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PREFACE

It is probable that ahnost every teacher of advanced calculus feels the

need of a text suited to present conditions and adaptable to his use. To

write such a book is extremely difficult, for the attainments of students

who enter a second course in calculus are different, their needs are not

uniform, and the viewpoint of their teachers is no less varied. Yet in

view of the cost of time and money involved in producing an Advanced

Calculus, in proportion to the small number of students who will use it,

it seems that few teachers can afford the luxury of having their own

text ; and that it consequently devolves upon an author to take as un-

selfish and unprejudiced a view of the subject as possible, and, so far as

in him lies, to produce a book which shall have the maximum iiexibility

and adaptability. It was the recognition of tliis duty that has kept the

present work in a perpetual state of growth and modification during

five or six years of composition. Every attempt lias been made to write

in such a manner that the individual teacher may feel the minimum

embarrassment in picking and choosing what seems to him best to meet

the needs of any particular class.

As the aim of the book is to be a working text or laboratory manual

for classroom use rather than an artistic treatise on analysis, especial

attention has been given to the })reparation of numerous exercises which

should range all the way from those which require nothing but substi-

tution in certain formulas to those which embody important results

withheld from the text for the purpose of leaving the student some

vital bits of mathematics to develop. It has been fully recognized that

for the student of mathematics the work on advanced calculus falls in

a period of transition, — of adolescence,— in w^hich he must grow from

close reliance upon his book to a large reliance upon himself. More-

over, as a course in advanced calculus is the ultima Thule of the

mathematical voyages of most students of physics and engineering, it

is a])propriate that the text placed in the hands of those who seek that

goal should by its method cultivate in them the attitude of courageous
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iv PKEFACE

explorers, and in its extent supply not only their immediate needs, but

much that may be useful for later reference and independent study.

With the large necessities of the physicist and the growing require-

ments of the engineer, it is inevitable that the great majority of our

students of calculus should need to use their mathematics readily and

vigorously rather than with hesitation and rigor. Hence, although due

attention has been paid to modern questions of rigor, the chief desire

has been to conhrm and to extend the student's working knowledge of

those great algorisms of mathematics which are naturally associated

wnth the calculus. That the compositor should have set ^' vigor" where

"rigor" was written, might appear more amusing were it not for the

suggested antithesis that there may be many who set rigor where vigor

should be.

As I have had practically no assistance witli either tlie manuscript

or the proofs, I cannot expect that so large a Avork shall be free from

errors : I can only have faith that such errors as occur may not prove

seriously troublesome. To spend upon this book so much time and

energy which could have been reserved with keener pleasure for vari-

ous fields of research would have been too great a sacrifice, had it not

been for the hope that I might accomplish something which should be

of material assistance in solving one of the most difficult problems of

mathematical instruction, — that of advanced calculus.

EDWIN BIDWELL WILSON
Massachusetts Ixstitlte of Techxologv
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ADVA^^CED CALCULUS

INTRODUCTORY REVIEAV

CHAPTER I

REVIEW OF FUNDAMENTAL RULES

1. On differentiation. If the function /'(./•) is interpreted as the

curve y =/(./•),* the quotient of the increments Ay and A.r of the

dependent and independent variables measured from (.r^, y^) is

y-//o _ A// _ ^fi^l _ /(r^ + A.r)-,/Ya-^)

./•-.Ag A.r A./' Ax
'

^ ^

and represents the sfope of the secant through the points /^(a'Q, y^ and

^''(•% + '^'' ^0 + -^'/) '-*^^ ^^'^ curve. The limit approached by the quo-

tient \y/ilx when P remains fixed and Aa- = is the sIo2jg of the

tangent to the curve at the point P. This limit,

ii.„^=i.,. /<'-.+ ^;)-/^'»)
^/>,), (2)

is called the derirative of /(x) for the value x = .r^. As the derivative

may be computed for different points of the curve, it is customary to

speak of the derivative as itself a function of o: and write

A// /(.,. + A,T)-/(.r)

There are numerous notations for the derivative, for instance

^'(-) =^ = s = ^'^= '"''' = * - "f= "'J-

* Here and tliroiiglioiit the work, where figures are not given, the reader should draw
graphs to ilhistrate the statements. Training in making one's own iUustrations, whether
graphical or analytic, is of great value.
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2 I^iTRODUCTORY REVIEW

The first five show distinctly that the independent variarble is cr, Avhereas

the last three do not explicitly indicate the variable and should not be

used unless there is no chance of a misunderstanding.

2. The fundamental formulas of differential calculus are derived

directly from the application of the definition (2) or (3) and from a

few fundamental propositions in limits. First may be mentioned

dx ^ <lf-^ (;/) _ 1 _ 1

dij dij df(x) dy (P)

dx dx

D(u ± r) = Dii + Dv, D{uv) = uDv + vDu. (6)

lu\ rDi( — vDv * ^^ ^

^ (-; =—^.
—

' ^ c^") = ''^'" -' (")

It may be recalled that (4), which is the rule for differentiating a function of a

function, follows from the application of the theorem that the limit of a jfroduct is

Az Az A?/
the product of the limits to the fractional identity — = ~

; whence
Ax Ay Ax

Az ,. Az .. Au ,. ,
Az ,. Am

Inn — = Inn — • Inn ^= limt nm •

—

,
Ax = Ax A,/: = Ay Ax = Ax A,v i Ay Ax = Ax

which is equivalent to (4). Similarly, if y =/(x) and if x, as the inverse function

of ?/, be written x=f~'^{y) from analogy with ?/ = sinx and x — sin-'^y. the

relation (5) follows from the fact that Ax/Ay and Ay/Az are reciprocals. The next

three result from the immediate application of the theorems concerning limits of

sum.s, products, and quotients (§ 21). The rule for differentiating a power is derived

in case n is integral by the application of the binomial theorem.

Ay (x + Ax)"— X"
, n{n — \) ,. ,. x ,— = ^-^^ = ?(X"-i + —^ ^x"-2 Ax + • • • + A./-)»-i,

Ax Ax 2 !

-r -I V y 5

and the limit when Ax= is clearlj- )jx"-i. The result may be extended to rational

V
'-

values of the index ?i Iw writing n = —, y = x'l
,

y'' — xp and by differentiating

both sides of the equation and reducing. To prove that (7) still holds when ji is

irrational, it would be necessary to have a icorkahle definition of irrational numbers

and to develop tlie properties of sucli luimbers in greater detail than seems wise at

this point. The fornmla is therefore assumed in accordance with the princijAe of

permanence of form (§178). just as formulas like a"'a" = a"' + " of the theory of

exponents, which may readily be proved for rational bases and exponents, are

assumed without proof to hold also for irrational bases and exponents. See, how-

ever, §§ 18-25 and the exercises thereunder.

* It is frecpicntly better to regard the quotient as tlie proiluet x r-i and apply (6).

t For wlien A-r = 0, then Ay = or \ij/\:c could not approach a limit.



FUXDAMEXTAL KULES 3

3. Second may be mentioned the formulas for the derivatives of the

trigonometric and the inverse trigonometric functions.

D sin .T = cos 0I-, D cos x = — sin x, (8)

or D sin x — sin (x- + i tt), D cos x = cos (x + J tt), (8')

D tana; = sec-.r, D cot x = — csc^x, (9)

D sec X = sec a- tan x, D esc ,/ = — esc x cot r, (10)

D vers a' = sin x, where vers x =1 — cos x = 2 sin'-^ |^ rr, (11)

^ . 1 ±1 f + in (luadrants I, lY, ,^ ^.
i)sm-.. = -/=__, |_^, ^

,,
jj^j^^; (12)

r — in quadrants I, II, ,^ o\

i+" " III, IV,
^^'^)

/;cot-ia- = -^,, (14)

r + in quadrants I, III, ,^ w,

I-" " 11, iv; (1^)

r — in quadrants I, III, ,^ ,..

I + " " II, IV, ^ -*

r + in quadrants I, II, ,^ -^

V2J^^'' i-" " III, IV. ^-^'^

It may be recalled that to differentiate sinx the definition is applied. Then

Asinx sin (x + Ax) — sinx sin Ax 1— cos Ax .= = cos X sni X.
Ax Ax Ax Ax

It now is merely a question of evaluating the two limits which thus arise, namely,

sin Ax 1— cos Ax .^..
lim and lun (18)
Axio Ax A.< = Ax

From the properties of the circle it follows that these are respectively 1 and 0.

Hence the derivative of sinx is cosx. The derivative of cosx may be found in

like manner or from the identity cos x = sin (^ tt — x) . The results for all the other

trigonometric functions are derived by expressing the functions in terms of sin x

and cos x. And to treat the inverse functions, it is sufficient to recall the general

method in (5). Thus

if i/ = sin-ix, then siiiy = x.

Differentiate both sides of the latter equation and note that cos?/ = ± Vl — sin-y

= ± Vl — X- and the result for D sin-^x is innnediate. To ascertain which sign to

use with the radical, it is .sufficient to note that ± Vl — x- is cosy, which is po.sitive

when the angle ?/ = sin-ix is in quadrants I and IV, negative in II and III.

Similarly for the other inverse functions.
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EXERCISES *

1. Carry through the derivation of (7) when n —p/q, and review the proofs of

typical fonnulas selected from the list (5)-(17). Note that the formulas are often ^
given as DxU" = nu'^-^D^u, D^sinu = con uD^u, • • •, and may be derived in this

form directly from the definition (3).

2. Derive the two limits necessary for the differentiation of sinx.

3. Draw graphs of the inverse trigonometric functions and label the portions

of the curves which correspond to quadrants I, II, III, IV. Verify the sign in

(12)-(17) from the slope of the curves.

4. Find Z>tanx and I>cotx by applying the definition (3) directly.

5. Find D sinx by the identity sin u — sin v = 2 cos sin -
2 2

« u — V
6. Find D tan-^x by the identity tan-i u — tan-i v = tan-i and (3).

1 + uv

7. Differentiate the following expressions :

(a) CSC 2 X — cot 2 x, (^) I tan^x — tan x + x, (7) x cos-i x — Vl — x'-,

(5) .sec-i — . (e) sin-i , (f) x Va- — x- + a- .sin-i -
,

Vl - X- Vl + x- "

2rtx
(ij) a ver.s-i - — Vz ((X — x-, {0) cot-i —

^

tt X" — u- II

What trigonometric identities are suggested by the answers f(jr the following:

(«) .sec^x, {5) 1 . (^) rr-^' (^) 0-
VI - X- 1 + ^^-

8. In B. O. Peirce's " Short Table of Integrals" (revi.sed edition) differentiate the

right-hand members to confirm the formulas : Xos. 31, 45-47, 01-U7, 125, 127-128,

131-135, 1(J1-1G3, 214-210, 220, 200-2GU, 2U4-298, 300, 380-381, 38(i-3'.i4.

9. If X is measured in degrees, what is iisinx '?

4. The logarithmic, exponential, and hyperbolic functions. The

next set of formulas to be cited are

1 -1 loir,/' ,^^^
]j log^.r = -

,

D log„.r = —^

,

(19)

De' = e^, 7>/* = rr'loy,.'^t (20)

It may be recalled that the procedure for differentiating the logarithm is

X
Alo(j„x log„(x + Ax) — l()ir„x 1 , x + Ax 1, /, AxXaj

log„ — = - log,, 1 + '

Ax Ax Ax X X \ X

* The student should keep ou file his solutions of at least the important exercises:

many subsequent exercises and consideraljle portions of the text depend on previous

exercises.

t As is customary, the subscript e will IxTeafter be omitted and tlie .symbol log will

denote the logaritluu to tlie base e; any base other than f must Ije si)ecially designated

as such. This observation is particularly neces.sary with reference to the connnou Ijase

10 used in computation.
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If now x/Ax be set equal to A, the problem becomes that of evaluating

H'^j) 6 = 2.71828..-,* logioe = 0.4342y-4...; (21)

and hence if e be chosen as the base of the system, D log x takes the simple form

1/x. The exponential functions e^ and a^ may be regarded as the inverse functions

of logx and logaX in deducing (21). Further it should be noted that it is frequently

useful to take the logarithm of an expression before differentiating. This is known
as logarithmic differentiation and is used for products and complicated powers and

roots. Thus

if y = X'', then log?/ = x logx,

and -y' — 1 + logx or i/ = x''{l + higx).

It is the expression y'/y which is called the logarithmic derivative of y. An especially

noteworthy property of the function y = Ce^ is that the function and its derivative

are equal, y' = y ;
and more generally the function y = Ce^'-* in proportional to ita

derivative, y' = ky.

5. The lu/perhollc fiinrtlinui are the hyperbolic sine and cosine,

sinli ./• =
''''''
J

'

, cosh X =
'^'^

\''
; (22)

and the related functions tanh./-, coth .r, sech./', cs<;h.r, derived from

them by the same ratios as those by which the corresponding trigono-

metric functions are derived from sinx and cos.;c. From tliese defini-

tions in terms of exponentials follow the formulas :

cosh"-;/" — sinlr./' = 1, tanlr./' -f- seclr./' = 1, (23)

sinh (./• ± >/) = sinh x cosh y ± cosh x sinh
//, (24)

cosh (./' ± i/') = cosli X cosh // ± sinh x sinh //, (25)

, X fcosh.r-l-l . , .'
, fcosha- — 1 ,^^,

cosh - = + ^ ^ , snih - = ± ^ ^ , (26)

X* sinh ./• = cosh .r, y^* cosh ,/• = sinh r, (27)

D tanh ./ = sech-^:*', D coth x = — csch'-.r, (28)

D sech ,/• = — sech ./• tanh x, D csch ,/• = — csch ./• coth x. (29)

The inverse functions are expressible in terms of logarithms. Thus

e-K — l
y = sinh ^A", X = sinh ii = -— ,

?

e-y — 2 xe" — 1=0, e^=: X ± \fx- + 1.

* The treatment af this limit is far from complete in the majority of texts. Reference

for a careful presentation may, however, be made to (iranville's '" Caleulus," pp. .'31-54,

and Osgood's "Calculus," pp. 78-82. See also Ex. 1, (/3), in § IGo below.



6 I^sTRODUCTORY REVIEW

Here only the positive sign is available, for e^ is never negative. Hence

sinh-^ X = log {x -f- Vx^ + 1), any x, (30)

cosli~"^a:! = log(.x' ± V^:'^ — l), x > 1, (31)

tanh-^a; = - log ^-—^ , x^ <1, (32)

1 a'+l
coth-i x = ~ log -—- , x^ > 1, (33)

sech-i x = log ( - ±^— - 1
j

, a; < 1, (34)

any a-,

X >\,

x'Kl,

x' > 1,

X <1,

csch-i X = log ( - + J- + 1
j

, any x, (35)

J>sinli-^a;=
,

> i; cosli-^a; = —-^=, (36)
Va--^ + l Vx-^-l ^ ^

D tanh-ia- = ^
r,
= /> coth-ia^ = :; ;, (37)

1 — X' 1 — a- ^ '

i) sech-i X = =—— , D csch-i a- =
~

• (38)
a' VI — ./- a- V 1+ a;"

EXERCISES

1. Show by logarithmic differentiation that

1) {uvw ...) = ^ + - + — + ... {uvw . .),\uvw I

and hence derive the rule : To differentiate a product differentiate eacli factor

alone and add all the results thus obtained.

2. Sketcli the graphs of tlie hyperbolic functions, interpret tlie graphs as those

of the inverse functions, and verify tlie range of values assigned to x in (80)-(3.5).

3. Prove sundry of formulas (23)-(20) from the definitions (22).

4. Prove sundry of (30)-(;->8), checking the signs with care. In cases where

double signs remain, .state wlien each applies. Note that in (31) and (34) the

double sign may be j)laced before tlie log for the reason that the two expressions

are reciprocals.

5. Derive a fonnula for sinli); ± sinlir by applying (24) ; find a foruuda for

tanh \ X analogous to the trigonometric fonnula tan Ix = sinx/(l + c(.isx).

6. The (judermannian. The function 4> = gd.c. defined by the relations

sinh X = tan
(f>,

<p = gd x = tan-i sinli .c, — i, tt < < + \ tt,

is called the gudermanniau of x. Prove the set of fornndas :

cosh X = sec 0, taidi x = sin 0, cscli x = cot 0, etc.
;

IJ gd X = secli X, X = gd-i (p = log tan (', + J- tt), IJ gd-i 4> = sec
(f>.

7. Substitute the functions of (p in Kx. (> for their liyperbolic equivalents in

(23), (26), (27), and reduce to simple known trigonometric formulas.
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8. Differentiate the following expressions :

(a) (X + l)-(x + 2)-3(x + 3)-S {13)
x'o=-, (7) log,.(x + 1),

(5) X + logcos(x — 1 tt), (e) 2tan-ie^, (j") x — tanlix,

(ij) X tanh-ix + i log(l - x-), ((9)
—^ '-

m- + u-

9. Check sundry formulas of Peirce's "Table,"" pp. 1-01, 81-82.

6. Geometric properties of the derivative. As the quotient (1) and

its limit (2) give tlie slope of a secant and of the tangent, it appears

from graphical considerations that when the derivative is positive the

function is increasing with x, but decreasing when the derivative is

negative.* Hence to determine the regions in irhieh a f11 netion is in-

creasing or decreasing, one may Jind the deriratire and deterntine the

regions in which it is positive or negatirc.

One must, however, be careful not to apply this rule too blindly
; for in so

simple a case as/(x) = logx it is seen that/'(x) = 1/x is positive when x > and

negative when x < 0, and yet log x has no graph when x < and is not considered

as decreasing. Thus the formal derivative may be real wlien the function is not

real, and it is therefore best to make a rough sketch of the function to cfjrroborate

the evidence furnished by the examination of /'(x).

If oc^ is a value of a- such that immediately t upon one side of .r = x^

the function /"(.'') is increasing whereas immediately upon the other

side it is decreasing, the ordinate ij^=f(.r^) will be a maximum or

minimum or ,f (•'') ^^^^'- become positively or negatively infinite at :r^.

If the case where /(/') becomes infinite be ruled out, one may say that

tit e function vill hare a inininniin or niaxiiiuini at .r^ accurding as tlie

deriratire changes from negotice to jiositli'c or from j>ositire to ncgatlre

irlien x, moving in tlie positive direction, passes through the value x^.

Hence the tisual rule for determining maxima and minima, is to find

the roots of f'(x) = 0.

This rule, again, must not be applied blindly. For first, /'(x) may vanish where

there is no maxinuim or mininuim as in the case y = x'^ at x = where the deriva-

tive does not change sign; or second, /'(x) maj' change sign by becoming inlinite

as in the case ?/ = x^ at x = where the curve has a vertical cusp, i)oint down, and

a minimum ; or third, the function /(x) may be restricted to a given range of values

a ^ X ^ 6 for x and then the values /(a) and/(6) of the function at the ends of the

interval will in general be maxima or minima without implying that the deriva-

tive vanish. Thus although the derivative is highly usefvd in determining maxima
and minima, it should not be trusted to the complete exclusion of the corroborative

evidence furnished by a rough sketch of the curve y =/(x).

* The construction of illustrative figures is again left to the reader.

t The word " innnediately " is necessary because the niaxinui or ininima may be

merely relative; iu the case of several maxima and nnninia in an interval, sonu' of

the maxima may actually be less than some of the minima.
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7. The derivative may be used to express the equations of the tangent

and normal, the values of the subtangent and subnon/ial, and so on.

Equation of tangent, y-y^ = y[ (^ - ^o)' (39)

Equation of normal, (// — y^) i/[ -|- {.c — a-^) = 0, (40)

TM = subtangent = yjij^, MX = subnormal = y^ij[, (41)

6*7' = u'-intercept of tangent = j-^ — y^/y[, etc. (42)

The derivation of tliese results is sufficiently evi-

dent from the figure. It may be noted that the

subtangent, subnormal, etc., are numerical values

for a given point of the curve but may be regarded

as functions of x like the derivative.

In geometrical and jjliysical problems it is frequently necessary to

apply the definition of the derivative to finding the derivative of an

unknown function. For instance if A denote the

area under a curve and measured from a fixed

ordinate to a variable ordinate, A is surely a func-

tion A{x) of the abscissa x of the variable ordinate.

If the curve is rising, as in the figure, then q ,/ ^^^

MPQ'M' < A,l < MQP'M', or i/\x < A.I < (// + Ay) Ax-.

Divide by A./j and take tlie limit when Ax = 0. There results

Hence

lim // ^ Jim
A J- = Aa: = A.t'

,. AJ
lim
aj = o a.''

lim (// + A//).
AxiO

d.l

(43)

liolle^s Theorem and the Theorem if the Mrnn are two important

theorems on derivatives which will be treated in the next chapter but

may here V)e stated as evident from their geometric interpretation.

li()lh'"s Theorem states that : Jf " functuni has a di-rlmtu'e at rrt-ri/

Y

^ J

A
^'

B
O f

Fig. 1 Fi( Fi(

l>nint of (in Interval and f the fum-tioti ranishrs at the ends if tin- In-

ti'rral^ tlwn tlwre is at least one puird u-ithin the intercaJ at adiii-h tin'

drrieatiri' rmiishrs. This is illustrated in Fig. 1, in which there ai'e

two such }i()ints. The Theorem of the Mean states that: If a funitiun
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has a derivative at each point of an intcn-al, there is at least one itoint

in the interval such that the tawjent to the carce i/=f(:r') is jjarallel to

the chord of the intcrral. Tliis is illustrated in Fig. 2 in which there

is only one such point.

Again care must be exercised. In Fig. 3 the function vanislies at A and B but

there is no point at which the slope of the tangent is zero. This is not an excep-

tion or contradiction to Rolle's Theorem for the reason that the function does not

satisfy the conditions of the theorem. In fact at the point P, although there is a

tangent to the curve, there is no derivative ; the quotient (1) formed for the point P
becomes negatively infinite as Ac = from one side, positively infinite as Ax =
from the other side, and therefore does not approach a definite limit as is required

in the definition of a derivative. The hypothesis of the theorem is not satisfied and

there is no reason that the conclusion should hold.

EXERCISES

1. Determine the regions in which the following functions are increasing or

decreasing, sketch the graphs, and find the maxima and minima :

{a) i x^-x- + 2. (^) (x + l)^{x- of. (y) log {x" - 4),

(3) {x-2)Vx-l. (
e
) _ (X + 2) V 1 2 - x\ (f) x^ + ax + b.

2. The ellipse is r = Vx' + y- = e{d + x) referred to an origin at the focus.

Fin<l the maxima and minima of the focal radius r, and state why D^r = does

not give the solutions while D^r = does [the polar form of the ellipse being

r = k{l — e cos0)-i].

3. Take the ellipse as x-/(i.- + y-/b- = 1 and discuss the maxima and minima of

the central radius r =Vx- + (/-. Why does iJji- = give half the result when r is

expressed as a function of x. and why will JJ^r = give the whole result when
X = a cosX, y = ?;sinX and the ellipse is thus expressed in terms of the eccentric

angle '?

4. If 2/ = I'{x) is a polynomial in x such that the equation 7' {x) = has nudtiple

roots, show that P'{x) = for each multiple root. What more complete rL-lationsliip

can be stated and proved ?

5. Show that the triple relation 27 b~ -|- 4 a^ S determines completely the nature

of the roots of x^ + ax + b = 0, and state what corresponds to each possibility.

6. Define the angle beta-een two interserting curves. .Siiow that

tan = [/'(,/:„) - ;/'(./;,)] -^ [1 +r{x,)y'{x,)]

if y =f(x) and y = g ix) cut at the point [x^^. y^).

7. Find the subnormal and subtangent of the three curves

(a) y- = Ajjx, (p) X- - 4py, (y) x- + y" = a-.

8. The pedal curve. The locus of the foot of the perpendicular dropped from

a fixed point to a vaiiable tangent of a given curve is called the pedal of the given

curve with respect to the given point. Show that if the fixed point is the origin,

the pedal of y =f{x) may be obtained b}' eliminating Xy, y^, y'o from the equations

y -yn = y', ('• - a'u), yy'j + x = o. y,, = /{x„), y;^ = f'(x^).
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Find the pedal {a) of the hyperbola with respect to the center and (/3) of the

parabola with respect to the vertex and (7) the focus. Show (5) that the pedal of

the parabola with respect to any point is a cubic.

9. If the curve y =/(x) be revolved about the z-axis and if V(x) denote the

volume of revolution thus generated when measured from a fixed plane perpen-

dicular to the axis out to a variable plane perpendicular to the axis, show that

i^xV = -n-r •

10. ^lore generally if A {x) denote the area of the section cut from a solid by

a plane perpendicular to the x-axi.s, show that DxV = A (x).

11. If .4 {(p) denote the sectorial area of a plane curve r =f{<p) and be measured

from a fixed radius to a variable radius, show that D^A = | /•-.

12. If p, h. p are tlie density, height, pressure in a vertical column of air, show

that dp/dh =— p- If p = kp, show p — Ce-^''.

13. Draw a graph to illustrate an apparent exception to the Theorem of the

Mean analogous to the apparent exception to Rolle"s Theorem, and discuss.

14. Show that the analytic statement of the Theorem of the Mean forf(x) is

that a value x = ^ intermediate to a and h may be found such that

f{b) -f(a)=r (I) (6 - «), a < ^ < h.

15. Show that the semiaxis of an ellipse is a mean proportional between the

z-intercept of the tangent and the ab.sci.ssa of the point of contact.

16. Find the values of the length of the tangent (a) from the point of tangency

to the z-axis, (/3) to the y-axis. (7) the total length intercepted between the axes.

Consider the same problems for the normal (figure on page 8).

17. Find the angle of intersection of (a) y- = 2 nix and x- + y- = a-.

,„. o , 1
8r/^ X- y- for i)<K<h

(3) x" — 4 ay and y = , (7) = 1
, , ^ ^

18. A constant length is laid off along the normal to a parabf)la. Find the locus.

19. The length of the tangent to x^ + y'^ = a^ intercepted by the axes is con.stant.

20. The triangle formed by the asymptotes and any tangent t(j a hyperbola has

constant area.

21. Find the length FT of the tangent to x = Vc- — y- + c sech-^ (2/A).

22. Find tlie greate.st right cylinder inscribed in a given right cone.

23. Find the cylinder of greatest lateral .surface in.scribed in a sphere.

24. From a given circular sheet of metal cut out a sector that will form a cone

(without base) of maximum volume.

25. Jnin two points ^-1. B in the same side of a line to a point P uf the line in

such a way that the distance PA + PB shall be least.

26. Obtain the formula for the distance from a point to a line as the minimum
distance.

27. Test for maximum or minimum, {a) \i f(x) vanishes at the ends of an inter-

val and is positive within the interval and if f'{x) = has only one root in the

interval, that root indicates a maximum. Prove this by Rollers Theorem. Apply

it in Exs. 22-24. (^) If fix) becomes indefinitely great at the ends of an interval

and/'(x) = has only one root in the interval, that root indicates a uunimum.
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Prove by RoUe's Theorem, and apply in Exs. 25-26. These rules or various modi-

fications of them geierally suffice in practical problems to distinguish between

maxima and minimc without examining either the changes in sign of the first

derivative or the f/gn of the second derivative ; for generally there is only one

root oif'(x) = Oin the region considered.

28. Show chat x~^ sinx from x = to x = ^tt steadily decreases from 1 to 2/7r.

1 iz-
29. IfJ<z < 1, show (a) <x- log(l + x) < -z2, (/3)

-^— < x - log(l + «).
2 1 + X

1 i X-
30. if > X > — 1, show that - x^ < x — log (1 + x) <

"

2
°'

1 + x

P. Derivatives of higher order. The derivative of the derivative

regarded as itself a function of ./•) is the second derivative, and so on

,0 the nth. derivative. Customary notations are

:

/•"w,/-w, ,y^-'W; g>g' >£'•••

The Tith derivative of the sum or difference is the sum or difference of

the nth. derivatives. Eor the nth derivative of the product there is a

special formula known as LeUjnlz's Theorem. It is

D''(i(v) = D"u v + nir-^ uDc + ^^ ~ ir--uD'i- -\ ^uD^u. (44)

This result may be written in symbolic form as

Leibniz's Theorem D"-{uv) = {Du + Di-y, (44')

where it is to be understood that in expanding (/)?/ -f 7)/;)" the term

(Duy is to be replaced by L^ti and (Day by B'^ii = v. In other words

the powers refer to repeated differentiations.

A proof of (44) by induction will be found in § 27. The following proof is

interesting on account of its ingenuity. Note first that from

D (UI-) = uDv + vDu, D" (uv) = D (uDv) + D (i-Du),

and so on, it appears that D- {uv) consists of a sum of terms, in each of which there

are two differentiations, with numerical coefficients independent of w and v. In like

manner it is clear that

I)" (Mr) = CqD'>u V + C^D^-^uBv + • • • + C„ _i 7>wZ»« -i
i- + C„uD''v

is a sum of terms, in each of which there are ri differentiations, with coefficients C
independent of u and v. To determine the C"s any suitable functions u and v, say,

may be substituted. If the substitution be made and e'-^+"^^' be canceled,

e-(i-n).,-7)«(„,) = (1 + ,f)n = C, + C,a + . . . + C„_ia"-i + C„a-,

and hence the C"s are the coefficients in the binomial expansion of (1 + «)".
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function may be

Formula (4) for the derivative of a function ,^ crenerally

extended to higher derivatives by repeated applic '

. i
^^f

f\\

any desired chunrje of variable may he made hy tht^
^ functions

and (o). For if x and y be expressed in terms of , .i ^leriva-

of new variables u and r, it is alwaj's possible to obta^ ^.gggJQj^

fives D^y, D'^y, • in terms of Z),,?-, D^r, , and thus auj.^^.gggjoj^

F(x, y, y', y", • •) may be changed into an equivalent .^g ^\^q

^(ji, r, v', r", • • •) in the new variables. In each ease that a.p /n
transformations should be carried out by repeated application

and (o) rather than by substitution in any general formulas.

The following typical cases are illustrative of the method of change of variab

Suppose only the dependent variable y is to be changed to z defined as?/=/(2). Tb

d-y _ d /dy\ _ d /dz dy\ _ d-z dy dz / d dy\

dz^ dx \dx/ dx \dx dzj dx- dz dx \dx dz)

_ d-z dy dz / d dy dz\ _ d-z dy A^~\" d-y

, dx- dz dx \dz dz dx) dx" dz \dx) dz-

As the derivatives of y =f{z) are known, the derivative d-y/dx- has been expr

in terms of z and derivatives of z with respect to x. The third derivative won

found by repeating the process. If the X'roblem were to change the indepe

variable x to 2, defined by x =/(2),

dy _ dy dz _ dy (dx\-^ ^^"v _ '^ \<Ml ('^'\^
dx dz dx dz \dzj dx- dx\_dz \dzj J

d-y _ d-y dz /rZ.r\-i dy /dj-\-- dz d-x _ Vd-y dx d-x dy~\ A

dx- dz:- dx\dz) dz\dz/ dx dz- tdz- dz dz- dzj \<

The change is thus made as far as derivatives of the second order are conceri

the change of both dependent and independent variables was to be made, th

would be similar. Particularly useful changes are to find the derivatives of

when y and x are expressed parametrically as functions of t, or when both ;

pressed in terms of new variables r, <p as x — r cos (p. y = r sin (p. For these

see the exercises.

9. The mnrtn-ify of n nirrc y^f{.r^ is giv(Mi by the ta])le

:

if /"(''f) > ^, tlie curve is concave up at ,r =
.^v,,

if f"(.r^) < 0, the curve is concave down at :r = r^,

if /"('',) = 0, an inflection point at ,/• = .'.. (?)

Hence the criterion for distiyir/uisliiyir/ hrtireen muxiiini and ruinirini

if f{x^ = and /'"(.''J > 0, a minimum at ./• = .r^,,

if /''(./•.) = and .fV-'V,) < 0, a maximum at ,r = ./_,,

if /'(,/;^) = and /"(./'j = 0, neither max. nor min. (?
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The question points are necessary in the third line because the state-

ments are not always true unless /'"(a-^j) ^ (see Ex. 7 under § 39).

It may be recalled that the reason that the curve is concave up in case/"(XQ) >
is because the derivative /'(x) is then an increa.sing function in the neighborhood

of x — x^; whereas if /"(x^) < 0, the derivative /'(x) is a decreasing function and

the curve is convex up. It should be noted that concave up is not the same as

concave toward the x-axis, except when the curve is below the axis. AVith regard

to the use of the second derivative as a criterion for distinguishing between maxima
and minima, it should be stated that in practical examples the criterion is of rela-

tively small value. It is usually shorter to discuss the change of sign of /'(x) directly,

— and indeed in most cases either a rough graph of /(x) or the physical conditions

of the problem which calls for the determination of a maximum or minimum will

immediately serve to distinguish between them (see Ex. 27 above).

The second derivative is fundamental in dynamics. By definition the

ai-emge velocity v of a particle is the ratio of the space traversed to the

time consumed, v = s/t. The actual velocitij v at any time is the limit

of this ratio when the interval of time is diminished and approaches

zero as its limit. Thus

r = —^ and V = lim -— = -r • ('45")M At = 0^t clt ^ '

In like manner if a particle describes a straight line, say the cr-axis, the

(ivHrnge accelerntion f is the ratio of the increment of velocity to the

increment of time, and the actual accelerationf ^t any time is the limit

of this ratio as A^ = 0. Thus

/=— and /=hm — = — = —• (46)

By Newton's Second Law of JlTotion, the force actinfj on the particle is

equal to the rate of cliancje of momentum, with the time, momentum
being defined as the product of the mass and velocity. Thus

iljun-^ (h- d-r
I< =—;—- = m —r = ri> f = m ——; > (4

<

)

dt dt ' dt- ^ '

where it has been assumed in differentiating that the mass is constant,

as is usually the case. Hence (47) appears as the fundamental e(pia-

tion for rectilinear motion (see also §§ 79, 84). It may be noted that

dr d [1 A dT ,,_.

where 7'= i n)r~ denotes by definition the kinetic enercjy of the particle.

For comments see Ex. 6 following.
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EXERCISES

1. State and prove the extension of Leibniz's Theorem to products of tliree oi

more factors. Write out the square and cube of a trinomial.

2. Write, by Leibniz's Tlieorem, the second and third derivatives

:

(a) e^sinx, (/3) cosh x cos x, (7) x-e^logx.

3. Write the nth derivatives of tlie following functions, of which the last three

should first be simplified by division or separation into partial fractions.

(a) Vx + 1, (^) \og{ax + b), (7) (x2 + 1) (x + l)-3,

(5) cosax, (e) e^sinx, (f) (1 — x)/(l + x),

iv)
1 ... x^ + X 4-

1

, . /ax + IV

x^-l X — 1 \c

4. If y and x are each functions of i, show that

dx d"y dy d^x

d'^y dt df^ dt df^ x'y" — y'x''

dx2 /dx\3 X'3

\dt)

d^y x' {x'y'" — y'x'") — 3 x" (x'y" — y'x")

dx^ x'^

5. Find the inflection points of the curve x = 4 — 2 sin ^, ?/ = 4 — 2 cos </>.

6. Prove (47'). Hence infer that the force which is the time-derivative of the

momentum mv by (47) is also the space-derivative of the kinetic energy.

7. If A denote the area under a curve, as in (4.3), find dA/d9 for the curves

{a) y = a{l— cos 0), x = a{9 — sin 6), (fi)
x — a cos 0, y = b .sin 0.

8. Make the indicated change of variable in the following equations:

, , d-y 2x dy V r, . a
^^?/

(a) —^ H -\ = 0, X = tan z. Ans. —^ + y =: 0.

dx^ 1 + x^ dx (1 4- x-y- dzr

X = sm II.

Ans. ----1-1 = 0.
du"

9. Transformation to polar coordinates. Suppose that x = 7* cos 0, ?/= r sin </>. Then

dx dr . dy dr .— = — cos (p — r am 4>, — = — sm ^ + r cos </>,

d(f> dif) d(p d(p

, ,., , . ,. ,,. ,dy rPy r^^ + 2{D^r)"^ - rl)^r
and so on for higher derivatives. I md — and =

dx dx^ (cos <p B^r — r sin 4>)^

10. Generalize formula (5) for the differentiation of an inver.se function. Find

d"-x/dy" and d'^'x/dy^. Note that tliese may also be found from Ex. 4.

11. A point describes a circle with constant speed. Find the velocity and

acceleration of the projection of the point on any fixed diameter.

12. Prove —^ = 2 nv + 4v* (
—

)
— v (— ) if x = -• y — uv.

dx- \du/ du^ \du/ v
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10. The indefinite integral. To integrate a function /(p-) is to faid

a function F(3i-) tlte derivative of vlilch is f(x). The integral F(r) is

not uniquely determined by the integrand ,/'(•') '
^^^' ^^^y ^^^^ funcjtions

which differ merely by an additive constant have the same derivative.

In giving formulas for integration the constant may be omitted and

understood ; but in applications of integration to actual problems it

should always be inserted and must usually be determined to fit the

requirements of special conditions imposed upon the problem and

known as the initial conditions.

It must not be thought that the constant of integration always appears added to tlie

function F(x). It may be combined with F(x) so as to be somewhat disguised. Thus

logx, h.igx + C, logCx, log(x/(7)

are all integrals of 1/x, and all except the first have the constant of integration C,

although only in the second does it appear as formally additive. To illustrate the

determination of the constant by initial conditions, consider the problem of finding

the area under the curve y = cosx. By (43)

DjcA = y = cos X and hence A — sin x + C.

If the area is to be measured from the ordinate x = 0, then A = when x = 0, and

by direct substitution it is seen that C = 0. Hence A = sin x. But if the area be

measured from x=— |7r, then ^=0 when x= — Itt and C =1. Hence ^ = l + sinx.

In fact the area under a curve is not definite until the ordinate from which it is

measured is specified, and the constant is needed to allow the integral to fit this

initial condition.

11. The fundamental formulas of intcGfration are as follows:

(48)

I
e^ = e%

I
a-' = «71og a, (49)

J.i„.,.
= -cos., Jcos. = sin.. (60)

I
tan X = — log cos .', / cot .r = log sin x, (51)

I sec'a- = tan x, I csc'a; = — cot x, (o2)

I tan X sec x = sec x, j cot x esc x = — esc x, (53)

with formulas similar to (o0)-(5.3) for the hyperbolic functions. Alrio

/- :, — tan~^a- or — cot"\'', I :, ;
= tanh"^r or coth~'.r, (54)

1 + ^- J 1-x-
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/I . r ± 1 .—;== siii'^T 01" — COS '?
I

— = + sinh'^r, (55)
Vl-^-- J Vl+ ar

^

f 1 r ± 1

I

— = sec~^j'or — CSC \/', |
— =p sech'^j-, (56)

r ,^^ = + COsh-^r, r ^^— = qP CSch-l.r, (57)
J Vx'-l J .rVl + a-

/
,^

= vers"',/-, / sec./' = gd-^x = logtaiW - +':;)• (''58)

For the integrals expressed in terms of the inverse hyperbolic functions, the

logarithmic equivalents are sometimes preferable. This is not the case, however,

in the many instances in which the problem calls for immediate solution with

regard to x. Thus if y = I (1 + x-)~ % = sinh-i x + C, then x = sinh (y— C), and tiie

.solution is effected and may be translated into exponentials. This is not so easily

accomplished from the form y = log (x + v 1 + x-) + C. For this reason and

because the inverse hyperbolic functions are briefer and offer striking analogies

with the inverse trigonometric functions, it has been thought better to use them

in the text and allow the reader to make the neces.sary substitutions from the table

(.30)-(35) in case the logarithmic form is desired.

12. In addition to these special integrals, vvliich are consequences

of the corresponding formulas for differentiation, there are the general

rules of integration which arise from (4) and (6).

j^>f + r - ir) = j u^ j
r- j >r, (60)

vr= ( in-' -\-
I

ii'r. ((il)

Of these rules the second needs no cnnnnent and the tliird will be treated hitcr.

Especial attention should be given to the tirst. For instance suppose it were re-

(luired to integrate 2 logx/x. This does not fall under any of the given types
;
but

2
^^
_d (log x)2 d logx _ dz dy

X
°

d logx dx dy dx

Here (logx)- takes tlie place of z and logx takes the place of y. Tlie integral is

therefore (logx)- as may be verified by differentiation. In general, it may be

po.ssible to .see that a given integrand is separable into two factf)rs. of which one

is integrable when considered as a finiction of some function of x. while the other

is the derivative of that function. Then (-^O) applies. Other examples are :

I
t^'"'' cosx, rtan-ix/(l + x"), fx- sin (x'
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In the first, z = C' is integrable and as ?/ = sin a;, y' = cosx ; in tlie second, z = ?/ is

integrable and as y = tan-ix, 2/'= (1 + x-)-i
; in tlie third z = siny is integrable

and as ?/ = a;^, y' = 3x~. Tlie results are

c^'n^
I
(tan-i a;)2, — 1 cos (x'')

.

Tliis nietliod of integration at sight covers sucli a large percentage of the cases

that arise in geometry and physics that it must be thoroughly mastered.*

EXERCISES

1. Verify the fundamental integrals (48)-(58) and give the hyperbolic analogues

of (o0)-(53).

2. Tabulate tlie integrals here expressed in terms of inverse hyperbolic func-

tions by means of the corresponding logarithmic equivalents.

3. "Write the integrals of the following integrands at sight:

(/3) cot{ax + b), (7) tanhSx,{a} SlUrtX,

(5)
1

<l~ + X-

iv)
1

xlogx

(x) x^vox- + b,

{")
(x-1 - 1)^

X-

ip)
C6l + '*'"^C0SX,

Vx- — a" V2 ox — x^
1

X- X- + a-

(X) tanxsec"x, (/ic) cot x log sin x,

, , taidi-^x
, , 2 + loijx

(0) ;;-, (tt) —
,

1 — X" X

.sinx 1
(<,) _^^, (r)

Vcosx Vl — x-sin-ix

4. Integrate after making appropriate changes such as sin-x = ^ — J cos 2x
or sec-x = 1 4- tan"x, division of denominator into numerator, resolution of the

product of trigonometric functions into a sum, completing the square, and so on.

(a) COS-2X, (/3) sin^x. (7) tau*x,

;c2 +3x4-2.')'
^^' X4-2' ^^' versx

/ \
•'^ + •'>

tm (-'' + t"
, .

1

4 x2 - 5 X + 1 e^'^ + 1 V2 ax + x^

(k) sin 5x cos 2x + ], (X) sinln?(X sinluix, {/x) cosx cos 2x cos 3x,
, cj- _|_ ,; rm—l

(v) sec^x tanx — V2x, (o) ^ -, (tt)

x" + ax + b {(ix"> + b)i'

* The use of dilTerentials (§ .'55) is perliaps more familiar than tlio use of derivatives.

J dx J (l>i dx J di/

Then I
~ leg X d.i- = I - log X d log X = (log x)-.

The use of this notation is left optional with the reader; it has some advantages and

some disadvantages. The essential thing is to keep clearly in mind the fact tliat the

prol)lem is to be inspected with a view to detecting the function which will differentiate

into the given integrand.
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5. How are the following types integrated ?

(a) sin"'x co.s"x, m or n odd, or m and n even,

(^) tan"x or cot"x when n is an integer,

(7) sec"x or cscx when n is even,

(5) tan'"x seC'x or cot'"x csc"x, n even.

6. Explain the alternative foniis in (54)-(56) with all detail possible.

7. Find {a) the area under the parabola y- = A^px from x = to x = a ; also

(P) the corresponding volume of revolution. Find (7) the total volume of an ellij)-

soid of revolution (see Ex. 9, p. 10).

8. Show that the area under y = sin mz sin nx or y = cos itix cos nx from x =
to X = TT is zero if m and n are unequal integers but 4 ir if they are ecjual.

9. Find the sectorial area of r = a tan between the radii = and <p = ^tt.

10. Find the area of the (a) lemniscate ?•- = «- cos20 and (^3) cardioid r=l— cos0.

11. By Ex. 10, p. 10, find the volumes of these solids. Be careful to choose the

parallel planes so that A (x) may be found easily.

{a) The part cut off from a right circular cylinder Ijy a plane through a diameter

of one base and tangent to the other. Aim. 2/3 tt of the whole volume.

(j3) How much is cut off from a right circular cylimler by a plane tangent to its

lower base and inclined at an angle ff to the plane of the base '?

(7) A circle of radius b < a is revolved, about a line in its j^lane at a distance a

from its center, to generate a ring. Tlie volume of the ring is 2Tr'-ah'-.

(5) The axes of two equal cylinders of revolution of radius r intersect at right

angles. The volume common to the cylinders is 10 /""'/S.

12. If the cross section of a solid is A(x) = a,yC^ + a^x- + a.,x + a.^. a cubic in x,

the volume of the solid between two i)arallel planes is 1 h (Ji + i M + B') where h

is the altitude and B and B' are the bases and M is the middle section.

13. Show that f = tan-
J 1 + X- 1 — ex

.1 -g + c

13. Aids to integration. The majority of eases of integration wltich

arise in simple a})})Iieations of ealeulus may ])e treated by tlu^ method

of § 12. Of the remaining eases a large number eannot Ije integrated

at all in terms of the functions whieli have boon treated u}) to this

point. Thus it is impossiljle to ex})ress / = in terms

J V(l-./'-)(l-r/V-)

of elementary functions. One of the ehief reasons for introducing a

variety of new functions in higher analysis is to liave means for effeet-

ing the integrations called for by important applications. Tlic dis-

cussion of this matter cannot be taken u[) here. The problem of

integration from an elementary point of view calls for the tal)ula-

tion of some tleviees which Avill accomplish the integration for a
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wide variety of integrands integrable in terms of elementary functions.

The devices wliich will be treated are

:

Integration by parts, Resolution into partial fractions,

Various substitutions. Reference to tables of integrals.

Integration by parts is an application of (61) when written as

I
ur' = uv — i u'v. (61')

That is, it may happen that tlie integrand can be written as the prodnct uv' of two

factors, where v' is integrable and where u'v is also integrable. Then uv' is integrable.

For instance, logx is not integrated by the fundamental formulas ; but

I
logx =

I
logx • 1 = X logx —

I
x/x = X lugx — X.

Here log x is taken as u and 1 as v', so that i- is x. u' is 1/x, and u'v = 1 is immedi-

ately integrable. This method applies to the inverse trigonometric and hyperbolic

functions. Another example is

/ X sin X = — X cos x + / cos x = sin x — x cos x.

Here if x = w and sinx = v'. both v' and u'v =— cosx are integrable. If the choice

sin x— u and x= v' had been made, v' would have been integrable but u'v= l x- cosx

would have been less simple to integrate than the original integrand. Hence in

apph'ing integration by parts it is necessary to look ahead far enough to see that

both v' and u'v are integrable, or at any rate that v' is integrable and the integral

of u'v is simpler than the original integral.*

Frequentlj' integration by parts has to be applied .several times in succession. Thus

I
x'-e' = x-f —

I
2xe-'' if u — x-, v' = e^',

= x-c-'' — 2 xe' —
I

e'- ii u = x. v' = e^,

= x-t-'' — 2 xe-'' + 2e^.

Sometimes it may be applied in such a way as to lead back to the given integral

and thus afford an equation from which that integral can be obtained by solution.

For example,

I
e-'" cosx = e^ cosx + I e'' sinx if u = cosx, v' = e-"",

= e^(cosx + sinx) —
|
e-'cosx.

Hence | e^cosx = l e''(cosx + sinx).

* The nietliod of differentials may again be introduced if desired.
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14. For the integration of a rational fraction f {x) /F (x) where /and i^ are poly-

nomials in X, the fraction is first resolved into partial fractions. This is accom-

plished as follows. First if / is not of lower degree than F, divide F into / until the

remainder is of lower degree than F. The fraction f/F is thus resolved into the

sum of a polynomial (the quotient) and a fraction (the remainder divided by F)

of which the numerator is of lower degree than the denominator. As the polyno-

mial is integrable, it is merely necessary to consider fractions f/F where / is of

lower degree than F. Next it is a fundamental theorem of algebra that a poly-

nomial F may be resolved into linear and quadratic factors

F (x) = A: (x — a)" (x — h)P (x — c)v . . . {x" + mx + 71)1^ {x" + px + qy

,

where a, 6, c, • • are the real I'oots of the equation F{x)= and are of the respec-

tive multiplicities a, /3, 7, • • •, and where the quadratic factors when set (Mjual to

zero give the pairs of conjugate imaginary roots of F = 0, the multiplicities of the

imaginary roots being /x, v, . It is then a further theorem of algebra that the

fraction //F may be written as

fix) A, A., Aa B, Bb

F{x) X — a (x — a)- (x — u)'' x — h (x — h)li

M^x + N^ J/.X + X, + . . . + -"^^M-g + A>
^

_ _

X- 4- mx + n (x- + mx + )t)- (x- + mx + n)t^

where there is for each irreducible factor of F a term corresponding to the highest

power to which that factor occurs in F and also a term corresponding to every

lesser power. The coefficients A^ B, • • •, M, N, may be obtained by clearing

of fractions and equating coefficients of like powers of x, and solving the e(]uations
;

or they may be obtained by clearing of fractions, substituting for x as many dif-

ferent values as the degree of F, and solving the resulting equations.

When f/F has thus been resolved into partial fractions, the problem has been

reduced to the integration of each fraction, and this does not present serious

difficulty. The following two examples will illustrate tlie metliod of resolution

into partial fractions and of integration. Let it be recjuired to integrate

r x- + 1
, /- 2 x3 + (5

( :;
and ; r-

J X (X - 1) (X - 2) (X- + X + 1) J (X - 1)2 (X - Hf

The first fraction is expansible into partial fractions in the form

X- 4- 1 A B C J)x + F
= - + 7 + ^ +

X (x — 1) (x — 2) (x- + X -I- I) X X — 1 X — 2 X- 4- X + 1

Hence x- -1- 1 = ^ (x - 1) (x - 2) (x'- -1- x + 1) + Bx (x - 2) (x- -1- x -|- 1)

-t- Cx (X - 1) (x"- -^ X 4- 1) + {Dx 4- E) X (X - ]) (x - 2).

Rather than multiply out and equate coefficients, let 0, 1. 2. — 1. — 2 be substi-

tuted. Then

1 = 2.1, 2 = - 3 /.', 5 = 14 C, D-E = 1/21, K -•ll)='i /7,

r X- + 1 — C ^ C ~ C ^ r ix + 5

J x(x-l)(x-2)(x-4-^+l) ~ -' 2 X
~ J ;J (X ^Y) J ] 4 (X - 2) J 21 (./,- + .'• + !)

1 2 o 2 2 L'x+1
= ~logx- log(x — 1)+ Aoiiix— 2) lo<r(x2 4-x 4-1) tau~-

2
^

S 14 21 7v'o VS
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In the second case the form to be assumed for the expansion is

2 x« + 6 A B C D E
+ -

Z7:, + ^, ^ + z ^ +
(X - 1)- (X - 3)'^ X - 1 (X - 1)2 (X - 3) (x - 3)- (X - 3)3

2x3 + 6 = ^(x-l)(x-3)3 + B(x-3)3 + C'(x-l)2(x-3)2

+ i> (X - 1)- (x - 3) + £ (X - 1)2.

The substitution of 1, 3, 0, 2, 4 gives the equations

8=-8 7>, 60 = 4£', 9.4 + 3C'-Z) + 12 = 0,

.4-C' + Z> + = 0, ^ + 3C + 3Z) = 0.

The solutions are — 9/4, — 1, + 9/4, — 3/2, 15, and the integral becomes

/
2x3 + 9, , ,, 1 9, ,- - log (X - 1) + h - log (x - 3)

(X - 1)- (X - 3)3 4 ' X - 1 4

3 15
+

2 (X - 3) 2 (X - 3)-

The importance of the fact that the method of partial fractions shows that any

rational fraction may he integrated and, moreover, that the integral may at most con-

sist of a rational part plus the logarithm of a rational fraction plus the inverse

tangent of a rational fraction should not be overlooked. Taken with the method

of substitution it establishes very wide categories of integrands wliich are inte-

grate in terms of elementary functions, and effects their integration even though

by a somewhat laborious method.

15. The metJiod of substitution depends on the identity

r/(x)= r/[^(2/)]^ if x = <t>{y), (59')
Jx Jy dy

which is allied to (59). To show that the integral on the right with respect to y

is the integral of /(x) with respect to x it is merely necessary to show that its

derivative with respect to x is /(x). By definition of integration,

'^ r j-r /XT C^X .r , XT <^^x

dyJf/ dy dy

and y f n<P{y)]j =n<P{y)]~-'^=n<p{!/)]
dxJy dy dy dx

by (4). The identity is therefore proved. The method of integration by substitu-

tion is in fact seen to be merely such a systematizatiou of the method based on

(59) and set forth in § 12 as will make it practicable for more complicated problems.

Again, differentials may be used if preferred.

Let E denote a rational function. To effect the integratifju of

I
sinx Zi (sin-x, cosx), let cosx = ?/, then l—It(\—y-^y);

I
cosx l?(cos'-x, sinx), let sin x = ?/, then j R{1 — y'-, y)

;

fn(^^'^]= fj:{tiiux), let tanx = 2/, then fj^^^"*-
J Vcosx/ -^ '^y I -

I
7? (sinx, cosx), let tan- = t/, then I ^'(-^

+ 2/-

2?/ 1—2/-

-+y- l+y-/l + y-

The last substitution renders any rational function of sin x and cos x rational in

the variable y ; it sliould not be used, however, if the previous ones are applicable

— 't is almost certain to give a more difficult final rational fraction to integrate.
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A large number of geometric problems give integrands which are rational in x

and in some one of the radicals Va- + x-, Va- — x^, Vx- — a-. These may be con-

verted into trigonometric or hyperbolic integrands by the following substitutions:

I
R (x, Vu- — X-) X = a sin y, ( R (a sin y, a cos y) a cos y

;

I tan y, j R {a tan y, a sec y) a sec- y
'J y

\
X = a sinh ?/, |

R (a sinh ?/, a cosh ?/) a cosh y ;

I

X = a sec 2/, |
fi (rx .sec y, a tan ?/) a sec ?/ tan ?/

I
X = a cosh ?/,

I
i? (« cosii y, a sinh y) a sinh ?/.

It frequently turns out that the integrals on the right are easily obtained by

methods already given ; otherwise they can be treated by the substitutions above.

In addition to these substitutions there are a large number of others which are

applied under specific conditions. Many of them will be found among the exer-

cises. Moreover, it frequently happens that an integrand, which does not come

under any of the standard types for which substitutions are indicated, is none the

less integrable by some substitution which the form of the integrand will suggest.

Tables of integrals, giving the integrals of a large number of integrands, have

been constructed by using various methods of integration. B. O. Peirce's " Short

Table of Integrals " may be cited. If the particular integrand which is desired does

not occur in the Table, it may be possible to devise some substitution which will

reduce it to a tabulated form. In the Table are also given a large number of

reduction fornuilas (for the most part deduced by means of integration by parts)

which accomplish the successive simplification of integrands which could perhaps

be treated by other methods, but only with an excessive amount of labor. Several

of these reduction fornuilas are cited among the exercises. Although the Table is

useful in performing integrations and indeed makes it to a large extent unneces-

sary to learn the various methods of integration, the exercises immediately below,

which are constructed for the purpose of illustrating methods of integration, should

be done without the aid of a Table.

EXERCISES

1. Integrate the following by parts :

(a) /xcoshx, (^)
I
tan-ix, (7) Cx"'\ogx,

^ ^J x^ ^ ^J il + xf ''^J xix^-a^)^
2. If P(x) is a polynomial and P'{x), P"{x), its derivatives, show

(a) fP{x) e"-'- = - e"-^ \p (x) - ^- P'(x) + - P"{x) 1

,

•^ a L " a- J

(iS ) fl' (X) cos ax = ^ sin cu: \p (x) - ^ P'\x) + - P"(j\ 1
J " L "' "' J

+ - cos nx \^ T"(x) - - P"'{x) + \ P-{x) 1,
(( \_(i a' r(^ J

and (7) derive a similar result for tlic integrand P [x) sinr/x.



(a)
I

f'^' m\hx =
o- + h-

&"•* (b sin bx + a cos bx)
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3. By successive integration by parts and subsequent solution, sliow

t"-'' (a sin bx — b cos bx)
r" Mil I/.C =

{(3) fe<'-cn^bx
,^ a- + b-

(7) / xc--'- cosx = 2Ve--»'[5x(sina; + 2 cosx) — 4 sinx — 3 cosx].

4. Pr(jve by integration by parts the reduction fornudas

, ^ r sin"'+ix cos"-ix n — lr.
(a)

I
sni"'xcos"x = 1 I sin'"x cos"--x,

,,,, r, tan"'-ix sec"x »( — 1 r
(fi)

I
tan"'xsec"x =

| tan" --x sec" x,^ m + ji — 1 ?/i + )i — 1 J

(7) r^^-—^— r

—

-— +i^n-s) f
—'—

-

J (x^ + a^y 2 {n - I) a- 1 (x'-= + a-)''-i ^ ' J (x- + a-)" -1

(5) f-^^= "^^ m+lr^c^
J {\0'j:x)» ()i- l)(logx)«-i n-lJ (iogx)"-i

5. Integrate by decomposition into partial fractions :

(5) r
'"

,

^4x^-3x4-1^
in f—'^ J (x + 2)-{x + 1) -J 2 x^ + x3 ^ ' J x{l + x-f

6. Integrate by trigonometric or liyperbolic substitutii)n :

(a) jx'a- - X-. {(i) JVx^ - u\ (7) fVa- + x-,

(5)/--L^, (e)/^^^^, (r)/*'^^.
-'0/-X-)i J X ^ xi

7. Find the areas of tliese curves and tlieir volumes of revulution :

(«) xt + (/? = «t, (/J) «v- = "-.'•^ - j«. (7) ('^y+(0'=i.

8. Integrate by converting to a rational algebraic fraction :

r sinSx ,„^ T cosSx , . r sin2x
U^) I r-' (3) h-. ; ; ' (7) I ; ;J a- C(,>s- X + b- sin- x J (/- cos- x -f- '> sin- x J a- cos- x -f b'- sin- x

r 1 , .. r 1 r 1 — cos X
(5) j

, (e)
I

, (f) I

J a + 6c(isx «^ f< + '^ciisx-f- csinx J 1 -\- sinx

9. SliDWthat
I

ii fx. ^ (( + bx + ex-) maybe treated by trigonometric substitu-

tion : distinguish between b- — 4 dc ^ 0.

10. Sliow that
I
R( X. \'-^

) is made rational bv w" = ~'^— • Hence infer
J \ ' \ rx + d/

'

rx + d

" i'lx + b\
. ax + b

\i I is made rational bv y" =
ex + df ex + tZ

that
I
/i(x. A^(x — a) (x — /3)) is rationalized bv y- = "- This accomplishes

J X — a
the integration of 7.'(x. vo + bx + ex-) when the roots of a + bx + rx- = are

real, that is, when b- — 4 ((c > 0.
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11 r., , r,-, r /ax + bX'" lax-\-hY 1 , ,

11. Show that I U\ x. 1 . , • • , where the exponents m. n,
J I

' \cx + dj \cx + d/ '

J

• • • are rational, is rationalized by y^ = if k is so chosen that kin^ kn, • • are
ex + d

integers.

12. Show that
f

{a + by)Pi/i may be rationalized if p or g or p + ^ is an integer.

By setting x" = y show that / x'" (a + bx") >' may be reduced to the above type and

. . , , ,
m + 1 ?H + 1 . . ,

hence is mtei^rable when or p or \- p is integral.
n n

13. If the roots of a + hx + ex" = are imaginary, / li (x, Va + hx + ex-) may

be rationalized by ^ = v ({ + bx + ex- =F -c Vc.

14. Integrate the following.

•^Vx-l -^l+vx -^Vl + J^-Vl + x

1
(5)r-£L., (e) f J^ , (of

V(l — x'-)=' "^ (x — d) Va + 5x + ex-

*^X(1 + X2)2
^ X ^

V2 X- + X
, ^ r a-^ ^1 — a;^

Vl-x^

15. In view of Ex. 12 discuss the integrability of :

, s r , . r . C ic™ r let X = ay-.
(cr) I sin'"xcos"x, let sinx=Vy, (/3) I —^= -^

•^ *^ V'ax — X- t
"^" V «x - X- = xy.

16. Apply the reduction foruuihvs, Table, p. 60, to show that the final integral for

r x'" . /" 1 r X r ^

I
IS I

— or
I

—r==z or I ^z^^z;
-J Vl - X- -^ Vl - X- "^ Vl - X- -^ X Vl - X-

according as ?rt is even or odd and positive or odd and negative.

17. Trove sundrv of the formulas of Peirce's Table.

18. Show that if A' (x, Va- — x-) contains x only to odd powers, the substitu-

tion z—Vd- — x- will rationalize the expression. Use Exs. 1 (f) and 6 (e) to

comjiare tlie labor of this algebraic snbstitution with that of the trigonometric or

hyperbolic.

16. Definite integrals. If an interval from .r = a to :' =: Z* be divided

into n successive intervals A./'i, Xi\, , A./'„ and the value /(^,) of a

function /(.') l)e computed from some point ^,- in each interval A.j;,- and

be multiplied by A./-,-, then t/ie Ilinlt of the snm

lim [/( t\) A,/'i +f(i,) A./'o + • • • + /XU A.e„] =
f^

/(x) dx. (G2)
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when each interval becomes infinitely short and their number n be-

comes infinite, is known as the definite integral oi f{x) from a to h, and

is designated as indicated. If y =/(•?) be graphed, the sum will be

represented by the area under

a broken line, and it is clear

that the limit of the sum, that

is, the integral, will be repre-

sented by 'the area under the

curre y =f(.r) and between

the ordinates :/: = a and ./•= b.

Thus the definite integral, de-

fined arithmetically by (G2),

may be connected with a geo-

metric concept which can serve to suggest properties of the integral

much as the interpretation of the derivative as the slope of the tan-

gent served as a useful geometric representation of the arithmetical

definition (2).

For instance, if a, h, c are successive values of .r, then

£m'^-'-+IJm^-=!j(c'')d^ (63)

is the equivalent of the fact that the area from a to c is equal to the

sum of the areas from a to L and // to r. Again, if A.r be considered

positive when .r moves from a to />, it must be considered negative

when X moves from h to a and hence from (62)

fj(x)dx = -Jj(,,^dx. (64)

Finally, if J/ be the maximum of /{>') in the interval, the area under

tlie curve will be less than that under the line // = ^[ through the

highest point of the curve ; and if in he the minimum of /(.'), the

area under the curve is greater than that under // = ni. Hence

ra (b - ^0 < X ^'(•') ^^^ '^ '^^(^' ~ ")• (65)

There is, then, some intermediate value /// < fj.< ^f such that the inte-

gral is ec[ual to fi(h— a); and if the line y = p. cuts the curve in a

point whose abscissa is ^ intermediate between a and b, then

jj(:r) d:r = f.(b- a) = (b - a)f(^). (G5')

This is the fundamental llieorem of the Mean for definite integrals.
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The definition (62) may be applied directly to the evaluation of the definite in-

tegrals of the simplest functions. Consider first 1/x and let a, b be positive with a

less than b. Let the interval from a to 6 be divided into n intervals Ax, which are

in geometrical progression in the ratio r so that Xi = a, x-z — ar, • •, Xn+i — ar"

and Axi = a(?- — 1), Ax2 = ar{r — I), AX3 = ar'-{r — 1), • • •, Ax„ = «r"-i(/' — 1)

;

whence b — a — Axi + Axo + • • • + XCn — « (/•" — 1) and r" = b/a.

Choose the points |,- in the intervals Ax,- as the initial points of the intervals. Then

Axi
,

Ax.2 Ax„ _ a (r - 1) ar{r-l) (o-"-i (/•-]) _

But r=Vb/a or ji = log (///«) ^ log r.

Axi Ax2 Ax„
, , , . b r — I . b h

Hence 1 h • • • H = n (r — 1) = log -

li I2 f« " log/- ''a log(l + A)

Now if 71 becomes infinite, r approaches 1, and li approaches 0. But the limit of

log (1 + Ji)/h as /i zb is by definition the derivative of log (1 + x) when x = and

is 1. Ilence

I
— = hm —'

-{ = + ---H '

\
= hiir- = \oiib — loija.

Ja X « = =0 L ?i I2 l« A '( '^

As another illustration let it be re(juired to evaluate the integral of cos-x from

to I IT. Here let the intervals Ar,- be equal and their number odd. Chuose the |"s

as the initial points of their intervals. The sum of wliich the limit is desired is

(T — cos- • A.e + cos- Ax • Ax + cos- 2 Ax Ax + • • •

+ cos- (« — 2) Ax Ax. + cos- [n — 1) Ax • Ax.

But nA.c =
I

IT, and (» — 1 ) Ax = ^ tt — Ax. (// — 2) Ax = i tt — 2 Ax, • •,

and cos {\ tt — y) = sin y and sin- y + cos- (/ = 1.

Hence cr = Ax [cos- + cos- Ax + cos- 2 A.C + • • • + .sin- 2 Ax + sin- Ax]

Hence
|

" cos-xcZx = liin [^5 nXc + ', A.c] = lim {\ rr + ] Ax) = 5 tt.

Hidications for finding the integrals nf other functions are given in the exercises.

It should be noticed that the variable x which appears in the exprcssidu of the

definite integral really has nothing to do with the value of the integral but merely

serves as a symbol useful in forming the sum in ((i2). What is nf importance is

the function /and the limits a. b of the interval over which the integral is taken.

J y (x) <lr-=
f^

[fit) at =J ''f(y) dy =J /(*) d*.

The variable in the integrand disappears in the integration and leaves the value of

the inteirral as a functi(jn of the limits a and /; alone.
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17. If the lower limit of the integral be fixed, the value

I
of the integral is a function of the upper limit regarded as variable.

To find the derivative ^'{f>), form the quotient (2),

^(/> + A/y) -<!>(
f{:r)<h-- { f{,-)dx

]^y applying (63) and (65'), this takes the simpler form

>h + Sb

•A/.

"
A/y -A//-^^^^-^'

wliere $ is intermediate l^etween f/ and /v + \h. Let A/^ = 0. Then i

approaches b and/'(^) ai)proaehes /'(T'). Hence

^'C/0 = |;J'/C^')^^-^-=/(^')-
(66)

If preferred, the varial)le // may be written as ./•, and

This equation will establisli the relation l)ctween the definite integral

and the indefinite integral. For ];y definition, the indefinite integral

7-'(,/-) of /'(./•) is any function such that /''(•'') equals /'(./•). As ^'(.') =/{>')

it follows that ^r
I /(..)./.. = 7-X.'0+C. (67)

Hence except for an additive constant, the indefinite integral of f is

the definite integral of /' from a fixed lower limit to a variable u])per

limit. As tlie definite integral vanishes when the upper limit coincides

with tlie lower, tlie constant C is —
/'X''')

and

/' f{,^d,-^F(J.)-F(n). (67')

Hence, iltr dpfiiufe IntegmJ of f(x) from a to h is flic (Jlfferimce hetireen

tlie valves of "ny Indt'tinlfe tnte'jrol F{.r') tohoi for tlie uiiper tnid lover

limits of the di'fnite biterjrdl ; and if the indefinite integral of / is

known, the definite integral may be obtained without a})plying the

definition (62) to/
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The great iinportancie of definite integrals to geometry and physics

lies in that fact that many quantities connected with geometric figures

or physical bodies mruj he e^iwessed simply for small portions of the

figures or bodies and may then be obtained as the sum of those quanti-

ties taken over all the small portions, or rather, as the Vwiit of that sum
when the portions become smaller and smaller. Thus the area under a

curve cannot in the first instance be evaluated ; l)ut if only that portion

of the curve which lies over a small interval A.r be considered and the

rectangle corresponding to the ordinate /(^) be drawn, it is clear that

the area of the rectangle is f(^) A.r, that the area of all the rectangles is

the sum 2 /"(O ^''' taken from a to h, that when the intervals Aa; approach

zero the limit of their sum is the area under the curve
; and hence that

area may be Avritten as tl:e definite integral of /(,?•) from <i to h*

In like maimer consider the mans of a rod of variable density and suppose the

rod to lie along the x-axis so that the density may be taken as a function of x.

In any small length Ax of the rod the density is nearly constant and the mass of

that part is approximately equal to the product pAc of the density p{x) at the

initial point of that part times the length Ax of the part. In fact it is clear that

the mass will be intermediate between the products /«Ax and 3/Ax. where m and

M are the miniimim and maxinmm densities in the interval Ax. In other words

the mass of the st'ction Ax will be exactly equal to p
(t) Ax where f is .some value of

X in the interval Ac. The mass of the whole rod is therefore the sum 2/3(^)Ax

taken from one end of the rod to the other, and if the intervals be allowed to

approach zero, the mass may be written as the integral of p(x) from one end of

the rod to the other, t

Another problem that may be treated by these methods is that of finding the

total preHsurc on a vertical area submerged in a liciuid, say, in water. Let w be the

weight of a column of water of cross section 1 s(]. unit and
of height 1 unit. (If the unit is a foot, lo = 62.5 lb.) At a

point h units below the surface of the water the pressure is

idi and upon a small area near that depth the pressure is

approximately idiA if A be the area. Tlie pressure on the

area A is exactly equal to iv^A if ^ is some depth interme-

diate between that of the top and that of the bottom of

the area. Now let the finite area be ruled into strips of lielght Ah. Consider the

product vjhb {h) A/i where h{h) =f{h) is the breadth of the area at the depth h. This

* The ^'s may evidently be so chosen that the finite sum 1f(^)\x is exactly equal to

tlie area under the curve
;
Ijut still it is iiccessarv to let the intervals approach zero and

thus replace the sum 1)y an intejiral because the values of ^ whicli make the sum equal

to the area are unknown.
t This and similar problems, here treated hy usins the Theorem of the Mean for

integrals, may hu treated from the point of view of differentiation as in § 7 or from that

of Didiamel's or Osgood's Theorem as in §§ "A, .".t. It should he needless to state that in

any particular problem some one f)f the three methods is likely to l)e somewhat preferable

to citiier of the others. The reason for laying such emphasis upon the Theorem of the

Mean here and in the exercises lielow is that the theorem is in itself very important and
needs to he tlior(>UL:;hlv mastered.
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is approximately tlie pressure on tlie strip as it is tlie pressure at the top of tlie strip

multiplied by the approximate area of the strip. Then iv^b{^)Ah, where f is some

value between h and h + Ah, is the actual pressure on the strip. (It is sufficient to

write the pressure as approximately whb{h)Ah and not trouble with the ^.) The
total pressure is then 2w^&(?) Ah or better the limit of that sum. Then

P = lim V?<.'?6(^)d/i = r i€hb{h)dh,

wliere a is the depth of the toi) of the area and b that of the bottom. To evaluate

the pressure it is merely necessary to find the breadth 5 as a function of h and

integrate.

EXERCISES

kf{x)dx = k I f{x)dx.
a *j n

Xh p b /% b

(u i: v) dx — I udx ± j vdx,

\p{x)dx < / f{x)dx < I (p{x)dx.
a ^a on

4. Suppose that the minimum and maximum of the quotient Q{x) =f{x)/(p{x)

of two functions in the interval from « to 6 arc m and M, and let (x) be positive

so that

m < Q (.c) = -^ < M anil m4> (x) <f{x) < Mc}> (x)
<p(x)

are true relations. Show by Exs. 3 and 1 that

f''f{x)dx f''f{x)dx

m < — < M and ^ = fj.= 0^) = ^-^'-

,

/ cf>{x)dx / cp{x)dx
^^^'

where ^ is some value of x between a and b.

5. If m and 3/ are the minimum and maximum of f{x) between a and b and if

<p (x) is always positive in the interval, show that

(p (x) dx <
I

/(x) 4> (x) dx < M I <p (x) dx

and ( /(x) <t>
(x) dx =

fj. f (x) dx =f{^) f <P ('C) dx.

Note that the integrals of [M — f {x)] (p (x) and [/(x) — ?«] (x) are positive and

apply Ex. 2.

6. Evaluate the following by the direct application of (62) :

J"^
b" — ffl^ 1^ ^

xdx = , (/3) I e^dx = t* — e".
a 2 «/

a

Take equal intervals and use the rules for arithmetic and geometric progressions.

7. Evaluate {a) f x"'dx = (?>"' + i - «"'+!), (^) f r'dx = (c* - c°).
Jn in -\- 1 J„ logc

In the first the intervals should be taken in geometric progression with r" = l>/a.
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siii^xdx = \ TT, (/3) I
coii"xdx = 0, if n is odd."Jo

9. With the aid of tlie trigonometric formulas

cosx + cos 2 X + • • • + cos ((( — 1) X = I [sin iix cot
J x — 1 — eos?w;],

sinx + sin 2x + • • • + sin (?t — 1) x = h [(1 — cosnx) cot J x — sin?u;],

J-»

?> /^ h

cosxdx = sin6 — sin a, (;3) / sinxrZx = cosa — cos/;.
a ^ it

10. A function is said to be men if /(— x) =/(x) and odd if /(— x) = —f{x)

Show («) r 7(x)(7x = 2 r7(x)cZx, /even, (/3) f 7(x)(Zx = 0, /odd.
%J ~~ a */ J — a

11. Show that if an integral is regarded as a function of the lower limit, the

upper limit being fixed, then

*» = T- Cf{x)dx = -f{a), if <f>(a)= r/(x)rZx.
da J a J, I.

12. Use the relation between definite and indefinite integrals to compare

/(x) dx = {b - a)f{^) and F{h) - F{a) = {h - a) F'(f),
•/a

the Theorem of the Mean for derivatives and for dcfiinte integrals.

13. From consideration of Exs. 12 and 4 establish Cauchy'a Formnlu

which states that the quotient of the increments AF and A<[» of two functions, in

any interval in which the derivative 4>'(x) does not vanish, is equal to the quotient

of the derivatives of the functions for some interior point of the interval. What
would the application of the Theorem of the Mean for derivatives to numerator

and denominator of the left-hand fraction give, and wherein does it differ from

Cauchy's Fornuda ';*

14. Discuss tlu! volume of revolution of y =/(x) as the linnt of tlitssum of thin

cylinders and compare the results with thf)se found in Ex. 0, \). ](.).

15. Show that the mass of a rod running from a to /; along the x-axis is

I k(l)^ — a") if the density varies as the distances from the origin [k is a factor of

proportionality).

16. Sh<>w (a) that the mass in a rod running from rt to h is i lie same as the ai'ca

under the curve y = p (x) between the ordinates x = a. and x = h. and explain why
this should be seen intuitively to be so. Show (/3) that if the density in a plane slab

bounded by the x-axis, the curve y =/(x), and the ordinates x = '/, and x = h is a

function p (x) of x alone, the mass of the slab is I yp (x) dx ;
also (7) that the mass

of the corresponding volume of revolution is / iry'-p(x)dx.

17. An isosceles triangle has the altitude (t, and the base '2h. Find (cr) the mass

on the assumption that the density varies as the distance from the vertex (meas-

ured along the altitiide). Find (/3) the mass of the cone of revolution formed by

revolving the triam;le about its altitude if the law of densitv is the same.
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18. In a plane, the moment of inertia I of a particle of mass m with respect to a

point is defined as the product mr- of the mass by the square of its distance from tlie

point. Extend this definition from particles to bodies.

{a) Show tliat tlie moments of inertia of a rod running from a to b and of a

circular slab of radius a are respectively

I =
I

x'-p {x) dx and 1=1 2 Trr'p (?•) clr, p the density,

if the point of reference for the rod is the origin and for the slab is the center.

(j3) Show that for a rod of length 21 and of uniform density, 1= \M1^ with

respect to tlie center and I = \ 3/f- with respect to tlie end, J/ being the total mass

of the rod.

(7) For a uniform circular slab with respect to the center I = ^ J/a'-.

(5) For a uniform rod of length 21 witli respect to a point at a distance d from

its center is I = ^I {\ I" + d-). Take the rod along the axis and let the point be

(tr, /3) with d~ = a- + /3-.

19. A rectangular gate holds in check the water in a reservoir. If the gate is

submerged over a vertical distance II and has a breadth B and the top of the

gate is ft units below the surface of the water, find the pressure on the gate. At
what depth in the water is the point where the pressure is the mean pressure

over the gate '?

20. A dam is in the form of an isosceles trapezoid 100 ft. along the top (which

is at the water level) and 00 ft. along the botttmi and 30 ft. high. Find the pres-

sure in tons.

21. Find the pressure on a circular gate in a water main if the radius of the

circle is r and the depth of the center of the circle below the water level is d^r.

22. In space, moments of inertia are defined relative to an axis and in the for-

mula I = mr-, for a single particle, r is the perpendicular distance fr(.)ni the

partit'le to the axis.

(a) Show that if the density in a solid of revolution generated by ij =/(,/•) varies

only with the distance along the axis, the moment of inertia about the axis of

revolution is 7 = I I Trt/^p{x)dx. Apply Lx. 18 after dividing tlie solid into disks.

(/3) Find the moment of inertia of a sphere about a diameter in case the density

is constant ;
I — i Ma- = ^-^ Trprr"'.

(7) Apply the I'esult to find the moment of inertia of a spherical shell with

external and internal radii a and h : I = = M{a'' — lr)/(a" — //"). Let h = a and

thus find 1= '^ISIC' as the moment of inertia of a spherical surface (shell of negli-

gible thickness).

(5) For a cone of revolution I — j^,j Ma" where a is the radius of the base.

23. If the force of attraction exerted l)y amass m upon a point is lnnf{r) where

r is the distance fnim the mass to the point, show that the attraction exerted at

the origin l)y a rod of density p(x) running from a to b along tlie x-axis is

A = f lf{x) p (x) dx, and that A = kJI/ab, M = p{b- a),

is the attraction of a uniform rod if the law is the Law of Nature, that is,
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24. Suppose that the density p in the slab of Ex. 16 were a function p (x, y) of

both X and y. Sliow that the mass of a small slice over the interval Ax,- would be

of the form

Ac
I

p{x, y)dy = 'i>{^)Ax and that I ^ (,;;) Ax = I | p{x,y)dy\clx

would be the expression for the total mass and \v((uld recpiire an integration with

respect to y in which x was held constant, a suljstitution of the limits f{x) and

for y, ajid then an integration with respect to x from a to b.

25. Apply the considerations of Ex. 24 to finding moments of inertia of

[a) a uniform triangle y = nix, y — 0, x = a with respect to the origin,

(/3) a uniform rectangle with respect to the center,

(7) a uniform ellipse with respect to the center.

26. Comimre Exs. 2-4 and 10 to treat the volume under the surface 2 = p (x, y)

and over the area liounded by y =f(x), ?/ = 0. x = a, x = h. Find the volume

(or) under z = xy and over y- = 4px. y = 0. x = 0. x = h,

{^) luider z = X- + y- and over x- + y'^ = n-. y = 0. x — 0. x = Q.

(7) under '— + — + - = 1 and over -- + — = 1, ?/ = 0, x = 0, x = a.
a- Ir c- a- b-

27. Discuss sectorial area 4 I r-d4) in polar coordinates as the limit of the sum

of small sectors running out from the pole.

28. Show that the moment of inertia of a uniform circular sector of angle a

and radius a is \ pan*. Hence infer I = \ p i r^d(p in polar coordinates.
Jaf,

29. Find the moment of inertia of a uniform (a) lemniscate ;•" = a- cos- 2 (p

and (^) cardioid r = a (1 — cos0) with respect to the pole. Also of (7) the circle

r = 2 a cos <p and (5) the rose r = a sin 2 and (e) the rose r = a sin 3 0.



CHAPTER II

REVIEW OF FUNDAMENTAL THEORY*

18. Numbers and limits. The concept and theory of real number,

integral, rational, and irrational, will not be set forth in detail here.

Some matters, however, which are necessary to the proper understand-

ing of rigorous methods in analysis must be mentioned ; and numerous

points of view which are adopted in the study of irrational nund)er

will be suggested in the text or exercises.

It is taken for granted that by his earlier work the reader lias become familiar

with the use of real numbers. In particular it is assumed that he is accustomed

to represent numbers as a scale, that is, by points on a straight line, and that he

knows that when a line is given and an origin chosen upon it and a unit of measure

and a positive direction have been chosen, then to each point of the line corre-

sponds one and only one real number, and conversely. (.)\ving to this correspond-

ence, that is, owing to the conception of a scale, it is possible to interchange

statements about numbers with statements about points and hence to obtain a

more vivid and graphic or a more abstract and arithmetic phraseology as may be

desired. Thus instead of saying that the numbers Xi, X2, • • • are increasing algebra-

ically, one may say that the points (whose coordinates are) Xi, X2, • • • are moving

in the positive direction or to the right ; with a similar correlation of a decreasing

suite of numbers with points moving in the negative directiun or to the left. It

should be remembered, however, that whether a statement is couched in geometric

or algebraic terms, it is always a statement concerning numbers when one has in

mind the point of view of pure analysis, t

It may be recalled that arithmetic begins with the integers, including 0, and

with addition and multiplication. That second, the rational numbers of the

foi"m p/q are introduced with the operation of division and the negative rational

numbers with the operation of subtraction. Finally, the irrational numbers are

introduced by various processes. Thus V2 occurs in geometry through the

neces.sity of expressing the length of the diagonal of a square, and V3 for the

diagonal of a cube. Again, tt is needed for the ratio of circumference to diameter

in a circle. In algebra any equation of odd degree has at least one real root and

hence may be regarded as defining a number. But there is an essential dilference

between rational and irrational numbers in that any rational number is of the

* Tlie object of tliis chapter is to set forth systematically, witli attention to precision

of statemeiU and accuracy of profif, those fundamental definitions and tlieorems which
lie at the basis of calculus and whicli have been given in tlie previous chapter from an
iutuitive rather tliaii a critical point of view.

t Some ilhistrative graphs will be given; tlie student should make many others.
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form ± p/q with q j^ and can therefore be written down explicitly ; whereas

tlie irrational numbers arise by a variety of processes and, altlioutrh they may be

represented to any desired accuracy by a decimal, they cannot all be written

down explicitly. It is therefore necessary to have some definite axioms regulating;

the essential properties of irrational luimbers. The particular axiom upon which

stress will here be laid is the axl(jm of contiiniity, the use of which is essential

to the proof of elementary theorems on limits.

19. Axiom of Coxtixi'Ity. Jfa// f/tej/oinfs of(i Ihie are ilirl/Icd into

tiro classes siiclt tliaf crenj ji<}lnf of flw fi rst class jtreeedes evert/ paint of

the second class, there must he a jiolnt C siicJi that any point preeedimi

C is in til e first class and a ni/ point succeed inij C is in the second class.

Tliis principle may l^e stated in terms of mimbers, as : If all real num-

bers he assorted into tico classes such that crenj numhcr (f the first class

is alfjehraicalhj less than every ninnhcr (fi the second class, tJwre ruust he

a numhcr X such that any numhcr less thmi X is in tin' first class and

any numhcr yreater tJian X is in the second. The numljer J\' (Or point C)

is called the frontier numl;)er (or point), or sim^ily the frontier of the

two classes, and in particnlar it is the vpper frontier for the first class

and the lou-er frontier for the second.

To consider a particular case, let all the negative numbers and zero constitute

the first class and all the positive numbers the second, or let the negative luunbers

alone be the first class and the positive numbers with zero the .second. In either

case it is clear that the classes satisfy the conditions of the axiom and that zero is

the frontier number such that any lesser number is in the first class and any

greater in the second. If. however, one were to consider the .system f)f all positive

and negative numbers but without zero, it is clear that there wmdd be no number
X which would satisfy the conditions demanded by the axiom when the two

classes were the negatixc and jiositive numbers
;
for no matter how small a jiosi-

tive numlier were taken as X. tliere would be smaller numbers which would also

be positive and would not belong to the first class ; and sinularly in case it were

attempted to find a negative X. Thus the axiom Insures tlie presence of zero in

the system, and in like maniuu' insures the presence of every other nundier— a

matter which is of importance because there is no way of writing all (irrational)

numbers in explicit form.

Further to appreciate the continuity of the niunber scale, consider the four

significations attributable to the phrase " </(C interval from u to h." They are

« = X s h, a < X = h. a = X <h. (I < X < h.

That is to say, both end points or either or neither may belong to the interval. In

the case a is absent, the interval has no first point
; and if h is absent, there is no

last point. Tims if zero is not counted as a positive lunnber. there is no least

positive nundier
;
for if any least luunber were named, half of it would surely l)e

less, and hence the absurdity. The axiom of continuity shows that if all numbers

lie divided into two classes as reijuired. there nuist be either a greatest in the tirst

class or a least in the second — the frontier— but not both unless the frontier is

counted twice, once in each class.
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20. a)EFixiTiox OF A Limit. Ifx is a va viable vJilrh takes on succes-

sice (•((lues x^, ,/„ • •, ,r,, .)•/, , the var'uihle x is said to approach the con-

stant I as a 11 III It If tlie ntniierlcal difference heticcen x and I ultliiiateJ
ij

heconies, and for all sacecedliuj values of x remains,

less tlian any preasshined ninnhev no inattev how k \ ly. L ''"'"' ' ™

small. The numerical difference between x and I

is denoted by |.'' — /| or \l — x\ and is called the absolute value of the

difference. Tlie fact of the approach to a limit may be stated as

|.'' — /| < e for all .r's subsequent to some x

or X = I -{-
7], [77I

< £ for all x's subsequent to some x,

where e is a ])0sitive number which niay be assigned at pleasure and

must be assigned before the attemi)t be made to find an x such that

for all subsequent .r's the relation |./' — /] < e holds.

So long as the conditions required in tlie definition of a Hniit are satisfied there

is no need of bothering about liow the variable approaches its linnt, whether from

one side or alternately from one side and the other, whether discontinuously as in

the case of the area of the polygons used for computing the area of a circle or

continuously as in the case of a train brouglit to rest by its brakes. To speak

geometrically, a point x which changes its ixisitinu upon a line approaches the

point I as a limit if the point x ultimately comes into and remains in an assigned

interval, no matter how small, surrounding I.

A variable is said to become Infinite if the numerical value of the

variable idtimately l)econies and remains greater than any preassigned

number A', no matter how large.* The notation is .r = cc, but had best

be read " .r becomes infinite," not "' x equals inhnity."

TiiEOKEM 1. If a variable is always increasing, it either becomes

infinite or approaches a limit.

That the vaiiable may increase indefinitely is apparent. But if it does not

become infinite, there must be numbers K which are greater than any value of

the variable. Then any number nuist satisfy one of two conditions: either there

are values of the variable which are greater than it or there are no values of the

variable greater than it. Mort'over all numbers that satisfy the first condition are

less than any number which satisfies the second. All minibers are therefore

divided into two classes fulfilling the reciuirements of the axiom of contiiuiity, and

there must be a number .Y such that there are values of the variable greater than

any number N— e which is less than .Y. Hence if e be assigned, there is a value of

the variable which lies in the interval A^ — e < x ^ i\^, and as the variable is always

increasing, all subsequent values nuist lie in thi.s interval. Therefore the variable

approaches N as a linut.

* This (letiuition means what it says, and no more. Later, additional or different

meanings may l)e assigned to infinity, but not now. Loose and extraneous concepts in

this connection are ahnost certain to introduce errors and confusion.
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EXERCISES

1. If Xi, X2, • • •, x,„ • • •, x„4.;„ • is a suite approacliing a limit, apply the defi-

nition of a limit to show that when e is given it must be possible to find a value of

n so great that \Xn + p — Xn\<e for all values of p.

2. If Xi, X2, • • • is a suite approaching a limit and if 2/1, 2/2, •• • is any suite such

that \y„ — x„ I approaches zero when n becomes infinite, show that the y''s approach

a limit which is identical with the limit of the x's.

3. As the definition of a limit is phrased in terms of inequalities and absolute

values, note the following rules of operation :

/N-r,. ^ , ,, c h ^ a a
(a) It a > and c > b, then - > - and - < -

,

a a c b

(^) \a + b + c+ ...\s\a\ + \b\ + \c\+ •••, {7) |ate • • .| = |a|.|6|.|c|. • .,

where the equality sign in (/3) holds only if the luimbers a, b, c, have the same

sign. By these relations and the definition of a limit prove the fundamental

theorems :

If Unix = A' and lim y = 1', then lim (x ± y) = X ± Y and lim xy = XY.

4. Prove Theorem 1 when restated in the slightly changed form : If a variable

X never decreases and never exceeds 7i, then x approaches a Unfit -A'' and N ^ K.
Illustrate fully. State and prove the corresponding theorem for the case of a

variable never increasing.

5. If Xi, x„, • • and yi, 2/2, •• • are two suites of which the first never decreases

and the second never increases, all the ?/\s being greater than any of the x's, and if

when e is assigned an n can be found such that ?/„ — x„ < e, show that the limits

of the suites are identical.

6. If Xi, x.„ • • • and ?/i, 2/2, •• • are two suites which never decrease, show by Ex. 4

(not by Ex. 3) that tlie suites xi + y-i, X2 + 2/2, • • • and Xj?/i, X22/2, • • • ajiproach

limits. Note that two iidiiute decimals are precisely two suites which never de-

crease as more and more figures are taken. They do not always increase,for some

of the figures may be 0.

7. If the word " all " in the hypothesis of the axiom of continuity be assumed to

refer only to rational mnnbers so that the statement becomes : If all rational

numbers be divided into two classes- • •, there sliall be a number N (not neces-

sarily rational) such that • • •
; tlien the conclusion may be taken as defining a

lumiber as the frontier of a seciuence of rational luimbers. Show that if two num-
bers X, Y be defined by two such sequences, and if tlui sum of the numbers be

defined as the number defined by the se(iuence of the sums of corresponding terms

as in Ex. 6, and if the product of the numbers be defined as the miniber defined l)y

the secjuence of the products as in Ex. 0, then th(! fundamental rules

X+ Y=:Y+ X, XY = YX, {X + Y)Z = XZ + YZ

of arithmetic hold for the numbers X, Y, Z defined by sequences. In this way a

conqik'te theory of irrationals may be built up from the properties of rationals

combined with the ])rinciple of ((nitiiniity, namely, 1° by defining irrationals as

frontiei's of sefiucnces of I'ationals, '2° by defining tlie operations of addition, nuilti-

l)licati()ii, • • • as operations upon the rational numbers in the scijuences, 3° by

showiii'^ that the fundamental rules of arithmetic still hold for the irrationals.
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8. Apply the principle of continuity to show that there is a positive number x

such that z- = 2. To do this it should be shown that the rationals are divisible

into two classes, those whose square is less than 2 and those whose square is not

less than 2 ; and that these classes satisfy the requirements of the axiom of conti-

nuity. In like manner if a is any positive number and n is any positive integer,

show that there is an x such that x" = a.

21. Theorems on limits and on sets of points. The theorem on

limits which is of fundamental algebraic importance is

Theoke.m 2. If R (x, I/, z, • • •) be any rational function of the variables

X,
I/,

z, •••, and if these variables are approaching limits A', Y, Z, ,
then the value of Jl approaches a limit and the limit is 7^ (.Y, }', Z, •),

provided there is no division by zero.

As any rational expression is made up from its elements by combinations of

addition, subtraction, multiplication, and division, it is sufficient to prove the

theorem for these four operations. All except the last have been indicated in the

above Ex. 3. As multiplication has been cared for, division need be considered

only in the simple case of a reciprocal 1/x. It must be proved that if lim x = A',

then lim (1/x) = 1/X. N(jw

t-Xl1 1

x~X !A'
by Ex. 3 (7) above.

This quantity must be shown to be less than any assigned e. As the quantity is

complicated it will be replaced by a simpler one which is greater, owing to an

increase in the denominator. Since x :^ X, x — A' may be made numerically as

small as desired, say less than e', for all x's subsequent to some particular x. Hence

if e' be taken at least as small as l\X\, it appears that |x] must be greater than

i|A'|. Then
|x- A"

I
|x- A'j e'

1 T^ o / X 1< =
, bv Ex. 3 (a) above.

|x||X| l\X\-^ i|A|^

and if t' be restricted to being less than ^| A'|-e, the difference is less than e and

the theorem that lim (1/x) = 1/A' is proved, and also Theorem 2. The necessity

for the restriction A' ^i and the corresponding restriction in the statement of

the theorem is obvious.

Theorem 3. If when e is given, no matter how small, it is possil)le

to find a value of ?i so great that the difference |.''„ + p — .'„! between »„

and every subsequent term .>'„4-/, in the suite :i\, x^, , a'„, •• is less

than e, the suite approaches a limit, and conversely.

The converse part has already l)ecn given as Ex. 1 above. The theorem itself is

a consequence of the axiom of continuity. First note that as \x„j.p — .rn
|
< e for

all x's subsequent to x„, the x"s cannot become infinite. Suppose P that there

is some number I such that no matter how remote x„ is in the suite, there are

always subsequent values of x which are greater than / and others which are less

than /. As all the x"s after x„ lie in the interval 2e and as / is less than some x"s

and greater than others, I must lie in that interval. Hence \l — Xn^p\ < 2 e for all
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x's subsequent to x„. But now 2 e can be made as small as desired because e can be

taken as small as desired. Hence tlie definition of a limit applies and the x's

approach I as a limit.

Suppose 2° that there is ]io such number I. Then every number k is such that

either it is possible to go so far in the suite tliat all subsequent numbers x are

as great as k or it is possible to go so far that all subsequent z's are less than k.

Hence all numbers k are divided into two classes which satisfy the requirements of

the axiom of continuity, and there must be a number -N" such that the x'a ultimately

come to lie between N — t' and X + e, no matter how small e is. Hence the x's

approach iV as a limit. Thus under either supposition the suite approaches a limit

and the theorem is proved. It may be noted that under the second supposition tlie

ic's ultimately lie entirely upon one side of tlie x>oint X and that the contlition

|x„ + ;,
— a;„| < e is not used except to show that the x"s remain finite.

22. Consider next a set of points (or their eorrelative numbers)

without any implication that tliey form a suite, that is, that one may
be said to be subsequent to another. If there is only a finite number

of points in the set, there is a point farthest to the right and one

farthest to the left. If there is an infinity of points in the set, two

possibilities arise. Either 1° it is not possible to assign a point A' so

far to the right that no point of the set is farther to the right— in

which case the set is said to be unllinltcd nhorc— or 2° there is a

point K such that no point of the set is lieyond 7v— and the set is

said to be limited above. Similarly, a set may be Junited heJou- or ini-

limited heloiv. If a set is limited above and below so that it is entirely

contained in a finite interval, it is said merely to ])e limited. If tliere

is a point C such that in any interval, no matter how small, surround-

ing C there are points of the set, then C is called a paint of rnndt'nso-

tion of the set (C itself may or may not belong to the set).

Theokem 4. Any infinite set of points which is limited has an

upper frontier (maximum ?), a lower frontier (minimum ?), and at

least one point of condensation.

Before proving this theorem, consider three infinite sets as illustrations

:

(a) 1, 1.9, 1.09, 1.999, • • •. (/3) - 2, • • •, - 1.99, - 1.9, - 1,

(7) -l.-^.-i, •,1, i,l.

In (a) the element 1 is the minimum and serves also as the lower frontier
;
it is

clearly not a jxtint of condensation, but is isolated. There is no maxinuun ;
but 2

is the upper frontier and also a point of condensation. In (/3) there is a maxinuim

— 1 and a minimum — 2 (fur — 2 has been incorporated with the set). In (7) there

is a maxinuun and mininuim ; the point of condensation is 0. If one could he sure

that an infinite set had a maxinuim and minimum, as is the case witli finite

.sets, there would be no need of considering upper and lower frontiers. It is clear

tliat if the upju'r or lower frontier belongs U) the set. there is a maximum nr

mininuun and the frontier is not necessarily a point of condensation ;
whereas
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if the frontier does not belong to the set, it is necessarily a point of condensation and

the corresponding extreme j)oint is missing.

To prove that there is an upi^er frontier, divide the points of the line into two

classes, one consisting of points which are to the left of some point of the set, the

other of points which are not to the left of any point of the set— then apply the

axiom. Similarly for the lower frontier. To show the existence of a point of con-

densation, note that as thei-e is an infinity of elements in the set, any point p is such

that either there is an infinity of points of the set to the right of it or there is not.

Hence the two classes into which all points are to be assorted are suggested, and

the application of the axiom offers no difficulty.

EXERCISES

1. In a manner analogous to the proof of The<jrem 2, show that

, , , . X — 1 1 , ^x , . 3 X — 1 5 , , . X- + 1
(a) lim = -, ((3) Inn = -, (7) Inn =— 1.

a: = OX — 2 2 x = 2 X + 5 7 .ti-lX'^ — 1

2. Given an infinite series .b' = Mi + »2 + »3 + • • • . Construct the suite

.S'l = «i, So = III + H2, S3 = III + "2 + "3, • • •• Si = Ml +i(2 + • • + ",-. • • -.

where Si is the snnn of the first i terms. Show that Theorem 3 gives : The neces-

sary and sufficient t-Dudition that the series S converge is that it is possible to find

an n so large that j.Sn-i-;, — *'„
|

shall be less than an assigned e for all values of p.

It is to be understood that a series converges when the suite of ,S'"s approaches a limit,

and converse!}'.

3. If in a series Ui — Uo + W3 — 7(4 + • • • the terms approach the limit 0, are

alternately positive and negative, and each term is less than the preceding, the

series converges. C<jnsider the suites .Si. .S3, .S-. • • • and ,S._,. ,S4, .Sq. ....

4. Given three infinite suites of numl.iers

Xi. Xo. . x„. : !/i. i/-. . y„. : Zi. z-2- Zn.

of which the first never decreases, tlie second never increases, and tlie terms of tJie

thiril lie between corresponding terms of tlie first two. x,, ^ Zn s (/„. Siiow that

the suite of 2"s has a xx.iint of condensation at or between the limits approached by

the x's and liy tiie y's
; and that if lim x = lim y = I. then the z"s api)i'oach I as a

limit.

5. Kestate the definitions and theorems on sets of points in arithmetic terms.

6. Give the details of the proof of Theorem 4. Show that the jirocjf as outlined

gives the least point of conden.sation. How would the proof be worded so as to give

the greatest point of conden.sation? Show that if a .-^et is limited above, it has an

upper frontier but need not have a lower frontier.

7. If a set r)f points is sucli that l)etween any two there is a third, the set is said

to be dense. Sliow that the rationals form a dense .set ; also the irrationals. Show
that any point of a dense set is a point of conden.sation for tlie .set.

8. Show that the rationals p/(j where q < K do not form a dense set — in fact

are a finite .set in any limited interval. Hence in regarding any irrational as the

limit of a .set of rationals it is necessary that the denominators and also the numer-

ators should become infinite.



40 INTRODUCTORY REVIEW

9. Show that if an infinite set (if points lies in a limited region of the plane,

say in the rectangle a ^ x ^ b. c ^ y = d, there must be at least one point of

condensation of the set. Give the necessary definitions and apply the axiom

of continuity successively to the abscissas and ordinates.

23. Real functions of a real variable. // x he a varlahle which

takes on a certaiii set of rallies of wlileJi the totality may he denoted

hy [./'] and if y is a second variaJile the value of which is uniquely

determined for each x of tlie set [./], tJien y is said to he a function of

X defned orer the set [./•]. The terms "limited," "unlimited/' "limited

above," '' unlimited below," • • • are applied to a function if they are

applicable to the set [//] of values of the function. Hence Theorem 4

has the corollary :

Theorem 5. If a function is limited over the set [./•], it has an

upper frontier .1/ and a lower frontier m for that set.

If the function takes on its upper frontier J/, that is, if there is a

value x^ in the set [./] suc-h that /(.'',-) = -V, the function has the abso-

lute viaximuiii M at x^; and similarly w"ith respect to the lower

frontier. In any case, the difference M — iii between the upper and

lower frontiers is called the oscillation of the function for the set [a-].

The set [;>•] is generally an interval.

Consider some illustrations of functions and sets over which they are defined.

The reciprocal 1/x is defined for all values of x save 0. In the neighborhood of

the function is unlimited above for positive x"s and unlimited beluw for negative x"s.

It should be noted that the function is not limited in the interval < x = a but is

limited in the interval e ^ x ^ a where e is any assigned positive number. The

function + \'x is defined fur all positive x's including and is limited below. It

is not limited abitvc for the totality of all positive numbers ; but if K is assigned,

the function is limited in the interval = x ^ A'. The factorial function x I is de-

fined only for positive integers, is limited beltjw by the value 1, but is not limited

above unless the set [x] is limited above. The function E [x) denoting the Integer

not greater than x or "tlie integral part of x" is defined for all positivf numbers
— for instance A" (3) = E (tt) — .3. This function is not expressed, like the elemen-

tary functions of calculus, as a " fornuda "
; it is defined by a definite law, however,

and is just as much of a function as x- -\-'?>x -\-'l or \ sln-:ix + logx. Indeed it

.should be noted that the elementary functions themselves are in the first instance

defined by definite laws and that it is not until after they have been made 'the

subject of considerable study and have lieen largely developeil along analytic lines

that they appear as formulas. The ideas of function and fonnula are essentially

distinct and the latter is essentially secon<lary to the former.

The definition of function as given above excludes the so-called multiple-valued

functions such as \'x. and sin-i x where to a given value of x correspond more than

one value of the function. It is usual, however, in treating nudtiple-valued func-

tions to resolve tlie functions into different parts oi- hranches so that each branch

is a siuLile-valueil function. Thus — ^ x is one brancii and —ax the other branch
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of vx ; in fact when x is positive tlie symbol V.c is usually restricted to mean
niei'ely + Vx and thus bec(imes a single-valued syndxil. ( )ne branch of sin-i x con-

sists of the values between — i tt and + 4 tt, otiier branches give values between

^ TT and I TT or — Itt and — | tt, and so on. Hence the term "function" will be

restricted in this chapter to the single-valued functions allowed by the definition.

24. If X = (I, Is (inu point (if (111 iiitercal orcr ir/tich f(.i-) is dep'ned,

the funci ioti f(.r^ is said to be continuous at the point ./• = o if

lim/(./') =fQi), no matter hoir x = a.

X = a

The function is said to he continnoi/s in the intcrr(// if it is continuous

at every pjoint of the intercaJ. If the function is not continuous at the

point a, it is said to Ije disco?itinuous at ft ; and if it fails to be con-

tinuous at any one point of an interval, it is said to be discontinuous

in the interval.

Theorem G. If any finite numl^er of functions are continuous (at a

point or over an interval), any rational expression formed of those

functions is continuous (at the point or over the interval) ])rovided no

division by zero is called for.

Theorem 7. If // =_/'(,/•) is continuous at x^ and takes the value

y^=f(:r^ and if ,v = ^(//) is a continuous function of // at // = v/^, then

z = <^ [/(•'')] ^vill be a continuous function of x at ,/•,.

In regard to the definition of continuity note that a funetiim cannot be C(jn-

tinuous at a point unless it is defined at that ixiint. Thus c-i/'" is not continuous

atx = because division by is impi^-^silde and the fiuiction is umlefined. If, how-

ever, the function be defined at as/(0) — 0, the functi(jn becomes continuous at

X = 0. In like manner tlie functicju ]/x is not continuous at the (jrigin, and in this

case it is impossible to assign to/(0) any value which will render the function

continuous; the function bec<jmes infinite at the origin and the very idea of be-

coming infinite precludes the possibility of approach to a definite Unfit. Again, the

function E [x) is in general continuous. Itut is discontinuous for integral values

of X. When a function is discontinuous at x = u. the amount of the discontinuity is

the limit of the oscillation ^f — m of tlie function in the interval '( — 5 < x < « + 5

surrounding the X'oint a when 5 apijroaches zero as its liuut. Tiie discontinuity

of E (x) at each integral value of x is clearly 1 ; tliat of 1/x at the origin is infi-

nite no matter what value is assigned ti)/(0).

In case the interval over which /(x) is defined has end points, say « =x ^t),

the question of continuity at x = a nuist of course be decided by allowing x to

approach a from the right-hand side only ; and similarly it is a (piestion of left-

handed approach to h. In general, if for any reason it is desired to restrict the

approach of a varialjle to its linfit to being one-sided, tlie notations x = a+ and

X == h- respectively are used to denote approach through greater values (right-

handed) and through lesser values (left-handed). It is ivit necessary to make this

specification in the case of tlie ends of an interval ; for it is understood that x

shall take on only values in the interval in (luestioii. It should be noted that
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lim f{x) =f(xo) when x == Xo+ in no wise implies the continuity of f{x) at Xq ; a

simple example is that of E (x) at the jiositive integral points.

The proof of Theorem 6 is an immediate corollary ajjplication of Theorem 2. For

lim R [/(x), (x) • • ] = E [lim/(x), lim (x), • • •] = I^ [/(lii'i ^), </> (li"i a;), • • •],

ajid the proof of Theorem 7 is eciuallv simple.

Theokem 8. If /('') is continuous at ,/• = <>, tlien for any positive

which has been assigned, no matter how small, there may be found a

number 8 such that |/'(.r) —/'(*/)
|

< £ in the interval j.r— (<|<S, and

hence in this interval the oscillation of /('') is less than 2 e. And
conversely, if these conditions hold, the function is continuous.

\ This theorem is in reality nothing but a restatement of the definition of conti-

nuity combined with the definition of a limit. For "lini/(x) =/(«) when x = a,

no matter how" means that the difference between /(x) and/(«) can be made as

small as desired by taking x sufficiently near to a ; and conversely. The reason

for this restatement is that the present form is more amenable to analytic opera-

tions. It also suggests the geometric picture which corre-

sponds to the usual idea of continuitj' in graphs. For the

theorem states that if the two lines y =/(«) ± e l>e drawn,

the graph of the function remains between them for at least

the short distance 5 on each side of x = (( ; and as e may be

assigned a value as small as desired, the graph cannot exhibit

breaks. On the other hand it should be noted that the actual

physical graph is not a curve but a baud, a two-dimensional region of greater or

less breadth, and that a function could be discontinuous at every point of an

interval and yet lie entirely within the limits of any given physical graph.

It is clear that 5, which has to be detennined subsaiuvntly to e, is in general

more and more restricted as e is taken smaller and that for different points it is

more restricted as the grai)h rises more rapidly. Tluis if /(x) = 1/x an<l e = 1/1000,

5 can be nearly 1/10 if Xq = 100. Itut must be sligiitly less tlian 1/1000 if Xo = 1, and

something less than 10^ 'J if x is 10- '^. Indeed, if x be allowed to approach zero, the

value 5 for any assigned e also approaches zero ; and although the function

/(x) = 1/x is continuous in the interval < x ^ 1 and for any given Xq and e a

number 5 may be found such that |/(x) — /(xo)
]

< e when |x — Xoj < 5, yet it is not

possible to assign a number 5 which shall serve uniformly for all values of Xq.

25. TiiKoKKM 9. If a function /'(.'•) is continuous in an interval

'/ =i ./• s // witli end points, it is jiossiblt^ to find a 8 such that

/'(./•) —/'(./•u) <€ when j.'' — .'oj<8 for all ])oints .ro ; and the function

is said to be unifiiniily couft/ii/oi/s.

The ])r<i()f is conducted by the method of reductio ad absurdum. Suppose e

is assigned. Consider the suite of values ',. |. ',. •••. or any other suite which

approaches zer<i as a limit. Su])pose that no one of these values will serve as a 5

for all points of the interval. Then there niu^t be at least one point for which
.]

will not sei-ve. at least one for wliicli ] will not serve, at least one for which
J

will

not serve, and so on indefinitely. This infniite set of points nmst have at least one
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point of condensation C such tiiat in any interval surroundinf; C tliere are points for

which 2-^ will not serve as 5, no matter how large k. But now by hypothesis /(x)

is continuous at C and hence a number 5 can be found such that |/(x) — /(C')|< I e

when \x — Xo\< 2S. The oscillation of f{x) in the whole interval 4 3 is less than e.

Now if xo be any point in the middle half of this interval, |xo— C
\

< S ; and if x

satisfies the relation \x — Xo] < S, it must still lie in the interval 4 5 and the differ-

ence \f{x) — /(xo)
I

< e, being surely not greater than the oscillation of /in the wdiole

interval. Hence it is possible to surround C with an interval so small that the

same 5 will serve for any point of the interval. This contradicts the former con-

clusion, and hence the hj'pothesis upon wliich that conclusion was based nuist have

been false and it must have been possible to find a 5 which would serve for all

points of the interval. The reason why the proof would not apply t(» a function

like l/x defined in the interval < x s i lacking an end point is precisely that

tlie point of condensation C Avould be 0, and at the function is not continuous

and [/(x) —f{C)
|
< i e, jx — C

|
< 2 5 could not be satistied.

Theokem 10. If a function is continuous in a region which inchides

its end points, the function is limited.

Theorem 11. If a function is continuous in an interval which includes

its end points, the function takes on its upper frontier and has a niaxi-

luuni JI; similarly it has a minimum ))/.

These are successive corollaries of Theorem 9. For let e be assigned and let 5

be determined so as to serve uniformly fnr all points of tlic interval. IJivide the

interval b — a into ?i successive Intervals of length 5 or less. Tlieii in each such

interval /cannot increase by more than e nor decrease by more than e. Hence /
will be contained betweeii the values/(</) + ne and /(a) — ne. and is limited. And

fix) has an tipper and a lower frontier in tlie interval. Next consider the rational

function 1/(3/ — /) of/. By Theorem this is continuous in the interval tuiless

the denominator vanishes, and if contiimous it is limited. Tliis, Jiowcver. is impos-

sible for the reason that, as 3/ is a frontier of values of /. the difference 3f — /
may be made as small as desired. Hence l/{M — f) is not continuous and there

nuist be some value of x for which/= M.

Theorem 12. li f(:r) is continuous in the interval >' ^ ./'^ A Avith end

])()ints and if /'(") and /(/y) have o})posite signs, there is at least one

])oint $,"<$< //, in the interval for which the function vanislies.

And wh(4her f(V/) and_/(A) have o})posite signs oi' not, there is a point

$,"<.$<. ft, such that /'(I) = /M, Avhere /x, is any value intermediate be-

tween the maximum and minimum of /' in the interval.

For convenience suppose tliat/(//) < 0. Then in the neighborhood of x = (i the

function will remain negative on accouiit of its continuity ; and in the neighbor-

hood of h it will remain positive. Let ^ be the lower frontier of values of x which

make/(x) positive. Suppose that/(^) were either positive or negative. Then as

/ is continuous, an interval could be chosen surrounding ^ and so small that / re-

mained positive or negative in that interval. In neither case could ^ be the lower

frontier of positive values. Hence the contradiction, and /(|) must be zero. To
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prove the second part of the theorem, let c ajid d be the vahies of x which make

/ a minimum and maxinuim. Then the function f— n has opposite signs at c and

d, and must vanisli at some point of the interval between c and d ; and hence a

fortiori at some point of the interval from a to b.

EXERCISES

1. Note that x is a continuous function of x, and that consecpiently it follows

from Theorem 6 that any rational fraction P(x)/Q(x), where /' and Q are poly-

nomials in X, must be continuous for all x"s except roots of Q{x) = 0.

2. Graph the function x — E (x) for x ^ and show that it is continuous except

for integral values of x. Show that it is limited, has a minimum 0, an upper fron-

tier 1, but no maxinuim.

3. Suppose that/(x) is defined for an inlinite set [xj of which x = a is a point

of condensation (not necessarily itself a point of the set). Suppose

lim [/(x')-/(x")] =0 or |/(x') -/(x") |< e, |x' - «| < 5, |x" - « |< 5,

when x' and x" regarded as independent variables approach a as a limit (passing

only over values of the set [x], of course). Show that /(x) approaches a limit as

X = a. By considering the set of values of /(x), the method of Theorem 3 applies

almost verbatim. Show that there is no essential change in the proof if it be

assumed that x' and x" become infinite, the set [x] being unlimited instead of

having a jioint of condensation a.

4. From the formula sin x < x and the formulas for sin u — sin v and cos u — cos u

show that A sin X and A cos x are numerically less than 2 1 Ax
]

; hence infer that sin x

and cosx are continuous functions of ,c for all values of x.

5. Wliat are the intervals of continuity f(U' tan.c and esc x ? If e = lO-**, what

are approximately the largest available values of 5 that will make |/(x) — /(x^) |<£

when Xj, = 1°, 30^, (50°, SU'^ for each ? Use a four-place table.

6. Let /(x) b(! defined in tlie interval from to 1 as (Mjual to when x is irra-

tional and e(iual to ]/(/ when x is rational ami expressed as a fraction p/q in lowest

terms. SIiow that/ is continuous fur irrational valiU's and discontinuous for

rational values. Ex. 8, p. 39, will be of assistance in treating the irrational values.

7. Note that in the definition of contiiuiity a generalization may be introduced

by allowing the set [x] over which/ is defined to be any set each point of which

is a point of condensation of the set, and that hence continuity over a dense set

(Ex. 7 above), say tlie rationals or irrationals, maj' be defined. This is important

because many functions ar(_^ in tlie first instance defined only for rationals and are

subse(iuently defined for iri'ationals by interpolation. Note that if a function is

contimious over a dense set (say, the rationals), it docs not follow tliat it is uni-

formly contiimous over the si't. For the point of condensation C which was used

in the proof of Theorem !) may not be a point of t!ie set (may be irrational), and

the proof wouhl fall tlirougli for tlie same reason tliat it would in the case of 1/x

in the interval < x ^ 1. namely. l.)eea\ise it could not be afiirme(l that the function

was contimious at ('. Show that if a func'tiou is defined and is uniformly contimi-

ous over a dense set, the value /(/•) will apjiroach a limit wlieii x approaches any

value a (not necessarily of th(! set, but situated between the upper and lower
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frontiers of the set), and that if this limit be defined as the value of /(a), tlie

function will remain continuous. Ex. 3 may be used to advantage.

8. By factoring (x + A x)" — x", show for integral values of n that when
OS a; ^ A", then A (x") <?i7v»-i Ax for small Ax's and consequently x" is uniformly

continuous in the interval 0^ x^ K. If it be assumed that x" has been defined

only for rational x's, it follows from Ex. 7 that the definition may be extended

to all x's and that the resulting x" will be continuous.

9. Suppose (a) tliat/(x) +f{y) =/(x + y) for any numbers x and y. Show that

f{n) = n/(l) and nf{l/n) =/(l), and hence infer that f{x) = x/(l) = Cx, where

C=/(l), for all rational x's. From Ex. 7 it follows that if /(x) is continuous,

/(x) = Cx for all x's. Consider (p) the function /(x) such that/(x)/(?/) =/(x + ?/).

Show that it is Ce^ = a^\

10. Show by Theorem 12 that if y —f{x) is a continuous constantly increasing

function in the interval a ^ x ^ f)^ then to each value of y corresponds a single value

of X so that the function x =f~^ (y) exists and is single-valued ; show also that

it is continuous and constantly increasing. State the corresponding theorem if

/(x) is constantly decreasing. The function f-'^(y) is called the inverse function

to/(x).

11. Apply Ex. 10 to discuss y = Vx, where n is integral, x is positive, and only

positive roots are taken into consideration.

12. In aritlnnetic it may readily be shown that the equations

a"^/" — a"' + «, (a'")" = «"'», a"h" = (ah)",

are true when a and b are rational and positive and when m and n are any positive

and negative integers or zero, (a) Can it be inferred that they hold when a

and b are positive irrationals ? (/3) How about the extension of the fundamental

inequalities

x">l, when x > 1, x" < 1, when OSx<l
to all rational values of n and the proof of the ineiiualities

x"'>x'« if m>n and x>l, x"'<x'» if vi>n and 0<x<l.

(7) Next consider x as held constant and the exponent n as variable. Discuss the

exponential function a^ from this relation, and Exs. 10, 11, and other theorems that

may seem necessary. Treat the logarithm as the inverse of the exponential.

26. The derivative. Jf x = c is a point of "n Interval over which

f{x) is defined and if the. ([Kotient

A/' f(a + h) -f(a)-— =
, h = A,r,

approaches a, limit ivlien h aptpn'oaehes zero, no matter hoiv, the function

f(x') is said to he differentiahle at x = a and the rahce of the limit of

the quotient is the derivative f'(a) off at x = a. In the case of differ-

entiability, the definition of a limit gives

^^"^^'l"-^^"^ =f(")+ri or f{a-{-h)-f{a) = hf\a)+r^h, (1)

where liiu r; = when lini h = 0, no matter how.
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In other words if e is piven, a 5 can be found so that|r;|<e when \h\<S. This

shows that a function differentiable at a as in (1) is continuous at a. For

|/(a + h)-f{a)\^\r{a)\8+ e8, \h\< 5.

If the limit of the quotient exists when h = through positive values only, the

function has a right-hand derivative which may be denoted by/' {a+) and similarly

for the left-hand derivative /'(a-). At the end points of an interval the derivative

is always considered as one-handed ; but for interior points the right-hand and left-

hand derivatives must be equal if the function is to have a derivative (unqualified).

The function is .said to have an infinite derivative at a if the quotient becomes infi-

nite as 7i = ; but if a is an interior point, the quotient must become positively

infinite or negatively infinite for all manners of approach and not positively infinite

for some and negatively infinite for others. Geometrically this allows a vertical

tangent with an inflection point, but not with a cusp as in Fig. 3, p. 8. If infinite

derivatives are allowed, the function maj' have a derivative and yet be discontin-

uous, as is suggested hj any figure where /(a) is any value between lim/(x) when

X = a+ and lim/(x) when x = «-.

Theorem 13. If a function takes on its maximum (or minimum) at

an interior point of the interval of deiinition and if it is differentiable

at tliat point, the derivative is zero.

Theorem 14. Boilers TJieorem. If a function /'(,') is continuous over

an interval " = .' = h with end jjoints and vanishes at the ends and has

a derivative at each interior point -:' < ./• < //, there is some }ioint L
a < ^ < h, such thatf ($) = 0.

Theorem 15. Tlicnri'm of flte Jfran. If a function is continuous over

an interval " ^ .'• ^ /> and has a derivative at each interior point, there

is some point i such that

AM -/(.-

1

^ .,, „,,
/'-' + ^'-/'"'

=,v- + OA),
h — (I h

'

where h ^ I, — a* and 6 is a proper fraction, < ^ < 1.

To prove the first theorem, note that if /(a) = ,V, the dift'erence/(a -{- h) — f{a)

cannot be positive for any value of h and the quotient Af/h cannot he positive

when /i > and cannot be negative when /t<0. Hence the right-hand derivative

cannot be positive and the left-hand derivative cannot be negative. As these two

must be equal if the fuiK^tion has a derivative, it follows tliat tlicv nuist be zero,

and the derivative is zcrn. Tiie secimd theorem is an immciliate cnrnliary. Fur as

the function is continuous it nuist have a niaxinmm and a mininiuni (Tlicorcm 11)

both of which cannot be zero unless the function is always zero in the innT\al.

Now if the function is identically zei'o. the derivative is ideiuically zero and the

theorem is true ;
whereas if the function is not identically zero, either the niaxiuunu

or minimum nnist be at an interior ]ioint. and at that point t lie derivative will vauisii.

* That the tlicnrcni is true for any part of tlic interval from n to h if it is ti'uc for tlie

whole interval follows from the fact that the eonditioiis. namely, that J' be eoiitinuous

and that/'' exist, lioM for any part of tlie int-rval if they hoM for the wlioje.
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To prove the last theorem construct the auxiliary function

h —a — a

As \j/ [a) = yp (b) = 0, Holle's Theorem shows that there is some point for which

\t'(^) = 0, and if this value be substituted in the expression for ^'(x) the solution

f"i"/'(l) gives the result demanded by the theorem. The proof, however, requires

the use of the function ^ (j) and its derivative and is not complete until it is shown

that
\f/

(x) really satisfies the conditions of Rolle's Theorem, namely, is continuous

in the interval a^x^b and has a derivative for every point a <x< h. The con-

tinuity is a consequence of Theorem 6 ;
that the derivative exists follows from the

ilirect application of the definition combined with the assumption that the deriva-

tive of /exists.

27. TiiEOEKM Ki. If a fuiu-tion lias a derivative which is identically

zero ill the interval " = ./ = b, the fnnction is constant ; and if two

functions have deri\atives e(|ual throughout the interval, tlie functions

differ by a constant.

Theoke.vi 17. If /(•'•) is differential )le and l)econies infinite when

X == a, the derivative cannot remain finite as ./• = a.

Theorem 18. If the derivative /'('') of a function exists and is a

continuous function of .'• in the interval " = .' ^ h, the quotient \f/h
converges uniformly toward its limit /'(./•).

These theorems are consequences of the Theorem of the Mean. For the first,

/(« + h)-f{a) = A/'('f + eh) = 0. if h^b- a, or /(« + Ji) =/(«).

Hence /(j) is constant. And in case of two functions/and with equal derivatives,

the difference xp (x) =f(x) — 4>(x) will have a derivative that is zero and the differ-

ence will be constant. For the second, let x,, be a fixed value near a and suppose that

in the interval from x^ to a the derivative remained finite, say less than K. Then

I

/(xo + l<) - f{xo)
I

=
I

hr{xo + eh)\^\h\K.

Now let Xq + h approach a and note that the left-hand term becomes infinite and

the supposition that/' remained finite is contradicted. For the third, note that/',

being continuous, must be unifnrmly continuous (Theorem 9), and lience that if e is

given, a 5 may be found surh that

\l^^:±Ilz:m-f'ix)\^\r(x + eh)-r{x)\<e

when |/ii< 5 and for all .c's in the interval ; and the theorem is proved.

Concerning derivatives of higher order no special remarks are necessary. ICach

is the derivative of a definite function — the previous derivative. If the deri\a-

tives of the first ?i orders exist and are continuous, the derivative of order n + 1

ma}" or may not exist. In practical aiiplications, however, tlie functions are gen-

erally indefinitely differentiable except at certain isolated points. The pri.mf of

LeibmV/s Theorem (S 8) may be revised so as to depend mi elementary processes.

Let the f(n-mula lie assumed for a given value of n. The only terms which can
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contribute to the term I)HiD" + ^-'v in the formula for the (?i + l)st derivative of

uv are the terms

n(n— I) (n — i + 2) ^^. , r, ., n(n — 1) • (n — i + 1) -r,- ^^

1.2...(t-l) 1.2...t

in wliicli tlie first factor is to be differentiated in the first and the second in tlie

second. Tlie sum of tlie coelticients obtained by differentiating is

71 (>i - 1) • • {n - i + 2) n{n- ]) • {n - i + 1) _ (n + l)n • (n- i + 2)

1 2 • • • (i - 1^ 1 • 2 • • j

"
l-2---i

'

which is precisely the proper coefficient for the term D'uD'^ + i -
'i- in the expansion

of the {n + 1) St derivative of uv by Leibniz's Theorem.

With regard to this rule and the otlier elementary rules of operation (4)-(7) of

the previous chapter it should be remarked that a theorem as well as a rule is in-

volved— thus: If two functions u and v are differentiable at .r„, then the product

uv is differentiable at x^, and the value of the derivative is u (jv) v' {x^^) + u' (x^ v (x^).

And similar theorems arise in connection witli the other rules. As a matter of fact

the ordinary proof needs only to be gone over with care in order to convert it into

a rigorous demonstration. But care does need to be exercised both in stating the

theorem and in looking to the proof. For instance, the aliove theorem concerning

a product is not true if infinite derivatives are allowed. For let it be — 1, 0, or + 1

according as x is negative, 0, or positive, and let v = x. Now v has always a deriva-

tive which is 1 and u has always a derivative which is 0, + co, or according as x

is negative, 0, tir positive. The product uv is |x|, of which the derivative is — 1 for

negative x's, +1 for positive x's, and nonexistent for 0. Here the product has no

derivative at 0, although each factor has a derivative, and it would be useless to have

a formula for attempting to evaluate something that did not exist.

EXERCISES

1. Show that if at a point tlie deiivative of a function exists and is positive, the

function must be increasing at that point.

2. Suppose that the derivatives /'(«) and fij)) exist and are not zero. Show

that /(a) and fQj) are relative maxima or minima of / in the interval a = x ^ ?>, and

determine the precise criteria in terms of the signs of the derivatives /'(«) and /'(';).

3. Show that if a contimious function has a positive right-hand derivative at

every point of the interval a^x'^h. then /(?>) is the maxinuim value of/. Simi-

larly, if the right-hand derivative is negative, show tliat/(^) is the mlninuim of/.

4. Apply the Theorem of the Mean to show that if /'(.r) is continuous at a, then

x\ .'" == <i X — X

x' and x" lieing regarded as independent.

5. Form the increments of a function /for cquicrcscent values of the variable :

AJ = f(a + h) - fin). XJ = f(<t + 2 //) - f{a + A),

A,/ = /(a. + a/o-/(" + -^')-----
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These are called first differences ; the differences of these differences are

Af/ = /(r/ + 2/0 - 2f{a + h)+f{a),

Asf =f{a + 3 h) - 2/(a + 2 /;) + f{a + h),

which are called the second differences ; in like manner there are third differences

Af/ =/(r/ + 3 h) - Sf{a + 2h) + 8f{a + h)-f{n),

and so on. Apply the Law of the 3Iean to all the differences and show that

Ai-/= h-f"{a + d^h + e.Ji), A^.f= hV"{a + O^h + OJi + <9J0, • • •

Hence show that if the first n derivatives of /are continuous at a, then

A = ft- !i = Q ft" h = n ft"

6. Cnuchy's Theorem. If /(j) and <p(x) are contiiuious over r/ ^ j ^ /<, have

derivatives at each interior point, and if 0'(.'") does not vanish in the interval,

/(6)_/(r/) _/'(t)
^^

f(a + h)-fia) _ .f{a + eh)

<t> (6) - 4> {(I) (t>'(k) 4>{ei + h)- cf, (a) <t>'{a + eii)

Prove that this follows from the application of Kolle's Theorem to the function

^(x) =f{x)-f{a) - [0(x) - 0(«)] ff;^~{f|
.

7. One application of Ex. H is to the theory of indeterminate forms. Show that

if /(a) = (p(ri) = and if /'(.r)/(/)'(.r) approaches a limit when x = «, W\(i\\ f (/)/<p {x)

will approach the same limit.

8. Taylor's Theorem. Note that the form f{b) —f{n) + {h — it)f'{^) is one way
of writing the Theorem of the ^lean. By the application of ]{olie"s Theorem to

f{h)-f{a)-(h-a)f'{a)
V (x) =f{h)-f{x) - (b - x)f'{x) - (h - .c)-

{h - «)-

show f{h) =f{,i) + {h - n)f'('i) + .<''--^^/"(t),

and to i (X) = f{b) - fix) - {h - x)r{x) - l^^/-(.f ) lJ^'')'ll'/(.. -D (x)

- TT^F-^'^'') -•^^") - ^'' - ")-^'(")
{b - «)" L

_ ^^.f"(a) L 1 J («-.,(„)
,

2 {n—l)\ J

show f{li) ^f{a) + {b - a) /'{<,) + ^^^-f"{a) + • •

.

{n — 1) ! n\

"What are the restrictions that must be imposed on the function and its derivatives '?

9. If a continuous functi<m over a ^x = b has a riirht-hand derivative at each

point of the interval whicli is zero, show that the function is constant. .Vpply Ex. 2

to the functions /(x) + e (j- — r/) and/(x) — £(j — r() to show that the maximum
difference between the functions is 2e{b— a) and that/ nuist tlierefore be constant.
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10. State and prove the theorems implied in the formulas (4)-(6), p. 2.

11. Consider the extension of Ex. 7, p. 44, to derivatives of functions defined

over a dense set. If the derivative exists and is uniformly continuous over the dense

set, what of the existence and continuity of the derivative of the function when its

definition is extended as there indicated ?

12. If f(x) has a finite derivative at each point of the interval a^x^h, the

derivative f'{x) must take on evei-y value intermediate between any two of its values.

To show this, take first the case where /'(a) and/' (6) have opposite signs and show,

by the continuity of / and by Theorem 13 and Ex. 2, that /'(f) = 0. Next if

/'(a) < M <./" '('') without any restrictions on /'(a) and /'(/>), consider the function

/(x) — /xx and its derivative /'(x) — /x. Finally, prove the complete theorem. It

should be noted that the continuity of /'(x) is not assumed, nor is it proved ; for

there are functions which take every value intermediate between two given values

and yet are not continuous.

28. Summation and integration. Let /(.r) be defined and limited

over the interval o ^ j- ^ b and let M, m, and = M— m be the

upper frontier, lower fron-

tier, and oscillation of /(•')

in the interval. Let ?i — 1

points of division l)e intro-

duced in the interval divid-

ing it into 71 consecutive

intervals S^, So, •••. S„ of

which the largest has the

length A and let .1/,-, ///,-, O.,

and f(i,) he the up})er and lower frontiers, the oscillation, and any

value of the function in the interval 8,-. Then the inequalities

will hold, and if these terms be summed up for all ?i intervals,

Y 3/;
^l

/

/
in

cc
'i I> X

m{h - a) ^ 2^/y;A ^ 2)/Yv^-)8, ^ 2)-l/A- ^ ^^ij' ') (^•0

wall also hold. Let .^ = 2//^8,, o- = 2/'(^,)8,-, and ,s' = SJ/^. i'l'^'n^ (-0

it is clear that the difference .s' — .v does not exceed

(J/ - ///) (h - <i) =
0(J>

- n),

the product of the length of the interval by the oscillation in it. The

values of the sums S, s, cr Avill evidently depend on the numlx'r f)f ]iarts

into which the interval is divided and on the Avay in which it is dividiMl

into that nuniber of ])arts.

Thkoi;e:\i 19. If n' additional ]i(»ints of division be introduced into

the interval, the sum .S' constructed for the 'a 4- />' — 1 points <-)f division
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cannot be greater than S and cannot be less than .S' by more than

7i'(>A. Similarly, *•' cannot be less than s and cannot exceed s by more

than 7i'(jA.

Theokem 20. There exists a lower frontier L for all possible methods

of constructing the sum S and an upper frontier I for s.

Theokem 21. Darboux's Tlteoreiii. When e is assigned it is possible

to find a A so small that for all methods of division for wliich 8,- ^ A,

the sums .S' and .v shall differ from their frontier values L and I by less

than any preassigned e.

To prove the first theorem note that although {A) is written for the whole inter-

val from a to h and for the svuns constructed on it, yet it applies equallj" to any

part of the interval and to the sums constructed on that part. Hence if Si = -V,-5i be

the part of .S due to the interval 5,- and if S\ be the part of 6" due to this interval

after the introduction of some of the additional points into it, 7H,-5,-^ ,S^ s Si — Midi.

Hence -S/ is not greater than .s',- (and as this is true for each interval 5,, .S" is not

greater than .S) and, moreover, -S,— S^ is not greater tlian 0,-5,- and a fortiori not

greater than OA. As there are only ?i' new points, not more than u' of the intervals

5; can be affected, and hence the total decrease .S — S' in .S cannot be more than

n'OA. The treatment of .s is analogous.

Inasmuch as (^1) shows that the sums N and s are limited, it follows from Theo-

rem 4 that they possess the frontiers required in Theorem 20. T(^ prove Theorem 21

note first that as L is a frontier for all the sums S, there is some particular sum S

which differs from L by as little as desired, say I e. For this .S let ji be the number

of divisions. Now consider .S' as any sum for which each 5,- is less than A = J (/nO.

If the sum .S" be cimstructed by adding the n points of division for S to the points

of division for S'. ,s" cannot l)e greater than S and hence cannot differ from L by

so much as I e. Also S" cannot be greater than .s" and cannot lie less than .S' by

more than 7(OA. which is \ e. As S" differs from L l>y less than i e and .S" differs

from .s" by less than ,' e. S' cannot differ from L Ij}' nujre than e, which was to be

pro\ed. The treatment of .s and / is analogous.

29. If indices are introduced to indicate the interval for Avhich the

frontiers L and / are calculated and if /8 lies in the interval from '/ to h,

then L^f and /,f will Ix* functions of
fi.

Theorem 22. The equations L^ = L,1 -f- Z *, n <r<h; L^^ = — /,,;'

;

L'; =^ ix{I) — (i), III ^ fx-^ M, hold for L, and similar ecjiuitions lor /. As

functions of /3. />,f and /,f are continuoits, ami if /'(./•) is continuous,

they are ditt'erentiable and have the common derivative /{ft)-

To prove tliat Z,'' = Z^f + />,!'. consider c as one of the points of division of the

interval from a to '/. Then the sums -S will sati.sfy .S'^'' = S^ + S^, and as the limit

of a sum is the sum of the limits, the corresixjnding relation must hold for the

frontier L. To show that L'^ = — Z," it is merely necessary to note that Sj* = — .S,^

becau.se in passing from h to a, the intervals 5; nmst be taken with the sign opposite

to that which they have when the direction is from a to h. From (^4) it appears

that m (h — (/) ^ s'^ ^ M {h — a) and lience in the limit in (h — n) ^ Z,'' ^ 3/ {h — u).
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Hence there is a value fi, m ^ /x ^ M, such that L^^ = /i{b — a). To show that L^
is a continuous function of ^, take A' >i^^f |

and |nij, and consider the relations

Xa + A _ i3 = i3 + i3 + /- _ LB ^ LB + n ^ ^^^ |^|< j,^^

LB-k_ LB ^ Lf - L^-" - H-n =- L^-, =" m'/^ \f^'\<K.

Hence if e is assigned, a 5 may be found, namely 5 < e/K, so that
|
i,f

~
'' — if

|

< e

when h<d and L^f is therefore continuous. Finally consider the quotients

L^ + >'-Lf L^-''-Lf}
^ = 11 and

h
r-

_j^

where ya is some number between tlie maximum and minimum of /(x) in the inter-

val /3 ^ X ^ /3 + /t and, if / is continuous, is some value /(^) of / in that interval

and where // =f{^') is some value of / in the interval ^ — h^x^ (3. Now let

h = 0. As the function /is contiiuious, lim/(^) =f{l3) and lim/(f') =f{p). Hence

the right-hand and left-hand derivatives exist and are equal and the function L^
has the derivative /(/3). The treatment of I is analogous.

Theorem 23. Eor a given interval and function /, the quantities /

and L satisfy the relation I ^ L ; and the necessary and sufficient con-

dition that L = I is that there shall he some division of the interval

which shall make 2 (Mi — 'iii-) S,- = 20,8,- < e.

If L^ =
/^f,

the function /' is said to be integrable over the interval

from a to b and the integral I /(.<') d-r is defined as the common value

X^* = J^'^. Thus the definite integral is defined.

Theorem 24. If a function is integrable over an interval, it is inte-

grable over any ])art of tlie interval and the equations

f(.r)rlr+
j

f(.r)d.r=j f(.r)dj;

hold; moreover,
j

/'(,/•) r/.r = 7''(/3) is a continuous function of /3 ; and

if /'(./•) is continuous, the derivative J'''(I3) will exist and be/(^).

By (^-1) the sums ^' and ,s constructed for tlie same division of the interval satisfy

tlie relation 8 — .s ^ 0. By Uarboux's Tlieorem tlie sums S and s will approach the

values L and I when the divisions are indefinitely decreased. Hence L — 1^0.
Now \i L = I and a A be found so that when 5,- < A the inetjualities >S' — i < i e aiu.l

Z — .s < I e hold, then N — .s = S (.1// — m;) 5/ = 20,-5,- < e ; and hence the condition

S0,'5,- < e is seen to be necessary, ('inversely if there is any method of division such

that 20,-5i < e. tlieii N — .s < e and the lesser (luaiitity L — I must also be less than e.

But if the difference between two constant (juautities can be made less than e,

where e is arbitrarily assigned, the constant (juautities are ecjual ; and hence the
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condition is seen to be also sufficient. To show that if a function is integrable over

an interval, it is integrable over any part of the interval, it is merely necessary to

show that if i„ = /„*, then L^ = l^ where a and /3 are two points of the interval.

Here the condition S0,-5,<e applies; for if S0,-5,- can be made less than e for the

wiiole interval, its value for any part of the interval, being less than for the whole,

must be less than e. The rest of Theorem 2-1 is a coi'ollary of Theorem 22.

30. Theorem 25. A function is integrable over the interval n S ./ ^ h

if it is continuous in that interval.

Theorem 26. If the interval a ^ ./ ^ h over which f{x') is defined

and limited contains only a finite number of points at "which / is dis-

continuous or if it contains an iniinite number of points at which /' is

discontinuous but these })oints have only a finite number of points of

condensation, the function is integrable.

Theorem 27. If /'(•'') ^^ integraljle over the interval '' ^ ,/• ^ h, the

sum or = 2/'(^,) 8,- will approach the limit I /{•'') d-'' when the indi-

vidual intervals 8,- a})proach the limit zero, it Ijeing immaterial how
they apijroach that limit or how tlie points ^,- are selected in their

respective intervals S,.

Theorem 28. If /"(./•) is continuous in an interval ((^.r^f), then

/(.'•) has an indefinite integral, namely
|

f(j')dj:, in the interval.

Theorem 25 may be reduced to Theorem 23. For as the function is continuous,

it is possible to find a A so small that tlie oscillation of the function in any interval

of length A shall be as small as desired (Theorem 9). Suppose A be chosen so that

the oscillation is less than e/{l) — «). Then Z0,-5,- < e when 5,- < A ; and the function

is integrable. To prove Theorem 2*!, take lirst the case of a tiiiite muuber of discon-

tinuities. Cut out the diseontiiuiities surrounding each value of j- at wliich/ is dis-

continuous by an interval of length 5. As the oscillation in each of tiiese intervals

is not greater than 0, the contribution of these intervals to the sum ^Oi5i is not

greater than On8, where n is the mnnber of the discontinuities. V,y taking 5 small

enough this may be made as small as desired, .say less than l e. Now in each of the

remaining parts of the interval a^x^b. the function / is contiiuious and hence

integrable, and consequently the value of 20,-5i for these portions may be made as

small as desired, .say ^e. Thus the sum S0,-5; for the whole interval can be made
as .small as desired and/(j") is integrable. When there are points of condensation

they may be treated just as the isolated points of discontinuity were treated. After

they have been surrounded by intervals, there will remain over only a finite num-
ber of discontinuities. Further details will be left to the reader.

For the proof of Theorem 27. appeal may be taken to the fundamental relation

(^1) which shows that s ^ a- ^ S. Now let the number of divisions increase indefi-

nitely and each divi.sion become indefinitely small. As the function is integrable,

N and ,s approach tlie same limit
|

f{x)dx. and consequently a which is included

between them must approach that limit. Theorem 28 is a corolla :-y (jf Theorem 24
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XXf {x) dx in f {x) . By defi-

nition, tlie indefinite integral ig any function wliose derivative is tlie integrand.

f{x)dx is an indefinite integral of /(x), and any other may be obtained
a

by adding to this an arbitrary constant (Theorem 10). Thus it is seen that the

proof of the existence of the indefinite integral for any given continuous function

is made to depend on the theory of definite integrals.

EXERCISES

1. Rework some of the proofs in the text with I replacing L.

2. Show that the L obtained from C'f{x), where C is a constant, is C times theX

obtained from/. Also if u, v, v: are all limited in the interval a^x^b, the L for

the combination u + v — iv will be L (m) + L{v) — L (w), where L (u) denotes the L
for u, etc. State and prove the corresi)onding theorems for definite integrals and

hence the corresponding theorems for indefinite integrals.

3. Show that SOjSj can be made less than an assigned e m the case of the func-

tion of Ex. 6, p. 44. Note that / = 0, and hence infer that the function is integrable

and the integral is zero. The proof may be made to depend on the fact that there

are only a finite muuber of values of the function greater than any assigned value.

4. State with care and prove the results of Exs. 3 and 5, p. 20. "What restric-

tion is to be placed onf{x) if /(^) may replace /x ?

5. State with care and prove the results of Ex. 4, p. 29, and Ex. 13, p. 30.

6. If a function is limited in the interval a^x^h and never decreases, show

that the function is integrable. This follows from the fact that 20,- s is finite.

7. More generally, \etf{x) be such a function that ZO,- remains less than some

number A', no matter how the interval be divided. Show that/ is integrable. Such

a function is called a function of limited variation (§ 127).

8. (Jhange of variable. Let f{x) be continuous over a^x^ b. Change the

varialjle to x = 4>{t). where it is supjjosed that a = 4>{t^) and b = 0(io), and that

<p(t), 4>'{t), s.n(\f[(p{t)] are continuous in t over t^^t^ t„. Show that

Cf{x)dx^ f'y[<p{t)]<p'{t)dt or f'^^'^f{x)dx=f[n4>{t)]4'\t)dt.

Do this by showing that the derivatives of the two sides of the last equation with

respect to t exist and are e(iual over t^ ^t^t.,, that the two si(h's vanish when

t = i^ and are equal, and hence that they nmst be eiiual tliroughout the interval.

9. Osgood'^ Theorem. Let n-; be a set of (luantities which differ uiiifonuly from

f{ki) St by an amount f,-5i, that is, suppose

ai =f{^;) di + ^i5i, where \^i\<e and « ^ ? ^ b.

Trove that if /is integrable, the sum 2«j approaches a limit when 5; :^ and that

the limit of the sum is I f{x)dx.

. 10. Ai)i)lv Ex. 9 to the case Af = f'Ax + ^Ax where/' is continuous to show

r''
directly that /(/*) -/(//) = I f'{x)dx. Also by regarding Aj: = <p' {() At + fA/. apply

to Ex. 8 to xjrove the rule for change of variable.



PART I. DIFFERENTIAL CALCULUS

CHAPTER III

TAYLOR'S FORMULA AND ALLIED TOPICS

31. Taylor's Formula. The obje(;t of Taylor's Formula is to express

the value of a function f(j') in terms of the values of the function and

its derivatives at some one point x = <i. Thus

/(•^•) =/(^0 + C'^
- ^0./"(") + ^^f^/"(^0 + • •

•

Such an expansion is necessaril\' true because the remainder R may be

considered as defined by the equation ; the real significance of the

formula must therefore lie in the ])ossibility of finding a simple ex-

pression for R, and there are several.

Thkokkm. On tlie hypothesis that /{>•) and its first n derivatives

exist and are continuous over the intei'val a ^ .'• ^ b, the function may
be expanded in that interval into a })olynomial in x — a,

/(') =,/(") + (' - ")/"(,") + ^-^^^^T^f'X") +

with the remainder 7? expressible in any one of the forms

(x — ay J/" (1 — 0)"-'^

where h = x — a and a < t < x or ^= <i \- Bh where < ^ < 1.

A first proof may be made to depend on Kolle's Theorem as indicated in Kx. 8,

p. 4!). Let X be regarded for the moment as constant, say equal to b. Constrnct

55
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the function \p {j) there indicated. Note that \}/ («) = \l/
(h) = and that the deriva-

tive ^'(x) is merely

n^)=-~ ^/^"H-^) + n\ ^~-\ f{h)-f{a) - {h - a)f'{a)
(n-l)I (6- «)« L

(H - 1) !

'
^ ^J

By llolle's Tlieoreni \p'{^) = 0. Hence if ^ be substituted above, the result is

f{h) =f{a) + {h - ,,)/'(") + • • • + ^"^J"^V("-^>('0 + ^'^^V<">(f),
(7t — 1) ! n\

after strikini;' out the factor — {!) — f)"
-i, nudtiplyin^- l)y (/; — aY/n^ and transposing

/(/;). The tlieoreni is therefore proved with the first form of the remainder. This

proof does not require the continuity of the nth derivative nor its existence at a and at b.

The second form of the remainder may be found by api)lyiug llolle's Theorem to

^ {X) =f{b) - /(./•) - (/> - x)r{x) -'r^Tvr
•^'" "'

'
(') - ('' - '") ^'

(u-l) !

where P is deternuned so that li = {!> — a) P. Note tliat i/- (/;) — and that by

Taylor's rormula i/' (a) = 0. Now

^V)---: ----/<"H.'-) + ^' <>!• ^=/^"H0S— "rrr
^'"^'' ^'(^') = o.

(H-f)! ("-!)!

Hence if | be written ^= a+0h where h = l>—a, then J>—^ = h— a— 6h.= {J>— a){\ — d)

.

And R = {b- a) P = {b-a) ^ 1-- ^^^^-fOO^ = i /\, f"" i^)-
{n — 1) ! (ji — 1) !

The second form of R is thus found. In this work as before, the result is proved

for X = b, the end point of the interval a^x^t). But as tlu^ interval could be

considered as terminating at any of its points, the proof clearly applies U> any x

in the interval.

A second jiroof of Taylor's Formula, and the easiest to remember, consists in

integrating the jtth derivative n times from a, to x. The successive results are

f
"/-(.o (,,) dx = /» -

1 (X) ]"= /(« - 1 ) (X) - /(" - 1) (a)

.

f r7<")(x)(/./;2 = r7(«-i)(j:) (/,,._ c'foi-i)(^,t)dx

f- • • r>'0(x)(Zx« =/(x, -/(.A) - (X - a)r{a)
I'll 'J a

2 ! (n — 1) !

'I'lie formula, is therefore jjroved with R in the form | • • •

/
/(")(x)(?x". To trans-

form this t,o the ordinary form, the Law of t,he Mean may l)e applit'd ((<>•">), S 1<»)- ^'''"'

m(x-«)< rV<")(x)tZx<.V(x~«), w^^-.ZL.-')!< T'... f /X'0(x)(Zx'' <3/^--^-"-^-,
^« ?i ! t/« J a V. !
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where m is the least and M the greatest vahie of /(")(j) from a to x. There is tlien

some intermediate valne/(")(^) = ^ such tliat

J a J a n\

Tliis prooi' requires that tlie nth derivative be continuous and is less general.

The third proof is obtained by applying successive integrations by parts to the

Jr\
h

/'{a + h — t) dt to make the integrand contain
u

liigher derivatives.

f{a + Ji) - /(«.) = f \f'{a + A - dt = tf'{a + h - t)\'' + f
''

if '{a + h - t) dt
Ju Jo «^0

= hfia) + I t'f'\<^ + li-t)X + f'' h i:y""{a + //. - t) dt

= hfia) + ^^r{a) + . . . + T^^,/(" ~'\n) + (
"-^^

'~--i/(")(a + h-t) dt.

2 ! (u — 1)1 i/o (h— 1)1

This, however, is precisely Taylor's Fornmla with tlie third form of remainder.

If the point a about which the function is expanded is .r = 0, tlie

expansion Avill take the fonu known as JMaclauriirs Formula:

/(•O =/(0) + ^fi^ + ;;';/"(0) + .

. + j£^.r"'^'' (0) + n, (3)

P'^X6.r) =-^ (1 - ey ~\f<"\e.r)=
j--^jyf

'^"

-\f"%^- '^^-

32. Both Taylor's Formula and its special cas(>, ]\raclaiirin*s, express

a function as a polynomial in // = .' — r', of which all the coefhcients

except the last are constants while the last is not constant but depends

on // both explicitly and throiigh the unknown fraction Q which itself is

a function of h. If, however, the nxX\ derivative is continuous, the coeffi-

cient /'^"^(^^ + ^//)//i ! must remain finite, and if the form of the deriva-

tive is known, it may be possible actually to assig'n limits between

Avhich /'"^"^(rf + 6//)/« ! lies. This is of gri'at importance in making-

approximate calculations as in Exs. 8 if. below ; for it si'ts a, limit to

tlie value of R for any value of n.

TiiKoi;K:\r. There is only one possible expansion of a function into

a polynomial in // = ./• — d of which all the coefficients except the last

are constant aiul the last finite ; and lu^nce if such an expansion is

found in any mariner, it must be Taylor's (or jMaclaurin's).

To prove this theorem consider two polynomials of the nth order

Co + ''\j^ + ^-]>^^ + 1- t'n-i/i""^ + t^H/t" = C'y -i- 6\/t + CJiP- + 1- C'„_i//,«-i + ('„/<",

which represent the same function and hence are eipial for all values of /t from

to 6 — «. It follows that the coefficients nmst be equal. For let h approacli 0.

' =
;;:
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The terms containing h will ai^proach and hence Cq and Cq may be made as

nearly eqnal as desired ; and as they are ct)nstants, they must be equal. Strike

them out from the equation and divide hj h. The new equation must hold for all

values of h from to b — a with the possible exception of 0. Again let h = and

now it follows that c^ — G'j. And so on, with all the coefficients. The two devel-

opments are seen to be identical, and hence identical with Taylors.

To illustrate the applicatit)n of the theorem, let it be required to find the expan-

sion of tanx about when the expansions of sinx and cosx about are given.

sin X = X — ^ x^ + jl ^j
x^' + Px', cos X = 1 — i X- -f- ^'j x'* + Qx*^,

where P and Q remain finite in the neighboi'hood of x = 0. In the first place note

that tanx clearly has an expansion ; for the function and its derivatives (which

are combinations of tan x and sec x) are finite and contiiuious until x approaches i tt.

By division,

X -I- 1 X^ + y--- X^

1 - I X2 + 2\ X* + QX«) X - 1 X'^ + t' ^'
\ + ^^''

X - J- x» + IT T -c^
; + Q^''

,3-3_ 1 X": + -Sx' + 1QX«

Hence tan x = x 4-
J

a"" + tVx'' -I x', where S is the remainder in the division
cosx

and is an expression containing P, Q, and powers of x ; it must remain finite if P
and Q remain finite. The quotient .S'/cos x which is the coefficient of x' therefore

remains finite near x = 0, and the expression for tan x is the Maclaurin expansion

u}) to terms of the sixth order, plus a remainder.

In the case of functions compounded from simple functions of which the expan-

sion is known, this method of obtaining the expansion by algebraic processes upon

the known expansions treated as polynomials is generally shorter than to obtain

the result by differentiation. The computation may be abridged by omitting the

last terms and work such as follows the dotted line in the example above ; but if

this is done, care nuist be exercised against carrying the algebraic operations too

far or not far enough. In Ex. .5 below, the last terms should be put in and carried

far enough to insure that the desired expansion has neither more nor fewer terms

than the circumstances warrant.

EXERCISES

1. Assume E = (b - a)>^P: show R = — ^^ ~ ^^''~V ^"'' (^^)-

(n-l)'.lc

2. Apply Kx. o, p. 2i>, to compare the third form of remainder with the first.

3. Obtain, by differentiation and suljstitution in (1), three nonvanisliing terms:

(a) sin-'x. a = 0. (/i) tanh x, a = 0, (7) tanx. « = 1 tt,

(5) cscx, a —-
}. TT. (e) e*'"'', a = 0, {^) log sin x. it = Iw.

4. Find the )(th derivatives in the following cases and write the expansion:

(((-) sin X. (( — 0, ip) sin x. (( = I tt, (7) r'\ d = 0.

(5) c', a = 1, (e) logx, a ^ 1, (f) (1 + £)''\ " - 0.
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By algebraic processes find the Maclaurin expansion to the term in x^

:

(a) sec x, (^) tanh x, (7) — Vl — x-,

(5) e^siiix, (e) [log(l — x)]-, (f) + Vcosh x,

(17) e«i°^, (ff) hjgcosx, (t) log Vl 4- X-.

The expansions needed in this worlv may be foinid by differentiation or taken

from B. O. Peirce's "Tables."" In (7) and (f) apply the binomial theorem of V.x.

4 (f). In {r]) let y = sinx, expand e'J, and substitute for y the expansion of sinx.

In (d) let cosx = 1 — y. In all cases show that the coefficient of the term in x^

really remains finite when x = 0.

6. If f{a + h) = Cy + c-j/i + c.Ji- + •• • + (•„_!/(" -1 + c„/(", show that in

f f{a + h) dh = cji + -1 h" + ^ AJ5 + . , . + 'hl^ kn _^ C 'r,JiHlh
Jo 2 3 n Jo

the last term may really be put in the form Pit" +1 with P finite. Apply Ex. 5, p. 29.

_ r ^ (If
7. Applv Ex. to sin-ix =

j
, etc.. to find developments of

Jo Vl - X-

(a) sin -1 X, (/3)
tan-i x, (7) sinh-i x,

(5) log:^, (e) /
C--V/X, (n / dx.

1 — X J() J<} X

In all these ca.ses the results may be found if desired to n terms.

8. Show that the remainder in the Maclaurin development of e^ is less than

x"e^/n 1 ; and hence that the error introduced by disregarding the remainder in com-

puting e-'" is le.ss than x"e-''/n I. How many terms will suffice to compute e to four

decimals'? How many for c^' and for e"-^ ?

9. Show that the error introduced by disregarding the remainder in comput-

ing log (1 + x) is not greater than x"/n if x > 0. Ibiw mauy terms are required for

the computation of log 1^ to four places? of log 1.2 '.' Compute tlie latter.

10. The hypotemise of a triangle is 20 and one angle is ol". Find tlie sides by

expanding sinx and cosx about a = i ir as linear functions of x — ^ tt. Examine

the term in (x — l-rr)- to find a maximum value to the error introduced by

neglecting it.

11. Compute to 6 places: (a) ti (/3) log 1.1. (7) sin .30'. (5) cos 30'. During

the computation one place more than the desired number should be carried along

in the arithmetic work for safety.

12. Show that the remainder for log (1 + x) is less than x"/)i (1 + x)" if x < 0.

Compute (a) log 0.9 to places, (^) log 0.8 to 4 places.

13. Show that the remainder for tan-i/ is less than x"/n where ?i may always

be taken as odd. Compute to 4 places tan-i i.

14. The relation | tt = tan-i 1 = 4 tan-' I — tan-i
^ It enables 1 tt to be found

easily from the series for tan-^x. Find ^ tt to 7 places (intermediate work carried

to 8 places).

15. Computation of logarithms, (a) If a = log 1,,". /* = log |i, c = log Ji. then

loff 2 = 7 (/ - 2 6 -1- 3 c, lo£t 3 = 11 « - 3 h + 5 c. \> >g 5 = 10 a — ib + 7 c.
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Now a = — log (1 — j\,), b =— log (1 — y^o), c = log (1 + -jjig) are readily computed

and hence log 2, log 3, logo may be found. Carry the calculations of a, 5, c to

10 places and deduce the logarithms of 2, 3, 5, 10, retaining only 8 places. Com-
pare Puirce's "Tables," p. 109.

1 + X 2 .r"

(S) Show that the error in tlic series for loij; is less than
'- Com-

^
'

' 1 - X )i (1 - x)«

pute log 2 corresponding to x = -^ to 4 places, log 1| U) 5 places, log l'^ to places.

(y) Show log
Ip + <i

3 \?) + ql
+ + llm

<1 LP + 'I
ii \P + q/ 2 H — 1 \p + q/

give an estimate of li-2>i^i- <^'i'l compute to 10 figures log 3 and log 7 from log 2

and loi;- 5 of Tcirce's "Tables " and from

4 log 3—4 lo','- 2 — If )Lr 5 = loi
81

41( r, = loir-

Ii„<

80
'-' '7^-1

16. Compute Ex. 7 (e) to 4 places for x = 1 and to G places for x = |.

17. Compute .'in-iO.l to seconds and sin-i
?,
to minutes.

18. Show that in tlie expansion of (1 + x)^' tlie remainder, as x is > or <0, is

k-{k-l)---{k-n + ]) X'\ k.{k-l)...{k-n + l)
^„^

1 • 2... ?i

or /?„< ', n>k.
1-2..-71 (l + x)«-

Hence compute to 5 figures \^10;J, V!i8, ^28, V2.j0, a'ioIJO.

19. Sometiiues the remainder cannot be readily found but tl;e terms of the

expansion appear to be dinnnisliing so rapidly that all after a t-ertain point appear

negligible. Thus use Peirce"s "Tables," Nos. 774-789, to comi>ute to four places

(estimated) tlie values of tan 0^ log cos 10', esc 3^^, sec 2'^.

20. Find to witliiu 1'^,'. the ari'a under cos (x-) and sin (x-) from to ^ tt.

21. ^V unit magnetic polo is j.l^H'cd at a distance L from the center of a magnet

of pole strengtli J/ and Icngt'.i 2/. wliere l/L is small, i'ind the force on the ])ole

if (a) the pole is in the line of the magnet and if {^) it is in the perpendicular

bisector.

Ans. (a) -^^ (1 + e) with e about 2( {3)
" V (1 — f) with e ab.iut '-'

(
-

22. The fornnila for the di.-tance of the horizon is J) —\'^h wlicre T) is the

distance in nnles and h. is tlie altitude of the observer in feet. I'rove the fonnula

and show that the error is aliout l\', for heights up to a few mih s. Take tlie radius

of the earth as 3900 miles.

23. Find an aiiprnximate foi-nnda for tlio dip of the liorizou in minutes below

the iKU'izontal if 11 in feet is the height of the observer.

24. If N is a eircr.lai' arc and (' its chord and r tlu; chord of half the arc, prove

,S' =
I
(8r - () (1 + f) where f is aliout syii\S{) /.'* if /.' is the radius.

25. If tv.'o ijiiantities differ from each other by a small fraction e of their value,

show that their geometric mean \\ill differ from their arithmetic mean by about

\ i- of its value.

26. The algebraic method may be applied to finding expansioiis of some func-

tions which become infinite. ('I'lius if the series fur cos x and >i:ix be divided to

find cot X, the initial term is 1/x and becomes infinite at x = just as cotx does.
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Such expansions are not Maclaurin developments Init are analogous to them.

The function xcotx would, however, have a ^laclauriu development and tlie

expansion found for cot x is this development divided by x.) Find the develop-

ments about J = to terms in x* for

(a) cot J, (i3) cot-j-, (7) CSC J, (5) csc^j:,

(e) cot X CSC J, (f) l/(tau-ij)-, (7;) (sinx — taux)-i

27. Obtain the expansions:

(a) logsinx = logx — ^x- — ji^x^ + /i, (^) log taux = logx + ix- + g'gX* + • • ,

(7) likewise for log vers x.

33. Indeterminate forms, infinitesimals, infinites. If two functions

/'(./') and 4>{.i-) are defined for ./ = <i and if <^(''') ^ 0, the quotient /'/<^ is

defined for ,r = a. I>ut if <^ ('") = 0, the quotient /'/</> is not defined for a.

If in tliis case/' and <^ are defined and continuous in the neif,dd)orhood

of a and/(V/) 4^ 0, the quotient Avill become infinite as ,/• = a ; whereas

if /(r/) = 0, the behavior of the quotient /'/(^ is not immediately appar-

ent but gives rise to the indeterminate form 0/0. In like manner if /
and <^ liecome infinite at a, the quotient f/<^ is not defined, as neither

its numerator nor its denominator is deiined ; thus arises the indeter-

minate fornt x/x. The question of determining or evaluating an

indeterminate form is merely the (piestion of finding out whether the

(piotient /'/</> approaches a limit (and if so, what limit) or l)eco]ues

positively or negatively infinite when ./• approaches ".

Tii?:oki;m. L' lI(i.<p\f(iTs Riih'. If the functions /'(./•) and <^ (.'•), which

give rise to the indeterminate form 0/0 or x/x Avlien ./• = '/, arc; con-

tinuous and differentiable in the interval (t < .' =s ^> and if // can l)e

taken so near to <i that <^'('') does not vanish in the interval and if the

quotient/''/^' of the derivatives ap])roaches a limit or l)ecomes posi-

tively or negatively infinite as ./• = ", then the quotient /'/<^ will ap-

proach that limit or l)ecome positively or negatively infinite as the ease

may be. Hence (ni indi'fcrmbv'fi; fnnii 0/0 or x/x imn/ he fcplaci'd Jnj

the (iitiiflinit of the drrlrdfu'es af nmni'i'dfoi' (ni<l (Jcnnm inntnr.

C-Vsi; I. f{a) = (p {(i) = 0. The proof follows from Cauchy's Fornuila, Ex. (i, p. 49.

i (»r = =
, (I < ^ <X.

<P (X) 4> (X) - <p (r/) 0'(?)

Now if X = (I. so nuist J. which lies between x and a. Hence if the quotient on tlie

right approaches a limit or becomes positivelj^ or negatively infinite, the same is

true of that on the left. The necessity of inserting the restrictions that / and

shall be continuous and differentiable and that </>' shall not have a root indefinitely

near to a is apparent from the fact that Cauchy's Formula is proved only fer func-

tions that satisfy these conditions. If the ilerived form/'/^' should also be inde-

terminate, the rule could again be ajiplied and tlie ^[wnx'u'wi f"/cf>" would replace

f/<p' with the understanding that pn.iper restrictions were satisfied by/', 0', aiul 0".
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Cask II. f{a) = <p{a) = x. Apply Cauchy's Formula as follows

:

f{x)-f{h) ^ f{.c) 1 -/(/>)//(x) ^n^)^ a<x<b,
<t>{z)-<t>{b) <p{x) l-.p{b)/<p{x) 4>'{^)' X <!</>,

where the middle expression is merely a different way of writinij the first. Now
suppose that/'(x)/0'(x) approaches a limit when .c = a. It nmst then be possible to

take h so near to a t\mtf'{^)/<p'{^) differs from that limit by as little as desired, no

matter wliat value ^ may have between a and b. Now as / and (p become infinite

when X = a, it is possible to take x so near to a that f{b)/f(x) and (p {b)/<p {x) are

as near zero as desired. The second equation above then shows that /(x)/0(x),

multiplied by a quantity which differs from 1 by as little as desired, is etjual to

a quantity f'{^)/<p'{^) which differs from the limit of f'{x)/(p'{x) as x = a by as little

as desired. Hence //^ must approach the same limit as/V0'. Similar reasoning

would apply to the supposition that/y0' became positively or negatively infinite,

and the theorem is proved. It may be noted that, by Theorem 10 of § 27, the form

/'/<!>' is sure to be indeterminate. The advantage of being able to differentiate

therefore lies wholly in the possibility that the new form be more amenable to

algebraic transformation than the old.

The other indeterminate forms 0- x, 0\ l"". xf, ao — oo may be reduced to the

foregoing by various devices which may be indicated as follows :

0-x = -:=-, Oo^eiogoo^^goiogo = eO--. •••, oc- oo = loo-e- -«> = loi; —

.

^ 2_

. . ^
.- ^^

00

The case where the variable becomes infinite instead of approaching a finite value

a is covered in Ex. 1 below. The theory is tlierefore completed.

Two methods which frequently may be used to shorten the work of evaluating

an indeterminate form are the method of E-functions and tJic application of Taylor's

Fonnula. By definition an E-function for the point x =. a is any continuous function

which apjjroaches a finite limit other than u:hen x = a. Suppose then that/(x) or

(p{x) or lioth may be written as the products £",/, and E.-,4>^. Then the method of

treating indeterminate forms need be applied only to/j/^^ and the result multiplied

l)y lini Ej/E.,. For example,

X — ff X o,

lini (x- + ax + a") lim — — = .3 a- lim — = .3 a-.
.r = aSin(x — «) .7~a ,, = r, slu (x — r() ^. j, „ sill (X — c)

Again, suppose that in the form 0/0 Imth numerator and denominator may be de-

veloped about X = a by Taylor's Formula. The evaluation is immediate. Thus

tanx — sinx _ (x + ix" + Px") - (x — ^ x^ + Qx-') _ I + (P — Q)x-

x" log (1 + X)
^

X- {x- i X- + /i'x-5)
~

1 _ 1 X + lix-
'

and now if x = 0, the limit is at once shown to be simply I.

When the functions l)ecoiiie infinite atx = a. the conditions requisite for Taylor's

Formula are not present and there is no Taylor expansion. Nevertheless an expan-

sion may sometimes be obtained by the algebraic method ($ 32) and may fre(iuentl.v

be used to advantage. To illustrate, let it be required to evaluate cot x — 1/x which
is of the form x — x when x = 0. Here

cosx 1 + 1, X- 4- /V^ 1 1 - 1. ,/•- 4- /V-" ] / 1 „
cot X = = = -:i = - 1 X- + 'Sx'

sin X X —
I

X-' + (^x-J X 1 —
J
X- + (^'x'* X \ 3
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where S remains finite when x = 0. If this vahie be substituted for cot x, then

lini (cotx )
= lim ( x + Sx^ )

= iini
(

x + SxA = 0.
x = o\ Xf x = o\x 3 Xf x~(j\ 3 /

34. An infinitesimal is a variable vjJiicli is ultiwatclij in aiqtroacli the

Hill it zero : an infinite is a variable w/iirh is to become eitlter positively

or negatively infiyiite. Thus the increments A// and A.r are finite quan-

tities, but when they are to serve in the definition of a derivative the}-

niust ultimately approach zero and hence may be called infinitesimals.

The form 0/0 represents the quotient of two infinitesimals :
* the form

x/cc, the quotient of two infinites; and 0- x, the pi'oduct of an infin-

itesimal by an infinite. If any infinitesimal a is chosen as the j>rima ry

infinitesimal, a second infinitesimal (i is said to be of the same order as

a if the limit of the quotient ^/a exists and is not zero wlien « = ;

whereas if the quotient ^/a becomes zero, /? is said to be an infinites-

imal of higher ordi'r than a, but of loirrr order if the quotient becomes

infinite. If in particular the limit /8/V' exists and is not zero when
a == 0, then ^ is said to be of the nth order relatire to a. The deter-

mination of the order of one infinitesimal relative to another is there-

fore essentiall}- a problem in indeterminate forms. tSimilar definitions

may be given in regard to infinites.

Theokem. If the quotient ^/a of two infinitesimals approaches a

limit or becomes infinite when « = 0, the qtiotient /S'/a' of two infin-

itesimals which differ respectively from (i and a \)\ infinitesimals of

higher order will approach the same limit or l)ecome infinite.

Theokem. DahameVs Theorem. If the sum Sa, = t^ -f ct, -|- • • • + «t„

of n positive infinitesimals a]>iiroa('hes a limit Avlicn their lunnbin' n

becomes infinite, the sum 2/3, = ^^ + /3., + • • + /3„. wliei'c eacli /? differs

uniformly from the corresponding a-, ly an infinitesimal of higher

order, will approach the same limit.

As a' — a is of hitrher order than a and j3' — ^ of liiirlier order than ;3,

Ihn^^lzii^^O, lim^::=^=.0 or ^' = 1 + ^. ^ = 1 -f f

,

a p a (3

where i; and f are infinitesimals. Now a' = cr (1 -f 77) and /3' = (3(1 -I- f). Hence

— = ^ and hm — = hm —
,

a' a 1 + 7] a' a

provided /3/a: approaches a limit
;
whereas if p/cx becomes infinite, so will ji'/a'.

In a more complex fraction such as (/3 — 7)/« it is not permissible to replace p

* It caniKit be emphasized too stroTii^ly tliat in tlic syinliol 0/0 ilic O's arf merely sym-

liolic for a mode of variation just as x is: they ai-c not actual O's a:id some otlier nota-

tion Would l>e far |)referable, likewise for • x, 0", etc.
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and 7 individually by iuliuitesimals of higher order; for /3 — 7 rnay itself be of

higher order than /3 or 7. Thus tan x — sin x is an inlinitesinial of the third order

relative to x although tan x and sin x are only of the first order. To replace tan x

and sinx by infinitesimals which diffcu- from them by those of the second order or

even of the third order would generally alter the limit of the ratio of tanx — sinx

to x^ when x = 0.

To prove Duhamers Theorem the ^'s may be written in the form

(3,- = (l-;(l+ t;,-), i = 1, 2, • • ., Ji, \-<]i\<e-,

where tlie tj's are infinitesimals and wluu'e all the t/'s sinndtaneously may be made
less tlian the assigned e owing to the uniformity r(M]uired in the theorem. Then

I
(/3, + /3., + • • • + fin) - {oc^ + nr, + • • • + a,)

|

=
[

77,fr, + -q.^a., + • • • + r]n^x„
\

< eXa.

Hence the sum of the ^'s may be made to differ from the sum of thi^ a"s by less

than eSa, a (quantity as small as desired, and as ^(v approaches a limit by liypoth-

esis, so 2/3 nuist approach the saim^ limit. The theorem may clearly be extended

to the case where the cr's are not all positive provided the sum S|a-i| of the abso-

lute values of the a's approaches a limit.

35. If 7/ =/'(.'•), the (I!ffrn;ntt,(fl of // is dcliiu'd as

<•/// =f'(,r) A.r, and hence (/.< = 1 A,t. (4)

From this definition of (/>/ and d.r it appears tliat (h//(J.r =f'(.f), wlieve

tlui quotient (hj/dx is tiie rpiotient of two tinitt; cpiautities of wdiicli dx

may be assigned at pleasure. This is true if ,r is tlie independent

variable. If ./ and // are both expressed in terms of t,

x = x {f), y^ij if), ilx = I),x (If, (hj = ]),;/<n

1/1/ 1),)/

and
(Ij /),>

= />.,//, by virtue of (4), § 2.

From this a,p]")ears i]]o, impoi'tiint theorem : 77/7'. (/iiotlcnt di/fd.r is flip,

dci'li'dflre of y irilJi rrsjicct io x no hniffcr iiduit Hu; ln(h'p("nd('iif rarhildc,

111(11/ he. It is this theorem which I'eally justilies Avi'iting the dei'ivative

as a fraction ami ti'eating the com})onent differentials according to the

rules of ordinary fi'actions. For higher derivatives this is not so, as

may be seen by refei-ence to Ilx. 10.

As A// a,nd A./' art; I'egarded as infinitesimals in dctining tlic dcriva,-

tivc, it is natural to regard dy and dx as infinitesimals. The ditferenc-e

\y — dy niay be pid'. in the f'oi'm

./•(•' + A,r)-/60
A// — «/// =

A./'

-./"(') A.r, (5)

wherein it ap])ears that, when A.r = 0, the bra(l\et a])])roa:clies zero.

Ilenee arises the tlusorem :
//'.'• /x ihc ludcpcudcnf (((r'uildc (oid if \y

'ind dy (ire ri'(i((rdcd as iiifnitcsinials. flic dijf'cfc/icc Ay — df/ is (oi i/ijhl-

ifcsiiiKil of /(i(/li('r order fhoii \x. 4'liis has an ap[)lication fo the
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subject of cliange of variable in a definite integral. For if x — <f>(t'),

then dx = (f>\f)df, and ap})arently

f f(x)dr= fyicf^i^nwiO'^f,

where (fi(t^ = (i and ^ (/,) = //, so that t ranges from t^ to t^^ Avhen x

ranges from a to h.

But this substitution is too hasty ; for the dx written in the integrand

is really A.r, Avhich differs from dx by an infinitesimal of higher order

when X is not the independent varial)le. The true condition may be

seen by comparing the two siuns

the limits of which are the two integrals a])o\e. >i'ow as \x dilTers

from dx = <f>'(i)dt by an infinitesimal of higher order, so _/'(,>) A,r Avill

differ from /'[^(?')] ^'(/*)c,V by an infinitesimal of higher order, and

with the proper assumptions as to continuity the difference Avill be uni-

form. Hence if the infinitesimals /'(.>) A.r be all positive, Duhamel's

Theoi'eni may l)e ap})lied to justify the fornnda for change of variable.

To avoid the restriction to positive infinitesimals it is Avell to replace

Duhamel's Theorem by the new

THKoin::\i. Osf/ond's TJicnrcm. Let a^, cr,, • • •, (x,^ be n infinitesimals

and let «r,- differ unifoi'udy by infinitesimals of higher order than A.r

from the elements /'(.',) A,)\- of the integrand of a definite integral

Jf^x^dx, where/' is continuous ;
then the sum 1(t --— a^ + '^., + • • • + *'„

a])proaches tlie value of the definite integral as a limit when the num-

ber 71 becomes infinite.

Let Hi =./"(..•,) Ac, + i',-
A,'' ,. Nvlicri' \^'i\ <e owiuu: t') tlio uniformity deinaiuled.

Then
I

2^<'V- ^/{ri)Ar,-\^--\^i';AJ-i\<e^AXi = e{h-a).

But as/ is continuous, the delinite inteii'ral exists and one can make

dj- €{b-a+l).^ /(.(•,•) A.r,- — f f{x)(li- < e, and hence Vtr,; - f '/(x)

It therefore appears that 2a/ may be made to differ from the integral In^ as little

as desired, and Scr,- nmst then approach the integral as a limit. Now if this tlieo-

rcm be applied to the case of the change of variable and if it be assumed that

/[0(i)] and <p'{t) are continuous, the infinitesimals A/,- and dxi = (p'{ti)dti will

differ uniformly (compare Theorem 18 of § 27 and the alxive theorem on Ay — dij)

by an infinitesimal of higher order, and so will the infinitesimals /(x,) A.rj and

f[(p (ti)] <p'{ti) dti. Hence the change of variable suggested by the hasty substitution

is justified.
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EXERCISES

1. Show that THospitars Rule applies to evaluating the indeterminate form

f{x)/<p{x) -when x becomes infinite and both /and (p either become zero or infinite.

2. Evaluate the following forms by differentiation. Examine the quotients

for left-hand and for right-hand approach ; sketch the graphs in the neighborhood

of the points.

a^ — //' ,
, , . tan x — 1

, ^ ,

.

(a) Inn , (/3) hm , (7) limxlogx,
.- = X :r = ^Tr X — \ir x =

1

(5) limxc--'-, (e) lim(cotx)'*i°-% (f)limxi-^.
j=zo .r = <) 0- i 1

3. Evaluate the following forms by the method of expansions :

(1
\ (>-r (.Unx loiTX

cot- X ) , (/3) lim , (7) lim ^^^—

,

x" I ,( = X — tan X .(• = 1 1 — X

,..,.,, N / \ ,• X sin (sinx) — sin^x ,,. .. t-""— e-^— 2x
(5) lim (cschx — cscx), (e) lim ^

j- , (f) hm
J = ^ = x" a; = X — sin X

4. Evaluate by any method :

, , ,. e^— e-' + 2sinx — 4x ,
, ,. /tanx\^

(a) hm ^—. , (/3)lim(
) ,

.TiO X-^ a- = 0\ X /

xcos-^r- log(l 4-x) — siu-iix2 l(ig(x— ^tt)
(7) hm ^-

—

'- ^—

,

(5) hm -—L,
a- = o x-^ .'=>„ tanx

^^^iH'iH'+iJ-^^^^'K'+i)]-

5. Give definitions for order as applied to infinites, noting that higher order

would mean becDmiiig infinite to a greater degree just as it means becoming zero

to a greater degree for infinitesimals. State and prove the theorem relative to quo-

tients of infinites analogous to that given in the text for infinitesimals. State and

prove an analogous theorem for the product of an iiitinitcsimal and infinite.

6. Note that if the quotient of two infinites has the limit 1. the difference of

the infinites is an infinite of lower order. Apply this to the prriof of the resolution

ill partial fractions of the (piotient/(x)/F(x) of two polynoniials in case the roots

of the denominator are all real. For if -F(x) = (x — (i)^'I-\{x). the (]uotient is an

infinite of order k in the neighborhood of x = a ; but the difference of the (luotient

and/(a)/(x — (i)'-l-\{i() will be of lower integral order— and so on.

7. Sliow that when x=-|-x. the function e'' is an infinite of higher order

than X" no matter how large n. Hence show that if I' {x) is any polynomial,

lim P (/)<:-'' = when x = + x.

8. Show that (lou- x)"* when x is infiinte is a weaker infinite than x" 110 matter

how large »/ or Imw small n, supposed positive, may be. Wliat is the graphical

interpretation ?

9. If P is a polynomial, show tliat lim P(-)c '- = 0. Hence show that the

Maclaurin development of c •'- is/(x) = c '- = ' f("XOx) if /(O) is defined as 0.
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10. The higher differentials are defined as d>>y =/<-") (^x) (dr)" where x is taken

as tlie independent variable. Show that d^'x — for A; > 1 if x is the independent

variable. Show that the higher derivatives D^y, D^y, • • • are not the quotients

d-y/dx-, (Py/dx^, • • • \i x and y are expressed in terms of a tliird variable, but that

the relations are

, _ d-ydx — d-xdy „ _dx (dxd^y — dyd^x) — 3 d-x {dxd-y — dyd'-x)

The fact that the quotient d'^y/dx^, n > 1, is not the derivative when x and y are

expressed paranietrically militates against the usefulness of the higher differentials

and emphasizes the advantage of working with derivatives. The notation d"y/dx'^

is, however, used for the derivative. Nevertheless, as indicated in Exs. 10-19,

higher differentials may be used if proper care is exercised.

11. Compare the conception of higlier differentials witli tlie work of Ex. 5, p. 48.

12. Show that in a circle the difference between an infinitesimal arc and its

chord is of the third order relative to either arc or chord.

13. Show that if j3 is of the }(th order with respect to a. and y is of the first

order with respect to ex, then (3 is of the ?ith order with respect to 7.

14. Sliow that the oi'der of a product of infinitesimals is e(iual to the sum of the

orders of the infinitesimals when all are referred to the sameprimaiy infinitesimal

a. Infer that in a product each infinitesimal may be replaced by one which differs

from it by an infinitesimal of higher order than it without affecting the order of the

product.

15. Let A and B be two points of a unit circle and let the angle A OB subtended

at The center be the primary infinitesimal. Let the tangents at A and B meet at

T, and OT cut the chord AB in ^^ and the arc ^l B in C. Find the trigonometric

expression for the infinitesimal difference TC — CM and detennine its order.

16. Compute d- (x sin x) = (2 ens x — x sin ,r) dx" + (sin x + x cos x) d-x by taking

the tlifferential of the differential. Thus find the second derivative nf x sin x if x is

the independent variable and the second derivative with respect to t if x = \ + t-.

17. Compute the first, second, and third differentials, d-x ^ 0.

(a) j-cosx, (/3) Vl — X log (1 — x), (7) /(.'•'- sin x.

18. In Ex. 10 take y as the independent variable and hence express d^pj. l>^'y

m terms of DyX, I)'^x. Cf. Ex. 10, p. U.

19. Make the changes of variable in Exs. 8. 0. 12. p. 14. by tlie metlmd of

differentials, that is, by replacing the derivatives by tin- corresp(jnding differential

expressions where x is not assiimed as independent variable and Ijy replacing these

differentials by their values in terms of the new variables where the higher differ-

entials of the new independent varialile are set etjual to 0.

20. Eeconsider some of the exercises at the end of Chap. I. say, 17-10. 22. 23,

27, from the point of view of (Jsgood"s Theorem instead of the Tlietjreni of the Mean.

21. Find the areas of the bounding suifaces of the solids of Ex. 11. \). 18.
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22. Assume the law F = kmm'/r- uf attraction between particles. Find the

attraction of :

(a) a circular wire of radius a and of mass 3/ on a particle m at a distance r from

the center of the wire alon;,^ a perpendicular to its plane ;
vl n-s. kMmr (a- + r-)" =.

(^) a circular disk, etc., as in {a)
;

^•l?i.s-. 2kM))i(i--(l — r/^r- + a-).

(7) a semicircular wire on a jjarticle at its center
;

An^. 2kMni/Tra~.

(6) a finite rod upon a particle not in the line of the rod. The answer should

be expressed in terms of the an.i:le the rod subtends at the i)arti(le.

(e) two parallel equal rods, forming the opposite sides of a rectangle, on each

other.

23. Compart- the method of derivatives (§ 7). the method of the Theorem of the

Mean ($ 17), and the method of infinitesimals above as applied to oljtaining the for-

mulas for ((f) area in jiolar coordinates, (p) mass of a rod oi varial)le density. (7) pres-

sure on a vertical suljmerged bulkhead. (0) attraction of a rod on a i)article. ( )btain

the results by each method and state which method seems preferable for each case.

24. Is the substitution dx = (p'{t)dt in the indt-linite integral //(/)'J.f to obtain

the indefinite integral I /[0(O] <P'{i)<~lt justifiable immediately ?

36. Infinitesimal analysis. To work rapidly in the applications of

cali'ulus to })i-ol)lenis in g-eonietry and ])liysic.s tmd t(j follow readily the

books "written on those subjects, it is necessary to have scjine familiarity

with working directly with inhnitesinials. It is ])ossil)le ]»y making use

of the Theorem of the ]\Iean and allied theorems to retain in every ex-

pression its complete exact value ; but if that expression is an infini-

tesimal which is ultimately to enter into a ipiotieiit or a limit of a sum,

any infinitesimal which is of higher order than that which is tiltimately

ke})t will not influence the result and may be discarded at any stage of

the work if the work may thereljy be simplified. A few theorems

worked through In* the infinitesimal method will serve }iartly to slnnv

how the method is ttsed and ])artly to establish I'esults which may be

of use in further work. The theorems which will be chosen are :

1. The increntent A./- and the differential '/.' of a varialjlc differ by

an infinitesimal of higher order than either.

2. If a tangent is drawn to a curve, the per])endicular from the curve

to the tangent is of higher order than the distance from the foot of the

perpendicidar to the ])oint of tangency.

o. An infinitesimal arc differs from its chord liy an infinitt'simal of

higher order relative to the arc.

