a differential equation of the first order may lee solved for ' y^{\prime} so that

$$
\begin{equation*}
y^{\prime}=\phi(r, y) \quad \text { or } \quad M(r, y) d r+N(r, y) d y=0 \tag{1}
\end{equation*}
$$

(where the functions $\phi, 1 /, N$ are single valued or where only one sperific branch of each function is selected in case the solution leads to multiple ralued functions), the differential equation involves only the first power of the derivative and is said to be of the first degree. If, furthermore, it so happens that the functions $\phi, 1 /, N$ are products of functions of r and functions of y so that the equation (1) takes the form

$$
\begin{equation*}
y^{\prime}=\phi_{1}(\cdot r) \phi_{2}(y) \quad \text { or } \quad M_{1}(r) \cdot M_{2}(y) \cdot x^{x}+N_{1}(\cdot r) N_{2}(y) d y=0, \tag{2}
\end{equation*}
$$

it is clear that the variables may be separated in the mamer

$$
\frac{d y}{\phi_{2}(y)}=\phi_{1}(r) d, r \quad \text { or } \quad \frac{M_{1}(r)}{I_{1}(\cdot r)} d x+\frac{Y_{2}(y)}{M_{2}(y)} d y=0,
$$

and the integration is then immediately performed by integrating earch side of the equation. It was in this way that the numerous problems considered in Chap, VII were solved.

As an example consider the equation $y y^{\prime}+x y^{2}=x$. Here
and

$$
y d y+x\left(y^{2}-1\right) d r=0 \quad \text { or } \quad \frac{y d y}{y^{2}-1}+x d x=0,
$$

$$
\frac{1}{2} \log \left(y^{2}-1\right)+\frac{1}{2} x^{2}=C \quad \text { or } \quad\left(y^{2}-1\right) e^{r^{2}}=C
$$

The second form of the solution is foum by taking the exponential of both sides of the first form after multiplying by 2.

In some differential equations (1) in which the variables are not immediately separable as above, the introduction of some change of variable, whether of the dependent or independent variable or both, may lead to a differential equation in which the new variables are separated and the integration may be acromplished. The selection of the proper change of variahle is in general a matter for the exprcise of ingenuity: succeeding paragraphs, howerer, will point out some eperial
types of equations for which a definite type of sulstitution is known to accomplish the sepration.

As an example consider the equation $x d y-y \not l x=x \sqrt{x^{2}+y^{2}} d x$, where the variables are clearly not separable withont substitution. The presence of $\sqrt{x^{2}+y^{2}}$ suggests a elange to polar coordinates. The work of finding the solntion is:
$x=r \cos \theta, \quad y=r \sin \theta, \quad d x=\cos \theta d r-r \sin \theta d \theta, \quad d y=\sin \theta d r+r \cos \theta d \theta ;$
then $\quad x d y-y d x=r^{2} d \theta, \quad x \sqrt{x^{2}+y^{2}} d x=r^{2} \cos \theta d(r \cos \theta)$.
Hence the differential epuation may be written in the form

$$
r^{2} d \theta=r^{2} \cos \theta d(r \cos \theta) \quad \text { or } \quad \sec \theta d \theta=r l(r \cos \theta)
$$

and

Hence

$$
\log \tan \left(\frac{1}{2} \theta+\frac{1}{4} \pi\right)=r \cos \theta+r \quad \theta \quad \log \frac{1+\sin \theta}{\cos \theta}=x+C
$$

$$
\frac{\sqrt{r^{2}+y^{2}}+y}{x}=C e^{x} \quad(o n \text { substitution for } \theta)
$$

Another change of variable which works, is to let $y=v c$. Then the work is :

Then $\quad \frac{d v}{\sqrt{1+v^{2}}}=d x, \quad \sinh ^{-1} v=x+C, \quad y=x \sinh (x+())$.
This solution turns ont to be shorter and the answer appears in neater form than before obtained. The rreat difference of form that may arise in the answer when different methods of integration are emplosed, is a noteworthy fact, and renders a set of answers practically worthless ; two solvers may frequently waste more time in trying to get their answers reduced to a common form than each would spend in solving the problem in two ways.
90. If in the equation ! $y^{\prime}=\phi(\cdot$, , !) the function ϕ turns out to be $\phi(y / r)$, a function of y / r^{r} alone, that is, if the functions $1 /$ and N are homogeneous functions of $, r, y$ and of the same order ((s.3), the differential equation is said to be hommonenoms and the clange of variald. $y=r$ or $x=r y$ will always result in separating the variables. The statement may be tabulated as:
if

$$
\frac{d!}{d \cdot r}=\phi\left(\frac{!y}{r}\right), \quad \text { substitute }\left\{\begin{array}{r}
y=r \cdot x \tag{3}\\
o r \\
, r
\end{array}=\stackrel{y}{r} .\right.
$$

A sort of corollary case is given in Ex. 6 below.
As an example take $y\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}(y-x) d y=0$. of which the homotreneity is perhaps somewhat disquised. Here it is better to choose $x=x y$. Then

$$
\left(1+e^{x}\right) d x+\epsilon^{x}(1-x) d y=0 \quad \text { and } \quad d x=r d y+y d x
$$

Hence

Ilence

$$
\left(v+e^{\prime \prime}\right) d y+y\left(1+e^{\prime \prime}\right) d v=0 \quad \text { or } \quad \frac{d y}{y}+\frac{1+e^{r}}{v+e^{r}} d y=0 .
$$

$$
\ln x y+\log \left(x+c^{n}\right)=\because \quad \text { or } \quad x+y t^{n}=C
$$

If the differential equation may be arranged so that

$$
\begin{equation*}
\frac{d y}{d x}+I_{1}(x) y=I_{2}(x) y^{n} \quad \text { or } \quad \frac{d x}{d y}+Y_{1}(y) x=I_{2}(y) x^{n} \tag{4}
\end{equation*}
$$

where the second form differs from the first only through the interchange of r and y and where X_{1} and X_{2} are functions of $i r$ alone and Y_{1} and Y_{2} functions of $!$, the equation is called a Bemonlli equntion : and in partioular if $n=0$, so that the dependent variable does not oecur on the right-hand side, the equation is called linerri. The substitution which seprates the variables in the respuective cases is

$$
\begin{equation*}
y=r r^{-\int r_{1}(r) \cdot d r} \quad \text { or } \quad x=r e^{-\int r_{1}(y) d y} \tag{3}
\end{equation*}
$$

To show that the separation is really aromplished and to find a general formula for the solution of any hernoulli or linear equation, the suipstitution may be tarried out formally. For

$$
\frac{d!\|}{d l^{x}}=\frac{d r}{d x} e^{-\int x_{1} d x}-x_{1^{e}}^{e^{-\int x} x d x} .
$$

The substitution of this value in the equation gives

Hence

Or

$$
\begin{align*}
t^{1-n} & =(1-n) \int X_{2^{\prime}}^{(1-n)} \int x_{1^{\prime} d x} l_{1}, \text { when } n \neq 1, * \\
y^{1-n} & =(1-n) r^{(n-1)} \int x_{1^{\prime}, r}\left[\int X_{2^{\prime}},(1-n) \int x_{1} r^{\prime} d r^{r}\right] \tag{i}
\end{align*}
$$

There is an analogons form for the serond form of the equation.
The equation $\left(r^{2} y^{3}+s y\right) d y=d r$ may be treated by this methond by writing it as

Then let

$$
\frac{d \cdot r}{d y}-y x=y^{3} x^{2} \quad \text { so that } \quad Y_{1}=-y, Y_{2}=y^{3}, n=2
$$

Then

$$
x=r e^{-\int-y^{\prime} l^{\prime} y}=r e^{\frac{1}{2} y^{2}}
$$

$$
\frac{d x}{d y}-y / x=\frac{d v^{\frac{1}{1} y^{2}}}{d y}+e^{r y e^{\frac{1}{2} y^{2}}-y c e^{\frac{1}{2} y^{2}}=\frac{d v}{d y} e^{\frac{1}{2} y^{2}} .{ }^{2}}
$$

aurd
and

$$
-\frac{1}{v}=\left(y^{2}-2\right) e^{\frac{1}{2} y^{2}}+C^{\prime} \text { or } \frac{1}{x}=2-y^{2}+r^{-\frac{1}{2} y^{2}} .
$$

This result could have been obtained by direct substitution in the formula

$$
x^{1-n}=(1-n) e^{(n-1) \int r_{1} l^{\prime \prime} y}\left[\int Y_{2} e^{(1-n)} \int r_{1^{\prime}, l y} x_{y}\right]
$$

but actually to carry the method through is far more instructive.

$$
\text { * If } t=1 \text {, the rariables are separated in the original equation. }
$$

EXERCISES

1. Solve the efuations (variables immediately separable):
($\alpha)(1+x) y+(1-y) \cdot x y^{\prime}=0$,
Ans. $x y=C e^{n-x}$.
(β) $a(x d y+2 y d x)=x y d y, \quad(\gamma) \sqrt{1-x^{2}} d y+\sqrt{1-y^{2}} d x=0$,

$$
(\delta)\left(1+y^{2}\right) d x-(y+\sqrt{1+y})(1+x)^{\frac{3}{2}} d y=0
$$

2. By various ingenious changes of variable, solve:
(a) $(x+y)^{2} y^{\prime}=a^{2}$,
Ans. $x+y=a \tan (y / a+C)$.
(β) $\left(x-y^{2}\right) d x+2 x y d y=0$,
$(\gamma) x d y-y d x=\left(x^{2}+y^{2}\right) d x$,
(δ) $y^{\prime}=x-y$,
(є) $y y^{\prime}+y^{2}+x+1=0$.
3. Solve these homogeneous equations:
(α) $(2 \sqrt{x y}-x) y^{\prime}+y=0$,
Ans. $\sqrt{x /!!}+\log y=C$.
(β) $x 6^{\frac{!}{\prime r}}+y-x y^{\prime}=0$,
Ans. $y+x \log \log C / x=0$.
$(\gamma)\left(x^{2}+y^{2}\right) d y=x y d x$,
($\delta) x y^{\prime}-y=\sqrt{x^{2}+y^{2}}$.
4. Solve these Bernoulli or linear equations :
(α) $y^{\prime}+y / x=y^{2}$,
Ans. $x y \log (1 x+1=0$.
(β) $y^{\prime}-y \operatorname{esc} x=\cos x-1$,
Ans. $!=\sin x+C \tan \frac{1}{2} x$.
(γ) $x y^{\prime}+y=y^{2} \log x$.
Ans. $y^{-1}=\log x+1+C x$.
($\delta)\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$,
(є) $y d x+\left(a x^{2} y^{n}-2 x\right) d y=0$,
(广) $x y^{\prime}-a y=x+1$,
(η) $y y^{\prime}+\frac{1}{2} y^{2}=\cos x$.
5. Show that the substitution $y=v x$ always separates the variables in the homogencous equation $y^{\prime}=\phi(y / x)$ and derive the general formula for the integral.
6. Let a differential eguation be reducible to the form

$$
\frac{d!}{d x}=\phi\binom{f_{1} r+l_{1} y+c_{1}}{a_{2} x+l_{2} y+c_{2}}, \quad \begin{aligned}
& a_{1} b_{2}-u_{2} l_{1} \neq 0 \\
& u_{1} b_{2}-a_{2} b_{1}=0
\end{aligned}
$$

In case $a_{1} b_{2}-a_{2} b_{1} \neq 0$, the two lines ${ }_{1} x+b_{1}!+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ will meet in a point. Show that a thansommation to this point as origin makes the new equation homosencons and hence soluble. In catse $a_{1} b_{2}-a_{2} b_{1}=0$, the two lines are parallel and the substitution $z=u_{2} x+b_{2} y$ or $z=u_{1} x+b_{1} y$ will separate the variables.
7. By the mothon of Ex. © solve the equations:

($\gamma)(4 x+3!y+1)(x x+(x+y+1) d y=0$,
($\delta)(2 x+y)=y^{\prime}(4 x+2 y-1)$,
(є) $\frac{d y}{d x}=\left(\frac{x-y-1}{2 x-2 y+1}\right)^{2}$.
8. Show that if the equation may be written as $y f(x y) d x+x g(x y) d y=0$. where f and g are functions of the proluet $x y$, the substitution $v=x y$ will separate the variables.
9. By virtue of Ex. 8 integrate the equations:
$(c)\left(y+2 x y^{2}-x^{2} y^{3}\right) d x+2 x^{2} y l_{!}=0$,
Ans. $r+r^{2} ? y=\prime^{\prime}(1-x!)$.
$(\beta)\left(y+x y^{2}\right) d x+\left(x-x^{2} y\right) d y=0$,
$(\gamma)(1+x y) x y^{2} d x+(x y-1) x d y=0$.
10. By any methol that is applicable solve the following. If more than one method is applicable, state what methods, and any apparent reasons for choosing one:
$\begin{array}{ll}\text { (} \alpha) y^{\prime}+y \cos x=y^{n} \sin 2 x, & \text { (ß) }\left(2 x^{2} y+3 y^{3}\right) d x=\left(x^{3}+2 x y^{2}\right) d y, \\ \text { (r) }(4 x+2 y-1) y^{\prime}+2 x+y+1=0, & \text { (ס) } y y^{\prime}+x y^{2}=x, \\ \text { (} \epsilon) y^{\prime} \sin y+\sin x \cos y=\sin x, & \text { (弓) } \sqrt{a^{2}+x^{2}}\left(1-y^{\prime}\right)=x+y, \\ \text { (} \eta \text {) }\left(x^{3} y^{3}+x^{2}-y^{2}+x y+1\right) y+\left(x^{3} y^{3}-x^{2} y^{2}-x y+1\right) x^{\prime}, \quad(\theta) y^{\prime}=\sin (x-y), \\ \text { (८) } x y d y-y^{2} d x=(x+y)^{2} c^{-\frac{y}{x}} d x, & \text { (к) }\left(1-y^{2}\right) d x=a x y(x+1) d y .\end{array}$
91. Integrating factors. If the equation $M_{l} x+V_{l y}=0$ by a suitable rearangement of the terms can be put in the form of a sum of total differentials of certain functions $\mid \prime, r, \cdots$, say

$$
\begin{equation*}
d u+d u+\cdots=0, \text { then } u+u+\cdots= \tag{7}
\end{equation*}
$$

is surely the solution of the equation. In this case the equation is called an erroct differentinl equation. It frempently happens that although the equation eannot itself be so aranged, get the equation obtained from it by multiplying through with a certain factor $\mu(x, y)$ may be so arranged. The factor $\mu(x, y)$ is then called an integreting forctor of the given equation. Thas in the case of variables selarable, an integrating factor is $1 / M_{2^{2}} \Lambda_{1}$; for

$$
\begin{equation*}
\frac{1}{M_{2,} N_{1}}\left[M_{1} M_{2}\left(l_{x}+N_{1} N_{2} d!y\right]=\frac{M_{1}(x)}{N_{1}(\cdot r)} d l_{x}+\frac{N_{2}(!)}{M_{2}(!)} d!y=0 ;\right. \tag{S}
\end{equation*}
$$

and the integration is immediate. Agan, the linear equation may be treated by an integrating factor. Let

$$
\begin{equation*}
d y+\lambda_{1} y l_{1} r=X_{2} d_{1} x \quad \text { and } \quad \mu=e^{\int} x_{1} d x \tag{9}
\end{equation*}
$$

then

$$
\begin{equation*}
e^{\int x_{1} d x} d y+X_{1} \rho x_{1} d x, y+l \cdot x=e^{\int x_{1} d x} X_{2^{2}} / x \tag{10}
\end{equation*}
$$

In the case of varables separalob the use of an integrating factor is therefore implied in the process of separating the variables. In the case of the linear equation the use of the interrating factor is somewhat shorter than the use of the snbstitution for separating the variables. In general it is not possible to lit upon an integrating factor by insperetion and not practicable to olatain an integrating factor by analysis, but the integration of an equation is so simple when the factor is known, and the equations which arise in practive so frequently do lave simple integrating factors, that it is worth while to examine the equation to see if the fantor camot be determined by inspeection and trial. To aid in the work, the differentials of the simpler functions sueh as

$$
\begin{array}{ll}
d x y=r d y+y d x, & \frac{1}{2} d\left(x^{2}+y^{2}\right)=x d x+y d y, \\
d \frac{y}{x}=\frac{r d y-y d x}{r^{2}}, & d \tan ^{-1} \frac{x}{y}=\frac{y d x-r^{2} l y}{x^{2}+y^{2}}, \tag{12}
\end{array}
$$

should be borne in mind.
Consider the equation $\left(x^{4} e^{n}-2 m s y^{2}\right) d x+2 m x^{2} y d y=0$. Here the first term $x^{4} e^{x} d x$ will be a differential of a function of x mo matter what function of x may be assumed as a trial μ. With $\mu=1 / x^{\text {t }}$ the equation takes the form

$$
e^{x} d x+2 m\left(\frac{y d y}{x^{2}}-\frac{y^{2} d x}{x^{3}}\right)=d e^{x}+m d \frac{y^{2}}{x^{2}}=0
$$

The integral is therefore seen to be $e^{x}+m y^{2} / x^{2}=C^{\prime}$ withont more ado. It may be notiecd that this equation is of the Bernoulli type and that an integration by that method would be considerably longer and more tedions than this use of an integrating factor.

Again, consider $(x+y) d x-(x-y) d y=0$ and let it be written as
then

$$
\begin{aligned}
& x d x+y d y+y d x-x d y=0 ; \quad \operatorname{try} \quad \mu=1 /\left(x^{2}+y^{2}\right) ; \\
& \frac{x d x+y d y}{x^{2}+y^{2}}+\frac{y d x-x d y}{x^{2}+y^{2}}=0 \quad \text { or } \quad \frac{1}{2} d \log \left(x^{2}+y^{2}\right)+d \tan -1 \\
& \frac{x}{y}=0,
\end{aligned}
$$

and the integral is $\log \sqrt{x^{2}+y^{2}}+\tan ^{-1}(x / y)=(\%$. Ifere the terms $x d x+y d y$ strongly suggested $x^{2}+y^{2}$ and the known form of the differential of $\tan ^{-1}(x / y)$ corroborated the idea. This equation comes under the homogeneons type, but the use of the integrating factor considerably shortens the work of integration.
 ats the sum of total differentials $d_{l \prime}+d n+\cdots$, that is, as the differential $d F$ of the function $u+r+\cdots$, so that the solution of the equation $1 / d x+N / y=0$ could be obtained as $F=r$. When the expressions are complicated, the attempt may fail in pactiee even where it theoretically should suceeed. It is therefore of inportance to establish ronditions under which a differential expression like $P d x+(e d y$ shall be the total differential $d F$ of some function, and to find a means of obtaining f when the conditions are satisfied. This will now be done.

Suppose
then
 the relation $r_{y}^{\prime}=\ell_{x}^{\prime}$ must hohl. Now monversely if this relation does hold. it may be shown that rem + rel! is the total differential of a function, and that this function is

$$
\begin{align*}
& F=\int_{x_{0}}^{x} P(x, y) d x+\int Q\left(x_{0}, y\right) d y \tag{14}\\
& F=\int_{y_{0}}^{y} Q(x, y) d y+\int P^{\prime}\left(x, y_{0}\right) d x
\end{align*}
$$

or
where the fixed value x_{0} or y_{0} will naturally be so chosen as to simplify the integrations as much as possible.

To show that these expressions may be taken as F it is merely necessary to compute their derivatives for identification with l^{\prime} and Q. Now

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=\frac{\partial}{\partial \cdot x^{\prime}} \int_{x_{0}}^{x} P(x, y) d x+\frac{\partial}{\partial x} \int Q\left(x_{0}, y\right) d y=P^{\prime}(x, y), \\
& \frac{\partial F}{\partial y}=\frac{\partial}{\partial y} \int_{x_{0}}^{x} P^{\prime}(x, y) d x+\frac{\partial}{\partial y} \int Q\left(x_{0}, y\right) d y=\frac{\partial}{\partial y} \int P d x+Q\left(x_{0}, y\right) .
\end{aligned}
$$

These differentiations, applied to the first form of F, require only the fact that the derivative of an integral is the integrand. The first turns out satisfactorily. The second must be simplified by interelanging the order of differentiation by y and integration ly r (Leibniz's Rule, § 119) and by use of the fundamental hypothesis that $l_{y}^{\prime}=\ell_{x}^{\prime}$.

$$
\begin{aligned}
& \frac{\partial}{\partial y} \int_{x_{0}}^{x} P d x+Q\left(x_{0}, y\right)=\int_{x_{0}}^{x} \frac{\partial P}{\partial y} d x+Q\left(x_{0}, y\right) \\
& \quad=\int_{x_{0}}^{x} \frac{\partial Q}{\partial x} d x+Q\left(x_{0}, y\right)=\left.Q(x, y)\right|_{x_{0}} ^{x}+Q\left(x_{0}, y\right)=Q(x, y) .
\end{aligned}
$$

The identity of l ' and (Q with the derivatives of F is therefore established. The second form of F would he treated similarly.

Show that $\left(x^{2}+\log y\right)(d x+x / y d y=0$ is an exact differential equation and obtain the solution. Here it is first necessary to apply the test $I_{y}^{\prime}=\left(Q_{x}^{\prime}\right.$. Now

$$
\frac{\hat{c}}{\hat{c} y}\left(x^{2}+\log y\right)=\frac{1}{y} \text { and } \quad \frac{\hat{c}}{\hat{c} x y}=\frac{1}{y} .
$$

Hence the test is satisfied and the integral is obtained by applying the formula :
or

$$
\begin{aligned}
& \int_{0}^{x}\left(x^{2}+\log y\right) d x+\int \frac{0}{y} d y=\frac{1}{3} x^{3}+x \log y=C \\
& \int_{1}^{y} \frac{x}{y} d y+\int\left(x^{2}+\log 1\right) d x=x \log y+\frac{1}{3} x^{3}=(
\end{aligned}
$$

It should be moticed that the choice of $x_{0}=0$ simplifies the integration in the first case becanse the substitution of the lower limit 0 is easy and becatse the second integral vanishes. The choice of $y_{0}=1$ introduces correxponding simplifications in the second case.

Derive the partial differential equation which any integrating fartor of the differential equation $M d x+N d y=0$ must satisfy. If μ is an integrating factor, then

Hence

$$
\begin{gather*}
\mu M d x+\mu N d y=d F \quad \text { and } \quad \frac{\partial \mu M}{\partial y}=\frac{\partial \mu N}{\partial x} . \\
M \frac{\partial \mu}{\partial y}-N \frac{\partial \mu}{\partial x}=\mu\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \tag{15}
\end{gather*}
$$

is the desired equation. To determine the integrating factor by solving this equation would in general be as difficult as solving the original equation; in some speeial eases, however, this equation is useful in determining μ.
93. It is now convenient to tabulate a list of different typers of differential equations for which an integrating factor of a standard form (an be given. With the knowledge of the factor, the equations may then be integrated by (14) or by inspection.

$$
\text { Equation Mdx }+ \text { Ydy }=0:
$$

I. Homogencous $M d x+\lambda_{t} d y=0$,
II. Bernoulli $d y+X_{1} y y^{\prime} x^{x}=\lambda_{2} y^{\prime \prime}\left(d_{x}\right.$,
III. $M=y f^{\prime}\left(\cdot x_{!}\right), \quad N=x y(\cdot r y)$,
IV. If $\frac{\frac{\partial M}{\partial y}-\frac{\partial V}{\partial x}}{\Lambda}=f(x)$,
V. If $\frac{\frac{\partial J}{\partial r^{r}}-\frac{\partial M}{\partial!I}}{H}=f^{\prime}(y)$,
VI. Type $\cdot r^{\alpha}!y^{B}\left(m!y^{\prime} l_{x}+2 \cdot x^{\prime} / y\right)=0$,

Factore μ :
$\frac{1}{N I r+N!}$.
$y^{-n} e^{(1-n)} \int x_{1} x^{\prime \prime} x$.
$\frac{1}{3 x-N ゙ y}$.
$e \int f(x) d x$.
$e \int f(y) d y$.
$\left\{\begin{array}{l}r^{k^{k} m-1-\alpha}!f^{k n-1-\beta}, \\ l_{i} \text { arbitiar } y .\end{array}\right.$
$\left\{\begin{array}{l}\left.r^{k i m-1-a}\right)^{k n-1-\beta}, \\ f: \text { determined. }\end{array}\right.$

The use of the integrating farem oftem is simpler than the substitntion $!=x=x^{\prime}$ in the homogeneons equation. It is paratieally identieal with the substitution in the bermonlli type. In the thind tyme it is often shorter than the substitution. The remaining types have had ne substitution indieated for them. The proofs that the assigned forms of the factor are right are given in the examples below or are left as exercises.

To show that $\mu=\left(M x+N_{y}\right)^{-1}$ is an intequating factor fow the homorenems case, it is poswible simply to substitute in the equation (15), which μ must satisfy, and show that the erpation actually helds ley virtue of the fact that M :me N are
homogeneons of the same degree, - this fact being used to simplify the result by Euler's Formula (30) of $\$ 53$. But it is easier to proceed direetly to show
$\frac{\partial}{\partial y} \frac{M}{M x+N y}=\frac{\hat{c}}{\partial x}\left(\frac{N}{M x+N y}\right)$ or $\frac{\partial}{\hat{c} y}\left(\frac{1}{x} \frac{1}{1+\phi}\right)=\frac{\hat{c}}{\hat{c} x}\left(\frac{1}{y} \frac{\phi}{1+\phi}\right)$, where $\quad \phi=\frac{N_{y}}{M x}$.
Owing to the homogeneity, ϕ is a function of y / x alone. Differentiate.

$$
\frac{\hat{c}}{\hat{c} y}\left(\frac{1}{x} \frac{1}{1+\phi}\right)=-\frac{1}{x} \frac{\phi^{\prime}}{(1+\phi)^{2}} \frac{1}{x}=\frac{1}{y} \frac{\phi^{\prime}}{(1+\phi)^{2}} \cdot \frac{-y}{x^{2}}=\frac{\hat{c}}{\hat{c} x}\left(\frac{1}{y} \frac{\phi}{1+\phi}\right) .
$$

As this is an evident identity, the theorem is proved.
To find the condition that the integrating factor may be a function of x only and to find the factor when the condition is satisfied, the equation (15) which μ satisfies may be put in the more compact form by dividing by μ.

$$
M \frac{1}{\mu} \frac{\hat{c} \mu}{\partial y}-N \frac{1}{\mu} \frac{\partial \mu}{\bar{c} x}=\frac{\hat{c} N}{\hat{c} x}-\frac{\hat{c} M}{\hat{c} y} \text { or } M \frac{\hat{c} \log \mu}{\hat{\partial} y}-N \frac{\hat{\ln g} \mu}{\hat{c} x}=\frac{\hat{i} N}{\hat{c} x}-\frac{\hat{\partial} M}{\hat{\partial} y} .
$$

Now if μ (and hence $\log \mu$) is a function of x alone, the first term vanishes and

$$
\frac{d \log \mu}{d x}=\frac{M_{y}^{\prime}-N_{x}^{\prime}}{N}=f(x) \quad \text { or } \quad \log \mu=\int f(x) d x
$$

This establishes the rule of type IV above and further shows that in no other case can μ be a function of x alone. The treatment of type V is clearly analognous.
lntegrate the equation $x^{4} y(3 y d x+2 x d y)+x^{2}(4 y / x+3 x(y)=0$. This is of type VII ; an integrating factor of the form $\mu=x^{\rho} y^{\sigma}$ will be assumed and the exponents ρ, σ will be determined so as to satisfy the condition that the equation be an exact differential. Here

$$
P=\mu M=3 x^{\rho+4} y^{\sigma+2}+4 x^{\rho+2} y^{\sigma+1}, \quad Q=\mu V^{\sigma}=2 x^{\rho+5} y^{\sigma+1}+3 x^{\rho+3} y^{\sigma} .
$$

Then

$$
\begin{aligned}
P_{y}^{\prime} & =3(\sigma+2) x^{\rho+4} y^{\sigma+1}+4(\sigma+1) x^{\rho+2} y^{\sigma} \\
& =2(\rho+5) x^{\rho+4} y^{\sigma+1}+3(\rho+3) x^{\rho+2} y^{\sigma}=y^{\prime} .
\end{aligned}
$$

Hence if $\quad 3(\sigma+2)=2(\rho+5)$ and $4(\sigma+1)=3(\rho+3)$, the relation $P_{y}^{\prime}=Q_{x}^{\prime}$ will hold. This gives $\sigma=2, \rho=1$. Hence $\mu=x^{\prime} y^{2}$,
and

$$
\int_{0}^{x}\left(3 x^{5} y y^{4}+4 x^{33} y^{3}\right) d x+\int 0 d y=\frac{1}{2} x^{6} y^{4}+x^{4} y^{3}=C
$$

is the solntion. The work might be shortened a trithe by dividing through in the first phace by x^{2}. Moreover the integration ean be performed at sight withont the use of (14).
94. Several of the most important facts relative to integrating factors and solutions of MIdx + Nily $=0$ will now be stated as theorems and the proofs will be indicated below.

1. If an integrating factor is known, the corresponding solution may he found: and conversely if the solution is known, the corresponding integrating factor may be found. Hence the existence of either implies the existence of the other.
2. If $F=C^{\prime}$ and $r_{i}=r$ are two solutions of the equation, cither monst be a function of the other, as $:_{i}=\Phi(F)$: and any function of either is
a solution. If μ and v are two integrating factors of the equation, the ratio μ / ν is either constant or a solution of the equation; and the prockuct of μ by any function of a solution, as $\mu \Phi\left(r^{\prime}\right)$, is an integrating factor of the equation.
3. The normal derivative $d F / d n$ of a solution obtained from the factor μ is the product $\mu \sqrt{11^{2}+N^{2}}$ (see $\S 48$).

It has already been seen that if an integrating factor μ is known, the corresponding solution $F=C$ may be fomd by (14). Now if the solution is known, the equation

$$
d F=F_{x}^{\prime} d x+F_{y}^{\prime} d y=\mu(M d x+\mathcal{V} d y) \text { gives } F_{x}^{\prime}=\mu M, F_{y}^{\prime}=\mu \mathrm{F}
$$

and hence μ may be fomm from either of these equations as the cpotient of a derivative of F by a coefticient of the differential equation. The statement 1 is therefore proved. It may be remarked that the discnssion of approximate solutions to differential equations ($\$ \mathbf{S} 86-88$), combined with the theory of limits (beyond the scope of this text), affords a demonstration that any equation $M d x+N d y=0$. where M and N satisfy certain restrictive conditions, has a solution; and hence it may be inferred that such an equation has an integrating factor.

If μ be eliminated from the relations $F_{x}^{\prime}=\mu M, F_{y}^{\prime}=\mu . V$ found above, it is seen that

$$
\begin{equation*}
M F_{y}^{\prime}-N F_{x}^{\prime}=0, \quad \text { and similarly }, \quad M G_{y}^{\prime}-N G_{x}^{\prime}=0 \tag{I6}
\end{equation*}
$$

are the conditions that F and G should be solutions of the differential equation. Now these are two simultaneons homogeneous equations of the first degree in M and N. If M and N are eliminated from them, there results, the equation

$$
F_{y}^{\prime} G_{x}^{\prime}-F_{x}^{\prime} G_{y}^{\prime}=0 \quad \text { or } \quad\left|\begin{array}{ll}
F_{y}^{\prime} & F_{y}^{\prime} \\
G_{x}^{\prime} & G_{y, y}^{\prime}
\end{array}\right|=J(F, G)=0
$$

which shows ($\$ 62$) that F and G are functionally related as required. To show that any function $\Phi(F)$ is a solution, consider the equation

$$
M \Phi_{y}^{\prime}-\lambda \Phi_{s,}^{\prime}=\left(M F_{y}^{\prime}-N F_{s}^{\prime}\right) \Phi^{\prime} .
$$

As F is a solntion, the expression $M F_{y}^{\prime}-N F_{s}^{\prime}$ vanishers 1 y (16i), and hence $M \Phi_{y}^{\prime}-V \Phi_{s}^{\prime}$ also vanishes, and Φ is a solution of the equation as is clesired. The first half of 2 is proved.

Next, if μ and ν are two integrating factors, equation (155^{\prime}) sives

On comparing with (1fi) it then appears that log (μ / ν) must be a solution of the equation and hemee μ / ν itself must be a solution. The inferenee. howeros. wombl not hokd if μ / ν reduced to a constant. Finally if μ is an integrating factor leading to the solution $F=($ ', then

$$
d F=\mu(M d x+V d y), \quad \text { and heree } \mu \Phi(F)\left(M(x+N d y)=d \int \Phi(F) d F\right.
$$

It therefore appears that the factor $\mu \Phi(F)$ makes the follation an wate differential and must be an integrating factor. Statement 2 is therefore wholly poved.

The third proposition is proved simply by differentiation and substitution．For

$$
\frac{d F}{d n}=\frac{\hat{c} F}{\hat{c} x} \frac{d x}{d n}+\frac{\hat{c} F}{\hat{c} y} \frac{d y}{d n}=\mu M \frac{d x}{d n}+\mu N \frac{d y}{d n} .
$$

And if $\boldsymbol{\tau}$ denotes the inclination of the curve $F=C$ ，it follows that
$\tan \tau=\frac{d y}{d x}=-\frac{M}{N}, \quad \sin \tau=\frac{d y}{d n}=\frac{N}{\sqrt{M^{2}+N^{2}}}, \quad-\cos \tau=\frac{d x}{d n}=\frac{M}{\sqrt{M^{2}+N^{2}}}$.
Hence $d F / d n=\mu \sqrt{M^{2}+N^{2}}$ and the proposition is proved．

EXERCISES

1．Find the integrating factor by inspection and integrate：
（ $\alpha) x d y-y d x=\left(x^{2}+y^{2}\right) d x$ ，
（ β ）$\left(y^{2}-x y\right) d x+x^{2} d y=0$ ，
（ $) ~ y d x-x d y+\log x d x=0$ ，
（ $\delta) y\left(2 x y+e^{c}\right) d x-e^{x} d y=0$ ，
（є）$(1+x y) y d x+(1-x y) x d y=0$ ，
（ら）$\left(x-y^{2}\right) d x+2 x y d y=0$ ，
（ η ）$\left(x y^{2}+y\right) d x-x d y=0$ ，
（ $\theta) a(x d y+2 y d x)=x y d y$ ，
（（）$\left(x^{2}+y^{2}\right)(x d x+y d y)+\sqrt{1+\left(x^{2}+y^{2}\right)}(y d x-x d y)=0$ ，
（к）$x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$ ，
（入）$x d y-y d x=x \sqrt{x^{2}-y^{2}} d y$ ．

2．Integrate these linear equations with an integrating factor：
（a）$y^{\prime}+a y=\sin b x$ ，
（B）$y^{\prime}+y \cot x=\sec x$,
（ $\gamma)(x+1) y^{\prime}-2 y=(c+1)^{4}$,
（ $\delta)\left(1+x^{2}\right) y^{\prime}+y=e^{\tan ^{-1} x}$ ，
and（ β ），（ δ ），（ ζ ）of Ex．4，p． 206.
3．Show that the expression given under II．p．210，is an integrating factor for the Bernonlli equation，and integrate the following equations by that method ：
（a）$y^{\prime}-y \tan x=y^{4} \sec x$,
（阝） $3 y^{2} y^{\prime}+y^{3}=x-1$,
（ $\gamma) y^{\prime}+y \cos x=y^{n} \sin 2 x$,
（8）$d x+2 x y d y=2 u x^{3} y^{3} d y$ ， and $(\alpha),(\gamma),(\epsilon),(\eta)$ of Ex， $4, \mathrm{p}, 206$.

4．Show the following are exact differential equations and integrate：
（ $\alpha)\left(3 x^{2}+6 x y^{2}\right) d x+\left(6 x^{2} y+4 y^{2}\right) d y=0, \quad(\beta) \sin x \cos y d x+\cos x \sin y d y=0$ ，
（ $\gamma)(6 x-2 y+1) d x+(2 y-2 x-3) d y=0$ ，（ $\delta)\left(x^{3}+3 x y^{2}\right) d x+\left(y^{3}+3 x^{2} y\right) d y=0$ ，
（є）$\frac{2 x y+1}{y} d x+\frac{y-x}{y^{2}} d y=0$ ，
（ऽ）$\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0$,
（ η ）$e^{x}\left(x^{2}+y^{2}+2 x\right) d x+2 y e^{x} d y=0$ ，
（ $\theta)(y \sin x-1) d x+(y-\cos x) d y=0$.
5．Show that $(M x-N y)^{-1}$ is an integrating factor for type III．Determine the integrating factors of the following equations，thas render them exact，and integrate：
$(c)(y+x) d x+x d y=0$,
（ β ）$\left(y^{2}-x y\right) d x+x^{2} d y=0$ ，
（r）$\left(x^{2}+y^{2}\right) d x-2 x y d y=0$ ，
（ $\delta)\left(x^{2} y^{2}+x y\right) y d x+\left(x^{2} y^{2}-1\right) x d y=0$ ，
（ $\epsilon)(\sqrt{x y}-1) x d y-(\sqrt{x y}+1) y d x=0$ ，
（5）$x^{3} d x+\left(3 x^{2} y+2 y^{3}\right) d y=0$ ，
and Exs． 3 and 9，p． 206.
6．Show that the faptor given for type VI is right，and that the form given for type VIl is riyht it k satisfies $k(q m-p n)=q(\alpha-\gamma)-p(\beta-\delta)$ ．
7. Integrate the following equations of types IV-VII:
(c) $\left(y^{4}+2 y\right) d x+\left(x y^{3}+2 y^{4}-4 x\right) d y=0, \quad(\beta)\left(x^{2}+y^{2}+1\right) d x-2 x y d y=0$,
($\gamma)\left(3 x^{2}+6 x y+3 y^{2}\right) d x+\left(2 x^{2}+3 x y\right) d y=0, \quad(\delta)\left(2 x^{2} y^{2}+y\right)-\left(x^{3} y-3 x\right) y^{\prime}=0$,
($\epsilon)\left(2 x^{2} y-3 y^{4}\right) d x+\left(3 x^{3}+2 x y^{3}\right) d y=0$,
(与) $\left(2-y^{\prime}\right) \sin (3 x-2 y)+y^{\prime} \sin (x-2 y)=0$.
8. By rirtue of prowsition 2 above, it follows that if an equation is exact and homogeneons, or exact and has the variables separable or homogeneous and muter types IV-V'II, so that two different integrating factors may be obtainet, the solntion of the equation may le ohtainel withont integration. Apply this to finding the solutions of Ex. $4(\beta) .(\delta),(\gamma)$; Ex. $5(\alpha),(\gamma)$.
9. Discuss the apparent exceptions to the rules for types I, III, VII, that is. when $M x+N_{y}=0$ wr $M x-N_{y}=0$ or $q m-p m=0$.
10. Comsiler this rule for integrating $M d x+V d y=0$ when the equation is known to be exact: Integrate Mdx regarding y as eonstant, differentiate the result regarting y as variable, ant subtract from $N_{\text {; }}$; then integrate the difference with respect to y. In symbols,

$$
C=\int(M d x+M d y)=\int M d x+\int\left(X-\frac{\hat{c}}{\hat{i} y} \int M d x\right) d y
$$

Apply this instearl of (14) to Ex. 4. Wherere that in no case should either this formula or (14) be appliet when the integral is obtainable by inspection.
95. Linear equations with constant coefficients. The tyle
of differential equation of the nth order which is of the first degree in If and its derivatives is called a lineme equation. For the fresent only
 treated, and for eonsenderee it will he assumed that the equation has been divided through leg "so that the eroetliedernt of the highest derivat tise is 1. Then if differentiation le denoted ly 1), the "quation may le wittencosmblulirolly as

$$
\left(l l^{n}+\prime_{1} l l^{n-1}+\cdots+{ }_{n-1} l\right)+\left({ }_{n}\right)!!=N
$$

Where the symix) I I (omblined with (omstants follows many of the laws

The simplest equation wonkl lae of the first ordere. Here
as may be seen ly referene to (11) or (6). Now if I - " 1 be treated

$$
\left.(l)-n_{1}\right)!=\mathrm{l} \quad \text { and } \quad y=\frac{1}{l 1-n} \mathrm{l}
$$

where the operator $\left(D-a_{1}\right)^{-1}$ is the incerse of $D-{ }_{1}$. The solution which has just been obtained shows that the interpretation which must be assigned to the inverse operator is

$$
\begin{equation*}
\frac{1}{D-u_{1}}(*)=e^{a_{1} x} \int e^{-a_{1} x}(*) d x^{x} \tag{19}
\end{equation*}
$$

where (*) denotes the function of x upon which it operates. That the integrating operator is the inverse of $l \boldsymbol{l}-\mu_{1}$ may be proved by direct differentiation (see Ex. 7, p. 122).

This operational method may at once be extended to obtain the solution of equations of higher order. For consider

$$
\begin{equation*}
\frac{d^{2}!}{d x^{2}}+t_{1} \frac{d y}{d x}+a_{2} y=X \quad \text { or } \quad(1)^{2}+a_{1} D+\left(t_{2}\right) y=X \tag{20}
\end{equation*}
$$

Let α_{1} and α_{2} be the roots of the equation $\left.l\right)^{2}+{ }_{1} D+c_{2}=0$ so that the differential equation may be written in the form

$$
\left.\left[D^{2}-\left(\alpha_{1}+\alpha_{2}\right) D+\alpha_{1} \alpha_{2}\right] y=X \quad \text { or } \quad\left(D-\alpha_{1}\right)(I)-\alpha_{2}\right) y=X
$$

The solntion may now be evaluated by a succerssion of steps as
or

$$
\begin{align*}
& y=r^{a_{2} x} \int r\left(x_{1}-a_{2}\right) x\left[\int r^{-a_{1} w^{x}} \sum^{Y} d x\right] d x .
\end{align*}
$$

The solution of the erquation is thus reducen to quadratures.
The extension of the method to an erfuation of any order is immediate. The first step in the solution is to solve the equation

$$
\left.l^{n}+{ }_{1} l l^{n-1}+\cdots+{ }_{n-1} I\right)+{ }_{n}=0
$$

so that the differential equation may be written in the form

$$
\left.\left.\left.(I)-\alpha_{1}\right)\left(I I-\alpha_{2}\right) \cdots(I)-\alpha_{n-1}\right)(I)-\alpha_{n}\right)!I=X ;
$$

whereupon the solution is comprised in the formula

$$
y=\varphi^{a_{n} x} \int e^{\left(\alpha_{n}-1-\alpha_{n}\right) x} \int \cdots \int r^{\left(\alpha_{1}-a_{2}\right) x} \int 1,-a_{1} x X^{-}(d x)^{n},
$$

where the sumessive integrations are to be berformed by begiming upon the extreme right and working toward the left. Moreorer, it appears that if the operators $\left.\left.I)-\kappa_{n} . I\right)-r_{n-1} . . ., I\right)-\kappa_{2 .} . I-\kappa_{1}$ were successively applied to this value of $!$, they would undo the work here
done and lead back to the original equation. As n integrations are required, there will occur n arbitrary constants of integration in the answer for y.

As an example consider the equation $\left(L^{\beta}-4 D\right) y=x^{2}$. Here the roots of the algebraic equation $I^{3}-+D=0$ are $0,2,-2$, and the solution for y is

$$
y=\frac{1}{D} \frac{1}{D-2} \frac{1}{D+2} x^{2}=\int e^{2 x} \int e^{-2 x} e^{-2 x} \int e^{2 x} x^{2}(d x)^{3}
$$

The successive integrations are very simple by means of a table. Then

$$
\begin{gathered}
\int e^{2 x} x^{2} d x=\frac{1}{2} x^{2} e^{2 x}-\frac{1}{2} x e^{2 x}+\frac{1}{4} e^{2 x}+C_{1} \\
\int e^{-4 x} \int e^{2 x} x^{2}(d x)^{2}=\int\left(\frac{1}{2} x^{2} e^{-2 x}-\frac{1}{2} x e^{-2 x}+\frac{1}{4} e^{-2 x}+C_{1} e^{-4 x}\right) d x \\
=-\frac{1}{4} x^{2} e^{-2 x}-\frac{1}{8} e^{-2 x}+C_{1} e^{-4 x}+C_{2}, \\
y=\int e^{2 x} \int e^{-4 x} \int e^{2 x} c^{2}(d x)^{3}=\int\left(-\frac{1}{4} x^{2}-\frac{1}{8}+C_{1} e^{-2 x}+C_{2} e^{2 x}\right) d x \\
\\
=-\frac{1}{12} x^{3}-\frac{1}{8} x+C_{1} e^{-2 x}+C_{2} e^{2 x}+C_{3} .
\end{gathered}
$$

Fhis is the solution. It may be noted that in integrating a term like $C_{1} e^{-4 x}$ the result may be written as (${ }_{1} e^{-4 x}$. for the reason that C_{1} is arbitrary anyhow; and. moreover, if the integration had introlucerl any terms such as $2 e^{-2 x}, \frac{1}{2} e^{2 x}$, 5 , these could be combinel with the terms $C_{1} \epsilon^{-2 x}, C_{2} e^{2 x}, C_{3}$ to simplify the form of the results.

In case the roots are imaginary the procedure is the same. Consider

$$
\left.\frac{d^{2} y}{d x^{2}}+y=\sin x \quad \text { or } \quad\left(I^{2}+1\right) y=\sin x \quad \text { or } \quad(I)+i\right)(D-i) y=\sin x .
$$

Then

$$
y=\frac{1}{D-i} \frac{1}{D+i} \sin x=e^{i x} \int e^{-2 i x} \int e^{2 x} \sin x(d x)^{2}, \quad i=\sqrt{-1}
$$

The formula $f o r \int e^{n x} \sin b x d c$, as given in the tables, is not applicable when $a^{2}+b^{2}=0$, as is the case here. because the denominator vanishes. It therefore becomes experlient to write sin x in terms of exponentials. Then

$$
y=e^{i s} \int e^{-2 i r} \int e^{i i e^{i \cdot}-} \frac{e^{-i x}}{2 i}(d x)^{2} ; \text { for } \sin . c=\frac{t^{i x}-e^{-i r}}{2 i} .
$$

Now $\frac{1}{2 i} e^{i \cdot x} \int e^{-2 i x} \int\left(\epsilon^{2 i x}-1\right)(d x)^{2}=\frac{1}{2} i^{e^{i x}} \int e^{-2 i x}\left[\begin{array}{c}1 \\ 2 i^{2 i x}-x+c_{1}\end{array}\right] d x$

Now

$$
\begin{aligned}
& =\frac{1}{2} e^{i s}\left[\frac{1}{2 i} x+\frac{1}{2} e^{-2 i x} x-\frac{1}{4} e^{-2 i x}+\left(_{1} e^{-2 i x}+C_{2}\right]\right. \\
& =-\frac{x e^{i x}+e^{-x,}}{2}+C_{1} e^{-w}+C_{2} e^{i x} . \\
C_{1} e^{-i x}+C_{2} e^{i x \cdot} & =\left(\left(_{2}+\left(_{1}\right) \frac{e^{i x}+e^{-i x}}{2}+\left(C_{2}-C_{1}\right) i \frac{e^{i s}-e^{-i x}}{2 i} .\right.\right.
\end{aligned}
$$

llence this expression may be written as $C_{1} \cos x+C_{2} \sin x$, and then

$$
y=-\frac{1}{2} x \cos x+C_{1}^{1} \cos x+C_{2} \sin x
$$

The solution of such equations as these gives excellent opportunity to cultivate the art of manipulating trigenometric functions through exponentials (\$ 74).
96. The general method of solution given above may be considerably simplified in case the function $X^{\prime}(x)$ has certain special forms. In the first place suppose $X=0$, and let the equation be $l^{\prime}(D) y=0$, where $P(D)$ denotes the symbolic polynomial of the nth degree in I. Suppose the roots of $P(D)=0$ are $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$ and their respective multiplicities are $m_{1}, m_{2}, \cdots, m_{k}$, so that

$$
\left(D-\alpha_{k}\right)^{m_{k}} \cdots\left(D-\alpha_{2}\right)^{m_{2}}\left(D-\alpha_{1}\right)^{m_{1}} y=0
$$

is the form of the differential equation. Now, as above, if

$$
\left(D-\alpha_{1}\right)^{m_{1}} y=0, \quad \text { then } y=\frac{1}{\left.(7)-u_{1}\right)^{m_{1}}} 0=r^{a_{1}, r} \int \cdots \int 0(d x)^{m_{1}}
$$

Hence

$$
y=r^{\alpha_{1} x}\left(C_{1}+\zeta_{2^{2}}+C_{3^{\prime}} x^{2}+\cdots+C_{m_{1}} r^{r^{n}-1}\right)
$$

is amihilated by the application of the operator $\left(D-r_{1}\right)^{m_{1}}$, and therefore by the application of the whole operator $P(P)$, and must be a solntion of the equation. As the factors in $P^{\prime}(I)$ may be written so that any one of them, as $\left.(I)-r_{i}\right)^{m_{i}}$, comes last, it follows that to eath factor $\left(D-\alpha_{i}\right)^{m_{i}}$ will correspond a solution

$$
y_{i}=\epsilon^{\alpha_{i} x}\left(\left(_{i 1}+r_{i 2}^{\prime} r^{r}-\cdots+r^{\prime} m_{i} r^{\prime m_{i}-1}\right), \quad P(D) y_{i}=0\right.
$$

of the equation. Moreover the sum of all these solutions,

$$
\begin{equation*}
y=\sum_{i=1}^{i=k} e^{\alpha_{i} x}\left(\zeta_{i 1}+\left(_{i 2^{2}}+\cdots+\left(^{i m} m_{i} r^{r_{i}-1}\right)\right.\right. \tag{21}
\end{equation*}
$$

will be a solution of the equation; for in aprlying $I P(I)$ to $!/$,

$$
P(D)!=P(I) y_{1}+P(I)!_{2}+\cdots+P(D)!y_{k}=0 .
$$

Hence the general rule may be stated that: The solution of the differential equation $I^{\prime}(I)!=0$ af the nth arther ma!! he finend lyy multipl!y-

 may be made. First, the solution thas found contains n arthitrary eonstants and may therefore he considered as the gemeral solution; and second, if there are imaginary roots for $l^{\prime}(l)=0$, the espmentinls "rising firom the prise imaginary pusts of the roots may be comererted into trigonometrir fientions.

As an example take $\left(J^{4}-2 I^{3}+I^{2}\right) y=0$. The roots are $1,1,0,0$. Hence the solution is

$$
y=\epsilon^{r}\left(\left(_{1}^{\prime}+C_{2}^{\prime} r\right)+\left(C_{3}+C_{4}^{\prime} x\right) .\right.
$$

Again if $\left.(I)^{+}+4\right) y=0$, the roots of 1$)^{4}+t=0$ are $\pm 1 \pm i$ and the solution is

$$
y=C_{1}^{\prime} e^{(1+i) x}+C_{2^{2}} e^{(1-x) x}+\left(_{3^{t^{\prime}}}(-1+i) x+\left(_{4^{\prime}} e^{(-1-i) x}\right.\right.
$$

or

$$
\begin{aligned}
y & =e^{x}\left(C_{1} e^{i x}+C_{2^{2}} e^{-i x}\right)+e^{-x}\left(C_{5} e^{i x}+C_{4} e^{-i x}\right) \\
& =e^{x}\left(C_{1} \cos x+C_{2} \sin x\right)+e^{-x}\left(C_{3} \cos x+C_{4} \sin x\right),
\end{aligned}
$$

where the new C 's are not identical with the old C 's. Another form is

$$
y=e^{x} A \cos (x+\gamma)+e^{-x} B \cos (x+\delta),
$$

where γ and δ, A and B, are arbitrary constants. For

$$
C_{1} \cos x+C_{2} \sin x=\sqrt{C_{1}^{2}+C_{2}^{2}}\left[\frac{C_{1}}{\sqrt{C_{1}^{2}+C_{2}^{2}}} \cos x+\frac{C_{2}}{\sqrt{C_{1}^{2}+C_{2}^{2}}} \sin x\right],
$$

and if $\gamma=\operatorname{tan-1}\left(-\frac{C_{2}}{C_{1}}\right)$, then $C_{1} \cos x+C_{2} \sin x=\sqrt{C_{1}^{2}+C_{2}^{2}} \cos (x+\gamma)$.
Next if X is not zero but if any one solution I can be found so thet $P(I) I=\lambda$, then a solution contrining n "witrenn! romstants maty le found by adding to I the solution of $l^{\prime}(I) y=0$. For if

$$
P(D) I=X \quad \text { and } \quad P(D) y=0, \quad \text { then } \quad P(D)(I+y)=X
$$

It therefore remains to devise means for finding one solution I. This solution I may be found loy the long mothod of ($17^{\prime \prime \prime}$), where the integration may be shortened by onitting the constants of integration since only one, and not the general, valne of the solution is neederl. In the most imprortant cases which arise in practice there are, howerer, some very short cuts to the solution 1 . The solution I of $I^{\prime}(I)!!=X$ is called the purtiondere intergonl of the equation and the general solution of $P(リ)!=0$ is called the complementrory fienction for the equation $P(I))!=X$.

Suppose that X is " pm!momion in .r. Solve symbolically, armange $I^{\prime}(1)$ in aseemding powers of I, and divide out to powers of 1 ergual to the order of the polynomial 1 . Then

$$
\begin{equation*}
P(l) I=X, \quad I=\frac{1}{J^{\prime}(I)} x=\left[\left(\Omega(I)+\frac{R(I)}{l^{\prime}(I)}\right] X,\right. \tag{22}
\end{equation*}
$$

where the rematuder $R(1)$ is of higher order in l than I in x. Then

$$
P(D) I=P(D) Q(D) X+R(I) X, \quad R(I) X=0
$$

 this mether the solution I may be fomm, when X is a polynomial, as
 be written down le ($\because 2$) : and the sum of I and this will be the recpured solation of $I^{\prime}(\not ノ)!=X$ containing n constants.

As an example consider $\left(I^{3}++J^{2}+3 I\right) y=x^{2}$. The work is ats follows:

Hence

$$
I=Q(D) x^{2}=\frac{1}{D}\left(\frac{1}{3}-\frac{4}{9} D+\frac{13}{27} D^{2}\right) x^{2}=\frac{1}{9} x^{3}-\frac{4}{9} x^{2}+\frac{26}{27} x
$$

For $D^{3}+4 D^{2}+3 D=0$ the roots are $0,-1,-3$ and the eomplementary function or solution of $I^{\prime}(D) y=0$ would be $C_{1}+C_{2} e^{-x}+C_{3} e^{-3 x}$. Hence the solution of the equation $P(D) y=x^{2}$ is

$$
y=C_{1}+C_{2} e^{-x}+C_{3} e^{-3 x}+\frac{1}{9} x^{3}-\frac{1}{9} x^{2}+\frac{2}{2} \frac{6}{7} x .
$$

It should be noted that in this example D is a factor of $P(D)$ and has been taken out before dividing ; this shortens the work. Furthermore note that, in interpreting $1 / D$ as integration, the constant may be omitted beeanse any one value of I will do.
97. Next suppose that $\mathrm{X}=C e^{a x}$. Now $D e^{\alpha x}=a e^{\alpha x}, D^{k} e^{a x}=\left(e^{k} e^{a x}\right.$,
and $\quad P(D) e^{\alpha x}=P^{\prime}\left((x) e^{\alpha x} ;\right.$ hence $\quad P(D)\left[\frac{C}{P(x)} e^{\alpha x}\right]=C e^{\alpha x}$.
But $\quad \quad(I)) I=C^{\prime} e^{\alpha, x}, \quad$ and hence $\quad I=\frac{C}{P((x)} e^{\alpha x}$
is clearly a solution of the equation, provided r is not a root of $P(P)=0$. If $P(x)=0$, the division by $P^{P}(x)$ is impossible and the quest for I has to be directed more carefully. Let α be a root of multiplicity m so that $P(D)=(I)-(k)^{m} P_{1}(D)$. 'Then
and

$$
P_{1}^{\prime}(D)(D-q)^{m} I=C e^{\alpha x}, \quad(D-\kappa)^{m} I=\frac{C}{P_{1}^{\prime}(n)} e^{\alpha x},
$$

$$
\begin{equation*}
I=\frac{C}{P_{1}(x)} r^{a x} \int \cdots \int(d x)^{m}=\frac{C e^{\alpha x}, x^{m}}{P_{1}(r) m!} \tag{23'}
\end{equation*}
$$

For in the integration the constants may be omitted. It follows that when $I=C e^{a x}$, the solution I may be fomed by direct sullstitutim.

Now if X broke up into the sum of terms $X=X_{1}+X_{2}+\cdots$ and if solutions I_{1}, I_{2}, \cdots were determined for earh of the equations $P(D) I_{1}=X_{1}$, $I(I) I_{2}=X_{2}, \cdots$, the solution I corresponding to I would be the sum $I_{1}+I_{2}+\cdots$. Thus it is seen that the above short methods apply to equations in which X^{-}is a sum of terms of the form $C x^{m}$ or $C e^{\alpha x}$.

As an example consider $\left.\left(D^{4}-2 I\right)^{2}+1\right) y=e^{x}$. The roots are $1,1,-1,-1$, and $\alpha=1$. Hence the solution for I is written as

$$
(D+1)^{2}(D-1)^{2} I=e^{x}, \quad(D-1)^{2} I=\frac{1}{4} e^{x}, \quad I=\frac{1}{8} e^{x} x^{2}
$$

Then

$$
y=e^{x}\left(C_{1}+C_{2} x\right)+e^{-x}\left(C_{3}+C_{4} x\right)+\frac{1}{8} e^{x} x^{2}
$$

Again consider $\left(D^{2}-5 D+6\right) y=x+e^{m x}$. To find the I_{1} corresponding to x, divide.

$$
I_{1}=\frac{1}{6-5 D+D^{2}} x=\left(\frac{1}{6}+\frac{5}{36} D+\cdots\right) x=\frac{1}{6} x+\frac{5}{36} .
$$

To find the I_{2} corresponding to $e^{m x}$, substitute. There are three cases,

$$
I_{2}=\frac{1}{m^{2}-5 m+6} e^{m x}, \quad I_{2}=x e^{3 x}, \quad I_{2}=-x e^{2 x}
$$

according ats m is neither 2 nor 3, or is 3, or is 2 . Hence for the complete solution,

$$
y=C_{1} e^{3 x}+C_{2} e^{2 x}+\frac{1}{6} x+\frac{5}{36}+\frac{1}{m^{2}-5 m+6} e^{m x},
$$

when m is neither 2 nor 3 ; but in these special cases the results are

$$
y=C_{1} e^{3 x}+C_{2} e^{2 x}+\frac{1}{6} x+\frac{5}{3 b}-r e^{2 x}, \quad y=C_{1} e^{3 x}+C_{2} e^{2 x}+\frac{1}{6} x+\frac{5}{3}+x e^{3 x}
$$

The next case to consider is where N is of the form $\cos \beta$.r or sin β.r. If these trigonometric functions be expressed in terms of exponentials, the solution may be conducted by the method above; and this is perhals the best method when $\pm \beta i$ are roots of the equation $P^{\prime}(D)=0$. It may he noterl that this method would apply also to the case where
 trigonometric functions into two exponentials, it is lossible to combine two trigonometric functions into an exponential. Thus, consider the equations
and

$$
\begin{align*}
& P(I) y=r^{a \cdot x} \cos \beta \cdot r, \quad P(D)!=r^{a r} \sin \beta \cdot r, \\
& P(D)!y=r^{a \cdot r}\left(\cos \beta \cdot r^{r}+i \sin \beta \cdot r^{\prime}\right)=r^{(\alpha+\beta i) \cdot} . \tag{24}
\end{align*}
$$

The solution I of this last equation may he found and split into its real and imasinary parts, of which the real part is the solution of the equation involving the cosine, and the imaginary part the sime.

When X lats the form cos β.r or sin $\beta, r^{\text {and }} \pm \beta i$ are not roots of the equation $P(I)=0$, there is a very short method of finding I. For

$$
I^{2} \cos \beta \cdot r^{r}=-\beta^{2} \text { ros } \beta \cdot r^{r} \quad \text { and } \quad I r^{2} \sin \beta . r^{r}=-\beta^{2} \sin \beta . r
$$

Hence if $I(I)$ lie witten as $I_{1}^{\prime}\left(I^{2}\right)+I I_{2}^{\prime}\left(I^{2}\right)$ beollecting the even terms and the odd terms so that I_{1} and I_{2}^{\prime} are both even in I, the solution may be carried out symbolieally as

$$
\begin{align*}
& I=\frac{1}{P^{\prime}(D)}-\cos r=\frac{1}{P_{1}\left(I I^{2}\right)+I I_{2}^{\prime}\left(I^{2}\right)} \cos x=\frac{1}{P_{1}\left(-\beta^{2}\right)+D P_{2}^{\prime}\left(-\beta^{2}\right)} \cos x, \\
& \text { or } \quad I=\frac{I_{1}^{\prime}\left(-\beta^{2}\right)-I I_{2}^{\prime}\left(-\beta^{2}\right)}{\left[I_{1}^{\prime}\left(-\beta^{2}\right)\right]^{2}+\beta^{2}\left[I_{2}^{\prime}\left(-\beta^{2}\right)\right]^{2}} \quad
\end{align*}
$$

By this derice of sulstitution and of rationalization as if f) were a surd, the differentiation is transfered to the mmerator and win be performen. This method of prevedure may be justified direetly, or it may be made to depend upen that of the jaragaph above.

Consiler the (xample $\left.(I)^{2}+1\right)!=$ cosc. . Here $\beta i=i$ is a root of $J^{2}+1=0$. As an operator 7$)^{2}$ is culuivalent to -1 , amb the rationalization method will mot work. If the first solution be followed. the methond of solution is

If the second sugsestion be followed, the solution may be foum as follows:

$$
\left(D^{2}+1\right) I=\cos x+i \sin x=\epsilon^{t x}, \quad I=\frac{1}{L^{2}+1} e^{i x}=\frac{x e^{i s}}{2 i} .
$$

Now

$$
I=\frac{x}{2 i}(\cos x+i \sin x)=\frac{1}{2} x \sin x-\frac{1}{2} i x \cos x .
$$

Fience

$$
\begin{array}{lll}
I=\frac{1}{2} x \sin x & \text { for } & \left(D^{2}+1\right) I=\cos x, \\
I=-\frac{1}{2} x \cos x & \text { for } & \left(I^{2}+1\right) I=\sin x .
\end{array}
$$

and
The complete solution is $\quad y=C_{1} \cos x+C_{2} \sin x+\frac{1}{2} x \sin x$ ， and for $\left(D^{2}+1\right) y=\sin x, y=C_{1} \cos x+C_{2} \sin x-\frac{1}{2} x \cos x$ ．

As another example take $\left(L^{2}-3 D+2\right) y=\cos x$ ．The roots are 1,2 ，neither is equal to $\pm \beta i= \pm i$ ，and the method of rationalization is practicable．Then

$$
I=\frac{1}{D^{2}-3 D+2} \cos x=\frac{1}{1-3 D} \cos x=\frac{1+3 D}{10} \cos x=\frac{1}{10}(\cos x-3 \sin x) .
$$

The complete solution is $y=C_{1} e^{-x}+C_{2} e^{-2 x}+\frac{1}{1_{0}}(\cos x-3 \sin x)$ ．The extreme simplicity of this substitution－rationalization method is noteworthy．

EXERCISES

1．By the general method solve the equations：
（a）$\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=2 \epsilon^{2 r}$ ，
（ β ）$\frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-y=e^{x}$ ，
（ γ ）$\left(D^{2}-4 D+2\right) y=r$ ．
（ס）$\left.\left(I^{3}+I^{2}-4 I\right)-4\right) y=x$ ，
（ ϵ ）$\left(I^{3}+5 D^{2}+6 I\right) y=r$ ，
（ら）$\left.\left(I^{2}+1\right)+1\right) y=r e^{r}$ ，
（ η ）$\left(I^{2}+D+1\right) y=\sin 2 x$ ．
（ θ ）$\left(T^{2}-4\right) y=x+c^{2} x$ ，
（九）$\left(L^{2}+3 D+2\right) y=x+\cos x$ ．
（к）$\left(J^{4}-4 D^{2}\right) y=1-\sin x$ ，
（入）$\left(D^{2}+1\right) y=\cos x$ ，
$\left.(\mu)(I)^{2}+1\right) y=\sec x$.
（v）$\left.(1)^{2}+1\right) y=\tan x$ ．

2．By the rule write the solutions of these equations：
$\left.(\alpha)\left(I^{2}+3 I\right)+2\right) y=0$,
（ β ）$\left(L^{3}+3 J^{2}+7-5\right)!=0$,
（ γ ）$(I-1)^{3} y=0$ ，
（б）$\left(I^{4}+2 I^{2}+1\right) y=0$ ，
（є）$\left(I^{3}-3 I^{2}+4\right) y=0$ ，
（ら）$\left.\left(I^{4}-I^{3}-9 I^{2}-11 I\right)-4\right) y=0$ ，
（ η ）$\left(I^{3}-\left(6 I^{2}+9 I\right) y=0\right.$ ，
（ θ ）$\left.\left(I^{4}-4 I^{3}+8 I^{2}-8 I\right)+4\right) y=0$ ，
（1）$\left(I^{5}-2 I^{4}+D^{3}\right) y=0$ ，
（к）$\left(I^{3}-I^{2}+I\right) y=0$ ，
（入）$\left(I^{4}-1\right)^{2} y=0$ ，
（ μ ）$\left(I^{5}-13 I^{3}+2\left(I^{2}+82 I\right)+104\right) y=0$ ．

3．By the short methorl solve（ γ ），（ δ ）．（ ϵ ）of Ex．1，and also ：
（ α ）$\left(I H^{4}-1\right) y=x^{4}$ ．
（阝）$\left(D^{3}-6 I^{2}+11 I\right)-(i) y=x$ ．
（ γ ）$\left(I^{3}+3 D^{2}+2 I\right) y=r^{2}$ ，
（ $\left.\delta)\left(I^{3}-3 I^{2}-6 I\right)+8\right) y=r$ ，
（є）$\left(I^{3}+8\right) y=x^{4}+2 x+1$ ，
（乡）$\left.\left(l^{3}-3 l^{2}-I\right)+3\right) y=r^{2}$ ：
（ η ）$\left(I^{4}-2 I I^{3}+V^{2}\right) y=x$ ，
（9）$\left.\left(I^{4}+2 I^{3}+3 I^{2}+2 I\right)+1\right) y=1+x+x^{2}$ ，
（ 1$)\left(I^{3}-1\right) y=x^{2}$ ，
（к）$\left(I^{4}-2 D^{3}+I^{2}\right) y=x^{3}$ ．

4．By the short methord solve $(\alpha),(\beta)$ ．（ θ ）of Ex．1，and also：
（ $\alpha)\left(D^{2}-3 D+2\right) y=e^{x}$ ，
（ β ）$\left(D^{4}-D^{3}-3 I^{2}+5 I-2\right) y=\epsilon^{3 . r}$ ，
（ γ ）$\left.\left.(I)^{2}-2 I\right)+1\right) y=e^{x}$ ．
（ δ ）$\left(L^{3}-3 D^{2}+4\right) y=e^{3 r}$ ，
（ $\epsilon)\left(D^{2}+1\right) y=2 e^{x}+x^{y}-x$ ．
（弓）$\left(D^{3}+1\right) y=3+e^{-x}+5 e^{2 r}$ ，
（ η ）$\left.(J)^{4}+2 J^{2}+1\right) y=e^{x}+4$ ．
（ θ ）$\left.\left(L^{3}+3 I^{2}+3 I\right)+1\right) y=2 e^{-x}$ ，
（ 1$)\left(J^{2}-2 I\right) y=t^{2} \cdot+1$ ．
（к）$\left(I^{3}+2 I^{2}+D\right) y=e^{2} x+c^{2}+x$,
（入）$\left(L^{2}-u^{2}\right) y=\epsilon^{a \cdot r}+\epsilon^{b b r}$ ，
（ μ ）$\left.\left(J^{2}-2 a D\right)+u^{2}\right) y=c^{x}+1$ ．

5．Solve by the short method（ η ），（ $)$ ．（ κ ）of Ex．1，and also：
（a）$\left(D^{2}-D-2\right) y=\sin x$ ，
（ß）$\left(I^{2}+2 D+1\right) y=3 e^{2 \cdot x}-\cos x$ ．
（ γ ）$\left(L^{2}+4\right) y=x^{2}+\cos x$ ，
（ $\delta)\left(I^{3}+D^{2}-D-1\right) y=\cos 2 x$ ，
（є）$\left(D^{2}+1\right)^{2} y=\cos x$ ，
（官 $\left(D^{3}-D^{2}+D-1\right) y=\cos x$ ．
（ η ）$\left(D^{2}-5 D+6\right) y=\cos x-e^{2 x}$ ，
（ θ ）$\left(I^{3}-2 I^{2}-3 I\right) y=3 x^{2}+\sin x$ ，
（（ ）$\left(D^{2}-1\right)^{2} y=\sin x$ ，
（к）$\left.\left(J^{2}+3 I\right)+2\right) y=e^{2 x} \sin r$ ．
（ λ ）$\left.(I)^{4}-1\right) y=e^{x} \cos x$ ，
（ μ ）$\left(I^{2}-3 D^{2}+4 D-2\right) y=e^{2}+\cos x$,
（v）$\left(L^{2}-2 D+4\right) y=e^{x} \sin x$,
（o）$\left(D^{2}+4\right) y=\sin 3 x+\epsilon^{x}+x^{2}$ ，
$(\pi)\left(D^{6}+1\right) y=\sin \frac{3}{2} x \sin \frac{1}{2} x$ ，
（P）$\left(I I^{3}+1\right) y=e^{2 x} \sin x+\epsilon^{\frac{r}{2}} \sin \frac{x \sqrt{3}}{2}$ ，
（ σ ）$\left(D^{2}+4\right) y=\sin ^{2} x$,
$\left.\left.(\tau)(I)^{4}+32 I\right)+48\right) y=r c^{-2}+c^{2 x} \cos 2^{2} s$.

6．If X has the form $\epsilon^{\alpha x} I_{1}$ ，show that $I=\frac{1}{P(J)} \epsilon^{\epsilon^{a x}} X_{1}=\epsilon^{\alpha x} \frac{1}{\left.I^{\prime}(I)+\alpha\right)} X_{1}$ ． This enables the solution of equations where X_{1} is a polynomial to be obtainerl ly a short method；it also gives a way of treating equations where X is cow cos $\beta \kappa$ or $e^{\alpha x} \sin \beta x$ ，but is not an improvement on（ 24 ）；finally，combined with the secomd suggestion of（24），it covers the case where I is the product of a sine or cosine by a polynomial．Solve by this methord，or partly by this method，（ ζ ）of Ex． $1 ;(\kappa)$ ．（ λ ）． $(\nu),(\rho),(\tau)$ of Ex． 5 ；and also
（ α ）$\left(D^{2}-2 D+1\right) y=x^{2} e^{3 x}$ ，
（ β^{3} ）$\left(I^{3}+3 D^{2}+3 D+1\right) y=\left(2-x^{2}\right) e^{-x}$ ．
（r）$\left(L^{2}+n^{2}\right) y=x^{4} e^{x}$ ，
（ $\left.\delta)\left(I^{4}-2 D^{3}-3 D^{2}+4 I\right)+4\right) y=x^{2} e^{x}$ ．
（ ϵ ）$\left(L^{3}-7 D-{ }^{3}\right) y=e^{2, r}(1+x)$ ，
（乡）$(I-1)^{2} y=e^{2}+\cos x+x^{2} e^{x}$ ．
（ η ）$(I-1)^{3} y=x-c^{3} e^{x}$ ，
（日）$\left(J^{2}+2\right) y=x^{2} e^{3 x}+e^{x}\left(\cos ^{2} 2 x\right.$ ．
（1）$\left(I^{3}-1\right) y=x e^{x}+\cos ^{2} x$ ，
（к）$\left(I^{2}-1\right) y=s \sin x+\left(1+x^{2}\right) e^{r}$ ，
（ λ ）$\left(D^{2}+4\right) y=x \sin x$ ，
（ μ ）$\left(I^{4}+2 I^{2}+1\right) y=r^{2} \cos \pi s$ ．
（v）$\left(L^{2}+4\right) y=(r \sin x)^{2}$ ．
（o）$\left(D^{2}-2 D+4\right)^{2} y=x e^{x} \cos \sqrt{3} s$ ．

7．Show that the substitution $s=e^{t}$ ．Ex．9．p．1．2．chanses erfuations of the type

$$
\begin{equation*}
x^{n} D^{n} y+a_{1} \cdot c^{n-1} D^{n-1} y+\cdots+d_{n-1} \cdot x I y+a_{n} y=X(r) \tag{26}
\end{equation*}
$$

into equations with ernstant coefficients ：also that $a r+h=\epsilon^{\prime}$ would make a simi－ lar simplification for equations，whe coefficients were powers of ar $+h$ ．Hence integrate：
（ $(x)\left(x^{2} y^{2}-x D+2\right) y=x \log x$ ．
（ß）$\left.\left(x^{3} I^{3}-x^{2} I\right)^{2}+2 r I-2\right) y=x^{3}+3 x$ ．
（ γ ）$\left.\left.\left[(2 x-1)^{3} I\right)^{3}+(2 x-1) I\right)-2\right] y=0$ ，
（ $\left.\delta)\left(r^{2} I\right)^{2}+3 s I\right)+1!\eta=(1-r)^{-2}$ ．
（є）$\left(x^{3} D^{3}+x D-1\right) y=x \ln c x$ ．
（ ζ ）$\left[(r+1)^{2} I H^{2}-4(r+1) I\right)+(i] y=r$ ．
（ η ）$\left.\left(x^{2} D^{2}+4 x I\right)+2\right) y=e^{r}$ ，
（G）$\left.\left.\left(r^{3} 1\right)^{2}-3 x^{2} I\right)+r\right)!=\log x \sin \log r+1$ ．
（（ ）$\left(x^{4} D^{4}+0, x^{3} J^{3}+4 x^{2} D^{2}-2 x D-4\right) y=x^{2}+2 \cos \log x$.
8．If L be self－induction．I_{i} resistance．（＇capacits．i current． 4 sharge upon the plates of a condenser．and $f(f)$ the electromotive force then the differential equa－ tions for the circuit are

$$
\text { (} \left.\alpha) \frac{d^{2} \varphi}{d t^{2}}+\frac{R \frac{d q}{L} d t}{d t}+\frac{q}{L C^{\prime}}=\frac{1}{L} f(t) . \quad \text { (} \beta\right) \frac{d^{2} i}{d t^{2}}+\frac{R}{L} \frac{d i}{d t}+\frac{i}{L C}=\frac{1}{L} f^{\prime}(t) .
$$

Solve (α) when $f(t)=e^{-a t} \sin b t$ and (β) when $f(t)=\sin b t$ ．Reduce the tritenometric part of the partioular solution to the form K sin $(b t+\gamma)$ ．Show that if R is small

98. Simultaneous linear equations with constant coefficients. If

 there be given two (or in general n) linear equations with constant coefficients in two (or in general n) dependent variables and one independent variable t, the symbolic method of solution may still be used to adyantage. Let the equations be$$
\begin{aligned}
& \left(\prime_{0} D^{n}+r_{1} I^{n-1}+\cdots+\prime_{n}\right) x+\left(l_{0} D^{m}+l_{1} I^{m-1}+\cdots+l_{m}\right) y=R(t), \\
& \left(r_{0} D^{\prime \prime}+c_{1} D^{n-1}+\cdots+r_{p}\right) r+\left(l_{0} D^{q}+l_{2} D^{q-1}+\cdots+l_{q}\right)!=s(t),
\end{aligned}
$$

when there are two variables and where D denotes differentiation by t. The equations may also be written more briefly as

$$
P_{1}(I) \cdot r+Q_{1}(I)!!=R \quad \text { and } \quad P_{2}(I) \cdot r+Q_{2}(D)!y=S .
$$

The ordinary algenmai process of solntion for x and !/ may be employed beeanse it depends only on such laws ats are satisfied erpally hy the symbols $I), I_{1}(I), Q_{1}(I)$, and so on.

Hence the solution for and ! is fomud hy multiplying ly the appropriate coefficients and adding the erpuations.

Then

It will be notiered that the roefferients be which the erguations are multiplied (writtern on the left) are so chosen as to make the conetficients of .r and y in the solved form the same in sign as in other resperets. It may also be noted that the order of P and $(Q$ in the symboliw produrts is immaterial. By (x Pambing thr operator $P_{1}(I) Q_{2}(I)-P_{2}(I) R_{1}(l)$ a rertain polynomial in $/ /$ is obtained ant hy applying the operators to f and is as indieated rertain functions of t are ohtained. Each equation, whether in , ror in !/, is 'quite of the form that has been treated in ss 95-97.

As an example consider the solution for s and y in the case of

$$
2 \frac{d^{2} x}{d t^{2}}-\frac{d y}{d t}-4 x=2 t, \quad 2 \frac{d r}{d t}+4 \frac{d y}{d t}-3 y=0
$$

or
Solve

$$
\left.\left(2 D^{2}-4\right) x-1!!=2 t, \quad 2 I x+(4 I)-?\right) y=0
$$

$$
\begin{array}{cc|c}
41)-3-2 l) & \left.(2 l)^{2}-4\right) \cdot x-I!y=2 t \\
J) & 2 l^{2}-4 & 2 I x+(47-3)!=0 .
\end{array}
$$

Then

$$
\left.[(4 I)-3)\left(2 J^{2}-4\right)+2 H^{2}\right] x=(4 I-3) 2 t
$$

$$
\left[2 I^{2}+\left(2 D^{2}-4\right)(4 I-3)\right] y=-(2 I) 2 t,
$$

or $\left.\quad 4\left(2 I^{3}-I^{2}-4 D+3\right) x=8-6 t, \quad 4(21)^{3}-D^{2}-4 D+3\right) y=-4$.
The roots of the polynomial in I are 1. 1. $-1 \frac{1}{2}$; and the particular solution I_{x} for x is $-\frac{1}{2} t$ and I_{y} for $!\mathrm{i}$ is $-\frac{1}{3}$. Hence the solutions have the form

$$
r=\left(r_{1}+r_{2} t\right) c^{t}+\left(_{3} r^{-\frac{3}{2} t}-\frac{1}{2} t, \quad y=\left(K_{1}+K_{2} t\right) e^{t}+K_{3} c^{-\frac{3}{2}} t-\frac{1}{3} .\right.
$$

The arbitrary constants which are introluced into the solutions for x and!/ are not independent nor are they identical. The solutions must
 betreph the constonts. It will be noticed that in general the order of the equation in I for r and $f(r r y$ is the sum of the orders of the highest derivatives which oceur in the two equations, - in this case, $3=2+1$. The order may be diminished by cancellations whiclo oceur in the formal algebraic solutions for r and y. In faret it is conceivahle that the coefticient $P_{1} Q_{2}-P_{2} 2_{1}$ of r^{r} and y in the solved equations should vamish and the solution berome illusory. This rase is of so little consequence in practice that it may be dismissed with the statement that the solution is then either impossible or indeterninate; that is, either there are no functions, r and ! of t which satisfy the two given differential equations, or there are an intinite number in each of which other things than the constants of integration are arbitrary.

To finish the example above and determine one set of arbitrary constants in terms of the other, substitute in the second differential equation. Then

$$
\begin{aligned}
& 2\left(C_{1} e^{t}+C_{2} e^{t}+C_{2} t e^{t}-\frac{3}{2} C_{3} e^{-\frac{3}{2} t}-\frac{1}{2}\right)+4\left(K_{1} c^{t}+K_{2_{2}} e^{t}+K_{2} t c^{t}-\frac{3}{2} K_{3} e^{-\frac{3}{2}}\right) \\
& -3\left(K_{1} t^{t}+K_{2} t e^{t}+K_{3^{2}} e^{-\frac{3}{2} t}-\frac{1}{5}\right)=0, \\
& \epsilon^{t}\left(2 C_{1}+2 C_{2}^{\prime}+K_{1}+K_{2}^{\prime}\right)+t^{t}\left(2 C_{2}+K_{2}^{2}\right)-3 e^{-\frac{3}{2}}\left(C_{3}+3 K_{3}\right)=0 .
\end{aligned}
$$

or
As the terms ϵ^{t}, tet, $e^{-\frac{3}{2} t}$ are independent, the linear relation between them can hold only if each of the coetticients vamishes. Hence

$$
C_{3}+3 K_{3}=0, \quad 2 C_{2}+K_{2}=0, \quad 2 C_{1}+2 C_{2}+K_{1}+K_{2}=0
$$

and $\quad C_{3}^{\prime}=-3 K_{3}, \quad 2 C_{2}^{\prime}=-K_{2} . \quad 2 C_{1}=-K_{1}$.
Hence $x=\left(C_{1}+C_{2} t\right) e^{t}-3 K_{3} e^{-\frac{3}{2} t}-\frac{1}{2} t, \quad y=-2\left(r_{1}+C_{2} t\right) e^{t}+K_{3} e^{e^{-\frac{3}{2} t}-\frac{1}{3}}$
are the finished solutions, where $C_{1}{ }_{1}{ }^{\prime}{ }_{2}^{2}, K_{3}$ are three arbitrany constants of integration and might equally well be demotel by C_{1}. ' ${ }_{2}$. (' ${ }_{3}$, of K_{1}, K_{2}, K_{3}.
99. One of the most inportant applications of the theory of simultanenns equations with constant cnefficients is th the theory of small cilbrations whout a slute of equilibrium in "romservative* lynamical system. If $q_{1} \cdot q_{2}, \cdots, q_{n}$ are n coürdinates (see Exs. 19-20. p. 112) which specify the position of the system measured relatively

[^20]to a position of stable equilibrimm in which all the q ss vanish, the development of the potential energy by Maclaurin's Formula gives
$$
V^{\prime}\left(q_{1}, q_{2}, \cdots, q_{n}\right)=V_{0}+V_{1}\left(q_{1}, q_{2}, \cdots, q_{n}\right)+V_{2}\left(q_{1}, q_{2}, \cdots, q_{n}\right)+\cdots,
$$
where the first term is constant, the second is linear, and the third is quadratic, and where the supposition that the \dot{q} s take on only small values, owing to the restriction to small vibrations, shows that each term is infinitesimal with respect to the preceding. Now the constant term may be neglected in any expression of potential energy. As the position when all the q s are 0 is assumed to be one of equilibrium, the forces
$$
Q_{1}=-\frac{\hat{c} V}{\hat{c} q_{1}}, \quad Q_{2}=-\frac{\hat{c} V}{\hat{c} q_{2}}, \quad \cdots, \quad Q_{n}=-\frac{\hat{\partial} V}{\hat{c} q_{n}}
$$
must all vanish when the q s are 0 . This shows that the coefficients, $\left(\hat{\partial} V^{\top} / \delta q_{q}\right)_{0}=0$, of the linear expression are all zero. Hence the first term in the expansion is the quadratic term, and relative to it the higher terms may be distegarded. As the position of equilibrium is stable, the system will tend to retimen to the prsition where all the q s are 0 when it is slightly displacel from that position. It follows that the quadratic expression must be definitely positive.

The kinetic energy is always a quadratic function of the velocities $\dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}$ with coefficients which may be functions of the q $\%$. If each coefficient he expanled by the Machanrin Formula and only the first or constant term be retained, the kinetic energy becomes a qualratic function with constant coefficients. Hence the Lagrangian function (cf. § 160)

$$
L=T-V^{\top}=T\left(\dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}\right)-V^{-}\left(q_{1}, q_{2}, \cdots, q_{n}\right),
$$

when substituted in the formulas for the motion of the system, gives

$$
\frac{d}{d t} \frac{\hat{c} L}{\bar{c} \dot{q}_{1}}-\frac{\bar{c} L}{\bar{c} q_{1}}=0 . \quad \frac{d}{d t} \frac{\bar{c} L}{\bar{c} \dot{q}_{2}}-\frac{\bar{c} L}{\bar{c} q_{2}}=0 . \quad \cdots, \quad \frac{d}{d t} \frac{\hat{c}}{\frac{c}{c} \dot{q}_{n}}-\frac{\hat{c} L}{\hat{c} q_{n}}=0,
$$

a set of equations of the second order with constant coefficients. The equations moreover involve the operator I only throngh its spuare, and the roots of the equation in D must be either real or pure imaginary. The pure imaginary roots introduce trigonometric functions in the solution and represent vibrations. If there were real roots, which would have to occur in pairs, the positive rout would represent a term of exponential form which would increase indefinitcly with the time, - a result which is at variance both with the assumption of stable equilibrium and with the fact that the energy of the system is constant.

When there is friction in the system, the forces of friction are supposed to vary with the velocities for small vibrations. In this case there exists a dissipative function $F\left(\dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}\right)$ which is quadratic in the velocities and may lee assumed to have constant coefficients. The equations of motion of the system then become

$$
\frac{d}{d t} \frac{\hat{c} L}{\frac{c}{c} \dot{q}_{1}}-\frac{\hat{c} L}{\hat{c} q_{1}}+\frac{\hat{c} F}{\hat{c} \dot{q}_{1}}=0, \cdots \cdot \frac{d}{d t} \frac{\hat{c} L}{\frac{\partial}{c} \dot{q}_{n}}-\frac{\hat{c} L}{\hat{c} q_{n}}+\frac{\hat{c} F}{\hat{c} \dot{q}_{n}}=0,
$$

which are still linear with constant coefficients lont involve first powers of the operator D. It is physically obvions that the ronts of the equation in I) must be negative if real, and monst have their real parts negative if the roots are complex ; for otherwise the energy of the motion wond increase infefinitely with the time. whereas it is known to be steadily dissipating its initial energe. It may be added that if, in addition to the internal forees arising from the potential IV and the
frictional forces arising from the dissipative function F, there are other forces impressed on the system, these forces would remain to be inserted upon the righthand side of the equations of motion just given.

The fact that the equations for small vibrations lead to equations with constant coefficients by neglecting the higher powers of the variables gives the important physical theorem of the superposition of small vibrations. The theorem is: If with a certain set of initial conditions, a system executes a certain motion ; and if with a different set of initial conditions taken at the same initial time, the system executes a second motion; then the system may execute the motion which consists of merely addiner or superposing these motions at each instant of time ; and in particular this combined motion will be that which the system would execute mader initial conditions which are fomed by simply adding the corresponding valnes in the two sets of initial conditions. This theorem is of course a mere corollary of the linearity of the equations.

EXERCISES

1. Integrate the following systems of equations:
(c) $D x-D y+x=\cos t$,
(阝) $31 x+3 x+2 y=\epsilon^{t}$,
(γ) $D^{2} x-3 x-4 y=0$,
(ס) $\frac{d x}{y-7 x}=\frac{-d y}{2 x+5 y}=d t$,
(ら) $t I D x+2(x-y)=1$,
(η) $D . r=n y-m z$,
(A) 7$)^{2} x-3 x-4 y+3=0$,
(1) $\left.I^{4} x-4 I\right)^{3} y+4 I I^{2} x-x=0$,
$D^{2} x-1 I_{y}+3 x-y=c^{2 t}$, $4 x-31 y+3 y=3 t$, $D^{2} y+x+y=0$,
(ϵ) $-d t=\frac{d x}{3 x+4 y}=\frac{d y}{2 x+5 y}$,
$t D y+x+5 y=t$,
$\left.D_{y} y=l z-n x, \quad \quad I\right) z=m x-l y$,
$1)^{2} y+x-8 y+5=0$,
$I^{4} y-47 J^{3} x+4 I^{2} y-y=0$.
2. A particle vibrates withont friction upon the imer surface of an ellipsoint. Discuss the motion. Take the ellipmide as
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{(z-c)^{2}}{c^{2}}=1 ;$ then $x=\left(\sin \left(\frac{\sqrt{c}(q}{a} t+C_{1}\right), \quad y=K \sin \left(\frac{\sqrt{c \cdot q}}{b} t+K_{1}\right)\right.$.
3. Same as Ex. 2 when friction varies with the velocity.
4. Two heavy particles of equal mass are attached to a light string, one at the middle. one at one end, and are suspended by attaching the other end of thestring to a fixed point. If the particles are slightly displaced and the oscillations take place without friction in a vertical plane containing the fixed point, discuss the motion.
5. If there be given two electric circuits without capacity, the equations are

$$
L_{1} \frac{d i_{1}}{d t}+M_{d t}^{d i_{2}}+I_{1} i_{1}=L_{1}, \quad L_{2} \frac{d i_{2}}{d t}+M \frac{d i_{1}}{d t}+I_{i_{2}} i_{2}=E_{2},
$$

where i_{1}, i_{2} are the curvents in the circuits, L_{1}, L_{2} are the coefficionts of solfinchection, h_{1}, R_{2} are the resistances, and M is the eocfticient of mmtnal induction. (α) Integrate the eflations when the impressed dectromotive fores E_{1}, E_{2} are zero in looth (ircuits. (β) Also whon $E_{2}=0$ but $E_{3}=$ sin p is a periodie force. (γ) Disenss the cases of lowse coupling, that is, where $M^{2} / L_{1} L_{2}$ is small ; and the case of chose compling, that is, where $M^{2} / L_{1} L_{2}$ is marly mity. What values for p are especially moteworthy when the dimping is small?
6. If the two circuits of Ex. 5 have capacities C_{1}, C_{2} and if q_{1}, q_{2} are the charges on the condensers so that $i_{1}=d q_{1} / d t, i_{2}=d q_{2} / d t$ are the currents, the equations are

$$
L_{1} \frac{d^{2} q_{1}}{d t^{2}}+M \frac{d^{2} q_{2}}{d t^{2}}+R_{1} \frac{d q_{1}}{d t}+\frac{q_{1}}{C_{1}}=E_{1}, \quad L_{2} \frac{d^{2} q_{2}}{d t^{2}}+M \frac{d^{2} q_{1}}{d t^{2}}+R_{2} \frac{d q_{2}}{d t}+\frac{q_{2}}{C_{2}}=E_{2}
$$

Integrate when the resistances are negligible and $E_{1}=E_{2}=0$. If $T_{1}=2 \pi \sqrt{C_{1} L_{1}}$ and $T_{2}=2 \pi \sqrt{C_{2} L_{2}}$ are the periods of the individual separate circuits and $\Theta=2 \pi M \sqrt{C_{1} C_{2}}$, and if $T_{1}=T_{2}$, show that $\sqrt{T^{2}+\Theta^{2}}$ and $\sqrt{T^{2}-\Theta^{2}}$ are the independent periods in the compled circuits.
7. A miform beam of weight 6 ll . and length 2 ft . is placed orthogonally across a rough horizontal cylinder 1 ft . in dianeter. To each end of the beam is suspemded a weight of 1 lb . upon a string 1 ft . long. Solve the motion produced by giving one of the weights a slight horizontal velocity. Note that in finding the kinetic energy of the beam, the bean may be considered as rotating about its middle point (\$39).

CIIAPTER IX

ADDITIONAL TYPES OF ORDINARY EQUATIONS

100. Equations of the first order and higher degree. The legree of a differential equation is defined as the degree of the derivative of highest order which enters in the equation. In the case of the equation $\Psi\left(r^{r}, y, y^{\prime}\right)=0$ of the first order, the degree will he the degree of the equation in y^{\prime}. From the idea of the lineal element (885) it appears that if the degree of Ψ in y^{\prime} is n, there will be n lineal elements through each point (x, y). Hence it is seen that there are n curves, which are compounded of these elements, passing through each point. It may be pointed out that equations surn as $y^{\prime}=r \sqrt{1+y^{2}}$, which are apparently of the first degree in ! $/$, are really of higher degree if the multiple value of the functions, sulh as $\sqrt{1+y^{2}}$, which enter in the equation, is taken into eonsideration: the equation abore is replareable by $y^{\prime 2}=r^{2}+r^{2} y^{2}$, which is of the serond degree and without any multiple valued function.*

First sulpose that the diffirmentenl ryuntion

$$
\begin{equation*}
\Psi\left(\cdot y^{\prime}, y, y^{\prime}\right)=\left[y^{\prime}-\psi_{1}(\cdot, r, y)\right] \times\left[y^{\prime}-\psi_{2}(\cdot, y, y)\right] \cdots=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime}-\psi_{1}(\cdot, y, y)=0, \quad y^{\prime}-\psi_{2}(\cdot, \cdot, y)=0, \cdots \tag{1'}
\end{equation*}
$$

of equations earch of the first orktr, and earch of these may be treated by the methods of 'hap]. VIII. Thas a set of integrals \dagger

$$
\begin{equation*}
F_{\mathrm{r}}^{r_{r}}\left(r, y, r^{\prime}\right)=0, \quad r_{2}\left(r, y, r^{\prime}\right)=0, \cdots \tag{2}
\end{equation*}
$$

may lee ohtained, and the procluct of these selarate integrals

$$
\begin{equation*}
F\left(r^{\prime}, y, r\right)=F_{1}(r, y, r) \cdot F_{2}\left(r, y, r^{\prime}\right) \cdots=0 \tag{2}
\end{equation*}
$$

is the eomplete solution of the original equation. Geometrionlly speaking, earh integral $F_{i}\left(x, y, \prime^{\prime}\right)=0$ repmenents a fantily of "urves and the product represents all the fanilies simultaneonsly.

[^21]As an example consider $y^{\prime 2}+2 y^{\prime} y \cot x=y^{2}$. Solve.

$$
y^{\prime 2}+2 y^{\prime} y \cot x+y^{2} \cot ^{2} x=y^{2}\left(1+\cot ^{2} x\right)=y^{2} \csc ^{2} x,
$$

and

$$
\left(y^{\prime}+y \cot x-y \csc x\right)\left(y^{\prime}+y \cot x+y \csc x\right)=0 .
$$

These equations both come under the type of variables separable. Integrate
and

$$
\begin{array}{ll}
\frac{d y}{y}=\frac{1-\cos x}{\sin x} d x=-\frac{d \cos x}{1+\cos x}, & y(1+\cos x)=C, \\
\frac{d y}{y}=-\frac{1+\cos x}{\sin x} d x=\frac{d \cos x}{1-\cos x}, & y(1-\cos x)=C .
\end{array}
$$

Hence $\quad\left[y(1+\cos x)+C^{\prime}\right]\left[y(1-\cos x)+C^{\prime}\right]=0$
is the solution. It may be put in a different form by multiplying out. Then

$$
y^{2} \sin ^{2} x+2 C y+C^{2}=0 .
$$

If the equation cannot le solved for y^{\prime} or if the equations resulting from the solution cannot be integrated, this first method fails. In that case it may be possible to solve for y or fin x and treat the equation by differentiation. Let $\eta^{\prime}=\rho$. Then if

$$
\begin{equation*}
y=f\left(x, p^{\prime}\right), \quad \frac{d_{y}}{d_{x}}=p=\frac{\hat{c} f}{\hat{c}, x^{\prime}}+\frac{\hat{c} f}{\hat{c} p^{\prime}} \frac{d_{p}}{d_{x^{\prime}}} . \tag{3}
\end{equation*}
$$

The equation thus found by differentiation is a differential equation of the first order in dy/dx and it may be solved by the methods of Chap. V'III to find $F\left(p, x, C^{\prime}\right)=0$. The two equations

$$
y=f\left(r^{\prime}, l^{\prime}\right) \quad \text { and } \quad F\left(1^{\prime}, x^{\prime}, r^{\prime}\right)=0
$$

may be regarded as defining x and !/ paranctrionlly in terms of ρ^{\prime}, or $I^{\prime \prime}$ may be eliminated between them to determine the solution in the form $\Omega(x, y, \sigma)=0$ if this is more convenient. If the given differential equation had been solved for x, then

The resulting equation on the right is an equation of the first order in " 1 '/dy and may be treated in the same way.

As an example take $x p^{2}-2 y p+\alpha x=0$ and solve for η. Then
or

$$
\begin{gathered}
2 y=x p+\frac{a, r}{p}, \quad 2 \frac{d y}{d x}=2 p=p+r \frac{d p}{d x}-\frac{d \cdot r}{p^{2}} \frac{d p}{d x}+\frac{a}{p}, \\
\frac{x}{p}\left[p-\frac{a}{p}\right] \frac{d p}{d x}+\left(\frac{a}{p}-p\right)=0, \quad \text { or } \quad r \quad r l_{p}-p d r=0 .
\end{gathered}
$$

The solution of this equation is $s=r p$. The solution of the given equation is

$$
2 y=x p+\frac{u x}{p}, \quad x=C p
$$

when expressed parametrically in terms of p. If p be eliminated, then

$$
2 y=\frac{r^{2}}{C}+a C \quad \text { parabolas. }
$$

As another example take $p^{2} y+2 p x=y$ and solve for x. Then

$$
\begin{gathered}
2 x=y\left(\frac{1}{p}-p\right), \quad 2 \frac{d x}{d y}=\frac{2}{p}=\frac{1}{p}-p+y\left(-\frac{1}{p^{2}}-1\right) \frac{d p}{d y} \\
\frac{1}{p}+p+y\left(\frac{1}{p^{2}}+1\right) \frac{d p}{d y}=0, \quad \text { or } \quad y d p+p d y=0 .
\end{gathered}
$$

or

The solution of this is $p y=C$ and the solution of the given equation is

$$
2 x=y\left(\frac{1}{p}-p\right), \quad m y=C, \quad \text { or } \quad y^{2}=2\left(x+C^{\prime 2}\right.
$$

Two special types of equation may be mentioned in addition, although their method of solution is a mere corollary of the methods alreaty given in general. They are the equation homogeneons in (x, y) and Cleirentis equation. The general form of the homogemens equation is $\Psi(\rho, y / x)=0$. This equation may be solved as

$$
\begin{equation*}
y=\psi\left(\frac{!}{x}\right) \quad \text { or as } \quad \frac{!}{r}=f(1 \prime), \quad y=r f(1 \prime) ; \tag{5}
\end{equation*}
$$

and in the first case is treated by the methots of ('hal!. VILI, and in the second ly the methols of this artiele. Which method is chosen rests with the solver. The Clairant type of "fuation is

$$
\begin{equation*}
y=p^{2}+f^{\prime}\left(f^{\prime}\right) \tag{6}
\end{equation*}
$$

and comes direetly under the methods of this article. It is esperially noteworthy, however, that on differentiating with respect to x the resulting equation is

$$
\left[x+f^{\prime}\left(f^{\prime}\right)\right] \frac{d_{1}}{d_{x}}=0 \quad \text { or } \quad \frac{d_{p}}{d_{x^{\prime}}}=0 .
$$

Hence the solution for p is $p=r^{\prime}$, and thus $y=r^{\prime} r+f\left(r^{\prime}\right)$ is the solution for the clairaut equation and represents a family of straglat lines. The rule is merely to substitute $($ 'in place of $1 /$. This type orcurs very frequently in geometric: applications cither directly or in a disguised form reguiring a preliminary ehange of varialle.
101. To this point the only solution of the differential equation $\Psi\left(x, y, f^{\prime}\right)=0$ which has been eonsitered is the fermotel swlution $F\left(r^{\prime},!, r^{\prime}\right)=0$ containing an arbitrary constant. If a sperial valur,
 solution. It may lappen that the arbitrary constant (' enter's into the experession $F\left(x, y, C^{\prime}\right)=0$ in such a way that when ${ }^{\prime}$ beromes pesitively
 definite limiting position whiel is a solution of the differential equation : surch solutions are called infinite solutions. Th addition to these tyeres of solution which maturally group themselves in commetetion with the general solution, there is often a solution of a different kind which is
known as the singular solution. There are several different definitions for the singular solution. That which will be adopted here is: A singulurs solution is the encolope of the fumily of curces defined by the general solution.

The consideration of the lineal elements ($\$ 85$) will show how it is that the envelope ($\$ 65$) of the family of particular solutions which constitute the general solution is itself a solution of the equation. For consider the figure, which represents the partitular solutions broken up into their lineal elements. Note that the envelope is made up of those lineal elements, one taken from each particular solution, which are at the points of contact of the envelope with the curves of the family. It is seen that the envelope is a curve all of whose lineal
 elements satisfy the equation $\Psi\left(x^{\prime}, y, l^{\prime}\right)=0$ for the reason that they lie upon solutions of the equation. Now any curve whose lineal elements satisfy the equation is by definition a solution of the equation; and so the envelope must be a solution. It might ronteivally happen that the family $F\left(n^{\prime}, y,\left(^{\prime}\right)=0\right.$ was so constituted as to envelope one of its own eurves. In that case that curve would be both a particular and a singular solntion.

If the general solution $F\left(x, y, C^{\prime}\right)=0$ of a given differential equation is known, the singular solution may be found atcording to the rule for finding envelopes ($\$ 65$) by etiminating $($ from

$$
\begin{equation*}
F(r, y, C)=0 \quad \text { and } \quad \frac{\partial}{\partial C} F(x, y, C)=0 \tag{1}
\end{equation*}
$$

It should be borne in mind that in the eliminant of these two equations there may ocerur some factors whirh do not represent envelopes and which must be discarded from the singular solution. If only the singular solution is desired and the general solution is not known, this method is inconvenient. In the case of Clairaut's equation, however, where the solution is known, it gives the result immediately as that obtained by eliminating (' from the two equations

$$
\begin{equation*}
y=r^{r}+f\left(r^{\prime}\right) \quad \text { and } \quad 0=x^{\prime}+f^{\prime}\left(r^{\prime}\right) \tag{S}
\end{equation*}
$$

It may be noted that as $p=C$, the second of the equations is merely the fartor $x^{\prime}+t^{\prime \prime}\left(f^{\prime}\right)=0$ discarded from $\left(6^{\prime}\right)$. The singular solution may therefore be fomd bex eliminating ρ^{\prime} between the given ('lairaut equation and the discarded factor $\quad t+f^{\prime \prime}(\prime \prime)=0$.

A reepamination of the figure will suggest a means of finding the singular solution withont integrating the given equation. For it is seen that whin two neighboring 'anves of the fanily intersect in a point I '
near the envelope, then through this point there are two lineal elements which satisfy the differential equation. These two lineal elements have nearly the same direction, and indeed the nearer the two neighboring curves are to each other the nearer will their intersection lie to the envelope and the nearer will the two lineal elements approath coincidence with each other and with the element upon the envelope at the point of contact. Hence for all points (x, y) on the envelope the equation $\Psi(x, y, p)=0$ of the lineal elements must have donlule routs fur μ. Now if an equation has double roots, the derivative of the equation must have a root. Hence the requirement that the two equations

$$
\begin{equation*}
\psi\left(x, y, y^{\prime}\right)=0 \quad \text { and } \quad \frac{\hat{c}}{\hat{c}_{p}} \psi\left(s^{\prime},!/, l^{\prime}\right)=0 \tag{9}
\end{equation*}
$$

have a common solution for p will insure that the first has a double root for l^{\prime}; and the points (r, y) which satisfy these equations simultaneously must surely include all the points of the envelope. The rule for finding the singular solution is therefore: Eliminate 1 , from the giren differentiol equation and its deriontice with resperet to p, that is, from (9). The result should be tested.

If the equation $x p^{2}-2 y p+a x=0$ treated above be tried for a singular solution, the elimination of p is required between the two equations

$$
s p^{2}-2 y p+a x=0 \quad \text { and } \quad s p-y=0 .
$$

The result is $y^{2}=a x^{2}$, which gives a pair of liness through the origin. The substitution of $y= \pm \sqrt{\prime}^{\prime} a x$ and $p= \pm \sqrt{\prime} \frac{1}{}$ in the given equation shows at once that $y^{2}=u x^{2}$ satisfies the equation. Thas $y^{2}=u x^{2}$ is a singular solution. The same result is fom by finding the envelope of the general solution given above. It is clear that in this case the singular solution is not a particular solution, as the particular solutions are parabolas.

If the elimination had been carried on by Sylvester"s method, then

$$
\left|\begin{array}{rrr}
0 & x & -y \\
x & -2 y & u \\
x & -y & 0
\end{array}\right|=-x\left(y^{2}-a x^{2}\right)=0 ;
$$

and the eliminant is the product of two factors $x=0$ and $!y^{2}-n, r^{2}=0$. of which the secom is that just fonnd and the first is the y-axis. As the shoge of the y-axis is infinite, the substitution in the equation is hardly legitimate, am the equations can hardly be said to be satisfied. The necurvence of these extranems fastors in the eliminant is the real reasen for the necessity of testing the result to see if it actually represents a singular solution. These extraneous factors may represent a great variety of conditions. Thms in the case of the equation $p^{2}+2 y y^{2}$ ent $s=y^{2}$ previously treaterl, the elimination gives $y^{2} \operatorname{csec}^{2} x=0$ and as cse x cammot ranish. the result reduces to $y^{2}=0$. wr the x-axis. As the slope along the x-axis is 0 anm $!$ is 0 , the equation is clearly satisfied. Tot the line $y=0$ is not the enveloze of the general solution ; for the curves of the fanily tonch the line only at the juints $n \pi$. It is a particular mhation and corresponds to $C=0$. There is no singular solution.

Many anthors use a great deal of time and space discussing just what may and what may not oceur among the extraneous loei and how many times it may oceur． The result is a considerable number of statements which in their details are either grossly incomplete or glaringly false or buth（ef．§§ 6．5－67）．The rules here given for finding singular solntions should not be regarded in any other light than as leading to some expressions which are to be examined，the best way one ean，to find out whether or not they are singular sohtions．One curve which may appear in the elimination of p and which deserves a note is the tac－locus or locus of points of tangency of the particular solutions with each other．Thus in the system of circles $(x-C)^{2}+y^{2}=r^{2}$ there may be fomm two which are tangent to each other at any assigned point of the x－axis．This tangeney represents two coincident lineal elements and hence may be expected to oceur in the elimination of p between the differential equation of the family and its derivative with respect to p ；but not in the eliminant from（ 7 ）．

EXERCISES

1．Integrate the following equations by sulving for $p=y^{\prime}$ ：
（ α ）$p^{2}-6 p+5=0$ ．
（ β ）$p^{3}-\left(2 x+y^{2}\right) y^{2}+\left(x^{2}-y^{2}+2 x y^{2}\right) p-\left(x^{2}-y^{2}\right) y^{2}=0$,
（ $\gamma) x p^{2}-2 y p-x=0$ ，
（ $\delta) p^{3}(x+2 y)+3 p^{2}(x+y)+p(y+2 x)=0$ ．
（є）$y^{2}+p^{2}=1$ ，
（ऍ）$p^{2}-a x^{3}=0$ ，
（ η ）$p=(u-x) \sqrt{1+p^{2}}$ ．

2．Integrate the following equations by solving for y or x ：
（a） $4 x p^{2}+2 x p-y=0$ ，
（ β ）$y=-x_{p}+x^{4} p^{2}$,
（ γ ）$p^{2}+2 x y-x^{2}-y^{2}=0$,
（ $\delta) 2 p x-y+\log p=0$ ，
（є）$x-y p=(i)^{2}$ ，
（乡）$y=x+u \tan ^{-1} p$ ，
（ η ）$x=y+a \log p$ ，
（ θ ）$x+p y\left(2 p^{2}+3\right)=0$ ，
（ c）$u^{2} y p^{2}-\underline{2} r^{\prime} y+y=0$ ，
（к）$y^{3}-4 x y p+8 y^{2}=0$ ，
（入）$x=p+\log p$ ，
（ μ ）$\nu^{2}\left(r^{2}+2(u, c)=u^{2}\right.$ ．

3．Integrate these equations［substitutions suggested in（ ℓ ）and（ κ ）］：
（ α ）$x y^{2}\left(p^{2}+2\right)=2 p y^{3}+x^{3}$ ，
（ β ）$\left(u x+l^{\prime} y\right)^{2}=\left(1+y^{2}\right)\left(y^{2}+u x^{2}\right)$,
（ $\gamma) y^{2}+x y p-x^{2} p^{2}=0$ ，
（ δ ）$y=y p^{2}+2 p^{n}$,
（є）$y=p s+\sin ^{-1} p$ ，
（ら）$y=p^{\prime}(x-\eta)+11 / p$ ．
$(\eta) y=p \kappa+p\left(1-p^{2}\right)$ ．
（ θ ）$y^{2}-2 y^{2} y-1=y^{2}\left(1-r^{2}\right)$ ，
（ 1$) 4 \epsilon^{2 y} p^{2}+2 x p-1=0, \quad z=t^{2 y}$ ，
（к）$y=2 p x+y^{2} y^{3} . y^{2}=z$ 。
（ λ ） $4 e^{2} y_{p}^{2}+2 e^{2} y-e^{x}=0$ ．
$(\mu) r^{2}(!/-p, r)=!p^{2}$.

4．Treat these equations by the p methor（ (1) to find the singular solutions． Also solve and treat by the C method（7）．Sketels the fanily of solntions and examine the signiticance of the extraneons factors as well ats that of the factor which gives the singular solution ：
（a）$p^{2} y+p(x-y)-x=0$ ．
（ β ）$y^{2} y^{2} \cos ^{2} \alpha-2 \mu r y \sin ^{2} \alpha+y^{2}-u^{2} \sin ^{2}(x=0$ ．
（v） $4 x p^{2}=(3 x-a)^{2}$ ．
（ δ ）$\left.y y^{2} x(x-a)(x-b)=\left[3 x^{2}-2 x(a+b)+a l\right)\right]^{2}$ ，
（ $є$ ）$p^{2}+x p-y=0$ ．
（ら） $8 \prime \prime(1+p)^{3}=27(x+y)(1-p)^{3}$ ，
$(\eta) x^{3} p^{2}+x^{2} y p+u^{3}=0$ ，

5．Examine sumbry of the equations of Exs．1，2，3．for singular solations．
6．Show that the solution of $y=x \phi(p)+f^{\prime}(p)$ is given parametrically by the given equation and the solution of the linear equation：

$$
\begin{gathered}
\frac{d l r}{d_{p}+c \frac{\phi^{\prime}(p)}{\phi(p)-p}-\frac{f^{\prime}(p)}{p-\phi(p)} \text {. Sulue (a) }!l=m \cdot r p+n\left(1+p^{2}\right)^{\frac{3}{2}}} \\
(\beta)!!=r\left(p+a \sqrt{1+p^{2}}\right), \quad(\gamma) \quad x=y p+u \mu^{2}, \quad(\delta)!l=\left(1+p^{\prime}, d^{\prime}+p^{2}\right.
\end{gathered}
$$

7. As any straight line is $y=m x+b$, any family of lines may be represented as $y=m x+f(m)$ or by the Clairaut eqnation $y=p, r+f(p)$. Show that the orthogonal trajectories of any family of lines leads to an equation of the type of Ex. ti . The same is true of the trajectories at any constant angle. Express the equations of the following systems of lines in the Clairant form, write the equations of the orthogonal trajecturies, and integrate:
(c) taugents to $x^{2}+y^{2}=1$,
(β) tangents to $y^{2}=2 u x$,
(γ) tangents to $y^{2}=x^{3}$,
(δ) mormals to $!!^{2}=2(u, x$.
(ϵ) nomals to $y^{2}=x^{3}$,

8. The evolute of a given curve is the locus of the center of curvature of the curve, or, what amountis the same thing, it is the envelope of the normals of the given curve. If the (lairaut equation of the nomals is known, the evohte may be obtained as its singular solution. Thus find the evolutes of
(α) $y^{2}=4 \alpha x$,
(β) $2 x y=u^{2}$.
($\gamma) x^{\frac{2}{3}}+y^{\frac{2}{3}}=u^{\frac{2}{3}}$.
($\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right.$,
(є) $y^{2}=\frac{x^{3}}{211-s}$,
(广) $y=\frac{1}{2}\left(e^{x}+e^{-x}\right)$.
9. The involutes of a given curve are the curves which cut the tangents of the given curve orthogonally, or, what amomes to the same thing. they are the curves which have the given curve as the loens of their centers of curature. Find the involutes of

$$
\begin{array}{lll}
\text { (}) ~ & x^{2}+y^{2}=u^{2}, & (\beta) y^{2}=2 m . r .
\end{array}(\gamma) y=a \cosh (r / u) .
$$

10. As any curve is the envelope of its tangents. it follows that when the curve is described hy a property of its tangents the curve may be regarded as the singular solution of the Clairant equation of its tangent lines. Determine thes what curves have these properties:
(α) length of the tangent intercepted between the axes is 1 ,
(β) sum of the intwreepts of the tangent on the axes is c.
(γ) area between the tangent and axes is the constant k^{2},
(δ) modnct of perpendiculars from t wo fixed points to tangent is k^{2},
(ϵ) moxluct of ordinates from two prints of x-axis to tangent is k^{2}.
11. From the relation $\frac{d F}{d n}=\mu \sqrt{M^{2}+\sqrt{2}}$ of Propnition 3. 1. 212. show that as the curve $F=($ is moving tangentially to itself along its envelope, the singular sulution of Mat + Nal! $=0$ may be expected to be fomm in the equation $1 / \mu=0$: also the intinite solutions. Discuss the equation $1 / \mu=0$ in the following cases:

$$
\left((x) \sqrt{1-y^{2}} d x=\sqrt{1-x^{2}} d y, \quad \text { (अ) } x d x+y l_{y}=\sqrt{x^{2}+y^{2}-n^{2}} d y\right.
$$

102. Equations of higher order. In the treatment of special probllems (s sol) it was seen that the substitutions
rendered the differantial equations integrable by reduring them to integrable equations of the first ordere. Theser substitutions or others like thern are nevenl in trating erertain cases of the differential cruation
$\Psi\left(x^{\prime},!/,!^{\prime},!!^{\prime \prime}, \cdots,!^{(n)}\right)=0$ of the nth order, mamely, when one of the variables and perhaps some of the derivatives of lowest order do not occur in the equation.

$$
\text { In case } \quad \Psi\left(x, \frac{d^{i}!!}{d \cdot x^{i}}, \frac{d^{i+1}!y}{d x^{i+1}}, \ldots, \frac{d^{n}!}{d x^{n}}\right)=0
$$

y and the first $i-1$ derivatives being absent, substitute

$$
\frac{d^{i} y}{d x^{i}}=q \quad \text { so that } \quad \Psi\left(x, \eta, \frac{d_{q}}{d x}, \cdots, \frac{d^{n-i} q}{d x^{n-i}}\right)=0 .
$$

The original equation is therefore replaced by one of lower order. If the integral of this be $F(x, y)=0$, which will of course contain $n-i$ arbitrary constants, the solution for I gives

$$
\begin{equation*}
q=f(x) \quad \text { and } \quad y=\int \cdots \int f(x)(d x)^{i} \tag{12}
\end{equation*}
$$

The solution has therefore been atcomplishen. If it were more convenient to solve $F(x, y)=0$ for,$r=\phi(y)$, the integration would be

$$
\begin{equation*}
y=\int \cdots \int I\left(\|_{x} x^{i}=\int \cdots \int I\left[\phi^{\prime}(I) d_{I}\right]^{i}\right. \tag{12'}
\end{equation*}
$$

and this equation with $r=\phi(\eta)$ womld give a parametric expression for the integral of the differential equation.

In case

$$
\begin{equation*}
\Psi\left(!, \frac{l_{1}!}{d, r^{2}}, \frac{d^{3} y}{d, r^{2}}, \cdots, \frac{l^{n}!\prime}{d, r^{\prime n}}\right)=0 \tag{13}
\end{equation*}
$$

x being absent, substitute 1 and regard f^{\prime} as a function of $\%$. Then
and

$$
\Psi_{1}\left(!/, l^{\prime}, \frac{\|^{\prime \prime}}{l_{!}}, \cdots, \frac{d^{n-1} \mid \prime}{d!^{n-1}}\right)=0 .
$$

In this way the order of the erpation is lowered her mity. If this equation can be integrated as $F\left(.1, \prime^{\prime \prime}\right)=0$, the last step in the solntion may be obtained either direetly or parametrically as

$$
\begin{gather*}
l^{\prime}=f(!), \quad \int \frac{d!!}{f^{\prime}(!)}=, r \tag{14}\\
y=\phi\left(l^{\prime}\right), \quad x=\int \frac{l^{\prime}!}{l^{\prime}}=\int \frac{\phi^{\prime}\left(l^{\prime}\right) l_{l}}{l^{\prime}} .
\end{gather*}
$$

It is no particular simplification in this rase to have some of the lower derivatives of y absent from $\Psi=0$, becanse in general the lower derivatives of p will none the less lee introduced by the substitution that is made.
Λs an example consider $\left(x \frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{d x^{2}}\right)^{2}=\left(\frac{d^{3} y}{d x^{3 i}}\right)^{2}+1$,
which is

$$
\left(x \frac{d q}{d x}-q\right)^{2}=\left(\frac{d q}{l d x}\right)^{2}+1 \quad \text { if } \quad q=\frac{d^{2} y}{d x^{2}}
$$

Then

$$
q=x \frac{d q}{d x} \pm \sqrt{\left(\frac{d q}{d x}\right)^{2}+1} \quad \text { and } \quad q=C_{1} x \pm \sqrt{C_{1}^{\prime 2}+1}
$$

for the equation is a Clairant type. Hence, finally,

$$
y=\iint\left[C_{1} x \pm \sqrt{C_{1}^{2}+1}\right](l x)^{2}=\frac{1}{6} C_{1} x^{3} \pm \frac{1}{2} x^{2} \sqrt{U_{1}^{2}+1}+C_{2} x+C_{3}
$$

As another example consider $y^{\prime \prime}-y^{\prime 2}=y^{2} \log y$. This becomes

$$
p \frac{d p}{d y}-p^{2}=y^{2} \log y \quad \text { or } \quad \frac{d\left(p^{2}\right)}{d y}-2 p^{2}=2 y^{2} \log y
$$

The equation is linear in p^{2} and has the integrating faetor $e^{-2} \%$.

$$
\frac{1}{2} p^{2} e^{-2 y}=\int y^{2} e^{-2 y} \log y d y, \quad \frac{1}{\sqrt{2}} p=\left[c^{2} y \int y^{2} e^{-2} y \log y d y\right]^{\frac{1}{2}},
$$

and

$$
\int \frac{d y}{\left[e^{2 y} \int y^{2} e^{-2 y} \log y d y\right]^{\frac{1}{2}}}=\sqrt{2} x
$$

The integration is therefore reduced to quadratures and becomes a problem in ordinary integration.

If an equation is homogeneoms with respert to y and its derivatives, that is, if the equation is multiplied ly a power of k when y is replaced by li!g, the order of the equation may be lowered by the substitution $y=e^{z}$ and by taking i^{\prime} as the new variable. If the equation is homogeneons with respert to x amd dx , that is, if the equation is multiplied hy a power of l when,r is replated by hax, the order of the equation may be redured ly the substitution $r=r^{t}$. The work may be simplified (Ex. 9, p. 152) by the use of

$$
\begin{equation*}
l_{n}^{n} y=e^{-u t} I_{t}\left(I_{t}-1\right) \cdots\left(I_{t}-n+1\right)!\% \tag{15}
\end{equation*}
$$

If the equation is homogrenpons with respert to x and y and the difforentiols $d, x, d_{3}, d^{2} /,, \cdots$, the order may be lowered by the substitution $x=r^{\prime}, y=r^{t} i$, , where it may be recalled that

$$
\begin{align*}
I_{n}^{n}! & \left.\left.=r^{-n t} I_{t}(1)_{t}-1\right) \cdots(1)_{t}-n+1\right)! \tag{15}\\
& \left.=r^{-(n-1)^{\prime}}(1)_{t}+1\right) I_{t} \cdots\left(I_{t}-n+2\right) \therefore
\end{align*}
$$

Finally, if the equation is homogencons with respert to er ronsidered of dimensions 1 , cond ! momsidered of dimensions m, that is, if the equation is multiplied by a power of li when kir replates x and i^{m} ! replaces ?/, the substitution $r=r^{t}, y=e^{m+z}$ will lower the degree of the equation. It may be reealled that

$$
D_{n}^{n}!=r^{(n-n) t}\left(I_{t}+m\right)\left(I_{t}+m-1\right) \cdots\left(I_{t}+m-n+1\right) \cdots
$$

Consider $x y y^{\prime \prime}-x y^{\prime 2}=y y^{\prime}+b x y^{\prime 2} / \sqrt{a^{2}-x^{2}}$. If in this equation y be replaced by $k y$ so that y^{\prime} and $y^{\prime \prime}$ are also replaced by $k y^{\prime}$ and $k y^{\prime \prime}$, it appears that the equation is merely multiplied by k^{2} and is therefore homogeneous of the first sort mentioned. Substitute

$$
y=e^{z}, \quad y^{\prime}=e^{z} z^{\prime}, \quad y^{\prime \prime}=e^{z}\left(z^{\prime \prime}+z^{\prime 2}\right)
$$

Then $e^{2 z}$ will cancel from the whole equation, leaving merely

$$
x z^{\prime \prime}=z^{\prime}+b x z^{\prime 2} / \sqrt{u^{2}-x^{2}} \text { or } \frac{x d z^{\prime}}{z^{\prime 2}}-\frac{1}{z^{\prime}} d x=\frac{b x d x}{\sqrt{t^{2}-x^{2}}}
$$

The equation in the first form is Beruoulli ; in the second form, exact. Then

$$
\frac{x}{z^{\prime}}=b \sqrt{u^{2}-x^{2}}+C \quad \text { and } \quad d z=\frac{x d x}{b \sqrt{a^{2}-x^{2}}+C}
$$

The variables are separated for the last integration which will determine $z=\log y$ as a function of x.

Again consider $x^{\frac{d}{} \frac{d^{2} y}{d x^{2}}}=\left(x^{3}+2 x y\right) \frac{d y}{d x}-4 y^{2}$. If x be replaced by $k x$ and y by $k^{2} y$ so that y^{\prime} is replaced by $k y^{\prime}$ and $y^{\prime \prime}$ remains unchanged, the equation is multiplied by k^{4} and hence eomes under the fourth type mentioned above. Substitute

$$
x=e^{t}, \quad y=e^{2 t} z, \quad D_{x} y=e^{t}\left(D_{t}+2\right) z, \quad I_{x}^{2} y=\left(D_{t}+2\right)\left(D_{t}+1\right) z
$$

Then $e^{4 t}$ will cancel and leave $z^{\prime \prime}+2(1-z) z^{\prime}=0$, if accents denote differentiation with respect to t. This equation lacks the independent variable t and is rednced by the substitution $z^{\prime \prime}=z^{\prime} d z^{\prime} / d z$. Then

$$
\frac{d z^{\prime}}{d z}+2(1-z)=0, \quad z^{\prime}=\frac{d z}{d t}=(1-z)^{2}+C, \quad \frac{d z}{\left(1-z^{2}\right)+C}=d t .
$$

There remains only to perform the quadrature and replace z and t by x and y.
103. If the equation may be ohtained by differentiation, as

$$
\begin{equation*}
\Psi\left(x, y, \frac{d!}{d x^{\prime}}, \cdots, \frac{d^{n}!}{d_{1} x^{n}}\right)=\frac{d \Omega}{d x^{\prime}}=\frac{\hat{c} \Omega}{\hat{c} \cdot x^{\prime}}+\frac{\hat{c} \Omega}{\hat{c} y} y^{\prime}+\cdots+\frac{\hat{c} \Omega}{\hat{c}!l^{(n-1)}}!^{(n)} \tag{16}
\end{equation*}
$$

it is called an exort pquation, and $\Omega\left(x^{\prime}, y, y^{\prime}, \cdots, y^{(n-1)}\right)=($ is an integral of $\Psi=0$. Thus in case the equation is exact, the order may be lowered hy mity. It may be noted that mless the degree of the nth derivative is 1 the equation eanmot be exact. C'onsider.

$$
\Psi\left(x, y, y^{\prime}, \cdots, y^{(n)}\right)=\phi_{1} y^{(n)}+\phi_{2},
$$

where the coefficient of $y^{(n)}$ is colleceted into ϕ_{1}. Now intecrate ϕ_{1}, 1artially regarding only $y^{(n-1)}$ as vimialble so that

$$
\int \phi_{1} d y^{(n-1)}=\Omega_{1}, \quad \frac{d}{d y_{r}} \Omega_{1}=\frac{\hat{c} \Omega_{1}}{c_{1} r}+\cdots+\frac{\hat{c} \Omega_{1}}{\hat{c} y^{(n-2)}} y^{(n-1)}+\phi_{1} y^{(n)} .
$$

Then

$$
\Psi-\frac{d \Omega_{1}}{d x_{1}}=\phi_{3}\left[\frac{d^{n-k}!}{d / x^{n-k}}\right]^{m}+\phi_{4}
$$

That is, the expression $\Psi-\Omega_{1}^{\prime}$ does not contain $y^{(n)}$ and may contain no derivative of order ligher than $n-l$, and may be rollected as
indicated. Now if Ψ was an exart derivative, so must $\Psi-\Omega_{1}^{\prime}$ be. Hence if $m \neq 1$, the conchnsion is that Ψ was not exact. If $m=1$, the process of integration may be continned to oltain Ω_{2} by integrating partially with respect to $y^{(n-k-1)}$. And so on until it is shown that Ψ is not exact or matil Ψ is seen to be the derivative of an expression $\Omega_{1}+\Omega_{2}+\cdots=C$.

As an example consider $\Psi=x^{2} y^{\prime \prime \prime}+x y^{\prime \prime}+(2 x y-1) y^{\prime}+y^{2}=0$. Then

$$
\begin{array}{ll}
\Omega_{1}=\int r^{2} d y^{\prime \prime}=x^{2} y^{\prime \prime}, & \Psi-\Omega_{1}^{\prime}=-x y^{\prime \prime}+(2 x y-1) y^{\prime}+y^{2}, \\
\Omega_{2}=\int-x l y^{\prime}=-x y^{\prime}, & \Psi-\Omega_{1}^{\prime}-\Omega_{2}^{\prime}=2 x y y^{\prime}+y^{2}=\left(x y^{2}\right)^{\prime} .
\end{array}
$$

As the expresion of the first order is an exact derivative the result is

$$
\Psi-\Omega_{1}^{\prime}-\Omega_{2}^{\prime}-\left(x y^{2}\right)^{\prime}=0 ; \text { and } \Psi_{1}=x^{2} y^{\prime \prime}-s y^{\prime}+x y^{2}-C_{1}=0
$$

is the new equation. The method may be tried again.

$$
\Omega_{1}=\int x^{2} d y^{\prime}=x^{2} y^{\prime}, \quad \Psi_{1}-\Omega_{1}^{\prime}=-3 x y^{\prime}+x y^{2}-C_{1} .
$$

This is not an exact derivative and the equation $\Psi_{1}=0$ is not exact. Morenver the equation $\Psi_{1}=0$ contains lwoth x and y and is not homogenens of any type except when $G_{1}=0$. It therefore appears as though the further interration of the equation $\Psi=0$ were imposisble.

The method is applied with especial ease to the case of

$$
\begin{equation*}
X_{0} \frac{\partial^{n}!}{d r^{n}}+X_{1} \frac{l^{n-1}!}{l_{1} r^{\prime n-1}}+\cdots+X_{n-1} \frac{d!}{l l \cdot}+X_{n}!-R\left(r^{r}\right)=0 \tag{17}
\end{equation*}
$$

where the coefficients arr functions of alone. This is known as the limerre rquation, the integration of which has been treated muly when the order is 1 or when the rooftiofents are constants. The application of sucressive integration by parts gives

$$
\Omega_{1}=X_{0} y^{(n-1)}, \quad \Omega_{2}=\left(X_{1}-X_{n}^{\prime}\right)!!^{(n-2)}, \quad \Omega_{3}=\left(X_{2}-X_{1}^{\prime \prime}+X_{0}^{\prime \prime}\right) y^{(n-3)} \cdots \cdots
$$

and after n surl interrations there is left merely

$$
\left(X_{n}-N_{n-1}^{\prime}+\cdots+(-1)^{n-1} N_{1}+(-1)^{n} \cdot X_{n}\right)!!-R
$$

which is a derivative only whon it is a function of , r. Hence

$$
\begin{equation*}
X_{n}-X_{n-1}^{\prime}+\cdots+(-1)^{n-1} X_{1}+(-1)^{n} X_{n} \equiv 0 \tag{18}
\end{equation*}
$$

is the condition that the linear equation shatl herexact. and

$$
\begin{equation*}
X_{0} y^{(n-1)}+\left(X_{1}-X_{n}^{\prime}\right)!^{(n-2)}+\left(X_{2}-X_{1}^{\prime}+X_{n}^{\prime \prime}\right)!!^{(n-3)}+\cdots=\int l_{i} d d_{1} \tag{19}
\end{equation*}
$$

is the first solntion in case it is exact.
As an example take $y^{\prime \prime \prime}+y^{\prime \prime}$ (ons $r-2 y^{\prime} \sin x-y \cos r=\sin 2 s$. The test

$$
X_{3}-X_{2}^{\prime}+X_{1}^{\prime \prime}-X_{3}^{\prime \prime}=-\cos x+2 \cos x-\cos x=0
$$

is satisfied．The integral is therefore $y^{\prime \prime}+y^{\prime} \cos x-y \sin x=-\frac{1}{2} \cos 2 x+C_{1}$ ． This equation still satisfies the test for exactness．llence it may be integrated again with the result $y^{\prime}+y \cos x=-\frac{1}{4} \sin 2 x+C_{1} x+C_{2}$ ．This belongs to the linear type．The final result is therefore

$$
y=e^{-\sin x} \int e^{\sin x}\left(C_{1} x+C_{2}\right) d x+C_{3} e^{-\sin x}+\frac{1}{2}(1-\sin x) .
$$

EXERCISES

1．Interrate these equations or at least reduce them to quadratures：
（ α ） $2 r$ r ！$!^{\prime \prime} y^{\prime \prime}=y^{\prime \prime 2}-a^{2}$ ，
（ β ）$\left(1+x^{2}\right) y^{\prime \prime}+1+y^{\prime 2}=0$ ．
（ γ ）$y^{\mathrm{iv}}+i^{2} y^{\prime \prime}=0$ ，
（ δ ）$y^{v}-m^{2} y^{\prime \prime \prime}=c^{a n \cdot r}$ ．
（є）$r^{2} y^{\text {iv }}+a^{2} y^{\prime \prime}=0$ ．
（ら）$x^{2} y^{\prime \prime} y^{\prime}=x$ ，
（ η ）$x y^{\prime \prime}+y^{\prime}=0$ ，
（ θ ）！！$\prime \prime \prime!\prime \prime=4$ ．
（ 1$)\left(1-r^{2}\right) y^{\prime \prime}-r^{\prime}!^{\prime}=\geq$ ，
（к）$y^{\mathrm{iv}}=\sqrt{\prime \prime} y^{\prime \prime \prime}$ ，
（入）$y^{\prime \prime}=f(y)$ ，
（ μ ） $2(2(2)-!!) y^{\prime \prime}=1+!^{\prime 2}$,
（ $\nu) ~ y y^{\prime \prime}-y^{\prime 2}-y^{2} y^{\prime}=0$ ，
（o）$y y^{\prime \prime}+y^{\prime 2}+1=0$ ，
（ π ） $2 \ddot{2}^{\prime \prime} y^{\prime \prime}=c^{\prime \prime}$ ．
（ ρ ）$y^{3} y^{\prime \prime}=a$ ．

2．Carry the integratiom as far as possible in these cases：
（ α ）$x^{2} y^{\prime \prime}=\left(m \cdot r^{2} y^{\prime 2}+m y^{2}\right)^{\frac{1}{2}}$ ，
（ β ）$m \cdot r^{3}!y^{\prime \prime}=\left(y-s y^{\prime}\right)^{2}$,
（r）$x^{\frac{1}{\prime \prime}} y^{\prime \prime}=\left(y-x y^{\prime}\right)^{3}$ ．
（（ ）$x^{4} y^{\prime \prime}-x^{\prime \prime} y^{\prime}-x^{2} y^{\prime 2}+4 y^{2}=0$ ，
（є）$x^{-2} y^{\prime \prime}+x^{-4} y=\frac{1}{4} y^{\prime 2}$ ，
（c）$\quad 4!y y^{\prime \prime}+b y^{\prime 2}=y y^{\prime}\left(x^{2}+x^{2}\right)^{-\frac{1}{2}}$ ．

3．Carry the integration as far as posible in thes macs：
（c）$\left(y^{2}+x\right) y^{\prime \prime \prime}+6 y y^{\prime} y y^{\prime \prime}+y^{\prime \prime}+2 y^{\prime 2}=0 . \quad$（ß）$y^{\prime} y^{\prime \prime}-y x^{\prime 2} y^{\prime}=x y^{2}$,
（ $\gamma) x^{3} y y^{\prime \prime \prime}+3 x^{3} y^{\prime} y^{\prime \prime}+9 r^{2} y y^{\prime \prime}+9 x^{2} y^{\prime 2}+18 \cdot r y y^{\prime}+3 y^{2}=0$ ，
（8）$y+3 x y^{\prime}+2 y y^{\prime 3}+\left(r^{2}+2 y^{2} y^{\prime}\right) y^{\prime \prime}=0$ ，
（ $\epsilon)\left(2 x^{3} y^{\prime}+x^{2} y\right) y^{\prime \prime}+4 x^{2} y^{\prime 2}+2 x y y^{\prime}=0$ ．
4．Treat these linear equations：
（c）$x y^{\prime \prime}+2 y=2 x$ ，
（ β ）$\left(x^{2}-1\right) y^{\prime \prime}+4 x y^{\prime}+2 y=2 x$ ，
（r）$y^{\prime \prime}-y^{\prime}$ wit $x+y \operatorname{cis}^{2} r=\cos r$ ．
（б）$\left(x^{2}-x\right) y^{\prime \prime}+(8, x-2) y^{\prime}+y=0$ ，
（ ϵ ）$\left(. r-r^{3}\right) y^{\prime \prime \prime}+\left(1-\pi, r^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2!=1 ; r$ ．
（弓）$\left(r^{3}+r^{2}-3 x+1\right)!^{\prime \prime \prime}+(9) r^{2}+(9 x-9) y^{\prime \prime}+(18 x+6)!y^{\prime}+\left(5 y=x^{3}\right.$ ，
（ η ）$(r+2)^{2} y^{\prime \prime \prime}+(r+\because 2) y^{\prime \prime}+y^{\prime}=1$ ．（ θ ）$x^{2} y^{\prime \prime}+3, r y^{\prime}+y=s$ ，
（ 1$)\left(x^{3}-x\right) y^{\prime \prime \prime}+\left(8 x^{2}-3\right) y^{\prime \prime}+14 x^{\prime}+4 y=0$ ．

5．Note that Ex． $4(\theta)$ comes muler the third homogenemis type．and that Ex． 4 （ η ）mas be brought moter that type hy multiplying ly $(x+2)$ ．Test sundry of Exs． 1．$\because: 8$ for exactnos．Show that any linear emation in which the enefticients are polymmials of dowee las than the order of the derivatives of which they are the eneftiofents．is smely exact．

6．sometimes．when the comditim that an equation bee exact is mot satisfiem，it is posible to fim an integratinu factor for the ermation so that after multiplication by the factor the equation becomes exact．For linear egmations try $s^{m h}$ ．Intecrate

$$
\text { (a) } x^{5} y^{\prime \prime}+\left(2 x^{4}-x\right) y^{\prime}-\left(2 x^{3}-1\right) y=0 . \quad(\beta)\left(x^{2}-x^{4}\right) y^{\prime \prime}-x^{3} y^{\prime}-2 y=0 .
$$

7．Show that the efluation $y^{\prime \prime}+P^{\prime} y^{\prime}+8 y^{\prime 2}=0$ may be reduced to quathatures 1° when P and Q are both functions of y or 2° when hoth are functions of s ．or B^{3} when l＇is a function of x and $\left(?\right.$ is a function of y（integrating factor $1 / y^{\prime}$ ）．In wach wise fiml the general expression for y in terms of duadratures．laterrate $y^{\prime \prime}+2 y^{\prime}$ cot $x+2 y^{\prime 2} \tan y=0$ ．
8. Find and discuss the curves for which the radius of curvature is proportional to the radius r of the curve.
9. If the ratius of curvature R is expressed as a function $R=R(s)$ of the are s measured from some point, the equation $h=R(s)$ of $s=s(R)$ is called the intrinsic cquation of the curve. To find the relation between x and y the second equation may be differentiated as $d s=s^{\prime}\left(l^{\prime}\right) d l^{2}$, and this equation of the third order may be solvet. Show that if the migin be taken on the curve at the point $s=0$ and if the x-axis be tangent to the curve, the equations

$$
x=\int_{0}^{s} \cos \left[\int_{0}^{s} \frac{d s}{R}\right] d s, \quad y=\int_{0}^{s} \sin \left[\int_{0}^{s} \frac{d s}{h_{i}}\right] d s
$$

express the curve parametrically. Find the emrves whose intrinsic equations are

$$
(\gamma) R=\pi . \quad(\beta) \mu R=s^{2}+\iota^{2}, \quad(\gamma) l^{2}+s^{2}=16 \mu^{2} .
$$

10. Given $k^{\prime}=y^{(n)}+X_{1} y^{(n-1)}+X_{2} y^{(n-2)}+\cdots+X_{n-1} y^{\prime}+\lambda_{n} y=0$. Sl ow that if μ, a function of x alone, is an integrating factor of the equation, then

$$
\Phi=\mu^{(n)}-\left(X_{1} \mu\right)^{(n-1)}+\left(X_{2} \mu\right)^{(n-2)}-\cdots+(-1)^{n-1}\left(X_{n-1} \mu\right)^{\prime}+(-1)^{n} X_{n} \mu=0
$$

is the equation satisfied by μ. Collect the enefficient of μ to show that the condition that the given equation be exact is the combition that this coefticient vanish. The equation $\Phi=0$ is called the alfoint of the given ergation $F=0$. Any integral μ of the aljoint erfuation is an integrating factor of the original equation. Moreover note that

$$
\int \mu F I d x=\mu j^{(n-1)}+\left(\mu X_{1}-\mu^{\prime}\right) y^{(n-2)}+\cdots+(-1)^{n} \int y \Phi d x
$$

or

$$
d\left[\mu F-(-1)^{n} y^{\Phi} \Phi\right]=d\left[\mu y^{(n-1)}+\left(\mu \Gamma_{1}-\mu^{\prime}\right) y^{(n-2)}+\cdots\right]=d \Omega
$$

Hence if μF is an "xact differential, so is $y \Phi$. 1nother words, any solution y of the original equation is an integrating factor for the aljoint equation.
104. Linear differential equations. The equations

$$
\begin{align*}
& X_{0} I I^{n}!!+X_{1} I^{n-1}!!+\cdots+X_{n-1} I!!+X_{n}!=R(\cdot x), \tag{20}\\
& X_{0} I^{\prime \prime}!!+X_{1} I I^{n-1}!y+\cdots+I_{n-1} I!y+X_{n} y=0
\end{align*}
$$

are linear differential equations of the nth order ; the first is called the
 are any solutions of the redured "puation, and (' ${ }_{1},{ }^{\prime}{ }_{2},{ }^{\prime}{ }_{3}, \cdots$ are any constants, then $\left.!={ }^{\prime}{ }_{3}!_{1}+{ }^{\prime}{ }_{2} \%_{2}+{ }^{\prime} \%_{3}\right)_{3}+\cdots$ is also a solution of the reduced equation. This follows at one from the linearity of the redued equation and is proved by dirert substitution. Furthermore if I is any solution of the complete erpation, then $y+I$ is also a solution of the complete equation (of. 今 9 (i).

As the equations (20) are of the nth order, the ? will detremmer !f ${ }^{(n)}$ and, by difforentiation, all higher derivatives in termes of the values of
 which correspond to the value \quad e $=r_{0}$ be givern, all the higher derivativen we determined (s.s.si-ss). Henter there are n and no more than n arbitrary conditions that may ix imposed as initial conditions. A solution
of the equations (20) which contains n distinct arbitrary constants is called the general solution. By distinct is meant that the constants can actually be determined to suit the n initial conditions.

If $y_{1}, y_{2}, \cdots, y_{n}$ are n solutions of the reduced equation, and

$$
\begin{gather*}
y=C_{1}^{\prime} y_{1}+C_{2} y_{2}+\cdots+C_{n!}^{\prime} y_{n}, \\
y^{\prime}=C_{1} y_{1}^{\prime}+C_{2}^{\prime} y_{2}^{\prime}+\cdots+C_{n}^{\prime} y_{n}^{\prime}, \tag{21}\\
\cdot
\end{gather*}
$$

then y is a solution and $y^{\prime}, \cdots, y^{(n-1)}$ are its first $n-1$ derivatives. If x_{0} be substituted on the right and the assumed corresponding initial values $y_{0}, y_{0}^{\prime}, \cdots, y_{1}^{(n-1)} l_{\text {ee }}$ sulstituted on the left, the above n erguations become linear equations in the n mknowns $C_{1}, C_{2}, \cdots, C_{n}$; and if they are to lue soluble for the ('s s, the condition

$$
W^{\prime}\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\left|\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{n} \tag{22}\\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
\cdot & \cdot & \cdot & \cdot \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right| \neq 0
$$

must hold for every value of $r=x_{0}$. Converscly if the condition does hold, the equations will be soluble for the ('s.

The determinant $W^{-}\left(y_{1},!!_{2}, \cdots,!_{n}\right)$ is called the Wionstian of the n functions $y_{1}, y_{2}, \cdots, y_{n}$. The result may lee stated as: If n functions $y_{1}, y_{2}, \cdots, y_{n}$ which are solutions of the redured equation, and of which the Wronskian does not vanish, can lee found, the general solution of the reduced equation can he written down. In general no solution of the equation can be found, whether hy a detinite proress or he inspertion ; but in the rare instances in which the n solutions "an he seen by inspection the prohlem of the solution of the redurerl equation is completed. Frequently one solution mas be found hy inspertion, and it is therefore important to see how much this contributes toward effecting the solution.

If y_{1} is a solution of the redued equation, make the substitution $y=y_{1} \hat{\prime}$. The derivatives of ! mave he ohtamed ly Leibniz's Theorem $(\$ 8)$. Is the formula is linem in the derivatives of a, it follows that the result of the substitution will leave the equation linear in the new variable \approx. Moreover, to collect the coefficient of \because itself, it is necessary to take only the first term $y_{1}^{(k)} \approx$ in the expansions for the derivative! $y^{(k)}$. Hence

$$
\left(X_{0} y_{1}^{(n)}+X_{1} y_{1}^{(n-1)}+\cdots+X_{n-1} y_{1}^{\prime}+X_{n} y_{1}\right) z=0
$$

is the coefficient of $: z$ and ranishes by the assumption that y_{1} is a solution of the reduced equation. Then the equation for a is

$$
\begin{equation*}
P_{0} \vartheta^{(n)}+I_{1}^{\prime} *^{(n-1)}+\cdots+I_{n-2 \vartheta^{\prime \prime}}^{\prime}+P_{n-1} \ddot{v}^{\prime}=0 ; \tag{23}
\end{equation*}
$$

and if \approx^{\prime} be taken as the variable, the equation is of the order $n-1$. It therefore appears that the knowledge of a solution y_{1} reduces the order of the equetion by one.

Now if $y_{2}, y_{3}, \cdots, y_{2}$ were other solutions, the derived ratios

$$
\ddot{z}_{1}^{\prime}=\left(\frac{y_{2}}{y_{1}}\right)^{\prime}, \quad \ddot{n}_{2}^{\prime}=\left(\frac{y_{3}}{y_{1}}\right)^{\prime}, \quad \cdots, \quad \because_{p-1}^{\prime}=\left(\frac{y_{p}}{y_{1}}\right)^{\prime}
$$

would be solntions of the equation in $\ddot{\prime}^{\prime}$; for by substitution,

$$
y=y_{1 i_{1}}=y_{2}, \quad y=y_{1} \hat{\tilde{z}}_{2}=y_{3}, \quad \cdots, \quad y=y_{1 \%}^{* i} p-1=y_{p}
$$

are all solutions of the equation in !/ Noreover, if there were a linear relation $r_{1} \ddot{n}_{1}^{\prime}+C_{2}^{2} \hat{B}_{2}^{\prime}+\cdots+C_{p-1} \ddot{n}_{p-1}^{\prime}=0$ (ommecting the solutions \because_{i}^{\prime}, an integration would give a linear relation

$$
C_{1} y_{2}+C_{2} y_{3}+\cdots+C_{p-1} y_{n}+C_{p} y_{1}=0
$$

connecting the p solutions η_{i}. Hence if there is no linear relation (of which the coefficients are not all zero) connerting the p solutions y_{i} of the original equation, there can be none comecting the $p-1$ solutions a_{2}^{\prime} of the transformed equation. Hence a linouledge of p solutions of the originerl redured equation gives a new retuced mqution of whirh $p^{\prime}-1$ swlutions "rer linmm. And the process of substitution may he continued to reduce the order further until the order $n-p$ is reached.

As an example consider the equation of the thirl order

$$
(1-s) y^{\prime \prime \prime}+\left(x^{2}-1\right) y^{\prime \prime}-s^{2} y^{\prime}+s y=0
$$

Here a simple trial shows that x and e^{x} are two solutions. Substitute
$y=e^{r} z, \quad y^{\prime}=\epsilon^{x}\left(z+z^{\prime}\right), \quad y^{\prime \prime}=\epsilon^{r}\left(z+2 z^{\prime}+z^{\prime \prime}\right), \quad y^{\prime \prime \prime}=\epsilon^{\prime \prime}\left(z+3 z^{\prime}+3 z^{\prime \prime}+z^{\prime \prime \prime}\right)$.
Then $\quad(1-x) z^{\prime \prime \prime}+\left(x^{2}-3 x+2\right) z^{\prime \prime}+\left(x^{2}-3 x+1\right) z^{\prime}=0$
is of the second orter in z^{\prime}. A known solution is the derived ration $\left(r / e^{r}\right)^{\prime}$.

$$
z^{\prime}=\left(x e^{-x}\right)^{\prime}=\epsilon^{-x}(1-x) \text {. Let } z^{\prime}=e^{-x}(1-x) u \text {. }
$$

From this, $z^{\prime \prime}$ and $z^{\prime \prime \prime}$ may be foum amd the equation takes the form

$$
(1-r) u^{\prime \prime}+(1+r)(x-2) u^{\prime}=0 \quad \text { or } \quad \frac{d, u^{\prime}}{u^{\prime}}=r d x-\frac{2}{x-1} d x
$$

This is a linear equation of the first order and may be solverl.

$$
\log u^{\prime}=\frac{1}{2} s^{2}-2 \log (x-1)+C \quad \text { or } \quad u^{\prime}=C_{1} \epsilon^{\frac{1}{2} x^{2}}(x-1)^{-2}
$$

Hence

$$
\begin{aligned}
& w=C_{1} \int e^{\frac{1}{2^{2}}}(x-1)^{-2} d x+C_{2}, \\
& z^{\prime}=\left(\frac{x}{e^{x}}\right)^{\prime}{ }^{\prime \prime}=C_{1}\left(\frac{x}{e^{x}}\right)^{\prime} \int e^{\frac{1}{2} x^{2}}(x-1)^{-2} d x+C_{2}\left(\frac{x}{e^{x}}\right)^{\prime}, \\
& z=C_{1} \int\binom{x}{c^{x}}^{\prime} \int e^{\frac{1}{2} x^{2}}(c-1)^{-2}(r x)^{2}+c_{e^{x}}^{x}+c_{3}, \\
& y=e^{x} z=C_{1} e^{r} \int\left(\frac{r}{r}\right)^{\prime} \int r^{1} n^{2}(r-1)^{-2}(l d r)^{2}+C_{2}^{\prime} r+C_{3} e^{x} .
\end{aligned}
$$

The ralue for y is thus obtained in terms of quadratures. It may be shown that in case the equation is of the nth decree with p known solntions, the final result will (all for $p(n-p)$ quadratures.
105. If the general solution $y=C_{1} 1_{1}+C_{2} y_{2}+\cdots+C_{n} y_{n}$ of the reduced equation has been found (alled the complementary function for the romplete equation), the general solution of the complete equation may always be obtained in terms of cuadratures by the important and farrearling metloul of the corrintion of comstants due to Lagrange. The question is: C'munt functions of or formen so that the expression

$$
\begin{equation*}
y=r_{1}(\cdot \cdot \cdot) y_{1}+r_{2}(\cdot \cdot) y_{2}+\cdots+C_{n}(\cdot \cdot) y_{n} \tag{24}
\end{equation*}
$$

shall he the solution of the complate ergation:" As there are n of these functions to be determined, it should the possible to impose $n-1$ conditions upon them and still find the functions.

Differentiate !/ on the supposition that the e"s are variable.

$$
y^{\prime}=r_{1} y_{1}^{\prime}+C_{2} y_{2}^{\prime}+\cdots+r_{n} y_{n}^{\prime}+y_{1} C_{1}^{\prime}+y_{2} r_{2}^{\prime}+\cdots+y_{n} C_{n}^{\prime}
$$

As one of the conditions on the ("s sumpose that

$$
y_{1} r_{1}^{\prime}+y_{2} r_{2}^{\prime}+\cdots+y_{n} r_{n}^{\prime}=0
$$

Differentiate again and impose the new emblition

$$
y_{1}^{\prime} r_{1}^{\prime}+y_{2}^{\prime} r_{2}^{\prime}+\cdots+y_{n}^{\prime} r_{n}^{\prime}=0,
$$

so that

$$
y^{\prime \prime}=r_{1}, y_{1}^{\prime \prime}+r_{2}, y_{2}^{\prime \prime}+\cdots+r_{1}, y_{n}^{\prime \prime} .
$$

The differentiation may be continued to the ($n-1$) st conalition
ant

$$
\left.!y_{1}^{(\prime \prime-2)}\left(y_{1}^{\prime}+y_{2}^{(n-2)}\right)_{2}^{\prime \prime}+\cdots+y_{n}^{\prime \prime \prime}\right)_{2}^{\prime \prime} r_{n}^{\prime}=0,
$$

Then

$$
\begin{aligned}
& \left.\left.+y_{1}^{(n-1)}\right)_{1}^{\prime \prime}+y_{2}^{(n-1)}\right)_{2}^{\prime \prime}+\cdots+y_{n}^{(n-1)} C_{n}^{\prime} .
\end{aligned}
$$

Now if the expressions thins fomm for !!, !! ! ! $y^{\prime \prime}, \cdots$. ! $y^{(n-1)}$! ! $y^{(n)}$ be sunstituted in the complete equation, anm it be remembered that y_{1}, !/n. $\cdots, /_{n}$ are sohutions of the meducen equation and henere give 0 when

$$
y_{1}^{(n-1)} r_{1}^{\prime}+y_{2}^{(n-1)} r_{2}^{\prime \prime}+\cdots+y_{n}^{(n-1)} r_{n}^{\prime}=R .
$$

llemee, in all, there are n linear ergations

$$
\begin{align*}
& !1_{1} r_{1}^{\prime \prime}+!/ n^{\prime}{ }_{2}^{\prime}+\cdots+!!_{2} r_{n}^{\prime \prime}=0, \\
& y_{1}^{\prime} r^{\prime}+!_{2}^{\prime} r_{2}^{\prime}+\cdots+!_{n}^{\prime} r_{n}^{\prime \prime}=0, \\
& \left.!!_{1}^{(n-2)}\right)_{1}^{\prime \prime}+!I_{2}^{(n-2)} r_{2}^{\prime}+\cdots+!!_{n}^{(n-2)_{1}^{\prime}}{ }_{n}^{\prime}=0, \tag{25}\\
& \left.\left.!!_{1}^{(n-1)}\right)_{1}^{\prime \prime}+!_{2}^{(n-1)} r_{2}^{\prime}+\cdots+!!_{n}^{(n-1)}\right)_{n}^{\prime \prime}=R .
\end{align*}
$$

comecting the derivatives of the ("s; and these may actually be solved for those derivatives which will then be expressed in terms of x. The C's may then be found by quadrature.

As an example consider the equation with constant coefficients

$$
\left(D^{3}+D\right) y=\sec x \text { with } y=C_{1}+C_{2} \cos x+C_{3} \sin x
$$

as the solution of the reduced equation. Here the solutions y_{1}, y_{2}, y_{3} may be taken as $1, \cos x, \sin x$ respectively. The conditions on the derivatives of the C "s become by direct substitution in (25)
$C_{1}^{\prime}+\cos x C_{2}^{\prime}+\sin x C_{3}^{\prime}=0,-\sin x C_{2}^{\prime}+\cos x C_{3}^{\prime}=0,-\cos x C_{2}^{\prime}-\sin x C_{3}^{\prime}=\sec x$. Hence $\quad\left(_{1}^{\prime}=\sec x . \quad\left(_{2}^{\prime \prime}=-1, \quad\left(_{3}^{\prime}=-\tan x\right.\right.\right.$ and $\quad C_{1}=\log \tan \left(\frac{1}{2} x+\frac{1}{4} \pi\right)+c_{1}, \quad C_{2}=-x+c_{2}, \quad U_{3}=\log \cos x+c_{3}$.
Hence $\quad y=c_{1}+\log \tan \left(\frac{1}{2} x+\frac{1}{4} \pi\right)+\left(r_{2}-x\right) \cos x+\left(c_{3}+\log \cos x\right) \sin , x$
is the general solution of the complete equation. This result could not be olitained
 method of $\$ 95$, but with little if any advantage over the method of variation of constants here given. The present method is equally available for equations with variahle coefficients.
106. Linear equations of the seromb oretor are especially frequent in practical problems. In a number of cases the solution may be fomm. Thus 1° when the coefficients are constant on may be made constant by a change of variable as in Ex. $\overline{7}, 1$, 2.22 , the general solution of the reduced equation may lee written down at once. The solution of the (omplete equation may then he fomm ly ohtaiming a particular integral I her the methods of sis 9:-97 or he the aphation of the method of variation of constants. And 2° when the exuation is exact, the solution may be had by integrating the line er equation (19) of $\leqslant 103$ of the first order by the ordinary methods. And 3° when one solution of the reduced equation is known (\$ 104), the redaceel equation may be eonnpletely solved and the complate erpation may then be solved hy the methed of variation of eonstants. on the eomplete ergation may be solved directly ly Ex. © below.

Otherwise, write the differential ergation in the form

$$
\begin{equation*}
\frac{r^{2}!!}{d_{1} r^{2}}+I^{\prime} l_{1!} l_{1}+(2!!=I \tag{26}
\end{equation*}
$$

The substitution $!=\|=$ gives the new equation

If "the determinerl so that the coreftherat of y^{\prime} vanishers, then

Now 4° if $Q-\frac{1}{2} P^{\prime}-\frac{1}{4} P^{2}$ is constant, the new reduced equation in (27) may be integrated; and 5° if it is $k i / x^{2}$, the equation may also be integrated by the method of Ex. 7, 1, 222. The integral of the complete equation may then be found. (In other cases this method may be useful in that the equation is reduced to a simpler form where solutions of the reduced equation are more evident.)

Again, suppose that the independent variable is changed to $\%$. Then

$$
\begin{equation*}
\frac{d^{2} y}{d z^{2}}+\frac{z^{\prime \prime}+P z^{\prime}}{z^{\prime 2}} \frac{d y}{d z^{\prime}}+\frac{Q}{z^{\prime 2}} y=\frac{R}{z^{\prime 2}} . \tag{28}
\end{equation*}
$$

Now 6° if $z^{\prime 2}= \pm Q$ will make $z^{\prime \prime}+P z^{\prime}=l_{i} z^{\prime 2}$, so that the coefficient of $d y / d z$ becomes a constant l, the equation is integrable. (Trying if $a^{\prime 2}= \pm Q z^{2}$ will make $\because^{\prime \prime}+P \because^{\prime}=l: z^{\prime 2} /:$ ns needless beramse nothing in addition to 6° is therehy obtained. It may happen that if a be determined so as to make $z^{\prime \prime}+I^{\prime}=0$, the equation will be so far simplified that a solution of the reduced equation becomes evident.)

Consider the example $\frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{d y}{d x}+\frac{a^{2}}{x^{4}} y=0$. Here no solution is apparent. Hence compute $Q-\frac{1}{2} P^{\prime}-\frac{1}{4} P^{2}$. This is ι^{2} / x^{4} and is neither constant nor proportional to $1 / x^{2}$. Hence the methods 4° and 5° will not work. From $z^{\prime 2}=Q=u^{2} / x^{4}$ or $z^{\prime}=a / x^{2}$, it appears that $z^{\prime \prime}+P z^{\prime}=0$, and 6° works; the new equation is

$$
\frac{d^{2} y}{d z^{2}}+y=0 \quad \text { with } \quad z=-\frac{a}{x}
$$

The solution is therefore seen inmediately to be

$$
y=C_{1} \cos z-C_{2}^{\prime} \sin z \text { or } y=C_{1} \cos (n / x)+C_{2} \sin (n / x)
$$

If there had been a right-hand member in the original equation, the solution conhd have leen found by the method of variation of constants. or ly some of the short methods for finding a particular solution if R hat been of the proper form.

EXERCISES

1. If a relation $C_{1} y_{1}+C_{2} y_{2}+\cdots+C_{n} y_{n}=0$. with constant coefficients not all 0 . exist, between n functions $y_{1}, y_{2}, \cdots, y_{n}$ of s for all talues of x, the functions are by definition said to be lincurly dependent; if no such relation exist., they are said to be linecrly independent. Show that the nonvanishing of the Wronskian is a criterion for linear indepentence.
2. If the general solution $y=C_{1} y_{1}+C_{2} y_{2}+\cdots+C_{n} y_{n}$ is the same for

$$
X_{0} y^{(n)}+X_{2} y^{(n-1)}+\cdots+X_{n} y=0 \text { and } P_{0,} y^{(n)}+\Gamma_{1} y^{(n-1)}+\cdots+P_{n} y=0
$$

two linear equations of the u th order. show that y satisfies the efuation

$$
\left(X_{1} P_{0}-X_{0} P_{1}\right) y^{(n-1)}+\cdots+\left(X_{n} P_{0}-X_{0} P_{n}\right) y=0
$$

of the $(n-1)$ st order: and hence infer. from the fact that y contains n arlitrary constants corresponting to n arbitrary initial conditions, the important theorem: If two linear equations of the u th order have the same general solution, the corresponding coefficients are proportional.

3．If $y_{1}, y_{2}, \cdots, y_{n}$ are n independent solutions of an equation of the nth order， show that the equation may be taken in the form $H^{\prime}\left(y_{1}, y_{2}, \cdots, y_{n}, y\right)=0$ ．

4．Show that if，in any reduced equation，$X_{n-1}+x X_{n}=0$ identically，then x is a solution．Find the condition that x^{m} be a solution ；also that $e^{m x}$ be a solution．

5．Find by inspection one or more independent solutions and integrate：
（a）$\left(1+x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$ ，
（ β ）$x y^{\prime \prime}+(1-x) y^{\prime}-y=0$ ．
（r）$\left(a x-b x^{2}\right) y^{\prime \prime}-a y^{\prime}+2 b y=0$ ，
（ δ ）$\frac{1}{2} y^{\prime \prime}+x y^{\prime}-(x+2) y=0$ ，
（ ϵ ）$\left(\log x+\frac{1}{x^{4}}-\frac{1}{x^{2}}+\frac{1}{x}\right) y^{\prime \prime \prime}+\left(\log x+\frac{1}{x^{4}}+\frac{1}{x^{3}}-\frac{1}{x^{2}}\right) y^{\prime \prime}+\left(\frac{1}{x^{2}}-\frac{1}{x}\right)\left(y^{\prime}-x y\right)=0$ ，
（弓）$y^{\mathrm{iv}}-x y^{\prime \prime \prime}+x y^{\prime}-y=0$ ，
（ η ）$\left(4 x^{2}-x+1\right) y^{\prime \prime \prime}+8 x^{2} y^{\prime \prime}-4 \cdot x y^{\prime}-8 y=0$ ．

6．If y_{1} is a known solution of the equation $y^{\prime \prime}+P y^{\prime}+Q y=R$ of the second order，show that the general solution may be written as

$$
y=C_{1} y_{1}+C_{2} y_{1} \int e^{-\int P d x} \frac{d x}{y_{1}^{2}}+y_{1} \int \frac{1}{y_{1}^{2}} e^{-\int P d x} \int y_{1} e^{\int P d x} R(d x)^{2} .
$$

7．Integrate：
（a）$x y^{\prime \prime}-(2 x+1) y^{\prime}+(x+1) y=x^{2}-x-1$ ，
（ β ）$y^{\prime \prime}-x^{2} y^{\prime}+x y=x$ ，
（r）$x y^{\prime \prime}+(1-x) y^{\prime}-y=e^{x}$ ，
（ $\delta) y^{\prime \prime}-x y^{\prime}+(x-1) y=R$ ，
（ ϵ ）$y^{\prime \prime} \sin ^{2} x+y^{\prime} \sin x \cos x-y=x-\sin x$ ．
8．After writing down the integral of the reduced equation by inspection，apply the method of the variation of constants to these equations：
$\left(\text {（c）}\left(D^{2}+1\right) y=\tan x, \quad(\beta)\left(D^{2}+1\right) y=\sec ^{2} x . \quad(\gamma)(I)-1\right)^{2} y=e^{x}(1-x)^{-2}$ ， （ δ ）$(1-x) y^{\prime \prime}+x y^{\prime}-y=(1-x)^{2},(\epsilon)\left(1-2 x+x^{2}\right)\left(y^{\prime \prime \prime}-1\right)-x^{2} y^{\prime \prime}+2 x y^{\prime}-y=1$ ．

9．Integrate the following equations of the secont order：
（c） $4 x^{2} y^{\prime \prime}+4 x^{3} y^{\prime}+\left(x^{2}+1\right)^{2} y=0$ ，
（ β ）$y^{\prime \prime}-2 y^{\prime} \tan x-\left(a^{2}+1\right) y=0$.
（ $\gamma) \cdot x y^{\prime \prime}+2 y^{\prime}-x y=2 e^{x}$ ，
（ס）$y^{\prime \prime} \sin x+2 y^{\prime} \cos x+3 y \sin x=e^{x}$ ．
（є）$y^{\prime \prime}+y^{\prime} \tan x+y \cos ^{2} x=0$ ，
（弓）$\left(1-x^{2}\right) y^{\prime \prime}-r y^{\prime}+4 y=0$ ．
（ η ）$y^{\prime \prime}+\left(2 e^{x}-1\right) y^{\prime}+\varepsilon^{2} \cdot y=\epsilon^{4 x}$ ，
（ θ ）$x^{6} y^{\prime \prime}+3 x^{5} y^{\prime}+y=x^{-2}$ ．

10．Show that if $X_{0} y^{\prime \prime}+X_{1} y^{\prime}+X_{2} y=R$ may be written in factors as

$$
\left.\left.\left(X_{0} I^{2}+X_{1} I\right)+X_{2}\right) y=\left(p_{1} D+q_{1}\right)\left(p_{2} I\right)+q_{2}\right) y=R,
$$

where the factors are not commatative inasmuch as the differentiation in one factor is applied to the variable coefficients of the succeeding factor as well as to L ，then the solution is obtainable in terms of quanlatures．Show that

$$
q_{1} p_{2}+p_{1} p_{2}^{\prime}+p_{1} q_{2}=X_{1} \quad \text { and } \quad q_{1} q_{2}+p_{1} q_{2}^{\prime}=X_{2}
$$

In this manner integrate the following equations，chowsing p_{1} anl p_{2} as factors of X_{0} and determining t_{1} and q_{2} ，by inspection or by assming them in some form and applying the methon of undetermine coefficients：
（c）$x y^{\prime \prime}+(1-x) y^{\prime}-y=e^{\prime}$ ，
（ $\left.\beta^{\prime}\right): x^{2} y^{\prime \prime}+\left(2-\left(3 x^{2}\right) y^{\prime}-4=0\right.$.
（ γ ） $3 x^{2} y^{\prime \prime}+\left(2+6, x-\left(5, x^{2}\right) y^{\prime}-4 y=0\right.$ ，
（ $\delta)\left(x^{2}-1\right) y^{\prime \prime}-(3, x+1) y^{\prime}-x(x-1) y=0$ ．
（ ϵ ）$u x y^{\prime \prime}+(3)(1+b x) y^{\prime}+3 b y=0$ ．
（5）$x y^{\prime \prime}-2 x(1+x) y^{\prime}+2\left(1+x^{\prime}\right) y=x^{3}$ ．

11．Huterrate these equation in any mamer：
（ $\alpha) y^{\prime \prime}-\frac{1}{\sqrt{x}} y^{\prime}+x+\sqrt{x}-8 x^{2} y=0$.
（ β ）$y^{\prime \prime}-\frac{2}{x} y^{\prime}+\left(u^{2}+\frac{2}{x^{2}}\right) y=0$,
(r) $y^{\prime \prime}+y^{\prime} \tan x+y \cos ^{2} x=0$,
($\delta) y^{\prime \prime}-2\left(n-\frac{\prime \prime}{x}\right) y^{\prime}+\left(n^{2}-2 \frac{n a}{x}\right) y=e^{n x}$,
(ϵ) $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}-c^{2} y=0$,
(广) $\left(a^{2}-x^{2}\right) y^{\prime \prime}-8 x y^{\prime}-12 y=0$,
(η) $y^{\prime \prime}+\frac{1}{x^{2} \log x} y=e^{x}\left(\frac{2}{x}+\log x\right)$,
(θ) $y^{\prime \prime}-\frac{9-4 x}{3-x} y^{\prime}+\frac{6-3 x}{3-x} y=0$,
(1) $y^{\prime \prime}+2 x^{-1} y^{\prime}-x^{2} y=0$.
(к) $y^{\prime \prime}-4 x y^{\prime}+\left(4 x^{2}-3\right) y=e^{x^{2}}$,
(入) $y^{\prime \prime}+2 n y^{\prime} \cot n x+\left(m^{2}-n^{2}\right) y=0$,
(μ) $y^{\prime \prime}+2\left(x^{-1}+B x^{-2}\right) y^{\prime}+A x^{-4} y=0$.
12. If y_{1} and y_{2} are solutions of $y^{\prime \prime}+P y^{\prime}+R=0$, show by eliminating Q and integrating that

$$
y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=C e^{-\int P d x}
$$

What if $C=0$? If $C \neq 0$, note that y_{1} and y_{1}^{\prime} camot vanish together ; and if $y_{1}(a)=y_{1}(b)=0$, use the relation $\left(y_{0} y_{1}^{\prime}\right)_{a}:\left(y_{2} y_{1}^{\prime}\right)_{b}=k>0$ to show that as $y_{1 u}^{\prime}$ and $y_{1 b}^{\prime}$ have opposite signs, $y_{2 a}$ and $y_{2 b}$ have opposite signs and hence $y_{2}(\xi)=0$ where $a<\xi<b$. Hence the theorem : Between any two roots of a solution of an equation of the second order there is one root of every solution independent of the given solution. What conditions of continnity for y and y^{\prime} are tacitly assumed here?
107. The cylinder functions. Suppose that $\left({ }_{n}(, r)\right.$ is a function of x which is different for different values of n and which satisfies the two equations
$r_{n-1}(x)-C_{n+1}(x)=2 \frac{d}{d x} r_{n}(x), \quad C_{n-1}(x)+C_{n+1}(x)=\frac{2 n}{e^{r}} C_{n}(x)$.
Such a function is called a cylinder function and the intlex n is called the order of the function and may have any real value. The two equations are supposed to holel for all values of n and for all values of x. They do not completely determine the functions but from then follow the chief rules of operation with the funetions. For instance, by addition and subtraction,

$$
\begin{equation*}
C_{n}^{\prime}(, r)=r_{n-1}\left(r^{r}\right)-{ }_{r}^{n} C_{n}\left(r^{r}\right)=\frac{n}{x} r_{n}(x)-C_{n+1}(x) \tag{30}
\end{equation*}
$$

Other relations which are easily eleduced are

$$
\begin{align*}
& D_{x}\left[r^{r^{2}} C_{n}\left(\sqrt{n, r^{r}}\right)\right]=\frac{1}{2} \sqrt{n, r^{\prime \cdot-1}{ }^{2}} C_{n-1}\left(\sqrt{\alpha, r^{r}}\right) \text {, } \tag{31}\\
& C_{0}^{\prime}(x)=-r_{1}^{\prime}\left(r^{r}\right), \quad C_{-n}\left(r^{r}\right)=(-1)^{n} C_{n}\left(r^{r}\right), \quad n \text { integral, } \tag{33}\\
& C_{n}\left(, r^{\prime}\right) K_{n}^{\prime \prime}\left(, r^{\prime}\right)-r_{n}^{\prime}\left(r^{r}\right) K_{n}^{\prime}(x)=r_{n+1}(x) K_{n}(r)-r_{n}^{\prime}(, r) K_{n+1}\left(r^{r}\right)=\frac{A}{x},
\end{align*}
$$

where r 'and K denote any two (rvinder functions.
The proof of these relatims is simple. but will he given to show the use of (29). In the first case differentiate directly and substitute from (2! 2).

$$
\begin{aligned}
D_{x}\left[x^{n} C_{n}^{\prime}(\alpha x)\right] & =\kappa^{n}\left[\alpha D_{\alpha x} r_{n}^{\prime}(\alpha, x)+\frac{n}{x} C_{n}^{\prime}(\alpha x)\right] \\
& =x^{n}\left[\alpha C_{n-1}^{\prime}(\alpha x)-\alpha \frac{n}{\alpha x x} C_{n}^{\prime}(\alpha x)+\frac{n}{x} C_{n}(\alpha x)\right] .
\end{aligned}
$$

The seenml of (31) is proved similarly. For (82), differentiate.

Next (83) is obtaned 1° by substituting 0 for u in both equations (\because ? 9).

$$
r_{-1}^{\prime}(r)-C_{1}^{\prime}(r)=2\left(_{0}^{\prime}(r) . \quad r_{-1}^{\prime}(r)+\left(_{1}^{\prime}(r)=0 . \quad \operatorname{l}_{1}+r^{\prime}+4 \quad r_{0}^{\prime}(r)=-r_{1}^{\prime}(r) ;\right.\right.
$$

$$
\begin{aligned}
& x C_{-1}^{\prime}+x C_{1}^{\prime}=0 . \quad x C_{-2}^{\prime}+x C_{0}^{\prime}=-2\left(_{-3}^{\prime} \quad \quad f_{0}^{\prime}+x f_{2}^{\prime}=2 C_{1}^{\prime}\right. \\
& x C_{-3}^{\prime}+x C_{-1}^{\prime}=-4 \prime_{-2}^{\prime} \quad r C_{1}^{\prime}+r C_{: 3}^{\prime}=+r_{2}^{\prime} . \\
& r C_{-4}^{\prime}+r C_{-2}^{\prime}=-1 i C_{3}^{\prime} . \quad r C_{2}+r C_{4}^{\prime}=1 ; r_{3} .
\end{aligned}
$$

 amd so om. For the last of the relations. a very imporiant ome mote finst that the two expresions bexome erfaivalent by virtue of (2!9) ; for

$$
C_{"} K_{n}^{\prime \prime}-r_{"}^{\prime} K_{n}={ }_{r}^{n} r_{"} K_{n}-r_{n}^{\prime} K_{n+1}-\underline{r}_{r}^{n} r_{"} K_{n}+C_{n+1} K_{"}
$$

$$
\begin{aligned}
& +s\left(_{n+1}\left({ }_{n}^{n} K_{n}-K_{n+1}\right)-r K_{n+1}\left({ } _ { n } ^ { n } \left(_{n}-\left(_{n+1}\right)\right.\right.\right. \\
& -r f_{n}^{\prime}\left(K_{n}-\frac{n+1}{s} K_{n+1}^{\prime}\right)=0 .
\end{aligned}
$$

The eqlinden functions of a givem orden on satisfy a linear differemtial eguation of the sawomb order. This may lae ohtained ly differentiating the first of (29) and wonhining with (:3).

$$
\begin{aligned}
& \because r_{n}^{\prime \prime \prime}=r_{n-1}^{\prime}-r_{n+1}^{\prime}={ }_{n-1}^{n} r_{n-1}-\because_{n} r^{n+1} r_{n+1}
\end{aligned}
$$

[146e

 From the equation it follows that any then functions of the same orther
 fundions of any given order.

By a change of the independent variable, the liessel equation may take on several other forms. The easiest way to find them is to operate directly with the relations (31), (32). Thus

$$
\begin{aligned}
& I_{x}\left[r^{-n r^{\prime}}{ }_{n}\left(x^{\prime}\right)\right]=-x^{-n} r^{\prime}{ }_{n+1}=-x^{\prime} \cdot x^{-n-1} C_{n+1} \text {, } \\
& I)_{n}^{2}\left[r^{-n} r^{\prime}\left(r^{\prime}\right)\right]=-n^{-n-1} r_{n+1}+r^{\prime} \cdot n^{-n-1} r_{n+2} \\
& =-r^{-n-1}\left({ }_{n+1}+2(n+1) r^{-n-1} r_{n+1}-x^{-n} r_{n} .\right.
\end{aligned}
$$

Hence

$$
\begin{equation*}
\frac{r^{2}!}{d_{r^{2}}}+(1+2 n) \frac{d y}{d r^{\prime}}+y=0, \quad y=r^{\prime n} r_{n}^{\prime}\left(r^{\prime}\right) \tag{36}
\end{equation*}
$$

Again

$$
\begin{equation*}
\frac{d^{2}!}{d x^{2}}+\frac{(1-2 n)}{r^{\prime}} \frac{d!y}{d x^{\prime}}+y=0, \quad y=x^{n r^{\prime}}(x) \tag{37}
\end{equation*}
$$

Also

$$
\begin{equation*}
x y^{\prime \prime}+(1+n) y^{\prime}+y=0, \quad y=x^{-\frac{n}{2}},\left({ }^{\prime}\left(2 \sqrt{x^{\prime}}\right) .\right. \tag{38}
\end{equation*}
$$

Anel

$$
\begin{equation*}
\because y^{\prime \prime}+(1-n)!^{\prime}+y=0, \quad y=r^{\frac{n}{2}} r_{n}\left(2 \sqrt{y^{\prime}}\right) \tag{39}
\end{equation*}
$$

In all these differential equations it is well to restrict , 1 to positive values inasmum as, if n is not sperialized, the poweis of x^{r}, as $, x^{n}, x^{-n}, x^{n}, r^{-\frac{n}{2}}$, are not always real.
108. The fact that n occur's only squared in (35) shows that both ${ }^{\prime}(, r)$ and $r_{-n}^{\prime}(, r)$ are solutions, su that if these functions are independent, the complete solution is $!=\| C_{n}+b C_{-n}$. In like mamer the "rgations (36) , (37) form a pair whirh differ only in the sign of u. Hemere if H_{n} and H_{-n} denote particular intergals ot the tirst and second respectively, the complete integrals are respertivery

$$
y=\| I I_{n}+b I_{-n} r^{r^{-2}} \quad \text { and } \quad y=\| I I_{-n}+l H I_{n} r^{r^{2 n}}
$$

and similarly the respective intergals of (38), (39) are

$$
y=\| I_{n}+l_{-n} I^{r^{-n}} \quad \text { and } \quad y=\| I_{-n}+b I_{n} i^{n}
$$

where I_{n} and I_{-n} demote partimular integrals of these two equations. It should be noted that these foms are the complete solntions only when the two integrals are inderemolent. Note that

$$
I_{n}(, r)=r^{-\frac{1}{2} f_{n}}\left(\begin{array}{l}
2 \tag{40}\\
2 \\
\sqrt{n}
\end{array}\right) \quad\left(_{\prime \prime}(, r)=\left(\frac{1}{2}, r^{n}\right)^{n} I_{n}\left(\frac{1}{4}, r^{2}\right) .\right.
$$

As it has been seen that $\prime^{\prime},{ }^{\prime \prime}=(-1)^{\prime \prime} f_{-}$" when n is intergal. it follows that in this ("ase the abmer lomms do not give the eomplete solution.
 methed of undeterminerl corffiedents (s $8 s$). It is

$$
\begin{equation*}
I_{u}\left(, n^{\prime}\right)=\sum_{n}^{\infty} "_{i i^{\prime}}, \quad{ }_{i}=i_{i}:(n+1)(n+2) \cdots(n+i) \tag{41}
\end{equation*}
$$

as is derived helow. It shomble botel that I_{-n} fommed by ehanging the sign of n is meaningless when n is an integer. for the reason that
from a certain point on, the coefficients $"_{i}$ have zeros in the denominator. The determination of a series for the second independent solution when n is integral will be omitted. The solutions of (35), (36) corresponding to $I_{n}(x)$ are, by (40) and (41),

$$
\begin{gather*}
J_{n}\left(\cdot x^{\prime}\right)=\frac{r^{\prime \prime}}{2^{n}} \sum_{0}^{\infty} \frac{(-1)^{i} \cdot x^{2} i}{2^{2} i} i!(n+i)! \tag{42}\\
x^{-n} I_{n}(x)=\frac{x^{n}}{2^{n} n!} I_{n}\left(\frac{1}{4} x^{2}\right) \\
2^{n} n!
\end{gather*} I_{n}\left(\frac{1}{4} \cdot x^{2}\right), ~ \$
$$

where the factor n ! has been introduced in the denominator merely to conform to usage.* The chief eylinder function $C_{n}(x)$ is $J_{n}(x)$ and it always carries the name of Bessel.

To derive the series for $I_{n}(x)$ write

$$
\begin{array}{c|c}
1 \\
(1+n) & \begin{array}{l}
I_{n}=u_{0}+u_{1} x+\quad a_{2} x^{2}+\cdots+u_{k-1} x^{k-1}+\cdots, \\
x
\end{array} \\
\begin{aligned}
I_{n}^{\prime \prime} & =u_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+(k-1) a_{k-1} x^{k-2}+\cdots, \\
I_{n}^{\prime \prime} & =\frac{2 u_{2}+3 \cdot 2 u_{3} c+\cdots+(k-1)(k-2) a_{k-1} \cdot x^{k-3}+\cdots,}{} \\
0 & =\left[u_{0}+u_{1}(n+1)\right]+x\left[u_{1}+u_{2} 2(n+2)\right]+x^{2}\left[u_{2}+u_{3} \cdot 3(n+3)\right] \\
& \quad+\cdots+x^{k-1}\left[u_{k-1}+a_{k} k(n+k)\right]+\cdots .
\end{aligned}
\end{array}
$$

Hence $\quad a_{0}+a_{1}(n+1)=0, \quad a_{1}+a_{2} 2(n+2)=0, \cdots, \quad a_{k-1}+a_{k} k(n+k)=0$,
or

$$
\begin{aligned}
a_{1}=-\frac{a_{0}}{n+1}, \quad a_{2} & =\frac{-a_{1}}{2(n+2)}=\frac{a_{0}}{2!(n+1)(n+2)}, \cdots, \\
a_{k} & =\frac{(-1)^{k} u_{0}}{k!(n+1) \cdots(n+k)} .
\end{aligned}
$$

If now the choice $t_{0}=1$ is made, the series for $I_{n}(x)$ is as given in (41).
The famons differential equation of the first order

$$
\begin{equation*}
x y^{\prime}-u y+b y^{2}=c x^{\prime \prime}, \tag{43}
\end{equation*}
$$

known as Riceatis equation, may be integrated in terms of cylinder functions. Note that if $n=0$ or $c=0$, the variables are separable ; and if $b=0$, the erpation is linear. As these cases are immediately integrable, assume ben $\neq 0$. By a suitable change of variable, the equation takes the form

$$
\xi \frac{d^{2} \eta}{d \xi^{2}}+\left(1-\frac{d}{n}\right) \frac{d \eta}{d \xi}-b c \eta=0, \quad \xi=\frac{1}{n^{2}} x^{n}, \quad y=\frac{n}{b} \frac{d \eta \xi}{d \xi} \frac{\eta}{\eta} .
$$

A eomparison of this with (39) shows that the solution is

$$
\eta=A I_{-\frac{1}{n}}\left(-b c_{\xi}^{\xi}\right)+1 i I_{c}(-b c \xi) \cdot\left(-b c^{\xi}\right)^{\frac{a}{n}},
$$

which in terms of Bessel functions I becomes, by (40),

[^22]The value of y may be found by substitution and use of (29).

$$
\begin{equation*}
y=\sqrt{-\frac{c}{b}} x^{\frac{n}{2}} \frac{J_{\frac{a}{n}-1}\left(2 x^{\frac{n}{2}} \sqrt{-b c} / n\right)-A J_{1-\frac{a}{n}}\left(2 x^{\frac{n}{2}} \sqrt{-b c} / n\right)}{J_{\frac{a}{n}}\left(2 x^{\frac{n}{2}} \sqrt{-b c} / n\right)+A J_{-\frac{a}{n}}\left(2 x^{\frac{n}{2}} \sqrt{-b c} / n\right)}, \tag{44}
\end{equation*}
$$

where A denotes the one arbitrary constant of integration.
It is noteworthy that the cylinder functions are sometines expressible in terms of trigonometric functions. For when $n=\frac{1}{2}$ the equation (35) has the integrals

$$
y=A \sin x+B \cos x \text { and } y=x^{\frac{1}{2}}\left[A C_{\frac{1}{2}}(x)+B C_{-\frac{1}{2}}(x)\right] .
$$

Hence it is permissible to write the relations

$$
\begin{equation*}
x^{\frac{1}{2}} C_{\frac{1}{2}}(x)=\sin x, \quad x^{\frac{1}{2}} C_{-\frac{1}{2}}(x)=\cos x, \tag{45}
\end{equation*}
$$

where C is a suitably chosen cylinder function of order $\frac{1}{2}$. From these equations by application of (29) the eylinder functions of order $p+\frac{1}{2}$, where p is any integer, may be founcl.

Now if Riceatis equation is such that b and c have opposite signs and a / n is of the form $p+\frac{1}{2}$, the integral (44) can be expressed in terms of trigonometric functions by using the values of the functions $C_{p+\frac{1}{2}}$ just found in place of the J 's. Moreover if b and c have the same sign, the trigonometrie solution will still hold formally and may be converted into exponential or hyperbolic form. Thus Riccati's equation is integrable in terms of the elementary functions when $a / n=p+\frac{1}{2}$ no matter what the sign of $b c$ is.

EXERCISES

1. Prove the following relations:
($\alpha) 4 C_{n}^{\prime \prime}=C_{n-2-2}-2 C_{n}+C_{n+2}$,
(β) $x C_{n}=2(n+1) C_{n+1}-x C_{n+2}$,
($\gamma) 2^{3} C_{n}^{\prime \prime \prime}=C_{n-3}^{\prime}-3 C_{n-1}+3 C_{n+1}-C_{n+3}$, gencralize,
(δ) $x C_{n}=2(n+1) C_{n+1}-2(n+3) C_{n+3}+2(n+5)\left({ }_{n+5}-x C_{n+6}\right.$.
2. Study the functions defined by the pair of relations

$$
F_{n-1}(x)+F_{n+1}(x)=2 \frac{d}{d x} F_{n}(x), \quad F_{n-1}\left(x^{\prime}\right)-F_{n+1}(x)=\frac{2}{x} F_{n}(x)
$$

especially to find results analogrus to (30)-(35).
3. Use Ex. 12, p. 247, to obtain (34) and the emresponding relation in Ex. 2.
4. Show that the solution of (38) is $y=A I_{n} \int \frac{d x}{x^{n+1} I_{n}^{2}}+B I_{n}$.
5. Write out five terms in the expansions of $I_{0}, I_{1}, I_{-\frac{1}{2}}, J_{0}, J_{1}$.
6. Show from the expansion (42) that $\frac{1}{2}!\sqrt{\frac{2}{x}} J_{\frac{1}{2}}(x)=\frac{1}{x} \sin x$.
7. From (45), (29) obtain the following:

$$
\begin{array}{ll}
x^{\frac{1}{2}} C_{\frac{3}{2}}(x)=\frac{\sin x}{x}-\cos x, & x^{\frac{1}{2}} C_{5}^{2}(x)=\left(\frac{3}{x^{2}}-1\right) \sin x-\frac{3}{x} \cos x, \\
x^{\frac{1}{2}} C_{-\frac{3}{2}}(x)=-\sin x-\frac{\cos x}{x}, & x^{\frac{1}{2}} C_{-\frac{5}{2}}(x)=\frac{3}{x} \sin x+\left(\frac{3}{x^{2}}-1\right) \cos x .
\end{array}
$$

8. Prove by integration by parts: $\int \frac{J_{2} d x}{x^{3}} d x=\frac{J_{3}}{x^{3}}+6 \frac{J_{4}}{x^{4}}+6 \cdot 8 \int \frac{J_{5} d x}{x^{5}}$.
9. Suppose $C_{n}(x)$ and $K_{n}(x)$ so chosen that $A=1$ in (34). Show that

$$
y=A C_{n}^{\prime}(x)+R K_{n}(x)+L\left[K_{n}(x) \int \frac{C_{n}(x)}{x^{3}} d x-C_{n}(x) \int \frac{K_{n}(x)}{x^{3}} d x\right]
$$

is the integral of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=L x^{-2}$.
10. Note that the solntion of Rierati's ergation las the form

$$
y=\frac{f(x)+A!(\cdot x)}{F(x)+I G(x)} \text {, and show that } \frac{d y}{d x}+I^{\prime}(x) y+Q(x) y^{2}=R(x)
$$

will be the fom of the equation which has such an expression for its integral.
11. Integrate these equations in terms of cerinder functions and reduce the results whenever possible by means of Ex. 7 :
($\alpha) x y^{\prime}-5 y+y^{2}+x^{2}=0$,
(β) $x y^{\prime}-3 y+y^{2}=r^{2}$.
(r) $y^{\prime \prime}+y c^{2 \cdot x}=0$,
(δ) $x^{2} y^{\prime \prime}+n x \cdot y^{\prime}+\left(b+x^{2} x^{m}\right) y=0$.
12. Identify the functions of Ex. 2 with the eylinder functions of $i x$.
13. Let $\left(n^{2}-1\right) P_{n}^{\prime}=(n+1)\left(P_{n+1}-x P_{n}\right), \quad P_{n+1}^{\prime}=x P_{n}^{\prime}+(n+1) P_{n}$
be taken as defining the Legendre functions $P_{n}(r)$ of neder n. Prove
(a) $\left(x^{2}-1\right) P_{n}^{\prime}=n\left(r P_{n}-P_{n-1}\right)$,
(β) $(2 n+1) x P_{n}=(n+1) I_{n+1}+u P_{n-1}$.
(γ) $(2 n+1) I_{n}=I_{n+1}^{\prime}-I_{n-1}^{\prime}$,
($\delta)\left(1-x^{2}\right) \Gamma_{n}^{\prime \prime}-2 x I_{n}^{\prime}+u(n+1) I_{n}=0$.
14. Show that $I_{n}^{\prime} \ell_{n}^{\prime}-P_{n}^{\prime} Q_{n}=\frac{A}{x^{2}-1}$ and $\quad I_{n}^{\prime} Q_{n+1}-I_{n+1}^{\prime} \ell_{n}=\frac{A}{n+1}$,
where P and Q are any two Legendre functions. Express the general solution of the differential equation of Ex. 13 (δ) analogonsly th Ex. 4.
15. Let $u=x^{2}-1$ and let D denote difierentiation loy x. Show

$$
\begin{aligned}
& I^{n+1} u^{n+1}=I^{m+1}\left(m_{n \prime \prime}^{\prime \prime}\right)=u I^{n+1} u^{n}+2(n+1) \cdot \boldsymbol{r} I^{m} u^{n}+n(n+1) I I^{m-1} u^{n}, \\
& \left.I^{n+1} u^{n+1}=I^{m} I^{n} u^{n+1}=2(n+1) I^{m}\left(r^{m}\right)=2(n+1) x^{\prime} m^{m} u^{n}+2 n(n+1) I\right)^{n-1} u^{n} .
\end{aligned}
$$

Hence show that the derivative of the secombl equation and the climinant of $I^{n-1} u^{n}$ between the two equations give two eruations which realuee to (1ti) if
16. Determine the whtions of Ex. $1: 3$ (o) in serice for the initial conditions

$$
\left(\text { (a) } \Gamma_{n}(0)=1 . \quad \Gamma_{n}^{\prime}(0)=0 . \quad(\beta) \quad \Gamma_{n}(0)=0 . \quad \Gamma_{n}^{\prime}(0)=1 .\right.
$$

17. Takn $P_{0}=1$ and $P_{1}=r$. S゙mw that these are shlutinns of (fi) and compute

18. Write Ex. 13 (δ) as ${ }^{d}\left[x^{\prime}\left[\left(1-x^{2}\right) f_{n}^{\prime}\right]+n(x+1) P_{n}=1\right.$ amm thow $\left.[m(m+1)-n(n+1)] \int_{-1}^{-1} \Gamma_{n}^{\prime} P_{m} d x=\left.\int_{-1}^{+1}\right|^{\Gamma} P_{m} \frac{d\left(1-r^{2}\right) P_{n}^{\prime}}{d x}-I_{n} \frac{d\left(1-r^{2}\right) \Gamma_{m}^{\prime}}{d x}\right] d x$.

Integrate by parts, assume the functions and their derivatives are linite, and show

$$
\int_{-1}^{+1} I_{n} I_{m}^{\prime} d x=0, \text { if } \quad n \neq m
$$

19. By sucessive integration by parts ambly demption formulas show

$$
\int_{-1}^{+1} P_{n}^{2} d x=\frac{1}{n_{n}^{2 n}(n!)^{2}} \int_{-1}^{+1} \frac{t^{\prime \prime \prime}\left(x^{2}-1\right)^{n}}{\left(d x^{n}\right.} \cdot \frac{i^{\prime \prime}\left(x^{2}-1\right)^{\prime \prime}}{\left(l x^{n}\right.} d x=\frac{(-1)^{n}}{2 n \cdot n!} \int_{-1}^{+1}\left(x^{2}-1\right)^{n} d x
$$

and

$$
\int_{-1}^{+1} I_{n}^{2} \lambda x=\frac{2}{2 n+1}, \quad n \text { integral. }
$$

20. silow

$$
\int_{-1}^{+1} d^{m} l_{n}^{\prime} d x=\int_{-1}^{1} x^{m}\left(f^{\prime \prime}\left(x^{2}-1\right)^{n}=0, \quad \text { if } m<u\right.
$$

10termine the value of the intergal when $m=n$. Cannot the results of lixs. 18,19 for m and n integral be ohtained simply from these results:
21. Comsider (38) anl its sohtion $I_{0}=1-x+\frac{r^{2}}{y^{2}}-\frac{x^{3}}{3!^{2}}+\frac{x^{4}}{4!^{2}}-\cdots$ when $u=0$. Asinme a solution of the fomm $y=I_{0} v+w$ so that

$$
x^{d^{2} \|} \frac{d x^{2}}{x^{2}}+\frac{d u}{d x}+u+2 r^{\prime} \frac{d I_{0} \cdot d v}{d x \cdot d x}=0, \quad \text { if } \quad r^{r^{2} v} \frac{d^{2} v}{d x^{2}}+\frac{d v}{d x}=0
$$

is the equation f or w if x satisfies the equation $x v^{\prime \prime}+v^{\prime}=0$. Show

$$
r=1+B \log x, \quad m^{\prime \prime}+w^{\prime \prime}+w=2 B-\frac{2 B r}{2!}+\frac{2 B r^{2}}{2!3!}-\frac{2 B r r^{3}}{3!+!}+\cdots
$$

By assuming $w=u_{1} x+u_{0} x^{2}+\cdots$, determine the $a<x$ and hence obtain

$$
u=2 B\left[x-\frac{r^{2}}{2!:}\left(1+\begin{array}{l}
1 \\
2
\end{array}\right)+\frac{r^{2}}{3}\left(1+\frac{1}{2}+\begin{array}{l}
1 \\
3
\end{array}\right)-r^{r^{1}}\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{1}\right)+\cdots\right]
$$

and $(a+B \log x) f_{0}+w$ is then the eomplete sulntion containing two ponstants. As $A I_{0}$ is onm solation, B lager $\cdot I_{0}+w$ is another. From this seeond solation for $n=0$, the semoml solution lor any intergat value of n may be ohtained by differentiation ; the work, however, is long and the result is somewhat complicated.

CHAPTER X

differential equations in more than two variables

109. Total differential equations. An equation of the form

$$
\begin{equation*}
P(x, y, *) d x+Q(x, y, z) d y+R(i, y, y) d z=0, \tag{1}
\end{equation*}
$$

involving the differentials of three variahles is called a totul differentiell equution. A similar equation in any number of variables would also be called total; but the discussion here will be restricted to the case of three. If definite values be assigned to x, y, z, , say a, b, c, the erpuation becomes

$$
\begin{equation*}
A d x+B r y+C d z=A(r-1)+B(y-l)+C(z-c)=0, \tag{2}
\end{equation*}
$$

where x, y, z are supposed to le restricted to values near n, h, ρ, and represents a small portion of a plane passing through ($1, l, r$). From the analogy to the lineal element (8.5), such a portion of a plane may be called a plonnre olement. The differential equation therefore represents an infinite number of phanar elements, one passing through each peint of space.

Now any family of surfaces $F(x, y, n)=C$ also represents an infinity of phanar elements, namely, the portions of the tangent planes at every point of all the surfares in the neighborhood of their respective points of tangency. In fact

$$
\begin{equation*}
d F=F_{x}^{\prime} d x+F_{y}^{\prime} \prime y+F_{z}^{\prime} l y=0 \tag{3}
\end{equation*}
$$

is an equation similar to (1). If the planar elements represented by (1) and (3) are to lee the same, the efuations camot differ by more than a factor $\mu(x, y, y)$. Hence

$$
r_{x}^{\prime}=\mu P^{\prime}, \quad F_{y}^{\prime}=\mu \prime, \quad r_{z}^{\prime}=\mu R .
$$

If a function $F(\cdot,, y, n)=C$ (ann he found which satisfies these conditions, it is said to be the integral of (1), and the fartor $\mu(\ldots . y, z$) , whirh the "rguations (1) and (3) differ is called an introgrofing fourton of (1). Compare s? 91.

It nay happen that $\mu=1$ and that (1) is thas an erort differential. In this case the conditions
which arise from $F_{x y}^{\prime \prime}=F_{y, y}^{\prime \prime}, F_{y z}^{\prime \prime}=F_{z y,}^{\prime \prime}, F_{z, z}^{\prime \prime}=F_{x z}^{\prime \prime}$, must be satisfied. Moreover if these conditions are satisfied, the equation (1) will be an exact equation and the integral is given by

$$
F(x, y, z)=\int_{x_{0}}^{x} P(x, y, z) d x+\int_{y_{0}}^{y} 2\left(x_{0}, y, z\right) d y+\int R\left(\cdot x_{0}, y_{0}, z\right) d z=c,
$$

where x_{0}, y_{0}, z_{0} may he chosen so as to render the integration as simple as possible. The proof of this is so similar to that given in the case of two variables ($\$ 92$) as to be omitted. In many cases which arise in practice the equation, though not exact, may be made so by an obvious integrating factor.

As an example take $z x d y-y z d x+x^{2} d z=0$. Here the conditions (4) are not fulfilled but the integrating factor $1 / x^{2} z$ is suggested. Then

$$
\frac{x d y-y d x}{x^{2}}+\frac{d z}{z}=d\left(\frac{y}{x}+\log z\right)
$$

is at once perceived to be an exact differential and the integral is $y / x+\log z=C$. It appears therefore that in this simple case neither the renewerl application of the conditions (4) nor the general formula for the interral was necessary. It often happens that both the integrating factor and the integral can be recognized at once as above.

If the equation does not suggest an integrating factor, the question arises, Is there any integrating factor? In the case of two variables ($\$ 94$) there always was an integrating factor. In the case of three variables there may be none. For

$$
\begin{aligned}
& F_{x y}^{\prime \prime}=P^{\prime} \frac{\partial \mu}{\partial y}+\mu \frac{\partial P}{\partial y}=F_{y, r}^{\prime \prime}=\Omega \frac{\partial \mu}{\partial x}+\mu \frac{\partial Q}{\partial r r}, \\
& F_{y z}^{\prime \prime}=\Omega \frac{\partial \mu}{\partial z}+\mu \frac{\partial Q}{\partial z}=F_{z y}^{\prime \prime}=R \frac{\partial \mu}{\partial y}+\mu \frac{\partial R}{\partial y}, \\
& F_{z r}^{\prime \prime}=R, \\
& P, \\
& \frac{\partial \mu}{\partial x}+\mu \frac{\partial R}{\partial x}=F_{z z}^{\prime \prime}=r \frac{\partial \mu}{\partial z}+\mu \frac{\partial P}{\partial z},
\end{aligned}
$$

If these equations be multiplied ly R, P, Q and added and if the result be simplified, the condition

$$
\begin{equation*}
P\left(\frac{\partial Q}{\partial z}-\frac{\partial R}{\partial y}\right)+Q\left(\frac{\hat{c} R}{\partial x}-\frac{\partial P}{\partial z}\right)+R\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=0 \tag{0}
\end{equation*}
$$

is found to be imposed on P, Q, R if there is to be an integrating factor. This is called the condition of integrothility. For it may be shown conversely that if the condition (5) is satisfied, the equation may be integrated.

Suppose an attempt to integrate (1) be made as follows: First assume that one of the variables is constant (naturally, that one which will
make the resulting equation simplest to integrate), say a. Then $P^{\prime}\left(x+Q^{\prime}!y=0\right.$. Now integrate this simplified equation with an integrating factor or otherwise, and let $F\left(x^{\prime},!/, A^{*}\right)=\phi(*)$ be the integral, where the eonstant (" is taken as a function ϕ of \because. Next try to determine ϕ so that the integral $F(x, y, i)=\phi(i)$ will satisfy (1). To do this, lifferentiate;

$$
F_{x^{\prime}}^{\prime} l_{x}+F_{y,}^{\prime} \prime_{y}+F_{z}^{\prime} d_{z}=d \phi
$$

Compare this equation with (1). Then the equations*

$$
F_{x}^{\prime}=\lambda l^{\prime}, \quad F_{l \prime}^{\prime}=\lambda Q, \quad\left(I_{z}^{\prime \prime}-\lambda R_{i}^{\prime}\right) d_{z}^{\prime}=\| \phi
$$

must hold. The third equation $\left(F_{z}^{\prime}-\lambda R\right) d i=\| \phi$ may be integrated
 that is, of a and F alone. This is so in case the condition (σ) holds. It therefore appears that the integration of the equation (1) for which (o) holds reduces to the succession of two intergrations of the type discenssed in Chatp. VIII.

As an example take $\left(2 x^{2}+2 x y+2 x z^{2}+1\right) d x+d y+2 z d z=0$. The condition

$$
\left(2 x^{2}+2 x y+2 x z^{2}+1\right) 0+1(-4 x z)+2 z(2 x)=0
$$

of integrability is satisfied. The greatest simplification will be hat loy making x constant. Then $d y+2 z d z=0$ and $y+z^{2}=\phi(x)$. Complare

$$
d y+2 z d z=d \phi \quad \text { and } \quad\left(2 x^{2}+2 x y+2 x z^{2}+1\right) d x+d y+2 z d z=0 .
$$

Then $\quad \lambda=1, \quad-\left(2 x^{2}+2 x^{2} y+2 x z^{2}+1\right) d x=d \phi ;$
or

$$
-\left(2 x^{2}+1+2 x \phi\right) d x=d p \quad \text { or } \quad d \phi+2 x \phi d x=-\left(2 x^{2}+1\right) d x .
$$

This is the linear type with the integrating factore ${ }^{2}$. 'Then

$$
e^{2}(l \phi+2 x \phi x)=-e^{2}\left(2 x^{2}+1\right) d x \quad \text { (1) } \quad r^{2} \phi=-\int 1 x^{2}\left(2 x^{2}+1\right) d x+r^{\prime}
$$

Hence $y+z^{2}+c^{-r^{2}} \int c^{r^{2}}\left(2 x^{2}+1\right) d x=r^{\prime} c x^{2}$ or $c^{r^{2}}\left(y+z^{2}\right)+\int e^{r^{2}}\left(2 x^{2}+1\right) d x=r$ is the solution. It may be noted that $e^{r^{2}}$ is the intergrating factor for the original Cflation:

$$
\epsilon^{2}\left[\left(2 x^{2}+2 x y+2 x z^{2}+1\right) d x+11 y+2 z d z\right]=1 l\left[x^{x^{2}}\left(y+z^{2}\right)+\int\left(x^{2}\left(z x^{2}+1\right) d x\right] .\right.
$$

To complete the proof that the entration (1) is interatabe if (a) is satistion. it is neeresary to show that when the emolition is satistied the ceneficiont $s=r_{-}^{\prime}-\lambda /$ is a function of z and F alone. Latt it be regaterl ats a function of r, F, z instrad of x, y, z. It is mecessaly to prove that the derivative of s $\begin{gathered}\text { by } x \\ x\end{gathered}$ when F and z are constant is zero. By the formalas for change of variable

$$
\binom{\hat{i}}{\hat{i}, x}_{y, z}=\binom{\hat{c}}{\hat{i} s}_{F, z}+\binom{\hat{i}}{\hat{i} F} \begin{gathered}
\hat{i} F \\
\hat{i}, \vec{j}
\end{gathered} \quad\binom{\hat{i}}{\hat{c} y}_{i, z}=\binom{\hat{i}}{\hat{i} F}_{s, z}{ }_{i V} \hat{i} .
$$

[^23]But $F_{x}^{\prime}=\lambda P$ and $F_{y}^{\prime}=\lambda Q$, and hence $Q\binom{\hat{c},}{\hat{i}, r}_{y, z}-P^{\prime}\binom{\hat{i} S}{\hat{i} y}_{x, z}=Q\binom{\hat{c},}{\hat{i} x}_{F, z}$.
Now

$$
\left(\frac{\hat{c} x}{\hat{c} x}\right)_{y, z}=\frac{\hat{c}}{\hat{c} x}\left(\frac{\hat{c} F}{\hat{c} z}-\lambda F i\right)=\frac{\hat{i}^{2} F}{\hat{c} z \hat{z}, x}-\frac{\hat{c} \lambda l i}{\hat{c} x}=\frac{\hat{c} \lambda P}{\hat{c} z}-\frac{\hat{c} \lambda l i}{\hat{c} x} .
$$

Hence

$$
\left(\frac{\hat{c} A}{\hat{c} x}\right)_{y, z}=\lambda\left(\frac{\hat{c} P}{\hat{c} z}-\frac{\hat{c} l i}{\hat{c} x}\right)+P^{\prime} \frac{\hat{c} \lambda}{\hat{c} z}-R^{\frac{c}{} \lambda},
$$

and

$$
\left(\frac{\hat{c}}{\hat{c} y}\right)_{x, z}=\lambda\left(\frac{\hat{\partial} Q}{\hat{c} z}-\frac{\hat{c} R}{\hat{c} y}\right)+Q \frac{\hat{\imath} \lambda}{\hat{c} z}-R \frac{\hat{\partial} \lambda}{\hat{c} y} .
$$

Then $Q\left(\frac{\partial S}{\hat{c} x}\right)_{y, z}-P\left(\frac{\hat{c} Y}{\hat{c} y}\right)_{x, z}=\lambda\left[Q\left(\frac{\hat{c} P}{\hat{c} z}-\frac{\hat{c} R}{\hat{c} x}\right)+P^{\prime}\left(\frac{\hat{c} R}{\hat{c} y}-\frac{\hat{c} Q}{\hat{c} z}\right)\right]-R\left[Q \frac{\hat{c} \lambda}{\hat{c} x}-P \frac{\hat{c} \lambda}{\hat{c} y}\right]$
and

$$
\begin{aligned}
Q\left(\frac{\hat{c}}{\hat{c} x}\right)_{F, z}=\lambda\left[Y\left(\frac{\hat{c} P}{\hat{c} z}-\frac{\hat{c} l}{\hat{c} x}\right)\right. & \left.+P\left(\frac{\hat{c} R}{\hat{c} y}-\frac{\hat{\partial} Q}{\hat{c} z}\right)+H\left(\frac{\hat{c} Q}{\hat{c} x}-\frac{\hat{c} P}{\hat{c} y}\right)\right] \\
& -H\left[\frac{\hat{i} \lambda Q}{\hat{c} x}-\frac{\hat{i} P}{\hat{c} y}\right]
\end{aligned}
$$

where a term las been adhed in the first bracket and subtracted in the second. Now as λ is an integrating factor for $P^{\prime} d x+\left(l_{l} l y\right.$. it follows that $\left(\lambda(\lambda)_{r}^{\prime}=(\lambda P)_{y}^{\prime}\right.$; and only the first hacket remains. By the condition of integrability this, tow. vanishes and hence s as a function of x, F, z does not contain x but is a function of F and z alone, as was to be proved.
110. It las heen seen that if the equation (1) is integrable, there is an integrating fartor and the combition (5) is satisfied ; also that conressely if the condition is satistied the equation may he integrated. Geometrically this means that the infinity of phanar elements defined oy the equation can he grouped upon a family of surfares $F(x,!/, a)=(*$ to which they are tangent. If the eondition of integrability is not satisfied, the planar elements cammot be thas gromped into surfaces. Neverthelese if a surface $(i(x, y, i)=0$ be given, the planar element of (1) which passes through any point $\left(x_{0}, y_{0}, \tilde{y}_{0}\right)$ of the surface will ent the surface $:^{\prime}=0$ in a certain lineal element of the surfare. Thus upon the surface $(;(r, y, i z)=0$ there will be an infinity of lineal elements, one throngh earll point, which satisfy the given equation (1). And these elements may he grouped into curves lying upon the surface. If the equation (1) is integrable, these curves will of course be the intersections of the given surface $G=0$ with the surfates $F=C$ defined by the integral of (1).

The methot of ohtaining the rarves upon $\left(i, x^{\prime}, y, i=0\right.$ which are the integrals of (1), in case (5) does not possess an integral of the form $F\left(r^{\prime}, y, z\right)=($, is as follows. Consider the two equations
of which the first is the given differential equation and the second is the differential equation of the eriven surface. From these eruations
one of the differentials, say $d \approx$, may be eliminated, and the corresponding variable \approx may also be eliminated by substituting its value obtained by solving $G(x, y, z)=0$. Thus there is obtained a differential equation $M d x+N d y=0$ comnecting the other two variables x and y. The integral of this, $F(x, y)=C$, consists of a fanily of cylinders which cut the given surface $G=0$ in the curves which satisfy (1).

Consider the equation $y d x+x d y-(x+y+z) d z=0$. This does not satisfy the condition (5) and hence is not completely integrable ; but a set of integral curves may be found on any assigned surface. If the surface be the plane $z=x+y$, then

$$
y d x+x d y-(x+y+z) d z=0 \quad \text { and } \quad d z=d x+d y
$$

give

$$
(x+z) d x+(y+z) d y=0 \quad \text { or } \quad(2 x+y) d x+(2 y+x) d y=0
$$

by eliminating $d z$ and z. The resulting equation is exact. Hence

$$
x^{2}+x y+y^{2}=C \quad \text { and } \quad z=x+y
$$

give the curves which satisfy the equation and lie in the plane.
If the equation (1) were integrable, the integral eurves may be used to obtain the integral surfaces and thus to aceomplish the complete integration of the equation by Mayer's method. For suppose that $F(x, y, z)=C$ were the integral surfaces and that $F(x, y, z)=F\left(0,0, z_{0}\right)$ were that particular surface cutting the z-axis at z_{0}. The family of planes $y=\lambda x$ throush the z-axis would cut the surface in a selies of curves which wonld be integral curves, and the surface could be regarded as generated by these curves as the plane tumed about the axis. 'lo reverse these considerations let $y=\lambda x$ and $d y=\lambda d x$; by these relations elininate $d y$ and y from (1) and thus obtain the differential equation $M d x+N d z=0$ of the intersections of the planes with the solutions of (1). Integrate the equation as $f(x, z, \lambda)=C$ and determine the constant so that $f(x, z, \lambda)=f\left(0, z_{0}, \lambda\right)$. For any value of λ this gives the intersection of $F(x, y, z)=F\left(0,0, z_{0}\right)$ with $y=\lambda . r$. Now if λ be eliminated by the relation $\lambda=y / x$, the result will be the surface

$$
f\left(x, z, \frac{y}{x}\right)=f\left(0, z_{0}, \frac{y}{x}\right), \quad \text { equivalent to } \quad F(x, y, z)=F\left(0,0, z_{0}\right),
$$

which is the integral of (1) and passes through ($0,0, z_{0}$). As z_{0} is arbitrary, the solution contains an arbitrary constant and is the general solution.

It is clear that instear of using planes throngh the z-axis, planes throngh either of the other axes might have been nsed, or indeed planes or eylinders through any line parallel to any of the axes. Such motifieations are freguently neeessary owing to the fact that the substitution $f\left(0, z_{0}, \lambda\right)$ introduces a division by or a log or some other impossibility. For instanee eonsider

$$
y^{2} d x+z d y-y d z=0, \quad y=\lambda x, \quad d y=\lambda d x, \quad \lambda^{2} x^{2} d x+\lambda z d x-\lambda x d z=0
$$

Then

$$
\lambda d x+\frac{z d x-x d z}{x^{2}}=0, \quad \text { and } \quad \lambda x-\frac{z}{x}=f(x, z, \lambda)
$$

But here $f\left(0, z_{0}, \lambda\right)$ is impossible and the solution is illusory. If the planes $(y-1)=\lambda x$ passing through a line parallel to the z-axis and containing the point $(0,1,0)$ had been used, the result would be

$$
d y=\lambda d x, \quad(1+\lambda x)^{2} d x+\lambda z d x-(1+\lambda x) d z=0
$$

or

$$
d x+\frac{\lambda z d x-(1+\lambda x) d z}{(1+\lambda x)^{2}}=0, \quad \text { and } \quad x-\frac{z}{1+\lambda x}=f(x, z, \lambda)
$$

Hence

$$
x-\frac{z}{1+\lambda x}=-z_{0} \quad \text { or } \quad x-\frac{z}{y}=-z_{0}=C
$$

is the solution. The same result could have been obtained with $x=\lambda z$ or $y=\lambda(x-\alpha)$. In the latter case, however, care should be taken to use $f(x, z, \lambda)=f\left(u, z_{0}, \lambda\right)$.

EXERCISES

1. Test these equations for exactness ; if exact, integrate ; if not exact, finel an integrating factor by inspection and intecyrate:
$(\alpha)(y+z) d x+(z+x) d y+(x+y) d z=0$,
(β) $y^{2} d x+z d y-y d z=0$,
($\gamma) x d x+y d y-\sqrt{a^{2}-x^{2}-y^{2}} d z=0$,
(ס) $2 z(d x-d y)+(x-y) d z=0$,
(є) $\left(2 x+y^{2}+2 x z\right) d x+2 x y d y+x^{2} d z=0$.
(广) $z y d x=z x d y+y^{2} d z$,
(η) $x(y-1)(z-1) d x+y(z-1)(x-1) d y+z(x-1)(y-1) d z=0$.
2. Apply the test of integrability and integrate these:
(α) $\left(x^{2}-y^{2}-z^{2}\right) d x+2 x y d y+2 x z d z=0$,
(β) $\left(x+y^{2}+z^{2}+1\right) d x+2 y d y+2 z d z=0$,
$(\gamma)(y+u)^{2} d x+z d y=(y+u) d z$,
(δ) $\left(1-x^{2}-2 y^{2} z\right) d z=2 x z d x+2 y z^{2} d y$,
(e) $x^{2}\left(d x^{2}+y^{2} d y^{2}-z^{2} d z^{2}+2 x y d x d y=0\right.$,
(广) $z(x d x+y d y+z d z)^{2}=\left(z^{2}-x^{2}-y^{2}\right)(x d x+y d y+z d z) d z$.
3. If the equation is homogeneous, the substitution $x=u z, y=v z$, frequently shortens the work. Show that if the given equation satisfies the condition of integrability, the new equation will satisfy the corresponding condition in the new variables and may be rendered exact by an obvious intergating factor. lntegrate :
($\alpha)\left(y^{2}+y z\right) d x+\left(x z+z^{2}\right) d y+\left(y^{2}-r y\right) d z=0$,
(β) $\left(x^{2} y-y^{3}-y^{2} z\right) d x+\left(x y^{2}-x^{2} z-x^{3}\right) d y+\left(x y^{2}+x^{2} y\right) d z=0$,
$(\gamma)\left(y^{2}+y z+z^{2}\right) d x+\left(x^{2}+s z+z^{2}\right) d y+\left(x^{2}+x y+y^{2}\right) d z=0$.
4. Show that (5) does not hold ; integrate subject to the relation imposed :
$(\alpha) y d x+x d y-(x+y+z) d z=0, \quad x+y+z=k \quad$ or $\quad y=k x$,
(β) $c(x d y+y \prime l y)+\sqrt{1-u^{2} x^{2}-l^{2} y^{2}} d z=0, \quad a^{2} x^{2}+l^{2} y^{2}+c^{2} z^{2}=1$,
($\gamma) d z=u y d x+b d y, \quad y=k x \quad$ or $\quad x^{2}+y^{2}+z^{2}=1 \quad$ or $\quad y=f(x)$.
5. Show that if an equation is integrable, it remains integrable after any change of variables from x, y, z to u, v, w.
6. Apply Mayer's method to sundry of Exs. 2 and 3.
7. Find the conditions of exactness for an equation in fom variables and write the formala for the integration. Integrate with or without a factor :
($\alpha)\left(2 x+y^{2}+2 x z\right) d x+2 x y d y+x^{2} d z+d u=0$,
(β) $y z u d x+x z u d y+x y u d z+x y z d u=0$,
($\gamma)(y+z+u) d x+(x+z+u) d y+(x+y+u) d z+(x+y+z) d u=0$,
($\delta) u(y+z) d x+u(y+z+1) d y+u d z-(y+z) d u=0$.
8. If an equation in four variables is integrable, it must he so when any one of the variables is held constant. Hence the fome eonditions of interrability obtained by writing (5) for each set of three coetficients must hold. Show that the comblitions
are satisfied in the following eares. Find the interrals by a qeneralization of the methorl in the text by letting one variahle be eomstant and intererating the three remaining terms and determining the constant of integration as a function of the fourth in such a way as to satisty the equations.

$$
\begin{aligned}
& (\alpha) z(y+z) d x+z(u-x) d y+y(x-u) d z+y(y+z) d u=0 \text {, } \\
& (\beta) u y z d x+u z x \log d y+u c y \log d d z-x d u=0 .
\end{aligned}
$$

9. Try to extend the method of Mayer to suel as the above in Ex. 8.
10. If $G(x, y, z)=a$ and $H(x, y, z)=b$ are two families of surfaces defining a family of curves as their intersections, show that the equation

$$
\left(G_{y}^{\prime} H_{z}^{\prime}-\left(i_{z}^{\prime} H_{y}^{\prime}\right) d x+\left(f_{z}^{\prime} H_{x}^{\prime}-C_{x}^{\prime} H_{z}^{\prime}\right) d y+\left(C_{x}^{\prime} H_{y}^{\prime}-G_{y}^{\prime} H I_{x}^{\prime}\right) d z=0\right.
$$

is the equation of the plamar thments perpendionar to the curves at every point of the curves. Find the combitions on G and $I I$ that there shall be a fanily of surfaces which ent all these emres orthomally. Determine whether the comes below have orthogonal trajectories (surfates) ; and if they have. find the surfaces:
$($ ($) ~ y=x+1, z=x+1$,,
$(\beta)^{\prime} y=11 . x+1 . z=3, r$.
(γ) $x^{2}+y^{2}=u^{2} \cdot z=3$,
($\delta), x y=u \cdot x z=1$.
($є$) $x^{2}+y^{2}+z^{2}=u^{2} ., ~ r y=b$.
(5) $x^{2}+2 y^{2}+3 z^{2}=(a, x y+z=h$,
(η) $\log x y=u z, x+y+z=b$,
$(\theta) y=\underline{2} u c+u^{2}, z=2 u, c+l l^{2}$.
 derivative of the solution of equation (1) and to show that the singular solution may be looked for among the factors of $\mu^{-1}=0$.
12. If $\mathrm{F}=P^{\prime} \mathrm{i}+Q \mathrm{j}+R \mathrm{k}$ be formed, show that (1) beeomes $\mathrm{F} \cdot / \mathrm{lr}=0$. Sluw that the condition of exactuess is $\Gamma \times F=0$ by expanding $\Gamma \times F$ as the formal veetor
 tion of interrability is $\mathrm{F} \cdot(\Gamma \times \mathrm{F})=0 \mathrm{by}$ similan fommal expansiont.
13. In Ex. 10 consider $\Gamma\left(\begin{array}{c}\text { and } \\ \Gamma\end{array} I\right.$. Slons these vectors are nommal to the sturfaces $G=a . H=b$. and hence infer that $\left(\Gamma \sigma_{i}\right) \times(\Gamma / I)$ is the direction of lle intersection. Finally explain why dre($\Gamma(\dot{x} \times \Gamma)=0$ is the differential equation of the orthogomal famity if there be such a family. Show that this veetor form of the family rednees to the form aloove given.
111. Systems of simultaneous equations. The two expuations
in the two deprendent variables ! amel as and the independent variable ar (omstitute a set of simultamenus rgations of the tirst order. It is more customary to write these wflations in the form
which is symmetric in the diferemtials and where $\mathrm{K}: \mathrm{Y}: Z=1: f: \%$
 differentials are dutermimed lis sulstitution in (\vec{r}). Itemee the erpations
fix a definite direction at cacll point of space, that is, they determine a lineal element through each point. The problem of integration is to combine these lincal dements into a family of curves $F^{\prime}(x, y, a)=C_{1}^{\prime}$, $G\left(x^{\prime},!, a^{\prime}\right)=C_{2}^{\prime}$, depending on two paraneters C_{2} and C_{2}, one curve passing through each peint of space and having at that point the direction determined by the equations.

For the formal integration there are several allied methods of proredure. In the first plate it may hapren that two of

$$
\frac{d, r}{X}=\frac{d!!}{Y}, \quad \frac{d!!}{Y}=\frac{d \pi}{Z}, \quad \frac{d, r}{I}=\frac{d \pi z}{Z}
$$

are of such a form ats to contain only the variables whose differentials enter. In this case these two may le integrated and the two solutions taken together give the family of curves. (or it may haplen that one and only one of these "puations can be intergrated. Let it be the first and suppose that $F(, r,!)=r_{1}$ is the integral. By means of this integral the variable or may he diminated from the second of the erpuations or the variable !f from the thind. In the respective eases there arises
 $G_{i}(, r, a, F)=C_{0}$, and this result takn with $F(x,!!)=\prime_{1}^{\prime}$ will determine the family of rurves.

Comsiler thw example $\frac{r d x}{y z}=\frac{y d y}{r^{2} z}=\frac{d z}{y}$. Incre the two erguations

$$
\frac{r d x}{y}=\frac{y / y}{x} \quad \text { and } \quad \frac{x+d s}{z}=d z
$$

are integrable with the results $x^{3}-y^{3}=C_{1} . x^{2}-z^{2}=C_{2}$, and these two integrals constitute the solution. The solution might, of comse, apmear in rery different form : for there are an indedinite mumber of pairs of equations $F\left(x . y, z . f_{1}^{\prime}\right)=0$, $G_{i}\left(x, y, z .\left(_{2}\right)=0\right.$ which will intersent in the curves of intersection of $. r^{3}-y^{3}=C_{1}$, and $x^{2}-z^{2}=\left(\ldots\right.$. In fact $\left(y^{3}+(1)^{2}=\left(z^{2}+(2)^{3}\right.\right.$ is clearly a solution and could replate eithere of thase format aboe.

Consiber the example $\frac{d x}{r^{2}-y^{2}-z^{2}}=\frac{n y}{2 \cdot r y}=\frac{d z}{2 \cdot x z}$. Here

$$
\frac{d y}{y}-\frac{d z}{z} \text {, with the integral } y=C_{1} z
$$

is the only equation the intergral of whell can be oltained directly. If y be elimimateal by means of this first intemral. there resulta the equation

$$
\frac{d x}{x^{2}-\left(r_{1}^{2}+1\right) z^{2}}=\frac{d z}{2 x z} \text { (1r } 2 x z h r+\left[\left(f_{1}^{2}+1\right) z^{2}-x^{2}\right] d z=0 .
$$

This is. homereteons and maty be internated with a fartor to give

$$
r^{2}+\left(r_{3}^{\prime 2}+1\right) z^{2}=\left(_{2} z \text { or } x^{2}+y^{2}+z^{2}=r_{2}^{\prime} z\right.
$$

Hemer

$$
y=\prime_{1} \check{z} \quad x^{2}+y^{2}+z^{2}='_{2} z
$$

is the stations and repmesents a certain lamily of circles.

Another method of attack is to use composition and division.

$$
\begin{equation*}
\frac{d x}{X}=\frac{d y}{Y}=\frac{d \tilde{z}}{Z}=\frac{\lambda l x+\mu d!y+v l \tilde{z}}{\lambda Y+\mu Y+v Z} . \tag{8}
\end{equation*}
$$

Here λ, μ, ν may be chosen as any functions of (x, y, a). It may be possible so to choose them that the last expression, taken with one of the first three, gives an equation which may be integrated. With this first integral a second may be obtained as before. Or it may be that two different choices of λ, μ, ν can be made so as to give the two desired integrals. Or it may be possible so to select two sets of multipliers that the equation oltained by setting the two expressions equal may be solved for a first integral. Or it may be possible to choose λ, μ, v so that the denominator $\lambda . Y+\mu Y+v \dot{Z}=0$, and so that the numerator (which must ranish if the denominator does) shall give an equation

$$
\begin{equation*}
\lambda / l \cdot x+\mu \| l y+v / l \tilde{z}=0 \tag{9}
\end{equation*}
$$

which satisfies the condition (5) of integrability and may be integrated by the methods of $\$ 109$.

Consider the equations $\frac{d \cdot x}{x^{2}+y^{2}+y z}=\frac{d y}{x^{2}+y^{2}-x z}=\frac{d z}{(x+y) z}$. Here take λ, μ, ν as $1,-1,-1$; then $\lambda X+\mu Y+\nu Z=0$ and $d x-d y-d z=0$ is integrable as $s-y-z=C_{1}$. This may be used to obtain another integral. But another choice of λ, μ, ν as $x . y, 0$, combined with the last expression, gives

$$
\frac{x d x+y d x}{\left(x^{2}+y^{2}\right)(x+y)}=\frac{d z}{(x+y) z} \text { or } \log \left(x^{2}+y^{2}\right)=\log z^{2}+C_{2} \text {. }
$$

Hence

$$
x-y-z=C_{1} \text { and } r^{2}+y^{2}=C_{2} z^{2}
$$

will serve as solutions. This is shorter than the methor of elimination.
It will be noted that these equations just solved are homogeneons. The substitution $x=u z, y=v z$ might be tried. Then
or

$$
\begin{aligned}
\frac{u d z+z d u}{u^{2}+v^{2}+v}= & \frac{v d z+z d v}{u^{2}+v^{2}-u}=\frac{d z}{u+v}=\frac{z d u}{v^{2}-u v+v}=\frac{z d v}{u^{2}-u v-u}, \\
& \frac{d u}{v^{2}-u v+v}=\frac{d v}{u^{2}-u c-u}=\frac{d z}{z} .
\end{aligned}
$$

Now the first equations do not contain z and may be solved. This always happens in the homogeneons case and may be empheyel if aw shorter methorl surgests itself.

It need hardly be mentioned that all these methods apply equally to the case where there are muse than there equations. The geometric pirture, howerer, fails. althomeh the geometric languge may he continued if one wishes to deal with higher dimensions than three. In some (ases the introduction of a fourth variable, as

$$
\begin{equation*}
\frac{d \cdot r}{x}=\frac{d!}{r}=\frac{1 / z}{Z}=\frac{1 t}{1} \quad \text { or } \quad=\frac{1 t}{t}, \tag{10}
\end{equation*}
$$

is useful in solving a set of equations which originally contained only three variables. This is particularly true when X, Y, Z are lincar with constant coefficients, in which case the methods of \& 98 may be applied with t as independent varialle.
112. Simultaneous differential equations of higher order, as

$$
\begin{array}{cl}
\frac{d^{2}, r}{d t^{2}}=N\left(r, y, \frac{d x}{d t}, \frac{d y}{d t}\right), & \frac{d^{2} y}{d t^{2}}=Y\left(x, y, \frac{d \cdot r}{d t}, \frac{d!y}{d t}\right) \\
\frac{d d^{2},}{d t^{2}}-r \cdot\left(\frac{d \phi}{d t}\right)^{2}=R\left(r, \phi, \frac{d r^{2}}{d t}, \frac{d \phi}{d t}\right), \quad \frac{1}{r} \frac{d}{d t}\left(r^{2} \frac{d \phi}{d t}\right)=\Phi\left(r, \phi, \frac{d r^{\prime}}{d t}, \frac{d \phi}{d t}\right),
\end{array}
$$

especially those of the second order like these, are of constant occurrence in mechanies ; for the areeleration recuires second derivatives with respect to the time for its expression, and the fores are expressed in terms of the eoordinates and velorities. The romplete integration of such equations requires the expression of the depembent variables as functions of the independent variable, generally the time, with a number of constants of integration equal to the sum of the order's of the equations. Frequently even when the complete interrals camot be found, it is possible to carry out some integrations and replace the given system of erfuations by fewer equations or equations of lower order containing some constants of integration.

No special or general rules will be laid down for the integration of systems of higher orter. In earh case some particular combinations of the equations may suggest themselves which will enable an integration to be performed.* In problems in mechanies the prineiples of energy, monentum, and moment of momentum frequently suggest combinations leading to integrations. Thens if

$$
r^{\prime \prime}=X . \quad y^{\prime \prime}=Y, \quad i^{\prime \prime}=Z
$$

where acrents denote differentiation with respect to the time, be multiplied bys $d . r, d y, d z$ and adted, the result

$$
\begin{equation*}
x^{\prime \prime} l d x+y^{\prime \prime} d y+z^{\prime \prime} d z=x \cdot x, x+y^{\prime \prime} y+Z, l x \tag{11}
\end{equation*}
$$

rontains an exart differential on the left : then if the expression on the right is an exart differential, the integration

$$
\frac{1}{2}\left(r^{\prime 2}+!y^{\prime 2}+\ddot{n}^{\prime 2}\right)=\int X l x+I \cdots y+Z l y+C
$$

[^24]can be performed. This is the primiple "f eneroy in its simplest form If two of the equations are multiplied by the chief rariable of the other and sulstracted, the result is
\[

$$
\begin{equation*}
y x^{\prime \prime}-r^{\prime} y^{\prime \prime}=!y X-r Y \tag{12}
\end{equation*}
$$

\]

and the expression on the left is again an exact differential: if the right-hand side redures to a constant or a function of t, then

$$
\begin{equation*}
y x^{\prime}-x y^{\prime}=\int f(t)+C \tag{2}
\end{equation*}
$$

is an integral of the equations. This is the principle of moment ut momentum. If the equations (all be multiplied by constants as

$$
\begin{equation*}
l \cdot x^{\prime \prime}+m!y^{\prime \prime}+n z^{\prime \prime}=l \Sigma+m V^{r}+n Z, \tag{13}
\end{equation*}
$$

so that the expression on the right redures to a function of t, an integration may be performed. This is the principle ut momentum. These three are the most commonly usable devices.

As an example : Let a particle move in a plane subject to forces attracting it toward the axes by an amome proprtional to the masis and to the thistance from the axes; discuss the motion. Here the equations of motion are merely

$$
m \frac{d^{2} x}{d t^{2}}=-k m x, \quad m \frac{d^{2}!}{d t^{2}}=-k m y \quad \text { or } \quad \frac{\lambda^{2} x}{d t^{2}}=-k x, \quad \frac{n^{2} y}{d t^{2}}=-k y .
$$

Then

$$
d x \frac{d^{2} x}{d t^{2}}+d y \frac{d^{2} y}{d t^{2}}=-k(x d x+y l y) \quad \text { and } \quad\left(\frac{d, r}{d t}\right)^{2}+\binom{d y}{d l}^{2}=-k\left(x^{2}+y^{2}\right)+C .
$$

Also

$$
y \frac{d^{2} r}{d t^{2}}-r \frac{d^{2} y}{d t^{2}}=0 \quad \text { and } \quad y \frac{d, c}{d t}-x^{\frac{d y}{d t}}=C^{\prime} .
$$

In this case the two principles of energy and moment of momentum give two integrals and the equatims are reduced to two of the first onder. But as it happerns. the original ergations conld bee interemated directly as

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}} d x=-k: c t \cdot r, \quad\binom{a r}{d t}^{2}=-l_{i} x^{2}+c^{\prime 2} \cdot \quad \frac{d r}{\sqrt{c^{2}}-k \cdot x^{2}}=d t \\
& \frac{d^{2} y}{d t^{2}} d y=-l i y l y, \quad\binom{n y}{d i t}^{2}=-k i y^{2}+K^{2} . \quad \frac{d!}{\sqrt{2}-l i y^{2}}=d t .
\end{aligned}
$$

The constants (and K^{2} of interation have been written ats suares because they are necessarily pritior. Tha emmpere integrationgive

As another example: A particle. attractent thwart a peint biy a foree cmal to

 of turtion are

The second integrates directly as $r^{2}(l \phi / a t=h$ where the constant of integration h is twice the areal velocity. Now substitute in the first to elminate ϕ.

$$
\frac{d^{2} r^{2}}{d t^{2}}-\frac{l^{2}}{r^{3}}=-\frac{r}{m^{2}}-\frac{h^{2}}{r^{3}} \quad o r^{2} \quad \frac{d^{2} r}{d t^{2}}=-\frac{r}{m^{2}} \quad \text { or } \quad\left(\frac{d r}{d t}\right)^{2}=-\frac{r^{2}}{m^{2}}+C
$$

Now as the particle is projected perpendicularly to the radius, $d_{r} / d t=0$ at the start when $r=V^{\prime} m h$. Hence the eonstant (' $\mathrm{is} h / m$. Then

Hence

$$
\sqrt{m h} \sqrt{1}-\frac{1}{h}=\phi+\left(^{\prime} \text { or } \frac{1}{r^{2}}-\frac{1}{h m}=\frac{\left(\phi+()^{2}\right.}{m h}\right.
$$

Now if be assumed that $\phi=0$ at the stant when $r=\sqrt{m h}$, we find $C=0$.
Hence

$$
r^{2}=\frac{m h}{1+\phi^{2}} \quad \text { is the orbit }
$$

To find the relation between ϕ and the time,

$$
r^{2} l l \phi=h a t \quad \omega^{*} \quad \frac{m l^{2} \phi}{1+\phi^{2}}=a t \quad o \quad \quad t=m \tan ^{-1} \phi
$$

if the time be taken a: $t=0$ when $\phi=0$. Thas the on hit is fomm, the expression of ϕ as a function of the time is fomme and the expression of r as a function of the time is obtanable. 'The problem is completely solved. It will be noted that the constants of intergration hate been determined after each integration by the initial eomblitons. 'This simplifies the sulserguent integrations which might in fact be impossible in terms of elementary functions withont this simplifieation.

EXERCISES

1. Interrate these efrations:

$$
\begin{aligned}
& (x) \frac{d x}{y z}=\frac{l y y}{x z}=\frac{d z}{x y} \\
& (\gamma) \frac{d l_{d}}{x z}=\frac{d y}{y z}=\frac{d z}{x y} \\
& (\epsilon)-\frac{d, r}{y}=\frac{d y}{x}=1+z z
\end{aligned}
$$

$$
(\beta) \frac{d x}{y^{2}}=\frac{d y}{x^{2}}=\frac{d z}{x^{2} y^{2} z^{2}}
$$

($\delta) \frac{d, x}{y z}=\frac{d y}{d z}=\frac{d z}{x+y}$,
(ら) $\frac{d x}{-1} \frac{d!y}{3 y+4 z}=\frac{d z}{2 y+5 z}$.
2. Integrate ho (4) fations:
(β) $\frac{d x}{x^{2}+y^{2}}=\frac{d y}{z x y}=\frac{1 z}{x z+y z}$,
(c) $\frac{1 l d r}{b i z-r y}=\frac{d y}{c x-11 z}-\frac{d z}{11 y-b x}$,
(o) $\frac{d l x}{y^{3} \cdot x-2 x^{4}}=\frac{d y}{2 y^{4}-x^{\prime 3} y}=\frac{d z}{z\left(x^{3}-y^{3}\right)}$,
(v) $\frac{d l \cdot}{y+z}=\frac{d y}{x+z}=\frac{l z}{x+y}$,
(乡) $\frac{d l x}{x\left(y^{2}-z^{2}\right)}=\frac{d y}{y\left(z^{2}-x^{2}\right)}=\frac{17 z}{z\left(x^{2}-y^{2}\right)}$,
(є) $\frac{d x(y-z)}{x(y-x)}=\frac{d y}{y(z-x)}=\frac{1 d z}{z(x-y)}$,
(η) $\frac{d l_{x}}{x\left(y^{2}-z^{2}\right)}=\frac{-d y}{y\left(z^{2}+x^{2}\right)}=\frac{d z}{z\left(x^{2}+y^{2}\right)}$,
(θ) $\frac{d x}{y-z}=\frac{d!y}{x+y}=\frac{d z}{x+z}=d t$.
(1$) \frac{d x}{y-z}=\frac{d y}{x+y+t}=\frac{d z}{x+z+t}=d t$.
3. Show that the differential equations of the orthogonal trajectories (curves of the family of surfaces $F(x, y, z)=C$ are $d x: d y: d z=F_{x}^{\prime}: F_{y}^{\prime}: F_{z}^{\prime}$. Find the curves which cut the following families of surfaces orthogonally :
(c) $a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}=C$,
(β) $x y z=C$,
(r) $y^{2}=C x z$,
($\delta) ~ y=x \tan (z+C)$,
(ϵ) $y=x \tan C z$,
(广) $z=C x y$.
4. Show that the solution of $d x: d y: d z=X: Y: Z$, where $X, Y . Z$ are linear expressions in x, y, z, can always be found provided a certain cubic equation can be solvea.
5. Show that the solutions of the two equations

$$
\frac{d x}{d t}+T(a x+b y)=T_{1}, \quad \frac{d y}{d t}+T\left(u^{\prime} x+b^{\prime} y\right)=T_{2}
$$

where T, T_{1}, T_{2} are functions of t, may be obtained by adding the equation as

$$
\frac{d}{d t}(x+l y)+\lambda T(x+l y)=T_{1}+l T_{2}
$$

after multiplying one by l, and by determining λ a.s a root of

$$
\lambda^{2}-\left(a+b^{\prime}\right) \lambda+u b^{\prime}-u^{\prime} b=0
$$

6. Solve:

$$
\begin{aligned}
& \text { (a) } t \frac{d x}{d t}+2(x-y)=t, \quad t \frac{d y}{d t}+x+5 y=t^{2}, \\
& \text { (} \beta) t d x=(t-2 x) d t, \quad t d y=(t x+t y+2 x-t) d t, \\
& \text { (} \gamma) \frac{u l x}{m n(y-z)}=\frac{m d y}{m(z-x)}=\frac{n d z}{\operatorname{lm}(x-y)}=\frac{d t}{t} .
\end{aligned}
$$

7. A particle moves in vacuo in a vertical plane umler the force of gravity alone. Integrate. Determine the constants if the particle starts from the origin with a velocity T and at an angle of α degrees with the horizontal and at the time $t=0$.
8. Same problem as in Ex. 7 except that the particle moves in a medium which resints proportionately the the vecity of the particle.
9. A particle moresin a plane about a center of force which attracts proportionally to the distance from the center and to the mass of the particle.
10. Same as Ex. 9 but with a repulsive force instead of an attracting force.
11. A particle is projected parallel to a line toward which it is attracted with a force proportional to the distance from the line.
12. Same as Ex. 11 except that the force is inversely proportional to the square of the distance and only the path of the particle is wanted.
13. A particlo js attracted toward a center by a foree proportional to the square of the distance. Find the orbit.
14. A particle is phacert at a point which repels with a constant force under which the particle mowes away to a distance " where it strikes a per and is deflected off at a right angle with modiminished velocity. Find the orlit of the subserquent motion.
15. Show that "quatims (i) may he written in the form $l \mathbf{r} \times \mathbf{F}=0$. Fim the

16. Introduction to partial differential equations. An equation which tontains a dependent variable, two or more independent variables, and one or more partial derivatives of the dependent variable with respect to the independent variables is called a purtial differential equation. The equation

$$
\begin{equation*}
P(x, y, z) \frac{\hat{c}_{z} z}{\partial x}+Q(x, y, z) \frac{\partial_{z}}{\partial y}=R(x, y, z), \quad p=\frac{\hat{c}_{z}}{\hat{c}_{x}}, \quad \eta=\frac{\hat{c}_{z}}{\hat{c}_{y}}, \tag{14}
\end{equation*}
$$

is clearly a linear partial differential equation of the first order in one dependent and two independent varialles. The discussion of this equation preliminary to its integration may be carried on by means of the concept of plunn, elrment.s, and the discussion will immediately suggest the method of integration.

When any point $\left(r_{0}, y_{0}, z_{0}\right)$ of space is given, the coefficients P, Q, R in the equation take on definite values and the derivatives f and q are comected by a linear relation. Now any planar element through $\left(r_{0}, y_{0}, z_{0}\right)$ may be considered as specified by the two slopes p, and η_{I}; for it is an infinitesimal portion of the plane $a-z_{0}=p\left(x-x_{0}\right)+\eta\left(y-y_{0}\right)$ in the neighborlhood of the point. This plane contains the line or lineal element whose direction is

$$
\begin{equation*}
d x: d y: d \tilde{n}=P: Q: R, \tag{15}
\end{equation*}
$$

because the substitution of P, Q, R for $d x=x-x_{0}, \quad d y=y-y_{0}$, $d z=z-z_{0}$ in the plane gives the original equation $I_{p}^{\prime}+\left(z_{l}=R\right.$. Hence it appears that the planar elements defined ly (14), of which there are an infinity through each point of space, are so related that all which pass through a given point of space pass through a certain line through that point, namely the line (1,5).

Now the problem of integrating the eguation (14) is that of gromping the planar elements which satisfy it into surfaces. As at carly point they are already grouped in a cortain way by the lineal elements through which they pass, it is first advisable to group these lineal elements into curves be integrating the simultancous equations (15). The integrals of these equations are the curres defined by two families of surfaces $F(, r, y, z)=C_{1}$ and $c_{i}(x, y, z)=C_{2}$. These curves are called the chururnteristie curres or merely the churneteristios of the equation (14). Through each lineal element of these curves there pass an infinity of the planarelements, which satisfy (1t). It is therefore clear that if these curves bee in any wise grouped into surfaces, the phanar elements of the surfaces must satisfy (14): for through earh peint of the surfanes will pass one of the curves, and the planar element of the surface at that point must therefore pass through the lineal clement of the curve and hence satisfy (14).

To group the curves $F(x, y, z)=C_{1}, G(x, y, z)=C_{2}$ which depend on two parameters C_{2}, C_{2} into a surface, it is merely necessary to introduce some functional relation $\ddots_{2}=f\left(C_{2}\right)$ between the parameters so that when one of them, as C_{1}, is given, the other is determined, and thus a particular curve of the family is fixed by one parameter alone and will sweep ont a surface as the parameter varics. Hence to integrute (14), first integrute (15) "nd then urite

$$
\begin{equation*}
G\left(x^{\prime}, y, z\right)=\Phi\left[F^{\prime}(x, y, \therefore)\right] \quad \text { or } \quad \Phi(F,(i)=0 \tag{16}
\end{equation*}
$$

where Φ denotes any arbitrary function. 'This will be the integral of (14) and will contain an arbitrary function Φ.

As an example, integrate $(y-z) p+(z-x) q=x-y$. Here the equations

$$
\frac{d x}{y-z}=\frac{d y}{z-x}=\frac{d z}{x-y} \text { give } x^{2}+y^{2}+z^{2}=C_{1}, \quad x+y+z=C_{2}
$$

as the two integrals. Hence the solution of the given erquation is

$$
x+y+z=\Phi\left(x^{2}+y^{2}+z^{2}\right) \quad \text { or } \quad \Phi\left(x^{2}+y^{2}+z^{2}, x+y+z\right)=0
$$

where Φ denotes an arbitrary function. The arbitrary function allows a solution to be determined which shall pass through any desired cmere; for if the carve be $f(x, y, z)=0, g(x, y, z)=0$, the elimination of x, y, z from the four simultancons equations

$$
F(x, y, z)=C_{1}^{\prime}, \quad G^{\prime}(x, y, z)=C_{2}^{\prime}, \quad f(x, y, z)=0, \quad y(x, y, z)=0
$$

will express the condition that the four surfaces meet in a point, that is, that the curve given by the first two will cut that given by the second twon; and this elimination will determine a relation between the two parameters C_{1} and C_{2} which will be preecisely the relation to express the fact that the integral curves fut the given "ume and that consequently the surface of integral curves passes thenoth the given "ure. Thus in the particular case here considered, suppese the solution were to pass through the curve $y=x^{2}, z=x$; then

$$
x^{2}+y^{2}+z^{2}=C_{1}, \quad x+y+z=C_{2}, \quad y=x^{2}, \quad z=x
$$

give

$$
2 x^{2}+x^{4}=C_{1}, \quad x^{2}+2 x=C_{2}
$$

whence

$$
\left(C_{2}^{2}+2 C_{2}-C_{1}\right)^{2}+8\left(_{2}^{2}-24 C_{1}-16 r_{1} C_{2}=0\right.
$$

The substitution of $r_{1}=r^{2}+y^{2}+z^{2}$ and $C_{2}=x+y+z$ in this requation will give the solution of $(y-z) p+(z-x) q=x-y$ which pastes thenugh the pammat $y=r^{2} \cdot z=r$.
114. It will be ferallerl that the interomal of an ordinary differ-
 stants, and that consersely if at systom of corves in the plane. sily $P\left(r_{0}, I,\left(_{1}, \cdots,\left(_{n}\right)=0\right.\right.$, contains n ronstants, the romstants may ble diminated from the equation and its first n derivatives with resperet tor. It hats now bern seen that the integral of a contain partial difforntial equation rontams an abitrary function, ant it might be
inferred that the elimination of an arhitrary function would give rise to a partial differential equation of the first order'. To show this, suppose $r^{*}(r,!, z)=\Phi[f(r, y, z)]$. Then

$$
F_{x}^{\prime}+r_{z}^{\prime \prime} l^{\prime}=\Phi^{\prime} \cdot\left(f_{i}^{\prime}+r_{z}^{\prime} l^{\prime}\right), \quad F_{y}^{\prime}+F_{z}^{\prime} I=\Phi^{\prime} \cdot\left(r_{y}^{\prime}+r_{z z}^{\prime} \eta\right)
$$

follow from $l^{\text {nutial }}$ differentiation with respect to x and y; and

$$
\left(F _ { z } ^ { \prime } \left(r_{y}^{\prime}-F_{y}^{\prime \prime}\left(r_{z}^{\prime \prime}\right) l^{\prime}+\left(I _ { x } ^ { \prime } \left(r_{z}^{\prime}-F_{z}^{\prime}\left(r_{x}^{\prime}\right)!=F_{y}^{\prime}\left(i_{x}^{\prime}-F_{x}^{\prime} r_{y}^{\prime}\right.\right.\right.\right.\right.
$$

is a partial diflerential equation arising from the elimination of Φ^{\prime}. More genembly, the elimination of n arbitrary functions will give rise to an erfuation of the nth order; conversely it may be believed that the integration of such an equation would introduce n arbitrary functions in the general solution.

As an cxample. 'liminate from $z=\Phi(x y)+\Psi(x+y)$ the two arbitrary functions Φ and Ψ^{*}. The first differentiation gives

$$
p=\Phi^{\prime} \cdot y+\Psi^{\prime} . \quad q=\Phi^{\prime} \cdot x+\Psi^{\prime}, \quad p-q=(y-x) \Phi^{\prime} .
$$

Now differentiate again and let $r=\frac{\hat{c}^{2} z}{\hat{c} x^{2}} \cdot s=\frac{\hat{c}^{2} z}{\hat{c} \cdot \hat{c}^{2} y}, t=\frac{\hat{i}^{2} z}{\hat{c} y^{2}}$. Then

$$
r-s=-\Phi^{\prime}+(y-x) \Phi^{\prime \prime} \cdot y . \quad s-t=\Phi^{\prime}+(y-x) \Phi^{\prime \prime} \cdot x .
$$

These two equations with 1 - $\boldsymbol{I}=(y-x) \Phi^{\prime}$ make three from which
$x r-(x+y) s+y t=\frac{r+y}{x-y}(p-q)$ or $x \frac{\hat{i}^{2} z}{\hat{c} x^{2}}-(x+y) \frac{\hat{i}^{2} z}{\hat{x} \dot{c} y}+y^{\hat{c}^{2} z} \frac{x+y}{\hat{c} y^{2}}=\frac{\hat{c}+y}{x-y}\left(\frac{\hat{c} z}{\hat{c} x}-\frac{\hat{c} z}{\hat{c} y}\right)$ may be obtained as a partial differential cquation of the seenul order free from Φ and Ψ. The general integral of this equation wouk be $z=\Phi(x y)+\Psi(x+y)$.

A partial differential equation may represent a cortain definite type of surfare. For instance by definition a conoidal surfare is a surface generated fy a line which moves panalel to a given plane, the director blane, and cuts a given line, the directrix. If the director plane be taken as $i=0$ and the directrix be the axis, the equations of any line of the surface are

$$
\therefore=C_{1} . \quad y=r_{2^{2}}, \quad \text { with } \quad \prime_{1}^{\prime}=\Phi\left(r_{2}\right)
$$

as the relation whirh phrks out a detinite family of the lines to form a
 gencral equation of a ronoidal surface of which $i z=0$ is the director phane and the ex-axis the directrix. The elimination of Φ gives $p^{\prime} \cdot x+y=0$ as the differential equation of ans such conoidal surface.

L'artial differentiation may he used not only to eliminate arliatrary func-
 contained tworonstants, the er fuation and its first derivatives with respect to x and y would sield three equations from which the constants could
be eliminated, learing a partial differential equation $F(r, y, z, p, q)=0$ of the first order. If there had heen five constants, the equation with its two first derivatives and its three second derivatives with respect to x and y would give a set of six equations from which the constants could be eliminated, leaving a differential equation of the second order. And so on. As the differential equation is obtained by eliminating the constants, the original equation will be a solution of the resulting differential erguation.

For example. eliminate from $z=A x^{2}+2 B x y+C y^{2}+D x+E y$ the five constants. The two first and three second derivatives are

$$
p=2 A x+2 B y+1), \quad q=2 B x+2(y+E, \quad r=2 A, \quad s=2 B, \quad t=2 C .
$$

Hence

$$
z=-\frac{1}{2} r x^{2}-\frac{1}{y} t y^{2}-s x y+p x+4 y
$$

is the differential equation of the family of surfaces. The family of surfaces do not constitute the general solution of the equation, for that would contain two arbitrary functions, but they sive what is called a complete solution. If there had been omly three or four constants, the elimination would have led to a differential egration of the secont order which need have contained only one or two of the seend derivatives instead of all three : it would also have been possible to find theee on two simultaneons partial differential eruations by differentiating in different ways.
115. If $f^{\prime}\left(i,!/, \approx, C_{1} . C_{2}\right)=0$ and $F(, r,!/, \approx, l, q)=0$
are two equations of which the second is ohtained ly the climination of the two constants from the first, the first is said to be the romplete sollotion of the second. That is, any equation which contains two distinct arhitrary constants and which satisfies a partial differential equation of the first ortar is said to be a complete solution of the differential equation. A romplete solntion las an interesting geometrie interpretation, The differential equation $F=0$ dutines a serie's of planar emenents throngh earch print of spare. so does $f\left(\ldots, \ldots, \% r_{1},{ }^{\prime}{ }_{2}\right)=0$. For the tangent plane is given ly

$$
\left.\frac{\hat{c} f}{\bar{\partial} \cdot r}\right|_{n}\left(r-r_{0}\right)+\frac{\hat{c} f^{\prime}}{\hat{c}!!}\left(!!-y_{0}\right)+\left.\frac{\bar{c} f}{\hat{c} f_{n}}\right|_{0}\left(z-z_{0}\right)=0
$$

with

$$
f\left(r_{0}^{\prime}, y_{1}, r_{1},\left(c_{1}, r_{2}\right)=0\right.
$$

as the eomdition that ${ }^{\prime}$, ame ('z shall he so related that the smeare
 the two arlitray comstants, the re is a whole series of planare chanents
 tion, the planar elements defined hy it are those defined by the differential equation. Thus a complete solution estahlishes an arrangement of the planar obements defined hy the differential "fuation upon a family of surfares depmulent upn two arlitrary constants of integration.

From the idea of a solution of a partial differential equation of the first order as a surface pieced together from planar elements which satisfy the equation, it appears that the envelope (1.140) of any family of solutions will itself be a solntion; for each point of the envelope is a point of tangency with some one of the solutions of the fanily, and the planar element of the envelope at that point is identical with the planar element of the solution and hence satisfies the differential equation. This olservation ullous the general solution to le drentmined firom any complete solution. For if in $f^{\prime}\left(x, y, a, C_{1}, C_{2}\right)=0$ any relation $C_{2}=\Phi\left(C_{1}\right)$ is introduced between the two arbitrary eomstants, there arises a family depending on one parameter, and the envelope of the family is found by eliminating (' from the three equations

$$
\begin{equation*}
C_{2}=\Phi\left(C_{1}^{\prime}\right), \quad \frac{\partial f}{\partial C_{1}^{\prime}}+\frac{d \Phi}{d C_{1}^{\prime}} \frac{\partial f}{\partial C_{2}^{\prime}}=0, \quad f^{\prime}=0 . \tag{18}
\end{equation*}
$$

As the relation $C_{2}=\Phi\left(r_{1}\right)$ rontains an arbitrary function Φ, the result of the elimination may be considered as containing an arlitray finction even thongh it is generally impossible to carry out the elimination except in the case where Φ has been assigned and is therefore no lomger arbitrary.

A family of surfaces $f\left(r^{\prime},!, \therefore, C_{1}, C_{2}\right)=0$ dernuminer on two parameters may also have an envelop (p. 139). This is found by eliminating C_{1} and C_{2} from the three erpations

$$
f^{\prime}\left(r^{\prime}, y, \neq, C_{1},\left(_{2}^{\prime}\right)=0, \quad \frac{\hat{c} f^{\prime}}{\hat{c} \prime_{1}^{\prime}}=0, \quad \frac{\zeta f}{\hat{c} C_{2}^{\prime}}=0\right.
$$

This surface is tangent to all the surfares in the eomplete solution. This enveloge is called the singnlar solution of the partial differential efuation. As in the case of ordinary differential equations (101), the singula solution mat $1 x$ ohtamed directly from the equation; * it merely necessary to eliminate ρ and I from the three equations

$$
F\left(x,!\cdot A^{\prime} \cdot l^{\prime} \cdot \eta\right)=0, \quad \frac{\partial F}{\hat{c}_{\prime} \prime}=0, \quad \frac{\partial F}{\hat{c}_{y}}=0 .
$$

The last two equations express the fart that $F(p, q)=0$ regarded as
 to sef will loring out another print, mamely, that not only are all the surfares represented hy the romplete solution tangent to the singular solution, but so is any surface which is represented by the general solution.

[^25]
EXERCISES

1．Integrate these finear equations：
（c）$x z p+y z q=x y$ ，
（ β ）$a(p+q)=z$ ．
（ $\gamma) x^{2} p+y^{2} q=z^{2}$ ，
（ $\delta) ~-y p+x q+1+z^{2}=0$ ，
（є）$y p-x q=x^{2}-y^{2}$ ，
（官 $(x+z) p=y$ ，
（ η ）$x^{2} p-x y q+y^{2}=0$ ，
（ θ ）$(\prime \prime-r) p+(b-y) q=c-z$,
（1）$p \tan x+4 \tan y=\tan z$ ，
（к）$\left(y^{2}+z^{2}-x^{2}\right) p-2 x y q+2 x z=0$ ．

2．Determine the integrals of the preceling equations to pass through the curves：

$$
\begin{array}{ll}
\text { for }(\alpha) r^{2}+y^{2}=1, z=0, & \text { for } \\
\text { for }(\gamma) y=0, t=z, \\
\text { for } \quad(\gamma=2 x, z=1, & \text { for } \\
\text { (} \epsilon) & x=z, y=z
\end{array}
$$

3．Show analytically that if $F(x, y, z)=r_{1}^{\prime}$ is a solution of（15）．it is a solution of（14）．State precisely what is meant by a sulution of a partial differential equa－ tim，that is，by the statement that $F(x, y, z)=r_{1}$ ，watisfies the equation．Show that the equations
are equivalent and state what this means．Show that if $F=C_{1}$ ami $r_{t}=C_{2}$ are two solutions，then $F=\Phi(G)$ is a solution，and show monersely that a functional relation must exist between any two solutions（ace Sitiz）．

4．Generalize the work in the text along the analytic lines of Ex． 3 to estab－ lish the rules for integrating a linear equation in one depembent and four or n independent variables．In particular show that the integral of

$$
P_{1} \frac{\partial z}{\partial s_{1}}+\cdots+P_{n} \frac{\hat{\partial} z}{\hat{c} s_{n}}=P_{n+1} \quad \text { depends on } \quad \frac{d r_{1}}{I_{1}}=\cdots=\frac{d r_{n}}{P_{n}^{\prime}}=\frac{d z}{P_{n+1}^{\prime}} \text {, }
$$

and that if $F_{1}=C_{1}, \ldots . F_{n}=C_{n}$ are n interrats of the simultaneons system，the integral of the partial differential equation is $\Phi\left(F_{1}, \cdots, F_{n}\right)=0$ ．

5．Integrate：$(\alpha) x \frac{\hat{c} u}{\hat{c} x}+\|_{\hat{c} y}^{\hat{\prime} y}+z_{\hat{i} u}^{\hat{c} z}=s y z$ ，
$(\beta)(y+z+u) \frac{\hat{c} u}{\hat{c}, x}+(z+u+r)^{\hat{i}} \frac{\bar{i} y}{}+(u+x+y)_{\hat{i} z}^{\hat{i} u}=x+y+z$.
6．Interpere the general equation of the first order $F(x, y, z, p, q)=0$ as dutur－ mining at＂ach $l^{\text {wint }}\left(x_{0}, y_{0}, z_{1}\right)$ of space a series of phand efements tancent to a certain come．namely，the cone fombl by eliminatine p and if fom the chree simul－ taneous equations

$$
\begin{gathered}
F\left(x_{0}, y_{0}, z_{0}, p, q_{1}\right)=0 . \quad\left(x-r_{0}\right) y+\left(y-y_{0}\right) q=z-z_{0}, \\
\left(x-r_{0}\right) \frac{i F}{i,\left(y-y_{0}\right)^{i}} \frac{i p}{i_{p}}=0 .
\end{gathered}
$$

7．Eliminate the arbitrary functions：
（c）$x+y+z=\Phi\left(x^{2}+y^{2}+z^{2}\right)$ ．
（ 3 ）$\Phi\left(r^{2}+y^{2} \cdot z-r y\right)=0$,
$(\gamma) z=\Phi(. r+y)+\Psi(. r-y)$ ．
（o）$z=e^{\prime \prime \prime \prime \prime} \Phi(. r-y)$ ．

（（ ）$\Phi\left(\begin{array}{lll}r\end{array}, \frac{\prime \prime}{z}, \frac{z}{x}\right)=0$ ．
8. Find the differmial equations of these type of surfaces:
(α) crlinlers with sencrators parallel to the line $x=u z, y=b z$,
(β) conical surfaces with vertex at (($, b, r$),
(γ) surfaces of revolution about the line $x: y: z=a: b: c$.
9. Eliminatu the constants from these equations:
(a) $z=(s+11)(y+l)$,
(β) $a\left(r^{2}+y^{2}\right)+b z^{2}=1$,
(γ) $\left(x-(\prime)^{2}+(y-b)^{2}+(z-c)^{2}=1\right.$,
($\delta)(r-r)^{2}+(y-1)^{2}+(z-c)^{2}=d^{2}$, (ϵ) $1 \cdot x^{2}+B x y+\left(y^{2}+1\right) x z+L y z=z^{2}$.
10. Show geometrically and analytically that $F(x, y, z)+a G(x, y, z)=b$ is a complete solution of the linear erpation.
11. How many constants oceur in the complete solution of the equation of the thirel. fourth, or nth orler"'
12. Dischse the complete. general. and singular solutions of an equation of the first order $F\left(f ., y, z, u, u_{x}^{\prime}, u_{y}^{\prime}, u_{z}^{\prime}\right)=0$ with there indepembent variables.
13. Show that the planes $z=a, x+b y+{ }^{\prime}$. Where a and b ane commected by the relation $F\left(\mu_{1}, l_{1}\right)=0$, are complete solutions of the equation $F(p, q)=0$. Integrate :
(a) $m_{l}=1$,
(β) $q=p^{2}+1$,
(γ) $\nu^{2}+q^{2}=m^{2}$.
(o) $I^{\prime \prime}=k$,
($\epsilon) k \log _{\substack{ }} q+p=0$,
(5) $3 p^{2}-2 q^{2}=4 p q$,
and detormine atoo the singular solutions.
14. Note chat a simple change of variable will often reduce an equation to the type of Ex. 18. Thus the equations

$$
F\left(\frac{p^{\prime}}{z}, \frac{q}{z}\right)=0, \quad F(x p, q)=0, \quad F\left(\frac{x p}{z}, \frac{y q}{z}\right)=0,
$$

with $\quad z=\varepsilon^{\prime}, \quad x=c^{\prime \prime}, \quad z=\varepsilon^{z^{\prime}}, x=r^{\prime}, y=e^{y^{\prime}}$,
take a simpley form. Interrate amb detrmine the singular solutions:
((x) $y=z+1 \mu$.
(泣) $x^{2} p^{2}+y^{2} q^{2}=z^{2}$.
(γ) $z=1 \mu$.
($\delta) ~ 4=2=2 i^{2}$ 。
(ϵ) $\left({ }^{\prime} x-y\right)^{2}+(1, x-x)^{2}=1$,
(ζ) $z=\mu^{m+\prime} q^{m}$.
15. What is the wrimes complete sulntion of the extemed Clatrant equation $z=f^{\prime} p+y_{q}+f(p, q)$? Diseuss the singular solution. Inteqrate the equations:
(a) $z=x_{1}+y q+\sqrt{p^{2}+q^{2}+\overline{1}}$.
$(\beta) z=x_{p}+y q+(p+q)^{2}$,
($\gamma) z=x p+y^{\prime} q+p \mu$,
(ঠ) $z=x_{p}+\eta q-2$ \} p .
116. Types of partial differential equations. In addition to the linear ergation and the types of Exs. $13-15$ above, there are several types which should be mentioned. Of these the first is the genorol equation of thr fis st morro. If $F(\cdots, y, a, p, y)=0$ is the given equation
 ously with the first and contains an arlitraly eonstant can be fount, the two equations may be sulved together for the values of 1 and $\%$, and
 total differential crpation of which the integral will rontain the constant a and a secoml constant of intergration b. This integral will then
be a complete integral of the given equation; the general integral may then be obtained by (18) of $\$ 115$. This is known as Chorpit's method.

To find a relation $\Phi=0$ differentiate the two equations

$$
\begin{equation*}
F(x, y, \approx, p, q)=0, \quad \Phi(x, y, \approx, p, q,(\prime)=0 \tag{19}
\end{equation*}
$$

with respect to x and y and use the relation that dra be exact.

$$
\begin{aligned}
& F_{x}^{\prime}+F_{z}^{\prime} l^{\prime}+F_{p}^{\prime} \frac{d_{p}}{d l^{\prime}}+F_{q}^{\prime} \frac{d q}{l \cdot x^{\prime}}=0, \quad \Phi_{p}^{\prime}, \\
& \Phi_{x}^{\prime}+\Phi_{z}^{\prime} P+\Phi_{p}^{\prime} \frac{l_{l}}{l l x}+\Phi_{q}^{\prime} \frac{d_{l}}{d x}=0, \quad-F_{p}^{\prime}, \\
& F_{y}^{\prime}+F_{z}^{\prime} I+F_{p}^{\prime} \frac{d y}{d!y}+F_{q}^{\prime} \frac{d y}{d y}=0, \quad \Phi_{q}^{\prime}, \\
& \Phi_{y}^{\prime}+\Phi_{z}^{\prime} \eta+\Phi_{p}^{\prime} \frac{d_{l}}{d_{y}}+\Phi_{q}^{\prime} \frac{d_{q}}{d y}=0, \quad-F_{q}^{\prime}, \\
& \frac{d_{p}}{d_{y}}-\frac{d_{l}}{d_{x}:}=0, \quad F_{q}^{\prime} \Phi_{p}^{\prime}-\Phi_{q}^{\prime} F_{p}^{\prime} .
\end{aligned}
$$

Multiply by the quantities on the right and add. Then

$$
\begin{equation*}
\left(F_{x}^{\prime}+p_{z}^{\prime}\right) \frac{\hat{c} \Phi}{\hat{c} p}+\left(F_{y}^{\prime}+\eta F_{z}^{\prime}\right) \frac{\hat{\partial} \Phi}{\partial \eta}-F_{p}^{\prime} \frac{\partial \Phi}{\partial x}-F_{q}^{\prime} \frac{\hat{c} \Phi}{\partial y}-\left(p_{p} F_{p}^{\prime}+q F_{q}^{\prime}\right) \frac{\hat{c} \Phi}{\partial z}=0 \tag{20}
\end{equation*}
$$

Now this is a linear equation for Φ and is equivalent to

$$
\begin{equation*}
\frac{d_{p}}{F_{x}^{\prime}+\rho^{\prime} F_{z}^{\prime \prime}}=\frac{d_{y}}{F_{y}^{\prime}+q F_{z}^{\prime \prime}}=\frac{d_{x}}{-F_{p}^{\prime}}=\frac{d_{y}}{-F_{z}^{\prime \prime}}=\frac{d_{\tilde{z}}}{-\left(\mu F_{p}^{\prime \prime}+\eta F_{4}^{\prime}\right)}=\frac{d \Phi}{0} \tag{21}
\end{equation*}
$$

Any integral of this system ('ontaining f ' or' q and $\quad \epsilon$ will do for Φ, and the simplest integral will maturally be chosen.

As an example take $z p(x+y)+p(q-p)-z^{2}=0$. Then Charpit's equations are

$$
\begin{aligned}
\frac{d p}{-z p+p^{2}(x+y)} & =\frac{d q}{z p-2 z q+p q(x+y)}=\frac{d s}{2 p-q-z(x+y)} \\
& =\frac{d y}{-p}=\frac{d z}{2 z^{2}-2 p q-p z(x+y)}
\end{aligned}
$$

How to combine these son as to gat a selution is mot very clear. Suppose the sulb stitution $z=e^{z^{\prime}}, p=e^{z^{\prime}} p^{\prime}, q=e^{z^{\prime}} q^{\prime}$ be made in the equation. Then

$$
p^{\prime}(x+y)+p^{\prime}\left(q^{\prime}-p^{\prime}\right)-1=0
$$

is the new equation. For this Charpit's smmltaneous system is

$$
\frac{d p^{\prime}}{p^{\prime}}=\frac{d q^{\prime}}{p^{\prime}}=\frac{n x^{\prime}}{2 p^{\prime}-q^{\prime}-(\cdot r+y)}=\frac{d y}{-p^{\prime}}=\frac{d z}{2 p^{\prime 2}-2 p^{\prime \prime} y-p^{\prime}(x+y)} .
$$

The first two equations wive at once the solution $d p^{\prime}=d q^{\prime}$ or $q^{\prime}=r^{\prime}+a$. Solving

$$
\begin{gathered}
p^{\prime}(x+y)+p^{\prime}\left(q^{\prime}-p^{\prime}\right)-1=0 \quad \text { and } \quad q^{\prime}=p^{\prime}+u . \\
p^{\prime}=\frac{1}{a+x+y}, \quad q^{\prime}=\frac{1}{u+x+y}+u . \quad d z^{\prime}=\frac{a l x+d y}{u+x+y}+a d y .
\end{gathered}
$$

Then $z=\log (a+x+y)+a y+b$ or $\log z=\log (a+x+y)+a y+b$
is a complete solution of the given equation. This will determine the general integral by eliminating a between the three equations

$$
z=e^{a y+b}(a+x+y), \quad b=f(a), \quad 0=\left(y+f^{\prime}(a)\right)(a+x+y)+1
$$

where $f(a)$ denotes an arbitrary function. The rules for determining the singular solution wive $z=0$; but it is clear that the surfaces in the complete solution cannot be tangent to the plane $z=0$ and hence the result $z=0$ must be not a singular solution but an extraneons factor'. 'There is no singular solntion.

The method of solving a partial differential equation of higher order than the first is to reduce it first to an equation of the first order and then to complete the integration. Frequently the form of the equation will suggest some method easily applied. For instance, if the derivatives of lower order corresponding to one of the independent variables are absent, an integration may be performed as if the equation were an ordinary equation with that variable constant, and the constant of integration may be taken as a function of that variable. Sometimes a change of variable or an interchange of one of the independent variables with the dependent variable will simplify the equation. In general the solver is left mainly to lis own devices. Two speecial methods will be mentioned below.
117. If the equation is linerer uith emstent coefficients and all the derivatives are of the same order, the equation is

$$
\begin{equation*}
\left({ }_{0} D_{\cdot x}^{n}+{ }_{1} P_{n}^{n-1} I_{n}+\cdots+{ }_{n-1} I_{n} D_{n}^{n-1}+{ }_{n} D_{y}^{n}\right) \approx=R\left(x^{n}, y\right) \tag{22}
\end{equation*}
$$

Methods like those of \$ 9 may be applied. Fartor the equation.

$$
\begin{equation*}
u_{0}\left(D_{x}-\alpha_{1} D_{y}\right)\left(I_{x}-\alpha_{2} D_{y}\right) \cdots\left(D_{x}-\alpha_{n} I_{y}\right), z=R(\cdot, r, y) . \tag{22'}
\end{equation*}
$$

Then the equation is reduced to a succession of equations

$$
D_{, r i v}-\alpha D_{y^{z}}=R(x, r, y),
$$

each of which is linear of the first order (and with constant roefticients). Short ruts analogous to those previonsly given may be developed, hut will not be given. If the derivatives are not all of the same order lout the polynomial can be factored into linear factors, the same method will apply. For those interesten, the several exercises given below will serve as a synopsis for dealing with these types of equation.

There is one equation of the second order,* namely

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\hat{c}^{2}, u}{c t^{2}}=\frac{\hat{c}^{2} u}{\partial \cdot x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\hat{c}^{2}, u}{\partial z^{2}}, \tag{23}
\end{equation*}
$$

[^26]which occurs constantly in the discussion of wares and which has therefore the name of the arace equation. The solution may be written down by inspection. For try the form
\[

$$
\begin{equation*}
u(x,!, a, t)=F(u x+b!y+c z-V t)+G(u, r+b y+c z+I t) \tag{24}
\end{equation*}
$$

\]

Substitution in the curation shows that this is a solution if the relation $u^{2}+b^{2}+c^{2}=1$ holds, no matter what functions F and c_{i} may be. Note that the equation

$$
a \cdot r+l y+c z-l^{2} t=0, \quad \prime^{2}+l^{2}+c^{2}=1,
$$

is the equation of a plane at a perqumbirnlar fistaner I't from the origin along the direction whose cosines are $", l, r$. If t denotes the time and if the plane moves away from the origin with a velority V, the function $F\left(r x+b y+r a-l^{\prime} t\right)=F(0)$ remains constant ; and if $r_{r}=0$, the value of $"$ will remain constant. Thus $u=F$ repnesents a phenomenom whicls is constant over a plame and retreats with a velority l, that is. a plane wave. In a smilar manner $1 /=$ orepersents a plane ware approneling the origin. The general solution of (2:3) therefore rephesents the superposition of an advancing and a retreating plane ware.

To Monge is due a method sometimes useful in treating differential equations of the second order linear in the derivatives r, s, t; it is known as Monge methot.
Let

$$
\begin{equation*}
R r+s s+T t=1 \tag{25}
\end{equation*}
$$

 p and q. From the given equation amb

$$
\quad d p=r d x+s d y . \quad d q=s d d x+t d y
$$

the elimination of r and t gives the equation

$$
s\left(R d y^{2}-\operatorname{sid} d d y+T d x^{2}\right)-\left(R_{1} d y d p+T d x d y-T^{\prime} d s d y\right)=0,
$$

and this will surely be satisfied if the two equations
can be satisfied simultaneonsly. The first may be factored an

$$
\begin{equation*}
d y-f_{1}(x, y, z, p, y) d, r=0 . \quad\left(l_{y}, f_{y},(r, y, z, p, y) d, r=0 .\right. \tag{24}
\end{equation*}
$$

The prohlem then is redured to integrating the sestem comsisting of onte w these far-

$$
u_{1}(r, y, z, p, q)=C_{1}, \quad u_{2}(r, y, z, t \cdot q)=r_{2}^{\prime}
$$

 integral of which may forman her integratime this erthation of the first onder. If the two factors are lianinets it may hapen that the two syatems whish arise may

As an example take $(x+y)(r-t)=-4 p$. The equations are

$$
(x+y) d y^{2}-(x+y) d x^{2}=0 \quad \text { or } \quad d y-d x=0, \quad d y+d x=0
$$

and

$$
\begin{equation*}
(x+y) d y d p-(x+y) d x d y+4 p d x d y=0 \tag{A}
\end{equation*}
$$

Now the equation $d y-d x=0$ may be integrated at once to give $y=x+r_{1}$. The second equation (1) then takes the form

$$
2 x l_{p}+4 p d x-2 x d_{q}+C_{1}\left(d p-d_{q}\right)=0 ;
$$

lut as $d z=p u l x+q d y=(p+q) d x$ in this case, we have by combination

$$
\begin{gathered}
2(x d y)+p d x)-2\left(x d q+q(d x)+C_{1}(d p-d q)+2 d z=0\right. \\
\left(2 x+\left(_{1}\right)(p-q)+2 z=\left(_{2} \quad(1) \quad(x+y)(p-q)+2 z=C_{2} .\right.\right.
\end{gathered}
$$

or
Hence

$$
\begin{equation*}
(x+y)(p-q)+2 z=\Phi(y-x) \tag{27}
\end{equation*}
$$

is a first integral. Thris is linear and may be integrated by

$$
\frac{d x}{x+y}=-\frac{d y}{x+y}=\frac{d z}{\Phi(y-x)-2 z} \quad \text { or } \quad x+y=h_{1}, \quad \frac{d x}{h_{1}}=\frac{d z}{\Phi\left(K_{1}-2 x\right)-2 z} .
$$

This equation is an ordinary linear equation in z and x. The integration gives

$$
K_{1} z e^{\frac{2 x}{h_{1}}}=\int e^{\frac{2 x}{K_{1}} \Phi\left(K_{1}-2 x\right) d x+K_{2} .}
$$

Hence $\quad(x+y) z e^{\frac{2}{2}}+\int e^{\frac{2}{K_{1}}} \Phi\left(K_{1}-2 x\right) d x=K_{2}=\Psi\left(K_{1}\right)=\Psi(x+y)$
is the general integral of the given equation when H_{1} has been replaced by $x+y$ after integration, -an intersation which camot be performed matil Φ is given.

The other method of solution would be to nse also the seeond sy stem containing $d y+d x=0$ insteal of $d y-d x=0$. Thus in addition to the lirst integral (27) a sucom intemediary integal might be songht. The substitution of $d y+d x=0$,
 becanse $d_{p}+d_{l}$ is a perfeet differential and $p u l s$ is not. The combination with $d z=p u d+f^{\prime} l y=(p-q) d e d$ des not improve matters. Hence it is imposible to determine a seomd intermediary interal, and the methen of completing the solution by integrating (27) is the only available methot.

Take the equation $p^{\prime s}-q r^{\prime}=0$. Here $s=p, R=-q, T=V^{r}=0$. Then

$$
-q^{d} y^{2}-p^{x} d x d y=0 \quad \text { or } \quad d y=0, \quad p^{x} d x+\operatorname{r}^{2} d_{y}=0 \quad \text { and } \quad-y^{2} d y d_{y}=0
$$

 for ontaning an intermediary intempal $u_{1}=\Phi\left(u_{2}\right)$, although $p=\Phi(z)$ is anthoms sinlation of the first set. It is better to mas a method adapted to this special ergation. Note that

By (11), p. 124,

$$
\begin{aligned}
\frac{i}{i, r}\binom{q}{p} & =\frac{p-q r^{\prime}}{p}, \text { and } \frac{i}{i},\binom{q}{p}=0 \text { gives } \frac{q}{p}=f(y) \\
\frac{q}{p} & =-\binom{\bar{c}, r}{\frac{i}{i}} ; \text { then } \frac{\hat{c}}{\hat{c} y}=-f(y) \\
x & =-\int f(y) d y+\Psi(z)=\Phi(y)+\Psi(z)
\end{aligned}
$$

and

EXERCISES

1．Integrate these equations and disenss the singular solution：
（c）$p^{\frac{1}{2}}+4^{\frac{1}{2}}=2 x$ ，
（ β ）$\left(p^{2}+q^{2}\right) x=p z$,
（r）$(p+q)(p x+q y)=1$ ，
（ $\delta) ~ p q=p x+q y$ ，
（є）$p^{2}+q^{2}=x+y$ ，
（弓）$x p^{2}-2 z p+x y=0$ ，
（ η ）$q^{2}=z^{2}(p-q)$ ．
（ $\theta) \quad q\left(p^{2} z+q^{2}\right)=1$ ．
（九）$p\left(1+q^{2}\right)=q(z-c)$ ，
（к）$x p(1+q)=q z$ ，
（入）$y^{2}\left(p^{2}-1\right)=x^{2} p^{2}$ ，
（ μ ）$z^{2}\left(p^{2}+q^{2}+1\right)=c^{2}$ ，
（v）$p=\left(z+y_{i}\right)^{2}$ ，
（o）$p z=1+q^{2}$ ，
$(\pi) z-p q=0$,
（р）$q=x p+p^{2}$.

2．Show that the rule for the type of Ex．13．p，273，can be leduced by Charpit＇s methot．How about the generalized Clairant form of Ex．15？

3．(α) For the solution of the type $f_{1}(x \cdot p)=f_{2}(y, q)$ ，the rule is：Set

$$
f_{1}(x, p)=f_{2}(y, q)=u,
$$

and solve for p and q as $p=y_{1}(x, a), q=y_{2}(y, u)$ ；the complete solution is

$$
z=\int y_{1}(f \cdot a) d x+\int y_{2}(y, a) d y+b .
$$

（ β ）For the type $F(z, p, q)=0$ the rule is：Set $X=x+a y$ ，solve

$$
F\left(z, \frac{d z}{d X}, u \frac{d z}{d X}\right) \text { for } \frac{d z}{d X}=\phi(z, a) \text {, and let } \int \frac{d z}{\phi(z, u)}=f(z, a) ;
$$

the complete sohtion is $s+a y+b=f(z, a)$ ．Discuss these rules in the light of Charpit＇s method．Establish a rule for the type $F(x+y \cdot p \cdot q)=0$ ．Is there any advantage in using the rules over the use of the seneral method？Assort the exam－ ples of Ex． 1 according to these rules as far as possible．

4．What is obtaimable for partial differential equations ont of any characteristics of homogencity that may be present？

5．By differentiating $p=f(x, y, z, q)$ snccessively with respect to x and y show that the expansion of the solution by Taylor：s Formula about the point $\left(x_{0}, y_{0}, z_{0}\right)$ may be found if the successive derivatives with respect to y alone，

$$
\frac{\hat{c} z}{\hat{c} y}, \quad \frac{\hat{c}^{2} z}{\hat{c} y^{2}}, \quad \frac{\hat{c}^{3} z}{\hat{c} y^{3}}, \quad \ldots, \quad \frac{\hat{c}^{n} z}{\hat{c} y^{n}}, \quad \ldots,
$$

are assigned arhitrary values at that point．Note that this arbitrarmess allows the solution to be pasised through any eurve through $\left(x_{0}, y_{0}, z_{0}\right)$ in the plane $x=x_{0}$ ．

6．Show that $F(x, y, z, p, q)=0$ satisties（＇harpit＇s equations

$$
\begin{equation*}
d u=\frac{d x}{-F_{p}^{\prime}}=\frac{d y}{-F_{q}^{\prime}}=\frac{d z}{-\left(p F_{p}^{\prime}+q_{1} F_{q}^{\prime}\right)}=\frac{d_{p}}{F_{x}^{\prime}+p_{p} F_{z}^{\prime}}=\frac{d q_{q}}{F_{y}^{\prime}+{ }_{q} F_{z}^{\prime}}, \tag{28}
\end{equation*}
$$

where u is an anxiliary variable intronduced for srmmetry．Show that the first three equations are the lifferential equations of the lineal elements of the cones of Ex． 6, p．272．The integrals of（28）therefope define a system of eurves which have a phanar element of the erguation $F=0$ pawing through each of their lineal tan－ gential elements，if the equations he interrated and the results he solved for the variables，and if the constants be so determined as to speefy one particular curve with the initial comditions，$x_{0}, y_{0}, z_{0}, p_{10} \cdot q_{10}$ ，then

$$
x=x\left(u, x_{0}, y_{0}, z_{0}, p_{0}, q_{0}\right), \quad y=y(\cdots), z=z(\cdots), \quad p=p(\cdots), \quad q=q(\cdots) .
$$

Note that，along the curre，$q=f(p)$ and that consequently the panar elments just mentioned must lie upon a developable surface containing the eurve（si 67）．The enrve and the planar elements along it are called a characteristic and a choructeristic strip of the given differential equation．In the case of the linear equation the characteristic eurves afforled the integration and any phanar element through their lineal tangential elements satisfied the equation；but lere it is only those planar elements which constitute the eharacteristic strip that satisfy the equation． What the complete integral does is to piece the characteristic strips into a family of surfaees dependent on two parameters．

7．By simple devices integrate the equations．Check the answers：
（c）$\frac{i^{2} z}{\frac{i}{2}, r^{2}}=f(x)$ ．
（ β ）$\frac{\hat{c}^{n} z}{\hat{c} y^{n}}=0$,
（ γ ）$\frac{\hat{c}^{2} z}{\hat{c} r \hat{c} y}=\frac{x}{y}+a$ ，
$(\delta) s+\eta f(s)=g(y)$ ．
（ ϵ ）$u r=r y$.
（广）$x r=(n-1) p$ ．

8．Integrate these equations by the methox of factoring：
（ $\alpha)\left(I_{x}^{2}-u^{2} I_{y}^{2}\right) z=0$.
（ β ）$\left.(1)_{x}-1 I_{y}\right)^{3} z=0$.
$(\gamma)\left(I_{s} D_{y}^{2}-D_{y}^{3}\right) z=0$,
（ס）$\left(D_{x}^{2}+3 I_{x} I_{y}+2 D_{y \prime}^{2}\right) z=x+y$ ．
（ ϵ ）$\left(D_{x}^{2}-I_{1} I_{y}-\left(j I_{y}^{2}\right) z=x y\right.$,
（弓）$\left(I_{x}^{2}-I I_{y}^{2}-31 I_{x}+3 I_{y}\right) z=0$,
（ η ）$\left(D_{x}^{2}-1 y_{y}^{2}+2 D_{x}+1\right) z=e^{-x}$ ．

9．Prove the olerational equations：
（a）$\epsilon^{\alpha a r} D_{y} \phi(y)=\left(1+(\gamma, r)_{y}+\underline{1}_{1}^{1}\left(r^{2} r^{2} D_{!!}^{2}+\cdots\right) \phi(y)=\phi(y+\alpha x)\right.$,

$$
\begin{aligned}
& \text { (} \gamma \text {) } \frac{1}{D_{x}-\alpha I_{y}} I \cdot(r . y)=\epsilon^{a, x I_{y}} \int^{r} e^{-\alpha \xi D_{y} R} R(\xi \cdot y) d \xi=\int^{x} R(\xi \cdot y+\alpha x-\alpha \xi) d \xi .
\end{aligned}
$$

10．Prove that if $\left[\left(D_{x}-\alpha_{1} I_{y}\right)^{m_{1}} \cdots\left(I_{x}-\alpha_{k} I_{y}\right)^{m k}\right] z=0$ ．then

$$
\begin{aligned}
z=\Phi_{11}\left(y+\alpha_{1} s\right) & +r \Phi_{12}\left(y+\left(\gamma_{1} s\right)+\cdots+r^{r m_{1}-1} \Phi_{1} m_{1}\left(y+\alpha_{1} r\right)+\cdots\right. \\
& \left.+\Phi_{k: 1}\left(y+\alpha_{k} \cdot r\right)+c \Phi_{k-2}\left(y+\alpha_{k} r\right)+\cdots+r^{\prime \prime}\right)_{k}^{-1} \Phi_{k m_{k}}\left(y+\alpha_{k} \cdot r\right) .
\end{aligned}
$$

where the Φ ：are all arlithary functions．This gives the sonution of the reducel equa－ tion in the simplest case．What terms woukd correspond to $\left.\left(I_{x}-\alpha\right)_{y}-\beta\right)^{m} z=0$ ？

11．Write the shlutions of the equations（or equations reduced）of Ex． 8.
12．State the rule of Ex．$\rho(\gamma)$ as：Integrate $R(x, y-\alpha s)$ with respect to x and in the result change y to $y+\alpha x$ ．Anple this to ohtaining particular solutions of Ex． $8(5) .(\epsilon) .(\eta)$ with the airl of any short cuts that are analogous to these of Chap．VIII．

13．Integrate the folluwinge equations：
（a）$\left.(I)_{n}^{2}-I j_{y}^{2}+I y_{y}-1\right) z=\cos (r+2 y)+(y$.
（ β ）$x^{2} r^{2}+2 x y s+y^{2} t^{2}=s^{2}+y^{2}$ ，
（ $\left.\gamma)\left(I_{r}^{2}+D_{r y}+7\right)_{y}-1\right) z=\sin (x+\underline{y} y)$ ．
（ δ ）$r-t-3 p+3 r_{1}=t^{r+2 \mu}$ ，
（ ϵ ）$\left.\left(I_{z}^{3}-2\right)_{r} D_{y}^{2}+I_{y}^{3}\right) z=x^{2}$ ．
（ङ）$r-t+p+3 q-2 z=e^{x}-y-r^{2} y$.
（ $\eta)\left(I_{4}^{2}-I_{x} I_{y}-2 I_{y}^{2}+2 I_{x}+2 D_{y}\right) z=e^{2 x+3 y}+\sin (2 x+y)+r y$ ．

14．Try Monge＂s methen on these equations of the second onder：
（ x ）$q^{2} r-2 p q \cdot+\mu^{2} t=0$.
（ β ）$r-a^{2} t=0$,
（ γ ）$r+s=-p$.
（o）$q(1+q) r-\left(p+q+2 p^{\prime \prime}\right) s+p(1+p) t=0$ ．
（є）$x^{2} r^{r}+2 x^{2} y \times y^{2} t=0$ ，
（弓）$\left(b+(r q)^{2} r-2\left(b+r^{2}()\left(n+r^{\prime} p\right) s+(n+c p)^{2} t=0\right.\right.$ ，
（ η ）$)+\operatorname{lin}^{2} t=2(\mathrm{c} . \mathrm{n}$ ．

If any simpler method is available，state what it is and apply it also．
15. Show that an equation of the form $R r+S s+T t+U\left(r t-s^{2}\right)=V$ necessarily arises from the elimination of the arbitrary function from

$$
u_{1}(x, y, z, p, q)=f\left[u_{2}(x, y, z, p, q)\right] .
$$

Note that only such an equation can have an intermediary integral.
16. Treat the more general cquation of Ex. 15 by the methods of the text and thus show that an intermediary integral may benght by solving one of the systems.

$$
\begin{array}{ll}
U d y+\lambda_{1} T d x+\lambda_{1} l^{\prime} d y=0, & l d x+\lambda_{1} R d y+\lambda_{1} U d q=0, \\
U d x+\lambda_{2} I d y+\lambda_{2} I^{\prime} d q=0, & l^{\prime} d y+\lambda_{2} T d x+\lambda_{2} U d p=0, \\
d z=p d x+q l y, & d z=p d x+q d y,
\end{array}
$$

where λ_{1} and λ_{2} are roots of the equation $\lambda^{2}\left(l^{2} T+l^{\prime} T^{\prime}\right)+\lambda U S+l^{2}=0$.
17. Solve the equations: $\quad(\alpha) s^{2}-r t=0 . \quad(\beta) s^{2}-r t=u^{2}$,
($\gamma) a r+b s+c t+t\left(r t-s^{2}\right)=h, \quad$ ($) ~ x q r+y p t+x y\left(s^{2}-r t\right)=p q$.

PART III. INTEGRAL CALCLLUS

CHAPTER XI

ON SIMPLE INTEGRALS

118. Integrals containing a parameter. ('onsider

$$
\begin{equation*}
\phi(i x)=\int_{x_{0}}^{x_{1}} f(x, x) d x, \tag{1}
\end{equation*}
$$

a definite integral which contains in the integrand a parameter α. If the indefinite integral is known, as in the ease

$$
\int \cos a x d x=\frac{1}{\alpha} \sin a x ; \quad \int_{0}^{\frac{\pi}{2}} \cos a r d x=\left.\frac{1}{\alpha} \sin a \cdot x\right|_{0} ^{\frac{\pi}{2}}=\frac{1}{a},
$$

it is seen that the indefinite integral is a function of r and r, and that the detinite integral is a function of x alone because the variable x disappears on the sulstitution of the limits. If the limits themselves depent on α, as in the case

$$
\int_{\frac{1}{\alpha}}^{\alpha}\left(\cdot 0 \sin \alpha x d x=\left.\frac{1}{\alpha} \sin \alpha x\right|_{\frac{1}{\alpha}} ^{\alpha}=\frac{1}{\alpha}\left(\sin \alpha^{2}-\sin 1\right)\right.
$$

the integral is still a function of α.
In many instances the indefinite integral in (1) cannot be found explicitly and it then becomes necessary to discuss the continuity. differentiation, and integration of the function $\phi(r)$ defined hy the integral withont having recourse to the actual evaluation of the integral; in fact these diselnssions may be recuired in order to effect that evaluation. Let the limits x_{0} and x_{1} be taken
 as constants independent of r. Consider the range of values $x_{0} \leqq x \leqq x_{1}$ for x, and let $\alpha_{0} \leqq n \leqq \kappa_{1}$ be the range of values over whicll the function $\phi(n)$ is to be disoussed. The fumetion $f(x, a)$ may be photted as the surface $z=f(x, \pi)$ over the rectangle of values for (r, n). The
value $\phi\left(x_{i}\right)$ of the function when $\alpha=x_{i}$ is then the area of the section of this surface made by the plane $r=r_{i}$. If the surface $f(r, r)$ is continnous, it is tolerably clear that the area $\phi(r)$ will be continuons in r. The function $\phi(x)$ is continuous if $f(x, x)$ is continums. in the tuo crurict bles (ir, a).

To discuss the continuity of $\phi(\alpha)$ form the difference

$$
\begin{equation*}
\phi\left(\alpha+\Delta(x)-\phi(\alpha)=\int_{x_{0}}^{x_{1}}[f(x, \alpha+\Delta(x)-f(x, \alpha)] d x .\right. \tag{2}
\end{equation*}
$$

Now $\phi(\alpha)$ will be contimmen if the difference $\phi(\alpha+\Delta \alpha)-\phi(\alpha)$ can be made as small as lesired by taking $\Delta c x$ sufficiently small. If $f(x, y)$ is a contimuons function of $(c . y)$, it is possible to take Δx and Δy so small that the difference

$$
|f(x+\Delta x, y+\Delta y)-f(x, y)|<\epsilon, \quad|\Delta x|<\delta, \quad|\Delta y|<\delta
$$

for all points (x, y) of the region over which $f(x . y)$ is contimus (Ex. 3. p. 92). Hence in particular if $f(x, \alpha)$ be continuous in (x, α) over the rectangle. it is possible to take $\Delta a r$ so small that

$$
|f(x, \alpha+\Delta \alpha)-f(x, \alpha)|<\epsilon, \quad|\Delta \alpha|<\delta
$$

for all values of x and α. Hence, by (65), p. 2.).

$$
\mid \phi\left(\alpha+\Delta(\alpha)-\phi(\alpha)\left|=\left|\int_{r_{0}}^{r_{1}}[f(r . \alpha+\Delta \alpha)-f(x . \alpha)] d l . c\right|<\int_{r_{0}}^{r_{1}} \epsilon l l . x=\epsilon\left(r_{1}-r_{0}\right) .\right.\right.
$$

It is therefore proved that the function $\phi(c x)$ is contimusus provided $f(x, \alpha)$ is comtimons in the two rariables $(x . c x)$: for $\epsilon\left(r_{1}-f_{0}\right)$ may be made as small as desired if ϵ may be made as small as desired.

As an illustration of a case where the condition for continuity is vinlated, take

$$
\phi(\alpha)=\int_{0}^{1} \frac{\alpha d x}{\alpha^{2}+x^{2}}=\left.\tan ^{-1} \frac{x}{\alpha}\right|_{0} ^{1}=\cot ^{-1} \alpha \quad \text { if } \quad \alpha \neq 0, \quad \text { and } \quad \phi(0)=0 .
$$

Here the interrand fails to be continuons for (0.0); it beemes infinite when $(x . a) \doteq(0$. (0) almg any curve that is not tangent to $\alpha=0$. 'ilue function $\phi(\alpha)$ is defined for all values of $\alpha \equiv 0$. is cual to cot-3 α when $\alpha \neq 0$, amd should therefore be equal to $\frac{1}{2} \pi$ when $r=0$ if it is to be continums. whereas it is cupal to 0 . The importane of the imposition of the comdition that $f(r$. o o $)$ be contimums is clear. It shombl not he inferred. howerele that the fmetion $\phi(\alpha)$ will neessarily be discontinums whem $f(r$. (r) fails of continuity. For instance

$$
\phi(\alpha)=\int_{0}^{1} \frac{d r}{\sqrt{\alpha+x}}=\frac{1}{2}\left(\checkmark \imath+1-\imath^{\prime}(r), \quad \phi(0)=\frac{1}{2} .\right.
$$

This function is comtimume in α for all values $\alpha \equiv 0$: ret the integrand is hiscontinusus and indeed becomes intinite at (1). 0). The emmition of continuty

 mation of the froblen will sometimes disclase the fact that $\phi(a)$ is still comtinumb.

In (atse the linuts of the interieal are functions of x, as

$$
\begin{equation*}
\phi(r)=\int_{v_{0}=g_{0}(\alpha)}^{r_{1}=g_{1}(\alpha)} f^{\prime}\left(r^{r}, a\right) d, r, \quad r_{0} \leqq a \leqq \alpha_{1}, \tag{3}
\end{equation*}
$$

the function $\phi(x)$ will surely be contimusis if $f(x, n)$ is continuons over the region bounded by the lines $r=\alpha_{0}, r=r_{1}$ and the curves $x_{0}=y_{0}(x), x_{1}=y_{1}(x)$, and if the functions $y_{0}(n)$ and $y_{1}(x)$ are continuous.

For in this case

$$
\begin{aligned}
\phi(\alpha & +\Delta(\gamma)-\phi(\alpha)=\int_{y_{1}(\alpha+\Delta \alpha)}^{y_{1}(\alpha+د \alpha)} f(x, \alpha+\Delta(\gamma) d x \\
& -\int_{y_{0}(a)}^{y_{1}(\alpha)} f\left(r \cdot(\gamma) d x=\int_{y_{0}(a+\Delta a)}^{y_{1}(a)} f(r,(x+\Delta(x) d x\right. \\
& +\int_{y_{1}(a)}^{y_{1}(\alpha+د(x)} f(x \cdot \alpha+\Delta \alpha) d x \\
& +\int_{y_{0}(a)}^{y_{1}(\alpha)}[f(r, \alpha+\Delta(x)-f(x, \alpha)] d x .
\end{aligned}
$$

The absolute values maty be taken and the inte-
 grals reduced lyy (i.5), (i.5'), 1 . 25.
$\mid \phi\left(\ell r+\Delta(\gamma)-\phi(\alpha)|<\epsilon| g_{1}(\alpha)-g_{0}(\alpha)|+| f\left(\xi_{1}, \alpha r+\Delta(\gamma)| | \Delta y_{1}|+| f\left(\xi_{0}, \alpha+\Delta(\gamma) \mid \Delta g_{0}\right\}\right.\right.$, where ξ_{0} and ξ_{1} are values of x between g_{0} and $g_{9}+g_{g_{0}}$. and g_{1} and $g_{1}+g_{1}$. By taking $\Delta\left(\gamma\right.$ small enough. $g_{1}\left(\alpha+J(\gamma)-g_{1}(\alpha)\right.$ and $g_{0}(\alpha+\Delta \alpha)-g_{0}(\alpha)$ may be made as small as desired, and hemee $\Delta \phi$ may he made as small as desiretl.
119. To find the drevortire of a firmotion $\phi(r)$ defined by an intergme contrininy " prrommeter, form the quotient

$$
\begin{aligned}
& \frac{\Delta \phi}{\Delta r}=\frac{\phi(r+\Delta x)-\phi(r)}{\Delta r} \\
& =\frac{1}{\Delta \Omega}\left[\int_{u_{0},(a+\Delta a)}^{l_{1}(z+\Delta(z)} f^{\prime}\left(. r^{\prime}, x+\Delta x\right) d \cdot r-\int_{!_{0}(a)}^{g_{1}(a)} f^{\prime}(x, \alpha) d x^{\prime}\right],
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{g_{1}}^{g_{1}+\Delta g_{1}} \frac{f(r, r+\Delta r)}{\Delta v} d \cdot r .
\end{aligned}
$$

The transformation is made he (33), p. 2.5. A further reduretion may be made in the last two integrals loy ($6.5 \mathbf{\prime}$), p. 25, which is the Theorem of the Mean for integrals, and the i.ntegrand of the first integral may be motified ly the Theorem of the Mean for derivatives (p. T, and Ex. 14, 1. 10). Then

$$
\begin{align*}
& \text { and } \quad \frac{d \phi}{d x}=\int_{g_{0}(2)}^{g_{1}(x)} \frac{\partial f}{c(r} d, d_{x}-f\left(y_{0}, n\right) \frac{d\left(f_{0}\right.}{d r c}+f\left(!l_{1}, n\right) \frac{d(/)_{1}}{d r} . \tag{4}
\end{align*}
$$

A rritical examination of this work shows that the derivative $\phi^{\prime}(r)$ exists and may he obtained ly (1) in case fó" exists and is continuous
in (x, x) and $g_{0}(x), g_{1}(x)$ are differentialle. In the partienlar case that the limits y_{0} and g_{1} are constants, (4) reduces to Leibniz's Rule

$$
\frac{d \phi}{d r}=\frac{d}{d r} \int_{x_{0}}^{r_{1}} f(x, n) d x=\int_{x_{0}}^{r_{1}} \frac{f f}{\hat{c} r} d r^{\prime}
$$

Which states that the deriertive "ff "fontion defined by an integrerl with tiverd limits may be obtained ly, differentirtirg under the sigu of integrertion. The additional two terms in (4), when the limits are variable, may be considered as arising from (66), p. 27, and Ex. 11, p. 30.

This process of differentiating under the sign of integrotion is of fiergent use in erobluting the funtion $\phi(x)$ in cases where the indefinite integral of $f^{f}\left(x^{\prime}, \alpha\right)$ camot be found, but the indefinite integral of $f_{\alpha}^{\prime \prime}$ can be foumd. For if

$$
\phi(k)=\int_{x_{0}}^{x_{1}} f\left(r^{\prime}, k\right) d x, \text { then } \frac{d \phi}{d r t}=\int_{x_{0}}^{x_{1}} f_{a^{\prime}}^{\prime} \lambda_{n}=\psi(r) \text {. }
$$

Now an integration with respect to α will give ϕ as a function of α with a constant of integration which may be determined by the usual method of giving a some special value. Thus

$$
\phi(n)=\int_{0}^{1} \frac{x^{\alpha}-1}{\log x} d x, \quad \frac{d \phi}{d x}=\int_{0}^{1} \frac{x^{x} \log x}{\log x} d x=\int_{0}^{1} x^{x} d x
$$

Hence

$$
\frac{l \phi}{d r}=\left.\frac{1}{\pi+1} x^{\alpha+1}\right|_{0} ^{1}=\frac{1}{\kappa+1}, \quad \phi(r)=\log (x+1)+c .
$$

But

$$
\phi(0)=\int_{0}^{1} 0 d, r=0 \quad \text { and } \quad \phi(0)=\log 1+C
$$

Hence

$$
\phi(r)=\int_{0}^{1} \frac{r^{r \alpha}-1}{\log r} d r=\log (r+1)
$$

In the way of comment upon this evaluation it may be remarked that the functions $\left(x^{\alpha}-1\right) / \log x$ and x^{α} are contimuns functions of (x, α) for all values of x in the interval $0 \leqq r \leqq 1$ of integration and all positive values of o x less than any assignet value, that is, $0 \leqq a \leqq K$. The eomditions which permit the differentiation muler the sign of integration are therefore satisfied. This is not true for negative values of α. Whell $\alpha<0$ the derivative $\boldsymbol{r}^{r^{\alpha}}$ becomes infinite at (0.0). The method of evaluation camot therefore be aphiod without further examination. Is a matter of fact $\phi(\alpha)=\log (\alpha+1)$ is defined for $\alpha>-1$. and it would be natural to think that some methoul conh be found to justify the above formal caluation of the intequal when $-1<\alpha \leqq ん$ (see (lhap. Xllit).

Tow illustrate the application of the rule for differentiation when the limits are fonctions of er. let it be reguivel to disferentiate

$$
\phi(\alpha)=\int_{\alpha}^{\alpha^{2}} \frac{x^{\alpha}-1}{\log x} d x . \quad \frac{d \phi}{d \alpha x}=\int_{a}^{i^{2}} x^{\alpha} d x+\frac{\alpha^{2 \alpha}-1}{\log \alpha}\left(x-\frac{\alpha^{\alpha}-1}{\log \alpha},\right.
$$

or

$$
\frac{d \phi}{d c \gamma}=\frac{\alpha^{\alpha+1}}{\alpha+1}\left[\alpha^{a+1}-1\right]+\frac{1}{\log \alpha}\left[\alpha^{2 \alpha}-\alpha^{\alpha}-\alpha+1\right] .
$$

This formal result is only goorl subject to the conditions of continuity. Clearly α must be greater than zero. This, however, is the only restriction. It might seem at first as though the value $x=1$ with $\log x=0$ in the denominator of $\left(x^{\alpha}-1\right) / \log x$ would canse diffieulty; but when $x=0$, this fraction is of the form $0 / 0$ and has a fimite value which pieces on continuonsly with the neighboring values.
120. The next problem would be to find the integrell of a function defined l!y \quad on intergral rontrining a perrometer. The attention will be restricted to the case where the limits x_{0} and x_{1} are constants. Consider the integrals

$$
\int_{a_{0}}^{a} \phi(x) d x=\int_{\alpha_{0}}^{a} \cdot \int_{x_{0}}^{x_{1}} f(x, x) d x \cdot d x,
$$

where α may be any point of the interval $r_{0} \leqq a \leqq \alpha_{1}$ of values over which $\phi(x)$ is treated. Let

$$
\Phi(x)=\int_{x_{0}}^{x_{1}} \cdot \int_{\alpha_{0}}^{\alpha} f(x, x) d x \cdot d \cdot r_{0}
$$

Then $\Phi^{\prime}(n)=\int_{r_{0}}^{x_{1}} \cdot \frac{\partial}{\partial n} \int_{x_{0}}^{a} f\left(\cdot r^{\prime}, n\right) d x \cdot d x=\int_{x_{0}}^{r_{1}} f(\cdot,, x) d, r=\phi(r)$
by (1^{\prime}), and by (66), 1,27 ; and the differentiation is legitimate if $f(x, a)$ be assumed continmous in $\left(x^{\prime}, r\right)$. Now integrate with respect to r. Then

$$
\int_{a_{0}}^{a} \Phi^{\prime}(r)=\Phi\left((x)-\Phi\left(x_{0}\right)=\int_{\alpha_{0}}^{\alpha} \phi(x) d x\right.
$$

But $\Phi\left(\alpha_{0}\right)=0$. Hence, on substitution,
$\Phi(n)=\int_{r_{0}}^{r_{1}} \cdot \int_{a_{0}}^{\alpha} f^{\prime}(\cdot r, n) d r \cdot d, r=\int_{a_{n}}^{\alpha} \phi(n) d x=\int_{a_{0}}^{a} \cdot \int_{r_{0}}^{x_{1}} f^{\prime}(x, n) d, r \cdot d n$,
Hence appears the rule for integration, namely, integrete muler the sign of integrention. The rule has here been ohtained by a trick from the previous rule of differentiation ; it could be proved directly by considering the integral as the limit of a sum.

It is interesting to note the interpretation of this intergration on the figure. p. 2\$1. Λ s $\phi(\pi)$ is the area of a section of the surfare, the product $\phi(r)$ dre is the infinitesimal volume mader the surface and included between two neighboring planes. The integral of $\phi(r)$ is therefore the volume * moder the surface and boxed in hy the four

[^27]planes $a=x_{0}, x=x, x=r_{0}, x=x_{1}$. The geometric significance of the reversal of the order of integrations, as
$$
V=\int_{x_{0}}^{r_{1}} \cdot \int_{\alpha_{0}}^{\alpha_{1}} f(\cdot r, x) d x \cdot d x=\int_{\alpha_{0}}^{\alpha_{1}} \cdot \int_{x_{0}}^{x_{1}} f(\cdot r, x) d x \cdot d x
$$

is in this case merely that the volume may be regarded as gemerated by a cross section moving parallel to the arrplane, or by one moving parallel to the $\begin{gathered}r-p l a n e, ~ a n d ~ t h a t ~ t h e ~ e v a l u a t i o n ~ o f ~ t h e ~ v o l u m e ~ m a s ~\end{gathered}$ be made by either method. If the limits x_{0} and r_{1} deprend on n, the integral of $\phi(r)$ camot le foum by the simple rule of integration under the sigu of integration. It should be remarked that integration under the sign may serve to evaluate functions detined by integrals.

As an illustration of integration under the sign in a case where the method leads to a function which may be eonsidered as evaluated by the methon, consider

But $\quad \int_{a}^{b} \phi(\alpha) d \alpha=\int_{0}^{1} \cdot \int_{a}^{b} x^{\alpha} d d x \cdot d x=\left.\int_{0}^{1} \frac{x^{\alpha \alpha}}{\log x}\right|_{\alpha=a} ^{\alpha=b} d x=\int_{0}^{1} \frac{r^{b}-r^{n}}{\log x} d x$.
Hence

$$
\int_{0}^{1} \frac{x^{h}-x^{a}}{\log x} d x=\log \frac{b+1}{u+1}=\psi(a, b), \quad u \geqq 0 . \quad b \equiv 0
$$

In this case the integrand contains two parmeters a. lo and the function define is a function of the two. If $a=0$, the function rednces to one previously fomul. It would be possible to repeat the integration. Thus

$$
\left.\begin{array}{l}
\int_{0}^{1} \frac{x^{\alpha}-1}{\log x} d x=\log (\alpha+1), \quad \int_{0}^{\alpha} \log (\alpha+1) d x=(\alpha+1) \log (\alpha+1)-\alpha \\
\int_{0}^{1} \cdot \int_{0}^{\alpha} x^{\alpha}-1 \\
\log x
\end{array} d \alpha \cdot d x=\int_{0}^{1} \cdot r^{\alpha}-1-\alpha \log x \cdot d x=(\alpha+1) \log (\alpha+1)-\alpha\right)^{2} .
$$

This is a new form. If here α be set equal to any number, say 1 , then

$$
\int_{0}^{1} \frac{r-1-\log x}{(\log r)^{2}} \operatorname{dx}=2 \log 2-1
$$

In this way there has been evaluated a definite intergral which depends on mo parameter aml which misht have been diffientt to evaluate directly. The introluetiom of "porameter and its subsecquent cquation to a partirular ratuc is of frequent use in ectluating definite integruls.

EXERCISES

1. Evaluate divectly and diseuss forminuity. $0 \leqq \alpha \leqq 1$:
(α) $\int_{0}^{1} \frac{\alpha^{2} d l r}{\alpha^{2}+x^{2}}$,
(β) $\int_{0}^{1} \frac{d c}{\sqrt{c^{2}+r^{2}}}$,
(γ) $\int_{0}^{1}-\frac{r d r}{a^{2}+x^{2}}$.
2. If $f(x, \alpha, \beta)$ is a function containing two paranctuss and is comtimumis in the three variables (r. (α, β) when $r_{0} \leqq r \leqq r_{1}$. $\alpha_{1} \leqq \alpha \leqq \alpha_{1}$. $\beta_{0} \leqq \beta \leqq \beta_{1}$. show
3. Differentiate and hence evaluate and state the valid range for α :

$$
\begin{aligned}
& \text { (} \alpha) ~ \\
& \int_{0}^{\pi} \log (1+\alpha \cos x) d x=\pi \log \frac{1+\sqrt{1-\alpha^{2}}}{2}, \\
& (\beta) \quad \int_{0}^{\pi} \log \left(1-2 \alpha \cos x+\alpha^{2}\right) d x=\left\{\begin{array}{l}
\pi \log \alpha^{2}, \alpha^{2} \geqq 1 \\
0, \alpha^{2} \leqq 1
\end{array} .\right.
\end{aligned}
$$

4. Find the derivatives withont previonsly integrating:
(c) $\int_{\tan ^{-1} \alpha}^{\sin ^{-1} \alpha} \frac{1}{x} \tan \alpha x d x$,
(β) $\int_{0}^{\alpha^{2}} \tan ^{-1} \frac{x}{\alpha^{2}} d x$,
($\gamma) \int_{-\alpha x}^{\alpha, x^{-h^{2}, x^{2}}} e^{a^{2}} d x$.
5. Extend the assumptions and the work of Ex. 2 to find the partial derivatives ϕ_{α}^{\prime} and ϕ_{β}^{\prime} and the total differential el ϕ if x_{0} and x_{1} are ennstants.
6. Prove the rule for inteqrating under the sign of integration by the direct method of treating the interral as the limit of a sum.
7. Fronn bix. 6 derive the mule for differentiating under the sign. Can the complete rule inchuling the case of variable limits be olntained this way?
8. Note that the integral $\int_{x_{0}}^{g(r, \alpha)} f(x, a)$ d, will be a function of (x, α). Derive formulas for the partial derivatives with respect to r and $(x$.
9. Differentiate: $(\alpha) \frac{\hat{\imath}}{\hat{c}(x} \int_{0}^{\alpha x} \sin (x+\alpha) d x$,
(β) $\frac{d}{d x} \int_{0}^{\sqrt[3]{x}} x^{2} d x$
10. Integrate muler the sign and henee evalmate by sulserpent differentiation :
(c) $\int_{0}^{1} x^{\alpha} \log x d x$,
(β) $\int_{0}^{\frac{\pi}{2}} x \sin \alpha x x d x$,
($\gamma) \int_{0}^{1} x \sec ^{2} \alpha x d x$.
11. Interiate or lifferentiate both sides of these equations:
($(x) \int_{0}^{1} x^{\alpha} l_{x}=\frac{1}{a+1}$ to show $\int_{0}^{1} x^{\alpha}(\log x)^{n} l x=(-1)^{n}\left(x+\frac{n!}{n} \overline{n+1}\right.$,
(β) $\int_{0}^{\infty} \frac{d, r}{x^{2}+\alpha}=\frac{\pi}{2 \sqrt{c x}}$ to show $\int_{0}^{\infty} \frac{d . r}{\left(x^{2}+\alpha\right)^{n+1}}=\frac{\pi \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 2 \cdot \frac{1}{2} \cdot 6 \cdot \cdots 2 n \cdot\left(x^{n+\frac{1}{2}}\right.}$,
(γ) $\int_{0}^{\infty} e^{-\alpha x^{r}} \cos m x d x=\frac{\alpha}{a^{2}+m^{2}}$ to show $\int_{0}^{\infty} \frac{e^{-\alpha \cdot r}-e^{-\beta \cdot r}}{x \sec m x} d x=\frac{1}{2} \log \left(\frac{\beta^{2}+m^{2}}{\alpha^{2}+m^{2}}\right)$,
(δ) $\int_{0} e^{-a \cdot r^{r} \sin m e d x}=\frac{m}{\alpha^{2}+m^{2}}$ toshow $\int_{0}^{\infty} \frac{e^{-a \cdot r}-e^{-\beta} x^{x}}{x c \sec x} d x=\tan ^{-1} \frac{\beta}{m}-\tan ^{-1} \frac{\alpha}{m}$,
(є) $\int_{0}^{\pi} \frac{d x}{a-\cos x}=\sqrt{a^{2}-1}$ to tind $\int_{0}^{\pi} \frac{d x}{(a x-\cos x)^{2}}, \int_{0}^{\pi} \log \frac{b-\cos x}{a-\cos x}$,
(5) $\int_{0}^{\infty} \frac{r^{\alpha-1}, x}{1+x}=\frac{\pi}{\sin \pi x}$ to find $\int_{0}^{\infty} \frac{x^{\alpha-1} \log x d x}{1+x}, \int_{0}^{\infty} \frac{r^{h-1}-x^{\prime \prime}-1}{(1+x) \log x} d x$.

Note that in $(\beta)-(\delta)$ the integrals extend to infinity and that, as the rules of the text have been proved on the hypothesis that the interval of integration is finite, a further justifieation for applying the rules is necessary this will be treated in (hap. XIIl, but at this point the rules may he applied formally without justificatiom.

12 Evaluate by any means these interrals:

$$
\begin{aligned}
& \text { (a) } \int_{0}^{a} \sqrt{a^{2}-x^{2}} \cos -1 \cdot r a d x=a^{2}\left(\begin{array}{l}
\pi^{2} \\
16
\end{array}+\frac{1}{4}\right) \text {, } \\
& \text { (} \beta \text {) } \int_{0}^{\frac{\pi}{2}} \frac{\ln (1+\cos (\alpha \cos x)}{\cos s} d x={ }_{2}^{1}\left(\begin{array}{c}
\pi^{2} \\
4
\end{array}-\alpha^{2}\right) \text {, } \\
& \text { (} \gamma \text {) } \int_{0}^{\frac{\pi}{2}} \ln \left(\alpha^{2} \cos ^{2} x+\beta^{2} \sin ^{2} \cdot x\right) d x=\pi \ln g \frac{\alpha+\beta}{2} \text {, } \\
& \text { (} \delta \text {) } \int_{0}^{\infty} r c^{-\alpha, r} \cos \beta \cdot r d r=\frac{\left(\alpha^{2}-\beta^{2}\right.}{\left(\alpha^{2}+\beta^{2}\right)^{2}} \text {, } \\
& \text { (є) } \int_{0}^{\frac{\pi}{2}} \log \frac{a+b \sin x}{a-b \sin x} \frac{c l n}{\sin c}=\pi \sin ^{-1} \frac{b}{a}, \quad b<a, \\
& \text { (ら) } \int_{0}^{\pi} \frac{\operatorname{lng}(1+k \cos x)}{\cos x} d x=\pi \sin ^{-1} k \text {, }
\end{aligned}
$$

(A) $\int_{0}^{1} \log f\left(u+x^{\prime}\right) d x=\int_{u}^{u+1} \log f(x) d x=\int_{u \prime}^{\prime \prime} \operatorname{lng} \frac{f^{\prime}(\prime+1)}{f^{\prime}(\prime \prime)} d u+\int_{0}^{1} \log f(x) d x$.
121. Curvilinear or line integrals. It is familiar that

$$
A=\int_{a}^{n}, r r^{\prime}, t=\int_{n}^{n} f^{\prime}(, r) d, r
$$

 $x=\pi, r=h$. The formula mar ly used to evaluate more eompliraterl areas. For instance, the area between the batablat $y^{2}=r$ and the semicubical parabola $y^{2}=r^{3}$ is

Where in the seromb expression the subseripts P and ${ }^{\prime}$ denote that the integrals are evaluated fom the parabola and semiombinal larabola. As a change in the orter of the limits changes the sign of the integral, the area may be written

and is the area bomaled hy the elosed rime formed of the portions of the parabola and semisubical parabola from 0 to 1.

In comsidering the area bomeded hy a chased curve it is convenient to arrange the limits of the different integrals so that they follow the corve in a refinite order. Thus if one advances alongr P from 0 to 1 and returns along is from 1 to 0 , the entire closed curve hats been desoriberl in a miform diee fion and the indosed area has heen eomstantly on the right-hand side; whereas if one adranced along is from 0 to 1 anl
returned from 1 to 0 along P, the curve would have been described in the opposite direction and the area would have been ronstantly on the left-hand side. Nimilar considerations apply to more general closed reurves and learl to the definition: If a closed durve which nowhere crosses itsclf is described in such a direction as to keep the inclosed area always upon the left, the area is considered as positive; whereas if the description were such as to leave the area on the right, it would he taken as negative. It is clear that to a person standing in the inelosure and watching the description of the boundary, the descrip)tion would appear comerelockwise or positive in the first case ($\$ 76$).

In the case abore, the area when positive is

$$
\begin{equation*}
I=-\left[\int_{0}^{1} y d x+\int_{1}^{0} y d x\right]=-\int y d x \tag{6}
\end{equation*}
$$

where in the last intergral the symbol O denotes that the integral is to be evaluated around the chosed curve by describing the curve in the positive direction. That the formula holds for the ordinary ase of area moder a corve may be verified at once. Here the circuit consists of the contour $A B B^{\prime} .1^{\prime} 1$. 'Then

$$
\int_{0} y d x=\int_{A}^{B} y d x+\int_{B}^{B^{\prime}} y d x+\int_{b^{\prime}}^{A^{\prime}} y r d x^{\prime}+\int_{A^{\prime}}^{A} y d x
$$

The first integral vanishes betansis $!=0$, the second and fourth vanish becaluse r is constant and $d x=0$. Hen'e

$$
-\int_{0} y / f x=-\int_{I^{\prime}}^{A^{\prime}} y / y x^{\prime}=\int_{1^{\prime}}^{b^{\prime}} y d x
$$

It is readily seen that the two new formulas

$$
\begin{equation*}
A=\int x^{r}+l y \quad \text { and } \quad 1=\frac{1}{2} \int_{0}\left(r^{r} l y-y r^{\prime}, x^{\prime}\right) \tag{i}
\end{equation*}
$$

also give the area of the elosed rurve. The first is proved as (6) was proved and the secome arises from the addition of the two. Any onn of the three maty lo used to cenmpute the area of the elosed durve the last hats the adrantage of symmetry and is partioularly useful in finding the area of a seetor. beeanse along the lines issuing from the origin
 ord! is alvantageons when part of the contour consists of lines paralle] to the reaxis so that d!! $=0$; the first form has similar advantages when parts of the contom are parallel to the y-axis.

The comection of the third formula with the vector expression for the area is noteworthy. For (1.175)
and if

$$
\begin{array}{rlrl}
l \mathbf{A} & =\frac{1}{2} \mathbf{r} \times d \mathbf{r}, & \mathbf{A}=\frac{1}{2} \int_{0} \mathbf{r}_{\times} / \mathbf{r} \\
\mathbf{r} & =x \mathbf{i}+y \mathbf{j}, & d \mathbf{r}=\mathbf{i} / l x^{r}+\mathbf{j} / y \\
\mathbf{A} & =\int_{0} \mathbf{r} \times / \mathbf{r}=\frac{1}{2} \mathbf{k} \int_{0}(x / l y-y / l x)
\end{array}
$$

then

The mit vector k merely calls attention to the fact that the area lies in the $x y-p$ me perpendicular to the $\boldsymbol{\text { oraxis }}$ and is described so as to appear positive.

These formulas for the area as a curvilinear integral taken around the boundary have been derived from a simple figure whose contour was cut in only two points by a line parallel to the axes. The extension to more complicated contours is easy. In the first place note that if two closed areas are contiguons over a part of their contours, the integral around the total area following both contours, hut omitting the pat in common, is equal to the sum of the integrals. For

$$
\int_{P R, S P}+\int_{P Q R P}=\int_{P R}+\int_{R: S P}+\int_{P Q R}+\int_{R P}=\int_{Q R S P P}
$$

since the first and last integrals of the four are in opposite directions along the same line and most cancel. But,
 the total area is also the sum of the individual areas and hence the integral around the contour P QRS'P must he the total area. The formulas for determining the area of a closed wrve are therefore applicable to such areas ats maty be composed of a finite number of areas each bounded by an oral curve.

If the contom bounding an area be expressed in parametric form as $x=f(t)$, $y=\phi(t)$, the area may be evaluated as

$$
\int f(t) \phi^{\prime}(t) d t=-\int \phi(t) f^{\prime}(t) d t=\frac{1}{v} \int\left[f(t) \phi^{\prime}(t)-\phi(t) f^{\prime}(t)\right] d t,
$$

where the limits for t are the value of t corresumbing to any point of the contour and the value of t corresponding to the same point after the curve has been described once in the positive direction. Thus in the case of the strophoid

$$
y^{2}=x^{2} \frac{a-x}{a+x}, \text { the line } y=t x
$$

cuts the curve in the donble point at the origin and in only one other point ; the coordinates of a peint on the eurve may be expressed as rational functions

$$
r=a\left(1-t^{2}\right) /\left(1+t^{2}\right), \quad y=a t\left(1-t^{2}\right) /\left(1+t^{2}\right)
$$

of t by solving the stropheid with the line : and when t varies from -1 to +1 the point $(., y)$ deseribes the loop of the strophoid and the limits for t are -1 and +1 .
122. Consider next the meaning and the evaluation of

$$
\begin{equation*}
\int_{a, b}^{x, y}[P(x, y) d, x+Q(x, y) d y], \quad \text { where } \quad y=f(x) \text {. } \tag{8}
\end{equation*}
$$

This is called ac curvilinear or line integral ulony the cure (" or $y=f(x)$ from the point ($(1, b)$ to (x, y). It is possible to eliminate y by the relation $y=f^{\prime}\left(x^{\prime}\right)$ and write

$$
\begin{equation*}
\int_{a}^{x}\left[P(x, f(x))+Q\left(x, f^{\prime}(x)\right) f^{\prime}(x)\right] d x \tag{9}
\end{equation*}
$$

The integral then becomes an ordinary integral in alone. If the equre hat been given in the form $x=f(y)$, it would have been better to convert the line integral into an integral in y alone. The methort of erolmeting the intrigral is therefore defined. The differential of the integral may be written as

$$
\begin{equation*}
d \int_{a, b}^{x, y}(P d x+Q d y)=P d x+Q d!y \tag{10}
\end{equation*}
$$

where eithor x and d.e or y and dy may be climinated by means of the equation of the curve (C . For further partionlarss see 8123.

To get at the meaning of the lime intergonl, it is necessary to consider it as the limit of a sum (compare $\$ 16$). Suppose that the curve (' between ($11, b$) and (x, y) be divided into n parts, that $\Delta_{x_{i}}$ and $\Delta_{!} y_{i}$ are the increments corresponding to the the part, and that $\left(\xi_{i}, \eta_{i}\right)$ is any point in that part. Form the sum

$$
\begin{equation*}
\sigma=\sum_{1}^{-1}\left[P\left(\xi_{i}, \eta_{i}\right) \Delta r_{i}+Q\left(\xi_{i}, \eta_{i}\right) \Delta y_{i}\right] . \tag{11}
\end{equation*}
$$

If, when n becomes infinite so that Δx and Δy cath approathes 0 as a limit, the smm σ approarhes a definite limit independent of how the individual increments Δr_{i} and Δy_{i} approadel 0 , and of how the point $\left(\xi_{i}, \eta_{i}\right)$ is chosen in its segment of the colve, then this limit is defined as the line intergal

$$
\begin{equation*}
\lim \sigma=\int_{(u, b}^{\infty, y}[P(x, y) d x+(2(x, y) d y] . \tag{12}
\end{equation*}
$$

It should he noted that, as in the case of the line integral which gives the area, any line integral which is to be evaluated along two curves which have in common a portion deseriberl in opposite directions may be replared by the integral along so murh of the rourves as not repeated ; for the elements of σ eorresponding to the common portion are equal and opposite.

That σ does approach a limit provided P and Q are contimous functions of (x, y) amb provided the curve $($ is monotonic, that is, that neither Δx nor Δy changes its sign, is easy to prove. For the expression for σ may be written

$$
\sigma=\sum\left[P\left(\xi_{i}, f\left(\xi_{i}\right)\right) \Delta x_{i}+\left(\ell\left(f^{-1}\left(\eta_{i}\right), \eta_{i}\right) \Delta y_{i}\right]\right.
$$

by using the equation $y=f(x)$ or $x=f^{-1}(y)$ of r^{\prime}. Now as

$$
\int_{a}^{x} P(x, f(x)) d x \text { and } \int_{0}^{y}\left(Q\left(f^{-1}(y) . y\right) d y\right.
$$

are both existent mdinary definite integrals in view of the assmmptions as to contimuity, the smm σ most approath their smm as a limit. It may be noted that this poof does not repuire the eontinnity or existence of $f^{\prime}(x)$ as oges the formula (!). In practice the alded gemematy is of little nse. The restriction to a momotomic curve may be replaced by the assmution of a corve (' which can be regarled as made up of a tinite momber of monotonic parts inchating perhaps some portions of lines parallel to the axes. Nore ereneral varieties of C are abmissible, but are wot very useful in practice ($\$ 127$).