4. If one angle of a triangle, none of whose angles are infinitesimal,

differs infinitesimally from a right angle and if // is the side o])]iosite

ami if (^ is am^ther angle of the triangle, tlien the side o]»])(isite c^ is

// sin c/) except for an infinitesimal of the second order and the adjacent

side is h cos ^ except for an infinitesimal of the first order.
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The first of these theorems has been proved in § 35. The second follows from

it and from the idea of tangency. For take the a:-axis coincident with the tangent

or parallel to it. Then the perpendicular is Ay and the distance from its foot to tlie

point of tangency is Ar. The quotient Ay/Ax approaches as its limit because the

tangent is horizontal
; and the theorem is proved. The theorem would remain true

if the perpendicular were replaced by a line making a constant angle iclth the tangent

and the distance from the point of tangency to the foot of the perpendicular icere re-

placed by the distance to the foot of the oblique line. For if Z PMX — 0^

P/PM
TM

PX CSC

TX^PX ji&

PX
fx

CSC ff

1-^cot^
TX

and therefore when P approaches 7' with cnnstant, 7'j// T.V approaches zero and

PM is of higher order than TM.
The third theorem follows without ditticulty from the assumption or theoi'em

that the arc has a length intermediate between that of the chord and that of the

sum of tlie two tangents at the ends of the chord. Let ^^ and 0., be the angles

between the chord and the taiiLrents. Then

s - A n A r + Tr> - AB _ a

M

(sec
i^i
- 1) + 37yi (sec ^., - 1)

AM + ZMn ^ 7l M+JlB
"

AM + MJS
(0)

Now as AB approaches 0, both sec 6*^ — 1 and sec /9„ — 1 approach and their

coefficients remain necessarily finite. Hence tiie difference betwet'U the arc and

the chord is an infinitesinral of higher onk-r than tlie chord. As
the arc and chord are therefore of the same order, the difference

is of higher order than the arc. This residt enables (jne to replace

the arc by its chord and vice versa in discussing infinitesimals of

the first order, and for such purposes to consider an infinitesimal

arc as straight. In discussing infinitesimals of the second ordei', this substitution

would not be permissible except in vii-w of the further thcori-m i;i\-en below in

§ 37, and even then the substitution will hold only as far as the K-ngths of arcs are

concerned and not in regard to directions.

For the fourth theorem let & be the angle by which C departs from 'MP and with

the perpendicular 7i,V as radius strike an arc cutting BC. Then by trigonometry

^1 C = A .17 + ^fr = h cos + BM tan 6,

BC = h sin0 + 7j'J7(sec — I).

Now tan ff is an infinitesimal of the first order witli respect to ;

for its Maclaurin development l)egiiis with ff. And sec 6 — 1

is an infinitesimal of the second order; for its development

begins with a term in ff-. The theorem is therefore proved.

This theorem is freiptently applied to infinitesimal triangles,

that is. triangles in which Ji is ti.> approach 0.

37- As a further discussion of the third theorem it may be recalled that by deli-

idtion the length of the arc of a curve is the limit of the length of an inscribed

polygon, namely.

:<i C

lim ( ^ Ac; A7f -'r
^- A/| + Ayj + • • • + ^ A/-; + Ay;
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/

—

:i

—

"

7, rr', 7~^ ^' + ^y' — dx- — dy-
2sow V Ax- + Ay- — y/dx- + ay- = — -

VAj- + Ay- + V(Zj- + dy-

_{Ar- dj-) (Ax + dx) + (Ay - d'y) (Ay + dy)

\ Ax- + Ay- + \ dx- + dy-

and
VAx- + Ay- — Vilx'^ + dy- _ (Ax — dx) Ax + dx

VAx- + Ay- Vax- + Ay- \ Ax- + Ay- + Vdx- + dy'^

i^y - dy) Ay + dy

A Ax- + Ay- \ Ax- + Ay- + Vdx- + dy'^

Rut Ax — dx and Ay — dy are infinitesimals ijf liiirher order tlian Ax ami Ay.

Hence tlie rii,dit-haiid side must approai'h zero as its linnt and lienee \ Ax- + Ay-

differs from Vdx- + dy- l)y an infinitesimal of hiulier order and may replaee it in

the sum

s = lim ^ ^ Ax,- + Ayr = lim ^ Vdx- + dy- = C ' Vl + y"-dx.

The length of the are measured from a fixed point to a variable point is a func-

tion of the tipper limit and the differential of arc is

df I f Vl + y'-dx = Vl + y'-dx =Vdx- + dy-.

To find the order of the difference between the arc and its chord let the origin

be taken at the initial pctint and the x-axis tangent to the curve at that point.

The expansion of the arc by Maclaurin"s Formula gives

,s(x) = s(0) + j-.s'(0) + \ xH"{0) + 1 x^s'"((9x).

where s (0) = 0, .s'(0) = Vl + y'-
o = L ^"{^) = --—

!
= 0.

y l-\- y"-'io

Owing to the choice of axes, the expansion of the curve re<luces to

y =/(') = y (•>) + .f//'(0) + I x-y"{dx) = 1 x-y'\&x),

and hence the chord of the curve is

c (x) = Vx--^ + y- = X Vl + 1- x-y ((9x)]- = X (1 + x'-^P),

where P is a complicated expression arising in the exixvnsion of the radical by

Maclaurin"s Formula. The difference

.s (X) - c (X) = [X + 1 x--s'"{dx)] - [X (1 + x'-^P)] = x^ (l
s"\e.r) - P).

This is an infinitesimal of at least the third order relative to x. Now as both .s (x)

and c (x) are of the first order relative to x, it follows that the difference .s (x) — r (x)

must also be of the third order relative to either .s-(x) or r(x). Note that the \)\\)oi

assumes that y" is finite at the point considered. This result, which has been

found analytically, follows more simply tlu.mgh perhaps less rigorously from the

fact that sec <?! — 1 and sec 6., — 1 in ((i) are infinitesimals of the second order with

e^ and e...

38. Tlu! tlicoiy of ((iiifdcf nf jJnnp c'lirrcs may 1)0 treated by means

(if 'rayloi'"s l'~()rnnila and stated in terms of infinitesimals. Let two

eurvt'S 1/ = f{.rj and i/=(j(^.r^ be tanyent at a given point and let the
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origin be c-hosen at that point with the a--axis tangent to the curves.

The Machuuin developments are

y = A^-) = lf"(0),:^ + • • • + ^^^^lyi ^^-V'-'KO)
+ 1 /'o/oo^O) + . .

.

y= .v(./0 = ^rAO).'---= + -- +—

^

If these developments agree up to but not including the term in ./•", the

difference between the ordinates of the curves is

f(x) - g (x) = ^ .." [/•^")(0) - ;/"\0)] + • •
•

,

/^«>(0) ^ ./^''>(0),

and is an infinitesimal of the nth order with respect to .r. The curves

are then said to have fonttirt of order n —1 at their point of tangeney.

In general when two curves are tangent, the derivatives f"(0) and (/"(O)

are unequal and the curves have simple contact or rontorf of the, Jirtit

order.

The problem may be stated differently. Let PM be a line wliich

makes a constant angle 6 with the .''-axis. Then, Avhen P approaches 7',

if RQ be regarded as straight, the proportion

lim (PR : PQ) = lim (sin Z PQR : sin Z PRQ) = sin : 1

shows that PR and PQ are of the same order. Clearly also the lines

TM and TX are of the same order. Hence if

PR . PQ
lim =f^ 0, X, then lim ^ 0, x .

{TX)" ' ' (TM)" '

Hence if two curves have contact of the O; — l)st "j^
order, the segment of a line intercepted between "^
the two curves is of the nth order with res}»ect to

the distance from the point of tangeney to its foot. It would also l)e

of the ?ith order with respect to the pei-pendicular TF from the point

of tangeney to the line.

In view of these results it is not necessary to assume tliat the two

curves have a special relation to the axis. Let two curves // = f(.r) and

1/ = y (,/) intersect when ./ = o^ and assume that the tangents at that point

are ncjt parallel to the //-axis. Then

(,r^„)n-l (;r — a)"

!/ = ih + (' - ")/(") + • • • + -—Trr/'""'^('" ) + ,
f'"H") +{n—l)l n.

y = //o -I- (' - ") '/{") + + T-rf"'-'H") + r ,'/"'< ") +
{/I —1) , n .
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will be the Taylor developments of tlie two curves. If the difference

of the ordinates for equal values of x is to be an infinitesimal of the

n\\\. order wnth respect to x — a which is the perpendicular from the

j^oint of tangency to the ordinate, then the Taylor developments must

agree up to but not including the terms in x'\ This is the condition for

contact of order n — 1.

As the difference between the ordinates is

/(') - y (') = ^ (•« - '0" [/'"K") - ^^"^(^0] +,
the difference will (-hange sign or keep its sign when x passes through

(( according as 7i is odd or even, because for values sufficiently near to

./• the higher terms may be neglected. Hence the curves tclll cross each

other if the order of contact is even^ but will not cross each other if the

order of contact is odd. If the values of the ordinates are eiiuated to find

the points of intersection of the tAvo curves, the result is

0= l(.r- a)"
^
[/<")(.) -,V^"Y/0] + ---^

and shows that x = a is a root of multiplicity w. Hence it is said that

two curves have in common as many coincident points as the order of

their contact plus one. This fact is usually stated more graphically

1)V saying that t/ie ci/rres hare n consecutire p'>ints in coDnnon. It may

be remarked that what Taylor's development carried to n terms does, is

t(j give a polynomiid which has contact of order w — 1 with the function

that is developed by it.

As a problem on contact consider the determination of tlie circle which shall

liave contact of the second order with a curve at a given point (a, yo). Let

y = yo + (.r - '0/'(") + 2
(•'' - «)'/"(") + •

•

be the development of the curve and let y' =f\a) = tan r lie the slope. If the

circle is to have contact with the curve, its center nuist be at some point of the

normal. Then if It denotes the assumed radius, the equation of the circle may be

written as

(./• - a)- + 2 n sin t (,c - a) + (//
- //o)" - 2 /.' cos r (//

- //„) = 0,

where it remains to detei'mine 7i' so that tlie deveUipnient of the circle will coincide

with tliat of the curve as far as written. Differentiate the eciuation of the circle.

ily 11 sin T + (,/ — a) /(h/\
= tan T = /''(((),

(/,/ 7.' cos T — (// — v/J \d.C/a,!,„

(V^y __ [ // c. .s T - (// - y„)Y- + [
II^T + (x-ji)Y ld'y\ 1_

and y =-^
?/„ + (./ - ")/'{'() + i {f - a)- -- -,- + • • •

/i COS" T
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is the development of the circle. The equation of the coethcieiit.s of (/ — a)-,

= / <0, ii'ives R = = -— '-- '-':'-^ .

Z^co.s'r • ^ " - /"(„) r(a)

This is the well known fdrnuila for the radius of curvature and shows that the cir-

cle of curvature has contact of at least the second order with the curve. The circle

is sometimes called the osculatiuic circle instead of the circle of curvature.

39. Three theorems, one in geometry and two in kinematics, will

now Ije proved to illustrate the direct application of the infinitesimal

methods to such problems. The choice Avill be :

1. The tangent to the ellipse is eqttally inclined io the focal radii

drawn to the point of contact.

2. The displacement of any rigid body in a plane may be regarded

at any instant as a rotation through an infinitesimal angle about some

point unless the body is moving parallel to itself.

3. The motion of a rigid body in a i)lane may be regarded as the

rolling of one curve upon another.

F(.)r the first prohlem consider a secant J'l" which may he convi'rted into a

tan,<:ent 7'7'' l)y letting; the tw() points approach until they C(_iincii]e. Draw the

focal radii to Z' and P' and strike arcs with /•" and F' as

centers. As F'P + PF := FT' + P'F ^ 2 a. it follows

that XI' = MP'. Now consider the two triangles PP'M
and P'PX nearly rii:ht-ang-led at 3/ and X. The sides

PP\ I'M. PX. P'M. P'X are all infinitesimals of the

same order and of the same order as the angles at /•' and

F'. Hy proposition -t of § ?A\

MP' = PP' cos Z PP'M + f
J.

XP = PP' (;< is Z P'J'X + c.„

where c, and c, are intinitesimals relative to MP' and XP or /'/". Therefon

lim [cu>ZPP'M- cosZ 7"7'-V] = cos Z TPF - cos Z T PF' = lim
PP

0.

:>7B'

and the tw() anples TPF' and T'PFixyc proved to Ije eijual as desireil.

To prove the second the(U'em note first that if a body is riuiil. its ]iositioii is i-om-

pletely deternnned when the position ^l B of any rectilinear seL:inent of the hody

is known. Let the points .1 and P of the liody be de-

scribini:- curves ^1^-1' and BW so that, in an infinitesimal

interval of time, the line ^4 7^ takes the neiizhborinir posi-

tion J '7i'. Krcct tlie perpemlicular liisectoj-s of the lines

.1.1' and BJV ami let them intersect at O. Then the tri-

auLiles .107i and A'OJV have the three sides of the one

eijual to the three sides of the other and are equal, and

the second may be oljtained from tlie lirst liy a mere rotation about C) throuLLii the

an-le.l0.r= BOB'. Except for intinitesimals of higher order, the ma-nitude of

the aimle is AA'/OA uv BB'/Oll. Next let the interval of time approach so that

.1
' appi-oaclies A and P>' approaches B. The perpendicular liisi/ctors w\\\ approach
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the normals to the arcs AA' and BIV at A and 7i, and the point will approach

the intersection of those normals.

The theorem may then be stated that: At any instant of time the motion of a

rigid body in a plane may he considered as a rotation through an infinitesimal angle

about the intersection of the normals to the paths of any two of its points at that in-

stant ; the amount of the rotation will be the distance ds that any point moves divided

by the distance of that point from the instantaneous center of rotation; the angular

velocity about the instantaneous center icill be this amount of rotation divided by tJte

interval of time dt, that is, it loill be r/r, where v is the velocity of loiy poiid of tJie body

and r is its distance from the instantaneous center of rotation. It is therefcn-e seen

that not only is the desired theorem proved, bnt numerous other details are fnund.

As has been stated, the point about which the body is rotating; at a givi-ii instant

is called the instantaneous center for that instant.

As time goes on, the position of the instantaneous center will generally change.

If at each instant of time the position of the center is marked on the moving plane

or body, there results a locus which is called the moving centrode or body centrode

;

if at each instant the position of the center is also marked on a fixed plane over

wliich the moving plane may be considered to glide, there results another locus which

is called the fixed centrode or the sjjace centrode. From these (lefinitii)ns it follows

that at each instant of time the body centrode and the space centrode intersect at

the instantaneous ct'Uter for that instant. Consider a series of

po.sitions of the instantaneous center as r_.J'_il']\P.^ marked

in space and C^_or^;_iQQjQ., marked in the l)o(ly. At a given

instant two of the points, say P and Q, coincide ; an instant

later the body will have moved so as to bring Q^ into coin-

cidence with P,
;
at an earlier instant Q_i was coincident with

P_i. Now as tlie motion at the instant when P and Q are together is one of

rotation through an infinitesimal angle about that point, the angle between PP^
and QQ^ is infinitesimal and the lengths PP^ and QQj are efjual

;
for it is by the

rotation about P and Q that (^^ is to be l)rouglit into t'oincidence with 7^ Hence

it follows r^ that the two centrodes are tangent and 2^ that the distances 7'/'^ = (^Qj

which the point of contact moves along the two curves during an infinitesimal inter-

val of time are the same, and this means that the two curves roll on one another

without slipping— l)ecause the veiy idea of slipping implies that the point of con-

tact of the two curves should move by different amounts along the two curves,

the difference in the amounts being the amount of the slip. The third theorem

is therefore proved.

EXERCISES

1. If a finite parallelogram is nearly rectangied. what is the order of infinites-

imals neglected by taking the area as the ijroduet of the two sides'.' Wliat if the

figure were an isosceles trapezoid? Wiiat if it were any rectilinear ((iiadrilateral

all of whose angles differ from right angles by infinitesimals of the same oi-der '.'

2. On a sphere of radius /• the area of the zone between the parallels of latitude

X and \ -t- '/\ is taken as 2 ttc eos \ • nl\. the i)erimeter of the base times the slant

height. ( >f what order relative to d\ is the infinitesimal neiileeted ? What if the

perimeter uf tlie middle latitude were taken so that 2 tt/'- cos (\ + \d\)d\ were

assumed ".'
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3. What is tlie order of the iiifinitesinia] iiedected in taking i-Trr-dr as the

vohune of a hollow sphere of interior railius r and th.iekness dr ? What if the mean
radius were taken instead of the interior radius '? ^^'l>uld any particular radius be

best ?

4. Discuss the length of a space curve y =f(j). z = g {x) analj'tically as the

length of the plane curve was discussed in the text.

5. Discuss proposition 2, p. 08. by Maelaurin's Formida and in particular show

that if the second derivative is continui)Us at the point of tangency. the infinites-

imal in t^uestion is of the second order at least. How a.ltout the case of the tractrix

a

.

y = ~r log + ^ "- - /-,

^ a + \a- - X-

and its tangent at the vertex x = a? How alxiut s{x} — c(.r) of § 37 ?

6. Show that if two curves have contact of order ?i —1, their derivatives will

have contact of order n — 2. What is the order of contact of the A'th derivatives

k<n-l?

7. State tlie conditions for maxima, minima, ami points ot int^ection in the

neighborhood of a point where /'")((/) is the first derivative that does not vanish.

8. Determine the order of contact of these curves at their intersections:

9. Show that at points where the radius of curvature is a maximum or mini-

nuun the contact of the osrulating circle with the curve nuist be of at least the

third order and must always Ije of odd order.

10. Let 7'.V lie a normal to a curve and F'X a neighborinir normal. If O is the

center of the osculatini: circle at P. show with the aid of Kx. tiiat ordinarily the

perpendicular from O to P'X is of tlie second order relative to the arc PI'' and that

the distance OX is of the first ordi-r. HeiK/e interpret the statement : Consecutive

normals to a curve meet at the center of the osculating circle.

11. Does the osculating circle cross the curve at the point of osculation '.' Will

the osculating circh.-s at neiglil)oriiig points of the curve intersect in real points?

12. In tlie hyperbola the focal radii drawn to any point make equal angles with

the tangent. Trove this and state and prove the corresponding theorem for the

parabola.

13. Given an infinitesimal arc AB cut at C by the perpendicular bisector of its

chord AB. What is the order of the difference AC — BC ?

14. of what order is the area of the segment included between an infinitesimal

arc and its chord compared with the sijuare on the chord ?

15. Two sides AB. AC of a triangle are finite and differ infinitesimally : the

aiiirle 6 at *1 is an infinitesimal of the same order and the side BC is either recti-

linear or curvilinear. What is the order of the neglected infinitesimal if the area

is assumed as \ AB'O ? What if the assumption is 5 AB AC B ?



76 DIFFERENTIAL CALCULUS

16. A cj'cloid is the locus of a fixed point upon a circumferenre whicli rolls on

a straight line. Show that the tangent and normal to the cycloid pass through the

highest and lowest points of the rolling circle at each of its instantaneous positions.

17. Show that the increment of arc Ah in the cycloid differs from 2o sin I 6d0

by an infinitesimal of higher order and that the increment of area (betweeii two

consecutive normals) differs from 3 a- sin- I BdO by an infinitesimal of higher order.

Hence show that the total length and area arc 8« and i-yira-. Here a is the radius

of the generating circle and 6 is the angle subtended at the center by tlie lowest

point and the fixed point which traces the cycloid.

18. Show that the radius of curvature of tlie cycloid is bisected at the lowest

point of the generating circle and hence is 4 a sin I 9.

19. A triangle ABC is circumscri!)ed al)out any nval curve. Show that if tlie

side BC is bisected at the p(untof contact, the area of tlie triangle will b(.' changed

by an infinitesimal of the second order when BC is replaced l.)y a neighboring tan-

gent B'C\ Vnit that if BC be not Ijiseeted, the change will Ije of the first order.

Hence infer that tlie minimum triangle circumscribed aljout an oval v.ill have its

three sides bisected at the points of contact.

20. If a string is wrapped alxnit a circle f)f radius n and then unwound so that

its end describes a curve, show that the lengtli of the curve and the area between

the curve, the circle, and the striiiL:- are 'x'\

H= / oMO, A =
I

\<(-d-(W. ^ V

where is the angle that the luiwinding string has tui-ned through.

21. Show that the motion in space of a rigid body one point of wliich is fixed

may be regarded as an instantaneous rotation about some axis thrnugh the gi\'en

point. To do this examine the displacements of a unit sphere surrounding tlie lixed

point as center.

22. vSuppose a fluid of \arialile <leii>ity 7^(.;') is tinwiiiL;' at a uivcn instant through

a tube surrounding the .r-axis. Let the velocity of the fiuid he a function r(,r) <if ,/'.

Show that during the intiiiitesimal time ot the diminution of the amount of liie

Ikiid which lies betweeJi ./' = a and ./: = a + h is

.S [v (a + h) I) [a + //) U - V (r/) I) (n) 51],

where .S is tlie cross sectir)n of the tube. Hence show that T)(.r) r(,r) = const, is the

condition that the flow of the fiuid shall n(_)t change tlie dcii.-ity at any point.

23. Consider the curve u =./'(') and three equally s['afed ordinatcs at ,/• ~ a — 3.

J- =:. (I. X = II + S. Inscribe a trajiczoid by joinini:- the emls of the ordiiiati-s at

,/• = II -± S and circums(;ri!ic a trajiezoid by di'awing the tangent at tlie end of the

ordinate at .r = u and prodiicing to mei't the other onlinates. Siiow that

•S = 2 of{ii), S = 2 o\f(ii) + "'-
f"(ii) + ''

- ./"("-'(t)
I

'

L 'i 120 J

r -
«"- ,. 5^

. 1
Nj = 2 5 ,t{<i) -r _^

.fill) J^
_^ y^'l^'i)
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are the areas of the circumscribed trapezoid, the curve, tlie inscriljetl trapezoid.

Hence infer that to compute the area under the curve from tlie inscribed or cir-

cumscribed trapezoids introduces a relative error of the order 5-, but that to cf)m-

pute from tlie relation 6' = i (2 S^^ + .S\) introduces an error of oidy the order of 5*.

24. Let the interval from a to h be divided into an even niunber 2n of eipial

parts 5 and let the 2 n + 1 ordinates (/q, y^, • • •, y-2n at the extremities of the inter-

vals be drawn to the curve y =/(j). Inscribe trapezoids by joininsj; the ends of

every other ordinate beginning with y^, y„, and going to y-^n- Circumscribe trape-

zoids by drawing tangents at the ends of every other ordinate ?/j, y.,, •, yon-i.

Compute the area under the curve as

.S=f'f(,r)dx = -~~ [4 0/, + ?/, + --- + U-2n-i)

+ 2 (;/„ -I- v/., -I 1- y2„] - //o
- 1/2 „] + li

liy using IIk' work of Ex. 23 and infer that the error R is less than {h—a) S'*f<-'^'>{^)/4:0.

This method of computation is known as Shupson's Ilulc. It usually gives accu-

racy sufficient for work to four or even live tigures when 5 = 0.1 and b — a ~ I ; for

/<"'){j') usually is small.

25. Compute these integrals by Simpson's Kule. Take 2n— 10 equal intervals.

Carry numerical work to six tigures except where tables nuist be used to lind/'(,r) :

la) r " ~ = lotr 2 = 0.G0.315, (^ f
^ —~~ = tan-i 1 = ^

tt = 0.78535,
Jl X

'~

J<) I -I- X- i

(7) f
' sin x(U = 1.00000, (5) f ' log,„.fr7x = 2 log,,j J" - ^t = 0.16770,

Jo Jl

(0 r'^^^^+^.Lr = 0.27220, (,') f ^^±^ dx = 0.^2247.
Jo 1 + X- Jo X

1 log n_+.r),, _,.,„...., ,,,
^Mog(l + .f)

+ x

The answers here given are the true values of (he integi'als to live places

26. Show that the (juailrant of tln' ellipse x = u slw cp, y =--. hntscp is

/ A TT
,

; n I ,

,s = (f / \ 1 — c- sin- <pd<p = ,', TTd
I

^ .1 (2 — t-) -i- ,\ c- cds 7r« ilu.

Jo ' Jo '

Compute to four figures h\ Simpson's Kule with six divisions the quadrants of

the ellipses :

(a) c=\ \/3, s = 1.211 a, (/S) c = \ V2, h = 1 .351 a.

27. Expand s in Ex. 26 into a series and discuss the remainder.

1 /I • 3- • • ("^ ?) -I- lU- e-" + -

/.'„ < ( - - ~'\ SeeEx.l8.p.60.andPeirce-s"Tables.'-p.62.
1_ e--; \2.4-..(2?i+ 2)/ 2n-|-l

Estimate the number of terms necessary to ccmipute Ex. 26 (/3) with an error not

greater than 2 in the last place and compare the labor with that of Simpson's Rule.

28. If the eccentricity of an ellipse is ,,L. find to five decimals the percentage

error made in taking 2 7r« as the perimeter.
,

An>i. 0.006i>i%
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29. If tlic catenary y ~ r cosli {.c/r) .i,dves the sliape of a wire of lensth L sus-

peiiiled between two points at the same level and at a distance I nearly equal to

L. iind the first approximation coiniectini; L. I. and d, where d is the dip of the

wire at its lowest point below tlie level of support.

30. At its middle point the paraliolic cable of a .suspension bridge 1000 ft. long

between the supports sags 50 ft. below the level of the ends. Find the length of

the ealile correct to inches.

40. Some differential geometry. Suppose that Ijetween the incre-

ments (»f a set of varial)]os all of which depend on a single varial)le t

tlu'i'o exists an equation which is true except for infinitesimals of higher

order than \t — dt, then the equation will Ia' exactly true for the differ-

entials of the variables. Thus if

f\x + ;/Ay + /, A- + /A/ + • • • + .>^ + .', + . .
. =

is an e([uation of the sort mentioned and if the coefficients are any func-

tions of the variables and if c^ r.„ • • are infinitesimals of higher order

than dt, the limit of

,A,/- A//
,
A.v ,\t

'' \t ' \t \t \f A;' A^

IS

d.r <hl dz

or fd.r + </d,j + /,,/,-: + /r/^ = :

and the statement is proved. This I'csult is very ttseful in wi-iting

down vai'ious differential formulas of geometry where the a}»])roximate

relation between the increments is obvious and where the true relation

between tlie differentials can therefore be found.

]""or instance in the case of the differential of ai'c in rectangular cocu'-

dinates. if the increment of arc is known to differ from its chord by an

infinitesimal of higher order, the Pythagorean theorem shows that the

equation .2 v -2
, \ ,-2 ,„. v 2 \ .2 , * ,2 , k ..-i /~\

^ A.s = A.' + A// or An = A.' + A// -f- A.;
(^

i

j

is true except for infinitesimals of higher order: and hence

ds- = d.r- + dir or ds- = d.r- + dir-\-dz-. (7')

In the case of jilane jiolar coin-dinates, the triangle PP'X (see Fig.)

has two curvilinear sides /'/•' and /'.V and is right- Jr

angled at X. The Pythagorean theorem may be

apj)lied to a curvilinear triangle, or the tiiangle may

be replaced by the I'cctilinear triangle PP'X with J.r"

the angle at A' no longer a right angle but nearly so. In either way of

looking at the figui-e, it is t'asily seen tliat the eipiation Ax- = A/'- + r^(f>-
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which the figure suggests differs from a true equation by an infinitesi-

mal of higher order; and hence the inference that in polar coordinates

ds' = d)^ -f- i^d(^'.

The two most used systems of coordinates

other than rectangular in si)ace are the pohw

or spherical and the ojl'mdrical . In the first

the distance r = OP from the pole or center,

the longitude or meriditmal angle </>, and the

colatitude or polar angle 6 are chosen as coor-

dinates ; in the second, ordinary polar coordinates r = OM and
(f>

in

the a-y-plane are coml>ined with the ordinary rectangular ;: for distance

from that plane. The formulas of transformation are

z — r cos 6, = Vj'- -f- / + .t'>

7/ = /• sin 6 sin <^,

X = r sin 6 cos
<f>,

V? + y^ + .^' (8)

(j) = tan"

(9)

for polar coordinates, and for cylindrical coordinates they are

z = z, u = r sui ({>. ./• = /• cos (/), r —\ J- -\- >/-, </> — tan"^--
X

Formulas such as that

for the differential of

arc may l)e obtained for

these new co(')rdinates l)y

mere transformation of

(7') according to the rules

for change of variable.

In l}oth these cases,

however, the value of

ds may be found readily

by direct inspection of

the figure. The small

parallelepiped (figure

for polar case) of which

As is the diagonal has

some of its edges and

faces curved instead of

straight; all the angles,

however, are right angles,

and as the edges are infinitesimal, the equations certainly suggested as

holding except for infinitesimals of higher order are
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As"-^ = Ar^ + r shr OAc{>- + rAd- and A.s- = A/-- + /'-Ac^- + A.-r (10)

or (lr = (/r + rshre-/(f>--{-r-'/0' and r/.s-- = r/y- + /'-^/^'- + r/--. (10')

To make the })roof (•oiii})U-t(', it would be iiecessaiy to sliow tliat iiotli-

ing but intinit(,\sinials of higher order liave been neglected and it might

actually be easier to transfoi'ni V'/,/'- + '///- + r/-- rather than give a

rigorous demonstration of this fact. Indeed the iniinitesinial method is

seldom iised rigorously; its great use is to make the facts so clear to the

rapid worker that he is Avilling to take the evidence and omit the proof.

In the i)lane for rectangular coiu'dinates with ndings parallel to the

_y-axis and for polar coordinates with rulings issuing from the pole the

increments of area differ from

JA=;/J.r and (/A = \ rt/cf) (11)

respectively by iniinitesimals of higher order, and

A= f
'

!/'h- and .1 = .\ f
"

r-'/cf> (IV)

are therefore the formulas for the area undei' a curve and between two

ordinates, and for the area between the curve and two radii. If the plant;

is ruled by lines parallel to lioth axes or l)y lines issuing from the pole

and by circles concentric with the i)ole, as is customary for double inte-

gration (§§ 131, 13-t), the increments of area differ respectively In'

iniinitesimals of higher oi'der from

dA=<lr,J;/ and r/.l =/v//v/c^^ (12)

and the formulas for the area in the two cases are

A = lim 2) A.l - fC.I I = fCh'/f/, (12')

A = limV A. I = fC/. I = rf/v/yv/t^,

wliere the double integrals are extended over the area desired.

The elements of volume whieli ai'e reipiireil foi' triple integration

(-<ij 13,3, 134) over a volume in space may readily be wi'itten down i'oi'

tlie three cases of rectangular, polar, and cylindrical cotu'dinatt's. In the

iirst case spacer is su])})Osed to lie divided up ly ]ilanes .r = i/, // = />,

z — (' perpendi<'ular to the axes and spaced at infinitesimal intervals; in

the second case, tlie division is made liy the spheres / — r/ conet'ntric

with the i)ole. the ])lanes c/) = A through tlie ])olar axis, and tlie cones

Q z= r of revolution al)i)ut the })olar axis; in tlie third ease by tlie cylin-

ders r^~<i, the planes ^=^>. and the planes :: = c. The infinitesimal
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volumes into Avliicli space is divided then differ from

(// = (Inh/iJr:, dr = /•- sin OdnJifiiW, dr = rdrd(j>dz (13)

respectively l»y infinitesimals of higher cji'der, and

/.rd>/d-:, •-sin 6drd^,ie.
' llh /cj^d, (i;V)

are the fornudas for the volumes.

41. The direction of a line in space is rei)resented Ijy the three angles

which the line makes Avith the positive directions of the axes or Ity the

cosines of those angles, tlie direction cosines of the line. From the defi-

nition and figure it ajipears that

I = cos a —
d.r

ds
ill = cos

f3 ds
n ^ cos y ^

dz

ds
(14)

are the direction cosines of the tangent tn the arc at the point; of the

tangent and not of the chord for the reason

that the inci'ements ai'e ivplaced by thediffci--

entials. Hence it is seen that foi' tL(' direc-

tion cosines of the trnvjcHf the propoi'tion

I : 111 : n = dx : dij : dz (14')

holds. The equations of a s})ace curve are

in terms of a variahle parameter /.* At the ]iniiit (x^^, >/., -;^) -where

t=^t_^ the i'<niiifhins uf flir fiiiKjriit Jiiirs ^\()\\\{\ tlirn 1)e

z

Axl /
p'

1
f)

^Az\y
Y

11
—

//,, :: — ^0 H — !/o • — -(,

{'''% ('V'. (''-), '' /"'/o) //'</„) ^Vo)
^^'^^

As tlie cosine of the angle 6 lietween the two directions given l)y the

direction cosines /. ///, n and I'. ///. ;/' is

(•()s^= //' + //////' + 7/;/, so ir -{- linn' + nn' = (16)

is the condition for the })ei-pendieularity of the lines, ^'ow if (.'•, //, .'.)

lies in the plane normal to tlie curve at ;i\^,
//^,,

,-.,,. tlie lines determined

by tlu' I'atios ./• — .;., : // — //., :
:.' — .t;, and ("'.'),-, : ("'//)„ : ('''-)o

"^^'i^^ ''^' !"'''

pendicular. Hence the i'<iii(ifti,n of tin; unnnnl. jdom' is

(
,' - ,/•

,) {d..:)^^ + (.'/- //„ )

(

'hl\, + ( - - -,, ).(//-)o
= *^>

or _/"( t :)(.!' — ,/;) + y'l fjii/ —
1/^^ ) + //'( tj{ ,v — zj = 0. (17)

* For Tho suki' of L;i'iiiTality the piiraiin'trir foi-m iii / is assunicil : in a ]iartiiT,lar case a

simplitiratidii huliIiT Ik- inailf l>y taking- (Hie of tlic vai'iahles as f and on.' of tiic functicins

/'', '/'. A' woiiM tiirn lit- 1. TIuis in Kx. S (e). // should lnj taken as t.



82 DIFFEREXTIAL CxVLCULUS

The finKjtnt i)hine to the curve is not determinate; an}- plane through

the tangent line will Ije tangent to the curve. If A l)e a parameter, the

pencil of tangent planes is

+ A 0.

There is one particular tangent plane, called t/te osrulfifln'j plcnt'j^yhuAi

is of especial importance. Let

^ -
-'-o
= /'(g r + i/"(g T^ + i/""(0 r^ r = t- t, r<$< ^

with similar ex})ansions for // and ,-;, Ije the Taylor developments of

.r, )/, z about the point of tangency. When these are substituted in the

equation of the plane, the result is

1 , "/"(g^^r/'vg

f{Q y'(^)
(1+^)

h"{K)

-\- (1+A)
i'-"'(0

'

This expression is of course proi)orti()nal to the distance from any ])oint

.7', )/, z of the curve to the tangent })laiie and is seen to be in general of

the second order Avith respect to t (h- Ox. It is, however, ])0ssil)le to

choose for A that value which makes the iii'st bracket vanish. The tan-

gent plane thus selected has the [)ro])erty tliat fht; (I'tstifnci' of flie nirrc

from if in flic ncifjlihorlKKid of flic iKiinf of tinKicnri/ is of t/te fhirddrdcr

and is rnlled the osrulatinfj ^lOnn'. The suljstitution of the value of A gives

/"(g r/'^g ^''(>„)

/"(g f/"(g ^"(g

^/• — ,'•. 1/ — 1/ Z — ,i\
'

or \{d.r)J (d;,)_ (./,V),/'! = (18)

'('/^'), ('/V)„ ('^^)S

or (dn'T-z - dzJ'f/)J:r - ,,;^) + (dzd-.r - <l.rd-z)j!/ -
//J

-^(,l.nP./-d;,d-.r)^IZ-Z^^) =

as the equation of the osculating plane In case /'"( ^ ) = .'/"( z",,) = //"(V,,) = 0,

this equation of the osculating jtlane vanishes identically and it is neces-

sary to push the development further (Ex. llj.

42. For the case of ]ilane curves the oirnitiiri' is dctined as the I'ate

at which the tangent turns com])ared with the description of arc, that

is, as i/(f}/ds if d(fi denotes the differential of the angle througli which

the tangent turns when tlie ])oint of tangency advances along the cui've

by ds. The radius of curvature Ji is the reciprocal of tlu^ cui-vature,

that is. it is ils/d^. Then

(/<^ = ,/tan-'
ds

d^ d.r

dl-^.ls ^ + U"J
R ' (I'J)
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where accents denote differentiation with respect to a". For space curves

the same definitions are given. If /, m, n and 1 -{-dl, m -\-diii, n-{-dn

are the direction cosines of two successive tangents,

But

Hence

1 _
11-
~

cos d(^ = I(J -\- dl) + III {ill -\- dill) + n(7i -|- dii).

P + III- + u- = 1 and (/ + diy- + (in + dm)- + (ii + dn)- = 1.

dl- + dm- + dii- = 2 — 2 cos d4> = (2 sin h dcfif,

2 sin \ d(f)

ds
~" dl- + <]iir + dir

d?
/'-+ m'- + n'-, (19')

where accents denote differentiation Avitli respect to s.

The torshni of a S})ace curve is defined as tlie rate of turning of tlie

osculating plane compared with the increase of arc (that is, difz/ds, where

(/ij; is the ditt'erential angle the normal to the osculating ]jlane turns

through), and may clearly be cakadated ])y the same formula as the

curvature jjrovided the direction cosines L, M, X of the normal to the

plane take the places of the direction cosines /, in, n of the tangent line.

Hence the torsion is

lxP\^ dL- -f- ilM- -f <IX-

ds d.r
= Z'- + J/'- + X'^; (20)

and the radius of torsion R is defined as the reciprocal of the torsion,

Avliere from the e(piation of the osculating plane

M N
dijd'-': — dzd'-i/ dzd'-.r — drd'-z d.rd'-ij — ilijd'X

1
(20')

Vsum of S(piares

The actual computation of these quantities is somewhat tedious.

llie vectorial discussion of curvature and torsion (§ 77) ^ives a better insight

into the principal directions connected witli a space curve. These are the direction

of the ((UKicnt. that of the normal in the oseulatinii' plane and directed towards

the concave side of tlie curve and called the principal normal, and that of the

normal to the oseulatin<j,- plane drawn ui)on that side which makes the three direc-

tions form a right-handed system and called the hinoriiud. In the notations there

f;'iven. combined with those aljove.

r = ,ci + //i -h 2k, t = /i -1- rn) + i<k, c = Xi + ^j -f- ^^k, lA + 3/j + ,Vk,

when,' \. ,u. " ure taken as the direction cosines i.if the principal normal. Now dt

is parallel h) c and dn is i)arallel to — c. Hence the results

(21)
dl dm (7); '7.S dL dV dX r/.s— r^ — - - ZZ: :zr — and . _ — - —
\ M " R \ fJ-

•'' K
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follow from dt/ds = C and dn/ds = T. Now dc is perpendicular to c and hence in

the plane of t and n ; it may be written as dc= (t.dc)t+ (n.tZc)n. Eut as t.c = n.c = 0,

t.dc =— C'dt and n.(Zc =— CfZn. Hence

• (c.(Zt)t - (c '7n)n = - Ctds + Tndsdc — d.s + - (i.s.

i: R

Hence (22)
d\ _ I L dix _ in ^r dv _ n X
'ds'~~ Tl^l\' dl'^Jl^^R' (Ts

^ "
i.'

"^
R

'

Formulas (22) are known as Frenet's Formuhis; they are usually written with — R

in the place of R because a left-handed system of axes is used and the torsidi;. beini;

an odd function, changes its si^n when all the axes are reversed. If accents dennte

differentiation by .s,

'

!/' Z' \

above fornmlas. —

ri'dit-handed R

X y z

x" y" z'

x"--\-y"- + z'

usual formula^

left-handed

y z

1 ,/•'" //'" z'"- ;,---,7,

—

,,-r ^)
£ - + u

'- + Z -

EXERCISES

1. Show that in polar coordinates in the plane, the tansent of the inclination

of the curve to the radius vector is rdrp/dr.

2. Verify (10), (10') by direct transfdnnation of corirdinates.

3. Fii; in the steps omitted in the text in reuard i<< tiu- pi-oof nf (10). (10') by

the method of infinitesimal analysis.

^. A rhumb line on a sphere is a line which cuts all the meridians at a constant

angle, say a. Show that for a rhundj line sin Odfp — \-a\\ adO and (Zs = raecadO.

Hence fintl the ecpuitidU (if the line, show tliat it cnils indehnitely amund tlie

poles of the sphere, and that its total length is Trr sec a.

5. Show that the surfaces represented liy F(rf>. B) — and F(r. 0) ~ in polar

coordinates in space are respet'tively citnes and .--urtares i>f re\nluti(in abdut tlie

pdlar axis. What sort of surface wuuld tlie eijuatinn F[r. (p) = re})resent ".'

6. Show accurately that the expression -iven iov the differential of area in

l)olar coordinates in the plane and for the diiYerentials of \-olunu' in polai' and

cylindrical coordinates in space differ from the corre>}iouilin-- increments by in-

linitesimals of hiuher order.

7. Show that -— , r— . rsin^ — are the direction cosines of the tauuent to a
(/.S (/.s- ds

space curve relative to the radius, meridian, and pai'allel of hititude.

8. Find the tani:'ent line and normal plane of tliese curves.

{a) xyz = 1. //- = ./• at (1. 1, 1). (/:() ./• = cos /. // = sin f. z ^ It.

(y) 2 <nj = .(-. (i-z = x'\ (5) x = i c< >s t. ;/ = / sin /. ,r = Id.

(e) y = X-. 2'^ = ] - //. (f) X- + y- + z- = <(-. X- + //^ + 2 </./• = 0.

9. Find the equation of tlie osculatim:' jilane in the i'xaiiiiili_'s of V.x. 8. Note

that if X is the independent, \ariabU'. the equation of the jihine is

/dy d-z _ dz d-y\

\dx dx- dx dx-
(- - ^u) = 0-
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10. A space curve passes throuich the origin, is tangent to the j;-axis, and has

z = as its (jsculating phine at tlie origin. Siiow tliat

I = tr{0) + \ f\r{0) + • • , y^i t^g"{0) + , z = 1 t^h'"{0) + • • •

will be the form of its Maclaurin development if ^ = gives x = y =^ z = 0.

IL If the 2d. 3d, • •
,
(u — l)st derivatives of /, g, h vanish for t = t^ but not

all the ?ith derivatives vanish, show that there is a plane from which the curve

departs by an infinitesimal of the {n + l)st order and with which it therefore

has contact of order n. Such a plane is called a hyperosculating plane. Find its

eijuation.

12. At what pr)ints if any do the curves (/3), (7), (e), (f), Ex. 8 have hyperoscu-

lating planes and what is the degree of contact in each case ?

13. Show that the expression for the radius of curvature is

-- \ X - + 1/
- + ~ 3 ,

A
If'^ + y'^ + k'-]^

where in the iirst case accents denote differentiation by .s, in the second by t.

14. Show that the radius of curvature of a space curve is the radius of curva-

ture of its projection on the osculating plane at the point in (piestion.

15. Fr(jni Frenefs Formulas show that the successive derivatives ol' x are

x' = /, x" =
X , X' \ir I > /' /.—

, x'" — — — - X~ +
It R 1!^ A'-i R^ i:r

where accents denote differentiation by .s. Slmw that the results fru- y and z are

the same except that //(. ix. M or n. v. X take the places of I. X. L. Hence infer

that fur tlie xth derivatives the results are

j:(") = IJ\ + XP^ -f- LP... !/<") -= inl\ + nP.. 4- MP„. z("> = nP^ + vP.^ -f XP,.,

where /'j. /".,. /*. are rati(jnal funt.-tioiis of U and R and their derivati\es by s.

16. Apply the foregoing to the expansion of Kx. 10 to sliow that

] .. s- ir „

-r^ '*' + •••' y = --7-,.^- +
!i^ 2 1! (i It- G y^'R

where A' and R are the values at the origin where .s = 0, I = ^ = X = 1, and the

other six direction cosines m. n. X. v. L. M vanish. Find .s and write the expan-

sion of the curve of Ex. 8 (7) in this form.

17. Note that the distance of a point on the curve as expanded in Ex. 10 from

the sphere through the origin and with center at the point (0, It. It'R) is

Vx- + {!/- It)- + {z - It'Rf - V/.'- + /,"-R-

(.r- -I- if^ - -1 Uy -i^ z- -2 Tt'Rz)

V .f^ + {y- Itf +{z- It'Rf ^ \ R + /."-R-^

and consequently is of the fc.iurth (jrder. The curve therefore has contact of the

third order with this sphere. Can the e(jUation of this sphere be derived by a

limiting process like that of V.x. 18 as a^jplied to the osculating plane
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18. The osculatinj,' plane may be regarded as the plane passed through three

consecutive points of the curve ; in fact it is easily shown that

lini

&r, 6?/, Sz
Ax. A?/, Az
approach

X y Z I

•^0 Vo ^0 1

r,, + Sx ?/,j + dy Zq + 5z 1

/y + Ax l/o + A;/ z^^ + Az 1

^-^0 y-Vo z-^o
(dx)o (d2/)o (dz)^

{(Px)^ (d^y)^ {dh)^

= 0.

19. Express the radius of torsion in terms of the derivatives of x, y, z hy t

(Ex. 10, p. 07).

20. Find the direction, curvature, osculating plane, torsion, and osculating

sphere (Ex. 17) of the conical helix x = t cos t. y = t sin t, z = kt at i = 2 tt.

21. Upon a plane diagram which shows A.s, Ax. Ay, exhibit the lines which

represent ds, dx, dy under the different hypotheses that x, y, or s is the independ-

ent variable.



CHAPTER IV

PARTIAL DIFFERENTIATION; EXPLICIT FUNCTIONS

43. Functions of two or more variables. The definitions and theo-

rems about functions of more than one independent variable are to a

large extent similar to those given in Chap. II for functions of a single

variable, and the changes and difficulties which occur are for tlu^ most

part amply illustrated by the case of two varia])les. The work in the

text Avill therefore be confined largely to this case and the generaliza-

tions to functions involving more than two variables may be left as

exercises.

If the value of a variable z is uniquely determined when the values

(.'-, y) of two variables are known, ,'; is said to be a function z =f(^.r, y)

of the two variables. The set of values [(,r, y)] or of points P{.r, //) of

the .'/'y-plane for which z is defined may be any set, but usually consists

of all the points in a certain area or region of the i)lane bounded by

a curve which may or may not belong to the region, just as the end

points of an interval may or may not belong to it. Thus the function

1/ V 1 — y^ — if is defined for all points within the circle .'•"
-f- //" = 1,

but not for points on the perimeter of the circle. For most ])urposes it

is sufficient to think of the boundary of the region of dt'hnition as a

polygon whose sides are straight lines or such curves as the geometric;

intuition naturally suggests.

The first way of representing the function z =/(./•, y) geometrically

is by the Hiirfdce z =f(;t, //), just as // =t\.r'^ was represented by a curve.

This method is not available for u =/(./•, //, z), a function of three vari-

ables, or for functions of a gi-eater numlx^r of variaV)les ; for space has

only three dimensions. A second method of representing the function

z =/{.>, ij) is by its contmir lines in the ./-y-plane, that is, the curves

/{'': !/) = const, are plotted and to each curve is attached the value of

the constant. This is the method employed on maps in marking heights

above sea level or depths of the ocean below sea level. It is evident that

these contour lines are nothing but the projections on the .rv/-plane

of the curves in which the surface z =f{x, y) is cut by the planes

z = const. This method is a})})licable to functions u = f(.r, //, z) of

three variables. The contour surf(ires u = const, whic-h are thus obtained

87
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are frequently called c'luqioteiituil Hurfact^s. If the function is single

valued, the contour lines or surfaces cannot intersect one another.

The function z =f(.r, y) is continuous for (u, h) Avhen either of the

following equivalent conditions is satisfied

:

1°. lini /'(•'•, U) =/("! ^') ^"' li"\/'(''^j .'/) = ,fG"'^^ •'' 1"'^ 2/)j

no iiKittcr lioir tin; ra ruOilc point i^(.'', y) (tpproitchcs (ji, //j.

2°. Iffor any assigned e, a niiuihcr 8 may Jx' found so tltat

!/('•, ii)
-

fd', W\<^ "'^' '-'''
I

•'• - " 1

< s.
i

y -
^' ; < s-

Geometric-ally this means that if a square with {a, h) as center and

/(a,WH

25

\ -^

/{a,W-e

with sides of length 2 8 parallel to the axes be drawn,

the portion of the surface z = f{.r, y) aljove the

square will lie Ijetween the two planes z^f(a. l/)±e.

Or if contour lines are used, no line f(.r, y) = const.

where the constant differs from /'('/, h) 1a' so much

as e Avill cut into the square. It is clear that in place 0\ 25 X
of a square surrounding ((/, />) a circle of radius 8 or any other figure

wdiicli lay within the square might be used.

44. Contlnultij examinc-'I. From the deliiiition of continuity just <iivon and

from tlie corresponding definition in § 24, it follows that if /(x, y) is a continuous

fnnction of x and y for (a, h), then /(j, h) is a continuous function of x for x = a

and f(a. y) is a contiinu.ius function of y for y = h. Tluit is. if / is continuous in

x and y jointh', it is contiiuKjus in x and y severally. It mii^lit be thought that

conversely if f{x. h) is contiiuious for x = a and f{a. y) for y = h. fix. y) would

be continuous in (/. y) for (u. h). Tliat is, if / is continuous in x and y severally,

it would be continuous in x and y

jointly. A simple example will show

that this is not necessarily true. Con-

sider the case

z =f(x, y) =
X- + y-

•1^ + y

/(O. 0) =

and examine z for coutiiuiity at

(0. 0). I'he functions f(x. 0) = .r.

anil/(0, y) ~ y are surely continuous

in their respective variables. But the surface z = fix. y) is a conical surface (except

for the points of the z-axis other than the origin) and it is clear that Fix. y) may
approach the origin in such a manner that z shall approach any di'>ired value.

^Moreover, a glance at the comour lines shows that they all enter any circle or

square, no matter how small, concentric with the origin. If P approaches the origin

along one of these lines, z remains constant and its limiting value is tliat constant.

In fact by approaching the oriuiu alon^ a set of p((ints which juiup from one con-

tour line to another, a method of aiijiroach luay be found surli that z ajiproaches

no limit whatsoever but oscillates between wide limits or becomes iulinite. Clearly

the conditions (,f contimiity are not at all fultilled by z at (0, 0).
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Double limits. There often arise for consideration expressions like

lini riini/(x, 2/)l. lini riini/{j, y)!, (1)

where the limits exist whether x first approaclies its limit, and then y its limit, or

vice versa, and where the question arises as to whether the two limits thus obtained

are equal, that is, whether the order of taking the limits in the double limit inay

be interchanged. It is clear that if the function /(x, y) is continuous at {a. h), the

limits approached by the two expressions will be ecjual ; for the limit of /(.r, y) is

/(«, b) no matter how (j, y) approaches (a, h). If / is discontinuous at («, b), it

may still happen that the order of the limits in the double limit may be inter-

changed, as was true in the case above where the value in either order was zero
;

but this cannot be afhi'med in general, and special c(jnsiderati(jns must be applied

to each case when /is discontinuous.

Varieties of reyioriH* For both pure mathematics and physics the classilication

of regions according to their connectivity is important. Consider a finite region li

bounded by a curve which nowhere cuts itself. (For the present

pui-poses it is not necessary to enter upon the subtleties of tlie

meaning of "curve" (see §§ 127-128); ordinary intuition will

suffice.) It is clear that if any closed curve drawn in this region

had an unlimited tendency to contract, it could draw togethei-

to a point and disappear. On the other hand, if 1'/ be a region

like E except that a portion has been removed so that W is

bounded by two curves one within the other, it is clear tluit

some closed curves, namely tliose which did not encircle the

portion removed, could shrink away to a point, whereas (jther

closed curves, namely those which encircled that portion, could

at most shrink down into coincidence with the boundary of that

portion. Again, if two portions are removed so as to give rise

to the region E'\ there are circuits around each of the p(jrtions

which at most can only shrink down to the boundaries of those

portions and circuits around both portiims which can shrink down to the bounda-

ries and a line joining them. A region like A', where any closeil curve or circuit

may be shrunk away to nothing is called a simply connected reybm ; whereas regions

in which there are circuits whicli cannot be shrunk away to nothing are called

inulVqAy connected regions.

A multiply connected region may be made simply connected \)X a simple device

and convention. For .suppose that in IV a line were drawn connecting the two

bounding curves and it were agreed that no curve or circuit drawn within /." should

cross this line. Then the entire region woidd be surnnuided by a

single boundary, part of whicli would be C(junted twice. The figure

indicates the situation. I]i like manner if two lines were drawn in

It" connecting both interirtr Ijoundarles to the exterior or connecting

the two interi(jr Ixjundaries together and eitlier of them to tlie outer

boundary, the region would be rendered simply connected. The entire region

would have a single boundary oi whicli x»arts would be coiuited twice, and an\'

circuit which did iKjt cross the lines could be shrunk awav to nothinu. The lines

* The discussion from this pcjint to the end of § 45 may be connected witli that of

§§ 123-126.
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thus drawn in the region to make it simply connected are called cuts. There is no

need that the region be Unite ; it miglit extend off indetinitely in some directions

like the region between two parallel lines or between the sides of an angle, or like

the entire half of the jy-plane for which y is positive. In such cases the cuts may
be drawn either to the boundary or off indefinitely in such a way as not to meet

the boundary.

45. Multiple calued fiDictions. If more than one value of z corresponds to the

pair of values (/, y), the function z is multiple valued, and there are some note-

worthy differences between nuiltiple valued functions of one variable and of several

variables. It was stated (§ 23) that multiple

valued functions were divided into branches

each of which was single valued. There are

two cases to consider when there is one vari-

able, and they are illu.strated in the figure.

Either there is no valtie of x in the interval

for which the dift'erent values of the function

are equal and there is consequently a number

D which gives the least value of the difference

between any two branches, or there is a value of x for which different branches

have the same value. Now in the first case, if x changes its value continuously and

if/(j:) be constrained also to change contiimously, there is no possibility of passing

from one branch of the function to another : but in the second case such change is

possible for, when x pas.ses through the value for which the branches have the same

value, the function while constrained to change its value contiimously may turn off

onto the other branch, althottgh it need not do so.

In the case of a function z =f{x. y) of two variables, it is not true that if the

values of the function nowhere become equal in or on the boundary of the region

over which the function is defined, then it is impossible to pass continuousb' from

one branch to another, and if P{x. y) describes any

continuous closed curve or circuit in the region, the

value of f{x. ij) clianging contiiniously must return to

its original value when P has completed the descrip-

tion of the circuit. For suppose the function z be a

lielicoidal surface z = a tan-i(/y/,f). or rather the por-

tion of tliat surface between two cylindrical surfaces

concentric with the axis of the heliroid. as is the case

of the surface (if the screw of a jack, and the circuit

be taken around the inner cylinder. The nmltiple num-
bering of tlie contour lines indicates the fact that the

function is mulriple valued. Clearly, each time that

the circuit is ilescriljed. the value of z is increased liy the amount between the >uc-

cessive branches or leaves of the surface (or decreased by that amount if the cinMiit

is descriljed in the opposite direction). The region here dealt with is not simply

connected and the circuit cannot be shrunk to nothing — which is tlie key to the

situatif.in.

Thkohkm. If the difference between the different values of a continuous mul-

tiple valued function is never less than a finite number 1) for any set (./•. y) of

values of the variables whetlier in or upon the boundary of the rcirioii of detini-

tion. then the value f{x. y) of the fiuiction. constrained to change continuously,

70,27r
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will return to its initial value when the point P{x. ij). (lescribinu- a closed curve

which can be shrunk to nothing, completes the circuit and returns to its starting

point.

Now owing to the continuity of / throughout the region, it is possible to find a

numbers so that \f(x,y) — f{x'.y')\<e when |x — J'']<5 and |*/— ?/'|<5 no matter

what points of the region (x, y) and (x', y') may be. Hence the values of / at any
two points of a small region which lies within anj' circle of radius \ 5 cannot differ

by so nuich as the amount !>. If, then, the circuit is so small

that it may be inclosed within such a circle, there is no possi-

bility of passing from one value of / to another when the circuit

is described and / nmst return to its initial value. Next let

there be given any circuit such that the value of /.starting from

a given value /(x, y) returns to that value when the circuit has

been completely described. Suppose that a modification were

introduced in the circuit by enlarging fir diminishing the inclosed area l)y a sniaii

area lying wholly within a circle of radius
I

8. Consider the circuit ABCDEA and

the modified circuit ABCDEA. As these circuits coincide except for the arcs B( '1)

and BCD. it is only necessary to show that/ takes on tlie same value at D whether

D is reached from B by the way of C or by the way of C . Jiut this is necessarily

so for the reason that both arcs are within a circle of radius J 5.

Then the value of / must still return to its initial value /(x, y)

when the modified circuit is described. Now to comi)lete the

proof of the theorem, it suffices to note that any circuit which

can be shrunk to nothing can be made up by piecing together a

number of small circuits as shown in the figure. Then as the

change in /around any one of the small circuits is zerf). the change nnist be zero

around 2, 3, !,••• adjacent circuits, and thus finalh' around the complete large

circuit.

Kedurlbllity of circuits. If a circuit can be shrunk away to nothing, it is said to

be reducible ; if it camiot, it is .said to l)e irreducible. In a simi^l}- connected region

all circuits are reducible ; in a multiply connected region there are an infinity of

irreducible circuits. Two circuits are said to be e(juiv(ile}it or I'edvudble to each

other when either can l)e expanded or shrunk into the other. The change in the

value of /on passing antund two equivalent circuits from .1 to .1

is the same, provided the circuits are described in the same direc-

tion. For consider the figure and the equivalent circuits ^ICA
and ACA described as indicated by the large arrows. It is clear

that either may be modified little by little, as indicated in the

])r(iof above, until it has been changed into the other. Hence the

cliange in the value of /around the two circuits is the same. Or, as another pi'oof,

it may be observeil that the condjined circuit AC\l("A. where the second is

described as indicated Viy the small arrows, may be regarded as a reduciljle circuit

wliicli toviches itself at ^l. Then the change of / around the circuit is zero and /
must lose as much on passing from A to A by C as it gains in iiassing from .1 to

^1 by C. Hence on passing from .1 to -1 by C in the direction of the large arrows

the gain in/mu.st be the same as on passing by C.

It is now possible to see that any circuit ABC may he reduced to rirruitH uround

the portions cut out of the region combined with lines goinij to mid fruin A nud the

boundaries. The figure shows this; for the circuit AB("BAlJ("'DA is clearly
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rodiu'ible to the circuit ACA. It must not be forgotten that althnuuh the lines yl7i

and BA coincide, tlie values of the function are not necessarily the same on AB
as on BA but differ by the amount of change introduced in

/on passing around the irreducible circnit BC'B. One of the

cases which arises most frequentlj' in practice is that in

which the successive branches of /(x, y) differ by a constant

amount as in the case z — tan-i(///x) where 2 tt is the differ-

ence between successive values of z for the same values of the

variables. If now a circuit such as ^IBC'BA lie considere<l, where it is imagined

that the origin lies within BC'B, it is clear that the values of z along ,17> and

along J}A differ by 2 7r, and whatever z gains on passing from A to

B will be lost on passing from B to ,1, although the values through

which z changes will be different in the two cases by the amount //

2 7r. Hence the circuit ABC'B^l gives the same changes for z as

the simpler circuit BC'B. In other words the result is obtained

that if the different vdlues of a multiple vidued fundinn for the same

V(dites of the i^arioliles differ hy a eonstant independent of the nilues of

t/ie variables, any circuit may he reduced to circuits about the bound-

aries of the p)ortions removed; in tliis case the lines going from the point A to the

boundaries and back mav be discarded.

(a). =
;^-

+
|, .(0,0,.0. iii)

EXERCISES

1. Draw the contriur lines and sketch the surfaces corresponding to

I'll
--

-— , 2(0. 0) = 0.

Note that here and in the text only one of the contour lines passes through the

origin although au iutiiiite luunber have it as a frontier point between two parts

of the same contour line. Discuss the doulile limits lim lim z. lim lim z.

.r = n II = // = .'• =

2. Draw the contour lines and sketch the surfaces corresponding to

(a) z
./•- + y- - 1

(/3) (7) z
X- + 2 y- - 1

•2y " '

X
"

'

2 X'- + y- — 1

Examine particularly the behavior of the function in the neighlxirhood of the

apparent points of intersection of different contour lines. Why apparent'.'

3. State and prove for functions of two independent variables the generaliza-

tions of Theorems (1-11 of ( 'haii. 1 1. Note that the theorem on luiiformity is proved

for two variables by the ap[)licatioii of Kx. 0. p. 40. in almost the identical manner

as for the case f>f one variabh.'.

4. ( lutline definitions and theorems for functions of three variables. In partic-

ular indicate the contour surfaces of the functions

(<») » = .r + y + 2 z (/3)«=4^-^^' (7)» = ^.
y - z

' X + (/ + 2

and discuss the triple limits as x. //. z in different orders approach the origin.

5. Let 2 = V{s. ]i)/(^{.r. y). where 7' and fj ai'i- ]iolynomials. lie a rational func-

tion of X and //. Show that if the curves /' = and (^> ^ intersect in any points,

all the contour lines of z will ctm verge toward these points ; and conversely show
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that if twfi (lifftreiit contour lines of z apparently cut in some point, all the contour

lines will converge toward that point, P and Q will there vanish, and z will \)c

undefined.

6. If 1) is the minimum difference between different values of a nndtiple valued

function, as in the text, and if the function returns to its initial value plus I)'^D
when P describes a circuit, show that it will return to its initial value plus I)'^D
when P describes the new circuit formed by piecing on to the given circuit a small

region which lies within a circle of radius J 5.

7. Study the function z = tan- 1(2///). noting especially the relation between

contour lines and the surface. To eliminate the origin at which the function is not

defined draw a small circle about the point (0. 0) and observe tiiat the region of

the whole ^iz-plane outside this circle is not simph' connected but may be made so

by drawing a cut from the circumference off to an infinite distance. Study the

variation of the function as P describes various circuits.

8. Study the contour lines and the surfaces due to the functions

(rt) z = tan-ij-y, ^^^ 2 = tan- ' —, (7) ^ = sin- ^ (./• — y).
1 - .'/'-

Cut out the XJoints where the functions are not defined and fi)llow the chanu'es in

the functions about such circuits as indicated in the figures of the text. IIow may
the region of definition be made simply connected ?

9. Consider the function z ~ tan- ^ (P/ Q) where P and (J are polynomials and

where the curves P = and Q = intersect in 11 pnints (11^. h^). {u.,. h.,). . (((„. b„)

V)ut are not tangent (the polynomials have cnmnKm sulutidus which are Udt mul-

tiple roots). Show that the value of the function will change b\' 2 kir if (,r, y)

describes a circuit which includes k of the points. Illustrate liy taking for P/Q
the fractions in Ex. 2.

10. Consider regions or volumes in space. Slmw that there are regions in which

some circuits cannot lie shrunk away t<i nothing
; also regions in which all cii'cuits

may be shrunk away but not all chised surfaces.

46. First partial derivatives. Let ,^ =/'(.'•, //) 1h' a single valuod

function, or one ],)ninc]i of a multiple valued function, defined for (", Ji)

and for all points in tlie neigliliorliood. If // be given the value />,

then z l)ecomes a function /'(.'. I') of .r alone, and if that function has a

derivative for .'• = <i, that derivative is called tlie pdrfhil dcrii-nflre of

,-;; =/(:/•, 7/) with respect to ,'• at ('/, //). Similaily, if ,/ is held fast and

eiptal to a and ii /(a. //) has a deiivative when // = //. that deiivative is

called the partial derivative of ,v with respe<'t to >/ at ('", //). To obtain

these derivatives formally in the case of a given function /(,', >/) it is

merely necessary to differentiate the function by the ordinary rtdes,

treating // as a constant Avlien finding tht^ derivative with respect to ./

and a; as a constant for the dorivativc with rcspei't to //. Xotations are

T^ = — =./; =/ .
= < = l\ / = i'r- = -T

ex ex \(IX
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for the .r-derivative with similar ones for the ^-derivative. The partial

derivatives are the limits of the quotients

\\m- —
, lim , {1)

provided those limits exist. The application of the Theorem of the

Mean to the functions f(.r, />') and f(". //)
gives

/(" + /', /') -/(", ^') = /'./;:(" + oj'- />), < ^^ < 1,

f(", h + 1-) -f(", f>) = J^f;Of, h + ej:), < ^^ < 1,
^"^

under the proper but evident restrictions (see § 26).

Two coinments niaj' be made. First, some writers denote the partial derivatives

by the same symbols dz/dx and dz/dy as if z were a function of only one variable

and were differentiated with respect to that variable ; and if they desire especially

to call attention to the other variables which are held constant, they athx them as

.subscripts as shown in the last symbol ,i;iven (p. D.S). This notation is particularly

prevalent in thermodynamics. As a matter of fact, it would probably be impos-

.sible to devi.se a simple notation for partial derivatives which should l)e satisfac-

tory for all purposes. The only safe rule to adopt is to use a notation which is

sutticieutly explicit for the purposes in hand, and at all times to pay careful atten-

tion to what the derivative actually means in each case. Second, it should l)e noted

that for points on the boundary of the region of definition nf /(.;•. //) there may be

merely right-hand or left-hand partial derivatives or perhaps none at all. For it

is necessary that the lines y = h and x = « cut into the region on one side or the

f)ther in the neighborhood of [a. h) if there is to be a derivative even one-sided
;

and at a corner of the boundarj' it may happen that neither of these lines cuts

into the region.

Theorem. If _/'(,'•, //) and its derivatives f^ and f'y are continuous func-

tions of (./•, //) in the neighborhood of (ji, b), the increment A/ may l»e

written in any of the three forms

= ^'fX" + oj'- h + /.:/;;(" + /'. /' + oj.-)

= iif'A" + Oh. h + Ok) + hr:,(" + eii. h + Bh) ^ '

= ///::(/'. /') + /./;;(", />) + ^^ + u.-.

Avhere the 6"s arc ]>ro]»ci- fractions, tlie ^"s intiiiitcsimals.

To prove the lirst form, add and suljtract ./'('/ + //. h) ; then

Af^lfin + h. h)-f{n. h)] + [f{a + h. h + k)-fOi + h. /-)]

= lif',\n + d^h. h) + /,;/;(,( + //. h -\- OJc)

by the application of the Theorem of the INIean for functions of a single \arialile

(§§ 7, 2(i). The api)lication may be made because tlie function is continuous and

the indicated derivatives exist. Now if the derivatives are also continuous, tlicy

may be expressed as
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where fj, f, may be made as small as desired by taking h and k sufficiently small.

Hence the third form follows from the first. The second form, which is symmetric

in the increments h, k, may be obtained by writing x = a + th and y = b + tk.

Then/(j-. ;/) = <{>(0- As/ is continuous in (x, y), the function 4> is continuous in t

and its increment is

A* = f{a + t + Ath, b + t + Atk) -f{a + th, b + tk).

This may be regarded as the increment of / taken from the point {x, y) with At • h

and At k as increment-; in x and y. Hence A* may be written as

A* = Af ///;; (a + ih, b + tk) + At kf'^ {a + th, b + tk) + fj A< • h + ^M k.

Now if A<t> be divided by At and At be allowed to approach zero, it is seen that

At , , r/4>
lim— = h f' {a + Uu b + tk) + k f, {<( + th, b + tk) = — •

The Theorem of the Mean may now be applied to <l> to give 4> (1) — t (0) = 1 • i''{ff),

and hence

<!> (1) - * (0) = fin + /(. b + k) - f{n. 6)

= Af=hf'_^{a + dh, b + ek) + kfy{,i + Oh, b + 6k).

47. mXm jKirfliil differentid Is of /'may Le defined as

(f,f =^ f',A:r, so that d.r = \r, -^j— = ^ ,

a. I' ex

.If cf
('')

(L,f= T",A>/, so tliat (Jii = \i/. -''r^ = -r-i
"

' '

' '

<'!J
cy

where the indices .'• and // introduced in </,./and f^/,,/' indicate tliat .r and

1/ respectively are ah)ne allowed to vary in forming the corresjjonding

partial differentials. The total differential

'{f= <^rf + dj = t^ d.r + ?^ du, (6)

Avliich is the sum of the partial differentials, may 1)6 defined as that

sum ; but it is better defined as that part of the increment

\f == ?^ ^'- + ?^ A// + L\.r + lAu (7)

Avhicli is obtained by neglecting the terms ^^A.r + tA/A "\vhich are of

higher order than A./' and \y. The total differential may therefore be

computed bv finding the partial derivatives, multiplying them respec-

tively by dx and (///, and adding.

The total differential of « = /(.r, ij) may be formed for (.r^, tj^ as

'"cf\ ,. , ,

(if
,^''-^'o) + (|)/-'^-^o). (8)

where the values x — x^ and //
— y^ are given to the independent differ-

entials '/.'• and '///, and df= dz is Avritten as z — z . This, however, is
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the equation of a plane since x and ij are independent. The difference

Af— df whicli measures the distance from tlie plane to the surface

along a parallel to the .-i-axis is of higher order than Va,/''-^ + A/y- ; for

\f-<lf

VA,7y^ + Ay-

r\.r + C.A//
<!C,| + ILl = o.

Va;/-- + A.;/

Hence the plane (8) will be defined as the tcmjcnt plana at (.r^^, y^, z^

to the surface z =fQi-, ij). The normal to the plane is

%
-1 (^)

1>I> A./

which will be defined as the nornml to ilia surface at (.r^, y^, z^^. The

tangent plane will cut the ])lanes y = y^ and ./• = x^ in lines of which

the slope is f^^ and
f',j^.

The surface will cut these planes in curves

which are tangent to the lines.

In the figure, PQSR is a portion of the

surface z =f(x, y) and PT'TT" is a cor-

responding portion of its tangent plane

at P(x^, y^^,
-.'q). Xow the various values

may be read off.

I"Q = A,/,

J"r = ,/J]

x's = A/;

48. If the variaUes x and // are expressed as ./ = <j)(f) and // = {{/(t)

so that /'(./•, y) becomes a function of t, the derivative^ of /'with respect

to t is found from the ex})ression for the increment of/'.

\f 'If

p'T'/pp' =/;,

p"r"/pp" =;;,
P'T' + P"T" = X'T,

ct A.'' cf \ii ^ A.'' <, A//

ex \t cy \f ^' M - \t

_, ,, cf <lx Cfily
hm — = --- = ' r ^ '- r
A( = o At (It ex ilt cy at

(10)

The conclusion I'cquii'es that x and // should have finite derivatives Avith

respect to t. The ditt'erential of /'as a function of t is

(It ^ cf (Ix cf (111 , cf ^ Cf ^

(If = ^(]t = 4 (It + f~^ (It = 7^ (Ix + /- (hi
(It ex (It cy (It ex cy '

(11

and hence it a])])eai's that tJ/c (Hifcrcnt'tal I/as tlw saiin' form as the total

differential. This result will be generalized later.
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As a particular case of (10) suppose that :i- and // are so related tliat

the point (.r, ;/) moves along a line inclined at an angle r to the rr-ax is.

If s denote distance along the line, then

a- = .r^ + * cos T, ?/ = ?/p -f .s- sin T, r/./- = cos rr/.s', di/ = auiTds (12)

df dfdxdfd!, .

and -r = ~T~ + ~^=^/x cos t + /„ sm r. (13)
ds ox ds oij ds ^ '

' ^ ^

The derivative (13) is called the dlrerflonnJ dcrirdtlrc of /in the direc-

tion of the line. The i)artial derivatives
f'-,.,

/',^ are the particular direc-

tional derivatives along the directions of the ./'-axis and ?/-axis. The

directional derivative of _/' in any direction is the rate of increase of

/' along that direction ; \i z = f(.r, ;/) be inter-

preted as a surface, the directional derivative is

the slope of the curve in which a plane through

the line (12) and perpendicular to the .t//-plane

cuts the surface. If /'(.r, y) be represented liy

its contoiir lines, the derivative at a i)oint

(.r, y) in any direction is the limit of the ratio

A /'/As — AT/A.s of the increase of/', from one contour line to a neigh-

boring one, to the distance between the lines in that direction. It is

therefore evident that the derivative along any contour line is zero and

that the derivative along the normal to the contour line is greater than

in any other direction because the element dn of the normal is less than

ds in any other direction. In fact, a])art fi'om inlinitesimals of higher

order,

&

A?t— = cos xb.

A/
A.s

A f ilf df
cos^, - = -cos^.

A/i ds
(1^)

Hence it is seen that flw dcrirdtlrc (doiuj (inij direction ukii/ he found

hy inultvplijiiKj the deriratirc (ilon^ tlic noi'inal In/ the cosine of tJic (mf/le

between that direction and the normol. The dei'ivative along the normal

to a contour line is called the norniol dcrivdtire of /'and is, of course,

a function of (.r, ?/).

49. ISText suppose that n = f(.r, //,
--, • • •) is a function of any number

of variables. The reasoning of tht> foregoing paragraphs may be

repeated without change except for the additicjnal number of variables.

The increment of /'will take any of the forms

= hf:(a + eji, />, c, . .

.) + ff;(o + /^ /. -f ej:, c,.--)

+ lf:(n + h, b + f, e + BJ, ...)-f ...

= V'.C + kf'y + V:+-- •]. + e,,. r, + Ok. r .u m....

= kfr + //; + (r: + • • + C/ + V^ + 1,1 + ,
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and the total differential will naturally he defined as

and finally if a', y, z, • • • be functions of ;*, it follows that

(It d.r (It c.j dt cz (It ^ ^
^

and the differential of /'as a function of ;* is still (16).

If the variables ./', i/, -:, Avere expressed in terms of several new
variables /•, s, •

• , the function /' would become a function of those vari-

ables. To iind the partial derivative of / with respect to one of those

variables, say /•, the remaining ones, .s, •••, would l)e held constant and

/ would for the moment l)ecome a function of /• alone, and so would ,/•,

y,z,---. Hence (17) may be applied to ol>tain the partial derivatives

cr ex cr Cii cr cz cr
'

. ,, ... / . . ... (18)
Cf Ct cr Cf Cij Cf CZ ^ '

and T^ = 7^ -:r- + 7^-7^ + -7— -:— + •. etc.
C.S Cj- Cs C// €.< CZ Cs

These are the formulas for cl/'inf/e of rnrlahlr analogous to (4j of § 2.

If these equations be multiplied In- A/-, An, • • • and added,

cf cf
,

cf Ic.i- C.I' \ cf /cii \^ A/- + T^ Ax + • • • = ^ — A/- + — A.s- + • • • + 7^M A/- + • • • + . • -.

cr cs c.r \ cr cs / cij \cr j

or (If = 7— '/.'• + -- <hi + :;• - ilz + • •
•

;

cr Cij CZ

for when /, .s, ••• are the inde})endent variables, the parentheses al)Ove

are cA/', c///, ^At', • • and the expression on the left is df.

Theokkm. The expression of the total dittVi'ential of a function of

.V', //,
,--, •• as (If= f'jl.r -\- f%li/

-\-
f'jiz -\- .

. is the sanu- whether ./.
//,

'.', ••• ai'C the independent variables or functions of other indcjjcndent

variables /•, .v, • •
• ; it being assumed that all the derivatives which occur,

whether of /' by ./•, y, z, or of .r, y, z, by r, s, , are continuous

functions.

By the same reasoning or ly virtue of this theorem the rules

(I (riA = r/I/i^ il { II -\- r — //•) = i1 II -\- il r — (///•,

7/ , , , J"\ rihi - iiilr (19)
,1 {-,,,)— mil' ^ nhi. d[-\=- , ^ ^

of the diffei'cntial calculus will apply to calculate the total differential

of combinations oi' functions of several variables. If In' this means, or

any other, tliere is olitaiiied an expression
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df =R(r,s,f,...) dr + S{,;s,t,...) d, + T (r, s, f, . . .)dt -{- (20)

for the total differential in Avliieh r, s, t, are Inde^iendt'nt variables,

the coefficients R, S, T, are the derivatives

R = ^, S = '-l, T = ¥-,.... (21)
Cj- Cs Cf ^ ^

For in the equation df^ Rdr+Sds-j- Tdt -\ =f;.dr-{-flds^f;dt-\ ,

the variables r, s, f, , Ijeing independent, may be assigned increments

absolutely at pleasure and if the particular choice dr= 1, d.'i = df= --- = 0,

l)e made, it follows that /.' =./',': and so on. Tlie single equation (20) is

thus equivalent to the e(|uations (21) in number e(|ual to the number of

the independent variables.

As an example, coiisiiler the case of the function tan-i (y/x). By the rules (1!»),

,; f^j^-
1 y _ '-l(y/-f) _ '^y/'>^ — yds/x- _ j-dy - ydx

X
~

1 + ((///)-
~

1 + ((///)-
"

Jt- + r
Then ^tan-i?^= ^^— , -^tan-i^ = -^ , by (20)-(21).

ex X X- + y- cy x x- + y'-

If y and x were expressed as y = siidi rst and x = cosh rst, then

_ 1 .y '''^y ~ y'-^"'' {^t-dr + rtdn + r^idf] [cosh-r.s< — sinh-rs^]

cosh'-'/'.si + sinh-/>-i

cf rt cf rs

X X- + y-

and
cf _ .s(

cr cosh 2 r.st •s cosh 2 rst ct cosh 2 rst

EXERCISES

1. Find the partial derivatives/,', f'^ 'ir/_^'. f^. /.' of these functions :

{a) loiiix- + y"). (/3) e-^ ens y sins:. (7) x- + 3 xy + //',

(5) -^, (e) ^--^^, ii-)
ln,.(sinx + sin^y + sin^^).

(.) sin-i^ (0)^ei; (0 tanh-^V2("^^+4+^^y.^" X ^ ' X \x- + y- + z-/

2. Apply tlie definition (2) directly to the following to find the partial deriva-

tives at the indicated points :

(a) ~j at (1, 1), (p) X- + 3xy + r :it (0, 0). and (7) at (1, 1),

(5) 5^^^ at (0. 0): also trv differentiating;- and suVistitutiim- (0, 0).
^ ' X + y ^ '

- -
'

3. Find the partial derivatives and hence the total differential nf :

e-n/

(a) -^^
—~^, (/3) xlog.yz, (7) V<(-

X- + y-
y--

(0) f-^siny. (e) e=^-sinhx?/, (j-) log tan/x +
-j ;/j,

yV ,r.\ ^ ~"
?/

l-'ix
_ _\, .

z-x-W . W^. (.)i"=Uv + \' + ^x^z
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4. Find the general eciuations of the tangent plane and normal line to these

surfaces and find the eijuations of tlie plane and line for the indicated (x^, y^^) :

(a) the helicoid z = /c tan- i (y/x), (1, 0), (1,-1), (0, 1),

(/3) the paraboloid 4pz = jx" + y-), (0, p), (2p, 0), {p, — p),

(y) the hemisphere z = Va- — x- — y-, (0, — J «), {\ a, I a), (l Vs «, 0),

(5) the cubic xyz = 1, (1, 1, 1), {- i, - h ^i (4, h D-

5. Find the derivative with respect to t in these cases by (10)

:

((If) f — x" + y", X = a cos t^ y = h sin i, (/3) tan- ^ \/ ;
^ y — cosh t, x = sinh i,

(7) sin- 1 (x — ?/), X =: 3 i, ?/ = 4 f', (5) cos 2 xv/, x = tan- ^ t, y =^ cot- 1 i.

6. Find the directional derivative in tlie direction indicated and obtain its

numerical value at the points indicated :

{a) x'-//, T ^ 45^, (1, 2), {13) i^m"-xy, r = 00^, (V-S, - 2).

7. (a) Deternune the niaxinuun value of df/ds from (13) by regarding t as

variable and applying the ordinary rules. Show that tlie direction that gives the

maxinuun is , r

T = tan- 1 -. and then — = \ — ) + U,— I
•

/; dn \\cxj \cy]

(/3) Siiow that tlie sum of the S(iuares of the derivatives along any two perpen-

dicular directions is the same and is the s(puire of the normal derivative.

8. Show that (/; + ?/7;')/v 1 + y'- and (/;?/' -/;)/Vl + y'- are the deriva-

tives of /along the curve y = ^(x) and normal to the curve.

9. If df/dn is delined by the work of Ex. 7 (a), pn)ve (14) as a consecpience.

10. Apply the formulas for the change of variable to the following cases :

(a) r = Vx^+V^ = tan-i^. Find '^-, ^, x[('-'-)\ PY'
•<; ex cy \\Zxl Vy/

(/3) x = rcos0, ?/ = rsiii0. Find — ,
-'-,

(
'-] -{—-{^] •

cr c(j> Xcrf r~\d(p/

(7) X = 2 r — ;J .s- + 7, ?/ = — r 4- 8 .s — 0. Find - — 4x + 2y if u — x- — y'^.

,^, fx = x' coscr — ?/'sin (ir, „, /f/\- /<J'\' /^/V" , /('fV
5 -; , .

', Show — +:=-; + .-- •

(,!/ = '' sina•+ // cost!-. \f)x/ \( y / \(x/ \cy/

(e) Prove '-L + 'l = if /(«, 1-) r=f{x - v/, // - x).
(X cy

(f) Let X = dx' + ^.v' -1- i-z', y = a'x' + h'y' + r'z'. z — n"x' + //'//' + ''"2', wliere

a, />, c, <('. I/, r', rf", //', <•/' are tin; direction cosines of new rectangular axes with

resx)e<'l to the old. This transformation is called an (irUux/diial lr<insfotinati.()n. Sliow

11. Define directional derivative in space
;
also normal derivative and estab-

lish (14) for this case. Find the normal dei'ivative of / = xyz at (1, 2, i>).

12. Find the total diftVrenliid and hence the partial derivatives in Kxs. 1, 8, and

{a) h>y;{x- + y- + Z-), (i^) i/Z-c, {-y) x-yfi'\ {5) xyz loi^ xyz,
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(e) u — X- — y-, X = rcotist, y = .ssinrL Fiiul cu/cr, c«/(.s, cu/ct.

( f ) u = y/x, X = r cos (p sin 9, y = r sin <p sin $. Find u/, » /, iig.

(77) u = e^'J, X = log vr- + .s-, y = tan- 1 (s/r). Find w/, w^'.

lo. It — = - and — =
, show — =—^ and = if r, <p are polar

ex ly cy ex cv r c<p r c<p Zr

coordinates and/, g are any two functions.

14. If p{x, y, z, t) is the pressure in a fluid, or p(x, ?/, z, t) is the density, depend-

ing on the position in the fluid and on the time, and if 7<, ?), w are the velocities of

the particles of the fluid along the axes,

dp cp cp cp cp , dp cp (o CO (p

dt ix cy cz It dt ex cy cz dl

Explain the meaning of each derivative and prove the formula.

15. If z = xy, interpret z as tlie area of a rectangle and mark dxZ, AyZ., Az on the

figure. Consider likewise u = xyz as the volume of a rectangidar parallelei)iped.

16. Small errors. If /(x, y) be a (juaiitity determined by measurements on x

and 2/, the error in / due to small errors dx, dy in x and y may be estimated as

df = f^dx -\- fydy and the relative error may be taken as df -^f — dlogf. Why
is this ?

(a) Suppose S = I ah am C be the area of a triangle with a = 10, h = 20, C = 30"^.

Find the error and the relative error if a is subject to an error of 0.1. Ans. 0.5, 1%.

(P) In (tr) suppose C were liable to an error of 10' of arc. Ans. 0.27, |%.

(7) If (I, 6, C are liable to errors of f/^', the cond)ined error in S may be 3.1%.

(5) The radius r of a capillary tube is determined fn)m 13.()7rr-/ = iv by find-

ing the weight iv of a colunni of mercury of lengtli I. If w = 1 gram with an err(u-

of 10-^ gr. and I = 10 cm. with an error of 0.2 cm., determine the possible error

and relative error in r. Ans. 1.05%, 5 x 10- ', mostly due to error in I.

(e) The fornmla c' = 0- -|- ?/- — 2r//jci)s (.' is used to determine c where a = 20,

b = 20, C = 00° with possible errors of 0.1 in a and b and 30' in C. Find the possible

absolute and relative errors in c. Ans. 1, 1|%.

(f) The possible percentage error of a product is the sum of the percentage

errors of the factors.

(7/) The constant <j of gi'avity is determined from y = 2 si-- by observing a body

fall. If .s' is set at 4 ft. and ( detenuined at about ' sec, show that the error in r/

is almost wholly due to the error in /, that is, that s can be set very nuich more

accurately than t can be determined. For example, find the error in I which would

make the same error in g as an error of
J
inch in .s.

(ff) The constant g is determined by gt- = ir'-l with a pendulum of lengtli I and

period t. Suppose t is determined by taking the time 100 sec. of 100 beats of the

pendulum with a stop watch that measures to 1 sec. and that I may be measured

as 100 cm. accurate to l millimetei'. Discuss the errors in g.

17. Let the coordinate x of a particle be x =f{q^, (/.,) and depend on two inde-

pendent variables q^, q.-,. Show that the velocity and kinetic energy are

''=.C'^f
+4'^'' T=lmf- = a^^,yl+ 2a,Ji^i^ + a^Jil
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where dots denote differentiation by t, and a^j, a^g, ^02 ^^'^ functions of {q^, g.,).

Show — = — , z = 1. 2, and similarly for any number of variables q.

cqi cQi

18. The helix x = a cosi, y = a sin t,z = at tan a cuts the spliere x'^ + y'^ + z^ —
«^sec-^ at sin-i (sin cr sin/3).

19. Apply the Theorem of the Mean to prove that /(x, y. z) is a constant if

f^ =fy =f^ = is true for all values of x, y, z. Compare Theorem 10 (§ 27) and

nialce the statement accurate.

20. Transform ^ = A/'i^) + (^) + (^) to (a) cylindrical and (/3) polar

coordinates (§ 40).

21. Find tlie aui^le of intersection of the helix x = 2cosi, y = 2 sin ^ z = t and

the surface xyz = 1 at their lirst intersection, that is, with < i < 1 tt.

22. Let/, y, h be three functions of (x, y, z). In cylindrical coordinates (§ 40)

form tlie combinations F = /cos (p + g sin cp^ G = — /sin <p + y cos 0, II = h. Trans-

form .J.. _, .,,_ - ^j.

(a)^ + ^ + ~, {/3)^-^> (7)^-^
cx cy c2 cy cz cx cy

to cylindrical coordinates and express in terms of F. G, II in simplest form.

23. Given the functions y^ and (z'')^ and z<-^^). Find the total differentials and

hence obtain the derivatives of x-'- and (x-*)^ and x(' '>.

50. Derivatives of higher order. If the first derivatives be again

differentiated, there arise four derivatives /^'., /','^,
f'J,., /',^^ of the second

order, where the first subscript denotes the tirst differentiation. Tliese

may also be written

where the derivative of cfjcij with respect to ,/ is written c-f.'c.r'ci/

with the variabk'S in the same order as required in yv,,/v,^ /'and opposite

to the order of the subscripts in/^j.. This matter of order is usutilly of

no importance owing to the theorem: If tint (hn-lcdtlri's
f'^.. f^^ Junw

diu'lc<dli't's
f',',^, f',^\.

(rliidi are contbuiotis in (,/'. //) in tJw ncijJilini-JiiKKl

of (i.nij jinint (.'\^. i/^f tlie derlratu-cs
f"^,j

anil
fy^.

are i-'jiial, tliat is.

The theorem may l>e proved by repeated application of the Theorem of the

Mean. For

[/(Xq + h. y„ + k)-f{x,,. y, + k)] - [/(x„ + h. 2/,)-/(x,, //,,)] = V'PilU. + /'•)- 0(.V„)]

= [/K+^'- //o + /^-)-/K+^^ .'/„)]- [/(Ar //o + ^O-ZK- .'/o)j = [-f(''-o + ^')--y^U-o)J

where 0(//) stands for /(x^ + h. y)~f{x^^. y) and 4,{x) for /(x, //„ + A') -/(^, V^)-

Now

<p{y,^ + k) - ,p(i/,) = k4>'(y,, + dk) = A-[/;(x„ + h. //,, + dk)-f;,(-r,r y,, + ^'n].

^ (.Co + '0 - -^
(.'-u)

= /'Vi-'; + 0'/') = f' [/; (^0 + ff'f'- y. + ^) -/. (''-o + ^'^'- y.)]

c-f cY
t..r

=— „ J ^,„
^'^// ^//"
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by ai:)plyiiig the Theoreni of the Mean to (p{i/) and \p{x) regarded as functions of a

single variable and then substituting. The results obtained are necessarily equal

to each other ; but each of these is in form for another application of the theorem.

Hence fy',:(:'^o + '?/': ^o + Olc) =.C,{''-o + ^''^N Vo + '/'^')-

As the derivatives
/J'.,

/^'^ are supposed to exist and be continuous in the variables

(x. y) at and in tlie neighborhood of (x^^, y^^). the limit of each side of the ecjuation

exists as /l = 0, k =: and the equation is true in the limit. Hence

The differentiation of the three derivatives/^^, /''.'^
=y'J^., _fj'^ Avill give

six derivatives of the' third order. Consider /',','^, and /"^'. Tliese niay

be written as {f^ )',',, and (f',)y[r aiul are equal by the theoreni just proved

(provided the restrictions as to continuity and existence are satisfied).

A similar conclusion holds for /y,'^, and
f',',^.^ ; the nuruljer of distinct

derivatives of the third order reduces from six to four, just as the

number of the second order reduces from four to three. In like manner

for derivatives of any order, flit' rahie of flic (Ivrirdfln^ ili'pi'uds not on

tlie order In vlih-li thr indirldaal dljft'rcntlotlon.'i irlfli respi'cf to ./ and

II
are jierfornied, hat onlij on the total narnher of d'ljferenthftlons trlth

resjierf to eocli, and the result niay be written with the differentiations

collected as -,„-^„ .

J).^J-)n f ^ ^1^ ^ fOn - .) ^^^._ /22)

Analogous results liold for functions of any number of variables. If

several derivatives are to Ije found and added togetlier, a symbolic

form of Avriting is frequently advantageous. For example,

. . , . c''f cf'f

or (T>, + T)^ff = (j>^ + 2 Dj)y + iy^)f = fz + 2/:; + /;;.

51. It is sometimes necessary to rlt(/n;je t/ie roriotde in higher deriv-

atives, particularly in those of the second order. This is done by a

repeated application of (18j. Thus /',". "^vould he found Ijy differentiat-

ing the first equation with respect to /•, and
f',.^

1)V differentiating the

first l)y .s- or the second by r, and so on. Compare p. 12. Tlie exercise

below illustrates the metliod. It may be remarked that the use of hif/I/ej-

dijferentio/s is often of advantage, although these differentials, like the

higher differentials of functions of a single variable (Exs. 10, 16-19,

p. G7), have the disadvantage that their form depends on what the

independent variables are. This is also illustrated below. It should l)e

particularly borne in mind that the great value of the first differential
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lies in the facts that it may be treated like a finite quantity and that

its form is independent of the variables.

To change the variable in v^ + i^'^ to polar coordinates and sliow

c'-v c'-v _ c-v lev 1 c'-v (x = rcoii(p, y = rm\(p.

ex- cy- cf- rcr r- ccp'-' I r = Vx- + y-, (p = Uu\- '^ {y /x)

.

cv ev cr cv cd> cv ev cr cv c4>
Then — = h—— . — = V

ex cr ex c<p cx cy cr cy c<p cy

hy applying (18) directly with x. y taking the place of r, .s, • • and r,
(f>

the place

of X. y, z, • . These expressions may be reduced so that

cv cv X cv — ;/ cv X cv —
}

cx cr Vj- + y- c4> X- + y- cr r c(p r-

c-v c cv c cv cr c cv c4>— z^ — . -U

ex- cx cx cr cx cx c0 cx cx
Next

cx-

[c-v X cv c X c'-v — y cv c — ?/nx

cr- r cr cr r creep r- ccpcr r- J r

[c'-v X cv C X c'-v — II ff f — ?/!— w
-^- - + ^ -- - + -

,
^^ + — — -

, ^ •

ccpcrr creep r c(p- r- ccpccp r- J /-

The differentiations of x/r and — y/r'- may bf performed as indicated with respect to

/, 0, remembering tliat, as r, <p are independent, the derivative of r h\ cp is U. Then

c'-v _x'- c'-v y'- cv _^xy c'-v
. ./^U (^^' !/- e'-v

(./- ;'- c
r'- H cr r^ creep r' c(p r^ erp'-

In like manner c'-v/ey'- may be found, and the sum of the twn derivatives reduces

to the desired expression. This method is long and tedious thouLili straigiitforward.

It is considerably shorter to start with the expression in pohir coordinates and

transf(jrm l)v the same method to the one in rectan^rular coordinates. Thus

ev cX cvci/ eV cv . l/ty ev
1

'- = - - cos (p -\ sill (p = ~i - £ -\-
;

cx c r eycr cx cy r\cx ey'

c'-v c'-v . \ / e'-i c'-v . \ cv cv .—-^cos0+ sin0 .r + i cos + - ---siii^ w/ + -cos0H sin0,
cx'- cycx j ^Ix.ey cy'- ] ex ly

cV cx ev ell cv . ev cv cv
1- = r sin + - - /• cos <p — — y -\ X',

f .r (0 iy(<P <-J' ([I (x' cy

1 e'-v I'e-v . c'-v \ , / e-v
- ^= ,>in0 COS0 //+
r c(p- \cx- f //fx / \ cxe

y

COS0 sill 0.
(.', cy

e I cv\ 1 e'-v /e'-v e'-v\
1 lien _,-_+ ^^lj_ .._ ,.

cr\ erf rc<p- ^cx- cy-/

e'-v e'-v lei cv\ 1 c'->- c'-v 1 ev 1 e'-v ,^^.
or —

- +-=--/•- + — -^, = - --, -{ \- —.--,• (-•')

cX- cy- rer\ er; r- eep'- er- rer r'-c(p'-

The definit'>iis <l;f=fZ'lx-. d_,ayf = f'/^^iUdy. il'lf = f!,'„<h.r- would naturally be

given iov jiiirtuil dlffcnntuii-^ of tin- sicunil onhr. each of which would vanish if,/'

reduced to either of the independent ^;^iables ./. y or to any linear fuiietion of

them. Thus the second differentials of the indei)endeiit variables are zero, 'f'he
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second total differential would be obtained by differentiating the first total differ-

ential.

d^f = ddf =d(^-^ dx + ^ dy) = d — (/x + d— dy + "^ d^x + - d'^y
;

\cx cy j ex cy ex cy

, ^ ,cf c-f , ,
c-f

,
,c/ c-f c-f

but d -^ = ^- dx H dy, d— = dx -| dy,
cx cx- cycx cy cxZy ty-

and dy = —^ dx^ + 2— dxdy + —^ dy'- + ^ a\r + ~ dhj. (24)
cxr dxdy dy- cx cy

Tlie last two terms vanish and the total differential reduces to the first three terms

if X and y are the independent variables ; and in this case the second derivatives,

f^ifxyifyy^ are the coefficients of^dx-, 2 dxdy, dy'^, which enables those derivatives

to be found by an extension of the method of finding the first derivatives (§ 49).

The method is particularly useful when all the second derivatives are needed.

The problem of the change of variable may now be treated. Let

70 c'-« ,0,0 ^'^ 7 , ,

f '" 7 o
d-y = — dx- + 2— dxdy -\

^ dy-
cx- cx- cy-

C-V , , ^ C-V , , c'-V , , (V ,, cv ,,= — dr- + 2 drd(p -\
^
d(p- + d-r -\ d-(p,

cf- creep c(p- Zr c(p

where x, y are the independent variables and )-, (p other variables dependent on

them— in this case, defined by the relations for polar coordinates. Then

dx = cos (pdr — r sin <pd(p, dy = sin cpdr + r cos 0d0

or dr = cos 0dx + sin 4)dy, rdcp = — sin (pdx + cos <pdy. (2.5)

Then d-r = (— sin0dx + cos (pdy)d<p = rd<pd(p = rdcp-,

drd<p + rd-cp = — (cos (pdx + sin <pdy) dcp = — drd(p,

where the differentials of dr and rd(p have been found subject to d-x = d'-y = 0.

Hence d^r = rdep- and rd-(p = — 2drd<p. These may be substituted in d-y which

becomes

d-v = —^ dr- + 2 )drd<p + { —; + '' -)d(p-.
cf- \crccp r l<pj \Z(p'- Zr/

Next the values of dr-, drdcp, d<p- may be substituted from (2-3) and

,., VZ-v ,-, 2 / Z-v 1 Zv\ . ,
/Z-v

,
fLAsin-c^n

, „
d-v = — cos-<p cos (p sin <p + —; + r— 1

—^~ dx-
tZr- r\crZ(p r Zcpl \Z(p- Zr/ r- J

rZ'-v . / Z-n 1 f cX cos-</) — sin-<i f-f ens0sin 01
+ 2 — cos sin + ^ ^ - -- -

--r-
-^

\_er- vrcKp r c<p/ r c<p- r- J
dxdy

[Z-v . , 2 / Z-v 1 Zi-\ . (Z-v fr\cos-(;&]—^ sni-0 + cos sni + -,— + '' — —~
cr- r\erc(p r ccpj \c<p- cr/ r- J

dy-.

Thus finally the derivatives v'^'^. r,'^. i-J,'^ are the three brackets wliich are the

coefficients of dx-, 2 dxdy, dy-. The value of v^.'^. + rj,^ is as found before.

52. The condition /,'^=/',^,' Avhieli sul)sists in accordance with tlie

i'undaniental theorem of § 50 gives tJir ctiniJithin ilmt

M{.r, !/)dx + X{.r, ;/)(/;/ = 5^ <I.r + ^f^ ,1H = df
CX cy
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he the total differential of some fnnrtlon /{x, //). Jnfact

c cf cM cX _ c cf

Cij C.r Cij C.I' C.I' Cij

cM cX (<IM\ /'IX\
and — =^ or —- = —-• (2G)

cu c.r V'^yA \<l'>- Ju

The second form, where the variables which are constant during tlie

differentiation are explicitly indicated as subscri})ts, is more common in

Avorks on thermodynamics. It will be proved later that conversely if

this relation (2C)j holds, the expression Md.r + Xdi^/ is the total ditt'er-

ential of sonie function, and the nietliod of finding the function will

also be given (^^j 92, 124). In case Md.r -\- Xdij is the differential of

some function /'(./•, //) it is usually called an cxdrt dfferrnfia/.

The ap})lication of the condition for an exact differential may 1)e

made in conneetiou with a problem in thermodynamics. Let .S' and U
Ije tlie entropy and energy of a gas or vapor inclosed in a receptacle of

volume r and subjected to the pressure ji at the temperature 7'. The

fundamental equation of thermodynamics, connecting the differentials

of energy, entrojy, and volume, is

.!U=r,,S^j,.lr; and
('f)

=
-(;;^,)_ (27)

is the condition that dU be a total differential. Now, any two of the

five quantities U, S, r. T. p may l)e taken as indtqiendent v;iri;iblcs. In

(27) the choice is -S', r \ if the equation were solved for dS. the choice

woiild be U, r\ and /', .s' if solved for ///•. In each case thi' cross differ-

entiation to exjirt'ss the condition (20) would give rise to a relation

between the derivatives.

If J). T were desired as independent variables, the clianue of variable

should be made. The expressiun of the ennditinii is then

' ^0,-"Oi\\r {.)!.[''(^r)rK-rrl]}.
/'^'^\

,,. (^ (-V _ (-S /(Zi'\ <-c

^dp I r'^ irip
" ''

f- T(j>
~ cpcT ~ VlT \r ^' (pcT

'

^ 1'

where the differentiation (ju the left is made with p mnstant and that nn tlie rii:ht

with 7' cnnstant and where tlie .-ubsci'iiits liave been dniijped frnm the sreimil

derivatives and the usual notatinn adopted. l''.\erythiny cancels exce^jt two terms

whit'h uive
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C^^-m or i/^)=-(i''^\.
(28)

Xdpjr \dTJr. T\dp/r \dT/p ^ >

The importance of tlic tt'st for an exact differential lies not only in the relations

obtained between the derivatives as above, but also in the fact that in applied

mathematics a great many expressions are written as differentials which are not

the total differentials of any functions and which nnist be distinnuished from exact

differentials. For instance if dll denote the infinitesimal portion of heat added

to the i,^as or vapor above considered, the fundamental equation is expressed as

dll — dU + jidv. That is to say, the amount of heat added is e(jual to the increase

in the eneri^y plus the work done by the sas in expanding. Now dll is not the dif-

ferential of any function H{C, v) ; it is dS = dll/T which is the differential, and

this is one reason for introducing the entropy .S. Again if the forces A", Y act on a

particle, the irork done during the displacement through the arc f/.s = Vdx- + di/'-

is written dW = Xdx + Yd)/. It may happen that this is the total differential of

some function ; indeed, if

d]V=-dV{x,y). A'd.r + Ydy = -d V, A' = - — , 1' = - --

,

ex cy

where the negative sign is introduced in accordance with custom, the function V is

called the jjoientiiil energy of the particle. In general, however, there is no poten-

tial energy function T. and dW is not an exact differential
;
this is always true

when part of the work is due to forces of friction. A notation which should dis-

tinguish between exact differentials and those which are not exact is much more

needed than a notation to distinguish between partial and ordinary derivatives;

but there appears to he none.

Many of the ])liysical magnitudes of thermodynamics are expressed as deriva-

tives and such relations as (2(i) estaljlish relations between the magnitudes. Some
definitions :

specific lieat at constant volunu; i>

specific lieat at constant pressure i:-

latent heat of expansion i.-

coefficient of cubic expansion i.^

modulus of elasticit}' (isothermal) i.-

modulus of elasticity (adiabatic) i.-

53. A [lolyiiuniitil is stiid to 1)0 liomogcneous wlieii eacli of its terms

is (if tile same order wlicii all the vari;il)les are considered. A defini-

tion of homogeneity which includes this etise and is ap})lieable to more

general etises is : ^1 funftionfi.i', ij, z. •) af an// nuiiihrr of rarldhlc^ As'

railI'll Jiniiio'jcneovs if the fawtlnn /.S III itltljtlu'il hi/ SDliie jinirer Iif X ir/irii

all fJic mrinhJi's m-c m nltipJlril lij X: tind the power of \ which factors

--Q.-I(dS\

KdTjv

'^•=a=^(
'dS\

^. = ("1) =r( t)'XdvJT ^\di-/T

-Kill
iv =-.(!'),

\dvlr

-'-'(E-
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out is called the order of homogeneity of the function. In symbols the

condition for homogeneity of order n is

f{Xx,Xi/, Xz, ...) = X\f(x, y, z, .

.

.). (29)

Thus xe^ + '-^j -^ + tan-i-, . C29')
X z- z Va'- + /

ai'c liomogeneous functions of order 1, 0, — 1 respectively. To test a

function for homogeneity it is merely necessary to replace all the vari-

ables by A times the variables and see if A factors out completely. The
homogeneity may usually be seen without the test.

If the identity (29) be differentiated with respect to A, with x'=Xx, etc.,

(^ a? + -^ ^7' + ' ^ + )'^'^^''' ^^' ^•'-'
•) = ^^^""'/(^' yr^,-- •)•

A second differentiation with respect to A would give

Now if A be set equal to 1 in these equations, then cc' = cc and

x^~% + 2 xyM- + //%+2 xz ,-.^ + --. = n (n - 1 )/(,>, y, z, • • •)•

In words, these equations state that tlic sum of the partial derivatives

each multiplied l)y the variable with I'cspect to Avhich the differentia-

tion is performed is n times the function if the function is homogeneous

of order n ;
and that the sum of tlic second derivatives each multiplied

by the variables involved and by 1 or 2, according as the variable is

repeated or not, is n {n — 1) times the function. The general formula

ol)tained by differentiating any number of times Avith respect to A may
be ex})ress('(l symbolically in tlie convenient form

('/>.. + il^Kj + .--/>. + •
•)'/'= ?' (" - 1 )

• • • ('^ - / + !)/• (31)

This is known as EiiJcr's Fdniinl'i on homogeneous functions.

It is worth while nnlinii; tliat in ;i certiiin sense every e(iuati()n wliicli represents

a .treonietric <ir pliysical rehitinn is hoinoireneous. Por instance, in i^^eonietry tlie

magnitudes tliat arise may be lenirths. areas, vohimes. or angles. These ma,<;ni-

Uules are expressed as a number times a unit ; thus, v2 ft., .3 sq. yd., tt cu. ft.
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111 adding and subtracting, the terms nuist be like (piantities ; lengtlis added to

lengths, areas to areas, etc. The fundamental unit is taken as length. The units of

area, volume, and angle are derived therefrom. Thus the area of a rectangle or

the volume of a rectangular parallelepiped is

A = a ft. X h ft. = ab f t.'-^ = ah sq ft., V = a f t. x b ft. x c ft. = abc ft.^ = abc cu. ft.,

and the units sq. ft., cu. ft. are denoted as ft.-, ft.^ just as if the simple unit ft.

had been treated as a literal tjuantity and included in the nudtiplication. An area

or volume is therefore considered as a compound quantity consisting of a inimber

which gives its magnitude and a unit which gives its quality or dimensions. If L
denote length and [i] denote "of the dimensions of length," and if .similar nota-

tions be introduced for area and volume, the equations [^4] = [L]- and [F] = [L]"'

state that the dimensions of area are squares of length, and of volumes, cubes of

lengths. If it be recalled that for purposes of analysis an angle is mea.sured by the

ratio of the arc subtended to the radius of the circle, the dimensions of angle are

seen to be nil, as the definition involves the ratio of like magnitudes and must

therefore be n pure numJ)er.

When geometric facts are represented analytically, cither of two alternatives is

open : l'\ the ecjuations may be regarded as existing between mere numbers ; or

2°, as between actual magnitudes. Sometimes one method is preferable, sometimes

the other. Thus the equation x^ + y'-^ = r- of a circle may be interpreted as 1°, the

sum of the squares of the coordinates (numbers) is constant ; or 2'^, the sum of the

squares on the legs of a right triangle is equal to the square on the hypotemise

(Pythagorean Theorem). The second interpretation better sets forth the true

inwardness of the equation. Con.sider in like manner the parabola ?/- = ipx. Gen-

erally y and x are regarded as mere numbers, but they may ('(jually l)e looked

upon as lengths and then the statement is that the square upon the ordinate ecjuals

the rectangle Tipon the abscissa and the constant length 4p ; this may be inter-

preted into an actual construction for the jiarabola, because a sijuare equivalent

to a. rectangle may be constructed.

In the last interpretation the constant p was assigned the dimensions of length

so as to render the equation homogeneous in dimensions, with each term of the

dimensions of area or [L]-. It will be recalled, however, that in the delinition of

the parabola, the quantity p actually has the dimensions of length, being half the

distance from the fixed ]3oint to the fixed line (focus and directrix). This is merely

another corroboration of the initial statement that the ecjuations which actually

arise in considering geometric prolilems are homogeneous in their dimen.sions, and

nntst be so for the reason that in stating the first e(piation like magnitudes nuist

be compared with like magnitudes.

The question of dimensions may be carried along through such processes as

differentiation and integration. For let y have the dimensions [y] and x the dimen-

.sions [x]. Then Ay, the difference of two ?/"s, must still have the dimensions [?/]

and Ax the dimen.sions [x]. The quotient Ay/Ax then has the dimensions [2/]/[x].

For example the relations for area and for volume of revolution.

., . [dAl [.I] [dVl [V] ^^^.

dx ' '
(7x

and the dimensions of the left-hand side check with those of the right-hand side.

As integration is the limit of a sum, the dimensions of an integral are the product
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of the dimensions of the function to be inte.irrated and of the differential dx.

Thus if

r "^ dx 1 , X=
I

=: - tan-i - + c
Jo a- + X- a a

y . .,^

were an integral arising in actual practice, the very fact that a'^ and x'^ are added

would show that they nuist have the same dimensions. If the dimensions of x

be [i], then

and this checks with tlie dimensions on the right which are [i]~S since angle has

no dimeiisions. As a rule, the theory of dimensions is neglected in x^ire mathe-

matics : l)ut it can nevertheless be made excei'ilingh' useful and instructive.

In mechanics the fund(i)Hcnt<il iniit^ are length, mass, and time ; and are denoted

by [i]. [-V]. [7']. The fullowing table contains some derived units:

[LI
, . [L] ^ r-virLi

velocity -— , acceleration-

—

-, force —- —^

,

, ,
. [ii- , . [M] [-virLi

areal velocitv ^—~, density -—-, momentum'

—

—^,
^ [T] [L]3 IT]

, . 1 r-vuLi- i^nm-anyular velocity , moment -—^-^——, cnerijy '

—

—^—^.
- [T] [T]-^

'

[TJ^

With the aid of a table like this it is easy to convert magnitudes in one set of

units as ft., lb., sec, to another system, .'^ay cm., gm.. sec. All tliat is necessary is

to substitute for each individual unit its value in the new system. Thus

q = 321 ^^ , 1 ft. = 30.48 cm.. ,/ ^ 32' x 30.48
—"' = 080]- -^^^.

sec-
'

sec- ' sec-

EXERCISES

1. Obtain the derivatives/",.. /,',',.
/,J^,, J]'/,^ and verify/,"^ =/,',',

{a) sin-i •'

,

(/J) Ing -^^i^^'

,

[y)
1'i] + ^ (,r//).

X xy \xl

2. Compute c-v/ci/- in polar cuilrdinates by the straightfm-ward method.

3. Show that '(- —- = '-'- if v =/(x + at) + 4>{x — (d).
cx- ct'^

4. Show that tliis eijuation is unchanged in form Ijy the transformation :

;;^^ + 2 x//- , - + 2 (//
- ?/•') _- + x-y-f = ; u = xy. v = 1/y.

cx- (X cy

5. In polar coordinates z = r cosi9. x — r sin ft cos(^, // -= r sin ft sin
(f>

in space

fX- (y- (y- i-l(r\ cr! s\\\-ft((f>- >h\ft(ft\ (ft'\

The work of transformation may be shortened by substituting successively

X = ;'j C()S (/>. // = r, sin </j. and ,~ = /• cos 0. z', — ;• sin 0.

6. T>et X. )/. z. t be four imlejiendent \;!ria1iles and ./• — reos«/i. y — )-sin0, z -

tlie e(|nations for transfoniiing ,/•. y. x to eylindriral eorniiinaies. Let
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cxcz c!/cz C.C- cij- cycl cxct

show Z = , X cos + i sill = , V sill — (r cos = ^

,

/• cr r cz r ct

where ;— 'V = U/(>'- (' 'i" iniimrtance fnr the Hertz osciUator.) Take cf/ c(p = 0.

7. ^Vpply the test fur an exact differential t(» eacii of the fnllowjng. and write

by inspectinn the functions correspondini;- to the exact differentials:

{a) Sxdx + y-dy, (p) Zxydx + x^dy. (7) x-ydx + y-dy,

1 5
, xdx + ydy xdx - ydy ydx - xdy

X- + y- X' + y^ X- + y-

{n) (4 x" + 8 x-y + r ) f/x + (x-^ + 2 xy + 3 ;/') %. {9) x-y- {dx + dy).

8. Express the conditions that P{x. y. z)dx + ^^M.'". y. z)dy + R(x. y. z)dz be

an exact differential dF{x. y. z). Apph' these Cdiiditions to the differentials :

(a) 3 x-y-zdx + 2 xhjzdy + x^y-dz, (/i) {y + z) dx + {x + z) dy + (x + y) dz.

9. (>btaiu (-— I = ( — I and (
—

1 = I-— frniu (•17) with proper variables.
UrJ,. Uv/t WN/;> vO>^

10. If three functions (called thermodynamic potentials) l)e defined as

^ = r-Ts. x = i' + p^-- ^^r-rs + pv^

show df = — Sd T — pdf, dx = Tds + vdp. r/j- = — Sd T + vdp,

and express the conditions that df. dx. d^ be exact. Compare with Ex. 0.

11. State in words the definitions corresponding to the defining formulas, p. 107.

12. If the sum (Mdx + Xdy) + {Pdx + (^dy) of two differentials is exact and one

of the differentials is exact, the other is. Prove this.

13. Apply Euler"s Formula (31), for the simple case k = 1, to the three func-

tions (29') and verify the formula. Apply it for k = 2 to the lirst function.

14. A'erify the hoiiiogeiieit}'' of these functions and determine their order :

(a) y-/x + X (log X - log y), {(3)

'''"'"

, (7)
'^^~

AX- + y- ^« + f^y + cz

( 5 ) xy^ + z\. {e)sG. cot- 1 ^^ (n ^r--^^

'

z VX -f V y

15. State the dimensions of moment <if inertia ami convert a unit of moinent of

inei'tia in ft. -Hi. into its equivalent in cin.-gm.

16. Diseuss for dimensions Peirce's formulas Nos. 03. 124-125. 220. .300.

17. ( out 1 line Ex. 1 (. p. 101. to show - - = — ami = inc 1

dt c'li a/i dt ci'n cq; oj,

18. If /',- = — in Ex. 17. p. 101. show without analvsis that 2T = 7,;^, -f- '}.,/'.,.

If T' denote T' = 7'. wliere 7" is consiilcred as a function of ji^. p., while T is con-

sidered as a function of q^. I'j.,. prove from 7" = 'JiPi + <'l-^P->
— "^ fli'it

f r _ . '^L- _IL
cpi cq, tqi
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19. If (Xj, ?/,) and (x,^, t/.,) are the coordinates of two moving particles and

d'^x, _,, d-y, ,^ d-x., ^, d-y„

' df^ ' ^ (Zi2
^' - dfi ^ - di2

2

are the equations of inoti<^n, and if Xj, y^, x.,, y^ are expressible as

in terms of three independent variables r/^, q.-,, q,^, show that

fT/j Cf/i cq^ cq^ dtcq^ cq^

where T = I [m^v^ + m.^v.^) = T{q^, q„, q^, q^, q.,, q„) and is homogeneous of the

second degree in r/j, 7.,, f/3. The work may be carried on as a generalization of

Ex. 17, p. 101, and Ivx. 17 above. It may be further extended to any lunnber of

particles whose positions in space depend on a number of variables q.

20. In Ex. 19 if Pi = — , generalize Ex. 18 to obtain
cqi

'ii =— ' — = ---' Q^= -^ +—

•

cPi cqi cqi dt cq^

d cT cT , , dpi cT . , ., -rThe equations Q,- = and % = -^—| are respectively the Lagran-
dt a'li an dt cqi

gian and Hainiltonian ecpiations of motion.

21. If rr' — k- and (p' = (p andf'(>'', 0') = v{r, 0), show

c~v' ] cv' 1 c-v' f^ /cH 1 cv 1 (-V

T^ + "--; + ^ ^T7 = ^^ + " ^ + ^ - :,

cr - r cr r - ccp - r- \cr- ?• cr r- c (p-

22. If /t' = k~, (p' — (p,
6' = 6, and i-'(K. 4,'. 0') — - v{i\ <p, 6), show that the

/'

expression of Ex. o in the primed letters is kr-/r'''' of its value for the uiiprimed

letters. (Useful in § 1U8.)

23. Uz'-^xJ"\^i{'i\, shew x-5'^+2x///^+;/2f^ = 0.
cxcy cy-

24. Make the indicated cliani,^es of varialile :

, . c"V c"V „ /('-V c"V\ ..
(a) f-

— = c- - " I
\

) II X = e" cos v. y = e" sm v,

cx~ cy~ \cu- cv-

/

cu- cv- \cx- cy-/l\cu/ \ft7J
F T r rh 7 f rrfi

x=f(u,v), y = <p{i(,v),
cu cv cv cu

25. For an orthogonal transf(n-ination (Ex. 10 (f), y). 100)

c-v r-v (-V c-v f'-r (-V
r--, + . ,+ . ,= . 7;+ ;; + —;7-
ex- ( y- (Z- cx - ((/- (Z-

54. Taylor's Formula and applications. The dcvclojnnoiit ()l\f(.<\ //)

is found, as was tlu' Tli('()r(Mn of tlu.' Mean, from the relation (p. Uoj
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A/= $ (1) - 4> (0) if $ (t) = f(a + f/i, h + tk).

If ^(t) be expanded hy ^Maclaiiriir's Formula to n terms,

The ex})ressions for <J>'(/) and $'(0) may be found as folloAvs by (10) :

<^'(0 = A/:: + ¥;„ *'(0) = [a/:: + ^:/;;]--

then ci,"(;^) = /^ (/,/;;; + /.q + a- (///:; + /;C)

^'('XO = {hir,. + /^ /),)'>; <f^'>(0) = lihD,. + /./),)'/]._„.

And f(,, + //, // + /,•) -/(r/, //) = A/= $(1) -$(0) = (A/)„ + l-D,),f\n, h)

+ ^ (/' A„. + /.-AjyC", /') + • • • +
^;^3iyi i^'^^'- + /•^^.)"~V'(", ^0

+ ^ {hD^, + h-D,;)"f{" + ^//, /' + ^A-). (32)

In this expansion, the increments A and /.• may be replaced, if de-

sired, by X — a and // — !> and then /(,/, //) will be expressed in terms

of its value and the values of its derivatives at (a, h) in a manner

entirely analogous to the case of a single variable. In particular if the

point (ir, h) about Avhich the development takes place be (0, 0) the

development becomes ]Maclaurin's Formula for /(.r, //).

f(^; V) =/(o, 0) + {..D, + z/A,)/\o, 0) + ^ (,.i;, + >iii,ff{0, 0) + . .

.

+ ^^i-^.,C'' Z^.,.+ ///>,)" "^(0, 0) + ^ {.rir.+ yD,y'f{6.r, On). (32')

Whether in j\[aclaurin"s or Taylor's I'^oi'nuda, the successive terms are

homogeneous polynomials of the 1st, 2d, • • , (/?- — l)st order in ,/, y or

in X — n, y — h. The formulas are uni(]ue as in § 32.

Suppose V 1 — x- — ij~ is to be developed about (0, 0). The successive deriva-

tives are

./:; = ~7=^^=' /; = -^^^^=. .ceo, o) = o, /,;(o. n) = o,

Vl — X- — y~ A 1 — X- — ;/-

•f .r.r , _ s ' ' .1-1/ _ X ' •''/

,„ _ \(\ — //-)x ,„ _ ?/' - 2 ,c//- - y

{\-x?--y-'-Y (1 -.C- -//-)-

and V l - .f- - y- = 1 -h (0 .r + //) + ',(- •*- + xy - ;/-) + ;i (0 ,/•• + ...) + ...,

"I" V 1 — X- — ;/- = 1 — ;, (x- -1- ?/-) -f- terius of fourth order -(-•••.

In tiiis case the expansion may be found by trcatinii; x- -|- //- as a sinule term and

expanding by the binomial theorem. The result would be
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[1 - {X- + 7/2)] i ^l-l(x- + r) - I
{x^ + 2,/:-//- + >/) - ^\ {X- + i/'f .

That the development thus obtaineil is iilentical witli the Maehiiirin developineiit

tliat might be had by the method above, follows from the uni(iueiiess of the devel-

opment. Some such short cut is usually available.

55. The condition that a function ;-; = /'(,/, //) have a niininnnii or

niaxiuiuni at (", f>) is tliat A/'> or A/'< for all values of // = A,/'

and k = A// Avhicli are sufticiently small. From cither geometrical or

analytic considerations it is seen that if the surface ; =f(x, jf) lias a

minimum or maximum at (n, />). the curves in which the ])lanes // = //

and .r = a cut the surface have minima or nuixima at ,/ = >i and // = />

respectively. Hence the partial derivatives/',' and
/'J

must l)oth vanisli

at ((I, li), provided, of course, that exceptions like those mentioned on

page 7 be made. The two simultaneous e(|uations

f: = Q, /:; = o, (:w)

corresponding to /''(,'•) = in the case of a function of a. single varia-

ble, may then be solved to iind the })()sitions (./', //) of the minima

and maxima. Frequently the geometric or ]»hysical intcrpi'etatioii of

,'. =_/'(',/, //) or some special device will then determine whether there

is a maximum or a minimum or neither at each of these ])oints.

For example let it be required tn find the niaxinium rectangular parallelepiped

which has three faces in the cdrirdinate planes and one vertex in the plane

x/a -f y/h -\- z/c — 1. The volume is

y = xiiz = cxii 1 1 —
\ II I.

cV c r, fT r r
--~= — 2'- XII — -

If- + f// = - = — 2 - xy x- -1- ex = 0.
ex a b ly b n

Tlie solution of tliese eijuations is x = I n. y = 1 b. The corresp(iiiding z is '. / and

the volume U is therefore (ibr/U or -, of the volume cut off from the lirst octant by

the i)lane. It is evident that this solution is a maximum. There are other solutions

of I'j' = Uj = which have been discarded because tliej' give V = 0.

The conditions/',' =/'„' = nitty be esttiblishcd tmtdytically. For

A/=(/:; + ^,)A,'' + (/; + t,)A//.

Now ;is ^j, ^, are infinitesimals, the signs of tlio ]i;ircnthcscs ;irc deter-

mined ly the signs of/',',/j,' unless these derivatives vanish; ;ind hence

unless/',' = 0, the sign of A/' for A.'' sutfieiently small and ]M)siti\-e and

A// = would be opposite to the sign of Af' for A.'' sutfieiently small ;nid

negative and A// = 0. Tlierefore /'//• -/ in'nn nmm nr ni'i.rim n m j][ = :

(1)1(1 in ///v; iiKiiiiicr _/'^' = 0. Considerations like these will ser\'e to

esttiblish a criteri(Mi iV)r distiiio'tiishiiig' lietwecn maxima tiiid niininia
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analogous to the criterion furnished by /"(.'•) in the case of one vari-

able. For if /j' =f'^ = 0, then

by Taylor's Formula to two terms. Xow if the second derivatives are

continuous functions of (.', //) in the neighborhood of {<i, h), each deriv-

ative at {(( -\- 6Ji, h + 61: ) nray be written as its value at (ji, h) plus an

infinitesimal. Hence

Now the sign of \f for sufficiently small values of //, /.• must bo the

same as the sign of the first jjarenthesis provided that parenthesis does

not vanish. Hence if the quantity

., , ,,/ ,. . -, .„ ,1 ./, > for everv ('/^ /.•), ^ minimum
^ " ^ Ji(

' > ^ for every (A, /.), a maximum.

As the derivatives are taken at the point {a, b), they have certain constant

vahies, say ^1, B, C. The qnestion of distinguishing between minima and maxima
tlierefore reduces to the discussion of the possible signs of a quadndk fdnii

Ah- + 2 Bhk + Ck- for different values of h and k. The examples

k-2 + f-^, - /(^ - k^, /(2 _ A-^ ± {h - A-)--^

show that a (piadratic form may be : eitlier P, positive fur every {//. k) except (0, 0)

;

or 2^, negative for every (li. k) except (0. 0); or ,S^, i)o.sitive for sume values (/(, k)

and negative for otliers and zero for others ; or linally 4^, zero for values other than

(0. 0), but either never negative or never positive. Moreover, the f(jur possiljilities

here mentioned are the only cases conceivable except .j\ that A = B — C = and

the form always is 0. In the first case the form is called a definite positke form, in

the .second a definite negidive form, in the third an indefinite form, and in the fourth

and fifth a singular form. The tirst case asstires a mininmm, the .second a maxi-

mum, the third neither a minimum nor a maxinmm (sometimes called a minimax)
;

but the case of a singular form leaves the question entirely undecided just as the

condition /"{/) = did.

The conditions which distinguish between the different possibilities may be ex-

pressed in terms of tlie coefficients .1, 7>, C.

I'pos. def., ;;-'<.IC. A.OQ; S'indef., B- > AC
2^neg. def., 11- < AC. A.C<0; 4^ sing., B- = AC.

The conditions for distinguishing between maxima and minima are :

/", = "1 „ , r /''.. /"' > minimum
;

./,/ = '-^

J \fr,-J,i.i ^ "^ maxnuum
;

It may be noted that in applying these conditions to the case of a definite form it

is sufficient to show that ei

sarilv base the same sign.
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EXERCISES

1. "Write at length, without syiiil)olic shortening, the expansion of /(x, ?/) by

Taylor's Formula to and including the terms of the third order in x — a, y — b.

"Write the formula also with the terms of the tliird order as the remainder.

2. "Write by analogy the proper form of Taylor's Formula for/(x, y. z) and

prove it. Indicate the result for any mimber of variables.

3. Obtain the quadratic and lower terms in the development

(rt) of xy- + sin xij at (1, I ir) and (/3) of tan-i {y/x) at (1. 1).

4. A rectangular parallelepiped with one vertex at the origin and three faces

in tile coordinate planes has the opposite vertex upon the ellipsoid

^-/"- + yV'^- + --/'•- =1.

Find the maximum volume.

5. Find the point within a triangle such that«the sum of the squares of its

distances to tlie vertices shall be a mininmm. Note that tlie point is the intersec-

tion of the medians. Is it obvious that a mininmm and not a maxinunn is present ?

6. A floating anchorage is to be made with a cylindrical body and equal coni-

cal ends. Find the dimensions tliat make the surface least for a given volume.

7. A cylindrical tent has a conical roof. Find the best dimensions.

8. Apph" the test Ijy second derivatives to the problem in the text and to any

of Exs. 4-7. Discuss for maxima or minima the following functions :

{a) x-y + xy- — x, (/3) x" + y^ - i'-^- -
\
(^- + y-),

(7) X- + y- + X + y, (5) J y- - xy- + x-y - x,

(
e

) x^ + y-' - xy + 21, (
j") .'•"' -\- y^ - 2 x- + Axy-± y^.

9. State the conditions on the first derivatives for a maxinmm or minimum of

function of three or any luunber of variables. Prove in tlie case of three variables.

10. \ wall tent with rectangular Ijody and gal>le roof is to be so constructerl as

to use tlie least amount of tenting for a given volume. Find tlie dimensions.

11. Given anj' number of masses m^. in.,. . m,, situated at (.Cj, y^). (x.,. ?/.,), • •,

(•C«. y?,)- Show that the point about whicli their moment of inertia is least is their

center of gravity. If the points were [x^, //j, 2j), • • in si)ace, what point would

make ^inr- a minimum '.'

12. A test for maximum or minimum analogous to that of Ex. 27, }). 10, maj'

be given for a function /(j,-. y) of two varialiles, namely : If a function is positive

all over a region and vanishes upon tlie contour of the region, it must have a max-
inmm within tlie region at tlie jxiint for wliich ./'_' =./'„' = 0. If a function is Unite

all over a region and becomes intinite over tlie contour of tlie region, it must have

a minimum within the region at the point for which /^ =/J = 0. These tests are

subject to the proviso tliat/,' =,/'J
= has only a single solution. Comment on the

test and ai)ply it to exercises above.

13. If '(. I). I', r arc tiic sides of a given triangle and the radius of tlie inscrilied

circle, tlie i>yraiiiid of altitude // constructed on the triani;ie as base will have its

maximum surface wlieii the surfaci' is ', (a + 6 + cj^'r- + h'-.



CHAPTER V

PARTIAL DIFFERENTIATION; IMPLICIT FUNCTIONS

56. The simplest case ; F(Xf y) = 0. The total differential

dF= F[jl.r + F/h/ = dO =

indicates
dx F' '/// f:

(1)

F(x,y)=0

as the derivative of y by a*, or of x by y, where y is defined as a function

of .r, or X as a function of y, by the relation F{.r, y/) = ; and this method

of obtaining a derivative of an imj^liclt function without solving expli-

citly for the function has probably been familiar long before the notion

of a partial derivative was obtained. The relation F(x, y) = is pictured

as a curve, and the function y = 4*(x), whicli would be obtained by solu-

tion, is considered as multiple valued or as restricted to some definite

Ijortion or branch of the curve F(x, y) = 0. If the results (1) are to

be applied to find the derivative at some i)oint

(x^^, yj of the curve F(x, y) = 0, it is necessary

that at that point the denominator F^ or Fj sliould

not vanish.

These i)ictorial and somewliat vague notions

may be stated precisely as a tlicorcm susce})til)le

of proof, namely : Let ./ be any real value ui x

such that 1°, the equation F{x^^, v) = ^ l^'i^ ^ i'*'*'! solution y^ ;
and 2°, the

function F{.i-, y) regarded as a function of two independent variables

(./', ?/) is continuous and has C(jntinuous first })artial derivatives F,', F',^ in

the neighborhood of {x^^, y^y^ and ?°, \\w. derivative F^'C'Vu .Vo) ^ ^ <\-<d^^

not vanish for (.z'^,
y^) ; tlien F(./', //) = may be solved (theoretically)

as y=cf)(x') in the vicinity of x = x^^ and in such a manner that

y .
= <^ (.'•-), that (f>(x) is continuous in ./, and that cji(x~) has a derivative

(f>'(x) = — F',./F'^ ; and tlie solution is unique. This is the fundamental

theorem on implicit functions for the sinq)le case, and the ])roof follows.

By the conditions on F^', F' tlie Theorem of the Mean is applicable. Hence

F {X. y)-F (/„ . 2/„) = F{x,y) = (h F^ + kP;),^ + ,,, ,,„ .. g,. (2)

Furthermore, in any S(iuare \h\<8, |A-]<5 surroundimr (./•„.?/„) and sufficiently

small, the continuity of /"' insure: [F,'|<3fan(l the continuity of Fj taken with

117
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the fact tliat F^j{x^,, 2/^) t^ insures |Fj|>»i. Consider the riiji.i^e of x as furthei

restricted to values sucli that | x — x^
|
< ?/i5/3/ if )n<M. Now consider tlie valuM

of F(x, y) for any x in tlie permissible interval

and for y = y^ + S or y = y^ — d. As
j

kF^ \>iiid

but |(x — Xy)F^.|<7H5, it follows from (2) that

F{x, Vq + 5) has the si,!i;n of 5F^ and F{x, y^^ — 8)

has the sign of — 5F^ ; and as the sign of F^^ does

not change, F{x, y^^ + 5) and F{x, 2/^ — 5) have

opposite signs. Hence by Ex. 10, p. 45, there is

one and oidy one value of y between 2/y — 5 and

?/„ + 5 such that F{x, y) — 0. Tlius for each x in

tile interval there is one and only one y such

tliat F{x, y) = 0. The eijuation F(x, ?/) = has a

unique solution near (.r,„ ?/,,). Let y — (p(x) denote tiie solution. The solution is

continuous at x = Xy because \y — y^^\<S. If (x, y) are restricted to values y = <^< (x)

su<'h that F(x, y) = 0, etjuation (2) gives at once

k _y- ?/n _ A^/ _ _ K{-^ + Gh, y + 6^-^ d;/ _ F'. (x,-,. ?/„)

it
~

X - X ~~^x~ F'^{x^ Oh. y + 'eJ) ' dx'" ^(x„. .vj

As 7^^,, F,^ are continuous and F,^ ^ 0, tlie fraction k/]i approaches a limit and the

derivative <^'(Xy) exists and is given l)y (1). The same reasoning would apply to

any point x in the interval. Thi' theorem is completely pro\cd. It may be added

that the expression for 4>'{x) is such as to show that 0'(x) itself is continuous.

The valttes of liiglicr derivatives of iin])licit functions are obtainable

l»v sticeessive total differentiation as

K + f;>/' = 0,

f;.: + 2 7-::;//' + fZ;/' + f;,;/' = 0, (3)

etc. It is notewortliy that tliese successive eijuations may he solved for

tlie derivative of liiyhest order hy dividin;^- ]>y 7"J which luis heeu assumed

not t(j vanish. Tlie question of vvlicther the function // = <^(..'') defined

iuqdicitly hy Fi'.r^ if) = has deri\-atives of order hi,L;her tlian tlie tirst

may l)e seen hy these e(|uations to de])end on whether P^ix, //) has

liiLi'lun' ])artial derivatives which are continuous in (./•, //).

57. To hnd the hkli-'hiki (nul iiiiniiiKi of y = ^ i^.r). tliat is, to find the

|ioints wliere the tan,L;-ent to F(.'', //) = is jiarallel to the .c-axis, uliserve

that at such jioints //' = 0. Etjuations (;>) gi\'e

F 0, f;:... + Fy = 0. (1)

Hence always under tlie assTim];)tion that Fj -^ 0. fliri'c ari- unixhiiii ni

fill' infrrsrrflniis of F = "/."/ F' = if 1-"/^ (IU<I ]f^ Imrr fin' snuir s'i'jn,

'tiiil iitin'niKi itf fill- iiifrrsrcfidiis fir irh'icli /•','. II ml F[^ Imrr njijuisltt: til'jns ;

the case F''.~ still remains undecided.
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For example if F{x. y) = x^ + y^ — Saxy = 0, the derivatives are

dij x~ — ay
3 (x2 - ay) + 3 {y'^ - ax) y' = 0,

6x-6ay' +6 yy''^ + 3 (y^ - ax) y" = 0,

dx y- — ax

d-y 2 a'^xy

dx- {y~ — ax)'^

To find the maxima or minima of ?/ as a function of x, solve

F; = = j- - «?/, F = = x3 + ?/3 - 3 axy, F',^ yt 0.

The real solutions of F; = and F= are (0, 0) and (j^2a. J/4«) of which the

first must be discarded because F^'(0, 0) = 0. At (V2«, v-4a) tlie derivatives

F,^ and F,''. are positive ; and the point is a maximum. The curve F= is the

folium of Descartes.

The role of the variables a- and y may l)e interchanged if F^. 4^ and

the equation F{j', //) = may be solved for ./• = ^i'.i)-, the functions ^
and \\i being inverse. In this way the vertical tangents to the cur\'e

F = may Ije discussed. For the ])oiiits of F = at which botli F,' =
and Fj = 0, the equation cannot be solved in the sense here defined.

Such points are called sinrjuhir polnfa of the curve. Tlie (questions of

the singular points of F = and of maxima, minima, or minimax (§ o7))

of the surface .-.- = -?"(•'', y) are related. For if F,', = F^ = 0, tlie surface

has a tangent }dane parallel to z = 0, and if the condition ,- = F = is

also satisfied, the surface is tangent to the ./-//-plane. Now if : = F(.r. //)

has a maxinuim or minimum at its point of tangency with x = 0, tlie

surface lies entirely on one side of the plane and the point of tangency

is an isolated })oint of F(.i-, ij) = ; whereas if the surface has a mini-

max it cuts througli the plane z = and the point of tangency is not

an isolated ])oint of Fix, if) = 0. The shape of the curve F= in the

neighborhood of a singular i)oint is discussed by developing F(,/-,
//)

about that point by Taylor's Formula.

For example, consider the curve F(x. y) = xJ^ + y^ — J^'y' — l W~ + ?/'") = and

the surface z = F(x, y). The ci:)inmon real solutinns of

F; = iix^-2xy^-x = 0. f;^ = S y- - 2x^y - y = 0, F{x,y) =

are the singular points. The real solutions of F.^. = 0. F,^' = are (0. 0). (1. 1),

(1, I) and of these the first two satisfy F{x. y) — but the last d(»es not. The

singular points of the curve are therefore (0. 0) and (1. 1). The test (34) of g 55

.shows that (0. 0) is a maximum for z = F{x. y) and hence an isolated point of

F(x. y) = 0. The test also shows that (1. 1) is a minimax. To discuss the curve

F{x. y) = near (1, 1) apply Taylor's Formula.

= F(x, y) = I (3 h- - 8 hk + 3 k-) + | (0 h"^ - 12 h-k - 12 hk- + C }c^) + remainder

:= I (3 COS- 0—8 sin cp cos -f 3 sin- 0)

-j- /• (cos-' — 2 ci_)s- sin — 2 cos sin- -f sin^ 0) -f • • •

.



120 DIFFERE]^TIAL CALCULUS

if polar coordinates h = rcos<^, k = r sin be introduced at (1, 1) and r^ be can-

celed. Now for very small values of r, the eciuation can be satisfied only when
the first parenthesis is very small. Hence the solutions of

3 - 4sin 2 = 0, sin 2 = |, or =: 24'" \1V, (i-P 42^',

and + 77, are the directions of the tan<;-ents to -F(.r, //)= 0. The equation F = is

= (U — 2 sin 2 0) + r{c()>^4> + sin0)(1 — 1^ sin 2 0)

if only the first two terms are kept, and this will serve to sketch F{x, y) = for

very sm-.U value,', of r, that is, for very near to the tangent directions.

58. It is hnj)ortiint to obtain conditions for tlie niaxiinuin or mininnim

of a function z =f(^.i', y) where tlie variables ./, ;j are connec'ted by a

relation -/''('', .'/) = so tliat z really becomes a function of x aloiu; or //

alone. For it is not always possible, and fre(|uently it is inconvenient,

to solve F(:r, ?/) = for either variable and thus eliminate that variable

from z ^ /(,!-, y) by substitution. AVhen the \'ariables x, y in -: =f(x, y)

are thus connected, the minimum or maximum is called a ((insfrdbird

III Inlin II III or iiKixim inn : when there is no e(juati(m F(.i-, y) = between

them the juininium or maximum is called free if any designation is

needed.* The conditions art; ol)tained l)y dilt'erentiating -.' =f(x, y)

and F{x,if)= totally Avitli respet't to ./'. Thus

^ _ £/' 9^' ['H _ ^
dx Cx Cij dx

and Iffl-- 2^-^=0, :^,5 0, ' V=% (5)
CX cy cy cx dx' ^ ^

Avliere the first e(|nation ai'ises from tlie two above l)y eliminating (fy/dx

and tlu! second is added to insnre a nnnimum or maximum, are tlie con-

ditions desired. Note that all singular points of F(x, y) = satisfy tlie

fii'st condition ithMitically, but that tlie jirocess by means of which it

Avas obtained excludes such ])()ints, and that the rule cannot be exju'cted

to a})pl\' to tlieni.

Another method of ti'oating the problem of constrained maxima and

minima is to inti-oduce c iinf/fl/dirr and form the function

r: = <i>{.r. y) =f(x, y) -j- \F{x, y), X a niulti[ilier. (»>)

Now if this function :: is to hav(^ a free; maximum or minimum, then

K =/', + ^f; = 0, <i>;, =,/;; + af; = o. (7)

These two e([uatioiis takini with 7'' = constitute a set of three fi'oui

wliich tlie tlii'ce values ;/,
//, A niay lie obtained by solution. Note that

•The nil ji'cti\i' relative '
is sdinetiiiies iiseil fur eiiiistraineil. ami " absnliite "' I'nr

free: hnt file term "alisdlute" is best kept foi- the greatest of tiie inaxiiiia m- least nf

tile iiiiiiiina, and tlie term " relatixe " lor the other maxima and minima.

r/0 cF cF '^!/
:= — + =. 0,

dx cx
'(^'J

dx

d-z
s=o, F :^ 0,

dx^
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A. cannot be obtained from (7) if both F',. and F'^^ vanish; and hence this

nietliod also rejects the sing-uhir points. That this method really deter-

mines the constrained maxima and minima of /'(./, //) subject to tlu;

constraint F{x, //) = is seen from the fact that if A. be eliminated from

(7) tlie condition _/',' F,^ —f'^F',. = of (o) is obtained. The new method

is therefore identic^al with the former, and its introduction is more a

matter of convenience than necessity. It is possible to show directly

tliat the new metliod gives thc^ constrained maxima and minima. Por

the conditions (7) are those of a free exti'cme for the function <!>(,/•,//)

which de])ends on two inde])en(lent varial)les (./, //). >«'o\v if the e(|ua-

tions (7) l)e solved for (,r, //), it ap})ears that the position of the maxinuuu

or minimum will be expressed in terms of X as a ]);irameter and that

conse(piently tlu' ])oint (.''(A.), //(A)) cannot in general lie on the curvi;

^'^ {'') //) = Oj ^'^d. if X be so detei'mined that the point shall lie on tliis

curve, the funtdjon $(.'•, //) has a free extreme at a point for which

F ~ and hence in particular must have a constrained extreme foi' the

]iarticular values for Avhich F(x, if) = 0. In speaking of (7) as the con-

ditions for an extreme, the conditicMis wliich shoidd be imposed on

tlie secoiul di'rivative have been disregarded.

Yor example, suppose the iiiaxiuiuin I'adius vt'ctor from the oi'ighi to the folium

of Descartes Avere desired. Tlu; problem is to reuder/(,f, y) = x- -f- y- maxiuuim

subject to the condition F{x^ y) = x'' -\- if' — 3 (txij = 0. Hence

2 X -1- o X (/' — iry) = 0, 2 // -H ;} X (//- — ((,/) = 0, x"' -f-
//' — 8 <txij =

or 2 .r • 3 (//- — ax) — 2 ;/ 'P, (x- — iiy) — 0, x'' + y"' — 3 axy =

are the conditions in thi' two cases. These (_'(iuations may be solved for (0, 0),

(1 ^ (I, ^l ((), and sonu' ima.ninary values. The value (0, 0) is singular and X cannot

be determined, but the })oint is e\idently a mininnuu of i'- -f ?/- by inspection. The
point (H ", 1^ <() ,ij,ives 'K = — 11 a. 'I'hat the point is a (relative consti'ained) maxi-

nuun of X- + v/- is also seen by inspection. 'J'here is Jio need to examine d-f. In

most practical problems the exaniiualion of the conditions of the second order

may be waived. 'I'liis example is one which may be treated in jiolar c(>ru-dinales

by the oi'dinary methods; but it is iKiteworthy that if it could not l)e treated that

Vvay. Ilie mt'thod of solution by eliminatiuL;- one of the variables by solvinj;- the

cubic 7''(.'', y) = would be una\;iilablc and the methods of constrained luaxima

woulil be re(piired.

EXERCISES

1. V>\ total differentiation and division obtain dy/dx in these cases. Do not

substitute in (1). but use the method by which it was derived.

{a) ((X- + 2 !ixy + cy- — 1 =; 0, (/i) /' 4- y* = 4 d-xy, (7) (cos/)" — (sin ?/)•'• - 0,

(0) ('- + .'/-')- = "-('-—//-), (e) <:+ c" = 2 xy, (f) ,r- -//"- = tau-i .(//.

2. obtain the second derivative d-y/dx- in Kx. 1 (a). (^). (e), (j") 3>y differcn-

tiatiu';- t'.ie value of dy/dx ol)taincd above, t'onniare with use of (:!).
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3. Prove^ = - ^'^'"^^-^ ~ ^ ^''^'1/K, + ^'x'-^yy

y

4. Yhu\ the radius of curvature of these curves :

(tr) j-I + y'- = rf J, 7? = 3 (a.r.y)3, (/?) j^ + i/^ =ai, R = 2 V{x + yf/a,

(7) b-x- + a-y- = «-6-, (5) xy- - u-{<t — x), (e) (ax)- + {hy)'i = 1.

5. Find y', y'\ y'" in case x^ + 2/^ — 3 nxy = 0.

6. ICxtcnd equations (3) to (il)taiii //'" and reduce by Ex. 3.

7. Find tangents parallel to the j--axis for (/- + y'-)- = 2 «- (/- — y-).

8. Find tangents i)arallel to the ^-axis for (,r- + ij- -\- ax)'- = ((- {x- + y-).

9. If //- <ac in ax- + 2lixy + r//- +/,/• + f/// + // = 0. circumscribe about the

curve a rectangle parallel to the axes. Check algebraically.

10. Sketch x" + y" = x-y- + \
(.r- + y-) near the singular point (1, 1).

11. Find the singular points and discuss the curves near them :

(a) r^ + //• = 3 Hxy, (/3) {x- + y-)- = 2 «- (.c- - //-),

(7) .f^ + y ' = 2 (.f - ?/)^ (5 )
y'> + 2 .f ;/- = ^•- + y*.

12. Make these functions maxima or nnnima subject to the given conditions.

Discuss the work l)oth with and without a nuiltiplier:

, , a h , . sinx u
(a) 1 , a tan x -\- h tan y — c. Aiis. = -

.

ucosx i;cos(/ siny u

(j3)
./•- + y-, ax- + 2hxy + ry- =/. Find axes of conic.

(7) Find the shoi'test distance from a point to a line (in a plane).

13. Write the second and third total differentials of F{x. y) — and compare

with (;!) and Kx. 5. Try this method of cahaUating in l-"x. 2.

14. Show that F'llx + F^^ily = does and should i;ive the tangent line to

F{x. y) = U at the points {.c, y) if dx = | — / and dy = rj — y. where ^. 77 are the

coordinates of points other than {x, y) on the tangent line. Why is the e(iuation

inapplicable at singular points of the curve '.'

59. More general cases of implicit functions. The ])roblem of

ini])licit fiuu'tioiis may be generalized in two ways. Li ilic iirst place

a gretiter number of \'ariables may oeciir in the ftnietion, ;is

^'{•, .'A-) = f>, F{:'', :i, .-,••, "j = 0;

and the ({iiestion may be to solve the equation for one of the variables

in ter]us of the others and to determim' the jKirtial derivatives of tlie

chosen de])endent variable. In the second ])lai'e there may be several

eqntitions connecting;- the variables ;ind it may be recjiiired to solve the

(Mutations for some of the variables in terms of the others atid to

determine the partial derivtitives of the chosen dependent variables
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with respect to the independent variables. In both cases the formal

differentiation and attempted formal solution of the equations for the

derivatives will indicate the results and the theorem under which the

solution is proper.

Consider the case F(.v, //. z) = and form the differential.

dF(x, y, z) = F:j.r + F','1>J+ Fl'lz = 0. (8)

If ,-; is to be the dependent variable, the partial derivative of z by x is

found by setting di/ = so that // is constant. Thus

-p (9)
z

are obtained l)y ordinary division after setting <li/ = and dx = re-

spectively. If this division is to be legitimate, F., must not vanish at

the point considered. The immediate suggestion is the theorem : If,

when real values (./•,^, ij}} are chosen and a real value z^^ is obtained

from F(z, x^, i/^^ = by solution, the function F(x, >/. z) regarded as

a function of three inde})endent variables (./. //. z) is continuous at

and near (x^,
//^^, zj and has continuous tirst ])artial derivatives and

F'.(x^^,
l/^,

z^) ^ 0, then F(x. //. z} = () may be solved uni(]uely for

z = cf>(x, I/) and <^(.'', //) will be continuous and liave partial derivatives

(9) for values of (./. //) sufficiently near to C'^^, i/^').

The theorem isai^ain proved by thf Law (if tlie ^Nleaii, and in a similar manner.

F(x, y, z) - F{.r,^, y„. zj = F(j, y. z) = (hV,. + kV',, + '-P"^).,„r e/-,.vo + e<-. .„ + e^-

As Fl. F[^, Fl are continuous and F'.,(.r^^, ;/„, s,,) j^ 0. it is pussilile to take 5 so

small that, when |/( [< 5. 1^-| < 5. |/1< 5, tlie derivative
|

/•';!> rii and !'i':,'|<;u. \F',^\<fji,.

Now it is desired so to restrict h, k that ± 57-'.' shall iletermine the sign of the

parenthesis. Let

I
J — J„

I

< i m5/tx,
I i'
—

2/o I

< i w5/m, then
|
// F,' + A'Fj

|
< mb

and tlie signs of the parenthesis f(ir (.c. y. z,, + 5) and (,r, y. z,, — 5) will be opposite

since |F^'|>7?i. Hence if (.r. y) be held fixed, there is one and only one value of z

for which the parenthesis vanishes lietween z,, + 5 and z„ — 5. 'I'hus z is defined as a

single valued function of [x. y) for sufficiently small values of /( = x — x^J. k = y — y,,.

Also - =- K(-ro + ^''-vo + ^'^--^. + ^i) I __ K^::^
h" F:{x,, + eh.y,, + ek.z„ + eii k~ f:{.--)

when k and h respectively are assigned the values 0. The limits exist when A = or

k = 0. Bm in the first case I = Az = A,.2 is the increment of z when x alone varies,

and in the second case I = Az =AyZ. The limits are therefore tlie desired partial

derivatives of z by x and y. The proof for any number of variabhs would be

similar.
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If none of the derivatives F'^., F„', F', vanish, the equation F{x, y, z) =
may be solved for any one of the variable*^, and formulas lilve (9) will

express the partial derivatives. It then appears that

V/-'\/',l.r'
\ cz €.,r' K f:

= 1,
Z')(^^-,).

~
C.r C-,S 1^~ K

~

<Jz^\ /V/,/AJ;///\ CZ ex ^.'/

dXjK!^!//KM—
ex

<^'J
cz

— I

(10)

in like manner. The first ('(juation is in this case identical Avith ( 1)

of § 2 V)ecause if // is constant the relation F{.i\ //, r:) = reduces tn

G(x, z) = 0. Tlie second equation is new. Ly virtue of (10) and simi-

lar relations, the derivatives in (11) may be inverted and transformed

to the riylit side of the equation. As it is assumed in tliermodynamics

that the pressure, volume, and temperature of a given simple sul)stance

are connected by an equation F(p, r, T) = 0, called the characteristic

etpiation of the sid)stance, a relation between different thermodynamic

magnitudes is furnished by (11).

60. In the next place suppose there are two equations

/•'('•,
.'A ",. '0 = ^^ ^'C'-,!/,", <) = () (12)

between four vai'iablcs. T^'t each equation be differentiated.

,/F = = F//x + /•',//// + f;,>/u + F/h-,

(If; = = (i//x + r/v/y + a^u + (;%/,-. (1.3)

If it l)e desired to consider //, r as the dependent variables and ./, // as

inde])endent, it would be natural to solve these equations for the dilfer-

entials (In and (/<• in terms of i/.r and fh/; for exam})le.

(Fv;; - f;/;;. ) dx + i f;/;;. - F;jr
,

, ./y .,an = — —'
, ,

(1.-)

The differential i/r would have a different numeratoi' Imt tlie same de-

nominator. Tlie solution reijuires /\6',' — F',.fr'^ — 0. This suggests llie

desired theorem : If (i/^.^. r^
) ai'e soluti(jns of F = 0. (i = c()n-es[ion(liiig

to (r^, ?/j and if F^fr^. — F^/F, does not vanisli for the values (./.. y . i/. r
),

the equations F — 0, G — may be solved for >' = cfi(x, //). r = ibi.r. if)

and the solution is miique and valid for (./•. //) sufficiently near (.'^. y )

— it lieing assumed that /^"and '/ I'egarded as functions in four variables

are continuous and have continuous first ])artial derivatives at and iieai-

(.'•-,. //. , 11^^, rj ; moreover, the total differentials dc, dr are given by (
1.'3')

and a similar t'<piati(jn.
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The proof of this theorem may be deferred (§ G4). Some observations

should be made. Tlie e(piations (13) may he solved for any two \-ari-

ables in terms of the other two. The partial derivatives

d>i(.r,//) r>'(.r,r) C.r(u.r) C.r ()/,//)
;; J 7 } ;. ' 7- ( -L -i

)

CJ' C.I- Cll cu ^ '

of V ])y .r or of x l)y // Avill naturally dei)end on Avhether the solution

for u is in terms of (./•, //) or of (./ , r), and the solution for ./• is in i^ii. r)

or (;/, if). ]Moreovei', it must not be assununl that du/dx and cxJcii are

reciprocals no matter Avhich meaning is attached to each. In obtaining

relations between the derivatives analogous to (10), (11), the values of

the derivatives in terms of the derivatives of F and G niiiy be found or

the equations (12) may first be considered as solved.

Thus if u = (p {x, y), du = (p/lx + 4>^/ly,

V = i^ (.(•, y), dv = x^/lx + xi^^/hj.

Then dx = ^-"— ^^

,

dy = -^^^ f^

, fx "AJ cx - 4>',

and — =
,

- = , etc.
Cll 0>; - ,p\p;. cv 0;^,; _ 0^^;

cu cx cv cx
Hence + - - = 1

,

(15)
cx cu cx cv

as may be seen by direct substitution. Here u, v are expressed in terms of x. y for

the derivatives m^', r,' ; and x, y are considered as expressed in terms of u, v for the

(U'rivatives j,^, x^..

61. The questi(jns of free or constrained maxima and minima, at an}'

rate in so far as the determination of the conditions of the first order is

concerned, may now ])e treated. If /'(./•,
//, r.) = is given and the max-

ima and minima of r: tis a function of (./•, //) are wanted,

F; (.', ;/, z) = 0, f; (x, !i, rS) = 0, F(x, y, ^) = (1 0)

are three equations which may V)e solved for,/-, //,
.-.'. If for any of these

solutions the derivative F_' does not vanisli, the surface .v — 4>(.r.
//) has

at that point a tangent plane parallel to ,-; = and there is a maximum,

minimum, or minimax. To distinguish between the possibilities further

investigation must be made if necessary ; the details of such an investi-

gation Avill not be outlined for the reason that special methods are

usually availal)le. The conditions for an extreme of 1/ as a function of

(,/, )/) defined implicitly by the ecpiations (13') are seen to be

Fr;;. _ /-^y;; = o, f;g;. - f;/;;, = o, f= o, g = o. (17)

The four ecpiations may be solved for ,/•, y, k, c or merely for ,/, //.
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Suj)})()se that tlie maxima, minima, and lainimax of n ^=f(x, //, z) su]>

jeet eitlitr to one e(|uation F{.r, //, z) = or two equations F{.r. //, ,-.) = 0,

6'(./', //, ,v) = of constraint ai'e desired. Xote tliat if only one equation

of constraint is imposed, the function u =/(./. tj, z) l)ecomes a function

of two varial)les ; whereas if two equations are imposed, tlie function v

really contains only one varial)le and the question of a minimax does

not arise. The mrtliod nf intilt'qdicrs is again employed. Consider

^(', y, -)=/+A/-^ or ^=fJrXF+ixG (18)

as the case may be. The conditions for a free extreme of $ are

$; = 0, *; = 0, cj>: = 0. (19)

Tliese three equations may l)e solved for the coordinates ./•, //, z which

will then he expressed as functicjns of X or of A and ^i according to the

case. If then A or A and /x be determined so that (./, //. z) satisfy F =
or i*" = and G = 0, the constrained extremes of v =^f{.r. //, z) will Ije

found exce})t for the examination of the conditions of higher order.

,\s a ])riil)le!ii in coiistriuned maxima ami minima let the axes (if the section of

an ellipsdid by a plane through the origin l)e ik'termined. Form the function

* = X- + //- + 2- + X ("^ +
-f,
+ -. - n + M {Ix + my + nz)

by adding to x- + ;/- + 2-, which is t< i be made extreme, the equations of the ellipsoid

and plane, which are the equations of constraint. Then apply (IH). Hence

(/- 2 \r -1 (f- 2

taken witli tlie equatiims of ellipsnid and plane will determine x. y. z. X. /i. If the

equations are nuiltiplied by /. //. z and reduced by the equations of plane and

ellipsoid, the solution for X is X =— r- ~— (x- + y- + z-). The three equations

then become

1 u.J(l- 1 ainh- 1 unc- . , ,

X = , y = . z = , with It + my + nz — 0.
2 ?- — o'- 2 r- — h- 2 /•- — ';-

\-(i- m'-h- n'-c-
Hence ;H h — =0 determines r-. (20)

/•- — (i- r- — b- ;- — c-

Tlie two rniits for /• are the major ami minor axes of the ellipse in which the jilane

cuts the ellipsoid. The suVistinuion of /. y. z above in the ellips(jid determines

- / "/ \- / h)i, \- I rii \- . x- if- z- , ,-,

Now when (20) i> snlvi'd for any particular root /• and the value of fx is found by

(21 ). 1 !i- actual coordinates s. y. z of the extremities of the axes mav lie found.
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EXERCISES

1. Obtain the partial derivativL-.s cif z l)y x and g directly from (8) and not by

substitution in (9). Wliere does the solution fail ?

(a) ^ + J^
+ ?: = 1, (^)j + y+.= l_,

a- b- c- xijz

(7) (•?- + .'/- + z-)' = n-x- + l)-y- + C-Z-, (5) xyz - c.

2. Find the second derivatives in Ex. 1 [a), (/3), (5) by repeated differentiation.

3. State and prove the theorem on the solution of F{x. ij, z, u) = 0.

4. Show that the product ctpEr of the coefficient of expansion by the modulus

of elasticity (§ 52) is equal to the rate of rise of pressure with the temperature if

the volume is constant.

5. Establish the proportion E,^ -. Et = C), : C,- (see § 52).

6. If I {x, y, z, u) = 0, show ^ = 1, =1.
ex cy cz cii cx cii

7. Write the ecjuations of tangent plane and normal line to F{x. y. z) = and

find the tangent Y)lanes and normal lines to Ex. 1 (/i), (5) at x = 1. y = 1.

8. Find, by using (13), the indicated derivatives on the assumption that either

ar, y or h, v are dependent and the other pair independent :

{ix) ir' + r"' + x'' — 3y = 0, ir + v"' + y" + ?>x = 0, k'.. u'^. m,',^, r,','

(P) x + y + u + V = (I, X- + y- + u- + v- = h, x^. mJ, t,/, v'.y

(7) Find dy in botli cases if x. v are independent variables.

9. Prove ^ ^ + ^ ^^ = if F{x, y, u, v) = 0, G (x, y, u, v) = 0.
cx ell cx CK

10. Find du and the derivatives u[.. ",^. u'. in case

J' + y'' + 2- ~ uv, xy = u- + r- + vf-, xyz = uvw.

11. If E(,r., y. z) — 0, (t{x, y, z) = define a curve, show that

g-Jp _ y - iJn z-
g(i

is the tangent line to the curve at (.r,,. y„. z,,). Write the normal plane.

12. P'ornuilate the problem of implicit functions occurring in Ex. H.

13. Find the perpendicular distance from a point to a plane.

14. The sum of three positive nundaers is x + y + z — X. where J\" is given.

Determine x. y. z so that the product xi'yiz'' shall be maxinuun if p. 7. r are given.

Ans. X : y : z : X =z p : q : r : {p + q + r).

15. The sum of three positive numbers and the sum of their squares are both

given. Make the i)roduct a maximum f)r mininuim.

16. The surface (x- + y- + z'-)-= ax- + hy- + cz- is cut by the plane lx + ]iu/ + uz=.0.

Find the maximum or mininmm radius of the section. .Ins. > = 0.^ r- — (I
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17. In ca.se F(x, ?/, w, v) = 0, G'(x, ?/, w, r) = consider the dilferentials

7
^"

7 ,

f'^
7 7

^'^
7 ,

^-^^ 7 7
^ ''/ 7 ,

^ !^ 7au = — «x -I ay, ax = — an, -\ dv, ay = — du ^ dv.
ex cy cii cv cu cv

Substitute in the lirst from the hist two and obtain relations like (1-j) and Ex. 9.

18. If f{x. y, z) is to be niaxinuuu or uiininuun subject to the constraint

F(x, y, z) = 0, show that the conditions are that dx : dy : dz = A) : are indeter-

minate when their solution is attempted from

f)lc + f',(hj + f'jlz = and F'dx + F'/ly + Fjlz = 0.

From what jjeometrical considerations should this I)e olnious '.' Discuss in connec-

tion with the problem of inscribing the maxinuun rectangular parallelepiped in

the ellipsoid. These e(piations,

dx : dy : dz ^f^F^ - f:j% :fX-KK CK-J'ijK = 0^0:0,

may sometimes Ije used to advantage for such prol)lenis.

19. (Jiven the curve F{x, ;/, z) = 0, G' (x, ?/, z) = 0. Discuss the conditions for

the highest or lowest points, or more generally the points where tlie tangent is

parallel to z = 0, by treating u =/(x. y, z) = z as a maxinuun oi' minimum sub-

ject to the two constraining (Mjuations F — 0, G — 0. Siinw that the condition

F^.G' — F'Cy. which is thus obtained is eciuivalent to setting dz — in

Fjlx + F',^dy + Fjlz = and Gjlx + G'(ly 4- Gjlz = 0.

20. Find the highest and lowest points of these curves :

(a) x" 4- y~ =: 2- + 1. x + y -\--2,z=. 0, {p)
''^ + '- + '"- = 1, Ix + wy + nz = 0.
a- h- c-

21. Show that F%Jx + F^/ly + Fjlz = 0, witli dx := ^ - .'. '/// = •>? — //, dz = f — z,

is the tangent plane to tlie surface F{x, y, z) — at (./:. //. z). Apph' to Ex. L

22. (iiveu F(x, y. u. r) -~ 0, G' (x, //, », v) = 0. obtain the (M|uations

cF (Fell cFcv ^ cF cFcu cFcv
- 4- - + — - = 0, + + =0,
ex eu. cx cv ex cy cu ey co cy

cG cGcu cG cv ^ (G cG cu cG cV— + + — = 0, — + + — .- = <!,

cx cu ex cv ex cy eu ey ev cy

and explain their signilicauce as a sort of pai1ial-total differentiation of /<' =
and G = 0. Find u'^. from them and compare witli (K)'). Write similar e(]uatinns

where x, y are considered as functions of (». v). Hence pr(i\'e, and compai'c with

(15) and Ex. 0,

cu cy eV ey _ cu eX cv cX _—\- - — 1, 7 + - — 0.

ey eu c y ev ey eu c y co

23. Show that the differentiation with respect tn x and y of the four equations

under Ex. 2'2 leads to eiglit ecjuations fi-om which the eight derivatives

c-u e-u e-u c'-u c'-v e'-v

cx- cxey eyex cy- f.c- cy-

mav be olilained. Show thus that fnrmallv u''„ ^~ u''..
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62. Functional determinants or Jacobians. Let t^vo functions

'< = ^(:'; I/),
'• = '/'(•'•,//) (22)

of two independent variables l)e given. Tlie continuity of the functions

and of tlieir first derivatives is assumed throughout tliis discussion

and "will not be mentioned again. Suppose that there were a relation

F(u, r) = or /'\<^. i/') = betAveen the functions. Then

F(<i>,^) = o, f:<j>:+f;^:^ = o, F:<i>'„ + F:.^; = o. (23)

The last two equations arise on differentiating the first with respect to

X and y. The elimination of F^^ and F'^ from these gives

•^i'/'.v
- 4>i,'Px

= ^^^'''^-./(:^)=0.
(24)

^('•jy} V, u

The determinant is merely another way of writing the first expression
;

the next form is' the customary short Avay of Avriting the determinant

and denotes that the elements of the determinant are tlie first deriva-

tives of }i and V with respect to .' and //. This determinant is called the

functional (h'tei'mlnant or Jdcohlini of the functions ii, r or <^, i^^ with

respect to the varial)les x, // and is denoted l)y ./. It is seen that : If

there is a functioncl n hithni F((j), i/^) = Jictu-cen tiro finictiotts, tlif

Jacohian of the functions rotiishes identic// Ity^ that is, vanishes for all

values of the variables (x, //) under consideration.

Conversely, iftheJ('c/,//i//n r//nishes identicalli/ oi-cr ti ttr/j-zJim/nisi/m/il

region for (x, i/), the fnn/iions ore connected hi/ <i fun/ilon/il rcl/iti/m.

For, the functions v, v may be assumed not to reduce to mere constants

and hence there may lie assumed to l)e points for which at least one of

the partial derivatives ^,', </),^, i//'., i//,^ does not vanish. Let ^',. be the

derivative which does not vanisli at some particular point of the region.

Then u = <^(.>', rj) may be solved as x = xi^i-, y) in the vicinity of that

point and the result may be substituted in v.

<^->' cu ex ^ ^>' 1 , , , , /<^,,.
But ^=-^- and — = — {<f>4-^xl>:) (24')

Cy cy cu cy <^,
• ^-^ ^ "

by (11) and sul_«titution. Thus crfey = .//c^.,'. ; and if ./ = 0, then

cvIcy = 0. This relation holds at least throughout the region for which

c^'. 4^ 0, and for points in this region cr jcy vanishes identically. Hence

r does not dex)end on // but becomes a function of ." alone. This es-

ta1)lishes the fact that e and a are functionallv connected.
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These considerations may be extended to otlier cases. Let

n = <f>(.r, I/,
z), r = xp{x, y,z), "' = X^'''' //: -)•

If there is a functional relation /•"('/, r, ir) = 0, differentiate it.

(25)

(26)K¥., + ^''.4'u + ^'.rXi, = 0, <i>'. ^'. v,: = 0,

or T ^= T = ./ = u.
c (./', //, -:) c (,'•, ij, :)

The result is obtained by eliminating Fj, F,'. F,^, from the thi'ee equations.

The assum])tion is made, here as al>ove, that FJ, F,!, F,^. do not all vanisli

;

for if they did, the three equations would iu)t im})ly ./ = 0. On the

other hand their vanishing would imply that F did not contain //. r. ir.

— as it must if there is really a relation fyetwccn them. And now con-

vei'sely it may be shown that if ./ vanishes identically, tliere is a func-

tional I'clation lu'twcen //, c. ". Hence again f]ic /im'ssm'// /'//_'/ suijicii-nf

ro)iiIifir)iis flidf fill- tltri'i' finirt'ujns (25) he fanctlonulhj conncctnil is that

til eir Jacdfii'i 11 I'd n <sli

.

The pniof nf tlic (.iniviTse part is about as Ijcforc. It may lie assumeil that at

least one of the derivatives of u. v. ir or (p. ^.
y(^

liy .r. ;/. z does not vanish. Let

0^' :^ be that derivative. Then u = (p(.r. ;/. z) may be solved as x ~ w{u. y. z)

and the result may l>e substitute(l in r and id as

r = i// {.r. II. z) = ^p (oj. y. z). V- = X ('-• .'/• z) = X i^- V- z)-

Next the Jaeobian of r and c- relative to // and z mav be written as

, (X , , (X ,

"A,- .- + •'/,/ X.,- V- + X.i
cy ' cy '

f r (>r

f> ('J

(V cu-

cz cz
i

'/'.-.' x,t

<>.

i.,

X:

-0, /^.: x'l
1

i',, -<P;,h'A
- 't'. /r.- X,:

+ x; ,,
~-

'^c/ 'Pj-

X., '!'',
4>:, '^'ll

J
+ f

\

+ ^''' =
\
X-' '}': 'P', '•fz 'p.

As./ vanishes identiralh', the Jacobjan of r and >'• ex]iressed as funetions of ?/. z,

also vanishes. Ilenee by the case previously iliseiissetl there is a functional rela-

tion F(v. ir) = inilependent of //. .-/
; and as v. n: ikjw contain ?(.tliis relation may

be considereil as a fuiK'tional relation betwi/en u. v. i'\

63. If in (22) the variables i/, r be ;issigne(l c()n>tunt values, tlie

e(|uations define two curves, and if /'. r be assigiuMl a series of sucli

values, file equations (22j define a network of ctirx'cs in some part of the
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a'//-plane. If there is a functional relation v = t^i''), that is, if tlie

Jaeobian vanishes identically, a constant value of c implies a constant

value of u and lience the locus for which r is constant is also a locus

for which v is constant ; the set of r-curves coincides with the set of

^-curves and no true network is formed. This >,

case is uninteresting. Let it be assumed that

the Jaeobian does not vanish identically and

even that it does not vanish foi' any point (,/, //)

of a certain region of the .///-iJane. The indi-

cations of § GO are that the ecpiations (22) may
then be solved for .r, // in terms of u, r at any

})oint of the region and that there is a pair of

the curves tlirough each point. It is then pro})er to consider (u, y) as

the coordinates of the points in the region. To any point there corre-

spond not only the rectangular coordinates (./, >/) but also the n/rri-

I'lnedr ruurdindtf's (ii, r).

The equations connecting the rectangular and cairvilinear coordinates

may be taken in either of the two forms

n = (/>(>•, y), r = ijy(.r, ;j) or ./• =J\a, r), y = g{u, r), (22')

each of which are the solutions of the other. The Jacobians

Y l\

A'

J(^ ../ ^1=1 (27)

are reciprocal each to each ; and this rela-

tion may be regaitled as the analogy of

the relation (4) of § 2 for the case of

the function ii = c^(.r) and the solution

w = f(ij) = <f>~^(i/) in the case of a single

variable. The difff^nnfi'il of (/re in

(x + di-x, y + cly'y)

(u, v+dv)
(x + dx.p+dy)
{u + du, v+ dv)

v+dv

(x + dux, i/+diiv)
(u + du. v)

.Cd \Clt

d.^ = d.r- -f df = Kdir + 2 Fdiidr + Gdr"-,

fr

X

(28)

C.r C.I- C lie 11

Cii cr Cii cr
'

ca \cc

The d liferent i' 1 1 i,f nrcn included between two neighboi'ing ^/-curves and

two neiuhborinsj' r-curves mav Ije written in the form

dA =j{''^\dddr = dudr -r-J ''

These statements will now ])e proved in detail.

(29)
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To prove (27) write out the Jacobians at length and reduce the result.

u, V

,x, y.

•c, y

ell cv cX cy

cx, cx Cll cu

Cll cv cx cy

cy cij cv cv

cu cx

CX cll

cu CX C V cX

cy cu cy cv

cv cx cu cy

cx cv cx cll

cu cy

cy cu
+

cvcy
1

cx cv

cv cy

cy cv
1

where the rule for multiplying detenuinants has been applied and the reduction

has been made by (15), Ex. 9 above, ami similar fonnulas. If the rule for multi-

plying determinants is unfamiliar, the Jacobians may be written and multiplied

without that notation and the reduction may be made by the same f(jrnuilas as

before.

To establish the formula for the differential of arc it is only necessary to write

the total differentials of dx and dy, to square and add, and then collect. To obtain

the differential area between four adjacent curves consider the triangle determined

by (u, v), (u + du, y), (ii, v + dv), which is half that area, and double the result.

The determinantal form of the area of a triauulc is the best to use.

dA=2-
d„x duy

dyX d^y dv

'^Uu
CX cy—

cu CM cu

cy , CX cy— cv —
cv cv cv

dudv.

The subscripts on the differentials indicate which variable changes ; thus J„x, duy

are the coordinates of (w + du, v) relative to (w, v). This method is easily extended

to determine the analogous quantities in three dimensions or more. It may be

noticed that the triangle does not look as if it were half the area (except for inlin-

itesimals of higher order) in the ligure ; but .see Ex. 12 below.

It should be reniarkfd tliat as the differential of area r/.l is usually

considered positive Avhen die and (7a are positive, it is usually ])etter to

rei)lace ./ in (29) by its absolute value. Instead of rei^ardiii::^' ('//, r) as

curvilinear coordinates in the ,/;//-})lane, it is ]»ossil)le to plot theui in

their own ///--plane and thus to establish l)y (22') a tr<insf(n'in'if((i)i of

the a-//-plane over onto the ///--plane. A small art^a in the .''//-plane tlien

becomes a small area in the ///--plane. If J > 0, the transformation is

called direct ; but if ,/ < 0, the transformation is calli'd perverted. The

significan(;e of the distinction can be made clear only when the (pies-

tion of tlie sig-ns of areas has been ti'eated. The transformation is called

conforiiHiI when elements of arc; in the neig-hl)orhood of a ])()int in tlie

.r/y-plane are jtroportional to tlie ehunents of ar(^ in the neighl)orhood of

the corresponding point in the ///--plane, that is, when

d/' + //// = A- (////- -f ///--) = /.v/o--. (30)
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For in this case any little triang-le will be transformed into a little tri-

angle similar to it, and hence angles will be nnclianged by the transfor-

mation. That the transformation be conformal re(}ui]'es that F — and

E = G. It is not necessary that E = G = /.• be constants ; the ratio of

similitude may be different for different points.

64. There remains outstandings the proof tliat equations niay be solved

in the neighl)orhood of a point at whi(*h the Jacobian does not vanish.

The fact was indicated in § 60 and used in § 63.

Thkohkm. Let^y e(}uations in n -\- p variables be given, say,

^(•'V •'- • • •' ^"+.) = 0. 7^ = 0, . .

., 7-;, = 0. (81)

Let the /> functions be soluble for .r^^, .r.^, • • •, .r^^^ when a particular set

"*"(;' +i)o' ' •'^(n + p)o
^^ ^^^^ other 71 variables are given. Let the functions

and their first derivatives be continuous in all the n +2^ variables in the

neighborhood of (,/ , ,r, , • • •, i'(„ + „^ ). Let the Jacobian of the functionso \ lo" io" (II + I'm'

with respect to ./'^ ./•.,, •
• , x^^,

r,,

dJ-\ dF,

cy d.r^

'^\. ..^
C,/' C.I-

^0, (32)

' (»+p)o

fail to vanish for the particular set mentioned. Then the ]) equations

may be solved for the /J variables .r^, ./•„, • • •, .r^,, and the solutions will lie

continiious, unicjuc, and diffcrentiable witli continuous first partial

derivatives i'or all values of '),mi, , ''„ + ,<
sufficiently near to the

values ;'V,,+i)„. •••,
'''(n + /Oo-

TiiKoKKM. The necessary and sufficient condition that a functif)nal

relation exist between jt functions of // vai'iables is tliat tlie -lacobian

of the functions with respect to the variables shall vanish identically,

that is, for all values of the variables.

The proofs of tliesc tlicorcins will naturally lie !:;iv(Mi by niathoniatiral iinluclioii.

Ivicli of the theorems has been proved in the simplest cases and it remains only to

show that the theorems are true for p functions in ease tliey are for ]> — ^ . I^xpand

the determinant ,f.

cx,

F.

ex.,

f'F,
^^' + '/.v^ + --- + -/..l'^' J, , J^,. minoi'.-

l"or the tirst theorem J ^ and hence at least one of the minors J^, •. J^, nnist

fail to vanish. Let that one be ,[^, which is tlu' Jacobian of 7\,, • • • . Fj, with res})e(.'t

tij x.^, • • •, X/,. By the assumption that the theorem liolds for the case p — 1. these

p — 1 ecjuations may be solved for x.,. • • •, x^ in terms of the n -|- 1 variables x^,
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Xp+i, • • • , x„ +p, and the results may be substituted in F^. It remains to show that

Fj = is soluble for x^. Kow

dF, cF, cF. ex., cF, cx„ ^ ^~ =~ +^^ + --- + -~^-^ = J/Ji ^ 0. (32')
ax^ cx^ ex.-, cJj cXp fjj

For the derivatives of x^, • • • , Xp with respect to x^ are obtained from the equations

CX^ CX.-, CX^ CXp CX^ ZX-^ ex., cXj CXp CX^

resulting from the differentiation of F., = 0, • • •, F^ = with respect to x^. Tlie

derivative Zxjcx^ is therefore merely J,/./j , and hence dFjdx^ — J/J^ and does

n(jt vanish. The equation therefore may be solved for x^ in terms of J";, + i. •••,

Xn j^p. and this result may be substituted in the solutions above found for x.,. • . x^.

Hence the equations have been solved for x^, x.,, • • •, Xp in terms of Xp +i , • •
• , x„ 4-j,

and the theorem is proved.

For the second theorem the procedure is analogous to that previously followed.

If there is a relation F(xiy. • •, h^,) = between the p functions

"i = 0i('''n • • : -^p)- •' ^P = <Pp{->'i- • • •, -fj),

differentiation with respect to x^. • • •, ./Tp gives p equations fnun which the deriva-

tives of F bv Hj. • • •. Up mav be eliminated and ./( —!^ •__j!\ _ q i^ecomes the con-
Ui- •, .'•;./

dition desired. If conversely tliis Jacobian vanishes identically and it be assumed

that one of the derivatives of i;,- by X/, say cii-^/cx^. does not vanish, then tlie solution

Xj = w(i<^, X.,. • • •. x^,) may be effected and the result may be substituted in u.,,

• • •, Up. The Jacobian of Ho. • • •, Up with respect to x,,. • • . Xp will then turn out

to be ./ -^ (Hj/fXj and will vanish because J vanishes. Now. however, only _?>
— 1

functions are involved, and lience if tlie theorem is true for p — 1 functions it nm.-it

be true for p functions.

EXERCISES

1. If u = ax + hy 4- c and v = a/x + h' ij -\- <' are functionally dependent, the

lines u = and v = are parallel ; and conversely.

2. Trove X + y + z. xy + yz + zx. x- + y- + z- functionally dependent.

3. If u = (IX + hy + €z + d, V = a/x + h'y + c'z + (/'. !' = a"x + h"y + r"z + d"

are functionally dependent, tlie planes u = 0. i- = 0, v: = are parallel to a line.

(

V

t dF cF
4. In wJiat senses are — and -Jy,^ of (24') and -—i and - - of (82') partial or total

cy '
'

' (ix^ cXj

derivatives ' Are not the two sets completely analogous ?

5. Given (25). suppose ^ ^^0. Solve v = \p and lo = x f'^'" V 'I'l^^ ^i substi-

tute in H = (p. and prove cu/cx = ./

6. If u = u (x, y), V = f(x, y). and x = x (^. 17). y — y(^. rj), prove

State the extension to any number of varialilcs. llow may (27') lie used to prove

(27) '.' .Vgain state the extension to any nuuibcr of variaoies.
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7. Prove dV = J
X. y.

dudfdw — dwhdw
u. V. iv\ .^—- 1.'

X, y, zf
is tlie element of

\u, r, 10,

volume in space with eurvilineai- coordinates », i-, iv — consts.

8. In what parts of the plane can u = x- + y-. v = xy not be used as curvi-

linear coordinates ? Express ds- for these coordinates.

9. Prove that 2 w = x- — y'-, v = xy U a confonnal transformation.

10. Prove that x y is a conformal transfoi'mation.

11. Define conformal transformation in space. If the transformation

X = au + bv + rii% y = d'li + h'\: + c'v\ z = a"xi + h"x) + c"w

is conformal, is it orthogonal ? See Ex. 10 (f), p. 100.

12. Show that the areas nf the trianules whose vertices are

(w, r), (w 4- (Zu, r), (», i' + dn) and (m + dn. x + dr). (u + du, t), («, v + dv)

are infinitesimals of the same order, as suuLrested in ^ '!o.

13. Would the condition F= in (28) mean that the set of curves u = const.

were perpendicular to tlie set v = const. '.'

14. Express E. F. (r in (28) in terms of the derivatives of w, v by x. y.

15. If X = 0(.s. t), y = \p (x. t). z = X (•*, i) 'T-i'e the parametric equations of a

surface (from which .s-. t could be eliminated to obtain the equation between

X, ?/, z), show

= J X- "/-

.s. t

and find
cy

65. Envelopes of curves and surfaces. Let the efitmtion F(.<', y, a) =
be coiisideved ;is it'prescutiii.n' ;i family of cui'ves wliere tlie different

curves of tlu? family are obtained by assi.n'iiini;- different values to the

]>arameter a. Such families are ilhistrated l)y

(./ — ar + if = 1 and ax + ufa = 1, (33)

wliieh are circles of unit radius centered on the ./'-axis and lines which

cut off the area J- <r from the first (juadrant. As <x changes, the circles

remain always tangent to the t\V(^ lines 7/ = -j- 1 and

the point of tangency traces those lines. Again, us
^'

a changes, the lines ('33) I'emain tangent t(; the hyper-

bola ./// = /,•, owing to the pro})erty of the hyperbola

that a tangent forms a triangle of c(jnstant area with

the asymptotes. The lines y = + 1 are called the —

enreJopc of the system of circles and the liypcrlxjla

,'/// = /• the envelo])e of the set of lines. In general, If there is a rurre

to ii-li'ir], f]ir (///rt's of II fdiiiih/ F(.i\ I/, (i) = f) lire tiiniji'nf nnrl if the,

Jiniat iif til nijeilrij llrsrrilies tJitit nirre us a mrirs, the rurre is ciilti-d
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ilic enreh>j/e (or part of the envelope if there are several such curves)

of the f<i milij F(^x, y, a) = 0. Thus any curve may be regarded as the

envelope of its tangents or as the envelo})e of its circles of curvature.

To find the ecpiations of the envelope note that by definition the

enveloping curves of the family F{/, //, a) = are tangent to the envelope

and tliat tlui j)oint of tangency moves along the envelo])e as a varies.

Th(! ecpiation of the envehjpe may therefore be written

:,' = ^{(t), y — i{/(o:) with Fief), if/, a) = 0, (;>4)

where the lii-st ecpiations express the dependence of the ])oints on tlie

envelope uj)on tlie parameter a and the last ecj^uation states that eaeli

point of the envelope lies also on some curve of the family F(.r, y, a) = 0.

Differentiate (84) with respect to a. Then

F:.cj>'(a) + i-;>'( '0 + f; = 0. (35)

Xow if the ]ioint of contact of tlie enveloi)e with tlie curve i^ = is an

ordinary point of that curve, the tangent to the cui've is

F;(.r - ./j + F;(y - yj = ; and F;,j,' + i-^^' = 0,

since the tangent direction dy : dj' = i//' : <^' along the envelope is hx

definition identical A\itli that along the envelo]iing curve; and if the

point of contact is a singular point for the enveloping curve, F'^. = 7-^ = 0.

Hence in either case F^^ = 0.

Thus _/'o/' //o/'/iAs- oil fill' inircliijic the fico i-tjinifion.^

Fi,; y, a) = 0, F^-'; y, a) = (36)

(ifp, Sdt'islicil ond flic ciiiuif'ion <>f flw mciJoiii' of fJic fn mil // F =: may

hf found liij siiJi-iiuj (.')<")j fu fiml ilic pa re tin'fric nj iKifimis ./ = (f)(n).

y^i^(a) of flic, ('iiri'h)iii', or In/ cliiiiuiot'iiKj a hrfirccn (•")(>) in find 1hi'

cijinif'Kin of flic cnrclojic in flic firm <i>(.r. y) = 0. It should be remai-ked

that the lonis found by this ])Voct'SS iiiay contain other curves than the

envelope, fm- instanre if the curves of the family F = have singular

])(Mnts and if ./• = 4>('t), .'/ = (//(a) be the locus of the singular ])oints

as a varies. e(pialions CM). (.">.')) still hold and hence (.')(')) also. The

rule for finding the envelojie tliend'ore finds also the locus of singular

])oints. ()thei' exti-ani'ous factors niav also l)e introduced in perfoi-niing

the (diminalion. Jt is there I'oi-e ini])orlant to test graphically or analvt-

icallv the solution obtained by applying the rule.

As a tirst cxaiiijilc let tlie cuvclu^jc of (./• — n)- + //- ~ 1 lie feniid.

Fi.r. II. a)- is -(11- + //- -1=0. Fj - - 2 (./• - ,( ) = 0.

The cliuiiiiatieii of (X from tlicsc (qnations L;i\('s //-—I =0 and tlic solution

for It 'A\v> X ' ix. a ^~
\ 1. 'riie loci indicatcil as cmclopcs ai'c ij = ± 1. It Is
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geometrically evident that tliese are really envelopes and not extraneous factors.

But as a second example consider ax + y/ct = 1. Here

i'ir, y, o:^. + y/et —1 = 0, F'^ — x — y/ a- = 0.