Further to examine the lime interral and appreceiate its utility for mathematics and physios consider some examples. Let

$$
r^{\prime}(r, y)=\Lambda(x, y)+i I^{\prime}(x, y)
$$

be a complex function (今 - 3). Then

It is apparent that the intrymel of thr compler formetion is theremm of tero
 (omphted only hy the assumption of some definite path re of interglat

 the forer. is $\|^{\prime}=f$ cos θ. If the path were emovilintat and the forre

 and θ is the anste hetweren the ane anel the forer. - Hence

$$
W^{r}=\int d \|_{a}=\int_{a, b}^{x \cdot y} V^{\prime}\left(\cdot(), \theta_{d} l_{s}=\int_{r_{0}}^{\mathrm{r}} \mathrm{~F} \cdot \| \mathrm{r}\right.
$$

Where the path mast be known to exaluate the integral and where the last expression is merely the equivalent of the others when the
notations of rectors are used (1). 16t). These expressions may be converted into the ordinary form of the line intergal. For
and
where X and I are the compenents of the forer along the axes. It is readily seen that any line intergral may be given this same interpretation. If

Then

$$
I=\int_{u, b}^{x_{1} y} P_{l}^{\prime} l_{c}+Q l y . \quad \text { form } \quad \mathrm{F}=1 \cdot \mathrm{i}+Q \mathrm{j} .
$$

$$
I=\int_{u, b}^{a \cdot 3} P \cdot l, r+\left(y_{l}, y=\int_{u, b}^{x, y} F \cos \theta \cdot l \cdot s\right.
$$

To the principles of momentum and moment of momentm (\$80) may now be added the principle of work and energy for merhanics. (imsider

Then

$$
m_{i d t^{2}}^{l^{2} \mathrm{r}}=\mathrm{F} \quad \text { and } \quad m \frac{l^{2} \mathrm{r}}{\mathrm{r}} \cdot \mathrm{t} t^{2} \cdot \mathrm{r}=\mathrm{F} \cdot d \mathrm{l}=d \mathrm{H}^{2} .
$$

or

$$
a\left(\frac{1}{2} c^{2}\right)=\frac{l^{2} \mathrm{r}}{d t^{2}} \cdot l \mathrm{r} \quad \text { and } \quad d\left(\begin{array}{c}
1 \\
2
\end{array} m v^{2}\right)=d \mathbb{H}^{2}
$$

Ifence

$$
\frac{1}{2} m v^{2}-\frac{1}{2} m c_{10}^{2}=\int_{\mathrm{r}_{0}}^{\mathrm{r}} \mathrm{~F} \cdot l \mathrm{l}=11
$$

1n words: The change of the kinctic entoly $\frac{1}{2} m^{2-2}$ of a particle moving under the action of the resultant firece F is equal to the work dome by the force, that is. to the line integral of the fore ihome the path. Ii there were several mutnally interacting particles in motion, the results for the energy ant work womb merely be abded as
 dome by all the fores. The result gains its significance chiefly by doe comsideration of what forces may he disresarded in evaluating the work. As d $1 \mathrm{l}=\mathrm{F}=\mathrm{dr}$, the work done will be zero it dr is zero or if F aud dr are perpendicular. Hence in waluating $\mathbb{I I}^{\text {. fores whe weint of application does not move may be omitted }}$ (for example, forces of surport at pivots) and su may forces whose pint of apphieation mosesmanal to the fore (forexampe the momal reactions of smenthemes or surfaces). When more than one particle is conemed, the work tome by the mutnal actions and reactions may be evaluated as follows. Let r_{1}. r_{2} he the vectors to the particles and $r_{1}-r_{2}$ the vector joining them. The forces of action and reaction may he writen as $\pm c\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)$ ans they are equal and opposite and in the line joining the particles. Hence

$$
\begin{aligned}
d W^{r} & =d W_{1}^{r}+d W_{2}=c\left(r_{1}-r_{2}\right) \cdot d r_{1}-c\left(r_{1}-r_{2}\right) \cdot l r_{2} \\
& =c\left(r_{1}-r_{2}\right) \cdot l\left(r_{1}-r_{2}\right)=\frac{1}{2} \operatorname{col}\left[\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right) \cdot\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)\right]=\frac{1}{2} \cdot \operatorname{cll} r_{12}^{2} .
\end{aligned}
$$

 when drin vanishes, that is, when and only when the distance between tie prictess
remains constant. Hence when a system of partictes is in motion the change in the total kinctic energy in pussing from one position to another is equal th the urork done by the forces, where, in eculuating the work, forecs acting at fised points or normal to the line of motion of their points of application, and forres due to actions.s and reactions of particles rigidly comnerted. may be disregurded.

Another important application is in the theory of thermodymanies. If l^{*}, p, v are the energy. pressure, volume of a gas inclosed in any receptacle. and if dle and do are the increments of energy and volume when the anoment dil of heat is added to the gals, then

$$
d H=d U+p d v, \text { and hence } I I=\int d l^{r}+u d c
$$

is the total amome of heat adder. By taking p and x as the independent rariables,

$$
H=\int\left[\frac{\hat{c} l^{r}}{\hat{c} p^{\prime}} d p+\left(\frac{\hat{c} l}{\hat{c} v}+p\right) d v^{v}\right]=\int[f(p, v) d p+g(p, v) d v] .
$$

The amoment of heat absorbed by the system will therefore mot depend merely on the initial and final values of (p, r) but on the serquence of these values between those two points. that is. upon the path of integration in the $p e$-phane.
123. Let there be given a simply comected region (1 . sor) bounded by a closed (omre of the type allowed for line integrals. and let $P^{\prime}(, r, y)$ and Q ($, x, y)$ be continuons functions of $(x: y)$ orer this region. Then if the line integrals from (1.0) to ($\left(r^{\prime}, y\right)$ along two pathis
are equal, the line integral taken around the rominined path

$$
\int_{u, b}^{x, y}+\int_{\Gamma}^{a, b}=\int_{-x, y} P P_{1} l_{1}+(b)_{!y}=0
$$

vanishes. This is a comollary of the finet that if the order of description of a come is reversed, the signs of Δ_{i} and Δy_{i} and henee of the line integral are also reversed. Also, conversely. if the integral around the closed ainenit is zero, the integrals from any boint (\because,,) of the circuit to any other point (.r. !f) are expal when evaluated along the two different

The elnef value of these observations arises in their application to
 gral aromad any and every elosed path ly ine in the lewinn is zero. In
 the line integral from (", b) to (.r., !) along an! two bathe lying within the region will be the same: fom the two paths may be womsidered as forming one elosed path, and the integral aromad that is zero he hypothesis. The value of the integral will therefore not depend at all on
the path of integration bat only on the final point (x, y) to which the integration is extended. Henee the integral

$$
\begin{equation*}
\int_{a, b}^{x, y}[P(x, y) d x+(2(x, y) d y]=F(x, y) \tag{14}
\end{equation*}
$$

extended from a fixed lower limit ($(1, \prime)$ to a variable upper limit (x, y), must be a function of ($r \cdot$ y).

This result may be stated as the theorem: The necessury and sutitcient condition thent the line intergrell

$$
\int_{a, b}^{x, y}\left[P(, r, y) \cdot l, r+Q\left(, x^{\prime}, y\right) d y\right]
$$

drine a single calued function uf (r, !) wer a simply connerted region is that the circuit integreal twien "romml any und eivery rlosed carre in ther regiem shatl bee atern. This theorem, and in fact all the theorems on lime integrals, may be immediately extended to the case of lime integrals in space,

$$
\begin{equation*}
\int_{n, b, c}^{r_{i}, \eta, z}\left[I^{\prime}\left(\cdot r^{r},!, z\right) d, x+\left(2\left(. r^{r}, y, z\right) d y+R(x, y, z) d z\right] .\right. \tag{15}
\end{equation*}
$$

 "fixed lourer" limit to a rerrielble "lpmer limit

$$
F(x, y)=\int_{a, b}^{x, y} l(x, y) d, r+Q(r, y) d y
$$

 derioutices and hener " total differential, namely,

$$
\begin{equation*}
\frac{\partial F}{\hat{C}_{1} r}=P, \quad \frac{\partial F}{\partial_{!}}=\ell, \quad d F=P_{i}, \quad \Omega d y \tag{16}
\end{equation*}
$$

To prove this statement apply the detinition of a derivative.

Now as the integral is indegendent of the path, the integral to $(, x+د, r$, , $)$ mat follow the same path as that to (x, y), except for the passage from (.r.!) to (.r + د.r, !/) which may be taken along the straight line joining them. Then $\Delta!y=0$ and

$$
\frac{\Delta F}{\Delta \cdot r}=\frac{1}{\Delta, r} \int_{x, y}^{r+\Delta \cdot y} P(x, y) d x=\frac{1}{\Delta r} P(\xi, y) \Delta x=P(\xi, y)
$$

by the Theorem of the Mean of $\left(65^{\prime}\right), ~ 1,25$. Now when $\Delta r \doteq 0$, the value ξ intermediate between r and $r+\lambda . r$ will approach r and $P(\xi,!)$ will aproach the limit $P(. r$, $y)$ by virtue of its continuity. Hence $\Delta F / \Delta x$ approaches a limit and that limit is $I^{\prime}\left(x^{\prime}, y\right)=\hat{c} F / \bar{c} x^{\prime}$. The other derivative is treated in the same way.

If the integromb Prler + (Qrly of a line integral is the total differentiol
 circuit is apro and

$$
\begin{equation*}
\int_{a, b}^{c, y} P d x^{r}+Q d y=\int_{a, b}^{x, y} d F=F(, r, y)-F(n, 7) . \tag{17}
\end{equation*}
$$

If equation (17) holds, it is clear that the integral aromed a closed path will be zero provided $F(x, y)$ is single valued : for $F\left(r^{\prime}\right.$, !) must come bark to the vahe $F(\prime, b)$ when $(. r, y)$ retmons to ($1, l,()$. If the function were not single valned, the conclusion might not hold.

To prove the relation (17). note that by definition

$$
\int d F=\int P d x+\left(l d y=\lim \sum\left[P\left(\xi_{i}, \eta_{i}\right) \Delta r_{i}+Q\left(\xi_{i}, \eta_{i}\right) \Delta y_{i}\right]\right.
$$

and

$$
\Delta F_{i}=P\left(\xi_{i}, \eta_{i}\right) \Delta r_{i}+Q_{\left(\xi_{i}, \eta_{i}\right) \Delta y_{i}+\epsilon_{1} \Delta r_{i}+\epsilon_{2} \Delta y_{i}, ~}^{\text {and }}
$$

where ϵ_{1} and ϵ_{2} are quantities which by the assumptions of continuity for P and Q may be made mifomly ($\$ 2.5$) less than ϵ for all points of the curve provided Δr_{i} and ∂y_{i} are taken small enough. Then

$$
\mid \sum\left(P_{i} \Delta c_{i}+\left(\ell_{i} \Delta y_{i}\right)-\sum \Delta F_{i} \mid<\epsilon \sum\left(\Delta x_{i} \mid+\Delta y_{i}\right) ;\right.
$$

and since $\Sigma \Delta F_{i}=F(x, y)-F\left(\prime\right.$. 少) , the sum $\Sigma P_{i} \Delta_{i}+\left(r_{i} \Delta y_{i}\right.$ approaches a limit. and that limit is,

$$
\lim \sum\left[P_{i} \Delta x_{i}+Q_{i} \Delta y_{i}\right]=\int_{u, b}^{c_{n}} P d d r+(k l y=F(x, y)-F(n \cdot b) .
$$

EXERCISES

1. Find the area of the loop of the strophid as indicated above.
2. Find, from (6), (7), the three expresims for the integrand of the line integrals which sive the area of a chosed chre in pohar coordinates.
3. (iiven the equation of the ellipse $r=\|$ cos $t . y=b$ sint. Find the total area. the area of as sement from the emb of the major axis to a line parallel the the mine

4. Find the area of a segment and of a sector for the hyperbula in its parametrice form $x=\|$ cosht. $y=b$ sinht.
5. Express the folimm $x^{3}+y^{3}=3$ nixy in parametric form and find the area of the loop.
6. What area is given by the curvilinear integral around the perimeter of the cheed curve $r=\pi \sin ^{3} \frac{1}{3} \phi$? What in the case of the lemnisate $r^{2}=a^{2} \cos 2 \phi$ described as in making the figure 8 or the sign x ?
7. Write for y the analogous form to (9) for x. Show that in curvilinear coördinates $x=\phi(u, v), y=\psi(u, v)$ the area is

$$
A=\frac{1}{2} \int\left[\begin{array}{cc:c}
\phi & \psi & \psi^{\prime} \\
\phi_{u}^{\prime} & \psi_{u}^{\prime}!
\end{array}\right.
$$

8. Compute these line integrals along the pathis assigned:
(α) $\int_{0,0}^{1.1} x^{2} y d x+y^{3} d y, \quad y^{2}=x \quad$ (1r $\quad y=x \quad$ or $\quad y^{3}=x^{2}$,
(β) $\int_{0,0}^{1,1}\left(x^{2}+y\right) d x+\left(x+y^{2}\right) d y, \quad y^{2}=x \quad$ or $\quad y=x \quad$ or $\quad y^{3}=x^{2}$,
($\gamma) \int_{1.0}^{e .1} \frac{y}{x} d x+d y, \quad y=\log x$ or $y=0$ and $x=e$,
($\delta) \int_{0,0}^{x, y} x \sin y d x+y \cos x d y, \quad y=m x$ or $x=0 \quad$ and $y=y$,
(є) $\int_{z=0}^{1+i}(x-i y) d z, \quad y=x$ or $x=0$ and $y=1$ or $y=0$ and $x=1$,
(ζ) $\int_{z=1}^{z=i}\left(x^{2}-(1+i) x y+y^{2}\right) d z, \quad$ quadrant in strajght line.
9. Show that $\int P d x+\left(d y=\int \sqrt{P^{2}+2^{2}} \cos \theta d x\right.$ by working directly with the figure and withent the use of vectors.
10. Show that if any circuit is divided inter a number of circhits by drawing lines within it ats in a figure on 1 , : 11 . the line interral aromu the original cirenit is equal to the sum of the integrals aromul the suberenits taken in the proper order.
11. Explain the method of evaluating a line integral in space and evaluate:
(a) $\int_{0,0,0}^{1,1,1} x d x+2 y d y+z d z, \quad y^{2}=r, \quad z^{2}=s \quad$ or $\quad y=z=r$,

12. A head of mation trung on a frictindes wire of any shape falls from one puint $\left(r_{10}, y_{11}, z_{11}\right)$ th the print $\left(r_{1}, y_{1}, z_{1}\right)$ on the wire under the influcmee of gravity. show that my $\left(z_{0}-z_{1}\right)$ is the work dome leg all the forees, namely, gravity and the mormal reatetion of the wire.
13. If $c=f(t), y=g(t)$, aml $f^{\prime}(t)$. ! $y^{\prime}(t)$ bu assumed continurms. show

$$
\int_{a, b}^{\infty, y} I^{\prime}(x, y) d r+\left(!(r, y) d y=\int_{t_{0}}^{1}\left(P^{d l, v}+\left(Q^{d y}\right) d t\right.\right.
$$

where $f\left(t_{0}\right)=\|$ anm $g\left(t_{1}\right)=t$, Note that this proses the statement mate on page 290 in regard to the posibility of sulstituting in a line integral. The thenem is also needed for Exs. 1-8.
15. Extend to line interrals (1.5) in space the results of $\$ 123$.
16. Angle "s. "lime integrot. Show semmetrically for a plane carve that $d \phi=\cos (r, u) d s / r$. Where r is the radins veetor of a corve and $d s$ the element of
are and (r, n) the angle between the radins prodnced and the normal to the curve, is the angle subtended at $r=0$ by the element $d s$. Ilence show that

$$
\phi=\int \frac{\cos (r, n)}{r} d s=\int \frac{1}{r} \frac{d r}{d n} d s=\int \frac{d \operatorname{los} r}{d n} d s
$$

Where the integrals are line internals alomg the curve and dr/an is the momal derivative of r, is the angle ϕ subtended by the eurve at $r=0$. Henee infer that
according as the peint $r=0$ is within the curve or outside: the curve or mpon the corve at a point where the tangents in the two directons are intelined at the angle θ (nswally π). Note that the fommla may be anhled at any point (ξ, η) if $r^{2}=(\xi-x)^{2}+(\eta-y)^{2}$ where (x, y) is a point of the curve. What would the intearal give if applied to a space curve?
17. Are the line integrals of Ex. 16 of the same type $\int P(x, y) d x+Q(x, y) d y$ as those in the text, or are they more intimately assoneiated with the curve"' Cf. $\$ 155$.
18. Compute $(\alpha) \int_{1,0}^{0,1}(x-y) d x,(\beta) \int_{-1,0}^{0,1} r y d x$ along a right line, alons a quadreant, along the axes.
124. Independency of the path. It las leen seen that in rase the integral around every rlosed path is zero or in rase the intergand
 jath, and conversely. Hence if
and
provided the partial derivatives P_{y}^{\prime} and ℓ^{\prime} are rontinuons functions.* It remains to pove the womverse, mammer that: If the tarn fertiol

$$
\begin{equation*}
\int_{n, b}^{\cdots \cdot y} I^{\prime} l, v^{\prime}+Q d y \text { witl } I_{y}^{\prime}=\left(\ell_{x}^{\prime}\right. \tag{18}
\end{equation*}
$$

 if $I_{y}^{\prime}=\left(Q_{s}^{\prime}\right.$, ©onsiclur first a region R surll that any point (.r. !) of it may

[^28]be reached from (", li) hy following the lines $y=b$ and $x=x$. Then define the function $F\left(\cdot r^{\prime}, y\right)$ as
\[

$$
\begin{equation*}
F(x, y)=\int_{u}^{r} P(\cdot, b) d x+\int_{b}^{y} Q(x, y) d y \tag{19}
\end{equation*}
$$

\]

for all points of that region l. Now

But
This results from Leibniz's mbe (4^{\prime}) of $\$ 119$, whirh may be aprplied since Q_{x}^{\prime} is hy lyyothesis continnons, and from the assmuption $\ell_{x}^{\prime}=I_{y}^{\prime}$. Then

$$
\frac{\hat{c} r^{\prime}}{\partial x^{\prime}}=I^{\prime}\left(\cdot r^{r}, b\right)+I^{\prime}\left(\cdot r^{r}, l\right)-I^{\prime}\left(\cdot r^{\prime}, b\right)=I^{\prime}(\cdot r, y)
$$

Henere it follows that, within the region sperified, $I^{2} h+$ Qry is the total differential of the function $F\left(r^{\prime}\right.$, , $)$) defined l y (19). Hence along any rlosed circuit within that region a the integral of $P d x+(2 d y$ is the integral of $A F$ and vanishes.

It remains to remove the restriction on the type of region within which the integral around a closed path vanishes. Consider any chsed path C which ties within the region over which P_{y}^{\prime} and (e_{x}^{\prime} are equal continums functions of (x, y). As the path lies wholly within R it is possible to rule R so finely that any little rectangle which contains a pertion of the path whall lie wholly within R. The reader may construct his own figure, $p_{\text {msill }}$ y with reference to that of $\S 128$, where a fincre maling woud be needed. The path (' may thus be surromed by a gigzag line which lies within R. Each of the small rectangles within the zigzag line is a region of the type above consilered amb, by the poof above given, the integral aromulay checel curve within the smath rectangle mast be zero. Now the cirenit (' may be reptaced by the totality of small circaits consisting either of the perimctels of smalt rectangles lying wholly within C^{\prime} or of portions of the curve C^{\prime} and portions of the perimeters of such rectangles as contain parts of C. And if (beso replacet, the integral around C is resolved into the sum of a lage number of integrals about these small circuits; for the integrals along such parts of the small cirenits as are pertions of the perimeters of the rectangles ocelur in pars with opposite signs. \% Hence the integral around C is zero, where C is any direnit within l.
 and detines a function $F(x, y)$ of which P Pl $x+$ (rly is the total differential. As this funtion is eontimons. its value for perints on the lemulary of l may be defined as the linit of $F(x, y)$ as $(x . y)$ appoaches a point of the hemotary, and it may the erely be seen that the line integral of (18) aromm the bommary is also 0 without any further restriction than that P_{y}^{\prime} and Q_{c}^{\prime} be equal and continuous within the boundary.

* See Ex. 10 above. It is well. in commertion with work of $\$ \$ 4-45$ dealing with varieties of regions, reducibility of eircuits, ete.

It should be noticed that the line integral

$$
\begin{equation*}
\int_{u, b}^{x, y} P d x+Q r y=\int_{a}^{r} P(\cdot r, l) d x+\int_{b}^{y} Q(x, y) d y \tag{19}
\end{equation*}
$$

 provided the path allong $!=b$ and $: x=a$ does not go outside the region. If that path should rut ont of l, some other method of evaluation would be required. It should, howerer, be borne in mind that $P d x+$ edy is lesit intergated ly inspection whenerer the function F, of which $P d x+(x d y$ is the differential, "an be reeognized : if F is multiple valued, the consileration of the path may be required to pick out the partieular value which is needed. It may be added that the work may be extended to line integrals in space without any material modifications.

It was seen (\$73) that the eonditions that the complex function

$$
F(r,!\prime)=X(r, y)+i Y(, r,!\prime), \quad z=x+i y,
$$

be a function of the complex variable a are

$$
\begin{equation*}
X_{y}^{\prime}=-Y_{r}^{\prime} \text { and } X_{y}^{\prime \prime}=Y_{y}^{\prime \prime} \tag{20}
\end{equation*}
$$

If these conditions be applied to the expression (13),
for the line intriml of sum a fanction it is seen that they are prerisely the emmlitions (18) that carlo of the line intergrals enteriner into the eomplex lime integral shall loe inchependent of the path. Hence

 remsed futh romishes. This applies of erourse only to simply comereterl rexions of the phane throughout which the derivatives in (20) are equal and continuous.

If the notations of vectors in three dimensions lee adopted,

$$
\int x l_{n}+\mid n l_{!}+Z l_{n}=\int \mathrm{F} \cdot \| \mathrm{r}
$$

where

$$
\mathrm{F}=\mathrm{li}+\mathrm{I} \mathrm{j}+Z \mathrm{k}, \quad / 7 \mathrm{r}=\mathrm{i} / /, r+\mathrm{j} /!/ / \mathrm{k} / / \because
$$

In the partienlar "atse where the integranel is an exant differential and the integral aromad a closed path is zero,

$$
x i d x+I \cdot l y+Z\|l:=\mathrm{F} \cdot / \mathbf{r}=\| l=d \mathrm{r} \cdot \Gamma l^{\circ}
$$

where l^{\prime} is the function lefined ly the integral (for ∇C^{+}see pr 17^{2}). When F is interpreted as a force, the function $r^{r}=-U$ such that

$$
\mathrm{F}=-\Gamma V \quad \text { or } \quad \mathrm{I}=-\frac{\partial \mathrm{V}}{c_{0} r}, \quad Y=-\frac{\partial V^{r}}{\partial!y}, \quad Z=-\frac{\partial \mathrm{J}}{\partial: \ddot{r}}
$$

is called the potential funetion of the foree F . Ther negretior of the sloper of the pententiol function is the fine F and the negotives of the purtiol drivatives are the component firmes whomy the ares.

If the forces are such that they are this derivable from a potential function, they are said to be consercative. In fact if
and

$$
\begin{aligned}
& m \frac{t^{2} \mathrm{r}}{d t^{2}}=\mathrm{F}=-\nabla \mathrm{V}, \quad m_{d t^{2}}^{t^{2} \mathrm{r}} \cdot d \mathrm{r}=-d \mathrm{r} \cdot \Gamma \mathrm{~V}=-d \mathrm{~V}^{+},
\end{aligned}
$$

$$
\begin{aligned}
& \frac{m}{2}\left(r_{1}^{2}-r_{0}^{2}\right)=V_{0}-V_{1} \quad \text { or } \quad \frac{m}{2} r_{1}^{2}+T_{1}=\frac{m}{2} v_{0}^{2}+T_{0} .
\end{aligned}
$$

or
Thns the sum of the kinetic energy $\frac{1}{2} m v^{2}$ and the potential energy V^{r} is the same at all times or positions. This is the principle of the conservation of energy for the simple case of the motion of a particle when the force is conservative. In case the force is not conservative the integration may still be performed as

$$
\frac{m}{2}\left(r_{1}^{2}-r_{0}^{2}\right)=\int_{\mathbf{r}_{0}}^{\mathrm{r}_{1}} \mathrm{~F} \cdot l \mathrm{r}=\|,
$$

where IF^{\prime} stands for the work done by the force \mathbf{F} during the motion. The result is that the change in kinetic energy is equal to the work dome by the force ; but d IF is thrn not an exact differential and the work must not he regarled as a function of (r. $y . z$). - it depemds on the path. The reneralization to any number of particles as in $\$ 123$ is immediate.
125. The conditions that $r_{3,}^{\prime}$ and Q^{\prime} he contimous and equal, which insures independence of the path for the line integral of $P d x+Q d!/$, need to be examined more closely. ('onsider two examples:

First

$$
\int P d x+\left(x d y=\int \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y,\right.
$$

where

$$
\frac{\hat{c} P^{\prime}}{\hat{\partial} y}=\frac{y^{2}-r^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \quad \frac{\hat{c} Q}{\hat{c} x}=\frac{y^{2}-r^{2}}{\left(x^{2}+y^{2}\right)^{2}} .
$$

It appears formally that $P_{y}^{\prime}=Q_{,}^{\prime}$. If the integral be calculated around a square of side 2 a surrounding the origin, the result is

$$
\begin{aligned}
& \int_{-a}^{+a}+u d x \\
& x^{2}+u^{2}+\int_{-a}^{+a} \frac{a d y}{u^{2}+y^{2}}+\int_{+n}^{-n-a r^{2}+u^{2}}+\int_{+n}^{-a}-u u^{2}+y^{2} \\
&+2 \int_{-a}^{+a} \frac{a d y}{a^{2}+y^{2}}=4 \int_{-a}^{+a} \frac{a d \xi}{{r^{2}}^{2}+a^{2}} \\
&=4 \frac{\pi}{2}=2 \pi \neq 0 .
\end{aligned}
$$

The integral fails to vanish around the closed path. The reason is not far to seek, the derivatives P_{y}^{\prime} and Q_{x}^{\prime} are not defined for $(0,0)$, and eamot be so defined as to be contimuons functions of (x, y) near the origin. As a matter of fact

$$
\int_{a, b}^{x, y} \frac{-y d x}{x^{2}+y^{2}}+\frac{x d y}{x^{2}+y^{2}}=\int_{a, b}^{x, y} d \tan -1 \frac{y}{x}=\tan -\left.1 \frac{y}{x}\right|_{a, b} ^{x, y}
$$

and tan ${ }^{-1}(y / x)$ is not a single valued function ; it takes on the merement 2π when one traces a path surrombling the origin ($\$ 45$).

Another illustration may be found in the integral

$$
\int \frac{d z}{z}=\int \frac{d x+i d y}{x+i y}=\int \frac{x d x+y d y}{x^{2}+y^{2}}+i \int \frac{-y d x+x d y}{x^{2}+y^{2}}
$$

taken alons a path in the emmpex plane. At the nrigin $z=0$ the integrand $1 / z$ beeomes infinite and so do the partial derivatives of its real and imaginary parts. If the integral be evaluated around a path passing once about the origin, the result is

$$
\begin{equation*}
\int_{0} \frac{d z}{z}=\left[\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \tan -1 \frac{y}{x}\right]_{a, b}^{x, y}=2 \pi i \tag{21}
\end{equation*}
$$

In this case, as in the previous, the integral wond necessarily be zero about any elosed path whieh did not inelude the origin ; for then the conditions for absolute independence of the path womld be satisfied. Moreover the integrals around two different paths each encireling the origin onee would be equal ; for the pathe may be considered as one single closed cirenit by joining then with a line as in the device ($\$ 44$) for making a multiply commected resrion simply connected, the integral around the complete eirenit is zero, the parts.
 due to the description of the line in the two directions cancel, and the integrals around the two given circnits taken in opposite rirections are therefnre equal and opposite. (Compare this work with the multiple valued mature of $\log z, \mathrm{p} .161$.)

Suppose in general that $P(x, y)$ and $Q(x, y)$ are single valued functions which lave the first partial derivatives P_{y}^{\prime} and ℓ_{r}^{\prime} continuous and equal orer a reqgion l_{i} except at certain points A, B, \cdots. surromen these points with small rirenits. The remaining portion of l is such that $l_{y, \prime}^{\prime}$ and Q_{c}^{\prime} are evervwhere equal and continnous; but the region is not simply commerted, that in, it is possible to draw in ther region circuits which cannot he shrmk down to a point, owing to the fact that the circuit mas surround one or more of the regions which lave heen cut out. If a circuit can le shrunk down to a point, that is, if it is not inextrically womed alont one or more of the deleted portions, the integral aromed the cirenit will ranish; for the previrus reatsoning will apply. laut if the circuit coils about one or more of the deleted regions so that the attempt to shrink it down leads to a circuit which consists of the contours of these requins and of lines joining them, the integral need nut ranish; it reduces to the sun of a number of integrals
taken around the contours of the deleted portions. If one circuit can be shrunk into another, the integrals around the two circuits are equal if the direction of description is the same; for a line eomecting the two circuits will give a combined circuit which can be shrunk down to is point.

The inference from these varions olservations is that in a multiply comected region the integral around a circuit need not be zero and the integral from a fixed lower limit (1, , l) to a variable upper limit (r, y) may not be absolutely independent of the path, lout may be different along two paths which are so situaterl relatively to the excluded regions that the e ircmit formed of the two paths from (a, l) to (x, y) cannot le shrunk down to a point. Hence

$$
F(\cdot r, y)=\int_{a, b}^{r, y} P^{\prime} d x+Q_{d} d y, \quad P_{y}^{\prime}=Q_{x}^{\prime}(\text { generally })
$$

the function defined ly the integral, is not necessarily single valued. Nevertheless, any two values of $F(r, y)$ for the same end point will differ only by a sum of the form

$$
F_{2}(x, y)-F_{1}(x, y)=m_{1} I_{1}+m_{2} I_{2}+\cdot \cdot
$$

where I_{1}, I_{2}, \ldots are the ralues of the integral taken around the contours of the exeluded regions and where m_{1}, m_{2}, \ldots are positive or negative integrers which represent the number of times the combined circuit formed from the two paths will coil around the deleted regions in one direction or the other.
126. Suppose that $f(z)=X(x, y)+i Y(x, y)$ is a single valuer function of a over a region f surrounding the origin (see figure ahove), and that over this region the derivative $f^{\prime}(\approx)$ is continuous, that is, the relations $X_{y \prime}^{\prime \prime}=-Y_{x}^{\prime \prime}$ and $X_{x}^{\prime \prime}=Y_{y \prime \prime}^{\prime \prime}$ are fulfilled at every ${ }^{\text {wint }}$ so that no points of R need lee cut out. Consider the integral

$$
\begin{equation*}
\int_{0}^{\frac{f(i)}{z}} d z=\int_{0} \frac{Y+i Y}{x+i y}(d x+i d y) \tag{22}
\end{equation*}
$$

over paths lying within R. The function $f(z) / \approx$ will have a continnons derivative at all points of a except at the origin $a=0$, where the denominator vanishes. If then a small circuit, say a circle, be drawn about the origin, the function $f(z) / z$ will satisfy the requisite conditions over the region which remains, and the integral (22) taken around a circuit which does not contain the origin will vanish.

The integral (22) taken around a circuit which coils onee and only once about the origin will be endual to the integral taken aromed the
small circle about the origin. Now for the eircle,

$$
\int_{\odot} \frac{f(\tilde{i})}{z} d \tilde{z}=\int_{\odot} \frac{f(0)+\eta(z)}{z} d z=f(0) \int_{\odot} \frac{d z}{z}+\int_{\odot} \frac{\eta}{z} d z,
$$

where the assmucd continuity of $f(z)$ makes $|\eta(z)|<\epsilon$ provided the circle about the origin is taken sufficiently small. Hence ly (21)

$$
\begin{gathered}
\int_{0} \frac{f^{\prime}(z)}{z} d z=\int_{\odot} \frac{f(z)}{z} d z=2 \pi i f(0)+\xi \\
\left.|\xi|=\left|\int_{\odot} \frac{\eta}{z} d z\right| \leqq \int_{\odot}\left|\frac{\eta}{i}\right| d z \right\rvert\, \leqq \epsilon \int_{0}^{2 \pi} 1 \theta=2 \pi \epsilon .
\end{gathered}
$$

with

Hence the difference between (22) and $2 \pi i f^{\prime}(0)$ can be made as small as desired, and as (22) is a certain constant, the result is

$$
\begin{equation*}
\int_{0} \frac{f(z)}{z} d z=2 \pi i f(0) . \tag{23}
\end{equation*}
$$

A function $f(z)$ which has a contimous derivative $f^{\prime}(z)$ at every point of a region is said to bee cuntuftir over that region. Hence if the region includes the origin, the value of the analytic function at the origin is given by the formula

$$
\begin{equation*}
f(0)=\frac{1}{2 \pi i} \int \frac{f(z)}{z} d z, \tag{23'}
\end{equation*}
$$

where the integral is extended over any "ircuit lying in the region and passing just once aloont the origin. It follows likewise that if $z=\alpha$ is any point within the region, then

$$
\begin{equation*}
f^{\prime}(r)=\frac{1}{2 \pi i} \int_{0} \frac{f^{\prime}(i)}{z-r} d z, \tag{24}
\end{equation*}
$$

where the circuit extends once around the point $e x$ and lies wholly within the region. This important result is due to ('anchy.

A more convenient form of (24) is obtained by letting $t=a$ represent the value of a along the circoit of integration and then writing $x=z$ and regarding is as variable. Hence Cauchy's Integral:

$$
\begin{equation*}
f(i z)=\frac{1}{2 \pi i} \int_{0} \frac{f^{\prime}(t)}{t-z} d t \tag{25}
\end{equation*}
$$

 is unulytir, the rulue of $f^{\prime}\left(z^{\prime}\right)$ nt "ll puints. with in thiut cirenit man! he obl-

as defined by an integral containing a parameter z; for many purposes this is convenient. It may le remarked that when the values of $f(a)$ are given along any circuit, the integral may be regarded as defining $f^{\prime}(*)$ for all points within that cirenit.

To find the suressive derimatives of $f(: 氵)$, it is merely necessary to differentiate with respect to z under the sign of integration. The conditions of continuity which are required to justify the differentiation are satisfied for all points a
 actually within the circuit and not upon it. Then

$$
f^{\prime \prime}(: i)=\frac{1}{2 \pi i} \int_{0} \frac{f^{\prime}(t)}{(t-i n)^{2}} d t, \cdots, f^{\prime(n-1)}(i)=\frac{(n-1)!}{2 \pi i} \int_{0} \frac{f^{\prime}(t)}{(t-i)^{n}} d t .
$$

As the differentiations may be performed, these formulas show that an "nulytir founction hurs continnons. derirutires af "ll omeders. The definition of the function only required a contimons first derivative.

Let a be any particular value of ai (spe figure). Then

$$
\begin{aligned}
& \frac{1}{t-a}=\frac{1}{(t-a)-(i-v)}=\frac{1}{t-\alpha} \frac{1}{1-\frac{z-\alpha}{t-\alpha}}
\end{aligned}
$$

$$
\begin{aligned}
& f(\hat{z})=\frac{1}{2 \pi} \int_{0} \frac{f(t)}{t-i} d t=\frac{1}{2} \pi i \int_{0} \frac{f^{\prime}(t)}{t-\pi} d t+\frac{1}{2 \pi i} \int_{0}(i-k) \frac{f^{2}(f)}{(t-a)^{2}} d t \\
& +\frac{1}{2 \pi i} \int_{0}(\because-a)^{2} \frac{f^{\prime}(t)}{(t-n)^{3}} d t+\cdots+\frac{1}{2 \pi i} \int_{0}(*-a)^{n-1} \frac{f^{\prime}(t)}{(t-n)^{n}} d t+R_{n}, \\
& \text { with } \\
& l_{n}=\frac{1}{z \pi i} \int_{0} \frac{(z-n)^{n}}{(t-a)^{n}} \frac{1}{1-\frac{z-n}{t-a}} \frac{f^{\prime}(t)}{t-a} d t .
\end{aligned}
$$

Now t is the variable of integration and $\approx-x$ is a constant with respect to the integration. Hence

$$
\begin{align*}
f^{\prime}(i)=f^{\prime}(x)+(i-n) f^{\prime}(x) & +\frac{(i-k)^{2}}{2!} f^{\prime \prime}(x) \tag{26}\\
& +\cdots+\frac{(z-n)^{n-1}}{(n-1)!} f^{(n-1)}(n)+l_{n}
\end{align*}
$$

This is Taylor"s Formula fon' a function of a complex variable.

EXERCISES

1. If $P_{y}^{\prime}=Q_{x}^{\prime}, Q_{z}^{\prime}=R_{y}^{\prime}, R_{x}^{\prime}=P_{z}^{\prime}$ and if these derivatives are continnous, show that $P d x+Q d y+R d z$ is a total differential.
2. Show that $\int_{C}^{x, y} P(x, y, \alpha) d x+(Q(x, y, \alpha) d y$, where C is a given curve, defines a continuons function of α, the derivative of which may be found by differentiating monder the sign. What assmmptions as to the continuity of $P,\left(Q, F_{\alpha}^{\prime}, Q_{\alpha}^{\prime}\right.$ do you make?
3. If $\log z=\int_{1}^{z} \frac{d z}{z}=\int_{1,0}^{x, y} \frac{x d x+y / y}{x^{2}+y^{2}}+i \int_{1,0}^{x, y} \frac{-y / x+x d y}{x^{2}+y^{2}}$ be taken as the delinition of $\log z$, draw paths which make $\log \left(\frac{1}{2}+\frac{1}{2} \sqrt{-3}\right)=\frac{1}{3} \pi i .2 \frac{1}{3} \pi i,-1 \frac{1}{3} \pi i$.
4. Study $\int_{0}^{z 8 z-1} z^{2}-1$ with especial reference to closed paths which surromed +1 , -1 , or both. Draw a closed path surronuding both and making the integral vanish.
5. If $f(z)$ is analytic for all values of z and if $|f(z)|<K$, show that

$$
f(z)-f(0)=\int_{0} f(t)\left[\frac{1}{t-z}-\frac{1}{t}\right] d t=\int_{0} \frac{z f(t)}{(t-z) t} d t
$$

taken over a circle of large radius, can be mate as small as desired. Hence infer that $f(z)$ must be the constant $f(z)=f(0)$.
6. If $a_{i}^{\prime}(z)=a_{0}+a_{1} z+\cdots+u_{n} z^{n}$ is a polynomial, show that $f(z)=1 / a^{\prime}(z)$ must be analytie over any region which does not inelude a root of $C_{i}(z)=0$ either within or on its bomdary. Show that the assmption that $(f(z)=0$ has no trots at all leads to the conclusion that $f(z)$ is constant and equal to zero. Hence infer that an algebraic equation hats a root.
7. Show that the absolute value of the remainder in 'Taylor's Fomma is

$$
\left|R_{n}\right|=\frac{|z-\alpha|^{n}}{2 \pi} \left\lvert\, \int_{0(t-\alpha)^{n}(t-z)} \begin{gathered}
f(t) d t \\
2 \pi \rho^{\prime \prime} \rho-r
\end{gathered}\right.
$$

for all points z within a circle of radins r about a as ernter, when ρ is the radins of the largest ciecle eoncentric with or which cam be drawn within the dircuit alomt which the intecral is taken. M is the maximum value of $f(t)$ men the circuit, and L is the length of the eirenit (figure above).
8. Examine for independene of path and in case of independence intergate:
(d) $\int x^{2} y / d x+x y^{2} d y$,
(β) $\int x y^{2} d x+x^{2} y d y$.
(γ) $\int \cdot r l y+y l x$,
(o) $\int\left(x^{2}+x y\right) d x+\left(y y^{2}+x y\right) d y$.
(ϵ) $\int y \cos x \cdot x y+\frac{1}{2} y^{2} \sin x d x$.
9. Find the comservative forees and the potential:

$$
\begin{aligned}
& \text { (} \alpha \text {) } X-\underset{\left(r^{2}+y^{2}\right)}{r}, Y=\frac{!}{\left(r^{2}+y^{2}\right)^{\frac{3}{2}}}, Z=-\frac{z}{\left(r^{2}+y^{2}\right)^{\frac{3}{2}}},
\end{aligned}
$$

10. If $R(r, \phi)$ and $\Phi(r, \phi)$ are the component forces resolved along the radius vector and perpendieular to the radius, show that $d W=R d r+r \Phi d \phi$ is the differential of work, and express the condition that the forces h, Φ be conservative.
11. Show that if a particle is acted on by a force $R=-f(r)$ directed toward the origin and a function of the distance from the origin, the foree is conservative.
12. If a foree follows the Law of Nature, that is, acts toward a point and varies inversely as the square r^{2} of the distance from the point, show that the potential i.s $-k / r$.
13. From the results $\mathrm{F}=-\Gamma \mathrm{I}^{*}$ or $\mathrm{T}^{\prime}=-\int \mathrm{F} \cdot \mathrm{dr}=\int \mathrm{T}^{2} d x+$ Ydy $+Z d z$ show that if V_{1} is the potential of F_{1} and V_{2} of F_{2} then $V^{r}=V_{1}+V_{2}$ will he the potential of $F=F_{1}+F_{2}$, that is, show that for conservative forees the adition of potcontials is ergivalent to the parallelogram law for alding forces.
14. If a particle is acted on by a retarding force $-k$ proportional to the relveity, show that $l a=\frac{1}{2} k c^{2}$ is a function such that

$$
\begin{aligned}
& \frac{i R_{i}}{i v_{x}}=-k v_{0 .} \quad \frac{i R_{i}}{i v_{y}}=-k v_{\|}, \quad \frac{i R}{i v_{z}}=-k v_{z}, \\
& d \mathrm{H}=-k \cdot \mathrm{~V} \cdot d \mathrm{r}=-k\left(r_{0} l_{d} d+r_{y}{ }^{\prime} l y+r_{z} d z\right) .
\end{aligned}
$$

Here R is called the dissipative function ; shon the foree is not conservative.
15. Pick out the integrals independent of the path and integrate:

$$
\begin{array}{ll}
\text { (人) } \int y z d x+x z d y+r y d z, & \text { (ß) } \int y d x / z+r d y / z-x y d z / z^{z}, \\
\text { (}) \int x y z(d x+d y+d z) . & \text { (o) } \int \log (x y) d x+r d y+y y d z .
\end{array}
$$

16. Ohtain logarithmie forms for the inverse trigonometric finctions. analogons to those for the inverse hyperbolic functions, either algehraically or by considering the inverse trigomonetric functions as detined by integrals ans

$$
\tan ^{-1} z=\int_{0}^{z} \frac{d z}{1+z^{2}}, \quad \sin ^{-1} z=\int_{0}^{z} \frac{d z}{\sqrt{1-z^{2}}} \cdots \cdots
$$

17. Integrate these functions of the comples variable directly acombing to the rules of integration for reals and determine the values of the integrals by substitution:
((r) $\int_{0}^{1+i} z t=z^{2} d z$.
(β) $\int_{0}^{2 i} \cos 3 z d z$,
($) ~ \int_{1}^{-1 \psi i}\left(1+z^{2}\right)^{-1} d z$,
($\delta) ~ \int_{0}^{1+i} \frac{d z}{\sqrt{1-z^{2}}}$,
(є) $\int_{i}^{2} \frac{d z}{z \sqrt{z^{2}-1}}$,
(5) $\int_{-1}^{-2-i} \frac{d z}{\sqrt{1+z^{2}}}$.

In the case of multiple valued functions mark two different paths and !ive two values.
18. Can the algorism of iutecration by parts be applied to the lefinite (or indetinite) interral of a fometion of a complex variable. it being moderstom that the interral mnst be a line interral in the emmplex plane? Consider the proof of Taylors Formula by interration by parts. p. 57 . to aseertain whether the proof is valid for the complex plane and what the remainder means.
19. Suppose that in a plane at $r=0$ there is a particle of mass m which attracts aceording to the law $F=m / r$. Show that the potential is $V^{r}=m$ logr r, so that $\mathrm{F}=-\nabla \mathrm{J}$. The induction or flux of the force F outward across the element $d s$ of a curve in the plane is by definition $-F \cos (F, n) d s$. By reference to Ex. 16, p. 297 , show that the total intuction or finx of F across the curve is the line integral (along the curve)
and

$$
-\int F \cos (F, n) d s=m \int \frac{d \log r}{d n} d s=\int \frac{d I^{r}}{d n} d s
$$

$$
m=\frac{-1}{2 \pi} \int_{0} F \cos (F, n) d s=\frac{1}{2 \pi} \int_{0} \frac{d V}{d n} d s
$$

where the circnit extends aromed the joint $r=0$, is a formula for obtaining the matss m within the circuit from the field of force F which is set up by the mass.
20. Suppose a number of masies $m_{1} . m_{2}, \cdots$. attracting as in Ex. 19. are sitnaten at puints $\left(\xi_{1}, \eta_{1}\right),\left(\xi_{2}, \eta_{2}\right) \ldots$ in the plane. Let

$$
\mathbf{F}=\mathbf{F}_{1}+\mathrm{F}_{2}+\cdots, \quad \mathrm{T}^{2}=\mathrm{r}_{1}+\mathrm{r}_{2}+\cdots, \quad \mathrm{r}_{i}=m_{i} \log \left[\left(\xi_{i}-x\right)^{2}+\left(\eta_{i}-y\right)^{2}\right]^{\frac{1}{2}}
$$

be the force and porential at (r, y) due to the masses. Show that

$$
\frac{-1}{2 \pi} \int_{0} F \cos (F, n) d s=\frac{1}{2 \pi} \sum \int_{0} \frac{d V}{d n} d s=\sum^{\prime} m_{i}=M
$$

where Σ extends orer all the masses and Σ^{\prime} over all the masses within the circuit (nome being on the circuit), qives the total mass M within the circuit.
127. Some critical comments. In the discussion of line integrals, and in the future disenssion of double integrals it is neressary to speak frequently of eurves. For the msual problem the intuitive concegtion of a curve suffices. A curve as ordinarily comeetred is continuons, hat a contimonsly tuming tangent line exept permas at a finite momber of angular points, and is cont by a line parallel to any giveli direction in only a finite momber of points, exeret as a portion of the curve may coincide with such a line. The ideas of longth and area are also appliwable. For those, however, who are interested in mone than the intuitive presentation of the ideat of a curve and some of the matters therewith romereded, the following seetions are offered.

If $\phi(t)$ and $\psi(t)$ are t wo single valuel real functions of the real variable t defined for all values in the interval $t_{0} \leqq t \leqq t_{1}$. the Jair of whations

$$
\begin{equation*}
x=\phi(t) . \quad y=\psi(t) . \quad t_{n} \leqq t \leqq t_{1} . \tag{27}
\end{equation*}
$$

will be said to define a curce. If ϕ anl ψ are continums finctions of t, the clure will be called (wntinnoms. If $\phi\left(t_{1}\right)=\phi\left(t_{0}\right)$ and $\psi\left(t_{1}\right)=\psi\left(t_{4}\right)$. so that the initial and emblemints of the chrve coincide, the chere will he called a closed carve provided it is contimons. If there is mes wher pair of values t ame t^{\prime} whicla make buth $\phi(t)=\phi\left(t^{\prime}\right)$ and $\psi(t)-\psi\left(t^{\prime}\right)$. the curwe will be called simple: in ordinary langunge

 in the opposite direction.

Let the interval $t_{0} \leqq t \leqq t_{1}$ be divided into any number n of subintervals $\Delta_{1} t, \Delta_{2} t, \cdots, \Delta_{n} t$ ．There will be n corresponding inerements for x and y ，

$$
\Delta_{1} c \cdot \Delta_{2} r, \cdots, \Delta_{n} r . \quad \text { and } \quad \Delta_{1} y . \Delta_{2} y, \cdots, \Delta_{n} y .
$$

Then $\Delta_{i^{\prime}}=\sqrt{\left(\Delta_{i} x\right)^{2}+\left(\Delta_{i} y\right)^{2}} \leqq\left|\Delta_{i} x\right|+\left|\Delta_{i} y\right|, \quad\left|\Delta_{i} x\right| \leqq \lambda_{i} e, \quad\left|\Delta_{i} y\right| \leqq \lambda_{i} r$
are obvinus inequalities．It will be necessary to consider the three sums

$$
\sigma_{1}=\sum_{1}^{n} \Delta_{i} r \cdot \quad \sigma_{2}=\sum_{1}^{n}\left|\Delta_{i} y\right|, \quad \sigma_{3}=\sum_{1}^{n} \Delta_{i} r=\sum_{1}^{n} \sqrt{\left(\Delta_{i} x^{2}\right)^{2}+\left(\Delta_{i} y\right)^{2}} .
$$

For any division of the interval from t_{0} to t_{1} each of these sums has a definite positive value．When all posible modes of division are considered fon any and every value of u ，the sums σ_{1} will form an infinite set of mumbers which may lo． either limited or unlimited above（ 822 ）．In case the set is limited，the unper frontier of the set is called the variation of x over the curve and the curse js sad to be of limited variation in x ；in ease the set is unlimited，the curve is of unlimited variation in x ．Similar ubservations for the sums σ_{2} ．It may be remarked that the geometric conception eorresponding to the variation in x is the stm of the projec－ tions of the eurve on the x－axis when the sum is evaluated arithmetically and not algebraically．Thas the variation in y for the curve $y=\sin x$ from 0 to 2π is 4 ． The enrve $y=\sin (1 / s)$ between these same limits is of unlimited variation in y ． In both eases the variation in f is 2π ．

If both the sums σ_{1} and σ_{2} hase upper frontiers L_{1} and L_{2} ，the sum σ_{3} will have an uper frontier $L_{3} \leqq L_{1}+L_{2}$ ；and converedy if σ_{3} has an upper frontier．both σ_{1} and σ_{2} will have upper fromiers．If a new point of division is interealated in $\lambda_{i} t$ ． the sum σ_{1} cannot deerease and．moreover．it camont increase by more than twice the oscillation of x in the interval $\lambda_{i} t$ ．For if $\lambda_{1 i} x+\lambda_{2 i} x=\lambda_{i} x$ ．then

$$
\left|\Delta_{1 i}, r\right|+\left|\Delta_{2 i}, r \leqq \Delta_{i} r\right| . \quad\left|\Delta_{1 i} r\right|+\left|\Delta_{2 i} r\right| \leqq 2\left(M_{i}-m_{i}\right) .
$$

Here $\Delta_{1} t$ and $\Delta_{2 i} t$ are the two intervals into which $\Delta_{i} t$ is divided，and $M_{i}-m_{i}$ is the usillation in the interval $\lambda_{1} t$ ．A similar theorem is true for σ_{2} ．It now remains to show that if the interval from t_{0} to t_{1} is diviled sufticiently fine．the sums σ_{1} and σ_{-} wilh differ by as little as desired from their frontiers L_{1} and L_{2} ．The proof is like that of the similar jroblem of $\$ 28$ ．First，the fact that L_{1} is the frontier of σ_{1} shows that some method of division can be fomm so that $L_{1}-\sigma_{1}<\frac{1}{2} \epsilon$ ．Suppose the num－ ber of peints of division is n ．Let it next he asmmed that $\phi(t)$ is contimuons；it
 small that when $\Delta_{i} t<\delta$ the uscillation of s is $M_{i}-m_{i}<\epsilon / f x$ ．Consider then any method of division for which $\Delta_{i} t<\delta$ ，and its smm σ_{1}^{\prime} ．The superposition of the former division with n points men this gives a sum $\sigma_{1}^{\prime \prime} \geqq \sigma_{1}^{\prime}$ ．But $\sigma_{1}^{\prime \prime}-\sigma_{1}^{\prime}<2 n \epsilon / 4 n=$ 容c． and $\sigma_{1}^{\prime \prime} \geqq \sigma_{1}$ ．Hence $L_{1}-\sigma_{1}^{\prime \prime}<\frac{1}{2} \epsilon$ and $L_{1}-\sigma_{1}^{\prime}<\epsilon$ ． A similar demonstration may he given for σ_{2} and L_{2} ．

To treat the sum σ_{3} and its upper frontier L_{3} note that here．too，the intercalation of an additional point of division cammet decrease σ_{3} and，as

$$
\sqrt{(\Delta r)^{2}+(\Delta / y)^{2}} \equiv \Delta r|+|\Delta y| .
$$

it cannot increase σ_{3} by more than twice the sum of the oscillations of x and y in the interval Δt ．Hence if the cerre is continuons，that is，if both s and y are con－ timons，the division of the interval from t_{0} to t_{1} can be takens．tine that σ_{3} shall
differ from its upper frontier L_{3} by less than any assigned quantity, no matter how small. In this tase $L_{3}=s$ is called the length of the curve. It is therefore seen that the necessary and sufficient condition that any continuous curce shall have a lenyth is that its. Cartesian eourelinutes x und y shall hoth be of limited variution. It is clear that if the frontiers $L_{1}(t), L_{2}(t)$. $L_{3}(t)$ from t_{0} to any ralue of t be regarded as functions of t, they are continuons and nondecreasing functions of t, and that $L_{3}(t)$ is an increasing function of t; it would therefore be possible to take s in plate of t as the parameter for any continnons curve having a length. Moreover if the derivatives x^{\prime} and y^{\prime} of s and y with respect to t exist and are continums. the derivative s^{\prime} exists, is contimons. and is given ly the ustal formula $s^{\prime}=\sqrt{s^{\prime 2}+y^{\prime 2}}$. This will be left as an exereise; so will the extension of these considerations to three dimensions or more.

In the sum $s_{1}-r_{0}=\Sigma د_{i} t$ of the actual, mot absolute, values of $\Delta_{i} e$ there may be both positive and nequative terms. Let π be the sum of the positive terms and ν be the sum of the negative terms. Then

$$
x_{1}-x_{0}=\pi-\nu . \quad \sigma_{1}=\pi+\nu . \quad 2 \pi=r_{1}-x_{0}+\sigma_{1} . \quad 2 \nu=r_{0}-x_{1}+\sigma_{1}
$$

As σ_{1} has an upper frontier L_{1} when x is of limited variation, and as x_{0} and x_{1} are constants, the sums π and ν have upper frontiers. Let these be II and N. Comsidered as functions of t, neeither $\mathrm{II}(t)$ nor $\mathcal{N}(t)$ can decrease. Write $x(t)=x_{0}+\Pi(t)-\mathcal{N}(t)$. Then the function $x(t)$ of limited rariation has been resolved into the difference of two functions each of limited variation and nondecteasing. . Ls a limited mondecreasing function is integrable (Ex. 7. P. 54), this shows that "function in integroble over uny intercul over whirh it is of limited curiution. That the difterence $x=x^{\prime \prime}-x^{\prime}$ of two limited and nombecreasing functions must be a function of limited variation follows from the fact that $\Delta x \leqq \Delta x^{\prime \prime}\left|+\Delta x^{\prime}\right|$. Furthemme if

$$
x=x_{0}+\Pi-N \text { be written } x=\left[x_{0}+\Pi+\left|x_{0}\right|+t-t_{01}\right]-\left[N+r_{0} \mid+t-t_{0}\right] .
$$

it is seen that a function of limited cariution cen be reyurded as the difference of turo pusitive functions whinh are constantly incretsing. and that these funetions are contimuons if the giren function $s(t)$ is smatimusus.

Let the curve e detined by the eqnations $x=\phi(t) . y=\psi(t), t_{0} \equiv t \leqq t_{1}$. be continumans. Let $P^{\prime}($ (r. y) be a continums function of (r. y). Form the sum

$$
\begin{equation*}
\sum I^{\prime}\left(\xi_{i}, \eta_{i}\right) \Delta_{i} x=\sum I^{\prime}\left(\xi_{i}, \eta_{i}\right) \Delta_{i} e^{\prime \prime}-\sum P^{\prime}\left(\xi_{i} . \eta_{i}\right) \Delta_{i} r^{\prime} \tag{28}
\end{equation*}
$$

 is the point on the curve which correspmuls torme value of t in $\Delta_{i} t$. where s is assumed to be of limited variation, and where $x^{\prime \prime}$ and f^{\prime} are two continumens inceras-
 increasing function of t, it is trme inversely (Ex. 10. I. 4.) that t is a contimantin and
 is continoms in t and also in $x^{\prime \prime}$ and x^{\prime}. Now let $\Delta_{i} \doteq 0$: then $\perp_{i} x^{\prime \prime} \doteq 0$ and $\Delta_{i} r^{\prime} \doteq 0$. Alsu

The limits exist ant are int"rals simply wecanse P is continnous in $s^{\prime \prime}$ or in x^{\prime}. Henere the sum on the loft uff (2s) hens af fimit anm

$$
\lim \perp P \Delta_{i} r-\int_{s_{0}}^{r_{1}} P d r=\int_{r_{0}^{\prime \prime}}^{r_{1}^{\prime \prime}} P d r^{\prime \prime}-\int_{i^{\prime}}^{i_{1}^{\prime}} P d s^{\prime}
$$

may be definal as the line integral of l' ulong the curve C of limited variation in x. The assmmption that y is of limited variation and that $Q(x, y)$ is continums woukd lead to a corresponding line integral. The assumption that both x and y ure of limited rariation. that is, that the curve is rectifiable, and that P and Q are continuous would lend to the existence of the line integral

$$
\int_{C} \int_{v_{0}, z_{0}}^{x_{1}, y_{1}} P(x, y) d x+Q(x, y) d y .
$$

A considerable theory of line integrals over general rectifiable curves may be const ructed. The sulbject will not be carried further at this point.
128. The question of the area of a curve requires careful consinteration. In the first place note that the intuitive elosed plane curre which does cont itself is intuitively believed todivide the plane into two rerions, one interior, one exterior to the curve ; and these recions have the property that any two points of the same revion may be comected by a continuns curve which does not cut the given curve, whereas any continuns curve which connects ans point of one recrion to a pint of the other must cut the given curve. The first question which arimes with reqarel to the general closed simple curve of page 308 is: Does such a curve tlivide the phane into just two regions with the properties inticated. that is. is there an interion and exterion th the curve? The ansuce is affirmatice. but the pronf is sumenhat difficult not becalse the statement of the problem is involved or the promf replete with adrancel mathematics, but rather becanse the statement is so simphemelementary that there is little to work with and the prow therefore requires the keenest and most tedtous logical analysis. The theorem that a closed simple phane curve hats an interior and an exterior will therefore be assmed.

As the functions $\boldsymbol{s}(t), y(t)$ which define the curve are continuous. they are lim-
 as entirely to survond the curve. This rectangle may next be rulot with a momber of lines parallel to its sides, and thus be divided into smaller rectangles. These little rece tancles may bedivided into three caterorice, these ontside the curve thase inside the curve, and these upen the curve. By whe unem the curve is meant one which has so much as a single point of its perimeter or interion upen the curve. Let A. A. A. A. A dernote the area of the large reetangle. the sum of the areas of the small rectangles. which are interion the the curse, the sum of the areas of these unen the curve and the sum of

 Now if all methoms of ruline be comsilered. the drantitics A_{i} will have an mper fromtere L_{i}, the guantities A_{e} will have an upper frontior L_{e}. ame the guantities $A_{\text {" }}$ will have a lower frontier l_{n}. If to any mothon
 the comblions $-A_{i}^{\prime} \geqq A_{i}$. $A_{b}^{\prime} \geqq . A_{n}$. amd heme $I_{u}^{\prime} \leqq A_{u}$. From this it follows that

 he lese than $\frac{1}{3} \epsilon$. Then the surerpusition of the three systems of ruling gives rise to at ruling for which A_{i}^{\prime}. A_{e}^{\prime}. . 1_{u}^{\prime} mast hifter from the frontier values by lees than
${ }_{3}^{\frac{1}{3}} \epsilon$, and hence the sum $L_{i}+l_{u}+L_{e}$, which is constant, differs from the constant A by lesis than ϵ, and must therefore be equal to it.

It is now possible to define as the (qualified) ureas of the curve

$$
L_{i}=\text { inner area }, \quad l_{u}=\text { area on the curve. } \quad L_{i}+l_{u}=\text { tutal area. }
$$

In the case of curves of the sort intuitively familiar, the linit l_{u} is zero and $L_{i}=A-L_{e}$ becomes merely the (mumalified) area bommed by the curve. The guestion arises: Does the same hold for the general curve heve mader discnssion? This time the enswer is negutive; for there are curves which, thongh closed and simple, are still so simuts and meandering that a finite area l_{u} lies upon the curve, that is, there is a finite area so bestudided with points of the curve that no part of it is free from points of the curve. This fact again will be left as a statement withwut proof. Two further facts may be mentionel.

In the first place there is applicable a therem like Theorem 21, p. 51 , mamely : It is possible to find a number δ so small that, when the intervals between the rulings (both sets) are less than δ, the smms A_{u}, A_{i}. A_{e} differ from their frontiers by less than 2ϵ. For there is, as seen above, some method of rolime sueh that these sums differ from their frontiers by less than ϵ. Moreover. the alding of a single new ruling camot change the sums by more than $\Delta 7$). Where \perp is the bargent interval and l) the largest dimension of the reetangle. Hence if the total number of
 the ruling obtained by superposing the given ruling upon a ruling where the intervals are less than δ will be such that the sums differ from the given ones by less than ϵ, and hence the ruling with intervals less than δ can only give rise to sums which differ from their frontiers ly less than 2ϵ.

In the second piace it shonld be observed that the limits. L_{i}. $l_{\text {u }}$ have been obtained by means of all possible modes of ruling where the rules were parallel to the x-and y-axes, and that there is no a priori assmance that these same linits. would have been obtained by rulings parallel to two other lines of the plane or by covering the phane with a network of triangles or hexagons on other figures. In any thorongh treatment of the subject of area such matters wouk have to bee diselnsed. 'That the diselusion is met given here is due entirely to the fact that these eritical eomments are given not so molh with the desire to establish certain theorems as with the ain of showing the feader the sort of questions whith come up for considera1inn in the rigorons treatment of such elementary matters as " the area of a plane "wre," which he may have thonght he " knew all almut."

It is a common intuitive convietion that if a region like that formed by a square be divided into two regions by a contimons curve which runs acrow the square from one point of the boumary to another. the area of the sipure and the sum of the areas of the two parts into which it is disided are equal. that is. the curve (combent twier) and the two protions of the perineter of the shlurte form two simple chased enrres, and it is expected that the sum of the areas of the ormes is the area of the sumare. Xow in case the curve is such that the fromtiers l_{n} and l_{u}^{\prime} formed for the two curves are lut zero. it is elear that the sum $L_{i}+L_{i}^{\prime}$ for the two enrese will not give the area of the square but a shaller area, wheres the sum $\left(L_{i}+l_{k}\right)+\left(L_{i}^{\prime}+l_{n}^{\prime}\right)$ will sive a greater area. Moreoser in this case. it is mot casy to formulate a general definition of area applicable to each of the rexions and such that the sum of the areas slall bee equal the the area of the combine requion. But if l_{n} and l_{u}^{\prime} buth vanish, then the sum $L_{1}+L_{i}^{\prime}$ does give the combined area.

It is therefore customary to restrict the application of the term "area" to such simple closed curres as have $l_{u}=0$, and to say that the quadrature of such curves is possible, but that the quadrature of curves for which $l_{u} \neq 0$ is impossible.

It may be proved that: If a curve is rectifiable or even if one of the functions $x(t)$. or $y(t)$ is of limited rariation, the limit l_{u} is zero and the quadrature of the curve is possible. For let the interval $t_{0} \leqq t \leqq t_{1}$ be divided into intervals $\Delta_{1} t, \Delta_{2} t, \cdots$ in which the uscillations of x and y are $\epsilon_{1} \cdot \epsilon_{2}, \cdots, \eta_{1}, \eta_{2}, \cdots$. Then the portion of the curre due to the interval $\Delta_{i} t$ may be inseribed in a rectangle $\epsilon_{i} \eta_{i}$, and that portion of the eurve will lie wholly within a rectangle $2 \epsilon_{i} \cdot 2 \eta_{i}$ concentric with this one. In this way may be obtained a set of rectangles which entirely contain the curre. The total area of these rectangles must exceed l_{u}. For if all the sides of all the rectangles be produced so as to rule the plane, the rectangles which go to make up A_{u} for this ruling must be contained within the original rectangles, and as $A_{u}>l_{u}$, the total area of the original rectangles is greater than l_{u}. Next sumpse $x(t)$ is of limited variation and is written as $x_{0}+\Pi(t)-N(t)$, the difference of two nondecreasing functions. Then $\Sigma \epsilon_{i} \leqq \Pi\left(t_{1}\right)+N\left(t_{1}\right)$. that is, the sum of the usillations of x camot exceed the total variation of f. (on the other hand as $y(t)$ is continuous, the divisims dit $_{i}$ could have been taken so small that $\eta_{i}<\eta$. Hence

$$
l_{u}<A_{u} \leqq \sum 2 \epsilon_{i} \cdot 2 \eta_{i}<4 \eta \sum \epsilon_{i} \leqq 4 \eta\left[\Pi\left(t_{1}\right)+\Upsilon\left(t_{1}\right)\right] .
$$

The quantity may be mate as small as desirect, since it is the product of a finite quantity by η. Hence $l_{u}=0$ and the quadrature is posible.

It may be observen that if $x^{\prime}(t)$ or $y(t)$ or both are of limited variation, one or all of the three curvilinear interrals,

$$
-\int y d x, \quad \int x d y, \quad \frac{1}{2} \int x d y-y d x
$$

may be defined, and that it should be expected that in this case the value of the integral or integrals would give the area of the curve. In fact if one desired to deal only with rectifiable curves, it would be possible to take one or all of these integrals as the definition of area, and thas to obviate the discussions of the present article. It seems. however, advisalle at least to point out the problem of quadrature in all its semerality, effecially as the treatment of the problem is very similar to that usmally adopted for domble integrals (\$ 132). From the present viewpoint. therefore. it wouk be a proposition for demonstration that the curvilinear integrals in the cases where they are applicable do give the value of the area as here definel, but the demonstration will not be modertaken.

EXERCISES

1. For the continums curve (27) prove the following properties:
(a) Lines $x=u, x=b$ nay he drawn such that the curve lies entirely between them, has at least one point on each line. and cuts evers line $x=\xi, a<\xi<b$. in at least one point ; similarly for y.
(β) From $p=x$ cus $\alpha+y \sin \alpha$. the mormal eqnation of a line. prove the propositions like those of (α) for lines parallel to any direction.
(γ) If (ξ, η) is any point of the $x y$-plane, slow that the distance of (ξ, η) from the curve has a minimum and a maximum value.
(δ) If $m(\xi, \eta)$ and $M(\xi, \eta)$ are the minimun and maximum distances of (ξ, η) from the curve, the functions $m(\xi, \eta)$ and $M(\xi, \eta)$ are continuous functions of (ξ, η). Are the coordinates $x(\xi, \eta), y(\xi, \eta)$ of the points on the curve which are at minimum (or maximum) distance from (ξ, η) continuons functions of (ξ, η) ?
(ϵ) If $t^{\prime}, t^{\prime \prime} \ldots, t^{(k)} \ldots$ are an infinite set of values of t in the interval $t_{0} \leqq t \leqq t_{1}$ and if t^{0} is a point of condensation of the set, then $x^{0}=\phi\left(t^{0}\right), y^{0}=\psi\left(t^{0}\right)$ is a point of comelensation of the set of points $\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right), \cdots,\left(x^{(k)}, y^{(k)}\right), \cdots$ corresponding to the set of values $t^{\prime}, t^{\prime \prime} \cdots, t^{(k)}, \cdots$.
(ξ^{\prime} Conversely to (ϵ) show that if $\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right), \cdots,\left(x^{\left(k^{\prime}\right)}, y^{(k)}\right), \cdots$ are an infinite sut of points on the curve and have a point of condensation $\left(x^{0}, y^{0}\right)$, then the point $\left(x^{0}, y^{0}\right)$ is also on the curve.
(η) From (ζ) show that if a line $x=\xi$ cuts the curve in a set of points $y^{\prime} \cdot y^{\prime \prime}, \cdots$, then this suite of g° s contains its upper and lower frontiers and has a maximmm or minimum.
2. Define and discuss rectifiable curves in space.
3. Are $y=x^{2} \sin \frac{1}{x}$ and $y=\sqrt{x} \sin \frac{1}{x}$ rectifiable between $x=0, x=1$?
4. If $x(t)$ in (27) is of total variation II $\left(t_{1}\right)+N\left(t_{1}\right)$, show that

$$
\int_{r_{11}}^{r_{1}} I(x . y) d x<M\left[I I\left(t_{1}\right)+\mathrm{S}\left(t_{1}\right)\right]
$$

where M is the maximmu value of $l(x, y)$ on the cmeve.
5. Comsider the function $\theta(\xi, \eta, t)=\tan ^{-1} \frac{\eta-y(t)}{\xi-x(t)}$ which is the inclimation of the line joining a mint (ξ, η) not on the curve to a point (x, y) on the eurve. With the motations of Ex. $1(\delta)$ show that

$$
\left|\Delta_{t} \theta\right|=|\theta(\varsigma, \eta \cdot t+\Delta t)-\theta(\varsigma . \eta, t)|<\frac{2 M_{0}}{m-2 M \delta},
$$

Where $\delta>, \Delta x \mid$ and $\delta>|\Delta y|$ may he mate as small as desired by taking Δt sutficiently small and where it is assmmed that $m \neq 0$.
6. From Ex. 5 infer that $\theta(\xi . \eta . t$) is of limited variation when t deseribes the interval $t_{0} \leqq t \leqq t_{1}$ dething the curve. Show that $\theta(\xi, \eta, t$) is continnous in (ξ, η) through any region for which $m>0$.
7. Let the parameter t vary from t_{0} to t_{1} and suppuse the curse (27) is closed so that (r. 4) retmon to its initial value. Slww that the initial and final values of $\theta(\xi, \eta, t)$ differ by an integral multiple of 2π. Hence infer that this difference is constant over any rerion for which $m>0$. In lartienlar show that the eonstant is O ower all distant rewions of the pham. It may be remarked that, by the starly of this change of θ ans t derembes the corve. a prow may be given of the thenem that the elosed emontinoms conve divines the phane into two regions, one interion, ont exterior.
8. Extend the last theorem of $\S 129$ to rectifiable curves.

CHAPTER XII

ON MULTIPLE INTEGRALS

129. Double sums and double integrals. Suppose that a borly of matter is so thin and flat that it can bee considered to lie in a phane. If any small portion of the body surrounding a given point P (r. (I) ber considered, and if its mass be demoted lyy Δm and its area by $\Delta .1$, the average (surfare) density of the portion is the (quotient $\Delta / / / \Delta .1$, and the artual density at the point P is defined as the limit of this quotient when $د .1 \doteq 0$, that is,

$$
I(, r, y)=\lim _{\Delta \lambda \neq 0} \frac{\Delta m}{\Delta \lambda} .
$$

The density may vary from point to pint. Now ronversely suppose that the density $I(r$, , !) of the loody is a known function of (x, y) and that it lee required to find the total mass of the hody. Let the boxly ber ronsidered as divided rep into a latrge mumber of pieces each of which is s.mall in "rom!! dirertion, ankl let $د .1_{i}$ le the area of any pine. If (ξ_{i}, η_{i}) be any loint in $\Delta . I_{i}$, the density at that point is $l\left(\xi_{i}, \eta_{i}\right)$ and the amount of matter in the piere is approxi-

 that is, as not varying much orel so small an arei. Then the sum

$$
D\left(\xi_{1} \cdot \eta_{1}\right) \Delta 1_{1}+H\left(\xi_{2} \cdot \eta_{2}\right) \Delta .1_{2}+\cdots+I M\left(\xi_{n}, \eta_{n}\right) \Delta \cdot 1_{n}=\sum H\left(\xi_{i}, \eta_{i}\right) \Delta .1_{i}
$$

extemede over all the pieeres. is an aproximation to the total mass, aul may lo sufficient for pratian purposes if the pietes be taken tolerahly suall.

The prores of dividing a borly up into a large number of small pieces of which it is regarded as the smm is a deviee often resorted to: fon the properties of the small pieces may be known alproximately. so that the cormsponding property for the whole body an he obtained appoximately hy sumation. Thus be definition the moment of inertia of a small partirle of matter relative to an axis is $\boldsymbol{m}^{r^{2}}$, wherte $/ \mathrm{m}$ is the mass of the grarticle and r its distance from the axis. If therefore the moment of inertia of a plane borly with respect to an axis perpernticular 815
to its plane were required, the body would be divided into a large number of small portions as above. The mass of each portion would be approximately $D\left(\xi_{i}, \eta_{i}\right) \Delta .1_{i}$ and the distance of the portion from the axis might be considered as approximately the distance r_{i} from the point where the axis cut the plane to the point $\left(\xi_{i}, \eta_{i}\right)$ in the portion. The moment of incretia would bee

$$
\left.D\left(\xi_{1}, \eta_{1}\right) r_{1}^{2} \Delta A_{1}+\cdots+I\right)\left(\xi_{n}, \eta_{n}\right) r_{n}^{2} \Delta A_{n}=\sum_{1} D\left(\xi_{i}, \eta_{i}\right) r_{i}^{2} \Delta A_{i},
$$

or nearly this, where the sum is extended over all the pieces.
These sums may be called doulle sums because they extend over two dimensions. To pass from the approximate to the actual values of the mass or moment of inertia or whatever else might be desired, the underlying idea of a division into parts and a subsequent summation is kept, but there is added to this the idea of passing to a limit. Compare $\$ \S 16-17$. Thus

$$
\operatorname{limit}_{n=\infty, \Delta A_{i} \doteq 0}^{\operatorname{lin}} \sum\left(\xi_{i}, \eta_{i}\right) \Delta A_{i} \text { and } \operatorname{limit}_{n=\infty, \Delta A_{i}=0}^{\operatorname{lin}} D\left(\xi_{i}, \eta_{i}\right) r_{i}^{2} \Delta A_{i}
$$

would be taken as the total mass or inertia, where the sum over n divisions is replaced by the limit of that sum as the number of divisions beeomes infinite and each becomes small in every direction. The limits are indicated by a sign of integration, as
$\lim \sum J\left(\xi_{i}, \eta_{i}\right) \Delta A_{i}=\int J(x, y) d A, \quad \lim \sum J\left(\xi_{i}, \eta_{i}\right) r_{i}^{2} \Delta A_{i}=\int D r^{2} d A$.
The use of the limit is of course dependent on the fact that the limit is actually approached, and for practical pruposes it is further dependent on the invention of some way of evaluating the limit. Both these questions have been treated when the smm is a simple sum (ss 16-17, $28-30,35$); they must now he treated for the case of a donble sum like those above.
130. Consider again the problem of finding the mass and let I_{i} be used briefly for $I\left(\xi_{i}, \eta_{i}\right)$. Let M_{i} be the maximmon value of the density in the piece ΔI_{i} and let m_{i} be the minimum value. Then

$$
m_{i} \Delta A_{i} \leqq H_{i} \Delta A_{i} \leqq M_{i} \Delta A_{i}
$$

In this way any anmoximate expression $I_{i} \Delta A_{i}$ for the mass is shat in between two vahes, of which one is surely not greater than the true mass and the other surely not less. Form the smons

$$
s=\sum m_{i} \Delta 1_{i} \equiv \sum H_{i} \Delta 1_{i} \leqq \sum u_{i} \Delta A_{i}=s
$$

extended orer all the elements ΔA_{i}. Now if the sums sand is approach the same limit when $\Delta A_{i} \doteq 0$, the sum $\leq I_{i} \perp A_{i}$ which is constantly
included between s and S must also approach that limit independently of how the points $\left(\xi_{i}, \eta_{i}\right)$ are chosen in the areas ΔA_{i}.

That s and s do approach a common limit in the usual case of a continuous function $D(x, y)$ may be shown strikingly if the surface $a=D(x, y)$ be drawn. The term $D_{i} \Delta . A_{i}$ is then represented by the volume of a small cylinder upon the base ΔA_{i} and with an altitude equal to the height of the surface $i=I(x, y)$ above some point of ΔA_{i}. The sum $\leq H_{i} \Delta I_{i}$ of all these cylinders will h_{n} alm proximately the volume under the surface $\because=I(x, y)$ and over the total area $.1=\Sigma \Delta .1_{i}$. The term $M_{i} د I_{i}$ is represenited by the volume of a small "ylinder uron the lase ΔI_{i} and circumseribed about the surfare; the term $m_{i} \Delta A_{i}$, by a cylinder
 inseribed in the surface. When the momber of elements $\Delta . L_{i}$ is inereased without limit so that earlo leromes indetinitely small, the three sums s, s, and $\Sigma I_{i} \pm I_{i}$ all appoach as their limit the volume umber the surface and over the area A. Thas the notion of volume does for the double sum the same service as the notion of area for a simple sum.

Let the notion of the integral be applied to find the formula for the renter of grarity of a plane laminu. Assume that the rectangular coördinates of the center of gravity are (\bar{x}, \bar{y}). Comsider the bonly as divided into small areas ΔA_{i}. If $\left(\xi_{i}, \eta_{i}\right)$ is any point in the area $د, 1$, the approximate moment of the approximate mass $1 l_{i} \perp A_{i}$ in that area with respect to the line $x=\bar{x}$ is the product $\left(\xi_{i}-\bar{x}\right) I_{i} \Delta A_{i}$ of the mass by its distance from the line. The total exact moment would therefore be

$$
\lim \sum\left(\xi_{i}-\bar{x}\right) \nu_{i} \Delta 1_{i}=\int(x-\bar{x}) D(x, y) d A=0
$$

and must vanish if the center of gravity lies on the line $x=\bar{x}$ as assmmed. Then

$$
\int x D(x, y) d A-\int \bar{x} D(x . y) d A=0 \quad \text { or } \int x D d A=\bar{x} \int D(x, y) d A .
$$

These formal operations presuppose the fats that the difference of two interrals is the integral of the difference and that the integral of a constant \bar{x} times a function is
is the proxuct of the emstant by the iuteral of the function. It should be immediately apharent that as these rules are aplicable to sums. they must be applicable to the limits of the sums. The equation may mow be solved for \bar{r}. Then

$$
\begin{equation*}
\bar{x}=\frac{\int x I n d A}{\int D d A}=\frac{\int x d m}{m}, \quad \bar{y}=\frac{\int y D d A}{\int I M d A}=\frac{\int y d m}{m}, \tag{1}
\end{equation*}
$$

where m stands for the mass of the houly and $d m$ for $D l_{A} t$, just as $J m_{i}$ might replace $B_{i} \triangle A_{i}$; the result for y may be writters down from symmetry.

As another example let the kinctir energy of " lomem moving in its plane be ealculated. The nise of rectoms is advantagentrs. Let \mathbf{r}_{9} be the veetor from a dixed migin to a print which is fixed jn the hody. and let r_{1} be the vector from this point to any other boint of the booly st that

$$
\mathrm{r}_{2}=\mathbf{r}_{0}+\mathrm{r}_{1 i}, \quad \frac{d \mathbf{r}_{i}}{d t}=\frac{d \mathbf{r}_{0}}{d t}+\frac{1 / \mathbf{r}_{1 i}}{d t} \quad \text { or } \quad \mathbf{v}_{i}=\mathbf{v}_{0}+\mathbf{v}_{1 i}
$$

The kinetic eneroy is $\Sigma \frac{1}{2} r_{i}^{2} \Delta m_{i}$ or hetter the interalal of $\frac{1}{2} x^{2} d m$. Now

$$
r_{i}^{2}=\mathbf{v}_{1} \cdot \mathbf{v}_{i}=\mathbf{v}_{0} \cdot \mathbf{v}_{1 j}+\mathbf{v}_{1 i} \cdot \mathbf{v}_{1 i}+2 \mathbf{v}_{0 j} \cdot \mathbf{v}_{1 i}=r_{10}^{2}+r_{1 i}^{2} \omega^{2}+2 \mathbf{v}_{0} \cdot \mathbf{v}_{1 i} .
$$

That $\mathrm{v}_{1 i} \cdot \mathrm{v}_{1 i}=r_{1 i}^{2} \omega^{2}$. where $r_{1 i}=\mathrm{r}_{1 i}$ and ω is the angular velowity of the lody about the point r_{0}. follows fiom the fact that r_{1} is a vector of constant lemgeth $r_{1} ;$
 quently $\omega=d \theta /$ det. Next intesrate were the lump.

$$
\begin{align*}
\int \frac{1}{2} c^{2} \cdot d m & =\int \frac{1}{2} r_{10}^{2} \cdot l m+\int \frac{1}{2} r_{1}^{2} \omega^{2} l l m+\int \mathbf{v}_{1} \cdot \mathbf{v}_{1} l m \\
& =\frac{1}{2} r_{0}^{2} l l+\frac{1}{2} \omega^{2} \int r_{1}^{2} d m+\mathbf{v}_{1 j} \cdot \int \mathbf{v}_{1} l m \tag{2}
\end{align*}
$$

for x_{0}^{2} and ω^{2} are emstants relative to the intesration wer the buly. Note that

$$
\mathrm{v}_{11} \cdot \int \mathrm{v}_{1} \prime l m=0 \text { if } \mathrm{v}_{0}=0 \quad\left(m \text { if } \int \mathrm{v}_{1} d m=\int_{d t}^{l l} \mathrm{r}_{1} \prime l m=\frac{l l}{l l} \int \mathrm{r}_{1}^{\prime} l m=0 .\right.
$$

 that r_{0} be the center of gravity. In the latet case

$$
T=\int \frac{1}{1} c^{2}, l m=1,2,2 \omega^{2} I, \quad I=\int r_{1}^{2}, l m .
$$

 the kinetic encrgy would be more emmplicated wwine th the freseme wf this term.
 purallol to the "res uf räralimetes, let the division be made into small rectangles by drawing lines paralle to the axes. Let there be $/$ eq equal divisions on one side and n on the other. These will then bee mn small pieces. It will be convenient to introdure a double index and denote ly $>._{i j}$ the area of the reetangle in the i th column and , f tha
 row. Leet $\left(\xi_{i j} \cdot \eta_{i j}\right)$ lee any ${ }^{\text {peint, say }}$ the micldle point in the area $\Delta .1_{i j}=\Delta \cdot r_{i} y_{I_{i}}$. Then the sum may be written

Now the terms in the first row are the sum of the contributions to $\Sigma_{i, j}$ of the reatamgles in the first row, and so om. But
and

$$
\left(I_{1, j} \Delta \cdot r_{1}+I_{2, i} \lambda_{2}+\cdots+I_{m i} \Delta r_{m}\right) \lambda_{!}=\Delta!I_{j} \sum_{i} I\left(\xi_{i} \cdot \eta_{i}\right) \Delta r_{i}
$$

$$
\Delta!y_{i} \sum 川\left(\xi_{i}, \eta_{i}\right) \Delta r_{i}=\left[\int_{r_{i}}^{r_{1}} \mu\left(., r, \eta_{i}\right) l_{r}+\zeta_{i}\right] \Delta!_{i}
$$

That is to mal. lys taking on suftieferntly latere so that the individual
 from the inteoral hy ats little as desimed beraluse the intereal is by detinition the limit of the sum. In finet

$$
\left.\zeta_{i} \equiv \sum_{i} M_{i j}-m_{i j} د_{i} \equiv \epsilon_{1, r_{1}}-r_{i}\right)
$$

 After thms smaming up acoreling to rows sum up, the fors. Then

If

$$
\int_{r_{1}}^{r_{1}} I \mu(, r \cdot y) d, r^{\prime}=\phi(,!)
$$

then

$$
\begin{aligned}
\sum_{i, j} J_{i j} د 1_{i j} & =\phi\left(\eta_{1}\right) \Delta!l_{1}+\phi\left(\eta_{2}\right) \Delta!!_{2}+\cdots+\phi\left(\eta_{n}\right) \Delta_{!/ \prime}+\lambda \\
& =\int_{y_{0}}^{n_{1}} \phi(!/) l_{y}+\kappa+\lambda, \quad \kappa_{:} \lambda \text { sintill }
\end{aligned}
$$

$$
\begin{aligned}
& +
\end{aligned}
$$

Hence * $\lim \sum_{i, j} D_{i j} \Delta A_{i j}=\int I H_{1} A=\int_{y_{0}}^{y_{1}} \int_{r_{0}}^{r_{1}} D(i, y) d x d y$.
It is seen that the double integral is equal to the result obtained by first integrating with respeect to r, regarding !/ as a parameter, and then, after substituting the limits, integrating with respect to $\%$. If the summation had been first according to columns and second according to rows, then by symmetry

$$
\int D d A=\int_{y_{0}}^{y_{1}} \int_{r_{0}}^{r_{1}} D(, r, y) d l_{t} d y=\int_{r_{0}}^{r_{1}} \int_{y_{0}}^{y_{1}} D(x, y) d y d l_{1} .
$$

This is really nothing hut an integration moler the sign (\$120).

If the reqgion orra which thes summation is ratemeded is not "rectangle furrollet to the weres, the method roukl still be applied. But after summing or rather integrating areording to rows, the limits world not
 be constants as r_{0} and r_{1}, but would be those functions $r=\phi_{0}(!)$ and $r=\phi_{1}(!)$ of y which represent the left-hand and right-hand curves which bound the region. Thas

$$
\left.\int I n l_{\Delta} 1=\int_{y_{0}}^{y_{1}} \int_{b_{n}(y)}^{\phi_{1}(y)} 1\right)(. r, y) d l_{1} \cdot d y .
$$

And if the summation or intergation lad been first with respert to colmmns, the limits would not have been the constants $\%_{0}$ anel ! ! , bint the functions $y=\psi_{0}(\cdot x)$ and $!=\psi_{1}(, r)$ whieh repment the lower and mpler bounding rarves of the resion. Thas

$$
\left(: i^{\prime \prime \prime}\right)
$$

The order of the intergrations camont be inverterl withont makinse the

 to be performedj) as to sum up areorling to strijes rearbing from one side of the region to the wther, ame the seeond set of limits being eonstants which determine the exterme limits of the seemed variable sen as to sum up all the strips. Nlthoush the results (3") and (3'") are toqual. it frequently happens that one of them is dee idempersine to evaluate than the other. Moreover, it has elwarly heren assmed that a line parallel to the

[^29]axis of the first integration cuts the bounding curve in only two points; if this condition is not fulfilled, the area must be divided into subareas for which it is fulfilled, and the results of integrating over these smaller areas must be added algebraically to find the complete value.

To apply these rules for evaluating a double integral, consider the problem of finding the moment of inertia of a rectangle of constant density with respect to one vertex. Here

$$
\begin{aligned}
I & \left.=\int D r^{2} l, 1=I\right) \int\left(r^{2}+y^{2}\right) d A=D \int_{0}^{b} \int_{0}^{a}\left(x^{2}+y^{2}\right) d r d y \\
& \left.=I) \int^{b}\left[\frac{1}{3} x^{3}+r y^{2}\right]_{0}^{a} d y=I\right) \int_{4 \prime}^{b}\left(\frac{1}{3} u^{3}+a y^{2}\right) d y=\frac{1}{3} D u b\left(u^{2}+b^{2}\right) .
\end{aligned}
$$

If the problem had been to find the noment of inertia of an ellipse of uniform density with respect to the eenter. then

$$
\begin{aligned}
& I\left.=1) \int\left(r^{2}+y^{2}\right) l .1=I\right) \int_{-b}^{b} \int_{-\frac{a}{b} \sqrt{b^{2}-y^{2}}}^{+\frac{a}{b^{2}-y^{2}}}\left(x^{2}+y^{2}\right) d x d y \\
&=I) \int_{-a}^{+n} \int_{-a}^{+\frac{n}{a}} \frac{h}{n^{2}-r^{2}} \\
& a^{2}-x^{2} \\
&\left(x^{2}+y^{2}\right) d x d y .
\end{aligned}
$$

Fither of these foms might be evaluated, but the moment of inertia of the whole ellipse is clearly four times that of a quadrant, and hence the simpler results.

$$
\begin{aligned}
I & =4 \nu \int_{0}^{b} \int_{0}^{a} \frac{\sqrt{b^{2}-y^{2}}}{}\left(x^{2}+y^{2}\right) d x d y \\
& =4 l) \int_{y}^{\prime \prime} \int_{0}^{\bar{b}} \sqrt{a^{2}-r^{2}}\left(x^{2}+y^{2}\right) d y d x=\frac{\pi}{4} D\left(t b\left(a^{2}+b^{2}\right) .\right.
\end{aligned}
$$

It is highly alvisable to make use of symmetrs, wherever possible, to reduce the region over which the intergration is extended.
132. With regaral to the more coreful consideration of the limits incolterl in the dectinition of a double integral a few observations will be sufficient. Consider the sums s' and s and let $K_{i} \perp .1_{i}$ bee any tem of the first and $m_{i} \perp_{i}$ the comesponding

 the maxinum in the whole area $\Delta \Lambda_{i}$ camot be less than that in either part. and the minimum in the whole camot be ereater than that in either part. it follows that $m_{1 i} \geqq m_{i}, m_{2 i} \geqq m_{i}, M_{1 i} \leqq M_{i}, M_{2 i} \leqq M_{i}$. and

$$
m_{i} \Delta 1_{i} \leqq m_{1 i} \lambda 1_{1 i}+m_{2 i} \Delta 1_{2 i}, \quad M_{1 i} \Delta A_{1 i}+M_{2 i} \perp 1_{2 i} \leqq M_{i} \Delta \Lambda_{i}
$$

Hence when one of the pieces $\lambda 1_{i}$ is sublivided the sum seannt increase nor the sum s deerease. Then continued incuualities may be written as

$$
m_{A} 1 \leqq \sum m_{i} \lambda 1_{i} \leqq \sum D\left(\xi_{i}, \eta_{i}\right) \Delta \Lambda_{i} \leqq \sum, M_{i} \lambda 1_{i} \leqq M A
$$

If then the original divisions ΔA_{i} be subdivided indefinitely. botlo s and s will approach limits ($(\leqslant \leqslant 21-22)$: and if those limits are the same, the sum $\Sigma)_{i} \perp_{i} 1_{i}$ will apmorl that commen limit as its limit independently of how the pints ($\xi_{i} . \eta_{1}$) are chowen in the areas $\Delta 1_{i}$.

It has not been shown, howerer, that the limits of S and s are independent of the method of division and sublivision of the whole area. Consider therefore not omly the sums S and s due to seme particular mone of sublivision, but consider all such sums due to all pasible horles of suludivision. As the sums s are limiter] below by $m A$ they must have a lower frontier L, and as the sums s are limited above by MA they must have an uper frontier l. It must be shown that $l \leqq l$. To see this consider any pair of sums st and s correxpmonge to one division and
 the sums s" and $s^{\prime \prime}$ empermming to the division obtained by combining, that is. by superposing the two methods. Now

$$
s^{\prime} \geqq s^{\prime \prime} \geqq s^{\prime \prime} \geqq s, \quad N \geqq s^{\prime \prime} \geqq s^{\prime \prime} \geqq s^{\prime}, \quad S \geqq L . \quad N^{\prime} \geqq L, \quad s \leqq l . \quad s^{\prime} \leqq l .
$$

It therefore is seen that any S is greater than any s. whether these sums correspond to the same or to different methonls of sumbivision. Now if $L<l$, some S would late to be less than some es for as L is the frontion for the sums so there must he stme such sums which differ by as little as dexired from L; and in like mamer there must be some sums s which differ by as little as ilesired from l. Ilence as mo scan be less than any s, the surposition $L<l$ is untrue and $L \geqq l$.

Now if for any methoul of division the limit of the difference

$$
\lim (x-s)=\lim \sum\left(M_{i}-m_{i}\right) \Delta 1_{i}=\lim \sum \sigma_{i} \Delta_{i} \Lambda_{i}=0
$$

of the two sums corremonding to that method is zero, the frontiers L and l must be the same and both st and sapmoach that common value as their limit ; and if the
 s will apmoach the same limit $L=/$ for all methote of division, ant the sum
 as inderembently of the selection of ($\xi_{i} . \eta_{i}$). This result follows from the fact that
 zero, then $L=l$ and x and $*$ must alporach the limit $L=l$. One case, which mors those arising in pactice. in which these results are true is that in which
 curves. fach of which may be intwon in a strip of area as small as desirel amb

 from these areas, the function $/$)(r. !/) is continums. and it is pwalle to take the

 momber of emres where it may le discontimus provided it remains finite. Throlught the disenswion the term " area" has heen applied : this is justified he the

 all the reptanges within the eure and where the last extende orer all reetang ${ }^{\text {a }}$
within the curve and over an arbitary number of those upon it. In a cortain sense this method is simpler, in that the area then falls ont an the integral of the special function which reduces to 1 within the curve and to 0 outside the enve, and to either upon the curve. The reader who desires to follow this methon throngh may do so for himself. It is not within the range of this book to do more in the way of rigorons malysis than to treat the simpler questions and to indicate the need of corresponding treatment for other questions.

The justification for the methon of evaluating a definite double integral as wiven above offers some difficulties in case the funtion $D(x, y)$ is discontinuons. The proof of the rule may be ohtainel by a careful consideration of the interration of a funetion defined by an integral eontaining a parameter. Consides

$$
\begin{equation*}
\phi(y)=\int_{y_{0}}^{r_{1}} D(x, y) d x . \quad \int_{y_{0}}^{y_{1}} \phi(y) d y=\int_{y_{0}}^{y_{1}} \int_{x_{0}}^{r_{1}} D(x, y) d x d y . \tag{4}
\end{equation*}
$$

It was seen ($\$ 118$) that $\phi(y)$ is a continuons function of y if $I)(x, y)$ is a contimous function of (x, y). Suppose that $l)(x, y)$ were discontinuons. but remaned finite. on a finite number of curves each of which is ent by a line parallel to the x-axis in only a finite momber of puints. Form $\Delta \phi$ as before. Cut ont the shont intervals in which disemtimitiss maty oreme. As the mumber of such intervals is finite and as each can be taken ass shent as desired. their total eometribution to $\phi(y)$ or $\phi(y+\Delta y)$ can be made as smatl as desired. For the remaning portions of the interval $x_{0} \leqq x \leqq x_{1}$ the previons remoning andies. Hence the difference $\Delta \phi$ can still be made as small as desired and $\phi(y)$ is continums. If $D(x, y)$ be disemtimm, along a line $y=\beta$ parallel to the r-axis, then $\phi(y)$ might mot be defined and might have a discontimuty for the value $y=\beta$. But there can be only a finite number of such values if $D(r, y)$ satisties the eomditions impersed umen it in comsidering the double integral above. Hence $\phi(y)$ would st ill be integrable from y_{0} to y_{1}. Hence

$$
\int_{y_{0}}^{y_{1}} \int_{x_{0}}^{x_{1}} D(x . y) d x d y \quad \text { exists }
$$

and $\quad m\left(x_{1}-x_{0}\right)\left(y_{1}-y_{0}\right) \leqq \int_{y_{0}}^{y_{1}} \int_{x_{0}}^{x_{1}} D(x, y) d \cdot x d y \leqq M\left(x_{1}-x_{0}\right)\left(y_{1}-y_{0}\right)$
under the conditions imposel for the double integral.
Now let the rectangle $r_{0} \leqq r \leqq r_{1} \cdot y_{0} \leqq y \leqq y_{1}$ he dividen up as beforo. Then

$$
\left.m_{i j} \Delta_{i} \Delta_{j} \leqq \int_{y}^{y+د_{j^{\prime \prime}}} \int_{r}^{r+د_{i}^{r}} 1\right)(r, y) d x d y \leqq M_{i j} \Delta_{i} r \Delta_{j} y
$$

Now if the number "f divisions is multiplied indefinitely, the limit is

$$
\int_{y_{0}}^{y_{1}} \int_{x_{0}}^{x_{1}} D(x, y) d r d y=\lim \sum m_{i j} \perp 1_{i j}=\operatorname{lim\sum } \sum M_{i j} \perp .1_{i j}=\int D(r . y) d .1 .
$$

Thus the previons rule for the rectangle is proved with proner allowame for possible disomtimities. In case the area 1 did mot form a rectangle. a reetande could be dewribed about it and the function $I)(x, y)$ embld be defined for the whole rectangle ats fullows: For points within A the value of $D(r, y)$ is alreaty
defined, for points of the rectangle outside of A take $D(x, y)=0$. The discontinnities across the bommary of A which are thens introduced are of the sort allowable for either integral in (4), and the integration when applied to the rectangle wond then elearly give merely the integral over A. The limits could then be adjusted so that

$$
\int_{y_{0}}^{y_{1}} \int_{x_{0}}^{x_{1}} D(x, y) d x d y=\int_{y_{0}}^{y_{1}} \int_{x=\phi_{0}(y)}^{x=\phi_{1}(y)} D(x, y) d x d y=\int D(x, y) d A
$$

The rule for evaluating the double integral by repeated integration is therefore proved.

EXERCISES

1. The sum of the moments of inertia of a plane lamina about two perpendicular lines in its plane is equal to the moment of inertia abont an axis perpendicular to the plane and passing throngh their point of intersection.
2. The moment of incrtia of a plane lamina abont any point is equal to the smm of the moment of inertia abont the center of gravity and the product of the total mass by the square of the distance of the point from the center of gravity.
3. If upon every line issuing from a point O of a lamina there is laid off a distance $O P$ 'such that $O P$ is inversely proportional to the spuare root of the moment of inertia of the lamina about the line $O P$, the locus of I ' is an ellipse with center at O.
4. Find the moments of inertia of these miform laminas:
(α) segment of a circle about the center of the circle,
(β) rectangle abont the center and about either side,
(γ) parabolic segment bomiled by the latus rectum abont the vertex or diameter,
(δ) right triangle abont the right-angled vertex and abont the hypotemse.
5. Find by double integration the following areas:
(α) quadrantal segment of the ellipse, (β) between $y^{2}=x^{3}$ and $y=x$,
(γ) letween $8!y^{2}=25, x$ and $5 x^{2}=9 y$,
(δ) between $x^{2}+y^{2}-2 x=0, x^{2}+y^{2}-2 y=0$,
(ϵ) between $y^{2}=4 a x+4 a^{2}, y^{2}=-4 b x+4 l^{2}$,
(ζ) within $(y-x-2)^{2}=4-x^{2}$,
(η) between $x^{2}=4 a y, y\left(x^{2}+4 u^{2}\right)=8 u^{3}$.
(θ) $y^{2}=u x, x^{2}+y^{2}-2 u x=0$.
6. Find the center of gravity of the areas in Ex. $5(\alpha),(\beta),(\gamma),(\delta)$, and
(x) fluadrant of $a^{4} y^{2}=u^{2} x^{-4}-x^{6}$,
(β) quadramt of $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$,
(γ) between $x^{\frac{1}{2}}=y^{\frac{1}{2}}+u^{\frac{1}{2}}, x+y=a$,
(δ) segment of a circle.
7. Find the volmes muder the surfaces and orer the areas given:
(α) sher $z=\sqrt{u^{2}-r^{2}-y^{2}}$ and sume inseribed in $x^{2}+y^{2}=u^{2}$,
(β) shere $z=\sqrt{\prime}^{\prime} u^{2}-x^{2}-y^{2}$ and circle $x^{2}+y^{2}-a x=0$,
(γ) cylinder $z=\sqrt{4}+u^{2}-y^{2}$ and (incle $x^{2}+y^{2}-2 u x=0$.
(δ) parabolod $z=k$ ary and rectangle $0 \leqq x \leq u, 0 \leqq y \leqq 1$,
(ϵ) paraboloid $z=k r^{\prime} y$ and circle $x^{2}+y^{2}-2(1, x-2 u y=0$,
(() plane $x / t t+y / b+z / c=1$ and trimele $r y(x / u+y / b-1)=0$,
(η) parabond $z=1-x^{2} / 4-y^{2} / 9$ abowe the phane $z=0$,
(θ) paraboloid $z=(x+y)^{2}$ and circle $r^{2}+y^{2}=u^{2}$
8. Instead of choosing ($\left.\xi_{i}, \eta_{j}\right)$ as particular points, namely the middle points, of the rectangless and evaluating $\Sigma I\left(\xi_{i}, \eta_{j}\right) \Delta x_{i} \Delta y_{j}$ subject to erross λ, κ which vanish in the limit, assume the function $D(x, y)$ contimons and resolve the double integral into a double sum by repeated use of the Theorem of the Mean, as

$$
\begin{gathered}
\phi(y)=\int_{x_{0}}^{x_{1}} D(x, y) d x=\sum_{i} D\left(\xi_{i}, y\right) \Delta x_{i}, \quad \xi \text { s properly chosen, } \\
\int_{y_{0}}^{y_{1}} \phi(y) d y=\sum_{j} \phi\left(\eta_{j}\right) \Delta y_{j}=\sum_{j}\left[\sum_{i} D\left(\xi_{i}, \eta_{j}\right) \Delta x_{i}\right] \Delta y_{j}=\sum_{i, j} I\left(\xi_{i}, \eta_{j}\right) \Delta A_{i j} .
\end{gathered}
$$

9. Comider the generalization of ()sgool's Theorem (\$35) to apply to double integrals and smms, namely: If $\alpha_{i j}$ are infinitesimals snch that

$$
\left.\alpha_{i j}=1\right)\left(\xi_{i}, \eta_{i}\right) \Delta 1_{i j}+\xi_{t j} \Delta \Lambda_{i j},
$$

where $\zeta_{i j}$ is miformly an infinitesimal, then

$$
\lim \sum_{i, j} \alpha_{i j}=\int D(x, y) d i d=\int_{y_{0}}^{y_{1}} \int_{r_{0}}^{x_{1}} D(x, y) d x d y .
$$

Discuss the statement and the result in detail in view of sist.
10. Mark the region of the $x y$-phane ower which the integration extends: *
($(x) \int_{0}^{a} \int_{0}^{a} 1 d d y d x$,
(β) $\int_{1}^{2} \int_{x^{x}}^{x^{2}} I d y d x$,
(γ) $\left.\int_{0}^{1} \int_{y^{2}}^{3 /}\right) d x d y$,
($) ~ \int_{1}^{\sqrt{2}} \int_{\frac{\sqrt{2}}{x}}^{\sqrt{3-J^{2}}} 1 d y d x$,
(ϵ) $\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \int_{u}^{a \sqrt{ } 2 \cos 2 \phi} D d t r d \phi$,
(乡) $\int_{a}^{2 a} \int_{-\frac{\pi}{6}}^{\frac{1}{2} \cos ^{-1} \frac{r}{2 a}} D d \phi d r$.
11. The density of a reetangle varies as the spuare of the distance from one vertex. Find the moment of inertia abont that vertex, and about a side throngh the vertex.
12. Find the mass and center of eravity in Ex. 11 .
13. Show that the moments of momentum (80) of a lamina about the origin and about the point at the extremity of the vector r_{0} satisfy

$$
\int \mathrm{r} \times \mathbf{v} d m=\mathrm{r}_{0^{\prime}} \times \int \mathbf{v} d m+\int \mathrm{r}^{\prime} \times \mathbf{v} d m
$$

or the difference between the moments of momentman and P and Q_{1} is the moment about P of the total momentum comsidered as applied at (2 .
14. Show that the formulas (1) for the center of gravity reduce to

$$
\begin{aligned}
\bar{x}=\frac{\int_{0}^{\prime \prime} x y I d l x}{\int_{0}^{\prime \prime} y D D d x}, \quad \bar{y} & =\frac{\int_{0}^{\prime \prime} \frac{1}{2} y y I d d x}{\int_{y} y I n d x} \quad \text { or } \bar{x}=\frac{\left.\int_{x_{0}}^{r_{1}} x\left(y_{1}-y_{0}\right) I\right) d x}{\int_{x_{0}}^{x_{1}}\left(y_{1}-y_{0}\right) I d x}, \\
\bar{y} & =\frac{\int_{r_{0}}^{x_{1} \frac{1}{2}\left(y_{1}+y_{0}\right)\left(y_{1}-y_{0}\right) I d x}}{\int_{x_{0}}^{x_{1}}\left(y_{1}-y_{0}\right) D d x}
\end{aligned}
$$

[^30]When $D(x, y)$ reduces to a function $l(x)$, it being molesstood that for the firsi two the area is bommed by $x=0 . r=a, y=f(x), y=0$, and for the second two by $x=x_{0}, x=x_{1}, y_{1}=f_{1}(x), y_{0}=f_{0}(x)$.
15. A rectangular hole is cot throush a sphere, the axis of the hole being a diameter of the sphere. Find the fohmme cut ont. Disenss the problem by donble intergration and also dis a solid witls parallel bases.
16. Show that the moment of momentum of a plane lamina abont a fixed point or about the instantaneons center is $I \omega$, where ω is the angular velocity and I the moment of inertia. Is this true for the center of gravity (not necessarily fixed)? Is it true for other points of the lamina?
17. Invert the order of integration in Ex. 10 and in $\int_{-1}^{1} \int_{\sqrt{4-y^{2}}}^{\sqrt{3} n+2 \sqrt{3}}$ Iflydx.
18. In these intergrals ent down the region over which the intergral must be extended to the mombers possible by nsing symmetry, and evaluate if possible:
(c) the intexral of Bx .17 with 1$)=y^{3}-2 x^{2} y$,
(β) the interal of Ex. 17 with $I)=(x-2 \sqrt{3})^{2} y(01)=(x-2 \sqrt{3}) y^{2}$.
(γ) the integral of Fx. $10(\epsilon)$ with $l)=r(1+\cos \phi)(1)=\sin \phi \cos \phi$.
19. The curve $y=f(x)$ between $x=a$ and $x=b$, is constantly increasing. Express the volmue ohtained by revolving the curve abomt the x-axis as $\pi[f(u)]^{2}(b-\pi)$ phas a double intecral, in rectangutar and in polir eoordinates.
20. Experes the area of the cardiodi $r=0(1-\cos \phi)$ by mons of domble integration in rectangular coindinates with the limits for both orders of interation,
133. Triple integrals and change of variable. In the extension from double to triphe and hisher integrals there is little to catise diftionlty. For the disemssion of the triple interemal the same fommatione of mass and demsity may he made fumdamental. If $/$) (r, \% . \because) is the demsity of a body at amy point. the mass of a small volmme of the bouly smomombing the point ($\xi_{i}, \eta_{i}, \zeta_{i}$) will he apmoximately l ($\left.\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta I_{i}^{-}$, and will sumely lie betwern the limits $M_{i} \Delta V_{i}^{-}$and $m_{i} \Delta I_{i}$, whore M_{i} and m_{i} are the maximum and minmmm viahes of the density in the rement of volume $\left.\Delta\right|_{i}$. The total mass of the hooly would be taken as

Where the sum is oxtemader ore the whole borly That the limit of the sum exists ame is jubleperment of the mothod of rhoier of the points $\left(\xi_{i}, \eta_{i}, \zeta_{i}\right)$ and of the mother of (livision of the total volmme into elements

 tolerably apparent.

The evaluation of the triple integral by repeated or iterated integration is the immediate generalization of the method used for the double integral. If the region over which the integration takes place is a rectangular parallelepipeed with its edges parallel to the axes, the integral is

$$
\int I(x, y, z) d V=\int_{z_{0}}^{z_{1}} \int_{y_{0}}^{y_{2}} \int_{x_{0}}^{x_{1}} D(x, y, z) d x d y y d i z .
$$

The integration with respect to x adds up the mass of the elements in the column upon the lase dydiw, the integration with respecet to ! then adds these columns together into a lamina of thickness div, and the integration with respect to a finally adds together the laminas and obtains the mass in the entire parallelepiped. This could le done in other orders ; in fart the integration might be performed first with regard to any of the three variables, second with either of the others, and finally with the last. There are, therefore, six equivalent methods of integration.

If the region over which the integration is desired is not a rectimgular parallele-
 piped, the only modification which must be introduced is to adjust the limits in the suceessive integrations so as to cover the entire region. Thus if the first integration is with respeet to x and the region is bounded by a surfact,$r=\psi_{0}(!, i z)$ on the side nearer the $y ;-$ plane and by a surface $x=\psi_{1}(,, z)$ on the remoter side, the integration

$$
\int_{x=\psi_{0}(y, z)}^{x=\psi_{1}(y, z)} H(\cdot r, y, z) d, r+l y l^{\prime} z=\Omega(y, z) d y d z z
$$

will add up the mass in dements of the column which has the ross section dydz and is intereeperd betwern the two surfares. The problem of adding up the colmmns is merely one in double integration over the region of the yoplane upen whel they stand ; this region is the projection of the given volume upon the ys-plane. The value of the integral is then

$$
\int D d V^{Y}=\int_{z_{0}}^{z_{1}} \int_{y=\phi_{0}(z)}^{y=\phi_{1}(z)} \Omega d y / y / z=\int_{z_{0}}^{z_{1}} \int_{\phi_{0}(z)}^{\phi_{1}(z)} \int_{\psi_{0}(x, y)}^{\psi_{1}(x, y)} D_{1} l_{1} d y \mid y d z .\left(s^{\prime \prime}\right)
$$

Here again the integrations may he performed in any orlere provided the limits of the integrals are earefully adjusted to comespond to that orter. 'The method may best be learned by example.

Find the mass, center of sravity. and moment of inertia about the axes of the volume of the cylimber $x^{2}+y^{2}-2 a r=0$ which lies in the first netant and maler paraboloid $x^{2}+y^{2}=u z$, if the density be assumed constant. The integrals to evalmate are:

$$
\begin{align*}
& m=\int I d l^{*} . \quad \bar{x}=\int_{m} x \| m, \quad \bar{y}=\frac{\int y l m}{m}, \quad \bar{z}=\frac{\int z d m}{m}, \tag{6}\\
& \left.\left.\left.I_{x}=\int 1\right)\left(y^{2}+z^{2}\right) d \Gamma^{5} . \quad I_{y}=7\right) \int\left(x^{2}+z^{2}\right) d \Gamma, \quad I_{z}=J\right) \int\left(x^{2}+y y^{2}\right) d \Gamma .
\end{align*}
$$

The consideration of how the figure looks shows that the limits for z are $z=0$ and $z=\left(x^{2}+y^{2}\right) / a$ if the first integration be with respeet to z; then the rlouble inters ral in x and y has to be evaluated ower a semicircle. and the first interemtion is more simple if made with respect to y with limits $y=0$ and $y=V 2 a x-x^{2}$. annl final limits $x=0$ antl $x=2 \boldsymbol{Z}$ for x. If the attrmpt were matle to interrate first with respect to y, there would be diffienty beeause a line parallel to the y-axis will give different limits aceordiner
 the $x z$-plane and eylinder ; the total interral would be the sum of two interrals. There would be a similar difficulty with respeci to an initial interration by.c. The order of
 integration shombl therefore le z, y, x.

$$
\begin{aligned}
& =\begin{array}{l}
1) \\
11 \\
\int_{0}^{a \prime \prime}
\end{array} x^{2} \sqrt{2}\left(1, x-x^{2}+\frac{3}{1}\left(2\left(x, x-x^{2}\right)^{2}\right], l, r\right. \\
& =I)_{11^{3}} \int_{10}^{\pi}\left[\left(1-(\cos \theta)^{2} \sin ^{2} \theta+\frac{1}{\theta^{2}} \sin \theta\right] d \theta=\frac{3}{4} \pi n^{3} 7\right) \quad(12 x=\| \sin \theta+\lambda
\end{aligned}
$$

134. Bometimes the region ower which a multiphe integral is to low evaluated is surf that the evaluatiom is matively simple in one kime of courdinates lout entirely impracticable in amother kind. In andition

except for infinitesimals of higher order. These quantities may be substituted in the double or triple integral and the evaluation may be made by successive integration. The proof that the substitution can be made is entirely similar to that given in ss $34-35$. The proof that the integral may still be evaluated by successive integration, with a proper ehoice of the limits so as to cover the region, is contained in the statement that the formal work of evaluating a multiple integral berepeated integration is independent of what the coördinates actually represent, for the reason that they could be interpreted if desired as representing rectangular coürlinates.

Find the area of the lart of one loon of the lemniscate $r^{2}=2 a^{2} \cos 2 \phi$ which is exterior to the circle $r=u$; alsis the conter of sravity and the moment of inertia relative to the origin under the assumption of constant density. Here the integrals are

$$
\left.A=\int d A, \quad A \bar{x}=\int x d A, \quad A \bar{y}=\int y d A, \quad I=1\right) \int r^{2} d A, \quad m=I A
$$

The integrations may be perfomed first with reapect tor r sus to and up the elements in the litule radial sectors, amb then with requad to ϕ so as to add the secters: or first with regarl to ϕ so as to combine the elements of the little circular strips, and then with regatel tof sio as to atd up, the strip. Thus

$$
\begin{aligned}
& A=2 \int_{\phi=i,}^{\frac{\pi}{5}} \int_{i}^{a \sqrt{2 \cos ^{2} \phi}} d d r d \phi=\int_{0}^{\frac{\pi}{6}}\left(2 u^{2} \cos 2 \phi-u^{2}\right) d \phi=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array} \overline{3}-\frac{\pi}{i ;}\right) u^{2}-.343 \cdot u^{2},
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{3} u^{3} \int_{\theta}^{\pi}\left[\underline{\pi} \sqrt{2}\left(1-2 \sin ^{2} \phi\right)^{\frac{3}{2}} d \sin \phi-\cos \phi(l \phi]=\frac{\pi}{8} l^{3}=.393 u^{3} .\right.
\end{aligned}
$$

Hence $\bar{r}=3 \pi /(12 \sqrt{3}-4 \pi)=1.15$, The s.rmmetry of the tivere shons that $\bar{y}=0$. The calculation of I may be left ats an exercise.

Given a share of which the density varies as the distance from anme peint of the surface: required the mats and the center of gravity. If pelar ecourdinates with the orimin at the siven peint am the phar axis along the diameter thromh that pein be assumed, the erpation of the share rednes to $r=2$ acos θ Where " is the radins. The center of gravity from manals of symmetry will fall on the diameter. To ravel the whme of the ejherer mast vary fome $r=0$ at the arigin to $r=2$ acts θ unn the shere. The
 lomitminal andu. from $\phi=0$ to $\phi=2 \pi$. 'Tlien

$$
\begin{aligned}
& m=\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{2 a \cos \theta} k r \cdot r^{2} \sin \theta d r d \theta d \phi, \\
& m \bar{z}=\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{r=2 a \cos \theta} l i r \cdot r \cos \theta \cdot r^{2} \sin \theta d r d \theta d \phi, \\
& m=\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\frac{\pi}{2}} 4 k l^{4} \cos ^{4} \theta \sin \theta d \theta d \phi=\int_{0}^{2 \pi} \frac{4}{5} k l^{4} d \phi=\frac{8 \pi k a^{4}}{5}, \\
& m \bar{z}=\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi \frac{2}{2}} \frac{32 k k^{5}}{5} \cos ^{6} \theta \sin \theta d \theta l \phi=\int_{0}^{2 \pi} \frac{32 k \cdot r^{5}}{3.5} d \phi=\frac{64 \pi k l^{5}}{3 . \overline{3}} .
\end{aligned}
$$

The center of gravity is therefore $\bar{z}=8$ ut $/ 7$ ．
Sometimes it is neressary to make a change of variable

$$
\begin{align*}
& , x=\phi\left(\prime \prime, c^{\prime}\right), \quad y=\psi(⿲, ~ i) \\
& \text { or } \quad \pi=\phi\left(\left\|, r^{\prime},\right\|^{\circ}\right), \quad y=\psi(\|, r, u r), \quad z=\omega(\|, r, u) \tag{S}
\end{align*}
$$

in a clouble or a triple integral．The element of area or of volume has been seen to be（s 63，and Ex．7，1．135）

Hence
and

It should be moted that the ．Facobian may be either pesitive or negative lont should not vanish：the differenee between the case of positive ame the case of nergative values is of the same mature as the difference leetwern an area or volume and the reflection of the area or volume． As the elements of area or volmene are considered as positive when the increments of the variables are positive，the absolute value of the Jacolion is taken．

EXERCISES

1．Show that（fi）are the formmas for the ennter of gravity of a solid body．
2．SH心 that $I_{n}=\int\left(y^{2}+z^{2}\right) d m . I_{y}=\int\left(r^{2}+z^{2}\right) d m . I_{z}=\int\left(x^{2}+y^{2}\right) d m$ are the formulas for the moment of inertia of a solid abont the axes．

3．Prose that the difference between the moments of inertia of a solit about any line and about a parallel line though the conter of gravity is the protuct of the mass of the body by the square of the perpendicular distance between the lines．

4．Fime the moment of inertia of a borly about a line through the origin in the divection determinel ly the wines $1 . m$ ，n ，and shm that if a distane of be lat

5. Find the moments of inertia of these sulids of uniform density :
(α) rectangular parallelepiped abr, about the efge a,
(β) ellipsoid $x^{2} / u^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$, about the z-axis,
(γ) eireular cylinder, about a perpendicular bisector of its axis,
(δ) wedge cut from the cylinder $x^{2}+y^{2}=r^{2}$ by $z= \pm m x$, about its edge.
6. Find the volume of the solids of Ex. $5(\beta),(\delta)$, and of the:
(α) trirectangular tetrahedron between $x y z=0$ and $x / a+y / b+z / c=1$,
(β) solid bounded by the surfaces $y^{2}+z^{2}=4 a x, y^{2}=a x, x=3 a$,
(γ) solid common to the two equal perpendicular cylinders $x^{2}+y^{2}=u^{2}, x^{2}+z^{2}=u^{2}$.
(δ) octant of $\left(\frac{x}{a}\right)^{\frac{1}{2}}+\left(\frac{y}{b}\right)^{\frac{1}{2}}+\left(\frac{z}{c}\right)^{\frac{1}{2}}=1$,
(є) octant of $\left(\frac{x}{a}\right)^{\frac{2}{3}}+\left(\frac{y}{b}\right)^{\frac{2}{3}}+\left(\frac{z}{c}\right)^{\frac{2}{3}}=1$.
7. Find the center of gravity in Ex. $5(\delta)$, Ex. $\beta(\alpha),(\beta),(\delta)$, (ϵ), density uniform.
8. Find the area in these eases: $\quad(\alpha)$ between $r=\alpha \sin 2 \phi$ and $r=\frac{1}{2} \alpha$.
(β) between $r^{2}=2 a^{2} \cos 2 \phi$ and $r=3^{\frac{1}{4}} a$, (γ) between $r=a \sin \phi$ and $r=b \cos \phi$,
(δ) $r^{2}=2 a^{2} \cos 2 \phi, r \cos \phi=\frac{1}{2} \sqrt{3} a$,
(ϵ) $r=a(1+\cos \phi), r=a$.
9. Find the moments of inertia abont the pole for the eases in Ex. 8, density uniform.
10. Assuming uniform density, find the center of gravity of the area of one loop:
(α) $r^{2}=2 u^{2} \cos 2 \phi$,
(β) $r=a(1-\cos \phi)$,
(γ) $r=a \sin 2 \phi$,
(δ) $r=a \sin ^{3} \frac{1}{3} \phi$ (small lomp),
(є) circular sector of angle 2α.
11. Find the moments of inertia of the areas in Ex, $10(\alpha),(\beta),(\gamma)$ about the initial line.
12. If the density of a sphere deereases uniformly from D_{0} at the center to D_{1} at the surface, find the mass and the moment of inertia about a diameter.
13. Find the total volume of :

$$
\text { (} \alpha)\left(x^{2}+y^{2}+z^{2}\right)^{2}=u x y z, \quad(\beta)\left(x^{2}+y^{2}+z^{2}\right)^{3}=27 \mu^{3} x y z .
$$

14. A wherical sector is bounded by a cone of revolution; fime the center of gravity and the moment of inertia about the axis of revolution if the density varies as the nth power of the distance from the center.
15. If a cylinder of liquid rotates about the axis, the shape of the surface is a paraboleid of revohtion. Find the kinetic energy.
16. Compute $J\left(\frac{r, y}{r, \frac{\phi}{\phi}}\right), J\left(\frac{r \cdot y, z}{r, \phi, z}\right), J\left(\frac{x, y, z}{r, \phi, \theta}\right)$ and hence verify (7).
17. Sketeh the region of integration and the eurves $u=$ const., $v=$ const. ; hence show:
(α) $\int_{0}^{c} \int_{y=0}^{r-x} f(x, y) d x d y=\int_{0}^{1} \int_{u=0}^{c} f(u-u v, u c) u d u d x$, if $u=y+x, y=u v$,
(β) $\int_{0}^{n} \int_{y=0}^{x} f(x, y) d x d y$

$$
=\int_{0}^{1} \int_{v=0}^{u(1+u)} f\left(\frac{v}{1+u}, \frac{u v}{1+u}\right) \frac{v}{(1+u)^{2}} d v d u \text { if } y=x u, x=\frac{v}{1+u} \text {, }
$$

(γ) or $=\int_{0}^{u} \int_{u=1}^{1} f \frac{v}{(1+u)^{2}} d u d v-\int_{a}^{\dot{a} a} \int_{u=1}^{\frac{r}{u}-1} f \frac{v}{(1+u)^{2}} d u d v$.
18. Find the volume of the eylinder $r=2 a \cos \phi$ betwern the cont $z=r$ and the plane $z=0$.
19. Same as Ex. 18 for cylimuler $r^{2}=2 u^{2} \cos 2 \phi$: amd fimd the moment of inertia about $r=0$ if the density varies as the distance from $r=0$.
20. Assuming the law of the inverse square of the distance, show that the attraction of a homogeneous sphere at a point outside the sphere is as though all the mass were concentraterl at the center.
21. Find the attraction of a right circular cone for a particle at the vertex.
22. Find the attraction of (α) a solid eylinder, (β) a eylindrical shell upon a point on its axis ; assume homogeneity.
23. Find the potentials. along the axes only, in Ex. 22. The potential may be defined as $\Sigma r^{-1} d m$ or as the integral of the force.
24. Ubtain the formulas for the center of gravity of a seetorial area as

$$
\bar{x}=\frac{1}{-1} \int_{\phi_{n}}^{\phi_{1}} \frac{1}{3} r^{3} \operatorname{ear} \phi r l \phi . \quad \bar{y}=\frac{1}{-1} \int_{\phi_{1}}^{\phi_{1}} \frac{1}{3} r^{3} \cdot \sin \phi l \phi .
$$

and explain how they could be derived from the fart that the center of gravity of a uniform triangle is at the interscetion of the medians.
25. Find the trital ilhmination upon a vircle of mantio ". wing to a light at a distance h above the center. The illmmation varics inversely as the suare of the distance ant directly as the cosine of the angle between the ray and the normal to the surface.
26. Write the limits for the examples worked in $\$ \$ 183$ and 134 when the integrations are performed in varions other orders.
27. A theorem of Pappus. If a clnsul phane curve be revolved about an axis which does not cut it. the volume gomeratel is emual to the promuct of the area of the curve by the distane traversed ? whe ewhter of gravity of the area. Prowe either analytically or mintinitesimal analysis. Aphly to rarions figures in whin two of the three grantities. volume and position of center of gravity, are known. to find the thirl. Compare Ex. .3. 1. 84%
135. Average values and higher integrals. The salue of some sperial interpertation of interneals anm other mathomatical motities lies in the concreteness and sugestiveness whirl would be lakking in a prome analytical handling of the subject. For the simple integral \int fiow dac
 an area: it wonld hate bern posiblate to reman in one dimension ly interpreting $f^{\prime}(x)$ as the density of a ron and the integral as the mas.
 sity and mass of a lamina was made fumbamental: as was perinterd out,

and interpret the integral as a volume. In the treatment of the triple integial $\int f^{+}\left(r^{\prime},!, A\right) d l^{+}$the density and mass of a body in space were made fundamental ; here it wonld not he possille to plot $\quad \prime=f(, r, y, a)$ as there are only three dimensions available for photting.

Another important interpertation of an integral is foumd in the comception of aromige imbur. If $\eta_{1}, \eta_{2}, \cdots, \eta_{n}$ are n numbers, the average of the numbers is the quotient of their sum ly n.

$$
\begin{equation*}
\bar{\eta}=\frac{\eta_{1}+y_{2}+\cdots+\eta_{n}}{n}=\frac{\Sigma I_{i}}{n} . \tag{!}
\end{equation*}
$$

If a set of numbers is formed of w_{1} numbers y_{1}, and $"_{2}$ number: γ_{2}, \cdots, and $\|_{n}$ mumbers q_{n}, so that the total number of the mumbres is $w_{1}+w_{2}+\cdots+w_{n}$, the average is

$$
\bar{q}=\frac{\left\|_{1} \eta_{1}+\right\|_{2}\left\|_{2}+\cdots+\right\|_{n}^{\prime} g_{n}}{\left\|_{1}+\pi_{2}+\cdots+\right\|_{n}}=\frac{\Sigma \|_{i} f_{i}}{\Sigma \|_{i}} .
$$

The coefficients $"_{1}$. $\|_{2}, \cdots, "_{n}$. or any set of mumbers which are $\mathrm{p}^{\prime \prime}()$ -
 nitions of arorage will not aplly to finding the arerage of an infinte number of munkers beranse the denominator n would not be an aritlmetical number. Honee it would not be pesiblle to apply the detinition to finding the average of a fimetion, $n^{\prime \prime}\left(r^{\prime}\right)$ in an interval $x_{0} \leqq r_{1} \leqq$

A slight change in the point of view will, however, lead to a defi-
 $r_{0} \leqq r \equiv r_{1}$ is divided into a mumber of intervals $\Delta_{r^{\prime}}$, and that it be imagine that the number of values of $!=f\left(f^{\prime}\right)$ in the interral Δr_{i} is promertional to the length of the interval. Then the quantitios Δr_{i} would le taken as the weights of the values $f\left(\xi_{i}\right)$ and the arerage would be

$$
\begin{equation*}
\bar{y}=\frac{\leq \Delta x_{i} f\left(\xi_{j}\right)}{\leq \Delta r_{i}}, \quad \text { or better } \quad \bar{y}=\frac{\int_{r_{0}}^{r_{1}} f(x) d x}{\int_{x_{0}}^{r_{1}} d x_{x}} \tag{10}
\end{equation*}
$$

1,y passing to the limit as the $\sin _{i}$ is apmonach zero. Then

$$
\bar{y}=\frac{\int_{r_{0}}^{r_{1}} f\left(r^{r}\right) d x}{r_{1}-r_{0}} \quad \text { or } \quad \int_{r_{0}}^{r_{1}} f(, r) r x_{x}=\left(r_{1}-r_{0}\right) \bar{y}
$$

Is like manner if $\because=f^{\prime}(r$, , /f) le a function of two variables on $"=f^{\prime}\left(, r^{\prime}, ?,, i\right)$ a function of three variables, the averages over an area
or volume would be defined loy the integrals

$$
\bar{z}=\frac{\int f^{\prime}(\cdot, y) d .1}{\int d A=A} \quad \text { and } \quad \bar{u}=\frac{\int f(. r, y, z) d V}{\int a V=V}
$$

It should be particularly noticed that the colue of the average is defined with reference to the rurimbles of which the function averoged is " function; " rlomyp of comiable will in general briny about a change in the vatue of the acerage. For
if

$$
y=f(\cdot r), \quad \overline{y(x)}=\frac{1}{x_{1}-x_{0}} \int_{x_{0}}^{x_{1}} f\left(\cdot x^{r}\right) d x
$$

but if

$$
y=f^{\prime}(\phi(t)), \quad \overline{y(t)}=\frac{1}{t_{1}-t_{0}} \int_{t_{0}}^{t_{1}} f(\phi(t)) d t
$$

and there is no ratson for assuming that these very different expressions have the same mumerical value. Thus let

$$
\begin{gathered}
y=r^{2}, \quad 0 \leqq r \leqq 1, \quad x=\sin t, \quad 0 \leqq t \leqq \frac{1}{2} \pi \\
\overline{y(x)}=\frac{1}{1} \int_{0}^{1} x^{2}, x_{1}=\frac{1}{3}, \quad \overline{y(t)}=\frac{1}{\frac{1}{2} \pi} \int_{0}^{\frac{\pi}{2}} \sin ^{2} t d t=\frac{1}{2} .
\end{gathered}
$$

The average values of x and y over a plane area are

$$
x=\frac{1}{1} \int x+1, \quad y=\frac{1}{1} \int y d .
$$

when the weights are takn propertional to the elements of area; but if the area be ocompied by a lamina and the weights be assigned as proportional to the elements of mass, them

$$
\bar{z}=\frac{1}{m} \int m^{\prime} / m, \quad \bar{y}=\frac{1}{m} \int!m m
$$

and the average values of ,r and !/ are the coind dinates of the center of gravity. These two aborase manot be expereted to be equal muless the density is constant. The first would be ealled an areatareage of a and !/ the seromel, a mass-atrerage of x and ! $\%$ The mass average of the spuare of the distance from a point to the different points of a lanima would te

$$
\begin{equation*}
\overline{m^{2}}=l^{2}=\frac{1}{M} \int r^{2} d m=I / M \tag{11}
\end{equation*}
$$

and is defined as the radins of eryation of the lamina about that point ; it is the quotient of the moment of inertia ly the mass.

As a problen in arerages eonsider the detemination of the averagevalue of a proper fraction ; also the average value of a proper fraction subject to the condition that it be one of two proper fractions of which the sum shall be less than or equal to 1 . Let x be the proper fraction. Then in the first case

$$
\bar{x}=\frac{1}{1} \int_{0}^{1} x d x=\frac{1}{2}
$$

In the second case let y be the other fraction so that $x+y \leqq 1$. Now if (x, y) be taken as coordinates in a plane, the range is over a triangle, the number of points (x, y) in the element dody would naturally be taken as proportional to the area of the element, and the average of x over the region would be

$$
\bar{x}=\frac{\int x d t}{\int d+1}=\frac{\int_{0}^{1} \int_{0}^{1-y} \cdot d x d y}{\int_{0}^{1} \int_{0}^{1-y} d x d y}=\frac{\int_{0}^{1}\left(1-2 y+y^{2}\right) d y}{2 \int_{0}^{1}(1-y) d y}=\frac{1}{3} .
$$

Now if x were one of four proper frartions whose sum was not greater than 1 , the problem would be to average x over all sots of values (x, y, z, u) subject to the relation $x+y+z+u \leqq 1$. From the analogy with the above problems, the result would be

$$
\bar{x}=\lim \frac{\operatorname{sir} \Delta x \Delta y \Delta z \Delta n}{\Delta \Delta r \Delta y \Delta z \Delta u}=\frac{\int_{u=0}^{1} \int_{z=0}^{1-u} \int_{\eta=0}^{1-n-z} \int_{n=0}^{1-u-z-\eta} x d x d y d z d u}{\int_{u=0}^{1} \int_{i=0}^{1-u} \int_{y=0}^{1-n-z} \int_{n=0}^{1-n-z-y} d x d y d z d u} .
$$

The evaluation of the puadruple integral giver $\bar{x}=1 / 5$.
136. The foregoing problem and other problems which may arise learl to the consideration of interamas of grater multiplieity than three.
 first place let the four variables lee

$$
\begin{equation*}
x_{0} \leqq r \leqq r_{1}, \quad y_{0} \leqq!\leqq!\eta_{1}, \quad \ddot{r}_{1} \leqq \therefore \leqq A_{1}, \quad u_{0} \leqq \mu \leqq \|_{1} \tag{12}
\end{equation*}
$$

included in intervals with comstant limits. This is ambogous to the case of a rectangle or rectangular parallelepijed for couble or triple integrals. The mage of values of r : $\%, \ldots, \quad$ in (12) may be sloken of as a rertangular volmme in fonl (limmsions, if it be desired to use geor netrical as well as analytical analogy. Then the product $\Delta x_{i} \Delta y_{i} \Delta a_{i} \Delta_{i}$ would be an element of the region. If

$$
x_{i} \leqq \xi_{i} \leqq x_{i}+\Delta r_{i}, \cdots, w_{i} \leqq \theta_{i} \leqq w_{i}+\Delta \mu_{i}
$$

the point $\left(\xi_{i} \cdot \eta_{i} \cdot \zeta_{i}, \theta_{i}\right)$ would be said to lie in the element of the region. The formation of̈ a quadruple sam

$$
\sum f^{2}\left(\xi_{i}, \eta_{i}, \xi_{i}, \theta_{i}\right) \Delta x_{i} \Delta y_{i} \Delta \pi_{i} \Delta u_{i}
$$

conld be carried out in a manner similar to that of domble and triple sums, and the sum could readily be shown to have a linit when
$\Delta r_{i}, \Delta y_{i}, \Delta \ddot{z}_{i}, \Delta y_{i}$ approach zero, providerd f is continuous. The limit of this sum could be evaluated loy itematerl integration

$$
\lim \sum f_{i} \Delta r_{i} \Delta y_{i} \Delta z_{i} \Delta u_{i}=\int_{x_{0}}^{r_{1}} \int_{u_{0}}^{y_{1}} \int_{i_{0}}^{z_{1}} \int_{u_{0}}^{u_{1}} f^{\prime}\left(x^{\prime}, y, \ddot{2}, u\right) d u d z_{i} d y l_{1, r}
$$

where the order of the integrations is immaterial.
It is possihle to define regions other than her means of inequalities such as arose above. Considel

$$
F(i, y, \therefore, u)=0 \quad \text { and } \quad F(x, y, \therefore, u) \leqq 0
$$

where it may be assumed that when three of the fon variables are griven the solution of $F^{\prime}=0$ gives not more than two values for the fomrth. The values of $a^{\prime},!, a, \quad, \quad$ which make $r<0$ are separated from those which make $r^{r}>0$ he the vines which make $r^{\prime}=0$. If the sign
 values whien give $r>0$ will be sate to be outside the region and those which give $F<0$ will be said to he inside the region. The value of the integral of $f^{+}\left(r^{\prime},!, \therefore, \quad \prime\right)$ over the recrion $F \leqq 0$ could be fomm as

$$
\int_{r_{0}}^{r_{1}} \int_{u=\phi_{n}(r)}^{y=\phi_{1}(r)} \int_{z=\psi_{n}(r, y)}^{z=\psi_{1}(r, y)} \int_{u=\omega_{n}(r, y, z)}^{u=\omega_{1}(r, y, z)} f\left(, r^{r}, y, z, u\right) d u \| \eta d y d, r,
$$

where $\|=\omega_{1}(r, y, \Delta)$ and $\|=\omega_{n}(, r, y, a)$ are the two solutions of $r=0$ for " in terms of $r, \%, \sharp$, ancl where the triple integral remaining after the first integration must le eraluaterl over the range of all pessible valnes for (r. ! ! : $)$. liy first solving for one of the other variahles. the integrations conld be arranged in another order with properly changed limits.

If a change of variahle is effectent such as
$x=\phi\left(x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}\right) . \quad y=\psi\left(x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}\right) . \quad z=\chi\left(r^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}\right), u=\omega\left(r^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}\right)$
1!n integrals in the new and oh variables are related hy

The result maty he acerpted as a fact in view of its analugy with the remult (() fon the simpler cases. A pront. however. may be given which will serve entally wedt
 somewhat lowse treatment of intinitesimats and may therefore be cobsidered as more satisfactory. In the timst wate mote that from the retation (83) of f , $13 . \mathrm{s}$
 that if the change (14) is posilde fow eath of two tramsomations. it is pesiblue for the succession of the two. Now for the simple transomation

$$
\begin{equation*}
x=x^{\prime}, \quad y=y^{\prime}, \quad z=z^{\prime}, \quad u=\omega\left(\cdot r^{\prime} \cdot \ell^{\prime} \cdot z^{\prime}, u^{\prime}\right)=\omega\left(r, y, z, u^{\prime}\right) \tag{18,}
\end{equation*}
$$

which involves only one variable, $J=\hat{c} \omega / \hat{c} u$, and here

$$
\int f(x, y, z, u) d u=\int f\left(x, y, z, u^{\prime}\right)\left|\frac{\bar{c} u}{\hat{c} u^{\prime}}\right| d u^{\prime}=\int f\left(x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}\right)|J| d u^{\prime}
$$

and each side may be integrated with respect to x, y, z. Hence (14) is true in this case. For the transformation

$$
x=\phi\left(x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}\right), \quad y=\psi\left(x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}\right), \quad z=\chi\left(x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}\right), \quad u=u^{\prime}, \quad\left(13^{\prime \prime}\right)
$$

which involves only three variables, $J\left(\frac{x, y, z, u}{x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}}\right)=r\left(\frac{x, y, z}{x^{\prime}, y^{\prime}, z^{\prime}}\right)$ and

$$
\iiint f(x, y, z, u) d x d y d z=\iiint f(\phi, \psi, \chi, u)|J| d x^{\prime} d y^{\prime} d z^{\prime}
$$

and each side may be intemraten with respect to u. The rule therefore holds in this case. It remains therefore merely to show that any transformation (13) may be resolved inten the succession of two such as ($\left.1: 3^{\prime}\right)$. ($13^{\prime \prime}$). Let

$$
x_{1}=x^{\prime}, \quad y_{1}=y^{\prime}, \quad z_{1}=z^{\prime}, \quad u_{1}=\omega\left(r^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}\right)=\omega\left(x_{1}, y_{1}, z_{1}, u^{\prime}\right) .
$$

Solve the equation $u_{1}=\omega\left(x_{1}, y_{1}, z_{1} . u^{\prime}\right)$ for $u^{\prime}=\omega_{1}\left(x_{1}, y_{1}, z_{1}, u_{1}\right)$ and write

$$
x=\phi\left(x_{1}, y_{1}, z_{1}, \omega_{1}\right), \quad y=\psi\left(x_{1}, y_{1}, z_{1}, \omega_{1}\right) . \quad z=\chi\left(x_{1}, y_{1}, z_{1}, \omega_{1}\right), \quad u=u_{1} .
$$

Now by virtue of the value of ω_{1}. this is of the type $\left(13^{\prime \prime}\right)$, and the substitution of $x_{1}, y_{1}, z_{1}, u_{1}$ in it gives the original transomation.

EXERCISES

1. Determine the average values of these functions over the intervals:

$$
\begin{array}{ll}
(x) x^{2}, 0 \leqq x \leqq 10, & \text { (} \beta \text {) } \sin x, 0 \leqq x \leqq \frac{1}{2} \pi \\
(\gamma) x^{n}, 0 \leqq x \leqq n, & \text { (}) \quad \cos ^{n} x, 0 \leqq x \leqq \frac{1}{2} \pi
\end{array}
$$

2. Determine the average values as indicated:
(α) ordinate in a semicirelc $x^{2}+y^{2}=u^{2}, y>0$, with x as variable,
(β) ordinate in a semicircle, with the are as variable,
(γ) ordinate in semiellipse $x=a \cos \phi, y=b \sin \phi$, with ϕ as variable,
(δ) foeal radius of ellipse, with equiangular spacing about focus,
(ϵ) focal radius of ellipse, with equal spacing along the major axis,
(ζ) chord of a circle (with the most natural assumption).
3. Finu the averave height of so much of these surfaces as lies above the $r y$-plane:
(o) $r^{2}+1 y^{2}+z^{2}=11^{2}$.
$(\beta) z=\mu^{+}-p^{2} x^{2}-q^{2} y^{2}$,
(γ) $e^{z}=4-x^{2}-y^{2}$.
4. If a man's height is the areage height of a conical tent, on how much of the thom space san he stand erect?
5. Whata the arrage values of the following:
(18) distance of a puint in a stuare from the center, (β) ditto from vertex.
(2) bintance of a point in a cirele from the center, (δ) ditto for sphere,
(c) distance of a point in a sphere from a fixed point on the surface.
6. From the S.W. corner of a township persons start in random directions between N. and E. to walk across the township. What is their average walk:" Which has it?
7. On each of the two legs of a right triangle a point is selected and the line joining them is drawn. Show that the average of the area of the suluare on this line is $\frac{1}{3}$ the stuare on the hypotenuse of the triangle.
8. A line joins two points on opprasite sirles of a syuare of sille $\boldsymbol{\prime}$. What is the ratio of the average square on the line to the siven square?
9. Find the average value of the sum of the syuares of two proper fractions. What are the results fur three and for four fractions?
10. If the sum of n proper fractions camot exceed 1 , shan that the average value of any one of the fractions is $1 /(n+1)$.
11. The averace value of the product of k proper fractions is $2-k$.
12. Two points are selecter at random within a circle. Find the ratio of the average area of the circle described on the line joining them as diameter tuthe area of the circle.
13. Show that $J=r^{3} \sin ^{2} \theta \sin \phi$ for the transformation

$$
x=r \cos \theta . \quad y=r \sin \theta \cos \phi . \quad z=r \sin \theta \sin \phi \cos \psi, \quad u=r \sin \theta \sin \phi \sin \psi .
$$

and prove that all values of x, y, z, u definem by $r^{2}+y^{2}+z^{2}+u^{2} \leqq \|^{2}$ are coveren by the range $0 \leqq r \leqq a .0 \leqq \theta \leqq \pi .0 \leqq \phi \leqq \pi, 0 \leqq \psi \leqq 2 \pi$. What range will cover all positive values of x, y, z, u ?
14. The sim of the sylares of two proper fractions cannot exceed 1. Find the average value of one of the fractions.
15. The same as Ex. It where three or fome fractions are involvent.
16. Note that the solution of $u_{1}=\omega\left(s_{1}, y_{1}, z_{1}, u^{\prime}\right)$ for $u^{\prime}=\omega_{1}\left(r_{1}, y_{1}, z_{1}, u_{1}\right)$ requires that $\hat{c} \omega / \hat{c} u^{\prime}$ shall mot vanish. Show that the hymothesis that I d foes mot vanish in the regron. is sufticient to shm that at and in the neighborhonl of wach puint
 which does not ranish; and thus complete the prow of the text that in case of $\neq 0$ and the 16 derivatives exist and are continnons the change of varialle is as wiven.
17. The intensity of light varies inversely as the sumare of the diotance. Find the areare intensity of ilfonination in a hemispherical dome lighten he a lamp at the top.
18. If the data be as in Ex. 12. p. 391, find the average density.
137. Surfaces and surface integrals. ("omsinler a surfare which has at earch print a tangent plane that ehathers montinmonsly form perint to print of the surface. (onsinder also the pumertion of tha surfate upon at plane. say the $x y$ pplane, and assume that a line perpendionlar to the plane ruts the surfare in only one point. Orer any element 7.1 of the projection there will he a small portion of the surfares. If this small
 the area of the surface (1 . 164) would be to its penjection as 1 is to
$\cos \gamma$ and would be sec $\gamma /$. . The value of $\cos \gamma$ may lee read from (9) on page 96 . This suggests that the quantity

$$
\begin{equation*}
s=\int \sec \gamma^{\prime} / A=\iint\left[1+\left(\frac{\hat{c}_{z}}{\hat{c}_{x}}\right)^{2}+\left(\frac{\hat{c}_{\tilde{z}}}{\hat{c}_{y}}\right)^{2}\right]^{\frac{1}{2}} d x d y \tag{15}
\end{equation*}
$$

be taken as the dretinition of the mron of the surfure. Where the double integral is extembed orer the projection of the surface: and this definition will be adopetel. This definition is really deberndent on the particular plane upon which the surfare is projected : theat the value of the area of the surface would turn out to be the same no matter what phane was used for projection is tolerahly apmarent, but will he proverl later.

Let the area cut ont of a hemisphere by a evinder upon the radius of the hemisphere as dianeter be evaluaterd. Here (or by qeometry directly)

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=u^{2}, \quad \frac{i z}{\hat{c} x}=-\frac{x}{z}, \quad \frac{i z}{\hat{c} y}=-\frac{y}{z} \\
S=\int\left[1+\frac{x^{2}}{z^{2}}+\frac{y^{2}}{z^{2}}\right]^{\frac{1}{2}} d A=2 \int_{x^{\prime}=0}^{u} \int_{y=0}^{\sqrt{u x-x^{2}}} \frac{a}{\sqrt{u^{2}-x^{2}-y^{2}}} d y d x
\end{gathered}
$$

This integral may be evaluated directly. lut it is better to transform it to polar coördinates in the plane. Then

$$
s=2 \int_{\phi=1}^{\frac{1}{2} \pi} \int_{r=11}^{a \cos \phi} \frac{n}{\sqrt[1^{2}]{2}-r^{2}} r d r d \phi=2 \int_{0}^{\frac{1}{2} \pi} t^{2}(1-\sin \phi) d \phi=(\pi-2) a^{2}
$$

It is clear that the half area which liew in the finst fectant tombla bee projected upen
 rxtemen is that betwern $r^{2}+z^{2}=\pi^{2}$ ant the peroection $z^{2}+14=w^{2}$ of the curve of intersection of the splere and eylimet. The forgection contal alac) be mate on the $y z-1$ lane. If the area of the eylinder betwern $z=0$ amb the splere wore desired. propectimen on $z=0$ womble
 the owrlapinig of the projection om itwelf, but projection (1) $y=0$ would be entirely feasible.

To slow that the definition of area dow not depent,
 exeent apparently. wen the phane of prowern consider any wechul plane which makes an ancle θ with the tirst. Lett the line of intersection be the y-axis: then from a figure the new coürdinate s^{\prime} is,

$$
\begin{aligned}
& r^{\prime}=r \cos \theta+z \sin \theta \cdot y=y . \quad \text { anm } \quad J_{(x . y)}^{\left(r^{\prime} \cdot y\right)}=\frac{\hat{c}, r^{\prime}}{\hat{c}, r}=\cos \theta+\frac{\hat{c} z}{\hat{c}, ~} \sin \theta,
\end{aligned}
$$

 (1) the wipinal axes the directin cosine of the momal ar $-p:-y: 1$ and of
the z^{\prime}-axis are $-\sin \theta: 0: \cos \theta$. The cosine of the angle letween these lines is therefore

$$
\cos \gamma^{\prime}=\frac{p \sin \theta+0+\cos \theta}{\sqrt{1+p^{2}+q^{2}}}=\frac{p \sin \theta+\cos \theta}{\sec \gamma}=\cos \gamma(\cos \theta+p \sin \theta) .
$$

Hence the new form of the area is the integral of sec $\boldsymbol{\gamma}^{\prime}$ l. l^{\prime} anm curnals the ohl form.
The integrand ds $=\operatorname{ser} \gamma \gamma^{\prime} A$ is called the moment "f surfure. There are other forms such as $d s=\sec (1: n) r^{2} \sin \theta 7 \theta / \phi$. where (Ω, n) is the angle betweren the radins vector and the normal: lont they are med comparatively little. The pressession of an experession for the alement of surfare affords a means of romputing "rometres wor surfores. For if
 the interglall

$$
\begin{equation*}
\bar{u}=\frac{1}{s} \int u(, r, ?, z) d s=\frac{1}{s} \iint\left\|\left(, x^{\prime}, \eta, f^{\prime}\right) \sqrt{1+\eta^{2}+\eta^{2}} d, r^{\prime}\right\| \tag{16}
\end{equation*}
$$

will be the arerage of over the surface s. Thms the arerage height of a hemisphere is (for the surface average)

$$
\bar{z}=\frac{1}{2 \pi u^{2}} \int \pi \eta=\frac{1}{2 \pi n^{2}} \iint \pi \cdot \frac{\prime \prime}{z} d r l_{l}=\frac{1}{2 \pi} \cdot \pi n^{2} \cdot \pi \prime^{2}=\frac{1}{2} ;
$$

whereas the average height orer the diametral plane wonk be $2 / 3$. This illustrates again the fact that the value of an arerage depends on the assmmption made as to the weights.
138. If a sulacee $:=, f^{\prime}\left(r^{\prime},!/\right)$ le divided into elements ΔS_{i}, and the function "1 (, , !, ia) lo formed for any peint ($\xi_{i}, \eta_{i}, \zeta_{i}$) of the element, and the sum na $_{i} \mathrm{~S}_{i}$ he extended over all the elements, the limit of the sum at the elements berome small in every direction is defined as the surfiere integral of the function wrer the surfare and may be waluated as

$$
\begin{align*}
& \lim \sum "\left(\xi_{i}, \eta_{i}, \xi_{i}\right) \Delta s_{i}=\int u(, 1 /, i) \| s \tag{17}
\end{align*}
$$

 the element " $\left.\xi_{,}, \eta_{i} \cdot \zeta_{i}\right) \Delta x_{i}$ of the sman differs mifonmly fron the integrand of the demble interal he an intinitesinall of higher adore

 form of the intergrand of a surfare integral, insteat of mis, the
product $R \cos \gamma^{\prime \prime} s$ of a function $R(. r, y, z)$ by the cosine of the ir:dination of the surface to the θ-axis by element $d s$ of the surface. Then the intergral may ie evaluated orer sither side of the surfare; for $R(x, y, z)$ has a definite value on the surfare, $\boldsymbol{s} s$ is a positive quantity, but $\cos \gamma$ is pesitive or negative areording as the normal is drawn on the upher or lower side of the surface. The value of the integral over the surface will be

$$
\begin{equation*}
\int R(\cdot, y, y, a) \cos \gamma d s=\iint \operatorname{li} d x d y \text { or }-\iint R d x d y \tag{18}
\end{equation*}
$$

according as the evaluation is made over the upper or lower side. If the function $R(x, y, z)$ is contimons over the surface, these integrands will be finite eren when the surface heromes perpendicular to the ary-1 lane, which might not be the case with an intergrand of the form $n(r, y, z, d s$.

An integral of this sort may be evaluated orer a closed surface. Let it be assumed that the surfate is cut by a line parallel to the e-axis in a finite monler of points, and for convenimee le that mumber be two. Let the nomal to the surface lee taken eonstantly as the exterior homal (some take the interior nomal with a resalting change of sign in som formulas), so that for the upper fart of the surfare (e)s $\gamma>0$ and for 1tw lower part cos $\gamma<0$. Leet $a=f_{1}^{\prime}(x$, , $)$ and $: z=f_{n}^{\prime}(e, y)$ le the uper and lower values of a on the surface. Then the exterior integral over the closed surface will have the form
$\int I \cdot \cos \gamma h x=\iint I\left[\cdot x, y, f_{1}(x, y)\right] d x d y-\iint l i\left[x,!/, f_{v}^{\prime}(x,!y)\right] d, r d y,\left(1 S^{\prime}\right)$
Where the double integrals are extended over the area of the projection of the surfate on the er!-plame.

From this form of the surface integral over a closed surface it appears that a surfate integral over a closed surface may be exphessed as a volmme integral over the volmene inclosed by the surface.*

[^31]For by the rule for integration,

$$
\begin{align*}
\iiint_{z=f_{0}(x, y)}^{z=f_{1}(x, y)} \frac{\partial R}{\partial z} d z d x d y & =\left.\iint R(\cdot,, y, z)\right|_{z=f_{0}(x, y)} ^{z=f_{1}(x, y)} d x d y . \\
\int_{0} R \cos \gamma^{\prime} d & =\int \frac{\partial R}{\partial z} d V \\
\iint_{0} R d x d y & =\iiint \frac{\partial R}{\partial z} d x d y d z \tag{19}
\end{align*}
$$

Hence
or

Then $\int_{0}(P \cos \alpha+Q \cos \beta+l i \cos \gamma) d S=\int\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial i z}\right) d V$
or $\iint_{0}(P R l y l i z+Q d z d x+R d x d y)=\iiint\left(\frac{\partial P}{\partial x^{i}}+\frac{\partial Q}{\partial!y}+\frac{\partial R}{\partial: i}\right) d x d y d z$
follows immediately by merely adding the three equalities. Any one of these equalities (19), (20) is sometimes called Gitusse's Formuln, sometimes Cirern's Lemmer, sometimes ther dirergenere formuln owing to the interpretation below.

The interpretation of (ianss's Formula (20) by vectors is important. From the viewpoint of vectors the element of surfare is a vector as directed along the exterior normal to the surface (76). Construct the vector function

$$
\mathbf{F}(x, y, z)=\mathbf{i} P(r, y, y)+\mathbf{j} Q(x, y, z)+\mathbf{k} R(x, y, z) .
$$

Let $\quad \| \mathbf{S}=(\mathbf{i} \cos \alpha+\mathbf{j} \cos \beta+\mathbf{k}(\pi) \gamma) d s=\mathbf{i} / S_{x}+\mathbf{j} / S_{y}+\mathbf{k} d S_{z}$,
where $d s_{x}, d s_{y}, d s_{z}$ are the projections of $d s$ on the coirdinate phancs Then

$$
l^{\prime} \cos \operatorname{col} N+Q \cos \beta d S+R \cos \gamma d S=F \cdot d \mathbf{S}
$$

and

$$
\iint\left(p^{\prime} d y d x+\left(e^{\prime} d \cdot d x+R \cdot d \cdot \cdot d!\right)=\int \mathrm{F} \cdot d \mathrm{~S},\right.
$$

 which would be used to evaluate the integrals in rectangular coirdinates,
without at all implying that the projections $d S_{x}, d S_{y}, d S_{z}$ are actually rectangular. The combination of partial derivatives

$$
\begin{equation*}
\frac{\partial P}{\partial x}+\frac{\hat{\partial} Q}{\partial y}+\frac{\partial h}{\partial z}=\operatorname{div} \mathrm{F}=\nabla \cdot \mathrm{F}, \tag{21}
\end{equation*}
$$

where $\Gamma \cdot F$ is the symbolic scalar product of Γ and F (Ex. 9 below), is called the dierergence of F. Hence (20) becomes

$$
\int \operatorname{div} \mathrm{F} d \Gamma^{-}=\int \Gamma \cdot \mathrm{F} d \mathrm{~V}^{-}=\int \mathrm{F} \cdot d \mathrm{~S} .
$$

Now the function $\mathrm{F}(r, y, z)$ is such that at each point (x, y, z) of space a rector is defined. Such a function is seen in the velocity in a moving fluid such as air or water. The picture of a scalar function $u(x, y, z)$ was by means of the surfaces $u=$ const.; the picture of a vector function $\mathrm{F}(x, y, z)$ may be found in the system of curves tangent to the vector, the stream lines in the fluid if F be the velocity. For the immediate purposes it is better to comsider the function $\mathrm{F}(x, y, z)$ an the flux $I) \mathrm{v}$, the product of the density in the fluid by the velocity. With this. interpretation the rate at which the duid flows through an element of surface $d \mathbf{S}$ is I vod $/ \mathbf{S}=\mathrm{F} \cdot \boldsymbol{d} \mathbf{S}$. For in the time dt the fluid will advance along a stream line by the amomet
 vat and the whme of the eylindrical volume of fluid which adrances through the
 of fluid within the closed surface.

As the amonnt of fluid in an element of volme $d V^{\top}$ is D d V°. the rate of diminution (if the fluid in the element of volume is $-\hat{c} l$)/ $\hat{c} t$ where $\hat{c} l$) $\hat{c} t$ is the rate of increase (ff the demsity I) at a peint within the element. The total rate of diminution of the anmant of thuid within the whole volume is therefore - ¿ì D/êtdl'. Ifence, by virtue of the minciple of the indestructibility of matter,

$$
\int \mathrm{F} \cdot \mathrm{~d} \mathrm{~S}=\int_{0} I \nu \mathrm{v} \cdot \mathrm{l} \mathrm{~S}=-\int \frac{\partial D}{\partial t} d V .
$$

Now if $v_{r,}, r_{y,}, \tau_{\text {, }}$, e the components of v in that $P=D v_{x}, Q=D v_{y,}, R=D v_{z}$ are the components of F. a comparison of (21) (20^{\prime}). ($20^{\prime \prime}$) shows that the integrals of $-\hat{c} D / \hat{c} t$ and div F are dhatys ermal, and hence the integrands,

$$
-\frac{\hat{i} I)}{\hat{c} t}=\frac{i P}{i, x}+\frac{\hat{i} Q}{\hat{c} y}+\frac{i L_{i}}{i z}=\frac{\hat{i} D e_{\cdot}}{\hat{c} x}+\frac{\hat{i} I e_{y}}{\hat{c} y}+\frac{\hat{i} I e_{z}}{\hat{c} z},
$$

are equal ; that is. the smm $P_{x}^{\prime}+\ell_{n}^{\prime}+R_{z}^{\prime}$ represents the rate of diminution of demsity when $\mathrm{i}^{\prime}+\mathrm{j} Q+\mathrm{k} R$ is the flux vectur: this combination is called the divergence of the rector. no matter what the vector F really represents.
139. Not only may a surface integral he stepped up to a rolume integral, hut a line integral aromed a closed curve may he steppeed up into a surface integral over a surface which spans the curve. To begin
with the simple case of a line integral in a plane, note that by the same reasoning as above

$$
\begin{align*}
& \int_{0} P d x=\iint-\frac{\hat{c} P}{\hat{c} y} d x d y, \quad \int_{0} Q d y=\iint \frac{\hat{c} Q}{\hat{c} y^{\prime}} d x d y \tag{22}\\
& \int_{0}[P(x, y) d x+Q(x, y) d y]=\iint\left(\frac{\hat{c}(\ell}{\bar{c} x}-\frac{\hat{c} P}{\hat{c} y}\right) d x d y
\end{align*}
$$

This is sometimes called Green's Lemma for the plane in distinction to the general Green's Lemma for space. The opposite signs must be taken to preserve the direction of the line integral about the contour. This result may be used to establish the rule for transforming a double integral by the change of variable $x=\phi\left(u, c^{\circ}\right)$, $y=\psi(l, c)$. For

$$
\begin{aligned}
& A=\int_{0} x d y= \pm \int_{0} x \frac{\hat{c} y}{\partial u} d u+x \frac{\hat{c}!}{\hat{c}} d x \\
& = \pm \iint\left[\frac{\partial}{\partial_{u \prime}}\left(x \frac{\hat{\partial}_{I \prime}}{\partial_{r}}\right)-\frac{\partial}{\partial_{c}}\left(x \frac{\hat{\partial}_{I \prime}}{\partial_{u \prime}}\right)\right] d u d c . \\
& = \pm \iint\left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial_{x} x}{\partial v} \frac{\partial y}{\partial u}\right) d u d v \\
& \left.= \pm \iint J\left(\frac{x,!}{u, c^{\prime}}\right) d u d v=\iint|J| r \right\rvert\, u d c .
\end{aligned}
$$

(The double signs have to le introduced at first to allow for the case where J is negative.) The element of area $d A=|J|$ dud is therefore established.

To obtain the formula for the conversion of a line integral in spare to a surface integral, let $P^{\prime}\left(, r^{\prime}, y, z\right)$ be given and let $z=f^{\prime}\left(x^{\prime}, y\right)$ be a surfare spaming the closed curce O. Then by virtue of $\because=f^{\prime}\left(y^{\prime}, y\right)$, the function $I^{\prime}\left(x^{\prime}, y, a\right)=I_{1}^{\prime}(, x, y)$ and

where O^{\prime} denotes the projection of O on the $.4 y$-plane. Now the final donhle integral may he transformed by the introduction of the eosines of the normal direction to $::=f^{\prime}(, \cdot,, y)$.
$\cos \beta: \cos \gamma=-\boldsymbol{f}: 1, \quad d x d y=\cos \gamma d S, \quad q^{2} d x d y=-\cos \beta d s=-d x d z$.

If this result and those obtained by permuting the letter's be added,

$$
\begin{align*}
& \int_{0}(P d x+(z d y+I \cdot d z) \\
& \quad=\iint\left[\left(\frac{\hat{c} R}{\bar{c}!y}-\frac{\hat{c} Q}{\bar{c}:}\right) d y l_{i z}+\left(\frac{\hat{c} P}{\hat{c} z}-\frac{\hat{c} R}{\bar{c} x}\right) d x d z+\left(\frac{\hat{c} Q}{\hat{c} \cdot x^{\prime}}-\frac{\hat{c} P}{\partial y}\right) d x d y\right] . \tag{23}
\end{align*}
$$

This is known as stopess Fonmmlan and is of especial importance in hydromerchanics and the theory of electromagnetism. Note that the line integral is carried around the rim of the surface in the direction which appears positive to one standing upon that side of the surface over which the surface integral is extended.