The solution is y = a/2, x = I /'2a, which gives xy = \. This is the envelope ; it could

not be a locus of singular points of i^ =; as there are none. Suppose the elimina-

tion of a be made \)y Sylvester's method as

y/a- + O/ir + .e -(- Oa =
0/rt- —y/a + + .'vr =
y/a- — \/a + x + ()(t: =
0/a- +///<( - 1 + J-cr =

and

y x

— // X

y -

1

X

y - ] X

=

the reduction (jf the detei'minant gives xy{ixy — 1) =: as the eliminant, and con-

tains not only the envelope ixy = I, but the factors x = and y = which are

obviously extraneous.

As a third problem find the envelope of a line of which the length intercepted

between the axes is constant. The necessary ecpiations are

it- -f- 13- - K-, ^ (la -f
'

(7/3

:- /3-

0. ada + jid^ = 0.

Two parameters a, j3 connected bj' a relation have been intro(bTced
;
both ecpations

have been differentiated totally with respect to the parameter.s ; and the problem

is to elinunate a. /3, da, dj3 from the equations. In this case it is simpler to cai'ry

both parameters than to introduce the radicals which would be recjuired if oidy

one parameter wi're used. The elimination of do:, d(i from tlie last two equations

gives X : y = a' : /S'* or Vx : V^/ = a : /3. From this and the lirst e(juation,

1 _ 1 1 _ 1

<^^ j:j {x~i Jf- ys) /3 y '. (xTi + ?/3

and hence + y/S = Zv'J.

66. Consider two iieig-]il)oriiig curves of F(.r, //, a) ~ 0. Let (.r^^, y )

be an ordiiiary })oiiit of a = a^^ and (.r^^ + (/./, //. -|- <///) of a'^^ -(- r/a-. Then

= F:>/.r + F;^,/;/ + F:,]a = {?u)

holds ex('e])t for infinitesimals of lii<;lH'r order. Tlie distance from tlie,

point on a^ + "'''<-' to the tani^-ent to a^^ at (x^^, i/^^ is

± Vi-'/ -f /;;- Vy-::- + f/
(In. (38)

except for infinitt>simals of liii^'lier order. Tliis distance is of the fii'st

order witli c/a'. and tlie normal derivati\-e dajdn of § 4(S is finite excejtt

when F[^ = 0. T'he distance is of liigher order than da, and (/a/(/)i is

infinites or <lnjdn is zero when F[^ = 0. It a])])ears therefore that flw

cnri'liijip !s the locii.^ nf jiDinfs at irhii'li flic (llxfuncc hcticrcn firn nchjji-

borlnij cKrrcs is of Ii ii/]icr order tlinii da. This is also apparent geomet-

rically fi-om tlie i'act that the distance from a ]ioint on a cnrve to the
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tangent to the curve at a neighboring ])oint is of higher order (§ 36).

Hinguhir points have l)een ruled out because (38) l)ecomes indeternii-

iiate. In general the locus of singular points is not tangent to the

curves of the family and is not an envelope but an extraneous factor

;

in exceptional cases this locus is an envelope.

If two neighboring curves F(.r, //, a) = 0, F(.r, y, a -\- A«) = inter-

sect, their point of intersection satisfies both of the equations, and hence

also the equation

— lF{x, u, a + \a) - F{.r, //, «)] = F'^ (,', ,/, a + 6\a) = 0.

If the limit be taken for A« = 0, the limiting position of the intersec-

tion satisfies F^ = and hence may lie on the envelope, and will lie on

the envelope if the common point of intersection is remote from singular

points of the curves F(x, t/, a) = 0. This idea of an rnrr/ape as f/te

Ill/tit of points ill irhlrh neUjlihor'tng rinu-es of flie funtili/ Infi'i'st'rf is

valuable. It is sometimes taken as the definition of the envelo})e. But,

unless imaginary points of intersection are considered, it is an inade-

quate definition ; for otherwise // = (,/' — af would have no envelope

according to the definition (whereas i/ = is obviously an envelope) and

a curve could not be regarded as the envelope of its osculating circles.

Care must be used in applyiiii,'' the rule for tiiiding an envelope. Otherwise not

only may extraneous solutions be mistaken for the envelope, but the envelope may
be missed entirely. Consider

y — sin a/ = or a — /-i sin-i y = 0. (39)

where the second form is obtained by solution and eontains a multiple valued

function. These two families of curves are identical, and it is iieometrii-ally clear

that they have an envelope, namely y = ± 1 . This is precisely what woidd l)e

found on aiiplyin,ii- the I'ule to the first of (3!>) ; but if the ride be applied to the

second of (3l»), it is seen that 7^ = 1, which does not vanish and hence indicates no

envelope. The whole matter slioidd be examined carefully in the liuiit of ini])licit

functions.

IIeiic(^ let F(s, y. a) = be a contiiuious single valued function of the three

\ai'iables (,c. y. a) and let its <lei-ivatives F'^.. F',^. F^ exist and be continudus. Con-

sider the l)ehavior of the curves of the family near a ixiint (/,,. ?/,,) of the curve for

a — <i-|, provided that (,/•,,. ?/,,) is an ordinary (uonsinuular) point of the curve and

that the derivative F'^(x^^. //,,. (t-„) does not vanish. As F[^ ^t and eitiier F\. #
or 7-',^ ^ for {.r^^, t/^. (i,,), it is jtossible to surround (,f,,, ?/,,) with a region so small

that F(.r. y. a) := may l)e sohcd for a = f(,r, y) which will be sini;le \alued and

differentialile : and tin- I'ciiiou may further be taken so small that F'^. or
/-'J

irmains

different from tlirouuhout the reuion. Then throui:h every jioint of tlic re,i;ion

there is one and oidy one curve a =f(s. y) and the curves have no siniiular points

within the reiiion. In iiarticulai- no two curves of the family can be tangent to

each other ^vithill the i'cL;ion.
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Furthci-more, in such a region there is no envelope. For let any curve which

traverses the region be x = <^ {t), y — \p (t). Then

a (t) = /(0 (t), V (0), «'(0 = />'(<) + />'(0-

Along any curve a =/(x, y) the equation f/lx +//?// = holds, and if x = 4>{t),

y = \l/{t) be tangent to this curve, dy — dx = \j/' -. (p' and cx'{t) = or a = const.

Hence the only curve which has at each point the direction of the curve of the

family through that point is a curve which coincides throughout with some curve

of the family and is tangent to no other member of the family. Hence there is no

envelope. The result is that an envelope can be x)resent only when F^ = or when
F'^ = jp,^ = 0, and this latter case has been seen to be included in the condition

F^ = 0. If F{x, ?/, a) were not single valued but the branches were separalile, the

same conclusion would hokl. Hence in ease F(x, ?/, a) is not single valued the loci

over which two or more values become inseparable must be added to those over

which F^ = in order to insure that all the loci which may be envelopes are taken

into account.

67. The preceding considerations apply with so little change to other

cases of envelopes that the facts Avill niei'ely be stated Avithout proof.

Consider a family of siu'faces F(.i', y, ,^', a, (i) = depending on two

parameters. The envehjpe may be defined by the property of tangency

as in § 65; and tlia condlfions for an enrclopa waidd he

F(x, >/, z, a, /3) = 0, F: = 0, 7-', = 0. (40)

These three equations may be solved to express the envelope as

x = cf, (a, 13), ii
= ip (a, j3), :: = x (o:, /3)

parametrically in tcrins of <i, (3; or the two parauu'ters may be elimi-

nated and the envelope may be found as <!»(.'•, //, .'.) = 0. In any case

extraneous loci niay be introduced and the results of the Avork should

therefore be tested, which generally may be done at sight.

It is also possible to determine the distance from the tangent plane

of one surface to th(> neighboring surfaces as

^K' + K + K' -^K' + K + K'

and to define the envelope as the locus of j)oints su(^h that this distance

is of higher order than \i/a\ + \dft\. The equations (40) would then also

follow. This definition would a})}ily only to ordinary points of tlie sur-

faces of the family, tliat is, to points for Avhich not all tlie derivatives

F',., F',i, F^ vanish. lUit as the elimination of a, f3
from (40) would give

an ecpuition Avliich included the loci of these singular points, there

would l)e no danger of losing such loci in the rare instances Avhere they,

too, happened to be tangent to the surfaces of the family.
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The application of implicit functions as in § 00 could also be made in tliis case

and would show that no envelope could exist in regions where no singular points

occurred and where either F^ or F'^ failed to vanish. This work could be based

either on the first definition involving tangency directlj- or on the second definition

which involves tangency indirectly in the statenients concerning infinitesimals of

higher order. It may be ailded that if F(x, ?/. 2, a-, (3) == were not single valued,

the surfaces over which two values of tlie function become inseparable should be

added as possible envelopes.

A family of surfaces F(x, //, ,--, a) = dependiuf.,^ 011 a single param-

eter may have an envelope, and tlm encclope is fmoid from

F(.r, v/, .V, a) = 0, F^Cr, >/, ;:, a) = (42)

hj the elimination of the single i)arameter. Tlie details of the deduction

of the rule will l)e omitted. If two neighboring surfaces intersect, the

limiting position of the curve of intersection lies on the envelope and

the envelope is the surface generated by this cur\-e as a varies. The
surfaces of the family touch the envelope not at a i)oint merely l)ut

along these curves. The curves are called clini-di-fin-lstlrs of the family.

In the case where consecutive surfat-es of the family do not intersect

in a real curve it is necessary to fall l)ack on the conception of imagi-

nai'ies or on the definition of an enveh)pe in terms of tangency or

infinitesimals ; the characteristic curves are still the curves along

which the surfaces of the family are in contact with the envelo})e and

along which two consecutive surfaces of the family are distant from

each other l)y an infinitesimal of higher order than da.

A particular case of importance is the envelope of a i)lane which

depends on one parameter. The equations (42) are then

Ax + ]'.;/ -h ^.'.v + n --= 0, J'.r 4- />"// 4- (_":: + D' = 0, (43)

where .1, B, C, D arc functions of tlie parameter and differciutr'ation

with respect to it is denoted by accents. The case where the plaiu'

moves parallel to itself or turns about a line may lie excluded as trivial.

As the intersection of two planes is a line, tlie characteristics of tin'

system are straight lines, the envelope is a i-iilrd surfiny, and ca piaur

tangent to tJui niir/'icn at one -point of tlie /ini's is funijent to the surfdcf

tlirour/hout the vJioIe extent of the tine. Cones and cylindei'S are exam-

ples of this sort of surface. Another exam}»le is the surface enveloj)ed

In' the osculating ])lanes of a curve in space ; for the oscidating plane

depends on only one parameter. As the osctdating plane (§ 41) mav be

regarded as passing tlirough three consecutive points of the cu)-ve, two

consecutive osculating planes may l)e considei'ed as liaving two consecu-

tive points of the curve m common and hence the characteristics are
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the tangent lines to the eurve. Suvi'aees which are the envelopes of a

plane which dej)entls on a single })aranieter are called th-n-hqjohh: mirfncca.

A family of curves dependent on two })aranieters as

1-i.r, :j, ::, a, j3) = 0, G (x, //. ,-:, a, (3) = (44)

is called a coiuir^nnvc nf cnrrfs. The curves niay have an envelope, that

is, there niav l»e a surface to which the curves ai'e tangent and which

may be regarded as the locus of their })oints of tangency. The envelope

is obtained by eliminating a. /5 from the ecpiations

F = 0, <; = 0, F'ji, - 7-0- = 0. (45)

To see this, sup})ose that the third condition is not fulfilled. The equa-

tions (44) may then be solved as a = /-'('',
//, '-'), /3 = ,v(.'', //. .-). Leason-

ing like that of § 6(> now shows that there cannot possibly lie an

envelope in the region for which the solution is valid. It may therefore

l)e inferred that the only possibilities for an envelope are contained in

die equations (4o). As various extraneous loci might be introduced in

the elimination of a. /3 from (4."ij and as tlu^ solutions should therefore

be tested individually, it is hardly necessary to examine the general

question further. The envelope of a congruence, of curves is called the

focdj siirfdcc of the congruence and the points of contact of the curves

with the envelope are called i\w /'><"! poinfa on the curves.

EXERCISES

1. Find the oiivolopes of tlicse families uf cur\c's. In each case test the answer

or its individual factors and check the results l>v a sketch :

{a) >j = 2 a.c + a-4, (,i) y- = <t (,r - a), (y) ;/ = a.r + k/a,

(5) a{y + af - x^, (e) y - a{.c + a)-, (f) //- = a{.i: - (if.

2. Find the envelope (if the ellipses x'-/<i'- + y- /^r = 1 under the eunditidii that

(a) the sum of tlie axes is constant or (^^) the area is constant.

3. Find the enveh'pe of the circles whose center is on a j:iven jjarabola and

which pass through the vertex of the parabola.

4. Circles pjass throuyh the origin and have their centers on j- — //- = r'-. Find

their envelope, xl?i.s. A leinniscate.

5. Find the envelopes in these cases :

(a) X, + xya — sin- ^ x.y. (3) x+ a = vers- i
y + V2 y — y-,

{'/) y + a = Vl- l/x.

6. Find the envelopes in these cases :

{a) ax + py+ a^z = 1. (/?)
i^ + ^ -f

/:* 1 — « —

(7) — + -, + ~ = 1 ^vith aiiy = k^.
a- /3- 7-

7. Find the envelopes in Ex. (J [a). {[3) if a = (3 or if cr = —
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8. Prove that the envelope of F{x. y. z, a) = is tangent to the surface along

the whole characteristic by showing that the normal to F(x, y, z. a) = and to the

elimiiiant of i^" = 0, F^ = are the same, namely

F; : F' : F: and F^ + F'^
'

" : F' + F^~ : Fl + F;^— ,

^ ' cx, cy ~ Zz

where a:(x, ?/, z) is the function obtained by solving F„' = 0. Consider the problem

also from the point of view of infinitesimals and the normal derivative.

9. If there is a curve x = (p{a), y = f{a), z — xi^^) tangent to the curves of

the family defined by F{x, y, z, a) = 0, G (x, y, z. a) — in space, then that curve

is called the envelope of the family. Show, by the same reasoning as in § 65 for

the case nf the x'laiie, that the four conditions F = 0, ft = 0. F^ = 0, G^ = must

be satisfied for an envelope ; and lience infer that ordinarily a family of curves in

space dependent on a single parameter has no envelijpe.

10. Show that the family F(x, y, z, a) = 0, F^[{x, y. z. a) = oi curves which

are the characteristics of a family of surfaces lias in general an envelope given by

the three equations 7^"' = 0, Fa = 0, F^'^ = 0.

11. Derive the condition (45) for the envelope of a two-parametered family of

curves from the idea of tangency, as in the case of one parameter.

12. Find the envelope of the normals to a plane curve y =/(x) and show that

the envelope is the locus of the center of curvature.

13. The locus of Ex. 12 is called the eiolute of the curve y =/(x). In the.se cases

find the evolute as an envelope :

[a) y = X-, (/3) X = a sin t. y = b cos t, (y) 2 xy = n-,

(5) y- = 2 mx, (e) x = a{d — sin 0). y = r/ (1 — cosi9), (f) y = coshx.

14. Given a surface z =/(x, y). Construct the family of normal lines and find

their envelope.

15. If rays of liglit issuing from a point in a plane are reflected from a curve in

the plane, the angle <if reflection Ix'ing ecpial to tlu' angle of incidence, the envelope

fif the retiected rays is called the rdiistlr of the curve witli respect to the point.

Show that the caustic of a circle with respect to a point on its circumference is a

cardioid.

16. The curve which is the envelope of the cliaracteristie lines, that is. f^if the

rulings, on the developable surface (4o) is called the cuspidal edye of the surface.

Show that the eiiuations of this curve may Ije found parametrically in terms of tlie

parameter of (43) by solving simultaneously

.Ix + By + Cz + D = 0. A'x + B'y + ("z + T)' = 0. .4"x + B"y + C"z + D" =

for X, y. z. Consider the exceptional leases of cones and cylinders.

17. The term " developable "' signifies that a ilrrchipdlih; .surface riKiy he dncloped

or majjped on a jAane in Hudt a iray tluit lenr/tJ/s of nrrs nn tin: sur/urr hvrmnv equal

lenytJis in Ihc plane, that is. the map may be made without distortion of sizt- or

shape. In the case of cones or cylinders this map may V)e made by slitting the cone

or cylinder along an element and rolling it out upon a plane. What is the analytic

statement in this case? In the case of any developabh* surface with a cuspidal

edge, the developable surface being the hx'us of all tangents to the cuspiihil edge.
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the length of arc upon the surface may be written as do-- = {dt + da)" + t-ds~/E-,

where s denotes arc measured along the cuspidal edge and t denotes distance along

the tangent line. This form of dff- may be obtained geometrically by infinitesimal

analysis or analytically from the equations

X =/(.s) + (r(.s), y = rj{,) + tr/{.), z = h (.s) + th'{s)

of the developable surface of which x =/(.s), y = ^(-s), z = Ii{») is the cuspidal edge.

It is thus seen that da- is the same at corresponding points of all developable sur-

faces for whicli the radius of curvature R of the cuspidal edge is the same function

of .s- without regard to the t<n\sion ; in particular the torsion may be zero ami the

developable maj' reduce to a plane.

18. Let the line x = az + b. y = rz + d depend on one parameter so as to gen-

erate a ruled surface. By identifying this form of the line with (43) obtain by

substitutiiin the conditions

Aa + Jk + (' = 0, A '<i + B'c -j- C" = An' -\- Br' = _

J

Ah + Bd + IJ= 0. A'h + B'd + D' = "'"
Ab' + Bd' = *^'^" 16' d'\

as the condition tiiat the line generates a develoijable siu'face.

=

68. More differential geometry. The representation

F(,r, ;/,z)=0, or z=f(.r^,/) (46)

or ,/• = (fi(>', '•), // = ^(", '), ;: = -^(ii, r)

of u stirfaee nuiy be taken in the luisolved, the solved, oi- tlic ])aranietric

form. The panuuetric form is e(|tiivalent to the solved form pr(jvided

V. r he taken as ./•, //. The notation

C-: C-: c'-r: C'r: _ C'z

ex Cjl C.r- CXCiJ Cif

is adojited for the dci'i\'atives of ;. with ivsjiect U) x and //. The applica-

tion of Taylo]''s Formula to the solved form gives

A^ = ,,h + ,,h -f \ (rh- + 2shk + fir) -f • • • (47)

with // = \.i\ /,• = A//. Tlie linear terms y/// + '//> constitute the differ-

ential '/,-; iuid rejjresent that part (jf tlie increment of x which wotild l)e

ol)tained liy replacing the surface by its tangent ])lane. Apai't from

intinitesinutls of the third ordei-. the distance from the tangent [ilane \\\)

or down to the surface along a parallel to the ,-;-axis is given \)\ the

(|tiadratie terms \{r]r 4- 2s]il: -\- fir).

Hence if the quadratic terms at any ])oint are a positive definite foiau

(§ 55). the surface lies above its tangent plane and is concave \\\i : but

if the f(ji-m is negative definite, the surface lies Ixdow its tangent }»lane

and is concave down or c(jnvex up. If the form is indehnite but not

singular, the surfai-e lies partly aljove and partly below its tangent

}ilam:' and may be called concavo-convex, that is, it is saddle-sha]>e(l. If

the form is singular nothing can b;- detinitelv stated. These statements
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are merely generalizations of those? of § 5o made for the case where the

tangent plane is parallel to the .ry-plane. It will be assumed in the

further work of these articles that at least one of the derivatives r, .s, t

is not 0.

To examine more closely the behavior of a surface in the vicdnity of

a particular point upon it, let the .r//-plane be taken in coincidence with

the tangent plane at the point and let the }K)int be taken as origin.

Then Maclaurin's Formula is available.

;:; = ^(rx' + 2 ,svr y + fi/~) + terms of higher order

— 2" P~(''
^•^^' ^ + 2 .s- sin 9 cos 6 -}- t sin- 6) -\- higher terms,

where (p, 6) are polar coordinates in the .ry-plane. Then

— = /' (;os- ^ + 2 .s sin cos 6 -\- t sin'- = —-^,

R dp'

(48)

(40)

is the curvature of a normal section of the surface. The sum of the

curvatures in two noi'mal sections which are in })erpendicular planes

may be obtained by giving the values 6 and 6 + -^ tt. This sum

reduces to r -\- t and is therefore independent of 9.

As the sum of the ('urvatures in two ptu'pendieular normal planes is

constant, the maxinnim and mininuim values of the curvature will b(i

found in perpendicular })lanes. Tliese values of the curvature are called

the principal vffJKcs and their reci])rocals are the p))'i7icip(il rajHi of

curvature and the sections in wliich they lie are the prinviiKil scrtians.

If s = 0, the principal sections are ^ = and 9 = ^,77; and conversely

if the axes of x and // had been chosen in the tangent })lane so as to l)e

tangent to tlie principal sections, tlie derivative .s would have vanished.

The equation of the surface would then have taken the simple form

?^ = 1 (rx'^ + ftp) + higher terms. (.>())

The principal curvatures would be merely r and f, and the cur\'ature

in any normal section would have had the form

1 cos- 9 sin- ^ ., „ . , ^— = —;
1 ^— = ;• cos- 9 + t sin- 9.

If the two ])rinc;i])al curvatures have 0])posite signs, that is, if the

signs of ;• and t in (50) are 0})posite, tlie sui'face is saddle-shaped.

There are then two directions for Avhich the curvature of a normal sec-

tion vanishes, namely the directions of the lines

$ = ± taii^i V— /.', /y.'j or Vpl ./ =± V| /*

I

//.

These nvo, calliMl tlie axi/nipfufir (lirccfions. Along these directions the

surface departs from its ta,ngeiit plane liy iniinitesimals of i\w. third
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ordei-, or higlier order. If ii curve is drawn on a surface so that at each

point of tlie curve the tangent to the curve is along one of the as^-ni})-

totic directions, the curve is called an ai<ijiuptntlc (iirre or line of the

surface. As the surface departs from its tangent plane by inhnitesimals

of higher order than the second along an asymptotic line, the tangent

I)lane to a surface at any point of an asymptotic line must be the oscu-

lating plane of the asymptotic line.

The character of a }>oint upon a sui-face is indicated by the Dupln

lmllc((trix of the })oint. The indicatrix is the conic

;^ + f = l, ^L:: = l{i:.- + t!r), (51)
1 .;

•which has the principal directions as the directions of its axes and the

square roots of the absolute values of the principal I'adii of curvature

as the magnitudes of its axes. The conic may be regarded as similar to

the conic in which a plane inhnitely near the tangent plane cuts the

sui'face Avlien infinitesimals of order higher than the second are neg-

lected. In case the surface is concavo-convex the indicatrix is a hyper-

bola and should be considered as either or both of tlie two conjugate

hyperl)olas that would arise from giving :: jiositive or negative values

in (51). The point on the sui'face is called elli})tic, hyperbolic, or

parabolic according as the indicatrix is an ellipse, a hyperbola, or a pair

of lines, as happens Avlien one of the principal curvatures vanishes.

These classes of })oints ctn-respond to the distinctions definite, indefinite,

and singular applied to the quadratic form rlr -\- '2s//k -f f/c'^.

Two further results are noteworthy. Any curve drawn on the siirface

differs from the section of its osculating plane with the surface l)y

infinitesimals of higher order than the second. For as the osculating

})lane passes through three consecutive points of the curve, its inter-

section with the surface ]iasses through the same three consecutive

})oints and the two curves have contact of the second order. It follows

that the radius of curvature of any curve on the surface is identical

with tliat of the curve in which its osculating plane cuts the surface.

The other result is Meusfilcrs Tlicorem : The radius of curvature of an

obli(pie section of the surface at any point is the projection upon the

})lane of that section of the radius of curvature of the normal section

which })asses through the same tangent line. In other words, if the

radius of curvature of a normal section is kiu)wn, that of the oblique

sections through the same tangent line may l)e obtained 1)V nudti])lying

it by the cosine of the angle between the plane normal to the surface

and the plane of the ol)li(]ue section.
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The proof of Meu.snier",s Theorem may be given by reference to (48). Let the

r-axis in the tangent plane be talten along the intersection with tlie oblique plane.

Neglect infinitesimals of higher order than the .second. Then

y = <j,{x)=l ax", z-\ (>vf2 + 2 aiy + ty") = \ rx" (48')

will be the equations of the curve. The plane of the section is az — ry = 0, as may
be seen by inspection. The radius of curvature of the curve in this plane may be

found at once. For if u denote distance in the plane and perpendicular to the

/-axis and if v be the angle between the normal plane and the oblique plane

az — ry = 0,

u = z sec V — y esc v = \r sec v x- = \ a esc v • x-.

The form u = \ rsec v- x- gives the curvature as csec v. But the curvature in the

normal section is /• by (48'). As the curvature in the oblique section is sec v times

that in the normal section, the radius of curvature in the oblique section is cos v

times that of the normal section. Meusnier's Theorem is thus proved.

69. These investigations with a special choice of axes give geometric proper-

ties of the surface, but do not express those properties in a convenient analytic

form ; for if a surface z =f{x. y) is given, the transformation to the .special axes

is difficult. The idea of the indicatrix or its similar conic as the section of the

.surface by a plane near the tangent plane and parallel to it will, however, deter-

mine the general conditions readily. If in the expansion

Az- dz=
I
{rh- + 2 shk + tk-) = const. (52)

the quadratic terms be set ec^ual to a constant, the conic obtained is the projection

of the indicatrix on the x?/-plane. or if (52) be regarded as a cylinder upon the

xy-plane, the indicatrix (or similar conic) is the intersection of the cylinder with

the tangent i^lane. As the character of the conic is unchanged Ity the projection,

the j)oint on the surface h elliptic if .s- < rt. Ityperbolic if .s- > rt, and parabolic if

s- = rt. Moreover if the indicatrix is hyperlxilic. its asyniptntes must project into the

asymptotes of the conic (52), and hence if dx and d/j replace h and k, the equation

rdx- + 2 siJxd)/ + tdy- = (58)

may be regarded as the differential (yuation of the projection of the asymptotic lines

on the xy-plane. If r. s, t be expressed as functions /^^,/^^,/,^,', of (j-, y) and (53) be

factored, the integration of tlie two ecjuations ^[{x. y)dx + X{x. y)dy thus found

will give the finite equations of the projections of the asynqitotic lines and, taken

with the equation z =f{x. y). will give the curves on the surface.

To find tlie lines of curvature is not quite .so simple : for it is necessary to deter-

mine the directions which are tlie projections of the axes of the indicatrix. and

these are not the axes of the projected conic. Any radius of the indicatrix may
be regarded as the intersection of the tangent plane and a plane perpendicular to

the xy-plane through the raditis of the projected conic. Hence

z- z,, = p (x - x.j) + q {y - ?/y), {x - ,/:,;> k = (y - y^) h

are the two planes which intersect in the radius tliat projects along the direction

determined by A, k. The direction cosines

h:k^vJ^,k
^^_^^ ^^^^^^ ^,^^

a7(- + /.•- + {ph -\- qk)-
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are therefore those of the radius in the indicatrix and of its projection and tliey

determine the cosine of the anj^le
(f>

between the radius and its projection. The
square of the radius in (52) is

/;- + A:-, and {Ifi + k-)sec-4> = h- + k- + {ph + qk)'-

is tlierefore tlie square of tlie corresponding radius in the indicatrix. To deter-

mine the axes of the indicatrix, this radius is to be made a maxinuuu or mininuini

subject to (52). With a nudtiplier X,

h + ph + qk + X {rh + .si-) = 0, A: + pjh + qk + X {sli + tk) =

are tlie conditions required, and the elimination of X gives

ifi [,s (1 + pi) _ p,/,] + ki: It (1 + ;/-) -'•(! + <r)] - /^- [t (1 + q-) - pqi] =

as the equation that determines the projection of the axes. Or

(1 + p-) dx + pqdy pqdx + (1 + q") dy= (oo)
rdx + »dy sdx + tdy

is the differential equation of the projected lines of curvature.

In addition to the a.symptotic lines and lines of curvature the geodesic or shortest

lines on the surface are important. 'I'liese. however, are better left for the methods

of the calculus of variations (§ 15!»). The attention may tlierefore be turned to

finding the value of the radius of curvature in any normal .section of the .surface.

A reference to (48) and (40) shows that the curvature is

I _2z _ rh- + 2 shk + tk- _ rh- + 2 shk + tk'^

R~^~ y^
^

h- + k^

in the special ca.se. But in the general case the normal distance to the .surface is

(Az — dz) cos 7, with .sec 7 = Vl + p- + q-, instead of the 2 z of the special case, and

tlie radius p- of the special case becomes p-.sec'-<?l) = h- + A:'- + {ph + qk)- in the

tangent plane. Hence

1 _ 2 {Xz — '72) cos 7 _ rl- + 2 shn + tm-

Tl~~h^+k- + {ph + qkf~~ Vl + p-^ + 1?

where the direction cosines I. in, of a radius in the tangent iilane have been intro-

duced from (54), is the general expression fur the curvature of a normal section.

The form
1 rh^ + 2M + tk^ 1 ..^.,.^— = —

, (ob

)

R h- + k- + {ph + qk)- VI -(- pi + qi

where the tlirection /(, k id the projected radius remains, is frequently more con-

venient than (50) wliicli contains tlie direction cosines /. in of the oriuina! direction

in the tangent plane. Meusnier's Theorem may now be written in the form

cr>s V rl- 4- '2 shn -f- tm-

i' \^1 + p- + q-

where u is the angle between an oblique .section and the tangent plane and where

I. m are the direction cosines of the intersection of the x'lanes.

The w(jrk here given has depended for its relative simplicity of statement upon

the assumption of tlie .Mirface (40) in solved form. It is merely a prolilem in

implicit partial differentiation to pa.-<s from p. q. r. .s. t to their equivalents in terms

of F^, F' F^ or the derivatives of 0, ^, x by a, /3.



us DIFFEKEXTIAL CALCULUS

EXERCISES

1 r + i r — t

1. In (49) show — =
1 cos 2^ + 5- sin 2 and find the directions of

li 2 2

inaxinuini and niininuun R. If U^ and i?., are the rnaxinuuu and niininiuni values

of li, show 11
. 1 1 1 , o

1 =z r + t and = H — s^.

Half of the sum of the curvatures is called the mcdn riD-vciturc ; the product of the

curvatures is called the total cunuture.

2. Find the mean curvature, tlie total curvature, and therefrdni (hy construct-

ing anil sdlvinn' a (juadratic equation) tlie principal radii of curvature at the origin :

(a) z = ./(/. (,3) z = X- + j-t/ + y-. (y) z = x {x + y).

3. In tlie surfaces (a) z = xy and (/3) z — 2x- + y~ find at (0, 0) tlie radius of

citrvature in the sections made by the planes

{a) x + y = 0. (/3) X + y + z = 0. (7) .r + ?/ + 2 z = 0.

{5)x-2y = 0. (e)x- 2^ + 2 = 0, (,0 .r + 2 y + U = 0.

The obliijue sections are to be treated by applying Meiisnier's Tlieoreni.

4. Find the asymptotic directions at (0. 0) in Exs. 2 and ?,.

5. SIkiw that a developable Nurf((ce is everyvhere parahoUe. that is. that rt — s- =
at every point ; and conversely. 'J"o do this considfr the surface as the envelope of

its tangent plane z - p^/ - 7,,^ = Zy - p^^x^^ - (j„y^, where p^,, q^^, .r^. y^. z^ are func-

tions of a single parameter lx. Hence show

jI'^) = = (,., - .^,. »,„ ,,(t'.ii^'i.'.. -'.M = ,„(,= _ ,,)„.
Vir t'o/ \ •' [)• If I) I

The first result proves the statement
; the second, its converse.

6. Find the difft'reiitial equations of tlu' asymptotic lines and lines of curvature

on these surfaces :

(a) z = xy, ip) z = tan-i(;///), (7) z- + y- = cosh.f, (5) xyz = 1.

7. Siiow that the mean curvature and total curvature ari'

1/] J\_r{l + q-^) + t{l+p^)-2pqs 1 _ rt-s-

8. Find the j)rincipal radii of cur\ature at (1. V) in l".x. (>.

9. An umbilic is a point of a surface at. whicii tlie i)rincipal radii of curvature

(and hence all radii of curvatui-e for normal .sections) are equal. Show that the

conditions are = - = for an umV)ilic, and determiiR' the umbilics of
1 + /'- /"/ 1 + q-

tlie ellijjsoid with semiaxes a, h, c.



CHAPTER VI

COMPLEX NUMBERS AND VECTORS

70. Operators and operations. If an entity u. is changed into an

entity r by sdhk^ law. tlu' clianyv may be regarded as an ojifrdtina per-

formed upon a, the (ipcninil., tcj convert it into r; and if /'he introdneed

as tlie syndtol of the (j])eration, the resnlt niay Ije written as /• =./'".

For Ijrevity the syjidx)! /' is often ealled an oprmfor. A'arions sorts

of operand, o}»erat(jr, and i-esult are familiar. Thus if n is a })(jsitive

number n, the a})plieation of the operator ^ gives the square root: if u

represents a range of values of a vaiiable .', the expressi(jn /'(./") or f.r

denotes a function of .r ; if v lie a function of ./•, the operation of diC-

fereiitiation may be syndioli/.ed by 1) and the result ])ii is the deriva-

tive ; the symbol of definite integration | (*)'/* converts a function

i'(.'-) into a numbei'; and so on in great variety.

The reason for making a short study of operators is that a consider-

able num!)er of the concepts and i-ules of arithmetic and algebra mav
be so defined for operators themselves as to lead to a. ciilcuhin of oprrii-

tiiins which is of fre(juent use in matliematics ; the single a}»plication to

the integration tif certain diil'erential e(juations (§!>."») is in itself highly

valuable. The fundamental conce})t is that of 'a prail m-f : If i' ''•"> oj^icr-

(tfi'il upnil h(j f fi) /jii-!' fil = C rind if C (S iijicrdtt'd lljiojl In/
(J

tit Ij'li'i'
[J

i' = ir,

sn thilt

J" — '', [/''
= ://" = "', at" = "', (1)

f/ir/i till' opi'l'iitinii 'uLiliniti'il US ijf ir]iii-Ji cnnri'iis II (I'u'pi-tlii into ir is

riilli'iJ till' proihirt off III/ [/ . If the functi<jnal syml)ols sin and log be

regarded as operators, llie symbol log sin ccndd be regarded as the

product. The transi'ormations of turning the ,i-ij-\A-a\w over on the

./•-axis, so tliat .'•' = ,/•, //' = — _//, and over the y-axis, so that ./•' = — ,/,

//' = _y, may be regarded as operations: the cond)ination of these o})era-

tious gives tlu^ ti-ansformation ,/' = — ./•, //' = — y, which is erpiivalent

to rotating the jilaiie through 180° about the origin.

The products of ai-ithmetic and algebra satisfy the com nintntiri' Imr

i/f = fi/^ tliat is. tlie products of y In" /'and of _f b\' y are etpial. This

is not true of operators in geutu'al, as n)av be seen from the fact that

14',>
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log sin X and sin log x are different. Whenever the order of the factors

is inmiaterial, as in the case of the transformations just considered, the

ojjerators are said to he romvivtatlri^. Another hnv of arithmetic and

algebra is that when there are three or more fa(-t<jrs in a })roduct, tlie

factors may be grouped at pleasure without altering the result, that is,

This is known as the ossorlatlrc. hm- and operators Avhich obey it are

(•alhnl (issocitifirc. Only associative operators are considered in the

work here given.

For the repetition of an operator several tinu^s

ff=A fry=A AT = ./'"' +
", (3)

the usual notation of powers is used. TI/c Imr nf in'fii-rs rlcarl// holds;

for f"'
+ " means that /' is applied //> + /; times successively, whereas

/"*/'" means that it is applied ?i times and then /// times more. Xot

ap})lying the operator /'at all would naturally be denoted by/"", so that

f^i/ = u and the operator/^ would ))e ecpiivalent to multiplication l)y 1;

the notation /^ = 1 is adopted.

If for a given operation f there can be found an opei'ation (/ such

that the product f(j
= f' = l is equivalent to no ojieration, then g is

called the Inverse of /'and notations such as

f'j = ^, (i=A' = Y A-'=fy-^ (4)

are regularl}' borrowed from arithmetic and algebra. Tlius the inverse

of the square is the square root, the in\-erse ol' sin is sin~', the inverse

of the logarithm is the exponential, tlie inverse of /> is /. Some ojter-

ations have no inverse; multiplication liy is a case, and so is the

s(|uare when applied to a negative number if only real numliers are

considered. Other operations have more than one inverse; integra-

tion, the inverse of D, involves an arbitrary additive constant, and the

invei'se sine is a multiple valued function. It is tlierefore not always

true tliat/'~\f = 1, but it is customary t(^ mean by /'^^ that ])ai'ticular

inverse of /' for which /'"'/'= //'~"^ = L Higher negative ])0\vei's are

dehned by the e(|uation /"~" = ('/"^)", and it readily follows that

/'/'-" = 1, us may l)e seen by the exanqjle

77//' /ilir f>j' i/l(/irrs /'"/"=/'"' " ii/sn hnlds fnr Drijilt i rr iu'llrrs. eXce]it

in SO far as /'"'/' nia\" not be e(pial to 1 and may l)e reipiiii'd in the

reduction of /'"/'" to /-'"' +
".
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If u, V, and u + v are operands for the operator / and if

A" + 0= /"+/'; (5)

so that the operator applied to the sum gives tlie same result as the

sum of the results of operating on each operand, then the operator

f is called linear or disfrihutice. If / denotes a function such that

y(./- -)- _//) —f{.r) -j-f(t^)^ it has been seen (Ex. 9, p. 45) that / must be

equivalent to multiplication by a constant and fx = Cx. For a less

specialized interpretation tins is not so ; for

D(ii -f- r) = Di( 4- T)r and ( (tf + r) = I " + /
''

are two of the fundamental formulas of calculus and sliow operators

which are distributive and not equivalent to multiplication l)y a constant.

Nevertheless it does follow l>y the same reasoning as used before (Ex. 9,

p. 45), t\iH,t full = 72f('
if /is distributive and if 7i is a rational number.

Some operators have also the property of addition. Suppose tliat ii

is an operand and/', r/ are operators such that fi( and f/it are things tliat

may be added together as /V + ;/i/, tlien the sum of tlie operators, /+ y,

is defined by the equation (/-'-[-,'/)" =/V + ,'/"• If furthermore the

operators /', (/, h are distributivf, then

// (f+ y) = If + Ay and (/'+ y) h = f/i + r/Ji

,

(G)

and the multiplication of the 0})erators becomes itself distributive. To

jjrove tliis fact, it is merely necessary to consider that

/' [(,/+ r/) "] = ^' (/" + !/") = ¥'" + /','/«

and (f+ 'J) (Ji I') = fli " + 'J^'
"•

Operators irlta-lt are assoelafire^ cnmriuitatlre, disfribntive, arid irlia'h

admit addition ma ij he treated (ihjct/ralraJJ ij^ in so fir as pohpioinlojs are

einxferned . hi/ tlie ordlna rij ahjorlsins of ahji'hra ; for it is by means

of the associative, commutative, and distrilnitive laws, and the law of

indices that oi'dinary algel»raie })olynomials are rearranged, multi})lied

out, and factored. N(jw the operations of multi])lication l)y constants

and (jf dift'erentiatiou or ])artial ditt'erentiation as a])plied to a function

of one or more variables ,/•, //, z, • do satisfy tliese laws. For instance

r(lJ(() = D(i-)l'). ]>J»„ii = ^>J',"; ( l'.r + l>,i)I>:" = I>,!>" + l'„^'z>'- (~)

Hence, for example, if // be a function of ./, tlie expression

J>"i/ + "J>"-^!J -\ h "u^J>if + ".,!/,

where the coefficients a are constants, mav be written as

(^Tr + ajr^-^^^-... + n_^_j>Jr",oij (8)
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and may then be factored into the form

[i^D- aJ {^JJ - aj ...{J>~ a,^ -,){D- «,j] y, (8')

where a^, (X,„ • •, «„ are the I'uots of the algel)raic polynomial

EXERCISES

1. Show that (fgh)-'^ = Ji-'^y-'^f-^, tliat is, that the reciprocal of a profluct of

operations is tlie product of tlie reciprocals in inverse order.

2. ISy (It'linitidn the operator y/'y-i is called the transform offhyg. SIkiw

that (a) the transform of a product is the product of the transforms of the factors

taken in the same order, and (p) the transform of the inverse is the inverse of the

transform.

3. If .s :7f: 1 but .s- = 1, the operator ,s is by definition said to be involutory . Show
that {a) an involutory operator is equal to its own inverse; and Cduversely (/3) if

an operator and its inverse are equal, the f)perator is involutory ; and (7) if the

product of two invdlutory operators is connmitative, the jn-oduct is it.self involu-

tory
; and conversely (5) if the product of twu involutory operatcjrs is involutory,

the operators are conmuitative.

4. If/' and ij are both distributive, so are the products/f/ and gf.

5. If /is distributive and n rational, sliow/x;/ = nfu.

6. Expand the followiuic operators first by ordinary formal multiplication and

second by applying the operators successively as indicated, and show the results

are identical by translating- both into fanuliar forms.

(a) (/>-l)(/>_2)y. Ans. '^'^^ _ 8
'|^ + 2 y.

(/5) {I)-}}1){JJ + 1 ) //, (7) U (1) - 2) (7J + 1) (Z» + 3) y.

7. Show that (I)— ii)\ <-"''
i (.— "'A'lU = A', where .V is a function of x, and

heucf infer that t"'' / (-'"(:•;)'/./• is the inverse of the operator {I) — '()(*).

8. Show that ])[i"' IJ) = i"'{]) -\- <i) IJ and hence i;cneralize to sliow that if

L'(l)) denote any polynomial in 1) with constant coeliicii'Uts. tlieii

7^(7;) • ("'[/ = (".'P(7V+ u)y.

Apply this to the followinu- and check the results.

(a) (/>- -:!/;+ 2),- >/ ^ e^-(Ifi + ]))y = e--i'p^ + '^)

,

(,:!){ I J- - ] J) -- -Ix 'y. (7) ( Ir - ;•] 7^ + 2 ) c'y.

9. ]f // is a function of x and x = (' slio\v that

]>,y = e-'J),y, jyj.y = v--'l),{I),- })y. . ])';y = (-''' I),{I),- \)---{I),-p + 1)//.

10. Is the expression i/il),. + IrJ),,)". which occurs in Taylnr's Koiinulii (^ .')4).

the ),tli power of the (i])erator /il), + 1:1),, or is it merely a conventional .-^yndiol V

'I'Jic .-ame que.-tion relatixe to (,;/>,. + yl),i]'- (iccurrin::' in I-;uler"> l-'nrnuihi
(

,' '>')) '.'
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71. Complex numbers. In the formal solution of the equation

't.r- + //./• 4" ' = 0, where Ir < 4 c/c, uumljers of the form /// + a V— 1,

where in and n are real, arise. Such numlxu's are called cuniplcf or

imar/lnanj ; the part in is called the real pit rt and n\ — 1 Ww. i)nre

InuKjmanj piirt of the number. It is customary to write v— 1 = l and

to treat i as a literal quantity subject to the relation r = —1. The defini-

tions for the cquardij, addition, and inultijilicdtinn of conq)lex num-

l)ers are ,

.

,. -n t i -ra -\- Oi = r -\- a I. it and only it a = r, h = a,

[./, + /./] + [.. + di-] = (ii + r) + (h + d) i.
, (9)

[a -f /'>/] [r 4- r/i] = (,ir — />d) + Qid + hr) /.

It readily follows that f/ie rn/nmufafin', (fssoeiatirr, and distributire

/airs /add in the domain of i-omplcx nHndicrs, namely,

« + ^ = /3 + «, (,j; + ^) -f. y = « + (/3 + ^)^

al3 = l3'C, (a^)y = a{/3y). (10)

aiJB -\- y) = a(3 + ay, (ft -{- /Sjy = ay + I3y.

where Greek letters have Ijeen used to denote com])lex nuniliers.

JJirision is accomplished Ijy the method of rationalization.

a + /// _a ^ hi r — di _ (<if + hd
) + (/>r — <id) i

e -f- di r + di r — di <'- + </- ^

This is always possible except Avlien r'^ + ^/'- = 0, that is, wlien Ixith r

and '/ are 0. A conijilex miiuber is defined as wlien and only when

its real and i)ure imaginary parts are l)otli zero, ^\'itll this delinition

has the ordinary jiroperties that a + = a and «0 = and that a/O is

im})Ossible. Furthermore if n jimdiicf a/3 cnnislifs, ciflwr a or /3 canisln-s.

For suppose

\_a + />/] [r + </;] = (<,r - hd) + (ad + l,r) i = 0.

Then ar - hd = and ad -\~ />r = 0, (12)

from which it follows tliat eitlier a = // = or c —. d = 0. From the

fact that a product cannot vanish unless one of its factors vanishes

follow the ordinary laws of cancellation. In l)rief, "// t/w rln/u^ntari/

lairs of rriil alijrhr<i ludd also for tlw aljjchra of i-innph'X naiiihrrs.

By assuming a set of Cartesian coordinates in the .'//q)lane and asso-

ciating the number a -j- hi to the point (a, Ji), a grapliical rcprrsmfafion

is obtained which is the counterpart of the number scale for real num-

bers. The point (a. //^ alone or the directed line from the (jrigin to tlie

])oint (a, h) may be considered as representing tlie number '/ + ///.

If ()/' and (>(} are two direeted lines repi-esenting tlie two numbers

a 4- /'i and '• + di, a referenee to thi- iigure shows that the line wliich
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(a+c,b + cl)

represents tlie sum of the iiumhers is 0/!, the diagonal of the paralleh>

graiii of ^vhieh OP and 0(2 are sides. Thus fJiP (jcomcfrlr hnr fnr mhlbuj

coiiiph'X numhura is f/ie saiiif "s flw hnr fur cniii^xrnndln'/ farci-s (md is

hnoirn as tlie pdrdlh'lorjrdiii latr. A segment AB of a line possesses

magnitude, the length All. and direetion, the

direction of the line AFi from .1 to B. A
quant'dij vlilch Ikis rniif/n'ifn<h' find dirrcfhni is

n/lli-d II rrrtiir : mid tlir piiriilh'lixjnnn. hnr is

cdUed tJw hnr of rertur addition. ( 'oiiiph'.r nmn-

bcrs may therefore Ix' regarded as rrctcjrs.

From the figure it also aj)p('ars that OQ and PPi. have the same mag-

nitude and direction, so tliat as vcctoi-s tlicy are e(|Ual although they

start from different points. As OP + J'J! will be regardc^l as e([ual to

OJ^ + O'l, the definition of addition may l^e given as the triangle law

instead of as the parallelogram law ; namely, from the terminal end J'

of the first vector lay off the second vector PR and close the triangle

hy joining the initial end O of the hrst vector to tlie ternunal end R of

the second. The idisoliftr nilni' of a complex numher <i -f hi is the

magnitude of its vector Ol' and is ecpial to V'r + /r, the S(|uai-e root of

the Sinn of the squares of its rt^al part and of tli(^ coethcient of its })Ui-e

imaginary part. The absolute value is denoted by \(i + /'/as in the case

of reals. If a and /3 are two complex niuabers, tlie rulc^ 't' + j8^ ''t + /3!

is a consequence of the fai't that one side of a triangle is less than tlie

smu of the other two. If tlie absolute value is given and tht^ initial end

of tlie vector is fixed, tlie ttM-minal end is thereliy constrained to lie

u])()n a circle conciMitric with tlie initial end.

72. \N'hen the com])lex numbers are laid otf from the oi'igin, ])olar

coordinates may be used in ])lace oi Cartesian. Then

r = V"- + //-,

and

= tan-'A^'^/*, II = /• CDS cf), /> = r sin

11 -\- II, = /•((•OS (^ + / sin <^).

(13)

The absolute value / is (jften called the iimdnl us or nuiijnifiidv of the

coiii])lex numbei-; the angle (^ is called the iinijh' or a r'/nnifnt of the

number and suffers a certain indetermination in that 2 mr. where ii is

a ]iositi\'e or negative integer, mav be added to <^ without aifecting the

number. This jiolai- n-preseiitation is ])articularly usefTil in discussing

jiroducis and (juotients. Foi- if

a = /'jicos (^j + /sin cf>^). (S = /•.,(cos ^., + /sin </>._,),

then a/3 = /y., [eos (^^ + ^ ,) -f / sin ( <p^ + <^.()],

* As both cos •' uiiil .sill','' arr known, tin- (iuailraiit nf tliis aiigli- is (Iftfriniin

14;
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as may be seen by multiplication aeeordin,t,f to the rule. Henc-e the

1)1(1(jn'ifudo of (I in'iKJiicf is tlie pro'/i/rf of fl/r vKiynitmhs of flic factors^

and fJie awjlc of <i [n'oduct is the siim of tJin (ingles of the factors ; the

general rule being i)rove(l by induction.

The interpretation of m iilt'qdicatlon Inj a coinph'.r niimhcr as an ojicr-

iitlon is illuminating. Let ^ he the multiplicand and a the midtiplier.

As the product a/3 has a magnitude equal to the product of the magni-

tudes and an angle equal to the sum of the angles, the factor a used as

a multiplier may be interpreted as effecting tlie rotation of ^ through

the angle of a and the stivtching of /3 in the ratio [a] : 1. From the

geometric viewpoint, thei'efoi'c, iiniJtlpUcdt'ton luj u complcj' nidiiJier is

(in opcvdtion (f rotdtlon (hkI strcti-Ji'oKj In tlic phnic. In the case of

« = cos ^ + / sin (^ \vith /' = !, the o})eration is only of rotation and

hence the factor cos ^ -|- I sin <^ is often called a cyclic factor or versor.

In particular the number i = V— 1 will effect a rotation through 90°

when used as a multi})lier and is known as a quadrantal versor. Tlie

series of j)Owers /, r = — ], ?" = — /,
/"* = 1 give rotations through 90°,

180°, 270°, 360°. This fact is often given as the reason for laying off

pure imaginary numbers hi along an axis at right angles to the axis

of reals.

As a particular product, the 7ith })Ower of a complex nmuber is

a" = (/(. + di)" = [/'('cos 4> -\- i sin ^)]" = /•" (cos n<f) + '' ^in fi(t>)
; (15)

and (cos cji -\- i sin cf))" = cos n(f> + '' sin /icf), (15')

which is a special case, is known as I/c Jfoim's T]/corcin and is of use

in evaluating tlie functions f)f nc^: foi' tlie binomial theoi'em may l»e

ap})lied and the real and imaginary parts of the expansion may be

equated to cos »<^ and sin nc^. Hence

V (n — 1)
cos nc^ = cos"<^ — cos" -<^ snr^

H —

;

cos" ^(^siir^ — ••• (16)
-i ,

_, . n(n — l)(n — 2) „ . .,

sm n(p = 11 cos" 'c/> sin </> ^-; cos"~"^ sin c/) + • •.

o .

As the ??th root Va of a must be a numl>er which Avhen raised to the

?;th power gives (X. the ??th root may be written as

\a = y/i-CcoH cf}/n + i sin (f>/n). (17)

The angle cf), however, may have any of the set of values

(/). c^ + 2 7r. cji+iTT. •. -/> + 2(/; - l)7r,
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anil the ?ith parts of tlicso give tlic n different angles

* + ^(!iIzilZ. (IS)

1 Fence there niay ])e found just 71 different ?itli roots of any given com-

plex number (including, of course, the reals).

The roots of unity {Icscrve iiu'iition. Tlie eiiuation x" = 1 lias In the real domain

one oi- two roots acc'ordinn' as n is odd or even. But if 1 be regarded as a complex

nundxT of which tlie pure imaginary part is zero, it may l)e represented by a point

;'t a unit distance fi-om the origin ujion the axis of reals; the magnitude of 1 is 1

and the angle of 1 is 0, 'Itt, • • •, 2(?i — l)7r. The nth roots of 1 will therefore have

the magnitude 1 and one of the angles 0, 2 tt/ji, • • • , 2 {n — 1) ir/n. 'i'he n nth roots

are therefore

27r ..27r , Air . . iir
1 (t =; cos H 'i'SUi— , (I- = COS + t^ni— ,

•••,
H n n n

2(h- l)7r . . 2(u-l)7r
(r"-i — cos—- ' 1- tsm- - — --,

?i n

and may l)e evalualcd with a table of natural functions. Now x" — 1 =0 is factor-

able as (,c — !)(,/" -i + ,(,"-- + • • • + .c + 1) = 0, and it therefore follows that the

i(th roots otlier than ] iinist ;i]l satisfy the eijuation formed by setting the second

factor ecjual to 0. .\s it in particular satisfies this ecjuation and the other roots are

a'-, • • -, a"~^ it follows that the sum of the n nth roots of luiity is zero.

EXERCISES

1. Prove the distributive law of multiplication for conqilex munbers.

2. By detinitioii the jiair of imaginarics (/ + hi and a — hi are calU'd ronjiigntc

imiuiindrics. Prove that {a) the sum and the product, of two conjugate imaginarics

are I'eal
; and conversely (/3) if the sum and the product of two imaginarics are both

real, the imaginaries are conjugate.

3. Show that if /'(,/. //) is a symmeti'ic iiolyudmial in x and y with n^al coetti-

cicnts so that l'(.r. //)
--- l'(y. x). tlien if conjugate imaginarics be substituted forx

and /y, the value of the polynomial will be I'eal.

4. Show that if a -\- Jti is a rout of an algebraic e(iuation V{x) — with real

coeflicicnts, then a — l)i is also a root, of the eipiation.

5. Carry out tlir indieatcd ojx'rations algebraically and make a graphical repre-

sciitalioii for every nunilicr conrcriieil and for the answer :

(a) {1 + iy\ (p) (l + V '.^
/) (1 - 0. (7) (-i + ^ ^V (^ + V^),

V2 - i \'-i

- ')-

6. Plot and tind the modulus and angle in the following cases:

(<() - 2, iji) - 2 V^l, (7) ^l + ii, (5) I-
I
n'^.

<^> ii ;•
1 - i -X'l-i

iv) ,, ,

. .,'

(1 + it'
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7. Sliow that iJie modulus of a quotient ofttco numhvrf^ is the (juolient of tite moduli

and that the angle is the anrjle of the numerator leas thai of the denominator.

8. Carry out the indicated operations trigononictrieally and plot:

(a) Tlie examples of Ex. 5, (/S) Vl + i \'l - (, (7) \/- 2 + 2\^Si,

(5) (VITl + Vl^)-, (e) VV2 + V^, (s-) \2 + -^ VS (,

(77) ^10 (cos 200^^+ (sin 200°), (^) -v/ITT, (0 "v^.

9. Find the ecpiations of analytic j^eonietry whicli represent the transforma-

tion ecjuivalent to nudtiplication by d = — 1 -\- V— o.

10. Show that l^
— a I

= /•, where z is a varial)le and a a fixed complex mimber.

is the equation of the circle (,r — (/)-' + (// — b)- = /•-.

11. Find cosox and cos8.f in terms of cosj-, and sinO j and sinTj in terms (if

sin .r.

12. Obtain to four decimal places the five mots VI.

13. If z = J' + iy and z' = x' -\- i;/', show that z' = (c<is0 — /sin (p)z— a is the

formula for shifting the axes tiirougli the vector distance if = a + ih to the new

origin (a, h) and turning them through the angle (p. Deduce the ordinary ecjua-

tions of transformation.

14. Show that \z — "1= A-jz — /3|. where I is real, is the e(]natiiin of a circle;

spt'cif}^ the piisitiiin of tlie circle carefully. I'si' the theorem : The locus of points

whose distances to two lixed points are in a constant ratio is a I'ircle the diameter

of which is divided internally and externally in the same ratio by the tixcd points.

15. The transformation z' = — , where a. h. r, d are conqilex and ad— he ^ 0,
cz + d

is called the general linear transformation of z into z' . Show that

ra + '/'

\z' — a'\ = k\z' — p'\ becomes \z — a\=k .- - - ;-,z— /3|.

I

r;i + f/

1

Hence infer that tlie transformation cari'ies circles into circles, and points wliich

divide a diameter internally and externally in the same ratio into jioints whicli

divide some diameter of tlie new circle similarly, but generally with a dit't\'rent I'atio.

73. Functions of a complex variable. Lot ,v = ,/• + /// lie a coinplcx

variable reprcseiitalilo yooiuotrically as a- varialilo point in the ;''//-plaiio,

which may he called the rmiipler jilanc As z (leteniiiiies the two real

numbers .-'• and //, any ftmction Fi-r, //) which is the sum of two single

valued real functions in the form

F{.r, ,/) = X (./•. v/) + IV {.r, //) = Jl (cos 4) + (• sin ^I>) (19)

will be cotupletely determined in value if z is given. Such a function

is called a cooijtJe.i' function (and not a function of tlie eom})le.x: vjirialjle,

for reasons that will appear later). The magnitude and angle of the

function are determined by

.V .

]'

/,' = Va'- + Y\ cos $ = -7 , sin * = -
. (20)
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The function F is continuous Ijy definition wlien and only -vvlien both

X and Y are continuous functions of (,r, y) ;
7.' is then continuous in

(./•, y) and F can vanish only when R = : the angle $ regarded as a

function of (.7-, ?/) is also continuous and determinate (except for the

additive 2 inr) unless R = 0, in Avhich case X and Y also vanish and the

expression for $ involves an indeterminate form in two variables and

is generally neither determinate nor continuous (§ 44).

If the derivative of F with respect to z were sought for the A'alue

z = a + >^>, the procedure Avould be entirely analogous to that in tlie

case of a real function of a real variable. The increment A,t' = A,/' + /Ay

would be assumed for z and AF would be computed and the quotient

AF/Az would be formed. Thus by the Theorem of the ]Mean (§ 4(3),

AF ^ AA' + ;a )' ^ (x: + / );;.) \.,- + (x; + ; )-;) \y
Az A./' + lAy A./' + /Ay ^' ^~ ^

where the derivatives are formed for (n, ],) and where I is an infinitesi-

mal complex number. AVhen \z approaches 0, both A./' and Ay must

approach without any implied relation between them. In general the

limit of \F/\z is a double limit (§ 44) and may therefore depend on

the way in wliicdi A.'- and Ay approach their limit 0.

XoAV if first Ay = and then subsequently A,/- = 0. the value of the

limit of AF/Ar; is A'-,'. + lY'^ taken at the point (", //j ; wliereas if first

A^' = and then Ay = 0, tlie value is — IX'^ -\- Y'^. Hence if the limit

of AF/Az is to lie indepeiident of the way in which A." approaches 0, it

is sui'ely necessary that

£X .££__. rX ar
ex c.c cy cy

cX cY cX cY
or -7— = -— and — = — -;—• ^22)

c.i' cy cy CX ^ '

And conversely if tliese relations are satisfied, tlum

AF (cX
,

.cY\ ^ icY .cX\

A.v \C.r CX J \cy cy)

and the limit is A'' + lY'^ = Y', — iXy tak(^n at tlie ]>oint (n, //), and is

independent of the way in which As approaches zei-o. The desirability

of having at least tlie ordinary functions differentiabh^ suggests the

definition: A complex funrfuni F(^x, y)=Xi.r, y)-\-(Y{x. y) is rnn-

s'uhrred as a function of tlie conijjlex va ruihle z = .'• -\- iy irlicn (in(J only

vJicn X and Y are in yenprol (Jiffercnfiiihle and satisfy the rtdntions (22).

Til tliis cnsc t///' dri'irotire is
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, , ilF cX .cY cY .cX ,^„

^ ^ dz CX CX
(^il ^y

These conditions may also be expressed in polar coordinates (Ex. 2).

A few words about tlie function <I>(.r, y). This is a multiple valued function of

the variables (x, y), and the difference between two neiu-libdrin^: branches is the con-

stant 2 7r. The application (if the discussion of § 45 to this case shows at once that,

in any simply connected reizion of the complex plane which contains no point («, li)

svich that R{n, h) = 0, the different branches of $(.c, y) may be entirely separated

so that the value of $ nuist return to its initial value when any closed curve is de-

scribed by the point (.f. y). If. however, the region is multiply comiected or contains

points for which U — (which makes the reuion nudtiply cimni.'cteil because these

points nmst be cut our), it may happen that there will be circuits fur which <t>,

although changing contiuuuusly. will imt return tn its initial \alue. Indeed if it can

be shown that <i> dues imt ivtui'ii to its initial value when cJiauging continuously as

(.r, y) describes the boumlary of a region simply comiected except for the excised

points, it may be inferred that there must be points in the region fi_)r which R = 0.

An applicatinn uf tliese results may be made to give a very simple demonstration

of Uie fundamental tltcorcm of nlgebra that every equation of the nth degree lias at least

one root. Consider the fuurtidu

F{z) = z" + a,r'-i + • • + <i„-iz + a„ = X(.r. y) + iY(.r. y),

where A' and i' ai'e found by writing z as ,r + ly and expanding and rearranging.

The functions X and Y will be polynomials in (./;. y) and will therefore be everj"-

where finite and continuous in (x, //). Consider the angle <I> of F. Then

* = ang. of F = an-:, of a" ( 1 + — H h
^'" "- + —

) = an-, of 2" + ang. of (1 + • • •).

\ z 2''-i z"l

Next draw about the origin a cii'ele of radius r so large that

I",'
+ •• + 1^^- ' +

Then for all points z upon tlie circumference the angle of F is

<J> = ang. of F = ?( (ang. of z) + ang. of (1 -|- 7;), \'n\<^-

Now let the point (.r, y) describe the circumference. The angle of z will change by

2 TT for the complete circuit. Hence <J) must change In' 2mr and does not return to

its initial value. Hence there is within the circli' at least one point (a. h) for which

li{(i. h) ~ Oand conseouently for which X{a, h) = and Y {a. h) ~ and F{a, b)=0.

Thus if a = (I + ih. then /•"(<» ) = and the ecjuation F(z) = is seen to have at

least the one root a. It follow^ that z — a is a factor of F [z) ; and hence by induc-

tion it may be seen that F(z) = has just n roots.

74. The discussion of tlie algelmi of complex numbers showed how
the sum, difference, jiroduct, quotient, real powers, and real roots of

such numl)ers could ho found, and hence made it possil)le to compute

the vabie of any ^^'ivcn alg'oliraic expression oi- function of ,-; for a y-iveii

value of ;;. It renuiins t<.) sIkjw that any alj^^'braic expression in z is
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really a function of z in the sense that it has a derivative with respect

to z, and to find the derivative. Xow the differentiation of an algebraic

function of the variable .r was made to depend upon the formulas of dif-

ferentiation, (6) and (7) of § 2. A glance at the methods of derivation

of these formulas shows that tliey were proved l)v ordinary algebraic

manijoulations such as have Ijeen seen to l)e equally possible Avith imagi-

naries as with reals. It therefore may be concluded that (in a hjehrule

e.i'pression In z /ms (t (hrrlrdflre icifli rrspt'ct in z and that Oi'i'lruflrc

VKn/ he found just us if z were a ri'dl ru r'uthh'.

The case of the elementary functions r, log,-;, sins;, cos ,v, •• otlici-

than algebraic is different; for these functions have not been defined

for complex vai'iables. Now in seeking to define these functions when ::

is complex, an effort should l^e made to define in such a way that: 1°

when z is real, the new and the old definitions Ijecome identical : and

2° the rules of operation with the function shall be as nearly as possi-

ble the same for the complex domain as for the real. Thus it would In-

desirable that 7>'^' = r^ and </ + "' = e'f"', when z and /'• are complex.

With these ideas in mind one niay proceed to define the elementary

functions for complex arguments. Let

i~- = /.' (./,
//) [cos ^ (,', //) -f ; sin $(,/, //)]. (24)

The derivative of this function is, by tlie iirst rule of (23),

c c
1J('~ = -^

(
A' cos <!>) 4- / — ( R sm 4>)

c.r C.r

= (/.','. cos <t> — 7.' sin <P $,') + / (
/,',', sin <$• -f A' cos <I> • $,',),

and if this is to be identical with '- ab(i\-c, the e(piations

A',', cos <I> — A'4)'. sin $ = Ji cos <^ A',' = A'

or
A',', sin <I> -f L'<t>',. cos 4> = /.' sm <P f,, =

must hold, wliei'c the second pair is obtained by solving the first. If

the second i'oi'ni of the dci-ivative in (2.')) had licen used, the results

would have licen
/,'J
= 0. <i>^'^

— \. It tliei-efoi-e appears that if the

derivative of r~. however computt'd, is to be i'-. then

7.'; = n, /,',; = o, ci',: = o. <p;, = i

are four conditions ini])0se(l upon /.' and (p. These conditions will be

satisfied if 7' = >'' aiid <I> = >/.* Hence define

i'~ = (' '
^ '" = ,-' (COS // -f-

;

sin //)

* The use of tlH iiiori! L^i'iirral Snlutiiills /.' - ','', 'p ,/ -L 1
•

iiiicli wdiili 1 III It 1-ClliU-L til '' w

i

irii 1/ (1 ami z .' Ill- W.Mlia I!

'/ -i- '' wdiilil Irail to (•xiir<'ssiciti>
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With this definition 7>e' is surely e^, and it is readily shown that the

exponential law e' + "" = (fe"' holds.

For the special values \ iri, ir't, 2 irl of ,. the value of (f is

t'2"' = /, r-- = -l, <--' = !.

Hence it appears that if 2 inrl he added to z, ('"" is unchanged;

t-- + -"'' = r", period 2 tt/. (26)

Thus m tltp rnriipli'.r iJnnuiln r^ Jid.-i iln> period '2rrl. just as cos./' and

sin a- have the real period 2 tt. Tliis relation is inherent; for

e'" = cos // + '' sill !/• li''" = (^os u — l sin //,

''"' + ''""'
.

''" — ''"'"
,o_and cos y = . ; sm //

= — • (2i )

2
'

2 <.

The trigonometric functions of a real variahle // may l)e cxjiressfd in

terms of the exponentials of yl and — ///. As the exponential has Iteen

defined for all complex values of .-.-, it is natural to use (27^ to define

the trigonometric functions for complex values as

cos z =
^,

' sin ,-: = —~ (J .

;

With tliese definitions the ordinary formulas for cos (-; + "'), ^> sin ,-.', • • •

may be obtained and Ije seen to hold for com])lcx ai'gunients, just as tlie

corresponding formulas Avere derived for tlie hy])erbolic functions (§ ~j).

As in the case of reals, the logarithm log ,v will be defined for com-

plex numbers as the inverse of the exponential. Thus

if i'~ = >r, tlien log //• = ,v + 2 niri, (2S)

where the periodicity of the function r~ sliows tliat fl/r /of/r/rif/nn is not

iini<iuehj fh:t<;rtnini-d hut (idinlts. flic (iddlflnn <if 'Inirl in (niij one <>f !fs

values, just as tan~^ .r admits tlie addition f)f ?i7r. If ir is written as a

complex numl)er ii + ir with modulus /• = '^' ir + c'- and Avith the angle

</). it follows that

//• =. „ + ''• = '•('•OS (/) + / sin <^) = rr'-'' = ,>-'--^'J"
: (29)

and log //• — l(.)g /• + ^/ = log A li- + r- + i tail"' ('/")

is the expression for the logarithm of //• in terms of t]n.^ hkhIuIus and

angle of ?/ ; tin.' '2 rnri mav he added if desired.

To this point tlie expression of a power a^'. Avhere the ex])()ne]it // is

imaginary, has had no definition. The definition niay now be givoi in

terms of exponentials and logarithms. Let
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In this "vvcay the problem of computing c^ is reduced to one ah-eady

solved. I'roni the very definition it is seen that the logarithm of a

power is the product of the exponent hy the logai'itlnn of the base, as

in the case of reals. To indicate the path that has been followed in

defining functions, a sort of family tree may be made.

real numl)ers, .c

I

real powers and
roots of reals, x"

I
I

real angles, x
\"

real trigonoiueti-ic functions,

cos J, sin/, tan-ij, • • •

exponentials, logarithms

of reals, t-''. \o<ix

real powers and rex its

of iniairinaries. z"

I I

exponentials of iniauinaries, e^

logarithms of imaginaries, lo<j

imaginary powers, z"

trigonometric fmictions
of imasiinaries

EXERCISES

1. Show that the following complex functions satisfy the conditions (22) and

are therefore functions of the complex variable z. Find F'(z):

(5) log Vj:- + >f + i tan- 1 - ,

(f) sin J- sinh y + i cos/ cosh //.

(a) X- - ij- + 2 ixy,

(7) -r-^-, - ' ;o-^

(
e
) &' cos y + ie' sin //,

2. Show that in polar ciHirdinates the cimditions for the existence of F'{z) ar

cX _lcY_ rT

cr r c<p cr

3. Use the conditions (if Ex. 2 to show from J) lo

1^ with F'(.) = (^+^^)(n,s^
r cd> \ cr

I sm

z- 1 that log z = log r + (pi.

4. From the definitions given above prove the formulas

(or) sin (.r + ///) = sin x cosh // + i cos x sinh //,

(/3) cos (.r + iy) = cos x cosh // — < sin j sinh y,

sin2.r + /sinh 2//
7 tan (.r + ly) = --— •

cos 2/ + cosh 2 //

5. Find to three decimals the complex numbers which express the values of:

(e) sin \ TTi.

(0 i-^'(-i).

(.0 CO.-

(7) e-^ ' ^ ^ •', (0)

(t?) sin(^ + i
x- o). C?) taii(-l— /).

(\) l.igU+^x'^). (a) ln-(-l-;).

6. Owing to the fact tliar logr; is multiple valued. */'' is multiple valued in such

a manner that any one value may be nmltiplied liy c-"~'"'. Find one value of each

of the following and several values nf one of them:

(a) 2', {13) i'\ (7)^^. (5)^, (^) (1 + i^'-S)''' '
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7. Show tliat Z)«^ = a~ log a when a and z are complex.

163

8. Show that Oi''Y = a'"': and fill in such other steps as may l)e su,a-,i(ested by

the work in the text, which for the most pjart has merely been sketched in a broad

way.

9. Sliow that \i f{z) and g {z) are two functions of a complex variable, then

/(z)±y(2), ocf{z) witli a a complex constant, /(z)^(z). f{z)/(j{z) are also func-

tions of z.

10. <)btain louarithmic expressions for the inverse triironometric functicjns.

Finil sin- '/.

75. Vector sums and products. As stated in § 71, a veotor is a quan-

tity wliich lias mag-nitudo and direction. If the magnitudes of two

vectors are ecjual and the directions of tlie two vectors are the same,

tlie vectors are said to be (^(jual irres})ective (jf tlie

position which tliey occu})}' in s})ace. Tlie vector

— a is hy definition a vector \vln(di has the same f^i

magnitude as a hut tlie 0}ii)Ositc direction. Tlie ^
vector i/ia is a voctoi- which has the sami' diroction

as a (or the oii])Osit(') and is /// for — /// ) times as

long. The law of vector or geonicti-ic addition is

the parallelogram or triangle law (§ 71) and is still

ap])licable Avlieii the vectors do not lie in a plane

hut have any directions in s])ace: for any two vec-

tors brouglit end to end determine a plane in which the construction

may he carried out. \'eetors will he designat<'d by (4 reek small lettiu-s

or by letters in heavy type. The i-idations of e(piality oi' similaritv

between triangles establish the rules

a + {3 = (S + a. a-\-{(3-\-y) = in + ^ » -f- y. /// (a -f /3 ) = i/<'t + ////? (
;;-50)

as true for vectors as well as for numbei-s whether real or complex. A
vector is said to he zero when its magnitude is zero, and it is writ-

ten 0. Eroni the definition of addition it follows that

or + = fi. In fact us fur us inlil'dion, suhirai-fuin, aad

iniiltiiilii->ifl(,n III/ nil iiiJicrs nn- nnicfnii'il, n-rturs nhi'ij

fill' s"//ii' f'lriiiiil Imrs IIS nil iiihrrs.

A vector p may be resol\'ed int(^ components }iar-

allel to any three given N'ectors a.
ft. y wdiich are not

parallel to any one ])lane. For let a jjaralleleiiiped

be consti'ucted with its edges ])ai-all(d to the three

given vectors and with its diagonal etpial to the vectoi' whose compo-

nents are desired. Tlie edges of the paralhdepiped are then certain
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inulti})les xa, y(3, .ty of a, (i. y ; and these are the desired components

of p. Tlie vectoi- p may be written as

p = xa + ///3 + .-y.* (31)

It is clear that two equal vectors would lun-essarily have the same

components along three given directions and that the components of a

zero vector would all be zero. -Just as the ecjuality of two complex

numbers involved the two equalities of the resijective real and imagi-

nary })arts, so tlie ecpiality of two vectoi-s as

p = :ra + >//3 + -:y = -r'n + //'/? + r:'y = p' (31')

involves the three eipiations ./• = .'•', // = //, r: = z'.

As a problem in the use of vectors let there be triven the three vectors a, /3, y
from an assumed oritiiu to three vertices of a parallelogram ; refjuired the vector

to the other vertex, the vector expressions for the sides and diagonals of the paral-

lelogram, and the proof of the fact that the diagonals bisect

each other. Consider the iigure. Tlie side A IS is. by the

triangle law, that vector which when added to OA = a
gives OB = ^. and hence it nnist l)e that Ali = (i — ex.

In like manner .K' = 7— a. Now OD is the sum nf OC
and CI), and CI) = AH: hence 01) = 7 + /3 - a. The diag-

onal AIJ is the difference of the vectors OD and OA. and

is therefore y + (3 — 2 a. The diagonal 1>C is 7 — /3. Now the vector from to the

middle point of ]IC may be found Ijy adding to OB one half of BC. Hence this

vector is /:i -t- 4 (7 — /i) <)r \ (^ + 7). In like manner the vector to the middle point of

AD is seen to be a + H.7 + /3 — - <») "r I (7 4- /3). which is identical with the former.

The two middle points tlierefore coincide and the diagonals bisect each other.

Let (I and (3 be any two vectors, \a\ and \(3\ their respective lengths,

and /I (a. jS) the angle between them. For convenience the vectors may
be considered to be laid otf from the same origin. The product of the

lengths of the vectors by the cosine of the angle lietween the vectors

is called the sra/af j,fot/iN-f,

scalar product = a.^ = |^!!^1 ''^^^ ^ <«• /?), (32)

of the two vectors and is denoted l)y jilaeing a d(.»t between the letters.

This combination, called the scalar ]troduct, is a number, not a vector.

As 1^1 cos z^ (a'. /3) is the jirojeetion of /? u])on the direction of a, the

scalar ])ro(luet may be stated to lie equal to the prodtict of the length

of eitlier vector l>y the lengtli of the iirojcction of the other iqton it.

Ill jiarticular if either \'ector were of miit length, the scalar jiroduct

would bt' the projection of tlie (jtlier upon it. with projter regard for

* The numbers ./•. >/. z are tlic (ibli(|nr coru'diiiatt's of tlie torniiiia! end ai p (if the

initial cnrl be at the (iriudii) i-cffi-icil to a scr of axes whicli are i)arallcl to a. pS. 7 and
upon winch the unit lengths are taken as the lengths of n, /3, 7 respectively.
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the sign ; and if Ijotli vec-t(«'s arc unit vectors, tlie pi'oduct is the cosine

of the angle between them.

The scalar product, from its delinition, is (•(immutdtire so i\vAt(X'^=^'<x.

Moreover (/tia)'fS = a'(ii)(3) = m {<X'(i), tlius allowing a numerical factor

m to be combined with either factor of the product. Furthermore the

distrlhatirc' hnr

a.(i3 + y) = n-/3 + n.y or (a + ^).y = a.y + yS-y (33)

is satisfied as in tlie case of nuiubcrs. Foi- if a be written as tlie product

(/a^ of its length /t by a vector a^ ol' unit length in tlie direction of (x,

the first equation ])ecomes

(la^'ift + y) — '"•'^i*/?
+ "(t^'y or (x^-([i + y) = a^'(i + rc^-y.

And now «j»(/3 + y) i^ the |)rojection of tlie sum /? + y n})on the direc-

tion of a, and cc^'P + 'tj.y is tlie sum of the ])i-ojections of /Sand y iqion

this direction; liy the law of projections these are equal and hence the

distributive law is })roved.

The associative law does not hold for scalar products ; for («•/?) y
means that the vector y is multijilied by the numVjer a-^, Avliereas

« (y8«y) means that a is multiplied by (/3»y), a very different matter.

The laws of cancellation cannot hold: for if

«./? = 0, then [a"/3| cos Z (a. /?) = 0, (34)

and the vanishing of the scalar pi'oduct a-ft implies either that one of

the factors is or that the two vectors are ])er])endicular. In fact

a.yg = is called the cnndlfuni of ix'rpcn'ilciild r'lt ij. It should be noted,

however, that if a vectoi' p satisfies

p.a = 0, p./3 = 0, p.y = 0, (35)

three conditions of perpendicularity with three vectors a, /3. y not

parallel to the same ])lane. the inference is that p = 0.

76. Anotlier product of two vectors is the rfcfnr prodnet
^

vector product = ax/3 = v a'} fi\^n\ A ((t, ft), (oG)

where v represents a vector of unit length normal to the plane of a

and /3 upon that side on which I'otntioii from a t(j

yS through an angle of less than 1S()° apiu-ns posi- axiSt

five or counterclockwise. Thus the vector ]>roduct

is itself a vector of which the direction is ])er])en-

dicular to each factor, and of whicli the magni-

tude is the ])roduct of the magnitudes into the

sine of the included angle. The magnitude is therefoi'e equal to the

area of the parallelogram of which the vectors a and /3 are the sides.
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The vector })roduct will be represented Ijy a cross inserted between the

letters.

As rotation from ^ to a is tlie oppositt; of tluit fr(jni a to /3, it follows

from the definition of the vectcjr product that

fixa = - ux/3. not ax^ = /3xa-, (37)

and the product is not cdhhh iif<ifii-i'. the order of the factors must be

carefully observed. Furthci-morL' the e(piation

ax 13 = V a'\l3'<s\nA(a, /3) = (38)

implies either that one of the factors \;uiishes or tliat the vectors ft and

/3 are ])arallel. Indeed the condition ax/3 = is called the cnndiflnn nf

piirdlli'l'tsiii. The laws of cancellation do not hold. Tlie associati^e law

also (l(_)es n(jt hold; for (axft)xy is a vector jierjiendicular to ax/3 ;inil y.

and since ax^ is perpendicular to the plane of tc and (3. tlie vector (ax/3)xy

perpendicular to it must lie in the plane of a and /3 : whereas the vec-

tor ax((3xy), by similar I'easoniny, must lie in the jilane of /3 and y ; and

hence tlie two vectors cannot be (^qnal exi-ept in the very special case

where each was ])arallel to
f3
which is comnion to the two ])lanes.

lUit the opei'ation ( //ki ^y /3 = nx( i//f3} = ///(ax/Ji. which consists in

alhnving the transference of a numerical factor to any position in the

])roduct, does hold; and so does the (llsfriliiifii-c Jan-

«:x(/3 -f y) = ax/S + axy and ( a + /3)xy = axy -f- ^xy. (.SO)

the ])r(jof of which will lie L^'iveii l.telow. In ex]iaiidiii,L;' accoi-diiiL;- to

the distributive law care must be exercised t(j kee]) tlie order <.»f tlie

fa(;tors in each vector product the sanu^ on both sides of the eipiation.

owing to the failure of the commntative law: an interchan,!-;'e (.)f the

order of tlie factors chanyes the si^'ii. It might seem as if any algeliraic

operations where s(_) many of the laws of elementary algebra fail as in

the case of vector ])roducts would be too restricted to be \vv\ useful;

that this is not so is due to the astonishingh" great number of pi'obh^ms

in whicdr the analysis can be cai'i'ied on with only the laws of addition

and the distributive law of multiplication conibined with the jiossibility

of transferring a nuniei-ical factor from one position l<i another in a

jiroduct; in addition to these laws, the scalar ])roduet cr»/3 is eommuta-

tive and the vector jiroduct 'tx/3 is commutative except bir chaiigi^ of sign.

In addition to segments of liiu^s. jilnnr (irms tiKuj lie ri'ijn nli-il ".-

i-fffor ijiinnfiflfs : for a ]ilane area has magnitude (the amount of the

area) and direction (the dii'ection of the noinial to its ]ilane ). To S]tecify

on which side of the ]ilane the normal lies, some con\'ention must be

made. If the ai'ea is part oi' a surface inclosing a jiortion of Sjiace. the
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A^

normal is taken as the exterior normal. It' the area lies in an isolated

plane, its positive side is determined only in connection with some

assigned direction of description of its hounding curve; the rule is : If

a person is assumed to walk along the boundary of an area in an

assigned direction and upon that side of the plane which

causes the inclosed area to lie upon his left, he is said

to be upon the positive side (for the assigned direction

of description of the boundary), and the vector which

represents the area is the normal to that side. It has

been mentioned that the vector ])roduct represented

an area.

That the projection of a plane area u})on a given plane gives an area

which is the original area midtiplied by the cosine of the angle between

the two planes is a fundamental fact of projection, following from the

simple fact that lines parallel to the intersection of the two planes are

unchanged in length whereas lines perpendicular to the intersection

are multiplied by the cosine of the angle between the planes. As the

angle l)etween the normals is the same as that Ijetween the planes, f/te

projrctlini of an (iraa ^(pon a plane and tin' jtrnjcctidii of flic ci'ctor rep-

resenting the (ireii upon the nurnidl to the jdmie are cqulrdlent. The

projection of a closed area upon a plane is zero; for the area in the

projection is c(n'ered twice (or an even numljcr of times) witli opposite

signs and the total algebraic sum is therefore 0.

To prove the law ax(/3 -)- y) = av.^ -(- axy und illustrate the use of

the vector interjjretation of ai-eas, construct a triangular piism with the

triangle on /3, y. and /3 + y as base and a as lateral edg(\ The total

vector expression for the surface of this ])rism is

y3x(t + yx<t + ax(/3 + y) + .V(/3xy) - \
/3xy = 0,

and vanislies because the surface is clos(-d. A cancel-

lation of the eijual and o})positc terms (the tw(j

leases) and a simple transposition combined with the

rule /3xct = — ax^ gives the result

frx(/3 -(- y) = — i^^"^
— y^"-' = '^'^/S + axy.

A svstem of rectors of reference wliicli is parti(,-ularly iiseful consists

of three vect(jrs i, j, k of unit length directed along the axes A', 1', Z
drawn so that rotation from A' to }' a})pears positive from the side of

the ./'//-plane u})on which Z lies. The com])(jnents of any \-cctor r drawn

from the origin to tlit^ jioint (',/,
//,

,-;") are

,'/i.
//J.

,-;k, and r = ./i + //j + .-.k.
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The products of i, j, k into cucli otlicv arc, from t\w definitions,

i-i = j-j = k.k = l,

i-j = j-i = j-k = k.j = k.i = i.k = 0,

ixi = jx j = kxk = 0, ^ ^

ixj = — jxi = k, jxk = — kxj = i, kxi = — ixk = j.

By means of tliese prodm^ts and the distributive laws for scahir and

vector produ(!ts, any giv(Mi products may be expanded. Thus if

a = ^^^i + aj + (1,^ and fi = A^i + />j + ^'Js.,

then a-.^ = a/>^ + r/./., + a.h,^, (41)

ay. 13 = (nj>^ - r//gi + ("/>, - "/',) j + ("/', - ''7'i)k,

by direct multiplication. In this Avay a passage may b(^ made from

vector formulas to Cartesian formulas whenever desired.

EXERCISES

1. I'rovc ^coiiictricall.y tluit (t: + (p + 7) = (<i' + (i) + y and 11/ {it + /i) = 111a + iu(i.

2. ]f a and ft
arc tlui vectors from an assumed oi-ii;in to A and li and if ('

divides All \\\ the ratio m : n, sliow that tlie vector t.o (,' is 7 = [ita + iuji)/{)n + it).

3. In tlie ])ara,lleh>,uram AIICI) show tliat the line HE coiniectinii,- tlie vertex to

the, middle point of tlu^ oi^posite sidi^ CD is triset'ted Ijy the diai^'onal AJ) and

trisects it.

4. Show that tin; medians of a triangle meet in a, point and are trisected.

5. ]f *;/[ and iu., are two masses situated at 7'^ and 7*.,, the rotter of (jraviiy or

rvnlif 0/ >n<(ss of m^ aud 111., is dclined as that point, (! ou tlie line l\f'., which

di\ides /',/'., iu\<'rsely as the masses. Moreos'er if CV, is the center of mass of a

nundier of masses of whi(di the total luass is .1/, and if (,'., is tlie ceiilef of mass of

a niuuher of other masses whose total mass is .)[.,, tin." same rule applied to M^ aud

37„ and C/, and ^/., !.;ives the center of gravity (,' of the total number of masses.

Show that,

in.r. + m.,r.,
,

?/;,r, + ?//.x, -»-•• + ?H„r„ Sw^r
r ^ '

' - - aud r — --'- ' - - - :--
- --,

'"i + "i.j "'1 + "'o + • • + '"„ i:»(,

whci'c r denotes the vector to the center of ni'avily. liesolve inlo comjionents to

.show ,, „ ..

.1- r:- — , // :.: -'
, Z :

-.
-

6. if a and ji are t.wo Jixed vectors aud p a \ariahh> xector. all lieiiti;- laid off

from the same oriniii. show that (p — ft)-"- = •* i''^ tht' equation of a, plane llii'ounh

the cud of li ])ei-i)eu(lieular to (f.

7. Let, cc, (i. 7 he the vectors to the vertices .1. J!, (' of a trian-le. W'l'ite Ihe

thiee e(|ualions of Ihe planes through the vertices ]>erpeuilicular to the o]ii)osite

sides. Show that, the third of these can he derived as a. comliinatiou of the other

two; and hence iufer that the three ]ilaiies have a line in common and tiiat the

perpendiculars from the vertices of a triait^le meet in a, point.
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8. Solve the xn-oblem analogous to Ex. 7 fur the perpendicular bi.sectoi-.s of the

sides.

9. Note that the length of a vector is v axr. If a, p, and y = (3 — a are the

three sides of a triangle, expand 7.7 = (/i — a)'{l3 — a) to obtain the law of cosines.

10. Sliow that the sum of the scjuares of the diagonals of a parallelogram ei|uals

the sum of the scjuares of the sides. What docs the dilfcrence of the sqiiares of the

diagonals cental ?

(X*8 ( (Xy. 8\ X (f
11. Show that ^ (f and - are the conix)onents of /i parallel and iierpcu-

d'ct cixr

dicular to a by showing 1° that these vectors have the right direction, and 2° tiiat

they have the right magnitude.

12. If (f, 13, 7 arc the three edges of a xiarallelepiped which start from the same

vertex, show that (ax/i).7 is the volume of the parallelepi})cd, the volume being

considered positive if 7 lies on the same side of the plane of ci and (3 with the

vector axfj.

13. Show by Ex. 12 that (<tx/i).7 = a'{l3xy) and {(ixl3)'y — {l3xy)'a ; and hence

infer that in a product of three vectors with cross and dnt. the x'ositidu of the cross

and dot may l)e interchanged and the order of the factors may be permuted cyc-

lically without altering the value. Show that the vanishing of {i\xj3).y (U- any of

its equivalent expressions denotes that a, (3, 7 are parallel to the .same plane ; the

condition a'x/3«7 = is called the condition of complanarity.

14. Assuming a = «ji + a.,} + r(..k, l3
= li^i + ^,j + ^gk, 7 — c,i -|- r.,j + ('..k,

expand (r'7, a«/S, and (ix{i3xy) in terms of the coelticients t(j show-

ax (/ix7) = {(fy)ft — (((-•/i)7; and hence (ax/i)x7 = (^cfy) fi — {y'i3)a.

15. The formulas of Ex. 14 for expanding a i)rodnct with two crosses and the

ride of Ex. 13 tliat a. dot and a cross may be interchanged may be ajiplicd to expand

(ax/i)x(7x5) = (<i.7x5),:; - (,i-7x5)a .. (cix/^.5)7 - {^i-,i-y)5

and {axi3). {yx5) ~^ {a.y)il3.5) - {i3.y)i<r.5).

16. If a and
f3

are two unit vectors in the .///-phine inclined at angli's ff and
(f>

to the .f-axis, show that

a = ic'os^ + j sin 0, fi
= icos<;6 + jsin 4> ;

and from the fact that (t./i = cos (0 — 6) and ux/i =: ksin(0 — 6) obtain by multi-

plication the trigonometric fornnUas for sin((/) — 0) and cos (</> — B).

17. If /, ///. )( are direction cosines, the vect(ir /i + ?/(j + )/k is a vector of unit

length in tlu' direction for which /,//(, n are direction cosines. Show that (he

condition fm- ])crpcndicularity of two directions (/, m, n) and (/'. ;//'. )(') is

IV + nmi + >"t' = 0.

18. With the same notations as in Ex. 14 show that

j

i j k I
Kyj rf„ a., I

a'LX — (!{ + ((.J + (*.;- anil cixfi = a^ it„ a..
;

ami axft.y — 1
h^ h„ //,, i-

i \ '', h I

; ', ''I

'•':

:
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19. Compute tlie scalar and vector products of these pairs of vectors

:

(^'^) i

fv>i + 0.3 j — 5 k

'[^0.1 i- 4.2] + 2.0 k,
(/^) i

r i + 2 j + 3 k

^ - 3 i - 2
i + k,

(7)

ri + k

20. Find tlie areas df the parallehigrams dethied Ijy the pairs of vectors in

Ex. 19. Find als(j the sine and cosine of the angles between the vectors.

21. Prove ax[/3x(7x5)] = {a-yx5)(i — a-^yxS = /i-S (xxy — j3-y ax8.

22. What is the area of the triangle (1, 1, 1), (0. 2. 8). (0. 0,-1)?

77. Vector differentiation. As the fundamental rules of differentia-

tion depend on the laws of sul)traction. inultiiilicatiou by a nuinlx-r,

the distributive law, and the rules pennittin.L;- i-earrangement, it follows

that the rules must l)e ap^dicable to expi'essions containing vectors

without any changes except those implied by the fact that axfS =fc /3xa.

As an illustration consider the application of the definition of differen-

tiation to the vector jjroduct Uxv of two vectors Avhic-h are supposed

to be functions of a numerical variable, say ,/. Then

A(Uxv) = (U + AUjx(V + AV) — UxV

= UxAv -f AUxV + AUxAv,

A (UxV

)

A.r

r/(UxV)

Av AU
Ux

\
xV

A,/' A./'

= lim
A (UxV

)

AUxAv

Jy '/u
ux - + -XV.

(/./ (t.r

Here the ordinary rule for a product is seen to hold, except that

///« ordi'i' (if fltc fdctoi'ii III list nut III' Infci'cliinujiil

.

Th(^ interpretation oi tlie derivative is inqioi-tant. Let the variable

vector r 1)6 regarded as a function of some varial»le, say .', and suppose

r is laid off from an assumed origin so that, as ./ varies,

the terminal ])oint of r describes a ctu've. The incre-

ment Ar of r coi-responding to A./' is a vector quantitv

and in fact is the cliord of the ciu'\-c as indicatiMl.

Tin- (Irrirutn-r

'/T ,. Ar—
- = Inn - •

>/.r A./-

.. Ar
Inn —

A.s
(42)

is ill I' rrfun- II rri-tni- In ivjriit fn flir rii riw : ill ])articular if

the variable ./ were the ai'c x. tlie derivative woidd liavc

tlie magnitude unity and would be a unit \'ector tangent to the curv(\

The derivati\-c or differential of a \ector of constant length is per-

pendicular to the vector. This follows from the lad that the ^cctor
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then describes a circle concentric with tlie orij,dn. It may also be seen

analytically from the e<j^uation

r/(r.r) = ./r.r + r.^/r = 2 r.r/r = d const. = 0. (43)

If the vector of constant lenyth is of length unity, the increment Ar is

the chord in a unit circle and, apart from infinitesimals of higher

order, it is equal in magnitude to the angle subtended at the center.

Consider then the derivative of the unit tangent t to a curve with

respect to the arc .s-. The magnitude of dt is the angle the tangent turns

through and the direction of dt is normal to t and hence to the curve.

The vector cpiantity, i. j-2~

cur\-ature C = — = -7-^ > (44)
ds (IS'

therefore has the magnitude of the curvature (by the definition in § 42)

and the direction of the interior normal to the curve.

This work holds equally for plane or space curves. In tlie case of a space curve

the plane which contains the tanirent t and the curvature C is called tlie osculating

Xjlane (§ 41). By definition (§ 42) the torsion of n space curve is the rate of turning

of tlie osculating plane with tlie arc. that is. d-^/fU. To fin<l the torsion by vector

methods let c l>e a unit vector C/ v C«C along C. Then as t and c are perpendicular,

n = txc is a unit vector perpendicular to the osculating plane and rfn will ec^ual d\p

in magnitude. Hence as a vect<ir (piantity the torsion is

rZn J (txc) '7t , '7c . (Zc— xC + tx — = tx— ,

da (/.s dn d-s ds
(45)

where (since dt/ds = C. and c is parallel to C) the first term

drops out. Next note that dn is iierpendicular to n because it

is the differential of a unit vector, and is perpendicular to t

becatise cZn = 'Z(txc) = tx(?c and t«(txi?c) = since t. t. dc ;ivc -^
_

necessarily coniplaiiar (Kx. 12. p. Ki'.i). Hence T is parallel / ' ^

to c. It is convenient to consider the torsion as iiositivc \\iien jj /

the osculating plane seems to turn in tlic positive direction when
viewed from the side of the normal plane upon whicli t lies. An inspection of tlie

figure shows that in this case '7n has the direction — c and not + c. As c is a unit

vector, the numerical value of the torsion is therefore — c-T. Then

'/ CT= -cT

= — C'tx

. dc
C.tx- =

(Z.s

ct.
''^- vCC

(Ft 1

+ C =z^
'l^- ^''C.C 'l'^ VC-C

Ct)
d-x 1

ds'^ VCC
(450

^ C d'^x
t- X
C-C ds^ X".l"

where differentiation with respect to .s is denoted by accents.

78. Another sort of relation between vectors and differentiation

comes to light in connection with the normal and directional deriva-

tives (§ 48). If /'(./, y, z) is a function which has a definite value at
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eiich point of space and if the two ncij^hboring surfaces F= C and

F = (' + </(' are considered, tlie normal derivative of F is tlie rate of

change of F along the noi'nial to tlie surfaces and

is written dF/<Jn. The rate of change of F along ' - ^^^ ^

the normal to the surface /•' = (' is more i-apid than

along any other direction ; for tlie change in F be-

tween the two surfaces is (/F — di ' and is constant,

whereas the distance dn, l)ctween the two sui'faces is

least (apai't from inhnitc'simals of higher order) along the normal. In

fact if dr denote the distance along any other direction, the relations

shown by the figure are

dr = sec Bdn and —— = —— cos 6. (46)
(//• (In

If now n denote a vectoi- of unit length normal to the surface, the

product XidFIdn irlll he a, iwctor (jiKnitlti/ irliicli Ihis both tlui iiKKjnltitde

and tlie direction of most rapid Increase of /•'. Let

dF
dn

iJ'ad F (47)

l)e the symbolic expressions for this vector, wIkm'c V/'' is read as "del /'"

and grad /•' is read as " the gi-adient of /•'." If dv be the vector of which

(//• is the length, the scalar product n^/r is pre(dsely cos Odr, and hence

it follows that

,lx.\F=dF and r,.V/' = ^j (48)

where r^ is a, unit Ncclor in the direction dr. The second of tlie ecpia-

tioiis shows that the dlrcctlounl dcrlcailrc hi a mj direction Is tlie com-

ponent or projection of tlie (jrndloit In tliat direction.

From this fact the ex|)ression of the gradient may be found in terms

of its components along the axes. Vur the derivatives of F along the

axes are dF/cx, cFIcij, cF/cz, and as these are the comjjonents of \F
along the directions i, j, k, the result is

\l-

HeiKu;

^rad /•'

V = i

r.r c.z

(49)

c.r ' ('1/ f::

may be regarded as a symbolic vcctor-dilferentiating o])erator Avhich

when applied to /•' gi\'es the gradient of /•'. The ]»roduct

dX'^I'
dec

'/,/ ^- -h d,i 7 - + dr: -
] I'

c.r • cij c::.

dF m
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is iiniiUHliately seen to give the ordiiuiry ex})ression for d]-\ l""roiu this

form of grad F it does not a|)})ear tliat tlie gradient of a function is

independent of the ehoice of axes, but fi'oju the manner of derivation

of VF first given it does appear that grad /•' is a (h'finite vectoi- (}uan-

tity independent of the ehoiee of axes.

In the ease of any given function /-' the gradient may he found l)y

the application of the formuhi (-^9); hut in many instances it may also

he found hy means of the important relation dr'\F = dF of (-1-8). For

instance to prove the formula \ <^F(<) = FVG -\- G'Vi-', the relation may
1)0 applied as follows :

(/r.V(/-V/) = d(Ff;) = F<Ur 4- (idF

= FdX'Xa + (;dX'\F ^ dr.{FV(; + ^tf).

Now as these equations hold for any dircH'tion dr, tlu" dx may he can-

celed by (35), p. IGo, and the desired result is obtained.

The list' of vector notations for treating;- assiu-ncd practical prohlenis involving

computation is not i^reat, but for haudliiii;' tlic i^ciicral tiicory of such parts of

physics as are essentially concerned with direct iiuantities, mechanics, hydro-

mechanics, electromagnetic theories, et('., tlie actual use of the \'ector a(u'ovisnis

considerably shortens the formulas and has the added advantau'e of operating-

directly upon the magnitudes involved. At this point some of the elements of

mechanics will be developed.

79. According to Xc\vton"s Second Law, when a force acts upon ;i

])article of mass m. tlie i'<iti> of clKiniji' of iiuiiiu'ntii in is ei/xcl to tlic

fori'c (icinKj. (Did tiil:i's jdiicr in tin' dirrctinn of flic force. ]t therefore^

a})})cars that the I'ate of clumge of momentum and momentum itself

are to 1h' regarded as vector or directed magnitudes in the a])|)licati()n

of the St'cond Law. Now if the vector r, laid olT I'roni a fixed origin

to the point at which the moving mass in is situated at tiny insttmt of

time t, l)e differentiated with respect to the time t, tin' derivative dxjdt

is a vector, tangent to the ciu've in which the particle is moving and of

mttgnitude e(]ual to ds/dt or /•. the velocity of motion. As vectors*,

then, th(> velocity v ttnd the momentum ;ind the ft)rce nitiy be written ;is

Hence

dx
V == -—

'

dt
my, F = 'rjniv).

lit

dv d-x
III ,- = III -—;

dt dt'
= inf

(ol)

From the equation.s it ap])ears thttt the force F is tlie ])ro(luct of the

mass /// by a vector f which is the rate of change of the velocity rcganknl

* In ai)i)licatioiis, it is usual to denote vectors by heavy type and to denote the magni-

tudes (if tliose vectors by corresponding italic letters.
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as a vector. The vector f is called the acriderdtinn : it must not l>e con-

fused with the rate of change dr/df or d'-s/i/f- of the speed or magnitude

of the velocity. The components f^, f^, J\ of the acceleration along the

axes are the projections of f along the directions i, j, k and may be

written as f •!, f •]', f 'k. Then by the laws of differentiation it follows

that
, , / -x 7

. _ r . _ '^V . _ d (y.l) _ f/r,,

'^ ~ '^~
dt''^~ dt ~ dt

'

- . d-r . d-{T'i) d-.r

or tr = I •! = -TT.'! = TT,— = -TT, •

dt- dt- dt-

d'.r d'lf (Pz
Hence /,, = —; ^ /„ = ~,^ /'^ = 17

'

(It' dt' dt

and it is seen that the com])onents of the acceleration are the acceler-

ations of the com})onents. If A', )', Z are the components of the force,

the equations of motion in re(;tangular coordinates are

in
d'.r (T'li d'z
—7 = A', m -y'; = y, W -^7. = Z. (o2)
dt-

'

dt-
'

dt- ^ '

Instead of resolving the acceleration, force, and displacement along

the axes, it may be convenient to I'csolve them along the tangent and

normal to the curve. The velocity v may be written as /-t, wliere /• is

the magnitude of the velocity and t is a unit vector tangent to the

curve. Then
, , ^
r/v _ d(r\.) _ dr ilX.

~Yt ~ dt ~ "dt ^ ''Vt

dt <lt ds ^ r
But - =

,,^: ;77
= C- = ^ n, (o3)

where E is the radius of curvature and n is a unit normal. Hence

, d-s r- d's r-

It therefore is seen that the component of the acceleration along t!ie

tangent is d-s/dt'\ or the rate of change of tlie velocity i-egarded as a

numl)er, and the (•onn.)on(Mit noi'iiial to the curxc is r-/Jl. If 7' and A'

are the comjtonents of the force along the tangent and normal to the

curve of motion, the e(piations are

'^'•^'
.

'•'

"/' ^ I" ft = III r"., ' A" ^ iiif,^ = 11)
—

dt-
'

It

It is noteworthy that the force must lie in the osculating ])lane.

If r and r -f- Ar are two positidiis of tlie I'adius \-i'ctor. tlie area of

the seetoi- included bv them is i
I'Xcept \in- infinitesimals of higlier (jrder)
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AA = i rx(r + Ar) = i rxAr, and is a vector quantity of whieli the

direction is normal to tlie plane of r and r + Ar, that is, to the plane

through the origin tangent to the curve. The rate of description of area,

or the ureal vdoc'dii, is therefore

—- = Inii I rx— =
,
rx—- = \ rxv. (54)

dt - \f - dt - ^ '

The in-ojections of the areal velocities on the coordinate planes, which

are the saiiu' as the areal velocities of the projection of the motion on

those planes, art- (Ex. 11 l)elo\v)

dn d,i^ 1/ d.r dz\ 1 / d,i d.r\ _,,
^^^''^)' 2['^~'''d-f)' 2\'"di~^^dj)- ^^^)

If the force F acting on the mass m passes through the origin, then

r and F lie along the same direction and rxF — 0. The equation of

motion may then be integrated at sight.

m —- = F, 7//rx—- = rxF = 0,
dt

'

df '

'^v r/ ^ , ^
rx—- — — (rxv) = 0, rxv = const.

dt dt^ '
'

It is seen that in this case the rate of description of area is a constant

vector, Avhich means that the rate is not only constant in magnitude

but is constant in direction, that is, the path of the particle m. must lie

in a plane through the origin. When the force passes through a fixed

point, as in this case, the foice is said to l)e ccnfrdl. Therefore when a

particle moves under the action of a central force, the motion takes place

in a plane passing through the center and the rate of description of

areas, or the areal velocity, is constant.

80. If there are several i)articles. say n. in motion, eacli has its own equation

of ni(jtion. Tliese e(iuatiuiis may t»e eomljined by adilition ami .sul)sequent reduction.

m, ' = F,. »;., — - = F.,. • • •. m„—" = F„,
^ dt- ' - dt-

-
dt-

d-T, d-r„ d-T„ ^ ^ ^
and »ii ,

' + ?Ho -^o" + • • • + '"" -T^ = F, + F. + • • + F„.

^ J-r, d-T.-, d-x„ d-
,

But m, —- + m„—- + • • + »;„ = — (m,r, + "'or,, + • + mnT„).
1 fifi -

at'- dt- df^ ^ ^ ^ -
-

Let m^x^ + m.-x.^ + • • • + m,j„ = {jn^ + m.-, + • • + )n„) f = 3/ f

- _ '"I'^i + '">''•> + • + "hJn __ 2»(r _ 2»ir
or

?/(j + »(., + ••• + "In Swi M

Then .V-^ = F, + F., + • • • + F„ = Vf. (55)
dt- 1 - ^ " ^



170 ])IFFEKENT1AL CALCULUS

Now the vector r whicli has been here iutnKluced is tlie vector of tlie center of

mass or center of gravity of the particles {Ex. .'>, p. 1()8). 'I'lie result {')o) states, on

comparison with (51), that the centc'r of gravity of the n masses moves as if all the

mass M were concentrated at it and all the forces applied thi-re.

The force F; acting on the itli mass may be whdlly or partly due. to attractions,

I'cpulsions, pressures, or other actions exerted on that mass by one or more of the

other masses of the system of n particles. In fact let F,- be written as

F,- = F,,, + F/i + F,-^ + • • • + F„,,

where F,-/ is the force exerteil on »/, Ijy ;//, and F,-,, is llie force due tn some agency

external to I he ii masses which f(n'ni the system. Now l)y Newton's Tliird Law,

when one particle acts upon a second, the secoml reacts upon the tirst with a

force which is e(|ual in magnitude and opposite in direction. Hence (o F/, above

there will correspond a force F/,- =— F/y exerted by im on mj. In the sum i;F,- aU

these equal and opposite actions and reactions will drop out and >;F/ may be ir~

l)laced by SF,-o, the sum of the external forces. Hence I Ik.' iiiiiiortant theorem that :

The inotion of the renter of indss of a .sci of 'particles is (ts if (ill the muss ii'crc co)icv)i-

iratcd there (oul all the external forces vjere apj)lied there (the infernal fcn-ces, that is,

the forces of nuitual action and reaction between the particles being entirely

neglected).

The moment of a force about a given point is defined as the pi-oduct of tlie force

by till' perpt'udicular distance of the force from the ])oiut.. If r is the vector from

the jxiint its origin to any point in the line of the force, the moment is therefori;

rxF when considered as a vectcu' iiuantity, and is perpendicular to the i)lane of tin;

line of the force and the (u-igin. The e(iuations of » mo\ing masses may now be

combinetl in a different way and reduced, ^lultiply the eipiations by r^, r.,, • • •, r,j

and add. Then

'^v, '?v., f?v„ ^ .„ „
7H,r,x ' 4- )H„r„x - 4- . . . -(- //(,,r„x - =r,xF, + r.,xF., + • • • + r„xF,,

d d d ^ ^ ^or m, r.xv, + /«., r.,xv., + • • + ni„ - r„xv„ =. r.xF, + r.,xF„ + • • • + r,,xF,,

d
or - (»(,r|XV^ + ///„r.,xv., + . . . -f //(„r„xv„) := iilrxF. (50)

'I'his ('((nation shows tliat if the a real velocities of the dift'ereiit masses are multiplied

by those masses, and all added together, the derivative of the sum obtained is e(|ual

to the nioinent of all the forces about the origin, the moments of the different forces

being added as \-ector (luantities.

This i-esult may be simiilitied and put in a different form. Consider again the

resolution of F, into the sum F/u + F;i + • • • + F,„. and in ]iarticular cousiilei- the

action F,;/ and the reaction F;, -: — F;/ belwi'eii two iiarticles. Let it be assumed

that the action and reaction are not only ('<]ual and opposite, but lie along the line

coniiectiiig the two particles. Then tlie i)er])eiidicular distances from the oi'iiiin to

the actioii and reaction are ('(Uial and the moments of the action and reaction ai'e

'(lual and opposite, ;uid ma\' be dropjx'd from the sum 2r;xF,-. which then reduces

to i;r,xF,ii. ( Ml the other hand a term like iii;r;:<v,- may be written as r,x(/;(,v/). This

jiroduct is foi'ined from the nionientum in exactly the saiiu! way that the niomenl

is fornied from tlie force, and it is called the moment of momentum. Hence the

e(iuation (5(i) becomes
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— (total inoineiit of inoinentiuii) = moment of external forces.
dt

^ '

Hence the result that, as vector (juantities : T/ie r<Ue of change of the moment of

momentum of a system of particles is equal to the moment of the external forces (the

forces between the masses being entirely nef,'-lected under the assumption that action

and reaction lie along the line connecting the masses).

EXERCISES

1. Apply the deJiiiition of differentiation to prove

(a) d(U'V) = U'dv + V'du, (/3) (/[u.(vxw)] = rfu.(vxw) + u.('Zvxw) + u.(vx'/w).

2. Differentiate under tlie assumption that vectors denoted l)y early letttM's of

the alphabet are constant and tliose designated by the later letters are variable :

(a) ux(vxw), (p) acos^ + bsin/, (7) (u-u) u,

(5) ux , (e) u. , X - , (j-) c(a.u .

dx \ilx dx-l

3. Apply the rules for change of variable tr>sho\v that - - = —'- '-— , where
ds- s'-''

accents denote differentiation with respect to x. In case r. = ^1+ //j show that

1/ vC»C takes th(> usual form for the radius of curvatiii-i' of a plane curve.

4. The e(]uation of the helix is r = i'l" cos <p -\- ]a sin + kJxp with .s = a ar + 6-
;

show that the radius of curvature is («- + h-)/a.

5. Find the torsion of the helix. It is b/{a- + 0-).

6. Change the variable from .s to some otiier variable / in the fornnila for torsion.

7. In the following cases find the gradient either by ai)plying the fornnila which

contains the partial derivatives, or by using llie relation dT-VF — dF, or both :

(a) r.r = ./•- + //- + z-. Hi) log,-, (7) /• = Ar^.

(5) log (.r- +//-) = log [r.r - (k.r)-], (t) (rxa).(rxb).

8. Prove these laws of operation with the' symbol V :

(a) V(F + G) = VF + Vr;, (p) G-\(F/G) = CYF - F\(i.

9. If r. (p are polar corirdinates in a plane ami r, is a tiiiii vector along the radius

vector, show thrd i\r^/dt =: nd<p/dt where n is a. tuiit \-eeliu- peri)endieular to tlie

radius. Thus differentiate r = /Tj twice and separate the result iiUo components

along the radius vector and perpendicular to it so that

'~"dt:^ \rf(/
'

*"'"(Z> "
dt dt" rdt\ dt,

10. Prove conversely to the text that if the vector rate of description of area is

constant, the force nuist be central, that is. rxF = 0.

11. Note that rxy.i. rxyj. rxv-k are the xn'ii.if'Ctions of the areal velocities upon

tlie plaiu's x = 0, // = 0, z ~ 0. Hence derive (-34') of the text.
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12. Show that the Cartesian exi^ressions for the inafrnitude of the velocity and
of the acceleration and for the rate of chanii:e of the speed dv/dt are

V = Vx'^ + v'- + z'-, / - Vx"- + y"- + z"-, t' = —̂ ^^— - -
,

Vx'- + U"- + z'-

where accents denote differentiation with respect to the time.

13. Snppose that a bodj^ winch is riirid is rotating about an axis with the

anjiular velocity w = dcp/dt. Represent the an^-ular velocity by a vectcn- a drawn
along the axis and of magnitude equal to w. Show that the velocity of any poini

in space is v = axr. where r is the vector drawn to that point from any point (jf

the axis as origin. Show that the acceleration of the ix)int determined l)y r is in a

plane through the point and perpendicular to the axis, and that the components are

ax(axr) = (a»r)a — w'-r toward the axis, {da./dt)y.x perpendicular to the axis,

under the assumption that the axis of rotation is invariable.

14. Let f denote the center of gravity of a sy.stem of particles and r/ denote the

vector drawn from the center of gravity to the ith particle so that r, = f + r/ and

V, = V + v/. The kinetic energy of the /'th particle is by definition

\ nuvf = I
»i,V{.v,- - .V ;»;(v + v/).(v + v/).

Sum up for all particles and simplify by using the fact Smj-r^ = 0, which is due to

the assumption that the origin ftu' the vectors T- is at the center of gravity. Hence

prove the important theorem : The total kinetic energy of a system is t'(jiuil to the

kinetic energy which the total mass v-ould have If moving unth the center of gravity

plus the energy computed from the motion relative to the center of gravity as origin,

that is,

r = i Zmirf = i Mr- + \ Sm^rf.

15. Consider a rigid body moving in a plane, which may be taken as tlie x//-

plane. Let any point r,-, of the body ).)e marked and other points be denoted rela-

tive to it by r'. The motion of any point r' is compounded from the motion of r,^

and from the angular velocity a = kw of the body alioiu the jioiiu r,,. In tact the

velocity v of any ])oint is v = v,, + axr'. Show tliat the velocity of the ])oiiit di-notccl

by r' = kxv,|/co is zero. Thisjioint is known as the instaiUaneons cenrer of rotation

(§ 3!)). Show that the corirdinat(.'s of the instantaneous center referred to axes at

the origin of the vectors r are

1 d//,, . 1 (/x„
X = r.i = x,j -"

, // == r.j = //„ + -

'

.

w (It oj dt

16. If several forces Fj. F.. • . F„ act on a l)ody. tlie sum R = ZF, is called

the resultant and the siun Zr,-xF,-. wlieix' r,- is drawn from an m-igin to a point

in the line of the f(n'<'e F,-. is called the resultant momoit about O. Show that the

resultaiU moments Mo and Mo' about two })oints are connected by the relation

Mo' = Mo -i- Mo'(Ro). when' Mo'(Ro) nieaiis the moment about O' of the resultant,

R considereil as applied at O. Infer that moments about all points of any line

parallel to tlie resultant are eijual. Show that in any plane perpendicular to R
thert' is a ])oiiU ()' L:iven by r = RxMo/R-R. where is any point of tlie plane,

such that Mo' is parallel to R.



PART II. DIFFERENTIAL EQUATIONS

CHAPTER VII

GENERAL INTRODUCTION TO DIFFERENTIAL EQUATIONS

81. Some geometric problems. The application of the differential

caleulus to plane curves has given a means of determining some

geometric^ properties of the curves. For instance, the length of the

suLnormal of a curve (§ 7) is ij<]t//(l.f, which in the case of the parabola

//" = -ipv is 2/(, that is, the subnormal is constant. Suppose now it

were desired conversely to find all curves for which the subnormal is

a given constant 7;^ The statement of this problem is evidently con-

tained in the equation

'^!f
f 7 7

?/ — = m- or 2/1/' = m. or ydy = viax.

Again, the radius of curvature of the lemniscate /•- = <r cos 2 <^ is found

to 1)6 11 = a-^/'dr, that is, the radius of curvature varies inversely as the

ludius. If conversely it were desired to find all curves for whi(;h the

radius of curvature varies inversely as the radius of the curve, the state-

ment of the probh^m would be the equation

' + ^% h

,1-r
^ / dr

where /• is a constant called a factor of ])r()|)ortionality.*

Equations like these are unlike ordinary algebraic ecjuations l)ecause,

in addition to the varial)les x, 1/ or /•, cf> and certain constants m or /,-,

they contain also derivatives, as dy/dr or (h-/d(fi and d'r/i/<f)'~, of one of

the variables Avitli res])ect to the othei'. An equation which contains

* ^SlaiiY prdhlcms in uronii'try, iiiecliaiiics, aod physics are stated in terms of varia-

tion. For i>urposes of analysis tlie statement x varies as //. or x x if, is written as x -- kij,

introdneini; a I'onstant k ealled a factor of proportionality to convert the variation into

an equation. In like manner the statement .' varies inversely as //, or x -r. \/\i, becomes

X =- k/ii, and ./• vai'ies jointly witli // and z becomes .'• — kiiz.

1711
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derivatives is called a d'ijfcrenfhij riiiKitlnn. The orili'r of the differential

equation is the order of the highest derivative it contains. The equa-

tions above are respectively of the first and second orders. A differen-

tial equation of the first order may be symbolized as $ (./, ij, ij) = 0,

and one of the second order as 4>(,/', v/, ij\ y") = 0. A function i/ =/(./•)

given explicitly or defined implicitly by the relation F{x, //) = is

said to be a solntlan of a given differential equation if the e<iuation is

true for all values of the independent variable ./• Avhen the ex})ressions

for 1/ and its derivatives are substituted in the e(|uation.

Tlius to show that {wn matter what the vahie of a is) the rehation

4 (ly — J- + 2 a- hit;- x =

gives a sokition of the differential e<iuatif>n of the second order

Xdx) \dx-/

it is merely necessary to form the derivatives

(1;/ ft- il-y a-
•2 a — — X , -In— = 1-1

dx X dx- X-

and substitute tliem in the given equation together with // to see that

' + („;)
- '-

fc)
=

'
+ 4,7=

{'- - ^ "^ + .:=)
-

4 .-^ (' + :?r + ii) =
"

is clearly satisfied for all values (if ./. It appears therefore that the given relation

fur ij is a solutiiiu of the given equation.

To infi'firiifi' or snlrr a differential eipiation is to find all the fuiietioiis

which satisfy the equatinii. (Jeonictrically s})eaking. it is to find all the

curves whicli have the property expressed by the e(]uation. In median-

ics it is to find all possible motions arising from the given forces. The

method of integrating or solving a differential e(piation depends largely

upon the inf/m/fif// of the solver. In many cases, however, some method

is immediatelv obvious. l''or instance if it be jtossible to sfjiuraff fhr

i-iirlitlili's, so that the diffenMitial '/// is mulri])lied by a function (jf //

alone and tlx by a fiun-tion of ./ alone, as in tlie cquati(jn

cfii '/)</'/ — ij/
(.'}(/.!', then / c/) I//) '///=/(//(.'•)'/.'•+ *" (1)

will clearly be the integral or solution of the ditferential equation.

As an exainjile. let the eurves of eoustant subnormal be deterinineil. Here

1,'di/ =- iiidx ami ;/- r- 2 //(./•
-f-

('.

The variables are already separutetl and the integration is inmieiliate. The eurves

are parabolas with semi-latus rectum equal to the constant and with the axis
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coincident witli the axis of x. If in particular it were desired to deterniiue tliat

curve whose subnormal was m and wliirli passed throuirh the oriiiin, it would

merely be necessary to substitute (0, 0) in the ecjuation y- = 2mx + C to ascertain

what particidar value nuist be assiuned to C in order that the curve pass through

(0, 0). The value is C = 0.

Another example miiiht be to determine the curves for which the x-intercept

varies as the abscissa of the point of taniiency. As the expression (§ 7) for the

x-intercept is £ — ijdjc/dij. the statement is

dx
/I ,\ <^-^

s — II— = kz or (\ — k)x = y—
dy dy

Hence (1 — A) -- ^ — and (1 — A) lo-- q = loux + G.
'J -t

If desired, this expression may be ciiaiii^ed to another form by using each side of

the e(iuality as an exponent with tiie base e. Then

(.(l-i)Iog)/ = (Xo^x + C iji- ij\-k = t^'x = C'x.

As G'is an arljitrary constant, the constant C" = e'-'is also arbitrary and the solution

may simply lie written as y^~'^ = Cx. where the accent has been onntted from the

constant. If it were desired to pick out that particular curve which passed through

the i)oint (1, 1), it would merely be necessary to determine C from the e(iuation

li-'.- == CI, and hence C ^ 1.

As a third example let the curves whose tangent is constant and equal to « be

determined. The length of the tangent is // vi + ;/'-///' and hence the equation is

Vi + //'-
., 1 + //'- \'^:- — //-

,

y = (I or y- — =a or 1 = y
u' u"- U

The variables are therefore separable and the results are

\'((--y- '..-.. ,
ii + V(i-—y-

dx = '('/ and x + ( = \ ii- — i/- — <t Ut's

y '

'

ti

If it be desired that the tangent at the origin be vertic'al so that the curve passes

through (0. «). tiie constant C is 0. The curve is the tractrix or "curve of pursuit"'

as described by a calf dragged at the entl of a rope by a person walking along

a straight line.

82. Pr(»l)lfins wliieli involve tlic radius of cui'vaturc will lead to differ-

ential ('([uations of the si-cond (H-dei-. The nierhod of solving' such

])rol)lenis is to n-ilitci' fjir cijinifijui, if iinssilih', to unc <if flw p rst Di'ilcr.

For the se'cond derivatiN'e may he written as

and /; = t^+^^ = li±4^ = 1±jft (r,
U ''11 , ''//

dx dij
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is the expression for the radius of curvature. If it be given that tlie

radius of curvature is of the form /'(./)(/) (y') ov /(//) eft {;/'),

^pi^f,,,^,y, „v (l+£l=fy,^<fy (3)

the variables .r and //' or y and ij' are immediately separable, and an

integration may be performed. This will lead to an efj^uation of the

first order ; and if the variables are again se})aruble, the solution may

be completed by tlie methods of the alxjve cxam})les.

In the first place consider curves wliose radius of curvature is constant. Tlien

(1 + w"-)^ da' dx , // / — C
^ -^ ^ = a or = — and ' =

,

d/
(1 + r-)'^ « Vl + l/'-

«

dx

where the constant of integration has been written as — C/a for future conven-

ience. The equation may now be solved for ;/' and the variables become separated

with the results

r - C , (.r - C)
,

(J = =^^=1^= or dl/ = ;^z::^^3^z=:z=r dX

.

V«- - {x — cy- Vk- — (.(• — cy-

Hence y — C" =— Va- — {x — Cy- or (x — (')'- + (// — Cy- = a'-.

The curves, as shonld be anticipated, are circles of radius a and with any arbi-

trary point (C, C") as center. It should be nnted that, as the solution lias recjuired

two successive integ-rations, there are two arbitrary constants C and C" of integra-

tion in the result.

As a second example consider the curves wlmsc radius of curvature is dunble

the normal. As the length of the normal is y V 1 -f //"-, the equation becomes

i —i- = 2i/Vl+ I/- or —

-

, '('/ , dl/

y -^~
>i

~^-

dy dy

i -i- y.

where the dotible sign has been introduced when the radical is removed by cancel-

lation. This is necessary ; for before the cancellation the signs were ambii:uinis

and there is no reason to assume that the ambiguity disappears. In fact, if the

curve is concave up, the second derivative is positive and the I'adius nf c-ur\aturf

is reckoned as p(»sitive, whereas tlie normal is positive or negative accnrdinu" as

the curve is above or below the axis nf x : similarly, if the curve is concave down.

Let the negative sign be chosen. This corresponds to a curve aliove the axis and

concave down i>i lielow the axis and concave up, that is, the normal and the radius

of curvature have the same direction. Then

— = - ~-^'-^ and log y = - log (1 + //'-) + log 2 C.
y 1 + .'/'-

where the constant has been uiven the form log 2 (' for ron\-enience. This expres-

sion may be thrown into alurliraie form by exponentiation. sol\ed for //'. and then
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y{l-\- y'-) = 2G or y- = or z = dx.

y V2 Cy - y'

Hence x — 6" = C vers- ^ —; — Vz (Jy — y'^.

The curves are cycloids of which tlie generating circle has an arbitrary radius ('

and of which the cusps are upon the j-axis at the points C" i 2 kirC. If the posi-

tive sign had been taken in the eciuation, the curves would liave been entirely

different ; see Ex. 5 (a).

The number of arljitrary eoiistaiits of integration Avhicli enter into

the solution of a differential equation depends on tlie number of inte-

grations which are ])erformed and is equal to the order of the equation.

This results in giving a family of curves, dependent on one or moi-e

parameters, as tlie solution of tlie equation. To pick out any particular

member of the family, additional conditions must be given. Thus, if

there is only one constant of integration, the curve may be requiri'd

to pass through a given point; if there are two constants, the curve

may be required to pass through a given point and liave a given slope

at that point, or to jiass through two given i)oints. These additional

conditions are called Inltbd condltloiis. In meclianics the initial condi-

tions are very important ; for the point reached Ijy a particle describing

a curve under the action of assigned forces depends not only on the

forces, but on the point at which the ])article starttnl and the velocity

with which it started. In all cases the distinction between tlie consijtnta

of lute(//'Ofton and tlie (jlnni consfdufs of fin' jn'ohlcm (in the foregoing

examples, the distinction between (', C and //>, /., ") should Ije ke])t

clearly in mind

EXERCISES

1. Verify the solutions of the differential equations :

(a) xy + 1, x^ ^C, // -h J- + xy' = 0, (/i) .r'//- (:] f'-+ C) = 1, ,r//'+ //-h.rV^f-'-= 0.

(7) {\\xr-)y'-^\^ 2.f=r;f"-r'-ie^.", (5) y -F ,/•//' = xhf-., xy = C-x + C.

(e) y" + ^'A = 0, y = c lo-./- + C\, (f) // = rt'- + C'lC- '. y" + 2 // = 8 //'.

, ^ /// ) ,. _i,./^, .f A o ,, .
.fA';j\

iv) y — y = •<-, // = <~ t-'- + e 2 I Cj cos—^ + < o sm —^ I — x-.

2. Determine the curves which have tlie following properties:

{a) The subtangent is constant
;

y'"- = Ce^. If Ihrougli (2, 2). //'" = 2">e^-".

(/3) The right triangle furnied by the tangent, subtangent, and ordinate has the

constant area k/2 ;
the liyperbolas xy -f Cy + k = 0. SIkiw that if the curve ;[)asscs

through (1, 2) ami (2. 1). tlie arbitrary constant C is and the given /,: is — 2.

(7) The normal is constant in length
;
the circles (x — C)- + y- = k-.

(5) The normal varies as the sijuare of the ordinate ; catenaries t// = cosli k{x— C).

If in particular the curve is perpendicular to the (/-axis. (/ — 0.

(f ) The area of the right triangle furnied by the tangent, normal, and .c-axis is

inversely proportional to the slope
; the circles (./• — (')'- + y- = /..
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3. Dc'terinine the curves whicli have the following properties:

(a) The angle between the radius vector and tangent is constant ; spirals

r = Ce'^'t'.

(/3) The angle between the radius vector and tangent is half that between the

radius and initial line ;
cardioids /• = 6'(1 — cos0).

(7) The perpendicular from the pole to a tangent is constant ; r cos (^ — (
') = k.

(5) The tangent is eipially inclined to the radius vector and to the initial line
;

the two sets of parabolas r = C'/(l ± cos 0).

(c) The radius is eijually inclined to the normal and to the initial line ; circles

r = C cos (p or Hues r cos cp = C.

4. The arc s of a curve is proportional to the area A, where in rectangular

coordinates A is the area under the curve and in polar coordinates it is the area

included by the curve and the radius vectors. From the e(iuation (Z.s = (Z.l show

that the curves which satisfy the condition are catenaries for rectangular coordi-

nates and lines for polar coordinates.

5. Determine the curves for which the radius of curvature

((1-) is twice the normal and oppositely directed
;
parabolas (x — C)" = C"{2 y — C).

(/3) is eiiual tn the normal and in same din'ction ; circles (x — Cy~ + y- = C"-.

(7) is ecpial to tiie normal and in opposite direction
; catenaries.

(5 ) varies as the cube of the normal
;
conies kCy'^ — C'^ {x, + G")'-^ = A".

( e )
projected on the x-axis equals the abscissa ;

catenaries.

( f ) projected on the x-axis is the negative of the abscissa ; circles.

{>]) projected on the x-axis is twice the abscissa.

(6) is proportional to the slope of tin; tangent or of the normal.

83. Problems in mechanics and physics. In many ])liysif'al prol)lems

the stateininit involves an e(ina,tion between the I'tifi' of rlKiagc of some

quantity and the value of that (juantity. In this way the solution of

the problem is made to depend on the integration of a differential e(pia-

tion of the first order. If x denotes any quantity, the rate of in(;reas(»

in .r is (I.r/(lf and the rate of decrease in .r is — dx/dt ; and consequently

when the rate of change of x is a function of r/', the variables are

immediately sepai'ated and the integration may be ])ei'formed. The

constant of integration has to be determined fi'om the initial conditions
;

till! constants inlierent in tlie ])r()lilem nuiy be given in advam-e or their

values may be detenuined by comparing ,' and t at some sid)se<|uent

tune. The exei'cises offei-ed below Avill exemplify the ti'eatnu'iit of

sucli ])ro])lems.

In other ])liysieal problems tlu', statement of the question as a differ-

ential ('(piation is not so direct and is carried out by an examination of

the problem witli a view to stating a I'elation Itetween the increnu'uts

or diffei'entials of the de])endent and independent vai'iables, as in sonu;

geomcti'ie I'elations already discussed (^i 40). and in tlie ])rol)lem of tlu;

tension in a ro[te wra]>])i'd around a cxlindrieal post discussed below.
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T+Ar
Y

pA'A.s

The method may be further illustrated by tlie derivation of the differ-

ential equations of the curve of e<|uilibriuui of a flL'xil)le string or

chain. Let p be the density of the chain so that p\s is the mass of

the length Ax; let A' and Y be the components

of the force (estimated per unit mass) acting on

the elements of the chain. Let T denote the

tension in the chain, and r the inclination of

the clement of chain. From the figure it then

a})i»cars that the components of all the forces

acting on A.s- are

(7' -f AV; COS (r + Ar) — T cos r + ApAx = 0,

(T + A 7') sin (t + Ar) - T sin r + }>A.s- =
;

for these must be zero if the element is to be in a position of equi-

librium. The eipiations may l)e written in the form

A ( 7' cos r ) + A p A.s = 0, A ( T sin r) + 3 >Ax = :

and if they now be divided by Ax and if Ax be allowed to approach

zero, the result is the two c(piations of e(prilibrium

X

(b d

where cos r and sin r are re})laced by tlieir values (Li'./</s and (Jt//<7s.

-„'^//

If tlie string is acted ciu mily hj furres parallel to a uivcii ilircctidii. let the

//-axis be taken as parallel to that direction. 'I'lien the component -V will be zero

and the lirst equation may be integrated. '1"1k' result is

T
dx

(' r= c
d^

dx

This value of T may be substituted in the second equation. There i.s thus obtained

a differential ecpiation of the second order

.|')..r = o or C
Vl -1- (/'-

+ py 0. (4')

r-i-A.7'

If this equation can be integrated, tlie form of the curve

of equilibrium may be found.

Another problem of a different nature in strings is to

ci insider the variation of the tension in a rope wound around

a cylinder without overlapping. The forces acting on the

element Ax of the rope are the tensions T and T + AT, the

normal pressure or reaction T! of the cylinder, and the force

of friction whicli is proportional to the pressure. It will

be assumed that the normal reaction lies in the angle A(f> and that the coelhcient

of friction is fx so that the force of friction is /xU. The components along the radiu.s

and along the tangent are
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{T + AT) sin A4> - R cos (^A^) - /jlR sin (ftA-p) = 0, < ^ < 1,

(r + AT) COS A0 + R sin [OA'P) - /xR cos ((9A0) - T = 0.

Now discard all infinitesimals except those of the first order. It must be borne in

mind that the pressure R is the reaction on the infinitesimal arc As- and hence is

itself infinitesimal. The substitutions are therefore Tdcp for {T + AT) sin A0, R fur

R cos OA(p. fur R sin dAcp. and 7' + dT for (2' + A 7') cos A(p. The equations there-

fore reduce to twu sinqile e(iuations

Ta<p-R = 0. dT-iJLR = 0,

from which the unknown A' may be eliminated with the result

dT — /xTdcp or T = Ce>^'i> or T — T^,e>^<t>,

where 7'^ is the tension when <p is U. The tension therefore runs up exponentially

and affords ample explanation of why a man. by winding a rope about a post, can

reailily hold a sliip or otlier object exertinu- a great force at the other end of the

i'o;)c. If /J. is 1/3. three turns about the post will hold a force 5:>-3 T^^, or tiver 25

tons, if the man exerts a force of a hundredweight.

84. If a constant mass di is moving along a ]in(^ under the influence

of a force F acting along the line, Xewton's Set-ond Law of Motion (p. 13)

states the j^roUem of the motion as the differential ecjuation

mf = F or III ~r~, = F (o)

of the second order ; and it therefore appears tliat the comiJlete solution

of a ])rol)lem in rectilinear motion requires the integration of this eijua-

tion. The acceleration may Ije written as

' ~ dt'' d.r df
~ '\77

'

and hence the equation of motion takes either of the forms

F. (5')

It now' a|)pears that thei-e are several cases in which the tirst integration

may l)e performed. l-^)r if the f(jrce is a functi(jn of the velocity or of

the nine or a ])roducr of two such functions, the varial>les are separated

in the tirst form (jf the e(juation : whereas if the force is a function of

tin; velocity or of the coordinati' .'• or a jiroduct of two such functions,

the variables ai'C sepai'ated in the second foi'm of the eipiation.

When the tii'st integration is jiei-formed according to either of these

methods, tliei-i- will arise an equation l)etween the vehjcity and either

the tinu^ f or the c(.)ordinate .'•. In this equation ^\ill he contained a

constant of integration wliich may he detei-miiu^l hy the initial condi-

tions, tliat is. l)v the kiio\\le(hjv of the velocitv at tlie start, whetlier in

,lr dr

,77
= ^ or iiir

dr
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time or in position. Finally it will be possiljle (at least theoretically)

to solve the equation and express the velocity as a function of the time

t or of the position ./, as the case may be, and inte.qrate a second time.

The cariying through in ])ractice of this sketcli of the Avork will be

exemplihed in the following two examples.

Suppose a particle of mass m is projected vertically upward with the velocity V.

Solve the problem of the motion under the assumption that the resistance of the

air varies as the velocity of tlie particle. Let the distance be measured vertically

upward. The forces actin:,^ on the particle are two, — the force of uravity which is

the weiirht 11'= mfj. and tlie resistance of the air which is A'r. IJoth these forces

are lu-frative because they are directed toward diminishing values of s.. Hence

ml =: — iii(i — kv or »)-_ = _ (nr/ _ A-f,

di

where the first form of the eqttation of motion has been chosen, although in this

case the second form would be equally available. Then integrate.

- - dt and log
( ^ + — i- ) = t + C.

k
g + - V

m

As by the initial conditions v = V when t = 0. tiie constant C is found from

k
_

, / k ,A k ^ ^, ,

'' '^ m^ -^,'
log (^ H 1 )

= — - + f
; hence

g + -V
in

is the relation between i; and / found by substituting the value of C. The solution

for V gives

dx /))i, ^A — ' m
' =

dt
= {:k'-'')'

'"

--k''-

"' /"I , A — ' »' ,

Hence x = -ff + 1 ' '" - 7^' + ('

k\k I k

li the particle starts from the origin j- = 0. the constaiu C is found to be

Hence the positinn nf the particle is expressed in terms of tiie tiim.' and tlie prob-

lem is solved. If it be desired to lind the time which elapses before the particle

collies to rest and starts to drop back, it is merely necessary to siilistitute r = in

the relation connectinir tlie velocity ami the time, and solve for the time t z= T

:

and if this value of t be substituted in the expression for x, the total distance A'

covered in the ascent will be found. Tlie results are

4 --(fr[^'-'-^-i^')j-k \ rug

As a second example consiiler the mr>tion of a jiarticle vilirating up and down

at the end of an elastic strinu- held in tlie liehl of L:ravitv. I'v Hooke's Law for
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t'lastic strings tlie force exerted by the string is proportional to the extension of

the string over its natural length, that is, F = kAl. Let / be the length of the string,

AJ the extension of the string ju,st sut!ieient to hold the weight 11'= mg at rest so

that frAy/ = my, and let x measured downward be the additional exti^nsion of the

string at any instant of the motion. The force of gravity mg is positive and the

force of elasticity — /i'(A|/ + x) is negative. The second form of the equation of

motion is to be chosen. Hence

my — — mg — A' {AJ + i) or mv — = — Lr, snice mg — kAJ.
(xJu tl%C

Then mi-di- = — kj:dx or mv- = — kf~ + ('

.

Suppose that x = a is the amplitude of the motion, so that when ,f = ii the velocity

u = and the particle stops and starts back. Then C = A''(-. Hence

(Is k ,— , as ~k
,

V = — = \ \ (I- — s'~ or —— -
-- = A (u.

and .sin-i - z= \ -^t + C or x ~ n sin
\
\\- t -{ 0' ) •

a \ m. \M m /

Now let the time be measured from the instant when the particle passes through

the position s = 0. Then C satisties the e(juation = n sin (' and may be taken as

zero. The motion is theref(n'e given by the equation s = a >-ui \ k/mt and is

periodic. While t changes by 2 tt \^m/k the particle completes an entire oscilla-

tion. The time T = 27r \'m/k is called the 2)criodic time. The motion considered

in this example is characterized by the fact that the total force — Z,-/ is propor-

tional to the displacement from a certiiiii oi-ii^in and is directed toward the origin.

Motion of this sort is called simple lnuinmiie motion (brietij- S. II. M.) and is of

great importance in mechanics and physics.

EXERCISES

1. The sum of SI 00 is put at interest at 4 per cent per ainium under the condition

that the interest shall be comjjounded at each instant. Show that the sum will

amount to .Sl'OO in 17 yr. 4 mo., and to ,^1000 in 57| yr.

2. Given that the rate of decomposition of an amount s of a given substance is

proportional to the amount of the substance remaining undccomposcd. Solve tlie

problem of the decom])nsition and determine the constani of integration and the

physical constant of proportionality if s = o.ll when / = (J and ./• = 1.4!S wiu-ii

( = 40 mill. Ahs. k - .OoOO.

3. -V substance is luidergoing transformation into another at a rate wliii'h is

assumed to be ])ropoi-ti(inal to the aniouiu of the substance st ill remaining untratis-

formed. If that amount is o.'j.Ci when t = 1 hr. and I^.S wlien / = 4 lir.. iletermine

the amotuit at the start when / = and the constant of proportionality and lind

how many hours will elapse before only one-thousandth of the original ammuit

will remain.

4. If the aetivity A of a radioactive deposit is ]n-oportional to its rate of

diminution and is found to decrease to ', its initial value in 4 days, show that ^1

.satisties the eiiuation -!/.!„ = (,-"•'"''.
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5. Suppose tliat amounts a and b respectiveh' of two substances are involved in

a reaction in wliicli tlie velocity of transformation dx/dt is proportional to the prod-

uct (a — x){b — x) of the amounts remaining untransformed. Integrate on the

supposition that a ^t b.

t \ a — X \ b — X

log ^'^Li) = („ _ },) kt ; and if lluij" ,
0.48(j(j

' 0.2342
" ^'' " -^^

120.3 1 0.3870
\

0. 1354

determine the product k{a — b).

6. Integrate the ecjuation of Ex. 5 if a — b. and determine a and k it x = 0.87

when t — 15 and x = 13.00 when t = 55.

7. If the velocit}^ of a chemical reaction in which three substances are involved

is proportional to the continued product of the amounts of the substances remaining,

show that the equation between x and the time is

, a - %

""
\a - x) [b - x) [c - x) (x =— — kt, where -{

{<( - b)(b- c)(c- a)
'

[_t =0.

8. Solve Ex. 7 if a = b 7^ c ; also when a = b = c. Note the very different

forms of the solution in the three cases.

9. The rate at whicli water runs out of a Vduk tlirough a small pipe issuing

horizontall}' near the bottom of the tank is proportional to the s(iuare root of the

height of the surface of the water above the pipe. If the tank is cylindrical and

half empties in 30 niiii.. show that it will completely empty in about 100 min.

10. Discuss Ex. in case the tank were a right cone or frustum of a cone.

11. Consider a vertical colunui of air and assiune that the pressure at any level

is due to the weight of the air above. Show that p =ji^fi-^''' gives the jiressure at

any height h, if Boyle's Law tl:at the density of a gas varies as the pressure be used.

12. Work Ex. n under the assumption that the adiabatic law pxp'-'* rejtre-

seiUs the conditions in the atmosphere. Show that in this case the pressure would

becf)me zero at a Unite height. (If the proper numerical data are inserted, the

height turns out to be about 20 miles. The adiabatic law seems to correspond

better to the facts than Boyle's Law.)

13. Let I be the natural length of an elastic .string, let Al be the extension, and

assume Ilooke's Law that the force is proportional to the extension in the form

A/ = klF. Let the string be held in a vertical position so as to elongate under its

own weight IT. Show that the elongation is lk]Vl.

14. The density of water under a pressure of p atmosi^heres is p = 1 + 0.00004 p.

Show that the sitrface of an ocean six miles deep is aljout 000 ft. below the position

it would have if water were incompressilile.

15. Show that the eiiuations of the curve of e(itii]ibrium of a string or chain are

in polar coordinates, where 7i and ^ are the components of the force along the

radius vector and perpendicular to it.
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16. Slinw that (IT + pSih = and 7"+ pi:X = aro tlu- (M]uati(iMs of <M|uilib-

riiini of a .striu-i;' if /.' is tiic radius of curvatun' and .S and .V are the taiiL,^eiiLial and

normal compononts of the forces.

17.* Show that when a unifoi'ni chain is supported at two points and lianas down
betwi'en the points under its own weight, the curve of equilibrium is the catenary.

18. Suppose the mass ihii of the element rZ.s of a chain is proportional to the pro-

jection (l.r of (Is on the .f-axis, and that tlie chain han,i;K in the field of i;ravity.

Show that the cur\(' is a parabola. (This is essentially the problem of the shape

of the cabk's in a suspension bridn'e when the roadbed is of unifoi'm linear density
;

for tlu' weii^ht of thi' cables is ne^ligiljle compared to that of the roailbed.)

19. It is desired to sti'inii; upon a cord a. i^reat many uniform heavy rods of

varying; lenj,^ths -so that when the cord is huns up with the rods dauirling from it

the rods will be eipially spaced along the horizontal and have their lower ends on

the same level. Required the shape the conl will take. (It should be noted that

the shai)e must be known before the rods can be out in tlu' pnjper lengths t(j hang

as desired.) The weight of the cord may be neglected.

20. A masoiu'V arch carrit's a horizontal roadbed. On the assumption that the

material between the arch and the roadbed is of unifiu'm density aiid that eacli

(lenient of the arch supports the weight of the material al)ove it, find the shape of

the arch.

21. In equations (4') the integration may be carried through in terms of ijuadra-

tures if pV is a function of // alone : and similarly in Ex. 15 the integration may be

carried through if <t) = and pl\ is a function of r alone so that the Held is central.

Sliow that the results of thus carrying through the integration are the formulas

G(/// r ( 'dr/r
x +

/('(hi r ( (Ir/r

V(fpYdy)- - C^ J -^(fplUhf - C^

22. .\ Y)article falls from rest through the air, which is assumed to offer a resist-

aut'c ]iroportional to the velocity. Solve the problem with the initial conditions

V = 0. .r = 0. t = 0. Sho.w that as the particle falls, the velocity does not increa.se

indelinitely, but appi'oaches a definite limit T= »';///i'.

23. Solve I'^x. 22 with the initial conditions i' = r,,. .r = 0. / = 0, where r,, is

gi'eater than the limiting velocity ]'. .Show that the particle slows down as it falls.

24. \ particle rises througli the air. wliich is assumed to resist proportionally to

the s(iuare of the velocity. Solve the motinu.

25. Solve the problem analogous to Kx. 24 for a falling particle. Show tliat

there is a limiting velocity V = \ iiKj/k. If the iiarticle were projected down with

an initial velocity greater than V. it would slow ilowu as in Ex. 23.

26. A ]iarl icle falls towards a point which attracts it inversely as the S(iuare of the

distance ami dii'ectly as its mass. Find the relation between x and t and determine

the total time T taken to reach the center. Initial conilitions r = 0. .r = a. t = 0.

\ I = (MIS - + ^ (/,( — .(-. / == TT/.-

> a 2 a

* l''\ercisrs 17~2U slieuM l>c worked <(l, hiitin hy the iiicthnd liy wliich (4) were derived,

not by ai)i)lyiiiu- ( h <lircctly.
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27. A particle starts from tlie orii^in with a velocity T" and moves in a medium
which resists proportionally to the velocity. Find the relations between velocity

and distance, velocity and time, and distance and time ; also the limiting distance

traversed.

-tt -'If
v= V — kx/m, V = Ve '"

, kx = ?h l'(l — e '"
), mV/k.

28. Solve Ex. 27 under the assumption that the resistance varies as vu.

29. A particle falls toward a point which attracts inversely as the cube of the

distance and directly as the mass. The initial conditi"ons are x = (/. v = 0. t = 0.

Show that x- = a'-— kt"/a- and the total time of descent is T = <i-/\ k.

30. A cylindrical spar buoy stands vertically in the water. The buoy is pressed

down a little and released. Show that, if the resistance of the water and air be

neglected, the motion is simple harmonic. Integrate and iletermine the constants

from the initial conditions x = 0, v = V. t = 0. where x measures the displacement

from the position of ecjuilibrium.

31. A particle slides down a rough inclined plane. Determine the motion. Note

that of the force of gravity only the component ;/(f/ sin t acts dnwn the plane,

whereas the component mij cos ; acts perpendii'ularly to the plane and develops the

force /uL))tg cos i of friction. Here i is the inclination of the plane and fx is the

coetRcient of friction.

32. A bead is free to move upon a frictionless wire in the form of an inverted

cycloid (vertex down). Show that the component of the weight along the tangent

to the cycloid is proportional to the distance of the particle from the vertex. Hence

determine the motion as simple harmonic and lix the constants of integration by

the initial conditions that the particle starts from rest at the top vt the cycloid.

33. Two equal weights are hanging at the end ()f an elastic string. One drops

off. Determine completely the motion of the particle remaining.

34. One end of an elastic s])ring (such as istised in a spring balance) is attached

I'igidly to a point on a horizontal table. To the other end a particle is attached.

If the particle be held at such a point that the spring is elongated by the amount

a and then released, determine the motion on the assumption that the coefficient

of friction between the particle and the table is
fj. ; and discuss the possibility of

different cases according as the force of friction is small or large relative to the

force exerted by the spring.

85. Lineal element and differential equation. The idea of a curve

as juade \i\) of the points upon it is familial-. Points, however, have no

extension and therefore must Ije regarded not as pieces of a curve but

merely as positions on it. Strictly speaking, the pieces of a curve are

the elements A.s- of arc; hut for many purposes it is convenient to vi'-

place the com})licated element A.s by a piece of the tangent to the curve

at some point of the arc A.s-, and from this point of view a curve is made

U]) of an infinite number of infinitesimal elements tangent to it. This

is analogous to the point of view by which a curve is regarded as made
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up of an intiiiite number of infinitesimal cliords and is intimately related

to the conception of the curve as the envelope of its tangents (§ 65).

A point on a curve taken witli an infinitesimal ])ortion of the tangent

to the curve at tliat })oint is called a Uncal element of tlie curve. These

concepts and definitions are clearly ecjually available in two or three

dimensions. For the present the curves under dis-

cussion will be plane curves and the lineal elements

will therefore all lie in a plane. ''^

f(xyn)
To specify any particular lineal element iln-ee

eoordbvitcs :r, i/, p will be used, of Avliich tlie two (./•, //) determine the

point through which the element passes and of which the third p is

the slope of the element. If a curve /'(./', //) = is given, the slope at

any point may be found by differentiation,

p = y- = — — / — J (6)
(/,/ C.I-/ c// ^ ^

and hence the third coordinate p of the lineal elements of this particular

curve is expressed in terms of the other two. If in }ilace of one curve

f(.r, >/) = () the whole family of curves /('', >/) = <", Avhere C is an

arbitrary constant, had been given, the slope j/ would still be found

froni (6), and it therefore a])pears that the third coordinate of the lineal

elements of such a family of curves is expressible in terms of .'• and //.

In the moi'c general case whei'e the family of curves is given in tlie

unsolved form F{.i\ //,
<

') = 0, tlie slope 7> is found l)y the same formula

but it now depends api)arently on C in addition to on ,/• and >j. If, how-

ever, the constant <' be eliminated from the two eijuations

l'\-'; Ih
^

') = and ^ + ^ /. = 0, (7)

there Avill arise an c(juation <&(.'', //, y/) = which connects tlie slope //

of anv curve of tlie family with the coordinates (.'•, //) of any point

tlirough which a cui've of the family ]iasses and at which the slope of

that (airve is y. Hence it ajipears that the three cor.i-'linates (.'.//.//) of

the lineal elements of all the curves of a family are connected liy an eijua-

tion 4>(.'-. //, /')= 0. just as the corirdinatcs {.••. ij. :.) of the jioints of a

surface are connected by an (Miuation fl^.'',
//, ,'.) = 0. As the e(piation

<!>(./, //, ,'.) = () is called the e(juation of the surface, so the e([uation

<!>(,'•, //,
ji) = is called the eipiation of the family of cui'ves : it is. how-

ever, not the finite e(piatioii /•''(.;•,
//, (') = but the diffi'rential equation

of the family, because it invol\-es the di-rivativi' j/ = '////'/.',' of // by ,r

instead of the ]>aranieter '".
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As an example of tlie elimination of a constant, consider the case of tlie parabolas

I/'- = Cx <iv if-/x = C.

The differentiation of tlie equation in the second form pves at once

- ,'/-A- + 2 yp/x - or y = 2 j-p

as the differential ecjuation of the family. In the unsolved form the work is

2 lip = C, ^- = 2 ypj, y = 2xp.

The result is. of cour.se, the .same in either case. For the family here treated it

makes little difference which method is followed. As a general rule it is perhaps

best t(i solve for the constant if the .solution is simple and leails to a simple form

of the function /(J", y) ; whereas if the solution is not simple or the form of the

function is complicated, it is best to ilift'ereutiate lirst because the differentiated

equation may be simpler to s<ilve for the constant than the original ecjuation, or

because the elimination of the constant between the two eiiuations can be con-

ducted advantanetnisly.

If an equation 4> (.', ij. p) = eonnectinc,' the three coordinates of the

lineal element he i;iven, the elements Avhich satisfy the e(|Uation may
l)e ])lotte(l much as a sui-face is plottt'd ; tliat is, a pair of values (.'•, //)

may be assumed and sul)stituted in the e(iuation, tlie equation may then

he solved for oiu* or moi'e values of />, and lineal elements Avith these

values of J) nuiy l»e drawn through the jioint (./, //). In this maimer the

elements throiinh as many points as dcsii'ed may lu- found. The de-

tached elements arc of interest and siynihcance chit-fly from the fact

that thev can l)e (isscmlili'd into rm-ri's, — in fact, into the curves of a

family F(x, y, r) = of Avhich the ecpiation $(./,//, //) = is the differ-

ential equation. This is the converse of the problem treated above and

re(|uires the iiite.n'ration of the differential e(|uation <!>(.'•,
//, /') = for its

solution. In some simple cases the assembling may l)e accomplished

intuitively from the geometric iiropcrties implied in the equation, in

other cases it follows from the integration of the equation by analytic;

means, in other cases it can be done only approximately and by methods

of computation.

As an example of intuitively assemblini;- the lineal elements into curves, take

-, -> -, -> r.
V /•- — )/-

* (•' './ P) = l/'P' + '/' — '"' = fJi" P = =: ^

The quantity V/'- — //- may be interpreted as one les of a riirht triansle of which

y is the other lei: and r the hypotenuse. The .slope of the hypotenu.se is then

± y/\' r- — //- according to the position of the figure, and the differential equation

'i> {.r. y. p) — states that the coordinate p of the lineal element which satisfies it

is the negative reciprocal of this slope. Hence the lineal element is perpendicular

to the hypoteinisf. Ir therefore appears that the lineal elements are tangent to cir-

<!,> of r.'jlii;^ r ilc-ci-ilicd about points of tlie ..'--axis. The eiiuation of tln'se cirrles is
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(,r — (')- + ?/- = (•-. and tliis is therefore the inteijral of tlie differential e(iuation.

The correctness of this inteural niav be cliecked bv direct inteicration. For

/) = — = ± or —— = (U or ^ /- — //- = j — C.
dx y Vr-i - y-

86. In geometric problems wliieh relate the slope of tlie tangent of a

curve to other lines in the figure, it is clear that not the tangent but

the lineal element is the vital thing. Among such problems that of the

iirtJidridUdl triijcctdfii's (or trajectories inider any angle) of a given family

of curves is of es])ecial importance. If two families of curves are so

related that the angle at which any curve of one of tlie families cuts

any curve of the other family is a right angle, then the curves of either

family ai'e said to be the orthogonal trajectories of the curves of the

other family. Hence at any point (./, i/) at which two curves belonging

to the different families intersect, there are two lineal elements, one

])elonging to each curve, which are perpendicular. As the slopes of two

perpendicular lines are the negative reciprocals of each other, it follows

that if the coiu-dinates of one lineal element are (.', y, p) the coordinates

of the other are (.>•, //,
— 1///) ; and if the coordinates of the lineal ele-

ment (.V,
jj, p) satisfy the equation <J>(.'', ;/. ji) = 0, the coordinates of the

orthogonal lineal element must satisfy 4> ('./•,
//,
— l/j))= 0. Therefore

the rub' forfinillnfi thu orfJioriininI frdjrctnrlrs iiftJtc ri/z-rcs F{:f, y, '") =
is fo p'u'l p'rsf till' (lijfi'rrnfidl i'i{U(itti>n $(.', //. //) = <>f

tJw ptmiJi/, tln'ii

to ri'jtidci' p 1)1/ — \ ^) to finil tlie dlffprentuil i'<iii(it!nn of tlw ortJtogonul

f"U)ll;/, ami finiiU 1/ to lnt('(jr<iti' tli't^ cqiijit'ion topwl tlie fn mlli/. It may
be noted that if 7-'(,v) = A (./•, //) -f iY(:i\ if) is a function of ,-.' = .r -|- ///

(§ 73), the families X{.r, //) = C and V{.>\ //) = K are orthogonal.

As a problem in ortlioironal trajectories find the trajectories of the seniicubical

parabolas U — Cy'' = y-. The differential eijuation of tiiis family is found as

3 {X - C)- = -2 yp. X - C = (I yp)^-. (| ypy- = y- or | j> = yi.

This is the differential equation of the given family'. Keplace p by — l/p and

integrate :

2 1 3 1 3 1 1— - = i/s or 1 + -))ip = or dx + - //"> d// = 0. and x + v' = C.
:ip 2 2 8

Thus the differential eijuation and finite efjuation of the orthoconal family are found.

The ciu'ves look sometliini: like parabolas with axis horizontal and vertex toward

the right.

Given a differential e([ttation $(./, //, p) = or, in solved form,

ji :=
(f)

(./'. // ) : Vllo linriil rji'iin'iif iiffo/-/Is II llli'iiDS t'nr olitn'ni'inij ip-ii jiji iriiJI ij

(tJl'linriiirrlriilhinn ajip I'o.il ill n t'lo a to fjn'snhifi-iil ir/u'r/i juissrs tliroiKjJl
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an tis.^'ttinitl !„,'int ^^(•',j, y^- Eor the value y/^ oi p at this point may be

ct)iiijiuri-il from the equation and a lineal element 1\J^^ ii^'*-}' ^^e drawn,

the length being taken small. As the lineal element is tangent to the

curve, its end jjoint will not lie upon the curve but will de}>art from it

by an infinitesimal of higher order. Next the slope ^j^ of the lineal

element Avhich satisfies the equation and i)asses

throut-h P, ]uav be found and the element T\P^

may be drawn. This element will not be tangent

to the desired solution but to a solution lying near

that one. Next the element I'J'.^ uiay be drawn,

and so on. The broken line J\J\J'J'.^ • • is clearly

an approximation to the solution and will be a better ap])roximation

the shorter the elements /',/'( -i 'ii't' taken. If the I'adiiis of curvature

of the solution at J\^ is not great, the curve will be bending rai)idly and

the elements must be taken fairly short in (jrder to get a fair approx-

imation ; but if the radius of curvature is great, the elements need not

be taken so small. (This method of ap})roximate graphical solution

indicates a method which is of value in proving by the method of

limits that the equation// = (^(.'•, //) ac-tually has a solution
; but that

matter will not be treated here.)

Let it be required to plot approximately that solution of ?/p + x — which

pa.'^ses throuirh (0, 1) and thus to tind the ordinate for j = 0.5. and the area under

the curve and the lenuth uf tlie curvf to tliis point. Instead of assuminii; the lengths

of the successive lineal elements. 1ft the

lenirths (jf successive increments 5.f <.if

X he taken as 5.f = 0.1. At tlic start

j-|j = 0. (/,j
= ], and fruni p = — .//// it

f(jllo\vs tliat 7>,j = 0. The increment oi/

of // acijuired in movini:- alnnii' the tan-

gent is 5y = p5£ = 0. Hence the new
point of departure (.r,. //^) is (0.1. 1) and

the new slope is p^ = — .i\/ij^ = — 0.1.

The results of tlie W(jrk. as it is contin-
'

ued. may be grouped in the tal)h-. lli-ncf it ajjpcars that the tinal ordinate is

y = O.ltO. By adding up the trapezoids the area is compute<l as 0.48. and by tind-

imr the elements 5s — v 5./;- + oy- the length is found as O.ol. Now the particular

equation here treated can be inteiir;Ueil.

1 .

5x 5// .<« Hi Pi

0. 1.00 0.

i
1 0.1 0. 0.1 1.00 -0.1
2 0.1 - 0.01 0.2 0.09 -0.2
8 0.1 - 0.02 0.3 0.07 - o.:n

4 0.1 - O.O:] 0.4 0.04 - 0.43

•3 0.1 - 0.04 0.5 0.90

yp + .f = 0. ydy -I- xdx 0. .;•- -{ y- = ( ', and hence x- -\- y- = \

is the solution which passes throuuh (0. 1). Tlie ordinate, area, and length found

from the curve are therefore 0.87. 0.48. 0.52 respectively. The errors hi the

approximate results to two places are therefore respectively o. 0. 2 percent. If 5x

had Ijeeii chosen as 0.01 and four places had been kept in the computations, the

errors wouM have been smaller.
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EXERCISES

1. In the following cases eliminate the constant C to find the differential equa-

tion of the family given :

(a) x' = 2 6V + C•^ (/3) II = Cx + Vl - f^

(7) X- — y^ = C'x, (5) ij = X tan {x + C),

a- — C h'^ — (' \dx/ xij dx

2. Plot the lineal elements and intuitively assemble them into the solution :

(a) lip + X = 0, (/3) xp - y = 0, (7) r '-^ = 1

.

Check the results by direct integration of the differential e(iuations.

3. Lines drawn from the points {± (\ 0) to the lineal element are equally in-

clined to it. Show that the differential equation is that of Ex. 1 (e). What are the

curves '?

4. The trapezoidal area under the lineal element equals the sectoi'ial area formed

by joining the origin to the extremities of the element (disregarding inlinitesinials

of higher order), (a) Find tlu^ (inferential equation and integrate. {(3) Solve the

same problem where the areas are equal in magnitude but opposite in sign. What
are the curves :'

5. Find the orthogonal trajectories of the following families. Sketch the curves.

(a) parabolas y- = 2 Cx, Ans. ellipses 2x- -|- y- = C.

(^) exponentials // = (V'-"', An><. parabolas
J
ky- + x = (.'.

(7) circles (j* — C)- + //- = «-, Ans. tractrices.

(5) .f^ - r = ('-, (e) *"//- = .r% (f) x' + //! = ri.

6. Show from the answer to Ex. 1 (e) that the family is self-orthogonal and

illustrate with a sketch. From the fact that the lineal element of a parabola makes

equal angles with the axis and with the line drawn to the focus, derive the differ-

ential ecjuation of all coaxial confocal parabolas and show that the family is self-

orthogonal.

7. If <!' (x, v/, p) = is the diiferential equation of a family, show

/ p- m \
1 ^ / P + >"\ ^* X, II, = and 4> .r, i/, 1 =

\ ' 1 -I- nip/ \ • 1 _ „ii>/

are the differential equations of the family wliose curves cut those of the given

family at tan-i //(. Wiiat is the dilference between these two cases '.'

8. Show that the diiferential ei (nations

^('J^'L,r,^\ = and * ( - r-^",'^, r, 0^ =
\'l<p '7

\ di

(h^liue orthogonal families in ])olar eoiirdiiiatt's, and write the ecjuation of the family

which cuts the tii'st of these ai the constant angle tan-'//).

9. Find the orthogonal trajeeturies of the; following families. Sketch.

(((-) ; ^ i(''l>, (li) r = ('(] — cos<;fe), (7) /• = C'</), (5) r- = (.'- cos 2 0.
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10. Recompute the approximate solution of yp + x = under the conditions of

the text but witli 5x = 0.05, and carry the work to three decimals.

11. Plot the approximate solution of p = xij between (1, 1) and the ?/-axis. Take

5x = — 0.2. Find the ordinate, area, and lenyth. Check by integration and

comparison.

12. Plot the approximate solution oi j) = — x through (1, 1). taking 5x = 0.1 and

following the curve to its intersection with tlie .r-axis. Pind also the area and the

length.

13. Plot the solution of p = Vx- + </- from the point (0, 1) to its intersection

with the X-axis. Take 5x = — 0.2 and find the area and length.

14. Plot the solution of p = .s which starts from the origin into the first quad-

rant (.s is the length of the arc). Take Sx = 0.1 and carry the work for live steps

to find the linal ordinate, the area, and the length. Compare with the true integral.

87. The higher derivatives ; analytic approximations. Although a

ditt'erential equation 4>(.r, >/, //')=() does not determine the relation

between ./ and // Avithont the a})[)li('ation of some process equivalent to

integration, it docs afford a means of computing the higher derivatives

simply 1)}' differentiation. Thus

((J- C.r Cij ' Of
'

is an equation which may he solved for y" as a function of r, ?/, y'

;

and //" may thei'efore be expressed in terms of .r and // by means of

4>(./-, //, if) = 0. A further ditferentiation gives the e(puition

ax- C.I- c-''Cij
'^•''^il ^'f ^'J'^tl

Cr(b C^ ?<J>

Oif-
^

ClJ-^ CI/'
-^ '

which may be solved for //'" in terms of ./', //. //', _?/"; and hence, by the

preceding results, y'" is ex})ressil)li' as a function of .> and ij
\
and so

on to all the higher derivatives. In this way any property of the inte-

grals of <&(.'', //. //') = Avliich, like the radius of curvature, is exi)ressi-

ble in terms of the derivati\es, may be found as a function of ./• and //.

As the differential e(ptation <5(.'',
//, //') = defines //' and all tlie

higher derivatives as functions of ./, //. it is clear that the values of the

derivatives may be found as //',, //". //,',", ••• ;it any given point (,/•., ij.y

Hence it is })Ossible to wiite the series

y = !/, + .< (:'' -
•'•o) + > .'/:: C^ - -''o)' + }; >l7 {'• - a-o)' + • • (^)

If this ]K)wcr scries in ./• — ./'.^ converges, it defines y as a function of

X for values of ,/• near .'v : it is inch'cd tJic Tuijlur deci'hipitn'nt nf tlie
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function u {% 107). The convergence is assumed. Then

y' = 2/0 + th (-^ - -''o) + \ Ih (•' -
'"o)' H—

•

It may be shown that the function ij detinetl by tlie series actually

satisfies the differential e(|uation ^{.'•, //,
ij') = 0, that is, that

n (..) = c^ [,.', //,+ 'J.
(' -

-''o) + h //u' ( ' - -'-of + •••,//; + //: (•'• -
''o) + •••] =

for all values of ./' near x^^. To prove this accurately, however, is beyond

the scope of the present discussion; the fact may be taken for granted.

Hence an analytic ex})ansion for the integral of a differential e(iua-

tion has been found.

As an example of coiuputation with liiulier derivatives let it be recniired ti) deter-

iiiiiie the radius of curvature of that solutiou of //' = tan (y/Jt) wliich pas.ses tlirouuh

(1, 1). Here the slope y^j j^
at (1, 1) is tan 1 = 1.557. The second derivative is

/, 'h' '^ ,>J
, ,0 y -ry' - y

y = — = — tan - = sec-
(Lr, dx X X x-

Froni these data the radius of curvature is found to be

11 = ^l±A!l ^ sec ^-^^ , i/o. .) = sec 1
^

= 3.250.
y" -t -iy' — y tan 1 — 1

The equation of the circle of curvature may also be found. For as z/^, j^ is positive,

the curve is coiicave up. Hence (1 — 3.2-30 sin 1,1 + 3.2.j0 cos 1) is the center of

curvature ; and the circle is

(.c + 1.735)- + (// - 2.757)- = (3.2.50)-.

As a second example let four tt-i'ms of tlie expansion of that integral of

a; tan ;/' = y which pa.sses throuuh (2. 1) be found. The differential equation may
be .solved ; then

dy ^ , /y\ d'-y xy' — y— — tan-q -

(/,'• \x! dx- ./'- + y-

iPy _ (./;- + y'-){x - 1) y" + (3 // - - x-) y' - 2 xyy'- + 2 xy

dx}^

~
(.f^ + y-)-

Xow it must be noted that the problem is not wholly determinate ; for y' is multi-

l)le valued and any one (if tlu' values f(jr tan-i i may be taken as the slope i.if a

solution through (2. 1). Suppose tiiat the aiiule be takt-n in the first quadrant ; then

tan-^ }, = 0.402. Substitutinu' this in //". we find //,'.',
,j
=— 0.0152 : and hence may

be found y['.,\^ = 0.110. The series for // to four terms is therefore

// = 1 + 0.402 (.;• _ 2) _ 0.0070 (,;• — 2)- + 0.018 (./• — 2)'-.

It may be notcil that it is liiMnTally sinqilcr not to exi)ress the hiuher derivatives in

terms of X auil //. but to cnuqiuie each one successivcl}' from the precediuL:' nui-s.

88. I'icard has given a nu'tliod for tlie integration of the etjuatiou

//' = </>(•''; //) by s/n-rrssirr <i jiiii'n.i'i iii'it inns wliieli. altliougli of the highest

llicoretie value and importance, is init jiarlieularly suitable to analytic
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uses in finding an approximate solution. The method is this. Let the

equation _y' = c^(./-, ij) be given in solved form, and suppose (./;^, ij^^) is

the point through which the solution is to pass. To find the first

approximation let // he held constant and equal to _y^, and integrate the

equation ij =
(f>(.'', //,,). Thus

di/ = cf, ( ./•,
//J

dx
;

ij =
//,,

-{- 4> (.r, y^) d.r = J\(.r), (9)

where it will l)e noticed that the constant of integration has been chosen

so that the curve passes through (.z'^, yj. For the second approximation

let 1/ have the value just found, substitute this in <j> (,/•, _?/), and integrate

auain. Then

1/ = y. +j^ <^ '-, .% +£ ^ (/':i/^(^^ -fp-)- (9')

With this new value for y continue as Ix'fore. The successive deter-

minations of y as a function of .< actually converge toward a limiting-

function which is a solution of the e<juation and Avhich passes throiigh

(./•|.j, y^). It may be noted that at each ste}) of the Avork an integration

is required. The difficulty of actually perfoi'ming this integration in

formal practice limits the usefulness of the method in such cases. It is

clear, however, that with an integrating machine such as the Integra] )h

the method could be applied as rapidly as the curves <j){.r, /](./) ) could

be plotted.

To see how the method works, consider tlie intei^ratiou of >/ = :/: + // to find the

integral through (1, ]). For tlie first approximation y = I. Tlien

(7// r= (.C + 1) (/,/•.
.'/ I f- + .'• ./•- + x /iGO-

From this vahxe ot i/ tiie next ai)pi'oximatiiin may be i'uniid. and then still another :

dij = [x + (l .'•- + X - V)] dx, !/

di/ = [x+f.,{x)]dx, tj = h-''^ + Ix'- + Ix- + i^x + .^^.

In this case there are no difficulties wliich would prevent any luunber of appli-

cations i:)f the method. In fact it is evident that if //' is a polynomial in x and t/. the

result of any number of applications of the method will be a polynomial in x.

The method of triulett'rni'nu'il coefficients may often be tMn])loyed to

advantage to d(n'elop the solution of a differential equation into a

series. The result is of course identical with that obtained by the

application of successive differentiation and Taylor's series as alxjve
;

the work is sometimes short(U'. Let the equation Ije in the form

y/' = <^(.'', //) and assuHU' an integral in the lV)rm

!I = U, + "l {'• -
-'-o) + "-2 (.' - ^of + "3 (.'' -

^'o)' + •

• (10)
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TlicMi <f)(.r, ?/) may also be expanded into a series, say,

<^ ('; i/) = ^\ + ^\ (•« - «'o) + ^h (^ - «-o)'' + -I3 (^- - ^0)' + •
••

But by differentiating the assumed form for 1/ we have

!/' =
<'r
+ 2 a^ (X - .g + 3 a.^ {x - x^f + 4 «^ {x - x^f + • • •

.

Tlius there arise two different expressions as series in x — x^ for the

function ?/', and therefore the corresponding coefficients must be etjual.

The resulting- set of e(]^uations

i(, = A, ?>a^ = A^ 4.a^ A, (11)

may be solved successively for the undetermined coefficients a^, a.„ c.^,

(I ^, • which enter into the assumed expansion. This method is partic-

ularly useful when the form of the differential etjuation is such that

some of the terms may be omitted from the assumed expansion (see

Ex. 14).

As an example in the use of undetermined coefticients consider that sohition of

the equation y' = Vx'-^ + 'iy'^ which passes tlu-ou<;h (1, 1). The exjjansion will pro-

ceed according to powers of x — 1, and for convenience tlie variable may be changed

to ( = X — 1 so that

dt
= -^{t + 1)- + ;:5 tf\ ?/ = 1 + a^i + ((o«- + a.S' + «4<* +

are the equation and the assnmed expansion. One expression f(n' y' is

7/' = «j + 2 aj. + ?. a.P + 4 a^t^ + • • • •

To find the other it is necessary to expand into a series in t the expression

?/ = V"(i + 0- + ;mi + «i^ + '^-f + «3^¥-

If this had to be done by Maclaurin's series, nothing would be gained over the

niethod of § 87 ; but in tiiis and many other cases algebraic methods and known
expansions may be applied (§ 32). First scpiare y and retain only terms up to the

third power. Hence

y' = 2 Vi + i (1 + -^ "1) ^ + -1(1 + ^ "! + ''' "0 ^' + 2 ('h<'-2 + "-.i)
^•'-

Now let the (juantity under the I'adical be called 1 + /t and expand so that

y' = 2 Vl + h = 2 (1 + J /i - I Ifi + tV '''')•

Finally raise h to the indicated powers and collect in pt)wers of t. Then

2/' = 2 + \ (1 + 3 a,)

t-

-
/,. (1 + •i",)n +(><(., + "^"{)
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Hence the successive equations for determining tlie coefficients are a^ = 2 and

2 «^ = ^ (1 + 3 «j) or a., = |,

3 rt3 = i (1 + (5 a., + 3 a{) - Jj (1 + 3 a^)" or a^ = |-5,

4 «, = I (rtjo, + a.,) - J. (1 + 3 a^)(l + a, + 3 a^) + ^\ (1 + 3 a,f or a^ = !«-.

Tlierefore to five terms tlie expansion desired is

y = 1 + 2 (X - 1) + 4 (^ _ 1)2 + l|(^ _ 1)3 + , M (X _ 1)4.

The methods of developing a solution hy Taylor's series or by un-

determined coefficients apply ecjually well to equations of higher order.

Eor example consider an equation of the second order in solved form

y" =
(f,

(.r, ]/, ?/') and its derivatives

^ ex CiJ
^

CiJ
^

''
CX' CXC(J

^
cxcij

-^

Cif
''

CijCtJ "^ -^

C//-
^

Cij C;/

Evidently the higher derivatives of y may be obtained in terms of x,

y, y' ; and y itself may be written in the ex}»anded form

where any desii'ed values may be attributed to the ordinate //^ at which

the curve cuts the line x = ./,, and to the slope //'j of the curve at that

point. ]\roreover the coeffic-ients //,", y'^\ are determined in such a way

that they depend on the assumed values of
//,,

and y',,. It therefore is

seen that the solution (12) of the difterential (-(piation of the second

order rt^ally involves two arbitrary constants, and the justitication of

writing it as F(x, y, C^, ('J = is clear.

In following out the method of undetermined coefficients a solution

of the equation would be assmued in the form

U = !/o+ !/'>(: - ^0 + <',(:• ' '.)" + ",(:' "
-^'o)' + ^'S'' " ^'o)' + '

'

"

.
(13)

from which y' and y" would l)c oljtained by differentiation. Then if the

series for y and //' be sul)stituted in //" = c/)(.'', y, y') and the result

arranged as a series, a second expression for //" is obtained and the

comparison of the coefficients in the two series will afford a set of equa-

tions from which the successive coeffi(-ients may be found in terms of

//,,
and /^ b}' solution. These results may clearly be generalized to the

case of differential e(piations of the ?(th order, whereof the solutions

will dep(Mid on n arbitrary constants, namely, the values assumed for

a and its first n — 1 derivatives when ./ = ,/..
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EXERCISES

1. Find tlif radii and circles of curvature of the solutions of the followin<r equa-

tifjus at the points indicated :

(a) >/ = Vx- + !/- at (0, 1). (/3) yy' + x = at {x^, y^).

2. Find
!/[[[ J)

= (5 V2 - 2)/4 if / = Vx' + y-.

3. Given the equation y-y''^ + xyy"~ — yy' + x- = of the third degree in y' so

that there will be three solutions with different slopes through any ordinary point

(x, y). Find the radii of curvature of the three solutions through (0. 1).

4. Find three terms in the expansion of the solution of y' — (-"' about (2.
i).

5. Find four terms in the expansion of the solution of (/= logsinx(/ abmit {\ tt. 1)..

6. Ivxpand the solution of y' = xy alxmt (1. y^^ to five terms.

7. Expand the solution of ;/' = tan (///x) about (1. 0) to four terms. Note that

here x should be expanded in terms of y. not y in terms of x.

8. Expand two of the solutions of y-y'"^ + xyy"- — yy' -|- x- = about (— 2, 1)

to four terms.

9. ( )btain four successive aiiproximations to the integral of y' — xy through (1, 1).

10. Find four successive aiiproximations to the integral of y' = x \- y through

(0. y,).

11. Show by successive approximations that the integral of y' = y through (0, y^,)

is the well-known y = y„e^'.

12. Carry the approximations to the solution of //' = — x/y through (0, 1) as

far as you can integrate, and plot each approximation on the same figure with the

exact integral.

13. Find by tlie method of undetermined coefficients the number of terms indi-

cated in the expansions of the solutions of these differential equati(jns about the

points given :

(a) y' — Vx + //, five terms, (0, 1), (^) y' — x'x + //, four terms, (1, 3),

(7) il' = >' + ,'/. " terms, (0. //,,). (5) //' = x 'x- + y-. four terms,
(f. \).

14. If the solution of an equation is to be expanded about (0. //,,) and if tlie

change of x into — x and y' into — //' does imt alter the (Mjuation. the s(.jlutiiin is

necessarily synunctric with respect to the y-axis and the expansion may be assumed

to contain only even powers of x. If tlie solution is to be expanded about (0. 0)

and a change of ,/• into — x and y into — y does not alter the I'quation. the solution

is synunctric with respect to the ori;:in and the expansion may be assumed in odd

powers. Obtain the expansions to four terms in the following cases and compare

the lal)or invojvcil in the method of undetermined coefficients with that whic'h

would lie involved in jiei-foi'ming the retjuisite six or seven differentiations f(jr the

ajiplication of .Maclauriifs series:

(n-) y' = about (0. 2), (/i) y' - sin xy about (0. 1),

A 'x- +//-'

(7) y' = e'J about (0. 0). (5) //' = x^y + xy-' about (0. 0).

15. Expand to and including the term x'' :

(a) y" — //'- + ,(// about x,, = 0. y^^ = n^^, //,' — n
^
(liy both methods).

(.i) xy" -f ;/' -L 7 — iiliiiut x^ = (t.
y^^ = a^^. y[^ = — "^ (by und. coeffs.).
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89. Integration by separating the variables. If a differential equa-

tion of the first order may Ije solved for //' so tliat

l,'
= ^(x,y) or M{.r, >,

)>!, + X{x,y)dy = (1)

(where the functions <^, M, X are single valued or where only one spe-

cific branch of each function is selected in case the solution h^ads to

multiple valued functions), the differential equation involves only the

first power of the derivative and is said to l)e of the first degree. If,

furthermore, it so happens that the functions <^. -1/, .V are products of

functions of x and functions of // so that the equation (1) takes the form

I/'
= 4>^(.r)

<f>Ji/) or M^(.r) M.i>,) d:r + X^-) Xjj/ ) ./y = 0, (2)

it is clear that the variables may be separated in the manner

and the integration is then immediately performed l>y integrating each

side of the equation. It was in this way that the numerous problems

considered in Chap. VII were solved.

As an example ccmsider the equation yy' -\- xy- = x. Here

ydii + X {y- - 1) dx - or J^-JL. + ^rh = 0,

and h log {y- — I) + \ x- = C or {y- — 1) c'- = C.

The second form of tlie solution is found by taking the exponential of both sides

of the first form after multiplying by 2.

In some differential equations (1) in which the varialjles are not

immediately separable as alcove, the introduction of some change of

variable, whether of the dependent or independent varial)le or both,

may lead to a differential equation in Avhich the new varial)lt's are se])a-

rated and the integration may be accomplished. The selection of the

proper change of variable is in general a matter for the exercise of

ingenuity : succeeding paragraphs, however, will point out some special

203
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types of equations for which a definite type of substitution is known

to accomplish the se})aration.

As an example consider the e(iviati()ii xAy — ydx = x Vx- + y- dx, where the varia-

bles are clearly not separable without substitution. The presence of Vx- + y'"^

suggests a change to polar coordinates. The work of finding the solution is :

X = r cos 0, y = r sin ^, dx = cos ddr — r sin 0d9, dy = sin Bdr + r cos Odd
;

then xdy — ydx = r-dO, x Vx- + y'-dx = r- cos dd (r cos 0).

Hence the differentia) e(iuation may be written in the form

f-dd = r- cos Od {r cos $) or sec ddO = d {r cos 8),

and los; tan (J + W) = r cos + C or log—~ '— = x + C.
cos 6

y x'^ _i_ ^/- _i_ y
Hence —'-

^ ^ = Ce'' (on substitution for ff).

X

Another change of variable which works, is to let y = vx. Then the work is

;

x{vdx + xdv) — vxdx = x- a/ 1 + v'-dx or du = V1 + t-dx.

dv
Then , = dx, sinh-iu = x + C, y = x sinh (x + C).

Vl + V-

This solution turns out to be sliorter and the answer appears in neater form than

before obtained. The great difference of form that maj' arise in the answer when

different methods of integration are employed, is a noteworthy fact, and renders a

set of answers practically worthless ; two solvers may frequently waste more time

in trying to get their answers reduced to a common form than each would spend in

solving the problem in two ways.

90. If in the equation //' = c/)(.v, //) the fiuiction <^ turns out to be

(^ (///./•), a function of ///,/• ah)iu'. that is, if the functions M and A' are

homogeneous functions of .r, // and of the same order (§ 53), tlie differ-

ential equation is said to be /ioii)');/t'7ieoi/s and the change of varial)le

1/ = vx or :r = r/j Avill always result in separating the variables. The

statement may be tabulated as :

if ^ = ci(-), substitute I
'/='•'

/3)
(/./• '^ y./y [ or ./." = ry.

A sort of corollary case is given in Ex. 6 below.

As an example take y\l + t'7'ix + c'' {y — x)dy — 0, of whieli tlie liomogeneity

is perhaps somewhat distjuised. Here it is better to choose x = vy. Then

(1 + C) dx + e'- (1 — t) dy = and dx = vdy + ydv.

Hence (u + t') dy + y (1 + e) dv = or — + -

'

du = 0.

y r + c'-

Hence log y + log (f + c') = C or x + yc'' = C.
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If the differential equation may be arranged so tliat

% + -^'i(-^-) U = '^'X-'-) 'f o^- ^ + y.iu) ^r = y/jj) .r", (4)

where the second form diifei'S from the first only through the inter-

change of .r and >/ and wliere A'^ and A'., are functions of .'• alone and

I'j and }\ functions of //, the equation is called a BernoaHl ciiiKithtii : and

in particular if ?i = 0, so that the dependent variable does not occur on

the right-hand side, the equation is called Ibiefw. The substitution

which separates the variables in the respective cases is

y = rr-/-*'>('>'''- or .r = /•«-/^'i^-"^''-".
(5)

To show that the separation is really accomplished and to find a general

formula for the solution of any Bernoulli or linear equation, the sui>

stitution may be carried out formally. For

dx dx"
''^'

The substitution of this value in the equation gives

<1 1' r c (II' r— t- J -^V'- = A ,r"c- "/ -^•''.'- or — = X/'- '"/•*>''.'-
,/,,..

dx ' f"

Hence v^^' 1 - n) Cx/'-"Kf-''^'''d.,; when >i ^ i;

or v/i-''= (1 — «)f>-i'jf-v./.
I

_Y/'<i-"'/-^V'.'-
(<>)

There is an analogous form for the second form of the equation.

The equation {x-y^' + xy)dy = dx may be treated by this method by writing it as

dx
yx — y"'x- su that Y. = — >/, Y.^ = y^, n = 2.

Then let X = re ^' = i-c- .

Then
dx dr. \ V- \ '1- \ .'/- dv \ v-

yx = — c- + vyc- — yvc = — e"
dy dy dy

and
dv ly- „ , , dv „ },>fi ,— e- — yv-c'J- or — = y"c- di/,

dy V-

and
1 _

V

-- (y-^ - 2) e- + C or - = 2 - y'^ + Ce " '

.

This result could hav e been obtained by direct svdjstitution in the fornuda

^1- « = (1 _ „) e<"
-'\f ^V" r

J Yj^- ")/ >V/v ^jl
^

but actually to carry the method through is far more instructive.

* If /< = !, the variables are separated in tlie original equation.
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EXERCISES

1. Solve Uie equations (variables iuiiiiediately separable) :

(a) (1 + x)ij + {I- y)sj/ ^ 0, Ann. xy = Ce''--^

(/3) a {xdy + 2 ydx) = xijdy, (7) Vl — x- dij + Vl — y'^ dx = 0,

(5) (1 + y-) dx - (// + Vl + y){\ + x)3 cZy = 0.

2. Dy various ingenious changes of variable, solve :

(a) (x + y^y' = a-, Ans. x + y = a tan (y/a + C).

(/3) (x — //-) dx + 2 zydy = 0, (7) xdy — //dx = (x^ + j/''^) dx,

(5) y' = X - y, (e) v/y' + r + X + 1 = 0.