Again the vector interpretation of the result is valuable. Let

Then

$$
\begin{equation*}
\int_{0} \mathrm{~F} \cdot / \mathrm{r}=\int \cdot \mathrm{rlrl} \mathrm{~F} \cdot\left\|\mathrm{~S}=\int \Gamma \times \mathrm{F} \cdot\right\| \mathrm{I}, \tag{2.4}
\end{equation*}
$$

where $\Gamma \times F$ is the symbolic vector product of Γ and $F(E x .9$, helow), is the form of stokes's Formula; that is, the line integral of a vector aromud a closed curve is equal to the surfane integral of the curl of the vector, as defined hy (24), around any surface which spans the curve. If the line integral is zero about every closed curve, the surface integral must ranish over every surface. It follows that and $\mathrm{F}=0$. For if the vector curl F falled to vanish at any joint. a small phane surface "IS per ${ }^{\text {pendicular to the vertor might he taken at that point and }}$ the integral over the surfare would be approximately \mid (en $\mathrm{l} \mathrm{F} \mid$ ds and would fall to vanish, - thans rontradieting the hypothesis. Now the vanishing of the vertor croll F reduires the vanishing

$$
l_{y}^{\prime}-Q_{z}^{\prime}=0, \quad P_{z}^{\prime}-l_{x}^{\prime}=0, \quad Q_{x}^{\prime}-I_{y}^{\prime}=0
$$

of earh of its components. Thus may be derived the condition that

If \mathbf{F} be interpreted as the velucity \mathbf{v} in a fluid. the integral

$$
\int \mathrm{v} \cdot \mathrm{dr}=\int r_{x} d x+r_{y} d y+r_{z} d z
$$

of the component of the velocity ahong a curve, whether open or closerd. is called the circulation of the Huil along the enrve; it might be more natural to define
the integral of the flux $I \mathrm{v}$ along the cure as the circulation，but this is not the convention．Now if the velocity be that due to rotation with the angular veloc－ ity a about a line throngh the orisin，the circulation in a cloned curve is readily computed．For

$$
\mathrm{v}=\mathbf{a} \times \mathrm{r} . \quad \int_{0} \mathrm{v} \cdot l \mathrm{lr}=\int_{0} \mathbf{a} \times \mathrm{r} \cdot d \mathrm{r}=\int_{0} \mathrm{a} \cdot \mathrm{r} \times d \mathrm{r}=\mathbf{a} \cdot \int_{0} \mathrm{r} \times l \mathrm{r}=2 \mathbf{a} \cdot \mathrm{~A}
$$

The circulation is therefore the product of twice the angular velocity and the area of the surface inclosed by the curve．If the circnit be taken indefinitely small，the integral is 2 a．dS and a comparison with（23＇）shows that curl $\mathbf{v}=2 \mathbf{a}$ ；that is．the curl of the velocity due to rotation about an axis is twice the angular velocity and is constant in magnitude and direction all over space．The seneral motion of a fluid is not one of miform rotation about any axis；in fact if a small element of flud lee considered and an interval of time ot be allowed to elapse，the element will have moved into a new position，will have been somewhat deformed owing to the motion of the flnis，anl will have been somewhat rotated．The vector curl \mathbf{v} ． as defined in（24），may be show th give twice the instantaneons angular velocity of the element at each point of space．

EXERCISES

1．Find the areas of the following surfaces：
（cx）cylinder $x^{2}+y^{2}-a x=0$ included by the phere $x^{2}+y^{2}+z^{2}=u^{2}$ ，
（ β ）$x / u+y / b+z / r=1$ in first setant，（ γ ）$x^{2}+y^{2}+z^{2}=u^{2}$ above $r=u$ cos $u \phi$.
（ δ ）sphere $x^{2}+y^{2}+z^{2}=u^{2}$ above a spuare $|x \leqq b| y \leqq b<.\frac{1}{2} \backslash 2$ 。
（ ϵ ）$z=x y$ over $x^{2}+y^{2}=u^{2} . \quad$（ら） $2 a z=x^{2}-y^{2}$ over $r^{2}=u^{2} \cos \phi$ ．
（ η ）$z^{2}+(\cos \alpha+y \sin \alpha)^{2}=u^{2}$ in first octant．$\quad(\theta) z=x y$ over $r^{2}=\cos 2 \phi$ ．
（ 1 ）cylinder $x^{2}+y^{2}=u^{2}$ intercepted log equal cylinder $y^{2}+z^{2}=u^{2}$ ．
2．Comphte the following superficial averages：
(α) latitude of places north of the erpuator．
Alns． 327^{70} ．
（ β ）mdinate in a right cirenar come $h^{2}\left(x^{2}+y^{2}\right)-a^{2}(z-h)^{2}=0$ ．
（ γ ）illmination of a hollow sherical surface ly a lisht at a puint of it．
（ δ ）iltumination of a hemispherical surfate ly a distant light．
（ ϵ ）rectilinear distance of points moth of equator from north pele．
3．A thenem of fatpus：If a clused or open plane curve be resolvod about an axis in its phane the area of the surface generated is erpal the the pronuct of the lenoth of the curve by the distane described by the center of gravity of the curve． The curve shall mot ont the axis．l＇rose either analytically or ly infinitesimal analysis．Apply to varions figures in which two of the three f⿴囗十⺝刂灬tites．length of chre，area of surface．pesition of center of gravity，are known，to find the third． （＇mmare Ex．27．1，33：

4．The surface integrals are to be evalnated over the closed surfaces by express－ ing them as whume interrals．Try also direct calculation ：
（ix） $\iint\left(x^{2} d y d z+x y d x d y+x z d\right.$ ridz）wer the spherical surface $x^{2}+y^{2}+z^{2}=u^{2}$ ．
（3） $\iint\left(x^{2}, l y d z+y^{2} d x d z+z^{2} d x l y\right)$ ，cylimbrical surface $, x^{2}+y^{2}=u^{2}, \quad z= \pm h$ ．
$(\gamma) \iint\left[\left(x^{2}-y z\right) d y d z-2 x y d x d z+d x d y\right]$ over the cube $0 \leqq x, y, z \leqq a$,
(δ) $\iint x d y d z=\iint y d d r d z=\iint z \cdot d x d y=\frac{1}{3} \iint(x d y d z+y d x d z+z d x d y)=\mathrm{I}^{r}$,
(ε) Calculate the line interrals of Ex. 8, p. 297, around a closed path formed by two paths there given, by applying Green's Lemma (22) and evaluating the resulting clouble integrals.
5. If $x=\phi_{1}(u, x), y=\phi_{2}(u, x), z=\phi_{3}(u, v)$ are the parametric equations of a surface, the direction ratios of the normal are (see Ex. 15, p. 135)

$$
\cos \alpha: \cos \beta: \cos \gamma=J_{1}: J_{2}: J_{3} \quad \text { if } \quad J_{i}=J\left(\frac{\phi_{i+1}, \phi_{i+2}}{u, v}\right)
$$

Show 1° that the area of a surface may be written as
$s=\iint \frac{\sqrt{J_{1}^{2}+J_{2}^{2}+J_{3}^{2}}}{\left|J_{3}\right|} d c d y=\iint \sqrt{J_{1}^{2}+J_{2}^{2}+J_{3}^{2}} d u d v=\iint \sqrt{E G-F^{2}} d u d v$, where

$$
E=\sum\left(\frac{\hat{c} \phi_{i}}{\hat{c} u}\right)^{2}, \quad G=\sum\left(\frac{\hat{c} \phi_{i}}{\hat{c} v}\right)^{2}, \quad F=\sum \frac{\hat{c} \phi_{i} \hat{c} \phi_{i}}{\hat{c} u} \frac{\hat{c} v}{}
$$

and

$$
d s^{2}=E d u^{2}+2 F d u d u+\left(i d c^{2}\right.
$$

Show \geq^{3} that the surface integral of the first type becomes merely

$$
\iint f(x, y, z) \sec \gamma\left(l_{d} d y=\iint f\left(\phi_{1}, \phi_{2}, \phi_{3}\right) \sqrt{E G-F^{*}} d u d x\right.
$$

and determine the inteqrand in the case of the developable surface of Ex. 17, p. 143.
Show 3° that if $x=f_{1}^{\prime}(\xi, \eta, \zeta), y=f_{2}(\xi, \eta, \zeta), z=f_{3}(\xi, \eta, \zeta)$ is a transformation of space which transforms the abore surface into a new surface $\xi=\psi_{2}(u, v), \eta=\psi_{2}(u, v)$, $\zeta=\psi_{3}(u, v)$, then

$$
J\left(\frac{x, y}{u, v}\right)=J\left(\frac{x, y}{\xi, \eta}\right) J\left(\frac{\xi \cdot \eta}{u, v}\right)+J\left(\frac{x \cdot y}{\eta \cdot \zeta}\right) \cdot J\left(\frac{\eta \cdot \xi}{\prime \cdot \cdot}\right)+J\binom{r \cdot \eta}{\zeta \cdot \xi} \cdot J\left(\frac{\zeta \cdot \xi}{u, v}\right) .
$$

Show 4° that the surface integral of the second type hecomes

$$
\begin{aligned}
\iint l i d x d y & =\iint R J\left(\frac{x, y}{u, v}\right) d u d v \\
& =\iint R\left[J\left(\frac{x \cdot y}{\eta \cdot \zeta}\right) d \eta l \zeta+J\left(\frac{x \cdot \eta}{\zeta \cdot \xi}\right) d \zeta d \xi+J\left(\frac{x \cdot \eta}{\xi, \eta}\right) d \xi d \eta\right]
\end{aligned}
$$

where the integration is now in terms of the new variables ξ, η, ζ in place of x, y, z.
Show 5° that when $R=z$ the domble integral above may be transformed by Green": Lemma in such a manner as to estahlish the formula for change of variables in triple integrals.
6. Show that for vector surface integrals $\int_{0} L d S=\int \Gamma C d V$.
7. Solid angle as a surface integral. The area cut out from the mit sphere by a cone with its vertex at the center of the sphere is called the solid angle ω subtember at the vertex of the come. The solid angle may also be defined as the ration of the area cut out upon any sphere concentric with the vertex of the cone. the stuare of the radius of the sphere (compare the definition of the angle between two lines
in radians），Show geometrically（eompare Ex，16， $1,2,27$ ）that the infinitesimat solid angle $d \omega$ of the enne which joins the origin $r=0$ to the periphery of the element $d s$ of a surface is $d \omega=\cos (r, n) d 心 r^{2}$ ，where (r, n) is the angle between the radius produced ant the outward normal to the surface．Hence show

$$
\omega=\int \frac{\operatorname{ces}(r, n)}{r^{2}} d 心=\int \frac{\mathrm{r} \cdot d \mathrm{~S}}{r^{3}}=\int \frac{1}{r^{2}} \frac{d r}{d n} d s=-\int \frac{d}{d n} \frac{1}{r} d s=-\int d \mathrm{~S} \cdot \Gamma \frac{1}{r}
$$

where the integrals extend wers a surface，is the solid angle subtented at the origin by that surface．Infer further that

$$
-\int_{0} \frac{d}{d n} \frac{1}{r} d 心=4 \pi \quad \cdots \quad-\int_{0} \frac{d}{d n} \frac{1}{r} d 心=0 \quad \omega^{r}-\int_{0} \frac{d}{d n} \frac{1}{r} d x=\theta
$$

ancording as the point $r=0$ is within the elosed surface or outside it or mon it at a point where the tanernt planes envelop）a come of solid angle θ（usually 2π ）． Note that the fomma may be apmied at any mont（ ξ, η, ζ ）if

$$
r^{2}=(\xi-x)^{2}+(\eta-y)^{2}+(\zeta-z)^{2}
$$

where (x, y, z) is a point of the surface．
8．Gousss．s Integrol．Suppose that at $r=0$ there is a particle of mass m which attroets accombing to the Newtonian Law $F=m / r^{2}$ ．Shew that the potential is $V^{*}=-m / r$ so that $F=-\Gamma I^{*}$ ．The induction om flux（see Ex． 19 ． 1．308）of the feree F outwarl across the element a S of a surface is by definition $-F \cos (F, n) d s=\mathrm{F} \cdot d \mathrm{~S}$ ．Show that the total induction or mlux of F across a surface is the surface integral

$$
\int \mathrm{F} \cdot d \mathbf{S}=-\int 1 \mathrm{~S} \cdot \Gamma 1^{+}=-\int \frac{11}{1 \ln } d x=m \int 1 \mathbf{S} \cdot \Gamma \frac{1}{r}
$$

and

$$
m=\frac{-1}{4 \pi} \int_{0} \mathrm{~F} \cdot d \mathrm{~S}=\frac{1}{4 \pi} \int_{0} d \mathrm{~S} \cdot \Gamma \mathrm{r}=-1 \int \frac{d}{4 \pi} \frac{m}{d n} \frac{-1}{r}
$$

Where the surface integral extemels ower a surface surombling a point $r=0$ ，is the formula for obtaning the mass m within the surfare fron the field of force F whicll is set up，by the mass．If there are several masses m_{1}, m_{2}, \ldots situated at points $\left(\xi_{1}, \eta_{1}, \zeta_{1}\right),\left(\xi_{2}, \eta_{2}, \zeta_{2}\right), \cdots$ let

$$
\begin{aligned}
\mathrm{F} & =\mathrm{F}_{1}+\mathrm{F}_{2}+\cdots \quad \quad \mathrm{V}^{2}=\mathrm{T}_{1}+\mathrm{T}_{2}+\cdots \\
\mathrm{T}_{i} & =-m\left[\left(\xi_{i}-x_{i}\right)^{2}+\left(\eta_{i}-\mu_{i}\right)^{2}+\left(\zeta_{i}-z_{i}\right)^{2}\right]^{-\frac{1}{2}}
\end{aligned}
$$

be the forer and potential at (x, y, z) due to the masses．Show that

Where ジ extends orer all the masers ant ご がer all the mases within the surface （none being on it），wives the thal mass V within the surface．The intergal（25） which erves the mass within a smfate as a surface intergal is known as Ganss＇s Interral．If the foree were repulsive（as in edectricity and matretism）instead of attracting（as in gravitation）．the results wombler br $=m / r$ and

$$
\frac{1}{4 \pi} \int_{0} \mathrm{~F} \cdot d \mathrm{~S}=\frac{-1}{4 \pi} \int^{1} d \mathrm{~S} \cdot \Gamma V^{-1}=-\frac{1 \pi}{d} \int_{d n r_{i}}^{m_{i}} d \cdot=\sum^{\prime} m_{i}=M
$$

9. If $\nabla=\mathbf{i} \frac{\hat{c}}{\hat{c} x}+\mathbf{j} \frac{\partial}{\hat{c} y}+\mathbf{k} \frac{\partial}{\partial z}$ be the operator defined on page 172 , show

$$
\nabla \cdot \mathrm{F}=\frac{\hat{c} P}{\hat{\partial} x}+\frac{\hat{c} Q}{\hat{c} y}+\frac{\hat{c} R}{\hat{c} z}, \quad \nabla \times \mathbf{F}=\mathrm{i}\left(\frac{\hat{c} R}{\hat{c} y}-\frac{\hat{c} Q}{\hat{c} z}\right)+\mathrm{j}\left(\frac{\hat{c} P}{\hat{c} z}-\frac{\hat{c} R}{\hat{c} x}\right)+\mathbf{k}\left(\frac{\hat{c} Q}{\hat{c} x}-\frac{\hat{c} P}{\hat{c} y}\right)
$$

by formal operation on $\mathrm{F}=1 \mathrm{i}+(2 \mathrm{j}+R \mathrm{k}$. Show further that

$$
\begin{gathered}
\nabla \times \nabla U=0, \quad \nabla \cdot \nabla \times F=0, \quad(\Gamma \cdot \Gamma)(*)=\left(\frac{\hat{c}^{2}}{\hat{c} x^{2}}+\frac{\hat{\imath}^{2}}{\hat{c} y^{2}}+\frac{\hat{c}^{2}}{\hat{c} z^{2}}\right)(*), \\
\nabla \times(\nabla \times \mathbf{F})=\nabla(\nabla \cdot \mathbf{F})-(\nabla \cdot \Gamma) \mathbf{F} \quad \text { (write the Cartesian form). }
\end{gathered}
$$

Show that $(\Gamma \cdot \Gamma) U=\nabla \cdot(\nabla U)$. If u is a constant unit vector, show

$$
(u \cdot \nabla) \mathbf{F}=\frac{\hat{c} \mathbf{F}}{\hat{c} x} \cos \alpha+\frac{\hat{\imath} \mathbf{F}}{\hat{c} y} \operatorname{arcs} \beta+\frac{\hat{c} \mathbf{F}}{\hat{c} z} \cos \gamma=\frac{d \mathbf{F}}{d s}
$$

is the directional derivative of \mathbf{F} in the direction \mathbf{u}. Show $(d r \cdot \nabla) \mathbf{F}=d \mathbf{F}$.
10. Green's Formula (space). Let $F(x, y, z)$ and $G(x, y, z)$ be two functions so that ∇F^{\prime} and ∇G become two vector functions and $F \nabla G$ and $G \nabla F$ two otlier vector functions. Show

$$
\Gamma \cdot(F \nabla G)=\nabla F \cdot \nabla G+F \nabla \cdot \Gamma G, \quad \Gamma \cdot(G \nabla F)=\Gamma F \cdot \Gamma(\dot{H}+G \Gamma \cdot \nabla F,
$$

or

$$
\begin{aligned}
\frac{\hat{c}}{\hat{c} x}\left(F \frac{\hat{c} G}{\hat{c} x}\right)+\frac{\hat{c}}{\hat{c} y} & \left(F \frac{\hat{c} G}{\hat{c} y}\right)+\frac{\hat{c}}{\hat{c} z}\left(F \frac{\hat{c} G}{\hat{c} z}\right) \\
& =\frac{\hat{c} F \hat{c} G}{\hat{c} x} \frac{\hat{c} x}{\hat{c} x}+\frac{\hat{c} F}{\hat{c} y} \frac{\hat{c} y}{\hat{y}}+\frac{\hat{c} F}{\hat{c} z} \frac{\hat{c} G}{\hat{c} z}+F\left(\frac{\hat{c}^{2} G}{\hat{c} x^{2}}+\frac{\hat{c}^{2} G}{\hat{c} y^{2}}+\frac{\hat{c}^{2}(\hat{i}}{\hat{c} z^{2}}\right),
\end{aligned}
$$

and the similar expressions which are the Cartesian equivalents of the above vector forms. Apply Green's Lemma or Ganss's Formula to show

$$
\begin{align*}
& \int_{0} F\left\ulcorner G \cdot d \mathbf{S}=\int \nabla F \cdot \nabla G d l^{\top}+\int F \Gamma \cdot \Gamma G d V^{\top},\right. \tag{26}\\
& \int_{0} G \nabla F \cdot d \mathrm{~S}=\int \Sigma F \cdot \nabla G d V+\int G \nabla \cdot \nabla F d V, \\
& \int_{0}(F \nabla G-G \nabla F) \cdot l \mathrm{~S}=\int(F \nabla \cdot \nabla G-G \nabla \cdot \nabla F) d \Gamma, \\
& \text { or } \int_{0} F \frac{d G}{d n} d s=\int\left(\frac{\hat{\partial} F}{\hat{c} x} \frac{\hat{c} G}{\hat{c} x}+\frac{\hat{\partial} F}{\hat{c} y} \frac{\hat{c} G}{\hat{c} y}+\frac{\hat{c} F}{\hat{c} z} \frac{\hat{\partial} G}{\hat{\partial} z}\right) d V+\int F\left(\frac{\hat{c}^{2} G}{\hat{c} x^{2}}+\frac{\hat{\lambda}^{2} G}{\hat{c} y^{2}}+\frac{\hat{c}^{2} G}{\hat{\partial} \bar{z}^{2}}\right) d V \text {, } \\
& \int 0\left(F \frac{d G}{d n}-G \frac{d F}{d n}\right) d S=\int\left[F\left(\frac{\hat{c}^{2} G}{\hat{c} x^{2}}+\frac{\hat{\imath}^{2} G}{\hat{c} y^{2}}+\frac{\hat{t}^{2} G}{\hat{c} z^{2}}\right)-G\left(\frac{\hat{c}^{2} F}{\hat{c} s^{2}}+\frac{\hat{c}^{2} F}{\hat{c} y^{2}}+\frac{\hat{c}^{2} F}{\hat{c} z^{2}}\right)\right] d r .
\end{align*}
$$

The formulas (26), (26'), (26") are known as Green's Formulus; in particular the first two are asymmetric and the third symmetric. The ordinary Cartesian forms of (26) and (26") are given. The expression $\hat{\iota}^{2} F / \hat{\imath} x^{2}+\hat{\iota}^{2} F / \hat{c} y^{2}+\hat{\iota}^{2} F / \hat{c} z^{2}$ is often written as ΔF for brevity ; the vector form is $\nabla \cdot \nabla F$.
11. From the fact that the integral of $F \cdot d r$ has opposite values when the enrve is traced in opposite directions, show that the integral of $\bar{F} \times \mathbf{F}$ over a closed surface vanishes and that the integral of $\nabla \cdot \nabla \times F$ over a volmme vanishes. Infer that $\nabla \cdot \nabla \times F=0$.
12. Retuce the integral of $\Gamma \times \Gamma C^{*}$ over any (open) surface to the difference in the values of C^{\prime} at two same points of the bounding curve. Hence infer $\Gamma \times \Gamma \mathcal{C}^{*}=0$.
13. Comment on the remark that the line integral of a vector. integral of Fodr. is around a curve and along it. whereas the surface integral of a vectur. integral of FodS. is over a surface but through it. Compare Ex. 7 with Ex. 16 of p. 2! 7 . In particular give vector forms of the integrals in Ex. 16. p. 297. analusurs th thene of Ex. 7 by using as the element of the curve a normal dn equal in length to dr, instead of $d r$.
14. If in $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$, the functions P. Q depend only on x, y and the function $R=0$, apply Gauss's Formula to a cylincler of unit height upon the $x y$-plane to show that

$$
\int \Gamma \cdot \mathbf{F} d \mathrm{~V}^{\prime}=\int \mathrm{F} \cdot d \mathbf{S} \text { becomes } \iint\left(\frac{\hat{c} P}{\hat{c} x}+\frac{\hat{c} Q}{\hat{c} y}\right) d x d y=\int \mathrm{F} \cdot d \mathrm{n} .
$$

where $d \mathrm{n}$ has the meaning given in Ex. 13. Show that mmerically F • ln and $\mathrm{F} \times \mathrm{d} \mathrm{dr}$ are equal, and thus obtain Green's Lemma for the plane (22) as a special case of (20). Derive Green"s Formula (Ex. 10) for the plane.
15. If $\int \mathbf{F} \cdot d \mathbf{r}=\int \mathrm{G} \cdot d \mathbf{S}$, show that $\int(\mathrm{G}-\Gamma \times \mathbf{F}) \cdot d \mathbf{S}=0$. Hence infer that if these relations hold for every surface and its bounding curve. then $G=\Gamma \times F$. Ampere"s Law states that the integral of the magnetic force \mathbf{H} about any cireuit is equal to 4π times the flux of the electric current C through the circuit. that is, through any surface spanning the circuit. Faralay"s Law states that the integral of the electromotive force \mathbf{E} around any cirenit is the negative of the time rate of flux of the magnetic induction B through the cirenit. Phrase these laws as integrals and convert into the form

$$
4 \pi \mathrm{C}=\text { curl } \mathrm{H} . \quad-\dot{\mathrm{B}}=\operatorname{curl} \mathrm{E} .
$$

16. By formal expansion pove $\Gamma \cdot(\mathbf{E} \times \mathbf{H})=\mathbf{H} \cdot \Gamma \times \mathbf{E}-\mathbf{E} \cdot \Gamma \times \mathbf{H}$. $A \times$ ume $\Gamma \times \mathbf{E}=-\dot{\mathrm{H}}$ and $\Gamma \times \mathrm{H}=\dot{\mathrm{E}}$ and estamish Poynting's Theorem that

$$
\int(\mathrm{E} \times \mathrm{H}) \cdot l \mathrm{~S}=-\frac{\hat{c}}{\hat{c}} \int \frac{1}{2}(\mathrm{E} \cdot \mathrm{E}+\mathrm{H} \cdot \mathrm{H}) d \mathrm{~T}^{r}
$$

17. The " equation of continuity ${ }^{\text {en for flus motion is }}$

$$
\frac{\hat{} D}{\hat{c} t}+\frac{\hat{i} I r_{r}}{\hat{c} x}+\frac{\hat{i} I r_{y}}{\hat{c} y}+\frac{\hat{i} I r_{z}}{\hat{c} z}=0 \quad \text { Or } \quad(l \mid)+D\left(\begin{array}{c}
\hat{c} r_{r} \\
\hat{i} r
\end{array}+\frac{\hat{i} r_{n}}{\hat{i} y}+\frac{\hat{c} r_{z}}{\hat{i} z}\right)=0 .
$$

where I) is the density, $\mathrm{v}=\mathrm{i} c_{x}+\mathrm{j} c_{y}+\mathrm{k} c_{z}$ is the volocity. (il)/et is the rate of change of the demsity at a print. and $(J) /$ dt is the rate of chame of density as one moves with the fluid (Ex. 14. p. 101). Explain the meanine of the eduation in view of the work of the text. Show that for fluids of constant density $\Gamma \cdot v=0$.
18. If f denotes the acceleration of the particles of a fluin. and if F is the external foree acting per mit mass upon the elements of fluid. and if f, lemotes the pressure in the flum, show that the equation of motion for the fluid within any surface may be written as

$$
\sum \mathrm{f} D d \mathrm{~T}^{-}=\sum \mathrm{F} D \mathrm{H}^{-}-\sum p d \mathrm{~S} \quad \text { or } \quad \int \mathrm{f} I d \mathrm{~V}^{-}=\int \mathrm{F} M d \mathrm{~V}^{-}-\int p d \mathbf{S}
$$

where the summations or integrations extend over the volume or its bounding surface and the pressures (except those acting on the bom ling surface inward) may be disregardet. (See the first half of $\$ 80$.)
19. By the aid of Ex. 6 transform the surface integral in Ex. 18 and find

$$
\left.\int D \mathrm{f} d V^{r}=\int(I) \mathrm{F}-\nabla p\right) d V^{r} \text { or } \frac{d^{2} \mathrm{r}}{d t^{2}}=\mathrm{F}-\frac{1}{D} \Gamma p
$$

as the equations of motion for a fluid, where r is the vector to any particle. Prove

$$
\begin{aligned}
& (\gamma) \frac{d^{2} \mathrm{r}}{d t^{2}}=\frac{d \mathrm{v}}{d t}=\frac{\hat{\mathrm{v}}}{\hat{c} t}+(\mathrm{v} \cdot \Gamma) \mathrm{v}=\frac{\hat{\mathrm{v}}}{\bar{c} t}-\mathrm{v} \times \Gamma \times \mathrm{v}+\frac{1}{2} \Gamma(\mathrm{v} \cdot \mathrm{v}), \\
& \text { (}) \frac{d}{d t}(d \mathrm{r} \cdot \mathrm{v})=d \mathrm{r} \cdot \frac{d \mathrm{v}}{d t}+l^{d \mathrm{r}} \cdot \frac{\mathrm{r}}{d t} \cdot \mathrm{v}=d \mathrm{r} \cdot \frac{d^{2} \mathrm{r}}{d t^{2}}+\frac{1}{2} d(\mathrm{v} \cdot \mathrm{v}) .
\end{aligned}
$$

20. If F is terivable from a potential, so that $\mathrm{F}=-\Gamma \zeta^{\text {. }}$, and if the density is a function of the pressure, so that $d_{p} / D=d I^{\prime}$, show that the equations of motion are

$$
\frac{\hat{c} \mathbf{v}}{\partial t}-\mathbf{v} \times \Gamma \times \mathbf{v}=-\Gamma\left(U+P+\frac{1}{2} r^{2}\right), \text { or } \frac{d}{d t}(\mathbf{v} \cdot d \mathbf{r})=-a\left(U+P^{P}-\frac{1}{2} r^{2}\right)
$$

after multiplication by dr. The first form is INelmholtz's, the second is Felvin's. Show

$$
\int_{n, b, c}^{x, y, z} \frac{d}{d t}(\mathbf{v} \cdot d \mathbf{r})=\frac{d}{d t} \int_{n, b, c}^{x, y, z} \mathbf{v} \cdot d \mathbf{r}=-\left[U^{-}+P-\frac{1}{2} r^{2}\right]_{a, b, c}^{x, h, z} \text { ant } \int_{0} \mathbf{v} \cdot d \mathbf{r}=\text { const. }
$$

In particular explain that as the differentiation d/at follows the particles in their motion (in eontrast to \bar{f} / \bar{t}. which is executed at a single pmint of space). the integral must do so if the order of differentiation anl integration is to be interchangeable. Interpret the fimal equation as stating that the circulation in a curve whieh mover with the fluid is constant.
21. If $\frac{\hat{z}^{2} U^{V}}{\hat{c} y^{2}}+\frac{\hat{c}^{2} U^{2}}{\hat{c} y^{2}}+\frac{\hat{c}^{2} U}{\hat{c} z^{2}}=0$, show $\int\left[\left(\frac{\hat{c} U^{*}}{\hat{c} x}\right)^{2}+\left(\frac{\hat{c} C^{2}}{\hat{c} y}\right)^{2}+\binom{\hat{c} V^{2}}{\hat{c} z}^{2}\right] d V^{v}=\int_{0} L^{-d U^{2}} d x$.
22. Show that, apart from the proper restrictions as to continuity and differentiability, the necessary and sufficient condition that the surface integral

$$
\iint P d y d z+\left(x d z d x+\operatorname{li} d x d y=\int_{0} p d x+q^{\prime} d y+r d z\right.
$$

depends nuly on the curve bomming the surface is that $P_{s}^{\prime}+Q_{y}^{\prime}+R_{z}^{\prime}=0$. Show further that in this case the surface inteqral reduces to the line integral given above. provided p, q, r are such functions that $r_{y}^{\prime}-q_{z}^{\prime}=P$. $p_{z}^{\prime}-r_{x}^{\prime}=\left(\ell . q_{r}^{\prime}-p_{y}^{\prime}=I\right.$. Show finally that these elifferential equations for po q. r may be satisfied by

$$
p=\int_{z_{0}}^{z}\left(\mu l z-\int l i\left(x . y . z_{0}\right) d y . \quad y=-\int_{z_{0}}^{z} I d z, \quad r=0 ;\right.
$$

and determine ber insection altmative values of p, q, r.

CILAPTER XIII

ON INFINITE INTEGRALS

140. Convergence and divergence. The definite integral, and hence for theoretical proposes the indefinite integral, has been defined,

$$
\int_{a}^{b} f(\cdot x) d x, \quad F(x)=\int_{a}^{x} f(\cdot, r) d x,
$$

when the function $f(x)$ is limital in the interval " to b, or a to x; the proofs of various propositions have depended essentially on the fact that the integrourd remoined finite orea the finite interwel of integretion ($\$ 16-17,28-30$). Nevertheless problems which call for the determination of the area between a curve and its asymptote, say the area under the witeh or cissoid,

$$
\int_{-\infty}^{+\infty} \frac{8 u^{3} \mu, r^{r}}{x^{2}+4 u^{2}}=\left.4 u^{2} \tan ^{-1} \frac{x}{2 u}\right|_{-\infty} ^{+\infty}=4 \pi u^{2}, \quad 2 \int_{0}^{2 n} \frac{x^{\frac{3}{2}} l_{1}}{\sqrt{2}{ }^{\prime \prime}-x}=3 \pi u^{2}
$$

have arisen and have been treated as a matter of course.* The integrals of this sort require some special attention.

When the intregremel of " detinite integoral becomes infinite within or at the extermitios of the intererl of intergoration, ore when we or both of the limits of integrertion berome infinite, the intergral is ralled an infinite integreal and is definere, not as the limit of es sum, but as the limit of "n integrenl athe a variulle limit, that is, as the limit of a function. Thus

$$
\begin{array}{ll}
\int_{a}^{\infty} f(x) d x=\lim _{x=x}\left[F^{\prime}\left(x^{\prime}\right)=\int_{a}^{x} f\left(x^{x}\right) d x\right], & \text { infinite upper limit, } \\
\int_{a}^{b} f\left(x^{x}\right) d x=\lim _{x \neq b}\left[F\left(x^{x}\right)=\int_{a}^{x} f\left(\cdot x^{\prime}\right) d x\right], & \text { integrand } f\left(l_{1}\right)=\infty .
\end{array}
$$

These definitions may be ilhstrated by figures which show the comecetion with the idea of area between a curve and its asymptote. Similar definitions would be given if the lower limit were - ∞ or if the integrand became infinite at,$r=\pi$. If the integland were infinite at some intermediate peint of the interval, the interval would be subdivided into two intervals and the definition would be appled to each part.

[^32]Now the behavior of $r(x)$ as r approaches a definite value or becomes infinite may le of three distinct sorts ; for $F(r)$ may approach a definite finite quantity, or it may berome infinite, or it may oscillate without approaching any finite quantity or becoming definitely infinite. The examples

$$
\begin{aligned}
\int_{0}^{\infty} \frac{8 u^{3} d_{2}}{x^{2}+4 u^{2}} & =\lim _{x=\infty}\left[\int_{0}^{x} \frac{8 u^{3} d x^{x}}{x^{2}+4 u^{2}}=4 a^{2} \tan ^{-1} \frac{x^{x}}{2 a}\right]=2 \pi u^{2}, \text { a limit, } \\
\int_{1}^{\infty} \frac{d \cdot x}{x^{2}} & =\lim _{x=\infty}\left[\int_{1}^{\infty} \frac{d x}{x}=\log x\right], \text { becomes infinite, no limit, } \\
\int_{0}^{\infty} \cos x d x & =\lim _{x=\infty}\left[\int_{0}^{x} \cos x d x=\sin , r\right], \text { oscillates, no limit, }
\end{aligned}
$$

illnstrate the three modes of behavior in the case of an infinite upper limit. In the first case, where the limit rasts, the infinite integrol is said to comerege; in the other two cases, where the limit does not exist, the integral is said to direrge.

If the indefinite integral can be found as above, the question of the convergence or divergenee of an infinite intergal may be determined and the value of the integral may be obtained in the ease of convergente. If the indefinite integral cannot be found, it is of prime importance to know whether the detinite infinite integral converges or diverges; for there is little use trying to compute the value of the integral if it does not converge. As the infinite limits or the points where the integrand becomes infinite are the essentials in the discossion of infinite integrals, the integrals will be written with only one limit, as

$$
\int^{x} f^{\prime}(x) d x, \quad \int^{b} f^{\prime}(. r) d, r, \quad \int_{1 i} f^{\prime}\left(. x^{r}\right) d x .
$$

To discuss a more complicated combination, one would write

$$
\int_{0}^{\infty} \frac{r^{-x} d, r}{\sqrt{\cdot^{3}} \log , r}=\int_{0}^{\xi}+\int_{\xi}^{1}+\int_{1}^{\equiv}+\int_{\equiv} \frac{r^{-r} d, r}{\sqrt{\cdot r} \log , r},
$$

and treat all four of the infinite integrals

$$
\int_{0} \frac{r^{-x} / x}{\sqrt{x^{3}} \log x}, \quad \int^{1} \frac{r^{-r} d x}{\sqrt{x^{3}} \log x}, \int_{1} \frac{r^{-r} / l x}{\sqrt{x^{3}} \log , x}, \quad \int^{x} \frac{r^{-x} d x}{\sqrt{x^{3}} \log , x} .
$$

Now by defintion a function $E(x)$ is called an V-function in the neighborhood of the value $x=$ " when the function is eontinnons in the neighborhood of $r=0$ and approaches a limit which is neither \%ero nor infinite (1). (62). The berlereine of the infinite intergrets "f "fometion

Which does not change sign and of the prorlurt of that firn ition liy an E-fiunction arp illentiorl as fien as conerergence or divergener are concernel. Consider the proof of this theorem in a special case, namely,

$$
\begin{equation*}
\int^{\infty} f^{\prime}\left(\cdot r^{r}\right) d \cdot r, \quad \int^{\infty} f^{\prime}(x) E(\cdot r) d x, \tag{1}
\end{equation*}
$$

where $f(x)$ mat he assumed to remain positive for large values of ,r and $E(x)$ appromeles a positive linit as,r becomes infinite. Then if κ be taken suffiriently large, both $f(x)$ and $E\left(r^{r}\right)$ have become and will remain positive and finite. By the Theorem of the Mean (Ex. 5, 1. 29)

$$
m \int_{K^{\prime}}^{x} f\left(x^{\prime}\right) d x^{\prime}<\int_{K^{\prime}}^{x} f(x) E^{\prime}(x) d x^{x}<M \int_{K}^{x} f\left(x^{x}\right) l_{x^{x}}, \quad x>K
$$

where m and $I A$ are the minimum and maximm values of $E\left(r^{\prime}\right)$ between K and δ. Now let r become infinite. As the integrands are positive, the integrals must increase with x. Hence (1 . 35)
if $\int_{K}^{\infty} f(x) d x$ converges, $\int_{K^{n}}^{\infty} f(x) E\left(x^{x}\right) d, x<M \int_{K}^{\infty} f\left(x^{x}\right) d x$ converges,
if

$$
\begin{aligned}
& \int_{K}^{\infty} f(, r) E(x) d x \text { converges, }
\end{aligned}
$$

and divergence may be treated in the sane way. Honce the integrals (1) converge or diverge together. The same treatment tould be given for the case the integrand beeame intinite and for all the variety of hypotheses whirlh could arise muder the theorem.

This theorem is one of the most nseful and most easily applied for determining the convergence of divergence of an infinite integral with an integrand which does uot change sign. Thus consiler the ease
$\int_{\left(1 x+x+x^{2}\right)^{\frac{3}{2}}}^{\infty}=\int^{\infty}\left[\frac{x^{2}}{11 x+x^{2}}\right]^{\frac{3}{2}} \frac{d x}{x^{2}}, \quad E(x)=\left[\frac{x^{2}}{u\left(x+r^{2}\right.}\right]^{\frac{3}{2}}, \quad \int^{\infty} \frac{d x}{x^{2}}=-{ }^{1} r^{\infty}$.
Here a simple rearrangement of the integrand thenws it inte the product of a fumetion $E(x)$. which apmothes the limit 1 as \boldsymbol{f} beromes intinite, ant a function $1 / x^{2}$. the integration of which is posible. Hence by the the erem the original integral converqes. This eonld have beedn seem he intecrating the original interal: but the integration is not altogether short. Another case. in which the integration is not pessible. is

$$
\begin{gathered}
\int^{1} \frac{d x}{\sqrt{1-x^{4}}}=\int^{1} \frac{1}{\sqrt{1+x^{2}} \sqrt{1+x}} \frac{1 d x}{\sqrt{1-r}} \\
E(x)=\sqrt{1+r^{2}} \backslash 1+s
\end{gathered} \quad \int^{1} \frac{d l r}{\sqrt{1-x}}=-2 \sqrt{1-x}^{1} .
$$

Here $E(1)=\frac{1}{2}$. The integral is again convergent. A case of divergence would be

$$
\int_{0} \frac{d x}{\left(2 x-x^{2}\right)^{\frac{3}{2}}}=\int_{0} \frac{1}{(2-x)^{\frac{3}{2}}} \frac{d x}{x^{\frac{3}{2}}}, \quad E(x)=\frac{1}{(2-x)^{\frac{3}{2}}}, \quad \int_{0} \frac{d x}{x^{\frac{3}{2}}}=-\left.\frac{2}{\sqrt{x}}\right|_{0} .
$$

141. The interpretation of a definite integral as an area will suggest another form of test for convergence or divergence in case the integrand does not change sign. Consider two functions $f(x)$ and $\psi(x)$ both of which are, say, positive for large values of x or in the neighborhood of a value of a for which they become infinite. If the arere $y=\psi(x)$ remains whore $y=f(x)$, the integral of $f(x)$ must fonnerepe if the integron uf $\psi(, r)$ femererges, "nnd the intergrol of $\psi(x)$ menst direrge if the integronl,$f^{*} f^{\prime}(x)$ direrges. This may be proved from the definition. For $f^{\prime}\left(r^{\prime}\right)<\psi(, r)$ and

$$
\int_{K^{r}}^{x} f^{\prime}\left(r^{r}\right) d w^{\prime}<\int_{K^{*}}^{x} \psi\left(\cdot r^{r}\right) d v^{\prime} \quad \text { or } \quad F\left(r^{\prime}\right)<\Psi\left(, r^{*}\right) .
$$

Now as approaches l or \boldsymbol{x}, the functions $F(r)$ and $\Psi\left(r^{\circ}\right)$ both increase If $\Psi\left(, r^{\prime}\right)$ apmoarles a limit, so must $F(, r):$ and if $F^{(}\left(r^{\prime}\right)$ increases withont limit, so must $\Psi\left(r^{r}\right)$.

As the relative hehavior of $f\left(r^{\prime}\right)$ and $\psi(r)$ is ronsequential only near particular values of x or when x is very great, the conditions may be expressed in terms of limits, namely : If $\psi\left(f^{\circ}\right)$ dues not chentye sign and

 first case it is possible to take a so near its limit or so large, as the case may be, that the ratio $f^{\prime}\left(x^{\prime}\right), \psi\left(x^{\prime}\right)$ shall be less than any assigned number of greater than its limit: then the functions $f\left(r^{r}\right)$ and fit (x) satisfy the conditions estallished above, namely $f<6 \psi$, and the integral of $f^{\prime}\left(r^{\prime}\right)$ bonverges if that of $\psi(, r)$ does. In like mammer in the semom wase it is possible to proreed so far that the ratio $f^{\prime}\left(, x^{\circ}\right) / \psi(, r)$ shall have lecome to reman greater than any assigned number g less than its limit; then $t^{\prime}>9 / 4$ and the result above may he applied to show that the integral of $f^{\prime}\left(, r^{\prime}\right)$ diverges if that of $\psi(, r)$ does.

For an infinite upher limit a direct integration shows that

$$
\int^{\infty} \frac{\gamma^{r}}{r^{k}}=\left.\frac{-1}{k_{i}-1} \frac{1}{r^{k^{k}-i}}\right|^{\infty} \quad \text { or } \log r^{\infty}, \quad \begin{gather*}
\text { converges if } k_{i}>1 \tag{2}\\
\text { diverges if } l_{i} \leqq 1
\end{gather*}
$$

Now if the trast funtion $\phi\left(r^{r}\right)$ be chosen as $1 / r^{k}=r^{-k}$. the ratio

and may be shown to be finite (or aero) as x becomes infinite for any choice of R: greuter then 1, the integrell of $f(x)$ to infinity will converge: but if the prorluct "pmorerles a finite limit (not sero) (os becomes infinite for "n!y choice of hi less than or equal to 1 , the inteyral diverges. This may be stated as: The integral of $f(x)$ to infinity will converge if $f(x)$ is an infinitesimal of order ligher than the first relative to $1 / x$ as x becomes infinite, but will diverge if $f(x)$ is an intinitesimal of the first or lower order. In like mamer
$\int^{b} \frac{d \cdot r^{r}}{(l-r)^{k}}=\left.\frac{1}{l_{i}-1} \frac{1}{(l-r)^{k-1}}\right|^{b} \quad 0 r^{r}-\left.\log (l,-r)\right|^{b}, \quad \begin{gathered}\text { converges if } l_{i}<1, \\ \text { diverges if } l \\ l\end{gathered}(3)$
and it may be stated that: The integral of $f(x)$ to b will converge if $f(x)$ is an infinite of order less than the first relative to $(h-x)^{-1}$ as x approaches l, but will diverge if $f(x)$ is an infinite of the first or higher order. The proof is left as an excreise. See also Ex. 3 below.

As an example, let the integral $\int_{0}^{\infty}{ }^{n} c^{n} e^{-x} d x$ be tested for convergence or divergence. If $n>0$, the integramd never becomes infinite. and the only integral to examine is that to infinity ; but if $n<0$ the internal from 0 lats also to be eomsidered. Now the function e^{-x} for large values of x is an infinitesimal of infinite order, that is, the limit of $x^{k+n} e^{-x}$ is zero for any value of k and n. Hence the integrand $x^{n} e^{-x}$ is an infinitesimal of order higher than the first and the integral to infinty converges under all ciremstances. For $x=0$, the function e^{-x} is finite and equal to 1 ; the order of the infinite $x^{n} e^{-x}$ will therefore be precisely the order n. Hence the integral from 0 converges when $n>-1$ and diverges when $n \leqq-1$. Hence the function

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x, \quad \alpha>0
$$

defined by the integral containing the parameter a, will be defined for all positive valuess of the parameter, but not for negative values nor for 0 .

Thus far tests have been estahlished only for integrals in which the integrand does not change sign. There is a general test, not partioularly useful for practical leurgoses, hat highly useful in olitaining theoretical results. It will be treated merely for the case of an infinite limit. Let

$$
\begin{equation*}
F\left(, r^{\prime}\right)=\int_{K^{\prime}}^{r^{\prime}} f^{\prime}\left(\cdot x^{x}\right) d x, \quad F\left(r^{\prime \prime}\right)--F\left(r^{\prime}\right)=\int_{x^{\prime}}^{x^{\prime \prime}} f^{\prime}(x) d x^{\prime}, \quad, x^{\prime}, r^{\prime \prime}>< \tag{4}
\end{equation*}
$$

Now (Ex. :3, 1, 44) the neressary and sufficient condition that $F(x)$
 approarl the limit 0 when r^{\prime} amb , $r^{\prime \prime}$, rexarded as independent variables, berome infinite: by the dafinition, then, this is the newessiny and suffiejent condition that, the integral of $f^{\prime}\left(r^{r}\right)$ to infinity shall converge. Furthermore
if

$$
\begin{equation*}
\int^{\infty}\left|f^{2}(x)\right| d x \quad \text { converges, then } \int^{x} f(x) d x \tag{5}
\end{equation*}
$$

must converge and is said to be chsolutely comerigent. The proof of this important theorem is contained in the above and in

$$
\int_{x^{\prime}}^{x^{\prime \prime}} f(x) d x \leqq \int_{x^{\prime}}^{x^{\prime \prime}}|f(x)| d x .
$$

To see whether an integral is absolntely convergent, the tests established for the convergence of an integral with a positive integrand may be applied to the integral of the absolute value, or some obrious direct method of compurison may be employed; for example,

$$
\int^{\infty} \frac{(\cdot 0) \cdot u^{2} \|^{x}}{u^{2}+u^{2}} \leqq \int^{\infty} \frac{1 d x^{2}}{u^{2}+x^{2}} \text { whith conserges, }
$$

and it therefore appears that the integral on the left converges absolutely. When the eonvergence is not absolute, the question of convergence may sometimes be settled by interaration b!! farts. For suppose that the integral may be written as
$\int^{x} f(x) d x=\int^{x} \phi\left(x^{x}\right) \psi(, x) \| x=\left[\phi(x) \int \psi\left(x^{x}\right) l_{x}\right]^{x}-\int \phi^{x}\left(x^{x}\right) \int \psi(x) d x^{x}$
by separating the integrand into two faciors and integrating by parts. Now if, when r becomes infinite, eath of the right-hand terms approathes a limit, then

$$
\int^{\infty} f\left(x^{r}\right) d x^{x}=\lim _{x=x}\left[\phi\left(, x^{r}\right) \int \psi\left(, r^{r}\right) d, x^{x}\right]^{x}-\lim _{x=x} \int^{\infty} \phi^{\prime}\left(, x^{x}\right) \int \psi\left(, x^{x}\right) d x d x,
$$

and the integral of $f\left(r^{\prime}\right)$ to infinity converges.
As an example consider the convergence of $\int \frac{x \cos \operatorname{col} x}{a^{2}+c^{2}}$. Here $\int \frac{x|\cos x| d x}{a^{2}+x^{2}}$ does not appear to be convergent ; for, apart from the factor \mid ens $x \mid$ whieh oscilites between 0 and 1 , the integrand is an infinitesimal of only the first order and the integral of such an integrand does not converge; the original integral is the tefore apparently not absiontely convergent. Howerer, an integration by parts gives

$$
\begin{aligned}
& \int^{x} \frac{x \cos \cdot x d x}{u^{2}+x^{2}}=\frac{x \sin x}{u^{2}+r^{2}}-\int^{x} \frac{x^{2}-u^{2}}{\left(x^{2}+u^{2}\right)^{2}} \cos x d x, \\
& \lim _{x=x} \frac{x^{2} \sin x}{u^{2}+r^{2}}=0 . \quad \int \frac{x^{2}-u^{2}}{\left(u^{2}+u^{2}\right)^{2}} \cos u^{2} d x<\int \frac{x}{x^{2}} .
\end{aligned}
$$

Now the integral on the right is seen to be convergent and, in fact, absolutely convergent as r beromes intinite. The original integral therefore mast apmonch a linit and be eonsergent as x becomes intinite.

EXERCISES

1．Establish the convergence or divergence of these infinite integrals：
（a） $\int^{\infty} \frac{d x}{x \sqrt{1+x^{2}}}$ ，
（ β ） $\int^{\infty} \frac{x^{2} d x}{\left(a^{2}+x^{2}\right)^{2}}$ ，
（ γ ） $\int^{\infty} \frac{x^{2} d x}{\left(a^{2}+x^{2}\right)^{\frac{3}{2}}}$,
（ $\delta) \int_{0} x^{\alpha-1}(1-x)^{\beta-1} d x$（to have an infinite integral，α must be less than 1），
（ $\epsilon) \int^{1} x^{\alpha-1}(1-x)^{\beta-1} d x$ ，
（5） $\int_{0}^{a} \frac{d x}{\sqrt{a x-x^{2}}}$ ，
（ η ） $\int_{1}^{x} \frac{d x}{x \sqrt{x^{2}-1}}$ ，
（ $\theta) \int_{0}^{x} \frac{d x}{1-x^{4}}$ ，
（1） $\int_{0}^{2} \frac{s d x}{(1-x)^{\frac{1}{3}}}$ ，
（к） $\int_{0}^{2} \frac{x^{\alpha-1}}{1-x} d x$ ，
（入） $\int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}, k<1, k=1$ ，
（ μ ） $\int_{0}^{1} \sqrt{\frac{1-k^{2} x^{2}}{1-x^{2}}} d x, k<1$ ．
2．Point ont the peculiarities which make these integrals infinite integrals，and test the integrals for eonvergence or divergence：
（a） $\int_{0}^{1}\left(\log \frac{1}{x}\right)^{n} d x$ ，conv．if $n>-1$ ．div．if $n \leqq-1$ ，
（ β ） $\int_{0}^{1} \frac{\log x}{1-x} d x$ ．
（ $\gamma) \int_{0}^{1}(-\log x)^{n_{i}} d x$ ．
（o） $\int_{0}^{\frac{\pi}{2}} \log \sin x i d x$ ，
（ ϵ ） $\int_{0}^{\pi} x \log \sin x d x$ ，
（5）． $\int{ }^{x} \ln _{1} \leq\left(x+\frac{1}{x}\right) \frac{d . c}{1+x^{2}}$ ，
（ $)$ ） $\int_{0}^{\pi} \frac{d x}{(\sin x+\cos x)^{k}}$ ，
（（）） $\int_{0}^{1} \cdot x^{2 m}\left(\log _{x}^{1}\right)^{n} d x$ ，
（1） $\int_{0}^{x} \frac{e^{-x} d x}{\sqrt{x \log (x+1)}}$ ，
（к） $\int_{0}^{x} x^{\frac{1}{x}} d x$ ，
（入） $\int_{0}^{1} \operatorname{lng} x \tan \frac{\pi \cdot x}{z} d x$ ，
（ μ ） $\int_{0}^{\infty} \frac{t^{a-1}}{1+x} d x$ ，
（v） $\int_{-\infty}^{+\infty}-x^{2} d x$ ，
（o） $\int_{0}^{\infty} \frac{x^{\alpha-1} d x}{(1+x)^{2}}$ ，
$(\pi) \int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$ ，
（ ρ ） $\int_{0}^{1} \frac{\log x d x}{\sqrt{1-x^{2}}}$ ，
$(\sigma) \int_{0}^{\infty} e^{-\left(r--_{i}^{a}\right)^{2}}$ ，
（ $\tau) \int_{0}^{\infty} \frac{x^{\alpha}-1 \log x}{1+x} d x$ ，
（v） $\int_{0}^{\infty} \frac{\ln \left(1+1 u^{2} x^{2}\right)}{1+1 i^{2} x^{2}} d x$ ．
（x） $\int_{0}^{\infty} e^{-a^{2} s^{2}} \cosh \beta x d x$ ．

3．Point out the similarities and differences of the method of E－functions and of test functions．Compre also with the work of this seetion the remark that the determination of the orler of an intinitesimal or infinte is a porblem in indeter－ minate foms（1）．（63）．state also whether it is necessary that $f(x) / \psi(x)$ or $x^{k} f(x)$ should apmoroch a limit．on whether it is suftiegent that the ghantity remain finite．

4．Discnss the eonsergence of these integrals and prove the convergence is absolute in all eases where possible：
（a） $\int \frac{\sin _{x^{k}} x}{x}$ ．
（ β ） $\int^{s} \cos x^{2} d x$ ，
（ 2 ） $\int_{x^{x}}^{x} d x$ ．
（ס） $\int_{0}^{\infty} f_{i} d x$ ，
（ ϵ ） $\int_{1}^{x}\left(-a^{2} x^{2} \cos \beta x d x\right.$ ，
（弓） $\int_{0}^{x} 1 \frac{i^{2}+x^{2}}{x^{3}} d x$ ．
(η) $\int_{0}^{x} \frac{x \sin x}{x^{2}+k^{2}} d x$,
(θ) $\int_{0}^{x} e^{-a x} \cos b x d x$,
(4) $\int_{0}^{x} \frac{\cos x}{\sqrt{x}} d x$,
(к) $\int_{0}^{\infty} x^{\alpha-1} e^{-x \cos \beta} \cos (x \sin \beta) d x$,
($\lambda) \int_{0}^{\infty} \frac{\sin x \cos \alpha x}{x} d x$,
($\mu) \int_{0}^{\infty} \cos x^{2} \cos 2 \alpha x d x$,
(v) $\int_{0}^{\infty} \sin \left(\frac{x^{2}}{2}+\frac{\alpha^{2}}{2 x^{2}}\right) d x$,
(o) $\int_{0}^{\infty} \frac{\sin ^{k} x^{l}}{x^{m}} d c$.
5. If $f_{1}(x)$ and $f_{2}(x)$ are two limited functions integrable (in the sense of §§ 28-30) over the integral $a \leqq x \leqq b$, show that their prodnct $f(x)=f_{1}(x) f_{2}(x)$ is integrable oser the interval. Note that in any interval δ_{i}, the relations $m_{1 i} m_{2 i} \leqq m_{i} \leqq M_{i} \leqq M_{1 i} M_{2 i}$ anMI $M_{1 i} M_{2 i}-m_{1 i} m_{2 i}=M_{1 i} M_{2 i}-M_{1 i} m_{2 i}+$ $M_{1 i} m_{2 i}-m_{1 i} m_{2 i}=M_{1 i} O_{2 i}+m_{2 i} O_{1 i}$ bold. Show further that

$$
\begin{aligned}
& \int_{a}^{b} f_{1}(x) f_{2}(x) d x=\lim \sum f_{1}\left(\xi_{i}\right) f_{2}\left(\xi_{i}\right) \delta_{i} \\
&=\lim \sum f_{1}\left(\xi_{i}\right)\left[\int_{x_{2}}^{x_{i}+1} f_{2}(x) d x-\int_{i_{i}}^{x_{i}+1}\left\{f_{2}\left(\xi_{i}\right)-f_{2}(x) d x\right\}\right] \\
& \text { or } \quad \begin{aligned}
\int_{a}^{b} f(x) d x & =\lim \sum f_{1}\left(\xi_{i}\right) \int_{x_{i}}^{x_{i+1}} f_{2}(x) d x \\
& =\lim \sum f_{1}\left(\xi_{i}\right)\left[\int_{x_{i}}^{b} f_{2}(x) d x-\int_{r_{i+1}}^{b} f_{2}(x) d x\right] \\
\text { or } \quad \int_{a}^{b} f(x) d x & =f_{1}\left(\xi_{1}\right) \int_{a}^{b} f_{2}(x) d x+\lim \sum\left[f_{2}\left(\xi_{i}\right)-f_{2}\left(\xi_{i}-1\right)\right] \int_{s_{i}}^{b} f_{2}(x) d x
\end{aligned}
\end{aligned}
$$

or
6. The Second Theorem of the Merm. If $f(x)$ and $\phi(x)$ are two limited functions integrable in the interval $u \equiv x \leqq b$, and if $\phi(x)$ is positive, nondeereasing, and less than K, then

$$
\int_{u}^{b} \phi(x) f(x) d x=h \int_{\xi}^{b} f(x) d x, \quad a \leqq \xi \leqq b
$$

And, more generally, if $\phi(x)$ satisties $-\infty<k \leqq \phi(x) \leqq K<\infty$ and is either nondecreasing or nomincreasing thomghont the interval, then

$$
\int_{a}^{b} \phi(x) f(x) d x=k \int_{a}^{\xi} f(x) d x+K \int_{\xi}^{b} f(x) d x, \quad u \leqq \xi \leqq b
$$

In the first case the proof follows from Ex. 5 by noting that the integral of $\phi(x) f(x)$ may be regarded as the limit of the smm

$$
\phi\left(\xi_{1}\right) \int_{a}^{b} f(x) d x+\sum\left[\phi\left(\xi_{i}\right)-\phi\left(\xi_{i}-1\right)\right] \int_{x_{i}}^{b} f(x) d x+\left[K-\phi\left(\xi_{n}\right)\right] \int_{v_{n}}^{b} f(x) d x
$$

Where the restrictions on $\phi(x)$ make the coefficients of the integrals all positive or zero, and where the sum may consequently be written as

$$
\mu\left[\phi\left(\xi_{1}\right)+\phi\left(\xi_{2}\right)-\phi\left(\xi_{1}\right)+\cdots+\phi\left(\xi_{n}\right)-\phi\left(\xi_{n-1}\right)+K-\phi\left(\xi_{n}\right)\right]=\mu K
$$

if μ be a properly chosen mean value of the integrals which multiply these coefticients: as the interrals are of the form $\int_{\xi}^{b} f(x) d x$ where $\xi=1, x_{1} \ldots . x_{n}$. it follows
that μ must be of the same form where $u \equiv \xi \leqq 1$. The second form of the theorem follows by considering the function $\phi-k$ or $k-\phi$.
7. If $\phi(x)$ is a function varying always in the same sense and approaching a tinite limit as x becomes infinite, the integral $\int^{x} \phi(x) f(x) d x$ will converge if $\int^{\infty} f(x) d x$ converges. Consider.

$$
\int_{x^{\prime}}^{x^{\prime \prime}} \phi(x) f(x) d x=\phi\left(x^{\prime}\right) \int_{x^{\prime}}^{\xi} f(x) d x+\phi\left(x^{\prime \prime}\right) \int_{\xi}^{x^{\prime \prime}} f(x) d x
$$

8. If $\phi(x)$ is a function varying always in the same sense and approaching 0 as a limit when $x=\infty$, and if the integral $F(x)$ of $f(x)$ remains tinite when $x=\infty$, then the integral $\int^{\infty} \phi(x) f(x) d x$ is convergent. Consider

$$
\int_{x^{\prime}}^{x^{\prime \prime \prime}} \phi(x) f(x) d x=\phi\left(x^{\prime}\right)\left[F(\xi)-F\left(x^{\prime}\right)\right]+\phi\left(x^{\prime \prime}\right)\left[F\left(x^{\prime \prime}\right)-F(\xi)\right] .
$$

This test is sery usefulin practice ; for many integrals are of the form $\int^{x} \phi(x)$ sin $x d x$ where $\phi(x)$ constantly decreases or increases toward the limit 0 when $x=x$; all these integrals converge.
142. The evaluation of infinite integrals. After an infinite integral has been proved to converge, the problem of calculating its value still remains. No general method is to be had, and for each integral some special device has to he discovered which will lead to the desined

 "romem some closed puthe in the $\begin{gathered}\text { s-plone. It is known that if the points }\end{gathered}$
 that is, where $X^{-}(x, y)$ and $Y^{\prime}(x, y)$ (ease to lave continuons first partial derivatives satisfying the relations $X_{n}^{\prime}=Y_{n}^{\prime}$ and $X_{y}^{\prime}=-Y_{r}^{\prime}$, are cut ont of the plane, the integral of $F(\because i)$ aromul any rlosed path which does not include any of the exeised points is zero ($\$ 1 \ddot{2}$). It is sometimes possible to select surh a function $F(\%)$ and such a path of integration that part of the intergal of the complex function rerluces to the giver infinite integral while the rest of
 the intergral of the complex function maty be computed. Thas there arises ann erpation which determines the value of the infinte integral.

Consider the intergal $\int_{0}^{\infty} \frac{s}{} \quad$ sin r which is known to converge. Kinw

$$
\int_{0}^{\infty} \frac{\sin , r^{r}}{r} r l, r=\int_{1}^{\infty} \frac{r^{i x}-e^{-i x}}{2 i r} d x=\int_{0}^{\infty} \frac{r^{i x}}{2 i, r}-\int_{0}^{\infty} \frac{e^{-i, x}}{2 i x} d x
$$

 derivative at every wint "xalit $z=0$, and the origin is therefore the only 1 mint
which has to be cut out of the plane. The integral of $e^{i z / z}$ around any path snech as that marked in the figure ${ }^{\text {is }}$ therefore zero. Then if a is small and 1 t is large,

$$
\begin{aligned}
0=\int_{0} \frac{t^{i z}}{z} d z=\int_{a}^{A} \frac{t^{i r}}{x} d x & +\int_{0}^{b} \frac{\epsilon^{i, A-y}}{A+i y} i d y+\int_{-1}^{-A} \frac{t^{i x-B}}{x+i B} d x \\
& +\int_{B}^{0} \frac{t^{-i A-y}-1+i y}{-1+} i d y+\int_{-1}^{-a} \frac{e^{i x}}{x} d x+\int_{-a}^{+a} \frac{t^{i z}}{z} d z
\end{aligned}
$$

But $\int_{-1}^{-a} \frac{c^{i x}}{x} d x=-\int_{-a}^{-\lambda} \frac{e^{i x}}{x} d x=-\int_{a}^{-\lambda} \frac{e^{-i x} d x}{x}$ and $\int_{-a}^{+a} \frac{e^{i z}}{z} d z=\int_{-a}^{+u} \frac{1+\eta}{z} d z ;$
the first by the ordinary rules of integration and the second by Maclanrin"s Formula. Hence

$$
0=\int_{0} \frac{e^{i z}}{z} d z=\int_{a}^{A} \frac{e^{i x}-e^{-i x}}{x}+\int_{-a}^{+a} \frac{d z}{z}+\text { four other integrals. }
$$

It will now be shown that by taking the rectangle sufficiently large and the semicirele about the origin sufficiently small each of the four interrals may be made as small as desired. The method is to replace each intergral by a larger one which may be evaluated.

$$
\left|\int_{0}^{B} \frac{e^{i A-y}}{A+i y} i d y\right| \equiv \int_{0}^{B} \frac{\left|e^{i A}\right| e^{-y}}{A+i y \mid}|i| d y<\int_{0}^{B} \frac{1}{A} e^{-y} d y<\frac{B}{A} .
$$

These changes involve the facts that the integral of the absolute value is as great as the absolute value of the inteqral and that $e^{i . t-y}=\epsilon^{i \cdot 1} e^{-y} \cdot \epsilon^{i-1}=1 .|A+i y|>A$. $e^{-y}<1$. For the relations $\left|c^{i d}\right|=1$ and $A+i y>A$. the interpretation of the
 as great as the absolute value of the interal follows from the same fact for a sum (p. 154). The absolnte value of a fraction is enlarges if that of its mumerator is enlarged or that of its demminator diminisher. In a similar mammer

Furthermore

$$
\begin{aligned}
& \left.\int_{-u}^{+u} \eta d z \equiv \int_{-u}^{+u}\left|\eta \frac{|\lambda z|}{z}=\int_{0}^{\pi}\right| \eta \right\rvert\, \lambda \phi, \\
& \int_{-u}^{+r} \frac{r l z}{z}=\int_{\pi}^{9} \frac{r \operatorname{ci} \phi i d \phi}{r \epsilon^{i t i}}=-\pi i .
\end{aligned}
$$

Then $\quad 0=\int_{-} \frac{\epsilon^{i z}}{z} d z=\int_{a}^{A} 2 i \frac{\sin x}{x} d x-\pi i+R . \quad \quad i<2 \frac{B}{A}+2 e^{-B} \frac{A}{B}+\pi \epsilon$,
where ϵ is the greatest value of η on the semicircle. Now let the rectangle he so chosen that $A=B e^{\frac{1}{2} B}$; then $|R|<4 e^{-\frac{1}{2} B}+\pi \epsilon$. By taking B sufficiently large $e^{-\frac{1}{2} B}$ may be made as small as desired; and by taking the semicircle sufficiently

[^33]small, ϵ may be made as small as lesired. This amomets to saying that, for A sufficiently large and for a sufticiently small, R is negligible. In other words, by taking A large enough and a small enongh $\int_{a}^{4} \frac{\sin x}{x}$ may be made to differ from $\frac{\pi}{2}$ by as little as desired. As the integral from zero to infinity converges and may he regarded as the limit of the integral from a to A (is so defincd, in fact), the integral from zero to infinity must also differ from $\frac{1}{2} \pi$ by as little as desired. But if two constants differ from each other ly as little as desired, they must be equal. Hence
\[

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin x}{x}=\frac{\pi}{2} \tag{6}
\end{equation*}
$$

\]

 an appropriate path. The denominator will vanish when $z= \pm i k$ and there are two points to exelude in the z-plane. Let the integral be extended over the closed path as indicated. There is no need of integrating back and forth along the double line $O a$, because the function takes on the same values and the integrals destroy each other. Along the large semicircle $z=R e^{i \phi}$ and $d z=R i e^{i \phi} d \phi$. Moreover

$$
\int_{-R}^{0} \frac{e^{i x} d x}{x^{2}+k^{2}}=-\int_{0}^{-R} \frac{e^{i x} d x}{x^{2}+k^{2}}=\int_{0}^{R} \frac{e^{-i x} d x}{x^{2}+k^{2}} \quad \text { by elementary rules. }
$$

Hence $\quad \int_{-R}^{0} \frac{e^{i x} d x}{x^{2}+k^{2}}+\int_{0}^{R} \frac{e^{i x} d x}{x^{2}+k^{2}}=\int_{0}^{R} \frac{e^{i x}+e^{-i x}}{x^{2}+k^{2}} d x=2 \int_{0}^{R} \frac{\cos x}{x^{2}+k^{2}} d x$,
and $0=\int_{0} \frac{e^{i z}}{z^{2}+k^{2}} d z=2 \int_{0}^{R} \frac{\cos x}{x^{2}+k^{2}} d x+\int_{0}^{\pi} \frac{e^{i R e^{i \phi}} R i e^{i \phi \phi}, d \phi}{l^{2} e^{2}-i \phi+k^{2}}+\int_{u e^{\prime}\left(z z^{2}+k^{2}\right.} \frac{e^{i z} d z}{}$.
Now

$$
\left|e^{i R e^{i \phi}}\right|=\left|e^{i R(\cos \phi+i \sin \phi)}\right|=\left|e^{-R \sin \phi e^{i} i R \cos \phi}\right|=e^{-R \sin \phi} .
$$

Moreover $\left|F_{i^{2} e^{2 i \phi}}+k^{2}\right|$ cammon posibly exceen $i^{2}-k^{2}$ and can equal it only when $\phi=\frac{1}{2} \pi$. Hence

$$
\left|\int_{0}^{\pi} \frac{e^{i R_{c} e^{i \phi}} R i^{2} i^{i}, l \phi}{R^{2} c^{2} i \phi}+k^{2}\right| \leqq \int_{0}^{\pi} \frac{R e^{-R \sin \phi}}{l^{2}-k^{2}} d \phi=2 \int_{0}^{\frac{\pi}{2}} \frac{R e^{-R \sin \phi}}{R^{2}-k^{2}} d \phi .
$$

Now by Ex. 28, 1. 11, sin $\phi>2 \phi / \pi$. Hence the inter mal may be further increased.
where η is uniformly intinitesimal with the radins of the small circle. But

Where $\left\lvert\, \begin{gathered}5 \\ \equiv 2 \\ 2\end{gathered} \pi\right.$ if ϵ is the largest value of $\mid \eta$. Heme finally

$$
0=2 \int_{0}^{k} \frac{\cos x}{x^{2}+k^{2}} r x-\frac{\pi}{k} \epsilon^{-k}+\zeta+\frac{\pi}{R^{2}-k^{2}}\left(\epsilon^{-k}-1\right)
$$

By taking the small eircle small enongh and the large circle large enough, the last two terms may be made as near zero as desired. Hence

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\cos x}{x^{2}+k^{2}} d x=\frac{\pi e^{-k}}{2 k} \tag{7}
\end{equation*}
$$

It may be noted that, by the work of $\S\left(23, \int_{a a^{\prime} a} \frac{\epsilon^{i z}}{z+k i} \frac{d z}{z-k i}=-2 \pi i^{e^{-k}} 2 k i\right.$ inexact and not merely approximate, and remains exat for any closel curve abont $z=k i$ whieh does not inelude $z=-k i$. That it is approximate in the small circle follows immediately from the continuity of $e^{i z} /(z+k i)=e^{-k / 2} k i+\eta$ and a direct integration abont the eirele.

As a thind example of the method let $\int_{0}^{x} \frac{x^{\alpha-1}}{1+x} d x$ be evalnated. This integral will converge if $0<c<1$, beeause the infinity at the origin is then of order less than the first and the integrand is an infinitesimal of order higher than the first for large values of x. The function $z^{\alpha-1} /(1+z)$ becomes infinite at $z=0$ and $z=-1$, and these points must be exeluded. The path marked in the figure is a closed path which dues not contain them. Now here the integral back and forth along the line ad cannot be neglectenf; for the function has a fractional or irrational power $z^{\alpha-1}$ in the numerator and is therefore not single valued. In
 faet, when z is given, the function $z^{\alpha-2}$ is leterminel as far as its absolute walue is concernell, but its angle may take on any addition of the form $2 \pi k(\alpha-1)$ with k integral. Whatever value of the function is assumed at one point of the path, the values at the other points must be sueh as to piece on eontimonsly when the path is followed. 'Thus the values along the line $a A$ ontwarl will differ by $2 \pi(\alpha-1)$ from these along Act inward becanse the turn has been made alont the origin and the angle of z has increased by 2π. The donble line bc and $c b$. howerer, may he disregarded becanse now turn about the origin is made in deseribing $c d c$. Hence, remembering that $\epsilon^{\pi i}=-1$,

$$
\begin{aligned}
& 0=\int_{0} \frac{z^{\alpha-1}}{1+z} d z=\int_{0}^{r^{\alpha \alpha-1} e^{(\alpha-1) \phi i}} \frac{1+e^{\phi i}}{1+(r c \phi i)}=\int_{a}^{A} \frac{r^{a \alpha-1}}{1+r} d r+\int_{0}^{2 \pi} \frac{\Lambda^{\alpha} e^{\alpha \phi i}}{1+1 e^{\phi i}} i d \phi \\
& +\int_{A}^{a} \frac{r^{\alpha(z-1} e^{2 \pi(\alpha-1) i}}{1+r e^{2 \pi i}} \epsilon^{2 \pi i} d r+\int_{u b b c a} \frac{z^{\alpha-1}}{1+z} d z+\int_{\text {rilc }} 1+z^{z^{\alpha-1}} d z .
\end{aligned}
$$

Now $\quad \int_{a}^{-1} 1+r \cdot r_{-1}^{r^{\alpha-1}} \frac{r^{a \alpha-1} \varepsilon^{2} \pi a i}{1+r} d r=\int_{a}^{-1} \frac{r^{\mu \alpha-1}}{1+r}\left(1-\varepsilon^{2 \pi \alpha i}\right) d r$,

$$
\begin{gathered}
\left|\int_{0}^{2 \pi} \frac{A^{\alpha} e^{\alpha \alpha \phi i}}{1+A \epsilon^{\phi i}} i l \phi\right| \equiv \int_{0}^{2 \pi} \frac{A^{\alpha}}{A-1}\left|e^{\alpha \phi i}\right| d \phi=\frac{2 \pi A^{\alpha}}{1-1}, \\
\left.\left|\int_{a b h k u} \frac{z^{\alpha-1}}{1+z} d z\right|=\left|\int_{2 \pi}^{0} \frac{n^{\alpha} e^{\alpha \alpha \phi i}}{1+a e^{\phi i}} i n\right| \phi \right\rvert\, \equiv \int_{0}^{2 \pi} \frac{u^{\alpha}}{1-u} d \phi=\frac{2 \pi \mu^{\alpha}}{1-u},
\end{gathered}
$$

$$
\int_{c^{\prime \prime} c} \frac{z^{a-1}}{1+z} d z=\int z^{\alpha-1} \frac{d z}{1+z}=-2 \pi i(-1)^{\alpha-1}=-2 \pi i i^{\pi(\alpha-1) i}=2 \pi i e^{\pi \alpha i} .
$$

Hence $\quad 0=\left(1-\iota^{2 \pi a i}\right) \int_{a}^{. t} \frac{r^{\alpha \alpha-1}}{1+r} d r+2 \pi i e^{\pi \alpha i}+\zeta . \quad|\zeta|<\frac{2 \pi \cdot 1^{\alpha}}{1-1}+\frac{2 \pi t^{\alpha}}{1-a}$.
If A be taken sufficiently lare and a sufficiently small. ζ may le mate as small as desired. Then liy the same reasoning as before it follows that

$$
0=\left(1-\epsilon^{2 \pi \alpha i}\right) \int_{1}^{x} \frac{r^{\alpha-1}}{1+r} d r+2 \pi i e^{\pi a i}, \quad \text { or } \quad 0=-\sin \pi c \int_{0}^{x} \frac{r^{\alpha-1}}{1+r} d r+\pi
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{\alpha-1}}{1+x} d x=\frac{\pi}{\sin (\imath \pi} \tag{8}
\end{equation*}
$$

143. One intecrat of particular importance is $\int_{0}^{x} e^{-v^{2}}, 7 x$. The evaluation may be made hy a deviee which is ravely useful. Write

The passage from the probuct of two integrals to the domble integral may le made because neither the limits nor the integramls of either integral depend on the variable in the other. Now transform to polar coorrdinates amb integrate orer a quadrant of matius A.

$$
\int_{0}^{1} \int_{0}^{A} p^{-r^{2}-y^{2}} l_{n} d y=\int_{0}^{\pi} \int_{0}^{-1} e^{-r^{2}}, l_{n} d \theta+R=\frac{1}{4} \pi\left(1-e^{-A^{2}}\right)+l_{i}
$$

where h denotes the intergral ower the area hetween the quadrant and sulate, an area less than $\frac{1}{2} 1^{2}$ over which $r^{-r^{2}} \leqq r^{-t^{2}}$. Then

$$
R_{i}<\frac{1}{2} A^{2} e^{-A^{2}}: \quad \int_{i}^{1} \int_{0}^{t^{1}}, n^{2}-y^{2} d, \left.r_{1} l y-\frac{1}{4} \pi \right\rvert\,<\frac{1}{2} \cdot 1^{2},-A^{2}
$$

Now A may be taken so large that the double integral differs from $\frac{1}{4}$ T ly as little as desired. and heme for sutheriontly large values of A the simple integral will differ from $\frac{1}{2} \sqrt{\pi}$ by as little as desired. Hence*

$$
\begin{equation*}
\int_{0}^{x} p^{-x^{2}} \nmid x=\underline{2}-\sqrt{\pi} \tag{9}
\end{equation*}
$$

 domble integrals mor of change of varialbe: the whele prouf consists merely in fimbing

 swles that the intinite integmbe converge. For when it has lown show that an integral with a large emongh mper limit and at sall chomgh lower limit ran be made to differ from a remtain constant by as little as desired. it has therebs beren proved that that integral from zero to intinity mant converare to the value of that constant.

When some infinite integrals have been evaluated, others may be obtained from them by various operations, such as integration by parts and change of variable. It should, howerer, be borne in mind that the rules for olerating with detinite integrals were established only for finite integrals and must be reëstoblished for infinite integrals. From the direct application of the definition it follows that the integral of a function times a constant is the product of the constant by the integral of the function, and that the sum of the integrals of two functions taken between the same limits is the integral of the sum of the functions. But it camot be inferred conversely that an integral may be resolved into a sum as

$$
\int_{a}^{b}\left[f\left(x^{r}\right)+\phi(x)\right] d x=\int_{a}^{b} f\left(x^{r}\right) d x+\int_{a}^{b} \phi\left(x^{*}\right) d x
$$

when one of the limits is infinite or one of the functions heromes infinite in the interval. For, the fact that the integrall on the left converges is 1 o guarantee that either intecral upon the right will converge; all that can be stated is that if one of the intragnts on the righte comrerges, the other will, and the equation will le true. The same remark applies to integration by parts,

$$
\int_{a}^{b} f\left(r^{\prime}\right) \phi^{\prime}\left(r^{r}\right) d, e^{2}=\left[f\left(r^{\prime}\right) \phi\left(r^{r}\right)\right]_{a}^{b}-\int_{a}^{b} f^{\prime}\left(r^{r}\right) \phi\left(, r^{r}\right) \boldsymbol{l}, r^{\prime} .
$$

If, in the process of taking the limit which is reguired in the definition of infinite integrals, two af the three termes in the equation
 be true for the infinite intergrals.

The formula for the change of variable is

$$
\int_{r=\delta(t)}^{r=\phi(T)} f(, r) d, r=\int_{t}^{T} f[\phi(t)] \phi^{\prime}(t) d t
$$

where it is assmmed that the derivative $\phi^{\prime}(t)$ is continuous anf does not vanish in the interval fiom t to T (although either of these ronditions maty be violated at the exteremities of the interval). As these two quantities are equal, they will approach equal limits, providet they approach limits at all, when the limit

$$
\int_{a=\phi\left(t_{0}\right)}^{b=\phi\left(t_{1}\right)} f(x) d x=\int_{t_{0}}^{t_{1}} f[\phi(t)] \phi^{\prime}(t) d t
$$

required in the definition of an infinite integral is taken. where one of the four limits $", l, t_{0}, t_{1}$ is infinite or one of the integranl. leeomes
infinite at the extremity of the interval. The fiommlu, for the rhange
 noted that the proof applies only to intinite limits and intinite values of the integrand at the extremities of the interval of integration; in case the integrand becomes infinite within the interval, the change of variable should be examined in eath subinterval just as the question of eonvergence was examined.

As an example of the change of variable consider $\int_{0}^{x} \frac{\sin x}{x} d x=\frac{\pi}{2}$ and take $x=\alpha x^{\prime}$. $\int_{x=0}^{x=x} \frac{\sin \alpha x^{\prime}}{x^{\prime}} d x^{\prime}=\int_{x^{\prime}=0}^{+\infty} \frac{\sin \alpha x^{\prime}}{x^{\prime}} d x^{\prime}$ or $=\int_{x^{\prime}=0}^{-x} \sin \alpha x^{\prime} d x^{\prime}=-\int_{x^{\prime}=0}^{x^{\prime}=x} \frac{\sin \alpha x^{\prime}}{x^{\prime}} d x^{\prime}$, according as α is positive or negative. Hence the results

$$
\begin{equation*}
\int_{0}^{x} \frac{\sin \alpha x}{d} d x=+\frac{\pi}{2} \text { if } \alpha>0 \text { and }-\frac{\pi}{2} \text { if } \alpha<0 \tag{10}
\end{equation*}
$$

Sometimes chanse of variahleor integrations by part: will leal hack to a given integral in such al way that its value may he fomm. Fon instance take

$$
I=\int_{0}^{\frac{\pi}{2}} \log \sin x d x=-\int_{\pi}^{\pi} \log \cos y y^{2} y=\int_{1}^{\pi} \log \cos y d y . \quad y=\frac{\pi}{2}-x
$$

Then

$$
\begin{aligned}
& 2 I=\int_{0}^{\frac{\pi}{2}}(\ln x+\operatorname{in} x+\ln \cos x) d x=\int_{0}^{\pi} \frac{\pi}{2} \ln \frac{\sin 2 x}{2} d x
\end{aligned}
$$

$$
\begin{align*}
& I=\int_{0}^{\pi} \operatorname{l}_{\ln } \sin \sin x d x=-\frac{\pi}{2} \log 2 . \tag{11}
\end{align*}
$$

Hence

Here the first chance was $y=\frac{2}{2}-x$. The new intecral amd the original one were then added tow ther (the varable indicated under the sign of a detinite integral is immaterial. p. 2(i). and the sum led back to the original interral by virtue of the substitution $y=2 x$ and the fact that the curve $y=$ log sin x is symmetrical with respect to $x=\frac{1}{2} \pi$. This gave an equation which conld be solved for I.

EXERCISES

2. By direct integration show that $\left.\int_{1}^{\infty} e^{-(n-l, i}\right)$ alz converges to ($\left.11-h i\right)^{-1}$. When $a>0$ and the intersal is extembed along the line $y=0$. Thus prove the relations

3. Show $\int_{0}^{\infty} \frac{x^{\alpha-1} \lambda x}{(1+x)^{2}}=\frac{(1-\alpha) \pi}{\sin \alpha \pi}$. To integrate about $z=-1$ use the binomial expansion $z^{\alpha-1}=[-1+1+z]^{\alpha-1}=(-1)^{\alpha-1}[1+(1-\alpha)(1+z)+\eta(1+z)]$, η small.
4. Integrate $e^{-\varepsilon^{2}}$ aromid a circular sector with vertex at $z=0$ and bounded by the real axis and a line inclined to it at an angle of $\frac{1}{4} \pi$. Hence show

$$
\begin{gathered}
\epsilon^{\frac{1}{4} \pi i} \int_{0}^{\infty}\left(\cos r^{2}-i \sin r^{2}\right) d r=\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}, \\
\int_{0}^{\infty} \cos x^{2} d x=\int_{0}^{\infty} \sin x^{2} d x=\frac{1}{2} \sqrt{\frac{\pi}{2}}
\end{gathered}
$$

5. Integrate $e^{-z^{2}}$ aroum a rectangle $y=0 . y=B, x= \pm A$, and show

$$
\int_{0}^{\infty} e^{-x^{2}} \cos 2 \alpha x d x=\frac{1}{2} \sqrt{\pi} e^{-a^{2}}, \quad \int_{-\infty}^{\infty} e^{-x^{2}} \sin 2 d x d x=0 .
$$

6. Integrate $z^{\alpha-1} e^{-z}, 0<\alpha$, along a sector of angle $q<\frac{1}{2} \pi$ to show

$$
\begin{aligned}
& \sec \alpha q \int_{0}^{\infty} x^{\alpha-1} e^{-x \cos q} \cos (x \sin q) d x \\
&=\operatorname{cse} \alpha q \int_{0}^{\infty} x^{\alpha-1} e^{-x \cos q} \sin (x \sin q) d x=\int_{0}^{\infty} e^{\alpha-1} e^{-x} d x
\end{aligned}
$$

7. Establish the following results by the proper change of variable:
(α) $\int_{0}^{\infty} \frac{\cos \alpha x}{x^{2}+k^{2}} d x=\frac{\pi e^{-a k}}{2 k}, \alpha>0$,
(β) $\int_{0}^{\infty} \frac{r^{\alpha \alpha}-1, l, r}{\beta+r}=\frac{\pi \beta^{\alpha}-1}{\sin \alpha \pi}, \beta>0$,
(γ) $\int_{0}^{\infty} e^{-\alpha^{2} x^{2}} d x=\frac{1}{2 \alpha} \sqrt{\pi}$,
($\delta) \int_{1}^{\infty} e^{-\alpha x} \frac{1}{\sqrt{x}} d x=\sqrt{\frac{\pi}{\alpha}}$,
(ϵ) $\int_{0}^{\infty} e^{-\alpha^{2}, s^{2}} \cos b x d x=\frac{\sqrt{\pi} e^{-\frac{b^{2}}{4 a^{2}}}}{2 \alpha}, \alpha>0$.
(5) $\int_{11}^{1} \frac{d x}{\sqrt{-\log x}}=\sqrt{\pi}$,
(η) $\int_{0}^{\infty} \frac{\cos x}{\sqrt{x}} d x=\int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} d x=\sqrt{\frac{\pi}{2}}$,
(A) $\int_{0}^{1} \frac{\log x d x}{\sqrt{1-x^{2}}}=-\frac{\pi}{2} \log 2$.
8. By integration by parts or other inevices show the following :
($\alpha) ~ \int_{0}^{\pi} x \operatorname{lng} \sin x d x=-\frac{1}{2} \pi^{2} \operatorname{lng} 2, \quad$ (3$) \quad \int_{19}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\frac{\pi}{2}$,
(γ) $\int_{0}^{\infty} \frac{\sin x \cos \alpha \cdot r}{x} d x=\frac{\pi}{2}$ if $-1<\alpha<1$, or $\frac{\pi}{4}$ if $\alpha= \pm 1$, or 0 if $|\alpha|>1$,
($\delta) ~ \int_{0}^{\infty} x^{2} e^{-\alpha^{2} x^{2}} d x=\frac{\sqrt{\pi}}{4 \alpha^{3}}$,

(弓) $\Gamma(\alpha+1)=\alpha \Gamma(\alpha)$ if $\Gamma(\alpha)=\int_{0}^{\infty}{ }_{\alpha}{ }^{\alpha-1} e^{-x} d x$,
(η) $\int_{0}^{\pi} \frac{x \sin x d x}{1+\cos ^{2} x}=\frac{\pi^{2}}{4}$,
(θ) $\int_{11}^{\infty} \log \left(x+\frac{1}{x}\right) \frac{d x}{1+x^{2}}=\pi \log 2$, by virtue of $x=\tan y$.
9. Suppose $\int_{a}^{x} f(f) \frac{d l r}{x}$, where $a>0$, converges. Then if $p>0, q>0$, $\int_{1,}^{\infty} \frac{f(p, r)-f(\nmid, r)}{x} d x=\lim _{a=0}\left[\int_{a}^{\infty} \frac{f(p x)-f(q, x)}{x} d x=\int_{v a}^{\infty} \frac{f(\xi)}{\xi} d \xi-\int_{q \pi}^{\infty} \frac{f(\xi)}{\xi} d \xi\right]$.

Show

$$
\int_{0}^{\infty} \frac{f(p, x)-f(q, x)}{x} d x=\lim _{a=0} \int_{p, a}^{q / x} f(x) \frac{d x}{x}=f(0) \log \frac{q}{p} .
$$

Hence
(c) $\int_{0}^{x} \frac{\sin n x-\sin \eta \cdot x}{x} d x=0$.
(β) $\int_{1}^{x} \frac{e^{-r-x}-1-4 \cdot r}{x} d x=\log \frac{q}{p}$,
(v) $\int_{1,}^{1} \frac{e^{p-1}-x^{q-1}}{\log x} d x=\log \frac{q}{p}$,
(o) $\int_{0}^{x} \frac{\cos x-\cos \pi}{x} \pi x=\ln \pi a$.
1.0. If $f(r)$ ancl $f^{\prime}(x)$ are continuous, show ly interation ly parts that
$\lim _{k=x} \int_{0}^{b} f(r)$ sin $k \cdot a d x=0$. Hence prove $\lim _{k=x} \int_{11}^{a t} f^{\prime}(r) \frac{\sin k i r}{v} d r=\frac{\pi}{2} f(0)$.
[Writ1. $\left.\int_{0}^{\prime \prime} f(x) \frac{\sin k x}{x} d x=f(0) \int_{0}^{a} \sin k i r d x+\int_{0}^{a} f(. r)-f^{\prime}(0) \sin k x d x.\right]$
Aphly Ex. 15. p. 359, to prove these formalas muler gencral hypotheses.
11. Show that $\lim _{k=x} \int_{a}^{b} f(x) \frac{\sin k x}{x} d x=0$ if $b>a>0$. Hence note that
$\lim _{k=x} \lim _{a=0} \int_{a}^{b} f(x) \frac{\sin k x}{x} d: \lim _{a=0} \lim _{k=x} \int_{a}^{b} f(x) \frac{\sin k i r}{s} d x$, unless $\quad f(0)=0$.
144. Functions defined by infinite integrals. If the integrand of an integral contains a paraneter ($\$ 118$), the intergral defines a function of the parameter for every value of the mancere for which it conserges. The continnity and the difforentiability and interrability of the function have to bre treated. ('onsibur first the ease of an? infinite limit

If this integral is to converge for a wiven ralue $\alpha=\sigma_{n}$, it is necessary that

 the intergand beronnes intinite for the value $x=1$, the eommition that

$$
\int_{a}^{b} f^{\prime}(, r, n) d, r=\int_{a}^{r} f^{\prime}(, r, n) d, r+l_{i}(r \cdot n), \quad R=\int_{r}^{b} f^{\prime}\left(r^{\prime} \cdot n\right) d_{1}
$$

Now for different values of a the least values of or which will make
 grals ine suid to conrorge "nifinmly for a range of values of a such as
$\pi_{0} \leqq n \leqq r_{1}$ when it is possible to take x so large (or x so near l) that $R(\cdot r, r) \mid<\epsilon$ holds (and continues to hold for all larger values, or values nearer l^{\prime}) simultaneously for all values of n in the range $a_{0} \leqq n \leqq a_{1}$. The most useful test for uniform convergence is contained in the theorem: If "pmsitior fiunction $\phi\left(r^{\circ}\right)$ forn be fiound such that

$$
\int^{*} \phi(\cdot \cdot) d x \quad \text { converges and } \quad \phi(x) \geqq|f(x, \alpha)|
$$

 for the renge of collues in r. The proof is contained in the relatima

$$
\left|\int_{x}^{x} f(x, r) d x\right| \leqq \int_{x}^{\infty} \phi(\cdot r) d, r<\epsilon,
$$

which holds for all values of r in the range. There is clearly a similar theorem for the case of an infinite intergrand. See also Ex. 18 below.

Fundamental theorems are:* Orer any interval $r_{0} \leqq r \leqq \alpha_{1}$ where an infinite integral converges uniformly the integral defines a continuous function of r. This function may he integrated over any finite interval where the convergence is uniform by integrating with respect to or under the sign of integration with resileert to x. The function maty be differentiated at any loint α_{ξ} of the intman $n_{n} \leqq r \leqq x_{1}$ ly differentiating with respect to a muler the sign of integration with respect to x provided the integral oltained lay this differentiation converges uniformly for ralues of a in the moighomood of a_{ξ}. Proofs of these theorems are given immediately helow. \dagger

To prove that the function is contimus if the convergence is uniform let

$$
\begin{gathered}
\psi(\alpha)=\int_{a}^{x} f(r, \alpha) d x=\int_{a}^{r} f(r, \alpha) d x+R(r, a), \quad\left(r_{0} \leqq \alpha \leqq \alpha_{1},\right. \\
\psi(\alpha+\Delta x)=\int_{a}^{x} f(r, \alpha+\Delta(x) d x+R(r, \alpha+\Delta \alpha), \\
\Delta \psi \mid \leqq \int_{a}^{r}[f(r, \alpha+\Delta(\imath)-f(r, \alpha)] r l r+R(r, \alpha+\Delta(r)!+R(r, \alpha) .
\end{gathered}
$$

[^34]Now let x be taken so large that $|R|<\epsilon$ for all $\alpha \alpha^{\prime}$ s and for all larger values of x - the condition of uniformity. Then the finite interral (\$118)

$$
\int_{a}^{x} f(x, \alpha) d x \text { is continuous in } \alpha \text { and hence } \quad \int_{a}^{x}[f(x, \alpha+\Delta \alpha)-f(x, \alpha)] d x
$$

can be made less than ϵ by taking $\Delta \alpha$ small enough. Hence $|\Delta \psi|<3 \epsilon$; that is, by taking $\Delta \alpha$ small enough the quantity $|\Delta \psi|$ may be made less than any assigned number 3ϵ. The continuity is therefore proved.

To prove the integrability under the sign a like use is made of the condition of uniformity and of the earlier proof for a finite integral (\$120).

$$
\int_{\alpha_{0}}^{\alpha_{1}} \psi(\alpha) d \alpha=\int_{\alpha_{0}}^{\alpha_{1}} \int_{a}^{x} f(x, \alpha) d x d \alpha+\int_{\alpha_{0}}^{\alpha_{1}} R d x=\int_{a}^{x} \int_{\alpha_{0}}^{\alpha_{1}} f(x, a) d \alpha d x+\zeta .
$$

Now let x become infinite. The quantity ζ can approach no other limit than 0 ; for by taking x large enough $R<\epsilon$ and $|\zeta|<\epsilon\left(\alpha_{1}-\alpha_{0}\right)$ independently of α. Hence as x becomes infinite, the integral converges to the constant expression on the left and

$$
\int_{\alpha_{0}}^{\alpha_{1}} \psi(\alpha) d \alpha=\int_{a}^{\infty} \int_{\alpha_{0}}^{\alpha_{1}} f(r, \alpha) d \alpha \| l c .
$$

Moreover if the integration be to a variable limit for α, then

$$
\Psi(\alpha)=\int_{\alpha_{0}}^{\alpha} \psi(\alpha) d \alpha=\int_{a}^{\infty} \int_{\alpha_{0}}^{\alpha} f(\kappa, \alpha) d \alpha d s=\int_{a}^{\infty} F(r, \alpha) d x .
$$

Also $\left|\int_{x}^{\infty} F(x, \alpha) d x=\left|\int_{x}^{\infty} \int_{\alpha_{0}}^{\alpha} f(r, \alpha) d \alpha d x\right|=\int_{a_{0}}^{\alpha} \int_{, v}^{x} f(r, \alpha) d r d d \alpha\right|<\epsilon\left(\alpha-\alpha_{0}\right)$.
Hence it appears that the remainder for the new interral is less than $\epsilon\left(\alpha_{1}-\alpha_{0}\right)$ for all values of α : the convergence is therefore uniform and a second integration may be performed if desired. Thus if an infinite integrat concerges uniformly. it may be integrated as many times as desired under the sign. It should he noticed that the proof fails to cover the case of integration to an infinite upper limit for α.

For the case of differentiation it is necessary to show that

$$
\int_{u}^{\infty} f_{\alpha}^{\prime}\left(x, \alpha_{\xi}\right) d x=\phi^{\prime}\left(\alpha_{\xi}\right) . \quad \text { Consider } \int_{u}^{\infty} f_{a}^{\prime}(x, \alpha) d s=\omega(\alpha) .
$$

As the infinite integral is assumed to converge unifnmly ly the statement of the theorem, it is possible to integrate with respect to α unler the sion. Then

$$
\int_{\alpha_{\xi}}^{\alpha} \omega(\alpha) d \alpha=\int_{a}^{\infty} \int_{\alpha \alpha_{\xi}}^{\alpha} f_{\alpha}^{\prime}(x, \alpha) d \alpha d s=\int_{a}^{\infty}\left[f(r, a)-f\left(r, \alpha_{\xi}\right)\right] d r=\phi(\alpha)-\phi\left(\alpha_{\xi}\right) .
$$

The integral on the left may be differentiated with resuret (1) α. and hence $\phi(\alpha)$ must be differentiable. The differentiation sives $\omega(\alpha)=\phi^{\prime}(\alpha)$ and hence $\omega\left(\alpha_{\xi}\right)=\phi^{\prime}\left(\alpha_{\xi}\right)$. The theorem is therefore prown. This thenem and the two above conld be provel in analogons ways in the case of an intinite interral due to the fact that the integrand $f(r, \alpha)$ hecame infinite at the ends of (or within) the interval of intergation with respect to x; the pronfs neen mot be given here.
145. The method of integrating or differentiating under the sign of integration may be applied to evaluate infinite integrals when the contitions of miformity are prowerly satisfied, in precisely the sume manmer as the method was previonsly applied to the case of finite integrals where
the question of the uniformity of consergence did not arise (s 119-120). The examples given below will serve to illustrate how the method works and in particular to show how readily the test for uniformity may be applied in some casts. Some of the examples are purposely elosen identical with some which have previonsly been treated by other methods.

Consider first an integral which may be found by direct integration, namely,

$$
\int_{0}^{x} e^{-a x} \cos b x d x=\frac{a}{a^{2}+b^{2}} . \quad \text { Compare } \int_{0}^{\infty} e^{-a x} d x=\frac{1}{a}
$$

The integrand $e^{-a x}$ is a positive quantity greater than or equal to $e^{-a x} \cos b x$ for all values of b. Hence. by the general test, the first interral regarded as a function of b converses uniformly for all values of b. defines a continuous function, and may be intergrated between any limits, say from 0 to l, Then

$$
\begin{aligned}
\int_{0}^{b} \int_{0}^{\infty} e^{-a s} \cos l_{x} d x d b & \left.=\int_{0}^{\infty} \int_{0}^{b} e^{-\alpha \cdot x} \cos b x \cdot d\right\rangle d x \\
& =\int_{0}^{\infty} e^{-a \cdot x} \frac{\sin b, x}{x} d x=\int_{0}^{b} \frac{(1 d l)}{a^{2}+b^{2}}=\tan ^{-1} \frac{b}{a} .
\end{aligned}
$$

$$
=b \tan ^{-1} \frac{b}{a}-\frac{a}{2} \log \left(u^{2}+b^{2}\right) .
$$

Compare $\quad \int_{0}^{x} e^{-u x} \frac{1-\cos h x}{x^{2}} d x$ and $\int_{0}^{x} \frac{1-\cos h x}{x^{2}} d x$.
Now as the second inturral has a positive integrand which is never less than the integrand of the first for and positive value of u. the first integral converges miformly for all positive valus of " incluting 0 , is a continuous function of α. and the value of the integral for " $=0$ may be found ly setting a ergal to 0 in the interrand. Then

$$
\int_{0}^{x} \frac{1-(0) s}{r^{2}} x^{2} \cdot d x=\lim _{u=0}\left[b \operatorname{trn}-\frac{h}{a}-\frac{11}{2} \log \left(\left(u^{2}+b^{2}\right)\right]=|b| \frac{\pi}{2} .\right.
$$

The change of the variable to $x^{\prime}=\frac{1}{2} x$ and an integration loy parts give renpectively

$$
\int_{0}^{x} \frac{\sin ^{2} l y x}{x^{2}} d x=\frac{\pi}{2} h \quad \int_{0}^{x} \frac{\sin l x}{x} d x=+\frac{\pi}{2} \text { or }-\frac{\pi}{2} \text {. as } l>0 \text { or } \quad b<0 .
$$

This last result might be obtained formally by taking the limit

$$
\lim _{n=1,} \int_{0}^{x} t-a \cdot \frac{\sin 1, x}{x} d x=\int_{0}^{x} \frac{\sin b, c}{x} d x=\tan ^{-1} \frac{b}{0}= \pm \frac{\pi}{2}
$$

after the first inturation : lut such a process would be mujustifiable without first showing that the interral was a continuous function of a for small positive values of u and for 0 . In this case $r^{-1} e^{-a r}$ sin $b x|\leqq| c^{-1}$ sin $x \mid$, but as the interral of $\mid x^{-1}$ sin b, r^{\prime} dees mot converge, the test for uniformity fails to apply. Hence the limit would mot be justified without ilecial investigation. Here the limit does give the right result. but a simple case where the integral of the limit is not the limit of the integral is

$$
\lim _{b=0} \int_{0}^{\alpha} \frac{\sin 7 x}{x} d x=\lim _{b=0}\left(\pm \frac{\pi}{2}\right)= \pm \frac{\pi}{2} \neq \int_{0}^{x} \lim _{b=0} \frac{\sin 1, c}{c} d x \int_{0}^{x} \frac{0}{x} d x=0 .
$$

As a second example consitter the evahation of $\int_{0}^{x} e^{-\left(x-\frac{a}{x}\right)^{2}} d x$. Differentiate.

$$
\begin{aligned}
\phi^{\prime}(a)=\frac{d}{d l d} \int_{0}^{x} e^{-\left(x-\frac{a}{x}\right)^{2}} d x & =2 \int_{0}^{\infty} e^{-\left(x-\frac{u}{x}\right)^{2}}\left(x-\frac{a}{x}\right) \frac{1}{x} d x \\
& =2 \int_{0}^{\infty} e^{-\left(x-\frac{a}{x}\right)^{2}}\left(1-\frac{a}{x^{2}}\right) d x
\end{aligned}
$$

To justify the differentiation this last integral must be shown to converge miformly. In the first place note that the intergand does not become infinite at the origin, although sue of its fators does. Hence the integral is intinite only by virtue of its infinite limit. Snpuose $\| \geqq 0$; then for large values of x

$$
e^{-\left(x-\frac{\mu}{x}\right)^{2}}\left(1-\frac{u}{x^{2}}\right) \leqq e^{2 u_{e}-x^{2}} \text { and } \quad \int^{\infty} c^{-x^{2}} d x \quad \text { converqes }(\S 143) .
$$

Inenee the convergence is miform when $a \geqq 0$. and the differentiation is justified. But, by the change of variable $x^{\prime}=-u / x$. when $u>0$.

$$
\int_{0}^{\infty} e^{-\left(x-\frac{u}{x}\right)^{2}} \frac{u 1 x}{x^{2}}=\int_{0}^{\infty} e^{-\left(-\frac{u}{x^{\prime}}+x^{\prime}\right)^{2}} d \cdot x^{\prime}=\int_{0}^{x} e^{-\left(x-\frac{u}{x}\right)^{2}} d x .
$$

Hence the derivatise above foum is zero; $\phi^{\prime}(t)=0$ and

$$
\phi(u)=\int_{0}^{\infty} e^{-\left(x-\frac{u}{x}\right)^{2}} d x=\text { const. }=\int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}
$$

for the integral converges miformly when $a \geqq 0$ and its constant value may be obtaned by setting $\neq 0$. As the eonvergence is miforn for any range of valnes of a, the fumetion is everywhere eontinuons and equal to $\frac{1}{2} \vee \pi$.

As a third example calculate the integral $\phi(b)=\int_{0}^{\infty} e^{-a^{2} x^{2}}$ eos bxdx. Now

$$
\frac{d \phi}{a b}=\int_{0}^{x}-x e^{-a^{2} x^{2}} \sin h x d x=\frac{1}{2 a^{2}}\left[e^{-a^{2}, x^{2}} \sin h\right]_{0}^{x}-\frac{b}{2 a^{2}} \int_{0}^{x} e^{-a^{2} x^{2}} \cos \ln x d x .
$$

The second step is obtained hy intequation by ladts. The previons differentiation is justified by the fact that the integral of $r e^{-a^{2},,^{2}}$. Which is greater than the integrand of the derived intergat, eonverges. 'The differential equation may be solfed.

1I

$$
\begin{aligned}
& \frac{d \phi}{d l^{\prime}}=-\frac{b}{2 \alpha^{2}} \phi, \quad \phi=\left(\varepsilon-\frac{b^{2}}{4 a^{2}} . \quad \phi(1)=\int_{11}^{\infty},-a^{2} x^{2} d x=\begin{array}{l}
\frac{1}{\pi} \\
2 d r
\end{array} .\right.
\end{aligned}
$$

146. The fuestien of the intergration maler the sign is naturally comereted with the: question of intinite double integrals. The doubhe

convergence is analogous to that given before in the case of infinite simple integrals. If the area 1 is infinite, it is replaced by a finite area A^{\prime} which is allowed to expand so as to cover more and more of the area A. If the function $f^{\prime}(x, y)$ becomes infinite at a point or along a line in the area A, the area A is replaced by an area A 'from which the singularities of $f(x, y)$ are exeluded, and again the area A^{\prime} is allowed to exprand and approach coincidence with A. If then the double intergral extended over A^{\prime} approaches a definite limit which is independent of how A ' approaches A, the double integral is said to converge. As

$$
\left.\iint f(x, y) d x d y=\iint J\left(\frac{x, y}{\prime \prime, r}\right) \right\rvert\, f(\phi, \psi) d u d x
$$

where $x=\phi(u, r), \eta=\psi(u, v)$, is the rule for the change of rariable and is applicable to A^{\prime}, it is clear that if either side of the equality approathes a limit which is independent of how A^{\prime} approaches A, the other side must approach the same limit.

The theory of infinite double integrals presents numerous difinculties, the solution of which is beyond the scope of this work. It will be sutticient to point out in a simple case the questions that arise, and then state without proof a theorem which cover's the cases which arise in practice. Suppose the region of integration is a complete quadrant so that the limits for x and y are 0 and ∞. The first question is, If the double integral converges, may it be evaluated by surcessive integrat tion as

$$
\int f^{0}\left(x^{\prime}, y\right) d A=\int_{x=0}^{\infty} \int_{y=0}^{x} f(x, y) d y d x=\int_{y=0}^{\infty} \int_{x=0}^{\infty} f(x, y) d x^{x} d y!
$$

And conversely, if one of the iterated integrals converges so that it may be evaluated. does the other one, and does the double integral, converge to the same value? A pret of this question also arises in the rase of a function defined by an infinite integral. For let

$$
\phi\left(x^{x}\right)=\int_{y=0}^{x} f(x, y) d y \text { and } \int_{x=0}^{x} \phi\left(x^{i}\right) d x^{x}=\int_{x=0}^{x} \int_{y=0}^{x} f(x, y) d y d x,
$$

it being assmmed that $\phi\left(r^{\circ}\right)$ converges except possibly for certain values of x, and that the integral of $\phi(x)$ from 0 to ∞ converges. The question arises, May the integral of $\phi(. i)$ be evaluated ly integration muder the sign? The proofs given in $s 144$ for miformly convergent integrals integrated over a finite region do not apply to this case of an infinite integral. In any particular given integral special methods may pessibly be devised to justify for that rase the desired transformations. lint most cases are eovered by a theorem due to de la Vallé Pousim: If the
frenction $f(x, y)$ does not chernges sign rund is rontinuous ercepptorer a finite number of lines purallel to the ares of x and !, then the there inteyrals

$$
\begin{equation*}
\int f(x, y) d A, \quad \int_{x=0}^{\infty} \int_{y=0}^{\infty} f(x, y) d y d x, \quad \int_{y=0}^{\infty} \int_{x=0}^{\infty} f(x, y) d x d y \tag{12}
\end{equation*}
$$

remnot lead to different detrminute results: that is, if an!! tero of them trad to definite results, those results aro equal.* The chief use of the theorem is to establish the equality of the two iterated integrals when each is known to converge : the applieation requires no test for mi'formity and is very simple.

As an example of the use of the theorem consider the evaluation of

$$
I=\int_{0}^{\infty} e^{-x^{2}} d x=\int_{0}^{x} \alpha e^{-\alpha^{2} x^{2}} d . r
$$

Multiply by $e^{-\alpha^{2}}$ and integrate from 0 to x with respect to α.

$$
I e^{-\alpha^{2}}=\int_{0}^{\infty} \alpha e^{-\alpha^{2}\left(1+\alpha^{2}\right)} d x, \quad I \int_{0}^{\infty} e^{-\alpha^{2}} d \alpha=I^{2}=\int_{0}^{\infty} \int_{0}^{\infty}\left(r e^{-a^{2}\left(1+x^{2}\right)} d d d d x .\right.
$$

Now the integrand of the iterated integral is positive and the integral. being equal to I^{2}, has a definite value. If the order of integrations is changed, the integral

$$
\int_{0}^{\infty} \int_{0}^{x}\left(r e^{-a^{2}\left(1+x^{2}\right)} d x d x=\int_{0}^{\infty} \frac{1}{1+x^{2}} \frac{d r}{2}=\frac{1}{2} \tan ^{-1} x=\frac{\pi}{4}\right.
$$

is seen also to lead to a definite value. Hence the values I^{2} and $\frac{1}{4} \pi$ are equal.

EXERCISES

1. Note that the two integrands are continuous functions of (r. α) in the whole region $1 \leqq c r<x .0 \leqq x<x$ and that for eath value of a the integrals converge. Establish the forms given to the remainders and from them show that it is men pussible to take x so large that for all values of or the relation $|R(x, a)|<\epsilon$ is satisfietl, but may be satisfied for all $\alpha=$ such that $0<\alpha_{0} \equiv \alpha$. Hence infer that the conversence is nommiformanout $\alpha=0$. hut miform chewhere. Note that the functions detined are not continuons at $x=0$. bat are emontinuons for all other values.

$$
\begin{aligned}
& \text { (} \beta \text {) } \int_{01}^{x} \frac{\sin (\alpha, r}{x} d r . r(, r, \alpha)=\int_{x}^{x} \frac{\sin \alpha, r}{x} d r=\int_{a, r}^{x} \frac{\sin , r}{x} d r .
\end{aligned}
$$

2. Repeat in iletail the profs. relative to continnty. integration, and differentiation in tase the interral is intinite owing to an infinite integrand at $s=b$.

[^35]3. Show that differentiation under the sign is allowable in the following cases, and lence derive the results that are given :
(α) $\int_{0}^{x} e^{-\alpha x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{\alpha}}, \alpha>0, \quad \int_{0}^{x} x^{2 n} e-\alpha x^{2} d x=\frac{\sqrt{\pi}}{2} \frac{1 \cdot 3 \cdots(2 n-1)}{2^{n} \alpha^{n+\frac{1}{2}}}$,
(β) $\int_{0}^{\infty} x e^{-\alpha x^{2}} d x=\frac{1}{2 \alpha}, \alpha>0, \quad \int_{0}^{x} x^{2 n+1} e^{-\alpha x^{2}} d x=\frac{1 \cdot 2 \cdots n}{2 \alpha^{n+1}}$,
(γ) $\int_{0}^{x} \frac{d x}{x^{2}+k}=\frac{\pi}{2} \frac{1}{\sqrt{k}}, k>0, \quad \int_{0}^{x} \frac{d x}{\left(x^{2}+k\right)^{n+1}}=\frac{\pi}{2} \frac{1 \cdot 3 \cdots(2 n-1)}{2 n n: k^{n+\frac{1}{2}}}$,
(o) $\int_{0}^{1} x^{n} d x=\frac{1}{n+1}, n>-1 . \quad \int_{0}^{1} x^{n}(-\log x)^{m} d x=\frac{m:}{(n+1)^{m+1}}$,
(є) $\int_{0}^{x} \frac{x^{\alpha-1}}{1+x} d x=\frac{\pi}{\sin \alpha \pi} \cdot 0<\alpha<1, \int_{0}^{x^{2}} \frac{x^{\alpha-1} \log x}{1+x} d x=\frac{\pi^{2} \cos \alpha \pi}{\cos ^{2} \alpha \pi-1}$.
4. Fstablish the right to integrate and hence evaluate these :
($\alpha) ~ \int_{0}^{x} e^{-\alpha x} d x, 0<\alpha_{0} \leqq \alpha . \int_{0}^{x} \frac{e^{-\alpha x}-e^{-b x}}{x} d x=\log \frac{b}{u}$, ,. $\quad \geqq \alpha_{0}$.
(β) $\int_{0}^{1} x^{a} d x,-1<\alpha_{0}<\alpha, \int_{0}^{1} \frac{x^{a}-x^{b}}{\log x} d x=\log \frac{a+1}{b+1}, \quad,, \quad, \geqq \alpha_{11}$,
(γ) $\int_{0}^{\infty} e^{-\alpha x} \cos m x d x, 0<\alpha_{0} \leqq \alpha . \int_{0}^{x} \frac{e^{-a x}-e^{-b x}}{x} \cos m x d x=\frac{1}{2} \ln \frac{b^{2}+m m^{2}}{u^{2}+m 2^{2}}$.
($\delta) \quad \int_{0}^{x} e^{-\alpha x} \sin m x d x, 0<\alpha_{0} \leqq \alpha \cdot \int_{0}^{x} \frac{t^{-a x}-e^{-b x}}{x} \sin m x d c=\tan ^{-1} \frac{h}{m}-\tan ^{-1}{ }_{m}^{\prime \prime}$,
(є) $\int_{0}^{x} e^{-\alpha^{2} x^{2}} d x=\frac{\lambda^{\prime} \frac{\pi}{2}}{2 \alpha}, 0<\alpha_{0} \leqq \alpha . \int_{0}^{x} e^{-\frac{a^{2}}{x^{2}}}-e^{-\frac{b^{2}}{x^{2}}}(d x=(b-a) \sqrt{\pi}$.
5. Evaluate : $\quad(\alpha) \int_{0}^{x}-\alpha x \frac{\sin \beta x}{x} d \cdot x=\tan -1 \frac{\beta}{\alpha}$,
(β) $\int_{0}^{x} e^{-x} \frac{1-\cos \alpha x}{x} d x=\log \sqrt{1+\left(x^{2}\right.}$.
(γ) $\int_{0}^{x} \epsilon^{-x^{2}} \frac{\sin 2 \alpha x}{x} d x$,
(() $\int_{0}^{x} e^{-\left(x^{2}+\frac{a^{2}}{x^{2}}\right)} d x=\frac{\sqrt{\pi}}{2} \epsilon^{-2 u} \cdot u \geqq 0$.
(є) $\int_{0}^{\infty} \frac{\log \left(1+u^{2} x^{2}\right)}{1+b^{2} x^{2}} d x$.
6. If $0<a<b$. obtain from $\int_{0}^{x} e^{-r x^{2}} d x=\frac{1}{2} \backslash \frac{\bar{\pi}}{r}$ and justify the relations:
\[

$$
\begin{aligned}
& \int_{a}^{b} \frac{\sin r}{\sqrt{r}} d r=\frac{2}{\sqrt{\pi}} \int_{a}^{b} \int_{0}^{\infty} e^{-r x^{2}} \sin r d x d r=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \int_{a}^{b} e^{-r x^{2}} \sin r d r d x \\
& =\frac{2}{\sqrt{\pi}}\left[\sin a \int_{0}^{x} \frac{e^{-a x^{2}} \cdot x^{2} d x}{1+x^{4}}-\sin b \int_{0}^{x} \frac{e^{-b x^{2}} x^{2} d x}{1+x^{4}}\right. \\
& \left.+\cos a \int_{0}^{x} \frac{e^{-\alpha x^{2}} d \cdot r}{1+x^{4}}-\cos b \int_{0}^{x} \frac{e^{-b x^{2}} d x}{1+x^{4}}\right] . \\
& \int_{0}^{r} \frac{\sin r}{\sqrt{r}} d r=\sqrt[\frac{\pi}{2}]{2}-\frac{2}{\pi}\left[\sin r \int_{0}^{s} \frac{e^{-r x^{2}} x^{2} d x}{1+x^{4}}+\cos r \int_{0}^{x} \frac{e^{-r x^{2}} d r}{1+x^{4}}\right] .
\end{aligned}
$$
\]

Similarly, $\int_{0}^{r} \frac{\cos r}{\sqrt{r}} d r=\sqrt{\frac{\pi}{2}}-\frac{2}{\pi}\left[\cos r \int_{0}^{x} \frac{e^{-r x^{2} x^{2} d x}}{1+x^{4}}-\sin r \int_{0}^{x} \frac{e^{-r x^{2}} d x}{1+x^{4}}\right]$.

Also

$$
\int_{0}^{\infty} \frac{\sin r}{\sqrt{r}} d r=\int_{0}^{\infty} \frac{\cos r}{\sqrt{r}} d r=\sqrt{\frac{\pi}{2}}, \quad \int_{0}^{\infty} \sin \frac{\pi}{2} r^{2} d r=\int_{0}^{\infty} \cos \frac{\pi}{2} r^{2} d r=\frac{1}{2} .
$$

7. Given that $\frac{1}{1+x^{2}}=2 \int_{0}^{\infty} \alpha e^{-a^{2}\left(1+x^{2}\right) d \alpha \text {, show that }}$

$$
\int_{0}^{\infty} \frac{1+\cos m x}{1+x^{2}} d x=\frac{\pi}{2}\left(1+e^{-m}\right) \text { and } \int_{0}^{\infty} \frac{\cos m x}{1+x^{2}} d x=\frac{\pi}{2} e^{-m}, \quad m>0 .
$$

8. Express $R(x, \alpha)=\int_{x}^{\infty} \frac{x \sin \alpha x}{1+x^{2}} d x$, by integration by parts and also by substituting x^{\prime} for αx, in such a form that the miform convergence for α such that $0<\alpha \alpha_{0} \leqq \alpha$ is shown. Hence from Ex. 7 prove

$$
\int_{0}^{\infty} \frac{x \sin \alpha x}{1+c^{2}} d x=\frac{\pi}{2} e^{-\alpha}, \quad \alpha>0 \quad \text { (by differentiation). }
$$

Show that this integral does not satisfy the test for uniformity given in the text; also that for $\alpha=0$ the convergence is not uniform and that the integral is also discontinuous.
9. If $f(x, \alpha, \beta)$ is continuous in (x, α, β) for $0 \leqq x<\infty$ and for all points (α, β) of a region in the $\alpha \beta$-plane, and if the integral $\phi(\alpha, \beta)=\int_{10}^{x} f(x, \alpha, \beta) d x$ converges uniformly for said values of (α, β), show that $\phi(\alpha, \beta)$ is continnous in (α, β). Show further that if $f_{\alpha}^{\prime}(x, \alpha, \beta)$ and $f_{\beta}^{\prime}(x, \alpha, \beta)$ are continuous and their integrals converge uniformly for said values of (α, β), then

$$
\int_{0}^{\infty} f_{\alpha}^{\prime}(x, \alpha, \beta) d x=\phi_{\alpha}^{\prime}, \quad \int_{0}^{\infty} f_{\beta}^{\prime}(x, \alpha, \beta) d x=\phi_{\beta}^{\prime},
$$

and $\phi_{u c}^{\prime}, \phi_{\beta}^{\prime}$ are contimons in (α, β). The proof in the text holds almost verbatim.
10. If $f(x, \gamma)=f(x, \alpha+i \beta)$ is a function of x and the complex variable $\gamma=c \gamma+i \beta$ which is emtimums in (c. α, β). that is, in (x, γ) wer at region of the γ-phace, ctc., as in Ex. 9, and if $f_{\gamma}^{\prime}(x, \gamma)$ satisfies the same conditions, show that

$$
\phi(\gamma)=\int_{0}^{x} f(x, \gamma) d x \text { defines an analytic function of } \gamma \text { in said region. }
$$

11. Show that $\int_{10}^{\infty} e^{-\gamma j^{2}} d x, \gamma=\alpha+i \beta$. $\alpha \geqq \alpha_{0}>0$. defines an amalytie function of γ orer the whole γ-plane to the right of the vertical $\alpha=\alpha_{0}$. Hence infer

Prove

$$
\begin{gathered}
\phi(\gamma)=\int_{0}^{x} e^{-\gamma x^{2}} d x=\frac{1}{2} \backslash \frac{\bar{\pi}}{\gamma}=\frac{1}{2} \backslash \frac{\pi}{\pi+i \beta}, \quad \alpha \geqq \kappa_{0}>0 . \\
\int_{0}^{x} e^{-\alpha x^{2} \cos \beta \cdot r^{2} d x}=\frac{1}{2} \sqrt{\frac{\pi \alpha+\sqrt{\alpha \alpha^{2}+\beta^{2}}}{2}}, \\
\int_{0}^{x} e^{-\alpha \alpha^{2}+\beta^{2}} \sin \beta \cdot r^{2} d x=\frac{1}{2} \sqrt{\frac{\pi-\alpha+\sqrt{\alpha^{2}+\beta^{2}}}{2}} .
\end{gathered}
$$

12. Integrate $\int_{x}^{\infty} \frac{1}{x} e^{-\alpha x^{2} x} \cos \beta x^{2} d x$ of Ex. 11 by parts. with $x \cos \beta x^{2} d x=d u$ to show that the convergence is uniform at $\alpha=0$. Hence find $\int_{0}^{\infty} \cos \beta x^{2} d x$.
13. From $\int_{-\infty}^{+\infty} \cos x^{2} d x=\int_{-\infty}^{+\infty} \cos (x+\alpha)^{2} d x=\sqrt{\frac{\pi}{2}}=\int_{-\infty}^{+\infty} \sin (x+\alpha)^{2} d x$, with the results $\int_{-\infty}^{+\infty} \cos x^{2} \sin 2\left(r x d x=\int_{-\infty}^{+\infty} \sin x^{2} \sin 2 \alpha x d x=0\right.$ due to the fact that $\sin x$ is an odd function, establish the relations
$\int_{0}^{\infty} \cos x^{2} \cos 2 \alpha x d x=\frac{\sqrt{\pi}}{2} \cos \left(\frac{\pi}{4}-\alpha^{2}\right), \int_{0}^{\infty} \sin x^{2} \cos 2 \alpha x d x=\frac{\sqrt{\pi}}{2} \sin \left(\frac{\pi}{4}-\alpha^{2}\right)$.
14. Calculate:
(a) $\int_{0}^{\infty} e^{-a^{2} x^{2}} \cosh b x d x$,
(β) $\int_{0}^{\infty} r c^{-\alpha x} \cos b x d x$,
and (together)
($\gamma) \int_{0}^{\infty} \cos \left(\frac{x^{2}}{2} \pm \frac{\alpha^{2}}{2 x^{2}}\right) d x$,
($\delta) \int_{0}^{\infty} \sin \left(\frac{x^{2}}{2} \pm \frac{\alpha^{2}}{2 x^{2}}\right) d x$.
15. In continuation of Exs. $10-11$, p. 368 , prove at least formally the relations:

$$
\begin{gathered}
\lim _{k=\infty} \int_{-a}^{0} f(x) \frac{\sin k x}{x} d x=\frac{\pi}{2} f(0), \quad \lim _{k=\infty} \frac{1}{\pi} \int_{-a}^{a} f(x) \frac{\sin k x}{x} d x=f(0) \\
\int_{0}^{k} \int_{-a}^{a} f(x) \cos k x d x d k=\int_{-a}^{a} \int_{0}^{k} f(x) \cos k x d k d x=\int_{-a}^{a} f(x) \frac{\sin k x}{x} d x \\
\frac{1}{\pi} \int_{0}^{\infty} \int_{-a}^{u} f(x) \cos k x d x d k=\lim _{k=\infty} \frac{1}{\pi} \int_{-a}^{a} f(x) \frac{\sin k x}{x} d x=f(0) \\
\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(x) \cos k x d x d k=f(0), \quad \frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(x) \cos k(x-t) d x d k=f(t) .
\end{gathered}
$$

The last form is known as Fonrier's Integral ; it represents a function $f(t)$ as a double infinite integral containing a parameter. Wherever possible, justify the steps after placing sufficient restrictions on $f(x)$.
16. From $\int_{0}^{\infty} c^{-x y} d y=\frac{1}{x}$ prove $\int_{0}^{x} \frac{e^{-a x}-e^{-b x}}{x} d x=\log \frac{b}{a}$. Prove also

$$
\begin{aligned}
\int_{0}^{x} x^{n-1} e^{-x} d x & \int_{0}^{x} x^{m-1} e^{-x} d x \\
& =2 \int_{0}^{x} r^{2 n+2 m-2} e^{-r^{2}} d r^{2} \int_{0}^{\pi} \sin ^{2 n-1} \phi \cos ^{2} m-1
\end{aligned} d \phi .
$$

17. Treat the integrals (12) by polar coördinates and show that

$$
\int f(x, y) d A=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} f(r \cos \phi, r \sin \phi) r d r d \phi
$$

will converge if $|\hat{f}|<r^{-2-k}$ ass r becomes infinite. If $f(x, y)$ becomes infinite at the origin, but $|f|<r^{-2+k}$, the integral converges as r approaches zero. Generalize these results to triple integrals and polar coorrdinates in space ; the only difference is that 2 beeomes 3 .
18. As in Exs. 1, 8, 12, uniformity of convergence may often be tested directly, withont the test of page 369 ; treat the integrand $x^{-1} e^{-a x} \sin b, x$ of page 371 , where that test failed.

CHAPTER XIV

SPECIAL FUNCTIONS DEFINED BY INTEGRALS

147. The Gamma and Beta functions. The two integrals

$$
\begin{equation*}
\Gamma(n)=\int_{11}^{x} x^{n-1} e^{-x} l_{x} r, \quad \mathrm{~B}(m, n)=\int_{1}^{1} x^{m-1}(1-x)^{n-1} d x \tag{1}
\end{equation*}
$$

converge when $n>0$ and $m>0$, and hence define functions of the barameters n or n and m for all positive values, zero not included. Other forms may he obtained by changes of variable. Thus

$$
\begin{align*}
\Gamma(n) & =2 \int_{0}^{x} y^{2 n-1},-y^{2}, l y, & \text { by } x=y^{2}, \tag{2}\\
\Gamma(n) & =\int_{0}^{1}\left(\log \frac{1}{y}\right)^{n-1} d y, & \text { by } e^{-x}=y, \tag{3}\\
\mathrm{~B}(m, n) & =\int_{0}^{1} y^{n-1}(1-y)^{m-1} d y=\mathrm{B}(n, m), & \text { by } \quad x=1-y, \tag{4}\\
\mathrm{~B}(m, n) & =\int_{0}^{x} \frac{y^{m-1} l y}{(1+y)^{m+n}}, & \text { by } x=\frac{y}{1+y}, \tag{5}\\
\mathrm{~B}(m, n) & =2 \int_{0}^{\pi} \sin ^{2 m-1} \phi \cos ^{2 n-1} \phi l \phi, & \text { by } x=\sin ^{2} \phi . \tag{6}
\end{align*}
$$

If the original form of $\Gamma(n)$ be integrated by larts, then

$$
\left.\Gamma(n)=\int_{0}^{x} x^{n-1} e^{-x} d x=\frac{1}{n} x^{n} e^{-x}\right]_{0}^{x}+\frac{1}{n} \int_{0}^{x} r^{n^{n} e^{-x}} \nmid x=\frac{1}{n} \Gamma(n+1)
$$

The resulting relation $\Gamma(n+1)=n \Gamma(n)$ shows that the values of the Γ-function for $n+1$ may be obsained from those for n, and that consequently the values of the function will all be determined if the values over a unit interval are known. Furthermore

$$
\begin{align*}
\Gamma(n+1) & =n \Gamma(n)=n(n-1) \Gamma(n-1) \\
& =n(n-1) \cdots\left(n-l_{i}\right) \Gamma\left(n-l_{i}\right)
\end{align*}
$$

is found by successive reduction, where l is any integer less than n. If in particular n is an integrer and $k=n-1$, then

$$
\Gamma(n+1)=n(n-1) \cdots \underset{3 \cdot 1}{\cdots} \cdot \Gamma(1)=n: \Gamma(1)=n: ;
$$

since when $n=1$ a direct integration shows that $\Gamma(1)=1$. Thus for integrol colurss af'n the 「-fiuntion is the fuctorial; and for other than integral ralues it may he regarded as a sort of generalization of the factorial.

Both the Γ - and B-functions are continuous for all values of the parameters greater than, but not including, zero. To prove this it is sufficient to show that the convergence is uniform. Let n be any value in the interval $0<n_{0} \leqq n \leqq N$; then

$$
\int_{0} x^{n-1} e^{-x} l_{1} x \leqq \int_{0} x^{n_{0}-1} e^{-x} d x, \quad \int^{\infty} x^{n-1} e^{-x} d x \leqq \int_{x^{x-1}}^{\infty} e^{-x} d x
$$

The two integrals converge and the general test for uniformity ($\$ 144$) therefore applies: the application at the lower limit is not necessary except when $n<1$. Similar tests apply to $\mathbf{B}(m, n)$. Integration with respect to the parameter may therefore be carried under the sign. The derivatives

$$
\begin{equation*}
\frac{d^{k} \mathbf{\Gamma}(n)}{d n^{k}}=\int_{0}^{x} x^{n-1} e^{-x}(\log x)^{k} d x \tag{9}
\end{equation*}
$$

may also be had by differentiating under the sign ; for these derived integrals may likewise be shown to converge uniformly.

By multiplying two Γ-functions expressed as in (2), treating the product as an iterated or double integral extended over a whole quadrant, and evaluating by transformation to polar coördinates (all of which is justifiable by \& $14 t$, since the integrands are positive and the processes lead to a deteminate result), the B-function may be expressed in terms of the Γ-function.

$$
\begin{align*}
& \Gamma(n) \Gamma(m)=4 \int_{0}^{\infty} x^{2 n-1} e^{-x^{2}} d x \int_{0}^{\infty} y^{2 m-1} e^{-y^{2}} d y=4 \int_{0}^{x} \int_{0}^{\infty} x^{2 n-1} y^{2 m-1} e^{-x^{2}-y^{2}} d x d y \\
& =4 \int_{0}^{\infty} r^{2 n+2 m-1} e^{-r^{2}} d r \int_{0}^{\frac{\pi}{2}} \sin ^{2 m-1} \phi \cos ^{2 n-1} \phi d \phi=\Gamma(n+m) \mathbf{B}(m, n) \\
& \text { Hence } \quad \mathrm{B}(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}=\mathrm{B}(n, m)
\end{align*}
$$

The result is symmetric in m and n, as must be the case inasmuch as the B-function has been seen by (4) to be symmetric.

That $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ follows from (9) of \& 143 after setting $n=\frac{1}{2}$ in (2); it may also be deduced from a relation of importance which is obtained from (10) and (5), and from (8) of $s 142$, namely, if $n<1$,

$$
\begin{align*}
\frac{\Gamma(n) \Gamma(1-n)}{\Gamma(1)=1}= & \mathrm{B}(n, 1-n)=\int_{0}^{\infty} \frac{y^{n-1}}{1+!} d y=\frac{\pi}{\sin n \pi} \\
& \Gamma(n) \Gamma(1-n)=\frac{\pi}{\sin n \pi} \tag{11}
\end{align*}
$$

or

As it was seen that all values of $\Gamma(n)$ could be had from those in a unit interval, say from 0 to 1 , the relation (11) shows that the interval may be furtlier reduced to $\frac{1}{2} \leqq n \leqq 1$ and that the values for the interval $0<1-n<\frac{1}{2}$ may then be found.
148. By suitable changes of variable a great many integrals may he reduced to B- and Γ-integrals and thus expressed in terms of r-functions. Many of these types are given in the exercises below; a few of the most important ones will be taken up here. By $y=a, x$;
$\int_{0}^{a} x^{n-1}\left(u-n^{2}\right)^{n-1} d e^{r}=a^{m+n-1} \int_{0}^{1} y^{m-1}(1-y)^{n-1}\left(\eta y=a^{m+n-1} \mathrm{~B}(m, n)\right.$
or

$$
\begin{equation*}
\int_{0}^{a} x^{n-1}\left((1-x)^{n-1} d x=a^{m+n-1} \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}, \quad \|>0\right. \tag{12}
\end{equation*}
$$

Next let it be rerpuired to evaluate the triple integral

$$
I=\iiint x^{l-1} y^{m-1} \tilde{i}^{n-1}\left(l x+y d z, \quad x^{n}+y+z \leqq 1\right.
$$

orer the rolume bounded by the coordinate planes and $x+y+a=1$. that is, orer all positive values of $, x, y$ such that $r+y+a \leqq 1$. Then

$$
\begin{aligned}
I & =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} x^{l-1} y^{m-1} \dot{n}^{n-1}(7 \dot{\omega} l y d x \\
& =\frac{1}{n} \int_{0}^{1} \int_{0}^{1-r} x^{l-1} y^{m-1}(1-r-y)^{n} d y d x .
\end{aligned}
$$

By (12)

$$
\int_{0}^{1-x} y^{m-1}(1-x-\eta)^{n} \left\lvert\,!=\frac{\Gamma(m) \Gamma(n+1)}{\Gamma(m+n+1)}\left(1-x^{r}\right)^{m+n}\right.
$$

Then

$$
\begin{aligned}
I & =\frac{\Gamma(m) \Gamma(n+1)}{n \Gamma(m+n+1)} \int^{1}{ }^{n-1}(1-,)^{m+n} l_{r} r \\
& =\frac{\Gamma(m) \Gamma(n+1)}{n \Gamma(m+n+1)} \frac{\Gamma(l) \Gamma(m+n+1)}{\Gamma(l+m+n+1)} .
\end{aligned}
$$

This result may be simplified by ($\overline{1}$) and by cancellation. Then

There are simple monlifications and weneralizations of these results which are sometimes useful. For instance if it were desired to eraluate I over the rance of positive values such that $s / u+y / h+z / n \equiv h$. the change $x=\| h \xi . y=b h \eta$. $z=c h \zeta$ gives

$$
I=\left\|^{l l, m e n}\right\|_{l}+m+n \iiint \xi^{l-1} \eta^{m i-1} \xi^{n-1} d \xi\{\eta d \xi . \quad \xi+\eta+\xi \leqq 1 .
$$

$I=\iiint x^{l-1} y^{m-1} z^{n-1} d \cdot r d y d z=u^{\eta} b^{m} c^{n} \frac{\Gamma(l) \Gamma(m) \Gamma(n)}{\Gamma(l+m+n+1)} h^{l+m+n} \cdot \frac{x}{a}+\frac{\eta}{b}+\frac{z}{c} \leqq h$.

The value of this integral extended over the lamina between two parallel planes determined by the values h and $h+d h$ for the constant h would be

$$
d I=\epsilon^{l} b^{m} e^{n} \frac{\Gamma(l) \Gamma(m) \Gamma(n)}{\Gamma(l+m+n)} h^{l+m+n-1} d h .
$$

Hence if the integrand contained a function $f(h)$, the reduction would be

$$
\begin{aligned}
\iiint x^{l-1} y^{m-1} z^{n-1} f\left(\frac{x}{a}+\frac{y}{b}\right. & \left.+\frac{z}{c}\right) d x d y d z \\
& =a^{l b b^{n} c^{n}} \frac{\Gamma(l) \Gamma(m) \Gamma(n)}{\Gamma(l+m+n)} \int_{0}^{I I} f(h) h^{l+m+n-1} d h
\end{aligned}
$$

if the integration be extended over all values $x / a+y / b+z / c \leqq I I$.
Another morlification is to the ease of the integral extended over a volume

$$
J=\iiint x^{l-1} y^{m-1} z^{n-1} d x d y d z, \quad\left(\frac{x}{a}\right)^{\prime}+\left(\frac{y}{b}\right)^{q}+\left(\frac{z}{c}\right)^{r} \leqq h
$$

which is the oetant of the surface $(x / a)^{p}+(y / b)^{r}+(z / c)^{r}=h$. The reduction to

$$
J=\frac{l^{l} l^{m} c_{c^{n}} h^{\frac{l}{\mu}+\frac{m}{q}+\frac{n}{r}}}{p q r} \iiint \xi^{\frac{l}{l}-1} \eta^{\frac{m}{q}-1} \zeta^{\frac{n}{r}-1} d \xi d \eta d \zeta, \quad \xi+\eta+\zeta \leqq 1,
$$

is made by $\xi h=\left(\frac{x}{a}\right)^{p}, \eta h=\left(\frac{y}{b}\right)^{q}, \zeta h=\left(\frac{z}{c}\right)^{r}, d x=\frac{a}{p} h^{\frac{1}{p}} \xi^{\frac{1}{p}}-1, \cdots$.

This integral is of importance because the bounding surface here oceurring is of a type tolerably familiar and frequently arising ; it inchodes the ellijsoid, the surface $x^{\frac{1}{2}}+y^{\frac{1}{2}}+z^{\frac{1}{2}}=u^{\frac{1}{2}}$, the surface $x^{\frac{2}{3}}+y^{\frac{2}{3}}+z^{\frac{2}{3}}=u^{\frac{2}{3}}$. By taking $l=m=n=1$ the volmmes of the octants are expressed in terms of the r-function; by taking first $l=3 . m=n=1$, and then $m=3 . l=n=1$, and adding the results, the moment, of inertia about the z-axis are fomd.

Althoush the ease of a triple integral has been treaterl. the results for a double interral or a guadruple integral or integral of higher multiplicity are made obsions. For example.

$$
\begin{aligned}
& \iint x^{l-1} y^{m-1} d x d y=u^{l} l^{m} m_{l} l+m \frac{\Gamma(l) \Gamma(m)}{\Gamma(l+m+1)}, \quad \frac{x}{a}+\frac{u}{b} \leqq h . \\
& \iint x^{l-1} y^{m-1} d x d y=\frac{n^{l l}, m}{p q} \frac{\Gamma\left(\frac{l}{p}\right) \Gamma\left(\frac{m}{q}\right)}{\Gamma\left(\frac{l}{p}+\frac{m}{q}+1\right)} h^{l}+\frac{m}{\eta} . \quad\left(\frac{r}{a}\right)^{n}+\left(\frac{l}{b}\right)^{q} \leqq h, \\
& \iint x^{l-1} y^{m-1} f\left[\binom{x}{a}^{p}+\left(\frac{y}{b}\right)^{q}\right] d x^{l} l y=\frac{a^{l / p m}}{p^{m}} \frac{\Gamma\left(\frac{l}{p}\right) \Gamma\left(\frac{m}{q}\right)}{\Gamma\left(\frac{l}{p}+\frac{m}{q}\right)} \int_{0}^{H} f(h)^{h} h^{\frac{l}{p^{\prime}}+\frac{m}{q}-1} d h, \\
& \left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{q} \leqq I I,
\end{aligned}
$$

$$
\begin{gathered}
\iiint \int x^{k-1} y^{l-1} z^{m-1} t^{n-1} d x d y d z d t=\frac{4^{k} b c^{m} d^{n}}{p q r s} \frac{\Gamma\left(\frac{k}{p}\right) \Gamma\left(\frac{l}{q}\right) \Gamma\left(\frac{m}{r}\right) \Gamma\left(\frac{n}{s}\right)}{\Gamma\left(\frac{k}{p}+\frac{l}{q}+\frac{m}{r}+\frac{n}{s}+1\right)}, \\
\left(\frac{r}{a}\right)^{p}+\left(\frac{y}{b}\right)^{q}+\left(\frac{z}{c}\right)^{r}+\left(\frac{t}{d}\right)^{s} \leqq 1
\end{gathered}
$$

149. If the product (11) be formed for each of $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}$, and the results be multiplied and reduced by Ex. 19 below, then

$$
\begin{equation*}
\Gamma\left(\frac{1}{n}\right) \Gamma\left(\frac{2}{n}\right) \cdots \Gamma\left(\frac{n-1}{n}\right)=\frac{(2 \pi)^{\frac{n-1}{2}}}{\sqrt{n}} \tag{14}
\end{equation*}
$$

The logarithms may be taken and the result be divided by n.

$$
\sum_{k=1}^{n} \log \Gamma\left(\frac{7}{n}\right) \cdot \frac{1}{n}=\left(\frac{1}{2}-\frac{1}{2 n}\right) \log 2 \pi-\frac{1}{2} \frac{\log n}{n}
$$

Now if n be allowed to become infinite, the sum on the left is that formed in computing an integral if $d x=1 / n$. Hence

Then $\quad \int_{0}^{1} \log \Gamma(\|+x) d x=\|(\log \pi-1)+\log \sqrt{2 \pi}$

$$
\begin{equation*}
\lim _{n=x} \sum \log \Gamma\left(r_{i}\right) \Delta x=\int_{0}^{1} \log \Gamma\left(x^{r}\right) d_{r}=\log \sqrt{2 \pi} \tag{1.5}
\end{equation*}
$$

may be evaluated by differentiating mor the sign (Ex. 12 (θ), p, 2SS).
liy the use of differentiation and integration under the sign, the expressions for the first and second logarithmic derivatives of $\Gamma(n)$ and for $\log \Gamma(n)$ itself may be found as definite integrals. By (9) and the expression of Ex. $4(18)$, p. 375 , for $\log x$,

$$
\Gamma^{\prime}(n)=\int_{0}^{\infty} x^{n-1} e^{-x} \log x d, r=\int_{0}^{\infty} x^{n-1} e^{-x} \int_{0}^{\infty} \frac{e^{-x}-e^{-\alpha x}}{a} d x d x
$$

If the iterated integral $h_{r e}$ regarded as a double integral, the order of the integrations may be inverted: for the integrand maintains a positive sign in the region $1<r<\infty, 0<x<\infty$, and a negative sign in the region $0<r<1,0<r<\infty$, and the integral from 0 to ∞ in,r may be considered as the sum of the integrals from 0 to 1 and from 1 to ∞, - to each of which the inversion is apmlicable ($\$ 146$) because the integrand does not change sign and the results (to be obtained) are definite. Then by Ex. 1 (r),
$\Gamma^{\prime}(n)=\int_{0}^{\infty} \int_{0}^{\infty} x^{n-1} e^{-x} \frac{e^{-\alpha}-e^{-\alpha x}}{\alpha} d x d n=\Gamma(n) \int_{0}^{\infty}\left(e^{-\alpha}-\frac{1}{(1+\alpha)^{n}}\right) \frac{d r}{\alpha}$

$$
\text { or } \quad \frac{\Gamma^{\prime}(n)}{\Gamma(n)}=\frac{d}{d n} \log \Gamma(n)=\int_{0}^{\infty}\left(e^{-\alpha}-\frac{1}{(1+n)^{n}}\right) \frac{d n}{a}
$$

This value may be simplified ly subtracting from it the particular value $-\gamma=\Gamma^{\prime}(1) / \Gamma(1)=\Gamma^{\prime}(1)$ found for $n=1$. Then

$$
\frac{\Gamma^{\prime}(n)}{\Gamma(n)}-\frac{\Gamma^{\prime}(1)}{\Gamma(1)}=\frac{\Gamma^{\prime}(n)}{\Gamma(n)}+\gamma=\int_{0}^{\infty}\left(\frac{1}{1+\imath}-\frac{1}{(1+n)^{n}}\right) \frac{\pi / r}{\alpha}
$$

The change of $1+c$ to $1 / a$ or to e^{α} gives

$$
\begin{equation*}
\frac{\Gamma^{\prime}(n)}{\Gamma(n)}+\gamma=\int_{0}^{1} \frac{1-\varepsilon^{n-1}}{1-\varepsilon} d x=\int_{0}^{\infty} \frac{e^{-\alpha}-e^{-a n}}{1-e^{-\alpha}} d \alpha \tag{17}
\end{equation*}
$$

Differentiate: $\quad \frac{d^{2}}{d n^{2}} \log \Gamma(n)=\int_{i j}^{\infty} \frac{\pi p^{-\alpha n}}{1-e^{-\alpha}} d n$.
To find $\log \Gamma(n)$ integrate (16) from $n=1$ to $n=n$. Then

$$
\begin{equation*}
\log \boldsymbol{\Gamma}(n)=\int_{0}^{\infty}\left[(n-1) e^{-\alpha}-\frac{(1+a)^{-1}-(1+a)^{-n}}{\log (1+a)}\right] \frac{d / \tau}{\alpha}, \tag{19}
\end{equation*}
$$

since $\Gamma(1)=1$ and $\log \Gamma(1)=0$. As $\Gamma(2)=1$,

$$
\log \Gamma(\underline{\prime})=0=\int_{n}^{x}\left[\frac{p^{-\alpha}}{\alpha}-\frac{(1+n)^{-2}}{\log (1+n)}\right] d x,
$$

and $\log \Gamma(n)=\int_{0}^{x}\left[\frac{n-1}{(1+n)^{2}}-\frac{(1+n)^{-1}-(1+n)^{-n}}{n}\right] \frac{d n}{\log (1+n)}$
bey subtracting from (19) the quantity $(n-1) \log \mathrm{L}^{\prime}(z)=0$. Finally

$$
\log \mathrm{I}(n)=\int_{-\infty}^{n}\left[\frac{r^{\alpha n}-\mu^{\alpha}}{e^{\alpha}-1}-(n-1) e^{e^{\alpha}}\right] \frac{d / r}{\kappa}
$$

if $1+r$ be changed to e^{-a}. The details of the reductions and the justification of the differentiation and integration will be left as extrerises.

An approximate expression or, better, an as!ymptotir prpmessiom, that is, an expression with smoll perementrge ermor; may be found for $\Gamma(n+1)$ when n is longe. Choose the form (2) and note that the integrand $y^{2 n+1},-y^{2}$ rises from 0 to a maximum at the point $y^{2}=n+\frac{1}{2}$ and falls away again to 0 . Make the change of variable ! $=\sqrt{k}+\cdots$, where $n=n+\frac{1}{2}$, so as to bring the origin under the maximum. Then
or

$$
\begin{aligned}
& \Gamma(n+1)=2 \int_{-\sqrt{\alpha}}^{\infty}(\sqrt{\alpha}+w)^{2 \alpha} e^{-\alpha-2 \sqrt{\alpha} w-u^{2}} \nmid c, \\
& \Gamma(n+1)=2 n^{\alpha} e^{-\alpha} \int_{-\sqrt{\alpha}}^{\infty} e^{2 \alpha \log \left(1+\frac{w}{\sqrt{\alpha}}\right)-2 \sqrt{a} w-u^{2}}, ~ / l n .
\end{aligned}
$$

N゙ow $\quad 2 \alpha \log \left(1+\frac{\pi}{\sqrt{a}}\right)-2 \sqrt{n} \leqq 0, \quad-\sqrt{k}<\pi<x$.

The integrand is therefore always less than $e^{-w^{2}}$, except when $\pi^{=}=0$ and the integrand becomes 1 . Moreover, as w increases, the integrand falls off very rapidly, and the chief gart of the value of the integral may be oltainel by integrating hetween rather narrow limits for u, say from -3 to +3 . As x is large hy hypothesis, the value of $\log (1+\cdots / \sqrt{n})$ may lee oltained for small values of w from Maclaurin's Formula. Then

$$
\Gamma(n+1)=2\left(x^{\alpha} e^{-\alpha} \int_{-r}^{a} e^{-2 w^{2}(1-\varepsilon)} d w\right.
$$

is an approximate form for $\mathrm{\Gamma}(n+1)$, where the quantity ϵ is about $\frac{2}{3}, r / \sqrt{x}$ and where the limits $\pm r$ of the integral are small relative to \sqrt{r}. But as the integrand falls off so rapidly, there will be little error made in extending the limits to ∞ after dropping ϵ. Hence approximately
or

$$
\begin{align*}
& \Gamma(n+1)=2 n^{\alpha} e^{-\alpha} \int_{-\infty}^{\infty} e^{-2 w^{2}} d \|=\sqrt{2} \pi n^{\alpha} e^{-\alpha} \\
& \Gamma(n+1)=\sqrt{2 \pi}\left(n+\frac{1}{2}\right)^{n+\frac{1}{2}} e^{-\left(n+\frac{1}{2}\right)}(1+\eta), \tag{20}
\end{align*}
$$

where η is a small quantity approaching 0 as n becomes infinite.

EXERCISES

1. Establish the following formulas by changes of variable.
$\left((x) \Gamma(n)=\tau^{n} \int_{0}^{x} x^{n-1} c^{-\alpha x} d x, \quad \alpha>0\right.$,
(β) $\int_{0}^{\pi} \frac{\pi}{2} \sin ^{n}$ rd $x={ }_{2}^{1} \mathrm{~B}\left(\begin{array}{l}n \\ 2\end{array}+\frac{1}{2}, \frac{1}{2}\right)$,
$(\gamma) \mathrm{B}(n, n)=2^{1-2 n} \mathrm{~B}\left(n, \frac{1}{2}\right)$ ly (i).
(ס) $\int_{0}^{1} x^{m-1}\left(1-x^{2}\right)^{n-1}, l x=\frac{1}{2} \mathrm{~B}\left(\frac{1}{2} m \cdot n\right)$,
(ϵ) $\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(x+u)^{m+n}} d x=\frac{\mathrm{B}(m \cdot n)}{u^{n}(1+u)^{m}}=\frac{1 \quad \mathrm{I}^{\prime}(m) \mathrm{I}^{\prime}(n)}{u^{n}(1+u)^{m}} \mathrm{I}^{\prime}(m+n)$ take $\frac{x}{x+u}=\frac{y}{1+u}$.
(() $\int_{n}^{1} \frac{r^{\prime n-1}(1-x)^{n-1} d x}{[a x+b(1-x)]^{m+n}}=\frac{\Gamma^{\prime}(m) \Gamma(n)}{u^{m} l^{n} \Gamma^{\top}(m+n)}$, take $x=\frac{b y}{u(1-y)+b y}$,
(η) $\int_{0}^{1} \frac{r^{m-1}(1-r)^{n-1}, l x}{(b+c \cdot)^{\prime m+n}}=\frac{\mathrm{B}(m \cdot n)}{b^{n}(b+r)^{m}}$,
($\theta) \int_{01}^{1} \frac{x^{n} d x}{\sqrt{1-x^{2}}}=\frac{\pi}{2} \frac{\Gamma\left(\frac{1}{2} n+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} n+1\right)}$.
() $\int_{0}^{1} x^{m}\left(1-c^{n}\right)^{n} d x=\frac{1}{n} \mathrm{~B}\left(p+1, \frac{m+1}{n}\right)$,
($\kappa) \int_{0}^{1} \frac{n, r}{\sqrt{\prime}-v^{n}}=\frac{v^{\prime} \pi}{n} \quad \Gamma\left(n^{-1}+\frac{1}{2}\right)$.
2. From $\mathrm{I}^{\prime}(1)=1$ and $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ make a table of the values for every integer and half interer from 9 to 5 and phot the curve $y=1(x)$ from them.
3. By the aid of (10) and Ex. $1(\gamma)$ prove the relations

$$
\sqrt{\pi} \Gamma\left(2,(u)=2^{2 u-1} \Gamma(u) \Gamma\left(u+\frac{1}{2}\right), \quad \sqrt{\pi} \Gamma^{\prime}(n)=2^{n-1} \Gamma^{\Gamma}\left(\frac{1}{2} n\right) \Gamma\left(\frac{1}{2} n+\frac{1}{2}\right) .\right.
$$

4. Given that $\mathrm{P}(1.75)=0.9191$, add to the talle of Ex. 2 the values of $\Gamma(0)$ for wery quarter from 0 to 8 and and the pints the the pot.
5. With the aid of the Γ-function prove these relations (see Ex. 1) :
(a) $\int_{0}^{\frac{\pi}{2}} \sin ^{n} \cdot d x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x / 2 x=\frac{1 \cdot 3 \cdot 5 \cdots(n-1)}{2 \cdot 4 \cdot 6 \cdots n} \frac{\pi}{2} \quad$ or. $\frac{2 \cdot 4 \cdot 6 \cdots(n-1)}{1 \cdot 3 \cdot 5 \cdot \cdots n}$,
(β) $\int_{n}^{1} \frac{x^{2 n d} x}{\sqrt{1-x^{2}}}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots n} \frac{\pi}{2}$
(v) $\int_{0}^{1} \frac{x^{2 n+1} d x}{\sqrt{1-x^{2}}}=\frac{2 \cdot 4 \cdot 6 \cdots 2 n}{1 \cdot 3 \cdot 5 \cdots(2 n+1)}$,
(() $\int_{0}^{a} x^{2} \sqrt{u^{2}-x^{2}} d x=\frac{\pi a^{4}}{16}$,
(є) $\int_{0}^{\pi} x^{2}\left(\pi^{2}-x^{2}\right)^{3} d x=\frac{3 \pi \alpha^{6}}{96}$,
(ら) Find $\int_{0}^{1} \frac{d x}{\sqrt{1-c^{4}}}$ to four ilecimals,
(η) Find $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{\frac{1}{4}}}}$.
6. Find the areas of the quatrants of these curves :
($\alpha) x^{\frac{1}{2}}+y^{\frac{1}{2}}=u^{\frac{1}{2}}$.
(ß) $x^{\frac{2}{3}}+y^{2}=a^{2}$,
($\gamma) x^{2}+y^{2}=1$,
($\delta) x^{2} / u^{2}+y^{2} / y^{2}=1$.
(ϵ) the evolute $(a x)^{\frac{2}{3}}+(b y)^{\frac{2}{3}}=\left(a^{2}-b^{2}\right)^{\frac{2}{3}}$.
7. Find centers of gravity anl moments of inertia alont the axes in Ex. 6 .
8. Finfl volumes. centers of gravity, and moments of inertia of the octants of
($\alpha) x^{\frac{1}{2}}+y^{\frac{1}{2}}+z^{\frac{1}{2}}=u^{\frac{1}{2}}$,
(β) $r^{\frac{2}{3}}+y^{\frac{2}{3}}+z^{\frac{2}{3}}=r r^{\frac{2}{3}}$,
($\gamma) x^{2}+y^{2}+z^{\frac{2}{3}}=1$.
9. (α) The sum of four proper fractions rloes not exceed mity : tind the arerage value of their prombet. (β) The same if the sum of the sifuares does not exceed mity. (γ) What are the results in the case of k proper fractions?
10. Averare c $-a^{2}-y^{2}$ under the supposition $a r^{2}+b y^{2} \leqq H$.
11. Eralnate the alefinite interral (15') by differentiation muler the sign.
12. From (18) aml $1<\frac{x}{1-e^{-a}}<1+a$ show that the magnitude of $I^{2} \log \Gamma(n)$ is about $1 / n$ for larse valutes of u.
13. From Ex. 12. and Ex. 2 ? ${ }^{\prime}$, 76 , show that the error in taking
$\log \Gamma\left(n+\frac{1}{2}\right)$ for $\quad \int_{n}^{n-1} \log \Gamma(x) d x$ is abont $\frac{1}{24 n+12} \log \Gamma\left(n+\frac{1}{2}\right)$.
14. Show that $\int_{n}^{n-1} \operatorname{low} \Gamma(x) d x=\int_{n}^{1} \operatorname{lom} \Gamma(n+x) d x$ and hence compare (15^{\prime}), (20). and Ex. 19, to show that the small quantity η is about $(24 n+12)^{-1}$.
15. Ise a fomr-place table to fimb the logarithms of 5 : and $10:$. Find the lomatimns of the appoximate values by (20). and determine the percentace crms.
16. Asmme $n=11 \mathrm{in}$ (17) ant evaluate the first integral. Take the logarithmic derivative of (20, to find an aphoximate expersion for $\Gamma^{\prime}(n) / \Gamma(n)$. and in particW.ar compute the value for $n=11$. Combine the results to find $\gamma=0 . \pi \sigma$. By more accurate metho? it may be shown that Ender"s Constant $\gamma=0.577 .215 .565 .$.
17. Integrate (199^{\prime}) from n to $n+1$ to find a definite intergral for (15) . Subtract the integrals ant and $2_{2}^{1} \ln n=\int_{-\infty}^{0} \frac{e^{\alpha n}-e^{\alpha}}{2} \frac{d \alpha}{\alpha}$. Hence find
$\log \Gamma(n)-n(\operatorname{lom} n-1)-\operatorname{lom} \sqrt[2]{2}+\frac{1}{2} \log n=\int_{-\infty}^{n}\left[\begin{array}{c}1 \\ -1 \\ c^{2}-1\end{array}-\frac{1}{\alpha}+\frac{1}{2}\right]$ and $\frac{d x}{\alpha}$.
18. (Obtain Stirling's approximation. $\Gamma(n+1)=\sqrt{2 \pi n} n^{n} e^{-n}$. either by comparing it with the one already found or by applying the method of the text, with the substitution $x=n+\sqrt{2 n} y$, to the original form (1) of $\Gamma(n+1)$.
19. The relation $\prod_{k=1}^{k=n-1} \sin \frac{k \pi}{n}=\sin \frac{\pi}{n} \sin \frac{2 \pi}{n} \cdots \sin \frac{(n-1) \pi}{n}=\frac{n}{2^{n-1}}$ may be obtained from the roots of unity (§ $\pi 2)$; for $x^{n}-1=(x-1) \Pi\left(x-e^{\left.-\frac{2 k \pi i}{n}\right)}\right.$,

$$
n=\lim _{x=1} \frac{x^{n}-1}{x-1}=\prod_{k=1}^{k=n-1}\left(1-e^{-\frac{2 k \pi i}{n}}\right), \quad \prod_{k=1}^{k=1} \frac{e^{k \pi i}}{2 i}=\frac{e^{(n-1) \frac{\pi i}{2}}}{(2 i)^{n-1}}=\frac{1}{2^{n-1}} .
$$

150. The error function. Suppose that measurements to determine the magnitude of a certain object be made, and let $m_{1} . m_{2} \cdots, m_{n}$ be a set of n determinations each made independently of the other and each worthy of the same weight. Then the quantities

$$
q_{1}=m_{1}-m, \quad \eta_{2}=m_{2}-m, \quad \cdots, \quad q_{n}=m_{n}-m
$$

which are the differences between the observed values and the assumed value m, are the errors committed ; their sum is

$$
q_{1}+q_{2}+\cdots+q_{n}=\left(m_{1}+m_{2}+\cdots+m_{n}\right)-m n^{2}
$$

It will be taken as a fundamental axiom that on the arerage the errors in excess, the positive errors, and the errors in defect, the negative errors, we evenly balanced so that their sum is zero. In other words it will be assumed that the mean value

$$
n m=m_{1}+m_{2}+\cdots+m_{n} \quad \text { or } \quad m=\frac{1}{n}\left(m_{1}+m_{2}+\cdots+m_{n}\right)(21)
$$

is the most probable value for m as determined from $m_{1}, m_{2}, \cdots, m_{n}$. Note that the arerage value m is that which makes the sum of the squares of the error's a minimum: hence the term "least squares."

Before any observations have been taken, the rhance that any particular eror ${ }^{\prime}$ should be made is 0 , and the chanee that an error lie within infinitesimal limits. say between $\%$ and $y+\|_{y}$, is infinitesimal ; let the thance be assmmed to be a function of the size of the error. and write $\phi(\eta) d y$ as the ehance that an error lie between $\%$ and $\eta+d \%$. It may be seen that $\phi(\eta)$ may be experted to denerease as \neq increases ; for, under the reasomale hyothesis that an olserver is not so likely to lap far wrong as to be somewhere near right, the chane of making an error between s.0 and 8.1 would he less than that of making an erres betwern 1.0 and 1.1. The function $\phi(y)$ is called the erron fundion. It will he sail that the chance of making an ermor y_{i} is $\phi\left(y_{i}\right)$: to put it more preefsetly. this means simply that $\phi\left(\frac{1}{2}\right) d_{\eta}$ is the ehance of making an error whel lies between y_{i} annl $y_{i}+d y$.

It is a fumbamental principle of the theory of chance that the chance that several indepement events take place is the prodnct of the chances for each separate event. The probability, then, that the errors $q_{1}, q_{2}, \cdots, q_{n}$ be made is the 1 roduct

$$
\begin{equation*}
\phi\left(q_{1}\right) \phi\left(q_{2}\right) \cdots \phi\left(q_{n}\right)=\phi\left(m_{1}-m\right) \phi\left(m_{2}-m\right) \cdots \phi\left(m_{n}-m\right) . \tag{22}
\end{equation*}
$$

The fundamental axiom (21) is that this probability is a maximum when m is the arithmetic mean of the measurements $m_{1}, m_{2} \cdots, m_{n}$: for the errors, measured from the mean value, are on the whole less than if measured from some other ralue.* If the probability is a maximum, so is its logarithm; and the derivative of the logarithm of (22) with respect to m is

$$
\frac{\phi^{\prime}\left(m_{1}-m\right)}{\phi\left(m_{1}-m\right)}+\frac{\phi^{\prime}\left(m_{2}-m\right)}{\phi\left(m_{2}-m\right)}+\cdots+\frac{\phi^{\prime}\left(m_{n}-m\right)}{\phi\left(m_{n}-m\right)}=0
$$

when $+q_{2}+\cdots+q_{n}=\left(m_{1}-m\right)+\left(m_{2}-m\right)+\cdots+\left(m_{n}-m\right)=0$. It remains to determine ϕ from the se relations.

For brevity let $F(g)$ be the function $F=\phi^{\prime}$ ' ϕ which is the ratio of $\phi^{\prime}(q)$ to $\phi(q)$. Then the conditions becone

$$
F\left(q_{1}\right)+F\left(q_{2}\right)+\cdots+F\left(\eta_{n}\right)=0 \quad \text { when } \quad q_{1}+q_{2}+\cdots+q_{n}=0 .
$$

In particular if there are only two olservations, then

$$
F\left(\tau_{1}\right)+F\left(q_{2}\right)=0 \quad \text { and } \quad q_{1}+\tau_{2}=0 \quad \text { or } \quad q_{2}=-q_{1} .
$$

Then

$$
F\left(\eta_{1}\right)+F\left(-\eta_{1}\right)=0 \quad \text { or } \quad F\left(-q_{1}\right)=-F\left(\eta_{1}\right) .
$$

Next if there are three observations. the results are

$$
F\left(\eta_{1}\right)+F\left(\eta_{2}\right)+F\left(\eta_{3}\right)=0 \quad \text { and } \quad y_{1}+y_{2}+\eta_{3}=0 .
$$

Hence

$$
F\left(\eta_{1}\right)+F\left(\eta_{2}\right)=-F\left(\eta_{3}\right)=F\left(-\eta_{3}\right)=F\left(\eta_{1}+\tau_{2}\right) .
$$

Now from

$$
F(\cdot,)+F(,!)=F_{(}(, r+!(j)
$$

and

$$
F(q)=\frac{\phi^{\prime}(\eta)}{\phi(q)}=\left(\prime q, \quad \log \phi(/)=\frac{1}{2}\left(y^{\prime} y^{2}+K,\right.\right.
$$

This determination of ϕ contains two arlitrary constants which may be further determined. In the first plare, note that C is negative, for $\phi(q)$ decreases as q increases. Let $\frac{1}{2}(:=-l: \%$. In the second place, the

[^36]error q must lie within the interval $-\infty<y<+\infty$ which comprises all possible values. Hence
\[

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \phi(I) d y=1, \quad G \int_{-\infty}^{+\infty} e^{-k^{2} q^{2}} d I I=1 \tag{23}
\end{equation*}
$$

\]

For the chance that an error lie between q and $q+d q$ is ϕd_{l}, and if an interval $u \leqq q \leqq b$ be given, the chance of an error in it is

$$
\sum_{a}^{b} \phi(I) d_{I} \quad \text { or, better, } \quad \lim \sum_{a}^{b} \phi(I) d l_{I}=\int_{a}^{b} \phi(I) d_{I},
$$

and finally the chance that $-\infty<y<+\infty$ represents a certainty and is denoted by 1. The integral (2:3) may be evaluated (s 14:3). Then (i) $\sqrt{\pi} / k_{i}=1$ and $\sigma_{i}=k_{i} / \sqrt{\pi}$. Hence $*$

$$
\begin{equation*}
\phi(\eta)=\frac{l_{i}}{\sqrt{\pi}} e^{-k^{2} q^{2}} \tag{24}
\end{equation*}
$$

The remaining constant F is essential; it measures the acomacy of the observer. If 7_{i} is large, the function $\phi(g)$ falls very rapidly from the large value $k: / \sqrt{\pi}$ for $y=0$ to very small values, and it appears that the observer is far more likely to make a small eror than a large one: but if l is small, the fimction ϕ falls very slowly from its value $k i \sqrt{\pi}$ for $q=0$ and denotes that the observer is almost as likely to make reasonably large errors as small ones.
151. If only the numerical value be considered, the probability that the error lie momerically between ' y and $y+d_{y}$ is

$$
\frac{2 l_{i}}{\sqrt{\pi}} e^{-k^{2} q^{2} d l}, \quad \text { and } \quad \frac{2 l_{i}}{\sqrt{\pi}} \int_{0}^{\xi}{ }_{0}^{-k^{2} u^{2} d \eta}
$$

is the chance that an error be numerically less than ξ. Now

$$
\begin{equation*}
\psi(\xi)=\frac{2 k}{\sqrt{\pi}} \int_{0}^{\xi} e^{-k^{2} q^{2} d l}=\frac{2}{\sqrt{\pi}} \int_{11}^{k \xi} \tag{2.5}
\end{equation*}
$$

is a function defined by an integral with a variable upper limit, and the problem of computing the value of the function for any given ralue of ξ reduces to the problem of computing the integral. The integrand may be expanded by Marclanin's Formula

$$
\begin{align*}
& \rho-x^{2}=1-x^{2}+\frac{r^{4}}{2!}-\frac{r^{4}}{3!}+\frac{r^{8}}{4!}-\frac{r^{10} r-\theta x^{2}}{5!}, \quad 0<\theta<1 \\
& \int_{11}^{x} \rho-x^{2} d x^{4}=r-\frac{r^{3}}{3}+\frac{r^{5}}{10}-\frac{r^{7}}{42}+\frac{r^{9}}{216}-R, \quad R<\frac{r^{11}}{132} \tag{26}
\end{align*}
$$

[^37]For small values of x this series is satisfactory ; for $x \leqq \frac{1}{2}$ it will be accurate to five decimals.

The probable error is the technical term used to denote that error ξ which makes $\psi(\xi)=\frac{1}{2}$; that is, the error such that the chance of a smaller error is $\frac{1}{2}$ and the chance of a larger error is also $\frac{1}{2}$. This is found by solving for x the equation

$$
\frac{\sqrt{\pi}}{2} \cdot \frac{1}{2}=0 \cdot 44311=\int_{0}^{x} e^{-x^{2}} 7 x=x-\frac{x^{3}}{3}+\frac{x^{5}}{10}-\frac{x^{7}}{42}+\frac{x^{9}}{216}
$$

The first term alone indicates that the root is near $x=.45$, and a trial with the first three terms in the series indirates the root as between $x=.47$ and $x=.48$. With such a close approximation it is easy to fix the root to four places as

$$
\begin{equation*}
x=l i \xi=0.4769 \quad \text { or } \quad \xi=0.4769 l^{-1} . \tag{27}
\end{equation*}
$$

That the probable error should depend on k is obvious.
For large valnes of $x=k \xi$ the method of expansion by Maclanrin's Formma is a very poor one for calculating $\psi(\xi)$; too many terms are required. It is therefore important to obtain an expunsion accordiny to descemeli?y purcers of x. Now

$$
\int_{0} p-x^{2} d x=\int_{0}^{\infty} e^{-x^{2}} d x-\int_{x}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}-\int_{x}^{\infty} e^{-x^{2}} d x
$$

and

$$
\int_{x}^{\infty} p-x^{2} \| x=\int_{x}^{\infty} \frac{1}{x} \cdot x-x^{2} d x=\left[-\frac{e^{-x^{2}}}{2 x}\right]_{x}^{\infty}-\frac{1}{2} \int_{x}^{\infty} \frac{e^{-x^{2}} d x}{x^{2}}
$$

The limits may be substituted in the first term and the method of integration by parts may be applied again. Thms

$$
\begin{aligned}
\int_{x}^{x} r^{-x^{2}} d x & =\frac{r^{-x^{2}}}{2 x}\left(1-\frac{1}{2 x^{2}}\right)+\frac{1 \cdot 3}{2^{2}} \int_{x}^{\infty} \frac{e^{-x^{2}} d x}{x^{4}} \\
& =\frac{r^{-x^{2}}}{2 x}\left(1-\frac{1}{2 \cdot x^{2}}+\frac{1 \cdot 3}{2^{2} x^{4}}\right)-\frac{1 \cdot 3 \cdot 5}{2^{3}} \int_{x}^{\infty} \frac{r^{-x^{2}}, x^{x}}{x^{6}}
\end{aligned}
$$

and so on indefinitely. It slould be noticed, however, that the term

$$
T=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} x^{2 n}} \frac{r^{-x^{2}}}{2 x} \text { diverges as } u=\infty
$$

In fact although the denominator is multiplied by $2 x^{2}$ at each step, the numerator is multiplied by $2 n-1$, and hence after the integrations by parts have heen applied so many times that $n>x^{2}$ the terms in the parenthesis begin to increase. It is worse than useless to carry the integrations further. The integral which remains is (Ex. 5, 1. 29)

$$
\frac{1 \cdot 3 \cdot 5 \cdots(2 n+1)}{2^{n+1}} \int_{x}^{\infty} \frac{e^{-x^{2}} \nmid \cdot n}{r^{2 n+2}}<\frac{1 \cdot 3 \cdot 5 \cdots(\underline{2} n-1)}{\underline{2}^{n+1}, r^{2 n+1}} e^{-x^{2}}<T
$$

Thus the integral is less than the last tem of the parenthesis, and it is possible to write the naymptotic series

$$
\begin{equation*}
\int_{0}^{x} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}-\frac{p^{-x^{2}}}{2 \cdot x}\left(1-\frac{1}{2 \cdot x^{2}}+\frac{1 \cdot 3}{2^{2} \cdot n^{4}}-\frac{1 \cdot 3 \cdot 5}{2^{3} \cdot x^{6}}+\cdots\right) \tag{2S}
\end{equation*}
$$

with the assurance that the vollue oltained by using the series will differ firm the true colue by less then the last term untirh is used in the series. This kind of series is of frequent ocrurrence.

In addition to the probable error. the areprge numprienl error and the mean square error, that is, the average of the square of the error, are important. In finding the arerages the probability $\phi(i)$ dly may be taken as the weight; in fact the probability is in a certain sense the simplest weight becanse the sum of the weights, that is, the sum of the probabilities, is 1 if an average over the whole range of possible values is desired. For the average numerical error and mean square error

$$
\begin{align*}
& \left\lvert\, \overline{T_{T}}=\frac{2 l_{i}}{\sqrt{\pi}} \int_{0}^{\pi} q^{r-k^{2} \eta^{2}} d l_{I}=\frac{1}{l_{i} \sqrt{\pi}}=\frac{0.5643}{l_{i}}\right., \\
& \overline{q^{2}}=\frac{2 \eta_{i}}{\sqrt{\pi}} \int_{0}^{\pi} q^{2} e^{-k^{2} q^{2} l_{I}}=\frac{1}{2 l_{i}^{2}}, \quad \sqrt{I^{2}}=\frac{0.70 \pi 1}{l_{i}} . \tag{29}
\end{align*}
$$

It is seen that the average error is greater than the probable error, and that the square root of the mean square error is still larger. In the case of a given set of n observations the arerages may actually be computed as

$$
\begin{aligned}
& \bar{\eta}=\frac{\left|\eta_{1}\right|+\left|q_{2}\right|+\cdots+\mid \eta_{n}}{n}=\frac{1}{l_{i} \sqrt{\pi}}, l_{i}=\frac{1}{\bar{\eta} \sqrt{\pi}}, \\
& \overline{\eta^{2}}=\frac{q_{1}^{2}+\eta_{2}^{2}+\cdots+\eta_{n}^{2}}{n}=\frac{1}{2 l_{i}^{2}}, l_{i}=\frac{1}{\sqrt{\eta^{2} \sqrt{2}}}, \\
&\left.\pi\right|_{\eta^{2}} ^{2}=2 \overline{\eta^{2}}
\end{aligned}
$$

Moreover,
It cannot lee experted that the two values of l_{i} thes found will be pres risely equal or that the last relation will be exartly fulfilled: but so well does the theory of erors reperent what artually arises in pramtice that maness the two values of $l:$ are nearly egnal and the relation nearly satisfied there are fair reasons for shispecting that the wher vattions are not lonat tide.
152. Considere the ' ${ }^{\text {nesestion of the aprlication of these theories to }}$ the errors mate in rifte partioe on a target. Here there are two
errors, one due to the fact that the shots may fall to the right or left of the central vertical, the other to their falling above or below the central horizontal. In other words, each of the coorrdinates (ir, if) of the position of a shot will be regarded as subject to the law of errors independently of the other. Then

$$
\frac{l_{i}}{\sqrt{\pi}} e^{-k^{2} x^{2}}\left\|x, \quad \frac{k_{i}^{\prime}}{\sqrt{\pi}} e^{-k^{\prime 2} y^{2}} d y, \quad \frac{l_{i} l^{\prime}}{\pi} e^{-k^{2} x^{2}-k^{\prime 2} y^{2}}\right\| x d y
$$

will be the probabilities that a shot fall in the vertical strip between x and $x+d, r$, in the horizontal strip between y and $y+d y$, or in the small rectangle common to the two strips. Moreorer it will be assumed that the aceuracy is the same with respect to horizontal and rertical deviations, so that $k_{i}=l_{i}^{\prime}$.

These assumptions may appear too special to be reasonable. In particular it might seem as thongh the accuracies in the two disections would be very different, owing to the possibility that the marksman's am shombl tremble more to the right and left than up and lown, or tice versa, so that $k \neq k^{\prime}$. In this case the shots would not tend to lie at equal distances in all directions from the center of the tarect, but would disperse themselves in an elliptical fashiom. Moreover as the shootine is done from the right shoulder it might seem as thongh there wond be some inclinen line through the center of the target aloner which the accuracy would be least. and a line perpendicular to it alone which the accuracy would be ereatest. so that the disposition of the shots wouk not only be elliptical but inelined. To cover this general assumption the probability woukd be taken as
ats the condition that the shots lie somewhere. See the exereises below.
With the special assmmptions. it is best to transform to polar coorrdinates. The important quantitios to determine are the arerage distance of the shots from the center, the monn square distance the probable distance, and the most probable distance. It is necessary to distinguish carefully between the probable distance, which is by definition the distance such that half the shots fall nearer the renter and half fall farther away, and the most probable distance, which by definition is that distance whicle oceurs most frequently, that is, the distance of the ring between r and $r+d r$ in which most shots fall.

The probability that the shot lies in the element rolrlo is

$$
\frac{i^{2}}{\pi} e^{-k^{2} r^{2}} r^{2} d r^{r} d \phi, \quad \text { and } \quad 2 l_{i}^{2}, r-k^{2} r^{2} r^{2} d r,
$$

obtained by integrating with respect to ϕ. is the prohability that the

that which makes this a maximum, that is,

$$
\begin{equation*}
\frac{d}{d l_{r}}\left(e^{-k^{2}, r^{2},}\right)=0 \quad \text { or } \quad r_{p}=\frac{1}{\sqrt{2} l_{i}}=\frac{0.7071}{l_{i}} \tag{30}
\end{equation*}
$$

The mean distance and the menen stumre distance are respectively

$$
\begin{align*}
& \bar{r}=\int_{0}^{x} 27_{i}^{2} e^{-k^{2} r^{2}, 2} d_{1}=\frac{\sqrt{\pi}}{2 l_{i}}, \quad \bar{r}=\frac{0.8862}{k}, \\
& \overline{r^{2}}=\int_{11}^{x} 2 l_{i}^{2},-k^{2} r^{2} t^{3} d t=\frac{1}{i_{i}^{2}}, \quad \sqrt{\overline{i^{2}}}=\frac{1.0000}{l_{i}} .
\end{align*}
$$

The probluble distancer ds found by solving the erpuation

$$
\frac{1}{2}=\int_{0}^{r_{\xi}} \ddot{-} l_{i}^{2},-k^{2} r^{2}, l_{1} l_{i}=1-e^{-k^{2}-r_{\xi}^{2}}, \quad r_{\xi}=\frac{\sqrt{\log 2}}{l_{i}^{2}}=\frac{0.8326}{l_{i}}
$$

Hence

$$
r_{r}<r_{\xi}<\bar{r}<\sqrt{\sqrt{2}} .
$$

The chief importance of these considerations lies in the fact that, owing to Maxwell's assmm,tion, analogous considerations may le applied to the relocities of the molecules of a gas. Let \quad, \quad, . 1 be the (mmponent relocities of a molecule in there perpendicular directions so that $r=\left(n^{2}+1^{2}+n^{2}\right)^{\frac{1}{2}}$ is the artual relocitr. The assmmption is math that the intividual components $"$. ${ }^{\circ}$, "e obey the law of errors. The probat linlity that the components lie leetween the respective limits "and " + /", r and $r+\| r$, \quad and $\because r+d u$ is
is the comersponding expression in polar coordinates. There will then be a most probable a probable a mean, and a mean square velority. ()f these. the last corresponds to the mean kineticenergy and is subject to measurement.

EXERCISES

3. State how many terms of (28) shombl be taken to whain the best value for the interral to $x=2$ ancl ohtain that value.
4. Iow accuzately will (28) letermine $\int_{0}^{i} t^{-x^{2}} l_{t}-\frac{1}{2} \sqrt{\pi}$? Compute.
5. Ohtain these aspmptotic expansions and extemb them to tind the general law.
 retained in the serites. Show fortler that the aremeral tran diverate when x hecomes intinite.
(α) $\int_{11}^{x} \cos x^{2} d x=\frac{1}{2} \backslash_{2}^{\frac{\pi}{2}}+\frac{\sin x^{2}}{2 x}-\frac{\cos x^{2}}{2^{2} x^{3}}+\frac{1 \cdot 3}{2^{2}} \int_{x}^{\infty} \cos x^{2} \frac{d x}{x^{4}}$,
(β) $\int_{0}^{x} \sin x^{2} d x=\frac{1}{2} \frac{\pi}{2}-\frac{\cos x^{2}}{2 x}-\frac{\sin x^{2}}{2^{2} x^{3}}+\frac{1 \cdot 3}{2^{2}} \int_{x}^{x} \sin x^{2} \frac{d x}{x^{4}}$,
(γ) $\int_{0}^{x} \frac{\sin x}{x} d x, x$ large, (δ) $\int_{0}^{x}\left(\frac{\sin x}{x}\right)^{2} d x, x$ large.
6. (α) Find the value of the arerage of any odd power $2 n+1$ of the error; (β) also for the average of any even power; (γ) alsor for any power.
7. The observations 195. 225*, 190. 210. 20.5, 180*. 170*, 190, 200, 210, 210. 220*, $17.5 *, 192$ were ohtained for deffections of a galvanometer. Compute k from the mean error and mean square error and compare the rembls. Supmse the olservatims marked *. which show great deviations. were discarded ; compute k by the two methods and note whether the agreement is so good.
8. Find the arerage value of the product qq' of two errors selected at random and the arerage of the product $|q| \cdot\left|q^{\prime}\right|$ of mumerical values.
9. Show that the varions velocities for a gas are $\mathrm{I}_{\rho}=\frac{1}{k}, V_{\xi}=\frac{1.0875}{k}$, $\bar{V}=\frac{2}{\sqrt{\pi k}}=\frac{1.1284}{k}, \sqrt{V^{2}}=\frac{\sqrt{3}}{\sqrt{2} k}=\frac{1.2247}{k}$.
10. For oxygen (at $0(\mathrm{C}$. and 76 cm . Hg .) the square root of the mean sumare velocity is 462.2 meters per secome. Find k and show that only about 13 or 14 molecules to the thomand are moving as slow as 100 m ./see. What speel is most probable?
11. Conder the general assumption of ellipticity and inclination in the distrimation of the shots show that the area of the ellinse $k^{2} r^{2}+2 \lambda x^{2} y+k^{\prime 2} y^{2}=I$ is $\pi I I\left(k^{\prime 2} k^{\prime 2}-\lambda^{2}\right)^{-\frac{1}{2}}$, and the probability may be written $\left(e^{-\mu} \pi\left(k^{2} k^{\prime \prime 2}-\lambda^{2}\right)^{-\frac{1}{-1}} d I I\right.$.
12. From Ex. 11 establish the relations (α) $G=\frac{1}{\pi} \sqrt{k^{2} k^{\prime 2}-\lambda^{2}}$,
(β) $\overline{x^{2}}=\frac{k^{\prime 2}}{2\left(k^{2} k^{\prime 2}-\lambda^{2}\right)}$,
(γ) $\overline{y^{2}}=\frac{k^{2}}{2\left(k^{2} k^{\prime 2}-\lambda^{2}\right)}$,
(δ) $\overline{r y}=\frac{-\lambda}{2\left(k^{2} k^{\prime 2}-\lambda^{2}\right)}$.
13. Fiml $I_{p}, H_{\xi}=0.693, \bar{\Pi}, \Pi^{2}$ in the above problem.
14. Tuke 20 measurements of some object. Determine k by the two methods and compare the results. 'Test other points of the theory.
153. Bessel functions. The use of a definite integral to define functions which satisfy a given differential equation may be illustrated by the treatment of $r^{\prime}!g^{\prime \prime}+(2 n+1) y^{\prime}+r^{\prime}!/=0$, which at the same time will afford a new investigation of some functions which have previonsly been briefly disoussed (ss 107-10s). To obtain a solution of this erpation, of of any equation, in the form of a definite integral, some sperial trye of intergrand is assumed in patt and the remainder of the
integrand and the limits for the integral are then determined so that the equation is satisfied. In this case try the form

$$
y(. x)=\int e^{i x t} T \cdot d t, \quad y^{\prime}=\int i t e^{i x t} T_{1} d t, \quad y^{\prime \prime}=\int-t^{2} e^{i x t} T d t
$$

where T is a function of t, and the derivatives are found by differentiating under the sign. Integrate y and $y^{\prime \prime}$ by parts and substitute in the equation. Then

$$
\left.\left(1-t^{2}\right) T e^{i x t}\right]-\int e^{i x t}\left[T^{\prime}\left(1-t^{2}\right)+(2 n-1) t T^{\prime}\right] d t=0
$$

where the bracket after the first term means that the difference of the values for the upper and lower linit of the integral are to be taken; these limits and the form of T remain to be determined so that the expression shall really be zero.

The integral may be made to vanish by so choosing T that the bracket vanishes; this calls for the integration of a simple differential equation. The result then is

$$
\left.T=\left(1-t^{2}\right)^{n-\frac{1}{2}}, \quad\left(1-t^{2}\right)^{n+\frac{1}{2}} e^{i, s t}\right]=0
$$

The integral vanishes, and the integrated term will vanish provided $t= \pm 1 \mathrm{or}^{e^{i . r t}}=0$. If x be assumed to be real ancl positive, the exponential will approanh 0 when $t=1+i K$ and k becomes infinite. Hence $y(x)=\int_{-1}^{+1} e^{i x t}\left(1-t^{2}\right)^{n-\frac{1}{2}} d t \quad$ and $\quad z(x)=\int_{+1}^{1+i x} e^{\prime \cdot x t}\left(1-t^{2}\right)^{n-\frac{1}{2}} d t$
are solutions of the differential equation. In the first the integral is an infinite integral when $n<+\frac{1}{2}$ and fails to converge when $n \leqq-\frac{1}{2}$. The solution is therefore defined only when $n>-\frac{1}{2}$. The second integral is always an infinite integral because one limit is infinite. The examination of the integrals for miformity is found below.

$$
\begin{aligned}
& \text { Consider } \int_{-1}^{+1} e^{i \omega t}\left(1-t^{2}\right)^{n-\frac{1}{2}} d t \text { with } u<\frac{1}{2} \text { so that the intergral is infinite. } \\
& \int_{-1}^{+1} e^{i s t}\left(1-t^{2}\right)^{n-\frac{1}{2}} d t=\int_{-1}^{+1}\left(1-t^{2}\right)^{n-\frac{1}{2}} \cos x t d t+i \int_{-1}^{+1}\left(1-t^{2}\right)^{n-\frac{1}{2}} \text { sin xtdt. }
\end{aligned}
$$

From ennsiderations of symmetry the seend integral vanishes. Then

$$
\left|\int_{-1}^{+1} e^{i x t}\left(1-t^{2}\right)^{n-1}-\frac{1}{2} d t\right|=\left|\int_{-1}^{+1}\left(1-t^{2}\right)^{n-\frac{1}{2}} \cos x t d t\right| \equiv \int_{-1}^{+1}\left(1-t^{2}\right)^{n-\frac{1}{2}} d t .
$$

This last integral with a position integrand converges when $n>-\frac{1}{2}$. and sence the given integral converges miformly for all values of a and defines a continums function. The shecessive differemiations under the sign give the results

$$
-\int_{-1}^{+1}\left(1-t^{2}\right)^{n-\frac{1}{2}} t \sin x t d t, \quad-\int_{-1}^{+1}\left(1-t^{2}\right)^{n-\frac{1}{2}} t^{2} \cos x t d t
$$

These integrals also converge miformly, and hence the differentiations were jastifiable. The second integral (31) may be written with $t=1+i u$, as

This integral converges for all values of $x>0$ and $n>-\frac{1}{2}$. Hence the iven integral converges uniformly for all values of $x \geqq x_{0}>0$, and defines a continnots function ; when $x=0$ it is readily seen that the integral diverges and could not define a continuous function. It is easy to justify the differentiations as before.

The first form of the solution may be expanded in series.

$$
\begin{align*}
y(x) & =\int_{-1}^{+1} e^{i x t}\left(1-t^{2}\right)^{n-\frac{1}{2}} d t=\int_{-1}^{+1}\left(1-t^{2}\right)^{n-\frac{1}{2}} \cos x t d t \\
& =2 \int_{0}^{1}\left(1-t^{2}\right)^{n-\frac{1}{2}} \cos x t d t \tag{32}\\
& =2 \int_{0}^{1}\left(1-t^{2}\right)^{n-\frac{1}{2}}\left(1-\frac{x^{2} t^{2}}{2!}+\frac{x^{4} t^{4}}{4!}-\frac{x^{6} t^{6}}{6!}+\theta \frac{x^{8} t^{8}}{8!}\right) d t, \quad 0<|\theta|<1
\end{align*}
$$

The expansion may be carried to as many terms as desired. Each of the terms seqarately may be integrated by B - or Γ-functions.

$$
\begin{align*}
2 \int_{0}^{1}\left(1-t^{2}\right)^{n-\frac{1}{2}} & \frac{x^{2 k} t^{2 n}}{2 k!}=2 \frac{x^{2 k}}{\Gamma(2 k+1)} \int_{0}^{\frac{\pi}{2}} \sin ^{2 n} \phi \cos ^{2 k} \phi(\phi \\
& =\frac{x^{2 k} \Gamma\left(n+\frac{1}{2}\right) \Gamma\left(k+\frac{1}{2}\right)}{\Gamma(2 k+1) \Gamma(n+k+1)}=\frac{x^{2 k} \Gamma\left(n+\frac{1}{2}\right) \sqrt{\pi}}{2^{2 k} \Gamma\left(l_{i}+1\right) \Gamma(n+k+1)}, \tag{33}
\end{align*}
$$

and $\quad J_{n}(x)=\frac{x^{n}!\eta(r)}{2^{n} \sqrt{\pi} \Gamma\left(n+\frac{1}{2}\right)}=\sum_{k=0} \frac{(-1)^{k} \cdot x^{n+2 k}}{2^{n+2 k} \Gamma(k+1) \Gamma(n+k+1)}$
is then taken as the definition of the special function $J_{n}(x)$, where the expansion may be carried as far as desired, with the roefticient θ for the last term. If n is an integer, the Γ-functions may be written as factorials.
154. The seeond solution of the differential equation, namely

$$
\approx(\cdot r)=y_{1}(\cdot r)+i y_{2}(x)=\int_{1}^{1+i \infty}-2 e^{i \cdot r}\left(1-t^{2}\right)^{n-\frac{1}{2}} d t
$$

where the coefficient -2 has been inserted for convenience, is for some purposes more useful than the first. It is complex, and, as the equation is real and x is taken as real, it affords two solutions, namely its real part and its pure imaginary part, each of which must satisfy the equation. Is $y(x)$ converges for $x=0$ and $a(x)$ diverges for $x=0$, so that $y_{1}(x)$ or
$\%_{2}(x)$ dimerges, it follows that $!(x)$ and $y_{1}(x)$ or $y(x)$ and $\%_{2}(x)$ must he independent; and as the equation can hase but two independent solutions, one of the pairs of solntions must constitute a complete solution. It will now be shown that $y_{1}\left(r^{r}\right)=y\left(r^{r}\right)$ and that $A y(x)+B!y_{2}(x)$ is therefore the complete solution of $x y^{\prime \prime}+(2 n+1)!y^{\prime}+r!!=0$.

Consider the line integral aromed the contour $0,1-\epsilon$, $1+\epsilon i, 1+\infty i, \infty i, 0$, or oPQRS. As the integrand hats a contimous derivative at every point on or within the contour, the integral is zero ($\$ 124$). The integrals along
 the little quadrant P a and the unit line R dis at infinity may be mate at small as desired by taking the quadrant small enough and the line fa: enough away. The integral along so is pure imaginary, mamely, with $t=i \prime$,

$$
\int_{S O}-2 e^{i r t}\left(1-t^{2}\right)^{n-\frac{1}{2}} d t=2 i \int_{0}^{\infty} r^{-x n}\left(1+u^{2}\right)^{n-\frac{1}{2}} d u
$$

The integral along $O P$ is complex, namely

$$
\begin{aligned}
& \int_{O P}-2 r^{i x t}\left(1-t^{2}\right)^{n-\frac{1}{2}} d t \\
& \quad=-2 \int_{0}^{P}\left(1-t^{2}\right)^{n-\frac{1}{2}} \cos , r^{2} t d t-2 i \int_{0}^{P}\left(1-t^{2}\right)^{n-\frac{1}{2}} \sin a r t d t .
\end{aligned}
$$

Hence $\quad 0=-2 \int_{0}^{P}\left(1-t^{2}\right)^{n-\frac{1}{2}} \cos , r^{2} t t+2 ; \int_{0}^{p}\left(1-t^{2}\right)^{n-\frac{1}{2}} \sin$, rtt $t t+\zeta_{1}$
where ζ_{1} and ζ_{2} are small. Equate real and imasinary parts to zero semately after taking the limit.

$$
\begin{aligned}
& \ddot{z} \int_{0}^{1}\left(1-t^{2}\right)^{n-\frac{1}{2}} \sin x^{n} t d t-\ddot{z} \int_{0}^{\infty} p^{-s n}\left(1+n^{2}\right)^{n-\frac{1}{2}} d n .
\end{aligned}
$$

The signs \mathbb{R} and \hat{z} are wed to denote respectively real and inaginaty parts. Thu butatity of ! ! (.r) and ! ! (.r) is estalalishem and the new soln-

It is now possible to obtain the important expansion of the solutions $y\left(r^{r}\right)$ and $y_{2}(\cdot r)$ in descrmting jowers of r ．For

$$
\int_{1}^{1+i \infty}-2 e^{i x t}\left(1-f^{2}\right)^{n-\frac{1}{2}}, 7 t=\int_{11}^{\infty}-2 i e^{i x-n,}\left(u^{2}-2 i u\right)^{n-\frac{1}{2}} d u, \quad t=1+i u
$$

Since $x \neq 0$ ，the tramsommation $u x=r$ is permissible and gives

$$
\begin{aligned}
& 2^{n+\frac{1}{2}}(-i)^{n+\frac{1}{2}}, i r, r^{-n-\frac{1}{2}} \int_{0}^{\infty} e^{-r} r^{n-\frac{1}{2}}\left(1+\frac{r i}{2 r r}\right)^{n-\frac{1}{-}} d l, \\
& =2^{n+\frac{1}{2}, r^{-n-1}-n^{[}\left[n-\left(n+\frac{1}{2}\right) \frac{\pi}{2}\right]} \int_{0}^{\infty}, n^{-x}, n^{n-\frac{1}{2}} \times \\
& \left(1+\frac{n-\frac{1}{2}}{2 \cdot a^{2}} \cdot i-\frac{\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)}{2!(2, r)^{2}}, \cdot \cdots\right) d r .
\end{aligned}
$$

The expansion by the binomial theorem may be carried as far as de－ sired：lat as the integration is subsequently to be performed，the values of ，must lee allowed a range from（o to os and the use of Taylors Formula with a remainder is reguired－the series would not converge．The result of the integration is

$$
\begin{equation*}
\left.\because(r)=2^{n+\frac{1}{2}, r^{-n-\frac{1}{2}}} \Gamma\left(n+\frac{1}{2}\right) e^{i\left[x-\left(n+\frac{1}{2}\right)^{\pi}\right.}\right]_{\left[I^{\prime}\left(\cdot r^{r}\right)\right.}+i\left(Q\left(r^{\prime}\right)\right], \tag{34}
\end{equation*}
$$

where

$$
\left(Q(r)=\frac{n^{2}-\frac{1}{4}}{\because r^{r}}-\frac{\left(n^{2}-\frac{1}{4}\right)\left(n^{2}-9\right)\left(n^{2}-2_{i}^{3}\right)}{3!\left(z^{2} \cdot r^{3}\right.}+\cdots,\right.
$$

$I^{\prime}\left(r^{2}\right)=1-\frac{\left(n^{2}-\frac{1}{4}\right)\left(n^{2}-\frac{9}{4}\right)}{2!\left(2 r^{2}\right)^{2}}+\frac{\left(n^{2}-\frac{1}{4}\right)\left(n^{2}-\frac{9}{4}\right)\left(n^{2}-\frac{25}{4}\right)\left(n^{2}-\frac{4}{4}\right)}{4!\left(2, r^{4}\right)^{4}}-\cdots$.

$K_{n}\left(r^{r}\right)=\sqrt{\frac{2}{\pi} \cdot r^{r}}\left[r\left(, r^{r}\right) \cos \left(r^{\prime}-\left(n+\frac{1}{2}\right) \frac{\pi}{2}\right)+I^{2}(x) \sin \left(x-\left(n+\frac{1}{2}\right) \frac{\pi}{2}\right)\right]$
are two indelendent bessel functions which satisfy the equation（ 3.0 ）
 are expressed in terms of clemontary functions（s 10s）：but if $n+\frac{1}{2}$ is not an integer，I＇and Q are merely ascomptotice experesions which do not terminate of themselves，bat must le cort short with a remainder term beraluse of their tendency to diverge after a certain point：for tolerably large values of r and small values of n the values of $J_{n}(, r)$ and $K_{n}\left(r^{\prime}\right)$ may：however，be computed with great accuract hy using the first few terms of I^{\prime} and Q ．

The integration to find P and Q offers no particular difficulty.

$$
\int_{0}^{\infty} e^{-r} v^{n-\frac{1}{2}+k} d v=\Gamma\left(n+\frac{1}{2}+k\right)=\left(n+k-\frac{1}{2}\right)\left(n+k-\frac{3}{2}\right) \cdots\left(n+\frac{1}{2}\right) \Gamma\left(n+\frac{1}{2}\right) .
$$

The factors previous to $\Gamma\left(n+\frac{1}{2}\right)$ combine with $n-\frac{1}{2}, n-\frac{3}{2}, \cdots, n-k+\frac{1}{2}$, which necur in the k th term of the binomial expansion and give the numerators of the terms in P and Q. The remainder term must, however, be discussed. The integral form (p. 57) will be used.

$$
\begin{gathered}
R_{i k}=\int_{0}^{v} \frac{t^{k-1}}{(k-1)!} f^{\prime(k)}(v-t) d t, \\
f^{(k)}=\left(n-\frac{1}{2}\right) \cdots\left(n-k+\frac{1}{2}\right)\left(\frac{i}{\underline{2} x}\right)^{k}\left(1+\frac{r i}{2}\right)^{n-k-\frac{1}{2}}
\end{gathered}
$$

Let it be supposed that the expansion has been earried so far that $n-k-\frac{1}{2}<0$. Then $(1+v i / 2 x)^{n-k-\frac{1}{2}}$ is numerically greatest when $x=0$ and is then equal to 1 . Hence

$$
\left|R_{k}\right|<\int_{0}^{k} \frac{t^{k}-1}{(k-1)!} \frac{\left|\left(n-\frac{1}{2}\right) \cdots\left(n-k+\frac{1}{2}\right)\right|}{(2 x)^{k}} d t=\frac{v^{k}}{k!} \cdot \frac{\left|\left(n-\frac{1}{2}\right) \cdots\left(n-k+\frac{1}{2}\right)\right|}{(2 x)^{k}},
$$

and

$$
\left|\int_{0}^{\infty} e^{-r} x^{n-\frac{1}{2}} R_{k^{k}}+k\right|<\frac{\left|\left(n^{2}-\frac{1}{4}\right) \cdots\left(n^{2}-\frac{(2 k-1)^{2}}{4}\right)\right|}{k!(\stackrel{(2}{2})^{k}} \Gamma\left(n+\frac{1}{2}\right) .
$$

It therefore appears that when $k>n-\frac{1}{2}$ the error made in neglecting the remainder is less than the last term kept. and for the maximm accuracy the series for $P+i Q$ should be broken off between the least term and the term just following.

EXERCISES

1. Solve $x y^{\prime \prime}+(2 n+1) y^{\prime}-x y=0$ by trying $T e^{x t}$ as interrand.

$$
A \int_{-1}^{+1}\left(1-t^{2}\right)^{n-\frac{1}{2}} e^{r} x^{\prime} d t+B \int_{-\infty}^{-1}\left(t^{2}-1\right)^{n-\frac{1}{2}} e^{r^{\prime} t} d t . \quad x>0, \quad n>-\frac{1}{2} .
$$

2. Expand the first solution in Ex. 1 into series ; compare with y (ix) abore.
3. Try $T(1-t x)^{m}$ on $x(1-x) y^{\prime \prime}+[\gamma-(\alpha+\beta+1) x] y^{\prime}-\alpha \beta y=0$.
(1ne solution is $\int_{0}^{1} t \beta-1(1-t)^{\gamma-\beta-1}(1-t . s)^{-\alpha} d t, \quad \beta>0 . \quad \gamma>\beta . \quad|x|<1$.
4. Expand the solution in Ex. 3 into the series. called hypersemetric,

$$
\begin{aligned}
B(\beta, \gamma-\beta)\left[1+\frac{\alpha \beta}{1 \cdot \gamma} x\right. & +\frac{\alpha(\alpha+1) \beta(\beta+1)}{1 \cdot 2 \gamma(\gamma+1)} x^{2} \\
& \left.+\frac{\alpha(\alpha+1)(\alpha+2) \beta(\beta+1)(\beta+2)}{1 \cdot 2 \cdot 3 \gamma(\gamma+1)(\gamma+2)} x^{3}+\cdots\right] .
\end{aligned}
$$

5. Establish these results for Besel:s,fonetions:
(($)$) $T_{n}(x)=\frac{x^{n}}{2^{n} \sqrt{\pi} \mathrm{\Gamma}\left(n+\frac{1}{2}\right)} \int_{0}^{\pi} \sin ^{2 n} \phi \cos (x \cos \phi) d \phi, \quad n>-\frac{1}{2}$.
$(\beta) J_{n}(x)=\frac{1}{\pi} \cdot \frac{x^{n}}{3 \cdot 5 \cdots(2 n-1)} \int_{i}^{\pi} \sin ^{2 n} \phi \cos (r \cos \phi) d \phi . \quad x=0,1,2,3 \cdots$.
6. Show $\frac{1}{\pi} \int_{0}^{\pi} \cos (n \phi-x \sin \phi) d \phi$ satisfies

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}+\left(1-\frac{x^{2}}{x^{2}}\right) y=\frac{\sin n \pi}{\pi}\left(\frac{1}{c}-\frac{n}{x^{2}}\right) .
$$

7. Find the equation of the srecad orler satisfied by $\int_{0}^{1}\left(1-t^{2}\right)^{n-\frac{1}{2}}$ sin $x t d t$.
8. Show $J_{0}(2 x)=1-x^{2}+\frac{x^{4}}{(2!)^{2}}-\frac{x^{6}}{(3!)^{2}}+\frac{x^{8}}{(4!)^{2}}-\frac{x^{10}}{(5!)^{2}}+\cdots$.
9. Compute $J_{0}(1)=0.7652 ; ~ J_{0}(2)=0.2239 ; ~ J_{0}(2.405)=0.0000$.
10. Prove, from the integrals, $J_{1 \prime}^{\prime}(x)=-J_{1}(x)$ and $\left[x-n^{n} J_{n}\right]^{\prime}=-r^{-n^{\prime}} J_{n+1}$.
11. Show that four terms in the asmptentic expansion of $P+i \ell$ when $n=0$ give the best result when $x=2$ and that the error may be about 0.002 .
12. From the asymptotic expansions compute $J_{0}(3)$ as accurately as may be.
13. Show that for large values of x the solutions of $J_{n}(c)=0$ are nearly of the form $k \pi-\frac{1}{4} \pi+\frac{1}{2} n \pi$ and the solutions of $K_{n}(x)=0$ of the form $k \pi+\frac{1}{4} \pi+\frac{1}{2} n \pi$.
14. Sketch the graphs of $y=J_{0}(x)$ and $y=J_{1}(x)$ by using the series of ascending powers for small valnes and the asymptotic expressions for large values of x.
15. From $J_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \cos \phi) d \phi$ show $\int_{10}^{x} e^{\left.-u \cdot J_{1}()^{2}, x\right) d r}=-\frac{1}{\sqrt{u^{2}+b^{2}}}$.
16. Show $\int_{0}^{\infty} e^{-a x} J_{0}(x) d x$ converges miformly when $" \geqq 0$.
17. Evaluate the following integrals:
(c) $\int_{0}^{\infty} J_{11}(h, x) d x=b^{-1}$,
(β) $\int_{0}^{x} \sin a x \cdot J_{0}(b x) \frac{d x}{x}=\frac{\pi}{2}$ or $\sin -1 \frac{\prime \prime}{b}$ as $u>$ h >0 or $り>\|>0$,
($\gamma) \int_{0}^{x} \sin a x \cdot J_{0}(b x) d x=\frac{1}{\sqrt{l^{2}-b^{2}}}$ or 0 as $u^{2}>b^{2} 0, t^{2}>a^{2}$,
(δ) $\int_{0}^{x} \cos a x J_{0}(b x) d x=\frac{1}{\sqrt{b^{2}-a^{2}}}$ (rr 0 as $b^{2}>a^{2}$ or $a^{2}>b^{2}$.
18. If $u=\sqrt{x} \cdot J_{n}(a x)$. show $\frac{d^{2} u}{d x^{2}}+\left(u^{2}-\frac{n^{2}-\frac{1}{4}}{x^{2}}\right) u=0$. If $x=\sqrt{\frac{1}{x} \cdot J_{n}}(b x)$,

$$
\left[r \frac{d u}{d x}-u \frac{d r}{d x}\right]_{0}^{1}=\left(f^{2}-r^{2}\right) \int_{0}^{1} x \cdot J_{n}\left((x x) \cdot J_{n}(b, x) d x\right.
$$

19. With the aid of Ex. 18 estalbish the relations:
($\alpha) J_{J} J_{n}\left((1) \cdot J_{n+1}\left(l_{1}\right)-a \cdot J_{n}(b) \cdot J_{n \div 1}(a)=\left(l, r^{2}-u^{2}\right) \int_{0}^{1} x \cdot J_{n}(a x) \cdot J_{n}(l) x\right) d x$,
(β) $a \cdot J_{1}(a)=u^{2} \int_{0}^{1} r \cdot J_{0}(a x) d x=\int_{0}^{a} \cdot x \cdot J_{0}(x) d x$.

20. show, $J_{0}(x)=\frac{2}{\pi} \int_{2}^{\infty} \frac{\sin x t r d t}{\sqrt{t^{2}-1}}, \quad K_{0}(x)=\frac{2}{\pi} \int_{2}^{\infty} \frac{\cos x t d t}{\sqrt{t^{2}-1}}$.

CHAPTER NV

THE CALCULUS OF VARIATIONS

155. The treatment of the simplest case. The integrai

$$
\begin{equation*}
I=\int_{1}^{r} F\left(\cdot r, y, y^{\prime}\right) d x^{r}=\int_{-1}^{r} \Phi\left(\cdot r^{r}, y, d \cdot r^{r}: d y\right) \tag{1}
\end{equation*}
$$

where Φ is homogeneous of the first degree in dre and d!, may be evaluated along any curve $($ betwern the limits 11 and B by reduction to an ordinary integral. For if r is given lọ $!=f\left(f^{\prime}\right)$,

$$
I=\int_{, 1}^{B} F^{\prime}\left(x^{\prime}, y, y^{\prime}\right) d x=\int_{x_{0}}^{x_{1}} F^{\prime}\left(\cdot x^{\prime}, f^{\prime}\left(, x^{\prime}\right), f^{\prime \prime}\left(, x^{\prime}\right)\right) d_{1} ;
$$

and if r is given $\ln \quad r=\phi(t) .!/=\psi(t)$.

$$
I=\int_{-1}^{l ;} \Phi\left(r^{\prime}, y, l_{1}^{\prime}, \|, \eta\right)=\int_{t_{0}}^{t_{1}} \Phi\left(\phi \cdot \psi \cdot \phi^{\prime} \cdot \psi^{\prime}\right) d t .
$$

The ordinary line integral (120) is merely the spectal (alse in which
 on the path C^{\prime} of integration: the problem ut the culrulus ut morintions.
 tw neighlumein!! gnthes.

If a seerond path r_{1} be ! $f=f^{2}\left(\cdot r^{\circ}\right)+\eta\left(\cdot r^{\prime}\right)$, wherer $\eta\left(. r^{\circ}\right)$ is a small 'quantity whicll vanishes at x_{0} and,r_{1}, a whole family of pathes is wisen by

$$
!\prime=f\left(r^{\prime}\right)+n \eta\left(\cdot r^{\prime}\right), \quad-1 \equiv n \equiv 1, \quad \eta\left(r_{0}\right)=\eta\left(r_{1}\right)=0,
$$

and the value of the integrald

$$
f(v)=\int_{r_{0}}^{r_{1}} F\left(r^{\prime} \cdot f^{\prime}+\left(r \eta \cdot f^{\prime}+u \eta^{\prime}\right) d r^{\prime}\right.
$$

taken along the different pathe of the family. le-
 comes a function of x; in frartionlar $I(0)$ and $I(1)$ are the values along C and ${ }^{\prime}$. Under apmopriate assmpations as to the continnity of F^{\prime} and its jartial derivatives F_{3}^{\prime}. $F_{y^{\prime}}^{\prime}, F_{y^{\prime}}^{\prime}$, the function $I(x)$ will be continuons and have a contimons derivative which may he fomd by differentiating unter the sign (s)119): then

If the curve C is th give $I(n)$ a maximum or minimum value for all the curves of this family, it is necessary that

$$
\begin{equation*}
I^{\prime}(0)=\int_{r_{0}}^{r_{1}}\left[\eta F_{y}^{\prime}\left(x, y, y^{\prime}\right)+\eta^{\prime} F_{y^{\prime}}^{\prime}\left(x^{\prime}, y, y^{\prime}\right)\right] d x^{\prime}=0 \tag{2}
\end{equation*}
$$

and if (' is to makr / a maximum or minimm relative to all neighboring curves, it is neressary that (2) shall hold for any function $\eta(x)$ which is small. It is more usual and more suggestive to write $\eta\left(r^{r}\right)=\delta!/$, and to say that $\delta!$ is the morintion of y in passing from the curve C or $!=f(x)$ to the neighboring curve $C^{\prime \prime}$ or $\because=f^{\prime}(x)+\eta\left(x^{\prime}\right)$. From the relations

$$
y^{\prime}=f^{\prime \prime}\left(\cdot x^{\prime}\right), \quad y^{\prime}=f^{\prime}\left(r^{\prime}\right)+\eta^{\prime}(\cdot r), \quad \delta y^{\prime}=\eta^{\prime}(x)=\frac{d}{d .} \delta y,
$$

comerering the slope of C with the slope of C_{1}, it is seen that the corirtion of the deriratire is the derimtire of the rariatiom. In differential notation this is W $\delta!=\delta d!$, where it should bo noted that the sign δ applies to changes which occur on passing from one curve (C^{\prime} to another curve C_{1}, and the sign d applies to changes taking place along a particular curve.

With these notations the condition (\because) heromes

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}}\left(F_{y}^{\prime} \delta!y+F_{y^{\prime}}^{\prime} \delta y^{\prime}\right) l_{1} r=\int_{x_{0}}^{x_{1}} \delta F_{1} l_{1}=0 \tag{3}
\end{equation*}
$$

where δF is computed from $F, \delta y, \delta y$ hy the same rule as the differential dF is computed from F and the differentials of the variables which it contains. The rondition (3) is not sufficient to distinguish between a maximum and a minmum or to insure the existence of either ; neither is the comlition $g^{\prime}\left(r^{\prime}\right)=0$ in elementary calculus sufticient to answer these questions relative tora function $g(x)$; in both cases additional (onnditions are recpuired (s 9). It should be remembered, howerer, that these additional conditions were seldom actually applied in discussing maxima and minima of $g\left(r^{\prime}\right)$ in pratical problems, berause in such cases the distinction between the two was usually obvious; so in this rase the disconsion of sufticient comblitions will be omitted altogether, as in Ss. 5 s and 61, and (3) alone will be applied.

In integration hy parts will convert (3) into a differential erpuation of the seeond orter. In fart

Hence $\quad \int_{x_{0}}^{x_{1}}\left(F_{y^{\prime}}^{\prime} \delta_{y} y+F_{y^{\prime}}^{\prime} \delta y^{\prime}\right) d x^{x}=\int_{x_{0}}^{r_{1}}\left(F_{y}^{\prime}-\frac{\lambda}{d x} F_{y^{\prime}}^{\prime}\right) \delta y y l^{\prime} x^{\prime}=0$,
since the assumption that $\delta y=\eta\left(x^{r}\right)$ ranishes at x_{0} and x_{1} causes the integrated term [$\left.F_{y}^{\prime} \delta_{y}^{\prime} \delta\right]$ to drop, out. Then

$$
\begin{equation*}
F_{y}^{\prime}-\frac{d}{d x} F_{y^{\prime}}^{\prime}=\frac{\hat{\partial} F}{\hat{\partial} y}-\frac{\hat{\partial}^{2} F}{\partial x \partial \partial y^{\prime}}-\frac{\hat{\partial}^{2} F}{\hat{\partial y \partial} \partial y^{\prime}} y^{\prime}-\frac{\hat{\partial}^{2} F}{\hat{\partial} y^{\prime 2}} y^{\prime \prime}=0 . \tag{4}
\end{equation*}
$$

For it must be remembered that the function $\delta y=\eta(x)$ is " $n=y$ function that is small, and if $F_{y}^{\prime}-\frac{d}{d . x} F_{y^{\prime}}^{\prime}$ in (3^{\prime}) did not vanish at every point of the interval $x_{0} \leqq x \leqq x_{1}$, the arbitrary function δy could be chosen to agree with it in sign, so that the integral of the product would necessarily be positive instead of zero as the condition demands.
156. The method of rendering in integral (1) a minimum or maximum is therefore to set up the differential equation (4) of the second order rnd solve it. The solution will contain two arbitrary constants of integration which may be so determined that one particular solution shall pass through the points A and B, which are the initial and final points of the path C of integration. In this way a path C which connects A and B and which satisfies (4) is found: under ordinary conditions the integral will then be either a maximum or minimum. An example follows.

Let it be required to render $I=\int_{x_{0}}^{x_{1}} \frac{1}{y} \sqrt{1+y^{\prime 2}} d x$ a maximum or minimum.

$$
F\left(x, y \cdot y^{\prime}\right)=\frac{1}{y} \sqrt{1+y^{\prime 2}}, \quad \frac{\hat{c} F}{\hat{c} y}=-\frac{1}{y^{2}} \sqrt{1+y^{\prime 2}} . \quad \frac{\hat{c} F}{\hat{c} y^{\prime}}=\frac{y^{\prime}}{y} \frac{1}{\sqrt{1+y^{\prime 2}}} \cdot
$$

Hence $-\frac{1}{y^{2}} \sqrt{1+y^{\prime 2}}+\frac{y^{\prime}}{y^{2}} \frac{1}{\sqrt{1+y^{\prime 2}}} y^{\prime}-\frac{1}{y} \frac{1}{\left(1+y^{\prime 2}\right)^{3}} y^{\prime \prime}=0 \quad$ or $\quad y y^{\prime \prime}+y^{\prime 2}+1=0$ is the desired equation (4). It is exact and the integration is immediate.

$$
\left(y y^{\prime}\right)^{\prime}+1=0, \quad y y^{\prime}+x=c_{1} . \quad y^{2}+\left(x-c_{1}\right)^{2}=r_{2}
$$

The curves are cireles with theip eenters on the x-axis. From this fact it is eass by a efeometrical construction to determine the curve whirh passes through two given points $1\left(x_{0}, y_{0}\right)$ and $B\left(r_{1}, y_{1}\right)$; the analytical determination is not tifficult. The two points 1 and B must lie on the same sille of the x-axis or the integral I will not converge ant the prohlem will have no meaning. The question of whether a maximum or a minimum has been determined may he settled by takimes a curve (', which lies moter the circular are from of to B and yet has the sime lensth. The integrami is of the form ols/y and the integral aloner f_{i} is sreater than along the circle C if y is positive, but less if y is negative. It therefore appears that the integral is rendered a minimum if A and B are above the axis. lut a maximum if they are below.

For many problems it is mure comerenient nut to muke the chuire uf ic
 rully with buth rariathles "purn the seremu form oft (1). Suppose that the integral of the rariation of Φ be set equal to zero, as in (3).

$$
\int_{-1}^{b} \delta \Phi=\int_{-1}^{l}\left[\Phi_{x}^{\prime} \delta_{l}+\Phi_{y,}^{\prime} \delta!y+\Phi_{d x}^{\prime} \delta l_{l} \cdot+\Phi_{l l y}^{\prime} \delta d y\right]=0 .
$$

Let the rules $\delta d x=\| \delta \cdot r$ and $\delta \quad l y=\| \delta!/$ be applied and let the terms which contain $d \delta x$ and $d \delta y$ be integrated he parts as before.

As A and B are fixed points, the integrated term disappears. As the variations δ and $\delta!$ may be arbitrary, reatsoning as above gives

$$
\Phi_{s}^{\prime}-l \Phi_{d x}^{\prime}=0, \quad \Phi_{y}^{\prime}-d \Phi_{d y}^{\prime}=0
$$

If these two erfuations can be shown to be essentially identical and to reduce to the condition (4) previously obtained, the justification of the second method will be complete and either of (4^{\prime}) may be used to determine the solution of the problem.

Now the identity $\Phi(x, y, d x . d y)=F(x, y, d y / d x) d x$ gives, on differentiation,

$$
\Phi_{x}^{\prime}=F_{x}^{\prime} d x . \quad \Phi_{y}^{\prime}=F_{y}^{\prime} d x . \quad \Phi_{d y}^{\prime}=F_{y^{\prime}}^{\prime} . \quad \Phi_{d x}^{\prime}=-F_{y^{\prime}}^{\prime} d y+F
$$

by the ordinary rules for partial derivatives. Substitution in each of (4') gives

$$
\begin{aligned}
& \Phi_{y}^{\prime}-d \Phi_{d y}^{\prime}=F_{y}^{\prime} d x-d F_{y^{\prime}}^{\prime}=\left(F_{y}^{\prime}-\frac{d}{d c} F_{y^{\prime}}^{\prime}\right) d x=0 . \\
& \Phi_{x}^{\prime}-d \Phi_{d x}^{\prime}=F_{x}^{\prime} d x-d\left(F-F_{y^{\prime}}^{\prime} y^{\prime}\right)=F_{x}^{\prime} d x-d F+F_{y^{\prime}}^{\prime} d y^{\prime}+y^{\prime} d F_{y^{\prime}}^{\prime} \\
&=F_{x}^{\prime} d x-F_{y}^{\prime} d x-F_{y^{\prime}}^{\prime} d y-F_{y^{\prime}}^{\prime} d y^{\prime}+F_{y^{\prime}}^{\prime} d y^{\prime}+y^{\prime} d F_{y^{\prime}}^{\prime} \\
&=-F_{y}^{\prime} d y+y^{\prime} d F_{y^{\prime}}^{\prime}=-\left(F_{y}^{\prime}-\frac{d}{d x} F_{y^{\prime}}^{\prime}\right) d y=0 .
\end{aligned}
$$

Hence each of (4^{\prime}) reduces to the orininal combition (t). as was th be proved.
Suppose this method be applied to $\int \frac{d x}{y}=\int \frac{\sqrt{d}^{d} x^{2}+d y^{2}}{y}$. Then

$$
\begin{aligned}
\int \delta \frac{d s}{y}=\int \delta \frac{\sqrt{l \cdot x^{2}+d y^{2}}}{y} & =\int\left[\frac{d x \delta d x+d!\delta \delta d y}{y d s}-\frac{d x}{y y^{2}} \partial y\right] \\
& =-\int\left[d \frac{d x}{y d x} \delta x+\left(d \frac{d y}{y l v}+\frac{d s}{y}\right) \delta y\right],
\end{aligned}
$$

where the transfomation has been integration her pats. including the discarding of the integrated term which ranishes at the limits. The two equations are

$$
d \frac{d \cdot c}{y d s}=0, \quad d \frac{d!}{y d d}+\frac{d s}{y^{2}}=0 ; \quad \text { and } \quad \frac{d x}{y d s}=\frac{1}{c_{1}}
$$

is the obviohs first integral of the first. The integration may then be completed to fim the circles as before. The integration of the second equation would not be so simple. In some instances the orlontage of the choice of one of the two equations offiered thy this method of dircet operation is marked.

EXERCISES

1. The shortest distance. Treat $\int\left(1+y^{\prime 2}\right)^{\frac{1}{2}} d x$ for a minimum.
2. Treat $\int \sqrt{d r^{2}+r^{2} d \phi^{2}}$ for a minimum in polar coörrlinates.
3. The brachistochrone. If a particle falls along any curve from A to B, the velocity acpuired at a distance h below A is $v=\sqrt{2 g h}$ regardless of the path f_{0})lowed. Hence the time spent in passing from A to B is $T=\int d s / v$. The path of quickest descent from A to B is called the brachistochrone. Show that the curve is a cycloid. Talse the origin at A.
4. The minimum surface of revolution is found by revolving a catenary.
5. The curve of constant density which joins two prints of the plane and has a minimum moment of inertia with respect to the origin is $c_{1} r^{3}=\sec \left(3 \phi+r_{2}\right)$. Note that the two points must subtemd an angle of less than 60^{3} at the origin.
6. Lpon the sphere the minimum line is the great circle (polar coürdinates).
7. Upon the eirenlar cylinder the minimmon line is the helix.
8. Find the minimm line on the cone of revolntion.
9. Minimize the integral $\int\left[\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}+\frac{1}{2} u^{2} x^{2}\right] d t$.
10. Variable limits and constrained minima. This second methoul of oprration has also the advantage that it suggests the solution of the
 ", minimum. Thus suppose that the eruve (' which shall join some point A of one curve Γ_{0} to some peint B of another curve Γ_{1}, and which shall make a given integral a minimum or maximm, is desired. In the first place C must satisfy the condition (4) or (4^{\prime}) for fixed end-points becaluse C will not give
 a maximun or minimum value as compared with all other curves maless it tloes as compared merely with all other curves which join its emd-points. There must, however, be additional conditions which shall serve to deternine the peints A and B, which C C 'onnerts. These conditions are precisely that the interyruten torms:

$$
\begin{equation*}
\left[\Phi_{d s}^{\prime} \delta, r+\Phi_{l, t}^{\prime} \delta \delta,\right]_{A}^{B}=0, \quad \text { for } A \text { and for } B, \tag{array}
\end{equation*}
$$

whirh vanish identieally when the end-perints are fixent. shall remish it rach point A or l' proviled δ, r and $\delta!$ are interpmeded as differentials along the eurves Γ_{0} and Γ_{1}.

For cexmple, in the case of $\int \frac{d s}{y}=\int \frac{\sqrt{d x^{2}+d y^{2}}}{y}$ treated above, the integrated terms, which were discarded, and the resulting conditions are

$$
\left.\left.\left[\frac{d \cdot \delta \delta c}{y d s}+\frac{d y \delta y}{y d d s}\right]_{A}^{B}, \quad \frac{d x \delta x+d y \delta y}{y d s}\right]^{B}=0, \quad \frac{d x \delta x+d y \delta y}{y d s}\right]_{A}=0 .
$$

Here de and dy are differentials along the circle C and δx and δy are to be interpreted as differentials along the curves Γ_{0} and Γ_{1} which respectively pass through A and 1 , The conditions therefore show that the tangents to C and Γ_{0} at A are perpendieular, and similarly for $\left(:\right.$ and Γ_{1} at 13 . In other words the curve which renders the integral a minimm and has its extremities on two fixed curves is the circle which has its center on the x-ixis and cuts both the curves orthogonally.

To prove the rule for finding the conditions at the end points it will be sufficient to prove it for ome variable point. Let the equations

$$
\begin{gathered}
U^{\prime}: x=\phi(t), \quad y=\psi(t) . \quad \quad_{1}^{\prime}: x=\phi(t)+\zeta(t) . \quad y=\psi(t)+\eta(t), \\
\zeta\left(t_{0}\right)=\eta\left(t_{0}\right)=0, \quad \zeta\left(t_{1}\right)=u, \quad \eta\left(t_{1}\right)=b ; \quad \delta x=\zeta(t) . \quad \delta y=\eta(t),
\end{gathered}
$$

leternine C^{\prime} and C_{1} with the common initial point A and different temmal points B and B^{\prime} upon Γ_{1}. As paranetric equations of Γ_{1}, talke

$$
x=x_{E}+a l(s) . \quad y=y_{j i}+b m(s) ; \quad \frac{\delta c}{\delta, s}=a l^{\prime}(s) . \quad \frac{\delta y}{\delta s}=l m^{\prime}(s),
$$

where s represents the are alons Γ_{1} measured from 1 , and the functions $l(s)$ ant in (s) vary from 0 at B^{\prime} to 1 at B^{\prime}. Next form the fanily

$$
x=\phi(t)+l(s) \zeta(t) . \quad y=\psi(t)+m(s) \eta(t) . \quad x^{\prime}=\phi^{\prime}+l^{\prime}, \quad y^{\prime}=\psi^{\prime}+m \eta^{\prime},
$$

which all pass through A for $t=t_{6}$ and which for $t=t_{1}$ daseribe the curve Γ_{1}. Consider

$$
\begin{equation*}
g(s)=\int_{t_{0}}^{t_{1}} \Phi\left(x+l(x) \xi, y+m(x) \eta \cdot x^{\prime}+l \xi^{\prime}, y^{\prime}+m \eta^{\prime}\right) d t, \tag{i}
\end{equation*}
$$

which is the integral taken from 1 to Γ_{1} along the curves of the family, where $x, y, x^{\prime}, y^{\prime}$ are on the curve (conresponeling to $s=0$. Differentiate. Then

$$
\left.\left.y^{\prime}(\cdot s)=\int_{t_{0}}^{t_{1}}\left[l^{\prime}(s) \zeta^{\prime} \Phi_{x}^{\prime}+m^{\prime}(\cdot)\right) \eta \Phi_{y}^{\prime}+l^{\prime}(\cdot)\right) \zeta^{\prime} \Phi_{s^{\prime}}^{\prime}+m^{\prime}(s) \eta^{\prime} \Phi_{y^{\prime}}^{\prime}\right] d t
$$

Where the aecents mean lifferentiation with rearal to s when upon g. l, or m. but with regard to t when on r or y, and partial differentiation when on Φ. and where the argment of Φ is as in (if). Now if $g(x)$ has a maximmen of minimum when $s=0$, then

$$
\begin{gathered}
y^{\prime}(0)=\int_{t_{0}}^{t_{1}}\left[l^{\prime}(0) \zeta^{\prime} \Phi^{\prime}\left(z^{\prime} \cdot y \cdot l^{\prime} \cdot l^{\prime}\right)+m^{\prime}(0) \eta \Phi_{y}^{\prime}+l^{\prime}(0) \zeta^{\prime} \Phi_{y^{\prime}}^{\prime}+m^{\prime}(0) \eta^{\prime} \Phi_{y^{\prime}}^{\prime}\right] l t=0: \\
{\left[l^{\prime}(0) \zeta^{\prime} \Phi_{x^{\prime}}^{\prime}+m^{\prime}(0) \eta \Phi_{y^{\prime}}^{\prime}\right]_{t_{0}}^{1}+\int_{t_{0}}^{t_{1}}\left[l^{\prime}(0) \zeta\left(\Phi_{s}^{\prime}-\frac{d}{d t} \Phi_{u^{\prime}}^{\prime}\right)+m^{\prime}(0) \eta\left(\Phi_{u^{\prime}}^{\prime}-\frac{l}{d} \Phi_{y^{\prime}}^{\prime}\right)\right] d t=0 .}
\end{gathered}
$$

The change is mate as usial by integration by parts. Now as

$$
\Phi\left(x^{\prime}, y, x^{\prime}, y^{\prime}\right) d t=\Phi(x, y, d x, d y), \quad \text { sin } \quad \Phi^{\prime} \cdot d t=\Phi_{n}^{\prime} . \quad \Phi_{n}^{\prime}=\Phi^{\prime}, x, \text { etc. }
$$

Hence the parentheses under the integral sign, when multiplied by $d t$, reduce to (4) and vanish ; they could be seen to vanish also for the reason that ζ and η are arbitrary functions of t except at $t=t_{0}$ and $t=t_{1}$, and the integrated term is a constant. There remains the integrated term which must vanish,

$$
l^{\prime}(0) \zeta\left(t_{1}\right) \Phi_{x^{\prime}}^{\prime}+m^{\prime}(0) \eta\left(t_{1}\right) \Phi_{y^{\prime}}^{\prime}=\left[\frac{\delta x}{\delta s} \Phi_{x^{\prime}}^{\prime}+\frac{\delta y}{\delta s} \Phi_{y^{\prime}}^{\prime}\right]^{t_{1}}=\left[\Phi_{d x}^{\prime} \delta x+\Phi_{d y}^{\prime} \delta y\right]^{t_{1}}=0 .
$$

The condition therefore reduces to its appropriate half of (5), provided that, in interpreting it, the quantities δx and δy be regarded not as $a=\zeta\left(t_{1}\right)$ and $b=\eta\left(t_{1}\right)$ but as the differentials along Γ_{1} at B.
158. In many cases one integral is to be made a maximum or minimum subject to the condition that another integral shall have a fixed valne,

$$
\begin{equation*}
I=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x \min _{\max .}, \quad J=\int_{x_{0}}^{x_{1}} G\left(x, y, y^{\prime}\right) d x=\text { const. } \tag{7}
\end{equation*}
$$

For instance a curve of given length might run from A to B, and the form of the curve which would make the area under the curve a maximum or minimum might be tesired ; to make the area a maximum or minimum without the restriction of constant length of are would be useless, because by taking a curve which dropped sharply from A, inclosed a large area below the x-axis, and rose sharply to B the area could be made as small as desired. Again the curve in which a chain would hang might be required. The length of the chain being given, the form of the curve is that which will make the potential energy a minimum, that is, will bring the center of gravity lowest. The problens in constrained maxima and minima are called isoperimetrir problems because it is so freguently the perimeter or length of the curve which is given as constant.

If the method of determining constrained maxima and minima by means of muletermined multipliers be recalled ($\$ \$ 58,61$), it will appear that the solution of the isoperimetric problem might reasonably be songht by rendering the integral

$$
\begin{equation*}
I+\lambda \cdot I=\int_{x_{0}}^{x_{1}}\left[F\left(x, y, y^{\prime}\right)+\lambda\left(r^{\prime}\left(x, y, y^{\prime}\right)\right] d . c\right. \tag{8}
\end{equation*}
$$

a maximum or minimm. The solution of this problem would contain three constants, manely, λ and two constants r_{1}, c_{2} of integration. The constants r_{1}, e_{2} could be determined so that the emre should pass through A and B and the value of λ would still remain to be determined in such a manner that the integral J shonk have the desired value. This is the method of solution.

To justify the method in the case of fixed end-points, which is the only case that will be considered, the procedure is like that of $\$ 155$. Let C be given by $y=f(x)$; consider

$$
y=f(x)+\alpha \eta(x)+\beta \zeta(x), \quad \eta_{0}=\eta_{1}=\zeta_{0}=\zeta_{1}=0
$$

a two-parametered family of curves near to C. Then

$$
\begin{aligned}
& g(\alpha, \beta)=\int_{x_{0}}^{x_{1}} F\left(x, y+\alpha \eta+\beta \zeta, y^{\prime}+\alpha \eta^{\prime}+\beta \zeta^{\prime}\right) d x, \quad y(0,0)=I \\
& h(\kappa, \beta)=\int_{x_{0}^{\prime}}^{c_{1}} G\left(x, y+\alpha \eta+\beta \zeta, y^{\prime}+\alpha \eta^{\prime}+\beta \zeta^{\prime}\right) d x=J=\text { const. }
\end{aligned}
$$

would be two functions of the two variables $c \varepsilon$ and β. The conditions for the minimum or maximum of $g(\alpha, \beta)$ at $(0,0)$ subject to the condition that $h(\alpha, \beta)=$ const. are required. Hence
or

$$
\begin{gathered}
g_{\alpha}^{\prime}(0,0)+\lambda h_{a}^{\prime}(0,0)=0, \quad g_{\beta}^{\prime}(0,0)+\lambda h_{\beta}^{\prime}(0,0)=0, \\
\int_{r_{0}}^{x_{1}} \eta\left(F_{y}^{\prime}+\lambda G_{y}^{\prime}\right)+\eta^{\prime}\left(F_{y^{\prime}}^{\prime}+\lambda G_{y^{\prime}}^{\prime}\right) d x=0, \\
\int_{x_{0}}^{x_{1}} \zeta\left(F_{y}^{\prime}+\lambda G_{y}^{\prime}\right)+\zeta^{\prime}\left(F_{y^{\prime}}^{\prime}+\lambda G_{y^{\prime}}^{\prime}\right) d x=0 .
\end{gathered}
$$

By integration by parts either of these equations gives

$$
\begin{equation*}
(F+\lambda G)_{y}^{\prime}-\frac{d}{d x}(F+\lambda G)_{y^{\prime}}^{\prime}=0 \tag{9}
\end{equation*}
$$

the rule is justified, and will be applied to an example.
lequired the curve which, when revolved about an axis, will generate a given volume of revolution bounded by the least surface. The integrals are

$$
I=2 \pi \int_{r_{0}}^{x_{1}} y d s, \text { min.. } \quad J=\pi \int_{x_{0}}^{x_{1}} y^{2} d d^{2}, \text { const. }
$$

Make

$$
\int_{x_{0}}^{x_{1}}\left(y d x+\lambda y^{2} d x\right) \text { min. or } \quad \int_{x_{0}}^{x_{1}} \delta\left(y d x+\lambda y^{2} d x\right)=0
$$

$$
\begin{aligned}
\int_{x_{0}}^{x_{1}} \delta\left(y d x+\lambda y^{2} d x\right) & =\int_{x_{0}}^{x_{1}}\left[\delta y d s+y \frac{d x \delta d x+d y \delta d y}{d s}+2 \lambda y \delta y d x+\lambda y^{2} \delta d x\right]=0 \\
& =\int_{x_{0}}^{x_{1}}\left[\delta x\left(-\lambda d\left(y^{2}\right)-d \frac{y d x}{d s}\right)+\delta y\left(d s-d \frac{y d y}{d s}+2 \lambda y d x\right)\right]
\end{aligned}
$$

Hence

$$
\lambda d\left(y^{2}\right)+d \frac{y d x}{d s}=0 \quad \text { or } \quad d s-d \frac{y d y}{d s}+2 \lambda y d x=0
$$

The second method of computation has been used and the vanishing integrated terms have been discarded. The first equation is simplest to integrate.

$$
\lambda y^{2}+y \frac{1}{\sqrt{1+y^{\prime 2}}}=c_{1} \lambda, \quad \pm \frac{\lambda\left(c_{1}-y^{2}\right) d y}{\sqrt{y^{2}-\lambda^{2}\left(c_{1}-y^{2}\right)^{2}}}=d x
$$

The variables are separated, but the integration camot be executed in terms of elementary functions. If, however, one of the end-points is on the x-axis, the
values $x_{0}, 0, y_{0}^{\prime}$ or $x_{1}, 0, y_{1}^{\prime}$ must satisfy the equation and, as no term of the equation can become infinite, c_{1} must vinish. The integration may then be performed.

$$
\pm \frac{\lambda y d y}{\sqrt{1-\lambda^{2} y^{2}}}=d x, \quad 1-\lambda^{2} y^{2}=\lambda^{2}\left(x-c_{2}\right)^{2} \quad \text { or } \quad\left(x-c_{2}\right)^{2}+y^{2}=\frac{1}{\lambda^{2}} .
$$

In this special case the curve is a circle. The constants c_{1} and λ may be determined from the other point $\left(x_{1}, y_{1}\right)$ through which the curve passes and from the value of $J=v$; the equations will also determine the abscissa x_{0} of the point on the axis. It is simpler to suppose $x_{0}=0$ and leave x_{1} to be determined. With this procedure the equations are
or

$$
\begin{gathered}
c_{2}^{2}=\frac{1}{\lambda^{2}}, \quad\left(x_{1}-c_{2}\right)^{2}+y_{1}^{2}=\frac{1}{\lambda^{2}}, \quad \frac{v}{\pi}=\frac{x_{1}}{\lambda^{2}}-\frac{1}{3}\left(x_{1}^{3}-3 c_{2} x_{1}^{2}+3 c_{2}^{2} x_{1}\right), \\
x_{1}^{3}+3 y_{1}^{2} x_{1}-\frac{6 v}{\pi}=0, \quad c_{2}=\frac{x_{1}^{2}+y_{1}^{2}}{2 x_{1}}, \\
x_{1}=\pi^{-\frac{1}{3}}\left[\left(3 v+\sqrt{9 v^{2}+\pi^{2} y_{1}^{6}}\right)^{\frac{1}{3}}+\left(3 v-\sqrt{9 v^{2}+\pi^{2} y_{1}^{6}}\right)^{\frac{1}{3}}\right] .
\end{gathered}
$$

and

EXERCISES

1. Show that (α) the minimmm line from one curve to another in the plane is their common normal; (β) if the ends of the catenary which generates the minimum surface of revolution are constrained to lie on two curves, the catenary shall he perpendicular to the curves; (γ) the brachistochrone from a fixed point to a curve is the cycloit which cuts the curve orthogonally.
2. Generalize to show that if the end-points of the curve which makes any integral of the form $\int F(x, y) d s$ a maximum or a minimum are variable upon two curves, the solution shall cut the curves orthogonally.
3. Show that if the integrand $\Phi\left(x, y, d x, d y, x_{1}\right)$ depends on the limit x_{1}, the condition for the limit B becomes $\left[\Phi_{d, x}^{\prime} \delta x+\Phi_{d y}^{\prime} \delta y+\delta x \int_{x_{0}^{\prime}}^{x_{1}} \Phi_{x_{1}^{\prime}}\right]^{\prime \prime}=0$.
4. Show that the cycloid which is the brachistochrone from a point A, constrainet to lie on one curve Γ_{0}, to another curve Γ_{1} must leave Γ_{0} at the point A where the tangent to Γ_{0} is parallel to the tangent to Γ_{1} at the point of arrival.
5. Prove that the curve of given length which generates the minimum surface of revolution is still the catenary.
6. If the area muter a curve of given length is to be a maximum or minimum, the curve must he a circular are comecting the two points.
7. In polar courdinates the sectorial area hounded by a curve of given length is a maximum or minimum when the curve is a cirele.
8. A curve of given length generates a maximun or minimum volume of revolition. The mastic emrve

$$
R=\frac{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}{y^{\prime \prime}}=-\frac{\lambda}{2 y} \text { or } \quad d x=\frac{\left(y^{2}-c_{1}\right) d y}{\sqrt{\lambda^{2}-\left(y^{2}-c_{1}\right)^{2}}} \text {. }
$$

9. A chain lies in a central field of force of which the potential per unit mass is $V^{r}(r)$. If the constant density of the chain is ρ, show that the form of the curve is

$$
\phi+c_{2}=\int \frac{d r}{r\left[c_{1}^{2}\left(\rho I^{r}+\lambda\right)^{2} r^{2}-1\right]^{\frac{1}{2}}} .
$$

10. Discuss the reciprocity of I and J, that is, the questions of making I a maximum or minimum when J is fixet, and of making J a minimm or maximm when I is fixed.
11. A solid of revolution of given mass and uniform density exerts a maximmm attraction on a point at its axis. Ans. $2 \lambda\left(x^{2}+y^{2}\right)^{\frac{3}{2}}+x=0$, if the point is at the origin.
12. Some generalizations. Suppose that an integral

$$
\begin{equation*}
I=\int_{-1}^{B} F\left(x, y, y^{\prime}, z, z^{\prime}, \cdots\right) d x=\int_{-1}^{B} \Phi(x, d i x, y, d y, z, d z, \cdots) \tag{10}
\end{equation*}
$$

(of which the integrand contains two or more dependent variables y, \approx, \cdots and their derivatives $y^{\prime}, a^{\prime}, \cdots$ with respect to the independent variable x, or in the symmetrical form contains three or more variables and their differentials) were to be made a maximum or minimum. In case there is only one adhitional variable, the 1 moblem still has a geometric interpretation, namely, to find

$$
y=f(x), \quad z=y(x), \quad \text { or } \quad x=\phi(t), \quad y=\psi(t), \quad z=\chi(t)
$$

a curve in space, which will make the value of the integral greater or less than all neighboring curves. A slight modification of the previons reasoning will show that necessary conclitions are
or

$$
\begin{gather*}
F_{y}^{\prime}-\frac{d}{d \cdot r^{r}} F_{y^{\prime}}^{\prime}=0 \quad \text { and } \quad F_{z}^{\prime}-\frac{d}{d l_{r}} F_{z^{\prime}}^{\prime}=0 \tag{11}\\
\Phi_{x}^{\prime}-l \Phi_{d x}^{\prime}=0, \quad \Phi_{y}^{\prime}-l \Phi_{1 l_{y}}^{\prime}=0, \quad \Phi_{z}^{\prime}-l \Phi_{d z^{\prime}}^{\prime}=0
\end{gather*}
$$

where of the last three conditions only two are independent. Each of (11) is a differential equation of the second order, and the solution of the two simultaneous equations will be a family of curves in spare dependent on four arbitrary constants of integration whith may be so determined that one curve of the family shall gass throngh the endpoints A and B.

Instead of following the previons method to estahlish these farts, an older and perhaps less acourate method will be usech. Let the varied values of ! $\%, \approx, \eta^{\prime}, z^{\prime}$. he denoted by

$$
y+\delta y, \quad z+\delta z, \quad y^{\prime}+\delta y^{\prime}, \quad z^{\prime}+\delta_{i z} z^{\prime}, \quad \delta y^{\prime}=(\delta y)^{\prime}, \quad \delta: z^{\prime}=(\delta z)^{\prime} .
$$

The difference between the integral along the two curves is

$$
\begin{aligned}
\Delta I & =\int_{x_{0}}^{x_{1}}\left[F\left(x, y+\delta y, y^{\prime}+\delta y^{\prime}, z+\delta z^{\prime}, \ddot{z}^{\prime}+\delta z^{\prime}\right)-F\left(x, y, y^{\prime}, z, z^{\prime}\right)\right] d x \\
& =\int_{x_{0}}^{x_{1}} \Delta F\left(d x=\int_{x_{0}}^{x_{1}}\left(F_{y}^{\prime} \delta y+F_{y}^{\prime} \delta y^{\prime}+F_{z}^{\prime} \delta z+F_{z}^{\prime} \delta z^{\prime}\right) d x+\cdots\right.
\end{aligned}
$$

where F has been expanded by Taylor's Formula* for the four variables $y, y^{\prime}, \approx=a^{\prime}$ which are varied, and ${ }^{\prime}+\cdots$ " refers to the remainder or the subsequent terms in the development which contain the higher powers of $\delta y, \delta y^{\prime}, \delta \approx, \delta z^{\prime}$.

For sutticiently small values of the variations the terms of higher order may be neglected. Then if ΔI is to be either positive or negative for all small rariations, the terms of the first order which change in sign when the signs of the variations are reversed must vanish and the condition becomes

$$
\begin{equation*}
\int_{r_{0}}^{r_{1}}\left(F_{y}^{\prime} \delta!y+F_{y}^{\prime} \delta y^{\prime}+F_{z}^{\prime} \delta z+F_{z^{\prime}}^{\prime} \delta z^{\prime}\right) d, r=\int_{x_{0}}^{x_{1}} \delta F d x=0 . \tag{12}
\end{equation*}
$$

Integrate by parts and discard the integrated terms. Then

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}}\left[\left(F_{y}^{\prime}-\frac{d}{d y^{\prime}} F_{y^{\prime}}^{\prime}\right) \delta y+\left(F_{z}^{\prime}-\frac{d}{d l^{*}} F_{z^{\prime}}^{\prime}\right) \delta z\right]=0 . \tag{13}
\end{equation*}
$$

* In the simpler case of $\S 155$ this formal development would run as
$\Delta I=\int_{x_{0}}^{x_{1}}\left(F_{y}^{\prime} \delta y+F_{y^{\prime}}^{\prime} \delta y^{\prime}\right) d x+\frac{1}{2!} \int_{x_{0}}^{x_{1}}\left(F_{y y}^{\prime \prime} \delta y^{2}+2 F_{y y \prime}^{\prime \prime} \delta y \delta y^{\prime}+F_{y^{\prime} y^{\prime}, y^{\prime \prime}}^{\prime \prime}\right) d x+$ higher terms, and with the expansion $\Delta I=\delta I+\frac{1}{2!} \delta^{2} I+\frac{1}{3!} \delta^{3} I+\cdots$ it would appear that $\delta I=\int_{r_{0}}^{x_{1}}\left(F_{y}^{\prime} \delta y+F_{y^{\prime}}^{\prime} \delta y^{\prime}\right) d x, \quad \delta^{2} I=\int_{x_{0}}^{x_{1}}\left(F_{y y}^{\prime \prime} \delta y^{2}+2 F_{y y y^{\prime}}^{\prime \prime} \delta y \delta y^{\prime}+F_{\left.y^{\prime} y^{\prime} \delta y^{\prime 2}\right)}^{\prime 2} d x\right.$,

The terms $\delta I, \delta^{2} I, \delta^{3} I$. . . are called the first, secomb, thirr, . . variutions of the integral I in the case of fixed linits. The condition for a maximum or minimun then beeones $\delta I=0$. just as $\quad l y=10$ is the comblion in the case of $g\left(x^{\circ}\right)$. In the case of variable limit. there are some monlifications appopriate to the limits. This method of proeedure suggests the reanom that δr^{4}, $\delta!$ are frequently to be treated exactly as differentials. It ahon suggests that $\delta^{3} I>0$ and $\delta^{2} I<0$ would be criteria for distinguishing between maxima and minima. The same results can be had by differentiating (1') repeatedly umber the sign and "xpambing $I(c)$ into series: in fact, $\delta I=I^{\prime}(0), \delta^{2} I=I^{\prime \prime}(0), \cdots$. No emphasis hats been laid in the text on the suggestive relations $\delta I=\int \delta F / l e$ for fixed limits or $\delta I-\int \hat{o} \Phi$ for variable limits (variable in $x . l$, but not in t) becanse only the most elementary results were desired, and the treatment given has some atlvantages as to modernity.

As $\delta!y$ and δ_{z} are arbitrary, either may in particular be taken equal to 0 while the other is assigned the same sign as its coefficient in the parenthesis; and hence the integral would not vanish unless that coefficient vanished. Hence the conditions (11) are derived, and it is seen that there would be precisely similar conditions, one for each variable y, z, \cdots, no matter how many variables might occur in the integrand.

Without going at all into the matter of proof it will be stated as a fact that the condition for the maximum or minimum of

$$
\int \Phi(x, d x, y, d y, z, d z, \ldots) \text { is } \int \delta \Phi=0
$$

which may be transformed into the set of differential equations

$$
\Phi_{x}^{\prime}-d \Phi_{d x}^{\prime}=0, \quad \Phi_{y}^{\prime}-d \Phi_{d y}^{\prime}=0, \quad \Phi_{z}^{\prime}-d \Phi_{d z}^{\prime}=0, \quad \cdots,
$$

of which any one may be discarded as dependent on the rest; and

$$
\Phi_{d x}^{\prime} \delta x+\Phi_{d y}^{\prime} \delta y+\Phi_{d z}^{\prime} \delta_{z}+\cdots=0, \quad \text { at } A \text { and at } B,
$$

where the variations are to be interpreted as differentials along the loci upon which A and B are constrained to lie.

It frequently happens that the variables in the integrand of an integral which is to be made a maximum or minimum are connected ly an equation. For instance

$$
\begin{equation*}
\int \Phi(x, d x, y, d y, z, d z) \text { min., } \quad S(x, y, z)=0 \tag{14}
\end{equation*}
$$

It is possible to eliminate one of the rariables and its differential by means of $s=0$ and proceed as before; but it is usually better to introduce an undetermined multiplier ($\$ 558,61$). From

$$
S(x, y, z)=0 \quad \text { follows } \quad s_{x}^{\prime} \delta_{r} r+s_{y}^{\prime} \delta_{y}+s_{z}^{\prime \prime} \delta_{z}=0
$$

if the variations be treated as differentials. Hence if

$$
\begin{aligned}
& \int\left[\left(\Phi_{x}^{\prime}-d \Phi_{d x}^{\prime}\right) \delta x+\left(\Phi_{y}^{\prime}-d \Phi_{d y}^{\prime}\right) \delta y+\left(\Phi_{z}^{\prime}-l \mid \Phi_{d z}^{\prime}\right) \delta_{z}^{\prime}\right]=0 \\
& \begin{aligned}
\int\left[\left(\Phi_{x}^{\prime}-\left(l \Phi_{d x}^{\prime}+\lambda \digamma_{x}^{\prime}\right) \delta x\right.\right. & +\left(\Phi_{y}^{\prime}-\| \Phi_{d y}^{\prime}+\lambda \varsigma_{y}^{\prime \prime}\right) \delta_{y} \\
& \left.+\left(\Phi_{z}^{\prime}-d \Phi_{d z}^{\prime}+\lambda s_{z}^{\prime}\right) \delta_{z}\right]=0
\end{aligned}
\end{aligned}
$$

no matter what the value of λ. Let the value of λ be so rhosen as to annul the coefficient of δ. Then as the two remaining variations are independent, the same reasoning as above will cause the coefficients of δx and δy to vanish and

$$
\begin{equation*}
\Phi_{x}^{\prime}-l \Phi_{l x}+\lambda s_{x}^{\prime}=0, \quad \Phi_{y}^{\prime}-l \Phi_{l y}^{\prime}+\lambda \varsigma_{y}^{\prime}=0, \quad \Phi_{z}^{\prime}-l \Phi_{d z}^{\prime}+\lambda \varsigma_{z}^{\prime \prime}=0 \tag{15}
\end{equation*}
$$

will hold. These equations, taken with $s=0$, will determine y and z as functions of r and also incidentally will fix λ.

Consider the prohlem of determining the shortest lines upon a surfuce $\therefore(x, y, z)=0$. These liness are called the geodesics. Then

$$
\begin{align*}
& \int \delta d s=0=\frac{d \cdot r \delta \cdot r+d y \delta!y+d \pi \delta_{i}}{d s} \left\lvert\,-\int\left[d \frac{d x}{d s} \delta_{x}+d \frac{d!y}{d s} \delta_{y}+d \frac{d \dot{x}}{d s} \delta_{i r}\right]\right., \tag{16}\\
& \int\left(d \frac{d x}{d s}+\lambda \cdot s_{x}^{\prime \prime}\right) \delta r+\left(d \frac{d!}{d s}+\lambda s_{y}^{\prime \prime}\right) \delta y+\left(d \frac{d \vec{z}}{d s}+\lambda s_{z}^{\prime \prime}\right) \delta: z=0, \\
& d \frac{d x}{d s}+\lambda r_{x}^{\prime}=\left\|\frac{d!}{d s}+\lambda \cdot r_{y}^{\prime \prime}=\right\| \frac{d \pi}{d s}+\lambda r_{z}^{\prime \prime}=0, \quad \text { and } \quad \frac{d \frac{d \cdot x}{d s}}{s_{x}^{\prime}}=\frac{d \frac{d y}{d s}}{s_{y}^{\prime}}=\frac{d \frac{d z}{d s}}{s_{z}^{\prime \prime}} .
\end{align*}
$$

In the last set of equations λ has been eliminated and the equations, taken with $S=0$, may be regarded as the differentiol equentions of the gforlesics. The denominators are proportional to the direction cosines of the normal to the surface, and the numerators are the components of the differential of the mit tangent to the rurve and are therefore proportional to the direction cosines of the normal to the eurve in its osculating plame. Hence it appears that the osculrtiny phene of " georlesie curce rontains the nommol to the smifare.

The interrated terms drox + dy $\delta y+n z \delta z=0$ show that the least geodesic which comects two eurves on the surface will cut both emves orthogomally. These terms will also suffiee to prow a number of interesting theorems which establish an analogy between geodesies on a surface and straisht lines in a plane. For instance: The locus of puints whose geodesic distance from a fixed point is constant (a geodesic eirele) euts the geoxlesic lines orthomally. To see this write
$\int_{0}^{P} d l x=$ comst. $\quad \Delta \int_{0}^{P} d x=0, \quad \hat{o} \int_{0}^{P} d x=0, \quad \int_{0}^{P} \delta d x=0=d x \delta x+d y \delta y+\left.d z \delta z\right|^{P}$.
The interiml in (19) drops ont hecause taken abong a geofesic. This final equality estallishes the perpendieularity of the lines. The fact also follows from the statement that the geodesie circle and its center can be regarded as two curves between which the shortest distance js the distance measured along any of the geodesic radii, and that the radii must therefore be perpendicular to the curve.
160. The most funtamental and important single theorem of mathematical physires is Hamilton"s Prineiple, which is expressed hy means of the colculus of variations and affords a necessary and sufficient condition for studying the elements of this sulject. Let T be the kinetir energy of any dynanical system. Let X_{i}, Y_{i}, Z_{i} be the forees which act at any point $, r_{i},!_{i}, \ddot{i n}_{i}$ of the system, and let $\delta r_{i}, \delta y_{i}, \delta_{i=i}$ represent displacements of that point. Then the work is

$$
\delta U=\sum\left(X U_{i} \delta_{i}+Y, \delta y_{i}+Z, \delta \ddot{u}_{i}\right) .
$$

Hamilton＇s Principle states that the time integral

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}}\left(\delta T+\delta W^{\prime}\right) d t=\int_{t_{0}}^{t_{1}}\left[\delta T+\sum(N \delta x+I \delta y+Z \delta z)\right] d t=0 \tag{17}
\end{equation*}
$$

ronishes for the recturel motion of the system．If in particular there is a potential function $\mathrm{V}^{\text {，then }} \delta \mathrm{I}^{\circ}=-\delta \mathrm{I}^{\circ}$ and

$$
\int_{t_{0}}^{t_{1}} \delta\left(T-V^{V}\right) d t=\delta \int_{t_{0}}^{t_{1}}(T-V) d t=0
$$

and the time integral uf the difference betereen the lienetic and pontentiol energies is a maximum ur minimm，fior the actural motion of the s！stem as compared with any neighboring motion．

Suppose that the position of a system can be expressed ly means of n independ－ ent variables or coördinates $q_{2}, q_{2}, \cdots, q_{n}$ ．Let the kinetic energy be expressed as

$$
T=\sum_{1} \frac{1}{2} m_{i} v_{i}^{2}=\int \frac{1}{2} v^{2} d m=T\left(q_{1}, q_{2}, \cdots, q_{n}, \dot{q}_{1} \cdot \dot{q}_{2}, \cdots, \dot{q}_{n}\right),
$$

a function of the eoordinates and their lerivatives with respect to the time．Let the work done b_{y} displacing the single coördinate q_{r} be $\delta W^{-}=Q_{2} \delta q_{r}$ ．so that the total work．in view of the independence of the enominates．is $Q_{1} \delta q_{1}+Q_{2} d q_{2}+\cdots+Q_{n} d q_{n}$ ． Then

$$
\begin{aligned}
0=\int_{t_{0}}^{t_{1}}\left(\delta T+\delta H^{\prime}\right) d t & =\int_{t_{n}}^{t_{1}}\left(T_{i_{1}}^{\prime} \delta q_{1}+T_{\eta_{2}}^{\prime} \delta q_{2}+\cdots+T_{i_{n}}^{\prime} \delta q_{n}+T_{i_{1}}^{\prime} \delta \dot{q}_{1}+T_{i_{2}}^{\prime} \delta \dot{q}_{2}\right. \\
& +\cdots+T_{i_{n}}^{\prime} \delta q_{n}+\left(\ell_{1} \delta q_{1}+\left(\ell_{2} \delta q_{2}+\cdots+\left(\ell_{n} \delta q_{n}\right) d t .\right.\right.
\end{aligned}
$$

Perform the usual integration low pand discard the integrated terms which vanish at the limits $t=t_{0}$ and $t=t_{1}$ ．Then

$$
\begin{aligned}
0=\int_{t_{0}}^{t_{1}}\left[\left(T_{\eta_{1}}^{\prime}+Q_{1}-\frac{d}{d t} T_{\dot{i}_{1}}^{\prime}\right) \delta q_{1}\right. & +\left(T_{i_{2}}^{\prime}+\left(\ell_{2}-\frac{d}{d t} T_{i_{2}}^{\prime}\right) \delta q_{2}\right. \\
& +\cdots+\left(T_{i_{i_{n}}}^{\prime}+\left(\ell_{n}-\frac{d}{\| t} T_{i_{n}}^{\prime}\right) \delta q_{n}\right] d t .
\end{aligned}
$$

In view of the independence of the variatioms $\delta q_{1} \cdot \delta q_{2}, \cdots . \delta q_{n}$ ，

$$
\begin{align*}
& \text { diT} \tag{18}\\
& \text { it } i i_{1}
\end{align*}-\frac{i T}{i q_{2}}=\ddots_{1} . \quad \frac{d i T}{d t} \frac{i i_{2}}{i}-\frac{i T}{i q_{2}}=Q_{2} . \quad \cdots, \quad \frac{d}{d i} \frac{i T}{i i_{n}}-\frac{i T}{i q_{n}}=Q_{n}
$$

These are the Latrengien cquations for the motion of a dymanical system．＊If there is a potential function I $\left(q_{1}, q_{2}, \cdots, q_{n}\right)$ ，then by detinition

$$
Q_{1}=-\frac{i V}{i q_{1}}, \quad Q_{2}=-\frac{\hat{} V^{-}}{\hat{i} q_{2}}, \quad \cdots, \quad Q_{n}=-\frac{i V}{\hat{i} q_{n}}, \quad \frac{i V}{\hat{i} \dot{q}_{1}}=\frac{i V^{r}}{\hat{i} \dot{q}_{2}}=\cdots=\frac{i V^{V}}{i \dot{q}_{n}}=0 .
$$

Hence $\frac{d}{d t} \frac{i L}{\partial \dot{q}_{1}}-\frac{i L}{i q_{1}}=0 . \quad \frac{l}{d t} \frac{i L}{\partial \dot{q}_{2}}-\frac{i L}{i q_{2}}=0, \quad \cdots, \quad \frac{d}{d t} \frac{i L}{\hat{c} \dot{q}_{n}}-\frac{i L}{\hat{c} q_{n}}=0 . \quad L=T-\mathrm{I}$.
The equations of motion lave been expressen in terms of a single function L ．which is the difference between the kinetic energy T and putantial function $r_{\text {．By }}$ ＊Compara Ex．19，p．112，for a dealuction of（1ふ）by transformation．
comparing the equations with (17^{\prime}) it is seen that the dynamics of a system which may be specified by n coördinates, and which has a potential function, may be stated as the problem of rendering the integral $\int L d t$ a maximum or a minimum; both the kinetic energy T and potential function V may contain the time t without changing the results.

For example, let it be required to derive the equations of motion of a lamina lying in a plane and acted upon by any forces in the plane. Select as coördinates the ordinary coordinates (x, y) of the center of gravity and the angle ϕ throngh which the lamina may turn about its center of gravity. The kinetic energy of the lamina (p . 318) will then be the sum $\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2}$. Now if the lamina be moverl a distance δx to the right, the work done by the forces will be Xor, where X denotes the sum of all the components of force along the x-axis mo matter at what points they act. In like manner I' δy will be the work for a dipplacement δy. Suppose next that the lamina is rotated about its center of gravity through the angla $\delta \phi$; the actual displacement of any point is $r \delta \phi$ where r is its distance from the center of gravity. The work of any force will then be lirdo where R is the component of the force perpendicular to the radius r; but $R r=\Phi$ is the moment of the force about the center of gravity. Hence

$$
T=\frac{1}{2} M\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I \dot{\phi}^{2}, \quad \delta H^{\prime}=X \delta x+Y \delta y+\Phi \delta \phi
$$

and

$$
M \frac{d^{2} x}{d t^{2}}=I, \quad M \frac{d^{2} y}{d t^{2}}=Y . \quad I \frac{d^{2} \phi}{d t^{2}}=\Phi
$$

by substitution in (18), are the desired equations. where X and Y are the tutul emmponts along the axis and Φ is the total moment alont the center of gravity.

A particle glides without friction on the interin of an inverted cone of revolution; determine the motion. Chome the distance r of the particle from the vertex and the meridional angle ϕ as the two coüdinates. If l be the sine of the angle between the axis of the cone and the elements, then $d s^{2}=d t^{2}+r^{2}=l^{2} d \phi^{2}$ and $r^{2}=r^{2}+r^{2} 2^{2} \dot{\phi}^{2}$. The pressure of the cone against the particle does no work; it is normal to the motion. For a change $\delta \phi$ gravity does no work; for a change δ it does work to the amome $-m g \sqrt{1-\eta^{2}} \delta$. Hence

$$
T=\frac{1}{2} m\left(r^{2}+r^{2} l^{2} \dot{\phi}^{2}\right) . \quad \delta W^{\prime}=-m g \backslash \quad 1-r^{2} \delta r \quad \text { or } \quad T^{2}=m g \Omega^{\prime} \overline{1-r^{2}} r .
$$

Then

$$
\frac{d^{2} r^{2}}{d t^{2}}-r^{2}\left(\frac{d \phi}{d t}\right)^{2}=-g \sqrt{1-r^{2}} . \quad \frac{l}{d t}\left(r^{2} l^{\frac{1}{2} \phi} \frac{d t}{d t}\right)=0 \quad \text { or } \quad r^{2} \frac{d \phi}{d t}=r .
$$

The remaining integrations cannot all be effected in terms of elementary functions.
161. suppose the double integral

$$
\begin{equation*}
I=\iint F(, r \cdot!\cdot:, \mu \cdot \eta) d, r l!, \quad l^{\prime}=\frac{\hat{c}_{*}}{\hat{c}_{n}}, \quad q=\frac{\hat{c}_{:}}{\hat{c}_{!}}, \tag{19}
\end{equation*}
$$

extended over a certain area of the er:-plate were to be marle a maximum or minimum by a surface $z=z(r, y)$, which shall phos through a given curve upon the eylimber which stands mon the homedine curve of the area. This problem is analogons to the problem of s. 1.5 with
fixed limits ; the procedure for finding the partial differential ecquation which z shall satisfy is also analogous. Set

$$
\iint \delta F_{1}^{\prime} l_{r} l_{y}=\iint\left(F_{z}^{\prime} \delta z+F_{p}^{\prime} \delta_{p}+F_{q}^{\prime} \delta_{y}\right) d x d y=0
$$

Write $\delta_{p}=\frac{\hat{c} \delta_{z}}{c_{x}}, \delta_{I}=\frac{\hat{c} \delta_{z}}{c_{y}}$ and integrate by parts.

$$
\iint F_{p}^{\prime} \frac{\hat{c} \delta_{i n}^{\prime}}{c_{n} \cdot} d x^{r} d y=\left.\int F_{p}^{\prime} \delta_{i}^{\prime}\right|_{A} ^{B} l_{!l}-\iint \frac{d F_{p}^{\prime}}{l_{x} x} \delta d x d y
$$

The limits A and B for which the first term is taken are points upon the bounding contour of the area, and $\delta:=0$ for A and B by virtue of the assumption that the surface is to pass through a fixed curve above that contour. The integration of the term in δ_{I} is similar. Hence the rondition becomes
or

$$
\begin{equation*}
\frac{\hat{\partial} F}{\hat{c}_{i v}}-\frac{d}{d_{1} \cdot x} \frac{\hat{\partial} F}{\hat{c}_{l}^{\prime}}-\frac{d}{d_{y}} \frac{\dot{c} F}{\partial_{1}}=0 \tag{20}
\end{equation*}
$$

by the familiar seasoning. The total differentiations give

The strek illustration introduced at this point is the minimum surface, that is, the surface which spans a given contour with the least area and which is physically represented by a soap film. The real use, howerer, of the theory is in comenetion with Hamilton's Principle. To study the motion of a chan hung up and allowed to vibrates or of a piano wire stretehed lutween two points, compute the kinetic and potential energies and aphly Hanilton's Prineiple. Is the motion of a vibrating elastie body to be investigated ? Aphly Hamilton's Principle. And so in electrodyamics. In filct, with the rery foundations of mechanics somstimes in doult owing to moderns ideas on electricity, the one refnge of many theorists is Hamilon's Principle. Two problems will be worked in cletail to exhibit the methorl.

Let a uniform chain of density ρ and length l be suspended by one extremity and cansed to execute small oscillations in a vertical plane. At any time the shan of the curve is $y=y(x)$, and $y=y(x, t)$ will be taken to represent the shape of the curve at all times. Let $y^{\prime}=\hat{c} y / \hat{c}, r$ and $\hat{y}=\hat{c} y / \hat{c} t$. As the oscillations are small, the chain will rise only slightly and the main lart of the kinetic energy will be in the whippins motion from sille to side: the assmption $d x=d$ s may be made and the kinetic energy may be taken as

$$
T=\int_{11}^{1} \frac{1}{2} \rho\left(\frac{\hat{c} \ell}{\hat{c} t}\right)^{2} d x
$$

The potential cnergy is a little harder to compute. for it is necessary to obtain the slight rise in the center of gravity due to the bending of the chain. Let λ be the shortened length. The position of the center of gravity is

$$
\bar{x}=\frac{\int_{0}^{\lambda} x\left(1+\frac{1}{2} y^{\prime 2}\right) d x}{\int_{0}^{\lambda}\left(1+\frac{1}{2} y^{\prime 2}\right) d x}=\frac{\frac{1}{2} \lambda^{2}+\int_{0}^{\lambda} \frac{1}{2} x y^{\prime 2}(\lambda x}{\lambda+\int_{0}^{\lambda} \frac{1}{2} y^{\prime 2} d x}=\frac{1}{2} \lambda-\frac{1}{\lambda} \int_{0}^{\lambda}\left(\frac{1}{4} \lambda-\frac{1}{2} x\right) y^{\prime 2} d x
$$

Here $d s=\sqrt{1+y^{\prime 2}} d x$ has been expanded and terms higher than $y^{\prime 2}$ have been omitted.

$$
l=\lambda+\int_{0}^{\lambda} \frac{1}{2} y^{\prime 2} l l x, \quad \frac{1}{2} l-\bar{x}=\frac{1}{\lambda} \int_{0}^{\lambda} \frac{1}{2}(\lambda-x) y^{\prime 2} d x, \quad V=l p g\left(\frac{1}{2} l-\bar{x}\right)
$$

Then $\quad \int_{t_{0}}^{t_{1}}\left(T-J^{\prime}\right) d t=\int_{t_{0}}^{t_{1}} \int_{0}^{l}\left[\frac{1}{2} \rho\left(\frac{\hat{c} y}{\hat{c} t}\right)^{2} d x-\frac{1}{2} \rho g(l-x)\left(\frac{\hat{c} y}{\hat{c} x}\right)^{2}\right] d x d t$,
provided λ be now replaced in V by l which differs but slightly from it.
Hamilon's Primeiple states that (21) must be a maximm or minimum and the integrand is of precisely the form (19) except for a change of notation. Hence

$$
-\frac{d}{d x}\left[-\rho g(l-x) \frac{\hat{c} y}{\hat{c} x}\right]-\frac{d}{d t}\left(\rho \frac{\hat{c} y}{\hat{c} t}\right)=0 \quad \text { or } \quad \frac{1 \hat{c}^{2}!}{g} \frac{\hat{c} t^{2}}{}=(l-x) \frac{\hat{c}^{2} y}{\hat{c} x^{2}}-\frac{\hat{c}!}{\hat{c} x} .
$$

The change of variable $l-x=u^{2}$, which brings the origin to the ent of the chain . and reverses the direction of the axis, wives the differential equation

$$
\frac{\hat{c}^{2} y}{\hat{c} u^{2}}+\frac{1}{u} \frac{\hat{c} y}{\hat{c} u}=\frac{4 \hat{c}^{2} y}{g} \frac{\hat{c} t^{2}}{\text { or }} \quad \frac{d^{2} P}{d u^{2}}+\frac{1}{u} d \Gamma+\frac{4 n^{2}}{g} I^{\prime}=0 \quad \text { if } \quad y=P(u) \cos n t
$$

Ss the equation is a partial differential equation the usual device of writing the dependent variable as the product of two functions and trying for a special type of solution has beern userl ($\$ 194$). The erfation in P is a Bessel equation ($\$ 107$) of which one solution $P(u)=A \cdot J_{0}\left(2 n g^{-\frac{1}{2}} u\right)$ is finite at the origin $u=0$, while the other is infinite ank must be discorded as not representing possible motions. Thus

$$
y(x, t)=-1 J_{0}\left(2 n y^{-\frac{1}{2}} u\right) \cos n t, \text { with } \quad y(l, t)=A \cdot J_{0}\left(2 n y^{-\frac{1}{2}} l_{2}^{\frac{1}{2}}\right)=0
$$

as the condition that the chain shall be tied at the original origin, is a possible monle of motion for the chain and consists of whipping back and forth in the periorlic time $2 \pi / n$. 'The' eonclition $J_{1}(2 n g^{-\frac{1}{2}} \overbrace{}^{\frac{1}{2}})=0$ limits n to one of an infinite set of values obtained from the roots of J_{0}.

Let there be foum the equations for the motion of anerlimm in which

$$
\begin{aligned}
T & =\frac{1}{2} A \iiint\left[\binom{\hat{\imath} \zeta}{\hat{c} t}^{2}+\left(\frac{\hat{c} \eta}{\hat{\imath} t}\right)^{2}+\binom{\hat{c} \zeta}{\hat{c}}^{2}\right] d x d y d z \\
V & =\frac{1}{2} B \iiint\left(f^{2}+y^{2}+l^{2}\right) d x d y d z
\end{aligned}
$$

are the kinetic and potential encroies, where A and B are ennstants and

$$
4 \pi f=\frac{i \grave{j}-i \eta}{i!}-\quad+\pi!=\frac{i \xi}{i z}-\hat{i \xi}, \quad 4 \pi h=\frac{i \eta}{i z}-\frac{i \xi}{i x}, \quad i y
$$

are relations comecting f, g, h with the displacements ξ, η, ζ along the axes of x, y, z. Then

$$
\begin{equation*}
\iiint \int \delta\left[\frac{1}{2} A\left(\dot{\zeta}^{2}+\dot{\eta}^{2}+\dot{\zeta}^{2}\right)-\frac{1}{2} B\left(f^{2}+y^{2}+h^{2}\right)\right] d x d y d z d t=0 \tag{22}
\end{equation*}
$$

is the expression of Hamilton's Prineiple. These integrals are more general than (19), for there are three tependent variables ξ, η, ζ and fon indepentent variables $x, y, z . t$ of which they are functions. It is therefore necessary to apply the method of variations directly.

After taking the variations an integration by parts will be applied to the variation of each derivative and the integrated terms will be discarded.

$$
\begin{aligned}
& \iiint \int \delta \frac{1}{2} A\left(\dot{\xi}^{2}+\dot{\eta}^{2}+\dot{\zeta}^{2}\right) d x d y d z d t=\iiint \int A\left(\dot{\xi} \delta \dot{\xi}+\dot{\eta} \delta \dot{\eta}+\dot{\zeta}_{\delta} \dot{\zeta}\right) d x d y d z d t \\
& =-\iiint \int \Lambda(\ddot{\xi} \delta \xi+\ddot{\eta} \delta \eta+\ddot{\xi} \delta \xi) d x d y d z d t . \\
& \iiint \int \delta \frac{1}{2} B\left(f^{2}+g^{2}+h^{2}\right) d x d y d z d t=\iiint \int B(f \partial f+(f \delta y+h \delta h) d x d y d z d t
\end{aligned}
$$

After substitution in (22) the coefticients of $\delta \xi, \delta \eta$. $\delta \delta^{\circ}$ may be severally equated to zero because $\delta \xi, \delta \eta$, $\delta \zeta$ are each arhitrary. Hence the equations

With the proper determination of A amd B and the proper interpretation of ξ, η, ζ, $f . g, h$, these are the equations of electrmagnetism for the free ether.

EXERCISES

1. Show that the straight line is the shortest line in space and that the shortest distanee between two curves or surfaces will be normal to both.
2. If at caeb point of a curve on a surface a geodesie be erected perpenticular to the curve, the locns of its extremity is perpendicular to the geodesic.
3. With any two prints of a sufface as fori construct a geonesic ellipse by taking the distances $F P+F^{\prime} P=2$ " along the georlesics. Show that the tangent to the ellipse is equally inclined to the two geolesie focal radii.
4. Extend Ex. 2. p. 408, to space. If $\int_{0}^{P} F(x, y, z) d s=$ ennst., show that the Is cus of P is a surface nomal to the radii, provided the radii be curves which nake the integral a maximum or minimum.
5. Obtain the polar equations for the motion of a particle in a plane.
6. Find the polar equations for the motion of a particle in space.
7. A particle glides down a helicoid ($z=k \phi$ in (ylindrical coörlinates). Find the equations of motion in $(r, \phi),(r, z)$, or (z, ϕ), and carry the integration as far as possible toward expressing the position as a function of the time.
8. If $z=a x^{2}+b y^{2}+\cdots$, with $a>0, b>0$, is the Maclaurin expansion of a surface tangent to the plane $z=0$ at $(0,0)$, find and solve the equations for the motion of a particle gliding about on the surface and remaining near the origin.
9. Show that $r\left(1+q^{2}\right)+t\left(1+p^{2}\right)-2 p q^{s}=0$ is the partial differential equation of a minimum surface; test the helicoid.
10. If ρ and S are the density and tension in a uniform piano wire, show that the approximate expressions for the kinetic and potential energies are

$$
T=\frac{1}{2} \int_{0}^{l} \rho\left(\frac{\hat{c} y}{\hat{c} t}\right)^{2} d x, \quad V=\frac{1}{2} \int_{0}^{l} S\left(\frac{\hat{c} y}{\hat{c} x}\right)^{2} d x .
$$

Obtain the differential equation of the motion and try for solutions $y=P(x) \cos n t$.
11. If ξ, η, ζ are the displacements in a uniform clastic medium, and
$a=\frac{\hat{\partial} \xi}{\hat{c} x}, \quad b=\frac{\hat{\partial} \eta}{\hat{c} y}, \quad c=\frac{\partial \zeta}{\hat{c} z}, \quad f=\left(\frac{\hat{c} \zeta}{\partial y}+\frac{\hat{c} \eta}{\partial z}\right), \quad y=\left(\frac{\hat{c} \xi}{\hat{c} z}+\frac{\hat{\partial} \zeta}{\hat{c} x}\right), \quad h=\left(\frac{\hat{c} \eta}{\hat{c} x}+\frac{\hat{c} \xi}{\hat{c} y}\right)$
are six combinations of the nine possible first partial derivatives, it is assumed that $\mathrm{V}^{\top}=\iiint F a x d y d z$, where F is a homogeneous guadratic funetion of a, b, c, f, g, h, with constant coefficients. Establish the equations of the motion of the medium.

$$
\begin{gathered}
\rho \frac{\hat{c}^{2} \xi}{\partial t^{2}}=\frac{\hat{c}^{2} F}{\partial x x \hat{c} \epsilon}+\frac{\hat{c}^{2} F}{\partial y \hat{c} h}+\frac{\hat{c}^{2} F}{\hat{c} z \bar{c} y}, \quad \rho \frac{\bar{c}^{2} \eta}{\partial t^{2}}=\frac{\hat{c}^{2} F}{\hat{c} x \hat{c} h}+\frac{\hat{c}^{2} F}{\partial y \hat{c} b}+\frac{\hat{c}^{2} F}{\partial z \bar{c} f}, \\
\rho \frac{\hat{c}^{2} \zeta}{\bar{c} t^{2}}=\frac{\hat{c}^{2} F}{\hat{c} x \hat{c} y}+\frac{\hat{c}^{2} F}{\hat{c} y \hat{c} f}+\frac{\hat{c}^{2} F}{\hat{c} z \hat{c} c} .
\end{gathered}
$$

12. Establish the conditions (11) by the method of the text in $\$ 155$.
13. By the method of $\S 159$ and footnote establish the conditions at the end points for a minimum of $\int F\left(x, y, y^{\prime}\right) d x$ in terms of F instead of Φ.
14. Prove Stokes's Formula $I=\int_{0} \mathrm{~F} \cdot \mathrm{dr}=\iint \Gamma \times \mathrm{F} \cdot \mathrm{dS}$ of D .345 by the ealculus of variations along the following lines: First compute the variation of I on passing from one closed eurve to a neighboring (larger) one.

$$
\delta I=\delta \int_{0} \mathrm{~F} \cdot l \mathrm{r}=\int_{0}(\delta \mathrm{~F} \cdot l \mathrm{r}-d \mathrm{~F} \cdot \delta \mathrm{r})+\int_{0} d(\mathrm{~F} \cdot \delta \mathrm{r})=\int_{0}(\Gamma \times \mathrm{F}) \cdot(\delta \mathrm{r} \times l \mathrm{r}),
$$

where the integral of $d(F \cdot \delta r)$ vanishes. Seeond interpert the last expression : 4

 passing through a surcersion of closed eurves expanding from a point to final coincidence with the given closed curve.
15. In case the integrand contains ?" show hy suceessive integrations by parts that

$$
\begin{aligned}
& \delta \int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}, y^{\prime \prime}\right) d \cdot r=\left[Y^{\prime} \omega+Y^{\prime \prime \prime} \omega^{\prime}-\frac{d Y^{\prime \prime \prime}}{d x} \omega\right]_{11}^{1}+\int_{x_{0}}^{r_{1}}\left(Y-\frac{d Y^{\prime \prime}}{d x^{\prime}}+\frac{d^{2} Y^{\prime \prime \prime}}{d x^{c^{2}}}\right) \omega d x, \\
& \text { where } \quad Y^{\prime}=\frac{i F}{\partial y}, \quad Y^{\prime \prime}=\frac{i F}{\partial y^{\prime}}, \quad Y^{\prime \prime \prime}=\hat{i} F^{\prime \prime}, \quad \omega=\delta y .
\end{aligned}
$$

PART IV. THEORY OF FUNCTIONS

('HAPTER NYI

INFINITE SERIES

162. Convergence or divergence of series.* Let a series

$$
\begin{equation*}
\sum_{j}^{x} n=u_{0}+u_{1}+u_{2}+\cdots+u_{n-1}+u_{n}+\cdots \tag{1}
\end{equation*}
$$

the terms of which are constant but infinite in number, be given. Let the sum of the first n terms of the series be written

$$
\begin{equation*}
s_{n}=u_{0}+u_{1}+u_{2}+\cdots+u_{n-1}=\sum_{0}^{n-1} u \tag{2}
\end{equation*}
$$

Then

$$
s_{1}, s_{2}, s_{3}, \cdots, s_{n}, s_{n+1}, \cdots
$$

form a definite suite of numbers which muy "pmonarh a detinite limit $\lim S_{n}=S$ when n becomes infinite. In this case the series is said to foncerge to the ralue S, and s, which is the limit of the sum of the first n terms, is called the sum of the series. Or s.m man not armoroach a limit when n becomes infinite, either because the values of s_{n} become infinite or because, though remaining finite, they oscillate about and fail to settle down and remain in the vicinity of a definite value. In these "ases the series is said to dicerge.

The necessary and sutificiont aromlition thent "series comeroge is that "

 Theorem 3, and compare 1, Bith.) A sutficient condition that a series diverge is that the terms ${ }_{n}$ donot approach the limit 0 when n becomes infinite. For if there are alwars terms mmerically as great as some mumber r no matter how far one gos ont in the series, there must always be successive values of rin which differ by as much as r no $^{\text {n }}$ matter how harge n, and hence the values of S_{n} cannot possilly settle down and remain in the vicinity of some definite limiting value S .

* It will be useful to real wrer Chip. II, §§ 1s-2.2, and Exercises. It is also advisable to compare many of the results for infinite series with the corresponding results for infinite integrals (Chap. XIII).

A series in which the terms are alternately positive and negative is called an ulternuting series. An ulternuting series in which the terms approarle 0 us a limit uhen n leromens.s intinite, euche term lueing less them its predecessor, will concerge "nul the difference between the sum s' of the. series und the sum S_{n} of the first n terms is less than the next term u_{n}. This follows (p. 39, Ex. 3) from the fact that $\left|S_{n+p}-S_{n}\right|<u_{n}$ and $u_{n} \doteq 0$.

For example, consider the alternating series

$$
1-x^{2}+2 x^{4}-3 x^{6}+\cdots+(-1)^{n} n x^{2 n}+\cdots
$$

If $|x| \geqq 1$, the indivilual terms in the series do not approach 0 as n becomes infinite and the series diverges. If $|x|<1$, the individual terms do aproroach 0 ; for

$$
\lim _{n=x} n x^{2 n}=\lim _{n=x} \frac{n}{x^{-2 n}}=\lim _{n=x} \frac{1}{-2 x^{-2 n} \log x}=0 .
$$

And for sufficiently large* values of n the successive terms decrease in magnitude since

$$
n x^{2 n}<(n-1) x^{2 n-2} \text { gives } \frac{n-1}{n}>x^{2} \text { or } n>\frac{1}{1-x^{2}} .
$$

Hence the series is seen to converge for any value of x momerically less than mity and to diverge for all other values.

The ('ompanisus Test. If the terms of e series are all pusitice (or all
 "f " sorios "t prsitire terms whirl is linourn to ronerorg', the series comverefos and the differenee $s-s_{n}$ is less then the correxponding differenere for the serves linourn to romerege. ('f. j. Bes.) Let

$$
u_{0}+u_{1}+u_{2}+\cdots+u_{n-1}+u_{n}+\cdots
$$

anl

$$
u_{0}^{\prime}+u_{1}^{\prime}+u_{2}^{\prime}+\cdots+u_{n-1}^{\prime}+u_{n}^{\prime}+\cdots
$$

be respectively the given series and the series known to converge. since the terms of the first are less than those of the second,

$$
s_{n+p}-s_{n}=u_{n}+\cdots+u_{n+n-1}<u_{n}^{\prime}+\cdots+u_{n+p-1}^{\prime}=r_{n+p}^{\prime}-r_{n}^{\prime} .
$$

 so can the finst quantity $S_{n+p}-S_{n}$, which is less: and the series must converge. Theremainders

$$
\begin{aligned}
& r_{n}=s-s_{n}=\prime_{n}+u_{n+1}+\cdots=\sum_{n}^{\infty} \prime^{\prime} \\
& l_{n}^{\prime}=s^{\prime}-s_{n}^{\prime}=u_{n}^{\prime}+u_{n-1}^{\prime}+\cdots=\sum_{n}^{\infty} \prime^{\prime}
\end{aligned}
$$

[^38]clearly satisfy the stated relation $l_{n}<R_{n}^{\prime}$. The series which is most frequently used for comparison with a given series is the geometric,
\[

$$
\begin{equation*}
a+a r^{2}+a r^{2}+a r^{3}+\cdots, \quad R_{n}=\frac{a r^{n}}{1-i}, \quad 0<r<1 \tag{3}
\end{equation*}
$$

\]

which is known to converge for all values of r less than 1 .
For example, consider the series
and

$$
\begin{aligned}
& 1+1+\frac{1}{2}+\frac{1}{2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\cdots+\frac{1}{n!}+\cdots \\
& \quad 1+\frac{1}{2}+\frac{1}{2 \cdot 2}+\frac{1}{2 \cdot 2 \cdot 2}+\cdots+\frac{1}{2^{n-1}}+\cdots
\end{aligned}
$$

Here, after the first two terms of the first and the first term of the second, each term of the second is greater than the corresponding term of the first. Hence the first series converges and the remainder after the term $1 / n$! is less than

$$
I_{n}<\frac{1}{2^{n}}+\frac{1}{2^{n+1}}+\cdots=\frac{1}{2^{n}} \frac{1}{1-\frac{1}{2}}=\frac{1}{2^{n-1}} .
$$

A better estimate of the remander aftor the term $1 / n$! may be had by eomparing

$$
l_{n}^{\prime}=\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots \quad w^{2} h_{1} \frac{1}{(n+1)!}+\frac{1}{(n+1)!(n+1)}+\cdots=\frac{1}{n!n} .
$$

163. As the convergence and divergenee of a series are of vital importance, it is advisable to have a mamber of tests for the convergence or divergence of a given series. The test by comparison with a series known to converge reguires that at least a few types of convergent series be known. For the estal)lishment of surch trges and for the test of many series. the terms of whirls are positive, C'murhys integrol tist is useful. suppose that the terms of the series are
 decreasing and that a function $f^{\prime}(1 i)$ which decreases ran be foum such that $"_{n}=f(n)$. Now if the terms ${ }_{n}$ be plottec at mit intervals along the n-axis, the value of the terms may be interpreted as the area of restain rectangles. The curve $!=f(n)$ lies above the rectangles and the area under the curve is

$$
\begin{equation*}
\int_{1}^{n} f(n) d n>u_{2}+u_{3}+\cdots+u_{n} . \tag{4}
\end{equation*}
$$

Hence if the integral converges (whirh in practice means that if

$$
\left.\int f^{\prime}(n) d n=F(n), \text { then } \int_{1}^{\infty} f^{\prime}(n)=F(\infty)-F(1) \text { is finite }\right),
$$

it follows that the series must converge. For instance, if

$$
\begin{equation*}
\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots+\frac{1}{n^{p}}+\cdots \tag{5}
\end{equation*}
$$

be given, then $u_{n}=f(n)=1 / n^{p}$, and from the integral test

$$
\left.\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots<\int_{1}^{\infty} \frac{\ln }{n^{p}}=\frac{-1}{(\mu-1) n^{p-1}}\right]_{1}^{\infty}=\frac{1}{p^{\prime}-1}
$$

provided $p>1$. Hence the series converges if $\mu^{\prime}>1$. This series is also very useful for comparison with others; it diverges if $p \equiv 1$ (see Ex. 8).

The Rastio Tent. If the ratio of turn suressire termsin a series of posifire terms uppromethes a limit which is less thon 1, the series concerges: if the ratio approaches a limit which is greater than one or if the ratio becomes infinite, the series diverges. That is
if

$$
\lim _{n=x} \frac{u_{n+1}}{u_{n}}=\gamma<1 \text {, the series converges, }
$$

if

$$
\lim _{n=\infty} \frac{u_{n+1}}{u_{n}}=\gamma^{\prime}>1, \text { the series diverges. }
$$

For in the first case as the ratio approaches a limit less than 1. it must be possible to go so far in the series that the ratio shall be as near to $\gamma<1$ as desired. and hence shall be less than r if r is an assigned number between γ and 1 . Then

$$
\begin{gathered}
u_{n+1}<r u_{n}, \quad u_{n+2}<r u_{n+1}<r^{2} u_{n}, \cdots \\
u_{n}+u_{n+1}+u_{n+2}+\cdots<u_{n}\left(1+r+r^{2}+\cdots\right)=u_{n} \frac{1}{1-r}
\end{gathered}
$$

and
The proof of the disergence when u_{n+1} / u_{n} becomes infinite or approaches a limit greater than 1 consists in noting that the individual terms cammet approach 0 . Note that if the simit of the ratio is 1 . no information relative to the convergence or divergence is furnished by this test.

If the series of numerial or absolute values

$$
\left|u_{0}\right|+\left|u_{1}\right|+\left|u_{2}\right|+\cdots+\left|u_{n}\right|+\cdots
$$

of the terms of a series which rontains pesitive and negative terms. converges, the series converges and is said to comrerge absobutely. For consider the two sums

$$
s_{n+p}-s_{n}=u_{n}+\cdots+u_{n+p-1} \quad \text { and } \quad\left|u_{n}\right|+\cdots+\left|u_{n+p-1}\right|
$$

The first is surely not mumerically greater than the second: as the second can be made as small as desired, so can the first. It follow's therefore that the given series must converge. The converse proposition
that if a series of positive and negative terms converges, then the series of absolute values converges, is not true.

As an example on convergence consider the binomial series
$1+m x+\frac{m(m-1)}{1 \cdot 2} x^{2}+\frac{m(m-1)(m-2)}{1 \cdot 2 \cdot 3} x^{3}+\cdots+\frac{m(m-1) \cdots(m-n+1)}{1 \cdot 2 \cdots n} x^{n}+\cdots$,
where

$$
\frac{\left|u_{n+1}\right|}{\left|u_{n}\right|}=\frac{|m-n|}{n+1}|x|, \quad \lim _{n=\infty} \frac{\left|u_{n+1}\right|}{\left|u_{n}\right|}=|x| .
$$

It is therefore seen that the limit of the quotient of two successive terms in the series of absolute values is $|x|$. This is less than 1 for values of x numerically less than 1 , and hence for such ralues the series converges and converges absolutely. (That the series converges for positice values of x less than 1 follows from the fact that for values of n greater than $m+1$ the series alternates and the terms approach 0 ; the proof above holls equally for neqative values.) For values of x numerically greater than 1 the series does not converge absolutely. As a matter of fact when $|x|>1$. the series cloes not converge at all ; for as the ratio of successive terms approaches a limit greater than unity, the individual terms camot approach 0. For the values $x= \pm 1$ the test fails to give information. The conclusions are therefore that for values of $|x|<1$ the binomial series converges absolutely, for values of $\mid x>1$ it diverges, and for $|x|=1$ the question remains doubtful.

A word about series with complex terms. Let

$$
\begin{aligned}
& u_{0}+u_{1}+u_{2}+\cdots+u_{n-1}+u_{n}+\cdots \\
= & u_{1}^{\prime}+u_{1}^{\prime}+u_{2}^{\prime}+\cdots+u_{n-1}^{\prime}+u_{n}^{\prime}+\cdots \\
+ & i\left(u_{0}^{\prime \prime}+u_{1}^{\prime \prime}+u_{2}^{\prime \prime}+\cdots+u_{n-1}^{\prime}+u_{n}^{\prime \prime}+\cdots\right)
\end{aligned}
$$

he a series of complex terms. The sum to n terms is $s_{n}=s_{n}^{\prime}+i s_{n}^{\prime \prime}$. The series is satid to converge if s_{n} approaches a limit when u becomes infinite. If the complex number s_{n} is to approach a limit, both its real part S_{n}^{\prime} and the coefticient $r_{n}^{\prime \prime \prime}$ of its imaginary part must approach limits, and hence the series of real parts and the series of imaginary parts must converge. It will then be possible to take n so large that for any value of p the simultaneous inerqualities

$$
\left|S_{n+p}^{\prime}-S_{n}^{\prime \prime}\right|<\frac{1}{2} \epsilon \text { and }\left|S_{n+p}^{\prime \prime \prime}-S_{n}^{\prime \prime \prime}\right|<\frac{1}{2} \epsilon,
$$

where ϵ is any assigned number, hold. Therefore

$$
\left|s_{n+p}^{\prime}-s_{n}^{\prime}\right| \equiv\left|r_{n+p}^{\prime \prime}-s_{n}^{\prime \prime}+\left|i s_{n+p}^{\prime \prime}-i s_{n}^{\prime \prime}\right|<\epsilon\right.
$$

Hence if the series converges, the same condition holds as for a series of real terms. Now conversely the condition

Hence if the condition holds, the two real series converge and the con: phex series will then eomerge.
164. As Cauchy's interral test is not easy to apply except in simple cases and the ratio test fails when the linit of the ratio is 1 , other sharper tests for convergence or divergence are sometimes needed, as in the case of the binomial series when $x= \pm 1$. Let there be given two series of positive terms

$$
u_{1}+u_{1}+\cdots+u_{n}+\cdots \text { and } v_{0}+v_{1}+\cdots+v_{n}+\cdots
$$

of which the first is to be tested and the second is known to converge (or diverge). If the ratio of two successive terms u_{n+1} / u_{n} ultimately becomes and remains less (or (yreater) than the ratio v_{n+1} / v_{n}, the first series is also convergent (or divergent). For if

$$
\frac{u_{n+1}}{u_{n}}<\frac{v_{n+1}}{v_{n}}, \quad \frac{u_{n+2}}{u_{n+1}}<\frac{v_{n+2}}{v_{n+1}}, \quad \cdots, \quad \text { then } \quad \frac{u_{n}}{v_{n}}>\frac{u_{n+1}}{v_{n+1}}>\frac{u_{n+2}}{v_{n+2}}>\cdots .
$$

Hence if $u_{n}=\rho v_{n}, \quad$ then $u_{n+1}<\rho v_{n+1}, \quad u_{n+2}<\rho v_{n+2}, \quad \cdots$,
and

$$
u_{n}+u_{n+1}+u_{n+2}+\cdots<\rho\left(v_{n}+v_{n+1}+v_{n+2}+\cdots\right)
$$

As the v-series is known to converge, the ρv-series serves as a comparison series for the u-series which must then converge. If $u_{n+1} / u_{n}>x_{n+1} / v_{n}$ and the v-series diverges, similar reasoning would show that the u-series diverges.

This theorem serves to establish the useful test due to Raabe, which is
if $\lim _{n=x} n\left(\frac{u_{n}}{u_{n+1}}-1\right)>1, S_{n}$ converges; if $\lim _{n=\infty} n\left(\frac{u_{n}}{u_{n}+1}-1\right)<1$. S s diverges.
Asain, if the limit is 1 , no information is given. This test need never be tried (ecent when the ratio test gives a limit 1 aml fails. The proof is simple. For

$$
\left.\int^{\infty} \frac{d n}{n(\log u)^{1+\alpha}}=-\frac{1}{\sqrt{2}} \frac{1}{(\log n)^{\alpha}}\right]^{\infty} \text { is finite }
$$

:1141

$$
\left.\int^{x} \frac{d n}{n \log n}=\log \log n\right]^{\infty} \text { is infinite, }
$$

Lenee $\frac{1}{2(\log 2)^{1+\alpha}}+\cdots+\frac{1}{n(\log n)^{1+\alpha}}+\cdots$ and $\frac{1}{2(\log 2)}+\cdots+\frac{1}{n(\log n)}+\cdots$
are respectively convergent and livergent by Canchy"s integral test. Let these be laken ats the x-series with which to compare the u-series. Then

$$
r_{n+1}^{r_{n}}={ }_{n}^{n+1}\binom{\log (n+1)}{\log n}^{1+n}=\left(1+\frac{1}{n}\right)\left(\frac{\log (1+n)}{\log n}\right)^{1+\alpha}
$$

and

$$
\frac{r_{n}}{c_{n+1}}=\left(1+\frac{1}{n}\right) \frac{\ln (1+n)}{\log n}
$$

in the two respective cases. Next consider Raabers expression. If first
$\lim _{n=c} n\left(\frac{u_{n}}{u_{n+1}}-1\right)>1$, then ultimately $\quad n\left(\frac{u_{n}}{u_{n+1}}-1\right)>\gamma>1 \quad$ and $\frac{u_{n}}{u_{n+1}}>1+{ }_{n}^{\gamma}$
Now $\lim _{n=5}\binom{\log (1+n)}{\operatorname{low} n}^{1+\alpha}=1$ and ultimately $\left(\frac{\log (1+n)}{\log n}\right)^{1+\alpha}<1+\epsilon$,
where ϵ is arbitrarily small. Hence ultimately if $\gamma>1$,

$$
\left(1+\frac{1}{n}\right)\left(\frac{\log (1+n)}{\log n}\right)^{1+\alpha}<1+\frac{1+\epsilon}{n}+\frac{\varepsilon}{n^{2}}<1+\frac{\gamma}{n},
$$

or

$$
v_{n} / r_{n+1}<u_{n} / u_{n+1} \text { or } u_{n+1} / u_{n}<v_{n+1} / v_{n},
$$

and the u-series converges. In like mamer, secondly, if

$$
\lim _{n=x} n\left(\frac{u_{n}}{u_{n+1}}-1\right)<1, \text { then ultimately } \frac{u_{n}}{u_{n+1}}<1+\frac{\gamma}{n}, \quad \gamma<1 \text {; }
$$

and

$$
1+\frac{\gamma}{n}<\left(1+\frac{1}{n}\right) \frac{\log (1+n)}{\log n} \text { or } \frac{u_{n}}{u_{n+1}}<\frac{r_{n}}{r_{n+1}} \text { or } \frac{u_{n+1}}{u_{n}}>\frac{v_{n+1}}{r_{n}} .
$$

Hence as the v-series now diverges, the u-series mast diverge.
Suppose this test applied to the binomial series for $x=-1$. Then

$$
\frac{u_{n}}{u_{n+1}}=\frac{n+1}{n-m}, \quad \lim _{n=\infty} n\left(\frac{n+1}{n-m}-1\right)=\lim _{n=\infty} \frac{m+1}{1-\frac{m}{n}}=m+1 .
$$

It follows that the series will converge if $m>0$, but diverge if $m<0$. If $x=+1$, the binomial series becomes alternating for $n>m+1$. If the series of absolute values be considered, the ratio of suceessive terms $\left|u_{n} / u_{n+1}\right|$ is still $(n+1) /(n-m)$ and the binomial series converges absolutely if $m>0$; but when $m<0$ the series of absolute values diverges and it remains an open question whether the alternating series diverges or converges. Consider therefore the alternating series
$1+m+\frac{m(m-1)}{1 \cdot 2}+\frac{m(m-1)(m-2)}{1 \cdot 2 \cdot 3}+\cdots+\frac{m(m-1) \cdots(m-n+1)}{1 \cdot 2 \cdots n}+\cdots, m<0$.
This will converge if the limit of u_{n} is 0 . but otherwise it will diverge. Now if $m \leqq-1$. the successive terms are multiplied by a factor $m-n+1 \mid / n \geqq 1$ and they camot approath 0 . When $-1<m<0$, let $1+m=\theta$. a fratetion. Then the nth term in the series is

$$
\left|u_{n}\right|=(1-\theta)\left(1-\frac{\theta}{2}\right) \cdots\left(1-\frac{\theta}{n}\right)
$$

and $\quad-\log \left|u_{n}\right|=-\log (1-\theta)-\log \left(1-\frac{\theta}{2}\right)-\cdots-\log \left(1-\frac{\theta}{n}\right)$.
Each successive factor diminishes the term but diminishes it by so little that it may mot approach 0 . The logarithm of the term is a series. Now apply ('authy's tust.

$$
\int^{\infty}-\log \left(1-\frac{\theta}{n}\right) d n=\left[-n \log \left(1-\frac{\theta}{n}\right)+\theta \log (n-\theta)\right]^{\infty}=\infty
$$

The series of logarithms therefore diverges and $\lim \left|u_{n}\right|=\epsilon^{-x}=0$. Ilence the terms approach 0 as a limit. The final results are therefore that when $x=-1$ the binomial serics conserges if $m>0$ but diverges if $m<0$; and when $n=+1$ it converges (absolutely) if $m>0$, liverges if $m<-1$. and converges (mot ab)solutely) if $-1<m<0$.

EXERCISES

1．State the number of terms which must be taken in these alternating series to obtain the sum accurate to three decimals．If the number is not greater than 8 ， compute the value of the series to three decimals，carrying four figures in the work：
（a）$\frac{1}{3}-\frac{1}{2 \cdot 3^{2}}+\frac{1}{3 \cdot 3^{3}}-\frac{1}{4 \cdot 3^{4}}+\cdots$ ，
（ β ）$\frac{1}{2}-\frac{1}{2 \cdot 2^{2}}+\frac{1}{3 \cdot \underline{2}^{3}}-\frac{1}{4 \cdot 2^{4}}+\cdots$ ，
（ γ ） $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$ ，
（ס）$\frac{1}{\log 2}-\frac{1}{\log 3}+\frac{1}{\log 4}-\cdots$ ，
（ ϵ ） $1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\cdots$ ，
（广）$e^{-1}-2 e^{-2}+3 e^{-3}-4 e^{-4}+\cdots \cdot$

2．Find the values of x for which these alternating series converge or diverge：
（＜र） $1-x^{2}+\frac{1}{2} x^{4}-\frac{1}{3} x^{6}+\cdots$ ，
（ β ） $1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$ ，
（ γ ）$x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$ ．
（ δ ）$x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$ ，
（є） $1-\frac{x^{2}}{1 p}+\frac{x^{4}}{2^{p}}-\frac{x^{6}}{3 p}+\cdots$ ，
（乡） $2 x-\frac{\mathscr{2}^{3} x^{3}}{3}+\frac{2^{5} r^{-5}}{5}-\frac{2^{7} x^{7}}{7}+\cdots$ ：
（ η ）$\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+2}-\frac{1}{r+3}+\cdots$ ，
（A）$\frac{1}{x}-\frac{2}{x+1}+\frac{2^{2}}{x+2}-\frac{2^{3}}{x+3}+\cdots$ ．

3．Show that these series converge and estimate the crror after u terms ：
（c） $1+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\frac{1}{4^{4}}+\cdots$ ．
（ β ）$\frac{1}{3}+\frac{1 \cdot 2}{3 \cdot 5}+\frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7}+\cdots$ ．
（ $) \frac{1}{2}+\frac{1}{2 \cdot \underline{2}^{2}}+\frac{1}{3 \cdot 2^{3}}+\frac{1}{4 \cdot \underline{2}^{4}}+\cdots$ ．
（ δ ）$\left(\frac{1}{3}\right)^{2}+\left(\frac{1 \cdot 2}{3 \cdot 5}\right)^{2}+\left(\frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7}\right)^{2}+\cdots$ ．

From the estimate of error state how many terms are required to compute the series accurate to two decimals and make the comphtation，earrying three figures． Test for eonvergence or divergence：
（ ϵ ） $\sin 1+\sin \frac{1}{2}+\sin \frac{1}{3}+\cdots$ ．
（乡） $\sin ^{2} 1+\sin ^{2} \frac{1}{2}+\sin ^{2} \frac{1}{3}+\cdots \cdot$
（ η ） $\tan ^{-1} 1+\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}+\cdots$ ，
（ θ ） $\tan 1+\frac{1}{\sqrt{2}} \tan \frac{1}{2}+\frac{1}{\sqrt{3}} \tan \frac{1}{3}+\cdots$ ：
（ 1）$\frac{1}{1+1}+\frac{1}{2+12}+\frac{1}{3+\sqrt{3}}+\cdots$ ，
（к）$\frac{1}{2^{2}-1^{2}}+\frac{1}{3^{2}-2^{2}}+\frac{1}{4^{2}-3^{2}}+\cdots$ ．
（ λ ）$\frac{1}{x}+\frac{2}{x^{2}}+\frac{2 \cdot 3}{x^{3}}+\frac{2 \cdot 3 \cdot 4}{x^{4}}+\cdots$ ，
（ μ ）$\frac{1}{x}+\frac{\sqrt{2}}{x^{2}}+\frac{v^{3}}{x^{3}}+\frac{45}{x^{4}}+\cdots$ ．

4．Apply Canchy＇s integral to determine the comsergence or divergence：
$(\gamma) 1+\frac{\log 2}{2 y^{\prime}}+\underset{3 n^{\prime}}{\log 3}+\underset{4^{\prime \prime}}{\log \frac{4}{4}}+\cdots \quad(\beta) 1+\frac{1}{2(\log 2)^{\prime \prime}}+\frac{1}{3(\log 3)^{\prime \prime}}+\frac{1}{4(\log 4)^{p}}+\cdots$.
(r) $1+\sum_{2}^{\infty} \frac{1}{n \log n \log \log n}$,
(δ) $1+\sum_{2}^{\infty} \frac{1}{n \log n(\log \log n)^{p}}$,
$(\epsilon) \cot ^{-1} 1+\cot ^{-1} \boldsymbol{2}+\cdots$,
(广) $1+\frac{2}{2^{2}+1}+\frac{3}{3^{2}+2}+\frac{4}{4^{2}+3}+\cdots$.
5. Apply the ratio test to determine eonvergence or divergence :
(c) $\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\frac{4}{2^{4}}+\cdots$,
(β) $\frac{2^{2}}{2^{10}}+\frac{2^{3}}{8^{111}}+\frac{2^{4}}{4^{10}}+\cdots$,
() $\frac{2!}{2^{5}}+\frac{3!}{3^{5}}+\frac{4!}{4^{5}}+\frac{5!}{5^{5}}+\cdots$,
($\delta) \frac{2^{2}}{2!}+\frac{3^{3}}{3!}+\frac{4^{4}}{4!}+\cdots$,
(ϵ Ex. $3(\gamma),(\beta),(\gamma),(\delta) ;$ Ex. $4(\alpha),(\zeta)$,
(弓) $\frac{2^{10}}{10^{2}}+\frac{3^{1 n}}{10^{3}}+\frac{4^{10}}{10^{4}}+\cdots$,
(η) $1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{r^{6}}{6!}+\cdots$.
(θ) $1+\frac{x^{2}}{2^{2}}+\frac{x^{4}}{4^{p}}+\cdots$,
(c) $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$,
(к) $\frac{1}{a}+\frac{b x^{0}}{a^{2}}+\frac{7_{2}^{2} \cdot x^{3}}{a^{3}}+\cdots \cdot$
6. Where the ratio test failn, discuss the above exereises by any method.
7. Prove that if a series of decreasing pusitive terms converges, $\lim n u_{n}=0$.
8. Formulate the Cauchy integral test for divergence and check the statement on page 422. The test has been used in the text and in Ex. 4. Prove the test.
9. Show that if the ratio test indicates the divergence of the series of absolute values, the series diverges no matter what the distribution of signs may be.
10. Show that if $\sqrt[n]{u_{n}}$ approaches a limit less than 1 , the series (of positive terms. eonverges; but if $\xlongequal[n]{u_{n}}$ approaches a limit greater than 1 . it diverges.
11. If the terms of a convergent serios $u_{0}+u_{1}+u_{2}+\cdots$ of positive terms be multiplied respectively by a set of positive numbers $a_{0}, a_{1}, a_{2}, \ldots$ all of which are less than some number G, the resulting series $\pi_{0} u_{0}+\pi_{1} u_{1}+a_{2} u_{2}+\cdots$ converges. state the corresponding theorem for divergent series. What if the given series has terms of opposite signs, but converges absolutely "
12. Show that the series $\frac{\sin x}{1^{2}}-\frac{\sin 2 x}{2^{2}}+\frac{\sin 3 x}{3^{2}}-\frac{\sin 4 x}{4^{2}}+\cdots$ converges abso Lutely for any value of x, and that the series $1+x \sin \theta+x^{2} \sin 2 \theta+x^{3} \sin 3 \theta+\cdots$ converges absolutely for any x numerieally less than 1 , no matter what θ may be.
13. If $a_{0}, \alpha_{1}, \alpha_{2}, \ldots$ are any suite of numbers such that $\sqrt[n]{\left|\alpha_{n}\right|}$ approaehes a limit less than or equal to 1 , show that the series $a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ converges alsolutely for any value of x mumerically less than 1 . Apply this to show that the following series eonverge absolutely when $|x|<1$;
(c) $1+\frac{1}{2} x^{2}+\frac{1 \cdot 3}{2 \cdot 4} x^{4}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 1)^{6}}+\cdots$,
(β) $1-2 x+8 x^{2}-4 x^{3}+\cdots$,
(γ) $1+x+2^{p} x^{2}+3^{p} x^{3}+4^{p} x^{4}+\cdots$,
(δ) $1-x \log 1+x^{2} \log 4-x^{3} \log 9+\cdots \cdot$
14. Show that in Ex. 10 it will be sufficient for convergence if $\sqrt[n]{u_{n}}$ becomes and remains less than $\gamma<1$ without appronching a limit, and sufficient for divergence if there are an infinity of values for n such that $\sqrt[n]{u_{n}}>1$. Note a similar generalization in Ex. 18 and state it.
15. If a power series $a_{0}+u_{1} r+a_{2} r^{2}+a_{3} r^{3}+\cdots$ converges for $x=X>0$, it converges absolutely for any x such that $|x|<\alpha$, and the series

$$
a_{n} x+\frac{1}{2} a_{1} x^{2}+\frac{1}{3} \pi_{2} r^{3}+\cdots \quad \text { and } \quad \pi_{1}+2 \pi_{2} x+3 \pi_{3} x^{2}+\cdots,
$$

obtained by integrating and differentiating term by term. aton converge absolutely for any yalue of x sueh that $|x|<X$. The same result, by the same proof, holds if the terms $"_{0} \cdot "_{1} N, \|_{2} \mathrm{I}^{2}, \ldots$ remain less than a fixed value θ_{0}.
16. If the ration of the successive terms in a series of positive terms be regarded as a function of $1 / n$ and may be expanded by Maclaurin's Formula to give

$$
\frac{u_{n}}{u_{n+1}}=\alpha+\beta \frac{1}{n}+\frac{\mu}{2}\left(\frac{1}{n}\right)^{2}, \quad \mu \text { remaining finite as } \frac{1}{n} \doteq 0,
$$

the scries comerges if $\alpha>1$ (r $\alpha=1, \beta>1$, but diverges if $\alpha<1$ or $\alpha=1, \beta \leqq 1$. This test covers most of the series of positive terms which arise in practice. Apply it to varions instances in the text and previons exercises. Why are there series to which this test is inapplicable?
17. If $\rho_{0}, \rho_{1}, \rho_{2}, \cdots$ is a decreasing suite of positive numbers approaching a limit λ and $s_{0}, s_{1}, s_{2} \ldots$ is any limited suite of numbers, that is. numbers such that $\left|S_{n}\right| \leqq G$. show that the series

$$
\left(\rho_{0}-\rho_{1}\right) s_{0}+\left(\rho_{1}-\rho_{2}\right) s_{1}+\left(\rho_{2}-\rho_{3}\right) s_{2}+\cdots \text { converges absolutely, }
$$

and

$$
\mid \sum_{0}^{\infty}\left(\rho_{n}-\rho_{n+1}\right) 心_{n} \leqq C_{n}\left(p_{0}-\lambda\right)
$$

18. $\Lambda_{p p l}$ Ex. 17 to show that. $\rho_{10} \cdot \rho_{1} \cdot \rho_{2} .$. heing a der reasing suite if

$$
u_{0}+u_{1}+u_{2}+\cdots \text { comperges, } \quad \rho_{11} u_{n}+\rho_{1} u_{1}+\rho_{2} u_{2}+\cdots \text { will comperge also. }
$$

N.B. $\rho_{0} u_{0}+\rho_{1} u_{2}+\cdots+\rho_{n} u_{n}=\rho_{0} \aleph_{1}+\rho_{1}\left(\aleph_{2}-\aleph_{1}\right)+\cdots+\rho_{n}\left(\aleph_{n+1}-\aleph_{n}\right)$

$$
=s_{1}\left(\rho_{n}-\rho_{1}\right)+\cdots+s_{n}\left(\rho_{n-1}-\rho_{n}\right)+\rho_{n} \check{s}_{n+1}
$$

19. Apply Ex. 18 to prowe Ex. 1.) after showing that $\rho_{01}{ }^{\prime \prime}{ }^{11}+\rho_{1} \mu_{1}+\cdots$ must comverge absolutely if $\rho_{0}+\rho_{1}+\cdots$ comverges.
20. If $a_{1} \cdot t_{2} \cdot \pi_{1} \cdot \cdots \cdot \|_{n}$ are n mesitive mumbers tess than 1 . Show that
and

$$
\begin{aligned}
& \left(1+u_{1}\right)\left(1+u_{2}\right) \cdots\left(1+u_{n}\right)>1+n_{1}+u_{2}+\cdots+u_{n} \\
& \left(1-u_{1}\right)\left(1-u_{2}\right) \cdots\left(1-u_{n}\right)>1-u_{1}-u_{2}-\cdots-u_{n}
\end{aligned}
$$

by induction on any other method. Then since $1+n_{1}<1 /\left(1-n_{1}\right)$ show that

$$
\begin{aligned}
& 1-\left(u_{1}+u_{2}+\cdots+u_{n}\right)>\left(1+n_{1}\right)\left(1+u_{2}\right) \cdots\left(1+n_{n}\right)>1+\left(n_{1}+n_{2}+\cdots+\left(t_{n}\right) .\right. \\
& 1+\left(a_{1}+\pi_{2}+\cdots+a_{n}\right)>\left(1-\pi_{1}\right)\left(1-\pi_{2}\right) \cdots\left(1-\pi_{n}\right)>1-\left(\prime_{1}+a_{2}+\cdots+a_{n}\right) .
\end{aligned}
$$

if $a_{1}+a_{2}+\cdots+a_{n}<1$. Or if Π be the symbol for a product,
$\left(1-\sum_{1}^{n}(\ell)^{-1}>\prod_{1}^{n}(1+\|)>1+\sum_{1}^{n}\left(\ell, \quad\left(1+\sum_{1}^{n} u\right)^{-1}>\prod_{1}^{n}(1-a)>1-\sum_{1}^{n}(l\right.\right.$.
21. Lut $\prod_{1}^{t}\left(1+u_{1}\right)\left(1+u_{2}\right) \cdots\left(1+u_{n}\right)\left(1+u_{n}+1\right) \cdots$ he an infinite product and let P_{n} be the product of the first n factors. Show that $\left|I_{n+n}-P_{n}\right|<\epsilon$ is the neece:sary and sufficient condition that P_{n} approach a limit when n becomes infinite. Show that u_{n} must approach 0 as a limit if P_{n} approaches a limit.
22. In case I_{n} approaches a limit different from 0 . show that if ϵ be assignerl. a value of n can $1 \times$ fomm so large that for any value of p

$$
\left.\frac{I_{n+p}^{\prime}}{I_{n}^{\prime}}-1=\prod_{n+1}^{\prime \prime}\left(1+u_{1}\right)-1\left|<\epsilon \quad \wp^{\prime} \prod_{n+1}^{n+p}\left(1+u_{2}\right)=1+\eta, \quad\right| \eta \right\rvert\,<\epsilon
$$

Conversely show that if this relation holds, P_{n} must approach a limit other than 0 . The infinite moduct is sail to concerge when P_{n} approaches a limit other than 0: in all other cases it is said to diverge, including the case where lim $P_{n}=0$.
23. By combining Exs. 20 and 22 show that the necessary and sufficient condition that

$$
P_{n}=\left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{n}\right) \quad \text { and } \quad \ell_{n}=\left(1-a_{1}\right)\left(1-a_{2}\right) \cdots\left(1-a_{n}\right)
$$

converge as n hecomes infinite is that the serics $n_{1}+w_{2}+\cdots+n_{n}+\cdots$ shall con:rerge. Note that P_{n} is increasing and Q_{n} decreasing. Show that in case $\underset{\sim}{ } \alpha$ diverger, P_{n} diverges to x and (i_{n} to 0 (provided ultimately ${ }_{i}<1$).
24. Define abolute convergence for infinite prodncts and show that if a product converges absolutely it converges in its orisimal form.
25. Test these products for convergence, divergener. or alsohute convergence:
(r) $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{8}\right) \cdots$.
(, 3) $\left(1+\frac{1}{2^{2}}\right)\left(1+\frac{1}{33^{2}}\right)\left(1+\frac{1}{4^{2}}\right) \cdots$.
($\gamma) \prod_{1}^{\tau}\left[1-\binom{n \cdot x}{u+1}^{n}\right]$.
($\delta)(1+r)\left(1+x^{2}\right)\left(1+r^{4}\right)\left(1+r^{5}\right) \cdots$.
($\epsilon)\left(1-\frac{1}{\log 2}\right)\left(1-\frac{1}{(\log 4)^{2}}\right)\left(1-\frac{1}{(\ln 8)^{3}}\right) \cdots$.
(s) $\prod_{1}^{x}\left[\left(1-\frac{r}{c+n}\right)^{\frac{r}{n}}\right]$.

$$
\begin{aligned}
u_{n+1}+u_{n+2}+\cdots+u_{n+p}-\operatorname{lng}\left(1+u_{n+1}\right)(1 & \left.+u_{n+2}\right) \cdots\left(1+u_{n}+n\right) \\
& =\left(S_{n+p}-S_{n}\right)-\left(\operatorname{lng} P_{n+1}-\ln _{n} P_{n}\right)
\end{aligned}
$$

can he mate as small as desired by takine n laren emough regandess of p. Hence prove that if Σu_{n}^{2} monverses. $\Pi\left(3+u_{n}\right)$ converges if Σu_{n} lues. hut diverus the x if $\leq u_{n}$ diverces t$)+\boldsymbol{x}$. am diverges to 0 if Σu_{n} diverges to $-x$; whereas ii Σu_{n}^{2} diverges while Σu_{n} converses, the product diverges to 0 .
27. Apply Ex. 26 to:
(a) $\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1-\frac{1}{5}\right) \cdots$,
(β) $\left(1-\frac{1}{\sqrt{2}}\right)\left(1+\frac{1}{\sqrt{3}}\right)\left(1-\frac{1}{\sqrt{4}}\right) \cdots$,
($\gamma)\left(1+\frac{x}{1}\right)\left(1-\frac{x^{2}}{2}\right)\left(1+\frac{x^{3}}{3}\right)\left(1-\frac{x^{4}}{4}\right) \cdots$
28. Suppose the integrand $f(x)$ of an infinite integral oscillates as x becomes infinite. What test might be applicable from the construction of an alternating series?
165. Series of functions. If the terms of a series

$$
\begin{equation*}
s(x)=u_{0}(x)+u_{1}\left(x^{r}\right)+\cdots+u_{n}(x)+\cdots \tag{6}
\end{equation*}
$$

are functions of x, the series defines a function $S(x)$ of a for every value of a for which it converges. If the individual terms of the series are continuous functions of $: r$ over some interval $\ell \leqq x \leqq l$, the sum $S_{n}\left(w^{\prime}\right)$ of n terms will of course be a continuous function orem that interval. Suppose that the series converges for all points of the interval. Will it then be true that $S(x)$, the limit of $S_{n}(x)$, is also a continuous function over the interval? Will it be true that the integral term by term,

$$
\int_{a}^{b} u_{0}(x) d x+\int_{a}^{b} u_{1}(x) d x+\cdots, \text { converges to } \int_{a}^{b} S(x) d x ?
$$

Will it be true that the derivative term by term,

$$
u_{0}^{\prime}(x)+u_{1}^{\prime}(x)+\cdots, \quad \text { converges to } \quad S^{\prime}(x) ?
$$

There is no a priori leason why any of these things should be true: for the proofs which were given in the case of finite sums will not apply to the case of a limit of a sum of an infinite number of terms (ef. $\$ 144$).

These questions may realily be thown into the form of guestions concerning

For interration: Is

$$
\int_{a}^{b} \lim _{n=\infty} s_{n}(x) d x=\lim _{n=x} \int_{a}^{b} s_{n}(x) d x^{n} ?
$$

For differentiation: Is

$$
\frac{d}{d x_{n}} \lim _{n=x} s_{n}(x)=\lim _{n=x} \frac{d}{d x} x_{n}(x)!
$$

For continuity : 1s

$$
\lim _{x=r_{0}} \lim _{n=x} s_{n}(x)=\lim _{n=x} \lim _{x \neq r_{0}} s_{n}(x) ?
$$

As derivatives and definite integrals are themselves definerl as limits, the existence of a double limit is clear. That all three of the questions must be answered in the negative unless some restriction is placed on the way in which $S_{n}(x)$ converges to $S^{\prime}(x)$ is clear from some examples. Let $0 \leqq x \leqq 1$ and

$$
S_{n}(x)=x n^{2} e^{-n, r} \text {, then } \lim _{n=x} s_{n}(x)=0 \text {, or } \quad S^{\prime}(x)=0
$$

No matter what the value of r, the limit of $S_{n}(r)$ is 0 . The limiting function is therefore continuous in this case: but from the mamer in which $s_{n}(x)$ converges
to $S(x)$ it is apparent that under suitable conditions the limit would not be continuous. The area under the limit $S(x)=0$ from 0 to 1 is of course 0 ; but the limit of the area under $S_{n}(x)$ is
$\lim _{n=\infty} \int_{0}^{1} x n^{2} e^{-n x} d x=\lim _{n=\infty}\left[e^{-n x}(-n x-1)\right]_{0}^{1}=1$.
The derivative of the limit at the point $x=0$ is of course 0 ; but the limit,

$$
\begin{aligned}
& \lim _{n=\infty}\left[\frac{d}{d x}\left(x n^{2} e^{-n x}\right)\right]_{x=0} \\
= & \lim _{n=\infty}\left[n^{2} e^{-n x}(1-n x)\right]_{x=0}=\lim _{n=\infty} n^{2}=\infty
\end{aligned}
$$

of the derivative is infinite. Hence in this case two of the questions have negative answers and one of them a positive answer.

If a suite of functions such as $S_{1}(x), s_{2}(x), \cdots, S_{n}(x), \cdots$ converge to a limit $S(x)$ over an interval $a \leqq x \leqq 7$, the conception of a limit requires that when ϵ is assigned and x_{0} is assmmed it must be possible to take n so large that $\left|l_{n}\left(x_{0}\right)\right|=\left|S\left(x_{0}\right)-S_{n}\left(x_{0}\right)\right|<\epsilon$ for this and any larger n. The suite is said to comrerge uniform? toward its limit, if this condition can be satisfied simnltaneously for all values of x in the interval, that is, if when ϵ is assigned it is possible to take n so large that $\left|R_{n}(r)\right|<\epsilon$ for every value of x in the interval and for this and any larger n. In the above example the convergence was not miform ; the figure shows that no matter how great n, there are always values of x between 0 and 1 for which $S_{n}(x)$ departs by a large amount from its limit 0 .

The uniform comrergence of "rontinurns, function $s_{n}(x)$ to its limit is sufficient to insure the contimuit! of the limit $s(x)$. To show that $S(x)$ is continnous it is merely necessary to show that when ε is assigned it is possible to find a Δx so small that $\left|S(x+\Delta r)-S\left(r^{r}\right)\right|<\epsilon$. But $|S(x+\Delta x)-S(x)|=\left|S_{n}(x+\Delta x)-S_{n}(x)+R_{n}(x+\Delta x)-l_{n}(x)\right| ;$ and as by hypothesis P_{n} converges miformly to 0 , it is possible to take n so large that $\left|l_{n}(x+\Delta x)\right|$ and $\left|R_{n}(x)\right|$ are less than $\frac{1}{3} \in$ irrespective of x. Moreover, as $s_{n}\left(. x^{\prime}\right)$ is contimuons it is possible to take Δx so small that $\left|S_{n}(x+\Delta x)-S_{n}(x)\right|<\frac{1}{3}$ irrespective of x. Hence $|s(x+\Delta x)-S(x)|<\epsilon$, and the theorem is proved. Although the uniform consergence of S_{n} to s is a sufficient condition for the contimity of s, it is not a necessary condition, as the above example shows.

The uniform convergener of $S_{n}(x)$ to its limit insures that

$$
\lim _{n=\infty} \int_{a}^{b} \check{s}_{n}(x) d x=\int_{a}^{b} S(x) d x
$$

For in the first place $S(x)$ must be continuous and therefore integrable. And in the seeond place when ϵ is assigned, n may be taken so large that $\left|R_{n}(x)\right|<\epsilon /(b-11)$. Hence

$$
\left|\int_{a}^{b} S(x) d x-\int_{a}^{b} S_{n}(\cdot x) d x\right|=\left|\int_{a}^{b} R_{n}(x) d x\right|<\int_{a}^{b} \frac{\epsilon}{b-a} d x=\epsilon
$$

and the result is proved. Similarly if $s_{n}^{\prime}(x)$ is continuous and converges uniformly to a limit $T(x)$, thrn $T(x)=S^{\prime}(x)$. For by the above result on integrals,

$$
\int_{a}^{x} T(x) d x=\lim _{n=\infty} \int_{n}^{x} S_{n}^{\prime}(x) d x=\lim _{n=x}\left[S_{n}\left(x^{\prime}\right)-S_{n}(\prime)\right]=S(x)-S(1)
$$

Hence $T(x)=s^{\prime}(x)$. It should be noted that this poves inciulentally that if $s_{n}^{\prime}\left(x^{\prime}\right)$ is continuous and converges miformly to a limit, then $s(x)$ actually has a derivative, namely $T(x)$.

In order to apply these results to a series, it is necessary to have a test for the unifirmity of the roncergence of the sevies; that is, for the miform convergence of $S_{n}(x)$ to $S(x)$. One such test is Weierstross's M-test: The series

$$
\begin{equation*}
u_{0}(x)+u_{1}(x)+\cdots+u_{n}(\cdot x)+\cdots \tag{1}
\end{equation*}
$$

"ill converge umiformly provided a romiergent series

$$
\begin{equation*}
M_{0}+I_{1}+\cdots+I_{n}+\cdots \tag{8}
\end{equation*}
$$

of positire terms moy be forml such thut ultimentely $\left|\|_{i}(x)\right| \leqq M_{i}$. The proof is immediate. For

$$
\left|R_{n}(\cdot r)\right|=\left|{\mu_{n}}_{n}(\cdot r)+{\mu_{n+1}}(\cdot r)+\cdots\right| \leqq M_{n}+M_{n+1}+\cdots
$$

and as the M-series converges, its remaineler can be mate as small as desired by taking x sufficiently large. Hence any series of continuous functions defines a rontinuous function and may be integrated term ley term to find the integral of that function provided an I-test series may be forme ; and the derivative of that function is the derivative of the series torm by term if this derivative series almits an M-test.