3. Solve these homogeneous equations :

(a) (2 Vxy — x) y' + ?/ = 0, yl7i.s. Vx/// + log ?/ = G.

V

(/3) xe'' -V y — xy' = 0, ^ns. y + x log log C/x = 0.

(7) (x^ + y'^) dy = xydx, (5) xy' —y= Vx'-^ + y'^.

4. Solve these Bernoulli or linear equations :

(or) // + y/x = y~, Ans. x// log Tx + 1 = 0.

(/3) //' — // CSC X = cosx — 1, Ans. y = sin x + C tan } x.

(t) x// + y = //' logx, Anx. //-i = logx + ] + Cx.

(5) (1 + y'^) dx = (tan- 1 y/ — x) d//, (e) //dx + {(ix'-y"- — 2 x) d// = 0,

(f ) x//' - a// = X + 1, {ri) yy' + i //- = cos x.

5. Show that the substitution y = vx always separates the variables in the

homogeneous ecjuation y' = (p (y/x) and derive the general formula for the integral.

6. Let a differential equation be reducible to the form

dy _ /f'lX + '>i// + cA a^h., — <i.J)^ ^ 0,

dx \«^x + /a,// + cj ov (i^h., — <(J)^ = 0.

In case a^h., — aji^ -^ 0, the two lines r/,x + h^y + r, = and fl._,x + '>.,// 4- r^ =
will meet in a point. Show that a transformation to this point as origin makes

tlie new equation homogeneous and hence soluble. In case «,/»., — aj>^ = 0, the

two lines are parallel and the substitution z — a.,x + b.,y or z — a^c + b^y will

separate the variables.

7. By the method of Kx. G solve the ecpiations

:

(a) (?>// — 7x + 7)dx + ('//—;>x + 8)d// = 0, Ans. (//_ x +!)-(//+ x— 1)5 = C.

(^) (2x + 8//-5)//' + (3x + 2//-y)=0, (7) (4x+ 3 //+ l)dx+ (x + /y+l)d// = 0,

(5) (2x + y) = //'(4x + 2 // - 1), (e) '^ = (t^"^-^)'' •

dx \2 X — 2 // + 1/

8. Show that if the equation may bo written as yf(xy)dx + xg{xy)dy = 0,

where /and g are functions of the product xy, the substitution w = x// will sepa-

I'ate the variables.

9. By virtue of Ex. 8 integrate the ecpiations :

(a) {y + 2x?/2 — x-y"')dx + 2 x-ydy = 0, Ans. x + x-y = (' {^ — xy).

(i-i) (// + xy-) dx + (x - x~y) dy - 0, (7) (1 + xy) xy-dx + {xy - 1 ) xdy = 0.
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10. By any method that is applicable solve the fnllowinp;. If more than one

method is applicable, state what methods, and any apparent reasons for choos-

ing one :

(«) V' -\- y cos X = 2/» sin 2cc, (/3) (2 xhj + 3 if) dx = {x^ + 2 xy"-) dy,

(y) {4:x + 2y - l)y' + 2x + y + 1 = 0, (5) yy' + xy^ ^ x,

{e) y' sin'?/ + sin x cos y = sin .r, (f) Va"-^ + x'^ (1 — ?/') = x + ?/,

(t;) (x^y'^ + x-?/- + x(/ + 1) y + (x'V'' — x-y- — xy + I) xy\ [6) y' = sin (x — ?/),

_ V

(
t
) xydy — tf-dx = (x + y)- e ' (7x, (k) (1 — 2/-) dx = nxy [x + l)dy.

91. Integrating factors. If the e(iuation Md.r + Xd// = hy a suita-

ble rearraiigenuMit of tlu> tenns can V)e })iit in the form of ii siun of total

differentials of certain functions u, r, • •
• , say

da + (//; H = 0, then // + ^> + .
. • = (/ (")

is surely the solntion of the equation. In this case the equation is called

an exact different Icl equation. It frequently hapjiens that althousj^'h the

equation cannot itself be so arranged, yet the e(|uation obtained from

it by multiplying through Avith a certain factor fi^.r, //) may be so

arranged. The factor /x(,r, v/) is then called an Integrat'mg fa<'to)' oi the

given equation. Thus in the case of variables se2)arable, an integrating

factor is 1/M\^X^ ; for

—^ \M\M, d.r + A,.V, d>n = '^^'^ dx + ^^^ di/ = : (8)

and the integration is immediate. Again, the linear e(|uation may be

treated by an intt'grating factor. Let

d^ + \\f/dx = X,//x and /x = rPv''-; (9)

then t'/-^'''/.'- ,/y 4- A\r/-^V'.'- y,/,^ = ^,/.av/x
y^,/,. ^^q-^

(/[//r/-^.'''] = J-^VZ-AV/.r, and yr/-^V'-= fef''" Xjh 01)

In the case of variables separable tlie use of an integrating factor is

therefore implied in tlie ])rocess of separating tlie variables. In the

case of the linear equation the us<^ of the integrating factor is somewhat

shorter than the use of the substitution for separating the variables.

In general it is not jiossible to hit \q)on an integrating factor by ins})ec-

tion and not practicable to obtain an integi'ating factor by analysis, but

the integration of an equation is so simi)le when the factor is known,

and the equations which arise in i)ractice so frequently do have sinq)le

integrating factors, that it is worth while to examine the equation to

see if the factor cannot be determined l)y ins})ection and trial. To aid

in the work, the dil'fercntials of the simpler functions such as
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dxy — xiJij -\- ydx, \ d (./•'- + i/'-j = xdx -\- ydij,

^y^xdji_-ydx^ ^^^vH^ V'^'^-^'h/
^ ^12)

X X- y X- + y
should he home in mind.

Consider tli(3 eciuatioii (x*6-^ — 2 ?/«//-) dx + 2 7?ix-;/d// = 0. Here the first term

x^e^dx will be a diffeiTutial of a function of x no matter what function of x may be

assumed as a trial )x. With /u = ]//* the eciuation takes the form

edz + 2 ?/i - - = de- + hid — = 0.
\ X- x^ / X-

The integral is therefore seen to be e'' + my-/x" — (' without more ado. It may
be noticed that tliis e(iuatiou is of the Bernoulli type and that an integration by

that method would be considerably longer and more tedious than this use of an

integrating factor.

Again, consider (x + i/)dx — (x — y)di/ — and let it be written as

xdx + 7jdy + ydx — jcdij = ; try
fj.
= l/(x- + ?/-)

;

xfZx + ydy yds, — xdi/ ^ 1 , , , , ,x , , x ^
then

-^/j^ j^ •!_ j_ ^ q ,^j. _ ^^ log (x- + y-) + d tan-i - = 0,
X- + %f- X- + 2/- 2 ' y

and the integral is log Vx- + ij^ + tan-i (x/y) = C Here the terms xdx + ydy

strongly suggested x- + y- and the known form of the differential of tan-i (x/?/)

corroborated the idea. This equation comes under the homogeneous type, but the

use of the integrating factor considerably shortens the work of integration.

92. The attempt has heen to write Mdx + Xdy or /i (.l/r/.r + Ar/y)

as the sum of total differentials du + du + • •
• , that is, as the diffei'eiitial

dF of the function ?/ + /' + • •, so that tlie solution of tlie ecjuation

Mdx-\-Xdy = (-ould he ohtained as F= (\ A\"hen tlie, ex})ressi()ns

are complicated, the attempt nia}' fail in })ractice even where it theoi-eti-

cally should succeed. It is therefore of importance to estahlish condi-

tions under which a differential expression like I'dx + <(?'/// shall lie the

total differential dF of some function, and to hnd a means of obtaining

F when the conditions are satished. This will now he done.

(13)Sir[)pose Pdx + Qdy =--dF == ^ dx + . d>/
;

ex cy

tlien
cF

ex

cF dp cQ c-F

cy ex cxcy

Hence if Pdx + (^dy is a total differential dF. it follows (as in § 52) that

the relation
/'J^
= ''/,. must hold. Now convci-sely if this relation docs

liold, it may he shown that Pdr + (idi/ is the total diilerential of a

function, and tliat this function is



(14)

COMMONER ORDmARY EQUATIONS 209

or F= f \l (,r, >j) drj + f/^ (.r, ij^ (b;

where the fixed value .7-^ or y^ will naturally be so chosen as to simplify

the integrations as much as possible.

To show that these expressions may he taken as F it is merely neces-

sary to compute their derivatives for identification with P and Q. Now

^ = ^1 P(x, y)dx ^Yx] ^^*^'''«' ^^'^^ = ^'^''' y^'

dF

'i ^hj?^^' '^'^
^hJ''^'^'

'^'' ^ hJ'^'-' ^
'^^•'°' '^-

These differentiations, applied to the first form of F, require only the

fact that the derivative of an integral is the integrand. The first turns

out satisfactorily. The second must be simplified by interchanging the

order of differentiation l)y y and integration by x (Leibniz's Rule,

§ 119) and by use of the fundamental hypothesis that P'y = Q'^.

i.

J /V,« + Q(x^, y) =j 1^
<lr + Q{x^, y)

The identity of /' and Q with the derivatives of F is therefore estab-

lished. The second form of F Avould l)e treated similarly.

Show that (x- + log y)(lx + x/ydy = is an exact differential equation and obtain

the solution. Here it is first necessary to apply the test P^ = Q^ . Now

— (x- + log y) = - and = - •

cy y cxy y

Hence the test is satisiied and the integral is obtained by applying the formula

:

/ ' r \

I
(x- + log y) dx -\-

\
" dy = -x-" + x log y = C

Jo
'

J y 3

J->

II X p 1

- dy + I (x- -1- log 1) dx = X log y + ~ •''' — C.
1 y ' J 3

It sliould be noticed that the choice of x,, = simplifies the integration in the first

case because the substitution of the lower limit is easy and because the .second

integral vanishes. The choice of
?/o
= 1 introduces corresponding simplifications in

the second case.
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Derive tlie partial differential equation lohich any inter/rating factor of the differ-

ential equation Mdx + Ndy = must satiffy. If
fj.

is an intef^ratiiig factor, tlien

liMdx + ^iNdy = dF ami -^~— = -^--

.

cy dx

Hence M~ — N^ = fil ) (15)
dy ex \dx cy I

is tlie desired equation. To determine tlie integrating factor by solving this equa-

tion would in general be as ditHcult as solving the original ecjuation ; in some

special cases, however, this equation is useful in determining ^.

93. It is now convenient to tabulate a list of different types of dif-

ferential equations for whic.li an integrating factor of a, standard form

can be given. With the knowhidge of the factor, the ecpiations may
then be integrated by (14) or by inspection.

EciUATiox Mdx -f Nilij = : Factor
fj,

:

I. Homogeneous J\ldx + Nd/j = 0,

II. Bernoulli </// -\- X^ijdx = A'j/'dx,

m. _v = ,/(,,„), .V = ..,(.,,/), ^^^_^^

VI. Typo x^ifi^mudx + nxd/j) = 0, i'',

"'

.

";^ '\ '

VII. x^/fihnmJx -}- vxd //)-{- xy//^( p//(/x -\- fix(h/)= 0, <
'

, . ' .

'

'

' l/: detci'mmed.

The use of tlie integrating factor oi'tcn is simpler than the substitu-

tion )/ = rx in the liomogeneous ('(piation. It is practically identical

with tlie sid)stitution in the Bernoulli ty})c. In the third ty})e it is

often shorter than the substitution. The remaining ty])es have had no

substitution in(li(;ated for them. The ])ro()fs that tlu; assigned forms

of the factor are right ai'c given in tlu^ examples below or ai-e left as

exercises.

To .show tliat /J. = {}[x+ \y)^^ is an iiifegrating factor for tlic humogeiieeus

case, it is possil)lc sinq)ly to suhstitutc in tlic eiiiiatioii (1^")), which /x must satisfy,

and show that Ihc equation actually liohls by virtue of tlic fact that M and .V are

a.iA cX

v. If

dx

dx

d.U

-,m,

V. If
dx ^//

--/(!/),



COMMONER OEDINARY EQUATION'S 211

homogeneous of the same degree, — this fact being used to simi)lify the result by

Euler's Formula (30) of § 53. But it is easier to proceed directly to show

M c / N \ a /I 1 \ /I \ , Ni/— "••
' — ' where </> =

dy Mx + Ny ex \Mx + NyJ cy\xl + (pj cx \y I -\- (pj Mx

Owing to the homogeneity, 4> is a function of y/x alone. ^ Differentiate,

a 1 \ I (p' 1 I 4)' — y c/1
(fi

cy \xl + (pf X {I + 0)- X y (1 + (p)- x- cx \y 1 +

As this is an evident identity, the theorem is provinl.

To lind the condition that the integrating factor may be a function of x only

and to find the factor when the condition is satisfied, the equation (15) which
fj.

satisfies may be put in the more compact form by dividing by /x.

,1/^^-JV^^= —-— or J/^l^^_.V^i^!^ = ^-^'_^:^.
(15')

ndy /J. cx cx cy cy cx cx cy

Now if /x (and hence log /j.) is a function of x alone, the first term vanishes and

d log fi K, - K
dx N :/(x) or logM= jf{x)dx.

This establishes the rule of type lY above and further shows that in no other case

can n be a function of x alone. The treatment of type V is clearly analogous.

Integrate the equation x*y (3 ydx + 2 xdy) + x'^ (4 ydx + 3 xdy) = 0. This is of

type VII ; an integrating factor of the form
fj.
= xPy<^ will be assumed and the ex-

ponents p, cr will be determined so as to satisfy the condition that the equation be

an exact differential. Here

P = fj.M =SXP + 4y<r + 2 ^ 4 j.p + -2,^,7 +1^ Q _ ^_Y =2XP + Sy^ +1 + 3 XP + 3(/<^.

Then P^ = 3 (tr + 2) xP + ^y'^ +^ + 4{a + 1) xP + -•//«^

= 2 (p + 5) xP + ^y" +1 + 3 (p + 3) xP + -'//-^ = Q'^.

.

Hence if 3 (cr + 2) = 2 (p + 5) and 4 (<r + 1 ) = 3 (p + 3),

the relation P^ = Q\. will hold. 'I'his gives a- = 2, p = 1. Hence ^ = xy~,

and r (3 x-'y"^ + 4 rhf') dx + C Ody = I x^y* + /*//•" = C

is the solution. The work might be shortened a trifle by dividing througli in the

first place by x^. Moreover the integration can be performed at sight without the

use of (14).

94. Several of the most important facts relative to integrating factors

and solutions of Mdx -\- Xdi/ = will now l)e stated as theorems and

the proofs Avill be indicated below^

1. If an integrating factor is known, the corresponding solution may
be found ; and conversely if the solution is known, the corresponding

integrating factor may be found. Hence the existence of either implies

the existence of the other.

2. If F = C and G = C are two solutions of the e(|uation, eithei' must

be a function of the other, as (! = ^{F) ; and any function of eitliei' is
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a solution. If /u. and v are two integrating factors of the equation, the

ratio /i/v is either constant or a solution of the equation ; and the i)ro(l-

uct of yu, by any function of a solution, as yu$(F), is an integrating fac-

tor of the equation.

3. The normal derivative dFjdn of a solution obtained from the

factor \i is the product yu. Vj/-^ + X'^- (see § 48).

It has already been seen that if an integrathig factor /i is known, tlie corre-

sponding solution F = C may be found by (14). Now if the stjlution is known, tlie

equation

(IF = Fjlx + F'^dij = ii{Mdx + Ndy) gives F,' = /x.V, F^ = fj.N

and hence fx may be found from either of tliese ecjuations as the quotient of a

derivative of F by a coefficient of the differential equation. The statement 1 is

therefore proved. It may be remarked that the discussion of approximate solutions

to differential equations (§§ 86-88), combined with the theory of limits (beyond the

scope of this text), affords a demonstration that any ecjuation Mdx + Xdij = 0,

where M and N satisfy certain restrictive conditions, has a solution ; and lience it

may be inferred that such an equation has an integrating factor.

If fi be eliminated from the relations F^ = fiM, F'^ = /jlN found above, it is seen

that

MFy - NF^^ = 0, and similarly, MG'^ - .VG; = 0, (16)

are the conditions that F and G should be solutions of the differential ecjuation.

Now these are two sinuiltaneous homogeneous ecjuations of the first degree in 3/

and N. If M and N are eliminated from them, there results the equation

F'G'.-F'G' = or
g: g'a

J{F, G) = 0, (16')

which shows (§ 62) that F and G are functionally related as refjuired. To show

that any function 4'(F) is a solution, consider the eijuation

3/*,; - x*; = (.VF,; -nf'^.) *'.

As F is asolution, the expression 3/^F,^—-VF'. vanishes by (16), and hence M^',—N^'^

also vanishes, and <I> is a solution of the equation as is desired. The first half of 2

is proved.

Next, if IX and v are two integrating factors, ecjuation (15') gives

V — 'ii^ — V L'i^ — 1/ ^ '

'i" " _ V ^ '"^' "
or ¥ ^'^"-^/'' _ Y L"!'-^/^ — o

cy ex cy ex cy cx

On comparing with (16) it then appears that log (yu/f) nmst be a solution of tlie

ecjuation and hence /x/v itself nmst be a solution. The inference. ho\ve\fr. would

not hold if fx/v retluced to a constant. Finally if n is an integrating factor leading

to the solution F = C, then

dF= fx {Mdx + Ndy), and hence /x* (F) {Mdx + Xdy) = d f* ( F) dF.

It therefore appears that the factor pt<I>(F) makes the e(|uation an exact differen-

tial and must be an integrating factor. Statement 2 is therefore wholly pr(jved.



COMMONER ORDINARY EQUATIONS 213

The third proposition is proved simply by differentiation and snbstitntion. Por

dF cF clx cF di/ ^^dx ^^dy— =
1 = fj.M h fxJy —

.

dn cx dn cy dn dn dn

And if T denotes the inclination of the curve F = C, it follows that

dy M . dy N dx M
tan T = — = , sm t = — = , — cos r = — = .

dx N dn -y/M'^ + N'^ o!'^ VM'^ + N'^

Hence dF/dn = /x y/M'^ + N'^ and the proposition is proved.

EXERCISES

1. Find the integrating factor by inspection and integrate :

(or) xdy — ydx = (x^ + y^) dx, (j3) (?/2 — xy) dx + x'^dy — 0,

(7) ydx — xdy + logxdx = 0, {5) y {2 xy + e') dx — ef'dy — 0,

(e) (1 + xy)ydx + (1 - xy)xdy = 0, (f) (x — y^)dx + '2xydy = 0,

(t;) {xij^ + y) dx - xdy = 0, (6') a {xdy + 2 ydx) = xydy,

(i) {x- + y-) {xdx + ydy) + Vl + (x- + 2/") {ydx — xdy) = 0,

(k) x"ydx — (x* + y^) dy = 0, (X) xdy — ydx = xVx^ — y-dy.

2. Integrate these linear equations with an integrating factor

:

(a) y' + ay = sinte, (/3)
y' + ycotx = secx,

(7) (X + 1) / -2y = {x+ 1)\ (5) (1 +x2) / + y = e ta"-'%

and (/5), (5), (f) of Ex. 4, p. 200.

3. Show that the expression given under II, p. 210, is an integrating factor for

the Bernoulli equation, and integrate the following equations by that method :

(a) y' — y tan x = y^ sec x, (/3) 3 y'^y' + y^ -x — l,

(7) y' + y cos x = //" sin 2 x, (5) dx + 2 xydy = 2 ax^y^dy,

and (a), (7), (e), (rj) of Ex. 4, p. 200.

4. Show the following are exact differential equations and integrate :

{a) (3 x'^ + 6 xy-) dx+ (6 x'^y+ 4 y-) dy= 0, (/3) sin x cos ydx + cos x sin ijdy = 0,

(r) (6x-2i/ + l)dx + (2y-2x-3)di/ = 0, (5) (x^ + 3 x^'^) (Zx + (//^ + 3 x'^i/) cZy = 0,

2x?^+J. ^^ _^ ?^::i^cZ2/ = 0, (r) (1 + e'') ^^-k + e'^ (1 - -] dy = 0,

(r;) e-^' (x- + 2/'-^ + 2 x) dx + 2 yt^'dy = 0, (^) {y sin x — 1) cZx + (y — cos x) dy = 0.

5. Show that {Mx — Ny)~^ is an integrating factor for type III. Determine

the integrating factors of the following equations, thus render them exact, and

integrate

:

(a) {y + x)dx + xdy = 0, (/3) (?/2 — xy) dx + x^dy = 0,

(7) (x'^ + y'") dx — 2 xydy = 0, (5) (x"?/'-^ + xy) ydx + (x^?/^ — I) xdy = 0,

(e) (V^- 1) xdy - (V^+ 1) ydx = 0, (f) x^tZx + (3 xhj + 2 y^) dy = 0,

and Exs. 3 and 0, p. 206.

6. Show that the factor given for type VI is right, and that the form given for

type VI] is right if k satisfies k {qin — i^n) = q {a — 7) — i> (/3 — 5).
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7. Iiiteurate tlie following: ('iiuations of types IV-VII :

(a) {y* + 2ij) dx + (j-r + 2 y* -As)dy = 0, (/3) (x'^ + i/ + 1) dx - 2 xydy = 0,

(7) iSx^ + ()Jcy + 3y'')dx+{2y^ + Sxy)dy = 0, (5) {2x-^y' + y)- {x^y - 3x) y'=0,

( e) (2 xhj - 3 J/-*) dx + (3 x^ + 2 xy'^) dy = 0,

( f ) (2 - '/) sill (3 X - 2 y) + y' sin (x - 2 y) = 0.

8. By virtue of prop(Jsiti(iii 2 above, it follows that if an equation is exact and

homogeneous, or exact and has the variables separable, or homogeneous and under

types IV-VII, so that two different integrating factors may be obtained, the solu-

tion of the equation may be oljtaiiied without integration. Apply this to finding

the solutions of Ex. 4 (/S), (5), (7) ;
Ex. 5 {a), (7).

9. Discuss the apparent exceptions to the rules for types I, III, VII, that is,

when Mx + Xy = or Mx — Xy = or qrn — ]ni = 0.

10. Consider this rule for integrating Mdx + Xdy= when the equation is known
to be exact : Integrate Mdx regarding y as constant, differentiate the result regard-

ing y as variable, and subtract from X ; then integrate the difference with respect

to y. In symbols,

C = f {Mdx + Xdy) =: fMdx + f ix - ^'- f Mdx\dy.

Apply this instead of (14) to Ex. 4. observe that in no case should either this

formula or (14) be applied when the integral is obtainable by inspection.

95. Linear equations with constant coefficients. The type

/•/"// (l"~^i/ (1(1 , , ,^_^

"« 57' + "' Ta,^'
+ + '-;&' + ""' = -^ (-) (1 •

)

of differential equation of the n\\y order wliieli is of tlie first degree in

?/ and its derivatives is called a Unnir etjuation. For the ]iresent onh^

the ease where the eoetticicnts a^^. << ^. , "„_i, "„ ai'e constant will be

treated, and for eonveiiienee it will he assumed tliat the etjuation has

heen divided through hy n. so tliat tlie coehicieiit of the highest deriva-

tive is 1. Then if differentiation be denoted by 1), the equation may be

written si/t/J/oIirt///// us

(/>" + "i/>"
-' + + "., _, 1> + "„)

// = A, (17')

where the symbol J) combined with constants follows many of the laws

of ordinaiy algebraic ([uantities (see >; 70).

The simplest e(|uation would be of the first oi'der. Here

'/'/ r
-j a 1/ = X and 1/ = r"^' \ (^"^'Xdx, (18)

as may be seen by refei-enee to (11) or ((!). Now if T> — a^ be treated

as an algebraic symliol, tlie solution may be indicated as

(/>__„^,,/=A- an.l .'/ = --—-A, (18')
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where the operator (Z> — ff^)'^ is the inverse oi D — a^ . The solution

which has just been obtained shows that the interpretation which must

be assigned to the inverse operator is

D (*) = e"i^
j e- "'''{*) dx, (19)

where (*) denotes the function of x upon which it operates. That the

integrating operator is the inverse of I) — a^ may be ])roved by direct

differentiation (see Ex. 7, p. 152).

This operational method m-dx at once be extended to obtain the solu-

tion of equations of higher order. For consider

S + «i!7! + ''.^ = -^' o^" iJy' + a^D + a.;)i/ = X.
dx- dx

(20)

Let a^ and «-, be the roots of the equation 1>- + <iJJ -\- a_^ = so that

the differential equation may be written in the form

\_1J- — (cfj 4- a„) D + a^fc.,] // = A' or {D — ciTj) (I) — <(_) y = X.

The solution ma}' now be evaluated l)y a succession of steps as

(20')

1) — <i,

V

D - a.
\'dj

""='
j

^-("-«2).'-

I
c- ''''Xdx (20")

The solution of the equation is thus reduced to quadi'atures.

The extension of the method to an equation (jf any order is immediate.

The first ste}) in tlie solution is to solve the c(|uation

jy> + a/)"-' + ... + a,^_,l)-^>f,, =

SO that the differential e(|uation niay be written in the form

(7> _ ,,-) (/> _ ,g . . . (/; _ a,^ _0 (J)
- a„) // = X

;
(17")

whereu})On the solution is comprised in the formula

y = e"n"- Ce("" -'-'''»'

f rr("i-"^)'- Cr-'>i'X(dxy, (17'")

Avhere the successive integrations are to be performed by beginning

upon the extreme right and working toward the left. ^Foreover, it

a})pears tliat if the operators 1> — <i,,. I) — '(„_,. , I) — a\„ 1> — <x^ were

successively applied to this value of _//, they would undo the work here
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done and lead back to the original equation. As n integrations are

required, there will occur n arbitrary constants of integration in the

answer for y.

As an example consider the equation {Ifi — 4:D)y = x". Here the roots of the

algebraic equation Ifi — i D = are 0, 2, — 2, and the solution for y is

M = X- =
I

e'^^
I

e-'-'e-'^^ ( e--^x-{dx)''^.
1JD--1D+ 2 J J J "

'

The successive integrations are very simple by means of a table. Then

je^^x-dx = I x^e-^ — l xe--^' + ^ e^^ + Cj,

fe- * •^ Ce- ^x-{dx)- = f ( ' x-e- - ^ — J xe- ~-^- + le---' + C\e- * =') dx

= — i x-e- - •' — J- e- - -^^ + C\e- *^+ C„
,

?/ = fe-^^- fe-^'' Ce-^x~{dxY' = /"(— i x^ — i + C'ie-2^+ C„e-^)dx

= — yV r'' — I ic + C',e- 2 a" 4- C'„e-^ + C'g.

This is the .solution. It may be noted that in integrating a term like C^e-*^ the

result may be written as C'je-*^, for the reason that C\ is arbitrary anyhow ; and,

moreover, if the integration had introduced any terms such as 2 e---^, J e"^^, 5, these

could be combined with the terms C\e~-^, C„e-"f, (\ to .simplify the form of

the re.sults.

In case the roots are imaginary the procedure is the same. Consider

Y y = .sin x or {!)'- \- l)y = .sin x or (7J + z) (Z» — i) y = sin x.
dx"

Then ;/ = sin x = e'-'" | e- - '•'"

/ e'^ sin x (dx)-, i = V— 1

.

The formula for | e«^' sin hxdx, as given in the tables, is not applicable when

a- + b- = 0, as is the case here, because the denominator vanishes. It therefore be-

comes expedient to write sin x in terms of exponentials. Then

r o/. r ;.<:''''— 6"
'•"/

7 NO r e'^— e-'>
;/ = e'-' e- -'' c'-' (dx)- ; tor smx =

Now — e'-'- Ce--'-'-
j

{€-'• — V) (dx)- = - .t''- ft--'-' -e-"'— x + (\ \dx

1 . r 1 1 , . 1 , . ,
, ,

. ^1
2 1 I2i 2i 4

^

-J

X e" + e- '^
,, ^ .= —

^

~ + C\e-'^ + a,e'-^-.

Now C\e- '> + C',,e'> = {C, + C\)
^"

"^
"' "

+ {C„- C^) i

^'^ " ^" '^

2i

Hence this expression may be written as C\ cosx + C.iSinx, and then

y = —
I
X cos X +

(^'i
cos X + C^ sin x.

The ,';olution of such equations as these gives excellent opportunity to cultivate the

art of manipulating trigonometric functions through exponentials (§ 74).
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96. The general method of solution given above may be considerably

simplified in case the function X (x) has certain special fornis. In the

first place suppose A' = 0, and let the equation be P (D) y = 0, where

P (D) denotes the symbolic polynomial of the nth degree in D. Suppose

the roots of P{D) = are a^, a,^,
, %. and their respective multiplicities

are vi^, vi_^, , in^, so that

{D — a-^,)'"i- ... (D — ay"^(D — «j)""y =

is the form of the differential equation. Now, as above, if

(D - a^y'ij = 0, then ?/ = — -~ = e"''' ( J0(dx)"'\

Hence v/ = ,f^-(C^ + f'^ -f C^,-- + • • • + C„,x'"^ -')

is annihilated by the application of the operator (D — a^)'"', and there-

fore by the application of the whole operator P(D), and must be a solu-

tion of the equation. As the factoi's in P(l)) may be written so tliat

any one of them, as (I) — a,)'"', comes last, it follows that to each factor

(D — itiY'i will (correspond a solution

y. = (f>-((',, + C\^r ^- • • • + Cun-x>"i'^), P (D) 11- = 0,

of the equation. Moreover the sum of all these solutions,

i = k

y=Y^ ''"'"(f^'a + ^V + • • • + Ci,.,,-'i-^)^ (21)
a = l

will be a solution of the equation
; for in applving PiJ^) to y,

P ij)) y = P (D) y^ + /' (P) //, + •• + P (/)) //, = 0.

Hence the general rule may be stated that: The solvflon of tlie dif-

ferential e(pt(itl<)n P(Dyy = of the nih order may lie found by muJtiply-

iiig each e"^ by a iMdynoinlal (f(^i)i — Ij.s'/ der/rce In .r {irhere a ii< a root of

the equation P {D) = of iindtipJielty in and irliere the eoeficients. of tlie

jxdynoinial are arbitrary) and addiny tlie rennlts. Two obstTvations

may be made. First, the solution thus found contains n arl)itrary con-

stants and niay therefore be considered as the general s(jlution ; and

second, if there are imaginary roots for P (/)) = 0, tlie exponentlah ari.s-

ing from tlie pnre imaginary parts of tlie roots may be eonreiied into

trigonometrie functions.

As an example take (ZJ* — 2 7/' + 7)-) // = 0. The roots are 1, 1, 0, 0. Kence the

sohitiou is .,.,,,
, /, , , /^, , ^, s

Again if (7>* + 4) y = 0, the roots of /;* + 4 = are ± 1 ± i and the solution is
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or y = e^ (O^e'^ + C.e- ") + e- ^ (C,,e'''- + C^e-'^)

= e^' (C\ cos X + C'2 .sill x) + e- *' (C3 cos x + 6'^ sin x),

where the new Cs are not identical witli the old 6"s. Another f(n-m is

y = e^ A cos (x + 7) + e-^ iJ cos (x + 5),

where 7 and 5, A and 7), are arbitrary constants. For

Cj cos X + Co sin x = Vt'f + C'.|
cosx +

and if 7 = tan - 1 / '^\, then C^ cos x + C., sin x = Vc'^- -f C'^- cos (x + 7).

Xcxt if A' is not zero but if any one solution I can he foiaid so that

]^(^1)') I ^ X, ilnni a solution contalnlurj n arliltra rij ((mstants 'iiuiij be

found hij adding to I tJte sitlatlon of l\I))i/ ^= 0. Eur if

/>(/>) / = X and r{D) y = 0, then P(/)) (f -(- 7/) = A'.

It therefore remains to devise means for finding on(> solution /. This

solution I ]nay he found hy the long method of (17'"), where the inte-

gration may he shortened In' omitting the constants of integration since

only one, and not the general, ^allle of the solution is needed. In the

most important cases which arise in practicte there are, liowe\'er, some

very short cuts to the solution /. The solution / of 7'(/>)// = A is

called the pa rtlcular bifrgral of the equation and tlie general solu-

tion of l\l))i/ = is called the (oiiqJeiiD'ntari/ function for the e(|ua-

tion r{D) // = A.

Suppose that A' Is a jxd i/nonilol In .>'. Solve symbolically, arrange

I'(D) in as(!ending ])owers of J), and divide oui; to ])(nv('rs of 7> e(|ual to

the order of tlie polynomial A. Then

p(i))r=x, I = A = A, (22)

where the I'emainder H{1>) is of hlfjhci' oi'dcr in I) tlian A' in x. Then

7> (7)) / = P (79) qijt) X + 7.' (7>) A, R {If) X = 0.

Hence Q(7;).r may l)e taken as /, since J' (D) Q(D) X = J>(I)) f = X. By
tliis method the solution / may be found, wlicn X is a polynomial, ^r.s-

'/(ijildl;/ OS l'(l>) can he dlcldcd Into 1 ;
tli(^ solution of J'(/)) // = may

1h' written down by (21); and tlie smn of /and tliis will be the recpiired

soluticju ol' 7'( 1>) 1/ = A containing ?i constants.

As an example considci' {If- + 4 //- + S JJ) 1/ = x~. The work is as follows

:

3IJ + -i D- + 1)^

] 1

J)-6-\- iD + D-^' Vd 'J id7 l\J))j
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Hence I = (2(D)x^ = ^ (- -- D + - 1A x^ = -x^-^x^ + ~ x.

For D^ + 4D^ + SD = the roots are 0,-1,-3 and the complementary function

or solution of P{D)y = would be C^ + C^e~^ + C^e-^^'. Hence the solution of

the equation P {D) y = xr is

2/ = 6\ + G„e-^- 4- C^e-^^ + \x^ —
f,
x^ + |« x.

It should be noted that in this example Z) is a factor of P{D) and has been taken out

before dividing ; this shortens the work. Furthermore note that, in interpreting

1/D as integration, the constant may be omitted because any one value of I will do.

and P (D) e""" = P (a) e""" ; hence P(D) Ce"

But P{D) I = Ce% and hence I = -j^ e""" (23)

97. Next suppose that X = Cc"^. Now De"'' = ae"'', Dh"'' = «^e''%

^ C

LP (a)

C_

'(a)

is clearly a solution of the eqxiation, provided a is not a root of P(D) = 0.

If P (a) = 0, the division by P (a) is inipossil)le and tlie quest for / has

to be directed more carefully. Let « be a root of multiplicity vi so that

P(D) = (D — ay"P^(D). Then

C
Pj(P) (D - a)'"! = Ce""^, (D - a)">I =—— e"'',

and I = -—- e""-
\ \ (ih-y^ = \

' - • (23')

For in the integration the constants may be omitted. It follows that

when X = Ce"'', the solution 1 may be found hi/ direct siihufltufion.

Now if X broke up into the sum of terms A' = A'^ + A', + • • • and if

solutions I^, /.„ • • • were determined for each of the equations P{D)I^= X^,

P (D) I^ = A.„ • •
• , the solution / corresjionding to A' Avould be the sum

7j + /., 4 . Thus it is seen that the above short methods apply to

e(}uations in which A is a sum of terms of the form Ca-'" or Ce'^''.

As an example consider (D* — 2 7/- +!)?/ = e^. The roots are 1, 1, — 1, — 1,

and a = 1. Hence the solution for I is written as

(D+l)2(D-l)2I = e% (i)-l)2I = ie^, J^ie-^x^.

Then y = e^{G^ + C„x) + e-^-{C.^ + C^x) + i e-^-x-.

Again consider (D^ _52)^.0)y — x + e""'. To find the Ij corresponding to x,

divide.
^ 5

+ — 7) + .-. hc = -x +
' 6- 57) + 7)2 \6 36 / 6 36

To find the I^ corresponding to e'"-"", substitute. There are three cases,

7., = e '»•', 7., = xe^^-, 7„ = — xc"--'-,

m- — 5 ??i + 6
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according as m is neither 2 nor 3, or is 3, or is 2. Hence for the complete solution,

y = C\e^'- + C-.f^-'- + --X + ^ +
6 36 m- — 5 ni + 6

when m is ncitlier 2 nor 3 ; Viut in these special cases the results are

y = Cie^-^ + C.^c-^^-- + 1 X + 3\ - xe^^, y = C^e^^ + Cjfi^ + -^ x + /.. + xe^^.

The next case to consider is where X is of the form cos ^x or sin ^x.

If these trigonometric; functions he expressed in terms of exponentials,

the solution may he conducted by the method above ; and this is per-

luips the best method when ± ^/' are roots of the equation /'(/)) = 0.

It may b(^ noted that this method would apply also to the case where

A' might l)e of the form ('"'cos (ix or r"'' sin fix. Instead of splitting the

trigonometric functions into two ex])onentials, it is possible to combine

two trigonometric functions into an exponential. Thus, consider the

equations
7' (Z)j y = r"'- cos ^x, P(D) y = r"'' sin (3x,

and P (D) ij = (-" (cos jix + I sin (ix) = r(" + ^'>'\
(24)

The solution / of this last equation may be fcnmd and split into its

real and imaginary ])arts, of Avhich the real })art is the solution of the

equation involving the cosine, and the imaginary part the sine.

When A has the form cos /3x or sin fix and ± (31 are not roots of the

equation P(D) = 0, there is a very short method of finding /. For

n- cos f3x = — /?'- cos (3x and 7)- sin ^x = —
fS'- sin fSx.

Hence if P(J>) bt; written as /'///-) -f DPjT)-) hy collecting the even

terms and the odd tei'uis so that /'^ and 7',, are both even in D, the

solution may be carried out syml)olically as11 1

P{D) P^ilf-) + DI'SJ)-)
' " ]\{- /3-) + DPI- P-)

pi-p'-)-]>l>,^(-(S')

cos .r,

^^ ^ — cos X. ('25^

By this device of substitution and of rationalization as if D were a sui-d,

the differentiation is li-insfci'i-cd to tlie numerator and can be ])crformt'd.

This method of ])roc('(lure may be justiticd directly, or it may be made
to de})end iqion tliat of the jiaragrajih above.

(>)nsi(lcr tlie example (//- + 1)// := cos.c. Here /3/ = / is a root of 7>- + 1 = 0.

As an oiJcratnr 7/- is e(|nivalent to — 1. and the rationalization method will not

work. If the tirst solution l)e follewed, the method of solution is

1 C''> 1 c- ''
1

(''
1 r- ''

1 , . . , 1 .

H
;;

"
:
—

;
— :

- -— = - - [•'^f-'''' — xc~ ''] = r X sui x.
//- +12 7/- + 1 2 ]>- Hi ]) + I -ii 4

1

2

If the secontl suui^'estion he followed, the solution may be found as f
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1 xe'^
(D- + 1) / = cos X + i sin x = e'^, / = e'-^ =

T a; , . . , 1 . 1 .

Now I = — (cos X + I sin X) = - X sin X ix cos x.
2

1

^2 2

Hence / = ^ x sin x for {D^ + 1) / = cos x,

and I= — Jxcosx for (D- + 1) / = sinx.

The complete solution is ?/ = C\ cos x + Co sin x + J x sin x,

and for {D^ -\-\)y = sin x, y = C, cos x + C„ sin x — i x cos x.

As another example take {!)- — 3 D + 2) ij = cosx. The roots are 1, 2, neither

is equal to ± ^i = ± i, and the method of rationalization is practicable. Then

1 1 1 + 3D 1 , „ . ^cosx= cosx = — (cosx — 3sinx).
lJ-^--SD + 2 1-3Z> 10 10

The complete solution is y = C\e-''+ C.^c--^ + ^'^(cosx— Ssinx). The extreme

simplicity of this substitution-rationalization method is noteworthy.

EXERCISES

1. By the general method solve the equations :

dx^ dx dx^ dx- dx

(7

iv

1)2 _ 4 i) + 2) ?/ = X. (5) {/>'' + Ifi - in- 4) y = X,

Iy^ + 5 D2 + jj) y = j^ (f )
(7J-2 + /; + 1 ) y = je .^

Z>2 + i, + 1) y = sin 2 X. (^) (7)2 _ 4) (/ = X + C^ ^
7/2 4- 3 i» 4- 2) ?/ = X + cos x. (k) (7>« - 4 i*-) y = 1 - sin x,

7^2 + i)y = cosx, (m) (7/2 + l)y = secx, {v) {D- -{ \)y = im\x.

By the rule write the solutions of these eijuations :

j/2 + o 2, ^ 2) y = 0, (P) {Ifi + 3 Ifi + TJ- 5) y = 0,

D- l)"y = 0, (5) (/> + 27/-2 + 1)// = 0,

J>i _ 3 Lr2 + i)y = 0, (f )
(D* - If' - U IJ- -\\J)-4)y = 0,

Z>3 _ i»2 4. 9 7;) y = 0, (&) {ly^ - 4 7;- + 8 D- - 8 7; + 4) y = 0,

7>5 _ 2 7> + 7>':) y = 0, (k) {If' - I)- + /^) .V = 0,

7)4 _ 1)2^ ^ 0, (m) (7/5 - 137>5 + 2nifi + 82 J) + 104)?/ = 0.

By the short method solve (7), (5), (e) of Ex. 1, and also :

l)i -\)y = x\ (p) (7>'5 - 6 IP 4-117)- (',) }/ = X,

7>'5 4- 3 7)2 4- 2 I)) y = x2, (5) {Jfi - 3 7/2 - G 7) 4- 8) y = x,

7>'5 4- 8) ?/ = X* 4- 2 X 4- 1, (r) (7>'' - 3 7^2 _ 7; 4- 3) // = x-.

7>4 - 2 7>' 4- 7)2) 7/ = X, (0) (7/*4-27>''4-37/24-27)4-l)y = l + x4-x2,

7>'5 - 1) 2/ = x2, (0 (7/4 -2 7/^ + 7/2) y = x^

By the short method solve (a), (^). (<9) of Ex. 1, and also :

7)2 _ 3 7) 4. 2) 2/ = e-^, (/3) (7>» _ 7/^ _ 3 7/2 4- 5 7) - 2) y = c^-^

7)2 - 2 7) 4- 1) ?/ = e^ (5) (T*-'' - 3 7»2 4- 4) y = e^-^,

7)2 + 1) 2/ = 2 e-^ 4- x^' - X, (f) (7>^ 4- i) y = 3 + e-^' 4- ^2.--,

7)4 4. 2 7)2 + 1) ?/ = e-^ 4- 4, (^) (7>^ 4. 3 7)2 4- 3 7> 4- 1) 2/ = 2 e-^,

7/2 _ 2 7/) y = e2.- 4- 1

.

(k) (7)3 4- 2 7)2 + 7/) y = c2.'- 4- x2 + x,

7»2 _ a^) y = c«-'- 4- e'---, (^) (7)2 - 2 a7; 4- «2) y = c'^ 4- 1.
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5. Solve by the short method (77), (t), (k) of Ex. 1, and also :

(a) (Z»2 - Z) - 2) y = sin x, (/3) (Z>2 + 2 D + 1) 2/ = 3 e2^ - cos j,

(7)
(D'-i + 4) 2/ = x2 + cos X, (5) (i*^ + -Z^^ - i* - 1) 2/ = cos 2 x,

(e) (D2 + 1)^2/ = cosx, (f) {U^ - Ifi+ I)-l)y = cosx,

( r?)
(2)2 - 5 Z) + 6) 2/ = cos X - e2^, ((9) (Z>3 - 2 i»2 _ 3 i*) ?/ = 3 x"- + sin x,

( 1

)

(Z»2 _ i)2y = .sin X, (/c) (2)2 + 3 i; + 2) ?/ = e2^ sin x.

(X) (7> - 1)2/ = e-^cosx, (/x) (i/'' - 3Xi2 + 4i»- 2) y = e---+ cosx,

{v) (Z»2 — 2 1> + 4) y = e^ sin x, (0) (1/2 + 4) 1/ = sin 3 x + c-'- + x2,

"_
J* V 3

(tt) (D" 4- 1) ?/ = sin I X sin 1 x, (p) (/>' + 1) ?/ = e2a^ sin x + e2 sin——

,

( 0-) (Z>2 + 4) 2/ = sin2 X, (t) (Z)4 ^ 32 x> + 48) y = xc- 2 ' + e^ x cos 2t x.

6. If X has the form e-^^A", , show that I = e"-'X, — e^'- X,

.

^
P{I))

^ F{D+a) '

This enables the solution of equations %Yhere X^ is a polynomial to be oljtained Ijy

a short method
;

it also gives a way of treating equations where A' is (fi-'' cos/3x or

e^^ sin /3x, but is not an improvement on (24) ; finally, combined witli the second

suggestion of (24), it covers the case where A' is the product of a sine or cosine by

a polynomial. Solve by this method, or partly by this method, (f) of Ex. 1
;
(k), (X),

(y), (p), (t) of Ex. 5 ; and also

(a) (D2 _ 2 D + 1) ?/ = x2e3^, (jS) {I/^ + 3 1)2 + 3 7) + 1) 2/ = (2 - x2) e-^,

(7) (D2 4. 7i2) y = x*e^, (5) (Jj^ _ 9 J>" _ 3 Jfi + 4 7; + 4) ^ ^^ j-^gx^

(e) {Ifi -lD-6)>j = e2^(l 4- X), it) {D-ly^y = e'- + cosx + x-c^,

(17) (D - Ify =x- x^e^, {6) (//- + 2) ?/ = x2e«^ 4- e-^ cos 2 x,

(t) (!>' — 1)7/ = xe^ 4- cos2x, (k) (Z»2 _ i)y = .^ sin x 4- (1 4- x2) e-'',

(X) (D2 4- 4) ?/ n= X sin x, {ij.) {Ij^ -]- 21)- + \)y - x- cos ax._

( v) (2)2 4. 4) ,y = (j sin x)2, (0

)

(i>2 _ 2 Jj 4- 4)2?/ = xe-^ cos V3 x.

7. Show that the substitution x = e', Ex. 0. p. 152, changes equations of the type

x^lJ"y 4- r^jX" -li^" -
1// 4- • • • + «„ - vi-Dii 4- a„y = X ix) (20)

into equations with constant coefficients : also that a^r + b = e' would make a simi-

lar simplification for equations whose coefficients were powers of ax + b. Hence

integrate

:

(a) (x2ii2 _ J.JJ ^ 2) y = X log x, (/3) {x^If^ - x2X»2 4- 2 xl) - 2) y = x^ 4- 3 x,

(7) [(2x-l)5/>H(2x-l)Z»-2]?/ = 0, (5) (x--J>2 4-3x/>'4- ]),'/ = (1 -.'•)-2.

(e) {x^iy^ + xD — 1) y = X log X, (f) [(x 4- ly-lJ- — 4 (x 4- 1 )/> 4- (i] ?/ = x.

(ij) (x2i»2 4. 4 jX» 4- 2) 2/ = e^, (^) (x^l/2-3x27_;4-x)//= logxsinlogx 4-1.

( t) (x*7>' 4- Ox^/>' 4- 4 x-D" - 2 xD - i) ij = x- + 2 cos log x.

8. If L be self-induction. I! resistance, C capacity, i current, q charge upon the

plates of a condenser, and /(f) the electromotive force, then the differential equa-

tions for the circuit are

<"> 'f + 7 1' + /r = } •«'> <«
?' + f 7; + tV^ = 7

/«•
at- L at L t L at- L dt L C L

Solve (a) when/(i) = e- "' sin bt and (^) when/(<) = sin bt. Keduce the trigonometric

part of the particular solution to the form K sin {bt 4- 7). Sliow that if R is small

and h is r.carly equal to 1 /a LC. t!ie amplitude K is large.
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98. Simultaneous linear equations with constant coefficients. If

there be given two (or in general n) linear equations with constant

coefficients in two (or in general n) dependent variables and one inde-

pendent variable t, the symbolic method of solution may still be used

to advantage. Let the ecjuations be

{ajr + .-•, /)" -' ++ "„) :r + 0>,p"' -f h^'" -' ++ h^) y = R (f),

{c^D" + r^D" -1 + • • • + . ,)
.7- + Q/^D" 4- 'fjy-' + • • • + (/,) !/ = S (t),

^^
' ^

when there are two variables and where D denotes differentiation by t.

The equations nuiy also be Avritten more briefly as

J\(D) .-/ + Q^(D) tl
= n and PjJ)) x + Q.,(D) j/ = S.

The ordinary algebraic- process of solution foi- x and // may l)e employed

because it depends only on such laws as are satisfied equally by the

symbols D, 1\(1>), Q^0>), and so on.

Hence the solution for ./ and y is found by multiplying by the ap-

propriate coefficients and adding the e(|uations.

l\(D).r + q^(D)i/ = R,

PjD),r + QJI))i/ = S.

Then II\(D) QJD) - PjD) Q^(l))^ j- = Qjl)) 11 - (1^(1 >) S,

It Avill be noticed that the coefficients by which the eriuations are multi-

plied (written on the left) are so cliosen as to iiuikc tlie coefficients of

X and 1/ in the solved form tlie same in sign as in other respects. It may

also be noted that the order of P and (t in the symbolic ]iroducts is im-

material. IJy ex]>an(ling tlie operator P^{D) Qo(J^) — J'

J

^l) '^lij^)
'^"^ <'t'i'taiii

polynomial in ]> is o1»tained and liy a])plying the o])erators to A' and >'

as indicated certain fund ions of t are obtained. Each eqi;ation, whether

in ./• or in //, is quite of the form that has l)een treated in §§ 95-97.

As an example consider tlic solution for x and ij in the case of

2^- ^'^- 4.C = 2^ 2'i'': + i'^- .3 V = 0;
dC^ dt dt dt

or (2 I)- - i)j- - ])!/ = 2t, 2 Jlr + (4 7;- ?,) ;/ = 0.

Solve 4 7; - .3 I
- 2 7;

| (2 7;- - 4) r - Ih/ = 2 t

1) 2 7)- - 4 : 2 ])f 4- (4 7; - .8) y = 0.

Then [(4 7> - .3) (2 7/^ - 4) -1- 2 7/-^] x = (4 7> - .S)2<,

[2 7)2 -f (2 7J-^ - 4) (4 7) - .3)] y = - (2 7)) 2 i,

or 4 (2 Ifi - If-- ^ T) + .3) .r = 8 - (3 1, 4 (2 If' - D- - i IJ + ?j)y = - 4.

The roots of the polynomial in D are 1, 1. — H ; and the particular solution Ij^ for

J is — ^ f. and I,, for ;/ is —
J.

Hence the solutions have the form

.r =
(
/', + CJ) <:' -f r,(- i

' - i ^ y = (^1 + K./) c' + K,/r
'

'
- 1 •



224 DIFFERENTIAL EQUATIONS

The ai'bitraiy constants wliicli are introdnced into the solutions for a;

and II
are not independent nor are they identical. The solutions must

be substituted into one of the ciiudtions to establish the necessory relations

between the eonstants. It will be noticed that in general the order of the

equation in 1) for x and for ij is the sum of the orders of the highest

derivatives which occur in the two equations, — in this case, 3 = 2 4-1-

The ordt'r may l)e diminislied h\ cancellations which occur in the formal

algebraic solutions for x and y. In fact it is conceivable that the coeffi-

cient Pj(?., —J'M^ of X and y in the solved equations should vanish and

the solution become illusory. Tliis case is of so little consequence in

practice that it may be dismissed with the statement that the solution

is then either impossible or iudcttM-minate ; that is, either there are no

functions ./ and // of ;" which satisly the two given differential equations,

or there are an intinite number in each of which other things than the

constants of integration are arbitrary.

To finish tlie example above and determine one set of arbitrary constants in

terms of the other, substitute in the second differential eijuation. Then

2 (CjC' + Coe« + CJe' - | C^e" ^' - l) + -i (K^c> + K.,e> + KJC - 3 K^c' i ')

- 3 (h\e> + K./e> + K^/' i ' - i) = 0,

or e'(2 C\ + 2 T. + A', + Jf.,) + tc<{2 (\_ + Jv'.,) - 3 e" i \C\ + 3 iv,) = 0.

As the terms e', tc', e~ ^
' are independent, the linear relation between them can

hold only if each of the coefficients vanishes. Hence

C3 + 3 iig = 0, 2 C„ + A'._, = 0, 2 C\ + 2 C'._, + A', + A'., = 0,

and C'3 =: - 3 A'3 , 2 (
', = - A'., , 2 C\ = - 7v ,

.

Hence x = (C, + CJ) c> - 3 K.e~ 2
' - H, y = - 2 (r

', + CJ) t> + K^e' i' - \

are the finished solutions, where C\. ('.,. A',, are three arbitrary constants of inte-

gration and nii^ht e(jually well be denoted liy C\. ('., . f'g, or 7vj. K.^. 7\',,.

99. One of the most important applications of the theory of sinudtaneous equa-

tions with con.'itant coefficients is to tlie theory of sniuU vihrationn iibout a state of

equilibrium in a ronservative* dynamicnl sy-stem. If q^ . 7., . • • • . r/„ are n coordinates

(see Exs. 19-20, p. 112) which specify the po.sition of the system measured relatively

* The potential cncr^iy V is defined as — dV= fl \V = Qi<!'j^ + 0-2'''y2 -\ + Qndqn,

<^'ii (Qi i'li ('li f'/i- <^qi

This is tjic iiiimcdiatf extension of Q^ as ^iveii in Ex. l'.i, ji. 112. Here '/IT denotes the

differential of work ami nw = 2F,-/r, =. 2(A>/.^+ !>///,• -^ Z,'/2,). To tind Q,- it is

generally quickest to eonipute '/IF from this relation with '/.r,-, Jv,-. dz, pxpresse<l in terms
of the differentials '/'/i,

• • •
, ''7,,. Tlie generalized forces Qi are then the coetHcients of

ilqi. If there is to be a potential V. the ditTerential 'Hrmust be exact. It is frequently

easy to find I' directly in terms of q^, . q„ rather than through the mediation of

Oi .
•

. (Jn'- wlien this is not so, it is usually better to leave the equations iu the form
<l cT cT

. ,-- .. .— = Qi rather than to mtrodueu J'and L.
dt Cq, Cqi
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to a position of stable equilibrium in which all the q'a vanish, the development of

the potential energy by Maclaurin's Formula gives

y{(li , 9-2 ,
• •

, Qn) = Vo + ^lili > ^2 '
• • •

'
f/«) + ^-li^h , ^2 ,

• • •
, 9«) + • • •

,

where the first term is constant, the second is linear, and the third is quadratic, and

where the supposition that the q's take on only small values, owing to the restriction

to small vibrations, shows that each term is infinitesimal with respect to the preced-

ing. Now the constant term may be neglected in any expression of potential energy.

As the position when all the q's are is assumed to be one of equilibrium, the forces

cV ^, cV ^ cV
Qi = -— ' Q2 = -—

>
••' Qn = - —

cq-i cq^ cq„

must all vanish when the ^'s are 0. This shows that the coefficients, {dV/dq,)o = 0,

of the linear expression are all zero. Hence the first term in the expansion is the

quadratic term, and relative to it the higher terms may be disregarded. As the

position of equilibrium is stable, the system will tend to return to the position

where all the ^'s are when it is slightly displaced from that position. It follows

that the quadratic expression must be definitely positive.

The kinetic energy is always a quadratic function of the velocities qi, q,,,- • , ('u

with coefficients which may be functions of the r^'s. If each coefficient be expanded

by the Maclaurin Formula and only the first or constant term be retained, the

kinetic energy becomes a quadratic function with constant coefficients. Hence the

Lagrangian function (cf . § 160)

L=T-V= T{q, , r/„ , . .

. , q„) - V{q, . q, ,
• • • , r/„),

when substituted in the formulas for the motion of the system, gives

d cL cL _ d cL cL _ d cL ZL _
dt cq^ cqy dt c('i.2 cq.2 dt cq„ cq,,

a set of equations of the second order with constant coefficients. The equations

moreover involve the operator D only through its square, and the roots of the equa-

tion in D must be either real or pure imaginary. The pure imaginary roots intro-

duce trigonometric functions in the solution and represent vibrations. If there were

real roots, which would have to occur in pairs, the positive root would represent

a term of exponential form which would increase indefinitely with the time, — a

result which is at variance both with the assumption of stable equilibrium and

with the fact that the energy of the system is constant.

"When there is friction in the system, the forces of friction are supposed to vary

with the velocities for small vibrations. In this case there exists a dissipative func-

tion F{qy^, q„, • • • . q„) which is quadratic in the velocities and may be assumed to

have constant coefficients. The equations of motion of the system then become

d cL cL cF _ d cL cL cF
__

dt cq^ cqy cq^ dt cq,, cq,, cq,,

which are still linear with constant coefficients but involve first powers of the

operator D. It is physically obviovis that the roots of the etjuation in JJ must be

negative if real, and must have their real parts negative if the roots are complex
;

for otherwise the energy of the motion would increase indefinitely with the time,

wliereas it is known to be steadily dissipating its initial energ\-. It may be added

that if, in addition to tlie internal forces arising from the potential V and the
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frictional forces arising from the dissipative function F, tliere are other forces

impressed on the system, these forces wovild remain to be inserted upon tlie riglit-

hand side of the equations of motion just given.

Tlie fact tliat tlie e(iuations for small vibrations lead to equations with constant

coefficients by neglecting the higher powers of the variables gives the important

physical theorem of the superposition of small vibrations. The theorem is : If with

a certain set of initial conditions, a sy.stem executes a certain motion ; and if with

a different set of initial conditions taken at the same initial time, the system

executes a second motion ; then the system may execute the motion which consists

of merely adding or superposing these motions at each instant of time ; and in

particular tin's combined motion will be that which the system would execute under

initial conditions which are found l)y simply adding the corresponding values in

the two sets of initial conditions. This theorem is of course a mere corollary of the

linearity of the equations.

EXERCISES

1. Integrate tlie following systems of equations :

{(x) I)x — Dij + X = cos i, D'^x — By 4. 3 x — ?/ = e^
«,

(/3) 3 l)x + 3 X + 2 // = e', 4 x - 3 Ihj + 3 // = 3 <,

(7) D2x — 3x — 4?/ = 0, IPlJ + X + ?/ =: 0,

(8) = = clt, (e) — (It = =
,

y — 7x 2 X + 5 // 3 X + 4 // 2 x + 5 y •

(f) //>x + 2 (x - ?/) = 1, tJ)y + X + •')// = t,

{t}) I)x = ny — ?H2, By = Iz — ?)X, Bz = mx — ly,

(0) B-^x - 3 X - 4 ?/ + 3 = 0, -D2// + x - 8 7/ + 5 r= 0,

( 1 ) B^x - 4 Ifiy + 4 B'^x - x = 0, B^y - 4 B"x + 4 Bhj - // = 0.

2. A particle vibrates without friction upon the inner surface of an ellipsoid.

Discuss the motion. Take the ellipsoid as

i. + 'L-i-i:: ^ = 1; then x = C'sin —^' i + c;, ,
,/ = irsin(--^i + iv

3. Same as Ex. 2 when friction varies with the velocity.

4. Two heavy particles of eijual mass are attached to a light string, one at the

middle, one at one end, and are suspended by attacliing the other end of the string

to a fixed point. If the particles are slightly displaced and tlie oscillations take

place without friction in a vertical jilane containing the fixed point, discuss the

motion.

5. If there be given two electric circuits witliout capacity, the ecjuations are

-r dU ,rdi„ T^ . T-, T '''. ,,di, ,. .

^ dt dt ^^ ^

'

- dt dt ' '

where ij , i„ are the currents in the circuits, ij , L., arc tlic coefficients of solf-

induction, /i'^, /.'._, are the resistances, and M is the coefficient of nuitual induction,

(cr) Integrate the ecjuations wlien tlie inqjressed electromotivt' forces 2?j, E„ are

zero in both circuits. (/3) Also when E.^ = but £", = sin pi is a x>eriodic force.

(7) Discuss the cases of loose coupling, that is, where M'^/L^L., is small ; and the

case of close coupling, that is, wlierci M'^/L^L., is nearly unity. What values forj)

are especially notewortliy wlien the damping is small ?
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6. If the two circuits of Ex. 5 liave capacities C^, C.^ and if q^, q.^ are the

cliarges on the condensers so that i^ = dq^/dt, t.^ = dq.^/dt are the currents, the

equations are

d^ ^^d^ dq, q^^ d%, ^^d^ Clq, 9^ ^ ^
^ dt^ dfi ^ dt C^ ^ ^ dt^ dt^ ~ dt C.^

"

Integrate when the resistances are negligible and Ei= E„= 0. If T^ = 27r VC^i^
and T.^ = 2irVC2L.^ are the periods of the individual sejjarate circuits and

e = 2^J/VC\C'J and if T^ = T.,, show that VT"^ + 62 and Vt^ - B'-^ are the

indejjendent periods in the coux^led circuits.

7. A uniform beam of weight lb. and length 2 ft. is placed orthogonally

across a rough horizontal cylinder 1 ft. in diameter. To each end of the beam is

suspended a weight of 1 lb. upon a string 1 ft. long. Solve the motion produced

by giving one of the weights a slight horizontal velocity. Note that in finding the

kinetic energy of the beam, the beam may be considered as rotating about its

middle point (§ 39).
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ADDITIONAL TYPES OF ORDINARY EQUATIONS

100. Equations of the first order and higher degree. The degree of

a dittV'reiitial equation is defined as the degree of the derivative of

higliest oi'der wliieli enters in the equation. In the ease of the equation

^(.r, I/, '/) = of tlie iirst order, the degree will he the degree of the

equation in y'. From the idea of the lineal element (§ 85) it appears

that if the degree of ^ in y' is n, there will be n lineal elements through

each point (./•, y). Hence it is seen that there are n curves, which are

compounded of these elements, ])assing through each point. It may be

pointed out that equations such as //' = .rVl + //-, wliich are apparently

of the first degree in //', are really of higher degree if the multiple value

of the functions, such as Vl + //-, which enter in the equation, is taken

into consideration; the equation aljove is replaceable by y'- — x- -\- .ry-,

which is of the second degree and without any niidtiple valued function.*

First suppose that tlie d'lffi'rcnfhd eiitiat'ion

* ('•, !h !/') = [//' - '/'/', //)] X [//' - lAi.-'S .V)] • • • = (1)

7nay be soJred fnr y'. It then bt^comes cipiivalent to the set

//' - ^pp^, y) = 0, //' - ./../,/•, //) = 0, • • • (1')

of equations each of the first ord(^r, and each of these may be treated

by the methods of Chap. VIII. Thus a set of integrals t

J-\(,'; ]h n = 0, Fj.r, y, n = 0, . .
•

(2)

may be obtained, and the })roduct of these separate integrals

F(.r, //,
r) = F^i.r, y, C) Fj,', y, C) • • • = (2')

is the complete solution of the original e(]uati()n. (Tcometrically speak-

i]ig, each integral /•',(''; //• '")= represents a family of curves and the

]>roduct represents all the i'aniilics simultaneously.

* It is tliiTi'forc apparent tliat tin- idea of df^rce as aiii>lir(l in praftic*- is Sdincwliat

inilefinitf.

t Tlic same constant ''' or any desircil function of '' may be used in the ditTerent

solutions because (' is an arbitrary constant and no specialization is introiluced by its

repeated use in this way.
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As an example consider y'^ + 2 y'y cot x = y-. Solve.

y'^ + 2 y'y cot x + y- cot^ x = y^l + cot^ x) = y^ csc^ x,

and (y' + y cot x — ?/ esc x) {>/ + y cot x + ?/ esc x) = 0.

These equations both come under the type of variables sei:)arable. Integrate

dy 1 — cos X d cos x

y sinx 1 + cosx
y{l + cosx) = C,

dw 1 4- cosx , (Zcosx ,, , „
and — = dx = , 2/ (1 — cosx) = 6.

2/ sinx 1 — cosx

Hence [y (1 + cos x) + C] [ij (1 - cos x) + t'] =

is the solution. It may be put in a different form hy nuiltiplying out. Then

i/-sin2x + 2 CV + C"^ = 0.

If the equation cannot be solved for y' or if the equations resulting

from the solution cannot be integrated, this first method fails. In that

case it may he j^ossUde to solce for y or for x and treat the equation by

dilferentiation. 'hat y' =p. Then if

The equation thus found by differentiation is a differential equation of

the first order in dp/dx and it may be solved l)y the methods of Chap.

VIII to find F(^2^, x, C) = 0. The two equations

y=f{x,2>) and Fip,x,r)=={) (3')

may be regarded as defining x and y parametrically in terms oi p, or 2^

may be eliminated between them to determine tlie solution in tlie form

Q, (x, y, C) = if this is more convenient. If the given differential equa-

tion had been solved for x, then

'''=/ (U, J') and -y-= — = — 4-— -—

•

(4)

The resulting equation on the right is an equation of the first order in

d2j/<hj and may be treated in the same way.

As an example take xp- — 2 yp + WJ" = and sf)lve for //. Then

ax ^dy ^ ,
dp ax dp

,
a

2y = xp+^, 2-f = 2p=p + x^---^ + -,

p dx dx p^ dx p

or —\p — —
\
— -\-{- P I

= 0. <^'i" -i-'h' — P'^l-^ = 0-

p\_ pjdx \p I

The solution of this equation is x = Cp. The solution of the given equation is

2 y = xp H , X — Cp
P

when expressed parametrically in terms of p. It p be eliminated, then

2y = — + aC parabolas.
G
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As another example take 'p-y + 2 j>x = y and solve for x. Then

\V I dy p p \ p^ / dy

or - + p + ?/ (— + 1 ) -— = 0, or ?/Jjj + jKhj = 0.

p \p- / dy

The solution of this is j)y = C and the solution of tlie given equation is

2 X = ?/ / p j , py = C, or ?/2 = 2 C'x + C'^.

Two special types of equation may be mentioned in addition, altliough

tlunr method of s(dution is a mere corollary of the methods already

given in general. They are the equation ]uniiognneotis in (./', y) and

Clalraufs equation. The general form of the homogeneous equation is

^{I'i u/-'')^ ^- This equation may he solved as

P = ^(^ or as l=f(j^ V = ^''f{v)\ (5)

and in the first case is treated l)y the methods of ("luip. VIII, and in

the second by tlu'. nu'thods of this article. Which method is cliosen

rests with the solver. The Clairaut type of ecpiation is

y=l'^'rf{p) (6)

and comes directly under the methods of this article. It is esj^ecially

noteworthy, however, that on differentiating with res})ect to x the result-

ing equation is i ,

[«+/(.')] ;£=o 0. ;^;=o. (6')

Hence the solution for ^^ is j) = C, and thus ?/ = Cx +,/'('^') is the solu-

tion for the Clairaut equation and represents a family of straight lines.

The rule is merely to substitute C in })lace of y/. This tv2)e occurs very

frequently in geometric ap})lications either directly or in a disguised

form requiring a preliminary change of variable.

101. To this point the only solution of tin; differential equation

^(x,
]/, yy) = which has been considered is the (/rwrnl sa/i/fion

F(x,y, (''j=Q containing an arbitrary constant. If a sjiecial value,

say 2, is given to C, the solution F(x, //, 2) = is called a. jHirtifiihir

solution. It may ha])})en that the arbitrary constant (' eiitei's into the

expression /''(•'", //, '") = in such a Avay that when (' becomes jiositively

infinite (or negatively infinite) the curve F{x, //,
'")= ap])roaches a

definite limiting ])Osition which is a. solution of the diifei'eiitial ('(puition
;

such solutions are called intinifr. sohifians. In addition to tlu'se types

of solution which naturally grou}) themselves in connection witli the

general solution, there is often a solution of a differ(Mit kind which is
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known as the si/ujular t>olutlon. There are several different delinitions

for the singidar solution. That which will be adopted here is : A singu-

lar solution is the encelope of the family of curves defined hij the

(jeneral solution.

The consideration of the lineal elements (§ 85) will show how it is

that the envelope (§ 65) of the family of particular solutions which

constitute the general solution is itself a solution of the equation. For

consider the figure, which represents the particular solutions broken up

into their lineal elements. Kote that the envelope is made up <jf those

lineal elements, one taken from each })articular so-

lution, which are at the points of contact of the envelope

envelope with the curves of the famih'. It is seen ^f^ xT^
that the envelope is a curve all of whose lineal

elements satisfy the equation ^ (,/, y, p) = for the

reason that they lie upon solutions of the e(|uation. Xow any curve

whose lineal elements satisfy the equation is by definition a solution

of the equation ; and so the envelope must be a solution. It might

conceivably happen that the family FQr, >/, C)= was so constituted

as to envelope one of its own curves. In that case that curve would

be both a particular and a singular solution.

If the general solution F(x, y, (') = of a given differential equation

is known, the singular solution niay be found according to the rule for

finding envelopes (§ Go) by eliminating C from

F(,r. y, C) = and r^ F(,r, y, C) = 0. (7)

It should be borne in mind that in the climinant of these two equations

there may occur some factors which do not represent envelopes and

which must l)e discarded from the singular solution. If only the singu-

lar solution is desired and the general solution is not known, this

method is inconvenient. In the case of Clairaut's equation, however,

where the solution is known, it gives the result immediately as that

obtained b}' eliminating C from the two equations

y ^ Cx +f(r) and = , +f{r). (8)

It may l)e noted that as p = C, the second of the equations is merely

the factor ,/• +. /"'(/') = discarded from (G'). The singular solution may

therefore be found by eliminating p Ijetween the given Clairaut e(|ua-

tion and the discarded factor ./ +/''(y/)= 0.

A reexamination of the figure will suggest a means of finding the

singular solution without integrating the given equation. For it is seen

that v/lu'ii two neighboring curves of the familv intersect in a ]joint P
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near the envelope, then through this point there are two lineal elements

which satisfy the differential equation. These two lineal elements have

nearly the same direction, and indeed the nearer the two neighboring

cm'ves are to each other the nearer will their intersection lie to the

envelope and the nearer will the two lineal elements approach coinci-

dence with each other and with the element upon the envelope at the

point of contact. Hence for all points (x, //) on the envelope the equa-

tion ^{x, y, jj)— of the lineal elements must have douhJe roots for p.

Now if an equation has double roots, the derivative of the equation

must have a root. Hence the requirement that the two equations

"A (•''. y, P) = and ^ xp {x,
;/, p) = (9)Cp

have a common solution for p Avill insure tliat the first has a double

root for 2'
',
and the })oints (,'•, >/) which satisfy these equations simul-

taneously must surely include all the points of the envelope. The rule

for finding the singular solution is therefore: Ellm Inatc p from, the

fjlren (I!fferf'7itial equation and Its (Jerlrcitice with respert to p, that is,

from (9). The result should be tested.

If tlie equation xp- — 2 yp + ax = treated above be tried for a singular solution,

the elimination of p is required between the two equations

xp- — 2 i/p + ux = and xp — y = 0.

The result is y- = ax'-, which gives a pair of lines through the origin. The substi-

tution of y = ± \/ax and p = ± Va in the given equation shows at once that

y- = ox'-^ satisfies the equation. Thus y- = ax- is a singular solution. The same

result is found by finding the envelope of the general solution given above. It is

clear that in this case the singular solution is not a particular solution, as the par-

ticular .solutions are parabolas.

If the elimination had been carried on by Sylvester's method, then

X — y\

X — 2 y a\= — X (y- — ax-) = ;

X - y o|

and the eliminant is the product of two factors .r = and //- — ax- = 0. of which

the second is that just found and the first is the (/-axis. As the slope of the y-ax'ia

is infinite, the substitution in the e(]uation is hardly legitimate, ami the eiiuation

can hardly be said to be satisfied. The occurrence of these extraneous factors in

the eliminant is the real reason for the necessity of testing the result tn see if it

actually represents a singular solution. These extraneous factors may reju'esent

a great variety of conditions. Thus in the case oi the equation p/- + 2 yp cot x = y-

previously treated, the elimination gives y- csc'-.f = 0. and as esc x cannot vanish.

the result reduces to y- = 0. or the j"-axis. As the slope along the j"-axis is ami y

is 0, the eijuation is clearly satisfied. Yet the line y = is not the envelope of the

general solution
; for the curves of the family touch the line oidy at the points rnr.

It is a particvdar solution and corresponds to C — 0. There is no singular solution.
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Many authors use a great deal of time and space discussing just what may and

what may not occur among the extraneous h)ci and how many times it may occur.

The result is a considerable number of statements which in their details are either

grossly incomplete or glaringly false or both (cf. §§ 65-67). The rules here given

for finding singular solutions should not be regarded in any other light than as

leading to some expressions which are to be examined, the best way one can, to

find out whether or not they are singular solutions. One curve which may appear in

the elimination of p and which deserves a note is the tac-locus or hicus of points of

tangency of the particular solutions with each other. Thus in the system of circles

{x — C)'^ +y"^ = r- there may be found two which are tangent to each other at any

assigned point of the x-axis. This tangency represents two coincident lineal

elements and hence may be expected to occur in the elimination of p between the

differential equation of the family and its derivative with respect to p ; but not in

the eliminaut from (7).

EXERCISES

1. Integrate the following e(iuations by solving for p = i/-.

(a) p^ _ 6p + 5 = 0, (/3) p^ - {2x + i,'-^)p- + {x^ - if- + 2 jy-^)p- (x^ _ ^2)^2^0,

(7) a;p2 _ 2 //p - X = 0, (5) p' (X + 2 ;/) + 3p-^ (x + ,j) + p {y + 2 x) = 0,

(e) y^ + p^ = 1, (f)
p-^ - «x3 = 0, (7,) p = {« _ X) Vl + p-^.

2. Integrate the following equations by S(jlving for (/ or x :

(a) 4xp2 j^ 2xp - v/ = 0, (/3) y = - xp + x*p-, (7) p + 2 xy - x^ - 2/2 = 0,

(5) 2px — ?/ + logp = 0, (f) -r — yp = ap', {^) y = x + a tan-ip,

{t)) x = y + a logp, (6) x + py {2p" + 3) = 0, ( t) a-yp- - 2 xp + y = 0,

(k) p^ — ixyp + 8 (/- = 0, (X) X = p + logp, (fj.) p-(x~ + 2 ax) = «-.

3. Integrate these e(juations [substitutions suggested in (t) and (k)] :

(a) xy- {p- + 2) =2p^3 ^ ^s^
(^^ („j. ^ ^^^2 = (i + p"-) (f ^ ,,^.2)^

(7) y" + -ryp — a;V' = o, (5) .'/ = yp- + 2px,

( f ) y = px + sin-ip, (f ) // = p (x — h) + rt/p,

(7?) y =px-\- p (1 - p-). {6) y" - -Ipxy — 1 - p- (1 -x'-),

(t) ie-'Jp- + 2xp — 1 = 0, z = e-!', (k) y = 2 px + y-p". y- — z,

(X) Ae'^yp- + 2e--'-p — e-'^' = 0, (m) x- (y — px) = //p-.

4. Treat these e<juations by the p metliod (U) to lind tlie singular solutions.

Also solve and treat by the C method (7). Sketch the family of solutions and

examine the significance of the extraneous factors as well as that (tf the factor

which gives the singular solution :

(or) p2(/ + p (x — (/) — X = 0, ((3) fry- cos- a — 2px// sin- or + //- — x- sin" a = 0,

(7) 4 xp2 = (3 X — a)-, ( 5) yp-x (x — a) (x - h) = [3 x- — 2 x (a + Ji) + «'']-,

( 6 )
p2 + xp - ^ = 0, ( f) 8 (M 1 + pY = 27 (X + y) (1 - p)^,

(t?) x3p-- -F ^-yp + «=' = 0, (^) z/ (:5 - 4 y)2p-- = 4(1-//).

5. Examine sundry of the ecjuations of Exs. 1. 2. 3, for singular solutions.

6. Show that the solution of y = X(p(p) -f-/(p) is given paranietricaliy by the

given equation and the solution of tlie linear equation:

—
-I- X—^-'^-^ - - • ' V' Solve (a) II = vixp + ?i (1 + !>')-,

dp -i&(p)-p P^-4>{p)

(^) y = X (p + « Vr+ P-), (7) -t = yp+ tqi-, (5) // = (1 + p) x + P^.
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7. As any straight line is y = mx + h. any family of lines may be represented as

y = nix +f{m) or by the Clairant eciuatiun y = px +/{]>). Show that the orthog-

onal ti'ajectories of any family of lines leads to an ecjnation of the type of I-^x. (i.

The same is true of the trajectories at anj- constant angle. Express the eciuations

of the following systems of lines in the Clairaut form, write the equations of the

orthogonal trajectories, and integrate :

{a) tangents to a-^ + ^/^ = 1, (|3) tangents to y^ = 2rtj,

(7) tangents to y^ = x^, (5) normals to y- = 2ux,

(e) normals to y- = x^, (f) normals to h-x- + ii-y- = a-h-.

8. The ctolute of a given curve is the locus of the center of curvature of the

curve, or, what amounts to the same thing, it is the envelope of the normals of the

given curve. If the Clairaut ecjuation of tlie normals is known, the evolute may be

obtained as its singular solution. Thus tind the evolutes of

{a) y'^ = iax, (/3) 2xy = u"^, (7) X3 + ys = as,

a- 0- 2(1 — X

9. The involutes of a given curve are the curves which cut the tangents of the

given curve orthogonally, or, what amounts to tlie same thing, tlie}' are the curves

which have the given curve as the locus of their centers of curvature. Find the

involutes of

{a) XT -{ y- = a2, (/3) y- = 2 mx, (7) y = a cosh (//(().

10. As any curve is the envelope of its tangents, it follows that when the curve

is described by a property of its tangents the curve may be reganled as the singu-

lar solution of the Clairaut Ciptation of its tangent lines. Dett-rnune thus what

curves have these properties :

(a) length of the tangent intercepted Ijetween the axes is I,

{(3) sum of the intercepts of the tangent on the axes is c,

(7) area between the tangent and axes is the constant A'-,

(5) product of i)erpendicuiars from two fixed points to tangent is k-,

(e) product of ordinates from two points of x-axis to tangent is A'-.

(IF I

11. From the relation — = fx vJ/- -f- .V- of Proposition 3. p. 212. show that as
dn

the curve F = C is moving tangentially to itself along its envelope, the singular

solution of ^Ulx + -V'7// = may l)e expected to be found in the eijuation 1/^t = :

also tlie infinite solutions. Discuss the e(juation \/p. — in tlu- following cases:

((() X 1 — y-dx = X 1 — x-dy. {,i} xdx + ydy = \ x- + y- — n-dy.

102. Equations of higher order. In i\w troatnu-nt of siieciul }»rol>

leins (§ 8l'j it was seen that tlu* siil:)stitiitioiis

rendered the differential erjuations integral )le by reducing them to in-

tegrahle ecitiations of the first order. These substitutions or othei'S like

them ai-e tiseful in treating certain eases of the diiferential eijuation
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<if(x, y, y', y", , y^")) = of the nth onk-r, namely, when one of tlie

variables and perliaps some of the derivatives of lowest order do not

occur in the equation.

In-se *(^,,_-^, _;(,..., _=^) = o, (11)

y and the first i — 1 derivatives being absent, substitute

g = , so... .(,„|,....p) = 0. (11,

The original equation is therefore replaced by one of lower order. If

the integral of this be F(:r, ^) = 0, which will of course contain n — I

arbitrary constants, the solution for q gives

y =/(,.) and y=j...jf{.r){dxy. (12)

The solution has therefore been accomplished. If it were more con-

venient to solve -P(.'', 7) = for .?• = 4>('/), the integration would be

1/ =j. . J .y (d.ry =
J.

.

.J.J
[<^'( y) d^y ;

^

(12')

and this equation with ,r = <^(V/) -would give a parametric expression

for the integral of the differential equation.

,(,.g,g,..,£.).0, (13)

X being absent, substitute ]) and regard p as a function of y. Then

dy d'y dp d^y d I d

j

dx
^^^'

7i? = ^';n/ 'd?-J';n,[''dy^

and ^,^y,^>, -,...,^ = 0.

In this way the order of the equation is lowered by unity. If this equa-

tion can be integrated as F(y, ji) = 0, the last stfq) in the solution may
be obtained either directly or parametiically as

It is no particular simplification in this case to have some of the lower

derivatives of y absent from ^ = 0, l)ecause in general the lower deriva-

tives of ]) will none the less be introduced by the substitution that

is made.
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As ail example coiikuUt ( x —' ^
)
=

(
— + 1»

\ (/x> dx-/ \(lx'/

which is ( X -i - f/ = ~ + 1 it (/ = —^ •

\ dx / \dx/ dx-

Tlieii g = X— ± A I (-^\ + 1 and q = C.x i Vc',-^ + 1

;

dx > \dx/

for the equation is a Clairaut type. Hence, finally,

y -^fj\_GxX, ± Vc'i- + l](dx)2 = 1 C^x^ ± ia;2 Vc'f + f + C^x + Cg.

As another example consider y" — ?/'2 _ ^2 log?/. This becomes

p-^—p-=y^ log 2/ or —\-^ - 2p- = 2 ?/- log ?/.

dy dy

The eqiiation is linear in jr and lias the integrating factor t'--''.

- p^c- -'
2/ = j ^2e- - ^ log yd?/, -— p = c'-i !i fy-c- '^ v log ydy

,

and / ^

j- = V2x.

I e2 J/ r?/2e- 2 ." log ydy

The integration is therefore reduced to quadratures and becomes a problem in

ordinary integration.

If an equation is iKiivogcncnua icltJi resj'x'ct to y and its derivatives,

that is, if the e(|uation is niultipliinl by a power of h when y is replaced

by />•//, the order of the equation may l)e lowered by the substitution

y = ('~' and Viy taking- z' as the new varialile. If the equation is hnmn-

(jnii'oiis irith. respect to x and, dx, that is, if tlie equation is multiplied

by a ])0wer of /. wlien ,/• is replaced by /.;*•, the oi'der of the equation

may lie reduced by tlu^ substitution ,/• = «'. The work may be simplified

(Ex. 9, p. 152) by the use of

/>;// = <'r-ri),{D, - 1) . .
. {I), -n + V)y. (15)

If the equation is liomof/cneoiis iritli respeet to x and y and, the dif-

ferentials dx, dy, d'^i/, , tlu! ordiT may be lowered by the substitution

X = e', y =: e'z, wliei'e it may be recalled that

irjy = r-"' />//>, - 1) . •
. (I\ - 7. + 1)//

= ,--("-iV(/;^ + 1) />, • • • {'K -n + 2)::. ^ ' ^

Finall}', if tlie e(iuation is /nu/iof/eneoi/s iritli respect to x considered of

divieiisions 1, and y considered, of dimensions ni, that is, if tlu; equation

is multiplied by a ])<)\vcr of /,• wlicn /.•./• replaces x and l<:'"y replaces y,

the substitution ,/ = r', y = e"'h:. wall lower the degree of the equation.

It may be recalled that

rr,/ = r.("'-">'(/>^ + ni) (1), + /M - 3) • • • {I), + m - n + I)'-. (15")
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Consider xyy" — xij"^ = ijy' + bzy""/^d- — -r'-. If in this equation y be replaced

by ky so tliat y' and y" are also replaced by ky' and ky'\ it appears that the

equation is merely multiplied by Ic^ and is therefore homogeneous of the first

sort mentioned. Substitute

V = t^, y' = c~z\ y" = c'{z" + z'-).

Then e-^ will cancel from the whole e(iuation, leaving merely

xdz' 1 , bxdx
z = z + hxz^/^ a- — X- or — ax —

v/,,2

The equation in the first form is liernoulli ; in the second form, exact. Then

— = V«- — X- + (7 and dz
z' b Va- — XT + C

The variables are separated for the last integration which will determine z = log?/

as a function of x.

Again consider x* —^- = (x^ + 2xy)-' — 4y'-. If x be replaced by kx and y by
dx- dx

k-y so that y' is rejilaced by ky' and y" remains unchanged, the equation is nuilti-

plied by k* and hence comes under the fourth type mentioned above. Substitute

x = e', y = e^'z, Il-y = €'{!), + 2) z, J);y = {Dt + 2){D-, + l)z.

Then c*' will cancel and leave z" + 2 {1 — z) z' = 0, if accents denote differentiation

with respect to t. This equation lacks the independent variable t and is reduced

by the substitution z" = z'dz'/dz. Then

d"^' d^ dz— + 2 (1 - z) = 0, z' = -~ = {\- z)- + C, = dt.

dz ^ ' dt ^ ' (1-2.2) 4-0'

There remains only to perform the quadrature and replace z and t by x and ?/.

103. If the equation may he obtained by differentiation, as

/ (hi (i"i/\ (/n en cQ
, dn , , ,^

*("' •"• i' S?) = 7a7
=

si-
+ a^ " + + li^^y'-''

(i«)

it is called an exact equation^ and f2 (.', //, //', • • •, ;/^"~^^) = C is an inte-

gral of ^ = 0. Thus in ease the equation is exact, the order may be

loAvered by unity. It may l)e noted that unless the degree of the ?ith

derivative is 1 the equation cannot be exact. Consider

*(•',.'/,//', , //"^) = <^y"^ + <^,,

where the coefficient of //'^"^ is collected into
<f>^.

Now integrate cfi^, par-

tially regarding only i/'-"~^^ as variable so that

That is, the expression * — fi/ does not contain //'•"'' and may contain

no derivative of order hisj'her than n — l\ and mav be collected as

J4>^fy"'-'
^ = ^, ex

Then *-
,l,n-h
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indicated. Now if ^ was an exact derivative, so must * — Q[ be. Hence

if m ^ 1, the conclusion is that ^ was not exact. If vi = 1, the i)i'ocess

of integration may be continued t(j obtain O., by integrating partially

with respect to
y(«-*-i). And so on until it is shown that ^ is not exact

or until * is seen to be the derivative of an expression f2^ -f O., + • • = C.

As an example consider ^ — x-y'" + sy" + (2 x?/ — 1) y' + y- — 0. Then

^1 = j'''-'^y" = -'"y"^ ^ - Oj' = - xy" + (2 xy - 1) y' + 2/',

fio = f- sdy' = - xy', <i^ -9.[- 9.!, = 2 jyy' + r = (-^r)'-

As the expression of the tir.st onU'r is an exact derivative, the result is

^ — r>i
— 9/y — {xy-y = ; and >I'^ = x"y" — xy' + xy- — C\ =

is the new equation. The method may be tried again.

fij = i^xMy' = x-y', ^^-n[= -oxy' + xy- - C\.

This is not an exact derivative and the equation ^I'j = is not exact. Moreover

the equation 4'j = contains both x and y and is not homoireneous of any type

except when C'j = 0. It therefore appears as though the further integration of the

equation 4' = were inq)nssible.

The method is a})plied witli es})ecial ease to the case of

'^0
(h:"

^ ^
' <i(1,1

••. + A„_ -'- + A,,// -/?(.;= 0, (17;
(I.I

where the coefficients are functions of ,/ alone. This is known as the

linear I'liiKition, the integi-ation of which has l)eeii treatoil onlv when

the order is 1 or when the eoctficit'iits are constants. The apjilieation

of successive integration by jnirts gives

fij = x,n("-'\ ^,= (^\ - ^'>u/""'\ ^, = (X - a; + A-,;';/«-^'\ . • :

and after ?i such integrations there is left merely

(.Y„ - A,:_, + • + r-l)"^^Aj +(-! )"AV)// - /.',

which is a derivative only wlion it is a function of ./. Hence

A„ - A,:_i + . .
. + f- 1 y'-K\\ + (

- ] )" a; = (18)

is the condition that tlie linear equation shall be exact, and

^^c/"~'^ + (-Vj - a;) //<"--) + CA, - A-; + Aj')y"-«> + • • = f/^/.'- (19)

is the first solution in case it is exact.

As an example take //'" + ;/"cos./- — 2//'sin.r — yco^x = sin2./-. Tlie test

A'.; — a;' + A'j" — A',"' = — cus x- + 2 cos.c — cos x =



ADDITIONAL ORDIXAEY TYPES 239

is satisfied. The integral is therefore y" + y' coax — yainx =— lc(ii^2x + C\.

This equation still satisfies the test for exactness. Hence it may be integrated

again -with the result y' + y cos x = — ^sin2j; + C\x + C„. This belongs to the

linear type. The final result is therefore

y
sin.r rc^mx^C\X + C'j) 'iX + CgC-^*"'^ + | (1 — slu x).

EXERCISES

1. Integrate these equations or at least reduce them to (juadratures

:

(a) -Ixir'n" ^ y"-^ - a"-, ((3) (1 + x"-) y" + 1 + Z/'^ = 0,

(7) Z/"' + "-y" =0, (5) y^- - m-y"' = e% (e) x-y^'' + a-y" = 0,

(i') "-//"//' = -r. iv) -''y" + .'/'_= •"',
('9) //'".'/" = -1,

(0 (1 - .r2) y" - xy' = 2, {k) //^- =: ^ g'"

,

(X) y" =/(j/),

(m) 2 (2 a — y) y" - 1 + y'", {v) yy" — y'- — y"-y' = 0,

(o) yy" + y'- +1 = 0, (tt) 2 y" = t", (p)
y"y" = a.

2. Carry the integration as far as possible in these cases:

(a) x~y" - {mx'y'2 + ny^)-^, {/3) mx"y" = (y — xy')-,

(y) •r'y" = (y - ry'f, (5) x^y" - r'y' - .rV^ + 4 2/2=0,

(e) x--//" + x--i(/ = i?/'2, (f) r/////" + }>y'-'- - yy'{c- + .r^)- n.

3. Carrj' the integration as far as possilile in these cases:

(a) ((/2 + J-) y'" + i//?/" + y" + 2 //'- = 0. i'fi)
y'y" - ?/x-//' = xy2,

(7) x3(/i/'" + 'Zx'^y'y" + O.riyy" + Oj--//'- + Wxyy' + 3 */- = 0,

(5) y-\-Zxy' ^-2 yy'-> + (./-^ + 2 //^i/') 2/" = 0,

(6 ) (2 x""/ + /-2/) y" + 4x-//'2 + 2 xyy' = 0.

4. Treat these linear equations:

(a) xy" + 2 ?/ = 2 .r, (/3) (x2 - 1) y" + 4 xy' + 2 ?/ = 2 x,

( 7) y" - y' '' 't X + y csr2 .r = cos .r, (5) (,r'- - x) y" + (?> x - 2) y' + y = 0,

(e
)

(,r — x"') y'" + (1 — 'j X-) y" — 2 xy' + 2 y = r. x.

( J-) (X-' + x2 - .3 X + 1 )
y'" + (1» X'- + X - !>) y" + ( 18 x + 6) y' + (i y = x'',

(t?) (x + 2)-- y'" + (x + 2) y" + y' = 1. (0) xV' + 3xy' + y = x,

(
t ) {x- - X) y'" + (8 x2 - :|) y" + 14 xy' + 4 y = 0.

5. Note that Ex. 4 (0) comes under the tliird homogeneous type, and that Ex. 4

(77) may be brought under that type by nuUtiplying by (x + 2). Test sundry r)f Exs.

1, 2, 8 for exactness. Sliow tliat any linear e(iuati<in in which the coefficients are

polynomials of degree less than the order of the derivatives of which they are the

coefficients, is surely exact.

6. Sometimes, when the condition that an eijuation lie exact is not satisliefl, it

is possible to find an integrating factor for the eijuation so that after nudtiplication

by the factor the equation becomes exact. For linear equations try x'". Integrate

{a) xhj" + (2 X* - X) y' _ (2 x^ - 1) y = 0. (/3) (x^ - x^) y" - xh/ - 2 y = 0.

7. Show that the equation y" + Vy' + Qy'- = may be reduced to quadratures

1^ when V and Q are both functions of y. (ir 'P when both are functions of x, or ?P

when /' is a function of x and Q is a function of y (integrating factor 1/y'). In

each case find the general expression for y in terms of (juadratures. Integrate

y" + 2 y' cot x + 2 y'^ tan y - 0.
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8. Find and discuss the curves for which the radius of curvature is proportional

to the radius r of the curve.

9. If the radius of curvature I\ is expressed as a function R = 7i(.s) of the arc s

measured from some jioint, tlie ecjuation U = li{^) or s = •s(/^) is called the intrinsic

equation of the curve. To lind the relation between x and y the second equation

may be differentiated as cU = s'{Ii)dU, and this equation of the third order may be

solved. Show that if the origin be taken on the curve at the point s = and if the

X-axis be tangent to the curve, the equations

X = I cos
I : - ds, y = ( sin | — ds

express the curve parametrically. Find the curves whose intrinsic equations are

{a) R = a, (/3) aR = .s^ + ry2^ (7)
7.'2 + ,s2 = 10 ^(2_

10. Given F = y('>) + .Y,?/("-i) + X.,y("--^) + • • • + ^'u -^1!/' + ^V„y = 0. S) ow
that if ^i, a function of x alone, is an integrating factor of the equation, tlien

* = fx(") - (-V)("-i) + (A»("---) + (_ 1)"-i(.Y„_im)' + (- 1)«A'„M =

is the equation .satisfied by fi. Collect the coeilicient of n to show that the condition

that the given eiiuation be exact is the condition that tins coefficient vanish. The

equation <!> = is called the adjoint of the given equation F = 0. Any integral /x

of the adjoint etjuation is an integrating factor of tlie original e(iuation. Moreover

note that

J^pLFdx = /xyO'-i) 4. {fMX\- ^')y (>'--) +... + (_ 1)"J y<t>dx,

or d[pLF - (- l)"^*] = d [txy(" -D + {,xA\ - m') y(" -;)+...]= dU.

Hence if /xF is an exact differential, so is y<i>. In other words, any .solution y of the

original ecjuation is an integrating factor f(ir thi' adjoint e(iuation.

104. Linear differential equations. The equations

-V,/>"// + -\\/>"-\'/ ++ X„ _, !>;, + A,,// = R (.>),

A\D";/ + A^/>" -\y + • • • + A„ _,J>^ + A„y = ^- ^

are linear differential e(|uations of tlie ??tli order; the first is called the

ro//q/li'f(', cf/itiifi'Di and the seeoiul the rcliiri'd i-fitnifhni. If y^, _y.,, y/^,
• • •

are any solutions of tlie reduced e(|uation, and C^, (',,, (\^, •• are any

constants, then y = r '^y^ -(-
r

',//_ -|-

r

'^y^ -|- . .
. is also a solution of tlie

I'cduced equation. This follows at once from the linearity of the reduced

equation and is proved by direct substitution. Furthermore if / is atiy

solution of the complete ecjuation, then // + / is also a solution of the

com])lete equation (cf. § 90).

As the equations (20) are of the ??t]i order, thi'v will detei'inine //<'"'

and, by differentiation, all lii,n-her derivatives in terms of tlie values of

''>
,'/; .'/') •

5

.'/'""'"'• 1 lence if the values of the n quantiries //^, //', ,
• •

.
,'/!"

^''

wdiich coi'res})on(l to tlie value .r = .r^^ be g-iven, all the higher derivatives

are detei'inined (§^ <S7-.SS). Ilciiee there are 71 and no more than /iarlii-

trary conditions that may be imposed as initial conditions. A solution
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of the equations (20) which contains n distinct arbitrary constants is

called the general solution. By distinct is meant that the constants

can actually be determined to suit the n initial conditions.

If y^ y.,, • • •, y„ are n solutions of the reduced equation, and

y = ^\Ui + ''

'J'i -^ ^ '""•'/«

'

U' = f'l'A + ''iU'i -I 1- ^-\^u'n^ (21)

y(«-i) ^ Ci//^"-^> + cv/^"-'^ H 1- c„//,^;'-^>,

then y is a solution and y',
,

//'" ~^^ are its first ?i — 1 dei'ivatives. If

.r^ be substituted on the right and the assumed corresponding initial

values y^, ii^,, ,
y["~^^ l)e sul)stituted on the left, the above n equations

l^ecome linear equations in the n unknowns (\, C\, , C\, ; and if they

are to be soluble for the C's, the condition

^''(z/p 2/2'
•••' Vn)

ii\ 111 y'n

//I"-" ti^'-'' '/::

^ (22)

must hold for every value of r = ,/;.. Conversely if the condition does

hold, the equations will be soluldc for the '"'s.

The determinant M'i;/^, //.,, •••, //„) is called the Wrons]:i>in of the n

functions y^, //.,,
••-, -/„. The result may be stated as: If n functions

Uii Vti ) ]ln '^vhich are solutions of the reduced e(|uation, and of which

the Wronskian does not vanisli, can be found, the general solution of the

reduced equation can be Avritten down. In general no solution of the

equation can ])e found, whether by a detinite jirocess oi' by inspection;

but in the rare instances in whicli the n solutions can l)e seen by inspec-

tion the problem of the solution of the reduced equation is completed.

Frequently one solution may V)e found by inspection, and it is therefore

important to see how much this contributes toward effecting the solution.

If y^ is a solution of the reduced equation, make the substitution

y = y^z. The derivatives of // may be obtained by Leilniiz's Theorem

(§ 8). As the formula is lijiear in the derivatives of re, it follows that

the result of the sul)stitution will leave the equation linear in the new

variable z. ^Moreover, to collect the coefficient of z itself, it is necessary

to take only the first term y[^"'z in the expansions for the derivative y'^^'K

^«^C«
(A;,./^) + X,y[" -')+...+ A-„ _,y[ + A',./,) .. =

is the coefficient of z and vanishes In- the assumption that y^ is a solu-

tion of the reduced equation. Tlien tlie equation for z is

P/'" + P/" -^> + • + Pn-,^" + Pu-i-' = ; (23)
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and if z' be taken as the variable, the equation is of the order 71 — 1.

It therefore appears that the kiiowleilge of a solution //^ ri'(hi.C(;s the order

of the. equation hy one.

Now if y,, V-^t
•

' ) Vp were other solutions, the derived ratios

0, .^(S. -, .-. =© (-)

would be solutions of the equation in z^ \ for l)y substitution,

y = I'x^x = yv y = y^i = y^^ • •

' y = y^p -i = %,

are all solutions of the equation in y. ^Moreover, if there were a linear

relation <\z\ -|- '''0.-2 + • • • 4- C'^, _r^p_i = connecting the solutions .v-,

an integration would give a linear relation

C'l//., + C.jj^ + • • • + C;_i.y„ + C^y^ =

connecting the 7? solutions y;. Hence if there is no linear relation (of

which the coefficients are not all zero) connecting the ^^^ solutions ?/, of

the original equation, there can be none connecting the y-' — 1 solutions

z\ of the transformed equation. Hence a Invnrledge of p soluti<ms of

the original n^duced equation gives a, new redueed equation of xrhich

p — 1 solutions are knoicn. And the process of substitution may be

continued to reduce the order further until the order n — p is reached.

As an example consider the equation of tlie third order

(1 - X) y'" + (./••- -\)y" - s-y'^ sy = 0.

Hero a simple trial shows that x and e^ are two solutions. Substitute

y-c'z, y' = e'-{z + z'), y" = c^{z + 2z' + z"), y'" = c-'iz + oz' + 3z" + z'").

Then (1 - x) z'" + [s" - 3 x + 2) z" + (x- - 3 x + 1) z' =

is of the second order in z' . A known solution is the derived ratin (x/e'")'.

z' = (xt- ')' = e- '
(1 — x) . Let z' = C" -^ (1 — x) ;';.

From this, z" and z'" may be found and the ecjuation takes tlie form

'///•' 2
(1 — x) ir" + (1 + x) (x — 2) ;'•' = or - -- =; X'Zx ds.

u:' X — 1

This is a linear (Mjuation of the first f)rder and may be solved.

log v:' ^
I
X- - 2 log (x -1)4- C or 1// - C^t^-^'ix - 1)--.

Hence

='=©'"=^.(.')7'^"<'-'>-'"^+^=(fJ'

y = c^z =C\r'
fi^''- ) fr- '\.r - })~-(,lr)- + C.-,X + C.C''.
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The value for y is tlius obtained in terms of quadratures. It may be shown that in

ease tlie equation is of the >ith degree with j) known solutions, the final result will

eall forj)()i — p) quadratures.

105. If the general solution y = 6'^//^ + '''.,.'/., + • + t'„y„ of the redticed

equation has been found (called tlie cnmphnnentanj functlnn for the

complete equation), the general solution of the complete equation may
alwavs be ol)tained in terms of quadratures by the important and far-

reaching iiicihiiil nf tJin vdr'utfuni of ronstants dtie to Lagrange. The

question is :
( "unnot functions of :r be found so that the expression

!/ = Cp-) II, + <- •,(.'
) //, + • • + Cj.r) //„ (24)

shall be the solution of the complete eijuation '.' As there are n of these

functions to be determined, it should l)e })Ossible to impose n — 1 condi-

tions upon them and still find the functions.

Differentiate // on the supposition that the f's are variable.

u' = < \'j\ + <^'^ij'i -f- • • • + ('n'L + ih^'\ + i// ; + + y,S'\.

As one of the conditions on the '"''s su})pose that

y/'; + y/'; + •• + //,/; = 0-

Differentiate again and impose tlie new condition

ll\<"x + !l'i'"-i + --- + !l'j"n=^,

«o that y" = f\y'; + rj; -f- • • + ^ '„//:;.

The dilferentiation may be continiK^l to the (a — 1 )st condition

ii\"
--'''\ + ii-r

- '*^ ; + ••• + '/::
- ''^': = o,

and 7/^"
-'

' = (\y'{
-^

' + ^ ',//.V'
^"4 V( '„y\:

-^\

Then //^»> = ( \y\'> + (\y^''+ + cJ:'

Now if the expressions thus found for
//, //'. //", •••, //^""'\ //^"^ be

sul)stituted in the conq>lete e(|Uatiou, and it lie remendjcred that y^,

.'/..• ; .'/,, ''^'P solutions of the reduced (Mpuition and lieiice givt; Avhen

substituted in the left-hand side of the e(juation, tlie result is

M""''^'; 4- llT""'''-! 4- • • • 4- y\r'''".. = li-

Hence, in all, there are n linear equations

y/"i + lli'-"-i + + !l,Pn = 0,

y\''\ +u'/''i +--- + ii'/"u =0,

(25)
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connecting the derivatives of the ("*s ; and these may actually be solved

for those derivatives "which will tlien be expressed in terms of x. The

C's may then be found by (juadrature.

As an example consider the equation witli constant coefficients

(W -\- I))i/ = sec X witli y = C\ + C, cos x + C^ sin x

as the sohition of the reduced equation. Here tlie solutions y^, ?/,-,, y^ may be taken

as 1, cosx, sinx respectively. The conditions on the derivatives of the C"s become

by direct substitution in (25)

C'l + cosxt'.^ + sin.f(''j = 0, — i^mxC', + cosxf'^ = 0, — cosjCo — sinxC'g = secx.

Hence C[ = sec x, r,^ = — 1, C'.^ = — tan x

and C\ = log tan (.^ x + i tt) + r^

,

(',,= — x + c, ,
C'g = log cos x + c.,.

Hence y = c^ + log tan (J x + \ tt) + ('., — x) cosx + (r^ + log c<js x) sin x

is the general solution of the complete e(]uation. This result could not be obtained

by any of the real short methods of >;;§ HO-UT. It could be obtained by the general

method of § 95, but with little if any advantage over the method of variation of

constants here given. The present method is equally available for equations with

varial)le coefficients.

106. Linear ciiudtunis of ilti> scrond onJcr are especially frequent in

practical problems. In a number of cases the solution may be found.

Thus 1° when the coefficients are constant or nuiy be made constant by

a change of variable as in Ex. 7, }>. 222, the general solution of the

reduced equation nuiy be writtiMi down at once. The solution of the

complete equation may then be fouml by t)btaining a ])arti(;ular integral

/ by the methods of §)? 95-97 or by the ai)plication of the method of

variation of constants. And 2° when the eipiation is exact, the solution

may ])e had by integrating the liiu'ar equation (19) of § 103 of the first

order by the ordinary metliods. And ?° when one solution of the re-

duced equation is known (§ 104), the reduced equaticjn may be eom-

])letely solved and the complete e(ptation nuiy then be solved by the

method of variation of constants, or tlie complete equation may be

solved directly by Ex. O below.

Otherwise, AVi'ite tlin differential ('(juation in the form

(p-ii (III .^_.
7-, + /' / + (III = 11. (2G)
dx' (IX

The substitution // = i/z gives the lU'W^ equation

(Pz rid (I \dr: 1 „
,

R
-^ + -7- + P) ~,

- + - (/'" + P"' + Q")r. = - (2G')
(/.I- \ II 11

X

I il.r II II

If II l)e determiutM] so that the coefficient of ,-;' vanisht-s, tlien

ii = e-ll"'- and '!^^(u-y^;^-\Ar: = nAJ-^'^. (27)
f/.'" \ Ji dx 4 /
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Now 4° if Q — I P' — I P' is constant, the new reduced equation in

(27) may be integrated ; and 5° if it is A'/^"', the equation may also be

integrated by the method of Ex. 7, p. 222. The integral of the com-

plete equation may then be found. (In other cases this method may
be useful in that the equation is reduced to a simpler form where solu-

tions of the reduced equation are moTe evident.)

Again, suppose that the independent variable is changed to z. Then

ilZ t^ ((.V .V ^

Now 6° if s'"^ = ±(l will make .-s" -|- Pz' = hz'-, so that the coefficient

of dy/dz becomes a constant /.-, the equation is integrable. (Trying if

z'- = ± Qz- will make ,~" + Pz' = l:z'-jz is needless because nothing in

addition to 6° is thereby obtained. It may happen that if z be deter-

mined so as to make ,t" + P^' = 0, the equation will Ije so far simpli-

fied that a solution of the reduced equation becomes evident.)

^ . 1 , , fl'V 2 dy «- ^ ^T , . .

Con.siaer the example 1 1 ?/ = 0. Here no .sohition is apparent.

Hence compute Q — i -P' — 5 P'- Thi.s is a^/x'^ and i.s neither constant nor propor-

tional to l/x^. Hence the methods 4° and 5° will not work. From z'^ = Q = a'^/x*

or z' = a/x", it appears that z" + Pz' = 0, and G"^ works ; the new equation is

-^ 4- ?/ = with z =
dz- X

The .solution is therefore .«;een immediately to be

y = C, cosz — C, sin 2 or ?/ = C\ coi^{a/x) -f- C^ sin Ut/x).

If there had been a riirht-hand meinbcr in the oriirinal ecjuation, the .solution could

have been found by the method of variation of constants, or by some of the short

methods for finding a particular .solution if /* had been of the proper form.

EXERCISES

1. If a relation C^y^ + C.,//., + •••-!- C„y„ = 0, with constant coefficients not all 0,

exists between n functions ?/,,?/.,.•••. ij„. of x for all values of x. the functions are

by definition said to be linearly dependent; if no such relation exists, they are said

to be linearly independent. Show that the nonvaiiLshing of the Wronskian is a

criterion for linear indepemlence.

2. If the general .solution y — C\y^ + C.,y., + • 4- C„y„ is the .same for

X^yM + A\y(n -1) + . . . + X.jj = and P,^yO» + P^yC -!) + ... + P„y = 0,

two linear equations of the nth order, show that y .satisfies the equation

{A\P, - A\^P,) y(n -1) + . . . + {X„P, - XJ\) y =

of the (n — l)st order; and hence infer, from the fact that y contains n arbitrary

constants corresponding to n arbitrary initial conditions, the important theorem:

If two linear equations of the 7(tli urder have the same general solution, the corre-

sponding coefficients are proportional.
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3. If 2/j , 2/2, • • •
, 2/n ivi'e n independent solutions of an equation of tlie nth order,

show that the equation may be taken in the form ^V{y^, y.^, , Pn, y) = 0.

4. Sliow that if, in any reduced equation, A',j_i + ^A',, = identically, then x

is a solution. Find the condition that x'" be a solution ; also that e""^ be a solution.

5. Find by inspection one or more independent solutions and integrate :

(a) {l + x"-)y''-2xy' + 2y = 0, (^) xr/' + {I- x)y' - y = 0,

(7) {ax - bx^-) y" - ay' + 2hy = 0, ( 5 ) i ?/" + xy' - {x + 2)y = 0,

(e) (logx + ^ - 4 + -)y'" + i^ogx + 1 + i - iVr + (~ - -){y'-xy) = 0,

\ X* X- X/ \ X-* X" x-/ \x- x/

( i)
y'"' - ((/"+ xy'- y = 0, (77) (4 x'-^ - x + 1) y"'+ 8 xry"- 4 xy'- 8 ?/ = 0.

6. If ?/j is a known solution of the equation y" + Py' -\- Qy = I! of the second

order, show that the general solution may be written as

y = G^y^ + C.^/i \ e J — + yi—eJ y^eJ K{dx)^.
'^

2/f '' y\ '^

7. Integrate

:

(a-) xy"- (2 X + 1) ?/' + (x \-l)y-x^ — x — 1,

(i3) ?/' - xV + x?/ = X, (7) X2/" -{ {I- x)y' -y = e%

( 5 ) ?/" — xy' + {x — l)y = R, {^) y" si'i" -c + y' sin -c cos x — y = x — sin x.

8. After writing down the integral of the reduced equation by inspection, apply

the method of the variation of constants to these equations :

(a) {Ifi + 1) 2/ = tan X, (/3) (i>^ + 1) y = see^ x, (7) {B - Yfy = e-'-(l - x)- ^,

(5) (1 - x)y" ^xy' -y^{\- x)-\ (e) (1- 2x + x^){y"'- I)- xhj" ^2x'y' - y = 1.

9. Integrate the following equations of the second order:

(or) 4 xhj" + 4 x^?/' + (x^ + lyhj = 0, (/3) ?/" - 2 y' tan x - (flS + i) ^^ = 0.

{7) xy" + 2y' — xy = 2e'-', (5) ?/"sinx + 2 ;/' cosx + 3 ^sinx = e*-,

(e

)

y" + y' tan x + ^ cos^ x = 0, (f

)

(1 - x-) y" - x;/' + -1 y = 0,

(7,) 2/" + (2 e^ -1)2/' + e2^-2/ = £-4^, [6) xhj" + 3 x^/ + y = x- 2.

10. Show that if ^^yy" + A'j?/' + X.^y = 11 may be written in factors as

(A-,I;2 + Xj J^ + A'2) 2/ = {p^U + r/i) (p,7J + r/,) 2/ = K,

where the factors are not connnutative inasmuuli as the differentiation in one

factor is applied to tlie variable coefticients of the succeeding factor as well as

to i*, then the solution is obtainable in terms of (quadratures. Show that

(ilV-2 + Vllh + l\'l-2 = ^i fi"'^ fJi'h + Pi'i-i = ^'2

In this manner integrate tlie f(jllowing equations, clioosing p^ and p., as factors of

A'l^ and determining r/j and f/„ by inspection or by assuming them in some form and

applying the method of undetermined coerticicuts :

(a) xy" + (1 - X) y'-y = e-'\ (li) 3 x'^y" + (2 - x^) y' _ 4 = 0,

(7) Sx:^y"+{2 + (ix-(]x^)y'-4y = 0, (5) (x^- ] )y"- (3x + 1) 2/- x (x -1)2/ = 0,

( e ) axy" + (3 a + bx) y' + 3 by = 0.
( f) xy" - 2x (1 + x)y' + 2(1 + x) y = xK

11. Integrate these e(iuation.s in any manner :

"I r 4- "\ r 8 *^ / *^ \
{a) y" - - _i/ + '-

2/ = 0, (/3)
y" - "^ y' + a'' + -, 2/ = 0,

Vx *'-" 2; \ x-f
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(7) 2/" + 2/' tan X + ?/ cos- X = 0, (5) 2/"-2(n — "j ?/'+ ( h--2— j?/ = e'«,

{ e) (1 - x2) y" - xy' - c^y = 0, (f )
(a^ - x^) y" - 8 x;/' - 12 ?/ = 0,

/ X .. 1 /2 , \ ,^. ,, 9-4x , 6-3x
{'7)2/ + -V-,

2/ = e^- - + logx
, {&) V -

—, 2/+^, 2/ = 0,
x-logx \x / 3 —

X

3 —

X

(0 y" + 2 x-i;/' - n-y = 0, (k) ?/" - 4 x^/' + (4 .s^ - 3) y = e^-,

(\) y" + 2 n^/' cot nx + (//t- — )i-^) ?/ = 0, (/i) ;/" + ^ (x-i + i'x--) ;/' + Ax-'^y = 0.

12. If y^ and 2/, are solutions of y" + P?/' + 7? = 0, show by eliminating Q and

integrating tliat -

ViVi - 2/o2/i = Ce J

What if C = ? If C 7i 0, note that y^ and ?/j cannot vanish together ; and if

2/j(a) = y-^{h) = 0, use the relation (y<,y[)a (y.^y[)), = k>0 to show that as y\^^ and

2/jj, have opposite signs, 2/0 „ and 1/26 have opposite signs and hence y.^i^) = wliere

a <^<b. Hence the theorem : Between any two roots of a solution of an equation

of the second order there is one root of eveiy solution independent of the given

solution. What conditions of continuity for y and y' are tacitly assumed here ?

107. The cylinder functions. Suppose that CJ-'') is a function of x

which is different for different values of ?i and Avhicli satisfies the two

equations

Cn -:(-^) - ^'n +i(-x-) = 2 - C„{x), C„ _,{x) + r'„ ^,(,, ) = — Cix). (29)

Such a function is called a cylinder function and the index n is called

the order of the function and may have any real value. The tw^o equa-

tioiis are supposed to hold for all values of n and for all values of x.

They do not completely determine tlie functions but from them follow

the chief rules of operation with the functions. For instance, by addi-

tion and subtraction,

c:C'-) = r;_,(.>-) - ^ cjx) = - c„(^) - c„^,(:x). (30)

Other relations which are easily deduced are

j:y{x"C„(ax)^ = a.r"r\^_^(a,:), ]),[..-"('Ja,')^ = - ax-C„^,(x), (31)

D^b^cXV^)] = h V7u^C,,_,{V^:), (32)

C';(^) = - ^^(•'•), C_Jx) = (- 1)"CJ,'), n integral, (33)

C,Xx)K(x) - C:(x)K„(x) = C„^,(x)K\(x) - Cjx)K,,+,(,c) = ^, (34)

where C and A' denote any two cylinder functions.

The proof of these relations is simple, but will be given to show the use of (29).

In the first case differentiate directly and substitute from (29).

-Dx[x"G'„(ax)] =x" alJaj-CJax) + - Cn{ax)

aC„-i{ax) — a— C„{ax) + - CJax) .

ax -^ J
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The second of (31) is proved similarly. Fur (32), differentiate.

"
1 1—1 " 1 ~~

JjJx-CJVT^)] = - lu- C'„(V(j-j-)+ X- ^ " D ~~r„(Vax)
2 2 \ J^ ^ '

'

-, _ "-In -,

^ Wax ' ~

Vax J

Next (33) is obtained P by substituting;- for n in botli e(iuations (2it).

r_,(.c) - C\{x) = 2 r;{x). r_i(,,') + r,(.,-) = O. li.^nee C^ix) = - r',(.r)
;

and 2° by substitutinu' successive values for n in the second of (21t) written in the

form x(',i-] + .('('„ 1^1 = 2 /(("„. Then

/C'_i + ^<'-'i
= 0. x('^.2 + f^'o^ --^('-1. x(\^ + xC.r=2C\,

x('-3 + x('_i = - 4 r_.,. ./(", +,K',. = 4 r.,.

xC-i + .fr_._, = - () r,-,. xC.-, + x(\ = i; (".,.

and sn on. The first ^ives ('_] = — (\. Subtract the next two and u.se C-i + ('^ = 0.

Then C'_2 — (^'o = "i' ''-.' = (— 1
)-^

'...• Aild the next two and use the relations

already found. Then /'_o -f-<',. — <>v C^g = (— 1 )•'•''.,. Subtract the next two.

and so on. For the last of the relations, a very important one. note tirst that the

t\V(j expressions become eijui\alent by virtue of (2'.') : for

C •„ 7i';, - (
;, A'„ -^ "

( „ A",, - ( „ K„ X 1 - "
C „ K„ + r„ :. 1 7v'„

.

Now ^lx{C„+^K„ - C',;7v'„+,)J -. <„ '.-xK„ - <'..K„ ., + .rK,.i<'., - " "^ ^ ("„

+ xc,. .,(^ ;r„ - K„ .\ - r/r,, ,,Q r'„ _ r„ ,,

— ,/•(„ 7v ,^ 7i „ _u 1

\ .'•

Hence .r (r'„_,_i7v'„ — f'ij\„ ;-i) = const. =.1. and the relation is jiroved.

The (\liii(ler functions of ii o'ivcii order // satisfy a linear ditTerential

('(jiiation (d' the second order. Tliis may be olitained by tiifbn'entiating

tln^ lirst (jf ('1\)) and eombiniiiL;- willi (."id).

- 1

^•„-i-^^\,+
'^^K.

" 1

irenee •', + / + 1- .,)'/ = 0. .'/ = ''„(') C^o)

This ('(luation is known as Ilr.^sr/'s n/i/t/finn . llie functions '"„('.'•). wlncli

liave been called cyliiulcr functions, are often called /Irssr/'s j'l/ //</)',, us.

Fr<jui the etiuation it follows that an\ three fumdions of the same onlci'

/I are connected li\' a liiu'ar I'clation and there are only {wo indejiendeut

fiimdions ot an\' ljImmi (jnler.
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By a change of the independent variable, the IJessel equation may
take on several other forms. The easiest way to Ihid them is to operate

directly with the relations (31), (32). Thus

= - •'-""'^'.+1 + 2(m + l).t-"-V'„^j - x-"r„.

Hence '"^ + < ^+ "-''
^ '^^- + , = 0, y = :.- "CJ,). (3G)

(1.1- X a.r
'

^ ^

Again ?p^^+«-^l^U^ + ^=0, :,/
= ,..(,,). (37)

dx X dx

Also xy" -f (1 + n) //' + // = 0, // = ./"'

-

( '„( 2 V.7). (38)

And .'/•//" + (1 - n) ii' + 11 = 0, y = .>^ < '„( 2 V^' ). (39)

In all these differential equations it is well to restrict ./ to positive values

inasmucli as, if 7i is not specialized, the })Owers of x, as ./", ./•" ", x', x '"', are

not always real.

108. The fact that ?i occiirs only squared in (35) shows that both

Cj.r) and C_Jx) are solutions, S(j that if these functions are inde-

])endent, the conq)lete solution is y = aC\^ + ^>''-n- I'^ ^i^'^t' manner the

equations (•><">), (37j form a ])air Avliich diti'ei' only in the sign of ii.

Hence if //„ and //_„ denote pai'ticular inti^grals of the first and second

res})e(ttively, the complt-tc integrals are ri'S})ectively

y = a //,, + ////_ ,_.,•-
-
" and y = << 11_ „ + />/A„:r "

;

and similai'ly the I'cspective integrals of (38 j, (39) are

y = <i /„ + // 1_ ,,/" " a nd y = ,iI_^^-\- h /„,-,»,

where /„ and /_„ denote jjarticular integrals of these two equations. It

sh(juld l)e noted that these forms are the complete solutions only when

the two integrals are indtqiciidrnt. Xote that

/,/.'•;) = .'"" ^ "' '„( 2 v;), ( •„(./•) = (1 ,/•)"/„( 1 ..•-). (40)

As it has 1)een seen that (\^-:= {—\ fC _^^ when n is integral, it follows

that in this case the aliovt- forms do not give the conq)lete solution.

A particular solution of (38) may readily be obtained in series by the

method of undetermined eoeiticients (§ 88j. It is

1 ix) = y r'X\ (I- = - -'*-
, (41)

as is derived below. It sliould be noted that T_,^ formed ly clianging

the sign of n is meaningless when n is an integer, i'or the reason that,
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from a certain point on, the coefficients «; have zeros in the denominator.

The determination of a series for tlie second independent solution when

n is integral will be omitted. The solutions of (35), (36) corresponding

to /„(^') are, by (40) and (41),

»-V,(.T)=5;i^/,.(lA (42')

where the factor n ! has been introduced in the denominator merely to

conform to usage.* The chief cylinder function C'„(x) is Jn{x) and it

always carries the name of Bessel.

To derive the series for /„(x) write

1

(1 + n)

X

I„ = tty + a^x + a._>.x2 + • • • + ak-\x^~'^ + • • •

,

7,^ = a^ 4- 2 a,,x + 3 a^x^ ^ + (A: — 1) a^ _ix*' - ^ 4. . . .

^

/;; = 2 rt.^ + 3 • 2 «,jX +••• + (/£- 1) (A; - 2) at -ix^"- » +
= [«y + «i(u + 1)] + X [a^ + a.^ {n + 2)] + x^ [a, + a^}i {n + 3)]

+ • • + x^-i[«A;-i + akk{n + A-)] + . .
.

.

Hence a^ + a-j()i + 1) = 0, a^ + 032 (?i + 2) = 0, • • • , a^ _i + aA-t (n + A;) = 0,

a„ =
^

)i + 1

'

- 2 (ii + 2) 2 ! (?i + 1) [n + 2) ' '

^
! (u + 1) • • • (n + i-)

If now the clioice a^ = 1 is made, tlie series for /„(/) is as given in (41).

The famous differential eijuation of tlie first order

^y' — uy + ^'//'" = ex", (43)

known as Eiccati's equation, may be integrated in terms of cylinder functions.

Note that if n = or c = 0, the variables are separable
;
and if h = 0, the equation

is linear. As these cases are immediately integrable, assume ben ^ 0. By a suitable

change of variable, the equation takes the form

^^+ (^--)-ji-^'^V = 0, f = -;X'S y = --l^-. (430
d^~ \ nl «| n- ba^-q

A comparison of this with (39) shows that the solution is

a

7, = A /_ „ (- hc^) + BI„{- bc^) (- bc^Y ,

n n

which in terms of Bessel functions ,/ becomes, by (40),

7; = i^ [.1.AJ2 V-7.^) + r>.T ,,(2 V- 6cO].

* If n is not integral, both n\ and {a + i) ! must be replaced (§ 147) by r(« + 1) and

r(/i + ^ + i).
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The value of y may be found by substitution and use of (29).

n n

„ ,/„ (2x2V- hc/n) - AJ^ „(2x2 V- hc/n)

^=\-l^^^^ ^'^-n ' (44)

J„(2x2 V- hc/n) + AJ „(2x-V- hc/n)
n n

where A denotes the one arbitrary constant of integration.

It is noteworthy tliat the cylinder functions are sometimes expressible in terms

of trigonometric functions. For when n = \ the ecjuation (35) has the integrals

y = A sinx + 7) cosx and y = x^[ACi{x) + BC_ i(x)].

Hence it is permissible to write the relations

X 2 Ci (x) = sin X, X •; C'_ i (x) = cos x, (45)

where C is a suital)ly chosen cylinder function of order \. From these equations

by application of (29) the cylinder functions of order p + |, where p is any integer,

may be found.

Now if Riccati's equation is such that h and c have opposite signs and a/n is

of the form p -\- \i the integral (44) can be expressed in terms of trigonometric

functions by using the values of the functions C ^ j just found in place of the J's.

Moreover if h and c have the same sign, the trigonometric solution will still hold

formally and may be converted into exponential or hyperbolic form. Thus Riccati's

equation is integrable in terms of the elementary functions when u/n = p { h wo

matter what the sign of he is.

EXERCISES

1. Prove the following relations:

{a) 4 C; = C„_2-2 C„ + 0« + 2 , (^) xC„ = 2{n+ 1) C„ +i - xC„ + 2,

(7) 23C;;' = C„ _ 3 - 3 C„ _i + 3 C„ +, - C„ + , ,
generalize,

(5) xCn = 2()i + 1) C„+i -2{n + 3) C„ + 3 + 2 (ji + 5) (',, + 5- xC'„ + 6.

2. Study the functions defined by the pair of relations

F„_i(x) + F„+i(x) = 2^F„{x), F„_i(x) - F„+i(x) = ^F„(x)
ax X

especially to find results analogous to (30)-(35).

3. Use Ex. 12, p. 247, to obtain (34) and tlie corresponding relation in Ex. 2.

4. Show that the solution of (38) is y = AI„ f
^ ^'\ + BI„.

n

5. Write out five terms in the expansions of I^, I^, I_i , J^, J^.

/2 1
6. Show from the expansion (42) that I I \ -Ji (x) = ~ sin x.

\ X i X

7. From (45), (29) obtain the following :

x^ Cs (j) = cos X, X a Cs (x) = 1 1 sm x cos x,
2 X 2 \x" / X

1^ , , . cosx iri / ^ 3 . /3 A
X 2 C;_ 5(x) = — sni X , X2 (7_ 5 (x) = - sm x + ( 1 ) cos x.

2 X 2 X \X- /
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8. Prove by integration by parts : I
-- - fZx = ~ + 6 ^ + 6 • 8 -^4--

J x-^ X* X* J £'

9. Suppose C„(j) and 7\„(j") so chosen that A = 1 in (34). Show that

V^A Cn (y ) + BK„ (X) + L r K„ (X) f^ dx - C„ (x) J^^ cZxl

is the integral of the differential equation x"i/" + xy' + (x" — n-)y = Lx-^.

10. Note that the solution of Hiccati's e(ination has the form

^^^rf^^r.' ^"'^ «l>«^v that
'^l'

+ Pix)y.+ Q{x)y^=E(x)
F{x) + A(,'{x) dx

will be the form of the e(iuation wliich lias such an expression for its integral.

11. Integrate these eiiuations in terms of cylinder functions and reduce the

results whenever possible by means of Ex. 7 :

(a) xy' - '>y + y- + x^ = 0, (/3) xy' - 3 ?/ + y" = .>"-.

(7) y" + ye-'' = 0, (5) x'^y" + nxy' + (h + rx-^'")y = 0.

12. Identify the functions of Ex. 2 with the cylinder functions of ix.

13. Let (x2 - 1) 7^; = (n + 1) (P„ +1 - xP„), ^1 +1 = ^K + '« + 1) ^« (46)

be taken as defining the Legcndre functions P„{x) of order n. Trove

(a) (x2 - 1) r;, = n (xPn - r„ _i), (^) (2 n + 1) xP„ = [n + 1) P,, +i + '/ P„ _i

,

(7) (2 n + 1) P„ = P: +1 - P;_i, (5) (1 - x--^) P;; - 2xP: + n{n + 1) /'„ = 0.

A A
14. Show that I'nQn — P„Q„ = and P„Q„+i - Pn + iQn = >

X- — 1 ?i + 1

where P and Q are any two Legendrc functions. Express the general solution of

the differential equation of Ex. 1.3 (5) analogously to Ex. 4.

15. Let u = X- — 1 and let D denote differentiation by x. Sliow

J>"+iw"+i = 7>" +!(»»") = uT)'> +!«" + 2{n + l)xTJ"u" + n (n + 1) Jl"-h(",

7;«+i„n+i =J)nZ)un+i = ) (n + l)J)"{xu") = 2 (h + l)xl)"u" + 2 )i (u + l)7>"'-i"".

Hence show that the derivative of the second ecination and the eliniinant of P"-i«''

between the two ecpiations give two e(iuations winch reduce to (Ki) if

„ 1 d" -, ^^Vllen ». is integral these are
A, .'•) = (x2-])".

•2" }i\ dx" [Legendrc H ponjnoniKil!^.

16. Determine the solutions of Ex. 13 (S) in series for the initial conditions

(a) /'„(0) r^z 1, r;,fO) := 0, {ji) pjo) = 0. 7';(0) == i.

17. Take /',, --=; 1 and I\ = x. S'low tliat tliese are solutions of (40) and compute

P.,. P.,. /'., from Iv\. 13 {;i}. \i' x ~ cos (9. sliow

P., = ^cos2 + I P.. .r Jcos3^+ gcos^. P^ = |J(.,,s4^+ |$cos2^ + ^.

18. Write Ex. 13 (5) as '

[ ( 1 - x-) 7',',] + n (n + 1) P„ = an<l show

r -

'

r * 1
' fZ ( 1 - X-- )

7
''

rf ( 1 - x2 ) P'
"I

[„, („, + ]) _ „,(n + 1)] / P„P,„dx ^
/ I

P,„ - Pn , ~ dx.
J-i J -I 1 dx dx
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Integrate by pails, assume (he fuiietions ami their (lerivative.s are finite, and show

I l'„P,ndx = 0, it n ^ m.

19. By suceessivc int(\urati(iii liy parts and hy reihiction foi-niidas show

/-+!
]

p+i ,j„,f2 _iY, ,]"i.i-~ —A]" (—1)" r+^
J -I 2-"()t !)-J-i (/,<:" (k" 2«.)i!J-i

/- -1
1 , 2

and I P'-dx — , k integral.
J_i 2)1+1

r M r M r?"(.i'- — IV'
20. Show / x'"PAf =

I
•'•'" =-0, if m<n.

J-l J-i (/x"

Determine the value of (he integral when m = ?(. Cainiot the results of Exs. 18, 19

for )ii and u integral be obtained sini])ly from tliese I'esidts ?

./'"
x*^ x'^

21. Consiih'r (38) and its solution Z,, = 1 — x + -^ ,- — — ^ ""I ^ — . . • when

n = 0. Assume a solution of the form t/ — l^^^• + w so that

(I-m (Jin (U..(Iv ^ .. <l-v dv
X - - + + ir + 2 ./• " - - = 0, if .c - - + — = 0,

(/.(•- dx dx dx dx'~ dx

is the eipiation for ;'.' if v satisfies the e(piati(.)ii xv" -\- r' = 0. Show

„ , „ 2 Bx 2 Rr~ 2 Bx^
V =z A + ]} lou' X, xir" -f w' + w = 2 /> 1- + • • •

.

2 ! 2 ! ;3 ! :-5 ! 4 !

By assuming id = a^x -\- ((.,x- + • •
• , determine the «"s and henee obtain

and (,1 + 7) log.c) 7,1 -f w is then the complete solution containing two constants.

As vl /|, is one solution. 7ilog,/' • 7,, + v is anotlier. From this second solution for

n - 0, the st'cond solution f(U' any integral value of ?(. may be obtained by differ-

entiation ; the worlc, however, is long and the result is somewhat complicated.



CHAPTER X

DIFFERENTIAL EQUATIONS IN MORE THAN TWO VARIABLES

109. Total differential equations. An equation of the form

P {a; ij, z) dx + Q (r, y, z) dy + R (:r, y, z) dz = 0, (1)

involving tlie differentials of three varial)les is called a fofal differen-

t'tdl equation. A similar equation in any nurnVnu' of variables would

also ])e called total; hut the discussion here Avill be restricted to the

case of three. If dehnite values be assigned to x, y, z, say a, h, r, the

('(juation becomes

Adx + Bdy + Cdz = A (x - a) -\- B (y - h) + C (z - c) = 0, (2)

where x, y, z are supposed to l)e restricted to values near a, h, c, and

represents a small portion of a plane })assing through (a, !>, c). From

the analogy to the lineal element (§ 85j, such a ])ortion of a plane may

be called a plannr element. The differential ecpiation tlierefore repre-

sents an infinite number of planar elements, one passing through each

point of space.

Now any family of surfaces F{x, y, z) = C also represents an iiifinity

of planar elements, namely, the portions of the tangent planes at every

point of all the sui-faces in the neighi)orhood of their respective points

of tangency. In fact

dF = F;.dx + F'ydy + F^Iz = (3)

is an equation similar to (1). If the planar elements represented by

(1) and (3) are to be the same, the equations cannot differ by more

than a factor fJ^(x, y, z). Hence

f; = fip, f; = /iQ, f: = /^r.

If a function F(x, //,
-') = f can be found which satisfies these condi-

tions, it is said to l)e the integral of (1), and the factoi- /j, (.r. y, z) by

which the equations (1) and (oj differ is called an hitiyz-tifr/iy picfur

of (1). Compare § 91.

It may ha})])en that yu, = 1 and that (l) is tlius an e.i'<ict differential.

In this case the conditions
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which arise from F",j = l-"',!,, F',^, = 1-''"^, F'^',.= F^'^, must Ije satisfied.

Moreover if these conditions are satisfied, the equation (J) will be

an exact equation and the integral is given by

F{x, y, z) = f P (^, y, ^) dx-\- j Q (x^, y, z) dy + \R (.r^, y,, .-) dz = C,

where x^, y^, z^ may be chosen so as to render the integration as simple

as possible. The proof of this is so similar to that given in the case of

two variables (§ 92) as to be omitted. In many cases which arise in

practice the equation, though not exact, may be made so by an obvious

integrating factor.

As an example take zxdy — yzdx + xMz = 0. Here the conditions (4) are not

fuliilled but the integrating factor l/x'-z is suggested. Then

xdy — ydx dz _ (y^>°-)X- z

is at once perceived to be an exact differential and the integral is y/x + logz = C.

It appears therefore that in tliis simple case neither the renewed application of the

conditions (4) nor the general formula for the integral was necessary. It often

happens that both the integrating factor and the integral can be recognized at once

as above.

If the equation does not suggest an integrating factor, the question

arises. Is there any integrating factor ? In the case of two variables

(§ 94) there always was an integrating factor. In the case of three

variables there may be none. For

cu. cP „ CLi cQ
' cy cy ex ex

dix cQ „ da cR

da cR „ ca dP

ex ex
~

cz cz

R,

P,

Q.

If these equations be multiplied l)y A', /', (2 and added and if the result

be simplified, the condition

\cz cyj \cx cz) \cy dx J

is found to be imposed on P, Q, R if there is to be an integrating fac-

tor. This is called the condition of integrabUify. For it may be shown

conversely that if the condition (5) is satisfied, the equation may be

integrated.

Suppose an attempt to integrate (1) be made as follows : First assume

that one of the variables is constant (naturall}', that one Avhich will
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make the lesultiiig equation simplest to integrate), say .'.. Tlien

Pdx + Qdij = 0. Now integrate tliis simplified equation Avitli an iiite-

grating factor or otherwise, and let F{r, ij, .^) = <^0v) he the integral,

when; the constant (,' is taluai as a function ^ of a. Next try to deter-

mine <^ so tliat the integral F{.>', ij, '-) = ^ (•) '^v'ill satisfy (1). To do

this, dilferentiate

;

F'jlx + F,//// + Fjh =
(/(f>.

Compare this e(piation Avitli (1). Then the e(;[uations'*

i^'; = xp, /<;; = xq, (/': - xii) >/.: = ,icj>

must hold. Tlu' third ecpiation (F'^ ~- XR) th: — tl<^ may he integrated

provided the coetH(dt',nt S ~-- y', — XI! of '/,-; is a function of r: and </>,

that is, of ,'j and F alone. This is so in case the condition (.")) holds. It

therefore appears that the integration of the equation (1) for whi(;h (5)

holds reduces to the succession of two integrations of the type discussed

in Chap. VIII.

As an example take (2x- + 2xi/ + '2xz- + ])(lx, + dij + 2zdz = 0. The condition

(2x--^ + 2xy + 2XZ-' + 1)0 + 1 (- Axz) + 22(2.r) =

of intc'srability is satisfied. Tlie ^-reatcst simplification will be had by making x

constant. Then <bj + 2 zdz = and y -{ z~ =
(f>

(.c). Compare

dy + 2 zdz = d(t> and (2 x- + 2 xy + 2 xz~ + 1) dx + '/// + 2 zdz - 0.

Then \ = 1, - (2 .)•- + 2 ,/•// + 2 xz- + ] ) dx = d.t,
;

or — (2 X- + 1+2 X0) dx = (Z^/. or dtp + 2 x^l^dx =r - (2 ./;- + ]) (/x.

This is the linear ty^x; witli tlic integral ing factor c''. Then

c'-{d<p + 2 x^pdx) = - c''(2 X- + \)dx or r >/' = - ( '''('- ••'" + 1 ) '^'' + (^'

Hence // + ;•- + c^'' fc'-V-x- + l)dx - C'c--'-' or f'-'(// + z~) + Cc''\2x- + 1)(/.i- ;.. 6'

is the solntion. It may bo noted thai c'' is the integrating fa('t(n' for the originid

eqnalion :

t'--[(2x- + 2x/y + 2x~-^ + ])dx + dy + 2 zdz] = dlc'''{y + z-) +
J<

-(2„-- + ])dx I •

To complete the ]iroof that the ('([nation (1) is inlegrable if (.")) is siitisfied. ii is

necessaiy to show that wlien the cdiidilion is siilislied the cnelhcicnt N -.-. /',' — X/,'

is a fnnction of z and F alone. Let it be i-egarded as a fnnctiim of x, F, z instead

of X, y, z. It is necessary to ]irove that the derivative of N by x wlien F and z are

constant is zero. I>y the fornndas for change of vai'iable

rx/,,,~ \(J''r,~ \f"/'7 (X \(y'.,,z \f"/'7j, c '!/

• Here t'lie factor X is not an integrating facturof (li, l)rit only of tlie reduced e(]iiali(in

/'(/.-• + (j</y - 0.



]\L()HE THA^' TWO VAKIATU^ES 257

But F; = \P and Fj = \Q, and hence Q ryj - P i'^}'\ = Q rpj

/cS\ ( IcV ^ \ c-F c\I! c\P c\R
Now

I ) = — I X/i I =: =
\cx/„, c cx\cz I cZ(X ex cz ex

Hence ^ = X (^ -^U i> ^ _ /. ^,
\cx/,,^~ \cz ex] cz ex

and (^) =x(^_^WQ^-i^^.
\eij/.r,z \ez ey I cz cy

\exl„,, \cy/x,z L \ez ex I \ey cz J A \_ ex cyA

\cx/f,z L Vc:: cx/ \cy cz j \ex cy I\

Vex ey \

where a term lias been added in tlie first bracket and subtracted in the second.

Now as X is an integrating factor for Vdx + (Idy, it follows that {\(i)\. — (XP)^, ; and

only the first lirackct remains. By the condition of iute^rability this, too, vanishes

and hence ^' as a function of j, F, z does not contain x but is a function of F and

z alone, as was to be proved.

110. It lias bt'on seen that if tlie equation (1) is integrablo, tliere is

an integratiuL;- i'aetor and the condition (5) is satisfied ; also that con-

versely' if the condition is satisfied the equation may be integrated.

GeonietriciiUy this tueans that the infinity of ])lanaT elements defined

oy the equtition can be grouped upon a family of surfaces F{\v, i/, -S) = C
to which they are tangent. If the condition of integnil)ility is not satis-

fied, the phuiar elements cannot be thus grouped into surfaces. Xever-

theless if a surface G(,r, //, ..) = l)e given, the planar element of (1)

which passes through any point (.r^,
//^, ,-.\,) of the surface will cut the

surface G = in a certain lineal elen'ient of the surface. Thus upon the

surface (/ (.'•, //, z) = there will l)e an infinity of lineal elements, one

through each point, which satisfy the given equation (1). And these

elements niay lie grouped into curves lying upon the surface. If the

equation (1) is integrable, these curves will of course be the intersections

of the given surface 6^ = with the surfaces F = C defined by the

integral of (1).

The method of obtaining the curves upon 6' (,', //, ,v) = which are

the integrals of (1), in case (5) does not possess an integral of the form

F(.r,
I/,

,-') = C, is as follows. Consider the two equtitions

]>J,r + QJif + /.V/,v = 0, r/>/,r + ^'^/y
-J- G^dz = 0,

of which tlie first is the gi\'en diiferential (>(piation and the second is

the ditfereiitial e(_[uatioii of the gi\-eu surface. Froiu these etptatioiis
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one of the differentials, say dz, may be eliminated, and the correspond-

ing variable z may also be eliminated by substituting its value obtained

by solving G (x, ?/, .^') = 0. Thus there is obtained a differential equa-

tion Mdx -\- N(h/ = connecting the other two variables x and y. The

integral of this, F{x, y) = C, consists of a family of cylinders which cut

the given surface C = in the curves which satisfy (1).

Consider the equation ydx + xdy — {x + y + z) dz = 0. Tliis does not satisfy the

condition (5) and lience is not completely integrable ; but a set of integral curves

may be found on any assigned surface. If the surface be the plane z = x + y, then

ydx + xdy — {x + y + z)dz = and dz = dx + dy

give (x + z)dx + {y + z) dy = or {2x + y)dx + {2y + x)dy =

by eliminating dz and z. The resulting equation is exact. Hence

x^ + xy + y"^ = C and z = x + y

give the curves which satisfy the equation and lie in the plane.

If the equation (1) were integrable, the integral curves may be used to obtain

the integral surfaces and thus to accomplish the complete integration of the equa-

tion by Mayefs method. For suppose that F{x, y, z) = C were the integral surfaces

and that F{x, y, z) — F{0, 0, Zq) were that particular surface cutting the z-axis at z^.

The family of planes y — \x through the z-axis would cut the surface in a series

of curves which would be integral curves, and the surface could be regarded as

generated by these curves as the plane turned about the axis. To reverse these

considerations let y = 'kx and dy = 'Kdx ; by these relations eliminate dy and y from

(1) and thus obtain the differential equation Mdx + Ndz = of the intersections

of the planes with the solutions of (1). Integrate the equation as/(x, z,\) = C and

determine the constant so that/(x, z, X) =/(0, Zq, X). For any value of X this gives

the intersection of F{x, y, z) = F{0, 0, z„) with y = Xx. Now if X be eliminated by

the relation X = y/x, the result will be the surface

/|x, z, -| =/|0, Zq, -|, equivalent to i^(x, ?/, z) = i''(0, 0, Zq),

which is the integral of (1) and passes through (0, 0, Zg). As z^ is arbitrary, the

solution contains an arbitrary constant and is the general solution.

It is clear that instead of using planes through the z-axis, planes through either

of the other axes might have been used, or indeed planes or cylinders through any

line parallel to any of the axes. Such modifications are frequently necessary owing

to the fact that the substitution /(O, z^, X) introduces a division by or a log or

some other impossibility. For instance consider

y^dx + zdy — ydz = 0, y = Xx, dy — \dx, X^x^dx -|- Xzdx — \xdz = 0.

Then Xdx H ^ = 0, and Xx =/(x, z, X).
x'^ X

But here /(O, z,,, X) is impossible and the solution is illusory. If the planes {y—l) = \x

passing through a line parallel to the z-axis and containing the point (0, 1, 0) had

been iised, the r(;sult would bo

dy = "Kdx, (1 4- \x)'-dx + \zdx — {I + \x)dz =^ 0,
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or dx -\
^^ — = 0, and x =/(x, z, X).

(1 + \j)2
'

1 + Xx ^ ' ' '

Hence x =— z,-, or x =— Zn = C,
1 + Xx

"^

2/
'

'

is the solution. Tlie same result could have been obtained with x = X^ or y = \{x — a).

In the latter case, however, care should be taken to use/(x, z, X) =/(«, z^, X).

EXERCISES

1. Test these equations for exactness ;
if exact, integrate ; if not exact, find an

integrating factor by inspection and integrate :

(a) (y + z) dx + (z + x)(Zj/ + (x + y) dz = 0, (/3) yhU + zdij - ydz = 0,

(7) xdx + 2/dy — Va- — x^ — y'hlz = 0, (5) 2 z (t/x — fZ^/) + (x — y) dz = 0,

(e

)

{•>x+ y-+ 2 xz) dx + 2 xydy + x-dz = 0, (f ) z;/fZx = zxdy + ?/"^(Z2,

(7,) x(y - 1) (z - l)rfx + 2/(2 - 1) (X - ^dy + z(x - 1) (i/
- l)(iz = 0.

2. Apply the test of integrability and integrate these:

(a) (x^ - ?/2 — z2) cZx + 2 xydy + 2 xzdz = 0,

(^) (X + 2/^ + z- + 1) (Zx + 2 2/tZ2/ + 2 z(Zz = 0,

(7) {y + c)'^-^ + ^(Zy -{y + a)dz,

(5) (1 — X- - 2 2/2z) fZz = 2 xztZx + 2 yz-tZ;/,

( e

)

x-dx- + 2/"tZ2/- — z-(Zz"^ + 2 xydxdy = 0,

( f ) 2 (xcZx + ydy + zdzf = (z^ — x- - y^) {xdx + ydy + zdz) dz.

3. If the equation is homogeneous, the substitution x = wz, y = I'z, frequently

shortens the work. Show that if the given equation satisfies the condition of inte-

grability, the new ecjuation will satisfy the corresponding condition in the new
variables and may be rendered exact by an obvious integrating factor. Integrate :

{a) (y- + yz) dx + (xz + z") dy + (2/2 - xy) dz = 0,

{(i) (x-2/ — 2/^ — y'^z) dx + {xy- - x^z — x^) dy + {xy- + x-y) dz = 0,

(7) (2/- + yz + Z-) dx + (x^ + xz + Z-) dy + (x-' + xy + 2/-) dz = 0.

4. Show that (5) does not hold ; integrate subject to the relation imposed :

{a) ydx + xdy — (x + y + z) dz = 0, x + y + z = k or y = kx,

(/3) c {xdy + ydy) + Vl — a'^x'^ — b'^y'^dz = 0, u-x'^ + h-y- + c~z- — 1,

(7) dz — aydx + bdy, y — kx or x- + 2/' + z- — \ or y =/(x).

5. Show that if an equation is integrable, it remains integrable after any change

of variables from x, 2/, z to m, r, w.

6. Apply Mayer's method to sundry of Exs. 2 and 3.

7. Find the conditions of exactness for aii ecjuation in four variables and write

the fornu;la for the integration. Integrate with or witiiout a factor :

{a) (2x + y- + 2xz)(Zx + 2 xydy + x-dz + du = 0,

{j3) yzudx + xzudy + xyudz + xyzdu =0,

(7) {y + z+ u) dx + {x + z+ u) dy + (X + y + u) dz + {x + y + z) du = 0,

(5) u{y + z) dx + u{y + z + 1) dy + udz - {y + z)du = 0.

8. If an equation in four variables is integrable, it nmst be so when anj' one of

the variables is held constant. Hence the four conditions of integrability obtained

by writing (5) for each set of thi'ee coefficients uuist hold. Show that the conditions
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are .satisfied in the following cases. Find the integi-als by a generalization of the

method in the text by letting one variable be con.stant and integrating the three

remaining terms and determining the con.stant of integration as a function of the

fourth in such a way as to satisfy the equations.

(a) z{y + z) dx + z(u- /) dy + y (x - u) dz + y {y + 2) du = 0,

(/i) uyzdx + UZ.C lug jtdy + uxy log xdz — xdii = 0.

9. Try to extend the method of Mayer to such as the above in Ex. 8.

10. If G'(r, y, z) — a and II {x. y. z) — h are two families of .surfaces defining a

family of curves as their iiiter.sections, show that the equation

(f;;/f; _ aui;)dx + (a'jr. - G'ji:)dy + (rr//; - G'^ir:)dz = o

is the eijuation of the planar elements perpendicular to the curves at every point

of the curves. Find tlie eruditions on G and // that there shall V)e a family of sur-

faces which cut all these curves orthogonally. Determine whether the curves below

have orthogonal trajectories (surfaces)
; and if they have, find the surfaces :

(a) y = X + (I, z := X + h, (P)' V - "'' + 1.2= hx,

(7) •*- + y- = "-• ^ = '', (5) -ey = a. xz = h.

{ e) x~ + y- + z- = a-, xy = h, (j-) /- + -1 y- + 32- = <i, xy + 2 = '>,

(7?) log xy = «2, X +y -\- z = h, (0) y = -2 ,tx + (/-, z = •> hx + //-'.

11. Extend the work of proposition 3, § 04. and Ex. 11, p. 234. to find the normal

derivative of the .solution of eijuation (1 ) and to show that the singular solution may
be looked for among the factors of /wi = 0.

12. If F = /-"i + Qj + /ik be formed, show that (1) becomes F.(Zr = 0. .Show

that the condition of exactness is VxF = by expanding VxF as the formal vector

product of the operator V and the vector F (see vj 78). Show further that the condi-

tion of integrability is F.(VxF) = by similar formal expansion.

13. In Ex. 10 consider Vr and V//. Sliow these vectors are normal to the sur-

faces G = a. II — h. and hence infer that (V^V)x(V//) is the direction of the inter-

section. Finally explain why (Zr.(V6'xV//) = is the differential e(iuation of the

orthogonal family if there be such a family. Show that this vector form of the family

reduces to the form above given.

111. Systems of simultaneous equations. The two equations

(Lr (l.f

in the two dependent vuriabh-s // :uul z and the inde])en(h'nt vaiialile ,/•

constitute a set of siniultaiu'ous (Miimtions of the lirst orcUn'. It is nnn'e

customary to write tlu'se (^(luations in the form

which is synunetrie in tlie differentials and wliere A': Y:Z = A '/'',/

At any assigned ])oint ./;. // . :y of space tlie ratios d.f : il i/ : ilr: of the

differentials tire determined l>y sulistitution in {~ ). lleiu'c the eijutitions



MOEE THAX TWO VARIABLES 261

fix a definite direction at each })oint of space, that is, they determine a

lineal element through each point. The problem of integration is to

combine these lineal elements into a family of curves /'(.'•, //,
'-') = C\,

('(', //, r:) = t\„ de})cnding on two parameters C\ and ('.,, one curve ])ass-

ing through each })oint of S})ace and having at that })oint the direction

determined by the e(piations.

For the formal integration there are several allied methods of pro-

cedure. In the first place it may ha])pen that two of

(l.r (Jji (J 11 iJz dx (1r:

y~y' T^z' T~z^
are of such a form as to contain only the variables whose differentials

enter. In this case these two may be integrated and the two solutions

taken togethei- give the family of curves. Or it may ha}>])en that one

and only one of these equations can l)e integrated. Let it be the first

and suppose tliat F{.i\ //) = C\ is the integral. l)y means of this inte-

gral the varial)le ./ may be eliminated fi'om the second of the equations

or the varial)le // from the third. In the respective cases there arises

an ecjuation which may be intcgi'atcd in the form (id/, .'., C^^C,, or

G{.r, •:, F ) — (\,. and tliis result taken with /''(''; //) = '"j ^vill determine

the family of curves.

.rtJx yd)/ (Iz
Consider the example = '

' =— Here tlie two eijuatioiis
yz sz y

xdx ydy , xdx— ' -'- and - = dz
y •'•' z

are integrable with tlie results x^ — y^ = (\. x- — z- = C.,, and these two inten-rals

constitute the solutiim. Tlie solution niiulit, of eourse, appear in very different

form
;
for there are an indetinite nundier of ])airs of t'quations F(x, ?/, z. (\) = 0,

G {x, y. z. ('.,) = which will intei'sect in the curves of intersection of x^ — y^ = (.',

,

and /- — 2- = r., . In fact (//•" + (\)- ^ {z- -\- C.,f is clearly a solution and could

replace eitlier of those found above.

Consuler the example — = ' = Here
.e- — //- — z- 2 xy 'J, xz

dii dz . , , .— — - , wuh the uitenTal y = t .z,

is the only equation the integral of which can be obtained directly. If y be elinn-

nated by means of tliis lirst iiitciiral. there results the e(]uation

'^] ='^ or i>r-r?,r + [(rf+r)2--.r-]./- = 0.

./•--(rf+i)2- -^sz

This is honiogeiieous and may be intei:raled witli a factor to uive

.'•- -VC"]^ 1) :- -= <'.z or x^ J^ y-i j^ z- = C.z.

Hence //
— (\z. x~ + y- + ,~- = ('.-,z

is the sohaiiin. and represents a certain fauulj" of circles.
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Another method of attack is to use composition and division.

dx _ (hi _ dz __ \dx + /Ac/// -|- vdz

Y ~ T ~
"Z
~ XX + fxY + vZ ^^

Here X, /x, v may be chosen as any functions of (,r, y, ?.-). It may be

possible so to choose them that the last expression, taken with one of

the first three, gives an equation Avhicli may be integrated. AVith this

first integral a second may be obtained as before. Or it may be that

two different choices of A, ix, v can be made so as to give the two desired

integrals. Or it may be possible so to select two sets of multipliers that

the equation obtained by setting the two expressions equal may be

solved for a first integral. Or it may be possible to choose A, /u., v so

that the denominator AA' -{- /xY -\- vZ = 0. and so that the numerator

(which must vanish if the denominator docs) shall give an equation

Xdx + fjidf/ + vdz = (9)

which satisfies the condition (5) of integrability and may be integrated

by the methods of § 109.

Cunsider the equations = = Here take X, fj.,
v

^' + y-+ yz X- + y- - xz {x-{- y)z

as 1, — 1, — 1 ; then \X + fiY + vZ = and dx — dy — dz = is integrable as

X — y — z = C\. This may be used to obtain another integral. But another choice

of X, fi, V as X, y, 0, combined witli the hist expression, gives

xdx + ydx dz
, . , o^ , o ^" or hjg {x- + y-) = log 2- + Co

.

(x2 + y^) (X + y) {X + y)

:

Hence x — y — z = (\ and ./- + //- = C.^z^

will serve as solutions. This is shorter than the method of elimination.

It will be noted that these e(]uations just solved are homogeneous. The substi-

tution X = iiz. y = vz might be tried. Then

udz + zdu, _ vdz + zdv _ dz _ zdii _ zdv

u'^ + v^ + V u- + V- — u u + V V- — uv 4- V u- — uv — u

du dv dz

v'^ — uv + V H- — uc — u z

Now the first equations do not contain z and may be solved. This always happens

in the liomogeneous case and may be employed if no shorter method siigu-csts itself.

It need hardly be mentioned that all these methods apply equally to

the case Avhere there are more than tlirec ('(piations. The geometric^

})ictiire, however, fails. altli(MiL;li tlic geometric language may btM'ontin-

ued if one wishes to deal witli liiglicr dimensions than three. In some

cases the introduction of a fourth \-arial)le, as

(10)
dx <h, d:: df dt

:

—

—
: - - —~ or —

-

A Y Z 1 t
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is useful in solving a set of equations which originally contained only

three variables. This is }>articularly true Avhen A', Y. Z are linear with

constant coefficients, in wliich case the methods of § 98 may be applied

with f as independent varialjle.

112. Simultaneous differential equations of higher order, as

(P.I- ,. / <Jx d>/\ (I't/ ,, / 'Lr (hi

(It-
-^y '^' dt iUj df V '/^ '^^

d-r /dd>\- / (Ir (/<b \ Id/., dcb\ I dr dd,

It'
-

'•(;l) - " (' *' r,'i,)' rJt ('- Tt) = * ('' *'
;77 i

especially those of the second order like these, are of constant occur-

rence in mechanics ; for the acceleration requires second derivatives

with respect to the time for its expression, and the forces are expressed

in terms of the coordinates and velocities. The complete integration of

such equations requires the expression of the de})endent variables as

functions of the indei)endent variable, generally the time, with a num-

ber of constants of integration e(jual to the sum of the orders of the

equations. Frequently even when the complete integrals cannot be

found, it is })0ssible to carry out some integrations and re})lace the

given system of e(|uations by fewer ecpiations or equations of lower

order containing some constants of integration.

Xo special or general rules Avill be laid down for the integration of

systems of higher order. In each case some particular comljinations of

the equations may suggest themselves which will enable an integration

to be performed.* In ])roblems in mechanics the princi})les of energy,

momentum, and moment of momentum frequently suggest combinations

leading to integrations. Thus if

." = A, y"=Y, z" = Z,

where accents denote differentiation with resjject to the time, be multi-

plied by </.', <///, dr: and added, the result

X^d.r + ;/"d,j -f -"dz = Xdr + Vd,/ + Zdz (11)

contains an exact differential on the left ; then if the expression on the

right is an exact tlifferential, the integration

h
(•'" + .'/"' + ^'-) = f^Yd,' + Yd;/ + Zdr: + C (IV)

* Ir is possihlf t(( ililTereiitiatc the .:,'ivcn equations repeateiUy ami eliniiiiate all the

ih'iifiKlriit \'ai-ial)li's except (iiie. The resulting differential e(piatiou. sa>" in .!• and /, may
then 1)1- treated liy the methods (jf previous chapters ; but this is rai'ely suceessful except

when the equation is linear.
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Ciiu be performed. This is tJie prlnrlpJc of ''ni'iu/y m its siiui)lest form

If two of the equations are multi})lied by the chief variable of the other

and subtracted, the result is

y.r" - .ry" = !/X ^ xY (12)

and the expression on the left is again an exact differential ; if the

right-hand side reduces to a constant or a function of f, then

is an integral of the equations. This is tlw principle of mnmenf of

inoiaentiiiii. If the e(|uati(jns can be nuilti})lied by constants as

U" + /////" + n::" = IX + u, Y + nZ, (13)

so that the expression on the right reduces to a function of t, an inte-

gration may be performed. This is tlin prlnc'qjJe of inoiiientuiH. These

three are the most commonly usaljle devices.

As an example : Let a particle iihinc in a plane snljject to forces attracting it

toward tlie axes by an ainonnt proportional to tin' mass ami to the distance from

the axes; discuss the motion. Here the ecpiations of motion are merely

d-x , d-ii , d'-x
,

d'-iim— = — kmx, m —^ = — kmij or — = — kx, —— = — ky.
dV^ df^ df^ dV^

Then dx'^^^di/^^=-k{xdx + iidy) and i'^^^-\\{'^''\~ = -k{x-+if) + C.
dt- ' dt^ \dtj \dll

Also ?/ .' - - = and ?/ x— = C .

df- dC- dt dt

In this case the two principles of energy and moment of momentum irive two

integrals and the equations are I'educeil to two (if the hi'st order. But as it happens,

the original e(iuations couhl be integrated directh' as

— dx = — kxdx. (
= - kx- + ( -. —=-^= = dt

dV^
'

\'^^^ Vc^-kx^

dt- \dlj VK--ky^

Tlie constants ("- and 7v"- of integi'ation have been written as sijuares because they

are necessarily positive. The eomplctc integration gi\es

Vkx = ('sin (Vkl + (\), \ki/ = Jv'sin (\kt + K.X

As another example : A ])artirh'. attracti'il toward a point b_v a force eijual to

r/ui- + //-/r" pel- uint mass, wiifre //( is the mass and A is the (loul.)le areal Vfjocity

and r is the distance fiMm the ixjint. is ]ii-ojected ])ei-pendicuhu'l y to tlie radius xcc-

tor at the distance \ m/i : discuss the UKJtioii. In imhu' c'lnirdiiiatcs tlie eiiuati.uis

of mot inn arc

j

'/-/ /d'l>\-\ ,, itir mil- 111 d
I

.,d(j>\

df-
' '

-// '
I

'

~~
ui-

~ r
'

/• dt\ dt '

^l> = 0.
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The second integrates directly as r-d<p/dt = h where tlie constant of integration h

is twice the areal velocity. Now substitnte in the lirst to eliminate (p.

d-r li- y Ifi d-r r /dr\~ r-— = ;
J

or -— = or - - = + C.
dt- r" ni- r^ dt- iii- \dt/ m-

Now as the partick' is projected perpendicularly to the radius, dr/dt = at the

start when r =Vi>i/i. Hence the constant C is ]t/m. Then

dr
,,

- r''d(p ,, . V)nhdr- dt anil = tie give = d^.

Ii_4 '
.-

,1
\ ;/i m- \ hm

Hence V//(A \/ ,

— = (p + C or =-'-'—^.
V /- h r- Inn mli

Now if it be assumed tliat <^ = at the start \\ hen r = xmli, we find (7 = 0.

o ?"'' . ,Hence r-^ ^ is the orbit
1 + ^"

To find the relatit)n between and the time,

T-dd>=]idt or — dt nr i = j?i, tan-^rf),

! + </>-

if the time be taken as t = Vviien 4> — Q. Thus the orbit is found, the expression

of 4> as a function of the time is found, and the expressidii of r as a function of the

time is obtainable. 'J'he problem is completely solved. It will be noted th.at the

constants of integration ha\e l)een determiiu'd after each integration by the initial

conditions. 'I'his simplifies the subse(iuent integrations which might in fact be

impossible in tt rms of elementary functions \Nitiiout this simplification.

EXERCISES

1. Integrate these equations:

dx di/ dz dx dy dz

ijz xz xij y- X- x-y-z-

dx dy dz ,., dx dy dz
(7) — r= - = — , (5) — = — = —— ,

XZ yz xy yz xz x + V

dx _ (/// _ dz dx _ dy __ dz
^'' ~ y

" X ~f+^-' ^^' -T" a7T4 5 72^+T2'

dx dy dz
2. Integrate ihe ec|uations : («)

^,"i — c/y ex — HZ ay — bx

dx __ dy _ dz dx _^ dy __ <lz

x- + y- 2 xy xz + yz y + zx + zx + y

dx _ dy __ dz dx _ dy dz

y-x-2x* -ly^-x'hi z{x-^ - y^) ''{y-z) y(z-x} z(x-y)
. dx di/ dz , . dx — di/ dz

x:{y--z-^] y{z--x-^) z(x--y~) x(y-^-z-) y{z^ + x^) z{x- ^ y-)

dx dy dz , , (/•'' dy dz ,,= —^-^ =: = dt, (0 = = '-- dt

y - z X -{- y .(• + ~ y - z x + y + t x -\- z ^ t
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3. Show that the differential equations of the orthogonal trajectories (curves

of the family of surfaces F{x, y, z) = C are dx : dy. dz = F^ : F^ : F^ . Find the curves

which cut the following families of surfaces orthogonally :

(a) aP-xP- + Vh'^ + cV = C, {^) xyz = C, (7)
y'^ = Cxz,

(5) y = X tan (2 + C), (e) y = x tan Cz, (f) z = Cj-y.

4. Show that the solution of dx:dy:dz=: X : Y : Z, where X. Y. Z are linear

expressions in x, y, z, can always be found provided a certain cubic equation cau

be solved.

5. Show that the solutions of the two equations

^ + T{ax + by) = T„ '^ + T{a^x + }/y) = T,

,

where T, T^, T, are functions of t, may be obtained by adding the equation as

~ {X + ly) + \T{x + ly) =T^+IT.^

after multiplying one by /, and by determining \ as a root of

X- - (« + '/) X + ul/ - a'b = 0.

6. Solve: (a) t'^ + 2{x-y) = U ^''^ + x + 5?/ = <-\

dt at

(P) tdx = {t-2x) dt, tdy = {tx + ty + 2x- t) dt,

, ,
Idx mdy ndz dt

(7) — = = - .

mn {y — z) nl {z — x) Im {x — y) t

7. A particle moves in vacuo in a vertical plane under the force of gravity alone.

Integrate. Determine the constants if the particle starts from the origin with a

velocity V and at an angle of a degrees with the horizontal and at the time t = 0.

8. Same problem as in Ex. 7 except that the particle moves in a medium which

resists proportionately to the velocity of the particle.

9. A particle moves in a plane about a center (if force which attracts proportion-

ally to the distance from the center and to the mass of the particle.

10. Same as Ex. 9 but with a repulsive force instead of an attracting force.

11. A particle is ^jrojected X'a.rallel to a line toward which it is attracted with

a force i)roportional to the distance from the line.

12. Same as Ex. 11 except that the force is inversely proportional to the square

of the distance and onh' the patli of the particle is wanted.

13. A ])arti(;-le is attracted toward a center by a force proportional to the square

of the distance. Eind the orbit.

14. A particle is jilaced at a point which repels with a constant force under

which the particle moves away to a distance a where it strikes a peg and is

deflected off at a right angle with undiminished velocity. Find the orbit of the

subsequent motion.

15. Show tliat (Mjmitions (7) may be written in the form (?rxF = 0. Eind the

condition on F or on A'. Y. Z that tlic integral curves have (uthouonal surfaces.
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113. Introduction to partial differential equations. An equation

which contains a dependent variable, two or more independent varia-

bles, and one or more jmrtial derivatives of the dependent variable

with respect to the independent variables is called a, jycrt la I diffet-ent led

equation. The equation

P (•^' ^' ") g^ + ^ <^-^'
'/' '-^

ftj^^'
^'^' ^' ^'^' ^ "" !7-

'
'^^^/' ^"^"^^

is clearly a linear partial ditferential equation of the first order in one

dependent and two independent variables. The discussion of tliis equa-

tion preliminary to its integration may be carried on by means of the

concept oi phniar elements, and the discussion will immediately suggest

the method of integration.

When any point (.r^^,
y^^, z^ of space is given, the coefficients P, Q, R

in the equation take on definite values and the derivatives p and q

are connected by a linear relation. Xow any planar clement through

(.r^, y^, z^ may be considered as specified by the two slopes p and '/ ; for

it is an infinitesimal portion of the plane z — z^ = p (./• — x^^ -f- y ( y — y^
in the neighborhood of the point. This plane contains the line or lineal

element whose direction is

dx : dii : dz =P:Q:R, (15)

because the substitution of P, Q, R for dx = x — x^^, di/ = y — y^,

dz — z — z^ in the plane gives the original etpiation Pjt + (iq = R.

Hence it appears tliat the planar elements defined Ijy (14), of which

there are an infinity through each point of space, are so related tliat all

which pass through a given point of space pass through a certain line

through that point, namely the line (lo).

Now the prol)lem of integrating the etpiation (14) is that of grouping

the planar elements Avhich satisf}' it into surfaces. As at ea('h point

they are already grouped in a certain Avay by the lineal elements through

which they pass, it is first advisable to group these lineal elements into

curves by integrating the simultaneous equations (15). The integrals

of these equations are the curves defined by two families of surfaces

F(x, y, z) = C^ and G(x, y, z) — C.,. These curves are called the diarnr-

tevlstlc curves or merely the charaeterhtlcs of the equation (14j. Through

each lineal element of these curves there pass an infinity of the planar ele-

ments which satisfy (14j. It is therefore clear that if these curves Ix' in

any wise grouped into surfaces, the planar elements of the surfaces must

satisfy (14) : for throiigh each point of the surfaces will pass one of the

curves, and the ])lanar element of the surface at that point must there-

fore pass through the lineal element of the curve and hence satisfy (14).
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To group the curves F{x, ;j, z) — C\, G (x, ?/, ,v) = C„ which depend

on two parameters C^, C,-, into a surface, it is merely necessary to intro-

duce some functional relation (', = /"((;j between tlie parameters so

that when one of them, as C\, is given, the other is determined, and

thus a particular curve of the family is iixed by one parameter alone

and will sweep out a surface as the parameter varies. Hence to bitegrate

(1^), first integrate (15) and then vrlte

6'(,r, ,j, z) = ^[F(x, >/, ,-)] or $(F, G) = 0, (IG)

where <I> denotes any arbitrary function. This will be the integral of

(14) and will contain an arbitrary function $.

As an example, integrate {y — z)p + {z — x)q — x — >j. Here the equations

ClX (llJ dZ . no o .-, ^= = give x~ + y- + ^- = C\, .r + ?/ + z = C.^

y — z z — X X — y

as the two integrals. Hence the .solution of the given equation is

a; + 2/ + 2 = * (x- + y- + Z-) or * {x^ -{- y- + z\ x + ij -\- z) = 0,

where $ denotes an arbitrary function. The arliitrarv function allows a solution

to be determined which shall pass through any desired curve; for if the carve lie

f{x. v/, z) = 0, (j{x, y, z) — 0, the elimination of x, y, z from the four sinuUtaneous

equations

F{x, y, z) = C'l, G (x, y, z) = C.y, /(x, y, z) = 0, (j (x, y, z) =

will express the condition that the four .surfaces meet in a point, that is, that the

curve given by the first two will cut that given by the second two ; and this elimi-

nation will determine a relation between the two parameters C\ and C, which will

be precisely the relation to expri'ss the fact that the integral curves cut the givm
curve and that consequently the surface of integral curves passes through the given

curve. Thus in tlu^ particular case here considered, suppose the solution were to

pass through the curve i/ = x-, z — x ;
then

X- + ?/- + z- = C',, x + y + z-C.,, y-x\ z = x

give 2 X- + x* = Cj, X- + 2 X = C„,

whence {C'l + 2 C._. - C\)- + 8 C'| - 24 <:\ - 10 (:\r., = 0.

The substitution of C\ = x" -f //- + z- ami T'., = x + y + z in tliis eipiation Mill

giv(; the .solution of (y — z)p + (z — x) ([ ^ x — y which passes through the paral)ola

// = X-. z = X.

114. It will be recalled that the integral of an ordinary difiVi'-

ential e(piation ./"(''.//,//',•; ,'/'"^j = ^^ <'^ tlie nWi order contains ii con-

stants, and that conversely if a system of ctirves in the plane, say

/•'(.'%//, C'j, •••,'"„)= 0, contains // constants, the constants may li;'

eliminated from the c(|uati()n and its first ii derivatives with respect

to ./•. It has now been seen that tlie integral of a certain jiai'tial

diifcreiitial (Mpiatlon coniains an arl_)itrary function, and it miglit be
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inferred that the elimination of an arbitrary fiuu-tion would give

rise to a partial dilferential equation of the first order. To show

this, suppose !'(.', >/, a) = <J>[CV(./', y, ,t)]. Then

7-;; + f:j> = <D' . (/,-:. + rr^j>), 7-^ + FTy = $'
. (rv; + r;:^)

folloAV from j)artial differentiation with respect to .?• and //; and

(JO-; - K'-~)p + (K''^ - K^Oq = K''r - K'-:,

is a partial differential equation arising from the elimination of <J>'.

^Nlore generally, the elimination of n arbitrary functions will give rise

to an e(piation of the »th order; conversely it may be believed that

the integration of such an e<|uation Avould introduce n arbitrary func-

tions in the general solution.

As an (.'xainplc, eliiniiiate from z = ^(.ry) + ^ (x + y) the two arbitrary func-

tions <i> and 4'. Tlie lirst iliffercntiation gives

p — <P'.y-\-^\ g = $' -x -f ^', p — q = {1/ — x)^'.

(~z c'Z c~z
Now differentiate anain and let r = — . « = , t --. Then

CI- c.rcy c>j-

r — s =— <i>' + (y — x) ^" y. a — t = ^' + {y — x)<P" x.

These two cijuatiiins with p — q = (y — x)'P' nialvc three from which

x + y r-z c-z c-z x + y/cz dz\
xr - {x + y)s + yt = ^ (7) - q) or x -,— - (.r + y) -_-^ + y --- = - --

x — y cX' cxcy cy x — y\cz cyl

may be obtained as a partial differential eijnation of the second order free from

4> and ^. The general integral of this eijuatidn would be z = ^{x.y) + 4' (.c -f- y).

A partial differential equation may represent a certain definite ty])e

of stirface. For instance by definition a conoidal surface is a surface

generated by a line which moves })arallel to a given plane, the director

plane, and ctits a given line, the directrix. If the director ])lane lie taken

as ,-. = and the directrix be the ;v-axis, the equations of any line of

the surface are

:: = f\, y^r^; with r^ = 4>(^',)

as the relation which picks out a definite family of the lines to foi'in a

particukir conoidal surface. Hence :: = <!>(///./) may l)e regarded as the

general equation of a conoidal surface of which :: = is the director

plane and the s-axis the dii'cctrix. The elimination of ^ gives 7/,/- -f y// =
as the differential equation of any such conoidal surface.

Partial differentiation maybe used not only to elimiiiate arl)itrary func-

tions, but to eliminate constants. For if an equation /'{,'•.
//, .v, (\, ('„) =

contained two constants, the cfjuation and its first derivatives with respect

to ./ and
II
would yield three equations from which the constants could
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be eliminated, leaving a partial differential equation F{.r,
i/,

z, p, ^) =
of the first order. If there had been five constants, the equation with

its two first derivatives and its three second derivatives with respect

to X and y would give a set of six equations from which the constants

could be eliminated, leaving a differential equation of the second order.

And so on. As the differential equation is obtained l)y eliminating the

constants, the original equation will be a solution of the resulting dif-

ferential ecpiation.

For example, eliminate from z = Ax^ + 2 Bxy + Cy- + Dx + Ey the five con-

stants. The two first and three second derivatives are

p = 2 Ax -\--2.1hj -\- Z), q = 2 Bx + -2.Cy + E, r = 2 A, s = 2 B, t = 2 C.

Hence z =— I rx'^ — l ty'^ — sxy 4- px + qy

is the differential efjnation of the family of surfaces. The family of surfaces do

not constitvite the ,<reneral solution of the e(iuation. for tliat would contain two

arbitrary functions, but they irive what is called a rouiplete solution. If there had

been f)nly three or four constants, the elimination would have led to a differential

equation of the second order which need have contained only one or two of the

second derivatives instead of all three
;
it would also have been possible to find three

or two simultaneous partial differential equations by differentiating in different ways.

115. If f(.r, I/,
z, C\, Q = and F(.r, >/, z, p, y) = (17)

are two equations of which the second is obtained hy the elimination of

the two constants fi'om the fii'st, tlie first is said to be the comjiU-fc soJii-

tlon of the second. That is, any equati(^]r Avliicli contains two distinct

arl)itrary constants and wliicli satisfies a jiartial differential equation of

the first order is said to In- a complete solution of the differential equa-

tion. .V com[)lete solution has an interesting goometric interpretation.

The differential equation F=0 di.'fines a stu'ics of }ilanar elements

tln'f)ugh each ])oint of s])ace. So does /(./•, //, ;.•, C^, r
'
j = 0. For the

tangent plane is given l.)y

as the condition that C^ and ("., sliall be so I'clated tliat tlie surface

passes througli (./.,. //.^. z^). As tlicrc is only tliis one i-olatioii lictweon

the two arbitrai'v constants, there is a avIioIo scries of ])l;inar elements

through the point. As /(.r, //. z. C'^. r'j = satisfies the differential t^qua-

tion, the planar elements defined by it are those defim^d by tlie diffei'en-

tial equation. Thus a conq)lete soluticjii establishes an arrangement of

the ]»lanar elements defined by tlu' differential ('(piation u])on a family

of surfaces dependent upon two arbitrary constants of integration.
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From the idea of a solution of a partial differential equation of the

first order as a sui'faee })ieeed together from planar elements "whieh

satisfy the equation, it appears that the envelo})e (p. 140) of any family

of solutions will itself be a solution ; for each point of the envelope is

a point of tangeney with some one of the solutions of the family, and

the planar element of the envelope at that point is identical with the

planar element of the solution and hence satisfies the differential equa-

tion. This ohxcrrailon aJhurs tlie rjeimral solution to he itcicrmlncA fnnii

any complete solution. For if in /(j-, y, z, C\, ('.,) = any relation

C., = 4>(C'j) is introduced between the two arbitrary constants, there

arises a family depending on one parameter, and the envelope of the

family is found by eliminating C^ from the three equations

cf cl^ df

As the relation C, = <&(Cj) contains an arbitrary function 4>, the result

of the elimination may be considered as containing an arbitrary func-

tion even though it is generally im})Ossible to carry out the elimination

except in the case where 4> has been assigned and is tlierefore no longer

arbitrary.

A family of surfaces fCr, y, ':, C^, C,) = depending on two param-

eters may also have an envelope (p. 139). This is found by eliminat-

ing C\ and C„ from the three e(]uations

cf cf
f(,r,y,z,C\,C^ = 0, ^ = 0, ^=0.

This surface is tangviit to all the sui'faces in the cCJinph'te solution.

This envelope is called the slnyuhtr solution of the partial differential

equation. As in the case of oi-dinary differential ecpiations (§ 101), the

singular solution may be obtained directly from the equation;* it is

merely necessary to eliminate y^ and q from the tliree equations

F(.,y,.,y,v) = 0, -=0, ^ = 0.

The last two equations express the faet that F( p, if) = regarded as

a function of y/ and y should ha\e a double point (^ 57). A reference

to ^ ()7 will bring out another point, namely, that not only are all tlie

surfaces represented by tlie complete solution tangent to the singular

solution, but so is any surface whidi is represented l)y the general

solution.

* It is li!U'(lly iiecossary to point out thf fact that, as in the case of ordinary equations,

extraneous factors may arise in the eliniiiiatioii, wliether of < \, ''/o or of p, q.
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EXERCISES

1. Integrate tliese linear e(iuations:

{a) xzp + yzq = ry, (/3) a {p + q) = z, (7) i-p + y-q = z-,

(5) - ?/p + J'y + 1 + z- = 0, (e) ?/p - xq = X- - y-, (i") (X 4- 2)i> = y,

(n) x^p - xyq + y- = 0, {0} (a - x)p + (b-y)q = c- z,

{i) p tan X + q tan y = tan z, (/c) {y- + z- — x-)_p — 2 /^r/ + 2 /z = 0.

2. Determine the integrals of the iireceding eejuation.s to pa.ss through the curves :

for (a) /- + 2J- = \, z -0, for (/3) y = 0. x = z,

for (7) ;/ = 2x, z = 1, for {e) x = z, y = z.

3. Show analytically that if F{x, y, z) = (\ is a solution of (15), it is a solution

of (14). State precisely what is meant by a solution of a partial differential equa-

tion, that is, by the statement that F(x, y, z) — C\ satisfies the equation. Show that

the equations

p ^1 4- f^— == A' and P— + (/-- + I! -- =
cx iy ex cy Iz

are eciuivalent and state what this means. Show that if F = i\ and (i ~ ('„ are

two solutions, then F — ^(G) is a solution, and show ronversely that a functional

relation must exist between any two solutions (sec § (;2).

4. Generalize the work in the text along tlie analytic liiies of Ex. 3 to estal)-

li.sh the rules for integrating a linear equation in one dependent and four or n

independent variables. In particular show that the integral of

cz cz c/x, d.r„ (h
P-^^— + + Pn^r- = Pn+i depends on ----!• = ...= = ,

fXj fX„ /j P„ Iu+1

and that if F^ — (\. . F„ ^ ('„ are n integrals of the siniultaneous system, the

integral of the partial differential e(juation is 4>(-/'\, • , F„) = 0.

t , , , cu cii cu
o. Integrate : (a) x \- y ~\- z --- = xyz,

cx cy cZ

(/3) (y + 2 + i') T^ + (2 + « + X)
'-' + (,, + X + //)

'"
:^ X + // + Z.

CX cy cz

6. Interpret the general equation of the lirst order F(x. y. z. p. 7) = as detcr-

iniuing at each point (x,,. 2/,,, 2,,) of i^pace a series of j)laiiar eh-nicnts tangent to a

certain cone, namely, tlie cone found by eliminating ;> and 7 from ilic iliree simul-

taneous equations

^'K' ^o: ^0' P^ 'l) = 0- (•' - •'",.) i' + <'/ - //o) 7 = 2 - ^u'

cF cF ^
(x-x„)-_-- -(//- y^) _ - =0.

cq cp

7. Eliminate the arbitrary functions:

{a) J- + y + ^ = <f' (X- + .'/- + Z-), (;3) * (X-' + y-\ z - sy) = 0,

(7) z -^{s -{- y) + ^(x — y), (5) z = c""4>(x — y).

(e ) z = //- + 2 <l> (X- 1 + log ,y), (X)
<}>

('
,

'-
, ~) = 0.

\ij z x/
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8. Find tlic differt'iitiiil (Mjuatioiis of these types of surfaces:

(a) cylinders witli ^a'uerators parallel to tlie line x = az, y = bz,

(13) conical surfaces with vertex at {a. h. <"),

(7) surfaces of revolution about the line x : ij -.z ~ a:h -.c.

9. Eliminate the constants from these eijuations

:

(a) z = is + u) (g + /,^, (^) a (j-2 + ,f-) + ^2 = 1,

(7) (X - nf + (y - hf + (2 - cf- = 1, (5) (X - a)- + (y - '')- + (z - c)2 = d^,

(e ) .l.r2 + /;x^/ + Cif- + JJjz + 7;//z ^^ Z-.

10. Show jjeometrically and analytically that i'"(/, y, z) + aG {x, y, z) —b in ^

complete solution of the linear eijuation.

11. How many constants occur in the complete solution of the ecjuation of the

third, fourth, or ?ith order?

12. Discuss tlie cumphte. general, and simrular solutions of an e(]uation of the

first order F{x. y. z, », (/',., i/,, u'._) = with tliree imlependent variables.

13. Show that the planes z = ax + by -{- ('. where a and '/ are connected by the

relation F{fi. b) = 0. are complete solutions of the eiiuation F{p. '/) = 0. Integrate :

(a) p>i = 1, {13} q= [r + 1, (7) p- + q- = "'--

( 5 ) P'l = A-, {e) k lo- q + p = 0, (
j-) 3i>2 _ 2 ,f = ipq^

and determine also the siuLrular solutions.

14. Note that a simple chancre of variable will often reduce an equation to the

type of Ex. 13. Thus the eijuations

f(^,'^)=0, Fixp,q) = 0,
^(f. f)=0.

with z = c~\ X = €'''. z = C'', X — (:''. y = e'J',

take a simpler form. Infeurate and determine the singular .solutions:

((t) q ^ z + p£, iii) x-p- + //-'/- = '^-, (7) 2 = Vq-

(5) 7 = 2 yp-. (e) {p - yf + (7 - xf = 1, (D z = /'"V"-

15. What is the obvious complete .'solution of the extended C'lairaut eipiation

z = xp + y(j + fip. q) ? l)iscu.<s the singular solution. Integrate the ecjuations

:

(a) z = xp + yq + \'p)- + q- + 1, (p) z = xp + y/ + (p +_q)-,

(7) z =xp + yq + pq, (5) z = xp + yq - 2 ^'ptq.

116. Types of partial differential equations. In addition to the

liiu'tii- eijuiitioii ;uid the typt-s of Exs. 13-15 altove, there are several

types which shoiihl be mentioned. Of tliese the first is tlte general

e<[}i<it[nn tif tin' jir><t arih-r. If /•"('.', y, z, p, q) = is tlie given equation

tmd if a second e(|u;ition <!>(./.
//, '-.p. y, ") = 0, wliieh holds simultane-

ously vritli the first tiiid contains an arl)itrary constant e;in l)e found,

the two eijutitions mav l»e solved together for the vtilues of y> and y, and

the results m;iy he stiltstituted in tlie relation dz = p'Tj' + y"'.'/ f" yi'^'^* 'i'

tottil differential eqtiation (jf wdiicli the integrtil will contain the eon-

stant (I. aiid a second constant of integration h. This integrtd will then
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be a complete integral of the given equation ; the general integral may
then be obtained by (18) of § 115. This is known as Clmvplt^s metJtod.

To find a relation 4> = differentiate the two equations

F{x, y, z, 2h y) = 0, ^{x, >j, z, p, q, a) =

with respect to x and // and use the relation that dz be exact.

(19)

(l.i- a.r

^^ + <!' 7> + ^; y- + $ / = 0,
(IX (Ix

, dp , (hi

dii dx '

Multiply by the quantities on the right and add. Then

(K+pK) ^ + (f; + ,K,- - ^;- - ^;^ - (j,f; + ,,f;,^ = o. (20)

Now this is a linear equation for <I> and is equivalent to

dp ^ d<I ^ dx ^ dif ^ dz ^ (I^

K +i>K K + 1^^^ - K - K - O'K + 'iK) o ' ^- ^

Any integral of tliis system containing p or q and a will do for 4>, and

the sim})lest integral will naturally be chosen.

As an example take zp (x + ?/) + _2)(r/ — j<) — 2- = 0. Then Charpit's eqna-

tions are

dp _ '^^ _ ^^''

- zji + p2 (X + y) zp -2zq + pxi {X + 2/) 2p- q- z(z-\- y)

_ (ly _ dz

— p 2 p'^ — 2 p>q — pz (x + 7/)

How to combine these so as to get a sohition is not very clear. Suppose the sub-

stitution z = e^', p — e^'p', q = c~V/' l)e made in the equation. Then

i>' (-c + //) + p' ('/ - p') -1 =

is the new ecination. Por this Chai'pit's sinniltancous system is

dp' _ dq' _ dx _ dy ^ dz

p' p' 2 p' — ([' — (x + y) — p' -Ip"^ — 2pq — p' (x + y)

The first two e(iuati()iis ^ive at once the solution dp' = d([' or (/' = !>' + «• Solving

p' (X + y) + p' ('/' — P') —1 = and f/' = p' + «,

dx + dy
P

1

a + X + y

1

(( + X + y
+ ", dz' =

a + X + y
+ ady.
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Then z = log (a + x + y) + ay + b or \ogz = log (a + x + y) + ay + b

is a complete solution of the given etiuation. This will determine the general

integral by eliminating a between the three equations

z = e«2^ + 6(tt + x + ?/), b=f(a), = {y +f\a))(a + x + y) + 1,

where f{a) denotes an arbitrary function. The rules for determining the singular

solution give z — 0; but it is clear that the surfaces in tlie complete solution can-

not be tangent to the plane z = and hence the result z =-- must be not a singular

solution but an extraneous factor. There is no singular solution.

The method of solving a partial diii'erential e(|uatioii of higher order

than the first is to reduce it first to an e(}uation of the iirst order and

then to complete the integration. Frecjuently the form of the equation

will suggest some method easily applied. For instance, if the deriva-

tives of lower order corresponding to one of the independent variables

are absent, an integration may be performed as if the equation were

an ordinary equation with that variable constant, and the constant of

integration may be taken as a function of that variable. Sometimes a

change of variable or an interchange of one of the independent variables

with the dependent variable will sim})lify the equation. In general the

solver is left mainly to his own devices. Two special methods will be

mentioned below.

117. If the equation is Imcar with constant coefficients and all the

derivatives are of the same order, the equation is

{%D'; -f njyr'i>, + • • + "„-i />„./>;-' + ''.^;)- = ^^C'-. !/) (22)

Methods like those of § 95 niay be a])plied. Factor the e(p;ation.

a^{D, - a^D^) {D,_. - a^^;) • • • (7),. - ajl,) r: = E (.r, y). (22')

Then the lupiation is reduced to a succession of equations

each of which is linear of the fii'st order (and with constant coefficients).

Short cuts analogous to those previously given may be developed, but

will not be given. If the derivatives are not all of the same order but

the polynomial can be factored into linear factors, the same method Avill

api)ly. For those interested, tlie several exercises given belo\v Avill serve

as a syno})sis for dealing Avith these types of equation.

There is one equation of the second order,* namely

V'- if- c.r cij- drc-
'

* Tliis is one of the iniportiiiit differential equations of physics
;
other important equa-

tions and methods of treating them are discussed in Chap. XX.
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wliicli occurs constantly in the discussion of waves and wliich has there-

fore the name of tlie tcave e'lttatlon. The solution may be written down

by inspection. For try tlie form

n (.r,
I/,

r:, f) = F{ax + In, + cz - Vt) + G{ax + hj + cz + lY). (24)

Substitution in the e(|uation shows that tliis is a solution if the relation

(('- + Ir + c- = 1 holds, no matter what functions F and (^ uiay l)e. Note

that the equation

a.r + ],;j + cz — T7 = 0, n- + //- + c" = 1,

is the equation of a jilane at a ])erpendicul;ii' distance 17 from the origin

along the direction whose cosines are a, l>, c \i t denotes the time and

if the plane moves away from the origin with a velocity V, the function

F{(ix + by + ez — 17) = i^(0) remains constant ; and if G = 0, the value

of u will remain constant. Thus a = F represents a phenonu^non wliich

is constant over a })lanp and retreats with a velocity \', that is. a plane

wave. In a similar manner u = G re})resents a plane wave a])]ii-(jaching

the origin. The general s(jlution of (2.S) therefore re])resents the super-

position of an advancing and a retreating })lane Avave.

To Monp:e is due a metliod sometimes useful in treatiiiic ilifferential e(|uation.s

of the .second order linear in the derivatives r, .s, t ;
it is known as Mumjc'.s vuthod.

Let Ur -t- i^'.s ^ Tt = V (25)

be the e<ination, where 7i, S. T. V are functions of the variables and the derivatives

23 and q. From the given equation and

dp = rdx + sdy. dq = sdx + tdy,

the elimination of r and t gives the e(iuation

s{Edy- - Sdxdy + Tdx-) - {lldydp + Tdxdq - Vdxdy) = 0,

and this will surely be satisfied if the two equations

lldy-^ - Sdxdy + Tdx- = 0, lUlydp + Tdxdq - Vdxdy = (25')

can be .satisfied simultaneously. The first may lie factored as

dy — /^ (x. y. z, p, q)dx = 0, dy — /„ (x. y. z. p. '/)'/.'• = 0. (2(;)

The pi'dblem then is reduced to integrating the system ^insisting iif one of these f;u--

tors with (25') iuu\dz = j>dx-i-qdy. that is, asysteninf three total ditrei'cntial equations.

If two indejiendent solutions of this system can lie found, as

*/i
(x. y. z. p. q) = C'l, u.. (x. y. z. p. q) = ('..,

then 7q — 4> '//.,) is a lii'st oi' intermediary integral of tlie uiven equation, tlie general

integral of which uia\' be found by integrating tliis equation of the lirsl oriler. If

tiie two factors are di.-tim-t. it may happen that the two systems which arise ni;i>'

both be integrated. Tlien two fir>t integrals /(, :-- 'f' (/'.,) and r, =- ^' (r„) will be found.

and instead of intcgi'atiug one of these equations it may be better to sohc both for

p and (/ and to substitute in tlie ex]iression dz =z pdx + qdy and integrate. When,

however, it is not iios>ible to find even one first inteural. .Moiiai-'s method fails.
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As an example take (x + y) [r — t) =— ijK The equations are

{x + y) dy'^ — {£ + y) dx- = or dy — dx = 0, dy -\- dx =

and (X + y)dydp — (x + y)dxdq + ipdxdy = 0. (A)

Now the equation dy — (Zx = may be integrated at once to give y = x + (,\. Tlie

second eijuation (A) tlien takes tlie form

2 xtZp + ipdx - 2 xdq + C^ (dp — dq) = ;

but as dz = pdx + qdy = (p + q)dx in this case, we liave by combination

2 {xdp + pdx) — 2 {xdq + qdx) + C'^ ((Zj) — (Z(/) + 2 tZ^ =

or (2 X + r
,) (

?; - V) + 2 .- = (
', ( n- (x + y) (p - q) + 2 z = C,.

Hence (x + y) {]) — q) + 2z = ^{y — x) (27)

is a lirst integral. 'I'his is linear and may be integrated by

cZx di/ dz -, dx dz
or X + yx+y x + y $ (// - X) - 2 2 K\ 4> (iv", _ 2 x) - 2 z

This equation is an ordinary linear equation in z and x. The integration gives

I\\ze Jh =
I

c /''i *
(
K\ — 2 x) dx + Ju

.

Hence (x -^ ij) ze + <'— I L'^^-i>{K^ — 2x)dx = K„ = -^ [K ^) = ^ {x + y)

is the general integral of the given equation Avhen K^ has beoi replaced by x + ?/

after integration, — an integration which cannot be perfoi-med until <I> is given.

'J'he other nu'thod of solution would l)e to use also tln' second system containing

dy + dx = instead of dy — dx = 0. Thus in addition to the lirst integral (27) a

second intermediary inti'gral might be sought. The substitution of dy + dx = 0,

y + X = (\ in (A) gixcs (\ [dp + dq) + 4p)dx = 0. 'I'his eipiation is not int-egrable,

because d]> + (Z7 is a perfect ditTerential and ptZx is not. The combination with

dz = pdx + qdy = {p — q)dx does not improve matters. Hence it is impossible to

determine a second intermediary integriil, i^nd the method of completing the

solution by integrating (27) is the only available method.

Take the equation j>.s — qr = 0. Here S = p, 1! = — (/, T ~V = 0. Tlien

— qdy- — pidxdy — or dy = 0, pdx + qdy — and — (/dydp =

are the ('(juations to work with. The system dy — 0, qdydp = 0. dz = pdx + qdy,

and the system pdx + (/dy = 0. tjdydp = 0. ilz ~ ])dx + qdy are not very satisfactory

for obtaining an iiUermcdiary integral k^ = *('(.,), although ]> — *(-) is an ol)vions

solution of the lirst set. It is better t(.) use a method adapted to this spi'cial

iMjuation. Ntjte that

^-(")=^'-'/"'^ attd ^(''):=0 gives ? = /(,).

''=-p)^ then ^ =-/(,)

and X = - ^f(y) dy + ^I' (-) r^ * {y) + <i' (z).

IX \p' ]:- ex \i

P.y (11), p. 124,
''- =- ('A then '^=-f{y)
p \cy'-: cy
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EXERCISES

1. Integrate these equations and discuss the singular sohition

:

{a) pi + q^ = 2x, (^) (p^ + q^) j = py^ (^) (^ + ^) (^3. 4. ^^z) = 1,

(5) pg =px + (/?/, (e) p'^ + ^2 = X + 2/, (f) xp2- 2zp + j-i/ = 0,

(^) y2 ^ Z^ (p - fy), (^) q ip-h + q') = h (0 i^ (1 + ^r) = </ (^ - c),

( »c ) xp (1 + r/) = (/z, (X) ij' (p-^ - 1) = x2p2, (^) Z--2
(pi + r/ + 1) = c^

( »/) p = (z + y'i)-, (0) pz = l+ q-, (tt) z-pq = 0, (p) r/ = xp + p2.

2. Show that the rule for the type of Ex. 13, p. 273, can be deduced by Charpit's

method. How about the generalized Clairaut form of Ex. 15 ?

3. (a) Eor the solution of the type/](x, p) —-f.,{ij^ (/), the rule is : Set

and solve for p and ry asp = g^(x^ a), q = y.,{y, a) ; the complete solution is

^ = f (Jii-^- «)'^-« + fooiy-, «)''y + '^•

(/3) Eor the type F{z, p, q) = the rule is : Set X = x + ay, solve

(dz dz \ dz c dz
z, , a tor = d) [z, a), and let | —f(z, a)

;

the complete snlution is x + ay + h =f{z, a). Discuss these rules in the light of

Charpifs method. Establish a rule for the type F{x + y, p. q) = 0. Is there any

advantage in using the rules over the use of tlie general method ? Assort the exam-

ples of Ex. 1 according to these rules as far as possible.

4. What is obtainable for partial differential equations out of any characteristics

of homogeneity that may be present '?

5. By differentiating p —f{x. y, z. q) successively with respect to x and y show

that the expansion of the solution by Taylor's Foruuila about the point (x^.
y^J.

z,j)

may be found if the successive derivatives with respect to y alone,

cz c-z c^z c"z

cy cy- cy^ cy"

are assigned arbitrary values at tliat point. Note that this arbitrariness allows the

solution to be passed througli any curve through {x^,, y^^, z^^) in the plane x = x^.

6. Show that F{x, y, z. p, q) = satisfies Charpifs e(}uations

au = ^^^=^^ = '^ = '^^' = '^'^
, (28)

-K -K -O'K + 'iK) K + pK K + 'iK

wliere u is an auxiliary variable introduced for symmetry. Show that the first

three ecjuations are the differential equations of the lineal elements of the cones of

Ex. 6, p. 272. The integrals of (28) therefore define a system of curves whicli have

a planar element of the ecjuation F = passing through each of their lineal tan-

gential elements. If tlie e(]uatioiis be integrated and the results be solved f(ir tlie

variables, and if the constants Ije so determined as to specify one particular curve

with the initial conditions x,,. ?/,,, z,j, p^, 7,,. then

x = x(u, Xq, ?/o,2:o,Po, (y,j), y = y{---),z = z{---), p=p{---), q^q{---).
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Note that, aloiis; tlie curve, q =/{])) and that consequently the planar elements

just mentioned must lie upon a developable surface containing the curve (§ G7). The
curve and the planar elements along it are called a characteristic and a dtaracttrldic

strip of the given differential etiuation. In the case of the linear equation the

characteristic curves afforded the integration and any planar element through

their lineal tangential elements satisfied the equation ; but here it is only those

planar elements which constitute the characteristic strip that satisfy the equation.

What the complete integral does is to piece the characteristic strips into a family

of surfaces dependent on two parameters.

7. By simple devices integrate the e(iuations. Check the answers:

cj- cif cscij y

{5) s + pf(f) = g(y), {e)ar = xy. {^) xr = {n - l)p.

8. Integrate these equations by the method of factoring:

(a) (Ui - a^D^ )z^0. (^) {!), - lJ,f z = 0. (7) ^7),!); - D^) z = 0,

( 5 ) {Ui + 3 I)J)y + 2 7J;-) 2 = J + y. ( e ) (i>f. - 7/, /A, - 7>; ) z^xy,

( r) (^I- - 7>^ - 3 7>,, + 3 l),j) z = 0, (,,) (1)1 -ljl + -2D,+ l)z = e--.

9. Prove the operational equations :

(a) £«-'A/0 (//) = (1 + axl)„ + '. a-x-IJ; + • •) (.?/) = <P(y + ax),

(/3)
~ = e"-^,/ - = e"-!',, ^{y) = 4>(y + ax),

JJJ.
— aJ)i, J),r

(7) 7 ^—r ^' (•'•• y) = ^"'^'."
r

'^'~ ''^^vT? (f. y) d^ = ril (t, y + ax-a^)dk.
Lj. — alJy -J J

10. Prove that if [(7)^ - a-,7A,)'«i • • {T)j. - a/TV)'"''] z = 0. then

z = *„(;/ + a^x) + -t^^Jy + cx^x) + • • • + x'"i -1*1 ,„^{y + a^r) + • . •

where the<f>"s are all arbitrary functions. This gives the soiutinn of the reduced equa-

tion in the sinq)lest case. What terms would correspond tu (7J,. — cxlJy — /3)"'2 = ?

11. Write the solutions of the equations (or equations reduced) of Ex.8.

12. State the rule of Ex. (7) as: Integrate 7?(.r, y — ax) with respect to / and

in the result change </ to // + ax. Ai)})ly this to olitaining particular solutions of

Ex. 8 (5). (e). (rj) with the aid oi any short cuts that are analogous to those of

Chap. VIII.

13. Integrate the following eijuations:

(a) (If. - L':,, + 1),, - 1 ) z = C( -s ix + -i //) + e", (/3) a'2,.2 + 9 xy^ + yH"- = x'^ + 2/^,

(7) (If + 7),,, + 7a, -l)z = sin (X + 2 y), (5) ;• - ^ - 377 + 3 7 = e'' + - ?',

( e

)

(If - 2 l),^ + 7>2 ) 2 = X -
-K (X) r-t+p-\-?,q-2z^ e--:

- •-'- x-y.

{n) { If - IJ,J), - 2 7/; + 2 7>, + 2 7J,) 2 = f^^- + -='y+ sin (2 .r + y) + xy.

14. Try Mongers method on these e(iuations of the second older :

(a) q-r - 2pqH + pH = 0. (^) r - aH = 0, (7) r + ,s = - p.

(5) 7(1 + q)r- (]> + q + 2pq).-<+p(l+p)t = 0, (e) x-r + 2xys + yH = 0,

( f ) (/' + '<l)-i- - 2 ('< + <-'y) '" + '-7M 'S + (" + nA-t = 0, (7;) / + hiH = 2 «.s.

if any simpler method is available, .state what it is and apply it also.
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15. Show that an equation of the form Rr + Ss + Tt + U {rt — s^) = V neces-

sarily arises from the elimination of the arbitrary function from

Ui{x, y, z, p, q) ^f[u^_{x, y, z, p, g)].

Note that only such an equation can have an intermediary integral.

16. Treat the more general equation of Ex. 15 by the methods of the text and

thus show that an intermediary integral may be sought by solving one of the systems

IJdy + X^ Tdz + X^ Udp = 0, Vdx + \Edy + \ Udq = 0,

Udx + Xj'uly + \.,Udq = 0, I'dy + X.,Tdx + KUdji = 0,

dz — pdx + qdy, dz — pdx + qdy,

where \ and X^ are roots of the equation \-{ilT.+ UV) + XL^S + U'^ = 0.

17. Solve the equations : (a) s'^ — rt = 0. (/i) ,v- — rt — a-,

(y) ar + bs + ct -{- e {rt — s^) = h, (5) xqr + ypt + xy («'- — rt) — pq.



PART III. IXTEGRAL CALCULUS

CHAPTER XI

ON SIMPLE INTEGRALS

118. Integrals containing a parameter. Consider

%J .In

(1)

a definite integral which contains in tlic integrand a i)aranieter a. If

tlie indefinite integral is known, as in the ease

/'•'" axdx = - sin ax.
a l'""'

(ixdx = - sin ax
a

it is seen that the indefinite integral is a function of x and a, and that

the definite integral is a function of a alone because the variable x

disappears on the substitution of the limits. If the limits themselves

depend on a, as in the (tase

/' (•OS axdx = — sin ax
a

= - (sin a"^ — sin 1),
a '

the integral is still a function of a.

In many instances the indefinite integral

in (1) cannot be found explicitly and it then

becomes necessary to discuss the conti-

nuity, differentiation, and integration of the

function (^(a) defined by the integral with-

out having recourse to the actual evaluation

of the integral; in fact tliese discussions

may be required in order to effect that

evaluation. Let the limits x^ and x^ be taken ''

as constants independent of a. Consider the range of values x.^ ^x^x^
for x^ and let a^-^(f^a.^ be the range of values over Avhich the func-

tion <^(a) is to be discussed. The function /(a-, a) may be ])h)tted as

the surface ,v = f(x, a) over the rectangle of values for {x, a). Tlie

281
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value <^ (a,) of the function when a = n^ is then the area of the section

of this surface made by the plane (i = ((;. If the surface f(.r, a) is con-

tinuous, it is tolerably clear tliat the area <t>{'i:) will be continuous in a.

The fmiction ^(^t) Is continuous Iff{j', a) Is continuous In the two varia-

bles (x, a').

To discuss the continuity of (p{a) form the difference

<p{a + Aa) - ct>{a)= f'^\f(x, a + Aa) -f{x, a)] dx. (2)

Now (f>{a) will be continnous if the difference 0(a + An-) — (p{a) can be made as

small as desired by taking Aa sufficiently small. If f(x, y) is a continuous func-

tion of (x, ?/), it is possible to take Ax and Ay so small that the difference

\f{x + Ax,y + Ay)-f{x,y)\<e, |Aj-|<5, \Ay\<5

for all points (j, y) of the region over which /(j, y) is continuous (Ex. 3. p. 92).

Hence in particular if /(x, a) be continuous in {x, a) over the rectangle, it is pos-

sible to take Aa so small that

|/(J, a+ Aa)-/(x, a)|<e, !Aa|<5

for all values of x and a. Hence, by (Go), \). 25,

\4>{a + Aa) - ct>{a)\=:\ ('''[/ {x. a + Aa) -f{x. a)] */./;|< f'^'a?,? = e{x^ - x^^).

It is therefore proved that the function 4>{a) is continuous provided /(.r, a) is ccm-

tinuous in the two variables {x. a): for e(,f^ — x^) may be made as small as desired

if e may be made as small as desired.

As an illustration of a case where the condition for continuity is vi(jlated. take

/il (X(Jx c I

^

—^ ~-^ = tan-1^ = cot-la if a ?i 0, and 0(0) = 0.

u a- + X- a

Here the integrand fails to be contintious for (0. 0) : it becomes intinite when

{x. a) = {(). 0) aloni: any cui'vc that is not tangent to a — 0. 'riie function 0(a) is

detined for all values of a so. js eipial to cnt^io: wlien a ^ 0. and slmuld there-

fore be e(iual to i-Tr when <( = if it is ti) be cnntiiiuous. whereas it is eipial tu 0.

The importance nf the impnsitioii of tlie condition that /(,r. a) be continuous is

clear. It sho\dd ncjt be intVrred. howt'ver. that the function 0(a) will necessarily

be discontinuous when /(,/•. a) fails of eontinnity. For instance

r'^ dr 1 , ,- 1
0(a) ^ —^— rr-^(\ a + l-^ a), 0(0) = -.

^ y a -[ X ^ ^

This function is continuous in a for all values asf): yet the intorrrand is dis-

continuous and indeed becomes intinite at (0. Oi. Tlie condition of continuity

imposed on /(/. a) in the theorem is suffii'lmt to insure tlie comiiniity of 0(a)

bvit by no nirdus nc-issury : wiieii the condition is not satisfied sonii' clo.-er exami-

nation of the problem will sometimes disclose the fact that ((t) is still continuous.

In case tlie limits of tlic integral are functions of a, as

(/) (a) = I /(.'•, ^0 (Ir, a
. g a ^ a^, (3)
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the function <^(t) will surely he continuous if f(p', a) is continuous

over the ret^iou hounded hy the lines <x = d^^, ft = a^ aiul the curves

X = i/o('0' *^'i
~

(/ii'^)>
'^^^^^^ ^^ ^^^^ functions [/^in) and f/^('() are continuous.

For in this case

/> .'/, (a + Art-)

<p{a + Aa) - <p {(x) = f{x, a + Aa) dx

J"

.'/,(") r"if"^
f{.r. a)dx= I f{x, a+ Aa)dx

0„(a) -','/„(a + A<0

I
/(.f , a + Aa) dx

r yi(rt)

•^."oC'O

fr + A(() —f{x, a)]dx.

The absdhUe values may be taken and the inte- A/
,2;rals rechiced by ((i.")^, ((i-V), p. 25.

\4>[a + Aa)- <p{a)\<e\<j^{a)- (/^{a)\ + \f{^,. a + Aa)\\Af/,\ + \f{^^, a + Aa')\\Ag^\,

where ^^ and ^^ are vahies of x between
f/,^

and r/,j + Af/,,. and r/^ and
f/, + Af/p By

taking Atr small enongli. (/^(a + Aa) — f/|((r) and f/„(a 4- Aa) — f/|,(a) may be made
as small as desired, and hence A(p may be made as small as desired.

119. To hud tl/e (Icrlrdtlfi' of a fiini-fhni (f>{'i.) dejined hij an Intt'jjrul

confii'inln'j a jHiraincfcr, foi'Ui the quotient

A<^ _ «^ (a + \n') — cfy (a)

Act A'(

X1l^
(.t + Alt) /^.^iCn)

/'(.'•, a + ^n)d.r - / /(x, a)dx
.
„((t f Aa) t7r/„(rt;

Aa;
dx +

+ Aa)

r-'A + ^
^f.,., r. + Aa)

! A^f
f/,r.

The transformation is made hv (''>3), p. 2."). A further ]'(Hluction may

he made in the last two integrals hy (05'), p. 25, Avhich is the Theorem

of the Mean for integrals, and the i.itegrand of the hrst integral may be

modified by the Theorem of the Mean for derivatives (p. 7, and Ex. 14,

p. 10). Then

A^
Art-

and

.'/„(«)

f:(x. a + e\a) dx - f(L, a + Aa) "^f' + f{P, a + Aa) -^
J - Aa' Aa'

da I , ^ c<i
' / ^/^j. . - 1 / ,/,j.

(4)

A critical examination of this Avo)-k shows tliat the derivative (f>'{n)

exists and may lie ol.)tained ly (4) in case /',^ exists and is continuous
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ill (./•, a) and
^o('«), r/iC") '^i'^' (liftV'i-entiabli". In tlic })articular case that

the limits <j^ and rj^ are eoiistants, (4) reduces to Lelbnbi's Rale

which states that tlie derirafire of a function dejined hij an InfpfjroJ

tr It li fixed limits moij he oldalned hi/ differentia tlnr/ under the sltjn (f
Integration. The additional two terms in (4), when the limits are varia-

ble, may be considered as arising from (66), p. 27, and Ex. 11, p. 30.

This process of differentla tlnr/ under the sign of integration is if

frequent use In evaluating the function <f>('t:) in cases where the indeti-

nite integral of /(.r, a) cannot be found, but the indefinite integral of

f^ can be found. For if

«^(^0 = f /C'"^ '')'^-'-> then '—-=[ \Cdr = ^(a).

Now an integration witli respect to a ^\\\\ give (^ as a function of a

with a constant of integration which may be detenuincd ly tlie usual

method of giving a some special value. Thus

Jo i"y-^' '^'' Jo ^^y-'- Jo
Ix.

Hence ^ = ——r x''+' = ——-

,

<^ (a) = log (a + 1; + C.
da a -{-1

|q
ct + 1 ^ ^ ^ -^

But <^ (0) = To (/,/ = and <^ (0) = log 1 + C.

fVO

r^ x" — 1
Hence (b(a)= \ ^/r = log (^r + 1).

Jo 1^'y '

In the way of coniineiit upcm this evaluation it may be remarked that the func-

tions (x"^ — l)/lo,i,^,r and x" are cnntinuous functions of (,r, a) for all values of x in

the interval ^ .r ^ 1 of inteuration and all positive values of a less than any

assijined value, that is, 0^(f^7\'. The conditions which permit the differen-

tiation under the si,i,ni of inteuration are tlierefore satislied. This is not true for

neirative values of a. When a<0 the derivative ./•" becomes infinite at (0. 0). The

method of evaluation cannot therefore lie applied without further examination.

As a matter of fact 4>(a) = ]o<j:(ir + ^) is defined for a-> — 1, and it would be

natural to think that sduie method could be found to justify the above formal

evaluation of the integral \vhen — ] < re ^ A' (see Chap. XIII).

To illustrate the applicatinn of the rule for differentiation when the limits are

functions of a. let it be i-iMjuireil to differentiate

^a\r<> — \
,

(J(p /•''
, a-" — \ a' — 1

(P{cx)=
I

dx. - =
I

x'Hlx -\ a — .

«/a log x da Ja \o" a \o'j. a
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dip

da
_ a^

^^^ + 1_ 1 1^ L^-2<r _ ^<r _ (.^ + 1 .

a +11 J \ogal J

This formal result is only good subject to the conditions of continuity. Clearly a
nnist be greater tlian zero. This, however, is the only restriction. It might seem at

llrst as though the value x= 1 with logx = in the denominator of (x" — l)/logu;

would cause difficulty ; but when x = 0, this fraction is of the form 0/0 and has a

finite value which pieces on continuously with the neighboring values.

120. Tlic next problem would be to find f/ie Integrdl of a fiinrflon

(h\ti)u'<l III/ (1)1 infcijrdl coyitdmlnr/ a i:)arameter. The attention will be

restricted to the case where tlie limits a-^ and x^ are constants. Consider

the integrals

r <^(a)rAr= r . r /(^, a)dx-iJa,

where a may be any point of the interval <x^ ^ (X ^ <x^ of values over

which ^ (a) is treated. Let

Then <I>'(a)=
j

'•
,
-

(
/(.>; a)da- dx = I \f(.r,a)d.r = (t>(a)

by (4'), and by (06), ]>. 27; and the differentiati(^n is Icoitimate if ,/'(•'', ''')

be assumed continuous in (,»•, a). Now integrate with i-es})ect to a. Then

Ja„ Jag

But $(a'J= 0. J fence, on substitution,

^('^)= f
'•

f
/(r,n)dn.d.r= C cf,(n)dft= C • C f(x,n)dx-dn. (5)

Hence appears the rule for integration, nanu>ly, i/ifcf/ri/te under flie,

sir/n of 'inti'ijraf'iini. Tlie rule has here been obtained by a, trick from

the previous rule of differentiation; it could be proved directly by

considering tlie integral as the limit of a sum.

It is interesting to note the interpretation of this integration on the

figure, p. 281. As ^('•t) is the area of a section of the surface, the

product ^{ix)da is the infinitesimal volume under the surface and

included between two neighboring planes. The integrid of ^{'x) is

therefore the volume * under the surface and boxed in by the four

* For the " voluiiu^ of a solid with ])ar;dlcl bases and variable cross section'' see

Ex. 10, p. 10, and § 35 witli Exs. 20, 12o thereunder.
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planes a = (i^, a — a, .r = ,r^, x = ,r^. Tlie geometric significance of

the reversal of the order of integrations, as

V =1
I

/(.'', '() <lfi dx =1 \ /('', n) dx da,

is in this case merely that the volume may be regarded as generated

by a cross section moving parallel to the «rt--plane, or l)y one moving

l)arallel to the '-./'-plane, and that the evaluation of the ^'olume may
be made by either method. If the limits x^ and x^ depend on a, the

integral of <^(''i) cannot be found by the sim])le rule of integration

under the sign of integration. It should be remarlved that integration

under the sign may serve to evaluate functions defined b}' integrals.

As an illustration of iiitegi'atioii under tlie sipn in a case where the niethrxl leads

to a function whieh may be considered as evaluated h\ tlie nu'thod, cdnsider

f 1 , 1 r^ , . -, r^ da ,6 + 1
4>{a)^

\
x-dx = - --

.

\ <P (a) da =
/
—— = log —--

.

^0 a + 1 J a Ja a \-\ a + 1

Xh p\ rkh p \ pa a ^ h pi j^h j'a

(p{a)da—
I

•

I
x"da-dx= \

-^— dx - (
^ '—dx.

.; Jo Ja Jo log J' a=it Jo log X

n\ j-h yn ]) A. \
Hence | dx = loi>- = ^p (a, h), (i = 0, /; ^ Q.

J log X " a + 1

In this case the integrand contains two parameters a. h. and the function deliiied

is a function of the two. If <i ~ 0, the function reiluces to one previously found.

It would be possible to repeat the integration. Thus

r --"^dx = log(« + ]). r loi,r((i- + I) da = (a + 1) lou' (a + \) - a.
Jo logx Jo

da-dx=\ — -^^^r?x = (,T+ l)log(a + l)-a.
Jo Jo logx Jo (logx)-

This is a new form. If here a be set eijual to any number, say 1, then

Jo
^ -—'-(?x = 2 loir 2-].

(logx)^

In this way there has been evaluated a detiuite int(\L:i'al wliich depends on no

parameter and which miy-ht liave been difticult to evaluate directly. 77/c introdur-

lion iif (I pdrdnictcr dnd its .sidisequod cqiuduni to <i particular value i.s of frequent use

in evaluating definite integrals.

EXERCISES

1. Evaluate directly and discuss for contiuuity, ^ a ^ 1:

fi <t-'/x /-I dx
^ ^ r^ xdx

Jo a- + xJ Jo ^'a-^^.r-2 ^'> ^ a-' + .f-

2. If /(x, a, ji) is a. function containing two jtarametci-s and is coiitiinious in

the three varialiles (x. a. (S) when x,, ^ x ^ x,. a,, ^ (C ^ (C,. [i^, ^ fi ^ [i^. show

I /(.'•. a. ii)dx = f/Wi!. li) is continuous in {a. ^i).
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3. Differentiate and lience evaluate and state the valid range for a :

(d)
I

lo.u (1 + a ens x) (Ix = tt log ,

Jo ' 2

, , r^ , ,, -. o , fTrlogcr-, a^ ^^ 1

(/^i) log (1 -2 a cos X + ^1-2) dx = -i ^ ^, ^' - .

4. P'ini' tlie derivatives witliont previously integrating:

J/^^i^~
<r

2 r"' X f>
ax Z- '1

- tan axdx, (j3) (
tan-i— dx, (7) (

e «'- dx.

5. Extend the assumptions and the work of P>x. 2 to find the partial deriva-

tives (p'^ and (p'p and the total differential dcp if Xq and x^ are constants.

6. Prove the rule for integrating under the sign of integration by the direct

method of treating the integral as the limit of a sum.

7. From Ex. 6 derive the rule for differentiating under the sign. Can the com-

plete rule including the case of variable limits l)e obtained this way ';'

po ('. f

)

8. Note that the integral
| /(x, a) (Zx will be a function of (x, a). Derive

" 'o

formulas for the partial derivatives with respect to x and rr.

9. Differentiate : (rr)
-'^ - f' sin (x + a) dx, (/3)

'- f '"x^cZx.

f (t «^o dx Jo

10. Integrate under the sign and hence evaluate by subse(jueut differentiation :

{a)
I

x'Mogxdx, (/3) |
'xsinaxdx, (7) (

xsec^axdx.
Jo

^'

Jo Jo

11. Integrate or differentiate lioth sides of these equations :

x"(?x =-- to show
I

x" (log x)"dx = (— 1)"
,

<i + 1 -^0
' ^

(«+])" + !'

r ^ dx TT
,

/- - dx TT 1 . .S • .5 . . . (2 H - 1)
(/3) I

= = to show
I
— =

^,

,

Jo X- + a 2V

a

'''> {x-'" + a)" + > 2 2 • 4 • 0- • • 2 n a" +

^

(7) c-"'^ COS mxdx = to show | dx = - log —:

,

Jo a- + ?/t- Jq xsecv/ix 2 ' \a- + in-J

c-"''sln ?«xdx = to show | dx = tan-i tan-i —

,

li- -\- 1)1- Jo xcsc?«x )n m

(e)
(

= - -_^^ . to tnid / ,
f

log ,

Jo a'— COSX ^^/(^l^_l Jo ((C— cosx)"^ Jo «— COSX

•^ X" -i(/x TT „ ,
/"=° x« -1 Ion' xdx r '^ /'' - 1 — X" -1

dx.
r-" x'^-'-dx TT „ ,

/"=° x'^ -Moi;',rax r
(i-) /

= to find (
^^^

,
I

Jo 1 + X sin -rra Jo 1 + x Jo (1 + x) logx

Kote that in (/3)-(5) the integrals extend to infinity and that, as the rules of

the text have been proved on the hypothe.sis that the interval of integration is

finite, a further justification for applying the rules is necessary ;
this will be

treated in Cliap. XIII, but at this point the rules may be applied formally

without justification.
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12, Evaluate Iw any means these inteijrals :

^ ' Jo a \](; 4/

, z' o li i^M 1 + (< IS a r< >s ,r
) , 1 , tt- A

(/3
f

- ^^^^ UU = - aM,
Jo co.s.f 2 \ 4 /

7r

(7)
I

" lo.LT (a-cos-x + /3'-sin'-.r) f7j = Trlog

—

-^

—-,

(5)
(" r(.-a.r (US jixflr

a + /(sin X (Zx
(e)

I

" loo; —
Jo "a — 6sinx sinx

b <a,

dx.

r ^ Inix (1 + k cosx) , . , ,

(f) I

' ' '(ZX = TTsill-'A-,
Jo CdSX

(ff) f
lncr/(rt + x)r7x = ( loir /-(x) r?x = I ],,- --^L^rZr/ + I

log/{x)
Jo Jii J'J ,/ (") Jo

121. Curvilinear or line integrals. It is i'aiuiliar that

is tlie area l)et\v('en the curve //=/'(.;). tlic ./-axis, and tlie ordinates

.; = 11^ X = //. The fonnitla may l)e used to evaltiate more eom])lieate(l

areas. For instanee, the area Ijetweeu tlie juirabola >/'- = ,/• and the semi-

eubical parabola //- = ,r^ is

l/o i/o rJ) sJ()

'>/.,:

where in the si^-ond expression the sul)seri})ts /* and N denote that the

intej^'rals are evaluated for the parabola and semieubieal parabola. As

a change in the oi-der of the limits changes the sign of

the inteyi-al. the area mav be written

XI
/^ /^ /-»

1

and is the area br)unded by the closed curve formed

of the portions of the ])araliola and semieubieal parabola from to 1.

In considei'ing the area liounded l)y a closed curve it is convenient to

arrange the limits of the different integrals so that they follow the curve

in a definite ordei-. Thus if one advances along P from to 1 and re-

turns along N Irom 1 to 0, the entire closed curve has been described

in a uniform dii'ection and the inclosed area has T)een constantly on tin;

riirht-hand side ; whereas if one advanced along .S from to 1 and
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returned from 1 to along P, the curve would have been described

in the opposite direction and the area Avould have been constantly

on the left-hand side. Similar considerations apply to more general

closed curves and lead to the definition : If a closed curve which

nowhere crosses itself is described in such a direction as to keep the

inclosed area always upon the left, the area is considered as positive

;

Avhereas if the description Avere such as to leave the area on the right,

it would be taken as negative. It is clear that to a person standing in the

inclosure and Avatching the description of the boundary, the descrip-

tion would appear counterclockwise or positive in the first case (§ 76).

In the case above, the area when positive is

LsJa rJx J Jo
,'l.r^ (6)

where in the last integral the symbol O denotes that the integral is to

be evaluated ai'ound the closed curve by describing the

curve in the })()sitive direction. That tlie foi-mula holds

for the ordinary case of area under a curve may l)e

verified at once. Here the circuit consists of the con-
^

tour ABB'A'A. Then o\ A BX

C;,,Lr = r ydx + r ,jd.r + f f/>/.r + f ydx.

Jo JA Jn Jr.' JA'

The first integral vanishes because // = 0, the se(,'ond and fourth vanish

because x is constant and (/./ = 0. Hence

that

Jo

-£"''"-f?"'-
It is readily seen that the two new formulas

'y and ,1

Jo
ydx) (')

'o «^o

also give the area of the closed curve. The first is proved as ((V) was

])rove(l and the second arises from tlie addition of the two. Any one

of the three luay be used to compute tlie area of the closed curve: the

last has the advantage of symmetry and is particularly useful in finding

the area of a sectoi'. l>ecause along the lines issuing from the origin

y : X = dy : dx and xify — ydx = : the previous form with the integrand

xdy is advantageous when part of the contour consists of lines parallel

to the .''-axis so that r/y = ; the first form has similar advantages

wlieii ]iarts of the contour are parallel to the //-axis.
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The connection of the third formula with the vector expression for

the area is noteworthy. For (p. 175)

dA = I Txdt, A = I
I

Txdr,

Jo
and if r = xi + y], dr = idx + yJij,

then A= / rxr/r = J k / {xdij — ydx).

Jo Jo

The unit vector k merely calls attention to the fact that tlie area lies

in the .-r//-plane perpendicular to the r^-axis and is described so as to

appear positive.

These formulas for the area as a curvilinear integral taken around

the boundary have been derived from a simple figure whose contour

was cut in only two points by a line parallel to the axes. The exten-

sion to more complicated contours is easy. In the tirst })lace note that

if two closed areas are contiguous over a part of their contours, the inte-

gral around the total area following both contours, but omitting the pai't

in common, is equal to the sum of the integrals. For

J I'Rsr J j'QRr J I'll J i:sr Jpqk Jnr J qrs/' pf-

since the first and last integrals of the four are in ()i)po-
"^

. Q
site directions along the same line and must cancel. JJut

the total area is also the sum of the individiial areas and hence the

integral around the contour /'Q/iSP must be the total area. The for-

mulas for determining the ai'ca of a closed curve are therefore applicable

to such areas as may ha composed of a finite number of areas each

bounded by an oval curve.

If the contour liouiuling an area be expressed in parametric form as x=f{t),

y — <p {t), tlie area may be evaluated as

ff{t)i>'{t) dt = - f<p{t)r{i) at = ifif{t)^\t) - (o/'(0] dt, (70

where the limits for t are the value of t corresponding to any point of the contour

and the value of t correspondin.i,^ to the same point after the ciu'vo has been

described once in the positive direction. Thus in the case of the strophoid

fl — X
7/2 = X- , the line ?/ — tx

a + X

cuts the curve in the doul)l(> point at the orii^in and in oidy one other point; tlie

coordinates of a point on the curve may be exx^ressed as rational functions

J- = a (1 - r^)/{] + r'), y = at (1 - r^)/(1 + t^)

of t by solving- the stroi)hoid with the line : and when I varies from — 1 to + 1 the

point {x, y) describes the loop of the strophoid and the limits for t are — 1 and + 1.
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122. Consider next the meaning and tlie evalnation of

f '[Pi-^;i/)^^-'- + Q(->;!/)'^!/l where v/ =/(./•)• (8)

This is called a cuvvlUneat' or Line integral along the curre C or y = f(^,r^

from the point (a, It) to (x, y). It is possible to eliminate y by the rela-

tion y =f{.c) and write

U a

[P(,r,/(.r)) + Q(.r,/(.r))/'(.r)].?.r. (9)

The integral then becomes an ordinary integral in .r alone. If the cyrve

had been given in the form x =f(^y')^ it would have been better to con-

vert the line integral into an integral in // alone. TJie iiwthod of cvalaaf-

UKj ihe Iniegral is therefore defined. The differential of the integral

may be written as

d r\pd.:
Ja,h

-c -f- Qdy) = Pdx + Qdy, (10)

Avhere either x and dx or y and dy may l)e eliminated by means of the

ecpiation of the curve ( '. For further particulars see § 123.

To get at tlie meaning of the line Integral^ it is necessary to con-

sider it as the limit of a sum (compare § 16). Suppose that the curve

C between («, V) and (.r, y) be divided into n parts, that A./\ and A//,-

are the increments corresponding to the /th part, and that (^,, ly,) is

any point in that })art. l'\)rm the sum

= X t^' ^^^" '?'•) ^"' + ^^ ^^'' ^') ^'1^

If, Avhen n becomes infinite so that A,r and A// eacli

ajjproaches as a limit, the sum o- ap])roaclies a

definite limit inde})endent of how Ww. individual

increments A,/', and A//,- approach 0, and of how the

point (^,, >;) is chosen in its segment of the curve,

then this limit is defined as the line iuteural

lim o- = r [P (,r, //) dx + a (,/, //) dyl.
rJa, h

(12)

It should l)e noted that, as in the case of the line integral which gives

the area, any line integral which is to be evaluated along two curves

Avhicli liave in common a portion described in o])posite directioiis may

be i'e[)laced by the integral along so mucli of the cui'ves as not re})eated
;

for the elements of a corresponding to the common portion are equal

and opposite.
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That a does approach a limit provided P and Q are continuous functions of (x, y)

and provided the curve C is monotonic, that is, that neither Ax nor A*/ changes its

sign, is easy to prove. I'or tlie exi)ression for a may be written

by using the equation y =f{x) or x =/~i (y) of ('. Now as

J
"/'

(X, /(x)) tZx and J "q (/-i
(//). y) (Zy

are both existent ordinaiy definite integrals in view of the assumptions as to con-

timiity, the sum a must approacii their sum as a limit. It may be noted that this

proof does not reijuire the continuity oi' existence of /'(x) as does the fornuda (U).

In practice the added generality is of little use. The restriction to a monotonic

curve may be replaced l)v the assumption of a curve (J which can be regarded as

made up of a finite inunber of monotoinc parts including perhaps some portions of

lines parallel to the axes. More general varieties of (J are admissible, but are not

very useful in practice (§ 127).

FurtluM- to exuiuinc the line iiitogval and ai)preciate its utility for

matliematies and })li_vsics consider some, c'xani])les. Let

be a complex function (§ T'.V). Then

{Xdc — Y(h/) + /

I
(Y(/.r + X<f;/).

{!?,)

It is ap])arpnt that fln' 'infiijriil of ilw (oiiipJc.rfKncfinn !s flw sum of tico

line iiifrf/rcls In flu' ciniijiLcj' phinc The value of the integral can be

comjmted only by the assuni])tion of sonn' definite path (' of integra-

tion and will differ for different ])aths (but see § 124).

\\\ dehnition iJtc irarl; (hmc hij a cdnstdtif furcr /•"acting on a particle,

"which moNcs a distance .s' along a straight line inclined at an an.gle 6 to

the force, is 11'= /•'.>>• cos ^. If the jiath wei'e curvilinear and the force

wei'e variable. fJic d'lfft'rcni'Kil of irorl: woidd be talven

as (1 ]V = l-\-{)<, 9ils, where ds is the infinitesimal arc;

ami d is the angle between tlie are and the force.

Heiu'(^

W = i d]V =
I

FcoS^r/.v =
I

F.r/r,
A'

wliere the ])ath must be known to evaluate the integi'al and where

the last t'xpressiou is merely the e(|ui\alent of tin; otliers when the
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notations of vectors are used (p. 1G4). These ex})ressious may be con-

verted into the ordinary form of the line integral. For

F = A'i + }'j, dx = hix + yf//, F.r/r = X'U + l>/y,

Fros Oils = / {Xd.r + Yd;/),

h Ja. ii

"where X and ]' are the com])onenrs of the force alonj^' the axes. It is

readily seen that any line inti-yral may ]»e given this same inter-

]>retation. If

1=1 Pdj- + Qdii. foi'iu F = 7^i + Qy
J 'I, h

Xj.

!l r> J. 1/

Pdx + (ldii =
I

Frv^eds.

To the principles of inoineiituin and ninnient of nKinientuni (S 80) may now be

added the princii>le of work and eneriiv fur nieelianics. Consider

in
'^'^ = F and in

-'-''.
-7r = F-<h = <l IT.

dt- di-

^, d ildx dx\ 1 r."-r dx \ dx d-X d-x dx
Then — - • = h =- .^,

dt\ldl dt! --^ 'U-' dt 2, It dt- dt- dt

or (Z/Ji--) = '''^</r and d C'^^miA = dW.

1,1, /<r

Hence -mv- — inv- = | F.'7r = II .

In words : The change of the kinetic cneyy;/ ] mv- of a pctrticle moving tinder the

(iction of the resultunt force F is eijuiil to the u-urk done lit/ the force, that is, to the line

integ-ral of the fon^e alonii' the path. If there were several mutually interactiiii,'

particles in motion, the residts f(.ir the energy and work would merely tie added as

•2 i niv- — - 1 »H',-J 1^ 2 ir. and the tntal chanue in kinetic eneruy is the total work

done V)y all tho fc.irces. The result irains its significance chiefly by the consideration

(jf what forces may be disrei:arde(l in evaluating; tlie work. As dW = F«(/r, the

work done will be zero if dx is zero ov if F iuid dx are yjerpendicular. Hence in

evaluatinir ir, forces whose point of application does not move may be omitted

(for example, forces of su])port at jiivots). and so may forces whose point of appli-

cation moves normal to the force (for example, the normal reactions of smooth curves

or surfaces). When more than one particle is concerned, the work done by the

nuitual actions and reactions may be evaluated as follows. Let r^ . r., be the vectors

to the particles and x^ — r., the vector joiniuir them. The forces of action and re-

action may be written as ± c (ij — r.,). as they are equal and opposite and in the line

joining the pai'ticles. Hence

d]r=d]\\ + d\V., = c (ti - x.,).dx^ -c{x^- r.,).(Zr,

= c (r^ - r.).'? (rj - r,) = ] rd [(r, - r._,).(ri - r.)] = l cdrj.,,

where ;•,., is the ilistani;e between the iiartii'les. Now (7 IF vanislies whe.i and only

when dr^^ vanishes, that is, when and only when the distance between tl'j i>ariicles
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remains constant. Hence v:hcn a system of jjurtkks is in motion the change in the

total kinetic energy in passing from one position to another is equal to the icork done by

the forces, where, in evaluating the work, forces acting at fixed points or normal to the

line of motion of their points of application, and forces due to actions and reactions of

particles rigidly connected, inay he disregarded.

Another important application is in tlie tlieory of tliermodynaniics. If I', j). v

are the ener<ry. pressure, volume of a gas inclosed in any receptacU'. and if dU and

dv are the increments of energy and volume wlien the amount (/// (if heat is added

to the gas. then „

dll = dU + pdv, and hence J/ = dl' + pdc

is the total amount of heat added. By taking p and r as tlie indrjicndent variables,

The amount of heat absorbed by the system will therefore not depend merely on

the initial and final values of {p, v) but on the sequence of these values between

those two points, tliat is. upon the path of integration in the yjr-plane.

123. Let there 1)6 given a simply connected region (p. 89j lionnded by

a closed curve of the type allowed for line integrals, and let P(.r, >/) and

Q(.i\
II) be continuous functions of (.>•, //) over this region. Then if the

line integrals from (a , li) to (.r, y) along tw(j paths

r ' Pdx + Qdi, = r ]'<l.r + Q'hj

cJa,b vJti.h

are ec^ual, the line integral taken around the combined path

r"'+ r = f p<Lr+ <i,i,,=:{)

cJa.h rJ.r.ij J^

vanishes. This is a cort)llary of the i'art that if the order of description

of a ctirve is reversed, the signs of A.'-, and A//,- and liciice of the line

integral are also reversed. Also, conversely, if tlie in-

tegral around tlu; chxsed circuit is zero, the iiitt^grals

from any point {a, h) of the circuit to any other point

(.r, //) are equal when evaluated along the two different

parts of the circuit leading from (/'. //) to (./•. //).

The chief value of these ol)servations ai'iscs in their application to

the case where 1* and Q hap])en to be such functions that tlie line inte-

gral aromid any and evci-y closed ])atli lying in the iTgion is zero. In

this case if (", /') be a fixed jioint and (./•. //) lie any jioint of the region.

the line integral from ('/. I>) to (./•. //) along any two jiaths lying within

the region will be the same: for the two ])aths may lie considered as

forming one closed jiatli, and the integral aromid tliat is zero by hy-

pothesis. The value of the integral will thertd'ore not depend at all on
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the patli of integration but only on the final point (x, ij) to which the

inte<rration is extended. Hence the integral

x:
[P (./, //; dx + a (,r,

II) (hj-\ = F (x, y), (14)

extended from a fixed loAver limit {a, h) to a variable upper limit {x, y),

must l)e a function of (,/. y).

This result may be stated as the tlieorem : Tlie necessary and suffi-

cient condition tliat the line Integral

L [Pix,y)dx + Qix,y)dy^
' II. h

define a single valued function of (x, y) orer a simply connected region

Is that tlie circuit integral toh-cn oround any and ecery closed curce In

the region shall he zero. This theorem, and in fact all the theorems on

line integrals, may l)e innnediately extended to the case of line integrals

in space,

x:
IP (x, y, -:) dx + Q (x, y, z) dy + R (x, y, z) dz^ (15)

If tlie Integral ahout erery closed patJi Is zero so that the Integral from

a fixed lower limit to a varlahle upper limit

F(:'',y)= f PQ';y)dx-\-mx,i
J a, h

l/)(^!/

defines a function F[x, //), that function lias continuous first pjartlal

derlvatlccs and hence a total dlfferentud, namely,

— = P, — = Q, dF = Pdx + Qdu. (16)
ex cy ^

' -^

To prove this statement a])])ly the definition of a derivative.

l\lx + Qdy -
j

]\lx + (Idy

Xow as the integral is independent of the path, the integral to

(,/• + A.r, //) may follow the same i)ath as that to (x, y), except for

the passage from (./•, //) to (./ + A.r, //) which may be taken along the

straight line joining them. Then A// = and

cF ,. AF
-;:— = lim = lim
CX A.,- = oA.r A.'- =

A.7

A
^ =

\ f ^"''Pf-r, y)dx = ^P($, y)Ax = P(i, y),
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by the Theorem of the Mean of (65'), p. 25. Now when A./- = 0, the

value ^ intermediate between x and x + A,/.- will approach ./• and P (^, ij)

will approach the limit P{x, ij) by virtue of its continuity. Hence

AF/Aa; approaches a limit and that limit is /-"(.>•, y) = cF/cx. The other

derivative is treated in the same way.

Jf the integnnid Pdx + Qdy of a line integral is the total diffi^rential

dF of a single valued function F{x, y), then the integral ahoat any closed

eireiiit is zero and

f ''pdx + Qdy = f '\lF= F(x, y) - Fia, h). (17)

If equation (17) liolds, it is clear that the integral around a closed path

will be zero provided F{x, y) is single valued: for F[x. y) must come

back to the value F{a, h) when (x, y) returns to (a, h). If the function

were not single valued, the conclusion might not hold.

To prove the relation (17), note that by definition

jdF = jrdx + Qdy = liin^ [P(t,-. ,;,)A/,- + Q(t,-. t,,)^^,]

and AF,- = P (t;, m) A.f ,- + Q (t,-, t;,) Ay,- + e^XXt + e.,A?/,-,

where ej and e., are (jnantities wliich by the assumptions of continuity for P and Q
may be made uniformly (§25) less than e for all points of the curve provided A/,-

and A//,- are taken small enough. Then

2^ { P,Ar ,• + Qi\y, )-^M\\<e^(\\jCi\ + \

Ay. '

)

;

= F{x. y) — F{(i. h). the sum Zl'iAXi + Q,Ayi appn

lim^^ [p,A/, + Q,A//,] = f'''^''i-<- + Wy = -f'(-^, y) - ^(«- ^^

and since 2AF,- = F{x. y) — F[(t. h), tlie sum S/',A.f,- + Q,Ayi approaches a limit,

and that linut is

EXERCISES

1. Find the area of the loop of the strophdid as indicated above.

2. Find, from (6), (7), the three expressions for the integrand of the line inte-

grals which give the area of a closed curve in polar coordinates.

3. Given the equation of tlie ellipse x = a cos ^ y = 6 sin t. Find the total area.

the area (jf a segment from the end of the major axis to a line jiaraUel to the minor

axis and cuttim:- the ellii:>se at a jjoint whose i)arameter is t. also tlie area of a sector.

4. Find the area of a segment and of a sector for the hyperbola in its parametric

form I = (I cosh /. // = h sinhi.

5. Express the folium j-° + y^' = 3axy in parametric form and find the area of

the loop.

6. What area is given by the curvilinear integral around the perimeter of the

closed curve ;• = i; siu''* J '.' What in the case of the lemniscate /•- = «- cos 2 <^

described as in makini,'- the fiyure 8 or the sign x V
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7. Write for y the analogous fonn to (9) for x. Show that in curvilinear

coordinates x = <p{u, v), y = ^{u, v) the area is

8. Compute these line integrals along the paths assigned:

>i, 1

= X or y' = X-,

1,

1

or y = X or y^ — x-,

(a) f x-ydx + y"dy, y- = x or y

(/3) r
'

(x2 + y)dx + (X + y-)dy, 7j- = x
«^0.

J"

'• 1
1/

~dx + dy, ?/ = logx or y = () and x = e,

1, x"

J-*

J 1/

X sin //tZx + 2/ cos xcZ?/, y = mx or x = and y = y,
0,

(e) / {x—iy)dz, y = x or x = and y = l or ?/ = and x = 1,

(f) I (•'" — (1 + O-^'y + y")'^~i <iuadrant or straight line.

9. Show that C Pdx + Qdy = jVl'- + (/- eos6'(i.s by working directly with the

figure and without tlie use of vectors.

10. Show that if any circuit is divided into a number of circuits by drawing

lines within it, as in a figure on p. 91, the line integral around the original circuit is

etjual to the sum of the integrals anmnd the subcircuits taken in the proper (U'der.

11. Explain the method of evaluating a line integral in space and evaluate :

/ni, 1.

1

(a) i xdx + '2 ydy + zdz, y- = x, z- = x or y =z z = x,
^0, 0.

y logxJx + y'-dy + -dz, ?/ = x — 1. z = x- or y — logx, z = x.

1. 0, 1

'

~

12. Show that C I'dx + Qdy + lldz ^ ^^ 1'- +lj^+ H- eos^J.s.

13. A liead nf mass //( strung on a f rictionless wire of any shape falls frr)m one

]>oint (x,,. ;/,,. z„) tn the puint (Xj. y^. z^) nn the wire under the influence of gravity.

SIkiw tliat »/;/(2,| — 2,) is tlie work dniic liy all the forces, namely, gravity and

the normal reaction nf the wire.

14. If X =f{t). y = (j{t). and/'(/). (/'((} be assumed continuous, show

f
'' "p (X, y) df + Q (X. y) dy = f'(p'^+Q '^^ dt,

'Jii.b 'Ji„ \ dt dt/

where /(^ij)
= <( and </ {t,^) = h. Nnte that this proves the .statement made on page 200

in regard to the possibility of sul)slituting in a line integral. The theorem is also

needed for Exs. 1-8.

15. Extend to line integrals (!")) in s]iace tlie results of § 12o.

16. AiKjlc (IS II liuf intfyriil. Show geometrically for a iilane curve tliat

d<p = cos(/', n)d>:/r, where r is the radius vector of a curve and ds the element of
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arc and (r, ?j) the angle between the nulins produeeil and the luirnud to the curve,

is the angle subtended at r — by the element d.s. Ilenee show that

(P
=

I

^-^—^ ds=
I

ds =
I

^ c/,s,

J r J r dn J dn

where the integrals are line integrals along the curve and dr/dn is tlie normal

derivative of r, is the angle cp subtended by the curve at ;• = U. Hence infer that

rdhv^r /-(Hogr rdhiixr
I :— (7.S = 2 TT or I ds = or I da = &
Jq dn Jq d)L Jo dn

according as the point j- = is within the curve or outside the curve or upon

the curve at a point where the tangents in the two directions ai'e inclined at the

angle (usually it). Note that the fornuda may be appiie(l at any point (f, tj) if

r- = (I — x)- + (t; — //)- where (j, y) is a point of the curve. What would the inte-

gral give if aiiplied to a space curve?

17. Are the line integrals of Ex. 10 of the same type i P{f. y)dx + Q{:c, y)dy

as tho.se in the text, or are they more intimately as.sociated with the curve '.' Cf . § 155.

J-.0,

1 /I 0,1

(,f — y)dH. (13) I
.eyds along a riuht line, alontr a quad-

1.0 ^-1,0

rant, along the axes.

124. Independency of the path. It has l)een seen that in ease the

integral around every (dosed patli is zer(^ or in case the integrand

J'd.r + (I'/i/ is a total ditt'erential, the integral is inde])endent of the

path, and eonversely. Hence if

]><lr + Q'h,, tlKMl -^ = ]\ -;:" = (},

,,

^•'
^!l

c-F cQ c-F cP cP cQ
and ^ .. = :— J ^ „ = ,-— J — = --

J

CXCi/ C.r Ci/C.r Cij Cij CX

provided the })avtial derivatives P'^ and (l',. are continiioiis functions.*

It remains to ])rove the converse, namely, that: If flw tiro jxirtial

der'traflrcs 7*,^ (did Q',. (tri' contlnKous and oiikiI, flic Intcgrdl

L pdx + Qdij with y; = (^ (18)

i.s indcpcndinf nf the jjafJi. is r:i'fo tirmoid c i-loscd jxtfli, and fhf, quantlti/

Pdr + Q<h/ is <t fntdi dijfn-rntinl.

To show tliat tlic integral of l^d.r -)- Qjy around a closed ])ath is zero

if P,^ = Q',., c(.)nsider first a region /' su(di that any point (./•. //) of it may

* Sec § ."ii'. Ill particular (ihscrve the comnu'iits there made relative to differentials

whit'li are or which arc ijdt exact. Tliis difference corresponds to integrals which are

anil which arc not iiiclciiciKlciit of the i)ath.
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be reached from ('/, h) hy following the lines jj = l> and ,/• = .>. Then

define the function /'(.',
//) as

F

!'(,-, y)=j }'('; ^>)'^-'- +r^^(''' y^'^y (^^)

for all })oints of that rcyion 11. Xow

cF cF
,

c C"

^u

But

This results from Leibniz's rule (4') of §119. which may l)e ai)])lied

since (}',. is l)y hy})othesis continuous, and from th(^ assumption Q',. = P'y

Then ^y,-

Hence it follows that, within the region specified, Pdx + Qdij is tjie

total differential of the function F{.i-, //) defined l)y (10). Hence along

any closed circuit Avithin that region A' tlie integral of Pdx + (idij is

the integral of dF and vanishes.

It remains to roinove the restriction on tlie type nf retfion within wliich the

integral around a closed path vanishes. Consider any closed path f which lies

within the region over which P,^ and C^,' are e(jual continuous functions of (j, y).

As the path lies wholly within II it is jjossihle to rule l\ so tinely that any little

rectangle which contains a portion of the jiath shall lie wholly within 11. The

reader may construct his own figure, jjossihly with reference to that of § 128, where

a finer ruling would be needed. The path (' may thus be surrounded by a /.ig/.ag

line which lies within 7i. Each of the small rectangles within the zigzag line is a

region of the type aljove considei-ed and, by the pi'oof above given, the iiUegral

around any closed curve within the small rectangle nmst be zero. Now the circuit

C may be reiilaeed by the totality of small circuits consisting either of the i)erim-

eters of small rectangles lying wholly within C or of portions of the ciu've C and

portions of the perimeters of such rectangles as contain parts of C. And if C be so

replaced, the integral around C is resolved into the sum of a large luunber of inte-

grals about these small circuits; for the integrals along such parts of the small

circuits as are jiortions of the perimeters of the rectangles oecui' in pairs with oppo-

site signs.* Hence the integral around C is zero, where C is any circuit within A'.

Henct' the iiUegral of Vdx, + (Idy from {(i. h) to (x, y) is independent of the path

and delines a function F{.r. y) of which Pihc + (lily is the total differential. As

this function is continuous, its value for points on the l)omulary of 7.' may be detined

as the limit of F{,r. y) as (,r, y) approaches a point of the boundary, and it may thereby

be .seen that the line integral of (18) around the lioundary is also without any fur-

ther restriction than that P'^ and Q'. be ecjual and continuous within the boundary.

* Sec Ex. 10 above. It is well, in coniiectidu witli §§ li'.'^-bJ."). to read carefully the

work of §§ 44-45 dealing with varieties of regions, redueibility of circuits, etc.
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It should be noticed that tJia line integnd

f ''pdx + (i<j<j = r p(.>-, h)dx + riux, y),hj,

J(I, h Ja Jli

(19)

ii-Jicn P(Jx + Qdij is an exuct diffcrentlid, that is, when P,', = Q\., way he

('(•ahiafed by the rule glrcn for infi'(/ratln(j an exfU't dlffefe7it'uij (p. 209j,

])rovided tlic patli along y = h and x = x does not go outside the region.

If tliat path should cut out of It, sonie other method of evaluation would

be recpiired. It should, however, be borne in mind that Pdx + Qdy

is best integrated by iiispe(.'tion whenever the function F, of wliich

Pdx + Qdy is tlie differential, can be recognized ; if F is multiple valued,

the consideration of the path may l)e required to pick out the par-

ticular value Avliich is needed. It nuiy be added that the work may be

extended to line integrals in space without any material modifications.

It was seen (§ 73) that the conditions that the complex function

Fi:'', U) = ^ ('? U) + ''^'(•'•,
U): - = a- + iy,

l)e a function of tlie complex variable z are

a; = -i; and x:=y;. (20)

If these conditions be applied to the expression (13),

J.I. h

I Fix, y)= I Xdx - Ydy + [ I Ydx + Xdy,
J J„. h J.f. h

for llic line iiili'gral of such a junction, it is seen that they are pre-

cisely tlie conditions (IS) that I'ach of tlic line integrals entering into

the coiu])lcx line integral shall be independent of the path. Hence

tJic Infcgrdl of a fii ncflon of a coiiijdr.r rarlohlt', is indt'pnident of the

path if irdcgrafion in tin- couqdcx jdanc, and flic intcyral a ronnd a

(dosed path eanislies. This applies of course only to simply connected

I'cgions of tlie plane throughout which the derivatives in (20) are equal

and continuous.

If the notations of vectors in three dimensions be adopted,

\ Xdx + Ydy + Zd:: = /F.r/r,/'

where F = A'i -f ]'j -f Zk, dx = \dx + yly -f k'Av.

In the particular case where the integi'and is an exact differential and

<:])e integral around a closed })ath is zero,

Xdx -f- Ydy -f Z,h: = Y .dx = dU = dX'\U,



ox SIMPLE IXTEGEALS 301

where T is the function defined by the integral (for V6' see p. 172).

When F is interpreted as a force, the function I' = — IJ such that

„ cV cV cV
Y =-\V or A' = -—

,

}- = - ^— , z = --T-
c.i- cij cz

is failed the potential function of the force F. Tlie nrgafln' nf the

tihj)e of the jiotent'idl function is the farce F and tlte negatives of the

partial dcricatires are the coniponent forces alomj the axes.

If the forces are such that they are thus derivable from a potential function,

they are said to be conservative. In fact if

and

Thus the sum of the kinetic enersy Imv- and the potential enerrn;^ T' is the same

at all times or positions. This is the principle of the conservation of energy for the

simple case of the motion of a particle when the force is conservative. In case the

force is not conservative the integration may still be performed as

.4NF = -Tr,
dt-

in '^'^.dr = - (ir.V T' = - dV,
dt-

1 m— 'dx —
Jr, dV^

m dx (?r ! r, ! ri

~2 dt' dt f'~
'

or -^ v^ + T 1 = _. 1,^- + T 0.

|(rf-r|)=/^'F..r = T,',

where W stands for the work done by the force F (Uu-infj; the motion. The result is

that the cliange in kinetic energy is eqv;al to the worlv done l)y the force ; but dW
is then not an exact differential and the work nuist not be regarded as a function

of (.r. y. z).— it depends on the path. The generalization to any number of particles

as in § 123 is inunediate.

125. The conditions that /',^ and ll',. l)e continuous and equal, which

insures independence of the ])at]i for the line integral of Pdx + Qdi/,

need to be examined more closely. Consider two examples :

First C Pdx + qdy = f ~ ' - dx + / ~<ly

,

J J X- + y- X- + y'-

cP y- — x- cQ y" — x-
where

cy (.«•- + .'/'-)- ex {x- + y-y-

It appears formally that P,^ = Q'.. If the integral be calculated around a square of

side 2 a surrounding the origin, the result is

X
+ n + (idx r + " ady ^ -r, _ ^^/,. ^ - n _ f,fiy -^ r '" ndx4 -. +

I o , + o
- - , + o

- -
.,
= 2

.,
, ,

-a X- + «- -'-<( (I- + y d+„ .r- + <i~ J+„ a- + y- J-a x- + a

+ 2
I

^— = 4
I

— = 4 - = 2 TT ?i 0.

J- a a'^ + 2/- J- a ^- + a- 2
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The integral fails to vanish around the closed path. The reason is not far to seek,

the derivatives P' and Q^ are not defined for (0, 0), and cannot be so defined as

to be continuous functions of {x, y) near the origin. As a matter of fact

I —
f- ^ =

I
d tan -1 •' = tan -i

J<,, h X- + y- x- + y- J a, h X

and tan -i {y/x) is not a single valued function ; it takes on the increment 2 tt when

one traces a patli surrounding the origin (§45).

Another illustration may be found in the integral

/dz r dx + idy _ r xdx + ydy
, f

— V^^: + xdy

z J X + iy J X- + y- J x^ + y-

taken along a path in the complex plane. At the origin z = the integrand \/z

becomes infinite and so do the partial derivatives of its real and imaginary parts.

If the integral be evaluated around a path passing once about the origin, the

result is

I
_ = U log (x2 4- ?/2) + i tan -i ^ =2iri. (21)

Jo z \_2
'

irjfi,6

In tliis case, as in tlie previous, tlie integral would necessarily be zero about any

closed path which did not include the origin ; for then the con-

ditions for absolute independence of the path would be satisfied.

Moreover the integrals around two different ^laths each encircling

the origin once would be equal ; for the paths may be considered

as one single closed circuit by joining them with a line as in the

device (§ 44) iov making a nuiltiply connected region simply con-

nected, the integral around the complete circuit is zero, the parts

due to the description of the line in the two directions cancel,

and the integrals around the two given circuits taken in opposite directions are

therefore equal and opposite. (Compare this work with the nuiltiplc valued nature

of logz, p. 161.)

Suppose in general that P(.r. //) and Q(x, y) are single valued func-

tions wliicli liave the first partial derivatives P,^ and <.l', continuous

and equal over a region 7' exeept at certain points .1, B, . Surround

tliese points with small circuits. The remaining }iortion of Tt is such

that P'y and Q' are everyvrhere equal and continuous; but the r(\gion

is not simply connected, that is, it is ])Ossil)lc to draw in tlic region

circuits which cannot l)e shrunk down to a })oint, owing to the fact

that the circuit may surround one or more of tlitj regions which have

heen cut out. If a circuit can be shrunk down to a point, that is, if it

is not inexti'icably wound about one or more of the deleted ])0]-tions,

the integi'al around the circuit will vanish; for the })revious reasoning

will apply. ])Ut if the circuit coils about one or more of the deleted

regions so that the attenqjt to shrink it down leads to a circuit which

consists of the contours of these I'l^gions and of lines joining them, the

integral need not vanish ; it reduces to the sum of a number of integrals
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taken aroiiiul the contours of the deleted portions. If one circuit

can be shrunk into another, the integrals around the two circuits are

equal if the direction of description is the same ; for a line connecting

the two circuits will give a combined circuit which can bo shrunk down
to a point.

The inference from these various observations is that in a multiply

connected region the integral around a circuit need not be zero and

the integral from a fixed lower limit {(i, h) to a variable upper limit

(./•, ?/) may not be absolutely independent of the path, but may be dif-

ferent along tAvo paths which are so situated relatively to the excluded

regions that the circuit formed of the two paths from (rr, h) to (x, 7)

cannot be shrunk down to a })oint. Hence

^ ('> 1/)^ f
'

'l'<^'-'- + d'^'J, K = Q'x (generally),

the function defined l)y the integral, is not necessarily single valued.

Kevertheless, any two values of Fi^x, y) for the same end point will

difter only by a sum of the form

F'i(?', y) - Fi{^, y) = wiA + ^"2-^2 + •
•

where /j, In, • • • ^i'^ the values of the integral taken around the con-

tours of the excluded r(>gions and Avherc; ;//j, w.^^, . . . are positive or

negative integers which represent the number of times the combined

circuit formed from the two paths will coil around the deleted regions

in one direction or the other.

126. Sir])pose that /(,-:) = X(x, y) + lY{x, y) is a single valued func-

tion of z over a region R surrounding the origin (see figure above), and

that over this region the derivative /'(.v) is continuous, that is, the

relations A',,' = — F^ and X',. = Y', are fulhlled at every })oint so that

no points of 11 need ho cut out. Consider the integral

over paths lying witliin 7*. Tlie function f(rc)/z Avill have a contin-

uous derivative at all points of Jt except at the origin ,'v = 0, Avhere the

denominator vanishes. If then a small circuit, say a circle, be drawn

about the origin, the function /(«)/« will satisfy the requisite condi-

tions over the region which remains, and the integral (22) taken around

a circuit whi(,-h does not contain the origin will vanish.

The integral (22) taken around a circuit which coils once and only

once about the origin will be e(_[ual to the integral taken around the
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small circle about the origin. ISTow for the circle,

where the assumed continuity of f(n) makes \r](z)\ < c provided the

circle about the origin is taken sufficiently small. Hence by (21)

p^ dz = r^ dz = 2 7rlf{0) + $

Jo " Jq

with 1^1 =
1

fld:^^ r h. L/^l s e r\ld = 2 tte.

{Jq " Jq " Jn

Hence the difference between (22) and 2 7rlf(0) can be made as small

as desired, and as (22) is a certain constant, the result is

X
^dz = 2'7rlf(0). (23)

A function /(.") which has a continuous derivative /'(.") at every

point of a region is said to be annli/tle over that region. Hence if the

I'egion includes the origin, the value of the analytic function at the

origin is given by the formida

•^^^) = 2^- r^'^- (23')

Jq

where the integral is extended over any (drcuit lying in the region and

passing just once al)Out the origin. It follows likewise that if z = a is

any point within the region, then

f{n) = ^. f^^^dz, (24)

Jo

where the circuit extends once around the ])oint a and lies wholly Avitliin

the region. This inn)ortant result is due to ('aucliy.

A more (-onvenient form of (24) is obtained by letting t = z repre-

sent the value of z along the circuit of integration and then writing

a =^ z and regarding z as variable. Heiu^e Cauchy's Integral

:

This states that if (imj rirrult he drmrn in flic refjum over irhlch f{z)

is anah/fir, flic, value "f f(z) at all //oints iritJiln flint cirn/U iiKiij he, eijt-

tained hij eealiKitlnr/ C<nie]iijs Inte<jral (25). Thus f(z) may be regarded
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as defined by an intejj^ral containing a parameter z ; for many pur-

poses this is convenient. It may be remarked that Avhen the values of

fiz) are given along any circuit, the integral

may be regarded as defining /(,t;) for all points

within that circuit.

To iind the sKccc'ixlve derlrati/'es of /(z), it

is merely necessary to differentiate with respect

to z under the sign of integration. The condi-

tions of continuity which are required to justify

the diiferentiation are satisfied for all points z

actually Avithin the circuit and not upon it. Then

(n
/'(-)

1 r .rV)

2 TT.- /(/-,-:f'
, r >(.)

1)! r ,m
•Jo

dt.

As the differentiations may be performed, these formulas sIioav that an

(i7inlytlc function lies contmuous deriiuitlres of oil orders. The definition

of the function only required a continuous first derivative.

Let a be any particular value of ,',- (see figure). Then

1 1 11
{^t — a) — {^z — a) t — a z — (C

1 -

1 + ^^(. '^T

(^ - '0'-
+

(z — a)"

(t — a)"

fit)

(t-nf

+ ^. r^.-.)-^^'^^ + --+^ {iz-ay-^j^^dt^n

with n^, =^ f^^^^^
' -^'^'^ -

t — a

t — a

Now t is the variable of integration and z — « is a constant with respect

to the inte<rration. Hence

/(^) ^/CO + (^ - ^O/'l'O + ^^^:7T^/"('0

+ ••• +
(z - ay

(26)

This is Taylor's Foi'miila for a function of a complex variable.
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EXERCISES

1. If P'y = Q^,, Q'^ — R',^^ li'^ = P'^ and if these derivatives are continuous, show

that Pdx + Qdy + Rdz is a total differential.

2. Show that
I

P {X:, V-, ir)dx + Q(x, y, a)d)/, where C is a given curve,

defines a continuous function of <(-, tlie derivative of which may be fomid by differ-

entiating under the sign. What assumptions as to the continuity of P, Q, P^, Q^
do you make ?

o. If logz=
I
— = I \- I

I
be taken as the

Ji z J 1,0 x^ + y'- J 1,0 X- + y'^

definition of log z, draw paths which make log (J + }, V— 3) = jTri, 2
J

tt/, — 1
jj

tt/.

/.s 3^ — 1
4. Study

I
~ with especial reference to closed paths which surround + 1

Jo z^ — 1

— 1, or both. Draw a closed path surrounding both and making the integral vanish.

5. If /(z) is analytic for all values of z and if \f(z)
\
< 7r, show that

/(z) - /(o) = r ./-(o [^
^ - -

J]
./< = r

-f^^^^^
du

Jo \_i — z i\ Jo{l — z)t

taken over a circle of large radius, can be made as small as desired. Hence infer

that/(2) nuist be the constant/(z) =/(0).

6. If G (z) = (7„ 4- a-jZ + • • • + <i„'^" i>^ i> polynomial, siiow that/(z) = ^/G (r) nuist

be analytic over any region which docs not include a root of G (z) = either witliin

or on its boundary. Show that the assumption tliat (r{z) = has no roots at all

leads to the conclusion that /(z) is constant and equal to zero. Hence infer that

an algebraic equation has a root.

7. Show that the absolute value of the remainder in Taylor's Fonnula is

,^,,
\z-a\" r f(t)dt i 1 v ML^

2-w Jo{t — a)" {t — z)\ •2Tr p" p — r

for all points z within a circle of radius r about a as center, wlieii p is (lie radius

of the largest circle concentric with a which can be drawn within the circuit alxnit

which tlie integral is taken, M is the maxinuun value of f{t) upon the I'ircuit, and

L is the length of tlie circuit (figure above).

8. Examine for independence of path and in case of independence integrate:

(a)
I

x-i/dx + xy-ili/, {[i) j xy-dx + x-ydi/, (7) j
xih/ + ydx,

(5) / {x~ + xy)dx + {//- + xy)dy, (e)
|

// cos jv/// + ' //- sin ^•(Zx.

9. Find the conservative forces and the iiotential

:

(/3) X = - nx. ¥=.- »//. (7) X = V.r. Y = y/x.
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10. If li {)•, <p) and #(/•, (p) are the component forces resolved along the radius

vector and perpendicular to the radius, show that clW = Udr + i-^d<f) is the differ-

ential of work, and express the condition that the forces li, <I> be conservati'/e.

11. Show that if a particle is acted on by a force E = —/('') directed toward

the origin and a function of the distance from the (jrigin, the force is conservative.

12. If a force follows the Law of Nature, that is, acts toward a point and varies

inversely as the square r- of the distance from the point, show that the potential

is — k/r.

13. Troni the results F = — V T or T' = - C F<h = CA'dx + Ydij + Zdz show-

that if T\ is the potential of Fj and T'.^ of F., then V = Y^ + 1'. will be the

potential of F = F, + F.,. that is, show that for conservative forces the addition of

l^titcntials is e(iuivalent to the parallelogram law for adding forces.

14. If a particle is acted on by a retarding force — ky proportional to the

velocity, show that 11 = \ kv- is a function such that

- ~ = — ki\,: — = — kv,f, — = — A-y^,

(l-'.c fl'.v Cl'j

d]V= - kv.dT = - k{i\,d.c + v,,di/ + vMz).

Here E is called the dissipative function
;
show the force is not conservative.

15. rick out the integrals independent of the path and integrate:

(a) r t/zdx + .rzdij + xydz, {(S) j ijd.r/z + 'dtj/z — xijdz/z'^,

(7) J -'-l/z (d.r + dii + (?-). ( o) J log (.r //) dx + xdy + ijdz.

16. Obtain logarithmic forms for the inverse trigonometric functions, analogous

to those for the inverse hyperbolic functions, either algebraically or by considering

the inver.se trigonometric functions as defined by integrals as

dz . , r~- dz
1

r~ dz . . p- dz

t/U 1 -\-
Z- Jo -y^l r-

17. Integrate these functions of the comi)lex variable directly according to the

rules of integration for reals and determine the values of the integrals by

substitution

:

(a) £^'zv-ih, iiS) £"cosiizdz, (7) f^^'''0+z-^rhlz,

^'^ -Vl-2- ^' Z\Z--l '^-l Vl-l-2-

In the case of nudtipic valued functions mark two different paths and give two values.

18. Can the algorism of integration by parts be apjjlied to the definite (or indeti-

nite) integral of a function of a complex variable, it being understood that the

integral must Vie a line integral in the complex plane? Consider the proof of

Taylor's rormula by integration by parts, p. 57, to ascertain whether the proof is

valid for the complex plane and what the remainder means.
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19. Suppose that in a plane at ?• = there is a particle of mass in which attracts

accordiiiic to the law F = m/r. Show that the potential is V = mloi^r, so that

F = — VT". The induction or fliu of the force F outward across the element ds of

a curve in the plane is by definition — Fcos(F, n)ds. By reference to Ex. 16,

p. 297, show that the total induction or liux of F across the curve is the line integral

(along the curve)

—
I
Fcos(F, )()(/.s = ;/i j

^^^ (i,s = / — ds
;J J dn J dn

I r ^ ,^ - , i^ r dV
Itt ^o dn

and m = -—
| F cos (F, n) ds =— I -^— ds.

where the circuit extends around the point r = 0, is a fornnda for obtaining the

mass m within the circuit from the field of force F which is set up by the mass.

20. Suppose a luunber of masses w, . »/.,. • • . attracting as in Ex. l!t, are situated

at points (^j, Tjj), (^.,, V-^)-
• in the i>hirie. Let

F = F^ + F, + • •
•

,

V = V^ + v., +

,

Vi = m,- log
[i^,-

- xf + (t?,- - yf]l

be the force and potential at (.r, //) due to the masses. Show that

:^'
f FeoHF,n)ds = -Ly f '^ds=y'n, = M,

ZTT Jo ZTT ^~^ •JQ dn -^^

where 2 extends over all the masses and 2' over all the masses within the circuit

(none lieing on the circuit), gives the total mass 3f witliin tlie circuit.

127. Some critical comments. In the discussion of line int(\t,Tals

and in the future discission of double integrals it is necessary to speak

fre(jiieutly of curves. For the usual problem the intuitive conception

of a curve suthces. A curve as ordinarily conceived is continuous, has

a continuously turning tangent line except perluqis at a finite ntuubcr

of angular points, ami is cut by a line parallel to any giveii direction in

oidy a finite ]uunl)er of points, exce])t as a portion of the curvt^ may
(U)iiicide with such a line. The ideas of lengtli and area are also aj)])li-

cable. For those, however, who are interested in more than the intuitive

])resentation of the idea of a curve ami some oi' the matters therewith

coniu'cted, the following sections are offered.

If (p (t) and ^ (t) are two single valued real functions of the real variable t defined

for all values in the interval t^y = t ^ t^. the pair of t'(]uations

x = 4>{t). !/ = ^{t). /„^/^/,. (27)

will be said to define a rune. If and \p are continuous functions of t, the curve

will be called continuous. If (p{t^) = 0(/,,) and •/'(/,) = ^p (^,,). so that the initial and

end points of the curve cfdncide. the curve will lie called a closed curve i)rovided

it is continuous. If there is no other iiair of values t and V whicii make both

(j)(t) — (p{t') and '^(0 ~ ^(f). the curNc will be calJi'd shujilc: in ordinary language,

the curve does not cut itself. If / describes the iiiter\al from /,, to [^ cuntiuueusly

and cnnstaiUly in tlie same sense, the jiiiint i.e. //) will be said td desci-ilie the curve

in a given sense ; the (ipjMisite sense can be had by allowing t to describe tlie interval

in the opposite direction.
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Let the interval t^y ^ t ^ t^ be divided into any number n of subintervals

A^t, A.,t, •, A„t. There will be n corresponding increments for x and y,

A,/. A.,J", • • , A„j, and A^y. A.,y, • • • , A„y.

Then A,-'- = a (A,j-)- + {A,y)- =1A,-J-| + |A,-?/|, ] A/x| ^ A,c, |A,-2/| ^ A,-c

are obvious ine(]ualities. It will be necessary to consider tlie tliree sums

a, =^ A„r:. <r, =^|A,-2/], <r, =2^A,C =:^ V(A,.,-)- + {A^yf.

1 1 11
Fur any division of tlie interval from t^ to t^ each of these sums has a definite

positive value. When all possible modes of division are considered for any and

e\ery value of ;/. the sums o-j will form an infinite set of numbers which may be

either limited or unlimited above (§22). In case the set is limited, the ujiper

frontier of the set is called the variation of x over the curve and the curve is saiil

to be of limited variation in x; in case the set is unlimited, the curve is of unlimited

variation in x. Similar observations for the sums o-.,. It may be remarked that the

geometric conception corresponding to the variation in x is the sum of the projec-

tions of the curve on the j-axis wlien the .sum is evaluated arithmetically and not

algebraically. Thus tlie variation in y for the curve y = sinx from to 2 7r is 4.

The curve y = sin(l//) between these .same limits is of unlimited variation in y.

In both cases the variation in x is 2 tt.

If both the .sums (r, and tr., have upper frontiers L^ and Z.,, the .sum o-g will have

an upper frontier i., ^ -L, + L., : and conver.sely if ff., has an upper frontier, both

(7j and (T., will have upper frontiers. If a new point of division is intercalated in A,-^,

the sum o-j cannot decrease and, moreover, it cannot increa.se by more tlian twice

the oscillation of x in the interval A,^ For if Ai,x + Ao,x = A,J, then

fAi,-.f
I
+ \A.;X, s ;A,-.f

i.
|Ai,-x; + |Ao,-.r; ^ 2 (.V,- - ?«,).

Here Ant and Ao,i are the two intervals into which A,^ is divided, and 3/",- — ??;,- is the

oscillation in the interval A,^ A similar theorem is true for a.,. It now remains to

show that if the interval from t^^ to t^ is divided sutficieiitly fine, the .sums o-j and a..

will diiSer bj" as little as desired from their frontiers i^ and Z.,. The proof is like

that of the .similar problem of § 28. First, the fact that L^ is the frontier of o-, shows

that some method of division can be found so that L^ — a-^ < le. Suppose the num-

ber of points of divi.sion is n. Let it next be a.ssumed that (p{t) is continuous; it

niiLSt then be uniformly contimious (§25), and hence it is possible to find a 5 .so

small that when Ait < 5 the oscillation of x is ,V,- — ?»,- < e/^in. Consider then any

nieth(jd of division for which A,-^ < 5, and its sum ff[. The superposition of the former

division with ?i points upon this gives a sum a[' = a[. But cr'^ — a[<2 ne/A n =
J

c,

and a'^ ^ a-^. Hence L^ — a'^ < I e and L^ — a[<e. A similar demonstration may
be given for cr„ and Z„.

To treat the sum o-g and its upper frontier L^ note that here, too, the intercalation

of an additional point of division cannot decrease o-g and, as

A/(Ar)- + (A.'/)-^:A.r| + |A//|.

it cannot increase o-g by more than twice the sum of the oscillations of x and y in

the interval At. Hence if the curve is continuous, that is, if both x and y are con-

tinuous, the division of the interval from i^ to <j can be t.iken .so line that a^ .shall
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differ from its upper frontier ig by less than any assigned quantity, no matter how
small. In this case i^ = s is called the length of the curve. It is therefore seen that

the necessai-y and sufficient condition tltat any continuous curve shall have a length is

that its Cartesian coordinates z and y shall both be of limited variation. It is clear that

if the frontiers L^{t), L„{t). L.^{t) from ^^ to any value of t be regarded as functions

of i, they are continuous and nondecreasing functions of i, and that L.^{t) is an

increasing function of t ; it would therefore be possible to take s in place of t as

the parameter for any continuous curve having a length. ^Moreover if the deriva-

tives x' and y' of x and y with respect to t exist and are continuous, the derivative s'

exists, is continuous, and is given Ity the usual fornuda .s' = Vj-'- + y''^. Tliis will

be left as an exercise ; so will the extension of these considerations to three

dimensions or more.

In the sum x-^ — x^ = 2A,-x of the actual, not absolute, values ()f A,-.r there may
be both iJO'^^itive and negative terms. Let tt be tlie sum of the positive terms and

V be the sum of the negative terms. Then

Xj — Xy = TT — ;>, (Tj = TT + V, 2 TT = Xj — X|j + ""i,
2 V =: X^ — X^ + (T^.

As ff^ has an upper frontier L^ when x is of limited variation, and as x^ and x^ are con-

stants, the sums ir and v have ixpper frontiers. Let these be II and X. dmsidered

as functions of i, neither n(i) nor N(^) can decrease. Write x{t) = x,^ -\- Hit)— 'S{t).

Then the function x{t) of limited variation has been resolved into the difference of

two functions each of limited variation and nondecreasing. As a linuted non-

decreasing function is integrable (Ex. 7, p. 5-4), this shows that a function is inttgralile

over any irderval over which it is of limited variation. That the difference x = x" — x'

of two limited and nondecreasing functions must be a functi(jn of limited variation

follows ivom the fact that ' Ax^ !-^"l + ;-^-'''|- Lurtherniore if

X = Xy + n - X be written x = [x^ + II + \xj+ t - t,,] - [X + |Xy! + < - y

,

it is seen that a function of limited variation can be regarded as tJie difference of tv:o

positive functions whicli are constantly iucrca,-sing, and tliot Uieve functions are con-

tinuous if the given function x (t) In continuous.

Let the curve C detined by tlie equations x = 0(0- i/ = '/' (0- ^o — ' — ^- ^^

continuous. Let r{x. y) be a continuous function of (x. //). Form the sum

^ r (t^ . -n;) A,x =^r (^i , t;,-) a,-x" -^r i ^s- . 7,,) a,x'. (28)

wliere A^x, A.^x, • are the increments corresponding to Ajf. X,t. . where (^,-. tj;)

is tlie point on the curve which corresponds to some value of t in A,/, wliere x is

assumed to be of limited variation, and wliere x" and x' are tw(_i continui;>iis increas-

ing functions whose difference is x. As x" (or x') is a continuous and constantly

increasing function of t. it is true inversely (Ex. 10. p. 4.y) that t is a continuous and

constantly increasing function of x" (or x'). As P{x. y) is continuous in (x. //). it

is continuous in t and also in x" and x'. Xow let A,-^ =; : tlu-n A,x" = and

A,r' = 0. Also

liiiiV PA/.'-" = f''Pd.r and limV P, A,-x' = C'^Tdx'.

•'O ''u

'I'iie limits exist ami arc intt-iirals simply because P is contiiuu.ius in x" or in x'.

Hence the nuul on the Itft <f (2!-i) h<is a limit ditd

limV I'Xx -^
f

' Pdx = r'' Pdx" - f^'J^'dx'



ox 8I.MPLE INTEGRALS 311

may he defined as the line integral of P along the curve C of limited variation in z.

The a.s.suiiiption that y is of limited variation and that Q{x, y) is continuous would

lead to a corresponding line integral. The assumption that both x and y are of limited

variation, that is, that the curve is rcctifiable, and that P and Q are continuous icould

lead to the existence of the line hdegral

J"^'"''P{x, y)dx+ Q{x, y)dy.

A considerable theory of line integrals over general rectifiable curves may be con-

structed. The subject will not be carried further at this point.

128. The (luestiou of the area of a curve retiuires careful consideration. In the

first place note that the intuitive closed i)lane curve which does cut itself is intui-

tively believed to divide tlie plane into two regions, one interior, one exterior to the

curve ; and these regions have the property that any two points of the .same regi(jn

may be connected by a continuous curve which does not cut the given curve,

whereas any continuous curve which coiniects any point of one region to a point

of the other nuist cut the given curve. The first <iuestion which arises with regard

to the general closed simple curve of page 308 is : Does .such a curve divide the plane

into just two regions with the properties indicated, that is, is there an interior and

exterior to the curve ? The ansicer is affirmative, but the i>ronf is somewhat ditticnlt—
not becau.se the .statement of the problem is involved or the proof replete with

advanced mathematics, but rather because the statement is .so simple and elemen-

tary that there is little to work with and the proof therefore reijuires the keenest

and most tedious logical analy.sis. The theorem that a closed .simi)le plane curve

has an interior and an exterior will therefore be a.ssumed.

As the functions x{t), y (t) which define the curve are continuous, they are lim-

ited, and it is possilile to draw a rectangle with sides x = (t. x = h. y = '". // =; d so

as entirely to surround tlie curve. This rectangle may next be i-ulcd with a num-
lier of lines i)arallel to its sides, and thus be

divided i]ito .^mailer rectangles. These little rec-

tangles may be divided intr> three categories, those

outside the curve, those inside the curve, and

thosi' up(.)n the curve. B}' one upon the curve is

meant one which has .so nmch as a .'tingle point

fif its perimeter or interior upon the curve. Let

.1. .1,-, ^l,,, .le denote the area of the large rec-

tangle, the .'<um of the areas of the small rectan-

gles, which are intei-ior to the curve, tin- sum of

the areas of those upon tlie curve, and tlie sum of

those exterior to it. Of course .1 =.l,-f J„ + .l,..

Now if all methods of ndina- be cinsidcreil. the

qtu^ntities -1,- will have an upper frontier L,-. the quantities ylg will have an upper

frontier L^. and the quantities A„ will have a lower frontier ?„. If to any method

of ruling new rulings lie a<liled. the (luaiit ilies A,- and .!,> become .1^ and ^l' with

the conditions ,1,' s ^-1^., A'^, ^ .1,,. and hence J,', ^ vi„. From this it follows that

A = L; + i„ + L, . For let there be three modes of ruling which for the I'espective

cases .1;. A,,. A„ make these three (luaiiTiries difft^r from their froiUiers T;. L,,. l„

by less than
I e. Then the superposition of the tliree systems of ridings gi\-es rise

to a rulinu: for which A'-. A',. A' nnist differ from the frontier values bv less than
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If, and hence the sum Zj+/u+ L,., which is constant, dilYers from the constant A
by less tiian e, and nuist tlierefore be ecjual to it.

It is now possible to define as the {qualified) arvaa nf llie curve

Li = inner area. /« = area on the curve. i, + /„ = total area.

In the case of curves of the sort intuitively familiar, the limit /„ is zero and

Li = A — Lg becomes merely the (unqualified) area bounded by the curve. The

question arises : Does the same hold for the general curve here tinder discu.ssion ?

This time the ansiner is negative ; for there are curves which, though closed and

simple, are still so sinuous and meandering that a finite area /„ lies upon the curve,

that is, there is a finite area so bestudded with points of tlie curve that no part of

it is free from points of the curve. This fact again will be left as a statement with-

out proof. Two further facts may be mentioned.

In the first place there is applicable a theorem like Theorem 21, p. 51, namely:

It is possible to find a number 5 so small that, when the intervals between the

ridings (both sets) are less than 5, the sums A„. Ai. A^ differ from their frontiers

by less than 2e. For there is, as seen above, some methud of ruling such' that these

sums differ from their frontiers by less than e. Moreover, the adding of a single

new ruling cannot change the .sums by more than AD. where A is the largest inter-

val and D the largest dimension of the rectangle. Ileiu-e if the tutal munlicr ui

intervals (both sets) for the given method is -Vand if 5 lie taken less fhan e/XAI).

the ruling obtained by superpo.sing the given ruling upon a ruling where the inter-

vals are le.ss than S will be such that the sums differ from the given ones by less

than e, and hence the ruling with intervals less than 5 can only give rise to sums

which differ from their frontiers by less than 2e.

In the second place it should be ob.served that the limits i,-, l,, have been obtained

by means of all possible modes of ruling where the rules were parallel to the x- and

2/-axes, and that there is no a priori a.ssurance tliat these .same linuts would have

been obtained by rulings parallel to two other lines of the plane or b}' covering the

]ilane with a network of triangles or hexagons or other figures. In any thorough

treatment of the subject of area such matters would have to be discussed. That

the discussion is not given here is due entirely to the fact that these critical com-

ments are given not so much with the desire to establish certain theorems as with

I he aim of showing the reader the sort of <iiiestions which come up for considera-

I'nn in the rigorous treatment of such elementary matters as "the area of a jilane

curve,'' which he may have thought he "knew all about.
"'

It is a connnon intuitive conviction that if a region like that formed In' a square

be divided into two regions by a contimious curve which runs across the square

from one point f)f the bcjundary to another, the area of the S(|uare and the sum of

the areas of the two parts into which it is divided are ecjual. that is. the curve

(counted twice) and the two portions of the iierimeter of the square form two

siuqile closed curves, and it is expected that the sum of tlie areas of the curves is

the area of the S(juare. Now in case the curve is such that the frontiers /„ and l[^

formed for the two curves are not zero, it is clear that the sum Li + /- U>r the

tw(j curves will not give the area of the square but a smaller area, whereas the

sum (Li + /„) -\- (L'l 4- /,',) will give a greater area. Moreover in this casi', it is not

easy to formulate a general tlefinition of area applicable to each of the regions and

such that the sum of the areas shall be eijual to the area of the combined region.

Hut if /„ ami /^, both \anish, then the sum L, -\- L- does give the combined area.
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It is therefore customary to restrict the application of the term ''area" to such simple

closed curves as have /„ = 0, and to say that the quadrature of such curves is possible,

but that the quadrature of curves for which l^^ ^pt is impossible.

It may be proved that : If a curve is rectlfiable or even If one of the functions x (t).

or y{t) is of limited variation, the limit /„ is zero and the quadrature of the curve is

possUAe. For let the interval t^'^t -^t^ be divided into intervals A^i, A.,i, • • • in

which the oscillations of x and y are Cj, e.,, • •
, t;^, ijo, • • • Then the portion of

the curve due to the interval A,( may be inscribed in a rectangle ejij,-, and that

portion of the curve will lie wholly within a rectangle 2ei-'2.rii concentric with

this one. In this way may be obtained a set of rectangles which entirely contain

the curve. The total area of these rectangles must exceed Z„. For if all the sides

of all the rectangles be produced so as to rule the plane, the rectangles which go

to make up Au for this ruling must be contained within the original rectangles,

and as Au>lu, the total area of the original rectangles is greater than /„. Next

suppose x{t) is of limited variation and is written as J^ + IT {t) — X{t), the differ-

ence of two nondecreasing functions. Then 2e,- ^ n(ij) + -V(<,), that is, the sum
(if the oscillations of x cannot exceed the total variation of x. On the other hand

as y{t) is continuous, the divisinns A,-^ could have been taken .so small that r;, < t].

Hence

/„ < .1,, ^^ 2 e,- . 2 t;,- < 4 r;^ e, S 4 7, [U{t^) + X{t^)].

The quantity may bo made as small as desired, since it is the product of a finite

quantity by rj. Hence /„ = and the quadrature is i^ossible.

It may be observed that if x (t) or y (t) or both are of limited variation, one or

all of the three curvilinear integrals

— jydx, J-cdy, l jxdy — ydx

may be defined, and that it should be expected that in this case the value of the

integral or integrals would give the area of the curve. In fact if one desired to

deal only with rectlfiable curves, it would be possible to take one or all of these

integrals as the definition of area, and thus to obviate the di.scussions of the pres-

ent article. It seems, however, advisable at least to point out the problem of

quadrature in all its generality, especially as the treatment of the problem is very

similar to that usually adopted for double integrals (§ 132). From the present

viewpoint, therefore, it would be a proposition for demonstration that the curvi-

linear integrals in the cases where they are applicable do give the value of the

area as here defined, but the demonstration will not be imdertaken.

EXERCISES

1. For the continuous curve (27) prove the following properties:

(a) Lines x = a, x = h may be drawn such that the curve lies entirely between

them, has at least one point on each line, and cuts every line x = f , o< f < 6, in at

least one point
;
similarly for y.

((3) From p = x cos a + y sin a. the normal equation of a line, prove the prop-

ositions like those of (a) for lines parallel to any direction.

(7) If (^. 77) is any point of the jy-plane, show that the distance of (^, 77) from

the curve has a minimum and a maximum value.
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(5) If »t(|, r)} and J/(f, rj) are the ininiimun and maximum distances of (f, 7;)

from the curve, the functions 7/1 (|, 77) and 3/(|, 77) are continuous functions of (f, 77).

Are tlie coordinates x{^. 77), y(^. rj) of the points on the curve which are at mini-

nuim (or niaxinuim) distance from (^, 77) continuous functions of (^, 77) ?

( e ) If i', i", • • • ,
^(^'^ • • • are an infinite set of values of t in the interval i^ = i ^ i^

and if i" is a point of condensation of the set, then x^ = 4>{t'^), y'^ — ^p {V) is a point

of condensation of tlie set of points (/', ?/'), (j", 2/"), •••, (j('->, y^-^^), • corre-

sponding to the set of values t\ t" • • , U^\ • • •

.

(f) Conversely to (e) show that if (x', y'), (x", y"), • • , (j(*'), y^'^^), • • are an

infinite set of points on the curve and have a point of condensation (jc", y^), then

the point (x", y^) is also on the curve.

(77) From (f) show that if a line x = f cuts the curve in a set of points y'. y", • • •

,

then this suite of y'a contains its upper and lower frontiers and has a maximum or

mininmm.

2. Define and discuss rectifiable curves in space.

3. Are y = x- sin - and y = Vx sin - rectitiable between x = 0, x = 1 ?

X X

4. If x{t) in (27) is of total variation n (^j) + X(ii), show that

r'''P(x, ./)cZx<J/[II(ii) + N(ii)],
C 'J ,'',1

where "SI is the maximum value of P(x, //) on the curve.

5. Consider the function (9(^. 77, /) = tan-i ^—- which is the inclination of

I - X it)

the line JDining a ]i<iint (^, 77) not on the curve to a point (x, //) on the curve. With

the notations of Kx. 1 (5) show that

2 V5
!A,^l = |6'(t, 77, ^ + Ao-^(4. 7?, 0I< ttt;'m — 2 J/3

where > Ax
|

and 5 > |
A//

]

\\\\\\ l>e made as small as desired by taking Af sutiiciently

small and where it is assumed that m ^ 0.

6. From Kx. 5 infer that ^(f. 77. t) is of limited variation when t describes the

ititerval ^^ = < ^ ij defining the curve. Show that ^(|, 77, t) is continuous in (f. 77)

through any region for which m > 0.

7. Let the parameter t vary from ^,| to t^ and suppose tlie curve (27) is closed so

that (x, //) returns to its initial value. Show that the initial and final values of

^(^, 77, i) differ by an integral nuiltiple of 2 tt. Hence infer that this difference is

constant over any region for which )n > (t. In paitii'idar show that the constant is

over all distant regions of the plane. It may he remarked that, by the study of

this change of as i describes the curve, a jiroof may lie given of the theorem that

the chised continuous curve divides the jilane into two regions, one interior, one

exterior.

8. Extend the last theorem of § 12o to rectifiable curves.



CHAPTER XII

ON MULTIPLE INTEGRALS

129. Double sums and double integrals. Suppose that a Iwdy of

matter is so tliin and tiat that it can he consichn-ed to lie in a plane.

If any small portion of the Ixxly surrounding a given point J*(.r. //) l)e

considered, and if its mass be denoted hy \iii and its area hy A.l. the

average (surface) density of the portion is the quotient A/// /A.l, and the

actual density at the point P is defined as the limit of this quotient

Avhen A- 1 = 0, that is, .

D(j;i/) = Yun —-.

The density may vary from point to point. Xow conversely suppose

tliat the density D(:r, >/) of the body is a known function of (r, ]j) and

that it l)e required to find the total mass of the

body. Let the l)ody l)e considered as divided

up into a large number of }»ieces each of which

is )<ui<il! 1)1 ci-frij (lu'i'rfinn. and let A.l,- be the

area of any piece. If i^,-. 77,) be any point in

A.L-, the density at that })oint is l>{^i, -q-) and

the amount of matter in the piece is a})proxi-

mately T)(^j. 77/) A.l, provided the density be regarded as continuous,

that is, as not varying much over so small an area. Then the sum

D(i^. 7?;) A. I J + ]>[t, 7/jA.l^+ •• + />(t-„, 77,,;) A.l,, =^ />(>-,, 77,-) A.l,,

extended over all the pieces, is an ap])i'oximation to the total mass,

and may be suthcient for pi'actical purposes if the })ieces l)e taken

tolej-ably small.

The ]irocess of dividing a body up into a large ninul)er of small pieces

of which it is regai'ded as the sum is a device often resorted to : foi- the

]ir()}ierties of the small pieces may l)e known ap})roxiniately. so that

the corresponding property for the whole body can l)e ol)tained apprcjx-

imately by summation. Tlius by detinition the moment of inertia of a

small ]iarticle of matter relative to an axis is //'/•-, where m is the mass

of the jiarticle and / its distance from the axis. If therefore the

moment of inertia of a plane body with res})ect to an axis perpendicular

.315
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to its plane were required, the body Avould be divided into a large

number of small portions as above. The mass of each portion would

be approximately J)($f, 7],^A.A^ and the distance of the portion from

the axis might be considered as approximately the distance r,- from

the point where the axis cut the plane to the point (i^, rj>) in the por-

tion. The moment of inertia would be

or nearly this, where the sum is extended over all the pieces.

These sums may be called double sums because they extend over tAvo

dimensions. To })ass from the approximate to the actual values of tlie

mass or moment of inertia or whatever else might be desired, tlie

underlying idea of a division into parts and a sul)sequent summation

is kept, but there is added to this the idea of passing to a lindt. Com-

pare §§16-17. Thus

Avould l)e taken as the total mass or inertia, where the sum over n

divisions is replaced by the limit of that sum as the number of

divisions becomes infinite and each becomes small in every direction.

The limits are indicated by a sign of integration, as

lim 2^ /; (^,, 7?;)A. 1 , = Cn (./, 7/) (lA , lim '^ D (^,, 77,) r ?AJ , = fDrHA

.

The use of the limit is of course dependent on the fact that the limit

is actually approached, and for practical purposes it is further depend-

ent on the invention of some way of evaluating the limit. ]-)oth these

questions have been treated when the sum is a simple sum (§§ 16-17,

28-30, 35) ; they must now be treated for the case of a double sum like

those above.

130. Consider again the problem of finding the mass and let 7)^- be

used briefly for 7>(f,-, t^,). Let M- be the maxinmm value of the density

in the piece A.lj and let vi; be tlie mininTum value. Then

7/^A.l,.s 7).A.1,.^.1/,.A/1;.

In this Avay any approximate expression />,A.l,- for the mass is shut in

between two values, of which one is surely not greater than the true

mass and the other sui'elv not less. Form tlu> sums

^ »^.A.!.^^ />.A.l.^y .1/,-A.l,; S

extended over all the elements A.4,-. Noav if the sums .s- and N approach

the same limit when A.1, = 0, the sum 27>,A.l. which is constantly
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inchuled between .s and .S' must also ap})i'oa('li that limit independently

of how the points (if, rji) are chosen in the ai'eas A.l,-.

That s and .S' do ap})i'oacli a common limit in the usual case of a

continuous function D(.r, //) may be shown strikingly if the surface

s: — 1) (,r, y^ be drawn. The

term />,A/lj- is then repre-

sented by the volume of a

small cylinder upon the base

A,l,- and with an altitude equal

to the height of the surface

.-; = 1) Qr, v/) above some point

of AJ,.. The sum 2/>,A-',- of

all these cylinders will l)e a})-

proximately the volume under

the surface ,'w =/>(,/, v/) and

over the total area .1 = 2A.I •.

The term M^AA is re})resented

by the volume of a small cylin-

der u])on the base A.l,- and cir-

cumscri])ed about the sui-face
;

the term ?;;;A.l,-, by a cylinder

inscribed in the surface. When the numbei- of chMucnts A.I,- is increased

without limit so that eacli becomes indctinitcly small, tlic three sums s,

S, and 2/>,A.l,- all a})proach as their limit the volume under the surface

and over the area .1. Thus the notion of volume does for the double

sum the same service as the notion of area for a sim})le sum.

Let the notion of the inteirral be applied to lind tlie formula for the center of

graxity of a plane lamina. .V.ssuine that the rectaiifruhir coordinates of tlie center

of gravity are {jr. y). ('(insi(k'r the bedy as divi(U»d into small areas A^,. If (^,-, ?/,•)

is any point in the area AJ,-. the approximate moment of

the approximate mass J>»,A.l,- in that area with respect to

the line x = x is the product (^,- — x)Z),A^l,- of the mass

by its distance from the line. The total exact moment
would tlierefore be

limV {^i - l)]J,AAi = C{x - x)IJ{x, y)clA = 0,

and uuist vanish if the center of gravity lies on the line

X = X as assumed. Then

fxD (x, 7/) (lA - CxB (x, y) dA z^ or CxDdA =x Cl) (x, y) dA

.

These formal operations presuppose the facts that the difference of two integrals is

the intei^ral of the difference and that the integral of a constant x times a functi<jn B
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is till' product of tlie constant by the iutcu'i'al of the function. It should be imme-

diiitoh' apparent that as these rules are applicable to sums, they must be applicable

to the limits of the sums. The ecpiatiun may now be solved for x. Then

CxDdA fxdni fylXlA C ydm

fUdA fUdA
(1)

where m stands for the mass of the body and dm for UdA, just as A//*, miirht replace

UjAAj ; the result for y may be written down from symmetry.

As another example let the kinetic energy of a lamina moving In Ita plane be cal-

culated. The use of vectors is advantaiieous. Let ro be the

vector from a lixed oriuin to a point which is fixed in the

body, and let ri be the vector from this point to any other

point of the b(xly so that

dti dTr, dli

;

r, = ro + ri ,-, ~rr
=

-rr + —,r ^^' V' = "^o + '^i'

•

dt dt dt

The kinetic ener;.;y is 2 I vjAiitj or better the inte::ral of I v-dm. Now

VJ = V/.V; =- V,,.V,j + Vi,-.Vi,- + 2v,j.Vi,- = r~ + /Y,a)- 4- 2Vm.Vi,-.

Tiiat Vi,.Vi, = /'fi-oj-. where ;-i,-
= |ri,-' and w is the an,f;-nlar velocity of the Itody

about tlie point r,,. follows from the fact that ri,- is a vector of constant length ri,-

and hence dr^ = r-ndO. where dd is the angle that rn turns through, and conse-

(juently ai = d6/dl. Next integrate i>ver the body.

I
\ t-dm =

I
}, vijdiii + j i r'lw-dm + i v.j.Vidm

= }. vijM + io)- / r{dm + v,j' ( Vidm
; (2)

for r,j- and u- are constants relative to the integration over the body. Note that

v„.
I

v,'///( = if Vo = or if fy^d)n =
j

' r^din = - fi^ilm = 0.

15ut V,, = holds only when the ixiiut r,, is at rest, and I r^d)n = is the condition

that r, be the center of L:ravit\'. Jn the last case

T= Cl r-,hn r^ \ i\;}f + I /V' Im.

As / is the integral whirh lias been called the nioiiient of inertia relative to an axis

through the jioiiit r,, per]Mnilicnlar to the plane of the boily. the kinetic eneru-y is

seen to be the sum of ' Mr-, whidi Would be the kinetic ener:^y if all the mass were

concentrated at the iciitn- ..f gravity, ami of ' Iw'-. wliicli i> the kinetic energy of

rotation about the ceiitei- oi' -ravity : in ca>e r,, imlicated a jioint at lest (even if

only instantaiU'ousl_\' as in ^ '',' i) the whole kinetic energy would reduce to the

kinetic energy of rottition I Iw-. In case r,, indicated neither the center (jf gravity

nor a point at rest, the third tei-m in (li) would not vanish and the expre.-sion for

the kinetic energy woiUd be more complicated owinu' to tlie preseiire of this term.
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SCi X

131. To eriiliijifc tJic doiihli' infc(ii'<il In cisc flw rfr/ian is ii rcr'ton'/Zi'

pdrallel to tlie (/.res of cooriUnnti's, let the division be made into small

rectangles by drawing lines ])arallel to the

axes. Let there he in equal divisions on one ^^] »? columns /=i, 2..., ;n

side and n on the other. There will then l)e j^^f.i'.zij'-V-.

II) n small pieces. It will Ije convenient to in- '''^^n'-irt;:::':

troduce a double index and denote by AJ,-- the ,, -":t:'"-t:
•' uv [

'

'

'

•

area of the rectangle in the /th colunni and/th -(j.—^

row. Let (^,-y, ?;,/) be any ])oint. say tlie mid-

dle point in the area A.l,- = A./--A//;. Then the sum may l)e written

^ D(i^j, 77,;) A. I,^ = /^nAr^A//, -f 7>,,A.''-.A//i + • • • + J>,.,A'';,A'/i

'•'
-h 7-'i,A,/'iA//._, + ]).^^\.r.\ii., H + 7^„,,A.'-,„A//.

+
-f /)i„A,''iA.v,. -f 7>o„A-''-..^//„ H h J>,„„X''„A!/,r

Xow the terms in the tirst row are the sum of the contriljutions to

1;j of the rectangles in the first row, and so on. Hut

and A//,-^ Pi^;. 7;;)A./',- = JM.r, r].)>/.r + ^, A/j-

That is to say. by taking in sufhcicntly lai'ge so that the individual

increments A.'-,- ai'c sufHciently small, tlie sum can lie made to differ

from the integral by as little as desired lu'cause tlie integral is l)y

definition the limit of the sum. In fact

'lA^^\M,-in, A./
i = t

<

if e lie the maximum variation of D(.i\ ;,) over one of the little rectangles.

Aftei' thus suniming up according to rows, sum u]i the I'ows. Then

^7>,;A-I,,. = / 'yyt./', 7?;)'/,'-AVj + /
']>['. T^jd.rX,/,,

+ +
j

'}>(' r;„i'/.''A,V„ + A,

[Aj = [lA.'^i + ^-j-^/Z-j +" • +iA.'/,. = ei''' — •'•,i'V A// = £(.'• — ,'•„)(// — .y„)

If / J>(.'\ //)'/,'• = <^(.'/).

then 2} 7>,yA. I ,-; = (^ (

-,;,
) A//^ -b c^ ( 7;., ) A //., -J h <^ ( 7/,, ) A //„ + A

=
/ 4>[/J)'^l/ + K + X, K, A small.
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Hence *
(3)

It is seen that the douV)le inteij^ral is equal to the result obtained by

tirst integrating with res})eet to ./, regarding // as a parameter, and then,

after substituting the limits, integrating with respect to y. If the sum-

mation had l)een first according to columns and second according to

rows, then by symmetry

JDdA =
J
T '/^(.z-, !i)dn];, =j j

Vj(,v, il)'bjdx. (3')

This is really nothing l>ut an integration under the

sign (§ 120).

//' tlie rrrjion orcr jrjilrli ihc siinnnntlon is twfended

i.s not a recf(in(ili' jKirallel fa the axes, the method

could still be apjilied. IJut after summing or rather

integrating according to rows, the limits woidd not

l)e constants as x^ and x^, but would be those func-

tions X =
<^o(//)

mid ' = </)///) of // which rei)resent the left-hand and

ri'dit-hand curves which bound the req-ion. Thus

]jdA=
(

D(x,y)dxdy.

And if the summation or integi'ation had l)een iirst

with res})ect to columns, the limits would not have

been the constants //,. and //^ but tlic functions

ij = ipjx) and // = i/Zjl.'') which rciircscnt the lowci-

and up})er bounding curves of the I'cgion. Tlius

(3")

J"'"=£JZ"'"'
•, I/)

dijdx.

dx a'l A'

<•'
;

The order of the integrations cannot be inverted witlmnt making tlic

corresponding changes in tlie limits, the tii-st set of limits being sucli

functions (of tlie \'ariable witli I'cgard to whieli tlie second integration is

to be performed ) as to sum u]» according to strips reaching from (jiie side

of the region to tlie otlier, and tlie second set of limits being constants

which determine the extreme limits of tlie second variable so as to sum
up all the strips. Althougli the results (3") and (.'V") are equal, it fre-

(juently happens tliat one of them is decidedly easier to evaluate than the

other. ^Moreover, it has clearly been assumed that a line }iarallel to the

The result niav al ililaiiii'il as ill ]v\. S
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axis of tlie first integration cuts the bounding curve in only two points
;

if this condition is not fulfilled, the area must be divided into subareas

for which it is fulfilled, and the results of integrating over these smaller

areas must l)e added algel)raically to find the complete value.

To apply tliese rules for evaluating a double integral, consider the prf)l)leni nf

finding the moment of inertia of a rectangle of constant density with respect to

one vertex. Here

7 = jih-MA = i)j{x-^ + y"-)aA = dJY" (•=' + y^-)'^^^'iy

= J)f T '.
/^ + ///2

I

"

(1;/ =: ]) f
\i a' + «2/2) chj = 1 Lnb (a^ + I;^).

J \_ Jo J 'I

If the problem had been to find the moment of inertia of an ellipse of uniform

density with respect to the center, then//• '' /"• + { Vft- — '/'-

(/- + //•-) '1A=1> I „" {x"~ + 7/2) dxdy1)

,

J - a J - - \ II- — .1-

Either of these forms might be evaluated, but the moment of inertia of the whole

ellipse is clearly four times that of a quadrant, and hence the simpler results

{x- + y-) dxdy

{X- + y-)'hjdx = - Ihih (r/.2 4- Jf).

4

It is highly advisal)le to make use of symmetry, wherever possible, to reduce the

region over which the integration is extended.

132. With regard to the more careful consideration of the limits involved in the

definition of a double integral a few observations will be .sufHcient. Consider the

sums .S and -s and let .U,A-1,- lie any term of the first and ?H,A.l,- the corresponding

term of the second. Suppose tlie area AJ,- divided into two parts A^li,- and A^lo,-,

and let .Vi,-. J/j,- Ije the maxima in the i>arts and ??ii,-, nia the minima. Then since

the maxinnun in the whole area A.l,- cainiot be le.ss than that in either part, and

the minimum in tlie whole cannot lie greater than that in either part, it follows

that m\i s Hi,-, m-^i s m,-, J/j,- ^ ^f,-, ,Vo,- ^ 3/,-, and

mi^Ai ^ »/i,A.li; + m.2;^A2i, 3/i,A.ii,- + 3/o/AJo/ ^ .V,A.l,-.

Hence when one; of the pieces A^l,- is .subdivided the sum .S' cannot increase nor the

sum s decrease. Then contimied inequalities may be written as

mA ^ Vm,AJ,- ^ Vi'(i^•. Vi)^-^i ^ V-ViA.l,- s ^[A.

If then the original divisions A.l,- be subdivided indefinitely, both .'^' and -s will

approach limits {§§ 21-22) : and if those limits are the same, the simi 27^,A.l,- will

approach that common limit as its limit independently of how the jxjints (^,-, iji)

are chosen in the areas A-1,-.
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It lias not been .sliowii, however, that the limits of S and s are independent of

the method of division and subdivision of the whole area. Consider therefore not

only the sums 6' and s due to some particular mode of subdivision, but consider all

such sums due to all possible modes of subdivision. As the sums S are limited

below by niA they must have a lower frontier!,, and as the sums s are limited

above by MA they must have an upiier frontier /. It must l)e shown that / ^ i>.

To see this consider any pair of sums .S and s corresponding- to one division and

any other pair of sums S' and .s' corri'spondinL;' to anotlier method of division ; also

the sums S" and .s" (.-orrespondiim- to the division obtained by combining, that is,

by superposing the two methods. Now

,S" s >" s s" s .s, ,S' s S" s .s" ^ ,s', ,s s L. S' s L, ,s ^ /, s' s /.

It therefore is seen that any »S is greater than any .s. wjiether these sums correspond

to the same or to different methods of subdivision. Now if L<1. some .S' would

have to be le.ss than some .s
;
for as I. is the frontier for the sums .s, there nuist lie

some such siuns which differ by as litth.' as desired from L ; and in like manner

tln're must be some sums s which differ by as little as desired from I. Hence as no

^' can be less than any s, the supposition i < Hs untrue and L ^ I.

Now if for any method of division tlie limit of the difference

lim (N - .n) = limV (.V,- - ??(,-) A.l,- = liniV 0,A.l.- =

of the two stims corresponding to that method is zero, tlie frontiers L and / nuist be

tlie same and both N and .s approach tliat cf>nnnon value as their limit; and if tlie

difference S—s approaches zero for ever\' method of division, tlie sums S ami

.s will approach the same limit L = / for all methods of division, and the sum

-D;AAi will approach that limit iiiilepeinleiitly of the method of division as well

as independently of the selection of (f,-. t?/). Tliis result follows from the fact that

L — / ^ ,S — ,s, <S — L ^ S — .S-. / — -s- ^ N — .N, and hence if the limit of S — .s is

zero, then L = l and N and .s must a]iproacli the limit L = I. One case, which

covers those arising in iiractice. in which these residts are true is that in which

7>(.r. //) is contiiuious over the area A except i)erhaps upon a linite number of

curves, each of which maybe iiicloscd in a strip of area as .'^mall as desired and

upon which J){.r. //) remains tinite though it be discontiiuious. Tor let the curves

over wliich D(x. y) is discontinuous be inclosed in strii)s of total area a. 'J'he cou-

trihutioii of these areas to the difference N — .s cannot exceecl (M — ni)(i. .\]iart

fi-oiii these areas, the function J)(r. //) is continuous, and it is ]>ossilile to take tlie

divisions A.l,- so small that the OM'iUaiion uf the function over any one of them

is less tlian an assiiineil numbiT e. Hence the contribution to N — .s is less than

6(.l — ") for tlie remaining uudeh'tiMl regions. The total value of N — .s is tlierc-

foi'c less than (3/— iii)ii + e(.l — u) ami can certainl}' be made as small as desired.

Tlie proo^ of the existence and uiii(iueness of the limit of ^DjAA,- is therefore

obtained in case I) is continuous over the region .1 except for i)oiiits along a finite

lutmber of cttrves ^\•here it may be discontinuous provided it I'emains finite.

Throughout the discussion tlie term " area "" has been applied : this is justified by the

previous woriv (§]2S). Instead of di\i(ling the area A into elements A.I. one may
rule the area with lines jmrallel to the axes, as done in ij 12t<. ami consider the sums

^MAxAi/. ZmA.rA;/. -hA.rA;/. where the first sum is exteinleil over all the reclaii-

uh's wliich lie within or upon ihe cui'\c. where the second sum is extended o\(r

all the rectanu-les within the curvt'. and where the last extends over all rectaimlcs
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within the curve and over an arbitrary number (if tliose upon it. In a crrtain

sense tliis metliod is simpler, in that tlie area tlien falls out as the intei;ial of the

special function which reduces to 1 within the curve and to outside the curve,

and to either upon the curve. The reader who desires to follow this method throiiiih

may do .so for himself. It is not within the range of this book to do more in the

way of rigorous analysis than to treat the simpler questions and to indicate the

need of corresponding treatment for other questions.

The justification for the method of evaluating a definite double integral as given

above offers some difliculties in case the function X>(j, y) is discontinuous. The
proof of the ride may be obtained liy a careful con.sideration of the integration of

a function defined by an integral containing a parameter. Consider

cpiij) =/''^(-'-. .'/)'?.'•, f"''P{l/)dy =f"'f'''lJ{.c, y)d.aly. (4)

It was seen (§ 118) that (piy) is a contiiuious function of y if D{x, y) is a con-

tinuous fiuiction of (x, y). Suppose that l>{.t, y) were discontinnotts, but remained

finite, on a finite number of curves each of which is cut by a line parallel to the

a^-axis in oidy a finite munln'r of jxiints. Form A(p as liefore. Cut out the short

intervals in which discontinuities may occur. As the number of such intervals is

finite and as each can be taki'U as short as desired, their total contribution to (p{y)

or (p{y + Ay) can be made as small as desired. For the remaining portions of the

interval JC^,^ x ^ d\ the previous reasoinng applies. Hence the difference A<p can

still be made as small as desiivd and (y) is continvious. If D{x, y) be discontinuous

along a line y = ^ paralU'l to the ,r-axis. then <piij) nnght not be defined and nnght

have a discontinuity for the value y = ji. But there can be only a fiinte num-

ber of such values if U(x. y) satisfies the coiulitions imposed upon it in considering

the double integral above. Hence cp {y) would .still be integrable from y^^ to y-^. Hence

/ ' / 'Z>(,r. y)dxdy exi.sts

m {x^ - 3-,,) (//i
- y,) ^j 'j 'D{x, y) dxdy ^ M{x^ - x„) (y^ - ?y,j)and

Add

and ^ '

under the conditions imposed for the doulile integral.

Now let the rectangle .c,, = ,/• = ,Cj. y^ s ;/ ^ y^ he divided up as before. Then

mi;Ax;Ayj ^ I
'

| l){x, y)dxdy ^ ^f;jAiXAJy.

^ m;jAXiAyj ^^ J
" '

^ '

"/
' ^

^'

'
^^ (''• !/) <?''?// ^^ '^''''^'''^J'-'

V r
" ^ "'"

f
' ^ ^''

1> (X. y) dxdy = f
"'

f'T) {x. y) dxdy.

Now if the numVier of divisions is multiplied indefinitely, the limit is

r"' f'lH-c, y)dxdy = lim Vz/'z/A-l,;/ = limV .U,;/A.l// = fD(x. y)dA.

Thus the previous rule for the rectangle is proved with proper allo\vance for pos-

sible discontinuities. In case the area .1 did not form a rectangle, a rectani:le

could be described aViout it and the fiuiction l){x, y) could be deluied foi- the

whole rectangle as follows: For points within ^1 the value of l>{x. y) i> already
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defined, for points of the rectangle outside of A take I){x, y) = 0. The discon-

tinuities across the boundary of A wliicli are tlius introduced are of the sort

allowable for either integral in (4), and the integration when applied to the rec-

tangle would then clearly give merely the integral over A. The limits could then

be adjusted so that

I
D (x, y) dxdy =1 D

i^-, v) dxdy = I IJ (x, ?/) (

The rule for evaluating the double integral by repeated integration is therefore

proved.

EXERCISES

1. The sum of the moments of inertia of a plane lamina about two perpendicular

lines in its plane is equal to the moment of inertia about an axis j)erpendicular to

the plane and passing through their point of intersection.

2. The moment of inertia of a plane lamina about any point is equal to the sum

of the moment of inertia about the center of gravity and the product of the total

mass by the square of the distance of the point from the center of gravity.

3. If \\\)on every line issuing from a point of a lamina there is laid off a dis-

tance OP such that OP is inversely proxjortional to the square root of the moment of

inertia of the lamina about the line OP, the locus of P is an ellipse with center at 0.

4. Find the moments of inertia of these uniform laminas:

(a) segment of a circle about the center of the circle,

(/3) rectangle about the center and about either side,

(7) parabolic segment bounded by the latus rectum about the vertex or diameter,

(5) I'ight triangle about the right-angled vertex and about the hypotenuse.

5. Find by double integration the following areas:

(a) quadrantal segment of the ellipse, (/3) between y- = x^ and y = x,

(7) between S y^ = 25 x and 5x" = 9 //,

(5 ) between x^ + v/- — 2 x = 0, x'^ + y'^ — 2 y = 0,

(e) between y^ = 4ax -|- 4a-, ij- = — Ahx -{ 4//-^,

(f ) within {ij - X- 2)^ = 4 — x^

(77) between x- = 4 a//, ?/(x'-^ + 4:tfi) = 8 a''',

{6) y^ = (IX, X- + //- — 2 «x = 0.

6. Find the center of gravity of the areas in Ex. .5 (a), (/3), (7), (5), and222
(a) quadrant of a*y~ = a'-x'* — x^, (/3) quadrant ot xs + ys = as,

(7) between x2 = y/a + ai, x + v/ = a, (S) segment of a circle.

7. Find tlui volumes under the surfaces and over the areas given :

((r) spliei'c 2 = Va^ — x- — //- and s(juare inscribed in x- + //- = a^,

{(3) splicre z = Va- — x- — //- and circle x- + //- — ax = 0,

{7) cylinder z = V4a- — //- and circle x- + //- — 2 <ix = 0,

(5) paraboloid z = kxi/ and rectangle' ^ x ^ a, =s v/ = ^>,

(e) iiaraboloid z = kxy and circle x- + ?/- — 2 ax — 2 a// = 0,

(f )
plane x/a + y/h + z/r^ = 1 and triangle x// (x/a + y/^J — f ) = 0,

(7/) paraboloid z = \ — x~/~i — i/'^/d above the ])lane 2 = 0,

{6) paraboloid 2 = (x + y)- and circle x- + i/~ = a-.
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8. Instead of choosing (^,-, rij) as particular points, namely the middle points, of

the rectangles and evaluating Si>(|j-, tjj) AXiAyj subject to orr(n-s X, k which vanish in

the limit, assume the function -D(x, y) continuous and resolve the double integral

into a double sum by repeated use of the Theorem of the Mean, as

(p{i/)= I J){x., y)dx =^] D{^i, !/)Ajri, |'s properly chosen,

J^
'V ii/) dy =^ -^ (ni) Mj =X\X^^ ^''

'

'''^

^""'l
^^' ^X'^ ^"' '^'^ ^^^''-

9. Consider the generalizatidu of Osgood's Theorem (§35) to apply to double

integrals and sums, namely: If ii'ij are inlinitesimals such that

^0 = l>{i;, Vi)AA;j+ ^liAAri,

where t^/j is uniformly an iuiinitesimal, then

lim 2 "// = r^^A y)dA = r"' r''^{-^, y)dxdy.

Discuss the statement and the result in detail in view of § ;-54.

10. Mark the region of the j"//-plane over which the integration extends:*

{a) f'f Ddydx, (13) f f
'"'

Ddydx, (y) f' f
"Iklxdy,

Jo Jo J I J.r Jo J ir

(5) / r Jkhjdx, (e) / ^
I

l)dnl<p, (f)
j j

^ -"Dd,pdr.
' —

^

^ b " " ~ b

11. The density of a rectangle varies as the square of the distance from one

vertex. Find the monunit of inertia about that vertex, and about a side through

the vertex.

12. Find the mass and center of gravity in Ivx. 11.

13. Show that the moments of momentum (§80) of a lamina about the origin

and about the point at the extremity of the vector r,, .satisfy

I

rxvdin = r^iX / vdm + |
r'xvtZm,

or the difference between the mdiiients of momentum about P and Q is the moment
about P of the total momentum considered as applied at Q.

14. Sliow that the formulas (1) fur the center of gravity reduce to

f xyDdx f lyyDdx (
^ x{y.y — y^^Bdx

- Jo - Jo ' - J.r.
x = , 1/ = - - or X — —^ ,

I
i/lMx ( !/l)dx C '

\i/i — yo) Ddx
'()

J
'

I (.'/] + l/o) il/i - i/o) ^dx

y =

f \y^-y^)Bdx

* Exercises involving polar coordinates may be postponed until § 1,'U is reached, unless

the student is alreatly somewhat familiar witli the sul)jcct.
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wlicn D{x, y) reduces to a function J){x), it beiui,' understood that for the first

two the area is bounded by x = 0. x = «, 1/ =/(j-), y = 0, and for the second two

by X = j-y, X =x^,
?/i =/i(x), //,j

^ ,/;,(.'•).

15. A rectanguh^r hole is cut throuuli a spliere, tlie axis of the hole being a

diameter of the spliere. Find the volume cut out. Discu.ss the problem by double

inteuration and also as a solid with parallel ba.ses.

16. Show that the moment of momentum of a plane lamina about a fixed point

or about the instantaneous center is 7w, where w is the angular velocity and 7 the

moment of inertia. Is this true for the center of gravity (not necessarily fixed)?

Is it true for other points of the lamina?

18. In these integrals cut down the region over which the integral nmst be

extended to the smallest possible by tising synnnetry, and evaluate if possible:

{a) the integral of Ex. 17 with 1) = 7/^ — 2x'-i/.

(13) the integral of Ex. 17 with JJ = (x - 2 V';3)-y or 7; = G _ 2 V.S)?/,

(7) the integral of Ex. 10(e) with i* = r(l + cos0) or I) = sin <p cos 0.

19. The curve y =f{x) between x = a and x = h is constantly increasing.

Express the volume olitained by revolving the curve about the x-axis as

7r[f{(()]- {h — <i) i)lus a double integral, in rectangular and in polar coordinates.

20. Express tlie area of the eardioid r = a (I — cos0) by means of double inte-

gration in rectangular coiirdinates with the limits for both orilers of integration.

133. Triple integrals and change of variable. In tlic (>xteiisioii from

(l()iil.)le to triple iind lii^'lier integrals there is little to cause ditticiilty.

For the dis(;iissioii of the triph', integral the saiiu^ fouiulation of mass

and density may be made fiindatnental. If D(-'', //,
'-') is the density of

a l)odv at anv point, the mass of a. small volnnu> of the l)o(ly snrrotmd-

ing the point (4',, rj;, (;) will Ik; a])proxiniately J>(t;. rj;. ^,)Ar,, and will

surely lie Ijetween tlie limits .V^ATj and 7«,Ar,-, whci'e .!/• and /// are

the maximum and minimum values of the density in llie element of

volunu! A I';. The total mass of the body vvoidd be taken as

lim y />('t^, ,?,, ^,.) Ar, = fl>(.r, !,, x)>lV, (5)

where the sum is extended over the, whole l)0(ly. That the limit of the

sum exists and is in(l('])endent of the uudhod of choice of tlu; points

(t,. rj,. ii) and of tlie method of division of the total volume into elements

AT,-, pi'ovided ])(r, //, r:) is continuous tiiid the elenuuits Al'j a})[)roaeli

zero in such a. manner that they be(;ome small in every direction, is

tolerably tipparent.
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The evaluation of the triple integral by repeated or iterated integra-

tion is the inniiediate generalization of the method used for the doul)le

integral. If the region over which the integration takes place is a rec-

tangular parallelepiped with its edges parallel to the axes, the integral is

fD(x, ij, z)dV = f '

f''
C 'd(x, y, z)dxd>/dz. (5')

The integration with respect to x adds up the mass of the elements in

the column upon the hase dydz, the integration with res})ect to // then

adds these columns together into a lamina of thickness d::, and the

integration with respect to z finally adds

together the laminas and obtains the mass

in the entire parallelepiped. This could

V)e done in other orders ; in fact the inte-

gration might be performed first with re-

gard to any of the three variables, second

with either of the others, and finally with

the last. There are, therefore, six ecpuva-

lent methods of integration.

If the region over which the integration

is desired is not a rectangular parallele-

piped, the only modification which must be introduced is to adjust the

limits in the successive integrations so as to cover the entire region.

Thus if the first integration is with res})cct to x and the region is

bounded by a surface ./• = t//„(//, r:) on the side nearer the //."-plane and

by a surface x = i/'jO/, -) <>'i tlic remoter side, the integration

./,, (//, -)

/) (./•, //, ,-) dxdijdz = n {ij, z) dydz

will add up the mass in elements of the column which has the cross

section dydz and is intercepted between the two surfaces. The problem

of adding up the columns is ineiely oiu^ in dcjuble integration over the

region of the //."-plane npon wliieh tliey stand; this region is the pro-

j^'ction of the given \-olume upon the v/.v-plane. The value of tlie

integral is then

£

DdV=j
j

Qdydz=\ j
I

Ddxdydz. (5")

Here again the integiTitions may be ]ierformed in any ordei-. pi'ovided

the limits of tln^ integrals are carefully adjusted to (correspond to that

(ji-der. The method may best be learned by example.
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Find the mass, center of i:mvity. iind ludniei.t of inertia about the axes of the

vohnue of the cylinder x- + y- — 2r//; = which lies in the hrst octant and under
paraboloid x- -{ y- ~ az, if the density be assumed constant. The integrals to eval-

uate are :

/ J^'lin / i/ihn jzdm
m = f])dV. 2 =

-^
-, y= , z = ~ , •

(6)J lie in in ^ '

Ix = jl) {U- + 2-) d T', ly = dJ (./•- + z") dV, 7, = DJ^x- + y"-) d V.

The consideration of Imw the fii^'ure looks shows that the limits for z are z = and
z — {x- + y-)/a if the lirst integration be witii respect toz

;
then the double integral

in X and y has to be evaluated over a semi-

circle, and the lirst integi'atio;i is nuire simple

if made with respect to y with limits y =
and ?/ = V2r<x — X-. and linal limits x =
and X = 2n for/. If the attempt were made
to integrate lirst witli respect to y, there

would be dilRculty because a line parallel to

tlie y-axis will give different limits according

as it cuts both the paraboloid and cylinder i.r

tlie x^-plane and cylimler
;
the total integral

would be the sum of two integrals. There

would be a similar difficulty with respec:

to an initial integration by x. The order of

integrati(jn should therefore l;a z, y, x.

.T= 2«

/ f
dzdydx = I)(

/

= ^ (
'

\
,/•- V2 I IX - X- + (2 ax — X^)2 ilr

<i J'-,
1 :i J

= Ihr f"\ (1- cos(9)-sin-(9 + ^^
sin* ^'M^ -^ " TTirD

=
/

xdzdydx =D
/

II

di/dx

r.'.-
= »/(!- cos/9)

\
dx = (/ sin OiW

./•' + .'//-

lydx

\ 2 tix — X- + - X (2 ((.;: — ./•-)- '/./• = tth^D.

Hence .7 = 4 n/Z. Tlie computation of the other integrals may l)e left as an exercise.

134. Soiiiftiines tli-t', rcgidii over wliicli a inulviplti iiiti-grul is to 1h'

evaluated is stick that the evahiatioii is rehitivcly siinjilc in one kind

of coordinates hut eiitirtdv impracticabk' in anotker kind. In a(klili()n

to tke rectangular ((xirdinates tke most useful systems are imlar ru'nv-

dinates in tke plane (for doulile integrals) and jiDlar aiul cylindrical

eoiii'dinatcs in space 1 ini- ti-iplc integi-als 1. It lias keen seen i ;; 40) tkat

llic element of area or of \oluinf in tkese cases is

dA i/nI<P, <l\ ^m6iJi-<ld'l^. ilV = r.lr^l^ih:.
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(v^«,o)

except for infinitesiinals of higher order. These quantities may be

substituted in the douljle or triple integral and the evaluation may l)e

made by successive integration. The proof that the sul)stitution can

be made is entirely similar to that given in §§ 34-35. The proof that

the integral may still Ije evaluated by successive integration, with a

proper choice of the limits so as to cover the region, is contained in

the statement that tlie formal work of evaluating a multiple integi-al

by rei)eated integration is independent of what the coordinates actually

represent, for the reason that they could be interpreted if desired as

representing rectangular coordinates.

Find the area of the part of one loop of the lemniscate r- — 2a- coii2<p wliicli is

exterior to the circle r = « ; also the center of p-avity and the moment of inertia rela-

tive to the origin under the assumption of constant density. Here the integrals are

A=CdA, A2= CxdA, Ai;'=CydA, I = I)Cr-aA, m = nA.

The integrations may be performed first wiili respect («. Jc't)^

to r so as to add up the elements in the little radial

sectors, and then with regard to 4> so as to add the

sectnrs ;
or first with regard to <p so as to combine the

elements of the little circidar strips, and then with re-

gard U) r s(j as to add up the strips. Thus

IT / ~., TT

X/>
« V :! COS- ,/, ^- l\ — ^

" ( rdrd4> = / " (2 a- C(js 2,p- a^) d<p = / - ^ ;] - \a- . .:J4:; a-,

TT I
'7~ TT

P ,
/I ((V - COS-

A

2 r .• r-
Ax =2 "

/
r cos^ . rdnl4> = -

/ \2 x2 ,

_ 2 „ /> ,'; [2 \'^ (1 — 2 sin-^i) '^ (7 sin — cos 0'i0] ='^-(r = ..30.S a"

Hence x = jTrii/i\2\''>] — 4 tt) = l.lor(. 'J'he sym-

metry of the iigure shows that 7/ = 0. The calcula-

tion of I may be left as an exercise.

(jiven a sphere of which the density varies as the

distaiieL' fri)m sumo point of the surface : i'ei|uired the

ma.-s and the center <if gravity. If polar coordinates

^vith tiie origin at the given point and the polar axis

aloULC the diameter thnnigli that ]i(jiiil be assumed,

the tMiuatiiin of the sphere re(luces to ;• = 2 a cos ^

where a is the radius. The center of gi-avity from

reasons of synnnetry will fall on the diameter. To

cover the volume of the spln.-re /• must vary from /• =
at the orii:in to r = 2am< 9 upon the sphere. The
jiolar angle must range from (9 = to ^ = I tt. and the

longitudinal anule froiJi cp ~ to y = 2 tt. 'I'hen ^<^= u

(r ) cos 00



330 IXTECxRAL CALCULUS

J-.27r
/^^ ^lii cos e

Jr^in p - /^ ;•=_• a cos ^

/ " I L-r r i-ofiO 7--mi0drdOd4>,

jn = f
"

" r ^
4 Av(* cos-i ^ si n 0dddcf> = f

'

" ^ /c'(*c/0 = ^^^
:

'<^=o
4 ku*

82 A7f=/-^'^ />., 82A7f^ „„ . „,„, r ^'^32 Ay/5 , Giirka^
I / coa'^ e i^\\\ 6ded<j) =:

I
J0 = —-.—

•

The center of gravity is tlierefore 2 = 8 a/7.

Sometimes it is iiecessaiy to make a change of variable

x = 4>(h, r), !/ = ^(jf, f)

or X = 4>("i '"j '')' tf — ^(j'f ''i
")' ' ~ *^("' ''i

"') (^)

ill a double or a triple integral. The element of area or of volume has

been seen to be (§ 63, and Ex. 7, p. 135)

clA = J
> !/

dinh' or <IV

] lence

and

CI) (,>;>/)</.[= CI) (j; >/)</.[ =
I

J)(cf>, f) ./

/D(,;
I/,
^)dV=

I
D(cj>, xp, co)/• ,/

''.
.'/,

""l

", '', n-)

':,-, ?/^

idu
>', VJ

.r, Ih '"^

", '", ,)

dudi'dw.

dudvdw.

(8')

(8")

It should l)e noted that the Jacobian ma}' be either positive or negative

l)ut should not vanish; the difference between the case of positive and

tlie case of negative values is of tlie same nature as the difference

between an area or volunu^ and tlu^ reflection of the area or volume.

As the elements of area or volume are considered as positive Avhen

the increments of the variables are positive, the absolute value of the

Jacobian is taken.

EXERCISES

1. Slinw tluvt (()) are tlie forinuliis for the center of gravity of a solid body.

2. Show that /,, ~ C (if- + z-)diii, J,, = f (x- + z-)dvi, 7- = f {x- + !/-)dm are the

formulas foi- the iiiomeiit of inertia of a solid ahoiU the axes.

3. Prove that the difference between the moments of inertia of a .solid about

any line and about a parallel line through tlie center of gravity is the product of the

mass of the body by the s(iuare of the perpendicular distance between the lines.

4. Find the moment of inertia of a body about a line thrcjugh the origin in the

direction determined by the cMsiues /, 7n. n. and sliow that if a distance O/-" be laid

off along this line iiixci'sely iii'iiportional to the sijuare root of the moment (jf

inertia, the Im/us of /* is a:i i l!i snid with O as center.



= 1.

ON MULTIPLE INTEGRALS 331

5. Find tlie moments of inertia of these solids of uniform density:

(a) rectangular parallelepiped abr, about the edge «,

(/3) ellipsoid x^/a^ + y^/b'-^ + z^/c/^ = 1, about the z-axis,

(7) circular cylinder, about a perpendicular bisector of its axis,

(5) Avedge cut from the cylinder x^ + y^ = r- hjz=± mx, about its edge.

6. Find the volume of the solids of Ex. 5 ((8), (5), and of the :

(a) trirectangular tetrahedron between xyz = and x/a + y/b + z/c = 1,

((3) solid bounded by the surfaces y^ + z- = 4 (i.r, y- = ax, x = 3 a,

(7) solid common to the two equal perpendicular cylinders x- + y~ = «-, x- + z- = 11-

(,) octa... o, (£)•. (;/)> 0)'= , „) „„.,. „r (9% (0-.
(I*

7. Find the center of gravity in P>x. 5 (5), Ex. (5 (a), (/3), (5), (e), density uniform,

8. Find the area in these cases : {a) between r = a sin 2 and r = I n.

(/3) between r- = 2 d" cos 2 (p and r = 3^ a, (7) between r = a sin and r = 6 cos 0,

(5) r- = 2 a- cos 2 0, r cos = 1 Vs a, (e) r = a (1 + cos 0), r = a.

9. Find the moments of inertia about the pole for the cases in PvX. 8, density

uniform.

10. Assuming uniform density, find the center of gravity of the area of one loop :

(a) r- = 2 a2 cos 2 0, (/3) r = f( (1 — cos 0). (7) ?• = « sin 2 0,

(5) r = asin-^l (small loop), (e) circular sector of angle 2 ex.

11. Find the moments of inertia of the areas in Ex. 10 (a), (/3), (7) about the

initial line.

12. If the density of a spliere decreases unifornd\' from 7^ at the center to I)^

at the surface, find the mass and the moment of inertia about a diameter.

13. Find the total volume of :

{a) (.r- + y- + z~)- = axyz, {,3) {x- + ?/- + z~f = 21 a^xyz.

14. A spherical sector is bounded by a cone of revolution; find the center of

gravity and the moment of inertia about tlie axis of revolution if the density

varies as the ?ith power of the distance from the center.

15. If a cylinder of liquid rotates about the axis, the shape of the surface is a

paraboloid of revolution. Find tlie kinetic energy.

16. Compute ./ i'^-'-'^, j(''^^^^^], J (''^-\ and hence verify (7).^
Vr, 0/ \/-, 0, z) Vr, 0, ^/ ' ^

'

17. Sketch the region of integration and the curves u — const., v = const.
;

hence show

:

{a)
I I

/(x, y)dxdy = ( ( f{u — uv, uv) ududv, ii u = y + x, y = uv,
Jn J !/_=<) Jo J 11 =

(^) f" f f{x,y)dxdy

=
I / / ,

I
dvdu if y = xu, x = ,

Jo Jv^O \l + II 1 + M/ (1 + »)- l + «

I'

Jrt
(t p \ y n-la p 1 ):

/' dudv — I I
" f dudv.

J,.=o (1 + uy~ J„ J»=i ' (1 + 11)'^
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18. Find the volume of the cylinder r = 2 a cos ^ between the cone z ~ r and

the plane z = 0.

19. Same as Ex.18 for cylinder r~ = 2 ffi cofi 2 (p : and lind the moment of

inertia about ?• = if the density varies as the distance fnini r = 0.

20. Assuming the law of the inverse square of the distance, show that the

attraction of a homogeneous .sphere at a point outside the sjihere is as though all

the mass were concentrated at the center.

21. Find the attraction of a right circular cone for a particle at the vertex.

22. Find the attraction of (a) a solid cylinder, ((3) a cylindrical shell uj^on a

point on its axis ; assume homogeneity.

23. Find the potentials, along the axes only, in Ex. 22. The potential may be

defined as ^t—'^dm or as the inteirral of the force.

24. Obtain the fonnulas for the center of gravity of a sectorial area as

'^1 1 „ , _ ] r*^! 1_ 1 /--it 1 _ ] /-•^i 1

x = — I ~i-^coH<pd(p, y^ -
I

- y'^ Sill (pd(p.

and explain how they could be derived from the fact tliat tlie center of gravity of

a uniform triangle is at the intersection of the medians.

25. Find the total illumination upon a circle of radius a. r)wing to a light at a

distance h above the center. The illumination varies inversely as the square of the

distance and directly as the cosine of the angle between the ray and the normal

to the surface.

26. "Write the limits for the examples worked in §§ 1.33 and 134 when the inte-

grations are performed in various other ni'ilcrs.

27. A theorem of Pappus. If a closed jilane curve be revolved about an axis

which does not cut it. the volume generated is etjual to the product of tlie area of

the curve by the distance traversal by the center of gravity of the area. Prrive

either analytically (ir l)y inlinitesiinal aualvsis. .\pjih' to various figures in which

two of the three quantities, volnnie. ;',rea. position of center of gravity, are known,

to find the third. Compare Ex. 3. p. 34).

135. Average values and higher integrals. The value of some s])eeial

intei'})retatioii of iiitcyftils ami otiicr mathematical entities lies in the

concreteness and suyyestiveiiess which would be lacking in a ])urcly

analytical handling of the sul)ject. For the simple integral I fi. ')'/.'

the curve ?/ =f(.r} was ])lotted and the integrtd was inter])ret('d as

an area; it w()ulil lia\'e liocn i)Ossil)h' to remain in one dimensidii Ity

interpreting /(,'•) ;is the density of a rod and the integral as the mass.

In the case of the doulile integral
j
/('', ,'/)'^A the eoneeption of den-

sity and mass of a lamina was made fundamental: as was jiointed out,

it is possible to go into tlirt ( dimensions tind plot tln' surface .*.' =/'('',.
;/)
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and intcrpivt the iiitegi-al as a volume. In the treatment of the trijtle

integral I /('', ;/, z)dV the density and mass of a l)ody in s^taee were

made fundamental; here it Avould not l)e possible to })lot u =f(.r, >/, ,-j)

as there are oidy three dimensions available for })lotting.

Another im})ortant interpretation of an integral is found in the con-

ee})ti(jn of (ivrroge culiii'. If y^, y.„ • •, y,, are n numbers, the average of

the numbers is the quotient of their sum by n.

n n

If a set of numl)ers is formed of ir^ numbers y^, and ir„ nundicis

y.„ ••, and v,^ numbers y„, so that the total number of the luuubers

is v\ + yr, + • • • + ("„, the average is

The coefficients >r^^ v/-,. •
•

-, /r^ . or any set or numbers which are ])i'o-

])ortional to them, are called the ir('ifilif.'< of y^. y.,, •••, y„. These defi-

nitions of average will not a])])ly to finding the average of an inhnite

number of nund)ers because the dciiondnator n would not be an arith-

metical ninuber. Hence it would not l)e possibh» to apply the definition

to fiiuling the average of a function f(y) in an interval .>Vj ^ ./• ^ x^.

A slight change in the })oint of view will, however, lead to a deh-

nitiou for t]if in-i'i-di/c vdlin; of a funcfinn. Sup])ose that the interval

;% = .' = .'"j is divided into a numbei- of intervals A.c,-, and that it be

imagined tliat the number of values of // =/'(') in the interval Xr.

is pro|)ortional to the length of the interval. Then the quantities

A.r; would be taken as the weights of the values _/'(^,) and the average

would be „.,.^

J or better y = —---,. (10)

/ dx
2A,/\.

by ])assing to the limit as the A,>-,'s a}»proach zero. Then

rf(:r)dx

II
= '^-^^^—^ or r 'fix) dx = (x^ - x^) 7/. (10')

^1 ''o J,,,

In like manner if z =f(x, //) l)e a function of two varial)les oi'

II =,/'(.'•; //, z) a function of three variables, the averages over an area
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or volume would be defined bj the integrals

f/(';//) dA ff(:r,!/,z)dV

z = ^ and ¥1 = "^ —-• (10")

jdA = A id V = V

It should be particularly noticed that the value of the average is de-

fined v'lth reference to tJie variahlea of irhlcli the function averaged is a

function ; a clicnige of variable ivlll in general bring about a change In

the value of the acerage. For

if y = /(,r), J{7) =—^ f /(.-) dx ;

'l ''0J.r„

but if g=f(cf.(t)), ^ = -J— f\f(<f,(t))dt;

and there is no reason for assuming that these very different expres-

sions have the same numerical value. Thus let

7/ = ,r-, ^ ,, ^ 1^ -x = sin t, O^t^h TT,

The average values of x and y over a plane area are

.r = - / xdA,
/7 = 7 / l/'^-^y

when the weights are taken ])roportional to the elements of area; but

if the area be occupied by a lamina and the Aveights be assigned as

proportional to the elements of mass, then

— / xd/ir, y = — /
,

l/dm,

and the average values of .'• and // are the coordinates of the center of

gravity. Thes(> two averages cannot l)e expected to be e(pial unless the

density is (-onstant. The first would be called an area-average of x and

y; the second, a mass-average of x and y. Thi' mass average of the

s(]uai'e of the distance from a: point to the different points of a liimina

would be
-| ^

r^ = Jr = ~j Ah, = I/M, (11)

and is defined as the radius of gyration of the lamina al)Out that point;

it is the quotient of the moment of inertia by the mass.
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As a problem in averagt-.s consider the deteniiination of tlie average.value of a

proper fraction ; also the average value of a proper fraction subject to the condi-

tion that it be one of two proper fractions of which the sum shall be less than or

equal to 1. Let x be the proper fraction. Then in the first case

X = - ( xdx = - •

1 Jo 2

In the second case let ?/ be the other fraction so that x + ?/ ^ 1. Now if (x, y) be

taken as coordinates in a plane, the range is over a triangle, the number of points

(x, y) in the element dxdy would naturally be taken as proportional to the area of

the element, and the average of x over the region would be

jxdA f'j''~"xdjrdy j'\l-2y + y'-)dy ^

dA
/ /

djyly -2 {l-y)dy
J J Jo

3

Now if X were one of four proper fractions whose sum was not greater than 1, the

problem would be to average x over all sets of values (x, y, z, u) subject to the

relation x + v/ + z + m s i. From the analog}' with the above problems, the result

would be

,. SxAxAvA
Inn

IiA./'A//AzA«

xdxdydzdu

I I
I dxdydzdu

. = J.: = J '/ = J.'- =

The evaluation of the quadruple integral gives x = 1/5.

136. The foregoing probleiu and otlier problems wliieh may arise

lead to the consideration of integrals of greater inulti})licity than three.

It will l)e siifheient to nunition tlie case of a quadrtiple integral. In the

first place let the four variables Ije

X^^X^.r^, >,^^;^^;/^, -^^^X^X^ ,f^^u^U^, (12)

included in intervals with constant limits. This is analogous to the

case of a rectangle or rectangular ])arallelepiped for double or triple

integrals. The range of values of .', //, s:, a in (12) may l)e spoken of

as a rectangular volume in four dimensions, if it be desired to use geo-

metrical as well as analytical analogy. Then the product Aj;jAy,A,~,A//;

would be an element of the region. If

.r,. ^ 4 ^ •'",• + A.'-,-, • •, ?/, ^ Bj ^ ,,. + A//,-,

the point (^,, r;,, ^,-, ^,) would be said to lie in the element of the region.

The formation of a quadruple sum

X-
could be carried out in a nutnner similar to that of double and tri})le

sums, and the sum could readily lie shown to have a linut when
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A./',-, Ay,-, -A.-,-, \Uf approach zero, i)rovi(l(Hl_f is fontinuous. The limit of

this sum eoukl l^e evahiated l)_v itei'atcd integration

lim2^/;A.r,A//,A.t,A^/; =
I

'

j
'

j 'fi.r,>j,z,v)ilu<h<J>j<lr

^'o «^"o ^-0 ^"o

where the order of the integrations is immateriaL

It is possible to define regions other than ])y means of inecjualities

such as arose above. Consider

I^Q'', y, '^, ^0 = and F{x, y, z, n) s 0,

where it may be assumed that wlien three of the four varial)les are

given the solution of /' = gives not more than t\v(j values for the

foui'th. The values of ,r,
//, re, ti Avliich make /•' < are separated from

those which make 7'" > l)y the vahics which make F = 0. If the sign

of /•" is so chosen that large values of ./•.
//, ,t, n make /•' })Ositive, the

values whicii give /•' > Avill V)e said to be outside the region and those

which give F < Avill be said to l)e inside the region. The value of the

integral of /'('•, y. '-, "j over the region FS could be fouiul as

I j j
/('; y, '-, «) dudzdydx,

where n — Wj(,'-, y, z) and // = wjr, //, z) are the two solutions of F =
for If in terms of .>, ;//, ':, and wliere the tri])le integral remaining after

the first integration must l)e evaluated over the range of all ])()ssil)lc

values for (,/•, _y, r:). ]\y first solving for one of the othci' variables, the

integrations could be arranged in another order with pro})crly changed

limits.

If a change of variable is effected such as

:r = (p(x',y',z',u'). y = \l/{x\y',z',u'), z = x(''''-y%z\v/), u = io(.r\ i/\ z'. u') (13)

tlic iiitei^rals in the new and old varial)les are related by

fffffi., y, z, u) asayazan =fffffi'P. f, X,
c) |./

(>:;|;|>v)
i'^'^>'//'''^-""'- Ob

'I'he residt may be aceepteil as a fact in \ie\v of its analnuv with the resuli> (S) jdr

the .simpler cases. A ])roof, however, may be ,i;iven which will serx'c eijuaily well

as another way of establishiim- those results. — a way wliich docs not depend on the

soniewhat loose treatment of inlinitesimals and may therefore be enn.-idered us

more .satisfactory. In the tirst i>lace note that frimi the relatimi (•>]) nf p. ]:]i

involving Jacobians. and fmm its ^encralizatinn to sevei'al \ariables. it appeai-s

that if the cliange (14) is pnssihle fur each of two transformations, it is possible

for the succession of the two. N(jw for the simple transformation

X, — X.' , y = y'. z — z\ a = "(.f'. ,'/'. -'. u') — oj{f, y. z. u'). (13')
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which involves only one variable, J ~ (:w/cu\ and here

//(x, ?/, z, v)du = ff{.r, y, z, «')-,!'- f^"' = ff{-^\ V^ ~\ «') J du',

and each side may be integrated with respect to x, y, z. Hence (14) is true in this

case. For the transformation

X = ^ (x', y', 2', u'), y ^xp (x', ?/', z', «'), 2 = x (^', 2/', 2', «')> ** = «'» (13")

which involves onlv three variables, J ( — '
' ,'

~'—-) = J ( / '
"^

,

I
and

ffffi-'^ 2/, ^, u)<Udydz =ffffi'P, ^, X, M)l'^ |dx'd2/'d2',

and each side may be inteL;rated with respect to ;/. The rule therefore holds in

this case. It remains therefore merely to show that any transformation (13) may
be resolved into the succession of two such as (13'), (13"). Let

•?!=•?', yi = y\ Zi=z', «| = a;(x', ?/', 2', «')= w(X,, ?/,, 2i,
«').

Solve the eijuation u^ = w(Xj, ?/,, 2[. »') fi>r a' — to, (,c,, ?/,, 2,, ?(,) and write

X = 0(X,. ?/,, 2j, W,). ?/ = !/' (X,. ;/,. 2,. CO,), 2 = X (?!, 2/i, 2], t"!), " = ",•

>v"()w by virtue of the value of w^, this is of the type (13"), and the substitution of

X,, ?/j, 2i,
u^ in it gives the original transformation.

EXERCISES

1. Determine the average values of these functions over the intervals:

(<r) X-, s J- ^ 10, (/3) sin x. ^ x s i
tt,

(7) X", S X ^ 7i, (5) C0S"X, S X ^ 1 TT.

2. Determine the average values as indicated :

{(x) ordinate in a semicircle .(- + y- =; (('-, y > 0, with x as variable,

(jd) ordinate in a semicircle, with the arc as variable,

(7) ordinate in seiniellipse x = acos^, y = hm\(p, with (p as variable,

(5) f(»cal radius of ellipse, with equiangular spacing about focus,

( 6
) focal radius of ellipse, with equal spacing along the major axis,

(f) chord of a circle (with the most natural assumption).

3. Find the average liciglit of so nuich of these surfaces as lies above the xy-plane :

(a) X- + ,//- + 2- ^ <i-. (A') 2 = ('•* - p-x- - q-y'^, (7) e= = 4 - x- - //-.

4. Jf a m;\n"s height is the average height of a conical tent, on how nuich of the

tloor space 'an lie sliiud creel '.'

5. (»btaiii the average values of the following:

(it) distance of a point in a square frcjm the center, (/3) ditto from vertex.

(7) I'.istance of a point in a circle from the center, (5) ditto for sphere,

(c ) ilistiuice of a point in a sphere from a lixed point on the surface.

6. From the S.AV. corner of a township persons start in random directions

iK'tween X. and E. to walk across the township. What is their average walk '

Which has it ?
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7. On each of the two legs fif a right triangle a point is selected and the line

joining them is drawn. Show that the average of the area of the square on this

line is } the square on the hypotenuse of the triangle.

8. A line joins two points on opposite sides of a S(juare of side n. What is the

ratio of the average square on the line to the given s(iuare ?

9. Find the average value of the sum of the squares of two proper fractions.

What are the results for three and for four fractions ?

10. If the sum of n proper fractions cannot exceed 1, sliow that llie average

value of any one of the fractions is l/(n + 1).

11. The average value of the product of k proper fractions is 2--''.

12. Two points are selected at random within a circle. Find the ratio of t^c

average area of the circle described on the line joining them as diameter to tlie

area of the circle.

13. Show tliat ./ = r^ sin^ sin (p for the transformation

X = r cos 0. y = y sin 6 cos <p. z = r sin ff sin cos ;/', u = r sin ff sin <p sin ^,

and prove tliat all values of x. y. z. u defined by x- + y- -\- z- -\- u- ^ (i~ are covered

by the range ^ r ^ a, ^ ^ ^ tt. ^ ^ tt, 0^\p ^'Itt. What range will

cover all positive values of x. y. z. u ?

14. The sum of the squares of two proper fractions cannot exceed 1. Find the

average value of one of the fractions.

15. The same as Ex. l-i where three or four fractions are involveil.

16. Xote that the solution of n^ = oj{x^, y^. z^. u') for u/ = w^f.r^. //j. z^. h,)

requires that cw/cu' shall not vanish. Show that the hypotliesis that J dnes imt van-

ish in the region, is sufficient to sIkav that at and in the neigliburlnKid of larli point

(.r, y, z, u) there nuist be at least one of the 10 tlerivatives of 0. ^. y^. a> by ./•. y. z. u

which does not vanish ; and thus cijmplete the proof df the text that in case ./ ^
and the 16 derivatives exist and are contiimous the change of variable is as given.

17. The intensity of light varies inversely as the square of t!ie iHstancc Find

tlie average intensity of illumination in a hemispherical dome lighted Ijy a lamp

at the top.

18. If the data be as in Ex. 12. p. 3ol, find the average density.

17/

137. Surfaces and surface integrals. Consider a surface wliieh has

at each ])()iiit a tang-eiit plane tliat changes cdntin-

uotisly from jxiint to point of the surface. ('onsi(h'r

also the projection of tlie surface ttpon a ]ilane. say

the .ry-plane, and assume that a line perpendicular

to the plane ctits the stirface in only one ]>oint. /
|

;

1'

Over any element '/. 1 of the ])rojection there will / ^dA
1)6 a small jtortion of the sui'face. If this small

portion were plane and if its ncnaual made an an^le y with the .'.--axis,

the area of the surface (}). 1G7) woidd l)e to its projection as 1 is to
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cos y and avouIcI be sec ydA. The value of cos y may be read from (9)

on page 96. This suggests that the quantity

-/--"-ir[^-(ij-(i)i
dxdy (15)

be taken as ilw definition of tlte area of the surface, Avhere the douljle

integral is extended over the projection of the surface ; and this defi-

nition will be ado})ted. This detinition is really dependent on the

particular ])lane upon which the surface is projected ; that the value of

the area of the surface would turn out to be the same no matter what

plane Avas used for projection is tolerably apparent, but will be }iroved

later.

Let the area cut out of a heniisplicre by a cylinder upon the radius of the

hemispliere as diameter be evahuited. Here (or by ireometry directly)

X- + y- + ^-
cz

cy

dydx.
J [_ z- z- J J.,=f>J,, = i) s (I- — X- — y'^

This inteirral may be evaluated directly, but it is better to transform it to polar

coordinates in the plane. Then

'\^ inf't" r " cos <]> (I
/I * IT

8 = 2/ I —=z:= rilrd<i> = 2 I d- (1 - sin 0) d<p = (tt - 2) «2.

^.> = -',•=(1 \il- — /- -^tJ

It is clear that tin- half area which lies in tlie fii'st r)ctant could be projected upon

the .f^-plane and tints evaluated. The n-iziun over wliicli the integration would

extend is tliat, between .f- + z- = a- and the ]iri)jectiiin

Z- + ((/ = (/'-' (if the curve of interset-tion of the .sjihere

and cylinder. The projection could also be made on the

?/2-plane. If the area of tiie cylinder lietween z = and

the sphere were desireil, projt'rtion on z = would be

tiseless. ]irojection on x = W(juld be inv(jiveil owing to

tlie overlapping of the projection (jn itself, but projection

on (/ = would lie entireh' feasible.

To sliow that tlie detinition of area does not depend, i^

except ai)parent]y. upon the i)lane of projection consider

any second plane whicli makes an anule with tlie first. Let the line of intersec-

tion l^e the ^-axis ; then from a figure the new coordinate x' is

/ (-OS d + z sin (9. 1/

ilxdy

y- in<l ./

(''.
.'/)

\x. y) IX

(.'•. //) dx'dg c

c

dx'dy

-\ sni I

ix

, ^ pr'txny _ rr r
('". //) ax ay _ ff dxdy

^JJ cn^y'jJ (,/.//) cos-/
" Jj COS 7 (cos 6/ -hy; sin 6*)'

It reinaiiis to show that the deiKJiiiinator cos 7 (cos (9 + y^ sin 6^) -: C0S7'. Referred

to tlie original axes the direction cosines of the ntjrmal are — p -,
— ij ;]. and of
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the z'-axis are — sin ^ :0 : co.s^. Tlie cosine of the ani^de between these lines is

therefore
r»sin ^ + + cos(9 n sin ^ + cos (9

, r. . /,^

cos 7 = ^^— = = cos 7 (cos (9 + j/sm B).

Hence tlie new form of the area is tlie integral of sec 7'tZ. 1
' ami (Mnials the old form.

The integrand (lS=seGydA is called f//p cJcincnf of xurfacf. There

are other forms such as dS = sec(r,7i) r-nin 6 /9'f(f), where (V. ii) is the

angle between tht? radius vector and tlie normal; hut they ai\' used

comparatively little. The possession of an ex])ression lor tlie element

of surface affords a means of comptiting (n-cnnjcs arcr suffi/rcs. for if

11 = it(.r, //, rS) he any function of (./, //, ,^'), and .-:; =f{.r, 1/) any surface,

the integral

will be the average of u over the surface S. Tlius the average height

of a hemisjihere is (for the surface averagej

Z = -r -, \ r:<IS = ;

I I
-.' • - (7.rdi/ =

,
• Trri- = ~ ;

whereas the average height over the diametral ])lane woitld lie 2/3.

This illustrates again the fact that the value of an average de})ends

on the assum])tion made as to tlie weights.

138. If a surface :: =/'('', //) l»e divided into elements A-S'-, and the

function u{x, ij, z) \)v formed for any jjoiiit (t,-. rj;, t,;) of the element,

and the. sum 2/^,A.s'- 1h' extended over all the elements, the limit of

the sum as the elements l)ec()me small in e\'cry direction is defined

as the siirfiicr Inti'gi'dJ of the function over tlie surface and may be

e\'aluated as

\\ux^a(^;, rj;, C,-U.SV= f
>'(' >/, rS)'lS

-If'
['', ,'/,-./'(', .'/)] ^ '• -I-./'" +.r;;- '/.'•'///. (17)

Tliat the sum a|)])roaclics a limit iiHh'jicndciit iv of liow (t,. 7;,. ^,) is

chosen in A>',- and how AN- aitproachcs zero foUows from tlic fact tliat

the element /'{i/, rj;. C,)-^'"'',- "1 the sum diftVi's uiiiioi-mly fi'oiii tlic

integrand of Ihc doulilc integral by an iiilinitcsimal o!' higlin- i i-ilci-.

provided //(.'•. //, ."-) be assuiiuMl continuous in (./•. //. x) for points near

tlie sui'face and Vl +,/','+,/'„'" ^"' coutiijiious in (././/) over the sui'facc.

for many ]iur]ioses it is more conx-ciiiciir to take as the noi-mal

form of tlie inte>j-rand of a surface iiilcL;ral, instead of /"/S. the
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product 7' cos ydS of a function R (x, y, z) by the cosine of tlie in-

clination of the surface to the .r-axis by the element dS of the surface.

Then the integral may be eyaluated orcr citlmr side

of the surfact^ ; for 7? (,/•, y, ,^) has a definite value

on the sui-face, dS is a positive quantity, but cosy

is positive or negative according as the normal is

drawn on the upper or lower side of the surface.

The value of the intey'ral over the surface will be

I
li (./•, _?/, ?:) cos yds = I i lldi'd

iJ

according as the evaluation is made ov(U' tlie upper or lower side. If

the function 7i (,/•, y, -.) is c(jntiuuous over the surface, these integrands

will be finite even when the siu'face becomes perpendicular to the

,r//-plane, which might not be the case with

an integrand of the form u{.i', y, z)dS.

\\\ integral of this sort may be evaluated

over a closed surface. Let it be assumed

that the surface is cut by a line parallel to

the ,r-axis in a finite numl)er of points, and

for (convenience let that numlx^r be two. Let

the normal to the surface l)e taken con-

stantly as the exterior normal (some take

the interior normal with a resulting change

of sign in some foi'nndas), so that for the

u])])er jiai't of the sui-face c;)s y > and for

the lower part cos y < 0. Let :: =f^(,r, y)

and ,-. =/'(,/', y) l)e the u}»per and hnver values of r; on the surface. Then

the exterior integral over the closed surface Avill have the form

Jn cos y./.S
^-JJn

[,r, y,f^ (,r, //)] r/.v/.y

-JJj!
[,; y,f^r, y)-]d.rdy, (18')

where the double integrals 'avc extended over the area of the ])rojection

of the sui'face on the .'-//-plane.

Lrom this form of the surface integral over a closed surface

it ap])ears that a surface integral over a closed surfa<-e may be ex-

])iessed as a volume integral over the volume inclosed by the surface.*

* Certain restrictions upmi tlie fmictioTis and ileriviitives, as vetiards tlieir becoming
inliiiite anil the like, must hold upon and within the surface. It ^\ill he cxuite .sufficient

if tlie functions and derivatives renuiiu Unite and continuous, but such extreme conditions

ar(» by uo means necessary.
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For by the rule for integration,

/ I / T^
dzdxihj =

j
hi ('•, ;'/, ^)

Hence / 7Z cos y^/N = I ^- (/U

or
j
jnd.rdi/ =

I j
h (ixdydz

if the symbol O be used to designate a- closed surface, and if the double

integral on the left of (19) be understood to stand for either side of

the equality (18'). In a similar manner

/7' cos ads — I I
Pdifdz — \\\ w- dxdydz = \ — dV,

C Q cos lids = 11 Qdxdz = CnYdydxdz = f ^ ^^^^-

Then \ (P cos a + Q cos /3 + 7.* cos y)dS=
j
("^ + ;^ + g^ ) ^^^

,

'"
^.

,
(20)

or rr (7^///r/,^ + Qdzdx + /i-rfoy/v/) =
/ / /

(^! + ?^^ +^ ) '''•^''^/M^

follows immediately by merely adding the three equalities. Any one of

these equalities (19), (20) is sometimes called Gfn/ss's Foniniht, some-

times Grcciis I^i'iiiiii((, sometimes the din'riicncc funnula owing to the

interpi'etation l)elow.

The iiiter])retation of Gauss's J^'oi'mula (20) by vectors is im])ortant.

From the viewpoint of vectors the element of surface is a vec^tor </S

directed along the exterior normal to the surface (§ 76). Construct the

vector function

F(,r, 7/, .^) = i7>(.T, y, r;) + VH-'', Ih ^^ + kTZ (.r, y, z).

Let r/S = (i cos a + j cos /3 + k cos y)(IS = idS^. + jr/.S'J + krAs\,

where dS,., dS,^, dS, are the ])rojecti()ns of dS on the coordinate plancc

Then 1' cos adS + Q cos fSdS + R cos ydS = F.(/S

and [ I (Pdyd:: + (^/./v/,-; + /!</xdf/) = ( Y.dS,

where <fS_^., dS,^, dS^ have l)een replaced \)\ the elements <h/dr:, drdr:, dxdy,

whi(th would be used to evaluate tlie integrals in rectangular coordinates,
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without at all iniplying- that the projections dS^, dS,^, dS^ are actually

rectangular. The combination of partial derivatives

^ + |i^ + |^ = divF = V.F, (21)
ex Ci/ cz ^ -^

where V.F is the symbolic scalar product of V and F (Ex. 9 below), is

called the dirergeyice of F. Hence (20) becomes

rdivFf/r= C\.YdV= fF.dS. (20')

Now the function F(,/;, y, z) is such that at each point (/, y, z) of space a vector

is (U'tined. Such a function is seen in the velocity in a moving fluid such as air or

water. The picture of a scalar function u (x, ?/, z) was by means of the surfaces

u = const.; the picture of a vector function F(j, y. z) may be found in the system

of curves tangent to the vector, the stream lines in the fluid ,„

if F be the velocity. For the inunediute purposes it is better ^^
to consider the function F(.r, ?/, 2) as the flux 7>v, the prod-

uct of the density in the fluid by the velocity. With this

interpretation the rate at which the fluid fluws through an

element of surface dS is Dw-dS = F-JS. F<ir in the time

lit the fluid will advance along a stream line by the amount

vdt and the volume of the cylindrical volume of fluid which advances through the

surface will be V'dSdt. Hence ^iJy-dS will be the rate of diminution of the amount

of fluid within the closed surface.

As the amount of fluid in an element of volume(/T" is l)dV. the rate of diminution

(if the fluid in tlic element of volume is — cD/ct where cD/ct is the rate of increase

of the density 1> at a point witliin the element. The total rate of diminution of the

amount of fluiii witliin the whole volume is therefore — 'ZcD/ctdV. Hence, by

virtue of tlie principle of the indestructibility of matter,

f F.tZS ^ f Dy.dS = - C'^dV. (20")

Now if i\r. Vf,. v-_ lie the components of v so that P = Dvx, Q = Dv,,. E = Dv^ are

the components of F. a coiuparison of (21). (20'), (20") shows that the integrals of

— cl)/ct and div F ai'e always equal, and hence the integrands,

cl) (P cQ ni _clhj: cBv,, cJh\

ct C.C cy cz ex cy cz

are equal : that is. the sum Pjl + (/^ + B'^ represents the rate of dimiiuition of

density when iP + jQ + kli is the flux vector; this combination is called the

divergence of the vector, no matter wliat the vector F really represents.

139. Xot only may a surface integral be stepped up to a volume

integral, but a line integral around a closed curve may be stcpjied up

into a surface integral over a surface which spans the curve. To begin
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with the simple case of a line integral in a plane, note that by the

same reasoning: as above

(22)

This is sometimes called Green's Lemma for the plane in distinction

to the general Green's Lemma for space. The oppo-

site signs must be taken to preserve the direction

of the line integral about the contour. This result

may be used to establish the rule for transforming a

double integral by the change of variable x = ^ (u, r),

y = ^Oh v). For A'

}
^ L CU CO

f/y

(.^\-
cu \ cr

c / CiJ
y— X T—
cc\ cu

JJ \cu CO Co- cuI

dude

J \ dud I

(The double signs have to l)e introduced at first to allow for the case

where J is negative.) The element of area dA ^=\J\dudv is therefore

established.

To obtain the formula for the conversion of a ^

line integral in s})ace to a surface integral, let

P(x, ?/, ,'i) be given and let r: =f(x, //) be a surface oj-

s])uniiing the closed curve O. Then by virtue of /

z =/(.', y), the function J^(x, //,
-) = P^(x, i/) and

where O' denotes the projection of O on the .>7/-]jlane. Xow the final

diiuhle integnd may be transformed by the introduction of the cosines

of the normal direction to ;: =f{,r^ ijy

cos ^ : cos y = — Y : 1, dxd,j = cos ydS, iplxdij = — cos ^dS = — dxdz.
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Then ^(i-i)--ir(i
cP cP

dxdz ;— dxd If £Pdx.

If this result and those obtained by permuting the letters be added,

UPdx + Qdij + Ud-:)

^o

II
cR cQ\

, ,
(cP cR

c:: \ cz ex ex ClJ
dxdy (23)

This is known as Sfol-cs's Fonmihi and is of especial importance in

hydromechanics and the theory of electromagnetism. Note that the

line integral is carried around the rim of the surface in the direction

which ap})ears positive to one standing u})on that side of the surface

over which the surface integral is extended.

Again the vector interpretation of the result is valuable. Let

F (x, y, -:) = iP (,/•, j/,z)+iCl (x, >/, z) + kR (x,
f/,

z),

Then

, .^ j'cR cQ\ . /cP cR\ , /cQ cP\
curl F = lU--— +JT-- y- + k v^ - V-

\ct/ cz I \c:: ex I \cx cijj

CF.dT= Ccnv\F.dS=
f'
VxF.r/S,

(24)

(23')

where V^F is the symbolic vector })roduct of V and F (Ex. 9, l»elow),

is the form of Stokes's Formula; that is, the line integral of a vector

around a closed curve is equal to the surface integral of the curl of the

vector, as defined l)v (24), around any surface Avhich spans the curve.

If the line integral is 7.ero about every closed curve, the surface inte-

gral must vanish over every surface. It follows that curl F = 0. For

if the vector curl F failed to vanish at any i)oint, a small plane sur-

face dS perpendicular to the vector might be taken at that point and

the integral over the surface would Ix' approximately [curl F\(/S and

would fail to vanish, — thus contradicting the hypotliesis. Xow the

vanishing of the vector curl F rcfpiires the vanishing

7^; - q: = 0, y^: - y^; = o, q; - p; = o

of each of its comj^jnents. Thus may l)e derived the condition that

pdx + Qd// + /.'(/," be an exact differential.

If F be interpreted as the velucity v in a fluid, tlie inte,i.Tal

Tv-r^r = f^'-'dx + v,jdy -f v^dz

of the coniprinent of the velocity alonir a curve, whether fipen or closed, is called

the circulation o( the fluid ali.iiii,^ the curve ; it might be more natural to deflne
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the integral of the flux Dy along the curve as the circulation, but this is not

the convention. Now if the velocity be that due to rotation witii the angular veloc-

ity a about a line through the origin, the circulation in a clused curve is readily

computed. For

V = axt. f V'dT = faxr-f/r = ( a-rxdr = a.
|

rxiZr = 2a.A.

The circulation is therefore the product of twice the angular velocity and the area

of the surface inclosed by the curve. If the circuit be taken indefinitely small, the

integral is 2 a-dS and a comparison with (23') shows that curl v = 2 a; that is. the

curl of the velocity due to rotation about an axis is twice the angular velocity and

is constant in magnitude and direction all over space. The general motion of a

fluid is not one of uniform rotation about any axis; in fact if a small element of

fluid be considered and an interval of time St be allowed to elapse, the element

will have moved into a new position, will have been somewhat deformed owing to

the motion of the fluid, and will have been somewhat rotated. The vector curl v.

as deflned in (24), may be shown to give twice the instantaneous angular velocit}'

of the element at each point of space.

EXERCISES

1. Find the areas of the following surfaces :

(a) cylinder x- + y- — ox = included by the sphere x- + y- + z- = ft-.

{13) x/n + y/h + z/f — 1 in first octant. (7) .r- -\- y- -\- z- = a- above r — a cos7i0.

(5) spliere /- -[- y- + z- = a- above a square \x^ h. \y\ ^ h. h < l\ 2 a.

( e ) z — xy over x- + y- = a'-. ( f) 2 az — x- — y- over r- = a- cos 0,

(7;) z- + (x cos a + ysin a)- — a- in first octant, {&) z = xy (jver r- = cos 2 0,

(
I ) cylinder x- + 7/- = a- intercepted by equal cylinder y- + z- = a-.

2. Compute the following superficial averages:

(a) latitude of places north of the ecpuitor, Ans. 32j"j°.

(/3) ordinate in a right circular cone }i-{x- + ?/-) — fi-{z — h)- = 0.

(7) iiiununation of a hollow spherical surface by a light at a point of it,

(5) iiiununation of a hemispherical surface by a distant light.

(e) rectilinear distance of points north of equator from nortli pole.

3. A theorem of Pappus: If a closed or open plane curve be revolved about an

axis in its plane, the iirea of the surface generated is eijual to the product of the

length of tiie curve by the dist:ince described liy the center of gravity of tlie curve.

The curve sluiU not cut the axis. I'rove eithei- analytically rir by infinitesimal

analysis. Apply to various figures in wliich two of the three (juantities. lengtli of

curve, area of surface, position of center of gravity, are known, to find the third.

Compare Ex. 27, p. 332.

4. The surface integrals are to be evaluated over the closed surfaces by express-

ing them as volume integrals. Try also direct caiculatiim :

(a)
j j

(x-dydz -\- xydxdy + xzdxdz) over the spherical siu'face x- + y- + z- = (t-.

(J) 11 {x-dydz + y'-dxdz + z-dxdy), cylindrical surface x- + y" -- a-, z — ±h.
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(y) I / [i-'^"
~ yz)dydz — 2xydxdz + dxdij] over the cube ^ x, ij, z ^ a,

(5) fCxdydz = C C ydxdz = C C zdxdy = + C C {xdydz + ydxdz + zdxdij) = F,

(e) Calculate the line inteurais of Ex. 8, p. 297, around a closed path formed by

two paths there <riven, liy applying Green's Lemma (22) and evaluating the result-

ing double integrals.

5. If X = <P]{u, v), y = (p.,{it, v), z = (p^{u, v) are the parametric equations of a

surface, the direction ratios of the normal are (see Ex. 15, p. 135)

3S/3:coS7 = /,:/.:J3 if /, = / /^i±l^^i±^'i
\ u,v I

COS ix : cos
I

Show P that the area of a surface may be written as

.S- = ff—'
^ ^ ' -

"^
' •'

dxdy = ff Vji" + Ji + -T'i dudv = ff -yjEG - FHudv,

where E =^ i^\' , G' =V i^A' , F =V ^ '-^

,

and dn- = Edu~ + 2 Fdudv + Gdv'-.

vShow 2^ that the surface integral of the first type becomes merely

jy/(,f, y, z) i^ccrh'ly = fff{4'x, 4>2, 'P-d ^^^'^ - l-'-dudv,

and determine tlie integrand in the case of the developable surface of Ex. 17, p. 143.

Show 3^ that if x =/,($, rj. f), y =^ f„{^, ?;, f), z =/;;(?. v- f) i'"^ '^^ transformation of

space which transforms the above surface into a new surface ^ = f^in. v). rj — i/'o(m, v),

i'='/'3("» '-•), then

Show 4'^ that the .surface integral of the second type becomes

where the integration is now in terms of the new variables ^, rj, f in place of x, y, z.

Show 5° that when E = z the double integral above may be transformed by

Green's Lemma in such a manner as to establish the formula for change of variables

in triple integrals.