To apply the work to an example consider whether the series

$$
\begin{equation*}
x(x)=\frac{\cos , r}{1^{2}}+\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}}+\cdots+\frac{\cos n \cdot r}{n^{2}}+\cdots \tag{}
\end{equation*}
$$

defines a continnous function and may be interrated and differentiated term by terill as
and

$$
\begin{align*}
& \int_{0}^{x} s(x)=\frac{\sin , r}{1^{3}}+\underset{23}{\sin 2 r}+\frac{\sin 3 x}{3^{3}}+\cdots+\frac{\sin n \cdot r}{n^{3}}+\cdots \\
& d x \\
& d x(x)=-\frac{\sin x}{1}-\frac{\sin 2 x}{2}-\frac{\sin 3 \cdot r}{3}-\cdots-\frac{\sin n \cdot x}{n}-\cdots
\end{align*}
$$

As $|\cos x| \leqq 1$, the convergent series $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}+\cdots$ may be taken as an M-series for $S(x)$. Hence $S(x)$ is a continuons function of x for all real values of x, and the integral of $S(x)$ may be taken as the limit of the interral of $S_{u}(x)$, that is, as the integral of the series tem by term as written. On the other hand, an M-series for ($\sigma^{\prime \prime \prime}$) camot be fomm, for the series $1+\frac{1}{2}+\frac{1}{3}+\cdots$ is not convergent. It therefore appears that $S^{\prime}(x)$ may not be identical with the term-loy-term derivative of $S(x)$; it does not follow that it will not be, - merely that it may net be.
166. Of series with variable terms, the power series

$$
\begin{equation*}
f(i)=a_{0}+a_{1}(\hat{i}-\dot{q})+a_{2}(z-a)^{2}+\cdots+a_{n}(i-a)^{n}+\cdots \tag{9}
\end{equation*}
$$

is perhaps the most important. Here \approx, x, and the coefficients " ${ }_{i}$ may be either real or complex numbers. This series may be written more simply by setting $x=a-\alpha$; then

$$
\begin{equation*}
f(x+x)=\phi(\cdot r)=n_{0}+{ }_{1} x+{ }_{1} \cdot x^{2}+\cdots+{ }_{n} \cdot x^{n}+\cdots \tag{!}
\end{equation*}
$$

is a series which surely converges for $r=0$. It may or may not eonverge for other values of x, lut from Ex. 15 or 19 above it is seen that if the series converges for X, it converges absolutely for any x of smaller absolute value; that is, if a circle of ratins T he drawn around the origin in the complex plane for x or about the point α in the eomplex plane for $\hat{\sim}$, the series (9) and (9 ') respectively will (onverge absolutely for all complex numbers whielh lie within these circles.

Three cases should be distinguished. First the series may converge for any value x no matter how great its absolute value. The cirele may then have an indefinitely large mans; the series eonverge for all values of a or a and the function definet hy them is finite (whether real or eomplex) for all values of the argument. Sueh a function is called an integrel fumbtion of the complex variahle \approx or x. Secontly, the series may converge for no other value than $r=0$ or $a=r$ and therefore sannot define any function. Thirdly, there may be a definite largest value for the radius, say R, such that for any point within the respective eireles of radius R the series converge and define a function, whereas for any point outside the circles the series tliverge. The circle of radius R is called the circle of convergence of the series.

As the matter of the radius and circle of convergence is important, it will be well to go over the whole matter in detail. Consider the suite of numbers

$$
\left.\mid a_{1}\right\}, \quad \sqrt[2]{\left|a_{2}\right|}, \quad \sqrt[3]{\left|a_{3}\right|}, \quad \cdots, \quad \sqrt[n]{\left|a_{n}\right|} .
$$

Let them le imagined to be located as points with coördinates between 0 and $+\infty$ on a line. Three possibilities as to the distribution of the points arise. First they
may be unlimited above, that is, it may be possible to piek out from the suite a set of numbers which inerease withont limit. Secondly, the mumbers may converge to the limit 0 . Thirdly, neither of these suppositions is true and the numbers from 0 to $+\infty$ may be divided into two classes such that every number in the first elass is less than an infinity of numbers of the suite, whereas any number of the second class is surpassed by only a finite number of the numbers in the suite. The two classes will then have a frontier number which will be represented by $1 / R$ (see $\S \S 19 \mathrm{ff}$.).

In the first case no matter what x may be it is possible to piek out members from the suite such that the set $i^{i} \mid \overline{u_{i} \mid}, \sqrt[j]{\left|a_{j}\right|}, \sqrt[k]{\left|u_{k}\right|}, \cdots$, with $i<j<k \cdots$, inereases without limit. Hence the set $i^{i}\left|a_{i}\right||x|, \sqrt[j]{\left|a_{j}\right||x|}, \cdots$ will increase without limit; the terms $a_{i} x^{i} a_{j} x^{j}, \ldots$ of the series $\left(9^{\prime}\right)$ do not approach 0 as their limit, and the series diverges for all values of x other than 0 . In the second case the series converges for any value of x. For let ϵ be any number less than $1 /|x|$. It is possible to go so far in the suite that all subsequent numbers of it shall be less than this assigned ϵ. Then

$$
\left|a_{n+p} x^{n+p}\right|<\epsilon^{n+p}|x|^{n+p} \quad \text { and } \quad \epsilon^{n}|x|^{n}+\epsilon^{n+1}\left|x^{\mid n+1}+\cdots, \quad \epsilon\right| x \mid<1,
$$

serves as a comparison series to insure the absolute convergence of (9). In the third case the series converges for any x such that $|x|<R$ hut diverges for any x such that $|x|>R$. For if $|x|<R$, take $\epsilon<R-|x|$ so that $|x|<R-\epsilon$. Now proceed in the suite so far that all the subsequent numbers shall be less than $1 /(R-\epsilon)$, which is greater than $1 / h$. Then

$$
\left|a_{n+p} x^{n+p}\right|<\frac{|x|^{n+p}}{(R-\epsilon)^{n+p}}<1, \quad \text { and } \quad \sum_{0}^{\infty} \frac{|x|^{n+p}}{(R-\epsilon)^{n+p}}
$$

will do as a comparison series. If $|x|>R$, it is easy to show the terms of (9') do mot approach the limit 0.

Let a circle of radius r less than R be drawn concentric with the

 integirel of the fenction may be had by integrating the sorios trom by term,

$$
\Phi(x)=\int_{0}^{x} \phi(x) d x={ }_{0} x+\frac{1}{2} "_{1} r^{2}+\frac{1}{3} "_{2} x^{r^{3}}+\cdots+\frac{1}{n}{ }_{n}{ }_{n-1} u^{\prime \prime}+\cdots:
$$

and the series of deritatioss concorges amiformly and repressents the aleriratiere of the function,

$$
\phi^{\prime}\left(r^{\prime}\right)=n_{1}+2 n_{2} r+3 n_{3} r^{2}+\cdots+n n_{n} r^{n-1}+\cdots
$$

To prove these theorems it is merely necessary to set mp an w-series for the series itself and for the series of derivatives. Let X be any number between r and r. Therl

$$
\begin{equation*}
\left|u_{0}\right|+\left|n_{1} X+\left.\right|_{n}\right| X^{2}+\cdots+\left|{\mu_{n}}_{n}\right| X^{n}+\cdots \tag{10}
\end{equation*}
$$

converges because $\mathrm{X}<R^{\prime}$; and funthermore $\left|\iota_{n} x^{n}\right|<\left|{ }^{n}{ }_{n}\right| X^{n}$ holds for any x such that $|x|<x$, that is, for all points within and on the circle of radius r. Moreover as $|x|<N$,

$$
\left|n a_{n} x^{n-1}\right|=\left|a_{n}\right| \frac{n}{\mathrm{X}}\left(\frac{\lfloor x}{X}\right)^{n-1} X^{n}<\left|a_{n}\right| X^{n}
$$

holds for sufficiently large values of n and for any x such that $|x| \leqq r$. Hence (10) serves as an M-series for the given series and the series of derivatives; and the theorems are proved. It should be noticed that it is incorrect to say that the convergence is uniform over the circle of radius R, although the statement is true of any circle within that circle $n o$ matter how small $l i-r$. For an apparently slight lont none the less important extension to include, in some cases, some points upon the circle of convergence sce Ex. 5 .

An immediate corollary of the above theorems is that any pouer sorits (9) in the complex rarivble uhich converges for other ralues than $\approx=a$, and hence has a tinite circle of concergence or converges all over the somplex plune, defines an anulytic function $f(*)$ of a in the sense of Ss 73,126 ; for the series is differentiable within any circle within the circle of convergence and thas the function has a definite finite and continuous derivative.
167. It is now possible to extend Taylor's and Maclaurin's Formulas, which developed a function of a real variable x into a polynomial plus a remainder' to infinite series known as 'Taylor's and Maclaurin's Series, Which express the function ats a power series, provided the remainder after n terms converges uniformly toward 0 as n becomes infinite. It will be sufficient to treat one case. Let

$$
\begin{aligned}
& f^{\prime}\left(x^{\prime}\right)=f^{\prime}(0)+f^{\prime}(0) x^{2}+\frac{1}{2!} f^{\prime \prime}(0) x^{2}+\cdots+\frac{1}{(n-1)!} f^{(n-1)}(0) x^{n-1}+l_{n} \\
& l_{n}=\frac{x^{n}}{n!} f^{(n)}\left(\theta_{x}\right)=\frac{r^{n}(1-\theta)^{n-1}}{(n-1)!} f^{(n)}(\theta x)=\frac{1}{(n-1)!} \int_{0}^{x} f^{n-1} f^{2(n)}\left(x^{x}-t\right) d t
\end{aligned}
$$

$$
\lim _{n=x} R_{n}(r)=0 \text { uniformly in some interval }-h \leqq x \leqq h
$$

where the first line is Maclaurin's Formula, the second gives differnet forms of the remainder, and the third expresses the condition that the remainder converges to 0 . Then the series

$$
\begin{align*}
f(0) & +f^{\prime}(0) x+\frac{1}{2!} f^{\prime \prime}(0) x^{2} \\
& +\cdots+\frac{1}{(n-1)!} f^{(n-1)}(0) x^{n-1}+\frac{1}{n!} f^{(n)}(0) x^{n}+\cdots \tag{11}
\end{align*}
$$

converges to the value $f\left(r^{\prime}\right)$ for any x in the interval. The proof consists merely in noting that $f^{\prime}(\cdot x)-l_{n}(x)=S_{n}^{\prime}\left(s^{\prime}\right)$ is the sum of the first n terms of the series and that $\left|R_{n}(x)\right|<\epsilon$.

In the case of the exponential function ϵ^{x} the nth derivative is ϵ^{x}, and the remainder, taken in the first form, becones

$$
R_{n}(x)=\frac{1}{n!} e^{\theta \cdot x^{n}}, \quad\left|R_{n}(x)\right|<\frac{1}{n!} e^{h / l^{n}} . \quad|x| \leqq h .
$$

As n becomes infinite, l_{n} clearly approaches zewn m, matter what the value of h; and

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{r^{3}}{3!}+\cdots+\frac{r^{n}}{n!}+\cdots
$$

is the infinite series for the exponential function. The series converges for all values of x real or complex and may be taken as the definition of ex for complex values. This definition may be shown to coincilte with that oltained otherwise (\$ 74).

For the expansion of $(1+x)^{m}$ the remanner may le taken in the second form.

$$
\begin{aligned}
& R_{n}(x)=\frac{m(m-1) \cdots(m-n+1)}{1 \cdot 2 \cdots(n-1)} u^{n}\left(\frac{1-\theta}{1+\theta x}\right)^{n-1}(1+\theta x)^{m-1} \\
& \left|R_{n}(x)\right|<\left\lvert\, \frac{m(m-1) \cdots(m-u+1)}{1 \cdot 2 \cdots(n-1)} h^{n}(1+h)^{m-1}\right., \quad h<1 .
\end{aligned}
$$

Hence when $h<1$ the limit of $l_{n}(\cdot, n)$ is zero and the infinite expansion

$$
(1+r)^{m}=1+m \cdot r+\frac{m(m-1)}{2!} x^{2}+\frac{m(m-1)(m-2)}{3!} r^{3}+\cdots
$$

is valid for $(1+x)^{n}$ for all values of x numerically less than minity.
If in the binomial expansion x be replaced by $-x^{2}$ and m by $-\frac{1}{2}$,

$$
\frac{1}{\sqrt{1-x^{2}}}=1+{ }_{2} x^{2}+\frac{1 \cdot 3}{2 \cdot 4} x^{4}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^{6}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot x^{8}}+\cdots
$$

This series converyes for all ratues of x mumerically tess than 1. and hence converges miformly whenerer $a^{*} \equiv h<1$. It may therefore be integrated term by term.

$$
\sin ^{-1} x=x+\frac{1}{2} \frac{x^{3}}{3}+\frac{1 \cdot 3}{2 \cdot 4} \frac{x^{5}}{5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^{7}}{7}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8} \frac{x^{9}}{9}+\cdots
$$

This series is valid for all values of x mumerically less than mity. The series also converges for $x= \pm 1$, and hence by Ex. . j innifomly comergent when $-1 \leqq x \leqq 1$.

But Taylor"s and Maclamin's series may also lee extended directly to functions $f^{\prime}(\hat{i})$ of a complex varialle. If $f^{\prime}(z)$ is single valued and hats a definite continnons derivative $f^{\prime \prime}(i)$ at every point of a region and on the boundary, the expansion

$$
f(i)=f(n)+f^{\prime}(x)(z-n)+\cdots+f^{(n-1)}(x) \frac{(z-n)^{n-1}}{(n-1)!}+R_{n}
$$

for all points \approx within the cirele of radius r (Ex. 7, p. 306). As n becomes infinite, R_{n} approaches zero uniformly, and hence the infinite series

$$
\begin{equation*}
f(z)=f(\alpha)+f^{\prime}(\alpha)(z-\alpha)+\cdots+f^{(n)}(\alpha) \frac{(z-\alpha)^{n}}{n!}+\cdots \tag{12}
\end{equation*}
$$

is valid at all points within the circle of radins r and upon its circumference. The expansion is therefore convergent and valid for any a actually within the circle of radius ρ.

Even for real expansions (11) the significance of this result is great because, except in the simplest cases, it is impossible to compute $f^{(n)}\left(r^{*}\right)$ and establish the eonvergence of Taylor's series for real variables. The result just found shows that if the values of the function be considered for complex values $\%$ in addition to real values s, the circle of convergence will extend out to the nearest point where the conditions imposed on $f(z)$ break down, that is, to the nearest pint at whieh $f(z)$ becomes infinite or otherwise ceases to have a definite continuous derivative $f^{\prime \prime}(z)$. For example, there is nothing in the behavior of the function

$$
\left(1+x^{2}\right)^{-1}=1-x^{2}+x^{4}-x^{6}+x^{8}-\cdots,
$$

as far as real values are concernel, which should indicate why the expansion holds only when $|, N|<1$; but in the complex domain the function $\left(1+z^{2}\right)^{-1}$ becomes infinite at $z= \pm i$, and hence the greatest circle about $z=0$ in which the series could he expected to converge has a unit radius. Hence by considering $\left(1+i^{2}\right)^{-1}$ for complex values, it can be predicted without the examination of the nth derivative that the Maclamin development of $\left(1+r^{2}\right)^{-1}$ will converge when and only when x is a proper fraction.

EXERCISES

1. (α) Dues $x+x(1-x)+x(1-x)^{2}+\cdots$ converge uniformly when $0 \leqq x \leqq 1$?
(β) Does the series $(1+k)^{\frac{1}{k}}=1+1+\frac{1-k}{2!}+\frac{(1-k)(1-2 k)}{3!}+\cdots$ converge unifommy for small values of k ? Can the derivation of the limit e of $s 4$ thms be made rigorous and the value he found by wating $l i=0$ in the series:
2. Test these series for miform convergence; also the series of derivatives:
(c) $1+x \sin \theta+x^{2} \sin 2 \theta+x^{3} \sin 3 \theta+\cdots . \quad|x| \equiv X<1$.
(β) $1+\frac{\sin x}{1^{2 \frac{1}{2}}}+\frac{\sin ^{2} x}{2^{2 \frac{1}{2}}}+\frac{\sin ^{3} x}{3^{2 \frac{1}{2}}}+\frac{\sin ^{4} x}{4^{2 \frac{2}{2}}}+\cdots, \quad|x| \leqq X<\infty$,
($\gamma) \frac{x-1}{x}+\frac{1}{2}\left(\frac{x-1}{x}\right)^{2}+\frac{1}{3}\left(\frac{x-1}{x}\right)^{3}+\cdots, \quad \frac{1}{2}<\gamma \leqq x \leqq X<\infty$,
(ס) $\frac{x-1}{x+1}+\frac{1}{3}\left(\frac{x-1}{x+1}\right)^{3}+\frac{1}{5}\left(\frac{x-1}{x+1}\right)^{5}+\cdots . \quad 0<\gamma \equiv x \leqq \gamma<\infty$.
(ϵ Consider complex as well ats real values of the variable.

3．Deternine the radins of convergence and draw the circk．Note that in prac－ tice the test ratio is more convenient than the theoretical method of the text：
（a）$x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\cdots$ ．
（ β ）$x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{4} x^{7}+\cdots$,
（ $\gamma) \frac{1}{u}\left[1+\frac{b x}{u}+\frac{l l^{2} c^{2}}{a^{2}}+\frac{l^{3} x^{3}}{a^{3}}+\cdots\right]$ ．
（8） $1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\frac{x^{8}}{4!}-\cdots$ ，
（ ϵ ）$\frac{1}{1} x-\left(\frac{1}{1}+\frac{1}{2}\right) x^{2}+\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}\right) x^{3}-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right) x^{4}+\cdots$ ，
（弓） $1-\frac{3^{2}+3}{4 \cdot 2!} x^{2}+\frac{3^{4}+3}{4 \cdot 4!} x^{4}-\frac{3^{6}+3}{4 \cdot 6!} x^{6}+\cdots$ ，
（ η ） $1-x+x^{4}-x^{5}+x^{8}-x^{9}+x^{12}-r^{13}+\cdots$ ，
（ θ ）$(x-1)^{1}-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\frac{1}{4}(x-1)^{4}+\cdots$ ，
（ 1$) x-\frac{(m-1)(m+2)}{3!}, r^{3}+\frac{(m-1)(m-3)(m+2)(m+4)}{5!} x^{5}-\cdots$ ．
（к） $1-\frac{x^{2}}{2^{2}(m+1)}+\frac{x^{4}}{2^{4} \cdot 2!(m+1)(m+2)}-\frac{r^{5}}{2^{6} \cdot 3!(m+1)(m+2)(m+3)}+\cdots$ ．
（入）$\frac{x^{2}}{2^{2}}-\frac{x^{4}}{2^{4}(2!)^{2}}\left(\frac{1}{1}+\frac{1}{2}\right)+\frac{x^{6}}{2^{6}(3!)^{2}}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}\right)-\frac{x^{8}}{2^{8}(4!)^{2}}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\cdots$ ．
$(\mu) 1+\frac{\alpha \beta}{1 \cdot \gamma} x+\frac{\alpha(\alpha+1) \beta(\beta+1)}{1 \cdot 2 \cdot \gamma(\gamma+1)} x^{2}+\frac{\alpha(\alpha+1)(\alpha+2) \beta(\beta+1)(\beta+2)}{1 \cdot 2 \cdot 3 \cdot \gamma(\gamma+1)(\gamma+2)} x^{3}+\cdots$.
4．Establish the Maclaurin expansions for the elementary functions：
（ α ） $\log (1-x)$ ．
（ β ） $\sin x$ ．
$(\gamma) \cos x$ ．
（ δ ） $\cosh . c$ ．
（ $\epsilon) a^{x}$ ，
（广） $\tan ^{-1} x$ ，
（ η ） $\sinh _{1}-1 x$ ，
（ θ ） $\tanh ^{-1} x$ ．

5．Abel＇s Theorem．If the infinite series $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} r^{3}+\cdots$ converges for the value X ．it converges uniformly in the interval $0 \leqq x \leqq X$ ．Prove this by showing that（see Exs．17－19．p．428）

$$
\left.\left|R_{n}(x)\right|=\left|a_{n} x^{n}+a_{n+1} x^{n+1}+\cdots\right|<\left(\frac{x}{X}\right)^{n} \right\rvert\, a_{n} X^{n}+\cdots+a_{n+1}, X^{n+p}
$$

when p is rightly chosen．Apply this to extending the interval over which the series is miformly convergent to extreme values of the interval of convergence wherever possible in Dxs． $4(c),(\zeta),(\theta)$ ．

6．Examine sundry of the series of Ex． 3 in regard to their convergence at ex－ treme points of the interval of convergence or at various other points of the circum－ ference of their cirele of convergence．Note the significance in view of Ex．\％．

7．Show that $f(x)=e^{-\frac{1}{x^{2}}} . f(0)=0$ ，cannot be expanded into an infinite Mac－ laurin series by showing that $I_{n}=e^{-\frac{1}{x^{2}}}$ ．and hence that F_{n} dots mot（onnerme miformly toward 0 （see Ex．9．p．6f）．Show this also from the consideration of complex vahues of x ．

8．From the consideration of complex values determine the interral of con－ vergence of the Maclaurin series for

$$
\text { (} \left.\left.\alpha) \tan x=\frac{\sin x}{\cos x}, \quad \text { (} \beta\right) \frac{x}{e^{x}-1}, \quad \text { (}\right) \tanh x . \quad \text { (б) } \log \left(1+\epsilon^{x}\right)
$$

9. Show that if two similar infinite power series represent the same function in any interval the coefficients in the series nust be equal (cf. \$32).
10. From $1+2 r \cos x+r^{2}=\left(1+r e^{i x}\right)\left(1+r e^{-i x}\right)=r^{2}\left(1+\frac{e^{i x}}{r}\right)\left(1+\frac{e^{-i r}}{r}\right)$ wove $\quad \log \left(1+2 r \cos x+r^{2}\right)=2\left(r \cos x-\frac{r^{2}}{2} \cos 2 x+\frac{r^{3}}{3} \cos 3 x-\cdots\right)$, $\int_{10}^{x} \log \left(1+2 r \cos x+r^{2}\right) d x=2\left(r \sin x-\frac{r^{2}}{2^{2}} \sin 2 x+\frac{r^{3}}{3^{2}} \sin 3 x-\cdots\right) ; \quad r<1$ and $\quad \log \left(1+2 r(a) x+r^{2}\right)=2 \log r+2\left(\frac{\cos x}{r}-\frac{\cos 2 x}{2 r^{2}}+\frac{\cos 3 x}{3 r^{2}}-\cdots\right)$, $\int{ }^{r} 104(1+2 r \sin x+\sin 2 x \sin 3 x \quad r>1$ $\int_{0}^{r} \log \left(1+2 r \cos x+r^{2}\right) d x=2 x \log r+2\left(\frac{\sin x}{r}-\frac{\sin 2 x}{2 r^{2}}+\frac{\sin 3 x}{32}-\cdots\right) ;$ $\int_{0}^{\infty} \log (1+\sin \alpha \cos x) d x=2 x \log \cos \frac{\alpha}{2}+2\left(\tan \frac{c x}{2} \sin x-\tan 2 \frac{\alpha}{2} \frac{\sin 2 x}{2^{2}}+\cdots\right)$.
11. Prove $\int_{0}^{1} \frac{12 x}{\sqrt{1+x^{4}}}=1-\frac{1}{2 \cdot 5}+\frac{1 \cdot 3}{2 \cdot 4 \cdot!}-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot(i \cdot 13}+\cdots=\int_{1}^{x} \frac{1 x^{x}}{1+x^{4}}$.
12. Walnate these integrals by expansion into series (see Ex. 23. 1. 4. W2)
(α) $\int_{0}^{\infty} \frac{e^{-\gamma x} \sin r r}{x} d x=\frac{r}{q}-\frac{1}{3}\left(\frac{r}{q}\right)^{3}+\frac{1}{5}\left(\frac{r}{q}\right)^{j}-\cdots=\tan ^{-1} \frac{r}{q}$,
(β) $\int_{0}^{\pi} \frac{\log (1+k \cos x)}{\cos x} d x=\pi \sin ^{-1} k$,
($\gamma) \int_{1}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=\frac{\pi^{2}}{4}$,
(() $\int_{0}^{\infty} e^{-\alpha^{2} x^{2}} \cos 2 \beta x d c=\frac{\sqrt{\pi} \pi}{2 c} e^{-\left(\frac{\beta}{\alpha}\right)^{2}}$,
(є) $\int_{0}^{\pi} \log \left(1+2 r \cos x+r^{2}\right) d x$.
13. By formal multiplication (条 168) show that

$$
\begin{aligned}
& \frac{1-\alpha^{2}}{1-2 \alpha \cos x+\alpha^{2}}=1+2 \alpha \cos x+2 \alpha^{2} \cos 2 x+\cdots, \\
& \frac{\alpha \sin x}{1-2 \alpha \cos x+\alpha^{2}}=\alpha \sin x+\alpha^{2} \sin 2 x+\cdots
\end{aligned}
$$

14. Evaluate, by use of Ex. 13. these definite integrals, m an integer :
($\alpha) ~ \int_{0}^{\pi} \frac{\cos m x d x}{1-2 \alpha \cos x+\alpha^{2}}=\frac{\pi \alpha^{m}}{1-\alpha^{2}}$,
(β) $\int_{0}^{\pi} \frac{r \sin x d x}{1-2 \alpha \cos x+\alpha^{2}}=\frac{\pi}{\alpha} \log (1+\alpha)$.

$$
\begin{aligned}
& \text { (}) ~ \\
& \int_{0}^{\pi} \frac{\sin x \sin m x d x}{1-2 \alpha \cos x+\alpha^{2}}=\frac{\pi}{2} \alpha^{m-1} \\
& \text { (} \delta \text {) } \int_{0}^{\pi} \frac{\sin ^{2} x d x}{\left(1-2 \alpha \cos x+\left(x^{2}\right)\left(1-2 \beta \cos x+\beta^{2}\right)\right.}
\end{aligned}
$$

15. In Ex. 14 (γ) let $\alpha=1-h / m$ anf $r=z / m$. Obtain by a limiting process. and by a similar method exercisel upon lix. $14(\alpha)$:

$$
\int_{0}^{x} \frac{z \sin z d z}{h^{2}+z^{2}}=\frac{\pi}{2} e^{-h} . \quad \int_{11}^{\infty} \frac{\cos z d z}{h^{2}+z^{2}}=\frac{\pi}{2} e^{-h}
$$

Can the use of these limiting processes be readily justified?
16. Let h and x be less than 1. Assume the expansion

$$
f(x, h)=\frac{1}{\sqrt{1-2 x h+h^{2}}}=1+h P_{1}(x)+h^{2} P_{2}(x)+\cdots+h^{n} P_{n}(x)+\cdots
$$

Obtain therefrom the following expansions by differentiation:

$$
\begin{aligned}
\frac{1}{h} f_{x}^{\prime} & =\frac{1}{\left(1-2 x h+h^{2}\right)^{\frac{3}{2}}}=P_{1}^{\prime}+h P_{2}^{\prime}+h^{2} P_{3}^{\prime}+\cdots+h^{n-1} P_{n}^{\prime}+\cdots, \\
f_{h}^{\prime} & =\frac{x-h}{\left(1-2 x h+h^{2}\right)^{\frac{3}{2}}}=P_{1}+2 h P_{2}+3 h^{2} P_{3}+\cdots+n h^{n-1} P_{n}+\cdots
\end{aligned}
$$

Hence establish the given identities and consequent relations:

$$
\begin{array}{rlrl}
\frac{x-h}{h} f_{x}^{\prime} & = & x P_{1}^{\prime}+h\left(x P_{2}^{\prime}-P_{1}^{\prime}\right) & +\cdots+h^{n-1}\left(x P_{n}^{\prime}-P_{n-1}^{\prime}\right) \\
f_{h}^{\prime} & = & P_{1}+h\left(2 P_{2}\right) & +\cdots+h^{n-1}\left(n P_{n}\right) \\
\frac{\left(1+h^{2}\right)}{h} f_{x}^{\prime}-f & =-1+P_{1}^{\prime}+h\left(P_{2}^{\prime}-P_{1}\right) & +\cdots+h^{n}\left(P_{n+1}^{\prime}+P_{n-1}^{\prime}-P_{n}\right)+\cdots= \\
2 x h f & = & h(2 x) & +\cdots+h^{n}\left(2 x P_{n-1}\right) .
\end{array}
$$

Or $\quad{ }_{n} P_{n}=x P_{n}^{\prime}-P_{n-1}^{\prime}$ and $P_{n+1}^{\prime}+\Gamma_{n-1}^{\prime}-P_{n}=2 x P_{n}^{\prime}$.
Hence $\quad x P_{n}^{\prime}=P_{n+1}^{\prime}-(n+1) P_{n}$ and $\left(x^{2}-1\right) P_{n}^{\prime}=n\left(x P_{n}-P_{n-1}\right)$.
Compare the results with Exs. 13 and 17, p. 252, to identify the functions with the Legendre polynomials. Write

$$
\begin{aligned}
\frac{1}{\left(1-2 x h+h^{2}\right)^{\frac{1}{2}}} & =\frac{1}{\left(1-2 h \cos \theta+h^{2}\right)^{\frac{1}{2}}}=\frac{1}{\left(1-h e^{i \theta}\right)^{\frac{1}{2}}\left(1-h e^{-i \theta}\right)^{\frac{1}{2}}} \\
& =\left(1+\frac{1}{2} h e^{i \theta}+\frac{1 \cdot 3}{2 \cdot 4} h^{2} e^{2 i \theta}+\cdots\right)\left(1+\frac{1}{2} h e^{-i \theta}+\frac{1 \cdot 3}{2 \cdot 4} h^{2} e^{-2 i \theta}+\cdots\right),
\end{aligned}
$$

and show $P_{n}(\cos \theta)=2 \frac{1 \cdot 3 \cdot \cdot(2 n-1)}{2 \cdot 4 \cdot \cdots 2 n}\left\{\cos n \theta+\frac{1 \cdot n}{1 \cdot(2 n-1)} \cos (n-2) \theta+\cdots\right\}$.
168. Manipulation of series. If an infinite series

$$
\begin{equation*}
S=n_{0}+u_{1}+u_{2}+\cdots+u_{n-1}+n_{n}+\cdots \tag{13}
\end{equation*}
$$

comererges, the series obtuined by grouping the terms in purentheses without alterimy their order will also roncerge. Let

$$
S^{\prime}=U_{0}+I_{1}+\cdots+U_{u^{\prime}-1}+U_{u^{\prime}}+\cdots
$$

and

$$
s_{1}^{\prime}, S_{2}^{\prime}, \cdots, s_{n}^{\prime}, \cdots
$$

be the new series and the sums of its first n terms. These sums are merely particular ones of the set s_{1}, s_{2}, \cdots, s_{n}, \cdots, and as $n^{\prime}<n$ it follows that n becomes intinite when n^{\prime} bloes if n be so chosen that $s_{n}=S_{n^{\prime}}^{\prime}$. As S_{n} approaches a limit, $s_{n^{\prime}}^{\prime}$ must approarl the same limit. As a corollary it appears that if the serjes obtained hy removing premtheses in a given series ronverges, the value of the series is not affected by removing the parentheses.

If turo comrergent infinite series be gicen as
then

$$
S=u_{0}+u_{1}+\cdots, \quad \text { und } \quad T=r_{0}+v_{1}+\cdots,
$$

will ronverge to the limit $\lambda S+\mu T$, and will converge absolutely procided both the gicen series concerye absolutely. The proof is left to the reader.

If " giren series conrerges absolutely, the series formed by rearranging the terms in an! order "rithout omitting any terms will concerge to the sceme culue. Let the two arrangements be

$$
\therefore=u_{0}+n_{1}+n_{2}+\cdots+n_{n-1}+n_{n}+\cdots
$$

and

$$
s=u_{n^{\prime}}+u_{1^{\prime}}+"_{2^{\prime}}+\cdots+{ }^{\prime} n_{n^{\prime}-1}+u_{n^{\prime}}+\cdots
$$

As s'converges alsolutely, n may be taken so large that

$$
\left|u_{n}\right|+\left|u_{n+1}\right|+\cdots<\epsilon ;
$$

and as the terms in S^{\prime} are identical with those in S except for their order, n^{\prime} may be taken so large that $S_{n^{\prime}}^{\prime}$ shall contain all the terms in s_{n}. The other terms in S_{n}^{\prime}, will be found among the terms n_{n}, n_{n+1}, \cdots. Hence

$$
\left|\stackrel{\prime}{n}_{\prime \prime}^{\prime}-s_{n}\right|<\left|\prime_{n}\right|+\left|\prime_{n+1}\right|+\cdots<\epsilon .
$$

As $\left|s-S_{n}\right|<\epsilon$, it follows that $\left|s-s_{n^{\prime}}^{\prime}\right|<2 \epsilon$. Hence $S_{n^{\prime}}^{\prime}$ approarle's s as a limit when n^{\prime} becomes infinite. It may easily be shown tlat $s^{\prime \prime}$ also converges absolutely.

The theorem is still trme if the werromgoment of s is into "sories some
 Thus let

$$
S^{\prime}=l_{0}^{r}+l_{1}^{r}+l_{2}^{r}+\cdots+C_{n^{\prime}-1}+l_{n^{\prime}}+\cdots,
$$

where U_{i} may be any aggregate of terms selected from S. If C_{i} be an infinite series of terms selected from s, as

$$
l_{i}=u_{i 1}+\prime_{i 1}+u_{i 2}+\cdots+u_{i n}+\cdots,
$$

the absolute convergence of l_{i} follows from that of si^{\prime} (of. Ex. 22 below). It is possible to take n ' so large that every term in s_{n} slall oceur in one of the terms $U_{0}, l_{1}, \cdots, U_{n^{\prime}-1}$. Then if from

$$
\begin{equation*}
S-I_{0}^{r}-I_{1}-\cdots-U_{n^{\prime}-1} \tag{14}
\end{equation*}
$$

there be canceled all the terms of sin, the terms which remain will be found among u_{n}, u_{n+1}, \cdots, and (14) will be less than ϵ. Hence as n^{\prime} becomes infinite, the difference (14) approaches zero as a limit and the theorem is proved that

$$
S=U_{0}+U_{1}+\cdots+U_{n^{\prime}-1}+U_{n^{\prime}}+\cdots=S^{\prime}
$$

If a series of real terms is convergent, but not absolutely, the number of positive and the number of negative terms is infinite, the series of positive terms and the series of negative terms diverge, and the given series may be so rearranged as to comport itself in any desired manner. That the number of terms of each sign cannot be finite follows from the fact that if it were, it would be possible to go so far in the series that all subsequent terms would have the same sign and the series would therefore converge alsolutely if at all. Consider next the sum $S_{n}=P_{l}-X_{m}$, $l+m=n$, of n terms of the series, where P_{l} is the sum of the positive terms and N_{m} that of the negative terms. If both P_{l} and N_{m} converged, then $P_{l}+N_{m}$ would also converge and the serics would converge absolutely; if only one of the sums P_{l} or N_{m} diverged, then S would diverge. Hence both sums must diverge. The series may now be rearranged to approach any desired limit. to become positively or negatively infinite. w to weillate as desired. For suppose an arrangement to approach L as a limit were desired. First take enough pusitive terms to make the sum exceed L, then enongh negative terms to make it less than L, then enongh positive terms to bring it again in excess of L. and so on. But as the given series converges, its terms approach 0 as a limit; and as the new arrangement gives a sum which never differs from L by more than the last term in it. the difference between the sum and L is approaching 0 and L is the limit of the sum. In a similar way it could be shown that an arrangement which would comport itself in any of the other wass mentioned would be possible.

If tero absolutely romerergent semies le multiplied, as

$$
\begin{aligned}
& s=n_{0}+n_{1}+n_{2}+\cdots+n_{n}+\cdots, \\
& T=c_{0}+c_{1}+i_{2}+\cdots+c_{n}+\cdots,
\end{aligned}
$$

and

$$
\begin{aligned}
& W=u_{0,} r_{0}+{ }_{1} r_{0}+{ }_{n_{2}} r_{0}+\cdots+u_{n} r_{0}+\cdots \\
& +{ }^{4} r_{1}+{ }_{1} r_{1}+{ }_{n_{2}} r_{1}+\cdots+{ }_{n} r_{1} r_{1}+\cdots \\
& + \\
& +u_{0^{\prime}}{ }_{n}+"_{1} c_{n}+v_{2} r_{n}+\cdots+v_{n} r_{n}+\cdots \\
& +
\end{aligned}
$$

and if the troms in Wre arrenterl in a simple serios "s
 "nd wonererges to the corlure of the pronlart st

In the partirular arrangement above, $\stackrel{s}{1}^{T_{1}}$. $\stackrel{x}{2}^{2} T_{2}$. $\dot{x}_{n} T_{n}$ is the sum of the first, the first two, the first n terms of the serges of parenthests. As $\lim \check{N}_{n} T_{n}=\stackrel{y}{*} T$, the series of parentheses converges to sT. As sant T are absolutely convergent the same reasoning could be applied to the series of alsolute values and

$$
\left|n_{0}\right|\left|r_{0}\right|+\left|n_{1}\right|\left|r_{0}\right|+\left|n_{1}\right|\left|r_{1}\right|+{ }^{\prime} n_{0}| | r_{1}\left|+\left|n_{2}\right| r_{0}+\cdots\right.
$$

would be senn to converge. Hence the convergence of the series

$$
"_{0} r_{0}+"_{1} r_{0}+"_{1} r_{1}+"_{1} r_{1}+"_{2} "_{0}+"_{2} r_{1}+{ }_{1} r_{2}+"_{1} r_{2}+"_{0} r_{2}+\cdots
$$

is absolute and to the value siT when the parentheses are omitted. Moreover, any other arrangement, such in particular as

$$
u_{0} r_{0}+\left(u_{1} r_{0}+u_{0} r_{1}\right)+\left(u_{2} r_{0}+u_{1} r_{1}+u_{0} r_{2}\right)+\cdots,
$$

would give a series converging absolutely to s'T.
The equivalence of a function and its Taylor or Maclaurin infinite series (wherever the series converges) lends importance to the operations of multiplication, division, and so on, which mat be performed on the series. Thus if

$$
\begin{array}{ll}
f^{\prime}(r)=l_{0}+\pi_{1} r+\pi_{2} x^{2}+l_{3} r^{3}+\cdots, & |x|<R_{1}, \\
g(r)=l_{0}+l_{1} r+l_{1} r^{r}+l_{3} r^{3}+\cdots, & |x|<R_{2},
\end{array}
$$

the multiplication may le performed and the series arranged as

$$
f^{\prime}(x) g(x)="_{0} l_{0}+\left({ }_{0} l_{1}+"_{1} l_{0}\right) x+\left({ }_{0} l_{2}+"_{1} l_{1}+"_{2} l_{0}\right) x^{2}+\cdots
$$

according to ascending powers of x whenerer \boldsymbol{r} is mumerically less than the smaller of the two radii of convergence $l_{1_{1}}: l_{i_{2}}$, herause hoth series will then eonverge absolutely. Moreover, Ex. It above shows that this form of the product may still be appled at the extremities of its interval of convergence for real values of r provided the series converges for those values.

As an example in the multiplication of series let the product sin r ens r bernad.

$$
\sin x=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots, \quad \cos x=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\cdots
$$

The product will contain only odd powers of d. 'The first few terms are

$$
1 x-\left(\frac{1}{3!}+\frac{1}{2!}\right) r^{3}+\left(\frac{1}{5!}+\frac{1}{3!2!}+\frac{1}{4!}\right) r^{5}-\left(\frac{1}{7!}+\frac{1}{5!2!}+\frac{1}{3!4!}+\frac{1}{6!}\right) x^{7}+\cdots
$$

The law of formation of the enefficients gives as the conefficimen of $x^{2} k+1$

$$
\begin{aligned}
& \left.(-1)^{k}\left[\begin{array}{c}
1 \\
(2 k+1)!+(2 l-1)!2!
\end{array}+\frac{1}{(\because 2 l-3)!4!}+\cdots+\frac{1}{3!(2 k-2)!}+\frac{1}{(2 l}\right)!~\right]= \\
& -\frac{(-1)^{k}}{(2 k+1)!}\left[1+\frac{(2 k+1) 2 k}{2!}+\frac{(2 l+1)(2 k)(2 k-1)(2 k-2)}{4!}+\cdots+\frac{(2 k+1)}{1!}\right] .
\end{aligned}
$$

But $22 k+1=(1+1)^{2 k+1}=1+(2 k+1)+\frac{(2 k+1) 2 k}{2!}+\cdots+(2 k+1)+1$.
IIence it is seen that the coefficient of $r^{2 k-1}$ takes every other term in this symmetrical sum of an even number of terns and must therefore be equal to half the sum. The product may then be written as the series

$$
\sin x \cos x=\frac{1}{2}\left[2 x-\frac{(2 x)^{3}}{3!}+\frac{(2 x)^{5}}{5!}-\cdots\right]=\frac{1}{2} \sin 2 x .
$$

169. If a function $f(x)$ be expanded into a power series

$$
\begin{equation*}
f(x)=u_{0}+u_{1} x+u_{2} r^{2}+u_{3} x^{3}+\cdots, \quad|x|<R, \tag{15}
\end{equation*}
$$

and if $x=\alpha$ is any point within the cirele of convergence, it mon! be desired to trensfiom the serves into one whirh proceds afcording to pruers of $(x-\alpha)$ and concerges in a circle about the point $x=\alpha$. Let $t=x-a$. Then $x=\alpha+t$ and hence

$$
\begin{align*}
& x^{2}=r^{2}+2 r t+t^{2}, \quad r^{3}=r^{3}+3 r^{2} t+3 r t^{2}+t^{3}, \quad \cdots, \tag{15}
\end{align*}
$$

Since $|x|<R$, the relation $|\alpha|+|t|<R$ will hold for small values of t, and the series (15') will converge for $x=|x|+|t|$. Sinco

$$
u_{0}+u_{1}(|x|+|t|)+a_{2}\left(|x|^{2}+2|x||t|+|t|^{2}\right)+\cdots
$$

is absolutely convergent for small values of t, the parentheses in (15)) may he removed and the terms collected as

$$
\begin{align*}
& f(x)=\phi(t)=\left(n_{0}+u_{1} x+a_{2} x^{2}+\pi_{3} x^{3}+\cdots\right)+\left(n_{1}+2 n_{2} x+3 n_{3} r^{2}+\cdots\right) t \\
& +\left(t_{2}+3{n_{3}}_{3} x+\cdots\right) t^{2}+\left({ }^{\prime}{ }_{3}+\cdots\right) t^{3}+\cdots, \\
& \text { or } \\
& f(x)=\phi(x-\pi)=A_{0}+A_{1}(x-x)+A_{2}(x-k)^{2} \\
& +A_{3}(x-r)^{3}+\cdots, \tag{16}
\end{align*}
$$

where $A_{0}, A_{1}, A_{2}, \cdots$ are infinite series ; in fact

$$
A_{0}=f^{\prime}(r), \quad A_{1}=f^{\prime}(r), \quad A_{2}=\frac{1}{2!} f^{\prime \prime}(r), \quad A_{3}=\frac{1}{3!} f^{\prime \prime \prime \prime}(r), \cdots
$$

The series (16) in $x-x$ will surely eonverge within a circle of radius $R-|\alpha|$ about $x=\alpha$; but it may converge in a larger circle. As a matter of fact it will eonverge within the largest cirele whose center is at α and within which the function has a definite continnons derivative. Thus Maclaurin's expansion for $\left(1+x^{2}\right)^{-1}$ has a unit radius of convergence; but the expansion about $x=\frac{1}{2}$ into powers of $x-\frac{1}{2}$ will have a ladius of convergence equal to $\frac{1}{2} \sqrt{5}$, which is the distance from $x=\frac{1}{2}$ to either of the points $x= \pm i$. If the function lad originally been defned by its development about $x=0$, the definition would have been valid only over the mit aircle. The new development about $x=\frac{1}{2}$ will therefore extend the definition to a considerable region ontside the original domain, and by reperating the process the region of definition may be extended further. As the function is at each step defined by a power series, it remains analytie. This process of extending the definition of a function is called anulytic continuetion.

Consider the expansion of a function of a function. Let

$$
\begin{aligned}
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots, & |x|<l_{1}, \\
x=\phi(y)=b_{0}+b_{1} y+b_{2} y^{2}+b_{3} y^{3}+\cdots, & |y|<l_{2},
\end{aligned}
$$

and let $\left|\mu_{0}\right|<R_{1}$ so that, for sufficiently small values of y, the point x will still lie within the circle R_{1}. By the theorem on multiplication, the series for x may be squared, cubed, \cdots, and the series for x^{2}, x^{3}, \cdots may he arranged according to powers of y. These results may then be substituted in the series for $f^{\prime}(\cdot r)$ and the result may be ordered according to powers of y. Hence the expansion for $f^{[}[\phi(y)]$ is ohtained. That the expansion is valid at least for small values of y may be seen by considering

$$
\begin{gathered}
\left|r_{0}\right|+\left|a_{1}\right| \xi+\left|a_{2}\right| \xi^{2}+\left|\mu_{3}\right| \xi^{3}+\cdots, \quad \xi<r_{1}, \\
\xi=\left|r_{0}\right|+\left|r_{1}\right||y|+\left|r_{2}\right||y|^{2}+\cdots, \quad|y| \text { small },
\end{gathered}
$$

which are series of positive terms. The radins of convergence of the series for $f[\phi(y)]$ may be found by discussing that function.

For example emsider the problem of expanding $e^{\cos x}$ to five terms.

$$
\begin{aligned}
& e^{y}=1+y+\frac{1}{2} y^{2}+\frac{1}{6} y^{3}+\frac{1}{24} y^{4}+\cdots, \quad y=\cos x=1-\frac{1}{2} x^{2}+\frac{1}{2} x^{4}+\cdots, \\
& y^{2}=1-x^{2}+\frac{1}{3} x^{4}-\cdots, \quad y^{3}=1-\frac{3}{2} x^{2}+\frac{7}{8} x^{4}-\cdots, \quad y^{4}=1-2 x^{2}+1 \frac{2}{3} x^{4}-\cdots, \\
& e^{y}=1+\left(1-\frac{1}{2} x^{2}+\frac{7}{2} x^{4}-\cdots\right)+\frac{1}{2}\left(1-x^{2}\right.\left.+\frac{1}{3} x^{4}-\cdots\right)+\frac{1}{6}\left(1-\frac{3}{2} x^{2}+\frac{7}{8} x^{4}-\cdots\right) \\
& \quad+\frac{1}{24}\left(1-2 x^{2}+1 \frac{2}{3} x^{4}-\cdots\right)+\cdots \\
&=\left(1+1+\frac{1}{2}+\frac{1}{8}+\frac{1}{24}+\cdots\right)-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{12}+\cdots\right) x^{2} \\
& \quad\left(\frac{1}{2}+\frac{1}{6}+\frac{7}{48}+\frac{1}{y}+\cdots\right) x^{4}+\cdots, \\
& e^{y}=e^{\cos x}=2 \frac{1}{2} \frac{7}{4}-1 \frac{1}{3} x^{2}+\frac{2}{2} \frac{2}{7} x^{4}-\cdots .
\end{aligned}
$$

It should be moted that the coefficients in this series for $e^{\cos x}$ are really infinite series and the final values here given are only the approximate values found by taking the first few terms of each series. This will always be the case when $y=b_{0}+b_{1} x+\cdots$ begins with $b_{0} \neq 0$; it is also true in the expansion about a new origin, as in a previous paragraph. In the latter case the difficulty cannot be a coided, but in the case of the expansion of a function of a function it is sometimes possible to make a preliminary change which materially simplifies the final result in that the coefficients becone finite series. Thas here

$$
\begin{gathered}
e^{\cos x}=e^{1+z}=e e^{z}, \quad z=\cos x-1=-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-7^{\frac{1}{2} \sigma} x^{6}+\cdots, \\
z^{2}=\frac{1}{4} x^{4}-\frac{1}{24} x^{6}+\cdots, \quad z^{3}=-\frac{1}{8} x^{6}+\cdots, \quad z^{4}, z^{5}, z^{6}=0+\cdots, \\
e^{z}=1+\left(-\frac{1}{2} x^{2}+\frac{1}{2} \frac{1}{2} x^{4}-\nabla^{\frac{1}{2} \sigma} x^{6}+\cdots\right)+\frac{1}{2}\left(\frac{1}{4} x^{4}-\frac{1}{24} x^{6}+\cdots\right)+\frac{1}{8}\left(-\frac{1}{8} x^{6}+\cdots\right)+\cdots, \\
e^{\cos x}=e e^{z}=e\left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{4}-\frac{31}{7^{2}} x^{6}+\cdots\right) .
\end{gathered}
$$

The coefficients are now exact and the computation to x^{6} turns out to be easier than to x^{2} by the previous method ; the advantage introduced by the change would be even greater if the expansion were to be carried several terms farther.

The quotient of two pouror spries $f^{2}\left(x^{\prime}\right)$ by $g(x)$, if $g(0) \neq 0$, may be olituined b!y the ordinur!! alyonism of clirision "s:

$$
\frac{f(x)}{g(x)}=\frac{a_{0}+n_{1} r^{r}+{ }_{2} r^{2} r^{2}+\cdots}{b_{0}+b_{1} r^{r}+b_{2} r^{2}+\cdots}=c_{0}+r_{1} x^{2}+r_{2} x^{2}+\cdots, \quad b_{0} \neq 0
$$

For in the first plare as $g(0) \neq 0$, the quotient is analytie in the neighhorhood of $x=0$ and may be developed into a power series. It therefore merely remains to show that the coefficients ${ }_{c_{0}},{ }_{1}, r_{2}, \ldots$ are those that would be obtained by division. Multiply

$$
\begin{aligned}
& \left(n_{0}+\mu_{1} r^{r}+"_{2} r^{r^{2}}+\cdots\right)=\left(r_{0}+r_{1} r^{r}+r_{2} r^{2}+\cdots\right)\left(l_{0}+b_{1} r^{r}+b_{r^{\prime}} r^{2}+\cdots\right) \\
& =b_{0}{ }_{0}{ }_{0}+\left(J_{1} r_{0}+b_{0} r_{1}\right) r+\left(b_{2} r_{0}+b_{1} r_{1}+b_{0_{0}} r_{2}\right) \cdot r^{2}+\cdots,
\end{aligned}
$$

and then equate coefficients of equal powers of x. Then

$$
"_{0}=b_{0} r_{0}, \quad{ }_{1}=b_{1} r_{0}+b_{0} r_{1}, \quad{ }_{2}=l_{2} r_{n}+b_{1} r_{1}+l_{0} r_{2}, \cdots
$$

is a set of puations to be solved for $r_{0}, r_{1}, r_{2}, \cdots$. The terms in $f^{\prime}(x)$ and !f (.r) beromd , w^{n} have no effere upon the values of $r_{0}, r_{1}, \cdots, r_{n}$, and hence these would he the same if $b_{n+1}, l_{n+2} \cdots$ were replacerl by $0,0, \cdots$, and $"_{n+1}, "_{n+2}, \cdots, \prime_{2 n}, "_{2 n+1}, \cdots$ ly surh values $"_{n+1}^{\prime}, "_{n+2}^{\prime}, \cdots, "_{2 n}^{\prime} .0, \ldots$ as would make the division come out even: the coefficients r_{0} : ${ }^{\prime}{ }_{1} \ldots,{ }^{\prime}{ }_{n}$ are therefore precisely those obtained in dividing the series.

If $!f$ is developed into a power series in as

$$
\begin{equation*}
y=f^{\prime}\left(, r^{\prime}\right)=\prime_{0}+"_{1} r^{\prime}+"_{2} r^{2}+\cdots, \quad{ }_{1} \neq 0 \tag{17}
\end{equation*}
$$

then x may be developed into a power series in ! $-{ }^{\prime \prime}$ as

$$
\begin{equation*}
x=f^{-1}\left(!-\prime_{0}\right)=l_{1}\left(!\eta-\prime_{0}\right)+l_{2}\left(!!-\prime_{0}\right)^{2}+\cdots . \tag{18}
\end{equation*}
$$

For since ${ }_{1} \neq 0$, the function $f^{\prime}(x)$ has a nomvanishing derivative for $x=0$ and hence the inverse function $f^{-1}\left(!-\prime_{0}\right)$ is analytic near $x=0$ or $y="_{0}$ and can be developed (1,475). The methox of matermined coetficionts may be nsed to find l_{1}. $l_{12} . \cdots$. This process of finding (18) from (17) is called the erersion of (17). For the actual work it is simpler to replace $\left(y-"_{0}\right),_{1}{ }_{1}$ hy t so that
and

$$
\begin{array}{ll}
t=r+\left\|_{i r}^{\prime} r^{2}+\pi_{i r}^{\prime} r^{3}+\right\|_{4}^{\prime} r^{4}+\cdots, & \left\|_{i}^{\prime}=\right\|_{i} / \prime_{1}, \\
r^{\prime}=t+l_{i 2}^{\prime} r^{2}+l_{i j}^{\prime} t^{3}+l_{4}^{\prime} t^{+}+\cdots, & \\
l_{i}^{\prime}=l_{i} \prime_{1}^{i} .
\end{array}
$$

Let the assmmed value of,r he sulnstituted in the series for t : rearange the terms areording to powers of t and equate the corresponding coeffieients. Thus

$$
\begin{aligned}
t=t & +\left(l_{2}^{\prime}+l_{2}^{\prime}\right) t^{2}+\left(l_{3}^{\prime}+\because l_{2}^{\prime} \prime_{2}^{\prime}+\|_{3}^{\prime}\right) t^{3} \\
& +\left(l_{4}^{\prime}+2 l_{3}^{\prime} \prime_{2}^{\prime}+l_{2}^{\prime 2} \prime_{2}^{\prime}+3 l_{2}^{\prime} \mu_{3}^{\prime}+\prime_{4}^{\prime}\right) t^{4}+\cdots
\end{aligned}
$$

or $\quad l_{2}^{\prime}=-\pi_{2}^{\prime}, \quad l_{3}^{\prime}=2 \pi_{2}^{\prime 2}-\left\|_{3}^{\prime}, \quad l_{4}^{\prime}=-j \pi_{2}^{\prime 3}+j \prime_{2}^{\prime} \prime_{3}^{\prime}-\right\|_{4}^{\prime}, \cdots$.
170. For some few purposes, which are tolerably important, "fin'mul "pmontionml methoul of treating series is so useful as to be almost indispensable. If the series be taken in the form

$$
1+a_{1} x+\frac{a_{2}}{2!} r^{2}+\frac{a_{3}}{3!} x^{3}+\cdots+\frac{a_{n}}{n!} x^{n}+\cdots,
$$

with the factorials which occur in Marlaurin's development and with unity as the initial term, the series may be written as

$$
e^{a x}=1+u^{1} x^{r}+\frac{u^{2}}{2!} r^{2}+\frac{u^{3}}{3!} r^{3}+\cdots+\frac{u^{n}}{n!}{x^{n}}^{n}+\cdots
$$

provided that u^{i} be interpreted as the formal equivalent of " ${ }_{i}$. The product of two series would then formally suggest

$$
\begin{equation*}
e^{a x} e^{b x}=e^{(a+b) x}=1+(\prime+b)^{1} \cdot r^{r}+\frac{1}{\underline{2}!}(\prime+b)^{2} \cdot r^{2}+\cdots, \tag{19}
\end{equation*}
$$

and if the coetticients be transformed bey setting $\|^{i} \eta^{j}=a_{i} l_{j}$, then

$$
\begin{aligned}
\left(1+\prime_{1} r^{\prime}+\frac{\prime_{2}}{2!} u^{2}+\cdots\right)\left(1+l_{1} r^{r}\right. & \left.+\frac{l_{2}}{2!} r^{2}+\cdots\right) \\
& =1+\left(\prime_{1}+l_{1}\right)^{\prime}+\frac{\prime_{2}+2 \prime_{1} l_{1}+l_{2}}{2!}
\end{aligned}
$$

This as a matter of fart is the formula for the product of two series and hence justifies the suggestion contained in (19).

For example suppose that the development of

$$
\frac{x}{r^{r}-1}=1+B_{1} r^{r}+\frac{B_{3}}{2!} r^{2}+\frac{B_{3}}{3!} x^{3}+\cdots
$$

Whe desired. Is the derelopment begins with 1 , the formal method may be applied and the result is found to be

$$
\begin{gather*}
\frac{x}{e^{x}-1}=e^{B x}, \quad x=e^{(B+1) x}-e^{B x}, \tag{20}\\
x=r^{3}+\left[(B+1)^{2}-B^{2}\right] \frac{r^{2}}{\underline{2}}+\left[(B+1)^{3}-B^{3}\right] \frac{r^{3}}{3!}+\cdots,
\end{gather*}
$$

$(B+1)^{2}-B^{2}=0 . \quad(B+1)^{3}-B^{3}=0, \cdots, \quad(B+1)^{k}-B^{k}=0 . \cdots$, (12 $2 B_{1}+1=0 . \quad 3 B_{2}+3 B_{1}+1=0, \quad 4 B_{3}+6 B_{2}+4 B_{1}+1=0, \cdots$, Or $\quad B_{1}=-\frac{1}{2}, \quad B_{2}=\frac{1}{6}, \quad B_{3}=0, \quad B_{4}=-\frac{1}{30}, \cdots$.

The formal method leads to a set of equations from which the successive B 's may quickly be determined. Note that

$$
\frac{r}{e^{x}-1}+\frac{r}{2}=\frac{r}{2} \frac{r^{r}+1}{2}=\frac{r}{2}-1 \cdot \frac{r}{2}=-\frac{r}{2} \operatorname{coth}\left(-\frac{r}{2}\right)
$$

is an even function of x, and that consequently all the B s with odd indices except B_{1} are zero. This will facilitate the calculation. The first eight even E^{\prime} s are respectively

The numbers B, or their alsolute values, are called the Bernowlitin numbers. An independent justification for the method of formal calculation may readily be given. For observe that $e^{r^{r} \rho^{l / x}}=r^{(B+1) x}$ of (20) is true when B is regarded as an independent variable. Hence if this identity le arranged according to powers of B, the coefficient of each power must ranish. It will therefore not disturb the identity if any numbers whatsoever are substituted for $B^{1}, l^{2}, l^{3}, \cdots$: the particular set $B_{1}, B_{2}, B_{3}, \cdots$ may therefore be substituted : the series may be rearranged according to powers of r, and the coefficients of like powers of x may be equated to 0 , - as in (21) to get the desired equations.

If an infinite series be written without the factorials as

$$
1+\prime_{1} r^{r}+"_{i^{\prime}} r^{r^{2}}+\prime_{3} r^{r^{3}}+\cdots+"_{n} r^{r^{n}}+\cdots,
$$

a possible symbolic expression for the series is

$$
\frac{1}{1-u, r^{r}}=1+u^{1} x+u^{2} x^{2}+u^{3} \cdot x^{3}+\cdots, \quad u^{i}=\mu_{i} .
$$

If the substitution $y=x /(1+x)$ or $x=y /(1-y)$ be made,

$$
\begin{equation*}
\frac{1}{1-(1,!}=\frac{1}{1-" \frac{!!}{1-!}}=\frac{1-!}{1-(1+\prime \prime)!} . \tag{24}
\end{equation*}
$$

Now if the left-hand and right-hand expressions be expanded and "he regarded as an independent variable restricted to ralues which make $(n, r \mid<1$, the series oltained will both converge alsolutely and may be arranged areording to powers of ". 'orresponding coneticients will then he equal and the identity will therefore not be disturbed if " i_{i} rephaces u^{i}. Hence

$$
1+"_{1} r+"_{2} r^{2}+\cdots=(1-!)\left[1+(1+\prime) y+\left(1+(\prime)^{2}, y^{2}+\cdots\right],\right.
$$

provided that both series converge almolutely for $"_{i}=\pi^{i}$. Then

$$
=1+"_{1} y+\left(\prime_{1}+\prime_{2}\right)!y^{2}+\left(\prime_{1}+2_{\prime_{2}}+"_{3}\right) y^{3}+\cdots,
$$

or

$$
\begin{align*}
& "_{1} x+"_{2} r^{r^{2}}+"_{3^{\prime} r^{3}}+\cdots="_{1}!{ }^{\prime \prime}+\left.\left(\prime_{1}+"_{2}\right)!\right|^{2} \\
& +\left(\prime_{1}+\ddot{2}_{\left(\prime_{2}\right.}+"_{3}\right) y^{3}+\cdots \cdot \tag{3}
\end{align*}
$$

This transformation is known as Euler's transformation. Its great adrantage for computation lies in the fact that sometimes the second series converges much more rapidly than the first. This is espeeially true when the coefficients of the first series are such as to make the coefficients in the new series small. Thus from (25)

$$
\begin{aligned}
\log \left(1+x^{2}\right) & =x-\frac{1}{2} r^{2}+\frac{1}{3} x^{3}-\frac{1}{4} r^{4}+\frac{1}{5} x^{5}-\frac{1}{6} x^{6}+\cdots \\
& =y+\frac{1}{2} y^{2}+\frac{1}{3} y^{3}+\frac{1}{4} y^{4}+\frac{1}{5} y^{5}+\frac{1}{6} y^{6}+\cdots .
\end{aligned}
$$

To compute $\log 2$ to three decimals from the first series would require several hundred terms; eight terms are enough with the second series. An additional adrantage of the new series is that it may continue to converge after the original series has ceased to converge. In this case the two series can hardly be said to be equal; but the second series of course remains equal to the (continuation of the) function defined by the first. Thus $\log 3$ may be compruted to three decimals with alout a dozen terms of the second series, but camot be computed from the first.

EXERCISES

1. By the multiplication of series prove the following relations:
($\alpha)\left(1+x+x^{2}+x^{3}+\cdots\right)^{2}=\left(1+2 x+3 x^{2}+4 x^{3}+\cdots\right)=(1-x)^{-2}$,
(β) $\cos ^{2} x+\sin ^{2} x=1, \quad$ ($\left.\gamma\right) e^{x} e^{y}=e^{x+y}, \quad$ ($) ~ 2 \sin ^{2} x=1-\cos 2 x$.
2. Find the Maclaurin development to terms in x^{6} for the functions:
(c) $e^{x} \cos x$,
$(\beta) e^{x} \sin x$,
(γ) $(1+x) \log (1+x)$,
($\delta) \cos x \sin ^{-1} x$.
3. Group the terms of the expansion of $\cos x$ in two different ways to show that $\cos 1>0$ and $\cos 2<0$. Why does it then follow that $\cos \xi=0$ where $1<\xi<2$?
4. Establish the developments (Peirce's Nos. 785-789) of the functions:

$$
(\alpha) e^{\sin x}, \quad(\beta) e^{\tan x}, \quad(\gamma) e^{\sin -1} x, \quad(\delta) e^{\tan ^{-1} x}
$$

5. Show that if $g(x)=h_{m} x^{m}+b_{m+1} x^{m+1}+\cdots$ ancl $f(0) \neq 0$, then

$$
\frac{f(x)}{g(x)}=\frac{a_{0}+a_{1} r+a_{2} x^{2}+\cdots}{b_{m} x^{m}+b_{m+1} x^{m+1}+\cdots}=\frac{c_{-m}}{x^{m}}+\frac{c_{-m+1}}{x^{m-1}}+\cdots+\frac{c_{-1}}{x}+c_{0}+c_{1} x+\cdots
$$

and the development of the quotient has negative powers of x.
6. Develop to terms in x^{6} the following functions:
$(\alpha) \sin (k \sin x)$.
(β) $\log \cos x$,
$(\gamma) \sqrt{\cos x}$.
($\delta)\left(1-k^{2} \sin ^{2} x\right)^{-\frac{1}{2}}$.
7. Carry the reversion of these series t o terms in the fifth power:
($(\gamma) y=\sin x=x-\frac{1}{6} \cdot r^{3}+\cdots$,
(β) $y=\tan ^{-1} x=x-\frac{1}{3} \cdot x^{3}+\cdots$,
(γ) $y=e^{x}=1+x+\frac{1}{2} x^{2}+\cdots$,
(δ) $y=2 x+3 x^{2}+4 x^{3}+5 x^{4}+\cdots$.
8. Find the smallest root of these series by the method of reversion:

$$
\begin{aligned}
& \text { (ג) } \frac{1}{2}=\int_{0}^{x} e^{-x^{2} d x=r-\frac{1}{3} x^{3}+\frac{1}{3!5} x^{5}-\frac{1}{3!7^{7}} x^{7}+\cdots} \\
& \begin{array}{ll}
\text { (B) } \frac{1}{4}=\int_{0}^{r} \cos x^{2} l x . & \text { (र) } \frac{1}{10}=\int_{0}^{r} \frac{n d x}{\sqrt{\left(1-x^{2}\right)\left(1-\frac{1}{4} c^{2}\right)}}
\end{array}
\end{aligned}
$$

9. By the formal method oltain the general equations for the coefficients in the developments of these functions and compute the first five that do not vanish:
(x) $\frac{\sin x}{e^{x}-1}$,
(β) $\frac{2 c^{r}}{e^{r}+1}$,
(γ) $\frac{x^{3}}{1-2 x e^{5}+e^{2 x}}$.
10. Obtain the general expressions for the following developments:
(α) $\operatorname{coth} x=\frac{1}{x}+\frac{x}{3}-\frac{r^{3}}{45}+\frac{2 r^{-5}}{345}-\cdots+\frac{B_{2 n}(2, x)^{2 n}}{(2 n)!x}-\cdots$,
(β) $\cot x=\frac{1}{x}-\frac{x}{3}-\frac{x^{3}}{45}-\frac{2 x^{5}}{945}-\cdots+(-1)^{n} \frac{B_{2 n}(2 x)^{2 n}}{(2 n)!\cdot x}-\cdots$.
(र) $\operatorname{lng} \sin x=\operatorname{lng} x-\frac{x^{2}}{6}-\frac{s^{4}}{180}-\frac{r^{6}}{28 \cdot 3 \cdot 5}-\cdots+(-1)^{n} \frac{m_{2 n}(2, r)^{2 n}}{2 n \cdot(2 n)!}-\cdots$,
(б) $\log \sinh x=\operatorname{lng} x+\frac{r^{2}}{1 ;}-\frac{r^{4}}{180}+\frac{x^{6}}{2885}-\cdots+\frac{l_{n}(\underline{2} x)^{2 n}}{2 n \cdot(2 x)!}-\cdots$.
11. The Eulerian numbers $E=n$ are the coefticients in the expansion of sech x. listablish the defining equations and compute the first four at - 1. . . - til. 138.5.
12. Write the expansions for sece x and $\log \tan \left(\frac{1}{4} \pi+\frac{1}{2} r\right)$.
13. From the identity $\frac{1}{e^{r}-1}-\frac{2}{e^{2}-1}=\frac{1}{e^{r}+1}$ derive the expmsions:
((又) $\frac{r^{r}}{e^{r}+1}=\frac{1}{2}+B_{2}\left(2^{2}-1\right) \frac{r}{2!}+B_{4}\left(2^{4}-1\right) \frac{r^{3}}{4!}+\cdots+B_{2}^{2}\left(2^{2 n}-1\right) \frac{r^{2 n} n-1}{2 n!}+\cdots$.
(3) $\frac{1}{t^{r}+1}=\frac{1}{2}-B_{2}\left(2^{2}-1\right) \underset{2}{2}-B_{4}\left(2^{4}-1\right) \frac{r^{3}}{4!}-\cdots-B_{2 n}\left(2_{2 n}-1\right) \frac{r^{2 n} n-1}{2 n!}+\cdots$.
(r) tanh $x=\left(2^{2}-1\right) \underline{2}^{2} B_{2} \frac{r_{2}}{2!}+\left(\underline{2}^{4}-1\right) 2^{4} B_{4} \frac{r^{3}}{4}+\cdots+\left(2^{2 n}-1\right) \underline{2}^{2 n} B_{2}^{2} \frac{r^{2 n}-1}{2 n!}+\cdots$.
(δ) $\tan r=r+\frac{r^{3}}{3}+\frac{2 r^{5}}{15}+\frac{17}{315}+\cdots+(-1)^{n-1}\left(2^{2} n-1\right) \underline{2}-\cdots 132 n \frac{r^{2} n-1}{2 n}+\cdots$.

$(\eta) \csc x=\frac{1}{2}\left(\cot _{\underline{2}}^{\underline{2}}+\tan _{2}^{x}\right)=\frac{1}{r}+\frac{x}{3!}+\cdots+(-1)^{n-1} \underline{2}\left(2^{2 n-1}-1\right) B_{2 n} \underset{2}{r^{2 n}} n:$

(c) ligetanh x.
(N) $\mathrm{mish} s$.
($\lambda) \sec ^{2} d$.

Observe that the Bernotilian monbers afford a seneral development for all the trixomometric and hyperbolic functions and their logarithms with the exception of the sine and cosine (which have known developments) and the secant (which repuires the Euterian mumbers). The importance of these numbers is therefore apparent.
14. The coefficients $P_{1}(y), P_{2}(y) \ldots . P_{n}(y)$ in the development

$$
\frac{e^{y x}-1}{e^{r}-1}=y+P_{1}(y) x+P_{2}(y) x^{2}+\cdots+P_{n}(y) x^{n}+\cdots
$$

are called Bernoulli's polynomials. Show that $(n+1): P_{n}(y)=(B+y)^{n+1}-B^{n+1}$ and thas compute the first six polynomials in y.
15. If $y=\mathcal{N}$ is a positive integer, the puotient in Ex. 14 is simple. Hence

$$
n: I_{n}\left(N^{N}\right)=1+2^{n}+3^{n}+\cdots+(N-1)^{n}
$$

is easily shown. With the airl of the polymomials found above compute:
(c) $1+2^{4}+3^{4}+\cdots+10^{4}$.
(3) $1+2^{5}+3^{5}+\cdots+r^{3}$.
(γ) $1+2^{2}+9^{2}+\cdots+(1-1)^{2}$,
(б) $1+2^{3}+3^{3}+\cdots+(N-1)^{3}$.
16. Interpret $\frac{1}{1-a x} \frac{1}{1-b x}=\frac{1}{x(a-b)}\left[\frac{1}{1-a x}-\frac{1}{a-b x}\right]=\sum \frac{a^{n+1}-b^{n+1}}{a-b} x^{n}$.
17. From $\int_{0}^{x} e^{-(1-a x) t} d t=\frac{1}{1-a x}$ establish formally

$$
1+a_{1} x+a_{2} x^{2}+a_{3} r^{3}+\cdots=\int_{11}^{\infty} e^{-t} F(x t) d t=\frac{1}{x} \int_{0}^{x} e^{-\frac{u}{x}} F(u) d u
$$

where

$$
F(u)=1+u_{1} u+\frac{1}{2!} u_{2} u^{2}+\frac{1}{3!} u_{3} u^{3}+\cdots
$$

Show that the integral will converge when $0<x<1$ lrovideal $\left|\alpha_{i}\right| \leqq 1$.
18. If in a series the coefticients $"_{i}=\int_{11}^{1} t_{i f}(t) \cdot l t$. show

$$
1+u_{1} \cdot x+u_{2} x^{2}+u_{3} x^{3}+\cdots=\int_{0}^{1} \frac{f(l)}{1-s t} d t
$$

19. Note that Exs. 17 and 18 convert a series into an integral. Shom

(ß) $\frac{1}{1+1^{2}}+\frac{x}{1+2^{2}}+\frac{r^{2}}{1+3^{2}}+\cdots=-\int_{0}^{1} \frac{\sin \ln x t}{1-x t} d t \quad \ln \frac{1}{1+n^{2}}=\int_{0}^{x} \theta^{-n \xi} \sin \xi_{\xi} \xi_{5}$.
(ү) $1+\frac{a}{b} x+\frac{a(a+1)}{b(b+1)} x^{2}+\frac{(\prime(\prime+1)(u+2)}{b(b+1)(b+2)} r^{3}+\cdots$

$$
=\frac{\Gamma^{\prime}(b)}{\Gamma(u) \Gamma(b-u)} \int_{0}^{1 t^{\prime} t-1} \frac{(1-t)^{b-u-1}}{1-s t} \text { it. }
$$

20. In case the coefficients in a series are alternately positive and negative show that Euler's transformed series may be written

$$
a_{1} x-a_{2} x^{2}+a_{3} x^{3}-a_{4} x^{4}+\cdots=a_{1} y+\Delta a_{1} y^{2}+\Delta^{2}\left(\alpha_{1} y^{3}+\Delta^{3} \iota_{1} y^{4}+\cdots\right.
$$

where $\Delta a_{1}=a_{1}-a_{2}, \Delta^{2} a_{1}=\Delta q_{1}-\Delta a_{2}=a_{1}-2 a_{2}+a_{3}, \cdots$ are the successive first, second. ... differences of the numerical coeffeients.
21. Compute the values of these series by the method of Ex. 20 with $x=1, y=\frac{1}{2}$. Add the first few terms and apply the method of differences to the next few as indicated :
(a) $1-\frac{1}{2}+\frac{1}{8}-\frac{1}{4}+\cdots=0.09315$.
add 8 terms and take 7 more.
(β) $1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\cdots=0.6(6)=\%$
add 5 terms and take 7 more.
(γ) $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=0.78,39813$, ald 10 and take 11 more.
(() l'rove $\left(1+\frac{1}{2 p}+\frac{1}{3 z^{\prime}}+\frac{1}{4^{\prime}}+\cdots\right)=\frac{2^{p-1}}{2 p^{p-1}-1}\left(1-\frac{1}{22^{\prime \prime}}+\frac{1}{33^{\prime \prime}}-\frac{1}{4^{p}}+\cdots\right)$
and compute for $p=1.01$ with the aid of tive-phace talbes.
22. If an infinite series converges absolntely, show that any infinite series the terms of which are selected from the terms of the given series must als, converge. What if the given series converged. but mot absohtely ?
23. Note that the proof concerning tem-my-term interation (1. 482) would not hold if the interval were infinite. Discuss this case with eipecial referemees to justifying if possible the formal evaluations of lexs. 12 (a). (o) , p. 43?.
24. Check the fomma of Ex. 17 by temmise integration. Erahate

$$
\frac{1}{x} \int_{0}^{x} e^{-\frac{u}{x}} J_{u}(h u) d u=1-\frac{1}{2} b^{2} \cdot x^{2}+\frac{1}{2} \cdot \frac{l^{1}, x^{4}}{2}-2!-\cdots=\left(1+b^{2} \cdot x^{2}\right)^{-\frac{1}{2}}
$$

CHAP'TER XVII

SPECIAL INFINITE DEVELOPMENTS

171. The trigonometric functions. If m is an odd integer, say $m=\ddot{\sim} n+1$, De Moivre"s Theorem (s 72) givers

$$
\begin{equation*}
\frac{\sin m \phi}{m \sin \phi}=\cos ^{2 n} \phi-\frac{(m-1)(m-2)}{3!} \cos ^{2 n-2} \phi \sin ^{2} \phi+\cdots, \tag{1}
\end{equation*}
$$

where by virtue of the relation $\cos ^{2} \phi=1-\sin ^{2} \phi$ the right-hand member is a polynomial of degree $n \mathrm{in} \sin ^{2} \phi$. From the left-hand side it is seen that the value of the polynomial is 1 when sin $\phi=0$ and that the n roots of the polynomials are

$$
\sin ^{2} \pi / I I \prime, \quad \sin ^{2} 2 \pi / m, \quad \cdots, \quad \sin ^{2} n \pi / m
$$

Hence the polynomial maty be factored in the form

$$
\begin{equation*}
\frac{\sin m \phi}{m \sin \phi}=\left(1-\frac{\sin ^{2} \phi}{\sin ^{2} \pi / m}\right)\left(1-\frac{\sin ^{2} \phi}{\sin ^{2} 2 \pi / m \prime}\right) \cdots\left(1-\frac{\sin ^{2} \phi}{\sin ^{2} n \pi / m}\right) . \tag{2}
\end{equation*}
$$

If the substitutions $\phi=r / m$ and $\phi=i . r / m$ le made,

$$
\begin{aligned}
\frac{\sin r}{m \sin r / m} & =\left(1-\frac{\sin ^{2} r / m}{\sin ^{2} \pi / m}\right)\left(1-\frac{\sin ^{2} r / m}{\sin ^{2} 2 \pi / m}\right) \cdots\left(1-\frac{\sin ^{2} x / m}{\sin ^{2} n \pi / m}\right),(3\} \\
\frac{\sinh r}{m \sinh r / m} & =\left(1+\frac{\sinh ^{2} r / m}{\sin ^{2} \pi / m}\right)\left(1+\frac{\sinh ^{2}, r / m}{\sin ^{2} 2 \pi / m}\right) \cdots\left(1+\frac{\sinh ^{2} \pi / m}{\sin ^{2} n \pi / m}\right) \cdot\left(3^{\prime}\right)
\end{aligned}
$$

Now if m be allowed to berome infinite, passing through successive odd integers, these equations remain true and it would appene that the limiting relations would hold:

$$
\begin{gather*}
\frac{\sin r^{\prime}}{r^{2}}=\left(1-\frac{r^{2}}{\pi^{2}}\right)\left(1-\frac{r^{2}}{x^{2} \pi^{-2}}\right) \cdots=\prod_{1}^{\infty}\left(1-\frac{r^{2}}{i^{2} \pi^{2}}\right), \tag{4}\\
\frac{\sin h x}{r}=\left(1+\frac{r^{2}}{\pi^{2}}\right)\left(1+\frac{r^{2}}{x^{2} \pi^{2}}\right) \cdots=\prod_{1}^{6}\left(1+\frac{r^{2}}{l^{2} \pi^{2}}\right), \\
\lim _{m=\infty} \frac{\sin ^{2} \frac{x^{2}}{m}}{\sin ^{2} \frac{l i \pi}{m}}=\lim _{m=x} \frac{\left(\frac{r^{2}}{m}-\frac{1}{6} \frac{r^{3}}{m^{3}}+\cdots\right)^{2}}{\left(\frac{l \pi}{m}-\frac{1}{6}\left(\frac{l i \pi}{m}\right)^{3}+\cdots\right)^{2}}=\frac{x^{2}}{l_{i}^{2} \pi^{2}} .
\end{gather*}
$$

since

In this way the erpensions. into infinite products

$$
\begin{equation*}
\sin x=r \prod_{1}^{\infty}\left(1-\frac{x^{2}}{l_{1}^{2} \pi^{2}}\right), \quad \sinh x=r \prod_{1}^{\infty}\left(1+\frac{x^{2}}{l_{1}^{2} \pi^{2}}\right) \tag{5}
\end{equation*}
$$

wouk be found. As the theorem that the limit of a prosuct is the product of the limits holds in general only for finite products, the process here followed must be justitied in detail.

For the justification the consideration of sinh x, which involves only positive quantities, is simpler. Take the legarithm and split the sum into two parts

$$
\log \frac{\sinh \pi}{m \sin \ln \frac{r^{n}}{m}}=\sum_{1}^{p} \log \left(1+\frac{\sinh ^{2} \frac{d}{m}}{\sin ^{2} \frac{k \pi}{m}}\right)+\sum_{p=1}^{n} \log \left(1+\frac{\sinh ^{2} \frac{r}{m}}{\sin ^{2} \frac{k^{2} \pi}{m}}\right)
$$

As $\log (1+x)<r$, the seeond sum may be further transformed to

$$
R=\sum_{p+1}^{n} \log \left(1+\frac{\sinh ^{2} \frac{x}{m}}{\sin ^{2} \frac{k \pi}{m}}\right)<\sum_{p+1}^{n} \frac{\sinh ^{2} \frac{x}{m}}{\sin ^{2} \frac{k \pi}{m}}=\sinh ^{2} \frac{x}{m} \sum_{p+1}^{n} \frac{1}{\sin ^{2} \frac{k \pi}{m}} .
$$

Now as $n<\frac{1}{2} m$. the ancle $k \pi / m$ is less than $\frac{1}{2} \pi$, and $\sin \xi>2 \xi / \pi$ for $\xi<\frac{1}{2} \pi$. by Ex. 28, p. 11. Hence

$$
R_{i}<\operatorname{sinl}^{2} k \sum_{m}^{n} \frac{m^{2}}{4 k^{2}}=\frac{m^{2}}{4} \sinh ^{2} \frac{n^{n}}{m} \sum_{\mu+1}^{n} \frac{1}{k^{2}}<\frac{m^{2}}{4} \sin ^{2} \frac{x}{m} \int_{\mu}^{x} \frac{d k}{k^{2}}
$$

Hence

$$
\log \frac{\sinh x}{m \sinh x}-\sum_{1}^{\mu}\left(1+\frac{\sin ^{2} \frac{x}{m}}{\sin ^{2} \frac{k \pi}{m}}\right)<\frac{m t^{2}}{4 p} \sinh ^{2} \frac{x}{m}
$$

Now let m become intinite. As the smo on the left is a finite, the limit is simply

$$
\log \frac{\sinh x}{r}-\sum_{1}^{p}\left(1+\frac{r^{2}}{k^{2} \pi^{2}}\right)<\frac{x^{2}}{4 p} ; \text { and } \log \frac{\sinh x}{x}=\sum_{1}^{\infty}\left(1+\frac{x^{2}}{k^{2} \pi^{2}}\right)
$$

then follows tasily by letting p berome infinite. IIence the justitioation of (4^{\prime}).
By the differentiation of the series of legarithms of (\%),

$$
\begin{equation*}
\log \frac{\sin r^{r}}{r^{r}}=\sum_{1}^{x} \log \left(1-\frac{r^{2}}{\operatorname{li}^{2} \pi^{2}}\right) . \quad \log \sinh r=\sum_{1}^{x} \log \left(1+\frac{r^{2}}{h^{2} \pi^{2}}\right) \tag{6}
\end{equation*}
$$

the expressions of cot er and coth a in series of fratetions
are found. And the differentiation is legitimate if these series converge uniformly. For the hyperloblic function the uniformity of the convergence follows from the M-test

$$
\frac{1}{h^{2} \pi^{2}+s^{2}}<\frac{1}{k^{2} \pi^{2}} \text {, and } \sum \frac{1}{l^{2} \pi^{2}} \text { converges. }
$$

The accuracy of the series for cot x may then he inferred by the substitution of i, r^{\prime} for x insteal of by direct examination. As

$$
\begin{equation*}
\frac{-2 x}{k^{2} \pi^{2}-r^{2}}=\frac{1}{r-l_{i} \pi}+\frac{1}{r+l_{i} \pi}, \quad \cot x=\sum_{-\infty}^{+\infty} \frac{1}{r-l_{i} \pi} . \tag{8}
\end{equation*}
$$

In this expansion, howerer, it is necessary still to assoriate the terms for $k i=+n$ and $l_{i}=-n:$ for earh of the series for $l_{i}>0$ and for $\mathrm{l}:<0$ (livergess.

$$
\begin{equation*}
\frac{r}{2} \cdot \operatorname{coth} \frac{r}{2}=1+\sum_{1}^{x} \frac{2 r^{2}}{1 l^{2} \pi^{-2}+r^{2}}=1+\sum_{1}^{\infty} l_{2 n} \frac{x^{2 n}}{2 n!} . \tag{9}
\end{equation*}
$$

If the first series wan be arranged acoording to powers of x, an expression for $B_{2 \text { u }}$ will be found. Consider the identity

$$
\frac{t}{1+t}=-\sum_{p=1}^{n-1}(-t)^{n}-\frac{(-t)^{n}}{1+t}=-\sum_{1}^{n-1}(-t)^{n}-\theta(-t)^{n},
$$

which is derived bye division and in which θ is a proper fraction if t is positive. Sulstitute $t=r^{2} / 4 l:^{2} \pi^{2}:$ then

$$
\begin{aligned}
& \frac{x^{2}}{4 l^{2} \pi^{2}+y^{2}}=-\sum_{1}^{n-1}\left(-\frac{r^{2}}{4 l^{2} \pi^{2}}\right)^{p}-\theta_{k}\left(-\frac{x^{2}}{4 l^{2} \pi^{2}}\right)^{n}, \\
& \frac{x}{2} \operatorname{coth} \frac{r^{\prime}}{2}-1=-\underline{2} \sum_{k=1}^{x}\left[\sum_{r=1}^{n-1}\left(\frac{-r^{2}}{4 l_{i}^{2} r^{2}}\right)^{n}-\theta_{k}\left(\frac{-r^{2}}{4 l i^{2} \pi^{2}}\right)^{n}\right] \\
& =-2 \sum_{j=1}^{n-1}\left[\left(\frac{-r^{2}}{4 \pi^{2}}\right)^{p} \sum_{k=1}^{\infty} \frac{1}{l_{i}^{2,}}\right]-2 \theta\left(\frac{-r^{2}}{1 \pi^{2}}\right)^{n} \sum_{k=1}^{n} \frac{1}{l_{i}^{2 n}}{ }^{*}
\end{aligned}
$$

Let

$$
\begin{gathered}
\sum_{1}^{\infty} \frac{1}{l_{1}^{2} p^{\prime}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=s_{2,} \\
\frac{x}{2} \operatorname{coth} \frac{x^{\prime}}{2}-1=-2 \sum_{1}^{\prime \prime-1} x_{2}\left(\frac{-r^{2}}{4 \pi^{2}}\right)^{p}-2 \theta s_{2_{n}}\left(\frac{-r^{2}}{4 \pi^{2}}\right)^{n} .
\end{gathered}
$$

[^39]As $S_{2 n}$ approaches 1 when n becomes infinite, the last term approaches 0 if $x<2 \pi$, and the identical expansions are

Hence

$$
\begin{equation*}
2 \sum_{1}^{x} s_{2 p},(-1)^{\mu-1} \frac{r^{2} r^{2}}{(2 \pi)^{2 \mu}}=\sum_{1}^{x} B_{2, p} \frac{r^{2},}{2 p^{2}}!=\frac{x}{2} \operatorname{coth} \frac{x}{2}-1 . \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{x}{2} \operatorname{coth} \frac{x}{2}=1+\sum_{1}^{n-1} B_{2 p} \frac{n^{2 \mu}}{2 \mu^{\prime}!}+\theta B_{2 n} \frac{r^{2 n}}{2 n!} \tag{11}
\end{equation*}
$$

The desired expression for $B_{2_{n}}$ is thus found, and it is further seen that the expansion for $\frac{1}{2} x$ coth $\frac{1}{2} x$ can be broken off at any term with an error less than the first term omitted. This did not appear from the formal work of $\$ 170$. Further it may be noted that for large values of n the numbers $B_{2 n}$ are very large.

It was seen in treating the Γ-function that (Ex. 17, p. 380̈)

$$
\log \Gamma(n)=\left(n-\frac{1}{2}\right) \log n-n+\log \sqrt{2 \pi}+\omega(n),
$$

where

$$
\omega(n)=\int_{-\infty}^{0}\left(\frac{r}{2} \operatorname{coth} \frac{x}{2}-1\right) e^{n x} \frac{d x}{x^{2}} .
$$

As

$$
\int_{-\infty}^{n} x^{2-2 p} p^{n x} d x=\int_{0}^{\infty} \cdot r^{2 p} e^{-n x} d x=\frac{\Gamma(2 p+1)}{n^{2 p+1}}=\frac{2 p!}{n^{2 p+1}},
$$

the substitution of (12), and the integration gives the result

For large values of n this development starts to converge very rapidly, and by taking a few terms a very good value of $\omega(n)$ can be oltained; but too many terms must not be taken. Compare © $\$ 151,154$.

EXERCISES

1. Prove cas $x=\frac{\sin 2 x}{2 \sin x}=\prod_{0}^{\pi}\left(1-\frac{4 x^{2}}{(2 k+1)^{2} \pi^{2}}\right)$.
2. On the assmuption that the product for simh x inay be multiplied out and collected according to powers of x, show that

$$
\begin{aligned}
& \text { (c) } \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}, \quad \text { (} \beta \text {) } \sum_{k=1}^{\infty} \sum_{l=1}^{k} \frac{1}{k^{2} l^{2}}=\frac{\pi^{4}}{120}, \text { where } k \neq l . \\
& \text { (} \gamma) \sum_{k=1}^{\infty} \frac{1}{k^{-4}=}=\frac{\pi^{4}}{3(9)}, \\
& \text { (} \delta) \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{1}{k^{2} l^{2}}=\frac{\pi^{4}}{3 ;(6} \text {, if } k \text { may equal } i .
\end{aligned}
$$

3. By aid of Ex. $21(\hat{})$, p. 452 , show : $(\alpha) 1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{6}$,
(β) $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots=\frac{\pi^{2}}{8}$,
() $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{12}$.
4. Prove:
$(\alpha) \int_{0}^{1} \frac{\log x}{1-x} d x=-\frac{\pi^{2}}{6}$,
(β) $\int_{0}^{1} \frac{\log x}{1+x} d x=-\frac{\pi^{2}}{12}$,
(γ) $\int_{0}^{1} \frac{\log x}{1-x^{2}} d x=-\frac{\pi^{2}}{8}$,
($\delta) ~ \int_{0}^{1} \log \frac{1+x}{1-x} \frac{d x}{x}=\frac{\pi^{2}}{4}$.
5. From

$$
\tan x=-\cot \left(x-\frac{1}{2} \pi\right)=-\sum_{-\infty}^{+\infty} \frac{1}{x-\left(k+\frac{1}{2}\right) \pi}
$$

show $\csc x=\frac{1}{2}\left(\cot \frac{x}{2}+\tan \frac{x}{2}\right)=\sum_{-\infty}^{+\infty} \frac{(-1)^{k}}{x-k \pi}=\frac{1}{x}+\sum_{1}^{\infty} \frac{(-1)^{k} \cdot 2 x}{x^{2}-k^{2} \pi^{2}}$.
6. From $\frac{1}{1+x}=\sum_{0}^{n-1}(-x)^{k}+(-1)^{n} \frac{x^{n}}{1+x}=\sum_{0}^{n-1}(-x)^{k}+(-1)^{n} \theta x^{n}$ show $\int_{0}^{1} \frac{x^{a-1}}{1+x} d x=\sum_{v}^{\infty} \frac{(-1)^{k}}{t+k}$, and compute for $a=\frac{1}{4}$ by Ex. 21, p. 452 .
7. If a is a proser fraction so that $1-a$ is a proper fraction, show
(a) $\int_{0}^{1} \frac{x^{-a} d x}{1+x}=\sum_{1}^{n} \frac{(-1)^{k}}{a-k}=\int_{1}^{\infty} \frac{x^{a-1}}{1+x} d x$,
(β) $\int_{0}^{\infty} \frac{x^{\mu t-1}}{1+x} d x=\frac{\pi}{\sin u \pi}$.
8. When n is large $B_{2 n}=(-1)^{n-1} 4 \sqrt{\pi n}\left(\frac{n}{\pi e}\right)^{2 n}$ approximately (Ex. 13).
9. Fxpard the terms of $\frac{x}{2} \operatorname{coth} \frac{x}{2}=1+\sum_{1}^{\infty} \frac{2 x^{2}}{4 k^{2} \pi^{2}+x^{2}}$ by division when $x<2 \pi$ and rearmuge according to powers of x. Is it easy to justify this derivation of (11)?
10. Find $\omega^{\prime}(n)$ by differentiating under the sign and substituting. Hence get

$$
\frac{1^{\prime \prime}(n)}{1^{\prime}(n)}=\log n-\frac{1}{2 n}-\frac{B_{2}}{2 n^{2}}-\frac{B_{4}}{4 n^{4}}-\cdots-\frac{B_{2 n-2}}{(2 p-2) n^{2} n^{2}-2}-\frac{\theta B_{2} p}{2 p n^{2}{ }^{2}} .
$$

11. From $\frac{\Gamma^{\prime}(n)}{\Gamma(n)}+\gamma=\int_{0}^{1} \frac{1-\alpha^{n-1}}{1-\alpha} d \alpha$ of $\S 149$ show that, if n is integral,

$$
\frac{\Gamma^{\prime}(n)}{\Gamma^{\prime}(n)}+\gamma=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}, \quad \text { and } \quad \gamma=-\frac{\Gamma^{\prime}(1)}{\Gamma(1)}=0.5772156649 \ldots
$$

by taking $n=10$ and using the necessary number of terms of Ex. 10 .
12. Prove $\log \mathbf{\Gamma}\left(n+\frac{1}{2}\right)=n(\log n-1)+\log \sqrt{2 \pi}+\omega_{1}(n)$, where

$$
\begin{aligned}
& \omega_{1}(n)=\int_{-\infty}^{0}\left(\frac{1}{x}-\frac{e^{\frac{x}{2}}}{e^{x}-1}\right)_{e^{n x}} d x, \quad \omega_{1}(n)=\omega(n)-\omega(2 n), \\
& \omega_{1}(n)=\frac{B_{2} n^{-1}}{1 \cdot 2}\left(1-\frac{1}{2}\right)+\frac{B_{4} n^{-3}}{3 \cdot 4}\left(1-\frac{1}{2^{3}}\right)+\frac{B_{6} n^{-5}}{5 \cdot 6^{6}}\left(1-\frac{1}{2^{5}}\right)+\cdots .
\end{aligned}
$$

13. Show $n!=\sqrt{2 \pi n}\left(\frac{n}{\epsilon}\right)^{n} e^{\frac{\theta}{12 n}}$ or $\sqrt{2 \pi}\left(\frac{n+\frac{1}{2}}{e}\right)^{n+\frac{1}{2}} e^{-\frac{\theta}{24 n+12}}$. Note that the results of $s 149$ are now oltained rigorously.
14. From $\frac{1}{1-e^{-x}}=\sum_{0}^{n-1} e^{-k x}+\frac{e^{-n \cdot r}}{1-e^{-x}}=\sum_{0}^{n-1} e^{-k x}+\theta^{e^{-(n-1) x}} \underset{x}{c}$, and the formulas of $\$ 149$, prove the expansions
(o) $\frac{l^{2}}{d n^{2}} \log \Gamma(n)=\sum_{0}^{\infty} \frac{1}{(n+k)^{2}}$,
($\beta) \frac{d}{d n} \log \Gamma(n)+\gamma=\sum_{0}^{\infty}\left(\frac{1}{1+k}-\frac{1}{n+k}\right)$,
$(\gamma) \log \Gamma(n+1)+\gamma n=\sum_{i}^{\infty}\left(\frac{n}{k}-\log \frac{n+k}{k}\right)$,
($\delta) \frac{1}{\Gamma(n+1)}=e^{\gamma n} \prod_{1}^{\infty}\left(1+\frac{n}{k}\right) e^{-\frac{n}{k}}$.
15. Trigonometric or Fourier series. If the series

$$
\left.\begin{array}{rl}
f(x)= & \frac{1}{2} \prime_{0} \\
=\sum_{1}^{\infty}\left(\prime_{k} \cos k x+b_{k} \sin k_{k} x\right) \tag{14}\\
= & \frac{1}{2} \prime_{0}
\end{array}\right)+\prime_{1} \cos x+\prime_{2} \cos 2 x+\prime_{3} \cos 3 x+\cdots .
$$

converges over an interval of length 2π in x, say $0 \leqq x<2 \pi$ or $-\pi<r \leqq \pi$, the series will converge for all values of x and will define a periodic function $f(x+2 \pi)=f(x)$ of period 2π. As
accorcling as $l: \neq l$ or $l_{i}=l$, the coofticients in (14) may be determined formally hy multiplying $f^{\prime}\left(r^{\prime}\right)$ and the series by

$$
1=\cos 0, r, \quad \cos r, \quad \sin x, \quad \cos 2 x, \quad \sin 2 x, \cdots
$$

successivel amb integrating from 0 to 2π. By virtue of (15) each of the integrals vanishers except one, and from that one

$$
\begin{equation*}
{ }_{\prime} k=\frac{1}{\pi} \int_{0}^{2 \pi} f^{\prime}(\cdot r) \cos \text { hixd } r, \quad l_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin h i r d x . \tag{16}
\end{equation*}
$$

Converscrly if $f^{\prime}(r)$ be a function whicly is defined in an interval of length $\check{2} \pi$, and which is contimous ex'eplt at a finite mumber of points in the interval, the numbers a_{k} and b_{k} may be compouted aroording to (16) and the series (14) may then be constructed. If this series converges to the value of $f^{\prime}(, r)$. there has been found an expansion of $f(x)$ over the interval from 0 to 2π in a trigomomptria or Fomrior sories.* The question of whether the series thas found does really converge to

[^40]the value of the function, and whether that series can be integrated or differentiated term by term to find the integral or derivative of the function will be left for special investigation. At present it will be assumed that the function may be represented by the series, that the series may be integrated, and that it may be differentiated if the differentiated series converges.

For example let e^{x} be developed in the interval from 0 to 2π. Here
or

$$
a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} e^{x} \cos k x d x=\frac{1}{k \pi} \int_{0}^{2 \pi k} e^{\frac{y}{k}} \cos y d y=\left[\frac{e^{\frac{u}{k}}}{\pi}\left(\frac{k \sin y+\cos y}{k^{2}+1}\right)\right]_{0}^{2 \pi k}
$$

$$
a_{0}=\frac{1}{\pi} e^{2 \pi}-\frac{1}{\pi}, \quad a_{k}=\frac{1}{\pi} e^{2 \pi} \frac{1}{k^{2}+1}-\frac{1}{\pi} \frac{1}{k^{2}+1},
$$

and

$$
b_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} e^{x} \sin k x d x=-\frac{1}{\pi} \epsilon^{2 \pi} \frac{k}{k^{2}+1}+\frac{1}{\pi} \frac{k}{k^{2}+1} .
$$

Hence

$$
\begin{aligned}
& \frac{\pi e^{x}}{e^{2 \pi}-1}= \frac{1}{2} \\
&+\frac{1}{1^{2}+1} \cos x+\frac{1}{2^{2}+1} \cos 2 x+\frac{1}{3^{2}+1} \cos 3 x+\cdots \\
&-\frac{1}{1^{2}+1} \sin x-\frac{2}{2^{2}+1} \sin 2 x-\frac{3}{3^{2}+1} \sin 3 x+\cdots
\end{aligned}
$$

This expansion is valid only in the interval from 0 to 2π : outside that interval the series antomatically repeats that portion of the function which lies in the interval. It may be remarked that the expansion does not hold for 0 or 2π but gives the point midway in the break. Note further that if the series were differentiated the coefficient of the cosine terms would be $1+1 / k^{2}$ and would not approach 0 when k became infinite, so that the series would apparently oscillate. Integration from 0 to x wonld give

$$
\begin{aligned}
\frac{\pi\left(e^{x}-1\right)}{e^{2 \pi}-1}=\frac{1}{2} x & +\frac{1}{1^{2}+1} \sin x+\frac{1}{2^{2}+1} \frac{\sin 2 x}{2}+\frac{1}{3^{2}+1} \frac{\sin 3 x}{3}+\cdots \\
& +\frac{1}{1^{2}+1} \cos x+\frac{1}{2^{2}+1} \cos 2 x+\frac{1}{3^{2}+1} \cos 3 x+\cdots,
\end{aligned}
$$

and the term $\frac{1}{2} x$ may he replaced by its Fourier series if desired.
As the relations (15) hold not only when the integration is from 0 to 2π lut also when it is over any interval of 2π from α to $\alpha+2 \pi$, the function may be expanded into series in the interval from α to $\alpha+2 \pi$ by using these ralnes instead of 0 and 2π as limits in the formulas (16) for the coefficients. It may be shown that a function may be expanded in only one way into a trigonometric series (14) valid for an interval of length 2π : but the proof is somewhat intriate and will not he given here. If, however. the expansion of the function is desired for an interval $r<r<\beta$ less than 2π, there are an infinite number of developments. (14) which will answer; for if $\phi(x)$ be a
function which coincides with $f(x)$ during the interval $a<x<\beta$, over which the expansion of $f(x)$ is desired, and which las any value whatsoever over the remainder of the interval $\beta<x<\alpha+2 \pi$, the expansion of $\phi(x)$ from α to $x+2 \pi$ will converge to $f^{\prime}(x)$ orer the interval $a<x<\beta$.

In practice it is frequently desirable to restrict the interval over which $f(x)$ is expanderl to a length π, say from 0 to π, and to seek an expansion in terms of sines or cosines alone. Thus suppose that in the interval $0<x<\pi$ the function $\phi\left(x^{r}\right)$ he identical with $f^{\prime}(x)$, and that in the interval $-\pi<r<0$ it be equal to $f^{\prime}(-r)$; that is, the function $\phi(x)$ is an even function, $\phi(x)=\phi(-x)$, which is equal to $f\left(x^{\prime}\right)$ in the interval from 0 to π. Then ,

$$
\begin{aligned}
& \int_{-\pi}^{+\pi} \phi(x) \cos k x d x=2 \int_{0}^{\pi} \phi(x) \cos \operatorname{ki} r d x=2 \int_{0}^{\pi} f(x) \cos k x d x \\
& \int_{-\pi}^{+\pi} \phi\left(x^{\prime}\right) \sin \operatorname{ki} x d x=\int_{0}^{\pi} \phi(x) \sin k x d x-\int_{0}^{\pi} \phi(x) \sin k x d x=0
\end{aligned}
$$

Hence for the expansion of $\phi(, x)$ from $-\pi$ to $+\pi$ the coefficients h_{k} all ranish and the expansion is in terms of cosines alone. As $f(x)$ coincides with $\phi\left(r^{r}\right)$ from 0 to π, the expansion

$$
\begin{equation*}
f(x)=\sum_{11}^{\infty}{ }_{\prime \prime} \cdot \cos k i x, \quad{ }_{k}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos k x d x \tag{17}
\end{equation*}
$$

of $f(x)$ in terms of cosines alone, and valid orer the interval from 0 to π, has been fonnd. In like manner the expansion

$$
\begin{equation*}
f\left(r^{\prime}\right)=\sum_{1}^{\infty} l_{k} \sin l_{i} r^{\prime}, \quad b_{k}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin l_{k} x d l_{x} \tag{18}
\end{equation*}
$$

in term of sines alone may he found by taking $\phi(. r)$ ergual to $f\left(r^{\prime}\right)$ from 0 to π and equal to $-f(-, r)$ from 0 to $-\pi$.

Let $\frac{1}{2} r$ be developed into a series of sines and into a series of cosines valid over the interval from 0 to π. For the series of sines

$$
l_{k}=\frac{2}{\pi} \int_{11}^{\pi} \frac{1}{2} r \sin k x d x=-\frac{(-1)^{k}}{k}, \quad \frac{r}{2}=\sum_{1}^{\infty} \pm \frac{\sin k x}{k}
$$

or

$$
\begin{equation*}
\frac{1}{2} x=\sin x-\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x-\frac{1}{4} \sin 4 x+\cdots \tag{.1}
\end{equation*}
$$

Aso $\quad u_{0}=\frac{2}{\pi} \int_{n}^{\pi} \frac{1}{2} \cdot r d, r=\frac{\pi}{2} \quad u_{k}=\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2} \cdot x \cos k x d x=\left\{\begin{array}{l}0 . k \text { even } \\ -\frac{2}{\pi k} \cdot k \text { ord } .\end{array}\right.$
Hence

$$
\begin{equation*}
\frac{1}{2} x=\frac{\pi}{1}-\frac{2}{\pi}\left[\cos x+\frac{(\cos 3, r}{3^{2}}+\frac{(x) \pi}{5} \cdot r+\frac{(\cos 7 x}{3^{2}}+\cdots\right] . \tag{B}
\end{equation*}
$$

Although the two expansions define the same function $\frac{1}{2} x$ over the interval 0 to π, they will define different functions in the interval 0 to $-\pi$, as in the figure.

The development for $\frac{3}{4} x^{2}$ may be had by integratiug either series (A) or (B).

$$
\begin{aligned}
\frac{1}{4} x^{2} & =1-\cos x-\frac{1}{4}(1-\cos 2 x)+\frac{1}{9}(1-\cos 3 x)-\frac{1}{16}(1-\cos 4 x)+\cdots \\
& =\frac{\pi}{4} x-\frac{2}{\pi}\left[\sin x+\frac{\sin 3 x}{3^{3}}+\frac{\cos 5 x}{5^{3}}+\cdots\right] .
\end{aligned}
$$

These are not yet Fourier series because of the terms $\frac{3}{4} \pi x$ and the various 1's. For $\frac{1}{4} \pi x$ its sine series may be substitnted and the terms $1-\frac{1}{4}+\frac{1}{9}-\cdots$ may be collected by Ex. 3, p. 457. Hence

$$
\frac{1}{4} x^{2}=\frac{\pi^{2}}{12}-\cos x+\frac{1}{4} \cos 2 x-\frac{1}{9} \cos 3 x+\frac{1}{10} \cos 4 x-\cdots
$$

or $\frac{1}{4} x^{2}=\frac{2}{\pi}\left[\left(\frac{\pi^{2}}{4}-1\right) \sin x-\frac{\pi^{2}}{2} \sin 2 x+\left(\frac{\pi^{2}}{12}-\frac{1}{3^{2}}\right) \sin 3 x-\frac{\pi^{2}}{4} \sin 4 x+\cdots\right]$.
The differentiation of the series (X) of sines will give a series in whiel the inflividual terms do not approach 0 ; the differentiation of the series (B) of cosines gives

$$
\frac{1}{4} \pi=\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\frac{1}{6} \sin 7 x+\cdots
$$

and that this is the series for $\pi / 4$ may he verified by direct calculation. The difference of the two series (A) and (B) is a Fourier series

$$
\begin{equation*}
f(x)=\frac{\pi}{4}-\frac{2}{\pi}\left[\cos x+\frac{\cos 3 x}{3^{2}}+\cdots\right]-\left[\sin x-\frac{\sin 2 x}{2}+\cdots\right] \tag{C}
\end{equation*}
$$

which defines a function that vanishes when $0<x<\pi$ lout is equal to $-x$ when $0>x>-\pi$.
174. For diseussing the eonvergence of the trigonometric series as formally calculaterl, the sim of the first $2 n+1$ terms may be written as

$$
\begin{aligned}
S_{n} & =\frac{1}{\pi} \int_{0}^{2 \pi}\left[\frac{1}{2}+\cos (t-x)+\cos 2(t-x)+\cdots+\cos n(t-x)\right] f(t) d t \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} \frac{\sin (2 n+1) \frac{t-x}{2}}{2 \sin \frac{t-x}{2}} f(t) d t=\frac{1}{\pi} \int_{-\frac{x}{2}}^{\pi-\frac{x}{2}} f(x+2 u) \frac{\sin (2 n+1) u}{\sin u} d u,
\end{aligned}
$$

Where the first step was to combine $a_{k} \cdot \cos k x$ and b_{k} sin $k x$ after replacing x in the definite integrals (16) bs t to avoid eonfusion. then smming by the formula of dix. 9 . p. 30, and finally changing the variable to $u=\frac{1}{2}(t-x)$. The sum S_{n} is therefore represented as a definite interral whose limit must be evalnated as n becomes infinite.

Let the restriction he imposed upon $f(r)$ that it shall be of limited variation in the interval $0<x<2 \pi$. Is the function $f\left(f^{\prime}\right)$ is of limited variation, it may be recrarded as the differenee $P(x)-V(x)$ of two positive limited functions which are constantly increasing and which will be continuons wherever $f(x)$ is continuous ($\$ 127$). If $f(r)$ is discontimuns at $x=x_{0}$, it is still true that $f(x)$ approaches a limit. which will be denoted hy $f\left(x_{0}-0\right)$ when x approaches x_{0} from below; for each of the functions $P(x)$ and $T(x)$ is increasingr ant limited and hence each must approach a limit. and $f(r)$ will therefore approch the difference of the limits. In like mamer $f(r)$ will apprach a limit $f\left(x_{0}+0\right)$ as s appoaches x_{0} from above. Furthermore as $f(x)$ is of limited rariation the interrals reguired fror S_{n}, a_{k}, b_{k} will all exist ant there will be no diffienlty from that sumee. It will now be shown that
$\lim _{n=\infty} \dot{s}_{n}\left(r_{0}\right)=\lim _{n=\infty} \frac{1}{\pi} \int_{-\frac{r_{n}}{2}}^{\pi-\frac{r_{n}}{2}} f\left(r_{0}+2 u\right) \frac{\sin (2 n+1) u}{\sin u} d u=\frac{1}{2}\left[f\left(r_{0}+0\right)-f\left(x_{0}-0\right)\right]$.
This will show that the series ronverges to the function wherever the function is continuous and to the mid-point of the break wherever the function is disontinuous.

$$
\text { Let } f\left(r_{0}+2 u\right) \frac{\sin (2 n+1) u}{\sin u}=f\left(x_{0}+2 u\right) \frac{u}{\sin u} \frac{\sin (2 n+1) u}{u}=F(u) \frac{\sin k u}{u} \text {, }
$$

then $\dot{x}_{n}\left(x_{n}\right)=\frac{1}{\pi} \int_{-2}^{\pi-\frac{r_{0}}{2}} F(u) \frac{\sin k u}{u} d u=\frac{1}{\pi} \int_{u}^{b} F(u) \frac{\sin k u}{u} d u,-\pi<a<0<b<\pi$.
A* $f(x)$ is uf limited variation provinled $-\pi<u \leqq u \leqq b<\pi$. so most $f\left(x_{0}+2 u\right)$ be of limited variation anl alsu $F(\prime \prime)=u f /$ sin u. 'Then $F(u)$ may be recarled as
 two constantly Alocreanint lanitive fanctions: ank it will he sutficient to investisate the intecrall of $F(u) u^{-1}$ sink under the hyputhesis that $F(u)$ is constantly decreasiner. Let n le the momber of times $2 \pi / k$ is eontaineal in b.

$$
\begin{aligned}
& \int_{i j}^{n} F(u){ }_{u}^{\sin k u}-l u=\int_{u}^{\frac{2 \pi}{k}}+\int_{2 \pi}^{\frac{4 \pi}{k}}+\cdots+\int_{k}^{\frac{2 n \pi}{k}}+\frac{1 n-}{k}+\int_{2 n \pi}^{n} F(u) \frac{\sin k u}{u} d u \\
& =\int_{0}^{2 \pi}+\int_{2 \pi}^{1 \pi}+\cdots+\int_{-(n-1) \pi}^{2 n \pi} F\left(\frac{n}{k}\right) \sum_{u}^{\sin u} d u+\int_{\frac{2 n \pi}{k}}^{b} F(u) \frac{\sin k u}{u} d u .
\end{aligned}
$$

 ments are smaller than the conrownmoner positive elements. 'The interral from

$$
\int_{0}^{n} F(n) \frac{\sin k \cdot u}{u}, \eta u>\int_{0}^{2 p, \pi} F\binom{u}{k} \frac{\sin n}{u} l u . \quad p \text { fixed and less than } n .
$$

Again, $\int_{0}^{b} F(u) \frac{\sin k u}{u} d u=\int_{0}^{\pi}+\int_{\pi}^{3 \pi}+\int_{3 \pi}^{5 \pi}$

$$
+\cdots+\int_{(2 n-3) \pi}^{(2 n-1) \pi} F\left(\frac{u}{k}\right) \frac{\sin u}{u} d u+\int_{\frac{(2 n-1) \pi}{b} F(u)}^{\frac{\sin k u}{u} d u . ~ . ~}
$$

Here all the terms except the first and last are nerative because the negative elements of the interals are larger than the pasitive emonom. Ilence for k large,

$$
\int_{0}^{b} F(u) \frac{\sin k u}{u} d u<\int_{0}^{(2 p-1) \pi} F\left(\frac{u}{k}\right) \frac{\sin u}{u} d u, \quad p \text { fixed and less than } n .
$$

In the inequalities thus established let k become intinite. Then $u / k \doteq 0$ from above and $F(u / k) \doteq F(+0)$. It therefore follows that

$$
F(+0) \int_{0}^{(2)-1) \pi} \frac{\sin u}{u} d u<\lim _{k=x} \int_{0}^{b} F(u) \frac{\sin k u}{u} d u>F(+0) \int_{0}^{2 p \pi \pi} \frac{\sin u}{u} d u .
$$

Although p is tixerl, there is molimit to the size of the number at which it is fixed. Hence the inequality may be transformed into an equality

Likewise $\quad \lim _{k=\infty} \int_{u}^{0} F(u) \frac{\sin k u}{u} d u=F(-0) \int_{0}^{\infty} \frac{\sin u}{u} d u=\frac{\pi}{2} F(-0)$.

$$
\lim _{k=\infty} \int_{0}^{b} F(u) \frac{\sin k u}{u} d u=F(+0) \int_{0}^{x} \frac{\sin u}{u} d u=\frac{\pi}{2} F(+0) .
$$

Ilence

$$
\lim _{k=x} \int_{a}^{b} F(u) \frac{\sin k u}{u} d u=\frac{\pi}{2}[F(+0)+F(-0)]
$$

or

$$
\lim _{n=\infty} \frac{1}{\pi} \int_{-\frac{x_{n}}{2}}^{\pi-\frac{r_{n}}{2} f\left(r_{0}+2 u\right) \frac{\sin (2 n+1) u}{\sin u} d u=\frac{1}{2}\left[f f\left(x_{0}+0\right)+f\left(x_{0}-0\right)\right] ~ . ~}
$$

Hence for every puint r_{0} in the interval $0<x<2 \pi$ the series eonverges to the function where contimons. and to the mirl-pint of the loreak where discontimons.

As the function $f(r)$ has the perion 2π. it is natural to suppose that the conversence at $x=0$ and $x=2 \pi$ will not differ materialls from that at any other value. namely, that it will be to the value $\frac{1}{2}[f(+0)+f(2 \pi-0)]$. This may be shown by a transformation. If k is an onk integer, $2 n+1$.

$$
\sin (2 n+1) u=\sin (2 n+1)(\pi-u)=\sin \left(\frac{2}{2} n+1\right) u^{\prime} .
$$

$\lim _{n=\infty} \int_{b}^{\pi} F(u) \frac{\sin (2 n+1) u}{u} d u=\lim _{n=\infty} \int_{0}^{\pi-b} F\left(u^{\prime}\right) \frac{\sin (\underline{2} n+1) u^{\prime}}{u^{\prime}} \cdot d u^{\prime}=\frac{\pi}{2} F\left(u^{\prime}=+0\right)$.
Hence

$$
\lim _{n=\infty} \int_{0}^{\pi} F(u) \frac{\sin (2 n+1) u}{u} d u=\lim _{n=\infty} \int_{0}^{b}+\int_{b}^{\pi}=\frac{\pi}{2}[F(+0)+F(\pi-0)] .
$$

Now for $x=0$ or $x=2 \pi$ the sum $s_{n}=\frac{1}{\pi} \int_{0}^{\pi} f(2 u) \frac{\sin (2 n+1) u}{\sin u} d u$, and the limit will therefore be $\frac{\frac{1}{2}}{2}[f(+0)+f(2 \pi-0)]$ as predicted above.

The convergence may he examinerl more closely. In fact

$$
S_{n}(x)=\frac{1}{\pi} \int_{-\frac{r}{2}}^{\pi-2}{ }_{2}^{x} f(r+2 u) \frac{u}{\sin u} \frac{\sin k u}{u} d u=\frac{1}{\pi} \int_{a(x)}^{b(x)} F(r \cdot u) \frac{\sin k u}{u} d u .
$$

Suppose $0<\alpha \leqq x \leqq \beta<2 \pi$ so that the least possible upper limit $b(x)$ is $\pi-\frac{1}{2} \beta$ and the greatest possible lower limit $a(x)$ is $-\frac{1}{2} \alpha$. Let n be the number of times $2 \pi / k$ is contained in $\pi-\frac{1}{2} \beta$. Then for all values of x in $\alpha \leqq x \leqq \beta$,

$$
\begin{aligned}
\int_{0}^{(2 p-1) \pi} F\left(x, \frac{u}{k}\right) \frac{\sin u}{u} d u+\epsilon & <\int_{0}^{b(x)} F(x, u) \frac{\sin k u}{u} d u \\
& <\int_{0}^{2 p \pi} F\left(x, \frac{u}{k}\right) \frac{\sin u}{u} d u+\eta, \quad p<n
\end{aligned}
$$

where ϵ and η are the integrals orer partial periods neglected above and are minformly small for all x 's of $\alpha \leqq x \leqq \beta$ since $F(x, u)$ is everywhere finite. This shows that the number p may be chosen uniformly for all x s in the interval and ret ultimately may be allowed to beeome infinite. If it be now assumed that $f(x)$ is continuous for $\alpha \leqq x \leqq \beta$, then $F(x, u)$ will be continnons and hence uniformly continuous in (x, u) for the region definegd by $\alpha \leqq x \leqq \beta$ and $-\frac{1}{2} x \leqq u \leqq \pi-\frac{1}{2} x$. Hence $F(x, u / k)$ will converge miformly to $F(x,+0)$ as k becomes infinite. Hence

$$
F(x,+0) \int_{0}^{x} \frac{\sin u}{u} d u+\epsilon^{\prime}<\int_{0}^{h(x)} F(x, u) \frac{\sin k u}{u} d u<F(x,+0) \int_{0}^{\infty} \frac{\sin u}{u} d u+\eta^{\prime}
$$

where, if $\delta>0$ is given. K may be taken so large that $\left|\epsilon^{\prime}\right|<\delta$ and $\left|\eta^{\prime}\right|<\delta$ for $k>K$; with a similar relation for the integration from $a(x)$ to 0 . Hence in any interval $0<\alpha \leqq x \leqq \beta<2 \pi$ over which $f(x)$ is continuous $S_{n}(x)$ converges matommy toward its linit $f(x)$. Over such an interval the series may be integrated term by term. If $f(x)$ has a finite number of discontinnities, the series may still be integrated term by term thronghont the interval $0 \leqq x \leqq 2 \pi$ becanse $s_{n}(x)$ remains always finite and limited and such diseontinuities may be disregarded in integration.

EXERCISES

1. Obtain the expansions ofer the indicated intervals. Integrate the series. Also discuss the differentiated series. Make graphs.
(a) $\frac{\pi e^{x}}{2 \sinh \pi}=\frac{1}{2}-\frac{1}{2} \cos x+\frac{1}{5} \cos 2 x-\frac{1}{10} \cos 3 x+\frac{1}{17} \cos 4 x-\cdots$
$-\pi t 0+\pi$,

$$
+\frac{1}{2} \sin x-\frac{2}{5} \sin 2 x+\frac{3}{10} \sin 3 x-\frac{4}{17} \sin 4 x+\cdots
$$

(β) $\frac{1}{4} \pi$, as sine simies, 0 to π.
(γ) $\frac{1}{4} \pi$. as cosine series, 0 to π,

(ϵ) $\cos x$, as sine series. 0 to π, (5) cr. as eosinu suries, 0 to π,
$(\eta) x \sin x,-\pi t 1 \pi . \quad(\theta) x \cos x,-\pi t o \pi . \quad(c) \pi+x,-\pi$ to π.
(к) $\sin \theta x,-\pi$ to $\pi . \theta$ fractional,
(λ) $\cos \theta \cdot r,-\pi$ to π, θ fractional.
$(\mu) f(x)=\left\{\begin{array}{l}\frac{1}{4} \pi, 0<x<\pi, \\ 0, \pi<x<2 \pi .\end{array} \quad(\nu) f(x)=\left\{\begin{array}{l}\frac{1}{4} \pi, 0<x<\frac{1}{2} \pi . \\ -\frac{1}{4} \pi . \frac{1}{2} \pi<x<\pi .\end{array}\right.\right.$ as a sine selies. 0 to π,
(o) $-\log \left(2 \sin \frac{r}{2}\right)=\cos x+\frac{1}{2} \cos 2 x+\frac{1}{3} \cos \boldsymbol{\operatorname { c o s }} \boldsymbol{2}+\frac{1}{4} \cos 4 x+\cdots 0$ to π,
(π) $x,-\frac{1}{2} \pi$ to $\frac{3}{2} \pi$,
(ρ) $\sin \frac{1}{2} x,-\frac{1}{2} \pi$ to $\frac{3}{2} \pi$.
(σ) $\cos \frac{1}{2} x,-\frac{3}{2} \pi$ to $\frac{1}{2} \pi$,
(τ) from (o) find expansions for $\log \cos \frac{1}{2} x, \log$ vers $x, \log \tan \frac{1}{2} x$. Note that in these cases, as in (o), the function does not remain finite, but its integral does.
2. What peculiarities occur in the trigonometric development from $-\pi$ to π for an odd function for which $f(x)=f(\pi-x)$? for an even function for which $f(x)=f(\pi-x)$?
3. Show that $f(x)=\sum_{1}^{\infty} b_{k} \sin \frac{k \pi x}{c}$ with $b_{k}=\frac{2}{c} \int_{0}^{c} f(x) \sin \frac{k \pi x}{c} d x$ is the trigonometric sine series for $f(x)$ over the interval $0<x<c$ and that the function thus lefined is odd and of period $2 c$. Write the corresponding results for the cosine series and for the general Fourier series.
4. (Obtain Nos. 808-812 of Peirce's Tables. Graph the sum of Nos. 809 and 810 .
5. Let $e(x)=f(x)-\frac{1}{2} a_{0}-a_{1} \cos x-\cdots-a_{n} \cos n x-b_{1} \sin x-\cdots-b_{n} \sin n \cdot x$ be the error made by taking for $f(x)$ the first $2 n+1$ terms of a trigonometric series. The mean value of the square of $e(x)$ is $\frac{1}{2 \pi} \int_{-\pi}^{+\pi}[e(x)]^{2} d x$ and is a function $F\left(a_{0}, a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}\right)$ of the coefficients. Show that if this mean square error is to be as small as possible, the constants $a_{0}, a_{1}, \cdots, u_{n}, b_{1}, \cdots, b_{n}$ must be precisely those given by (16); that is, slow that (16) is equivalent to

$$
\frac{\hat{c} F}{\hat{c} a_{0}}=\frac{\hat{c} F}{\hat{c} a_{1}}=\cdots=\frac{\hat{c} F}{\hat{c} a_{n}}=\frac{\hat{c} F}{\hat{c} b_{1}}=\cdots=\frac{\hat{c} F}{\hat{c} b_{n}}=0
$$

6. By using the variable λ in place of x in (16) deduce the equations

$$
\begin{aligned}
f(x) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\lambda) \cos \theta(\lambda-x) d \lambda+\frac{1}{\pi} \sum_{1}^{\infty} \int_{0}^{2 \pi} f(\lambda) \cos k(\lambda-x) d \lambda \\
& =\frac{1}{2 \pi} \sum_{-\infty}^{\infty} \int_{0}^{2 \pi} f(\lambda) e^{ \pm k\left(\lambda-h^{\prime} i\right.} d \lambda=\frac{1}{2 \pi} \sum_{-\infty}^{\infty} e^{\mp k x i} \int_{0}^{2 \pi} f(x) e^{ \pm k x i} d x
\end{aligned}
$$

and hence infer $\quad f(x)=\sum_{-\infty}^{\infty} \alpha_{k} e^{\ddagger k \cdot x i} . \quad \alpha_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{ \pm k \cdot r i} d x$.
7. Without attempting rigorouts analysis show formally that

$$
\begin{aligned}
\int_{-\infty}^{\infty} \phi(\alpha) d \alpha= & \lim _{\Delta a \doteq 0}[\cdots+\phi(-n \cdot \Delta(1) \Delta(\gamma+\phi(-n+1 \cdot \Delta \alpha) \Delta \alpha+\cdots+\phi(-1 \cdot \Delta \alpha) \Delta \alpha \\
& +\phi(0 \cdot \Delta(\gamma) \Delta \gamma+\phi(1 \cdot \Delta \alpha) \Delta(\gamma+\cdots+\phi(n \cdot \Delta \alpha) \Delta \gamma+\cdots] \\
= & \lim _{\Delta a=0} \sum_{-\infty}^{\infty} \phi\left(k \cdot \Delta(\gamma) \Delta \gamma=\lim _{c=\infty} \sum_{-\infty}^{\infty} \phi\left(k_{-\infty}^{\prime \prime} \frac{\prime}{c}\right) \frac{a}{c} .\right.
\end{aligned}
$$

Show $f(x)=\frac{1}{2} \sum_{-\infty}^{\infty} \int_{-c}^{c} f(\lambda) e^{ \pm \frac{k \pi}{c}(\lambda-x) i} d \lambda=\frac{1}{2 \pi} \sum_{-\infty}^{\infty} \int_{-c}^{c} f(\lambda) e^{\frac{k \pi}{c}(\lambda-x) i} \frac{\pi}{c} d \lambda$
is the expansion of $f(x)$ by Fombier series from $-c$ to c. Hence nuter than

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\lambda) e^{ \pm \alpha(\lambda-r) i} d \lambda d \alpha=\lim _{c=x=\pi} 1 \sum_{-\infty}^{\infty} \int_{-c}^{c} f(\lambda) e^{ \pm \frac{k \pi}{c}(\lambda-x) x} d \lambda \frac{\pi}{c}
$$

is an expression for $f(x)$ as a double integral, which may be expectet to hold for all values of x. Reduce this to the form of a Fourier lntegral (Ex. 15, p. 377)

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(\lambda) \cos \alpha(\lambda-x) d \lambda d c{ }_{-}
$$

8. Assmme the possibility of expanding $f(x)$ between -1 and +1 as a series of Legendre polynomials (Exs. 13-20, p. 252, Ex. 16, p.440) in the form

$$
f(x)=a_{0} P_{0}(x)+u_{1} P_{1}(x)+{k_{2}}_{2} P_{2}(x)+\cdots+a_{n} P_{n}(x)+\cdots
$$

By the aid of Ex. 19, p. 253, determine the coefficients as $\alpha_{k}=\frac{2 k+1}{\underline{y}} \int_{-1}^{1} f(x) P_{k}(x) d x$. For this expansion, form $e(x)$ as in Ex. 5 and show that the determination of the coefficients a_{i} so as to give a least mean square eror agrees wili the determination here fomm.
9. Note that the expansion of Ex. 8 represents a function $f(x)$ between the limits ± 1 as a polynomial of the nth degree in x, plus a remainder. It may be shown that precisely this polynomial of deqree n gives a smaller mean square error over the interval than any other polynomial of degree n. For suppose

$$
g_{n}(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}=b_{0}+b_{1} P_{1}+\cdots+b_{n} P_{n}
$$

be any polynomial of degree n and its equivalent expansion in terms of Legendre polynomials. Now if the c 's are so determined that the mean value of $\left[f(f)-y_{n}(x)\right]^{2}$ is a minimmm, so are the b s, which are linear homogeneons functions of the c s.s. Hence the b's must be iklentical with the és alowe. Note that whereas the Machanin expansiom replates $f(x)$ by a polyomial in a which is a very gool appoximation near $x=0$, the legendre expransion replaces $f(x)$ by a polynomial which is the best expansion when the whole interval from - 1 to +1 is consintered.
10. Compute (cf. Ex. 17, p.2.2) the polyumial. $I_{1}=r, P_{2}=-\frac{1}{2}+\frac{3}{2} x^{2}$,

$$
P_{i}=-\frac{3}{2} x+\sum_{2}^{5} x^{3}, \quad P_{4}={ }_{x}^{3}-1_{4}^{\frac{1}{4}} x^{2}+{ }_{8}^{3} x^{4}, \quad P_{5}=\frac{15}{8} x-\frac{3.5}{4} x^{3}+{ }_{8}^{63} x^{5} .
$$

Compute $\int_{-1}^{1}{ }^{r^{i}} \sin \pi \cdot x d x=0, \frac{2}{\pi}\left(1-\frac{i}{\pi^{2}}\right), 0 . \frac{2}{\pi}, 0$ when $i=4,3,2.1$. 0 . Hence show that the polyonmial of the fourth degree which best represents sin $\pi \cdot$ from -1 to +1 reduces to dowree thred, and is

$$
\sin \pi x=\frac{3}{\pi} \cdot r-\frac{7}{\pi}\left(\frac{15}{\pi^{2}}=1\right)\left(\frac{5}{-2} x^{3}-\frac{3}{2} x\right)=2.69 x-2.89 x^{3} .
$$

Show that the mean square error is 0.004 and compare with that due to Maclaurins expansion if the term in x^{+}is retained or if the term in x^{3} is retained.
11. Expand $\sin \frac{1}{2} \pi x=\frac{12}{\pi^{2}} P_{1}-\frac{108}{\pi^{2}}\left(\begin{array}{l}10 \\ \pi^{2}\end{array}-1\right) P_{3}=1.55: 3, x-0.502, r^{3}$.
12. Expand from - 1 . $10+1$, as far as indicated, these functions:
($(<) \cos \pi r r$ to I_{4}.
(β) $c^{\prime \prime}$
to I_{j} 。
$(\gamma) \log (1+r)$ to P_{4}.
($\delta) \sqrt{1-x^{2}}$ † P_{4},
(ϵ) $\mathrm{cos}-1 \cdot r$ to P_{1}.
(ζ) $\operatorname{tam}^{-1} r$
to I_{5},
(η) $\frac{1}{11+r} \quad$ to I_{3}^{\prime},

(i) $\frac{1}{\sqrt{1+x^{2}}}$
to P_{3}.

What simplifications occur if $f(x)$ is onlo or if it is even?
175. The Theta functions. It has been seen that a function with the period 2π may be expanded into a trigonometric series; that if the function is odd, the series contains only sines; and if, furthermore, the function is symmetric with respect to $x=\frac{1}{2} \pi$, the odd multiples of the angle will alone oceur. In this case let
$f^{\prime}(x)=2\left[{ }_{0} \sin x-u_{1} \sin 3 x+\cdots+(-1)^{n} u_{n} \sin (2 n+1) x+\cdots\right]$.
As $2 \sin n \cdot x=-i\left(e^{n x i}-e^{-n, i}\right)$, the series may be written
$f(x)=2 \sum_{0}^{\infty}(-1)^{n} \epsilon_{n} \sin (2 n+1) x=-i \sum_{-\infty}^{\infty}(-1)^{n}{ }_{\mu_{n}} e^{(2 n+1)>i},{ }_{1}-n={ }_{n-1}$.
This exponential form is very convenient for many purposes. Let i ρ be added to x. The general term of the series is then

$$
u_{n-1} e^{(2 n-1)(x+i \rho) i}=u_{n-1}{ }^{(2-(2 n-1) \rho} e^{-2 x i} e^{(2 n+1) x i} .
$$

Hence if the cocfficients of the serios satisfy $a_{n-1} e^{-2 n p}=a_{n}$, the new greneral term is identical with the succeeding term in the given series multiplied by - $e^{\rho} e^{-2 x i}$. Hence

$$
f(x+i \rho)=-e^{\rho} e^{-2 x i} f(x) \quad \text { if } \quad \epsilon_{n-1}=\epsilon_{n} e^{2 n \rho} .
$$

The recurrent relation between the coetlicients will determine them in terms of u_{0}. For let $q=e^{-\rho}$. Then

$$
\begin{gathered}
u_{n}=u_{n-1} q^{2 n}=a_{n-2} q^{2 n} q^{2 n-2}=\cdots=u_{0} q^{2 n} q^{2 n-2} \cdots q^{2}=a_{0} q^{n^{2}+n} \\
u_{0}=\prime_{-1}=a_{-2} q^{-2}=u_{-3} q^{-2} q^{-4}=\cdots=a_{-n-1} q^{-n^{2}-n} .
\end{gathered}
$$

The new relation on the coefficients is thus compatihle with the original relation $"_{-n}=u_{n-1}$. If $u_{0}=q^{\frac{1}{4}}$, the series thats becomes
$f(x)=24^{\frac{1}{4}} \sin x-24^{\frac{9}{4}} \sin 3 x+\cdots+(-1)^{n} 27^{\frac{1}{4}(2 x+1)^{2}} \sin (2 n+1) x+\cdots$, $f^{\prime}\left(x^{\prime}+2 \pi\right)=f(x), \quad f(x+\pi)=-f^{2}\left(x^{x}\right), \quad f(x+i \rho)=-q^{-1, \rho^{2} x i} f(x)$.

The function thus defined formally has important properties.
In the first place it is important to discoss the convergenee of the series. Apply the test ratio to the exponential form.

$$
u_{n+1} / u_{n}=q^{2 n} e^{2 x i}, \quad u_{-n-1} / u_{-n}=q^{2 n_{e}} e^{-2 x i} .
$$

For any r this ratio will approad the limit 0 if $I f$ is momerically less than 1. Hence the series converges for all values of x provided $|y|<1$. Moreover if $|x|<\frac{1}{2}\left(i\right.$, the absolute value of the ratio is less than $|y|^{2 n} e^{G}$, which approaches 0 as n becomes infinite. The terms of the series therefore ultimately become less than those of any assigned geometrie
series. This establishes the uniform tonvergence and consequently the continuity of $f^{\prime}(x)$ for all real or complex values of r. As the series for $f^{\prime \prime}(x)$ may be treated similarly, the function has a continuous derivative and is everywhere analytic.

By a change of variable and notation let

$$
\begin{gather*}
H(\prime)=f\left(\frac{\pi \prime \prime}{2} \frac{K^{\prime}}{2}\right), \quad I=e^{-\pi \frac{\pi^{\prime}}{\hbar}}, \tag{19}\\
H(\prime \prime)=2 \eta^{\frac{1}{4}} \sin \frac{\pi \prime \prime}{2 K}-24^{\frac{9}{4}} \sin \frac{3 \pi \prime \prime}{2 K}+24^{\frac{25}{4}} \sin \frac{\sigma \pi \prime \prime}{2 K}-\cdots \tag{20}
\end{gather*}
$$

The function $I /(1)$, called eta of u, has therefore the properties

$$
\begin{gather*}
H(u+2 K)=-H(u), \quad H\left(u+2 i K^{-1}\right)=-4^{-1} e^{-\frac{i \pi}{h^{\prime}} u} H(u), \quad(\because 2 \tag{21}\\
H\left(u+2 m K+2 i n K^{\prime}\right)=(-1)^{m+n} \ell^{-n} e^{-\frac{i n \pi}{K^{\prime}} u} H(u), \quad m, n \text { integers. }
\end{gather*}
$$

The quantities $2 K$ and $2 i K^{-1}$ are called the periods of the function. They are not true periods in the sense that 2π is a period of $f(x)$: for wheln $2 K$ is added to u, the function does not return to its original value, but is changed in sign ; and when $2 i K^{-1}$ is added to $"$, the function takes the multiplier written above.

Three new functions will be formed by adding to u the quantity K or $i K^{\prime \prime}$ or $K+i K^{\prime}$, that is, the lulf f perimets, and making slight changes suggested by the results. First let $H_{1}(\prime \prime)=H(\prime \prime+K)$. By substitution in the series (20),

By using the properties of $I f$, eorresponding properties of H_{1}.

$$
I_{1}(\prime+2 K)=-H_{1}(\prime \prime) . \quad \quad H_{1}\left(\prime \prime+2 i K^{\prime \prime}\right)=+\|^{-1,}-\frac{i \pi}{R^{\prime \prime}} H_{1}(\prime \prime),(23)
$$

are fomnd. second let $i h^{-1}$ be added to $/ 1$ in $I /(11)$. Then
 apart from the roetficiont $\pm i$. Hence

Let

$$
\Theta(u)=-i l^{\frac{1}{4}} e^{\frac{i \pi}{2 K} u} H\left(u+i h^{\prime \prime}\right)=\sum_{-\infty}^{\infty}(-1)^{n} t^{n^{2}} e^{2 n \frac{\pi i}{2 K^{u}}}
$$

The development of $\Theta(\prime \prime)$ and further properties are evidently

$$
\begin{gather*}
\Theta(u)=1-2 \nmid \cos \frac{2 \pi u}{2 K}+2 \vartheta^{4} \cos \frac{4 \pi u}{2 K}-2 \eta^{9} \cos \frac{6 \pi u}{2 K}+\cdots \tag{24}\\
\Theta(u+2 K)=\Theta(u), \quad \Theta\left(u+2 i K^{\prime}\right)=-q^{-1} e^{-\frac{i \pi}{K^{\prime}} \Theta(u)} \tag{25}
\end{gather*}
$$

Finally instead of adding $K^{\prime}+i K^{\prime}$ to u in $I I(u)$, add K^{\prime} in $\Theta(u)$.

$$
\begin{align*}
& \Theta_{1}(u)=1+2 \eta \cos \frac{2 \pi u}{2 h}+2 \eta^{4} \cos \frac{4 \pi u}{2 h^{\prime}}+2 q^{9} \cos \frac{6 \pi u}{2 h^{\prime}}+\cdots \tag{26}\\
& \Theta_{1}\left(u+2 K^{\prime}\right)=\Theta_{1}(u), \quad \Theta_{1}\left(u+2 i K^{\prime}\right)=+q^{-1} e^{-\frac{i \pi}{h^{u}} \Theta_{1}(u)} \tag{7}
\end{align*}
$$

For a tabulation of properties of the four functions see Ex. 1 below.
176. As $H(u)$ vanishes for $u=0$ and is reproduced except for a finite multiplier when $2 m K+2 n i K^{\prime}$ is added to u, the table

$$
\begin{aligned}
& H(u)=0 \text { for } \quad u=2 m K+2 n i K^{\prime}, \\
& H_{1}(u)=0 \quad \text { for } \quad u=(2 m+1) K+2 n i K^{\prime}, \\
& \Theta(u)=0 \quad \text { for } \quad u=2 \quad \prime k+(2 n+1) i k^{-1} \text {, } \\
& \Theta_{1}(u)=0 \quad \text { for } \quad u=(2 m+1) K+(2 n+1) i K^{-1},
\end{aligned}
$$

contains the known vanishing points of the four functions. Now it is possible to form infinite poducts which vanish for these values. From such products it may be seen that the functions have no other vanishing points. Moreover the products themselves are useful.

It will be most convenient to use the function $\Theta_{1}(11)$. Now

$$
e^{i \frac{i \pi}{K^{2}}\left(2 m K+K^{\prime}+2 \pi i K^{\prime}+i K^{\prime}\right)}=-\eta^{(2 n+1)}, \quad-\infty<n<\infty .
$$

Hence $\quad e^{\frac{i \pi}{K^{\prime}} u}+\eta^{-(2 u+1)}$ and $e^{-\frac{i \pi}{K^{\prime} u}}+\eta^{-(2 n+1)}, \quad n \geqq 0$, are two expressions of which the second vanishes for all the roots of $\Theta_{1}(\prime \prime)$ for which $n \equiv 0$, and the first for all roots with $n<0$. Hence

$$
\Pi=C \prod_{0}^{x}\left(1+\eta^{2 n+1} e^{i \frac{i \pi}{K^{u}} u}\right)\left(1+\eta^{2 n+1} e^{-\frac{i \pi u}{K}}\right)
$$

is an infinite product which vanishes for all the roots of $\Theta_{1}($ u $)$. The product is readily seen to converge absolutely and uniformly. In particular it does not diverge to 0 and consequently has no other roots than those of $\Theta_{1}(1)$ above given. It remains to show that the product is identical with $\Theta_{1}(\prime)$ with a proper detemmation of C.

Let $\Theta_{1}(u)$ be written in exponential form as follows, with $z=e^{\frac{i \pi}{K} u}$:

$$
\begin{aligned}
\phi(z)=\Theta_{1}(u)=1+ & q\left(z+\frac{1}{z}\right)+q^{4}\left(z^{2}+\frac{1}{z^{2}}\right)+\cdots+q^{n^{2}}\left(z^{n}+\frac{1}{z^{n}}\right)+\cdots, \\
\psi(z)=C^{-1} \Pi(u)= & (1+q z)\left(1+q^{3} z\right)\left(1+q^{5} z\right) \cdots\left(1+q^{2 n-1 z}\right) \cdots \\
& \times\left(1+\frac{q}{z}\right)\left(1+\frac{q^{3}}{z}\right)\left(1+\frac{q^{5}}{z}\right) \cdots\left(1+\frac{q^{2 n-1}}{z}\right) \cdots
\end{aligned}
$$

A tirect substitution will show that $\phi\left(q^{2} z\right)=q^{-1} z^{-1} \phi(z)$ and $\psi\left(q^{2} z\right)=q^{-1} z^{-1} \psi(z)$. In fact this substitution is equivalent to replacing u by $u+2 i h^{\prime \prime}$ in Θ_{1}. Next consider the first $2 n$ terms of $\psi(z)$ written above, and let this finite product be $\psi_{n}(z)$. Then by substitution

$$
\left(q^{2 n}+\varphi^{2}\right) \psi_{n}\left(q^{2} z\right)=\left(1+q^{2 n+1} z\right) \psi_{n}(z)
$$

Now $\psi_{n}(z)$ is reciprocal in z in such a way that, if multiplied out,

$$
\begin{aligned}
& \quad \psi_{n}(z)=a_{0}+a_{1}\left(z+\frac{1}{z}\right)+a_{0}\left(z^{2}+\frac{1}{z^{2}}\right)+\cdots+a_{n}\left(z^{n}+\frac{1}{z^{n}}\right), \quad a_{n}=q^{n^{2}} . \\
& \text { Then }\left(q^{2 n}+q z\right) \sum_{0}^{n}\left(t_{i}\left(q^{2} i z^{i}+q^{-2 i z-i}\right)=\left(1+q^{2 n+1} z\right) \sum_{0}^{n} u_{i}\left(z^{i}+z^{-i}\right),\right.
\end{aligned}
$$

and the expansion and equation of contficients of z^{i} sives the relation

$$
a_{i}=u_{i-1} \frac{q^{2 i-1}\left(1-q^{2 n-2 i-2}\right)}{1-q^{2 n+2 i}} \quad \|^{\quad} \quad u_{i}=u_{0} \frac{q^{i^{2}} \prod_{k=1}^{i}\left(1-q^{2 n-2 k+2}\right)}{\prod_{k=1}^{i=1}\left(1-q^{2 n+2 k+2}\right)}
$$

From $\quad u_{n}=q^{u^{2}}, \quad u_{0}=\prod_{k=-11}^{n-1}\left(1-\eta^{2 n-2 k+2}\right) \quad . \quad u_{i}=\frac{\eta^{i i^{2}} \prod_{k=1}^{n-i}\left(1-\eta^{2 n+2 i+2 k}\right)}{n-i}$.

$$
\prod_{k=1}^{\prime}\left(1-y^{2 k}\right) \quad \prod_{k=1}^{n}\left(1-y^{2 k}\right)
$$

Now if n be allowed to become infinite, each coefficient t_{i} approaches the limit

Hence

$$
\begin{aligned}
& \lim a_{i}=\frac{q^{i^{2}}}{\theta^{\prime}} \quad\left(=\prod_{1}^{\infty}\left(1-\eta^{2} n\right)=\left(1-q^{2}\right)\left(1-\eta^{+}\right)\left(1-\eta^{6}\right) \cdots\right. \\
& \Theta_{1}(\prime)=\prod_{1}^{\infty}\left(1-\eta^{2 n}\right) \cdot \prod_{0}^{x}\left(1+\eta^{2 n+1} e^{\frac{i \pi}{k} u}\right)\left(1+\eta^{2 n+1} e^{\frac{-i \pi}{k^{-} u}}\right)
\end{aligned}
$$

provided the limit of $\psi_{n}(z)$ may $\begin{aligned} & \text { be fommt hy taking the serite of the limits of the }\end{aligned}$ terms. The justitiontion of this procesa would be similar to that of

The products for $\Theta, I_{1}, ~ I I$ may le obtained from that for Θ_{1} hy subt thatoting $K, i K^{-1}, K+i h^{-1}$ from " and making the needful slight alterat tions to conform with the definitions. The products may le eomferted into trigonometric form her multiplyimg. Them

$$
\begin{align*}
& H_{1}(\prime \prime)=C 2^{\frac{1}{4}} \cos \frac{\pi u}{2 K_{1}} \prod_{1}^{x}\left(1+2 q^{2 n} \cos \frac{2 \pi u}{2 K}+q^{4 n}\right), \tag{29}\\
& \Theta(\mu)=C \cdot \prod_{0}^{x}\left(1-2 \eta^{2 n+1} \cos \frac{2 \pi \prime \prime}{2 K}+\eta^{4 n+2}\right), \tag{30}\\
& \Theta_{1}(u)=C \prod_{0}^{x}\left(1+2 \eta^{2 n+1} \cos \frac{2 \pi u}{2 k}+4^{4 n+2}\right), \tag{31}\\
& c^{\prime}=\prod_{1}^{\infty}\left(1-\eta^{2 \prime \prime}\right)=\left(1-\eta^{2}\right)\left(1-\eta^{4}\right)\left(1-q^{6}\right) \cdots, \tag{3:3}\\
& H_{1}(0)=r \cdot 2 \eta^{\frac{1}{4}} \prod_{1}^{x}\left(1+\eta^{2 n}\right)^{2}, \quad \Theta(0)=r \cdot \prod_{0}^{x}\left(1-\eta^{2 n+1}\right)^{2}, \\
& H^{\prime}(0)=\left(\because y^{\frac{3}{2}} \frac{\pi}{2 K} \prod_{1}^{x}\left(1-\eta^{2 n}\right)^{2}, \quad \Theta_{1}(0)=r \prod_{0}^{x}\left(1+\eta^{2 n+1}\right)^{2} .\right.
\end{align*}
$$

The value of $I^{\prime}(0)$ is found by dividing $I($ (") by " and letting " $\doteq 0$. Then

$$
\begin{equation*}
H^{\prime}(0)=\frac{\pi}{2 K} H_{1}(0) \Theta(0) \Theta_{1}(0) \tag{iii}
\end{equation*}
$$

follows by direct sulntitution and cancellation or combination.
177. Other functions may lee built from the theta functions. Let

$$
\begin{align*}
& \sqrt{l_{i}}=\frac{I I\left(K^{\prime}\right)}{\Theta\left(K^{\prime}\right)}=\frac{I_{1}(0)}{\Theta_{1}(0)} . \quad \sqrt{T_{i}^{\prime}}=\frac{\Theta(0)}{\Theta_{1}(0)} . \quad \sqrt{\frac{K_{i}^{\prime}}{l_{i}}}=\frac{\Theta(0)}{I_{1}(0)}, \tag{34}\\
& s_{13} \|=\frac{1}{\sqrt{l_{i}} \frac{I I(\prime \prime)}{\Theta(\prime \prime)}}, \quad \text { 'n } \prime \prime=\sqrt{\frac{k_{i}^{\prime}}{l_{i}} \frac{I I_{1}(\prime \prime)}{\Theta(\prime \prime)}}, \quad \quad \ln \prime \prime=\sqrt{l_{i}^{\prime}} \frac{\Theta_{1}(\prime \prime)}{\Theta(\prime \prime)} . \tag{7}
\end{align*}
$$

The functions sn ", wh ", du" are "alled elliptice functions* of ". Is It is the only onld theta function, sn " is odd but en 1 and dn $"$ are even. All threr finurtions lumer turn "rtmel pertimls: in the same semse that sin ar and cos or have the period 2π. Thus dn " has the periods 2 K and $4 \mathrm{iN}^{-1}$
 That en" hats $f K$ and $\because K+\because i K^{-1}$ as periods is also easily verifiod. The values of "which make the functions vanish are known: they are those which make the mumerators ranish. In like manner the values of "for which the three functions becone infinite are the known roots of $\Theta(11)$.

If f is known, the values of $\sqrt{L_{i}}$ and $\sqrt{L^{\prime}}$ may be found from their definitions. Conversely the expression for $\sqrt{k_{i}^{\prime}}$,

$$
\begin{equation*}
\sqrt{K_{i}^{\prime}}=\frac{\Theta(0)}{\Theta_{1}(0)}=\frac{1-2 \eta+2 \eta^{4}-2 \eta^{9}+\cdots}{1+2!+2 \eta^{4}+2 \eta^{9}+\cdots} \tag{36}
\end{equation*}
$$

[^41]is readily solved for q by reversion. If powers of q higher than the first are neglected, the approximate value of q is found by solution, as
\[

$$
\begin{equation*}
\frac{1}{2} \frac{1-\sqrt{k_{i}^{\prime}}}{1+\sqrt{k_{i}^{\prime}}}=\frac{\eta+\eta^{9}+\cdots}{1-2 \eta^{4}+\cdots}=q-2 \eta^{5}+5 q^{9}+\cdots \tag{37}
\end{equation*}
$$

\]

Hence $\quad q=\frac{1}{2} \frac{1-\sqrt{k_{i}^{\prime}}}{1+\sqrt{l^{\prime}}}+\frac{2}{2^{\prime}}\left(\frac{1-\sqrt{k_{i}^{\prime}}}{1+\sqrt{k_{i^{\prime}}}}\right)^{5}+\frac{15}{2^{9}}\left(\frac{1-\sqrt{k^{\prime}}}{1+\sqrt{k_{i}^{\prime \prime}}}\right)^{9}+\cdots$
is the series for $\%$. For values of k ' near 1 this series converges with great rapidity; in fact if $k^{\prime 2} \geqq \frac{1}{2}, k^{\prime}>0.7, \sqrt{k_{i}^{\prime}}>0.8^{2}$, the second term of the expansion amounts to less than $1 / 10^{6}$ and may be distegarded in work involving four or five figures. The first two terms here given are sufficient for eleven figures.

Let is denote any one of the four theta series $H, H_{1}, \Theta, \Theta_{1}$. Then

$$
\begin{equation*}
y^{2}(11)=\phi(z)=\sum_{-x}^{x} b_{n} n^{n}, \quad z=e^{-\frac{i \pi}{h^{n}}} \tag{38}
\end{equation*}
$$

may be taken as the form of dertlopment of n^{2}; this is merely the Fourier series for a function with period $\stackrel{2}{ } K$. But all the theta functions take the same multiplier, except for sign, when $2 i K^{\prime \prime}$ is added to u; hence the squares of the functions take the same multiplier, and in particular $\phi\left(\eta^{2} z\right)=q^{-2} z^{-2} \phi(z)$. Apply this relation.

$$
\sum b_{n} 4^{2 n} \xi_{n}^{n}=4^{-2} n^{-2} \sum l_{n} i^{n} . \quad l_{n} \eta^{2 n+2}=l_{n-2} .
$$

It then is seen that a recurrent reantion between the coefficients is found which will deternine all the even coefficients in terms of b_{0} and all the odd in terms of b_{1}. Hence

$$
\begin{equation*}
y^{2}(\prime \prime)=l_{1} \Phi(i)+l_{1} \Psi(i), \quad l_{n} \cdot l_{1}, \text { constants, } \tag{38'}
\end{equation*}
$$

is the expansion of any \boldsymbol{y}^{2} or of any function which may be developect as (38) and satisties $\phi\left(y^{2}=\eta^{-2}\right)^{-2} \phi(z)$. Moreover Φ and Ψ are identical for all such functions, and the only difference is in the values of the constants l_{0}, l_{1}.

As any three theta functions satisfy (38^{\prime}) with different values of the constants, the functions Φ and Ψ may ${ }^{\text {be e eliminated and }}$

$$
w \psi_{1}^{2}(\prime \prime)+\beta \mathscr{r}_{2}^{2}(\prime \prime)+\gamma^{f_{3}^{2}}(\prime \prime)=0,
$$

where r, β. γ are mastants. In words, the squares of any three thetal functions satisfy a linear homugeneons equation with constant corefti-
 to the argument ". For example, take $I I$. I_{1}. Θ. Then*

[^42]\[

$$
\begin{align*}
& \frac{\Theta^{2} K^{-}}{H^{2} K^{-}} \frac{H^{2}(\prime \prime)}{\Theta^{2}(\prime \prime)}+\frac{\Theta^{2} 0}{H_{1}^{2} 0} \frac{H_{1}^{2}(\prime \prime)}{\Theta^{2}(\prime)}=1 \text {, or } \sin ^{2} u+\left(\cdot n^{2} u=1 .\right. \tag{39}
\end{align*}
$$
\]

By treating $I I, \Theta_{1}$, Θ in a similar manner may be proved

$$
\begin{equation*}
l^{2} \operatorname{snn}^{2} u+d n^{2} u=1 \quad \text { and } \quad l^{2}+l^{\prime 2}=1 \tag{40}
\end{equation*}
$$

The function $"(u) \dot{q}(\|-\pi)$, where u is a constant, satisfies the relation $\phi\left(\mu^{2} z\right)=4^{-2} z^{-2}\left(\dot{C}(\%)\right.$ if $\log C^{\prime}=i \pi / \prime / K$. Reasoning like that used for treating y^{2} then shows that between any three such expressions there is a linear relation. Hence

$$
\begin{aligned}
& u=0, \quad \beta I I_{1}(0) I_{1}(\prime \prime)=\gamma^{\Theta}(0) \Theta(\prime), \\
& \prime=K, \quad \kappa K I_{1}(0) I_{1}(\prime \prime)=\gamma \Theta_{1}(0) \Theta_{1}(\prime \prime), \\
& \frac{\Theta 0 \Theta_{1} 0 \Theta_{1} \prime \prime H(\prime \prime) I(\prime \prime-")}{H_{1}^{2} 0 \Theta \prime \prime \Theta(\prime \prime) \Theta(\prime-")}+\frac{\Theta^{2} 0}{H_{1}^{2} 0} \frac{H_{1}(\prime \prime) I_{1}(\prime \prime-")}{\Theta(\prime \prime) \Theta(\prime \prime-")}=\frac{\Theta 0}{H_{1} 0} \frac{H_{1} \prime}{\Theta \prime \prime},
\end{aligned}
$$

Or^{-}

$$
\begin{equation*}
\mathrm{d}_{n}\|\operatorname{sn}\| \operatorname{sn}(\|-\|)+(\cdot n u \operatorname{con}(\|-\|)=(\cdot n \| . \tag{41}
\end{equation*}
$$

In this relation replace " hy - \therefore. Then there results
or

$$
\begin{align*}
& r n u c \cdot(u+r)+\operatorname{sn} u \operatorname{dn} r \operatorname{sn}(\prime+r)=\operatorname{cnn} r \\
& \operatorname{cn} r \cdot \operatorname{cn}(u+r)+\operatorname{sn} r \operatorname{dn} u \operatorname{sn}(\prime+r)=c \cdot n u \tag{42}
\end{align*}
$$

and
hy symmetry and by solution. The fraction may be reduced by multiplying mumerator and denominator by the denominator with the middle sign changed. and by noting that

$$
\operatorname{snn}^{2} c \cdot \operatorname{cn}^{2}\left\|t n^{2}\right\|-\sin ^{2} \|\left(\cdot n^{2} \cdot d n^{2} r=\left(\sin ^{2} r-\sin ^{2} \|\right)\left(1-l^{2} \sin ^{2} \| \sin ^{2} r\right) .\right.
$$

Then

$$
\begin{equation*}
\operatorname{sn}(\prime+r)=\frac{\sin \| \cdot \cdot 11 \cdot\left(l_{11} \cdot+\operatorname{sn} 1 \cdot \cdot \cdot 11\left\|d_{11}\right\|\right.}{1-l_{i}^{2} s 1^{2} \| s 1^{2} \cdot}, \tag{43}
\end{equation*}
$$

and
and

$$
\begin{equation*}
\operatorname{sn}(\prime+\cdot)-\operatorname{sn}\left(\|-r^{\prime}\right)=\frac{2 \sin \cdot \cdot \cdot n \| d n u}{1-l_{i}^{2} \sin ^{2} \| s n^{2},} \tag{44}
\end{equation*}
$$

The last result may be used to differentiate sn "For

$$
\begin{align*}
& \frac{d}{d u} \sin u=g \cdot \operatorname{col} u \ln u, \quad g=\lim _{u=0} \frac{\sin u}{u} . \tag{45}
\end{align*}
$$

Here g is called the multiplipr. liy definition of sn u and by (33)

$$
g=\frac{\Theta_{1}(0)}{H_{1}(0)} \frac{I^{\prime}(0)}{\Theta(0)}=\frac{\pi}{2 K} \Theta_{1}^{2}(0) .
$$

The periods $2 \mathrm{~K}, 2 \mathrm{i} \mathrm{K}^{\prime}$ have been independent up to this point. It will, however, be a convenience to have $g=1$ and thus simplify the formula for differentiating sin u. Hence let

$$
\begin{equation*}
g=1, \quad \sqrt{\frac{2 K}{\pi}}=\Theta_{1}(0)=1+2 \eta+2 \eta^{4}+\cdots \tag{46}
\end{equation*}
$$

Now of the five quantities $k, k^{-1}, k, k^{\prime}, q$ only one is independent. If q is known, then k^{\prime} and K may be romputed by (36), (46); k is determined by $k^{2}+k^{\prime 2}=1$, and k^{\prime} by $\pi k^{\prime \prime} / K^{\prime}=-\log$ g of (19). If, on the other hand, k^{\prime} is given, 4 may be computed by (37) and then the other quantities may be deternined as before.

EXERCISES

1. With the notations $\lambda=q^{-\frac{1}{4}} e^{-\frac{i \pi}{2 \mu} K^{u}}, \mu=q^{-2} e^{-\frac{i \pi}{K^{n}} u}$ establish:

$$
\begin{aligned}
& H(-u)=-I I(u), \quad \Pi\left(u+2 h^{\prime}\right)=-\Pi(u), \quad \Pi\left(u+2 i \hbar^{\prime}\right)=-\mu I I(u), \\
& I_{1}(-u)=+I_{1}(u), \quad H_{1}\left(u+2 K^{\prime}\right)=-H_{1}(u), \quad H_{1}\left(u+2 i K^{\prime}\right)=+\mu I_{1}(u), \\
& \theta(-u)=+\Theta(u), \quad \Theta(u+2 k)=+\Theta(u), \quad \Theta\left(u+2 i K^{\prime}\right)=-\mu \Theta(u), \\
& \Theta_{1}(-u)=+\Theta_{1}(u), \quad \Theta_{1}\left(u+2 K^{\prime}\right)=+\Theta_{1}(u), \quad \Theta_{1}\left(u+2 i h^{\prime}\right)=+\mu \Theta_{1}(u), \\
& H(u+K)=+H_{1}(u), \quad \Pi\left(u+i h^{\prime}\right)=i \lambda \Theta(u), \quad \Pi\left(u+k+i K^{\prime}\right)=+\lambda \Theta_{1}(u) . \\
& I_{1}(u+\kappa)=-I(u), \quad H_{1}\left(u+i \hbar^{\prime}\right)=+\lambda \Theta_{1}(u), \quad I_{1}\left(u+K^{\prime}+i \kappa^{\prime}\right)=-i \lambda \Theta(u), \\
& \theta\left(u+K^{\prime}\right)=+\Theta_{1}(u), \quad \Theta\left(u+i k^{\prime}\right)=i \lambda l l(u), \quad \Theta\left(u+K^{\prime}+i k^{\prime \prime}\right)=+\lambda I_{1}(u), \\
& \Theta_{1}\left(u+K^{\prime}\right)=+\Theta(u), \quad \Theta_{1}\left(u+i K^{\prime}\right)=+\lambda I I_{1}(u), \quad \Theta_{1}\left(u+K+i K^{\prime}\right)=+i \lambda I l(u) .
\end{aligned}
$$

2. Show that if u is real and $q \leqq \frac{1}{6}$, the first two trigommetrie terns in the series for $I I . H_{1}$. Θ. Θ_{1}, give four-phace aceuracy. Show that with $q \equiv 0.1$ these terms give about six-place accuracy.
3. Tre $\frac{q \sin \alpha}{1-2 q \cos \alpha+q^{2}}=4 \sin a+q^{2} \sin 2 \alpha+q^{3} \sin 3 \alpha+\cdots$ to prove

$$
\frac{d}{d u} \log \theta(u)=\underset{\theta(u)}{\theta^{\prime}(u)}=\frac{2 \pi}{h^{\prime}}\left(\frac{q \sin \frac{\pi u}{h^{5}}}{1-q^{2}}+\frac{q^{2} \sin \frac{2 \pi u}{h^{4}}}{1-q^{4}}+\frac{q^{3} \sin \frac{3 \pi u}{h^{\prime}}}{1-q^{6}}+\cdots\right) .
$$

4. Prove tho domble periodicity of coll u and show that:

$\operatorname{cn}(u+K)=\begin{gathered}-k^{\prime} \operatorname{sn} u, \\ \text { dn } u\end{gathered} \quad\left(n\left(u+i K^{\prime}\right)=\frac{-i d n u}{k \sin u}, \quad\left(n\left(u+h+i K^{\prime}\right)=\frac{-i k^{\prime}}{k \operatorname{con} u}\right.\right.$,
$\operatorname{dn}\left(u+K^{\prime}\right)=\frac{k^{\prime}}{\ln u}, \quad \ln \left(u+i K^{\prime}\right)=-i \frac{\operatorname{cn} u}{\sin u}, \quad \ln \left(u+K+i K^{\prime}\right)=i k^{\prime} \frac{\operatorname{sn} u}{\ln u}$.
5. Tabulate the values of sn u, cn u, dn u at $0, h, i h^{\prime}, h+i h^{\prime \prime}$.
6. Compute k^{\prime} and k^{2} for $q=\frac{1}{6}$ and $q=0.1$. Hence show that two trigonometric terms in the theta series give four-place aceuracy if $k^{\prime} \geqq \frac{1}{4}$.
7. Prove $\operatorname{cn}(u+v)=\frac{c n u c n v-\operatorname{sn} u \operatorname{sn} v \operatorname{dn} u \operatorname{dn} v}{1-k^{2} \operatorname{snn}^{2} u \operatorname{sn}^{2} v}$,
and

$$
\operatorname{dn}(u+v)=\frac{\operatorname{dn} u d n v-k^{2} \operatorname{sn} u \sin v \operatorname{cn} u \operatorname{cn} v}{1-k^{2} \sin ^{2} u \operatorname{sn}^{2} v} .
$$

8. Prove $\frac{d}{d u} \operatorname{cn} u=-\sin u d \operatorname{dn} u, \quad \frac{d}{d u} d n u=-k^{2} \sin u \operatorname{cn} u, \quad g=1$.
9. Prove $\sin ^{-1} u=\int_{0}^{u} \frac{d u}{\sqrt{\left(1-u^{2}\right)\left(1-k^{2} u^{2}\right)}}$ from (45) with $g=1$.
10. If $g=1$, compute k, k^{\prime}. K, K^{\prime}, for $q=0.1$ and $q=0.01$.
11. If $g=1$, compute $k^{\prime}, q, K^{\prime}, h^{\prime}$, for $k^{2}=\frac{1}{2}, \frac{3}{4}, \frac{1}{4}$.
12. In Exs. 10, 11 write the trigonometric expressions which give su u, en u, dn u with four-place aceuracy.
13. Find $\operatorname{sn} 2 u$, $\mathrm{c}_{1} 2 u$, d $122 u$, and hence $\operatorname{sn} \frac{1}{2} u$, $\mathrm{c}_{1} \frac{1}{2} u$, dn $\frac{1}{2} u$, and show

$$
\operatorname{sn} \frac{1}{2} K=\left(1+k^{\prime}\right)^{-\frac{1}{2}}, \quad\left(\ln \frac{1}{2} K=\sqrt{k^{\prime}}\left(1+k^{\prime}\right)^{-\frac{1}{2}}, \quad \ln \frac{1}{2} k=\sqrt{k^{\prime}} .\right.
$$

14. Prove $-k \int \sin u(\ln =\log (\ln u+k \operatorname{cn} u)$; also

$$
\begin{aligned}
& \Theta^{2}(0) H(u+u) H(u-u)=\theta^{2}(u) I^{2}(u)-H^{2}(u) \theta^{2}(u), \\
& \theta^{2}(0) \theta(u+u) \theta(u-u)=\theta^{2}(u) \theta^{2}(u)-I^{2}(u) H^{2}(u) .
\end{aligned}
$$

CIDAPTER XVIII

FUNCTIONS OF A COMPLEX VARIABLE

178. General theorems. The complex function $u(x, y)+i r(x, y)$, where $n(x, y)$ and $r(x, y)$ are single valued real functions continuous and differentiable partially with respect to x and y, has been defined as a function of the complex variable $a=a+i y$ when and only when the relations $v_{x}^{\prime}=r_{y}^{\prime}$ and $\|_{y}^{\prime}=-r_{x}^{\prime}$ are satisfied (今73). In this case the function has a derivative with respect to a which is independent of the way in which λ_{i} approaches the limit zero. Let $u=f(i)$ be a function of a complex variable. Owing to the existence of the derivative the function is necessarily continuons, that is, if ϵ is an arbitrarily small positive number, a number δ may be found so small that

$$
\begin{equation*}
\left|f(\because)-f\left(\ddot{i}_{0}\right)\right|<\epsilon \quad \text { when } \quad\left|z-i_{0}\right|<\delta, \tag{1}
\end{equation*}
$$

and moreover this relation holds miformly for all points z_{0} of the region over which the function is defined, provided the region includes its bounding ('urve (see Ex. 3, p. 92).