6. Show that for vector surface integrals I UdS — j Vl'dV.

7. Solid angle ns a mrface integral. The area cut out from the unit si)here by a

cone with its vertex at the center of the sphere is called the solid angle u) subtended

at the vertex of the cone. The solid angle may also be defined as the ratio of the

area cut out upon any sphere concentric with the vertex of the cone, to tlie S(juare

of the radius of the sphere (compare the definition of the angle between two lines
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in radians). Show geometrically (compare Ex. 10, p. 21*7) that the infinitesimal .solid

angle dw of the cone which joins the origin r = to the periphery of the element dS

of a surface is cZw = cos(j', n)dS/r-, where (r, n) is the angle between the radius

I)roduced and the outward normal to the surface. Hence show

r cos (;•, ?() ,
r r-dS rid)-, r d 1 ^ , T ,,, ,, 1

0, =
I

5__! as = = / - — dS = -
I

dS = -
I
dS'V -

,

J r2 J r» J r- dn J dn r J r

where the integrals extend over a surface, is the solid angle subtended at the origin

by that surface. Infer further that

-f^ldS = 4n nr -rAl,,.s = o or -f '^^^^dS = d
Jq dn >' 'JQ dn r Jq dn r

according as the point r = is within the closed surface or outside it or upon it

at a point where the tangent planes envelop a cone of solid angle ff (usually 'Aw).

Note that the formula may be applied at any point (|, ??, f) if

where (,r, ?/, z) is a point of the surface.

8. Gaunti's Intcgnd. Suppose that at r = there is a particle of mass in

which attracts accnrding to the Newtonian Law F = ni/r-. Show that the

])oteiitial is !'=—)»//• so that F=— VI'. The induction or flux (see Ex. 10,

p. 308) of the force F outward across the element (ZS of a surface is by definition

— Fcos(F, }t)dS = F'dS. Show that the total induction or fiux of F across a

surface is the surface inteu'ral

fF.rZS =: - fdS.YV = - f -- dS = m fdS-V ^

;

J J J dn J r

'1=-'
f F.dS = ± f dS.VV=-' r 1 "^ dS,

4 TT Jq 4 TT Jo 4 TT Jq '7h r

dn

_ 1 /• ^ n
and

where the sui'face integral extends ovei' a surface surrounding a point r = 0, is the

fornuila for obtaining the mass in within the surface from the field of force F
whicli is .set up bj' the mass. If there are several masses ?/ij, ?«.,, • • • situated at

points (fj, 77j. j-j),
(t._,,

r,.^, f^), .... let

F = Fi + F, + •••• r= r, + ]', + ...,

be the force and poteiUial at {x, y, z) due to the masses. Show tliat

-^- C^.dS^ ^- CdS.\V=- ^ V r '' ^ r7.s- = V'/«f = .V, (25)
Att J.J \ttJz -i TT jQ J j dn n ^

where li extends over all the mass(\s and ^' over all I he masses within the surface

(none l)eing on it), gives the total mass M within tht; surface. The integral (25)

which gives the mass within a surface as a surface integral is known as Gauss's

Integral. If the foi'ce wer«' rei)ulsive (as in electricity and magnetism) instead of

attracting (as in gravitation), the results would be I' = nt/r and

-^- rF.c/S = --i r./S.Vl' = -'y f
'^ '"'dS^yuu^M. (25-)

4 7rc/o \TrJj \tv J^ J.jdn r,- ^
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9. IfV = i hj hk — be the operator defined on page 172, show
ex cy cz

cz cy cz \cy cz] \cz cs ] \cx cy /

by formal operation on F = i'i + Qj + ii'k. Sliow further that

VxV U=0, V-VxF = 0, (VV) (*) = (~ + —, +^ (*),

Vx(VxF) = V (V'F) - (V'V) F (write tlie Cartesian form).

Show that (V'V) U = V.(VL'). If u is a constant nnit vector, show

,^ cF (F (F dF
(U'V) F = — cos <-<•

-I cos j:i -\ cos y = —
ex cy cz (Is

IS the directional derivative of F in the direction u. Show (Jr'V)F = dF.

10. Green's Formula (space). Let F{x, y, z) and G {x, ?/, z) hi', two functions

so that VF and VG become two vector functions and FVG and GVF two other

vector functions. Show

V.(FVG-') = Vi^.VG + FV.VG, V.(GVF) = VF-Vr/ + 6T.VF,

or A/f^^U-^-(f^U-(f-)
ex \ cx / cy\ cy/ cz\ cz/

cF cG cF cG cFcG ^/r-G c-G c^G\

cx cx cy (y cz cz \cx- cy- cz^

I

and the similar expressions which are the Cartesian ecpiivalents of the above vector

forms. Apply Green's Lennna or (iauss's Formula to show

r FV G'.rZS = rVF.V GdV + f
^•^'^-VGd V, (26)

C GVF.fZS = fvF.VGdV + fGV.VFdV, (26')

HfVG - G'VF).rZS = C{FV.VG - G\''VF)dV, (26")

Cr^dG^^, r/cF cG cF cG cF cG\ ^^^ r^Vf"'^ c^^ f^^\ ^t^

./Q tin «^ \cx cx cy cy cz cz; J \fX^ cy cz^

/

Jo\ dn dnj J y_ \dx- cy- cz'^

/

\cx'- cy- cz'^ /

A

The formulas (26), (26'), (26") are known as Green's Formi(l(t.s; in particular the first

two are asymmetric and the third synnnetric. The ordinary Cartesian forms of

(26) and (26") are given. The expression c'-F/cx^ + c'-F/cy^ + c'^F/cz- is often

written as AF for brevity ; the vector form is V-VF.

11. From the fact that the integral of F.cZr has opposite values when the curve

is traced in opposite directions, show that the integral of VxF over a closed surface

vanishes and that the integral of V*VxF over a volume vanishes. Infer that

V.VxF = 0.
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12. Reduce the integral of VxVf^^ over any (open) surface to the difference in

the values of U at two same points of the bounding curve. Hence infer VxVf = 0.

13. Comment on the remark that the line integral of a vector, integral of F«dr.

is around a curve and along it, whereas the surface integral of a vector, integral

of F»dS, is over a surface but through it. Compare Ex. 7 with Ex. ](? of p. 2'M. In

particular give vector forms of the integrals in Ex. 16. p. 297, analogous to those of

Ex. 7 by using as the element of the curve a normal dn ei^ual in length to di,

instead of dr.

14. If in F = Pi + Qj + /'k, the functions P. Q depend only on x. y and the

function 2? = 0, apply Gauss's Formula to a cylinder of unit height upon the

x;/-plane to show that

CV'FdV = fF'dS becomes ff(~ + ^) dxdy = fF-dn,

where dn has the meaning given in Ex. 13. Show that numericallj' F»dn and FxrZr

are equal, and thus obtain Green's Lemma for the plane (22) as a special case of (20).

Derive Green's Formula (Ex. 10) for the plane.

15. If CF'dr =^ CC'dS, show that /"(G - VxF).rZS = 0. Hence infer that if

these relations hold for every surface and its bounding curve, then G = VxF.

Ampere's Law states that the integral of the magnetic force H about any circuit is

equal to Att times the flux of the electric current C through the circuit, that is,

through any svirface spanning the circuit. Faraday's Law states that the integral

of the electromotive force E around any circuit is the negative of the time rate

of flux of the magnetic induction B through the circuit. Phrase these laws as

integrals and convert into the form

4 ttC = curl H, - B = curl E.

16. By formal expansion prove V'(ExH) = H'VxE - E'VxH. Assume VxE = -H
and VxH = E and establish Povnting's Theorem that

J(ExH).r?S = - i-

J 1 (E.E + H.H)

17. The " e(iuation of continuity " for fluid motion is

dV

h H
'- + ~ = or — + 7; --'+-" + _^ = 0,

ct cx ly cz dt \ cx (1/ cz /

where I) is tlie density, v — u,r + ji'„ + ki\ is the velocity. cD/ct is tlie rate of

change of the density at a point, and dl)/dt is the rate of eliaiige of density as one

moves witli the fluid (Ex. 14. p. 101). Exiilain the meanini:- of the e(iuation in view

of the work of the text. Show that for fluids of constant density V-v = 0.

18. If f denotes the acceleration of the particles of a fluid, and if F is the

external force acting per unit mass upon the elenieius of fluid, and if p denotes

the pressure in the fluid, show that the eciuation of motion for the fluid within any

surface may be written as

V i-DdT = V F/AZP - V pf^S or CiBd 1
' = CfImI 1 ' - CpdS.



ON MULTIPLE INTEGRALS 351

where the suminatioiis or integrations extend over the vohime or its bounding sur-

face and tlie pressures (except tliose acting on the bounding surface inward) may
be disregarded. (See the first half of § 80.)

19. By the aid of Ex. 6 transform the surface integral in Ex. 18 and find

fDidV = f{I)F - Vp) dV or — = F - - Vp
J J dt- 1)

as the equations of motion for a fluid, where r is the vector to any particle. Prove

, , (7-r dv fV , fv 1 ,
,

dt-' dt ct ct 2

, . (^
, 1 . , '^v '/r , d-T ] ,

,

dt dt dt dt- 2

20. If F is derivable from a potential, so that F = — Vr, and if the density is a

function of the pressure, so that dp/l> = dP, show that thr equations of motion are

£Z_ vxvxv=- V (6^+ P + ^i-^), or -{v.dT}=-d(u+F-l^i---'

after nudtiplication by dr. The first form is Hehnholtz"s, the .second is Kelvin's.

Show

/> -'•. 'J, z d dp ^' !''• r 1 -.1 ^' ''•

"

r
I

— (v.(?r) = — I \-di = — L + P 1-2 and | V'dx = const.
Jn,h,c dt dtJfi.h.c L 2 J(7, '), o Jq

In particular explain that as the differentiation d/dt follows the i)articles in their

motion (in contrast to c/ct. which is executed at a single point of space), the

integral nuist do so if the order of differentiation and integration is to be inter-

changeable. Interpret the final equation as .stating that the circulation in a curve

which moves with the fluid is constant.

21. If^ + ^^ +^ =0, show C\m^ (-)V(-T>r= f u'l^ds.
ex- eg- cz- J \_\czl \cy / \ c2 / J Jq dn

22. Show that, apart from the proper restrictions as to contiiniity and differen-

tiability, the neces.sary and sufficient condition that the surface integral

C C Pdydz 4- ({dzdx + Hdxdy = C pdx + qdy + rdz

depends only on the curve bounding the svirface is that P.^ + (^,^ -f- li'^ = 0. Show
further that in tliis case tlie surface integral reduces to the line integral given above,

jjrovided p, 17, r are such functions that r,^ — 7' = P. }k — ?'^ = Q. q',. — p',, — P-

Show finally that these differential equations inv j>. 7. r may be .satisfied by

and determine by inspection alternative values of p, q, r.



CHAPTER XIII

ON INFINITE INTEGRALS

140. Convergence and divergence. The definite integral, and hence

for theoretical purposes the indefinite integral, has been defined,

f f{T)d,; F(,r)= rf(:r)ch;

when the function /"(*') is limited in the interval a to h, or « to cr ; the

proofs of various propositions have depended essentially on the fact

that the integrand remnined finite over the finite Interval of Integration

(§§ 16-17, 28-30). Nevertheless problems which call for the determina-

tion of the area between a curve and its asym})tote, say the area under

the witch or cissoid,

L
8 aN.<-

x^ + 4 a?
— 4 rr tan"

2 a
= 4 7r«", —

. = 3 TTft",

„ V2 a— X

have arisen and have been treated as a matter of course.* The inte-

grals of this sort require some special attention.

When the Integrand of a definite Integral heeomet^ Infinite vlthln or

at the extremities of t/ie Inti'riuit of Intcgrathm, or when one or both of

the limits of Integration heeome Infinite, the Integral Is ealled an infinite

Integral and Is defined, not as the limit of a, sum, hat as tlie limit of an

Integral trlfh a variable limit, tliat Is, as the limit of a funetlon. Thus

f{x)dx = lim

f(x)dx= lin

Ua

f(,r)dx

f(x)dx

infinite u})per limit,

integrand f(b^ = co.

These definitions may l)e illustrated by figures which sliow the coiniec-

tion with the idea of ai'ca l)etween a curve and its asymptote. Similar

(h'finitions would l)e given if the lower limit were — co or if the inte-

grand became infinite at ./• = ff. If the integi'aiul were infinite at some

intermediate point of the interval, the interval would be subdivided

into two intervals and tlie definition would be a])])lied to each part.

* Here and below the eoustnu'tidii of figures is left to the reader.

352
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Now the behavior of /•^(.r) as ;r approaches a definite value or lieooines

infinite may be of three distinct sorts
;
for F(.r) may ai)])i'oach a definite

finite quantity, or it may l)eeome infinite, or it may oscillate without

ap})roaching any finite quantity or becoming definitely infinite. The

examples

Jo •*^'+4«-

X cos ,'/v/,>

= lim

lim

lim
J

I COf

= 4 crtan"^
X

osav/.r = sin ,r

= 2 7r«", a limit,

becomes infinite, no limit,

oscillates, no limit.

illustrate the three modes of behavior in the case of an infinite up})er

limit. In the first case, where the limit exists, the infinite integral is

said to ermrerge; in the other two cases, Avliere the limit does not exist,

the integral is said to direrge.

If the indefinite integral can be found as above, the question of the

convergence or divergence of an infinite integi'al may be determined

and the value of the integral may be obtained in tlu' case of convergence.

If the indefinite integral cannot be found, it is of prime importance to

know whether the definite infinite integral converges or diverges ; for

there is little use trying to compute the value of the integral if it does

not converge. As the infinite limits or the points where the integrand

becomes infinite are the essentials in the discussion of infinite integrals,

the integrals Avill be Avritten with onlv one limit, as

j /{') <^-r, [/(-)''>; jf (x) dx.

To discuss a moi'e complieatcd (•()nd)inati()n, one would Avrite

J,, V,/rMog,'' Jo Jj Ji J- V.H(

and treat all four of the infinite inte"'rale

Jr er'dx r^ e-'dx r e-^'dx r" e^'dx

„ Va'''log.T J V.r^log.r Jj V.'''Uog.r J Vy'loga-

Now by definition a function A'(.r) is called an /-.'-function in the

neighV)orhood of the value ,/• = n when the function is continuous in

the neighboi'hood of .' = a and approaches a limit Avliicli is neither zero

nor infinite (p. Oli). Tlie hejiavinr of tlie infinite integrols of a finvtion
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vldclx does not change sign and of the i>voduet of that function Jnj on

1-1function ore identi^'al as for as convergence or divergence ore concerneit

.

Consider the proof of this theorem in a special case, namely,

j
f{.r)d.r, f f[,')]: (x)dx, (1)

where f(^) may h(» assumed to remain positive for large values of ,/•

and E{^') approaches a positive limit as ,/ becomes inhnite. Then if A'

be taken sufficiently large, both /(./•) and />'(.'•) have become and will

remain })ositive and finite. By the Theorem of the Mean (Ex. 5, p. 29)

I f f(,r)d.r < f f(,-)K(x)dx < M f f(,r)d:r,

JK Jk J K
X > K,

where ui and M are the minimum and maximum values of /..'(,/•) l)etween

K and co. Xow let x become infinite. As the integrands are positive,

tlie integrals must increase with x. Hence (p. 3o)

if
I

/(.r)rf.c converges, I f(x)E(x)(/x<MJ f(x)(tx converges,
Jk Jk Jk

if
I

/(,/) E (,r) dx converges,

Jf(x)dx < -—
\ t\x)E{x)dx converges:

K "' Jk'

and divergence may be treated in the same way. Hence the integrals

(1) converge or diverge together. Tlie same treatment could be given

for the case the integrand became inhnite and for all the variety of

hypotheses Avhich could arise under the tlicorem.

Tliis theorem is due of the most useful ami most easily applied for (letermiiiiu!;

the converirence or divergence of an inlinite integral with an integrand which

does not change sign. Thus consider the case

Ilei'e a simple rearrangement of the integrand throws it into the product of a func-

tion E{.r). which ajiju-oaches the limit 1 as x becomes inlinite. and a function l/.r-.

the integration nf which is possible. Hence liy the thedrem the original integral

converges. This cnuld have been seen V)y integrating the original integral : l)ut

the integration is not altogether short. Another case, in which the integration is

not possible, is

r^ dr _ r^ 1 '''

•^ ^'l- j:^ -^ \'l + x^ v'l + j; V 1 - x

'

1 ^1 dx I
|i
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Here £(1) = h The iiite_i,a-al is again convergent. A case of divergence would be

C lU r 1 dx -^ , ^ 1 r dx 2 I

I =
I

> E{x) = ,

I
— =

(2x-/^)i •^M2-/)ixi (2-a:)t -^Og.! V,XlQ

141. The interpretation of a definite integral as an area will suggest

another form of test for convergence or divergence in case the inte-

grand does not change sign. Consider two functions fiy) and </'(.'-)

both of Avhich are, say, positive for large values of x or in the neigh-

borhood of a value of ./• for which they become infinite. If fltc cur re

y = y(/{.r) rfiiKt'ins nhorr y =zf(.r), ihe intrfjrid off{.r^ uiust (Dnrrrtje if

t/ie integral of{f/(.r) eonrcrf/es, and the infegrnl of{l/(.r) iiuiat dircrge if

the integnd <ff(-r) dirm-gea. This may be proved from the definition.

For /(,/•) < \\i{x) and

j
f{.r)d.r < / ip(x)dx or F(.r) < "^ (•').

Jk Jk

Now as X approaches h or x, the functions F(x) and '^(x) both increase.

If >!'('./•) approaches a limit, so must Fix) ; and if F(j') increases wdth-

out limit, so nnist "^(x).

As the relative behavior oif(x) and \p(x) is consequential only near

particular values of x or when x is vcr}- great, the conditions may be

expressed in terms of limits, namely : Jfipix) does not ehungc sign and

if the ratio f(x)/\l/(x) (ipiironclirn a finite limit {i>r ':ero), tJie integral of

f(:>'')
icill conrrrge if tin- inti'gml of (//(,') converges ; and if the ratio

f(x)/\p(x) (ipproacln's a jinitc limit (not zer(t) or hccomcs infnite, the

integral iff(x) mill direrge if the integral of \p(x) dirergis. For in the

first case it is possible to take x so near its limit or so large, as the

case may be, that the ratio /'(,'' )/'«/' ('') shall be less than any assigned

number G greater than its limit; then the functions /(./-j and G\p(x)

satisfy the condititjns estal)lished above, namely / < G't/', and the inte-

gral of /(./•) converges if that of !//(.'•) does. In like maimer in the second

case it is possible to proceed so far that the ratio /('./•) /i// (';/;) shall have

become to remain greater than any assigned nund)er g less than its

limit; then/'> g\p. and tlie result abcn'e may be ajjplied to show that

the integral of /'(,/•) diverges if that of </'(.'•) does.

For an infinite up})er limit a direct integration shows tliat

f
dx _ - 1 1

or loi
converges if /,• > 1, ^,

diver.yes if /,• ^ 1.

Now if the /r.s-/ function cf)(x) be chosen as 1/x'' = x~^, the ratio

f(_x)/cj)(x) Viecomes x'''f{x). and if tJif limit <f tlie i)roduct J^f^J') exists
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and may he shown to he finite (or zero) as x becomes infinite for any

cJioice of k greater than 1, tlie integral offix) to infinity will converge;

hut if the product ajyproacltes a finite limit (not zero) or hecomes infinite

for any choice of k less than or equal to 1, tlie integral diverges. This

may be stated as : The integral oif(x) to infinity will converge if /(a')

is an infinitesimal of onler higher than the first relative to 1/x as x

becomes infinite, but will diverge if /(•'•) is an infinitesimal of the first

or lower order. In like manner

f
dx

{h -.,)'' k-1 (/y-./-)^-
or — log(/; — x)

converges if /.•<!,

diver":es if /.'^l, ^

and it may be stated that: The integral of/(.x') to h will converge if

f{x) is an infinite of order less than the first relative to (f> — x)"^ as x

approaches h, but Avill diverge if /(.r) is an infinite of the first or higher

order. The proof is left as an exercise. See also Ex. 3 below.

As an example, let the integral I x"e-nU be tested for convergence or diver-
" J

gence. If n > 0, the integrand never becomes infinite, and the only integral to

examine is that to infinity ; but if ?i < the integral from has also to be consid-

ered. Now the function e-^ for large values of x is an infinitesimal of infinite

order, that is, the limit of x^' + "e-^' is zero for any value of k and n. Hence the

integrand x"e-^ is an infinitesimal of order higher than the first and the integral

to infinity converges under all circumstances. Forx = 0, the function e--« is finite

and equal to 1 ; the order of the infinite x"e-^ will therefore be precisely tlie order

71. Hence the integral from converges when 7i > — 1 and diverges when ?i g — 1.

Hence the function

T(a)=f x'^-ie-aJx, a: > 0,

defined by the integral containing the parameter (t, will be defined for all positive

values of the parameter, but not for negative values nor for 0.

Thus far tests have been established only for integrals in which the

integrand does not change sign. There is a general test, not particularly

useful for ])ractical })urposes, but liighly useful in obtaining tlieoretical

residts. It will be treated nuu'elv for the case of an infinite limit. Let

''"'^f-'
F ('•)=! /(') '^'^^, F(,r")-F(x')=J f{x)dx, x',x">K. (4)

Xow (Ex. o, ]). 44) tlie necessary and sufficient condition tliat Fix)

approach a limit as x becoutes inhnite is tliat F(x")—F(x') shall

approach tlic limit wlieii x' and x", regarded as independent varia-

bles, become infinite; liy tlie definition, tlien, tliis is the necessary

and suffi(dent condition tliat tlie integral of ./'(•'") ^'^ infinity shall

conversj-e. Furthermore
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(f / /'(.>•)
I

dx conoerges , then I f(.r)dx (5)

must converge ami is said to be absolt(teIi/ conrei-r/ent. The proof of this

iiuportant theorem is contained in the above and in

£ /co^^-'-^j^ I

/(•'•)
I

'/•'••

To see whether an integral is absohitel}- convergent, the tests estab-

lished for the convergence of an integral with a positive integrand

may be applied to the integral of the absolute value, or some oljvious

direct method of eomptiri^on may be employed ; for example,

/cos jilx r ' 1 (/,/•
.—

;

; —
I -T , which

a-^x- J ./- + ..-
converges,

and it therefore appears that the integral on the left converges abso-

lutely. When the convergence is r.ot absolute, the question of con-

vergence may sometimes be settled by hitrijrdfioii hi/ parts. For

suppose that the integral may be written as

f f(x)dx = r cf>(x)ipi^x)dx= cf>(x) filf(x)d.r - r ct>\x) f^,(,i-)dx'

by separating the integrand into two factors and integrating by parts.

Now if, when ./• l)ecomes infinite, each of the right-liand terms approaches

a limit, then

/ f(u-)d., lim (f>(x) j ij/l^xjdx — lim
I

<^'(.'-)
I

\l/{x)dxdx,

and the integral of f(x) to infinity converges.

, 1 -1 *i ( r'" xQo^sdx ^^ /--^ x
I

cos J I
(7

J

As an example consider the converc-oiice 01 ( Here (
--

J a- -\- X' J a- + X-

does not appear to l.)e converuent ; for, apart from the factor [cos /| wiiich oscilhites

between and 1, the integrand is an intinitesimal of only the first cnxler and the

integral of such an integrand does not converge; the original integral is therefore

apparently not absolutely c(jnvergent. However, an integration by parts gives

/^xcosxdx j-snix r' r'^ x- — a-=
1
— I cos.mx,

(/- + x^ a- + /-; 'J {x- + a-)'

r-'' X- — (i- , r-'dx
cos xdx <

I

J {X- + a-)- J X-u- + X-

Now the integral on the right is seen to be convergent and, in fact, absolutely

convergent as .; ln'comes infinite. The original integral therefore nmst approach

a limit and be convergent as x becomes intinite.
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EXERCISES

1. Establish the convergence or divergence of these infinite integrals:

, . C^ dx /o r°^ ^^dx , . r"^ x-dx

^ xVl + x^ ^ {a- + x-)^ J (a2 + x-^)l

(5) I
x'^-i(l — x)^-'^dx (to have an infinite integral, a nuist be less than 1),

-^ -'o Vax-.f- -^i xVx^-1

«/0l — /* *^'J(1 X)3 i/OI — X

(X) r'~^^^;L=., /.-<!, /.; = i, (m) r\'l^Li:!f:czx,A-<i.

2. Point out the peculiarities which make these integrals infinite integrals, and

test the integrals for convergence or divergence :

r 1 / 1 \" /- 1 ]i)"-X
(a) log- dx, conv. if ?i > - 1. div. if n s _ l, (^) / ~^dx,

J \ x/ J \ — X

(7) I

(— log.r)«(7j-, (5)
I

' logsinjJj-, (e) |
/ li)gsin,r(7j;,

(r). r^..g(. + ^) ^^, („ fv f -. (^) rv-(h>g^)V
J \ x/ 1 + x- Jo (smx + cosx)-*^^ Ju \ .f/

r'^ - r^ TTX
(k) I x^(/,f, (\) I IniTxtan — dx,

Jo Jo 2

-'-OO Jo (1 + X)-

/-i logxfZx
, , r" -('-",)'

-'" ^ 1 -X- "^'^

(i-) /
^- '^^-^->dx. ix) e--'-cosh^xrix.

I/O 1 + b-x- Jo

(') /;
e-^(/x

\ xlog(x + 1)

(m) /; 1 + X

(T)
/;

' sin'-x ,

dx,
X-

(T)
/;

' x«-ilo£rx ,
^— ax,

1 +x

3. Pfiint out the similarities and differences of the method of ^-functions and

of test functions. Compare also with the work of tliis section the remark tiiat tlic

detenninatiou of the order of an infinitesimal or infinite is a i)rol)it'ni in indeter-

minate forms (p. (Jo). State also wliether it is necessary that /(x)/-/' (x) or x^/(x)

should a])iiroacli a linnt. or whetiier it is sufficient that the (nuiutity remain tiniti'.

Distinguish "of order liiglier'" (p. 3o(J) from "of higher order"' (p. 03); see Kx. iS. p, Otj.

4. Discuss the convergence of these integrals and prove the convergence is

absolute in all cases where possible :

--^^-dx. (p) J
cosx2.7x, (7)/ --dx,

(5)
p-'^^^i'l^^,

(,, f\-u^^.o,l3xdx, (n f\l"^+^dx,
Jo X Jo Jo \ X-^



ox INFINITE INTEGRALS 359

(tj)
I

(ix, (^) I
e-<^cos?;xdx, (t) I —^ dx,

J x'^ + ^- «/ Jo ^_p

, ,
/''•^

, a . ,,, /^«= sill X COS (XX ,

(k) I x'^-%--^<=o^Pco.s(xsiii/3)dx, (X) I tZx,

Jo Jo X

(m) / COS x2 COS 2 axdx, (i/)
j

sin
(

1 )dx, (o) f ^ dx.
Jo Jo \2 2 XV '^o x"^

5. If /i(x) and f„{x) are two limited functions integrable (in the sense of

§§ 28-30) over the integral a^x^h^ show that their product /(x) =/^(x)/2(x)

is integrable over the interval. Note tJiat in any interval 5,-, the relations

m-iima ^ nn s 3/,- ^ J/i,J/o; and M-nM-u — mum^i = MiiM2i — Miim.2i +
Miim-2i — mijm-2i = ^hiOa + rii^iOn hold. Show further that

£ /i(x)/,(x) dx = liin^ /,(^^)/,(,t,)5,-

= lini2 /,(e,) r£''' ^ V,(x) (/x - £" +
'{./;(fO -f,{x) dx}! ,

or f''f{x)dx = Um^J\i^,)£'' + 'fJx)dx
i

= lim^ /; a,) r r /^(x) jx - r ' /,(x) czxl

,

or J /(x)tZx =/,(ij)
J/,(x) Jx + lim^ [/,(,^) -/,(s^-_i)] £ /,(x)(7x.

6. TAe Second Theorem of the Mean. If /(x) and 0(x) are two limited functions

integrable in the interval « ^ x ^ h^ and if (x) is positive, nondecrea.sing, and

less than 7f , then

r V ('C)/(-r) dx = K f /(x) dx, a ^ f ^ 'a

And, more generally, if <p{x) satisfies — co < i ^ (x) ^ A' < cc and is either

nondecreasing or nonincreasing throughout the interval, then

f (x)/(x) dx = k f f{x) dx +K f f{x) dx, a ^ J ^ h.

In the first case the proof follows from Ex. o by noting that the integral of

(x)/(x) may be regarded as the limit of tlie sum

<t> (?i)/ "/(x) dx + ^ [0(t^) - {^i _ i)] r /(x) (Zx + [jr - (fe,)]J /(x) tzx,

where the restrictions on (x) make the coefficients of the integrals all positive or

zero, and where the sum may consequently be written as

M [0 (>S) + <P (lo) - 4> (sS) + • • • + (^„) - (f;, _ i) + iv - (L)] = /"A'

if /u be a properly chosen mean value of the integrals which multiply tliese coeffi-

cients : as the integrals are of the form I /(x) cZx where ^ =: «. x, . • • • , x„, it follows
J^
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tliat (U must be of the same form where a = f = h. The second form of the theorem

follows by considering the function ^ — A- or A- — (j>.

7. If <^(x) is a function varying always in the same sense and approaching a

finite limit as x becomes infinite, the integral I <p{x)f{x)dx will converge if

I
/(x)(lx converges. Consider

f"' 4,{x)f{x)ax = ,p{x')J^f{x)dx + <p{x")j"' f{x}dx.

8. If <p{x) is a function varying always in the same sense and approaching as

a limit when x = oo, and if the integral F{x) of /(x) remains finite when x = cc,

then the integral
|

(p{x)f{x)dx is convergent. Consider

^%{x)/(x)tZx = .^(x') [F(f) - F{x')] + cp{x") [F(x")- F(.')].

This test is very useful in practice
;
for many integrals are of the f i )rm / (x) sin x(/x

where <p{x) constantly decreases or increases toward the limit when x = x; all

these integrals converge.

142. The evaluation of infinite integrals. Afttn- an infinite integral

lias been proved to converge, the jirolilmu of calculating its value still

remains. Xo general method is to l)e had, and for each integral some

si>ecial device has to be discovered whicli will lead to the desired

residt. Ill Is iiiinj fre(iuently hr ((i'C(niij>Jis]ic)l hi/ cliooshuj c finictuu}

F(z) of till' coiiipli'x rur'wJili' r: = ./•
-J- /// n ml infi(jr(itin(j tlu' finirfinn

11 round some dosed path In tin' z-phinr. It is known that if the points

where F(,-;) = A(a-, ?/) + n'(.>', _y) ceast-s to have a derivative F'(',v").

that is, wdiere A' (a-, ?/) and }'(,', //) ceaso to liave cfjiitinuous first par-

tial derivatives satisfying the relations A',' = \"„ and A',^ = — l'^-, ^I'e cut

out of the ])lane, the integral of F{::) around

any closed i)ath wdiich does not include any of

the excised points is zero (§ VIX). It is some-

times possible to select such a function i"(.v)

and such a ]»at]i of integration that part of

the integial of tlie complex function I'cduces

to the given infinite integral Avhile the rest of

the intcgi-al of the com})lex function may l)e com})utcd. Thus there

arises an equation wdiich determines tlu' value of the infinite iutey-ral.

-A^iB A + \B

dz=-Vdx

dz=->ridij dz=id)j

1 d.~=<t,v

-A O A

Consider the integral
/; X

(• wllJL

- »> e'> -- e- '-^

ell is known to conven

•'0 X .'o 2 /x J II 2 ix Jo 2 ix

Xiiw

dx

suggests at once tiiat the I'liiirtinn r''-/z he exaiiiiiicil. This fuiictiiiii has a definite

derivative at every puint except ^ = 0, and the origin is therefore the only jmint
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which has to be cut out of the phiiie. The integral of e~/z around any path such

as tliat marked in the figure * is therefore zero. Tlien if a Is small and ^1 is large,

0=1 —dz=\ — tZx + I
idy + j (U

Jq, Z Ja X Jo ^l + hj JA X + ill

p (;- iA -II p-a (.h; p+a (.iz

+
I

^ r- i<il/+ — dx + / — dz.
J/i — A + 11/ J- A X J --a Z

r""^.zx = -r"^*^dx = -r-'^c^ and r""^j^=r"i+^j.:
J-.l X J-a X Ja X J-a Z J- a Z

But

the first by the ordinary rules of integration and the second by Maclaurin"s

Formula. Hence

Xpiz p A fiix g— ix /i + a (J^
^— dz = i hi h four other integrals.

J Z Ja X J- a Z

It will now be shown that by taking the rectangle sufficiently large and the

semicircle about the origin sufficiently small each of the four integrals may be

made as small as desired. The method is to replace each integral by a larger one

which may be evaluated.

I

I idy ' ^
I

' ' \t\dy < I ~e~ I'dy < —
I

Jo A + hj \~Jo \A + i>j\' ' -^ Jo .i A

The.se changes involve the facts that the integral of the absolute value is as great

as the absolute value of the integral and that e'-^ - '> = e''-'t:^ ''.
\

e'-^
]

= 1. \A + 'ii/\> A .

e- '.'<!. For the relations
j

f'-' j
= 1 and \A-\-iyl>^l, the interpretation of the

quantities as vectors suffices (§§ ll-'-i) ; that the integral of the absolute value is

as great as the absolute value of the integral follows from the .same fact for a sum

(p. 154). The absolute value of a fraction is enlarged if that of its numerator is

enlarged or that of its denominator diminished. In a similar manner

A
I r'> c-'-'-!' ., I

B
a'

Furthermore

I
dx < dx = ^c- ' - ,

I idy\<-
Ja X + IB J-A Ji B 'J;;-A + iy

\
J

,
- a Z 'J — a \Z

\

«^0

r + " dz c'^ re^'ldtb

J- a Z Jtt rt'"

Xe'^
r-' sin.c B A— dz= 2i- dx-TTi + K. 'R| <2— + 2e--B_ + 7re,

^ Z Ja X A B

where e is the greatest value of |7;| on the semicircle. Now let the rectangle be

so chosen that A = Be^ ^
; then \E\<zie~-^^ + ire. By taking B sufficiently large

e'^2'^ may be made as small as desired; and by taking the .semicircle sufficiently

* It is also possible to integrate almig a semicircle from A to — A, or to coine back
directly from IB to the origin and separate real from imaginary parts. These variations

iu niethdd niav be left as exercises.
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small, e may be made as small as desired. This amounts to saying that, for A suffi-

ciently large and for a sufficiently small, R is negligible. In other words, by taking

X'*^

sill X TT
'- may be made to differ from — by
X 2

as little as desired. As the integral from z.ero to infinity converges and may be

regarded as the limit of the integral from a to A (is so defined, in fact), the integral

from zero to infinity must also differ from
I

ir by as little as desired. But if two

constants differ from each other by as little as desired, they nuist be equal. Hence

«/() X. A

As a second exami)le consider what may be had by integrating e'^/{z- + k^) over

an appropriate path. The denominator will vanish when z = ± ik and there are

two points to exclude in the z-plane. Let the integral

be extended over the closed path as indicated. .There is

no need of integrating back and forth along the double

line Oa, because the function takes on the same values / Xd z=ik

and the integrals destroy each other. Along the large I ^|;

semicircle z = Ee^'t' and dz = Bie^<i>d(j>. Moreover —R O

r° e'^fZx r"^ e"'Zx r^ e-'^dx , , ,

I
= —

I
=

I
by elementary rules.

J- R x" + k:^ Jo a;2 + k'^ Jo x^ + k^

Hence / + | = / —-^^ dx = 12 / dx,
J- R x^ + k" Jo X- + k- Jo x^ + &'-

^1,1 x~ + k-

and 0= / dz = -2
( dx + | ~+ /

-'O Z^ + k- Jo X- + k- Jo R-e~ '* + k- Jaa'a z- + k-

J^Tqw le'^*'*! = •^ciR(eoi,<l> + iuin<t,)\^ =
|

(;- «sin ,J,(^.,-« cos <^
|

= (,- « sin </._

Moreover |7i'^t''-^'* + k^\ cannot possibly exceed A'- — k'^ and can e(iual it only when

(p = Itt. Hence

I

pn c'''''"^Ric''l'dd)\ C'^ 7.'e- /? Bin </, ^^ ll(,-R%\ni,

I
Jo ifV'-^ + A,-^

I

Jo R--k- Jo R--Ic~

Now by Ex. 28, p. 11, sin > 2 ^/tt. Ilencc tlio integral may be further increased.

I

r- '''^'^RU:>"d.p\ ^rl Rr '[ -jhp^ tt _ , ,^,,_ -,.

I

Jo y.'-c-'
''.'' + A--

I

" Jo R- - A:- R- - k-
''

Moreover,
(

-'
- '" = C —

'
'-~- = f ('- h v)

-

Jaa'a Z- + k'^ Jaa'a Z + ik Z - //,• Jaa'a Vlkl
'

where tj is nnifornily iiiliiiitcsimal with the radius of tlie small circle. But

Xdz . -. r (''dz 2Trc~^
- — — -Itvu and — — Y t,

.^a'a Z-ik Jaa'a Z- + k- 2 k

whei'e '

j-| ^2Tr€ if e is the lai'gest value of
|
7; |. Hence tinally



ox IXFIXITE IXTECrRALS 363

J'^

'' CI IS X

X- + k-
- t'"

A;

+ i-H ^ (t"''- 1).

By taking the siiuiU circle .small enough and the large circle large enough, the last

two terms may be made as near zero as desired. Hence

x x^ + Ic^

dx
•2k

(")

It may be noted that, by tlie work of §§ 12*5. f
'J aa'a

dz
is exact

z + kl z — ki 2 ki

and not merely approximate, and remains exact for any closed curve about z ~ ki

which does not include 2: =— ki. That it is approximate in the small circle follows

innnediately from the continuity of e'V(~ + ^'O = e-^/2ki + -q and a direct inte-

gration about the circle.

As a third example of the method let 1 -^ dx be evaluated. This inteirral
Jo 1 + x

will converge if < a < 1, because the intinity at tlie origin is then of order le.ss

than the first and the integrand is an infinitesi-

mal of order higher than the first for large values

of X. The function z"~^/{l + z) becomes infinite

at z = and z =— 1, and these points must be

excluded. The path marked in the figure is a

closed path which does not contain them. Now
here the integral back and forth along the line

aA cannot be neglected ; for the function has a

fractional or irrational power z'^-i in the nu-

merator and is therefore not single valued. In

fact, when z is given, tlie function z"~'^ is deter-

mined as far as its absolute value is concerned, but its angle may take on any

addition of the form 2 7r/i-(ci: — 1) with k integral. Whatever value of the function

is assumed at one point of the path, the values at the other points mu.st be .such

as to piece on contiimously when the path is followed. Thus the values along the

line aA outward will differ by 2 7r(cr — 1) fromtlio.se along ^Irt inward becau.se

the turn has been made about the origin and the angle of z has increa.sed by 2ir.

The double line be and cb. however, may be disregarded because no turn about the

origin is made in describing cdc. Hence, remembering that c^' =—1,

Now

0= ~ dz= f d(rt^^")= ( dr+ ~
JqI + z Jo l-fre*' J„ 1 4-

»• J<> 1

—^ e-^^'dr+ ( ^^ dz + I ~ -dz.
A I + rC-''' Jahha 1 + Z Jr.lc 1 -{- Z

/(I yii —lf^''2nai r* A i.<r — 1

dr = (1 - c-^''')dr,

A 1+ r Ja 1 + /•

^.[a(,a4,i

+ Acf
id(p

Ja 1 + r

I
Jo l + Ac't'i

\ Jo A-l\
1

.1-1

I
(Zz ='

I "?0i^ I
(

\Jahh,i I + z ;

J:; 77 1 4- a(ft>'
i

Jo I — a

2 TTd"

1-a
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dz

../c-1 + 2 J 1 + 2

Hence = (1 - t2'^<") / dr + ^Tric-"' + i'.
\d< +

Ja I + r ^1 — 1 1 — a

2 Tric'^'K

2 7rA" -iTrn"

If A be taken sufficiently l:\rge and a .sufficiently small, j' may be made as small

as desired. Then by the same reasoning as before it follows that

= (1 — c-"'^')
I

fZr + 2 TTic'^'", o r sin TTtr I dr + tt.

Jo 1 + r

ami
1

fZjr, =
+ X sin air

(8)

143. ( )iie intt'gval of particular iin})ortaiici' is I e'^'dx. Tlie evalu-

ation mav lie inadc 1)V a device wliich is rarclv useful. Write

r'.--.v.4r'.-.v.,.r'^-..vJ-=fr'r'. (l.rd If

The })assage from tin; product of two iiitegrals to the douljle integral

}nay be made because neither the limits nor the integrands of either

integral depend on the varial)le in the other. Now transform to polar

coordinates and integrate over a quadrant of radius ,4.

,lnh, =
•'

, 1
c"-rdr<ie + R = 77r(l •

) + /',

\vliere 11 denotes the integral o\'er the area between the quadrant and

s(piare, an area less than .V-l" over which i'~'"^i~"^'. Then

11 < iA-e--'\ n -•'-, I. ,<!, <\A\

Xow .1 may be taken so large that the (hmble integral differs from ^tt

by as little as desii'ed. and hence for sufficiently large values of ,1 the

simple integral will differ from 4- Vtt l)y as little as desired. Hence *

i
(-'

'<!.,' = 1, Vtt. (9)

* It slicmld lie iidticcd tlmt tlif pninf just ;^i\cii dix's imt require tlie tlieory of intinitp

dciulile integrals ihu- of rlian^e ni xarialde; llie wlmli' proof eousists merely in tindini;

a nuiulier \ Vn- from Avliieli the integral may lie sliown tn dilfer by as little as desired.

'I'liis was also true of the jiroofs in § 14l': no tlieoi->- had to lie devcdoin-d and no linntiiiu:

;n'ocesses were used. In fact tlie exaluations that have been iii^rformed show i>( tlieni-

si'h'es that the inliinte inteurals converLre. F<ir w hen it has heeu sIkiwu that an intejrral

with a larire enonudi niii);-r liiuit and a small enouirli lnwer limit can he nnide to differ

from a rertain constant by as little as desired, it has thereby l)een proved that that

integral from zero to inlinitv must roiiverLre to the value of that constant.
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When some infinite integrals have been evahiated, otliers niay be

obtained from them In* various operations, sucli as integration by parts

and change of variable. It should, howevei-, be borne in mind that the

rules for operating with definite integrals were established only for

finite integrals and must be reestahl'islied for infinite integrals. From

the direct application of the definition it follows that the integral of

a function times a constant is the product of the constant by the

integral of the function, and that the sum of the integrals of two

functions taken between the same limits is the integral of the sum

of the functions. But it cannot be inferred conversely that an integral

may be resolved into a sum as

lf{x) + «/, (a;)] dx = / /'(.'•) '/'• + / </> (/'; dx

when one of the limits is infinite or one of the functions becomes

infinite in the interval. For, tlie fact that the integral on the left

converges is no guarantee that either integral upon tlie right will

converge; all that can be stated is that If on<' nf iJic Infcji-ah on the

rhiht cnnrpvgi's, tlie oilier v'lU, and the equation Avill Ijl' true. The

same remark applies to integration by parts,

X f(x)<f>'(x)dx = /(,'-) i>(-'-) f (x) </> ( ./; dj

If, in the process of taking the limit Avhich is required in the defi-

nition of infinite integrals, tn-n of the three tmns i/i the e'lUfitlon

npproiirJt /ii/iits, the third irtll (ipproaehi a limit, and the efpiation will

be true for the infinite integi'als.

The formula for the chantfe of variable is

I
"

\f(x)dx= f f[ci.(t)]4>'(t)df.

where it is assumed that the derivative ^'f) is continuous and does

not vanish in the interval from t to T (although either of these con-

ditions may V)e violated at tlie extremities of the interval). As these

two quantities are equal, they will a})proa('h etjual limits, provided

they approach limits at all, Avhen the limit

'

/(.r)rAv= C\t\<i>(f)^^'(f)dt

required in the definition of an infinite integral is taken, wliere one of

the four limits -'/, h. t^, t, is infinite or one of the integrands becomes

£
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infinite at the extremity of the interval. Tli>; fornnihi for the rhanrje

(if mridhle is therefore npplifnlili: to hijhiite inte;/r'i.ls. It should be

noted that the proof applies only to infinite limits and infinite values

of the integrand at the extremities of the interval of integration ; in

ease the integrand becomes infinite Avithin the interval, the change of

variable should be examined in each subinterval just as the question

of convergence was examined.

As an example of the clianire of variable consider (

'- dx = ~ and takex = ax'.
^ ^

Jo X -2

X''="^

sin (TX' , , r + '^fi'max'
, , r~^ sino-x' , , r-^' = '= sin ax' , ,

dx =
I

dx or =1 - — dx =— I dx .

„. = X' Jj' = X' J.r' = X' Jx' = x'

according as a is positive or negative. Hence the results

/"'- SinO-X , ,
TT .- rv 1

" T r^ /,«\
j dx = + if rt > and if a < 0. (10)
Jo X 2 2

Sometimes changes of vavialile or integrations by parts will lead luick to a given

integral in such a way tliat its value may be found. For instance take

n IT

1=1 " log sin ,/v/,c :--- — I log- CDS //'/// = I
" Ing ciis^d//. y = - x.

Then 21= |" " (Ing.-iux + log c(.sx)r/x = |" -
1 ng -'-1:^ dx

1 r~ TT f -• TT= -
I

lousiiixdx \i><z'2 = I Ini.'- sin xcZx log2.
2 Ju 2 J'> 2

Hence ^ = f
~

'"- ""'" '^''''^ ^ ~'\> ^^-'^'^- (^^)

Here the first change was y = tt — x. The new integral and tlie original one

were then added togethci' (tlie variable indicated under the sign of a definite inte-

gral is immaterial. ]>. 2(1). and tlie sum led back tn the original integral by virtue

of the substitution // = 2x and the fact that the curve >/ = log sin x is synnnetrical

with respect to x =
J

tt. This gave an equation winch could be solved for I.

EXERCISES

It. .
^(''^

i- , , - , r '^ XSinX , TT ,

1. Intesrate • as tor the case of (<). to show | dx = - e-^'.
2- + /.•- .'o X- + k-^ 2

2. By direct integration show that ( c~ ("-'"') -d^ converges to {a — ''0^^ when

a > and the integral is exteude(l along the line >/ = 0. Thus prove the relations

\ t- "'' COS hxdx = .

,

j e- "-^ sni hxdx = , a > 0.
•-'0 ('- + h- Jo (I- + h-

AloiiLT what lines issuing from tin/ oii^-in would the ^ivcu inte-ral ciiuvcrij-e '.'
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^— = ^^ — To integrate about z = — 1 use the binomial
(1 + X)- sin air

expansion z'^-i = [- 1 + 1 + 2]«-i = (- l)'^-i[l + (1 - a) (1 + z) + ,,(1 + z)],

t; small.

4. Integrate e-^" around a circular sector with vertex at z = and bounded by

the real axis and a line iiulincd to it at an angle of \tt. Hence show

2

1 \ir

e* I (cos r- — i sin r-) cZ>- = | c-^'dx,

J^

50 ^ CO 1 /tT

cosx^fZx — I sinx-dx = - \\~.
Jo 2X2

5. Integrate e-^'' around a rectangle ?/ = 0, y = 5, x = J- .1, and show

I
e- ''-"' cos 2 axdx = I Vttc- «', / e- -''^ sin 2 rtXcZx =: 0.

6. Integrate z'^-^e-^, < a, along a sector of angle q <Iit io show

seca^
I

x'^
-

'^e-^'^'^^1 cos {x sin q)dx

— CSC aq I x"~'^e-^''''^ism {xsmq)dx= ( x"-'^e-^t
Jo Jo

dx.

7. Establish the following results by the proper change of variable :

, r=°cosa:x , 7re-«* „ ,„ f'"x'^-V/x 7r/3«-i „^ ^
a)

I
dx = , a>0, {13) = ~ ' /3 > 0,

Jo X- + k" 2 k Jo ji + X sm trTr

J^'",.,

1/— ,/"" 1, /''

2 a J' Vx ^^^

— J^

J^^

„ , vTre 4"^ /• 1 dx /

—

e- «''' cos /ixdx = , a > 0. (f ) I = Vtt,
2(T Jo V- logx

^
/"= cosx , /'^"sinx , 'tt ,,, /^Mogxdx tt

V) / —^dx=/ -—-dx = ^-, (^) / H = --
Jo Vx '^o Vx > - ^'J V 1 - x2 ^

--log 2.

8. By integration by parts or other devices show the following

:

X log sin xdx = tt- loir 2, (fi) i '- dx = —,
2

'

Jo x'^ 2

f=°sinxcosax tt ., ^ . tt ..
, ^ n •*

i i ^ i
7) I

dx = - if — 1 < a < 1, or - if or = ± 1 or if q- > 1,
Jo X 2 4

f"°

00 A TT r " .> ^ 3 V TT
x2e-«"-'~dx = , (e)

I
x*e-'^--^"dx = -,

4 a3 ^ Mo 8 a-

J^

30 Z' ''' T sill Xflj* TT"
x«-ie-^dx, (r?)

I
-^^ ^ = —

Jo 1 + cos'- X 4

r^ / 1\ dx
0) I

loic ( X + - ) = TT log 2, by virtue of x = tan y.
Jo ' \ x/ 1 + X-
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fix

J"

''-

fix

f{x) — , where a > 0, converges. Then if p > , 7 > 0,
ti X

Show nf(P^r)-fi,x)
^^ ^ j.^^^

r'^'y^^^ >lx
^j,^^^^ ,^^^.

,
_

Jo X a = «/y<« X p

Hence (a) I — dx = 0, (/3) / (Zx = log - ,

Jo X J') X p

XI
.r''^i — .r'/-! , ,

a r^ cos.r — cos ".r ,

cZx = log-i, (0) I ^Zj:^l<.ga.
luLi^r n Jm .f

.1 j-;<-i — .r'/^i
, , (/ , ., C^' cos.r — cos'/.r

10. \i f {s) anil/'(.f) are continuons, sliow by intearation by parts tlial

^in h\.

liin
I

/(,/•) sin /i-.fdr = 0. Hence prove iini | ^'(./'l '~dx — ~f(()).
k= A Jn / = -/-. J'l X 2

\\ rite f{x) dx — /^(O)
/

f/j + | sinA-.fdj.

!
J) X J<) X Jo X J

Apply Kx. 0, p. ooO, to prove these fornuilas under general hypotheses.

IL Show that lini f f{x)
" ^

"'

dx = if 6 > a > 0. Hence note that

Xh sin A*c p^ sin At
f{x)' '-d:^]\m lini | f(x)' dx, unless /(O) = 0.

144. Functions defined by infinite integrals. If the iiitogiand of an

integral eontains a |)ai'anieter ( JJ 118), tlie integral defines a function of

the parameter for every value of the parameter for "whieh it eonvei'ges.

The continuity and tlie differentiaVtility and integrahility of the- func-

tion have to l)e treated. Consider first the case of a:! infinite limit

/ ^(./•, ii)<lr = j f(.r, n),/.r + /.•(,-•. n), 11 = I f( ./• n )
<l.r.

If this integral is to converge for a given value a = n\^, it is necessary that

the rt'Uiainder /' (./'. 'r ) c-an he made as small as desirt-d ])y taking ,/• large

enough, and sliall I'cmain so for all larger values of ,/•. In like manner if

the inteu^rand Ix'comes infinite lor the \alue .r = h, the condition that

/ /'(.', 't)>/.r =
I

/'(.'•. n),/.r + A' ( ./•. a), Ji = I f(.r. ") f/.r

(onv«'!-ge is that /,'(./. '(
1 can he made as small as desired liy taking./'

near enough to A. and shall r.uuain so for nearer values.

Now for dirt'ei'ent valiirs of n. the least values of ,/ which will make
/•'(.'", '( ) =5 e. when e is assigmd. will ]ii-()l)al)ly differ. The infinite' inte-

grals are .said to cofin'r^/r u iiifuniili/ for a range of values of a such as
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n^^ = a = 'i^ -when it is }»ossil)le to take x so large (or x so near h) that

\

It (x, «) j

< e liolds (and continues to hold for all larger values, or values

nearer I/) simultaneously tor all values of a in the range a^ = « = a^.

The most useful test foi' uniform convergence is contained in the

theorem: //' " jnniiflri' function <^(.'') can hi' fonnd such that

f (j) (./•) dx converges and eft (x) ^ \f(^x, a)
|

fovall bii'fjc ralues of x and for all nilnt's <f<i ni thu interval 'f^ = <i = 'f,,

the integral af f{j-, a) to inp'nif;/ conrcrgcs an'ifornihj {<ind ahsohitcli/)

for the range of values in a. The proof is contained in the relatid;;

r f{x,a)dx\^ C 4>(x)dx<

which holds for all values of a in tlie range. There is clearly a similar

theorem for the case of an infinite integrand. See also Ex. 18 below.

Fundamental theorems are :
* Over any interval a^^ a ^ a wlu^-e

an infinite integral converges uniforndy the integral defines a con-

tinuous function of a. Tins function may l)e integrated over any finite

interval where the convergence is uniform l)y integrating with respect

to a under the sign of integration Avith I'espect to :/•. The function may
be differentiated at any })oint <i^ of the interval ''<„ = 'f = <t^ hy differ-

entiating Avith respect to a under the sign of integi'ation Avitli respei^t

to X provided the integral ol)tained l)y this differentiation converges

uniformly for values of a in the neighborhood of a^. Proofs of these

theorems are given immediately Ixdow. t

To pr(jve that tlie function is continuous it' the convergence i.s iniiforni let

f{a) =
I

/(.f, cx)dx =
I

/(/, a)dx + A' (x, a), «„ = a s a^,

f{a + An-) = r fix. a + A(r)f/.r + iH-r, a + Aa),
J a

lA-/-! ^
I

[/(/. a + A<() -/(./-, cx)]dx +
\

U{x, a + Aa)
]

-|-
;

ll{x. a)\.

* It is rif course assunifnl tliat /('.'•, a) is continuous in (.c, a) for all values of x anrl a
under consideration, and in the tlieorem on differentiation it is further assumed that

/^j (.J-, a) is continuous.

t It should he noticed, however, that although the conditions which have heen

imposed are xnijirlp/if to estalilish the theorems, they are not n ece •<'<(.( r >/ ; that is, it may
happen that the function will he continuous and that its derivative and integral may he

obtained hy operating under the sign although the convergence is uf)t uniform. In this

case a special investiLiatifin wf)nld have to he undertaken : and if nfi process for justifying

the continuity, integration, or differentiation could he devised, it miuht he necessary in

the case of an intet^ral occurring in some application to assume that the formal work le(l

to the i'ii;ht result if the result looked reasf)nah!e from the point fif view of the problem

under discussion, — the chance of getting an erroneous result would he tolerably small.
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Now let X be taken so large that |fi|<e for all a"s and for all larger values of x

— the condition of uniformity. Then the finite integral (§ 118)

f{x, a)dx is continuous in a and hence / [/(^» « + Aa) — /(j, a)]dx
a \Ja'

can be made less than e by taking Aa small enough. Hence
j Af |<3e; that i.s, by

taking Aa small enough the quantity
| Af |

may be made less than any assigned

number 3e. The continuity is therefore proved.

To prove the integrability under the sign a like use is made of the condition of

uniformity and of the earlier proof for a finite integral (§ 120).

C"'xp{a)da = f' r /(x, a)dxda + f'Udx = f ["'/{x, a)dadx + f.

Now let X become infinite. The quantity f can approach no other limit than 0;

for by taking x large enough E < e and |f |
< e {a^ — a^,) independently of a. Hence

as X becomes infinite, the integral converges to the constant expression on the

left and
_

n^ C''^
I f (a) da = I I /(x, a) dadx.
Ja^ Ja Ja^

Moreover if the integration be to a variable limit for a. then

^{a)= f yp{a)da= f f f{x, a)dadx = f F{x, a)dx.

F(x, a)dx' = \ \ I /{x, a) dadx \=
• \ I /(•'', «) dxda < e (a — a^).Al

Hence it appears that the remainder for the new integral is less than e (a, — ag)

for all values of a; the convergence is therefore uniform and a second integration

may be performed if desired. Thus if an infinite integral converges uniformly, it may

be integrated as many times as desired under the sign. It should be noticed that the

proof fails to cover the case of integration to an infinite upper limit for a.

Tor the case of differentiation it is iiecessary to show that

I
f {x, a^)dx = (p' (a^). Consider

|
f'^{x. a)dx — ui{a).

As the infinite integral is assumed to converge uniformly l)y the statement of the

theorem, it is x'ossible to integrate with respect to a under the sign. Then

C "w (a) da = f^ f"f'^ (x, a) dadx = T' [/(x, a) - fix. a^)] dx = <p {a) - 4> (a^).
Jay Ja Jay Ja

The integral on the left may be differentiated with resi>ect to a. and hence

<p{a) nuist be differentiable. The differentiation gives oj(a) = <p'{a) and hence

w(at) = (p' (at). The theorem is therefore proved. This theorem and the two

above could be proved in analogous ways in the case <>f an infinite integral due

to the fact that the integrand /(x, a) became infinite at the ends of (or within)

the interval of integration with respect to x; the prrxifs need not be given here.

145. Tl)e inetliod of integrating or differentiating imder tlie sign of

integration may be a})plied to evalnate infinite integrals wlien the condi-

tions of uniformity are properly satisfied, in precisely the same jnainier as

the inethod was previously applied to the case of finite integrals where
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the question of the uniformity of convergence did not arise (§§ 119-120).

Tlie examples given below will serve to illustrate how the method works

and in })articular to show how readily the test for uniformit}' may be

applied in some cases. Some of the examples are purposely chosen iden-

tical Avith some whicli have previously been treated by other methods.

Consider first an integral which may be found by direct integration, namely,

Jr>
r. d p-r. J
e- «-^ cos hxdx — Compare ( e- '^dx = - .

a^ + h" Jo a

The integrand e-'^-^ is a jjositive quantity greater than or equal to e-'^^coahx

for all values of b. Hence, by the general test, the first integral regarded as a

function of h converges uniformly for all values of h. defines a continuous func-

tion, and may be integrated Ijctween any limits, say from to b. Then

i
I

e-"-'co-ibxdj:db = I | e-^^coabxdbdx
J J J J

r '^- sin6x
,

/•'' ndJ) , b—
I

e-"-'^ ax — I = tan-i-.
Jo X Jo «- + b'^ a

sin/>x „ , r'^' 1 — cos/>x
,' ax

P '^'

P'> sm ox c
Integrate again. | I

(•-'" ^ dbdx =
jJ J X Jo

b a= b tan-i log («- + />').

a 2

1 — cos 5x , , /• ^ 1 — cos bx.
,

dx.r* „ . 1 — cos5x r^ 1
Compare

| e- "' ax and | -
Jo x~ Jo

Now as the sec(jnd integral has a positive integrand which is never less than the inte-

grand of the first fur any positive value of a, the first integral converges uniformly

for all positive values i)f a including 0, is a continuous function of a, and the value

of the integral f(U- a = may be found by setting a equal to in the integrand. Tlien

r ' 1 — CHS bx , ,. r, , b « , , , , , n
I

dx = lim b tan-i log (a^ + b-)

Jo X- a = oL a 2 ' J
' 2

The change of the varialjle to x' = 1 x and an integration by ijarts give respectively

J"'^-
s\n-bx , TT ,-, .

r'^'-iiinbx , tt tt , ^ , ^
dx =-\b\

I
dx= + ~ or . as '^ > or b<0.

X- 2 '
' Jo X 2 2

'

This last result might be obtained formally by taking the limit

r ^- sin />x , r "^ sin /jx ,
Ij tt

lim (
e-nc ax = | dx = tan-^-= ± —

a = ',Jo X Jo X 2

after the first integration ; but such a process would be unjustifiable without first

showing tliat the integral was a continuous function of a for small positive values of a

and for 0. In this case ^ x "^ e ~ "'' sin 5x
]
= | x "^ sin x |, but as the integral of |

x~i sin bx
\

does not converge, the test f(jr uinformity fails to apply. Hence the limit would not

be justified without special investigation. Here the limit does give the right result,

but a simple case wliere the integral of the Hunt is not the limit of the integral is

,. r'sin/>x , ,. / 7r\ TT r",. sin te
, C ^'

^^ , r.
lim

I
«x = Inn

( ± ^ I = ± — ^ /
Inn dx I -dx = 0.

ftioJo X 6 = \ 2/ 2 Jo h = X Jo X
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As a second example consider the evaluation of I e~\^^)dx. Differentiate.

da Jt) Jo \ xj X

To justify the differentiation this last integral must be siiuwn to converge uni-

forndy. In the first place note that the integrand does not become infinite at tlie

origin, although one of its factors does. Hence the integral is intinite oidy by vir-

tue of its infinite limit. Suppose a s ; then for large values of x

e ^ ^/ M ] ^ e -'"(-'' and | e-^'dx converges (§ 143).

Hence the convergence is uniform when a s 0. and the differentiation is justified.

But, by the change of variable x' = — a/x, when a > 0,

Jo X- Jo Jo

Hence the derivative above found is zero
; (f>' {<<) = ami

(p((i) — i e ^ '' dx = const. = I c--''dx = }, Vtt
;

Jo Jo

for the integral converges uniformly when « s and its constant value may be

obtained by setting a = 0. As the ccjiivergeuce is uniform for any range of values

of a, tlie function is everywhere continuous and equal to l ^ ir.

As a third example calculate the integral (p(h) = I (-""-''' cos //xJx. Xow
Jo

J"

* , » 1 r „ „ 1 '^ h r -^.y „— xt'-''"-''siu hfdx =
,

(;'"''' sin Iix | e~'^''' cos i

"2 a- L Jo 2 a- ^^o

The second stej) is obtained by integration by })arts. The previous differentiation

is justified by the fact that the integral of .ct-"'''. which is greater than the inte-

grand of the derived integral, converges. 'I'he differential ecjuation may be solved.

d4> _ h
''

dh
(/), (p -- Cc ia\ 0(0)= ( (-"'-dx= —

'2 a'- J I) 2 <

Hence (Jj) = <p (0) r~ 4«- = f
Jo

IS 1,.1-d.i

2 a

In deternnning the constant ('. the funi'lion (p{ii) is assumed continuous, as the

integral for (p {!/) obviously eonvurges uniformly for all values of h.

146. The (]U('sti()ii of the intcL;'ratioii iuhIci' Iho sis^'ii is iiatiinilly

connected with the (|tu'stiuii of intinite (loul)l(' intc.yrals. Tlic doiihlc

intfo'i-al
I

./'(•''. //)"'.l o\'er an area A is said to lie an intinite inti'i^-ral

if tliat area, extends out iiidt'tinitcly in any dii'cetion or if tin' function

./'(•''?
,'J)

l>eeonn'S iidinitc at any jioint (jf tin- area. The dtdinition of
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convergence is analogous to that given before in tlie case of infinite

simple integrals. If the area -1 is infinite, it is replaced by a finite

area A' which is allowed to expand so as to cover more and more of

the area .4. If the function /(.r, ?/) becomes infinite at a point or along

a line in the area A, the area .1 is replaced by an area A' from which the

singularities of /(;/•, //) are excluded, and again the area .4
' is allowed to

ex})and and approach coincidence with A. If then the double integral

extended over A' approaches a definite limit Avhich is independent of

how A' approaches A, the double integral is said to converge. As

//^(•"">"-"-"=//k('^-)
/(</>, ij/) dudv,

where x = <f>(u, r), ?/ = >/'(", i'), is the rule for the change of varialjle

and is applicable to .1', it is clear that if either side of tlie ecpiality

approaches a limit which is independent of how A' approaches A, the

other side must approach the same limit.

The theory of infinite double integrals presents numerous difiiculties,

the solution of which is beyond the scope of this work. It will be suffi-

cient to point out in a simple case the questions that arise, and then

state without proof a theorem which covers the cases which arise in

practice. Suppose the region of integration is a complete quadrant so

that the limits for x and // are and cc. The first question is, If the

double integral converges, may it be evaluated by successive integra-

tion as

ff(x, y)dA = f f fix, y)dydx = f f f(x, >/)dxdi/?

And conversely, if one of the iterated integrals converges so that it may
be evaluated, does the other one, and does the double integral, converge

to the same value ? A part of this question also arises in the case of a

function defined by an infinite integral. For let

'^(')=
/

/(:<-, y)^^y and / cf>(x)dx=l j f{x,y)dydx,

it being assumed that (^(x) converges exce])t possibly for certain values

of X, and that the integral of ^(.r) from to :o converges. The question

arises, ]\Iay the integral of <^(.f) be evaluated by integration under the

sign ? The proofs given in § 144 for uniformly convergent integrals inte-

grated over a finite region do not apply to this case of an infinite inte-

gral. In any particular given integral special methods may ]iossil)ly be

devised to justify fur that case the desired transfonnations. lUit niost

cases are covered by a theorem due to de la ^'alle' Poussin : If the
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ftciiction f(.r, ij) docs not cliangc sl'jn and is ronfhii/oHs e:rc,ept over a finite

numhei' of lines parallel to ilie axes of x and //, tlien the three integrals

ff{x,y)dA, f f\f(cr,y)d>/dx, f f \f(.r, y)dxd>/, (12)

cannot lead to different determinate results : tliat is, if an// tiro of them

lead to definite results, those results ((re equ((l.* The chief use of the

theorem is to estuhlish the equality of the two iterated integrals when

each is known to converge ; the application requires no test for uni-

formity and is very sim})le.

As an example of the use of the theorem consider tlie evahuition of

1=1 e-''J.c =
I

ae-^'-'-' tie.

Jo Jo

Multiply by e-"' and integrate from to x> with respect to a.

Ze-«'= r ae- '^-(1 +•'')tZx, if c-'^- da = 1~ =
\ f ac-'^-('^''-'-) dxda.

Ji) Jo Jo Ji)

Now the integrand of the iterated integral is positive and the integral, being equal

to 1'-, lias a definite value. If the order of integrations is changed, tlie integral

I I ixe-"-'<^^'-'~> dadx= \
= -tan-ix = --

Jo Jo Jo 1 + X- 2 2 4

is seen also to lead to a definite value. Hence the values Z- and ] tt are equal.

EXERCISES

\. Xote that the two integrands are continuous functions of (.r. a) in the whole

region ^ ^^ < x, ^ x < x and that for each value of a the integrals converge.

Establish the forms given to the remainders and from them show that it is not i)os-

sible to take x .so large that for all values of a the relation
|
R (x. a)

|

< e is sati-sfied,

l)Ut may be .satisfied for all a"s such that < (t,j == a. Hence infer that the conver-

gence is nonuniform about a = 0. but uniform elsewliere. Note that the functions

defined are wot continuous at a = 0. but are contimious for all other values.

e-"' - 1.
Jo Ja

, ^
/" sin tr.r , -,, , r ' Aw ax ,

/• ^ sin .

(/3) / dx.ll{x.a)=\ dx=\
Jo X J -! X J a.r X

dx.

2. Kepeat in detail the i^roofs relative to contiiuiity. integration, and differ-

entiation in case the integral is infinite owing to an infinite iiUegrand at x = h.

* The theorem may hi- gciicralizcd by allowing /'(.r, y) to be discontimnms over a

finite mind)er of curvi's rach <>f which is cut in only a finite limited number of ))uints

l)y lines i)arallel to tlie axis, ^run-over, the function may clearly he allowed ti) cli.-uige

sign to a certain extent, as in tlii- c;ise where /'>n when ./• > n. and /' < -when (^> < .'• < *',

etc.. w hei-e the integral oNcr the wlmle region iiia>- he resdlved into the sum of a tinite

number of integrals. Finall.\-. if tlie integrals are alisdlutely cinnergeiit auil the integrals

of !/'(.'•, //)' lead to definite results, so will the integrals ofy'(.;-. //).
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3. Show tliat differentiation under tlie sign is allowable in tlie following cases,

and hence derive the results that are given :

. r"^- > , 1& r. r"^- . - ,
^^7^ 1 • 3 • • • (2 n - 1)

^0 ^ \' a ' ^0 ^ -"«" + ^

J^

•^-
„ 1 /• * , 1 2 • n

xe-''^dx = — , or > 0, (
X'''+^ e-^^'-dx = ,

u '2 a Jo 2a''"!"i

^ r"^ dx TT 1 , ^ r^ dx tt 1 • 3-
• • (2 h — 1)

7) = = , A; > 0, I
= ,

—

'-

,

Jo x^ + k 2 v'^ J'J (x- + i-)«+i 2 2"n:/j« + 2

x"(Zx = , ?i > — 1. I x"(— loK xydx = ,

n + l Jo
'

(n+ l)"'+i

e
) I

dx = < a: < 1. I
'— dx =

Jo 1 + X sin air .^u 1 + x cos- air — 1

4. Establish the right to integrate and hence evaluate these :

p X p X ^— ax — g— bx
fj

a) ( e-"^dx, < a,, = a. / dx = los; -, h. a s a„,
Jo Jo X "a

/»

1

p \ j'ft ^ 6

j3) I
x'^dx. — 1 < a,) < cr, ( cZx = lO;

Jo Jo log X

a + 1 , ^
-, />. (/ ^ or,,.

'

^^ + 1

^ X /^ X p— CLT p— bx

y) I
e- «^' cos ??jxdx, < (Xq ^ tr. | cos?nxdx

«/o Jo X 2 ' a- 4- »(-

/> X /> X g— ftr g— bx
]f f-f

5) I
e-<^^sin7nxcZx. 0<cro^a. | sin ??ixdx = tan-i tan-i -,

Jo
'

Jo X 1)1)11

e)
(

e-<^'^dx = —~
, < a„ ^ a. f e"j-- — e x^dx = (b — a) Vtt.

Jo 2 a Jo

5. Evaluate: (a) f e-'^'^^^^^^-^ dx =tan-i -,
Jo X a

^ /^* 1 — cos n-x
, , /- ,

/^-^ oSin2arx,
^) I e-^ dx = logVl + a-. (7) ( e-^' dx,

Jo X Jo X

^, f '- -(x"- + '^) ,
^''^ ,., ^^ ^^ r- log(l + «2x-^)

,5) I e V a-'(:Zx = e--". « s 0. (e) (
— dx.

Jo 2 Jo 1 4- b-x'^

6. If < a < b, obtain from
j e-'"-''''dx = - * — and justify the relations

:

Jo 2 V '

X''

sin ?• 2 f^ n ^-
„ 2 n^ r^ «—

zr dr = —- I / e- '''sin rdxd)- = —= I I e- ™'sin rdrdx
.. ^ f ^-.Ja Jo -^\jj.Jo Ja

- r • r " e- "^"x-dx . , r ^ e- ^'^'x-dx= — 1; sm a sm b |

Vtt L Jo 1 + X* Jo 1 + x^

px(,-ax\jj. f^-e-^'"dx~\
+ cos a cos 5

I
.

Jo 1 + x* Jo l + x*J

/""sin?-
,

TT 2 r . /> ^ e- '•''x-dx r^- e-"'dx~]
I

dr = \ sm / 1- cos r | •

Jo ^r. \2 ^"L Jo l+x* ^ Jo l + x*J
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, . ., ,
/•'"cosr

, jir 2 Y c^- e-^'^-x^x . r- =^ g- '"'^^dx'l

Similarlv, I —=- dr = -s^i cds r sin r .

Jo Vr ^2 ^L ^'^ l + x'^ Jo l + x*J

1 r'^
7. Given that = 2 ( ae- "^d + ^'Wa, show that

1 + x^ Jo

J'^*

1 + citamx -, 7r ,, , ,
/"'^ cosmx , tt— dx = - (1 + e- "') and | dx = - e- '", m > 0.

1 + x^ 2 ^
' Jo 1 + x^ 2

X'-c
J* sin cxx-— ^ (ix, by integration by parts and also by substi-

tuting x' for ax, in sucli a form tliat the uniform convergence for a sucli tliat

< a^ s a is sliown. Hence from Ex. 7 prove

r^^' xsin ax , tt _ ,, ,.^ . . ^

I
^ax = — e-*^, a>0 (by differentiation).

Show that this integral does not satisfy the test for uniformity given in the text;

also that for a = the convergence is not uniform and that the integral is also

discontinuous.

9. If /(x, a, /3) is continuous in (x, a, ;3) for ^ x < x and for all i)oints (a, /3)

of a region in the aj3-plane, and if the integral (a, /3) = | /(x, a. j3)dx con-
Jo

'

verges uniformly for said values of (a. /3), show that <p (a. /3) is continuous in (a, (3).

Show further that if /^(x, a, ^) and/^(x, a, ^) are continuous aiul their integrals

c(jnverge uniformly for said values of (a, p), then

j
/^(x, a, /3)(Zx = 0^, r ./"^'Cx, a, /3)(Zx = 0g,

and 0^, (p^ are continuous in (a, /3). The proof in the text holds almost verbatim.

10. If /(x, 7) = /(x, a + i/S) is a function of x and the complex variable

y = a + (/3 which is continuous in (x, a, /3), that is, in (x, 7) over a region of the

7-plane, etc., as in Ex. 9, and if /'(x, 7) satisfies the same conditions, show that

0(7) =r
I

f(x, y)dx defines an analytic function of 7 in said region.

11. Show that
I

e-y''dx, 7 = a -f 1(3. (t ^ a,, > 0. defines an analytic func-

tion of 7 over tlie whole; 7-plane to the right of the \ertical d — a^|. Hence infer

(7) = r 'e- y-'-'dx = ^^'' = -J- ^— , as, ,„ > 0.
Jo 2 V 7 2 \ a + i(i

Prove
1 /tt a + Va- -I- //-

J'

•^
o .-, , 1 TT a -{-A

(- a.r- Q^,^ Bx-dx = -- A
u 2 \2 a-

r^ ...
., , 1 TT — (f -1- Va- -f /i-

/
(-"'-sinax-Uc = - X —^-^

Jo 2 \ 2 a- + ^33
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- e-<^^"x cos /Sx^dx of Ex. 11 by parts with xcos^x^dx = du

to show that the convergence is uniform at a = 0. Hence find / cos^x-cZx.

^ + CO /^ + » /.yj- ^ + CO

13. From | cosx-dx = I cos (x + a)2dx = -^/- = I sin (x + a)2dx, with

n+x ^ + CO

the results I cos x- sin 2 crxdx = / sin x^ sin 2 axdx = due to the fact that

sin X is an odd function, establisli tlie relations

( cos x- cos 2 axdx = cos ( a-), ( sinx^ cos2frxdx = sin
( a'^].

Jo 2 \4 / Jo 2 \4 /

14. Calculate: (cr)
(

e- "'^" cosh 6xdx, (/3) (
xc- ""-^ cos 5xdx,

Jo I'u

and (together) (7) J^'cos (^~ ± ^^ dx, (5) £ "sin
(^^

± ^^ dx.

15. In continuation of Exs. 10-11, p. 308, prove at least formally the relations:

,. f" ., sinA-x TT 1 /^« sinA:x
lim I /(x) dx = -/(0), Inn- I /(x) dx =/(0),
k=xJ-a X 2 A = z7rJ-rt X

Jr>
k n <l /^ <l n Jc r» <t Sill A,'iC

I f {x) co^ kxdxdk — I I f {x) cos kxdkdx —
j

/(x)-^ dx,

-
I I f (x) COS kxdxdk = \\m - ( f{x)- ^ dx =/(0),

TT Jo J -a /(=Qc7rJ~<e X

- r
"^

r
^
/(^) COS txdxdfc = /(O), - f r '

/(x) cos fc (x - dxdk = /(<)

.

The last form is known as Fourier's Integral ; it represents a function f{t) as a

double infinite integral containing a parameter. Wherever possible, justify the

steps after placing sufficient restrictions on/(x).

/- X I ^ X g— ax g— bx
I)

16. From (
c--"J dy = - prove / dx = log- • Prove also

Jii x Jo x a

I
x"-^e-^dx ( x'«-ie-^'dx

Jo Jo
IT

— 9
I

,.-2n + 2m-2g-r2(7j.2
j

" sin '-" -l0 COS^"' -l0d0.
Jo Jo

17. Treat the integrals (12) by polar coordinates and show that

I
/{X', y) dA =

I
~

j f[r cos 0, r sin 0) rdrd^)
J ' Jl) Jo

will converge if |/| < ?— --^- as r becomes infinite. If /(x, ?/) becomes infinite at the

origin, but \f\<r-^ + ^, the integral converges as r approaches zero. Generalizx'

these results to triple integrals and polar coordinates in space ; the only difference

is that 2 becomes 3.

18. As in Exs. 1, 8, 12, uniformity of convergence may often be tested directly,

without the test of page 369 ; treat the integrand x-^e-^^sin bx of page 371, where

that test failed.
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SPECIAL FUNCTIONS DEFINED BY INTEGRALS

147. The Gamma and Beta functions. The two integrals

r(»)= r ./"-it'-V./-, B(m,?i)=
I

x"'-\l -.>)" -hlx (1)

converge when n > and i/i > 0, and lience define functions of the

l)ai-anieters n or n and m for ajl positive values, zero not included.

Other forms may lie obtained by changes of \ariable. Thus

T{7i) = 2 fr"-'>'-'-n/>/, by x=>/% (2)

T(?i)=J (log-J \l>/, by e-- = y, (3)

B(//^ 72) =f y-Hl - y)"'-V/y = B(n, m), by x = l- >/, (4)

TJ/ X f" //"'-^^///
// ...

B(/M, ?i)= I -::; :~ ' by x = -
, (o)

B(m,7i) — 2J 'sin'-'"-^c^cos-"-'<^f/0, by a- = sin- (^. (6)

If the original form of T(7i) be integrated l)y parts, then

X '^
Jo '^Jo "'

The resulting relation V(n + 1) == nT(n) shows that the values of the

F-function for n + 1 may be obtained from those for n, and that con-

sequently the vabu'S of the function will all be determined if the values

over a unit interval are known. Furthermore

r( /; + 1 ) = nT(n) = n (ii - l)T(n - 1)

= nin - l)---(n-k)V(n-h) ^ ^

is found by successive reduction, where /, is any integer less than n.

If in particular n is an integer and k = n — 1, then

Via + 1)- n(n- \) 2 1 -V (V) = n\V {1) ^ n\

;

(8)

378
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since wlien n = 1 a direct integration shows that r(l) = 1. Thus /b?* inte-

gral ralurs ofn the V-fuwtion is the factorial ; and for other than integral

values it may 1)eT-egarded as a sort oT^eneralization of the factorial.

Both the F- and B-functions are continuous for all values of the

parameters greater than, but not including, zero. To prove this it is

sufficient to show that the convergence is uniform. Let n be any value

in the interval < ??^ ^ ?i s ;\^; then

/ 3.«-i^-T,/_,. ^
I

./"o-ie-^c/a:,
I

.r"-ie-V.r ^ | x^'-^e-'-'dx.

The two integrals converge and the general test for uniformity (§ 144)

therefore applies ; the application at the lower limit is not necessary

except when n < 1. Similar tests apply to B(//;, n). Integration with

respect to the parameter may therefore be carried under the sign. The

derivatives d^viv^ C"
-^=j^ x-'e-^(logxfdx (9)

may also be had by differentiating under the sign ; for these derived

integrals may likewise be shown to converge uniformh".

By multiplying two F-functions expressed as in (2), treating the

product as an iterated or double integral extended over a whole quad-

rant, and evaluating by transformation to polar coordinates (all of

which is justifiable by § 14(), since the integrands are positive and

the processes lead to a determinate result), the B-function may be

expressed in terms of the F-function.

r(?7)r(??i) = 4| x-"-^e-^dx I 7/2'»-ie-^'V//=4 / / x-"-hj-">-^e-'''-!''dxd>/

= 4
I

,.2n + 2m-ig-r2^7,. / ^sin^'''-^^ COS"" -^^r/<^ = T (h + vi)B(m, n).

Hence B (,v, n) = ^J'"^^^'') = B (n, w). (10)

The result is symmetric in m and n, as must be the case inasmuch

as the B-function has been seen by (4) to be symmetric.

That F a_) = Vtt follows from (9) of § 143 after setting w = | in (2)

:

it may also be deduced from a relation of importance which is obtained

from (10) and (5), and from (8) of § 142, namely, if n < 1,

Tin)Va-n) = B{n,l-n)=£^ylt
r(l)=l

or r(n)F(l-n)=^ .

'^

(i^j
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As it was seen that all values of r(?i) could be had from those in a

unit interval, say from to 1, the relation (11) shows that the inter-

val may be further reduced to ^ ^n^l and that the values for the

interval < 1 — Ji < ^ may then be found.

148. IJy suitable changes of variable a great many integrals may

be reduced to B- and F-integrals and thus expressed in terms of

F-functions. ]Many of these types are given in the exercises below

;

a few of the most important ones will be taken up here. By ij — ox,

j x"'-'^('i, — .r/'-i^/,/: = (/"' + "-i
I

(/"'-\1 — y'y^Oij = «"' + "-iB(7H, n)

or r x'"-Ha - ry-hlx = a'" + "-i iX^liffl")
, a > ^. (12)

Jo Y{jn + n)

Xext let it be required to evaluate the triple integral

/ = fCCx'-hr-^z^-^by/udz, ,r + i/ + z^ 1,

over the volume bounded by the coordinate planes and ./• + 1/ + '-' = Ij

that is, over all positive values of ./;, y, ;: such that x + y + '^ = 1- Then

nl — X /^ 1 — X — 1/

I x'-'f'-'z"-'dzdi/dx

= - / I x^-\/"'-\l — X — >/)"(//jdx.

By (12) J"V-^(l - ^- - 1/)"'^!/ = wI'lTT-tV (1 - •^O'"^"-V(m +71 + 1)

Then / = \ ,
'

,/' "Ml-.'' )'" + "'f-r

_ T(m)T(n + l} T(l)T(ui + n + 1)
~

nT{ii> + n + 1) T(^l + m + 71 + 1 )

'

This result may be simplified by (7) and by cancellation. Then

JJJ r(/ + ,« + »+i) ^

There are simple modifications and _ireneralizations of these results whicli are

sometimes nseful. For instance if it were desired to evaluate / over the ramxe

of positive values such that r/(( + y/h + z/r ^ A. the change x = ah^. y — bhr],

z = ch^ gives

C
j

j
x'-^y"'-'^z"-hlxdy(lz = «'6'"c»

r(/)r(m)r()0 ,,^„,,„ j-
,
u

+ T +
r {l+m+ n+ I) ' a h
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The value of this Integral extended over the lamina between two parallel planes

determined by the values h and h -\- dh for the constant h would be

T(l)T(m)V{n) ^.^ ^ ,„dl = a'b"'c'' ^-^—^—^—!^ h' + >" + « - ^dh.
V {I + m + n)

Hence if the integrand contained a function /(/<), the reduction would be

JJ/x'-i2/"'-i2«-i/ t^ + l+^\ dxdydz

T{1 + m +71) Jo ^ '

if the integration be extended over all values x/n + y/b + z/c ^ //.

Another modification is to the case of the integral extended over a volume

j=fff"-'«-'-"='-'<'"'«<u, @"+ 0)'+ @'- *,

which is the octant of the surface {x/a)p + {y/h)i + (z/c)'' = Ji. The reduction to

? m 1

J : -

J =
a'b"'c"}u' 'I

'

'" rrr --i - -i - -i

fff'''
^ '^'^ ^ ^' ^ '^^'-^V'J^^ I + 'J + f ^ 1,

pqr

is made by ^h = ('^Y, Vi = (-J,
^h = (~) , dx = ~hl'^'i>

J= CfCx^-hy>"-iz"-hlxdydz

r(-ir(~)r
h 1' 'I '•.

(('b^'c"^ \p/ \(i/ \/7 --(-'"4-'

-' ^ r - + - + - + 1

\p q r

This integral is of impurtance because the bounding surface here occurring is of a

type tolerably fanuliar and frequently arising ; it includes the ellipsoid, the surface1111 ''222
X2 4- 2/2 4- z2 = a2, the surface X3 + ys + zs = as. By taking I = m = n = 1 the

volumes of tlie octants are expressed in terms of the T-function ; by taking first

I = 3, m = 71 = 1, and then m = 3, Z = ?i = 1, and adding the results, the moments

of inertia about the z-axis are found.

Although the case of a triple integral has been treated, the results for a double

integral or a quadruple integral or integral of higher multiplicity are made oVtvious.

For example.

xJ-Uf'-klxdy = -i '—- hp '1, - +
J J P'l r/l + !!i + i\

W
\p q I

r(-ir

iJ----4©''- (;;)1-'-^Tzf^ X''
^'*>''^ '"-•

p q

r-(0'-"-
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(")

pqrs (k I

r - + - + - + ^ + 1

\p q r s I

12 n — 1
149. If the product (11) be formed for each of -

j
-

j • •> ? and
n n n

the results be multiplied and reduced by Ex. 19 below, then

The logarithms may be taken and the result be divided by n.

1 \o<i n

l-KD-^G-^)--
Now if n be allowed to become infinite, the sum on the left is that

formed in computing an integral if dx = 1/n. Hence

Ihn V log r (,;•,) A..; = f log V {:r) ,lr = log V2^. (15)

Then / log V (<i + ,r) dx = a (log a — 1) + log V2^ (lo')

may be evaluated by differentiating under the sign (Ex. 12 (6), p. 288).

]>y the use of differentiation and integration under the sign, the

ex])ressions for the first and second logarithmic derivatives of r(«)

and for log r(w) itself may l)e found as definite integrals. By (9)

and the expression of Ex. 4 (<(), p. 375, for log a-,

T'(n)= I x"-h'-'\(v^xdx =
I

x"-^e-'' I dadd

If the iterated integral l)e regarded as a double integral, the order of

the integrations may be inverted : for the integrand maintains a ])osi-

tive sign in tlie region 1 < ,r < x, < a' < x, and a negative sign in

the region < x < 1, < cr < x, and the integral from to x in x

may be considered as the sum of the integrals from to 1 and from

1 to X,— to each of Avhich tlie inversion is applicable (§ 146) because

the integrand does not change sign and the results (to be obtained)

are definite. Then by Ex. l('t).

T\n) = I I
j:"-^- '• dxda = T {n)

j

1 \ da

(1 + a)"/ a
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or

This value may be simplified by subtracting from it the particular

value - y = r'(l)/r(l)= r'(l) found for n = 1. Then

r(n) _ r(i)^ ^ r(n)
, ^ r /_^ l \ ^r

r {n) r (1) r («;
"^ ^

J^ \1 + ^r (1 + «/'/ «
"

The change of 1 + a to l/« or to e"^ gives

I>)
r(n)

T'(n) r ' 1 - "" - '
, f " e- '^ - e- ""

rfa.

r/-

Differentiate :

-—
-, logr(«)= | da.

(/n- ° ^ ''

J. 1 — e-"

To find log r(«) integrate (16) from 71 = 1 to ?i = 71. Then

(1")

(18)

iogr(») = (?i — l)e-"-
log(l + a)

since r(l) = 1 and log r(l) = 0. As r(2) = 1,

a + nr'

<hx

^' (19)

iogr(2) = o = da^

and log r (?i)

a log(l + a)J '

V — \ (1 + ^i)-^ — (1 + a')"

(1 + a

d<.

log (1 + (t)

by subtracting from (19) the (juantity (n — 1 ) log V('2) = 0. Finally

da
logT(n)=J^ {u.-!)," (19')

if 1 + 'r be changed to e~". The details of the reductions and the justi-

fication of the differentiation and integration will l)e left as exercises.

An approximate expression or, better, an asi/mpfotir expression,

that is, an expression with sumll percentdr/e error, may be found for

T(n -f- 1) when ?i is hn-ge. Choose the form (2) and note that the inte-

grand y-"^^'""" rises from to a maximum at the point // = n + \ and

falls away again to 0. ^fake the change of variable // = Va' + tr, where

rr = ?i, + \, so as to l)ring the origin under tlie maximum. Then

r (?i -f- 1) = 2
I

(
Va : + ?/)•->- "^ - - ^"^'"-""du;

tV - -V (I

or r(rt -f 1) = 2a-^'>-'' e v Va^ d/r.

Now 2 a log
(
1 -f -~\ — 2 V^v/- ^0, — V7i < ir < -r,.
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The integrand is therefore always h'ss tlian «"'"', except when w =
and the integrand becomes 1. Moreover, as tc increases, the inte-

grand falls off very rapidly, and the chief part of the value of the

integral may l)e obtained by integrating l)etween rather narrow

limits for ir, say from — 3 to + 3. As a is large by hypothesis,

the value of log(l -\- ir/'y/<c) may be obtained for small values of vj

from IVIaclaurin's Formula. Then

'(rt + l) = 2«'^e-- r ^---^a- >dw

is an approximate form for V(n-{-l), wliere the quantity e is about

2 ir/^a and Avhere the limits ± < of the integral are small relative to v a.

But as the integrand falls off so rapidly, there will \)e little eri-or made

in extending the limits to c/d after dropping e. Hence approximately

r (?i -f ] ) = 2 a-"e- "
I

e- -"'
(/tr

or r (n -j-l)= V27r («, + ^)" + 1 e' (" + i)(l + r,),
'

(20)

where rj is a small quantity approaching as ?t becomes infinite.

EXERCISES

1. Estal)li.sli the following formulas by cliaiif^es of variable.

(a) T (n) - a" C x" -k- '^^dx, a > 0, (/3) f " sin" xdx = B ( " + , - )

.

(7) B(n, n) = :^i--"B(??, J) by {(i), (5) C x"'-'^(l - x-^y>-hlx= lB{lm, n),

«) fJo (x + «)"' + « «"(1 + r/)'" ««{1 + «)'» r (m + n) x + a 1 + a

x'"-i(l -/)"-! B(m.v) ] r(?n)r(u) ^ , x y
ax = — = jtake —

«"(1 + r/)'" a"{l + «)'" I' ("^ + »)

-1(1 - x)"-!'?/ r(?n)r(n) ,, ?«/— take X = —
(I [ax + b{\ — x)]'" - " (L">b"Y {m + n) a (1 — //) + ''//

1 X"' -1(1 - x)" -hlr _ R (m. 7i) ^^^ f 1 x"dx __ a 'tt T {h n + I)r^x'"^'{\ — x)"-'(tx \i{m.n) ,.^ f^ x"dx at
(77) I

=r , (u) I
- = — -

Ji> (6 + cx)"' + " h"{b + c)"^ J (I v'i_j-i 2

(O / x'"(l-x")^r/x.= B ;, + !,._._+^, ^
I

^.^^=,----_^ ^^ ^^.

2. From T (1) == 1 and F (^) = a tt make a table of the values for every integer

and half integer fi-oni to 5 and plot the eurve // = T (x) from them.

3. By the aid of (10) and Kx. 1 (7) prove the relations

\/7rr (2 a) = 22«-ir (a) T (a + '), V^V {n) = 2"-ir (J n) T (4 n + }.).

4. Given that T (l.To) = O.Mim. add to the table of Kx. 2 the values of T (it) for

every (jnarter from to 3 and add the points to the plot.
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5. "With the aid of the r-fimction prove these relations (see Ex. 1) :

, . r\ . „ . r-2 „ , l-.3-o...(n-l) TT 2. 4. 6... (71 -1)
{a)

I
s\\\" xdx =

I
cos"a;'Zx = ^ '^"- '

•Jo Jo 2 • 4 • n 2 1 • 3 • 5 • • 71

as 71 is even or odd.

.^, ri x-"d.r 1.3- o--- (2n - 1) TT ,^ r i j'-^«+it?j 2-4-6...2u
(P) — =

. (7) I
— —

'Jo^l^X^ 2.4.0...:' 71 2 -'" Vl-X^ 1.3. 5... (271+1 )

3 7r«6
X- V «- — X-dx = , (e)

j
X-{a- — x-)^dx =

10 Jo

J^
1 r?x p ^—^;;= to four decimals. (7;) Find / —
-v/l — r* Jo /

,

^

6. Find the areas of the quadrants of these curves :

(a) x-^ + ?/2 = a^, (p) xi + if: = en, (7) ,r- + ;/? = 1,

(5) x-/a- + y-/h- = 1, (e) the evolute (r/x)f + (?;;/)! = (a- — 5-)t.

7. Find centers of gravity and iiionients of inertia al)out the axes in Ex. 6.

8. Find volumes, centers of gravity, and moments of inertia of the octants of

(a) xJ + yl + 23 = fli (^) x? + z/1 + zi = rn, (7) x- + //- + zt = 1.

9. (a) The sum rif fimr proper fractions does not exceed unity ; find the average

value of their pmrluct. (P) Tlie same if tho sum fd the sijuares does not exceed

tmity. (7) What are the results in the case of k proper fractions ?

10. Average ,— '</--'''/- under the supposition ox- + by- = //.

11. Evaluate the definite integral (15') by differentiation under the sign.

12. From (18) and 1 < — < 1 + tt show that the magnitude of D- log T (n)

is about \/n fnr large values df n.

13. From Ex. 12. and Ex. 23. p. 70, show that the error in taking

lotr r (n + -] for f
"

loi: T (x) dx is about log r ( 71 + I
•

^ \ 2' J„ '^
^

'
24 71+ 12 "^ \ 2/

14. Show that
I

logr(x)(Zx= I hig F ()i + x) ^Zx and hence compare (1.5'),
J )i

''

.'0

(20). and Ex. 13 to .'.^how that the small quantity 77 is about (24 77 + 12)- 1.

15. Use a four-place table to find the logarithms of 5! and 10!. Find the

li>garithms of the approximate values by (20). and determine the percentage errors.

16. Assume n = 11 in (17) and evaltiate the first integral. Take the logarithmic

derivative of (20) to find an approximate expression for T'(n)/T (n). and in partic-

ular compute tile value for 71 = 11. C'ljmbine the results to find 7 = 0..578. By more

accurate methods it may be shown that Euler's Constant 7 = 0. .577. 21 -o.005 ....

17. Integrate (10') from 71 to 7i + 1 to find a definite integral for (15'). Subtract

Til, r" t'"" — e"^ dcx ^^ „ ,

the integrals and add loo- ,j — Hence find
2 ^ J-.. 2 a

' — 1 r" r 1 in
lo- r (i() — n (lo- 71 — 1 ) — 1< 1- ^ ' 2 TT + ^ lo!,wi =

I h - e""
2 " J-r. Lc" — 1 a 2 J

da
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18. Obtain Stirling' is approximation. F ()i + 1) = Vz7r»?i"e-", either by compar'

ing it with the one already found or by applying the method of the text, with the

substitution x = n + \^iy, to the original form (1) of T {?i + 1).

,« ^, , . ^'%Ii.'~^ . JiTT . TT . 2 TT . (?i— l)7r n
19. The relation JT sn^— == •'^m — sm • sui -^ — = may be

1=1 n n n n 2«-i

»-l = (x- l)TTV/-e " y,

Ini
(n--ll"'

('-
" e

obtained from the roots of unity (§ 72) ; for x

.r"-l ^ = "-'(1 -""Pi ^ = "-ie« e' "- 1
n = Inn = TT M — t' ' / TT = =

3-ii.r —

1

/. = i ;, = i -21 (2?)''-i 2''-i

150. The error function. Suppose that measurements to determine

the magnitude of a certain object be made, and let //i^. //^,. • , ;«„ be a

set of n determinations each made independent!}' of the otlier and each

worthy of the same weight. Then the quantities

'ii
= '"1 - "^ '7.2 = '"2 - ^'h

,
'In = w„ - m,

Avhich are the differences between the observed values and the assumed

value m, are the errors committed ; their sum is

'/l + '/2 "I + '/» = ('"1 + "'-2 + • • • + '"„) — ''"'•

It will be taken as a fundamental axiom that on the average the errors

in excess, the positive errors, arid the errors in defect, the negative

errors, are evenly balanced so that their sum is zero. In other words it

will be assumed that the mean value

n//i = III + m. + • • + //'„ or m. = — (ni +"', + ••• + "'„) (21)
1 -

^^
1 - . V /

i-; the most probable value for /// as determined from m ^, vi ,„ , ?>/„.

Note that the average value m is that which makes the sum of the

squares of the errors a minimum ; lu'nce the term " least squares.
"

Befon^ any observations have been taken, the cliance that any par-

ticular error y should be made is 0, and the chance, that an error lie

within infinitesimal limits, say l^etween // and y + </'/, is infinitesimal

;

let the chance be assumed to l)e a function of the size of the error, and

write (f)('/)'If/ as the chance that an error lie l)etween y and 7 + '/y. It

may be seen that c^c/) niay l)e expected to det-rease as y incrtnises ;
for,

under the reasonable hypothesis that an observer is not so likely to l.e

far wrong as to lie sonu'where near right, the chance of making an

error ])etweeii S.O and S.l Avould be less than that of making an eri'or

between 1.0 and 1.1. The function ^(y) is called the error function.

It will l)e said that the chance of making an eri-or y- is <^(y,); to put it

more precisely, this means simply that ^('y,)"'y is the chance of making

an error which lies ijetween y,- and y,. + r/y.
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It is a fundanit'iital principle of the tlieoi'v of cliaiice that tlie

chance that several iude})eiident events take ])lace is tlit; product of

the chances for each separate event. The })rol)aljility, then, that the

errors q^, q^,---, ^„ be made is the product

<^('/i) <^('Z2) • • • <^(V«) = <^('«i
- r>i) <i>(m, - rn) • • .ci>(m,^ - m). (22)

The fundamental axiom (21) is that this probability is a maximum
when m is the arithmetic mean of the measurements m.^, m,^,---, 7//,,:

for the errors, measured from the mean value, are on the whole less

than if measured from some other \-alue.* If the probability is a maxi-

mum, so is its logarithm; and the derivative of the logarithm of (22)

with respect to 11/ is

^'(Wl — I))) 4>' {lll., — lit) 4>'('"» — w) ^
<i>{rn^ — III) 4>(j"o ~~ "0 4'(,"',i ~ "0

when +'/.,+ •• + '/„ = ('''1 — "0 + ('"2 ~ "0 + " • + ("In — '"0 = 0-

It remains to determine <^ from these relations.

For brevity let F(<f) be the function F = <^'
'<A

wliic^h is the ratio

of <^'('/) to (f>(q)- Then the conditions become

F('I,)+F{q.^ + ... + F(q,^) = when y^ + y.^ + . .
. + .y,,

= 0.

In particular if there are only two observations, then

F(q^) + F(q,^ = and y^ + y, = or q, = -q,.

Then /-Yy^) + Fr- y,) = or F(-y)=-F(y).

Kext if there are three oljservations. the results are

^(7i) + /«'
(//,)

+ i-^'/,) = and y, + y, + y, = 0.

Hence F(q;) + F('/,) = - /' (y,) = /( - '/,) = ^'('/, + '/,)•

Now from ^(.•'') + ^(f/) = ^'^^'' + //'

the function F may be determined (Ex. 9, p. IT)) as F{.r) = Cx. Then

9 i'l)

and <^(y) = e'^^' + ^=G'r*'^''.

This determination of <^ contains two arbitrary constants which may

be further determined. In the first ]>lace, note that C is negative, for

(t>(q) decreases as q increases. Let -i- C = — A-". In the second place, the

* The derivation of the expression for 4> is pliysical rather tlian loijical in its arizu-

ment. 'riie real justitieation or proof of the validity of the expression obtained is a pos-

teriori and depends on the experience that in practice errors do follow the law (24).
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error y must lie within the interval — cc < y < + x which comprises

all possible values. Hence

r\{q)dq = l, of \-^'rdq=l. (23)
*y — cc • U — -Ji

For the chance that an error lie between q and q + dq is ^'/y, and if

an interval a^q^h be given, the chance of an error in it is

^ <^ (7) dq or, better, lini^ (^ (y) ^Ay = / <^ (7) ^A/,

and finally the chance that — cc < y < + ^ re})resents a certainty and

is denoted by 1. The integral (23) may be evaluated (§ 143j. Then

a Vtt/A- = 1 and r; = /./ Vtt. Hence *

<^(y) = ^e-^'V (24)

The remaining constant /.• is essential ; it measures the accuracy of

the observer. If k is large, the function <^(y) falls very rapidly from

the large value A-/ Vtt for y = to very small values, and it ai)i)ears

that the observer is far more likely to make a small error than a large

one; but if k is small, the function c^ falls very slowly from its value

A'/ VTT for y = and denotes that the observer is almost as likely to

make reasonably large errors as small ones.

151. If only the numerical value be considered, the probability that

the error lie numerically between y and y -f- '^q i~'

2 A- 2 A' r^
—,— e-''''rdq, and —r^ \

<'-^''rdq

Vtt VttJ,

is the chance that an error be numerically less than ^. Xow

2k r^ 2 r'^
^(0 = -/- c-^V,Ay =—

.

,.-.>V,,. (25)

is a function defined by an integral with a variable ui)})er limit, and the

problem of computing the value of the function for any given vaku; of ^

reduces to the problem of conqjuting the integral. The integrand may

be expanded by ^laclaurin's Formula

„ , , 3'* ./•*= .r« :,^i'-e^
_^ ^ ^

e-^^ = l-.r + ~ -
.yi +4-, - -^T-' ^ < ^ < l-

£
* The reader may now verify the fact tlwit, with

<t>
as in (iM), tlie itroduct ('2'2) is a

maximum if the sum of the squares nf the errors is a iniuimum as (h'liiaiKh'd l)y Cil).
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For small values of x this series is satisfactory ; for cc S |- it will be

accurate to five decimals.

The -probable error is the technical term used to denote that error ^

which makes \p{^) = \; that is, the error such that the chance of a

smaller error is |- and the chance of a larger error is also \. This is

found by solving for x the equation

V^ 11 r^ x^ x^ x'
- = .44311 = / e~^dx = x-- + ™- — + 7
2 J^ 3 10 42 .

X

2 2 ^^~Jo
' " 3 ' 10 42 ' 2T()'

The first term alone indicates that the root is near x = .45, and a trial

with the first three terms in the series indicates the root as between

X = AT and x — .48. With such a close approximation it is easy to fix

the root to four places as

X = H = 0.4769 or ^ = 0.4769 k-\ (27)

That the probable error should depend on k is obvious.

For large values of x = Ji$ the method of expansion by Maclaurin's

Formula is a very poor one for calculating i/'(^); too many terms are

required. It is therefore important to obtain an expansion according

to descending jJoivers of x. Now

Js-'^'dx =
I

e-^'dx —
I

e-^-dx = - v tt — / e-'^'dx

U t/O tJX
"' Jx

and e-'-dx= -xe~^-dx= — -rr— —7; I —^,
/ I X 2x 2 } x^

The limits may be substituted in the first term and the method of in-

tegration 1)}' parts may be a})plied again. Thus

r" ., e-^V. 1\ 1-3 C^ er'^Wx

_ ^-j^ / j_ i^\ _ 1 3 5 r* e-^\Jx
~ 2x\ 2.r-^^2-./'7 2^

J,,
x^

'

and so on indefinitely. It should be noticed, however, that the term

^ l-3-5---(2?i-l) «--
,.T = ^^^

'- j^ diverges as n = cc.

In fact although the denominator is midtiplied by 2x'^ at each ste}), the

numerator is multiplied by 2 71 — 1, and hence after the integrations by

})arts have been aj)])lied so many times that 71 > x^ the terms in the

parenthesis begin to increase. It is worse than useless to carry the

integrations further. The integral which remains is (Ex. 5, p. 29)
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l-3-5---(2n + l) r" «-"V.y 1.3.o-.-(2?^-l)
^ ^-^ ' < ,.., ,, .,.. .. -fi'""' < T.2n+l T5^

Thus the integral is less than the last term of the parenthesis, and it

is possible to write the asymjjtot'iG series

r"" 2, 1 /- '^~"V. 1 1-3 1-3-0 \

i
^"^^^•'^ = 2^-ir7(i-T:^ + 2^""2^ +

--V
^-^^

with the assurance that tJie value ohtained by rising tlie series vj ill differ

fritrii tJie true value by less than the last terinwhh-h Is used m the series.

This kind of series is of frequent occurrence.

In addition to the probable error, the areraije nunwrlcd error and the

mean square error, that is, the average of the square of the error, are

important. In finding the averages the probability <^ (7) dq may be taken

as the weight ; in fact the probability is in a certain sense the sinqJest

Aveight because the sum of the weights, that is, the sum of the ]jrob-

abilities, is 1 if an average over the whole range of possible values is

desired. Tor the average numerical error and mean square error

,— 21: r^ ,.,,, 1 0.5(>43

-, 2k C .,,,,, 1 /= 0.7071
"^

"' = ^1.
*-«"*''"'''

= 2P' ^V = -l—
It is seen that the average error is greater than the probable error, and

that the square root of the mean square error is still larger. In the

case of a given set of n ol)ser\'ations the averages niay actually be

computed as

\q\ — — ——J= ? A — =:—^ >

''' /. Vtt
j^l

Vtt

-
'l^+'^' + + 'ln 1

;
1

\ ?V5
]Vroreover,

It cannot be expected that tlie two values of /. thus fomid will be pre-

cisely equal or that the last relation will be exactly fulfilled: but so

well does the theory of errors represent what actually arises in prac-

tice that unless the two values of k are nearly ecjual and the relation

nearly satisfic^l there are fair reasons for sus})ecting tliat the observa-

tions are not bona fide.

152. Consider the question of tlie a])]»lication of these tlieories to

the errors made in rifie pi-actiee on a tarLret. Here there are two
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errors, one due to the fact that the shots may fall to the right or left

of the central vertical, tlie other to their falling above or below the

central horizontal. In other words, each of the coordinates (.r, y) of

the position of a shot Avill be regarded as subject to the law of errors

independently of the other. Then

h , . A-' „ „ l:k' r. „ ,„ .,

Vtt Vtt '^

will be the probabilities that a shot fall in the vertical strip between

X and X + (hr, in the horizontal strip between y and y + dy, or in the

small rectangle common to the two strips. ^Moreover it will be assumed

that the accuracy is the same with respect to horizontal and vertical

deviations, so that k — k'.

The.se a.ssuinptions may appear too special to be reasonable. In particular it

might seem as thouuh the accuracies in the two directions wonld be very dil^erent,

owing to the possibility that the marksman's aim sliould tremble more to the right

and left than up and down, or vice ver.sa, .so that k :^ k'. In this case the shots would

not tend to lie at equal distances in all directions from the center of the target,

but would dispose themselves in an elliptical fashion. Moreover as the .shooting is

done from the right shoulder it might seem as though tliere would be .some inclined

line through the center of the target along which the accuracy would be least, and

a line perpendicular to it along which the accuracy would be greatest, .so that the

disposition of the .shots would not only be elliptical but inclined. To cover this

general assumption the probability would be taken as

Q^-k'-x---2Kxi,-k'->r,ij-j}ij^ with G C i t-f^'-'='-->^-'-y-'^''-'rdxdy = 1

as the condition that the shots lie somewhere. See the exercises below.

With the special assumptions, it is best to transform to polar coor-

dinates. The important (juantities to determine are the average distance

of the shots from the center, the nuniu square distance, the j^roljuble

distance, and the nujst probable distauc.-e. It is necessary to distinguish

carefully between the probable distance, Avhich is by definition the dis-

tance such that half the shots fall nearer the center and half fall farther

away, and the most probable distance, which by definition is that dis-

tance which occurs most frequently, that is, the distance of the ring

between / aiul /' + "'/" iu whieh most shots fall.

The probability that the shot lies in the element rdrdf^ is

— e- ^'''"/y//y/</), and 2 Irti- '"''''rdr,
IT

oV)tained by integniting with respect to ^, is the ])rol)ability that the

shot lies ill tlie ring from / to /• + '//. The mn^^f jii'dlmldf distance r^^ is
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that wliicli makes this a maximum, that is,

'//,-.. ..
1 0.7071

_(.-,,,, = o,- ,, = -^ = --^. (30)

The mean distance ami tlie mean square distance are respectively

V^ _ 0.SS62
2 lr,>- k-r"-j.-\/,. =

2 Ire- ^ ' r'\l)' = -j-; ' V /- = —
(30')

(30")

Tlie pmhahle distance r^ is found b}- solving the e(juation

~ =
I

2 /.• ,->- > ,'ilr = 1 - f-'- '5 , /-J

= -— = —

Hence z'^, < r^ < e < V /•-.

The chief importance of these considerations lies in the fact tliat,

ou'ing to ]\Laxwell's assumption, analogous considerations may he applied

to the velocities of the molecules of a gas. Let a. r. v Ite the c()m})0-

nent velocities of a molecule in three jjerpendicular directions s(j that

r = {a- -\- r- -j- a--)- is the actual velocity. The assum^ition is mad'' that

tlie individual components a. r. w obey the law of errors. The proba-

bility that the components lie between the respective limits k and u -f- du,

r and r + "''", "' lUid (C -\- dw is

,.-'^>^-'^'---iy'>'-,hn]ri]ir^ and ^ p-'- '-!'- sin 0<n\/Od(f)
TT V TT TT V TT

is the corresponding expression in |)olar coordinates. There will then

be a most probable, a proljable, a mean, and a mean S(]uare velocitv.

Of these, the last corres})onds to the mean kinetic energy and is subject

to measurement.

EXERCISES

1. Tf /,• " ().()447'). lind to three i>lacf> the prnhahility nf an error ^ < 12.

2. Coiiipiin- r i:--'-\U to three phices for {a) x = 0.2. (pi) j- = 0.8.

3. State how many terms of (28) should be taken to obtain the be.st value for

the intej,a-al to x = 2 and oljtaiii that value.

4. IIow aecurately will (28) determine / c- -'-dx — I \^ ? Compute.

5. Obtain these asymptotic expansions and extend them to tind the ireneral law.

Show tiiat tlie erroi- introihiced liy omittiiiLr tlie integral is h-ss than tiie hist term

retained in tlie series. Show further that the general tei'ui diver;i-es when n be-

eomes infinite.
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, , C ,, 1 TT .sinx- cosx^ 1-3 r '^ ilx
(a)

I
cos j-cZx = "-»-!

^

I
t-'osx- — ,

, , r'' . 1, 1 TT cosx- siiix- 1-3 /'^
. , t/x

(a) sill x'-ax = -
-V 1

I
Hiiix- — ,^^'

J(> 2\-l 2x 2-^x3 -I^ Jx x4

, , r^amx^ . ,^. /"^/sinxX^,
,

(7) I
cZx, X lai-rje, (5) |

) dx, x large.
./o X

'

Jo \ X /

6. (a) Find the value of the average of any odd power 2 n + 1 of the error

;

(/S) also for the average of any even power
; {7) also for any power.

7. The observations 195, 225*, 100. 210, 205, 180*, 170*, 190. 200. 210, 210, 220*,

175*, 192 were obtained for deflections of a galvanometer. Compute k from the

mean error and mean square error and compare the results. Suppose the observa-

tions marked *, which show great deviations, were discarded ; compute A: Ijy the

two methods and note whether the agreement is so good.

8. Find the average value of the product q(i' of two errors selected at random

and the average of the product |ry| • |^'] of numerical values.

, , . , . . . T, 1 -,, 1.0875
9. Show that the various velocities for a gas are T ^j

= , If =
,

^_ 2 _ 1.1284 /^_ V^ _ 1.2247
'' ^

~Vxt" ^ ' V2A: ^

10. For oxygen (at 0^ C. and 7Gcm. Hg.) the square root of the mean S(iuare

velocity is 402.2 meters per second. Find k and show that only about 13 or 14

molecules to the thousand are moving as .slow as 100 m. /sec. What .speed is most

probable ?

11. Under the general assumption of ellipticity and inclination in the distri-

buticiii of the shots show that the area of the ellipse k-x'~ + 2 Xx/y + k'-y- = II is

ttII {k-k"- — X-)~ -. and the probability may be written Ge- "TT{k-k"- — X-)" -dll.

1

12. From Ex. 11 establish the relations (a) G =- Vk-k'- - X-,

TT

13) x^ = '
, (7) ?/- = ~

, (5) x7/ = ~^ -.

13. Find H,,. 11^ = 0.093, U. IT- in the above problem.

14. Take 20 measurements oi s(jme ol)ject. Determine A: by the two nieth(jds

and ciiinijare the results. Test other points of the theory.

153. Bessel functions. The use of a detinite integral to detine func-

tions w"liich satisfy a given differential ecjuation may be illustrated by

the treatment of .ry" + {'In + 1)//' -f a-y = 0, which at tlie same time

will afford a new investigation of some functions which have ])re-

viously been Itrieily discussed ('§§107-108). To obtain a solution of

tliis e(juation, or of any equation, in the form of a definite integral, souu^

special tyi)e of integrand is assumed in pai-t and tlie remainder of the
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integrand and the limits for the integral are then determined so that

the equation is satisfied. In this case try the form

y {:!)= I e'^^'Tdt, y' = i if<''''TtJt, y" = I — t^e^^'Tdt,

where T is a function of f, and the derivatives are found by differen-

tiating under the sign. Integrate y and y" by parts and substitute in

the equation. Then

(1 - f) Te'^'^ - C e'^-'lT^l - f) -\- (2 n - l)t7yh = 0,

wliere the bracket after the first term means that tlie difference of the

values for the u})per and lower limit of the integral are to be taken

;

these limits and the form of T remain to be determined so that the

expression shall really be zero.

The integral may be made to vanish by so choosing T that the

bracket vanishes ; this calls for the integration of a simple differential

equation. The result then is

r = (i- t-y -i, (1 - ty + ^«'''] = 0.

The integral vanishes, and the integrated term will vanish provided

t = ± 1 or e"'* = 0. If X be assumed to be real and positive, the expo-

nential will a2)proa(;li when t = 1 -\- iK and K becomes infinite. Hence

y(x)= e'-'-'(l-f-y-^dt and ^ (,')= c'-''(l - t-f- ^dt (^M)
^'-i J+i

are solutions of the differential e(|uation. In the first the integral is an

infinite integral Avhen ?4 < + ]L and fails to converge Avhen n ^ —
\.

Tlic solution is therefore defined oidy when ?i > — },. The second in-

tegral is always an infinite integral because one limit is infinite. The

examination of the integrals for uniformity is found below.

r " -
1

'

Consider j (,'-'''(l — t-)" idt with n < I so tliat the iiitcyral is infinite.

r c>''{\ - i-f- '- dt= C (1 - i-j" - I cuaxtdt + ' f (1 - '"/' ~ ^ sinxWi.

From considerations of symmetry tlie second intei^ral vanislies. Then

r' c>-<^'{l-t-)"-ku\ = \ r' n-t~)"~'-coiixtdt\^ f (l-r-)"-itZL

'J'his hist intenral with ai)osiiiv(' integrand convciryes wlien ?i > — l, and 'lence the

giviai inteu'ral converues unit'oiinly for all values of x and delines a '.'ontinuous

function. Tiie su(;cessive ditlerenliations under the si^n i;'ive the I'esults
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-
I

{l-t-)"'^t sin x^(Zi, - / (1 - t-)" " 2 f- COS xtdt.

These integrals also converge uniformly, and hence the differentiations were justi-

fiable. The second integral (31) may be written with t = 1 + iii, as

\ J u = «^

du.

This integral converges for all values of x > and n > — I. Hence the ; iven inte-

gral converges uniformly for all values of x ^ Xq > 0, and defines a continuous

function ; when x = it is readily seen that the integral diverges and could not

define a continuous function. It is easy to justify the differentiations as before.

The first form of the solution may be expanded in series.

X-l
r> +1

e''-'(l - f-y - '^
(If = (1 - t-y ~ ^' cos xtdt

= 2 r (1 - ^')"" - cos xtdt (32)

XI 1 / r-f^ r*;'* r'^f^ r^f^\

a-'T-^(i-'2^ + |T-'6T + «8T}"' o<l«l<i-

The expansion may be carried to as many terms as desired. Each of

the terms separately may be integrated by B- or T-functions.

_ X- ^T (??- + ^ ) r (k -f- ^) x''^T(n-{- ^) Vtt
~ r(2 A- + l)T{n + k + r)~ 2-'T{l- -f 1) r(/i + k + 1)

'

is then taken as the definition of the special function J„Q'')i where the

expansion may be carried as far as desired, with the coefficient 6 for

the last term. If n is an integer, the F-functions may be written as

factorials.

154. The second solution of the differential equation, namely

^ (•') = Z/i
(-r) + i!/^-) =J '

'

'

' - 2 .^'-'(1 - fy - i dt, (31')

where the coefficient — 2 has been inserted for convenience, is for some

jiurposes more useful than the first. It is complex, and, as the equation

is real and .r is taken as real, it affords two solutions, namely its real part

and its ])ure imaginary part, each of which must satisfy the equation. As

v/(,r) converges for ,r = and ':(x) diverges for a' = 0, so that i/^(x) or
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//.,(•"') diverges, it follows that //(./) and
?/i(.>")

or //(,') and ,'/„('•) must Ije

independent; and as the equation can have but two inde])endent solu-

tions, one of the pairs of solutions must constitute a com-
s

plete solution. It Avill now be shown that ///.') = l/O'')

and that Ai/(:r') + J\'/.,(-'') is therefore the complete solu-

tion of xij" + (2 ?i + 1) //' -f ./•// = 0.

Consider the line integi'al around the contour 0, 1 — e,

1 + ei, 1 + cc i, X /, 0, or OPQliS. As the integrand has a

continuous derivative at every point on or Avithin tlic

contour, the integral is zci'O (§ 124). The integrals along

the little quadrant ]'Q and the unit line US at infinity may be made as

small as desired by taking the quadrant small enough and tlie line far

enough away. The integral along SO is pure imaginary, namely, witli

t = bi,

J so Jo

The integral along OP is coni})lex, namely

-2 «'-'(!- f-f-^-dt

= — '2 \
' 1 — '')" ~ ' f'os :rf,lf - 2 ! I (1 - f-)" " 3 sin crff/f.

(1 _ f-)" - 2 eos .vTdt - 2 ; I (1 — f-
)"
" 2 sin xtdf 4-

l^

+
I

- 2 <''' (I - /-/'- l/^ j^i^j^'2> i <-•••{ 1 + ii-f- 'r//^,

J q J I)

where t,^ and ^., are small. Equate real and imaginary parts to zero

sejiarately after taking the limit.

/J oi

1 — f- f - cos .i-filt = //(./•) =^1'

2 r (i-f-y-isi

i:
2r''', 1 -/-)'

\\\j-t'lf — 2 --('1 + v-)' Ijl

I 2 >-''{
\ ~f-

//,'•'•>.

df = uj.r).

The signs /^and ^' are used to denote respectively real and imaginary

Ijarts. Tlie identity of //(.') and //,(.') is establislied and the new solu-

tion //.,(.'•) is founil as a ditfei-enee of two integrals.
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It is now possible to obtain the iin})ortaut expansion of the soluticjns

//(.r) and
i/.,(->')

in (/fsmu/hif/ })0\vei's of .'•. For

Since x ^ 0, the transformation ux = r is permissible and gives

(11 - A)r".

2\i2xy
-— u

The expansion by the binomial tlieorem may be carried as far as de-

sired ; but as the integration is subsecpiently to be performed, the

values of r must l)e allowed a range from to x and the use of

Taylor's Formula with a remainder is re(piired— the series Avould not

converge. The result of the integration is

z(x) = 2"+h:-"-ir(?i+ l)e^ ('"-D'-^j^^,

where Q (')
(n-

)+iQ(x)l (34)

:M(2xf
+

'^''-^
2\i2xf

"^

^l{2xf

Take real and imaginary parts and divide l)y 2"x-
"
-w ttT { n -\- ),)• Then

Jjx) =

K„(') =
2

TT.r

P (
.,. ) cos

I

X -
I

» +
;^ ) ^ j

- (^ (./• ) sni

1

1\ TT

(<?('./•) cos l.r- hi + + 7'(y)sni n +
IXtt

ai'C two independent fJessel functions which satisfy the ecpiation (oo)

of § 107. If n + i- is iin integei', P and (I terminate and the solutions

are expressed in terms of elementary functions (^lOS); Init if 7i + I

is not an integer, /' and Q ai'e mei-eiy asym})totic ex})ressions wliich do

not terminate of tliemselves, l)ut nnist be cut short with a remainder

term l)ecause of their tendency to diverge after a certain point: for

tolerably large values of ./ and small values of 7i. the values of ./,/./")

and KJx) may, however, be computed with great accuracy by using

the first few terms of P and Q.
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The integration to find P and Q offers no particular difficulty.

f"e- 'u" - 2 + *cZu = r(n + i + ^) = (n + k- i)(n + A; -?)••• (n + i) T{n + h).
Jo

The factors previous to r (n + |) combine with ji — ^, n — |, • • • , » — A; + J, which

occur in the A:th term of the binomial expansion and irive the numerators of the

terms in P and Q. The remainder term must, however, be discussed. The integral

form (p. 57) will be used.

-——^fao(v-t)dt,

Let it be .supposed that the expan.sion has been carried so far that n — k — I <0.

Then (1 + vi/2x)"~^'~ - is numerically greatest when r = and is then etpial to 1.

Hence

IB l< f t'-' \(n-l)---(n-k + l)\ ^^^v'^\ (n-l)...(n-k+^)\
I ^1 Jo (A;_l)! (•2/)^- k'. (2/)i-

and
! X

''
"' ' '''''

I

< FFT? ^ (" + 2)

It therefore appears that when fc > ?! — I the error made in neglecting the remain-

der is less than the last term kept, and for the maxinuim accuracy the series for

P + iQ should be broken off between the lea.st term and the term just following.

EXERCISES

1. Solve xy" -\- {2 n + 1) y' — xy = by trying Te^' as integrand.

A f (1 - f^)" - ^e'Ult + B C (<2 _ i)« -ie-r'dt, x>0, n>- i.

2. Expand the first solutirm in Kx. 1 into series; compare with y(Lr) above.

3. Try 7(1 - tx)'" on x{l- x) y" + [y - (a + ^ + 1) x] y' - cx^y = 0.

One solution is f <3-i(l _ <)7-3-i(l - i.f)-«d^, ^ > 0. 7 > /S, |x|<l.

4. Expand the .solution in Ex. -3 into the series, called hyi:)ergeometric,

T, f^)3 a (ex + 1)
iJ(/3, 7-/3) 1 + -^^+ \.^

'

\_ 1-7 1- 2 7 i

1),3(^ + 1)^,

7 (7 + 1)

a(a+ l)(ar + 2)/3(;3 + l)(3+ 2) .^„ ^ _

T

1.2.37(7 + l)(7 + :i)

'^

'"'J'

5. EstaVilish tliese results for Bcssel's ./-functions :

X^ C ^

(<t) J,t(x) =
I

sin-" (p cos {x cos0)(Z0, n > — h

(/3) -/„(.r) =
^

f sin-" 0cris (,r cos0)rZ0, >« = 0, 1. 2. 3 •

TT 3 • o- • (2 ?i — 1) Jn
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6. Show -
( co.s (?i0 — X sin cp) d(p satisfies

?/ /, n^\ sin 7?7r /I n\
/' + -+!--, y = ,

•

X \ X-/ TT \X X^/

7. Find the CMiuation of the sf cc;)J order satisfied by / (1 — <-)" ^sinxid^.

rpi rpG 7»8 X^^
8. Show J„(2 x\ = 1 - X- + ; + —^— ^—- + • • • .

9. Compute ./^(l) = 0.7652 ; Jq{2) = 0.2239 ; J^i^AOo) = 0.0000.

10. Prove, from tlie integrals, J,){.r.) = — '/j(x) and [x- "-/„]' = — -r->'J„ ^i

.

11. Show that four terms in tlie asymptotic expansion of P + i(^ wlien n =
give the best result when x = 2 and tliat the error may be about 0.002.

12. From the asymptotic expansions compute f^0) as accurately as may be.

13. Show that for large values of x the solutions of ./„(x) = are nearly of the

form IcTT — \ TV -\- \ mr and the solutions of Kni^'^) = of the form kir + f tt + ^rnr.

14. Sketch the graphs of y = JQ{.t.) and y — '/^(x) by using the series of ascend-

ijig powers for small values and the asymptotic expressions fur large values of x.

15. From Jy(x) = - I cos (x cos 0)r?0 show / e-"-'./,//)x) Jx = —^

16. Show
I

e-"'t7o(x)cZx converges uniformly when (/ s 0.

Jo

17. I^valuate the following integrals : (a) ( JJh.i-)(lr = b~'^,
^ ^ Jo

sin asJ^{hx) ^ = - or sin- 1 - as d > ^ > ov h > a. > 0,

X 2 6

r' 1 00
(7) I

sin axJ^{hx) dx = - or as a- > /y- or h- > a-,

COS ax Jq {bx) dx = — or as b- > a- or a- > b-.

^V - ((-

18. If w = V^Jniax). show ':^ + fr,'^ _ "'-^)u = 0. If r .= V7rJ„(bx),
dx- \ X- /

\r- - u -T= (//- - «-) f\.h{ax)J„{bx)dx.
L i:/x f?xJo Jo

19. With the aid of Ex. 18 establish the relations:

(a) bJJa)J„^i{l,) - aJ„(b)J„^i{a) = Or - a-) f xJ„{ax)J„(bx)dx,
Jo

(13) aJ^{a) = (i- f xJfXax)dx= f x.JJx)dx.

(y) .Tr.{«)-Tn+ii<n + o [Tnia).r„^^{«) - ./,>0 J« -i(«)] = 2«J •'• [•/„(ax)]2dx.

2 r " i^'mxtdt ,- , , 2 r* cnnxtdt



CHAPTER XV

THE CALCULUS OF VARIATIONS

155. The treatment of the simplest case. The integral

/ = Fi'-; y,y')<-^-'- ^{:r,
II,

d.r, (]>/), a)

where <& is hoiuogemHms of the first degree in '/.'• and r///, may be evalu-

ated along any curve C Ix'tween tlie limits .1 and Ji by reduction to ;!!i

ordinary integral. For if C is given by y =/'(•''),

/ = r Fix, y, y')dx = f '

F(.r, f(.r), f'(x))d.r

-

and if C is given by ,/• = (^(O. // = i/'fO,

/ =
I

<^(.r,
I/,

<l.r. ill/) =
I

(P{(f>. if/. 4>\ il/')(Jt.

The ordinary line integral (§ 122) is merely the special case in which

(J) = Pd.r -f Qdy and F =^ P + Qy'. In gentn'al the value of / will depend

on the path C of integration ; fJu- proldi'in nf tJie cjtloi] ha nf nirinfinns,

Is to find tlmt jKifli irjildi n-lU nuilcc^ I a iDii.r'tmiim or iiihi'iiiunn ri'Idflra

to neigldioriufi j»itJis.

If a second ])ath (\ be _// = /"(.'•) + ''/(')> where rji-'-) is a small (pian-

tity Avhicli vanishes at :i\^ and x^, a whole family of ]»aths is given by

!/ =/(') + '^v (''), - 1 = 't S 1, y](.'\) = 7; (./'J
= 0,

and the value of the inteural

I(a) = Fi.r.f-i- ny.f + ar]')dx, (!')

taken along tin' different [latlis of the family. 1)(>- q -f.^

—'

J—

^

comes a function of a; in ])articular /(O) and 7(1)

are th«^ values along C and (' ^. I'nder a])])ropriate assumptions as to

the continuity of /-'and its partial derivatives F,'. FJ. F'„., the function

I (<i) will be continuous and have a continuous derivative whi(/h may
f)e found by differentiating under the sign ( ^J 11<.») : then

^'(") =
I [^^^/'.- f+ '^V-f + "^'» + r]'F'„Ax.f+ orj.f + nrj'qdx.

400
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If the curve C is to give /(a) a inaxiinum or minimum value for all

the curves of this family, it is necessary that

^ \^^) =f \vK(/^ >/, I/') + nK'i:-; u, y')] '^'- = o

;

(2)

and if C is to make / a maximum or minimum relative to all neighboring

curves, it is necessary that (2) shall hold for any function r){x) which is

small. It is more usual and more suggestive to write rjQr) = 8'/, and to

say that 8// is the variation of y in passing from the curve C or y = f{^r)

to the neighl)oring curve C' or y = /'(,r) + ^O^')-
From the relations

//' =f\^% >l' =/'(') + -n'Cr), 8y' = riU) = ~py,

connecting the slope of C with the slo})e of C\, it is seen that the variation

of the (In-iratire is the dcrlvatlre of the variation. In ditferential nota-

tion this is dSy = Sdy, where it should be noted that the sign 8 a})plies

to changes which occur on passing from one curve C to another curve C\,

and the sign d applies to changes taking place along a })articular curve.

\\'ith these notations the condition (2j becomes

X (f;8// + F;.8y'j d.r = SFd,- = 0, (3)

where SFis computed from F, 8y, Sy' by the same rule as the differential

dF is computed from F and the differentials of the variables which it

contains. The condition (3) is not sufficient to distinguish between a

maximum and a minimum or to insure the existenc^e of either; neither

is the condition ;/'{.') = in elementary calculus sufficient to answer

these questions relative to a function
f/

(.'); in l)oth cases additional con-

ditions are required (§ 9). It slundd be remembered, however, that

these additional conditions were seldom actually applied in discussing

maxima and minima of y(.'') in practical i)roblems, l)ecause in such (;ases

the distinction between the two was usually obvious ; so in this case

the discussion of sufficient conditions will be omitted altogether, as in

»;§ '"ii^ and (31. and (3) alone will be a])plied.

An integration by })arts will convert (3) into a differ(Mitial ecpiation

of the second order. In fact

'F'8>/'d.r =
I

'

F;,.^8>/d.r =
I

' dx
F;,hy 'S//-f F>/.r

dx "

Hence f '

( i-^S// + F'^^lf) dx = f '

(f; - ^ F'ASydx = 0, (3')
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sinoe the assumption that B>/ = rj(x) vanishes at a-^ and x^ causes the

integrated term [F,^,8//] to drop out. Then

d , cF c-F c-F , c-F „ ^

" dx ^ cy cxCy' cycy' "^ cy'-"^ ^ ^

For it must be remembered that the function Sy = >;(,«) is any function

that is small, and if i^^ r^ F'^, in (3') did not vanish at every point

of the interval x^ ^ .r ^ x^, the arbitrary function hy could be chosen

to agree with it in sign, so that the integral of the product would neces-

sarily be positive instead of zero as the condition demands.

156. The method of rendering an integral (1) a minimum or 7naxi)7ium.

is therefore to set vp the differential equation (4) of the second order

and solre it. The solution will contain two arbitrary constants of inte-

gration which may be so determined that one particular solution shall

pass through the points A and B, which are the initial and final points

of the path C of integration. In this way a path C which connects A
and B and which satisfies (4) is found ; under ordinary conditions the in-

tegral will then be either a maximum or minimum. An example follows.

Let it be reciuired to render / = / - Vl + i/"-dx a maximum or minimum.
•^x„ y

cF 1 /- cF y' 1
F(x, ?/, y') = - VI + ?/-, — ,= ^ V 1 + y -,

// cy y- cy' 2/ Vl + y"^

Hence Vl + y"- + ' - if }f' = or yy" -{ 7/" -\- \ = d
y- y- Vl + y'- 2/(1 + //'-)2

is the desired equation (4). It is exact and the intetiration is immediate.

{yify +1 = 0, yy' + X = Cj. //- + {X - ^j)- = r,.

The curves are circles witli thi'ir centers ow tlie .r-axis. From this fact it is easy

by a freometrical construction to determine tlic curve wliicli passes tliroush two

fjiven jioints vl (,/v„
?/,,) and B{x^. y^); tlie analytical dctcnuinatinn is not difticult.

The two points ^1 and H nnist lie on the same side of the ,f-axis or the intetrral I

will not converEre and the problem will have no meaning. The question of whether

a maximum or a minimum has been determined may be settled by taking a curve

Cj whicli lies under the circular arc from ,1 to Ji and yet has the same length.

The integrand is of tlie form ds/y and the integral along r. is greater than along

the circle C if y is positive, but less if // is negative. It therefore appears that the

integral is rendered a minimum if A and 7i are above the axis, but a maximum if

they are below.

F'or ?na?iy 2'rotile/iis it is rimrc fonrenii'nt not to ))}(i];p the rlmicp of x

or y as indt'pinidott i-oriotih' in the frst pZ/irc, tnit to operate symmetri-

eally vitli }>oth mrinhlfs tipon tlie second form of (X). Suppose that the

integral of the variation of $ be set equal to zero, as in (3).
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Let the rules Sdx = (/&'• and 8'/// = ^/S// be applied and let the terms

which contain d8x and d8i/ be integrated l)y parts as before.

I

8a> =
I

[( $; - (/$:,,) a/- + ($; - r/4),;;)8;/] + r$,;,a'' + ^[/y^;/]
^ = o.

As J and B are fixed points, the integrated term disap}>ears. As the

variations Sr and 8// may be arbitrary, reasoning as above gives

^: - (^^:i. = 0, $; - r/$;,^, = 0. (4')

If. these two eipiations can be shown to be essentially identical and to

reduce to the condition (4) previously obtained, the justification of the

second method will V)e complete and either of (4') may be used to deter-

mine the solution of the problem.

Now the identity 4>(.r, y. dx. dy) = F{x. y. dy/dx)dx gives, on differentiation,

<£' — F' dx *' — F' dx 4>', — F' *', — — F' -^ -J- F

by the ordinary rules for partial derivatives. Substitution in each of (4') gives

<J>' _ d^' = F'dx - dF' = i
F' - — F'\ dx = 0.

-' '•" - -'
^. ' dx

-'

I

^'x - dK. = i"'A' - f'(^- ^;''//') = K'^'^ -dF+ F'^Ah/ + y'dF'y,

= F'Jx - F^dx - F'ydy - F;^,dy' + F'^^ly' + y'dF'^,

= - Kdy + y'dF;, = - (^F; - £ F;}j dy = 0.

Hence each of (4') reduces to the oriuinal ciniditinn (4). as was to be proved.

Suppose this nietli(jd lie applied to I — = I — . Then
J V J V

r<U^ r .dx^ + dy^ ^rVdx5dx + dyMy_d.l
J y J y J I yds y- J

=^f\d'^5x+(d^-+'^8;\,

where the transformation has been integration by parts, including the discarding

of the integrated term which vani.shes at the limits. The two eqtiations are

d = 0. d^^ A^ =
; and = —

ydH yds y- yds c^

is the obvious first integral nf the first. The integration may then be completed to

find tlie circles as before. The integration of the .second equation wduUI not be -so

simple. In some instances t//e advantage of the choice of one of the tico equations

offered by this method of direH operation is marked.
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EXERCISES

1. The shortest distance. Treat
/ (1 + y"-)-dx for a minimum.

2. Treat
|

V(ir'^ + r-d(p'^ for a minimum in polar coordinates.

3. The brachistochrone. If a particle falls alon^^ any curve from A to 7J, the

velocity acquired at a distance h below ^-1 is y = V2(jli regardless of the path fol-

lowed. Hence the time spent in passing from ^1 to B is T ~ j ds/v. Tlie path of

quickest descent from A to B is called the brachistochrone. Show that the curve

is a cycloid. Take the origin at ^1.

4. The mininuim surface of revolution is found by revolving a catenary.

5. The curve of constant density which joins two points of the plane and has a

minimum moment of inertia with respect to the origin is c^r'^ = see (3 (p + r„). Nt)te

that the two points must subtend an angle of less than 00^ at the origin.

6. Upon the sphere the mininmm line is the great circle (polar coordinates).

7. Upon the circular cylinder the mininmm line is the helix.

8. Find tlie mininmm line on the cone of revolution.

9. Minimize the integral | -to|"
I + n'-x- t?i.

J l2 \dt/ 2 J

Y

\ jy^
\B

-^
It)

r^

O X

157. Variable limits and constrained minima. This second luothod

of operation has also the advantage that it suogests the solution of the

probhiDi of making an Integral bctirccn rarlaldi' aid-pointa a ina.rlin ii m
or vtlnunu/n. Tims su})i)Ose that the curve C Avliich

shall join some point .1 of one curve F^ to sonte

point B of another curve T^, and which shall make

a given integral a minimum or maximum, is desired.

In the first place C must satisfy the condition (4)

or (4') for fixed end-])oints because C Avill not give O

a maximum or minimum value as compared with

all other curvt'S unless it does as com})ared merely vvitli all othiM' curves

which join its end-points. There must, however, be additioiud condi-

tions which shall serve to determine the points A and I) whieh C con-

nects. These conditions are precisely that the Integrated terms,

Wuh' -f- *:,„S.v1
'' = 0, for A and for B, (5)

which vanish identically Avlicn tlu^ end-points are iixod. slioJl ranlsl/ at

each jiolnt A or B jirovided hx and 8// are intcr])rfled as diiforoutials

aloni;- the curves U and F,

.
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-^ , . , ^ r 'IS r V(/J- + air , , , .

ior fXiunple, lu the case or j — = ( treated above, the integrated
'^ y J y

terms, which were discarded, and the resulting conditions are

V±r5^ diibyl ''

^

(hSx + dydijl ^^ ^
(hdx + d>j5i/l ^ ^

L ijds yds J A

'

yds J
'

yds J a

Here di and dy are differentials along the circle C and Sx and 5y are to be inter-

preted as differentials along the curves Tq and r,^ which respectively pass through

A and B. The conditions therefore show that the tangents to C and Tq at A are

perpendicular, and similarly for C and r^ at B. In other words the curve which

renders tlie integral a minimum and has its extremities on two fixed curves is the

circle which has its center on the jr-axis and cuts both the curves orthogonally.

To prove the rule for finding the conditions at the end points it will be suffi-

cient to prove it fur one variable point. Let the equations

6':x = 0(O, y = ^{t), C\:x = <p{t) + ^{t), y = ^p (t) + 7j{t),

nf,) = v(t,) = 0, f(g = «, r,{h)=h; Sx = ^{t), Sy = 7j{t),

determine C and C\ with the connnou initial point .1 and different terminal points

B and B' upon T^. As parametric e(iuations of F^, take

xr=x + al (s), y = y + bin (.s) ;
-- = al'{s), ~ = bm'{s),
OS 5s

wlicre .s rei^resents the arc along Fj measured fri)ni B, and the functions l{s) and

}n (.s) vary from at B to 1 at ]V. Next form tlie familx'

x=^<p (t) + I (s) f (0, // = ^ (0 -f- m (s) 7, {t). x' = 0' + ^r, y' = V + ^n7,\

which all pass through A f(ir t = t^^ and which for t = t^ describe the curve Fj.

Consider

g (s) := f % {x + I (.s) j-, // + //( (.x)
-n. x' + /j-', y' + ruTj') dt, (6)

which is the integral taken fr(jm A to Fj along the curves of the faniih', where

J^' y, •''-', y' '11'*-' '-'11 the curve C corresponding to s = 0. Differentiate. Then

where the accents mean differentiation with regard to ,s- when upon rj. Z. or ;/;. l)ut

with regard U> t when on x or y. and partial differentiation when on <l>. and where

the argument of <i> is as in (0). Now if y (s) has a maximum or niininunn when

,s = 0, then

y\0) =J
''
[/'(O) r*;(,r. y. X'. y') + m'(0) tj*; + I'm f '*;,, -f ?n'(0) t?'*;.] dt = :

The change is made as usual by integration by parts. Now as

^(x. y. x'. y')dt =<i'{x. y, dx, dy), so <J>^7f = *',.. *',., = *,'/,., etc.
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Hence the parentheses nnder the integral sign, when multii)lied by d(, reduce tc

(4') and vanish ; they coukl be seen to vanish also for the reason that f and 7; are

arbitrary functions of t except at i = i^ and t = t-^, and the integrated term is a

constant. There remains the integrated term which must vanish,

V{0) UK) <. + m'{0) V (t,) ^\y = [^ *;. + ^ *;
J'

= [*rf, 5x + ¥,^ hy^ = 0.

The condition therefore reduces to its appropriate half of (5), provided that, in

interpreting it, the quantities 5x and hy be regarded not as a = f (f^) and & = -riii^

but as the differentials along r^ at B.

158. In many cases one integral is to be made a maximum or minimum

subject to the condition tliat another integral shall have a fixed value,

1=
j

F{x, y, y')dx ™', J^ I G {x, y, y')dx = const. (7)

For instance a curve of given length might run from A to B, and the

form of the curve which would make the area under the curve a maxi-

mum or minimum might be desired ; to make the area a maximum or

minimum without the restriction of constant length of arc would b?

useless, because by taking a curve which dropped sharply from .1, in-

closed a large area below the ic-axis, and rose sharply to B the area

could be made as small as desired. Again the curve in which a chain

would hang might be required. The length of the chain being given,

the form of the curve is that which will make the potential energy a

minimum, that is, will bring the center of gravity lowest. The pro)>

lems in constrained maxima and minima are called Isoperliiictrle pi-)b-

lems because it is so frecpiently tlie perimeter or length of the curve

which is given as constant.

If the method of determining constrained maxima and minima

by means of undetermined multipliers be recalled (§§58, 61), it will

appear that the solution of the isoperimetric problem might reasonably

be sought by rendering the integral

/ + A./ = r
'

[F(^x, y, y') + XG (x, y, y ')] dx (8)

a maximum or minimum. The solution of this problem would contain

three constants, namely, A and two constants c^, e,^ of integration. The

(constants c^, <\^ could be determined so that the curve should pass througli

A and Ji and the value of X would still remain to be determined in such

a manner that the integral J should have the desired value. This is

the method of solution.
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To justify the method in tlie case of fixed end-points, which is the only casa

that will be considered, the procedure is like that of § 155. Let G be given bj

y =/(x) ; consider

y =f{x) + at] (x) + /3f (x), 7;o
= 77j = fy = s'l

= 0,

a two-parametered family of curves near to C Then

(J (a, /3) =J ^'F(x, 2/ + ott; + iSf, ?/ + ^7;'+ /Sf ') iZx, g (0, 0) = Z
'0

h{a, /3) = f''G{x, y + cx-n + iSf, V' + ^^V + iSf ') dx = J = const.

would be two functions of the two variables a and jS. The conditions for the mini-

nmni or maximum of (j {a, j3) at (0, 0) subject to the condition that h (a, jS) = const,

are required. Hence

(/^{o, 0) + x/C(0, 0) = 0, r/;(0, 0) + xa;j(0, o) = o,

or f
'
',7 (F,; + X G;) + 7,'(^;' + ^ Gy^) dx = 0,

"'0

By integration by parts either of these equations gives

{F+\G%-^{F+\G):, = 0; (9)

the rule is justified, and will be applied to an example.

Required the curve which, when revolved about an axis, will generate a given

volume of revolution bounded by the least surface. Tlie integrals are

J = 2 TT / yds, min., J = it
j

y-c?.f, const.
^'0

"

•^'(1

Make I '(//cZ.s + \y-dx) min. or |
^5 {yds + \y-dx) = 0.

£ '' S (yds + XyhLc) =:^
;''

Isyds + y
^^^'^-^ +^'^^'^'^1' + ^ Xy5//cZx + X^'^ScZxl =

= T'"^' Fsx (- \d (y-) - d '^\ + 5y ids - d^ + 2 \ydx\~\.

Hence \d {y") + d
^'^'^ = or ds - d— + 2 \ydx = 0.
ds ds

The second method of computation has been used and the vanishing integrated

terms have been discarded. The first equation is simplest to integrate.

^ o 1 X (f 1
— 2/") dy

X2/- + y -—= = r^X, ± — ^ ^ -^ ' -^ = dx.

Vl + y'- Vy- - X- (c^ - y-y-

The variables ai'e separated, but the integration cannot be executed in terms of

elementary functions. If, however, one of the end-points is on the x-axis, the
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values Xy, 0, ?/q or Xj, 0, y[ must satisfy the equation and, as no term of the equa-

tion can become infinite, c^ must vanisli. The integration may then be performed.

•^ = dx, 1 — X~y- = X2 (x — c,)2 or (x - (•„) + 2/^ =

In tliis special case the curve is a circle. The constants Cj and X may be deter-

mined from the other point (x^, y^) through which the curve passes and from the

value of J = V ; the equations will also determine the abscissa Xq of the point on

the axis. It is simpler to suppose x,, = and leave Xj to be determined. With this

procedure the equations are

A" A" IT A" o

3 , o - *' y A ^i' + ^i'
or xf + o //f/, = 0, p., = ,

TT
"

2x,

and x^-iT-l [(3 u -1- V'.» v- + Tr-yj^js- -|- (s v — Vu y- -|- 7r-(/f)'].

EXERCISES

1. Show that {a) the minimum line from one curve to another in the plane is

their conunon normal
; (/3) if the ends of the catenary which generates the mini-

nuim surface of revolution are constrained to lie on two curves, the catenary shall

be perpendicular to the curves
; (7) the brachistochrone from a fixed point to a

curve is the cycloid which cuts the curve orthogonally.

2. Generalize to show that if the end-points of tlie curve which makes any inte-

gral of the form / i<"{x, y)ds a maximum or a mininnim are variable upon two

curves, the solution shall cut the curves orthogonally.

3. Show that if the integrand 4> (x, ?/, dx, di/, Xj) depends on the limit Xj, the

condition for the limit B becomes *'/^.5x -|- i''/„Sy + dx j
%'^. = 0.

4. Show that the cycloid which is the brachistochrone from a point A, con-

strained to lie on one curve Fq, to another curve Y^ must leave F,, at the point A
where the tangent to Fy is parallel to the tangent to F^ at the point of arrival.

5. Prove that the curve of given length which generates the minimum surface

of revolution is still the catenary.

6. If the area under a curve of given length is to be a maximum or mininuim,

the curve nmst be a circular arc connecting the two jpoints.

7. In polar coordinates the sectorial area bounded by a curve of given length is

a maxinmm or minimum when the curve is a circle.

8. A curve of given length generates a maxinuuu or minimum volume of

revdiutiiiu. Tile elastic curve

ii = ^+-^:^ = -A or ax = -^£^M^.
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9. A chain lies in a central field of force of which the potential per unit mass is

V(r). If the constant density of the chain is p, show that the form of the curve is

dr

+ \yh-"- - ly-

10. Discuss the reciprocity of I and J, that is, the cjuestions of making I a maxi-

mum or minimum when J is fixed, and of making / a minimum or maxinuun when
I is fixed.

11. A solid of revolution of given mass and uniform density exerts a maxinunn

attraction on a point at its axis. Arts. 2\{x- + y-)^ + x = 0, if the point is at the

origin.

159. Some generalizations. Supijose that an integral

/ =C F(.r, y, y\ z, z\ • •) dx
=J ^ (.r, dx, y, dy, z, dz, • •

•) (10)

(of whicli the integrand contains two or more dependent variables

//, z, a,nd their derivatives y\ z', • Avith respect to the independent

variable .r, or in the synimetrical form contains three or more variables

and their differentials) were to be made a maxinmm or minimum. In

case there is only one additional variable, the problem still has a geo-

metric interpretation, namely, to find

a curve in space, Avhich will make the value of the integral greater or

less than all neighboring curves. A slight modification of the previous

reasoning will show that necessar}- conditions are

F' - -^ F,:, = and Fl —~ K, =
" dx ' - dx ^ (11)

or *;. - ^/$;,,, = 0, $; — d^',,, = o, <i>; — d^[;,, = o,

where of the last three conditions only two are independent. Each of

(11) is a differential equation of the second order, and the solution of

the two simultaneous equations will be a family of curves in space

dependent on four arbitrary constants of integration which may be so

determined tliat one curve of the family shall pass through the end-

points ^l and B.

Instead of following the previous method to establish these facts, an

older and perha])s less accuiTite luethod will be used. Let the varied

values of //, -, //', ,-.'', be denoted by

y + Sy, z + 8z, y' + By', z' + 6z', Sy' = (Sy)', Bz' = (Bz)'.
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The difference between the integral along the two curves is

M= C \f(x, y + hj, y/' + hj\ z + Iz, z' + hz') - F{x, y, 7j\ z, z')yx

= C \Fdx = C '(F^Sy + F;,8y' + FlSz + f;8«') dx + • •
•

,

Jx^ Jx^

where F has been expanded by Taylor's Formula* for the four variables

y, y', z, z' which are varied, and '' + ..." refers to the remainder or the

subsequent terms in the development Avhich contain the higher powers

of 8y, By', Bz, 8z'.

For sufficiently small values of the variations the terms of higher

order may be neglected. Then if A/ is to be either positive or nega-

tive for all small variations, the terms of the first order which change

in sign when the signs of the variations are reversed must vanish and

the condition becomes

r \F;,By + F;^.8y' + FlBz + F^.Bz') dx = C 'SFdx = 0. (12

Integrate by parts and discard the integrated terms. Then

IKf;,-£f-\., + (f:~£k,]b. 0. (13)

* In tlie simpler case of § 155 this formal development would run as

and with the expansion A/= 51 -\ d~I + — 5^1 -\- • • • it would appear that

8r=f''\F;8>f+F'^,Su')<J?; m = T' {Fy^jhu'^ + 2 f;;.5;/S^/' + F'^^^W^dx,
'o -'o

53/= r\F'„''8!i^ + 3 f','^.:,^mi-8]i' + :^ F,;;;,5//5//'2 + Fiy^w^yix. • • •

.

The terms 5/, 5-/. 5-'/. • are called the./?r.>-^ ftecoml, third, I'ariatioyix of the inte<rral

I in the case of fixed limits. The condition fur a maximum or minimum then hecomes
S/= 0, just as ilf/ ~ is the condition in the case of g (.>•). In the case of variable limits

there are some modifications appropriate to the limits. This method of procedure suu-

gests the reasiiii rliat S.'", 5.'/ are frequently to be treated exactly as differentials. It also

suggests that 5-/ > and 5-/ < would be criteria for distinguishing between maxima
and minima. The same results can be had by differentiating (V) repeatedly under the

sign and exi)an(ling / (a) into .series; in fact, 5/= /'(O), 52/= F'(0), . No emphasis

has been laid in tiie text on the suggestive relations dl = I SF'Ix for fixed limits or

5/= / 54> for variable limits (variable in x, y, but not in t) because only the most ele-

mentary results were desired, and the treatment given has some advantages as to

modernitv.
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As 8// and 8z are arbitrary, either may in particular be taken equal to

while the other is assigned the same sign as its coefficient in the

parenthesis ; and hence the integral would not vanish unless that coeffi-

cient vanished. Hence the conditions (11) are derived, and it is seen

that there would be precisely similar conditions, one for each variable

J/,
z, , no matter how many variables might occur in the integrand.

Without going at all into the matter of proof it will be stated as a

fact that the condition for the maximum or minimum of

I
<I> {x, dx, y, dy, z, dz, . . .) is / 8$ = 0,

which may be transformed into the set of differential equations

of which any one may be discarded as dependent on the rest ; and

^'aM + ^dM + *rf.8'^ H = 0; at ^ and at B,

where the variations are to be interpreted as differentials along the loci

upon which A and B are constrained to lie.

It frequently happens that the variables in the integrand of an inte-

gral Avhich is to be made a maximum or minimum are connected by an

equation. For instance

/*(,r, dx, y, dy, z, dz) min., S{x, y, z) = 0. (14)

It is possible to eliminate one of the variables and its differential by

means of ^^ = and proceed as before ; but it is usually better to

introduce an undetermined multiplier (§§58, 61). From

s{x,y,z) = o follows .s;;&/- + .s';8y + 5;s,v =

if the variations be treated as differentials. Hence if

/[($; - f/$;,,) hx + (<^; - d^',^) Sy + (4.; - ./$;,,) s,^] = o,

[(*; - d^',, + \s:) 8x -f (% - d^:,,, + XS;) 8y

+ (^:-d^:,^-^-xs:)8z] = o

no matter what the value of A. Let the value of X be so cliosen as to

annul the coefficient of 8,^. Then as the two remaining variations are

independent, the same reasoning as above will cause the coefficients of

Sx and 8// to vanish and

^: - "'*,/,,. + A.v; = 0, % - d^'„j + x.% = 0, $: - ./$,% + A.s; = o (is)
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will hold. These equations, taken Avith S = 0, will determine y and z

as functions of ./• and also incidentally will iix A.

Consider the problem of determining the shortest lines upon a surface

S(x, 1/, z) = 0. These lines are called the geodesies. Then

(l.rh.r -\- (hjhil + flzhz
Chls = = -

ds -f
,l'$^,- + ,l'^S,, + d'$B.

/('' S + ''')' + ('' I' + ^"')^* + ('' I + ^*=)

ds

8y +

ds ds

8z'.

, (16)

0,

dx

fZ— + an;
ds

<^ll + an: =s; = r/f + an: = o,
ds

and
4'

fls

s'

In the last set of equations A has l)een eliminated and the equations,

taken with .S' = 0, may be regarded as tlie differential equations of the

rjpodesies. The denominators are proportional to the direction cosines

of the normal to the surface, and the numerators are the components of

the differential of the unit tangent to the curve and are therefore pro-

portional to the direction cosines of the normal to the curve in its oscu-

lating plane. Hence it aitpeai'S that tlie osculatintj iilane of a, fjeodesie

curve contnins tJie normal tn tlie s\irface.

Tlu' iiitci^rated terms ri.rS/ + f?//5// + <\zhz = show that the least pendesic wliich

connects two curves on the svn-face will cut both curves orthoi^onally. These terms

will also .suffice to prove a luunber of interesting theorems which establish an analogy

between geodesies on a surface and straight lines in a plane. For instance : The

locus of points whose geodesic distance from a fixed point is constant (a geodesic

circle) cuts the geodesic lines orthogonal!}'. To see this write

^7' pr pV ^r \r

(
fZ,s = const.. A (Z.s = 0, 5 1 (?.s 1= 0, (

5fU - - dx5z -\- dySy -\- dz5z\ .

Jo Jo Jo Jo
I

The integral in (10) drops out because taken along a geodesic. This final equality

establishes the perpendicularity of the lines. The fact also follows from the .state-

ment that the geodesic circle and its center can be regarded as two curves between

which the shortest distance is tlie distance measured along any of the geodesic

radii, and that the radii must therefore be perpendicidar to the curve.

160. The most fundanuuital and important single theorem of mathe-

matical physics is Hamilton's Principle, which is expressed by means

of the calculus of variations and affords a necessary and sufficient con-

dition for studying the elements of this sul)ject. Let 7' be the kinetic

energy of any dynamical system. Let A',-, }', Z,- be the forces which

act at any point .r,-, //,-, z,- of tlie system, and let &/,, 8//,-, S^-,- represent

displacements of that point. Tln'ii the work is

Sir = V (A;8,ri + y.h; + ^,8,-.-,v
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Hamilton's Principle states that the time Integral

j
\ST + BW) dt = r '[Sr + 2^ (X8.r + ]% + Z8.?)] dt = (17)

riinishes for the actinil motion of the si/stem. If in particular there is

a potential function V, then S]r= — 81' and

r \(T - y)dt = h f \r- V)dt = 0, (17')

and t/ie time Intcgyol of the dlfferenec hrtwccn the hlnetle and potmithd

energli't^ Is a r/iaxlmum or mlnimuni for the actual motion of tit e x^/stem

as coni})ared with any neighboring motion.

Suppose that the position of a system can be expressed by means of n independ-

ent variables or coordinates q^. q.^. . q,,. Let the kinetic energy be expressed as

^=5) 2'«'lf =/l''"-d»l = T{q^, q.^. • ., q„, q^. q.^, •, q„),

a function of tlie coordinates and their derivatives witli respect to the time. Let

tlie work done by displacing the single coonlinate qr be 5 11' = QrSq,-- ^''> that the total

work, in view of the independence of the coordinates, is Q^?qi+ Q./lq.,+ • • • + Qn'lQn-

Then

=f\dT+5W)dl =j\l-5q, + 7;;^5r/, + • • + 7:>/„ + T'.Sq^ + T;^5q^

+ • • • + ^l'')Jnn + QiS^i + q.oq.^ + • • • + Q„dq„)dt.

Terform the usual integration by ])arts and discard the integrated terms which

vanish at the limits t = ^^ and t = t^. Then

"
=

X.''
[ l'^'.

+ "' - i '-) '" + ('''. + '•'= - ;« ''=) *'=

dt.

In view of the independence of the variations 57^. S7.,. • •, S^,,,

'^-:^-iI=Q, l^-l^ = Q.. .... '-'^-''^=q„.
(18)

dt cq^ cq,^ dt cq., cq.-,
'

dt a},, cq„

Tiiese are the Laqrangian cquatiott--^ for the motion of a dynamical sj'stem.* If

there is a potential function I" {q^, ry.,. • • •, q„). then by detinition

C - -'Jl c ~-^Jl c - -— L^-iT- -LJI-o

d cL cL d cL cL d cL cL
Hence = 0. =0. ••., = 0. L = 1 — \ .

dt cq^ cq^ dt cq.2 cq^ dt cq„ cqn

The equations of motion have l.)een expressed in terms of a single function L. -which

is the difference between the kinetic energy T and potential function V. By

* Cniiiiiari' L\. 10, p. 1V2. for a deduction of Hs) hy transforniation.
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comparing the equations -with (17') it is seen that the dynamics of a sj^stem whicli

may be specified by n coordinates, and wliich has a potential function, may be stated

as the problem of rendering the integral / Ldt a maximum or a minimum ; both the

kinetic energy T and potential function V may contain the time t without chang-

ing the results.

For example, let it be required to derive the equations of motion of a lamina

lying in a plane and acted upon by any forces in the plane. Select 'as coordinates

the ordinary coordinates (x, i') of the center of gravity and the angle ^ through

which the lamina may turn about its center of gravity. The kinetic energy of tlie

lamina (p. 318) will then be the sum ^Mv" + ilu}-. Now if the lamina be moved a

distance 5x to the right, the Avork done by the forces will be X5x, where A' de-

notes the sum of all the components of force along the x-axis no matter at wliat

points they act. In like manner Y5y will be the work for a displacement dy. Sup-

pose next that the lamina is rotated about its center of gravity through the angle

50; the actual displacement of any point is rdcp where r is its distance from the

center of gravity. The work of any force will then be Iird(p where R is the com-

ponent of the force perpendicular to the radius ? ; but Kr = 4> is the moment of

the force about the center of gravity. Hence

T= 1 3r(x2 4- y^) + 1 702, 5 11' = X5x + Y5y + <l>50

(l^x d-y d-4>
and M— = A, ^[— = 1 . I— = *,

dt^ dt- dt-

by substitution in (18), are the desired equations, where X and 1' are the tctal

Cdinponents along the axis and <i> is the todd nmnient about the center of frravity.

A particle glides withnut friction on the iiiterii:)r of an inverted cone of revo-

lution ;
determine the motion. Choose the distance r of the particle from the ver-

tex and the meridional angle as the two coordinates. If / be the sine of the

angle between the axis of the cone and the elements, then ds- = dr- + f-l-drp- and

f- = r- \- r-l-4>~. The pressure of the cone against the particle does no work
; it is

normal to the motion. For a change 50 gravity does no work; for a change 8r it

does work to the anioinit — //if/ V 1 — l-dr. Ilt/nce

T = I m (/'•'-
-f /-/-0-). 5 ir = — //?;/> 1 — /-5/- or V = mr/\'\ — Pr

d-r ,o
/'^'^\'"

/^j ,o '^ I .y,nd(p\ ^ „d(f)
Then rl- — =-r/Vl - P. - r^l- — = or f^ ^- = C

df^ \dt)
^

dt\ dtj dt

The remaining integrations cannot all be effected in terms of elementary functions.

161. Sui)post' the double integral

extended over a certain area of the ,''//-plane were to be made a maxi-

mum or minimum by a surface z = z(.r, y), Avliich shall ]iass through a

given curve upon the cylinder wliich stands ujton tlic bounding curve

of the area. This prol)lem is analogous to the problem of § l.j.") with
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fixed limits
; the procedure for finding the partial differential equation

which z shall satisfy is also analogous. Set

jfsF>/.n/>/ = fuF'.hz + F;,hp + F'^h'i)dxdij = 0.

C?i" ??>•'

Write hp — -—-
' 87 = -~ and integrate by parts.

The limits A and B for which the first term is taken are points upon

the bounding contour of the area, and 8.~ = for A and B by virtue of the

assumption that the surface is to })ass through a fixed curve above

that contour. The integration of the term in Sy is similar. Hence the

condition becomes

jjmu,,, =//(k - 1:f -
;^,f) a.-.«. = o (20,

l^--fl^-^i^'=0, (2O0
cz dx c^t dtj C'l

^ ^

by the familiar reasoning. The total differentiations give

F' — F" — F" — F" p — F"'t — F" r — 2 F" s — F"f = 0.

The stcck illustration introduced at this point is the minimum surface,

that is. the surface Avhich spans a given contour Avith tlie least area and

which is pliysically rci)resented by a soap him. The real iise, however,

of the theory is in connection with Hamilton's Princijde. To study the

motion of a chain hung u}i and allowed to vibrate, ov of a })iano Avire

stretched between two ]ioints. compute the kinetic and })otential energies

and a})ply Hamilton's Principle. Is tin; motion of a vibrating elastic

body to be investigated ? A]»])ly Hamilton's Principle. And so in

electrodynamics. In fact, with the very foundations of mechanics some-

times in doubt owing to modern ideas on electricity, the one refuge of

many theorists is Hamilton's Principle. Two problems Avill be Avorked

in detail to exliiljit the method.

Let a uniform chain of density p and leniith I be suspended by one extremity

and caused to execute small oscillations in a vertical j^lane. At any time the shape

of the curve is y = y{x). and y = // (w. t) will he taken to represent the shape of the

curve at all times. Let y' = cy/c.r and y = cy/ct. As tlie oscillations are small,

the chain will rise only sliizhtly and the main part of the kinetic eneri,'y Avill be in

the whippinu- motion from side to side
;
the assumption dx = ds may be made and

the kinetic energy may be taken as

-x>©-
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The potential energy is a little harder to compute, for it is necessary to obtain the

slight rise in the center of gravity due to the bending of the chain. Let X be the

shortened length. The position of the center of gravity is

x= — = -X—
I

-X x\y~ax.

f (1+ ly'-')dx x+
/ ly'-dx

Here ds = Vl + y''^dx has been expanded and terms higlier than y'" have been

omitted.

l = \+ \
- y'-dx, ~l-x=\ - (X - X) y'Hx, V=lpgl~l-x].

Ji\ 2 2 \Ji) 2 \2 I

Then f'\T- V) dt = C'' C'\\p {^^\ dx - ^-^ pg{l - x) (^)"1 dxdt, (21)

provided X l)e now replaced in V by I wliicli differs but slightly from it.

Hamilton's Principle states that (21) must be a maximum or mininuun and the

integrand is of precisely the form (19) except f<ir a change of notation. Hence

d V ,, .cyl d( cy\ . Ic^ij
,, .c-y cy_ _pj/(l_3.)_ _ L,^_ \ =0 or ^ =(i_x)~,-— .

dx\_ cx_\ dt\ ctf get- ex- ex

The change of variable I — x = u-, which brings the origin to the end of tlie chain

and reverses the direction of the axis, gives the differential equation

e-i/ ley i c'-y d-P 1 dP
,

4)i2-^ H = or
\

1 P = if y = P (u) cos nt.

cu^ u ell g et- dii^ u du g

As the equation is a pai'tial differential ecpiation the usual device of writing the

dependent variable as the pmduct of two functions and trying for a special type

of solution has l)een used (§ 1U4). The etiuation in P is a Eessel equation (§ 107)

nf whicli one sohuion P{u) = A J
^^ {2 ng~ '-^ u) is tinite at the origin u = 0, while the

other is inlinite and must be discarded as not representing possible motions. Thus

y{x, t) = vl,7„(2 ng~2u)cni>nt, with y {I, t) = AJ^^{2rig~ ^l^ =

as the condition that tiie chain shall l)e tied at the original origin, is a possible

UKidc of motion for the chain and consists of whipping back and forth in the peri-

odic time 27r/?i. The condition J,,(2ng~-i-) = limits n to one of an infinite set

of values obtained from the roots (jf ./,,.

Let there be found the equations for the motion of a medium in which

v = ] '^fffU' + 'J' + ^'') ''^•''//'-^^

are the kinetic and i)otential energies, where A and B are constants and

4 tt/ = . I irg. -. , 4 tvIi = ~
cy cz ' Iz Ix ex cy
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are relations connecting/, (/, /( with the displacenients ^, 17, f along the axes of x, ?/, z.

Then

ffffs[U ik-' + V- + h - hB if- + g~ + h-)-] dxdydzdt = (22)

is the expression of Hamilton's Principle. These integrals are more general than

(19), for there are three dependent variables ^, 77. f and four independent variables

X, y, z, t of which they are functions. It is therefore necessary to apply the method
of variations directly.

After taking the variations an integration by parts will be applied to the varia-

tion of each derivative and the integrated terms will be discarded.

jyjjs I
A (e + ^- + t-) dxdydzdt = ffff-^m + ^5^ + tst) dxdydzdt

= -
ffff^^ (^^^ + V^V + fSr) dxdydzdt.

ffffs i B{f' + r/- + h") dxdydzdt = CCCC B{f5f+ r/8(j + !i8h) dxdydzdt

=-iX0'£fi-S)«-(S-S"-g-i) '*]-'"-

After substitution in (22) the coefficients of 5f. 5?;, 5j" may be severally equated to

zero because 5^, 5?;, 5j' are each arbitrary. Hence the equations

dt^ \cy czl (t- \cz cxj It" \cx cyl

With the proper determination of A and 7> and the proper interpretation of ^, r;,
f',

/, (J, h, these are the equations of electromagnet ism for the free ether.

EXERCISES

1. Show that the straight line is the shortest line in spacer and that the shortest

di.stance between two curves or surfaces will be normal to both.

2. If at each point of a curve on a surface a geodesic be erected perpendicular

to the curve, the locus of its extremity is perpendicular to the geodesic.

3. "With any two points f)f a surface as foci construct a geodesic ellipse l)y tak-

ing the distances FP + F'P = 2 a along the geodesies. Show that the tangent to

the ellipse is ecjually inclined to the two geodesic focal radii.

P r
4. Extend Ex. 2. p. 408. to space. If / F{x. y. z)dn = cornet., show tliat the

Jo '

locus of P is a surface normal to the railii, provided the radii be curves which

make the integral a maxinmm or minimum.

5. Obtain the polar equations for the motion of a particle in a plane.

6. Find the polar equations for the motion of a particle in space.

7. A particle glides down a helicoid {z = k<p in cylindrical coordinates). Find

the equations of motion in (r, (p), (r, z). or {z, <p), and carry the integration as far

as possible toward expressing the position as a function of the time.
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8. If z — ax^ + hy- + • • • , witli a > 0, 6 > 0, is the Maclaurin expansion of a

surface tangent to the plane z = at (0, 0), find and solve the equations for the

motion of a particle gliding about on the surface and remaining near tlie origin.

9. Show that r(l + (p-) + i(l + p'-) — 2_p(/s = is the partial differential equa-

tion of a minimum surface ; test the lielicoid.

10. If p and 6' are the densitj' and tension in a uniform piano wire, show that

the approximate expressions for the kinetic and jjotential energies are

2 Jo ^\ci/ 2 Jo \cx}

Obtain the differential equation of the motion and try for solutions ?/ = P(x) cos nL

11. If ^, 1), fare the displacements in a uniform elastic medium, and

cz cy cz \dij czl \cz cx/ \cx cyf

are six conil)inations of the nine possible first partial derivatives, it is assumed that

V =
I j I

Fdxdydz, where Fis a homogeneous (juadratic function of a, b, c^f, g, h,

with constant coefficients. Establish the equations of the motion of the medium.

c-2| c^F c^'F c-F c^-n r~F c"-F c^-F

P —\ — 1 1 ' P — ~ h h - - .

ct- dxda cych czcg ct^ cxch cijcb czcf

€"-•<: c-^F d"F c^F
P^, = 1

1

ci- cxcg cycf czlc

12. Establish the conditions (11) by the method of the text in § 1.5-5.

13. By the method of § 159 and footnote establish the conditions at the end

points for a minimum of | F{x, y, y')dx in terms of F instead of <l>.

14. Prove Stokes's Formula / = C¥-dx = ffVxF.dS of p. .34.5 by the calculus

of variations along the following lines : First compute the variation of I on pass-

ing from one closed curve to a neighboring (larger) one.

dl = d f F.dr = f {5F.dr - rfF.Sr) + f (Z(F.5r) = f (VxF).(5rx<'7r),
Jo Jo Jo ^G

'

where the integral of '/ (F.5r) vanishes. Second interpret the last expression as

the integral of VxF-dS over tlie ring formed by one position of the closed cur\e

and a neighlxiring ])ositi<)n. Finally sum up the variations 5/ which thus arise on

passing througli a succ('ssi(}n of closed curves expanding from a point to tinai coin-

cidence with the given closed curve.

15. In case the integi'and contains //" sliow by successive integrations liy

parts that

5
I

F{x, y, y'. y")dx = } 'a, + 1 "a;' - -- co + } _ + - ccdx,
•^.T„ L dx J 11 J.,„ \ (// ax- /

w = 5y.
.r if'^ (F (F

where Y = , y Y"
d!/ ?,'/

'

~ W'



PART lY. THEORY OF FUNCTIONS

CHAPTER XVI

INFINITE SERIES

162. Convergence or divergence of series.* Let a series

= % + '/j + ", + ••• + '^,-l + «„ + • • •

,

(1)X If =

the terms of Avhicli are constant but infinite in number, be given. Let tlie

sum of tlie first ?i terms of tlie series be written

'^ = "o + "i +".,+ •• + ''„-i = X "• (2)

Then S^, .v., S.^, , ,<„ S,,^„---
°

form a definite suite of numl^ers -wliieli Jtun/ approach a definite limit

lim ^„ = S when n becomes infinite. In tliis case tlie series is said to

conrerge to the value S, and S, Avliich is tlie limit of the sum of the first

ji terms, is called the sum of the series. Or \ vk/// not ajjproach a Iunit

when n becomes infinite, either because the values of ^'„ become infinite

or because, though remaining finite, they oscillate about and fail to

settle down and remain in the vicinity of a definite value. In these

cases the series is said to Jicerge.

Tlie necessary and sufficient condition that a series converge Is that a

ralue of n may he found so large that the numerical value of ^'„ + p — >'„

sJiall he less than any assigned, value fir every value <f pj- (See §21,

Theorem 3, and compare p. 356.) A sufficient condition that a series

diverge is that the terms u,^ do not approach the limit when n becomes

intinite. For if there are always terms numerically as great as some

number r no matter how far one goes out in the series, there must

always be successive values of X„ which differ by as much as /• no

matter how large n, and hence tlie values of ,S^„ cannot possibly settle

down and remain in the vicinity of some definite limiting value ^.

*It will be useful to read over Chap. II, §§ lS-22, and Exercises. It is also advisable

t<;> compare niatiy of the results for infinite series with the corresponding results for

iiifiuite integrals (Chap. XIII).

419
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A series in which the terms are alternately positive and negative is

called an altcrndilnrj series. An aJ.ternatin(j scries iii tcltich the terms

approach as a liriut when n hecomcs infinite, each term being less than

its 2y>'<i'^lscessorj vlll converge and the dljference between tJiesuni S of the

series and the sum >S'„ of the Jirst n terms Is less than the next term v ^^.

This follows (i). 39, Ex. 3) from the fact that| .S;^^, - .S'„l < //„ and ?/„ = 0.

For example, consider the alternating series

1 - X- + 2 J-* — 3 .r« H + (- l)«)ix2" + • • • .

If |x| ^ 1, the individual terms in the series do not approach as n becomes infinite

and the series diverges. If |x] < 1, the individual terms do approach ; for

1- 1 1- '1 ,• 1 ^Inn )i.i'-" = lim = Inn = 0.
(, = z K = x /- - " ), = X — 2 J- - " log X

And for sufficiently large* values of 7i tiie successive terms decrease in magnitude

.since ., i

vu;-" < ()(, — l).c-«-^ gives > x- or n >
1 - X-

Hence the series is seen to converge for any value of x numerically less than unity

and to diverge fnr all other values.

The Compakisox Test. If the terms of a. series are all pasltlre (or all

ne;/aflre^ (Hid each term l^ name/'lealli/ less tlian the corresponding term

(fa series of jinsltlve terms vhleh Is Iniown to converge, the series con-

verges and tlie dljference S — .S',, Is less than the corresp(jmhng difference

fnr tlte series Irnowyi to co^iverge. ((."f. p. 355.) Let

"u + "l + ".' + • • • + "„_i + "„ -\

and ii[, -f v[ + ii'.. -{-• -\- ii'„_i + ^'n +
be respecti\'fl_v the given series and the series known to converge.

Since tlie terms of the first arc less than those of the second,

s,,^^, - s„ = //„ + • • • + y„^-,,-^ < ": + ••• + K^,^i = '^U;, - •^:-

Xow as the second quantity >S',', +,,
— >',', can he made as small as desired,

so can the first ([uaiitity .S^„u.^, — >'„, which is less ; and the series must

converuv. The remainders

/',. = .S' "n + ".-1 H =2 "•

^'-K = " + "1-1 + • =2 "'

*It should be remarknl tliat tlio bcliavinr of a serirs near its Ijeginiiing is of no oon-

seqiu'iice in regard to its (•(uiviTgi'iici' or liivergeiice : the tirst .V terms may be added
and considered as a finite sum .S' v and the series may be written as .S'\-4- )i\+ ".v^i -r • •

:

it is tlie properties of Uy + (ly + i
-\ which are important, that is, the ultimate behavior

of the series.
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clearly satisfy the stated relation 7'„ < U\^. The series which is most

frequently used for comjjarison with a given series is the geometric,

a + ar -\- <u^ + av^ + R.= < r < 1, (3;

Avhich is known to converge for all values of r less than 1.

For example, consider the series

1

+1 + 1 + - + ^- +
1

and 1 + 1 +
1

+

2 3 4

1

2-2
+

+ — +

+ ^1 +

Here, after tlie first two terms of the first and the first term of tiie second, each

term of the second is greater than tlie C(jrresponding term of tlie first. Hence the

first series converges and tlie remainder after the term 1/n 1 is less than

2" 2''+i 2" 1 — -1 2"-i

A better estimate of the remainder after the term 1/n ! iwax be had bj^ comparing11. .,1 1 1
i'„ = ,^+7 ,+

(u + 1) : {n + 2) !

with
(H + 1) :

+
(u + l)!(/t + l) '" n\n

163. As the convergence and divergence of a series are of vital im-

portance, it is advisable to have a nuniher of tests for the convergence

or divergence of a given series. The test

by comparison with a series known to con-

verge requires that at least a few types of

convergent series be known. For the estal>-

lishment of such ty}ics and for the test

of many series, the terms of which are

positive, Cinirhy's Interjrifl fi'st is useful.

Suppose that the terins of tlie series are

decreasing and that a function /(«) which decreases can l)e found such

that II,^ =f(n). Xow if the terms //„ l)e plotted at unit intervals along

the «-axis, the value of the terms may be interpreted as the area of

certain rectangles. The curve i/=zf(n) lies above the rectangles anJ

the area under the curve is

r fin) (In > >'., -f ;/g + . .
. + u„. (4)

Hence if the integral convcrgt'S (which in practice means that if

I
f{n)dii = F{ji), then / j\a) = -F(x) — F{1) is tinitcj,
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it follows that the series inust converge. For instance, if

be given, then u„ —f(n) = l/n", and from the integral test

1 1 f" (hi^ + 7r + -
• <

12p 3p ./ ,
71"

provided ]) > 1. Hence the series converges if // > 1. This series is

also very useful for comparison with others ; it diverges if p ^ 1

(see Ex. 8).

Thk R.\tio Test. If tlte ratio of tico sticcessli-e ti'rms in a series ofjiosi-

tire terms approaches a limit which is less tlnni 1, tlte series converges

;

if the ratio approaches a limit which is greater than one or if the ratio

becomes uifiuite, the series diverges. That is

if lim —^"-^^ = y < 1, the series converges,

if lim -^^-^ = y' > 1, the series diverges.

For in the first case, a.s the ratio approaches a limit less than 1. it must be pos-

.sible to go so far in the series that the ratio shall be as near to 7 < 1 as desired,

and hence shall be less than /• if r is an assigned number between 7 and 1. Then

Un +1 < rUn
,

Un + C < '""/i +1 < '•-«„
. • •

•

and j/„ + u„ +1 + "« + 2 + • • • < "«(1 + ' + '•- + •••) = "« :.

1 — /•

The proof of the divergence when »,i+i/w« becomes infinite or approaches a limit

greater than 1 consists in noting that the individual terms cannot apprnach 0. Note

that if the limit of the ratio is 1. no in/urination relative to the convergence or

divergence is furnished bj- this test.

If the scries of numerical or absolute values

h'o!+i^i+;"j+---+!^.i+---

of the terms of a series wliich contains jxjsitive and negative terms

converges, tlie series converges and is said to concerfje absolatelij. For

consider the two sums

^'„+y. - \= ". H Viin^p-x and |/^,|^ h|"„ + ;,_il.

The first is surelyriot numerically greater than the second: as the

second can be made as small as desired, so can the first. It follows

therefore that the given series must converge. The converse proposition
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that if a series of positive and negative terms converges, then the series

of absolute values converges, is not true.

As an example on convergence consider the binomial series

m (m— \) „ in (in — 1) (?/i — 2) „ 7?i (m — 1) • • • {in — n-\-\\

1-2 1-2-3 1-2. ..ji
'

h'n + il \m — ?l| I"--
•
'1

where '

—

^-^ — \'^\i hm
l"ni 71 + 1 n=:c jl<„|

It is therefore seen that the limit of the quotient of two successive terms in the

series of absolute values is |j|. This is less than 1 for values of x numerically less

than 1, and hence for such values the series converges and converges absolutely.

(That the series converges for positive values of x less than 1 follows from the fact

that for values of n greater than m + 1 the series alternates and the terms approach

; the proof above holds equally for negative values.) For values of x numerically

greater than 1 the series does not converge absolutely. As a matter of fact when
\x\ > 1. the series does not converge at all ; for as the ratio of successive terms ap-

proaches a limit greater than unity, the individual terms cannot approach 0. For

the values x = ± 1 the test fails to give information. The conclusions are there-

fore that for values of |j|<l the binomial series converges absolutely, for values

of |x|>l it diverges, and for |X| = 1 the question remains doubtful.

A word about series with comphx terms. Let

^^;, + "i -\y.^ h "«- 1 + «„ H

= »o + ^I'x + ''2 H + ^<, _ 1 + ?<, H

+ H"o' + y'i + "o' H h '',;_ 1 + v"^ -\ )

be a series of complex terms. The sum to n terms is >'„ = .S',', + iS'^.

The series is said to converge if S^^ approaches a limit \rhen n becomes

infinite. If the com})lex number \ is to approach a limit, both its real

part aS^j and the coefficient N,7 of its imaginary part must approach limits,

and hence the series of real parts and the series of imaginary parts

must converge. It will then be possible to take n so large that for any

value of p the simultaneous inequalities

\^'n^„->^'n\<\^ and |5:;^^, -.^:|< |e,

where e is any assigned nundjer, hold. Therefore

Hence if the series converges, the same condition holds as for a series

of real terms. Xow conversely the condition

1^+,, -."<„! <e implies [s;.^, -.s:,;<c, |,s;^^^_5:j<6.

Hence if the condition liolds, the two real series converge and the com-

plex series will then converge.
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164. As Cauchy"s integral test, is not easy to apply except in simple cases and

the ratio test fails when the limit of the ratio is 1, other sharper tests for conver-

gence or divergence are sometimes needed, as in the case of the binomial series

when X = ± I. Let there be given two series of positive terms

Iti, + Ul + + Kn + and Vi) + Vi + + v„ +

of which the first is to be tested and the second is known to converge (or diverge).

// the ratio of two .swcce.s.stwe terrns Un + i/Un ultimately becomes and remains less {or

greater) than the ratio u,i + i/u,i, the first series is also convergent {or divergent). For if

U„ + 1 l'« +

1

Un + 2 Vii + 2 .

,

Un Un + 1 W„ + 2
<^ J '^

, ' '
' 1 tneii ^ ^ s> ' '

'

.

"rt y« U„ + 1 Vn + l Vn Vn _|. 1 Vn + 2

Hence if u„ = pv,,, then h„ + i < pr„ + ,, h„ + o < pv^ + 2, • •
•

,

and Un + w« + i + Wn + 2 + •• < piv^ + Vn^\ + u„ + 2 + •••)•

As the y-series is known to converge, the pij-series serves as a comparison series

for the w-series which must then converge. If ?<„ + ]/«„ > u,j + i/i'„ and the i;-series

diverges, similar reasoning would show that tlie «-series diverges.

This theorem serves to establish the useful test due to Eaabe, which is

if lim n(- ^ 1 ) > 1, S^ converges ; if lim n I— 1 ) < 1. <S'„ diverges.

Again, if the limit is 1, no information is given. This test need never Ije tried

i.-\c,ept wlien the ratio test gives a limit 1 and fails. Tlie proof is simple. For

and

r- dn 1 1 I"- .. •

I = — IS fnnte
J i((logn)i + "^

a- (log )t)''J

r ^- dii
, ,

"1 '"..,, .

I
= li)gl()gn IS mnnite,

«/ n log n
'

J

1 1 ,1 1
hence 1- • • • H 1- • • and h • • -1 h •

•

2 (log 2)1 + ^ n(log7iy+'' i^(l<>g^) 71 (log n)

are respectively convergent and divergent by Cauchy's integral test. Let these be

taken as the i;-seri(;s with wliicli to compare the H-series. Then

J'l^ ^ " + 2 /l'>g(H + l)y + "^ A ^ 1\ / log(] + >oY + ^

l"« f 1 n \ log 71 / \ 7// \ log 71 /

r„ /, l\]nLc(1+7()
and ^ — = 1 + -

)
-—V^J

—

'

Vn+l \ nj log 71

in the two respective cases. Next consider Raabe's expression. If first

Ii)ii7i(—~ 1)>^, then idtimately ni—"- — 1)>7>1 and — "- > 1

+

Now lim ^^' ^-') =1 and ultimately (l^£il'-^^) < 1 + e,

». = z\ l(lg)t / \ l0g7i /
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where e is arbitrarily .small. Hence ultimately if 7 > 1,

\ )(/ \ log n / n n- n

or Vn/Vn J- 1 < ",,/Mh + 1 Or ii„ + i/u„ < v,, + i/y„,

and the u-serie.s converue.s. In like manner, .secondly, if

lira ni~ 1 )< 1. then ultimately —- <l + '^, 7 < 1
;

and 1 + -i < ( 1 + -
)

'^^ —' or —— < —^ or -^^^ > -^^^

.

71 \ )(/ log 71 Wh+1 r„fi It,, i'rt

Hence a.s the r-series now diverges, the i/-series nuist diverge.

Suppo.se this test applied to the binomial series for x = — 1. 'J'lien

"« n + 1 ,. /n + 1 A ?7t + 1= — -

,

lim 71

1

1 ) = ''™ = "^ + 1-

7(„+i n — in n = j: \n — m / » = x ;/(

n

It follows that the .series will converge if m > 0, but diverge if m < 0. If .r = + 1,

the binomial series becomes alternating for n > vt + 1. If the .series of absolute

values be considered, the ratio of .sttccessive terms
|
«„/«„ + 1

1 Ls still {n + l)/{n — in)

and the binomial series converges absolutely if m > ; but when ?7i < the series

of absolute values diverges and it remains an open question whether the alternat-

ing series diverges or converges. C(.)nsider therefore the alternating series

1 + ,71 + f^^i^^-'̂ )
,

"1 ("i -_1) (m-^)
, ,

m{m--[).--{m-n + -i)

^^

1-2 1.2.3
l"----^

1.2. ..71
'

This will converge if the limit of u,, is 0, but otherwi.se it will diverge. Now if

ni = — 1, the successive terms are multiplied b\' a factor ]?« — ?( + 1 \/n s 1 and

they cannot approach 0. When — 1 < ?7t < 0, let 1 + ?/i = ff. a fraction. Then tiie

7tth term in the series is

and - log
1
u„

]

=: _ log (1 - (9) - log /l - ^^ log (l - ^) •

Kach successive factor diminishes the term but diminishes it by so little that it may
not approach 0. The logarithm of the term is a series. Now apply (Jauchy's test.

f
' - log (l - -\ dn = l-ri log (l -^\ + d log {n - ^)1 ' = co.

The series of logarithms therefore diverges and lim|w„|=e-^- = 0. Hence the

terms approach as a limit. The final results are therefore that when x = — 1 the

binomial series converges if m > but diverges if in < ; and when ./; = + ! it con-

verges (absolutely) if m > 0, diverges if 7n < — 1, and converges (nut ab.solutely) if

— 1 < ?/i, < 0.
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EXERCISES

1. State the number of terms which must be taken in these alternating series to

obtain the sum accurate to three decimals. If the number is not greater than 8,

compute the value of the series to three decimals, carrying four figures in the work :

I 1 1 1 1 1 1 1

. s , 1 1 1 /^^ 1 1 1

(^>^-2 + 3-4 + ---' (^^k^-i^ + h:;^^-""-'

(0 1-^ + :?-, -^ + ---, (f) e-i-2e--2 + 3e-3_4e-* + ....
y- o- I

-

2. Find the values of x for which these alternating series converge or diverge:

1,1. . ^ , a^" a^"* a-s

{a) 1 _ X- + -x^ - -./•" + . .
.

,
(/i) 1_++...

,

2. o z ; 4 : u .

3.3 j-h
J.7

, ^ J^ .<' .''

(7) X -- + --.,+••• , (5) X --+-.--- + •••

,

X- x* x6
, ^ ^ 23 X-' 2''x'' 2'x"

6 !-- + ---- + •••, (f 2x- -^ + — ^ + ---,
1'^ 2^' 3>' o (

II 1 1 1 2 2- 23

(^) + + . . (^) + + . .
.

.

X X + 1 .'J + 2 X + 3 X X + 1 X + 2 X + 3

3. Show that these series converge and estimate the error after ?t terms :

, . 1 1 1
, ox 1 1 • 2 1 :^ • 3

2- 6^ 4* 3 o o 3 • o /

,11 1 1
, , /IV- /I •:^\- /I •2-3\-

From the estimate of error state how many terms are required to compute the

series accurate to two decimals and make the computation, carrying three figures.

Test for convergence or divergence :

(e) sni 1 + sin + sm- + • • •, (j-) siii- 1 + sin- +siii-- + ---,
2 3' 23

(77) tan-i 1 + tun-' - + tan-' - + ..., (()) tan 1 H = tan - f - = tan - + ...,

2 3 ^'2 - \ 3 •'

1 + 1 2 + A 2 3+\3 2-— 1- o- — 2- 4- — o-

,,1 2 2.3 2.3.4 ,1 \'^> ^ .3 v4

X X- X3 X'' X X- X-^ X*

4. Apply Cauchy's integral to determine the convergence or divergence :

, ,
I0-2 loir 3 log 4

, ^ ^
1 1 1

2/' 3/' 4/'
^^^

2(iou-2)/' 3(loi.^3)/' 4(log4)/>
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CO , rr-.
(•y)l+X^ , (5)1+^ ,^ ?i log n log log )i ^ n log n (log log n)i'

2 3 4
(e) cot-i 1 + cot-i 2-1

, (f) 1 + h 1 + • • • •

5. Apply the ratio test to detennine convergence or divergence :

^12 3 4 ,.v 22 23 2*

(''^)2 +
i^
+ 23 + 2^ +

---'
^^^ ^i + .3To + iro +

---'

2 ! 3 ' 4 ' 5

'

22 33 44

^^^2^ + 3^+4^+5^ +
---'

^^)2l + ^ + 4l + ---'

910 ?!10 410
(e) Ex. 3(<r). (/3), (7). (5) ; Ex. 4(ar), (f), (f) -- + — +

-^-^^-^
+ • • -,

('')i + ^ + ^; + o: +
-'-' (^>i + 2. + 4. +

---'

,

,

x^ 3.3 2-4
, , 1 bx' h-x^

2 3 4 a a" a^

6. Where the ratio test fails, discuss the above exercises by any method.

7. Prove that if a scries of decreasing positive terms converges, lim ?z«„ = 0.

8. Formulate the Cauchy integral test for divergence and clieck the statement

on page 422. The test has been used in the text and in Ex. 4. Prove the test.

9. Show that if the ratio test indicates the divergence of tlie series of absolute

values, the series diverges no matter what the distribution of signs may be.

10. Show that if \ u„ approaches a limit less than 1, the series (of positive

terms) converges; but if a u,, approaches a limit greater than 1. it diverges.

11. If the terms of a convergent series u^ + u^ -f- u.^ + • • • of positive terms be

multiplied respectively by a set of positive numbers a^^, n^. o.,. all of which are

less than some number G, the resulting series (i^^Uq + a^ui + (i.,u., + converges.

State the corresponding theorem for divergent series. What if the given series has

terms of opposite signs, but converges absolutely ?

in „, ,, , ,, . sin X sin2x sin3.r sin4x
,

1^. Show that the series 1 —h converges abso-
1-2 22 ^ 32 42

lutcly for any value of ,r. and that the series 1 + x sin + x^ sin 20 + x'' sin S$ +
converges absolutely for any x immerically less than 1, no matter what d may lie.

13. If ftp, cfj, «.2, • • are any suite of numbers such that -v/i«n| approaches a

limit less than or equal to 1, show that the series a^ + a^x + a„x^ + • converges

absolutely for any value of x numerically less than 1. Apply this to show that the

following series converge absolutely when |x| < 1

;

1 1-3 1 • 3 • 5
(a) 1 + - x2 + X* + j-6 + . . . («) 1 _ 2 X + 3 x2 - 4 x3 + • •

•

,

^ ^ 2 2 . 4 2 • 4 . i;
^

'

(7) 1 + X + 2px^ + 3j'x^ + 4px* + •••, (5) l-xlogl + x2 1og4-x3 1og9 + ••.
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14. Show tliat in Ex. 10 it will \k' .sufficient for convergence if ^u„ becomes

and remains less than 7 < 1 without approaching a limit, and sufficient for diver-

gence if there are an iiitiinty of values for n such that -y/un >1. Note a similar

generalization in Ex. 13 and state it.

15. If a power series a,, + (l^x -f n....r" + a.,/^ + converges for x = X>0, it

converges ab.solutely for any x such that \x\ < A', and the .series

a,/ + I a^X" + I (i.-,x-^ + and a^ + 2 (i.-,x + 3 (ux" + • • •

,

obtained l)y integrating and differentiating term liy term, also converge absolutely

for any yalue of x such that |.r| < A'. The same result, by the .same proof, holds if

the terms (/j,, "jA", «.,A"-, • • remain less than a fixed value (J.

16. If the ratio of the .successive terms in a .series of positive terms be regarded

as a function of l/ji and may be expanded by Maclaurin's Formula to give

"?) 1 M- /1\" . . ^ . 1 „= a + p—l^l^? At remaining unite as - = 0,

the .series converges if tir > 1 or a — I, ^ > 1, but diverges if a < 1 or a = 1, p^l.
This test covers mo.st of the .series of po.sitive terms which arise in practice. Apply

it to various instances in the text and previous exercises. Why are there series to

which this test is inapplicable ?

17. If Pi,, pj. p.T. • • is a decreasing .suite of positive mimbers approaching a

limit X and Sq, 6\, .s'.,.- • • is any limited suite of number.s, that i.s, numbers such

that ["S,,! ^ G. .show that the .series

{Po - Pi) '"^0 + (Pi - P2) '^i + ^P-2
-

P.-)
'^1 + • • • converges ab.solutely,

and ^(P„-P«M)-S/^ Oip.,-^)-

18. Apply Ex. 17 to show that. p,,. p,. p.,. • • being a decreasing suite, if

"0 + "1 + " + converges. p^^ii^^ -\- p^ii^ + p.,»(., + • will converge also.

X.H. p„(/o + pi»i + • • • + PnUn = p„Ni + pi
(N, - .s\) + ... + p„ (.S, .1 _ S„)

= S^ Ip^, _ pj) + . . . + s„ (p„ _i - p„) + p„S„+i.

19. Apply Ex.18 to prove Ex. l-") after showing that p,,*/,, + p,?(, +••• must

converge al)si)lutely if p,, + pj + • • • ((uiverges.

20. If r/p ((„. (I.,.- . (f„ are ;; jxisitixc luimliers less than 1. shriw that

(1 + "1) (1 + ",) ••(!+ n„) > 1 + «i + ", + •• + "„

and (1 — a,) (1 — r/.,) ...(] — r^,,) > l _ ,/j _ ,/ , _ . . . _ ,i„

by induction or any other method. Then since 1 + ''j < 1/(1 — ^'j) show that

>(1 + ){[ + ,1.,) • (1 4- "„) > 1 + ("j + ".. + • • • + a„).

1 - («! + a., + • • • + ««)

- ^ - "*- -—- >(1 - a,) (1 - a.,) ••(!- a„) > 1 - {a, + a, + + a„),

1 + (", + "., + • • + ('„)
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\i a^ + 0.^ + + a„ < I. Or if JJ be the symbol for a 2)roduct,

\ 1 ' ^ I \ 1 / ^ 1

21. Let TT(1 + "i) (1 + "n)- •
• (1 +"„) (1 +"«ri)- • l"" ^'1 iiitiiiite product and

let P„ be the product of the first n factors. Show that
j
P„ + ,,

— P„
1
< e is the neces-

sary ami sufficient condition that P„ approach a limit when n becomes infinite.

Show that u„ must approach as a limit if P„ approaches a limit.

22. In case P„ approaches a limit different from 0. .show that if e be a.s.signed,

a value of n can be found .so large that for any value of p

;^±1' - 1 1
= "tt' (1 + »,) - 1 1 < e or "fr" (1 + ",) = 1 + ^. \v\<^.

\
I'n I ,"-1 I

"^1

Conversely show that if this relation holds, P„ must approach a limit other than 0.

The infinite product is said to converge when P„ approaches a limit other than ; in

all other ca.ses it is .«aid to diverge, including the case where lim P„ — 0.

23. By combining Exs. 20 and 22 .show that the nece.s.sary and .sufficient con-

dition that

P„ = (l + a^) (1 + rt„) . • . (1 -f r,„) and Q,, = - ",) (1 -«.,)•• (1 - a,,)

converge as n becomes infinite is that tiie .series ((^ J- (/., + +a„ + sliall coi:-

verge. Note that P„ is increasing and Q„ decreasing. Sliow that in ca.se Za diverges,

P„ diverges to cc and Q„ to (provided ultimately «, < 1).

24. Define ab.solute convergence for infinite products and .show that if a product

converges ab.solutely it converges in its oritrinal form.

25. Test these products for convergence, divergence, or absolute convergence:

(7 ) fr Fi -
(jT^jV]

• (5 ) (1 + ^) (1 + .'-) ( 1 + .H) (1 + -n • • •

.

(.)(i- '-)U ^\(i__-L\.... (nfrr(i--^)en.
^ \ ]og2/\ (log 4)-^'^ (log 8)3/ VIA c + nl

I

26. (iiveu --— or u- < n — lou(l -|- ;/) < (/- or -
accf>rdini,'- as u is a iiosj-

1 -^ M 2 2 \ + u

tive or negative fraction (.M-e K.\. 2'.». p. ]1). I'rovc that if S;;;, converges, then

«n +1 -h Un + 2 + • • • + Un+p - log (1 + U„ +]) (1 + U„ ,, o) . . . (l-f H „ ^^,)

= (Sn^p-Sn)-(\<^?Pn^>,-\"?'P«)

can lie made :'.s small as desired by taking n large enough regardless of p. Ilence

prove that if In'i converges, ffd + !(„) converges if "Zu,, does, but diverLit's to x

if 2m„ diverges to + x . and diverges to if Z'-(„ diverges to — x
;
when-as if lit'l

diverges while 2«„ converges, the product diverges to 0.
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27. Apply Ex. 26 to
:

(a) (l +
2)

(^ " l) (^ + i)(^
"

I,

<«(-^)(-7l)('-7l)-- «(-i)('-?)(-f)('-?)-

28. Suppose the integrand /(x) of an infinite integral oscillates as x becomes in-

finite. What test might be applicable from tlie construction of an alternating series ?

165. Series of functions. If the terms of a series

S(x) = u^(:r) + u^ (.r)+ • • + >',X^) + • • (6)

are functions of x, the series deiines a function Si^x) of x for every

value of X for which it converges. If the individual terms of the series

are continuous fun(;tions of x over some interval a ^ x ^ h, the sum

.S„ (x) of n terms will of course be a continuous function over that inter\al.

Suppose that the series converges for all points of the interval. Will it

then be true that .S^.'"), the limit of <S'„(.t), is also a continuous function

over the interval ? Will it be true that the integral term by term,

u^(x)dx + I u^(:i')dx + , converges to I S(x)dx2
U a mJ a

Will it be true that the derivative tei'm by term,

«o(-^') + "iC'') + ? converges to S' (x) ?

There is no a jn-lorl reason why any of these things shoidd be true ; for

the proofs which were given in the case of finite sums will not api)ly

to the case of a limit of a sum of an infinite numlx'r of terms (cf. § 144).

'I'hese ijuestions may readily be tlirown into the form of (juestions concerning

the possibility nf iu^•erti^l; the onicr nf two limits (see § 44).

For integration : Is I lim S„ (x)(Z.c = lim | .S, (.r) (Z.c '.'

P'or differentiation : Is -- lim.s'„(x)= lim— N„(,r)?
ds « = X w = X d.c

For contiimity : Is lim limtS„(j)= lim linijS,j(.r)?
.T = x^ « = /: » = X a- = x^

As derivatives and definite integrals are themselves defined as limits, the existence

of a double limit is clear. That all three of the questions mttst be answered in the

negative unless some restriction is placed on the way in which fS'„(j') converges to

S(x) is clear from some examples. Let ^ x ^ 1 and

S„(x) = xji-e-"'', then lim iS'„(x) = 0, or <S'(x) = 0.

n= X

No matter what the value of x, the limit of .S'„ (x) is 0. The limiting function is

therefore contiiuious in this case ; but from the manner in which N,, (x) converges
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r

Ij^
o }4 y^ 1 X

to S (x) it is apparent that under suitable conditions tlie limit would not be con-

tinuous. The area under the limit S (x) = from to 1 is of course ; but the

limit of the area under <S„ (x) is

lim
I
xn^e-^dx = lim e-"-^(— nx — 1) =1.

» = oot/0 n= oo L Jo

The derivative of the limit at the point x = is

of course ; but the limit,

lim — {xii^e-"^)
» = oo l_dX Ja;=0

= lim yi^e-'^{l — nx) = lim ?|2 = ao,

» = ocL Ja-=0 n = -x,

of the derivative is infinite. Hence in this case two of the questions have negative

answers and one of them a positive answer.

If a suite of functions such as '^^(.t), ^^(.t), • •
• , S,^(x), converge to a

limit S(x) over an interval a ^ x ^ h, the conception of a limit requires

that when e is assigned and x^ is assumed it nnist be possible to take n

so large that |is,(-^"o)l = l-^X'^'o)
~"

^n(^'o)\ < ^ fo^' this and any larger n.

The suite is said to converge uniform!tj toward its limit, if this condition

can be satisfied simultaneously for all values of x in the interval, that is,

if when e is assigned it is possible to take n so large that
|

7l„ (,x)
|

< e

for every value of x in the interval and for this and any larger n. In

the above example the convergence was not uniform ; the figure shows

that no matter how great n, there are always values of x, between and

1 for which S^^ {x) departs by a large amount from its limit 0.

Tlie uniform, convergence of a continuous function S^fx) to its limit is

sufjjcientto insure the continuitij of the Vuuit >S'(.r). To show that .S'(,t) is

continuous it is merely necessary to show that when e is assigned it

is possible to find a ^x so small that \Six + A,r) — H (.r)
| < e. But

I
S (.r + A,r) - 5(.r)

|

=
|

.S„ {x + A.r) - S^^ (,r) + 7?„ (,> + A.r) - 7.'„ (,/•) |;
and

as by hypothesis i?„ converges uniformly to 0, it is ])ossible to take n

so large that
|

/.'„ (.-r -|- Aa')
|

and
[
7i„ (,t)

|

are less tlian \ e irrespective of x.

Moreover, as S^fx') is continuous it is possible to take A.r so small that

I

.S^„ {x -f- A,t) — 5'„ (.r)
I

< ^ e irrespective of x. Hence
|

.S" (x + A.r) — S (,t)
[

< e,

and the theorem is proved. Although the uniform convergence of S^^ to ^S'

is a sufficient condition for the continuity of .S", it is not a necessary con-

dition, as the above example shows.

The uniform convergence of S,^(x) to its limit insures thxit

U a
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For in the first plac^e S(t) must be continuous and therefore integrable.

And in the second phice Avhen e is assigned, n may be taken so large

that
I

A'„ (;r) |< €/(b - a). Hence

S (.r) dx - I .S;, (.r) <l.r =1 7.'„ (,r) (h' < / y^- ./,r = e,

and tlie result is proved. Similarly if >%(^') Is c(mtlnH(>Hs and converges

unlformlij to a Viinit T(:r^, then 7'(.t) = S' {x^. For by the above result

on integrals,

£ T{x)dx = lim | Sl^(x)dx = lim .s:,(.>0 -'•?»(-) = S(x)-S(a).

Hence T(.'') = S'(x). It should be noted that tliis proves incidentally

that if S'^(x) is continuous and converges uniformly to a limit, then

S(af) actually has a derivative, namely T(x).

In order to apply these results to a series, it is necessary to have a

frst for t/ie imlformiti/ of the convergence of the series ; that is, for the

uniform convergence of S„(x) to S(x). One such test is Weierstrass^s

Jf-test : The series

^(•^•)+^(.T) + ---+'/„(.r)+--- (7)

IV lU converge -iuilfon)! /// jn'ovlded. a, convergent series

M^ + M^ + ..- + M,^ + .--
(8)

ofpositive terms moi/ he found, such that nltlniatehj \i'i(p'^\ = ^li- The

proof is immediate. For

1
I'n (•')

I

=
I

"„ (•') + "« +1 (•') + • •

-I
^ -V„ + 3/„ +, + •••

and as the iU-scu'ies converges, its remainder (!an be made as small as

desii'ed by taking n sufficiently large. Hence any series of continuous

functions defines a continuous function and may be integrated term by

term to find the integral of that function provided an .l/-test series may
be fomid ; and the derivative of tliat function is the derivative of the

series term bv term if this derivative series admits an J/-test.

To apply 11h_! work to an exaniplo consider whether the series

,, , , cos J CCS 2 a; cos 3 a; cos )*.r

.S (.r) = --- + + \ h + •

1- 2- 3- 71-

(')

defines a continiKius fuiu'tinn and may be integrated and differentiated term by

term as
sin2.r sin3.r

1X'«<'>=>" + + - .7,- - + +

and
d

, ,
sin.c sin2,c

(Ic ' 1 2
(.'''')
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As |cosx|^ 1, the convergent series 1 -\—
;; + 7;; + ---4—r + *'" "I'^y '-"-' taken as

an 3f-series for S{x), Hence S{x) is a continnons fmiction of x for all real values

of X, and the integral of S{x) may he taken as the limit of the integral of Su{x),

that is, as the integral of the series term by term as written. C)n the other hand,

an j\/-series for (7'") cannot bo found, for the series 1 + | + -| + • • • is not conver-

gent. It therefore appears that S' (x) may not be identical with the term-by-term

derivative of <S (x) ; it does not follow that it will not be, — merely that it may not be.

166. Of series with variable terms, the jwu-cr series

f{z) = a„ -f a^ (z - a) -f a,^ (z - af + • • • + <'n (- - <^")" + (^)

is perhaps the most important. Here z, a, and the coefficients </,- may

be either real or complex numbers. This series may be written more

simply by setting x = z — a; then

fix + a) =
<t>

(x) = a^ + a^x + o^:r + • • • + ''„.'•" + • • • (<)')

is a series which surely converges i'oi' x = 0. It may or may not con-

verge for other values of x, but from Ex. 15 or 19 above it is seen

that if the series converges for A', it converges absolutely for any x

of smaller absolute value ; that is, if a circle of radius A' be drawn

around the origin in the complex plane for x or about

the point a in the complex plane for z, the series (9)

and (9') respectively will converge absolutely for all

complex numbers which lie Avithin these circles.

Three cases should be distinguished. First the

series may converge for any value x no matter how
great its absolute value. Tlie cii-cle may tlien have

an indefinitely large radius ; the series converge for all values of x or ,-;;

and the function defined by them is Unite (whether real or com])lex)

for all values of the argunu'nt. Such a function is called an integnd

function of the complex varial)le z or ,/•. Secondly, the series may con-

verge for no other value than x = or z = (t and therefoi'e cannot define

any function. Thirdly, thei'c may be a definite largest value for the

radius, say R, such that for any ])oint within the respective circles of

radius R the series converge and define a function, whereas for any ])oint

outside the circles the series diverge. The circle of radius R is calU'd

the circle of convergence of the series.

x\s the matter of the radius and circle of convergence is important, it will be

well to go over the whole matter in detail. Consider the suite of nund)ers

Irtjl, v|«o|, "^''V'sl, ••i ^'V^n\- •
Let them be imagined to be located as points with coordinates between and + co

on a line. Three possibilities as to the distribution of the poiuls ai'isi'. First they
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may be unlimited above, that is, it may be possible to picl<: out from the suite a set

of numbers which increase without limit. Secondly, the numbers may converge to

the limit 0. Thirdly, neither of these suppositions is true and the mimbers from

to + CO may be divided into two classes such that every number in the first class is

less than an infinity of numbers of the suite, whereas any number of the second

class is surpassed by only a finite number of the numbers in the suite. The two

classes will then have a frontier luunber which will be represented by 1/R

(see§§19ff.).

In the first case no matter what x may be it is possible to pick out members
from the suite such that the set v

|

aj

\

, v |a/|, Vlai-I, • • , with i <j < k- •
• , increases

without limit. Hence the set v|a,||x|, V\ aj |

|x|, • • • will increase without limit ; the

terms OiX^ dj^,- • of the series (9') do not approach as their limit, and the series

diverges for all values of x other than 0. In the second case the series converges

for any value of x. For let e be any number less than l/|x|. It is possible to go so

far in the suite that all subsequent numbers of it shall be less than this assigned e.

Then

\an+pX"+P\<€''+P\x\"+P and e"|x|»+ e"+i|x|« + i + • • , e|x|<l,

serves as a comparison series to insure the absolute convergence of (9'). In the

third case the series converges for any x such that|x|< R but diverges for any

X such that
|
x

| > A*. For if
|

x
|
< 7?, take e < /? —

|
x

|
so that

|
x

|

< 1! — e. Now proceed

in the suite so far that all the subsequent niimbers shall be less than l/(/i — e),

which is greater than \/R. Then

|a„ + „x«+^M < ^^ < 1, and V -^-^

'

will do as a comparison series. If |x| > R, it is easy to show the terms of (9') do not

approach the limit 0.

Let a circle of radius r less than 7? be drawn concentric with the

circle of convergence. Then vifliin the circle of radlK.^ r < li the poire

KCfics (0') conrerr/cs unifoinnhj and defines, a continuous fiincfia)} : ilie

Integral of the function niaij he had hy intcfjrating the series term hij

term,

r^ 11 1
cE> (.t) =

I
^ (x) dx = a^x + ~ a/- + r. ''./"^ +•• + -- "„_,•''" + • • •

;

and the series of deriratires coni'erges iiniformhj and rejiresents th^

derivative^ of the function,

<^'(.r) = <,^-\-2 a_4r -f 3 a^x'^ -\ h 7i//,,/'»-i -\ .

To prove these theorems it is merely necessaiy to set up an .U-series

for the series itself and for the series of derivatives. Let A' be any

number between r and 11. Then

1^1 + l"i'-^' + l"J-^"' + • • + !"„| A'" + •
• (10)
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converges because A' < R ; and furthermore {('nX"] < |i'^,j A'" holds for any

X such that
|

.r
|

< A', that is, for all points within and on the circle of

radius r. Moreover as |.r| < A,

\nanX"-^\ = \a„\^(^y\x"<\a„\X'^

holds for sufficiently large values of n and for any x such that |a?| = r.

Hence (10) serves as an ^/-series for the given series and the series of

derivatives ; and the theorems are proved. It should be noticed that it

is incorrect to say that the convergence is uniform over the circle of

radius R, although the statement is true of any circle within that circle

no matter how small R — r. For an apparently slight but none the

less important extension to include, in some cases, some points upon

the circle of convergence see Ex. 5.

An immediate corollary of the above theorems is that any power

sei'les (9) in the complex variable which converges for oilier values than

z = a, and hence has a finite circle of convergence or conrerges all over

the cornpjlex pjlane, defines an analijtic function fiz) of z in the sense of

§§ 73, 126; for the series is differentiable within any circle within the

circle of convergence and thus the function has a definite finite and

continuous derivative.

167. It is now possible to extend Taylor's and ]\raclaurin's Formulas,

which developed a function of a real variable x into a polynomial plus

a remainder, to infinite series known as Taylor's and Maclaurin's Series,

which express the function as a power series, provided the remainder

after n terms converges uniformly toward as n becomes infinite. It

Avill be sufficient to treat one case. Let

/() =/(0) +/'lO),.- + j^./'"(0)..-= + . .
. + ^.^^J^^^,

/'— '(O).--- + /.'„,

lim R„{x) = uniformly in some interval — h ^ x ^ h,
n = »

where the first line is ^laclaurin's Formula, the second gives differnet

forms of the remainder, and the third expresses the condition that the

remainder converges to 0. Then the series

/(0)+/'(0).T + |,/"(0)cc-^

+ • • + (,rhy^/''-'^(:o)-^-^ + ;^/^'"(0)^" + • • • (11)
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converges to tlie value /(./) for any x in the intervnl. The proof con-

sists merely in noting that _/'(./) — Il„(x) = ^'„(^') is the sum of the first

n terms of the series and that |yi„(x)| < e.

In the case of the exponential function e^ the ?ith derivative is e^, and the re-

mainder, taken in the lir.st form, becomes

2?„ (x) = — eS-'x",
I

Ru (^)
I

<— fe''/i".
I J I ^ /i.

n\ ?( !

As n becomes inlinite, /.'„ clearly approaches zero no matter what the value of h
;

^^^
a-2 c3 ,„

e'- = 1 + X + — + — 4- • • • + — + • •
•

2 13! n

I

is the infinite series for the exponential function. The series converges for all

values of x real or complex and may be taken as the definition of e^ for complex

values. This definition may lie shown to coincide with that obtained otherwise (§ 74).

For the expan.sion of (1 -i- x)'" the remainder may be taken in the second form.

i?„(x) =
^»('H-i)---(»^-n + i )^„

.j_-^y-i _
, -n , >, \m(m — 1) (m — n + l)\

-, ,, ,, , , ,

j

1.2---(H-1)
I

Hence when h <1 the limit of /i'„ (x) is zero and the infinite expansion

niim — l) ., m(m — l)(m — 2) „

(1 + x)'" = 1 + mx + — ' x'-i + —

^

'-^ '- x3 + . .

.

2 : 3 !

is valid for (1 + x)"> for all valut's uf x imnu'rically less than tuiity.

If in the binomial expansion ,c be replaced by — x'^ and 7u bj^ — .',

,

1 , 1 , 1 • 3 , 1 • 3 • 5 , 1 • 3 • 5 • 7 ,
1 + X- H X-* + X6 + -^ X8 -I-

• . . .

Vl _ x2 - ^ -1 2 4 . 2 • 4 • • 8

Tills series converges for all values (jf x mimerically less than 1. and hence con-

verges uniforndy whenever |X|^ h < 1. It may therefore be integrated term by

^^'™'-
. , 1 x3 1 . 3 x'^ 1 • 3 • 5 X" 1 • 3 • 5 • 7 x9

23 2-45 2.4.67 2.4.U.8 9

This series is valid for all values of x ntunerically less than unity. The series also

converges for x — ± 1 , and hence by Ex. 5 is uniformly convergent when — 1 = x s i

.

I)Ut Taylor's and ]\raclaurin's series may also l)e extended directly to

fun(;tions /('-.) of a com])lex variahle. If _/'(-') is single valued tuid has

a definite continuous derivative /''(,^) at every point of a region and on

the boundary, the expansion

f(z) = f(a) + f'(a) (z - a) + ...+/<«- ^
) (a)

-J-
~^]^y + n^

has Ix'cn established (§ ]2()) with tlu- rcnuiindcr in tlic form

2 TT J,, (f — (ly (t — Z)
^"^ 2lT p" p — /•

l^^»(-)l
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for all points z within the circle of radius r (Ex. 7, p. 306). As n becomes

infinite, 7i„ approaches zero uniformly, and hence the infinite series

m = /(«) + /'(«) (^ - a) + . .

. + /<"^ (a) ^^^~ + • • • (12)

is valid at all points within the circle of radius r and upon its circum-

ference. The expansion is therefore convergent and valid for any z

actually within the circle of radius p.

Even for real expansions (11) the significance of this result is great

because, except in the simplest cases, it is impossible to compute /'"^ (,r

)

and establish the convergence of Taylor's series for real variables. The

result just found shows that if the values of the function be considert'd

for complex values z in addition to real values a-, the circle of ctonvei-

gence will extend out to the nearest point where the conditions imposed

on f{z) break down, that is, to the nearest point at which fiz) becomes

infinite or otherwise ceases to have a definite continuous derivative/' (.t).

For example, there is nothing in the behavior of the function

(1 + a:-)- 1 = 1 — X- + x^ — j^ -\-:)^ ,

as far as real values are concerned, whidi should indicate why the expan-

sion holds only when \x\ < 1 ; but in the complex domain the function

(1 + '-')" ^ becomes infinite at z= ± /, and hence the greatest circle

about ;s; = in which the series could be expected to converge has a unit

radius. Hence by considering (1 -f- ,t-)^^ for complex values, it can be

predicted without the examination of the n\X\ derivative that the Mac;-

laurin development of (1 + .r-)-^ will converge when and only Avhen x.

is a proper fraction.

EXERCISES

1. (a) Does x + a; (1 — a;) + x (1 — x)'^ + • • • converge uniformly when ^ x s i ?

1 2 ^ CI _ M n 2 lis

(/3) Does the series (1 + A:)i- = 1 + 1 + f-
^^ '-^ -' + . . . converge uni-

fcn-mly for small values of k ? Can the derivation of the limit e of § 4 thus be made
rigorous and the value be found by setting ): = in the series '?

2. Test these series for uniform convergence
;
also the series of derivatives-.

{a) 1 + X sin ^ x- sin 2 (9 + x^ sin 3 6* + • •
•

,

|x
|
^ X < ],

,^^^ _ ,
sinx sin^x sin^x sin''x

, ,

\^1 ^^i .3-2 4-5

^ , X - 1 1 /X - 1\2 1 /x - 1\3 1 _ _ -,,

X 2\x/ 3\x/ 2

,^, X-1 1 /X-l\3 1 /x-]\"
(5) h - + -H • • •

.

< 7 = X == X < CO .

^ X + 1 3 \x + 1/ 5 \x + 1/
/ - -

(e) Consider complex as well as real values of the variable.
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3. Determine the radius of convergence and draw the circle. Note that in prac-

tice the test ratio is more convenient than tlie tlieoretical method of tlie text:

(a) X - l
X- + i j-3 - i j-< + • • •

,

03) X- Ix^ + ix''- Ix' +,
a\_ a a- a^ J 2 13 14!

( e )
1 X - (^ + I) X- + (1 + ^ + ^)

^-3 - (i + I + i + i)x* + . .
.

,

, , ,
32 + 3 , 3* + 3 , 3" + 3 „

^^' 4.21 4.4! 4.G1
'

{,)) 1 - X + X* - X-' + ./•? - ,/^ + x^- - x^^ + •
•

,

(^) (X-l)l- \(x-\f-\- >(,._ 1)3 _!(,._ 1)4 + ...^

_ (»i-l)(m + -2)
_^,. _^

(m-1)(m-3)(m + 2)(»i + 4) ^,
^

3 1 5 !

(k) 1-
22(7M +1) 2* • 2 ! (til + 1) (»i, + 2) 2» • 3 1 (mi + 1) (m + 2) (»t + 3)

X- x* /I 1\ x6 /I 1 1\ x8 /I 1 1 1\

<^>2^-2M^(t + 2) + 2;H3^ (1 + 2 + 3)-2^(4Tj^ (1+2 + 3 + 4)
+•••

,

, ,
^ a^ ,, a(a + l)^(/3 + l) fl:(a + 1) (a + 2)^(/3 + 1) (/3 + 2)

1 u ) I A X H X- + X*^ + • • • .

1-7 1-2. 7(7 + 1) 1.2.3.7(7 + 1)(7 + -^)

4. Establish the Maclaurin expansions for the elementary functions:

(a) log (1 — x), (/3) sinx, (7) cosx, (5) cosh x,

(e) a^, (f) tan-'ix, (17) sinh-ix, {6) tanh-ix.

5. AbeVs Theorem. If the infinite series a^ + a^x + rtoX- + u..x^ + • • converges

for the value X, it converges uniformly in the interval ^ x ^ A'. Fnive this b}^

showing that (see Exs. 17-19, p. 428)

I

l',M)
I

=
1
anX'^ + cin +ix» +1 + . . .

I

< /^Vl rt„A''' + • • + a„ ^ „ A-« +v' I.

when J) is rightly chosen. Apply this to extending the interval over which the

series is uniformly convergent to extreme values of the interval of convergence

wherever possible in Exs. 4 (cr), (f), {6).

6. I'^xamine sundry of the series of Ex.3 in regard to their convergence at ex-

treme points of the interval of convergence or at various other points of the circum-

ference of their circle of convergence. Note the significance in view of Ex. .j.

_ 1

7. Show that /(x) = e 2--./(0) = 0. cannot be expanded into an inliniti' Mac-
_2_

laurin series by showing that A',, = e ^-, and hence that /i'„ docs nut cnnvcr-c

uniformly toward (see Ex.9, p. (30). Show this also from tlie coiisiilcratinn (,f

complex values of x.

8. From the consideration of complex values determine the interval of con-

vergence of the Maclaurin series for

(a) tanx = ^^^, (/3) ^— , (7) tanh x. (5) lo-(l + c-').

cos X e^ — 1
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9. Show that if two .siinihir infinite power series represent the same function

in any interval the coefficients in the series must be equal (cf. § 32).

10. From 1 + 2 r cos x + r- = (1 + r&^) (1 + re- ") = r^ M + — j
/i + ^^

/ r- r^ \
Ijrove log (1 + 2 r cos x + }-'^) = 2 / r cos x— — cos 2 j: + — cos 3 x — • •

• ) ,

XX
/

J.2 ,.3 \

log (1 + 2 /• cos J" + 7-"-^) t/x = 2 I /• sin x — — sin 2 x + ~ sin 3 x — • • • 1

11/1,, , ox ,1 ,
nA'osx cos2x cos3x \anil log (1 + 2 r cos x + r-) = 2 log r + 2

i

.
.

)

\ r 2 r- 3 r- /
) > 1

r'l /I ,
-1 ,•-.,, n , ,

„ /sin X sni2x sin3x \
hi;,^ (1 + 2 r cos x + r-) tZx = 2 x log r + 2 ( 1 • • •

I

•

J,j '
\ y 2- /•- 3- r^ /

I
loii (1 + sni tr cos x) ax = 2 x log cos—h 2 | tan — sm x — tan- — 1-

Jf>
'^

2 \ 2 2 2--2

1 1 „ r^ dx ^ 1,1.3 ] 3 .5 /> ' ^Zx
11. Prove / — =1

1 v. . . . = \

-'u ^ 1 + ^4 2-5 2 4 . !) 2 . 4 . «i . 13 -'i a 1 + j^

12. Evaluate these integrals by expansion into sci'ies (see Ex. 23. p. 4.")2)

((r)
/ dx = -~-(-] +^J-] = tan-i-,

J{) x

(/3) ^(Zx = 7rsui-iA:, (7) — cZx = — ,

•^1) cosx v'li 1 + cos^x 4

J^

°° Vtt - ( - ^' r '^

e- '^^" cos 2 /3xtZx = e V^y
^

(e)
|

],jo- (i + 2 r cos x + r")
u 2 a Jo

13. By formal nuiltiplication (^ 168) show that

1- a-

1 — 2 a cos X + a^

a sin X

- = 1 + 2 or cos X + 2 a- cos 2 x + • •
•

,

a sin X + a- sin 2x + • • .

1 — 2 a: cos X + cr-

14. Evaluate, by use of Ex. 13. these detinite integrals, m an integer:

/"^ cos?nxr7x tto"" , , r'^ x sin xdx tt,
{a) =

, (/3) = - log(l + a).
Jo 1 — 2 or cosx + a- 1 — a- Ju 1 — 2acosx + a^ a

C'" sm

Jo 1 — 2

1^0 (1 —

i

a cos X + a- 2

sin^xrix

(1 — 2a COSX+ a-)(l-— 2/3 cosx + /S^)

15. In Ex. 14 (7) let a = 1 — h/m and x = ^/??i. Obtain by a limiting process,

and by a similar method exercised upon Ex. 14 (a)

:

z' -^ z sin zfZz TT , c^ <io%z(lz tt

Jo /(2 + 22 2 Jo k- + 2^ 2

Can the u.se of these limiting processes be readily justified ?
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16. Let h and x be less than 1. Assume the expansion

/(x, h) =
^ = 1 + /iPi(x) + h^P^x) + + /i«P„(x) + . . .

«

Vl - 2 xh + /i^

Obtain therefrom the following expansions by differentiation :

-X = ^-

z=P'i + '^^2 + f'^'P's + + f^"-'K + •,
"- (l-2x/i + /i2)2

/,:
= ^—'^ - Pi + 2 hP„ + 3 IfiP^ + • • • + n/i»-iP„ + . .

. .

(l-2x/i + /i^)'-

Hence establish the given identities and consequent relations:

?J^V; = xp; + /I (xp; _ p;) + . .
. + /,« ~i(xp; - p;, _,) + . .

. =

^'-^x-/^ - 1 + p; + /K^; - -Pi) + • • • + /^"(p:.+i + p;-i - Pn) + • • •
=

2 X/// = /t (2 X) + • • + /*«(2 -^Pn -i) •

Or nPn = xp; - p; _i and 7^; ^^ + p; _i - P„ = 2 xp;

.

Hence xP^ = P; +i - (7i + 1) P„ and (x^ - 1) P; = ji (xP„ - P„ _i)

.

Compare the results with Exs. 13 and 17, p. 252, to identify the functions with the

Legendre polynomials. Write

1 1 1

(1-2 xh + ffi)i (1 - 2 /i cos + Ifi)^ (1 - he'^y^ (1 - he- ''«)^

= f 1 + 1 heie + l^ Jfie^ !8 + . . .\ /i + ^ he- ie + 111 h"~e-'^'e+],
\ 2 2-4 A 2 2-4 /

and show P„(cos 6) = 2 Ll^; " ' (^ '^ - ^)
| ^^^ ,,^ ^ Ll"^ cos (,i _ 2) ^ + . . . |

.

2 • 4 • • • 2 ?i (^ 1 • (2n — 1) J

168. Manipulation of series. If an Infinite series

S = >f^ + »i + v^, + • • + "„_i + 7/„ 4- • •
• (13)

converges, the serifs obtained bi/ (/roKpiruj tlie terms in jxirentlieses icitli-

out altering tJicir order if ill also converge. Let

,S' = ^/^ + r/, + . .
. + U„_, + f/,. +

.

(13')

and .s'l, S'j,, • , S',^.,

be the neAv series and the sums of its hrst 71' terms. These sums are

mert'ly particuhir ones of the set S^, S,„ , S,^,---, and as 71' < 71 it

follows that 71 becomes infinite when ?i' does if 71 be so chosen that

.S'„ = S'^,. As S^ ap])roaches a limit, S'„, must a])pi'oach the same limit.

As a corollary it a^jpears that if the series obtained by removing- ])aren-

theses in a given series converges, the value of the series is not affected

by removing the parentheses.
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If two convergent infinite series he glcen as

S = «o + ?/j + • • , (md T = v^ + I'l H ,

then (Xu^ + fxv^) + (A»^ + fJ.>\) -\

trill ronrerge to tlie limit XS + /^'I, (^nd ic ill converge cihsolatel
tj
provided

hotli the given series converge ahsolutelij . The proof is left to the reader.

If (I given series converges ahsolutelij, the seriesformed hij rearranging

the terms in anij order vithovt omitting any terms icill converge to the

same value. Let the two arrangements be

^ = ''o + "l + "j + • • • + ";/ - 1 + "« + • •

and S = u^^, + u^, + ;/._,, + • • • + ",,'-1 + ''„- + • • • •

As .S' converges ahsolutely, ?i may be taken so large that

and as the terms in S' are identical with those in S except for their

order, n' may be taken so large that S'„, shall contain all the terms in

.S'„. The other terms in S',^, will be found among the terms ?/„, ?/„^.i,
• • •

Hence , , ,. r. 1 ^ 1 1,1 1 ,

As |.S' — .S',,] < e, it follows thatj.V — .S',',,j < 2 e. Henct^ ,S^, approaches .S'

as a limit when 71' becomes infinite. It may easily be shown that S' also

converges absolutely.

77ie tlieorem is still triw if the rcarrangfinent ofS is into a series some

of u-hose terms are thenisclvcs infinitt' srrirs of terms selected from S.

where f/,- may be any aggregate of terms selected from S. If U^ be an

infinite series of terms selected from S, as

f"- = ''m + '',-1 4- i'ii H h ",„ H ,

the absolute convergence of L'- follows from that of S ('cf. Ex. 22 below).

It is possible to take n' so large tliat ewvy term in .s'„ shall occur in one

of the terms U^, l\. , U,^,_-^. Then if from

s- r^- i\ u„_, (14)

there be canceled all the terms of .S„, the terms which remain will be

found among u,^, ?^, + 1, •••, and (14) will be less than e. Hence as n'

becomes infinite, the difference (14) approaches zero as a limit and tlie

theorem is proved that

S=L\+ L\-\-...+ Lv-i + U,, + ... = S'.
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If a series of real terms is convergent, but not absolutely, the number of posi-

tive and the number of negative terms is infinite, the series of positive terms and

the series of negative terms diverge, and the given series may be so rearranged as

to comport itself in any desired manner. That the number of terms of each sign

cannot be finite follows from the fact that if it were, it would be possible to go so

far in the series that all subsequent terms would have the same sign and the series

would therefore converge absolutely if at all. Consider next the sum S„ = Pj— X,„,

/ 4- ??i = n, of n terms of the series, where Pi is the sum of the positive terms and

Nm that of the negative terms. If both Pi and y„, converged, then Pi + X,„ would

also converge and the series would converge absolutely ; if only oue of the sums

Pi or Nm diverged, then S would diverge. Hence both sums must diverge. The

series may now be rearranged to approach any desired limit, to become positivelj'

or negatively infinite, or to oscillate as desired. For suppose an arrangement to

approach I, as a limit were desired. Fir.st take enough positive terms to make the

sum exceed i, then enough negative terms to make it less than i, then enough

positive terms to bring it again in excess of L. and so on. But as the given series

converges, its terms approach as a limit ; and as the new arrangement gives a

sum which never differs from L by more than the last term in it. the difference

between the sum and L is approaching and L is the limit of the sum. In a sinnlar

way it could be shown that an arrangement which would comport itself in any of

the other ways mentioned would be possible.

If two absolufeJ// ronrerr/ent series he viultq/I'ied, as

^ = "o + >'l + "-2^ + "„ H ,

T= r, + /•! + r, + --. + r„ + ...,

and W = ii„i\, + i/^r^, + I/.,!-,, + • • • + i'-„'\, -i

+ ''o''i + "i'\ + if-2'\ + • • • + <'„>\ + •
+
+ "o''« + "l'-„ + t'-2'-n H + "„'„ H

+

and Iff/te terms In W hi' arrawjed In a slmph- series as

"o'"o + ("i''o + ''i''i + "o'"i'> + (>'.''o + ">J\ + ".''i + "i''^ + "o''.> + •

•

or in (inij nflirr rn<inncr (rlidtsoi'ri'r. the serirs is ifhsoh/fr/i/ i-irari'i'fjent

and eonrerges to tlie rohic of tlie product ST.

In the particular arrangement above. S^T^, <s'.,7'.,-
-S,

'/'„ i'^ the sum of

the tirst, the tirst two, the iirst n terms of the series of iiarcntlifscs. As

lim .S'„7'„ = ST, the series of parentheses converges to S'J'. As .S and T
are absolutely convergent the same reasoning could be ap})lied to the

series of absolute values and

would be seen to converge. Hence the convergence of the series
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is aljsolute and to the value .S'7' when the parentlieses are omitted.

Moreover, any other arrangement, such in particular as

would give a series converging absolutely to ,s'7'.

The equivalence of a function and its Taylor or ]\[aclaurin infinite

series (wherever the series converges) lends importance to the operations

of multiplication, division, and so on, which may be performed on the

series. Thus if

/(,.'•; =
''o
+ ('^:r + a^- + a^j'"^ H ,

\j'\< I!^,

(:') = '', + ^\-'- + ^o^-' + ^i'-' + , I'^' i
< ^o,

the multiplication may be ])erformed and the series arranged as

fC:r)ff(x) = aj>^ + (aj>^ + nh^)x + (aj>,^ + .//.^ + aj>^)x' + • • •

according to ascending powers of./- whenever,/- is numerically less than

the smaller of the two radii of convergence J!^. 7.'.,, because V>oth series

Avill then converge absolutely. ^Moreover, Ex. ~> above shows that this

form of the product may still be applied at the extremities of its inter-

val of convergence for real values of x provided the series converges

for those values.

As an example in tlie Jiuiltiplication of .scries let tlie product sin j cos jr lie found.

1,1. , 1 , 1 ^ 1 „sm X = X x^ -1 X' — • • . cos X = 1 — x'-2 H x'* x^ + •

.

3 1 5 1

'

2 1 4 1 6 1

The product will contain only odd powers of x. The first few terms are

/I 1 \ , /

1

1 1 \ . / 1 1 1 1
1 X- h ^ l-f^ + — + h ^ J-' - — H h h —

\.3I 2 1/ V3 1 3 12 1 4 1/ \7 1 .5 1 2 1 3 1 4 1 6 1

The law of formation of the coefficients liives as the cuetficient of x-^" + i

, ,,r 1 1 1 1 1 1(- 1)^ + + + • • + +—
^ 'lv^k+})\ (2A--1)121 (2A--3)141 3 1 (2 1 - 2) 1 (2^)lJ

(-IV- Pi ,

(2/.- 4-1)2/.-
,
(2t+l)(2/.-)(2t-l)(2/,,--2)

,
,

(2
A- 4-1)

_[ H -_--
1

— h - • - -1 --.

(2A--fl)lL 2 1 4 1

But 2-^'---i = (1 + l)-^- + i = 1 + (2A- -fl) -f

^-^'-'+'^y-^^
+ + (2k + l) + 1.

Hence it is seen that the coefficient of x-^-i takes every other term in this synnnet-

rical sum of an even number of terms and must therefore be eijual to half the sum.

The product maj' then be written as the series

sm X cosx
ir (2.r)3 (2x)5 11..-,
- 2 X + ...=:- sm 2 X.

2L 31 ^ 51 J 2
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169. If a function /(./•) be expanded into a power series

f{^-) = % + (\x + ^/,.t' + c^'' + • • •

,

\x\< R, (15)

and if x = a is any point witliin the oii'cle of convergence, it nxn/ he

dcslved to ti-ansfonii tlie t^crics into one v-lilch proceeds aeeordlng to j/oicci's

of (x — a) and converges in a circle ahovt the point x = a. Let t = x — o:.

Tlien x = a -\- t and hence

x'^ = a- + 2 at + /-, ;r^= a'' + 3 crt + 3 at:- + f, ,
/(;r) = o^ + o^ (a + + 'r (rr + 2 at + t') +

.

(If,')

Since \a\ < R, tlie relation |^| + 1''| < R will hold for small values of t,

and the series (lo') will converge for x ^=\a\-\-\t\. Since

is absolutely convergent for small values of t, the parentheses in (15')

may be removed and the terms collected as

/(») = ^ (/) = {((^ + a^a + a./r + a.^a^ -\ ) + {o^-\-2 iiji + 3 n ,(i- H )t

+ («.2 + '"^

''Z*^ + • • •) ^' + (". + • • •) ^' + • • •;

or /(,>•) = c^(,>' - a) = A^ + A^{x - a) + .l._^(,. - af

+ .l3(,r -< + ..., (16)

where A^, A^, A_,, are infinite series ; in fact

The series (16) in cc — a will surely converge within a circle of radius

72 — |a| about x — a; but it may converge in a larger circde. As a matter

of fact it will (!onvei'ge within the largest circle whose center is at a and

within which the function has a definite continuous derivative. Thus

Maclaurin's ex})ansion for (1 + .t^)~^ has a unit radius of convergence;

but the expansion about x = l into powers of x — I- will have a radius

of convergence equal to I V5, Avhich is the distance from x = ^ to either

of the points x = ± i. If the function had originally been defined by

its development about x = 0, the definition would have been valid only

over the unit circle. The new development about x — ^ will therefore

extend the definition to a considerable region outside the oi-iginal

domain, and by re])eating the pro(!ess the rf>gion of definition may be

extended further. As the function is at each step defined by a ])0wer

series, it remains analytic. This process of extending the definition of

a function is called anulijtic continuation.
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Consider the expansion of a function of a function. Let

f{x) = Cq + (i^x + a^ + a^x^ H
[.^'l
< 7.'^,

x = <i>(y) = \ + h^j + ^>.y + hy +, \y\ < n,,

and let \h^\ < R^ so that, for sufficiently small values of y, the point x

will still lie within the circle B^. By the theorem on multiplication, the

series for x may be squared, cubed, • •
• , and the series for x'^, o-^, may

be arranged according to powers of ?/. These results may then be sub-

stituted in the series for/(,r) and the result may be ordered according

to powers of ij. Hence the expansion for /[</>(?/)] is obtained. That

the expansion is valid at least for small values of 1/ may be seen by

considering

i = K^ol + IMI//I + Mu? + , \u\ small,

which are series of positive terms. The radius of convergence of the

series for /[</>(,/)] may be found by discussing that function.

For example consider the problem of expandijig e=°«-^ to five temis.

eV = 1 + 7/ + ^ ?/2 + 1 y3 + ^^yi ^ . . .^ y^ cosx = 1 _ J J-2 4. ^i^a;4 ^. . . .^

?/2 = i_a;2 4. 1^4
^

2/^:=l_ 1^2+ a-t
, ?/* = 1- 2a-2 + l|-x*

,

ey = l + {l-lx"- + r^^z^ ) + ^ (1 _ x2 + ix^
) + HI - I -i'^ + 1 ic^

)

+ ,i^(l-2a-2 + lfx^ ) + ••

= (1 + 1 + 1 + 4 + .V + . • •) - (i + A + i + A + • • Oa-'

+ (i + J + A + i + ••)•»* + ••-,

(.y — geoex — 21 1 _ 1^ x^ + | = X'* — • • • .

It .should be noted that the coefficients in this series for e'^"*-^ are really infinite

series and the final values here given are only the approximate values found by

taking the first few terms of each series. This will always be the case when

y z= b^ + h^z + • • • begins with &q ^i
; it is also true in the expansion about a new

origin, as in a previous paragraph. In the latter case the difficulty cannot be

avoided, but in the case of the expansion of a function of a function it is some-

times possible to make a preliminary change which materially simplifies the final

result in that the coefficients become finite series. Thus here

gcosx = ei + 2 i=ee-, z = cosx — 1 =— ^ a-2 ^ ^1^3.4 _ ,i-xs + • • •,

e* = 1 + (_ 1 x2 + ,i^x* - ,1^x6 + •••) + ! (K _ ^1^x6 +•••) + H- i-^' + •••) + •••

,

gcosx =; egj - e (1 _ I x2 4- ^ X* — /^V ^^ -^ )•

The coefficients are now exact and the computation to x^ turns out to be easier

than to x^ by the previous method
;
the advantage introduced by the change would

be even greater if the expansion were to be carried several terms farther.
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The quot'ipnt of tiro power series /'(•''') ^'U 0(:'')j {f 0{^) ^^ ^5 may he

ohtnined hij tJte ordtnonj aJgorisni of dirisum os

f{x) (1^ 4- f'v'' + "2-''' H
, ,

o , 7 ^ A

For in the first place as y (0) ^ 0, the quotient is analytic in the neigh-

borhood of ^' = and may be developed into a power series. It there-

fore merely remains to show that the coefficients r, r^, r^, ... are those

that would be obtained by division. Multiply

and then etpaate coefficients oi equal })0wers of .r. Then

(', = K'o, "x = ^''o + ^\fv "i = ^'/o + ^\'\ + ^><r-v

is a set of e(piatioiis to be solved for r^^, r^, c,. •

.
-. The terms in /'(•'') '^^"^

(/('') beyond ./:" have no effect upon the values of r^^, '\: , ''„, ^i^d hence

these Avould l)e the same if /'„ + i, ^',, + 2; ' "\vere replaced by 0, 0, • ., and

"„ + 1 , ^'„ ^ 2 ;
• • •

J
'^'1 uj "2n + ij ^T s^^<'li- values (t '„

_^ 1 , c/
'„ + .,.

•

.
•

,
o

'.,
^^

, 0, . •
•

as would make the division come out even ; the coefficients e , i-,--- r

are therefore precisely those obtained in dividing tlie series.

If // is developed into a power series in ./• as

// =/('•) = "„ + "r'- + "./' + • • •, ", ^ 0, (17)

then X may be developed into a power sei'ies in //
— o^^^ as

X =/-'(.'/ - o,) = \(y - oj + hjf/- n^f -f . . .. (18)

For since c^ ^ 0, the function /(.r) has a nonvanishing derivative for

X = and hence the inverse function/'"^
( y — nj is analytic near x —

or y — (1^ and can be develo])ed (j). 477). The nu'tho^l of undetermined

coefficients may be used to find fi^, ^/„.---. This ])r()cess of finding

(18) from (17j is called the rercrslon of (17j. For the actual work it is

simpler to re})lace (y — "^)/"^ by f so that

and ./• = /' + I,'/- + 1,'f + h\f'' H ,

],' = h.n\ .

Let the assumed value of ./• be substituted in the series for t\ rearrange

the terms according to powers of / and equate the corresponding coef-

ficients. Thus
. , , ,

+ (a; + 2 i>'^o:^ + iKfu'^ + .) Uju j^n\)t^ ^...

or /y.' = —
• (•/„, }i\ = 2 "o" — 'Vp, h' = — T) 11',;'' -\- ~) ii'ji'„ — */' . . -.
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170. For some few purposes, which are tolerably important, a formal

opirndlonal viethod of treating series is so useful as to be almost indis-

pensable. If the series be taken in the form

with the factorials which occur in ]Maclaurin's development and with

unity as the initial term, the series may be written as

e- ^ 1 + n\r + ^ ,- + 1^ a^^ + . . . + ^ .r» + . .

.

,

provided that r/' be interpreted as the formal equivalent of *-',•. The

product of two series would then formally suggest

^ax^bx ^ ^(a + b)x = 1 + (,, _i_ /,y^r. + — (a + ///-.,•- H , (19)

and if the coefficients be transformed l)y setting a'h' — a/tj, then

( 1 + a^ + i:
•'^' + • •

•)
(i + ^1'^ + h '" + • • •)

= 1 + (", + />,).' + -^^/:^^^- ^^^ + •

This as a matter of fact is the formula fqv. the product of two series

and hence justifies the suggestion contained in (19).

For example suppose that the development of

X , n., , B., „

r — 1 - . o .

were desired. As the development begins with 1, tlie formal method

may be applied and the result is found to be

'-, a- = e<^^' + i^"-t'^% (20)
e^ —

1

X = X + [( B + 1 )— B'^ ^77 + [< ^^' + 1 )' - ^"] ^ + • •
' (-1)

(B + i)--B- = o, (/3 + i)'-^' = o, ••, r/? + i/"-i:;'' = o, ••,

(n' 2B^ + l = 0, 3 /i, + P> /i, + 1 = 0, 4 /|^ + (i /i, + 4 7J^ + 1 = 0, • • •

,

or B^ = -h, B.^ = }„ i?3 = 0, ii, = -3L....

The formal method leads to a set of equations from which the suc-

cessive B's iiii^y quickly be determined. Note that

X .' .' e' + 1 ./ - ./ .'• . / x\ ,.^...

7^ + 2 = 2 ^-^i = . -^^^^
2 = -

2
""'^^ (~ 2)

^"^
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is an even function of x, and that consequently all the 5's with odd

indices except B^ are zero. This will facilitate the calculation. The

first eight even B'^ are respectively

I 1 1_ 1„ 5 ^fi 9 1 7 3_fi 1 7 (''>?,\

ffJ 30' 42! ;iO' ^(T) 2 7 .i ' ^^ 510 • \- ^

)

The numbers B, or their absolute values, are called tlie BernouUinn

numhers. An independent justification for the method of formal cal-

culation may readily be given. For observe that e^e'^'' = ('('i + '^)^ of (20)

is true when B is regarded as an independent variable. Hence if this

identity be arranged according to powers of B, the coefficient of each

power must vanish. It will therefore not disturb the identity if any

numbers whatsoever are substituted for B^, B'-, B^, • •
• ; the particular

set B^, JB.„ iJg, •• • may therefore be substituted ; the sci-ies may be rear-

ranged according to powers of .r, and the coefficients of like powers of

X may be equated to 0,— as in (21) to get the desired equations.

If an infinite series be written without tlie factorials as

1 + ^'.'- + "/' +"3^' + • • • + "„'" H ,

a possible symbolic expression for the series is

— = 1 + (i^x + tt'x- + cV -{-, //' = a^.
1 — (IX

If the substitution y = •'"/(! + '') ov x = ///(I — //) be made,

1 1 - //

l-(l + ")y (24)

1-//

Now if the left-hand and light-hand expressions l)e expanded and n ])c

regarded as an independent varia])le restricted to values Avhich make
\rix\ < 1, the series obtained Avill both converge absolutely and may be

arranged according to powers of ". Corresponding coefficients will then

be equal and the identity will therefore not V)e disturbed if </, replaces

a'. Hence

1 + ",'• + f'.'- -f • • • = (1 - //) [! + (! + ")u + (1 + "fif +•••],

provided that both series converge aljsolutely for -'', = <i\ Tlien

1 + a^x + o^r -f (/^./^' H = 1 4- ,,y 4- „ (1 + „jf _|_ ,, (1 4. nfif -\

or (i^C -f <i,/- -f 11./^ -f . .
. = r/^y + ( ,/j + ,/j //-

+ "'i + 2.^ + .g/ + .... (25)
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This transformation is known as Eulei^s tro.nsfonnatlon. Its great

advantage for computation lies in the fact that sometimes the second

series converges much more rapidly than the first. This is especially

true when the coefficients of the first series are such as to make the

coefficients in the new series small. Thus from (25)

log {l^o-) = x-\ ;/•- + ^ a:^ - i
,' +ix^-\:,-^^...

To compute log 2 to three decimals from the first series would require

several himdred terms ; eight terms are enough with the second series.

An additional advantage of the new series is that it may continue to

converge after the original series has ceased to converge. In this case

the two series can hardly be said to be equal ; but the second series of

course remains equal to the (continuation of the) function defined by

the first. Thus log 3 may be computed to three decimals with about a

dozen terms of the second series, but cannot be computed from the first.

EXERCISES

1. By the multiplication of series prove the following relations:

(a) (1 + a; + x2 + x3 + . • •)2 = (1 + 2x + 3x2 + 4x3 + . .
.) = (1 _ ^yi^

(p) cos2 X + sin2 X = 1, (7) e^c'J = e^+ ", (5) 2 sin^ x = 1 — cos

2

x.

2. Find the Maclaurin development to terms in x^ for the functions:

{a) e^cosx, ((3) e^siux, (7) (1 + x)log(l + x), (5) cosxsin-ix.

3. Group the terms of the expansion of cosx in two different ways to show that

cos 1 > and cos 2 < 0. Why does it then follow that cos | = where 1 < ^ < 2 ?

4. Establish the develoi:)ments (I'eirce's Xos. 785-789) of the functions:

(a) e^'"-^, (/3) t"^"-'', (7) e«'"~^^, (5)
gtan-i^.

5. Show that if g{x) = h,„x"> + 6,„ + ix'" +1 + • • • and/(0) ^i 0, then

f(x) n,. + a,x + a.^x- + c_,„ f-m + i c_i

f/(x) 6„.x"' + 6,„ + ix'« + i + •• X'" x"'-i x

and the development of the ciuotient has negative powers of x.

6. Develop to terms in x^ the following functions:

{a) sin(tsinx), (/3) logcosx, (7) Vcosx, (5) (1 — ^-^ sin^x)" 2.

7. Carry the reversion of these series to terms in the fifth power:

(a) \i
— siiix = X — 4 X-' + • •

,

{(3) // = tan-i X = x — |- x^ + • •

,

(7) ?/ = e^.- = 1 4. X + I X- + • • •
, (5) ,v = 2 X + 3 x2 + 4 x3 + 5 x'* + •

.
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8. Find the smallest root of these series by the method of reversion:

(a) - = f'c-Alx = x--x^+ ~-,x^ - —^x^ + •
. ,

2 ^0 o .5.0 6 . i

(^) \ = (\o^xMx. (7) - = f
"

4 Jo 10 Jo V(l- j-')(l- ix^)

9. By the formal method obtain the general ecinations for the coefficients in the

developments of these functions and compute the first five that do not vanish:

(«^) -^ 7' (A) —-T' W
t"'- — 1 e' + 1 1 — 2 xe-'' + e-^

10. Dbtain the general expressions for the following developments:

1 .r x'^ 2x'' li:,A-2x)-"
(a) coth x = -H -\ + -=

,
^ ' X S 45 945 (-Ihj'.x

1 X j3 2.r^
, , ^^ 7)'o„(2j-)2«

(/3) cot x = + (-1)" ——-—
.

^ ' x 3 45 1145 ' {iitj'.x

, , , .
,

a-" x^ j-«
, / •, B:„{2x)-"

(y) log sin X = logx + (- 1)"
,

x- x^ x'5 7>o„(2x)-«
( 5 ) log sndi X = logx -\ 1 • • • 4 =

• • •

.

^ ' -
'-

c, 180 28::!5 2 )i • (2 n) !

11. The Eulerian numbei's E->„ are the cnefficients in the expanslDU of sech x.

l--srablish the defining equations and t'onipute the first four as — 1. 5. — 01. 1385.

12. Write the expansions for sec x and log tan (i tt 4- ^ x).

1 2 1
13. From the identitv = derive the expansions:

'
t-'- - ] e-' - 1 t"'- 4- 1

(a) ^f^ = \ + 13,(2^ - 1) "-; 4- «,(2^ - 1) ^ + • • • 4- 7J.„(2-'' - 1)'^' 4- • • •

,

e' 4- 1 2 2 I 4 ; 2 ?; !+

11 r r^ (.l!/)-!

^ 7J^(,. _ 1, _ «^(24 _ 1 ) _ /i,„(,.» -1)--^-^
4-12 2 1 4 . 2 )( :

X- "

( 7 ) taidi X = (2- - 1 ) 2-B., ~ 4- (2^ - 1 )
2-* />' -- 4- • • 4- (2- "-1)2- "JL „

' + • •

,

'21 41 2/(1

(5) tan X =x + ~ + ~^ + -^^ + + (- ^Y'-HS-" - 1) 2- " /i. „
"'^^^^

4- • •

.

J ]•) ol-) 2 )i 1

( e ) loi:r cos X = — ' '' _..._(_ l)" -i(2-" — 1 ) 2-"7^„ - — • • •
.

2 12 45 2)/ •2h 1

(f) log tanx = loiTX 4-
"'

- + -''^- + ... + (- ly, -i{-s->- --l _
] , i'-.; » /i., „ _Zl- _ 4- • •

.

•"] (i() )( 2 ?i 1

(77) cscx = - (cot"-^ 4- tan"'') =-+- + ... + (_ ij^i-i 2 (2-''-i - 1)7I,„
'''—,

2 \ 2 2 / X ;! 1 2 » 1

iff) lo-ccishx. (i) logtanhx. (k) cS(4i x, (\) sec-x.
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Observe that the Bernoullian miinbers afford a general develnpinent for all the

triuonoinetric and liyperl)olic functions and tlieir ioiiarithms with the exception of

tlie sine and cosine (wliich have known devehipnients) and the secant (wliich re-

ijuires the Eulerian numbers). The importance of these numbers is therefore

ajiparent.

14. The coefficients P^iy), P.i{{/), • . P„{y) in the development

e^- 1
y + P^x + P.,{y)-^- + • • + Pn{y)-t>' +

are called Bernoulli's polynomials. Show that {n + 1) ! Puiy) = {B + y)" +i — 7i''+i

and thus compute the fir.st six polynomials in y.

15. li y = X is a positive integer, the (juotient in Ex. 14 is simple. Hence

n : 7^,(.V) = 1 + 2« + 3" + • • • + {X- 1)«

is easily shown. With the aid of the polynomials found above comimte:

(a) 1 + 2^ + ?>^ + • • + 10^ (^) 1 + 2' + 3-' + • • + ;».

(7)1 + 2--^ + .3-^ + . . . + {X - 1)-, (5) 1 + 2^' + 3-' + . . . + (.Y - 1 )3.

_ ' r 1 _ l>, + 1

(a - b)
I

I - > —16. Interpret = = >
1 — ax 1 — bx X [a — b) l_l — ux a — bxj *—l n

17. From
I

e-fi-"-'.)'(J^ = establish formal!

v

•J» \ — ax

1 + o,J + "..•'•- + (I -x^ + • • • = r t- 'F{xt)dt = - r e~^ F(u)du.

where F{h) = 1 + «,h -| «.,»- -\ a.,H^ + • • ••

2 1" 3 !

'^

Show that the integral will converge when < / < 1 provided j«,j ^ 1.

18. If in a series the coefficients a; = / i'f(t)<U. show

1 + «i.f + «.,J-- + <i.iX^ + •••=/ -
t/ 1

^'''
at.

It

19. Note that Exs. 17 and 18 convert a series into an integral. Show

^ ^ 2/' 3p 4/' r(]>)Jo I-./-/ ^
),/' Jm

'l + l- 1 + 2-' l + 3--^ Jo 1-J< '
l + 7r .'o

1 , / .r- /^ 1 sin log^
,^ ,

1

T2^'
"^
lT3-

"^ " ' ~ ~ Jo "l

«(« + ]) „., ,

"(f' + l){a + 2) ^3
(7) 1 + - X + ^

—

—'- X- + — "

./•'5 +

.

^^
b h{b->r\) 6(6 + !)(/> + 2)

r(a)r(6-a) Jo(a)r(6-a)Jo 1-j-i
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20. In case the coefficients in a series are alternately positive and negative show

that Euler"s transformed series may be written

a^x — 02^2 + asx^ — ntx* + • • = a^ij + Auiy- + A^ait/^ + A^aiy* +

where Aai = Ui — ao, A'-«i = Ac(i — Ado = (ii — 2 a-i + t/g, • • are the successive

first, second, • • • differences of the numerical coefficients.

21. Compute the values of these series by the method of Ex. 20 with x =:\.y — I.

Add the first few terms and apply the method of differences to the next few as

Indicated

:

(a) 1 \- f----= 0.69315. add 8 terms and take 7 more,
^ ' 2 8 4

{(i) 1 1 + • . = 0.1)040, add 5 terms and take 7 mure,
V^ \''3 V4

(y)
'^ = i_^-|-l_^ + ...= 0.78539813. add 10 and take 11 more,
4 3 5 7

/ 111 \ 2/'-i / 111
(5) Prove 1+ - + - + — + ...= 1 + + .

^ ' \ •>!' 3/' 4/' / 2/' - 1 — 1 \ -li' 3/' 4/'

and compute iov p = 1.01 with the aid of five-place tables.

22. If an infinite series converges absolutely, show that any infinite series the

terms of which are selected from the terms of the given series nuist alscj cunverge.

What if the given series converged, but not absolutely ?

23. Note that the proof concerinng term-by-terin integration (p. 432) would not

hold if the interval were infinite. Discuss this case with especial rt-ftrences to

justifying if possible the formal evaluations of Exs. 12 (cr), (5), p. 439.

24. Check tlie formula of Ex. 17 by termwisc integration. Evaliu\te

^
f

e 'JAhu) du = 1 - ', h-x- + i • ^ = (1 + '^-c-)~ 2

X Jii ' '"21

by the invt-rse trausformatii.iu. Set' Exs. 8 and 15. p. 3'.i9.



CHAPTER XVII

SPECIAL INFINITE DEVELOPMENTS

171. The trigonometric functions. If m is an odd integer, say

/// = li « + 1, ])e Moivre's Tlieoreiii (§ ~2) gives

sin y//(i
,

(m—l)(in — 2) , , . ,^^ = cos-"
<i>

-
'~f,

^ (•()s-"--ci sm- <i H , (1)
in sm (^ .^ I

where by virtue of the relation cos'- (^ = 1 — siir-<^ the right-hand mem-
ber is a polynomial of degree n in sin'- <^. From the left-hand side it is

seen that the value of the polynomial is 1 when sin eft = and that the

ii roots of the polynomials are

sin'- tt////, sin'- 2 7^///^ ' • • •

,

sin'- nirJm.

Henct^ tlip ])olynomial niay l)e factored in the I'orm

sin m<^ =i\- ^"^'^
\ A ^"''<^ \

. .
. A _ '^"^' ^ \ /ox

/// sin <^ Y sin'-TT//// / \ ^m-'lTr/nij \ Hu\-7i7r/i/i

If tlie substitutions ^ = .r/i/i and ^ = ix/m be made,

sin .'/• / _, sin'- .///// \ /^ sin^.r/'" \ /^ sin^ »:•//» \ „

mam x/iii. \ am- tt/iii / \ sur J tt//// / \ aurinr/inj ~
^

_jdidKr^^/ _^sin^
//^.sinhay/M y sur7r/m/\ hiu-'Jtt/j// / \ surynr/m/ ' '

Now if ill be allowed to l)ecome infinite, passing tlirough successive

odd integers, these equations renuiin true and it would apjiear that the

limiting relations would hold :

J' \ it'- j \ 'I' TT' J I \ IriT-

siidi X

,1 x""

snr- (-_ +.
() in

hm
A'TT ,„=x //.'TT 1 I L'ttY \'-

A''-7r'"

~
(

453

snr— --
r.
— +

7/i \ //^
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In tliis wuy tlte ej'jjfnuion.s Into injinite products

sin x = ./• TT ( 1 — ~—, I
-• sink x = » TT ( 1 + t^—, |

(o)
1 \ IriT-j 1 \ k-ir-j

would be found. As the theorem that the limit of ii })r()duct is the prod-

uct of the limits holds in general only for finite products, the process

here followed must be justified in detail.

For the justiticatioii the consideration of .'<inli j, which involves only positive

quantities, is simpler. Take the logarithm and split the sum into two parts

sndi-- „ / sndi

Off = > loi;- 1 + + > loir 1 -j-
.

?HSudi— 1
\

sm- — /
V' - 1 \ sin- —

/
rti ^. //( ?/i /

As log(l + a) < (t. the second sum may be further transformed to

>i / sinh2 — \ „ sinh"^^ „

Jt' = > loff 1 + <> = sndi^->
j^+i \ sm^— / J' + i sm-

—

^'-ism-—
\ HI

'

m in

Now as ?i < 1 »i, the angle kir/m is less than \ ir. and sin ^ > 2 ^/tt for ^ < i tt, by

Ex. 28, p. 11. Hence

R < sudi- - > = — smli2— X —;
< — snih^—

\

in -^ 4 k- -1 //( -^^, k- 4 m Jp
P ~ i. /' T 1

1 m- . , „ X c'^- dk

n X
j, / siidi-

1
sinh ,r xr^ I -, , "'1 '"^ • i , •'^

Hence log > 1 -\ < smh^—

.

• ,
•' ^ • J'-""' -^P "1

m sinli - 1
\

sni-— /

Now let m become intinite. As the sum on the left is a finite, the limit is simply

sinh J- -^^A / .r- \ j--
, , sinh j- x^ /, /- \

loLT > 1 + < — ; and loff = > ] + \

then follows easily tiy letting p liecome infinite. Hence the justification of (4').

])y tlic (litl'tM-ciitiatiun of the series of logarithms of (o),

sin ./• ./^ , / ^ ./•- \ , sinh .r ^ , / ^ ,/ \

the expressions of cot,'- and coth .r in series of fractions

cot ./• = y , .,

~ —:,, coth ,/ = -+ y Tv^H :,
(")



SPECIAL INFINITE DEVELOPMENTS 455

are found. And the differentiation is legitimate if these series eonvcrge

uniformly. For the hyperljolic function the uniformity of the conver-

gence follows from the J/-test

, ., o ,
—r, < TT—, ' and Xtt—, converges.

IriT- + '" A"7r"" ^^ IriT'

The accuracy of the series for cot a: may then be inferred I)}- the substi-

tution of /./' for ./• instead of bv direct examination. As

2j'

Ix'-tt'- — ./'

1 1
cot J- (8)

In this expansion, however, it is necessary still to associate the terms

fur /.• = -(- 7t and 1: = — n ; for each of the series for /.• > and for

/.• < diverges.

172. In the series for cotli.r rej.lace x liy ],,,. Tlien, by (22), p. 447,

^coth^=i+2 ,7^^^=i+i;^^-'f^ (^•)

If the first series can l)e arranged according to powers of x, an expres-

sion for iJo„ will be found. Consider the identity

if,
= -1 <

- '>' - r+'
' =

- "i (- "' - "'- '>"'

which is derived by division and in which 6 is a })roper fraction if t is

positive. Substitute ;" = x-/\ Irir'- ; then

4 IriT- + ./- 2 4 Irir- 4 ;.•V-

-•^^[^)Xw.^-'^^{-li.)X^r

Let

X . X
- coth -

^1,1 1

1
~ 'J

1 s.,,
"\4 7r-

* The d is still a proper fractinu since each Oj^. is. The interchan.ue <if tlie unlcr of

suniiiiatioH is Icicitiiiiate l>ecau.se the series would still converge if all signs w ere positi\e,

since ^k~-'' is cnn\-frircnt.
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As .S.,„ approaches 1 wlien ti becomes inlinite, the last term approaches

if ^- < 2 TT, and the identical expansions are

21 S,,.(- ly -
' -0^. = t ih,. 1^, = \ coth \ - 1. (10)

Hence -B.,. =(- 1)""' ^1^^?^ «., (H)

and |coth| = l+i;i?.,^ + ^i3.„:J^- (12)
w

^
"^ /' • -ill.

The desired expression for B.,^^ is thus found, and it is further seen

tliat the expansion for \ x coth \ x can be broken off at any term with

an error less than the first term omitted. This did not appear from the

formal work of § 170. Further it may be noted that for large values of

n the numbers B.^^ are very large.

It was seen in treating the T-function that (Ex. 17, p. 385)

log r(?i) = {n — \) log 71 — n + log V2 TT + o) (?i),

^"^^Kiwhere w (n) = / (
- coth - — "

As
I

x-''t''"dx =
I

.T-^'e ^^dx =_r(2;j + l) _ 2^^!

the substitution of (12), and the integration gives the result

-('^) = T:2- + Tnr + --- + (2,.-a)(2,.-2) + (2,.-i)2/(i^)

For large values of n this develo})ment starts to converge very ra])id]y,

and by taking a few terms a very good value of w(«) can be obtained
;

but too many terms must not be taken. Compare §§ 151, lo-l.

EXERCISES

I ^ sin 2,/' _:, / 4 r-
1. Prove cos j: = , .

= TT ( 1

ii^i".'- \ (2A: + l)-7r-

2. On the assniuption that the i)rodnct for sinh x may be mnltiplied out and

collected according to powers of j:. show that

(a) V r; = — . (/i) V V = ~ , wliere k ^ I.

(7)7 - = . (5)7 7 — = ' if A- may equal i
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111 2

3. By aid of Ex. 21 (c), p. 452, show : (a) 1 + — + — + ~ + ='^

,

, , 111 7r2 ,,,111 7r2
(|3 1 + 1 h — H = —

. (7)1 1 1--
32 52 72 8

^" 22 32 42 12

4. Prove: (a) / -^-tZx = - ~. (^) / —— dx = - -

,

Jo \ — X b .vo 1 + X 12

, ,
/'I 10o;X , TT^ ,,, /'^ 1 + X CZX TT^

(7) / r^~7A^ = -^'- (5 log:, = -r-^ol — X- 8 Jo 1 — XX 4

5. From tan x = — cot (
x tt ) = — 7

V 2 / Ax-(A: + -|)7r

1/ X ^ x\ ^(-1)^- 1 ^(-l)*-2x
show CSC X = -

I
cot - + tan - = > ^ = -f > -!^

'-

2 \ 2 2/ ^ X- kir x ^ x^ - k'^TT-

n-l
^^

»-l

(-1)^
dx = 7 -^ ^ , and compute for a = - by Ex. 21, p. 452.

u l + x V " + ^ *

7. If (( is a proper fraction so tliat 1 — a is a proper fraction, show

Jo l + x ^a — k ^1 1 + x Ji.) l-\-x sin «7r
1

8. When n is Large B-2n = (— 1)"~^ 4V7r>i(— ) approximately (Ex. 13).
\7re/

^ 92
9. Expand tlie terms of - coth - = 14-7 by division when x < 2 tt

2 2 A' 4 A;27r2 + x^

and rearrange according to powers of x. Is it easy to justify tliis derivation of (11) ?

10. Find co'(?i) by differentiating under the sign and substituting. Hence get

r'(n)
,

1 /i, B, B.2,-2 0B.„

r (n) "^ 2n 2n- 4 )i* (2p — 2)n2/'-2 2^^)12^^

11. From —^—^ + 7=1 da of § 149 sliow that, if n is integral,
r (n) Jo 1— a(«)

r'(w) ,11 1
,

r'(i) ^ _„,,,—!-i+ 7 = 1 + - + - + ... + , and 7 = !^ = 0.57721;
r(n) 2 3 71-1 r(l)

by taking n = 10 and using the necessary number of terms of Ex. 10.

12. Prove log T {n + \) = n (log ?i — 1) + log V2 tt + w^ (n), where

pf> I 1 e"
I

dx
w (ti) =

I
I ;e'"'— , uJn) = w{n) — w{2n),

J-jo\x e^ — 1/ X

,, B.,n-^ /^ 1\ B,n-^(^ 1\ B,n-^ /, 1\
w, (n) = -i 1 - - + ~ I

1
I + — I

1 +
^^ ' 1 • 2 \ 2/ 3 . 4 I 23/ 5 • (5 \ 2"/
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9 1

13. Show 7J : = V^Trn (- I e ' or V2 tt (

—

—^] "e ^*" + ^-=. Note that the

results of § 149 are now ulitaincfl rifjorously.

n-l
1 ^-V fi-».r .^-^ g— (n—l)x

14. From = > e- ''
-I = > e-^^ + , and the formulas

1-e- A l_c-- ^
of § 140, prove the expansions

{a)
f^

log r in) =V^ , (^) f log r (,o + 7 =V (-^ - -^-\ ^

173. Trigonometric or Fourier series. If the series

/(•^) = i "o +2 O'i- cos A-.r + h„ sill 7.vr)

=
-J-

c'^ + ((^ COS .r + i^^, cos 2 .r + (^/^ cos ^ x -{- ^ ^

+ Z*j sin X -\- h,, sin 2 x -{- b^ sin 3 .r + • • •

converges over an interval of lengtli 2 tt in .r, say S .r < 2 tt or

— TT < .' ^ TT, the series Avill converge for all values of x and Avill de-

fine a periodic function y(.'/;' + 2 tt) = /('') of period 2 tt. As

( cos /.•,? sni Z,rc/,/' = and | . ^ . , ax = () or tt (1

Jo J,.
s"^ ^-^ sm ^.^•

'^)

accoi'diug as /.• ^ ^ or /.• = I, the coefficients in (14) may be determined

formally by multiplying /"(^.r) and the series by

1 = cos X, cos X, sin x, cos 2 .r, sin 2 x,

successively and integrating from to 2 tt. By virtue of (15) each of

the integrals vanishes except one, and from that one

1 r-'' 1 r-'^
n,. = - / fix) COS Ixdx, h,. = - I f(.r) sin Lnlx. (10)

Conversely if _/'(./) be a function which is defined in an interval of

length 2 77, aiul which is continuous except at a finite numl»er of ])oints

in the interval, the numl)ers "^. and h^. may be computed according to

(H)) and the series (14) may then be constructed. If this series con-

verges to the value of /'(•'•), there has been found an ex])ansion of /(,r)

over the interval from to 2 tt in a fn'f/nnomefri<' or Fmiricr scries*

The question of whether the series thus found does really converge to

* ISy special devices some Fourier expansions were found iu Ex. 10, p. 4o9. .
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the value of the function, and whether that series can be integrated or

differentiated term by term to find the integral or derivative of the

function will be left for special investigation. At present it will be

assumed that the function may be represented by the series, that the

series may be integrated, and that it may be differentiated if the differ-

entiated series converges.

For example let & be developed in the interval from to 2 tt. Here

a/.- = -
I e^ cos Jucdx = — ^ cos ydy = ^ -|

—

^

)

TTt/O KTJ- J L7r\A:'' + l /Jo

1 „ 1 1 „ 1 11
or a = — e-

"
? cik = -"-'^

^^ + 1 TT k- + 1

1 /'-''•,
7 1 o ^ 1 fc

and bh = - I e-^ sni kjcdx = e-'^ i

IT Jo TT ^2 + 1 7rA:2 + i

7re-^ 1 1 1 o 1 oHence = - H cos x -\ cos 2x -\ cos 3 x +
e2 TT _ 1 2 12 4- 1 22 + 1 32 + 112 3

sni 2 X sin 3 x + •

12 + 1 22 + 1 32 + 1

This expansion is valid only in the interval from to 2 tt ; outside that interval the

series automatically repeats that portion of tlie function which lies in the interval.

It may be remarked that the expansion does not hold for or 2 tt but gives the

point midway in the break. Note further that if the series were differentiated the

coefficient of the cosine terms would be 1 + 1/A;2 and would not approach when
k became infinite, so that the series would apparently oscillate. Integration from

to X would give

7r(e''-l) 1 1 . 1 sin2x 1 sin3x—^: '- = - X -\ Sin X H 1 1- • •

e2,r_i 2 12 + 1 22 + 1 2 32 + 1 3

-\ cos X H cos 2x4 cos 3 x + • • •

,

12 + 1 22 + 1 .32 + 1

and the term ^x may he replaced by its Fourier series if desired.

As the relations (15) hold not only when the integration is from

to 2 TT but also when it is over any interval of 2 tt from a to a + 2 tt,

the function may be expanded into series in the interval from a to

«: -!- 2 TT by using these values instead of and 2 tt as limits in the

formulas (16) for the coefficients. It may be shown that a function

may be expanded in only one way into a trigonometric series (14) valid

for an interval of length 2 tt ; but the proof is somewhat intricate and

Avill not l_)e given here. If. however, the expansion of the function is

desired for an interval a < x < (3 less than 2 tt, there are an infinite

number of developments (14) which will answer ; for if <fi (.r) be a
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function Avhich coincides with /(•^) during the interval a < x <. (i,

over which the expansion of /(./•) is desired, and wliich lias any value

whatsoever over the remainder of the interval /3 < .r < «: + 2 tt, the

expansion of <^ (x) from a to a -\- 2 tt will converge to /(.'') over the

interval a <. x <C /3.

In practice it is frequently desirable to restrict the interval over

which f(x^ is expanded to a length tt, say from to tt, and to seek an

expansion in terms of sines or cosines alone. Thus suppose that in the

interval < a; < tt the function <^ (.') be identical with f(x), and that

in the interval — tt < ,r < it be equal to /(— x) ; that is, the func-

tion (f>(.r') is an even function, </>('•) = </>(—.'), which is equal to /(.<)

in the interval from to tt. Then ,

({) (x) cos kxdx = - j <f>
(^') cos kxdx = 2 / f (,/•) cos Jcxdx,

IT Jl) Jf)

cf> (,/•) sin L'xdr = / (^ (x) sin I'xdx — I cf) (,r) sin J:xdx = 0.

Hence for the expansion of </>(•') from — tt to + tt the coefficients /i^. all

vanish and the exjiansion is in terms of cosines alone. As /(.'') coin-

cides with
(f)

(x) from to tt, the expansion

r>

/(:'-)
=X"^^'^^^''''' "'^^i / /(•') cos A-a;^/^ (1.)

Jl)

of /(.r) in terms of cosines alone, and valid over the interval from to

TT, has been found. In like manner the expansion

/(')=yf>,smLr, /., = - r /(,r) sin A-.Tr/.r (18)
1

'^ Jl)

in term of sines alone niay be found by taking (pix) etpial tof{x') fi'om

to TT and equal to — ,/'(^ '') f^'oi^^ to — tt.

Let |x be developed into a .series of siiies'and into a .series of cosines valid over

the interval from to tt. For the .series of sines

2 /"^ 1 . , ,
(—1)^' .f A sinfcx

III- = I -
.-f. sni kxdx — — -^^

, - =y ±
TV Jo 2 k 2 ^ k

or I X = sin x — i sin 2 a-
-f J sin 3x — ^ sin 4 .c + • • •

.

(A)

„ , , , r *^. k even

Also (in = ~
I

-./'/.(=-, (1^. =
I

- X coakxdx = J, 2
TT Jo 2 2 TT J<j 2

I

: k odd.

I •^'^

.. I TT 2 I ros;i,c cos")./- rosT./' 1 ,„,Hence -x .^ - cis x + - —^ + - -_ - + —^--- + • • • (B)
2 4 77 .3- o- (

-
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Although the two expansions define the same function ^ x over tlie interval to tt,

they will define different functions in the interval to — rr, as in the figure.

The development for i x- may be had by integrating either series (A) or (B).

Ix" = 1 — cos X — i (1 — cos 2 x) + 1(1— cos 3 x) — j'g (1 — cos 4 x) +

TT 2 r . sin 3x cos5x 1— — X sin X H 1 !-••••
4 ttL 33 ^ 53 J33 53

These are not yet Fourier series because of the terms I ttx and the various l\s. For

^TTX its sine series may be substituted and the terms 1 — ^ + ^ — • • • may be col-

lected by Ex. 3, p. 4.57. Hence

(-tt.tt)

1 o n-2 1 , 1 o 1 .- X- = cos X + - COS 2 X cos 3 X + - cos 4 x —
4 12 4 9 16

(A')

1 ^ 2r/7r2 A . TT- . , (it- 1\ . o
-^'^

a "I ,T..^
or ^x^ = " 1

I
sni X sin 2x + sm 3x sm 4x + • • • . (B )

4 ttLU / 2 ^\VA 3V 4 J ^ ^

The differentiation of the series (A) of sines will give a series in wJiich the individual

terms do not approach ; the differentiation of the scries (I?) (if cosines gives

I TT = sin X + \ sin 3 x + 1 sin .5 x + I sin 7 x + • • •

and that this is the series for 7r/4 may be verified by direct calculation. The differ-

ence of the two series (A) and (B) is a Fourier series

/(
IT 2V cosox "1 r . sin2x T

X) = -^
_ -^cosx + -^ + . .

.J

-
I

s,n x - -^-- 4- .
.

.J

(C)

which defines a function that vanishes when < x < tt but is equal to — x when

> X > — TT.

174. For discussing the convei'gence of the trigonometric series as formallj'

calculated, the sum of the first 2 ?i -|- 1 terms may be written as

Sn= ^ r"T-+ cos(<-x) + cos2(«-.r) + -{ cos?i(( - x)l/(/)c/i
TT i/O l2 J

sin (2 n -F 1) .t

= -
f

; f(t)dt = - i , -/(c + 2»)
TT «/ , . t — X. TT J -'-

sin (2 n +1)m

. t-x
I sm

2

du,
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where the first step was to coinl>ine o^. cos kx and hj^ sin kx after replacing x in the

definite integrals (16) by t to avi)id confusion, then summing by the formula of

Ex.9, p. 30, and finally changing the variable to u = l{t — x). The sum 6'„ is

therefore represented as a definite integral whose limit must be evaluated as n

becomes infinite.

Let the restriction be imposed upon /(.r) tliat it shall l)e of limited variation in

tlie interval 0<.r < 2 7r. As the function f(x) is of limited variation, it may be

regarded as the difference P{x) — X{x) of two positive limited functions which

are constantly increasing and which will be continuous wherever /(x) is continu-

ous (§ 1'27). If /(.') is discontiiuious at x — Jq, it is still true that/(x) approaches

a Unfit, which will be denoted Ijy /(./•,-, — 0) when x approaches x^ from below ; for

each of the functions P{x) and X{x) is increasing and limited and hence each

must approach a limit, and f{x) will therefore approach the difference of the limits.

In like manner /(/) will approach a limit /(.rg + 0) as x approaches x^ from above.

Furthermore as/(.r) is of linfited variation the integrals required for .S'„, «;-, hi- will

all exist and there will lie no difficulty from that source. It will now be shown that

lim.S,(x„) = lim - fl~^\f{x^, + 2 u)
'''" ^~." ^ ^^ "

du = - [/(/^ + 0)-/(j, - 0)].
n = X n = 00 TT iJ— - .sin U 2

This will show that tJie ^erica converges to tlie fundion icherever the funrtion in con-

tinuous and to the mid-point of the break ichererer the funrtion is discontinuous.

T . ^/ , T ,
sin (2)1 + 1)" ., , -, , " .';in(2)i + l)u sinA'u

Let f{x,, + 2 u)
:

'— =/(.fo + 2 u) '— = F (u) ,

sin u sm u u u

1 r"~^ „/ . sinA-'.< , 1 r'',, sintw
,

then S„ (.r„) = - , - F («) du = ~ F («) du. - tt < a < < 6 < tt.

TT J- " U TT Ja U

As fix) is of limited variation provided — ir < a ^ u ^ ti < ir. ho must /(/q + 2 u)

be of limited variation and also Fiu) = "/"/sin u. Then F{u) may be regarded as

the difference of two constantly inci-easing jiositive functions. r)r. if preferable, of

two constantly decreasing jiositixe functions : and it will be sutHcieiU to investigate

the integral of F{u) u-^ slnku under the hypothesis tliat F{u) is constantly de-

creasing. Let n be the luimber of times 'l-Tr/k is contained in b.

2 TT -in- 2 HTT

r'', sin/i)/ , r^ pi- r'l- r^' ^, , sinA^u ,

I i-('M ' -'da =
/

' + /.,i + • • + /..,_,,. + f.^,,.^ (") ^^*^

= \ + +••+ /•- - du + /.„. F{u) du.

k

As F{u} is a decreasing' function, so is u- ^F{u/k). and hence each of the integrals

whicli extends over a comi)lete jieriod 2 tt will be positive liecause tlie neirative ele-

ments are smaller than the corresponding positive elements. The iiuci:ral from

2 nir/k to li approaches zero as /,• becomes infiinte. Hence for large values of k,

r^\,, Hxwku
,

/'-/"^ ,,/(A sin w ^. i , ,

(
/* (") du > ( ^

[ )
''"• P iixed and le.ss than n.

Jo u J ij ^ k' u
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sin ku
Again,

I
F{u) du = + +

Jo U J Jit J"yTT

r(->t-\)TT /n\^\]^H ph sin ku ,
du.

Ht^Tf all llu" tt'rni.s except tlie lirst and last are iieii:ative because the negative ele-

ments of the integrals are larger than the positive elciiieiits. Hence for k large,

/^*_,
, ^ sin A-w

,
/'(-^'-i)"„/w\ sin «

, ^ ,

I
t (u) a« < I r l~ ) du, p nxeu and less than n.

t/o u Jo \k/ u

In the inequalities thus established let k become intinite. Then u/k = from

above and F{u/k) = F{+ 0). It therefore follows that

„, r*-''- '""sin H
, ,. r^'r,, ,sinA7< , „, ^^^ /•-;"" sin « ,i-(+0) fZ«<l:m

I
i (») (/m>F(+0)| du.

Althougli p is lixed. there is no limit to the size of the number at which it is fixed.

Hence the inequality may be transformed into an equality

/• '' sin A.'u z' ^ sin !< tt
liin / F(«)~—^cZ« = F(+0)

f
-l^du = - F{+0).

k=A J u Jo u 2

X^
sin A'?* /* '-^ sin H tt

F{u) du = F{- 0) I
du = F(- 0)..... u Jo u 2

Hence lim f 'F{u)^^^^ du =- [F{+ 0) + F{- 0)]
k- = -r. Ja U 2

1 /> TT — - ciii (2ji 4- }^ u 1

or lim ~ f ,.„ - fix, + 2 u) \ ^ ' du = - [f(x, + 0) +f{x, - 0)].
n = /: TT J- - SHI U 2

Hence for every point .r^ in the interval < j' < 2 tt the series converges to the

function where continuous, and to the mid-point of the break where discontinuous.

As the function /(,r) has the period 2 tt. it is natural to suppose that the con-

vei'Lience at .r = and j = 2 tt will not differ materially from that at ain^ other

value, namely, that it will be to the value I [/(+ 0) A-f{2iv— 0)]. This may be

shown '\)\ a transformation. If k is an odd integer, 2}( -|- 1.

sin (2 n -f- 1) u = sin (2 )i + I) (tt — u) = sin (2 n -|- 1) «',

r r^E-/ ,sin(2n-f r))< f'V/ .,
sin (2)i -|- 1) m'

, t^ -n-, , , ^nlim
I

F{u) r/(7 = hm I F(u) du = -F(ii = + 0).
n = -x> Jb U !( = ^ Jo U' 2

r" sin (2 )i -I- ] 1 '/ /^'^ r '" tt
Hence lim / F{u)-—! I^'-tZ« = lim | + / = -- [F(+ 0) -f- F(7r - 0)].

1 /^"' sin (2 ?i -1- 1) ?/

Now for j = 0orj = 27r the sum ,^'„ = -
I /(^ w) — du, and the limit

TT Jo sin u
will therefore be \ [/(+ 0) -|-/(2 tt — 0)] as predicted above.

The convergence may be examined more closely. In fact

,S„(x)=~ ^ -f{x + 2u)- du = -
I

F{x.u) du.
ttJ-- ii\r\u u 7rJa(.T) u
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Suppose < a ^ X ^ /3 < 2 TT so that the least possible upper limit b (x) is tt — i ^
and the pjreatest possible lower limit a (x) is —

J
a. Let n be the number of times

2 ir/k is contained in tt — ^ ^. Then for all values of x in a ^ x ^ )3,

i<(x. -) du-\-e< \ F{x.u) di
\ k/ u Jo u

i:
„ , u\ sin u

,Fix,) du + 7], p < 71,

k/ u

where e and rj are the integrals over partial periods neglected above and are uni-

formly small for all x"s of nr ^ x s ^ since F{x, w) is everywhere finite. This

shows that the number p may be cliosen uniformly for all x"s in the interval and

yet ultimately may be allowed to become infinite. If it be now assumed that f{x) is

contiiuious for a = x = /3, then F(x, ii) will be continuous and hence uniformly

continuous in (x, it) for tlie region defin^l by a ^ x ^ ^ and — ^ x ^ w s tt — | x.

Hence F(x, u/k) will converge uniformly to F{x, + 0) as A; becomes infinite. Hence

F(x, + 0) I
du + e' < / i' (x, M) du < F(x, + 0) ( du -[- y,'

Jo u Jo u Jo u

where, if 5 > is given. K may be taken so large that |e'| < 5 and |7j'| < 5 for A' > 7v
;

with a similar relation for the integration from « (x) to 0. Hence in any interval

0<a^x^/iJ<27r over which /(x) is continuous .S„(x) converges uniformly

toward its limit /(x). Over such an interval the series may be integrated term by

term. If /(x) has a finite number of discontinuities, the series may still be inte-

grated term l)y term throughout the interval ^ x ^ 2 tt because -S'„ (x) remains

always finite and limited and such discontinuities may be disregarded in integration.

EXERCISES

1. Obtain the expansions over the indicated intervals. Integrate the series.

Also discuss the differentiated series. Mal^e graphs.

/ ^ "'e-'^ 11 1 ^ 1 „ 1 ,

(a) — cos X + - cos 2 X cos 3 x -1 cos 4 x — • • •

' 2siidi7r 2 2 5 10 17
— TT t(.l -f- TT,

1 2 ? 4
+ - sinx sin 2x4- —sin 8x sin 4x -1- • • •

.

2 5 10 IT

(/3) I TT, as sine series, to tt. (7) -] tt, as cosine series, to tt,

, ^, . 4 ri cos2x cos4x cos Ox "i „
(5) smx =

1 to TT.

TT \_2 1 • 3 3-5 5-7 J

(e) cosx, as sine series, to tt, (f) ("'. as cusinc series, to tt,

(tj) X sin X, — TT to TT. {0) X cosx, — TT to TT, (l) TT -f X, — TT tO TT,

(k) s'lnOx, — TT to TT. (9 fractional, (X) cos(9x. — tt to tt. (9 fractional,

/ ^ r/ V f + TT. < X < TT. , , ^ , , f \ IT. < X < I IT, . . ._
(/x) /(x) = -^

'
• (v) f(x)=i '

,
- as a snie series. to TT,

^ ' -^ ^ ' 1^0, 7r<x<27r, ^ '
'

^ ' \ - i tt, ,' 7r<x <7r,
'

(o) — log (2 sin'
I

= cosx 4- - cos2x -f -^
cos3x 4- - cos4x -f • •

• , to tt,
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(tt) X, — ^tt to I TT, (p) sin I j, — i tt to f tt, (o-) cos I X, — I tt to
I

tt,

(r) from (o) find expansions for lop; cos |x, log versa*, log tan J j. Note that in

these cases, as in (o), the function does not remain finite, but its integral does.

2. What peculiarities occur in the trigonometric development from — tt to tt

for an odd function for which f{x) =f{Tr — x)? for an even function for which

/(/)=/(7r-/)?

3. Show that f{x)= > o^. sm with o/^. = -
|

f{x)sn\ dx is the triso-
-^ c c Jo c

nometric sine series for /(x) over the interval 0<x<c and that the function thus

defined is odd and of period 2 c. Write the corresponding results for the cosine

series and for the general Fourier series.

4. Obtain Xos. 808-812 of Feirce's Tables. Graph the sum of Xos. 809 and 810.

5. Let e (x) = /(x) — IOq— a^ cos x — • • — a,i cos nx — l\ sin x — • — b„ sin nx

be the error made by taking for/(x) the first 2 n + 1 terms of a trigonometric series.

1 /- + "

The mean value of the square of e{x) is — I [e(x)]-dx and is a function
2 TT J-TT

F(«Q, Oj, • • • . a„, 5j, • , b„) of the coefficients. Show that if this mean square

error is to be as small as possible, the constants a^, a j, •-,«„, 5^, •••, 6„ must be

precisely those given by (16) ; that is, show that (16) is equivalent to

ca^ ca^ da,, cb^ cbn

6. By using the variable X in place of x in (16) deduce the equations

/(x) =— f /(X)co^0(\-x)(?\ + -V r'7(X)cosA-(X-x)d\

= J-V r^f{\)(j^^'^-''''d\ = -^2 t^^-"' r""/(J-)e=^*'-'-''(7x
;

and hence infer /"(x) = "V (^c- ''', a^- = — | /(x)e±^-"'dx.^ 2 TT v'o

7. Without attempting rigorous analysis show formally that

/:
4>{a)da = lim [ \- <p{— ?i • A(i)A(^r + 0(— 7i + 1 • Aa)Acr H \- 4>{—\ • Aa)Acr

+ (/>(0- A<i-)A(r + </!>(l Aa)Acr + • • • + ^(n- Anr)A(r + • • •]

a\ a

c
= lim V 0(A-- A(i-)Aa- = lim V0(/^~)-

\a = ^ r = X -^ \ C /

Show /(x) =
:/7.2

/_/(x)c"''^''''"'"''^x = J^;g X/w*^"^

is the expansion of /(x) by Fourier series from — c to c. Hence mier thai.

/(x) =— f r'/(X)e^«(A--')'(ZXrfa= lim --- V f \/-(X)c^ > ^""'"dX
''
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is an expression for/(x) as a donble integral, which may be expected to hold for

all values of x. Reduce this to the form of a Fourier Integral (Ex. 15, p. 377)

/(x) = i f r' f{\)coiia{\-x)d\d(x.
TT Jo J - r.

8. Assume the possibility of expanding /(x) between — 1 and + 1 as a series of

Legeudre polynomials (Exs. 1:3-20, p. 252, Ex. 10, p.440) in the form

fix) = a^V,^{x) + aj"^ (x) + ((.P. (x) + • • • + «„P„(x) + • • • .

By the aid of Ex. 19, p. 253, determine the coefficients as a^ = i /(x) Pyt(x) dx.
2 J-i

For this expansion, form t3(x) as in Ex.5 and show that the determination of the

coefficients cti so as to give a least mean square error agrees ^^i^!l the determi-

nation here found.

9. Note that the expansion of Ex. 8 represents a function /(x) between the

limits ± 1 as a polynomial of the nth degree in x, plus a remainder. It may be

shown that precisely this polynomial of degree n gives a smaller mean scjuare error

over the interval than any other polynomial of degree n. For suppose

Un (j) = Co + c^x + • • + c„x" = h^ + bj\ + + b„}\

be any polynomial of degree n and its equivalent expansion in terms of Legeudre

polynomials. Now if thec's are .so determined that the mean value of [/('') — f/n(J")]^

is a mininuun, so are the b's, which are linear homogeneous functions of the c's.

Hence the //s nuist be identical with the *rs above. Note that whereas t'.ie Maclaurin

expansion replaces /(x) by a pcjlynomial in x whic'.i is a very good approximation

near x = 0, the Legeudre expansion replaces /{x) by a polynomial which is the

best expansion when the whole interval from — 1 to + 1 is considered.

10. Compute (cf. Ex. 17, p. 252) the polynomials 7\ = x, P. = - ;i + | x^,

P _ -1 r 4- 5 r3 P — » 15 ,2 i 3 "> /.i p _ ijs .» 3 5 j.3 i 6 3 ^.5'3 — 2 ' 2 ' 4 — K 1 ' H ^ ."» — 8 4 "^' T^ g "^ •

r^ 2 / (') \ 2
Compute

I
X' sinTrxfZx = 0, — I 1 I. 0. - .0 when I = 4, 3, 2, 1.0. Hence show

that the polynonual of the f(jurlli degree which best reiiresents sin ttx from —

1

to + 1 reduces to degree three, and is

sin TTX = -^ X - - C- = l] i- X-' - ^A = 2.0i)x - 2.80x3.
TT TT \7r-

Show that the mean .sijuare error is 0.004 and compare with that due to Maclaurin's

expansion if tlie term in x'* is retained or if tlie term in x'^ is retained.

11. Expand .sin
^
ttx = ^'] I\ - ^''^

P-^- - \] l\ = 1.55:!x - 0.5()2.r3.

2 TT- TT- \7r- /

12. Expand from — 1- to +1, as far as indit'aled, these functions :

((f) cos TTX to P^, (/3) f- t<> /'.. (7)log(l + .r) toP^,

(5) \^l - X- to P^, (e) cos-lx to P,. (f) tan-'x toP-,

(^) -^_ tor,, (^) J=. toP„ (0^^= toPg.
\ 1 + X ^ 1 — ./- Vl + x^

AVhat simplilications occur if /'(x) is odd or if it is even ?
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175. The Theta functions. It has been seen that a function with the

period 2 ir niay be expanded into a trigonometric series ; that if the

function is ochl, tlie series contains only sines ; and if, furthermore,

tlie function is symmetric with res])ect to x — \7r, the odd multiples

of the angle will alone occur. In this case let

/(.r) = 2 \_<i^^ sin X — a^ sin 3 a' H + (- 1)" a„ sin (2n + l)x ^ ].

As 2 sin nx = — i (e'"' — e~""), the series may be written

fix) =2^ (- l)"a.„ sin (2 r. + l).^" = - ^X (- l)^^e(^" + 1)"', «_„ = ./„_,.

- -A

This exponential form is very convenient for many purposes. Let Ip

be added to x. The general term of the series is then

Hence if the coefficients of the series satisfy a^^_-^e~""P — c/„, the new
general term is identical Avith the succeeding term in the given series

multiplied b}^ — ife'-'-". Hence

/(.« + Ip) = - e^e-^- /(./•) if a,_, = ay^-i'.

The recurrent relation between the coefficients will determine them

in terms of a^. Eor let y = e~f. Then

The new relation on the coefficients is thus (;ompatiV)le with the original

relation ((_j^ = «„_i. If a^ = q*, the series thus becomes

/(.r) = 2y'sina--2-'/sin3a;H \-(~\)"2qi^-"^'^''shi(2n + l)x + ,

f(x + 2 TT) =f(x), f{x + tt) = -/(,r), /(,. + Ip) = - q-h^-'^'f(.r).

The function thus dehned formally has im})ortant properties.

In the first place it is important to discuss the convergence of the

series. Apply the test ratio to the exponential form.

"« + i/"« = '/V- v^_„ = (\

,1 il .j~ 'Ixi

Eor any x this ratio will approach the limit if y is numerically less

than 1. Hence the series converges for all values of x provided \q\<. 1-

Moreover if \x\ < }^(1, the absolute value of the ratio is less than \qf"e''',

Avhich approaches as n becomes infinite. The terms of the series

tlierefore ultimately become less than those of any assigned geometric
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series. This establishes the uniform convergence and consequently the

continuity of. f{x) for all real or complex values of ./. As the series for

/' (x) may be treated similarly, the function lias a continuous derivati\e

and is everywhere analytic.

By a change of variable and notation let

^00=/(^;V y =
'^'"'^

(19)

r. 1 TT'/ r, '^ 3 ITU , 2^=. . 5 TTU ,^^
//(») = 2y* sni--—- 2^5 Sin ---r + -*'/

* «i" 77— • (20)

The function Il(jt), called eta of u, has therefoi-e the pro])erties

II(h + 2 K) = - H(u), H(u + 2 iK') = - 7-ir^"'//(^/), (21)

inrr

H(u + 2 mK + 2 InK') = (— l)"' + "'y-"e~"^^" "//(?/), 7», ?i integers.

The quantities 2 A' and 2 //v ' are called the periods of the function. They

are not true periods in tlie sense that 2 tt is a period off(x) : for Avhen

2 K is added to v, the function does not return to its original value, but

is changed in sign ; and Avhen 2 IK' is added to u, the function takes

the multiplier written above.

Three new functions will be formed by adding to u the quantity A'

or iK' or K -\- IK', that is, the halfperiods, and niaking slight changes

suggested by the results. First let H.^{i() = H(i( -j- K). By substitution

in the series (20),

H^ {u) = 2 y ^" cos— + 2 7? cos -y-^ + 2 V ^ cos— .- + • •
. ( 22

)

By using the properties of //, corresponding properties of 7/^.

H^0( + 2 A) = - //j U). 11^ („ + 2 iK') = + 'r''~ " "JI, (<'), (-'^)

are found. Second let iK' be added to (/ in 11(1'}. Then

is the general term in the exponential development of Ihu + iK')

apart from the' coctticicnt ± /. Hence

H{,i + iK') = / y(- i)Y'""^r^A-",;-"-'A-"

h~''-'^'"t. (-1)7
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1 *^ CO q ni

Let ©(?/) = - l'/e^'"H{u + iA'') = ^ (- Ij^/'e'""^'" •

The development of ©(/<) and further properties are evidently

(u) = 1 - 2 y cos -^^ + 2 y* cos y^ - 2 ./ cos y^ + • •
•

, (24)

®(u + 2K) = &(h), ®(u-\-2 iK') = -q-h~'^"®(H). (25)

Finally instead of adding K + IK' to ?^ in H (ii), add A' in (^/).

0,(^0 = 1 + 2 ./ cos YY + 2 7^ cos —- + 2 ./ cos y^ + • • •
, (26)

0^(^. + 2 A) = 0/^/), 0/« + 2 .-A') = + y- VX^« 0^(,<). (27)

For a tabulation of properties of the four functions see Ex. 1 below.

176. As H {u) vanishes for u = and is reproduced except for a

finite multiplier when 2 mK + 2 nlK' is added to w, the table

H (xi) = for u = 2 ;«A + 2 nlK',

H^(u) = for u = (2 m. + 1) AT + 2 nlK',

(?<) = for « = 2 /y^A + (2 M + 1) tA',

®^(u) ^ for w = (2 m + 1) A + (2 7i + 1) iK',

contains the known vanishing points of the four functions. Now it is

possible to form infinite products which vanish for these values. From
such products it may be seen that the functions have no other vanish-

ing points. ^Moreover the products themselves are useful.

It will be most convenient to use the function ®^{<()- Now

eK^ ' = — y<-«+l)j — X < ?i < CC .

Hence e^" + ry-(-"+i) and g-^" + .y-(2»+i), n ^ 0,

are two expressions of which the second vanishes for all the roots of

0|(//) for which n ^ 0, and the first for all roots with n < 0. Hence

TT = C fl' (l + rf+^e'^") (l + r/"+ie-^)

is an infinite product which vanishes for all the roots of 0j(«)- The

product is readily seen to converge absolutely and uniformly. In par-

ticular it does not diverge to and consequently has no other roots

than those of ®^(i() above given. It remains to show that the product

is identical with @^(t() with a proper determination of C.
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in

Let 6j(ii) be written in exponential form as follows, with z = e^ :

0(2) = e,{u) = 1 + q (^z + -^ + q* (^Z^ + -^ + . . . + q-- /^^ + i\ + . .
.

,

^P{Z) = C'-1TT(") = (1 + (1Z){1 + q^z){l + q^z)- • (1 + q"->^-^z)-

A direct substitution will show that {q-z) = ry- 1^:- 1^ (z) and \(/ {q-z) = q-'^z-'^^ {z).

In fact this substitution is equivalent to replacing u by u + 2 jA'' in Gi. Next con-

sider the first 2 ?i terms of \p [z) written above, and let this finite product be i/'„(2).

Then by substitution

((/« + qZ)-^„{qh) = (1 + r/« + l2)^„(r).

Now i/'n (2) is reciprocal in 2 in such a way that, if multiplied out,

V'n (2) = «o + «i(2; + ;) + "•.. (2' + ;^) + • • • + ««(2" + ^\ «« = qn\

n n

Then (ry2 n + ,^2)^ (, .
(,/2,v-- + ,/- :;

/.-
') = (1 + q"- " + 12) 2 r(, (2' + 2-

'),

and the expansion and equation of coefficients of z' aives the relation

"<=<'»•- 1^ _ ., ,^ "!• "l = "ij~JZi

/: = U

From (1,1 = (j"', "0 — " """ — > "t

/(•= 1

TT (1-7-^) TT (1-'/-^)
A = 1 1=1

Now if n be allowed to become infinite, each coefficient (ii approaches the limit

lim Ui = ^ . C = fr (1 - 7-
«) = (1 - 7-) (1 - 7') (1 - ^y') • • • •

1

Hence GJm) = TT d - 7-") TT U + 7"" + ^e^ U + 7-" + 't'
' A

1

provided the limit of i/',, (2) may be fdund by taking the series of the limits of the

terms. The justification of tins proi'css would be similar to that of § 171.

TIh' products for 0. H^, If may Lo obtained from tliat for 0^ liy siili-

tractiiig K, IK', K -f- iK' from n and making the needful sliglit altera-

tions to conform with the deiinition.s. The products may l)e converted

into trigonometric form Ity multi])lying. Then

n{u) = c 2 v'-
sm

J-f.
fr (1 - 2 r" ^'<« ?7^'' + ''") i^^)

1 K 1 \
' 2 K
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H^i,) = C 2 >/^ cos ^^ TT ("l + 2 r'^ cos |-^ + >A, (29)

0(^0 = C fr (l - 2 ./" + ^ cos 1^ + ./« +
^), (30)

©X^/) = C fr ("l + 2 ./^ « +1 cos 1^' + '/ " + ^

V

(31)

C = TT (1 - y
^
") = (1 - >f) (1 - ,f) (1 _ ./) . .

.

,

(32)

//^O) = r 2 y ^ fr (1 + v^ " ;)^
(0) = r TT ( 1 - <f " + 'y,

1

//'(O) = C 2 .y^ ^. IT (1 - r"f, ®,(0) =rTl (1 + y-^" + iy^.

Tilt' value of If'(O) is found by dividing //('') by ?/ and letting u = 0.

Then
II '(0) = ^^, 7/^0; 0(0) 0^(0; (33)

follows by direct substitution and cancellation or condjination.

177. Other functions may Ije built from the theta functions. Let

' &{K) 0^0)' ' 0,(0/ \A- //,(0)' ^" ^

1 //(//) IP //,(//) ^ /7^0i''") ,.>-
sn (< = —^ —7—

J

''i^ " = A ; ' dn ^/ = VA- —
^ (3.))

The functions sn i/, en ;/, d]i u are called elliptic functions* of i>. As 7/

is the only odd theta function, sn i' is odd but en u and dn u are even.

^1// fl/ri-r fii/trftn/)s lid re tiro octiiiil jh'i'IoiIs in the same sense that sin./'

and cos ./ have the }»eriod 2 tt. Thus dn // has the })criods 2 7v and 4 IK'

liy (25), (27): and sn u has the jieriods 4 K and 2 /7v' by (~-i), (21).

That en u has 4 7v and 2 7v + 2 IK' as jieriods is also easily verified.

The values (if f Avhicli make the functions vanish are known: they are

those which make the numerators vanish. In like manner the values

of u for which the three functions Ijecome infinite are the known roots

of ©((/).

If q is known, the values of vT and vZ'' may be found from their

definitions. (.'(Uiversely the ex})ression for vA-',

^^' - ^W) -l + 2y + 2,^ + 2,«+...' ^^^^

* The study of the elliptic fuuctious is continued in Chapter XIX.
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is readily solved for q by reversion. If powers of q higher than the

first are neglected, the approximate value of q is found by solution, as

1 1 _ VA^ _ q + / + -

2l+V/.-' 1 --''/ +
q-2q'-{-bq^ +

1 1 - A/.' 2 /I - Va^Y 15 /I - V;^'V
Hence q — 7.

^ + 7?,
?=

) + "^ 1= I + • • ("J

is the series for q. For values of A-' near 1 this series converges with

great rapidity; in fact if A-''^ ^ \, k' > 0.7, "V^ > 0.82, the second term

of the expansion amounts to less than 1/10^ and may l)e disregarded

in work involving four or iive figures. The first two terms here given

are suflBcient for eleven figures.

Let /> denote any one of the four theta series //, H^, 0, 0^. Then

^^(U) = <{>(,) = ^ />„,'', Z=:C-K" (38)

may be taken as the form of develo])nient of >'/-; this is merely tlie

Fourier series for a function with period 2 A'. But all the theta func-

tions take the same multiplier, except for sign, when 2 iK' is added to u;

hence the squares of the functions take the same multiplier, and in par-

ticular 4>(q'^) — q~-z~-<f>(z). Apply this relation.

It then is seen that a recuri-cut I'clation between the coefficients is found

which will deternnne all the evi'U coefticients in terms of //^^ and all the

odd in terms of b^. Hence

'^-('0 = h^ (-) + ^^0), f>,, ^. constants, (38')

is the expansion of any ''/'- or of any function which may be develo})ed

as (38) and satisfies <ji(q'z) = q~-r:~-(f)(x). ^Moreover $ and ^ are iden-

tical for all such functions, and the only difference is in the values of

the constants A^ fi^.

As any three tlieta functions satisfy (38') with different values of the

constants, the functions $ and ^ may l)e eliminated and

n''}{(n) + /3''K:(") + r'^iOn = o,

where a, /?, y are constants. In words, the squares of any three theta

functions satisfy a linear hdinugeneous ecjuation with constant coeffi-

cients. The constants may be determined l)y assigning ]»articular values

to the argument //. For example, take //. 11^. 0. Then*

For brevity the pareuthesis abuut the argiuiieuts uf a fuuetion will frequently be

omitted.
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aH\it) + ftHf (u) = y®-(if), y8i7f0 = y©-0, nll-R =. y©-A',

0-A' H-(>') 0-'O H{(u) , , , ,

/rtC- 0Vi +
7/fo -0% = 1'

"' '" " + ' « = 1- (39)

By treating //, 0^, in a similar manner may be proved

//- sn- If + dn-u = 1 and Jr + /.'- = 1. (40)

The function >'j(i/)i'j(i/ — a), -where a is a constant, satisfies the rela-

tion <j>(<fz) = rj~-z~"C<j>(z) if log C = irra/K. Eeasoning like that used

for treating {^- then shows that between any three such expressions

there is a linear relation. Hence

aH(ii)If(u - a) + /3nju)II^(H - ») = y&(,/)&(t( - a),

n = 0, /?//j (0) //j (^f) = y0 (0; {n),

V = K, all^ (0) H^ (a) = y©^ (0) ©, (a),

&0®,0(d,<iH(ii)H(u - (i) ©-0 H,(u)II^(ii — (i) _ ©0^ Il^a

ir^O@a@(it)&(u - a) llfO (//)©(;/ - a) ~ II^^ '

or dn (I sn u sn (u — c) + en ti en (a — «/) = en <(. (41 j

In this relation re])lace o Ijy — r. Then there ivsults

en i/ cii(i( + r) + sn u dn r sn (/i -\- r) = en r,

or en v en (u + r) -f sn v dn u sn (k + '") = en «,

en- 1/ — en- (• = sn'- v — sn'- tr , ,^^
and sn(^; + r) = — , (42)

sn r en » dn << — sn « en r dn (•

by symmetry and by solution. The fraction niay lie reduced by multiply-

ing numerator and denominator by the denominator -with the middle

sign changed, and by noting that

sn'- c en- u dir ti — sn'- tt eir c dn'- r = (sn- v — sn'- (/ ) ( 1 — /.•'- sn- ii sn'- r).

siw/ en r dn r -f- sn r en /? diw^ ,,„,
Then sn (>> + r) = ~~ 3 ' (43)^

1 — Jr H\r u sn- r ^ ^

, ,
sn I) en r dn r — sn c en ^/ dn n

and sn(» — r) = ~ ——

,

^ )

1 — /.-sn- ^^ sn- /•

1 ^ ^ ^
2sn r en « dn k ....

and sn(*/ + r) — sn((/ — r) = -;—:, ^^ • (44)
1 — A-sn- «sn- /•

^

The last result may be used to differentiate sn n. For

sn(// + \n) — sn K _ sn i- A^^ cnf/^ + I \ii)({\\(ii + i^ A/')

A/^
~

\ \ii 1 — /.•'- sn- 1 \u sn'-(// + \\ii)'

(J
, ,

. sn //
, , _-— sn ;/ = a on u dn ?/, a = lini • (io)
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Here g is called the mult'qji'wr. By definition of sn u and by (33)

^"i/,(0) 0(0) ~2A'®^^^> ^^-"^

The periods 2, K, 2iK' have been independent up to this point. It will,

however, be a convenience to have g — 1 and thus simplify the formula

for differentiating sn //. Hence let

g = l, ^^ = ©,(0) = l + 2y + 2,/ + ---. (46)

Now of the five quantities K, K', k, k', q only one is independent.

If q is known, then A:' and K may be computed by (36), (46) ; /. is de-

termined by 1^' + /.:" = 1, and K' by ttK'/K = - log 7 of (19). If, on the

other hand, /.;' is given, q may be computed l)y (37) and then tlie other

quantities may be deternuned as before.

EXERCISES

in iiT

_ 1 « u
1. With the notations X = f/ *e -^ ,/j. = q-'^e ^ establish:

//(- u)=- II{u), U{u + -A K)=- JI{u), II{u + 2iK')=- ij.TI{u),

TI^ (- u) = + i/j (»), H^ {u + -2 K) = - 7fj («), ir^ {u + 2 IK') = + f,l[^ (h),

e(-M) = +e(M), Q{u + 2K) = + e{u), e{u + 2iK') = - ij.e{u),

ei(-M) = +ei(M), Q^{u+2K) = +e^{ii), Q^{u + 2 1K')=+ ^Q^{u),

II {u + K) = + 11^ («), // (» + IK') = /xe (m), II {u + K + iK') = + XGi (h),

II^{u + A') =- II (u), II ^{u + IK') = + Xei(u), II^{u+ K + iK') =— iXG(w),

e (u + K) = + Oj (it). {u + iK') = i\// (m), e (({ + A' + iK') = + X/fj («),

Bj ((i + A) = + e (w), Bj ((i + iK') = + \II^ {u), Bj (u + K + iK') = + i\II{u).

2. Show that if u is real and q ^ jl, tlie tirst two trigononu'tric terms in tlie

series for //, 7/^, B, Bj, give four-i)laee aecuraey. Sliow that with q ^ 0.1 tliese

terms give about six-place accuracy.

3. I'se _

--'
- =

(I
sin n- + q- sin 2(1- + q^ sin 8 tr -f-

• • • to prove
1 — 2 r/ cos a' -f (/-

t.

TTK , . 2 -RH ,, . 3 TTU \
f/sm - r/- sm - - (/•* sm \

A' A K

4. I'rovt! tlie double periodicity of en u and sliow that :

•I' "
, . ,.,s 1

, ,. . ,^,, dn u
sn (» 4- A ) = — , sn (11 + th ) = , sn (h + J\ + th )

=
,

dn u k sn a k en /(

— A'' sn »
, ,,,,^ —ii\nu

, ,, .,.,, — ik'
cn(« -f- A) = - - ' , cn(M. -f- t/v )

=
, cn(u + Jv -f <A )

=
,

dn H k sn « A' en »

1 / r- A;' , , ._,,„ .cnii , , ,, . „,, .,,sn(f
an (h -f a ) = - , dn (h 4- <7v )— — i , dn (m -\- K \- %K) — ik

dn M sn M en u
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5. Tabulate the values of sn u, en u, tin u at 0, A', iK', K + IK'.

6. Compute k' and k- for q = \ and q = 0.1 . Hence show that two trigononietric

terms in the theta series give four-place accuracy if k' ^ l.

- ,,
, , en u en r — sn u sn w dn li dn v

7. Prove en (« + r) = —

and dn (w + v) =

1 — A;2 sn^ u sn^ v

dn zt dn v — k!^ sn w sn v en it en u

1 — k^ sn- u sn^ v

8. Prove — en « = — snudnzt, — {\\\u =— k'^^nucwii (/ = 1.
(Ill du

9. Prove sn-iw := f —-^ from (45) with g = 1.
du

V(l-u2)(l-A;2u2)

10. If r/ = 1, compute k, k', K, K\ for q = 0.1 and q = 0.01.

11. If (/ = 1, compute k', q, K, K\ for A:'- = |, f, ^.

12. In Exs. 10, 11 write the trigonometric expressions which give sn u, en u, dn u
with four-place accuracy.

13. Find sn 2 ii, en 2 «, dn 2 ?/, and hence sn }, u, en I u, dn ?, w, and show

snJir = (l+ A-')^2, cn-|Jv= VA'(l+/c')-i, dn | A' = VP.

14. Prove — A I sn m dn = log(du u + ken u) ; also

e-^(0)7/(M + ,,^ //(((_«) = e2(r()//2(M)- //2(rt)e2(«),

02 (0) e (W + «) e {« - a) = 92 («) 02 {<() - 7/2 (i<) //2 ((,) .



CHAPTER XVIII

FUNCTIONS OF A COMPLEX VARIABLE

178. General theorems. The (•omplex function it (x, y) + iv (.r, ?/),

where ?/ {x, //) and r (./, _//) are single valued real functions continuous

and dift'erentiable })artially with respect to a- and //, has been defined

as a funcjtion of the complex variable z = ,r + HI '^^'^'sn and only when

the relations ?'^ = r'^ and ^i',, = — '"', are satisfied (§73). In this case

the function has a derivative with res})ect to z which is independent

of the way in which A,v ap})roaches the limit zero. Let iv — f{z) be a

function of a complex variable. Owing to the existence of the deriva-

tive the function is necessarily continuous, that is, if e is an arbitrarily

small positive number, a number 8 may be found so small that

|/C^)-/C^o)l<^ ^^'I'en \z-z^\<^, (1)

and nioi'cover this relation holds uniformly for all points z^ of the

region over which the function is defined, provided the region includes

its bounding curve (see Ex. 3, p. 92).

It is further assumed that the diu'ivatives u'.,., ?/^, r\., v\^ are continuous

and that therefore the derivative /''(".) is continuous.* The function

is then said to be an tinaliiflc funrfion (§ 126). All the functions of a

complex variable here to l)e dealt Avith are analytic in general, although

they may be alloAved to fail of being analytic at certain specified points

called sinr/ii/iir ]/oi')ifs. The adjective "analytic" may therefore usually

be omitted. The equations

if =/(-) ('! " = "(•'' !/)^ >' = '(•'? //)

define a transformation of the .'•//-] )lane into the //r-])lane, oi', V)i'iefer, of

the x-plane into the vr-plane; to each point of the former corresponds

one and only one point of the latter (§ 63). If the Jacobian

* It may bo jji-ovcd tliat, in tlic case of fuiictiims of a (•omi)lex vai'iablf, tlu^

contiimity of the (U'i'ivati\t' follows from its existeiii'e, l)ut the proof will not l)e

yiveii here.

47«;
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of the transformation does not vanish at a point z^, the equations may
be solved in the neighborhood of that poinly, and hence to each point

of the second plane corresponds only one of the first:

x = x(u,r),
i/
= i/(u,v) or ^ = 0(m-).

Therefore it is seen that if ic = f(z) is analytic in the neiglihorJiood

of z = z^, and if the dei'icativef'(z^) does not vanish, the function may he

solved as z = (f>(i''), where ^ is the inverse function of /, and is like-

wise analytic in the neighborhood of the point w — n-^. It may readily

be shown that, as in the case of real functions, the derivatives /'("-) and

4>'(t''') ^i"6 reciprocals. Moreover, it may be seen that the transformo-

tion is confonnal, that is, that the angle between any two curves is

unchanged by the transformation (§ 63). For consider the increments

As Az and Aw are the chords of the curves before and after transforma-

tion, the geometrical interpretation of the equation, apart from the infin-

itesimal ^, is that the chords Az are magnified in the ratio \f'(z^)\ to 1

and turned through the angle oi f'(z^) to obtain the chords Air (§ 72).

In the limit it follows that the tangents to the ^r-curves are inclined at

an angle equal to the angle of the corresponding ^.-curves plus the angle

of /'(.tg). The angle between two curves is therefore unchanged.

The existence of an inverse function and of the geometric interpre-

tation of the transformation as conformal both become illusory at points

for which the derivative /'(.r) vanishes. Points Avhere /' (,^) = are

called cvitical points of the function (§ 183).

It has further been seen that the integral of a function wliich is ana-

lytic over any simply connected region is independent of the path and

is zero around any closed path (§ 124) ; if the region be not simply con-

nected but the function is analytic, the integral about any closed path

which may be shrunk to nothing is zero and the integrals about any

two closed paths which may be shrunk into each other are equal (§ 125).

Purthermore Cauchy's result that the value

-^ ^ ^ 2 7ri t~zJo
dt (3)

of a function, which is analytic upon and within a closed path, may be

found by integration around the path has been derived (§ 126). By a

transformation the Taylor development of the function has been found

whether in the finite form with a remainder (§ 126) or as an infinite

series (§ 167). It has also been seen that any infinite power series
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which converges is differentiable and hence defines an analytic function

within its circle of convei'gence (§ 166).

It has also been shown that the sum, difference, product, and quotient

of any two functions will be analytic for all points at which Ijoth func-

tions are analytic, except at the points at which the denominator, in the

case of a quotient, may vanish (Ex. 9, p. 163). The result is evidently

extensible to the case of any rational function of any number of analytic

functions.

From the possibility of development in series follows that {/ ttro

functions (f re analytic in the neirjlthorlinod of a point and liai-e identical

values vpon anij curve draa-n throurjli that point, or even U])on any set

of points which approach that point as a limit, then tlie functions are

identicallij equal witliin their common circle of eonvercjence and over all

regio7is rvhich can he reached hij (§ 169) continidng tit e functions anali/ti-

calbj. The reason is that a set of points converging to a limiting point

is all that is needed to prove that two power series are identical |)ro-

vided they have identical values over the set of points (Ex. 9, \). 439).

This theorem is of great importance because it shows that if a function

is defined for a dense set of real values, any one extension of the defi-

nition, which yields a function that is analytic, for those values and for

complex values in their vicinity, must be equivalent to any other such

extension. It is also useful in discussing the principle of permanence of

form : for if the two sides of an equation are identical for a set of

values which possess a point of condensation, say. for all real rational

values in a given interval, and if each side is an analytic function, then

the e(|uation must ])e true for all values which may be reached by ana-

lytic continuation.

For example, the e(iuation sin ,r — cnsi^ tt — ,'•) is known to liold for the vahies

= ,r = I TV. Moreover the functions sin z and cos z are analytic for all values of z

whether the detinition l;)e u'iven as in § 74 or whether the functions be considered

as defined Ijy their jtower series. Hence the equation nuist liold for all real or

complex values of /. In like manner from the eipiation co' = v^-n whieh holds

for real rational ^'Xponents. the e(iuation t~e"' — c~ + "' holdiiiij,- for all i-eal ami im-

a^'inary exponents may he deduced. For if // he <,dven any rational value, the

functions of .c <m each side (jf the sii^n are analytic for all \alues of ,r real or com-

plex, as may he i^^'i'n most easily by consideriuir the exponenlial as delined by its

l)Ower series. Hence tlie e(juation holds when x has any complex value. Next

consider .f as fixed at any desired complex value ami h-t tlie two sides be con-

sidered as functions of // regarded as complex. Jt f(.illows that the enuatiou nuist

hold for any value of //. The CMiuation is therefore true for any value of z and v.

179. Suppose that a function is analytic in all ]i()ints of a region ex-

ce})t at some oiu' point within tlie region, and let it be assumed that
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the function ceases to be analytic at that point because it ceases to be

continuous. The discontinuity may be either finite or infinite. In case

the discontinuity is finite h>t \f(z)\< G in the neighborhood of the

point '.' = (I of discontinuity. Cut the point out

with a small circle and apply Cauchy's Integral to

a ring surrounding the point. The integral is appli-

cable because at all points on and within the ring

the function is analytic. If the small circle be

replaced by a smaller circle into which it may be

shrunk, the value of the integral will not be changed.

A^ is-rs 1 2

Xow the integral about y,- Avhich is constant can be made as small

as desired l)y taking the circle small enough; for \f{^)\<. G and

\t — ~~\^\o — z\ — 7';, where r,- is the radius of the cii'cle y,- and hence

the integral is less than 2 7ry/''/[|,v — r/ 1
— r,-]. As the integral is con-

stant, it must therefore be and may be omitted. The remaining inte-

gral about (\ however, defines a function Avhich is analytic at z = a.

Hence if /"(") be chosen as defined by this integral instead of the

original definition, the discontinuity disappears. Finite disrontinuifirs

niai/ f]i('i'>'f())-(' he considered as due to bad judgment in defining a

function (it some point and may therefore be disregarded.

In the case of infinite discontinuities, the function may eitlier become

infinite for oil met//o(/s of (ijijiroaeJi to the point of discontiiniity, or it

may become infnite for some metJiods of approueh, and. reuia in finite for

otiii'r luet/iods. In the first case the function is said to have a jjole at

the ])oint -' = a of discontinuity; in the second case it is said to have

an essential singuiariti/. In the case of a pole consider the reciprocal

function

F(z) =m z ^ a, F{a) = 0.

The function F(z) is analytic at all points near z = n. and remains

finite, in fact approaches 0, as z approaches a. As F{a') = 0, it is seen

tliat /•'(-) ^^'^^ ^^'^ finite discontini;ity at « = a and is analytic also at

z = a. Hence the Taylor ex})ansion

F{^ = a,lz - ay- 4- a^,^^^{z - af-^^ -f • •

is pro])er. If E denotes a function neither zero nor infinite at z = a,

the followimj- transformations mav be made.
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f(rA = _J---i^ + ^'—'^^ + + -^^

In other words, a function which has a pole at x = ^ inay l)e Avritten

as the product of some i)Ower iz — r/)"^'" by an /^-function; and as the

7s-function may be expanded, the function may be expanded into a

power series which contains a certain number of negative powers of

{z — d'). The ardor m of the highest ncr/atlre power is called tlie order

of the pole. Compare Ex. 5, p. 449.

If the function /'(,-.') be integrated around a closed curve lying within

the circle of convergence of the series C^ + C^{z — ") + ••, then

r r r dz r r ,dz

Jo

or ffiz)dz = 2 7rlC_,; (4)
Jo

for the first m — 1 terms may be integrated and vanish, the term

C_i/(,v — a) leads to the logarithm 6'_i log (.s — r/) which is multiple

valued and takes on the increment 2irlC_-^, and the last term vanishes

because it is the integral of an analytic function. The total value of

the integral of f(z) about a small circuit surrounding a pole is there-

fore 2 7rlC_^. The vahie of the integral about any larger circuit Avithin

which tlie function is analytic except at z = a and which may be shrunk

into the small circuit, will also be the same (piantity. The coefficient

C_i of the term (,^ — ff)~^ is called the residue of the jjo/e ; it cannot

vanish if the pole is of the first order, but may if the ])ole is of higher

order.

The discussion of the behavior of a function f(z) when ,-.' becomes

infinite may be carried on by making a transformation. Let

z' = l,
z = l, f(z)=f(^ = F(z'). (5)

To large values of z cori'espond small values of ,-.;'; if f(z) is analytic

for all large values of z, then F(z') will be analytic for values of z' near

the origin. At z' = the function F(z') may not be defined T)y (5) ; but

if F(z') remains finite for small values of z', a definition may be given

so that it is analytic also at z' — 0. In this case F(0) is said to be the
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value of f(z) when z is infinite and the notation /(o)) = /"(O) may
be used. If F(z') does not remain finite but has a poh' at x' = 0, tlien

f{z) is said to have a pole of the same order at .-.' = oc; and if F{z^)

has an essential singularity at ':' = 0, then /(.--') is said to have an essen-

tial singidarity at 2; = od. Clearly if f{z) has a pole at ,v = a>, the value

of /"(-) must become indefinitely great no matter how z becomes infi-

nite; but if /('-') has an essential singularity at ?; = x, there will be

some ways in which z may become infinite so that f(z) remains finite,

while there are other ways so that f(z) becomes iiifinite.

Strictly speaking there is no point of the ?.'-plane which corresponds

to z' = 0. Nevertheless it is convenient to speak as if there were such

a point, to call it tJie jmbit at infinit)/, and to designate it as z = oc. If

then F(z') is analytic for ^' = so that /'(••) ^^''^J ^^ ^^^^ ^^ ^6 analytic

at infinity, the expansions

F{z') =C,+ C^ -f C^^ + • • -f C,,^'" -f- • • • =

(\ r,, (

'

are valid ; the function ,/'(-') ^^''^^ been cx/xindcil ahoiit the jioint at lnp'?i-

ity Into a desrending power series in z, and the series will converge for

all points z outside a circle |.v] = U. For a jmjIc of order w at infinity

/(^) = C_,„z'" + ('-,„, ^r:'"-' + . .

. + C_,z + C^ + ^ + ^ + • • •

.

Simply because it is convenient to introduce tlie conce])t of the point

at infinity for the reason that in many ways the totality of large values

for z does not differ from the totality of values in the neighborhood of

a finite point, it should not be inferred that the point at infinity has

all the pro})erties of finite points.

EXERCISES

1. Discuss sin (x + y) = sin x cos y + vos x sin y for permanence of form.

2. If f{z) lias an essential singnlarity at z = «, show that l/f{z) has an essential

sinp:ularity at z = a. Hence infer that there is some method of approach to 2 = a

such that f{z) = 0.

3. By treating f{z) — c and [f{z) — c]-i show that at an essential singularity a

function may be made to approach any assigned value c by a suitable method of

approaching the singular point z = n.

4. Find the order of the poles of these functions at the origin :

(a) cot 2, (/3) csc2rlng(l— 2), (7) 2(sin z — tan z)-i.
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5. Show that if /(z) vanishes at z = a once or n times, the <jnotient f'{z)/f{z) lias

the residue 1 or n. Show that if f{z) has a i)ole of tlie ?ntii order at z = «, tiie

(juotient has the residue — m.

6. From Ex. 5 prove tlie important tlieorem that : If f{z) is analytic and does

not vanish upon a closed curve and has no siniiidarities otiier than poles within

the ci;rve, then

— r
.nz)

o f{z)
dz = ?(j + v., + 7/A-

— '", — 111; mi — N — M,

where N is the total miml)er of roots of f{z) = within the curve and M is the

sum of the orders of the i)oles.

7. Apxjly Ex. to \/F{z) to show that a polynomial P {z) of the ?ith order has

just n roots within a sufficiently lari^e curve.

8. Trove that e« caimot vanish for any finite value of z.

9. Consider the residue of zf'{z)/f{z) at a ])()!(' or vanishing,'' point of /(z). In

I)articular prove that if /(z) is analytic and does not vanish upon a closed curve

and has no sint^ularities but poles within the curve, then

] /> zf'(A
-—: -^-r— dz = riAU + «.,«, + • • • + iU"/[- — "'i''i

- mj)., ?/*;/;,,

2 7rt Jq f{z)

where a^, a,, • • • , a^. and ?;j, r/o, ^ rik are the positions and orders of the roots,

and />j, />.,, • • • , hi and ///,. »/.,, • , rni of the poles of /(z).

10. Trove that OjCz). p. 4()!», has only one root within a rectanii'le 2 /v by 2 IK'.

11. State the beha\ioi' (analytic, pole, or essential sMiuularity) at z = oo for :

(a) z^ + 2z. (/3) r>', (7) z/(l + z), (5) z/{z^ + 1).

12. Show that if /(z) = (z - aY-E{z) witli - 1 < A- < 0, the inte.ural of /(z) about

an infinitesimal t'ontour sui'roundin^- z = rr is infinitesimal. What analogous theo-

rem holds foi' an infinite contour '?

180. Characterization of some functions. The study of the limita-

tions whicli arc ])tit ii])oii a fum-tioii when certain of its properties are

known is important. For example, n fiincflon irhlch is (indh/fir. for (ill

raliti's of z hicl iid'ind filso z = co is <i consfunf. To sliow this, note that

as the ftmction nowlicre liccomes infinite, [./'("-)| < '^•- Consider tlie dif-

ference /'('•„) — ,/'(**) hctwecn the value at any ])oint z = z^^ and at the

origin. Take a. circle conceiiti'ic with z = and of radius Jl > |,-.'^|.

Then by Caucliy's Inteoral

//^ ) _ /Y0)|< ^^ '

''

A^d-fm

R -I.v„

By taking /' large enough the difference, which is constant, may l)e

made as small as desired and henc*; must he zero; henc(> f(z) — f(0).
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Any rational function /(,-) = P(s)/(2(.t), where P{z) and Q{z) are

polynomials in z and may be assumed to be devoid of common factors,

can have as singularities merely poles. There will be a pole at each

point at which the denominator vanishes; and if the degree of the

numerator exceeds that of the denominator, there will be a pole at in-

finity of order equal to the difference of those degrees. Conversely it

may be shown that any function u-h'ich has no other singularity than a

pole of the mtli order at infinity must he a jjolynomial of the vitJi order

;

that if tit e only singularities are a finite number ofpoles, vhetlier at in-

finity or at other points, the function is a rational function ; and finally

that the l^noxcledge of the zeros and j)oles u-ifh the multiplicity or order

of each is sufficient to determine the function excepjt for a constant

multiplier.

For, ill the first place, if f{z) is analytic except for a pole of the mth order at

infinity, the function may be expanded as

f{z) = a-,„z"' + + u-iz + «y + a^z-1- + a.,z-"- + • •

,

or f{z) - [r(_ ,„z"' + • • • + (t-iz] = a,, + a^z-'^ + a.,z-" + • • •

.

Tlie function on the right is analytic at intinity, and so must its equal on the left

be. The function on the left is the difference of a function which is analytic for

all finite values of z and a polynomial which is also analytic for finite values.

Hence the function on the left or its equal on the right is analytic for all values

of z including z = x., and is a constant, namely «^. Hence

f[z) = «|, + U-iz + +"_,„z"' is a polynomial of order m.

In the second place let z^, z.,. . z/,-. co be poles of f{z) of the respective orders

m^, m.,, • •
• , nik, m. The function

{z) = {z - z,)"'^z - z.f"-^{z- z,)"''^-f{z)

will then have no singularity but a pole of order ni^ + m„ + • • • + '"a- + m
at infinity; it will therefore be a polynomial, and f{z) is rational. As the

numerator 0(z) of the fraction cannot vanish at z^, z.,, •••, z>;.. but must have

THj + ?n„ + • • • + ?/u- + m roots, the knowledge of these roots will determine the

numerator (p(z) and hence /(z) except for a constant multiplier. It should be

noted that if f{z) has not a pole at infinity but has a zero of order m, the above

reasoning holds on changing m to — m.

When f(z) has a ])ole at z = a of tlie mt\\ order, the expansion of

/(-:) about the pole contains <,'ertain negative powers

p{z - a) = — + ~—^ H h^ ^ (,-; — (/)'" (z — a)'" ^ z — a

and the difference f{z) — P(z — a) is analytic at z = a. The terms

P(z — a'j are called the principal part of tlie function f{z) at the pole a.
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If the function lias only a finite nnuil)ei' of finite poles and the prin-

cipal parts corresponding to each pole are known,

4>(z) =f(^ - P^ - .J - 7'i. -z^ P^ - z,)

is a function which is everywhere analytic for finite values of z and

behaves at .-s = oo just as ./'(*-') behaves there, since ]\, P„ •••, P^. all

vanish at z — cc. If /(*-') is analytic at z = cc, then <j>(ji) is a constant;

if f(z) has a pole at z = cc, then ^ (z) is a polynomial in z and all of

the polynomial exce])t the constant term is the ])rincipal part of the

pole at infinity. Hence if a function lias no singuhd-itles except a finite

number of ^Jolea, ((ml the p't'incijxd ixais ((t tltese j^oles are knoivn, tlie

function is deteroiined except for an (((hlitire constdut.

From the above considerations it appears that if a function has no

other singularities than a finite number of i)oles, the function is ra-

tional; and that, moreover, the function is determined in factored form,

exce2)t for a constant multi])lier, when the positions and orders of the

fiinte poles and zei'os are known ; or is determined, except for an addi-

tive constant, in a development into partial fractions if the positions

and principal parts of the ])()les arc known. All single valued functions

other than rational functions luust therfsfon; have either an infinite

number of poles or some essential singularities.

181. The ex})onential function e~ = r''(cos // + ^ sin y) has no finite

singularities and its singularity at infinity is necessarily essential. The

function is periodic (§ 74) with the period 2 iri, and hence will take on

all tlie different valutas Avhich it can have, if z, instead of being allowed

all values, is restricted to have its pure imagi-

nary part // between two limits (/^= (/ <. //^-f 27r;

that is, to consider the values of e~ it is merely -'A

necessary to consider tlie values in a strip of

the ,^-plane ])arallel to tlie axis of reals and of breadth 2 tt (but lacking

one edge). For convenience the sti-ip m;iy be taken immediately above

the axis of reals. Tlu', function c~ becomes infinite as ,-.; moves out

toward the right, and zero as z moves out towartl the left in the strip,

ir c = (f. -\- fii is any number other than 0, there is one and only one

])oint in tlu; stri]) at which e~ = c. For

a
. . b

.Z + iTTl

= V^r + 0~ antl cos // + t Sm // = - yrrr—-n \- I

have only one solution for ,r and u\\\\ one i'or // if // be restricted to an

interval 2 tt. All other points t'oi- which r- = c have the same value for

./• and some value // ± 'Idir Un- y.
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Any rational function of e'', as

will also have the period 2 iri ^^'hen x moves off to the left in the

strip, R (ff) will approach Ca^/b^^^ if ^^^ =^ and will become infinite if

h^^ = 0. AYhen z moves off to the right, R {(f) must become infinite if

n > m, approach C if n = m, and approach if m. < vi. The denomi-

nator may be factored into terms of the form («^ — ay, and if the frac-

tion is in its lowest terms each such factor will represent a pole of the

A-th order in the strip because e^ — a = has just one simple root in

the strip. Conversely it may be shown that: Anu function /(:) vlik-Ji

lias tlie ijer'iod 2'Trl, which fiirtlicr Itas no singularities hut a Jinitc

number of jjoles In each strip, and irhlcJi either becomes infnite or ap-

proaches a finite limit as z moves off to the rhjht or to the left, must be

f(z)^ Rfe^^, (( rational function of e^.

The proof of this theorem requires several steps. Let it first be assumed that/(2)

remains finite at tlie ends of the strip and lias no poles. Then/(z) is finite over all

values of z, including z = co, and nuist be merely constant. Xext let f{z) remain

finite at the ends of the strip but let it have poles at some points in the strip. It will

be shown that a rational function 7i (c^) may be constructed such that f{z) — R (e^)

remains finite all over the strip, including the portions at infinity, and that there-

fore f{z) = R{e^) + C. For let the principal part oi f{z) at any pole z = c be

P(z — c) = ^
1

^+
1 + ; then * = h • • •

^
{z- c)k (2 _ c)^--i z-c (e^ - e'^f (z - c)^"

is a rational functit)n of e^ wliicli i-cniains finite at both ends of the strip and is

such that the difference between it and F {z — c) ov f{z) has a pole of not more

than the {k — l)st order at z = c. By subtracting a number of such terms from

/(z) the pole at z = c may be eliminated without introducing any new pole.

Thus all the poles may be eliminated, and the result is proved.

Next consider the case where /(z) becomes infinite at one or at both ends of the

stri}). If /(z) happens to approach at one end, consider f{z) + (', which cannot

approach at either end of the strip. Now if /(z) ov f{z) + C, as the case may be,

had an infinite number of zeros in the strip, these zeros would be confined within

finite limits and would have a point of condensation and the function would vanish

identically. It must therefore be that the functiuu has only a finite number of

zeros; its reciprocal will therefore have only a finite number of poles in the strip

and will remain finite at the ends of the strips. Hence the reciprocal and conse-

quently the function itself is a rational function of e^. The theorem is completely

demonstrated.

If the relation f(z -\- w) — f{z) is satisfied by a function, the func-

tion is said to have the period w. The function /(2 Trlz/ui) will then

have the jx'riod 2 tt/. Hence it follows that Iff(z) I/as tJie period w,

becomes Infinite or ronalns finite at tlie ends of a strip of rector tireadth
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<i), and uas no slngularltb's hut a jinlfe nuiiiln'r of poles in the strip, tlie

function i.s a rational function of ,'-'"'=/•", In particular if the period

is 2 TT, the function is rational in e'^, as is the

case with sins; and cos z; and if the period is

TT, the function is rational in c'-^-, as is tan z.

It thus appears that the single valued elemen-

tary functions, namely, rational functions, and

rational functions of the exponential or trigonometric functions, have

simple general properties which are characteristic of these classes of

functions.

182. Sui)pose a function /(.~) has two independent periods so that

f(z + cu) == fix), /(,. + <.'; = f(z).

The function then has the same value at z and at any point of the

form z + ?y/to -f nw', where m and 7i, are ])Ositive or negative integers.

The function takes on all the values of which it is capable in a parallel-

ou:ram constructed on the vectors w and w'. Such ^ ,

a function is called doufil// jjcriodic. As the values

of the function are the same on opposite sides of

the parallelogram, only two sides and the one in-

clndt^d vertex are siqiposed to belong to the ligiu'e.

It has been seen that some doubly periodic func-

tions exist ($ 1~~); but without reference to these

special functions many important theorems concerning doubly periodic,

functions may be proved, subject to a subsecjuent demonstratitju that

the functions do exist.

If a d(jtihlij periodic function Imx rin si/);/u/ti/-!tirs in tin- pdriillfliiijririii,

it uiust hi' cirnsfant : for the function will then ha\e no singularities at

all. Jfficit pcriinlic functinns Imre tlw sn im- j^crimls and lairi- fli,' seme

poh-s and zeros, (each to the same ordei-) in the jxt rdlhlnfjrn m . tin' ijitu-

tient if tJie fii itetidHS is " enUstiiut: iftliei/ hiire the sniiie pules mid tjie.

same prineipiil pii rts nt the j,ides, tlieir diffennee is n enustnnf. In these

theorems (and all those following") it is assumed that the functions

have no essential singularity in the jiarallelogram. The })roof of the

theorems is left to the reader. Xi f(z) is doulily ] )er iodic, /"( ,-.) is als(j

doulily periodic. Tlie integral of a doubly ])eri()dic fuiictifui taken

around any ])arallelogram e(pial and jiarallel to tlu* parallelogi'am of

periods is zero; for tlie function ]-e}ieats itself on f)p}iosite sides of the

figure while the differential '/,•. changes sign. Hence in particular

X-
f{z)dzr^\),

r f(z)
dz = 0,

'O

f(r:)dz = 0.
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The first integral shows tliat the sum of tJie residues of the poles hi tlie

Ijarallelorjram is zero ; tlie second, that the numher of zeros is equal to

the numher of poles provided multiplicities are taken into account; the

third, that the numher of zeros off(z) — C is the same as tlie numher of

zeros or px)les off(z), because the poles oif(z) and/(s;) — C are the same.

The common number m of poles of /(.") or of zeros of f(z) or of roots

of /(.?) = C in any one parallelogram is called the order of the doxdAy

period ic function. As the sum of the residues vanishes, it is impossible

that there should be a single pole of the first order in the parallelogram.

Hence there can be no functions of the first order and the simplest

possible functions Avould be of the second order with the expansions

7 77, + c + cfz -c)-\ or h c^ H and \- c' -\

in the neighborhood of a single pole at z = a of the second order or of

the two poles of the first order at z — a^ and -.; = a,^ Let it be assumed

that when the periods w. w' are given, a doubly periodic function (/(.", «)

with these periods and witli a double pole at z = a exists, and similarly

that /; (.?, «p «.-,) with simple ])oles at a^ and o., exists.

Any doahhj periodic function f{z) vitlt tlie periods u>, w' niay he ex-

pressed as a jJoli/noniial in the functions [/(z, a) and h (z, a^, r/.,) of the

second order. For in the first place if the function f{:S) lias a pole of

even order 2 /.• at z = a, then f(z) — C[f/(.v, a)f, Avhere C is properly

chosen, will have a pole of order less than 2 ]: at z = a and will have

no other poles than f(z). Hence the order of /'(-) — '"['/(^'j ''0]^ ^^ ^^ss

than that of /(,v). And if /"(•) ^^^^ '"^
P*^^^*^'

^^^ '^^^ order 2 /.• + 1 at z = a,

the function /(,?) — ('[;/(z, a)f]((z, a, J>), with the proper choice of C,

will have a pole of order 2 h or less at -. = a. and will gain a simple

pole at z = />. Thus although /' — Cf/'li will generally not be of lower

order than /', it will have a comY)lex pole of odd order si)Iit into a pole

of even order and a pole of the first order ; the order of the former

may be reduced as before and pairs of the latter may be removed. By
repeated applications of the process a function may be obtained which

has no poles and must be constant. The theorem is therefore proved.

AVith the aid of series it is possible to write down some doubly peri-

odic functions. In particular consider the series

p<^ = i +X (Z — UIW — llio'f (^tllOJ + 7lw'f

and 7>'(.^) = -2Tt:
(6)

(.V — ///W — 7lU)
)
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Avhere the second 2 denotes summation extended over all values of

m, n, whether i)Ositive or negative or zero, and 2' denotes summation

extended over all these values exee})t the pair /// = ?i = 0. As the sum-

mations extend over all })ossible values for m, n, the series construeted

for z -\- i» and for z + w' must have the same terms as those for ,-., the

only difference being a different arrangement of the terms. If, there-

fore, the series are absolutely convergent so that the order of the terms

is immaterial, the functions must have the periods w, w'.

Consider first tlie convergence of the series p'{z). For z = moj + nw', that is, at

tlie vertices of the net of paraUelogranis one term of the series becomes infinite

and tlie series cannot converu'e. But if z be restricted to a finite region 7t about

z = 0, tliere ^vill be only a finite number of terms

which can become infinite. Let a parallelogram P - - /^"^

large enough to surround the region be drawn, and

consider only the vertices which lie outside this par-

allelogram. For convenience of computation let the

points z = mw + nw' outside P be considered as ar-

ranged on successive parallelograms P.^, P„, • • •

,

Pi: • • . If the number of vertices on P be v, the

number on P^ is v + 8 and on P/^. is v + 8k. The

shortest vector z — mcj — no' from z to anj' vertex of Pj is longer than a, where

a is the least altitude of the parallelogram of periods. The total contribution of

P^ to iy{z) is therefore less than {v + 8)(t-° and the value contributed by all the

vertices on .successive parallelograms will be less than

, v+8 y+8-2 v+ 8-?> i>+ 8-k

This series of positive terms converges, llenci' the infinite series for p'{z), when
the fii'st terms corresponding to the vertices within ]\ are disregarded, converges

ab.solutely and even uniformly so that it represents an analytic function. The

whole .series for p'{z) therefore represents a doubly periodic function of the tliird

order analytic everywhere except at the vertices of the parallelograms where it

has a pole of tlie third order. As the part of the series p'{z) contributed by ver-

tices outside J' is uniformly convergent, it may be integrated from to z to give

the corresponding terms in p(z) which will also be ab.solutely coiivergent because

the terms, groupeil as for p'(z), will be less than the terms of IS where I is the

length of the ])atli of integration from to z. The other terms of p'{z). thus far

disregarded, may lie integrated at sight to obtain the eorresiionding terms i)i 2){z).

Hence p'{z) is really the derivative oi p (z) ; and as p (z) converges absolutely ex-

cept for the vertices of the parallelograms, it is clearly doubly periodic oi the

Heco}id order with the periods oi, w', for the same reason thatp'(2:) is periodic.

It has therefore ln'on sliown that doubly periodic functions exist,

and hence the tlicoicms deduced for such functions are valid. Some

further important theorems are indicated among the exercises. Tliey

lead to the inference tliat ;uiy doublv periodic function whieli lias the
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periods w, w' and has no other singularities tlian poles may be expressed

as a rational function of ^y(,t:) and p'(z), or as an irrational function of

2>(s:) alone, the only irrationalities being square roots. Thus by em-

ploying only the general methods of the theory of functions of a

complex variable an entirely new category of functions has been char-

acterized and its essential properties have been proved.

EXERCISES

1. Find the principal parts at z = for the functions of Ex. 4, p. 481.

2. PiTive b}' Ex. (), p. 482, that e~ — c = has only one root in tlie strip.

3. How does e<''^> behave as z becomes infinite in tlie strip?

4. If the vahies A'(t') approaclies when z becomes infinite in tlie strip are called

exceptional values, show that Ii{c~) takes on every value otlu^r than the excep-

tional values k times in the strip, k beini; the greater of the two luimljers 77. ?/(.

5. Show b}' Ex. 9, p. 482, that in any parallelogram oi periods the sum of the

positions of the roots less tlie sum of the jiositions of the poles of a doubly peri-

odic function is mu) + nw', where m and J7 are integers.

6. Show that the terms of p'{z) may be associateil in such a way as to prove

that_p'(— r) = — p'{z), and hence infer that the expansions are

p\z) = — 2^-3
-I- )>c^z 4- ic.z^ + • • , "idy odd powers,

and p{z) — Z-- -\- CjZ- -\- c.,z* + •
• , "idy even powers.

7. Examine the series (0) for ^'(z) to sliow that p'{l w) =2>'(.l w') =p'(l w -|- ^ w') =0.

"Why can p'(z) not vanish for any other points in tlie ]>arallelogram ?

8. Let p(l o)) =: r. p{l uj') = (,'. p{l w + I w') = r". Prove tlie identity of the

doubly periodic functions [p'(~)]" '^'^"^^ '^[P (-) ~ ^'] [ /' (~) ~ ^'l IP (-) "" *-'']•

9. B}^ examining the series dehning p(z) show tliat any two poiiUs z = a and

z = a' such tliatp(rf) =p(((') are symmetrically situated in the parallelogram with

respect to the center z = l{w + ui'). How could this be inferred from Ex. 5 '.'

10. AVith the notations <j{z, d) and ]i{z, a^, «.,) of the text show:

im+jfUT) ^ ^ ^^

p:(z)_+iyia) ^ _ ^ ^^

piz)-p{a)
V ^ p^r)^p^a)

(^)
]yiz) + p'(a^ _ P:( z) + p'ia^ ^ ,

^^ ^^^ ^^^^^

p{z)-p{(i.-,) p{z)-p{a^)

1 V p'(z) + p'{a)l ^_ ^ ^ _^" ilp(z)-p{a)] ^w ./v , ;
i\ ;t

ilpiz)-p{") J

11. Demonstrate the linal theorem of the text of ^182.
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12. By coiiibiiiiiifr the power series forp(2) and l>'{z) show

[p'{z)]- - 4 [p(z)]3 + •20c^p{z) + 28r,, = Az- + higlier powers.

Hence infer that the right-hand side must be identically zero.

13. Combine Ex. 12 witli Ex. 8 to prove e + e' + e" = 0.

14. "With the notations g., = 20 r^ and <j.^ = 28 c., show

dp
p'{z) = V4 pHz) - y,p(~) - <li

or dz.

d
I p {z)dz. show that15. If f(2) be defined bv t{z)=p{z) or ^{z)

dz

i'{z + oj) — ^"(2) and (;{z + w') — i'{z) must be merely constants 77 and rj'.

183. Conformal representation. The transfonnation (§ 178)

ic =/('i) or u + if = i>(.r,
11) + Irix. I/)

is oonformal between the planes of ,-: and u- at all points z at which

/'(,-.•) ^ 0. The correspondence between the planes may be represented

In* ruling the ?;-plane and drawing the corresponding rulings in the

?/--plane. If in particular the rulings in the .v-plane be the lines ./• = const.,

_//
= const., parallel to the axes, those in the «*-plane must be two sets

of curves which are also orthogonal; in like manner if the ,v-i)lane be

ruled V)y circles concentric with the origin and rays issuing from the

origin, the w-plane must also be ruled orthogonally : for in liuth cases

the angles between curves must l)e preserved. It is usually most

convenient to consider the /'/•-plane as ruled Avith the lines 11 = const.,

r = const., and hence to have a set of rulings u(:i\ if) = c^, rf.r, if) = r,,

in the '.--plane. The figiu-es represent several different cases arising from

the functions •

xc-plane (1) z—jyiaiie

(1) w = az = (,f^ + If/) (x -f li/)

1

- 1
>

lOLT ." = loLf V./'- aan->

Consider -?/• = ,-:'-', and apply ])olar cdrjrdinatc.;

ir = J' (ros <J> + / sin <t>) = /•-{Cos 2 (^ + / sin 1'
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To any point (r, <^) in the 2:-plane corresponds (A' = /•-, 4> = 2 </>) in the

(T-plane ; circles about z = become circles about w = and rays is-

suing from z = become rays issuing from ?<• = at twice the angle.

(A tigure to scale should l)e supplied by the reader.) The derivative

U-' = 2 z vanishes at z = only. Tlie transformation is conformal for

all points except z = 0. At z = it is clear that the angle between

two curves in the «-plane is douljled on passing to the corresponding

curves in the ?/'-plane ; hence at z — the transformation is not con-

formal. Similar results would l)e obtained from vj = z"" except that the

angle between rays issuing from c = would be in times the angle

between the rays at z = 0.

A point in the neighborhood of whicli a function ic = /(«) is ana-

lytic but has a vanishing derivative /''("-') is called a critical point of

/(.t); if the derivative /'('-') has a root of multiplicity k at any point,

that point is called a critical point of order k. Let z = s;^ be a critical

point of order /.-. Expand /'(-t) as

f(z) = a,{z - z^^ + a,^,(z - z^f^^ + a,,„X^ _ z^Y^^- + • • •

;

then /(.) =/(.,) +^ (z - z^f^^ +^ (z - z;)^^- + • • •

,

or y: = rr^ + {z-z^>^-'E(z) or ,/• _ ,r^ = (^ _ ^j^+i£(-;),
(7)

where 2s is a function that does not vanish at z^. The })oint z = ,-.•. goes

into V — y^. For a suthciently small region al>out z^^ the transt'ornui-

tion (7) is sufficiently represented as

"•-^'•o=^'(^--o)''S ^' = ^(-o)-

On comparison with the case a- = z'", it appears that the angle between

two curves meeting at z^^ will V)e multiplied Ijy k -\- 1 on jiassing to tin;

corresponding curves meeting at ir^. Hence at a critical point of t/ic

kth order tlie traiii^forinatlon li< not conformad hut angles are riniltlplled

hij k + 1 on jjasslng from tlie z-plane to tlie icpAane.

Consider the transformation ir = ,-/- ]n(jre in detail. To each point z

corresponds one and only one point ir. To the points -; in tlie first

(juadrant corres})ond the points of tlie first two quadrants in the v-

lilane, and to the upper half of the .-.-plane corres})onds the whole ?/'-planc.

In like manner the lower half of the -.--plane will be mapped u})on the

whole ?/--plane. Thus in finding the points in the ?r-plane Avhich cor-

resi>ond to all the yjoints of the ;v-plane, the */--plane is covered twice.

This double counting of the ?r-plane may be obviated by a simple de-

vice. Instead of having one sheet of p;q)er to represent the */>plane,
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let two sheets be superposed, and let the points corresponding to the

upper half of the 2;-plane be considered as in the upj^er sheet, while

those corresponding to the loAver half are considered as in the lower

sheet. Now consider the path traced npon the double ?6"-plane when z

traces a path in the ;i-plane. E\'ery time z crosses from the second to

n

«-^otH}

u

w—surface w— surface z—X)lane

the third (piadrant, tv passes from the foui'th quadrant of the U])per

sheet into the first of the lower. AVhen z passes from the fourth to

the first quadrants, v comes from the fourth quadrant of the lower

sheet into the first of the; iq)[)er.

It is convenient to join tlie two sheets into a single surface so that

a continuous path on the .'.'-plane is pictured as a continuous path on

the ^r-surface. This may be done (as indicated at tlie riglit of the

middle figui'c) l)y regarding the lower half of the u])pcr sheet as con-

nected to the u})[H',r half of the hjwer, and the lower half of the lower

as connec'ted to the upper half of the upper. The surface therefore

cuts through itself along the })Ositive axis of reals, as in tlie sketch on

the left*; the line is called \\\g junrfioyi line of the siu'face. The point

ir = whi('h corresponds to the ci'itical point z = is called the hrdneh

]>()lnt of the sm'face. Now not only does one point of the ,'v--])lane go

over into a single point of the //--surface, but to each point of the sur-

face corresponds a single jxdnt ,-.; although any two ])oints of the //•-

siu-face which are super})os(Ml have the same value of v, they correspond

to different values of ,-.- except in the case of tlu; branch point.

184. The //'-surface, which has been obtained as a mere convenience

in mapping the .?-})]ane on the //-j)lane, is of particular value in study-

ing the inverse function ,-.' = V//-. For v //• is a multiple valued func-

tion and to each value of // coi-resijond two values of ,'.': but if //• Ih*

* Practically tliis may lie accoin]ilislic<l Un- two sheets of paper l)y pasting; guniiiied

striiis to the sheets wliich ai-e to he connected across the cut.
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regarded as on the tr-surface instead of merely in the ^/--plane, there is

only one value of ,~ corresponding to a point v: upon the surface. Thus

the function ww wliicJi Is double valued orer the w-phmc beeoines slnr/le

valued orer the w-surfare. The //--surface is called the lilemann surfaee

of the function z — V/r. The construction of Riemann surfaces is im-

portant in the study of multi})le valued functions because the surface

keeps the different values apart, so that to each point of the surface

corresponds only one value of the function. Consider some surfaces.

(The student should make a paper model by following the steps as

indicated.)

Let K' — 2^ — o2 and plot the ?'>surface. First solve /'(2) = to find the critical

points z and substitute to find the branch points c;. Now if the branch points be

considered as removed from the ?/.'-plane, the plane is no longer simply connected.

It must be made simply connected by drawing proper lines in the figure. This may
be accomplished by drawing a line from each branch point to infinity or by con-

necting the successive branch points to each other and connecting the last one to

the point at infinity. These lines are the junction lines. In this particular case the

critical points are 2: = + 1. — 1 and the Viranch points are (/• = — 2, 4- 2. and the

junction lines may be taken as the straight lines joining v: = — 2 and v = + 2 to

I , II , III

I n lu in ni

c'U (1 -nC "'-0 L ./

I'll' hi'

b /

I'n'iii

l', 11', III'

w- surface z-plane

infinity and lying along the axis of reals as in the figure. N'ext spread the requi-

site number of sheets over the !';-plane and cut them along the junction lines. As

v: = 2^ _ g r is a cubit' in 2. and to i^ach value of v:. except the branch values, there

correspond three values of 2. three sheets are needed. Now find in the 2-plane the

image of the junction lines. The junction lines are represented by v = ; but

V = Sx-ij — y^ — 3 //. and hence the line ?/ = and the hyperbola 3.f- — y- = 3 will

be the images desired. The z-plane is divided into six pieces which will l)e seen to

correspond to the six half sheets over the i/>plane.

Next 2 will be made to trace (.>ut the images of the junction lines and to turn

about the crirical points so that ;/; will trace out the junction lines and turn about

the brani;li points in such a manner that the connections Vietween the different

sheets may be made. It will be c<invenient to regard 2 and v: as persons walking

along their respective paths so that the terms "right "" and '"left"" have a meaning.
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Let z start at z = and move forward to z = 1 ; tlien, a.s/'(z) is negative, vj starts

at IV = and moves back to w = — 2. Moreover if z turns to the right as at P, so

must w turn to the right through the same angle, owing to the conformal property.

Thus it appears that not only is 0^1 mapped on oa, but the region V just above OA
IS mapped on tlie region Y just below oa ; in like manner OB is mapped on oh.

x\s ah is not a junction line and the sheets have not been cut through along it, the

regions 1, V should be assumed to be mapped on the same sheet, say, the upper-

most, I, Y. As any point Q in the whole infinite region V may be reached from

without crossing any image of ah. it is clear that the whole infinite region 1' should

be considered as mapped on 1' ; and similarly 1 on I. The converse is also evident,

for the same reast)n.

If, on reaching ^4, tlie point z turn.s to the left through 90° and moves along AC,
then w will make a turn to the left of 180°, that is, will keep straight along ac

;

a turn as at 11 into V will correspond to a turn as at r into I'. This checks with

the statement that all 1' is mapped on all I'. Suppose that z described a small

circuit about -f- 1. When z reaches Z), to reaches d ;
when z reaches E, iv reaches c.

But when v: crossed ac, it could not have crossed into I, and when it readies c it

cannot be in I ; for the points of I are already accounted for as corresponding to

points in 1. Hence in crossing ac, vj must drop into one of the lower sheets, say

the middle, II; and on reaching e it is still in II. It is thus seen that II corre-

sponds to 2. Let z continue around its circuit; then IT and 2' correspond. When
z crosses AC from 2' and moves into 1, the point lo crosses ac' and moves from II'

up into I. In fact tlie upper two sheets are connected along ac just as the two

sheets of the surface for to = z- were connected along their junction.

In like manner suppose that z moves from to — 1 and takes a turn alx)ut B so

that w moves from to 2 and takes a turn about h. AVhen z crosses BF from V to 3,

ic crosses //from T into tlie upper half of some .sheet, and this must be III for the

rea.son that I and II are already mapped on 1 and 2. Hence I' and III are con-

nected, and .so are I and III'. This leaves II which has been cut along hf, and III

cut along ac, which may be recoiniected as if they had never been cut. The reason

for this appears forcibly if all the points z which correspond to the branch points

are added to the diagram. When ;/_• = 2, tlie values of z are the critical value — 1

(double) and the ordinary value z = 2 ; similarly, \c = — 2 corresponds to z = — 2.

Hence if z describe the half circuit AE .so that ic gets around to e in II. then if z

moves out to z = 2. ic will move out to lo = 2, pas.-^ing liy v: = in the sheet II as

z pa.'jses through z — ^ 3 : but as z = 2 is not a critical point, ic = 2 in II cannot

be a branch point, and the cut in II may be reconnected.

The ('--surface thus coiistructed for ic —f{z) = z^ — 3z is the Riemann .'surface

for the inverse function z =/-i(;c). of which the explicit form cannot be given

without solving a cubic. To each point of the surface corres^ponds one value of z,

and to the three superposed values of vj correspond three different values of z ex-

cept at the branch points where two of the sheets come together and give only

one value of z while the third sheet gives one other. The I\iemann surface conM
equally ^vell have been con.structed by joining the two branch points and tlun

connecting one of them to x. The image of r = would not have been cliangcil.

The connections of the sheets could Ije established as before, but would Ik- dif-

ferent. If the junction line lie — 2. 2. + x. the point u: = 2 has two junctions

running into it. and the connection.^ of the siieets on opposite sides of the point are

not independent. It is advisable to arrange the work .<o that the first branch point
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which is encircled sliall have only one junction running from it. This may be done

by taking a very large circuit in z so that w will describe a large circuit and hence

cut only one junction line, namely, from 2 to cc, or by taking a small circuit about

z = 1 so that w will take a small turn about lo = — 2. Let the latter method be

choseii. Let z start from z = at and move to z = 1 at A ; then v; starts at w =
and moves to lo = — 2. The correspondence between V and I' is thus established.

Let z turn about A ; then w turns about w = — 2 at a. As the line — 2 to — oo or ac

is not now a junction line, v: moves from I'

into the upper half I, and the region across \^v^^ V/^^'
AC from 1' should be labeled 1 to corre- I IN " \r
spond. Then 2', 2 and II', II may be filled

in. The connections of I-II' and II-I' are

indicated and III-III' is reconnected, as the w—surface z—j)lane
branch point is of the first order and only two

sheets are involved. Xow let z move from z=:Otoz = — 1 and take a turn about

B ; then lo moves from w = to w = 2 and takes a turn about 6. The regioji next

1' is marked 3 and Y is connected to III. Passing from .3 to 3' for z is equivalent

to passing from III to III' for lo between and b where these sheets are connected.

From 3' into 2 ffir z indicates III' to II across the junction from lo = 2 to oo. This

leaves I and II' to be connected across this junction. The connections are com-

plete. They may be checked by allowing z to describe a large circuit so that the

regions 1, 1', 3, 3', 2, 2', 1 are successively traversed. That I, I', III, III', II, II', I

is the corresponding succession of sheets is clear from the connections between

r/j = 2 and cc and the fact that from i« = — 2 to — oo there is no junction.

Consider the function w = z^ — 3z* + 3z'^. The critical points are z = 0, 1, 1,

— 1,-1 and the corresponding branch points are w — 0, 1, 1, 1, 1. Draw the junc-

tion lines from v: = to — oo and from wj = 1 to 4- oo along the axis of reals. To
find the image of r = on the z-plane, polar coordinates may be used.

z = r(cos0 -I- isin^), w = w + n = r*'>e''"i"' — 3r*e'**' + Sr'^e'^'t'K

V = = f^[)-* sin G(p — S r- sin 4 <;& + 3 sin 2 0]

= r- sin 2 4>[)-*{5 — 4 sin 2 0) — 6 r- cos + 3].

The equation v — therefore breaks up into the equation sin 2 <p = and

3cos2 ± \/3sin2(;& V3 sin (60 ±2 0) _ \/S

3-4 An" 20 2 sin (60 + 20) sin (60 - 2 0) 2 sin (60 ±20)

Hence the axes = 0^ and = 90"^ and the two rectangular liyperbolas inclined at

angles of ± 15^ are the images of v = 0. The z-plane is thus divided into six por-

tions. The function v: is of the sixth order and six sheets must be spread over the

z/"-p]ane and cut along the junction lines.

To connect up the sheets it is merely necessary to get a start. The line u' =
to w = 1 is not a junction line and the sheets have not been cut through along it.

But when z is small, real, and increasing, lo is also small, real, and increasing.

Hence to OA corresponds oa in any sheet desired. Moreover the region above OA
will correspond to the upper half of the sheet and the region below OA to the

lower half. Let the sheet be chosen as III and place the numVjers 3 and 3' so as to

correspond with III and III'. Fill in the numbers 4 and 4' aroniid z - 0. When
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z turns about the critical point 2 = 0, xo turns about ?'j 3= 0, but as angles are doubled

it nuist go around twice and the connections III-IV, IV-lIT nuist be made. Fill

in more numbers about the critical point z = 1 of the second order where angles are

tripled. On the lo-sur-

face there will be a

triple connection III'- I—YI
II, ir-I, r-III. In ^„ = ,

like manner the criti- \\ 1 ///

cal point 2 = — 1 may
be treated. The sur-

face is complete except

for reconnecting sheets

I,II,V, VI along !/;=0

to ;y = — 00 as if they

had never been cut. Xf—auvfacQ z—plane

"TTT/^/

iVvi'

xv—surface

EXERCISES

1. Plot the corresponding lines for: (a) v: = (1 + 2 i)z. {j3) v: = (1 — ^^ i)z.

2. Solve for x and y in (1) and (2) of the text and plot the corresponding lines.

3. Plot the cf)rresponding orthogonal systems of curves in these cases:

(a) I'J

1

(/3) 10 = ] + Z-, (7) w = cos

;

4. Study the correspondence between z and 70 near the critical points:

(a) w = z^, (/3) !'j =: 1 — 2'-, (7) !'; = sin2.

5. Upon the i/>surface for c: = 2- plot tlie pnints corresponding to 2 = 1,1 + ?,

2 /, —1-1-1 ^^t, — J,, _ 1 ^ ;j _ 1 /. _ /. I — I
i. And in_the 2-plane plot the

points corresponding to v: = V2 + A 2 /, (, — 4, — J
— ^ \'-'A, 1 — (, whether in

the upper ov lower sheet.

6. Construct the ir-surface for these functions:

(a) w = 2^, (^) w = z- -'.

(7) v: = 1 + z\ (5) v- = (2 - 1)^.

In (li) the singular point 2 = should be joined by a cut t(.) z = x.

7. Construct the IJieniaiin surfaces U>v these functions :

(a) w = 2^-2 2-, (ii) V = - 2^ + 4 2. (7) in = 2z^ t)2-.

(5) K' = 2 + > 1
(e) V = 2- + -- (n "•

+ V?j

:

v:]2- + l

185. Integrals and their inversion. Consider the funetiou

r"''hr . , .

defined li_v au iiiteL;-r;il, ;nid let the methods of the tlieovy of fuiietions

lu' apjilied to tlie study of the function tiiid its inverse. If w deserihes

a ])ath siuToundiiii,' tlic origin, tlu' integral need not vanisli; for tlic
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integiuucl is not analytic at w = 0. Let a cut be drawn from w = to

w = — cc. The integral is then a single valued function of vj provided

the path of integration does not cross the cut. jMoreover, it is analytic

except at w = 0, where the derivative, which is the integrand 1/ir,

ceases to be continuous. Let the ?i'-plane as cut be mapped on the

s-plane by allowing w to trace the path lahcdcfglill, hy computing the

value of ,v sufficiently to

draw the image, and by

applying the principles of

conformal representation.

"When w starts from w = 1

and traces 1 a, z starts from

z = and becomes nega-

tively very large. When iv

turns to the left to trace ah,

z will turn also through 90°

to the left. As the integrand along ah is iW^, z must be changing by an

amount which is pure imaginary and must reach li when ^v reaches b.

When IV traces he, both iv and die are negative and z must be increasing

by real positive quantities, that is, z must trace BC. AVheu tr moves along

cdefcj the same reasoning as for the path (d) will show that z moves along

CDEFG. The remainder of the path may be com})lete(l by the reader.

It is now clear that the whole ^r-plane lying between tlie infinitesimal

and infinite circles and bounded by the two edges of the cut is mapped
on a strip of width 2 ttI bounded ui)on the right and left by two infi-

nitely distant vertical lines. If ir ha,d made a complete turn in the posi-

tive direction about u- = and returned to its starting ])oint, z Avould

have received the increment 2 iri That is to say, tlie values of z which

correspond to the same point w reached by a direct ])ath and by a path

which makes k turns al)Out w = will differ by 2 I-ttI. Hence when w
is regarded inversely as a function of z, the function will be periodic

with the period 2 iri. It has been seen from the correspondence of

cdef(/ to CDEFG that tr becomes infinite when z moves off indefinitely

to the right in the strip, and from the correspondence of BAIII with

ha ill that u' becomes when '.' moves off to the left. Hence w must be

a rational function of e". As y neither becomes infinite nor vanishes

for any finite point of the strip, it must reduce merely to Ce^'^ with /.

integral. As //• has no smaller period than 2 ttI, it follows that k = 1.

To determine C, compare the derivative dw/dz = Ce^ at ,-. = with its

reciprocal dz/dir = w~^ at the corresponding point iv = 1; then C = 1

The inverse function ln~^z is tlierefore completely determined as e'.
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In like manner consider tlie integral

dw
Jr

«•
r,

+ 10-
2 =/(«), 4>{z)=f-Hz).

B AK J

Here the points v; = ± i must be eliminated from the !/>plane and the plane ren-

dered simply connected by the proper cuts, say, as in the figure. The tracing of

the figure may be left to the reader. The

chief difficulty may be to show that the

integrals along oa and be are so nearly equal

that C lies close to the real axis; no com-

putation is really necessary inasmuch as the

integral along oc' would be real and hence

C must lie on the axis. The image of the

cut ic-plane is a .strip of width tt. Circuits

around either + i f)r — i add tt to z, and

hence w as a function of z has the period tt.

At the ends of the strip, lo approaches the

finite values -|- / and — I. The fiuiction

w = (p{z) has a simple zero when 2 = and

has no other zero in the .strip. At the two points z = ± lir. the function iv becomes

infinite, but only one of these points .should be cniisidcre<l as in the strip. As the

function has only one zero, the point z = J, ir luust be a pole of the finst order.

The function is therefore completelj- determined except for a constant factor which

may be fixed by examining the derivative of the function at the origin. Thus

IV—plane

1 1 e'

+ 1 i e'^ + c-

= tan z. tan-ij/j.

186. As a tliird example consider the integral

-[ V 1 — u-

:f(u^, ir = 4>(rS)=f-\j:). (8)

Here the inte^^'rand is double valued in n- and eonsecjueiitly there is

liable to be confusion of the tAvo values in attempting to follow a path

in the ?/'-plane. Hence a two-leaved surface for the integrand will be

constructed and the path of integration will l)e considered to be on the

surface. Then to each ])oint of the path there will correspond only one

value of the integrand, although to each value of //• there correspond

two superimposed points in tlu^ two sheets of the surface.

As the radical ^ 1 — ir~ vanishes at v} = ±\ and takes u\\ only the single value

instead of two (Mjual and njipositc values, the points ir = - 1 are Virancli points on

the surface and they are the only finite branch points. S])read two sheets over the

('.•-plane, mark the branch points ic = — 1. ami draw the junction line between them

and continue it (provisionally) to (/• = as. At /'• = — ] the function ^' 1 — v:'- may
be written VI -f- v: Kin-), where /•; denotes a function wliicli does not vanish at

!'_• = — 1. Hence in tlie nei-liboihood uf ,/• = — ! the surfare looks like that for

Vic near vi = 0. Tins may be accomplished by making the connections across the
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junction line. At tlie point w = + 1 the surface nuist cut througli itself in a similar

manner. This will be so provided that the sheets are reconnected across Icxd as if

never cut ; if the sheets had been cross-connected along 1 cc, each sheet would have
been separate, though crossed, over 1, and the branch point would

have disappeared. It is noteworthy that if w describes a large 1 n
circuit including both branch points, the values of Vl — w'^ are

not interchanged; the circuit closes in each sheet without pass-

ing into the other. This could be expressed by saying that w = oo

is not a branch point of the function.

Now let w trace out various paths on the surface in the attempt to map the sur-

face on the z-plane by aid of the integral (8). To avoid any difficulties in the way
of double or multiple values for z which might arise if w turned about a branch

point v: = ± 1, let the surface be marked in each sheet over the axis of reals from
— CO to + 1. Let each of the four half planes be treated separately. Let w start

at w = in the upper half plane of the ui)i>cr sheet and let the value of Vl — v;-

at this point be -f- 1 ; the values of VI — u:- near v: = in IT will then be near

-I- 1 and will be sharply distinguished from tiie values near — 1 which are supposed

to correspond to points in 1', II. As w traces oa^ the integral z increases from to

a definite positive number a. The value of the integral from a to b is infinitesimal.

Inasmuch as lo = 1 is a branch point where two sheets connect, it is natural to

assume that as w passes 1 and leaves it on the right, z will turn through half a

straight angle. In other words the integral from b to c is naturally presumed to be

a large pure imaginary affected

with a positive sign. (This fact -5

—

Q. Q. C_ D
may easily be checked by exam-

ining the change in Vl — u:'^

when V.' describes a small circle

about w = 1 . In fact if tlie E-

function -\^\ -j- v; be discarded

and if 1 — )/,' be written as re*',

then Vres*' is that value of the

radical which is positive when
1 — 10 is positive. Now when w
describes the small semicircle,

</) changes from 0^ to — 180° and hence the value of the radical along be becomes

— i Vr and the integrand is a positive pure imaginary.) Hence when w traces

6c, z traces BC. At c there is a right-angle turn to the left, and as the value of

the integral over the infinite quadrant cc' is J tt, the point z will move back through

the distance \ tt. That the point (" thus reached nuist lie on the pure imaginary

axis is seen by noting that the integral taken directly along oc' would be pure imagi-

nary. This shows that a = | tt without any necessity of computing the integral

over the interval oa. The rest of the map of I may be filled in at once by symmetry.

To map the rest of the v.'-surface is now relatively simple. For V let v) traee

cc"d' ; then z will start at C and trace CI)' = tt. When iv comes in along tlie lower

side of the cut d'e' in the upper sheet I', the value of the integrand is identical with

the value when this line de regarded as belonging to the upper half plane was de-

scribed, for the line is not a junction line of the surface. The trace of z is there-

fore D'E'. "When v: traces f'o' it must be remembered that 1' joins on to II and

hence that the values of the integrand are the negative of those along /'j. This

z—plane ic—surface
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makes z describe the segment F'O' = — (r = — | tt. The turn at !!'¥' checks with

tlie straight angle at the branch point — 1. It is further notewortliy tliat when w
returns to o' on I', z does not return to but takes the value tt. This is no contra-

diction; the one-to-one correspondence which is being established by the integral

is between points on the w-surface and points in a certain region of the z-plane, and

as there are two points on the surface to each value of w, there will be two points

z to each w. Thus far the sheet I has been mapped on the z-plane. To map II let

the point w start at o' and drop into the lower sheet and then trace in this sheet

the path which lies directly under the path it has traced in I. The integrand now
takes on values which are the negatives of those it had previously, and the image

on the 2-plane is readily sketched in. The figure is self-explanatory. Thus the

complete surface is mapped on a strip of width 2 tt.

To treat the different values which z may have for the same value of to, and in

particular to determine the periods of w as the inverse function of z, it is necessary

to study the value of the integral along different sorts of paths on the surface.

Paths on the surface may be divided into two classes, closed paths and those not

closed. A closed path is one which returns to the same point on the surface from

which it started ; it is not sufficient that it return to the same value of w. Of paths

which are not closed on the surface, those which close in w, that is, which i-eturn

to a point superimposed upon the starting point but in a different sheet, are the

most important. These paths, on the particular surface here studied, may be fur-

ther classified. A path which closes on the surface may either include neither

branch point, or may include both branch points or may wind twice around one

of tlie points. A path which closes in w but not on the surface may wind once

about one of the branch points. Each of these types will be discussed.

If a closed path contains neither branch jwiut, there is no danger of confu.sing

the two values of the function, the projection of the path on the w-plane gives a

region over which the integrand may be considered <as single valued and analytic,

and hence the value of the circuit integral is 0. If the ^ivdh surrounds both branch

points, there is again no danger of confusing the values of the function, but the

projection of the path on the lo-plane gives a region at two points of which, namely,

the branch jjoints, the integrand ceases to be analytic. The inference is that the

value of the integral may not be zero and in fact will not lie zero unless the in-

tegral around a circuit shrunk close up to the branch points or exjjanded out to

infinity is zero. The integral around cv'dc/'c is here equal to 2 7r; the value of the

integral around any path which incloses both branch

points once and only once is therefore 2 tt or — 2 tt ac-

cording as the path lies in the upper or lower .sheet ; if

the path surrounded the points k times, the value of

the integral would be Ikiz. It thus ajtpears that w re-

garded as a function of z has a period 2 tt. If a path

closes in v) but not on the surface, let the point where it

crosses the junction line be held fast (figure) while the path is shrunk down to

whiui'b'w. The value of the integral will not change during tliis shrinking of the

])atli, for thy new and (jld paths may together be regarded as closed and of the

first case considered. Almig tin' paths vha and n'h'w the integrand has opposite

signs, but so has ihv; ai-ound the small circuit the value of the integral is infini-

tesimal. Hence the value of the integral around the path which closes in w is 2 I

or — 2 I if I is the value from the point a where the path crosses the junction line
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to the point iv. The same conclusion would follow if the path were considered to

shrink down around the other branch point. Thus far the possibilities for z corre-

sponding to any given w are z + 2k7r and 2 7mr — z. Suppose finally that a path

turns twice around one of the branch points and closes on the surface. By shrink-

ing the path, a new equivalent path is formed along which the integral cancels out

term for term except for the small double circuit around ± 1 along which tlie

value of the integral is infinitesimal. Hence the values z + 2kTr and 2m7r — z are

the only values z can have for any given value of w if z be a particular possible

value. This makes two and only two values of z in each strip for each value of iv,

and the function is of the second order.

It thus appears that iv, as a function of z, has the period 2 7r, is single valued,

becomes infinite at both ends of the strip, has no singularities within the strip, and

has two simple zeros at z = and z = tt. Hence w is a I'ational function of e'« with

the numerator e~"— 1 and the denoniinatur c-''- -\- 1. In fact

w=C 1 e'- — c
e"= + e- i t'~ -\- Q-

The function, as in the previous cases, has been wholly determined by the general

methods of the theory of functions without even computing a.

One more function will be studied in brief. Let

= X"
dw

{a — iv) Viv
«>0, = f{w), w = 4>{z)=f-\z).

Here the Kiemami surface has a branch point at jy = and in addition there is the

singular point w = a of the integrand which must be cut out of both sheets. Let

the surface be drawn with a junction line from w = to iu = — co and with a cut

in each sheet from w = a to w = cc. The

map on the z-plane now becomes as indi-

cated in the figure. The different values

of z for the same value of lo are readily

seen to arise when w turns about the

jioint 10 = a in either sheet or when a

path closes in w but not on the surface.

These values of z are z + 2k7ri/Va and

2imri/\a — z. Hence iv as a function of

z has the period 2 7ria~2, has a zero at

z = and a pole at z = iri/Va, and approaches the finite value w = a at both ends

of the strip. It must be noted, however, that the zero and pole are botli neces-

sarily double, for to any ordinary value of iv correspond two values of z in the

strip. The function is therefore again of the second order, and indeed

z—plane w—surface

(e^ Vcl. 1)-^

(e^ Va + 1)

= a tanh- ~ z Va,
2

tanh-i V^
The success of this method of determining the function z =f{iv) defined by an

integral, or the inverse w =f-'^{z) = ^{z), has been dependent tirst upon the ease

with which the integral may be used to map the jo-plane or ?c-suvface upon the

z-plane, and second upon the simplicity of the map, which was such as to indi-

cate that the inverse function was a single valued pericjdic function. It should be
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realized tliat if an attempt were made to apply the methods to integrands which

appear equally simple, say to

2 =
I

A (/'- — w-dH\ z=
I

{a — ic) dv:/\'v:,

the method would lead only with great difficulty, if at ail, to the relation between

2 and w ; for the functional relation between z and w is indeed not simple. There

is, however, one class of integrals of great importance, namely,

dw

f A (w — cx^){iv — (Xr,) • (w — a„)

for which this treatment is suggestive and useful.

EXERCISES

1. Discuss by the method of the theory of functions these integrals and inverses ;

f-
« div

, , r'" 2 dio
, , r"' dw

J I '2 10 «^ii 1 — w Jo 1 — R-

r"' dw
, , r"' dw

, , r"' dw
(5) I

• (0 / -—:=. (n / J-^

+

The I'esuils may be checked in each case by actual integration.

dw ,
/"'•' dw

r"' dw ,,, r'" (Zi'j
, , r"' dw

X"'

dii} r "-'
'((''— - ' and I
'

(i; 182. and Ex. 10. p. 489).
- A W{\- W){\ + W) ^'" \ 1- i/J*



CHAPTER XIX

ELLIPTIC FUNCTIONS AND INTEGRALS

187. Legendre's integral I and its inversion. Consider

£
(/,(

V(l - ir-) (1 - Jric^)
<k < 1. (I)

The Kiemann surface for the integrand* has branch points at ir = -j- 1

and ± 1/k and is of two siieets. Junction lines may l)e drawn between

+ 1, + 1/k and — 1, — 1//.-. For very hirge values of w, the radical

Vi^l — ir-) (1 — Irir'-) is approximately ± h-ir- and hence there is no

danger of confusing the values of the function. Across the junction

lines the surface may be connected as indicated, so that in the neigh-

borhood of tr = + 1 and ((• = ± 1/k it looks like the surface for 'wir.

Let + 1 be the value of the integrand at tc = in the upper sheet.

Further let

K =
(hi-

V(i — ((•-) (1 — k'-(

!h" =
') f:

dt

V(l — ir-) (1 — Irir-)
(1)

Let the changes of the integral be followed so as t(^ map the surface

on the ,v-})lane. As w moves from t> to </, the integral (I) increases

by A', and .- moves

from O to .1 . As ^r

continues straight

on,.-; nuikes a right-

angle turn and in-

creases by pure

imaginary incre-

ments to the total

amount IK' Avhen

V reaches A. As ic

continues there is

E D

F

C B
1

O A 0'

1' 2

z—plane IV— surface

another right-angle turn in z, the integrand again becomes real, and

,•; moves down to C. (That z reaches C follows from the facts that the

* Tlie reader unfjuniliar with Rieniaiiii surfaces ("§ 1S4) may proceed at once to identify

(1) aud ("2) by Ex. 9, p. 47,") and may take (1) and other nece.ssary statements for granted.

503
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integral along an infinite (j^uadrant is infinitesimal and that the direct

integral from to ix would be pure imaginary like <hc.) If ic is allowed

to continue, it is clear that the map of I will be a rectangle 2 A' by A''

on the -.'-plane. The image of all four half planes of the sui'facc is as

indicated. The conclusion is reasonably apparent that w as the inverse

function of z is doubly periodic with periods 4 A and 2 iK\

The periodicity may be examined more carefully by considering different possi-

bilities for paths upon the surface. A path surrounding the pairs of branch points

1 and A;-^ or — 1 and — k-'^ will close on the surface, but as the integrand has oppo-

site sigTis on opposite sides of the junction lines, the value of the integral is 2 iK'.

A path surrounding — 1, + 1 will also close ; the small circuit integrals about — 1

or { 1 vanish and the integral along the whole path, in view of the opposite values

of the integrand along /<( in I and II, is twice the Integral from / to a or is 4 A.

Any path which closes on tlie surface may be resolved into certain multiples of

these paths. In addition to paths which close on the surface, paths which close in

w may be considered. Such paths may be resolved into those already mentioned

and paths running directly between and w in the two sheets. All possible values

of z for any w are therefore 4 niK -\- 2 niK' ± z. The function w (z) has the periods

4 K and 2 iK\ is an odd function of z as iv{— z) = lo (z), and is of the second order.

The details of the discussion of various paths is left to the reader.

Let w =f(z). The function f('S) vanishes, as may be seen by the

map, at the two points -. = 0, 2 A of the rectangle of periods, and at

no other points. These zeros of a- are simple, as /'('•') does not vanish.

The function is therefore of the second order. There are poles at

z = /A', 2 A' -f IK', Avhieh must be simple poles. Finally /'(7v) = 1. The

])Osition of the zeros and poles determines the function except for a con-

stant multi})lier, and that will be fixed by f(K) = 1 ; the function is

wholly determined. The function /"(-) ^^^^Y ^^^^^' '-"^ identified with sn z

of § 177 and in particular with the special case for which K and A' are

so related that the niulti})lier ;/ = 1.

Q(K) II (z)
w = t(z) = — ' = sn ,-;, ,•:; = v. (J)

For the quotient of the theta fiuictions has simple zeros at 0, 2 7\',

where the nunu'rator vanishes, and simple poles at iK' . 2 A' + 'A', where

the denominator vanislies; tlii' (juotieiit is 1 at ,-.' = A; and the deriva-

tive of sn z at ,-.: = is y en dn — <j = 1, whereas /''(Oj = 1 is also 1.

The imposition of the cDiidirion y = 1 was seen to im])Ose a relation

between A', 7\''. /, /.', y by vii-tue of wliicli oidy one of the five remained

inde]iendent. The definition of A' and A'' as definite integrals also makes

them functions K(^l:) and A'(7.'^ of /.-. But
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V(l - ,r^) (1 - k'^c^)

i V(l - .rf) (1 - //Vf) ^ ^

if w = (1 — J:''-w\y- and /.•"- + ^''^ = 1- Hence it appears that K may be

computed from A-' as A'' from U. This is very useful in practice when
}r is near 1 and A-'- near 0. Thus let

-r-^;
,

11- Va 2/1-Va\'
. , , o

« "^ = 7 = o : ^T + .>3 : /T + • • •

' ^"^^ y 1"J.^ y' = tt',
-' 1 + V/.- -'' \i + V/.v

^^^

^jf^' =0:(O, 7') = 1 + 2y' + 2v'^ + .. ., A- = - ^^'log/;

and compare with (37) of \^. 472. Now either /..• or /.' is greater than 0.7,

and hence either y or 7' may be obtained to five places with only one

term in its expansion and Avith a relative error of only about 0.01 per

cent. ^Moreover either </ or //' will be less than 1/20 and hence a single

term 1 + 2 y or 1 + 2 y' gives A' or A' to four places.

188. As in the relation between the liiemann surface and the ,v-plane

the whole real axis of ,-; corresponds periodically to the part of the real

axis of v between — 1 and + 1, the function sn .-r, for real x, is real.

The graph of ^ = sn a- has roots at .r = 2 ///A', maxima or minima alter-

nately at (2 tiL + Ij A", inflections inclined at the angle 45° at the roots,

and in general looks like y = sin (ttx/2 K). Examined more closely,

sn i A' = (1 + ]:'
)~ - > 2~ - = sin \ ir ; it is seen that the curve sn x has

ordinates numerically greater than sin {nx]'! K). As

en .'/• = V1 — sn- X, dn ./ = Vl — Ir su" ./•, (5)

the curves // = en x. // = dn ./, may readily be sketched in. It may be

noted that as sn (./ + A) ^ en x, the curves for sn x and en x cannot

be superposed as in tlie case of the trigoncjmetric functions.

The segment 0, iK' of the })ure imaginary axis for z corres})Onds to

the whole upper half of the pure imaginary axis for ir. Hence sn ix

with ./• real is pure imaginary and — l sn /,/• is real and })()sitive for

s ,, < A' ' and Ijecomes infinite for ./ = A''. Hence — l sn /,/• looks in

general like tan (ttxj2 1\). V>\ (5) it is seen that the curves for y = en Ix,

y = dn /./• look much like sec ('Trx/2 K') and that en Ix lies above dn ix.

These functions are real for pure imaginary values.

It was seen that when /.- and /.•' interchanged. A' and A' also inter-

changed. It is therefore natural to look for a relation betAveen the ellip-

tic functions sn (.v, A), en (.v, /.), dn (-.-, /.•) formed Avith the modulus k
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and the functions sn {z, k'), cu (z, k'), dn (z, k') formed with the com-

plementary modulus k' It will be shown that

. sn (z, k') .sn(lz,k')
sn (iz, k) = I

—y-ri ' sn (z, A') = - «
—

)-.
—

-f

,

^ -^ en (z, k

)

^ en (<,?, k)

1 1

en {iz, k) =———77- J en (z, k)
en (z, k') ^ ' ^ en (Iz, k')

Consider sn (Iz, k). This function is periodic with the periods 4 /v and

2 IK' if Iz be the variable, and hence with periods 4 iK and 2 A'' if z be

the variable. With z as variable it has zeros at 0, 2 /A', and poles at

A'', 2 iK + A''. These are precisely the positions of the zeros and poles

of the quotient H(z, q')/H^{z, q'), where the theta functions are con-

structed with q' instead of q. As this quotient and sn (iz, k) are of the

second order and have the same periods,

^ '^" Z//-^,'/) "^^ en (.,;.•')

The constant C^ may be determined as C\ = i by comparing the deriva-

tives of the two sides at z = 0. The other five relations may be proved

in the same way or by transformation.

The theta series converge with extreme rapidity if q is tolerably

small, but if q is somewhat larger, they converge rather poorly. The

relations just obtained allow the series with q to be replaced by series

with q' and one of these quantities is surely less than 1/20.

In fact if V = 7rx/2 K and v' = 7r.r/2 A", then

_ Vy 2 sin v — 2 y- sin 3 v -f- 2 q''' sin 5 v — • • •

sn (X,
. j — ^- ^__ .j^^ ^.^^ 2 V + 2 7' cos 4 V — 2 y'' cos G v H

_ 1 sinh v' — '/'" sinh 3 v' + 7"' sinh v' — • •

V/.- *-'Osh v' + q'' cosh 3 v' + q"' cosh o v' + • •
•

The second series has the disadvantage that the hyperbolic functions

increase rapidly, and hence if the convergence is to Ijc as good as for

the first scries, the value of y' must be considerably less than that of

y, that is, A' must be consideral)ly less than A'. This can readily be

arranged for work to four or five places. For

y'« = e~
'^~^',

cosh .") v' = 1
(p'-''' + e'^') , ^ ./• ^ A",

where owing to the periodicity of the functions it is never necessary

to take ./• > A''. The term in q"'' is therefore less than
}j

y'"-. If tlie term
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in '/'*' is to be equally negligible Avitli that in (f,

2 '/" = i 7'- with log q log q' = tr-,

from Avhich q' is deterniinecl as about q' = .02 and q as about q = .08;

the neglected term is about 0.0000005 and is barely enough to effect

six-place work except through the multiplication of errors. The value

of ic corresponding to this critical value of q is about A- = 0.85.

Another form of the integral under consideration is

f
'^ (W _ r" da-

sin
(f)
= >/ = sn .'•,

(f>
= am ,/, cos

(f>
= v 1 — sn- x = en x,

\cf> = Vl - /.•-//- = Vl - /.- sin-"^ = dn ,/•, /.'- = 1 - Ir,

X = sn-\,y, A-) = cn-i(Vl - if, /.•) = dn-Y^-^l - /r'A /.')•

The angle
<f>

is called the amplltudu of ,/• : the functions sn .r, en a',

dn X are the slne-ampIltude, coslne-amjilitudi', djdt<i-(i inplltude of x. The

half periods are then

K=\
.

'" =F(Uk
' ~

J, Vl - fr sin^

Jo Vl-A-'-^sin-^^ \-^ /

(8)

and are knoAvn as the complete e//ipf!c inffr/ra/s of the first hind.

189. The elliptic functions and integrals often arise in problems

that call for a numerical answer. Here /.- is given and the conq^lete

integral K or the value of the elliptic functions or of the elliptic inte-

gral F(</>. /.) are desired for some assigned argument. The values of

A' and Fi^. /•) in terms of sin~V.- are found in tal)les (B. 0. Peirce,

pp. 117-119), and may be obtained therefrom. The tables may be

used by inversion to find the values of the function sn ./, en .v. dn ,/-

when X is given ; for sn x = sn F[<^. /,) = sin <^. and if ./• = /•" is given,

(^ may be found in the table, and tlicn sn ./• = sin <^. It is, however,

fa>y to com})ute tlu^ desired values directly, owing to tlie extrenie

rajiiditv of the conv(*rgence of the series. Thus

VTk (2 A7j' 1 + VP /— 1— ^ (T)). ^ = 0(0), —-^=~ VA' = -(0/0; + 0(0)),

^^^' = J^(l+2,*+...) = .J-flog,' (9)

^ V-2log y;.^ o „^.. ,

1 + Va
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The elliptic functions are computed from (6) or analogous series.

To compute the value of the elliptic integral F
((f>, /.), note that if

(In X 1 + 2 q cos 2 V + 2 7* cos 4 v + • • •

cot A = -7=- = z.-^^ „ ; o %—r"-r— ' (lo)
VA;' 1 — 2 y cos 2v + 2tf cos 4 v + • •

• ^ ^

/I \ cot X — 1 ^ cos 2 V + v^ cos G V ^
tan - TT — A = —— T = 2 y

— ;—-, ;

\4 / cot A + 1 ^ 1 + 2f/ cos 4 V H

2 '/ cos 2 V
and tan (i tt - A) = 2 y cos 2 v or tan (j tt - A) = :; fr-r — (10')^* ^ ' ^* ^ 1 + 2 y^ cos 4 V ^ ^

are two approximate equations from which cos 2 v may be obtained

;

the first neglects y* and is generally sufficient, but the second neglects

only yl If k'^ is near 1, the proper approximations are

1 dn (.r, Z-
) _ dn (^.r, /.') 1 + 2 y' cosh 2 v' + •

""

-v^ en (.r, A:)
~

VZ^ 1 - ^ y' cosh 2 v' + • • '
^^^^

tana7r-A) = 2y'cosh2v' or tan Q tt - A) =
^ _^ j^'^;"^||J^"j ^,

(11')

Here y'^ cosh 8 v' < y'^ is neglected in the second, but y'* cosh 4 v' < y'"

in the first, which is not always sufficient for four-place work. Of course

if <^ with sn .r = sin (/> or if // = sn x is given, dn x — Vl — /.•- sn'-^ x and

en x = V1 — sn'-cc are I'cadily computed.

As an exaiiiTiple take ,
--^= and fnid K, sn I A', F(J tt. i). As k'- = J-

and V/(;'>0.0, the lirst term of (87), p. 472, gives q accurately to five places.

Compute in the form : (Lg = h)gjp)

Lg A;'2 = 9.87.50(5 Lg (l - VIT') = 8.84136 Lg 2 tt = 0. 7982

Lg VP = 9.9087(5 Lg (l + v/p) = 0.28569 2 Lg (l + W?) = 0.571

4

VF = 9.93060 Lg 2 y =: 8.55-567 Lg K = 0.22(58

1 - VP = 0.06940 2 7 = 0.03595 K = 1 .686

1 + Va? = 1.93060 q = 0.01797 Check with table.

2 „ ^^ ^/y sin Itt — y^ sin tt + • • • „ ^/y i Vs
sn - 7v = 2 —£ ^ = 2—- •

3 VA; 1 — 2 y cos
;:|
tt + •

• -y^ 1 + '/

2 , VO \/y 1 Lg 6 = 0.38908 Lg sn 2 K = 9.9450

^"
3 ^ ^ 1.01797 1 Lg q = 9.5(53(56 .sn | A' = 0.8810.

- Lg 1.018 = 9.99226

Af = dn ,r = v 1 — | sin-
J
tt = v^l —

J
sin

J
tt V 1 + I sin

J
tt.
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I sin i7r = 0.19134

1 - i sin 1 IT = 0.80866

1+ isinl7r= 1.19134

I Lg (1 - I
sin 1 tt) = 9.95388

I Lg (1 + i sin 1 tt) = 0.03802

- Lg vF = 0.03124

Lg cot X = 0.02314

X = 43° 28' 28''

i TT - X = 1° 31' 32"

Lg tan = 8.42540

Lg2(/ = 8.55567

Lgcos2;' = 9.86973

2 ./ = 42° 12'

180x = Jl (42.20)

Lg 42.20= 1.6253

Lg A' = 0.2268

-Lgl80= 7.7447

Lgx = 0.5968

X = 0.3952

Cliec]< witli table.

As a second example consider a pendnlnm of length a oscillating through an

arc of 300°. Find the period, the time when the pendulum is horizontal, and its

position after dropping for a third of the time required for the whole descent.

Let x'^ 4-7/2 = 2 ay be the equation of the path and /i = a (l + ^ \ 3) the greatest

height. When y = /;, the energy is wholly potential and equals myh ;
and ingy is

the general value of the potential energy. The kinetic energy is

7?i /d

2\c

m /ds\"_ I n

Kdi) ~2«7
dyV
dtj

and
J-WKr dij

y^ \ai/ 2 ay — y- \dt

is the equation of motion by the principle of energy. Hence

+ mgy = mgh

Jo

ady

-^/'l

dio
k"-.

/gjcit = su-i(;(j, k), w = sn (Vg/cd, k), y = hsn~{\ g/at, k),

A
2a

are the integrated results. The quarter period, from highest to lowest point, is

K Va/g ; the horizontal position is ?/ = a, at which t is desired ;
and the position

for Vg/at = § JC is the third thing required.

A;2 = 0.93301, 2(/

=

s/k K
1 + \'k

logf/ =
- 2 Lg q'

i/(l + -xk)-

Lgfc2 = 9.96088

Lg Va- = 9.99247

V^ = 0.98280

1- ^-^ = 0.01720

1+ \^=. 1.98280

Lg (l - a/a-) = 8.23553

Lg(l+ \'A-) = 9.70272

-Lg2 = 9.69897

Lgr/'= 7.63722

q' = 0.00434

Lg2 = 0.3010

Lg^^'-i = 0.3734

- Lg 3/ = 0.3622

2Lg(l+ A A;) = 9.4034

L£r K = 0.4420.

Hence K = 2.768 and the complete periodic time is 4 7i ^'a/g.

" ' /
T

cn V) — V 1 — a/h, dn w = a' 1 — k'-a/h.y = ^fi

h

1 dn!/j 4|4—

=

= a' - k^ = cot X,

^'f^ cn w \ 3

Lg k" = 9.96988

Lg 4 = 0.60206

-Lg3 = 9.52288

Ltr cot" X = 0.09482

tan [TT
\4

2 {/ cosh 2 v',

TT K \g t

l^\aK
X = 43° 26' 12"

^ TT - X = 1° 33' 48"

Lg tan = 8.43603

Lg 2 q' = 9.93825

Lg cot X = 0.02370 L-- cosh 2v' = 0.49778

2/= 1.813

Lg2/ = 0.2584

Lg2r/-i = 9.6266

Lii'Jf = 9.6378

\ a K
= 9.5228.
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llunce the lime for y = a ii^ t = 0.3333 K \ a/g =
J
whole time of ascent.

(7 2 ,, Id /; /.siiih 7r/v'/3 7v' — r/'- sinh 7r7v/A''\'-
y = h 811- -V

'- - J'^ \ - — ~
[ I\ a 3 V </ k \cosh ttK/S A" + ry'^ cosii ttK/K'J

n' ' + '/'
• + '/'-('/'"^ + n')' \h'

'' + ''/=' + '/

iL£rv' = 0.21241 7'5 = 0.1631
_^ ,

/5.064o\2
Z/ = - "^'

)
•

-
\ Lgv/' = 0.78750 q'- 3 = 0.1310 VJ.2003/

Tills gives y = 1.732 ((. which is very near the top at /i = 1.866 a. In fact starting

at 30° from the vertical the pendulum reaches 43° in a third and 00" in another

third of the total time of descent. As sii \ K is (1 + k')~ ^ it is easy to calculate

the position of the pendulum at half the total time of descent.

EXERCISES

1. Discuss these integrals by the method of mapping

(1^1^ .... . . b
(a) z — j — — — , (/>'>> 0. w = h sn ciz. k = -

,

J ^ ^,,-2 _ „.-2^ (//2 _ „,-2j a

iii) z = f
"

'^"'

, w = sn2 (' z. k). z = 2 su-i (\ j. k),
Jo ^ ((•(! _ ;/) (1 _ k-(i-) \- /

(Iw sn (z. k)

(1+ ir-^){l + k'-hr-i)

2. Establish these Maclaurin developments with the aid of § i;

( V) . = r
" '"'

. .• = ^" "
"I

= tn (. k). z = tn- (., k).
'^'^ ^ (1 + ir-)

{ 1 + k'-ir-^) cn (2. k)

(a) sn z = 2 - (1 + k-') j' + (1 + 14 f^ + A-^) ^

(13) CM z = 1 _ -
+ (1 + 4/,--^) ~- - (1 + 44/,-- + k;;,-^)

~
- + . .

.

,

2

:

4

:

(i

:

(7) dn2 = l-^--'- + k-{i + k^)~^-k^(m+ 44k-^ + k^)~ + ....
2 ! 4 '.

I

3. I'rove I
— — - / — ' > 1. siii^^ = Z^sm^

,

•^0 ^'l_^-sin-0 ^
'^" A 1 — /--sin--J/

4. Carr}- out tlu' (•(ini])Utaticiiis in tlirsi' cases :

(a)
(

— to find h. sii-Jv. /•
(

- tt. ——),
^" ^ 1- 0.1 sin- (9

-^ \^ ^ 10/

r'> <I$ 1 /I 3 \
(/3) I

— to find 7^:, sn - K. F( -- tt. —= V
•^0 A 1- 0.0 siii-^ 3 \3 ^ lo/

5. A pendulum oscillates throuuh an an-le of (cx) 180% (;3) 00". (7) 340°. Find

the periodic time, the posit inn at / = j K. and the time at which the pendulum

makes an anule nf 30° with the vertical.
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6. With the aid of J>x. 3 find the arc of the lemniscate r- = 2a'^ coii2 4). Also

the arc from = to = 30% and the middle point of the arc.

7. A bead moves aronnd a vertical circle. The velocity at the top is to the

velocity at the bottom as 1 :?i. Express the solntion in terms of elliptic functions.

8. In Ex. 7 compute the periodic time if )( = 2, 3, or 10.

9. Neglecting gravity, solve the problem of the jumping rope. Take the x-axis

horizontal through the ends of the rope, and the y-axis vertical through one end.

Remember that "centrifugal force"" varies as the distance from the axis of rotation.

The first and second integrations uive

a-tbj —.
, / \ //- + <t-j- h- — «'

ax — —z:^^=^=^^^= . y = ^ lj~ — II- sn . -»

^ (lyi _ y2y2 _ a^ \ a- \ h- + a-

10. Express / —
, a > 1, in terms of elliptic functions.

\ a — cos(

11. A ladder stands on a smooth tioor and rests at an angle i>f 30^ against a

smooth wall. Discuss the descent of the ladder after its release from this position.

Find the time which elapses before the ladder leaves the wall.

12. A rod is placed in a smooth hemispherical bowl and reaches from the bot-

tom of the bowl to the edge. Find the time of oscillation when the rod is released.

190. Legendre's Integrals II and III. Tlie treatment of

i
by the method of confoi-mal mujipiug to determine the fvinetion and its

inverse does not give satisi'actdvy results, for th(^ map of tlie Iviemann

surface on the .-.-plane is in>t a sim]ile reyion. J Jut the integral nuiy be

treated bv a change of variable and be reduced to the integral of an

elliptic function. J-'or with (c = sn ii^ n = sn~^ //,

( 1 — Irir-) <hr

i (1 — /.- sn- if) du
-\\i- tr-)(l-]r,r-) J. (12)

= // — /."
I

sn- iiiJii.

The problem thus becomes that of integrating sn" u. To effec-t the in-

tegration, sn- II will be expivssed as a derivative.

The function sn- // is doubly })eriodie with })eriods 2 K, 2 IK', and

with a pole of the second order at // = iK'. But now

Q(ii + 2 A') = ©(//), ©(^ + 2 lK') = -q-'^e"^"Q(u)

ITT
log ©(^^ -f 2 K) = log ©(/'), log (© + 2 IK') = log0(/^) - — If - log (- q).K
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It then appears that the second derivative of log @(ii) also has the

periods 2 K, 2 iK'. Introduce the zeta function

ZOO = -flog 000 =^' Z'('0 = f ®^. (13)

The expansion of ©'(?0 shows that 0'(?O = at u = mK. About u = Hi'

the expansions of Z'(?0 and &n^u are

^'^") = -0^-:^^ + ^'o + ---. «"^- = |(.-^y.')^ + ^o + ----

Hence A;^ sn^ 7f = - Z'('0 + ^'(0), Z'(0) = 0"(O)/0(O),

and Jr f sn'^n die = - Z(;0 + ''^'(O),

(1 - /.:- sn- u) du = u(l- Z'(0)) + Z (h). (14)
Jo

The derivation of the expansions of 7,'{u) and sn^ u about m = IK' are easy.

e(u) = C-rT(l - r/2«+lc^A-U loge(M) = ^ l0g(l - q-2n+le^K") + log C

( -'"-A
log 6 (w) = log \1 — qc '^ ) -{ function analytic near u = iK'.

in

K{l-(ie A- j Jvl^e^^' -q)
in

f{u) ^ cx " =f{iK') + (« - iK')r{iK') + . . . = ry + (,, _ iZr) ^9 +

e'(u) _ + 1 (Z e'(M) _ -

1

Q{u) u — iK'
'

du Q(u) (u — iK')'^

sn (w + jA'') = , sn2(w + fJv') =:
,

k sn M k- sn'^ u

/(u) = sn u = uf{0) + I u^r"{0) +... = u + cu^ + • • •

,

sn2(u + iK') = — - = ^ ( CU+ ] = - (— — 2c +
A;^ sn'^ u k- \u / t- \m'-

sn-' M = —
I 2c +

k-^ \{u - i/iT')"'^

In a similar manner may be treated the integral

die r" dn

)•

Ji)Jo (?/;' - a) V(l - vr'-^) (1 - J^^ic^ Jo ^J^' " " «

Let a be so chosen that sn- ft = (x. The integral becomes

(III)

—. ^ =
7, ,

—
I

-, ^— ^^«- (15)
g sn- K — sn a J sn « en a dn f( J sn- u — an a '
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The integrand is a function with periods 2 A', 2 IK' and with simple

poles at ;( = -|- r^ To find the residues at these poles note

,. H^<1 -. 1 +1
lim —:, r;— = lim

, „ sn'- it — sn'^ a u = ±a 2 sn u. en u dn u 2 sn a en (t dn (t.

The coefficient of (i/ =f a)~'^ in expanding about ± a is therefore ± 1.

Such a function niay be written down. In fact

2 sn a en a dn a _ H'(u — a) //'(w -\- a)

sii^ u — sn'-a II (^ti — c/) //(w + f)

= z,(« - ^0 - ZiC'' + ^0 + ^''

if Zj = IVI II. The verification is as al)Ove. To determine (' let ?<. = 0.

2cnr/ dn^/ ^ , , ,
1 //('')

Then C = h 2 Z,(r/), but sn ?< = ^- 7-^ ^

sn (/ '^ ^

V/.- ®(")

and -7- log sn ?^
= = Z.iin — Z(u).

(In sn u '^ •^ ^ ^

Hence C reduces to 2Z('') and the integral is

du 1

f sn- u — sn- a 2 sn a en « dn ^/
(16)

The integrals liere treated by the substitution w = sn u and thus reduced to the

integrals of elliptic functions are but special cases of the integration of any rational

function A'(it', V U') of V3 and the radical of the biquadratic W = (1 — vfl){\ — U-w^).

The use of the substitution is analogous to the use of lo = sin « in converting an

integral of A'(k', a 1 — ic-) into an integral of trigonometric functions. Any ra-

tional function A' (('.•, ^ IT) niay be written, by rationalization, as

i?(w,VTr) ^ ^M±-^l(i-ll^ = AOo) + fi(i»)Vlr

where U means not always the same function. The integral of 7?(h', •vMT) is

thus reduced to the integral of i?^(?t') which is a rational fraction, plus the inte-

gral of xvRJ^w"-)/^^' which by the substitution vfl — u reduces to an integral of

li (u. \ (1 — i()(l — i'-M) and may be considered as belonging to elementary calculus,

l>lus finally

rIL{iv-)
,

r
I

" -dv' = I RJsn-u)du, w — snu.

By the method of partial fractions li.^ may be resolved and/p du
sn- " u du 71 S 0, I 71 >

J (sn- u — a)"

are the types of integrals which must be evaluated to finish the integration of the

given U(ii\ \^]V). An integration by parts (B. O. Peirce, No. 507) shows that for
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the first type n may be lowered if positive and raised if negative until the integral

is expressed in terms of the integrals of sn-^x and sn° x = 1, of which the first is

integrated above. The second type for any value of n may be obtained from the

integral for ?i = 1 given above by differentiating with respect to a under_the sign

of integration. Hence the whole problem of the integration of Ii{w, V W) may
be regarded as solved.

191. With tlie substitution v = sin <j>, the integral II becomes

Vl - //- sin- OJO = /

'
"
(Iw (^j^

= u (1 - Z'(0);) + Z (v), „ = F{<i>, /.•).

Ill purticulur />'(
.\ tt, /.•) is caUed the eomph'te integral of the second kind

and is generally denoted l)v L'. ^Vhen cf) = \ tt, the integral n = /'X^, A")

becomes the complete integral A'. Then

E = K (1 - Z'(0)) + Z {K) = K (1 - Z'(Oj), (18)

and E(ci>, /.•) = EF(cf>, k)/K + Z(//). (19)

The problem of computing E(<^. /.) thus reduces to that of computing

K, E, E{(^, /.•) = }i, and Z{ti). The methods of olitaiuing A' and l-^i^. /.')

liave been given. The series for Z(ii) converges ra})idly. The value

of A' may be found by computing A'(l — Z'(0)).

For the convenience of logarithmic com})utatioii note that

K—E ,^^^. 0"(O) TT 2 7r%
, , ^ .

or A-- /;= i-Tr/VZ^ -(2 77/ A-)'^y (1-4 y^ + ••). (20)

M -7/ X Q'^'O 2 yTT sin 2 V - 2 y'^ sin 4 v H ,^...
Also Z(?0 = —~~" =

:.
; : 7r~^ \

" (21)
'

(//) A 1 — 2 y cos 2 V + 2 y-* cos 4 v ^ '

wliere v = ^n/2 K. These series neglect only terms in y'', -which will

barely atfect the fifth place when /.• ^ sin 82° or /r ^ 0.98. The series

as Avritteii therefoin^ cover most of the cases arising in practice. For in-

stance in the iirohh'Ui which gives the name to the elliptic functions

and integrals, the problem of hndiiig tlie arc of the ellipse x = a sin <^,

y = /; cos (^.

r/.s' = V"" COS- ^ + //'- sin'- <^il(^ = (I V 1 — ('- sin"- <^(1<^ ;

the eccentricity r may be as liigli as 0.99 without invalidating the

approximate formulas. An exam})le follows.

Let it be required to detenniiic tlie length of the quadrant of an ellipse of

eccentricity e = 0.',» and also tlic Icimth df the portion over half the seniiaxis

major. Here the series in y' converge better tlian those in y. but as the proper
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expression to replace Z(h) has not been found, it will be more convenient to use

the series in q and take an a(lditi(jnal term or two. .\s k — ().'.>. k"- = 0.1!).

Lgr- = 9.27875 Lg(l - VP) = 9.53120 5dilf. = G.55515

Lg V A? = 9.81909 Lg (l + VP) = 0.2201

7

Lg 10 = 1 .20412

VF = 0.66022 diff. = 9.31 103 Lg term 2 = 5.35103

1 - VP = 0.33978 Lg 2 = 0.30103 term 1 = 0. 102.33

1 + vF = 1.66022 Lg term 1 = 9.01000 term 2 = 0.00002

q = 0.10235.

Lg g = 9.0101 Lg 2 TT = 0. 7982 Lg J tt/VP = 0.3764

3 Lg r/ = 7.0303 - 2 Lg (l + ^ k') = 9.5597 | log 2 -rr/K = 0.6003

4Lgg = 6.0404 Lg(l+ 2 g-*) =0.0001 Lgr/ = 9.0101

^3 = 0.0011 LgK = 0.3580 Lg (1-4 r/S) = 9.9981

(/ = 0.0001 A' = 2.280 Lg (A' - A) = 0.0449.

Hence A— A = 1.109 and A= 1.171. The (jnadrant is 1.171 r<. The point cor-

responding to X = A a is given

LgdnA= 9.9509

Lg VP = 9.8197

LgcotX = 0.1312

X = 36^ 28^'

Now 180 F = A (42.92). The computation for A, Z, A(i tt) is then

Lg K = 0.3580 Lg 2 tt/A = 0.4402 Lg A/A = 9.7106

Lg 42.92 = 1.6326 L^ 7 = 9.0101 Lg A = 9.7353

- Lg 180 = 7.7447 Lg sin 2 v = 9.8331 AA/A = 0.2792

Lg A = 9. 7353 - Lg (1 - 2 ry cos 2 p) = 0.0705 Z = 0.2256 *

A = 0.5436 Lg Z = 9.3539 A (i tt) = 0.5048.

The value of Z marked * is corrected for the term — 'Iq^nin iv. The part of the

quadrant over the first half of the axis is therefore 0.5048 a and 0.666 a over the

second half. To insure complete four-figure accuracy in the result, five places

should have been carried in the wcjrk, but the values here found check with the

table except for one or two units in the la.st place.

EXERCISES

1. Prove the following relations for Z(m) and 7.^(u).

Z (- M) = - Z («), Z (u + •2K) = Z (h), Z{u + 2 iK') = Z (») - ?7r/A.

If Z,{u) = ~ log II («) = ^[^ , Z,{u 4- iK') = Z (.) -— ,

du II {u) 2K

. = 30^ Then dn A = ^ 1 — 0.2025.

Ltt-X = 8^31.r cos 2^ = 0.7323

Lgtan = 9.1758 Hence 4 v near 90^

Lg 2 q = 9.3111 14- 2 7*cos4»'= 1.0000

f cos 2 V = 9.8647 2 J/ = 42= 55'.

Z[(u) + Z'(0), r -^ = - Z,(») + wZ'(O),
J sn- u

1 „., , . r du

sn"^ u

ZAu) — Z (m) = ~ log sn u = , Z, (0) = 00.

du su u
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2. All elliptic function with periods 2 A', 2 iK' and simple poles at «j, Qo, • , On

with residues Cj, c.,, • • • , c„, 2c = 0. may be written

f{u) = CiZi(w — a,) + c.,Zi(« - «,) + • • + '-»Z,(« — a„) + const.

_ A;2 sn a en a dn « sn'^ u 1, , 1„,
, \ , „,. s

3- —,
TTy
—

o S
= - Z (« - a) - - Z (u + a) + Z'(a),

1 — A;'' sn^asii- u 2 2

r" sn'-^wdn 1, e(a — k) „,, ,

A;"^ sn a en a dn a | ^—; — = -loir-—^ --\-u7.{a).
J{) 1 — k- 811- a sn'-^ w 2 9 {« + i()

^^" ^ ^„,A^ \v/ \' ^ -cn^X»dn^X«— = X((Z (0) — ^ \Z (\ X»j — ^ X ^
sii- \ \u sii A \u

-^, / . , - X - en \ Xi( (111 ^ \u „= Xi( — ^ X£ (0 = siii-'sii \ X») — A X ; h C,

811 \ X«

(B) I =
I

(111- i/(Z« — ;^'- = i:((;6 = 8111-1 sii «) — A-- ^

J (In- u J dn u dn u

, ,
/• en- m'7h ^ ,,

,

. , ,
cii h ,, ^ , „ v

(7) I
= u — •2L{<p = 8111-1 ^1, „) .|. (1 — 2 dn^ «).

J 811- H dn- « 811 u dn (;

5. Find the length of the quadrant and of the portion of it cut off by the latus

rectum in ellipses of eccentricity e = 0.1, O.o, 0.75, O.U').

6. If e is the eccentricity of the hyperbola .c-/a- — !/'-/l>- = 1, sIkjw that

b' r * sec''^ <pdd> , ae , '

s = — I — —
, where — u = tan cp, k

aeJo Vi_/^-^sin2<* ^- e

Ij^

= — F((p. k) — acE{(p, k) + octaii (p \ I — k-tiin-<p.
ue

7. Find the arc of the hyperb(.)la cut off by the latus rci.;tuiii if e = 1.2, 2, 3.

8. Show that the length of the jumping rope (Ex. 0. p. .311) is

a(k'K/\ 2 + ^ 2 E/k').

9. A flexible trough is filled with water. Find the expression of the shape of

a cross section of the trough in terms of F{4>. k) and E {(p, k).

10. If an ellipsoid has the axes a > h > c. lind the area of one octant.

1 , Tzdh V c-
^^ , ,^ it- — (•-

,,, ,,n '•

,
TTi- + - -.— -„ /• {4,, k) + /•; (</), /.•) , c( IS = ^ , A--

4 4 sill L"" "" J «

11. Compute the area of the ellipsoid with axes 3, 2, 1.

h-^ - <

^- sill- (

12. A hole of radius b is bored through a cylinder of radius a>b centrally and

perpendicularly to the axis. Find the volume cut out.

13. Find the area of a right elliptic cone, and compute the area if the altitude

is 3 and the semiaxes of the base are \\ and 1.
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192. Weierstrass's integral and its inversion. In studying the

general theory of doubly periodic functions (§ 182), the two special

functions ^^(^/), p'(i') were constructed and discussed. It was seen that

=
I

=' e^ + r, + .' =0,

where the fixed limit x has l)een added to the integral to make w = cc

and .-; = correspond and where the roots liave been called e^, e_^, e.^

Conversely this integral could be studied in detail by the method of

mapping ; but the method to be followed is to make only cursory use

of the conformal maj) sufficient to give a hint as to liow the function

p('') iiiay be expressed in terms of the functions sn ,~ and en-.-. The

discussion will be restricted to the

case which arises in practice, namely, w, _i, ^
^-^H-. -^-l"—

when y., and r/^ are real quantities. 2' 2 -oo' <C^ ^i +°=

There are two cases to consider, one

when all three roots are real, the other when one is real and the other

two are conjugate imaginary. The root e^ will be taken as the largest

real root, and e,-, as tlie smallest root if all three are real. Xote that the

sum of the three is zero.

In the case of three real roots the Eiemann surface may be drawn

with junction lines c,^. f.,, and f^, x. The details of the map may readily

be filled in, but tlie observation is sufficient that there are oidy two

essentially different paths closed on the surface, namely, about e.,, e^

(which by deformation is equivalent to one about e^, cc) and al)out f^, e^

(which is equivalent to one about f,,, — x). The integral about e,-,, e^ is

real and will be denoted by 2 w^, that about e.^, e^ is pure imaginary and

will be denoted by 2 w.,. If the function yv (.t) be constructed as in § 182

with w = 2 Wj. w' = 2 (0., the function will have as always a double pole

at ,~ = 0. As the })eriods are real and pure imaginary, it is natural to

try to exjiress y/ ('.') in terms of sn z. As y; (-') depends on two constants

f/.,, y.j, "wherras sn ,-.' depends on oidy the one /.-, the function y/ (.-r) will

be exjiressed in terms of sn ( VA::, /.•),• where the two constants A, /.• are

to be determined so as to fulfill the identity j/- = -iji^ — f/„j>
— y^. In

particular try

2j('S) = A H
—

J .1, X, /. constants.
sn-(-vA.v, k)
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This form surely gives a double pole at z = with the expansion \J^.
The determination is relegated to the small text. The result is

i>(^) = .,+ h^
e., — p..

-<1,

(23)

sn'^ ( VXz, Jc)

X = «j — ^2 > 0, cojVX = A', o)^ Va = iK'.

In the case of one real and two conjugate imaginary roots, the

Riemann surface may be drawn in a similar manner. There are again

two independent closed paths, one about e.„ e.^ and another about e.^, e^.

Let the integrals about these paths be respectively 2 w^ and 2 w.,. That

2 coj is real may be seen by deforming the path until it consists of a

very distant portion along which the integral is infinitesimal and a path

in and out along e.^,cx), which gives a real value to the integral. As
2 w,^ is not known to l)e pure imaginary and may indeed be shown to be

complex, it is natural to try to express j^i.'-) i^^ terms of en z of which

one period is real and the other complex. Try

l + (m{2^z, k)p(z)^A +/X
l-cn(2 V/x,t;, k)

This form surely gives a double pole at « = with the expansion 1/?,

The determination is relegated to the small text. The result is

P (^ = '\ + f^

l, + cn(2V/.^, /•)

k'
l-cn(2 V/xs, /v) ^

/*' =
(''i
- 'QO'i - ^'3)' ^f^^i = ^J ^f^<^

To verify these determinations, substitute in 2/'^ = ip^

4/x

(23')

p {z) = A +
sn2(VX2, k)

l>\z) =
2\2

'(VX2, A:)

en ( vXz, A;) dn (a/xz, k\

4X3
(1- sn2)(l- fc2sn2)

4|yl3 + :r+^, - + ^sn- sn'* sn"
- o-A

f/oX - 9z

Eijuate coefficients of corresponding powers of sn'-. Hence the equations

4 ^13 - g„A - (/3 = 0, 4 X2A;2 = 12 yl2 _ y.,\ - X (1 + fc2) = 3 J..
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The first shows that ^ is a root e. Let A = e.^. Note — g.-, — e^e^ + e^e^ + ^-fi-i-

\ . \k~ = 3 e.,- + e^fo + e^c^ + c.-,e.^ = (e^ — e.-^{i;.^ — e.,).

\ -\- \k'- = — 3 e, = t'^ — <?2 + ^V,
~ ^-j'

by virtue of tlie relation e^ + e., + e^ = 0. The sohuiou i.s iiiunediate as given.

To verify the second determination, the substitution is similar.

l + cn2V,u2 „_^ 4^i2sndn
p{z) =A+fM

[i/(^)]-^ = l(5M^

1 — en 2 V/xz

(1 + cn)(k'- + k-cn-)

PV)
(1 - en)-

ilj.^[t^ + 2{l-2k-)f^ + t]

(1 - en)

where i = (1 + cn)/(l — en). The identity -p"- = -ip'-^ — g.,p — g., is therefore

if,S[L^ + 2{\- 2 k-) r- + t]=-i: (.43 + 3 .4-V + 3 Af.f^ + ^0) -g.^A - g.^,xt - g^.

•4.43- f/._,.4 -r/.. =0, 4 m- = 12.4 --(/,. 2 ^ (1 - 2 /,•-)= 3.4.

Here let .4 = tj. The .solution then appears at once from tlii' forms

AC- = 3 e^- + e,c, + e,e, + (-.,63 = (c, - e;)(e, - c,). ix{\ - 2 k-) = 3 .4/2.

The expression of the function j) in ternts of the functions ah'eady

studied permits the determination of the vahu' of the function, and by

inversion permits tlie sokttion of the equation jj (z) = c. Tlie function

p{z) may readily be expressed directly in terms of the theta series.

In fact the periodic properties of the function and the corresponding-

properties of the quotients of theta series allow such a representation

Qgj 20]+2a32 looi 2(i5i+26ao

S^:.^

?~i.2

-co<p<0 o<p<as 2(i3i -co <p'<o o<p'<a:> 2ft3,

to be made from the work of § 175, provided the series be allowed com-

plex values for q. l>ut for practical purposes it is desirable to liave the

expression in terms of real quantities only, and this is the reason for a

different expression in the two different cases here treated.*

The values of z for which7^(.-;) is real may be read off from (2o) and

(23') or from the correspondence between the yr-surface and the ,t'-})lane.

They are indicated on the figures. The functions j> and/>' may be used

to ex})ress parametrically the curve

4 ,-' - y.,7- - ff^ by t/ = jj'(z), X = p (,-)•

1 ""

a 2-
•2

^ e3>p>e„

=, P'<o

/ Q 1 ^ ^'e /
/ lis vis /
/ '^i-^ a^i-r /
/ ^,"?s VI ?Y
/ '^l 81 /

/oo>p>ei
j
ei<p<co ' 1/

//'

* It is. however, jjossihle, if desired, to transform the ifiven cubic 4 f"^ — g.,>'- — g^ with

two cdiiiplex roots into a similar euhie with all three roots I'eal and tiie.s a\ciid tlie din)li-

cate forms. 41ie trausfonuatiou is nut <riveu here.
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2=w„-t-tt

The figures indicate in the two eases the shape of the curves and the

range of values of the parameter. As the function p is of the second

order, tlie equation |> (,-j) = c has just two roots in the parallelogram,

and as jji?-^ is an even function, they will be of the form z = a and

2; = 2 Wj -f- 2 w.^ — a and l)e symmetri-

cally situated with respect to the cen-

ter of the figure except in case a lies

on the sides of the parallelogram so

that 2 o)j + 2 w, — a would lie on one

of the excluded sides. The value of

the odd function ^>' at these two points

is equal and opposite. This corresponds precisely to the fact that to

one value x = c of x there are two equal and oi)posite values of // on

the curve
\f-
= 4 x'^ — rj,^x — g,^. Conversely to each point of the }jarallelo-

gram corresponds one point of the curve and to points symmetrically

situated with respect to the center correspond points of the curve sym-

metrically situated with respect to the a^-'axis. Unless z is such as to

make both^>(s:) and2>'(s) real, the point on the ciirve will he imaginary.

193. The curve y'^ = \x^ — (j„x — {/., may be studied by means of the properties

of doubly periodic functions. For instance

Ax + liy Ar V - Ap'{z) + Bp{z) + C =

is the condition tliat tlie parameter z sliould be such that its representative point

shall lie on the line Ax + By + C = 0. But the function AjViz) + Bp{z) + C is

doubly periodic with a pole of the third order
;
the function is therefore of the

third order and there are just three ^joints Zj, z.,, z.3 in the parallelogram for which

the function vanishes. These values of z correspond to the three intersections of

the line with the cubic curve. Now the roots of the doubly periodic function sat-

isfy the relation

Zj + Zo + Zo — 3x0 = 2 m^w^ + 2 m.,w.y

It, may be observed that neither m^ nor )/)., can be as ureat as .3. If conversely Zj. z.,, z^

are three values of z which satisfy the relation Zj -\- z„ -|- Z;, = 2 m^ij]^ + 2?n.,w.,. the

three corresponding points of the cubic will lie on a line. F(jr if Zg be the point in

which a line thrtnigh z,, z., cuts the curve,

Zj + z.i + z'3 = 2 ///jojj + 2 MfoO).,. Zg — Zj = 2 (»(j — ?/ij) a)j 4- 2 ()«._, — m'.^ w.,,

and hence z.,. z^ are identical except for the addition of periods and nuist therefore

be the same point on the parallelogram.

(»ne application of this condition is to find the tangents to the curve from any

point of the curve. Let z Ijc the point from which and z' that to which the tangent

is drawn. The condition then is z + 2z' = 2 ))i^w^ + 2 in.,w.,. and hence

z' = — Iz, z' = — J Z + a)[

.

z' = —
I
Z -\- w.,

.

z' = — ^ Z + a>, + o).,

are the four different possibilities fur z' corres})onding to nt^ = ;/(., = : ?/(, = 1,

nt., = ; //(. = 0, m., = 1 ; in. =- 1, ;//., = 1. To give other values to ))i^ or ///„ wou'ld
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merely reproduce one of the four points excejjt for the addition of complete periods.

Hence there are four tangents to the curve from any point of the curve. The
question of the reality of these tangents may readily be treated. Suppose z denotes

a real point of the curve. If the point lies on the infinite portion, < z < 2 w^, and

the first two points z' will also satisfy the conditions < z' < 2 a;j except for the

possible addition of 2u;j. Ilcnce there are always two real tangents to the curve

from any point of the infinite branch. In case the roots gj, €„, Cg are all real, the

last two points z' will correspond to real points of the oval portion and all four

tangents are real ; in the case of two imaginary roots these values of z' give imag-

inary points of the curve and there are only two real tangents. If the three roots

are real and z corresponds to a point of the oval, z is of the form w., + » and all

four values of z' are complex,

— \ (i>., — I U, —
I Wo — I U + O),, + J

W., — I «, + I OJ., — III + OJj,

and none of the tangents can be real. The discussion is complete.

As an inflection point is a point at which a line may cut a curve in three coin-

cident points, the condition 3z = 2??i,Wj + 2??i,,aj., holds for the parameter z of such

points. The possible different combinations for z are nine :

z = I w., i
0,.,

f wj I ojj + I w., f u); + I w.,

i^l |Wi+|Wo ^O), + ^w.,.

Of these nine inflections only the three in the first colunm are real. When any

two inflections are given a third can be found so that Zj + z., -f- Zg is a complete

period, and hence the inflections lie three bj^ three on twelve lines.

If p and ]/ be sul)stituted in Ax'~ + lixy + Cij'^ + l)x + Ey + l'\ the resuH is a

doubly periodic function of order with a pole of the 0th order at the origin.

The function then has 6 zeros in the parallelogram coiuiected by the relation

Zj + z., + z.^ + z^ + Z. + z^ = 2 ?/i,c<;, -1- 2 m.,w.,,

and this is the condition wliich connects the parameters of the points in which

the cubic is cut by the conic Ax^ + Bxy + Cy- -f Dx + Ey -[- F= 0. One applica-

tion of interest is to the discussion of the conies which may be tangent to the cubic at

three points z,. ?.,. z.,. 'i'lie condition then reduces to Zj + z., + z., = jh^w, + ?n.„w„.

If ??ij, m.^ are (ir any even number.s, this condition expresses tlie fact that the

three points lie on a line and is thei'efore of little interest. 'J'he other possibilities,

apart from the addition of complete periods, are

z^ 4- Zo + Zo = Wj, Zi -f- z.-, + Z3 = w.,, z^ + z., + z., = wj + Wo.

In any of the three cases two points may be chosen at random on the cubic and

the third point is then fixed. Hence there are tiiree conies which are tangent to

the cubic at any two assigned points and at some other point. Another application

of interest is to the conies which have contact of the 5th order with the cubic.

The condition is then Gz = 2?/),w, + 2in.,o}.,. As ?Hj, ?Ho niay have any of the

values from to 5, there are 30 points on the cubic at which a conic may have

contact of the 5th order. Among these points, however, are the nine inflections

obtained by giving m^, m.-, even values, and these are of little interest because the

conic reduces to the inflectional tangent taken twice. There remain 27 points at

which a conic may have contact of the 5th order with the cubic.
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EXERCISES

1. The function f (2) is defined by the equation

-^'{z)=p{z) or ^{z) = - fp{z)dz = ~--c^z^ + ....

Show by Ex. 4, p. 516, that the value of f in the two cases is

en Vxzdn \'\z
^{z) = - e^z + V\E{^, k) + VX

sn VX

f (z) = - (m + ei) z + 2 \^ E (0, /.•) + ^r^ "' ^ "^
,- (2 dn2 ^^^z - l),

sn Vyuz dn \' iiz

where X = (\ — c„, fc^ = (e, — e.-,)/(ej — e.,), = sin-i sn v'Xz,

and /i = "\ (^1 — e.3)(ej — Cg), A:'- = 1 — 3 ej/4 /x, ^ = sin-i sn \ fxz.

2. In case the tliree roots are real show that p (2) — e,- is a square.

cn^'Xz I
—

—

VX /

—

,.- dn VXz
\ p

/-cn^^z /
—-— va /

—

,.—

(z) - t'l
= VX -=-

, Vp (z) - e.. = ^ , Vp (z) - ^3 = \ X

sn A X z sn V X z sn \' X z

What happens in case there is onlj" one real root ?

3. Letjij(z ;
r/.,, f/3) denote the function p corresponding to the radical

Compute p{\: 1 . 0), p (\ ; 0, ^), p (| ; 13, (3). Solve p (2 ; 1, 0) = 2, p (2 ; 0, |) = 3,

p{z; 13. 0) = 10.

4. If of the 9 points in which a cubic cuts y- = 4 j^ — ^.^j — g.^ are on a conic,

the (ilher three are in a straight line.

5. If a conic has contact of the second order with the cubic at two points, the

points of contact lie on a line through one of the infiections.

6. How many of the points at which a conic may have contact of the 5th order

with the culiic are real '.' Locate the points at least roughly.

7. If a conic cuts the cubic in four fixed and two variable points, the line join-

ing the latter two passes through a fixed point of the cubic.

8. Consider the space curve x = sn ;, // = en <, 2 = dn <. Show that to each

point of the rectangle 4 A' hy UK' corresponds one point of the curve and con-

versely. Show that the curve is the intersection of the cylinders x- -f- (/- = 1 and

k-.c- + z- = \. Show that a plane cuts the curve in 4 points and deternune the

relation l)et\veen the jiarameters of the points.

9. IIoVn- many osculating planes may be drawn to the curve (^f Ex. 8 from any.

point on it? At how many puims may a plane have contact of the 3d order with

the curve and where are the points ?

10. In case the roots are real show that i;{z) has the form

^1 ~ / ~ \ /~ ^ E^c^
f(r)z= "2+ A \Z,(\ Xz),

77i
= \X£ ^.

'^1 VX
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Hence log a (z) = f ^(z)dz = ~'^
z^ + log n(-\/\z) + G'J 2 oij^

or <r(2)= Ce-"i' ir(x\z).

11. By general methods like those of § 190 prove that

^
^

[f(2 + «)_f(._,,)_2i-(a)],
P (2) - P (") P'i'l)

J r dz 1 , a-(z + (() >2(-(a)
and

I
= loi; —^—

—

- + 2 ~^^-—!-

.

J p{z)-p{a) p'(a) ' ff(z-n) 2)'{a)

12. Let the functions ff be definetl by the.se relations :

iz) = 11m . ,,(,) = n(^ . 04Z) = e (^) , ff,(z) = e,(^

with fj = e '"i . Show that the ^-series converge if Wj is real ami w., is pure imagi-

nary or complex with its imaginary part positive. Show more ueneraliy that the

series converge if the angle from w, to oj, is positive ami less than 180^.

13. Let aiz) = e-4
'" ^^~\

, a„(z) = c^^\
"' ^"^'^

.

^-(0) '
^.(0)

Prove (T(,r -f- 2i<;j) = — e"''i('^'"iV(4) ami similar relations for (Xaiz).

t A -r -. 2 77, OJ.T n"i TTL
14. Let 2 7?., = —*—

, or tj^w., — 7),,Wj = —
Wj oij " ' 2

Prove (r(2 + 2w.,) = — t
-''2*" '"2^(2) and similar relations for 0-^(2).

15. Sliow that cr(— z) = — (r(2) and develop a (z) as

16. With the determination of tj^ as in Ex. 15 prove that

^ log „ ( .) = f (z). _ ^''-, log <j iz) = - r(2) = V (2)
((2 " dz-

liy showing that p(.r) as here define<l is doubly periodic witli periods 2c<;p 2 Wj,

with a pole I/2- of the second order at 2 = and witli )io constant term in Its

devehjpment. State why this identifies j> (2) with the function of t;he text.



CHAPTER XX

FUNCTIONS OF REAL VARIABLES

194. Partial differential equations of physics. In the solution of

pliysical 2)roblenis partial differential equations of higher order, partic-

ularly the second, frequently arise. "With very few exceptions these

equations are linear, and if they are solved at all, are solved by assum-

ing the solution as a product of functions each of -which contains only

one of the variables. The determination of such a solution offers only

a particular solution of the problem, but the combination of different

particular solutions often suffices to give a suitably general solution.

For instance

i?^;=o (1)

is Laplace's equation in rectangular and polar coordinates. For a solu-

tion in rectangular coordinates the assum^jtion 1'= X {'r') VQ/) would l)e

made, and the assumption F = 7.' (/•)ci>((^j for a solution in polar coor-

dinates. The equations would then become

A'" ]" r-Jl" R' ^"— -f— = or + /. — +— = 0. (2)
A' Y R R ^ ^ ^

Now each equation as written is a sum of functions of a single variable.

But a function of ,/ cannot equal a function of // and a function of /

cannot equal a function of ^ unless the functions are constant and have

the same value. Hence

c-V c^V c-V Ic]
-7r-r + ^-r == or -^+- —
cx- Clf Cj'- /' C/'

X"
4)
~ '" '

y"
or

;-/.'" R'

R +''a>

(2')

-f vi".

These are ordinary ecpiations of the second order and may be solved

as such. The second case will be treated in detail.

The solution (,'orresponding to any value of ni is

<J) = f/^^^ cos i/i<f> + />„, sin v)<f), /' = . I ,„/•'" + J!,j-~
'"

and I' = 7i'$ = (-I,,,/-'" + R,j'~"")(",„ cos ;//</> + /<„, sin /)><f>)

524
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or T' = 2 (-1 ,„'"' + J'mi'~ "'){"m COS m<^ + /v sin w<^). (3)

That any number of solutions corresponding to different values of m
ma}' be added together to give another solution is due to the Unearitij

of the given equation (§ 96). It may be that a single term will suffice

as a solution of a given problem. ]>ut it may be seen in general that

:

A solution for T' inay be found in the form of a Fourier series which

shall give V any assigned values on a unit circle and either be conver-

gent for all values within the circle or be convergent for all values

outside the circle. In fact let f(<i>} be the values of V on the unit circle.

Expand /(^) into its Fourier series

f{^) = \ '',1 + "V («'„, cos iii<li + /»„, sin m<f).

Then T' = -^ a^ + V r'" ('/,„ cos ///^ + /.,„ sin w^) (3')

will be a solution of the equation which reduces to /(^) on the circle

and, as it is a power series in r, converges at every point within the

circle. In like manner a solution convergent outside the circle is

r = ], r/„ + V /•-'"
('/,„ cos iii<^ -f A,,, sin in(^). (3")

The iiiiiiiite series for V have l}een called solutions of Laplace's equation. As a

matter of fact they have not been proved to be solutions. The finite sum obtained

by taking any number of terms of the series would surely be a solution ; but the

limit of that sum when the series becomes infinite is not thereby ])rove(l to l)e a solu-

tion even if the series is convergent. For theoretical purposes it would be necessary

to give the proof, but tlie matter will be passed over here as having- a neuiiuible

bearing- on the practical solution of many problems. For in ]U'actice the values of

/((/)) on tlie circle could not be exactly known and could therefore be adecjuatcly

represented by a linite and in general not very large number of terms of the de-

velopment of /(0), and these terms would give only a finite series for the desired

function 1'.

In sonte problems it is better to keep the particular solutions se])a-

rate, discuss each possible particular solution, and then imagine them

compounded physically. Thus in the motion of a drumhead, the most

general solution obtainaV)le is not so instructive as the particular solution

corresponding to particular notes ; and in the motion of the surface of

the ocean it is jtreferable to discuss individual types of waves and com-

])()und them according to the law of superposition of snudl vibrations

([>. 22G). For example if

lf--_r-,v c-x 1 7"_.V" r" _ vv^v'
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be taken as the equation of motion of a rectangular drumhead,

_ fain ax, »- _ f^ii^ /^•''j „, _ fsin c Va- -f- ftH

Loos ax, Lc.os fix, \cos c Va'- + fiH

are particular solutions which may be combined in any way desired

As the edges of the drumhead are supposed to be fixed at all times,

z — if X = 0, ./• = ((, y == 0, y = ^>, t = anything,

where the dimensions of the head are a bv h. Then the solution

rinr.r . viri/ \iir n~
z — A'}'7' = sni sui —~ cos rir \ —7 + 77 z'

a I) > c/- Ir
(-^)

is a possible type of vil)ration satisfying tlic given conditions at the

])erimeter of the lu'ad foi' any integral values of m , v. The solution is

])eriodic in f and rei)resents a ])articular not,> uliich may b' omitted.

A sum of sucli ex])i'(_'Ssions multi[)li('(l by any constants would also be

a solution and would represent a ])ossible mode of motion, luit would

not be periodic^ in i and would represent no note.

195. For tlii't'c dimensions La})laci'"s equation l)ccomes

cr\ cr sin'-^ rd)" sin 9 cO\ c9
(5)

in ]iolar cooi-dinates. Substitute V — /! (r)(r){6)(i>((f)): then

A" 7r ('"
,lr I

"^
(-) sin <I6 \ ''0 I

^ * sin^ ^ r/<^-
~

'

Here the lirst term in\-olvcs /• alone and no other tciau involves r

Hence the iirst term mnsv be a constant, sa\". //(// + 1). Then

/ / ., (in
(), + 1)/,' = 0, y.' = .!/•" + Jlr-"-\

Next consider the last term after multiplying thr(.)Ugli by sin'-^. It ap

})ears that 4)~'(i)" is a constant, say, — i/i'. Ilenee

<^" = ~ ///<^. <P = (•/„, cos i/i(f) -f- ''',„ sin ni(f>.

^loi'eovep the equation foi' now reduces to the sinqtle form

>/

(I cos
(^-<-'>^'^),/7

/0
(" +1) 1- = 0.

'I'iie problem is now separated into that of the integration of three

differential equations of which the tirst two are I'cadily integrable. The

third ei|iiation is a generali/at ion of Lcgendre"s (Fxs. 13-17, }). 252),
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and in case n, m are positive integers the solution may l:ie expressed in

terms of polynomials P„_
,„
(cos 6) in cos 6. Any expression

2 (-!„'•" + A,'-~"~')(«". cos 7»<^ + h,, sin ,),,f) I\„, (cos $)
n, til

is therefore a solution of Laplace's equation, and it may be shown that

by combining- such solutions into infinite series, a solution may be

obtained wliich takes on any desired values on the unit sphere and

converges for all points within or outside.

Of particular simplicity and importance is the case in which 1' is su}>

posed independent of
(f>

so that )i/ = and the equation for is soluble

in terms of Legendre's })olynomials 7'„(cos^) if n is integral. As the

potential V of any distribution of matter attracting according to the in-

verse square of the distance satisfies Laplace's eqiiation at all points

exterior to the mass (§ 201), the potential of any mass symmetric with

respect to revolution about the polar axis ^ = niay be expressed if

its expression for points on the axis is known. For instance, the poten-

tial of a mass M distributed along a circular wire of radius a is

r.l//- 1 r- l-:^r' 1-3 -or"

V «- -f
/•-

.V (n 1 li^ 1 ;5 n'' 1 . .3 5 <r

l~i;"i>7 + i>:4 7"2T4T^7 + --'' ''>"^

at a point distant /• from the center of the wire along a perpendicular

to the plane of tlu; wire. Tlie two series

I M /n 1 n^ 1 .S
,1'" 1 ..3.") a'

[tAI- ''o - 2 ? ''-- + Y'x ,>
''."

^TTTTi 7 ''« +
'

'• > "'

are then precisely of the form 2. 1 „/•"/•'„, 2. 1
„/•"""'/'„ admissible for

solutions of Laplace's equation and reduce to the known value of T'

along the axis ^ = since P„(^) — ^- I'l^*?}' fti'^'6 the values of F at all

])()ints of space.

To this point the method of combining solutions of the given differ-

ential equations was to add them into a finite or infinite series. It is

also possible to combine tliem by integration and to obtain a solution

as a definite integral instead of as an inhnite series. It should be noted

in this case, too, that a limit of a sum lias replaced a sum and that it

would theoretically be necessary to demonstrate that the limit of the

sum was really a solution of the given equation. It will lie sufficient

at this point to illustrate the luetliod without any rigorous attenq)t to
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justify it. Consider (2') in rectangular coordinates. The solutions for

X, Fare

A'" , F"

where F may be expressed in terms of hyperbolic functions. Now

I c~ '"" \^a (7?i) cos nix + h (???.) sin mx^ chn

(6)

= lim 2, ''"'"'''['''
(?/?-,) cos v)jX + f'('i'i) Hin ii/jx'] A»?,-

is the limit of a sum of terms each of which is a solution of the given

equation ; for a (w?,) and b (j)t,) are constants for any given value ni = m,-,

no matter Avhat functions a(m) and l)(m) are of ?». It may b(^ assumed

that V is a' solution of the given equation. Another solution could be

found by replacing e~"'" by e'"".

It is sometimes })0ssible to determine a (i>i), l> (/») so that ]' shall

reduce to assigned values on certain lines. In fact (p. 4()G)

/(,r) =-
I j

/(A) ('OS VI (X - x) (Ihlm. (7)

Hence if the limits for m be and co and if the (dioice

a (ill) = —
I

f(X) cos mX(/X, h (?ii) = —
| fi^) sin mXdX

is taken for a (m), b(iii'), the expression ((>) for V becomes

V = - f j
e-""'f(X) cos III (X - x) (iXdiii (8)

and reduces to /(,r) when // = 0. Ibmce a solution V is found which

takes on anv assigned values ,/'(•'') '^-^oi'g ^'^'*' ;r-axis. Tliis solution clearly

becomes zei'o when y be(H)mes infinite. AVhen /(•'') ^^ given it is sonu'-

times possible to perform one or more of the integrations and thus

simplify the ex})ression for V.

For instance if

/(.r) = T when j > and /(.r) = wlien x < 0,

tlie intt'i^ral from — co t.o drops ont and

V= f f e-'»'J 1 • c\mvL{\ — x)d\(li)i —- f f c- '"" cos ??i (X — x) d/nd\

1 r ' v(l\ 1 /tt
,

•' \ - 1 , V
/ = + tan-i U= 1 tan-i-.

TT J //" + (X — X)- TT \2 I// TT X
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It may readily be shown that when y > the reversal of the order of integration

is permissible ; bnt as V is determined completely, it is simpler to substitute the

value as found in the equation and see that F^^ + 1'^^ = 0, and to check the fact

that V reduces to f{x) when y = 0. It may perhaps be superfluous to state that

the proved correctness of an answer does not show the justification of the steps by

which that answer is found; but on the other hand as those steps were taken

solely to obtain the answer, there is no practical need of justifying them if the

answer is clearly right.

EXERCISES

1. Find the indicated particular solutions of these equations

:

(a) c- -— = -—- , 1" = "X 'l»it- '""'
(«,„ cos cmx + 6„, sin anx),

ct ex'-
^~-<

(j3)
=

. F = / (^l„jC0sc??i^ + 7i,„si'i cml)(amCosmx + 6„iSin )nx),
c'^ ct' dx- -^

(y) c-2^^ = ^\^l\ ^-^.^
rsincax ^.^jsinc/S^/ ^^,-(.= + ,2),

^ ' ct cx-^ cy- icon cax, ^cos cjSy,

2. Determine the solutions of Laplace's equation in the plane that have V = 1

for < < TT and F = — 1 for it < 4> <2it on a unit circle.

3. If Y --\tt — 4)] on the unit circle, find the expansion for F.

4. Show that F= Sff,„sinTO7rx/? • cos cmirt/l is the solution of Ex. 1 (/3) which

vanishes at x = and x = I. Determine the coefficients a,„ so that for t = the

value of T" shall be an assigned function /(x). This is the problem of the violin

string started from any assigned configuration.

5. If the string of Ex. 4 is .started with any assigned velocity dV/ct =f{x) when

t = 0, show that the solution is 2a„, sin nnrx/l • sin cimrt/l and make the proper deter-

mination of the constants am-

6. If the drumhead is started with the shape z =.f{x, y), show that

s:-\ , . niTTX . mri/ ^ m- n^2= > .1,,, ,, sm sm—^cosTTrfA/ 1 ,

f;^
a b \cfi 62

A r"^ r^' viTTX . inry
-4,„.„ = -- f{x,y)sm sm——cbjdx.

ab J J a b

7. In hydrodynamics it is shown that —^ = '

(/i6 -^) is the differential equa-
ct- b cx \ cxj

tio]i for the surface of the sea in an estuary or on a beach of breadth b and depth

li measured perpendicularly to the x-axis which is supposed to run seaward. Find

(a) y = ^4J"y(A.-x)cos ni, k- = 11^/gh, {(3) y = AJf^(2 \ lex) cos nt, k = n-/gm,

as particular solutions of tlie equation when (cx) the depth is uniform but the

breadth is proportional to the distance ovTt to sea, and when (/3) the breadth is vini-

form but the depth is ntx. Discuss the shape of the waves that may thus stand on

the surface of the estiuiry or beach.
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8. If a serifs of parallel waves on an ocean of constant depth h is cut perpen-

dicularly by the a"?/-plane with the axes horizontal and vertical so that ?/ = — /i is

the ocean bed, the equations for the velocity potential (p are known to be

?l+?^=o, p;*] =0, r§+„?*i =0.

Find and combine particular sc^lutions to show that (^ may have the form

(p = A cosh k{y + h) cos {kx — 7t<), ?i^ = gk taidi kh.

9. Obtain the solutions or types of solutions for these ecjuations.

(fi)
^~-

-\ 1- — ^

—

- + V = 0, Am. "V (amcosm0-f-f'„,.si"'«0)t/m(''))

(rf„,„, cos ?/i0 + /)„,„, sin m0),dx'^ dy'- cz'"

^V JV c'^V
, , 1 c^V c-V f2]^ d-^v

1-2 =
, (e) - = h h

fr- ct dx^ c^ ct'^ cx'^ ci/^ cz^

10. I-'ind the potential of a homogeneous circular disk as (Kx. 22, p. 68
;

Kx. 23, p. 332)

,, 2 3/ ri a 1 • 1 a3 ^ 1 1 • 3 a^ i . ] . 3 • 5 r;^ n
V = Po + P. F, + ], r>a,

a 12 r 2 • 4 r3 " 2 • 4 • r^ * 2 • 4 • 6 • 8 r'' ** J
'

2 Jf r, r „ 1 '-2 ^ 1 . 1 r* 1 • 1 • 3 r6 n
= l^F-P, -1- P„ P, -h P, , r <a,

a I a ^ 2 «-^ - 2 4 «4 ^ ^ 2 • 4 • (5 «« 'J
where the negative sign before P^ holds for 6 <\Tr and the positive for 6 > |-7r.

11. Find the potential of a homogeneous hemispherical shell.

12. Find the potential of (a) a hf)mogeneous hemisphere at all points outside

the hemisi)iiere, and (^) a homogeneous circular cylinder at all external pcjints.

13. Assume — cos-' is the potential at a point of the axis of a conduct-
2 n x'^ -f a^

ing disk of radius a charged with (^ units of ehictricity. Find the potential anywhere.

196. Harmonic functions
;

general theorems. A function wliieli

satisfies Laplace's equation I "^.^ -f !

'J^'^

= or I ",',. -f I

",l,^ -f I
".'^ = 0, Avlietlier

in the plane or in S})a('e, is cnllcd a Im rDinnin fimcfinti. It is assunu:-!!

that tlie first and second partial derivatives of a liiuMuouic Function are

continuous exce])t at S])ecihed })oints called singailar jjoints. There are

many similarities between harmonic functions in the ])lane and har-

monic functions in space, and some diiferiMict'S. Tlie fundamental th"0-

rem is that: Jf <( finictloii is ha riiionic and ]i<ts vo siii'inhi ritics Vjinn.

or irifJii)) (t si.iiijtlc cIdsciI ciiri-c (nr s/trfifcr^^ the line itdi'ijriil of i/s iior-

vial (Jcrirnfiiw, (iloiuj tin', ciirn' (rcspcrfi rch/^ siirf'icc') ranisltcs \ <in<l cm-

V('/'seli/ if (I fiincfidii !'(,/•, //), ar r(.r, _//, rSV has continuous Jirst and second
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partial derivatives and the line integral (or sMrface interjral) along everij

closed curve (or surface') in a region vanis/ws, the function is harmonic.

For by Green's Formula, in the respective cases of plane and space

(Ex. 10, p. 349),

r dv
, Ccv ^ dv , rr/c-v c-]-\

, ,
1 -—ds^l -^— di/ — -7— dx =111 ^r-r + —T7 dxdi/,

rf'«=r"s-v.=///v-vr,,.,.,,,,fe.

(9)

Kow if the function is harmonic, the right-hand side vanishes and so

must the left; and conversely if the left-hand side vanishes for all

closed curves (or surfaces), the right-hand side must vanish for every

region, and hence the integrand must vanish.

If in particular the curve or surface be taken as a circle or sphere of

radius a and polar coordinates be taken at the center, the normal de-

rivative becomes cV/cr and the result is

/ ^ r/ci = or r
I

^.- sin OdOdch = 0,

Jo ^'- Jo Jo
''

where the constant a or ir lias been discarded from the element of arc

((d<^ or the element of surface <r sin ddddnfy. If these equations l)e inte-

grated Avith respect to r from to (f, the integrals may be evaluated by

reversing the order of integration. Thus

0= f\lr r^'-Lj^^ C" r"'±,frd^=
f'\\'.-

!;)./</>,

and j l„./c^= r,j d^, or \\=V„ (10)

Avhere ]'„ is the value of 1' on the circle of radius a and V^ is the value

at the center and !'„ is the average value along the perimeter of the

circle. Similar analysis "would hold in space. The result states the

important theorem: Tlie average value of a Jiarinonlc function over a

circle (or sjilierc) is e([ual to the value at the center.

This theorem has imm(»diat(.> corollaries of imjxortance. A Jiarmonic

function, irltich hus no singidaritics irifliina region cunntd become maxi-

itiuDi or minim uni at anij poird u-ithin the region. I'or if the function

were a maximum at any ])oint, that point (H)idd be surroundi'd by a

circli' or sphere so small that the value of the function at every point

of the contour would be less than at the assumed maximum and hence

the average value on the contour coidd not be the value at the center.
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A ha n7ion ic function whic/i Ikis no n'lngtilnrlfu's irltJiln a region and is

constant on the boundari/ Is constant throughout tlic region. Fur the

maximum and minimum values must be on the boundary, and if these

have the same value, the function must have that same value through-

out the included region. Tu-o lidrmonlc functions u-hldi liare identical

values upon a closed contour and have no singula rltu's u-ltltln, are ideii-

tlral throughout the Included region. For their difference is harmonic

and has the constant value on the boundary and hence throughout

the region. These theorems are equally true if the region is allo-wed to

grow until it is infinite, i)rovidc(l the values -which the function takes

on at infinity are taken into consideration. Thus, if two hai'nionic

functions have no singularities in a certain infinite region, take on the

same values at all points of the l:)Oundary of the region, and approach

the same values as the point (.r, y) or (,/, y, z) in any manner recedes

indefinitely in the region, the two functions are identical.

If Green's Formula be applied to a product Ud I '/dn, then

r dv , r dv , dv
,

I i: -—ds= I r —- dii — I —- dx
Jo '^'' Jo '^•'- '^y

or rrr/s.vr=
I

rv.vivr +
I

vr.viv/r (11)

in the plane or in space. In this relation let ]' be harmonic Avithout

singularities within and upon the contour, and let /' = \'. The first inte-

gral on the right vanishes and the second is necessarily })Ositive unless

the relations l'_^. = 1',', = ov \'',. = ',/ = ^ ^ = 0, which is equivalent

to V r = 0, are fulfilled at all points of the included region. Suppose

further that the normal derivative dVJdn is zero over the entire bound-

ary. The integral on the left will then vanisli and that on the right

must vanish. Hence )' contains none of the variables and is constant.

If the nariuiil di'rlrntlcc <if a fu nrthni ha ciuonlc and dcmlil (f singula f-

Ifli's at all jxtlnts on and irlfJihi a glcmi contour ranlshrs Identically

upon th,e contour, the funrflon Is constmif. As a corollary : If tw>i

functions are harmonic and devoid of singularities upon and within a

given contour, and if tlieir normal derivatives are identically equal

upon the contour, the functions differ at most by an additive constant.

In other Avords, a harmonic function u-ltlmuf singula rltlcs not only Is

dctcrnilncd hy Its ralncs on a contour luf also {c.fccpt for an adiJltli'c

constant) hy the rallies of' Its normal dcrlratlcc upon a contour.
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Laplace's equation arises directly upon the statement of some problems in

physics in mathematical form. In the first place consider the flow of heat or of

electricity in a conducting body. The physical law is that heat flows along the

direction of most rapid decrease of temperature T, and that the amount of the flow

is proportional to the rate of decrease. As — VT" gives the direction and magni-

tude of the most rapid decrease of temperature, the flow of heat may be represented

by — kV T, where k is a constant. The rate of flow in any direction is the compo-

nent of this vector in that direction. The rate of flow across any boundary is

therefore the integral along the boundary of the normal derivative of T. Now the

flow is said to be steady if there is no increase or decrease of heat within aiij" closed

boundary, that is p
k / fZS-VT = or T is harmonic.

Hence the problem of the distribution of tlie temperature in a body supfjorting

a steady flow of heat is the jjroblem of integrating Laplace's equation. In like

manner, the laws of the flow of electricity being identical with those for the flow

of heat except that the potential V replaces the temperature T, the problem of the

distribution of potential in a body supporting a steady flow of electricity will also

be that of solving Laplace's equation.

Another problem which gives rise to Laplace's equation is that of the irrotational

motion of an incompressible fluid. If v is the velocity of the fluid, the motion is

called irrotational when Vxv = 0, that is, when the line integral of the velocity

about any closed curve is zero. In this case the negative of the line integral from

a fixed limit to a variable limit defines a function <f> (x. ij, z) called the velocity

potential, and the velocity may be expressed as v =— V<i>. As the fluid is incom-

pressible, the flow across any closed boundary is necessarily zero. Hence

CdS'V'^ = or fv.V^'Zr = or V.V* = 0,

and the velocity potential <l> is a harmonic function. Both tliese problems may be

stated without vector notation by carrying out the ideas involved with the aid of

ordinary coordinates. Tlie xiroblems may also be solved for the plane instead of

for space in a precisely analogous manner.

197. The conception of the flow of electricity will be advantageous

in discussing the singularities of harmonic functions and a more gen-

eral conception of steady flow. Suppose

an electrode is set down on a sheet of zinc

of which the perimeter is grounded. The

equipotential lines and the lines of flow

which are orthogonal to them may be

sketched in. Electricity passes steadily

from the electrode to the rim of the sheet

and off to the ground. Across any circuit

wduch does not surround the electrode the

flow of electricity is zero as the flow is steady, Imt across any circuit

surrounding the electrode there will be a certain definite flow ; the

circuit integral of the normal derivative of the potential 1' around such
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a circuit is not zero. This may be compared with the fact that the

circuit integral of a function of a complex variable is not necessarily

zero about a singularity, although it is zero if the circuit contains no

singularity. Or the electrode may not be considered as corresponding

to a singularity but to a portion cut out from the sheet so that the

sheet is no longer simi)ly connected, and the comparison would then

be with a circuit which could not be shrunk to nothing. Concerning

this latter interpretation little need be said ; the facts are readily seen.

It is the former conception which is interesting.

For mathematical purposes the electrode will be idealized by assum-

ing its diameter to shrink down to a point. It is physically clear that

the smaller the electrode, the higher must be the potential at the elec-

trode to force a given How of electricity into the })late. Indeed it may

be seen that T' must become infinite as — <_' log r, where r is the distance

from the point electrode. For note in the first place that log /• is a solu-

tion of Laplace's equation in the ])lane ; and let U = V -\- C log / or

r= U — C log /•, where V is a harmonic function which reniains finite

at the electrode. The flow across any small circle concentric with the

electrode is ^-z-k ^ y /^ 2 - - ,

-

—
j

^—
j'>Jcf> = -

I

— nl<p + 2 7rr = 2 ttC,

and is finite. Tlie constant ''' is called the strength of the source situ-

ated at the point electrode. A simihir discussion for space would show

that the potential in the neighljorhood of a source woidd become infinite

as C/r. The })articular solutions — log / and 1 '/• of Laplare's e(|uation

in the respective cases may be called t\w f/'>i'^"'>i''>tt"^ s'diit'tnns.

The physical anah:)i;y will also suggest a nu'thud nf dbtaiiiiiig higher singular-

ities by combining fundamental singularities. F(ir suppose that a i)i)\verful positive

electrode is placed near an ecjually powerful negative electrode, that is. suppose a

strong source and a strong sink near together. The greater part of tiie tlow will be

nearly in a straight line from the source to the sink, but some part of it will spread

out over the .sheet. The value of T" obtained by adding together the two values for

.source and sink is

r = - 1 C log {r- 4- /- - 2 H cos (p) + \ C log (
/•- + /- + 2 rl cos 4>)

= --Clog(^l- -^-cos^ + -,^ + ^Clog^l + -cos,^ + ^
2 IC

, . ,
.V= cos -f hiuher powers = — cos^ + • • ••

r r

Thus if the strength (_' be allowed to become infinite as the distance 2/ becomes

ziTo. and if M denote the liuiir of the ].roduct •IlC. the linutiii- form of b is

' cos^ and is itself a soli u ion of the ecjuation. beconung inliuiti- more strongly

. In space the eo|-rrspoiidinu- solution would be 3//'-- cos (p.
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It was seen that a harmonic function \vhi(.-h had no singularities on or

within a given contour was determined by its values on the contour and

determined except for an additive constant by the values of its normal

derivative upon the contour. If now there be actually within the contour

certain singularities at which the function becomes infinite as certain

particular solutions I'^, l'^, • •
• , the function t' = T' — T^ — I '.,— ••• is har-

monic without singularities and may be determined as before. Moreover,

the values of I'^ 1'.,, • • • or their normal derivatives may be considered as

known upon the contour inasmuch as these are definite particular solu-

tions. Hence it appears, as before, that the, harmonic fu net ion V is deter-

mined hy its rallies on tJie hoiindanj of the region or {exceptfor an additire

constant) hy tlie values of its normal derivative on tlie boundary, provided

the singularities are specified inpjosition and their mode ofbecom ing infin-

ite is given m earJi case as some particular solution of Lapiact;'s equation.

Consider again the conducting sheet with its perimeter grounded and

with a single electrode of strength unity at some intericn- ])oint of the

sheet. The })otential thus set up has the properties that :
1° the poten-

tial is zero along the perimeter because the perimeter is grounded ;
2° at

the position P of the electrode the })otential becomes infinite as — log ?;

and 3° at any other ])oint of the sheet the potential is regular and sat-

isfies Laplace's equation. Tliis particular distribution of potential is

denoted b}' G{P) and is called the Green Function of the sheet relative

to I\ In space the Green Function of a region would still satisfy 1° and
3°, l)ut in 2° the fundamental solution — log r would have to l)e replaced

Ijy the corresponding fundamental solution 1/r. It should be noted

that the Green Function is really a fun(,'tion

G(P) = a(o^ b\ ./, y) or G{1') = G{a, b, r ; x, y, z)

of four or six variables if the position P(a, h) or P (<', b, c) of the elec-

trode is considered as variable. The function is considered as known
only Avhen it is known for any position of J\

If now the svmmetrical form of Green's Formula

-ff(,,^r
- .s„yu,, +£{„ ^ -

.

I),;,
= 0. (12)

where A denotes the sum of the second derivatives, Ije a^tplied to the

entire sheet with the exception of a small circle concentric with 7-" and

if the choice u — G and r = F be made, then as G and ]' are harmonic

the double integral drojis out and

r da
, f-" dv r-^ dG

(13)
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Now let the radius / of the small circle approach 0. Under the assump-

tion that I' is devoid of singularities and that G becomes infinite as

— log r, the middle integral approaches because its integrand does,

and the final integral approaches 2 7rr(P). Hence

This formula expresses the values of T' at any interior point of the sheet

in terms of the values of V upon the contour and of the normal deri\'a-

tive of G along the contour. It appears, therefore, that tJie deternibiatlon

of til e^ value of a ho nnonlc function devoid of singularities tvithin and

iipon a contour tiunj he made in terms of the values on the contour jj^'o-

vided the Green Function of the region is known. Hence the particular

importance of the problem of determining the Green Function for a

given region. This theorem is analogous to Cauchy's Integral (§ 126).

EXERCISES

1. Show that any linear function ax + by + cz + d = is harmonic. Find the

coiulitions that a (quadratic function be harmonic.

2. Show that the real and imaginary parts of any function of a complex vari-

able are each harmonic functions of {x, y).

3. Why is the sum or difference of any two harmonic functions multiplied by

any constants itself harmonic ? Is the power of a harmonic function harmonic '?

4. Show that the product J'l' of two harmonic functions is harmonic when

and only when U^V^ + ^"n^'n
— ^ ^''' V6'.V1" = 0. In this case the two functions

are called conjugate or orthogonal. What is the significance of this condition

geometrically ?

5. Prove the average value theorem for space as for the plane.

6. Shiiw for the jjlane that if V is harmonic, then

f = -7— '?N = ^^r~ dy - -z~
J d)i J (X cy

dx

is independent of the path and is the cunjugate or orthogonal function to T', and

that U is devoid of singularities over any region over which )" is devoid of them.

Show that, 1'
-f- ii' is a function of z = x + iy.

7. State the problems of the steady flow of heat or electricity in terms of ordi-

nary coordinates f(jr the case of the plane.

8. Discuss for space the problem of the source, showing that C/r gives a fiiute

fl(jw AttC. where C is called the strength of the source. Note the presence of the

factor 4 77 in the place of 2 tt as found in tW(j dimensions.

9. Derive the solution Mi—- cos (p for the source-sink combination in space.
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10. Discuss the problem of the small magnet or the electric doublet iu view of

Ex. 9. Note that as the attraction is inversely as the square of the distance, the

potential of the force satisfies Laplace's equation in space.

11. Let equal infinite sources and sinks be located alternately at the vertices

of an infinitesimal square. Find the corresponding particular solution (a) in the

case of the plane, and (^) in the case of space. What combination of magnets does

this represent if the point of view of Ex. 10 be taken, and for what purpose is the

combination used ?

12. Express V{P) in terms of G{P) and the boundary values of T in space.

13. If an analytic function has no singularities within or on a contour, Caucliy's

Integral gives the value at any interior point. If tliere are within the contour cer-

tain poles, what must be known in addition to the boundary values to determine

the function ? Compare with the analogous tlieorem for harmonic functions.

14. Why were the .solutions in § 104 as series tlie only possible .solutions

provided they were really solutions? Is there any ditficulty in making the same

infei'ence relative to the problem of the potential of a circular wire in § 195 ?

15. Let G{P) and G(Q) be the Green Functions for the same sheet but relative

to two different points P and Q. Apply Green's symmetric theorem to the .sheet

from which two small circles about P and Q have been removed, making the choice

u = G{P) and v - G{Q). Hence show that G {P) at ^ '-^ t-ijual to (;{Q) at /'. This

may be written as

G{a, b; j, y) = G{x. y ; a, li) or 6-' (a, h. c ; .c, y, z) = G [x. y. z ; a. h^ c).

16. Te.st these functions for the harmonic property, determine tlie conjugate

functions and the allied functions of a complex variable:

{ex) xy, (,a) x-y - I y^, (7) ^ log {x- + y'^),

(5) e-^siuj, (e) sin j cosh y. (f) tan-i(cot x tanh y).

198. Harmonic functions ; special theorems. For the purposes of

the next paragrii})lis it is necessary to study the pro})erties of the geo-

metric transformation known as Inrersuin. Tlie definition of inversion

will be given so as to be a})plieai)le either to space or to the i)lane.

The transformation which replaces each point P by a point P' such

that OP OP' = Ir where o is a given fixed point, /.• a constant, and P'

is on the line <>P, is called inrersion irlflt flu- n-nfcr <) and tin; rudlns h.

Xote that if P is thus carried into P\ then /'' will be carried into P
;

and hence if any geometrical configuration is carried into another, that

other will be carried into the first. Points very near to () are carried

off to a great distance; for the point O itself the definition l)reaks

down and correspoiuls to no point of space. If desired, one may add

to space a fictitious }ioint called the point at infinity and niay then say

that the center O of the inversion corresponds to the point at infinity

(p. 481). A pair of points /', /'' which go over iiitc; each other, and another

pair 0, 0' satisfy the equation OP- OP' = OQ- Oil'.



538 THEORY OF FUNCTIONS

A curve wliieh cuts tlie line oP at an angle t is carried into a

curve which cuts the line at the angle t' = tt — t. For by the relation

OP. OP' = OQ. OQ', the triangles OPQ, OQ'P' are similar and

Z OPQ = Z OQ'P' = TT - Z — Z OP'Q'.

Now ii Q = P and (/ = P', then Z = 0, Z OJ>Q = t, Z OP'Q' = t and

it is seen that t = tt — t' or t' — tt — t. An immediate extension of

the argument will show that the magnitude

of the angle between two intersecting curves p____—-;7f'

will be unchanged by the transformation; tJu'

transformation is therefore confornial. (In

the plane where it is possible to distinguish \)etween positive and neg-

ative angles, the sign of the angle is reversed by the transformation.)

If polar coordinates relative to the point (> be introduced, the equations

of the transformation are simply ;/' = /- Avith the understanding that

the angle <^ in the plane or the angles <^, d in space are unchanged. The

locus / = /., which is a circle in the plane or a sphere in space, becomes

r' = 1; and is therefore unchanged. This is called the circle or the sphere

of inversion. Iielative to this locus a simple construction for a pair of

inverse points /• and /'' may be made as indicated in the figure. The locus

7- + /;-:= 2 V(r + A'-/- becomes Ir + '''" = - v cr + /.'/' cos <^

and is therefore unchanged as a whole. This locus represents a circle

or a sphere of radius a orthogonal to the circle or sphere of inversion.

A construction may now l)e made for hnding an inversion which car-

ries a given circle into itself and

the center Z' of the circle into any

assigned point 1^' of the circle ; tlu'

construction holds for space l)y rc-

voh'iug tliehgurc al>outtlie \\\w(>l\

To tiud what ligure a line in the plane or a })lane in space becomes

on inversion, let the polar axis
<f>
= or ^ = be taken perpendicular

to the line or plane as the casi^ i"'iy 1"'- Then

r = p sec (fi. r' sec 4> = /.'"/y/ or /• = j/ sec 6, r' sec = A-'/y/

are the equations of the line or })laiie and the inverse locus. The locus

is seen to be a circle or s})here through the center of inversion. This

may also be seen directly by ap})lying the geometric definition of in-

versi(jn. In a similar manner, or analytically, it may be shown that

any circle in the })lane or any sphere in s})ace inverts into a circle or

into a sphere, unless it passes through the center of inversion and

becomes a line or a plane.
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If d be the distance of P from the circle or sphere of inversion, the distance of

P from the center is A; — d. the distance of P' from the center is k'-/(k — d), and

from the circle or sphere it is d' = dk/{k — d). Now if the radius k is very large

in comparison with d. the ratio k/{k — d) is nearly 1 and d' is nearly equal to d.

If k is allowed to become infinite so that the center of inversion recedes indefinitely

and the circle or sphere of inversion approaches a line or plane, the distance d'

approaches d as a limit. As the transformation which replaces each point by a

point equidistant from a given line or plane and perpendicularly opposite to the

point is the ordinary inversion or reflection in the line or plane such as is familiar

in optics, it appears that reflection in a line or plane may be regarded as the limit-

ing case of inversion in a circle or sphere.

The importance of inversion in the study of harmonic functions lies

in two tlHH)rems applicable respectively to the plane and to space.

First, if r is //"/•iDonic orer <niy region of tlie plune and If tlud region

he inrevti'd in "n;/ cin-lf, the function T''(P') — V (^P) forriu'iJ Jn/ assigyi-

ing the an me ralue at P' in the new region as the funetion had at the

point P icliirh inrevted into P' is also liarmonie. Second, if V is har-

monic over any region in space, and if that region he inverted in a sphere

of radius k, the function !''(/'') = ?:V(P')/r' formed hij assigiiing at P'

the value the f/met ion had at P nndtijdied hij k and divided hij the dis-

tance OP' = /•' of P' from the renter of inversion is also harmonir. The
significance of these theorems lies in the fact that if one distribution

of potential is known, another may be derived from it by inversion

;

and conversely it is often possible to determine a distriljution of ])oten-

tial by inverting an unknown case into one that is knoAvn. Tlu* proof

of the theorems consists merely in making the changes of variable

V = k-/r' or /' = //-//•, cf>' = cj>, 6' = d

in the polar forms of Laplace's equation (Exs. 21, 22, p. 112).

The method of using inversion to determine distribution of potential in electro-

statics is often called the method of electric imaijes. As a charge e located at a

point exerts on other point charges a force proportional to the inverse s(|uare of

the distance, the potential due to e is as 1/p. where p is the distance fmni the

charge (with the proper units it may be taken as e/p), and satisfles Laplace's

equation. The potential due to any number of point charges is the sum of the

individual iKitentiais d\ie to the charges. Tims far the theory is essentially the

same as if tiie charges were attracting particles of matter. In electricity, however,

the question of the distribution of potential is furtlier complicated when tliere are

in the neighl)orhood of the charges certain conducting surfaces. Tor 1^ a conduct-

ing surface in an electrostatic field must everywhere be at a constant potential or

there would be a component force along the surface and the electricity upon it

would move, and 2^ there is the phenomenon of induced electricity whereby a

variable surface charge is induced upon tlie conductor by other cliarues in the

neighborhood. If the potential ViP) due to any distriliati<iii ef diarges be

inverted in any sphere, the new potential is k]'{P)/r\ As the i>i)tential V{P)
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becomes inlinite as e/p at the point cliarges e, the potential kV{P)/r' will become

infinite at the inverted positions of the charges. As the ratio ds' : ds of the in-

verted and original elements of length is ?-'-/A:'^,. the potential kV{P)/r' wiU become

infinite as k/r' c/p' r"^/k^, that is, as r'e/kp'. Hence it appears that the charge e

inverts into a charge e' = r'c/k ; the charge — e' is called the electric image of e.

As the new potential is ky{P)/r' instead of V{P), it appears that an eqnipoten-

tial surface V = const, will not invert into an equipotential surface V'{P') = con.st.

unless V = or r' is constant. But if to the inverted system there be added the

charge e = — A;]'at the center O of inversion, the inverted equipotential surface

becomes a surface of zero potential.

With these preliminaries, consider tiie question of the distribution of potential

due to an external charge e at a distance r from the center of a conducting spheri-

cal surface of radius k which has been grounded so as to be maintained at zero

potential. If the system be inverted with respect to the sphere of radius k, the

potential of the si^herical surface remains zero and the charge e goes over into a

charge e' = r'c/k at the inverse point. Now if p, p' are the distances from e, e' to

the sphere, it is a fact of elementary geometry that p : p' = const. = K : ^•. Hence

the potential

)' \p kp'

I

kpp'
Y =

due to the charge e and to its image — e', actually vanishes upon the sphere ; and

as it is harmonic and has only the singularity e/p outside the sphere (which is the

same as the singularity due to e), this value of V throughout all space must be

precisely the value due to the charge and the grounded sphere. The distribution

of potential in the given .system is therefore determined. The potential outside

tile sphere is as if the sphere were removed and the two charges e, — e' left alone.

By (Jau.ss"s Integral (Ex. 8, p. 348) the charge within iiny region may be evaluated

by a surface integral around the region. This integral over a surface surrounding

the sphere is the same as if over a surface shrunk down around the charge — c',

and hence the total cliarge induced on the sphere is — t' — — r'c/k.

199. Inversion will tians'fonn the avera,f,^e value theorem

1

^\n = i7. V>/(fi into V'(P')

-'^i
T'V/^, (14)

a form applicable to determine the value of 1' at any point of a eircle

in terms of the value upon the cireumferenee. For suppose the circle

•with center at /' and with the set

of radii s[)aced at anj^des dcf). as

im})lied in the c()m})utation of the

average valu(% he inverted up(Mi an

orthogonal circle so chosen that 7'

shall go over into I''. The given

circle goes over into itself and the series of lines goes over into a series

of cindes through /'' and the center o of inversion. (The figures are

drawn se})arately instead of su{>erposed.j From the confornud jjropert}^
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the angles between the circles of the series are equal to the angles be-

tween the radii, and the circles cut the given circle orthogonally just

as the radii did Let V along the arcs 1', 2', 3', be equal to V along

the corresponding arcs 1, 2, 3, • • • and let V(P) = V'(P') as required by

the theorem on inversion of harmonic functions. Then the two inte-

grals are equal element for element and their values T'(P) and V'^P')

are equal. Hence the desired form follows from the given form as

stated. (It may be observed that d(f> and dij/, strictly speaking, have

opposite signs, but in determining the average value V'(P'), di(/ is taken

positively.) The derived form of integral may be written

nn=Y^l r# =~j rp,, (14')

as a line integral along the arc of the circle. If P' is at the distance r

from the center, and if a be the radius, the center of inversion O is at

the distance a'^/r from the center of the circle, and the value of k is

seen to be k^ = (a^ — r^)«-//'". Then, if Q and Q' be points on the circle,

^ , ^
OQ'' 7\<r-2a'r''cosrt>' + a'r-"-

) ^^ds = ds —-r = 7^, ^:^

—

r, add).
k- {<r — v) (C

Now d\p/ds' may be obtained, because of the equality of d\p and d4>, and

ds' may be written as ad(^'. Hence

^^ 2'ir X « - 2 ar cos <^' + ?•-'
^

Finally the primes may be dropped from V' and P', the position of P'

may be expressed in terms of its coordinates (r, ^), and

is the expression of T' in terms of its boundary values.

The integral (15) is called Polsson^s Integral. It should be noted par-

ticularly that the form of Poisson's Integral first obtained by inversion

represents the average value of 1" along the circumference, provided that

average be computed for each point by considering the values along the

circumference as distributed relative to the angle xp as independent vari-

able. That T' as defined by the integral actually approaches the value on

the circumference when the point approaches the circumference is clear

from the figure, which shows that all except an infinitesimal fraction of

the orthogonal circles cut the circle within infinitesimal limits when the

point is infinitely near to the circumference. Poisson's Integral may be
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obtained in another way. For if /* and P' are now two inverse y^oints

relative to the circle, the equation of the circle may be written as

p/p' = const. = r/a, and G (P) = - log p + log p' + log (r/a) (16)

is then the Green Function of the circular sheet because it vanishes along

the circumference, is harmonic owing to the fact that the logarithm of the

distance from a point is a solution of Laplace's equation, and becomes

infinite at P as — log p. Hence

It is not difficult to reduce this form of the integi'al to (15).

If a harmonic function is defined in a region abutting upon a segment

of a straight line or an arc of a circle, and if the function vanishes along

the segment or arc, the function may be extended across the segment

or arc by assigning to the inverse point P' the value V (P') =— y{P),

which is the negative of the value at P; the conjugate function

J <^n J c.r ^ c,/
(1')

takes on the same values at /' and P'. It Avill be sufficient to prove

this theorem in the case of the straight line because, by the theorem on

inversion, the arc may l)e inverted into a line by taking the center of

inversion at any point of the ar(' or the arc produced. As the La})lace

operator 7)| + 1)"^ is independent of the axes (Ex. 25, p. 112), the line

may be taken as the .r-axis without restricting the conclusion.

Now the exteiidcil funetinn V [P') satisfies Laplace's iMjuation .since

c.r
-

c>/
-

c.c- cy-

Therefore V{P') is liarinonic. V,y tlic detinitidii ^'{P') = — l'(P) and the assumption

that F vanishes alonu the segment it appears tliat the function 1' (in tiie two sides

of the Hne pieces on tn itself in a continuous manner, and it remains merely to sliow

tliatit pieces on to itself in a harmonic manner, that is. that the function 1' and

its extension form a function harmonic at points of the line. This follows from

Poissoir.s Integral applied to a circle centered on the line. For let

JI{x,i/)-f' ]'dip; then //(.r, 0) =
Jo

because Intakes on ecjual and ojiposite values on the u])p(u- and lower semicircum-

ferences. Hence JI = V{P) = V{P') = along the axis. I5ut // = !'(/') along the

upper arc and H — V{P') along the lower arc because Toisson's Integral takes on

the boun(hiry values as a limit when tlu; jioint approacdies the boundary. Now as

// is harmonic and agrees with ^'(P) upon the whole perimeter of the upper semi-

circle it nuist be identical with !'(/') througlujut that semicircle. Ju like manner
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it is identical with V{P') throughout the lower semicircle. As the functions V(P)
and V{P') are identical with the single harmonic function H, they must piece

together harmonically across the axis. The theorem is thus completely proved.

The statement about the conjugate function may be verified by taking the integral

along paths symmetric with respect to the axis.

200. If a function tv =z f{z) — u + iv of a complex variable becomes

real along the segment of a line or the arc of a circle, the function may
be extended analytically across the segment or arc by assigning to the

inverse point P' the value ic — 7c — iv conjugate to that at P. This is

merely a corollary of the preceding theorem. For if tu be real, the

harmonic function v vanishes on the line and may be assigned equal

and opposite values on the opposite sides of the line ; the conjugate

function u then takes on equal values on the opposite sides of the

line. The case of the circular arc would again follow from inversion

as before.

The method employed to identify functions in §§ 185-187 w^as to

map the halves of the ?r-plane, or rather the several repetitions of these

halves which were required to complete the map of the ^--surface, on a

region of the ,v-plane. By virtue of the theorem just obtained the con-

verse process may often be carried out and the function w —f(z)
which maps a given region of the .t-plane upon the half of the ?/>plane

may be obtained. The method will apply only to regions of the «-plane

which are bounded by rectilinear segments and circular arcs ; for it is

only for such that the theorems on inversion and the theorem on the

extension of harmonic functions have been proved. To identify the

function it is necessary to extend the given region of the s-plane by

inversions across its boundaries until the ^^'-surface is completed. The
method is not satisfactory if the successive extensions of the region in

the 5:-plane result in overlapping.

The method will be applied to determining the function (a) which

maps the first quadrant of the unit circle in the s-plane upon the upper

half of the «--plane, and (Ji) which maps a 30°-60°-90° triangle upon the

upper lialf of the ?r-plane. Sup-

pose the sector ABC mapped on t^^ ^'
the ?r-half-plane so that the perim-

eter ABC corresponds to the ^ t^////////^« ^-^'

real axis nJ,c. When the perime-

ter is described in the order w^ritten and the interior is on the left,

the real axis must, by the principle of conformality, be described in

such an order that the upper half-plane which is to correspond to the

interior shall also lie on the left. The points a, b, c correspond to points
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.1, B, C. At these points the correspondence required is such that the

conformality must break down. As angles are doubled, each of the

points A, ]'>, C must be a critical point of the first order for w=f(z)
and a, h, c must l)e branch points. To map the triangle, similar con-

siderations apply except that whereas '^'' is a critical point of the first

order, the points -1', W are critical of orders 5, 2 respectively. Each

case may now he treated separateh' in detail.

Let it be assumed that tlie three vertices A, B, C of the sector po into the

points* 10 — 0. 1. X. As the perimeter of the sector is mapped on the real axis,

the function vj—f{z) takes on real values for points z along the perimeter.

Hence if the sector be inverted over any of its sides, the point P' wliich corre-

sponds to P may be triven a value conjugate to lo at

P, and the image of P' in the H"-plane is symmetrical

to the image of P with respect to the real axis. The

three regions V. 2\ 3' of the z-plane correspond to

the lower half of the wj-plane ; and the perimeters

of these regions correspond also to the real axis.

These regions may now be inverted across their

boundaries and give rise to the regions 2, 3, 4 which

must correspond to the upper half of the i/'-plane.

Finally by inversion from one of these regions the

region 4' may be ol)tained as corresponding to the WyJ//^^
lower half of the )/'-plane. In this manner the inver-

sion has been carried on until the entire r-plane is covered. Moreover there is no

overlapping of the regions and the figure may be inverted in any of its lines with-

out producing any overlapping ; it will merely invert into itself. If a Riemann sur-

face were to be constructed over the ;/'-plane, it would clearly require four sheets.

The surface could be connected up by studying the correspondence
; but this is not

necessary. Note merely that the function ./'(-i) becduies infinite at (' when z = i

bj' hypothesis and at C when z = — i by inversion : and at no other point. The

values ± i will therefore be taken as poles of /(2) and as poles of the second order

because angles are thjubled. Note again that the function /(^) vanishes at ^1 when

z = l)y liypothesis and at z = x by inversion. These will lie assiuned to be zeros of

the second order because the points are critical points at which angles are doubled.

The function

w =/() = cz^z-i)-^z + i)-^ = (z-{z- + 1)-^

has the above zeros ami poles and must be identical with the desired function when
the constant C is pniperly chosen. As the Cfirrespnudence is such tliat/(l) = 1 by

hypothesis, the constant C is 4. The determination of the function is complete as

given.

Consider next the case of the triangle. The same pmcess of inversion and re-

peated inversion may be f<jllowed, and never results in overlapping except as one

* It may be observed tliat the linear trausfurniation (y- -\- S) "•' — cxn- + /3 (Ex. 15,

p. 157) has tlu'ee arbitrary cinistiuits tr: f^:y: 5, and that by siirh a traiisforiiiatioii any
three jtoints of the ?'--i)lan(' may be carried into any three peiiits of the 7r'-jilane. It is

tlierebire a jirnper and triviid restriction to assume tliat 0, 1, x are the points of the

zc-plane wliich correspond to .1, /.', C.
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2iK'

region falls into absolute coincidence with one previously obtained. To cover the

whole z-plane the inversion would have to be continued indefinitely
; but it may

be observed that the rectangle inclosed by the heavy line

is repeated indefinitely. Hence w = f(z) is a doubly periodic

function with the periods 2K, 2iK' if 2 it, 2K' be the

length and breadth of the rectangle. The function has a

pole of the second order at C or z = and at the points,

marked with circles, into which the origin is carried by

the successive inversions. As there are six poles of the

second order, the function is of order twelve. When z = K
at A or z = iK' at A' the function vanishes and each of

these zeros is of the sixth order because angles are increased

G-fold. Again it appears that the function is of order 12.

It is very simple to write the function down in terms of

the theta functions constructed with the periods 2 A', 2 /A''.

w=f{z)=C
iif{z)eHz)

H\z)e"^{z)ir^iz - a)ei{z - a)ir\z - lifQKz - 13)

For this function is really doubly periodic, it vanishes to the sixth order at A', iK\
and has poles of the second order at tlie i^oints

0, K + iK\ a = I A 4- 1 iK', cx + A' + iK', p = 2K —'a,

ir\z + a), Q,{z -13) =As p = 2 K — a the reduction II-{z — /3)

be made.

w=f{z)=C

/3 + Jv + iK'.

e^{z + a) may

//['(z)e«(2)

ir^(z)e"^(z)ir^z - a)n\z + a)ef(z - a)ef(2 + a)

The constant C may be deterinineil, and the expression for f{z) may be reduced

further by means of identities; it might be expressed in terms of sn (z, k) and

en (z, k), with properly chosen fc, or in terms of p{z) and p'(z). For the purposes of

computations that might be involved in carrying out the details of the map, it

would probably be better to leave the expres-sion of /(z) in terms of the theta

functions, as the value of q is about 0.01.

EXERCISES

1. Show geometrically that a plane inverts into a sphere through the center of

inversion, and a line into a circle through the center of inversion.

2. Show geometrically or analytically that in tlie plane a circle inverts into a

circle and that in space a sphere inverts into a sphere.

3. Show that in the plane angles are reversed in sign by inversion. Show that

in space the magnitude of an angle between two curves is unchanged.

4. If (Z.s, d.s', dv are elements of arc, surface, and volume, show that

ds' = - d.'i = — ds, dS' = — dS = ~ (7.S, dv' h- = — dv.

N'lte that in tlie plane an area and its inverted area are of opposite sign, and that

the same is true tif vohuiies in space.
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5. Show that the system of circles through any point and its inverse with respect

to a given circle cut that circle orthogonally. Hence show that if two points are in-

verse with respect to any circle, they are carried into points inverse with respect to

the inverted position of the circle if the circle be inverted in any manner. In par-

ticular .show that if a circle be inverted with respect to an orthogonal circle, its cen-

ter is carried into the point which is inver.se with respect to the center of inversion.

6. Obtain Poisson's Integral (15) from the form (16'). Note that

clG _ cos (p. n) cos {p'. n) _ a- — r^
r^ — p'^ + a- — 2 ap cos (/a, 7i),

dn p p' u-p-

7. From the etjuation p/p' = con.st. = r/a of the .sphere obtain

1 a 1 ..^ In y{a-- f^) dS

pro 4 7r« J r.,-2 i ,.2P >' P 4 7r« J
^^^-2 ^ ,.2 _ 2 ar cos (r, «)] t

the Green Function and Poi.s.son's Integral for the sphere.

8. Obtain roi.s.son"s Integral in .space by the method of inversion.

9. Find the potential due to an insulated spherical conductor and an external

charge (by placing at the center of the sphere a charge equal to the negative of

that induced on the grounded .sphere).

10. If two spheres intersect at right angles, and charges proportional to the

diameters are placed at their centers with an opposite charge proportional to the

diameter of the common circle at the center of the circle, then the potential over

the two spheres is constant. Hence determine the effect throughout external .space

of two orthogonal conducting spheres maintained at a given potential.

11. A charge is placed at a distance h from an infinite conducting plane.

Determine the potential on the supposition that the plane is insulated with no

charge or maintained at zero potential.

12. Map the quadrantal sector on the upper half-plane .so that the vertices

C. A. B correspond to 1. ck, 0.

13. Determine the constant C occurring in the map of the triangle on the plane.

Find the point into which the median point of the triangle is carried.

14. With various selections of correspondences of the vertices to the three points

0, 1, 00 of the ('.'-plane, map the following configurations upon the upper half-plane :

(a) a sector of (30^. {j3) an i.sosceles right triangle,

(>) a .sector of -i'r'. (5) an equilateral triangle.

201. The potential integrals. If p(.i\ //. ;:) is a function defined at

different points of a region of S})ace, the integral

evaluated over that region is ealled the potential of p at tlie point

a. rj. ^). The significance of the integi'al may be seen l>y considering

the attraction and the potential energy at the point ($. i-j. t,) due to a
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distribution of matter of density p (.r, y, z) in some region of space.

If /i be a mass at (|, 77, ^) and in a mass at (,t, y, z), the component

forces exerted by m upon /x are

A' = c
/i//^ .r

l' = c
/XHi y — 7; Z = c

/z?», z - t,

fim
(19)

and 7^ = c -—r ? T' = — oli — + C

are respectively the total force on /x and the potential energy of the

two masses. The potential energy may be considered as the work done

by F or A', Y, Z on /x in bringing the

mass fjL from a fixed point to the

])oint ($. 7). I) under the action of 7/1

at (j:, y, z) oy it may be regarded

as the function such that the nega-

tive of the derivatives of I' by ./•, y, z

give the forces A', )', Z, or in vector

notation F=— Vl'. Hence if the

units be so chosen that e = 1, and if y ,/^

the forces and potential at (L -q. I)

be measured per unit mass by dividing b}- /x, the results are (after dis-

regarding the arbitrar}- constant '")

(.i^,r)

H

X = ill X — $ Y
ill y III z

Z = -,- I
(19')

Now if there be a region of matter of density p{.r, y, z), the forces and

potential energy at (L 77. measured per unit mass there located may

be obtained bv summation or intey-ration and are

A
:r-$)r/.rr/yi/z ^,^_ rpifr

(19")
p(-': y. z) {.

lit - .rf + (-q

It therefore appears that the i)otential (' defined Ijy (IS) is the negative

of the potential energy T' due to the distribution of matter.* Xote fur-

ther that in evaluating the integrals to determine A', }', Z, and C = — ]',

the variables .r, y, z with respect to which the integrations are per-

formed will dro[) out on substituting the limits which determine tiie

region, and will tlierefore leave A', }', Z, T as functions of the param-

eters 6. -q. t, wliich appear in the integrand. And finally

cl' cU dr
-^^ Y=^-, Z = ^-:
C^ C-q CQ

X = (20)

*Iu electric ami mairnetic theory, where like rfpel^ like, the potential and potential

enersv have the same si^u.
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are consequences either of differentiating Launder the sign of integration

or of integrating the expressions (19') for A', 1^, Z expressed in terms of

the derivatives of U, over tlie whole region.

Theokem. The potential integral U satisfies the equations

c-U c-U c^U ^ c-U c-r c^U
, ,^,,

known respectively as Lajdace^s and Poissonh Equations, according as

the point (^, -q, t,) lies outside or within the body of density p{x, y, z).

In case (^, r}, C) lies outside the body, the })roof is very simple. For

the second derivatives of fJ may be obtained by differentiating with

respect to $, -q, t, under the sign of integration, and the sum of the

results is then zero. In case ($, rj, ^) lies within the body, the value

for r vanishes when (^, -q, coincides with (j:, y, z) during the integra-

tion, and hence the integrals for U, X, Y, Z become infinite integrals

for which differentiation under the sign is not permissible without jus-

tification. Suppose therefore that a small sphere of radius r concentric

Avith (I, 7/, t,) be cut out of the body, and the contributions F' of this

sphere and F* of the remainder of the body to the force F be considered

separately. For convenience suppose the origin moved up to the point

(f, t;, 0- Then

F = vr = F* + F' = r pV ^ dc + F'.

Now as the sphere is small and tlu^ density p is supposed continuous,

the attraction 7-'' of the sphere at any point of its surface may be taken

as \ TTr^pJr, the quotient of the mass by the square of the distance to the

center, where p^ is the density at tlie center. The force F' then reduces

t(j —
^^

TTp T in magnitude and direction. Hence

v.F = v.vr = v.F* + v.F' =
I
pV.V - dr + v.F= J,v.vJ

The integral vanishes as in the first case, and V.F' = — 4 irp,. Hence

if the suffix l>e now dropped, V.vr = — 4 irp. and Poisson's Ecjuation

is }»roved. Gauss's Integral (p. 348) affords a similar proof.

A rigorous treatment of the potential U and the forces A', Y, Z and tlieir de-

I'ivatives requires the discussion of convergence and allied topics. A detaile(l treat-

ment will not be given, hut a few of the most important facts may be pointed out.

Consider the ordinary case where the volume density p n-mains finite and the body
itself does not extend to intinity. The integrand p/r bci'ouics infinite when r = 0.

But as dv is an infinitesimal of the third order around the point where r = 0, the

term pdv/r in the integral l' will he inhnitesimal. may l)e disregarded, and the

integral U converges. In like manner the integrals for A', Y. Z will converge
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because p{^ — x)/f^, etc.. become infinite at r = to only the second order. If

cX/c% were obtained by differentiation under the sign, the expressions p//-^ and

p(| — xf-/r> would become infinite to the third order, and the integrals

C ^dv = CCC f^ r" sin d drdcpdO, etc.,

as expressed in polar coordinates with origin at r = 0, are seen to diverge. Hence

the derivatives of the forces and the second derivatives of the potential, as ob-

tained by differentiating under the sign, are valueless.

Consider therefore the following device :

1 _ _ c 1 cU
r ex r c^ J '^ c^ r

CU /* c 1
,

r c I ,— =
I
p dv = —

I p dv,
c| J ^

ci, r J '^
ex r

+ p^'-, -fp^^-dv^fl'Pd.-f^Pdv.
ex r J cx r J r cx J ex r

The last integral may be transformed into a surface integral so that

eU _ r 1 ep ,_ _
r p ^^^^_ ,., _ rrrlep

ci f
i 1^ J, _f

e cos adS = fff
'- '£ dxdydz - ff

P- dydz. (22)

It should be remembered, however, that if r = within the bodj', the transforma-

tion can only be made after cutting out the singularity r = 0, and the surface inte-

gral must extend over the surface of the excised region as well as over the surface

of the body. But in this case, as dS is of the second order of infinitesimals while r

is of the first order, the integral over the surface of the excised region vanishes

when r = and the equation is valid for the whole region. In vectors

VU= f^dv- f^dS. (22')

It is noteworthy that the first integral gives the i)otential of Vp, that is, the inte-

gral is formed for Vp just as (18) was from p. As Vp is a vector, the summation

is vector addition. It is further noteworthy tiiat in Vp the differentiation is with

respect to x, y, z, whereas in VU it is with respect to ^. tj. f. Xow differentiate

(22) under the sign. (Distinguish V as formed for ^, rj. f and x, y, z by V^ and V^..)

¥ = / ff 7. s
'"
' f" '•'"

" h \ "' "' ^'-^f
''

= / ^*
'

•''"'"" - / "'* ,-
•"^-

or again V^.V^U=- C V^ ^
.V,p,7i- + C pV, -^- .dS. (2-3)

This result is valid fur the whole region. Now Uy fJreen's Furiunla (Kx. 10, p. 340)

/ pv.r, 1 „. + / V, 1 .v,p,„ = / V,. (pV. 1
j
„, = / ,v, L,s = / p 1^

Us.

Here the .small region about ?• = must again be excised and the surface integral

must extend over its surface. If the region be taken as a sphere, the normal dn,

being exterior to the bod\', is directed along — dr. Thus for the sphere

f p ' - lis = CC p — r- sin edcpdd = CC p sin $d(pdO = 4 vp,
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where o is the average of p upon tlie surface. If now r be allowed to approach

and V«Vr-i be set equal to zero, Green's Fornuila reduces to

r V^ - 'V.- p'iv = { P^x- 'dS + 4 irp,

where the volume integrals extend over the whole volume and the surface integral

extends like that of (23) over the surface of the body but not over the small sphere.

Hence (23) reduces to V.V J7 = — 4 irp.

Throughout this discussion it has been assumed that p and its derivatives are

continuous throughout the body. In practice it frequently happens that a body

consists really of several, say two, bodies of different nature (separated by a bound-

ing surface 6'j.,) in each of which p and its derivatives are continuous. Let the

suffixes 1, 2 serve to distinguish the bodies. Then »

The discontinuity in p along a surface S^o does not affect a triple integral.

vr = f^^dv,- f P^^as,.r2 + f^'^^dv,- f P^ds,,,^.

Here the first surface integral extends over the boundary of the region 1 which

includes the surface iS'j., between the regions. For the interface <S'j„ the direction

of tZS is from 1 into 2 in the first case, but fmm 2 into 1 in the second. Hence

^• = /?'"-/^--/ ^-~^- dS,

It may be noted that the first and second surface integrals are entirely analogous

because the first may be regarded as extended over the surface separating a body

of density p from one of density 0. Now V-VD" maj- be found, and if the proper

modifications be introduced in Green"s Fornuda, it is seen that V-VU = — 4wp
still holds provided the point lies entirely within either body. Tlie fact that p
comes from the average value p ui)on tlie surface of an intinitesinial sphere shows

that if the point lies on the interface Nj., at a regular point. V«Vf' = — 4:Tr{lp^+ ] p.,).

The application of (jreen's Formula in its synnnetric form (Kx. 10. p. 340) to

the two functions /—i and [', and the calculation of the integral over the infini-

tesimal .sphere about r = 0, gives

/(.'
_^,, ^.„^1\, r (^ dV ,. '7 1\ , , , ^-V.vr— L V.V-)(ii- = / T \dS—47rli

J \r dn dn r

IU\ IdlldU\

X'XU , ^^ r\dn/T_ \dn,-.
, .-dSf'-^'"-X.f

d 1

-S/<''.-'-->;k7."'^--^'^'

(2J)

where 2 extends over all the surfaces of discontinuity, including the boundar}- of

the whole body where the density changes to 0. Now V«VL"= — -iirp and if the

definitions l)e ^iven that

\dnK Xdnl. ^
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where the surface integrals extend over all surfaces of discontinuity. This form of

U appears more general than the initial form (18), and indeed it is more general,

for it takes into account the discontinuities of U and its derivative, which cannot

arise when p is an ordinary continuous function representing a volume distribution

of matter. The two surface integrals may be interpreted as due to surface distribu-

tions. For suppo.se that along some surface there is a surface den.sity <r of matter.

Then the first surface integral re|)resents the potential of the matter in the .surface.

Strictly speaking, a surface di.stribution of matter with o- units of matter per unit

surface is a phy.sical iiupos-sibility, but it is none the le.ss a convenient mathemati-

cal fiction when dealing with thin sheets of matter or with the charge of electricity

upon a conducting surface. The .surface di.stribution may be regarded as a limit-

ing case of viilume distriljution where p becomes infinite and the volume through-

out wliich it is ,'^pread becomes infiniteh' thin. In fact if dn he the thickne.ss of

the sheet of matter pdndS = a-dS. The second surface integral may likewise be

regarded as a limit. For suppose that there are two surfaces infinitely near to-

gether upitn one of which tiiere is a surface den.sitj- — <r. and upon the other a .surface

density cr. The potential due to the two ecjual .superimposed elements dS is the

(T.dS, ff.,dS..
,

/I ]\ ,,(/!, , (Z 1 ,^_,-J—i + -^—- = o-(/.S ( )
= ffdS dn = adn dS.

i\ /„ \r.2 )\/ dii r dn r

Hence if a-dn — r. the poteiUial takes the form rdi—'^/dndS. Just this sort of dis-

trilnuioii of magnetism arises in the case of a magnetic shell, that is. a surface

covered ou one side with positive p(jles and on the other with negative poles. The
three integrals in (25) are known resi)ectively as volume jxitential. surface poten-

tial, and double surface potential.

202. The jioteiitials may l)e used to obtain particular integrals of

some ditt'erential equations. In the Hrst place the e(piation

c-i' c-r c-r ,, , , -1 r fdi'

C.r Cjl CZ \ IT J r

as its solution, when the integral is extended over the i-egion through-

out which /'is defined. To this })articular solution for l' may he added

tiny solution of Laplace's equation, hut the particular solution is fre-

quently precisely that particular solution which is tlesired. If the

functions U and f were vector functions so that U = \l\ + jr., -f kt^^,

and f =:
\f^ + j/*, + k/lj, the results would be

-7—;^^-; + -7r-; = i(:c,ii,z) and U = -,— ;

c.r- CiJ- CZ- V
'

.^' / -AtT J V

where the integration denotes vector summation, as may be seen by

adding the results for V.Vr^ = f^, V.vr,, =/„ V.VTg =/; after multi-

])lication by i, j, k. If it is desired to indictite the vectorial nature of

U and f. the ]iotenti;d U may be called a vector potential.
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In evaluating the potential and the forces at ($, -q, ^) due to an ele-

ment dm at (dc, y, z), it has been assumed that the action depends solely

on the distan(;e r. Now sup})ose that the distribution p (x, y, z, t) is a

function of the time and that the action of the element pdv at (x, y, z)

does not make its effect felt instantly at ($, rj, ^) but is propagated

toward ($, -q, t,) fi'om {x, y, z) at a velocity 1/a so as to arrive at the time

{t + ar). The potential and the forces at {^, -q, C) ^^ calculated by (18)

will then be those there transpiring at the time t + ar instead of at the

time t. To obtain the effect at the time t it would therefore be necessary

to calculate the jwtential from the distribution p (x, y, z, t — ar) at the

time t — ar. The potential

•^^0' + (^-?/r + (C-.^)^
(26)

where for brevity the variables x, y, z have been dropY)ed in the second

forni, is called a retarded potential as the time has been set back from

t to t — ar. The retarded potential satisfies the equation

c'^U c-U d-U ,d'U
. .^ . .

according as (^, rj, C) l'^^^ ivithin or outside the distribution p. There is

really no need of the alternative statements because if ($, t], C) is out-

side, p vanishes. Hence a solution of the ecjuation

cHl c^U d~U ..c-U

is IJ =^ [
^^''^^'''-'"^

10.
4 TT / r

The proof of tlie ((nuvtion (27) is relatively simple. For in vector notation,

v.^ii = v.v r p-^dv + v.v rp(/)^,,.
,
^^ r p{t-ar)-p{t)

(Id

i-n-p + V.V C
p{L-ar)-p{t)

dv.

Tiie lirst reduction is made by Toisson's E(iuation. The second expression may
be evaluated by differentiation under the si^n. ¥i>v it should l>e remarked that

p{t — ar)— p(t) vanishes when r = 0, and hence the order of the infinite in the

integrand before and after differentiation is less by unity than it was in the cor-

respcmding steps of § 201. Then

v,CP^^^^dD= r/(-'^»^'^r:^!l^^' + r,(/-.r)-p(o]v,n.z.,
J r J I r V J
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+ {-a)p'Vtr.Vt-+ {-a)p'Vtr.Vt~ + [p{t - ar)- p{t)]Vt-V,~\dv.

But V^ = - V^ and Vr = r/r ami V/- 1 = — r/r^ and V.V/-~i = 0.

Hence V^r.V^r = 1, V^r.V^r-i =— r-2, V^.Vjr = 2r-i

and V.V f
Pi^-<'>-)-P(O

a, ^ r '^a, = r^ '"P^'-'"\lv = a-^^'.
^ r J r J r ct- H-

It wus seen (p. 345) that if F is a vector function with no curl, that

is, if VxF = 0, then F'dr is an exact differential (!<}> ; and F may be ex-

pressed as the gradient of
(f>,

that is, as F =
\'<f>.

This problena may also

be solved by potentials. For suj)pose

- 1 r v.F
F = V<^, then V-F = V.V(/), c^ = -— Jr. (28)

-iTT J r ^ -^

It appears therefore that <^ may be expressed as a potential. This solu-

tion for <^ is less general than the former because it depends on the

fact that the potential integral of V«F shall converge. jVIoreover as

the value of <^ thus found is only a particular solution of V«F = V«V^,

it should be proved that for this <^ the relation F = V^ is actually sat-

isfied. The proof will be given below. A similar metliod may now be

employed to show that if F is a vector function with no divergence,

that is, if V«F = 0, then F may be written as the curl of a vector

function G, that is, as F = VxG. For suppose

F = VxQ, then V^F = VxVxQ = VV-G - V-VG.

As G is to be determined, let it be sup]wsed that V'G = 0.

Then F = VxG gives G
1 r vxF

Here again the solution is valid only when tlie vector potential integral

of VxF converges, and it is further necessary to show that F = VxG.

The conditions of convergence are, however, satisfied for the functions

that usually arise in physics.

To amplify the treatment of (28) and (29), let it be shown that

1 r V'F 1 r VxF
V0 = V

I
^^dv^F, VxG = - - Vx ( ^^Jv = F.

By use of (22) it is possible to pass the differentiations under the si.un of integra-

tion and apply them to the functions V.F and VxF, instead of to 1/r as would be

required by Leibniz's Rule (§ 119). Then

1 r ^^'F
, 1 r ^-F ,o

v<t> = -~-
\

jy + / - - as.
iir J r -iir 'J r
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The surface integral extends over the surfaces of discontinuity of V^F, over a large

(infinite) surface, and over an infinitesinial sphere surrounding r = 0. It will be

assumed that V.F is such that the surface integral is infinitesimal. Now as VxF = 0,

VxVxF = and VV.F = V.VF. Hence if F and its derivatives are continuous, a

reference to (24) shows that

1 r ^'"^F
,

V.;& =
I

dv - F.
iir J r

„ ^ 1 /'VxVxF, 1 /-VxF ,„ -1 /-v.v;
VxG =— I dv

I
xdS =

I

In like manner
V.VF

dv

Questions of continuitj- and tlie significance of the vanishing of the neglected sur-

face integrals will not be further examined. The elementarj' facts concerning

potentials are necessary knowledge for students of physics (especially electro-

magnetism) ; the detailed discussion of the subject, whether from its physical or

mathematical side, may well be left to special treatises.

EXERCISES

1. Discuss the potential U and its derivative VI7 for the case of a uniform

sphere, both at external and internal points, and upon the surface.

2. Discuss the second derivatives of the potential, that is, the derivatives of the

forces, at a surface of discontinuity of density.

3. If a distribution of matter is external to a sphere, tlie average value of the

potential on the .spherical .surface is the value at the center
;

if it is internal, the

average value is the value obtained by concentrating all the mass at the center.

4. What density of distribution is indicated by the potential e-''' ? AVhat den-

sity of distribution gives a potential proportional to itself '.'

5. In a space free of matter the determination of a putenthil wliicli shall take

assigned values on the boundary is equivalent to the problem of minimizing

ifffm-m^mh--ifvr.VTcZr.

6. F'lr Laplace's equation in the plane and for the logarithmic potential — log r,

develop the theory of potential integrals analogously to the work of § 201 for

Laplace's equation in space and for the fundamental solution 1/r.



BOOK LIST

A short list of typical hooks with V)rief comments is given to aid the

student of this text in selecting material for collateral reading or for

more advanced study.

1. Some standard elementary differential and integral calculus.

For reference the book with whicli tlie student is familiar is probably preferable.

It may be added that if the student has had the misfortune to take his calculus under

a teacher who has not led him to acquire an easy formal knowledge of the subject,

he will save a great deal of time in the long run if he makes up the deficiency soon

and thoroughly; practice on the exercises in Granville's Calculus (Ginn and Com-
pany), or Osborne's Calculus (Heath & Co.), is especially recommended.

2. B. (). Peirce, Table of Inter/rah (new edition). Ginn and Company.

This table is frequently cited in the text and is well-nigh indispensable to the

student for constant reference.

3. Jahxke-Emde, FunktlonentafeJn in it Fornieln xind Kurven.

Teubner.

A very useful table for any one who has numerical results to obtain from the

analysis of advanced calculus. There is very little duplication between this table

and the previous one.

4. Woods and Bailky, Course in Mathematicsi. (linu and Com])aiiy.

5. BvKin.Y, Diffrrcntial Cah'ulas and Integral Calculns. Ginn and

Company.

6 ToDiiuxTEK, Differential Calculus and Integral Calculus. ^Mac-

millan.

7. Williamson, Differential Calculus and Integral Calculus. Long-

mans.

These are standard works in two volumes on elementary and advanced calculus.

As sources for additional problems and for comparison with the methods of the

text they will prove useful for reference.

8. C. J. DE LA YALLp:E-Porssix, Cours (V analyse. Gauthier-Villars.

Then; are a few books which inspire a positive affection for their .style and
beauty in addition to re.spect for their contents, and this is one of those few.

]My Advanced Calculus is necessarily under considerable obligation to de la Vall^e-

Poussin's Cours d' analyse, because I taught the subject oi;t of that book for several

years and esteem the work more highly than any of its compeers in any language.
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9. GouKSAT, Cours (V analyse. Gauthier-Villars.

10. Gouksat-Hkdkkk, Mathematical Anali/sis. Ginn and Company.

The latter is a translation of the first of the two volumes of the former. These,

like the preceding five works, will be useful for collateral reading.

11. ])KKTKAND, Cdlcul dlfferentiel and Calcul Integral.

This older French work marks in a certain sense the acme of calculus as a

means of obtaining formal and numerical results. Methods of calculation are not

now so prominent, and methods of the theory of functions are coming more to the

fore. Whether this tendency lasts or does not, Bertrand's Calculus will remain an

inspiration to all who consult it.

12. FoKSYTH, Treatise on Different la J J'^'/i/atlons. ]Macmillan.

As a text on the solution of differential equations Forsyth's is probably tlic

best. It may be used for work complementary and supplementary to Chapters

VIII-X of this text.

13. PiEiM'OXT, TJieorij of Funetloyis of Ileal Varlahles. Ginn and

Company.

In some parts very advanced and diilicult, but in otiicrs quite elementary and

readable, this work on rigorous analysis will be found useful in connection with

Chapter II and other theoretical portions of our text.

14. GiBBs-WiLSox, Vector Anahjsls. Seribners.

Herein will be found a detailed and connected treatment of vector methods

mentioned here and there in this text and of fundamental importance to the

mathematical physicist.

15. ]). (). Pkikck, Xi'irtonlan Potential Function. Ginn and Comi)any.

A text on the use of tlie x>'>tential in a wide range of physical problems. Like

the following two works, it is adapted, and practically indispensable, to all who

study higher matliematies for the use they may make of it in practical x>i'oblems.

1(). ]>YKKLY, Fourier Series and Splicrlcal Ilarmonlcs. Ginn and

Company.

of international repute, this book presents the methods of analysis employed

in tlie solution nf the differential ecjuations of physics. Like the foregoing, it gives

an extended development of some questions briefly treated in our Chapter XX.

17. AViiiTTAKKi;, Moilem Annhjsls. Cambridge University Press.

This is probably tlie only book in any language which develops and applies the

methods (if the tlieory of functions for the purpose of deriving ami studying the

formal properties of the most inqiortant functions t)tlier than elementary which

occur in analysis directed toward the needs of the applied mathematieian.

IS. ()sGO()i), Lt'hrhurli tier Funh'flnni'ntheorlc. Ten1)nt'r.

Fiu- the pure niatlifinatician this work, written with a grace comparable only

to that of de la Vallee-roussin"s Calculus, will be as useful as it is charming.
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a^, a', 4, 45, 162

AbeFs theorem on uniformity, 438

Absolute convergence, of integrals, 357,

369 ; of series, 422, 441

Absolute value, of complex numbers,
154; of reals, 35; sum of, 36

Acceleration, in a line, 13; in general,

174; problems on. 186
Addition, of complex numbers, 154 ; of

operators, 151 ; of vectors, 154, 163

Adjoint equation, 240
Algebra, fundamental theorem of, 159,

306, 482 ; laws of, 153

Alternating series, 39, 420, 452
am = sin-i sn, 507
Ampere's Law, 350
Amplitude, function, 507; of complex
numbers, 154 ; of harmonic motion,

188
Analytic continuation, 444. 543

Analytic function, 304, 435. .See Func-
tions of a complex variable

Angle, as a line integral, 297, 308 ; at

critical points, 491 ; between curves,

9 ; in space. 81 ; of a complex number,
154; solid, 347

Angidar velocity, 178. 346
Approximate formulas. 60, 77, 101, 383
Approximations, 59, 195; successive, 198.

See Computation
Arc, differential of. 78. 80. 131 ; of ellipse,

77, 514 : of hyperbola. 516. See Length
Area, 8, 10. 25, 67, 77; as a line integral,

288; bv double integration. 324, 329;
directed, 167; element of, 80, 131, 175,

340, 342 : general idea, 311; of a sur-

face. 339
Areal velocity, 175
Argument of a complex ntimber. 154
Associative law, of addition, 153, 163 ; of

multiplication, 150, 153
Asymptotic expansion, 390. 397, 456
Asymptotic expression for ?zl, 383
Asymptotic lines and directions, 144
Asvmptotic series. 390
Attraction. 31. 68. 308. 332. 348, 547;
Law of Nature. 31, 307; motion tinder,

190. 264. .See Central Force and Po-
tential

Average value, 333 ; of functions. 333

;

of a harmonic function, 531; over a
surface, 340

Axes, right- or left-handed, 84, 167
Axiom of contiiuiity, 34

B. .See Bernoulli numbers, Beta fimction
Bernoulli's ecjuation, 205, 210
Bernoulli's numbers, 448. 456
Bernoulli's polynomials, 451
Bessel's efjuation, 248
Bessel's functions, 248, 393
Beta function, 378
Binomial theorem, finite remainder in,

60; infinite series, 423, 425
Binomial, 83
Boundary of a region, 87. 308, 311
Boundary values, 304, .541

Brachistochrone, 404
Branch of a function, of one variable,

40 ; of two variables, 90 ; of a com-
plex variable. 492

Branch point, 492

C„. .See Cjdinder functions
Calculation. .See Computation, Evalua-

tion, etc.

Calculus of variations, 400-418
Cartesian expression of vectors. 167
Catenary, 78, 190; revolved. 404, 408
Cauchy's Formula. 30. 49. 61

Cauchy's Integral, 304. 477
Cauchy's Integral test, 421, 427
Caustic, 142

Center, instantaneous, 74, 178; of in-

version, 538
Center of gravity or mass, motion of the,

176 ; of areas or laminas, 317, 324 ; of

points or masses, 168 ;
of volumes, 328

Central force, 175, 264
Centrode, fixed or inovini:. 74

Chain, equilibrium of, 185, 190, 409;
motion of, 415

Chanse of variable, in derivatives. 12,

14, 67. 98, 103. 106: in differentia!

equations. 204. 235. 245; in inte<rrals.

16, 21. 54. 65. 328. 330
Characteristic curves. 140, 267
Characteristic strip, 279
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Charge, electric, 539
Charpit's method, 274
Circle, of curvature, 72 ; of convergence,

433, 437; of inversion, 538
Circuit, 89 ; equivalent, irreducible, re-

ducible, 91

Circuit integrals, 294
Circulation, 345
Clairaut's equation, 230; extended, 273
Closed curve, 308; area of, 289, 311;

integral about a, 295, 344, 300, 477,

536 ; Stokes's formula, 345
Closed surface, exterior normal is posi-

tive, 167, 341; Gauss's fornuila, 342;
Green's formula, 349, 531 ; integral over

a, 341, 536 ; vector area vanishes, 167

en, 471, 505, 518
Commutative law, 149, 165
Comparison test, for integrals, 357; for

series, 420
Complanarity, condition of, 169

Complementary function, 218, 243

Complete elliptic integral, 507, 514, 77

Complete equation, 240
Complete solution, 270
Complex function, 157, 292
Complex numbers, 153
Complex plane, 157, 302, 360, 433
Complex variable. See Functions of a
Components, 163, 167, 174, 301, 342, 507
Computation, 59 ; of a definite integral,

77; of Bernoulli's numbers, 447; of

elliptic functions and integrals, 475,

507, 514, 522; of logarithms, 59; of

the solution of a differential equation,

195. See Approximations, Errors, etc

Concave, up or down, 12, 143
Condensation point, 38, 40
Condition, for an exact differential, 105

;

of complanarity, 169 ; of integrability,

255 ; of parallelism, 166 ; of perpendic-
ularity, 81, 165. See Initial

Conformal representation, 490
Conformal transformation, 132, 477, 538
Congruence of carves, 141

Conjugate functions, 536
Conjugate imaginaries, 156, 543
Connected, simply or multiply, 89
Consecutive points, 72

Conservation of energy, 301
Conservative force or system, 224, .307

Constant, Euler's, 385
Constant function, 482
Constants, of integration, 15, 183; phys-

ical, 183 ; variation of, 243
Constrained maxima and minima. 120,

404
Contact, of curves, 71 ; order of, 72 ; of

conies with cubic, 521 ; of plane and
curve, 82

Continuation, 444, 478, 542

Continuity, axiom of, 34 ; equation of,

350
;
generalized, 44 ; of functions, 41,

88, 476; of integrals, 52, 281, 368; of
series, 430 ; uniform, 42, 92, 476

Contour line or surface, 87
Convergence, absolute, 357, 422, 429

;

asymptotic, 456 ; circle of, 433, 437

;

of infinite integrals, 352 ; of products,
429; of series, 419; of suites of num-
bers, 39 ;

of suites of functions, 4.30
;

nonuniform, 431 ; radius of, 433 ; uni-
form, .368, 431

Coordinates, curvilinear, 131 ; cylindri-

cal, 79;' polar, 14; spherical, 79
cos, cos-i, 155, 161, 393, 456
cosh, cosh-i, .5, 6, 16, 22
Cosine amplitude, 507. See en
Cosines, direction, 81, 169; series of, 460
cot, coth, 447, 450, 454
Critical points, 477, 491

;
order of, 491

CSC, 550, 557
Cubic curves, 519
Curl, Vx, 345, 349, 418, -553

Curvature of a curve, 82 ; as a vector,

171 ; circle and radius of, 73, 198

;

problems on, 181
Curvature of a surface, 144 ; lines of, 14'!

;

mean and total, 148; principal radii,

144
Curve, 308 ; area of, 311 ; intrinsic equa-

tion of, 240 ; of limited variation, 309
;

quadrature of, 313 ; rectitiable, 311.

See Curvature, Length, Torsion, etc.,

and various special curves
Curvilinear coordinates, 131

Curvilinear integral. See Line
Cuspidal edge, 142
Cuts, 90, 302, 362, 497
Cycloid, 76, 404
Cylinder functions, 247. See Bessel
Cylindrical coordinates, 79, 328

D, symbolic use, 152, 214, 279
I)arboux"s Theorem, 51

Definite integrals, 24, 52 ; change of

variable, 54, 65 ; computation of, 77
;

Duhamel's Theorem. 63; for a series,

451; infinite, 352; Osgood's Theorem,
54, 65 ; Tiieorem of the Mean, 25, 29,

52. 359. See Double, etc.. Functions,

Infiiute, Cauchy's, etc.

Degree of differential eijuations, 228
Del, V, 172, 260, 343, 345, 349
Delta amplitude, 507. See dn
De Moivre"s Theorem, 155
Dense set, -39. 44, 50
Density, linear, 28; surface, 315; vol-

ume, 110, 326
Dependence, functional. 129; linear, 245
Derivative, directional. 97. 172: geo-

metric properties of, 7: infinite, 46;
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logarithmic, 5; normal, 97, 137, 172;
of higher order, 11, 67, 102, 197; of

integrals, 27, 52, 283, 370 ; of products,

11, 14, 48 ; of series term by term, 430
;

of vectors, 170; ordinary, 1, 45, 158;
partial, 93, 99 ; right or left, 46 ; The-
orem of the Mean, 8, 10, 46, 94. See
Change of variable, Functions, etc.

Derived units, 109
Determinants, functional, 129 ; Wron-

skian, 241
Developable surface, 141, 143, 148, 279
Differences, 49, 462
Differentiable function, 45
Differential, 17, 64 ; exact, 106, 254, 300

;

of arc, 70. 80. 131 ;
of area, 80, 131

;

of heat, 107, 294 ; of higher order, 67,

104; of surface, 340; of volume, 81,

330; of work, 107, 292; partial, 95,

104 ; total, 95, 98, 105, 208, 295 ; vec-

tor, 171, 293, 342
Differential equations, 180, 267; degree

of, 228 ; order of, 180 ; .solution or

integration of, 180 ; complete solution,

270^ general solution, 201, 230, 269;
infinite solution, 230; particular solu-

tion, 230; singular solution, 231, 271.

See Ordinary, Partial, etc.

Differential equations, of electric cir-

cuits, 222, 226 ; of mechanics, 186, 263
;

Hamilton's, 112 ; Lagrange's, 112, 224,

413; of media, 417; of physics, 524;
of striniis, 185

Differential geometry, 78. 131, 143, 412
Differentiation, 1; logarithmic, 5; of

implicit functions, 117; of integrals,

27,283; partial, 93 ; total, 95; under
the sign, 281 ; vector, 170

Dimensions, higher, 335
;
physical, 109

Direction cosines, 81, 169 ; of a line, 81

;

of a normal, 83 ; of a tangent, 81
Directional derivative, 97, 172
Discontinuity, amount of, 41, 462 ; finite

or infinite, 479
Dissipative function, 225, 307
Distance, shortest, 404, 414
Distributive law, 151, 165
Divergence, formula of, 342 ; of an inte-

gral, 352 ; of a series, 419 ; of a vector,

343, 553
Double integrals, 80, 131, 313, 315, 372
Double integration, 32, 285, 319
Double limits, 89, 430
Double points, 119
Double sums, 315
Double surface potential, 551
Doubly periodic functions, 417, 486,

504, 517; order of, 487. See p, sn,

en, dn
Dniiamers Theorem. 28, 63
I")iuiin"s indicatrix, 145

e = 2.718-.-, 5, 4.37

E, complete elliptic integral, 77, 514
A^-function, 62, 353, 479
E {<p, k), second elliptic integral, 514
c^,e^ 4, 160, 447, 484, 497
Edge, cuspidal, 142

Elastic medium, 418
Electric currents, 222, 226, 533
Electric images, 539
Electromagnetic theory, 350, 417
Element, lineal, 191, 231 ; of arc, 70,

80 ; of area, 80, 131, 344 ; of surface,

340 ; of volume, 80, 330
;
planar, 254,

267
Elementary functions, 162 ; character-

ized, 482, 497 ; developed, 4.50

Elimination, of constants, 183, 267 ; of

functions, 269
Ellipse, arc of, 77, 514
Elliptic functions, 471, 504, 507, 511, 517
Elliptic integrals, 503, 507, 511, 512, 517
Energy, conservation of, 301 ;

dimen-
.sioiis of, 110; kinetic, 13, 101, 112,

178, 224, 413 ; of a gas, 106, 294, 392
;

of a lamiua, 318
;
potential, 107, 224,

301, 413, 547
;
principle of, 264 ; work

and, 293, 301
Entropy, 106, 294
Envelopes, of curves, 135, 141, 231 ; of

lineal elements, 192 ; of planar ele-

ments, 254, 267 ; of planes, 140, 142;
of surfaces, 139, 140, 271

Equation, adjoint, 240; algebraic, 159,

306,482; Bernoulli's, 205, 210; Clair-

aut's, 230, 273 ; complete, 240
;
intrin-

sic, 240 ; Laplace's, 524 ; of continuity,

350 ; Poisson's, 548 ; reduced, 240

;

Piccati's, 250; wave, 276
Equations, Hamilton's, 112 ; Lagrange's,

112, 225, 413. .See Differential equa-

tions. Ordinary, Partial, etc.

E(iuicrescent variable, 48
Equilibrium of strings, 185, 190, 409
Equipotential line or surface, 87, 533
Equivalent circuits, 91

Error, average, 390 ;
functions, ij/, 388

;

mean square, 390, 465 ; in target

practice, 390
;
probable, 389

;
proba-

bility of an, 386
Errors, of observation, 386; small, 101

Essential singularity, 479, 481
p:uler's Constant, 385, 457

Euler's Formula, 108, 159

Euler's numbers, 450
Euler's transformation, 449

Evaluation of integrals, 284, 286, 360,

371. See Computation, etc.

Even function, 30
Evolute, 142. 234
Exact differential, 106, 254, 300
Exact differential equatiou, 207, 237, 254
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Expansion, asymptotic, 390, 397, 456

;

by Taylor's or Maclaurin's Formula,
57, 305 ; by Taylor's or Maclaurin's
Series, 435, 477 ; in ascending powers,

433, 479 ; in descending powers, 390,

397, 456, 481 ; in exponentials, 4(i-'),

467 ; in Legendre's polynomials, 400
;

in trigonometric functions, 458, 405

;

of solutions of differential e<iuations,

198, 250, 525. See special functions
and Series

Exponential development, 405, 407
Exponential function. See a-'-, e^

F, complete elliptic integral. 507, 514
F(0, k) = sn-i sin <p, 507, 514
Factor, integrating, 207, 240, 254
Factorial, 379
Family, of curves, 135, 192, 228 ; of sur-

faces, 139, 140. See Envelope
Faraday's Law. 350
Finite discontinuity, 41, 402. 479
Flow, of electricity, 553 ; steadv", 553
Fluid differentiation, 101
Fluid motion, circulation, 345 : curl. 340

;

divergence, 343 ; dynamical equations,

351; equation of continuitj^ 350; ir-

rotational, 533; velocity iwtential,

533 ; waves, 529
Fluid pressure, 28
Flux, of force, 308, 348 ; of fluid, 343
Focal point and surface, 141

Force, 13, 203; as a vector, 173, 301;
central, 175; generalized, 224 ; prob-
lems on, 180, 204. See Attraction

Form, indeterminate, 01, 89; perma-
nence of. 2, 478; quadratic, 115,

145
Fourier's Integral. 377, 400. 528
Fourier's series. 458. 405, 525
Fractions, partial, 20, 00. See Kational
Free maxima and minima, 120
Frenet's fornuilas, 84
Frontier, 34. See Bcnindary
Function, average value of, 333 ; ana-

lytic, 304; complementary, 218, 243;
complex, 157, 292; conjugate, 5o(i

;

dissipative, 225, 307 ; doubly periodic,

486; F-function, 02 ; even, 30; Green,
535; harmonic, 530; inteirral. 433;
odd, 30; of a complex varialjle, 157;
periodic, 458, 485

;
potential, .301. See

also most of these entries themselves,
and others under Functions

Functional dependence, 129
Functional determinant. 129
Functional equation, 45, 247. 252, 387
Functional independence, 12'.»

Functional relation. 129
Functions, series of, 4.30: table of ele-

mentary, 102. For special functions

see under their names or symbols ; for
special types see below

Functions defined by functional equa-
tions, cylinder or Bessel's, 247 ; ex-

ponential, 45, 387 ; Legendre's, 252
Functions defined by integrals, contain-

ing a parameter, 281, 368, 376; their

continuity, 281, 369; differentiation,

283, 370 ; integration, 285, 370, 373
;

evaltiation, 284. 286, 371 ; Cauchy's
integral, 304 ; Fourier's integral, 377,

460; Poisson's integral, 541, 540; po-
tential integrals, 546 ; with variable

limit, 27, 53, 209, 255, 295, 298; by
inversion. 490. 503, 517; conjugate
function, 530, 542; special functions,

Bessel's, 394. 398 ; Beta and Gamma,
378; error, f. 388 ; E (0. k). 514 ; F(,p. k),
507 ; logarithm. 302, 300. 497

;
7)-func-

tion, 517; sin-i, 307, 498; sn-i, 435,

503; tan-i. 307, 498
Functions defined by mapping, 543
Functions defined by properties, con-

.stant, 482 ; doubly periodic, 486 ; ra-

tional fraction. 483
;

periodic or

exponential. 484
Functions defined by series, p-f unction,

487 ; Theta functions, 467
Functions of a complex variable, 158,

163 ; analytic, 304, 435 ; angle of,

159; branch point, 492; center of

gravity of poles and roots, 482
;

Cauchy's integral, 304, 477 ; con-
formal representation, 490 ; continu-

ation of, 444, 478, 542 ; continuity,

158, 470 ; critical points. 477, 491 ; de-

fines conformal transformation, 476

;

derivative of. 158, 470; derivatives of

all orders, 305; determines harmonic
functions. 530 ; determines orthogonal
trajectin-ies. 194 ; doubly periodic, 486

;

elementary. 1(52 ; essential singularity,

479, 481; expansible in series, 430;
expansion at infinity, 481 ; finite dis-

continuity. 479 ; integral, 433 ; integral

of, 300. 3()0; if constant, 482; if'ra-

tional, 483 ; inverse function, 477 ; in-

version of . 543 ; logarithnuc derivative,

482; nniltiple valued, 492 ; number of

roots and poles. 482; periodic, 485;
poles of, 480 ;

principal part, 483 ; resi-

dues, 480 ; residues of logaritlunic de-

rivative, 482; l^iemann's surfaces,

493 ; roots of, 158, 482 ;
singularities

of, 476, 479; Taylor's Fornuda, 305;
uniformly continuous, 476; vanishes,

158, See various special functions

and topics

Functions of one real variable, 40;

average value of, 333; branch of, 40;

Cauchy's theorem, 30, 49 ; continuous,



INDEX 561

41; continuous over dense sets, 44;
Darboux'sTlieorem, 51 ; derivative of,

45 ; differentiable, 45 ; differential, 64,

67; discontinuity, 41. 462; expansion
by Fourier's series, 462

; expansion by
Legendre's polynomials, 466 ; expan-
sion by Taylors Formul^i, 49, 55;
expansion by Taylor's Series, 435 ; ex-

pression as Fourier's Integral, 377,

466 ; increasing, 7, 45, 310, 462 ; in-

finite, 41 ; infinite derivative, 46 ; inte-

grable, 52, 54. 310; integral of, 15, 24,

52 ; inverse of, 45 ; limited, 40 ; limit

of, 41, 44 ;
lower sum, 51 ; maxima and

minima, 7, 9, 10, 12, 40, 43, 46, 75;
multiple valued, 40; not decreasing,

54, 310 ; of limited variation, 54, 309,

462 ; oscillation, 40, 50 ; Rolle's Theo-
rem, 8, 46 ; right-hand or left-hand
derivative or limit, 41, 46, 49, 462

;

single valued, 40 ; theorems of the

mean, 8, 25. 29, 46, 51, 52, 359; uni-

formly continuous, 42 ; unlimited, 40
;

upper sum, 51; variation of, 309, 401,

410. See various special topics and
functions

Functions of several real variables, 87;
average value of, 334, 340 ; branch
of, 90; continuity, 88; contour lines

and surfaces, 87; differentiation, 03,

117; directional derivative, 97; double
limits, 89, 430 ; expansion by Taylor's
Formula, 113; gradient, 172; harmonic,
530; homogeneous. 107; implicit. 177

;

integral of^ 315, 326. 335. 340; intt--

gralion,319. 327; inverse. 124; maxima
and minima, 114. 118. 120, 125; miui-
max, 115; multiple-value(1.90

; iK)rmal
derivative. 97 ; over various regions,

91; potential. 547; single-valued, 87;
solution of, 117; space derivative, 172

;

total differential, 95; transformation
by, 131; Theorem of the Mean, 94;
uniformly continuous. 91; variation
of. 90

Fundamental solution. 534
Fundamental theorem of aK'ebra. 159.

306
Fundamental units, 109

Gamma function, 378; as a product,
458 ; asymptotic expression, 383, 456

;

beta functions. 379 ; inteirrals in terms
of. 380 ;

logarithm of, 383 ; Stiriin-'s

Fornuila. 386
Gas, air, 189 ; molecules of a, 392
Gauss's Formula, 342
Gauss's Intesral, 348
gd, gd-i, ey,\Q, 450
General solution, 201, 230, 269
Geodesies, 412

Geometric addition. 163
Geometric language, 33, 335
Geometric series, 421
Geometry. See Curve, Differential, and

all special topics

Gradient, y, 1"^, 301. See Del
Gravitation. See Attraction
Gravity. See Center
Green Function, 535, 542
Green's Formula, 349, 531
Green's Lemma, 342, 344
Gudermannian function, 6, 16, 450
Gyration, radius of, 334

Half periods of theta functions, 468
Hamilton's equations, 112

Hamilton's principle, 412
Harmonic functions, 530; average value,

531; conjugate functions, 536 ; exten-
sion of, 542 ; fundamental solutions,

534; Green Function, 535; identity

of, 534; inversion of, 539; maxinmm
and mininuun. 531, 554; Poisson's In-

tegral, 541, 546; potential, 548; sin-

gularities, 534
Helicoid, 418
Helix, 177, 404
Helmholtz, 351
Higher dimensions, 335
Higher order, differentials, 67, 104; in-

finitesimals, 64. 356; infinites, (iO

Ilonidgeneitv, phvsical, 109; order of,

107"

Homo<:eneous differential equations,
204,' 210, 230, 23*;, 259, 262. 278

Homogeneous functions, 107 ; Euler's

Fcinnula, 108, 152
Hooke's law, 187

Hydrodynamics. See Fluid
IIy]:)erbolic funetiims. 5. .Sec cosh, sinh,

etc.

Hypergeometric series, 398

Imaginary. 153, 216; conjugate, 156
Imaginary powers. 161

Implicit functions. 117-135. See .Max-

ima and Minima. Minimax. etc.

Indefinite integral. 15. 53. See Functions
Independence, functional. 129; linear,

245 ; of path, 298
Indeterminate forms, 61; L'llospital's

Rule, 61 ; in two variables, 298
Indicatrix. Dupin's, 145
Indices, law of. 150
Induction, 308. 348
Inequalities, 36
Inertia. .See Moment
Infinite. 66 ;

become. 35
Infinite derivative. 46
Infinite integral. 352. .See Functions
Infinite product, 429
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Infinite series, 30, 419
Infinite solution, 230
Infinitesimal, 03 ; order of, 03 ; higher

order, 04 ; order higher, 350
Infinitesimal analysis, 08
Infinity, point at, 481
Inflection point, 12, 75; of cubic, 521

Instantaneous center, 74, 178

Integrability, condition of, 255 ; of func-

tions, 52, 308
Integral, Cauchy's, 304; containing a

parameter, 281, 305; definite, 24, 51

;

double, 315 ;
elliptic, 503 ; Fourier's,

377; Gauss's, 348; higher, 335; in-

definite, 15, 53 ; infinite, 352 ; inver-

sion of, 490; line, 288, 311, 400;
Poisson's, 541; potential, 540; sur-

face, 340 ; triple, 320. See Definite,

Functions, etc.

Integral functions, 433
Integral test, 421
Integrating factor, 207, 240, 254
Integration, 15 ; along a curve, 291. 400

;

by parts, 19, 307 ;
iiy substitution, 21

;

constants of, 15, 183 ; double, 32, 320
;

of functions of a complex variable,

307 ; of radicals of a biquadratic, 513
;

of radicals of a quadratic, 22 ; of ra-

tional fractions, 20 ; over a surface,

340 ; term by term, 430 ; under tlie

sign, 285, 370. See Differential eijua-

tions. Ordinary, Partial, etc.

Intrinsic equation, 240
Inverse function, 45, 477 ; derivative of,

2, 14

Inverse operator, 150, 214
Inversion, 537; of integrals, 490
Involute, 234
Irrational numbers, 2, 30
Irreducible circuits, 91, 302, 500
Isoperimetric problem, 400
Iterated integration, 327

Jacobian, 129, 330. 330, 470
Jumping rope, 511
Junction line, 492

Kelvin, 351
Kinematics, 73, 178
Kinetic energy, of a chain, 415; of a

lamina, 318; of a medium, 410 ; of a

particle, 13, 101 ;
of a rigid body, 293

;

of systems, 112, 225, 413

Lagrange's ecjuations, 112, 225, 413
Lagrange's variation of constants, 243
Lamina, center of gravity of. 317;

density of, 315 ; energy of, 318 ; kine-

matics of, 78, 178; mass of, 32, 310;
moment of inertia of, 32, 315, 321;
motion of, 414

Laplace's equation, 104, 110, 52(), 530,

533, 548
Law, Ampere's, 350; associative, 150,

105; commutative, 149, 105; distrib-

utive, 150, 105 ;
Faraday's, 350

;

Hooke's, 187; of indices, 150; of

Nature, 307
;
parallelogram, 154, 103,

307 ; of the Mean, see Theorem
Laws, of algebra, 153; of motion, 13,

173, 204
Left-hand derivative, 40
Left-handed axes, 84, 107
Legendre's elliptic integrals, 503, 511
Legendre's ecjuation, 252 (Ex. 13 5) ;

gen-
eralized, 520

Legendre's functions, 252
Legendre's polynonnals, 252, 440, 400

;

generalized, 527
Leibniz's Kule, 284
Leibniz's Theorem, 11, 14, 48
Length of arc, 09, 78, 131, 310
Limit, 35 ; double. 89 ; of a (juotient,

1, 45; of a rational fraction, 37; of a
sum, 10, 50, 291

Limitt'd set or suite, 38
Linuted variation, 54, 309. 402
Line, direction of, 81, 1()9 ; tangent,

81 ; normal, 90
;

perpendicular, 81,

105
Line integral, 288, 298, 311. 400 ; about a

closed circuit, 295, 344 ; Cauchy's, 304 ;

differential of, 2!)1 ; for angle, 297

;

for area, 289; f(n- work, 293; in the

complex plane, 300, 497 ; independent
of jiath, 298 ; on a Riemaim's surface,

499, 503
Lineal element, 191, 228, 231, 201

Linear dependence or independence,
245

Linear differential etpiations, 240
;

Bessel's, 248; first order, 205, 207;
Legendre's, 252 ; of physics. 524

;
par-

tial, 207, 275, 524; second order, 244;
simultaneous, 223 ; variation of con-

stants, 243 ; with constant coefficients,

214, 223, 275
Linear operators, 151

Lines of curvature, 140

log, 4, 11, 101, 302, 449, 497 ; log cos, log

sin, log tan, 450 ;
— logr, 535

Logaritlnnic differentiation and deriv-

ative, 5 ; of functions of a complex
variable, 482 ; of gamma function,

382 ;
of theta functions, 474, 512

Logarithms, computation of, 59

Attest, 432
Maclaurin's Formula, 57. Sec Taylor's

^laclaurin's Series, 435
Mii^iiitude of complex numbers, 154

Mapping regions, 543
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Mass, 110; of lamina, 316, 32; of rod,

28; of solid, 32(5; potential of a,

308, 348, 527. See Center of gravity

Maxima and minima, constrained, 120,

404 ; free, 120 ; of functions of one vari-

able, 7, 9, 10, 12, 40, 43, 46, 75 ; of func-

tions of several variables, 114, 118, 120,

125 ; of harmonic functions, 531 ; of

implicit functions, 118, 120, 125; of

integrals, 400, 404, 409 ; of sets of num-
bers', 38 ; relative, 120

Maxwell's assumption for gases, 390

]Mayei''s method, 258
Mean. See Theorem of the Mean
Mean curvature, 148
Alean error, 390
Mean square error, 390
Mean value, 333, 340
Mean velocity, 392
Mechanics. See E(iuilibrium, Motion,

etc.

Medium, elastic, 418; ether, 417. See

Fluid
Meusnier's Theorem, 145

IMinima. See Maxima and minima
Minimax, 115, 119

Minimum surface, 415, 418
Modulus, of complex number, 154; of

e*lliptic functions, k, k', 505
Molecular velocities, 392
Moment, 176; of momentum, 176, 264,

325
Moment of inertia, curve of mininuim,

404; of a lamina, 32, 315, 324; of a

particle, 31 ; of a solid, 328, 381
Momentum, 13, 173; moment of, 176,

264, 325; principle of, 264
Mongers method, 276
Motion, central, 175, 264; Hamilton's

equations, 112; Hamilton's I'rinciple,

412; inaplane, 2r)4
; Lagrange's equa-

tions, 112, 225, 413; of a chain, 415;
of a drumhead, 52(i ; of a dynamical
system. 413 ; of a lamina, 78, 178. 414

;

of a medium, 41(5 ; of the simple pen-
dulum, 509 ; of systems of particles,

175 ; rectilinear, 186 ; simple harmonic,
188. -See Fluid, Small vibrations, etc.

INIultiple-valued functions, 40, 90, 492
Multiplication, liy complex numbers,

155; of series. 442 ; of vectors, 164
Multiplier, 474; undetermined. 411

Multipliers, method of. 120, 126, 406,
411

^lultiply connected regions, 89

Newton's Seconil Law of Motion, 13, 173,
186

Normal, principal, 83; to a closed sur-

face, 167. 341
Nori lal derivative, 97, 137, 172

Normal line, 8, 96
Normal plane, 181

Numbers, Bernoulli's, 448 ; complex,
153 ; Euler's, 450 ; frontier, 34 ; inter-

val of, 34 ; irrational, 2, 36 ; real, 33
;

sets or suites of, 38

Observation, errors of, 386 ; small er-

rors, 101

Odd function, 30
Operation, 149
Operational methods, 214, 223, 275, 447
Operator, 149, 155, 172 ; distributive or

linear, 151; inverse, 150, 214; invol-

utorv, 152 ; vector-differentiating, 172,
260, '343, 345, 349

Order, of critical point, 491 ; of deriv-

atives, 11 ; of differentials, 67 ; of

differential equations, 180; of doubly-
periodic function, 487

; of homogene-
ity, 107 ; of inhnitesimals, 63 ; of

intinites, 66; of ix)le, 480
Ordinary differential equations, 203

;

approximate solutions, 195, 197; aris-

ing from partial, 534 ; Bernoulli's, 205,

210; Clairaut's, 230; exact, 207, 237;
homogeneous, 204, 210, 230, 236 ; inte-

grating factor for, 207; lineal element
of, 191; linear, see Linear; of higher

degree, 228; of higher order, 234; prob-
lems involving, 179; Kiccati's, 250;
systems of, 223, 260 ; variables sepa-

rable, 203. See Solution
Orthogonal trajectories, plane, 194, 234,

266'; space, 260
Orthogonal transformation, 100
Osculating circle, 73
( )sculating plane. 82, 140. 145, 171, 412
Osgood's Theoi'em, 54, 65, 325

p-function. 487, 517
Pappus's Theorem, 332, 346
Parallelepiped, volume of, 169

Parallelism, condition of, 166
Parallelogram, law of addition, 154, 163,

307; of periods, 486; vector area of,

l(i5

I'arameter, 135 ; integrals Avith a, 281

Partial derivatives, 93 ; higher order,

102

Partial differentials, 95, 104
Partial differential equations, 267; char-

acteristics of, 267, 279; Charpifs
method, 274 ; for types of surfaces.

269; Laplace's, 526; linear, 267, 275,

524 ; ]\Ionge's method, 276 ; of physics,

524 ; Poisson's, 548
Partial differentiation, 93. 102 ;

change
of variable, 98, 103

Partial fractions, 20, 06
Particular solutions, 230, 524
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Path, independency of, 298
Pedal curve, 9

Period, half, 468 ; of elliptic functions,

471, 480; of exponential function, 161;

of theta functions, 468
Periodic functions, 161, 458, 484
Pennanence of form, 2, 478
Physics, differential equations of, 524

Planar element, 254, 267
Plane, normal, 81 ; tanfrent. 96 ; oscu-

lating, 82, 140, 145, 171, 412
Points, at infinity, 481; consecutive, 72

;

inJiection, 12, 75, 521 ; of condensation,

38, 40 ; sets or suites of, 380 ; singular,

119, 476
Poisson's equation, 548
Poisson's Integral, 541

Polar cooi'dinates. 14, 79

Pole, 479; order of, 480 ; residue of, 480
;

principal part of, 483
Polynomials, Pernoulli's, 451 ; Leuen-

dre's, 252, 440, 466, 527 ; root of, 159,

482
Putential, 308, 332, 348. 527, 530. 539,

547 ; double surface, 551

Potential energy, 107, 224, 301, 413

Potential function, 301, 547
Potential integrals, 546; retarded, 512;

surface, 551

Power series, 428, 433, 477 ; descending,

389, 397, 481

Powers of complex numbers, 161

Pressure, 28
Principal normal, 83
Principal part. 483
Principal radii and sections, 144

Principle, Hamilton's, 412 ; of energy.

264 ; of momentum, 264 ; of moment
of momentum, 264 ; of permanence
of form, 2, 478 ; of work and enerirv,

293
Probability, 387
Probable error, 389
Product, scalar, 164; vector, 165; of

complex numbers, 155; of operators,

149; of series, 442
Products, derivative of, 11, 14, 48; in-

tinite, 429
Projection, 164, 167

Qaadratic form, 115, 145
Quadrature, 313. See Integration
Quadruple integrals, 335
Quotient, limit of, 145; of differences.

30,61; of differentials. 64, 67; of power
series, 446; of theta functions, 471

Paabe"s test. 424
Radius, of convergence, 433, 437; of cur-

vature. 72, 82, 181; of gyration, -V-'A
;

uf torsion, 83

Hates, 184
Katio test, 422
Rational fractions, characterization of,

483 ; decomposition of, 20, 66
; inte-

gration of, 20 ; limit of, 37

Keal variable, 35. See Functions
Rearrangement of series, 441
Rectifiable curves, 311

Reduced equation, 240
Reducibility of circuits, 91

Regions, varieties of, 89
Relation, functional, 129
Relative maxima and mimima, 120
liemainder, in asymptotic expansions,

390, 398, 4.56; in Taylor's or Mac-
laurin's Formula, 55, 306, 398

Residues, 480, 487 ;
of logarithmic de-

rivatives, 482
Resultant, 154, 178; moment, 178
lietarded potential, 552
Reversion of series, 446
Revolution, of areas, 346 ; of curves,

332; volume of, 10

Rhumb line, 84
Riccati's equation, 250
Niemann's surfaces, 493
Right-hand derivative, 46
Right-handed axes, 84, 167

Rigid body, energy of a, 293; with a
fixed point, 76

Holle's Theorem, 8, 46
Roots, of complex numbers, 155 ; of

polynomials, 156, 159, 306, 412; of

unity, 156
Railed surface, 140

Saddle-shaped surface, 143

Scalar product, 164. 168, 343
Scale of numbers. 33
Series, as an inteirral. 451 ; asvmptotic,

390, 397, 456; binomial, 423. 425;
Fourier's, 415; infinite, 39. 419; ma-
nipulation of, 440 ; of complex terms,

423; of functions, 430; Taylor's and
Maclaurin's, 197, 435, 477; theta,

467. See various special functions

Set or suite, 38, 478 ; dense, 39, 44, 50
Shortest distance, 404, 412
Sigma functions, a, ca, 523
Simple harmonic motion, 188

Simple pendulum, 509
Simply connected region, 89. 294

Simpson's Rule. 77

Simultaneous diiferential equations. 223.

260
sin. sin-i. 3. 11. 21, 155, 161. 307, 43( .

453, 499
Sine amplitude. 507. Sec sn

Single-valued function. 4(). !-i7, 2'.t5

Singular jioints. 119. 476
Singular solutions, 230, 271
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Singularities, of functions of a complex
variable, 476, 479 ; of harmonic func-

tions, 534

sinh, sinh-i, 5, 453

Slope, of a curve, 1 ; of a function, 301

Small errors, 101

Small vibrations, 224, 415

sn, sn-i, 471, 475, 503, 507, 511, 517

Solid angle, 347
Solution of differential equations, com-

plete, 270
;
general, 260 ; infinite, 230

;

particular, 230,',524 ;
singular, 230, 271

Solution of implicit functions, 117, 133

Speed, 178
Spherical coordinates, 79

Sterling's approximation, 386, 458

Stokes's Formula, 345, 418

Strings, equilibrium of, 185

Subnormal and subtangent, 8

Substitution. See Change of variable

Successive approximations, 198

Successive differences, 49

Suite, of numbers or points, 38 ; of func-

tions, 430 ; uniform convergence, 431

Sum, limit of a, 36, 24, 51, 419; of a

series, 419. See Addition, Definite in-

tegral. Series, etc.

Superposition of small vibrations, 226,

525
Surface, area of, 67, 339 ; closed, 167,

341; curvature of, 144; developable,

141, 143, 148, 279; element of, 340;
geodesies on, 412; minimum, 404, 415

;

normal to, 96, 341; Riemann's, 403;
ruled, 140 ; tangent plane, 96 ; types

of, 269; vector,l67; w-, 492

Surface inteitral, 340, 347
Symbolic methods, 172, 214, 223, 2()0,

275, 447
Systems, conservative, 301; dvnamical,

413
Systems of differential e(iuations, 223,

260

tan, tan-i, 3, 21, 307, 450, 457, 498
Tangent line, 8, 81, 84
Tangent plane, 96, 170
tanh, tanh-i, 5, 0, 450, 501
Taylor's Formula, 55, 112, 152, 305, 477
Taylor's Series, 197, 435, 477
Taylor's Theorem, 49
Test, Cauchy's, 421; comparison, 420;

Raabe's, 424; ratio, 422; Weierstrass's

M-, 432, 455
Test function, 355
Theorem of the Mean, for derivatives.

8, 10. 46, 94 ; for integrals, 25, 29, 52

359
Thermodynamics, 106, 294
Theta functions, //, H^.Q. 6j, as Fourier's

series, 467; as products, 471 ; define

elliptic functions, 471, 504; logarith-

mic derivative, 474, 512
;
periods and

half periods, 468 ; relations between
S(]uares, 472 ; small thetas, d, da, 523

;

zeros, 469
Torsion, 83; radius of, 83, 175
Total curvature, 148
Total differential, 95, 98, 105, 209,

295
Total differential equation, 254
Total differentiation, 99
Trajectory, 196; orthogonal, 194, 234,

260
Transformation, conformal, 132, 476;

Euler's, 449 ; of inversion, 537 ; orthog-
onal, 100; of a plane, 131; to polars,

14, 79

Trigonometric functions, 3, 161, 453
Trigonometric series, 458, 465, 525
Triple integrals, 326 ; element of, 80

Umbilic, 148
Undetermined coefficients, 199
Undetermined nmltiplier, 120, 126, 406,

411
Uniform contiiuiity, 42. 92,. 476
Uniform convergence, 369, 431

Units, fundamental and derived, 109;
dimensions of, 109

Unity, roots of, 156
Unlimited set or suite, 38

Vall^e-Poussin, de la, 373, 555
Value. See Alisolute, Average, Mean
Variable, complex, 157; eciuicrescent,

48 ; real, 35. See Change of. Functions
Variable limits for integrals, 27, 404
A'ariables, separable, 179, 203. See

Functions
Variation, 179; of a function, 3, 10. 54;

limited, 54. 309; of constants, 243
Variations, calculus of, 401 ; of integrals,

401, 410
Vector, 154, 163; acceleration, 174; area,

1()7, 290 ; components of a, 163, 167,

174, 342; curvature, 171; moment,
176; moment of momentum, ]7();

momentum, 173 ; torsion, 83, 171
;

velocity, 173

Vector addition, 154. 163
Vector di fferential ion, 1 70, 260, 342, 345

;

f (n-ce, 1 73

Vector functions, 260, 293, 300, 342, 345.

551
A'ector operator y. see Del
A'ector product, l(i5, 168, 345
Vectors, addition of, 154, 163 ; com-

planar, 169; nudtiplication of, 155.

163
;
parallel, l(i6

;
perpendicular, 165 ;

products of, 164, 165, 168, 345; pro-

jections of, 164, 167, 342
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Velocity, 13, 173 ; anjjular, 346 ; areal,

175 ; of molecules, 392
Vibrations, small, 224, 526 ; supeiposi-

tion of, 226, 524
Volume, center of gravity of, 328 ; ele-

ment of, 80 ; of parallelepiped, 169
;

of revolution, 10 ; under surfaces, 32,

317, 381 ; with parallel bases, 10

Volume integral, 341

Wave equation, 276
Waves on water, 529

Weierstrass's integral, 517
Weierstrass's J/-test, 432
Weights, 333
Work, 107, 224, 202. 301 ; and eneriry,

293, 412
Wronskian determinant, 241

z-plane, 157. 302, 360, 433; mapping
the, 490. 497, 503, 517, 543

Zeta functions, Z, 512
; f, 522

Zonal harmonies. See Legendre's poly-
nomials





THE LIBRARY
UNIVERSITY OF CALIFORNIA

Santa Barbara

THIS BOOK IS DUE ON THE LAST DATE
STAMPED BELOW.

yyilS 13B

;! J n
flr^-)o .-Oil iiETD0CT5 mno

KID
Mil 1084

lODSEP 2^198828

sop 'fpi/'v

Series 9482

•" » ?^



3 1205 00413 5495

Ci>^
UC SOUTHERN REGIONAL LIBRARY FACILITY

AA 000118 850 7