It is further assumed that the derivatives u_{x}^{\prime}. $u_{y,}^{\prime}$. r_{x}^{\prime}. r_{y}^{\prime} are continuous and that therefore the derivative $f^{\prime \prime}\left(\theta^{*}\right)$ is continnous.* The function is then said to be an "nnllytir finnrtion ($\$ 126$). All the functions of a complex variable here to le dealt with are analytic in general, althongh they may be allower to fail of being analyie at certain specified points ("alled sim!nlor points. The adjective "analytie" may therefore usually be omitted. The equations

$$
\pi^{\prime}=f^{\prime}(\because) \quad \pi^{\prime} \quad\|=\|(\cdot r,!\prime), \quad r=r(r \cdot!!)
$$

define a transformation of the $\cdot \boldsymbol{r},-p$ plane into the $w r-p l a n e$, or, briefer, of the a-plane into the w-plane; to each point of the former corresponds one and only one point of the latter (($56: 3$). If the dacobian

$$
\begin{equation*}
\left|u_{x}^{\prime} \quad u_{y}^{\prime},=\left(u_{x}^{\prime}\right)^{2}+\left(r_{x}^{\prime}\right)^{2}=\left|f^{\prime}(i i)\right|^{2}\right. \tag{2}
\end{equation*}
$$

[^43]of the transformation does not vanish at a point \approx_{0}, the equations may be solved in the neighborhood of that point, and hence to each point of the second plane corresponds only one of the first:
$$
x^{\prime}=x\left(u, r^{r}\right), \quad y=y\left(n, r^{\prime}\right) \quad \text { or } \quad z=\phi\left(k^{\prime}\right) .
$$

Therefore it is seen that if $u=f(*)$ is analytic in the neighborlhoml of $\approx=z_{0}$, and if the dericutive $f^{\prime \prime}\left(z_{0}\right)$ does not ranirlt, the function miny be soluel $a s:=\phi(k)$, where ϕ is the inverse function of f, and is likewise analytic in the neighborhood of the point $u=u_{0}$. It may readily be shown that, as in the case of real functions, the derivatives $f^{\prime \prime}(i)$ and $\phi^{\prime}\left(\mu{ }^{\prime}\right)$ are reciprocals. Moreover, it may be seen that the trensformution is conformal, that is, that the angle letween any two rurves is unehanged by the transformation ($\$ 63$). For consider the increments

$$
\Delta u=\left[f^{\prime}\left(z_{0}\right)+\zeta\right] \Delta z=f^{\prime}\left(\tilde{z}_{0}\right)\left[1+\zeta / f^{\prime}\left(\tilde{z}_{0}\right)\right] \Delta \approx .
$$

As Δz and Δw are the chords of the curves before and after transformation, the geometrical interpretation of the equation, apart from the infinitesimal ζ, is that the chords Δz are magnified in the ratio $\left|f^{\prime \prime}\left(\pi_{0}\right)\right|$ to 1
 In the limit it follows that the tangents to the "-rurves are inclined at an angle equal to the angle of the corresponding o-curves plus the angle of $f^{\prime}\left(a_{0}\right)$. The angle between two curves is therefore unchanged.

The existence of an inverse function and of the geonctrice interpretation of the transformation as conformal both hecome illusory at points for which the derivative $f^{\prime}(i)$ vanishes. Points where $f^{\prime \prime}(i)=0$ are ealled critiral pmints of the function (s 183).

It has further been seen that the integral of a function which is analytic over any simply connected region is independent of the path and is zero around any closed path ($\$ 124$) ; if the region be not simply connected but the function is analytic, the integral about any closed path which may be shrunk to nothing is zero and the integrals about any two closed paths which may be shrunk into each other are equal (今心) 12. Furthermore Cauchy's result that the value

$$
\begin{equation*}
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{0} \frac{f(t)}{t-z} d t \tag{3}
\end{equation*}
$$

of a function, which is analytic upon and within a closed path, may be found by integration around the path has been derived (\$ 126). By a transformation the Taylor development of the function has been found whether in the finite form with a remainder ($\$ 126$) or as an infinite series ($\$ 16 \pi$). It has also been seen that any infinite power series
which converges is differentiable and hence defines an analytic function within its circle of converqence ($\$ 166$).

It has also been shown that the sum, difference, product, and quotient of any two functions will be analytic for all points at which hoth functions are analytic, except at the points at which the denominator, in the (ase of a quotient, may ranish (Ex. 9, p. 163). The result is eridently extensible to the case of any rational function of any number of analytie functions.

From the possibility of development in series follows that if tir,
 collues upen any curve drourn through thut point, or even mpon any set of points which approach that point as a limit, then the functions. "ire intentirally cruall withein their common cirrle of concergenere and oner "tl reyions. "hieth cen be rectched by ($(\mathbf{1} 169$) continning the functions annulyticully. The reason is that a set of points converging to a limiting point is all that is needed to prove that two power series are identical provided they have identical values over the set of points (Ex. 9, p. 439). This theorem is of great importance lecanse it shows that if a function is defined for a dense set of real values, any one extension of the detinition, which yields a function that is analytie for those values and for complex values in their vicinity. must he erguivalent to any other such extension. It is also uneful in disseussing the perinciple of permunence of form: for if the two sides of an equation are identical for a set of values which possess a point of condensation, say, for all real rational ralues in a given interval, and if each side is an analytie function, then the equation must lee true for all values which may be rearhed bey analytie continuation.

For example, the equation sin $x=$ (mis $\left(\frac{1}{2} \pi-r\right)$ is known to hohd for the values $0 \leqq r \leqq \frac{1}{2} \pi$. Morenser the functions sin z and cos z are analytic for all valnes of z
 as defined by their power series. Hence the equation must how for all real or complex values of f. In like manner from the equation ere $=e^{x+3}$ which holeks for real ratimal exponents. the erpation $\epsilon^{2} e^{m}=\epsilon^{*}+w^{2}$ holding for all real and innagimary "xponents may be dernceal. For if y le given any mational value the functions of x on eath wide of the sign are analytic for all walnes of or real or complex, as may be sem most easily hy consilering the expenential as defined by its power series. Hence the equation hobs when o has any complex value. Next consider x as fixet at any desired complex value and let the two siltes be considered as functions of y regarterl ans cmplex. It follows that the cequation must hold for any value of y. The equation is the refore tron for any value of z and u.
179. Suppose that a function is analytic in all prints of a region except at some one point within the region, and let it he assmmen that
the function ceases to be analytic at that point beeause it ceases to be continuous. The discontimuity may be either finite or infinite. In case the discontinuity is finite let $|f(\%)|<G$ in the neighborhood of the point $a="$ of discontinuity. Cut the point out with a small rircle and apply Cauchy's Integral to a ring surrounding the point. The integral is applicable because at all points on and within the ring the function is analytic. If the small circle be replaced by a smalles circle into which it may be shomk, the value of the integral will not be changed.

$$
f(z)=\frac{1}{2 \pi i}\left[\int_{i} \frac{f^{2}(t)}{t-i} d t+\int_{\gamma_{i}} \frac{t^{2}(t)}{t-a} d t\right], \quad i=1,2, \cdots
$$

Now the integral abont γ_{i} which is constant can be made as small as desired ly taking the circle small enomgh; for $|. f(t)|<C_{i}$ and $|t-a|>|a-a|-r_{i}$, where r_{i} is the radius of the cirele γ_{i} and hence the integral is less than $2 \pi r_{i} r_{r} /\left[\mid a-\left(1 \mid-r_{i}\right]\right.$. As the integral is constant, it must therefore be 0 and may be onitted. The remaining integral alont $(*$, however, defines a function which is analytic at $\approx=\pi$. Hence if $f^{\prime}(1)$ be chosen as defined liy this integral instead of the original definition, the discontinuity disappears. Finite discontinuitios mu!y thereforere be comsielereal "s due tw buel judyment in dretining " fiunction "t some p"oint: and may therefore be disregarded.

In the case of infinite discontinuties, the function may either berome infinite for "ll methorls of "llmporell to the point of discontimuity, or it mave become intinite for some methols of "tpmoorde unel remernin finite for wther methorls. In the first case the function is said to have a pele at the point $a=$ " of discontimuty; in the second case it is said to have an rssentiol singularity. In the case of a prole consider the reciprocal function

$$
F(*)=\frac{1}{f^{\prime}(*)}, \quad \approx \neq \|, \quad F(l)=0 .
$$

The function $F(z)$ is analytic at all points near $\ddot{z}=r$ and remains finite. in fact approaches 0 , as $\&$ approaches $\|$. As $F(\neq)=0$, it is seen that $F(\%)$ las $n o$ finite discontinnity at $\pi=u$ and is analytie also at $\hat{*}=\prime \prime$. Hence the Taylor expansion

$$
F(\ddot{⿲})={{ }^{n}}(\hat{z}-u)^{m}+{ }^{\prime}{ }_{m+1}(\ddot{z}-")^{m+1}+\cdots
$$

is proper. If E denotes a function neither zero nor infinite at $\approx=a$, the following transformations may be made.

$$
\begin{aligned}
& F(z)=\left(z-(a)^{m} E_{1}(z), \quad f(z)=(z-a)^{-m} E_{2}(z),\right.
\end{aligned}
$$

$$
\begin{aligned}
& +C_{0}+C_{1}(\because-a)+C_{2}(\ddot{u}-\cdots)^{2}+\cdots .
\end{aligned}
$$

In other words, a function which has a pole at $a=a$ may he written as the product of some power $\left(z-(1)^{-m}\right.$ by an E-function; and as the E-function may be expanded, the function may be expanded into a power series which contains a certain number of negative powers of
 of the poole. ('ompare Ex. 5, p. 44!.

If the function $f^{\prime}(\approx)$ be integrated around a closed curve lying within the circle of convergence of the series $c_{0}+\left(_{1}(\tilde{\sim}-\cdots)+\cdots\right.$, then

$$
\begin{align*}
& +\int_{0}\left[C_{0}+C_{1}(\because-\|)+\cdots\right] d i n=2 \pi i C_{-1}, \\
& \text { or } \\
& \int_{0} f^{\prime}(\tilde{i}) d i=2 \pi i C_{-1} ; \tag{4}
\end{align*}
$$

for the first $m-1$ terms may be integrated and ranish, the term $C_{-1} /\left(*-{ }^{\prime \prime}\right)$ leads to the logarithm $C_{-1} \log \left(z-{ }^{\prime \prime}\right)$ which is multiple valued and takes on the increment $2 \pi i C_{-1}$, and the last term ranishes because it is the integral of an analytic function. The total value of the integral of $f(*)$ about a small circuit surromnding a pole is therefore $2 \pi i C_{-1}$. The valne of the integral about any larger cireuit within which the function is analytic except at $i=$ " and which may be shounk into the small cirenit, will also be the same quantity. The coefficient C_{-1} of the term $(\because-1)^{-1}$ is called the residne of the pole: it camot vanish if the pole is of the first order, but may if the pole is of higher order.

The disenssion of the lohavior of a function $f(\because)$ when \because becomes infuite maty be carried on ly making a transformation. Let

$$
\begin{equation*}
z^{\prime}=\frac{1}{i}, \quad \therefore=\frac{1}{i^{\prime}}, \quad f\left(z^{\prime}\right)=f^{\prime}\left(\frac{1}{i^{\prime}}\right)=F\left(i^{\prime}\right) . \tag{玄}
\end{equation*}
$$

To large values of a^{*} forrespont small values of i^{\prime} : if $f(i=)$ is analytie for all large values of \because, then $F\left(\sim^{\prime}\right)$ will be analytic for values of z^{\prime} neat the origin. At $A^{\prime}=0$ the function $F\left(\tilde{*}^{\prime}\right)$ may not be defined by (0) ; but if $P\left(i^{\prime}\right)$ remains finite fon small values of A^{\prime}, a definition may be given so that it is analytic also at $\because^{\prime}=0$. In this case $F^{\prime}(0)$ is said to be the
value of $f(*)$ when \approx is infinite and the notation $f(\infty)=F(0)$ may be used. If $F\left(a^{\prime}\right)$ does not remain finite but has a pole at $a^{\prime}=0$, then $f(z)$ is said to have a pole of the same order at $\because=\infty$; and if $F\left(\because^{\prime}\right)$ has an essential singularity at $\approx^{\prime}=0$, then $f\left(\varepsilon^{\prime}\right)$ is said to have an essential singularity at $\approx=\infty$. Clearly if $f(i$,$) has a pole at i=\infty=\infty$, the value of $f(\approx)$ must hecome indefinitely great no matter how a becomes infinite; but if $f(\pi)$ has an essential singularity at $\approx=\infty$, there will be some ways in which a may become infinite so that $f\left(\begin{array}{c}a \\ \text { a }\end{array}\right.$ remains finite, while there are other ways so that $f\left(n^{\prime}\right)$ becomes infinite.

Strictly speaking there is no point of the A-plane which corresponds to $z^{\prime}=0$. Nevertheless it is convenient to speak as if there were such a point, to eall it the point of infinity, and to designate it as $z=\infty$. If then $F\left(\alpha^{\prime}\right)$ is analytie for $a^{\prime}=0$ so that $f^{\prime}\left(z^{\prime}\right)$ may be said to be analytic at infinity, the expansions

$$
\begin{aligned}
& F^{\prime}\left(z^{\prime}\right)=C_{0}^{\prime}+C_{1}^{\prime} \ddot{i}^{\prime}+C_{2^{\prime}}^{\prime 2}+\cdots+C_{n}^{\prime \psi^{\prime \prime}}+\cdots= \\
& f(\because)=C_{0}+\frac{r_{1}}{\approx}+\frac{C_{2}}{z^{2}}+\cdots+\frac{r_{n}}{i^{\prime \prime}}+\cdots
\end{aligned}
$$

are valid; the function $f(*)$ has been expundwh about the point at infinity into a descending pourer serios in A, and the series will converge for all points a outside a cirele $\mid: 2=R$. For a pole of order m at infinity

$$
f(\ddot{i})=C_{-m i^{\prime \prime \prime}}+C_{-m+1^{\prime \prime}}+\cdots+C_{-1}^{\prime \prime}+C_{0}^{\prime}+\frac{C_{1}}{i}+\frac{C_{2}^{\prime}}{i^{2}}+\cdots
$$

Simply because it is convenient to introdure the concept of the point at infinity for the reason that in may ways the totality of large valnes for a does not differ from the totality of values in the neighborhood of a finite point, it should not be inferred that the point at infinity has all the properties of finite points.

EXERCISES

1. Discuss $\sin (x+y)=\sin x \cos y+\cos x \sin y$ for permanence of form.
2. If $f(z)$ has an essential singularity at $z=a$, show that $1 / f(z)$ has an essential singularity at $z=\|$. Hence infer that there is some method of approach to $z=a$ such that $f(z) \doteq 0$.
3. By treating $f(z)-c$ and $[f(z)-c]^{-1}$ show that at an essential singularity a function may be made to approach any assigned value c by a suitable method of approaching the singular point $z=\pi$.
4. Find the order of the poles of these functions at the origin:
$(\alpha) \cot z$,
$(\beta) \csc ^{2} z \log (1-z)$,
$(\gamma) z(\sin z-\tan z)^{-1}$.
5. Show that if $f(z)$ vanishes at $z=$ a once or n times, the cuotient $f^{\prime}(z) / f(z)$ has the resilue 1 or n. Show that if $f(z)$ has a pole of the m th order at $z=u$, the fuotient has the residue $-m$.
6. From Ex. 5 prove the important theorem that: If $f(z)$ is analytic and does not vanish upon a closed corve and has no singularities other than poles within the eurve, then

$$
\frac{1}{2 \pi i} \int_{0} \frac{f^{\prime}(z)}{f^{\prime}(z)} d z=n_{1}+n_{2}+\cdots+n_{k}-m_{1}-m_{2}-\cdots-m_{l}=N-M,
$$

where N is the total momber of ronts of $f(z)=0$ within the curve and M is the sum of the orders of the peles.
7. Apply Ex. 6 to $1 / P^{\prime}(z)$ to show that a polymmial $P^{\prime}(z)$ of the nth order has just n roots within a sufficiently large curve.
8. Prove that e^{z} cannot vanish for any finite value of z.
9. ('msider the residue of $z f^{\prime}(z) / f(z)$ at a pole or ranishing point of $f(z)$. In particular prove that if $f(z)$ is analytic and does not vanisu unon a chosed curve and has no singularities but poles within the curve, then

$$
\frac{1}{z \pi i} \int_{0} \frac{z f^{\prime}(z)}{f(z)} d z=n_{1} a_{1}+n_{2} a_{2}+\cdots+n_{k}\left(l_{k}-m_{1}^{\prime \prime} 1_{1}-m_{2} h_{2}-\cdots-m_{l} l_{1}\right.
$$

where $a_{1}, a_{2}, \cdots, a_{k}$ and $n_{1}, n_{2}, \cdots, n_{k}$ are the positions and orders of the ronts, and b_{1}, b_{2}, \cdots, b_{1} and $m_{1}, m_{2}, \cdots, m_{1}$ of the poles of $f(z)$.
10. Prove that $\Theta_{1}(z)$. 1. fial, has only one root within a rectangle $2 K$ hy $2 i K^{\prime}$.
11. State the beharion (analytic. pole, or essential shoularity) at $z=\infty$ for:

$$
(\alpha) z^{2}+\supseteq z, \quad(\beta) \quad{ }^{z}, \quad(\gamma) z /(1+z), \quad \text { (}, \quad z /\left(z^{3}+1\right) .
$$

12. Show that if $f(z)=\left(z-(r)^{k} E(z)\right.$ with $-1<k<0$, the integral of $f(z)$ aboust an infinitesimat conton surroming $z=\alpha$ is infinitesimal. What analogons theorem bolks for an infinite contour?
13. Characterization of some functions. The study of the limitations which are put upon a functitn when ereran of its properties are known is important. For example, "function nlich is crmelytir fior all reluos of a immlulin! als" $a=\infty$ is "ronstant. To show this, mote that as the function nowhere becomes infinite. $\left.\mid f^{\prime}(i)\right) \mid<r_{i}$. ('onsiner the differenere $f^{\prime}\left(\ddot{i}_{0}\right)-f^{\prime}(0)$ hotween the value at any point $a=\ddot{z}_{0}$ and at the orgin. Take a direle conmentrice with $a=0$ and of radius $~ R i>\left|i_{0}\right|$. Then ly ('anchy's Intergral

$$
\begin{aligned}
& f\left(z_{0}\right)-f(0)=\frac{1}{2} \pi i\left[\int \frac{t^{\prime}(t)}{t-i_{0}} d t-\int \frac{f^{\prime}(t)}{t-0} d t\right]=\frac{\ddot{z}_{0}}{2 \pi i} \int_{0} \frac{f^{\prime}(t) d t}{t\left(t-\tilde{z}_{0}\right)}, \\
& \left|f\left(i_{0}\right)-f^{\prime}(0)\right|<\frac{\left|\tilde{z}_{n}\right|}{\frac{2}{-} \pi} \frac{2 \pi l_{i}(i}{R\left(l_{i}-\left|\tilde{z}_{0}\right|\right)}=\frac{\left(i\left|\tilde{z}_{0}\right|\right.}{R-\left|\tilde{z}_{0}\right|} .
\end{aligned}
$$

By taking l large mough the differemer, which is eomstant, may be mate as small as desired and lemore must be zero; hemor for $f^{\prime}=f^{\prime}(0)$.

Any rational function $f(\hat{i})=P(*) / Q(*)$, where $P(*)$ and $Q(*)$ are polynomials in a and may be assumed to be devoid of common factors, can have as singularities merely poles. There will be a pole at each point at which the denominator vanishes; and if the degree of the numerator exceeds that of the denominator, there will be a pole at infinity of order equal to the difference of those degrees. Conversely it may be shown that any function u'hirh has no other singulurity then " pole of the mith oreler at infinity mast he a polynomial of the moth order: that if the only singularities ere ", finite number of poles, whether at infinity "n "th "ther peints, the function is "rutionel function: and finally that the linouledge of the suros and poles with the multiplicity or order of erech is sufficient to dretermine the fienetion exeept for a constant multiplier.

For, in the first place, if $f(z)$ is analytic except for a pole of the m th order at infinity, the function may be expanded as

$$
f(z)=u_{-m} z^{m}+\cdots+u_{-1} z+u_{0}+u_{1} z^{-1}+u_{2} z^{-2}+\cdots,
$$

or

$$
f(z)-\left[u_{-m} z^{m}+\cdots+u_{-1} z\right]=u_{0}+u_{1} z^{-1}+u_{2} z^{-2}+\cdots .
$$

The function on the right is amalytic at intinity, and so must its equal on the left lee. The function on the left is the difference of a function which is analytic for all finite values of z and a polynomial which is also analytic for finite values. Hence the function on the left or its equal on the right is analytie for all values of z including $z=x$, and is a constant, namely a_{0}. Hence

$$
f(z)=u_{0}+u_{-1} z+\cdots+n_{-m} z^{m} \text { is a polynomial of order } m \text {. }
$$

In the second place let $z_{1}, z_{2}, \cdots, z_{k}, \infty$ be poles of $f(z)$ of the respective orders $m_{1}, m_{2}, \cdots, m_{k}, m$. The finction

$$
\phi(z)=\left(z-z_{1}\right)^{m_{1}}\left(z-z_{2}\right)^{m_{2}} \ldots\left(z-z_{k}\right)^{m_{k}} \cdot f(z)
$$

will then have no singularity but a pole of order $m_{1}+m_{2}+\cdots+m_{k}+m$ at infinity; it will thesefore be a polynomial, and $f(z)$ is rational. As the numerator $\phi(z)$ of the fraction camot ranish at $z_{1}, z_{2}, \cdots, z_{k}$. but must have $m_{1}+m_{2}+\cdots+m_{k}+m$ ronts, the knowlellge of these roots will determine the mumerator $\phi(z)$ and hence $f(z)$ except for a comstant multiplier. It should be noted that if $f(z)$ has not a pole at infinity but has a zero of order m, the above reasoning holds on changing m to $-m$.

When $f^{\prime}(*)$ has a pole at $\approx=\|$ of the m th order, the expansion of $f(r)$ about the pole tontains reertain negative powers

$$
P(\approx-a)=\frac{c_{-m}}{(\approx-u)^{m}}+\frac{c_{-m+1}}{(\approx-u)^{m-1}}+\cdots+\frac{r_{-1}}{\approx-u}
$$

and the difference $f(z)-P(z-\|)$ is analytic at $z=\|$. The terms $P(\pi-1)$ are called the principul purt of the fiunction $f(\%)$ at the pole a.

If the function has only a finite number of finite poles and the prin(ipal parts corresponding to each pole are known,

$$
\phi(z)=f(\dot{z})-I_{1}\left(\tilde{z}-\tilde{z}_{1}\right)-I_{2}\left(\tilde{z}_{i}-\tilde{z}_{2}\right)-\cdots-P_{k}\left(\tilde{z}-\tilde{z}_{k}\right)
$$

is a function which is everywhere analytic for finite values of a and behaves at $\approx=\infty$ just as,$f^{*}(*)$ hehaves there, since $P_{1}, P_{2}, \cdots, P_{k}$ all vanish at $a=\infty$. If $f^{\prime}(\because)$ is analytic at $a=\infty$, then $\phi(*)$ is a constant; if $f(z)$ has a pole at $\approx=\infty$, then $\phi(z)$ is a polynomial in z and all of the polynomial except the constant term is the principal part of the pole at infinity. Honce if " function hus no simgularities escept a finite number af pules, amb the principul purts at theses poles are linowen, the function is determined exerpt fire un arditive constant.

From the above considerations it appears that if a function has no other singularities than a finite number of poles, the function is rational; and that, moreover, the function is determined in factored form, except for a constant multiplier, when the positions and orders of the finite poles and zeros are known or is determined, except for an additive constant, in a development into partial fractions if the positions and principal parts of the poles are known. All single valued functions other than rational functions must therefore have either an infinite number of poles or some essential singularities.
181. The exponential fumetion $r^{z}=r^{x}(\cos y+i \sin y)$ has ne finite singularities and its singularity at infinity is necessarily essential. The function is periodic (STt) with the period $2 \pi i$, and hence will take on all the different values which it can liave, if $\ddot{\sim}$, instead of being allowed all values, is restricted to lave its pure imaginary part ! bletween two limits $y_{0} \equiv y<y_{0}+2 \pi$; that is, to comsider the values of r^{z} it is merely neressary to consider the values in a strip of the a-plane parallel to the axis of reals and of breadth 2π (lout lacking one odge). For convenience the strip maty $]_{x}$ taken immediately alove the axis of reals. The function beromes infinite as anowes out toward the right, and zaro as ar mowes ont toward the left in the strip. If $e=u+b i$ is any monner other than 0 , there is one and only one point in the strip at which, $z=r$. For

$$
r^{r}=\sqrt{n^{2}+l^{2}} \quad \text { and } \quad(\cdot 0) y+i \sin !=-\frac{u}{\sqrt{u^{2}}+l i^{2}}+i \frac{b}{\sqrt{u^{2}}+l^{2}}
$$

 interval 2π. All other foints for which $r^{z}=r$ lave the same value for x^{r} and some value ! $\pm \because n \pi$ for ! $\%$

Any rational funetion of e^{z}, as

$$
R\left(e^{z}\right)=C \frac{e^{n z}+{1_{1} e^{(n-1) z}}^{(n)}+\cdots+a_{n-1} e^{z}+a_{n}}{e^{m z}+b_{1} e^{(m-1) z}+\cdots+b_{m-1} e^{z}+b_{m}},
$$

will also have the period $2 \pi i$. When a moves off to the left in the strip, $R\left(e^{z}\right)$ will approach $C t_{n} / l_{m}$ if $b_{m} \neq 0$ and will become infinite if $b_{m}=0$. When a moves off to the right, $l\left(e^{z}\right)$ must become intinite if $n>m$, approach C if $n=m$, and approach 0 if $n<m$. The denominator may be factored into terms of the form $\left(e^{z}-\alpha\right)^{k}$, and if the fraction is in its lowest terms each such factor will represent a pole of the l:th order in the strip because $e^{z}-\alpha=0$ has just one simple root in the strip. Conversely it may be shown that: Any function $f^{\prime}(\approx)$ which has the period $2 \pi i$, whirh finthere lows no singulurities but a finite number of poles in erch stiy, and which vither becomes infinite or "p,prouches a finite limit us a mores off to the right or to the left, must be $f(z)=R\left(e^{z}\right)$, "retionul function of $f^{\prime z}$.

The proof of this theorem requires several steps. Let it first be assumed that $f(\boldsymbol{z})$ remains finite at the ends of the strip and has no poles. Then $f(z)$ is finite over all values of z, including $z=\infty$, and must be merely constant. Next let $f(z)$ remain finite at the ends of the strip but let it have poles at some points in the strip. It will be shown that a rational function $f_{i}\left(\varepsilon^{z}\right)$ may be constructed such that $f(z)-R\left(\varepsilon^{z}\right)$ remains finite all over the strip, including the portions at infinity. and that therefore $f(z)=R\left(e^{z}\right)+C$. For let the principal part of $f(z)$ at any pole $z=c$ be

$$
P(z-c)=\frac{c_{-k}}{(z-c)^{k}}+\frac{c_{-k+1}}{(z-c)^{k-1}}+\cdots+\frac{c_{-1}}{z-c} ; \quad \text { then } \quad \frac{c_{-k} e^{k c}}{\left(e^{z}-e^{c}\right)^{k}}=\frac{c_{-k}}{(z-c)^{k}}+\cdots
$$

is a rational function of e^{z} which remains finite at both ends of the strip and is such that the difference between it and $l^{\prime}(z-c)$ or $f(z)$ has a pole of not more than the $(k-1)$ st oreler at $z=c$. By subtracting a number of such terms from $f(z)$ the pole at $z=c$ may be eliminated without introducing any new pole. Thus all the poles may be eliminated, and the result is proved.

Next consider the case where $f(z)$ becomes infinite at one or at both ends of the strip. If $f(z)$ happens to approach 0 at one end, consider $f(z)+($. which camot approach 0 at either end of the strip. Now if $f(z)$ or $f(z)+\ddots$. as the case may be, had an infinite mumber of zeros in the strip, these zeros would he confined within finite limits and would have a point of condensaṭion and the function would vanish identically. It must therefore be that the function las only a finite number of zeros; its reciprocal will therefore have only a finite number of poles in the strip and will remain finite at the ends of the strips. Hence the reciprocal and consequently the function itself is a rational function of e^{z}. The theorem is completely demonstrated.

If the relation $f(\approx+\omega)=f(\%)$ is satisfied ly a function, the function is said to have the period ω. The function $f^{\prime}(\underline{2} \pi i=/ \omega)$ will then have the period 's π i. Hence it follows that if $f(\approx)$ has the periond ω, becomes infinite on iemmins finite at the ends of a strip of cector mrendth
w, und inas no singularities but a finite numbor, of poles in the strip, the funtion is a rutionul fienction of $e^{2 \pi i z / \omega}$. In particular if the period is 2π, the function is rational in $e^{i z}$, as is the case with $\sin z$ and $\cos z$; and if the period is π, the function is rational in $e^{i z / 2}$, as is tan \approx It thus appears that the single valued elementary functions, namely, rational functions, and rational functions of the exponential or trigonometric functions, have simple general properties which are chanateristic of these classes of functions.
182. Suppose a function $f(*)$ has two independent periods so that

$$
f(*+\omega)=f(*), \quad f\left(*+\omega^{\prime}\right)=f^{\prime}(*) .
$$

The function then has the same value at z and at any point of the form $a+m \omega+n \omega$, where m and n are positive or netrative integers. The function takes on all the values of which it is "apable in a parallelogram constructed on the vertors ω and ω '. surh a function is ealled doubly pertiolier. As the values of the function are the same on opposite sides of the parallelogram, only two sides and the one inChaled vertex are supposed to belomg to the figure. It has been seen that some doubly leriodic functions exist ($17 . \overline{6}$); but without reference to these
 sperial functions many important theorems ronereming donbly periodice functions may be proved, suljecet to a sulserguent demonstration that the functions do exist.
 it menst le comstront: for the function will then late no singularities at

 same freineiperl fersts at ther fenles, their aliffererenere is "ronstant. In thesese theorems (and all those following) it is asimmed that the finnetions have no exsential singulanity in the paralle logram. The proof of the theorems is left to the rearler. If $f^{\prime}(:)$ is doully feriondie. $f^{\prime \prime}(:$,$) is also$ donbly periodic. The integral of a doubly feriondie function takes aromd any parallelogram agual and parallel to the paralle logran of periods is zero: for the function repeats itself on oprosite sides of the figure while the differential do elamges sign. Hence in praticular

$$
\int_{\square} f(i) d z=0, \quad \int_{-} f^{f^{\prime \prime}(i)}(i) d z=0, \quad \int_{\square} \frac{f^{\prime \prime}(i) d z}{f^{\prime}(z)-(}=0 .
$$

The first integral shows that the sum of the residues of the poles in the parallelogram is aro ; the second, that the mumber of areos is equal to the number of poles provided multiplicities are taken into account; the third, that the number of seros of $f(z)-C$ is the sume as the number of zeros or poles of $f(*)$, because the poles of $f(*)$ and $f(*)-C$ are the same.

The common number m of poles of $f(z)$ or of zeros of $f(z)$ or of roots of $f(z)=C$ in any one parallelogram is called the order of the doubly perionlir fiuntion. As the sum of the residues vanishes, it is impossible that there should be a single pole of the first order in the parallelogram. Hence there can be no functions of the first order and the simplest possible functions would be of the second order with the expansions
$\frac{1}{(z-u)^{2}}+c_{0}+e_{1}(z-c)+\cdots$ or $\frac{1}{z-\prime_{1}}+c_{0}+\cdots$ and $\frac{-1}{z-\prime_{2}}+c_{0}^{\prime}+\cdots$
in the neighborhood of a single pole at $:=\boldsymbol{a}$ of the second order or of the two poles of the first order at $z="_{1}$ and $z="_{2}$. Let it be assmmed that when the periods ω, ω ' are given, a doubly periodic function $g\left(\approx,{ }^{\prime}\right)$ with these periods and with a double pole at $z=\|$ exists, and similarly that $h_{1}\left(\tilde{\varepsilon}, a_{1}, a_{2}\right)$ with simple poles at $\|_{1}$ and $\|_{2}$ exists.

Any doubly perimetic fanction $f\left(\right.$ a with the perionds ω, ω^{\prime} muy be expressed "s a polynominel in the finnctioms $!(z, ")$ "nt $h\left(*, "_{1}, "_{2}\right)$ of the secend omers. For in the first place if the function $f^{\prime}(*)$ has a pole of even order $27:$ at $a=\pi$, then $f(i)-C[g(i, n)]^{k}$, where C is properly chosen, will have a pole of order less than 27 at $\approx=$ and will have no other poles than $f^{\prime}(i)$. Hence the orter of $f^{\prime}(i=)-C^{\prime}[!(\because, \pi)]^{k}$ is less than that of $f(z)$. And if $f^{\prime}(*)$ has a pole of odd orter $27:+1$ at $z=a$, the function $f(\%)-\quad\left([!(z, a)]^{k} l_{(}(*, ", b)\right.$, with the proper choice of C, will have a pole of orter 2 \% or less at $i=11$ and will gain a simple pole at $a=\Longleftrightarrow$. Thus although $t^{\prime}-\zeta^{\prime} y^{k} /$ will generally not be of lower order than f, it will have a complex pole of odd order split into a pole of even order and a pole of the first order ; the order of the former may be retuced as before and pairs of the latter may be removed. By repeated applications of the process a function may be obtained which has no poles and must be constant. The theorem is therefore proved.

With the aid of series it is possible to write down some donbly periodic functions. In particmar consider the series

$$
\begin{gather*}
\rho(\hat{i})=\frac{1}{\hat{i}^{2}}+\sum^{\prime}\left[\frac{1}{\left(\hat{i}-m \omega-n \omega^{\prime}\right)^{2}} \cdots \frac{1}{\left(m \omega+n \omega^{\prime}\right)^{2}}\right] \tag{6}\\
\mu^{\prime}(\dot{i})=-2 \sum \frac{1}{\left(\because-m \omega-n \omega^{\prime}\right)^{3}},
\end{gather*}
$$

and
where the second Σ denotes summation extended over all values of m, n, whether positive or negative or zero, and Σ ' denotes summation extended over all thess values except the pair $m=n=0$. As the summations extend over all pussible values for m, n, the series constructed for $z+\omega$ and for $z+\omega^{\prime}$ minst have the same terms as those for z, the only difference being a different arrangement of the terms. If, therefore, the series are absolutely convergent so that the order of the terms is immaterial, the functions must have the periods ω, ω '.

Consider first the convergence of the series $p^{\prime}(z)$. For $z=m \omega+n \omega^{\prime}$, that is, at the vertices of the net of parallelograms one term of the series becomes infinite and the series camot converge. But if z he restricted to a finite region R about $z=0$, there will be only a finite mumber of terms which can become infinite. Let a parallelogran P lage enongh to surround the region be drawn and consider enly the vertices which lie outside this parallelogram. For convenience of computation let the peints: $z=m \omega+n \omega^{\prime}$ outside P be considered as arranged on strcessive parallelograms P_{1}, P_{2}, \cdots, P_{k}, \cdots. If the number of vertices on P be ν, the number on P_{1} is $\nu+8$ and on P_{k} is $\nu+8 k$. The
 shortest vector $z-m \omega-n \omega^{\prime}$ from z to any vertex of P_{1} is longer than a, where " is the least altitule of the parallelogram of periods. The total contribution of I_{1} to $p^{\prime}(z)$ is therefore less than $(\nu+8) u^{-3}$ and the value contributed by all the vertices on successive parallelograms will te less than

$$
s=\frac{\nu+8}{u^{3}}+\frac{\nu+8 \cdot 2}{\left(2(u)^{3}\right.}+\frac{\nu+8 \cdot 3}{(3, u)^{3}}+\cdots+\frac{\nu+8 \cdot k}{(k u)^{3}}+\cdots
$$

This series of positive terms comberges. Henme the infinite series for $p^{\prime}(z)$. When the finst terms correspoming to the vorims within P_{1} are disergarten, converges absolutely and exell uniformly so that it represents an analytic function. The whole series for $p^{\prime}(z)$ therefore represents a doubly periodic function of the therd order analytic everywhere except at the vertices of the parallelograms where it has a pole of the third order. As the part of the series $p^{\prime}(z)$ contributed by vertices ontwide I ' is miformly convergent, it may be integrated from 0 to z to give the corresendine terms in $p(z)$ which will also be absolutely convergent becanse the terms, groulen as for $p^{\prime}(z)$, will be los than the terms of ls where l is the lempth of the path of integration from 0 to z. The other terms of $p^{\prime}(z)$. thus far thisegardel, may be interrated at sight to ohtain the coresponding terms of $p(z)$. Hence $p^{\prime}(z)$ is really the derivative of $p^{\prime}(z)$; and as $p(z)$ ennerges absolutely exrent for the rertios of the parallelograns, it is clearly doubly perionie of the secoud order with the perioxls ω, ω^{\prime}, for the sume reasm that $p^{\prime}(z)$ is periodic.

It has therefore heen shown that doully periodic functions exist, and heme the theorems delluced for sum functions are valid. Some further inmortant theorems are indirated among the exercises. They lead to the inferenew that :uny dondly periondie function which hat the
periods ω, ω^{\prime} and has no other singularities than poles may be expressed as a rational function of $\rho^{\prime}(\approx)$ and $\mu^{\prime}(\%)$, or as an irrational function of $f^{\prime}(z)$ alone, the only irrationalities being spuare roots. Thus hy enploying only the general methods of the theory of functions of a complex variable an entirely new category of functions has been characterized and its essential properties have been proved.

EXERCISES

1. Find the principal parts at $z=0$ for the functions of Ex. 4. p. 481.

2. How does $e^{\left(\varepsilon^{z}\right)}$ behare as z becomes infinite in the strip?
3. If the ralues $R(c \approx)$ approaches when z becones intinite in the strip are called exceptional values, show that $R\left(e^{z}\right)$ takes on every value other than the exceptional ralues k times in the strip, k being the greater of the two mombers $n . m$.
4. Show by Ex. 9, p. 482, that in any parallelogran of periods the sum of the positions of the roots less the smo of the positions of the poles of a dombly periodic function is $m \omega+n \omega^{\prime}$, where m and n are integers.
5. Show that the terms of $p^{\prime}(z)$ may be associated in such a way as to prove that $p^{\prime}(-z)=-p^{\prime}(z)$, and hence infer that the expansions are

$$
p^{\prime}(z)=-2 z^{-3}+2 c_{1} z+4 c_{2} z^{3}+\cdots, \quad \text { mly odd powers, }
$$

and

$$
p(z)=z^{-2}+c_{1} z^{2}+c_{2} z^{4}+\cdots, \quad \text { only even powers. }
$$

7. Examine the seric* (6) for $p^{\prime}(z)$ th show that $p^{\prime}\left(\frac{1}{2} \omega\right)=p^{\prime}\left(\frac{1}{2} \omega^{\prime}\right)=p^{\prime}\left(\frac{1}{2} \omega+\frac{1}{2} \omega^{\prime}\right)=0$. Why can $p^{\prime}(z)$ not vanish for any other perints in the parallelowram?
8. Let $p\left(\frac{1}{2} \omega\right)=c \cdot p\left(\frac{1}{2} \omega^{\prime}\right)=c^{\prime} \cdot p^{\prime}\left(\frac{1}{2} \omega+\frac{1}{2} \omega^{\prime}\right)=r^{\prime \prime}$. P'rowe the identity of thr doubly perioxic functions $\left[p^{\prime}(z)\right]^{2}$ and $+\left[p^{\prime}(z)-c\right]\left[p^{\prime}(z)-e^{\prime}\right]\left[p(z)-e^{\prime \prime}\right]$.
9. By examining the serics defining $f^{\prime}(z)$ show that any two puints $z=u$ and $z=u^{\prime}$ such that $p(u)=p\left(u^{\prime}\right)$ are symmetrically situated in the parallelogram with respect to the center $z=\frac{1}{2}\left(\omega+\omega^{\prime}\right)$. Inw eould this be inferred from Ex. $5:$
10. With the notations $g(z, u)$ and $h\left(z, u_{1}, u_{2}\right)$ of the text show:
(a) $\frac{p^{\prime}(z)+p^{\prime}(u)}{p^{\prime}(z)-p(u)}=2 h\left(z .0,(k), \quad \frac{p^{\prime}(z)+p^{\prime}((u)}{p(z)-p(u)}=-2 h(z . u, u)\right.$,
$(\beta) \frac{p^{\prime}(z)+p^{\prime}\left(u_{2}\right)}{p^{\prime}(z)-p\left(u_{2}\right)}-\frac{p^{\prime}(z)+p^{\prime}\left(u_{1}\right)}{p(z)-p\left(u_{1}\right)}=2 h_{\left(z, u_{1}, u_{2}\right), ~}^{\text {位 }}$
($\gamma) \frac{1}{4}\left[\frac{p^{\prime}(z)+p^{\prime}(u)}{p(z)-p(u)}\right]^{2}-p(z)=y(z, a)=p(z-u)+$ const.,
($\delta) p(z-\prime)=\frac{1}{4}\left[\frac{p^{\prime}(z)+p^{\prime}(t)}{p^{\prime}(z)-p(1)}\right]^{2}-p(z)-p((t)$.
11. Demonstrate the final theorem of the text of
12. By combining the power sories for $p(z)$ and $p^{\prime}(z)$ show

$$
\left[p^{\prime}(z)\right]^{2}-4[p(z)]^{3}+20 c_{1} p(z)+28 c_{2}=A z^{2}+\text { higher powers. }
$$

Hence infer that the right-hand side must be inlentically zaro.
13. Combine Ex. 12 with Ex. 8 t! prove $e+e^{\prime}+e^{\prime \prime}=0$.
14. With the notations $g_{2}=20 r_{1}$ and $g_{3}=28 c_{2}$ show

$$
p^{\prime}(z)=\sqrt{4 p^{3}(z)-y_{2} p(z)-y_{3}} \quad \text { or } \frac{d p}{\sqrt{4 y^{3}-y_{2} p-y_{3}}}=d z .
$$

15. If $\zeta(z)$ be defined by $-\frac{d}{d z} \zeta(z)=p(z)$ or $\zeta(z)=-\int p(z) d z$. Now that $\zeta(z+\omega)-\zeta(z)$ and $\zeta\left(z+\omega^{\prime}\right)-\zeta(z)$ must be merely constants η and η^{\prime}.
16. Conformal representation. The transformation ($\$ 178$)

$$
u=f(z) \quad \text { or } \quad u+i n=u(n, y)+i n(n, y)
$$

is conformal between the planes of \because and \nsim at all points \because at which $f^{\prime \prime}(: 氵) \neq 0$. The correspondence between the planes may be represented by ruling the aplane and drawing the corresponding rulings in the (r-p lane. If in particular the rulings in the whane be the lines, = ronst., ! $=$ const., parallel to the axes, those in the u-plane must be two sets of curves which are also orthogonal; in like manner if the a-plane lee ruled hy eircles concentrice with the origin and rays issuing from the origin, the $w^{-p} p$ lane must also be rulet orthegonally: for in both cases the angles between curves must be preserved. It is usually most ronvenient to consider the "r-phane as ruled with the lines $"=$ const., $r=$ const., and hence to hare a set of rulings $n(x,!)=c_{1}, r(r \cdot,!)=c_{2}$ in the $\begin{gathered}\text {-plane. The figures represent several different cases arising from }\end{gathered}$ the functions

Comsider $u=A^{2}$, and apmly polar eromplate.s so that

To any point (r, ϕ) in the $z-p l a n e$ corresponds $\left(R=r^{2}, \Phi=2 \phi\right)$ in the "-plane; circles about $z=0$ become circles about $u=0$ and rays issuing from $\approx=0$ berome rays issuing from $u=0$ at twice the angle. (A figure to scale should be supplied hy the reader.) The derivative $u^{\prime}=2 z$ vanishes at $z=0$ only. The transformation is conformal for all points except $\hat{z}=0$. At $\hat{z}=0$ it is clear that the angle between two curves in the a-plane is doubled on passing to the corresponding curves in the $u-p l a n e$; hence at $\ddot{\sim}=0$ the transformation is not conformal. Similar results would be obtained from $u^{=}=z^{m}$ except that the angle between rays issuing from $w=0$ would be m times the angle letween the rays at $z=0$.

A point in the neighborhood of whiels a function $\pi^{\circ}=f(\approx)$ is anslytie but has a vanishing derivative $f^{\prime \prime}(:)$ is called a critioch point of $f^{\prime}(*)$; if the derivative $f^{\prime \prime}(a)$ has a root of multiplicity k at any point, that point is called a criticul proint of ormer k. Let $z=z_{0}$ be a critical point of order k. Expand $f^{\prime \prime}(*)$ as

$$
f^{\prime}(z)=\prime_{k}\left(z-z_{0}\right)^{k}+\left(\prime_{k+1}\left(z-z_{0}\right)^{k+1}+\prime_{k+2}\left(z-z_{0}^{\prime}\right)^{k+2}+\cdots ;\right.
$$

then $f(z)=f\left(\hbar_{0}\right)+\frac{{ }^{\prime \prime} k}{l_{i}+1}\left(i-z_{0}\right)^{k+1}+\frac{{ }^{\prime \prime} k+1}{k+2}\left(z-z_{0}\right)^{k+2}+\cdots$,
Oi'

$$
u^{\prime}=u_{0}+\left(\because-\because_{0}\right)^{k+1} E(z) \quad \text { or } \quad u^{\prime}-u_{0}=\left(\because-u_{0}\right)^{k+1} E(i),
$$

where E is a function that does not vanish at \ddot{n}_{0}. The point $i=a_{0}$ gros into $u=u_{0}$. For a suffieriently small region about \ddot{a}_{n} the transformat tion (1) is sufticiently represented as

$$
\| \prime-\prime_{0}=r\left(\because-\ddot{n}_{0}\right)^{k+1}, \quad \quad \quad=E\left(z_{0}^{\prime}\right) .
$$

On comparison with the case $u=a^{m n}$. it appears that the angle between two curves meeting at π_{0} will be multiplied by $k+1$ on passing to the corresponding curves meeting at w. Hence ut ar reitiral puint of the

('onsider the transformation $u=z^{2}$ more in detail. To each point a corresponds one and only one point w. To the points $:$ in the first 'fualrant correspond the points of the first two quadrants in the π_{-} phane, and to the upper half of the en-plane corresponds the whole $w-p l a n e$. In like maner the lower half of the oplane will be mapped mon the whole "r-plane. Thus in finding the points in the er-plane which cor-
 This double counting of the m-plane may be obviaterl by a simple device. Instead of having one shent of prum to represent the w-plane,
let two sheets be superposed, and let the points eorresponding to the upper half of the ablane be considered as in the uper sheet, while those corresponding to the lower half are considered as in the lower sheet. Now consider the path traced upon the double u-plane when z traces a path in the a-plane. Erery time a crosses from the seeond to

the third quadrant, x passes from the fourth quadrant of the upper shect into the first of the lower. When \approx passes from the fourth to the first quadrants, womes from the fourth quadrant of the lower sheet into the first of the upper.

It is convenient to join the two sheets into a single surface so that a continuons path on the a-plane is pictured as a continnous path on the u-surface. This may be dome (as indicated at the right of the middle figure) ly regarling the lower half of the mper sheet as connected to the upper half of the lower, and the lower half of the lower as connceded to the uprer half of the upper. The surface therefore cuts through itself along the positive axis of reals, as in the sketeh on the left*; the line is called the junctiom lime of the surface. The point $\|=0$ whieh corresponds to the eritieal point $a=0$ is called the burenrly forint of the surfare. Now not only does one point of the a-plane go wer into a single point of the w-surface, but to each point of the surface corresponts a siugle point \because; although any two points of the usurface whicll are superpesed have the same value of n, they correspond to different values of a exerpt in the case of the banch point.
184. The er-surface, which has been obtained as a mere convenience in maplying the oplane on the w-plane is of particolar value in studying the inverse function $a=\sqrt{\prime \prime}$. For $\sqrt{\prime \prime}$ is a multiple valued function and to eacla value of "" "ormespond two values of \because; but if " be

[^44]regarded as on the x-surface instead of merely in the w-plane, there is only one value of \approx corresponding to a point u upon the surface. Thus the function $\sqrt{\text { ur }}$ whirh is double creluet orer the "-phlome becomes single walued over the w-surfare. The w-surface is called the Riemmon surfore of the function $z=\sqrt{1 r}$. The construction of Rienann surfaces is important in the study of multiple valued functions because the surface keeps the different values apart, so that to each point of the surface corresponds only one value of the function. Consider some surfaces. (The student should make a paper model by following the steps as indicated.)

Let $u=z^{3}-3 z$ and plot the u-surface. First solve $f^{\prime}(z)=0$ to find the critical points z and substitute to find the branch points u. Now if the lranch points be considered as remored from the u-plane, the plane is mo longer simply connected. It must be made simply connected by drawing proper lines in the figure. This may be accomplished by drawing a line from each branch point to infinity or by connecting the successive branch points to each other and comecting the last one to the point at infinity. These lines are the junction lines. In this particular ease the critical points are $z=+1,-1$ and the braneh points are $u=-2,+2$, and the junction lines may be taken as the straisht lines fuining $u=-\underline{2}$ and $u=+2$ to

infinity and lying along the axis of reak as in the figure. Next ypread the reguisite momber of sheetsover the u-plane and ent them abome the junction lines. As $u=z^{3}-3 z$ is a culic in z, and to cach value of u, except the branch values, there correspond three vahes of z, three sheets are neeted. Now find in the z-phane the image of the junction lines. The junction lines are represented by $x=0$: but $r=3 x^{2} y-y^{3}-3 y$, and hence the line $y=0$ and the hyperbola $3 x^{2}-y^{2}=3$ will be the images desired. The z-plane is divided into six pieces which will be sern to forrespund th the six half sheets over the u-plane.

Sext z will be made to trace ont the imases of the junction lines and to turn about the critical points so that w will trace ont the junction lines and turn about the luanch prints in such a mamer that the enmections between the different sheets may be male. It will be convenient to requal z and ur as persms walkin? abong their respective paths so that the tems" right" and "left" have a memine.

Let z start at $z=0$ and move forward to $z=1$; then, as $f^{\prime}(z)$ is negative. w starts at $w=0$ and mores back to $w=-2$. Moreover if z turns to the right as at P, so must w turn to the right through the same angle, owing to the conformal property. Thus it appears that not only is $O A$ mapped on ou, but the recrion 1^{\prime} just above $O A$ 1s mapped on the region I' just below on; in like manner $O B$ is mapped on ob. As $a b$ is not a junction line and the sheets have not been cut through afong it, the regions $1,1^{\prime}$ should be assmmed to be mapped on the same sleet, say, the uppermost, I, I'. As any point Q in the whole infinite region I' may be reached from 0 without crossing any image of (t). it is clear that the whole infinite region I^{\prime} should be considered as mapped on I^{\prime}; and similarly 1 on I. The converse is also evident, for the same reasom.

If, on reaching A, the $l^{m i n t} z$ turns to the left through 90° and moves along $A C$. then w will make a turn the theft of 180°, that is. will keep straight along ac; a turn as at R^{\prime} into I^{\prime} will correspond to a turn as at r into I^{\prime}. This checks with the statement that all 1^{\prime} is mapped on all I^{\prime}. Suppose that z deseribed a small circuit about +1 . When z reaches D, w reaches d; when z reaches E, w reaches ϵ. But when w erossed ue. it could not have crossed into I , and when it reathes e it camot be in I ; for the points of 1 are already accounted for as corresponling th points in 1. Hence in crossing ur. w must drop into one of the lower sheets. say the middle, II; and on reaching e it is still in II. It is thus seen that 11 correspombs to 2 . Let z continue aromes its cireuit; then II' and z^{\prime} correspont. When z croses $A C^{\prime \prime}$ from 2^{\prime} and moves into 1 . the point w crosses ać amt moves from II' up into I. In fact the upper two sheets are emmected alons ue just as the two sheets of the surface for $u=z^{2}$ were commected along their junction.

In like manner suppose that z moves from 0 to -1 and takes a turn alont B su that u moves from 0 to 2 and takes a turn about l. When z croses $B F$ from I^{\prime} to $B_{\text {, }}$ or croses lif from I^{\prime} into the upper half of some sheet, amd this must be III for the reason that I and II are already mapper on 1 and 2 . Itence I^{\prime} and $1 H$ are connected, and so are I and III'. This leaves II which has been cut along lif. and III ont along $u c$, which may be recmmected as if they had never been cut. The reasm for this appears forcilly if all the peints z which correspond to the branch peints are admed to the diasram. When $w=2$, the values of z are the critical value -1 (dmble) and the ordinary value $z=2$; similarls. $u=-2$ comespmols to $z=-2$. Hence if z describe the half eirenit $A E$ so that w gets armund to e in II, then if z moves ont to $z=2$. w will move out to $w=2$. passing by $w=0$ in the sheet If as z passe thourh $z=1$? but as $z=2$ is not a critical point, $u=2$ in II emmot he a branch print, and the cht in II may be recomected.

The w-surfare thas constructed $f\left(u r=f(z)=z^{3}-3 z\right.$ is the Riemann surface for the inverse function $z=f^{-1}\left({ }^{\prime}\right)$. of which the explicit form camot be siven without solving a mbic. To each pint of the surfare corrermols ome value of z. and to the three superpond ralues of u comeanmol thee different ralues of z (xcept at the branch puints where two of the sheets come together and wive onl: one value of z while the thim sheet givas one wher. The liemam surface comb equally well have heen comstructent heming the two branch pointe and then comecting one of them to x. The imate of $x=0$ wouk not have been chancer? The connections of the sherets couk be established as before, but would he difforent. If the junction line he $-2.2 .+x$, the wint $x=2$ has two junetims ruming inte it. and the "omectims of the sherets on opposite sines of the pinint are not indepembent. It is alvisable th arrange the work so that the first branch peint
which is encircled shall have only one junction rumning from it. This may be done by taking a very large circuit in z so that w will describe a large circuit and hence cut only one junction line, namely. from 2 to ∞, or by taking a small circnit about $z=1$ so that w will take a small turn about $w=-2$. Let the latter method be chosen. Let z start from $z=0$ at O and more to $z=1$ at A; then w starts at $w=0$ and moves to $w=-2$. The correspondence between 1^{\prime} and I^{\prime} is thus established. Let z turn about A; then w tums about $w=-2$ at a. As the line -2 to $-\infty$ or $a c$ is not now a junction tine, w moves from I^{\prime} into the upper half I, and the region across $A C$ from 1^{\prime} should be labeled 1 to correspond. Then $2^{\prime}, 2$ and II'. II may be filled in. The connections of $\mathrm{I}-\mathrm{II}^{\prime}$ and $\mathrm{II}-\mathrm{I}^{\prime}$ are indicated and 11I-III' is reconnecterl, as the

w-surface

z-plane branch point is of the first order and only two sheets are involven. Now let z move from $z=0$ to $z=-1$ and take a turn about B; then w moves from $w=0$ to $w=2$ and takes a turn about b. The region next 1^{\prime} is markel 3 and I^{\prime} is connected to III. P'assing from 3 to 3^{\prime} for z is equivalent to passing from III to III' for w between 0 and b where these sheets are comected. From 3' into 2 for z indlicates III' to II across the junction from $w=2$ to \propto. This leaves I and 1I' to be connected across this junction. The connections are complete. They may be checked by allowing z to describe a large circuit so that the regions $1,1^{\prime}, 3,3^{\prime} .2,2^{\prime}, 1$ are successively traversed. That I, I', IIl. 111', II. II'. I is the corresponding succession of sheets is clear from the comections between $w=2$ and ∞ and the fact that from $w=-2$ to $-\infty$ there is no junction.

Consider the function $w=z^{6}-3 z^{4}+3 z^{2}$. The critical points are $z=0,1,1$, $-1,-1$ and the corresponding branch points are $w=0,1,1,1,1$. Draw the junction lines from $w=0$ to $-\infty$ and from $w=1$ to $+\infty$ along the axis of reals. To find the image of $r=0 \mathrm{~cm}$ the z-plane, polar coördinates may be used.

$$
\begin{gathered}
z=r(\cos \phi+i \sin \phi), \quad w=u+i v=r^{6} e^{6 \phi i}-3 r^{4} e^{4 \phi i}+3 r^{2} e^{2} \phi i . \\
r=0=r^{2}\left[r^{4} \sin 6 \phi-3 r^{2} \sin +\phi+3 \sin 2 \phi\right] \\
=r^{2} \sin 2 \phi\left[r^{4}(3-4 \sin 2 \phi)-6 r^{2} \cos \phi+3\right] .
\end{gathered}
$$

The equation $v=0$ therefore breaks up into the equation $\sin 2 \phi=0$ and

$$
r^{2}=\frac{3 \cos 2 \phi \pm \sqrt{3} \sin 2 \phi}{3-4 \sin ^{2} 2 \phi}=\frac{\sqrt{3}}{2} \frac{\sin (60 \pm 2 \phi)}{\sin (60)+2 \phi) \sin (60-2 \phi)}=\frac{\sqrt{3}}{2 \sin (60 \pm 2 \phi)} .
$$

Hence the axes $\phi=0^{\circ}$ and $\phi=90^{\circ}$ and the two rectangular liyperbolas inclined at angles of ± 1.5 are the images of $v=0$. The z-plane is thens divided into six portions. The function \mathfrak{r} is of the sixth order and six sheets must be spread over the u-plane and cut along the junction lines.

To connect up the sheets it is merely necessary to get a start. The line $u=0$ to $w=1$ is not a junetion line and the sheets have not been cut through along it. But when z is small, real. and increasing, w is also small, real, and increasing. Hence to $O A$ corresponds of in any sheet desiren. Moreover the region above $O A$ will corremond to the mpper half of the sheet and the regiom betow oA to the lower half. Let the sheet be chosen as III and place the numbers 8 and Ω^{\prime} sor as to oncrespond with III and II' $^{\prime}$. Fill in the numbers 4 and t^{\prime} aromul $z=0$. When
z turus about the critical point $z=0, w$ turns about $w \leq 0$, but as angles are doubled it must go around twice and the comections lll-l ${ }^{\prime}$, $\mathrm{I}^{\prime}-1 l^{\prime}$ must be made. Fill in more numbers about the critical point $z=1$ of the second orler where angles are tripled. On the w-sin'face there will be a triple connection 11III, II'-I, I'-[II. lı like mamer the critical point $z=-1$ may be treated. 'Tlu' surface is complete exctit for recomnecting sheets I, II, V , VI along $u=0$ to $w=-\infty$ as if they had never been cut.

u-surface

z-plane

EXERCISES

1. Plot the corresponding lines for: $\quad(\alpha) w=(1+2 i) z . \quad(\beta) w=\left(1-\frac{1}{2} i\right) z$.
2. Solve for x and y in (1) and (2) of the text and plot the corresponding lines.
3. Plot the enresponding orthoronal systems of curves in these cases:

$$
\left.(\alpha) w=\frac{1}{z}, \quad(\beta) w=1+z^{2}, \quad \text { (}\right) \quad w=\cos z .
$$

4. Study the correspondence between z and w near the critical points:

$$
(\alpha) w=z^{3} . \quad(\beta) \quad w=1-z^{2}, \quad(\gamma) \quad w=\sin z .
$$

5. Upon the w-surface for $u=z^{2}$ phot the punts $^{\text {win }}$ corresponding to $z=1,1+i$, $\because i,-\frac{1}{2}+\frac{1}{2} \sqrt{3} i,-\frac{1}{2},-\frac{1}{2} \sqrt{3}-\frac{1}{2} i .-i, \frac{1}{2}-\frac{1}{2} i$. And in the z-plane phot the prints correspoming to $r=\sqrt{2}+\sqrt{2} i . i .-4 .-\frac{1}{2}-\frac{1}{2} \sqrt{3} i, 1-i$. whether in the mper on lower sheet.
6. Construct the x-surface for these functions:
(cr) $w=z^{3}$,
(β) $u=z^{-2}$.
($\gamma) ~ u=1+z^{2}$,
($\delta) \quad w=(z-1)^{3}$.

In (β) the singular mint $z=0$ shoukd be joined by a cut to $z=x$.
7. Construct the Riemam surfaces for these functions:
(a) $u=z^{4}-2 z^{2}$.
(ß) $x^{r}=-z^{4}+4 z$.
(γ) $w=2 z^{5}-5 z^{2}$,
(o) $w=z+\frac{1}{z}$.
(є) $u=z^{2}+\frac{1}{z^{2}}$.
(乡) $u=\frac{z^{3}+\sqrt{3} z}{\sqrt{3} z^{2}+1}$.
185. Integrals and their inversion. ('onsider the function

$$
\therefore=\int_{1}^{n \prime} \frac{d \|}{\| \prime}, \quad \because=\ln u, \quad u=\ln n^{-1}: n
$$

defined hy an integral, and let the methods of the theory of functions fer applerl to the study of the function and its inverse. If or deserihes a path smommeng the origin. the integral need not vanislis for the
integrand is not analytic at $u=0$. Let a cut be drawn from $u=0$ to $w=-\infty$. The integral is then a single valued function of w provided the path of integration does not cross the ent. Norcover, it is analytic except at $u=0$, where the derivative, which is the integrand $1 / u$, ceases to be continuous. Let the u-plane as cut be mapped on the \approx-plane by allowing $火$ to trace the path 1 cubcrefighi 1 , by computing the value of z sufficiently to draw the image, and by applying the prineiples of conformal representation. When u starts from $u=1$ and traces $1 a$, $w_{\text {starts }}$ from $z=0$ and becomes negatively very large. When u. turns to the left to trace $a b$, \approx will turn also through 90°
 to the left. As the integrand along $u b$ is ill ϕ, a must be changing by an amount which is pure imaginary and must reach l when w reaches b. When $\not e^{\text {traces }} \boldsymbol{m}$, both u and $d \|$ are negative and $: i$ must be increasing by real positive quantities, that is, $i=$ must trace $B C$. When ${ }^{\prime}$ moves along colefig the same reasoning as for the path ahb will show that in moves along CDEFG. The remainder of the path may be completed by the reader.

It is now clear that the whole "-plane lying leetween the infinitesimal and infinite cireles and bounded by the two edges of the cut is mapped on a strip of width $2 \pi i$ bonnled upon the right and left by two infinitely distant rertical lines. If u had made a complete turn in the positive direction about $\|^{=}=0$ and returned to its starting point, \ddot{z} would have receired the increment $2 \pi i$. That is to say, the values of z which correspond to the same point u reached by a direct path and by a path which makes k turns about $\nsim=0$ will differ by $27 \pi i$. Hence when u is regarded inversely as a function of \therefore, the function will be periodic with the period $2 \pi i$. It has been seen from the correspondence of caleff to CDEFG that w becomes infinite when \approx moves off indefinitely to the right in the strip, and from the correspondence of $B .1 / H /$ with buih that w becomes 0 when \approx moves off to the left. Hence w must be a rational function of e^{z}. Is r^{r} neither becomes infinite nor vanishes for any finite point of the strip, it must reduce merely to Ce $e^{k z}$ with l_{i} integral. As π las no smaller period than $2 \pi i$, it follows that $k=1$. To determine C, compare the derivative $d w / d z=C e^{z}$ at $\ddot{z}=0$ with its reciprocal $d_{z} / d_{u}=u^{-1}$ at the corresponding point $u^{=}$: then $C=1$. The inverse function $\ln ^{-1}$ is is therefore eompletely determined as e^{z}.

In like manner consider the interral

$$
z=\int_{0}^{w} \frac{d u}{1+w^{2}}, \quad z=f(w), \quad w=\phi(z)=f^{-1}(z) .
$$

Here the points $w= \pm i$ must be eliminated from the $w-p l a n e$ and the plane rendered simply comected by the proper cuts, say, as in the figure. The tracing of the figure may be left to the reader. The chief difficulty may be to show that the integrals along ou and be are so nearly equal that C lies chose to the real axis; no computation is really necessary inasmuch as the integral along or would be real and hence C^{\prime} must lie on the axis. The image of the eut w-plane is a strip of width π. Circuits around either $+i$ or $-i$ ald π to z, and hence w as a function of z has the period π. At the ends of the strip, w approaches the finite values $+i$ and $-i$. The function
 $w=\phi(z)$ has a simple zero when $z=0$ and has no other zero in the strip. At the two points $z= \pm \frac{1}{2} \pi$, the function w becomes intinite. hut conly one of these points shombl be comsilered as in the strip. As the function has only one zero, the puint $z=\frac{1}{2} \pi$ must be a pole of the first onder. The function is therefore completely determinell except for a constant factor which may be fixed by examining the derivative of the function at the origin. Thus

$$
w=r \frac{c^{2 i z}-1}{\epsilon^{2} i z+1}=\frac{1}{i} \frac{r^{i z}-\varepsilon^{-i z}}{\epsilon^{i z}+\epsilon^{-i z}}=\tan z . \quad z=\tan ^{-1} w .
$$

186. As a thirk pample consider the integral

$$
\because=\int_{0}^{\prime \prime} \frac{d_{1} \cdot}{\sqrt{1-n^{2}}}, \quad \ddot{n}=f^{\prime}\left(\|^{\circ}\right), \quad \pi^{\prime}=\phi(\ddot{*})=f^{-1}(\ddot{*}) .
$$

Here the integrand is double valued in $1 /$ and conseduently there is liable to be confusion of the two values in attempting to follow a path in the $w^{-p p l a n e}$. Hence a two-leaved surfare for the intecrand will be constructed and the path of integration will be considered to be on the smrfare. Then to earh point of the path there will comespemt only one value of the integrand, although to earh value of "there correspond two superimposed points in the two sheets of the surface.

As the matieal $\sqrt{1-u^{2}}$ vanishes at $2= \pm 1$ and take on only the single value 0
 the surface and they are the only finite hranch peints. Sjereal two sheets ower the
 and continue it (provisionally) to $\begin{array}{r}0 \\ =x\end{array}$. At $w=-1$ the function $\backslash 1-u^{2}$ may be written $1+\mathfrak{t} E\left(\mu^{\prime}\right)$. where E denotes a fumbion which dues mot vanish at $w=-1$. Hence in the nemberthen of $\boldsymbol{H}^{2}=-1$ the surface low like that for $\sqrt{\prime}$ now $u=0$. This may be accomplisherl by mane the comections across the
junetion line. At the point $w=+1$ the surface must cut through itself in a similar mamer. This will be so provided that the sheets are recomected across 1∞ as if never cut; if the sheets had been cross-comected along $1 \propto$, each sheet would have been separate, though crossed, over 1, and the branch point would have disappeared. It is noteworthy that if w describes a large circuit inchuding both branch points, the values of $\sqrt{1-w^{2}}$ are not interchanged ; the circuit closes in each sheet without passing into the other. This could be expressed by saying that $w=\infty$
 is not a branch point of the function.

Now let w trace out various paths on the surface in the attempt to map the surface on the z-plane by aid of the integral (8). To avoid any difficulties in the way of double or multiple values for z whieh might arise if z turned about a branch point $w= \pm 1$, let the surface be marked in eath sheet over the axis of reals from $-\infty$ to +1 . Let each of the four half planes be treated separately. Let w start at $w=0$ in the upper half plane of the upper sheet and let the value of $\sqrt{1-u^{2}}$ at this point be +1 ; the values of $\sqrt{1-u^{2}}$ near $u=0$ in $1 I^{\prime}$ will then be near +1 and will be sharply distinguishen from the values near -1 which are supposed to correspond to points in $\mathrm{I}^{\prime}, ~ I I$. As w traces od, the interral z increases from 0 to a definite positive number α. The value of the intergal from a to b is infinitesimal. Inasmuch as $w=1$ is a branch peint where two sheets comect, it is natural to assume that as w passes I and leaves it on the right, z will turn through half a straight angle. In other words the integral from b to c is naturally presumed to be a large pure imaginary affected with a jositive sign. (This fact may casily be checked by examining the change in $\sqrt{1-u^{2}}$ when u describes a small circle about $w=1$. In fact if the E function $\sqrt{1+w}$ be discarded and if $1-w$ be written as redi, then $\sqrt{r}^{\frac{1}{1} e^{2} \phi i}$ is that value of the radical which is positive when $1-w$ is positive. Now when w

z-plane

u-surface describes the small semicircle, ϕ changes from 0° to -180° and hence the value of the radical along be becomes $-i \sqrt{1}^{2}$ and the integrant is a pritive pure imaginary.) Hence when w traces be, z traces $B C$. At c there is a right-angle turn to the left. and as the value of the integral over the infinite quadrant on is $\frac{1}{2} \pi$, the point z will move back through the distance $\frac{1}{2} \pi$. That the point (" thens reachent must lie on the pure imaginary axis is seen by moting that the integral takendirectly along of would be pure inasinary. This shows that $\alpha=\frac{1}{2} \pi$ without any necessity of computing the integral orer the interval ou. The rest of the map of I may be filled in at once by symmetry.

To map the rest of the w-surface is now relatively simple. For I' let w trace $c c^{\prime \prime} d^{\prime}$; then z will start at C^{\prime} and trace $C D^{\prime}=\pi$. When w comes in along the lower side of the cut d'e in the upper sheet I^{\prime}. the value of the interrand is intentical with the value when this line de regarded as beloneing to the upper half plane was describend, for the line is not a junetion line of the surface. The trace of z is therefore $J^{\prime} E^{\prime}$. When w traces $f^{\prime \prime} o^{\prime}$ it must be remembered that I^{\prime} juins on to II and hence that the values of the intesrand are the negative of those along for. This
makes z deseribe the serment $F^{\prime} O^{\prime}=-a=-\frac{1}{2} \pi$. The turn at $E^{\prime} F^{\prime}$ checks with the straight angle at the branch point - 1. It is further noteworthy that when w returns to o^{\prime} on \mathbf{I}^{\prime}, z does not return to 0 but takes the value π. This is no contradiction; the one-to-one correspondence which is being established by the integral is between points on the w-surface and points in a certain region of the z-plane, and as there are two points on the surface to each value of w, there will be two points z to each w. Thus far the sheet I has been mapped on the z-plane. To map II let the point w start at σ^{\prime} and drop into the lower sheet and then trace in this sheet the path which lies directly under the path it has traced in I. The integrand now takes on values which are the negatives of those it had previonsly, and the image on the z-plane is readily sketched in. The figure is self-explanatory. Thus the complete surface is mapped on a strip of width 2π.

To treat the different values which z may have for the same value of w, and in particular to determine the periods of w as the inverse function of z, it is necessary to study the value of the integral along different sorts of paths on the surface. Paths on the surface may be divided into two classes, closed paths and those not closed. A closed path is one which returns to the same print on the surface from which it started ; it is not sufficient that it return to the same value of w. Of paths which are not closed on the surface, those which cluse in w, that is, which return to a point superimposed upon the starting point hut in a different sheet, are the most important. These paths, on the particular surface here studied, may be further classified. A path which closes on the surface may either include neither branch point, or may include both branch points or may wind twice around one of the points. A path which closes in w but not on the surface may wind once about one of the hranch points. Each of these types will he thiscussed.

If a closed path contains neither brancl point, there is no danger of confusing the two values of the function, the projection of the path on the w-plane gives a region over which the integrand may be considered as single valued and analytic, and hence the value of the circuit integral is 0 . If the path surrombls both branch prints, there is again no danger of confusing the values of the function, but the projection of the path on the w-phane gives a region at two points of which, namely, the branch points, the integrand ceases to be analytic. The inference is that the value of the integral may not be zero and in fact will not be zero unless the integral around a circuit shronk close up to the branch points or expanded out to infinity is zero. The integral around ce'te"c is here equal to 2π; the value of the integral around any path which ineloses both branch points once and only once is therefore 2π or -2π according as the path lies in the upper or lower sheet; if the path surrounded the points k times, the value of the integral would he $2 k \pi$. It thus appears that w regarded as a function of z hats a period 2π. If a path
 closes in w hut not on the surface. let the print where it erosses the junction line be held fast (figure) while the path is shrunk down to worenth'w. The value of the interral will not change during this shrinking of the path, for the new and old paths may torether be regarded as closed and of the first case consintered. Ahong the paths who ant athe $^{\prime}$ er the integrand hats opposite
 tesimal. Hence the value of the integral armm the path whicla doses in w is 21 or $-2 I$ if I is the value from the print "twere the path crosses the junction line
to the point w. The same conclusion would follow if the path were considered to shrink down aromb the other branch point. Thus far the possibilities for z corresponding to any given w are $z+2 k \pi$ and $2 m \pi-z$. Suppose finally that a path turns twice aromd one of the braneh points and closes on the surface. By shrinking the path, a new equivalent path is formed along which the integral cancels out term for term except for the small double cirenit around ± 1 along which the value of the integral is infinitesimal. Hence the valnes $z+2 k \pi$ and $2 m \pi-z$ are the only values z can have for any given value of w if z be a particular possible value. This makes two and only two values of z in each strip for each value of w, and the function is of the second order.

It thus appears that w, as a function of z, has the period 2π, is single valned, becomes infinite at both ends of the strip, has no singularities within the strip, and has two simple zeros at $z=0$ and $z=\pi$. Hnnee w is a rational function of $e^{i z}$ with the numerator $e^{2 i z}-1$ and the denominator $e^{2 i z}+1$. In fact

$$
w=C \frac{e^{i z}-e^{-i z}}{e^{i z}+e^{-i z}}=\frac{1}{i} \frac{e^{i z}-e^{-i z}}{e^{i z}+e^{-i z}}=\sin z
$$

The function, as in the previons cases, has been wholly determined by the general methods of the theory of fmetions without even computing α.

One more function will be studied in brief. Let

$$
z=\int_{0}^{w} \frac{d w}{(a-w) \sqrt{w} w}, \quad a>0, \quad z=f(w), \quad w=\phi(z)=f^{-1}(z) .
$$

Here the Riemann surface has a branch point at $w=0$ and in addition there is the singukar point $w=a$ of the integrand which must be eut ont of looth sheets. Let the surface be drawn with a junction line from $w=0$ to $w=-\infty$ and with a cut in each sheet from $w=u$ to $w=\infty$. The map on the z-plane now becomes as indicated in the figure. The different values of z for the same value of w are radily seen to arise when w turns abont the point $w=a$ in either sheet or when a path closes in w but not on the surface. These values of z are $z+2 k \pi i / 1$ and $2 m \pi i / \sqrt{\prime} t-z$. Hence w as a function of z has the period $2 \pi i u^{-\frac{1}{2}}$, has a zero at

z-plane $\quad w$-surface $z=0$ and a pole at $z=\pi i / \sqrt{d}$, and apmoathes the finite valne $w=u$ at both ends of the strip. It most he noted, however, that the zero and pole are both neeessarily double, for to any ortinary value of w correspond two values of z in the strip. The function is therefore again of the second order, and indeed

$$
w=a \frac{\left(e^{z \sqrt{a}}-1\right)^{2}}{\left(e^{z \sqrt{a}}+1\right)^{2}}=a \tanh ^{2} \frac{1}{2} z \sqrt{a}, \quad z=\frac{2}{\sqrt{a}} \tanh ^{-1} \sqrt{\frac{\omega}{a}}
$$

The success of this methor of determining the function $z=f(u)$ defined by an integral, or the inverse $w=f^{-1}(z)=\phi(z)$, has been lepentent first upon the ease with which the integral may be used to map the w-plane or w-surfate upon the z-plane, and second upon the simplicity of the map, which was such as to indieate that the inverse function was a single valued periodie function. It should be
realized that if an attempt were made to apply the methods to integrands which appear equally simple. say to

$$
z=\int \sqrt{u^{2}-u^{2}} d w, \quad z=\int(a-w) d w / \sqrt{u}
$$

the method would lead only with great difficulty, if at all. to the relation between z and w; for the functional relation between z and w is indeed not simple. There is, however, one class of integrals of great importance, namely,

$$
z=\int \frac{d w}{\sqrt{\left(w-\alpha_{1}\right)\left(w-\alpha_{2}\right) \cdots\left(w-\alpha_{n}\right)}}
$$

for which this treatment is suggestive and useful.

EXERCISES

1. Discuss by the method of the theory of functions these integrals and inverses:
((x) $\int_{1}^{w} \frac{d v}{2 w}$,
(β) $\int_{0}^{w} \frac{2 d w}{1-w}$,
(γ) $\int_{0}^{u} \frac{d}{1-w^{2}}$.
(o) $\int_{0}^{w} \frac{d w}{\sqrt{u^{2}-1}}$.
(є) $\int_{0}^{x} \frac{d u}{\sqrt{\prime} w^{2}+1}$.
(ら) $\int_{x}^{w} \frac{d w}{w \sqrt{u^{2}+u^{2}}}$,
(η) $\int_{s}^{\pi} \frac{d u}{w-u^{2}-u^{2}}$.
(θ) $\int_{1}^{w} \frac{d w}{\sqrt{2 u} u x-u^{2}}$.
(1) $\int_{1}^{w} \frac{d w}{(w+1) \sqrt{u^{2}-1}}$.

The results may be checked in each case by actual integration.
2. Diseuss $\int_{s}^{w} \frac{d w}{w\left(1-u^{w}\right)\left(1+u^{\prime}\right)}$ and $\int_{n}^{w} \frac{d u}{\sqrt{1-u^{4}}}(\$ 182$. anl Ex. 10. p, 489).

CHAPTER XIX

ELLIPTIC FUNCTIONS AND INTEGRALS

187. Legendre's integral I and its inversion. Consider

$$
\begin{equation*}
z=\int_{0}^{w} \frac{d u}{\sqrt{\left(1-u^{2}\right)\left(1-k_{i}^{2} u^{2}\right)}}, \quad 0<k<1 . \tag{I}
\end{equation*}
$$

The Riemann surface for the integrand* las branch points at $u= \pm 1$ and $\pm 1 / k$ and is of two sheets. Junction lines may be drawn between $+1,+1 / k$ and $-1,-1 / k$. For very large values of u, the radical $\sqrt{\left(1-u^{2}\right)\left(1-l^{2} u^{2}\right)}$ is approximately $\pm k w^{2}$ and hence there is no danger of confusing the values of the function. Across the junction lines the surface may be comected as indicated, so that in the neighborhood of $"= \pm 1$ and $"= \pm 1 / k$ it looks like the surface for $\sqrt{ }$ ". Let +1 be the value of the integrand at $u=0$ in the upper sheet. Further let

$$
\begin{equation*}
K=\int_{0}^{1} \frac{d u^{\prime}}{\sqrt{\left(1-u^{2}\right)\left(1-l_{i}^{2}, u^{2}\right)}}, \quad i K^{-1}=\int_{1}^{\frac{1}{k}} \frac{d l^{2}}{\sqrt{\left(1-u^{2}\right)\left(1-k^{2} u^{2}, u^{2}\right)}} . \tag{1}
\end{equation*}
$$

Let the changes of the integral be followed so as to map the surface on the oplane. As "moves from "to ", the integral (I) inureases by K, and a mores fromo to A. As $\|^{\prime}$ rontinues straight on,: makes a rightangle turn and in(reases by fure imaginary incerments to the total amonnt $i K^{\prime}$ when "r reatches $\%$ As ". rontinues there is

z-plane
 another sight-angle turn in a, the integrand again becomes real, and a mores down to C. (That a reaches C^{\prime} follows from the facts that the

[^45]integral along an infinite quadrant is infinitesimal and that the direct integral from 0 to $i \infty$ would be pure imaginary like $d u$ ．）If u is allowed to continue，it is clear that the map of I will be a rectangle $2 K^{\prime}$ by K^{\prime} on the aplane．The image of all fom half planes of the surfare is as indicated．The conclusion is reasonably apparent that u as the inverse function of a is doubly feriodic with periods $4 K$ and $2 i K^{\prime \prime}$ ．

The periodicity may be examined more carefully by considering different possi－ bilities for paths upu the surface．A path surrounding the pairs of branch points 1 and k^{-1} or -1 and $-k^{-1}$ will close on the surfaee，but as the integrand has oppo－ site signs on opqosite sites of the junction lines，the value of the integral is $2 i \mathrm{~h}^{\prime \prime}$ ． A path surrounding $-1,+1$ will also close ；the small circhit integrals about -1 （1）+1 vanish and the integral along the whole path，in view of the opmesite values of the integramd alung f u in I and II，is．twice the integral from f to ${ }^{\prime}$（1）is 4 h ． Any path which closes on the smface may be resolved into certain multiples of these pathis．In addition to paths which close on the surface，pathe which close in w may be considered．Such paths may be resolved into those already mentioned and paths rming directly between 0 and w in the two sheets．All posible values of z for any w are therefore $4 m h^{\prime}+2 h h^{\prime} \pm z$ ．The function $w(z)$ has the periods $4 h^{\prime}$ and $2 i h^{\prime \prime}$ ，is an odd function of z as $w(-z)=w(z)$ ，and is of the second orter． The details of the discussion of varions pathes is left to the reader．

Let $w=f(:)$ ．The function $f(i)$ ranishes，as may be seen by the map，at the two points $:=0,2 K$ of the rectangle of periods，and at no other points．These zeros of u^{\prime} are simple，as $f^{\prime \prime}(\dot{*})$ does not vanish． The function is therefore of the second order．There are poles at $\pi=i K^{-1}, 2 K^{-}+i K^{-1}$ ，which must be simple poles．Finally $f^{\prime}\left(K^{\prime}\right)=1$ ．The position of the zeros and poles determines the function exteret for a con－ stant multijlier，and that will be fixed by $f^{\prime}(K)=1$ ；the function is wholly determined．The function $f^{\prime}(: i)$ may now be identified with sn a of $\$ 17 \mathrm{~T}$ and in particular with the special case for which K and K^{-1} are so related that the multiplier $!f=1$ ．

$$
\begin{equation*}
u=f(i v)=\frac{\Theta(K)}{H(K)} \frac{H(i)}{\Theta(i)}=\sin \because, \quad \pi=u \tag{2}
\end{equation*}
$$

For the quotient of the theta functions has simple zeros at 0,2 に，
 the denominator vanishes：the puotient is 1 at $: \because=K$ ：and the derivad tive of sin \because at $\because=0$ is ！$/(110)$（1n $0=!/=1$ ．whereas $f^{\prime \prime}(0)=1$ is also 1 ．

The impusition of the comblition $!f=1$ was seen to impose a relation
 indelendent．The definition of バ and K^{-1} as definite integrals also makes them functions $K\left(l_{i}\right)$ and $K^{\prime}\left(l_{i}\right)$ of l_{i} ．But

$$
\begin{align*}
& i K^{\prime}\left(l_{i}\right)=\int_{1}^{\frac{1}{k}} \frac{d u^{\prime}}{\sqrt{\left(1-u^{2}\right)\left(1-l_{i}^{2} u^{2}\right)}} \\
&=i \int_{0}^{1} \frac{d u_{1}}{\sqrt{\left(1-u_{1}^{2}\right)\left(1-l_{i}^{2} u_{1}^{2}\right)}} \tag{3}
\end{align*}=i K^{\prime}\left(k^{\prime}\right)
$$

if $u=\left(1-k^{\prime 2} u_{1}^{2}\right)^{\frac{1}{2}}$ and $k^{2}+k^{\prime 2}=1$. Hence it appears that K may be computed from k^{\prime} as $k^{\prime \prime}$ from k. This is very useful in practice when l^{2} is near 1 and $i^{\text {te }}$ near 0 . Thus let

$$
\begin{align*}
e^{-\pi \frac{K}{h^{\prime}}}=\eta^{\prime} & =\frac{1}{2} \frac{1-\sqrt{l_{i}}}{1+\sqrt{l_{i}}}+\frac{2}{2^{\prime}}\left(\frac{1-\sqrt{l_{i}}}{1+\sqrt{l_{i}}}\right)^{5}+\cdots, \quad \log \eta \log \eta^{\prime}=\pi^{2} \tag{4}\\
\sqrt{\frac{2 k^{\prime \prime}}{\pi}} & =\Theta_{1}\left(0, \eta^{\prime}\right)=1+2 \eta^{\prime}+2 \eta^{\prime \prime}+\cdots, \quad K=-\frac{k^{\prime}}{\pi} \log \eta^{\prime}
\end{align*}
$$

and compare with (3i) of 1 . 42 . Now either k or $k i$ is greater than $0 . \bar{i}$, and hence either' $/$ or ' $/$ may be obtained to five places with only one term in its expansion and with a relative error of only about 0.01 per cent. Moreover either \nexists or $\not \subset$ ' will be less than $1 / 20$ and hence a single term $1+2$ y or $1+2 \eta^{\prime}$ gives K or h^{\prime} to four phaces.
188. As in the relation letween the liemam surface and the o-plane the whole real axis of a corresponds periodically to the part of the real axis of " leetween -1 and +1 , the function sn r, for real,r, is real. The graph of $!=\sin x$ las roots at $s^{\prime}=\underline{2}$, $n k$, maxima or minima alternately at $(2 m+1) K$, inflections inclined at the angle 45° at the roots, and in general locks like $y=\sin (\pi, r / 2 k)$. Examined more closely, sin $\frac{1}{2} K=\left(1+K^{\prime}\right)^{-\frac{1}{2}}>2^{-\frac{1}{2}}=\sin \frac{1}{4} \pi$; it is seen that the curse sn x has ordinates mmerically greater than $\sin (\pi s / 2 / 2 ゙)$. As

$$
\begin{equation*}
\cos x=\sqrt{1-\sin ^{2} x}, \quad \mathrm{~d} \| x=\sqrt{1-k^{2}} \sqrt{21^{2}}, x^{2} \tag{5}
\end{equation*}
$$

the curves $y=(11, x, y=d n, x$, may readily be sketched in. It may be notel that as $\sin \left(r^{2}+K\right) \neq(11, r$, the curves for snis and on cramot be superposed as in the case of the trigonometrin functions.

The segment $0, i K^{\prime \prime}$ of the pure imatrinary axis for a corresponds to the whole upper half of the pure imaginary axis for ". Hence sn is with a real is pure inaginary and $-i$ sn i, r is real and ${ }^{\text {mositive }}$ for $0 \equiv, r<k^{\prime \prime}$ and beromes infinite for,$r=k^{\prime \prime}$. Hence $-i$ su ir looks in gencmal like $\tan \left(\pi x / 2 K^{-1}\right)$. By (5) it is seen that the curves for $y=$ cu is,
 These functions are real for pure imaginary values.

It was seen that when k and k_{i}^{\prime} interchanged, k and $k^{\prime \prime}$ also interchangel. It is therefore natural to look for a relation between the elliptic functions sin $\left(z, l_{i}\right)$, $\operatorname{cn}\left(z, l_{i}\right)$, dn $\left(z, k_{i}\right)$ formed with the molulus k
and the functions $\operatorname{sn}\left(z, k^{\prime}\right)$, $\operatorname{cn}\left(z, k^{\prime}\right)$, dn $\left(z, k^{\prime}\right)$ formed with the complementary modulus k^{\prime} It will be shown that

$$
\begin{array}{ll}
\operatorname{sn}(i z, k)=i \frac{\operatorname{sn}\left(z, k^{\prime}\right)}{\operatorname{cn}\left(z, k^{\prime}\right)}, & \operatorname{sn}(z, k)=-i \frac{\operatorname{sn}\left(i z, k^{\prime}\right)}{\operatorname{cn}\left(i z, k^{\prime}\right)}, \\
\operatorname{cn}(i z, k)=\frac{1}{\operatorname{cn}\left(z, k^{\prime}\right)}, & \operatorname{cn}(z, k)=\frac{1}{\operatorname{cn}\left(i z, k^{\prime}\right)}, \\
\operatorname{dn}(i \approx, k)=\frac{\operatorname{dn}\left(z, k^{\prime}\right)}{\operatorname{cn}\left(z, k_{i}^{\prime}\right)}, & \operatorname{dn}(z, k)=\frac{\operatorname{dn}\left(i z, k^{\prime}\right)}{\operatorname{cn}\left(i z, k^{\prime}\right)} .
\end{array}
$$

Consider sn $(i z, k)$. This function is periodic with the periods $4 K$ and $2 i K^{\prime \prime}$ if $i z$ be the variable, and hence with periods $4 i K$ and $2 K^{\prime}$ if \approx be the variable. With \approx as variable it has zeros at $0,2 i K$, and poles at $K^{\prime}, 2 i K+K^{-1}$. These are precisely the positions of the zeros and poles of the ruotient $H\left(z, q^{\prime}\right) / H_{1}\left(z, q^{\prime}\right)$, where the theta functions are constructed with q ' instead of q. As this quotient and $\operatorname{sn}(i z, 7)$ are of the second order and have the same periods,

$$
\operatorname{sn}(i z, k)=C \frac{I I\left(z, \eta^{\prime}\right)}{H_{1}\left(z, q^{\prime}\right)}=C_{1} \frac{\operatorname{sn}\left(z, k^{\prime}\right)}{\operatorname{cn}\left(z, k^{\prime}\right)} .
$$

The constant C_{1} may be determined as $C_{1}=i$ by comparing the derisatives of the two sides at $z=0$. The other five relations may be proved in the same way or by transformation.

The theta series converge with extreme rapidity if q is tolerably small, but if I is somewhat larger, they converge rather poorly: The relations just obtained allow the series with q to he replaced by series with q ' and one of these (quantities is smrely less than $1 / 20$.
In fact if $v=\pi x / 2 K^{-}$and $v^{\prime}=\pi r / 2 K^{-1}$, then

$$
\begin{align*}
& \operatorname{sn}\left(x, l_{i}\right)=\frac{\sqrt[4]{l}}{\sqrt{k}} \frac{2 \sin v-2 y^{2} \sin 3 v+2 \eta^{6} \sin \pi v-\cdots}{1-2 \cos 2 v+2 \eta^{4} \cdot 0 \cos +2-\eta^{9} \cdot(1) 6 v+\cdots} \tag{6}\\
& =\frac{1}{\sqrt{V_{i}}} \frac{\sinh v^{\prime}-y^{\prime 2} \sinh 3 v^{\prime}+y^{1 / 3} \sinh \tilde{5} v^{\prime}-\cdots}{\cosh v^{\prime}+f^{12} \cosh 3 v^{\prime}+\eta^{1 / 3} \cdot \cosh 5 v^{\prime}+\cdots} \text {. }
\end{align*}
$$

The second series has the disadrantage that the hyperbolie functions increase rapidly, and hence if the convergence is to bee ats good as for the first series, the value of η must be considembly less than that of I, that is, $K^{\prime \prime}$ must be considerably less than k. This can readily be arranged for work to foll or five places. For

$$
q^{\prime 6}=e^{-6 \pi \frac{K}{h^{\prime}}}, \quad\left(0 \operatorname{sh} \pi v^{\prime}=\frac{1}{2}\left(r^{\frac{5 \pi r}{2 h^{\prime \prime}}}+e^{\left.-\frac{5 \pi x}{2 h^{\prime \prime}}\right)}, \quad 0 \leqq r \leqq K^{\prime \prime}\right.\right.
$$

where owing to the periorleity of the functions it is never necessary to taker,$r>K^{-1}$. The term in $q^{\prime 6}$ is therefore less than $\frac{1}{2} \|^{\prime 3 \frac{1}{2}}$. If the term
in q^{18} is to be equally negligible with that in q^{6},

$$
2 \eta^{6}=\frac{1}{2} \eta^{\frac{7}{2}} \text { with } \log \eta \log \eta^{\prime}=\pi^{2}
$$

from which q^{\prime} is determined as about $\eta^{\prime}=.02$ and q as about $q=.08$; the neglected term is about 0.0000005 and is barely enough to effect six-place work except through the multiplication of erors. The value of k correspourling to this critical value of η is about $k=0.85$.

Another form of the integral under consideration is

$$
\begin{align*}
& F\left(\phi, l_{i}\right)=\int_{0}^{\infty} \frac{d \theta}{\sqrt{1-l_{i}^{2} \sin ^{2} \theta}}=\int_{0}^{y} \frac{d u}{\sqrt{1-\mu^{2}} \sqrt{1-l_{i}^{2} \cdot u^{2}}}=x, \tag{7}\\
& \sin \phi=!/=\sin x, \quad \phi=\mathrm{am} r, \quad \cos \phi=\sqrt{1-\sin ^{2} x}=\mathrm{cn} x, \\
& \Delta \phi=\sqrt{1-l_{i}^{2} y^{2}}=\sqrt{1-l_{i}^{2} \sin ^{2} \phi}=\operatorname{dn} r^{2}, \quad l^{\prime 2}=1-l_{i}^{2}, \\
& r=\operatorname{sn}^{-1}\left(y, l_{i}\right)=\left(n^{-1}\left(\sqrt{1-y^{2}}, l_{i}\right)=\ln ^{-1}\left(\sqrt{1-l_{i}^{2} y^{2}}, l_{i}\right) .\right.
\end{align*}
$$

The angle ϕ is called the amplitude of r : the functions sn x, en r, dn x are the sine-rimplitude, cosine-ampliturle, doltu-rimplitude of x. The half periods are then

$$
\begin{align*}
& K=\int_{0}^{\frac{1}{2} \pi} \frac{d \theta}{\sqrt{1-l^{2} \sin ^{2} \theta}}=r\left(\frac{1}{2} \pi, l_{i}\right), \tag{S}\\
& K^{-1}=\int_{0}^{\frac{1}{2} \pi} \frac{l \theta}{\sqrt{1-l^{\prime 2} \sin ^{2} \theta}}=F\left(\frac{1}{2} \pi, l_{i}^{\prime}\right),
\end{align*}
$$

and are known as the cromplete elliptie intromos of the first lient.
189. The elliptic functions and integrals often arise in problems that call for a numerial answer. Here l^{2} is given and the complete integral k or the value of the elliptic functions or of the elliptic integral $F\left(\phi, l_{i}\right)$ are desired for some assigned argument. The values of K and $F\left(\phi . l_{i}\right)$ in terms of $\sin ^{-1} k_{i}$ are found in tables (B. O. Peirere pp. 11:-119), and may be obtaned therefrom. The tables may be used he inversion to find the ralues of the function sn ar ar a dn ir when r is given : for sn $r=\sin F\left(\phi . l_{i}\right)=\sin \phi$ and if $r=F$ is given, ϕ may he found in the talle, and then sn $r=\sin \phi$. It is, howerer, "asy to compute the desired values direetly, owing to the extreme rapiolity of the convergence of the series. Thus

$$
\begin{align*}
\sqrt{\frac{2 k}{\pi}}=\Theta_{1}(0) \cdot \quad \sqrt{\frac{2 k^{\prime}}{\pi}}=\Theta(0) \cdot \quad & \frac{1+\sqrt{k^{\prime}}}{\sqrt{\because \pi}} \sqrt{k^{\prime}}=\frac{1}{2}\left(\Theta_{1}(0)+\Theta(0)\right) \\
\sqrt{k^{\prime}}=\frac{\sqrt{2 \pi}}{1+\sqrt{k^{\prime}}}\left(1+2 q^{4}+\cdots\right) & =\sqrt{-\frac{k^{\prime}}{\pi} \log \eta^{\prime}} \tag{9}\\
& =\frac{\sqrt{-2} \log \eta^{\prime}}{1+\sqrt{l_{i}}}\left(1+\cdots 1^{\prime 4}+\cdots\right)
\end{align*}
$$

The elliptie functions are computed from (6) or analogons series. To compute the value of the elliptic integral $F\left(\phi, z_{i}\right)$, note that if

$$
\begin{gather*}
\cot \lambda=\frac{\operatorname{dn} x}{\sqrt{k^{\prime}}}=\frac{1+2 \eta \cos 2 v+2 \eta^{4} \cos 4 \nu+\cdots}{1-2 \eta \cos 2 v+2 \eta^{4} \cos 4 v+\cdots} \tag{10}\\
\tan \left(\frac{1}{4} \pi-\lambda\right)=\frac{\cot \lambda-1}{\cot \lambda+1}=2 \eta \frac{\cos 2 v+\eta^{8} \cos 6 v+\cdots}{1+2 \eta^{4} \cos 4 v+\cdots}
\end{gather*}
$$

and $\tan \left(\frac{1}{4} \pi-\lambda\right)=2 y \cos 2 \nu$ or $\tan \left(\frac{1}{4} \pi-\lambda\right)=\frac{2 \eta \cos 2 \nu}{1+2 \eta^{4} \cos 4 v}$
are two approximate equations from which $\cos ^{2} \nu v$ may he oltained; the first neglects q^{4} and is generally suffieient, but the second neglects only q^{8}. If h^{2} is near 1 , the proper approximations are

$$
\begin{equation*}
\cot \lambda=\frac{1}{\sqrt{k}} \frac{\operatorname{dn}\left(x, l_{i}\right)}{\operatorname{cnn}^{\prime}\left(x, l_{i}\right)}=\frac{\operatorname{dn}\left(i x, l_{i}^{\prime}\right)}{\sqrt{R_{i}}}=\frac{1+2 \eta^{\prime} \cosh 2 v^{\prime}+\cdots}{1-2 \eta^{\prime} \cosh 2 v^{\prime}+\cdots} \tag{11}
\end{equation*}
$$

$\tan \left(\begin{array}{l}1 \\ 4\end{array} \pi-\lambda\right)=2 q^{\prime} \cosh 2 \nu^{\prime}$ or $\tan \left(\frac{1}{4} \pi-\lambda\right)=\frac{2 q^{\prime} \cdot \cosh 2 \nu^{\prime}}{1+2 q^{\prime 4} \cdot \cosh 4 \nu^{\prime}}$.
Here η^{18} "osh $8 \nu^{\prime}<\eta^{\prime 4}$ is neglected in the second, but $\eta^{14} \cosh 4 v^{\prime}<\eta^{12}$ in the first, which is not always sufficient for four-place work. (of course if ϕ with $\sin x=\sin \phi$ or if $!=\operatorname{sn} x$ is given, $\ln : x=\sqrt{1-l^{2} \sin ^{2} x}$ and cn $x=\sqrt{1-\sin ^{2} x}$ are roadily romputed.

As an example take $\int_{0}^{\phi} \frac{d \theta}{\sqrt{1-\frac{1}{4} \sin ^{2} \theta}}$ and find $K, \sin \frac{2}{3} \pi, F\left(\frac{1}{8} \pi, \frac{1}{2}\right)$. $\operatorname{As} k^{\prime 2}=\frac{3}{4}$ and $\sqrt{k^{\prime}}>0.9$, the first term of (37), p. 472, gives q accurately to five places. Compute in the form: $\left(\mathrm{Lg}=\log _{10}\right)$

$$
\begin{aligned}
& \mathrm{L} \mathrm{Lg}_{\mathrm{g}} k^{\prime 2}=9.87506 \mathrm{~L} g\left(1-\sqrt{k^{\prime}}\right)=8.84136 \quad \mathrm{Lg} 2 \pi=0.7982 \\
& \mathrm{Lg} \sqrt{k^{\prime}}=9.96876 \quad \mathrm{~L} \dot{(g}\left(1+\sqrt{k^{\prime}}\right)=0.28569 \quad 2 \mathrm{Lg}\left(1+\sqrt{k^{\prime}}\right)=0.571+ \\
& \sqrt{k^{\prime}}=0.930650 \\
& \mathrm{~L} \text { g } 2 \boldsymbol{2}=8.5 .5567 \\
& 2 \boldsymbol{2}=0.03595 \\
& 1-\sqrt{k^{\prime}}=0.066940 \\
& q=0.01797 \\
& \mathrm{~L} \stackrel{y}{s} K=0.2268 \\
& K=1.68 \% \\
& 1+\sqrt{k^{\prime}}=1.03060 \\
& q=0.01797 \\
& \text { (heck with table. }
\end{aligned}
$$

$$
\begin{aligned}
& \sin \frac{2}{3} K^{\prime}=2 \frac{\sqrt[4]{q}}{\sqrt{k}} \frac{\sin \frac{1}{3} \pi-q^{2} \sin \pi+\cdots}{1-2 \eta \cos \frac{2}{3} \pi+\cdots}=2 \frac{\sqrt[4]{q}}{\sqrt{\frac{1}{2}}} \frac{\frac{1}{2} \sqrt{3}}{1+q} .
\end{aligned}
$$

$$
\begin{aligned}
& -\operatorname{Lg} 1.018=9.99220 \\
& \phi=\frac{1}{8} \pi \quad \Delta \phi=411 x=\sqrt{1-\sqrt{\sin ^{2} \frac{1}{8} \pi}}=\sqrt{1-\frac{1}{2} \sin \frac{1}{8} \pi} \sqrt{1+\frac{1}{2} \sin \frac{1}{8} \pi} .
\end{aligned}
$$

$$
\begin{array}{rlrlrl}
\frac{1}{2} \sin \frac{1}{8} \pi & =0.19134 & \lambda & =43^{\circ} 28^{\prime} 28^{\prime \prime} & \operatorname{Lg} 42.20 & =1.6253 \\
1-\frac{1}{2} \sin \frac{1}{8} \pi & =0.80866 & \frac{1}{4} \pi-\lambda & =1^{\circ} 31^{\prime} 32^{\prime \prime} & \mathrm{Lg} K & =0.2268 \\
1+\frac{1}{2} \sin \frac{1}{8} \pi & =1.19134 & \mathrm{Lg} \tan & =8.42540 & -\mathrm{Lg} 180 & =7.7447 \\
\frac{1}{2} \mathrm{Lg}\left(1-\frac{1}{2} \sin \frac{1}{8} \pi\right) & =9.95388 & \mathrm{Lg} 2 q & =8.55567 & \mathrm{Lg} x & =9.5968 \\
\frac{1}{2} \mathrm{Lg}\left(1+\frac{1}{2} \sin \frac{1}{8} \pi\right) & =0.03802 & \mathrm{Lg} \cos 2 \nu & =9.86973 & x & =0.3952 \\
-\operatorname{Lg} \backslash k^{\prime} & =0.03124 & 2 \nu & =42^{\circ} 12^{\prime} & \text { Check with table. } \\
\operatorname{Lg} \cot \lambda & =0.02314 & 180 x & =K(42.20) &
\end{array}
$$

As a second example consider a pendulum of length a oscillating through an are of 309°. Find the period, the time when the pendulum is horizontal, and its position after dropping for a third of the time reguired for the whole descent. Let $x^{2}+y^{2}=2 a y$ be the equation of the path and $h=a\left(1+\frac{1}{2} \sqrt{3}\right)$ the greatest height. When $y=h$, the energy is wholly potential and equals $m g h$; and $m g y$ is the general value of the potential energy. The kinetic energy is

$$
\frac{m}{2}\left(\frac{d s}{d t}\right)^{2}=\frac{\frac{1}{2} m a^{2}}{2 a y-y^{2}}\left(\frac{d y}{d t}\right)^{2} \quad \text { and } \frac{\frac{1}{2} m a^{2}}{2 a y-y^{2}}\left(\frac{d y}{d t}\right)^{2}+m g y=m g h
$$

is the equation of motion by the prineiple of energy. Hence

$$
\begin{gathered}
t=\int_{0}^{y} \frac{a d y}{\sqrt{2 g} \sqrt{(h-y)\left(2 a y-y^{2}\right)}}=\sqrt{\frac{(t}{y}} \int_{0}^{\prime \prime} \frac{d w}{\sqrt{\left(1-w^{2}\right)\left(1-k^{2} 2 w^{2}\right)}}, w^{2}=\frac{y}{h}, k^{2}=\frac{h}{2 a}, \\
\sqrt{y / a} t=\operatorname{sn}^{-1}(w, k), \quad w=\operatorname{sn}(\sqrt{y / a t}, k), \quad y=h \sin ^{2}(\sqrt{y / a} t, k),
\end{gathered}
$$

are the integrated results. The quarter period, from highest to lowest point, is $K \sqrt{a / g}$; the horizontal position is $y=a$, at which t is desired ; and the position for $\sqrt{g / a t}=\frac{2}{3} K$ is the third thing required.

$$
k^{2}=0.03301, \quad 2 \ell^{\prime}=\frac{1-\sqrt{k}}{1+\sqrt{k}}, \quad K=-\frac{K^{\prime}}{\pi} \log q^{\prime}=\frac{-2 \mathrm{~L}\left(q^{\prime}\right.}{M(1+\sqrt{k})^{2}} .
$$

$$
\begin{aligned}
& \operatorname{Lg} k^{2}=9.96988 \quad \operatorname{Lg}(1-\sqrt{k})=8.23553 \quad \operatorname{Lg} 2=0.3010 \\
& \mathrm{Lg} \backslash \hat{k}=9.99247-\mathrm{Lg}(1+\backslash \hat{k})=9.70272 \quad \mathrm{Lg}^{2} q^{\prime-1}=0.3784 \\
& \sqrt{k}=0.98280 \\
& -\operatorname{Lg} 2=9.69897 \\
& -\mathrm{L} \underline{\operatorname{Lr}} \boldsymbol{M}=0.3622 \\
& 1-\sqrt{k}=0.01720 \\
& 1+\checkmark k=1.98280 \\
& \mathrm{Lg} \varphi^{\prime}=7 .(03722 \\
& -2 \operatorname{Lg}(1+\backslash k)=9 \cdot 4034 \\
& q^{\prime}=0.00434 \\
& \operatorname{Lg} K=0.4420 \text {. }
\end{aligned}
$$

Hence $K=2.768$ and the complete periolic time is $t K \sqrt{1 / 4}$.

$$
y=u, \quad u^{2}=\frac{1}{h}, \quad \operatorname{cn} w=\sqrt{1-a / h}, \quad \text { du } w=\sqrt{1-k^{2} \| t / h} .
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{k} \frac{\operatorname{dn} w}{\operatorname{cn} w}}=\sqrt[4]{4_{3}^{2}}=\cot \lambda, \\
& \tan \left(\frac{1}{4} \pi-\lambda\right)=2 q^{\prime} \cosh 2 \nu^{\prime}, \quad 2 \nu^{\prime}=\frac{\pi K^{\prime}}{K^{\prime}} \backslash \frac{\sqrt{!}}{\pi} \frac{t}{K^{\prime}} . \\
& \operatorname{Lg} k^{2}=9.96988 \\
& \lambda=43^{\circ} 20^{\prime} 12^{\prime \prime} \\
& 2 v^{\prime}=1.813 \\
& \mathrm{Lg} 4=0.60206 \\
& \frac{1}{4} \pi-\lambda=1^{\circ} 33^{\prime} 48^{\prime \prime} \\
& \operatorname{Lg} 2 \nu^{\prime}=0.2 .584 \\
& -\operatorname{Lg} 3=9.52288 \\
& \text { Lg } \cot ^{4} \lambda=0.09482 \\
& \operatorname{Lg} \operatorname{eot} \boldsymbol{\lambda}=0.02370 \\
& \mathrm{Lg} \tan =8.4360 \text {, } \\
& -\mathrm{Lg}^{2} q^{\prime}-1=9.6266 \\
& \operatorname{Lg} 2 q^{\prime}=9.93825 \\
& \mathrm{~L} \text { 皆 } M=9.0 .9378 \\
& \text { Lect } \cosh 2 \nu^{\prime}=0.49778 \\
& \text { L } \sqrt{11} \frac{t}{11} \frac{1}{h}=0.5228 .
\end{aligned}
$$

Hence the time for $y=\|$ is $t=0.3333 K \sqrt{u / y}=\frac{1}{3}$ whole time of ascent.

$$
\begin{aligned}
& y=h \sin ^{2} \sqrt{\frac{1}{4} \frac{2}{3} K^{\prime}} _{g}^{\prime \prime}=\frac{h}{k}\left(\frac{\sinh \pi K / B h^{\prime}-4^{\prime 2} \sinh \pi h^{\prime} / h^{\prime}}{\cos h \pi h / 3 h^{\prime}+q^{2} \cos \cos \pi h^{\prime} / h^{\prime \prime}}\right)^{2} \\
& =2 a k\left(\frac{q^{\prime-\frac{1}{3}}-\eta^{\frac{1}{3}}-q^{\prime 2}\left(\eta^{\prime}-1-q^{\prime}\right)}{q^{\prime-\frac{1}{3}}+q^{\prime \frac{1}{3}}+\eta^{\prime 2}\left(q^{\prime}-1+q^{\prime}\right)}\right)^{2}=2 \boldsymbol{q} k\left(\frac{q^{\prime-\frac{1}{3}}-q^{\prime \frac{1}{3}}-\eta^{\prime}}{q^{\prime-\frac{1}{3}}+q^{\prime \frac{1}{3}}+q^{\prime}}\right)^{2} . \\
& \frac{1}{3} \operatorname{Lg} q^{\prime}=9.21241 \quad q^{-\frac{1}{3}}=0.16931 \\
& -\frac{1}{3} \mathrm{~L} \mathscr{y}^{\prime} \ell^{\prime}=0.78759 \quad \ddots^{-\frac{1}{3}}=6.1819 \\
& y=2 u k\binom{5.49645}{(6.2!93)^{2}}^{2} .
\end{aligned}
$$

 at 30° from the vertical the pemdinhm reaches $4: 3$ in a thirl and 00° in another third of the total time of descent. Assn $\frac{1}{2} K$ is $\left(1+k^{\prime}\right)^{-\frac{1}{2}}$ it is tisy to calculate the position of the pendulum at half the total time of descent.

EXERCISES

1. Discuss these integrals hy the methor of maphing :
$(火) z=\int_{0}^{x} \frac{d u}{1\left(u^{2}-u^{2}\right)\left(l^{2}-u^{2}\right)} \quad, \quad a>b>0 . \quad u=b, \cdots a z . \quad k=\frac{b}{u}$,

2. Establish these Maclaurin develomments with the aid of $\$ 177$:
(c) $\sin z=z-\left(1+k^{2}\right) \frac{z^{3}}{3 ;}+\left(1+1+k^{2}+k^{4}\right) \frac{z^{5}}{5!}-\cdots$.
(β) $011 z=1-\frac{z^{2}}{z!}+\left(1+1 k^{2}\right) \frac{z^{4}}{4!}-\left(1+14 k^{2}+16 k^{4}\right) \frac{z^{6}}{6!}+\cdots$
(γ) $\ln z=1-k^{2} \frac{z^{2}}{2!}+k^{2}\left(4+k^{2}\right) \frac{z^{4}}{4!}-k^{2}\left(16+44 k^{2}+k^{4}\right) \frac{z^{6}}{6!}+\cdots$.
3. Prove $\int_{0}^{\phi} \frac{d \phi}{\sqrt{1-l^{2} \sin ^{2} \phi}}=\frac{1}{l} \int_{0}^{山} \frac{l \psi}{\sqrt{1-l^{2}-\ln ^{2} \psi}} \cdot l>1 . \quad \sin ^{2} \psi=l^{2} \sin ^{2} \phi$.
4. Carry rut the monfutations in these rases :
$(c) \quad \int_{0}^{\infty} \frac{1 / A}{\sqrt{1-0.1-i n^{2} H}}$ th fimi $h . \quad \sin \frac{2}{3} K . \quad F\left(\begin{array}{l}1 \\ \pi\end{array} \pi \frac{1}{\sqrt{10}}\right)$,
(β) $\int_{0}^{\phi} \frac{d \theta}{\sqrt{1-0.9}+11^{2} \theta}$ to find $K, \quad \sin \frac{1}{3} K . \quad F\left(\frac{1}{3} \pi \cdot \frac{3}{\sqrt{10}}\right)$.

 makes an ande of 30 with the vertical.
5. With the aid of Ex. 3 find the are of the lemiscate $r^{2}=2 a^{2} \cos 2 \phi$. Alsw the are from $\phi=0$ to $\phi=30^{\circ}$, and the midelle point of the are.
6. A head moves around a vertical cirele. The velocity at the top is to the velocity at the bottom as $1: n$. Express the solution in terms of elliptic functions.
7. In Ex. 7 compute the periodic time if $n=2,3$, or 10 .
8. Neglecting gravity, solve the problem of the jmmping rope. Take the x-axis horizontal through the ends of the rone. and the y-axis vertieal throngh one pad. Remember that "centrifugal force" varies as the distance from the axis of rotation. The first and seeond integrations give

$$
d x=\frac{u^{2} d y}{\sqrt{\left(b^{2}-y^{2}\right)^{2}-u^{2}}} \cdot \quad y=\sqrt{b^{2}-u^{2}} \operatorname{sn}\left(\frac{\sqrt{l^{2}+u^{2}} s}{a^{2}} \cdot \sqrt{\frac{1,1^{2}-a^{2}}{l^{2}+a^{2}}}\right) .
$$

10. Express $\int \frac{d \theta}{\sqrt{a-\cos \theta}}, a>1$, in terms of celiintic functions.
11. A ladeler stanls (in a smooth flom and rests at an angle of 30 against a smooth wall. Discons the descent of the ladder after its release from this position. Find the time which elapses before the ladder leaves the wall.
12. A rod is phaced in a smonth hemispherimal bowl and reaches from the bottom of the bowl to the eder. Find the time of aspllation when the rox is released.
13. Legendre's Integrals II and III. The treatment of
by the method of conformal maphing to determine the function and its inverse does not give satisfactory results, for the map of the Riemam surface on the or-plane is not a simple rogion. Dut the integral may be treated hey a change of variable and be redued to the integral of an elliptic funtion. For with $\|=s\| n,\left\|=s n^{-1}\right\|$,

$$
\begin{align*}
\int_{0}^{\prime \prime} \frac{\left(1-l_{i}!^{2}\right) \cdot l_{n}}{\sqrt{\left(1-n^{2}\right)\left(1-l_{i}^{2} \|^{2}\right)}} & =\int_{\|}^{n}\left(1-l_{i}^{2} \sin ^{2} \|\right) d \| \tag{12}\\
& =\left\|-l_{i}^{2} \int_{0}^{n} \sin ^{2}\right\|\|l\| .
\end{align*}
$$

The problem thas heromes that of intergating sn" ${ }^{2}$. To effect the integration, s. ${ }^{2} /{ }^{2}$ will be expersed as a derivatioe

The function sn" ${ }^{2}$ is doubly perionlic with periods 2 K, 2 iK', and $^{\prime \prime}$ with a pole of the semond order at $"=i h^{\prime}$. But now

$$
\begin{aligned}
\Theta\left(\prime \prime+2 K^{-}\right) & =\Theta(\prime \prime), \quad \Theta\left(\prime+2 i K^{-1}\right)=-q^{-1} e^{-\frac{i \pi}{K^{\prime}} u} \Theta(u) \\
\log \Theta\left(\prime+2 K^{-}\right) & =\log \Theta(\prime \prime), \log \left(\Theta+2 i K^{-1}\right)=\log \Theta(\prime)-\frac{i \pi}{K^{\prime}} u-\log (-q) .
\end{aligned}
$$

It then appears that the second derivative of $\log \Theta(11)$ also has the periods $2 K, 2 i K^{\prime}$. Introduce the zeta function

$$
\begin{equation*}
\mathrm{Z}(u)=\frac{d}{d u} \log \Theta(u)=\frac{\Theta^{\prime}(u)}{\Theta(u)}, \quad \mathrm{Z}^{\prime}(u)=\frac{d}{d u} \frac{\Theta^{\prime}(u)}{\Theta(u)} . \tag{13}
\end{equation*}
$$

The expansion of $\Theta^{\prime}(u)$ shows that $\Theta^{\prime}(u)=0$ at $u=m k$. About $u=i K^{\prime}$ the expansions of $\mathbf{Z}^{\prime}(u)$ and $\mathrm{sn}^{2} u$ are

$$
\mathrm{Z}^{\prime}(u)=-\frac{1}{\left(n-i K^{\prime}\right)^{2}}+\pi_{0}+\cdots, \quad \operatorname{sn}^{2} u=\frac{1}{k_{i^{2}}} \frac{1}{\left(u-i \Lambda^{\prime}\right)^{2}}+b_{0}+\cdots
$$

Hence

$$
\hbar^{2} \operatorname{sn}^{2} u=-Z^{\prime}(u)+Z^{\prime}(0), \quad Z^{\prime}(0)=\Theta^{\prime \prime}(0) / \Theta(0),
$$

and

$$
\begin{gather*}
l_{i} \int_{0}^{u} \sin ^{2} u d u=-\mathrm{Z}(u)+u \mathrm{Z}^{\prime}(0) \\
\int_{0}^{u}\left(1-l^{2} \sin ^{2} u\right) d u=u\left(1-Z^{\prime}(0)\right)+\mathrm{Z}(⿲) . \tag{14}
\end{gather*}
$$

The derivation of the expansions of $Z^{\prime}(u)$ and $\operatorname{sn}^{2} u$ about $u=i K^{\prime}$ are easy.

$$
\begin{aligned}
& \theta(u)=C \Pi\left(1-q^{2 n+1} e^{ \pm \frac{\prime \pi}{\kappa^{u}}}\right), \quad \log \theta(u)=\sum \log \left(1-q^{2 n+1} e^{ \pm \frac{i \pi}{K^{n}}}\right)+\log C \\
& \log \theta(u)=\log \left(1-q e^{-\frac{i \pi}{K} u}\right)+\text { function analytic near } u=i K^{\prime} \text {. } \\
& \frac{\Theta^{\prime}(u)}{\Theta(u)}=\frac{i \pi q e^{-\frac{i \pi}{K^{\prime}} u}}{K\left(1-q e^{\left.-\frac{i \pi}{\kappa^{\prime \prime}}\right)}\right.}+\cdots=\frac{i \pi \prime}{K^{\prime}\left(e^{\left.\frac{i \pi}{N^{\prime \prime}}-q\right)}\right.}+\cdots, \\
& f(u)=e^{i \pi} \kappa^{i u}=f\left(i K^{\prime}\right)+\left(u-i K^{\prime}\right) f^{\prime}\left(i K^{\prime}\right)+\cdots=q+\left(u-i K^{\prime}\right) \frac{i \pi}{K} q+\cdots, \\
& \frac{\theta^{\prime}(u)}{\Theta(u)}=\frac{+1}{u-i H^{\prime}}+\cdots, \quad \frac{d}{d u} \frac{\theta^{\prime}(u)}{\theta(u)}=\frac{-1}{\left(u-i H^{\prime}\right)^{2}}+\cdots \cdot \\
& \operatorname{sn}\left(u+i K^{\prime}\right)=\frac{1}{k} \frac{1}{\sin u}, \quad \sin ^{2}\left(u+i K^{\prime}\right)=\frac{1}{k^{2}} \frac{1}{\operatorname{sn}^{2} u}, \\
& f(u)=\operatorname{sn} u=u f^{\prime}(0)+\frac{1}{6} u^{3} f^{\prime \prime \prime}(0)+\cdots=u+c u^{3}+\cdots, \\
& \sin ^{2}\left(u+i h^{\prime}\right)=\frac{1}{k^{2} \cdot \sin ^{2} u}=\frac{1}{k^{2}}\left(\frac{1}{u}-c u+\cdots\right)^{2}=\frac{1}{k^{2}}\left(\begin{array}{c}
1 \\
u^{2}
\end{array}-2 c+\cdots\right), \\
& \mathrm{sin}^{2} u=\frac{1}{k^{2}}\left(\frac{1}{\left(u-i h^{\prime}\right)^{2}}-2 c+\cdots\right) .
\end{aligned}
$$

In a similar mamer may be treated the integral

$$
\begin{equation*}
\int_{0}^{w} \frac{d u}{\left(u^{2}-r\right) \sqrt{\left(1-u^{2}\right)\left(1-k_{i}^{2} n^{2}\right)}}=\int_{0}^{u} \frac{d u}{\sin ^{2} \|-r} . \tag{III}
\end{equation*}
$$

Let a be so chosen that $\operatorname{sn}^{2} a=\alpha$. The integral becomes

$$
\begin{equation*}
\int_{0}^{n} \frac{d \|}{\sin ^{2} \|-\sin ^{2} \alpha}=\frac{1}{2 \sin a c \operatorname{cn} \pi d n \pi} \int \frac{2 \sin \pi \cdot n \pi d n \pi}{\sin ^{2} a-\sin ^{2} a} d u . \tag{15}
\end{equation*}
$$

The integrand is a function with periods $2 \mathrm{~K}, 2 i \mathrm{~K}^{-1}$ and with simple poles at $u= \pm u$. To find the residnes at these poles note

$$
\lim _{u \neq \pm a} \frac{u \mp \|}{\operatorname{sn}^{2} u-\sin ^{2} u}=\lim _{u \neq \pm a} \frac{1}{2 \sin u \operatorname{cn} u \operatorname{dn} u}=\frac{ \pm 1}{2 \operatorname{sn} u \operatorname{cn} \| \operatorname{dn} u} .
$$

The coefficient of $\left(\| \mp(1)^{-1}\right.$ in expanding about $\pm a$ is therefore ± 1. Such a function niay be written town. In fact

$$
\begin{aligned}
\frac{2 \sin a c \operatorname{cn} a \ln a}{\sin ^{2} u-\operatorname{sn}^{2} a} & =\frac{I^{\prime}(u-a)}{H(u-u)}-\frac{H^{\prime}(u+a)}{H(u+a)}+C \\
& =\mathrm{Z}_{1}(u-u)-\mathrm{Z}_{1}(u+a)+r^{\prime},
\end{aligned}
$$

if $Z_{1}=I^{\prime} / H$. The verification is abs above. To determine (' let $u=0$.
Then $C=-\frac{2 \operatorname{cn} \| \ln \pi}{\sin \ell}+2 \mathrm{Z}_{1}(11)$, but $\sin u=\frac{1}{\sqrt{k}} \frac{I(\|)}{\Theta(\|)}$,
and

$$
\frac{d}{d u} \log \operatorname{sn} u=\frac{\mathrm{c} n u \mathrm{~d} n u}{\mathrm{~s} n \|}=\mathrm{Z}_{1}(\|)-\mathrm{Z}(u) .
$$

Hence C reduces to $2 Z(11)$ and the integral is

$$
\begin{equation*}
\int_{0}^{u} \frac{d u}{\operatorname{sn}^{2} u-\sin ^{2} u}=\frac{1}{2 \sin u \operatorname{cn} u d n u}\left[\log \frac{n(u-\|)}{I I(a+u)}+2 u \mathrm{Z}(u)\right] \tag{16}
\end{equation*}
$$

The integrals here treated by the substitution $w=\sin u$ and thas reduced to the integrals of elliptic functions are but special cases of the integration of any rational function $R(u . \backslash \bar{W})$ of w and the radical of the biquadratic $W^{r}=\left(1-u^{2}\right)\left(1-k^{2} w^{2}\right)$. The use of the subtitution is analogens to the use of $w=\sin u$ in converting an integral of $R\left(w, \sqrt{1-\frac{u^{2}}{2}}\right)$ into an integral of trigonometric functions. Any rational function $R\left(u, \backslash \overline{W^{5}}\right)$ may be written, by rationalization, as

$$
\begin{aligned}
R\left(w, \sqrt{W^{*}}\right) & =\frac{R(w)+R(w) \sqrt{W^{W}}}{R(w)+R(w) \sqrt{W}}=\frac{R^{\prime}(w)+R(w) \sqrt{W}}{R^{2}(w)} \\
& =R_{1}(w)+\frac{R(w)}{\sqrt{W}}=R_{1}(w)+\frac{w R_{2}\left(w^{2}\right)+R_{3}\left(w^{2}\right)}{\sqrt{H}}
\end{aligned}
$$

where R means not always the same function. The integral of $R(x, \sqrt{W})$ is this redneed to the integral of $R_{1}(x)$ which is a rational fraction, plus the integral of $w R_{2}\left(u^{2}\right) / \sqrt{1 I}$ which by the substitution $w^{2}=u$ reduecs to an integral of $i\left(u . \sqrt{(1-u)\left(1-k^{2} u\right)}\right.$ and may be considered as belonging to elementary ealculus, $p^{p l u s}$ finally

$$
\int \frac{R_{3}\left(w^{2}\right)}{\sqrt{W}} d u=\int R_{3}\left(\operatorname{su}^{2} u\right) d u, \quad w=\operatorname{sn} u .
$$

By the method of partial fractions R_{3} may be resolved and

$$
\int \sin ^{2} n u d u \quad n \geqslant 0, \quad \int \frac{d u}{\left(\mathrm{~s}^{2} u-\alpha\right)^{n}} \quad n>0
$$

are the trpes of integrals which must be evaluated to finish the integration of the given $R(x, \sqrt{15})$. An integration by parts (B. O. Peirce, No. 5ti7) shows that for
the first type n may be lowered if positive and raised if negative until the integral is expressed in terms of the integrals of $\operatorname{sn}^{2} x$ and $\sin ^{0} x=1$, of which the first is integrated above. The second type for any value of n may be obtained from the integral for $n=1$ given above by differentiating with respect to $(x$ under the sign of integration. Hence the whole problem of the integration of $R(w, \sqrt{W})$ may be regarded as solved.
191. With the substitution $u^{\prime}=\sin \phi$, the integral II becomes

$$
\begin{align*}
E\left(\phi, l_{i}\right) & =\int_{0}^{\infty} \sqrt{1-l_{i}^{2} \sin ^{2}} \theta_{1} \|=\int_{0}^{m} \frac{\sqrt{1-l_{i} i^{2} u^{2}}}{\sqrt{1-u^{2}}} d u \tag{i}\\
& =\left\|\left(1-\mathrm{Z}^{\prime}(0)\right)+\mathrm{Z}(\|), \quad\right\|=F\left(\phi, l_{i}\right) .
\end{align*}
$$

In particular $E\left(\frac{1}{2} \pi, k\right)$ is called the complete integral of the second kind and is genemally denoted ly E. When $\phi=!\pi$, the integral $"=F(\phi, k)$ becomes the complete integral K . Then

$$
\begin{gather*}
E=K^{\prime}\left(1-Z^{\prime}(0)\right)+\mathrm{Z}\left(K^{\prime}\right)=K^{\prime}\left(1-\mathrm{Z}^{\prime}(0)\right) \tag{18}\\
E\left(\phi, l_{i}\right)=E F\left(\phi, l_{i}\right) / K+Z(1 i) \tag{19}
\end{gather*}
$$

and
The problem of computing $E\left(\phi, 7_{i}\right)$ thas reduces to that of computing $k_{i}, l_{i}, F\left(\phi, l_{i}\right)=\|$, and $Z(\prime \prime)$. The methods of ohtaining N_{i} ant $F\left(\phi, l_{i}\right)$ have been given. The series for $Z(11)$ converges rapidly. The value of E may be found by computing $K^{\prime}\left(1-Z^{\prime}(3)\right)$.

For the convenience of logarithmic computation note that

$$
\begin{align*}
& \frac{K-E}{K^{\prime}}=Z^{\prime}(0)=\frac{\Theta^{\prime \prime}(0)}{\Theta(0)}=\sqrt{\frac{\pi}{2 K K^{\prime}}} \cdot \frac{2 \pi^{2}}{K^{-2}}\left(\eta-4 \eta^{4}+9 \eta^{9}-\cdots\right) \\
& K-E=\frac{1}{2} \pi / \sqrt{k^{\prime}} \cdot\left(\stackrel{2}{2} \pi / K^{\prime}\right)^{\frac{3}{2}} \eta\left(1-4 \eta^{3}+\cdots\right) \text {. } \tag{20}\\
& Z(\prime \prime)=\frac{\Theta^{\prime}(\prime \prime)}{\Theta(\prime \prime)}=\frac{2 \eta \pi}{K^{\prime}} \frac{\sin 2 v-2 \eta^{3} \sin t v+\cdots}{1-2 \eta \cos 2 v+2 \eta^{i} \cos +v-\cdots} \tag{21}
\end{align*}
$$

Or
Also
Where $v=\pi / \prime / 2 \pi$. These series neglect only terms in η°, which will barel! affert the fifth place when $7_{i} \leqq$ sin $5 \geq^{\circ}$ or $7_{i}^{2} \leqq 0.9 \mathrm{~s}$. The series as written therefore eover most of the eases arising in practice. For instance in the prohlem which gives the mane to the elliptic functions and intergals, the prohlem of finding the are of the ellipse $x=" \sin \phi$, $y=l \cos \phi$.

$$
d s=\sqrt{n^{2} \cdot n^{2}} \phi+l^{2} \sin ^{2} \phi\|\phi=\| \sqrt{1-,^{2} \sin ^{2} \phi} d \phi:
$$

the efcentricity, may he at high as 0.99 without invalidating the approximate formulat. An example follows.

Let it he required to determine the length of the guadrant of an ellipse of eceentricity $e=0.5$ and als, the lenisth of the portion wer half the semiaxis major. Here the series in q^{\prime} convere better than those in q. but as the proper
expression to replace $\mathbf{Z}(u)$ has not heen fomm, it will be more convenient to use the series in q and take an additional term or two. $\Lambda s k=0.9 . k^{\prime 2}=0.19$.

$\mathrm{Lg} k^{\prime 2}=9.27875$	$\mathrm{Lg}\left(1-\sqrt{k^{\prime}}\right)=9.53120$	5 dilf. $=6.55515$
$\operatorname{Lg} \sqrt{ } \overline{k^{\prime}}=9.81969$	$\operatorname{Lg}\left(1+\sqrt{k^{\prime}}\right)=0.22017$	L
$\sqrt{k^{\prime}}=0.66022$	diff. $=9.31103$	Lg term $2=5.35103$
$1-\sqrt{k^{\prime}}=0.33978$	$\operatorname{Lg} 2=0.30103$	term $1=0.10233$
$1+\sqrt{k^{\prime}}=1.66022$	Lg term $1=9.01000$	term $2=0.00002$
		$q=0.10235$.

$\operatorname{Lg} q=9.0101$	$\mathrm{L} \underline{2} 2 \pi=0.7982$	$\operatorname{Lg} \frac{1}{2} \pi / \sqrt{k^{\prime}}=0.3764$
$3 \mathrm{Lg} q=7.0303$	$-2 \operatorname{Lg}\left(1+\sqrt{k^{\prime}}\right)=9.5597$	${ }_{2}^{3} \log 2 \pi / K=0.6603$
$4 \mathrm{Lg} q=6.0404$	$\operatorname{Lg}\left(1+2 q^{4}\right)=0.0001$	L ¢ $\downarrow=9.0101$
$q^{3}=0.0011$	Lig $\mathrm{L}^{\prime}=0.3580$	$\operatorname{Lg}\left(1-4 q^{3}\right)=9.9981$
$q^{4}=0.0001$	$K=2.280$	$\lg (K-E)=0.0449$.

Hence $K-E=1.109$ and $E=1.171$. The quadrant is $1.171 a$. The point corresponding to $x=\frac{1}{2} a$ is given by $\phi=30^{\circ}$. Then dn $F=11-0.202$. .
$\operatorname{Lg} \ln F=9.9509$
$\operatorname{Lg} \sqrt{k^{\prime}}=9.8197$
$\operatorname{Lg} \cot \lambda=0.1312$
$\lambda=36^{\circ} 28 \frac{1^{\prime}}{}$
$\frac{1}{4} \pi-\lambda=8^{\circ} 31 \frac{1}{2}$
с1~2 $\nu=0.7: 323$
$\operatorname{Lg} \tan =0.17 .58$
$\operatorname{Lg}{ }_{2} q=9.3111 \quad 1+2 q^{4} \cos t \nu=1.0000$
Lgeos $2 v=9.8647$

Now $180 F=K(42.92)$. The computation for $F, \mathrm{Z}, E\left(\begin{array}{l}1 \\ 6\end{array} \pi\right)$ is then

$$
\operatorname{Lg} K=0.3580 \quad \operatorname{Lg} 2 \pi / K=0.4402 \quad \operatorname{Lg} E / K=9.7106
$$

$\mathrm{L} . \mathrm{g} 42.92=1.6326$
$-1 \mathrm{~g} 180=7.7447$
$\mathrm{Lg} \sin 2 \nu=9.8331$
$\mathrm{L} \mathrm{L} F=9.735 \%$

$$
E F / K=0.2792
$$

$\operatorname{Lg} F=9.7353$

$$
F=0.5436
$$

$-\operatorname{Lg}(1-2 q \cos 2 \nu)=0.0705$

$$
Z=0.2 .25 i j *
$$

$\mathrm{L}_{\mathrm{g}} \mathrm{Z}=0.8539$

$$
E\left(\frac{1}{6} \pi\right)=0.5048
$$

The value of Z marked * is corrected for the term $-2 \ell^{3} \sin 4 \nu$. The part of the quadrant over the first half of the axis is therefore 0.5048 and 0.6 afif a over the second half. To insure complete four-figure accuracy in the result, five phaces should have been carried in the work. but the values here found check with the table except for one or two mits in the last place.

EXERCISES

1. Prove the following relations for $Z(u)$ and $Z_{1}(u)$.

$$
\mathrm{Z}(-u)=-\mathrm{Z}(u), \quad \mathrm{Z}\left(u+2 h^{\prime}\right)=\mathrm{Z}(u), \quad \mathrm{Z}\left(u+2 i \hbar^{\prime}\right)=\mathrm{Z}(u)-i \pi / \hbar .
$$

If

$$
\begin{gathered}
\mathrm{Z}_{1}(u)=\frac{d}{d u} \log I(u)=\frac{I^{\prime}(u)}{\Pi(u)} . \quad \mathrm{Z}_{1}\left(u+i \hbar^{\prime}\right)=\mathrm{Z}(u)-\frac{i \pi}{2 \pi}, \\
\frac{1}{\operatorname{sn}^{2} u}=-\mathrm{Z}_{1}^{\prime}(u)+\mathrm{Z}^{\prime}(0), \quad \int \frac{u u}{\sin ^{2} u}=-\mathrm{Z}_{1}(u)+u \mathrm{Z}^{\prime}(0), \\
\mathrm{Z}_{1}(u)-\mathrm{Z}(u)=\frac{d}{d u} \log \sin u=\frac{\operatorname{cn} u \operatorname{dn} u}{\operatorname{sn} u}, \quad Z_{1}(0)=\infty .
\end{gathered}
$$

2. An elliptic function with periods $2 K^{\prime}, 2 i h^{\prime}$ and simple poles at $\alpha_{1}, a_{2}, \cdots, a_{n}$ with residues $c_{1}, c_{2}, \cdots, c_{n}, \Sigma \mathbf{\Sigma} c=0$. may be written

$$
f(u)=c_{1} Z_{1}\left(u-u_{1}\right)+c_{2} Z_{1}\left(u-u_{2}\right)+\cdots+c_{n} Z_{1}\left(u-u_{n}\right)+\text { const. }
$$

3. $\frac{k^{2} \operatorname{sn} a \mathrm{cn} a \operatorname{dn} u \sin ^{2} u}{1-k^{2} \operatorname{sn}^{2} a \sin ^{2} u}=\frac{1}{2} \mathrm{Z}(u-a)-\frac{1}{2} \mathrm{Z}(u+a)+\mathrm{Z}^{\prime}(a)$,

$$
k^{2} \sin a \operatorname{cn} a \operatorname{dn} a \int_{0}^{u} \frac{\sin ^{2} u \ln n}{1-k^{2} \operatorname{sn}^{2} u \sin ^{2} u}=\frac{1}{2} \operatorname{los} \frac{\theta(u-u)}{\theta(u+u)}+u Z^{\prime}(a) .
$$

4. (c) $\int \frac{\lambda d u}{\mathrm{sn}^{2} \backslash \bar{\lambda} u}=\lambda u \mathrm{Z}^{\prime}(0)-\sqrt{ } \bar{\lambda} Z(\sqrt{ } \bar{\lambda} u)-\sqrt{\lambda} \frac{\mathrm{cn} \backslash \bar{\lambda} u d n \backslash \bar{\lambda} u}{\operatorname{sn} \backslash \bar{\lambda} u}+C$

$$
=\lambda u-\backslash \bar{\lambda} E\left(\phi=\sin ^{-1} \sin \backslash \bar{\lambda} u\right)-\sqrt{\bar{\lambda}} \frac{(n) \sqrt{\lambda} u \ln \backslash \sqrt{\lambda} u}{N, \bar{\lambda} u}+C,
$$

(β) $\int \frac{k^{2} d u}{\ln ^{2} u}=\int \operatorname{dn} n^{2} u d u-k^{2} \frac{\sin u \operatorname{cn} u}{\operatorname{dn} u}=E\left(\phi=\sin ^{-1} \sin u\right)-k^{2} \frac{\sin u \operatorname{con} u}{\ln u}$,
($\gamma) \int \frac{\left(n n^{2} u d u\right.}{\sin ^{2} u d_{1} u}=u-2 E\left(\phi=\sin ^{-1} \sin u\right)+\frac{\operatorname{cn} u}{\sin u(1 n u}\left(1-2 d n^{2} u\right)$.
5. Find the length of the quadrant and of the portion of it cut off by the latus rectum in ellipses of eecentricity $e=0.1,0.5,0.75,0.45$.
6. If e is the eccentricity of the hyperbola $x^{2} / u^{2}-y^{2} / \pi^{2}=1$. show that

$$
\begin{aligned}
s & =\frac{b^{2}}{u t} \int_{0}^{\phi} \frac{\sec ^{2} \phi l \phi}{\sqrt{1-k^{2} \sin ^{2} \phi}}, \quad \text { where } \frac{u c}{b^{2}} y=\tan \phi, \quad k=\frac{1}{e}, \\
& =\frac{l^{2}}{u e} F(\phi, k)-u c E(\phi, k)+a e \tan \phi \backslash \overline{1-k^{2} \sin ^{2} \phi} \bar{\phi} .
\end{aligned}
$$

7. Find the are of the hyjerbola cut off by the lathe rectum if $\epsilon=1.2,2,3$.
8. Show that the length of the jumping rope (Ex. 5. 1). 511) is

$$
u\left(k^{\prime} K / \overline{2}+\sqrt{2} E / k^{\prime}\right)
$$

9. A flexible trongh is filled with water. Find the expression of the shape of a crons section of the trough in terms of $F(\phi, k)$ and $E(\phi . k)$.
10. If an ellipsoid hats the axes $" \ggg c$, find the area of one octant.
11. ('ompme the area of the ellipmind with axes 3. 2. 1 .
12. A hole of radius) is bered through a cylinder of radius a $>b$ centrally and perpendicularly to the axis. Find the whme cut ont.
13. Find the area of a right celliptic cone, and compute the area if the altitude is 3 and the semiaxes of the base are $1 \frac{1}{2}$ and 1 .
14. Weierstrass's integral and its inversion. In studying the general theory of doubly periodic functions (182), the two special functions $p(1 \prime), p^{\prime}(\prime \prime)$ were constructed and discussed. It was seen that

$$
\begin{align*}
& z=\int_{\infty}^{\pi} \frac{d l_{x}}{\sqrt{4 u^{3}-y_{2} u^{\prime}-g_{3}}}, \quad u=p(z), \quad \infty=1(0), \tag{22}\\
& =\int_{x}^{!e} \frac{d \pi}{\sqrt{4\left(1!-e_{1}\right)\left(!\cdot-e_{2}\right)\left(\prime \prime-e_{3}\right)}}, \quad e_{1}+\rho_{2}+\rho_{3}=0,
\end{align*}
$$

where the fixed limit s has lreen added to the integral to make $u=\infty$ and $: z=0$ (*orrespond and where the roots have been called p_{1}, e_{2}, e_{3}. Conversely this integral could lee studied in detail ly the method of mapping; but the method to be followed is to make only cursory use of the conformal map, sufficient to give a hint as to how the function
 discussion will be restricted to the case whicharises in practice, namely, when g_{2} and g_{3} are real quantities.

$\omega_{0} \stackrel{1}{-\omega_{1}}$	1^{\prime}	111	$\begin{array}{ll} \mathrm{III} \\ \hline \end{array}$
2^{\prime}	2	$\sim_{-\infty} e_{2}$	

In the case of three real roots the Riemann surface may be drawn with junction lines ${ }_{2}{ }_{2} r_{3}$, and r_{1}, ∞. The details of the map may readily be filled in, but the observation is sufficient that there are only two essentially different paths closed on the smrface, mamely, abont er ${ }_{2}$, ${ }_{3}$ (whielh ly deformation is equivalent to one about e_{1}, ∞) and about e_{3}, e_{1} (which is equivalent to one about $p_{2},-\infty$). The integral about p_{2}, p_{3} is real and will he denoted by $2 \omega_{1}$, that alout e_{3}, e_{1} is pure imaginary and will be denoted hy $2 \omega_{2}$. If the function $\mu(*)$ le constructed as in $\$ 182$ with $\omega=2 \omega_{1}, \omega^{\prime}=2 \omega_{2}$ the function will have as always a louble pole at $a=0$. As the periods are real and pure imaginary it is matural to try to expmess $f^{\prime}(i)$ in terms of sn \because. As $f^{\prime}(: 氵$) derends on two comstants
 lee expresserl in terms of su ($\left.\sqrt{\lambda} \because, 7_{i}\right)$. where the two "onstants λ, li are to be determined so as to fultill the identity $\mu^{\prime 2}=4 \ell^{3}-!\Omega^{\prime \prime}-!_{3}$. In partirular tuy

$$
\mu(i \because)=A+\frac{\lambda}{\sin ^{2}\left(\sqrt{\lambda_{i}}, l_{i}\right)}, \quad A, \lambda . l_{i} \text { (onstants. }
$$

This form surely gives a donble pole at $z=0$ with the expansion $1 / z^{2}$. The determination is relegated to the small text. The result is

$$
\begin{align*}
& p(z)=e_{2}+\frac{\rho_{1}-e_{2}}{\sin ^{2}(\sqrt{\lambda}, k)}, \quad k^{2}=\frac{e_{3}-e_{2}}{e_{1}-e_{2}}<1, \\
& \lambda=e_{1}-e_{2}>0, \quad \omega_{1} \sqrt{\lambda}=k, \quad \omega_{2} \sqrt{\lambda}=i K^{\prime} . \tag{23}
\end{align*}
$$

In the case of one real and two ronjugate imaginary roots, the Riemann surface may be drawn in a similar mamer. There are again two independent closed paths, one about e_{2}, e_{3} and another about e_{3}, e_{1}. Let the integrals about these paths be respectively $2 \omega_{1}$ and $2 \omega_{2}$. That

$2 \omega_{1}$ is real may be seen ly deforming the path until it consists of a very distant portion along which the integral is infinitesimal and a path in and out along e_{1}, ∞, which gives a real value to the integral. As $2 \omega_{2}$ is not known to le pure imaginary and may indeed be shown to be complex, it is natural to try to express $p(z)$ in terms of $\mathrm{cn} z$ of which one period is real and the other complex. Try

$$
p(: z)=A+\mu \frac{1+\operatorname{cn}\left(2 \sqrt{\mu} z, k_{i}\right)}{1-\operatorname{cn}\left(2 \sqrt{\mu} z, k_{k}\right)} .
$$

This form surely gives a double pole at $\approx=0$ with the expansion $1 / z^{2}$. The determination is relegated to the small text. The result is

$$
\begin{align*}
& p(*)=r_{1}+\mu \frac{1+\cdots 11\left(2 \sqrt{\mu_{i}}, l_{i}\right)}{1-\left(\cdot 11\left(2 \sqrt{\mu_{i}}, l_{i}\right)\right.}, \quad l_{i}^{2}=\frac{1}{2}-\frac{3 e_{1}}{4 \mu}<1, \\
& \mu^{2}=\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right), \quad \sqrt{\mu} \omega_{1}=K, \quad \sqrt{\mu} \omega_{2}=\frac{1}{2}\left(K+i K^{-1}\right) .
\end{align*}
$$

To verify these determinations, substitute in $p^{2}=4 p^{3}-g_{2} p-g_{3}$.

$$
\begin{aligned}
& p(z)=A+\frac{\lambda}{\operatorname{sn}^{2}(\sqrt{\lambda} z, k)}, \quad p^{\prime}(z)=-\frac{2 \lambda^{\frac{3}{2}}}{\sin ^{3}(\sqrt{\lambda} z, k)} \mathrm{cn}(\sqrt{\lambda} z, k) \mathrm{dn}(\sqrt{\lambda} z, k), \\
& 4 \lambda^{3} \frac{\left(1-\operatorname{sn}^{2}\right)\left(1-k^{2} \mathrm{sn}^{2}\right)}{\sin ^{6}}=4\left(A^{3}+\frac{3 A^{2} \lambda}{\mathrm{sn}^{2}}+\frac{3 \lambda^{2}}{\mathrm{sn}^{4}}+\frac{\lambda^{3}}{\mathrm{sn}^{6}}\right)-g_{2} A-\frac{g_{2} \lambda}{\mathrm{sn}^{2}}-g_{3} .
\end{aligned}
$$

Equate coefficients of corresponding powers of sin. Hence the equations

$$
4 A^{3}-y_{2} A-y_{3}=0, \quad 4 \lambda^{2} k^{2}=12 A^{2}-y_{2} \lambda, \quad-\lambda\left(1+k^{2}\right)=3 A .
$$

The first shows that A is a root e. Let $A=e_{2}$. Note $-g_{2}=e_{1} e_{2}+e_{1} e_{3}+e_{2} e_{3}$.

$$
\begin{gathered}
\lambda \cdot \lambda k^{2}=3 e_{2}^{2}+e_{1} e_{2}+e_{1} e_{3}+e_{2} e_{3}=\left(e_{1}-e_{2}\right)\left(e_{3}-e_{2}\right), \\
\lambda+\lambda k^{2}=-3 e_{2}=e_{1}-e_{2}+e_{3}-e_{2},
\end{gathered}
$$

oy virtue of the relation $e_{1}+e_{2}+e_{3}=0$. The solution is immediate as given.
To verify the second deternination, the substitution is similar.

$$
\begin{gathered}
p(z)=A+\mu \frac{1+\mathrm{cn} 2 \sqrt{\mu} z}{1-c n 2 \sqrt{2}^{\prime} z}, \quad p^{\prime}(z)=-\frac{4 \mu^{3} \operatorname{snn} \mathrm{dn}}{(1-\mathrm{cn})^{2}} . \\
{\left[p^{\prime}(z)\right]^{2}=16 \mu^{3} \frac{(1+\mathrm{cn})\left(k^{\prime 2}+k^{2} \mathrm{c} n^{2}\right)}{(1-\mathrm{cn})^{3}}=4 \mu^{3}\left[t^{3}+2\left(1-2 k^{2}\right) t^{2}+t\right]}
\end{gathered}
$$

where $t=(1+\mathrm{cn}) /(1-\mathrm{c} 1)$. The identity $p^{2}=4 p^{3}-g_{2} p-y_{3}$ is therefore

$$
\begin{gathered}
4 \mu^{3}\left[t^{3}+2\left(1-2 h^{2}\right) t^{2}+t\right]=4\left(A^{3}+3 A^{2} \mu t+3 A \mu t^{2}+\mu^{3} t^{3}\right)-y_{2} A-y_{2} \mu t-y_{3} . \\
4 A^{3}-y_{2} A-y_{3}=0, \quad 4 \mu^{2}=12 A^{2}-y_{2} \quad 2 \mu\left(1-2 k^{2}\right)=3 A .
\end{gathered}
$$

Here let $A=\epsilon_{1}$. The solution then appeas at once from the forms

$$
\mu^{2}=3 e_{1}^{2}+\epsilon_{1} e_{2}+\epsilon_{1} e_{3}+e_{2} e_{3}=\left(e_{1}-e_{2}\right)\left(e_{1}-\epsilon_{3}\right) . \quad \mu\left(1-2 k^{2}\right)=3 A / 2 .
$$

The expression of the function l in terms of the functions ahready studied permits the determination of the value of the function, and by inversion permits the solution of the equation $p^{\prime}(*)=r$. The function $p(i)$ may readily be expressed directly in terms of the theta series. In fact the periodic properties of the function and the corresponding properties of the quotients of theta series allow such a representation

to be made from the work of 175 , provided the series be allowed complex values for $\%$. But for practical prowes it is desimble to lave the expression in terms of real quantities only, and this is the reason for a different expression in the two different eases here treated.*

The valnes of a for which $p(z)$ is real may be read off from (23) and (23') or from the correspondence between the u-smface and the $\alpha-p$ pane. They are indicated on the figures. The functions p^{\prime} and p^{\prime} may be used to express parametrically the curve

$$
y^{2}=4 x^{3}-g_{2} x-g_{3} \quad \text { by } \quad y=p^{\prime}(\pi), \quad x=p(\approx)
$$

* It is, however, possible, if desired, to transform the given cubic $+m^{3}-g_{2} \mu^{\prime \prime}-g_{3}$ with two complex rowts into a similar conbie with all three roots real and thes anoill the daplicate forms. The transformation is not given here.

The figures indicate in the two cases the shape of the curves and the range of values of the parameter. As the function l, is of the second order, the equation $p(i)=c$ has just two roots in the parallelogram, and as $p(z)$ is an even function, they will be of the form $z=\mu$ and $\tilde{\sim}=2 \omega_{1}+2 \omega_{2}-a$ and he symmetrically situated with respect to the center of the figure excep,t in case a lies on the sides of the parallelogran so that $2 \omega_{1}+2 \omega_{2}-\mu$ would lie on one of the excluded sides. The salue of the odd function p ' at these two points
 is equal and opposite. This corresponds precisely to the fact that to one value $x=c$ of x there are two equal and opposite values of y on the curve $y^{2}=4 x^{3}-y_{2^{t}}{ }^{2}-y_{3}$. Conversely to each point of the parallelogram corresponds one point of the curve and to points symmetrically situated with respect to the center correspond points of the curve symmetrically situated with resperet to the x-axis. Unless z is such as to make both $p^{(z)}$ and $p^{\prime}(z)$ real, the point on the curve will he imaginary.
193. The curve $y^{2}=4 x^{3}-g_{2} x-g_{3}$ may be studied by means of the properties of doubly periodic functions. For instance

$$
A x+B y+C^{\prime}=A p^{\prime}(z)+B p(z)+C=0
$$

is the condition that the parameter z should be such that its representative point Whalt lie on the line $A x+B y+C=0$. But the function $A p^{\prime}(z)+B p(z)+C$ is donbly periodic with a pole of the third order; the function is therefore of the third order and there are just three puints z_{1}, z_{2}, z_{3} in the parallelogram for which the function ranishes. These values of z eorrespond to the three intersections of the line with the cubic curre. Now the roots of the doubly periodic function satisfy the relation

$$
z_{1}+z_{2}+z_{3}-3 \times 0=2 m_{1} \omega_{1}+2 m_{2} \omega_{2} .
$$

It may be onserved that neither m_{1} nom m_{2} can be as great as 3 . If consersely z_{1}, z_{2}, z_{3} are three values of z which satisty the relation $z_{1}+z_{2}+z_{3}=2 m_{1} \omega_{1}+2 m_{2} \omega_{2}$, the three corresponding points of the cubic will lie on a line. For if z_{3}^{\prime} be the point in which a line through z_{1}, z_{2} cuts the curve,

$$
z_{1}+z_{2}+z_{3}^{\prime}=2 m_{1}^{\prime} \omega_{1}+2 m_{2}^{\prime} \omega_{2} . \quad z_{3}-z_{3}^{\prime}=2\left(m_{1}-m_{1}^{\prime}\right) \omega_{1}+2\left(m_{2}-m_{2}^{\prime}\right) \omega_{2},
$$

and henee z_{3}. z_{3}^{\prime} are identical except f on the aldition of periods and must therefore be the same peint on the parallelogran.

One appleation of this comdition is to find the tangents to the curve from any puint of the eurve. Lete z he the peint from which and z^{\prime} that to which the tangent in drawn. The condition then is $z+2 z^{\prime}=2 m_{1} \omega_{1}+2 m_{2} \omega_{2}$. and hence

$$
z^{\prime}=-\frac{1}{2} z . \quad z^{\prime}=-\frac{1}{2} z+\omega_{1} . \quad z^{\prime}=-\frac{1}{2} z+\omega_{2} . \quad z^{\prime}=-\frac{1}{2} z+\omega_{1}+\omega_{2}
$$

are the font different posibilitios for z^{\prime} (onresponding to $m_{1}=m_{2}=0 ; m_{1}=1$, $m_{2}=0 ; m_{1}=0 . m_{2}=I ; m_{1}=1, m_{2}=1$. To gise other values to m_{1} or m_{2} world
merely reproduce one of the four points except for the addition of complete periods. Hence there are four tangents to the curve from any point of the curve. The question of the reality of these tangents may readily be treated. Suppose z denotes a real point of the curve. If the point lies on the infinite portion, $0<z<2 \omega_{1}$, and the first two points. z^{\prime} will also satisfy the conditions $0<z^{\prime}<2 \omega_{1}$ except for the possible addition of $2 \omega_{1}$. Hence there are always two real tangents to the curve from any point of the infinite branch. In case the roots e_{1}, e_{2}, e_{3} are all real, the last two points z^{\prime} will correspond to real points of the oval portion and all four tangents are real ; in the case of two imaginary roots these values of z^{\prime} give imaginary points of the curve and there are only two real tangents. If the three roots are real and z corresponds to a point of the oval, z is of the form $\omega_{2}+u$ and all four values of z^{\prime} are complex,

$$
-\frac{1}{2} \omega_{2}-\frac{1}{2} u, \quad-\frac{1}{2} \omega_{2}-\frac{1}{2} u+\omega_{1}, \quad+\frac{1}{2} \omega_{2}-\frac{1}{2} u, \quad+\frac{1}{2} \omega_{2}-\frac{1}{2} u+\omega_{1},
$$

and none of the tangents can be real. The discussion is complete.
As an inflection pint is a point at which a line may cut a curve in three coincident points, the condition $3 z=2 m_{1} \omega_{1}+2 m_{2} \omega_{2}$ holds for the parameter z of such points. The possible different combinations for z are nine:

$z=0$	$\frac{2}{3} \omega_{2}$	$\frac{4}{3} \omega_{2}$			
	$\frac{2}{3} \omega_{1}$	$\frac{2}{3} \omega_{1}+\frac{2}{3} \omega_{22}$	$\frac{\frac{2}{3} \omega_{1}+\frac{4}{3} \omega_{2}}{}$	$\frac{1}{3} \omega_{1}$	$\frac{4}{3} \omega_{1}+\frac{2}{3} \omega_{2}$
---:	:---	$\frac{\frac{4}{3} \omega_{1}+\frac{4}{3} \omega_{2} .}{}$			

Of these nine inflections only the three in the first colnmn are real. When any two inflections are given a thiri can be found so that $z_{1}+z_{2}+z_{3}$ is a complete period, and hence the inflections lie three by three on twelre lines.

If p and p^{\prime} be sulnstituted in $A x^{2}+B x y+\left(y^{2}+B x+E y+F\right.$, the result is a doubly periodie function of order 6 with a pole of the 6th order at the origin. The function then has 6 zeros in the parallelogram comected by the relation

$$
z_{1}+z_{2}+z_{3}+z_{4}+z_{5}+z_{6}=2 m_{1} \omega_{1}+2 m_{2} \omega_{2}
$$

and this is the enndition which connects the parameters of the 6 points in which the cubic is cut by the conic $A x^{2}+B x y+C y^{2}+D x+E y+F=0$. One application of interest is to the discmssion of the conics which may be tangent to the cubie at three points z_{1}, z_{2}, z_{3}. The condition then reduces to $z_{1}+z_{2}+z_{3}=m_{1} \omega_{1}+m_{2} \omega_{2}$. If m_{1}, m_{2} are 0 or any even numbers, this condition expresses the fact that the three points lie on a line and is therefore of little interest. The other pussibilities, apart from the aldition of complete periods, are

$$
z_{1}+z_{2}+z_{3}=\omega_{1}, \quad z_{1}+z_{2}+z_{3}=\omega_{2}, \quad z_{1}+z_{2}+z_{3}=\omega_{1}+\omega_{2} .
$$

In any of the thee cases two points may he chosen at random on the culbic and the thirl point is then fixed. Hence there are three conics which are tangent to the cubic at any two assigned points and at some other point. Another application of interest is to the conies which have contact of the Eth order with the cubic. The condition is then $6 z=2 m_{1} \omega_{1}+2 m_{2} \omega_{2}$. $\Lambda s m_{1}, m_{2}$ may have any of the 6 values from 0 to 5 , there are 36 points on the cubic at which a conic may have contact of the zth order. Among these foints, however, are the nine inflections obtained by giving m_{1}. m_{2} even values, and these are of little interest becanse the conic reduces to the inflectional tangent taken twice. There remain 27 points at which a conic may have contact of the 5th order with the cubic.

EXERCISES

1. The function $\zeta(z)$ is defined by the equation

$$
-\zeta^{\prime}(z)=p(z) \quad \text { or } \quad \zeta(z)=-\int p(z) d z=\frac{1}{z}-\frac{1}{3} c_{1} z^{3}+\cdots
$$

Show by Ex. 4, p. 516, that the value of ζ in the two cases is

$$
\begin{aligned}
& \zeta(z)=-e_{1} z+\sqrt{\lambda} E(\phi, k)+\sqrt{\lambda} \frac{\operatorname{cn} \sqrt{\lambda} z \mathrm{dn} \sqrt{\lambda} z}{\operatorname{sn} \sqrt{\lambda} z}, \\
& \zeta(z)=-\left(\mu+e_{1}\right) z+2 \sqrt{\mu} E(\phi . k)+\sqrt{\mu} \frac{\mathrm{cn} \sqrt{\mu} z}{\sin \sqrt{\mu} z \mathrm{dn} \sqrt{\mu} z}\left(2 \mathrm{dn}^{2} \sqrt{\mu} z-1\right),
\end{aligned}
$$

where $\quad \lambda=e_{1}-e_{2}, \quad k^{2}=\left(e_{3}-e_{2}\right) /\left(e_{1}-e_{2}\right) . \quad \phi=\sin ^{-1} \div \sqrt{\lambda} z$.
and $\quad \mu=\sqrt{\left(e_{1}-e_{2}\right)\left(e_{1}-e_{3}\right)}, \quad k^{2}=\frac{1}{2}-3 e_{1} / 4 \mu, \quad \phi=\sin ^{-1}$ sn $\sqrt{\mu} z$.
2. In case the three roots are real show that $p(z)-e_{i}$ is a sumare.
$\sqrt{p(z)-\epsilon_{1}}=\sqrt{\lambda} \frac{\operatorname{cn} \sqrt{\lambda} z}{\operatorname{sn} \sqrt{\bar{\lambda}} z}, \quad \sqrt{p(z)-e_{2}}=\frac{\sqrt{\lambda}}{\operatorname{sn} \sqrt{\lambda} z}, \quad \sqrt{p(z)-\epsilon_{3}}=\sqrt{\bar{\lambda} \frac{\mathrm{m} \sqrt{\lambda} z}{\operatorname{sn} \sqrt{\lambda} z}}$
What happens in case there is only one real root?
3. Let $p\left(z ; g_{2}, y_{3}\right)$ denote the function p corresponding to the radical

$$
\sqrt{4 p^{3}-y_{2} p-y_{3}}
$$

Compute $p\left(\frac{1}{2}: 1.0\right), p\left(\frac{1}{4} ; 0 . \frac{1}{2}\right) . p\left(\frac{3}{4} ; 13.6\right)$. Solve $p(z ; 1,0)=2 . p\left(z ; 0 . \frac{1}{2}\right)=3$, $p(z ; 13$. (i) $=10$.
4. If $f ;$ of the 9 points in which a cubic euts $y^{2}=4 x^{3}-y_{0} x-y_{3}$ are on a conic, the other three are in a straight line.
5. If a conic has contact of the second order with the culbic at two points, the points of contact lie on a line through one of the inflections.
6. How many of the pints at which a conic may have contact of the 5th order with the eubir are real:' Lonate the points at least roughly.
7. If a conic chts the culne in four fixed and two variable points, the line joining the latter two pase through a fixed point of the cubic.
8. (omsider the siace curve $x=\sin t, y=\mathrm{cn} t, z=\ln t$. Show that to each point of the reatange $4 K^{\prime}$ by $4 i K^{\prime}$ corresponds one point of the curre and conversely. Show that the curve is the intersection of the crlinders $x^{2}+y^{2}=1$ and $k^{2} x^{2}+\tau^{2}=1$. Shw that a plane cuts the curve in 4 points and determine the relation between the parameters of the point.
9. How many weculating flanes may be drawn to the curve of Ex. 8 from any * point on it:' At how many mints may a plane have eontact of the 3 l order with the curve and where are the points?
10. In case the ronts are real show that $\zeta(z)$ has the form

$$
\zeta(\approx)=\frac{\eta_{1}}{\omega_{1}} z+\sqrt{\lambda} z_{1}(\sqrt{\lambda} z), \quad \eta_{1}=\sqrt{\lambda} E-\frac{\kappa e_{1}}{\sqrt{\lambda}} .
$$

Hence

$$
\begin{gathered}
\log \sigma(z)=\int \zeta(z) d z=\frac{1}{2} \frac{\eta_{1}}{\omega_{1}} z^{2}+\log H(\sqrt{\lambda} z)+C \\
\sigma(z)=C e^{\frac{1}{2} \frac{\eta_{1}}{\omega_{1}} z^{2}} I I(\sqrt{\lambda} z) .
\end{gathered}
$$

11. By general methots like those of $\$ 190$ prove that
and

$$
\frac{1}{p(z)-p((1)}=-\frac{1}{p^{\prime}(\mu)}[\zeta(z+a)-\zeta(z-(\prime)-2 \zeta(t)],
$$

$$
\int \frac{d z}{p(z)-p(\alpha)}=-\frac{1}{p^{\prime}(\alpha)} \log \frac{\sigma(z+\alpha)}{\sigma(z-\alpha)}+2 \frac{z \zeta(\alpha)}{p^{\prime}(u)} .
$$

12. Let the functions θ be defined by these relations:

$$
\theta(z)=I\left(\frac{K u}{\omega_{1}}\right) . \quad \theta_{1}(z)=I_{1}\left(\frac{K u}{\omega_{1}}\right) . \quad \theta_{2}(z)=\theta\left(\frac{K u}{\omega_{1}}\right), \quad \theta_{3}(z)=\theta_{1}\left(\frac{K u}{\omega_{1}}\right)
$$

with $g_{I}=e^{\frac{\pi t \omega_{2}}{\omega_{1}}}$. Show that the θ-series converge if ω_{1} is real ant ω_{2} is pure imaginary or complex with its imagnary part positive. show more senerally that the series converge it the angle from ω_{1} to ω_{2} is positive and less than 180°.
13. Let $\quad \sigma(z)=e^{\eta_{1}^{\eta_{1}} z_{1}^{2}} \theta(z) \quad \theta^{\prime}(\theta) . \quad \sigma_{\alpha}(z)=e^{\frac{\eta_{1}}{2 \omega_{1}} z^{2}} \frac{\theta_{\alpha}(z)}{\theta_{\alpha}(0)}$.

Prove $\sigma\left(z+2 \omega_{1}\right)=-\epsilon^{2} \eta_{1}\left(z+\omega_{1}\right) \sigma(z)$ and similar relations for $\sigma_{a}(z)$.
14. Let

$$
2 \eta_{2}=\frac{2 \eta_{1} \omega_{2}}{\omega_{1}}-\frac{\pi i}{\omega_{1}}, \quad \text { or } \quad \eta_{1} \omega_{2}-\eta_{2} \omega_{1}=\frac{\pi i}{2} .
$$

Prove $\sigma\left(z+2 \omega_{2}\right)=-\iota^{2} \eta_{2}\left(z+\omega_{2}\right) \sigma(z)$ and similar relations for $\sigma_{\alpha}(z)$.
15. Show that $\sigma(-z)=-\sigma(z)$ and develop $\sigma(z)$ as
$\sigma(z)=z+\left[\frac{\eta_{1}}{2 \omega_{1}}+\frac{1}{i} \theta^{\prime \prime \prime \prime}(0) \theta^{\prime}(1)\right] ~ z^{3}+\cdots=z+0 \cdot z^{3}+\cdots, \quad$ if $\quad \eta_{1}=-\frac{\omega_{1}}{3} \frac{\theta^{\prime \prime \prime}(0)}{\theta^{\prime}(0)}$.
16. With the determination of η_{1} as in Ex. 15 prove that

$$
\frac{d}{d z} \log \sigma(z)=\zeta(z) . \quad-\frac{d^{2}}{d z^{2}} \operatorname{lng} \sigma(z)=-\zeta^{\prime}(z)=p(z)
$$

he showing that $p(z)$ as home defined is doubly perionlic with perious $2 \omega_{1}$, $2 \omega_{2}$, with a pole $1 / z^{2}$ of the secome order at $z=0$ and with no constant term in its development. State why this identifies $p(z)$ with the function of the tuxt.

CHAPTER XX

FUNCTIONS OF REAL VARIABLES

194. Partial differential equations of physics. In the solution of physical problems partial differential equations of higher order, particularly the second, frequently arise. With rery few exceptions these equations are linear, and if they are solved at all, are solved by assuming the solution as a product of functions each of which contains only one of the variables. The determination of such a solution offers only a particular solution of the problem, but the combination of different particular solutions often suftices to give a suitably general solution. For instance

$$
\begin{equation*}
\frac{\hat{c}^{2} V^{r}}{\partial x^{2}}+\frac{\hat{\partial}^{2} V}{\partial y^{2}}=0 \quad \text { or } \quad \frac{\hat{c}^{2} V}{\partial r^{2}}+\frac{1}{r} \frac{\hat{c} V}{\hat{c} 1}+\frac{1}{r^{2}} \frac{\hat{c}^{2} V}{c \phi^{2}}=0 \tag{1}
\end{equation*}
$$

is Laplace's equation in rectangular and polar coördinates. For a solution in rectangular coordinates the assumption $I^{r}=\lambda^{\prime}\left(. r^{\prime}\right) I^{*}(!)$ would he made, and the assumption $V^{\prime}=R(r) \Phi(\phi)$ for a solution in polar coördinates. The equations would then become

$$
\frac{X^{\prime \prime}}{I^{\prime}}+\frac{r^{\prime \prime}}{r^{\prime}}=0 \quad \beta^{\prime} \quad \frac{r^{2} R^{\prime \prime}}{l^{\prime}}+r \frac{l^{\prime}}{l^{\prime}}+\frac{\Phi^{\prime \prime}}{\Phi}=0
$$

Now each equation as written is a sum of functions of a single rariahle. But a fumetion of r camot equal a function of ! and a function of r manot equal a function of ϕ miless the functions are constant and have the same value. Hence

$$
\begin{array}{ll}
\frac{X^{\prime \prime}}{I^{\prime}}=-m^{2}, & \frac{\Phi^{\prime \prime}}{\Phi}=-m^{2} \\
\frac{Y^{\prime \prime \prime}}{Y^{\prime}}=+m^{2}, & \frac{r^{\prime}}{r^{2} R^{\prime \prime}} \tag{2'}\\
R^{\prime} & +\cdot \frac{R^{\prime}}{R^{\prime}}=+m^{2}
\end{array}
$$

These are ordinary erpations of the second order and may be solved as surch. The second ase will be treated in detail.

The solntion comesponding to any value of m is
and

$$
\Phi=\prime_{m} \cos m \phi+l_{m} \sin m \phi, \quad l=1_{m} m^{\prime \prime m}+l_{m} r^{\prime-m}
$$

$$
I^{-}=l_{i} \Phi=\left(1_{m} r^{\prime m}+l_{m 2}^{\prime} r^{\prime-m}\right)\left(\prime_{m}(\cdot 0) m \phi+l_{m} \sin m \phi\right)
$$

or

$$
\begin{equation*}
V=\sum_{m}\left(1_{m} m^{m}+J_{m}^{\prime} r^{-m}\right)\left(\prime_{m} \cos m \phi+l_{m} \sin m \phi\right) \tag{3}
\end{equation*}
$$

That any number of solutions corresponding to different values of m may be added together to give another solution is due to the linereity, of the given equation (s 96). It may be that a single term will suffice as a solution of a given ${ }^{n}$ moblem. But it may be seen in general that: A solution for J^{+}may be found in the form of a Fourier series which shall give I any assigned values on a unit circle and either be convergent for all values within the circle or be convergent for all values outside the circle. In fact let $f^{(}(\phi)$ be the values of V on the unit circle. Expand $f(\phi)$ into its Fourier series

$$
f(\phi)=\frac{1}{2} n_{n}+\sum_{m}\left(n_{m} \cos m \phi+b_{m} \sin m \phi\right)
$$

Then

$$
V=\frac{1}{2} n_{0}+\sum_{m} r^{m}\left(n_{m} \cos m \phi+l_{m} \sin m \phi\right)
$$

will be a solution of the equation which reduces to $f(\phi)$ on the circle and, as it is a power series in r, converges at every boint within the circle. In like mamer a solution convergent ontside the circle is

$$
V=!_{2}^{\prime} n_{0}+\sum_{m} r^{-m}\left(n_{m} \cos m \phi+l_{m} \sin m \phi\right)
$$

The infinite series for I have been called solutions of Laphaces equation. As a matter of fact they have uot heen proved to be solutions. The finit, sum obtained by taking aluy mumer of terms of the series would surely be a solution; but the limit of that sum when the series beeomes infinite is mot thereby provel to be a solution even if the series is convergent. For theoretial purpenes it would be nereseary to sive the prof. but the matter will be passed over here as having a newliwible bearing on the practueal solution of many problems. Fon in pratice the values of $f(\phi)$ on the eircle emild mot he exactly known and could the wefore be alematery represented by a finte and ingeneral not very large number of terms of the development of $f(\phi)$, and these tems would give only a finite series for the desired function ${ }^{5}$.

In some problems it is better to keep the partioular solutions separate, disouss each possible particular solution, and then imagine them compounded physirally. Thus in the motion of a drumhead. the most general solution obtainable is not so instruetive as the particular solution corresponding to partirular notes: and in the motion of the surfare of the ocean it is preferable to discuss individual types of waves and compound them areording to the law of superposition of small ribrations (1. 226). For example if

$$
\frac{1}{c^{2}} \frac{\hat{c}^{2} z}{c t^{2}}=\frac{\hat{c}^{2}: z}{c r^{2}}+\frac{\hat{c}^{2} z}{c y^{2}}, \quad \frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}=\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}, \quad z=X Y T
$$

be taken as the equation of motion of a rectangular drumhead,

$$
I=\left\{\begin{array}{l}
\sin \alpha x, \\
\cos \alpha x,
\end{array} \quad Y=\left\{\begin{array}{l}
\sin \beta x, \\
\cos \beta x,
\end{array} \quad T=\left\{\begin{array}{l}
\sin c \sqrt{x^{2}+\beta^{2}} t \\
\cos c \sqrt{1^{2}+\beta^{2} t}
\end{array}\right.\right.\right.
$$

are particular solutions which may be combined in any way desired As the edges of the drumhead are supposed to be fixed at all times,

$$
\therefore=0 \quad \text { if } \quad x=0, \quad x=n, \quad y=0, \quad y=b, \quad t=\text { anything },
$$

where the dimensions of the head are " by h. Then the solution

$$
\begin{equation*}
z=X Y T=\sin \frac{m \pi \cdot r^{\prime}}{a} \sin \frac{n \pi!!}{l!}(\cdot 0) \cdot \pi \sqrt{\frac{\left(m^{2}\right.}{n^{2}}+\frac{n^{2}}{l^{2}}} t \tag{1}
\end{equation*}
$$

is a possible trpe of vibution satisfying the wiven combitions at the perimeter of the lead for any integral values of m, m. The solution is

 a solution and would menesent a possible moke of motion, but would not le feriodie in t and would represent non note.
195. For there dimensions Laphaters equation lexomes

$$
\begin{equation*}
\frac{\hat{c}}{c \cdot}\left(r^{2} \frac{c I}{c r}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} I^{r}}{c \phi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{c \theta}\left(\sin \theta \frac{\hat{c} I}{c \theta}\right)=0 \tag{5}
\end{equation*}
$$

in polar eoordinates. Substituto $\mathrm{V}=\boldsymbol{R}(\sqrt{\prime}) \Theta(\theta) \Phi(\phi)$: then

$$
\frac{1}{l_{n}} \frac{\prime \prime}{l_{1}}\left(r^{\prime 2} \frac{\prime l}{l /}\right)+\frac{1}{\Theta \sin \theta} \frac{l}{l \theta}\left(\sin \theta \frac{\| \Theta}{/ \theta}\right)+\frac{1}{\Phi \sin ^{2} \theta} \frac{\|^{2} \Phi}{l \phi^{2}}=0 .
$$

Here the first torm involver alone alm mo other term involves r Henee the first term mast be a constant, sily, $n(11+1)$. Then

Next emsider the last trem after multiplying thengh by sin θ. It ap jeans that $\Phi^{-1} \Phi^{\prime \prime}$ is a constant, say. - m^{2}. Hemer

$$
\Phi^{\prime \prime}=-m^{2-2} \phi . \quad \Phi="_{m} \cdot(1) s m \phi+l_{m} \sin m \phi .
$$

Moreover the equation for Θ now reduers to the simple form

The prohlem is now seramated jnten that of the intergation of thee diflemential equations of which the first two are readily integrathe. The

and in case n, m are positive integers the solution may be expressed in terms of polynomials $P_{n, m}(\cos \theta)$ in $\cos \theta$. Any expression

$$
\sum_{n, m}\left(A_{n} r^{m}+b_{n} r^{-n-1}\right)\left(a_{m} \cos m \phi+l_{m} \sin m \phi\right) I_{n, m}(\cos \theta)
$$

is therefore a solution of Laplaces equation, and it may be shown that by combining surla solutions into infinite series, a solution may be obtained which takes on any desired ralues on the unit sphere and converges for all points within or outside.

Of particular simplicity and importance is the case in which I is supposed inclependent of ϕ so that $m=0$ and the equation for Θ is soluble in terms of Legendres polyomials $I_{n}(\operatorname{tros} \theta)$ if n is integral. As the potential I of any distribution of matter attracting acrording to the inverse square of the distance satisfies Laplace's equation at all points exterior to the mass (201), the potential of any mass symmetric with respect to revolution about the polar axis $\theta=0$ may be expressed if its expression for points on the axis is known. For instance, the potential of a mass M distributed along a cirrular wire of radius a is
at a point distant, from the center of the wise along a perpendicular to the plane of the wire. The two series
we then precisely of the form $\Sigma 1_{n^{\prime}},^{n} I_{n}, \mathbf{\Sigma} \cdot I_{n} r^{-n-1} l_{n}$ arlmissible for solutions of Laplace's equation and reednee to the known value of I along the axis $\theta=0$ since $r_{n}^{\prime}(1)=1$. They give the values of I^{\prime} at all pints of space.

To this point the method of combining solutions of the given differratial equations was to add them inter a finite or infinite series. It is also possible to combine them he integration and to obtaln a solution as a refinite integral instead of as an infinite series. It should be noted in this case, too, that a limit of a sum has replaced a sum and that it would theoretically be necessary to demonstrate that the limit of the smm was really a solution of the given equation. It will he suftherent at this pront to illnstrate the mothon withont any rigorous attempe to
justify it. Cowsider (2) in reetangular coördinates. The solutions for X, Y are
$\frac{X^{\prime \prime}}{X}=-m^{2}, \frac{Y^{\prime \prime}}{Y}=m^{2}, \quad X=a_{m} \cos m x+b_{m} \sin m x, \quad Y=A_{m} c^{m y}+b_{m} v^{-m y}$, where Y may be expressed in terms of hyperbolic functions. Now

$$
\begin{align*}
V & =\int_{m_{0}}^{m_{1}} e^{-m y}["(m) \cos m x+b(m) \sin m x] d m \tag{6}\\
& =\lim \sum_{n} n^{n-m_{i}}\left[{ }^{\prime \prime}\left(m_{i}\right) \cos m_{i} x+l\left(m_{i}\right) \sin m_{i} x\right] \Delta m_{i}
\end{align*}
$$

is the limit of a sum of terms each of which is a solution of the given equation; for " $\left(m_{i}\right)$ and $b\left(m_{i}\right)$ are constants for any given value $m=m_{i}$, n matter what functions $a(m)$ and $b(m)$ are of m. It may be assmmed that V is at solution of the given equation. Another solution could be found by replacing $e^{-m y}$ ly $e^{m y}$.

It is sometimes possible to determine "(m), $b(m)$ so that l^{\prime} shall reduce to assigned values on certain lines. In fart (p. 466)

$$
\begin{equation*}
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{+\infty} f(\lambda) \cos m(\lambda-x) d \lambda d m . \tag{7}
\end{equation*}
$$

Hence if the limits for m be 0 and ∞ and if the choice

$$
u(m)=\frac{1}{\pi} \int_{-\infty}^{+\infty} f^{\prime}(\lambda) \cos m \lambda d \lambda, \quad b(m)=\frac{1}{\pi} \int_{-\infty}^{+\infty} f(\lambda) \sin m \lambda d \lambda
$$

is taken for $"(m), l(m)$, the expression (6) for I becomes

$$
\begin{equation*}
V=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{+\infty} e^{-m y} f(\lambda) \cos m(\lambda-r) d \lambda d m \tag{8}
\end{equation*}
$$

and reduces to $f(x)$ when $!=0$. Hence a sohtion V^{\prime} is found which takes on any assigned values, $f^{\prime}(x)$ along the x-axis. This solution clearly becomes zero when y hecomes infinite. When $f^{\prime}(\cdot r)$ is given it is sometimes possible to perform one or more of the integrations and thes simplify the expression for V.

For instance if

$$
f(x)=1 \text { when } x>0 \text { and } f(x)=0 \text { when } x<0,
$$

the integral from - ∞ to 0 drops ont and

$$
\begin{aligned}
& V^{\gamma}=\frac{1}{\pi} \int_{0}^{x} \int_{0}^{\infty} e^{-m y} \cdot 1 \cdot \cos m(\lambda-x) d \lambda d m=\frac{1}{\pi} \int_{0}^{x} \int_{0}^{x} e^{-m y} \cos m(\lambda-x) d m d \lambda \\
& =\frac{1}{\pi} \int_{0}^{x} \frac{y / \lambda \lambda}{y^{2}+(\lambda-s)^{2}}=\frac{1}{\pi}\left(\begin{array}{c}
\pi \\
2
\end{array}+\tan 1^{-1} \frac{r}{y}\right)=1-\frac{1}{\pi} \tan ^{-1} \frac{y}{x} .
\end{aligned}
$$

It may readily be shown that when $y>0$ the reversal of the order of integration is permissible; but as T^{-}is determined completely, it is simpler to substitute the value as found in the equation and see that $V_{x x}^{\prime \prime \prime}+V_{m y}^{\prime \prime \prime}=0$, and to check the fact that V reduces to $f(x)$ when $y=0$. It may perhaps be superfluous to state that the proved correctness of an answer does not show the justification of the steps by which that answer is found ; but on the other hand as those steps were taken solely to obtain the answer, there is no practical need of justifying them if the answer is clearly right.

EXERCISES

1. Find the indicated particular solutions of these equations:
(a) $c^{2} \frac{\hat{} T^{r}}{\hat{c t}}=\frac{\hat{c}^{2} J^{r}}{\hat{c} x^{2}}, \quad T=\sum \Lambda_{m} c^{-m^{2} t}\left(a_{m} \cos c m x+b_{m} \sin c m x\right)$,
(β) $\frac{1}{c^{2}} \frac{\hat{c}^{2} V^{r}}{\partial t^{2}}=\frac{\hat{c}^{2} V^{r}}{\hat{c} x^{2}}, \quad T^{r}=\sum\left(\Lambda_{m} \operatorname{ens} c m t+\beta_{m} \sin c m t\right)\left(a_{m} \cos m x+b_{m} \sin m x\right)$,
$(\gamma) c^{2} \frac{\partial V^{\gamma}}{\hat{c} t}=\frac{\hat{c}^{2} V^{\gamma}}{\hat{c} t^{2}}+\frac{\hat{c}^{2} V^{\gamma}}{\hat{c} y^{2}}, \quad T=\left\{\begin{array}{l}\sin c \alpha x \\ \cos c \alpha x,\end{array} \quad Y^{+}=\left\{\begin{array}{l}\sin c \beta y \\ \cos c \beta y,\end{array} \quad T=e^{-\left(\alpha^{2}+\beta^{2}\right) t}\right.\right.$.
2. Determine the solntions of Laplace's eqnation in the plane that have $V=1$ for $0<\phi<\pi$ and $V^{*}=-1$ for $\pi<\phi<2 \pi$ on a unit circle.
3. If $V^{r}=|\pi-\phi|$ on the unit circle, find the expansion for V.
4. Show that $\Gamma=\Sigma a_{m} \sin m \pi x / l \cdot \cos \operatorname{con} \pi t / l$ is the solntion of $\mathrm{Ex} .1(\beta)$ which vanishes at $x=0$ and $x=l$. Determine the coefficients α_{m} so that for $t=0$ the value of 1 shall be an assigned function $f(x)$. This is the problem of the violin string started from any assigned configuration.
5. If the string of Ex. 4 is started with any assigned velocity $\hat{C} J^{+} / \hat{c} t=f(x)$ when $t=0$, show that the solntion is $\Sigma \alpha_{m} \sin m \pi x / l \cdot \sin c m \pi t / l$ and make the proper determination of the constants a_{m}.
6. If the drumhead is started with the shape $z=f(r, y)$, show that

$$
\begin{aligned}
z & =\sum_{m, n} A_{m, n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \cos c \pi t \sqrt{\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}}, \\
A_{m, n} & =\frac{t}{a b} \int_{0}^{a} \int_{0}^{b} f(x, y) \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} d y d x .
\end{aligned}
$$

7. In hydrodynamics it is shown that $\frac{\hat{c}^{2} y}{\hat{c} t^{2}}=\frac{g}{b} \frac{\hat{c}}{\hat{c} x}\left(h b \frac{\hat{c} y}{\partial x}\right)$ is the differential equation for the surface of the sea in an estuary or on a beach of breadth b and depth h measured perpendicularly to the x-axis which is supposed to run seaward. Find
$(\alpha) y=A J_{0}(k x) \cos n t, \quad k^{2}=n^{2} / y h$,
$(\beta) y=A J_{0}(2 \sqrt{k \cdot r}) \cos n t, \quad k=n^{2} / g m$, as partienlar solutions of the equation when (α) the depth is miform but the breadth is proportional to the distance out to sea, and when (β) the breadth is umiform lat the depth is m.r. Discuss the shape of the waves that may thus stand on the surface of the estuary or beach.
8. If a series of parallel waves on an ocean of eonstant depth h is cut perpendicularly by the $x y$-plane with the axes horizontal and vertical so that $y=-h$ is the ocean bed, the equations for the velocity potential ϕ are known to be

$$
\frac{\hat{c}^{2} \phi}{\hat{c} x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0, \quad\left[\frac{\hat{c} \phi}{\hat{c} y}\right]_{y=-h}=0, \quad\left[\frac{\hat{\partial}^{2} \phi}{\hat{c} t^{2}}+!\frac{\hat{c} \phi}{\hat{c} y}\right]_{y=0}=0 .
$$

Find and combine particular solutions to show that ϕ may have the form

$$
\phi=A \cosh k(y+h) \cos (k x-n t), \quad n^{2}=\{k \tanh k h .
$$

9. Obtain the solutions or types of solutions for these equations.
($\alpha) \frac{\hat{c}^{2} \jmath^{r}}{\partial z^{2}}+\frac{\hat{c}^{2} \gamma^{2}}{\hat{c} r^{2}}+\frac{1}{r} \frac{\hat{\partial} J^{r}}{\hat{c} r}+\frac{1}{r^{2}} \frac{\hat{c}^{2} V^{r}}{\partial \phi^{2}}=0, \quad$ Ins. $c \pm k \approx\left\{\begin{array}{l}\cos m \phi \\ \sin m \phi\end{array}\right\} . I_{m}(k r)$,
$(\beta) \frac{\hat{\partial}^{2} V^{r}}{\hat{\partial} r^{2}}+\frac{1}{r} \frac{\hat{\partial} J^{r}}{\hat{\partial} r}+\frac{1}{r^{2}} \frac{\hat{\imath}^{2} J^{r}}{\hat{c} \phi^{2}}+T^{r}=0, \quad \quad$ Ins. $\sum\left(a_{m} \cos m \phi+b_{m} \sin m \phi\right) J_{m}(r)$,
($\gamma) \frac{\hat{c}^{2} T^{\gamma}}{\hat{c} x^{2}}+\frac{\hat{\lambda}^{2} T}{\partial y^{2}}+\frac{\partial^{2} T^{\gamma}}{\partial z^{2}}+T=0$,
Ans. $r^{-\frac{1}{2}} J_{m+\frac{1}{2}}(r) I_{n, m}(\cos \theta) \times$ $\left(t_{n, m} \cos m \phi+b_{n, m} \sin m \phi\right)$,
(δ) $\frac{\hat{\imath}^{2} J^{\gamma}}{\hat{\imath} t^{2}}+2 \frac{\hat{} T^{T}}{\hat{\imath} t}=\frac{\hat{c}^{2} V^{\top}}{\hat{\partial} x^{2}}$,
(ϵ) $\frac{1}{c^{2}} \frac{\hat{c}^{2} V^{\top}}{\hat{c} t^{2}}=\frac{\hat{i}^{2} V^{\top}}{\hat{c} x^{2}}+\frac{\hat{c}^{2} V^{\top}}{\hat{\partial} y^{2}}+\frac{\hat{c}^{2} V^{\gamma}}{\hat{\partial} z^{2}}$.
10. Find the potential of a homogencous circular disk as (Ex. 22, p. 68 ; Ex. 23, p. 332)

$$
\begin{aligned}
V^{\top} & =\frac{2 M}{a}\left[\frac{1}{2} \frac{a}{r}-\frac{1 \cdot 1}{2 \cdot 4} \frac{a^{3}}{r^{3}} P_{2}+\frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} \frac{a^{5}}{r^{5}} P_{4}-\frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} \frac{a^{7}}{r^{7}} P_{6}+\cdots\right], \quad r>a \\
& =\frac{2 M}{a}\left[1 \mp \frac{r}{a} P_{1}+\frac{1}{2} \frac{r^{2}}{u^{2}} P_{2}-\frac{1 \cdot 1}{2 \cdot 4} \frac{r^{4}}{a^{4}} P_{4}+\frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} \frac{r^{6}}{a^{6}} P_{6}-\cdots\right], \quad r<a
\end{aligned}
$$

where the negative sign before P_{1} holds for $\theta<\frac{1}{2} \pi$ and the positive for $\theta>\frac{1}{2} \pi$.
11. Find the potential of a homogenenus hemispherical shell.
12. Find the potential of (α) a homogeneons hemisphere at all points outside the hemisplere, and (β) a homogeneons cirenlar eylinler at all extermal points.
13. Asstime $\frac{Q}{2 a} \cos -1 \frac{x^{2}-a^{2}}{x^{2}+a^{2}}$ is the potential at a point of the axis of a conducting disk of ralius a charged with Q mitsof electricity. Find the potential anywhere.
196. Harmonic functions; general theorems. A function which
 in the plane on in space, is called a lumponic fimetion. It is assumed that the first and seeond partial derivatives of a hamomide function are rontinums exopht at seerified points called singular points. There are many similarities betweren harmonice funetions in the plane and harmonic functions in spare, and some differences. The fundamental theorem is that: If " function is hormonic "nell hus mus sim!!"tritios "fmen

partial derinatives and the line integral (or surfure integral) along ever!s closed curee (or surface) in a region vanishes, the fiemition is harmonic. For by Green's Formula, in the respective cases of plane and space (Ex. 10, p. 349),

$$
\begin{align*}
& \int_{0} \frac{d V}{d n} d s=\int_{0} \frac{\partial V^{r}}{\partial x} d y-\frac{\partial V^{\prime}}{\partial y} d x=\iint\left(\frac{\hat{c}^{2} V^{*}}{c x^{2}}+\frac{\hat{c}^{2} l^{-}}{c y^{2}}\right) d x d y \\
& \int_{0} \frac{d J^{\top}}{d n} d S=\int_{0} d \mathbf{S} \cdot \Gamma V=\iiint \Gamma \cdot \Gamma V^{-} d \cdot d y d \tilde{\sim} . \tag{9}
\end{align*}
$$

Now if the function is harmonic, the right-hand side vanishes and so must the left; and conversely if the left-hand side vanishes for all closed curves (or surfaces), the right-hand side must vanish for every region, and hence the integrand must vanish.

If in particular the curve or surface be taken as a circle or sphere of radius " and polar coördinates be taken at the center, the normal derivative becomes $\partial \mathrm{I}^{\circ} / \hat{\partial}$ and the result is

$$
\int_{0}^{2 \pi} \frac{\partial I^{r}}{\partial r} d \phi=0 \quad \text { or } \quad \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\partial r^{r}}{c_{r}} \sin \theta d \theta d \phi=0
$$

where the constant " or "2 has been discarded from the element of arr ald or the cloment of surfare $a^{2} \sin \theta_{i} l \theta_{i} \phi$. If these equations be inte-grated with respect to r from 0 to $"$, the integrals may be evaluated by reversing the order of integration. Thas
and

$$
\begin{equation*}
\int_{0}^{2 \pi} r_{a} d \phi=r_{0} \int_{0}^{2 \pi} d \phi, \quad \text { or } \quad F_{a}=r_{0} \tag{10}
\end{equation*}
$$

Where V_{a} is the value of 1° on the circle of radius $"$ and r_{0} is the value at the center and F_{a} is the average value along the perimeter of the "incle. Similar analysis would hold in spalere. The result states the important theorem: The arevaye rahere of "harmone function orev a vircle (one splarere) is equal to the ralue at the centere.

This theorem has immediate corollaries of importanee. A hormonic
 mum "15 minimum "t "ne! puint within the reegion. For if the function were a maximm at any point, that proint could be surroumbed by a circle or sphere so small that the value of the function at every point of the contomr would be less than at the assmmed maximum and hence the average value on the contour could not be the value at the eenter.

A lurmonic fanction which lus no singulurities uithin a region amd is constant on the boundary is constrant throughant the region. For the maximun and minimum values menst be on the boundary, and if these have the same value, the function must have that same value throughout the inchaded region. Turo hurmonic functions whirle lurre illentical ralues upon a closed contour und have no singularitirs within, are irlentiral throughout the included region. For their difference is harmonis and has the eonstant value 0 on the boundary and hence throughout the region. These theorems are equally true if the region is allowed to grow matil it is infinite, provided the values whirll the function takes on at infinity are taken into consideration. Thas, if two harmonic functions have no singularities in a certain infinite region, take on the same values at all points of the boundary of the regiom, and approach the same values as the point (r, y) or (r, y, z) in any manner recedes indefinitely in the region, the two functions are identical.

If Green's Formula be applied to a product $C^{\prime} l \mathrm{l} / \mathrm{dn}$, then

$$
\begin{align*}
& \int_{0} L \cdot \frac{d V}{d n} d s=\int_{0} r \cdot \frac{d V^{r}}{d s^{2}} d y-1 \cdot \frac{d V}{d y} d x \\
& =\iint I^{\prime}\left(I_{x, x}^{\prime \prime}+I_{y, n}^{\prime \prime \prime}\right) d d_{x} \cdot l_{y}+\iint\left(I_{x}^{\prime} I_{x}^{\prime \prime}+\left.I_{y}^{\prime \prime}\right|_{y} ^{\prime \prime}\right) d \cdot r l y, \tag{11}
\end{align*}
$$

in the plane or in space. In this relation let I he harmonic without singularities within and upon the contour, and let $I^{\circ}=V^{\circ}$. The first integrad on the right ranishes and the second is neressarily positive maless the relations $I_{x}^{\prime \prime}=I_{!}^{\prime \prime}=0$ or $l_{x}^{\prime \prime}=I_{y}^{\prime \prime}=I_{z}^{\prime \prime}=0$, which is equivalent to $\Gamma \mathrm{I}=0$, are fulfilled at all points of the indeluded region. Supposic further that the normal derivative $d \mathrm{~F} / \mathrm{d} n$ is zero over the entire bountary. The integral on the left will then vanish and that on the right must vanish. Wence l^{1} eontains none of the variahles and is romstant.

 "pen the contone, the fiemetion is ronstrut. As a corollary: If two functions are hamonie and devoid of singularities upon and within a given contome and if them normal derivatives are identioally erpal upon the contome, the funetions differ at most by an additive constant. In other words, a lur'monir finmetion without singulnsitios not om? is

Laplace's equation arises directly upon the statement of some problems in physics in mathematical form. In the first place consider the flow of heat or of electricity in a conducting body. The physical law is that heat flows along the direction of most rapid decrease of temperature T, and that the amount of the flow is proportional to the rate of decrease. As $-\nabla T$ gives the direction and magnitude of the most rapid decrease of temperature, the flow of heat may be represented by - $k r T$, where k is a constant. The rate of flow in any direction is the component of this vector in that direction. The rate of flow across any boundary is therefore the integral along the boundary of the normal derivative of T. Now the flow is said to be steady if there is no increase or decrease of heat within any closed bomblary, that is

$$
k \int_{0} d \mathbf{S} \cdot \nabla T=0 \quad \text { or } \quad T \text { is harmonic. }
$$

Hence the problem of the distribution of the temperature in a body supporting a steady flow of heat is the problem of integrating Laplace's equation. In like manner, the laws of the flow of electricity being identical with those for the flow of heat except that the potential Ir replaces the temperature T, the problem of the distribution of putential in a body supporting a steady flow of electricity will also be that of solving Laplace's equation.

Another problem which gives rise to Laplaces equation is that of the irrotational motion of an incompressible fluid. If v is the velocity of the fluad, the motion is called irrotational when $\Gamma \times v=0$, that is, when the line integral of the velocity about any closed curve is zero. In this case the negative of the line integral from a fixed limit to a variable limit defines a function $\Phi(x . y, z)$ called the velocity potential, and the velocity may be expressed as $v=-\Gamma \Phi$. Is the fluid is inconpressible, the flow across any chosed boundary is necessarily zero. Ilence

$$
\int_{0} d \mathbf{S} \cdot \Gamma \Phi=0 \quad \text {, } \quad \int \Gamma \cdot \Gamma \Phi k=0 \quad \text { w } \quad \Gamma \cdot \Gamma \Phi=0 \text {. }
$$

and the relocity potential Φ is a larmonic function. Buth these problems may be stated without vector notation ly carrying out the ideas involved with the aid of ordinary coürdinates. The froblems may also be solved for the plane instead of for slace in a precisely analogons manner.
197. The conception of the flow of electricity will he adrantagrous in discussing the singularities of harmonic functions and a more general conception of steady How. Suppose an electrode is set down on a sheet of zine of which the perimeter is grounded. The equipotential lines and the lines of How which are orthogonal to them may be sketched in. Electricity passes steadily from the electrode to the rim of the sheet and off to the ground. Across any rireuit which does not surround the electrode the
 flow of electricity is zero as the flow is steady, hut across any cirenit surrounding the electrode there will be a rertain definite flow ; the rircuit integral of the normal derivative of the potential I' around surh
a circuit is not zero. This may he compared with the fact that the circuit integral of a function of a complex variable is not necessarily zero about a singularity, although it is zero if the circuit contains no singularity. Or the electrode may not be considered as corresponding to a singularity but to a prortion cut out from the sheet so that the sheet is no longer simply romnected, and the comparison would then be with a circuit which could not be shrunk to nothing. Concerning this latter interpretation little need be said; the facts are readily seen. It is the former conception which is interesting.

For mathematical purposes the electrode will be idealized by assuming its diameter to shrink down to a point. It is physially clear that the smaller the clectrode, the higher must loe the potential at the electrode to force a given How of electricity into the phate. Indeed it may be seen that I^{\prime} must become infinite as $-1 \cdot \log r$, where i is the distance from the point electrode. For note in the first place that $\log r$ is a solution of Laplare's equation in the plane: and let $r^{\prime}=r^{\circ}+r^{\prime} \cdot \log r$ or $r^{\prime}=U^{r}-C^{\prime} \log r$, where l^{\prime} is a hamonice function which remains finite at the electrode. The flow across any small circle concentric with the electrode is
and is finite. The constant ' is called the strength of the source situated at the point electrode. A similar discussion for space would show that the potential in the neightorhool of a source would herome infinite as ($/ r$. The particular solutions $-\log$ a r and 1 , r of Laplane's erpuation in the respective cases may be called the fimblimerntul swlutions.

The physical analogy will also suggest at methot of obtaining higher singularities by combining fundamental singularities. For suppose that a powerful positive clectrode is plated near an equally powerful nexathe eledtome. that is. suppose a stomg source and a strong sink near thgether. The ir erater pat of the How will be nearly in a straight line from the somree to the sink. but some part of it will sprear out over the sheet. The value of I obtained hy adding together the twor vilues for source and sink is

$$
\begin{aligned}
& V^{2}=-\frac{1}{2}\left(\log \left(r^{2}+l^{2}-2 m \cos \phi\right)+\frac{1}{2}\left(\operatorname{los}\left(r^{2}+l^{2}+2 r l \cos \phi\right)\right.\right. \\
& =-\frac{1}{2}\left(\log \left(1-\frac{2}{2} l \cos \phi+\frac{l^{2}}{r^{2}}\right)+\frac{1}{2} \operatorname{con}\left(1+\frac{2}{r} l \cos \phi+\frac{l^{2}}{r^{2}}\right)\right. \\
& =\frac{2 r^{\prime}}{r} \cos \phi+\text { himber powers }=\frac{M}{r} \cdot \cos \phi+\cdots .
\end{aligned}
$$

It was seen that a harmonic function which had no singularities on or within a given contour was determined by its values on the contour and determined except for an additive constant by the values of its normal derivative upon the contomr. If now there be actually within the contour certain singularities at which the function becomes infinite as certain particular solutions $\mathrm{I}_{1}, \Gamma_{2}, \cdots$, the function $\Gamma^{-}=V^{r}-V_{1}-\Gamma_{2}-\cdots$ is harmonic without singularities and may be determined as before. Moreover, the values of V_{1}, I_{2}, \cdots or their normal derivatives may be considered as known upon the contour inasmuch as these are definite particular solutions. Hence it appears, as before that the lormonic function V is deter-
 (anstunt) by the ralues of its normal dericative on the houndmiy, procided the singularities "re specitied in pusition and the ir moule of loecom ing intin-

Consider again the ronducting sheet with its perimeter grounded and with a single electrole of strength unity at some interior point of the sheret. The potential thus set up has the properties that: 1° the potential is zero along the perimeter berause the perimeter is grounded; "2 at the position P ' of the electrode the potential beromes infinite as $-\log r$; and 3° at any other $\}$ oint of the sheet the potential is regular and satisfies Laplaces equation. This particular distribution of potential is denoted byy $\boldsymbol{C l}_{(}(P)$ and is called the Green Function of the sheet relative to l^{\prime}. In space the (ireen Function of a region would still satisfy 1° and 3°. hut in 2° the fundamental solution - $\log n^{\prime}$ would hase to bereplaced ly the corresponding fundamental solution $1 / r$. It should be noted that the Green Function is really a function

$$
G_{i}\left(I^{\prime}\right)=\left(i(\prime, l, r, y) \quad \text { or } \quad G\left(I^{\prime}\right)=r_{i}(\prime \prime, l, r ; x,!l, z)\right.
$$

of four or six variahles if the position $P^{\prime}(\prime, l)$ or $I^{\prime}\left({ }^{\prime \prime}, \vec{\prime},{ }^{\prime \prime}\right)$ of the electrode is considered as variable. The function is considered as known only when it is known for any position of I '.

If now the symmetrical form of Grem's Formula

$$
\begin{equation*}
-\iint(n \Delta \cdot-r \Delta u) d \cdot r d y+\int_{0}\left(u \frac{d r}{d n}-r \cdot \frac{d n}{d n}\right) d s=0 \tag{12}
\end{equation*}
$$

where $د$ denotes the sum of the second derivatives, be applied to the entire sheet with the exception of a small circle concentric: with I' and if the choice $\prime=r^{\prime}$ and $\cdot=I^{-}$be made, then as C_{r} and I^{\prime} are hamonice the double integral drops out and

$$
\begin{equation*}
\int_{C}-1^{-} \frac{d d_{i}}{d n} d s-\int_{0}^{2 \pi} G_{i} \frac{d V^{*}}{d_{i}} d^{\prime} d \phi+\int_{0}^{2 \pi} \mathrm{~V}^{2} \frac{d C_{i}}{d_{i}} m^{2} l \phi=0 . \tag{13}
\end{equation*}
$$

Now let the radius r of the small circle approach 0 . Under the assumption that V^{\prime} is devoid of singularities and that G becomes infinite as $-\log r$, the middle integral approaches 0 because its integrand does, and the final integral approaches $2 \pi I^{\prime}(P)$. Hence

$$
V^{\prime}(P)=\frac{-1}{2 \pi} \int_{0} V \frac{d r}{d n} d s
$$

This formula expresses the values of I at any interior point of the sheet in terms of the values of I^{\prime} upon the contour and of the normal derivative of G along the contour. It appears, therefore, that the determination "f the ralue of " hurmomic fanction deroid of singularities within and upion a contour ma!y be made in terms of the relues on the contour prorided the Gireen Function of the region is linnom. Hence the particular importance of the problem of determining the Green Function for a given region. This theorem is analogous to Cauchy's Integral (\$ 126).

EXERCISES

1. Show that any linear function $a x+b y+c z+d=0$ is harmonic. Find the conditions that a quadratic function be hamonic.
2. Show that the real and imaginary parts of any function of a complex variable are each hamonic functions of (x, y).
3. Why is the sum or difference of any two harmonic functions multiplied by any constants itself harmonic? Is the power of a larmonic function harmonic ?'
4. Show that the product L'V of two harmonic functions is harmonic when and mly when $C_{x}^{\prime} l_{x}^{\prime \prime}+C_{y}^{\prime} 1_{y}^{\prime \prime}=0 \ldots \Gamma C^{\circ} \cdot \Gamma I^{\top}=0$. In this case the two functions wre ealled congurate or orthogmal. What is the significance of this condition geometrically :'
5. Prove the averate value theorem for space as for the plane.
6. Shw for the phane that if I^{\prime} is hamonic, then

$$
L^{r}=\int \frac{d J^{r}}{d x} d s=\int \frac{\hat{i} V^{r}}{\hat{c}, r^{\prime}} d y-\frac{\hat{c} V^{r}}{\hat{c}!} d x
$$

is indeqentent of the path and is the comjugate or orthogomal function to I , and that l^{\prime} is devoid of singularities over any reqion ower which V^{\prime} is devoid of them. Show that, $V^{2}+i l^{+}$is a function of $z=r+i y$.
7. State the problems of the steady flow of heat or eleetricity in terms of ordinary coordinates for the eave of the plane.
8. Disuns fur space the problem of the source, showing that ('/r gives a finite flow $4 \pi($. where (is callect the strength of the source. Note the presence of the factor 4π in the phace of 2π as foum in two dimensions.
9. Derive the solution $M r^{-2} \cos \phi$ for the source-sink combination in space.
10. Discuss the problem of the small magnet or the electric donblet in view of Ex.9. Note that as the attraction is inversely as the square of the distance, the potential of the force satisfies Laplace's equation in space.
11. Let equal infinite sources and sinks be located alternately at the vertices of an infinitesimal square. Find the corresponding particular solution (α) in the case of the plane, and (β) in the case of space. What combination of magnets does this represent if the point of view of Ex. 10 be taken, and for what purpose is the combination used?
12. Express $\mathrm{I}^{\prime}(P)$ in terms of $G(P)$ and the boundary values of I^{\prime} in space.
13. If an analytic function has no singularities within or on a contour. Cauchy"s Integral gives the value at any interior point. If there are within the contour certain poles, what must be known in addition th the bombary values to determine the function? Compare with the analogous theorem for harmonic functions.
14. Why were the solutions in $\$ 194$ as series the only possible solutions provided they were really solutions? Is there ans dithonlty in making the same inference relative to the problem of the potential of a circular wire in
15. Let $G(P)$ and $G(Q)$ be the Green Functions for the same sleet but relative to two different pints I^{\prime} and (2. Apply Greens smmetric theorem to the sheet from which two small cireles about I^{\prime} and $(Q$ have been remowed, making the choice $u=G(P)$ and $v=G(Q)$. Hence show that $\left(G^{\prime}\left(I^{\prime}\right)\right.$ at $\left(?\right.$ is elpual to $f^{\prime}(\ell)$ at P^{\prime}. This may be written as

$$
G(a, b ; x, y)=G(x, y ; a, b) \quad \text { or } \quad(\dot{r}(a, b, c ; x, y, z)=(f(x, y, z ; u, b, c) \text {. }
$$

16. Test these functions for the harmonic property, detemine the conjugate functions and the allied functions of a complex variable:
(cr) $x y$,
(β) $x^{2} y-\frac{1}{3} y^{3}$,
($\gamma) \frac{1}{2} \log \left(x^{2}+y^{2}\right)$,
(δ) $e^{r} \sin x$,
(ϵ) $\sin x \cosh y$.
(s) $\tan ^{-1}(\cot x \tanh y)$.
17. Harmonic functions; special theorems. For the purposes of the next paragraphs it is neeessary to study the properties of the geometric transformation known as incersion. The detinition of inversion will be given so as to be applicable either to space or to the plane. The transformation which replaces earh point P hy a point I^{\prime} surh that $\left(1 P^{\prime} \cdot \sigma P^{\prime}=l^{-2}\right.$ where 1 is a given fixerl point, l a constant, and P^{\prime} is wn the line or', iss called ineresion urithe the rentro a and the wertius li. Note that if l^{\prime} is thns carried into P^{\prime}, then P^{\prime} will be carried into l^{\prime}; and hence if any geometrical configuration is carried into another, that other will be carried into the first. Points very near to a are carried off to a great distance: for the point " itself the definition breaks down and $1 /$ corresponds to no point of space. If desired, one may add to space a fictitions point called the point at infinity and may then say that the center " of the incersion corresponds to the point at infinity (p. 481). A pair of points P^{\prime}, P^{\prime} which go over into ead other, and another pair Q, Q^{\prime} satisfy the equation $O P \cdot O P^{\prime}=v\left(Q \cdot{ }^{\prime}\left(l^{\prime}\right.\right.$.

A curve which cuts the line (op) at an angle τ is carried into a curve which cuts the line at the angle $\tau^{\prime}=\pi-\tau$. For by the relation $O P^{\prime} \cdot O P^{\prime}=O Q \cdot O Q^{\prime}$, the triangles $O P Q$, $O Q^{\prime} P^{\prime}$ are similar and

$$
\angle O P Q=\angle O Q^{\prime} P^{\prime}=\pi-\angle O-\angle O P^{\prime} Q^{\prime} .
$$

Now if $Q \doteq P^{\prime}$ and $Q^{\prime} \doteq P^{\prime}$, then $\angle O \doteq 0, \angle O P^{\prime} Q \doteq \tau, \angle O P^{\prime} Q^{\prime} \doteq \tau$ and it is seen that $\tau=\pi-\tau^{\prime}$ or $\tau^{\prime}=\pi-\tau$. An immediate extension of the argument will show that the magnitude of the angle betwern two intersecting curves will be unchanged by the transformation; the transformation is therefore conformal. (In
 the plane where it is possible to distinguish between positive and negative angles, the sign of the angle is reversed by the transformation.)

If polar coordinates relative to the point o be introduced, the equations of the transformation are simply $r^{\prime}=k^{2}$ with the understanding that the angle ϕ in the plane or the angles ϕ, θ in space are unchanged. The locus $r=k$, which is a circle in the phane or a sphere in space, becomes $r^{\prime}=l$: and is therefore unchanged. This is called the circle or the sphere of inversion. Relative to this locus a simple construction for a pair of inverse points l 'and P^{\prime} may be made as indicated in the figure. The locus

$$
r^{2}+k^{2}=2 \sqrt{u^{2}+k^{2} r} \cdot \cos \phi \text { becomes } l^{2}+r^{2}=2 \sqrt{u^{2}+k i^{2} r^{\prime}} \cos \phi
$$

and is therefore unclianged as a whole. This locus represents a circle or a sphere of radins "orthogonal to the circle or sphere of inversion. A construction may now the made for finding an inversion which carries a given circle into itself and the center l ' of the circle into any assigned point P^{\prime} of the circle; the construction holds for space ley revolving the figure alont the line en'.

To timb what figure a line in the phate or a plane in spare beeomes on inversion. let the polar axis $\phi=0$ or $\theta=0$ be taken perpendicular to the line on plane as the case may lue. Then

$$
r=l^{\prime} \sec \phi . \quad r^{\prime} \sec \phi=k^{2} / l, \quad \text { or } \quad r=l^{\prime} \sec \theta . \quad r^{\prime} \sec \theta=l^{2} / l
$$

are the equations of the line or plane and the inverse lex.us. The locus is seen to loe a "ircle or sphere throngh the center of inversion. This maly also be seen directly ly applying the geonetric definition of inrersion. In a similar mamer, or analytically, it may be shown that any arcle in the phane or any sphere in satace inverts into a circle or into a sphere, unless it passes through the center of inversion and becomes a line or a plane.

If a be the distance of P from the circle or sphere of inversion, the distance of P from the center is $k-d$, the distance of P^{\prime} from the center is $k^{2} /(k-d)$, and from the circle or sphere it is $d^{\prime}=d k /(k-d)$. Now if the radius k is very large in comparison with d, the ratio $k /(k-l)$ is nearly 1 and d^{\prime} is nearly equal to d. If k is allowed to become infinite so that the center of inversion recedes indefinitely and the circle or sphere of inversion approaches a line or plane, the distance d^{\prime} approaches d as a limit. As the transformation which replaces each point by a point equidistant from a given line or plane and perpendicularly opposite to the point is the ordinary inversion or reflection in the line or plane such as is familiar in opties. it appears that reflection in a line or plane may be regarded as the limiting case of inversion in a circle or sphere.

The importance of inversion in the study of harmonic functions lies in two theorems applicable respectively to the plane and to space. First, if I^{\bullet} is lurmonic orer "my region of the plone "nd if that region be incerted in "n! cirele, the fometion $I^{\prime \prime}\left(I^{\prime}\right)=I^{\prime}\left(I^{\prime}\right)$ firmerl lly assigning the sume ratue "t I^{\prime} in the new reation as the fienction lurd at the point I ' uheirle inverted into l^{\prime} is "ls" harmonir. Second, if I is harmonie orer" "ny region in spuce, and if thut region he incerted in "sphere of rectias li, the function $I^{\prime}\left(I^{\prime}\right)=l \cdot I^{\prime}\left(I^{\prime}\right) / r^{\prime}$ formed liy "ssigning at I^{\prime} the ralue the function luad at I' multiplied b!y k and divided by the dis-
 significance of these theorems lies in the fact that if one distribution of potential is known, another may be derived from it by inversion; and conversely it is often possible to determine a distribution of potential by inverting an unknown case into one that is known. The proof of the theorems consists merely in making the changes of rariable

$$
r=k i^{2} / r^{\prime} \quad \text { or } \quad r^{\prime}=1 i^{2} / r, \quad \phi^{\prime}=\phi, \quad \theta^{\prime}=\theta
$$

in the prolar forms of Laplace's equation (Exs. 21, 22, 1, 112).
The methot of using inversion to determine distribution of potential in electrostaties is often called the method of elentric imuyes. As a charge e located at a point exerts on other point charges a force promertional to the inverse sfuare of the distance. the potential due to e is as $1 / \rho$. where ρ is the distance from the charge (with the proper mits it may be taken as e / ρ). and satisfies Laplace's equation. The potential dhe to any number of point charges is the sum of the individual imtentials due to the charges. Thms far the theory is essomtially the sime as if the charses were attracting particles of matter. In electricity. however, the question of the distribution of putential is further complicated when there are in the neighburnod of the charses certain conducting surfaces. For 1 'a condincting surface in an electrostatic field must everywhere be at a constant portential or there would be a component force along the surface and the electricity upon it would mowe and z^{2} there is the phemmenon of induced electrinty whereby a variable surface charge is induced upon the conductor by other charges in the neighborlooke. If the potential $\mathrm{I}^{-}(P)$ dhe to ans distribution of charges be inverted in any iphere, the new potential is $k I^{\prime}\left(I^{\prime}\right) / r^{\prime}$. As the dotential $V^{r}\left(P^{P}\right)$
becomes infinite as c / ρ at the point charges c, the potential $k V^{\top}(P) / r^{\prime}$ will become infinite at the inverted positions of the charges. As the ratio $d s^{\prime}: d s$ of the invertert and original elements of length is $r^{\prime 2} / k^{2}$, the potential $k V^{\prime}(P) / r^{\prime}$ will become infinite as $k / r^{\prime} \cdot c / \rho^{\prime} \cdot r^{\prime 2} / k^{2}$, that is, as $r^{\prime} c / k \rho^{\prime}$. Hence it appears that the charge e inverts into a charge $e^{\prime}=r^{\prime} e / k$; the charge - e^{\prime} is called the electric image of e. As the new potential is $k J^{Y}\left(I^{\prime}\right) / r^{\prime}$ instead of $V^{Y}(P)$, it appears that an equipotential surface $l^{\prime}=$ const. will not invert into an equipotential surface $J^{\prime \prime}\left(P^{\prime}\right)=$ const. unless $r^{r}=0$ or r^{\prime} is constant. But if to the inverted system there be added the charge $c=-k V^{r}$ at the center O of inversion, the inverted equipotential surface becomes a surface of zero potential.

With these preliminaries, consider the question of the distribution of potential due to an external charge e at a distance r from the center of a conducting spherical surface of radins k which has been grounded so as to be maintained at zero potential. If the system be inverted with rempect to the sphere of radius k, the potential of the pherical surface remains zoro and the charge e goes over into a charge $e^{\prime}=r^{\prime} c / k$ at the inverse point. Now if ρ, ρ^{\prime} are the distances from e, e^{\prime} to the sphere, it is a fact of elementary geometry that $\rho: \rho^{\prime}=$ const. $=r^{\prime}: k$. Hence the potential

$$
V^{\prime}=\frac{e}{\rho}-\frac{e^{\prime}}{\rho^{\prime}}=\epsilon\left(\frac{1}{\rho}-\frac{r^{\prime}}{k \rho \rho}\right)=c^{k \cdot \rho^{\prime}-r^{\prime} \rho} \frac{k \rho \rho^{\prime}}{},
$$

due th the charge e and to its image $-e^{\prime}$, actually vanishes upon the sphere; and as it is harmonic and has only the singularity e / ρ ontside the sphere (which is the same as the singularity due to c), this value of throughont all space must be precisoly the value due to the charge and the gromeded sphere. The distribution of putential in the given system is therefore determined. The potential outside the sphere is as if the sphere were removed and the two charges $e,-e^{\prime}$ left alone. By (ianss"s hategral (Ex. 8. 1,348) the charge within any recrion may be evaluated ly a surface integral around the region. This integral over a surface surrounding the sphere is the same as if over a surface shrunk down aromb the charge - e^{\prime}, and hence the total charge induced on the sphere is $-\epsilon^{\prime}=-r^{\prime} c / k$.
199. Inversion will transform the average value theorem

$$
\begin{equation*}
I^{\prime}\left(I^{\prime}\right)=\frac{1}{2 \pi} \int_{1 \prime}^{2 \pi} \Gamma^{\prime} d \phi \quad \text { into } \quad \Gamma^{\prime}\left(P^{\prime}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Gamma^{\prime \prime} d \psi \tag{14}
\end{equation*}
$$

a form applable to determine the value of 1 at any point of a circle in terms of the value upon the circumference. For suppose the circle with center at l 'and with the set of radii spaced at angles d $/ \phi$, as implied in the computation of the average valure lo inverted upos an orthogronal eirele so chosen that I) shall so (wxor into l^{\prime}. The given
 (rircle groes over into itself and the series of lines goes over into a series of "ineles throush l^{\prime} "and the "enter 1$)$ of inversion. (The figures are drawn separately instead of superposed.) From the eonformal property
the angles between the cireles of the series are equal to the angles between the radii, and the circles cut the given circle orthogonally just as the radii did Let $V^{\prime \prime}$ along the ares $1^{\prime}, 2^{\prime}, 3^{\prime}, \cdots$ be equal to I^{\prime} along the corresponding ares $1,2,3, \cdots$ and let $V(P)=V^{\prime}\left(P^{\prime}\right)$ as required by the theorem on inversion of harmonic functions. Then the two integrals are equal element for element and their values $\mathrm{I}^{\prime}\left(P^{\prime}\right)$ and $\mathrm{I}^{-1}\left(P^{\prime}\right)$ are equal. Hence the desired form follows from the given form as stated. (It may be observed that $d \phi$ and $d \psi$, strictly speaking, have opposite signs, but in determining the average value $\mathrm{I}^{\prime}\left(P^{\prime}\right), d \psi$ is taken positively.) The derived form of integral may be written

$$
V^{\prime \prime}\left(P^{\prime}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Gamma^{\prime} d \psi=\frac{1}{2 \pi} \int_{0}^{2 \pi a} \Gamma^{\prime} \frac{\prime \psi}{d s^{\prime}} d s^{\prime},
$$

as a line integral along the are of the circle. If P^{\prime} is at the distance r from the center, and if a be the radius, the center of inversion O is at the distance $a^{2} /$ from the center of the circle, and the value of k is seen to be $k^{2}=\left(a^{2}-r^{2}\right) a^{2} / r^{2}$. Then, if Q and Q^{\prime} be points on the circle,

$$
\left.d s^{\prime}=d s \frac{\overline{\left(\overline{Q^{\prime}}\right.}}{k^{2}}=\frac{r^{2}\left(\mu^{2}-2 r^{3} r^{\prime-1} \cos \phi\right.}{\left(\mu^{\prime}-r^{\prime}\right) u^{2}} u^{4} r^{-2}\right) ~ a d \phi .
$$

Now $d \psi / d s^{\prime}$ may be obtained, because of the equality of $d \psi$ and $d \phi$, and $d s^{\prime}$ may be written as ${ }^{\prime}$ 'l ϕ^{\prime}. Hence

$$
r^{\prime \prime}\left(r^{\prime}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} r^{\prime \prime} \frac{\mu^{2}-r^{2}}{u^{2}-2 u r^{\prime} \cos \phi^{\prime}+r^{2}}{ }^{\prime} \phi^{\prime} .
$$

Finally the primes may be dropped from V^{\prime} and r^{\prime}, the position of P^{\prime} may be expressed in terms of its coorrdinates (r, ϕ), and

$$
\begin{equation*}
I^{\prime}(r, \phi)=\frac{1}{2 \pi} \int_{0}^{2 \pi} V^{\prime} \frac{\left(u^{2}-r^{2}\right) d \phi^{\prime}}{u^{2}-2\left(a^{\prime} \cdot \cos \left(\phi^{\prime}-\phi\right)+r^{2}\right.}=\frac{1}{2 \pi} \int_{0}^{2 \pi}{ }^{\prime} d \psi \tag{15}
\end{equation*}
$$

is the expression of I' in terms of its boundary values.
The integral (15) is called I'oisson's Integroll. It should be noted particularly that the form of Poisson's Integral first obtained by inversion represents the average value of I^{\prime} along the circumference, provided that average be computed for each point by considering the values along the circumference as distributed relative to the angle ψ as independent variable. That I as defined by the integral actually approaches the value on the circumference when the point approaches the circumference is clear from the figure, which shows that all except an infinitesimal fraction of the orthogonal circles cut the circle within infinitesimal limits when the point is infinitely near to the circumference. Poisson's Integral may be
obtained in another way. For if P^{\prime} and l^{\prime} are now two inverse points relative to the circle, the equation of the cirele may be written as

$$
\begin{equation*}
\rho / \rho^{\prime}=\text { const. }=r / / 1, \quad \text { and } \quad \sigma_{i}\left(l^{\prime}\right)=-\log \rho+\log \rho^{\prime}+\log (r / \mu) \tag{16}
\end{equation*}
$$

is then the Green Function of the circular sheet betause it vanishes along the circumference, is harmonic owing to the fact that the logarithm of the distance from a point is a solution of Laplace:s equation, and becomes infinite at P^{\prime} as $-\log \rho$. Hence

$$
V=\frac{-1}{2 \pi} \int \mathrm{~V}^{\mathrm{V}} \frac{d G}{d n} d s=\frac{-1}{2 \pi} \int \mathrm{~V} \cdot \frac{d}{d n}\left(\log \rho^{\prime}-\log \rho\right) d_{\mathrm{s}}
$$

It is not difficult to reduee this form of the integral to (15).
If a harmonic function is defined in a region abutting upon a segment of a straight line or an are of a circle, and if the function vanishes along the segment or are, the function may be extended across the segment or are by assigning to the inverse point I^{\prime} the value $I^{\prime}\left(I^{\prime}\right)=-I^{\prime}\left(I^{\prime}\right)$, which is the negative of the value at P; the conjugate function

$$
\begin{equation*}
U=\int \frac{d V^{r}}{d n} d s+C=\int \frac{\hat{c} V}{\hat{c_{i} r}} d y-\frac{\hat{c} V}{\hat{c}!!} d \cdot r+C \tag{6}
\end{equation*}
$$

takes on the same valnes at I^{\prime} and P^{\prime}. It will be sufficitent to prove this theorem in the "ase of the straiglat line becamse, by the theorem on inversion, the are may be inverted into a line by taking the center of inversion at any point of the arr or the are produced. As the Laplace operator $\rho_{x}^{2}+\rho_{y}^{2}$ is independent of the itxes (Ex. 25, p. 112), the line may be taken as the er-axis without restricting the conclusion.

Now the extended function $I^{\prime}\left(P^{\prime}\right)$ satisfies Laplace sequation since

$$
\frac{\hat{\tau}^{2} I^{\prime}\left(P^{\prime}\right)}{\hat{c} r^{\prime 2}}+\frac{\hat{i}^{2} I^{\prime}\left(P^{\prime}\right)}{\hat{c} y^{\prime 2}}=-\frac{\hat{\tau}^{2} I^{2}\left(I^{\prime}\right)}{\hat{c} x^{2}}-\frac{\hat{c}^{2} I^{\prime}\left(I^{\prime}\right)}{\partial y^{2}}=0 .
$$

Therefore $I^{\prime}\left(P^{\prime}\right)$ is harmonir. By the definition $I^{\prime}\left(P^{\prime}\right)=-I^{\prime}(P)$ and the assumption that I vanishes along the serment it appears that the function V° on the two sides of the line piefers on to itself in a continnominamer. and it remains merely to show that it pieces on to itself in a hammin mamers. that is. that the function I^{r} aml its extension form a function hamonic at peints of the line. This follows from looisson's Integral applied to a dirche centered on the line. For let

$$
H(r, y)=\int_{0}^{2 \pi} f d \psi ; \text { then } H(x, 0)=0
$$

hecanse I takes on equal and opmosite values on the urper and tower semiciscumferences. Hence $H=I^{\prime}\left(I^{\prime}\right)=I^{\prime}\left(I^{\prime}\right)=0$ along the axis. But $I I=I^{\prime}\left(I^{\prime}\right)$ abong the upper are and $I I=I^{\prime}\left(P^{\prime}\right)$ akmen the lower are becanse Poincons: Intural take me the boumtary values as a limit when the point apmonders the bematary. Now as
 +irele it mast be jelentical with $I^{\prime}\left(I^{\prime}\right)$ thronghont that semicirche. In like mamer
it is identical with $V^{\top}\left(P^{\prime}\right)$ throughout the lower semicircle. As the functions $V(P)$ and $\mathrm{T}^{\prime}\left(P^{\prime}\right)$ are identical with the single harmonic function H, they must piece together harmonically across the axis. The theorem is thus completely proved. The statement about the conjugate function may be verified by taking the integral along paths symmetric with respect to the axis.
200. If a function $u=f(z)=u+i v$ of a complex variable becomes real "long the segment "f " line or the are of a circle, the function may be extended analytically across the segment or are by assigning to the incerse point P^{\prime} the value $u=u-i v$ conjugate to that at P. This is merely a corollary of the preceding theorem. For if w be real, the harmonic function r vanishes on the line and may be assigned equal and opposite values on the opposite sides of the line; the conjugate function u then takes on equal values on the opposite sides of the line. The case of the circular are would again follow from inversion as before.

The method employed to identify functions in ş 185^{-187} was to map the halres of the r-plane, or rather the sereral repetitions of these halves which were required to complete the map of the w-surface, on a region of the z-plane. By virtue of the theorem just obtained the conrerse process may often be carried out and the function $\pi=f(*)$ which maps a given region of the z-plane upon the half of the u-plane may be obtained. The method will apply only to regions of the z-plane which are bounded by rectilinear segments and circular arcs ; for it is only for such that the theorems on inversion and the theorem on the extension of harmonic functions have been proved. To identify the function it is necessary to extend the given region of the z-plane ly inversions across its boundaries until the r-surface is completed. The method is not satisfactory if the successive extensions of the region in the \approx-plane result in overlapping.

The method will be applied to determining the function (α) which maps the first quadrant of the mite circle in the z-plane upon the upper half of the $c^{\circ}-\mathrm{plane}$, and (β) which maps a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle upon the upper half of the (r-plane. Suppose the sector A $B C$ mapped on the w-half-plane so that the perimeter A B^{\prime} corresponds to the real axis "he. When the perime-
 ter is described in the order written and the interior is on the left, the real axis must, by the principle of conformality, be described in such an ormer that the upper half-plane which is to correspond to the interior shall also lie on the left. The points a, b, c correspond to points

I, l, C^{\prime}. At these points the correspondence required is such that the conformality must break down. As angles are doubled, each of the points A, B, $\left(\cdot\right.$ must be a critical point of the first order for $\pi=f^{\prime}(z)$ and a, b, o must be lranch points. To map the triangle, similar considerations apply except that whereas c^{\prime} is a critical point of the first order, the points A^{\prime}, b^{\prime} are critical of orders 5,2 resipectively. Each case may now be treated sejarately in detail.

Let it be assumell that the three vertices A, B, C of the sector go into the points ${ }^{*} w=0.1, x$. As the perimeter of the sector is mapped on the real axis, the function $w=f(z)$ takes on real valnes for points z along the perimeter. Hence if the sector be inverted over any of its sides, the point P^{\prime} which corresponds to P may be given a value conjugate to w at P, and the image of P^{\prime} in the x-plane is symmetrical to the image of P ' with respect to the real axis. The three regions $1^{\prime}, z^{\prime}, 3^{\prime}$ of the z-plane correspond to the lower half of the w-plane ; and the perimeters of these regions correspond also to the real axis. These regions may now be inverted across their boundaries and give rise to the regions $2,3,4$ which mist correspond to the upper half of the w-plane. Finally l_{y} inversion from one of these regions the region 4' may be obtained as corresponding to the
 lower half of the u-plane. In this mamer the inversion has been carried on until the entire z-plane is covered. Moreover there is no overlapping of the regions and the figure may be inverted in any of its lines without prolucing any overlapping : it will merely invert into itself. If a Riemann surface were to be emstructed over the whane. it would clarly require four wheets. The surfare could be commected up betulying the comresmulence : hut this is not necessary. Note merely that the function $f(z)$ beeomes infinite at (' when $z=i$ by hypothesis and at ("when $z=-i$ hy inversion : and at no wther point. The values $\pm i$ will therefore be taken as poles of $f(z)$ and as poles of the seecond orter berause angles are doubled. Note arain that the function $f(z)$ vanishes at A when $z=0$ by hypothesis am at $z=x$ by inversion. These will he assumed to be zeros of the second order because the points are critical points at which angles are doubled. The function

$$
u=f(z)=\left(z^{2}(z-i)^{-2}(z+i)^{-2}=\left(z^{2}\left(z^{2}+1\right)^{-2}\right.\right.
$$

has the above zeressand poles and must be incmital with the desirnd function when the emstant ℓ is propery chosen. As the enrespmoneme is sudh that $f(1)=1$ hy hymothesis, the constant C^{C} is 4 . The determination of the function is complete as given.

Comsider next tho case of the triangle. The same prosest of inversion and repeated inversion may be followed, and never results in owerlaphan except as one

[^46]region falls into absolute coincidence with one previonsly obtained. To cover the whole z-plane the inversion would have to be continued indefinitely; but it may be observed that the rectangle inclosed by the heavy line is repeated indefinitely. Hence $w=f(z)$ is a doubly periodic function with the periods $2 h, 2 i h^{\prime}$ if $2 K, 2 h^{\prime \prime}$ be the length and breadth of the rectangle. The function has a pole of the second order at C or $z=0$ and at the points, marked with cireles, into which the origin is carried by the successive inversions. As there are six poles of the second order, the function is of order twelve. When $z=\kappa$ at A or $z=i K^{\prime}$ at A^{\prime} the function vanishes and each of these zeros is of the sixth order because angles are inereased 6 -fold. Again it appears that the function is of order 12. It is very simple to write the function down in terms of
 the theta functions constructed with the periods $2 \mathrm{~K}, 2 i \mathrm{~h}^{\prime \prime}$.
$$
w=f(z)=C \frac{I_{1}^{6}(z) \theta^{6}(z)}{I^{2}(z) \Theta_{1}^{2}(z) I^{2}(z-\alpha) \theta_{1}^{2}(z-\alpha) I I^{2}(z-\beta)^{2} \theta_{1}^{2}(z-\beta)}
$$

For this function is really donbly perionlic, it vanishes to the sixth order at $K^{\prime}, i K^{\prime \prime}$, and has poles of the second order at the points
$0, \quad K+i K^{\prime}, \quad \alpha=\frac{1}{2} K+\frac{1}{2} i K^{\prime} . \quad \alpha+K^{\prime}+i K^{\prime}, \quad \beta=2 K^{\prime}-\alpha, \quad \beta+K^{\prime}+i K^{\prime}$.
As $\beta=2 K^{\circ}-\alpha$ the reduction $\Pi^{2}(z-\beta)=\Pi^{2}(z+\alpha), \theta_{1}(z-\beta)=\theta_{1}(z+\alpha)$ may be made.

$$
w=f(z)=C \frac{I_{1}^{6}(z) \Theta^{6}(z)}{I^{2}(z) \Theta_{1}^{2}(z) I^{2}(z-\alpha) I^{2}(z+\alpha) \theta_{1}^{2}(z-\alpha) \theta_{1}^{2}(z+\alpha)} .
$$

The constant (' may be deteminerl, and the expression for $f(z)$ may be reduced further by means of identities; it misht be expressed in terms of su (z, k) and en (z, k), with properly chosen k, or in terms of $p(z)$ and $p^{\prime}(z)$. For the purposes of computations that might be involver in earrying ont the details of the map, it would probably be better to leave the expression of $f(z)$ in terms of the theta functions, as the value of q is about 0.01 .

EXERCISES

1. Show geometrically that a plane inverts into a sphere through the center of inversion, and a line into a cirele through the center of inversion.
2. Show geometrically or analytically that in the plane a circle inverts into a circle and that in space a sphere inverts into a sphere.
3. Show that in the plane angles are reversed in sign by inversion, Show that in space the magnitude of an angle between two curves is mehanged.
4. If $d s, d s, d v$ are elements of are, surface, and volume, show that

$$
d s^{\prime}=\frac{r^{\prime}}{r} d s=\frac{r^{\prime 2}}{l^{2}} d s, \quad d S^{\prime}=\frac{r^{\prime 2}}{r^{2}} d S=\frac{r^{\prime 2}}{k^{4}} d S, \quad d v^{\prime}=\frac{r^{\prime 3}}{r^{3}} d t=\frac{r^{\prime 3}}{h^{\prime 6}} d v .
$$

Note that in the plane an area and its inverted area are of opposite sisn. and that the same is truc of volumes in space.
5. Show that the system of circles through any point and its inverse with respect to a given circle eut that circle orthogonally. Hence show that if two points are inverse with respect to any circle, they are earried into puints inverse with respect to the inverted position of the circle if the circle be inverted in any mamer. In partieular show that if a circle be inverted with respect to an orthogenal eircle, its center is carried into the print which is inverse with respect to the center of inversion.
6. Obtain Poisson's Integral (15) from the form (16'). Note that

$$
r^{2}=\rho^{2}+a^{2}-2 u \rho \cos (\rho, n), \quad \frac{d G}{d n}=\frac{\cos (\rho \cdot n)}{\rho}-\frac{\cos \left(\rho^{\prime} \cdot n\right)}{\rho^{\prime}}=\frac{a^{2}-r^{2}}{a^{2} \rho^{2}} .
$$

7. From the equation $\rho / \rho^{\prime}=$ const. $=r / u$ of the sphere obtain

$$
G(P)=\frac{1}{\rho}-\frac{a}{r} \frac{1}{\rho^{\prime}}, \quad V=\frac{1}{4 \pi u} \int \frac{V^{\prime}\left(a^{2}-r^{2}\right) d S}{\left[u^{2}+r^{2}-2 u r \cos (r, a)\right]^{\frac{3}{2}}},
$$

the Green Function and Poisson's Integral for the sphere.
8. Obtain Poisson's Integral in space by the method of inversion.
9. Find the prential due to an insulated spherical conductor and an external charge (by placing at the center of the sphere a charge equal to the negative of that induced on the grounded sphere).
10. If two spheres intersect at right angles, and charges proportional to the diameters are placed at their centers with an opposite charge proportional to the diameter of the common circle at the center of the eircle. then the potential over the two spheres is constant. Hence determine the effect throughout external space of two orthogonal conducting spheres maintained at a given potential.
11. A eharge i.s placed at a distance h from an intinite conducting plane. Determine the potential on the supposition that the plane is insulated with mo charge or maintained at zero potential.
12. Map the qualrantal sector on the upper half-plane so that the rertices (. A, B correspond to $1, \infty, 0$.
13. Determine the constant C ocumring in the map of the triangle on the plane. Find the peint into which the merlian print of the triangle is carried.
14. With varions selections of correspondences of the vertices to the three points, $0,1, \infty$ of the u-phane. map the following configurations upon the mper half-plane:

$$
\begin{array}{ll}
\text { (c) a sector of } 60 \text {. } & \text { (} \beta \text {) an insoceles right triancle. } \\
\text { (r) a sectur of } 45 \text {. } & \text { (o) an equilateral triangle. }
\end{array}
$$

201. The potential integrals. If $\rho(\cdots \cdot / / 4)$ is a function definet at different points of a region of spare. the integral
evaluated ores that region is called the potential of ρ at the point
 the attraction and tha potential eneros at the perint (ε, η. ζ) (hne to a
distribution of matter of density $\rho(r, y, z)$ in some region of space. If μ be a mass at (ξ, η, ξ) and m a mass at (x, y, z), the component forces exerted by m upon μ are

$$
X=c \frac{\mu m}{r^{2}} \frac{x-\xi}{r}, \quad Y=c \frac{\mu m}{r^{2}} \frac{y-\eta}{r}, \quad Z=c \frac{\mu m}{r^{2}} \frac{z-\xi}{r},
$$

and

$$
\begin{equation*}
F=c \frac{\mu m}{r^{2}}, \quad V=-c \mu \frac{m}{r}+C \tag{19}
\end{equation*}
$$

are respectively the total force on μ and the potential cinergy of the two masses. The potential energy may be considered as the work done ly F or N, r, Z on μ in bringing the mass μ from a fixed point to the point (ξ, η, ζ) under the action of m at (r, y, \therefore) or it may he regarded as the function such that the negative of the derivatives of I by $x: y$ give the forces $x, 1, z$, or in sector notation $\mathrm{F}=-\mathrm{rl}$. Hence if the mints be so chosen that $r=1$, and if the forces and potential at (ξ, η, ζ)
 be measured per unit mass by dividing by μ, the results are (after disregarding the arbitrary constant (')
$X=\frac{m}{r^{2}} \frac{x-\xi}{r}, \quad Y=\frac{m}{r} \frac{!-\eta}{r}, \quad Z=\frac{m}{r^{2}} \frac{\pi-\xi}{r}, \quad \mathrm{r}=-\frac{m}{r}$.
Now if there be a region of matter of density $\rho\left(e^{\prime}, y, z\right)$, the fores and potential energy at ($\xi, \eta . \xi$) measured per unit mass there located may be obtained hy summation or integration and are

It therefore appears that the potential $/$ defined by (18) is the negative of the potential emergy I due to the distribution of matter:* Note further that in evaluating the integrals to determine X, Y, Z, and $l^{\circ}=-r^{\circ}$, the variahles x, y, z with respect to which the integrations are performed will drop, out on sulstituting the limits which deternine the region, and will therefore leave X, I, Z, L° as functions of the parameters $\xi \cdot \eta . \zeta$ which appear in the integrand. And finally

$$
\begin{equation*}
Y=\frac{\hat{c} I^{\cdot}}{\hat{c} \xi^{*}} . \quad Y=\frac{\hat{c} I^{\cdot}}{\hat{c} \eta} ; \quad Z=\frac{\hat{c} I^{\cdot}}{\hat{c} \xi^{\prime}} \tag{20}
\end{equation*}
$$

* In electric and mannetic theory, where like rapels like, the potential and potential energy have the same sign.
are consequences either of differentiating l° under the sign of integration or of integrating the expressions (199^{\prime}) for X, Y, Z expressed in terms of the derivatives of U, over the whole region.

Theorem. The potential integral U satisfies the equations
known respectively as Luplluce's and Poisson's Equations, according as the point (ξ, η, ζ) lies outside or within the body of density $\rho(x, y, z)$.

In case (ξ, η, ζ) lies outside the body, the proof is very simple. For the second derivatives of U may be obtained by differentiating with respect to ξ, η, ζ under the sign of integration, and the sum of the results is then zero. In case $(\xi, \eta, \xi$) lies within the body, the value for r vanishes when (ξ, η, ζ) coincides with (r, y, z) during the integration, and hence the integrals for L^{r}, X, Y, Z become infinite integrals for which differentiation under the sign is not permissible without justification. Suppose therefore that a small sphere of rallins r concentric with (ξ, η, ζ) be cut out of the body, and the contributions F^{\prime} of this s_{p},here and F^{*} of the remainder of the body to the force F be considered separately. For convenience suppose the origin moved up to the point (ξ, η, ζ). Then

$$
\mathrm{F}=\Gamma l^{\prime}=\mathrm{F}^{*}+\mathrm{F}^{\prime}=\int_{0} \rho \Gamma \frac{1}{r} d l^{*}+\mathrm{F}^{\prime} .
$$

Now as the sphere is small and the density ρ is supposed continuous, the attraction $l^{\prime \prime}$ of the suhere at any point of its surface may be taken as $\frac{+}{3} \pi r^{3} \rho_{0} / r^{2}$, the quotient of the mass hy the square of the distance to the center, where ρ_{0} is the demsity at the center. The force F^{\prime} then retuces to $-\frac{1}{3} \pi \rho_{0} \mathrm{r}$ in magnitule and direction. Hences

$$
\Gamma \cdot \mathrm{F}=\Gamma \cdot \Gamma I^{\prime}=\Gamma \cdot \mathrm{F}^{*}+\Gamma \cdot \mathrm{F}^{\prime}=\int_{\rho} \rho \Gamma \cdot \Gamma \frac{1}{i} d \cdot+\nabla \cdot \mathrm{F}^{\prime} .
$$

The integral vanishes as in the first case, and $\Gamma \cdot F^{\prime}=-4 \pi \rho_{0}$. Hence if the suffix 0 le nuw dropped, $\Gamma \cdot \Gamma I^{\prime}=-4 \pi \rho$. and P'oisson's's Equation is proved. (ianss's Integral (1.348) affords a similar proof.

A rigorons treatment of the potential L° and the forces F, Y, Z and their derivatives regnires the discussion of consergence and allied thpics. A detailed treatment will not be given, hat a few of the most important facts may be pointed out. Comsider the ordinary case where the volume density ρ remains finite and the body itself does not extend thinfinty. The integrand ρ / r hermmes infinite when $r=0$. But as $d x$ is an intimitesimal of the thise ordor aromm the peint where $r=0$, the term $p / d / r$ in the integral l^{*} will ho intintesimal. may he disereadend and the integral I^{*} converses. In like manmer the integrals for X, I, Z will converge
because $\rho(\xi-x) / r^{3}$. etc., become infinite at $r=0$ to only the second order. If $\hat{\partial} X / \hat{c} \xi$ were obtained by differentiation under the sign, the expressions ρ / r^{3} and $\rho(\xi-x)^{2} / r^{5}$ would become infinite to the third order, and the integrals

$$
\int \frac{\rho}{r^{3}} d v=\iiint \frac{\rho}{r^{3}} r^{2} \sin \theta d r d \phi d \theta, \text { etc. }
$$

as expressed in polar coördinates with origin at $r=0$, are seen to diverge. Hence the derivatives of the forces and the second derivatives of the potential, as obtained by differentiating under the sign, are valueless.

Consider therefore the following device:

$$
\begin{gathered}
\frac{\hat{c}}{\hat{c} \xi} \frac{1}{r}=-\frac{\hat{c}}{\hat{c} x} \frac{1}{r}, \quad \frac{\hat{c} U}{\hat{c} \xi}=\int \rho \frac{\hat{c}}{\hat{c} \xi} \frac{1}{r} d v=-\int \rho \frac{\hat{c}}{\hat{c} x} \frac{1}{r} d v, \\
\frac{\hat{c}}{\hat{c} x} \frac{\rho}{r}=\frac{\bar{c} \rho}{\hat{c} x} \frac{1}{r}+\rho \frac{\hat{c}}{\hat{c} x} \frac{1}{r}, \quad-\int \rho \frac{\hat{c}}{\hat{c} x} \frac{1}{r} d v=\int \frac{1}{r} \frac{\hat{c} \rho}{\hat{c} x} d v-\int \frac{\hat{\partial}}{\hat{c} x} \frac{\rho}{r} d v .
\end{gathered}
$$

The last integral may be transformed into a surface integral so that

$$
\begin{equation*}
\frac{\hat{C} U}{\hat{c} \xi}=\int \frac{1}{r} \frac{\hat{c} \rho}{\bar{x} x} d x-\int \frac{\rho}{r} \cos \alpha d S=\iiint \frac{1}{r} \frac{\hat{c} \rho}{\hat{c} \cdot r} d x d y d z-\iint \frac{\rho}{r} d y d z . \tag{22}
\end{equation*}
$$

It shonld be remembered, however, that if $r=0$ within the body, the transformation can only be made after cutting out the singularity $r=0$, and the surface integral must extend over the surface of the excised region as well as over the surface of the body. But in this case, as $d s$ is of the second order of infinitesimals white r is of the first order, the integral over the surface of the excised region vanishes when $r \doteq 0$ and the equation is valid for the whole region. In vectors

$$
\nabla \ell^{r}=\int \frac{\nabla \rho}{r} d v-\int \frac{\rho}{r} d \mathbf{S} .
$$

It is noteworthy that the first integral gives the potential of $\nabla \rho$, that is, the integral is formed for $\nabla \rho$ just as (18) was from ρ. $A s \nabla \rho$ is a rector, the simmation is rector addition. It is further noteworthy that in $\nabla \rho$ the differentiation is with respect to x, y, z, whereas in ∇C it is with respect to $\xi . \eta$. ζ. Now differentiate (22) under the sign. (Distinguish ∇ as formed for $\xi \cdot \eta . \zeta$ and $\kappa . y, z$ by Γ_{ξ} and ∇_{x}.) $\frac{\hat{c}^{2} U}{\hat{c} \xi^{2}}=\int \frac{\hat{c}}{\hat{c} \xi} \frac{1}{r} \frac{\hat{c} \rho}{\hat{c} \lambda} d v-\int \rho \cos c r \frac{\hat{c}}{\hat{c} \xi} \frac{1}{r} d S$ or $\nabla_{\xi} \nabla_{\xi} V^{r}=\int \Gamma_{\xi}{ }_{r}^{1} \cdot \Gamma_{x} \rho d x-\int \rho \nabla_{\xi} \frac{1}{r} \cdot d \mathbf{S}$, or again

$$
\begin{equation*}
\Gamma_{\xi} \cdot \nabla_{\xi} U^{r}=-\int \Gamma_{x}{ }_{r}^{1} \cdot \Gamma_{s} \rho d t+\int \rho \nabla_{s} \frac{1}{r} \cdot \mathrm{l} \mathbf{S} \tag{23}
\end{equation*}
$$

This result is valil for the whote region. Now he (iremis Fommata (Ex. 10, p. 349)

$$
\int \rho \Gamma_{x} \cdot \Gamma_{x} \frac{1}{r} d x+\int \Gamma_{x} \frac{1}{r} \cdot \Gamma_{x} \rho d v=\int \Gamma_{x} \cdot\left(\rho \Gamma_{x} \frac{1}{r}\right) d v=\int \rho \Gamma_{r}, \frac{1}{r} \cdot \mathrm{~S}=\int \rho \frac{d}{d n} \frac{1}{r} d S_{0}
$$

Here the small region about $r=0$ must again be excised and the surface integral must extend over its surface. If the region be taken as a sphere, the normal $d u$, being exterior to the body. is Airected along - $d r$. Thus for the sphere

$$
\int \rho \frac{d}{d n} \frac{1}{r} d s=\iint \rho \frac{1}{r^{2}} r^{2} \sin \theta d \phi d \theta=\iint \rho \sin \theta d \phi d \theta=4 \pi \bar{\rho},
$$

where $\bar{\rho}$ is the average of ρ upon the surface. If now r be allowed to approach 0 and $\nabla \cdot \nabla r^{-1}$ be set equal to zero, (ireen"s Fommula reduces to

$$
\int \nabla_{s} \cdot \frac{1}{r} \cdot \nabla_{s} \rho d v=\int \rho \nabla_{x} \frac{1}{r} \cdot d \mathbf{S}+4 \pi \rho
$$

where the volume integrals extend over the whole volume and the surface integral extends like that of (23) over the surface of the body but not over the small sphere. Hence (23) reduces to $\nabla \cdot \nabla C^{\circ}=-4 \pi \rho$.

Thronghont this disenssion it has been assumed that ρ and its derivatives are contimous thronghout the bory. In practice it frequently happens that a body consists really of several. say two, borlies of different nature (separated by a bounding smrface s_{12}) in each of which ρ and its derivatives are continnons. Let the suffixes 1,2 serve to distinguish the bodies. Then

$$
U=\int \frac{\rho_{1}}{r} d v_{1}+\int \frac{\rho_{2}}{r} d v_{2}=\int \frac{\rho}{r} d v
$$

The discontinnity in ρ along a surface S_{12} does not affect a triple integral.

$$
\nabla I^{r}=\int \frac{\nabla \rho_{1}}{r} d v_{1}-\int \frac{\rho_{1}}{r} d \mathbf{S}_{1,12}+\int \frac{\nabla \rho_{2}}{r} d x_{2}-\int \frac{\rho_{2}}{r} d \mathbf{S}_{2,21}
$$

Here the first surface integral extends over the bommary of the region 1 which inchates the surface s_{12} botwern the regions. For the interface s s_{12} the direction of $d S$ is from 1 into 2 in the first case, lat from 2 into 1 in the second. Hence

$$
\nabla L^{r}=\int \frac{\Gamma \rho}{r} d x-\int \frac{\rho}{r} d \mathbf{S}-\int \frac{\rho_{1}-\rho_{2}}{r} d \mathbf{S}_{12}
$$

It may be noted that the first and second surface interyls are entirely analogous becanse the first may be regarded as extembed over the surface separating a body of clensity ρ from one of density 0 . Now $\nabla \cdot \nabla U$ may be fomms. and if the proper modifications be introduced in Greens Formma, it is seen that $\Gamma \cdot \Gamma l^{*}=-4 \pi \rho$ still hoks provided the point lies entirely within either boly. The fact that ρ eomes from the average value $\bar{\rho}$ uron the surface of an infinitesimal shere shows that if the point lies on the interface sin at a resular point. $\nabla \cdot \nabla L^{*}=-4 \pi\left(\frac{1}{2} \rho_{1}+\frac{1}{2} \rho_{2}\right)$.

The appleation of (ireens Fommula in its symmetric form (Ex. 10. 1, sto) to the two functions r^{-1} and L^{r}. and the calculation of the intexral over the intinitesimal sphere about $r=0$, sives
or

$$
\begin{align*}
\int\left(\frac{1}{r} \Gamma \cdot \Gamma l^{r}-U \Gamma \cdot \Gamma \frac{1}{r}\right) d t & =\int\left(\frac{1}{r} \frac{d U^{-}}{d n}-l^{\cdot} \frac{d}{d n} \frac{1}{r}\right) d s-4 \pi U^{T} \\
\int \frac{\Gamma \cdot \Gamma U^{r}}{r} d v & =\sum \int \frac{\left(\frac{d L^{r}}{d n}\right)_{1}-\left(\frac{d L^{-}}{d n}\right)_{2}}{r} d s_{12} \tag{24}\\
& -\sum \int\left(l_{1}-l_{2}\right) \frac{l}{d n} \frac{1}{r} d s_{12}-4 \pi U
\end{align*}
$$

Where Σ extends over all the surface of diseontimuty inchudine the bommary of the whole body where the density ehanges to 0 . N゙ow $\Gamma \cdot \Gamma U=-4 \pi \rho$ and if the definitions be siven that

$$
\left(\frac{d l^{v}}{d n}\right)_{1}-\left(\frac{d l^{v}}{d n}\right)_{2}=-4 \pi \sigma, \quad U_{1}-U_{2}=4 \pi \tau
$$

then

$$
\begin{equation*}
U=\int \frac{\rho}{r} d v+\int \frac{\sigma}{r} d ふ+\int \tau \frac{d}{d n} \frac{1}{r} d S \tag{25}
\end{equation*}
$$

where the surface integrals extend over all surfaces of discontinuity. This form of l^{\prime} appears more general than the initial form (18), and indeed it is more general, for it takes into accomnt the diseontinuities of I and its derivative, which camot arise when ρ is an ordinary continuous function representing a volme distribution of matter. The two surface integrals may be interpreted as due to surface distributions. For suppose that along some surface there is a surface tensity σ of matter. Then the first surface integral represents the potential of the matter in the surface. Strictly surakins. a surface distribution of matter with σ units of matter per unit surface is a physital impossibility. but it is nome the less a convenient mathematical fiction when dealing with thin sheets of matter or with the charge of clertricity upon a eonducting surface. The surface distribution may be regrarled as a limiting casc of volume distribution where ρ becomes intinite and the volume throughont which it is spread becomes infinitely thin. In fact if $d n$ be the thickness of the sheet of matter prluds' $=\sigma d s$. 'Tle second surface integral may likewise be regarded as a limit. For suppose that there are two surfaces intinitely near togrether upm one of which there is a surface density $-\sigma$. and upm the other a surface density σ. 'The potential due to the two equal superimposed elements ds' is the

$$
\frac{\sigma_{1} d s}{r_{2}}+\frac{\sigma_{2} l s_{2}}{r_{2}}=\sigma d s\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)=\sigma d s \frac{d}{d n} \frac{1}{r} \cdot d n=\sigma d n \frac{d}{d n} \frac{1}{r} d S .
$$

 tribution of magnetism arises in the ease of a manetic mell. that is. a surface coverel on ome side with positive poles and on the other with mequtive poles. The three integrals in (25) are known respectively as volume prontial. surface potential, and domble surface putential.
202. The petentials may be used to obtain partioulan integrals of some differential equations. In the first place the equation
as its solution, when the intergral is extended orer the region throughout which t is defined. To this particular solution for I nasy he added any solution of Laplaress equation, hat the particular solution is fre(quently precisely that particular solution which is desired. If the functions U and f were rector functions so that $\mathrm{U}=\mathrm{i} l_{1}+\mathrm{j} l_{2}+\mathrm{k} l_{3}^{\circ}$, and $\mathrm{f}=\mathrm{i} f_{1}+\mathrm{j} f_{2}^{2}+\mathrm{k} \tau_{3}$, the results would he

$$
\frac{c^{2} \mathbf{U}}{c, r^{2}}+\frac{\hat{c}^{2} \mathbf{U}}{\bar{c}, y^{2}}+\frac{\hat{c}^{2} \mathbf{U}}{c z^{2}}=\mathrm{f}\left(x, y, \hat{y}^{2}\right) \text { and } \mathbf{U}=\frac{-1}{4 \pi} \int \frac{\mathrm{f} / c \cdot}{r} \text {, }
$$

where the integration denotes rector stmmation, as may be seen by adding the results for $\Gamma \cdot \Gamma l_{1}=f_{1} \cdot \Gamma \cdot \Gamma l_{2}=f_{2}, \Gamma \cdot \Gamma l_{3}^{\circ}=f_{3}^{\prime}$ after multiplimation $l_{y} \mathbf{i}, \mathbf{j} . \mathrm{k}$. If it is desired to indicate the vectorial nature of U and f. the postential U may be called a vertor potential.

In evaluating the potential and the forces at (ξ, η, ζ) due to an element $d m$ at (x, y, z), it lias been assumed that the action depends solely on the distance r. Now suppose that the distribution $\rho(x, y, z, t)$ is a function of the time and that the action of the element $\rho d v$ at (x, y, z) does not make its effect felt instantly at (ξ, η, ζ) but is propagated toward (ξ, η, ζ) from (x, y, z) at a velocity $1 / a$ so as to arrive at the time $(t+u r)$. The potential and the forces at (ξ, η, ζ) as calculated by (18) will then be those there transpiring at the time $t+a r$ instead of at the time t. To obtain the effect at the time t it would therefore be necessary to calculate the potential from the distribution $\rho(x, y, z, t-a r)$ at the time t - ar. The potential

$$
\begin{align*}
U(x, y, z, t) & =\int \frac{\rho(x, y, z, t-(t r) d x d y d z}{\sqrt{(\xi-x)^{2}+(\eta-!/)^{2}+(\zeta-z)^{2}}} \tag{26}\\
& =\int \frac{\rho(t)}{r} d v+\int \frac{\rho(t-a r)-\rho(t)}{r} d v
\end{align*}
$$

where for brevity the variables x, y, z have been dropped in the seeond form, is called a returded potenticl as the time has been set back from t to $t-u r$. The returded potential sutisfies the equation

$$
\begin{equation*}
\frac{\hat{\partial}^{2} U}{\partial \xi^{2}}+\frac{\partial^{2} U}{\partial \eta^{2}}+\frac{\partial^{2} U}{\partial \zeta^{2}}-u^{2} \frac{\partial^{2} U}{\partial t^{2}}=-4 \pi \rho(\xi, \eta, \zeta, t) \text { or } 0 \tag{27}
\end{equation*}
$$

uecording as (ξ, η, ζ) lies within or outside the distribution ρ. There is really no need of the alternative statements because if (ξ, η, ζ) is outside, ρ vanishes. Hence a solution of the equation
is

$$
\begin{gathered}
\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}+\frac{\partial^{2} U}{\partial \tilde{n}^{2}}-u^{2} \frac{\partial^{2} U}{\partial t^{2}}=f(x, y, z, t) \\
l=\frac{-1}{4 \pi} \int \frac{f(x, y, \because, t-(\| r)}{r} d u
\end{gathered}
$$

The proof of the efuation (27) is relatively simple. For in vector notation,

$$
\begin{aligned}
\nabla \cdot \nabla U & =\nabla \cdot \nabla \int \frac{\rho(t)}{r} d v+\nabla \cdot \nabla \int \frac{\rho\left(t-\left(r^{\prime}\right)-\rho(t)\right.}{r} d v \\
& =-4 \pi \rho+\nabla \cdot \nabla \int \rho \frac{\rho\left(t-\left(t r^{r}\right)-\rho(t)\right.}{r} d v .
\end{aligned}
$$

The first rednction is made by Poisson's Equation. The second expression may be evaluated by differentiation moder the sign. For it should be remarked that $\rho(t-$ or $)-\rho(t)$ vanishes when $r=0$, and hence the order of the infinite in the integrand before amb after differentiation is less by unity than it was in the corresponding step of § 201. Them

$$
\nabla_{\xi} \int \frac{\rho\left(t-(t)^{\prime}\right)-\rho(t)}{r} d t=\int\left\{\frac{(-u) \rho^{\prime}\left(t-(t)^{\prime}\right) \Gamma_{\xi} t^{\prime}}{r}+\left\lceil\rho\left(t-\left(t^{\prime}\right)-\rho(t)\right] \Gamma_{\xi}^{1}\right\} d v,\right.
$$

$$
\begin{aligned}
& \nabla_{\xi} \cdot \nabla_{\xi} \int \frac{\rho(t-a r)-\rho(t)}{r} d v=\int\left\{\frac{(-a)^{2} \rho^{\prime \prime} \nabla_{\xi^{r}} \cdot \nabla_{\xi} r}{r}+\frac{(-a) \rho^{\prime} \nabla_{\xi} \cdot \nabla_{\xi^{r}}}{r}\right. \\
&\left.\quad+(-a) \rho^{\prime} \nabla_{\xi^{\prime}} r \cdot \nabla_{\xi} \frac{1}{r}+(-a) \rho^{\prime} \nabla_{\xi^{\prime}} \cdot \nabla_{\xi} \frac{1}{r}+[\rho(t-a r)-\rho(t)] \nabla_{\xi} \cdot \nabla_{\xi} \frac{1}{r}\right\} d v .
\end{aligned}
$$

But

$$
\nabla_{\xi}=-\nabla_{x} \text { and } \nabla r=\mathrm{r} / r \text { and } \nabla r^{-1}=-\mathrm{r} / r^{3} \quad \text { and } \quad \nabla \cdot \nabla r^{-1}=0
$$

Hence $\quad \nabla_{\xi} r \cdot \nabla_{\xi} r=1, \quad \nabla_{\xi} r \cdot \nabla_{\xi} r^{-1}=-r^{-2}, \quad \nabla_{\xi} \cdot \nabla_{\xi} r=2 r^{-1}$
and $\quad \Gamma \cdot \Gamma \int \frac{\rho(t-u r)-\rho(t)}{r} d v=\int \frac{t^{2} \rho^{\prime \prime}}{r} d v=\int \frac{a^{2}}{r} \frac{\partial^{2} \rho(t-a r)}{\partial t^{2}} d v=u^{2} \frac{\hat{c}^{2} U^{r}}{\partial t^{2}}$.
It was seen (p. 345) that if F is a vector function with no curl, that is, if $\Gamma \times F=0$, then $F \cdot \not \subset \mathbf{r}$ is an exact differential $\boldsymbol{\iota} \phi$; and \mathbf{F} may be expressed as the gradient of ϕ, that is, as $F=\nabla \phi$. This problem may also be solved by potentials. For suppose

$$
\begin{equation*}
\mathrm{F}=\Gamma \phi, \quad \text { then } \quad \Gamma \cdot \mathrm{F}=\Gamma \cdot \Gamma \phi, \quad \phi=\frac{-1}{4 \pi} \int \frac{\Gamma \cdot \mathrm{~F}}{r} d r . \tag{2S}
\end{equation*}
$$

It appears therefore that ϕ may be expressed as a potential. This solution for ϕ is less general than the former becanse it depents on the fact that the potential integral of $\Gamma \cdot F$ shall converge. Noreorer as the value of ϕ thus found is only a particular solution of $\Gamma \cdot F=\Gamma \cdot \Gamma \phi$, it should be proved that for this ϕ the relation $F=\Gamma \phi$ is actually satisfied. The proof will be given below. A similar methot may now be employed to show that if F is a vector function with no divergenere, that is, if $\Gamma \cdot F=0$, then F may be written as the "url of a vector function G, that is, as $F=\Gamma \times G$. For suppose

$$
\mathrm{F}=\nabla \times \mathrm{G}, \text { then } \Gamma \times \mathrm{F}=\Gamma \times \Gamma \times \mathrm{G}=\Gamma \Gamma \cdot \mathrm{G}-\Gamma \cdot \Gamma \mathrm{G}
$$

As G is to le determined, let it be supposed that $\Gamma \cdot G=0$.

$$
\begin{equation*}
\text { Then } \quad \mathrm{F}=\Gamma \times \mathrm{G} \text { gives } \mathrm{G}=\frac{1}{4 \pi} \int \frac{\Gamma \times F}{r} d r \text {. } \tag{29}
\end{equation*}
$$

Here again the solntion is valid only when the vector potential integral of $\Gamma \times \mathbf{F}$ eonverges, and it is further neressary to show that $\mathrm{F}=\Gamma \times \mathbf{G}$. The conditions of convergence are, howerer, satistied for the functions that usually arise in physics.

To amplify the treatment of (28) and (29), let it be shown that

$$
\nabla \phi=-\frac{1}{4 \pi} \nabla \int \frac{\nabla \cdot \mathbf{F}}{r} d v=\mathbf{F}, \quad \nabla \times \mathbf{G}=\frac{1}{4 \pi} \Gamma \times \int \frac{\nabla \times \mathbf{F}}{r} d v=\mathbf{F}
$$

By use of (22) it is possible to pass the differentiations under the sign of integration and apply them to the functions $\Gamma \cdot F$ and $\nabla \times F$, instead of to $1 / r$ as wouh be required by Leilmiz's Rule ($\$ 119$). Then

$$
\nabla \phi=-\frac{1}{4 \pi} \int \frac{\Gamma \Gamma \cdot \mathrm{~F}}{r} d x+\frac{1}{4 \pi} \iint_{r}^{\Gamma \cdot \mathrm{F}} d \mathrm{~S} .
$$

The surface integral extends over the surfaces of discontinuity of $\nabla \cdot F$, over a large (infinite) surface, and over an infinitesimal sphere surrounding $r=0$. It will be assumed that $\Gamma \cdot \mathrm{F}$ is such that the surface integral is infinitesimal. Now as $\nabla \times \mathrm{F}=0$, $\Gamma \times \Gamma \times F=0$ and $\Gamma \Gamma \cdot F=\Gamma \cdot \Gamma F$. Hence if F and its derivatives are continnons, a reference to (24) shows that

$$
\nabla \phi=-\frac{1}{4 \pi} \int \frac{\nabla \cdot \nabla \mathbf{F}}{r} d v=\mathbf{F}
$$

In like manner

$$
\Gamma \times \mathbf{G}=\frac{1}{4 \pi} \int \frac{\Gamma \times \Gamma \times \mathrm{F}}{r} d v-\frac{1}{4 \pi} \int \frac{\Gamma \times \mathrm{F}}{r} \times d \mathbf{S}=\frac{-1}{4 \pi} \int \frac{\nabla \cdot \nabla \mathrm{~F}}{r} d v=\mathrm{F} .
$$

Questions of continuity and the significance of the vanishing of the neglected surface integrals will not be further examined. The elementary facts concerning potentials are necessary knowledge for students of physics (especially electromagnetism) ; the detailed discussion of the subject, whether from its physical or mathematical side, may well be left to special treatises.

EXERCISES

1. Discuss the potential U and its derivative ΓC^{+}for the case of a uniform splere. hoth at external and internal points. and upon the surface.
2. Discuss the second derivatives of the potential, that is, the derivatives of the forces, at a surface of discontinuity of demsity.
3. If a distribution of matter is external to a sphere the averaqe value of the potential on the spherical surface is the value at the center; if it is intemal, the average value is the value obtained by concentrating all the masis at the center.
4. What density of distribution is indicated by the potential $\epsilon^{-r^{2}}$? What density of distribution gives a pertential proportional tw itself ?
5. In a space free of matter the determination of a putential which shall take assigned values on the boundary is equivalent to the problem of minimizing

$$
\frac{1}{2} \iiint\left[\binom{\hat{c} l^{*}}{\hat{c} \cdot}^{2}+\left(\frac{\hat{c} l^{+}}{\hat{c} y}\right)^{2}+\left(\frac{\hat{c} l^{*}}{\hat{c} z}\right)^{2}\right] d x d y d z=\frac{1}{2} \int \Gamma l^{r} \cdot \Gamma l^{\prime} d x .
$$

6. For Laplace sequation in the plane and for the logarithmic potential - $\log r$, develop the theory of potential interrals amalosmsily to the work of $\$ 201$ for Laplace's equation in space and for the fundamental solution $1 / r$.

BOOK LIST

A short list of typical books with hrief comments is given to airl the student of this text in selecting material for collateral reading or for more advanced study.

1. Some standard elementary differential and integral calculus.

For reference the book with which the student is familiar is probably preferable. It may be added that if the student has had the misfortune to take his caleuhs under a teacher who has not led him to acquire an easy formal knowletge of the subjeet, he will save a great deat of time in the long run if he makes up the defieiency soon and thoronghly; practice on the exereises in Granville's Calculus (Gimn and Company), or Osborne"s Calculus (Heath \& Co.), is especially recommended.
2. B. (). Peirce, Talle of Integrols (new edition). Gimu and Company.

This table is frequently cited in the text and is well-nigh indispensable to the student for constant reference.
3. Tannke-Emde, Funkionentufeln mit Formeln und Kurven. Teubner.

A very nseful table for any one who has momerical results to obtain from the analysis of arlvanced ealculus. There is very little duplieation between this table and the previous one.
4. Woons and Banner, Comse in Muthemutirs. (iinn and Company:
5. Byends, Difforentinl C'alrulus and Intergerl Colvolus. Ginn and Company.

6 Tonnuxten, Differentirl Culculus and Integrol Calculus. Macmillan.
7. Wimbamson, Differentinl Chentus and Integral. Calcmlus. Longmans.

These are standard works in two molumes on elementary and advanced caleulus. As sourees for additional problems and for emparison with the methods of the text they will prove useful for referenee.

There are a few books which inspire a positive affection for their style and beauty in addition to respect for their emtents, and this is one of those few. Dly Adranced Calculus is necessarily under considerable obligation to de la ValléePoussin"s Cours d' analyse. because I taught the subject out of that book for several years and estecm the work more highly than any of its compeers in any language.

9. Goursit, Cours d' anulyse. Gauthier-Villars.

10. Goursat-Hediele, Muthemuticel Analysis. Ginn and Company.

The latter is a translation of the first of the two volumes of the former. These, like the preceding five works, will be useful for collateral reading.

11. Bertrand, C'elmbl différentiel and Colcul intégral.

This oller French work marks in a certain sense the acme of calculus as a means of obtaining formal and momerical results. Methods of calculation are not now so prominent, and methods of the theory of functions are coming more to the fore. Whether this tendeney lasts or does not, Bertrand's Caleulus will remain an inspiration to all who eonsult it.

12. Fonssme Thentive on Differentinl Eqzutims. Macmillan.

As a text on the solution of differential equations Forsyth"s is probably the best. It may be used for work eomplementary and supplementary to Chapters VIII-X of this text.
13. Pieriont, Theory of Fienctions of Peal Farichles. (iinn and Company.

In some parts very advanced and difficult. but in others gnite elementary and readable, this work on rigorons analysis will be found useful in eomection with Chapter II and other theoretieal portions of our text.

14. Giblss-TVilson, Tertor Anctlysis. Sicribners.

Herein will he found a detailed and emmected treatment of vector methots mentioned here and there in this text and of fundamental importance to the mathematical physicist.

A text on the nse of the jotential in a wide range of physical problems. Like the following two works. it is adapted. and practically indiepensable. to all who stury higher mathematio's for the we they may make of it in practieal problems.
 Company.
of international repute. this book presents the metherls of analysis employed in the solution of the differential ("guations of physics. Like the foregonge it gives an extembed ilevelopment of some questions briefly treated in mur Chapter AX.
17. Winttaker, Mompon Anolysis. (ambridge University Press.

This is probally the only lowk in any language which develops and applies the methonds of the the ery of functions for the purpose of aleriving and studying the formal properties of the most impertant functions other than elementary which oceur in analysis directell toward the needs of the applied mathematician.

For the pure mathematician this work, written with a srace comparable only to that of de la Vallée-pousin's Calculus, will be as useful as it is charming.

INDEX

(The numbers refer to pages)

$a^{x}, a^{z}, 4,45,162$
Abel's theorem on uniformity, 438
Absolute convergence, of integrals, 357 , 369 ; of series, 422.441
Absolute value, of complex numbers, 154 ; of reals. 35 ; sum of, 36
Acceleration, in a line, 13 ; in general, 174 ; problems on. 186
Addition, of complex numbers, 154; of operators, 151 ; of rectors, 154,163
Adjoint equation, 240
Algebra. fundamental theorem of, 159 , $306,48 \cdot 2$; laws of, 15.3
Alternating series, $39,420,452$
$\mathrm{am}=\sin ^{-1} \mathrm{sn}, 507$
Ampères Law, 350
Ampliturle, function, 507; of complex numbers, 154 ; of harmonic motion, 188
Analytic continuation. 444, 543
Analytic function, 304, 435. . See Functions of a complex variable
Angle, as a line inteqral, 297, 308; at critical points, 491 ; between curves. 9 ; in space. 81 ; of a complex number, 154 ; solicl. 847
Angular velocity, 178, 34t;
Approximate formulas, 60, 77, 101, 38,
Approximations, 59, 1!5; sucerssive, 1!8. See Computation
Arc, differential of, 78, 80, 131; of ellipse. 77.514: of hyperbola. 516. Nee Length

Area, $8,10,25,67,77$; as a line integral, 288: 以上 rlouble intesration, 324, 329: directed, 167; element of. 80, 131, 175, 340,342 ; general idea, 311 ; of a surface. 33!
Areal velocity, 175
Argument of a complex number, 154
Associative law. of addition, 153,163 ; of multiplication, 150. 153
Asymptotic expansion, 390, 397, 456
Asymptotic expression for $n!, 383$
Asymptotic lines and directions, 144
Asymptotic series. $3!0$
Attraction. 31. 68, 308, 332. 348, 547; Law of Nature, 31. 307; motion muder, 190. 2f4. Šce Central Force and Potential

Average value, 333; of functions. 333 ; of a harmonic function, 531 ; over a surface, 340
Axes, right- or left-handerl, 84, 167
Axiom of contimuty, 34
B. See Bernoulli mumbers, Beta function

Bemonlli's equation, $20.5,210$
Bermoulli's numbers, 448, 456
Bernoulli's polynomials, 451
Bessel's equation. 248
Bessel's functions, 248, 3:3
Beta function. 378
Binomial theorem, finite remainder in, 60 ; infinite series, 423 , 425
Binormal, $8: 3$
Bomndary of a region, 87, 308, 311
Boundary values, 304. 541
Brachistoclnone. 404
Branch of a function, of one variable, 40 ; of two variables, 90 ; of a complex variable. $4!2$
Branch point, 49\%

C_{n}. See Cylinter functions

Calculation. See Computation, Evaluation, ete.
Calculus of variations, 400-418
Cartesian expression of vectors. 167
Catenary, 78, 1510; mevolverl, 404, 408
Cauchy's Formula. 30. 4!3. (i)
Canchy's Interral, 304, 477
Cauchy's Integral test, $4 \geq 1,4 \div 7$
Caustic, 142
Center, instantaneons, 74,178 ; of inversion. 5.88
Center of sravitr or mass motion of the, 176 ; of areas or laminas. 317,324 ; of points or masses, 168 ; of volumes, 328
Central force. 175. 24;
Centrode, fixed or movine. it
Chain, equilibrimm of , 185, 190, 409 ; motion of, 415
Change of variable, in derivatives, 12 , 14. 67. $98,10 \%$, 106: in ilificrential equations, 204. 235. 24.5; in integrals. 16. 21. 54. (55. 328. 830

Characteristic curves. 140,267
Characteristic strip,, 279

Charge, electric, 539
Charpit's method, 274
Circle, of curvature, 72 ; of convergence, 433, 437; of inversion, 538
Circuit, 89 ; equivalent, irreducible, redueible, 91
Circuit integrals, 204
Cirenlation, 345
Clairant's equation, 230 ; extenderl, 273
Closed curve, 308; area of. 289, 311; integral about a, 2!5. 344, 360. 477, 536 ; Stokes's formula, 345
Closed surface, exterior normal is positive. 167. 341; Gaussis formula, 342; Green's formula, 349,531 ; interral over a, 341,536 ; veetor area vanishes, 167
cn, 471, 505, 518
Commutative law, 149, 16a
Comparison test, for integrais, 357; for series, 420
Complanarity, condition of, 169
Complementary function, 218, 243
Complete elliptic integral, 507, 514, 77
Complete equation, 240
Complete solution, 270
Complex function, 157, 292
Complex mumbers, 153
Complex plane, $157,302,360,433$
Complex variable. See Functions of a
Components, 163, 167, 174, 301. 342. 507
Computation, 5 ; ; of a definite integral, 77 ; of Bernoulli's numbers, 447 ; of elliptic functions and integrals, 475 , $507,514,522$; of locrarithms, 59 ; of the solution of a differential equation, 195. See Approximations, Error's, etc

Concave, up or rown, 12, 143
Conclensation point, 38, 40
Condition, for an exact differential, 10.) ; of complanarity, 169 ; of integrability, 255 ; of parallelism, 166 : of perpendicularity, 81, 165. See luitial
Conformal representation, $4!90$
Conformal transformation, 182, 477, 538
Congruence of eurves. 141
Conjugate functions, 536
Conjugate imarinaries, 156,543
Connecterl. simply or multiply. 89
Consecutive prints. 72
Conservation of energs. 301
Conservative foree or system, 224,307
Constant, Euler's, 38.)
Constant function, 482
Constants. of integration, 15. 183 ; physical, 183 ; variation of , 24 ?
Constrained maxima and minima. 120 , 404
Contact, of curves. 71 ; ordor of. 72 ; of comies with cubic. 521; of plane and curve. 8:
Continuation, $444.478,542$

Continuity, axiom of, 34 ; equation of, 350 ; generalized, 44 ; of functions, 41, 88,476 ; of integrals, $52,281,3(58$; of series, 430 ; wniform, 42, 92, 476
Contour line or surface, 87
Convergence, absolute, $357,422,429$; asymptotic, 450 ; circle of, 433,437 ; of infinite integrals, 352 ; of products. 429 ; of series, 419 ; of suites of numbers, 39 ; of suites of functions, 430 ; nonuniform, 431 ; radius of , 433 ; uniform. 368, 431
Coordinates, curvilinear. 131 ; cylindrical, 79 ; polar, 14: spherical, 79
$\cos , \cos ^{-1}, 155,161,393.456$
cosh, cosh-1, 5, 6, 16, 22
Cosine ampliturle, 507. See en
Cosines, clirection, 81, 169) ; series of, 460 cot, coth, 447, 4.50, 4.)
Critical points, 477,491 ; orler of, 491
cse, 550. 557
Cubic curver. 519
Curl, $\nabla \times .845,349.418,553$
Curvature of a curve. 82 ; as a vector, 171; circle and radius of, 73. 1!8; problems on, 181
Currature of asurface, 144 ; linesuf, 14 ; mean and total, 148 ; principal ratii, 144
Curve, 308 ; area of, 311 ; intrinsic epration of, 240 ; of limited variation, 30.); quadrature of, 313; rectifiable, 811. see Curvature, Lensth, Torsiun, etc., and varions sperial curves
Curvilinear coördinates, 131
Curvilinear integral. See Line
Cuspidal elge, 142
Cuts, $90,302,362,497$
Cyeloid, 76, 404
Cylinder functions. 247. see Bessel
Cylindrical coörlinates. 79. 328
D. symbolic use. $152,214,279$

Darbonx*s Therrem, 51
Definite interrals, 24.52 ; change of variable, 54. (i.5; computation of. 77 ; Duhamel's Theorem. (i.) ; for a series, 4.51 ; infinite. 3.2 ; (wiroorlos Thenrem, 54. 6.5; Themem of the Mean, 25. 2!,
 Infinite, Canchy*s, ete.
Degree of diffrential erpations, 2.2
Del. $\Gamma .172,260,343,345,349$
1)elta amplitule. 507. See dn

De Muivre s Theorem. 15.5
bonse set. 39. 44. 50
bellsity, linear. 28 ; surfare. 315; rolume. 110. 326

 metric properties of. 7 : infinite, 46 ;
logarithmic, 5; normal, 97, 137, 172; of higher order, 11, 67, 102, 197; of integrals, $27,52,28: 3,370$; of products, $11,14,48$; of series term by term, 430 ; of vectors, 170 ; ordinary, $1,45,158$; partial. 03, 99 ; right or left, 46 ; Thenrem of the Mean, $8,10,46,94$. See Change of variable, Functions, ctc.
Derived units, 109
Determinants, finctional, 129 ; Wronskian, 241
Developable surface, $141,143,148,279$
1)ifferences. 49, 462
1)ifferentiable function. 45

Differential, 17, 64 : exact, 106, 254, 300; of are, $70,80.131$; of area, 80,131 ; of heat, 107, 294; of higher order, 67, 104 ; of surface, 340 ; of volume, 81 , 330 ; of work, 107, 292; partial, 95, 104; total, 95, $98,105,208,295$; vector, $171,293,342$
Differential equations, 180, 267; degree of, 228 ; orter of, 180 ; solution or integration of, 180 ; complete solution, 270 ; general solution, 201, 230, 269; infinite solution, 230 ; partienlar solntion, 230; singular solution, 231, 271. See Ordinary, Partial, ete.
Differential equations, of electric circuits, 222,226 ; of mechanics, 186, 263; Hamilton's. 112 ; Lagrange's, 112, 224, 413 ; of media, 417 ; of physics, 524 ; of strings, 18.)
Differential geometry, $78,131,143,412$
Differentiation, 1; Iogarithmic, 5; of implicit functions, 117 ; of integrals, 27.283 ; partial, 93 ; total, 95 ; under the sign, 281; vector. 170
Dimensions, higher. 33.5; physical, 109
Direction cosines, 81,169 ; of a line, 81 ; of a normal, 83 ; of a tangent, 81
Directional derivative, 97, 172
Discontinuity. amount of, 41,462 ; finite or infinite, 479
Dissipative function. 22.5, 307
Distance, shortest, 404, 414
Distributive law, 151, 165
Divergence, formula of, 342 ; of an integral, 352 ; of a series, 419 ; of a vector, 343, 553
Double integrals. $80.131,313,315,372$
Donble interration, 32, 285, 319
Double limits, 89, 430
Double points, 119
Double sums, 315
Double surface potential. .n.) 1
Doubly periodic functions, 417, 486, 504, 517 ; order of, 487. See p, sn, (rin, dn
Dhamel's Theorem, 28,63

1) min"s indicatrix, 145
$e=2.718 \cdots, 5,437$
E, complete elliptic integral, 77, 514
E-function, 62, 353,479
$E^{\prime}(\phi, k)$, second elliptic integral, 514
$e^{x} . e^{z}, 4,160,447,484,497$
Edge, cuspidal, 142
Elastic medium, 418
Electric currents, 222, 226,533
Electric images, 539
Electromagnetic theory, 350, 417
Element, lineal, 191, 231 ; of arc, 70, 80 ; of area, $80,131,344$; of surface, 340 ; of volume, 80,330 ; planar, 254, 267
Elementary functions, 162 ; characterized, 482, 497; developed, 450
Elimination, of constants, 183, 267; of functions, 269
Ellipse, are of, 7T, 514
Elliptic functions, $471,504,507,511,517$
Elliptic integrals. 503, 507, 511, 512, 517
Energy, conservation of, 301 ; dimensions of. 110 ; kinetic, 13, 101, 112, $178,224,413$; of a gas, $106,294,392$; of a lamina, 318 ; potential, 107, 224, 301, 413, 547; principle of, 264; work and, 293, 301
Entropy, 106, 294
Envelopes, of curves, 135, 141, 231 ; of lineal elements, 192 ; of planar elements, 254, 267; of planes, 140,142 ; of surfaces, $139,140,271$
Equation, arljoint, 240 ; algebraic, 159, 306,482 ; Bernonlli's, 205, 210 ; Clairaut's, 230,273 ; complete, 240 ; intrinsic, 240 ; Laplace's, 524 ; of continuity, 350 ; Poissons. 548 ; reduced, 240 ; Riccati's, 250 ; wave, 276
Equations. Hamilton"s, 112; Lagrange's, $112,225.413$. See Differential equations, Ordinary, Partial, ete.
Equicrescent variable, 48
Equilibrium of strings, 185, 190, 409
Equipotential line or surface, 87,533
Equivalent circuits, 91
Lirror, average. 390 ; fmetions, $\psi, 388$; mean square, 390 , 465 ; in target practice, 390 ; probable, 389 ; probability of an, 386
lirors of observation. 386 ; small, 101
Essential singularity, 47!, 481
Euler"s Constant, 385, 457
Euler's Formula, 108, 159
Euler's numbers, 450
Euler's transformation, 449
Evaluation of integrals, 284, 286, 360, 371. Nee Computation, etc.

Even function. 30
Evolute. 142, 234
Exact differential, 106, 254, 300
Exact differential equation, 207, 2:37, 254

Expansion, asymptotic, 390, 397, 456 ; by Taylor's or Maclaurin's Formnla. 57,305 ; by Taylor's or Maelaurin's Series, 435, 477; in ascending powers, 433,479 ; in descending powers, 390 , 397 , 456, 481; in exponentials, 46.), 467 ; in Legentre's polynomials, 466 ; in trisonometric functions, 458. 44.5; of solutions of differential equations, $198,250,525$. See special functions and Series
Exponential development, 465. 467
Exponential function. See e^{r}. e^{x}
F, complete elliptic integral, 507, 514
$F(\phi, k)=\operatorname{sn}^{-1} \sin \phi .507,514$
Factor, integrating, 207. 240,254
Factorial, 379
Fanily, of curves, $135,192.228$; of surfaces, 139, 140. See Envelope
Farallay's Law, 350
Finite discontinuity, 41, 462, 479
Flow, of electricity, 55:3 ; steady, 55 ?
Fluid differentiation. 101
Fluid motion, circulation. 345 : curl. 346 ; divergence, 343 ; dynamical equations, 3.51; equation of continuity, 3.30; irrotational, 533; velocity potential, $5: 3$; waves, $52 ?$
Fluid pressure, 28
Flux, of force, 308, 348; of fluid, 343
Focal point ant surface, 141
Force, 13, 2(83; as a rector. 173, 301 ; central, 17.5; generalizet, 2.24: prob) lems on. 18t5. 264. See Attraction
Form, indeterminate. 61. 8!!; permanence of. 2, 478; quatratic, 115, 14.5

Fonvier:s lnterral, 377, 4 763.528
Fourier's series. 4.58. 4(i.), 52.5
Fractions, partial, 20. 66, See Rational
Free maxima anf minima, $1 \geq 0$
Frenet's formulas. 84
Frontier, 34. See Bommlary
Function, average value of, 338 : analytic. 304; complementary. 218, 213: complex. 157. 242; conjurate. $533 ;$ dissipative 20.5.307; donbly periondic. 486; E-finnction, fiz: even, 80 ; Green, 53.5; harmonie. 530 ; interral. 43. ; ord. 30: of a complex variable. 1.57; perionlic. 458. 485) : 10tential. 301. See also most of these entries themselven, and others under Functions
Functional ilepencence. 129
Functional determinant. 12?
Functional equation, 4.5, 247. 252, 387
Functional indepentence. 12?
Functional relation. 12.?
Functions, saries of. 430 : table of elementary, 162. For special functions
see under their names or symbols; for special types see below
Functions defined by functional equations, cylinder or Bessel's, 247; exponential, 45, 387; Legendre's, 252
Functions defined by integrals, containing a parameter, 281, 368, 376; their contimuity, 281. 369; differentiation, 283, 370; interration, 285, 370. 373; evaluation. 284. 280, 371; Cauchy's integral, 304 ; Fonrier's integral, 377, 466 ; l'oisson's integral, 541, 546; potential interrals, 546 ; with variable limit, $27,53,209,255,295,298$; by inversion. $4!\% .503,517$; conjugate function. 533 . 542 ; special functions, Besselis, 394. 398; Beta ant Gamma, 378; error. $4.388 ; E(\phi . k)$. $514 ; F(\phi . k)$, 507 ; logarithm, 302, 306.497 ; p-function, 517 ; $\mathrm{sin}^{-1}, 307,498 ; \mathrm{sn}^{-1}, 435$, 503 ; $\tan ^{-1}$. 307. 418
Functions defined hy mapping, 543
Functions defined by properties, constant, 482 ; doubly periotic, 486 ; rational fraction, 48:); periodic or expmential. 484
Functions lletined by series, p-function. 487; Theta functions. 467
Functions of a complex variable, 158 , 163; analytic, 304, 43.5; angle of, 159; branch point, $4!2$; center of grasity of poles and roots, 482; Cauchy's interral. 30t. 477; conformal representation. 490 ; continuation of 444 . 4ic. 542 ; continuity, 158. tim: critical points. 477,491 ; defines conformal transformation, 476 : derivative of. 158.474 ; derivatives of all orders. 30.5; determines harmonic functions. $5: 3$: determines orthogonal trajecturies. 194; doubly periodic. 486 ; elementary. 162 ; essential singularits. 479. 481 : expansible in series. 43%; expansion at infinity. 481 ; finite discontinuity. 47 ! ; interral. 433 ; inteqral of, 300. 380; if constant. 482; if rational. 48:3; inverse function, 477; inversion of. . 43 ; lorarithmic flerivative. 48%; multiple valued, $4!2$; number of romts and 1ples. 482; perionlic. 48.5; inles of. 480 : principal part. 483 ; resiIdees. tes); residues of logarithmic derivative, 482: Riemamis surfaces, 493 ; roots of, 158.4×2 : singularities of, 476,479 ; Taylor's Formula, 30.5: uniformly continuous. 476 ; vanishes. 158. Sice varions special functions and topics
Functions of one real variable. 40 ; average value of, 333; branch of. 40 ; Cancly's theorem, 30,49 ; continuous,

41; contimuous over dense sets, 44 ; Darboux's Theorem, 51 ; derivative of, 45 ; lifferentiable, 45; clifferential, 64 , 67 ; discontimuity, 41. 462 ; expansion by Fourier's series. 462 : expansion by Legendre's polynomials. 46i6; expansion by Taylors Formula. 49, 55; expansion by Taylor's Series, 435; expression as Fourier's Integral. 87\%, 466 ; increasing. $7,45,310,462$; infinite. 41 ; infinite derivative, 46 ; integrable, $52,54.310$; integral of, 15, 24. 52 ; inverse of. 45 ; limited, 40 ; limit of, 41. 44; lower sum, 51 ; maxima and minima. $7,9,10,12,40,43,46,75$; multiple valued, 40 ; not decreasing, 54,310 ; of limitel variation, 54, 309, 462 ; oscillation. 40, 50; Rolle's Theorem. 8. 46 ; right-hand or left-hand derivative or limit, $41,40,49,462$; single valued, 40 ; theorems of the mean, $8,25,29,46,51,52,359$; uniformly continuous, 42 ; unlimiten, 40 ; upper sum, 51 ; variation of, 309, $\$ 01$. 410. See various special topics and functions
Functions of several real variables. 87 ; average value of , $3: 34,340$; branch of, 90 ; contimuity, 88 ; contour lines and surfaces, 87 ; differentiation, 117; directional derivative, 97 ; druble limits. 89. 430 ; expansion by Taylor*s Formula, 113; gradient. 172: harmonic, 530 ; homosenems. 107 ; implicit. 1 it; integral of, $315,826,33.5 .340$; integration, 319. 327 ; inverse. 124 : maxima and minima, 114.118. 120, 12.5; minimax, 115; multiple-valued.! ! ; nmmal derivative 97 ; over varims reqions, 91; potential. 547: single-valued, 87 ; solution of. 117 : space derivative. 172; total differential, 却; transformation hy. 131; Theorem of the Mean. :4; uniformly continuous, 11 ; variation of. ! $!$
Fundamental solution. is: 4
Fundamental theorem of alqebra, 1\%. 306
Fundanental units, 10 :
Gamma function, 378; as a product. 458; asymptotic expression. 38.3, 4.t; beta functions, 37 !) ; integrals in terms of. 380 ; logarithm of, 383 ; Stirling's Formula, 386
Gas. air. 189; molecules of a, 392
Gauss Formula, 342
(iauss's Integral. 348
grd. $\mathrm{gdd}^{-1}, 6,16,450$
General solution, 201, 230. 269)
Geodesics, 412

Geometric aldition. 163
Geometric language, 33, 33.5
Geometric series, 421
Geometry. See Curve, Differential, and all special topics
Gradient. $\nabla, 172,301$. See Del
Gravitation. See Attraction
Gravity. See Center
Green Function, 535, 542
Green's Formula. 349. 531
Green's Lemma, 342. 344
Gudermannian function, 6, 16, 450
Gyration, radius of, 334
Half periods of theta functions, 468
Hamilton's equations, 112
Hanilton's principle, 412
Harmonic functions. 330 ; a rerage value. 531 ; conjugate functions, 536 ; extension of, 5t2; fundamental solutions. 534: Green Function. 535; identity of, 534 ; inversion of, $53!$; maximm and minimum, 51 , 5. 4 ; Poisson's Integral. 541. 546; potential, 548 ; singularities. 534
Helieoid. 418
Helix, 17T, 404
Helmholtz, 3.51
Hirher dimensions, 335
Higher orler, differentials, 67,104 ; infinitesimals. 64, 3.0) ; intinites, 46
Homomeneity, physical. 10!? orrler of 107
Hommseneons differential equations, 244, 210, 230, 2396, 259, 2692, 278
Ifommenters functions, 107 ; Euler.s Formula, 108. 15:
Homke's law, 187
Hydrohynanics. , sce Fluid
Hypurbolic functions. 5. See cosh, sinh. etc.
Hypergenmetric serime, 398
Imaginary, 153, 216: conjugate, 15%
Imaginars powers. 161
lumpicit functions. 117-18\%. see Maxima and Minima. Minimas. ete.
Indefinite integral. 15, 53. sec Functions
Independence. functional. 12!! ; limear, 24.) ; of path, 24.8

Indeterminate forms, 61 ; L. IInepital's Rule e 61 ; in two variables, 248
Indicatrix, Dupin"s, I4.5
Indices. law of. 150
Induction. 308.348
Inequalities, $3 ;$
Inertia. See Moment
Infinite. 169 : become. $3:$
Infinite derivative. 46
Intinite inteqral. 352. Se Founctions
Intinite product, 429

Intinite series, 39, 419
Infinite solution, 230
Infinitesimal, 63; orter of, 63; higher order, 64 ; order higher, 356
Infinitesimal analysis, 68
Infinity, point at, 481
Inflection point, 12, 75 ; of cubic, 521
Instantaneous center, 74, 178
Integrability, condition of, 2.5.) ; of functions, 52, 368
Integral, Canchy's, 304; containing a parameter, 281, 305; definite. 24, 51; double, 315 ; elliptie, 503 ; Fourier's, 377 ; Gauss's, 348 ; higher, 335 ; indefinite, 15,53 ; infinite, 352 ; inversion of, $496 ;$ line, 288, 311, 400 ; Poisson's, 541 ; potential, 546 ; surface, 340 ; triple, 326. See Detinite, Functions, ete.
Integral functions, 433
Integral test, 421
Integrating factor, $207,240,254$
Integration, 15; along a curve, 2!1, 400; by parts, 19,307 ; by substitution, 21 ; constants of, 15,183 ; double, 82.320 ; of functions of a eomplex variable. 307 ; of raticats of a biquadratic. 518; of radicals of a quadratic, 22 ; of rational fractions, 20 ; over a surface. 340 ; term by term, 430 ; under the sign, 285, 370. See Differential equations, Ordinary, l'artial, ete.
Intrinsic equation, 240
Inverse function, 45,477 ; derivative of, 2, 14
Inverse operator, 150,214
Inversion. 537 ; of integrals, 496
Involute, 284
Irrational numbers. 2, 36
Irreducible (ircuits, $91,302,500$
Isoperimetric problem, 406
Iterated intersration, 327
Jacobian, 129, 330, 336, 476
Jumping rope. st1
Junction line, 492
Kelvin, 351
Kinematics, 7:3, 178
Kinetic encroy, of a chain, 415 ; of a lamina, 318; of a medimm, 416 ; of a particle, 13, 101 ; of a rigid body, 293; of systems, $112,205,413$

Lagrange's equations, 112, 225. 413
Lagrange's variation of constants, 243
Lamina, eenter of gravity of. 317; density of, 315 ; encrey of, 318 ; kinematies of 78,178 ; mass of, $32,: 316$; moment of inertia of, $32,315,321$; motion of, 414

Laplace's equation, $104,110,5 \pm 6,530$, 533,548
Law, Ampère's, 350; associative, 150 , 165 ; commutative, 149), 165 ; distributive, 150 , 165 ; Faraday"s. 350; Hooke's, 187; of indices, 150 ; of Nature, 307 ; parallelogram, 154, 163, 307 ; of the Mean, see Theorem
Laws, of algebra, 153 ; of motion, 13 , 173,264
Left-hand derivative, 46
Left-handed axes, 84, 167
Legendre's elliptic integrals, 503,511
Legendre's equation, 252 (Ex. 13δ) ; generalized, 526
Legendre's functions, 252
Legendre's polynomials, 252, 440, 466; generalizer, 527
Leibniz's Rule, 284
Leibniz's Theorem, 11, 14, 48
Length of are, $69,78,191,310$
Limit, 3.5 ; double. 89 ; of a quotient, 1. 4.5 ; of a rational fraction, 37 ; of a smm, 16, 50, 291
Limiter set or suite. 38
limiterl variation, 5.4. 309. 462
Line, direction of, 81, 169 ; tangent, 81 ; normal, 96 ; perpendicular, 81, 165
Line integral. 288, 298,311. 400 ; abont a closed circuit. 295, 344 ; (anchy's, 304 ; differential of, 2!91; for angle, 297; for area, 28!) for work, 203; in the eomplex plane, 360,497 ; independent of path, 298 ; on a Riemamssurface, 499, 503
Lineal alement, $191,228,231,261$
Lincar dependence or independence, 24.5

Linoas differential equations, 240 ; Bessel's, 248; tirst oriler. 20.). 207; Legentre s. 252 ; of physics. 2 zt : partial, 267, 275, 524; second order, 244; simultameons, 223 ; variation of constants. 243 ; with constant eocfficients, $214.223,275$
Linear operators, 151
Lines of eurvature, 146
Iog, 4, 11, 161, 30:, 44 , 497; logeos, log sin, log tan, 4.2日; - loge, 53.5
Logarithmic differentiation and derivative 5 ; of functions of a complex Variable, 48^{2}; of samma function, 382 : of theta functions, 474,512
Logarithms, computation of, 59

W!-test. 4.3:

Maclaurins Formula, 57. Se 'laylor's Maclaurins Series. 485
Mismituld of complex numbers, 154
Mapping regions, 543

Mass, 110 ; of lamina, 316, 32; of rod, 28 : of solid, 326 ; potential of a, 308, 345. 527 . See Center of gravity
Maxima and minima, constrained, 120 , 404 ; free, 120 ; of functions of one variable, $7,9,10,12,40,43,46,75$; of functions of several variables, $114,118,120$, 125; of barmonic functions, 531 ; of implicit funetions, $118,120,125$; of integrals, $400,404,409$; of sets of numbers, 38 ; relative, 120
Maxwell's assumption for gases, 390
Mayer's method, 2.58
Mean. See Theoren of the Mean
Mean curvature, 148
Mean error, 390
Mean square error, 3:0
Mean value, 333,340
Mean velocity, 392
Meehanics. See Equilibrium, Motion, etc.
Medimm, elastie, 418; ether, 417. See Fluid
Mensnier's Theorem, 145
Ninima, See Maxima ant minima
Minimax, 115, 119
Minimum surface, 415, 418
Moduhns, of complex number. 154 ; of elliptic funetions, $k, k^{\prime}, 505$
Molecular veloeities, 392
Moment, 176; of momentum, 176, 264, 325
Moment of inertia, eurve of minimm, 404; of a laminal, 32. 315, :324; of a partiele, 31 ; of a solin, 3:38, 381
Momentum, 13, 17:3: moment of, 176 , 264, 225; principle of, 264
Monge"s methorl, 276
Motion, eentral. 175. 264; 1Lamiltons equations, 112; Hamilton's l'rinciple, 412 ; in a plane, 2 fi4; Lagrange"s equations, 112, 225, 413: of a chain, 415; of a drumbend. atif: of a dynamical srstem, 413 : of a lamina, $78,178,414$; of a medium, 416; of the simple penduhm, 509) of swstems of particles. 175 ; reetilinear. $186 ;$ simple harmonic, 188. See Fluid. simall vibrations, ete.

Multiple-valued functions, 40,90 . $4!2$
Multiplication. by compler numbers, 155; of series. 442 ; of vectors, 164
Multiplier, 474; undetermined. 411
Multipliers, method of. 120. 126, 406, 411
Multiply connected regions. 89
Newtons: Second Law of Motion, 13, 173, 186
Normal, principal, 88 ; to a closed surface, 167. 341
Norn al derivative, 97, 137, 172

Normal line, 8,96
Normal plane, 181
Numbers, Bernoulli's, 448; complex, 153 ; Euler"s, 450 ; frontier, 34 ; interval of, 34 ; irrational, 2,36 ; real, 33 ; sets or suites of, 38

Observation, errors of, 380 ; small errors, 101
Odd function, 30
Operation, 149
Operational methods, $214,223,275,447$
Operator, 149, 155, 172 ; distributive or linear, 151 ; inverse. 150,214 ; incolntore, 152 ; vector-differentiating, 172, $260,343,345,349$
Order, of critical point, 491 ; of tlerivatives, 11 ; of tifferentials, 67 ; of differential eguations, 180; of donblyperiodic function. 487 ; of lomogeneity. 107; of infinitesimals, 63 ; of intinites, 66 ; of pole, 480
Ordinary differential equations, 203; approximate solutions, 195, 197; arising from partial, 534 ; Bernoulli's, 205 , 210 ; Clairant's, 230; exact, 207, 237; homogeneous, 204,210 . 230. 236 ; integrating factor for, 207 ; lineal element of, 191 ; linear, see Linear; of higher degree, 228; of higherorder, 234; problems involving, 179 ; Riceati's, 250 ; systems of, 223. 2(i); variables separable, 203. See solution
Orthoronal trajectories, plane, 194, 234, 266 ; space. 260
Orthomal transformation, 100
(Siculating circle. 73
()iseulating plane, 82, $140,145,171,412$
(Sigood's Theorem, 54, 65, 325
p-function, 487, 517
Pappusis Theorem. 382. 346
Parallelepiped, volume of, 169
Parallelism, condition of, 166
larallelogram. law of addition, 154, 163, 307 ; of periond, 486 ; vector area of, 16:5
Pammeter, 18.5; ; integrals with a, 281
lartial derivatives, 93; higher onder, 102
l'artial differentials, 95,104
lartial differential equations, 267 ; characteristics of, 267, 279: Charpit ${ }^{2}$ method, 274: for types of surfaces. 269 : Laplace's. 526 ; linear, 26T. 275. 524 ; Monge's method, $276 ;$ of physics. 524: Poision's, 548
lartial differentiation, 93. 102 ; change of variable, 98,103
Partial fractions, 20. (if
1articular solutions. 230,524

Path, independeney of, 298
Petal curve, 9
Period, half, 468; of elliptic functions, 471,486 ; of exponential function, 161; of theta functions, 468
Periodic functions, $161,458,484$
Permanence of form, 2,478
Physics, clifferential equations of, $5 \geq 4$
Planar element, 254, 267
Plane, normal, 81; tangent. 9f; osculating, $82,140,145,171.412$
Points, at infinity, 481; consecutive. 72 ; inflection, $12,75,521$; of condensation, 38,40 ; sets or suites of, 380 ; singular. 119, 476
Poisson's equation, 548
Poisson's Integral. 541
Polar coörlinates, 14. 79
Pole, 479 ; orler of, 480 ; residue of, 480 ; principal frart of, 483
Polynomials, Bernoulli's, 451; Legraldrees, $25 \cdot 2,440,466,527$; root of, $15!$, 482
Potential, 308, 332, 348. 527, 530. 539, 547 ; double surface, 5.51
Potential enersy, 107, 224. 301, 413
Potential function, 301, 547
Potential integrals, 546 ; retarled, 512; surface. 551
Power series. $428,433,477$; descenting, 389, 397. 481
Powers of complex numbers, 161
Pressiure, 28
Prineipal normal, 83
Principal part, 483
Principal ratlii ant sections, 144
Prineiple, Ilamilton's, 412; of energr. 264 ; of momentum, 264 ; of moment of momentum, 264 ; of permanence of form, 2. 478 ; of work and energy, 293
Probability, 387
Probable error. 389
Probluct, sealar, 164 ; vector, 16.5; of eomplex numbers, 15.5 ; of operators, $14!$; of series, 442
Prombcts, derivative of $11,14,48$; inlinite, $4 \geq 9$
l'rojection, 164, 167
(2)adratic form. 115. 145

Quadrature. 313. See Integration
quadruple integrals. 305
((uotient, limit of, 145 ; of differences. 30, 61; of differentials. (64, 67; wf 10wer. series, 446 ; of theta functions, 471

Raalues test. 424
Radius. of convergener. 433. 4:7; of mor-
 of tornion, 8 ?

Rates, 184
Ratio test, 422
Rational fiactions, characterization of, 483 ; decomposition of, 20,66 ; intesration of, 20 ; limit of, 37
leal variable. 35. See Functions
Rearrangement of series, 441
Rectifiable curves, 311
Retheed efpuation, 240
Reducibility of circuits, 91
Regions, varieties of, 89
lelation, functional, 129
Relative maxima and mimima, 120
Remainder, in asymptotic expansions, $3!0,398,456$; in 'Taylor's or Naclaurins Formula, 55, 306, 398
Resitues, 480, 487; of logarithmic derivatives, 482
Resultant. 154, 178 ; moment. 178
Retarderl potential, 5.52
leversion of series, 446
Revolution, of areas, 846 ; of curves, 332 ; volume of, 10
Rhumb line. 8 f
Riecati's equation, 250
licmann's surfaces, 493
Right-hamd derivative. 46
hisht-handed axes. 84, 167
Rigirl body, energy of a, 293 ; with a fixed point. 76
Rolle"s Therorem. 8, 46
loonts, of complex numbers. 155; of pulynomials, 150 , 159, 30ti, 412; of unity, $1.5 ;$
Ruled surface. 140
Sarlde-shaped surface. 143
Scalar product. $164.168,343$
sale of numbers. 83?
Series. as an interral. 451; asvmptotic. $390,3!7,4.56$; binomial. 423, 42.5; Fourier"s, 415; infinite. 39. 419; manipulation of. 440 ; of complex terms, 423 ; of functions, 430 ; 'Taylor's and
 4ia. Sife varions speecial functions
Sut or suite. 38, 488; dense, 39, 44, 50
Shortest distance. 404, 412
Simua functions, σ, σ_{α}.52?
Simple harmonic motion, 188
Simple pendulum, 509
Simply eomecterl region, 80. 204
Nimpsoñs lank. 77
Simultaneous differential equations. 223) 269
sin, sin-1. 3, 11, 21. 15). 167, 307. 4:31 453.499

Sine ampliturle. 507. Ner sls
sinsle-valued function. 40. 8 , $2,29.5$
singular joints. $11:$. $47 ;$
sinsular sulutions, $\because: 30,271$

Singularities, of functions of a eomplex variable, 476,479 ; of harmonic functions, 534
sinh, sinh ${ }^{-1}, 5,45$?
Slope, of a curve, 1 ; of a function, 301
Small errors, 101
Small vibrations, 224,415
sn, $\mathrm{sn}^{-1}, 471,475,503,507,511,517$
Solid angle, 347
Solution of differential equations, complete, 270 ; general, 269; infinite. 230; particular, 230,524; singular, 230, 271
Solution of implicit functions, 117, 183:
Speed, 178
Spherical coördinates, 79
Sterling's approximation, 386, 458
Stokes's Formula, 345, 418
Strings, equilibrium of 185
Subnormal and subtangent, 8
Substitution. See Change of variable
Suceessive approximations, 198
Successive differences, 49
Suite, of numbers or points, 38 ; of functions, 430 ; uniform convergence, 431
Sum, limit of a, 36, 24,51, 419 ; of a series, 419. See Addition, Definite integral, Series, etc.
Superposition of small vibrations, 226 , 525
Surface, area of, 67, 339; closed, 167, 341 ; curvature of, 144 ; developable. $141,143,148,279$; element of, 340 ; geodesies on, 412; minimum, 404, 415; normal to, 96, 341; Riemamn's, 493; rulerl, 140 ; tangent plane, 96 ; types of, 269 ; vector, 167 ; w-, 492
Surface interyal, 340,347
Symbolic metlools, 172, 214, 223, 260, 275, 447
Systems, conservative, 301; dynamical, 413
Systems of differential equations, $2 x .3$, 260
tan, $\tan ^{-1} \cdot 3,21,307.450,457,498$
'Tangent line, 8. 81. 84
Tangent plane, 96,170
tanh, tanh-1, 5, $6,450,501$
Taylor"s Formula, 55, 112, 152, 305, 477
${ }^{\prime}$ Taylor's Series, $197,435,477$
'Taylor's 'Theorem, 49
Test. Canchy"s, 421 ; eomparison, 420 ; Raabe"s, 424; ratio, 42\%; Welerstrass's M-, 432. 455
Test function. 3.55
Theorem of the Mean, for derivatives. 8. $10,46,94$; for integrals, $25,29,52$ 359
Thermodynamies, 106,294
Theta functions, $I I, I_{1}, \Theta, \Theta_{1}$, as Fomrier*s series, 467 ; as products, 471 ; define
elliptic functions, 471, 504; logarithmic derivative, 474,512 ; periods and half periods, 468 ; relations between spuares, 472 ; small thetas, $\theta, \theta_{68}, 523$; zeros, 469
Torsion, 83 ; radius of, 83,175
Total curvature, 148
Total differential, 95, 98, 105, 209, 295
Total differential equation. 2.54
'Total differentiation, 99
'Trajectory, 196; orthognial, 194, 234, 260
'Transformation, conformal, 132, 476 ; Enler's. 449 ; of inversion, 587; orthogonal. 100 ; of a plane, $1: 31$; to polars, 14. 79

Trigonometrie fumetions, 3, 161. 453
'Trigonometric series, 458, 465, 525
Triple integrals, 326 ; element of, 80
Umbilie, 148
Undetermined coefficients, 199
Undetermined multiplier, 120, 126, 406, 411
Uniform continuity, 42, !2, 476
Uniform convergence, 369, 431
Units, fundamental and derived, 109 ; dimensions of. log
Unity, roots of. 150 ;
Unlimited set or suite, 38
Vallée-Poussin, de la, 37:3, 555
Value. See Alnsolute, Average, Mean
Variable, eomplex. 157; equicrescent, 48 ; real. 3.5. See Change of, Functions Varialle limits for interrals, 27, 404
Variables. separable, 179, 203. Sce Functions
Variation, 17!) ; of a function, $3,10,54$; limiterl. 54. Bo! ; of constants, 243
Variations. calculus of. 401 ; of integrals. 401,410
Vector, 154, 16:3; aceleration, 174; area, 167,260 ; components of a, 163,167 . 174, 342; cmrature, 171; moment. 176; moment of momentum, 176 ; momentum, 173; torsion, 83, 171; velocity, 173
Yector aiddition, 154. 103
Vector differentiation, 170.260, 342, 345; foref, 173
Vemor functions, $2(90,293,300,342.345$, .5.) 1
Vector operatore Γ. see Del
Vector prombct. 16.5. 168. 345)
Vectors. addition of, 154,163 ; combplanar, 169: multiplication of, 155. 163 ; parallel, 166 ; perpentlenlar. 16. p $^{\text {: }}$ products of, $164,165.168,345$; 1mojections of, $164,167,342$

Velocity, 13, 173 ; angular, 346 ; areal, 175 ; of molecules, 392
Vibrations, small, 224, 526; superposition of, 226,524
Volume, center of gravity of, 328 ; element of, 80 ; of parallelepiperl, 169 ; of revolution, 10 ; under surfaces, 32 , 317,381 ; with parallel bases, 10
Vulume integral, 341
Wave equation, 276
Waves on water, 529

Weierstrass's integral, 517
Weierstrass"s M-test, 432
Weights, 333
Work, 107, 224, 292, 301; and energy, 293,412
Wr ronskian determinant, 241
z-plane, 157. 302, 360, 433; mapping the, $4!0.497,503,517,543$
Zeta functions, Z, 512; 广, 522
Zonal harmonies. See Legendre's polynomials

THE LIBRARY
UNIVERSITY OF CALIFORNIA
Santa Barbara

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW.

Series 9482

sham

AA 000118850

[^0]: * Here and throughout the work, where figures are not given, the reader should draw graphs to illustrate the statements. Training in making one's own illustrations, whether graphieal or analytic, is of great value.

[^1]: * It is frequently better to regard the quotient as the product $\quad 1 \cdot r-1$ and apply (6).
 \dagger For when $\Delta r^{\circ} \div 0$, then $\Delta y \doteq 0$ or $د!/ \Delta x$ could not approach a limit.

[^2]: * The student should keep on file his solutions of at least the important exameises: many subsequent exereises and considerahbe portions of the text depend on previons exereises.
 \dagger is is cnstomary, the sulseript e will hereafter be onitted and the symbol hog will denote the logarithn to the base e; any base other than e must be spectally designatend as such. This olservation is particnlarly nedessary with reference to the common base 10 used in computation.

[^3]: * The treatment of this limit is far from complete in the majority of texts. Reference for a careful presentation may, however, be made to (iranville's "Caleuhs," pp. 31-34, and Osgoon's "Cateulus," 11. 78-8". See also Ex. 1, (β), in § 160 luelow.

[^4]: * The construction of illnstrative figures is again left to the reater.
 \dagger The word "immediately" is necessary because the maxima or minima may be merely relutice: in the case of several maxima and minima in an interval, some of the maxima may actually be less than some of the minima.

[^5]: * The method of differentials may again be introluced if desired.

[^6]: * The ξ 's may eviflently be so chosen that the finite sum $\Sigma f(\xi) \Delta x$ is exactly efual to the area under the rurve ; but still it is neoessary to bet the intervals approach zero and thus replace the sum by an interal because the values of ξ which make the sum equal to the area are manown.
 \dagger This and similar problems, here treated by using the Theorem of the Mean for integrals, may be treated from the point of view of differentiation as in $\S 7$ or from that of Duhamel's or Osqood's Theorem as in sis 34,35 . It should be needless to state that in : my partimbar problem some one of the there methods is likely to be somewhat preferable to rither of the others. The reason for havige such emphasis upon the Theorem of the Noan here amd in the cxereises below is that the theorem is in itself very important and noeds to be thoremghly mastered.

[^7]: * The objert of this chapter is to set forth systematically, with attention to precision of statement and arouracy of proof, those fundamental definitions and theorems which lie at the hasis of calmuns and which have been given in the previons chapter from an intuitive rather than a eritical wont of view.
 \dagger Some illnstrative graph, will be given; the student should make many others.

[^8]: * This definition means what it says, and no more. Later, additional or different meanings may be assimed to infinits, but not now. Lowse and extraneons concepts in this eomnection are almost certain to introduce errors and confusion.

[^9]: * 'That the thenrem is true for ans bart of the interval from a to b if it is trime for the
 and that f^{\prime} exist, hold for any part of the int:rval if they hold for the whole.

[^10]: * It cammot be emphasized ton strongly that in the symben $0 / 0$ the 0 's are merely symbolic for a morle of variation just as x is: they are mot atual ors abd some other notation wond le fiar preferable, likewise for $0 \cdot x_{0}, 0^{n}$, etc.

[^11]: simplitication might le made ly taking one of the variables as t and one of the functions $i^{\prime \prime}$. f^{\prime}. ℓ^{\prime} wouth then he 1. Thas in Ex. is (ε), ?shoul he taken as t.

[^12]: * The discossion from this point to the end of $\S 45$ may be connected with that of §§ $123-126$

[^13]: frees : but the term " abselute" is best kept for the greatest of the maximat or least of the minima, ant the term "relative" for the other maximat amd minima.

[^14]:

[^15]:

[^16]:
 upon which the unit lengths are taken as the lengths of ce, β, γ respectively.

[^17]: * In applications, it is manal to denote vectors by heavy type and todenote the magnitudes of thase vectors hy corroponding italie letters.

[^18]: * Many prohlems in geometry mechanios, and physies are stated in terms of varia-
 introduring a constant k ralled a factor of proportionality to convert the variation into
 $x=k /!!$, and ι^{\prime} varies jointly with $!/$ and z becomes $. t-k!!z$.

[^19]: not by applyine (b) limetly.

[^20]: where

 d q_{i}. If there is to be a potential J^{*}, the differential $I W$ must be exact. It is frequently easy to find V^{*} directly in terms of $/ 1, \cdots, q_{n}$ mather than through the mediation of ($1, \cdots$, (n_{n} : when this is not so, it is usmally hetter to leave the equations in the form d iT iT at $\hat{c} \eta_{\imath}-\frac{\partial}{c} q_{i}=\left(\ell_{2}\right.$ mather thath to introduce j° and L.

[^21]: imbefinite.
 \dagger^{+}The same constant f^{\prime} of :any deximed funtion of ${ }^{\prime}$ maty be mserl in the different solutions beramse ${ }^{\prime}$ is an arbitrary ermstant and mon secialization is introdnced by its reprated hse in this way.

[^22]: * If n is not integral, both n ! and $(n+i)$! must be replaced (§ 147) by $\Gamma(n+1)$ and $\mathbf{I}^{\prime}(n+i+1)$.

[^23]: *Here the factor λ is mot an intergrating factor of (b) hat only of the redued ergation $P^{2} l_{x}+\left(n n_{!}-0\right.$.

[^24]: * It is possible to differentiate the given fybations repeatembe and eliminate all the
 then be trated hy the methonls of previous chapters; but this is rarely succesoful exefpt when the equation is linear.

[^25]: * It is hardly neressary to point out the fart that, as in the case of ordinary equations, extraneous factors may arise in the elimination, whether of ' ${ }_{2},{ }^{\prime}$, of of 1 , q.

[^26]: * This is one of the important differential equations of physies: other important equations and methods of treating them are disenssed in Chap. NX.

[^27]: * For the " volume of a solid with parallel bases and variable cross section" see Ex. 10, p. 10, and § 35 with Exs. 20, 2:3 thereunder.

[^28]: Which are or which are mot exabt. This difference corresponds to integrals which are and which are not imberendent of the path.

[^29]: * The result may alao he whtimed as in Ex. \& below.

[^30]: * Exercises involving polat coördinates may be postponed until $\S 124$ is reached, unless the student is arready somewhat familiar with the smbjeret.

[^31]: * Certain restrictions upon the functions and derivatives, as regards their becoming infinite and the like, must hold uphe and within the surface. It will be quite suthodent if the fimetions and darivatives remain finite and continuous, but such extreme conditions are by no means necessary.

[^32]: * Here and below the construction of figures is left to the reader.

[^33]: * It is also possible to intecrate ahoner a semicirele from if to - f, or to come batck direotly from $i f$ to the wiofin and sforate real from imaginary parts. These variations in methoul may be left as rixeroises.

[^34]: * It is of comrse assumed that $f(x, \alpha)$ is continnoms in (r, α) for all values of r and α mader comsideration, and in the theorem on differentiation it is further assmand that $f_{a}^{\prime}(x, n) \mathrm{is}$ comtinuons.
 \dagger It should be motioed, however, that although the conditions which have hean
 happen that the fumetion will be continums and that its derivative and intectal may be obtained bev operating under the sign althomghe convergence is not uniform. In this (aser a special investigation wombl have to be undertaken: and if no procese for justifying the continuty, intergation, or difforentiation eond be devised, it might be neressary in the coase of an integral oreorring in some application to assmme that the formal work led to the risht result if the result lowend reasonalle from the point of riew of the problem under discussion, - the chatace of getting an erroneous result would be tolerably smabl.

[^35]: * The themran masy he gemeralized hy allowing f(r. !!) to be tiseontimuns wer a finte nomber of emres cath of wheh is cut in only a finite limited number of peints bey lines paratlel to the axis. Moneoser, the function may elearly be allowed to change

 of $f^{\prime}(r,!!)$ lead to definite results, su will the intergrals of $f^{\prime}(x, y)$.

[^36]: * The derivation of the expression for ϕ is physical rather than logical in its argument. The real justitication or proof of the valiclity of the expression obtained is a powteriori and depends on the experience that in practice errors do follow the law (24).

[^37]: * The reader may now verify the fact that, with ϕ as in (24), the profuct (2n) is a maximum if the sum of the squares of the errors is a minimmm as demanded by ($\because 1$).

[^38]: * It should be remarkel that the beharior of a series near its beginning is of no con-
 and considered as a tinite sum sy and the series may be writtenas $\cos _{y}+{ }_{y} y+n y+1+\cdots$: it is the properties of "x + " $x+1+\cdots$ which are important, that is, the ultimate behavior of the series.

[^39]: * The θ is still a prober fraction since eath θ_{k} is. The interehange of the order of smmmation is lesitimate becanse the series wonld still converge if all signs were pisitive, since $\boldsymbol{L}^{-h^{-2}}$ is combregent.

[^40]: * By special devices sone Fourier expansions were found in Ex. 10, p. 439.

[^41]: * The study of the elliptic functions is continued in Chapter NIX.

[^42]: * For brevity the parenthesis about the argments of a function will frequently be onitted.

[^43]: * It may be proved that, in the rase of functions of a complex variable, the contimity of the derivative follows from its existence, but the proof will not be given here.

[^44]: * Prabtically this mas he acomplisherd for two sheets of paper by pasting gummed strips to the sheets which are to lor eomenterl across the cout.

[^45]: * The reader unfamiliar with Riemann surfaces (\$̧ 1st) may proceed at once to identify (I) aud (2) by Ex. 9, p. 45 and may take (1) and other necessary statements for granted.

[^46]: * It may be observed that the linear transformation (γ r $+\delta$) m $=(\gamma)+\beta$ (Ex. 15 , p. 1.7) has three arhitrary constants o $\gamma: \beta: \gamma: \delta$, and that by surh a transfomation any three points of the re-plane may be carriol into any threw points of the moplabe It is therefore a froper and trivial reatristion to assume that 0,1 , so are the points of the r-plathe which eorresemel to $1, I, A^{\prime}$:

